

Now you can be a Hall "cralier" Build this new HALLIKIT AM/CW station. See your distributor.

Two great new kits...a complete, high-performance AM/CW station, from the world's most experienced designers of short wave equipment.

HALLIKITS, we call them - a completely new concept of kit engineering that brings to your workshop, for the first time, these two outstanding advantages:

First, the unparalleled design experience of Hallicrafters' communi-
cations laboratories; and second, production-line proof of "Constructability" before you buy.

Have a wonderful time! Save a bundle of money! End up with a station the most experienced amateur would be proud to call his own.

HT-40 TRANSMITTER, \$79.95

A perfect match for the handsome SX-140, both in quality and appearance. Hallicrafters' transmitter leadership is evident in every precisionengineered feature of this crystal-controlled 75 -watt beauty-features as important to oldtimers as they are to novices.

- FEATURES: You get excellent CW performance as well as AM. Full band switching, 80 through 6 meters. Enjoy easy tune-up and crisp, clean styling that has efficient operation as well as appearance in mind. Unit is fully metered, TVI filtered.
- SPECIFICATIONS: Maximum D.C.powerinput: 75 watts. Power output in excess of 35 watts CW, 30 watts peak AM phone. (Slightly less on 6 meters.) Frequency bands: 80, 40, 20, 15, 10 and 6 meters.
- TUBES AND FUNCTIONS: 6DQ5 power output; 6CX8 crystal oscillator and driver; 12AX7 speech amplifier; 6DE7 modulator; silicon high voltage rectifiers.
- FRONT PANEL: Function (AC off, tune, standby, AM, CW); Band Selector (80, 40, $20,15,10,6$); Drive control; Plate tuning, plate loading, Crystal-V.F.O:; Grid Current; Meter; AC indicator light; RF output.
- REAR CHASSIS: Microphone gain; antenna co-ax connector; remote control terminals; AC power cord.

halli-kits fom $\boldsymbol{(B}$ hallicrafters

EXPORT SALES: International Div., Raytheon Co., Walham, Mass. Canada: Gould Sales Co., Montreal, P.Q.

SX-140 RECEIVER, $\$ 94.95$
Doesn't it make sense to team up your skill with the experience of a company who has designed and built more high-performance receivers than any other in the world? Especially when the result is the lowest-priced amateur band receiver available?

- FEATURES: You get complete coverage of all amateur bands 80 through 6 meters, with extremely high sensitivity and sharp selectivity. Unit has RF stage; S-meter; antenna trimmer: and XTAL calibrator. Tuning ratio is 25 to 1 .
- CONTROLS: Tuning; Antenna Trimmer; Cal. Reset; Function (AC off, standby, AM, CW-SSB); Band Selector; Cal. on/off; RF Gain; Auto. Noise Limiter on/off; Selectivity ;BFO; Audio Gain; phone jack; S-meter Adj.
- TUBES AND FUNCTIONS: 6AZ8 tuned RF amplifier and crystal calibrator; 6 U 8 oscillator and mixer; 6BA6 1650 kc . IF amplifier and BFO; 6T8A 2nd detector, A.V.C., ANL and 1st audio; 6 AW 8 A audio power amplifier and S-meter amplifier; (2) silicon high voltage rectifiers.

Both units are available fully wired, and tested. SX-140, \$109.95. HT-40, \$99.95.
in communications are born!

The pride of any room

CollasSlue

Those clean, smooth lines of Collins S/Line make this system-engineered single sideband station welcome in your den, ham shack or family room.
The distinctive appearance of Collins $S /$ Line is surpassed only by its advanced circuitry and technical performance. Collins $S /$ Line gives you the cleanest, clearest signal on the amateur bands between 3.4 and 29.7 mc .

Visit your Collins Distributor and discover why Collins $\mathrm{S} /$ Line, because of its advanced design and built-in quality, retains its value through the years. Bring your XYL and see why Collins S/Line wins her acclaim for excellence in appearance.
After talking with your Collins Distributor you'll find out just how easy it is to own the finest in amateur radio - Collins S/Line.

PUBLISHED. MONTHLY, AS ITS OFFICIAL ORGAN, BY THE AMERICAN RADIO RELAY LEAGUE, INC., WEST hartford, CONN., U. S. A.; Official organ of the international amateur radio union

STAFF

A. L. BUDLONG, WIBUD Editor
HICHARD L. BALDWIN, WIIKE Managing Editor
GEORGE GRAMMER, WIDF Technical Editor DONALD H. MIX, WITS BYRON GOODMAN, WIDX MASON P. SOUTHWORTH, WIVLH
Assistant Technical Editors EDWARD P. TILTON, WIHDQ V.H.F. Editor

LEWIS G. McCOY, WIICP
E. LAIRD CAMPBELL, WICUT Technical Assistants ROD NEWKIRK, W9BRD Contributing Editor, DX ELEANOR WILSON, WIQON Contributing Editor, YLs SAM HARRIS, WIFZJ HELEN HARRIS, WIHOY Contributing Editors, V.H.F.

LORENTZ A. MORROW, WIVG Advertising Manager EDGAR D. COLLINS Advertising Assistant
Chris Dunkle and Associates 740 S. Western Ave. Los Angeles 5
California Representative

DAVID H. HOUGHTON Circulation Manager
J. A. MOSKEY, WIJMY

Assistant Circulation Manager

OFFICES

38 La Salle Road

West Hartford 7, Connecticut Tel.: ADams 6-2535
Subseription rate in United States and fosseripions. $\$ 5.00$ per year, postnaif: $\$ 5.25$ in the tominion of Canada, 5.25
56.00
in $\$ 6.00$ in all other countries. Sinkle roples. so pents. foreign remittances sthond be moy merner or bank draft. expressblate in the ir, is. and for an equivalent amount in U. s. funds.
Second-class nostage paid at Hartford. Onn.. and at additional malling omces.
Copyright 1960 by the American Radio Relay League, Inc. Title registered at i, b. Patentionce.international ropyrikht secured. Quedan reserdado. todos los derechos.
Printed in 11.8. A.

INDEXED BY
Applied Science and Technology Index
Library of Congress Catalog -...
Card No.: 21-9421

-CONTENTS-

TECFNICAL -More Beef for the "Imp"
Joseph S. Galeski, jr., W4IMP 11
The Gamma-Matched Ground Plane
Benson Boss, K2GHM 16
The Fox Vox Adapter Grady B. Fox, jr., W2VVC 18
Array Design With Optimum Antenna Spacing
H. W. Kasper, K2GAL 23
A V.H.F. Variable-Frequency Crystal Exciter Henry J. Saborsky, W4KXI 27
A Better Way to Install Fittings on $1 / 4$-Inch Coax
John Howard, K8MME 29
More on Homemade Transformer Design
T. J. Maresca, W2VLA 30
Transistor Preamplifier for Dynamic Microphones Robert F. Witters, K6VGA 34
Measuring Coil Q .Doyle Strandlund, W7LHZ 36
A High-Pass Filter for the Ham Receiver
R. E. Baird, W7CSD 38
Recent Equipment:
Hallicrafters HA-1 Electronic Keyer 44
Heathkit GW-30 Ten-Meter Transceiver. 46
Technical Correspondence 49
New Apparatus:
New Miniaturized Variable Capacitors 77
BEGINNER \& NOVICE-
50- and 144-Mc. Reception at Low Cost
Lewis G. McCoy, WIICP 39
OPERATING -
Announcing the 27th ARRL Sweepstakes. 50
GENERAL -
Home-built Stations 53
Planning Ahead 56
The Amateur and the Army

\qquad .Earle F. Cook, W4FZ 58
"It Seems to Us . . ."............ 9 . 10
Harfest Calendar 10
Hints and Kinks. 54
YL News and Views 64
65
65
Vorld Above 50 Mc 71
How's DX? 77
Quist Quiz 77

POPULAR AMATEUR TUBE
 POWERS SPACE AGE TV

The miniature TV transmitter at left has special significance for a space-curious world. It may one day help unravel some of the mysteries of the unknown as it soars, along with a TV camera, through the outer reaches in a sophisticated satellite.
At the heart of this tiny transmitter is an Eimac letrode, the 4CX300A. This is the same tube so many discerning amateurs have chosen for use in SSB service. The reason: its ruggedness, reliability, exceptional linearity, and long life. 'Today, whether it's amateur application, or breakthroughs in space communications, Eimac-pioneered tubes lead the way. Look to Eimac for all your amateur radio tube needs.

EITEL-McCULLOUGH, inc. San Carlos, California

It pays to insist on

PR crystals

STANDARD OF EXCELLENCE SINCE 1934

AMATEUR TYPES

40 and 80 Meters, PR Type Z-2
Rugged. Low drift fundamental ascillators. High activity and
power output. Stands up under maximum crystal currents. Stable,
long-lasting ± 500 cycle.. $\$ 2.95$ Net
Third Overtone, PR Type Z-9A
Hermetically sealed; calibrated 24,000 to 24,666 and 25,000 to $27.000 \mathrm{Kc} ., \pm 3 \mathrm{Kc} . ; 050^{\prime \prime}$ pins
$\$ 4.95$ Net

6 Meters, PR Type Z-9A

Fifth overtone; for operating directly in 6-meter band; hermetically sealed: calibrated 50 to 54 Mc., $\pm 15 \mathrm{Kc}$.; $.050^{\prime \prime}$ pins. \$6.95 Net

CITIZENS BAND CLASS "D"

Type Z-9R, Transmitter
FCC assigned frequencies in megacycles: $26.965,26.975,26.985$, 27.005, 27.015, 27.025, 27.035. $27.055,27.065,27.075,27.085$, 27.105, 27.115, 27.125, 27.135, 27.155, 27.165, 27.175, 27.185, 27.205, 2F.215, 27.225; calibrated to $.005 \%$. (Be sure to specify manufacturer of equipment)...... $\$ 2.95 \mathrm{Net}$
CITIZENS BAND CLASS "D"
Type Z-9R, Receiver
Specify I.F. frequency, also whether receiver oscillator is above or below transmitter trequency. Calibrated to $.005 \%$. (Be sure to specify manufacturer of equipment.)
$\$ 2.95$ Net
Type Z-9R, Radio Control FCC assigned frequencies in megacycles: $26.995,27.045,27.095$, 27.145, 27.195, 27.255; calibrated to $.005 \%$. (Be sure to specify manufacturer of equipment)...... $\$ 2.95 \mathrm{Net}$

Type 2XP

Suitable for converters, experimental, etc. Same holder dimensions as Type Z-2.
 12001 to 25000 Kc . (3rd Overtone) $\pm 10 \mathrm{Kc} \$ 4.45$ Net

ALL PR CRYSTALS ARE UNCONDITIONALLY GUARANTEED. ORDER FROM YOUR JOBBER.

COMMERCIAL TYPES
Commercial Crystals available from 100 Kc . to 70 Mc . Prices on request.
Type Z-1, MARS and CAP Official assigned frequencies in the range Calibrated to 005%. 1600 to 10000 Kc $\$ 3.45 \mathrm{Net}$

Type Z 1, TV Marker
Channels 2 thru 13.... $\$ 6.45$ Net
4.5 Mc. Intercarrier, $.01 \%$. $\$ 2.95$ Net
5.0 Mc . Signal Generator.
$.01 \%$....................... $\$ 2.95$ Net
10.7 Mc. FM, IF, $.01 \%$.......................... $\$ 2.95$ Net

Type Z-6A, Frequency Standard
To determine band edge. To keep the IFO and receiver properly calibrated. 100 Kc. .. \$6.95

> PETERSEN RADIO CO., Inc. 2800 W. Broadway COUNCILBLUFFS, IOWA

Section Communications Managers of the ARRL Communications Department

Reports Invited. All amateurs, especially League members, are invited to reportstation activities on the first of each month (for preceding month) direct to the SCM, the administrative. ARRL ollicial elected by members in each Section. Kadio clinb reports are also desired by SCMs for inclusion in QS'T'. ARRL Field Orsanization station appointments are available in the areas shown to qualified League members holding Canadian or FCC amateur license, (ieneral or Conditional Class or above. These include ORS, OES. OPS, OU and OBS. SCNIs also desire applications for SEC, EC, RM and PAMi where vacancies exist. OES appointment is available to Novices und Technicians.

[^0]
OUT OF EQUIPMENTS DEVELOPED B_{y} TMC EMERGES A NEW MODEL

 AUTOMATIC FREQUENCY CONTROL
${ }^{\text {wom }}$ AFS-1

Designed to provide automatic frequency control of less than ± 1 cycle error for reception of suppressed carrier sideband fransmissions, the Automatic Frequency System pictured, Model AFS-1 consists of two TMC models, the AFC-1, Automatic Frequency Confrol, and MSR-6, Receiving Mode Selector. In. conjunction, the two units will work into any sideband receiving system for transmissions of up to 30 db carrier suppression.

The system will correct for up to $\pm 1000 \mathrm{cps}$ drift at a drift rate of 50 cps per second. In the event of a signal fadeout, a built in memory circuit retains the drift information for a predetermined interval, thus holding the recefving system at the corrected frequency.

TECHNICAL SPECIFICATIONS

MODES OF OPERATION:

INPUT FREQUENCY RANGE: INPUT VOLTAGE RANGE: INPUT IMPEDANCE: AVC CHARACTERISTICS: SIDEBAND SELECTION: AFC CAPTURE RANGE: AFC LOCK RANGE:

OUTPUT:
POWER REQUIREMENT:

SSB-Selectable Sideband, suppressed carrier. With AFC-1 disabled the following are avail. able:
SSB-Selectable Sideband AM-Selectable Sideband Exalted carrier AM
CW-MCW
$452-458 \mathrm{kc}$
0.01 to 0.3 volts RMS

240 K ohms
Fast, Medium, Slow
Upper or Lower
$\pm 10 \mathrm{cps}$
Will maintain synchronism for $\pm 1000 \mathrm{cps}$ drift at a maximum drift rate of 50 cps per second. 2 watts, 600 ohms
105/115/125/210/230 volts, 50 60 cps , single phase, 110 watts

the AMERICAN

RADIO RELAY

LEAGUE, inc.,
is a noncommercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the odvancement of the radio ort and of the public welfare, for the representation of the radio amateur in legislative motters, and for the maintenance of froternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affoirs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is noncommercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.
"Of, by and for the amateur," it numbers within its ranks procticolly every worth-while amateur in the nation and has a history of glorious achievement as the standard-bearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite; although full voting membership is granted only to licensed amoteurs.

All general correspondence should be oddressed to the administrative headquarters at West Hartford, Connecticut.

Past Presidents

HIRAM PERCY MAXIM, WIAW, $1914-1936$ EUGENE C. WOOORUFF, W8CMP, 1936-1940 GEORGE W. BALLEY, W2KH, 194D-1952

Officers

President
GOODWIN L. DOSLAND, WOTSN Moorhead, Minnesota
firsf Vice-President, WAYLAND M. GROVES, WSNW P.O. Box 586, Odesso, Texas

Vice-President: FRANCIS E. HANDY, W $18 D I$ 38 La Salle Road, West Hartford, Connecticut
Vice-President ALEX REID, VE2BE 240 Logon Ave., St. Lambert, P. Q., Canado
Secrefary - A. L. BUDLONG, WIBUD 38 La Salle Rood, West Hartford, Connecticut
Treasurer
DAVID H. HOUGHTON
38 Lo Salle Road, West Hartford, Connecticut

Generoi Counsel

PAUL M. SEGAL

DIRECTORS

Canada

NOEL B. EATON
R.R. 3. Burimgton, Ontario

VE3CJ Tice-1)drector:

Atlantic Division

GILBERT L. CROSSLEY
Dent. of E E.. Yenna state University state Conlege. Pa.
V'lce-intrector:Fidwin s. Van Drusen W3 Wenp : 711 Mekinley St.. N.W.. Washington is, D. C:

Central Division

JOHN C DOYLEW9GPI
4331 N . Whinwod Ave. aitwaukee ii. Wis.
Tice-herector: Philin F, HallerW9HPG
600) S. Tripp Ave., (thicago 29, iu.

Dakota Division

CHARI,ES Girmount A ve.. sit. paui 5 , Minn.

Fice-htrector: Martha .J. Sbirley. WoZWLL Box 78, Blark Hawk, s. D.

Delta Division

SANFORD B. DE HART..........W4RRV
227 S. Purdue Ave.. Gais Ridige, Tenn.
Vice-htrector: Vintor Cantield. .i........
Box 965 . Lake Charies, La.

Great Lakes Division

DANA E. (כARTWRIGHT.W8TTP 2479 Observatory Ave.. Cincinnati 8. Ohlo
Fice-1, idector: Robert B. Coner 132 Gulld st., N.E.. Grand Raplds 5, Mich.

Hudson Division
MORTONR, KAHN.
2N BIrch Mill Rd., Great Neck, ${ }^{2}$. \dot{Y}.
W2KR
Tice-I)Arector: f, Jovd H. Manamon. W2VQR 709 Seventh Ave., Asbury Park, N. J.

Midwest Division

ROBERT W. DENNISTON...........WONWX
Vice-j)trectnr: Sumner H. FosterWGGQ
2315 Línden Dr., is.F., Cedar Rapids, Iowa

New England Division

MILTON E. CHAFFFF, Wi...................
53 Hompsdale Are., Southington, Conn.
Tice-Dtrecinr: 17 Park St.. West Haven 18 , Conn.

Northwestern Division

R. REX ROBERT\& 837 Park HUI Drive, Biliings, AMont.

Vece-Dtrector: Harold W. Johnston.........W7PN
27iz7 Belvidere Ave., Seattle fi, wash.

Pacific Division

Fice-i Merector: Ronald G. Martin. . .
1573 Baywood Lane, Napa, Calif.
1573 Baywood Lane, Napa,
Roanoke Division
P. LANIER ANDFRSON JR. ${ }_{4}$

428 Maple Lane, Danvilie. Va. W4MWE tee-Dtrector: Joseph F. Abernethy
. 84 AKC 7BR Colonial Drive, Rock Hili, s. C .

Rocky Mountain Division

CLAUDE M. MAFR, JR.... 485 Race it.. Genver 6 , Chin.
. . Worc
W70Cx
Mirectar: John H. Bampson, Jr.
3618 Mount (gden Drive, Ogden, Utah

Southeastern Division

JAMES ${ }_{2.5}^{P}$ FIrst Ave., N.E.. Atianta i7. Ga.
Tice-ridrector: Thomas M. Mose.W4HYW P.O. Box 644. Alunictnal Alrport Branch,
Atlanta 20, Ga.

Southwestern Division
RAYMOND F. MEYERS
W6MLZ
17 Anderson Way, 8an Ciabrifl. Callf.

West Gulf Division

GRADY A. PAYNE Bellaire, Texa
Vice-Director: Rohert 1). Recd.........W5KY
4339 8. f'corla, ' Tulsa 5, Okla.

"It Seems to Us...

UNSUNG SALESMEN

Along with his membership renerval form, an amateur in California recently wrote us concerning his efforts to "sell" a new ham nearby on the importance of belonging to the League. He hadn't quite brought down his quarry, and was calling on us for more ammunition.

There are hundreds, perhaps thousunds, more of our members whose dedication to the League qualifics them as "unsung salesmen" -.. club officers, SCMs and other ficld otficials, code and theory instructors, and just plain interested members --quietly pointing up the importance of unity in the amateur ranks, quietly recruiting new members for ARRL.

It seems to us that this is the principal way membership in our organization should and must grow - one member reaching one nonmember, and then another, here and there and everywhere in our two countries. True, the headquarters mails information on the League to all new FCC licensees, but remember - the new licensee finds his mailbox full of literature from all sorts of people eager to sell him something. Who can blame the neophyte if, without personal stimulation from a club or individual member-friends. he should consider his literature from the League as just another attempt to separate him from his money? With his main interest probably in more station equipment, it is not difficult to see how he might decide, at least for the moment, hed rather put the five bucks toward new gear. Unless, that is, an "unsung salesman". can personally point out the benefits his $\$ 5.5$ investment buys for all of amateur radio as well as himself. It is the enthusiasm of the individual member or club, with a conviction which cannot be matched by the printed word, which cuan best convince the prospect.

The newcomer may not connect a "subscription blank for QST" with the W1AIW code practice he listened to on a borrowed receiver, which eased the path to his ham ticket. He may have no idea that the joinARRL circular he received and the training film he saw at the local club mecting - the one which finally explained, in terms he could grasp, how a vacuum tube worked - ceme from the same place. Nchematics are just beginning to make real sense to him; he hasn't
yet fully grasped the scope of technical information conning from the laboratorics at 38 Laisalle Road. He may spend a few hours in the Sweepstakes, and thereby increase his operating proficiency considerably, and yet not realize that behind it is "more than a magazine." So it's just another ad, and in the wastebasket it might go, unless some member has given him an inkling of the importance of the League to him as an individual ham.

As a newcomer, he is unlikely to grasp the significance of the League's having fought for ham radio frequencies and privileges at every world conference since 1927, or that after both World Wars the League was instrumental in securing a return of suspended privileges. He has never heard of the case of Wright is. Vogt, one of several in which the League successfully established in court the right of amatcurs to erect antenna towers as a normal accessory to the use of residential property. He may join his section net or the local CD communications group, and still not be aware that the League has sponsored and encouraged message-handling nets and emergency communications units since its earliest days. Indeed, the new ham probably doesn't realize that the record built up through these operations, in the "public convenience, interest and necessity", is a basic reason our government continues to provide us with frequencies on which to enjoy our hobby.
That is, he may not be aware of these things unless a ham friend, already a League menber, has given him some inkling of the importance of organization to the furtherance of our holbly. Someone who will say, in effect:
"Your Full Membership in the League will strengthen the official voice of amateur radio. The larger and more united amateur radio becomes, the greater will be our productivity, the greater our contributions to the public welfare, and the stronger our position in retaining our operating privileges both domestically and at international conferences. As an ARRL Full Member, you will be supporting this concerted effort to keep amateur radio alive and flourishing and the fascinating scientific avocation it is."

May we have 100,000 unsung salesmen?
प5T-

Sudden zeath

I^{N}N Nashville, Tennessec, there are four orphans, brothers and sisters, the oldest of whom is only five. Until recently they had parents; then sudden death, tempted by carelessness, struck the happy family.

In early September the call KN4AAD was issucd to Robert (\mathbf{G}. Lorance, age about 30 , of 516 Annex Ave., Nashville. On Saturday, Sceptember 10, it was raining quite heavily in Nashville, and Lorance and his wife were trying to erect a telescoping mast in his back yard near a 4000 -volt high-tension line. The mast apparenily broke loose from his coutrol and fell across the high-tension line, electrocuting him instantly. His wife saw him fall to the ground and ran to his aid, putting her arms around his waist to pull him free from the mast. She, too, was killed instantly.

We have had several reports of such aceidents in recent years, but this is certainly the most pitiful, particularly because four young children are left without parents. It is all the more tragic because it was so needless.

Another accident, just reported to us, avoided fatal consequences by the harest of margins. K8KSN had been operating in the Ohio Fone Net, and had just secured and stepped outside
his trailer home when there was a flash and an explosion from the trailer. What had happened was this. His antenna ran underneath a 6600 volt line. Some boys had kicked a football in such a way that it struck and deflected the antemua upwards, touching the high-tension line and hurling 6600 volts down into the shack. The transmitter and receiver cabinets were welded together and the equipment ruined. Had this happened minutes carlier when K8KSN was holding his mike, he too might have been listed as a Silent Key this month.

How many of you have your antennas running near high-tension lines? If you do, then you are gambling with your life every time you sit down next to your han rig and every time you make an adjustment to the antenna. And even though you may be willing to risk your own life so foolishly, do you have any right to gamble with the security and happiness of your family?

This could well be a worth-while project for everv amatcur redio clul throughout the land -hold a series of antenna inspection parties at the homes of your members and other hams in the area, aud climinate the safety hazards that are found. Such a project might be the greatest service your cluh has ever rendered.

Indiana - The Fort Wayne RC will hold its 40 th annual Feast on Saturday, November 12. W9BWI will talk on "Hams in Onter Snace." For further information please contact R. Mitchell, W9PEP, 3012 McDonald St., Fort Wayne.

Texas - The Terry County ARC will hold its annual hamfest and swapfest on November 13. For further information contact Irene Lewis, K5LSO, $100 \pm$ South 6th St., Brownfield.

Wisconsin - The Fond du Lac ARC will hold its 4th annual banquet at Bernward Hall in Fond du Lac on November 6. Registration begins at 1300 local time. Since only 200 can be seated, all reservations must be made in rdvance, and prior to Oct. 2L. Mohile talk-in on 75- and ti-meter phone. For reservations and further info. contact havid R. Witt, K9UZR, Route 1, Ripon.

OUR COVER

Haven't forgotten what Field Day was like, have you? Perhaps this month's cover iwill remind you. Shown on our eover this month is the Field Day sctup at W1PX; 1 .-- - the Barnstable Radio Club of Massachusetts. Next month's issue, which will have a cover like you've never before seen on QST, will have the full Field Day results - seores, pictures, and the works.

nostrays

It was interesting to note the number of sharpeycd readers who atter looking at the cover on the August issue also spotted the Ham-Ad in the same issue.

Congratulations to 14 -vear-old K4PVE, who has just become an Eagle Scont.

We read in the General Eflectric News that "for a satisfactory life, a man needs food, shelter, and something to brag about." What better explanation of what makes a DI man tick!

K7IQI fed the e0-watt output of his transmitter into a music stand and worked $\mathrm{F} 5(\mathrm{xO} \mathrm{E}$ on 15 -meter phone. Why did K7IQI have to use such a compact antenna? Simple, dear fellow --. he's a clef-dweller.

The first edition of the Park Service Ham Dirctory has just been issucd, listing those hams who work with the various State and Federal Parks around the country. If vou haven't registered vet, contact Jack E. Boucher, W2PJD. 25 Jackson Ave., Northfield, N. J. Give him the full dope on your ham activities and your park employment.

Guing to be in New Zealand next June? Then plan to attend the 1961 Convention of the New Zealand Association of Radio Transmitters in Hamilton on June 3. Write to ZLiAUV for further details.

More Beef for the "Imp"

100 Watts P.E.P. with a 6DQ5 Linear
BY JOSEPH S. GALESKI, JR..* W4IMP

WTEAN the original "Imp" exciter ${ }^{1}$ was completed. Myron, W4IYC, suggested that it would be a nice rig to put additional countries on sideband. We decided that a more elaborate version would be desirable and for this purpose should (1) Use fixed erystal frequencies so that the station could be located in the pile-up; (2) Have enough power to be heard from a simple antenna: (3) Be self-contained with power supply. The little rig shown in the aceompanying photographs, incorporating an "Imp" exciter, power amplifier, and a.c. power supply, was the end result. It has the following vital statistics:

Size - 7 inches wide by 9 inches deep by 6 inches high.
Weight-11 pounds.
Power - 100 watts p.e.p. input.
Frequency - 20 meters, u.s.b., erystal controlled.
Except for requirement (1) mentioned above, the r.f. part of the exciter circuit is basically the same as that of the original "Imp" described in May (QST. Thus there is no need to repeat the circuit discussion, especially since in domestic operation the VNO of the earlier model is a wel-

[^1] come feature and no doubt would be preferred to fixed-frequency operation. Neither is it necessary to duplicate the actual layout: in fact, some changes might be advisable when there is no necessity for making the complete transmitter as small as possible. It is thought, however, that those who have built the "Imp" would be interested in the amplifier and power-supply circuits shown in Figs. 1 and 2.

Power Amplifier

With a little encouragement from QST, ${ }^{2}$ the 6 DQ 5 was chosen for the output stage. It gives
2 Gardner and Gooch, "The 6DQ5 as a Linear Amplifier," QST', October, 1959.

Fig. 1 -Circuit diagram of the 6DQ5 linear amplifier. Fixed capacitors are disk ceramic, 600 volts, except as listed below.
$\mathrm{L}_{2}-6$ furns No. 18 wound over 100 -ohm 1-watt composition resistor.
L_{3}-8 turns No. 18 wound over 100-ohm 1-watt composition resistor.

L-12 turns No. 18, 1 -inch diam., 8 turns per inch (B \& W 3014).
M_{1}-0-200 d.c. miniature milliammeter (unit shown is 0-1 shunted for $200-\mathrm{ma}$. range).
$\mathrm{RFC}_{1}, \mathrm{RFC}_{3}-2.5 \mathrm{mh}$.
RFC_{2} —44 $\mu \mathrm{h}$. (Ohmite 2-14).

The "export model" of the "Imp" includes not only the original exciter circuit but a 100-watt p.e.p. linear and power supply. In building this one for an overseas friend, W IIMP concentrated on compactness, but the "tight" construction is not an essential ingredient for ordinary use.
high output at relatively low plate voltage in Class AB_{1} operation and is quite easy to drive. The circuit is eonventional. The grid eoil, L_{1} in Fig. 1, uses the input capacitance of the tube itself for tuning. The output pi network, $\mathrm{C}_{2} \mathrm{C}_{3} L_{4}$, will handle a variety of antennas.

Final bias is set so that the static plate current is enough to cause the tube to run at full 24 watts of plate dissipation with no signal. There has been little trouble from instability.

Power Supply and Control Circuits

Size and weight considerations demanded small poser-supply components. In some cases values were determined by physical size limitations. For example, the filter chokes had to be two inches or less in the smallest dimension in order to fit under the chassis.
An "Economy" power supply ", using silicon " (irammer, "More Effective Utilization of the small Power Trunsformer," QST, November, 1952.

Fig. 2 - Power and bias supply. Capacitances are in μ f.; capacitors are electrolytic. Resistors are $1 / 2$-watt composition except as indicated.
$C R_{1}-C R_{4}$, inc.--Silicon, 150 to 500 ma. d.c., 360 to 400 volts inverse peak; use three in each arm of bridge rectifier (Sarkes Tarzian M-150 or M-500, or equivalent).
CR5—Selenium or silicon, 50 ma., 130 v. r.m.s.
$\mathrm{L}_{1}-2$ henrys, 200 ma . (Thordarson 26C43).
$\mathrm{L}_{2}-5$ henrys, $65 \mathrm{ma} .$, to 9 hy., 45 ma . (Thordarson 20C59).
$R_{1}-33,000$ ohms, $1 / 2$ watt (see text).
S1-Rotary, I section, 3 poles, 4 positions, shorting (Mallory 3134 J).
S2-D.p.d.t. toggle.
Tt-Power, 700 volts c.t., 90 ma.; 5 volts, 3 amp ; 6.3 volts, 3.5 amp . (Thordarson $24 \mathrm{RO4U}$ or equivalent).

T2-Filament, 6.3 volts, 1 amp.

Fig. 3-Revised circuit diagram of the 'Imp'" speech amplifier. See Fig. 1, page 12, May, 1960 QST for original circuit. The circuit above adds the 6C4 stage for higher gain. Capacitances are in $\mu \mathrm{f}$.; capacitors with polarities marked are electrolytic, others are ceramic. Resistors are $1 / 2 \mathrm{watt}$.
$\mathrm{R}_{1}-0.5$-megohm control, audio taper.
T_{1}-Plate-to-line audio transformer, approx. 20,000 ohms to 500-600 ohms (Stancor A-3250).
rectifiers in a full-wave bridge circuit, provides about 600 volts for the plate of the $\left.6{ }^{\circ}\right)(25$ and about half that for the exciter. The transformer is a small replacement type rated at 700 volts center-tapped, at 90 ma., 6.3 volts at 3.5 amp ., and 5 volts at 3 amp . If it were run continuously at its full ratings, this would represent ahout 65 watts drain on the transtormer. In s.s.b. we call. use most of this caparity rating while running with resting final current. The transformer will be overloaded during voice transmission, but underloaded on stand-by because then only the tube heaters take power. Because of the low duty eycle of s.s.b., and the fact that even a D) station has to listen about half the time, the temporarily overloaded transformer has a chance to rest.

A small 6.3-volt filament transformer used backwards from the 5 -volt winding supplies voltage to a silicon rectifier for the hias. The series resistor $L_{1}\left(33 \mathrm{~K}^{*}\right)$ was selected for the tube and voltage conditions. Its value should be adjusted to give a resting current that represents a plate
dissipation of 24 watts. The exact current will depend on the actual plate voltage on the tube.

The sercen is supplied from the high voltage through a dropping resistor and is regulated at 150 volts. This voltage is lowered to 75 volts in the "tune" position by shunting the VR tube with a 3500 -ohm resistor.

The main control switch is a 3 -pole, 4 -position unit with shorting contacts. The first pole controls the a.c. line, and the second operates the B + in the "tune" and "operate" positions. The third pole grounds the resistor across the VR tube in the "tune" position and carrier is automatically inserted; in "operate," the sereen voltage is returned to 150 volts and the carrier is balanced out.

The send-receive switch is a d.p.d.t. toggle with one set of contacts brought to a terminal strip on the rear for external control of the receiver or antenna relay.
(Note that there is voltage between the +275 and +600 terminals whether $S_{2 \mathrm{~A}}$ is open or closed, except when S_{1} is in the "off" position.)

An inside view from the power-supply and audio side. The tube in the shield alongside the power transformer is the voltage regulator. The 6U8A combined speech amplifier and crystal oscillator is close to the panel, with the 6C4 additional speech-amplifier tube at the chassis edge alongside the oscillator crystal.

The r.f. circuit runs along the section of the chassis at the upper left in this view. Audio components and the carrier-balance potentiometer are in the near corner. The transformer in the center is for the bias supply; just above it is the filter choke in the low-voltage supply, and in the upper right corner is the choke for the high-voltage supply. The tape wrapping supports the highvoltage filter capacitors

Audio Modification

A stage of audio was found to be a very worthwhile addition to the original "Tmp" exciter and is recommended for those undertaking the proj-

The r.f. side of the chassis. The mixer and amplifier of the original "Imp" circuit are in the section near the panel. Fixed-frequency operation, with different crystals selectable by the rotary switch on the panel, is used instead of the VXO in this model. The 6DQ5 output amplifier and its associated circuit components occupies the foreground in this view. The variable capacitor at the top of the shield partition is the tank tuning capacitor; the loading capacitor is below it, hidden by the tank coil. Band-pass filter crystals are in the compartment immediately under
the tank-capacitor shaft.
ect. A 6 C 4 triode stage, as shown in Fig. 3, provides the extra gain necessary and adds little to the expense or power requirements.

General Comments

In the course of construction, several different mixers, oscillators. and filter variations were tried. I have come to the conclusion that the original eircuit with the added andio stage is about as satisfactory as any arrangement. Good rristalfilter pass bauds can be had up to 8.5 Me. This is prob)ably not the upper limit. but I did not have surplus erystals higher in frequency.
The amplifier and its power supply can be built as a separate unit to follow any low-power exciter. Where more room is available 1 . would reconmend a higher value of filter capacitance for the high-voltage supply. 'The low-voltage and bias filters seem adequate. DIST- $^{\text {ST}}$

Editor's Note: WHIMP has a supply of circuit diagrams of the "export model", which as explained in the article uses a fixed-frequency version of the original Imp exciter, and will be glad to mail one on receipt of : istamped, self-addressed envelope.

The Gamma-Matched Ground Plane

Simplified Matching and
Construction for α Popular-Antenna

BY BENSON BOSS,* K2GHM/W3DAZ

TWE ground-plane antenna is a good low-angle radiator whose performance is relatively independent of where and how it is mounted. Getting a good match to a corxial transmission line, however, is not always easy. Such practices as changing the droop of the radials. shortening (or lengthening) the vertical and adding inductance (or capacitance) undoubtedly work but are difficult. After all these methods, plus pi and L networks at, the antenna, failed to match a $20-$ meter ground plane to better than a 1.5 s.w.r. (and by then bored with many week euds of up-the-tree adjustments), I decided to try one more thing hefore returning to the fondlyremembered Zepp.

The gamma match. It works wonderfully for beams - why wouldn't it work for a ground plane? It was simple enough to ground the vertical to the radials, run a No. 4 insulated wire parallel to the vertical and install a variable capacitor at the base of the wire. Theu the antenna, although too short, was quickly matched to a low s.w.r. by adjusting the height of the connection between the wire and the vertical element and tuning ont reactance with the rapacitor. The antenna maintained this match for three years without any touching up.

Fig. 1 is a diagram of the ground plane and

Fig. 1-Diagram of the gamma-matched ground plane. The vertical element and the radials are connected and grounded at the base. Matching is effected by adjusting the tap on the vertical along with capacitor C.
matching system. Fig. 2 shows s.w.r. vs. frequency curves obtained with the 20 -meter antenna. Both a resistance bridge and a Mickey Match ${ }^{1}$

[^2]
were used for the meusurements with almost identical results. Curve 2 in Fig. 2 is for the original shortened antenna. Curve 1 is for a vertical element of correct length, a recent im-

Fig. 2-S.w.r. vs. frequency characteristics of a 20-meter gamma-matched ground plane having a $21 / 4 \times 3$-inch downspout vertical element and 16.9 -foot long, 0.84 -inch diameter radials. No. 4 wire was used for the gamma rod. Data for curve 1 was taken with a 16.7 -foot vertical element (the theoretically-correct length) and the gamma tap and capacitor adjusted for best match at 14.175 Mc . Curve 2 was made using a 16.0 -foot vertical (too short) matched at 14.05 Mc . Note the higher minimum s.w.r. and the narrower s.w.r. bandwidth with the shorter element.
provement. I think you'll agree that a maximum 8.w.r. of 1.3 across the entire $2(0$-meter band is rather good. Without retuning the tinal, I can shift frequency from 14.00 to 14.35 Mc . with a maximum variation in tinal plate current of only 15 ma . from 330) at the center of the band.

In the summer of 1959 , after two solid weeks of adjustments on a three-loand trap ground plane failed to even approximate the "typical s.w.r. curves" published by the manufacturer, I built a 15 -meter gamma-matched ground plane. Matching again proved easy, and some of the resulting s.w.r. vs. frequency curves are shown in Fig. 3. A vertical of resonant length gave the lowest s.w.r. and the best band width. However. almost the same minimum s.w.r. and an s.w.r. of less than 1.4 across the whole band could be obtained with verticals up to 6 inches too long or too short by adjusting both gamma tap and capacitor. At the expense of a slightly higher s.w.r. and narrower impedance bandwidth, the frequency of minimum s.w.r. could be shifted by merely adjusting the capacitor.

Some ground-plane users have suggested that

Fig. 3-S.w.r. vs. frequency characteristics of a 15 -meter ground plane with $11 / 4$-inch elements and a $3 / 4$-inch gamma rod. For curve 1 (a), the elements were made the correct length (11.3 feet), and the gamma rod and capacitor were adjusted for best match at 21.15 Mc . Curve 1(b) shows the performance of the same antenna when only the capacitor was used to shift the frequency of best match to 21.45 Mc. Note the slightly higher minimum s.w.r. and the higher s.w.r. over a $300-k c$. band width. Curve 2 shows what happened when the elements were made too long (11.86 feet), and the matching system was adjusted at 21.10 Mc . Both minimum s.w.r. and s.w.r. bandwidth are worse than in curve $1(a)$. This is also true of curve 3, taken with short elements (10.2 feet) adiusted for best match at 21.20 Mc .
the radials be made from 21 ! 2 to 12 per cent longer than the vertical, and I have used the first figure with good results. However, the radial length has proven experimentally to be even less critical than the length of the vertical. My recommendation is not to fuss with element lengths but just make all five a quarter-wavelength long at the band center (allowing for their diameters as shown in the Antenna Book) and let the gamma match do the rest.

The gamma-matched ground plane has another advantage over the usual model besides ease of adjustment. Construction is easier since there is no need to insulate the base of the vertical from the radials. Indeed, the vertical cian be a continuation of the supporting mast. The entire assembly can be solidly grounded for lightning protection. Experiments with both antennas showed that when they were gamma-matched without a ground connection, no change occurred when a ground was added. (Use a ground rod of the same metal as the one at the transmitter or electrolytic action will cause a current through the coax sheath that connects the two.)

Construction

Fig. \& shows the construction recommended for a 10 -, 15 - or 20 -meter ground plane. This design is very much like my 15 -meter antenna, but embodies a few afterthoughts to make in-the-air assembly easier. The vertical and the radials are made of $11 / 4$-inch aluminum tubing slipped over shorter lengths of standard $3 / 4$-inch steel pipe. The pipe greatly reinforces the tubing at points of maximum bending moment aud also prevents clamps and bolts from collapsing the tubing. Don't substitute rigid conduit; it has a thinner wall thau pipe and it has threads with a different taper (same threads per inch, however)
which do not fit the pipe crosses as well. The aluminum tubing is available at many radio stores in 12 -foot lengths. This is long enough for $10-$ and 15 -meter elements, and $11 / 8$-inch aluminum tubing extensions can be added for 20 meters.

Aluminum bolts should be used so far as possible since they don't rust or cause galvanic action. Where steel bolts are used, seal the nut with aluminum mastic (sold for sealing joints in aluminum gutters) so that the nut may be removed later without drastic action. Galvanized bolts seem to last all of six months before rusting; better weatherproof them with mastic, also.

The variable capacitor should be double spaced, not for electrical reasons but to prevent shorting by condensation, as is likely to happen if the mapacitor is mounted with its shaft vertical. A maximum capacitance of $100 \mu \mu \mathrm{f}$. for 20 and 15 meters and $50 \mu \mu$ i. for 10 meters should be ample. Use a soft plastic box for the rain shield the hard ones will crack. I used an automobile wastebasket about 3 by 8 by 12 inches high, which is more than adequate in size. Use of a coax feedthrough connector rather than a jack prevents any water that leaks into the box from shorting the transmission line.

The length of the gamma rod will be between $1 / 8$ and $1 / 3$ the height of the vertical radiator if 52 -ohm coax is used. Of course, the smaller the rod and the greater the spacing from the radiator, the greater will be the impedance transformation for any given tap height. Experiments showed that limeh diameter rod would always provide a match while No. 8 aluminum wire did not always match with a reasonable spacing. In any event, the rod should be used for mechanical ruggedness, and any spacing from 3 to 12 inches will probably work.

To prevent oxidation, the aluminum elements should have at least one coat of spar varnish except, of course, where the gamma tap is ex-pected-before erection. It is suggested that marks 1 inch apart he filed on the gamma rod with double marks at integral fect from the radials. These marks will be very useful when the matching is done.

Matching

Don't try to check autenna resonance with a grid-dip uscillator. By adjusting the gamma capacitor you can get dips over a wide range of frequency, and the "best" dips won't even approximate the final matching adjustment.

Hook up an s.w.r. bridge at the transmitter end of the coax, and excite it with a low-powered transmitter tuned to the center of the band. Don't try to use the unstable, inadequatelypowered g.d.o. for this purpose, either. With a helper at the s.w.r. meter and you up in the air, start with a tap that you think is too high or too low and adjust the gamma capacitor for minimum s.w.r. Then move the tap an inch at a time

Fig. 4-Construction details for the gamma matched ground plane with dimensions for 10, 15 and 20 meters (28.5, 21.2 and 14.17 Mc. .). The basic framework is made of steel pipe fastened together with two pipe crosses and a tee fitting. $11 / 4$-inch aluminum tubing elements slip over the pipes and are fastened in place by bolts which also hold wires to bond the elements together. Fastenings marked ' a " are $1 / 4 \times 1 / 2$-inch 'do-it-yourself' aluminum bolts; those marked
" b " are $1 / 4 \times 2$-inch steel bolts equipped with two large aluminum washers.
(with the transmitter turned off), each time adjusting the capacitor. The s.w.r. should drop progressively lower and then start to rise. Try tap positions $1 / 4$ inch apart in the region of minimum s.w.r. A position should be found where the meter reads practically zero. The tap height and capacitor settings are quite eritical, but the process of tinding them is straightforward and easy.

Now tune the transmitter across the band. If the s.w.r. is considerably higher at one edge than the other, the frequency of minimum s.w.r. can be shifted by tuning the capacitor without having to adjust the tap. With some rod spacings and tap heights you may have to decrease the capacitance to shift to a lower frequency. This sounds wrong but can probably be explained as follows: The gamma section is a transmission line less than a quarter wavelength long, terminated in an impedance less than its characteristic impedance. At lower frequencies the antenna and the gamma section are electrically shorter. As the frequency is reduced the antenna will reflect
increasing capacitive reactance through the section, and the section itself will have decreasing inductive reactance. One would expect that more gamma capacitance (less capacitive reactance) would be required to establish resonance. But, at lower frequencies the radiation resistance of the antemna also drops, and this tends to increase the inductive reactance seen at the input of the gamma section. Depending on the impedances of the gamma section and the antenna, this effect may outweigh the expected behavior, and more capacitive reactance (less capacitance) will be required for resonance.
Other experiments showed that elements shorter than the resonant length required a higher gamma tap and less capacitance for optimum matching. The opposite was true with long elements. This agrees with Nose's results using a gamma-matched beam. ${ }^{2}$ The shorter elements have lower radiation resistance and require a higher tap for the desired 52 ohms. The (Continued on page 144)

[^3]
The Fox Vox Adapter Sequenced Transmitter-Receiver Change-Over System

BY GRADY B. FOX, JR.,* W2VVC

Abstract

By proper sequencing of the operation of transmitter-power and antenna relays, arcing at the antenna relay is avoided. As a result, small inexpensive relays may be used even with a highpower transmitter.

FYor several years I have been using a unique, rather complex transmitter-receiver control device for operation of my s.s.b. equipment. This device was noiseless and did the ehangeover extremely rapidly. In performance tests. using the "tick" from WWV to actuate the voice control to the s.s.b. exciter, and a receiver to demodulate the s.s.h. exciter output, all 5 eycles of the 1000 c.p.s. wave which compose the "tick" were registered on a scope connected to the receiver output.

Electronic T.R. Systems

Despite the noiscless and rapid performance of this circuit, it lacked one feature necessary for satisfactory voice break-in operation. It did not provide for t.r. operation of the transmitting antenna. Many operators would have been satisfied with the operation of an electron-type t.r. device in this assignment. But the manner in which such devices are used makes the arrangement prone to unpredictable performance with regard to signal loss suffered when QSYing the receiver within a given band, with random final-amplifier tuning adjustments. ${ }^{1}$ If one wants the best signal to receiver-noise ratio, it seems that the only really satisfactory antenna t.r. device to date is the old metallic-contact gadget, the s.p.d.t. relay.

Relay Change-Over

On-the-air listening to various s.s.b. signals showed that most relay-operated voice-control systems perform with no noticeable clipping of the first syllable. However, there seems to have been little concern by designers about the timing precision desirable in the sequence of operation of the relays used to control the receiver, change over the antenna, and control the transmitter. Inattention to the relay-sequence problem can result in quite fat arcs at the antenna relay contacts from time to time.

Improving the Relay System

An adapter which will provide improved performance of the usual relay-type voice-control

[^4]system has been developed and used for several months. It uses three carefully-sequenced relays for receiver control, antenna change-over and transmitter control. The inherent operate time of these relays, in conjunction with their associated time-control eomponents, functions to cause them to operate so that only one relay is in process of change-over at a time. In other words, each relay waits until the preceding one has completed its function. The circuit is beautiful in its precision and electron-tubeless simplicity. The order of operation from listen to transmit is:
1.) Turn off receiver.
2) Change antenna from receiver to transmitter.
3) Turn on transmitter.

From transmit to receive, the reverse sequence of events takes place. This is not the order of operation usually obtained when one relay is used to control one or more additional relays.

Causes of Arcing

In the conventional arrangement where relays are operated in tandem, the operator may wonder why he still gets ares and contact burning at the antenna relay even though he may have interlocked the contacts and done some contact bending in an effort to get the sequence of operation correct. 'The trouble he is experiencing may be due to antenna relay-contact bounce on make. The antenna change-over contact has simply not stopped bouncing before the transmitter starts delivering r.f. energy to the still-bouncing relay contact. The proposed arrangement takes this contact bounce time into account and delays r.f. output from the transmitter until contact is firmly established between the transmitter and antenna.

Antenna Relays

One advantage of a properly-sequenced controlrelay arrangement is the ability to use almost any small relay to do the antenna change-over job. Since the antenna change-over contacts do not switch under power, almost any but the frailest relay contacts will handle full amateur power. if the r.f. switching is done at a low-impedance point as it usually is. The principal restriction on relay selection is that the dielectric on which the relay contacts are mounted be able to withstand the applied r.f. voltage. This requirement is not one of arc-over but that of dielectric heating caused by high-frequency currents. Dielectric heating from the r.f. current can cause insulation breakdown where the same d.c. or 60 -cycle voltage would cause no trouble. In particular, relays which have the movable contact connected to

Fig. 1 -Diagram of the sequenced control circuit. Resistances are in ohms. Capacitors marked with polarity are electrolytic and capacitances are in μ. (see text in regard to C_{1} and C_{4}); others may be paper or ceramic and values are in $\mu \mu f$. Resistors are 10 -per-cent $1 / 2$-watt unless irdicated otherwise. Antenna-control portion (shown within dashed lines) should be installed at the transmitter. Note: pin 4 of J_{1} must go to grounded side of line.
$C_{1}-C_{1}$ inc.-. 450-volt electrolytic (see text).
$C R_{1}-C R_{6}$, inc.-Silicon diode: 360 p.i.v., 200 ma. (SarkesTarzian K-200).
J_{1}-Chassis-mounting 4 -prong male connector (or other connector whose connections may be polarized) (Cinch-Jones P-304-AB).
J_{2}-Phono connector.
J:-Chassis-mounting 4-prong female connector (CinchJones S-304-AB).
the relay frame are susceptible to dielectric heating. This construction promotes heating of the relay coil due to the effect of r.f. current flowing from the core piece of the coil through the coil insulation to the coil winding.

Two very commonly-available relays have been satisfactorily used as antenna change-over relays in it sequenced control system. Either one will handle any legal amsteur power into the usual coaxial cable. My favorite of the two is a little gem which I have wanted to put to work for some time. It is the relay from the BC-442 antenna tuning unit of the ARC-5 and SCR-274 series. There must be thousands of these little beauties which have been relegated to the attic by amateurs who bought tuning units to get the vacuum capacitor and thermocouple meter. They are still available on the surplus market at a rearonable price. This relay is beautifully insulated for high r.f. voltage. It has a set of s.p.d.t. contacts for r.f. switching and a set of normally-open
J_{4}-Miniature polarized chassis-mounting a.c. outlet.
$\mathrm{K}_{1}, \mathrm{~K}_{3}$-S.p.d.t. relay, 6000-ohm coil (Sigma 11F-6000G/SIL).
K_{2}-Antenna relay from ARC-5 antenna-tuning unit, or similar (see text).
$K_{4}-$-See text.
P_{1} —Polarized a.c. plug.
$R_{1}-R_{7}$ inc.--See text.
control contacts, one contact of which is at relayframe potantial. The coil of this relay is designed for $2 t / 28$-volt d.c. operation. The other relay which has been proven in the antenna ehangeover circuit is a commonly-available surplus d.p.d.t. relay. Some of these also have a set of s.p.d.t. control contacts. Both Advance and Leach have manufactured a relay of this type. The contacts are insulated with ceramic and the coil is intended for 115 -volt 60 -evcle operation.

These relays will work well from the same d.e supply voltage as the ARC-5 relay, although experimental readjustment of delay values may be necessary.

The relays used for receiver and transmitter control are miniature sensitive relays manufactured by Sigma and cost less than $\$ 2.00$ each new. They operate quietly and rapidly.

The circuit of the adapter is shown in Fig. 1. The system is controlled by a pair of normallyopen contacts on the VOX relay. K_{1} is for re-

(A)

Fig. 2-Graph showing reiay sequencing, including relay "bounce" characteristics. A shows the characteristics on "operate" (relays energized), while B follows the sequence on "release" (relays deenergized).

(B)
ceiver muting, K_{2} for antenna change-over and κ_{3} for transmitter power control. The contants of K_{1} and K_{3} may be used in any desired manner to suit the individual control arrangement, since the adapter system provides proper sequencing, including allowance for bounce, in both directions of the armature travel. However, the relays of the adapter should not be used to control other relays; they should perform the intended function directly to preserve the desired sequencing. This sequencing is illustrated graphically in Fig. 2. Fig. 2 A shows the progression in changing over from the receiving condition to the transmitting eondition, while Fig. 2B shows the reverse progression in returning to the receiving condition.

No specific circuitry is shown for receiver and transmitter controls, since this will depend upon the equipment in use and the operator's prefereuce. As suggestions, the receiver-control contacts may be used to raise the cathodes of the r.i. and i.f. stages far enough above ground to disable the receiver, or they ran supply the required eutoff negative voltage to the a.v.c. line. The transmitter-control contacts may be used to open cathode circuits on stand-by. In cases where additional transmitter-control contacts are desired to provide a cutoff bias to the final amplifier for tube protection or shot-noise quieting, in additional relay. K_{4}, may be used without delay and connected as shown in dotted lines.

Delay Circuits

As previously stated, in going from receive to transmit, k_{1} should close first and as quickly as possible to disable the receiver. When the normally-open contacts of the VOX relay close, approximately 140 volts is applied to K_{1} through K_{1} which serves to limit the power dissipated by the coil to a safe level. Capacitor C_{1} produces an insignificant delay in the closing of κ_{1}, since the series resistance common to C_{1} and K_{1} is negligible. The resistor R_{1} tends to speed up the action of $K_{1} .{ }^{\text {. }}$
K_{2} must wait for K_{1} to rlose and for contact bounce to subside. This necessary delay is an inherent characteristic of the relays recommended for K_{2}. Therefore no components are needed to delay the operate time of $\dot{K}_{2} . R_{3}$ limits the power dissipated by the eoil oi $K_{2} . R_{3}$ and C_{3} in series with the coil of K_{2} actually act to make the relay operate faster than it would if 24 volts was applied directly to its coil. Nevertheless, the resultant delay is adequate if the suggested relays are used. Again, C_{2} has an insignificant effect on the operate time of K_{2} both because of the negligible eommon series resistance.
K_{3} is inherently fast-arting, so its action must be delayed to permit K_{1} and K_{2} to operate first. This delay is supplied by C_{1} and the common series resistance of R. . These latter are the only components affecting the operate time of κ_{2} since, ou the receive-to-transmit cucle. the voltage divider $R_{5}-R_{6}$ biases $C^{2} R_{5}$ to nonconduction to prevent R_{6} from affecting the time delay, although $C R_{6}$ will eonduct. We now have all relays energized with the receiver off and the transmitter on.

From Transmit to Receive

To go from transmit to receive, we first must turn off the transmitter. To do this as quickly

[^5]This unit includes K_{1} (center) and K_{3} (left). The components are assembled in a $21 / 4 \times 21 / 4 \times 5$-inch aluminum Minibox. Note the spongerubber relay mounting.

as possible after the VOX relay opens, we should open the K_{3} coil circuit. This is done quite effectively by $C R_{6}$ which electronically disconnects C_{4} from $K_{3} .\left(C R_{6}\right.$ is so polarized that it, will not conduct in the direction of the discharge current from C_{4}^{\prime}.) $C R_{5}$ is now no longer hark-biased, so that C_{4} is rapidly discharged through R_{6}. (Discharge of C_{4} is necessary, of course, so that C_{4} will be ready to provide an accurate delay on the next receive-to-transmit cycle.)

The release of K_{2} is delayed by the charge on C_{2}, and K_{1} is delayed on release by the charge on C_{1}. ($R_{2}, C R_{3}$, and $C R_{4}$ are isolators to prevent interaction between the timing circuits.

Receiver Noise Suppression

The r.f. chokes at the VOX relay contacts are used to suppress electrical noise generated by the small arc as the contacts open. Since the receiver is still sensitive for a few milliseconds after the VOX relay operates, any r.f. disturbance of this sort can be picked up by the receiver unless the shielding is very complete in the antenna circuit. The chokes may be omitted and added later if found to be required. In most instances, however, they will be found to be beneficial. They should be installed at the VOX relay contacts with the shortest possible leads between the chokes and the relay contacts.

The installation of chokes in the receivercontrol contacts of K_{1} may also prove desirable. Even the low current switched by these contacts can cause an r.f. disturbance which can be picked up by the receiver in some instances. While not shown in the schematic of Fig. 1, these chokes can be seen in the photograph of the adapter unit.

Capacitors

Electrolytic capacitors are used because of the size problem which paper capacitors would present. Electrolytic capacitors have proven to be entirely satisfactory in this low-impedance application. Because of the manufacturing tolerance associated with the relays and capacitors, it may be necessary to determine experimentally the value of capacitance to provide the correct timing. The final proof of performance of this gadget is its ability to operate without antenna
arcing or "pops" in the receiver. The tolerance on electrolytics is none too good, of course, and in the case of the $1.5-\mu i$. capacitors, C_{1} and C_{4}, it will be necessary to make a selection from a group of 1 - and $2-\mu f$. units. For this reason, it may be more practical to use tubular paper capacitors in these two positions, if space can be found for them. 'The desired capacitance can be made up of a $1-\mu \mathrm{f}$. unit in parallel with a $0.5-\mu \mathrm{f}$. capacitor.

Relay Characteristics

The operate times shown in Fig. 2 are representative of what can be done with the relays used. The over-all design is pretty well dictated by the characteristics of K_{2} in this instance, since it is inherently slower-acting than K_{1} or K_{3}.

The total timing period of the release sequence of Fig. 2 B is not particularly critical. As shown, it is laster than the normal release adjustment of most VOX systems. As long as the total release timing period does not cause undesirably long "hang-on" of the VO.X. the release sequence of the relays can fit into this period in any manner which keeps them from coinciding in operate time. The circuit shown will follow e.w. up to about $15-20$ w.p.m. and can be adapted for phonec.w. operation by means of some additional switching.

It should be emphasized that the operating characteristics of no two relays, even of the same make and model, are identical, and that some adjustment of the delay-circuit values given should be expected. An article to follow will describe a method of accurately timing relay operation.

Reducing ARC-5 Relay Bounce

The very desirable mechanical construction of the ARC-5 antenna relay, which gives it the large contact spacing so desirable for high r.f.-voltage

Fig. 3-Sketch showing method of damping bounce in ARC-5 antenna relays.

use, brings about a problem in contact bounce. The long springlike contact of this relay is very prone to bouncing on release as the movable contact meets the normally-rlosed contact.

A group of four of these relays was checked for contact bounce. The bounce of the movable contact when it reached the normally-ouen contact was not abnormal, but all four relays showed $35-40$ milliseconds bounce time on release when the movable contact arrived at the normallyclosed contact. One other ARC-5 relay had a piece of felt inserted between the turns of the springlike movable eontart. Tests on this relay showed less than $10-1.5$ milliseconds bounce time on release. Installing a similar piece of felt in each of the four relays showed that bounce time could be cut to less than 20 milliseconds on all relays.

Fig. is is a sketch of how the felt was inserted in the contact mounting. The felt is material which cuan be taken from underneath the cover flaps of the ARC-5 transmitter series and is about $1 / 16$ inch thick. A piece about $3 / 16$ by $1 / 4$ inch is used.
'The graphs of Fig. 2 were taken with the felt installed. If no felt were used, C_{1} of Fig. 1 would have to he larger to delay K_{1} enough on release to allow for the larger bounce time of K_{2}.

Acoustical Noise Reduction

The ever-present noise of relay operation has been a subject of discussion for years. Nothing new is advanced here toward solving this problem. Its existence is, however, acknowledged. The small Sigma receiver- and transmitter-control relays are mounted on sponge rubber to reduce their operational noise. This rubber serves another important purpose. The movable contacts of these relays are connected to the relay frame, so that it is necessary to insulate the relays
electrically. The sponge rubber does both the job of mechanical isolation and electrical insulation. Rubber cement of the type used to cement automobile weatherstripping does the job of cementing the sponge rubber to the chassis and the relay to the sponge rubber. The sponge rubber can be seen in the photograph of the adapter unit.

The antenna relay is much the noisiest of the three. It is mounted at the final amplifier in : Minibox which is lined with sponge rubber. The relay is cemented to the rubber without using any mounting screws which would conduct sound to the box.
'These noise-reduction techniques are about 50 per cent elfective. Enclosing each of the two chassis inside another rubber- or acoustic-tilelined box is an idea for further experimentation.

Keying Filter

The graphs of Fig. '2 show that K_{3}, the trans-mitter-control relay, bounces quite a bit when the movable contact makes with either thr normally-open or normally-closed rontact. Ii this relay is used to key a transmitter for e.w. operation, clicks can result if a keying filter is not used. The usual c.w. click filter, which should be a normal required transmitter accessory, will take care of any tendency of the bounce to cause clicks.

DEF-

Strays"

W5SU points out that many hams, both here and abroad, are avid stamp collectors, and so its a nice gesture to use commemorative issues as much as possible. Also, instead of putting a single 25-cent stamp on a piece of forcign mail, use a combination of smaller values.

Getting the $\mathcal{H C o s t}$ Gain from Stacked Antennas Array Design with Optimum Antenna Spacing

BY H. W. KASPER,* K2GAL

IN the April, 1958 issue of QST, the author presented an article entitled "Optimum Stacking Spacings in Antenna Arrays." It soon became evident that although basic terms and fundamental equations were used in an effort to attain simplicity, many people did not grasp the meaning of the concepts presented nor were they able to utilize these concepts in a practical autenna design. The following words of wisdom were assembled to assist these people.

The first part of this article is a brief review of the origimal material, while the second part presents practical antenna designs fashioned in response to various inquiries.

Need for Optimum Spacings

Many amateurs, especially v.h.f. enthusiasts, have become aware that an antenna, no matter how small it is physically, has associated with it a power-gathering area. This area is called "effective aperture," and more often "capture area."

As an example, consider the dipole. The maximum effective aperture of a dipole is approximately the sume as an area $\frac{1}{2}$ by $1 / 1$ wavelength on a side. The physical signiticance of this aperture is that the power from the incident plane wave is absorbed over an area of this size by the dipole, and is delivered to its terminating resistance.

With the increasing use of multielement Yagis, it became evident that longer Yagis had larger "effective apertures," and that in order to realize maximum gain when using two stacked Yagis, a spacing larger than the customary half wavelength was needed to insure that the respective capture areas were not "overlapping." The same effect was noted in the case of collinear dipoles, where a center-to-center spacing of approximately $3 / 4$ wavelength is needed to achieve maximum gain. It should be noted that the customary haliwavelength spacing is a carry-over from collincar array design where no side lobes are desired. For an amateur striving to achieve maximum gain, an antenna design utilizing half-wavelength spacings between elements can be termed inefficient!

Achieving Optimum Spacings

The presence of a capture area poses two important questions:

1) How does the capture area vary with different antennas?
*O \& R Dept., NAS, Lakehurst, N. J. Home address, 96 Maplewood Drive, Bricktown, N. J.

Abstract

Stacking two antennas doesn't always result in a 3 -db, gain improvement - it all depends on the spacing used. Here's down-toearth information on putting together multiantenna arrays complete with universal design charts and examples of how to use them.

2) In stacking antennas, how must the individual capture areas to be positioned for maximum efficiency?

The first question cau be answered intuitively. The higher the antenna gain, the larger is the capture area.
The answer to the second question canmot be obtained so easily. Although the capture area can be expressed mathematically, its exact geumetrical configuration remains unknown. Fortunately, there is a method which enables us to compute the spacings necessary for achieving maximum gain. This method utilizes an important principle of antenna design called "pattern multiplication." It is restated here for the personal edification of those not in the know: "The field pattern (note: field, not power) of an array of nonisotropic but similar point sources (i.e., an array of dipoles, or Yagis, or horn antennas, etc.) is the product of the pattern of an individual source and the pattern of an array of isotropic point sources, having the same locations, relative amplitudes and phases as the nonisotropic sources." A thorough explanation of this statement, plus array patterns for isotropic point sources, can be found in Antennas, by Kraus.

Now suppose we have several Yagis and wish to stack them. How do we calculate the proper spacing for maximum gain? The necessary steps are as follows:
a) Determine the field pattern of an individual Yagi (i.e., rotate it and plot the field strength).
b) Determine the proper array factors or patterns for various spacings from Antennas.
e) Multiply the two to obtain the field pattern of the array.
d) Calculate the gain for the various spacings from the beam widths (see author's article in April, 1958, QST $)$.
e) Calculate the level of the highest side lobe for the various spacings. (Maximum gain oceurs at approximately $a-13 \mathrm{db}$. $[0.22 \mathrm{in}$ voltage] sidelobe level.)

Lots of work? You bet it is. The plots and calculations become quite cumbersome, especially when the number of antennas to be stacked becomes large. In order to simplify things, the author assumed "typical" field patterns for antennas having various beam widths. Following the procedure outlined above, a plot of optimum stacking spacing $v s$. antenna beam width was obtained. The results are shown here in Figs. 1 and 2. Figs. 3 and 4 were given by Greenblum ${ }^{1}$ in a previous article and illustrate the beam widths obtained from multielement Yagis. By using these charts, we can quickly determine the uptimum spacing for a given array design.

Figs. 1 and 2 are similar to the curves shown in the author's previous article, but close examination will show a difference, expecially in the maximum gain curves. The reason for the change is as follows: Originally a $10-\mathrm{db}$. side-lobe level was taken as the point at which maximum gain oceurs. However, a little thought on the subject led to the eonclusion that a $13-\mathrm{db}$. side-lobe level would be more appropriate. As shown by Silver, ${ }^{2}$ a uniformly illuminated rectangular aperture exhibits maximum gain at a side-lobe level of -13 db., while for a uniformly illuminated circular aperture maximum gain occurs at a side-lobe level of -17.6 db . It can be seen that stacking several antennas will result in an approximate uniformly illuminated rectangular aperture. The approximation is even more exact when a large number of antennas is stacked.

Practical Designs

Stacking Quad Antennas

During recent years, the "rubical quad" or "hi-square" antenna has beeu eujoying increasing popularity. Here is a typical problem posed to the author by John Knight, W6YY, concerning the stacking of two quads. The quads are to be

[^6]stacked horizontally and will replace a threcelement Yagi.

The following questions were raised:
a) Can one consider the cubical quad when stacked horizontally to behave the same as collinear dipoles in phase for the graphs and calculations given?
b) What is the "best" horizontal spacing, center-to-tenter, for two quads to produce the best torward gain and directivity with uptimum side lobes?

The answer to the first question is affirmative. The optimum spacing curves are universal; i.e., they can be applied to the quad, loop, slot, dipole, or any type of antenna. This is because the calculations were based on beam width, and not on any particular antenna type. The only restriction imposed is that the individual patterns have no side lobes. Actually, the results will hold for patterns with moderate side-lobe levels, since the multiplication process reduces their level.

To answer the second question, let us first determine the spacing for -13 and -20 db . sidelobe levels and then outline the steps leading to a final selection. In order to find out the spacing values we must know the horizontal beam width. Assuming that the horizontal and vertical beam widths are approximately equal, their value can be calcuiated from the expression

Gain (db.) over isotropic source

$$
=1.0 \log _{10} \frac{41,253}{\theta_{11} \theta_{v}}
$$

where θ_{h} and θ_{v} are the horizontal and vertical beam widths in degrees. A dipole has $2.14-\mathrm{db}$. gain over an isotropic source (one that radiates energy uniformly in all directions), so a quad with 6 -db. gain over a dipole will have $8.1+\mathrm{db}$. gain over an isotropic radiator. Therefore,

$$
8.14=10 \log _{10} \frac{+1.253}{\theta_{h}^{2}}
$$

and $\theta_{\mathrm{h}}=80^{\circ}$.
From Fig. 1 we see that for an 80 -degree beam width a spacing of 0.73 wavelength is appropriate for a $-1: 3-\mathrm{db}$. side-lohe level, while 0.64 -wavelength spacing would reduce the side-lobe level to -20 db . The difference in gain for the two spacings would be about 1 db ., and this would be hard to detect with most measurement techniques. The final spacing choice is one of personal preference. However, the

Fig. 1-Optimum stacking spacing for two antennas ($n=2$). The spacing for no side lobes can result in little gain over a single source, especially with small beam widths.

Fig. 2-Optimum stacking space for four antennas ($\mathrm{n}=4$). Note: Spacings less than $1 / 2$ wavelength are physically possible only for shortened dipoles in the case of collinear elements or for stacking in the plane perpendicular to the plane of polarization.
following points can be used as guides in making the choice:
a) Lower side-lobe levels reduce interference when the band is highly populated.
b) Smaller spacings require less boom length and are desirable from a mechanical viewpoint.
c) In some cases a large spacing will create physical problems in impedance matching.

The 8-Over-8 for 2 Meters

The 8 -element Yagi has become a popular 2meter antenna. In order to stack two, we proceed as follows: Fig. 3 shows that an 8 -element Yagi has a beam width of approximately 37 degrees in the plane of polarization (i.e., horizontal plane for a horizontal Yagi). The vertical beam width is slightly larger, but for all practical purposes the two can be considered equal. For two Yagis $(n=2)$ we see from Fig. 1 that a stacking spaceing of $11 / 2$ wavelengths is needed in cither plane for optimum performance. Using a design frequence of 1.45 Mc . (free-space wavelength $=81.4$ inches) the 1 lowavelength spacing is 10 feet, 2 inches. Deviations from this spacing of a few inches can be tolerated without any noticeable degradation of performance.

Fig. 5 shows two configurations for feeding the Yagis, assuming each Y'agi has a feed point impedance of 450 ohms. The spacing in Fig. 5A is optimum, while that in Fig. 5B is a few inches less to facilitate impedance matching. In Fig. 5A an open-wire line of any characteristic impedance connects the two Yagis. Each half of this line is electrically one wavelength long. Using a velocity factor of 0.975 this comes ont 79.4 inches. The impedance at the midpoint is half that of each heam or 225 ohms. A 4 -to- 1 impedance transforming balun connected at this point transforms the 225 ohms to 56 ohms and also provides the change from balanced to unbalanced line. If a balanced transmission line is desired, 300 -ohm Twin-Lead can be used hetween the midpoint and the balun.

Fig. 5B shows a similar scheme which will provide equal performance and uses all coax rather than an open-wire line phasing section. In this method two baluns are used, one heing placed directly at the feed point of each Yagi. The 450 ohms balanced is transformed to 112 ohms unbalanced, and the two baluns are then connected through a piece of couxial line having a half length of 53.7 inches. Again this half
length is electrically a wavelength long (using a velocity factor of 0.66). At the midpoint of the coax line the impedance is 56 ohms , and at this point a direct connection can be made to standard RG-8/U or RG-58/U coaxial cable.

Fig. 3-"E'-plane half power beam width of a Yagi vs. number of elements (including one driven element and one reflector). The " E " plane is the plane of polarization of the signal; in this case it corresponds to the plane of the antenna elements.

Fig. 4-" H '-plane half power beam width of a Yagi vs. number of elements (including one driven element and on reflector). The " H " plane is the plane at right angles to the plane of polarization.

Fig. 5-(A) Two 8-element Yagis for 145 Mc. stacked with optimum spacing of $11 / 2$ wavelengths. The open-wire line connecting the antennas is 2 electrical wavelengths long (with a velocity factor of 0.975). The balun and 52 -ohm coax can be mounted right at the 225 -ohm midpoint, or a 300ohm transmission line can be used between them. (B) Alternate matching system using only coax. The spacing between Yagis has been reduced slightly to accommodate the

2 -wavelength coaxial phasing line (velocity factor 0.66).

The open-wire line used in Fig. 5A minimizes feeder and balun losses. However, actual measured balun losses using RG-8/U ran less than 0.1 db. at 145 Mc .. and the use of coax minimizes the chance of feeder radiation.

A Stacked Array for Satellite Reception

Fig. 6 shows two vertical 5-element Yagis stacked horizontally for maximum gain. The lengths and spacings given are for 108 Mc. The beam width of one antenna in the plane perpendicular to the plane of polarization as given hy Fig. f is 54 degrees. The stacking spacing for maximum gain with two such antennas
($n=2$) can be taken from Fig. 1 as $11 / 8$ wavelengths. Notice that, we are only concerned here with picking up the satellite signals and not with any phase-comparison system such as Minitrack, which hiss special spacing requirements.

Each Yagi is connected to a piece of 300 -ohm Twin-Lead one wavelength (89.7 inches using a velocity tactor of 0.82) long. The two lengths of Twin-Lead are tied in parallel, resulting in a midpoint impedance of 150 ohms if the Yari feed-point impedances are 300 ohms. A 4 -tobalun connected to the midpoint will transtorm this to about 38 ohms unbalanced and can be fed directly with $\mathrm{RC}-8 / \mathrm{U}$ or $\mathrm{RG}-58 / \mathrm{U}$ cable. [5F-

Fig. 6-Matching system for two 5 -element Yagis with optimum spacing of $11 / 8$ wavelengths. Dimensions are for 108 Mc . The Twin-Lead connecting the two antennas is 2 wavelengths long with a velocity factor of 0.82 .

A V.H.F. Variable-Frequency Crystal Exciter

BY HENRY J. SABORSKY,* W3KXI

VARIABLE-FREQUENCY operation on the v.h.f. bands, with stability comparable to lower frequencies, is the goal of the serious v.h.f. man. Most v.f.o.s are low-frequency oscillators followed by stages multiplying to the desired v.h.f. band. With great care in construction and a hit of luck. an acceptable sounding signal may be realized, but really T9 signals on 144 Mc. are usually only a fond dream.

A UST article on a variable crystal oscillator circuit using inductance to lower the seriesresonant frequency of the erystal ${ }^{1}$ sounded like the answer to the v.h.f. man's problem. A test circuit was hurriedly put together using the basic variable crystal uscillator as described by W3BWK. The results were encouraging; a good erystal-sounding signal on 144 Mc. with plenty of frequency swing per erystal and excellent reset accuracy.

Considerable thought was given to the eventual application of the basic VXO circuit. The widespread use of $8-\mathrm{Mc}$. crystals in v.h.f. transmitters dictated the use of this type of erystal in the exciter. Subsequent investigation proved that, 8-Mc. fundamental erystals can be swung in frequency sufficiently to provide up to 500 kc . at $14 t$ Mc., depending on the crystal activity

* B33 So. Eighth St., Sharpsville, Penna.
'Shall, "A Variable Crystal Oscillator," QST', January. 1958. p. 11.
and the manufacturing process used in finishing the erystal. In general, any surplus erystal plugged in to this exciter will permit a swing of 100 to 500 kc . at the operating frequency.

Rebuilding and debugging yielded a hasic variable-frequency ervstal exciter that is simple in circuitry, easy to build and stable enough to be used for single sideband. Since no heterodyning action is involved there is no spurious beat prohlem. The oscillator runs continuously, and at low power level, avoiding the drift so often observed at the start of each transmission in v.h.f. work. Though the exciter was intended primarily for $144-\mathrm{Mc}$. use at W 3 KXI , frequencies for 50 and $2: 0-\mathrm{Mc}$. operation are readily obtainable. Frequency swings up to one megacycle at 144 Mc. are obtainable with specially-processed crystals.

Circuit

The VXO oscillator circuit is shown in Fig. 1. The inductance, L_{1}, is used to lower the seriesresontat frequency of the erystal. The dualsection capacitor, C_{1}, lowers the oscillation frequency as the capacitance is increased.

The crystal can be a fundamental 8- or 12-Mc. cut, or overtone-type (third or fifth overtone) operated on the fundamental frequency. For maximum frequency swing, with high stability, special VXO crystals or fifth-overtone types

Fig. 1-Schematic diagram and parts information for the v.h.f. VXO. Capacitor values in $\mu \mathrm{f}$. unless specified. Those marked with polarity are electrolytic; others mica or ceramic. Resistors $1 / 2$ watt unless specified.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$--per-section split-stator (Hammarlund HFD- $\mathrm{L}_{2}-22$ turns No. 26 enam., close-wound on $1 / 4$-inch form
50).
$C R_{1}$ - 150-ma. silicon rectifier.
J_{1}-Closed-circuit jack.

J_{2}-Coaxial fitting.

L_{1}-No. 26 enam. close-wound on $1 / 2$-inch form with h.f. iron slug, winding length 1 inch (CTC PLS7 form, with 20063-K core). with v.h.f. iron slug ICTC PLS6 form with 20063-0 core).
$\mathrm{L}_{3}-3$ turns insulated hookup wire over B-plus end of L_{2}.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$-Toggle switch.
T_{1}-Power transformer, 125 v. 40 ma ., and 6.3 v. 0.6 amp. or more.
are preferred. The second stage is a frequency multiplier to 24 Mc.

A word about components: the critical part of the VXO circuits is the coil, L_{1}. In line with good v.f.o. practice, the coil form should be of ceramic material with secure locking action of the tuning slug. The Q should be as high as possible. The tuning slug should be chosen for the frequency of operation, to realize the maximum ($)$ from the coil. Capacitor C_{1} can be any good dual-section model of the specified capacitance and plate shape. All other components are noncritical and standard.
Regulation of the plate and screen voltage for the oscillator is a must. The keying jack is included for amplifier disabling during receive periods. Jiode frequence multiplication through a hot transmitter with plate voltages off can put a good S9 signal on 144 Mc. This may be good for frequency spotting but difficult for receiving; hence the keying jack and spotting switch.

The power supply is shown for convenience only. To reduce the ripple component in the d.c. output, full-wave rectification is recommended. I used half-wave rectification to suit the power transformer available, but note the large amount of capacitance needed to reduce the ripple to a suitable level.

If the power supply is to be constructed on the same chassis as the exciter, use of the silicon rectifier is recommended from the standpoint of reduced temperature rise. If possible, all heat-producing components should be located on the outside of the chassis. Excessive temperature rise in the box will have an adverse effect on the coil stability. For the more technically inclined reader, the careful study of the articles by W3BWK on the theory behind the VXO principle is recommended.

Construction

A $3 \times 5 \times 6$-inch aluminum chassis houses the exciter. The piacement of the coil, eapacitor and crystal socket should be such as to give the shortest lead length. If its limited frequency coverage will suffice, the crystal can be soldered permanently into the circuit, eliminating the shunting effect of the crystal holder. This will increase crystal activity and frequency swing.

The dial calibration linearity depends on the crystal activity with maximum plate and grid eapacitauce in the circuit. The more active the crystal, the less is the effect of the increase in capacitance across the plate and grid on the frequency variation; i.e., less crowding at the low frequency end of the dial.

The series coil, L_{1}, was chosen to vary over a large inductance range in order to accommodate erystals in the 8 - to $12-\mathrm{Mc}$. range. If $12-\mathrm{Mc}$. erystals only are used, larger diameter wire can be used for the coil, reducing the number of turns required and improving the temperature stability and Q. In any event, the coil should be wound with the wire under tension, with no cement applied to hold the wire in position. Inductance
requirements will vary with the crystal type and circuit layout. A good rule to follow in arriving at the best coil for the particular circuit is to use the least amount of wire necessary to cover the range desired. Use the slug for maximum inductance and Q. A good sturdy coil form is required for this service.

The remainder of the exciter is conventional. with placement of components and wiring in line with good v.f.o. practice. The output circuit can be varied to suit the transmitter with which the exciter is to be used. Recommended circuits are suggested in the Handbook.

If the exciter is to he used in conjunction with a high-power transmitter, thorough shielding and filtering of the exciter are recommended for best results. This should include bottom plate, tube shiclds and even a crystal shield, if a plug-in erystal is used, and power-line filtering that will be effective at transmitter frequency. Excessive r.f. in the exciter cuan produce weird results.

Adjustment

A grid-dip meter is needed for the initial adjustments of the tuned circuits. With the crystal plugged into the cirenit and G_{1} set at maximum capacitance, check L_{1} for resonance near the frequency of the erystal in the circuit. Resonance should be approached from the highfrequency side. removing coil turns so that resonance is reached with the tuning slug into the coil about three quarters of the way. Next, resonate L_{2}, to $2 t \mathrm{Mc}$., with the exciter output feeding the v.h.f. transmitter. This eompletes the preliminary circuit adjustments.

Crystals should be selected on the basis of the highest frequencies to be covered. Example: To cover from 144 to 145 Mc ., select a crystal frequency of $\frac{145}{12}=12.08 \mathrm{Mc}$ c., and add .01 Mc . to allow for overlap and crystal variations. If a continuous calibration is desired, similar crystal types should be used.

Final adjustments as follows:
Turn the slug of L_{1} to the minimum inductance position and plug in the crystal. Set C_{1} to minimum capacitance.

Apply power to the exciter and check the crystal for oscillation near the calculated frequency, checking the frequency with the station receiver, preferably on the crystal fundamental.

Set C_{1} to maximum and note the frequency change.

With C_{1} at maximum, turn the slug into L_{1} to lower the frequency, checking with the receiver until the lowest desired frequency is reached.

Check tuning range by rotating C_{1} to minimum setting, and touch up the L_{1} slug if the tuning range is not correct.

Calibrate the dial for each crystal used.
Using the receiver S meter, peak L_{2} for maximum output.

Tuning range of 1 Mc . or greater can be obtained on 144 Mc . by the use of special crystals. However, for s.s.b. or other high-stability re(Continued on page 148)

A Better Way to Install Fittings on $1 / 4-$ IInch Coax

BY JOHN HOWARD,* K8MME

AMateur operators who feed their signals through 1-inch eoaxial cable (such as $\mathrm{RG}-58 / \mathrm{U}$ and $\mathrm{RG}-59 / \mathrm{U})$ may have shared the author's reservations about the accepted procedure for attaching u.h.f.-type fittings to the cable. Combing the shield braid wires down the outside of the reducing adapter and then screwing the adapter into the body of the fitting raises a question as to how well the fine wires have behaved themselves inside. In the conventional soldering operation, it is nearly impossible to keep the whole assembly from reaching a high temperature and subjecting the small core of insulation around the inner conductor to damage. One often feels the urge to give his handiwork an X-ray examination to learn just what has cooked.

The following procedure is offered as :an alternative: lightly apply a ring of solder to the forward rim of the reducing sleeve. Insert your coax cable through the slecve and remove the desired :amount of insulation (normally $21,3: 2$

[^7]
(1) Apply solder to the adapter.

(3) Solder the braid to the adapter.
inch). Disregard the insulation around the inner conductor for the moment. With a large straight pin or other pointed object, comb apart the fine wires of the braid and draw the wires straight out like the petals of a Hower. Now solder the wires to the forward rim of the reducing sleeve. Very little heat is required to do this because there is only a small amount of metal involved. Trim back the wires and any superfluous solder Hush with the bushing and give the job a final touching up with a fine filc. Next, strip 18 inch of the insulation from the inner conductor and tin the conductor. The adapter sleeve with the securely attached coax mable is now ready to screw into position within the body of the fitting. Give the assembly an extra twist with pliers to assure good contact between body and adapter. Complete the assembly hy soldering the center conductor.

The author believes you will find this procedure actually faster than the usual one, as well as providing more positive results, and you can apply the cost of that X-ray machine toward a new kilowatt!
-

(2) Remove insulation and fan out the braid wires.

(4) Trim braid back, bare the inner conductor, screw on the plug and solder the inner conductor.

More on Homemade Transformer Design

Abstract

This article was originally submitted as a letter for the Technical Correspondence section of QST in response to an article by Robert Coats in the September 1959 issue. However, the editors felt that the broader treatment by W2VLA warranted its presentation as a regular article. The author wishes to emphasize the fact that this material was inspired by the previous article by W9ESD.

THanks to WgLSD, today's radio amateurs have been introduced to the art of simplified transformer design. ${ }^{1}$ His design method and fabrication technique clearly illustrate the relative simplicity of high-voltage transformer construction. Strangely, however, very few people, including engineers, eonsider themselves adequately equipped to undertake a transformer design job. The reason for this is perhaps due to the fact that the criteria for efficient and economical transformer design have not been clearly established. If cost, minimum weight and minimum volume are not the primary controlling design factors, a simple and conservative step-by-step design procedure can be easily formulated. The author, no expert in the field of transformer design, has recently been required to design and coustruct small power transiormers for developmental airborne elertronic equipment. In becoming familiar with the various design parameters, a simple but effective design procedure has evolved. This procedure, while not optimum in the sense of minimum cost, weight and volume, has proven quite satisfactory in the design of those transformers needed for experimental evaluation.

Core Material

At the outset, several design parameters are usually known. These are:

1) Line voltage in volts.
2) Frequency in cycles per second.
3) Load power or volt-amperes.
4) Core material, its normal flux density and stacking factor.

The radio amateur is quite familiar with the first three parameters. In selecting suitable core material, consideration should be given to the peak flux density, exciting current, the ease of applying the windings and the core cost. The hest core materials are usually characterized by high peak flux densities and small exciting currents. Grain-oriented silicon steel has few su-

[^8]General Procedure

for Constructing

High-Voltage Units

BY T. J. MARESCA.* W2VLA

periors. It is perhaps just as easy to apply the windings to a core consisting of iron laminations as it is to the C core described by Coats. However, when a C core is purchased one does not have to worry about having too many or too frw laminations to make up the desired core. Also, the stacking factor, which is the ratio of iron volume to total core volume, is controlled by the manufacturer and is normally as high as practical. As Coats points out, the stacking factor for 12 -mil C ecres is approximately 95 per cent. The cost of C cores, especially the standard sizes, seems to be quite reasonable.
The grain-oriented silicon-steel (core is available in various sizes from a number of manufacturers, notably the Arnold Engineering Company and the Westinghouse Electric Company. The Arnold trade name is silectron and the various core sizes are described in their Bulletin $\mathrm{SC}-107 \mathrm{~A}$. The Westinghouse trade name is Hipersil. The descriptive bulletin covering these cores is $44-550$. Curiously, the AA-520 © core used by Coats is not a staudard size. The next larger core size, AA-523. is less expensive by approximately $\$ 1.50$ and is a standard core size. The Westinghouse catalog lists an A-520 core which is exactly equivalent to the AA-520 but it, too, is not a standard core size. From the monsideration of cost and availability (standard core sizes are usually stocked) the designer should endeavor to use only standard sizes whenever possible.

Core Size

Proceeding now to the step-by-step procedure for transformer design, it is first necessary to compute the r.m.s. primary and secondary currents. This can be found from the formula

$$
\begin{equation*}
I=\frac{V^{\prime} \text { olt A mperes }}{\text { Volts }} \simeq \frac{W^{\top} \text { atts }}{\text { Volts }} \tag{1}
\end{equation*}
$$

Next, a wire size is selected that will carry the

[^9]primary current without excessive heating. This can be done by referring to the accompanying table which lists the various wire sizes, the wire area in circular mils (including insulation) and the current-carrying capacity based on 1000 c.m. ampere. As Coats has stated, allowing one rircular mil of ropper for each milliampere of current is a conservative design consideration.
The next step in the design is to estimate the winding-space factor, K. This fiactor is the ratio of the total wire area threaded through the core window to the area of the wiudow itself. For a scramble-wound two-winding transformer the winding-space factor of either the primary or secondary (their areas are usually approximately equal) rarely exceeds 20 per cent of the total window area. For high-voltage transformers. where extra layers of insulation must be applied to prevent voltage breakdown, the winding-space factor for each winding may he less than 10 per cent. 'The designer's ability to fill the core window with as much copper as possible is a direct measure of his transformer winding proficiency.

When the winding-space fuctor, K, has been chosen the designer can compute the W A product,

$$
\begin{equation*}
W A=\frac{(2.74 E)(A \mathrm{~W})}{(S)(K)(f)\left(B_{\mathrm{M}}\right)} \tag{2}
\end{equation*}
$$

where: IV is the window area in square inches,
A is the nominal cross-sectional core area in square inches,
E is the r.m.s. line voltage in volts,
A_{w} is the cross-sectional area of one turn of primary wire in circular mils, including insulation,
S is the stacking factor of the core material, K is the winding-space factor,
f is the frequency in cyeles per second, and B_{M} is the peak Hux density in gausses.
For Silectron and Hipersil the W.A product times 50 is the approximate maximum power in watts that a core can handle under normal conditions at 60 c.p.s. and 15,000 gausses. ${ }^{3}$ The Arnold Engineering catalog lists C cores by increasing order of II A product. ${ }^{4}$ The Westinghouse catalog does not observe this convenient convention. Knowing the computed IVA product, the designer merely enters the catalog at the appropriate place and selects a core whose WA product, appropriately multiplied, equals or slightly exceeds the desired power rating, keeping in mind that it is economically advantageous to select a standard core size.

Windings

Once the core has been selected, the design proceeds rapidly. As Coats has stated, the number of primary turns is determined from the formula:

[^10]\[

$$
\begin{equation*}
N_{\mathrm{P}}=\frac{(34.9 E) 10^{5}}{(A)(S)(f)\left(B_{\mathrm{M}}\right)} \tag{3}
\end{equation*}
$$

\]

The number of secondary turns is then computed from the formula:

$$
\begin{equation*}
N_{\mathrm{s}}=\frac{E_{\mathrm{s}}}{E_{\mathrm{P}}^{\prime}} N \tag{4}
\end{equation*}
$$

It may be desirable to multiply the number of secoudary turns by 1.05 or 1.10 to allow for the transiormer regulation.
The primary and secondary wire sizes that will fit in the core window can now be computed from the formulas:

$$
\begin{equation*}
A_{W P}=\frac{(1.275)\left(10^{6}\right)(K)(W)}{N_{\mathrm{P}}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\mathrm{Ws}}=\frac{(1.275)\left(10^{6}\right)(K)(\mathrm{F})}{V_{\mathrm{s}}} \tag{6}
\end{equation*}
$$

where $A_{\text {wP }}$ and $A_{\text {ws }}$ are the circular-mil areas (including insulation) of the largest size wire of primary and secondary, respectively, that can be accommodated by a window whose area in square inches is ${ }^{5} W$.

As was mentioned before, the choice of K will depend on the type of transformer being fabricated and the ability of the builder to fill the window with as much wire as possible. For lowvoltage transformers, where the peak voltage between windings does not exceed approximately 500 volts, the winding-space factor may be chosen as 0.2 . In doing so. however, the coil hobbins should be made of relatively thin material and fit the core quite closely. (A method of bobbin fabrication which does not require two material thicknesses is included in the latter part of this article.) The total space factor, K_{T}, is given by

$$
\begin{equation*}
K_{\mathrm{T}}=\frac{N_{\mathrm{P}} A_{\mathrm{WP}}+N_{\mathrm{B}} A \mathrm{Ws}}{(1.275)\left(10^{6}\right)(W)} \tag{7}
\end{equation*}
$$

It is the ratio of the total wire area, both primary and secondary, to the window area and in practice rarely exceeds 0.4 for scramble-wound coils. For high-voltage transiormers, the total windingspace factor K_{T} should be chosen as 0.2 or even smaller. This will allow plenty of area for the generous application of high-voltage insulating materials. It should be noted that if the proper winding-space fiactor is used in determining the II. 1 product, the area of the primary wire just computed will agree closely with the primary-wire area selected at the beginning of the design procedure. When applying the windings to the core, half the number of turns of each winding should be wound on each core leg. This maximizes the coupling between primary and secondary and improves voltage regulation.

Example

To illustrate the design method, consider the following example for the design of a high-voltage plate transformer.

The primary voltage is 115 volts. The seconds'square inches may be converted to circular mils by multiplying by (1.275) (106).

Fig. 1 -Sketch showing the self-supporting bobbin described in the text. It should fit the core leg snugly. The top and bottom flanges should have such a width that they extend halfway across the core window opening.
ary voltage is 3000 volts. The frequency is 60 c.p.s. The load power is approximately 1200 watts. It is arbitrarily decided to use a Hipersil or Silectron 12 -mil core whose stocking factor is 0.95 and whose normal Hux density is 15,000 gausses.

First the primary and secondary currents are computed.

$$
\begin{align*}
& I_{P}=\frac{1200}{115}=10.4 \mathrm{amp} \tag{1a}\\
& I_{8}=\frac{1200}{6000}=0.197 \mathrm{amp} \tag{lb}
\end{align*}
$$

Note that twice the output voltage was used in the calculation of the secondary current. The secondary will be center-tapped for full-wave rectifier operation.

Next, reference is made to the wire table. This table is entered where No. 10 Heavy Formvar is chosen for the primary wire. This wire has a cross-sectional area of $11,130 \mathrm{c} . \mathrm{m}$. As this is a two-winding high-voltage transformer the wind-ing-space factor, K, is chosen to be 0.1. Since the maximum primary or secondary space factor for the wire of a two-winding trausformer is approximately 0.2 , the choice of the 0.1 windingspace factor should allocate sufficient space for all of the high-voltage insulation necessary.

Using formula (2) the $W^{r} A$ product is computed.

$$
\begin{equation*}
W A=\frac{(2.74)(115)(11130)}{(0.95)(0.1)(60)(15000)}=35.8 \tag{2a}
\end{equation*}
$$

Entering the Arnold Engineering Bulletin SC-107A, page 30, it is apparent that the AA-517 core is the smallest core that meets our design criteria. Selection of the next largest standard core size, AA-518, will permit extra power to be designed into the transformer and will cost less than the AA-517. Fifty times the computed 6 Computed as follows: (50) (10.9) (3.81) $=2080$ watts. The figure of 4150 watts shown in the Arnold catalog must be modified as mentioned in Footnote 3.

AA-518 W A product is almost 2100 watts ${ }^{6}$ so the design is indeed conservative. If the designer becomes expert at filling the core window with wire, smaller core sizes may be selected.

The nominal cross-sectional area, A, of the AA-518 core is 3.81 square inches. The window area, $I T$, is 10.9 square inches.

The number of primary turns is computed from formula (3):

$$
\begin{equation*}
\lambda_{P}=\frac{(34.9)(115)\left(10^{5}\right)}{(3.81)(0.95)(60)(15000)}=12: 3 \cong 122 \tag{3a}
\end{equation*}
$$

turns
and the number of sccondary turns can be computed from formula (3):
$N_{8}=\left(\frac{6000}{115}\right)(122)(1.05)=6700$ turns .
The number of secondary turns is multiplied by 1.05 to allow for the transformer regulation. This gives : total number of secondary turns of 6700 .

Now that we know the number of turns required, we can check back to see how much area the core window allows for each turn with a K factor of 0.1 .

Using equations (5) and (6),
$A_{\mathrm{WP}}=\frac{(1.275)\left(10^{6}\right)(0.1)(10.9)}{122}=11,400 \mathrm{c.m}$. (5a)

$\begin{gathered} \text { Wire } \\ \text { Size } \\ \text { (A.W.G.) } \end{gathered}$	TABLE I. W'ire Area (Cir. Mils) (Heavy l'ormvar)	Current Capacity (ma.)
40	14.4	9.61
39	17.6	12.25
88	23.0	16.00
87	29.1	20.25
36	36.0	25.00
35	44.9	31.36
34	56.2	39. 69
33	70.5	50.41
32	88.3	64.00
31	108.0	79.21
30	134	100.8
29	169	127.6
28	207	158.8
27	259	201.4
26	320	252.7
25	400	320.0
24	497	404.8
23	620	510.0
22	767	640.3
21	961	812.1
20	1147	1024
19	1489	1289
18	1888	1624
17	2323	2052
16	2894	2581
15	3624	3260
14	4529	4109
13	5670	5184
12	7088	6529
11	8873	8226
10	11,130	10.300
9	13,950	10,090
8	17,530	16,510

and $A w s=\frac{(1.275)\left(10^{6}\right)(10.9)}{6700}=207 \mathrm{c} . \mathrm{m}$.
The computed primary-wire area exceeds the wire area of No. 10 wire, proving the choice of this wire size is satisfactory. The wire area of the secondary winding corresponds to No. 28 wire, whose current-carrying capacity, based on our conservative estimate of 1 circular mil per milliampere, is only 158.8 milliamperes. By selecting the next larger size, No. 27 , the wire size requirement for the secondary current is adequately satisfied.

As a check, it is advisable to compute the total space fictor, K_{T}, using equation (7).

$$
\begin{equation*}
K_{\mathbf{T}}=\frac{(122)(11130)+(6700)(259)}{(1.275)\left(10^{f}\right)(10.9)}=0.22: 3 \tag{1a}
\end{equation*}
$$

This space factor does not seem unreasonable, since it is much less than 0.4 . If there are any doubts in the designer's mind, he may choose the next larger standard core size, AA-533. Usually, however, total winding-space fartors up to 0.3 are easily accommodated, except in cases where excessive insulation is used or windings are not well fitted.

Making the Secondary Findings

There are several practical suggestions which the writer feels may be usciul to the inexperienced transtormer designer. Fig. 1 illustrates the construction of a coil bobbin which does not require the use of serews or other fasteners. The bobbin tube is made from four pieces of thin Formica or Textolite, two pieces of which have small ears. The purpose of the ears is to prevent the bobbin flanges from separaing from the bobbin tube. If the parts are aceurately dimensioned, the bobbin will be almost self-supporting or can be tacked with varnish or glue. The bobbin should fit snugly to the core in order to conserve winding space. The material thickness should be as thin as strength will allow.

In winding the secondary pies, the writer recommends the fixture in Fig. 2. After the primary winding has been a!plied to the bobbins, the dimensions of the quadrilateral formed by the four serews can be determined by measurement. If the plate is drilled and tapped at the appropriate places, allowing some room for the insulation wrap, snug-fitting secondary pies can be easily fabricated. As a rule of thumb, the number of turns on each pie can be determined by dividing the total secondary voltage hy 500 and rounding the result off to the nearest even integer. Then, the number of secondary turns per pie are determined by dividing the total secondary turns by the number of pies. The thickness of the pie winding must be checked to make sure that it does not exceed one-half of the window height remaining after the primary winding is applied. In wther words, the pies should not protrude outside the bobbin.

Finishing

To conserve winding space, it is important that the rectangular cross section of the pies be main-

Fig. 2-Tool suggested for winding the secondary pies. The corner posts around which the wire is wound should be spaced so that the finished pie will fit snugly on the bobbin.
tained after wrapping. To do this, the bare pie should be soaked with a thin varnish or perhaps an acrylic aerosol spray and then allowed to dry before removal from the pie-winding tool. If carefully haudled after removal, the pie should maintain its rectangular cross section during the wrapping operation. To further stiffen the pie assembly the wrapping material should be painted with a good grade of insulating varnish. To prevent the bare pie from sticking to the tool, coat the tool with a thin coat of paraffin or spray it with one of the liquid wax aerosols. ${ }^{7}$

A superior pie-wrapping tape is Scotch X-1045 thermosetting electrical tape, which can be baked to a rugged fused coil encapsulation in the kitchen oven. This tape is available directly from the Minnesota Mining \& Mfg. Co. in several convenient widths. Suspend the eoil by its leads, if possible, and cure for two hours at $250^{\circ} \mathrm{F}$. Ficep the starting and finishing wires well separated.

Banding

Perhaps the most difficult task facing the amateur transformer constructor is that of adequately banding the core. While TV chimney mounts, pipe straps and adjustable hose clamps may be satisfactory for the job, one should not overlook the possibility of taking the assembled core and coil to a local transformer manufacturer or power company. It is quite possible that these organizations will have the banding straps and banding tool necessary for the job. ${ }^{8}$ In addition to the mounting plate illustrated by Coats, a second metal plate banded to the top of the transformer makes a convenient terminal board. Primary and secondary wires can be brought to feed-throughs in this plate. The plate may be either Hat or Lshaped depending on whether the terminals are desired at the top or side of the finished transformer.

The ingenious high-power enthusiast can probably save a considerable sum of money constructing high-voltage transformers by the methods

[^11]
Transistor Preamplifier for Dynamic Microphones

Self-Contained Unit of Small Dimensions

by ROBERT F. WITTERS,* K6VGA

 The rugged character of dynamic microphones makes them well suited - to ham use. Their relatively low out-- put, however, usually makes necessary the use of amplification greater than that available in many manufactured and home-built audio sections. The preamplifier described here is a small self-contained unit - that may be plugged in between the - microphone and the microphone jack of an existing rig. He great popularity of the high-impedance, high-output-level microphone, as represented hy the crystal and ceramic types, has led the great majurity of amateur transmitter builders both commercial and home-brew - to design rigs adapted to their use. Sooner or later, however, many wish to use the dynamic microphone, well known for its rugged-service record in the face of extremes of temperature and shock. These units are now available in high-impedance models having a frequency response more than adequate for communication service, and at reasonable prices. However, the output specifications of these units may be misleading. If, for example, both a high-impedance dynamic microphone and a crystal microphone have rated - 55 db . outputs, the power outputs are equal but the voltage outputs are vastly different. Since $E=\sqrt{W R}$ and W ' is the same for each type then, assuming typiral impedances.

$$
\begin{aligned}
E_{\mathrm{DYN}} & =\sqrt{\left(I I^{\prime}\right)}(50,000) \text { and } \\
E_{\mathrm{XTAL}} & =\sqrt{(I I I)}(5,000,000)
\end{aligned}
$$

The output ratio is then

$$
\begin{aligned}
E_{\text {XTAN }} & =\frac{\sqrt{\left(11^{\prime}\right)(50,000)}}{\sqrt{\prime}\left(11 I^{\prime}\right)(5,000,000)} \\
& =\frac{24}{22+0}=0.1 .
\end{aligned}
$$

It is no wonder, then, that by connecting the * 4774 Yarmouth St., Encino, Calif.

high-impedance dynamic microphone to the normal crystal-microphone input channel, low modulation is the result. In the writer's experience, the increased sound level required at the microphone is greater than the vocal cords can deliver. Increased amplification is required but it may not always be possible, or at least desirable, to add the necessary components internally in the rig. The preamplifier to be described is contained in a small external package, complete with hattery power supply.

Circuitry

To keep the unit small and simple, a transistorized circuit is used. To provide a match for the 50,000 -ohm impedance of the microphone, the first stage is an emitter follower. This type of transistor amplifier is similar to a tube cathode follower in that it has a high input impedance and a low output impedance. The output of this stage is well suited to driving the second stage which is a common-emitter amplifier. The output impedance of the second stage is approximately 1500 ohms, which reduces hum pickup problems.

R. F. Filtering

Since most antenna systems are not accurately batanced. some r.t. is usually Hoating around the shack. Any small amount of r.f. getting into the preamplifier cables will he rectified hy diode action in one of the transistors and cause feedback. The input filter consisting of the r.f. choke and C_{1}, and the output filter C_{2} reduce this possibility: Due to the low amplifier impedances, the (apacitors will not impair the audio response.

Pouer Supply

Each stage is hiased to provide stable operation over a reasunable temperature and batteryvoltage range. The total battery drain is approximately 2 ma., giving essentially shelf-life service from the three Z-size pen cells-meven for ragchewing specialists. The switch should be left "off", however, when the station is not in use.

Transistors

The unit shown in the photos uses a transistor made by General Transistor, similar to their type GT-81. This transistor is a p-n-p germanium type and is typical of many available inexpensive

This complete self-powered two-stage preamplifier is hardly noticeable alongside the dynamic microphone with which it is used.

Fig. 1-.. Circuit diagram of the transistor preamplifier. Unless indicated otherwise, capacitances are in $\mu \mu \mathrm{f}$.; C_{1} and C_{2} are mica; other capacitors are subminiature electrolytic. Resistances are in ohms and resistors are $1 / 2 \mathrm{waft}$.

$B T_{1}$-See text.

P_{1}-Microphone plug.
"entertainment"-type transistors. The transistors that muy be used in this circuit are too mumerous to be listed here: however, a few are: the Texas Instrument 2N369, Raytheon 2 N 362. RCA 2N408, and ('F 2N191. Select one having a nominal heta or h_{fe} between 50 and 100. Circuit changes should not be necessary with any transistor of this general type. N-p-n transistors will work as well, but it will be necessary to change all capacitor polarities and reverse the battery supply. Any of the above transistors will cost approximately $\$ 1.50$.

Construction

The amplifier and hattery supply are housed in a $21 / 4 \times 21 / 4 \times 13$-inch aluminum box. All amplifier eomponents are mointed on a plastic board that is raised on spacers. Components are located on boin sides of the bourd for convenience. Transistor sockets were used, but are not considered necessary. The transistor leads may be soldered directly, provided that care is taken not to allow the heat to damage the transistor. Keep leads 2 inch long and use a heat clamp during soldering. Component placemest is not eritical but the input and output r.f. filters
Q_{1}, Q_{2}-See text.
$\mathrm{S}_{1}-$ S.p.s.t. slide switch.
should be located as near to the shiclded input and output cables as possible. The hattery holder is a standard item available at radio and hobby supply houses. Other batteries may be used, including the long-life mercury type. None of the component types is oritical and any manufacturers' items may be used for the listed components. Both the input and output eables may be as long as desired, allowing the preamplifier to be located in any convenient position.

Operation

Before placing the preamplifier in system operation, it is a good idea to check the voltages at each transistor emitter. Approximately 22 volts should appear at the emitter of C_{1} and 1.5 volts it the emitter of (Q_{2}. These voltages may vary by 50 per cont and still be normal. The characteristics of transistors vary more widely than those of vacuum tubes. About 40 db . of gain will be obtained from the preamplifier. so you can use that dynamic microphone without shouting into the next district. Mobile fians may find the preamplifier handy when sulstituting a dynamic microphone for a carbon unit.

प57-

Exploded view of the transistor preamplifier. Most of the components are mounted on the two sides of a perforated fiber or Formica sheet. The Penlight cells are mounted in the cover of the box which is approximately a 2 -inch cube.

Most everyone know's the importance of Q in r.f. circuitry, but few realize it can be measured without expensive laboratory equipment. W7LHZ's method requires only a grid-dip oscillator and an antenna impedance bridge for reasonably accurate measurements up to 50 Mc .

Good Results with
 Simple Test Gear

BY DOYLE STRANDLUND.* W7LHZ

Measuring Coil \boldsymbol{Q}

0Ne can't get very far in r.f. circuit work without running in to the subject of Q. As the books all say, Q stands for quality -the quality of a coil or capacitor --. and that can be just as important, as the amount of L or r ? involved. In general, the higher the Qs of the reactive elements, the better will be the performance of a circuit. (apacitors have high (? built into them, at least up through the h.f. range, but the kind of coil chosen and the way it is made have a lot to do with the losses there. What is needed is a simple way to measure coil Q, and this article will show how to do it without the usual expensive test equipment. Continue reading for a better idea of what Q is, or skip down to the subhead if what you want is the method.
'To review briefly, a resistor may appear to be just a resistor to d.c., a.f., and low r.f. currents, but coils and capacitors don't behave so nicely they don't art like pure reactances. Coils have d.c. resistance and a different a.c. resistance as well as their inductive reaetance. Capacitors have i.c. resistance, too, besides their capacitive reactance. The figure of merit, Q, w:ts devised to relate these properties and equals the reactance divided by the resistance. It is a ratio without sign, since the sign of the reactance is not used. The resistance and the inductance must be taken at the operating frequency if any of the materials used in coustruction are frequency sensitive.

For example, a coil rated at 7 microhenrys in-

[^12]

Fig. 1-Basic circuit used in a commercial Q meter. R_{L} is the r.f. resistance of L, the coil under test; R_{C} is the resistance of the \mathbf{Q} meter capacitor, C .

Nuctance has about 300 ohms reactance at 7 Mc. This can be found from the reactance charts in the Handbook or by multiplying the inductanea by $2 \pi f$. If the coil had an a.c. resistance of 10 ohms at this frequency, its Q would be 300 divided by 10, or 30 . The lower the a.c. resistance compared to the reactance, the higher the Q and the better the coil will be for most applications.

Commercial Q meters use a basic circuit similar to Fig. 1 for measuring (2. A small r.f. voltage, E_{g}^{\prime}, is applied to a series-resonant circuit consisting of $/$, the coil being tested, and C^{\prime}, a built-in capacitor. R_{c}, the r.f. resistance of the capacitor, is negligible compared with R_{L}, the coil resistance we are interested in, so the latter is what limits the reurrent at resonance. E_{g} and E_{b}, the voltage drop across the reactance of the eapacitor (same as that across the eoil), are measured, and their ratio, E_{\star} / E_{g} equals the coil ($)$.

This sounds simple, but there are a few things that make it difficult to obtain accuracy with such a hookup on the experimenter's bench. Input voltage E_{g} may be too low to measure with the usual diode r.f. probes, and the circuit would be detuned considerably if such a probe were used to measure E_{s}^{\prime}. At the same time, if a grid-dip meter were used for the generator, voltage regulation would be so poor that moving the probe from one position to another would change the voltare as well as the irequency. Therefore, this type of a measurement had best be made with a factorydesigned and calibrated meter.

Using Simple Equipment

Fortunately, there is an easy way out for the ham. Since the value of r.f. resistance is what is wanted, just measure it. How? With :an impedance bridge - it is made to measure r.f. resistance. Here's the method: Set up the bridge, feeding it with a grid-dip meter or other lowpower source at the operating frequency. Connect the coil to be tested in series with an air-spaced variable capacitor across the "unknown" terminals of the bridge, as in Fig. 2. Adjust the capacitor and the variable element of the bridge until a complete null is obtained. (If a null cannot be found, the variable capacitor will not resonate with the coil or the bridge may not go low enough in resistance.) Take the value of resistance found, and divide it into the reactance of the capacitor to find the actual value of Q.

Fig. 2-S =.up for measuring r.f. resistance of coil L using grid-dip me.er, impedance bridge and variable capacitor C.

To find the reactance of the capacitor, remove it from the circuit and measure the capacitance in use (being careful not to change the setting). If a capacitance bridge is not available, use a grid-dip meter and a standard coil as described in the Handbook chapter on measurements. The reactance can be found from the Handbook charts or the formula $X_{C}=1 / 2 \pi f C$. With air-core coils, Q changes rather slowly with frequency, so a fixed capacitor can also be used and the frequency varied until a null is obtained. The value of resistance found when using a fixed capacitor may be different from that obtained at the same frequency with an air-spaced capacitor. This is beeause the lower (? of the fixed capacitor adds additional resistance to tue circuit. For comparing several coils which resonate at the same frequency with the same capacitance, no calculations need be made - the coil showing the least resistance has the highest Q.

In case you wonder why the reactance of the capacitor instead of the coil is used in these calculations, remember that the two are equal but of opposite sign at resonance, and the sign is not used in determining Q. It is usually easier to measure capacitance tian inductance because substitute values are handy and suitable bridges more commonly available. If you know the inductance of the coil being checked, it would be easier, of course, to look up or calculate its reactance rather than to determine the resonating capacitance. It makes no difference which is used - the answer is the same.

For best results, the value of the capacitance used each time, and the frequency, too, should be determined as accurately as possible. If many measurements are to be made, it would be well worth the trouble to calibrate a variable capacitor to show the capacitance for each degree of rotation. If all measurements are to be made at one frequency, the variable capacitor could even be calibrated in reactance instead of capacitance.

Any type of impedance bridge may be used if it works at the frequencies of interest and will indicate resistances between about 1 and 50 ohms. If your bridge was built for antenna work, chances are it will have to be modified to measure lower values of resistance. This can be accomplished easily as follows:

In the variable-voltage-divider type bridge, Fig 3A, the unknown is compared to a standard resistor, K. By substituting a resistor $1 / 10$ the value of R for R, the calibration values are re-
duced to $1 / 10$ their former value - -... 50 ohms becomes 5 ohms, 10 ohms becomes 1 ohm, etc.

In the equal-arm type, Fig. $: 3 B$, resistors R_{1} and R_{2} form a fixed voltage divider. By reducing k_{2} to $1 / 10$ its former value, the dial readings of the variable R_{3} are also reduced by a factor of 10 as above.

Noninductive resistors must be used in these changes, of course. It is not necessary to chop at resistor open to find if it contains wire. Just look at the first hand of the color coding. If the first band of color is twice the width of the others, the resistor is wire-wound. ${ }^{1}$ If the bands of color are the same width, there is carbon inside.
'This same setup will work with all kinds of coils, up to about 50 Mc., where the Q of capacitors becomes significant. It will work with audio filter inductors and teletype toroids as well, if the proper capacitances are used for resonance at the operating frequency. The effect of core materials and shiclding can be noted quickly. Just try using core material from a rod-type b.c. antenna at 4 or 5 Mc . and see what happens to the Q.

With ordinary ham-shack equipment, plus just a few calculations, a type of measurement that sounds impossible can easily be made with acceptable accuracy. ${ }^{2}$ Borrow a capacitance bridge to calibrate a few variables, dust off the antenna bridge, get your g.d.o. back from Friend Jim. and rou're in business.
1 This is true of current production, but older wire-wound resistors may not have a double-width band. - Ed.
${ }^{2}$ One word of warning - he caruful about using this method (or any other (i)-measuring technique we know of) in cases where the distributed capacitance of the coil is an appreciable fraction of the external capacitance used for tuning. This is true, for instance, of antenna loading coils used at the lower frequencies. The distributed capacitance acts very much as though it were lumped across the coil terminals and canses the coil to have an apparent \& which is lower than the true value. As an example, if the distributed C is $1 / 10$ the tuning C, the true and apparent (?s differ by 4 per cent.
(Continucd on page 100)

Fig. 3 (A) Basic circuit of variable-voltage-divider-type bridge. In the capacitive divider version of this circuit, a differential capacitor replaces the potentiometer
(B) Basic circuit of equal-arm-type bridge.

A High-Pass Filter for the Ham Receiver
 Getting Rid of Cross-Modulation from Local B.C. Stations

BY R. E. BAIRD,* W7CSD

ARE you one of those unfortunate amateurs who lives too close to a broadcast transmitter? Before moving last summer, the :tuthor had heard numerons complaints about b.e. signals all over the 80 -meter band, but usually you don't worry too much about the other fellow's problem.

Then yours truly found himself living within one mile of two 50-kw. transmitters. You guessed it: there were signals on top of signals on top of signals, broadcast hash par ercellence all over the 80-meter band. In a case like this how can you do any hamming?

First off, it should be clearly understood that all those signals are not really there. One or two may be true harmonics, but the rest are caused hy rectification in one of the early stages of the receiver. ${ }^{1}$ If this sounds suspiciously like some stories you've heard about amateur 'TVI, it is no eoincidence. The eure is the same, too. If you can build a high-pass filter for a TV receiver, you can build one for any other kind of receiver.

Fig. 1 shows the circuit which cleaned up the trouble at W7CSD. Two L filter sections are used in cascade. The formulas for designing filters of this trpe are published in Radio Engineering Handbook, by Henney.

$$
L=\frac{R}{4 \pi f_{\mathrm{c}}} \text { and } C=\frac{1}{4 \pi f_{\mathrm{c}} R}
$$

where L is the required shunt inductance in henries, C is the series capacitance in farads, R is the terminating resistance in ohms, and f_{c} is the cutolf frequency in c.p.s. In this case, 3 Mc. was selected as the cutoff frequency, and our receiver was reputed to have an input impedance of 72 ohms. Plugging in these numbers for f_{c} and R, we can crank out values of $1.9 \mu \mathrm{~h}$. for L and $370 \mu \mu$. for $(\therefore$.

It is not essential that O be exactly $370 \mu \mu \mathrm{f}$. In the original filter $400-\mu \mu$. caparitors were used because they were on hand. To find the right size coil for L, first calculate the resonant frequency of L and C from the formula

$$
f=\frac{10^{9}}{2 \pi \sqrt{V C}}
$$

[^13]

Fig. 1-Circuit of the two-section high-pass filter. Components should be mounted in a grounded metal container. Values shown below are for a cut-off frequency of 3 Mc . and a receiver input impedance of 72 ohms. For a different cutoff or termination, see the design information in the text.
$C_{1}, C_{3}-400-\mu \mu \mathrm{f}$. , mica or ceramic.
$L_{1}, L_{2}-1.9 \mu$ h., 5 turns No. 22 d.c.c. close-wound on $11 / 2$-inch diam. form.
f will be in Me. when L is in μ h. and C is in $\mu \mu \mathrm{f}$. Connect the capacitor you are using arross a coil and check the resonant frequency with it grid-dip meter. Vary the number of turns or the size of the coil until the meter dips at the calculated frequency; $1.9 \mu \mathrm{~h}$. resonates with 400 $\mu \mu \mathrm{f}$. at 5.8 Mc . . and the coils specified check out very close to this frequency.

The filter components should be mounted in a shield e:an which is grounded when in use. A frozen-orange-juice can with aluminum foil secured over the open end makes a suitable and inexpensive shield. Arrange the eoils perpendicular to each other to minimize coupling.

Any number of filter sections can be cascaded. Two seetions did the job for the case in point and removed all spurious signals from the 80 meter band except for two truc harmonics. [5F-]

No comment needed!

- Beginner and Navice

Crystal-Controlled Converters with a BC-455 as a Tunable I.F.

50- and 144-Mc. Reception at Low Cost

BY LEWIS G. McCOY,* WIICP

TTHis article describes a romplete receiving setup for 50 and 144 Mc. Basically, the arrangement consists of two erystal-controlled converters working into a BC- 455 which is used as it tunable i.f. to cover the 50- and 144 Ac. bands. The primary concern in designing the converters was to make them easy to build and get working. This was accomplished for the most part by using ready-wound, commerciallymade coils, which eliminate the problems many beginners have in duplicating homemade roils. In addition. the ready-wound coils are only pennies more expensive than coil forms and wire.

Many newcomers interested in getting on v.h.f. dislike putting a lot of cash into a receiver that is going to be used with converters. The BC-455 is the answer to this. In the event the reader isn't familiar with this particular piece of military surplus, the BC-455 is a ti-tube superhet that rovers from 6 to 9 Mc . The rost of these units ranges from five to fiftern dollars, depending on condition. Modifications required for using it with the converters are very simple and ran be made in au bour or so. It should be pointed out that the Novice operator also can make use of the BC-455 by itself to cover the $7-\mathrm{Mc}$. amateur band - in other words the reereiving setup as described here will cover 7,50 , and $14+$ Me.

* I'echnical Assistant, QST.

Circuit Details

You'll note that there are three separate eirouit liagrams. Figs. 1, 2 , and 3 , for the two converters and the power supply, although in actual construction all three circuits are mounted t.ggether on an 8×12-inch picce of aluminum. The reason for showing the circuits separately is to make it easier for the reader to follow. Let's take a look at the circuit of the 6 -meter converter, Fig. 1, first.

A $6 \mathrm{CB6}$ r.f. amplifier stage is used, with L_{2} in the grid circuit tuned to the 50-Mc. range. The output of the r.f. stage is fed from the tuned plate circuit to the pentode section of a 6 UP A which serves as the mixer. A $4 t$-Mc. crystal is used with the triode oscillator portion of the 6 UBA . Uscillator injection from the triode to the pertode mixer is accomplished by the coupling between the two units within the 6U8A itself. $L_{4} \mathrm{C}_{2}$, which resonate in the 6-Mc. region, form the ontput circuit of the mixer. Coupling from L_{4} to the $\mathrm{BC}-4.55$ is taken care of by the link L_{5}. Using the $4 t-M c$ crvstal, the 50-Mc. band starts at 6 Mc. on the BC- -55 dial. Actually, the BC455 does not eover all. of the 50-Mc. band but tumes to about 53.3 Mc. If complete coverage is required, another erystal, at approximately 45 Mc., would be needed.

As can be seen here, the con-verter-BC-455 makes a neat, compact package (Field Day here we come!). At the left in this view are the three tubes of the 144-Mc. unit. In the center is the $50-\mathrm{Mc}$. converter, while the power supply components are grouped along the far right side of the chassis. A short length of RG-58/U coax cable is used to connect the converters to the antenna terminal of the $B C-455$. The outer braid of the coax is grounded at the screw just above the antenna terminal.

Fig. 1-Circuit diagram of the $50-\mathrm{Mc}$. converter. Unless otherwise indicated, resistances are in ohms; resistors are $1 / 2$-watt composition. All $0.001-\mu \mathrm{f}$. capacitors are disk ceramic.
$C_{1}, C_{2}-47-\mu \mu$ f. mica.
I_{1}-Phono jack.
$L_{1}-2$ turns No. 30 enam., wound at ground end of L_{2}. $L_{2}, L_{3}, L_{\kappa}-0.9-1.6 \mu h_{\text {.; }} 7$ turns No. 28 enam., closewound on $3 / 8$-inch diam. slug-tuned ceramic form, iron core (Miller 4403).
S_{1} is a two-pole, three-position switch which in its first position has the power supply (Fig. 3) turned off. In the second position the supply is turned on and plate voltage is applied to the 6 -meter converter. In the third position the B plus is switched to the 2 -meter converter.

The 144-Mc. Converter

A tiBS8 dual triode is used with the first half operating as a grounded-cathode r.f. amplifier driving the rathode of the second half of the tube (rascode circuit). Output from the plate circuit, of the second half is fed to the pentode section of a 6U8A which serves as the mixer. A crystaleontrolled 6.AF4A triode oscillator is used, operating at 46 Mc . Its output is fed to the triode portion of the 6U8A, which triples to 1388 Mc. Injection from the tripler to the mixer is accomplished via the tube capuritances. The plate cir--uit of the mixer, $C_{5} L_{10}$, is resonant in the 6-Mc. region. The output of this circuit is coupled to the BC (-4.55 vi:i the link, L_{11}.

Power Supply

Fig. 3 shows the power supply circuit and the power connections to the $\mathrm{BC}-4.55$. A choke-input type filter is used for the plate supply. The supply furnishes approximately $1: 30$ volts, which is adequate for the converters and the $\mathrm{BC}-455$.

The BC-455 as used in military service has the tube heaters wired for 25.2 volts. T_{2} is a 25.2 volt filament transformer, so there is no need to rewire the heaters. Thus the BC- 455 can be used just as it comes in surplus: the only additions needed are a gain control, headphone jack, and b.f.o. witch. Connections for these are shown in Fig. 4.
$L_{4}-6.7-15 \mu \mathrm{~h} . ; 26$ turns No. 30 enam., close-wound on $3 / 8$-inch diam. slug-funed ceramic form, iron core (Miller 4406).
L.s-8 turns No. 30 enam., close-spaced, wound over ground end of L_{4}.
S_{1}--Rotary, 2 poles, 3 positions (Centralab 1472). Y_{1}-44-Mc. overtone crystal (International Crystal FA-9).

Construction Details

The two eonverters and the power supply are mounted on an $8 \times 1 \underline{1}$-inch aluminum plate. When completed, the plate mounts on an $8 \times$ 1%-inch chassis of either 3 - or 3 -inch depth. A fullsize drilling template is available to those interested in building the unit. ${ }^{1}$ It is to your advantage to use the template berause the placement of components is important at v.h.f.

When wiring, keep all leads as short and as direct as possible. When soldering, hold the lead being soldered with a pair of long-nose pliers. The pliers will conduct heat away from the associated component, thereby preventing possible damage.

The coils used in the 50-Mc. converter are wound on $3 / 8$-inch diameter ceramic forms. With the exception of L_{10} and the interstage transformer $L_{8} L_{9}$, the coils in the $144-\mathrm{Mc}$. converter are on $3 / 16$-inch diameter forms, the smaller size heing necessary since sulficiently small values of inductance are not available in the largerdiameter series. A coil on a 1 -inch diameter form was used for L_{10}, but if the builder desires there is no reason why the BU8A output circuits rannot be made identical in the two converters: either set of components $\left(C_{2} L_{4} L_{5}\right.$ or $\left.C_{5} L_{10} L_{11}\right)$ may be used in either 6U8A plate eircuit.

The input coil, L_{7}, of the $144-\mathrm{Mc}$. converter requires a tap which is eonnected to $/ /_{2}$. Before mounting the coil in place, unsolder the winding from the bottom terminal (the one that will be close to the mounting plate) and carefully unwind it little more than one turn. Scrape the insulating

[^14]

Fig. 2-Circuit diagram of the 144-Mc. converter. Unless otherwise indicated, resistances are in ohms; resisfors are $1 / 2$-watt composition. All 0.001 - $\mu \mathrm{f}$. capacitors are disk ceramic.
$C_{3}, C_{4}-1-6-\mu \mu \mathrm{f}$. tubular trimmer (Centralab 829-6).
C_{5}-68- $\mu \mu \mathrm{f}$. mica.
$\mathrm{C}_{6}-47-\mu \mu \mathrm{f}$. mica.
$C_{i}-47-\mu \mu$ f. mica.
$\mathrm{J}_{2}, \mathrm{~J}_{3}$-Phono jacks.
$\mathrm{L}_{7}-0.17-0.27$ uh.; 5 turns No. 24 enam., close-wound on $3 / 16$-inch diam. slug-tuned ceramic form, iron core (Miller 4301), tapped one furn from grounded end.
$L_{s}, L_{9}-3$ turns No. 20, $1 / 2$-inch diam., turns spaced to cover $3 / 8$ inch.
Lio-5-9 $\mu \mathrm{h} . ; 30$ turns No. 30 enam., close-spaced on
material from the wire and then sulder on the tap wire, which should be about, two inches long. lou can cut it off to size when the other end is soldered to δ_{2}. Wind the siugle turn buck on the form and solder the end to the hottom terminal.

You'll find it an easier job if you wind the links, L_{1}, L_{55}, and L_{11}, before making any connections to the coils. The links should be wound around the bottom ends of the coils. (The hottom end is that part of the winding closest to the mounting plate when the forms are mounted in place.) The links should be wound in the same direction as the other windings.

Note that L_{5} and L_{11} have a common connection to J_{3}. In the test model it was found that connecting the links in parallel did not appreciably affect the performance of the converter. Connerting them in this manner eliminates a switch section, allowing the use of an inexpensive switch for S_{1}.

Aside from the links the only coils that are not commercially wound are L_{8} and L_{9}. However, these are quite simple to make. Each coil consists of three turns one-half inch in diameter of No. 20 wire, and the turns are spaced to eover threeeighths of an inch. The coils are mounted on tie
$1 / 4$-inch diam. slug-tuned ceramic form, iron core (Miller 4505).
Lit-8 furns No. 30 enam., close-spaced, wound over ground end of L_{10}.
$\mathrm{L}_{12}-0.64-0.95 \mu \mathrm{~h}$; 12 turns No. 28 enam., close-wound on $3 / 16$-inch diam. slug-tuned ceramic form, iron core (Miller 4304).
$\mathrm{L}_{13}-0.27-0.41 \mu \mathrm{~h} . ; 7$ turns No. 28 enam., close-wound on $3 / 16$-inch diam. slug-tuned ceramic form, iron core (Miller 4302).
S_{1}-See Fig. 1.
$\mathrm{Y}_{1}-46$-Mc. overtone crystal (International Crystal FA-9).
points and when mounted are separated by oneeighth inch.

BC-455 Modifications

Figs. 3 and 4 show the connections to the BC455. In the unit shown, the filament transformer, ' T 's, was mounted on the rear of the tube eover. Be sure when mounting the transtormer to allow for access to the power terminals on the rear deck of the $\mathrm{BC}-455$.

There is a small panel directly below the tuning dial on the front of the BC-455. Take out the four screws and remove the panel. You'll find a small box mounted on the back of the panel; remove it and mount R_{1}, J_{5}, and S_{2} on the panel, bing sure to allow enough room so that the panel cun be mounted back on the BC- 455 (you'll find it a tight. squecze but the pancl will fit with the three components mounted). Connect the three units to the pins as shown in Fig. 4 (the laad length here is not important).

The last step is to make up a cable of four leads to connect the $B(-455$ to the converter chassis $\left(P_{1}\right.$ to $\left.J_{4}\right)$. An octal plug and socket are used for this, although only four connections are needed, because this type is readily available.

Grouped along the left in this view are the components of the $144-\mathrm{Mc}$. converter. Note how the interstage coils, L_{8} and L_{9}, are mounted on opposing tie points. The $50-\mathrm{Mc}$. components are mounted across the middle of the plate. The switch to the left of the power transformer at the upper right corner is S_{1}. At the lower right corner is J_{4}, with the $0.01-\mu f$. ceramic bypass capacitors mounted on the socket prongs. The line cord goes through a grommet in the chassis just to the right of J_{4}.

When this job is done you are ready to test the units.

Testing and Alignment

Connect up the units and turn on the power. First make sure the heaters are lighting up; if they don't, you have a wiring error. If you have a voltmeter you ran check the B-plus voltage. At the output side of L_{14} the voltage should he approximately 130 volts.

With B plus applied to the $50-\mathrm{Mc}$. converter, the first step in getting this section working is to check the operation of the oserillator. ()ne way of doing this is to use a calibrated indicating-type absorption wavemeter. ${ }^{2}$ which shouid be coupled to L_{16}. When the wavemeter is tuned to $t+\mathrm{Mc}$., the crystal frequency, you should get a reading on the wavemeter, showing that the osrillator is working. If you don't, adjust the slug in L_{66}. This circuit is an overtone oscillator working at the third overtone of the crystal, and in some instances the crystal may want to oscillate at its "The Radio Amateur's Handbogk, measurements chapter.
fundamental frequency - one-third of $4+$ Me., or about 14.7 Mc . Check with the wavemeter or listen for a signal on this frequency if you have a receiver that tunes to it - and if the oscillator is working at its fundamental adjust the slug in L_{6} so that it works only at $4+$ Me.

Another method of checking is with a grid-dip meter. One advantage of using a grid-dip meter is that it can also be used to generate a signal for peaking up the various stages in the converters.) 'To check the oscillator operation, couple the grid-dip meter to L_{6} and use it as an absorption wavemeter: i.e., with the grid-dip meter plate voltage turned off. When tuned to the erystal frequency, the meter should show an indication of oscillation.

When the oscillator is working correctly, you are ready to make the remaining adjustments. lou can use the grid-dip meter to generate a signal or you can put an antenna on the converter and listen on the air. In either event. tune in a signal at about 50.1 Mc. (BC-455 tuning at about 6.1 Mc.) and then adjust the slugs in L_{2}, L_{3}, L_{4},

Fig. 3-Circuit diagram of the power supply and connections to the BC-455. All $0.01-\mu \mathrm{f}$. capacitors are disk ceramic.
J_{4}-Octal socket.
Li4-Filter choke, $^{2} .5 \mathrm{hy}$., 50 ma . (Knight 62G136).
P_{1}-Octal plug (Amphenol 86-PM8).
S_{I}-See Fig. 1.
T_{1}-. Power transformer, 480 volts center-tapped, 40 ma.; 5 volts, $2 \mathrm{amp} . ; 6.3$ volts, 2 amp . (Knight 62 GO 34).
T_{2}-Filament transformer, 25.2 volts, 1 amp. (Knight 61G421).

AS VIEWED FROM THE FRONT
Fig. 4-Wiring of connector in front compartment of the BC-455.
J.-Phone jack, open-circuit type.
$R_{1}-20,000$-ohm control, audio taper.
S_{2}-S.p.s.t. toggle
and L_{6}, working for maximum signal strength. Also, adjust the antenna trimmer - the small knob marked "Align Input" -- on the BC-455 for maximum signal strength.

In order to judge signal strength with reasonable accuracy, turn on the beat-frequency oscillator of the $\mathrm{BC}-455$ and tune the receiver so you get a beat note of convenient pitch on the incoming signal. Reduce the gain of the BC-455 to give an audio output of moderate strength well below the point at which a further increase in gain causes no further corresponding increase in audio output. You'll probably have to reduce the gain of the BC-455 as the adjustments make the signal louder.

Once you have all the stages peaked up the converter is ready for use. If your initial alignment has been done with a grid-dip meter as a signal source, it is a good idea to touch up the adjustments on an actual distant signal after the converter is put in service.

For 2-meter alignment, switch the B plus to the $144-\mathrm{Mc}$. converter and check out the crystalcontrolled oscillator, V_{4}, in the same manner as you did with the 50-Mc. unit. Once the oscillator is working at 46 Mc ., adjust the slug in L_{12} for maximum output from the oscillator as indicated by the wavemeter or grid-dip meter. Next, adjust the tripler coil, L_{13}, for maximum output at 138 Mc. Using either a signal from the grid-dip meter or one coming in on the antenna, adjust L_{7}, C_{3}, C_{4}, and L_{10} for maximum signal strength. Also, touch up the adjustment of L_{12} and L_{13} for maximum signal. As mentioned with the $50-\mathrm{Mc}$. converter, a more precise adjustment can be made with an actual signal than with the grid-dip meter.

The adjustment procedure outlined above will he close enough for all but the most exacting listeners. To get the last drop of performance, however, the best adjustment method is to use a noise generator. The construction of a simple noise generator and the method of using it for obtaining maximum signal-to-noise ratio is described in the Handbook. ${ }^{2}$

If this is your first crack at v.h.f. a word or two about antennas might prove helpful. If you are going to take part in net or in civil-defense operation, or just want to rag-chew with your friends, you'll probably want an antenna that
will provide omnidirectional coverage. A good antenna of this type, and simple to make, is the "turnstile." Details for making a turnstile antenna were given in a recent issue of QST. ${ }^{3}$ A turnstile will not provide any antenna gain but has the advantage of general coverage without being rotated. On the other hand, if you want gain from vour antenna, then the thing to consider is a beam. A beam antenna will provide gain but for maximum effectiveness should be rotated and aimed at the station you wish to work. Beams ran be quite simple to make. Details for building your own can be found in the v.h.f. section of the Handbook.

Get your antenna as high as possible for best results. While you can make plenty of contacts on v.h.f. without having the antenna high above ground, you'll make more and get better results if you get your system as high as possible.

Other Receivers

The BC-4.55 was chosen as the tunable i.f. for this setup because of its low cost, as explained at the beginning of this article. However, if you already have a communications receiver that will cover the same tuning range - that is, 6 to 9 or 6 to 10 Mc . - you can of course substitute it for the BC-455. The converters will work with any receiver that has such a tuning range.

Assuming that you do use the BC-455, though, the chances are that after vou've got the setup working and have acquired a little experience with it you'll want to add such useful accessories as a.v.c., a noise limiter, and possibly an S meter. How to do this will be described in an early issue of QST.
[ST]
${ }^{3}$ Campbell, "lurnstile for Two," $2 S T$, April, 1959, p. 29.

ReStrays

This has been mentioned in QST previously, but W5P(XZ reminds us, - light aluminum is available from service stations in the form of discarded oil cans. A piece about 5 by 12 inches can be obtained from one can, or you can use the can as is for a coil shield or the like.

How many can qualify for this? A "Worked All W2HJ" certificate will be issucd to any amateur who has worked at least five operators at W2HJ, the Amateur Radio Society of the City College of New l'ork. Send the operators' calls, K2RGZ, c/o W2HJ, 139th St. and Convent Ave., New York 31.

And you can get a Proficiency Award by working 10 members of the Niagara Peninsula Amateur Radio Club after Jannary, 1960. Send the confirming QSL cards to VE3BJR, together with 50 ¢.

And for goodness sake, if you want a rather complete listing of available awards, contact K6BS, who is now the muestro for such info.

- Recent Equipment -

Hallicrafters HA-1 Electronic Keyer

I^{T}has been said in some circles that c.w. is ou the downgrade and that eventually everyone will shift to phone. The current interest in e.w.. particularly in the subject of keying, hardly bears this out--if you don't believe it, just take a look at all the articles on the subject that have appeared in (QST during the last couple of years! One item that has received quite a bit of attention is the electronic keyer, a device that takes over the job of forming the dots and dashes for c.w. transmission.

One such electronic keyer, developed by Jim Ricks, W9TO, has had a great deal of favorable comment, and has been built by many amateurs both in vacuum-tube and transistor versions. ${ }^{1}$ The Hallicrafters Company of Chicago, Ill., has marketed a version of the original W9TO circuit which it calls the "T.O. Keyer," designated Model HA-1. The keyer uses digital circuitry, similar to that foum in computers, to generate automatic self-completing dots and dashes.

Circuit Operation

The block diagram in Fig. 1 shows the hasic functions of the tubes and other major components in the circuit. To comprehend fully how the HA-1 works it is necessary to have a little background on the multivibrator, a type of circuit not too familiar to most amateurs. However, the fundamental operation of the keyer can be understood if you think of the basic multivibrator simply as an oscillator having an output wave shape that is nearly rectangular in form. A multivibrator circuit designed for square-wave output will give the mark-space ratio used in forming the dots and spaces of the code. The HA-1 keyer makes use of two types of multivibrators in its circuit. the "free-running" or continuously-

[^15]oscillating type for dot generation, and the "bistable" or "scale-of-two" circuit for dashes. The bistable type is really an electronic switch that can be thrown from "off" to "on," and vice versa, by an electrical impulse from an external control source.
Getting back to Fig. 1, when the s.p.d.t. key (not part of the HA-1) is closed on the dot side. the dot keyer tube $V_{2, A}$ is turned on, allowing the free-running multivibrator V_{1} to form dots. Once a dot has been started, it will go to completion, including the following space, as long as Vea remains on. $V_{2 A}$ is held on by a feed-back signal from V_{1} (see the loop marked "A" in Fig. 1) even though the key lever may he released from the dot contact. The dot output from V_{1} is fed to the relay tube $V_{4 \mathrm{~A}}$ which operates the keying relay K. The relay in turn is used to key the transmitter and to control other circuits associated with the keying action.

To form a self-completing dash the key lever is moved to the dash side, turning on the dash keyer tube, $V^{2}{ }^{2 B}$, and thus triggering the dash multivibrator, V_{3}. The triggering action docs not actually start the multivibrator but simply places it in the "ready" condition, the controlling actually being done by the dot generator. In addition to preparing the dash multivibrator, $T_{\text {se }}$ seuds a starting pulse to the dot keyer tube, $V_{2 \text { A }}$, through the diode $C R_{1}$, and $V_{2 \mathrm{~A}}$ starts the dot multivibrator V_{1}. The dot voltage is fed into an $R C$ differentiator, a circuit that produces a short pulse from the leading edge of the dot square wave, and this triggers the waiting dash multivibrator, $V_{3} . V_{3}$ remains on until :nother pulse. generated by the leading edge of a second dot from V_{1} through the differentiator, turns it off. Although the output of the dash multivibrator, V_{3}, is short of being a full-length dash by one dot length, this space is filled out by the second

Fig. 1-Block diagram of the HA-1 electronic keyer.
dot (the same one that turned Γ_{3} off) already initiated in V_{1}. As in the case of dots, the dash output from V_{3} (and the fill-in dot from V_{1}) turns on the relay tube and keys the relay to form a dash. Fig. 2 shows graphically what happens in the various stages in the HA-1 circuit, indicating the period during which earch tube is on or off when a single dot or dash is formed.

Constructional Features

Located on the rear :apron of the HA-1's chassis are two controls for adjusting the multivibrator eircuits. One control, labeled ralance, is used to adjust the gain of the dash multivibrator, V_{3}. The gain is set at the factory but the balance control is provided in case it is necessary to compensate for component aging or tube replacement. The secoud, the werght control, is provided so that the time relationship between a dot and its following space may be adjusted. Although this is usually set for a ratio of 1 to 1 , it may be changed to compensate for keying characteristics introduced at the transmitter that would upset the standard ratio.

A front-panel spefd control allows for regulation of the keying speed. Two ranges are available -10 to 25 words per minute and 30 to $65 \mathrm{w} . \mathrm{p} . \mathrm{m}$. --... selected by another front-panel control marked finction. In addition to the higir and low speed pusitions, the fonction switch turns the keyer on or off and has a center position labeled HOLD which closes the relay for transmitter tuning or testing.

It takes quite a few components to make an electronic keyer, as shown by this view underneath the chassis. The front panel, which contains the neon indicator, FUNCTION switch, SPEED control and KEY jack, is also visible in this picture. The black material on the upper half of the panel is fine-mesh perforated aluminum.

The HA-1 circuit includes a side-tone generator and loudspeaker for andibly reproducing the characters as they are formed in the keyer. A

This view of the HA-1 keyer shows the items on the rear apron. From left to right are the PHONES, SIDETONE level, BALANCE and WEIGHT adjustments, control socket, ground post and line cord. Mounted on the front panel is the $21 / 2$-inch speaker which reproduces the side tone as the unit is keyed. The two tubes in the foreground are the voltage regulators and directly behind them is the mercury-wetted-contract relay.
neon relaxation audio oscillator, V_{x}, is keyed hy the rolay K and the oscillator output is fed into a single triode amplifier, V_{48}. 1 sidetone level control located on the rear apron allows for adjustment of the side-tone output. Headphone output also is available, the speaker being automatically disconnected when the phone plug is inserted in the phones jack at the rear of the HA-1 cabinet.

The HA-1 includes a power supply which shares the same chassis as the keyer circuits. Using two semiconductor diodes, (R_{2} and $C R_{3}$, for rectifiers, the power supply furnishes both it plus and minus 150 volts d.c. along with the necessary heater power. Two gas voltage regulators, V_{5} and V_{6}, regulate the two voltages at. 150 each. Power requirements for the HA-1 are 105 to 125 volts, 60 cycles, at 25 watts.

The H.A-1 is housed in a gray wrap-around

Fig. 2-Time sequence in forming a dot or dash in the various tubes in the HA-1 keyer.
cabinet that measures $55 / 8$ inches high, 7 inches wide and $713 / 16$ inches deep. On the front panel are the function and speed controls already mentioned and a key jack which takes a standard /4-inch diameter three-circuit plug. Also on the front panel is a neon lamp, Γ_{7} in Fig. 1, which indicates when the power is on and also acts as a visual keying monitor. It flashes once for each dot and twice for each dash. A perfectly-formed character is indicated by flashes in steady rhythm.

In addition to the phuneis, sidetone, balance and weiget controls, the rear apron of the chassis contains the control outlet sucket, line cord and ground post. The control outlet is a standard 8-prong octal socket that provides connections to seeveral of the HA-1's circuits, includ-
ing chassis ground, two connections in parallel with the front panel key jack, low-impedance audio output, a lead to the internal speaker for muting purposes, and three connections to the relay k. The relay connections provide two relay contacts normally closed to ground, for use in eontrolling auxiliary station facilities, and is relay contact normally open to ground to key the transmitter. The relay, which is a mercurywetted type, has a contact rating of about 250 watts, with current and voltage maxima of 5 amperes and 500 volts, respectively. A Relay Contact Protection Chart included in the HA-1 instruction manual gives information on protecting the relay contacts with various loads.

- E. L. C".

Heathkit Ten-Meter Transceiver Model GW-30

Anew kit just released by the Heath Company of Benton Harbor, Michigan should fire the imaginations of all amateurs regardless of their special interests in amateur radio. The device is a hand-held ten-meter transeeiver, completely transistorized and powered by a single 9 -volt dry battery. Its light weight (only 2 pounds), compactness (it measures only $6{ }^{1}$ 2 inches high, $31 / 4$ inches wide and 23 inches deep), and low battery drain (slightly over 20 ma . at most) (errtainly qualify it as a good example of the latest thing in trausistor equipment for the amateur.

The first question one usually hears when exhibiting the unit is "How far will it work" or "How's the quality?" Heath claims that under good conditions, that in, away from buildings, trees, and other large obstacles, communication between two units is possible up to one mile. Of course, in the rity where there are many ofstructions, much electrical interference, and noise, the range is reduced considerably. Using two of the GW-30 transecivers in a test between the roof of the ARRL office and Selden Hill, which is line-of-sight and about two miles atway, prodnced marginal one-way reception. The signals were heard on selden Hill, but becuuse of local interfermece in the arra of the League office it was impossible to hear the signals from the hill. Contacts of three to tive blocks were possible in the business sertion of West Hartford if both whip antennas were oriented for maximum strength and held stationary, although it was practically impossible to carry on a solid contact if rither or both units were in motion.

Signal quality is good as long as the operator does not hit the mike too hard, something that is psichologically difficult to refrain from doing with such a small unit. The tendency is to shout when the rignal becomes marginal, but this only results in distortion.

When using a single transceiver along with a high-powered mobile or fixed station, the distance is not increased significantly, because of the low power of the GW-30's transmitter. Of course, the receiver section of the unit cun pick up signals from high-powered stations at tre-
mendous distances. In fact, when the band is open it is not unusual to copy many out-of-town stations.

Four transistors are used in the GIV-;30 circuit. two of them pertorming a dual audio role. The block diagram in Fig. 1 indicates the functions of the transistors. Trunsistor Q_{4} operates as

This view of the GW-30 transceiver shows the completed unit in its leather case. The single knob is used to turn the unit on and off and to control the audio output from the
receiver. The grille covers the speaker/microphone.

Block diagram of the Heath GW-30 hand-held 10-meter transceiver.
a common-base erystal-controlled oscillator. A tuned tank in the collector circuit of Q_{4} is resonated to the erystal frequency. This tuning, along with the tuning of several other circuits, must be done belore final assembly of the unit, since no external tuning controls are provided. Oscillator output is taken from a tay on the tuned circuit, which is coupled to the whip antenna through a loading inductance, L_{1}. The loading inductance, a miniature toroid, helps to compensate for the short antenna. A 3rd-overtone 10-meter miniature crystal with wire leads (type ML18) is nerded to fit the (iW -30 erystal socket and is not furnished as part of the kit. Power input to the oscillator runs about 90 milliwatts.

Modulation for the oscillator (ℓ_{1} is provided by two stages of audio amplification, Q_{2} and ℓ_{3}. The microphone, $M K$, also functions during receiving as the loudspeaker, LS'; actually, it is a small low-impedance speaker that is transformer-coupled to the speech amplifier for transmitting and to an audio-output amplifier in recciving. The audio circuits are designed to limit the modulation of the Class (, stage to less than 100 per cent, and even though the circuit is a modulated oscillator, the resulting signal is quite devoid of f.m.
In receiving, signals from the antenna go to a tuned circuit in the collector circuit of the superregenerative detector Q_{1}. The resonant frequency of this tuned eircuit determines the received sigual frequency. A regeneration control is provided for optimum adjustment of the detector. The fixed-tune receiver has relatively good sensitivity and is usable with signals as low as t microvolts or so. Since the detector is superregencrative, there is some radiation from the receiver which can be detected close by, but it soon becomes negligible as the separation
between the units is increased.
Gutput from the detector is fed through an audio gain control and then into two stages of audio amplification provided by transistors Q_{2} and Q_{3}. These transistors are the same two that act as speech amplifier and modulator, respectively, when transmitting. Maximum audio output from Q_{3} is about 30 milliwatts. The gain control is also linked to a switch which turns the unit on and off. This control and the sendreceive switch are the ouly operating controls on the transceiver.

Switching from transmit to receive is accomplished by a push-button switch that transfers power, audio and the antenna between the transmitter and receiver circuits. The switch is normally in the receive position and must be depressed in order to transmit.

Power for the CiW-30 is furnished by a single 9 -volt dry battery which has a life of about 75 hours under intermittent use. Drain on transmitting runs about 22 ma . and is about 12 ma . during receiving. A spare battery is included in the kit.

As you can tell from the photographs, the kit is composed principally of a printed circuit and therefore can be put together smoothly and quickly without any particular difficulty. Complete assembly, including preconstruction parts count, wiring, alignment and testing, takes about eight hours.

Final testing of the CW-30 is simplified by several alignment tricks which do not involve the use of any test equipment. To tune the receiver to the same frequency as the transmitter it is only necessary to use the transmitter's crys-

The Heath GW-30 with its cover and leather case removed. The 40 -inch collapsible antenna threads into the fitting at the top. The push-button send-receive switch is visible on the side of the cabinet and the 9 -volt battery is in the space at the bottom. Other components visible in this view are the transmitter tuning coil just below the antenna terminal, the receiver tuning coil just below the push-button switch, and the miniature toroid antenna loading inductance below and to the right of the antenna fitting. The circular object just above the battery is the speaker magnet.

With the circuit board removed from the cabinet it is possible to see the speaker which also doubles as a microphone. Located on the printed circuit board is the regeneration control at the right and the on-off switch/ audio volume control mounted on the bracket. The cable and terminals at the left connect to the 9 -volt battery.
tal, by positioning the crystal near the receiver's tuning coil and adjusting the coil until the normal background hiss goes down to a minimum because of "suck-out" at the crystal frequency.

A special low-power lamp is included in the kit
for tuming up the transmitter. The transmitter is powerful enough to light the hulb with r.f. (or the lamp is sensitive enough!). After tuning for maximum output, the 40 -inch antenna (which telescopes down to 6 inches) is substituted for the lamp load.

All of the GW-30's components are housed inside a stecl cabinet, and we noticed a slight detuning effect when the cover plate was placed on the rabinet. However, we drilled three holes (not shown in the photographs) directly above the transmitter tuning coil, recciver tuning coil and the regencration control, so that final tuning adjustments could be made with an alignment tool after the cabinet was completely assembled. A black leather carrying case is supplied with the kit.

While you've been reading about this little gadget you've probably thought of many practical uses for it. It certainly would come in handy for (ID work or for remote antenna adjustments and measurements. Of course, it can be used as a "sniffer" when the going gets rough in a transmitter hunt. But whatever the application, don't be surprised when you're surrounded by curious onlookers who will ask, "How far will it work . . . ?"
-E. L. C'.

. Strays "g

W7WFO mans a fire lookout tower on Powder Horn Lookout in southwest Washington, and keeps skeds with her OM, W7WFP, on 6 meters. She forgot a sked with him one day, but he used a mirror to catch her eye from their home 18 miles away, and she got right on the air. Sure proves that she is a good lookout, even if somewhat forgetful of skeds.

Please, now, who from Culver City wrote a 2-page letter on the subject of public relations,
sent it to W6MLZ, but forgot to include his own name and address?

WINSE bought himself a new hug and uses this sentence to practice on -. "She is 55 es she is his sister."

The days of barter aren't dead. For a complete mobile station VE1AAH traded a pony and suddle, a . 32 Winchester rifle, a . 32 pistol, and a chain saw.

Ham vs. Semaphore-South Bend, Ind., Boy Scouts gave a vivid demonstration on TV of the advance of communications in the Scouting movement by showing the old flag system next to an amateur station. Explorer Scout Mike Davis, at far left, ran the TV camera; Boy Scout Gary Schott waved the flags and Bill Butler, K9BQN, handled the radio.

Technical Correspandence

SCOOP!

2523 N. 57th St. Phocnix, Arizuna
Technical Editor, QS'T:
QST should be proud of the fact that the tunnel diode, currently the hottest thing in electronics, was first an nounced in its pages - forty vears ago!

Of course, it wasn't called a tunnel diode then, but on page 44 of QST for March, 1920) there was an announcement that G. W. Pickard had achieved heterodyne reception with a crystal detector. A circuit diagram was given: it showed a biased erystal, tuned circuit, and headphones.

We have no reason to doubt this claim, since Dr. Pickard was a respected worker in the field. He undoubtedly produced a negative-resistance effect in some particular crystal, permitting the tuned circuit to oscillate freely.
No mention of this item was ever made in any subsequent issue of QST', su Dr. Pickard presumably was not able to repeat these experiments. But the effect produced by the biasing was certainly similar to that produced by today's tunnel diodes.
So chalk up another first for QSTI

- Harry IR. Hyder, K7HQN
(The diagram and accompanying text are reproduced herewith - E'ditor.

Did you ever hear of an oscillating: crystal? Mr. G. W. Pickard, of the Wireless Specialty Apparatus Co., has done it, and here's the hook-up. The secret is the

nine volts at the potentiometer. CW is received by heterodyne beats in the usual manner. The Editor would like to know what results are had with this hookup.

PLANNED UTILIZATION OF PHONE FREQUENCIES

139 Beekman Road
Summit. New Jersey
Technical Editor, QST:
The letter in September QST (page 83) from G2HDU, commenting on the voluntary frequency-allocation plan which appeared in the "Technical Correspondence" section of the May issue, discloses several valuable contributions to the idea of using specific carrier or carrier reference frequenciex in the amateur phone bands to reduce QRM.

Such a plan must be agreed to on an international basis, as he points out. Second, such an agreement will enable equipment manufacturers to tailor their designs to meet the requirements of such channel separations with better performance at a lower cost to the amateur.

I learned of his proposal for $2.5-\mathrm{kc}$. separation, which appeared in the $R S G B$ Bulletin in January, in a most roundabout way - I received a copy of a reprint of his article from the editor of the Malayan Radio Society Neurs in late July!

However, the G2HDU plan will not permit an cquivalent number of channels in a given amateur band as it is based upon the concept of using either the upper or lower sideband exclusively in a single amateur hand. Also, it makes no provision for a.m. phone, which is well taken care of in the nroposal for interlaced sideband and a.m. operation using the $4-\mathrm{kc}$. separation shown in the May issue of QST.

Frequency allocation tables for 40 -, 20 - and 15 -meter operation using 4 -kc. separation were omitted from the May letter, but are shown herewith to give the DX boys something to think about. If DXers make a habit "zeroing in" on these frequencies, I am sure communication will improve materially when the bands are loaded with stations trying to communicate with each other or trying to ohtain a QSL from that rare DX station. This assumption is founded upon the facts concerning speech distribution shown in the graphs of the May UST letter.

There is no reason to assume that amateur radio will not continue to grow in popularity and there is every reason to helieve our bands will never be increased in sizc. Therefore, every effort by thoughtful amateurs and farsighted manufacturers to improve our capability to talk to each other with a minimum amount of QRM will enable all of us to get more enjoyment from our hobby. By giving up our freedom to QRM each other in a random manner when the bands are crowded, we'll all have more completed QSOs.

- Dana A. Griffn, IVRAOE

Carrier lieference and A.M. Carrier Frequcncies To Minimize Sideband Chatter and A.M. Heterodyne Interference (lirirst 100 Kilocycles)

Channel	80 Meters	40 Meters	10 Meters	20 Meters	15 Meters
1	39999 (a)	7299 (a)	29699 (a)	14347 (b)	21447 (b)

(a) Lower sideband only.
(b) U.s.b. - l.s.b. - a.m.
(c) Corresponds to Channel 1 minus $10 f$ kc.; also Channel $51=$ Channel 1 minus 200 kc., Channel $76=$ Channel 1 minus 300 kc., etc.
(d) Canadian and other non-U. S. phone.

There are 25 sideband assignments and $21 \mathrm{a} . \mathrm{m}$. assignments per 100 ke . on all bands. With exception of Channel 1 on 80,40 and 10 meters, each channel can be used for simultaneous upper and lower interlaced sideband transmission providing $4!$ effective sideband channels per 100 kc .

Amateur practice in setting up nets and schedules is to specify an operating frequency. To determine operating frequencies in other portions of U.S. and foreign phone-band :issignments, use the last two digits of the frequencies shown in the table in any portion of any band open to phone in any country. Channel numbers are not important; they are essentially illustrative. For example, Canadians can now operate on phone on $21,103 \mathrm{kc}$. while U. S. stations are limited to lower sideband on $21,251 \mathrm{kc}$. with the lowest preferred $a_{2} m$. channel at $21,255 \mathrm{kc}$.

DET

Announcing the 27th ARRL Sweepstakes

November 12-14 and 19-21

Hey you! If you never have been in the Sweepstakes before, now's the time to start. You say you don't know anything about it? It's real simple: all you have to do is get on the air during the contest hours and make contacts, swapping contest exchanges. You can get into either the phone or e.w. contest, or hoth.

For the two week ends, forty hours is the maximum operating time allowed. The contest begins (dates listed above) on Saturday afternoon and ends in the wee hours Monday morning - for two week ends. The phone and c.w. contests are
considered separate, so if you participate in both, send in separate logs.

The rules are the same as last year. One slight change - should a Novice or Technician, after having done an outstanding job, find there are not three entries from his seection. he still may earn a certificate. All other awards are the same with a certificate awarded to the top phone and e.w. scorer in each of the 73 ARRL sections. Single-ops also may compete for certificates given to a club's top seorer on both phone and c.w. Club seeretaries submit their club aggregate score, thereby putting them in contention for the cocobolo gavel engraved with the name of the club with the highest total score.
To get started merely call CQ SS or answer such a call during the Sweepstakes dates and send the exchange in the form shown in this announcement. All contesters are urged to use G.MIT in the time exchange. Then you won't get all mixed up when working across time \%oues, and the other guy is sending you some odd-ball time. for everyhody will be on the same hour with GMIT. Check the time conversion chart on page 81, August QST.

ARRL also puts out an Operating Aid No. 6 (stations worked check list) to keep track of the stations you already have worked. See bottom of page with accompanying caption. All con-

Here's how to keep track of the stations you work, for you just waste time reworking stations; duplicate contacts do nof count. This is ARRL's newly revised Operating Aid No. 6. When you work a W call, just enter the letters in the appropriate call area; for a K underline the letters, and for a WA circle . . . as simple as that. Below, for example, the three calls entered are WIDGL, WA2EKE, and K4CAX. Call areas through \emptyset and VEs are entered on the reverse side. Request yours from ARRL and remember to enter your own call letters in the lower left hand corner and submit it with your log sheets to ARRL.

testers are urged to use this revised version and also send it in along with your log sheets. This will help the log checkers. You can get this helpful ARRL form free on request.

For purposes of this contest all VE8s may be considered attached to Yiukon: also, VOs as Maritime and Cuba as West Indies.

Check the rules below carefully. Send for your free \log forms specifying how many you need. Also ask for ARRL Operating Aid No. 6 to keep track of the stations you work. Logs must be postmarked by December 12, 1960, to be eligible for score listing and awards.

Rules

1) Eligibility: The contest is open to all radio amateurs in (or officially attached to) sections listed on page 6 of this issue of QST'
2) Time: All contacts must be made during the contest periods indicated elsewhere in this announcement and between amateurs in (or oflicially attached to) the 73 neetions. Time may be divided between week ends as desired, but. a total of 40 hours must not be excended for each entry. Time spent in listening counts as operating time.
3) (iSO: Contacts must include vertain information sent in the form of a standard message preamble, as shown in the example. C.w. stations work only e.w, stations and phone stations only other phones. Valid points can be scored by contacting stations not working in the contest, upon acceptauce of your preamble and or receipi of a preamble.
t) Scoring: Each preamble sent and acknowledged counts one point. Each preamble received counts one point. Only two points can be earned by contacting any one station, regardless of the frequency band. The total number of ARRL sections (see $\mu .6$) worked during the contest is the "section multiplier." It is not necessary for preambles to be sent both ways before a contact may count, but one must be received, or sent and acknowledged, before credit is claimed for either point(s) or multiplier. Apply a " power multiplier" of 1.25 to c.w. entries and 1.5 to phone entries if the input power to the transmitter output stage is 150 watts or less at all times during contest operation.
The final score equals the total "points" X the "sections multiplier" x the "nower multiplier."
4) Reporting: ('nntest must be reported as shown in

Sample of report form that must be used by contestants

EXPLANATION OF "SS" CONTEST EXCHANGES						
Send Like a Standard Msg. Preamble, the.....NR		Call	CK	Place	Time	Date
Exchanges	Contest serial numbers, 1 , 2. 3. etc., for each station worked	Send your own call	CK (RST report of station worked)	Your ARRL section	Send time of transmitting. GMT recommended.	Send date of QSO
Sample	NR 1	W1aw	589	CONN	2301	NOV 12

the sample form. Printed contest forms will be sent free on request. Indicate starting and ending times for each period on the air. All Sweepstakes reports become the property of ARRL and none can be returned.

There are no ubjections to one's ubtaining assistance from logging, "spotting" or relief operators, but their use places the entrant in the multiple-operator class, and it must be su reported.

A single-uperator station is one manned by an individual amateur who receives no assistance from other persons during the contest periods. He may not have assistance in any manner in keeping the station \log and records, or in spotting stations during a contest period. The operation of two or more transmitters simultaneously is not allowed. Contest reports must be postmarked no later than December 12. 1Y60, to insure eligibility for QST T listing and awards.
(i) Awards: Certificates will be awarded to the highest c.w. scorer and to the highest phone scorer in each ARRL section. A c.w. certificate will also be awarded to the highest scoring Novice or 'Technician in each section where at least three such licensees submit c.w. logs; similarly, a phone certificate will be earned bv a Novice or Teehnician in each section where a total of three such licensees submit phone logn. A certificate also will be awarden to the highest scoring Novice and Technician from sections of less than three entries . . . that in the upinion of the Awards Committee displayed excentional effort. Only single-operator stations are pligible for certificate awards. Multiple-operator scores will receive scparate gs' listing in the final results.

A gavel will be awarded to the highest elub entry. The aggregate seores of phone and c.w. reported by club secretaries and contirmed by the receipt at ARRL of contest logs
constitute a club entry. Segregate club entries into phone and c.w. totals. Both single- and multiple-operator scores may be counted, but only the score of a bona fide club member, uperating a station in local club territory, may be included in club entries.

The highest single-nperator c.w. score and the highest single-operator phone score in any club entry will be rowarded with a "elub" certificate where at least three singleoperator phone and or three single-operator e.w. scores are submitted.
7) Dispualification: Failure to comply with the cuntest rules or FCC regulations or the neressity for avoiding interference with channels handling amateur emergency communication shall constitute grounds for disqualifications. In all cases of question, the decisions of the ARRL Contest Cummittce are final.

DST

HOW TO SCORE

Each preamble sent and acknowledged counts one point.

Wach preamble received counts one point.
Only two points can be earned by contacting any one station, regardless of the frequency band used. For final score: Multiply totaled noints by the number of diffcreni ARRL sections worked; that is, the number in which at least one hona fide SS point has been made. Multiply c.w. scores by 1.25 and phone secores by l.j) if you used 150-watts-or-less transmitter iuput at all limes during the contest.

Strays"

WGDYQ has an excellent piece of advice for the active amateur. Never plant a lawn larger than the XYL can take care of.

Here's the November schedule for the Eastern Technical net of the Air Forec MARS, meeting on 3295, 75 ± 0, and $15,715 \mathrm{kc}$. on Sunday at 1900 GMT.
Nov. 6 - Report on a trip to the Soviet.
Nov. 13 - Further reports on a trip to the Soviet.
Nov. 20 - Flectromagnetic compatibility.
Nov. 27 - Applications of Ultrasonics.
Dec. 4-Principles of guidance and navigation, and inertial devices.

Third Army MARS announces the following training program at 0000 GMT on 5850 kc . Note that these dates are GMT.
Nov. 5 - History and purpose of MARS.
Nov. 12 -- Net procedure.
Nov. 19 - Message handling on MARS.
Nov. 26-Converting a MARS message to the amateur format.

Here's somethiug for the Navy men. Any naval reservist in the Connecticut area interested in joining a special communications division should get in touch with W1IKE.

-…

Shortwave listeners will be interested in a new book DXiny Horizons, devoted entirely to radio and television D.X reception. Its editor, K6EDI, labels it. as the DNer's equivalent to QST. For further information, write directly to k 6 EDX at Box 3150, Modesto, Calif.

Congratulations to KfODS who, although blind, has been awarded a four-year scholarship to the University of Florida, where he will study electronics. He has been a regular NCS on traffic nets and has made BPL several times.

A W5 asked a suspiciously-loud UMI8AT how come he said his beam was 60 fect high when only an hour ago he had told another QSO that the beam was 50 feet high. Said the UM8, "Crank-up tower."

Home-built Stations

Here's another batch of ham stations in which all the gear is home built. If you have a station in which you have put together all the equipment, how about sending along a photo. Above is the $1-\mathrm{kw}$. sideband station of W5IUR, with the receiver covering 80 through 10 . Top left is VE5CX, who has a pair of 6146 s in the final and a 12 -tube double-conversion receiver. Currently his exciter is a Meissner which has been extensively reworked, but he'll join the ranks of the simon pure when he finishes his s.s.b. exciter. Center right is W ISUZ, who is a v.h.f. man. At the right in his station is a tunable i.f. for 7-11 Mc., with crystal-lattice filter. Separate crystal-controlled converters feed this for operation on 50, 14.4 and 220 Mc . Transmitting gear is at the left, currently ending up with a 6146 but with higher power on the way. Bottom right is W8NBN, whose receiver is the now-famous HBR-16. The transmitter ends up with a 7094, modulated with a pair of 811 As. Everything in the station was built either from QST or the Handbook. W8NBN started as a Novice about 10 years ago, and obviously has come a long way since then.

VE5CX

WISUZ

W8NBN

APACHE TRANSMITTER MODIFICATION

Some time ago I acguired one of the Heathkit Apache TX-1 Transmitters. I had a kilowatt final and wanted to use the Aparhe as a driver (both atudio and r.f.) while still retaining its original status as a self-contained mediumpurer transmitter. The diagram in Fig. 1 shows my modification.

In order to have a simple yet compact switching arrangement, 1 selected a Centralab index assembly type P-273 and two of their ceramic waters type RRD. These were chosen instead of the preassembled-type switch since the assembled type has a metal shaft. Phenolic material is used in the "do-it-yourself" switch and is preferable in order to withstand the high audio voltages developed.
Prior to assembly, the wafers must be modified to prevent arcing between rotary pole sections. This is a simple operation, easily completed in a few minutes. The end of each semicircular rotor strip opposite the contact tab is bent back on itself at the edge of the mounting rivet. A small screwdriver or knife edge will serve to lift the contact end slightly, allowing it to be readily grasped with a pair of needle-nose pliers. This gives another sixteenth of an inch clearance at each end, once all four contacts are so bent. With the contact ends bent, the switch should not be rotated to its extremes, since it will force the bent portion up against the pole contacts with possible damage resulting. Although the switch has five positions available, only two are required for this purpose.
Remove the jumper between. $/\left[T^{r}-2\right.$ and $J S-5$ as well as between $J \Gamma^{-}-1$ and lug 1 of the h.v. filter capacitor $J Y$. Now wire the switch into the circuit as shown in Fig. 1. Use sulficiently wellinsulated wire with leads long enough to permit positioning the switch in a hole drilled in the chassis to the right side of the coax antenna reeeptacle. It is recommended that several strips of plastic insulating tape be spread along the side of the chassis nearest the switch contacts to prevent accidental shorting.

The 500 -ohm audio output is brought out via a dual-enneection female microphone receptacle mounted in a hole drilled directly above the coax antenna receptacle. Two small v.h.f. chokes and a couple of small bypass capacitors are used for TVI suppression.

Prior to uperation of the transmitter it is advisable to check the wiring. Before replacing the cabinet, it will be necessary to drill and file or rean two holes to allow the protrusion of the switch shaft and andio connector. With this modification r.f. and audio excitation can be obtained wheu high power is desired without affecting the original circuit in any way.

> - Stephen CO Taber, WŋTD

PRINTED CIRCUIT DUMMY LOAD

A^{N}a anonymous Canadian amateur seut in the novel low-power dummy load shown in the accompanying photograph (Fig. 3). All that's required for construction are six pilot lamps, wire, and a small piece of enpper-clad printed circuit board. Mount the bulbs and wire as shown in the photograph. Solder all the lamp shells to the copper lamination on the phenolic board. To connect the lamps in series cut a series of slits in the copper material (but not through the phenolic) as shown in the sketch in Fig. 2.

Fig. 1-(left) W2ITD's Apache transmitter modification.

Fig. 4-Squelch circuit for Heathkit VX-1. R_{1} - 1500 -ohm potentiometer.
$\mathrm{R}_{2}-5$ meg-ohm potentiometer.
$S_{1}-$ S.p.d.t. switch on R_{1} wired so that the arm is at minimum resistance when in the vOX position.

ADDING SQUELCH TO THE HEATHKIT VX-1

FTig. 4 shows the arrangement I use to add squelch to the Heathkit Electronic Voice Control unit. The 12BY'z's cathode resistor is replaced by a potentiometer, R_{1}, and is adjusted to allow the tube to conduct and close the control relay. A.v.c. voltage from the receiver is applied through another potentiometer, R_{2}, to the 12BY7 grid. When a signal is present, a.v.c. voltage is applied to the grid, cutting off the plate current and releasing the relay. The relay is used to control the station speaker circuit.

To operate the squelch, switch the transmitter to standby and the VX-1 to vox. Adjust K_{1} so that the relay closes when there is no signal present. Adjust R_{2} so that receiver background noise does not trigger the system. The unit is now ready for squelch operation. Rotation of K_{1} to the of position restores normal VOX operation.

I mounted R_{1} to the lower left of the timedelay control and R_{2} directly below R_{1}.

- Robert L. IVilcox, H80.MS

USING THE JOHNSON VIKING VALIANT V.F.O. ON SIX AND OR TWO METERS

Since my Valiant is used quite often as a power and modulation source for the lohnson 6 N 2 transmitter, 1 decided to modify the 11 -meter portion of the v.f.o. for operation on six or two meters. The coax lead and fitting normally used for s.s.b. input on the Valiant can be used as the connection for the v.f.o. output. To make the modifications the following step-hy-step procedure should be followed:

1) Remove the side cover plate and the Ushaped shield hox on the v.f.o. Wo not remove the four screws or top plate.
2) Locate (4 , the 11-meter band padder capacitor, and rarefully solder a $20-\mu \mu \mathrm{f}$. NP0 capacitor across its terminals. This will change the original frequency coverage of the 11-meter band for use on six meters. If 2 -meter coverage is desired, place an NPO capacitor of $35 \mu \mu \mathrm{f}$. arross C_{4}.
3) Replace the IT shield and the side cover plate on the v.f.o.
4) Place the Valiant band switch in the 11meter position and turn the oscillator switch to zero.
5) Listen on a suitable receiver tuned to 50 Me. for the v.f.o. signal. Set the v.f.o. pointer to the extreme counter-clockwise position and tune capacitor C_{4} until the 50-Mc. signal is
heard. This will allow a full 2-Mc. coverage with 180-degree rotation of the v.f.o. dial.
6) Make a 1 -inch loop with 6 -inch leads out of No. 18 or 20 plastic-insulated wire. Tape or glue the loop to the cold end of the buffer coil, L_{5}. Bend the leads of the loop to bring them down to switch SW4-C.
7) Lift resistors R_{10} and R_{54} from terminal 12 of $\mathrm{SW}^{2}-\mathrm{C}$.
8) Cut away ${ }^{1 /}$ inch of the outer vinyl covering of the coax lead that connects to terminal t of switch SII $4-\mathrm{C}$. Connect one of the leads from the loop to terminal 4. Connect the other loop lead to the coax shield.

If the final r.f. amplifier filament circuit is opened it will isolate this stage and allow the v.f.o., power supply and modulator to be used with the external 6 N 2 transmitter. To make this modification:

1) Lift the gray lead from terminal 2 of TSS 3 and tape it aside.
2) Lift the green lead that comes out of the laced cable from tube $\lambda^{\prime} l^{\prime} 8$ and tave it. aside.
B) Lift the longer green lead from terminal 3 of tube $X V^{\prime} 6$ and tape it aside.
3) Run a lead from terminal 2 of rsiss to terminal 4 of $X V 8$.
4) Run a lead from terminal 1 of $\operatorname{TS} 18$ to terminal 2 of TS 6 .
(i) Connect a jumper from t.erminal 1 to terminals 7 and 8 on the jumper plug, $P S$.

When $\mu 8$ is inserted in its receptacle, the tilaments of the r.f. amplifier will be connected. When using the Valiant with the 6 N 2 remove the plug to disconnert the r.f. amplifier filament.

- Antonio (\%. O. Gclineau, $1 \% L E Q$

10-MINUTE TRANSMISSION REMINDER

THose who have 24 -hour digital read-out clocks with plastic number wheels will note that the wheel which shows minutes has ten sides and makes one revolution every 10 minutes. By arranging a pair of fingers made from shim stock or other similar material against this whecl and then pasting a very thin harrow strip of the same material across one of the faces of the wheel, contact is made between the strip and the two fingers once each 10 minutes. This contact can be used to control a light, bell or buzzer to remind the operator that a 10 -minute period has passed. In my case it actuates a small solenoid which taps a glockenspiel bar and gives a musical tone.

- Graham H. Hicks, W5IHP

Planning Ah e

BY JOHN G. TROSTER,* W6ISQ, ex-W2ISQ

Really! I did just like they advised in the articles on how to intluence scores and win contests. I made all those charts ou QSO's per hour versus time, frequency versus time zebra, sunspot cycle $\%$ s. temperature, etc. etc. And, I suppose they would have helped too - if l'd had a chance to use them. But something went wrong. Because, not only did I not win - I was lucky to get in the contest at all.

It all started about six weeks before 'The Big Contest. This time I was going to be prepared; so, I reread all available literature on contest uperating and plotted all those charts they talked about. Then I began a systematic check-out of the rig, and even polished up the rotary so it sparkled like new, just like the man said in the article. ${ }^{1}$
Then, just to make sure of complete and cooperative domestic tranquility and understanding, I decided it would be wise to prepare the $X Y L$ for my forthcoming week-end hibernation. This was to be a little strategic planning ahead. But alas, t'was my undoing.
My ill-fated campaign of preparing the XYL psychologically for The Big Contest began one evening when I took a large red grease pencil and circled the date of The Big Contest on the kitchen calendar. "This is the day," I announced. "Just count me out that week end because I'm going fishing - ha - for DS that is. Naybe you'd like to go over and spend that week end with your mother so you'd have someone to talk to because I'll he Very Busy during The Big C'ontest."
"Yes, dear." she smiled.

Every few days, I repeated my admonition. "There's that Big Contest getting closer all the time. I'm really going to be busy that week end!"
"Yes, dear."
"I just happened to pass a Horist and I know how you like roses. I won't have time to get you anything during The Big Contest, so00000 --"
"Yes, dear."
"How about going to the show tonite? Won't

[^16]be able to take you during The Big C'ontest, you know. And we can stop and have a soda afterwards too, if you like."
"Yes, dear."
"Our auniversary is only four months away and I know you like candy - it's a four-pound box too, and - "
"Yes, dear."
Well, comes the day of The Big Contest. The XYL certainly ought to be in line by now. This date on the calendar is colored almost solid red. Most everything is done except the lawn. I'll get that this morning. Then de-flea the hound. Then wash the car -- she'll want the car looking nice when she goes to her mother's.

Now that I have the XYL polished up, it's time for a little care of old Number One! After all, I'll probably be up most of the night. Let me see. Light lunch. Then, by gollv, I think I'll relax just a little before The Big Une!

Ahhhhhhhh - - this is the life. Still a few hours to go and here I arm stretched out for a short snooze. Lust contest I was still on the roof with that blinkity antenna when the contest started. Not this time. Boy, this planning ahead is the stuff. Now just to relax and think about nothing but all those beautiful DX stations just waiting to work ole Dad. Can almost hear them calling now - ahhhh.

Whoops - hit the deck! The Big Contest is about to blast off. Don't rush, don't rush. Make that planning ahead campaign pay off. Be nonchalant. Warm up the rig. Take a walk around the yard. Get a little air - - yood for the constitution. Say, that rotary looks mighty tine. Don't hurry. Wait for the colfee to perk. Another minute or two won't make any difference.

Check the charts. Frequency versus time, QSO's versus sunspot cycle, and all the rest OK, 20 it is. Now let's see. Hmmmmmm - band sounds good. South America coming in OK. Yes, Asia is there. Ahamaaaait. Europe and Africa now, too! Wow, this band is hot as a pistol! They're coming from all directions! Unbelievable. Who shall I go after first? VS6, LX, HC8? Relax, lots of time. Start slowly and work into this one.

Hold it now - what's this one? Yipes, an AC3! He's a good solid S7. Cet the xtal on him so you won't lose him in the "crash." OK, he signed -- Hip the switch - look at those beautiful blue rectifiers - Ac3! here I come -."
"John, aren't you ready yet?"
"I hope to work au ACB I'm ready. This band is like a fire cracker. Never heard the band open up like this. The whole world blasting right here in the shack. Yes, maaam, I'm ready. Been waiting for this for six weeks. I'm calling this fellow in Sikkim and -..."
"Well, if you don't hurry up the Smith's will
be calling up from cight blocks away and they won't need a radio. We were due over there an hour ago. I thought you were getting ready. I'll phone them and say we will be there in ten minutes. Now hurry up."
"But, Marge. This is the day of The Big Contest. I've been telling you about this for wix weeks. Remember the flowers, red ealendar, candy, show?? No! Absolutely not! I'm not going to the Smith's or anyplace else. I'm not going to leave this chair except to get another cup of coffee."

"I'm glad you took that nap this afternoon. You might stay awake long enough to bid intelligently for a change tonite."
"No. I'm staying right here, and that's final -Yes, dear. Well - we're not going to stay more than an hour. Yes, dear. I'll get the car."
"Good evening, we've been looking forward to this evening for six weeks. Sorry we're so late. John was taking a rest so he could play better -"
"Your deal."
"One spade."
"Two clubs."
"Two no trump."
"Three AC:3's."
"What was that?"
"Oh, I pass. Ahhhh, what's the time?"
"It's only midnite, and we haven't finished the fourth rubber yet-."'
"One o'clock, you said? Really we've got to go -- wonderful time - do it again some time come on Marge - wonderful time."
"You take cream, John? And how would you like them? Fried or Scrambled? Two kinds of cake."
"KS4 with the coffee and a VQ2 with ice cream."
"What on earth are you mumbling about, John? You know, you're probably working too hard. You ought to relax. Plan ahead a little for these week euds so you can take it easy and enjoy yourself. liou ought to get a good hobby or something. Oh, you say you have a hobby? radio? - You mean like crystal sets? You know. I used to make crystal sets. Did I ever tell you I got Pittsburgh ou a set I made once? Boy, you should have fooled around with radio in the old pioneering days. You know pcople used to stay up late at night just to hear some of those stations. Isn't that ridiculous. I stayed up till about
two a.m. that night I got Pittsburgh!
"OQ5, FL8, HS1, AC3, RST599x."
"Oh yes, I recognize those numbers - names of those old radio tubes aren't they?"
"Yes, yes --been a lovely evening. Wonderful, wonderiul. Should do this more often -- about every six weeks - you must come over and see us soon-"
"Slow down, John, you almost drove across that lawn - Johnnnnnnnn."
"No, officer, really. l've been playing bridge. No really, only coffee. You don't understand, Officer O'Malley. There's this fellow in Sublin been a wantin' ta talk to me, b'gorry, an -"
"Now slow down, John. Just because -you talked your way out of that one don't think the next officer will let you off."

Ahhhhh, at last. Now, let's see. My gosh! That AC3 is still in there. Maybe a little weaker. Unbelievable. Oh boy, oh hoy. What a pile up. Oh, oh, - what's this? He's not working W6's any more. He's probably sick of W6's or we're all QRMing each other out of existence. Oh well, give the fellow a blast and walk away. Where is he now? Can't hear him in that pile any more. Oh well, do like everybody else. Zero in on the center of the pile and sign 24 times or until everybody else quits - that's the way - hi. W'ear'em out. Wow, what a pile up. Blast again. Oh well, maybe I can work him some morning before work.

Let's tune around here - yep, few Furopeans still coming through. Lett's see now. Onoooops who's calling me? What a sig! (hh , its Gus on the other side of town. "W6ABC - what's up, Gus? How u doing? - Why didn't I go back to whom? - The AC3? -- He called me? - S9 plus? loudest sig on the band? - couldn't hear any other W's'? Ohhhhhhh me -"

"John, John - for goodness sake what's the matter? What are you thrashing around for? You must have been having a wild dream or something. How can you have such wild dreams in the middle of the afternoon? All that lawn mowing and car washing, I guess."
"Marge. My gosh. Dreaming? Hey, what time is it? Five minutes to go before The Big Contest? I really didn't miss it after all? Ohhhh, what a dream, There was this AC3 and I was the loudest W and - oh well.' Be calm, boy. Don't tighten (Continued on page 144)

The Amateur and the Army

BY EARLE F. COOK,* W4FZ

THe article "Use Your Amateur License in the Naval Reserve" ${ }^{1}$ certainly presented a clear picture of one channel of opportunity in the Armed Forces for young amateurs. The interest expressed by $\mathrm{K}+\mathrm{QET}$ in his letter in Correspondence ${ }^{2}$ indicates that some hams are getting the message loud and clear. It would seem that we in the military might well emphasize to the amateurs of our country the many additional and varied opportunities military service does offer.

I am reminded of the U. S. Army's real interest in amateur radio by the recent entry in my log contirming the QSO between $9 Q 5$ US and my own station W WFZ. Here is an example in which the Army included a complete amateur station in the communications equipment sent to Leopoidville (Congo), during the recent trouble in that area.

This is only one recent illustration of amateur activity in the Army. There are many added opportunities which you as a ham might have in the U. S. Army.

Perhaps the most significant program is the Military Affiliate Radio System, commonly known is MARS. This is an organization of and for the licensed amateur radio operator who is interested in military radio communication.

Suring World War I abcut 4000 amateurs contributed their skill and ability to either the Army or the Navy. (The Air Force didn't come into being as a separate service until after World War II).

After the war it was only natural that friendly relations should exist between the Army, the Navy and the unateur. These relationships increased in the next few years and grew into cooperative activities. This resulted in the estab-

[^17]
lishment of the Naval Communications Reserve and the Army Amateur Radio System. MARS is the latest outgrowth of the Army Amateur Radio System and is sponsored jointly by the U. S. Army and the U. S. Air Force.

Anyone 16 years of age or older who has a valid amateur radio license issucd by the Federal Communications Commission and who possesses a station capable of operating on at least two MARS frequencies is eligible for membership. This is a voluntary membership. The volunteer agrees to participate in at least six hours of MARS activities each three months, usually at the rate of one hour a week. Certainly this is an easy requirement for any active ham to meet. This is not a substitute for military service in the Armed Forces, however.

What then would a M.ARS membership mean to you as a volunteer member?

You will receive a MARS certificate to aid you in obtaining military communications assignments upon enlistment in the Armed Forces, if you desire such an assignment. And you will receive credit for MARS artivity towards promotion and retirement in the Reserve Military Program if you are a member of the Military Rescrves.
lou will receive excess and obsolete equipment and supplies for experimentation, for modification and cannibalization. Jou have no doubt read some of the many execllent articles in QS'l' and other publications on modifying military equipment for ham use. These articles speak most favorably concerning the value of this equipment. Its applications are too numerous to mention here.

You will herome eligible for electronic extension courses of the U. S. Army Signal Corps School or the U. S. Air Force Institute. Typical courses are: mathematics, alectrical fundamentals, a.c.-d.c. power siuplies and reguiation, theory of application of electron tubes, fundamentals of radio, a.m. radio receivers and transmitters, telenision, uathode ray tubes and associated circuits, r.f. transmission lines, electronic test equipments, fixed station radio findamentals, wave propagation and antennas, higher frequency techniques, frequency modulation, and frequency prediction.

Six months of active membership are required for you to be eligible to enroll in the extension courses or to receive equipment and parts. This certainly is not a hardship to you. Yet it does protect your Government's investment, and your

W4FZ is an active ham, despite the demands on his time because of his assignment as Deputy Chief Signal Officer of the U. S. Army. Here he logs some operating time at his home station in Arlington.

K4USA, the MARS station in the Pentagon, is a modern, well-equipped station. Visitors are always welcome.
membership will give you greater responsibilities than you may have thought about.

As a member you will be using certain military frequencies set aside for MARS. Through this you will be representing the Army and your country. You will be watched by other amateurs who will not only expect but will have the right to expect professional techniques to be used on MARS frequencies.

But perhaps the most important benefit to vou will be a realization that you are a part of an emergency organization, prepared and ready. In this respect the record of MARS is outstanding. Every MARS member is proud of his part in national preparedness.

Just a few happenings in which MARS memhers played a major role are: February 1958 Uperation MARS BRAVO - conducted by Serond U. S. Army. This was not an emergency but volunteer members participated in an exercise to determine an atomic radiation fall-out pattern.

December 1958-Fires in the Los Angeles Area - this was the Sixth U. S. Army Area,

July 1959 - Hurricane CINDY in the South Carolina, Ceorgia area --.. this was in the Third U. S. Army Area,

July 1959 - Hurricane DWBRA - this was in the Fourth U. S. Army Area involving Texas MARS stations, and

May 1960 - Tidal Wave Alert operations in Hawaii.

With respect to emergency readiness Gencral Lyman L. Lemnitzer, Chief of Staff of the U.S. Army, recently stated that the Army must make itself ready for major aspects of civil defense in case of nuclear war. This could be a job-a really vital und worthwhile job-for you as a MARS member.

Practically every military siation has an active MARS station. Here you will always be welcome either in uniform or as a civilian to share the comradeship of other MARS members. And a visit to a nearby MARS station may be just the thing to arouse your interest in the program. Your ham ticket will open the door.

And surely among your ham friends are MARS members. Talk over the program with them and be present during one of the drill periods in which they participate.

You will have noticed by this time how similar the MARS program is to the program discussed by W5PY'U. Moreover this program begins at the age of 16 and extends to all ages without limit. An amateur does not even have to be in the Armed Forces at any time to join the program. You might even be physically incapacitated by hlindness or injury, and still be a most valuable member.

And the YL or XYL should not be excluded. Assuming she has that ticket, she is also eligible. Listen in on any MARS frequency and hear the

$Y^{\prime} \mathrm{Ls}$ holding their own with the OMs.
Any ham knows that his hobby has dozens of appealing variations: set-building, traffic handling, DXing, rag chewing, antenna experimentation. All are variations of being a radio ham. 'The wide range is really what makes the hobby so attractive to so many.

Have you ever given a thought as to the varicty in the communications-electronics field alone in the Armed Forces? Chances are many haven't. let the variety can sutisfy nearly any particular personal interest. Consider this list: radio reliyy, telephony, power sources, drone control, surveillance devices, television and communication satellites, frequency measuring devices, automatic data processing equipment, telemetry, avionics, weather, radar." These are only a few of the technical areas directly related to U. S. Army Signal Corps activities.
I purposely put radar last in the list of communications electronics field items because every time I put down the word radar, I am reminded of a recent demonstration at the U. S. Army's Electronic Proving Giround. A photographer from one of the newspapers had erammed a great number of Hash bulbs in the pockets of his trousers. He then walked in front of one of the operating demonstration radars. He went through quite a dance as the flash bulbs went off one hy one! At the time, since there actually was no casualty and a good "press" tinged with humor resulted, all was well. There is danger, though, where such concentrations of r.f. are involved. You are aware of this r.f. danger and know that the problem is real in this technological era.

Equally extensive technical areas exist in almost every branch or technical service in the Army. In effect, nearly everything military today involves some application of electronics. In each case, there is every opportunity for you to learn and use all the latest techniques once you are in the service. Of particular value to you is the fact that you can choose your Army field of technical interest before you enlist.

The number of communications-electronics equipments has multiplied several times since
3 , See QS'T', June, 1960 , for a history of some of the accomplishments of the U. S. Army Signal Corps.

World War II. For many of you who are now :approaching the age where you must consider military service this comparison is undoubtedly vaguc. l'erhaps some figures may be impressive and more meaningful.

We recently became interested in the question of what would happen if all or much of the com-munications-electronics equipment in a field army were operated at one time. This could be the case where we might be conducting an offensive or where the enemy might have launched a major attack. We first had to determine how many and what kinds of equipment had to he considered.

We established that in an area roughly 100 miles by 100 miles the area normally occupied by a field army) there would be some $\% 5,000$ electronic devices aperating. Some of these devices may be in fields entirely unfamiliar to some of you.

Although I have listed the major fields in which radiating devices are to be found, there are other unlisted radiation devices which cause considerable trouble from time to time. One example is the historically accurate acenount of how one of our radio circuits was 'jammed' during World War II. The QRM sounded like 40 meters on a Sunday morning during an SS contest. But the interierence defied analysis. The troops tinally determined it came from a mess hall where a new electric potato pecler had been installed! There were no suppressors on the motor.

Let us assume that. once in the Army, you wanted to stick to the communications field. Also since you are of age where military service applies, you'll be interested in education for your future. The few paragraphs following will suggest what the U. S. Army has to offer in this area.

The scope of U.S. Army military teaching embraces every phase of Army organization and many levels of instruction. Thousands of new soldiers each year are taught basic combat teehniques and advanced individual or apecialist training. Not only does the U.S. Army train reeruits, but the schools range from courses for the lowest grade specialist to the requirements for the intellectual and professional development of senior officers.

The Army's educational system embraces some 35 schools and extends from West Point to the Army War College with a wide variety of technieal and specialist schools in hetween. Some 500 courses are taught from which roughly 140,000 students graduate each year. Thousands of active duty and reserve component soldiers also continue at home or in off-duty time their military studies by participating in the Army Extension Courses.

The Army instructs in military and technical subjects and at the same time has great concern for the person who, for various reasons, has never been allowed to finish his basic education. Each year a number of young men who have never completed fourth grade primary education are drafted or enlist. These men are put into classes, and during duty time, raise their educational level
so that as a minimum, they can read and write and thus become better soldiers, and eventually better informed citizens. Though this does not apply, of course, to everyone, this opportunity gives an appreciation of the extent of the Army's educational interest in the youth ot the country.

In addition to the schools conducted by the Army the resources of the civilian school system are extensively used. Throughout American universities today there are officers in training in fields ranging from bacteriology and business administration to guided missiles and electronics. In a recent school semester over 500 officers were enrolled in studies in over 40 fields in 48 American and 4 Europcan universities. How many young men have ever given thought to the Army as offering them such an educational opportunity?

Soldiers who leave the Army carry with them important skills of high dollar value acquired in military training. Industry and business recognize the value of these men and do much to attract them away from a service career. The Army is proud of the fact that it returns men to civilian life improved by military service.

Y'ou can make your hitch in the military very rewarding to yourself - as rewarding as you care to make it. Just as your code speed will increase with practice so your progress in the military will depend on how you work at making progress. There will be some aspects of the military life that may not appeal to you. But this is true of any field of endeavor.

Most important to you amateurs, during your service you need not give up ham radio. In my 29 years I have been licensed in the Canal Zone as $K(Z) 5 A K$, in Germany as D(L) $4 A F R$. in Hawaii as KH6AAX. I have eujoyed having the overseas ealls together with calls in the 3rd, fth, 5th, 7 th and 8 th districts of the Tnited States. And everyplace I have been, the ham has been regarded as a real contact with home. Those overseas phone patches have been worthwhile.

Since so much in the Army today is dependent directly on communications-electronics you might woll consider the Army as a career. Surely the Army will be just as good and as motivated as the people in it. Such a career offers adventure, travel, professional improvement, and a challenge. That challenge carries with it great responsibility which can be yours to share at an early age. And you have something (a demonstrated technical ability) which you can use to contribute to our national security.

Unless you are one who passively accepts the minimum as sufficient and military service as something to get behind you, I suggest that your ham ticket in the military can open the door for you for an enlivened carcer. As you apply yourself, the opportunity for advancement to noneommissioned officer and even to commissioned officer will be available to you. How far you go depends on you.

There are worse choices that you could make, but consider some of these total advantages and I doubt that you will find many belter ones!
[57-

I was a visiting faculty member for the summer at the U. of Conn. and was driving through West Hartford in my 1935 Ford with a center-loaded whip for 75 meters when I was stopped by a police car. When I asked what was wrong, the policeman said nothing really, but that he was attracted by the antique car with such a large antenna and then he thought he saw a "dollar sign" on the license plate, and that did it. What he referred to, of course, was the " Q " in my call. - $\mathrm{II}^{\top} O L C F$

Come on, you QST advertisers, let's get on the ball! WgAUY (3915 E .26 Ave., Denver 5) is real sad. He had had his ticket for 55 days when he wrote us (early fall) but had not received a single piece of mail from any of the radio supply houses or manufacturers. No guarantee that he'll buy, but he does want mail!

KNOVCK worked KN8RQW in Detroit and asked him to deliver it inessage to some relatives. It turned out that these people were also relatives of KN8RQW. And so KNGVCK and KN8RQW learned that they were cousins.

The Army is now using an expensive electronic machine called an Automatic Articulation Tester in the development of radio equipment which must deliver messages sharply and clearly through noise, natural radio interference, and enemy jamming efforts. Guess they never heard of 75 phone, ch?

Certificate Hunters! If you participate in a 30 -minute roundtable QSO with at least three of the charter members of the Okinawa Cotton Pickers Club, you cun get inother piece of wallpaper. Look for KR6CR, KR6IC, KR6ID, KR6DZ, KR6GR, KRGKF, and KR6HS.

K9AUB challenges all comers for length of service obtained from a single 1626 tube in an ARC-5. He recently replaced one which had 15,000 hours service. The tube tested good even though it chirped in its oscillator circuit.

KN7MEG points out, that a good buy for the Novice is the Lhetionary of Electronic: Termes that is available from Allied Radio for 356 .

A master cooperative interiorence committee has been formed in the spokane, Wash., area to bring together representatives of all the various services using radio communication. This committee will provide a pool of technical knowledge to help locate and resolve various radio interference problems as they arise. Among the officers clected at the first organizational meeting were W7IOP, W7NV, and W7ZNN.

The Tufts University Amateur Radio Society ($W^{\top} 1 \mathrm{KN}$), organized some time in 1911 as the Wireless Society, will soon be celebrating its 50 th anniversary. Because its early records are sketchy and ineomplete, the Society would appreciate hearing from anyone who can contribute information on any activities of $W^{\top} 1 \mathrm{KN}$ between 1911 and the present date. The Society is particularly interested in material on operating, Iocations, QS()s, members, alumni, equipment records, (esLs, ete., etc. If you have any info, please send the retails to WiKN, 40 West Hall, Thufts University, Medford 55, Mass.

K5FIO and K5LSR met via 75-meter phone, courted on 75 -meter molile, and were married on August 6, 1960. Eight hams were at the wedding.

K8RVJ is R. F. Watts, and he's an electronics technician at North American Aviation.

At a recent meeting of the Armed Forces Communications and Electronics Association in Washington ARRL. Director Ray Meyers, W6MLZ, had a chance to get in some licks for ham radio with some of the armed forces communications chiefs. Left to right in the photo are Maj. Gen. R. T. Nelson, Chief Signal Officer of the Army; Mr. B. H. Oliver, ir., president, AFCEA; Mai. Gen. H. W. Grant, Director, Communications \& Electronics, Air Force; Mr. Ray Meyers, W6MLZ, Director Southwestern Division, ARRL, and a regional vice president of AFCEA; and Rear Admiral Frank Virden, Director, Naval Communications.

CONDUCTED BY ELEANOR WILSON,* WIQON

FD 1960

FTOR the GAYLARFS of Texas. 15 inches of rain-for PARKA liss on Adak in the Alcutians, unusually balmy wather. The fortunes of Field Diy are, as always, unexpected.

Round the U. S. A. many Y'Ls operated in the individual portable station or home station class and had the usual good time doing so. Our 1960 FD story following consists largely of reports from YL clubs.

In California the BA YLARCS accredited themselves nicely under the call WA6MAO. Under Operations Chairmen W6GYL and WA6.JGR the Bay area YLs made 175 contacts on 15, 20. 40, 75 , and 80 and 132 contacts on 6 and 2 meters for a total seore of 2463 points. Down Mexico way the Sin Diego YLRC ret up two stations at the mountain QTH of WAGEVU near the W/XE border. In Chicago, using the eluh call W9DEQ, the Chicago YLRL had its first FD. Using four transmitters running 30 watts, club members Kigs CQF, GUB, JIDE, JVL, LIW, UHD, and WYGME scored 855 points.

The Polar Amateur Radio Klub of Alaska reported "great fun and small score - as usual." 'Thanks to the U. S. Army Security Agency the club was supplied with a 5 -kw. generator, complete with Volunteer Army personnel to man same. Resulting tally was 62 coutacts totaling 585 points. Operations were again based at the Girl Scout l)ay Camp in Anchorage.

In the Alcutians Ev, $\mathrm{W}^{\top}+\mathrm{V}^{\gamma} \mathrm{CB} / \mathrm{K} \mathrm{L} 7$ and her OM W4UTB/KL7 and Tee. W'1W'TQ/KL7 were three of ten members of the Bering ARC who spent FD atop Mount Moffett on Adak Island. Using four transmitters on single sideband with a 15-kw. generator, the group operated from the site of au abandoned Alaska communications system. "Saturday cvening," Ev reports. "the XYLs trudged up the mountain with steaming hot dishes of delicious food. Yon never saw a happier bunch of hams. Who said XYLs didn't like ham radio!"

From Texas Harriett, K5BJU, tells her own tale of what hatppened to eight little G.AYLARKs who set out for FD and were beset by odds that were unreasonable to expect.
"Our third annual all YL operator FD was a much hetter test for a real emergeney than we veeverexperienced. We followed our ussial procedure of going to our FD site prior to the onerating dates and erected three $64-\mathrm{ft}$. masts for 2 doublets and a tri-band beam and even dug our cooking pit.
You've heard about the hest laid plans of mice and men *YI Editor, (IST: Please send all news notes to W1QON's home address: 318 Fisher St.. Walpole. Mass.

- well. include YT ops ton! Include too in future FD rules that operators must carry giant ecunomy-size sponges for nnusible mop-up operations!
dune 25 and 26 found 15 inches of rain at our FD site. lnstead of operating from tarp-covered operating positions in a heantiful pasture, we thok refuge in an abondoned farm house that had been used for hay storage the list ten of its serenty-five vears. Rather than the FB antennae we had previously prepared, we had rain-drenched doublets thrown out the windows, drooping, erossing each other and oriented at quaint angles. Fivery imaginable variety of crauling and flying insect reluctantly shared their GTH with us. Another enoking pit had to be dug. Seoing two of them full of filthy rain water and decomposed animal and regetable matter made the hungry tummies ache a little harder. Our chow was served raw by our GAYLARK Auxiliary - our OMts. In all the rain, hungry palutes. and stench was enough to drive us home - 00 miles away. Our radio gear was hecoming water-logged. the roof was leaking, and the wind whistled down the drafty old chimnev. By daylight sunday, the rain having enntinued to pour down upon us heavily and steadily throughout the uight, we derided to lnad up and get out, and good that we did. After pushing our cars out of the mud, we slippel und slid down the mired country road to navement. Shortly ufter we travelled the road back to Houston it was closed to through traffir. Home looked good but wet too- 16 inches of rain had fallen on it! Next vear here's to sunshine and QSOs, with lots of both.

Unarcounted for on the FI) summary sheets but often the hero of many a FD expedition is that loyal creature, the XY'. Despite her spirited devotion to seeing her OM through the skirmishes of FD, an $X 1 \mathrm{~L}$ may reserve opinion of the whole affair. In fact for some the blooming week end may be chalked up as strictly a labor of love.

Witness the following thoughts of the famous Mabel of finrida skip - they may not be ton untrpical of the specie!
Dear Gladvs,
Just had to write to tell you about my idea for Field Day. Y"oll know, in the past several vears i have thought the emergencies that took place must he unusual. After this last one I've abnint decided that all Field Da,ve are like ours. 'Twenty-four hours of small injuries, annoyances and ralamities.

It should make us all respect those poor nioneer women. On second thought, a Comanche warrior can't be any

worse than a mad ham. Cladys, as sure as I'm sitting here he did not tell me to bring his soldering gun.

But as I started to say, I think it's time we girls got better organized for all future Field Days. We ought to gather hints and suggestions from rach other to make it easier for ourselves instead of floundering around in the brush like we do.

For instance, I've found a flyswatter is an absolute necessity. Bug bombs make the coffee taste funny. And there is nothing like a fast fly-xwatter to bring order among the harmonics. Also, 1 make sure to keep a small, clean spoon handy to fish the bugs out of the coffee as I fill the eups. You girls on the night shift can use any old spoon. Or forget the whole idea. The little nicities disappear around midnight.

We ought to have a special First-Aid book for us XYLs to use, too. We could have a chapter on how to treat bites from red ants. chiggers. wasps, tired children, and those green spotty bugs that T've never seen except on Field Dav. I think they bite enough that one day to last them until the next year.

We need instructions on care for cuts, bruises, saddlescores, (our e.w. operators suffier greatly from these) charlev horses, indigestion, san spurs, and foundering (that's what Grandmaw calls it. It means eating so much you get sick. C.w. uperators sutier from this, too).

Then there's rashes, burns, contusions, and double rision. ("We worked thern." "We did not." "Yes, we did, look up here." "That's not them." "Yes, it is. I know because I wrote it." "What were you writing, Roman numerals?"

We generally have to treat sunstroke, sprains and rabies. The symptoms of rabies are staggering gait, glazed eyes, slight frothing at the mouth and snarling. (C.w. operators are born with it.)

Well. what do you think? Can we all get together and help each other? Or should we organize a great big nationwide canasta party next Field Day and let the boys shift for themselves?

Love,

Mabel
(Reprinted from Florida Skip, Aug. 1960 issue, courtesy W4IYT, Editor)

YLRL ELECTION RESULTS

Congratulations to the following new officers of the Young Ladies Radio League who have been clected to serve for a one year term, commencing Jan. 1, 1961:

President - 1)oris Anderson, K5BNQ
Vice President - Onie Woodward, WIZEN
Secretary - Blanche Randles, KIIZT
Treasurer - -.. Jean Kincheloe, K60QD
District Chairmen: Helen Harris, W1HOY; Helen Yankaskas, WA2DBG; Elizabeth Zandonini, W3CDQ; Betty Dennison, W4EER; Bernice Jark, W5WXY; Claire Hogeweide, K6ZCR; Helen Maillot, W7GGV; Maxine Hill, K8DTD; Evelyn Cudia, K9EMS; Martha Wessell, KgEPE; Louise Bostwick, KH6AFL; Evelyn Wikolf, W4VCB/KL7; Ethel Williamson, VE3DTW.

YLRL members issue a vote of thanks for a job well done by out-going officers President Gladys Eastman, W6DXI; Vice President Lillian Beebe, W5EGD/3; and Secretary Connie Hauck, K6EXQ. Wanda Gluck, K6ENK, has regretfully resigned as Y'LKL Harmonics editor for reasons of health. A replacement editor will be announced.

Custodians of the various awards offered by the ILRL are appointed and serve an indefinite term. Present custodians are as follows: YL Century Certiticate - Katherine Johnson, W4SGD; YL Worked All States - Grace Ryden, W9GME; YL Worked All Continents - Barbara Houston,

OM W4HMG calls K4OVS, Nancy Leaman, of Greenwood, S. C. the "pride and joy of the Carolina Sideband Net." Blind since birth, the 16 -year-old YL has recently been acting control station on the net that comprises over 100 stations. Using a receiver with braille dials, a transmitter with a special tuning device, and a braille typewriter, Nancy efficiently handles net procedures. Licensed as á Novice in 1959 and as a Conditional Class operator in May of this year, Nancy has been aided in her ham career by local OMs K4sJVV, MKX, OVR, QMY, QMZ, QWQ, and VIA. (Photo by K4JVV)

Well-known by most mobile operators in the Minneapolis, Minn. area is WøNZT, Beulah Kreger, according to her OM, WøQXL. Beulah works the mobileers mainly on 75 phone from her kitchen station.

K4RNS used her own sideband rig in operations for the Daytona Beach ARA club station K4BV at Ormond Beach, Florida. Marge is President of the Floridora YLs.

A mode of transportation devised to keep lower appendages dry. W5HUX gallantly totes his XYL, W5CXM.

Bertha Watson, W5JCY, received DXCC \#960 in 1957, and she believes that she is still the only Oklahoma YL to be DXCC. Licensed in 1941 as the second YL in her state, Bertha has numerous certificates earned while working mainly 10 and 15 meter phone. She is currently

YL editor for The Monitor. (Photo via W5ERY)

Had they but known! W5ERH, K5YTT, and K5YIT eagerly laid pre-FD plans.

Chicago YLRLers ready for FD business. Left to right: W9GME, K9JDE, K9UHD, K9JVL, and K9GUB.

Buckets, bare feet, bad water, but cooking remained the bailiwick of GAYLARK Auxiliary members W5VWF, W5HUX, and W5ULZ. (GAYLARK photos by W5KFD)

Despite distressing developments the GAYLARKs claimed a score of 1512 points with 252 stations worked on 20, 40 , and 75 phone and c.w. Wearily K5YIT carried on at the 20 meter SSB position, while K5PFF logged.

K5YYB; DX-YL Award - Maxine Willis, W66UHA. Vada Letcher, W6CEE, is YLRL Librarian.

New Award

Now the great grandmothers are doing it tool When one great-grandmother ham contacts uncther great-grandmother ham, she is eligible for a special certificate, the GreatGrandmother's Award. Applications should be sent either to W6TCN, Mary Petly, P.O. Box B, Pine Valley, California, or to W7GWG, Grace McCormack, 1428 E. 20 Ave., Eugene, Oregon, both duly qualificd great grandmothers.

Y'Ls who have attained the state of simple grandmotherhood (not yet "great") are reminded of the Grandmother's Certificate, which is issucd to any amateur who contacts 10 or more YLs who are grandmothers. Send a list of the stations worked, with frequencies and dates, to Mary Meyer, W9RUJ, 16520 Patricia Lane, Brookfield, Wisconsin. QSLs not necessary.

Miscellany:

OM CX2AM writes that he was somewhat surprised to learn that he was listed as the head of the household of a VP8 ham family in the photo that appeared in the May 1960 column. He believes that VP8BN is more rightly responsible for the paternal honors. Apologies to CX2.AM and his wife, CX3CU.

A correction is due W8RIR for her 1958 ILRL Anniversary Party score. Beth's c.w. score of 1856 was listed as a phone score in the results published in the March 1060 column. YLRI. President W6DXI has sent W8RIR a certificate for winning high c.w. score for the eighth district in the contest.

CONDUCTED BY SAM HARRIS*, WIFZJ

Arong the many problems encountered in the 1296-Mc. moon-bounce project, one of the most interesting was that of frequency control vs. receiver handwidth. The lower frequencies, due primarily to the more stringent requirements of single sideband techniques, have in the past few yeurs undergone a complete renaissance of frequency control, both in the transmitter and receiver. Unfortunately, except for a small spillover, this trend towards greater stability has not carried over on the v.h.f. bands. This doesn't necessarily mean that the frequency control at v.h.f. is not as good as at lower frequencies in terms of parts per million, but it does mean that a part per million, at 144 Mc. for instance, is much less precise in terms of cycles than it is at 1 Mc. Equipment which will read out one kiloeycle aceuracy at $1+$ Mc. when multiplied to 144 Mc. will read ont to an accuracy of only 10 kilocycles. A. 01 per cent accurate 8-Mc. crystal, therefore, will put you on the two-meter hand somewhere within 14 kilocycles of where you expected to be. On 1296 Mc. it will be somewhere within 130 kc . of where you expected to he. As long as it ends up in the band, you don't have to worry and you can always establish what the frequency really is rather than what it savs on the erystal. However, the same mechanism which gave you the original uncertainty of what the frequency was, gives you the same multiplied frequency drift as the crystal and its associated circuitry warms up. In the moon-bounce project we put our crystals in ovens which held the fundamental crystal frequency within something better than a cycle. Unfortunately, a cycle at 8 Mc . is 16^{2} cycles at 1296 . And now we come to the receiver bandwidth part of the problem. If the receiver is using 1 kc . selectivity, a slight yooping of the transmitter of 100 (ycles or so is not really too ubjectionable. However, a signal which is even with the noise in a 1-ke. filter will be ten db . ahove the noise in a $100-\mathrm{c}$ ycle filter and 15 db . above the noise in a 30 -cycle filter. Problem - how do you keep a signal which wanders 160 cycles or so tuned in on a 30 -cycle filter. The auswer is, you don't: and the 15 db . gain that you expected to get with vaur narrow-band filters is lost simply because you cannot keep the signal" centered in the filter. Ton not be misled into thinking that this is a problem peculiar to moon bouncing. Quite the contrary. It is a problem which exists on any communication circuit where weak signals are

[^18]encountered. For instance, how many people wish they had a kilowatt limit on 420 Mc . because they cun't work far enough with 50 watts? And of these people, how many have considered getting the extra decibels by narrowing the passband of their receivers and using more stable transmitters'? 'This path lies open to anyone and requires no special legislation; only a little work. And not, I might point out, by any means as much work as is required to generate a 700 or 800 -watt carrier on 432 Mc . In view of the tremendous amount of work which has been done in the past few years in the field of decoding weak signale, it is amazing to me that so many amateurs still consider 500 cycles the ultimate in selectivity. A good old-fashioned crystal filter at 456 kc . is capable of producing a bandwidth on the order of 100 eycles. Inexpensive components in the audio system can knock this down to 30 cycles or less. And this additional selectivity over a $500-$ cycle filter is equivalent to having a fellow on the other end raise his power from 50 watts to 1000 watts. Now I'm not against running 1000 watts by any manner or means, I'm merely trying to point out that if you haven't gone the whole road on the rest of the equipment, you really shouldn't be complaining about the power limitation.

We have the case of the two-meter DXer who is running a kilowatt input, has a 20 db . or better antenna, a 2 db . or better receiver, and a so called "good location." This gentleman can make confacts with an adequately equipped station at 450 miles night and day, summer and winter. Signals are weak but always there. However, another equally adequately equipped station at 550 miles

1215 Mc. APX-6 taken to Catalina by W6MMU.
cannot be worked without the assistance of a little tropo opening. Now it is an established and wellknown fact that scatter loss increases approximately 10 db . for each additional 100 miles. The station in question has been carrying on satisfactory schedules at 450 miles using a 500 -evele filter: if he wants to work 550 miles, he needs 10 db . more and the 10 db . is sitting right in his junk box waiting to be used - provided there is adequate stability in the transmitters and receivers.

Now it is certainly true that a receiver using a 50 -cycle or a 30 -ervcle or a 10 -cycle filter is almost impossible to tune. New techniques for tuning signals are required as well as new techniques for hearing the signals. I will be the first to admit that a weak c.w. signal coming through a 30cycle filter is about as audible to the car as a pin dropping in the middle of a cat fight. But, does being radio amateurs mean we have to receive signals by our cars? lsn't it possible that some newer developments would make it possible to detect a signal electronically which our cars are unable to detect? The answer is "yes, of course there is." Even the simple system ot using is well-damped audio meter to observe changes in level is capable of producing remarkable results when slow speed c.w. is used.

A pen recorder is a slightly more elegant scheme of producing the same results as well as producing a permanent record of the QSO. The fact that these, inore or less, crude methods of detecting signals are many, many db. away from the ultimate now available, should give rise to some thought. Surely the day has not come when amateur radio must bow to superior knowledge of commercial enterprises.

On the other hand, we should certainly not ignore the advances made in our own art. Whether we like it or not, the majority of the receiving equipment in use on the v.h.f. bands today is about as antiquated as a spark gap in a $D X$ contest. However, the first step of making use of modern receiving techniques is to apply modern frequency controlling techniques to both the transmitter and receiver. When we ran into a stability problem on the moon-bounce project, we got hold of old Freddy Mauer, HB9MS, and talked him into transistorizing a crystal oscillator

WITQZ's 16 -foot home-made parabola mounted on polar mount and ready to feed.
for us. This little transistorized, hand-made oscillator is quite stable and if its temperature can be held is extremely stable. The problem of holding its temperature is solved in a simple manner; one which is available to any amateur operator who lives where there is bare ground. The transistorized oscillator, complete with crystal, is mounted in a small fruit-juice can and soldered shut. The fruit juice cau was mounted in a largemouth vacuum bottle and sealed shut with bee's wax. The untput from this device was in the form of a 10 -foot length of teflon coax cable. The r.f. came out the cable and the d.c. went in the cable. 'This whole device is buried in a hole approximately 6 feet deep where temperature varies not at all the year round. The oscillator is battery powered, thereby making it independent of variations in line voltage and the extrumely precise temperature regulation provided by mother earth at the depth of 6 teet or so provides an oven that no money could buy. As both the receivers and the transmitter are treated in the same manner, a stability on the order of 1 cycle at 1296 MI . is now available. Total cost of this project, not counting Freddy's time and my time and the hole digger's time (the latter two are one and the same) was about $\$ 15.00$; far below the price of even a moderately good crystal oven. Now the absolute frequency stability is dependent on many things such as crystal aging etc., but the short term stability is determined only by the temperature of the oscillator and the condition of battery which supplies the power to the device. Our short term stability measurements, comparing two of these standurds, indicates an accuracy of something on the order of 10 to the -10 th. Iou might compare that figure with the published accuracy of WWV while you're digging your bfoot hole.

KLTFLC

A request made in this column, August 1960, regarding reception of signais from KL7FLC has paid off with numerous reports. The following is a simplificd listing of the Stations either hearing or working KL7FLC:

8/17/60	KL7DKN	Mrd	9:00-9:30	GMT
	V'E4「X	Wrkd	0707	qMT
8/19/60	KL7AUV	Wrkd	O800	CiMT
	KL7CDG	Hrd	18800	GMT
	W7RT	Hird	0745	CiMT
	Y'EGOH	Hrd	2330	MST
	KL7CDG	Hrd	0830	CMIT
8/20/60	VE8BY	Hrd	1)520	GMT
8/21/60	V E8BY	Hrd	0700	GMT
	VEATX	Hrd	0522	GMT
8/28/60	VE4TX	Wrisd	06820	GMT
8/29/60	VE7AFB	Mrd	2305	PST
8/30/60	VE6OH	Hrd	$2 \dot{2} 50$	MST
8/30/150	VE4TX	Hrd	0609	GMT
8/31/60	VEATX	Wrkd	0628	siMT
9/3/60	VE4TX	Wrkd	0425	GMIT
9/3/60	VE8BY	Mrd	14,35	GMT
$9 / 3 / 60$	W7RT	Hrd	0622	CMT
9/4/60	W7INX	Wrkd	2354	PST
	W7EMX	Wrkd		
9/5/60	W7RT	Wrkd	0700	GMT
	W'7RDY	Wrkd	0754	GMT
	W7EMX	Wrkd	0645	GMT
9/6/60	W7PUA	Hrd	0615	GMT
	VE4TX	Wrkd	0)i47	CMT
9/7/60	$V E 4 T X$	Wrkd	(1832	CMT
9/9/60	VE4TX	Wrkd	0415-0715	GMT

	VE8BY	Wrkd		
	W曰GNS	Wrkd	0415	GMT
	TVChannels un to 5 heard at KL7FLC			
$9 / 13 / 60$	VE4TX	Hrd	0518	GMT
$9 / 14 / 60$	VE4TX	Hrd	0445	GMT

W7PUA, Eatonville, Wash., listened whenever possible for KL7FLC. On Sept. 5 he noticed aurora from about 0600 to 1000 (rMT, but no sign of KL7FLC. On the 6th aurora signals came in about 0000 GMT, staying in until 1100. Between 0345 to 0430 good c.w. signals were heard from W1 238 and 4 . These were almost steady, with no sign of buzz. W3TDF was worked. Nothing nearer than Michigan and Indiana was heard, and strongest signals were from the Fast Coast. At ahout 0615 KL7FLC appeared, running his tape. At the time he called a CQ, 0645, he was steadv, readable, and would have been readable on phone, according to W7PUA. Fquipment at Katonville, Washington, consists of 800 watts to a $4-400 \mathrm{~A}$, ten-element Sterba curtain on KL7FLC and crystal-eontrolled converter into an NC 240 D .

From Seattle, John, W7RT reports that on August 19 when he heard KL7FLC, there was what seemed to be a peculiar aurora-like modulation. The simnal faded and despite turning his 16 -element array, there was no change in signal strerigth. The signal stayed in for five minutes with John calling frantically for the next three hours. He needed only Alaska for WAS 50. On August 20 a schedule was arranged with KL7FLC via land-line and KL7AUV ($\$ \$ \$ \$$), but no contact was made that night. While listening for KL7FLC that night John heard California, Arizona and Nevada off the bark of his heam. John did make the contact with Alaska on September 4, and later that same night worked VE6OH. Both KL7FLC and VE6OHI had similar "ring" to signals, not. like rommon aurora signals. W7RT is now the proud holder of the first 50 -state 50 -Mc. WAS to he made from W7.

Another Washington 50-Mc. man worked Fletcher's Ice Lsland was W7EMIX. Jerry Ostrer. Jerry reports the aurora of September 4. All call areas except KH 6 and W' were conied at his GI'H, and he worked K7AAD. Oregon; W7EGN, Montana; W7INX, Oregon; VE4TX, Winnipeg; VE6OH, Alberta, and KL7FLC. Signals at the beginning uere 559 with no flutter, later going down to a 34 with auroral flutter. The post-auroral opening to the eastern seaboard was the strongest opening Jerry has heard to date, following an auroral disturbance.

In Oregon Lien Matsen, W7INX worked KL7FLC during that same auroral opening at its peak, with his bean due north. Washington. Idaho, Montana, VE6 and KL7 were heard with auroral Buzz with the beam either north or northeast. VE4, W1, 2, 3, 8, 9 areas were heard with the heam east, TP notes but with flutter.

An early contact with KL7FLC was made by Cliff, VE4TX, after he spotted an auroral patch in the northwest on August 17. When he turned on his rig at 0616 (iMT Angust 18, he heard a weak signal which soon hilitt up to $5-9-4$ and turned out to be KL7FLC. At 0707 contact was made. On the 16th Cliff heard W1GEF ralling KL7FLC, and about a week nreviously heard W3FTY calling him. Hoth stations on phone. On August 9 contart was made with $V E 3 C J N$ and with VE2AIO, the first time Cliff had heard a VE2; also worked New lork, Illinois, Michigan. Ohio and Indiaua. At 0506 VE8BY was heard calling CQ and although Cliff gave him a call he first came hack to K8MIHN, then VE4HW. When Cliff's turn came it turned out that Pete's (VE8BY') oscillator was on even when receiving and he could not hear signals too cinse to his own frequency. This might be the cause of others being unable to contact Pete. VE4BI joined this QSO to make it a 3 -way. On August 16 a two-hour opening to W8 and W9 call areas. When KL7FLC was heard on August 21 at Cliff's QTH his signal was RST 3-3-9 at best, coming through during a good aurora. During Cliff's August 28 QSO with KL7FLC, the aurora was widespread overhead. but none toward the north. Signal was $5-4-9 X$ with little QSB. Best onening of the season in Manitoba was the one of September 3. On September 5 at 0140 (iMT auroral signals started coming in from the nurtheast. First station identified was K0YBF in Minneapolis, Minnesota; a rare state in Manitoba. Next Cliff worked VE3CJN, dircet path, after which he worked stations in Pennsylvania, Michigan, Wisconsin, Missouri, Illinois and Iowa; heard VE6DB, Tennessee, Texas, Oklahoma, New York, Colorado and VE2AOM ofi the back of his beam.

W7RT and W7INX were also worked during this opening, ending up the session with a thirty-minute GSO with VE8BY.

VE4CV, VE4SH, VE4WL, VE4YTV. and K5RXT/VE4 were active and stations were heard calling VE5GI.

Final word from Cliff, VE4TX, gives out with the word of a three way contact between himself, KL7FLC and VE8BY on 50 Mc. on September 6 at 0657 GMT.

Another side of the above story comes from Pete, VE8BY who heard KL7FLC at 0620 GMIT on August 20th. AIthough Northern Lights were in view at the time there was no Hutter on the signals and the bearn had to be pointed due west to pick him up. Southeast for KøUDZ. Up until August 20, Pete's score in areas worked is VE5, 4, 3, and W0. 8, 7, 3, 2, with a five-element beam fifty feet high. On August 21 when Pete heard KL7FLC his beam was to the southeast; on turning it west signals were no better, $2 / 3$ to a $3 / 7$ in each case. On September 3 when he heard Bob northern lights were in evidence and with beam southeast report was 0.5 s 7 with slight increase on turning the heam west.

On August 19 Otto, VEGOH, heard KL7FLC Q5 S6 aurora with his beam pointed northwest. Called Bob but no response. Also heard him on Angust 30 at 2350 MST once again with good aurora signals. On this same date Otto also worked VE7AFB, and W7RDY with beam to the northwest. Beam northeast for WhENC. Best heard (but not worked) on aurora is WIGEF.

VE6DB. VE6FF and VE6OH are all active and monitor 50 Mc . all the time. They've had some good openings but not many of them and to date VE6DB has fifteen states, while VE6OH has seven states.

Janies Fraser, VE7AFB reports rereption of KL7FLC at 2305 PST on August 24. Simnals peaked RST 559 in Hritish Columbia and faded out after abont five minutes. Note was clean with no auroral buzz but with some Hutter. Shortly after this Jim worked VE6OH and heard W7ESN.

In Alaska, Boh, KL7FLC, was heard in Anchorage on Iugust 17 bv LiL7DKN at 0900 to 0930 GMIT. On August I! KL7AUV worked him at 0800 (iMIT with signals peaking S9 with slow QSB. W7RT was hearing KL7FLC just before this GisO.

The following information was received from Kav, W1PIPY. "KL7FLC, operated by WIIJD and W1FV'Y on the Ire 1sland. has been in QSO on six meters with W7RT z-9-9, September 5 at 0700Z: W7RDY 5-5-9, September s at 07457; W7EMX 3-3-9, September 5 at 0645Z, W7INX t-4 Aurora, 07527, September 5. On September it they esoed VE4TX and VE8BY for a two-hour 3-way. They also worked WøGNS at $0415 Z$ with a $5-9$ signal. They have been hearing TV stations in Reqina and Winnipeg.'

From the Province of Quebec, via VE2AIO, we hear that skeds on 50 Mc . between himself and W1HDQ finally paid off on August 27 and 28. On the 27 th Gentf's s.s.b. was readable, although original contact on each date

Serry (W9QXP) and Dave (K9CNN) produced this 16 -foot parabola. Antenna is located in Jerry's back yard at Wheaton, Illinois. All they need is a feed line and a feed.
was made on c.w. Fior Geoff conditions were good toward New England on August 17, 18, 19, 20 and 21 when he had QSOs with either W1HDS or KIIIZM or both usually after 2200 EST. He is particularly happy that the East Coast boys are looking up that-a-way and is now building a highnower linear hoping to keep some of the beams looking his way.

Ouring the September 4 aurora, Gary, K9LJN, heard VE8BY with signals in and out of the noise levol, but did not manage to nab him. Also heard W7RT and W0IC and un unidentified phone station on 50.010. On August 12 and 13 W 0 KM V was listening on 50 Mc . at the time the satellite passed over his area, aud heard several signals hounce in from the northeant sounding much the same as meteor bounce. These signaly were not present before or after the pass of the "Moon." He will be on 50.024 each evening is the satellite passes and will be keving and sending " V " and his call. Will listen after one minute of keying.

A TE opening on Sunday, September 11 between 1700 and 1830 PST is repurted by Gib, W6B.JI. Although he heard half a dozen signals at any one time, the only station identified was LU4DO\%. According to Gib, the unusual part of the opening was that it lasted three times as long as any he had heard in the past and was accompanied by back scatter from stations presumed to be from the 5th district. Thes were too weak to nositively identify. TE signals areruged about S 3 but came up to S 5 quite often.

Clubs and Nets

The Mid-South VHF (utb) in Tennessee handled communications for the third annual 1000 Mile ski Marathon at McKellar Lake. It lasted approximately thirty hours begituing August 10 and ending August 11, with UPI carrying hourly reports on it. The club operated four portahle stations, a Couset was used as one of the control stations, a second station was operated from a Coast Ciuard Cutter (also a (Gonset), and in the two first aid rescue boats a (ommunicator and a walkie talkie were used. This is the serond year that the club has participated in communications for the Marathon.

The North Carolina 6 Meter Net staged their annual summer pienic on Saurtown Mt., North Carolina on July 31 with over thirty-five members attending and guests from Virginia. Russ, W4ZXI, came from Fort Worth, Texas, to attend the picnic and advised the group that he will he operating from Swan Island in November on six and two meters and has been issued the rall IIS4AA.

Strange Signal Reports

On July 24 at 1300 EST and again on August 20 at 1316 EST VE2AIO heard PEG.J calling P'CH94 on 50.196 Mc . each time for a period of about thirty minutes and peaking S9 with deep fading. Slow c.w. at about 15 w.p.m., 1'7. Careful checking by Geoff eliminated i.f. fcedthrough or spurious in his receiver. These 4 -letter calls are ships, radiating harmonics in the band, which surgests the possibility of an E_{a} hop from some point off the Atlantic Coast.

144 Mc .

Thursday, August 18, marked the inauguration of the Atlantic seahoard 144-Mc. rel:ty system. Test messages originating in Kiey West and Miami, Florida, destined for Canada, reached the branch-out point, Chatam and Richmond, Virginia, in less than an hour. Apparently the fellows in the northeastern part of the states are not well enough organized into a relay team to guarantee immediate delivery

of these messuges. Anybody north of Virginia interested might contact any of the established relay points, such as W4RMIU, W4AIB, K4EUS and W4KDH.
A tropo opening the wight of August 25 and 26 , resulted in S9 signals both ways from stations on the east coast as far north as New Hampshire to stations in the western Pennsylvania and central Ohio area. W1AZK was receiving W8KAY with S9 signals. As usual, k8AXU portable 8 in Elkins, West Virginia was on the ball loud and clear. However, this little tropo opening was paled to insignificance by the aurora of September 4 and 5. According to Lee, R9AAJ, it was the best aurora ever heard there. He worked W4AIB at 1732 EST and then left for work; however, when he returned at 0200 EST on Monday morning things were still going strong. He found the aurora from his QTII bounded on the west by W6MOX in Boulder, Colorado; on the north by VL3DSU; on the east hy W1AZK in New Hampshire, and on the south by W4EQM in Alabama. ALI in all, Lee heard seventeen states plus VE3 at one sitting. W4AIB provided a new state for both K9AAJ and Box, W2RXG. And wonder of wonders, spparently the auroras are moving farther west because old Art. IV5PZ, picked up a new one when he contacted W0MOX in Colorado on the same widespread aurora session. As Pres, W3BYF, says "If I had only waited to get on 144 Mc. until the night of September 3, ! could have worked everything I have up to now." This means that Pres heard 25 states and 7 call areas, and out of this picked up one new state, W0BKV in Missouri
One of the inost common complaints from stations active during this aurora was put nicely by Bill, W4UVP. Bill was hearing all districts east of W9 land and managed one contact with W9PBP. "Heard only one or two of the W4s doing any good at all; the rest of us called and called." It would seem that this was almost the obvious resilt of many stations and small frequency allocations. With only ahout 100 to 150 kilocycles available for use on aurura sessions, it just isn't possible to separate all the stations who are active. If there were just some way to convince twometer operators that W8KAY does not mark the high end of the two-meter band, it is quite likely that this severe overerowded condition could be eliminated. A few penny (?) postcards to the more active stations in the states you are looking for, advising them of a non-(2RMI crystal frequency which you will religiously use during aurora sessions, would be a giant step toward eliminating QRM. Everybody, for instance, knows where to look for W8KAY or W1AZK, but do they know where to look for you? And if you're underneath a kilowatt, do you think they'll find you anyway?

Perseids Meteor Shower Results

Ernie, W4FYZ, managed new contacts during the August Perseids shower with W'1REZ, W2AZL, W3TDF, WgMOX, W7LEL and W7RUX. These were solid QSOs with all the necessary data exchange plus a little extra. These contacts represent five new states for Ernie and has convinced him that m. s. is a satisfactory method of working pcople. Louie, WøMOX, managed W4HIFK, W5JWL and W5FYZ. Luuie's contact with Ernie is probably the first Colorado/Louisiana contact on 144 MI . In addition to the states on meteor scatter, Louie took his wife to the hospital on the 10th of August and was presented with a mew son for his efforts.

Rex (IV5RCI), brought his states worked total up to 35 during the Aquarids and Perseids. WbMOX on July 27 gave him number 34, and W0ENC on August 14 th, number 35. Incidentally, Kex is back on 220 Mc . and is looking for sume m . s. schedules with his new 500 -watt final and 15 -foot Yaci.

220 Mc . and U_{p}

Results from $A P X-6$ Cnneersion

Conversion of APX-6 units for 1215 Mc. use (September Qs'T', p. 31) was a summer project for quite a few Connectieut Valley hams. Around Springfield, Mass., W1QWJ, WIWFL. W1RVW. W1STR and WIVNH are going strong. Connecticut is represented by W1CUT, Simsbury; KlC.JX, Granby; W1YDS, West Hartford; and W1HDQ, Canton. Demonstrations of the APX-6 and antennas to go with it, at

This is what a "polar mount" looks like close up. Parabola is W8LIO's 20 -footer at Dorset, Ohio.

50 Mc WAS

1 WoZJB	20 W6TMI**	39 WODDX	58 WIAEP*
2 W0BJV	21 K6EDX	40 WGDO	59 W5LFH
3 WDCJS	22 W5SFW*	$41 \mathrm{K9DXT}$	60 W6NLZ**
4 W5AJG	23 WOORE	42 W6ABN**	61 W7MAH
5 W9ZHL	24 W3ALU	43 W6BAZ	62 W8ESZ
6 W90cA	25 W8CMS*	44 VE3AET	63 W2BYM
7 W60B	26 WOMVG	45 W9JFP	64 W7ACD
8 WOINI	27 WOCNM	46 WOQIN	65 K6PYH*
9 W1HDQ	28 WIVNH	47 WбWWN	66 W4HOB
10 W5MJD	29 W0OLY	48 K9ETD	67 KOJJA
11 W2IDZ	30 W7HEA	49 WbFKY	68 K6RNQ**
12 W1LLL	31 KgGQG	50 W8LPD	69 W8QWT*
13 WøDZM	32 W7FFE	51 WOZTW	70 W6EDC**
14 WØHVW	33 WGPEP	52 W6GCG	71 K6VLM ${ }^{* *}$
15 W@WKB	34 W6BJ***	53 W2RGV	72 K6GOX**
16 W9SMJ	35 W2MEU	54 WIDEI	73 W0EDM
17 WøOGW	36 W1CLS	55 W1HOY	74 W9JC
18 W7ERA	37 W6PUZ	56 W6ANN	75 W0LLU*
19 W30JU	38 W7ILL	57 W1SUZ	76 W7RT**
* 49 states	** 50 states		
VE7CN 45	E[2W 37	LU3DCA 97	SM5CHH 20
KL7AYV i4	CO2XZ 36	LU3EX 2?	LA7Y 20
VEIEF 42	ZS3G 32	\%E2JV $\quad 26$	VQ 2 PL 18
VE4HS 41	SM6ANR 30	LU9MA 25	JA8AO 18
XEICE 34	CO2LX 30	CO2DL 25	JA8BU 17
VE2AOM 38	SMZZN 29	CTICO 24	JAlAAT 17
KH6UK 3i	PZ1AE 28	CO6WW 21	JAIAUH 16
	SM6BTT 28	LA9T 21	VP5FP 7

the first fall meetings of the Hampden County and Hartford County Radio Clubs, should result in more APX-6 units on the air soon.
Coverage has been better than expected, and antenna experimental work has provided much interesting work. Corner retlectors are easy to make, and their performance seems to be better than anything eise of equal simplicity. To everyone's surprise, however, collinear arrays pioncered hy WIQWJ and WIRVW have extended the range and improved signals markedly. Several screen-reflector collinears with 16 driven elements have been put up, and a massproduction job on arrays with 32 driven elements is currently underway in Springfield. Coax is universally used, and though the loss figures are formidable, getting the arrays up over the trees and buildings always seem worthwhile.

WICUT and KICJX are set up for portable and mobile operation. 'These two and W1HDQ sprang a surprise on the Springfield contingent by driving up there during the regular Monday-night 1215 Mc. workout, and providing the first mobile contacts. Using a simple horizontal dipole held aloft by an assistant operator, W1CUT/mobile made contacts at distances up to ten miles over open paths. Multiple reflections make antenna orientation extremely critical and mobile Hutter is terrific. W1QWJ and W1VNH said it sounded as much like $50-\mathrm{Mc}$. aurora as anything!

Portable work from various high spots in and around the valley has added spice to the 1215 Mc. program, and probing with the highly directive antennas has turned up someinteresting reflection paths. WICUT to W1HDQ is a distance of some 5 miles, over low hills. A nearly vertical ridge one half mile back of the W1CUT location provides a fine reflector, and a return is also observed from an observation tower atop the ridge. Signals are S8 over the retlection path; 82 to 3 direct.

Heavy foliage knocks off 1215 Mc . signals much more than those on 144 or 220 Mc ., and atmospheric effects show up markedly on even these local circuits. Comparison with 144 Mc. shows, it a general way, that if good signals are obtainable over a path with 2 watts and simple antennas ou 144 Mc ., there will be a usable signal on 1215 Mc . with two APX-6s and 20 -inch, 60 degree corner reflectors.
In case there is thought in some quarters that New England has a "corner" on using converted APX-bs; seems that W6MMU did some 1215 Mc. operating receutly from Catalina Island using an APX-6, (converted) a twenty-one inch fiberglas parabola with aluminum tape on the face. Five stations were worked during the week including July 11 through July 15 - W6HIT, Pacific Palisades: WABEWV, Bel Air; W6PCQ, Santa Monica; W6DQJ, Pico-Kivera all signals were 89 both ways.

The Palos Verdes Hills, nearly 1000 feet high, blocked the line of sight in most cases. Distances ranged from thirty to sixty miles. This was the first amateur oneration on any frequency above 144 Mc. from Catalina Island.

A little over a week of scheduling between Rex, W5RCI, and 'Tom, W4HJQ, on 432 Mc . paid off on September 11
with a good contact, and having caught the opening Kex went on to work W8TYY. i)istance to W8TYY from W5RC'I is about 580 miles. This little scheduling effiort gave Hex two new states bringing his total up to 8 .

George, W'3FEYY, is back on 220, 432, and 1296 looking for schedules. He is preseutly keeping nightly schedules with K2CBA at al30 Fiost. He comments. "Observations on 220 Mc. aurora signals indicate that the possibilities have been greatly under-estimated. Band was onen on aurora with signals from Ohio, New York, Pennsylvania and Massachusetts." (ieorge is operating 220.15 Mc. and notes that no one ever tunes that high.
Jack, W81TT, is maintaining a Monday, Wednesday and Friday night schedule on 200052 kilocycles with his heam on W1AZK and points east. The time is given as $2: 20$ EST (which is really 0300 GMT). Bob, W2L,WI, has a 5894 fired up into a seven over seven on 2 LO Mc . So far he has 34 different stations in 12 states. Says he is meeting lots of his oid two meter friends and suggests looking for W1AZK

220- AND 420-MC. STANDINGS			
220 MC.		W9EQC. . . . 11	6) 740
Wl.AZK,....y 3	412	W9JCS..... 5	2 4 4
W1HDQ....il	4.50	WYOVL. 6	4 3 3
W1OOP , ...12 4	400	Wgut	4605
W1RFU.... 15	480	W9z1H.... ${ }^{\text {W }}$	5 500
WVUUHE.... 114	3×5	KøDGU......	3425
W2AUC...... 13.	450 230	KטITF...... ${ }^{6}$	3515
K2CBA io ${ }^{\text {d }}$	325	KH6ttK..... ${ }^{\text {c }}$	12540
K2UIG ${ }^{4}$	140	VE3AIB	44.50
WV2DWJ.... 15 6	740	420 M	
WV2DZA.....12 5	410	W1HDG	
K2K1B.....10 ${ }_{\text {WLI }}$	300	W1HDG..... ${ }_{\text {W }}$	$3 \quad 210$
W\%LtJ.....10 4	250 2000	W1MFT, . . . ${ }^{\text {W }}$	$\begin{array}{ll}3 & 125 \\ 4 & 410\end{array}$
K2PPr	190	W1OUP.....io	3390
K2QJQ.....13 5	540	W1UHE. . . . 6	4430
W3AHQ.....t 3	180	W2AOT . . . ${ }^{\text {W }}$	4290
W3FEY.....io 4	296	WV2BLV.... 12	5360
W3KKN.... 10 \&	255	W2DWJ. . . . ${ }^{\text {g }}$	4196
WV3LC'C. S 5	301	h2\% ${ }^{\text {HA }}$. 5	3225
W3LZD..... 15	425	W2DZA..... ${ }^{\text {S }}$: 130
W3RTE..... 9	450	W2NTY.... ${ }^{\text {S }}$	2100
W3UJG.....i3 5	400	W2OTA..... 6	3150
W3ZRF..... 4	112	K2UUR......	3175
K4TFU...... 4	400	Kis EOF	3250
W4UYB....i 5	320	W'3FEX.....	2225
W4UMF.....11 5	420	W:3RUE, . . . 2	246
W5AJG.....3	1050	W4HHK, ...3	3 5050
W5RCI	700	W4VVE..... 6	$4 \quad+10$
W6N1ZZ..... ${ }^{\text {U }}$	2540	W5HTZ......	y 400
K6GTG.....2 1	241	W6CTM.... 1	1180
WFMMMU....: ${ }^{\text {a }}$	225	W5RCI. S	3600
K7ICW..... 1	250	W7LHL.....	1180
K゙XAXU....10 5	1050	W8HCC.... 3	2355
WY1JG....... 9	475	W8HRC.... ${ }^{\text {W }}$	2) 250
WKLPD.... 6	4×1	W8.JLQ.	2 275
W̌NNRM....ss 4	3¢1)	WNNRM	$\because 390$
WRPT.... 105	5.50	W8RKCI	$2 \quad 270$
W8SVI...... 64	620	W!IGAB..... 9	4 6100
W6AAG..... 4	600	W9AAG.....	3 375

nightly at 01000 GMT if yoū need New Hampshire. W3UJG pushed his total un to 13 on aurora contacts with W4ZXI and W8CSWV. Don, W1AZK, suggests a little more publicity on uperating times; beam healings, frequencies, etc., would he a big help when you are looking for a new one. Don also points out that no one will hear you if all you do is sit there and listen. (Amen) The 432-Mc. meteor scatter skeds carried out by $W 9 O J I$ and $W 2 B L V$ had disappointing results. No pings, bursts or otherwise were heard. At least it wasn't for want of tryiug. John, W6NLZ. suys that 432 Mc. activity in the Los Angeles area has reached QRM proportions. Naturally this prompted John to move up to 2700 Mc. He is running 70 watts output to a c.w. magnetron. In arldition to heating up $\mathrm{R}(\dot{i} / 8-\mathrm{U}$ cable in a hurry, it almost blows W6PUZ off his hill.

OES Notes

K1CXX --.. Activity on 50 Mc . Worked K3KCG, W3PGV, K5RBN and VE3CIK. Activity on 144 Mic. Worked first aurora, WA2DIR and W3BYF.

K1GQK - On 50 Mc . heard channel 9, WMUR-TV andio very strong. First time this happened.
kikUY -- Few openings on 50 Mc., heard Newfoundland.
WiLAIZ - Hears Montreal nightly and K1KKP in Peru, Vermont, on 144 Mc.
WINKA - All activity on 50 Mc. ; heard a VO2, also aurora sessions.
K2BGU - Sporadic E in on $7 / 2,3,10,11,15$. Not much else.
K2JWT - 144-Mc. openings to W. Virginia, Ohio and Michigan. Worked Nova Scotia.

K2h.MG - C.w. schedules held nightly on 144 Mc . with K2GQI, W2WZRR, W4LTU, W5PZ. W4EQM. Aurora contact on July 15 with W4MKT and W8CYX.
k3JHE - Heard K5R.4E, W5UW, W4KII, K4RZI and many others on 50 Mc .
h3KUD - Openings on 50) Mc. to Florida, Georgia, llinois, Iowa, Virginia and North Carolina.
W3ZRR - 50 Mc . activity to south and southwest fews davs in July. $2 \geqslant 0$-Mc. activity increasing.
W4CIN - Hold schedule with K4VTA at 0600 EST. No unusual openings on 50 Mc .
K4EUS - All activity on 144 Mc.; Perseids skeds with W@MOX, WGQDH, W5FYZ and W@TJF. Aurora: W1AZK, W1CRN, W8GGH and W9ZIH. Few transmissions at "Echo".

W4FWH - 50 Me , short skip activity. 144 Mc . activity in South Carolina, Alabama, North Carolina. Aurora recorded twice, $7 / 1$ and $7 / 15$. Relay station in process on 144 Mc.

K4IQU - Cuba 15-minute QSO. Nothing else of interest.
W4KDH - 3 good openings on 50 Mc . Normal conditions on 144 Mc. Good tropo openings with VE3DIR. Nightly contact with W4AIB, South Carolina. Also hear W4RMIU and W2LSX quite often.

K4KYL - Many openings on 50 Mc. Experiment on "Echo I" completed. Call CQ on 145.01 Mc. nightly at 2100 EST and 2200 LST beaming East, North, West, Bouth.

W4UCH - Iesigning new high-power 5()-Mc. amplifier.
WA6EEO - Preparing for Echo II. (What band?)
F6LCQ - Worked a few VE6s on 50 Mc .
K6SIX - Band opening on the th of August but only copied regular ti-meter stations. (Receiver troubles?)
k 7 BBO - Not much DX on 50 Mc ; worked W'6NLZ on back scatter.

K7GGJ - Few openings to the Midwest on 50 Mc . No v.h.f. activity on in Yakima except for K7GGJ. (Good srief!)

K7HKD - Worked W7QDJ on 144 Mc., also New Mexico and Oklahoma.

KN7LQA -... Anybody interested in joining the NorthWest Two Meter Net contact KN7LQA or W7DZK.

W7ZVY - Was on Mount Rainer for September asO party.

W8BFF -... 50 Mc . opening. Aurora visible, no signals.
K6BGZ - 144-Mc. oneni!gs in Nebraska, lowa and Kansas. Worked WøBTG, WøIAY, W@EMIS and W3YLR.

W8NOH - Cpenings on 144 Mc. to Missouri, Iowa, Minnesota, Kentucky and New Tork. Heard W8PT on 432 Mc. with make shift converter and discarded radar berdspring antenna.

W8PT -... Activity on 220 Mc; 1.44-Mc. aurora openings. Quite a bit of activity on 144 Alc. Official broadcast on Monday, Wednesday and Friday.

KBPUT - $50-\mathrm{Mc}$. ground wave very good with some aurora. Aurora openings $W 1 s$ and W2s. Everybody trying to get on 144 Mc .

W8WRN - Good opening 144 Mc. on September 2. QRM even above 145 Mc .
k9HWC -- looking for stations who want to work extended ground wave on $50-\mathrm{Mc}$. c.w.; located 25 miles west of Chicago and looking for stations 200 to 250 miles rway.
kyPGK-50 Me. excellent E skip during August. Local 50 Mc . activity increasing.

W9PNE - 50 Mc . Heard WGTAF of Missouri on August 18 , W5s and WGs heard. August $22, \mathrm{~W} 4 \mathrm{~s}$ and W 8 from Ohio. On aurora heard K2EVJ and Ki8BJC.

K9TMG -... Club stations with the call K9ONA operating on both 50 and 144 Mc .

E0BWQ - Wants more local activity in the Kansas (lity ares. (Ynu gotta flail the bushes!)

KODUO - New receiver under construction almost completed.

K90XY --.. Looking for scatter schcdules on 50 Mc . Operating frequency 50.03 running 50 watts input to a five element beam 30 feet high.

K1CRN - Runaing nightly schedules with W4RMU in Florida on 144 Mc., 0530 to 1630 EDST. His frequency 144.1, K1CRN's frequency 144.138.

Want to rum high power? Take a page from Eimac's design notebook and duplicate a highvoltage power supply they are putting together for experimental and developmental work. It will put out 282 kilovolts at 12 amperes, which figures out to be about three million watts. However, since it uses some oil-filled transformers weighing from 5 to 15 tons each, it would hardly be the sort of thing you'd consider for Field Day use! Eimac hopes to have it functioning by early 1961.

\％nd How＇s DX？FI？

CONDUCTED BY ROD NEWKIRK，＊WV9BRD

Whoa：

WANTED：Young，skinny，wiry fellows not over 18．Must be expert riders will－ ing to risk death daily．Orphans pre－ ferred．．．．

So went a newspaper ad of a hundred years ago，seeking DX talent for the Pony Express． Rugged qualifications for $\$ 25$ a week！In their wildest dreams these＂skinny，wiry fellows＂and their employers hardly could have visualized posterity seated comfortably in eastern parlors chatting directly with San Francisco via private wireless for a few pennies per conversation． Those old－timers surely did it the hard way．

Defying raging nature and the Indian gantlet， encountering incredible adventures and hair－ breadth escapes that render today＇s TV－western plots pale by comparison，the 80 －odd riders of this American preradio relay league logged 616,000 miles in 308 runs somewhere between St．Joseph，Missouri，and booming Sacramento．
There were 190 relay stations along the original 2000 －mile route．Each rider tired several horses in covering his allotted 70 －to 100 －mile stretch．It was normally a ten－day run，but word of Lincoln＇s election reached the coast in a record seven days．Best single－operator DX record？One magnificent stripling named William Cody raced 384 miles without rest when his relief rider was erased hy Indians．（Young Cody，you know， went on to immortal fame as Buffalo Bill．）
This is cosentially a traffic man＇s yarn，we sup－ pose，and yet there＇s a tangy DX flavor to the tale．In 1861，aiter cighteen furious months，a heroic moment in communications history gave way to more scientific kevs and sounders．Radio amateurs can certainly observe this year＇s Pony Express centennial appreciatively，for hams－ DX men in particular－still find in the art of communications a spirited adventure．

What：

In all that excitement the Pony Express lost only one pouch．（Jeeves ought to lose his．）But we digress． After a surprising August our TiX bands turned somewhat soft in September and October．Kinough strong spells do come along to keen our＂How＇s＂Bandwagon rolling，how－ ever，so let＇s cross－check results at random points here and abroad．Remember that such listings as＂CR1＠AD（95）4＂ mean that the station was observed 95 kilocycles ubove the lower band－limit（ $14,095 \mathrm{ke}$ ．if the parugraph deals with 20 metere，for instance，around 0400 hours GMT．
10 phone stays with us on a part－time basis but the quick－1）XCC－with－an－807 days are numbered now． Reporters K1s JUR LNC，W2FGD，WA2s EGK IGW， W4L．JV，K4s GSD TEA，K5VTA，WA6I）NM，K8s JCB （2EX，K9SPO，KøRNK，EL4A，ZD）25KO and s．w．l． 1）．Edger mention recent success with CEs laGI 3AG 3PY，CN8MT，CRs 4AX 6CA（450） $17,6 \mathrm{CZ} 7 \mathrm{CR}$ ，C＇Ts IIQ 1 KJ 1SX 2AH，CXs 6AF 7AR 7BH，ELs IN 2C LA 4 M （498）18，FFs 7AB 8AP，HCs 1DD（810）17， 415 ， HH2V，HKs IIT 2GO 4AY 7AB \mathcal{A} AI，JA3AD，a bunch of KZ5s，OA2B，OE1CS，PJ3s AI AK，TGs 5 HC 9 OD ， TI2s CMH JAP OE，VE8RH，VPB 2GAQ 5BL 6TR， VOs 2EZ 2JS 2NRE ithe kitwe exhibition）．2WR， VS9AJW，XEs $1 H$ 3AF，YN1WW，YVs 1 VW 3BD 5AEV
＊7862－B West Lawrence Ave．，Chicago 31，I1．

5AKM 5ANE 6BC，ZB1HC，ZD1AW，ZEs 1JA 1JJ 2．JA， ZP9AY，ZLIRI，ZS3s D L（490）17，5As 2TD 5TA， 602 CM and 905 CI ．
10 c．w．may be coming up for the third time m．u．f．－wise， so WA2EGK，K2UYG，K3CTI，K68 CJF ROU． K8JCB and K9SPO pulled out CE4EI，CX2BT（80） 17, some Gs and DLs，HKOAI，LUs 5UEL（iU）2゙3．7AU（80）， PY2s AJK BBP，VQ2HT，XE1H，ZEGJG，ZI， $2 A U M$ ， ZSs $1 U L$（70） 18,410 and 6AWY or $6 A Y W$（50） 18.
15 phone followers welcorned fall confidently，especially 15 WIBDI，K1．JUR，K＇zs KVII TDI＊（asterisks indicate single－sideband users hereafterı，h3LJZ．W4s LJV TIWC＊ K4s LRA MPE TEA，K5VTA，WA6DNM，KZs JCB QEX， W8KML．K8SRR，VE3PV，EL4A，ZD2．JKO，D．lidger and A．Rugg who logged such desirables as CEs 2MG 3WU＊， CN8s C8 EF EN HX＊JO，CO8s JK OK（235）23，CP5s HIH HL＊CR6CA＊（446）0，CTs IEY 3AE，CXB 4AW 9BA＊DM4BN，Els 8AF 9BC，ELs 2Q 2 U （244）2！2，4A 4c：＊ $4 L^{*}$ ，ET2VB，FFs 4AB（260）23，4AC 7AB（280） 23 ， 8CK（ $\because 45$ ）0，FO8s AQ AX，GB3LY just England，GD3s WNK＊UR，HH2s GR LD，HP1s GC LB，IRs 1HP＊ I ПA 2HA，HZ1AB＊，KC4USB＊，KG48 AD AK，KV4BM， KW6（决，OA4s AA H，OA8N＇，OD5s BUV CN．PJ3s AD AJ，PX1RC，PZ1s AW（265）3，AY（280）23，SM2BCS， SPs 5XM 8CR 8HK，SVs 1 AH＊gWT，TGs 5HC 9FI， TF2WFF，TIs 2AB（ 227 ） 3 ，2OE 2WA＊5AX＊5RV，UAs illZ＊ 4 KED ，VE8RX，VPs 2LS 2SI＊5AK 5BB of Turks． $6 W \mathrm{~F} 9 \mathrm{FR}$ ．VQs $2 \mathrm{AB}^{*} 4 \mathrm{DT} 4 \mathrm{~F}^{(\mathrm{K}}$（ 280 ） 21 ， $4 \mathrm{KF}^{*}$（397） 21－0，5GF，VR2e AS BC TE DS，VSs 1GQ IKD 9ADL （218）23，9AJW，VU2BK，W7AMW／KG6＊，XEIs galore，
 YSILM＊，YUs 30V 3VV 7LAA，YVs 1CS＊3DL 3TT 5AMI 5 ANK，ZB1HC，ZD2JKO（170）$\because \because, ~$ ZE4JN＊， ZK1BS，one ZM6AM，ZP6BB＊．ZS3X，4X4IK（2：25） 23 with a 10 －watt 6 A ． 5 rig，601TUF（176）21，9G1s BA（223） $\because 0$ CQ（248）23，DP（215） $21.905 \operatorname{silF} 11 \% / V Q 5 / \mathrm{m} \mathrm{KY} \mathrm{LI}$「M＊（235）23，9U5s FW（200）23．KU（255） 19 and VN．
15 c．w．investigators W1s BDI OPB，WA2ASM，K3s CUI LJZ，Kts MIPE（81／52 worked／contirmed），TEA， K5VTA，W6RCV K68，G．JF ROU，WA6DNM（31／22）， W7s DJU POU，W8KX，K8s JCB GFAX，K9s ORC（102／ （ị）．SPO SRR UCR UKM，FLAA，IIER，ZS2U，ZD2JKO and A．Rugg have dossiers on（ilAAK（22＇） 18 of Peking （＂the home of true communism，＂he ad－libs）．CE4EC， CAN8AN（68） 20 ．CRs 5AE 7 BC（68） 17 ，CXIBC．DMs 2AQB（54）18，3NML（51）17，3RB（28）19，DUIFM 15， FAGAM（38） 19, EIs 8AE 19, yAG（50）$\because 2$. FB8XX， FF8s BF CK of Mali，FK8AH，FQ8s HD HR of Congo， HAs 2CV（ 36 （ $19,5 \mathrm{KAG}$（41） $23,8(1 \mathrm{~K} 9 \mathrm{KOV}(55) \mathrm{JX}$ HC：IU，HH2JV（63） 23 ，HKs 3TH（80）17，7ZT（45） 19，IPP1s AC（93）20，SB（180）4，JAs 5 FQ 7 KX 8 AQ ， KG1FD（ 22 ） 23 ，KR6LJ，KV4AA（82），KX6CA（75）20，

LXIDW，LZIKNB，MP4s BBL BCV．OAs 3D（i0） 4. 4HK（34）シ3，OX3GN，PJ2ME，PZ1BR．SL5AB of Sweden， ST2AR 15，TFs $2 l \mathrm{FF}$ 3AIb，TI－s CMF（37）20，DL IT WA，UA9VB，UC2s BB KAC（37）16，UJ8KAA．UL7FA UO5AA，VK9XK，VPB 2VA 5LT 9RO 9 EH 90UU，VOS 1 AM $2 \mathrm{IE}(.03) 18.2 \mathrm{NLS}(74) 19$ ． $3 \mathrm{HZ}(79) 19$ ， 4 （iQ（ 55 ）19．VR3D YS6BJ．VU2JA，WH6s DNF DNG LSEC，XEs $1 H$ ONHD Y1BW（60）17，YOs 2 BO （55） $14, \because \mathrm{OCD}^{2}(48) 20,6 \mathrm{AW}$
 AK（47）17，KV，ZDs 1AW 2．1TU 2：，2GUP 2JFO（38） （38）14－20．ZE3JO（45）14，ZP5s AW（28），LS．ZSs 31） （ty） $18,3 \mathrm{~A} 7 \mathrm{R}$（ 42 ）18，3V8CA， 4 X 4 FU （ $20123,5 \mathrm{As} 1 \mathrm{TN}$ （76） 17 ， $2 \mathrm{CV} 5 \mathrm{TA}, 602 \mathrm{BAB}$（39）19，CMI（50）19，7G1A （53）19．9G1CW and 905LS．
15 Novice dispatches，still at low ebb，come from KNs with CEs sed VES．KH6UL，KP4ITQ，KZ5s BBN MQN，WP4s AUL AVF and YNi CRLi．

20C．W．brings us to the business portion of this meeting， 103）KIJFF ASM（ $73 / 50$ ），EFN Ḱ KMY（Y8／65），K38 CNN CUI LJZ， WHEEP，K＇s LRA TEA（ $151 / 137$ ）．K5s S＇TL（ $40 / 10$ ） YTA WWC，WGs JQB RCV．K6s OJF（112／94），ROU ATZ．WAGs FCX CUY．W7DJU，W8KX（191／180）， 588 JCB（130／115）．QEX，W9JJN， 598 YYB SRR UCR LHHH UKMI，EL4A，IIEK，KH6AHZ，ZEOJKO and ZSこU aith s．w．l．A．Rugy auditing．Customers include AP2s AC Q（17）15．BVI（jS（50）13，CEB IAD（60） 23.1 DN （73） 1. $310 \mathrm{H}(53) 0,4 \mathrm{AD}(55) 3$ 3 $4(\mathrm{GU} 0 \mathrm{AD}$（60）5．CMARM（53） 1 K CNB 8MB（ 90123.9 CK （15）0，COs 2 AD 2 CO 2 CT $\because 1$ J $7 \mathrm{HC} \mathrm{O}, 7 \mathrm{NR}$（ $8: 1$ ）7PG（ 45 ）5．CR8 4 AH 4 AX 6 AP

 ：WHN 3ICK（80）0，3WHN 3WL（91）23．DUs 10 R （59）
 EL4A，EPB 1 AD（18） $3,5 \mathrm{X}(7)$ ） 3 ，ET2US．＇FABTT 22 ，
 $X G 24 \mathrm{FM} 7 \mathrm{~B}$ WK WX（26），FO8s AE AG HO HW FY78 YF YI 2 7 PZ （85） 23 ， 8 KWG （72） 23 ，HCs $1 / \mathrm{T}$（14）3． 1 LE （66） 1 ， OS（30）4，IUU 5CN，HH2OT，HL9KT，HKs HV（61） U，3TH（5）3，4JC（64）0，7ZT（20） 3 ，HP1SB（8）1，HRs INX（90）13． 2 FG（ 5 ）2，HSIR（ 25 ），HZ1AB（35）．ISIDKL －1．IT1s AGA（15）1．GU（uis）U．JAs 4 EE（ 85 ）．4HM
 AC（ 60 ） $15 . \mathrm{KAC} 17$ ，J $\angle 0 \mathrm{PO} 1+\mathrm{KgSLD} / \mathrm{KW6}$ ，KA2s JL JM KC Kis（3（i） $6, \mathrm{KCs} 4$ USB 6JB，KGs 1 BB 1BX （ $8+1$ ） 3 ，4．AB 4AD 6AAY 13，6AFA（3ti） $1 \geq 6.1 J \mathrm{~T}$（75）， KM6s BI BV 5，KR6s KU LJ 13，QW，KV4AA（81）20－21， KX6CA，LZIs a－plenty，LZㅡs hSK（53），KST（29） 23 MP4BBL，OA4s AJ LF（ 60 ） 2 ，OR4＇TX，OX3s JI UD， OY7MLL，PJs 2AE $\because . A W$（43）0，3AD（30） 1% PZ18 BE 50）3，BP（10）0，ST2．1R（52）1，SUIIM（90）0，SV 0_{s}

 KID（40），KKD（4i），LS LU OK 16，KV 17 ．UB5s ES JO KAB MF NM UW，UC2s AD（11）5，KAR，UD6s AM （15）（），KAB，UF6FB（70） 21 ．UG6AW，UH8s BI 19，DA （ti（） $2 \dot{2}$, UI8s AK AN 20 ．UJ8s AC KAA，UL7HB，UM8s K゙AB K＇AD（i5） 23 ，UNis AB AH（27），UO5BM，UPOL9 ＇way up north．UP2AS．UO2s AN AU AX DB（15）4， Way up north．UP2AS．UQ2s AN AU AX DB（15）${ }^{4}$ ， VEs 8AP 8RW（13）3，GNI atoat，VO2s AW WW，VKs 1．JE 9XK（2U）1Z，VPs 2AU 2BK 2SX 3RS $3 \mathrm{YG} 2 \mathscr{2}$ ， 4 VS 5RL（84）23，7NT（82）0，9（天X 9HU 9QQ（87）10．VQs 2VS 4HT（tis）$\because .4$ ．4IA（ 80 ） 3 ．8B（：17，9HB 18 ，VRs 1 H （17） $11,1 \mathrm{D}(150) 6,2 \mathrm{DK} 3 \mathrm{KD}(70) 12,3 \mathrm{~L}$ ，VSs $1 \mathrm{AB} 1 \mathrm{G} Z$ （92）15，1JV（5U）1シ，1JW（ 555 ），6BJ 9AAC 9OA，W＇2AYN／ EP（7） 3 ，WAㄹARB，VE8 7，XEs 2BDL（83）$\angle 3,3 \mathrm{BL}$（15） 4，XZ2TH（36）16，YN4AB（13）O，YOs $2 B H 2 K A G 3 F D$
 $1 \mathrm{EQ}(27)=3 \mathrm{CD}+\mathrm{AC}+\mathrm{AU} 4 \mathrm{BE} 5 \mathrm{ABF} 5 \mathrm{ACP} 5 \mathrm{ADP}$ ANI 511 T, ZBIHC，ZCs 4AK（35），4SS（56）0，5AE 17 ZDs 1AW（9U）0， $1 C_{i} \mathrm{M}$（8U）23，2LUP 2JKO（11）1，2．JM 8SC 9AM 17，ZE3JJ／ZD6（55）15，ZE8JB，ZL4JF（155－ 181） 5 due for N．Z．return from the Campbells．ZK1s AR BS．ZM17AA，ZP5s LB LS，ZSs 3AZ 19，3E 19，3HT（8）2：3 7M（70）14，3V8CA，4S7EC 17，4X4s FU KL LQ II，all $1-2,8 J 1 A B$ of Japan＇s antarctif effort， 9 M 2 s FK and FS 17．Got＇em all？QSLd．that is？
20 phone accommodates W1BDI．W2DY，K2TDI＊， WA2EFN，K3LJZ．W4LJV（98 on phone this sea－ son），K5s VTA WWC，K8s JCB＊QEiX．EL4A，KH6AHZ， ZDL．JKO．Messrs．Edger and Kugg in their efforts to deal with AC5CQ，AP2CR＊CEVs EO＊CO＊（194）1．CRs 6CA＊9AH＊，CTs 1CL＊3AV＊，ELs 2 C ＋ $4 ., \because$ ET2US＊． FR72D＊（3io）3，GC3LXK＊HC1s FG＊RB＊（346）， HH2s JK 3，OP＊（310）13，HL9TR＊，HZ1AB＊，LしCQV／ KS6 \％，KA8RB＊，KC4s USB USH USN USV（all $265-310$ ） 3－4，KGs 1BP＊（30G）1，4AA 4AB 4AM＊6FAE＊ 2 ，KM6－ BIT．KW6CGA．KX6DA，OAs 3P＊（305），4AN，OHONC＊ PJ38 AE＊AJ（l90）4，PZ1AX＊21，TG9TI，TIs 2PI＊ WWTC 0，UAs $3 \mathrm{KGG} 9 \mathrm{CAI}^{*}$ ，UR5FJ＊，VPs 2AR 6 of Nevis．5AB＊．VOB 4RF＊5FS＊＇，VR1D＊（315）3，VS1JV＊＊ VU2NR＊，XE18 DDX＊SN＊．XZ2SY＊，YNs 1TAT＊（345）
 CJ＊（iW＊and SNI＊．The asterisks，us usual，gor for s．s．b．ers． 40 c．w．hounds．particularly K1JFF WADASM，K3－ CNN，WGRCV，KGCJF，WAGGUY，W7s DJU＇LZF． KタJCB，W＇SJNN，K9UKM，ELtA and MIr．Kugg，frolic
 （7）6，FG7XG（4）1，GD3UB．HC： mm ，I＇T1AGA（16）1，JAN tY＇C 5sL，5TM 7AB 7ADI 7IH
 of JA1－$-3-6-8 e$ around breakfusttime unt west，KA $\because k i$ KR6e KV（\％，4i），LJ 10，LU1HIRM0，PY＇s in all call areas save the 9th，PZ1s AX + ，BV（थ）3，TIOLA 1, UADs FF KID 7．curioue UK1AD 8 ，VK9XK（1\％），VP3RS（11） $2 \cdots 3$ ， VR2DK 8 ，XE1AX（ $6-10$ ） 1 ，YVs $4 . C^{C}(12) 2$ ，4C＇I 6 ．

I5TUF，now 6OITUF，distributes a colorful series of Somalia confirmations，watercolors of local fauna repro－ duced by a Mogadiscio mission．W 4LJV noticed a variety of I5TUF QSLs among DX buddies and obtained this complete set．

5AL 5HL 3－4，ZD2GUP（4）23，sundry VKs ZLs and ZSs KN7KXG has the 7－NIc．Novice slant on KH6UL VKBXiB．WL7s DNK and LNL．Good work！
40 phone comes last but not least，for W8GKB turns in your＂How＇s Report of the Month．Jun ably demonstrates what can be done DXinse on 7－Mic．voice by way of CO2DB＊（？94；）1，DJIBZ＊（130）O．DL4VL＊（127） 2：，F3NB（10）2，FG7XR（100）9，G3s BSR（5） 6 ，NUG＊ （40）6．GD3UB（60）3，HKs $1 \times \mathrm{D}^{\prime}(2(03) 10,7 \mathrm{MM}(270) 8$ JAs 1AEA＊（96）10，1AWO（10）9，1BMT＊（96）10，ICWS＊ （96） $9,2 \mathrm{KJ}^{*}$（ 96 ） $9,8 A H$（i0） $9,0 \mathrm{BV}^{*}$（90） 10 ，K $6 \mathrm{CQV} /$ KS6＊（203）9．KG1BA＊（296）5．KH6s and KPts in quan－
 VKs 2AP（16） 8 ， 2 EL＊*（130） $10,3 A H 0 *(145) 9$ ，3HG＊ （130）9，3IW（ $\because 5$ ） 9. VPs 2DQ 2LS 2LX all $10-11$（240）， $3 \mathrm{VN}(245) 11.4 \mathrm{LQ}(240) 10,6 \mathrm{TR}(240) 10,9 \mathrm{BN}(230) 12$, $3 \mathrm{VN}(245) 11,4 \mathrm{LQ}(240) 10,6 \mathrm{TR}(240) 10,9 \mathrm{BN}(230) 12$
NES 1BBN（170）8，2SG（22）7，YNs $1 \mathrm{BS}(220) 10,9 \mathrm{MQ}$ （210） 11, YV5s ACNI（ 20 ）1．ANS＊（ 203 ） $2 \rightarrow-0$ ，AW（ 280 ） 0 ， ZLs 1 ATQ ＊（145） $10,3[1) *(130) 10,315 \mathrm{~S}$（20） 9 ，ZSs 5.5 ＊＊
 （50）22．The stars trinkle for two－way sidebund QSOs^{2} other enntacts were s．8．b．－to－a．m．or s．s．b．－to－c．w．Ifrequency pives sood idea which）．．．．．K4GSD adds HIFDH and KG4AD with his potent 25－watter．Are you inissink a ball of forty phone？

Where：

Asia－Authorizational progress on the Korea amateur front reported by KARL：＂The prefix for Korean nationals is changed from HL to HM as of Angust 1，1960．HL9TA the headquarters station of KARL，becomes HMOMQ．HL9 is still used by Americans．HL＇3 remains assigned to experi－ mentiat stations who are forbidden foreign contacts．Seven stations．HMIAA thröugh HMIAAG，Lave been licensed as the tirst individual［private］horea ham stations and you will be hearing many more HM calls hercafter．HM19A is the portable station of KARL headquarters for use in special expeditions，exhibitions and emergencies．We ecle－ prated the initiation of Korean individual ham licenses by operating HNMAA on Cheju Lsland from August 5 th to Ith．＂Prefixes from HM1 through HM5 represent geo－ graphical areas in South K゙orea，while HM6－7 is reserved for North Korea upon remnification：UM8 will be a Novice－
type prefix. HAI9 is the fortable indicator and HMO is a clubs lahel. "As of January 1, 1961. KARL. C'entral Box 162, Seoul, Korea, will handle QSLs for HM stations." ..-. Notine much udo abont TA3US, W8MGD writes from Turkey: "I am the MIARS director for the Turkey and Greece areas and 1 must sadly report that there ure no lexal amateur stations in Turkey. I have been trying to obtain permission for myself and other amateurs here to operate on ham bands but I have had no success so far. Apparently the refusal is based on lack of monitoring capabilities by the "Turkish government." And scrateh TA1DB, too .-. "We've been receiving cards intended for
 is no such animal here, Our club station formerly signed KA HZ1AB. in QSO with $W+M I L E$ on 20 c .w.., promises to answer all cards as quickly as possible from the usual APO 616. I7AAIM (ex-DLAY-OL+OV-1)L4HE-[1DFB-PY7QE) writes from Taif, Saudi Arabia, that he may be able to help contirm 1955-56 MZ1AEH QSOR. Interested parties should write Sl:C E. F. DZAAEH QSis. Interested parties should write SIFEE. U. S. Army Element, Taif Det., USMIMSA, Diehl, jr., N. S. Army EMement, Taif Det., U hurrahs in NCO thC's Dew Yer: ".Just received a T-Mc. QSL from VUV KM via W'3KVQ for a QSO thirty months ago. Never wive up!".-...-AP2AD discloses. "Information obtained from licensing authorities here shows that the call AP4M has never been issued, also that AP5B ceased operation many years ago." Two bad.-EP1AD (K4ORQ), expecting his new. Apache to handle more pile-ups, assures WGDXC interviewers of thorough QSL response upon defrayal of return postare.

Africa -Southeastern UX Club. Box 10821, Station A, Atlanta. Ga., will try to satisfy QSL demands concerning the current Indian Geean swing of W's 4BPD GAIW GMAF and $0 L^{\prime} Q V$. $V^{\prime} Q 7-8$-9-etc. action from Seychelles. Aqalega. Aldubra, Astove and other delights is intended, sultixes su, far undetermined. VQQAIW/mm is expected to represent the pirty aboard SS Kampaia outbound and SO-foot sthooner Marsouin on the homeward leg. Nore on this DXtravaganza in "Whence"
"'The QSL manager for ZD2 now is ZD:J KO, Michael Dranstield. Restional Research Sitn.. Ministry of Agriculture, Samaru, Zaria, Niyeria," writes retiring ZD2DCP to W"2CTN. "Nike ofiered to take on the task after I returned from leave. I was pleased to take on the task after I returned from leave. I was pleased
to hand it over after doing the job for the pust eleven years." to hand it over aiter doing the sob for the pust eleven years. cards to ex-Z1)1GM. "I have made repeated efforts to contact ex-ZD1GM at Enugu. Investigation shows that he has never had QSLs printed anci is not interested in receiving the cards I hoid for him." 7.1)2l)(P aill hang onto those ZDIGM-bound QSLs, however, hoping for a change of heart -.-.- W8UTQ, now $3 V 8$-A, writes Ǩ9OKD: "Pass the
word around that there is no bureau here, su all cards come to. the direct. I just found out that QSLs arriving for me from June "'fth to September fith may have heon fither returned to sender or destroyed." Syd and his W8UTQ/3V8BV8CA QSL manager. W 4 YWX, are preparing for 100 -perCent QSL for all QSOsFrom ZD2JKO: "ExZ1)2HJG tells me that a large parcel of cards sent from the ZD): bureau to his last bnown address failed to arrive. He requests stations who worked him and who have not yet received cards to QSL again direct to his U.K. address (which follows) or via ZD2JKO." Mike also notes that, to this writing. ZD2SMI is the only legit two-letter ZD2. -
this writing. ZD2NAsis the only legit two-letter ZD2. -..... down. The latter is doing the best he can and requests patience.....- W2CTN assumes QSL, managership for the September c.w. spree of VQls HT and SC, self-addressed stamped envelopes recquired from W/Ks ...-. . The 4Q5YA address to follow has been augmented by suggestions to QSL ria INLYYM or WBTMA - take vour nick

 7) Ypress hears that the next mailboat for (iough's ZD9AM won't arrive till February or March.

Oceania - "I now have the contest logs of ZKIBS for the c.w. portion of the ARRL 1)X Contest, February 21-2!2, 1959," notities W7KAS. "Those needing deserved cards should send me QSI.s and s.a.s.e."- Ex-KH6DMP $K A 8 K W$ welcomes QiL inquiries at his new Stateside QTH isce list), promising unicuce confirmations in return.
"As of Aurust 1 , 1 Hifo, all QSLs for ZK1AR should go to K+LRA," states the latter, calling attention to his new Florida address in the following roster. "Cards, bearing time in GMT , should be accompanied by the usual s.a.s.e.' but - W(il)XC understands that VS5GS wants no QSLs but will respond with un airmail card if sent a slin of
paper with QSO data plus one International Reply Coupon Base GSL ouligations on that VKgPM will clear his Davis Base GSL obligations on return to Anstralia next March OVARA's Ether Waves has it that (B3CCN still holds his VS1BB/ZC5 records and will QSL deserving applicants who defray return-postage expense
K6QPG/KW6, now working her IIX from the short end of the 1)N stick as KtiQPG, still has a few QSLs left for un:onfirmed Wake rontacts. Mary QSLd 100 per cent. howmer, so repeat applicants should be few. Same goes for her OM, ex-KW'fCQ, now W'GPEU.

Europe - AKRL Assistant Secretary W1UED is advised that Austria's burean address has changed to: OeVSV QSL Bureau, Box 4y!, Vienna I/צ. Also that the SMI bureau now auswers to: Sceriges Sandare Amatörer. Finskede 7, Sweden.-.- "I agree with WITS that Yuguslavians are the world's best CQSLers," says E4ZYI. "I have 58 YU QSLs

VKØTF, now VK8TF at Darwin, is well depicted by these photos at Davis Base, Antarctica. Lower left is a view of Ted's layout in Davis quarters, lower right shows the main radio shack with Gardiner island in the background, and at right the OM hunts seal on four feet of ice a few miles off shore.
(Photos via W8KX)

from 61 worked." Wayne adds that EI6X continues to QSI, 100 per cent via bureaus- The extensive Kussian selection in the ©TH catalog to follow comes through the research and generosity of veteran s.h.L. LeRoy Waite, 39 Hannum St., Ballston Spa, N.Y., editor of the Newark News Radio Club Bulletin amateur section. Some of those "U"' addresses have appeared in US'T' previously, but none within the past six months.-.-.- W7LZF eucountered one IIK1AD who gave Archangel as his QTH.
Hereabouts - I,PRA (Panama) QSL manager IIP1AC is inundated by undesired QSLs for one HP9FC. He declares that Panamanian call areas run only from HP1 through HP7, plus an occasional special HPø authorization. F1AJQ may have your answer to this one. $\overline{-1} \cdot \dot{Q}$ "I now handle QSLs for KP4VB," states W7ZAS. "All QSLs must be accommanied by s.a.s.e. or IRCs." Until Larry took a hand, KP4VB has bren forced to forego answering W/Ks to avoid incurring a prohibitive QSL problem......-The new DX MSL Neursletter of K6BX should be getting around to subscribers by now. Clif's publications list QSL managerships hy the hundreds, so the serious DXer can hardly afford to he without it. Fx-W3RPG, K6BX's predecessor as editor of the Dirertory of Gerlificates, now is K8VNR at 3300 Sciotangy Lr., Columbus 21 , Ohio- Again it's time we presented the full list of DI stations whose QSL chores are handled by goodfellow W2CTN: CN2BK, CR4s AH AV AX, FG7XF, FK8s AI AT AW, FM7s WP'WU. HR2FG, JZ0s DA HA PO, KWGs CP CU, OQ5s BC IG. OX3s INL RH, TG9AI, TI2s CMF WD, VK8 $2 F \mathrm{R}$ 2PA 9GK 9NT 9KM, VPs 2KH 6PJ 8AI, VQs 1HT 1SC 2EW 3CF 3HH HAQ, VR:2s DA DK, YSIIN, ZBs IFA 21, ZD:DCP, ZP9A Y, ZS7M, 9G1BQ, 9Q5s BC and IG. Jack's ability to keep up with such an assipument depends upon receipt of s.a.s.e. and/or IRCs plus concise and complete QSO data K8QEX finds WYGJY still a waiting log details for FG7XC's March QSO outburst. Hang on .-. ... K4SCT seeks QSL/QTH tracers for 1956 QSOs with HC1KD,
$H Z 1 H Z, ~ U A 9 D N, ~ V Q 3 T L, ~ V S G C T ~ a n d ~ V U 2 H F, ~ p l u s ~$ LU9ZT' worked in '55.....- FY7YC/FMI7 writes'WA2ASM that he hasn't been active in French Guiana since 1958, recent evidence to the contrary notwithstanding Now let's see what Wis BDI UED, W2s UY JBL
 W4s MLE SIB. K4s HNA TEA, K5STL, W6RCV, K68 ?.JF STZ. W7s LZF UVR, W8KX, K8s IXZ JCB QEX RCD, V9JJN. K9s OKD ©RC PYB. VE3PV, KH6AHZ.
 Wast Amateur Kadio League. International Short Ware Learue, Japan DX Radio (lub. LABRE (Brazil) QTC, Newark News Kadio Club, Northern California 1)X Club, Malaya Amateur Kadio Transmitters Society, Universal Radio UX Club, VERON (Holland), West Gulf DX Club rand WIA (Australia) offer in the line of specific "Where" sugrestions:
AC5CO (via W4ANE)
AP2.AD, Ahmed Ebrahim, P.O. Box 65. Lahore, W. Pakistan AP2Q (via AP2AD)
ClAAK, c/o Radio Peking, Communist China
CE4GU, Box 20, Rancagua, Chile
CN8GO, P.O. Box 2175. APO 30. New York. N. Y.
CT2AK, J. M. Raposo, P.U. Box 143 . Ponta Velgada, San Miguel, Azores
DJOLU (via DJ2RY)
DL4LE (via W1DBN)
DL5BN, Box 86:3, USAF, APO 175. New York, N. Y.
EA8CG (via K1DCL)
EITAG (via G3ZY)
EP1AD, H. B. Leith (KłORQ), ARCI, P.O. Box 951, Tehran, Iran
I:P5X, Cmir. B. F. Borody (W2AYN), c/o Internol, Tehran. Lran
ET2US (via W+YWX)
eT3AZ, Box 3142, Addis Abubu, Ethiopia
FB8AA (via FB8BC)
FM17WX (via REF)
FO8HR, Box 2013, Brazzaville, Kepublic of Congo
FO8HV' P.O. Box 2 25, Brazzaville. Republic of Congo
FY7YF (via W2FXA)
HCILE (via W2NUMI)
HC2VB (ria W8EWS)
ex-HE9LAC (to HB9VV)
HK3RQ, W. Elasmar, Box 4498, Bogota, Colombia

HK4KZ, E. Forsten, P.O. Box 97U, Medellin, Colombia HK5IJ, Dr. G. Angel, Apartado Aereo 7868, Cali, Colombia HK7ZT, A. Novales, Apartado Aereo 283, Bucaramanga, Culombia
HM1s AA through AG (via HMøHQ; see preceding text)
HM9A (to HMøHQ)
HMOHQ, Headquarters Station, Korean Amateur Radio Ceague, Central Box 162, Seoul, Korea
HPIAO (via K4ASU)
IISIR, P. Rose, U8ARELM-JUSMIAG, APO 146, San Francisco, Calif.
ex-HZ1AEH (see preceding text)
IIMOC, Box 361 . Rome. Italy
$11 T C, T$. Tuscani, P.O. Box 144, Cremona, Italy
IC1IN (via W4TO)
IC1STP (to M1STP)
JTIAC, Box 369, Ulan Bator, Mongolian Peorles Republic
JT1KAB, Y.O. Box 639, Ulan Bator, Mongolian Peoples Republic
JT1KAC, Box 708, Ulan Bator, Mongolian Peoples Republic
JZOPO (via W2CTN)
KG6IVB, S. Goch, 1956-1 AACS Det., APO 815, San Francisco. Calif.
ex-KH6DMP-KA8KW, Col. G. Branch, Box 336, Giriffiss AFB, N.
KP4VB (via W7ZAS)
PX1EP, QSL to Gen. Mola 49. Zaragoza, Spain
RA1ZFF, Murmansk, North U.S.S. R., U.S.S. R.
RA2AAB, Kaliningad, U. S. S. R.
RA3VGR, Rudolf Sheshin, Ivanovo, U. S. S. R.
RA6JAB, North Caucasus, U.S.S.R.
RA6JAV, Yura, Caucasus, U. S. S. R.
RA6I,DB, Rostov-on-Don, Caucasus, U. S. S. R
RA6LDL, Rostov-on-Don, Caucasur, U. S. S. R
RA6XAA, V. Mahlauk, Malchik, Caucasus, U.S. S. R.
RC2AFA, Moldodechno, Byelorussian S. S. R., U. S. S. R.
RD6KAR, Radio Club, Baku, Azerbaijanian S. S. R., U.S.S.'R.

RI8A.AZ, Tashkent. Tzbek S. S. R., U. S. S. R.
RN1AT, V. Shevdov (ex-RN1AAB), Karelskaj St., Apt. 19, Sortavala, Karelia, U. S. ©. R.
RO2AAG, 8 Smilchu St.. Flat 4, Daugavpils, Latvian S. \&. R.

RO2AN, B. J. Greiza, Riga, Latvian S. S. R
RR2RCK, Endel Paaksi, Kehra, Estonian S. S. R.
EX-TF2WBU (to W2FGD)
UA1AB, G. Junkoviky, Leningrad, U. S. S. R.
UA1BE, B. K. Altynow, Leningrad, U. S. S. R
UA1CK, V. Uuploon (ex-U(X6AF-U'A@SB), Leningrad, U.S.S. K.

UAIDG, Ui. Communa 15-1, Leningrad-Petrodvorets, U. B. S. R.

UA1s FE FT (to UA1DG)
UA1GF, Constantin N. Popov, Leningrad, U. S. S. R.
UA1KBB, Radio Club, Electrotechnical Institute, Leninkrad, U. S. S. R.
UA1KBW, Radio Club, Leningrad, U. S. S. R.
UA1NA, B. K. Inkow, Leningrad Region, U. S. S. R.
UA3BW, A. Shadsky, Poste Restante, Moscow K9, UBDR, L. Sharapov, P.O. Box 111. Moscow, U. S. 8. R.
UA3DR, L.Sharapov, P.O. Box 111. Moscow, U. S. S. R
UA3GI, E. Kondratiev, P.O. Box 491. Moscow, U. S. S. R.
UA3KAH, Radio Club, Electrotechnical Institute, Moscow, U.S. S. R.

UA3RM, Tambov, U. S. S. R.
UA3YI, E. Razbitnov, Ul. Dzerzhinskora, Dom 78, Kalusa, U.S. 8. R.
UA4FE, V. G. Zhelnov, Penza, U. S. S. R.
UA4KAB, A. Perhuto, Radio Club, P.O. Box 19, Stalingrad, U. S. S. R.
UÁ4KYA, Radio Club, Cheboksary, U. S. S. R.
UA4LE. Anatol Orlov, Ulianovsk, U. S. S. R.
UA6KOB, Radio Club, Kostov-on-Don, Caucasus, U.S.S.R.

UA6KOD, Radio Club, Taganrog, Caucasus, U. S. S. R.
UA6LI, P.O. Box 15, Rostov, Caucasus, U. S. S. R.
UA9AA, Kadio Club, Chelvabinsk, U. S. S. R.
UA9CM, North Tapil. U. S. S. R.
UA9KOT, Kadio Club, Novosibirsk, Central Siberia, U. S. S. R.

UA9OM, A. F. 'Zenerich, Novosibirsk, Central Siberia, U.s.S. R.

UAOKK B, Radio C'lub, Vladivostok, E. Siberia, U. S. S. R.
UA0LA, P'O. Box 29 , Vladivostok, E. Siberiu, U. S. S. R.
UA@LO (to UAØLA)
YAORE, P. Euelvanow, Jakutsk, k:. ふiberia, U. S. B. R.
UADSB (to UA1CK)
UB5FG, Odessa, Likrainian S. 九. R.. U. \&. S. R.
UB5KAB, Radio (Club, P.U. Box 27 , Stalino, Ukrainian S, S. R., U. S. S. R.
VQ4ERR, one of Africa's best known DXers, used his communications know-how to serve effectively with fellow amateurs in spontaneous Congo-emergency nefworks this summer.
(Photo courtesy Raytheon and Hallicrafters via WIVG)

2S3s DM and FF, left and right, are fast with QSOs and QSLs from Windhoek.
(Photo via K9VRV/4)

UB5KBA, Rario Clıb, Lvov, Ukrainian S. S. R., U. S. S. R.
UB5KCA, Radio Club. Odessa, Ukrainian S.S. R.. U.S.S.R.
UB5KIA, Radio Club. Polytechnic Institute of Communications, Ulitsa Leuntovicha, Kiev 30, Ukrainian S. S. K.. II. S. S. R.

UB5LV, A. Provalov, Kharkov, Ukrainian S. S. K., USLS.S. R .
UB5UW, V. N. Bushma, Kiev, Ukrainign S. S. R., U.S. S. R. UC2AA, V. K. Benzar, Minsk City, Byelorussian S. S. R., U.S.S. R.

UC2AD, V. Korolenko, Minsk, Byelorussian S. S. R., U. S. B. K.

UC2AX, Minsh, Byelorussian S. S. R., U. S. S. K.
UC2KAB, Radio Ċlub, P.O. Box 71 , Minsk, Byelorussian S. S. R., U. S. S. R.

UDGKAB, E. Muradjan, Radio Club, Baku, Azerbaijanian S. S. R., U. S. ̇. R.

UF6FB, S. U. Kidnadze, Tbilsi, Georkian S. S. R., U. S. S. R.
UF6FB, S. Kidnadze, Tbilsi, Georkian S. S. R., U . S. S. S. R. Armenian S. S. K., U. S. S. K.
UG6AW, Erevan, Armenian S. S. R., U. S. S. R.
UI8AD. Tashkent, Uzbek S. S. K., Ü. S. S. R.
UI8AK, Radio © 'lub, Tashkent City 31, Ulzbek S. S. R., U.S.S.R.

UL7FA, Yavlodar, Kazakh S. S. R., U. S. S. R.
UL7GP, Alma-Ata, Kazakh S. S. R., U. S. S. R.
UI,7KBH, Radio Club. Petropawlousk, hazakh S. B. R., U.S.S.' R.

UL7KBK, Radio Club, Petropawlousk, Jazakh S. S. R., U.S.S. R.

UNiKAA, Kadio Club, Petrozavodsk, Karelia, U. S. S. R.
UO5AA, V. P. Glushkov, P.O. Box 1, Kagul, Moldavian S.S. $\dot{R} .$, U. S. S. R.

UO5PK, G. A. Pozdernik, Tiraspol, Moldavian S. S. R., U.S.S. R.

UP2AS, S. Uzdavinys, Kaunas, Lithuanian S. S. R., U.S.S. R.

UP2KCB, Radio Club, Pedagogical Institute, Shaulay, Lithuanian S. S. R., U. S. S. R.
UQ2AN (to RQ2AN)
UO2CL, Riga, Latvian S. S. R., U. S. S. R.
UR2GL, Riga, Latvian S. S. R., U. S. S. R. T. Tomson, Pussi, Estonian S. S. R., U. S. S. R.
UR2BU, K. Kallema. Úblast O! 1 , Tartu. Estonian S. S. R., U.S.S. R.

UR2CX, J. Tuur, Tartu. Estonian S. S. R., U. S. S. R.
UR2KAA, Radio Club, Tallinn, Estonian S. S. R., U.S.S. R. UR2KAE, Radio Club, Tartu, Estonian S. S. R., U. S. S. R. VK9BW. W. Holland, P.O. Box 187, Rabaul, T. N. (i.
VKORII, QSL to R. Harvey, 20 Princess St., Canterbury. Sydney, N.S.W.. Australia
VP3RS (via W4CAA)
VP5AB (via W4VPD)
VQ1s HT SC (via W2CTN)
VO8BC, Royal Navy Radio, Vacoas, Mauritius
VQ9AIW (see preceding text)
VO9TED, QSL to Box 1313, Nairobi, Kenya
VR1E, Capt. F. Strong, RAF. Tarawa, Gilberts
VR1E, Capt. F. Strong, RAF, Tarawa, Gilberts N. Z.

VR3KD (via K5ADQ)
VR3L, Christmas Island Radio (lub. cio RAF Det., Hickam Field, Honolulu, Hawaij
ex-VS1BB/ZC5 (to (33CCN)
ex-VSiEA (to G3KHT)
ex-VS1EA (to G, BKHT
ex-VS6EE (to ZC5AE) VS9AAC. R. Wake (G3MOJ), c/o Block 1, Bottom W'est. RAF Khormaksar, BFPO 69, Aden (or via RSGB)
VS9ADL, Šgt. Leese. Sdqn. A. Roval Signals, BFPO b9, Aden (or via RSGB)
ex-W8UTO/3V8 (see 3V8CA)
WOANJ/VE8, 926 th AC\&W Sqdn., Box 17, APO 446. New Iork, N. Y.
XEOALP, T. Fraser, P.O. Box 14, Los Mochis, Sinaloa, Mexico
YA1AC, J. A. Cole, USOM, U. S. Embassy, Kabul, Afghan-
istan
YIIRK ívia RSGB)
YV5AKP, E. Stiassni, Av. Arboleta, Edif. San Jorge, Apto. 4. Fil Bosque. C'aracas, Venezuela

YV5AMP, J. Mazzini Paiano, P.O. Box 2285, Caracas, Venezuela
ZC5AE, D. Yhillips, RAF Wet., Labuan. Br. No. Borneo ZD2GUP, E. Howell, Nigerian Maintenance Sve., V.H.ド., P\&T, Ilorin, Nigeria
ex-ZD2HJG (via RSC(B)
ZD2RFB, R. Bruwn, Mgr. Electrical Contractors store, CFAO, Box 1 tif), Lagos, Nizeria
7K1AR (via G. Kratr. K4LARA, Box 85, Kendall, Fla.)
ZK1BS (via Wr7AS; see preceding text)
ZP5ET, cio U. S. Limbassy, Asuncion, Paraguay
ZS3FIT, Box 2107, Windhoek, Southwest Africa
3A2BT (to G3FPh)
3A2BW (via W4TO)
3V8CA (via W4YWX)
4S7EC, Yostbox 907, Colombo, Ceylon
ex-4S7KD (see VR3KD)
9N1SM (via K3K.JF)
$905 A V$ (to ML.4AV)
905FV, QSL to T. Irwin, 2501 Grayswood Av., Nashville, Tenn.
905YM, c/o Embassy, Leopoldville. Congo Republic
9U5FW, P.O. Box 45, Kisenyi, Congo Republic
Note: Nothing necessarily accurate nor "official" about the preceding QSL suggestions. Might nork, though.

Whence:

Europe - Next month the •uopular RSGB 21/28-MIc. Telephony Contest comes off, 0700 GMIT the 3rd of December to 1900 on the t th, wherein I) Xers world wide will chase down G GC GD GI GM and GW colleagues with a venweance. Main requirements are that one must be singleoperator on 10 - and 15 -meter phone to exchange RS-plus-QS()-number serials (17001,58002 , etc.) with the U.K. chappies. Each completed contact with a British Isles station scores tive points; in addition, a bonus of 50 points can be claimed for the initial (2SO with each numerical prefix - Gi) (i3 G4 (45 G8 G8 GC2 GC'3, etc. - and a further $50-$ noint bonus is yours for each additional ten (i3s worked. Entries must (a) be clearly written or typed on whe side of each sheet; (b) show date, band, GMT, call of station worked, exchanges sent and received, QSO and bonus for each contact; (c) be addressed to the Contests Committee, RSGB, New Ruskin House, Little Kussell St., London, W.C. 1, England, postmarked no later than December 19 , 19e0; and (d) be accompunied by the signed statement, \cdots I declare that this station was operated strictly in accordance with the rules and spirit of the contest and I arree that the decision of the Council of the KSGB shall be tinal in all cases of dispute. I certify that the maximum input to the inal stare of the transmitter was - - watts." (eertificates of performance will be available to country leaders and top scorers in VE VK W/K ZI, and ZS call areas. Have fun!

Finland scored more points than Sweden. Norway and Denmark together in the 1959 Scandinavian Activity Ontest. SSA (Sweden) now is hard at work handling entries for this year's affair K8IXZ, stationed at Lajes Field in the Azores, visited CTis AC AI AJ AK and BO . "All run about tifty watts on 3.5 through 28 MIc., phone and c.w. C'T2AI is buil ling an 813 tinal. CT2AK has reneiver troubles, and all have a rough time with a mains supply that swings from 130 to 7% volts under nighttime oads." K8IXZ can be reached at 1936th AACS Sqdn., APO 10B, New York, N. Y......- W1UED sends along word of soniething new in the certifications field from Hungary's Gentral Radio Club. P.O. Box 185, Budapest 4. It's called "(iame of Rummy in the Ether" and requires data exchange with a certain combination of HA stations. Very tricky eheck with the preceding address for particulars .
4. Rugg learns REF (France) DUF diplomas have been is-
sued 1887， 1231 and 889 times in the tirst，second and third classes，respectively ．．．．．．－KtTEA reports that Wt－ BPD＇s inX tour sot under way with a 3AəBW kiloQSO， about 700 ICIIN contacts，and another fine bag at W＇ BPD／MII．．．．．－HB1TU／f1（HB9TU）talled（i00）QSOs 4.50 with W / Ks ）and 65 countries in ten davs of Liechten－ stein single－sideband work in July．An SB－10，homemade x07s tinal， $75 \mathrm{~S}-1$ and triband quad really did a job．Albert recently entered WIWPO＇s Ha．IXCC files erently entered W1WPOs Ha．OXCC files リJ1PF（DL9PF \＆Co．）ran off 4712 Andorra QSOs this summer，topping last year＇s PX1PF output by a consider－ rhle margin．＂We＇ll open another rare spot next summer，hut it＇s too early to talk abont it．＂It＇s never too early，Walter －MOON？．．．．．The $\cdots 1$ ）XCC ${ }^{2}$＂of ex－I1 KN（No．32） resulted from a successind files search even though the OMI has been QRT since 195f．Now sumeone olse holds his oll call but（1）r．（irossi hopes to return to the I）X game soon with a fresh suthx ．．．．．－K9AJW had a pleasing visit with OkilLA in Gurope this summer．W1TQS similarly linbnobbed with SMI5CCE an 1 opines：＂Many of us in the U．S．do not enjoy the real pleasure of a IIX QSO．Too often we are content with a mere three－minute contact and a promise of（NSL．－Tam bibliopinles uill be inter－ exted in the International liadio Amateur Year Book，1960－ th1，e：lited by（i3A1W\％．Covers a lot of 1） N ground．

Asia …＂HMgA will be operated November Ilth－30th from the Fifth National Srience lixhibition in Scoul．：ad－ vises the Korean Amateur Radio League．＂We hope to con－ tart many stations on 7－，14－，21－and 28－Mc．c．w．and phone．－－K6BX and others are distressed by the gpparent tardiness of JARL（Japan）correspondence con－ rerting QSLs and certifications．．．．．．．＂Just received my ticket as VS9．AAC，＂writes（i3MIOJ from Aden．＂I shall be here for two years，active on all bands 3.5 through 28 Me． with 1 t －IC．c，w．my favorite．I hope to give many W／K／VEs their missing VSS QSLs．＂．．．－EP5X，alter ego of W：AAYN／FP，vies with EPIAD TK\＆ORQ）in sutisfying world－wide DX appetites for Iran－－FIVAZZZ of HZ1AB－KG6ICD fame now goes back to W7YBI，the first chance he＇s had to use his U．S．call after holding it tive years．＂Some preparation is being made for another trip to Marcusisiand in the nerr future．HZ1AB news Via Ws＋MLLE and ©NZL：WfNZL leaves HZZAB for as－ signment in Sipuin where he can be reached at 128tith AACS Sqdn．，APO $28 t$ ．New York，N．Y．and writes．＂A new ar－ rival at club station IIZIAB is WA6CAD（ex－KZ5FZ），the new M．ARS director．The DX uang can expect a lot of c．w． activity from Jack on 7017.5 and 14.035 kc ．To date he claims 45 fast countries with a mere fiftien wattes input．His usual operating hours are $19400-0700$ and 01（00－0300（iNIT． There are about tifteen active hams at HZ1AB now，so watch for nleaty of s．s．b．，a．m．and c．w．QSOs on（i）．15， 20 and 40 meters．The thought of little or no activity for me for the next three years on my EA－land assignment sets me back a bit，especially after thirteen lively months at HZ1AB．But getting together again with the $X Y L$ and harmonics should make up for it．＂W7AMM，newly stationed at T＇aif，Saudi Arabia，claims that authorization for another HZ station is being sought．The last activity at Taif is believed to is heing sought．The last activity at raif is believed to Kadiogram iia WGLGG，K9s（iDQ and OVM：
 with sideband coming up．My home call is KğIKP．＇
WIPL．L keeps an eve and ear on Cyprus after hearing that a new treaty will result in a British base a la KG
Club Asian notes courtesy FEARL／MI and MARTジ：$\overline{\mathrm{K}} \dot{\mathrm{A}}$ 2．I，$\because \mathrm{KE}$ SCK and 8 PB are new arrivals on $D X$ bands．

KA2s BW and［E outhitted VU2KM with a erystal mike，a volt－ohmmeter and other oddments that improve Kiarta＇s signal significantly．．．VSIEA＇s 100th country was worked on the night he closed down for return to d3KHT．

Africa－＂With ZS9 activity scheduled by ZS6IF this month，the long－coveted AAA certitication will be within the reach of today＇s I）X zeneration，vours truly included．＂ W8KX reiers to the LS6IF＇／ZS9 c．w．eruption due November Sth t ＋th on $7005,14.010$ and $21,015 \mathrm{ke}$ ．W 4 PLL learns that Lambert may encounter some postponement From former VQtiAB via W＇1WPO：＂After becoming $\overline{6} \dot{O} \overline{2} \dot{A} \bar{B}$ I worked 38 quick countries on 14 and 21 Mc．I may be leaving here by late December．V＇QbLQ already has de－ partel，and tio：2LG（ex－VQ6LG）will be leaving soon for England．VQGGMI now signs 6O2（iNM at Berbera and should be very active for some monthis to come． \qquad VQtGQ \＆（\％o．enlisted a v．f．o．50－watter．HRO receiver and pre－ fabricated uround－plane for their late－summer Zanzibar prube us V Q 2 ls $H T$ and SC．At his home station VQtGQ likes It or 11 Mc．around 1900 GM T，according to W2CTN Congo＂SOS＂ERR repurts via Raytheon and W1VG：＂The now is ner and my house is free of re－ prin．consuls，secretaries－hife is returning to normal te Kelorium station was chosen to route messages directly to Belgium because of the solid punch of an 1FT－32 on s．s．b． Every messuge 1 gut for Belgium was delivered within minutes to a network of Belpian amateurs who were operat－ ing $\because t$ hours a day accepting traftic from Africa．＇
Eixcerits from ELAA＇s informative Liberian journal： W 4 BEQ has joined the staff here and will be signing EL4B，mostly 15－meter sideband．Bev and Mary，13－year－
voung Ladies，sign EL4s Gi and M，respectively，on 10 and 15 phone around 1700 ．Theyll be on the lnokout for other YLs，especially teen－agers．EL $4 E$ is hack at Placeka with a Valiant and 510 －foot rhombic on 20 phone．EL5A has a DX 35）soing．I had only 740 QSOs at ELtA in Auqust but the lue will be on the unswing next month with improved con－ ditions and contests in the offing．＂．．．．．．．Nigerian news
 up from Mubi，Caineroons Trusteeship Territory，this month or next．and hopes to use s．s．b．ZD2s KIIP and PJB are new licensees in the eastern region，both interested in sideband work．Here in the northern region ZD2s AMis ATU BRG GUP J KO and RJO keen the flag flying：ZD？s GUP and RJO have no mains supply and must rely on generators for their not－ton－frequent appearances on DX

ISIZUI does very well with 35 watts and a long－wire in Cagliari，receiving with a BC－348．Sardinia－seekers can often find Paolo on 20 c．w．around 2200 GMT． （Photo via KP4RK）
hands．ZD2s DCP FNX HHT and JM represent the west ern revion FQ8s HO and $\mathrm{H} W$ are cuite active from Tchad．Amateur in the French repmblice are to be found chietly on 1＋－Mc c．w．around $2000-23010$ and 0500－0800 GMIT，also 21 －und S－MIc．whone from 0600 to 1900 ．Most do not speak Enclisis and prefer to he culled in French．say，just heard news from Kaduna that the northern region of Nigeria has formed a commercial TV company．＇TVI looms ahead！＇ \％1） 2.150 ＇s QSL from MP4BCV kives him 100 countries contirmed，seven months and 53300 QSOs after Mike fired up as a ZVE．QiSls from 53 additional countries are still waited．$Z \mathrm{D} \because \mathrm{JKO}$ adds，＂The Congo Republic（ $(\mathrm{QQ} 5$ ）now s practically denuded of amateurs excent for some American nissionaries．UN4TT keeps a 2 －hour watch on $\because 1,360 \mathrm{kc}$ for ghts tratlic．The whole Congo situation would have been much more chaotir if it were not for amateur radio．＂
 been on 14 and 21 Mc．lately with some pood onenings to the U． 8 ．＇． I＇m on daily from 190 KD heirs from 3 K（．A（NXUTQ） 200 to 2300 GMT using $\geq 1,050,1+050$ or 140.25 kc ． 1.4 Y X and 1 hold frequent schedules on 1,050 at 2130．．．．．．．－K6BX has CRfiCA＇s favorite ）Xpeditionary frequencies as（с．σ. ） $14,075,14,100,21,075$ 21，100；（phone） $14,197,14,247,21,247$ and 21,447 kic．Joao was aiming for early operational visits to Nao Thome， Annabon，Togoland，Nigeria and Gabon，you know ZS：2 calls attention to the Golden（ity Award available to W／K／VEs and others who confirm contacts with fifteen lifferent Johannesburg ZSis since May 3uth of tius vear Check with Awards Mgr．，P．O．Box 2327 ，Johannesburg， S．．Ifr．，for complete © $\mathrm{iCA}_{\text {specifications ．．．．－WCGDC }}$ reports that K $2 \mathrm{H} W \mathrm{~T} / Z \mathrm{~L} 8 / \mathrm{mm}$ ，anchored off Ascension， recently shook up the $14,350-\mathrm{kc}$ ．sidebund crowd．So near and yet！ \qquad NNRC has W4BPD＇s November D）Xe－ ditionary itinerary as Jarquahar isle，Madagascar，Glori－ unses．Astuve，Aldabra and the Comoros．Next month，if all goes well，come Tromelin，Reunion，Mauritins，St． Brandon，Tanganyika，Kenva，Ifanda，jomalia and French somaliland in that oriler．After the first of the year Gus will try for fiamaran island（V＇S9）before heading back to Carolina．Wbs AIIF MAF UQV and others down that way intend to join W＋BPD on some of these stopovers －－According to VERON．ZD9AMI replaces ZD9AF n Gough isle，favoring the $1 t$－Mc．c．w．approach．
Oceania－4RRL Director WGMII．Z．host W6RO and a news elipping from KL7PI record this year＇s U．S．visit by famed VR6AC and XIL．Floyd＇s slide collection enthralled a meeting of the Associated Radio Amateurs of Long Beach in early September．It was way back in 1780 that floyd＇s preat－great－granafather，HMS Bounty boatswain William McCoy，settled on tiny Pitcairn with others of the crew and several Manri folk．Pitcairn＇s 148 inhabitants now kren themselves very tousy suriculturally and artistically． （＇＇ontinued on page 146）

- New Apparatus

New Miniaturized Variable Capacitors

The three variable capacitnrs shown in the photograph represent three styles of miniaturized variable capacitors recently made available by the James Millen Mfg. Co. of Malden Massachusetts. The one with the extended I/8-inch shaft has a maximum capacitance of almost $36 \mu_{\mu} \mathrm{f}$., yet it measures only about $9 / 6$ inch wide, $3 / 4$ inch high and 25.52 inch deep. The surprising thing about the construction of these small capacitors is that their rotors and stators are machined from solid bars of extruded brass. The photograph also shows some extruded brass stock. This method of construction simplifies alignment prohlems and insures reliability and high Q.

Electrical connection to the rotor is made by a lug that projects out from the capacitor assembly. However, the stator connection is made by connecting a lead to a hole (or holes) in the stator itself. This low-inductance connection makes the rapacitor a "natural" for v.h.f. applications.

The insulation of the capacitors is either Teflon-base material or steatite. The capacitors available through distributors will have steatite insulation.

In addition to the single-hole mount extended

$1 / 8$-inch shaft series (series $25000-\mathrm{E}$) there is the serewdriver slot series which is mounted by two 2-56 machine screws (series 25000-S). Also available is a serewdriver slot series mounted by four turn-down tabs (25000-T) which should not only find application in conventionally-constructed equipment, but also in printed-circuit gear.

Each series of capacitors is available in three maximum-capacitance values of approximately 16, 25 :and $36 \mu \mu \mathrm{f}$., with corresponding minimum caparitances of about 2,3 and $4 \mu \mu f$., respectively

- E. L. C.

FEEDBACK

In the circuit diagram of the PHJ-1 receiver in the September issue, the 0.01- f . capacitor at the grid of $V_{1 B}$ should be connected to ground instead of the cathode.
-••—

Only the author has spotted this so far, but there should be a 470 K resistor across the 1 N 34 in Fig. 3 on page 35 of March, 1960, QST. (S.S.B. Exciter Circuits).

Clifford Buttschardt, jr., W6HDO of Santa Barbara, submits this sneaky one for the quiz kids:

In the circuit below, the d.c. milliammeter reads tull scale and the lamp glows dimly. What happens when S_{1} is closed?

AOStrays影

W2EKM was making a long trip by auto one night and encountered extremely heavy fog on a mountain road in Pennsylvania. Visibility was perhaps 30 feet, and driving was, of course, hazardous. But W2EKM partially solved the problem by using a radar of sorts. He turned on his mobile 6 -meter reweiver and was able to hear the ignition noise of approaching cars several minutes before they became visible in the fog. After a little practice he was able to estimate the range of the approaching cars and trucks quite satisfactorily.

WA2GGB (14 Capitol Place, Huntington Station, N. Y.) wants to make a little contribution to the fraternity in the form of tags with one-inch lettering for the fellows who have mobile rigs in the car but no call letter plates to indicate they are hams and not deputy sheriffs or hot rodders. If you want one of these free tags, send WA2GGB your name. call, address, and a $+\phi$ stamp. Overseas stations should send equivalent first-class postage.

Ode to W2MXJ (See page 164, Sept. QST)
To get more drive on ten you must
Install the rig in car.
And when you hit the open road
You'll get more drive by far. - KZGFG

Election Results
 VE Phone Expansion Army Use of 144, 220 Mc.

VE PHONE EXPANSION

Fffective sieptember 15, voice hands in Canada were expanded to the following figures:

$$
\begin{aligned}
& 7150-7300 \mathrm{kc} \\
& 14,100-14,350 \mathrm{kc} . \\
& 21,100-21,450 \mathrm{kc} . \\
& 28,100-29,700 \mathrm{kc} .
\end{aligned}
$$

Shortly after the change in the U. S. 14-Mc. phone band, some 1500 Canadian amateurs signed petitions seeking expansion of their 7-, $14-$ and $21-\mathrm{Mc}$. voice bands and submitted them not only to the Department of Transport but also to Parliament. In the various official discussions which followed, Messrs. Reid (VE2BE) and Baton (VE3C.J), then director and vicedirector of the ARRL Cantidian Division, submitted a compromise proposal calling for only one-half the number of new kilocycles sought for phone in the petitions. The Department of Transport then undertook a poll of opinion of VE amatcurs, seeking an expression of preference for the petition proposals, the current sub-bands, or the Reid-Faton compromise. The 28-Mc. band was added to the poll postcard, though no "compromise" figures were here involved. The results were as follows:

Band	Petition	Existing	Compromise	Total
7	12.43	867	905	3015
14	2001	811	1029	3841
21	1612	887	1189	3688
28	1925	1305	\times	3230

In consideration of the results, the Department of Transport then acted to expand the voice subbands.

A simultancous action removes the restriction to the use of only French or English; now any language may be used, provided a notation is made in the log to that effect, including the name of the person speaking, and provided that station identification is still transmitted in either French or English.

ELECTION RESULTS

In the current elections for director and vice director taking place in the Central, Hudson, New England, Northwestern, Roanoke, Rocky Mountain, Southwestern and West Gulf Divisions, two incumbent directors and one pres?nt vice-director were declared re-elected by the Executive Committee, being the only candidates found lawfully nominated and eligible for their positions.

Morton B. Kahn, W2KR, will start his second term as director of the Hudson Division on January 1, 1961. Raymond E. Meyers, W6MLZ, also was re-elerted, having completed two years as director of the Southwestern Division. Philip E. Haller, W9HPG, continues as vice director of the Central Division for his second term.

The Hudson Division gets a new vice director, Harry J. Dannals, W2TUK, of Huntington, N. Y. Harry is well-known to most amateurs in the metropolitan area, having served as an assistant director of his division since 1953 and as SCM of the New York City - Long Island section since 1955 . W2TUK is a past president of the Nassau Radio Club, and is currently president of the Hudson Amatcur Radio Council. He currently holds appointments as ORS, OPS, OO and OES, and is a member of AREC, and of the A-1 Operator Club. The new vice director earns his living as a senior engineer with the Sperry Gyroscope Company at Great Neck.

All other offices in the eight divisions are contested, and ballots have been sent to the Full Members of those divisions. The full text of the Executive Committec mecting minutes can be found at the end of this department.

10- KMC. RADIOLOCATION

Recently 'Tellurometer, Inc., a radiolocation service operating mainly in the area of the Gulf of Mexico, sought from FCC permission to oper-

W80LJ/MM is now in full operation aboard the hospital ship Hope in the Pacific, operating mostly sideband on $14,345,21,445$, and $28,650 \mathrm{kc}$. for the purpose of handling personal traffic between medical personnel aboard ship and their families and friends back home. The station has special temporary permission to use $14-\mathrm{Mc}$. maritime mobile on the high seas outside Region 2 until December 31.
ate in the band $10,000-10,500$ megacycles. The Commission has granted the request, subject to the following conditions: (1) c.w. emission only (no pulse); (2) no harmful interference shall be caused to either the amateur service or the Government radiolocation service; (3) the nonGovernment radiolocation service must accept :uy interference it experiences from either amateur or Government operations; and (4) the nonGovernment radiolocation service is limited to survey operations using transmitters with a power not to exceed one watt into the antenna.

MINUTES OF EXECUTIVE COMMITTEE MEETING No. 276
 SEPTEMBER 26, 1960

Pursuant to due notice, the Executive Committee of The American Radio Relay League, Inc., met in West Hartford, Connerticut, at 9:38 A.st., September 29, 1960. Present: President Goodwin L. Dosland, in the Chßir; General Manager A. L. Budlong; Directors John (G. Doyle, Milton E. Chaffee, Morton B. Katun and Raymond E. Meyers; VicePresident F. F. Handy; and Treasurer Deavid H. Houghton. Assistant General Manager John Huntoon and Assistant Secretary Perry Williams were also present.
The Committee proceeded to examine nominations in the director elertions. The Committee made findings and ordered actions as detailed below. all by unanimous action. The views of First Vice-President W. M. Groves, expressed by telegram, were in concurrence.

?entral divicion

F'or Dircctor:
John G. Doyle, W9GPI, was found lawfully nominated and eligible. A petition was found for Harold Sever, W9FM, but with some question as to its timely arrival due to the use of the registered mail service; on motion of Mr. Doyle, unanimously VOTED that the petition is found valid. The Committee then ordered both names listed on ballots to be sent to Full Members of the Division.

F'or Vice-Dircetor:

Philip E. Haller, W9HPG, was found lawfully nominated and eligible. Being the onlv eligible nominee he was thereupon declared, pursuant to the By-Laws, to be duly reelerted as Vice-Directur of the Central Division for the 1961-1962 term without membership balloting.

hIJDson division

For Director:
Morton B. Kahn, W2KR. was found lawfully nominated and eligible. Being the only eligible nomince he was thereupon declared, pursuant to the By-Laws, to be duly reelected as Director of the Hudson Division for the 1961-1962 term without membership balloting.

For Vice-Director:
Harry J. Dannals, W2TUK, was found lawiully nominated and eligible. Being the ouly eligible nominee he was thereupon declared, pursuant to the By-Laws, to be duly elected as Vice-Director of the Hudson Division for the 1961-1962 term without membership balloting.
new england ditibion

For Dircctor:

Milton E. Chaffee, W1EFW, Robert Y. Chapman, W'1QV, and Ernest A. Coons, W1JLN/W1FOE, were found lawfully nominated and eligible and their names ordered listed on ballots to be sent to Full Members of the Division.

F'or Vice-Director:

Bigelow Gireen, W1EAE, and Jeffrey I. Weinstein, Wi.JMN, were found lawfullv nominated and eligible and their names ordered listed on ballots to be sent to l'ull Members of the Division.

NOKTHIEEETERY DIVIBION
F'ur Director:
William H. Bennett, W7PHO, Harcld W. Johuston, W7PN, and k . Rex Roberts, W'7CPY, were found lawfully nominated and eligithe and their names ordered listed un ballots to be seat to fiull Members of the Division.

Federal Communications Commission Washington 25, D. C.

Public Notice
September 15, 1960
Temporary Use of Amateur Frequencies for Army's Exercise South Wind
Not Expected to Cause Interference
The Federal Communications Commission has been asked by the Department of the Army to tooperate in arranging for temporary use of certain frequencies on a nun-interference basis to the Amateur Service in the 144-148 Mc. and 220-225 Mc. amateur bands. The request is for the period October 17 to November 12, 1960, and is based on the fact that the U. S. Army Radio Frequency Engineering Utfice bas exhausted all available Government frequencies in the 135-400 Nis band for radio relay operations nueded to support a large Army field exercise (EXERCISE SOU'TH WIND) which will involve 100,000 troops in the Eglin, Florida, area. The specific amateur frequencies are:

144.25 Mc.	220.75 Mc.
144.75 Mc.	221.25 Mc.
145.25 Mc.	221.75 Mc.
145.75 Mc.	222.25 Mc.
145.25 Mc.	222.75 Mc.
146.75 Mc.	223.25 Mc.
147.25 Mc.	223.75 Mc.
147.75 Mc.	224.25 Mc.
220.25 Mc.	224.75 Mc.

Although this type of operation would not normall v be conducted on amateur frequencies, it appears that the proposed temporary military use of these eightcen frequencies, as requested, would not cause any undue hardship to amateurs in the area. Because of the locations involved and the directional antennas employed, it is believed that any interference to amateurs will be unlikely, but in the event it does occur, it is understood that the Army will take immediate remedial action.

Recause of these considerations, the Commission has uffered no objection to the proposal and, on behalf of the Army, requests the voluntary cooperation of radio amateurs within interference range of the maneuver area. Such cooperation will not only contribute toward the success of Exercisc south Wind but will also further enhance the excellent reputation which radio amateurs have established over the years.

For V'ice-Director:

Robert B. Thurston, W7PGY, was found lawfully nominated and eligible. A petition was found for Elizabeth H. 'Tuylor, W7N.JS, but with some question as to her membership coutinuity; on motion of Mr. Kahn, unanimously VOTED that Mrs. Taylor is found eligible. The Committee thereupon ordered both names listed on ballots to be sent to Full Members of the Division.

ROANOKE DIVIBION

For Direntor:
A petition was found for Thomas Kincaid, K4JI,W, but was declared invalid because it contained less than the required signatures of ten Full Members. P. Lanier Anderson, Jr., W4MWH and Bannic L. Stewart, W4CE, were found lawfully nominated and eligible and their names ordered listed on ballots to be sent to Full Members of the Division.
f'or l'ice-Director:
Joseph F. Abernethy, W4AKC, and Lacy P. Wicker, W4ACY, were found lawfully nominated and eligible and their names ordered listed on ballots to be sent to full Members of the Division.

HOCLGY MOUNTAIN DIVIEION

F'ur Director:
C'harles M. Cotterell, WøSIN, and Carl L. Smith, W@EWWJ, were found lawfully nominated and eligible and their names ordered listed on ballots to be sent to Full Members of the Division.
(Continucd on pave 15世)

Correspondence From Members-

The publishers of OSI' assume no responsibility for statements made herein by correspondents.

MOON BOUNCE - BRAVO!

Q Bravo for the moon-bounce experiment! It is refreshing to be reminded again that somewhere beneath the rubbish of commercialism that now dominates our ham fraternity there still burns a small fire of creativity, ingenuity and determination that in the not-too-far-distant past was the very essence of our hobby. --. Arthur s. ('illespie, jr., W.S.JHT, New Kensington, Pennsulvania.

WELL DONE!

(1. The members of the Jefferson Barracks Amateur Kadio Club wish to express appreciation for the fine job W1HDQ has done in the past twenty years with his v.h.f. column. We also wish to extend our best wishes and success to Ed's successor, and hope he continues the fine jub. -- W'illiam Armstrong, K゙ๆK'l'J, Necretary, Jedferson Barracks Amateur Rudio Club, St. Louis, Missouri.
II I just tinished reading "The World Above 50 Mc ." in uSTT for September. I've been reading that column first for seven years now, . . . Ed Tilton's column has made life both pleasant and rewarding for me and, I should say for the whole v.f.f. gang. I'll be looking forward to the technical urticles by "EPT". -... Bob Mulholland, HOTGC.
(I As a Novice-turned 「ech-turned General, v.h.f.-born and v.h.f.-bred, l've followed W'HDQ's column since s.w.L. davs, and never fuiled to be fascinated by " 6 and Down." The timely "editorials" and reviews (plus tallis I've canght at Syracuse, Dhany, etc.) have, as far as I'm concerned, always hit the spot and been tops in the commentary field. If the column continues half as good as it has been, I'll be menuinely satisfied. - Bruce Steinberg, K\&VDR, Long Island City, Nery York.
©I. Sorry to read in Sept. QST' that Ed Tilton is giving up the "World" column but sure giad to know he will continue in the v.h.f. fick.
'The column has always been my first reading in QST T and W1HDQ's various construction articles have been most helpful. --. .Nat Stinnette, II 4 AYV. L'matilla, Florida.
d. . . . Please convey to your staff my hearty endorsement of the recent increase in your v.h.f. group. In this eres of "storebought gear", "net-type operation", etc., on the low frequency bands, it is good to see more emphasis on v.h.f., the only frontier left to the amateur experimenter. - Alan T'. Margot, W'EFZA, Porterville, Calif.

COMPLIMENT

II QST has been an aid to pleasure and education for me. It has been a readily available reference to look to as my interests change from one part of amateur radio to another. - B. F. Gallagher, KBBFJ, santa Barbara, Calif.

VERSATILITY

(1) About Kien Cilanzer's article in August. 1960, QST on inverted V-shaped dipoles:

There are probably mauy similar antennas in operation not by design. but hecause the center of the dipole is attached to the highest available place. Unless the poor ham is lucky enough to have a tree or two as high as Ken's, the ends of the dipole must slope downward, thereby forming the inverted V. Experience here at WV2rTh confirms Ken's conclusions: elemeut length is somewhat longer than the IIandbook calls for; directional properties are not pronounced and signal reports are generally higher than expected. Also the inverted V is cheup) and easyl - Philip L. C'rank, I'l'z.J'K, S'aıgertips, Nev' Y'ork.

STATUS QUO AT KR6

(1. The membership of this Club have for several months treen beseiged by amateur radio operators who want to know
why the Okinawa stations crowd into 14.325 to 14.350 Mc . when the band is open to the states.

A ruling of the Tri-Service Amateur Radio Board in the Ryukyu Islands published a directive dated 1 October 1959 as follows:
"All : A A a (single sideband) radiotelephone stations operating in the $14-\mathrm{Mc}$. band are restricted to that portion of the band between $14,325 \mathrm{kc}$. and $14,350 \mathrm{kc}$. while handling message traffic."

It will be noted that double sideband and amplitude modulated signals are not so restricted. KR6 stations are also restricted from use of the 20 -meter band between 14.2 Mc and 14.3 Mc .
The Okinawa Amateur Kadio Club passed a resolution to the Tri-service Amateur Radio Board asking that these restrictions be rescinded. This request was summarily refused. At present that is the stalus quo, which is Latin for the mess we're in. - Cieorge F. Kendrick, KR6IM, Secretary, Okinawa Amateur Radio Clubb.

QGT?

CI Isn't it high time to adopt a single time designation for all of us throughout the world? I have seen several comments about it recently, and it does seem to make very good sense. GMT would, of course, be the common zone due to its relationship to the date line. I would like to add a suggestion that the term "GMIT" be omitted and that wherever time is indicated it would be understood to be GMT. Reference to it might be made as a " Q " signal: "QGT" or "QGT?" in our lingo. - John B. Morgan, HORA, St. Paul 6, Minn.

BO PEEP SUPERCODE

4. Rod Newhirk's Bo Peep supercode (p. 71, July) which he describes as "landwire-like" might better be "waterwirelike". Under the name of Cable Morse or Three-Position Cable Code it has been in use for many years on manual and non-synchronous-automatic cables. Current quing one way is a dot, the other way a dash; no current is a space. While not as efficient on the cable as a synchronous code, it fllows the connection to a manual radio or land line circuit to be made with a standard reperforator rather than a complex translator. This can be rather important in out-of-way corners of the world.

The code is described briefly on pp. 507-8 of the third edition of the Federal 'Telephone and Radio Corporation's Keference Data for Kadio Enfincers. - Norman H. Williams, W'6BHI, San F'rancisco. Calif.

MIKE IN HAND ...

a In looking thru June QST, I noticed pictures of the league appointees and contest winners showing them with microphones in their hands, and in no case is there a kev even in sight. To make matters worse, it looking through the YL pictures, I found not a mike in sight. Does this mean the real operators are now all female?

Along these same lines, the whip antenna is no longer a symbol of the mobile amateur, probably because of the many other communications services and the current Citizen's Band activity; but a whip antenna on a car with a ham cull that does not recognize dit-dit-dit-dit dit-dit is a sad state of affairs.

With so much grumbling on the bands indicating that we need more frequencies, I would like to suggest a different solution: Suppose the FCC were to randomly select amsteurs and give them a oneday notice to appear for re-examination of their code proficiency. I believe this would make more space on the bands without any more frequencies being required!-G. S. Van Dyke, jr., W'SELL, Philadelphia, Pa.
(Continued on page 148)
F. E. HANDY, WIBDI, Communications Mgr. GEORGE HART, WINIM, Natl. Emerg. Coordinator JOHN F. LINDHOLM, WIDGL. Ass't. Comm. Mgr., C.W.

ROBERT L. WHITTE, WIWPO, DXCC Awards
LILLIAN M. SALTER, W1ZJE, Administrative Aide ELLEN WHITE, WIYYM, Ass't. Comm. Mgr., Phone
ARRL Activities Calendar 85 83Brass Pounders League.86 Traffic TopixCode Proficiency Program84 With the AREC.86
DX Century Club Awards. 83 WIAW Schedule. 88

Greenwich Mean Time. In August QST this column explained Greenwich Mean Time and passed along an ARRL Board recommendation that to conform to best communications practice and avoid confusion, especially in radio work beyond one's home town or state, we use GMT in setting up sehedules, in making reports and in our station logging. The use of a 24 -hour svistem of designations is a desirable first requisite to logging in (i.MT. That was explained. Wre included a complete conversion table for ready reference.

Using GMT avoids arguments and misunderstandings which are all too common with localized time differences. Now that we have discontinued Daylight (or summer) time, it is a good idea for the radio man to get station logging arrangements and the station clock set to use Greenwich in all radio operations. If you post such a table as we presented in August QST, it need only show your U. S. A. time and (xreenwich at a glance. The advantage of (iMT is that any radio references are a common language, the sume time everywherc. (You can cut the conversion ehart from page 81, August QST or make your own.)

Time Designations. More than one amateur has wondered about the letter suffixes that are noted in some traffic preambles that carry a military style date-time group, sach as 051800%. The first two figures always refer to the date in the current month: the next four cligits denote the 2 thour timedesignated, an 1 the letteridentifies the time zone A date-time group ending in Z refers to GMIT: R time releis to EST: S to CST; T to MST; U to PsT: () to AS'「: and W to HST, etc. The above example illistrates such a group where the date is the 5th and 1800 GMT the time. To quote a military service instruction coping with the time problem: "Zulu Time will be used exclusively to avoid confusion." Wise words, indeed.

Gaining Confidence in Operating. Overconfident amateurs often call $C Q$ or make lengthy calls, when they could do better for themselves by listening, calling other stations and
exercising more judgment. Then we have many good new men who want to be operator-perfectionists, but at first are apprehensive and fearful, proceeding with shyness and trepidation. Some of these lads become the builders who eonstruct, but operate little, thereby missing a full amateur operating life. To every newcomer and amateur who would also become a versatile and skilled operator, a hearty welcome!

Our advice, to make the most of amateur radio, is not to be brash, but to have you not hesitate in operating. Don't be afraid to throw the switch and work your fellow amateurs, or afraid to (1) report that first time into a net, (2) take traffic when offered, (3) try NCS, (4) originate a mes-

The Kern County Amateur Radio Club conducted an emergency test using only emergency power. The picture shows K6MWW operating on 10 and 2 from the truck used to house the emergency power supply, cable and antennas.
sage, or (5) speak before the radio club. True success and enjoyment in ham radio come from making a start, observing closely and improving technique as we go along. Use the opportunities available. Each can be a stepping stone to greater things. Pity the short wave listener who depends on vicarious experiences, and so accomplishes little. Get with two-way operating in ham radio and experience direct accomplishments instead of second hand ones.

To guin confidence and operator ability don't stand on the sidelines. ARRL offers three basic station type SCMT-appointments. The Official Experimental Station post is for the Novice or Technician propagation-reporter and v.h.f. traffic handler. Ufficial Relay Station or Official Phone Station appointment similarly recognizes the consistent trafficker supporting nets or skeds, on c.w. or phone respectively. Published standings, tratic reports, Station Activities, and ARRL certifications such as BPL, CP, WAS, RCC, and D.XCC, will help you spell out personal progress in operating results and ability, as your station participates. By taking part in organized amateur tadio you get more. There's AREC and RACES enlistment too. These all give recognition to each operator, and also increase the ability of amateur radio itself to do essential communicating within our amateur radio. Don't stand on the sidelines.

Shall We Have More Slow Speed Section Nets? A good number of slow speed nets showed up in the ARRL Net Directory issued last December. There's no hetter or more pleasurable way to get code and procedure experience up fiast than to belong to a regular net. Novice and other nets have demonstrated this. Amateurs interested in a slow c.w. net should report their activity and desire to the appropriate SCM. His address is given ou page \mathfrak{b} of this QST. sCMIs can heip, either by telling you of existing nets or assisting in getting one on the air. Our AIRRL operating bookiet gives the basic knowhow on setting up nets and running them. The Net Directory will give you the time of operation of all nets so many can be monitored to see how nets function. We shall welcome all reports on the organization of slow-speed traffic nets so we can arrange to list them. If not re-registered for the new net directory ask for CD-85 for this purpose as you get organized.

Further FCC Suspensions. (1) Accepting Compensation. (2) Working Off-frequency and Failing to Answer FCC. (3) Using General Privileges before Receiving General Class License. In the first instance the suspension was for violating the rule which prohibits amateur stations from hitulling formal or informal communications for hire for for material eompensation, direct or indirect, paid or promised). This license was suspended for the full remainder of the liceuse term. In the third action reported below note that the 75 -watt limit was exceeded in addition to unauthorized rhange of call and use of other than the Novice trequencies.
(1) FCC took under consideration the suspension of the General Class Amateur Radio Operator License of Arthur S. Arroyo (K6QZM) San Diego. Calif., it appcaring that on numerous occasions. Sept. 1959 to Jan. 28, 1960, the licenser: used his amateur radio station for the transmission or receipt of messages for hire, or for material compensation, direct or indirect, paid or promised, transmitting communications for hire, for numerous members of the crew of the vessel "Elsie A " on which his amateur station was installed; it further appearing in addition to the above violation of Sec. 12,102 of FCC rules, that the licensee also violated Sec. 12.94 (b) which provides that amateur mobile stations shall be separate and independent of ship or aircraft equipment, by using a radio receiver and antenna belonging to the National Marine Terminal Company which was part of ship radio telegraph station WIIC aboard the same vessel. The Federal Communications Commission ordered (June 24, 1960) that the General Class Amateur Operator License of Arthur ArroyO BE SUSPENDED for the remainder of the license term, that is, until March 5, 1961. This action was effective from July 23, 1960.
(2) FCC took under consideration the suspension of the Fixtra Class Amateur Radio Operator License of Raymond I. Balch. (W87VL) Detroit, Mich., it appearing that on June 11, 1959, W'8ZVL was operated outside the 14-14.35 Mc. amateur frequency band (measured deviation of 10 ke. low) and at the same time besides this violation of Sec. 12.111, he violated Sec. 12.133 of FCC rules (rough modulated emission) in his operation; it further appearing that his June 23, 1959 answer to the official notice transmitted by the Anchorage, Alaska FCC ottice was not satisfactory, and subsequent letters dated July 1, July 22, and August 7 , though received, were not answered by him; this failure to answer official correspondence violated Sec. 12.155 and 1.61 of FCC rules. The Federal Communications Commission ordered (Dec. 30, 1959) that the Extra Class Amateur Operator License of said Raymond D. Balch, BE SUSPENDED for three months. This action was effective from Aug. 1, 1960.
(3) FCC took under consideration the suspension of the (Xeneral Class Amateur Kadio Operator License of Larry \mathbb{K}. Reynolds (Wi6GKK) Redlands, Calif., it appcaring that on Feb. 20, 1960 while holder of Novice Class Liceuse WV6GKK and before issue of Geueral Class License WA6GKK later in the month, licensee operated his station in the $28,21,14.7$ and 3.5 Mc . frequency bands, using A-1 emission, contrary to the terms of his license, violating Scc. 12.23 (e) (2) and 12.28 of the FCC rules; it further "ppeariny that licensee at the time used a plate input power in excess of 75 watts and that he transmitted call letters not assigned by proper authority to his said station, a violation of Sec. 12.158. The Federal Communications Commission ordered (Apr. 18, 1960) that the General Class Operator License of Larry K. Reynulds BE SUSPENDED for a period of three months. This action was effective from Apr. 26, 1960.

The November "SS"! The ARRL Sweepstakes is our top operating event, to climax the year. Don't miss this chance to give your rig a real workout. All U. S. and Canadian amateurs are invited to participate. (2SO results are obtained easily with low power, as well as high, and the ehance for all to go far toward the WAS award has probably accounted in some measure, for the great popularity of this event.

See the full announcement and rules for this year's "SS" (to be held November 12-14 and November 19-21) on page 50 in this issuc. Two separate week ends are allowed to minimize the effect of any short period of poor radio eonditions, and also to make it possible for some to work all 50 states. One hint concerning the SS "exchanges" required or as used in message preambles too for that matter. It's just as fast, more explicit and definite and avoids confusion to give NOV 12 instead of the word "date." CU in the Sis, we hope.
$--F^{\prime} . E^{\prime} . H$.

MEET THE SCMs

Clancing up from the rig and wearing that broad smile is Rhode Island SCM, John E. Johnson, KlAAV, New Eingland Division Assistant Director and member of the Associated Radio Amateurs of Southern New England. He enjoys operating with the club station, W1AQ, with portable equipment during hurricane and other emergencies, and teaching Morse Code to the Boy Scouts; John also holds classes for future hams in his home QTH.

SCM Johnson has been a licensed amateur since 19.6. KlAAV's ye olde rig, located on the second floor of an old colonial cottage, consists of an Apache TX-1 for 80 to 10 meters and a Sixer HW-29 for 6 meters. Receivers are an HQ-170 and S-102: antennas are an 80-meter center-fed half-wave, 80 through 10 Hy-Gain 18HT vertical and 20 -. 10 - and 6 -meter beams. Eighty and 6 meters are his pet bands.
Other hobbies are photography, in which he has received awards for his outstanding work, and stamp and coin collecting; his favorite sports are hiking, camping, swimming and fishing. He is employed by the Gorham Mfg. Company as a design engineer
Your SCM is the backbone of organized section activity.

R.I. SCM, KIAAV.

CODE PROFICIENCY PROGRAM

Twice each month special transmissions are made to enable you to qualify for the ARRL Code Proficiency Certificate. The next qualifving run from WIAW will be made Nov. L8 at 2130 Fastern Standard Time (1230 CMT, Nov. 19). Identical texts will be sent simultaneously by automatic transmitters on 3555, 7080, 14,100, 21,075, $28,080,50,900$ and $145,800 \mathrm{kc}$. The next qualifying run from W6OWP only will be transmitted Nov. 3 at 2100 ['S'I' (050) GMIT, Nov. 4) ou 3590 and 7129 kc .

Any person can apply. Neither ARRL membership nur an arnatenr license is required. Send copies of all qualifying runs to ARRL for grading, stating the cull of the station you copied. If you qualify at one of the six speeds transmitted, 10 throngh $35 \mathrm{w} . \mathrm{p} . \mathrm{m}$. . you will receive a certificate. If your initial qualification is for a speed below 3.5 w.p.m. you may try later for endorsement stickers.

Code-practice transmissions are made from W1AW each
 utes' practice is given at each sperd. Reference to texts used on several of the transmissions are given below. These make it posible to check vour copy. For prartire purnoses, the order of words in each line of QST text sometimes is reversed. To improve your fist, hook up your own key and mudio oscillator and attempt to send in step uith W1AW.

Date Subject of Practice 'Text from September QST
Nov. 1: Const to C'asst . . . , p. 10
Nov. 8: Amateur Color Television, $), 13$
Nov. 10: A Simple Wanemeter , p. 16
Nov. 16: I'he " Tlltimatic" p. 27
Nov. 29: The "Budget" Vertical on 20 Meters, p. 36

In this column in July UST we raised the question of the practicability of the present National Calling and Emergency Frequencies and presented a proposal by W6RIL for changes. Since then, comments have been drifting in sporadically as Q'S' readers stumble across this column and decide to put in their two cents worth. So far. we have received 21 comments. In reading them over, it's often hard to determine whether the writer is in favor of WGRIL's proposals, against them, or has no opinion. Most of those commenting without expressing an opinion are making entirely new proposals, so we suppose they ought to be counted "against." However, we break down the comments as follows: In favor, 5 ; in favor but with qualifications (i.e., "I agree, but . . ."), 5: against, 7; comments without opinion, 4.

If we wanted to be urbitrary, we could say that this hardly constitutes a strong aflirmative vote and drop the ratter. But we don't want to do this. W6RIL's proposals were good and logical ones and even though they didn't strike everyone favorably they did evoke some thinking on the rubject. We'd like you to go on thinking about this and to continue to give us the benefit of your thinking. We can't answer all your comments, or even acknowledge them, but thes'll be kept in a separate file in sutne kind of clissification order and will receive continued study.

You might be interested in some of the comments already rereived, so we'll outline the salient ones as briefly as possible. W'øJUR likes WGRII's idea but thinks there should he NCE frequencies on both ends of the 6 and 2 meter hands. W8GiIU also agrees but thinks the UX men would not like using the high ends of 15 and 20 meters. K2MGMI feels that all that is needed is more publicity rather than frequency change. KH6ARL buys the proposal for phone ouly but thinks the c.w. frequencies should remain in tile c.w. segments. K 2 OPI wants the 6 and 2 meter frequencies located where novices and technicians can use them. WA2GWF disaprees, thinks that national frequencies should be at $100-\mathrm{kc}$. points and not too close to band edges hecause that invites out-of-band operation. W6.AM thinks the band edges should be left for QSO channels, especially for high powered stations. KgSEV says leave the NCE
frequencies as they are. K6D.XW arrees with 3995 and $7 \Omega 95$ hut feels that frequency stability is too big a problem on other band edges. WSVPQ is against band edges, thinks NCE frequencies should be in $100-\mathrm{kc}$. multiples or set aude for emergency calling use only - such as a fi-kc. channel using 3 kc . from the $\mathrm{c} . \mathrm{w}$. band and 3 kc . from the phone hand (e.g.. 7197-7203 kc.), preferably on a mandatory basis. WONWX proposes that NCE frequencies be set 100 kc. inyide e:wh band edge excent where hand is not that wide, and that these frequencies be used as the regular operating frequencies for W1AW - specifically (c.w.) $1805 / 1995, \quad 3600,7100,14,100,21,100,28,100,50,100$, 144,100 and (phone) 1820/1980, 3900, $\mathbf{i 2 5 0}, 14,300$, $21,300,28,600,50,200,144,100$. WA2CRF agrees with W6RIL but reminds that there are two hand eriges in each band and that c.w. NCE frequenries should be placed inside the low ends. WV2JIY thinks the low end of the phone bands would be better for matching antennas.

So there you have it. We won't be able to print all comments, but earh one will be read and considered in uny final decision made. even if that decision is to make no change, as it very well might be. If you are interested let us hear from uou.

- WLNJM

A police call to K7IRY on Jnne 21 at 2100 brought Nampa, Idaho, amateurs ont in force to help search for a missing two-sear-old girl. TV γ_{s} CCY GPM ZRQ and $K \gamma_{8}$ HYI LML assisted the searchers with communications until 0300. when the rhild's body was found. Without the assistance of the amateurs, the search would have taken much longer. --- Wrigal. ${ }^{\prime} C . M$ Idaho.

Possible extensive damage to a factory in Penria, Ill., was averted on Aug. 16 when WgUCW witnessed an explosion and fire as he wats massing the building. He immediately sent out a QRRR call which was answered by W9YYF. who notified the fire department and fire apparatus was on the way before the occupauts of the plant knew what had happened. As a result of the speedy communication, firemen were able to confine the blaze to the exterior of the factory and prevent its spreading.

Amateur mobiles planning a transmitter hunt at a hamfest at Big Springs, Idaho on Aug. 6 were pressed into service by the highway patrol to assist in running down three youths who had stolen a car and abandoned it after having committed a number of other crimes. Amateur mobiles fanned out through the area and worked each nther and a central control station on 75 meters. The bovs were flushed out by W7IRM/mobile, who gave chase, but they forded a creek and hitched a ride on a produce truck However, this was their undoing berause the truck stopped at a road block and the hovs were apprehended. This was hetter than a transmitter hunt, and it was for real! EC W7DHL lists the following participants: $K \gamma_{s}$ ATT IMB KIM OHMI BJI GHK IHE BKJ V.JH GKA BCE, W'子 HHF VFY CPPM DDR OIO OHM CQP PDJ HAU RKH. Operation of the hase station was under the direction of Wridup, W7DHL and KizBCE. The group received some excellent publicity. --.- I'7DHL, EC Fremont County, Idaho.

On Aug. 8 at 0720 a fuel truck and freight train crashed at Powderly, Ala., causing an explosion that claimed four lives and closed all roads in Powderly. W4DFE, Jefferson County RACES olticer, alerted key stations and furnished rommunications needed at the scene. Stations actively participating were W\&s DFF, FSW, K48 AAU OVE MQN HAG DSO TMID. - K4AOZ, SCM Alabama.

Some time in July, K9AFB/mobile witnessed an accident involving a truck and road grader near Calumet City, 111. An immeriate call for help on six meters and was answered by K9HDE and K9PPN in Uhicago. The former called state police and the latter called Chicago police, and within five minutes help was at the scene.

-•••

WABAXH was testing out his new mobile installation near Los Angeles on Aug. 1 when two cars collided head-on a short distance away. Driving to the scene, he found that there were serinus injuries. By informing K6UGQ, with whom he had been in contact, of the situation, he was able to summon the highway patrol to the scene within a very few minutes. Thus W.A6XH was at the right place at the right time and did the right thing --- $\mathrm{K}_{\mathrm{H}} \mathbf{J} U G Q$.

On July 17, K6RPZ in Lafayette, Calif., heard a distress call from K7FRE in Arizona indicating that lightning had struck in the forest and started a fire. KBRP\% contacted W'7GRU in Phoenix and the authorities uere notified and the fire was extinguished before it had gained enough headway to become a major conflagration. These amateurs were credited with having prevented a serious outbreak.

During the week of July 17, several members of the Boise Valley 2 -Mieter Net responded to a request by the sheriff's oftice to provide additional communications during a serious forest fire near Idaho City. The request was made at 2345 and within an hour four mobiles were at the fire, with a base station set up for relay into Boise. K7BJH and W7YLX reported to Thorne ('reek. W7FTJ and W7YAD were first into ldaho City, followed by K7HYI and W7NPI. W7OHM and W7OCR set up the base relay. The urtivity continued until 0400, when adequate commercial facilities were restored in the area. - W'7GGV, SCM Idaho.

On July 23 at 1155, W7PGY/mobile came upon a very bad accident on Highway 2-A enroute from Monroe to Seattle, W'ash. He immediately called for assistance and was unswered by W7SYS in North Bend and W7BSE in Olympia. The former notified the state patrol, which arrised on the scene in 12 minutes. Both $117 B S E$ and W7SYS kept the channel clear until the police had arrived. - W $7 l^{\prime} G Y$, $S^{\prime} M$ Washina'on.

A series of dry lightning storms set hundreds of forest fires in Elastern Oregon on July 10, precipitating an emergency cundition which lasted about ten days. Amateurs were called upon to assist the Forest Service with communications and a net was set up on 3825 ke. by W7GWS with K7AWJ as net control, W7HTL at the Le(irande warehouse and $W \gamma_{8}$ (iWS UHL ZTC and K7LKY at the four fire cambs. During the next six days this net handled over 80% of the traffic hetween fire camps and base stations. The original operators stayed at their nosts over 20 hours per day until relief operators could be rounded up. Traffic consisted of orders for food, nersunal messares for tire fighters, weather reports and orders for replacement parts for equipment. Amateurs directly connerted with the operation were $V^{\prime} 7_{s}$ I)RG EJS GPV (iWS HTL LW'M MEZ NOB QYS RLC: RLH ROA SGV WKP UHL ZTC, $\kappa \gamma_{8}$ AWJ CJC CLU (LLV ISW IBB IPS KRP KZP LKY. K9s PRG/7 PRH/7. Other amateurs participating were $\| \gamma_{s} A Z L$ RID FSU IGI MW UQI, K γ_{s} I)FV ADI. - WYUCI, SEC Orenon.

A.R.R.L. ACTIVITIES CALENDAR

Nov. 3: CP Qualifying Run - W6OWP
Nov. 12-13, 19-20: Sweepstakes Contest
Nov. 18: ©P Qualifying Run - W1AW
Dec. 7: CP Qualifying Run - WoOWP
Dec. 19: CP Qualifying Run - W1AW
Jan. 5: CP Qualifying Run - W6OWP
Jan. i-8: V.H.F. Sweepstalics
Jan. 14-15: CD Party (c.w.)
Jan. 20: CP Qualifying Run - WIAW
Jan. 21-22: CD Party (phone)

OTHER ACTIVITIES

The following lists date, name, sponsor, and page reference of QS'T' issue in which more details appear.

Nov. 5-6: RTTY Sweepstakes. RTTY Society of Southern California (p. 66. last issuc).

Dec. 3-4: 21/28 Mc. 'Telephony Contest, RSGB (p. 77, this issue).

Dec. 10-11: New England Christmas QSO Party, Connecticut Wircless Assn.

Jan. 14-15: New Mexico QSO Party, Sandia Base Radio Club.

Jan. 28-29: Kansas Centennial QSO Party.

Emergency stations are set up where you find room for them. During the Oregon forest fires in July, K7KZP/7 used a couple bales of hay for a table.

On Sept. 4, amateur scouters W5EJT and W5HHE maintained the only communication between Devil's Sinkhule, near Kock Springs. Texas, and San Antonio when an explorer scout was killed at the former location. Contact involved handling arrangements for notification of parents and scout leaders and was maintained for five hours until camp was broken and the group returned to San Antonio. Assisting at the San Antonio end were K5OPT, Li5VCR and W5VPQ. -- IF.5V1PQ.

July reports were received from 29 SBCs , representing 11,051 AREC members, again a sizable increase over the same month last year. Iowa submitted a report for the first time this vear, bringing the total sections heard from in 1960 to 40 , well over half. We're getting therel Other sections reporting for July: E. Fla., N ľC-LI, S. Dak., Ala., Litah, Öhio, N. Texas, Minn., Nev., Mich., Ore., N. Mex., San Joaquin Valley, Kans., Wash., E. Bay, Wyo., Me., S. Texas, E. Mass., Ga., Ind., Ont., La., E. Pa.,太anta ''lara Valley, Colo., III.

RACES News

The comprehensive RACES organizations of the Los Angeles, Calif., area montinue to show the way in extensive drilling for emergencies. On August 14, the RACES of the L. A. County Disaster Authority
 in conjunction with RACES nets of all c.d. areas in L.A. and Orange counties conducted a joint test of hospital coveruge, designated "Operation Medic." The operation avered 2800 square miles over terrain ranging from sea level to 10,000 feet elevation. A total of 89 major hospitals were provided with facilities for direct contact with the Command and Information Center of L. A. County. leach hospital originated a messuge indicating the number of doctors and uurses on duty and beds available, and a limited amount of command-type traffic was handled. K.ACES channels on all hands were used. Mobile units were dispatched from local Area or District control centers. The progress of the operation was reviewed at ©.I.C. and in local communication centers by plotting contacts on maps, showing the location of the hospital involved, frequency useld, call sign of the mobile and a message summary. Deployment time of mobiles for the entire operation was 90 minutes, well within the predicted period and judgeri to be excellent. Within 60 minutes, 80% of the hospitals had renorted.

While "Operation Medic" was a relatively minor effort, it was most important in demonstrating the use of RACES in the specialized field of medical disaster relief. In addition, R.ACES organizations in the L. A. area again forcefully demonstrated their ability to coordinate independent communications facilities into a single integrated command. Area and District radio officers deserve the biggest share of the credit for the success of "Operation Medic." - W6QJW.

This column is for traffie men. But what is a trallic man? Naturally, you'll say, a trattic man is an amateur who handles traflic. But how much traffic? If an amateur handles one message a vear, does that make him a tralfic man? Of course not! One a month? Heck, no! One a week? Well, not really. One a day? Now we're getting somewhere. Is it fair to say that a traffic man is one who makes traffic his major amateur interest? Maybe, but you'll be eliminating a lot of traflic handlers if you do this; and we need them all.

BRASS POUNDERS LEAGUE

Winners of BPL Certificate for August Tratic:

call ortg.	fecd.	itel.	nel.	Total
W3CUTL. 3334	2964	2513	421	6232
K2UTV. 108	2460	2400	53	5021
WGLCX......... 12	1248	1173	75	2508
W9IDA. . . 17	1006	992	1	2016
VE2AZI/Wl. . . 3 3	953	917	25	1934
WGLGG. ${ }^{\text {B2 }} 4$	593	545	49	1×11
WوRDR.... . . . 152	764	$8 \cdot 29$	17	1562
W7BA. 16	754	704	50	1524
K6BPI. 41	734	652	52	1509
WOSCA. ${ }^{\text {W }} 1$	597	583	4	1205
W6WPF........31	548	512	18	1119
W4PL 12	555	502	24	1098
W9DXG...... 28	505	426	44	1003
W6GYH........241	360	340	13	954
W9DO. 21	396	130	287	834
WロTVA. 77	297	384	96	824
WA2CIG....... 25	390	387	3	805
W7DZX.........	393	364	23	78.2
K4AKP.........24	36.5	348	15	752
КøВСН. 28	3×7	:324	6	745
WifRSY. ${ }^{\text {a }} 3$	374	216	99	712
K4*JH. 207	260	200	21	688
KטONK. 102	292	278	8	678
K61:PT. 3	337	164	170	674
KUCLS/6... 45	340	263	19	667
W1JXD..........3	32 K	307	4	642
W3VR. 64	291	280	8	641
-1CIF 287	184	145	9	625
WGPZO.........12	:314	272	20	618
K6LVR. 10	304	291	4	609
K2THC. 6	299	297	2	604
K2UFT. 2	299	162	100	683
K4EFY 26	279	227	28	560
W57HN 61	248	175	73	557
W8Dam........ 47	280	157	70	554
W7IRT ${ }^{10}$	269	236	32	547
『V9TT 12	275	95	153	535
K5W1C. 3	260	200	65	528
K6LKI. 8 8	288	24.3	5	524
W1SMEU........ ${ }^{3}$	271	239	2	515
W7ZB.........12	250	216	80	5118
kate Reports: ${ }_{\text {L }}$	2172	2102	63	4609
WA2CIG (July)..x	647	633	15	1303
VF2ATI/W1				
Ksw IC juily)..20	269	191	71	551
W1JXD (July) . . is	268	248	3	${ }_{527}$

More-Than-One-Operator Stations

KBHEA :'ty
K7AWJ 256
HPL medallions (see Auk. 1954 Q.ST. p . 64) have been awarded to the following amateurs since last month's listing: W1TXL, W4ZMH. KgORK.

The BPL is open to all amateurs in the United States, Canada, Cuba and U. R. Possessions who report to their sCM a message total of 500 or more or 100 or more originations plus deliveries for any calendar month. All
messages must be handled on amateur frequencies within 48 hours or receipt, in standard ARRL form.

So far as we know, the suecies Hammus 'l'rafficus has never been speritically defined -- nor need it be. The amateur who handles traffic is a traflic man while he is doing so, and most of our traffic nets are more than willing to accept him on that basis. Although traffic handling as an amateur radio activity is bigger and better than it ever was, we no Inger enjoy the high percontage we used to have in tho thirties, when Tro Hundrad Meters and Down mentioned tratfic handling as "perhaps the princinal activity of transwitting amateurs." It is far from that now. 'Today, we are a minority. l'es, even a small (but signiticant!) minority. There are too many phases of amateur radio today for any particular one to he the principal activity. And as amateurs in general divide themselves into c.w. groups, phone groups, s.s.b. groups, RTTY groups, and v.h.f. sroups, traffic amateurs in particular tend to divide themselves into the same groupings. Then, to make things more confusing, amateurs who are "hipped" on some mode specialty try to sell us traffic men on handling traffic by their mode, which ohviously, they contend, is far superior to any other mode.

The really dedicated traflic man is one who will study each mode of operation in the light of its traffic-handling capabilities and possibilities - the object being the efficient handling of traffic, not utilization of a particular mode. 'There are, alas, very few amateurs in this category. Most of us know only one way of handling traffic, and that's the way we uant to handle it -- all of it. Thus, our traffichandling minority is split into even smaller minorities, and our over-all influence on the destiny of amateur radio is proportionately diminished.

It seems to us that this is a problem to which we traffic men should give sober consideration. Which mode of emission, which type of operation, which frequency range, is best suited to which kind of traflic work? Never mind what we prefer individually - what will give us the best public service values?
Space does not permit us to go into a detailed study along these lines in this column, but perhaps a few examples would illustrate the method of approach. Take v.h.f.: here is a type of operation that is restricted in coverage to local areas and would be best suited to traflic distribution within a large city area or county or even a small state (like R. I.). RTTY has advantages in passing large wads of tratlic in a short time. Phone in general is most suitable to local or medium range coverage simply because of the vast number of phone operators. C.w. is best for long haul relays because of its characteristic distance capabilities with moderate power and modest antenna systems.

This kind of thinking is a switch from what usually precedes organization of a trattic net or system. Urdinarily, a group of amateurs get together and set up an island empire of their own, dedicated primarily to their own convenience and common interests. This is natural, and besides there's nothing wrong with it. But is it progress? Shouldn't a modicum of consideration be given to the over-all objectives of handling traffic? A modicum, did we say? Nay, let's consider the mode as a means to an end, not an end in itself.

August net reports:

Net	Seasions	Check-ins	Tralfic
Eiastern Area Slow	31	141	81
N. E. States Traffic.	12	196	190
20 Meter SSB.	23	613	2469
Tri-State Novice	1		2
7290 Traffic.	46	1227	471
Mike Farad E \& T.	53	484	722

National T'raffic Sustem. At last "daylight saving" time is over, and we're all more or less back to normal. Each year the advent of DST has calised the time schedule of NTS to go completely haywire, and each year we have been at a loss as to what to do about it. At first we thought it would be simple - simply ignore IDST and run the entire system on standard time. Although some areas have gone along with this, most of those using DST have arlvanced their net meeting times one hour to comply with local time, and so the NTS time schedule has gone to pot. Then. in some areas, we have had a knock-down-drag-out brawl about whether to use "daylight" or standard time. It has all been very silly, useless, frustrating and inimical.

A number of solutions to this dilemma have suggested themselves, but before we go into that we ought to examine
hou our schedules stack upin terms of standard time, before the milder weather hypnosis sets in. How many, or what percentage, of our NTS nets meet at the times prescrihed in CD-24, or within a near approximation of those times?

Using the 1959 year-end net directory as a guide, we find that of 100 nets registered as NTS section-level nets, 40 have sessions at 1900 (allow 15 minutes leeway), which is just 40% and 3 operate at 2200 (3%). At reaion level, 11 nets registered of which 9 have sessions at $1945(82 \%)$ and 6 have sessions at $2130(55.5 \%)$. At area level, all three nets meet at the prescribed time of $2(30$ standard.

This is not too bad, considering the options available in CD-24 at section and region level, but it is also not too good. When "daylight saving" time comes along, the whole system goes haywire. Even one of the area nets adjusts its meeting times to try to accommodate the changes arbitrarily made at other levels.

An Emergency and Traffic Bulletin issued recently to leaders in the emergency and traffic fields makes a number of proposals, but we think probably the best one is the proposal to compromise half way between fast and normal time - that is, in those areas which adopt fast time, the NTS schedule will be moved a half hour later; and for those which remain on standard time it will be noved a half hour earlier. Thus, in standard time areas it will be section nets at 1830 , region nets at 1915 , area net at 2000 , region nets at 2100 and section nets at 2130 . In "raylight saving" time areas, it will be section nets at 1930, region nets at 2015 , area net at 2100 , region nets at 2200 , and the late section net, if any, will be moved to the next morning or late the next afternoon.
This will have the advantage of minimizing the inconvenience to any particular net and also of maintaining the NTS time schedule, which is verv important. Note we say minimize the inconvenience, not eliminate it. When you are trying to operate on a nationwide time schedule and suddenly scattered parts of the country move their clocks it is bound to cause inconvenience to someone. The question is, are you NTSers willing to put up with sume inconvenience in order to achieve system? Are you willing to meet half way, to compromise with those who do not do as you dot On the answers to these questions will depend the success of any proposal to eliminate the summer snafu. Let's try it, next year, and if it works out we'll make it standard procedure and incorporate it in CD-24.
August reports:

Net	$\begin{aligned} & \text { Ses- } \\ & \text { sions } \end{aligned}$	Traffic	Rate	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	Repre- sentation (\%)
1RN.	31	446	. 399	14.4	90.7
2RN.	62	868	. 682	14.0	99.0
3RN.	H2	503	. 323	8.1	93.5
4 RN .	58	667	. 314	11.5	95.5
RN5.	62	852	. 517	13.7	95.5
RN6.	59	1084	. 402	18.4	88.6
RN7.	62	4.13	. 269	6.7	29.2
8RN.	60	308	. 174	S. 1	81.7
9RN.	43	1127	. 676	26.2	77.3
TEN.	90	1130	. 629	12.5	49.0
ECN	16	19	. 141	3.1	$64.6{ }^{1}$
TWN.	30	296	. 323	7.3	$60.6{ }^{1}$
EAN.	31	1236	. 796	41.2	96.7
CAN.	31	1318	. 861	45.1	100.0
PAN.	31	1078	. 603	34.8	100.0
Sections ${ }^{2}$	1245	7045		6.1	
TCC Eastern.	102^{3}	560			
TCC Central. .	93^{3}	1051			
TCC Pacific.	$121{ }^{8}$	960			
Summary.	1973	19991	C.AN	8.9	CAN/PAN
Record. .	1320	19767	. 895	14.8	100.0
Late Reports (J	uly) :4				
2RN	62	771	. 648	12.4	93.2
Sections ${ }^{\text {b }}$.	161	868			
Summary ${ }^{6}$...	1695	17233	EAN	8.7	PAN
Record.......	1710	20350	. 795	15.2	100.0

${ }^{1}$ Region net representation based on one session per day. ()thers are based on two or more sessions.

2 Section nets reporting: HNN, CC'W \& CEPN (Colo.); GSPN \& NHN (N.H.); VFN (Va.); GSN (Ga.); BUN (Utah) ; SCN (S.C.); MDDS (Md.-Del.-D.C.); N.JN (N.J.); SCN (Calif.); NEB (Nebr.); NJQ, S. Dak. 75 Evening \&

SDN (S. Dak.); Tenn. C.W.; OQN (Ont.-Que.); AENP AENP Morn, AENO \& AENB (Ala.); TLCN (Iowa); QKS (Kans.); WSSN, WIN \& BEN (Wis.); EMN (E. Mass.) ; LLN (Il.); CN \& CPN (C'onn.); MSPN Eve, MSPN Noon, MSN \& MJN (Minn.): WSN (Wash.); PFN (Pa.): KPN \& MKPN (Ky.); QFN, GN, TPTN \& FPTN (Fla.).
${ }^{3}$ TCC functions reported, not counted as net sessions.
${ }^{4}$ Received prior to normal Oct. QS'T deadline but after moved-up vacation deadline.
${ }^{5}$ Section nets reporting for July (add to those reported in Oct. QST') : N.IN (N.J.); QKS (Kans.); HNN (Colo.); WSN (Wash.) ; MKPN (Ky.); SGN (Me.).
${ }^{6}$ Summary data adjusted to addition of late July reports. These data supercede those shown in Oct. QST'.

Wow! These tables get complicated at times. We do not normally run "late reports" on section nets, but in Ausust we moved up the deadline a few days so we could get our copy in hefore going on vacation. Those included in the "late" summary above would have made it but for this. This is to remind all concerned: our deadline is the fifteenth of the month. Sometimes we're late and can include items received after that; but don't count on it. lf you slip your net report in the mail not later than the tenth, it's a cinch to reach us in time.

W1EMG reports for W1BVR on 1RN while the latter grabs some vacation; incidentally, 1RN is having a merry tussle trying to run a session on 75 meter phone. A 2 RN certificate has been awarded to WA2FDG. W4SHJ is taking leave of 4 RN for a vacation in foreign climes; a new manager will be appointed. TEN's third session at 1700 CST is building up; a TEN certificate has been awarded WøDUA. TWN is finding the going rough on both its 40 and 80 meter frequencies, but is changing back to 3570 with $7(060$ as alternate. PAN certificates have been awarded to W5ZHN, WA6ATB, W6s QMO RSY WPF, W7DZX, KøCLS/6, I $\emptyset E D H$ and WøANA.

T'ranscontinental Corps. W1SMU announces TCC certificates awarded to W'1s AW NJM OBR WEF, VE2AZI/W1. Kとs SIL SSX, WA2APY, W2FEB, W3WG, K4KNP, T9s DO DYG. Central and Pacific area TCC go along about as usual, with all rosters nearly filled and most functions successfully performed.
August reports:

| Area | Functions | \% Successful | Traffic | Out-af-Net
 Traftic |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Eastern...... | 102 | 89.2 | 1045 | 560 |
| Central..... | 93 | 87.1 | 2238 | 1051 |
| Pacific...... | 121 | 98.3 | 1893 | 960 |
| Summary.... | 316 | 92.1 | 5176 | 2571 |

The TCC roster: Eastern Area (W1SMU, Dir.) - W1s AW EMG NJM OBR SMU WEF, K1GRP, VE2AZI/W1, W\&s FEB OPB, K\&s SIL SSX UFT, WA\&s APY COO, W3WG, K4KNP, W8ELW. Central Area (W6BDR, Dir.) - K4AKP, W4ZDB, W9: DYG CXY DO ZYK, Wøs BDR LCX SCA. Pacific Area (W6EOT, Dir.) - W4DNU/6, K5IPK, W5ZHN. K6s LKD TPL GID LVR, IV'6s EOT ELQ HC WPF QMO, W.A6s ATB NCE. W7s GMC ZB万\%X, Kø̈s EDH EDK CLS/6, Tøs KQD WME.

NATIONAL CALLING AND			
EMERGENCY FREQUENCIES (Kc.)			
3550	3875	7100	7250
14,050	14,225	21,050	21,400
28,100	29,640	50,550	145,350

During periods of communications emergency these channels will be monitored for emergency traffic. At other times, these frequencies can be used as qeneral calling frequencies to experite general tralfic movement between amateur stations. Emergency traflic has precedence. After contact has been made the frequency should be vacated immediately to accommodate sther callers.

The following are the National Calling and Emergency Frequencies for Canala: c.u. - 3535, 705n, 14,060; phone -. 3765, 14,160, 28,250 lic.

NATIONAL RTTY CALLING AND WORKING FREQUENCIES

7140 ke.

WIAW OPERATING SCHEDULE

(All times are in (Greenwich Mean Time - (GMT)*
W1AW will return to its fall-Winter operating schedule
 on which WIAW has equirment. Novice periods include operation on 3.5, 7 and 21 Ic. see footnote 2 in box below). Printed master sched les showing complete W1AW operation will be sent to anyone on request.
Uperating- Tisiting Hours:
Monday thru Friday: :000-0800 (following day).
Sunday: 0ri00-0730 and 2000-0330 (Mon.).
Exception: W1AW will be closed from 0800 Nov. 24 to 200 Nov. 25 in observance of Thankseiving Day, and from 0730 Dec. 25 to 2000 Dec. 17 in observance of Christmas.

A map showing how to ge from main highways (or from Hq. office, to W1AW will be lent to amateurs advising their intention to visit the station.
Official . IRKL Bulletin Dehedule: Bulletins containing latest information on matters of general amateur interest are transmitted on regular schedules.

Frequencies (ke.):
C.w.: 1820, 3555, 14,100, 21,075, 28.080, 50,700, 145,800.

Phone: 18:20, 3945, 7255, 14,280,** 21,330, 29,000,50,700, 145.800.

Frequencies may vary slightly from round figures given: they are to assist in finding the W1AW signal, not for exact calibration purposes.

Times:
Monday thru Saturday: 0100 by c.w.; 0200 by phone.
Tuesday thru Sunday: 0430 by phone; 0.500 hy c.w.
Qicneral Operation: Use the chart (below), for times aud frequencies for W1AW general contact with any amateur.
Code Proficiency Hrogram: Practice transmissions at 15, $20,25,30$ and 35 w.p.m. on 'T'uesday, Thursday and saturday, and at $5,7 \frac{1}{2}, 10$ and 13 w.n.m. on Monday. Wednesday, liriday and Sunday are made on the above-listed frequencies (e.rept $18: 20 \mathrm{kc}$.). Code practice starts at 0230 each day. Approximately 10 minutes of practice is kiven at each speed. On Nov. 18 and Dec. 19. instead of the regular code practice. W1AW will transmit certificate qualifying runs. On Nov. 17, W1AW will transmit a frequency measuring test in place of code practice.

* W1AW schedule is shown in GMT per recommendation of ARRL Board of Directors that use of GMT for amateur communications be encouraged. For AST subtract four hours; for EST subtract five hours; for CST subtractsix
hours; for AST subtract seven hours; for PST subtract eight hours; for Alaska time (central part) and Hawaii sulptract ten hours. Don't forget to change the day ito previous day) when subtracting takes you through 0000 .
** Single sideband.

NET DIRECTORY

This list includes neter registered up to and including Sept. 22 1960. Registrations received after that date will be indluded in the Jannary UST listing if received prior to Nov. 15. If you have not yet registered your net for the $1950-61$ stanon, see page 90 , Sept. QST', for complete instructions.

Tbe_mmplete_crossinde-ed net directory is scheduled for distribution Dec. 1 . However, no amiomatic mailing urill be mode. Copies of the directory will be sent only upon request. Tl ere is no charge. The best way to get on the mailing list is to send a posteard requesting this ouly.

Nets which do not show a mublic service purpose in their reqistration information are not included in the net directory. Nets are repistered only upon request and receipt of the minimum basic information given below.
mportant note: $\mathrm{C} S T$ net listings and those in the printed net directory ure for information orip. Insofar as possible, net information is listed exactly as received, with certain eommon abbreviations used to save MST space. Listing in Q47 or the printed directory does not signify that these nets have any official status, does not entitle them to exclusi e or prior right to the frequencs or frequencies on which refistered, and is in no sense a form of constight.

Abbreviations used in net names are those commonly used for place names and certain common words. These abbreviations are nof used in the printed net directory unless the net name was registered that way. . Ill net times are in Cirenwich Mean T'ime (i:MT). Juys of the week are ahbreviated as follows: Dy-Maily; M-Monday; 'T-Tuosday; W-Wednescluy; Th-Thursday: F-Fris ay; S-Saturday; Sn-sunduy. When net operation vecurs on consecutive days but not daily, the days are comnected by a hyphen ie.g., M.F means the net meets each day Monday thru Friday). When net operation occurs less often than once per week, this is indicated by a numeral and slant mark (e.g., $1 / \mathrm{Sn}$ means the first sunday of pach month; $1 / 3 \mathrm{Sn}$ means the firtt and third Sunday of each month, etc.).

Name of Net	f'req.	GMT	Days
Ala. Emerg. Net "B" (AENB)*	:575.5	0100	Dy
Ala. Emerg. Net "(, ${ }^{\text {" }}$ (AENG)	29,560	0130	M
Al2. Emery. Net "H' (AENH)	29,560	1900	Sn
Ale. Emerg. Net"I" (AENI)	3885	1930	Sn
Ald. Einerg. Net ' J J (AENJ)	3900	1930	Sn
Ala. Emerg. Net ' L' ${ }^{\text {a }}$ (AENL)	8970	$\because 000$	Sn
Ala. Emerg. Net ' 0 '" (AENO)	50,550	0	'TThS
Alf. Einerg. Net " P " (AENP)	3955	2400	Do
Ala. Emerg. Net 'R' (AFNR)	50,550	0115	WF
Ala. Emerg. Net " S " 'AFINS	$33^{2} 25$	$19: 30$	Sn
Ala. Emerg. Net " X " ' AENX)	51,150	01.15	W

W1RW GENEREL-CONTACT SCHEDULE (Effective October 30, 1960)

WLAW weicomes calls from $a n \mu$ ambeur station. Starting with the following time-frequency chart:

Q.MT	Siunday	Monday	'T'upstay	Wernexdiny	Thutursiny	Friday	S'aturday
0130-(0)100			72.5		7180		7255
0120-0200			7080	3555	$7080{ }^{2}$	355.5 ${ }^{3}$	7080
(1210-0230 ${ }^{1}$			394.5	j0.7 MLe.	14.5.6 Mc.	3945	3945
(1):30-04:30	3555	307.5	7080	1820	\%555
0440-115001			3945	14.280	39.45	14,280	3314.5
0.520-0600 ${ }^{1}$		$35.55{ }^{2}$	7255	35.55	$7080{ }^{2}$	3045
(1600-0700			14,280	14,100	3.5 .55	14,100	
0700-0800			725%	3945	7080	3945	72.5
2000-2100			14.280	$21 / 28$ Me. ${ }^{3}$	14,100		
$\therefore 100-2200$		14,280	$21 / 28$ Mc. ${ }^{3}$	14.100	21.28 N16.	21,330	
2:200-2300	14.100	14,280	21,075 ${ }^{2}$	14,280	14,100	

- General-contact period on stated frequency begins immediately following transmission of Oflicial Bulletin which hegins at 0200 and $0+30$ on phone and at 0100 and 0.500 on c.w. Starting time is approximate.
\because W1AW will listen for Novices (on Novice band indicated) before looking over the band for other contacts.
3 Oneration will be conducted on one of the following frequencies: 21.075; 21,330: 28,080; 29,000 kc.

Ala. Emerg. Net "Y' (AENY)	50,250	0200	Ws	New Harmpshire Net (NHN)*	3685	23:30	M-s'
Ala. Post Otice Net	3920	2345	Th	New Jersey Net (NJN)*	3695	2400	Dy
Ala. Teenage Net (AENT)**	3905	2230	Dy	N. J. Post Office Net	3625	2400	M-s
All Serrice Net (ASN)	7270	1800	Sn		3873	2400	TWF
A.R.E.C. Net	50.850	$0: 330$	' 1	NJ 6 \& 2 Emerg and tfc Net	51,150	0400	Thsin
Ariz. Post Office Net	3855	0045	T-S		147,750	0100	W
Ark. C'W Net (OZK)*	3790	0100	'T-i'	New Mexico Post Office Net	8980	0330	Dy
Ark. Yout Ottice Net	3860	0200	T	New Urleans Emerg. Net	3825	1300	Sn
Badger Emerg. Net (Wis.) (BEN)*	3950	2100	$D y$	New York Post Uffice Net	3710	$: 400$	W
Beehive Utah Net (BliN)*	2272	1930	Dy		3825	2100	H
Benzie Co. Emg. Net (Mich.)	3880	0100	F		-100	2400	M
Hoston Region Post Office Net	3893	2315	M-H	New York State Net (NYS)*	3615	2400	Dy
Lroome Co. Regional AREC Net (N. Y.)	50.400	0200	S	Nine, Jacks and the Queen Net (South Dakota) (NJQ)*	3870	1815	M-S
Calif. Civil Defeuse Net (CCDN)	3501	0300	'T	North Carolina Post Uffice Net	3509	0200	S
Calif. Post Office Net	3695	0330	W		3905	0130	T
	38.35	0300	W	North Dakota Post Office Net	3860	2300	Sn
Colo. Post Uffice Net	3920	0200	'T-i'	N. Texas Traffic Net (NTTN)*	3960	2330	Dy
Columbia Basin Net (CBN)	3960	0330	Dy	Novice Hurricane Net (NHN) (rla.)	3725	1230	Sn
Conn. Phone Net (CPN)*	3880	2300	M-S	Ohio Post Office Net	3870	1200	in
		1500	Su			2300	M
Delaware Post Office Net	3905	2400	T	Okla. Central 6 Meter Net	50.250	0230	T
linger Lakes Net (N. Y.)	145,350	0300	¢	Okla. Phone Emerg. Net (OPEN)	8860	1400	in
Pirst Region Net (1RN)*	3605	0030	1) y	Oregon Post Uttice Net	3960	0:315	T-S
		0230	Dy	Penna. Phone Net (PFN)*	3×50	2300	M-F
	38.30	2215	D)	Phila. Area 6 Meter Trafic Net	50,850	0130	F
Fla. Amateur Sideband Traffic Net	3910	0030	T-S	Kegional Post Uffice Net	14,090	0145	T-S
		0130	T-S	R. I. State Phone Net (RISPN)*	50.600	2330	Dy
Fla. Post Office Net	3820	2300	F	San Diego (D-Hospital Net	145,680	0330	T
(iator Net (Flia.)*	3115	1330	Dy	San Diego City Area Net No. 1	29,545	03330	Γ
The Germantown Radio Club Net (Pa.)	29,200	vi0n	Th	Second Kegion Net (2RN)*	3690	2345	Dy
Grey-Bruce Net (GBN) (Ont.)*	3645	2330	MWF			0045	Dy
Hawkeye Eimerg. Net (Iowa)	29,600	0130	T'F	75M Monitoring Net (San Diego)	3991	0:300	T
High Noon Net (HNN)*	¢240	1900	M-S	Shore Emerg. Net (N.J.)	21,110	0100	W
"Hit \& Bounce" Net	7125	2230	M-S	Show-Me Net (SMN) (Mo.)*	3580	2200	in
	7140	1230	M-S	South Carolina Post Ottice Net	3815	1100	T
IIL. Ceutral Emerg. Net (ICEN)	3825	23330	M-F			2400	T
III. Weather Net	3873	1335	Sn	south Carolina Sisb Net	3915	0100	T-S
		0200	I'	South Dakota CW Net (SDN)*	3645	0100	TThS
Indiana Post Ottice Net	3657	2230	T	South Dakota Post Office Net	3890	0015	T-sin
	3865	2230	F	So. Dak. 75 meter am phone net*	3870	0030	Dy
Interstate Phone Net (IPN)	3980	2100	M-S	South Texas Emerg. Net (STEN)	3860	0015	T
lowa Post Office Net	3900	1400	in	(CW)	:1790	0230	T
Jefferson Radio Club Emerg. Net	3950	1500	Sn	(SisB 8uM)	3810	0200	Th
(JEN) (La.)				(SSB 40M)	7210	0100	$' \mathrm{I}$
Kansas CW Net (QRS)*	3610	0030	Dy	(Zone 1)	3860	1330	Sn
Kansas Post Uffice Net	3600	2400	\cdots		50,300	0130	T
	3935	1130	'I'	(Zone 2)	3860	0015	F
Eut Co. Emerg. Net (Mich.)	50.550	0100	T	(Zone 3)	3860	2400	W
		0200	Th		50,400	0130	W
Kentucky CW Net (KYN)*	3600	2300	1)y	(Zone 4)	:3860	2001	Sn
		0100		(Zone 5)	3815	0100	Wr
Kentucky Phone Net (KPN)*	3960	0130	Dy	Steuben Co. A.K.E.C. Net (Ind.)	52,525	2330	M
Kentucky Post Office Net	3775	0100	F	Susquehanna Emerg. Net (SLEN)	3910	1300	Sn
Knox Co. 6-Meter Emerg. Net (KEN) (Tenn.)	50.440	2400	M-F'	Tar Heel Emerg. Net (N. ©.)* 10 Meter AREC Net (Calif.)	3865 29,501	01311 0.300	T- W
Louisiana Post Office Net	3807	1300	So	Tenn. Post Office Net	-3675	0030	T-S
Madison Mobile Net (MMN) (Wis.)	29,620	2400	'T		3835	1230	s
Manchester, N. H. Emerg. Net	24,000	2400	F	Texas Post Uffice Net	3935	1130	M
	50.400				7260	2200	MS
	145,270			Tri-County Emerg. Net	3815	1800	in
Md-Del-DC Slow Speed Net*	3650	0130	TF	(TCEN) (Calif.)			
Metropolitan Net (San Diego)	50.150	$0: 315$	T	'Tri-State Novice Net (TSNN)	7160	2300	Th
Michigan P'ost Uffice Net	3830	1400	in			1400	s
	3120	2400	M-S	The Tri-state Traftic and Emerg.	29,100	0100	Dy
Michigan (QMN) 'TFC Nets*	3563	23100	Dy	Net ('I'TEN)	29,00	,	1
		2330	Dy	'Twelfth Regional Net (TWN)*	3570	0100	Dy
Minnesota Post Office Net	3820	1830	in			11300	Dy
Mission Trail Net. Inc.	3654	18400	Dy	Tygart Valley Emerg. Net (TVN)	3910	1900	Sn
	3854	0,300	Dy	(W. Va.)		1.0	,
Missouri Post Office Net	3540	0100	W	United Trunk Lines (Eastern) (UTL)	3568	0200	Dy
	3550	2200	TW	Virginia Phone Net (VFN)*	38:35	2400	Dy
	3900	1830	M-F	Virginia Post Otfice Net	3855	1930	Sn
Missouri Traftic Net (MON)*	3580	0100	T-Sn	Va. Slow Speed Net (VSN)	3680	23330	M-F
Montana Post Office Net	3955	1345	Th	Washington Post Office Net	3960	0230	T-S
Montgomery Co. AREC Net (MCA) (III.)	145.500	0130	H'	Washington Section Net (WSN)* West Va. Post Uffice Net	3535 3905	0300 2230	T-S MWF
Morning Ky. Phone Net (MKPN)*	3960	1330	M-S	Westeru Mass. Net (WMN)*	3560	2400	M-S
		1400	sn	Wisconsin Post Office Net	3630	2400	W
Muskegon Co. Civil Defense \&	29,610	0200	WS		3860	1815	Th
Red Cross Amateur Radio Netnork						0100	WS
Nebr. Marning Fone Net*	3980	1330	Dy	Wyoming Post Office Net	3655	0200	W
Nebraska Post Office Net	3980	0015	T-Sn		3885	0200	Th

The Ner

Abstract

- All operating amateurs are invited to report to the SCM on the first of each month. covering station activities for the preceding month. Radio Club news is also desired by SCMs for inclusion in these columns. The addresses of all cCMs will be found on page 6 .

ATLANTIC DIVISION

EASTERN PENNSYLVANIA-SCAI, fllen R. Breiner. W3ZRQ-We wish to welcome K3MVO to the section. Formerly K゙9IXK, he held ORS and OPS appointments in Illinois and now holds the same appointments in this section. HNK claıms "Gremlins" poured a glass of water through the fine holes of his DX-100. ZRR is a grandpapa the second time around An outside skvrire tinally was erected hy NNL. In $3 H T Z$, with his DX 40 , is an ORS. ZLP had a hit rif Kanger trouble, which cut into his traffic work. J3GFF is in the Amateur Radio Missionary Service handling traffic from his colrorts in the field. J3HXC was a V'E1AL visitor during his vacation. K3.AHT plans to attend Penn. State U. N has changed jubs and will he with the BkW Company after labor Day. DJW nperated mobile during his trek around Nova Necotia. The Haveriord Township Emergency Net Club held a transmitter hunt with EBY as bloodhound No. 1 and DQE second best. The Germantown Radio Club's call is K3MTK and the club is soliciting new members. Becuuse of the invasion of his daughter, OY's time on E.P.A has hemn greatly curtailed. KN3MKU, in Ottsville. is a new Novice operator in the section. CMIN esnects to become active it MI. I. T. from WIMX. RKP is operating with a DX-$100-\mathrm{B}$. GYP received WBE-DUF and W-Del twards. New vear ardied to K3CNN include an RT-19 and an ARC-4 2-meter trunsmitter. KN5ZQO is now located in Giwnedd Valley and has been accepted as a member of the North Penn ARC. New officers of the short Skip ARC are TLLN, pres: k3AWD, vice-pres.; K3.ANU, secy.; ZPX treas.: YLL. act. mgr. The Boy Scout Jamboree was the reason for many cluhs and atnateur organizations to set up traffic-handling stations. Among those reported were KijATI by the Bucks County AKC and MKA for the West Philadelphia Radin Assn. The p.a. ysitem was not needed at the North Penn. ARC auction with DHJ as auctioneer. Echo 7 was the expedition's name of the Mlahanoy l'allev Rrass pas the expeditions name of the the fork Hamest. Traffic: W3CUL 2232. !R B41. IVS 376. HNK 179. K3IPK 156. W3EML 137, WHK 93. K3DZB 85, W3KMID 82 , 1×4 F3BHU 66. IPA 65, HEX 58 , D(B 51 , W3NNL 43, K3JSX 34. HTZ 2b, W3ZRQ 24, K3CRU 22, ANU 18 , W3TEJ 17, JLQ 16. UIU 14. ITI 12. K3JLW 12, W3RUR 10. K3CAH 10. W3ZLP 10. K3ANS 9. W3BFF 8, K3GFF 8, W3PDJ 8, К3HXC 7, W3ADE 6, K3AHT 5, W3NF 4, K3CNN 3, DEM 3, W3GYP 3, K3GSU 1 , W3NF 4. 1 K3CNN
MARYLAND-DELAWARE-DISTRICT OF CO-LUMBIA-SCMI, Thomas B. Hedges, W3BKE—SEC: PKC. The MDD Trallic Net meets on 3650 kr. Mon. through sat at 1915 EST, MEPN (phone) on 3820 kc . Mon., Wed. and Fri. at 1800, Sat. and Sun. at 1300 EST.' New sppointments: N3MLLY. as OES. $4 E X M I 3$ Hs OPS. AHQ maintains his high level of OO monitoring. K3.ANA is busy installing an antenna at his new Q'TH. BUD reports the Sit. Nary's ARA has a new 10 -meter transceiver. UDQ has returned from another European trip visiting many Italian amateurs. Section mmateurs interester in participating in the Weather 1 mateur Reporting Net (WARN) may contact (VE. New OBS K3CRF is spending most of his time on 75 meters. Division Vice-Directar ECP is starting the new Hlinh susinn us presidient of the WRC and announces that code pructice classes are heing resumed. UCR reports the passing rway of EGI on Sept. 3. New uificers of the Sweepstakes-winning PV'RC for the '60- 61 season are JNE. pres,: JTC, vicp-pres.: KFC, secy.: VE2BX/W4, treas. DKT received his WV/Conn. Award from the Willimantic, Conn.. Jr. ©. of C. OES K3EJF reports in from Laurel. The Antietam, Id., Radio Assn. celebrater Amateur Radin Werk' by placing a wreath on the grave of Hiram Percy Maxim in Hagers-
town. He is remembered us "The Old Man" of umateur radio. New OPS 4EXM/3 likes *.s.b. EKO/2 reports in by radin from Monticello. N. Y. Enjoyed a visit with the Free State ARC hovs at Ft. Meade und found K3IVO, NNM, HCE, ENU, OSF, IISA, 4 PRV and K3USA active on RTTY. EOV was actively moblling on his Long Island vacation. K3GBV is husy on 6 and 2 meters. K3GKF suggests an MDDS QSO Party How about one of the section clubs sponsoring such an artivity? K3GMD likes transmitting Official Bulletins on 6-meter c.w. K3GZK wants to revive interest in the slow-speed net. K3HPG has a new Kanger and is three-element beam in Hagerstown. K3ICZ is a new repniter from Wheaton. IWJ invites all section 2 -meter stations to cherk in the PG AREC Net on Tue. ut 2100. OES E3IZM reports v.h.f. activity. F3JET is becoming interesterl in 1)X. New OBS K3JIQ repurts in from Riverdale. OO K3JTE received nice new:paper publicity on his satellite houncing feat. New reporter K3KHN likes his halo antenna. OBS K3KPZ is now sat. NCS for MEPN. OO LUL is attive on 144 NIc. K3MDL reports on a Maryland teenage phone net. New OWES い3MLY wants an $\mathrm{HQ}-110$. "iX remorts on $A \mathrm{KEC}$ activity in Hagerstown. KøPIV/3 received a letter of commendation for helning operate NSS on Armed Forces Day. TN makes BPL agaill. K3WBJ keeps up traffic antivity at Walter Reed Horpital. 3RN manager IIE is starting the long winter srind. YTV is a welcome Baltimore "utlet for MDD. OO ZAQ enjoys working TSC. ZGN is operating portable until school starts. ZNW reports work is needed on his antenna farm. The Foundation Hamiest at Gaithershurg was a big success! Traffic: W3TN 201. LØPIV/3 102. W3ITE 58. AHQ 48, K $3 W \mathrm{WB}$ 48. KPZ 45. W3ECP 31, BKE 30, ZGN 27,
 2. W3IWJ 2 ,

SOUTHERN NEW JERSEY-SCMI Herbert (! Brooks, h2BG-SEC : W2YRW. RMS: W2RZJ. W2HD W and W2ZI. A new appointee is WA2ARJ, Aillville, as ORS. N. J. Phone und Emergency Traific Net totals for August: 31 sessions, attendance 654 and traffic 134. Members of the net held their 5th Annual Pienic at Browns Mills during August. Fifty-one attended. The Bridgeton Area Radio Klub held a transmittor hunt with WA2ARJ, WA2DID, WA2ANH, K2CJB, W2MAS and K2UQK participating. W2RG has prepared for fallont protection with a basement shelter equipped with a transistor and receiver on 80 and 40 meters. K2SOX. Margate City Supt. of schools, hopes to he on KTTY non. K2NFF has replaced W2ZVW as the sCMI of N.N.J. W2TLO. Classboro, has a new transmitter. k2SNI. Trenton, has joiner MARS. K2JGU, Glassboro, plans to so sideband snon. To currect an error: W7QMIU replaced WA2CNS/VE8 on Baflin Island. K2BZK, Somerdale. is NCS on the 10 on 10 Net. Sundav mornings. W2BLV, SJRA's Harmnnirs news and libel editor, reports on many vacation trips hy the cluh's meunbers. W27UL has a new heann on ${ }^{6}$ meter: W2ESX. Moorestown, has skeds with W4RFR on 144 Me. The SJRA's roster now includes the tollowing $Y \mathrm{~L}-\mathrm{XYLs}: \mathrm{K} 2 \mathrm{SH} \mathrm{S}_{\text {, }}$ W2EBW, K2GCE, WV2NNC, WV2LCB und WA2FGS. Turing the rerent Margate Yacht Cluh races WA2IQD, L2DTB, K2RAB, K4CRA and 52 HBE provided communications for the event. Atlantic County RC news is published monthly hy K2HBA. The Levittown iN. J.) Radio (Mub plans to continue its training courses this fall. K2ECY, Burlington County EC, has organized $2 x$ - and $50-\mathrm{Ac}$. AREC nets, holding weekly drills. Orgamizations not reporting are niger to da so pach month. Heports of clubs, AREC and RACES are solicited. Trafic: K2DEI 177 . W2RG 174. W2ZI 60, K2SOX 31. W2SXV 31. W2BZJ 26, K2SNK 24. K2JGU' 19, K2RXB 14, W2BEI 13.
WESTERN NEW YORK \Rightarrow CM, Charles T, Han\&n, $2 \mathrm{HLK}-\mathrm{SECC}$ W2LXE. RMs: W2RLF and at 1900, ESS on 3590 kc. at 1×00. NYSPTEN on 392.5 kc. itt 1800. NYS C.D. on 3510.5 and 3993 kc . at i!!00 Sun.: TCPN 2nd Call Area on 3970 kc at 1900 . IPN on 3980 ke . at, 1600. WA2CIG made BPL during Suly and August. Appointments: WA2GCH and K2RTQ as OBSs, K2TDG und K2RTQ as OPSs and WA2HTW as OES. Endorsements: W2ZRC as RM and ORS W2PVI as PAM and OPS. E2KTK as OO and 52 HWI GS OES. Your SCM and SEC rttended the North Coumtry Call Bonk Pienic at the QTH of W.A2GCH. A very fine group was present and we look forward to our next visit. Plans are well under way by the Niagara Falls (Continued on paye gz)

FASTEN YOUR SEAT BELT AND CHECK YOUR AIR SPEED

Part II (Conclusion)

Abstract

what has happened - why has it happened and how has it happened? One must select and ponder these questions in sober judgment only to discover this is the space age - time and space; the dawn of the electronic kever! Without the electronic keyer these terrific speeds would be highly improbable indeed. High speed operator calls are listed in QST, July, 1060, Page 86; 45 to $60 \mathrm{w} . \mathrm{p} . \mathrm{m}$. Yes, the desire to be a good radio-telegraph operator rests in the heart and the mind of most every radio amateur though some profess otherwise. Speed alone is not the criterion, however. Accuracy stands first and when the two are combined, ah, this is the opera of the air.

7ow fast is fast? Some say 30 and some say 45 w.p.m. But nothing is too fast as long as you can copy it. Try it yourself. Crank your receiver up on $7.0-\mathrm{mc}$ and you will find many of those c.w. operators treading boldly hither and yon in that slip stream at 35 to 47 w.p.m. There are other slip streams in other bands, too.
Tot to the exclusion of many, many operators whose speed is beyond my capabilities or whose signals are in some other propagation path. you'll hear these wizards of this space age: W1CJC, W2MW, WA2CVV, W2TUK. W2PVR, W3FA, K4CVI, W4DKK, W4DL, W4DQS, W4IOC, W5NN, W6UF, W8CJK, W8OCT, W8RMH, W9SEM, W9TO (Jim Ricks, originator of the T. O. Kever) and Edith Viburg, W9WZL; yep, 35, 40, 45 w.p.m. and up.

Quecking air speed, remember 25 center holes in perforated tape are the equivalent of one 5 -letter word, equal to 24 dots, our standard here . . $30 \mathrm{w} . \mathrm{p} . \mathrm{m}$. would be 720 dots per minute, 12 dots per second. Who can count dots at 35 or 40 w.p.m.? Here is a simple and easier way. Count the number of dashes your electronic kever makes in 5 seconds, for example 25. That would be the number of w.p.m. for which it is adjusted, provided it is adjusted properly.

W.P.M.	Dashes in 5 Sec	Dots per Sec.
10	10	4
15	15	6
60	60	24

The dash time-length should be equal to the 2 dots in the letter " i " including the space.

η7 T is important that the dwell time (that small increment of time when the contacts are closed while making a dot) is correct. The contact spacing for dots and dashes should be as close as possible without touching each other --spring tensions to suit your requirements.

eONnect an ohmmeter across the electronic keyer contacts or a milliammeter, battery and potentiometer. Close the contacts and adjust for full scale meter deflection. Then open the contacts and make dots and adjust the dot control until the pointer of the meter sort of flutters about 52% to 54% of the full scale deflection. This makes for good, solid dots.

noow for some indoor tests. Here are some uniform 5-letter test words, 5 dashes and 10 dots equal to 24 dots: CURVE, BRUCE, CABLE. CHEAP, DUCKS, LAMBS, PEACH and SMALL. FAUNA contains 1 dash in every letter and MOTTO 10 dashes. When your electronic keyer is adjusted for your capable speed, perhaps 30 or 35 w.p.m., you should be able to time your manipulation for one minute and come up with 30 or 35 of the chosen word or any group totaling 30 or 35 w.p.m.
$W_{\text {Hen }}$ you have checked your air speed, hie vourself off into one of those slip streams, fasten your seat belt and keep your flaps down in case of a quick, but "Happy Landing".

Fred Schnell, W4CF

LJ J. Hally au WAAC
hallicrafters

Station Activities

ARC to hold a New York State Convention in Niagara falls in sept. 1961. It will he a first-rlass affair and 1200 hams are pxpected to attend. Make vour plans now. The NYS expected to attend. Make vour plans
now Picnic was held at the Q'H of K2RYH. WA2CIG donated a trophy to the fastest operator, which was wom hy perennial champ K2TPV. We are sorry to report that W2ZHU has joined Silent Kevs. He was EC and Radio Ofticer for Oswego C'ounty. K2RWV moved to Florida. He did a fine job as mgr. ui NYSPTEN. K2BBJ will take his place as mur. Wi NYSPTEN. K2BBJ will take his place as mpr. now has 500 -watt, finals for 2 and 220 Mc . 52 HWI bas a Heath "Sixer" and a homebrew 5 -watt 75-meter mobile. K2LMG has replacer his pleven-element Spiral ray antenna with a stacked pair of eight-element Yagis ofi 2 meters. W.A2JWV got his General Class license and a new Heoth Apache. WA2IYB runs a Valiant and th SX-100. W2LXE put the Leece-Neville system in his falcon for KWMI- K2LWR now has 24.5 countries confirmed. W2OZR has installed a BC-610 in his country place. Traffic: (Aue.) WA2CIG 305, W2EZB 385, K2SII, 267. K2QDT 231. K2SSX 217, K2RTQ 165, W2FEB 147, W2RUF 118, W2OF 109. K2IYP 104,
 K2RWV 33, $12 T D G 33$, $\operatorname{li} 2 \mathrm{BBJ} 27$, W2RQF 22, li2ATC 18. 52 GKK 15. K2.IBX 14, W2PVI 13 W. W 2 HEC 12, W2PGA 12. WA2GKB 9, WV2ILF 6, K2KTK 3, K2RTE 3. W'2ZDL 3. h2TNV :2. WA2IYB 2. (July) WA2CIG 1303. WA2BEX 19, JJune) K゙2QDT 117. W2PGA 39, WA2JKL 19, WA2FQV 11.

WESTERN PENNSYLVANIA-SCM Anthonv J. Mroczka, W3UHN-SEC: OMA. KMs: KUN, NUG and GEG. The WPA Traffic Net meets Mon. through Fri. at i900 FiST an 3585 ke. The PFN merts Mon. throush Fri. at 1800 on 3850 kc . It is with deep regret we renord the rieath of L'E'M. of Washington. Pa. R'TV attended the MARSFEST at F't. Meade HXF is attending Carliegie 'Tech. K $3 C O$ 'T has a new 10 -meter hearn. K 3 s GHH, KAP and HWL elected a $40-m e t e r$ antenna for K3HAO. WRE received her EAN rertificate. The Washington county ARC mpets the 2 nd Thurs. of each montl at the Brownson House. The Nittany ARC thports via "QST de K3HKK": SYY and K3AKR are alternate net. euntrols for the CD Net on 6 meters; the Allanst meetimg was a combined meeting and family pienic at the HRB picnic area. The steel City ARC reports via Kilountt Harmonirs: SDV rompleted a twoweek stay at the Melody Mill in Chicago: APN and UHM are constructing W2AZL 2-mpter converters. The Coke (enter RC (NAV) renorts: IW received his Spud Pickers Amateur Kadio Klub (Sparks) certificate; the radio club is in its 33rd vear. Our sympathies to KSR. who recently Inst his XVI. The Horseshoe RC reports via llamateur Neus: K3LGO now is on if meters; a new Novice is KN3MIXR: ROA visited in Pittsburgh rocently working mobile un 6 meters. EIuntingdon News hy K3CQU: The H-CAR did itself proud in assisting the Orhisonia Bi-Centennial with mobile units; a new Novice is KN3MRR. The (onemaugh l'alley ARC has done a swell iob in aiding handicapped amateurs in its area. The Etna KC reports via Osillator: K3KLP teceived his General Class license; DMK vacationed in 4 -Land; K3HJI is on 75 -meter phone. The Cumberland V Vallev ARC reports through Valley QRM that interest oll 2 meters is reaching a new high, with HSIT, RIH, IIMY. ZQU and K3EDH active. Route Manager KUN ruports that the WPA Tralfic Net held up iery well this past summer with swell support from WRE, UGV, MFB, LXQ. MIE. YUIL, K3HWL, K3GAO, K3GHH, and K3CLX. Don't forget the Fourth Annual Penn-s-lvania qio Partv on lee. 10 and 11. K3CIX has moved back to Centre Hall. RTV had no success in issing the E.cho balloon on 144 Mc. UHN is on 6 meters. Tring the Echo W3WRE 251, K3HWL 175. W3KUN 76, (IGV 29. K3GHH 17. COT 4. (July) W3HXF 3.

CENTRAL DIVISION

ILLINOIS-SCM. Edmond A. Metzqer, W9PRNAsst. SCM: Grace V. Kyden. 9GiIE. SEC: PSP. RM : IISR. PAM : RYU. EC of Cook County: HPG. Section net: [LN, 3515 kc . Mon. through Sat. at 1900 CST. ICF has a new $50-\mathrm{ft}$. mast to boost his 80-meter signal. LGH has joined the ranks of the DXCC boys. E9CIL's new $11 . h . f$. rig is a Heathkit Seneca and all his reports are FB. New appointments include K9IVG and K9JTD as OOs and K9TMGG as OES. The Quad County Radio Cluh, lnc., enjoyed being hnst at the very nuccessiul Breakfast Club Hamfest. The Rock Island County RACES has a new Johnson 500 and an HQ-180C at its training station. SKD is heard on 6 meters with a

Heathkit Sixer. The Rockford Imateur Radio Issn. had an exhibit at the Winnebago County Fair to promote anateur radio, handle mesages and to qet students for its Novice class. K9DJG has a new tower and heam. DSO, chief of the 9 QSL Bureau. wishes the fillows would send him the $5^{\prime \prime} \leqslant 713^{\prime \prime}$ clasp or the long husinese-size envelopes. as the smaller size will not hold ton many $\operatorname{es} \mathrm{S}$ cards. ShiR Inst his antenna in a recent storin. 4LEV is new not control of the Interstate sidehand Net. 1DA has resigned herause of a change of working hours. PVD's new GTM is Springfield. The Galumet Irea Emergency Net has resumen Sat. and Sun. operation. K9PLS is using a new TA-33 beam with his HT-37 and is hringing in the hard-to-ket signals. K9KKL and K9MMF are using the Orake 2-A receiver in their sharks. The springfield and sangamon Countr C.D. RAC'ES asang supplied communications for the sailhoat Kegatta, which inclurled craft manned by nationally-knowa skippers. K9QPJ's new antenna set-up includes a H.AM-M rotator and a Matchbox. K9RHU is 2-mpter mobile. The North Central Phone Net handled 206 messages and the ILN traffic count was 157. I.IW has the RTTY bug and is busy ropying and petting ready to transmit. K9PIQ is the new eilitor of Hameab (Hamfesters of Chicago publication). The Peoria Hamtest was well attended and the new site was praisell by all attending. QAZ reports that Pentia is woing nearly solid s.s.h. The L.ARKS (Chirago) held its installation dinner in Chicago. ©NO is DNing with a new Hy-Gain Thunderhird antenna. The MrDonough County Mobiles "6" "ooperated with Western Illinoos University (Macomb) in its Annual Homecoming Pararle by establishing communications along the parade route. KN9WVE is on 2 meters with it home-hrew hi293 transmitter. JEC is experimenting with amateur television. Ki9YRX has returned to W9-Land and SlM is now K7NBG. UCW and YYF were commended for their quick aution in reporting a fire in loliet athe therehv *aving considerable damage. IDA, DO and K9GDQ are winners of the BPL rwards for the rirrent month. Traffic: (Aug.) W9IDA 2016, DO 834 , USR 323. JSV 240 . MAK 285. K9GDQ 206. BTE 126. W9SNL *0 K9RAS 71, W9GFF 65, ITGY 61, K9IVG/9 54 . MHW 44, QYW 30. ©II, 26. OAD 26, TAE 24, 1NG 16. KCX 15, W9PRN 15, K9RHV 11, W9YYG i, K9BIV है, lliM 3, MLI 2, (QMJ 2. (Julv) K9CIL 30, W9JJN 6.
INDIANA-sCM. Clifford Singer. IT9SWD-Asst. SCM: Arthur G. Evans, 9TQC. SEC: SNQ. PAMs: K9AOM. BKJ, RVM and UKX. RMS: DGA, FJR. TT and V.AY. Net skeds: IFN 0800 daily and $1800 \mathrm{MI}-\mathrm{F}$ on 3910 kc .; ISN (s.s.b.) 1930 daily on 3920 kc .; QIN (training) $1800 \mathrm{MI}-\mathrm{W}-\mathrm{F}$ on 374.5 kc : QTN 1900 daily and RFN 10700 Sun. on 3656 kc : (idEN $(160$ meters M-F at 1900 on 1805 kc . New appointments: FJR as RM for Q[N itraming), K9IHG as ORS', h9 (1BK as ORS, K9IBT as OBS and K9EPT as OES. The Kokomo ARC entertained the Incal hains and neighboring friends at the Big Bull Session with a good-sized crowd present for the ham festivities. Muncie was the loration for the Duneland ARA's 3rd Annual Hamfest with well over 100 registered. The 'Tri-State ARS's Annual Hamfeet attracted well over 300 hams from three states. K9SVD is rumning a new HB-180 watter. GIXX has a new HQ-180 receiver. BKJ is recovering nicely from a recent illness and operation. K9KKG is trouring Fiurnpe K9IIBK has received the 20-w.p.m. Code Proficiency tward and also was top "Indian" in Indiana in the 1960 Novice Roundup. H9LWD is on 6 meters with is Hi Bander and is using an $\mathrm{HQ}-110 \mathrm{C}$ for a hearing aid. K9[LK has a new antenna on 75 meters nime r very much improved signal. K9MZV and OMT MHP visited ARRL Headquarters while on vacation in the east A mateur radin exists as a hobhy bernuse of the servire it reniers. August net reports: RVM reports IFN total at 400 ; K9OAM reports 243 for the ISN; OIN netted 364, reports VAY: FJR reports 57 for the ©IN (training) : TT reports 364 for QTN and CAEN totaled 73 reports $11 K X$. Making BPL: DGA. TT and K9UBK. Traflic: (Aug.) W9TT 535. K9UBK 307, W9VAY 238, ZYK 190. K9.AOM 166, W9DGA 160. GJS 121, FJR 118. BDG 102 , GFA 68, K9BSU 65, W9RVM 58, SWD 57 NZZ 55. EJW 51. NNQ 4B, QYQ 44, RTH 32, K9GBB 31, W9UQP 28, K91YD 22, DSY 21, W9MEK 21, EHZ 20, FWH 20, K 9 OOF 17 . W9DOK 16 . $M \mathrm{MU} 16$, AB 11 . BDP 10, BKJ 10, K9LAQ 9, W9YYX S, K9AHD 7 , 1Z.J 7, W9BVR 8 . KN9V'IC 6, W9CC 5, k9CRS s, W9HUF 5, KN9WET 5, K9GSV 4. MAN 2. N9TOC $\begin{array}{cc}\text { K9VHE } 2, ~ K N A C ~ 1 . ~(J u l y) ~ K 9 C R S ~ 10, ~ W 9 H U F ~ & \text { 8, }\end{array}$ K9VQP 1.
WISCONSIN—GCM. Genrge Woida, W9KQB-SEC: (Continued on page 98.)

the very finest
 $5 S=3$ equipment you can buy!

INVADER
 INVADER-2000

A superbly engineered SSB Transmitter/Exciter

 add hi-power conversion for 2000 watts P.E.P. (twice average $D C$) input SSB!

CRYSTAL FILTER-TYPE SIDEBAND-Exclusive high frequency bandpass crystal filter gives you more than 60 db of unwanted sideband and carrier suppression! Select upper or lower sideband instantly.

SIMPLIFIED OPERATION-Extremely easy to tune and operate! Tune for maximum on the meter and you're ready to gojust a few front panel controis give complete flexibility!

FREQUENCY CONTROL-Instant bandswitching coverage $80,40,20,15$ and 10 meter bands. Built-in VFO is differentially compensated and factory adjusted for maximum stability - "keep warm" heater element keeps VFO at operating temperature even with equipment turned off . . . NO WARM-UP DRIFT!

Free 8-page "Invader"
 brochure with detailed

FIRST CHOICE AMONG THE NATION'S AMATEURS

INVADER

The transmitter you've been waiting for-with more exclusive features than any other Transmitter/Exciter on the market today! Instant bandswitching 80 through 10 meters-no extra crystals to buy-no retuning necessary. Rated 200 watts CW and SSB input: 90 watts input on AM. Unwanted sideband and carrier suppression is 60 db or better! Wide range pi-network output circuit. Fully TVI suppressed. Self-contained heavy-duty power supply. Wired and tested with tubes and crystals.
Cat. No.
Amateur Net . $\$ 619.50$

INVADER-2000

Here are all of the fine features of the "Invader", plus the added power and Hexibility of an integral linear amplifier and remote controlled power supply. Rated a solid 2000 watts P.E.P. (twice average DC) input on SSB: 1000 watts.CW; and 800 watts input AM! Wide range output circuit (40 to 600 ohms adjustable). Final amplifier provides exceptionally uniform "Q". Exclusive "push-pull" cooling system. Heavy-duty multi-section power supply. Wired and tested with power supply, tubes and crystals.
Cat. No.
Amateur Net 240-304-2 \$1229.00

HI-POWER CONVERSION

Take the features and performance of your "Invader" . . . add the power and flexibility of this unique Viking "Hi-Power Conversion" system . . . and you're "on the air" with the "Invader-2000"-a solid 2000 watts P.E.P. (twice average DC) input SSB, 1000 watts CW and 800 watts input AM. Completely wired and tested-includes everything you need-no soldering necessary-complete the entire conversion in one evening!
Cat. No. 240-303-2 . . Hi-Power Conversion, complete Amateur Net \$619.50

features...pick

VIKING "KILOWATT" AMPLIFIER (Above)

The only transmitter that provides maximum legal power in all modes-SSB, CW, and plate modulated AM. Class C final amplifier operation provides plate circuit efficiencies in excess of 70% with unequalled broadcast-type high level amplitude modulation. Two 4-400A tubes in Class AB, easily deliver 2000 watts P.E.P. (twice average DC) in SSB mode-provides 1000 watts input AM with two push-pull 810 tubes in Class B modulator service. 1000 watts input Class C CW. High efficiency pi-network output circuit will match 50 to 500 ohm antenna loads.
Pedestal contains complete unit. Excitation requirements: 30 watts RF and 10 watts audio for AM; 10 watts peak for SSB. With tubes. Cat. No. 240-1000. . Wired and tested............... Amateur Net $\$ 1595.00$
Matching accessory desk top, black and three-drawer pedestal. Cat. No. 251-101-1. . FOB Corry, Pa. \$132.00

"ADVENTURER" TRANSMITTER

Self-contained . . . 50 watts CW input . . . rugged 807 transmitting tube.. instant bandswitching 80 through 10 meters. Crystal or external VFO con-trol-wide range pi-network output-timed sequence keying. With tubes, less crystals.
Cat. No. 240-181-1. . Kit. Amateur Net $\$ 54.95$

"CHALLENGER" TRANSMITTER

70) watts phone input 80 through 6: 120 watts CW input 80 through $10 \ldots 85$ watts CW on 6 meters. Two 6DQ6A final amplifier tubes. Crystal or external VFO control-TVI suppressed-wide range pi-network output. With tubes, less crystals.
Cat. No. 240-182-1 . . Kit. Amateur Net $\$ 114.75$ Cat. No. 240-182-2. . Wired...... Amateur Net \$154.75
"NAVIGATOR" TRANSMITTER/EXCITER
40 watts CW input . . . also serves as a flexible VFO Exciter. 6146 final amplifier tube-bandswitching 160 through 10 meters. Built-in VFO or crystal control. With tubes, less crystals.
Cat. No. 240-126-1. Kit..........
Amateur Net $\$ 149.50$ Cat. No. 240-126-2 . . Wired....... . Amateur Net $\$ 199.50$

"6N2" TRANSMITTER

Rated 150 watts CW and 100 watts phone-offers instant bandswitching coverage of both 6 and 2 meters. Fully TVI suppressed-may be used with the Viking I, II, "Ranger", "Valiant" or similar power supply/modulator combinations. Operates by crystal control or external VFO with 8-9 mc. output. With tubes, less crystals.
Cat. No. 240-201-1 . . Kit. Amateur Net $\$ 129.50$ Cat. No. 240-201-2. . Wired. Amateur Net $\$ 169.50$

"RANGER" TRANSMITTER/EXCITER

This popular 75 watt CW or 65 watt phone transmitter will also serve as an RF/audio exciter for high power equipment. Completely self-con-tained-instant bandswitching 160 through 10 meters! Operates hy built-in VFO or crystal control. High gain audio-timed sequence keying TVI suppressed. Pi-network antenna load matching from 50 to 500 ohms. With tubes, less crystals.
Cat. No.
Amateur Ne ? 240-161-1.. Kit
. $\$ 229.50$ 240-161-2.. Wired and tested.. . $\$ 329.50$

"VALIANT" TRANSMITTER

275 watts input CW and SSB (P.E.P. with auxiliary SSB exciter) 200 watts phone. Instant bandswitching 160 through 10 meters-built-in VFO or crystal control. Pi-network output matches antenna loads from 50 to 600 ohms. TVI suppressed-timed sequence keying-built-in low pass audio filter-self-contained power supplies. With tubes, less crystals. Cat. No.

Amateur Net
240-104-1 . .Kit $\$ 349.50$
240-104-2 . Wired and tested... . $\$ 439.50$

"FIVE HUNDRED" TRANSMITTER
Full 600 watts CW- 500 watts phone and SSB. (P.E.P. with auxiliary SSB exciter.) Compact RF unit designed for desk-top operation. All exciter stages ganged to VFO tuning-may also be operated by crystal control. Instant bandswitching 80 through 10 meters-TVI suppressed-high gain push-to-talk audio system. Wide range pi-network output. With tubes, less crystals.

Amateur Net
240-500-1 . . Kit. $\$ 749.50$
240-500-2. . Wired and tested... $\$ 949.50$
$\not \approx \star \star$ exciting desk-top linears...

"COURIER" AMPLIFIER

Rated a solid 500 watts P.E.P. input with auxiliary SSB exciter as a Class B linear amplifier: 500 watts CW or 200 watts AM linear. Self-contained desk-top package-continuous coverage 3.5 to 30 mcs . Drive requirements: 5 to 35 watts depending on mode and frequency desired. TVI suppressed. With tubes and built-in power supply.
Cat. No.
Amateur Net
240-352-2 . Wired and tested. . . $\$ 289.50$

"THUNDERBOLT" AMPLIFIER
The hottest linear amplifier on the market-2000 watts P.E.P. (twice average DC) input SSB; 1000 watts CW; 800 watts A M linear. Continuous coverage 3.5 to 30 mcs .-instant bandswitching. Drive requirements: approx. 10 watts Class $A B_{2}$ linear, 20 watts Class C continuous wave. With tubes and built-in power supply. Cat. No.

Amateur Net
240-353-1 . . Kit $\$ 524.50$
240-353-2 . . Wired and tested. . . $\$ 589.50$

"6N2 THUNDERBOLT" AMPLIFIER
1200 watts (twice average DC) input SSB and DSB, Class A $B_{1} ; 1000$ watts CW, Class C: and 700 watts input AM linear. Continuous bandswitched coverage on 6 and 2 meters. TVI suppressed. Drive requirements: approx. 5 watts Class ABı linear, 6 watts Class C CW. With tubes and built-in power supply.
Cat. No.
Amateur Net
240-362-1 . . Kit $\$ 524.50$
240-362-2 . Wired and tested. . . $\$ 589.50$

Boost performance...

 add convenience... with these popular Viking station accessories!
"6N2" VFO—Replaces 8 to 9 mc . crystals in frequency multiplying 6 and 2 meter transmitters. Output range: 7.995 to 9.010 mc . With tubes and power cable.
Cat. No. 240-133-1. Kit.
Amateur Net $\$ 34.95$
" 6 N2" CONVERTER-Instant front panel switching from normal receiver operation to 6 or 2 meters. Available in following ranges: 26 to 30 mcs ., 28 to 30 mcs ., 14 to 18 mcs ., or 30.5 to 24.5 mcs. With tubes.
Cat. No. 250-43 . Kits. Amateur Net $\$ 59.95$
Cat. No. 250-43 . . Wired
Amateur Net $\$ 89.95$
PRE-TUNED BEAMS-Rugged, semi-wide spaced with balun matching sections. 3 elements, boom and balun.
Cat. No. 138-420-3. 20 Meters.
Amateur Net $\$ 139.50$
Cat. No. 138-420-3. . 20 Meters. Amateur Amateur Net $\$ 110.00$ Cat. No. 138-410-3 . . 10 Meters . Amateur Net \$ 79.50
"MATCHSTICK"-Fully automatic, pre-tuned vertical antenna system. Bandswitching $80-10$ meters. Remotely motor driven. With 35 mast. Cat. No. 137-102. . Pre-tuned.

Amateur Net $\$ 129.50$

250-23-3

250-30-3

VIKING AUDIO AMPLIFIER-Self-contained 10 watt speech amplitier, with power supply and tubes.
Cat. No. 250-33-1 . Kit .
Amateur $\mathrm{Net} \$ 73.50$
Cat. No. 250-33-2 . Wired and tested Amateur Net $\$ 99.50$
LOW PASS FILTER - Wired and pre-tuned.
Cat. No. 250-20. . 52 Ohms Impedance. Amafeur Net $\$ 14.95$ Cat. No. 250-35 . . 72 Ohms Impedance. Amateur Net $\$ 14.95$
CRYSTAL CALIBRATOR-Provide asccurate 100 kc check points to 55 mc . With tube and crystal.
Cat. No. 250-28 . Wired and tested Amateur Net \$17.95
"SIGNAL SENTRY"... Monitors CW or phone signals up to 50 mc . With tubes.
Cat. No. 250-25 . Wired and tested
Amateur Net $\$ \mathbf{2 2 . 0 0}$
T-R SWITCH-Instantaneous break-in on SSB. DSB, CW or Λ. With tube, power supply and provision tor RF probe.
Cat. No. 250-39 . . Wired
Amateur Net \$27.75
"MATCHBOXES"-Completely integrated antenna matching and switching systems for kilowatt or 275-watt transmitters. Bandswitching 80 through 10 meters.

250-23-3 . . 275 Watts, with directional coupler and indicator . \$86.50 250-23 . 275 Watts, less directional coupler and indicator. . . $\$ 54.95$ 250-30-3. Kilowatt, with directional coupler and indicator. . $\$ 149.50$ 250-30 . . Kilowatt, less directional coupler and indicator $\$ 124.50$
DIRECTIONAL COUPLER AND INDICATOR-Provides continuous reading of $S W R$ and relative power in transmission line.
Cat. No. 250-37, Coupler
Amateur Net $\$ 11.75$ Cat. No. 250-38 . . Indicator

Amateur Net $\$ \mathbf{2 5 . 0 0}$
ATTENUATORS—Provide 6 db attenuation with required power dissipation to enable various units to serve as exciters for Viking "Thunderbolt".

Your complete guide to amateur radio's most exciting equipment. Write today for your free copy.

Anyone starting out in amateur radio will find these publications a necessary part of his reading and studying for the coveted amateur radio operator's ticket. Written in clear, concise language, they help point the way for the beginner. Tried and proven by thousands upon thousands of amateurs, these ARRL publications are truly the "Gateway to Amateur Radio."

$$
\$ 1.50
$$

The American Radio Relay League, Inc.-West Harfford, Connecticut,

Station Activities

YQH．PAMs：NRP and NGT．RMs：VHP and VHK． New appointees：NGT as OPS，K9UZR as OES．SIZ became the 23rd Wisconsin member of the A－1 Operators Club．K9LWV received his WSSN certificate and K9JQA his WIN certificate．L9GYG is attending the Moody Bible Institute in Chicago．The Milwankee Club will hold its meetings on the ist and 3rd Thurs．of each month at the Public Library starting at 8 P．m．MTA／9 and K0GDF took part in the Annual Fly－in at Rockford． Ill．，a flight of old and home－built planes．Considerable trattic was handled for the participants．K9GYQ is uff to college at Dubuque，Iowa．$Z B$ is chasing $D X$ and is active in the NTS trom his $28^{\prime \prime}$＂ $28^{\prime \prime}$ shark housing a Valiant and an HRO－60．New officers of the Fnnd du lac Club include H．JS．pres．；K＂9LCT and Li9UML， vice－pres．；K9UZR，secy．－treas．With the coming of the heavy traffic season，the BFA．WIN and WSSN will welcome new members，esperially from the northern and western parts of the state．DX－wise，DYG has 367 different prefixes worked．KNOTJJ＇s broken right arm has not curtailed his hamming．ILR＇s plane trip to Europe resulted in his meeting many Danish uperators． OTL now is in Madison．（））notices mailed ：RKP 38 ． K9GDF 22，K9EZG 5，CCO 1．Now that the slack summer season is past．more lisable news for his column will be appreciated，both from the clubs and individual operators．Please mail hy the 4th of euch month．Thank vou and 73．Traftic：（Auk．）WVODYG 1003 ．CXY i78． W2MTA／9 217，K9GYQ 214．GDF 118，W9KQB 97．VHP 61．CBE 48．CCO 3\％，VIK 36 ，ZB 35．NRP 33 ， K9GSC 27，DTK 23．W9APB 17．Ḱ9LW゙V 14．W9SZR 14. K9DOL 11．W9SIZ 9，LFK 8，MWQ 8，FZC 3．（July） W0OTL 27，SIZ 2.

DAKOTA DIVISION

NORTH DAKOTA—BCM，Harold A．Wengel，WOUVA －SEC：KイKBV．PAM：K月KJR．RM：KTZ．The North Dakota C．W．Net resumed operation the second week of September．KNGYWD．，f Minot．received an ap－ pointment as Official Experimental Station．The North Dakota 75－Meter Phone Net report；for July： 21 ses－ sions reported， 401 total check－ins， 27 maximum， 8 minimum； 48 pieces of formal traffic， 53 informal and 11 relays．The August report of the 75 －Meter Phone Net is 27 sessions with 400 check－ins， 24 maximum， 11 rainimum； 42 pieces of formal traffic， 44 informal and 6 relays．LGCLY has an antenna up and his rig on the air at his new home in East．Bismarek．Traffic： KøITP 124．MPH 19，PV＇8．GGI 7，WGPHC 7．BHF 3．KøOMA 3．TYY 3，YST 3，WøBHT 2，KøRRW 2， RRZ 1．VTP 1.

SOUTH DAKOTA—SCM，J．W．Sikorski，WGRRN－ SEC：SCT．KøVIZ，Leola，is a Class IV OO．The South Daknta Weather Net hegan its vixth year of operation on Ort． 3 at 7 A．m．MST．KGUXC is attend－ ing eollege at Jrange City．Iowa．OFS is tearhing at Mankato，Minn．ACG，Canistota，is teaching at Canis－ tota．and AYJ，Hayti，is teaching in North Dakota． TQE．formerlv of Avon，now is working for KORN－TV， Mitchell．KøEYA．Rapid City，retired from the U．S．， Army，is operating an HT－37 and an $5 \mathrm{X}-100$ ．HON is located at 6755 ．Logan，Littleton，Colo．Traffic： W曰SCT 364．K日BMQ 270，DVB 178．KดDUR 23．ZWL 12，KøACJ 6．WøYVF 5，KøKOY 3．W曰TMN 3， Kísfaj 1.

MINNESOTA－SCM，Mrs，J，vdia S．Johnson， W夭K．JZ－Asst．SCMI：Rollin O．Hall．ALST．SEC：TUS． PAMs：OPX and KøEPT．RMs：RIQ and KøZD．Net Secretary NYM attended the National Science Institute for Chemistry teachers in Minneapolis．K OVPO has a new Valiant on the air．WMA worked 4⒋ Tel Aviv． Israel．IUXX purchased a KWM－2．KøSNG installed a Hornet B－500 tri－hander with a rotator．OT（T operated ＂＂ham＂station in Vatican City to contact his home while traveling in Southern Eurone．KøRSL and KøVTG passed their General Cl．exams．KíISV entered Nazareth passed their General Cl．exams．Kippointered Nazareth MZR，KøKKQ and KøJYJ as ECs；KLG as ORS； IIGMNY as OPS and TUS as SEC：Cancelled appoint－ ments（for inactivity or per request）：BEI，DFP， FoisV，JCF and LLM as ECs；RA and Jigidy as OOs；and KOIDV as OBS．OGP is the new EC of Rice County．KNбCVK，age $12 \frac{1}{2}$ ，reqistered for the AREC in Ramses Co．The Minneapolis Radio Clut＇s Picnic was well attended by 100 hams and their families．RM KgIZD vacationed in W6－Land．SPRC members sup－ plied radio communications for the Open Gulf Tourna－ ment and the Annual Mississippi River Boat Parade． K$\because H K K$ moved to Anoka．and IRD to Pine City．Of the net reports received MJN，our training net，had the
highest traffic total．The St．Cloud Pienic registered 18.5 persons with the following League Officials attend－ ing：Dir．BLO，Asst．Dir．KLG．PAMs OPX and KøEPT，SEC TUS．Asst．SEC K日EWC；also 80 per cent of the phone and c．w．NCSs，many ECs and the SCMM VOA and TJA were winners in the inobile test． KøICG won prizes at Mankato and St．Cloud for being thin oldest ham present．TTis and libuHh made the BPL．KøEV＇W won a Miosely TA－33．RO TJA started a S．E．Minn．emergency net that meets at 1400 CST twice a month sun．on 3840 kr ．The b－meter group COS PQS．KOs EVW，PSI．CPW，JXB．KRO and FWA．provided radio rommunications for the Explorer Scout Cance Derby．Traffic：（Aug．）WØTUS $\times 24$ ， h0ORK 412，WøKJZ 190．K日SNC 181．WKU 156， W巨KYG 80．HEN 76，OPX 61．RIQ 60，BUO 55 ， KøQBI 55，WøD（QL 50，K月IZD 50．WøPET 48．KLG 47
 VPO 29．INT 29．K＇ßJJ 27，VXW 26，QYY 22．SBB 20. SNG 18．HIW＇17．IKU 16．＇TWM＇16，WGUMA 15 KGRHN 14．MGT 13．WYV 13．ISV 12．WGSZJ 9 KOOBT 8．OQT 7，MNY ${ }^{\circ}$ ．W円THY 6，KOKYK 5， WのWVT 5，KøQLM 3，WøOET 2，KøUKL 2．（July） IVGV＇SO 39．OET 4.

DELTA DIVISION

L．OUISIANA－SCM，＂Thomas J．Morgavi，W5FMO －．．The Luuisi：ına Section C．W．Net，LAN．is now a unit of the National Traffic Nvstem，operating on 3615 kc．Mon．through Fri．1900－1945 ©ST．Net controls are C＇EZ．MXQ，K5UYI，K5IGW and K5LZA／5．This is your net．Call in and take traftic ior your locality．OES UQR is dining some fine work on 50 Mre．The New Iheria ARC members，with two technicians from the local airbase and two others from the lncal radio sup－ ply house went to sce what could he done ahout getting GMO＇s s．s．b．rig back on the uir．K5SBF is getting his AREC Net yoing on 3885 kc ．K5UYL has a new $S X-101$ with has GSB－101 on his 32S－1．K5．AGJ thanks everyone for the＂get well＂cards sent to him while he was hos－ pitalized．4LDM／5 is back on the air after a vacation． K5ARH finisher the 4－400．A final in the grounded grid and is driving it with his HT－32A．IISXO，a new and is driving it with his GT－32A．IVASXO，a new hoth the New Orleans and Jefferson Radio Clubs． K5PQG．recently oi Shreveport．is now portable l＇E2． sUM is sporting a pair of 4×250 on a linoleum－ panelled final that works just out of this world．Your SCMI had a very fine meeting with the Lake Charles ARC recently at the local Ked Cross huilding．While driving through Baton Rouge your SCM noted that colue fine antennas are strung aboult the residence of HRC．K5AHS is doing a resident M．D．stint at C＇harity Hospital in New Orleans．K5ARH has been appointed OPS．DPJ．with his FB s．s．b．signal，will be transmit－ ting ARRL Ofticial Bulletins．Recent renewal of ARRL appointments include K5ESW．OO－I：CEZ，RM and ORS：K5LKC．OPS：MXQ，SEC：K5UYL，ORS and OPS．Traltic：W5CED 299，Ji5AGJ 253 ，UYL 111 ， LZA／5 93．W5MXC 86，W4LDM15 9，K5ÖKR 9.
MISSISSIPPI－SCM，Floyd ©，Teetinn．WSMUG－ Senior citizen RIX has heen elected a Commissioner of the City of Hattieshurg．It seems that Pat retired from the workaday world and then proceeded to get his ticket．However，the call of politics was ton inuch． We in Mississippi are proud of Pat．We know that Hattiesburg and amateur radio will both benetit from Pat＇s labors．DLA and SPX have heen recent visitors to the hospital．We are glad to report that both are doing better．The Magnolia Net held its annual meeting at Roosevelt Park and a fine time was had by all．It seems that VAK lost his shoes recently．Ask him about it．The Magnolia Net handled 64 formal and 103 infor－ mal messages during August．NCSs for August were K5IHQ，K5PPI，K5VAK，K5ZSU，NRU and K5SQS． Traffic：K5SQS 39.

TENNESSEE－SCM．R．W．Ingraham，W4UIO－ SEC：K4EJN．RM：FX．PAMs：UOT and PAH．WBK reports that nobody calls CQ on 50.5 Mc ．in Memphis without an answer．UVP has new beams，an eight－ element on 6 and a ten－over－ten for 2 meters and adds West Virginia and South Carolina to make his 2 －meter standing at ten states．K4MCO is now in Marietta．Ga．UTI is in Paducah．Ky．TDZ is finish－ ing his 432－Mc．equipment．PL savs he is having grow－ ing pains with 4 TO keyer．K4RSU is on 6 meters with a Sixer．K4KYL and ZBQ made the news by （Continued on page 112）

SAVE UP TO 50\%
 WITH HEATHKIT
 QUALITY ELECTRONICS

NOTE: 6 METER VERSION MODEL HW-10 COMING IN JANUARY 1961

EXPECTED SHIPPING DATE DECEMBER 4, 1960

NEW COMPLETE MOBILE OR FIXED 2-METER TRANSMITTER, RECEIVER COMBINATION . . . ALL IN ONE COMPACT UNIT

- Tracked VFO and Exciter Stages for single knob tuning
- Up to 10 watts RF output to antenna
- Built-in Low Pass Filter
- Built-in 3-way Power Supply for 117 V. AC, $6 \mathrm{~V} . \mathrm{DC}$ or 12 V . DC operation
- Push-to-talk Ceramic Element Microphone

"PAWNEE" 2-METER TRANSCEIVER KIT (HW-20)

More features, quality, performance and versatility are designed into the new "Pawnee" to bring you the finest in completc AM and CW facilities on the 2meter amateur band. The transmitter section features a built-in "'FO with all frequency determining components mounted on a "heat sink" plate for temperature stahility . . . plus, four switch-selected crystal positions for novice, CAP and Mars operation. VFO and all exciter stages are tracked for convenient single knob tuning over any 500 KC band segment (greater excursions require simple re-peaking of final). A VFO "spot" switch is provided for \%eroing-in signals with transmitter off.

A 6360 dual tetrode rinal RF amplifier provides up to 10 watts of power output to the antenna and a built-in low pass filter is incorporated to suppress harmonics and other spurious radiation which might reach the antenna. The dual purpose modulator provides a full 10 watts of audio for high level plate modulation of the final RF amplifier or 15 watts of audio for public, address operation, selectable with a push-pull switch.

The receiver is a superheterodyne using double conpersinn with the first oscillator crystal controlled for high stability. All oscillators are voltage regulated. The large, slide-rule type dial with vernier tuning prorides ample bandspread for both receiver and VFO tuning. Also featured is an RF gain control. BFO, ANL, squelch, $\mathrm{Al}^{\prime} \mathrm{C}$ on/off switch and front pancl tuning meter. Meter is automatically switched to read received signal strength or relative power output. Meter and tuning dial are edgc illuminated for high visibility.

A unique built-in 3 -way poucr supply allows 117 $V A C$ fixed station operation or 6 or 12 VDC mobile operation simply by using either AC or DC power cables furnished. The power supply uses heavv-duty vibrator system with silicon type rectifiers in bridge circuit configuration. All sections of the unit are completely siielded for maximum stability and noisefree operation.
The "Pawnee" comes complete with built-in speaker, two power plugs (AC \& DC), heavy duty mower cables, primary fused relay for mobile installation, mounting bracket and push-to-talk: ceramic element microphone with coil cord and mounting clip. Cabinet measures $6^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{D}$.
Model HW-20... 34 Ibs....
............... $\$ 20.00$ dn., $\$ 17.00$ mo. $\$ 199.95$
more exciting FIEATFIGIFTS to choose from

NEW PHONE AND CW TRANSMITTER KIT (DX-60)

SPECIFICATION8-Power input: 90 watts peak carrier controlled phone or CW. Output impedance: 50.72 ohm (coaxial). Output coupling: Pi network. Operation: CW or AM phone-crystal or VFO control. Band cove erage: 80 through 10 meters. Power requirements: 117 V 60 cycle AC, 225 watts. Dimensions: $1314^{\circ} \mathrm{W} \times 111 / 2^{*} \mathrm{D} \times 6 K^{*} \mathrm{H}$.

This successor to the famous DX-40 offers far more than any other unit in its price and power class. Its smart modern appearance, clean, rugged construction and conservatively rated components all add up to ease of assembly and trouble-free operation. New features include a built-in low pass filter for harmonic suppression, neutralized final for high stability, grid block keying for excellent keying characteristics and easy access to crystal sockets on rear chassis apron. A front panel switch selects any of four crystal positions or external VFO. Modulator and power supply are built-in. Single knob bandswitching and the pi-network output provide operating convenience. A tune-operate switch provides protection during tune-up and a separate drive control allows adjustment of drive level without detuning driver. May be run at reduced power for novice operation. A fine kit for the beginner as well as general class amateur.
Model DX-60. . . $27 \mathrm{lbs} . .$. . $\$ 8.30 \mathrm{dn}$. , $\$ 8.00 \mathrm{mo}$. $\$ 82.95$

Look to heathitio diliststrom for the

The "Chippewa" and KS-1 power supply combination team up to bring you performance unsurpassed in amateur rig equipment at the lowest cost anywhere! Compare price, features and specifications with any other unit on the market today, and you'll see why any ham would be proud to call this pair his very own! It is the only kilowatt rig with oil-filled, hermetically sealed plate transformer and filter choke and features full kilowatt power in ALL modes of operation (1500 watt Class C capability on dummy load tests). Any of the popular AM, CW and SSB exciters can be used as a driver; provides maximum legal amateur power inputs on 80 through 10 meters, Class AB1 or Class C operation. Power input in Class AB1 attains 2.000 volts P.E.P. with much better linearity than can be obtained with lower plate voltages or other modes of operation.
Model KL-1 "CHIPPEWA" KILOWATT LINEAR AMPLIFIER. . $70 \mathrm{lbs} . . . \$ 40.00 \mathrm{dn}$., write for details. . $\$ \mathbf{3 9 9 . 9 5}$ Model KS-1 POWER SUPPLY... 105 lbs.
$\$ 17.00 \mathrm{dn} ., \$ 15.00 \mathrm{mo}$.
$\$ 169.95$

ten transistor battery powered circuit!
 "MOHICAN" GENERAL COVERAGE RECEIVER KIT (GC-iA)

Many firsts in receiver design bring you complete portahility, high sensitivity, selectivity and stability in this outstanding communications receiver. Features tentransistor circuit, flashlight battery power supply, ceramic IF "transfilters," Zener diode voltage regulation front end, telescoping $54^{\prime \prime}$ whip antenna, S-meter, flywheel tuning and large slide-rule dial. Covers 550 kc , to 32 mc in five bands with calibrated bandspread scales (oscillator tuning) on amateur bands 80 through 10 meters, including 11 meter citizens band. Sensitivity is better than 2 uv for 10 db signal-to-noise ratio on amateur bands. GC-1A quickly converts from battery power to 117 VAC operation with plug-in power supply XP-2 for fixed station operation. 20 lbs.
Model GC-1 A (kit) . . $\$ 11.00 \mathrm{dn}$., $\$ 10.00 \mathrm{mo} .$. . $\$ 109.95$ Model GCW-1 A (wired) . . . $\$ 19.35 \mathrm{dn}$., $\$ 17$ mo. $\$ 193.50$ Model XP-2: 117 VAC power supply for GC-1

2 lbs.
$\mathbf{\$ 9 . 9 5}$

100 KC CRYSTAL CALIBRATOR KIT (HD-20)

Perfect for amateur or service shop use in dial calibration checks of communications receivers. Provides marker frequencies every 100 kc between 100 kc and 54 mc . Transistorized and battery powered for complete portability. Accuracy assured by $.005 \%$ crystal furnished.
Model HD-20... $1 \mathrm{lb} \$ 14.95$
now a new improved 6 meter model joins this famous transceiver series

Attn. HW-29 owners: Convert your "Sixer" to the new improved " A " model by ordering this easy to install conversion kit. Allows use of 8 mc crystal for maximum stability.
Model HWM-29-1. . . 1 lb. $\$ 4.95$

2, 6 \& 10 METER TRANSCEIVER KITS

(HW-30, 29A, 19)
The new 6 meter HW-29A joins "Tener" and "Twoer" to bring you top transceiver performance at the lowest prices anywhere. Like the "Twoer," the new HW-29A multiplies to its output frequency from an oscillator using an 8 mc fundamental crystal for rock steady stability. All models have crystal controlled transmitters and tunable, superregenerative receivers with RF preamplifiers. Receivers pull in signals as low as 1 uv and the 5 watt transmitter input is FB for emergency work or "local" nets. Features include transmit-receive switch, metering jack, ceramic element microphone, and two power cables. Less crystal. 10 ihs. each.

best values in Amateur Radio

UTILITY AC POWER

SUPPLY KIT (HP-20)

Furnishes filament and plate voltage for converting Heathkit "Comanche" and "Cheyenne" or other mobile amateur gear to fixed station operation. Delivers 6.3 VAC (i) 8 amps or 12.6 VAC if 4 amps for filaments and 120 watt ICAS DC plate power of 600 VDC (ai 200 ma or 600 VDC (a) 150 ma \& 300 VDC (i.. 100 ma . Less than 1% AC ripple.
Model HP-20... 15 lbs .
.\$29.95
MOBILE POWER SUPPLY (HP-10)
Heavy-duty, all semi-conductor circuit furnishes all power required to operate Heathkit mohile gear. With 12.6 v input supplies 600 VDC (a 200 ma or 600 VDC (a) $150 \mathrm{ma} \& 300$ VDC (e) 100 ma , and -125 VDC iii 30 ma .120 watt ICAS output rating. Extruded aluminum heat sinks provide efticient cooling of power transistors.
Model HP-10... 10 lbs.
$\$ 44.95$

Model HP-20

ORDER DIRECT BY MAIL
OR SEE
YOUR HEATHKIT DEALER

How to Acquire a Permanent Savings Habit in Minutes

Learning to save isn't the easiest thing in the world. But thousands of Americans have discovered a way that requires no learning buying U.S. Bonds on Payroll Savings. Just ask your company's bond officer to set aside any amount you wish each payday. You'll be surprised how little it changes your spending habitsand how quickly your savings will grow. Try it and see!

U.S. SAVINGS BONDS ARE MORE THAN A GOOD WAY TO SAVE

You save automatically with the Payroll Savings Plan.
You now get 33% interest at maturity. You invest without risk under a U.S.

Just sign your name and you're saving! Buying U.S. Bonds on payroll savings requires no "saving skill". Your payroll clerk does the saving for you.

NOW every Savings Bond you own-old or new-earns $1,2 \%$ more than ever before.

Government guarantee.
Your money can't be lost or stolen.
You can get your money, with interest; anytime you want it.
You save more than money-you help your Government pay for peace. Buy Bonds where you work or bank.

You Save More Than Money With U.S. Savings Bonds

The U.S. Government does not pay for this advertising. The Treasury Department thanks The Advertising Council and this magazine for their patriotic donation.

2 Meter 5 Elements

Ho-Gain's 5 element 2 meter Hi-Hander is smal be rotated by any TV antenna rotor and may droigned for seatx of troubletree installation it is alsu very convenient for emi-nermanent or portable VHF applications The beam is eonipiet. ly factory protuned and quick and easy to as:iemble. May be fed with either cuax or paralleh ransmission lines. Honm lensth 5' 4. Inngest element 41:! inches * 9db Gain

2 Meter IO' Element

The world's most pousular ${ }^{2}$ meter heam, the small and light weight (41/4 younds) enough to be rotated by any TV rotator. NO COMPROMISE DFSIGN DEVELOPS THFF TRFMENNDCIS FOK WARD GAIN OF 13.4IB WITH EXCEILENT FHUNT TO HACK RATIO RHARACTERIS'TICS. Hoom 12 feet long, longest element 416_{1} inches. May be ied with either coaxial or parallel transmission lines.

* $_{13.4 \mathrm{db}}$ Gain $\$ 1 / 95$
MODEL 210

11/4 Meter II Element

The same high quality construction as the 2 meter series results in an extromely strong yet light weight (siv/ wounds) EZU megacycle beam with a boum 12 feet long and the longest elemernt of 27 inches A pretuned advanced design nilied ratio dipole is used and specifically dasigned for low loss 450 ohm "pren wire tranxmust for minimizing feedline losses on $2 \because 0$ meca nust for minimizing feedine losses on 220 meca in many pionecuing performer has proven itsel challenging VHF band Uptimum siacing aud himh \& rod element design reiult in the very hisih grin of 14.2 db .
$* 14.2 \mathrm{db}$ Gain $\$ 1395$
MODEL 111

3/4 Meter 13 Element

One of the highest gain (16.1db) and officient extended multi-element. Yasis ever cummercially manufactured for amateur communications purposes, the Hy -Gain $3 i$ meter, 13 .lement Hi bander makes consistent long-range mintacts on 430 megacycles a reality. Bnom length x feet. Songest element 133_{\ddagger}^{\prime} inches. Net wt only $\% l_{i}$ lbs.
$\underset{\substack{16.1 \mathrm{db} \\ \text { MODEL } 313}}{*} \$ 1295$

antenna products

[^19]The A.R.R.L.Antenna Book,
Ninth Edition.
ALL HIBANDERS GUARANTEED FOR 1 YEAR

AN HONEST STEP FORWARD IN DESIGN WITH THE NEW
 Hethy-gaint ${ }^{2}$ AND 3 ELEMENT
 THE 3-ELEMENT THUNDERBIRD

Herc is the eud result of an intense engincerims program initiated to min produce the finest 3-Elemest trap tribander for amateur ermmunications on 10,15 and 20 meters. Unconditionally guaranteed to be better sfinstructed and to outperform any other 3 -Element triatr tribander regardless of priee Compare the 3-Element thínderbird in constructions\%cight, trap design and PRLEE. Ovcrall boom lensth 14 ft . Longest element 26 ft . OUTSTANDING FEATURES OF THE 2 AND FELEMENT - IfúfDERBIRDS

All atiminum construction of 2 " ary hooms and $1, \%$ telescoping to " OD elements . . . New
 plastic and steel gusset bracket assemblies; - all steel fixtures and harchware "iridite" treated in accordance with military specifications. 100\% rust proof.

LOW SWR

New Low Price 58995

 ERBIRD
The 2 -Element Thunderbird is extremely light weight and easy to handle; installs in a matter of minutes. It goes up almost anywhere . . apartment roofs, crowded city lots, small suburban homes . . . Wherever space is a problem. This little beam develops maximum gain possible in a ${ }^{2}$ Element tribander. Hotates easily with a TV-Rotator - pack it up and take it with you when you move. Boom length only 6 ft . Longest clement 26 ft .

MOBILETTE 61, International's new improved all transistor, crystal controlled converter provides a "quick and easy" way to convert your car radio for short wave reception. MOBILETTE 61, units cover a specific band of frequencies providing a broad tuning range. Mobilette units are miniature size and quickly interchangeable.

Check these all New features . . . New and improved circuit for increased. gain . . . New internal jumper for positive and negative grounds . . . New RF amplifier, mixer/oscillator . . . New separate input for broadcast and short wave antennas . . . Mounting bracket for under dash installation.

MOBILETTE 61, is available in a wide choice of frequencies covering the Amateur bands 75 through 6 meters, Citizens band, Civil Air Patrol 106

$$
\begin{aligned}
& c_{1} v_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { CTIZEN mosmets } \\
& E \\
& \text { with improved circuit } \\
& \text { for mobile short wave reception }
\end{aligned}
$$

Write for International's complete catalog of precision radio crystals, and quality electronic equip-ment-yours for the asking.

low band frequencies, WWV time and frequency standards. Any frequency in the range 2 MC to 50 MC available on special order.*

Designed for 12 VDC, MOBILETTE 61 will operate on 6 VDC at reduced output. Power connector plugs into cigarette lighter socket.

See the MOBILETTE 61 at Your Dealer Today.
$\begin{aligned} & \text { Mobilette } 61 \\ & \text { Cataleg No. }\end{aligned}$ units cover these short wave frequencies.
$630-110$
Frequency $\quad \begin{aligned} & \text { 6 meters (Amateur) }\end{aligned}$ 50-51 MC

Complete, ready to plug in and operate only $\$ 22.95$

AN APPEAL TO INTELLIGENCE

A product that is consistently advertised in QST month after month, year after year, has to be good. Over 10,000 GOTHAM antennas have been purchased by QST readers. Even the "price-is-no-object" customers choose GOTHAM antennas on the basis of performance and value. Select your needs from this list of 50 antennas:

Airmail Order Today - We Ship Tomorrow GOTHAM Dept. qst 1805 PURDY AVE., MIAMI BEACH, FLA.
Enclosed find check or money-order for:

TWO BANDER BEAMS

A full half-wave element is used on each band. No coils, traps, baluns, or stubs are used. No calculations or machining required. Everything comes ready for easy assembly and use. Proven Gotham Value!

TRIBANDER

Do not confuse these full-size Tribander beams with socalled midgets. The Tribander has individually fed (52 or 72 ohm (oax) elements and is broad banded. It does not have baluns, coils, traps, or other devices intended to take the place of aluminum tubing. The way to work multiband and get gain is to use a Gotham Tribander Beam.
[] 6-10-15 $\$ 39.95 \quad \square$ 10-15-20 $\$ 49.95$

2 METER BEAMS

Giutham makes only two different two meter beams, a six-element job and a twelve-element job. They are both Yagi beams, with all the elements in line on a twelve foot boom.
\square Deluxe 6-Element $9.95 \quad \square$ 12-EI 16.95

6 METER BEAMS

New records are heing made every day with Gotham six-meter beams. Give your rig a chance to show what it can do, with a Gotham six-meter beam.
[] Std. 3-El Gamma match 12.95
$\square \mathrm{T}$ match 14.957 Deluxe 3-El Gamma match 21.95
IJ Std. 4-El Gamma match
16.95
[] Deluxe 4-El Gamma match 25.95

T match 24.95
T match 19.95
7 T match 28.95

10 METER BEAMS

'Ten meter addicts claim that ten meters can't be beaten for all-around performance. Plenty of DX and skip contacts when the band is open, and $30-50$ miles consistent ground wave when the band is shut down. Thousands of Gotham ten meter beams have been perking for years, working wonders for their owners, and attesting to the superior design and value of a Gotham beam.
$\left[\begin{array}{lll}\text { Std. 2-El Gamma match } & 11.95 \quad \text { T match } 14.95\end{array}\right.$ T match 21.95
Std. 3-EI Gamma match 16.95 Deluxe 3-El Gamma match 22.95 Std. 4-El Gamma match 21.95 Deluxe 4-EI Gamma match 27.95

Now! Ruggedized 6,10, 15 METER BEAMS

Each has a TWIN boom, extra heavy beam mount castings, extra hardware and everything needed. Guaranteed high gain, simple installation and all-weather resistant. For 52,72 or 300 ohm transmission line. Specify which transmission line you will use.Beam \#R6 (6 Meters, 4-El). . . . $\$ 38.95$
\square Beam \#R10 (10 Meters, 4-EI). . 40.95
Beam \#RI5 (15 Meters, 3-EI). . 49.95

15 METER BEAMS

Fifteen meters is the "sleeper" band. Don't be surprised if you put out a quick, quiet $C Q$ and get a contact half-way around the world. Working the wurld with low power is a common occurrence on fifteen meters when you have a liotham beam.Std. 2-El Gamma match $19.95 \quad \square$ T match 22.95
\square
Deluxe 2-El Gamma match 29.95
\square Std. 3-El Gamma match
26.95T match 32.95
\square Deluxe 3-EI Gamma match 36.95
\square T match 39.95

20 METER BEAMS

A beam is a necessity on twenty meters, to battle the QRMI and to give your signal the added punch it needs to over-ride the high power boys. Hundreds and hundreds of twenty meter beams, working year after year, prove that there is no better value than a Gotham twenty meter beam.
$\square \mathrm{St}$
$\square \mathrm{D}$
\square

$$
\text { Std. 2-El Gamma match } 21.95 \quad \square \text { T match } 24.95
$$Deluxe 2-El Gamma match 31.95Std. 3-El Gamma match 34.95T match 34.95

D Deluxe 3-El Gamma match 46.95 T match 49.95
(Note: Gamma-match beams use 52 or 72 ohm coax. T-match beams use 300 ohm line.)

IS K6INI THE WORLD'S CHAMPION DX OPERATOR?

Judge for yourself! Read his letter and count the DX he has workedwith only 65 watts and a $\$ 16.95$ Gotham V-80 Vertical Antenna.

2405 Bowditch, Berkeley 4, California January 31, 1959
GOTHAM
1805 Purdy Avenue
Miami Beach 39, Florida
Gentlemen:
I just thought I would drop you a line and let you know how pleased I am with your V-80 vertical antenna. I have been using it for almost two years now, and am positively amazed at its performance with my QRP 65 watts input! Let me show you what I mean:

I have worked over 100 countries and have received very fine reports from many DX stations, including 599 reports from every continent except Europe (589) ! I have also worked enough stations for my WAC, WAS, WAJAD and ADXC awards, and I am in the process of working for several other awards. And all this with your GOTHAM V-80 vertical antenna!

Frankly, I fail to see how anyone could ask for better performance with such low power, limited space and a limited budget. In my opinion, the V-80 beats them all in its class.

I am enclosing a list of DX countries I have worked to give you an idea of what I have been talking about.

Wishing you the best for 1959, I am
Sincerely yours,
Thomas G. Gabbert, K6INI (Ex-TI2TG)

FACTS

ON THE GOTHAM

V-80 VERTICAL ANTENNA

- If K6INI can do it, so can you.
- Absolutely no guying needed.
- Radials not required.
- Only a few square inches of space needed.
- Four metal mounfing straps furnished.
- Special B \& W loading coil furnished.
- Every vertical is complete, ready for use.
- Mount it at any convenient height.
- No relays, traps, or gadgets used.
- Accepted design-in use for many years.
- Many thousands in use the world over.
- Simple assembly, quick installation.
- Withstands 75 mph windstorms.
- Non-corrosive aluminum used exclusively.
- Omnidirectional radiation.
- Multi-band, V80 works 80, 40, 20, 15, 10, 6.
- Ideal for novices, bul will handle a Kw.
- Will work with any receiver and xmitter.
- Overall height 23 feet.
- Uses one 52 ohm coax line.
- An effective modern antenna, with amazing performance. Your best bet for a lifetime antenna af an economical price. ONLY \$16.95.

YOU COULD
WORK
WONDERS WITH
A
GOTHAM
VERTICAL
ANTENNA!

FILL IN AND SEND TODAY!

Airmail Ordor Today — Wo Ship Tomorrow

GOTHAM Dopt. ast
1805 PURDY AVE., MIAMI BEACH, FLA.
Enclosed find check or money-order for:V40 VERTICAL ANTENNA FOR 40, 20, 15, 10 AND 6 METER BANDS. ESPECIALLY SUITED FOR THE NOVICE WHO OPERATES 40 AND 15
$\$ 14.95$

V80 VERTICAL ANTENNA FOR 80, 40, 20, 15, 10 AND 6 METER BANDS. MOST POPULAR OF THE VERTICALS. USED BY thousands of novices, technicians, AND GENERAL LICENSE HAMS... \$16.95
\square V160 VERTICAL ANTENNA FOR 160, 80, 40, 20, 15, 10 AND 6 METER BANDS. SAME AS THE OTHER VERTICAL ANTENNAS, EXCEPT THAT A LARGER LOADING COIL PERMITS OPERATION ON THE 160 METER BAND ALSO
\$18.95

HOW TO ORDER. Send check or money order directly to Gotham. Immediate shipment by Railway Express, charges collect. Foreign orders accepted.

Name
Address
City

THE

The design and production of communications' receivers today is considerably different than in past years for two principal reasons. Costs have risen precipitously; to manufacture a receiver in the face of this and keep the price reasonable requires good tooling, long runs, and little allow'ance for error. Secondly, there are greater demands placed on receiver operation than ever before, versatility . . . handling ease . . . yes, amateurs have come to ask for parameters of performance almost unheard of in past years.

RME in announcing the new 6900 states without equivocation that this receiver performance is unmatched by anything near its price class. The 6900 is engineered to give optimum service for all modes of amateur communications - not merely one. Engineered under the supervision of Russ Planck, W9RGH, the 6900 has as many advanced pioneering features as its extraordinary namesake, the world famous RME69, which was the first band-switching communications
receiver ever produced - over 20 years ago and still widely used today.
What makes the 6900 so Hot? First, meticulous attention to details so that every circuit is performing in an optimum manner. Second, an ingenious function selector, the Modemaster. Every circuit in the 6900 is designed to provide high selectivity; frequency stability, sensitivity and low internal noise. Finally, inclusion of all function controls necessary for a modern communications receiver... vernier control knob with overide clutch for fast tuning; RF gain; AF gain; antenna trimmer; band selector, stand-by/receive/calibrate/transmit; ANL; Tnotch filter; calibrate adjustment; band selector. Whether you operate CW; SSB; or AM, you will have the almost uncanny feeling the 6900 was designed solely for you - this is the test of a modern communications receiver that we believe only ours can meet on the operating desk.

[^20]
- Improved Fast Attack AYC Circuit.
 - Selectable Sideband.

- Panel of Attractive Groy "Clad-Rex" Vinyl Bonded to Aluminum with Charcoal Trim.
- Front Panel Controls Re-Grouped for Ultimate Operating Ease and Convenience.
- SENSITIVITY: 1 mv. 30\% Modulation for 100 mw output.
- S-N-R: 10 db at 1 mv Input.
- SELECTIVITY: 500 cps, 6 db down, in CW mode.

offers optimum pefformance on SSB, aM or CW with no compromisises

NEW...VERSATILE

Model 6900
MODEMASTER SWITCH

Gives One Hand Knob Control of 5 Distinct Functions

(A When in the indicated AM position, a full-urave diode detector is used. The IF frequency response curve is 3.5 kc wide at 6 db down and, the AVC system is switched for fast attack/fast decay operation. The AM band width for this area is 3.5 kc .

B In this AM position all of the conditions described for function A above remain the same except that the IF response curve is narrowed to 2 kc to reject nearby signals on crowded bands.
C In the LSB (Lower Side Band of SSB carrier) position a series of steps occur.
(1) The AVC system is switched to a fast attack/slow decay performance.
(2) The Beat Frequency Oscillator is turned on and positioned for desired sideband reception.
(3) The second conversion oscillator frequency also shifts for reception of desired sideband while the IF response curve remains the same.
(4) An advanced Product Detector switches in to replace the Diode Detector in all SSB and CW positions.
(D) In the USB (Upper Side Band) the changes cited in function C above also occur but are designed to accommodate the Upper Side Band.
(E) When switched to the CW position:
(1) The band pass of the IF System is reduced to 500 cycles (.5kc)
(2) The BFO Injection Control and BFO Pitch Control becomes operational.
(3) The AVC system is changed for optimum when operating under CW conditions.
(4) The second conversion oscillator is positioned for reception of the upper sideband beat note.

Station Activities

（Continued from page 98° ）
bouncing a 6－meter signal on Echo 1． CQE ，working bortable from Colorado，talked with BXP and WBY． TTJ and K4KEK have new OTHs in Oak Kidge． K4LTA is working to boost his signal with an 814 linear．FS was pleased to ses 22 c．w．net members at， the（iatlinburg meeting．Traffic：W4PL 1098，K4ALP 752．BWS 276．IV4FX 86，PQP 62，VJ 55，E4YFC 50， W4PAH 23．EIN 20．TZG 20，K4FNR 17．OUK 15. W4UIO 14．TYV 11，K4OEK 10，MAC 8．W4UVP 8， K4LPW 5, W4UVL 4；2BQ 3，K4KYL 2，RSU 2， W4SGI 1．íJuly！W＇4UV＇P 14，V＇TS 4，TDZ 2．

GREAT LAKES DIVISION

KENTUCKY－sCM，Rohert A．Thomason．W4SUD－ Asst．SCM：W．G．Alcock，4CD．A．SEC：BAZ．RM： K4CNH．PAMs：K4HCK and sZB．V．H．F．PAM： K4LUA．K4KWQ is a big help to（xH，assisting as manager of KYN．KYN＇s total traflic was 166．A new ORS and KYN member is RNF，of Lexington．K4IFB has moved to Indiana． K 4 DFO has 91 confirmed for TXCC．KN4QDF reports the Tri－state Novice Net has fair attendance but low tratlic．We are sorry to lose II4BUB as Kentucky＇s most autive OO．K 4 QCQ haw a new Heath＂sixer．＂CDA has completed a new emer－ zency transmitter for use with the c．d．kenerator．AlH worked A3USA air mobile．K4VUD reports great wind damage to the uuad and tower．The Audubon Amateur Radio society has hig ed．plans．K4VDN is QRT sehool．GSH is experimenting with sixnals retiected from Erho 1 on 2 meters converting APS6 for 1296 Mc．There is good b－meter activity in fnusville．Li4LOA is heard－ ing un the new H －meter M1ARS net．K $4 Z Q \mathrm{Z}$ is on s．s． d ． and working 15 －meter DN．The Louisville V．H．F．Net was active at the speed－hout races．K4AVX is QRT sichool．OO reports were teresved from K4ZRA，K4ZQR． sud K4DFO．K4LRX has a new hean and a hio－ft． tower and is working DD．He also transmits AKKL Ottirials Bulletins an 15 meters with a tape recorder． K4HTO is taking the s．s．b．rig back to MI．T．K4ZRA has a new 20 －meter ground plane for 36 toward DACC． Tratfic：W47DR 484，K4KWQ 90. W4SUD $50, \mathrm{~K} 4 \mathrm{CSH}$ 4h，UFO 41，SFD 41，J＇DO 39．OYI 32，W4CDA 27，

 3．JUI 2，KN4QDF 2，W4RNF 2，HTD 1，K4IFB 1， QHZ 1．ZRA 1.

MICHIGAN－GCM，Ralph P．Thetreau：W＇8FX— SEC：YAN．KAIs：SCW，MC．Q（20，and FWQ．PAMs： K8CKD，K8JUG and A＇MB．V．H．H．PAMs：NOH and PT．EC appointment went to TOX；OQ to EMD： ORS to ILP，NUL，SWG．WVL zid K8BQD；WPs to JYJ，THZ and IFS：OES to EMDD．FZ and PT； OHS to IWV．PT and K8NHC．Lucal visitors： $3 W \mathrm{FC}$ and 3WRE．（iES reports were ceceived from NOH，BFF， PYO and FZ．KళlNU has worked over f00）stations． 30 states，with $2 \mathrm{~s} / 4$ watts to a $40-\mathrm{ft}$ ．T． ACO ten－element， heam on io Mc．PYQ had to huild a $3.4 / 4 \mathrm{i}, \mathrm{i}$ ．converter to make all $30-\mathrm{Mc}$ ．i．t．ronverters fit his $75 \mathrm{~S}-1$ recelver． NOH Junked the＂hedspring＂antenna for 432 Mc．and ways the 2 －meter antenna does as good a job．The U．P．Hamfest，put un by the Twin sault RC．was a success with 300 attending，including UPB，AQA，CQU， The I＇H．F．Hamiest，same time．Hiar saugatuck．had 138 in attendance，including V．H．F．PAMs NOH and PT．（VQ（West．Mich．1I．）gave tine publirity．k8BGZ yot hack from the Colorado springs boy Scout shindig． K8KYS worked New lork with mobile on 2 meters． E．MD had to move his antenna farm to a new location hecanse of the new super－highway．K 8 KCO also is moving because of antenna－lead cutting！The vandal is known，but no proof！＇The Mason ©n．KC＇is raising funds to fix up mobile in a hus．IOQ is working on the SE＇T．NGQ＂enjovs＂the overhat on the HQ－ 120X！AAU and RX were mobile control for the Frazer Parade．Muskegon RC officers are KRKPS，pres．； FDE，vice－pres．；K8ROH，secy．；K8BRJ，treas，； K8CBL，act．wigr．ZHB is working on a generator proiect．SWF says 15 is＂lively＂for 15 minutes，when ＂Eicho＂passes over K甘KIT won the II．P．mobile contest．L8EEWI cured the thirp in the Ranger．H8LOS worked in the VFW（onvention and Silver Cup Races． Nice OES reports were received from PT and IBBGZ． PT worked K2CBA， 850 miles，on 220 Mc．Traffic： （Aug．）WXELW 434．JTQ 221，OCC 177．FWQ 170 ，
 32，KMQ 26．W8EU 25．ZHB 24，CQU 22，TBP 22， SWF 20，K8EXE 19，W8．AVD 17，HKT 17，SCW 16， K8GWZ 13，W8NOH 12，K8KIT 10．W४AHV＇9，ALG 6，

DAE 4．YAN 4，EGI 3，K8BGZ 2，EWI 2．（Julv） W8CWI 99．K8OTJ 58 ，W8ILP 2.5 ，AEM 15 ．K8CLD 15．W8UOQ 15，K8EXE 10，W8SCW 10，TIN 3.
OHIO－SCM，Wilson E．Weckel．W8AL－Ast．太CM ： 5．Frirkson，SDAE SEC：HNP．RMs：D．IE and VTP．PAM：HZJ．KN8UNO is a new ham with a WX－40 and a Mohawk reweiver．K8：MAD and MAZ are on b meters．K8DDB has a new HQ－170．K8SNB，ex－ 8．ABG of 1915，is back on the air after a lapse of 44 years．QHW recenved his W－Conn Award．K8MZS and li४NIZT have a new HT－32，a lohnson＇rhunderbolt and a $⿴ 囗 十 y$－Gain 2 BD for 40 and $x 0$ meters．KN甘UPN． the son of KIH，is a new ham．The Genevia ARA is a new club．AEB has a new Ranger and Courier com－ hination．The Cunton 1RC＇s Fecdline states that its ham directory has been printed and mailed to all stark county amateurs，li8HUI has a new Hornet Tribander． KYE and his wite varationed along the West Crast． LDR is mohile and K 8 LBZ vocationed in Cunada．The first issue of the Findlay RC＇s bulletin tells us that the club is gong to publish a ham dituctory，KN8TMC is a school teacher and is a new ham，K8TJM（ex－ W＇9．JWQ）moved there trom llinois，K2SVDi8 moved there from New Jersey and 87－year－old QP has heen named as its：＂Ham of the Month．＂Inother hullet in is in need of an editor，namely the Sipringfield ARCs $Q-\hat{n}$ ． which informs us that DCJ vacationed in Minnesotit using his new Frord，K4MJH，a former club member， visited with his rriends and EHW vacationed in Michi－ g：an．The seneca KC held a transmitter hunt and potluck monic．ioledo＇s Ham．Shark（ioxxip names K甘EHN as menic．
its $" \mathrm{Ham}$ of the Month，＂ K 8 KGL is mobile on H its＂Ham ui the Month，＂K8GGL is mobile on ${ }^{\text {K }}$
meters，TZO is mohile on 1 in meters．MHW and＂TTM vacationed in Florida．KXIISS has a new tilt－over tower
 ing out a cubical quad on 160 meters，the stork brought WKO b baby bov，hylDN is a new han yad KNE＇TVM and KNBTYX ate a himsband－wite team． k8GVV and KN8UKH have new SM99s．KN8VLU has a new DX－40．DAE made BPT，in August．New ap－ mintments in August were kyMTI as ORS，K8HSU as $E C$ ：and K8PUT as OES．The Lancaster and Fuirfield county ARC has planned a twelve－week rode and theory class．IF8RMY received his General Class license． The B．\＆W．Penn．－Ohin V＇H．F．Net was formed witi h8CMI pres．；h3GGZ，vice－pres．；BBF，net eontrol； and h8RWG．secv．IXXDBV has a new NC－300．K8MCG hay a new $5 \mathrm{X}-100$ ．SLF has a chemical factory at his QTH．The Tire Town RC handled the eommunications it the Manchester Finir and held its pienic with a hidden transmitter hunt．won by KxCLS．New mobiles ute ATH，PYZ，OLY，K8s LDU，LUV and NYM．K8DHJ and K8DJJ enlisted in the Navy．JEI is mobile on 6 meters．IBX received a Certificate Hunters＇erertiticate and TPA．Columbus ARA＇s Guraseope tolls is that TYY worked W＇4HHK on 420 Mc．，ex－P．10GE helped hild the elub）＇s Fipld Day antennas，the pienic brought out 6.5 amateurs and their tamilies．HUE received his HACC and the club directory is gomg to press．Rain gll morning and up until 1400 didn＇t stou， 1400 amateurs and their families from attending the Alliance Hamtest， where the Glohe Hy－Bander was won by ki8KSC，the transistor radio hy hoNJM and the Heathkit v．f．o．hv KixnyG．The Warren Hamtest was attended hy 187 amateurs and their families with a Drake 2A und ：Q multiplier won by k8ORF，a Mosley T． 133 ir．and n CDR rotor by L．Ziegler，a Johnson directional coupler and indicator by TTQ，A JT30 rrystal mike and hase hy SQJ and a 1961 Zenith $19^{\prime \prime}$ TV hy George Cooper． The Ganton ARC Pienic was attended bv 42 amateurs and their tamilies，with F 8 DHJ winning a $10-\mathrm{D}$ mike． AL received his HFRTA．Trattic：Aug．）WYD．AE 554 ． UPH 422．BZX 196．K8HKU 154，W8D（QG 100，CXM 84，K8MFY 54，W४IBX 47，К8DHJ 41．W8ZYI 36．DSZ 30，K8MTI 2s．W8CTZ 27．OKN 24．K8QRHH 23，UNQ 21．W8WYS 18．AL 16．K8BNL 9，W8QCU 8．BEW 7， K8HDO 6，W8HQK 6，BLS 4，に8OEX 4，W8WE 4． KXAYG 3，OC（＇3．W8ACN 2，CL 2，FHK 2，K8HEJ
 W8TXT 1．（June）K8MTI 16.

HUDSON DIVISION

EASTERN NEW YORK－，M，George W．Tracy， W2EFU－GEC：W2KGC．RM：W2PHX．PAMs：W2IJG and W2NOC．Sertion nets：NYS on 3615 ke ．at 1900 ； NYSPTEN on 3925 kc ．at 1800 ；SRPN on 3980 kc ．it 1600 ；ESS on 3590 kc ．at 1800；ENY（emerg．）on 29.490 Nc．（Thurs．）and 145.35 MIC ．（Fri．）at 2100 ：MHT （Novice）on 3716 kr. Sat．at 1300 ．Congrats to K2ITTV． who made BPL in Aug．and July．New appointments： （Continuti on page 114）

LOOK You'll find field-proved RCA Transistors INSIDE in RME's 4304 TRANSCEIVER

When dependability is a must, make RCA field-proved transistors your choice too. You'll find them at your nearby RCA Distributor. Or call one of the RCA Field Sales Offices listed below. For further technical information write RCA Semiconductor and Materials Division, Commercial Engineering, Sec. K-37-NN Somerville, N. J.

The Most Trusted Name in Electronics
RADIO CORPORATION OF AMERICA

Station Activities

Continued from page 112

K2SJN as EC for New Rochelle，WA2BAH as OES． We welcome ham family W2ASI．K2DEM and K2UTP， who have moved to New Rochelle from the NVC－LI section．K2I）EM is in his fourth vear at Cornell． K 2 TJB ，of（ g ．E．，was speaker at the Albany Club on hasic instruments．The committee for Old－tmers Nite at Albany was W2AWF．W2ONE and K2OTQ．This year＇s Field Day resulted in the best score in recent jears，according to the Schenectady Club．E．N．Y． members of the Red Cross New York State Mutual Aid Net（ 3875 kc ．the 1st，Sun．of each month at 1200） include K2CKG．W2EFU，W2FVP， 12 GCH ．W2GTC， K2HNW，WA2CGD，W2KGC，K2LKI and W2RTE． Their goal：awateur radio contact with all 104 chapters in the sitate．The Peekskill Club reports all members are planning $B-m e t e r$ uperation with walkie－talkies． W2LWI reports working Ohio，Maryland，Massachusetts and Long island on $220-\mathrm{Mc}$ ．aurora．Bob reports that W2YPM is active on 432 Mc．K2OZT is NCS on NYSPTEN each＇Thurs．night．K2BGU is using a 5894 on 220 Mc．with an eleven－element beam，With 150 watts on 50 and 144 Mc．，WA2B．AH now has 40 watts on 220 Mc．August picnics were held by both the NYSPTFN and NYS nets．Traflic：（Aug．）K2UTV 5021 ．K2 YZI 403．W2PHX 107．K2MBU／2 82，K2RKY 78，K2OZT 32， K2DEM 6，W2EFU 6．W．A2EKE 2．（July）K2UTV 4609.

NEW YORK CITY AND LONG ISLAND－SCAI． Harrv J．Wannals．W2TUK－SEC：W2ADO．KM： W2GXC．PAM ：W2UGF．V．H．F．PAM ：W2EW．Section nets：NiI， 3630 kc ．nightly at 1930 EST （regular ses－ sion）and 1815 EST（early session）and sat．and sun． gt 1915 EST．NYC－LIPN． 3908 kc．Mon．through sat． from 1730 to 1830 FiST．NYC－LI AREC， 3908 kc．Sun． at 1730 EST．V．H．F．＇Traffic Net， 145.8 Mc．Tue．－Wed．－ Thurs．at 2000 EST．1ou will note ：thew wall on the masthead．W2GXC is the section＇s new RAT．Harry replaces W 2 V＇DT $^{\prime}$ ．who served excellently during his two－ year hitch．Thanks to Doug for his fine work．W2GXC requests that all hands pitch in as often as possible on our section nets．Remember，NLI＇s early session is scheduled for the school gank who have to hit the hooks for most of the evening．Congratulations to k2UFT， WA2GPT，＇W＇2EW and KissFS．who earned BPL cards， the latter three on originations plus deliveries． K 2 SFS will be operating from W2SZ while at srhooi．W2GEZ added an SB－10 to his Apache．K2IUT is now Wednes－ day NCS for the New England Weather Net．WA2KSD passed his General Class exam．W2PF enjoys DXing with his $32 \mathrm{~S}-1$ and folded dipole on 15 meters．K2MEMT is mobiling with a Heath Sixer．The Bronklyn Poly $\mathrm{KC}, W^{2} 2 \mathrm{BX} \mathrm{K}$ ．is experimenting with 60 KMC ．W2UAL worked his first VK in 38 vears．K2QJQ and his 100－ watt rig worked Ohin on 220 Me．K21PU received his lst－class radiutelephone ticket．A new rall in Dix Hills is WV2OLQ，operating with a Novice－converted ARC－5． W．t2kIM passed the General Class exam．WV2JRI is on 40 meters with a Globe Scout 680A and an Si－86． i 2 PFFH writes from the Azores where his HT－37 and $H Q-180$ are gathering dust waiting for the ban to lift． K2AZT is working on transistor gear for 50 Mc ．for use in eonjunction with his Heatlı GC1－A．An excellent net bulletin has been received irom WA2FGP．asst．mgr． of the Eastern Area SIow Net．The EASN meets on 3748 kc ．nightly at 1800 EST．This is an excellent train－ ing ground for future BPL winners．WA2IEN，WV2JUG and WV＇2OIF all brothers，are on the air from Island Park．Excellent band openings permitted K2JWT to add his 13 th and 14th states on 144 Mc．K2QVH is mobile on 6 meters in his V－W．Your SCM would enjoy meet－ ing your club at your convenience．Club secretaries， write or call to arrange dates．Please send along cluh， newspapers or newsletters so that your club or group can be recognized in our section column．All appointees are urged to chere their certificates for renewal．＇Trat－ fic：（Aug．）K2UFT 583，WA2GPT 334，W2EW 219， K2SFS 124．WA2CZG 118，W2GKZ 117，K2RBW 103 ． W2DUS 102，W2OKU B1，K2THY 42，W2OME 35， WA2CSE 34．K2DKR 33，K2IUT 31，W2JBQ 25， WV2KSD 25，K2YQK 23，K2CMJ 14．W2PF 12，K2PHF 4．（July）W2DUS 70．K2PHF 4.

NORTHERN NEW JERSEY－SCM，Edward Hart， jr．W2ZVW－SEC：WA2APY．RM：W2RXL．PAMs： K2KVR and K2SLG．NJ6 and 2 report 15 sessions， 106 present and 36 traffic．K2THC is sorry but he wasn＇t very active in traffic in August．He made BPL of course，with a total of ouly 604！W2EWZ visited W1MHN．WA2GUI．who handles his traffic on 2 meters． has a new tower and beam．W2NIY got Certificate Hunters Club certificate No．54．WA2CCF is a new

OO．The Belleville $t R C$ has the memorial club call W2JUU．NJN had 31 sessions，attendance 607 and han－ dled 427 messages．K2RHN，from Sussex County，is nobile on 10 meters．WA2GQI espects his tratic style to he crimped by school．K2UWN built a 1 －tube 2 － weter transceiver．K2LTCY had DX－100 trouble．K2CEP had a visit from K9KBW．WA2EDG is working on Heath 6 －meter sets for the c．d．hut finds time for trat－ tic work on 80 meters．W2COT reports that all AREC members in his area also are RACES members．WA2FCB passed the General Class exain．W2ZI reports for NJPN： 31 session． 654 stations cherked in and 134 messages hundled．W2QNL is Deputy Kadio OHficer for Essex Co．WA2FGP was limited by vacation．WA2GZR has returned from a vacation on the farm．W2BVE／5 is uiow home irom New Mexico．K2P＇H is working 10 － meter s．s．b．with a new ground plane．K2UKQ received the WAZ and Maritime Mohile Awards．K2AGJ is mem－ ber No． 913 in the TOPS C．W．Cluh．W2CVW made 241 eontacts in the N．J．QSO Party．K2CBG spent two weeks it California．K2PTI was on from Cape May with K2BMI／2 for the Qig party．W＇2CZE reports from Sussex County that few stations are active and lists $\kappa 2 A Q V$ ，W2UVS．WA2FZK，K2CBK．K2BXN，W2POB WA2LQE and WA2HPW as possibles．W2CZE says he will make skeds for anyone needing that countr．This is my last report as SCM and I thank all the hams in the section for their loval support．Your new sCM is K2MFF．Be sure to get hehind him and help．Traf－ fic：（Aug．）K2THC 604，K2UCY 429，WA2CCO 268 ． WA2APY 247．WA2GUI 244，WA2CCF 165．W2RXL 142. WA2GQ1 135，K2VNL 127．W．A2EDG 104，W2QNL 87， W2ZVW 74，WA2FGP 51．WA2GZR 46，WA2GQZ 42 W2BVE／5 39 K 2 ETS 39 ．K2PVH $37 . \mathrm{K} 2 \mathrm{~V}^{\prime} \mathrm{V}$ ． 30° K2EQP 27，W2EBG 22，K2MFF 22，K2UKQ 22，K2MFX 19．K2AGJ 18．W2DRV 18．K2STU 13．W＇2CVW 12. NFFKL／2 12．K2CBG 6．N2CFB 6．WA2AT W2CJX 2，W2A「ZR 1，反2PTI 1．（July）К2VVL 17.

MIDWEST DIVISION

IOWA—SCM．Russell B．Marquis， 10 BDDR－Asst SCAI：Walter \dot{G} ．Porter，gIIJC．SEC：KbEXN．PAM： KGBSZ．KM： 1 ＇ZO．Nevada was host at the Iowa 75－ Meter Phone Net Picnic Aug．28．Wver 200 hams were registered atud with their $X \mathrm{~L}$ s and harmonics the at－ tendance was uver 500．NWX．Midwest Division Director and BDR greeted the guests with shoit talks．KgEXN held a state－mide AREC meeting during the pienic and it was well attended．KбHEA operated portable at the Iowa State fair and UIZ operated portable at the Avoca County Fair．The Sioux City Amateur Association will have its clut，house soom．DSP and KixASW operated DSP／VE4 from Northern Manitoba．YDV has a new 205－1 amplifier．New ntticers of the Council Blutis Radio Club are KgUAB，pres．：KgULW，vice－pres．：KgWRV， secv．New Generals are KgWRV and KgUIC．A new Novice is KNøDCV．WABJBA now is in Iowa．KH6IJ Novice is KNøDC WABSBA now is in lowa．KH6IJ
 traffic． PZO also reports ituceased activity for TLCN with 27 sessions， 234 QNS and 767 QTC．KGTNJ and li\＆POI are new TLCN members．KDHEA，KAUKN and K\＆ENN made BPL on originations．3TMZ．Maryland OU ＂observed＂personally by visiting several hams here． Traffic：（Aug．）WfLCX 2508，LGG 1811．BDR 1562．SCi 1205．PZO 618，DUA 374，K6HEA 269，UKN 151，HBD 150．WดNTB 149．KøEXN 114．JNK 109．WVK 64，GXP 63． 1 UU 61．TNJ 57，POI 51．WgY＇WF 39．TIZ 35 LJW 34．KøBSZ 28．KAQ 23，EAA 21，WGPTL 20 ，KgMFX 18．WGYIVV 17，K日EJN 16．KTP 18．OFK 16，W曰FMT 13 K乡IHC 13．BRE 11．WGYQX 11，E月GOT 10，WgMEL 10
 4，EबSEW 4．WGEEG 3．（Julv）W゙øLJW 8.

KANSAS－BCM．．Ravmond E．Baker，WorNs－sec VZM．Asst．SEC：LOW．RA：GGG．PAN：UTO．V．H．F． PAM：HAJ．Section nets：KPN，UTO mgr．， 3920 kc． Mon．，Wed．，Fri．0645，Sun．0800；QKS C．W．Net， 3610 kc．dailv，QGG mgr．Area Net Ham Butchers， 7280 kc． daily 12 noon，K6HGI mgr．KøMXU and KBSPF are playing with K＇TTY．also ALD，FDJ，RCY，QPR．FNS playding other stations are putting Model 15 s on the air．AMJ reports the Salina Club assisted the Highway Patrol in recovering two horlies from Smoky Hill River．Three simulated emergency tests were conducted at Schilling AFB．EXB＇s son now has his Novice Class license．ETX has moved to Arizona and has hopes of keeping in touch with Kansas on＂2．＂He was a most active ham in Lansas and was editor of Ham Monitor．President WXXY and Decretary KgAOQ were assisted hy ONH and SSM at
（C＇ontinued on page 116）

With any of the most popular 1 KW Amplifiers f. check these 15 outstanding design features...

1. Designed for quality performance, yet lowest initial cost- $\$ 375.00$
2. Designed for long tube life and lowest replacement cost-Type 813's used
3. Designed for a full KW input under CW conditions
4. Designed for 2 KW PEP*under SSB conditions
5. Designed for efficiency, in excess of 65% average
6. Designed to recover more than 80% of driving power in the output
7. Designed for minimum intermodulation distortion products
8. Designed for plate current cut-off under key-up conditions . . . built-in bias and filament supply
9. Designed for T-R Switch or Mechanical Antenna Relay
10. Designed for fool-proof operation . . . only two tuning controls
11. Designed for remote control of power supply
12. Designed for use with your own power supply
13. Designed for minimum space . . . requires no more than most receivers
14. Designed with smart clean styling . . . complements other equipment in your shack
15. Designed with heavy duty construction, yet light in weight. . . your XYL can easily move it about
. . . And it's the most copied amplifier by those who build their own.
Listen to the LPA-1's on the air. Note the eloquent power packing punch. It can't be drowned out nor ignored . . . it gets through when the going is rough.
See one at your favorite distributor. Discover a real thoroughbred in amplifiers. See its clean, uncluttered design and layout. You'll be amazed at its simplicity, accessibility, quality of components and sturdy construction.
After you have heard and seen a B\&W LPA-1 you will want to order one for Christmas. If your local distributor does not have one in stock. . . ask him to get one . . . also write to the factory for complete brochure in full color.

Canal Street and Beaver Dam Road - Bristol, Penna.

 Foreign Sales-Royal National Corp., 250 West 57th St., New York 19, N.Y.

FOR 144－174 MC BAND
STYLE 85 －includes ball mount through which cable passes for protection．Available in 3 ranges： 144 thru 154， 155 thru 164 and 165 thru 174．Overall length $531 / 4 "$ for cowl or bumper level mounting．

$$
\left.\begin{array}{l}
85-1 \text { for } 144-155 \mathrm{mc} \\
85-2 \text { for } 155-165 \mathrm{mc} \\
85-3 \text { for } 165-174 \mathrm{mc}
\end{array}\right\}
$$

25.50

STYLE 100 －Base Spring optional for use with Style 85 antenna．Design allows passage of coax through spring．
4.50

STYLE 56 ．．．same antenna as above but furnished with 3／8－24 threaded base ferrule．May be used with standard ball mount and spring．Overall length， 503／4＇．

$$
\left.\begin{array}{l}
56-1 \text { for } 144-155 \mathrm{mc} \\
56-2 \text { for } 155-165 \mathrm{mc} \\
56-3 \text { for } 165-174 \mathrm{mc}
\end{array}\right\}
$$

18.75

FOR 450 MC BAND
STYLE 45 －roof top antenna extends 19 inches above the surface．Mount furnished requires $7 / \mathrm{s}^{\prime \prime}$ hole．

45 for $\mathbf{4 4 0 - 4 7 0} \mathbf{m c - 2 0 . 0 0}$
Write for free literature．

COLUMBIA PRODUCTS CO．

Subsidiary of Shakespeare Company Columbia，South Carolina
the Kansas Nebraska RC Hamfest Aug．21，with 152 registered，approximately 250 present and 50 emergency mobile units．Benton gave a very good talk and told of his retirement as MARS Director Army 3；also Gen． Phil Smythe was present for any comments．EøLPE is cut of the hospital and back on the air．It is with regret we lose THX to Nebraski．Traffic：（Aug．）KABCH 745 ． HGI 192．W反ABJ 156．FNS 145．TOL 125，UTO 73．S₹Z 56．URB 54，IFR 38，K0HVG 36．UAX 31，WGQGG 30， KÓSWU 24，IZM 23，WGAMJ 16，V＇ZAI 15，KGYBD 14，EFL 10．QKS 10．JID 9，TNW 5，（2OB 4，W6WFD 1．（July） KgQOB 4，WUG 1.

MISSOURI－SCAT，C，O．Gosch，WGBUL－SEC： KøLTP．RMS：OUD，QXO and KøONK．PAMs：BVL OMM and KøKI．Q．Net reports：MEN（3885 kc． 1800 CST MWF） 13 sessions：QNI 342，QTC 119，NCSs，OVV 5，OHC 3，KбKBD 2．WVVPQ 1．OMM 1，BUL 1．MON （ 3580 kc． 1900 （ST MI－S） 27 sessions：（VNI 175．QTC 255：NCSs，OTD 18，KøQCQ 7．KøONK 2．SMN（3580 kc． 1600 （ST S）（2NI 6：NCS OID： 1 session．MLN （7115 kc． 1615 C：ST M－F）（July） 21 sessions：QNI 100 ； QTC 131：NCSs，K゙㫙TA 6，ONK 8，H月1＇XU＇5．＇BU 2 ； （Aug．） 22 sessions：QNI 79．QTC 63；NCSs KOV＇XU 4． VBU 3．ONE 7．UTX 7．KNQZQF 1．For the next six months information concerning the HBN（Ham Butch－ ers＇Net）will be found in the report of the Kansas sec－ tion．The combined SWMARC．Inc．Missouri Picnic at Springfield was ionted a huge success by all in attend－ ance．The SDM was privileged to conduct a＂Missouri Mobilerade＂and donated the＂golden whip＂trophy won by KiSX，with KめJOI as runner－up and KobIY placing third．Idditional mobilecades are planned tor the near future；monitor the nets for information．KIK received a letter of appreciation from the officer in charge of the St．Louis station U．S．Marine Corps for relivery of several pieces of traffic from W6YDK（MCRD，San Di－ egol．WYJ reports moving to a new QTH with eon－ struction of a new receiver keeping him irom OO activ－ ity．New officers of the Three Rivers RC（Eldorado springs－Butler）are KGRDD，pres．； 5 FG ．vice－pres．： KPT，secy．－treas．：BRN，act．chm．KबिJL reports ZB， FP8．UA and $Y^{\prime} U$ as UX on 14－Mc．A1．Traffic：（Aug．） K月ONK 678．©CQ 330．W゙øKIK 149．K月MA It 105，WGOUD
 IGGBU 29．W＇VYPQ 27，GBJ 26，R＇TW 26，KgPFF 22， ITX 21．RPL 13．VPH 13，WGBVL 9，OMIM 8，KOPCK 8． MMR B，WタQMF 4．l曰OJC 2．（July）KøQCQ 345 WøOMIM 75．KGMMIR 37．（June）KiøMMR 73，PFF 4.

NEBRASKA－SCMI Charles E．McNeel，WgEXP－ SEC ：KGTSU．The Nebraska Siection C．W．Net，reported hy NYU，had 22 sessions．QNI 91，QTC 57．This net resumed full oneration as of isept．1．The W＇estern Ne－ hraska Net，NIK as NC，reports QNI 650．QTC 117 ．The Nebraska 75－Meter Emergency Phone Net，ZOU re－ ports，had QN1 441．（QTC 38．The Nebraska Morning Phone Net，reported by KGDGW，had QNI 758，QTC 147．The July report for the Morning Phone Net was QNI 474，Q「C．36．I new Hastings Area C！D．Net． with LJO as NC．uperates each Wed．at 2030 CST on 1997 kc ．K反TSU is our new Section Emergency r＂oordina－ tor replacing JDJ，who has done a good job as SEC for several years．SXR has moved to（alifornia and will he looking for his old friends irom there．Traffic：W\％NYU 167．K月IJW 97，DGW 87．GFK 75．KJP 48，WGZJF 41， NIK 38．KøDV゙W 29．RRL 29．IVGOKO 25，K\＆RRS 23，
 KOKDW 16．TIA 15．WGBOQ 13．FTQ 13．VEA 11．DDT 10，KबKTZ 10．WGGGP 9．LFJ 7，KóDS 7．WøHOP B， HTA 6．KøRQA 5．WøYFR 5，OOX 4，URC 4．SWG 2， KøGUQ 2，W曰WLP 2，EGQ 1，LGSFB 1，ULQ 1.

NEW ENGLAND DIVISION

CONNECTICUT－SCMI，Victor L．Crawford．WITIQ NEC：EOR．KM ：KYQ．H．F．PAM：YBH．V．H．F． PAM：FHP．Traffic nets：CPN，Mon．－Sat． 1800 ，Sun． 1000 on 3880 kc．：CN，daily 1×4.5 un 3640 ke ；CV＇N，Mon． Wed．and Fri．203D on 145.98 MIc．：UTN，Sun． 0900 on 3640 kc ．K1PGQ，K1HZT and KP4API／1 made BPL．in addition to KP4API／1，h1PGQ also made BPL during July．FHP has a new Ranger．The（Q RC held its annual picnic Aug．21．KYQ advises that CN handled 245 messages during 31 sessions in August．Average at－ tendance was 6 ．High QNI were RFJ．KlGGG and KI－ HOP．BDI vacationed in Maine．KII＇R is back atter 8 weeks at camp．BFS has a new SX－101A．HAX is huild－ ing a new 50 －watt rig for 2 meters．K1MNX is on 2 Meters．APA has moved to a new（QTH．YBH reports that CPN handled 274 messages during 31 sessions with an average of 23 stations clecking it．（2NI honors go to K1AQE．YBH，30；KIBSB． 27 F FHP，25．K1IIG of Jewett City，is now active on CPN．A new three－ele－ ment beam is helping OBR with his TCC schedules．The Tri－City Amateur Kadio Council fielded 8 fixed and 4 （Continued on page（18）

Tonight, and every night to come, more and more Hammarlund HX-500 SSB transmitters will be operating and serving as the topic of conversation. This new transmitter is rapidly setting the standards by which all other transmitters will be judged.
Loaded with new features, designed to provide the finest performance, and built to the fine traditions of Hammarlund craftsmanship, the

HX-500 is your best buy in the fine transmitter field...
Write today for complete details... $\$ \mathbf{6 9 5} 5_{\text {amateur net. }}^{00}$

Estalulishted 1910

HAMMARLUND nomsion of TELECHROME

hammarlund manufacturing company, inc., 460 W. 34th ST., N. Y. 1, N. Y.
Export: Rocke International, d3 E, 40th St., N. Y. 26, N. Y. Canada; White Rado, btd., 4l West Ave. N., Hamilton, Can.

DEPENDABILITY
mobile stations to help with the Annual State Firemen's Convention and Parade in New London. K1HEC won a science contest sponsored by the Thames Valley Science Council. He also won a prize at the New London Hamfest for his mobile installation. K1CEC has a new rig. ILV is rebuilding. DDE is searching through the surplus around the shack with an eye toward a new all-band rig. K1EKC is ofi the air with transmitter trouble. New Novices in Waterbury are KNIOVF. KN1PHF, KN1POX, KNIPOY, KN1PQC and KN1PPR. OOW is a member of the Plebe Class at the Naval Academy. The Waterbury ARC has started a cole and theory course. A picnic at GI'T's in. July and another at Z7M's in Auzust rounded out the summer season for the southington ARA. ZPV is out of the Navy and active on all bands including 50 . 144 and 420 Me. Section Net rertifirates were issued to KIGGG and K1HOP. New appointees: KICSY as EC for Southington, ZPV as OES. Appointments renered: FHP and YBH as OPS's, YBH as OBS, MBX as OO. Keports received: OES from FVV: OO from K1GUD, K1IFJ, K1IVR, K1NIBA, EQV, NWE and VW. Traftic: (Ang.) W1YBH 2877 , K1PGQ 195', KP4API/1 156. K1HZT 121, W1AW 107. KYQ 63. EFW 52, K1JVZ/1 43, W1RJF 41. BDI 35, KIAQE 27, W1QV 22, K1MBA 17. BSB 15, DGK 11. W1VIY 10, K1CBV 8, W1CWF 6, K1IVR 6. W1MBX'6. BNB 3. (July) W1OBR 169, K1PGQ 138. W1MDB 70, FHP 66, NJM 64. QV 18, LiBSB 15, WIVIY 14, BDI 9, KIMBA 5, WIBNB 3 .

MAINE-SCMI, Jeffrev I. Weinstein. WIJMN-All ARRL station appointments are currently available to qualified applicants. Further information and application blanks reqarding OPS, OES, OO, ORS and OBS appointments are ohtainable by writing Jeffrey I. W'einstein, W1JMIN, 79 Caleb Street. Portland 4, Maine. Active participation in the League's prograins results in a stronger atnateur fraternity and hetter individual iperators. Theretore, evrryone who has the qualifications should be an ARRL official appointee. Secondly, and just as important. is the state of Maine AKEC. Every Maine anateur is urged to register and support his local AREC orxanization as suon as possihle. Contrary to what seems to be popular helief, registration in the AREC does not obligate anyone, whether it he intancial or personal. You are simply showing me. ARRL and the FCC that you are willing to provide communications during times of domestic disaster or emergency. It is this service which we offer the public that, among other things, instifies our existence an amateur radio mectators. Don't take the AREC for pranted-register torlay! Traffic: K1ISG 107, W1GRG 23. JMN 10, FV 8, K1DYG 7, MBM 7, IA.A 3, KN1OJH 1.

EASTERN MASSACHUSETTS—SCMI. Frank L. Haker, jr., W1ALP-SEC: AOG. New appointments: 7.OP as OŸs. KiGNW as OES. KiKJC and KHP are on 2 meters. FIMMQ is now living in Portsmouth, N.II. Sorry to lose vour nice tratic totals. Dave. Amateur Radio Mobile Systems (ARAIS) is :a new net on 52.52 Me. It monitors lay and night, patrols the roads and reports any troubles to control center in Weston. NKA heard a VO_{2} on 6 meters. New oflicers of the El-Ray Club: Jim Nye, pres. : Frank Ducat. vice-pres.; K1KTK, act. mgr. ; KlHTK, program mgr.; EJE. treas.: Bill Burgess. eecy.: OTH, chief eng. KILDI has a Ranger and an NC-300 receiver. K1GNW has a l'iking Challenget. a (lonset 2, an NC-300 and an RME v.h.t. receiver. TWG has a Gonset 4. Our 2 -meter net gang held a picnic at Wollaston Bearh. K1GVR moved to New York City. K1PKX has his Tech. Class license. Luck to HWE and hope he feels better. LMZ reports he hears. VE2TT on 144.3 Mc . and K1KKP, Peru, V^{r} t., and is going back to school. The 'r' 9 Radio Cluh met at ISX's ©TH. K1KUY heard VOIAE on 6 meters. K1EKV has a Gonset 3 on 6 meters. The Eastern Mass. 2 Net had 31 sessions. 430 stations, 205 traffic. HOH is a Silent key. IIP received the All-Conn. Q. W. Award. NS has an HT-37 and a Gonset KW. K1JML worked Ohio, Indiana and Michigan on 6 meters. BGW has 223 confirmed now. KB made DXCC. K1AQI was in Nicaragua, got the call YN1JS and was on 29 Mc. Burlington is getting RACES going. NF reports a poor signal on 14 Mc. LiJ.AW was in the N.J. QSO Party. Officers of the Reading High School Cluh, K1HOA, are K1JXU, pres.; K1LAK, vice-pres.; K1JIU, secy,-treas. FJJ has if Tri-hander on a $80-\mathrm{ft}$. tower. IAU is a new OFS. Apnointments endorsed: AOG as SEC; PEX, AWA and DOF as OPSs; EAE as RM for 80 -meter c.w.: AWA No. Reading, TZ RO for Sector 2D. LUF Revere, ISU Holbrook, as ECs; AWA as OBS: EAE and HWE as ORSs; K1KCG as OES. A new net, the North Eastern States 'Tratfic Net (NESTN) is on daily at 1700 on 3915 kc . PEX is the manager, DFS the sponsor. It starterl on Aug. 20 and for 12 days had 196 check-ins and 190 pieces of traftic. K1BYV is now at N. U. in Boston. ZOP. mgr. of the N. E. Phone Net, says attendance was good during the summer. K1MEM has 101 countries worked and made WAS and WAC. K1MHM has a new Globe Scout going on 6 meters with his dad,
(Continued on paye 120)
P.O. BOX 5767 TAMPA5, FLORIDA

MM-2 Kit . . . (less IF adaptor). $\$ 119.50$ Wired ... (less IF adaptor). \$149. 50 Plug-in IF adaptors (wired only) RM-50 (50 KC). RM-80 (60-80 KC). RM-455 (450-500 KC)... ea... $\$ 12.50$

THE MULTIPHASE MODEL MM-2 RF analyzer

- Monitors the RECEIVED and TRANSMITTED signals. Shows flat-topping, overmodulation, parasitics. keyed wave shape etc. Silent electronic switching keyed by transmitted RF.
- No tuning required. Broadband response flat 1 MC to 55 MC at power levels of 5 watts to 5 KW .
- New variable sweep control for transmit and receive.
- RF attenuator controls height of pattern. Calibrated in 3 DB steps.
- Function selector for ENVELOPE, TRAPEZOID and BOW-TIE patterns on transmit. For SSB, DSB, AM and CW.
- Built-in 1 KC audio oscillator, less than 0.5% distortion. With $3^{\prime \prime}$ scope, is ideal for complete alignment of SSB exciters.
- For use in series with 52-72 ohm coax lines. A short pickup antenna may be used with other systems.
- Plug-in adaptors available to match $50 \mathrm{KC}, 60 \mathrm{KC}, 80 \mathrm{KC}$ or 455 KC receiver IF systems. Only one simple connection to receiver.
THERE IS NO SUBSTITUTE FOR A SCOPE IF YOU WANT THE CLEANEST, MOST PERFECTLY MODULATED SIGNAL YOUR TRANSMITTER CAN PROVIDE. THE MM-2. IS BY FAR THE MOST DEPENDABLE and EASIEST TO USE, SINCE IT WAS DESIGNED STRICTLY FOR THIS PURPOSE.

OTHER FINE C.E. PRODUCTS

* Also available in kit form PIONEER

EFFICIENCY EXPERTS!

Built for DC to DC mobile power supplies, these small, encapsulated, toroidal transistor power transformers by Triad offer efficiencles of 85 to 90%

Center tapped output windings are provided so that two simultaneous voltages may be used. Typical units are listed below. Our new brochure TY-61 has circuit schematics for 26 Triad transistor power transformers, plus complete electrical and mechanical data. Ask your distributor for a free copy, or write us direct.

IRIAD TRANSFORMER CORPORATION

A division of Litton industries if

4055 Redwood Avenue, Venice, California 350 North Brlant Street, Huntington, Indiana

K1OUH. K1LJK, un 20 -meter phone, finally got through to relatives in Indiana. ALP is reeling much hetter. Thanks for your interent. JIT is moving to thode lsland. GOU was in the hospital for an operation. Traftic: (Aug.) W1PEX 286. K1JAW 152. JIU 116, W1EMG 113, ZSS 93, EAE 91, KiLLX 74. JCC 61. HYL 60. WIOFK 59 , HGN 52. FJJ 38, K1BYY 33, W1HGO 30. AOG 26. K1HAC 28, GYM 24, W1VYS 21, \&1 20 . kiKZP 17. W1TWG 15, KIMEM 14, WIZOP 14. KNIHM 10. GTX 9, LLU B, LC'Q 4. 1, JK 3. (July) KiKTK 18, KYN 5. (June) KIKTK 35.

WESTERN MASSACRUSETTS—SCM, Perry \subset Noble. WIBVR-SEC: BYH. RM: DVW. PAM: DNS. Assistant to RMI for Novice Net: KHIJV. WMN nirets on 3560 ke. at 7 P.M. Mon. through Sat. MPN meets on 3870 kc. at f r.m. daily. WMNN meets on or near 3744 kc . at 6:30 P.ar. Mon., Wed. and F'ri. DVW has resigned as RM hecause of business pressure and family ohligations. We are very sorry to lose him, but we'll see him on the net form time to time. KIIJ replaces DVW As KAI. KIIJV. K1LBB, OSK. WEF and ZEL kept WMN on the air during August. BVR is now on the air at his new QTH. MPN reported 84 messages were handled with an average attendance of 20.26 stations hetween Aug. 1 aud Aug. 19. KMMFS and KiMGE have graduated from WMNE to WMN. The latter probably will be active from YK this season. K1GOY couttinues to submit ercellent, OO reports. K1IQZ and K1LRB have dropped the " N "" and are raring to go. AGMI is in Florida untal May or June. EFN has received the "Worked all Conn. Award" from the Willimantic Jaycees. lourtcen mobile units and a communications trailer were in use in Pittsfield for the c. d. "Roadwatch" operation. New outicers of the Hampden Gunty Radio Club are RRX, pres.; STR. vice-pres.; HYO, secy.: LRE, treas. TDS has a new Seneca. hiJgV is going s.s.b. New officers of the Pittstield Kadio Club are K1DAB, pres.: HPA. vicepres.; k1LBB. secy.; K1MRP, treas. AZW is now feelink his wid self again after a very seriums operation. $D(2 X$ is DXing on s.x.b. COI is now DVCC. New officers of the Berkshire County Amateur Radio Askn. are K1JDC, pres. : KQK , vice-pres.: FVT, secy. K 1 KUMI , treas. Traffic: WIWEF 90. KIIJY 72, 1, BK 57 . W1DVW 35. Osk 26, BVR 20, KILRB 18, WVAGM 15, MGK 11, KIIQZ 7.

NEW HAMPSHIRE-SCM, Robert II. Wright, W1RMIH. SEC: KIGQK. RM: K1IIK. PAM: IIQ. The GSPN meets at 1900 Mion. through Fri. and at 0930 Sun. on 3842 kc . The NHN (c.w.) meets Mon. through Sat. at 1830 on 3685 kc . Any amateur interested in attaming the WNH Award, sponsored by the Concord Brasspounders, may secure full details by writing the club at P.O. Box 339. Concord. N.H. Present officers of the Twin-state Rad:o Club, K1HGS, are FN, pres.; USK, vice-pres.; and VEG. correspondent. The club meets the first Tue. of the month at the club house, Mascoma St. Fixt., Lebanon, N.H. AZK, well known ior his meteor seatter getivity on 2 meters, is a new OES. MUJ has been endorsed as EC for Carroll County. ZUS is a new OPS. The SEC ripurts the formation of n new z-meter AREC net in Sullivan County and a 6 -meter AREC net in Merrimack County, also new 10 -meter nets in both countie.: Sieveral nother coumties also ate readying for active participation in AREC nets. Contact your County EC and help make these net.s really go. Tratic: K1CIF 625, IIK 162. ITS 123. WITA 71. QGU 58. CUE 42, ZUS 35. ZUR 31, K1KRP 18, WIUGV 16, AIJ 10, YHI 8. EVN 7. JNC 5. K1MID 3, W1BYS 1.

RHODE ISLAND-SCM, John E. Johnson, K1AAV SEC: PAZ. RA1: SMU. Pam: TXL. KIGRC is a new OES. K1CRN works VE2TT and KiKPP consistently on 2 meters. He is Inoking for skeds on 144.138 Mc. from other states. AQ expects to have its $6 \mathrm{~N}_{2}$ equipment on the air soon. AQ's Kound Table meets every Wed. on 29.200 Mc . at 0200 GMT. All stations are invited to hreak in. WAC is completing a new shack in hix cellar. KIHMO and KlAMG have new Tri-banders. K1DWY and KIHMN are working on 8 meters, KIZHN, vacationing in W 2 -Land, reports meeting K 2 HQV and working 40 and 10 meters. $\operatorname{E1ELI}$ assisted in the rescue of a pleasure hoat off Newport. He received a distress message and informed the local Coast Guard who took the hoat in tow. Your sCAI had an enjoyable visit with the Roger Williams V.H.F. Society recently. The cluh is working with the Ked Cross providing the communications. Officers are KIRWX, pres.; hidT, vice-pres.; LSP. secy-treas. 'The society provided communications during the Jazz Festival riot in Nerwort. G3NVA visited QCO this summer. They met on the ar and have beeu friends for several years. K1JPK and K1DWH visited 4DEN, formerly Kid (io. in South Carolina. RISPN reports 297 QNI, 85 traffic. RIN reports 36 QNI, 43 traffic. Tratfic: (Aug.) WiJXD 642, SMU 515, TXI 147. CMH 93. KiZHN/2 8. (July) W1JXD 527, K1GRC 99.

W3JNN

"I am really sold"

. . . writes Oscar L. Short, W3JNN, of his Electro-Voice Model 664 Dynamic Cardioid Microphone

W3JNN, among the top 10 world wide radiotelephone stations listed in QST, is highly pleased with the performance of his 664 . He writes, "In VOX operation on SSB . . . the cardioid pattern results in very smooth performance . . . background noise does not trip the VOX circuit." He adds, " . . . the Model 664 has a very uniform frequency response . . . I was so pleased . . . that I have not made any modifications in my speech amplifier."

W3JNN concludes, "During the first month, I added four new countries to my 287 already confirmed...I was having so much fun using my 664 that I spent more time than usual on the air . . . I am really sold on the Model 664." For an investment in up to 12 db more usable audio-for an elimination of most acoustical feedback problems, try the Model 664. It's available at your nearest Electro-Voice distributor. Satisfaction is guaranteed--or your money refunded.

[^21]TECHNICALLY SPEAKING: Model 664 Variable-D ${ }^{\mathbb{1}}$ dymamic design* utilizes a series of properly phased phaseshifting tubes, integral to the microphone, to cancel unwanted sound. Cancellation is effected without sacrifice of range response. Highly uniform cardioid pattern throughout range of 40 to 15,000 cps. E-V Acoustalloy ${ }^{(B)}$ diaphragm is virtually indestructible. Impervious to mechanical shock, temperature changes, humidity variations. Pop-proof grille minimizes blasts and boominess due to close talking. High or low-Z selected at cable connector. Convenient ON-OFF switch.

ElectroWoics

Commercial Products Division
ELECTRO-VOICE, INC.
Dept. 110Q, Buchanan, Michigan

Tecraft DEPENDABLE and priced right
 TECRAFT CRYSTAL CONTROLLED CASCODE CONVERTERS

For Amateur，Commercial And Special Services

CRYSTAL－CONTROLLED CONVERTERS FOR 10 AND 15 METERS

Model C－3－21 15 meters Model C－3－26 10 meters Choose IF output between 2 and 6 mc ．to suit your receiver．

TECRAFT VHF TRANSMITTERS

For Mobile And Fixed Stations Complete with Crystal \＆Tubes Amateur Net

$\$ 59.95$

Model TR 20／21（10－15 meter band）6AU6 Osc． 5763 buf／dblr．－ 6360 Power Amplifier．20－25 watts input． Model TR 20／50（6 meter hand）6AU6 Osc． 5763 buf－dblr．－6360 Power Amplifier．20－25 watts input． Model TR 20／144（2 moter band or CAP）6AU6 Osc． 5763 buf／＇dblr 5763 buf／mult．－ 6360 Final Amplifier． 20 watts input．
Model TR 20／220（ $11 / 4$ meter band）6AU6 Osc． 5763 buf／－mult． 6360 buf／mult．－ 6360 Power Amplifier． 20 watts input．

A．C．POWER SUPPLIES

MODEL PTR2 Provides power for any Tecraft trans－ mitter．It will also power the compan－ ion converter．
\＄39．95

Tecoaft

EQUIPMENT CRAFTERS P．0．Box 84 －Soutti Hackensack，N．J． ATlas 8.9020

VERMONT－SCM，Mrs．Harriet Proctor．W1EIB－ SEC：K1DQB．PAM：HRG．Vermont frequencies：G．w．， 3.20 kc ；phone． 38.55 kc ．：KTTY． 3620 kc ．Nets：（ $: . W$ ． Mon．－Fri．at 1830；V＇EPN Sun．at 1730；VTPN Sun．at 0900；GMN Mon．－Sat．at 1730．Community assistance is a strong feature of some of our clubs．The Bellows Falls， Burlington，Central It．．and Middlebury Clubs report serving one or more of these situations：C．．d．drills． search tor lost，child，boating accident，wolt meet，teach－ ers convention．Rotary Club，sports car rally，waterama， bazatar，sheriff＇s dept．and parades．Congratulations to them！K1KSS has purchased a home in Jerichon and will have a rhombic．F．TE is working on u．h．f．and r．h．f． units，KJG was visited by the former KXY．who was sporting a new Mohican receiver．Welcome to KN1OXG of Montpelier KFD．Traflic：（Aug．）V＇E2AZI／W1 1934， WIKJG 15，FIR 10．K1KCT 4．BEH 2． 1 July）VE2－ $A Z I / W 1807$ ．KDDQB 21．W1EIB 10．KJG 10．K1IRII 8.

NORTHWESTERN DIVISION

IDAHO—SCM，Mrs．Helen M．Maillett．W7GGV－－ Echo Balloon sumbed the i－meter hove into antivity． OHM，Boise，was heard in California：DPD，Arco，was heard hy BDL，Pocatello，while the satellite wax passing neer GRJiM，at Gilmore Pass，talked via 2 meters to his hone rig at Righy，a distance of 99 miles．He alsn made contact with Mr．Harrison near Boise from Ryan Peak in Tetnn Momintains．RRF s now on 2 meters．（il）． is the new prexy of the Magic Vallev Club．＇The Idaho Radio Amateurs，Inc．held threatiast and $2=1$ hieter transmitter hunt at Municipal Park in Boise．K7BWV spent，the summer fighting inrest fires，eluising timber， scaling Ings，and fighting fires．Hriges has 35 hams， amone them 4 new YL．S．K7s AJJI，MJJ，MJK and MKD． Other new hams are WV6MJJ，of Caldwell，and KN7－ MDP．oi Pocatello．Freemont County Police rermited 21 moniles from the WIMIU Hamfest to assist the lunt for 3 teen－age escapmes．NAW WhMU Hamfest officers are DLW゙，Logan，LHE．Franklin and VNO，Idaho Falls． FARM Nit traffic：8．Traffie：W7GGV 22，K7BWV 21， W7DHL 14，VOG 9．EVR 1 ．

MONTANA——C＇M．Kat Wonds．W＇7SFK－PAM： YHS．RM：K7AEZ．The MPN meetx Mon．－Wed．－Fri．at 1 K（II）ont 3910 lir．TSN meets Mon．through Fri．at 1200 on 7225 kc．MSN meets 「ue．－Thurs，－Sat．at 1830 on 3.530 kc ．Your SCM hopes for the asmistance of all Mon－ tana amateurs in his new job and will try to rlo as grod a job as NPV．Amateur radio in this area was satclened by the loss of cope of Inave．Northwest Montana amateurs will mis V＇E7AIO．Who fo now a Silent Kev．The Electric City Radio Cluh＇s picuic un Kings Hill was well attended．YPN and RZY have fin－ ished their portable units．making $1-\mathrm{kw}$ ．and $10-\mathrm{kw}$ ． senerators available for emergency use．RPF is taking an Xiv，（she likes ham radio，too）．Reports are that the Have Hamie wis is real success．Livingston reportz that the ammal fish iry tor the hams was well attended and lots of tish was comsumed．K7BKH is kerping up with her RPI．with 14 m a tow．Billings went all nut for the Air Show with 14 mohiles taking part in the day＇s eveuts．New ralls ill Montana are K7NDV at Butte， K5BSR 7．W6EWD＇7．KN7MEG．all of Havre．＇ryatlic： K7BKH 305．DC＇I 273．W゙7IDK 20，DCH 19，上7BYC 10. JFR 8．IOA 3.

OREGON－S（：M，Hubert R．MCNally，W7JDX． There was lots of activity in August，emergency style． The Fiastern Uregon gang really did ：swell ioh during the bad forest fires in that area．Also the 2 －meter gang in Portland aided a fire department during a bad brush fire and one of the mobile fellows did his hest to help sate a drowning fisheman．Thanks，gang，for the swell jobs．K7EPO buvs parts at mysterinns prices！A new ham in Grants Pass is K7IQF．who is s disk jockey at KAGI！ZB made BPL again but there surms in lie no opposition to his continued good record．K7AWJ reports the tratic total during the torest fires．Guess he was the control station．k7CLL sends greetıngs to all from Rerkeley，Calif．KN7LCM wants to he a lu•t mant． With the coming of the fall months net activity should pick up．so we should have more news to report later on．The pickins＇have heen pretty serref，wang，so int＇s get sonne postcards in to the SCM．Trathe（Aug．）IF7ZB 508．17AWJ 486．W7BDU 210．K7AXF 161．W7ZFH 43． DEM 38，k7CBi 35，EPO 27．W7MTW 23，LT 18，WKP 13，D＇T 8．К7EZP 6．JWY 6．（July）K7．AXF 150.

WASHINGTON－SCN，Robert B．Churston，W＇7PGY －NEC：HMQ．RM：AIB．PAMs：LFA and PGY．Wash－ ington Nets：CBN， 3960 ke． 2100 PST Mon．through Sit． ESN． 3420 ke． 1800 PST Mon．through Sat．WSN， 3535 ke． 1900 PS＇T Mon．through Fri．NSN， 3700 ke． 2100 PSF Mon．through firi．WARTS，3970 ke． 1800 PST Mon． through Sat．New ECs are D．J．A for Whatcom County， SEC for Skamania County，GSN for Okanogan County，
（Continued on pape 124）

uedser

 BAND-SPANNER

 BAND-SPANNER

 streamlined mobile antenna for

 streamlined mobile antenna for effective 5 -band operation

 effective 5 -band operation}

The well established
performance advantages of
center-loading for mobile center-loading for mobile antennas are obtained without compromise by exclusive Webster design which entirely eliminates large unsightly loading coils.
Band Spanner is truly streamlined . . . distinctive . . . fine looking on any car. Fiberglass support column is strong, durable, lightweight . . . unaffected by moisture. Loading inductor is wound directly on column-no joints to corrodeis encapsulated in durable plastic for lasting protection. Band Spanner is a well-proved performer on 5 bands . .80, 40, 20, 15, 10 meters ... can be resonated for maximum performance anywhere within these bands by simple adjustment of the stainless steel top whip. No multiple coil arrangements or other tuning at the base.
iwo models
Short Band Spanner, 37" telescoped, $93^{\prime \prime}$ extended. Long Band Spanner, 63 " telescoped, 117 " extended. Both models have standard $3 \%-24$ threaded (M) base fittings.

ANTENNA 2475 (less mount)

317 ROEBLING ROAD, SOUTH SAN FRANCISCO, CALIFORNIA

K7EYM for Douglas County, K7KFT for Lincoln County :und K7BLW tor Wialla Walla County. New OPSs are ADT and K7CWO. Kenewals: OLH as OHS, NKO foimed the ranks of silent. Kevs on Aug. 21. UQY moved to Kennewick. KN7IYR is waiting for his Conditional Glass license. Li7JOA recemed his General Class license. WXW is ut a new QTH near Grandview. YFO is enorving noise-free reception since the nower company fixed the hmes. 'The Tamona AREC Net was reactivated of $\delta 1$ Mc, at 1930 Sept. 13. GD now is running a Viking IIV. DI'T is doing much better with a new antenna on 75 tueters. H7CWO is going in the ISBMC. MCU showed his colored slides of the south Pacific at a recent meeting of the V.ARC. $\mathrm{E} 7 \mathrm{CH} H$ has entered the II. of W. ANT is URL remodeling his home. (IWN rpent his vacation in Eastern Washington. QLH received a $25-$ w.p.m. sticker trom ARRL. AIB attended the N.W. DN meeting in seat tle and took home a new IRME-DB-23 preselector. G7CCY moved to Montana. ZEI and VOL have entered the U. of W. I'FM has a new 51-J. MNC works at radio station KTEI. KWF has a neat antenna farm in Davton. K7DLW spent several weeks at ©AP school in Portland. The Washington Amatell Radio Trallic system (W.ARTS) had 27 sessions, 1712 check-ins and handled 261 pieces of traffic during August. Eleven mobiles tock part. in the Western Washington mobile hunt held Sept. 4. K7DBO was tirst. IVC second and NJA thirul. This hunt is sponsored annually by the Radio Amateurs Mobile siervices of Neartle. Tratfic: (.tug.) W7B.A 1524. DZX 782, IST 547. QLH 330. DIT 143, LNC 112. LZ 68. APS 6.5. GIP 53. K7ATD 38. 1.JT 26, W7BTB 23, К7.ASY 20, W7EHH 20, GYF 18, K7CWO 17, W7AIB 10. VPW 7, K7DDQ 3. W7IEU 3. (July) W7LZ 79, A1A 69, GIP 66, EHH 22.

PACIFIC DIVISION

NEVADA—SCM Charles A. Rhines. W7VITーKN7LMM will be attending Pepperdine College in Los Angeles this winter. Your SCM has gone and done it-potten married. If voure in Filko lonk us up at 701 Pine st., phone RE8-5279. Maybe you'll be allowed to help tinish the new shack. Seen at the Paritic Division Convention at San Maten: PC! UNG, MAH and his XYL, and YIU and his XYL. MAH and VIU's XIL won prizes. VIIt's XYL won the Women's Bowling 'Tournament. If you fellows want Nevada news in WST' get it to me hy the fifth of each month. Some of you appointees are beoming lax in your reports. We can use some good trattic men for Nevada outlets ior RN6.

SANTA CLARA VALLEY--icM, W. Coniey Smith, K6DYX-For the second successive year our section has heen host at the Pacific Division Convention. Thanks to W6CTH, W6NVO and all the other committee members of the CCRC for putting over a fine affair at San Mateo this year. Incidentally, Larry Keed had a nice spread in the Redwond Gity Trihune ahout his newly-completed $23-\mathrm{ft}$. cabin cruiser. We hope to hear him maritime mobile on his progected trip to Alaska next slmmmer. The SCARS's unorganized picnic went over with a hang in lugust with some 50 adults and kids at Bean Hallow Beach. The Monterey Bay RC enioyed thanning the amateur raclio booth in shifts at the County Fair under the leadership of K 6 VQK and W.A6BZE. K6TQN is the new As-t. FC: and RO for Redwood City, ruplacing K6IEE. who did an excellent jub for the past three rears. KigMPN is the new Asst. EC for the SC'ARS and H6PDI is the new Asst. EC for the PAARA. WA6HRS reports on wa abortive exnedition to Alpine County to provide much wanted contacts for WACC. Hil has 52 of the 58 worked and 45 confirmed himself. W6Y'HM has completed a transistor GDO. W6DEF finally is v.f.o. on the traflic nets. WA6AVV and WA6GII are on 6 -meter s.s.b. W6W'X has his beam up and is chasing DX. Ǩ6ZCR is the new 6th district chairman of the YLRL for 1081. l-6RIM js on with a KWS-1 and a T.A-33 up 30 feet. W6OKK reports that he is busy painting fences! A new appointee is W6RLP as OBS. Trathic: W6RSY 712, K6ZCR 427. W6AIT 192. W3M以K 61, K6DYX 132 , KGCZ 90, W6FUN 72, W6DEF 69, W6YHM 42. W6JCG 37, W6UCS; 625 , W'6Y'RV 20, W.A6HRS 13, W6ZLO 8, W6HC 5. L6YKG 4, WA6JYJ 2.

EAST BAY-NGM, B. W. Southwell, W6OJW-SFC: K6DQM. सCs: K6JNW, K6VXK, K6ESZ. K6TYX, K6V'XM, W6EFI and W6LDV (acting). WV'6NJT is a new Novice in Berkeley and is the son of WBNBX. W'ow'L inoved hack to the Sacramento Valley section. WABIRK is a new General. W.-16EWI is trying to ket on is meters and has finished the new G.G. final. WhKG moved to KL7-Land. W'JOH is NCS at the kev of W'6OT. WA6EWI worked to new countries. The MDARC heard a talk on Radio Control at its Aug. 19 meeting. WVBMXC is a new Novice in Richmond. W6DWI's hrother-m-law is a new Technician, WA6FUE. K6ZBG is QRL vacation. (Continueri on page 1z6)

You can take this G-76 out of your car, use it --with matching AC power supply and speaker assembly - for excellent 6 band fixed station operation. Here's opportunity to add new enjoyment -and DX-with operation on another lively amateur band, 6 meters. G-76 is a full-blown, star performer on 6 as well as the other five widely used $10,15,20,40$ and 80 meter bands.

While G-76 is properly called a transceiver because of some common audio circuitry, transmitter and receiver are separately tunable. Receiver can be set to out-of-band DX, transmitter VFO anywhere within the band. Iransmitter VFO is intended to be spotted on receiver dial. Frequency control may be either by VFO or quartz crystal. (Except on 6 meters which is crystal controlled only.) Transmitter and receiver oscillators are both compensated so that drift with temperature is negligible. Oscillator circuit has very low drift even with exceptionally wide excursions in both plate and filament supply voltages.

[^22]G-76 less power supply and speaker, \#3338 376.25
G-76 transistorized 12V DC power supply (neg. ground), \#3350. 145.00
G-76 power supply for 117V AC w/speaker, \#3349 145.00

New Sylvania

 "Transistor Circuit Handbook for theHobbyist" gives you 30 performaits using
circuit
low-cost transistors! low-cost transistors!

Interesting new "gadgets" and useful equipment for every electronic experimenter, "ham" or student. Handbook is divided into four. circuit-packed chapters. into four II Test Equipment Circuits III High Frequency Circuits III Audio Frequency Circuits

NOW AT YOUR LOCAL SYLVANIA SEMICONDUCTOR DISTRIBUTOR'S. Only 50\$.

Mail Orders accepted only from U.S.A.

Get a copy today!

Sylvania Semiconductor Division, Woburn, Mass.
susodery of GENERAL TELEPHONE \& ELECTRONICS
W.46BRD got his Extra Class ticket. WV6IMC has a rompletely transistorized station. W6.ACN is temporary HRC representative to the CCRC. W3WAU/6 was promoted to It. senior grade. Congrats. WA6GUM has a Regency transistor converter for his mobile. K6SCS completed witing the speech section on her OM's kw , riz. W.A6DJD is mohiling on 6 meters with a gooney hird in Texas. K6UFK walked away with all the top prizes in the construction contest of the R.ARC. W.A6ITE is now General Class. KBCNZ has returned from KHOLand. WV6JKB has a new HQ-180. K Ci6AJF will be bark tateside in about tive months and can he found on $14.275-\mathrm{kc}$. s.s.b. Wetween 2200 and 0300 lonking fin the gang. K6JHV has a Viking 500 and an RME-4350. The HARC is holding corla classes. Tratlic: (Aug.) W6NBX 254, K6GK 130, W60T 39, W.A6EWI 9. (July) WA6EWI 6.

SAN FRANCISCO-GCM. Leonard R. Geraldi, K $6.1 N P-T h e$ Northern California Net (NCN) meets on 3635 kc . at 1900 Mnn. through Sat. New ofticers of the Treasure Island RC are KiPSF, pres.; K4ICS. vicepres.: W7HOY. secy.-treas.; K4DGU, custodian. The club's call is KBNCG. Guest speaker at the tugust meeting was VF6QMO, who spoke on tratlic procedure and net operation. The B.AYL.ARC has had a husy summer. It was hostess cluh for the women's nctivities and program for the 27 th Pacific Livision Convention held in San Mateo. Official nets of the BAYL.ARC are the 50.56-M1c. Net Mon. y.t 2000: the 75-Meter Net on 3850 kc. Sat. ut 1000. WA6ALK is NCS for the b-meter net and W6YQL is NCS for the 75 -meter net. The BAYLARC glso has a brand-new sward in its "Mermaid" certificate, a very attractive piece of wall paper. All you need is six contacts from BAYL.ARC members, individual contacts; net QSOs do not count. The Tamaipais Amateur Radio Club now hoasts of ahout 40 members. Recent topics: of discussion were a club station, affiliation with ARRL, and money-raising activities. 'The cluh held an auction in Alugust. which was most successful. The rlub station is a restored surplus rommunications hut, and TCS equipment will be used. The Far West Radio Olub reports that its Field Day operation was very well handled. Novice and Conditional Class examinations were riven during July. The Bandspanners Amateur RC recently voted to operate in the V.H.F. QSO Party and the SS. Guest speaker for the San Francisco $R C$ was Dick Whiteside, whose suhject was transistors. The Redwood V.H.F. Cluh had a pienic in Armstrong Park. with about 75 attending. W6OKR made his $50-$ state IVAS on 50 Mc. K6ELC molsiled to Minnesota for a fow weeks. W6FEA and W6W.JF had a dream vacation in Hawaii. Gertie and Clare Hew to the islands hy jet and returned on a Matson liner hy sea. W6GQ.A participated in both the C.W. and Phone C.D. Parties for July but couldn't work his own section in either session. Welcome to WBPYL, who has just moved hack to Kureka from Oregon. W6FBK has a new son. W6ZZZK caught a 9 -ft. shark off the Humbolilt Coast. A new appointee is IV6MXJ as OBS. W6PHS won the High Handicap trophy in the howling tournament at the Pacific Division Convention. Traffic: (Aug.) W6QMO 231. (July) W6QMO 138, W6FE. 22.

SACRAMENTO VALLEY-̇iCM, Jon J. O'Brien, W6GDO-Asst. SCM: William Van de Kamp, W6CKV. SEC: K6INV. The time has come for all of you to ronsider who you want for your next SCM. My term expires on Wehruary 25, 1961. Will vou please discuss this matter at your club meetings and talk it up among your triends. It would he hne to see each club nominate a candidate and have a real election in this section as this has not been done for a long time. I will not he able to continue the job after my term is up, so if vou do not get busy and nominate some candirlates there will he no SCM next Year. Watch for the Election Notice in Decemher 1960 QS't. The Northern (ylifornia Net (NCN) meets Mon. through sat. un 3935 kc . at 1900 . K6CKH is working on a high-nower rig for 144 Mc. W6GDO has a new iob which has heen keeping him traveling much of late. He made two trips to lyayton, Ohio, and New lork in one month. This Jet-Age travel sure is the thing. W'6KME worked into Sacrumento on 2 meters consistently while vacationing in his cabin located in a deep ranyon in the Sierras about seventy miles from Sacramento.

SAN JOAOUIN VALLEY-,SCMI. Ralph Saroyan, W6JPU-W6EFB has installed a G4ZU heam on a $54-\mathrm{ft}$. tower. $56 Z C D$ has a new trihand heam 70 feet in the :iir and a new shack. The NCN meets Mon. through Šat. at 1900 on 3635 ke. W6BAN. W6PSQ. K6LRQ, E6OGX and W6IRV attended the Pacific Division Convention in San Mateo. W6PSQ won a Gonset triband beam at the convention. WABDAU also attended the convention and came home with a 2 -meter heam. Li6JGH is huilding a high-nower final with a $4-1000$. K6OZL is huilding a. moilulator for has TX-40. W6JUK is having HT-33A problems and solves them by replacing PL172 tubes. W6JXY has a 75A-4. W6NKZ is running more iContinuri on paye $\{\geq x$

from $G / B \square A^{\circ}$ a completely new

CITIZENS BAND TRANSCEIVER

that meets FCC regulations*

* EICO premounts, prewires, pretunos, and seals the ENTIRE transmitter oscillator circuit to conform with FCC regulations (Section 19.71 subdivision d). EICO thus gives you the trans. ceiver in kit form that you can build and put on the air without the supervision of a Commercial Radio-Telephone Licensee!

NEW! 60-WATT CW
TRANSMITTER \#723

Kit \$49.95

Wired $\$ 79.95$ deal for novice or advanced ham needing low-power, stand-by rig. $60 \mathrm{CW}, 50 \mathrm{~W}$ external plate modulation. 80 through 10 meters.
90-WATT CW TRANSMITTER*
90-WATT CW TRANSMITTER*
$\# 720$ Kit $\$ 79.95$ Wired $\$ 119.95$ \#720 Kit \$79.95 wired $\$ 1$
$*$ U. S. Pat. No. D-184,776 *U.S. Pat. No. D-184,776 KITS GUIDE. Ideal for veteran or novice. 90W CW, 65W external plate modulation. 80 through 10 meters.

Highly sensitive, selective SUPERHET (not regenerative) receiver with
$51 / 2$ dual function tubes and RF stage. Continuous tuning over all 23 bands. Exclusive Super-Hush: \mathbb{R} noise limiter. AVC. $3^{\prime \prime} \times 5^{\prime \prime}$ PM speaker. Detachable ceramic mike. 5 watt xtal-controlled transmitter. Variable "pi" network matches most popular antennas. 12-position Posi-Lock:(M) mounting bracket. 7 tubes and 1 xtal (extra xtals available). Covers up to 20 miles. License available to any citizen over 18 no exams or special skills required; application form supplied free. Antennas optional.

Additional crystals $\$ 3.95$ each.

Most EICO distributors offer budget terms.

COLOR \& MONO DC-5MC LAB \& TV 5" OSCILLOSCOPE \#460 Kit $\$ 79.95 \quad$ Wired $\$ 129.50$
5" PUSH-PULL OSCILLOSCOPE \#425 Kit \$44.95 Wired \$79.95

HIGH-LEVEL UNIVERSAL
 MODULATOR-DRIVER \#730 Kit \$49.95 Wired $\$ 79.95$ Delivers 50W undistorted audio. Modulates transmitters having RF inputs up to 100W. Unique over-modulation indicator. Cover E-5 \$4.50.

GRID DIP METER \#710

 Kit \$29.95 Wired \$49.95 Includes complete set of coils for full band coverage. Continuous coverage 400 kc to 250 mc . 500 ua meter.

PEAK-TO-PEAK
VTVM \#232 \& *UNI-PROBE

Kit $\$ 29.95$
 Wired \$49.95

UU. S. Pat. No. 2,780,051
VACUUM TUBE VOLTMETER \#221 Kit \$25.95

Wired \$39.95

RF SIGNAL GENERATOR \#324 (150kc-435mc) Kit \$26.95

Wired \$39.95
TV-FM SWEEP GENERATOR
\& MARKER \#368
Kit $\$ \mathbf{\$ 9 . 9 5}$
Wired \$119.95

DYNAMIC CONDUCTANCE TUBE \& TRANSISTOR TESTER \#666 Kit $\$ 69.95 \quad$ Wired $\$ 109.95$ TUBE TESTER \#625
Kit \$34.95
Wired \$49.95

E/ED?

33-00 Northern Blvd.
Long Island City 1, N. Y.

EICO, 33-00 N. BIVd., L.I.C. 1, N.Y.

 Show me how to save 50% on 72 models of top-quality: \square Ham Gear \square Test Instruments $\square \mathrm{Hi}$ Fi \square Send free Short Course for Novice License. Send free cata-JUST4c
That's all it costs to mail the request for quotation coupon below to get our trade-in offer on your new equipment. It is designed to provide concise information permitting us to offer top dollar for prime equipment.
We handle our quotes fast. Our first offer is our best offer.
Your choice of new equipment at Brown Electronics is not limited. We carry all the major lines. Whether you want a KW SSB rig or a Conelrad monitor we will be happy to serve you.

Barker \& Williamson Central Electronics Collins Cusheraft
 R. L. Drake
 Elmac
 Gonset
 Hallicrafters
 Hammarlund
 E. F. Johnson
 Mosley
 National
 P \& H
 RME

Art Brown, W9IHZ
In addition to our stock of new equipment, we are accumulating an extensive and constantly changing stock of good used gear. Your request for our used goods list will bring you a list that is strictly current as of the day your inquiry is received.

All equipment, new or used, selling for $\$ 45.00$ or more may be purchased on our payment plan. We require only 10% down payment either in cash or trade-in credit. Our finance charge is $\$ 6.00$ per hundred per year on the unpaid balance and contract terms may be extended to 24 months. We carry our own contracts and you are dealing with Brown Electronics alone.

Don't wait. Complete the Request for Quotation form below today and drop it in the mail. It may turn out to be the best $4 \not \subset$ investment you've ever made.

REQUEST FOR QUOTATION

(Please Print)
I have the following used gear to trade: (Please use this code to describe it.) 3. Like new, little use; 4. Minor signs of use, no major blemishes; 5 . Good condition, with minor modifications; 6 . Has major modifications, or requires major repairs

I am interested in purchasing the following equipment: New \square

Used \square
No obligation to buy is implied.
Name:
Street No. or R.F.D.:
City:
State:

BROWNEFLGCRONICS Inc. 402 Rrsuincy

power in his mohile rig. $\mathbb{E} \dot{0} .4 \mathrm{U} . \mathrm{A}$ is running ARC-5s on Si) and to meters. KOUER is heard on 75 -meter mohile. W6.ARC is mobiling on 75 meters again. W'6LUS has a BC-1031A panadapter and is overhanling it. W'6NAS, K6PPI and WBNCG are oh 2 -meter i.m. mobile. The Fresin Amatelr Kadio Club meets the 2nd Fri. of each month at the P(X\&E Building. Keep the brws and reports

ROANOKE DIVISION

NORTH CAROLINA-X:M, B. Kiley Finwler, W4RRH-Y.AM : DKC. V.H.F. PAM: ACY. RM: PNAI. 1 am rery pleased at the progress hemg made hy the NCN (c.w. net). Lien has dinne a good ioh with the help of the net control stations. 1 am pleased to note that the net now has fortv-t wo members with a large percentage of them meeting the liet, thirts out of thirtv-one times. Outints are needed in the Fayettevile, Wilmington, south Port and possibly other areas. There is now un early net, a late net and a slow net, something for every c.w. uperator. K\&HGI reports some excellent results with "Echo" and long skin on h miterts. dey reports the B-meter aang held a pienic with :t very creditable turnout. matys of whom were mobile in 5 me ters. The cleveland County R.ACES group is to be conwratulated on the activity in the county. Those hove have a mobile truck complete with 500 -watt transmitter and at rerpiver pius 2 -meter equipment athl a senerator on wheels. This is no elaborate unit hut it does the job. It has four positions inr npriators. These same loges put "ill a swell hamfest on sum., Sent., 4. The tellowship was excellent. Many old friends and some net hoys who take traffic in eamest were present. Glad to see BCO was ohle to he there. HR was the oldest ham present :nimi was presented with a bedspread to help keep him warm.
 IV4GQV-Reports indicate that the Rock Hill RC uperating AKC'4. Was the states' high scorer in the Field Day attivity. The Barnwell Wike \& liey C'Tuh partiripated in the local Electric: Fair with an exhibit and K4F.JP succeerls PIA as editor of crosx Thall. VIW and TLC each have 41 states confirmed on 6 meters. मFFL Las completed an excellent article on gasoline-driven genem:tors whach will appear in sraraì. The spartanburg ARC tors whech will appear in scarate. The spartanburg ArC
held its Annual Arion Cutting Aug. If with the local held its Annual Melon Cufting Aug. With the ocal
Citizeu's Band Chb as guest ; its mohile on 75 meters acted as a relay station for the ill Dixie Air Meet on - Uue. 20: K4JOH received his General Class license and also a elub certificate tor code proticienc: $:$ L4DDX suggest. using an interruntion irequency coil as antomatic colume control as describet in the jatest issme of $\operatorname{SP} \mathcal{P}^{\prime} 1 R C$. The pienic at Licrshaw state Park on lug. 2s ponsured by the DX RC was well attender, With riN as M.C.: short talks were given by G()V. K4PJE, FFH ani HiMG. The Low Country RC pienic at Mnncks forner artracted much interest : ind trading. Aiter the treak tornado split off from Hurricane Donna and struck Charle ton the emergency net was set up and efficientlv
 158, AVU 121, W'4CHD 72. L4HDX 71, BRP 69. W4KNI 50, AKC 49, VIW 46, PED 7.

VIRGINIA—BCM, Kohert L. Follmar. W4QDY゙SEC: K4MJZ. PAM: BGP. RMTs: K4JKK, K4KNP, SHJ, K4QER, K4EZL and QDY. The W'inchester Hamtest, sponsored hy the $-1 . A R C$, was a whopping success. K4IEF reports : moch-moditied HQ-129X is working like a cham. OOL anys that they still can't get much 2-meter activity going in his area. K4FMJ is getting his new Hornet tribander in the nzone. 'lhere is much interest in new appointments by our Virginia gang with many queries hemg answered hy ve sCAl. Lh, up Richmond way, is back in traffic wort and we welcone this outlet. Our PAM. BGP. operated maritme mobile while fishing 15 miles ofi the V'irginia coust and reported good corersge into the Hallpton Area. PRO is working the night shift and it cuts down net activity but is fine for DX. KifIIP is operating portable 4 trom flhester. Va., week nights. Our top trequency measuring station, CoO, reports he is much on the move and it is timiting OO and OPS work. K4DWP, from Danville, says brother Larry (9 vears old) is : new Novice with the call EN 4 BJL. K4JDJ now is a Noriolk resilent. C'KK has a new HQ-180. K4LPR's and PK's (OO)s) reports contain nier-ly-worded letters of appreciation from atmateurs notified of violations. KX's rig finally has given up the phost and he savs only complete replacement or rebuilding wil! sutlice. JUJ likes to talk about "Awards and Contests" to the Richmond Club (4th time)! F4RBQ vacationed in Kientucky and is headed hack to college along with a number of our other tellows. VMA is doing a nice jub on Hampton Peninsula with the AREC. Traffic: (Aur.) W4SH.J 350, ZMH 26it. 1 1'T 239. Ki4MXF 189, W4ODY
 FMJ 30, W4OWV 18. IAD 17. LK 16. BGP 15, PRO 14, (Continusai on mave lim)

You Asked For It... Here It Is! cosMOPHONE "1000"

A A Self-contained 1 KW Transmitter-Receiver
\triangle A True Table-top Station with NO Sacrifice of Performance

SPECIFICATIONS

TRANSMITTER

-1NPUT: Full 1 kw on Voice Peaks (Meters Read 2500 V at 400 ma) into a pair of 4×300 A's
UNWANTED SIDEBAND: 42 db down
DISTORTION (SSB): Third order products approx. 32 db down
FREQUENCY STABILITY: Drift less than 100 cycles.
CALIBRATION: Built-in 100 kc marker
AUDIO CHARACTERISTICS: 200-3100 cps
MIKE INPUT: High impedance
VOX: Built-in
LEVEL: Automatic level control
METERING: Screen, plate, and grid current, plus RF output
RF OUTPUT: 52 ohms
VFO's: Dual VFO's permit transmitting on the receive or any other frequency
CONTROLS: Vox, Qt, ALC, Grid Tuning, Plate Tuning, Antenna Loading, Audio Gain, Band Switch. Meter Switch

RECEIVER

SENSITIVITY: 1 microvolt for $6 \mathrm{db} S / N$
SELECTIVITY: 3.1 kc mechanical filter plus a T-notch filter
STABILITY: Drift less than 100 cycles from a cold start at :oom ambient
TUNING KNOBS: Coarse gear ratio of 20:1, fine gear ratio of 100:1 gives a 1 kc dial reading per division. CALIBRATION: Built-in 100 kc marker
IMAGE AND IF REJECTION: Better than 50 db
AUDIO DETECTOR: Balanced detector for SSB and CW, diode detector for AM
MODE SWITCH: Selects up or low SSB, or up low AM, or CW
DUAL RECEPTION: Two VFO's permit reception of any two frequencies on one band with the flick of a switch
BFO: Crystal controlled
METERING: S-meter
CONTROLS: T-notch filter, audio gain, RF gain, antenna trimming, tune selector, phone jack, tune A and A.

> "The COSMOPHONE 1000 "-a complete Station, Receiver, and Transmitter.
> Dimensions: 17 inches wide, 12 inches high, and 15 inches deep.
> Power Supplies packaged separately, can be placed under operating desk.
> Price: "The COSMOPHONE 1000" with Power Supplies... $\$ 1,550.00$.

Get the best in Electronics

- For today's enjoyment
- For Christmas giving
- For year 'round pleasure Send for Radio Shack's

Electronics CATALOGS

Mail coupon for latest big Radio Shack catalog plus all new issues for \mathbf{I} year-FREE!

See world's largest electronics line! Hi-Fi, Ham Radio, Stereo. 100,000 items!

Buy now on new Easy Budget Terms, up to 2 years to pay. Satisfaction is guaranteed.

TYPICAL VALUES IN RADIO SHACK CATALOGS

3.98 ond 4.98
Srereo Records,
only \$1 each.

RADIO SHACK CORPORATION

730 Commonwealth Ave., Boston 17, Mass.

K4ILP 11. W4CTO 10. K4DW'P 10, LPR 8. CHA 7. W4KX 6. K4LHB 5. W4Y'MC 5, JUJ 2. (July) K4AL 20, W4BRI 9, KX 9. GOF 8. K4CHA 4. Wै4LK 4, VMC 2, IF 1 .
WEST VIRGINIA-SCM, Donald R. Morris, W8JM -The Black Diamond ARC Annual Bass Lake Picnic was well attended, with K8OEJ wiuning the DX-100B. New officers of the Blennerhassett ARC are MIIT. pres. K8DXU, vice-pres.: K8PCF. sey.; GWR, act. mgr. K8OIZ. publicity. BARC members attending college are V'VE, K8.AFQ. VSV, K8AJX and IHY. K8KFA will be in the Army for three years. AMIS now is teaching school in St. Leonard, Md., and has a DX-100 on the air. DY'A and K8DZU have new 100-5 exciters. HNC has a new HT-37 und an SX- 101 receiver. K8PJC and K8PJS, father and won, are aetive on 3x90-ke, phone. K8NOT is being transferred to Brownsville. Tex. K8HID, WVN Net Manager (c.w.) reports, the fill session is off to a good start. ESH worked A3USA mohile on B meters K8CNB has a new homerade kever. The MARAARC had a booth at the Wintield District Fair. The kinawha ARC plans state-wide distribution of its elub paper Splatter. WUB, PAM, plans to send a monthly phone net hulletin to active menhers. Congrats to K8ILD on his interest in emergency work. K8RQL is now 4CBM in Vurginia. The East River ARC of Bluntield is uuite active and publishes a clinh prper, Static. Traffic: K8JLF 94. PJC 24. HID 22.

ROCKY MOUNTAIN DIVISION

COLORADO-SCM, Gurl 1. Smith. WaBWJ-Asst SCM: Howard Eldridge, KøDCW. SEC: NIT. RM*: WME and MYB. PAMs: CNW and IJR. ORS: IMC: On Aux. 13 and 14 members of the IVenver Area RACES and AREC combined forces to assist the Jefferson County C.D. organization in "Qperation Aircrash." This exercise was viewed with a great deal of interest by civil defense heads from Washington, D. C'. Net activity was on the increase during Auxust with many of the winter regulars petting back into artion. It is encouraging to note the increase in EC reports and in AREC activity. The use of 2 meters in Colorado is rapidly incren ing: at last count there were 30 -odd stations on 2 meters, with IC, IUF, ACA and IGAYK probably being the most active. Boulder, Fort Collins, and Denver seem to be the most artive areas on 2 meters hut colorado Springs and Pueblo are catching up tast. All ARRL anpointments have beell renewed up to current date: those desiring endorsement of certificates please send them in The HNN has beten an active registered NTS net for the past 12 years. We welcome FEO. newly moved to Colorado. He is now Wed. and Fri. NCS for CCW: Trallir: KøEI)H 369. EDK 278. WøWME 230. K0DCW 159. WøKQD 146, FEO 81. MYB 74, KøQGO 29, WøCBI 27, IA 11.

UTAH-sCM. Thomas H. Miller, W7QWH-Asst. SCM: John H. Sampson. 7OCX. RM : OCX. V.H.F. PAM : SP. QDS has received appointment as OBS. Thrre are several appointments upen for those interested. QWH still is the Acting SEC. Any voluntrers? Reports from ECs have been nil. Criterion for continued appointment is your monthly report. QWH moved his station. (CX was in the hospitul for a short time. KøEDH was TWN liaison for BUN during John's absence. BUN could use some NCSs and ANCSs. OCX and QWH received BRAT Awards for August on BUN. K7GOF and JJC are a father-and-sirn team from Provo now nperating on θ meters and expecting to he on 2 meters soon. GUF reports that contacts are few and far hetween. Traffic: W7OCX 256, QWH 3.

NEW MEXICO-SCMI, Newell F. Greene. K5IQLAsst. SCAI : Carl W. Franz, 5ZHN. SEC: CIN. PAM ZUS. 10 -meter PAM: LQMI. V.H.F. PAM: FPB. RMI 7HN. We bid furewell to our SEC. Leonard has moved to Santa Rarbara. Cshlif.. irom where we hope to hear him soon. QRM permitting. We shall miss his timely reports and diligent work as Emergency Coordinator FPB is building a high-grade secondary frequency standard, second to none with three ovens in all, with multivibrators, markers, etc. Mort asks that more v.h.i. operators report to him. 2BIE/5 was located at the Philmont Scout Kanch. All nets are back on winter skeds and operating habits should be settled down. VWU has been trying to utilize Echo I, without luck so far. Your SCM, with a $6-\mathrm{ft}$. dish, is listening on 432 while completing the p.p. 4X250 rig running the limit on $144-$ Mc. s.x.h. Traffin: W5ZHN 557. K5IPK 49, W2BYE/5 39, W5GD 6, UBW 5, GB 2, K5LWN 2, UYT 2.
WYOMING-SCM, Liai D. Branson, W7AMU-SEC: CQL. The Pony Express Net meets Sun. at 0800 MST on 3920 kc. The Wyoming Jackalope Net meets Mon. through Fri. ut 1200 MST on 7255 kc . for traffic. The YO Net is a c.w. net on Mon.. Wed. and Fri. at 1830 MST on 3610 kc K7KMS and K7LBW, t wo Novices, got their ('onditional K7KMS and K7LBW, two Novices, got the
(Continucd on page 13s)

From Polytronics:

THE NEW, POWERFUL POLY-COMM 6-2,VIF TRANSGEIVER

For Novice, Technician and General

COVERS BOTH THE
6 AND 2 METER BANDS

Rugged... dependabie... feature by feature the Poly-Comm 6-2 outclasses them all!

NOW IN PRODUCTION!

This is it! Built for continuous heavy-duty service, the Poly-Comm 6.2 has a V.F.O or crystal controlled transmitter plus a triple conversion superheterodyne receiver!
All weatherproof steel cabinet and chassis . . . equipped with weatherproof fittings and teflon wiring for operation under the toughest conditions.
LOOK AT THESE ADDITIONAL FEATURES! 18 watt power input... S meter doubles as tune-up meter... 100\% plate modulation.... V.F.O. or 2 crystal positions for transmitter control . . . built-in $115 \mathrm{VAC} / 12 \mathrm{~V}$ DC power supply . . triple conversion with second and third conversion oscillators crystal controlled... squelch and automatic noise limiter ... sensitivity: better than 1 microvolt for 10 db S/N/N ratio . i. selectivity ($6 \mathrm{Kc} @ 6 \mathrm{db}$ pt.) and stability assured by triple conversion and Hi-Q IF stages utilizing 12 tuned circuits... single knob bandswitching... B and filaments regulated on oscillators... com. plete with under-the-dash bracket and ceramic microphone.
\$299.50 amateur net COMPLETE

NOW AVAILABLE!

the poly-comm 10-10 meter transceiver. 10 meter version of the Poly-Comm II, "workhorse' of the citizens band field, now available as an amateur band transceiver. Specify Poly-Comm 10 and frequencies desired.
At your electronics parts distributor or write for complete. specificatlons to:

CITIZEN BAND-CLASS "D" CRYSTALS

All 22 Frequencies in Stock

3rd overtone. . 005% tolerance-to meet all F C C requirements. Hermetically sealed HC6/U holders. $1 / 2^{\prime \prime}$ pin spacing-. 050 pins 1.093 pins available, add 15 d $\$ 2.95$
EACH
The following Class "D" Citizen Band trequencies in stock (frequencies listed in megacveles): 26.965, 25.975, 26.985, $27.005,27.015,27.025,27.035,27.055,27.065,27.075$, 27.085 , 27.105, 27.115, 27.125, 27.135, 27.155, 27.165, 27.175, 27.185, 27.205, 27.215, 27.225.
Matched crymtal sets for Globe, Gonset. Citi-Fone and Hallicrafters Units . . . $\$ 5.90$ per set. Specify equipment make.

```
RADIO CONTROL CRYSTALS IN HC6/U HOLDERS
In stock for immediate delivery Ifrequencies listed in megacycles)
sealed crvstals 26.99.5, 27.045, 27.095, 27.145, 27.195, 27.255, toler-
ance .005% 11/2" pin spacing...pin diameter . 05 1.093 pin
diameter, add 15&l.......................................92.95 ea.
    FUNDAMENTAL FREQ. SEALED CRYSTALS
in HC6/U holders
from 1400 KC to 4000 KC. .005% Tolerance. . . . . . . . . $4.95 ea.
From 4000 KC to 15,000 KC any frequency
    .005% Tolerance.
        SEALED OVERTONOM CRYOMTALS
Supplied in metal HC6/U holders
Pin spacing.486, diameter .050
15 to 30 MC .005 Tolerance. 
30 to 45 MC . 005 Tolerance
    $3.85 eq.
    $4.10 ea.
45 to 60 MC. . }005\mathrm{ Tolerance
$4.50 ea.
```


FT-243 holders
Pin spacing $1 / /^{\prime \prime}$
Pin diameter .093
MADE TO ORDER CRYSTALS • Specify holder wanted 1001 KC to 2600 KC:

$.01 \%$ Tolerance. 005% Tolerance.		
2601 KC so 9000 KC		
.005\% Tolerance.	…	2.50 ea.
. 005% Tolerance	9001 KC io 11,000 KC:	\$3.00

Amateur, Novice, Technician Band Crysials

$.01 \%$ Tolerance.. $\mathbf{\$ 1 . 5 0}$ ea.-80 meiers $13701-3749 \mathrm{KC}$), 40 meters $17152.7198 \mathrm{KCl}, 15$ meters $17034.7082 \mathrm{KCl}, 6$ metors 18335.8650 KCI within 1 KC

FT-241 !attice Crystals in all frequencies from 370 KC to 540 KC lall except 455 KC and 500 KC .
Pin spacing $1 / 2^{\prime \prime}$ Pin diameter 093
Matched pairs $=15$ cycles $\mathbf{\$ 2 . 5 0}$ per pair
Marched pairs 200 KC Crystals, $\$ 2.00$ ea.; 455 KC Crystals, $\$ 1.50$ ea.; 500 KC Crystals, $\$ 1.50$ ea.; 100 KC Frequency Standard Crystals in HC6/U holders $\$ 4.50$ ea.; Socket for FT- 243 crystal 15% ea.; Dual socket for FT- 243 crystals, 15 e ea.; Sockets for MC. 7 and FT-171 crystals 25 c ea.; Ceramic socket for HC6/U crystals 20 dea .
Write for new free calalog \#860 complete with oscillator circuits
ASK YOUR PARTS DEALER FOR TEXAS CRYSTALS
See big red display . . . if he doesn't stock them, send us his namo and order direct from our Florida factorv

RUSH YOUR ORDER TO OUR NEW PLANT!
 Use coupon below for 1st Class shipment TEXAS CRYSTALS

Dept. 0-110 1000 Crystal Drive, Fori Myers, Florida For extra fast service, Phone WE 6-2100

THIS COUPON TO YOUR ORDER FOR SHI VIA IST CLASS MAIL AT NO EXTRA COST

TERMS: All items subject to prior sale and change of price without notice. All crystal orders must be accompanied by check, cash or M.O. with PAYMENT IN FULL. NO COD'S.
Q. 110

spend one hour a day with either of these courses and prepare yourself for a rewarding future

BASIC ELECTRICITY

two fabulous illustrated training courses now used by the U. S. Navy and the nation's leading industrial firms

Abstract

These are the same famous courses sponsored by the U. S. Navy to turn out trained technicians in record time! More than 100,000 trainees have already learned the basics of electricity and electronics with this "learn-by-pictures" training course. What's more, the nation's leading firms rely on these courses to teach their personnel electricity and electronics. And, now you can learn these important subjects in the same easy-to-understand way!

Here's why these courses are the easiest, fastest way to learn the basics of electricity and electronics. Each idea is made completely understandable with specially created illustrations. These illustrations are so clear, so dramatic that you immediately grasp the idea. There's at least one of these illustrations to a page, each supported by text that is clear, concise and technically accurate. The illustrations and the text are the perfect combination to make the subject completely understandable. (These courses are not available from the U. S. Govt. Printing Office) .

BASIC ELECTRICITY

by Van Valkenburgh, Nooger \& Neville, Inc. Regardless of your previous education, you can learn the basics of electricity with this "pictured-text" course. You will understand the fundamentals of electricity and the role it plays in our daily living. These fundamentals are applicable to the many electrical devices you own and use ... machinery and other equipment. More than 900 carefully selected illustrations supported by crystal clear text makes these subjects completely understandable: DC components and their circuits: AC components and their circuits: $A C$ and DC motors and machinery.
A knowledge of electricity is the key to a rewarding future in repair or maintenance work. It's a step up the ladder to an even more rewarding field - electronics - where technical men are participating in the highest paid jobs in America. And, if you just want to know about electricity for your own information, you'll understand enough to save many dollars in electrical repairs in your home or be able to participate in exciting hobbies such as kit building, amateur radio, experimentation and hi-fi. \#169,5 vols. soft covers, $\$ 10.00$ per set; \#169-H, 5 vols. in one cloth binding, $\$ 11.50$.

BASIC ELECTRONICS

by Van Valkenburgh, Nooger \& Neville, Inc. Only a knowledge of the basics of electricity is necessary for you to easily master the basics of electronics. More than 800 carefully selected drawings make the function and operation of vacuum tube diodes and power supplies, oscillators, amplifiers, receivers and transmitters crystal clear. This course will prepare you for a bright future in electronics. What's more, it opens up many new, exciting hobbies-amateur radio, kit building, high fidelity. And even in business, it will speed your advance by helping you understand situations that require a basic knowledge of electronics.

BASIC ELECTRONICS famous 5-volume course available as heretofore. \#170, Vols. I to V in soft covers, $\$ 10.00$; $\# 170-H$, all 5 vols. in one cloth binding $\$ 11.50$.

BASIC ELECTRONICS Vol. 6 only-for the great many thousands who have completed the 5 volume course, can be purchased separately. $\# 170-6$ soft cover $\$ 2.90 ; \quad \# 170-6 \mathrm{H}$ eloth, $\$ 3.60$.

> These and many other Rider titles are available at
> bookstores, electronic parts distributors, dept. stores or direct. Send for new catalog.

Buy these books today-No matter where you buy these books, we guarantee satisfaction, or your money bacl: zvithin so days of purchase.
 Amateur net
MODEL NO. 405 T controlled magnetic microphone with transistor amplifier
All the advantages of controlled magnetic microphone construction-ability to withstand hard usage and extremes of climate and weather conditionsare yours in this sturdy, reliable microphone. The Ten-Four 405T has a flat frequency response characteristic (200 to 4000 cps), controlled to provide maximum speech efficiency.
It is ideally suited for SSB-AM transmission. Fits naturally and comfortably in the palm of the hand . . . takes up minimum space in mobile or fixedstation equipment. Equipped with heavy-duty push-to-talk switch.

Shure Brothers, Incorporated

 222 Hartrey Ave., Evanston, III.
MICROPHONES, HIGH FIDELITY AND ELECTRONIC COMPONENTS

WESTERN FLORIDA-SCM, lirank M. Butler, jr., W4RKH-SEC: HKK. PAM: K4RZF. RM: UBR. Madison: PBO, EC, holds drills every 2nd Sun. at 0815 on 3840 kc. Chipley: EQK was home from medical school for the suiumer and was active on 40 meters. K 4 SGY is Generai Class now. L.XK works on 20 meters mostly. Quincy: KN4QDN is a new ORS. He is NCS and an active member of the Novice Hurricane Net (NHN) and has WAS 34/30. Ki4EYC also is active, but BGO has moved away. EKY is active on 40 meters from Havana. Crestview: OC:G has renewed ORS, OES and OO Class I appointments: Fort Walton: K4UBR has resumed as net mgr. of QF'N, vice ATA. Members qualifying for fiection Net certificates are MLE, K4CNY and K4BSS/4. The Whipsnappers Mobile (lub sponsored a pienic and transmitter hunt, won by BSS. UXW has heen appointed OEs. He. NVW and others around Eglin F'ield are experimenting with 220 Mc , and above. Gulf Breeze: K4ZMIV has the 80-meter antenna down for repairs. Pensacola: MS has a new $63-\mathrm{ft}$. tower going up. His DX total is now 177. LJS has moved here from Jax. L 4 RMIO is working 15 meters with a quad. K4SOI is on 10 meters with a new tower and beam. KNAYYE has a DX -40 and mohile rig. SRK and K4UBR are organizing a Weather Amateur Reporting Net (WARN) on 3795 ke. to cover all coastal areas in the Southeast. "Traffic: (Ang.) K4VBR 244, W4NBF 110, Б゙4RAO 7. (July) K4BSS/4 56 ZMV 4.

GEORGIA——CM, William F . Kennedy, W4CF,JSEC: PMJ. PAMs: LXE and ACH. RM: DDY. GCEN meets on 3995 kc . at 1×30 EST on The. and Thurs., 0800 on Sun. GSN meets Mon through Sun on 3595 kc. at 1000 EST with DDY as NC. The 75-Mpter Mobile Net meets each Sun on 3995 kc . at 1330 EST with K 4 YID as NC. The GPYL Net meets each Thurs. on 7260 kc . at 0900 EST with K4ZZSS as NC. The Atl. Ten-meter Phone Net meets each Sun. on 29.6 Mc. at 2200 FST with BGE as NC. The Ga. S.L.B. Net meets Mon. through Fri. on 3970 kc . at 2000 EiST with k44 UM as net mgr. New olficers of the Ga. Peach YL Net are K4LVE. pres.; K4DNL, vice-pres.; K4LIU, secy.; K4BDZ, treas.; and K4ZZS, NC. FWH has a new $220-\mathrm{Mc}$. transmitter and receiver, also a $50-\mathrm{Mc}$. converter completed. Congratulations, Walter. The Graater Atlanta Six Meter Net meets every Fri. at 2030 EST on 50.169 Mc . NC is K4FNZ. The net has a roster of npproximately 70 members. Icet's try to join the gang on 1 meters. LNG worked his first Wg on 144 Mic. during August. K4TEA has a new Apache on and worked VP2MB his 148 th colintry. K4TEA also has joined the Southeastern DX Club. K4KZP is hack at the old grind in college again. FWH is reading ARRL Official Hulleting on 145.350 Mc. at 2000 EST each night. Traffic: W4DDY 174, K4TEA 126, E.J 40, OGG 30, BAI 28, BVD 24, W4JWO 12, E4MIH 1.

WEST INDIES—SCM, William Werner, KP4DJSEC: A.A.A. AOD applied for an OPS appointment and has assembled his Heath Sixer. AOD and DJ have all the pirts for six-element i-meter beanes on 24 - ft . booms. AAN. JM, MO and ABN have ordered Heath Sixers with vibrator power supplies. NY, the Colegio San Jose RC now has three operators, AOD, AQD and K2GJR/KP4. WT. Dña Maria Luisa, skeds the Antilles Weather Net and the Antilles MARS Net on 40 meters and Stateside traffic on 20 meters. ALY, pres. of the PRARC. received the first $50-$ Mic. WPR50 Award. TQ, operating portable in Hato Rev, is using a pooney-box. Old-timers BA and HH are on 6 meters, BA with a Heath Sixer and HH with an AF-68 transciter. an $\mathbf{H Q}-150$, a Heath 6 -meter converter and a Telrex six-element heam. KD plans to invade 6 meters to contact more KP4s for WPR Awnrds. DJ alerted the b-meter anang when Echo 1 was overhead San Juan. AUY is on 6 meters with 450 watts from Henry Rarracks, Cavev. AYQ, ex-DL4DJ, KG1DJ and W5GUP, now is located at Fort Buchanan. AOO is on a Stateside vacation. AVM, ex-W5CJY, is a silent Mey. SV nperated portable for a week from Lares high in the mountains and could work the entire isiand on 50 Me. with a G-50. CU huilt a 6 -meter transmitter into an old HRO rahinet. ALY rewired and realigned the Hallicrafters -37 u.h.f. receiver for real hot results on 50 Mc . W2ONY/KP4 is mobile on 6 meters. ES and son, AST, are on 6 meters from Ponce. AMN, vacationing in P. R. using a Heath Sixer, says he is a member of the Denver Mile High Hi-Bander Cluh, operates as KP4AMN/Wの using a Globe sicout Deluxe HQ-110 and a five-element beam on 30.3 Mc . and has worked 22 states and 3 VEs. CK and SV caught the first hand opening of the season on Nept. 2 and worked LU2FCD and LU4GOZ. DJ's and AVB's one-watters reach there along with the rest of the gang. KM is installing gear in the concrete shack in back of the new house. APR ordered a Heath Sixer. The Antilles Weather Net. with KP4AED as NCS, stood by on 7245 kc . during Hurricane Donna. Tratfic: KP4WT 62.
(Coníinued on page 136)

AND EXAMINE ITS SUPERIOR FEATURES AND CONSTRUCTION!

for $10 \cdot 15 \cdot 20$

The new clean-line design TA-36 . . . the three band beam that will give your signal that DX punch!

This wide spaced, six element configuration employs
4 Operating Elements on 10 Meters
3 Operating Elements on 15 Meters
3 Operating Elements on 20 Meters

You get the Most with Mosley!

An antenna for every purpose. All with proven performance, demonstrated dependability and rugged reliability, second to none.
Harrison has the complete Mosley line in stock for immediate delivery PLUS the friendly, interested attention and personal service and advice that are yours at

"HAM HEADQUARTERS USA"

ENJOY NOW! Pay later

You can CHARGE IT, and pay next month. Or, you can budget-spread any part of your account over many months.

> Ask for your HARRISON CHARGE ACCOUNT, now!

Can't visit us just now?

You can order your new beam (and everything else you want) from me with the assurance that you will promptly that will latest and the best of Ham gear satisfaction. you the most pleasure and Or, drop me a line and ill send you the comp and I'll be glad to the fine Mosley Antennas literature on all ticals, Mobile, "Tote-Tenna," Beams, Veretc.
I'll inclued

Worksheet", our "Propagation Boosting can base their which our specialists tions to you for the bidual recommendacable, etc. that will beam, rotator, tower, formance at the lowest price. best per. Cordially,
33. BilHarrison
W2AVA
"Ham Headquarters, USA" . . . Since 1925

225 GREENWICH STREET
NEW YORK 7, N. Y.

- PHONE: BARCLAY 7-7777
[IONG ISIAND-144-24 HILLSIDE, JAMAICA]

 THANESGIVING
 Festival Of VALUES at BARIEY ELECTRONICS
 CDR "HAM-M" ROTOR. Complete with CONTROL Box and Meter type Direction Indicator. \$117.10.
 CORNELL-DUBILIER MODEL AR-22
 ROTATOR. Complete with rotor control unit and instructions. Operates on 115 volts, 50/60 CPS. \$32.77.
 HEAVY DUTY PROP-PITCH MOTOR (80 lbs.). Probably last lot available at this price. A Power-House rotator for the heaviest "Beam". (shipped ria economical motor freight from Georgia). Only $\$ 35.00$.
 B \& W MODEL 600 GRID-DIP OSCILLATOR. Covers 1.75 to 260 Mcs in 5 bands. Sensitive, accurately calibrated G.D.O., sig.gen., or absorption wave meter. Self-contained 110 V.A.C. Pwr Supply. Complete w/coils. \$45.72.
 GLAS-LINE. 100^{\prime} Spool - $\$ 3.75 .600^{\prime}$ Recls - \$17.84.
 PlATE TRANSFORMER. I'ri: 115 V. $/ 60$ CPS. Sec: 6,000-()-6,000 V'AC (a) 400 Ma . Oil-filled. Compact. 103 lbs . $\$ 70.00$.
 MODULATION TRANSFORMER. 2500 Watts max. audio. Pri. impedance: 12 K Ohms Sec. imp: 7500/5000 Ohms. (150 to 3500 CPS $\pm 3 \mathrm{db}$.) New in orig. Kenyon wooden box. $\$ 75.00$.
 G.E. SELENIUM RECTIFIER. 1450 V. @, $100 \mathrm{Ma} .1 / 2$ Wave. Pair will deliver approx. 1400 V . © 200 Ma . in full Wave Circuit. 75 c SEE THE WORLD OR THE USA in 3-D. Beautiful colored raised plastic relief maps. Self-framed, ready for hanging. Accurate, educational ideal for the Shack. Adds prestige to room. $281 / 2^{\prime \prime} \times 18 \frac{1}{2 \prime \prime}-\quad$ - $\$ 9.95$. $26^{\prime \prime} \times 41^{\prime \prime}-$ any $\$ 24.95 .42^{\prime \prime} \times 60^{\prime \prime}-\$ 49.95$. Specify USA or World.
 BARRY HAS " Y " BAND MICRO-WAVE COMPONENTS. WRITE.
 DRAKE MODEL 2-A RECEIVER. For complete specs see Dec. '59 "OST". Price $\$ 269.95$. Combination Q-Multiplier and Deluxe Speakers. \$34.95.
 JOHNSON VIKING INVADER. Newest SSB Xmtr. $\$ 619.50$ (brochure avail).
 JOHNSON INVADER 2000. \$1229.00 (brochure avail.).
 TIME PAYMENTS easily arranged through your bank. We will pay usual interest charges. TRADE-INS ACCEPTED. Factory authorized distributor for: Adjust-A-Volt, Akro Parts Cabinets. Ameco, B \& W, Burgess, Central Electronics, Cornell-Dubilier, Drake, Glas-Line, Hammarlund. E. F. Johnson, National Radio Co., Stancor, Vibroplex, Sonotone.
 WRITE FOR YOUR COPY OF THE MID-SUMMER FALL '60 GATALOG TODAY. If you already have this issue, write for the I'inter catalog which will be coming out shortly.

BARRY ELECTRONICS CORP. 512 Broadway Dept. Q-1 1 New York 12, N.Y.

CANAL ZONE-KCM. Ralph E. Harvev. KZ5RVAugust 1900 saw a number of the Ganal Zone hams leaving for new stations in varions parts of the world. VR's and RV's jr. operator has left the Canal Zone and is now in Uncle Sam's Navy at Great Lakes. I'R has moved to a new location and is awaiting her new triband. TD has heen duly elented SCM for the (aual \%one, eifectice Oct. 1. All traflic reports. news items, etc., should be sent to him. It seems that there are onite a few new Apache uwners in the Cunal Zone. Among them are HB, RM, PR and HK. A group of hams had a kettogether for RMI and KA on the nccasion of their 24th wedding anniversary. The same group pulled a surprise honsewarming on RV and VR. A farewell party wai held for LL, who is leating for California. HR is tating over the duties as NCS for the Air Force MARS Net. GQ has heen hospitalized in the stutes, hut latest reports are that Gus is on the roisd to recovery, und will return shortly to the Zone. Best regards to all who assisterl cluring my term as SCM for the Canal Zone.

SOUTHWESTERN DIVISION

LOS ANGELES-SCAI dibert F. Iill. ir.. WbiJQB GEC: W6LIP. KMs: W6BHG and K6HLR. PAMs: W6BUK and W6ORS. The inllowing stations made the BPL in August: K6MCA. W6WPF, W6GYH. K6EPT, KøCLS/6. K6LVR and WA6EEO. Congrats. fellows! K0CLS/6 added a new mill to the shack. W6RUK is heading east to New York City ior a vacation. WA6HUO made RCC! WA6EEO has heen in San Francisco for eye operations. We wish you a speedy recovery, Larry! Ki6EA is hearling for Minnesota tor a couple of months and will sign W0MIFW buck there. W'6CIS was rery busy in the Octoher CD Tents. W6FB made WAS and is moving to Palm Springs! K6COP is back in tratfic again with more power! WA6GHW is poing 6 -meter mobile. WBNKIR is getting on 2 meters with a five-element beam. K6CDW spent his vacation in the High Sierra Country W6SRE is visiting some of the traflic gang in Wushington. W'6AM has phased rhombics for Europe! W6QEZ made WAS with 3 watts on 10 -meter phone. k6SIX is trying to copy KL7FLC on 50 Me. W6GMIC is sporting a new RME-6900 receiver! K6SLM is getting ready tor some 420-Mc. space bounce. WA6DJB put up a new Spiralray antenna on 50 Mc. W6IBD had the radio room flooded! K6GLS is spending a nice vacation in V'E7-Land. W6ORG reports that an XE2 from Tia Juana is on 2 meters. Support vour section nets: On e.w., the Southern California Net meeting at 1900 PST on 3600 kce: on phone. the SoCal 6 Net meeting at 1900 PST on 50.4 Mc . Traffic: (Aug.) K6MCA 1510. W6WPF 1119. W6GY'H 954, K6EPT 674, K6CLS/6 667, K6LVR 609, K6OZ, J 333, WA6EEO 227. W6BHG 226, K6COP 100. W6SYQ 93, K6EA 90, K6SLX 67, WA6DW'P 29, K6PZAI 22, K6JSD 18. W' ISY 18, W6BUK 9. W'0CIS 6. K6MSL 6. W6NKR 2, W6SRE 2. (July) WA6DJB 190, WA6CKR 156, W6SYQ 149. W6OKG 4.

ARIZONA-SCM, Kenneth P. Yole. W7QZH-The Copper state Net merts at 1930 MST Mon. through Fri., the Grand Canyon Net Sun. at 0800 on 7210 kc ., the Catalina Emergency Net Wed. at 2000 on 29.627 and 145.8 Mc.. the Tucson AREC Net Wed. at 1900 on 3880 kc. For the first time since 1048 an ARRL convention is planned for Phoenix, Ariz. The date has been set for May 2b through May 29. 1961. The convention is marie possible through the joint sponsorship of the Mummy possible through the joint sponsorship ot the Mummy
Mountain Radio Club, the Scottsdale Radio Club thoti of Scottsdale) and the Arizona Amateur Kadio (lub of Phoenix. The following officers for the convention have bern cliosen: Honorary chairmen are K7KYV and W7EH (ex-9EH); general chaimman is ASK; vice-chairmen are K7AWI and FEW; secretary is 2KEB/7; trensurer is QZH. Registration will be handled by KFV/7. and KOY is all set for XYL and YL entertainment. 'Technical sessions will be headed jointly by EBG and SSC. K7BGL and YAL are in charge of the exhibits and prizes, while K7KCB will set up the contests. The Woulf Hong will be jointly supervised by MAE and WFY. YWF will handle breakfast activities. Although we regret the loss of CAF (PAM) and FMIZ (SEC) we extend our hest wishes and congratulations. Both have entered the University of Colorado. WYY has started classes on code and theory at the Phoenis YMCA. SSC. who suffered 3 slight heart attack is back to work on light duty. 'lraffic: W7FMIZ S. K7HIJ 5.

SAN DIEGO-SCA, IMn stansifer. W6LRUW6VIV, OO, in Costa Mesa is active on all bands with the addition of $50-$ and $144-\mathrm{Mc}$. equipment in his shack. W6VTQ and W6YGE. in Santa Ana, are netive on 50 Mc. WA6BDW, who works for the San Dieqo Post Office, sends all Theorrectly addressed QsLs to the Nan Diego IX Club for routing: a real assist. Amateurs are reminded in applying for various ARRI appointments that (Continued on page 13x.)

For more than two decades the ASTATIC D-104 has been top choice of ham operators evervwhere

AND NOW

ASTATIC BRINGS YOU 2 NEW MIKES DESTINED TO BECOME EQUALLY FAMOUS IN SINGLE SIDE BAND TRANSMISSION the MODEL 10-C CERAMIC and 10-D DYNAMIC

[^23]For complete information write for Astatic Microphone Catalog Q11 TH:

HEADQUARTERS for Times Wire \＆ Cable Co．

LOW－LOSS CO－AX

（See WIGKX article in April 1959 QST）
We keep a big stock on hand and will cut to any length and ship any－ where in the U．S．Freight paid on 100 ft ．coils east of Mississippi only．

T4－50（RG－8／U style） 52 ohm
14 f foot
T5－50（RG－58／U style） 52 ohm ．．．．9\＆foot

CORKY＇S of HARTFORD

203 Ann St．HARTFORD 3，CONN．

Tel．CHapel 6－5691．

the three requirements heside l．eague membership are ex－ perience，ability and regular reporting to the SCM．A new Novice is WVGNHT，the XYL of WAGCRW，A late BPL for July was W4DNU／6，who has applied for ORS ap－ pointment．K6LKD，in Escondido，qualified tor the MTHC Award in August，and got his WAS certificate also．WBEOT，RM and ORS，missed BPL in fugust for the first time in years，hut did receive his DXCC． W6IEY，in Lat Mesa，continues to be the most active OES in the section．K6RCK，in Santa Ana，is now an OES，aud is active on 50,144 and 420 Mc ．Yulir sCM is authorized to make 10 trips a year to visit and talk to clubs in this section（San Diego．Orange and Imperial Counties）．If vour club is interested in a visit by vour SCM，please contart him to set a date．He is ready to give your cluh a run－down on recrnt amateur happen－ ings，League news，the AREC and RACES program，and appointments available to Leazue members．WV6IPS，of San Diegu，won one of the 32 Forl Motor Company Outstanding Achievement Awards in its Annual Indus－ trial Arts International Competition for ：Texila Cnil he built．It won a four－day trip for him and his instructor． W6LRU，to Dearhorn，Michigan hy jet in mid－Oetoher plus a $\$ 100$ cash award to WV6IPS．Traffic：li6BPI 1509， に6LkD 524，W6EOT 475，WA6CDD 239，WA6ATB 204， WA6AVA 5，W6ELQ 2.

SANTA BARBARA－SCMI，Robert A．Hemke．K6－ CVR－The Santa Barbara ARC reports new and more interesting programis．There are speakers sud plenty of hot cofies to 40 rlong with ratuchews．K6MQS changed his QTH to San Luis Ohispo．WA6DYD has a new Valiant transmitter．W6ENR has upened up in electronics store in San Luis Ohispo．WA6FGV and WV6HYE have put up the santa Barbara Bovs＇Club antenna so that the Bovs Club will have a rig on the air，which consists of a Kanger transmitter and an $\mathrm{S}-38 \mathrm{E}$ receiver．W＇A6CMIC lonated the Ranger to the club．K5AOB．from Oliahoma，received his new eall． WAGPNQ．WAGHGZ received his Cond．Class ticket． WVGHYP and WVGMBE took the Cond．Class exams． New calls around Sant：a Barbara are K6SZ，ex－WiNZ， W6KXK．ex－K゙2JCV，and K゙6UAD．WV＇6MUP．WV6ACW and WV6MBQ went to the ranger station on La Cumbre Peak to visit ex－WN6SPK and work 2 －meter DN．Traltic： W6YCF 14，K6MQE 5．W6OUL 4.

WEST GULF DIVISION

NORTHERN TEXAS－SCAI，L．L．Harbin．W5RNG GHU reports B－meter activity is going great in the Mineral Wells Area with five new Heathkits completed and two more aimost finished．The Richardson ARC demonstrated an emergency radio set－up at the Richard－ son Community fair Aug．10－13．＇The Terry County ARC elected k5LSN，pres．；K5JST，vice－pres．K5LFI was named chairman for the Rrownfield free swaplest to be held Nov．13．K5AVG is the new net control for the Nouth West＇rex．Emergency Net．LR reports the theft of a Hallicrafters SX－101 MK 3 chassis serial No．239024，lid serial No．b6． 11444 and matching speaker， HT－32 chassis serial No．209914，lid serial No．66．A451． This equipment was stolen from the J．ARC Club room in Dallas prior to lug．20．The ft．Worth Vilocvele Club hail a pienic at Burgers Lake in place of its regular meeting for dugust．SZD won a scope kit．MZW an－ nonnced the start if anuther code and thenry class for beginners．K5BKH is new net manager for the 7290 kc ． traflic net in place of S．MK．Who was torced to resign be－ callse husiness is taking all his time．The 5th Annual Waco Hamfest was held sint．， 4 and it was a preat success as Hinal with 340 present．For the ladies there success as nsinal with 340 present．For the ladies there
was a demonstration of new hair styles ind the proper use of cosmetics．Transmitter hunts were held on three frequencies，there were tratlir－hmudlers and MARS meet－ ings，eye－ball QSOs and plenty of prizes．＇Trattic：li5－ BKH 363，RAV 130．W5．AYX 81，LR 55，BOU 48，L55HTM 39，EGB 6，PXV 4.

OKLAHOMA－SCM，Aririan I ，Rea，WSDRT－ SEC：（TYQ．KMS：K5JG7 and OOF．P．AMs：K5DLP－75． EJK－40，$V^{\prime} C J-6$ and $H X K-2$ ．MFX is manager of the Oklahoma Phone Emergency Net．New appointments are ERY hs OO．AQZ as OBS－40 c．w．．K5OJD as OPS and OOF as RM．Special thanks and commendation no to the Oklahoma（ity clubs for such a swell State Conven－ tion．The state meeting goes to Tulsa next vear．The fellows in Southeant Oklahoma also did a nood jub at fellows in Noutheast Oklahoma aiso did a good job at the Beaver＇s Bend Park Hamfest．K5ZEP still is talking ahout the fish dinner．EJK thinks there are two tellows with＂K＂ealls who should be watched．INC and KHA． If your club neels a proprath，K5SW．A will do the fan－ dango for you．LIR，e．d．director and LTB，EC，really have a 1st－class set－up in C＇anadian County for civil defense and emergency work．Glad to hear CCK hack as NCS on the Sooner Tratfic Net．kSZIY is a new operator at Commerce．ODM and K5ZZA are now radi－

T-LINE COAXIAL CABLE will give you up to Two Times Effective Radiated Power

2O-YEAR LIFE EXPECTANCY.

Once T-LINE coaxial cables are installed, there's no need for automatic replacement every few years - as with RG-8/U which increases in attenuation exponentially after 3 or 4 years.

LOWER TRANSMISSION LINE LOSSES

T4.50 (Actual Size)

```
E. S. GRAINGER
cox le9
Bniontwatmes, L. I.
```

21 Septemter 1960
Mr. Larry DeGeorge. Gen. Mgr.,
Yimes Wire \& Cable.
Waltingtord Conn
Waltingford. Conn.
Dear Mr. DeGeorge:
1 am not the letter writing sort. but I thought you might like to hear about some of your T 4.50 cable.
i have
I have been using T .50 for over two years. replaced RG. $8 / 2$. The results have been excellent. 1 found substantial increase in radiated power due to reduction in transmission line loss. Fart of the T4.50 cable is suspended in air, ex. Fosed to the elements - and on Long island we do
have elements, with some salt thrown in for good measure-but there is no sign of outer jacket tailure.
in comparison with other cables I have used in the past 15 years, this is the best ever.
Sincerely.
suncerely, itheietrijec
Earl S. Grainger, W2NXZ

TIMES T-LINE Cables - because of low-loss construction-can decrease transmission line losses from 1 to 3 db in the average installation. This is equivalent to an increase of 25 to 100 percent in radiated power.

T5-50 (Actual Size)

LIGHT WEIGHT.

T.LINE coaxial cables are uniformly lighter than other cables with comparable characteris. tics. For example, T4-50 weighs 10% less than RG-8/U, even though the cables are the same diameter.

INTERCHANGEABLE WITH RG CABLES.
All T-LINE coaxial cables fit standard connectors. T4-50 (RG.8, C replacement) and T5.50 (RG. 58 U replace. ment) - the two most popular I-LINE cables-both fit type UHF PL-259 connectors.

HIGH MOISTURE RESISTANCE.
T:LINE's special jacket is so impervious to moisture that T-LINE cables can be buried without concern. It is unaffected by sunlight and moisture, and has excellent abrasion resistance.

MC's	4	10	30	100
T4.50 (Replaces RG-8/U)	.11	.18	.32	.65
$T 5-50$ (Replaces RG-58/U)	.20	.33	.59	1.1

Contact Your Nearest Dealer, or Write to:
TIMES WIRE \& CABLE DIVISION THE INTERNATIONAL SILVER COMPANY WALIINGFORD, CONNECTICUT, U.S.A.

NEW IN ALL RESPECTS!

COAXIAL RELAYS

For quieter operation and resistance against moisture, all moils are ethcapsuled in an epoxy resin. Aid to this: low SWR - less than 1.15 to 1 at SOO mc, -... low losses - high contact pressures - patented receiver protecting connector (optional) - bifurcated DIDT external contacts (optional) which are found in the NEW Dow DK60 series. $\$ 10.90$ to $\$ 14.20$.

OTHER FINE DOW-KEY PRODUCTS:

1.) K60-T2-Transier two or more antennas - 1 KW capacity price (with standard U.H.F. connectors) $\$ 10.90$ to $\$ 12.65$.
$1-R$ switches - models - self powered and non self-pow red. Also available for special COMMERICAL frequencies ult to 250 mc . Engineering inquiries solicited, regular models $\$ 12.50$ and $\$ 27.75$.
We invite inquiries for coaxial relays using types ' N ' ' C HN' BNC ' and 'UHF' connectors.
Gatalog shects available from any of our 700 dealers and distributors in U.S. and Canada or from the main office.

DOW-KEY CO. inc.
 THIEF RIVER FALLS,
 MINNESOTA

HALLICRAFTERS
 CENTRAL ELECTRONICS
 ELMAC - GONSET

W8EPI - "JERRY"
New location -
1524 OAK HARBOR RD. PHONE FE 2-5681

HAVE YOU GOT MY NEW TVI BOOK ?

The 2nd Edition Now Also Covera Citizens Band TVI $\$ 1.75$ in US.A. $\$ 2.00$ Foreign
At Your Favorite Dealer or Direct From Phil, WIDBM NELSON PUBLISHING CO., Redding Ridge, Conn,

ORDER YOUR COLLINS KWM-2 NOW

 from AMATEUR ELECTRONIC SUPPLY3832 W. Lisbon, Milwaukee 8, Wis. Phone: WEst 3-3262

Steve W9EAN

Be Sure to Get Our Top Trade-In Allowance Before Trading... Free Used Equipment Lists.

Also see Collins KWM-2 af Harris Radio Corporation Fond du Lac, Wisconsin on Fri. 7-9 Sat. 9-3
ating signals from wut Clinton way. VCJ is doing an uutstanding iob as i-meter PAM. Oklahoma "77" "ertificates are rearly. Who will he the tirst to claim orne? UYQ still has some copies of the Oklahoma State Amateur Radio Wirectory. DRZ is preparing an Oklahoma Club Directory. Oklahoma clubs: Send him a short history, list vour nflicers and give chob call and place of meeting. The Oklahoma QSO Party will be held Nov. 4 and 5. Time will he from 1 A.s. Nov. 4. to 12 P.ss. Nov. S. Rules will he sent to all clubs. Others can get information from IDRZ or a Muskogee station. Traffic: (Aug.) K5IBZ 150, JGZ 106, CAY 77. D(1, 58. W5DRZ. 50, OOF 49. MFX 47, K5AUX 26. QEF 24. ELG 23. W5WDD 19. C'C'K 18, WAF 14. Li5JOA 11. I ZF 11, 7, EP 10. FZAI S. KEH 8, LUR 7, OOV 7, INC 5, W5ADB 3, K5CBA 3, W5VLW 1. (July) W5,JXiI B5.

SOUTHERN TEXAS—EMM RnY H. Egaleton. W5QEM-SEC: QKF. PAM : ZPD. RM: I5BSZ. QKF visited the Houston Amateur Hadio ('lub. K5Blif is the new net manager of the 7290 Net. The net had 46 sessions, 1227 check-ins and 471 messages. ZPD and ITA have heen vacationmg in y-Luud. congratulations in K5WIC on making BPL. He glso is a new OPS for the College Station Area. K5DQN has a new HT-37. MVL, at Ell Paso, is working regular 2 -meter schedules with Roswell, N.M. K5PEQ is the new EC for the Bayshore Area. K5KIG is the new EC, ht College station. OIVF and QEMI visited the Pasadena Club. The new officers of tue El Aguila Radio Cluh at Fagle Pass are LisOFR, pres.; K5SKO, vice-pres.; RKI, secv. This club meets at 1600 the 2nd and 4 th sinn. V'isitors are welcome. Civil Defense also has heen organized in Easle Pass with K5OLiS as e.d. director. Ki5SKO Radio Otticer and Li5OFR net license and net enntrol. They monitor 29.6 Mc. daly; anyone driving through is welcome to give them 8 call. The new wfficers of the South Texas Emergency Vot are IPQ, net control: CIX, asst, net. control; FNH, secy.-treas.; and QEM, net pro. FNT won the HT-37 given awav by the STEN. K5JTP soon will be heard from Kessler Air Force Base. Glad to hear that K5V'XN is out of the hospital. Tratfic: (Ang.) h5NVIC 528 , ABV 230, JFP 90. W5IRJ 23, ZPD 23. (Julv) K5WIC 551, JFP 215, W5ZPD 144, L5ABV 137, MVI 47, MXO 30.

CANADIAN DIVISION

MARITIME—SCM, D. F. Wenks, VE1WB-Ast. SCMs: A. D. solomon, VE1OC, and H. C. Hillyard, VOICZ. SEC: BL. VOs and V'Eis are reminded of the recently expanded phone suh-bands as follows: 7150-7300 kc., 14.100-14,350 kc., 21.100-21.450 kc. and 28.100-29,700 kc. It is recommended that Rule One of "The Amateur's (eode" he strictly arlhered to in the use of these irequencies. OM invites all 6 -meter operators to participate in the sio.4-Mc. Niet which meets nightly it 10 P.M. VO 2 A iv reports the following departures from Goose Hay: EB to therta, GB and fis to Greenwooi. N. S., and K1DHE; VO2 hack to the U.S.A. VO2DP has in I)X-100B. New calls includn l'Els AED and KX. dmateurs in all Atlantic Provinces have seen action during the recent outhreaks of destructive inrest tires but no reports are in as vet. Please pet me have more information on activities such as this. fellows. Can you imagine any 2 -meter stations who refuse to helieve that ther signals are getting out and carry on with a lncal roundtable while rix stations are irsutically calling then? This is what happened to the Loyalist City group during a recent 2 -meter opening. TrattiC: (lug.) V'E1ADH 17, OM 3 .

ONTARIO-SCM, Richard W. Roberts, VE3NG -..Three PAMs are now on the roster for Ontario, CFR of London. AMT of cambleford, and of course, the ald stand-by, TX, of North Bay. These sentlemen will be responsible tor the opration of the Untarin Phone Net. If you have problems or inquiries write to any of them, Most of the portables are now hack in their home shacks. More and more signals are returning to the folu. BSY will he running the SWAP Clits on 75 -meter phone again soon. Stan voluntcered to do this in memory of KH . Several new calls have heen heard but with old tamiliar vorces: (MIR is now BD and BJV is now LK. both in the 'loronto Area. PR was in sick bay in London for five weeks. He sends thanks to the London gank. (FR has un R , C model hoat. The L,ARC heard an s.s.b. talk recently. The Sarnia group is on the hall for the coming season. UWO has a new QTH in Toronto. DNU helper the following get their tickets: DPW, DHS, DPH. [)LC and DIJ, all in the efusive Stormont County. IFOC applicants make note. BUW reports that Peterborough han an FB Field Dav and has a fine program for the coming year. The Niagara Cluh has a new format for its paper, fecd Linc. AUR is in VE7-Land. DNU is now in W4-Land. The weiner roast. was a wing-ding. The following are new hams in the Windsor Area: DEX, UWX, DWE, DXD, ETM, (1) n itinued on paye 14~)

FORTORANGE 904 BROADWAY ALBANY 4 N.Y. U. S.A. AMATEUR HEADQUARTERS

Uncle Dave Sez

The news about the new Mosley TA-36 has all of us at Uncle Dave's Radio Shack really hopping! This dandy, six element beam for 10,15 and 20 meter operation will really give your signal that DX punch . . .
 and we've got this terrific antenna in stock for immediate delivery!
I believe it is the finest antenna in its price range . . . for many reasons. It has wide spacing with 4 operating elements on 10 meters, 3 operating elements on 15 meters and 3 operating elements on 20 meters. Most important are the exclusive TrapMaster trap assemblies that are fully dirt and moisture proof for all-weather top performance. These slim-profile Mosley traps are truly proven, fail-proof, l KW rated traps too! All 6061-T6 aluminum construction - completely rust and corrosion proof, guaranteed! Nuf said. . . come in and see this terrific beam for yourself.

MODEL TA-36 . . . Amateur Net, $\$ 129.50$

Uncle Dave Also Sez

I'd better mention the Mosley AutoWhip TM-5 for 10, 15, 20, 40 and 80 meters while I'm on the subject of great antennas. This is really the ultimate in big signal mobile performance and it has automatic bandswitching from the transmitter!
Mobile hamming has sure improved for me - and it will for you too - if you have a Mosley TM-5! It's a neat, compact unit that can be used with all popular amateur mobile transmitters and receivers. It can also be used as a fixed or portable station with the newly available ground system accessory kit.

MODEL TM-5 . . . Amateur Net, $\$ 69.95$
MODEL TM-5AK Ground System Kit . . . Amateur Net $\$ 25.35$
These are just two antennas from America's favorite amateur antenna line. Come in soon and choose from our complete stock of Mosley antennas.

Cable Address "Uncledave"
 CALL ALBANY HE 6-8411
 NITES 77-5891

ROHN"Fold-aver" TOWERS*

first IN DESIGN foremost IN SALES

ROHN "fold-over" towers are ESPECIALLY made for amateur use. They are the most practical tower in design because they allow you to work ON THE GROUND for antenna maintenance and servicing. You'll quickly agree that this is a most wonderful feature for an amateur tower. In addition, these towers are made and designed for true, heavy duty use. They are structurally sturdy for use up to 70 feet and in enough sizes for all types and sizes of amateur antennae. This means that they can easily handle your requirements. They have unexcelled workmanship. They are hot-dipped galvanized after fabrication which means you have no problem of maintenance. They come as a complete package with all materials and accessories included. Add all these wonderful features together and you see why they're the most demanded tower today! Priced from \$186.
FREE literature and near source of supply gladly sent. Be Sure you investigate ROHN towers before buying!
*Patent-2,875,865

R○HA Manufacturing Company

116 Limestone, Bellevve - Peoria, lllinois
"World's largest exclusive manufacturer of TV-Communication towers'

CDHTINENTAL ELECTRONICS \& SOUND CD. 6151 DAYTON LIBRATY BOAD DAYTON 18. OHO

EMM, DKF and Al Hodgson, whose call is not available gs yet. A visit was made by some of the members to W8MYY. The Ottawa Mobile Club is up and at it. The club had a fine social, assisted in yacht racing, and attempted to "Eraluate the Mobile." Trattic: VE3CWA 189, DPO 64, NG 63. BZB 56. CFR 53, BUR 41, AIL 39, AUU 33, KN 32, BAQ 30. DZ.A 24, PR 24, EHL 16, LK 2, VD 2.

QUEBEC-SCM, C. W. skarstedt, VE2DR-It is with sincere regrets we record the passing of two oldtimers, VE2JJ and VE2HM. both very well known among the V'E2 fraternity. NV and YA took advantage of the Asiatic contest to work some Oriental DX. AGQ is active on 80 -meter $\%$ w. with his new DX-40. WT is the new manager of the Ontario-Que. C.W. Net on 3535 kc . at 1900 daily. Give him your cooperation. BE is off on a Western trip. ABE visited hams in the W' Area. Le Club des Jeunes (Uperateurs (JC) holds meetings the list Sun. of teach month at 7400 St. Lawrence Blvd., Montreal, at 1400 . BB now has a proper 80 -meter sky hook and puts out a potent signal on the trattic nets. BCK is ex-VE6CS at Drummondville. AYM lost his 35 - ft . tower and now intends sulstituting with a 50 -footer. 3EU (ex-EE) at Ottawa was married nn Sept. ${ }^{10}$. TY is dabbling with a few man-sized experiments. YU down-hoisted his heam and up-hoisted a quad. AFC seems to snare a great deal of govi DX. BLi enjoyed a holiday in England. IC reports that the annual KAQ1 (Radio Amateurs Quebec, Inc.) "summer do" was at great success even if it took him a long time to find the site at Montmagny. He was impressed with the number of tine mobiles. Apparently the Quebec boys favor center-loaded whips which perform well. Speaking of mobiles at kroup in Montreal. the Montreal Amateur Mobile Group, is well organized with AUU, ANV and others as spark plugs. Listen for their Sunday sked at 1100 on approximately 3760 kc . Traffic: (Aug.) VE2WT 245, W7QMU/V'E8 143. VE2DR 23, BB 22. (July) V'E2WT 138.

BRITISH COLUMBIA-SCM. Peter M. McIntyre, VE7JT. This report was submitted by AUT, the RM. Your SCMI is enjoying his vacation in California, but was unable to make the sian Maten Convention. MG is back in the groove after a stint in Ontario, and expects to stay in the land of the setting sun for at least a year befors heing shipped otf to some other tnur. AMI now is moved to Arizona. JQ now has recovered from a nasty attack of appendicitis. AQY now is operating with a half-gallon rig in Prince Rupert. AQU set up a 40 -meter position in Prince Kupert and is working on a new QRP rig for 75 meters. The BCEN now is operating daily, 7 and 10 p.m. These times may he changed if the move to intorporate GMT on the NTS nets goes through. AOT has a sequence kever on the Viking Two and it apparently is working fine with the Knight VFO. HJ had a leg amputation. ALE is back in B. C. after two imuntlis in Kurope. Thanks for the fine reports this montli. Tratic: VE7AAF 86, BAZ 33, ALZ 23, AAIV 15, J(Q 10.

MANITOBA-SCAI M. S. Wation. VE4JY-The ARLM held a sircessiul picnic at Falcon Lake Aug. 14 attended by 20 amateurs and families. JE, WS. HL, UR, ZK. NO, EK. QX and K゙㫙OZ were among the mobiles heard at Winnipeg during the day. The Manitotia Hamiest held at Brandon Sept. 3 and 4 under the auspices of the BARL was a huge success with 83 amateurs भnd 31 XYLs in ittendance. JQ was winner of the 75 -meter transmitter hunt and LF won on 6 meters. LC got first for the hest mobile and Jh secoud among 16 entries. The highlight was the evening bynquet with KP acting as master of ceremonies. ARRL Vice-Pres. Alex Reid, VE2BE, was the speaker and also won the prize for travelling the longest distance. EG landed a prize for having a license the longest (since 1921). IW was the first to register. Chose from a distance included EDH, AXO and BJD from Dryden; :5EG from Assiniboia; BL Regina; WM Moose Jaw ; WGFNZ Carbury: PHH, ORV and QFT, Cando and OR, Flin Flon. Trattic: ${ }^{\prime} E 4 A Y$ 11, AN 4,' CB 4, JY 4 HL, 2, JQ 2, KB 2. PE 1.

SASKATCHEWAN-SCM, Harold R. Horn, VESHR -Congratulations to FC and his XYL Barbara on the arrival of a daughter, Karen Elaine: also to LZ on the presentation of a son by Ann. HR has a new Tri-
hand Moxiev and will be after a few new ones to complete DXCC. DB has a new Apache for the coming season. XX and hs XYL, YY, have taken up residence at Saskatoon. XX has taken employment with the University of Saskatchewan. Welcome June and keith. JG and BV were visitors to the Hub City. BV is showing off an FB mobile installation. TH has $a t$ wo-element off an FB mobile installation. TH has H two-element
beam to go on 14 Mc . NQ is looking for members on the c.w. net. Tentative frequency is 3690 kc . The Saskatoon Cluh has started its fall activitios and visitors are always welcome. The meeting night is the 2nd Fri. of each month at c.d. hq. We extend our sympathy to UC and his family on the sudden passing of his mother. JV has joined the s.s.b. ranks.

G-76 Less Power	
SupplySpeaker $\$ 376.25$	
$\$ 3763$	$\$ 1700$
down	per mo.
Power Supply, Either	
12 V DC or $117 . \mathrm{AC}$	
$\$ 145.00$	
$\$ 1450$	$\$ 1100$
down	per mo.

6-band, 100 watt AM, 120 watt CW G-76 transceiver, mobile/fixed by GOWFET GONSET

[^24]
THE NEW PR LA-400-C 800 WATTS PEP SSB LINEAR AMPLIFIER

NOW 800 WATTS PEP FOR ONLY $\$ 164.95$ THE "BEST BUY" YET

NEW modern stylingl NEW high efficiency 3 element band-switching pi net. Puts more power into any antenna or load from $50-70$ ohms. For SSB, DSB, Linear AM, PM, CW and FSK. All bands $80-10$ meters. May be driven to 800 WATTS PEP SSB with popular 100 watt SSB exciters. Uses four modified 1625's in grounded grid. On customers order, will be furnished with 837's. (note: 1625's and 837's are not directly interchangeable, since sockets are different.) Typical P\&H Low Z untuned input. TVI suppressed. Parasitic Free. Meter reads grid drive, plate current, RF amps output. Heavy duty power supply using 816's. NEW modernistic grey cabinet measures approx. $9^{\prime \prime} \times 15^{\prime \prime} \times 10^{1 / 2^{\prime \prime}}$. Panel is recessed. WANT TO SAVE MONEY? BUY IT IN KIT FORM. It's a breeze to assemble and wire. BEFORE YOU BUY - SEE THE NEW LA-400. - AT YOUR DEALERS.

LA-400-C Kit complete with tubes. $\$ 164.95$
LA-400-C Wired and Tested.
\$219.95

ELECTRONICS INC.

424 Columbia Lafayette. Ind

Are You
 TRADING?

Let me make you a trade-in offer on your used amateur offer on your used amateur
equipment. All name-brand merchandise-late serial num. bers assured. Quick delivery.

WRITE TODAY!

COMMUNICATIONS EQUIPMENT CO.

518 State St., LaCrosse, Wis.
Phone 4-7373

Ground Plane

(Continued from page 17)
longer gamma section has higher inductive reactance and requires more capacitive reactance (less capacitance) to tune it out.

Leaving the part of the gamma rod which projects up past the tap intact causes no ill efficets except added wind resistance. If the end is cut off. the tap will have to he moved slightly to compensate for the subtracted capacitance.

प57-

Transformer Design

(Continued from puge 38)
outlined in the article by Coats and in this one. The reason for this perhaps lies in the fact that high-power transformers in the kilowatt range are not mass produced in the quantities of smaller units. Also, precision winding of the large number of secondary turns may be an expensive manufacturing operation. By performing this and other operations himself, the amateur transformer builder reduces the cost of his transformers considerably.

In conclusion, the author feels indebted to Mr. Coats for pointing out the idea of seramblewinding the high-voltage secondary winding in the form of series-connected pies. The prospect of winding a staggering number of secondary turns by hand has thus far prevented the author from undertaking the task. With the pie-winding technique, and perhaps its subsequent sophistication, the prospect of winding a high-voltage secondary is no longer objectionable.

Planning Ahead
 (Continued from prige 57)

up. Relax. Put on the coffice pot. That nap was just what I needed. Feel great. But, what a dream!

I suppose a thing like that could happen if I hadn't planned ahead a bit ---sure did get the XYL squared away and the rig fixed with plenty of time to spare this year.

OK, check the charts. Frequency versus time, QSO's versus frequency. OK, 20 it is. Hmmmmmm - those bottles sure light up pretty, don't they? Don't rush now. Maybe a fast breath of fresh air, then the coffice. Easy now, you got all night, dad.

Here they come. Contest must be on. Wow, listen to that. South America. Yep, Europe ohhh boy, Africa. Gee, this is even better than that wild, crazy dream!

Y'ipe! What's this? A real live bamboo-pickin' AC 3 ! And no dream - this one is real. Never thought I'd hear one of these. Must be a good (Continued on pave 186°)

THE NEW MODEL-TB 1000-4
10-15-20 Mexter Antenna

- Famous Hornet Quality
- Rated at Maximum Legal Power

- Four Elements On Each Band

 Model TB 1000-4 Cash Price, Only \$119.50NOW AT YOUR DEALERS! NOW Hornet antennas are now today for
World famous Hour dealer See your able from dealers. See your deo or order direct

THE NEW MODEL TB 750
This husky antenna replaces Hornet's famous Model TB 600, and is now rated at 750 watts AM or SSB.
Model TB $750 \quad$ Cash Price, Only $\$ 69.95$

YOU WILL-THINK SO TOO!

The four triband elements, in operation on each band make the difference -

A Powerful four element punch!

THE NEW MODEL TB 1000 offers top performance in three element design.

- Famous Hornet Quality
- Rated at maximum legal power

Model TB 1000 Cash Price,
Only \$89.75

ALL MODELS

- Are Pre-tuned and Easy to Install • Have Custom Fittings of Cast Aluminum © Use a Single 52 ohm Coaxial Transmission Line - Hove completely weather-sealed FrequencyDividers* * Have Elements of 6061-T6 Aluminum

All Prices F.O.B. Dealers Store or Factory
MAIL YOUR ORDER TODAY - 10 DAYS FREE TRIAL
HORNET ANTENNA PRODUCTS CO.
P.O. Box 808, Duncan, Okla.

Please ship one Model___Hornet tribander. Cash price in full is inclosed.
I wish to purchase one Model___ Hornet tribander, and would like to use your time-payment plan.

NAME	My Call Letters Are
ADDRESS	
CITY	STATE

SAVE 20\% BUV DREET

You can now buy this AIRCON MOBILE CONVERTER

- Requires no B+ voltage or external supply

- Uses hybrid tubes - no transistors
- The only 6 volt converters on the market - other models as shown below

$\begin{array}{lll} \text { C314 } & 6 \\ \text { C319 } & 10 \end{array}$	Meters । Mełers	For 6VDC \$40,30	Buy	\$32.2
C315 6	Meters	For 12VDC		32
C316 10	Meters	For 12VDC	For	
$\begin{array}{ll} \text { C318 } & 6 \\ \text { C317 } & 10 \end{array}$	Meters Meters	For 12VDC and $115 \mathrm{VAC}{ }^{4}$	Only	39.9

See QST \& C \bar{O} articles in Aug. ' 60 issues
Send 25% deposit, balance C.O.D. plus posiage or send check in full, freight prepaid.

TRANSCON DIVISION

Northeast Telecommunications, inc.

Send for NEW catalog

Avallable from franchised distributors at slightly higher cost.

G4ZU CRAMPED
 "Gazu pat." FOR SPACE?
 (YOU NEED NOT BE) DON'T SUFFER FROM CLAUSTROPHOBIA

Birdeages require $2 / 3$ the mounting area of a quad.
Birdcages require $1 / 6$ the mounting area of a comparable Yagi.
No flimsy quad construction-no traps, no coils, no trouble. Birdcages give the Big Signal.
20/40 Meter Birdcage with 25^{\prime} "Zoom Up" Mast.
\$94.50
10/15/20 Minibeam (not miniature) Broadbanded $13^{\prime} 6^{\prime \prime}$ radius - 16 pounds electrical dynamite.
$\$ 89.50$
ROHN \#6 TOWERS. Now! The "All Purpose Tower" with the Magic Iriangle construction. Hot-dipped galvanized steel. No small- $121 / 2^{\prime \prime}$ triangular design. 50 footer should be put up in 2 man hours.

House of Antennas manned 100%
 $\begin{array}{lll}30^{\prime}, \ldots \ldots & \$ 48.05 \\ 40^{\prime} \ldots \ldots & 63.70\end{array}$ by Amateurs. Go where they under-
 $50^{4} \ldots \ldots$. 63.70 79.35 stand your problem.

r amatours. Special top
ROHN \#25 TOWERS. Designed for amateurs. Special top sections. Electrically welded "ig ligen design the 25 G . Prices, including house bracket.

IMMEDIATE
 DELIVERY

CREDIT AVAILABLE
$\begin{array}{rrr}30^{\prime} \ldots \ldots & \$ 64.15 \\ 40^{\prime} \ldots \ldots . & 82.40\end{array}$
$60^{\prime} \ldots . . .$.
1153 East 82ndChicago 19, III. Tol. SO 8-9282
solid $\mathbf{S 7}$. Get that xtal on him -- don't lose him in the "crash." OK, he signed - Hip the switch -relax bov, relax. This is only the beginning You got all night. Look at those beautiful blut rectifiers - AC\%, here 1 come -"
"Ohhhhhh John, Johnnumnn - aren't yot ready yet? I told the Smith's we'd be there ar hour ago. I thought you were getting ready - now hurry -"'

DST

How's DX?

(Continued from pago 75)

VR6AC, a certitied marine navigator, is Pitcairn's postmaster and police chicf (no arrests necessary there in all his ten-year tour of duty!!. In addition to providing a "rare one" for the IIX fraternity. Floyd's amateur station stunde ready to summon assistance to the island in the event of medical or other emergencics - - Pert K 6 Q PG misses the D Xcitement her rild KtiQPG/KWF label used to cause but Mary managed tifty fust countries from her current Compton QTH on 40 watts. K6QPG needs but one more contirmation for her Wake D.)XCC. A nursing career keeps Mary quite QRL these days but she's a real ham's ham when time permits.-. \%L1ALI has K2UYG eager for imminent (.R10.AD. Bill observes that VR1B rarcly goes out of his way for a $1 / \mathrm{K}$ contact these days
W8KX's letter from VK8TF deseribes Ted's rockbound EL32-6L6 $2(0$-watter, 4 -tube superhet and a.c.-d.c. power pack. "The antenna ut the moment is a lump of wire strung between two trees in the back vard about 35 fyet high." VK8TF works the night shift at B(: station 8DR
KtLRA hears that ZK1AR' 40 watts soon will give way to a 100-watt c.w. and phone multiband affair VKtGT puts a plucky signal into KH6AHZ with a doughity 5-watter, screen-modulated and rockbound $\cdot-\cdot>=$ KGAIVB (K!IVB) expects to begin issuing Iwo Jima QSOs next month with a Navigator and $\mathrm{SB}-10$. Steve recalls working all continents with narrow-bund f.m. Anvbody still using that stuff"? \qquad VK5Fy directs your uttention to the Elizabeth (Australia) Amateur Kadio Club's "Elizabeth Award", a sheepskin offered to non-Australian amateurs who confirm contacts with any six of such Elizahethan VK5s as BP BS DY゙ EJ EV FY HA KD NO NQ PE PF QX and Z.JM, QSOs dating after January 1, 1960. Check with VK5FY for full details...... Further Pacific patter from WGDXC and WIA sources: AIacquaric's VK0WH still is known to answer c. W. calls near his 15 - and yometer phone frequencies. . . Vī3RJ, thirty years a QSL manager, recently visited here and on the Continent.

WIA (Australia) WAVKCA certifications Nos. 132 and 133 are kladly clutched by IIs 9QGR and 1 TTXL.

Mereabouts - VP9L and colleagues scheduled a busy visit for W3AYD, top Stateside scorer in the 1910 Bermuda Contest --- WWEAY, long-time "How's" contributor now tinds his poor 30 -meter beam dwarfed by a new highrise next door. Undaunter, Éric rests his 4-400As and ambushes coodics with a 2 E 26 . "Surprising how many guys still go after IHH-M1-HK-VP3-YV-etc. stations in our own back yard. These should not be difficult, but they're the hardest guys to get QSiss out of everything is 'rure'
 and try a 16 -element Sterha shortly. -. I Win wet serious $V E 2.4 F I$ having a St. Picre ball as FP8BO on 20 phone
 Det. 1, 71 th AC\&W Sqdn.. Cold Bay. Aluska - well represented on DX bands. Squadron reporter A/Ic l. Pace declares. "There is no better morale booster for men at remote sites than to be in close touch with home."
K2QXG uffers endorsement incentives for holders of his "20-K" certifications. Ship Mac an inquiry with s.a.s.e. for details.-... The Certificate Hunters' Club of K6BX has passed the 80 -member mark. W8JIN leads the membership with a wall-sagging 150 diplomas ...-.... (X9AW reminds us that RCU (Uruguay) makes available (i-19-I) certitications to amatcurs who can contirm contacts with cert Truguavan departments (states). Another RCU award: C-33-0. for which contacts with uny thirty-three © stations will do. Consunt the society for complete information tion.

W8QHW and KンCPR sikned in for OVARA tapestries \dot{N} os. 6 and 7 . Interview W8JIN for the specs on this one. .- K 6 CQQM succecds K6SSJ as editor of NCDXC's sprightly D Ner.... That was VP2VB/mim \& Co. at the key and mike of HC2VB preliminary to shoving off for the Galapagos, Marquesas and what-have-you abuard Yiasme III.-.-.- PY7LJ, expecting a two-vear stint, still offers Fernando de Noronha regularly around $2000-2100$ GMT near $21,050 \mathrm{kc}$.......- W9SFR subruits valid "WNCC ${ }^{2}$ " filing No. 33 (see p. Ais, July '59 QST). (Continued on mage 148)

NEW at RADIO SHACK Globe Ham Equipment that Outdates Them All

Immediate delivery! Use handy ordering coupon below.

Easiest Budget
Payments! Low as $\$ 5$ down, take up to 2 years to pay

FREE CATALOG

Radio Shack's 1961 Electronics Catalog plus all issues for 1 year. Write for it now America's Electronic Shopping Center
730 COMMONWEALTH AVE. BOSTON 17, MASS.

THE GLOBE SCOUT DELUXE TRANSMITTER

New RELAY CONTROLLED circuitry
for wide flexibility, ease of use
Streamlined table-top design with 90 watts CW and 75 watts phone input. Bandswitching 80.6 meters, straight thru operation of final on All bands; high efficiency, panel adiustment of loading on ALL bands. Pi-net matchos $50-300$ ohms on $80-10,50-75$ ohms link output on 6 meters. Husky new 7027A modulator tube. Plug in VFO or crvstal. Cat. No. 45DX852, shipping weight 36 lbs.

Outstanding power! Packed with advanced operating features $\$ 159.95$ Wired \$5 down, \$7.50 month

755A VFO for use with Scout. $10-160 \mathrm{M}$ bands with output on 40 and 160 M . Cable drive; 13:1 tuning ratio. Built-in power supply. Ship. wt. 9 lbs. $\$ 2$ down, $\$ 5 \mathrm{mo}$. 45DX859-Kit $\$ 49.95$ 45DX858-Wired ... $\$ 59.95$

Compact, modern, efficient! Self-contained bandswitching ($10-80 \mathrm{M}$). 90 watts for advanced CW or novice (at 75W input). Cathode or bias keying. No rewiring for external 755A VFO, UM-1 or SM-90 modulators. Just plug in. Built-in power supply. New design pi-net for wide range matching. 3 -color kit diagrams. Cat. No. 45DX855 - Kit; 45DX854 - Wired. Shipping weight 31 lbs.

Crystal or VFO controlled with 20 watts input. Compact transmitter and receiver combination for equal 6 meter adaptability to a fixed or mobile installation. Operates from $115 v$ AC, $12 v$ DC or ov DC, all power-supplied. Only $5 \times 12^{\prime \prime}$ size for home or car. 7 tubes including RF stage. Squelch control. Internal VFO voltage regulated and shock mounted. "S"" meter, tuning meter, slide rule dial, VFO spotting and Class B modulation. Cat. No. 44DX740. Shipping wt. 22 lbs.

MONEY BACK GUARANTEE

Radio Shack guarantees your complete satisfaction with every item or your money refunded in full. 15-day no-risk home trial on any item.

Are you fond of ．．．．

If you＇re the kind of guy that can＇t keep his soldering iron out of any radio gear－including a thousand－ buck receiver－then QST is for you． Fresh ideas for major components， gadgets and test equipment，for VHF，SSB，a．m．and c．w．，for an－ tennas，couplers，keyers，monitors， and modulators－all show up reg－ ularly in QST．

But even if you＇ve never built a thing，you＇ll want QST，for it also has the latest word in regulatory matters，contests，station activities， DX，emergency work，and of course，advertisements about the hottest commercial gear on the market from the most reliable sources．

If you＇re not now getting QST de－ livered to your door，sign up for your League membership and QST subscription today．Together，they cost just $\$ 5$ in the U．S．，$\$ 5.25$ in Canada，and \＄6 elsewhere．

> THE AMERICAN RADIO RELAY LEAGUE WEST HARTFORD 7，CONNECTICUT
＂With four or five thousand forcign QSLs in file I though this would be a cinch，＂says Steve．＂It wasn＇t！＂

Ten Years Ago in＂How＇s DX？＂－The introductory observation for Norember，1950，stresses the shift to phone found necessary by c．W．men scarching for such difficult I）XCC eredits as AR8AB，CR5UP，VR3C，etc．
Eighty c．w．＇s LX stock is booming because of FĀシ $\dot{B} G$ OY3IGO，PJ5RE，PK4OO，PY7WS，ZB2I，ZN6AK and 7S3K ．．．．Forty is favored by EA9BB，FO8AG，FR6CA VP8AP，UADFJ and ZE2JN ．．．．Delicacies on 20 c．w． ET9X，FKS8AL，KS4AI，L i iFS，MD2GO，MI3IMI， MS4Fi，YKB IAA 1TE ITM 3ST 4KS 5AA $6 \mathrm{LN} 6 \mathrm{VK}^{\prime}$ ， VR5GC，VS4．JB．IKIAM，9Sts AR and AX
Twenty phone＇s hest are CS3AA，HZ1KE，KB6AO， KS6AA，PK4DA，TA3GVU，VK1RB and ZM6AA
Ten meters sttempts its tall comeback with ZDs 1515 and tAB in the phone vanguard ．．．．．We note that DL－ts HA and LL are negotiating to put rare Vatican C＇ity on ham bands．．．HC8GI opens a Galapagos DX career．．．． Participation particulurs are listed for the tth All－European LX Competition ．．．．Pictures of DLA YQ，EA8LP and VPagG are on display，and our man Jeeves inherits a pair of peculiar mubile antenna masts．

प57－

Correspondence

（Continued from page 80）
WONDERING？
（1）The mention of the garbled XYL message in＂ 2.5 Years Ago This Month＂in August QS＇T＇brought back vivid memories of a 11×226 and a＂B＂eliminator in the depres－ sion days when we had more time and fun than moner． It is difficult for me to realize that the waters of twenty－tive summers have passed over the mill wheel since that hot August afternoon on 80 cw ．

If you will consult the 1935 issue carcfully，you will find that this message is still being garbled！The two participants in the QSO were W9ILH，Alton，Illinois and W9IBK， Bloomington，Indiana，（not W8ILH and WMBHİ）．I wonder what has happened to ole W9F；PT．－－．Wrally Kiunz，K才KF＇B （ex－IF9HBK），Seattle，Washington．

．．．AND HE SENT＂CL＂

（1）I have read the article＂A Critique on DXing＂by K9DNR（August．UST）and I agree with it completely． However，there is one point that Mr．Tlapa apparently overlooked．This is the practice of tail－ending on the part of many of the W／K゙／W．J／VE gang．The following incident illustrates this point well：

While tuning arross the 20 －meter c．w．band the other night，I heard a 5A2 in contact with a W4．When the 5A2 signed with the W4 he sent CL which I believe means ＂I am leaving the air＂．However，as soon as he sent CL，a flock of W／K／WA／VE；stations jumped on the frequency and began calling him．All this calling was useless and un－ necessury QRML．This case proves that the receiver should be used more and the transmitter less．－－Raphael Finkel－ stein，＂＇7AFF＇，T＇ucson，Irizona．

COUNTIES MAP

（1）For those of the gang who are interested in the countics of the various states（ 48 of them，anyway）there is a very nice map available from the Supt，of Documents．U．S．Govet． Printing Office，Washington 25，D．C．，for 15 d．Don＇t send stamps．

Ask for the＂Plant Hardiness Zone Map＂．Miscellancous Publications No．814．The counties are all clearly outlined and each state capital is shown．It is in color，measures $30^{\prime \prime}$ by $22^{\prime \prime}$ and contains other useful information．－Jamea E ． Higuins，WZCHK，Highland Park，New Jersey．

Crystal Exciter
 （Continued from pape \＆\＆）

quirements，a lower tuning range may be more desirable．Some experimentation may be in order to satisfy the particular case．A reminder： L_{1} is the range control and should be used accordingly；an increase in inductance increases the range．
（Continued on page 150）

NEWARK
 GIVES YOU TOP TRADES ON THIS ALL NEW ${ }^{1961}$ GONSET LINE!

Now, Newark is trading high to give you an outstanding opportunity to incorporate this new Gonset equipment into your rig-

G28 10 METER COMMUNICATOR
Model 3204. Complete 10 meter transceiver in 1 case! $50-\mathrm{W}$ input to 6146 PA . Built-in pwr. supply and superheterodyne receiver. For mobile use. Calibrated VFO. Covers 28 to 29.7 Mc . 115 VAC, 60 cps. Shpq. wt. 34 lbs. 299.50

G-50 COMMUNICATOR

E Model 3221. Similar to above. For 6 Meter operation. 97 F677
319.50

2 METER COMMUNICATOR IV

- Model 3341. Rcvr.: front end uses new frame-grid tubes tor $4-5 \mathrm{db}$ noise figure! Has ÀNL, squelch, "S" meter, Xmttr.: 20-W input. 143.7-148.3 Mc with broadband driver. Push-to-talk mike supplied. 26 lbs.
97F690 369.50
Model 3342. Same as above, but for
975691
.369 .50

GSB-100 SSB TRANSMITTER
Model 3233. 100 watts PEP input, 80-10! For USB, LSB, AM, PM, and CW. Has VOX and provides blocking bias for an external linear amp. VFO drift less than 250 cps in 2 hours. All bands covered in 600 kc segments. Pi-net output. Built-in $115 \mathrm{v}, 60 \mathrm{cps}$ power supply. 67 lbs.
$97 F 678$
499.50

GSB-101 LINEAR AMPLIFIER
Model 3262. Capable of 1000 watts PEP. Requires $60-70$ watts drive. May be used with GSB-100. Covers $80,40,20,15$ and 10 meter bands. Power con.: approximately 1500 watts. Built-in DC operated antenna relay. Flexible pi-network output easily matches $30-$ 200 ohms. Built-in pwr. and bias supply. Shpg. wt. 94 lbs. 97F683 459.50

NEW DOUBLE-CONVERSION RECEIVER
Model G-63. Covers all ham bands 80 to 6 meters in 6 bands: 3.5-4. 7-7.3, 14-14.35, 21-21.45, 28-29.7, $50-54$ Mc. Diode detector for $A M$, prod. det. for SSB and CW. 1st IF at 2065 kc ; 2nd IF at 262 kc . Peaking type " Q "-mult. ess than 1 uv sen. for $b \mathrm{db}$ signalnoise/ratio. 2.4 lbs. 975686
239.50

TAKE ADVANTAGE Of NEWARK'S MORE-FOR-YOUR-DOLLAR TRADEIN PLAN

- Receive fop dollar value for your present equipmont!
- Pay balanse on Newark's Easy Time Paymont Planl
Newark Trados Sky-High to dive you the bost "dail" onywhere on your used squipment.

FREE!

Newark's All-
Now 1961 Catalog No. 711 See the very latest Hom Equipment
foaturod in Nowark's extensive slock! Ordar Your sopy Now!

Write Dept. T-11
223 West Madison Street - Chicago 6, Illinois STate 2-2944 • TWX: CG 1401
4747 West Century Boulevard • Inglewood, Calif. ORegon 8-0441 • ORchard 4-8440 • TWX: INGL 4043

EDDYSTONE

GEARED SLOW MOTION DRIVE

For Amatuer Radio \& Communications RECEIVERS \& TRANSMITTERS
A high grade assembly, flywheal loaded, manufactured to fine tolerances, provides a smooth positive drive with a reduction ratio of $110: 1$. The vernier with its 100 divisions rotates 5 times for one pcinter traverse, giving 500 divisions with positive reset readings. A cam adjustment on the vernier assures correst zero setting. A spring loaded lockey arm maintains tension of the pointer drive. Overa! dimensions $93 / 6^{\prime \prime} \times 53 / 4^{\prime \prime}$.

Manufactured by
Strafton \& Co.. Lid. (Eddystone) PRICE \$15.00 NET Birmingham, England Postpaid

Distributed bv

BRITISH RADIO ELECTRONICS, LTD. 1833 Jefferson Place, N.W. WASHINGTON 6, D. C.

TAPE RECORDED CODE INSTRUCTION

ONE OF THE FINEST GODE GOURSES AVAILABLE NOVICE TAPE. Complete basic instruction and practice
 ADVANCED TAPE. Practice material 9 to is WPM. Plant language and coded groups. $\$ 5.50$ COMPLETE COURSE. Both above tapes..........sil.00
Ppd. In U.s., Possesplons and Canada - Penna. Residents 4\% tax. Dual Track $7^{\prime \prime} 1200^{\prime}$ tape. Kecorded at $3 \% 1$ PS. Sec Your Local Ham Distributor. If he docsn't carry them, order direct and give us his name
TAPEDCODE
BOX 31 E , Langhorne, Pa.

the Only Complete Line of

 V. H. F. ANTENNAS 3/4-11/4-2-6 METERS- beams
- dual stacks
- QUADS
- COLINEAR ARRAYS
- mobile halos

See your distributor or write for Free Catalog

Comments and Suggestions

Many uses for this oscillator are readily apparent. The controllable range and bandspread and high stability suggest use as a tured local oscillator for high-selectivity converters for 50,144 and $220-\mathrm{Mc}$. Transmitter control at 50 and 220 Mc . requires only the correct crystal frequencies. Range will be less on 50 Mc ., more on 220 Mc . Band switching could be incorporated in the exciter to cover different ranges. If crystal switching is used, care should be exercised to keep switching capacitance to a minimum.

This oscillator should be a natural for frequency modulation. A simple varicap reactance diode with a suitable preamplifier would do the trick. The screen or grid section of C_{1} would be suitable for the varicap eonnection. Circuit simplification could be achieved by the use of a dual-section tube such as a 6 UB A type.
As to results, the drift rate is negligible after a 5 -minute warmup period. The drift is negative in direction, stalilizing in about one hour, with a total drift of about 15 kc . at 144 Mc . from a cold start, most of it in the first few minutes of operation. T9 note reports are a certainty. A 130-Mc. version is currently being used to generate the variable injection frequency for my $144-\mathrm{Mc}$. s.s.b. rig, with excellent results. In all cases of reported drift, after warmup the receiver in question has turned out to be the offender.

Acknowledgment is given to W3BWK for his helpful suggestions in developing this exciter and in supplying the many different types of erystals required to evaluate this v.h.f. application of the VXO circuit.

प5T-

Measuring Coil Q

(Continued from prage 87)
To determine the distributed capacitance, take a reading at the operating frequency, f_{1}, ketting the resistance, R, and the resonating capacitance, C_{1}. Then find the capacitance, C_{2}^{\prime}, which resonates with the coil at some other frequency, f_{2}. (lf f_{2} is made half of f_{l} it will simplify the figuring.) Using the capacitance values (hoth in either $\mu \mathrm{f}$. or $\mu \mu \mathrm{f}$.) and the frequencies (both in either ke. or MC.), solve the following equation for the distributed capacitance, C_{X} :

$$
\frac{f_{1}^{2}}{f_{2}^{2}}=\frac{C_{2}+C_{2}}{C_{1}+C_{2}}
$$

C_{2} will have the units of C_{1} and C_{2}.
Of course, any coils which resonate with the same value of capacitance at ahout the same frequency can be compared using the method of this article. The coil with the lowest resistance is best. - Ed.

. Strays " ${ }^{2}$.

WA6MPR was a friend indeed, reports KlCBV. A vapor lock brought the K1's car to a halt on the Pennsylvania Turnpike last August 30, and dozens of cars passed him by without offering assistance. But the magic of a mobile whip and call letter license plates caused WAGMPR to stop and lend a hand to a fellow ham.

SEE THE

COLINS KWM-2

MOBILE

TRANSCEIVER

\mathcal{W}^{\prime} 200 kc bands from 3.4 to 29.7 mc .
Designed for swift and easy transfer between fixed station operation and mobile use, Collins KWM-2 has 175 watts PEP input on SSB and 160 watts on CW.
For more QSO's per kc-for one transceiver for use in your ham shack and in your car-try Collins KWM-2. Net price: $\$ 1150$. See the KWM-2 and Collins famous S/Line at Ack's.

ACK RADIO SUPPLY COMPANY

wholesale electronics

[^25]> 331 Luckie St. NW Atlanta 13, Georgia Telephone JA $4-8477$ Call W 4 RRW

Call, write or stop in at Ack's. We're anxious to talk trade-in allowances, time payments, or cash deals with you.

PEAK OF PRECISION

CONTROL CRYSTALS

Available for immediate delivery in any type, any frequency, any quantity, for -

- CITIZENS BAND USE
- AMATEUR and CAP
- AIRLINE and AVIATION
- TAXICAB and POLICE
- MARINE RADIOPHONE
- MILITARY and MISSILE USE plus all other requirements where precise and dependable frequency control insure successful, economical operation. Complete information and prices on request Engineering assistance available

SAVOY ELECTRONICS, Inc. Subsidiaries of Savoy Industries, Inc.
GRIFFIN, GEORGI FT. LAUDERDALE, FLA.
Box $7127-$ LOgan 6.8416

80x 584-Griffin 9401

FIRST TIME EVER OFFERED!

SOLID 14K GOLD CUFF LINKS \& LAPEL PIN AT MFRS. PRICES LAPEL PIN $\$ 9.95$ F.T.I. - CUFF LINKS $\$ 22.00$ F.T.I. SEND CHECK OR MONEY ORDER DIRECT TO MFR. TODAY. REGI ORIGINALS, 63 W. MAIN ST., ROCKAWAY, NEW JERSEY INFORMATION ON OTHER AMATEUR JEWELRY AVAILABLE.

Happenings of the Month

(Continucd from page 79)
For Vice-Dinector:
Carl Franz, W5ZHN, was found lawfully nominated, but ineligible due to lack of the required membership continuity. Lester M. Richards. WgIC'R, and John H. Sampson, Jr., W7OCX, were found lawfully nominated and eligible and their names ordered listed on ballots to be sent to Full Members of the Division.
gouthmestern division
For Divector:
Raymond E. Neyers, W6MLZ, was found lawfully nominated and eligitle. Being the only eligible nomince, he was thereupon declared, pursuant to the By-Laws, to be duls re-elected as Director of the Southwestern Dirision for the 1961-1962 term without membership, halloting.
For Vice-Dircctor:
Virgil Talbott, WGGTE, was found lawfully nominated and eligible; however, the Committee was in receipt of a letter from Mr. Talbott withdrawing his name us a candidate. Lyle G. Farrell. W6KGC, and Howard F. Shepherd, jr., W6QJW, were found lawfulls nominated and eligible and their names ordered listed on ballots to be sent to l'ull Members of the Division.

What oulf ditision
For Director:
Suther E. Harrison, W5LR, was found lawfully nominated but ineligible due to lack of the required membership continuity. Roemer O. Best, W5QKF, and Charles M. Sandidge, W5AZB, were found lawfully nominated and eligible and their names ordered listed on ballots to be sent to Full Members of the Division
F'or Vire-Director:
A petition was found for Roemer O. Best. W5QLF, but declated invalid, under the provisions of By-Law 17, because of his nomination for the oftice of Director. Ray K. Bryan, W5UYQ, and Robert D. Reed, W5KY, were found lawfully nominated and eligible and their names ordered listed on ballots to be sent to Full Members of the Division.

The Chair appointed Messrs. Kahn, Meyers, and Dosland, with Messrs. Handy, Houghton and Huntoon as alternates, to serve as a Committece of Tellers to count the ballots in the current director elections, under the terms of the By-Laws.

On motion of Mr. Dovle, unanimously VOTFD that the Learuc approves IARU proposal 98, relating to the admission into membership of the Club de Radio Aficionados de El Salvador.

On motion of Mr. Kahn, unanimously VOTED to approve the holding of a New Yorl State convention in Niraara Falls, September 15-17, 1961. On motion of Mr. Meyers, unanimously VOTED to approve the holding of a Southwestern Division convention in Phoenix, Arizona, May $26-29,1961$. On motion of Mr. Chaffce, unanimously VOTED to ratify the previnus mail action of the Committce in approving the holding of a Southeastern Division convention in Orlando, Florida, April 8-9, 1961. The Committee looked with favor on an application to hold a Central Division convention in Springfield, Illinois, sometime in 1961 , but deferred formal approval pending the establishment of a specific date.
Director Meyers reported on arrangements for the 1961 Board Meeting at Anaheim, California, and on his motion it was unanimously VOTED that, in accordance with ByLaw 20, a mail vote is to be taken of the directors on a proposal to change the date of the mecting to May 5, 1081.

The Committee discussed. at considerable length, the subject of proper observance of the FCC rules governing the amateur service. On motion of Mr. Kahn, unanimously VOTED that the Headquarters Staff and the Leaguc's (ieneral Counsel contact the Federal Communications Commission and ascertain how, in addition to our tradi tional policy of self-nolicing, the League can further assist in suppression of illegal and unauthorized uperating proce dures, and report to the Executive Committee at its nex meeting.
On motion of Mr. Doyle. affiliation was unanimously GRANTED to the following socicties:
(Continued on page 154)

World's Largest Distributors of Short Wave Receivers:'

2 AND 6 METERS ON ONE CHASSIS WITH SEPARATE RF SECTIONS LETTINE MODEL 262

Powerful 45 to 50 Watt VHF Transmitter With Mobile Connections and A. C. Supply
The 262 contains the identical $R F$ sections of the $\&$ meter 242 and the 5 meter $24 \because 3$ transmitters on one ehassix, with a single 949 audio and vower supply section. The only cuit. The siparate RFF sections make RF switching unneccuit. The speparate Rle sections make kiry of single band transmitters. Dach leF section has its own tubes and eircuits. comprising $4-5783$'s as uscillators and drivers. $2-16146$'s as final amplitiers. İAT't crystal mike amplitier, oV6 audio driver, $9-6 \sigma^{\prime} s$ elasx 13100% push-pull piate modulator, 5【4G rectiffer. "Two separate antenna uutputs are provided with coaxial connectors on the front of the transmitter. These are connected to swinging links, controllable from the front panel. matching antennas froin 52 to 300 ohins. The 262 uses standard 8 me. crystals and will operate with the leptine VFO. A socket is provided at the rear for relay connections. cabinet $8 \times 17 \underset{\sim}{x} 8$ inches. Weight 3% lbs. Will operate mobile from a PV:-103 dyuamotor. Completely wired and ready to operate

Price with eleven tubes and two crystals $\mathbf{\$ 1 3 7 . 5 0}$.
Send Full Amount or $\$ 25$ With Order-Balance C.O.D.
LETTINE RADIO MFG. CO.
62 BERKELEY STREET VALLEY STREAM, L. I., N. Y.
"The World's THRIFTIEST Light Plants"

Exclusive new ELEC TKONIC HKAIN provides instant fuld prower upon demand, holds thrifty inde otherwise. Slashes fisel cost.. doubles engine life! 'Available
on all nur plants. Built Ly experts dericated to bring you a better product!

Model illustrated. our portable 700 watt plant. 2.3 H.P. easy-starting Briggs-Stratton engine. Kadio shielded, shock mounted ... hams report less hash than on commercial nower line. Complete with voltmeter and built-in winding to charge auto batteries Easily tits in car trunk. W't. 72 lus. 149.50 1500 Watt Plant (Item 45) same ss item 24 but with $\$ 199.50$ If I:I ECRTRON IC BRAIN desired, specify and add $\$ 30.00$.

We make nill slzes to 100.000 Walls. Wrile for intormation.
Prices f.o.b. factory. Money back guarinter. Send cherk or m.o.
Master Mechanic Mfg. Co. Dept. I-116, Burlington, Wis. Southern Customers Write Dept. I-116, Box 65, Sarasota, Fla.

QUAD BEAMS

10-15-20 Mefers

STANDARD MODEL \$59.95

- Hi-Gain and Hi F/B ratio
- Single Feed Line
- Very light-TV Rotor turns
- Aluminum Boom with Hardwood Insert
- Bamboo Spreaders
- High "Area" Factor
- Reflector Coils-No tuning
- Low Wind Resistance
- Cast Aluminum End And Center Spiders

DELUXE MODEL $\mathbf{\$ 7 9 . 9 5}$-Same specifications as standard model, except aluminum spreaders with ribbed standoff insulators.

Write for Free Brochure
SKYLANE PRODUCTS
406 Bon Air
Tampa 10, Florida

Adams County Amateur Radio Society...Gettysburg, Pa. Bristol Radio Club, Inc.................... Wolcott, Conn. Chatter Amateur Radio Club. Chattanooga, Tenn. Colonie Central High School Radio Club. Albany, New York Contoocook Valley Radio Club, Inc.......Henniker, N. H. DX-Ploiters. . Baldwin Park, Calif. Edmond Amateur Radio Society..........Edmond, Okla. Iberia Radio Club. New Íberia, La. Larimore State High School
Radio Club. \qquad . Larimore, No. Dak. Loudon County Amateur Radio Club. .Lenoir City, 'Tenn. The Oklahoma Central 6 Meter (Club) Net.
. Oklahoma City, Okla. Oklahoma City Amateur
Radio Club.
... .Oklahoma City, OLla.
Putnam County Amateur Radio
Association. \qquad .Stormville, New York Reading High School Amateur Radio Club. . Reading. Mass. Sandusky Kadio Experimental League,

Inc.
.Sandusky, Ohio
Signa Seekers. Whittier, Calif.
Skywide Amateur Radio Club. Toronto. Ont.. Canada South Shore High School Radio Club. C'bicago, Ill. Verde Valley School Radio Club
(High School). \qquadSedona, Arizona Cuyahoza Falls Radio Club........ . . Cuvahoza Falls, Ohio
The Committee discussed, without formal action, the subjects of reciprocal operating agreements, privileges in $1800-2000 \mathrm{kc}$. , and the progress of the Housing Committer.
There being no further business, the Committee adjourned, at 12:20 P.M.
A. L. BUDLONa

Secretary

Pe Strays "

Because W8TS was from Olmstead Falls. Ohio, W8VWX of Columbus, just to make conversation, mentioned to W8TS that he had purchased an auto in 1948 from a man named Mr. Kucklick of Olmstead Falls. The immediate reply from W8TS was "How is the '36 Ford running?" Yep, W8TS was none other than the Mr. Kucklick and had just become active in ham radio after being off the air for about 30 years. W8VWX was able to report that the car was all spruced up and ready for a trip at any time.

Perhaps we oughta take a survey sometime and see what pattern of similar hobbies radio amateurs have.

Off and on there have been a number of letters criticizing the present-day amateur for buying instead of building his equipment. QST has discussed this problem, too. We quote:
"The American amateur is criticized for buying too much of his equipment ready-made. Necessity is the mother of invention - and since the necessity for an amateur building his own is nearly past, because complete sets can be purchased on the radio market, the inventive and ingenious spirit of a modern amateur is fast disappearing also, it is declared."

This was quoted from the March, 1924, issue of QS"'!

W2OCL, a motion picture operator at Aqueduct and other race tracks, reports that Warren Mehrtens, a former Triple Crown winner with Assault, is now VFA2GKZ.

Contacł The Ham

 from HARVEY for the latest fromWhen "GONSET" appears on the panel, you're on the move with the best mobile package you can buy - and the place to buy GONSET is
HARVEY
for reliability, service, and all-around know-how

GONSET G-76

AM Transceiver
For 6-band operation...

Now your mobile operation will be more enjoyable with G-76 .. . a powerful 100-watt AM transmitter and a sensitive, dual-conversion receiver. First, excellent 2-way communication on any of 6 amateur bands - $80,40,20,15$, 10 and 6 meters! Performance has of course been. the foremost design objective but flexibility and operating convenience has not been overlooked. Receiver tuning dial . . . " S " meter . . . any element that occasionally requires a quick glance while driving is fully visible. And because the entire front panel is only $5^{\prime \prime}$ high and $121 / 2^{\prime \prime}$ wide, every

Control - including transmitter VFO and Band switch is conveniently at the driver's fingertips . . . designed to be just right in size and shape for easy installation in your car.
Use G-76 both in your car and home station. Simple to do. Transistorized 12 volt DC supply remains in car. 117V AC supply with speaker is optionally available for home use.

Price
\$376.25

GONSET COMMUNICATOR IV

A complete 2-meter VHF station for vehicle or table-top
Here's the finest Communicator package yet - a complete VHF station operating within 143.7 to 148.3 mc . which contains transmitter, receiver and universal power supply At 20 watts input, transmitter power is greater than ever before. A full 10 watts of audio assures full "talk power" protected against overmodulation by high level speech clipping. Switch allows choice of six crystalcontrolled transmitter frequencies.
Price.
\$369.50

QUR 34TH YEAR

Mobile Sideband Communicator Transceiver
Compact . . . mounts readily under dash . . . complements any modern car or fits on any well-appointed operating desk.
Highly stable . . . non-critical with single knob VFO tuning both transmitter and receiver . . . with quartz crystal filter to eliminate unwanted sideband.
Has 125 watts P.E.P. input . . . upper and lower sideband and CW . .. all band operation. 10 through 80 meters . . . high stability VFO . . . VOX . . . push-to-talk and other provisions.

TRADE-IN AT HARVEY TRADE-UP TO GONSET

Call or write W2D10 for swaps or deals. HARVEY is known the world over as a reliable source for all ham gear. All orders shipped same day as received.

NEW CRANK-OVER ANTENNA HEAD NOW from VESTO!

plus Hurricane-Proof* Construction!
Noguy wires!

Tilts

Heaviest
Beams
To Any Angle

- Vesto Towers are Easy to Erect
- Hot-Dip

Galvanized to Last a Lifetime

- 10 Sizes from 22 ft . to 100 ft
*No Vesto Tower has ever been damaged by hurricane.

Beam can be easily cranked down to any position. Beam is readily accessible.

EASY PAYMENT PLANI Write for new, Write for newi
FREEliteraturel

VESTO CO., INC. 201h \& Clay 5t. North Kansas City, Mo.

PORTABLE 6-Meter Beam

3 Elements

Model HT-6 - $\$ 11.95$

"HE HLPMR "HMIITCOPI'ER" is a new portable :-element beam antenna for $\$$ meters. Designed for quick -element beam antenna for of metrer. Designed for quick set-up and take-down use such
locations. pienics, hamiestis, et.e.

The electrical design Incorporates wide sparing for exeptional performance and the feed system employs the improved ramma match developed by Hi-par, No fussy adjustment: simply connect standard 52 olmm cable to the built-in coax connector

The entire unit is built of the tinest grade seamiess aluminum tubing. Elements telessone and fold onto the sectiona. boom and tits into a compact box only $3 b_{2}^{\prime \prime} \mathrm{X} 4 \mathrm{~L}^{\prime \prime} \mathrm{X}$ f($)^{\prime}$ long. Net welght $33 / 4 \mathrm{lbs}$.

HI-PAR PRODÚCTS CO. - Fifchburg, Mass.

THE VIBROPLEX CO., INC.
833 Broadway
New York 3, N. Y.

NEW BOOKS

How To Troubleshoot TV Sync Circuits, by Ira Remer. Published by John F. Rider Publisher, Inc., 116 West 14th st., New York 11, N. Y. 119 pages, including index, 5 1/2 by 812 inches, paper cover. Price, $\$ 2.90$. Cat. No. 240.

This book is written primarily for the service technician and discusses the triggering of vertical and horizontal sync signals in television receivers. It is divided into five chapters and bepins with a review of the basic requirements and general needs of the television sync system. Thisis followed by a discussion of basic sync circuits, along with typical troubles and their cures. The last two chapters cover the common forms of syne systems in current use and give information on s.ynchronization in color TV receivers.

Handbook of TV Troubles, by Sol Heller. Published by Holt, Rinchart and Winston, Inc., New York. 61% by 9 inches, 302 pages.
Literally a "book full of troubles," this manual contains tronble-shooting data on all phases of television receiver malfunctíning. Arranged according to symptoms, it contains photographs to help identify the trouble along with detailed descriptions of the cures. Synchronization troubles. television interference, size, centering and sound troubles are all dealt with. Along with the photographs are many charts, tables and schematic diagrams.

S-9 Signals!, by William 1. Orr, W6GSII/ 3A2AF. Published by Radio Publications, Inc., Wilton, Conn. $51 / 2$ by $81 / 2$ inches, 48 pages, paper cover. Price, $\$ 1.00$.

A manual of practicul antenna data, this book gives iletailed information on design and construction of amateur antennas. It is broken down into twelve chapters and start. with a few simple definitions of antenna jargon. The remaining chapters are devoted to actual construction projects covering amateur bands from 80 through 2 meters. A table at the end of the book lists the necessary parts needed for the different antenna projects.

Professional TV Repair Secrets, by Art Margolis. Published by Arco Publishing (ompany, 480 Lexington Ave., New York 17, N. Y. $61 / 2$ by $91 / 2$ inches, 142 pages, more than 300 photographs. Price, cloth cover, $\$ 2.50$.

A do-it-vourself home TV repair guide is a good way to deseribe this book. It contains information on most of the common TV breakdowns and gives symptoms and remedie: for each. There are quite a few phutographs, charts and tatoles to make the job easier. For those whose TV reccivers are working perfectly, there in information on ' T ' interference, lightning protection and preveutive maintenance.

Quad Antennas, by William I. Orr. Published by Radio Publications, Inc., Wilton, Conn. $51 / 2$ by $81 / 2$ iwches, 96 pages, paper cover. Price, $\$ 2.85$.

Here is a practical handbook devoted entircly to cubical quad antennas. It includes information on theory, design, constraction and operation. Starting with a brief history, the author dives into the theory and characteristics of the antenna. Several chapters are devoted to suecific types of quads while another concerns fecd systems. The last two chapters give practical information on building your own quad antenna and the ever-important tuning and adjustment. The book has numerous charts, tables, drawings anid photographs.

a word from Ward, W2FEU

Warid J. Hinkle

THE MIGHTY TRIPLE-THREAT KWM-2

2e americans are the gadget-happiest race of all God's children. We buy an automatic pencil - because it writes in four different colors. Uur latest outboard motors not only propel the boat - but can also bail it out. We've got chairs that look like walking sticks, and walking sticks that serve as umbrellas - and umbrellas that fold up as tidily as a paper napkin!

I guess this stems from the fact that, as a group, we Americans are just naturally thrifty. We like one tool that does the work of two or three. We go for a hammer that doubles as a screw driver and triples as a can opener because it works an irresistible tug on our sense of value.

Sometimes!

The cold, wet-blanket fact of the matter is that all these two-in-one and three-in-one gradgets don't always work. They not only don't do 'three jobs, but some of them don't even do one job properly.

Let me tell you how I got started on this line of thinking. Several months ago, I yot wind of the fact that the Collins people were working on a new, spectacular kind of transceiver. The grapevine had it that this unit was going to be so advanced in design, power, and miniaturization that it could be used in either a car, boat, plane, or for fixed-base operation! As Mel Allen might say: "How about that?"

Well, sir, this was one case where the performance of a unit lived up to its advance billing. And that unit came to be known as the Collins KWM-2 SSB Transceiver.

Gentlemen, here's one amazing piece of equipment. The KWM-2 is light, light, light -- only a few ounces over 18 pounds! It gives you that Collins S/Line styling. It gives you operation on all bands between 3.4 Mc. and 29.7 Mc., on either voice or CW.

In addition, you get filter type SSB generation, crystal-controlled double conversion, VOX, speaker auti-trip circuits, ALC, permeability-tuned oscillator, RF inverse feedback - and a whopping power output of 100 watts PEP into a 50 ohin load!

For the traveling ham, however, that ${ }^{\prime}$ WM-2 is only half of the miracle. The other half is Collins' PM- 2 Portable Power Supply and carrying case. Weighing only $131 / 2 \mathrm{lbs} .$, including a built-in speaker, this supply operates from either 115 VAC or 220 VAC at $50-400 \mathrm{cps}$ and provides all the voltages for the A II MI-2 Transceiver! The two go together like Pat and Mike:

The Collins people were nice enough to provide me with some terrific literature on the KWM- 2 Transceiver and its companion PM-2 Portable Power Supply. I've yot your copy in a sealed, stamped envelope, ready to he mailed out to you today. Only two things are missing: your name and address. Won't yon send me a posteard asking for these data? 'Thanks.

$$
\begin{aligned}
& 73, \text { W } \begin{array}{l}
\text { Vird } \\
\text { W2FEU }
\end{array}
\end{aligned}
$$

Before you buy or trade, wire, write, call or drop in to see WARD, W2FEU ADIRONDACK RADIO SUPPLY

185-191 W. Main Street, Amsterdam, New York Phone: Vlctor 2-8350 Ward J. Hinkle, Owner
Write for our latest "used" list

CHALLENGING CAREER OPPORTUNITIES for CREATIVE ENGINEERS

Transistor Circuit Engineers
Single Sideband Engineers
Transmitter Design Engineers
Receiver Design Engineers
Antenna Design Engineers
Filter and Network Design Engineers
Component Design Engineers
Test Equipment Design Engineers
Mechanical Engineers

With a company of long-standing leadership in communications. Mail complete résumé to Chief Engineer.

BARKER \& WILLIAMSON, Inc.

PENNWOOD NUMECHRON CO.
7249 FRANKSTOWN AVE. PITTSBURGH 8, PA.

Rapid Radio Repair, by (G. Warren Heath. Published by Gerusback Library, Inc., 154 West, 14th St., New York 11, N. Y. 224 pages, $51 / 2$ by $81 / 2$ inches, paper cover. Price $\$ 2.90$.

Divided into four sections - receivers, techniques, servicing and troubleshooting charts - this technician's repair manual is useful in spotting, analizing and repairing troubles found in modern radio reccivers. Information is given on transistor sets, hybrid auto receivers, f.m. sets and the latest modular and printed circuit receivers. Designed to cut trouble-shooting time, the book contains a handy trumbleshooting table which gives the probable causes and cures of various difficulties. This table is broken down into sympoms by receiver sections such as power supply, converter, detertor, and so on. The manual could probably be used by amateurs desiring a quick and efficient method to shoot trouble in a communications receiver.

Motorola Power 'Transistor Handbook, complied by the Applications Enginecring Department of Motorola's Semiconductor Products Division, Inc., 5005 L. McDowell, Phocnix, Arizona. 202 pages, including index, b by 81 ́́́ inches, paper cover. Price, \$2.00.

Intended to serve as an accurate guide in the use of nower transistors, this handbook contains more than 200 drawings and charts along with many problems and solutions. Chapter headings include Semiconductor Plectronics, 'Iransistor Characteristics, Power Amplifiers, Switching Applications, Electronic Ignition Systems, Special Transistor "ircuits' Power Šupplies and Power Rectification, Transistor 'Testing, and Transistor specifications. The radio amateur will find valuable data on transistor nower supply design, with specifications and curves. A list of transistor symbols and abbreviations is also contained in this handbook.

-... -

Fundamentals of 'Transistor Physics, hy Irving Gottlieb. 5lé by 8!a inches, 146 pages including index. Cat. No. 267. Paper cover. Price, $\$ 3.90$.

Although the subject of transistor physics is certainly an involved one, this book presents information on semiconductor physics without any complicated mathematical analogies or fancy language. It is up-to-date and includes information on such recont developments as the zoner diode, semiconductor variahle capacitor, and tunnel diode. Starting with the theuretical isnects of semiconductors the book works its way into transistor structure. materials and oneration. Once the fundamental transistor has heen explained the author disensses basic transistor rircuits and other related semiconductor devices, including silicon control rectifiers, four-layer diodes, bilateral transistors and phototransistors.

Television Explained, by W. E. Miller. Published hy Iliffe \& Sons L.td., Dorset House, Stamford St., London S.E. 1, England, for Wireless \& Electrical Trader. 202 pages, including 10 pages of photos, $83 / 4$ by $51 / 2$ inches, cloth eover. Price. 12s.6d. 7th edition.

Here is an excellent beginner's manual containing information on the principles and circuits of television. Although some electronic backeround is necessary in order to understand fully the contents, no previnus knowledge of television cirenits is needed. It is written in simple uonmathematiral language and contains plenty of diagrams and photographs.

Although there are sume major differences in American and British television receivers, the majority of the material in this book is general enough to be of interest to any reader. It includes information on antennas, tuners, i.f., video and sound circuits, cathode ray tubes, synchronization, a.b.c. circuits and receiver installation and operation.

Mail the coupon today for your FREE copy

FREEI

 LAFAYETTE RADIO'S 324-PAGE 1961 CATALOG
America's "Electronics Shopping Genter"

40 years of servicing the Amateur
HERE IT IS - the biggest, best and most comprehensive catalog you can ask for. Immediate delivery at the lowest, money-saving prices.

- Amateur Equipment - Radio and TV Parts and Tubes - Mobile and Fixed Station Equipment - Stereo Hi-Fi Equipment - PA Systems - Industrial Supplies - EXCLUSIVE LAFAYETTE KITS

SATISFACTION GUARANTEED OR MONEY REFUNDED
EASY PAY PLAN-the simplest, and quickest way to get what you want when you want it. As little as $\$ 2$ down . . . up to 24 months to pay.

NEW! LAFAYETTE HE-25"VOYAGER" 6 TO 80 METER TRANSMITTER
 A Sensational Value for Your Ham Shack

- Single Knob Bandswitching-80 Through 6 Meters
- Full 120 Watts CW, 70 Watts Phone
- High Q Pi Network Output Circuit Matches Antennas From 40-600 Ohms
- Filtered and Shielded for TVI Suppression
- Clean Keying-Minimum of Clicks or Chirps

The perfect Transmitter for Novice, Technician or General. Completely self contained with efficient Class C Final amplifier operation on all bands. Tubes: 6AU6 crystal oscillator, 6DQ6A multiplierbuffer, 2-6DQ6A final amplifier beam tetrodes, 12AX7 dual triode audio amplifier and a 6AQ5 clamp tube modulator. Shpg. wt., 38 lbs.

LAFAYETTE PROFESSIONAL QUALITY COMMUNICATIONS RECEIVERENGINEERED FOR THE AMATEUR

- Superhet Circuit Utilizing 8 Tubes and Rectifier Tube
- Built-in "S" Meter with Adjustment Control
- Band Spread 80 to 10 Meters
- Covers 455 kc to 31 mc

KT-200WX
in Kit Form
64.50
5.00 Down
HE-10WX
Wired
and Tested
79.95
5.00 Down

- Variable BFO and RF Gain Controls
- Switchable AVC and Automatic Noise Limiter
The Communications Receiver that meets every amateur need - available in easy-to-assemble kit form or factory wired and tested. Signal to noise ratio is 10 db at 3.5 MC with 1.25 microvolt signal. Selectivity is -60 db at 10 kc , image reflection is -40 db at 3 MC. $77 / 8^{\prime \prime} \times 15^{\prime \prime} \times 9^{\prime \prime}$. Shpg. wt., 22 lbs.

165-08 LIBERTY AVENUE, JAMAICA 33, N. Y.

- OTHER LOCATIONS

NEW YORK, N. Y. \mid NEWARK, N. J. \quad BRONX, N. Y. \mid PARAMUS, N. J. \mid BOSTON, MASS. \mid PLAINFIELD, N. J. 100 6th Avenue 24 Central Avenue 542 E. Fordham Rd. 182 Route 17110 Federal Street 139 W . 2nd Street

- \$............Enclosed. Send Stock \# \qquad \square Rush FREE 324 Page Catalog 610
$\square \$$.. Down Payment Enclosed for Stock \#.. Lafayette Easy Pay Application Will Be Forwarded Upon Receipt of Down Payment
Naine
Address
city
Zone \qquad

IDEA

BOOK

7HIS NEWEST VOLUME in the Hints and Kinks series is packed with practical ideas. You'll find it a mighty valuable book around your shack and workshop. Like all other ARRL publications, Hints and Kinks contains complete, clearly written information illustrated with plenty of photos and drawings. Get your copv of this helpful new edition nou!
U.S.A. Proper
\$1.25 Elsewhere

Magnetism and Electromagnetism, edited by Alexander Schure. Published by John F. Rider Publisher, Inc., 116 West 14 th St., New York 11, N.Y. Electronic Teehnology Scrics No. 166-20. 78 pages, including index, $5^{1 / 2}$ by $8^{1 / 2}$ inches, paper cover. Price, $\$ 1.80$.

Part of an electronic technology series of linoks, this publication deals with the fundamentals of masnetism and clectromagnetism which tie in with the operation of communication and industrial electronic devices. It prepares the reader for a second volume on the subiect (Siee $\varphi S \Gamma$, Sept. 1960, page 56) which deals with advanced magnetism and electromagnetism. Covering the theoretical side of magletism, magnetic circuits and electromagnetism, the book keeps the mathematical descriptions simple vet extensive enough to teach the reader typical computations connected with the subject. Review problems are included at the end of each chapter to keep the reader on his toes

FM Simplified, by Milton S. Kiver. Published by D. Van Nostrand Company, Inc., 120 Alexander st., Princeton, New Jersey. $6 \frac{1}{4}$ by $91 / \frac{1}{1}$ inches, 376 pages, including index, cloth cover. 'Third edition. Price, $\$ 7.50$.

Although f.m. seems to have fallen by the wayside as far as amateur radio is concerned. there has heen a tremendous interest in f.m. broadcasting in the entertainment field. This book gives the entire picture of f.m. from the basic principles to details of the major sectinns of a modern f.m. receiver. This third edition contains new diagrams and information on the subject and although the chapter headings are the same as those of the secund edition, the eontents have been brought up-to-date. The material in the hook is non-mathematical yet enmplete in detail, with illustrations - diagrans, charts, tables and photomraphs - on almost every page. Neveral chapters should be of interest to radio amateurs, especially those dealing with antennas, propagation, r.f. tuners. i.f. amplificrs and limiters. At the end of the hook is a check list for fast and efficient trouble-shooting of f.m. receivers.

Applications of Electronics, by Bernard Grob and Milton S. Kiver. Published by McGrawHill Book Company, 330 West 43 nd St., New York 36, N. Y. $61 / 2$ by $91 / \frac{1}{4}$ inches, 628 pages. including index and answers to questions. Price, cloth cover, $\$ 7.00$.

This book describes the various specialized fichls of electronics and the operating equipment associated with these fields. Details on industrial and military electronics are given as well as information on circuit and equipment applications in trausmitters, navigational aids, test equipment and receivers. Several recent advances in elestronics are covered in the book. which also includes topics on transistors, counters and computers, seatter propagation and microwave equipment. Each chapter has an introductory description of its material and a summary with review ullestions.

General Electric Controlled Rectifier Man-

 ual, edited by Semiconductor Products Department, General Flectric Company, Charles Bldg., Liverpool, New York. 255 pages, 6 by $8 \frac{1}{2}$ inches, paper cover. Price. \$1.00.This book should give the cireuit designer the detailed information necessary to use eontrolled silicon rectifiers in almost any situation. The book contains information ou voltage transients in silicon rectifier circuits, un test circuits, turn-off characteristics, firing circuits and series und parallel operation of silicon enntrolled rectifiers. There are chapters on protecting these devices against overloads, typical cireuits operating from a.c. power, basic theory of operation and ratings and characteristics. There are many circuit diagrams, charts, nomngraphs and oscilloscope traces included.

- THOUSANDS who
do it have learned
what they were missing . . .
see Page 148

> 7 can give you personal service on helping you select better gear per dollar for your operating pleasure. Over 30 years' experience. Big trades, easy terms. Used bargains. VAN SICKLE RADIO SUPPLY $C O$. Gene Van Sickle, W9KJF, Owner 4.131 N. K'eystone Ave. On the northeast side of Indianapolis 5, Indiana

GUARANITED CRYSTALS!

BUY NOW AND SAVE!!

ALL MARINE FREQ.-FT-243, DC-34 Holders. Tol. . 005 $\$ 2.00$ POLICE, C.A.P., CD, MARS. TOI. 01% .. $\$ 1.60$ CITIZENS BAND-11 METERS-. 005% TOL. $\$ 2.50$ 26.965 to 27.225 MC, 3rd Over. Herm. Seal. or FT- 243 13.4825 to 13.6125 MC, 2nd Harm. Herm. Seal. or FT-243.. $\$ 2.50$ 6741.25 to 6806.25 Kc , 4th Harm. FT-243 only.................... $\$ 2.00$

NOVICE BAND FT-243 Fund.
 80 Met. 3701-3748-Steps of 1 KC. FT-243
 40 Met. 7150-7198-Steps of 1 KC. FT-243
 Dbl. to 40 Met. 3576-3599. Steps of 1 KC. FT- 243
 15 Met. 5276-5312-7034-7083 Steps of 1 KC. FT-243

FT-243-2 Meters (Steps of 1 KC)
FT-243-6 Meters (Steps of 1 KC) $\$.93$
FT-243-From 3000-4000 $\$.93$
FT-243-From 1005-2999 (Steps of 5 KC) .. 39
FT- 241 SSB Low Freq. Xtals 370 to 540 KC
(Steps of 1.852 and 1.388)
FT-241 SSB Matched Pairs $\$ 1.95$
Open Friday Evenings until 9 P.M.
"The House of Crystals"
U. S. CRYSTALS, Ine。 1342 S. La Brea Ave, Los Angeles 19, Gal.

A.R.R.L. QSL BUREAU

The function of the ARRL QSL Bureau system is to facilitate delivery to amateurs in the United States, its possessions, and Canada of those OSLL cards which arrive from amateur stations in other parts of the world. All you have to do is send your QSL manager (see list below) a stamped self-addressed envelope about $41 / 4$ by $91 / 2$ inches in size, with your name and address in the usual place on the front of the envelope and your call printed in rapital letters in the upper left-hand corner.

W1, K1-G. L. DeGirenier, W1GKK. 109 Gallup St., North Adams, Mass.
W2, K2 - North Jersey UX Ass'n, P. O. Box 666 Hillside, N.J.

W3. K3 - Jesse Rieberman, W3KT, P.O. Box 400, BalaCynwyd, Pa.
W'4, K4-Thomas M. Moss, W 4 HYW, Box (i44, Municipal Airport Branch, Atlanta, (ia.
W5, K5-Brad A. Beard, W5ADZ, P.O. Box 25172, Houston 5, Texas.
W6, K6 - San Liego JX C'lub, Box 16006, San Diego 16, Calif.
W7, K7 - Salem Amateur Radio Club, P.O. Box 61, Salem, Oregon.
W8, K8-Walter E. Musgrave, W8NGW, 1245 E. 187 th St., Cleveland 1U, Ohio.
W9, K9 - J. ト. Oberg, W9DSO, 2601 Gordon Irive, Flossmoor. Il.
W6, Kg-Alva A. Simith, WøDMA, 238 liast Main St., Culedonia, Minn.
VE1 - L. J. Fader, VE1FQ, P.O. Box 653, Halifax, N. S.
VE2 - George C. Goode, VE2YA, 188 Lakeview Avenue, Pointe Claire, Quebee.
VE3 - Leslie A. Whetham, VL3QE, 32 Sylvia Crescent, Hamilton, Unt.
VE4 - - Len Cuft, VE4LC, 286 Rutland St.. St. Jarnes, Man.
VE5 - Fired Ward, VE5OP. 899 Connaught Ave., Moose Jaw. Sask.
VE6-W. R. Savage, VEGEO, 833 10th St., N., Lethbridge, Alta.
VE7 -... H. R. Hough, VE7HR, 1684 Freeman Rd., Victoria, B. C.
VE8 - Earl W. Smith, VE8AT, P.O. Box 53.t, Whitehorse, Y. T.

VO1 -... Ernest Ash, VO1AA, P.O. Box 8, St. John's, Newf. VO2 - Douglas B. Ritcey, Dent. of Transport., Goose Bay, Labrador.
KP4 - E. W. Mayer, KP4KD, Box 1061, San Juan, P. R. KH6 - John H. Oka, KIIGDQ, P.O. Box 101. Aiea, Oahu, Mawaii.
KL7 - KL7CP, 310-10th Are., Anchorage, Alaska.
KZ5 - Ralph E. Harvey, KZ5RV, Box 407, Balboa, C. Z.

MOBILE POWER SUPPLY

MODEL
 A12/600/200 NOW $\$ 59.50$

This 12 V input dc to de transistorized converter is conservatively rated for continuous output of 120 watts at 600 V or 300 V , or any combination of 600 and 300 volt loads totaling 120 watts.

High efficiency, small size, and light weight, plus freedom from maintenance, conserve your battery and increase the enjoyment of mobile operation.

ELECTRONICS DIVISION

 GLOBE INDUSTRIES, INC. 525 MAIN STREET belleville, new jersey

164

我ilent keys

T^{T} is with deep regret that we record the passing of thesc amateurs:
W'1KE, Philip L. Ames, Portland, Maine W2ADV, Girant E. Mecker, Elmira, N. I. K2GFR. Joseph A. Curbalis, Beacon, N. I. W'2QBY, Leslie Robeson, Nunda. N. I. Hx-W'2sWM, Warden H. Bowman, Iuturn, N. Y. W2YKM, James Collins, Bethpare, N. Y. W2ZIIU, James L. Manwaring, Yulacki, N. I.
W3EGI, Roger M. Wilson, Silver Springs, Va. W'3IIG, Dr. George L. Deichmann, Baltimore, Md. Ex-W3OSR, John E. Montesanto, Washington, D. C.

KyliVk, Theodore Huff, Bradenton, Fla.
KiJCVU, Iarold Van Haton, Lawton, Ohla.
W5.JGW. Churles J. Uthoff, New Orleans, La. K6ETU, Ronald A. Lee, Lus Angeles, Culif. K6UVR, Sheldon Smith, Bell. Calif.
W6VED, William McAllister, Los Angeles, Calif. W'7.AIQ, Raymond Naser. Anacortes, Washington W'7ASZ. Harold G. Williams, Fort Huachura, Ariz. $1: 7 \mathrm{GHJ}$, Thomas Ray, Phoenix, Arizuna W7NEO, William J. Henry, W'alla Walla, Wash. h $80 \mathrm{OLN}, \mathrm{Bi}$ ger Jensen, Mt. Clemens. Mich. W8RJC, Herbert Climie, Otsego, Mich. K8TPW, Lester W. Johnson, Elyria, Ohio g.AVJ, William Endershy, Hillsboro, Iowa :ZZ.I, Francis F. Hamilton, Miami, Fla. VE7Fy, Sherley J. Craig, New Westminster, B. (..

November 1935

. . . Rnoss Hull descrihed a new receiving system for v.h.f., incorporating double-conversion and adjustable selectivity. . . . There was much excitement over 28 Mc., and a station (ZS1H) finally made WAC on that band.
. . Jim Millen, W1HRX, described a high-power twoband phone station.
. . WhAM went to the top of Mt. Whitney for some 5-meter tests.
. . Ted McElroy told how he won the code-ropying contest with 69 w.p.m.

There were more technical articles on resonant-line v.h.f. oscillators, a dual-tuner superhet, methods for reducing nower for local ($\mathrm{Q} \mathrm{SO}_{\mathrm{O}}$, and the usual collection of items for the experimenter.

The Sixth ARRL Sweepstakes Contest was announced, as well as a WiVE contest. Incidentall r, the SS ran from Nov. 22 straight through until Dec. 1. Nort of an endurance contest.

The Wireless Institute of Australia was celebrating its 25 th anniversary. . . Clair Foster. W6HM, died. . . The anmual Nary Day mexsaye was announced, as wrll as an Armistice Day message by the Army. The Circulation of WST rearhed 42,000 . (We do a little better than that now).

Strays

WめCVU put up a new rotator for that massive beam of his, and everything worked swell for about three weeks. Then operation becume intermittant, especially on the counter-clockwise direction. So, nothing to do but to climb 60 feet. dismantle the weatherproof hood, and see what was the difficulty. The difficulty was that a family of martins had built themselves a home inside the rotator housing, and when one of the birds happened to sit in just the right position, the reversing relay would not close!

BIGGER"SURPRISE TRADES on all New Hallicrafters equipment FROM WALTER ASHE

Hallicrafters SX-111 Receiver

This new dual-conversion, selectable sideband receiver covers 80, 40, 20, 15 and 10 meters in five individual bands, with a sixth band tunable to 10 mc . crystal calibrator calibration with WWV.

Shipping Weight 40 lbs.
Amateur net $\mathbf{\$ 2 4 9 . 5 0}$

ASHE TRADES HIGH!

Your used amateur transmitter or receiver. made since 1945 , is worth a lot more in trade at Walter Ashe. Get our offer and we guarantee you'll be surprised!

EASIEST TERMS

If cash is short you can still get your newham equipment at once thanks to Walter Ashe's easier terms. You can use your trade as a down payment!

GET RECONDITIONED LIST

Only top grade equipment is accepted in trade . . . and each unit is completely checked in our own shops. If you are interested in reconditioned equipment, ask for our current list . . . we probably have just what you want at a rock bottom price!

NEW CATALOG OUT!

The new 1961 edition of the 144 -page Walter Ashe Radio Amateur catalog . . . exclusively amateur equipment, parts and supplies . . . is now ready. Be sure to check and mail the coupon for your copy. Do it now!

FOR FASTEST SERVICE PHONE
CHestnut 1-1125 1125 PINE ST. - ST. LOUIS 1, MO.

Hallicrafters HT-37 Transmitter

The HT-37 is a complete table top, high efficiency amateur band transmitter providing S. S. B.-AMor CW output on $80,40,20,15$ and 10 meters.

Shipping \mathbf{W} cight 80 lbs.
Amateur net $\mathbf{\$ 4 5 0 . 0 0}$

ALL HALLICRAFTERS EQUIPMENT IN STOCK READY FOR IMMEDIATE DELIVERY

SX 101A 7 band receiver $\$ 399.50$
SX 1004 band receiver 295.00
SX 62A 6 band SW receiver 375.00
S-107 5 band receiver 94.95
S-108 4 band receiver 129.95
HT 32A Transmitter 695.00
HT 33A KW amplifier 795.00
HA-1 Automatic Keyer 79.95
SX 1104 band receiver 159.95
All prices f.o.b. St. Louis

RADIO AMATEUR'S LIBRARY

These are the publications which every amateur needs. They form a complete reference library for the amateur radio field; are authoritative, accurate and up to date
Title OST $\$ 5.00$ per year* The Radio Amateur's Handbook. . . . $\$ 3.50^{* *}$
The log 50c
How to Become a Radio Amateur 50 c
The Radio Amateur's License Manual . . . 50c
Hints \& Kinks for the Radio Amateur. . \$1.00Single Sideband for the Radio Amateur \$1.50

Title

Price
Lightning Calculators
a. Radio (Type A) $\$ 1.25$
b. Ohm's Law (Type B) $\$ 1.25$
A.R.R.L. Antenna Book \$2.00
The Minilog 30c
Learning the Radiotelegraph Code 50c
A Course in Radio Fundamentals. \$1.00 The Mobile Manual for Radio Amateurs. $\$ 2.50$
*Subscription rate in United States and Possessions, 85.00 per year, postpaid: $\$ 5.25$ in the Dominion of Canada, $\$ 6.00$ in all other countrics. Single ropics, 50 cents. **\$3.50 U.S.A. proper, $\$ 4.00$ U.S. Possessions and Canada, $\$ 4.50$ elsethere

The American Radio Relay League, Inc.

WEST HARTFORD 7, CONNECTICUT

SEE YOUR DEALER, OR WRITE
PREMAX PRODUCTS
Div. Chisholm-Ryder Co., inc.

6031 Highland Ave.
Niagara Falls, N. Y.

New! Telrex "Spiralray" Extremely high-gain, high signal-to-noise, practically no fade, all radiation planes horizontal, vertical or oblique! Ideal for scatter-wave, satellite, mobile or point to point work! 50,108 and 144 megacycle models available TELREX LARORATORIES ASBURY PARK 40, NEW JERSEY, U.S.A.
 ENJOY EASIER SENDING WITH

SEMI-AUTOMATIC

No matter how good an operator you are, the smooth and easy operating Vibroplex takes all the labor out of sending. Never tires the arm, never upsets the nerves. The choice of experts everywhere, Vibroplex with its affractive appearance and its precision machining gives long life even under rough usage. Adjustable to any speed and comes in five models, standard or deluxe. Priced from $\$ 15.95$ to $\$ 29.95$. Order foday af your dealer's or direct.

| THE VIBROPLEX CO., INC. | FREE
 Folder |
| :--- | :--- | :--- |
| 833 broadway New York 3, N. Y. | |

NEW
 AMECO TRANSMITTER


```
\star COVERS 80 THROUGH 6 METERS.
\star PHONE AND CW.
* FOR MOBILE OR FIXED STATION USE.
* MOST COMPACT TRANSMITTER ON THE
    MARKET. (5'' }\times\mp@subsup{7}{}{\prime\prime}\times\mp@subsup{7}{}{\prime\prime}
\star CRYSTAL CONTROLLED OR CAN TAKE VFO.
* FINAL 6146 RUNS STRAIGHT THROUGH ON
    ALL BANDS.
* PI-NET OUTPUT CIRCUIT.
\star PUSH-TO-TALK MIC. JACK ON PANEL.
\star EASILY ADJUSTED FOR NOVICE OPERATION.
\star TVI-SUPPRESSED.
\star LOW LOW PRICE.
```


AMECO POWER SUPPLY FOR TX-86-MODEL PS-3

Model PS-3 is an AC power supply which will provide the maximum power requirements for the TX-86. Input is 117 volts, 60 cycles AC. Output is:
12 12.6 volts at 3 amps. (or 6.3 volts at 3.2 amps.) $\$ 2-300$ volts at 100 $11-12.6$ volts at 3 amps. (or 6.3 volts at 3.2 amps.
ma., $3-600$ volts at 150 ma. Silicon rectitiers are used which give excellent ma., r3 - 600 volts at mat ma. Siucon rectiners are used which give excellent
voltage regulation. Since there are no tubes used, the power supply is cool and efficient. May be used for 12.6 or 6.3 volt filament tubes. The power supply has more than adequate power for the TX- 86 and may be used to supply power to other accessories at the same time.
Completely wired and tested. $\$ 44.95$

The TX-86 can handle 90 watts input on CW and 90 watts peak input on phone on all bands. It is most attractively packaged in a satin finished copper panel with black lettering and a black perforated cabinet.
The transmitter consists of a 12BY7 crystal controlled oscillator, a 12BY7 buffer and a 6146 final amplifier. The pi-net output circuit on all bands will feed antennas of from 35 ohms to 600 ohms. The low distortion screentype modulator consists of a $12 A X 7$ and a 6AQ5. The following features included in the Ameco TX-86 are not usually found in transmitters costing much more: an audio gain control, a true potentiometer type drive control (no de-tuning of circuits), a push-to-talk microphone jack on the front panel which is also the key jack on CW.
The power requirements for the TX-86 are: 6 volts at 3.2 amps. or 12 volts at 1.6 amps. and 300 volts at 75 ma . plus 600 volts at 150 ma . for maximum output. Performance is excellent with a single 300 volt, 150 ma. supply. If desired, the 6146 can be replaced with a 2E26 without changes to permit operation on a 100 ma .300 volt power supply.
Amateur Net Prices: Model TX-86K-Complete in kit form
(specify 6 or 12 volt filament) $\$ 84.95$ Model TX-86W-Completely wired and tested (specify 6 or 12 volt filament) $\$ 109.95$

AMERICAN ELECTRONICS CO. 178 Herricks Road, Mineola, L. I., New York Tel. Ploneer 1-5030

NEW Centimeg's 6-Meter Converter
 -Dimensions identical with Centimeg's other converters -
 And the TA-4.3 Tripler Amplifier for 432 MC $\$ 84.50$ (less 2C39A tube, $\$ 69.50$)

 $8^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$ - so this may be used with the PS-C power supply box. Uses a GER5/GG in the R.F., and a GU8A as mixer and oscillator. Also has a potentiometer for manual gain control of the R.F. stage and a pin jack for wiring AVC control from the receiver to the R.F. stage, if desired.$T_{\text {his high-gain, low-noise converter features great reduc- }}$ tion in cross talk and excellent reduction of spurious signals. Same high quality Centimes parts and construction.

Another Centimeg precision-engineered product in the high-quality tradition...excite with any 2 -meter transmitter.
Xfal controlled converters: 2 meter, $11 / 4$ meter, 432 Mc.
OUTPUT: 14 MC to 18 MC (a) 52Ω
26 MC to 30 MC (ai) 52Ω
30.5 MC to $34.5 \mathrm{MC}(\sigma) 52 \Omega$ \$69.50 each 50 MC to 54 MC (a) 52Ω

Other I.F. frequencies on request
It your deater's or send cherk
or money order to
CENTIMEG ELECTRONICS
312 East Imperial Hgwy. El Segundo, Calif.

Phone SPring 2-1032

FREQUENCY RANGE	CALIBRATION TOLERANCE	PRICE
2501 KC to 9999 KC	. 002%	\$3.00
15 MC to 32 MC TM	.0025\%	\$3.00
32 MC to 50 MC	. 0025 \%	\$4.00
10 MC to 17 MC Fund	. 002%	\$4.00
2001 KC to 2500 KC	.002\%	\$4.00
50 MC to 60 MC	. 0025 \%	\$6.00
1000 KC to 2000 KC	.002\%	\$7.50
Write for quantity discounts -		

AMERICAN CRYSTAL CO. P.O.BOX 2366 • KANSAS CITY 42, MO.

IF YOUR TOWER AIN'T GOT DIAGONAL BRACING It Ain't Got * \quad raviay

inert torsonial quality "Diagonal bracing resists twisting caused by constant starting and stopping of large rotary beams. Also twisting of tower caused by gusty winds . . All E-Z Way Towers got "IT Q".

Write for free literature! Et Way Towers
p. 0. Ecx 5491 Tompa, Florida

EASY TOLEARN CODE

It is easy and pleasant to learn or increase speed the modern way - with an instructograph Code Tencher. Excellent for the beginner or advanced student, A quick, practical and dependable method. Available tapes from beginner s alphabet to typical
messages on all sulsjects. Speed range 5 to 40 WPM. Always ready, no QKM, beats having someone send to you.

ENDORSED BY THOUSANDS!

The Instructo\&raph Code Teacher literally takes the place of an operator-instructor and enables anyone to learn and master code
 without further assistance. Thousands of silc cessful operators have "acquired the crile" with the Instructodraph System. Write today for full particulars and convenient rental plans.

INSTRUCTOGRAPH COMPANY

A709 SHERIDAN ROAD. CiHICAGO 40, ILLINOIS 4700 Crenshaw Bivd.. Los Andeles 43, Callf.

Jap SLSB
 COLLINS 75S-1
 RECEIVER
 Performance
 A NEW CRITERION OF RECEPTION AND OPERATIONAL EFFICIENCY

Covers all amateur bands between 3.4 and 29.7 mc . Mcchanical Filter for SSB generation. Fxcellent AVC characteristics with full RF gain. Stable, permeability-tuned VFO. Self-contained power supply. Net, \$520.00.

Easy terms, big trade-ins. Try us first. Write Tenny Freck, W'4WL
FRECK RADIO SUPPLY
 "the-performance-line"with a "MATERIAL" difference!
Send for (or, at your distributor), P.L. 77 Technical Specifications and Performance Bulletin describing 106 Antennas from $3 / 4$ through 80 meters including "BALUN" - FED ROTABLE DIPOLES, MONO, DUO, TRI, 4-BAND AND "SPIRALRAY" ANTENNAS, ROTATOR/INDICATOR SYSTEMS, TOWERS, BROAD-BAND "BALUNS," ACCESSORIES AND "NICE-TO-HAVE-AROUND-YOURSHACK' INFO.
For TOP-MAN-ON-
THE-FREQUENCY results...
install a Telrex antenna...dollar for dollar better in every way! Antenna systems from $\$ 6.95$ to $\$ 12,000.00$

FACTORY AUTHORIZED SERVICE

ON RECEIVERS AND TRANSMITTERS
Peparrs, modernization, calibration aud alignment by $R_{\text {rompetent engineers using factory standard instruments. }}$ Collins, Globe, Hallicrafters, Hammarlund, Harvev-Wells, National Co. Service representative for Hickok and RCA Test Equipment. Factory parts. All work Ruaranteed. Our twenty-fourth year.

DOUGLAS INSTRUMENT LABORATORY
176 Norfolk Avenue
Boston 19, Mass.

ELECTRONIC WHOLESALERSInc.
 NOW The Name Of All Three Stores: WASHINGTON, D.C., MIAMI, FLA., MELBOURNE, FLA.

The Florida Stores Were Formerly Called

ELECTRONIC SUPPLY
 Same addresses - same complete inventories same management - same excellent service.

LECTRONIC WHOLESALERS, wc.
of N.E 9th Street - miami 32, fla. Phone FRonklin 7.2511 FORMERLY ELECTRONIC SUPPLY
LECTRONIC WHOLESALERS, wc.
1301 hibiscus blvo. • MELBOURNE, fLA. PArkway 3.1441
fORMERLY ELECTRONIC SUPPLY
LECTRONIC WHOLESALERS, inc.
2345 Sherman ave., n. W - Washingion I, of - Phone hudson 3 . 5200

HX-500
Advanced design SSB transmitter offering the best features of all...... $\$ 695.00$

HQ-170
World's most popular SSB amateur bands receiver offering outstanding selectivity $\$ 359.00$

HQ-180
A fine quality general-coverage, SSB receiver offering commercial performance at amateur price $\$ 429.00$

HQ-100
The best buy for a general-coverage, quality communications receiver
$\$ 189.00$
(Clock-timer $\$ 10$ extra)

LECTRONIC WHOLESALERS, wc.
61 N.E. 9th STREET•MIAMI 32, FLA. - Phone fRonklin 7 251t FORMERLY ELECTRONIC SUPPLY
LECTRONIC WHOLESALERS, wc.
1301 HIBISCUS BLVD. MELBOURNE, FLA. P PArkway 3.1441
FORMERLY:ELECTRONIC SUPPLY
LECTRONIC WHOLESALERS, wc.
2345 SHERMAN AVE., K.W • WASHINGYON I. O. (Phone HUdson 3200

PHYSICAL CHEMIST

Electronic Materials

We are expanding our company-supported program of basic research and advanced development of new materials and their applications for the electronic industry. \mathbf{A} position is available for a qualified scientist or engineer to join a technical group that has already achicved a leading position in electroluminescent and photoconductive materials and devices and is expanding its interests into new materials for other elec tronic uses. His assignments will be primarily directed toward advancing the state-of-the-art in utilization of materials in multi-layer logic devices. This requires not only a thorough knowledge of the chemistry of electronically active materials but also some familiarity with electronic circuitry and the techniques of ceramics and graphic arts.

To the scientist interested in a challenging non-military technical assignment affording outstanding potential for significant scientific accomplishment we can offer a dynamic program and complete facilities in a stimulating professional climate. While specific related experience is desirable, we would also be interested in talking to a person who has complete formal training in chemistry, and has some familiarity with electronic components and circuitry.
general telephone \& ELECTRONICS LABORATORIES

208-20 Willets Point Blvd. Bayside, Long Island, N. Y.

Looking for
 A-1 Reconditioned EQUPPMENT?
 - LARGE STOCKS? LOWER PRICES? FREE TRIAL? GUARANTEE?

HENRY HAS IT!

Equipment at both Henry stores may be traded back in 90 days at full price on new equipment. Our time payments save you money because we finance ourselves. Write, phone or visit either Henry store to get better equipment at less cost on better terms.

TELETYPEWRITER EOUIPMENT - COLLINS

51J RECEIVERS .54-30.5 Mc. Model \#14, 15, 19, 26 and 28 Teletype machines, Telewriter Receiving Converter and others. For general information \& equipment list, write to TOM, WIAFN, ALLTRONICS-HOW ARD CO., Box 19, Boston 1. Mass. RIchmond 2-0018.

LEARN CODE!
SPEED UP Your RECEIVING with G.C
Automatic Sender
Type S
$\$ 32.00$ Postpaid in
U. S. A.

Housed in Aluminum Case, Black Instrument Finished. Small-Compact-Quiet Inductiontype motor. 110 Volts- 60 Cycies A.C.
Adjustable speed control, maintains constant speed at any Septting. Complete with ten rolls of double perforated tafo. A wide variety of other practice tapes available at 50c per roll.

GARDINER \& COMPANY STRATFORD NEW JERSEY

HT-37 TRANSMITTER-A complete, high efficiency amateur band transmitter providing SSB, AM, or CW output on 80, 40 20,15 , and 10 meters-employs a superbly designed phasing type side band generator. 144 watts plate input (P.E.P., two-tone) plus many of the same great features in famous HT-32A. $\$ 450.00$ NET

SX-III RECEIVER-An outstanding new receiver with sensitivity of 1 -uv on all bands and 5 steps of selectivity from 500 to 5000 CPS. Selectable sideband-covers 80 thru 10 meters in 5 individual bands with a 6 th band tunable to 10 mc . Excep tionally stable.
$\mathbf{\$ 2 4 9 . 5 0}$ NET
R-48 SPEAKER. Latest design, eliptical assembly. 3.16 oz . Alnico V magnet. Fidelity switch for music or voice. $\mathbf{3 . 2}$ ohm input impedance. $61 / 2^{\prime \prime} \times 131 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$.
$\$ 19.95$ NET

WRITE TODAY FOR A FREE COPY OF OUR LATEST CATALOG!

Other Stores:
Aberdeen, S. Dak.
Sioux Falls, S. Dak.
Phone BAldwin 5-4194
Phone ED 8-7888
Phone FIL 3-2093

HI, FELLAS !

2icture yourself in front of this equipment. This could be your shack. Many OMs are buying Hallicrafters gear from Burghardt's and getting fast deliveries and a square deal. The gear shown at the left is especially popular-the HT-37 and SX-111 and the R-48 speaker-and gives the service demanded.
'There are other items, too, that are well liked, at equally attractive prices. For instance,

S-38E, \$59.95
 S-110, \$159.95
 S-107, \$94.95
 SX-101A, \$399.50
 S-108, \$129.93 HT-32A, \$693.00
 HT-33A, \$795.00
 GENEROUS TRADE-IN DEALS! EASY TERMS! LOW PAYMENTS!
 You'll Buy HALLICRAFTERS Besf At Burghardt's!

HAM LICENSE COURSES

Resident Classes-3 Evenings a Week Thorough preparation in Code and Theory. Qualifies for NOVICE CLASS in 4 Weeks and for GENERAL CLASS in 2 Months.

Dept. A, DELAHANTY INSTITUTE
117 East 11 St., N. Y. 3
Phone GR 3-6900

THE QSO THAT

As the skip shortened up on 20 one morning and the VK5 I was QSO QSB'd out, a W8 called me. My contact with him was so long that it could have qualified me for the RCC! But it brought me something much more tangible: from this W8 I learned of the big money many hams are earning in commercial and public-safety 2 -way radio maintenance. He told me how several years ago he had sent in a coupon from a Lampkin ad in QST-and received a free copy of "HOW TO MAKE MONEY IN MOBILE-RADIO MAINTENANCE". It started him on the road to a high extra income.
So after signing him out in the log, I found and mailed the coupon from a Lampkin ad. Now I, also, am in high-paying mobileradio maintenance.

Why don't you send in the coupon? It's at the lower right of this ad!

STARTED ME UPWARD FINANCIALLY!

LAMPKIN I O5-B FREQUENCY METER RANGE Q.I TO 175 MCAND UP
PRICE \$260.00 NET
THE PREFERRED
MOBILE-MAINTENANCE METERS
LAMPXIN $2 D 5-A F M$ MODULATIUN METER RANGE 25 TO 500 MC PRICE $\$ 270.00$ NET

NEW: The Lampkin PPM Mefer to check frequency on splif channels above 50 MC. Accuracy 0.0001%. Price $\$ 147.00$ net.

```
    MAIL
COUPON
    TODAY
```

LAMPKIN LABORATORIES INC.
BRADENTON FIA.
LAMPKIN LABQRATQRIES, INC.
MFG. DIVISION, BRADENTON, FLORIOA
at no obligation to me, please send me "how TO MAKE MONEY IN MOBILE-RADIO MAIN. TENANCE"-and data on Lampkin Meters.
NAME
ADDRESS
CITY \qquad STATE

COLLINS SSB KWM-2
at HOME IN ANY SETTING
RADIO \& TV PARTS COMPANY 1828 N. SAINT MARY STREET herel, or on the go as a compact mobile unit. And no modifications necessary. The KWM-2 weighs only 18 lbs 3 oz. Measures $73 / 4^{\prime \prime} \times 143 / 4^{\prime \prime} \times 131 / 4^{\prime \prime}$. Its compact design makes it an ideal mobile unit. The PM-2 portable power supply teams up with the KWM-2 to give you a complete SSB station weighing less than 45 Ibs in its specially designed suitcase.

Place your order now for the Collins KWM-2, 80-10 meter mobile Transceiver.
$\tau_{\text {he KWM-2 is equally at home in the distinctive company of Collins } S / L i n e ~ e q u i p m e n t ~(a s ~ s h o w n ~}^{\text {S }}$
\$1150, (accessories extra). Write or phone
communications division

Before You Buy Any Tower ... CET THE FACTS ON WORLD RADIO'S SELF-SUPPORTING - SPAULDING WRLSpine

* Self-supporting. 32-48 ft. above ground with any full-size 3 -eiement Tribander. May be extended to 120 ft . with proper guying.
\star Commercial Grade Construction.
* Streamlined in appearance.
* E-Z "Instant" Installation.
* Extra large, 191/2" base width.

BURSTEIN-APPLEBEE CO., 1012 MCEEE ST., KANSAS CITY, MO.

PROTEGT YOUR RIG with this compact burglar alarm. Fiasily installed under the hood of any vehicle. he siren and relay proof, cast aluminum housing. Operation is simple; the alarm is turned on hy a key lock switch, usually mounted on the fender. When a door, hood or trunk lid is openel, the siren alarm sounds and continues until turned off with the key. 6 and 12 volts. Brand new. Postpaid in U.S.A............. $\$ 59.95$ ZIMCO ALARMS
2005 Atlantic Ave, Brooklyn 3.3. N. Y. DIckens 2-9121 or JAckson 2-2857

and compare with anything else. 40 years' experience teaching Code have uade the Tuleples Method far superior to all the Che have urade the perepres Method rar superior to all the free trial. You be the judze! (Improved cabinet design allows new low cost.)

TELEPLEX CO.
739-D Kazmir Court, Modesto, Calif. Canadian Representative: THE HAM SHACK 1269 Granville St., Vancouver, B.C.

$\mathbf{6}_{\text {solar ssstem }}^{\text {METER TR }}$

TRANSMITTER 12 watts input to 5763 final \bullet All transmitter controls are on the front panel - Both plate and grid of final are metered \bullet Push-to-talk operation - Uses a crystal, ceramic or carbon microphone - Uses popular low cost 8 mc crystals - Provision for a VFO - 35-75 ohm output, can he used with car whip - Spotting switch to check your frequency.
RECEIVER Better than $1 / 2$ microvolt sensitivity - Built-in noise limiter - Double-conversion superhet for selectivity and no band images - I.F.'s of 3 mc and $455 \mathrm{kc}-$ Vernier dial for fine tuning (6:1).

FEATURES Power input: $6 \mathrm{vdc}, 12 \mathrm{vde}$, and 115 vac - Three input power supply built right in $\dot{\text { Wi }}$. no separate mounting, no separate costs - Weighs only 15 pounds... great for trips, vacations \bullet $8^{\prime \prime} \times 6^{\prime \prime} \times 12^{\prime \prime}$, fits anywhere ${ }^{-}$Chassis easily removed for service, nothing hidden - Military type construction for ruggedness - High quality components used throughout - Carrying handle/ mounting bracket (for car, boat, or plane) $\bullet \mathrm{Re}-$ movable mounting feet for installation anywhere.

Send for literature giving full details. Representative Inquiries Invited.

149 WOOSTER STREET, NEW YORK 12, NEW YORK

PURCHASINGA HI-FISYSTEM? Send Us
 PARTIAL LIST OF BRANDS IN STOCK

 Your List of Components
For A Package Quotation

WE WON'T BE UNDERSOLD

All merchandise is brand new, factory fresh and guaranteed. Free Hb-Ft Catalog

RADIO CORPORATION

64-Q Cortlandt St., N. Y. 7

Jim Lansing*
Alfec Lansing
Electrovoice -
Jensen - Hartley
Universify
Acoustic Research
Janszen • Viking
Wharfedale
USL Citizen Band Gonsef - Hallicrafters Texas Crystals Bell-G.E. Weathers
Harman-Kardon Eico - Pilof - Fisher Concertone Acrosound - Roberts Bogen - Leak
Dynakit • H. H. Scoft
Thorens* - Sherwood* Dual Changer
Ampex © DeWald
Sony - Challenger Wollensak - Pentron Garrard • Quad* Miracord • Pickering Glaser-Steers Components Rek-O-Kuf - Tandberg* Audio Tape Norelco - Magnecord* Fairchild • Gray Rockford Cabinets Artizan Cabinets * l'air I'raded

CO 7-2137

BURGESS BATTERIES

CHROME PROTECTED SEALED-IN-STEEL

SELF RECHARGEABLE GUARANTEED LEAKPROOF

BURGESS BATTERY COMPANY
DIVISION OF SERVEL, INC.
freeport, ILINOIS - NIAGARA FALLS, CANADA

FOR SALE

CLOSED CIRCUIT TV DEMONSTRATOR SYSTEMS

GPL, one of the best known names in closed circuit TV, now has available demonstrator TV systems consisting of: camera a camera control m monitor a cables all tubes including vidicon (some cameras with remote features).

Total Price each.
\$1,395.00
Individual sweep video and sync chassis also available. Systems warranted to be in excellent operating condition. First come, first served. Bulk bids considered.

Write: J. W. BELCHER

GPL DIVISION
GENERAL PRECISION. INC.
Pleasantville, New York

TELREX LABORATORIES
ASBURY PARK 40, N.J., U.S.A.

YES, WE AND THEY SURE HAVE COLLINS—WILL TRAVEL

P. O. BOX 3915,

TERMINAL ANNEX CALIFORNIA

HAM-ADS

(1) Advertising shall pertain to radio and shall be of nature ot interest to radio amateurs or experimenters in their pursuit of the art.
(2) No display oi any character will be accepted. nor can any special typorraphical arrangement, such as all ir part capital letters be used which would tend to make Reply Service can be maintained in these columns nor may commercial type copy be signed solely with amateur call letters.
(3) The Ham-Ad rate is $35 \$$ per word, except as noted in paragraph (4) Remittance in fuli must accompany copy, since Ham-Ads are not carried on our books. No cash or contract discount or agency commission will be allowed. (5) Closing date tor Ham Ads is the 20th of the second month preceding publication sate.
(6) A special rate of $10 c$ per word will apply to advertising which, in our judgment, is obviously noncommercial in nature. Thus, advertising of bona fide surplus equipment owned, used and for sale hy an individual or apparatus oferedior exchange or advertisAddress and sionatures are charged for An attempt Address in apparaus in quantity for profit, An if by an individual, is commercial and all advertising so classified takes the ise rate. Provisions of naraxranhs (1). (2) and (5), apply to all advertising in this column regardless of which rate may apply.
(Because error is more easiy avoided, it is reon one side of paper only. Typewritten copy preferred but handwritten signature must accompany all authorized insertions.
(8) No advertiser may use more than 100 words in any one issue nor more than one ad in one issue.
Having made no investization of the advertusers in the classijied columns pxcept those obviously commercial in character, the publishers of OST are unable to vouch for their integrity or jor the grade or character of the prod-
ucis or servires ucuvertisea. ucts or servires uavertiséa.

WANTED: Early wireless gear, books, magazines, catalogs betore 1922 . Send description and prices. W6GH, 1010 Monte Dr., Santa Barbara, Calif.
COAXIAL Cable. New surplus RB-54A U, 58 nhms impedance - 30 tt. prepaid, $\$ 1,00$. Radio magazines, buy, sell, trade. K. Farmer. 3009 No. Columbia. Plainview. Texas.
ALL types of transmitting and receiving tubes wanted. Also aircraft or ground receivers and transmitters. Hamgear or test
 Dames. W2KUW. 308 Hickory St., Arlington. N. J.
MOTOROI.A used FM communications equipment bought and siold W'sBCO. Ralnh Hicks, Box 6097. Tulsa. Okla.
WANTED: Military ${ }_{3}$ Ir Industrial laboratory test equipment. Electronicraft, Box 399. Mt. Kisco. N. Y.
MICHICAN Hams! Imateut supplies. standard brands. Store hours 0830 in 1730 Mondav through Saturdav. Roy J. Purchase. WRRP. Purchase Radio Sunnly, 327 E . Hoover St.. Ann Arbor. Michizan. Tel. NOrmanv's-8262
HAM TV Equipment bought. sold. traded. Al Denson. WIBYX, Rnckville. Connn.
CASH for vour gear W'e buve trade nr sell. We siock Hammarlund. Hallicrafters. National. Inhnson. Gonset, Globe. Hy.

"PIG-IN-A-POKF"? Not if you visit Ham Headquarters. USA and see and choose from the hundreds of "tike-New" bareains in the world-famous Harrison trade-in Center, More for your Terms. trades. Send nostcard for mouth-watering photorraph and price list 0 -h. For the hest in all new and used eouioment. and price ist Q-6. For the hest in all new end: used eouloment it pays to come to "Ham Heaquarters. New York City. N. N. Y.
Harrisnn. W2AVV. 225 Greenwich St.. New KWMI and a mivhigh plate dissination tubes wanted $304 \mathrm{Tl/}$ TH 4-1000A, 4PR60A, etc: Ted Dames, W2KUW, 64 Grand (HICAGOLAND Amateurs! Factorv authorized service tor Hallicrafters. Hammarlund. Giobe, Gonset. Service all amateur equinment to factory standards. Heights Flectronics. Inc., 1145 Halsted St., Chicaro Heights. IIt. Tei. SKyline 5-4056:
WANTED: Old time commercially built and unaltered amateur snark transmitting and audiotron recervin
O.Neit. Camp I.akeview. Lake City, Minn.
J()HNSON Courier in like-new condx, \$175. W7PSO. P.O. Rox 455. Casper. Wyomine.

WANT 1925 and earlicr ham and broadcast gear for personal enllection. W4AA. Wavne Nelson. Concord. N. C..
RECEIVERS: Repaired and aligned by competent engineers usink factory standard instruments. Authorized factory service station tor (ollins. Hallicrafters. Hammarlund, National. Har-vey-Wells. Our iwenty-fourth year, Douslas Instrument Labo-
ratory. ilh Norfolk Ave.. Bostion ig, Mass. SSBERS! Keep up with SSB news and views! Join the Single Sideband Amateur Radio Association. dedicated to furthering good SSB operating: promoting advancement of SSB equipment; and disscminating SSB technical information. Read The Sidebander"', official publication of the SSBARA. Sucs $\$ 3.00$ yedrly. Write for membership application. sample "Sideband-

OUTSTANDING OSLS! Biggest variety samples 256 (refunded); Sakkers, W8DED. Box 218, Holland, Mich. Sifferent card-ot-the-nonth at new low prices! Samples 10t. ines. P. (). Box 1684, Scottsdale, Arizona.
QSLS-SWLS that are different colored. embossed card stock and "Kromekote." Samples $10 c$. KxAlA, Iurner, Fox H . $\mathrm{HS3}$,
Hamiton. Ohio. OSLS, Quality and economy complete samples dime. USL Printing. Box 123.51. Houston 17. Texas
OSL-SWLS. Reasonable. Samples 104 . Gienn Print. Att: M. L. Edmonds. 1103 Pine Heishts Ave.: Baltimore 29 . Md.
OSIS "Brownie." WSCJI. 3110 Lehigh. Allentown, Penna. samples, loe with cataloguc. $25 c$. OSIS-SWLS. Samples $10 c$. Malgo Press, 1937 Glensdale Ave., Tnledn 14. Ohio.
OST.S New desion. lower prices, fast delivery Catalos $25 \bar{t}$ (coin only), retundable. Dick Crawtord, KóGJM, Box 6177 . M'hittier. Calif
osts. Twenty exclusive desimns in anors. Rush $\$ 3$ for ino or \$5 for 200 and get surprise of your life. 48 -hour service. Satisfaction yuaraniced. Constantine Press. Bladensburg. Md.
CREATIVF OSL and SWL Cards. Are you proud of your ard? If not let us neint your next order. Write for frec samples ind bonklet. Porsonal attention piven to all requests. Bob WitNins. r . KN6ZMT, Creative Printing, P. O. Box 1064-C. Atas-
OSI S-SWLS. Samples free. W4BKT Press, 123 Main. McKen(10. Tenn.

GSts Samples dime. Sims. 3227 Missouri Ave., St. Louis 18 . Mo.
OSIS Taprint. IInion. Miss.
SUPERIOR OSLS. samples 10c. Ham Specialtics. Box 3023 , Bellaire. Texas
OSI S. 3-color ginssy. $100-\$ 4,50$. Rutgers VariTyping Service, Fairfield Rd.. New Brunswick. N. J.
OSIS WAT. Bor 1. Rrecksville. Ohio
OSI 's-SWL's: That are, different, colored. embosscd card sinck, and "Kromekote." Samples 10c. Turner, K8A1A Box 95. Hamilton. ()hio

OSLSSSWLS reasonable prices. Samples $10 ¢$. Robert Bull, OSIS. $\$ 1.00$. Riesland. Del Mar, Calif.
OSLS, Lapel pins, samples dime. Kephart IV2SPV. 4309 Willis. increhantville. N.
OSIS, SWLs, XYI OMAs 'sample assortment approximately 9y/4) covering designing, planning, nrinting. arransing, mailing: eye-catching. comic, sedate. fantabulous, DX-attracting, rrotorynal, snazzy, unparakoned cards (Wow!). Rogers, KøAAB, -37 I incoln Ave.. St. Paul 5 , Minn
PICTIRE QSL Cards of your shack, home, ctc Made from vour photorraph. 1000, \$13.00. Raum's, 4154 Fifth St., Philadelphia 40. Penna
GIOSSY OSIS, 100 colors, $\$ 3$ sn. Others Tess. Samples 104. DELEXF OSI.S. Petto W 2 HAZ. Box $\frac{27}{}$. Trenton, N. J. Samnles. Mre
Qs'S. Samples free. Phillirs. W7HRG, 1708 Bridge St., The Dalles. Oreson.
OSI'S SWI'S Nicholas \& Son Printery. P.O. Box 11184. Phoenix. Arizona
OSLS-SWl.S. 100 2-color glossy. \$3.00: OSO file cards. $\$ 1.00$ per 100 , Samples. 10 c , Rusprint. Bne 7507, Kansas Citv i6. Mo. OSLS-SWLS. Free Samples. Snicer, 4615 Rosedale. Austin - Texas

QSIS. Kromekote 2 is colors, attractive, distinctive Jifferent. Free hall point pen with order. Sample 104. K2vOB Press. 162 Midland Blvd. Maplewood. N. I.
OSLS, 100 for $\$ 3.00$. (ilossy. Distinctive design. Samples frec. R. A. Larson Press, 32 Midland Ave.. Stamford. Conn.

OUTSTANDING (11/2" Call) OSLS. One stve: $100, \$ 2.75$; ample frec. Garienv. $\mathbf{2} 24$ Kroemer. Fort Wavne. Ind.
Qsls: Cartoons. colors samples इ5c. Chis, W9PPA, 365 Terra Cotta Ave., Crystal Lake, IIl.
TON'T Buy OSILsuntil you see my tree samples. Bolles, 7701
ATTRACTIVE QSIS. Pearce, 192 Usbnrne, Danburv. Conn. OSLS. Samples, dime. Printer. Corwith. Iowa.
OSLS. Stamp brings samples. Fddie Scott. W3CSX, Fairplay, SSLS, 100 -color, $\$ 3.00$. Sample sheet, $10 c$, RBL Print M.R. FAST Scrvice, send stamp for QSL samples. K2 Press, Box 372, Mineola. L. I..N. Y.
ATEST Designs. quality QSLs. Samples 10c. Savory Press, OSIS 300 for 395 . Free samples. W9SKR, Vesely. RR \#1, Box $208-A$. Ingleside, ill.
OSLS itractive, colorful Varicty tvpe styles. backorounds. Samples 10 c . Jack Crandali. K6QAO Press. 5013 Enfield Ave.,
Encino. Calif. Encino. Calik
QSL Cards printed in 2-colors on hlossy Kromekote cards. Two designs especially for mobile, \$275 for each 1 le cards. S¢ for
sample card and brochure. Williams Printing, P.O. Box 2597 , sample card and
EYECATCHING OSIS-quick! Dollar-saving sample. Dime. Rad'Oorint, Ojai. Calif.
WIALITY QSLs. Large varicty multi-color samples. 10¢. Don.
OSLS. reasonable, nice designs, samples dime. W2DJH Press, Warrensbure, N. Y.

QSLS: Samples 254 (refundable), W6CMN, Wildcat Press, 6707 Beck Ave., North Hollywood. Calif.
OSLS. Wide selection, styles, card stocks. ink colors, cuts. Also photo cuards. Lowest prices. Fast service. Sample dime. Ray, K7HLK, 679 Borah. Twin Falls, Idaho.
RUBBER Stamps for hams, sample impressions, W9UNY. 542 FANTABULOUS OSLS. Dime. Filmerafters, Box 304, Martins Ferry, Ohio.
)SLSSWLS 3-colors, 100 \$2.00. Samples dime. Bob Garra, Lehighton, Penna.
STARTLING 3-Dimensional OSL cards! Your call letters raised iant shades on lustrous colored Kromcote. Onty-print in brilSamples quarter. 3-D (QSL, 5 Wood End Road. Springfield, Mass.
FREE! Sample copy of Ham-Swap! Ham-Swap, Inc., $35-\mathrm{A}$ East Wacker Drive, Chicago 1. 111 .
REGINNERS. Code memorized in one hour. New method. sed in Armed Services, ham radio, scouting. "Ketchum's Hour Code Course $\$ 1.00$ postnaid. Money back guaranteed
WANTED: 6 to 12 304TL tubes. Callanan, W9AU, P.O. Box
155. Barringon. 111 . 155. Barrington, 111 .

ATTENTION Mobilecrs! Lecec-Neville 6 volt 100 amp . system, \$60: 12 volt 100 amp system $\$ 50$; 12 volt 60 amp system, units. Herbert A. Zimmermann, Jr, K2PAT. 115 Willow St., Bronklvn 1. N. Y. Tel. Dlekens 2-9121 or JAckson 2-2857.
FOR Sale: $S X-100$ like new, in exc, condx, $\$ 195$. Two newly built Heathkit CB-1 VP-1-6, VP-1-12. \$100. Bill Flapan, 6036 N. Francisco, Chicaso. IM.

KWM-1. AC, DC supply, Collins speaker, Shure mike, mobile rack, Mosley 3-band mobile antenna, cables, 3-band Hy-Gain Prairie, Uecatur, $11 i$.
SALE: Central Electronics 10A multiphase exciter with OT-1 $\$ 100 ;$ DX-40 with VF-1 and 3 Novice xtals, $\$ 70$. All in vy gud
cond. WA2FMK. 111 Garfield Ave., Merchantville, N. J. FX-WSHO. The famous S.S.B. talking dog and Gco. W. Fahrubel, now K 4DP, 1004 Drake Ave., S.E., Huntsville. Mla.
COILINS Station: $30 \mathrm{~S}-1, \$ 1200 ; 75 \mathrm{~S}-1$ with noise blanker, spkr, \$150; Central Electronics MM-2, scope, $\$ 100$; Telrex "Monarch"' Tribander 'TBS-626, \$205; Ham-M rotor, \$85; Johnson TR switch, $\$ 20$; Johnson 52 ohm low-pass filter, $\$ 10$;
Astatic $10 D$ with G stand, $\$ 27$; ail prices F.o.b. Phoenix. Ariz. Astatic $10 D$ with G stand, \$27; all prices FF. O.b. Phoenix, Ariz. perfect condx. On the air less than 50 hours.
FOR Salc: Viking Kanger and DX-40. Both are extra gud. land 13. Ohio.
COMPLETE File of OST for sale: 1915-1951. Landa, R2, Clayton, Ga
KWS-1. \$1200. In top condx. W2ADD.
COLLINS Receivers reconditioned: $51 \mathrm{Js}, \$ 675 ; 51 \mathrm{~J} 2, \$ 495$; 75A-4, \$545; HO-160. \$275.00: Hickok, H188, \$69; HRO-60 $\$ 325.00 ;$ Ranger, $\$ 210$: Teletype printers., converters, etc. Tel. RI'chmond 2-0048.
CASH Paid for short-wave ham receivers, and transmitters. Treger. WyIVJ. 2023A N. Harlem Ave., Chicago 35, III. TUxedo

SELL: Collins KWM-1 transcciver, a.e. Duwer supplv 12 volt d.c. power supply, mobile mounting tras with wire and connectors, and spkr-- idirectional watmeter console. Will not sell
items separately. All excint cndx. Best of fer. Write Box 1 , West Hartford 7. Conn.
DSB $100 \$ 70 ;$ LA-1, $\$ 80 ;$ VOX-10, $\$ 15.00 ;$ WRL 755 VFO. $\$ 40$: PA-1, $\$ 6.00$; 400 watts sideband all for $\$ 215$: S-76. $\$ 95$:
 lect). WSFJR, S15 West Main. Houma, La.
DON'T Fail FCC tests! Check yourself with a time-tested "Sure-check Test", Novice, \$1.50: General, \$1.75; Extra, \$2.00. We pay the postage. Amateur Radio Specialties, 1013 Seventh Ave.. Worthington, Minn.
LOWEST Prices: Latest amateur cquinment. Factory fresh sealed cartons. Self-addressed stamped envelope for lowest quotation on your needs. HDH Sales Co., 919 High Ridge Rd., Stamford, Conn.
TOROIDS: Unused 88 mhy like new. Dollar each. Five, $\$ 4.00$. pp. 门aPaub, 101 Starview, San Francisco. Calif After Sept.
1st our address will be at 309 So. Ashton, Millbrae, Calif. 1 st our address will be at 309 So. Ashton. Millbrac. Calif. S.S.B. Xfrmes. exact type for W2EWL Special and other side-
band units; hermetically sealed, brand new set of 3 for $\$ 3.00$. Brand new G-E 100 watt (audio) multi-impedance modulation xfrmr (10 lbs.) $\$ 6.25$. No. Cu.d. include nostage. Send stamp for
list of other gear. S. A. fucker, W2HLT, $51-10$ Little Neck list of other gear. S. A. i.
Pkwy. Little Neck 62 . N. Y.
7 HREE Band Quad Antennas. $\$ 49.50$. Am-Tennas, P.O. Box 642, Cedar Rapids, Iowa.
is Meter Heliwhips, $2 \$ 7.00$ ea.; Central Electronics 100 V xmttr-xctr, new, with factory guarantee, $\$ 700 ;$ KWS-1, pertect, \$975: . F, MM2 RF analyzer, \$100; 6 V. mobile power supply, \$20: Fisher For stereo tuncr. \$160; Fisher PR 66 Roberts stereo 4-track record and playback with preamps and amps. for spkrs. \$375; Concertone (American Electronics), amps. 33 series. $71 / 2$ and 15 IPS, stereo recorder. preamps, $10^{\prime \prime}$ reels. 4 heads and room for sth, carrying cases, $\$ 690$, 10 reels, 124 heads and room for sth. carrying
W3VDE. 1219 Yardey Kd.. Morrisville. Penna.
40 Ft . crank-up Donner tower and Public Service Co. 1800% zuys, strain insul., like new, 2 el. Hy-Gain Tribander, 3 yrs. old, Worked Bargain. Sickness forces me to sell all. All in A-1 condx.

MOBILE: All-band complete station. Morrow transmitter MBS60A, receiver MBR-5, receiver power supply and P'T mike. Bendix dynamotor, 12 volt antenna change-oyer relay, 40 meter Heliwhip, Lables, manuals, $\$ 350.00$. Will ship. Will consider Ranger as part payment. W3YZE. 7934 Winterset, Pikesville, Md.

SELL: Yiking Challenger, 1 yr, old, $\$ 115$; SX-99, in exc. cundx, $\$ 100$: Knight VFO. perfect; $\$ 25$; Knight C-11, Citizens Band transceiver, used i month with 6-12 volt pwr. supply, $\$ 45$.
K 9 MSN . K9MSN.
SELL: Hi-Fi gear, ham gear, antennas and accessories. Write GOING To higher power. Sell Globe Chief 90 . Giobe VFO. UM-1, mod. General Class, now operating fone and c.w., $\$ 45.00$. N . Y and try it. Dr. Reisman, 1901 E. Main St., Peekskill, 10 METER Converter, 12 V, fil and plate, $\$ 10.00$. WVRET,
8831 Sovereign Road, San Diego i1, Calif.
WANTED: Set HT-9, 15 meter coils. Howard, K7MAT, Torrington, Wyoming.
VIRING II, Viking VFO, Hallicrafters SX-99, JT-30 micro\$350.00 or closest bid. Gi. W5. ft. RF8U coax. All to go for River Grove. Ill. MErcury 9-6573
FOR Sale: Glohe King 400B, $\$ 175$; matching coupler. $\$ 20$. No shipping. Will finance. K 5 DXL, P, ©. Box K(), Eupora, Miss. FOR Sale 600 watt c.w 350 watt A.M. all-band transmitter vith 4-250A final, \$200.00. will sell separately, Also Collins list of other gear and components. Roger Goodland, W9JHB 5306 Sunnybrook, Ft. Wayne, Ind.
WANT Tech. manual for TBS-4 or TBS-5, UHF radio equipment. Bob Jensen, K 3 HIU .
COLLINS 32 V 3 with low pass filter, $\$ 375$: Elmac AF-67, $\$ 80$ Both units in excellent physical and electrical condx. W2HYS 40 Lansdowne Rd., Syracuse 14. N. Y.
WANTED: Collins or TMC Equipment such as 32V3, 75A3, equipment. WILL TRADE Cameras Bnlex H8 Deluxe wi3 lenses on Turret, 1.5 lenses; Leica IIf w/1.5 lens; Rolleiflex Graphic w/2 best lenses: many holders and extras: Complet professional Darkroom w/Omega Dll Enlarger w/3 lenses for everything from 16 mm to 4×5. trays, timers, electric dryer, etc., All Above equipment in like new condition and fully Quarantecd. All inquiries answered. W9JFJ, 3013 Oak Street, Evansville 14. Indiana.
SELL: Station: HO-110C, DX-20. King Kigh VFO, mod., misc. Best offer. Jon Gabel, K2SMM, Bear Ridge Road, Pleasantville, N. Y
DX-35, VF-1, factory serviced. Write Pete Pointncr, Bon Air Drive, Sidney, Ohio.
TELETYPE: Want Model 14 typing-reperforator, 19 keyboard ny condx. Have to trade, comple Model 26 . 12 keyboard and cover. 12 typing unit, polar relays, brand ncw LM-20 frecuency standard. W4NZY, 119 North Birchwood Ave., Louisville 6. $\mathbf{k y}$.
75 milliameters, mil spec. 10304-A, 0-100 $212^{2 \prime}$ for flush mountng on masnetic or non-magnetic panels, $\$ 5.00$ ea. or $\$ 300$ for
SELL: Heath DX-20, like new, $\$ 30.00$. Dick Brown, Rte. 1 , Ritzville, Wash.
FOR Sale: Globe Scout 680, \$65: WRL VFO 755, \$40: cxc. Fondx: 14 AV vertical, \$15. Maj. E. B. Fountain. I 31 W. 8th St., Fort Dix, N. J.
FOR Sale: $S X-101 A$ receiver. like new, unly 3 months uld. $\$ 300.000$ Nathan Freund, 485344 th St., Woodside, L. I., SELL: Gonset Model 3065 six-meter linear amplifier to work Ridge, Tenn. W4SG1, 100 Elliott Circle. WANTED: Collins $516 \mathrm{E}-1$ DC power supply and $351 \mathrm{D}-1$ mount with cables. KSUSR/9, 7018 Oakton Ct.. Niles 48 . III.
FOR Sale: Transmitter complete, home built, phone and c.w. watts, in six ft rack, nower sunnly will handle 300 watts $\$ 125$.
Domenic Basolo. W9TJD, 1240 West 96 Sth St., Chicago. $1 i i$. FOR Sale: Collins 32 V 3 , in eud condx, $\$ 325.00$. W9JDD, Art Fullmer. Cordova. III.
COST of this adyertisement and $\$ 550$ huys complete station: BC $\mathbf{N O O}$ with matching spkr. DN-HZ mike. Hy-Gain switch yertical, cables. etc. You pick up. Sry, no shppg. All in pert condx. Only thing wrong is nrice. Sell complete only. No trade. Box 12. Lake Geneva. Wis.
FOR Sale: $32 \mathrm{~S} 1,75 \mathrm{~S} 1,312 \mathrm{~B}-4,516 \mathrm{~F}-2$ complete Collins station for \$910 cash. K'SOCQ
SALFI NC-303 in vy gud condx, ur best offer. John, WA2oklyn. N. Y.
GONSET Super 12 mobile converter, $\$ 50.00$. Hy-Gain T3 Trap raveller and TBW telescoping mobile antenna, \$20. All like Z. 1000 88th St.. Miami Beach, Fla.

HEATH Mohawk receiver. completely assembled, tactory alizned, $\$ 274$. Bill Oringderff. 109 Main, Elk City, Okla.
DX-40 FB condx Got WAS in 6 months with this. $\$ 55.00$. EL 6-0K22.
COLLINS 32S-1. \$490; 75S-1, \$390; 516F-2, \$75: Mosicy TAA KSUZO, 910 S. Shepherd, Houston, Texas.
SPITERI'S Electronics, 142 West 26th St.. Erie, Penna Transmitters, etc., designed and fabricated to your specifications. WANTED: 6 to 12 304TL tubes. Callanan, W9AU, P.O. Box 155, Barrington, 111 .

FOR Sale: Estate of W1GR, complete Collins station KWS-1.
 Heath 5 sceope, multiphase MM2.
BOEHME Automatic sender, recently reconditioned by expert, power supply, dot-dash perforator, practice tapes, blank tape, $\$ 120$. W3AFM, 5800 Hillburne, Chevy Chase, Md.
SALE: Gonset mobile twins. G-66B and G-77A with 3-way power supplies, all cables, hardware and instruction books.
Best reasonable offer. W2GOK, Florence Avc., Pitman, N. SACRIFICE: Need money badly. Hallicrafters S_{-85} with Smeter, cuax connectors. SS9; Heath $\mathrm{XC-2} \$$,39 ; Heath AR-3 with m, multiplicr, \$23i SCR-522 xmter with homebrew power set to mo, $\$ 25.00$ i everything, goes ior $\$ 115$. Steve Gruber, WA6IDB, 707 Main St.. Huntington Beach, Cal. FOR Sale: (Globe Champ. ${ }^{300-A}$. HO-170, mike. exc. condx,
$\$ 575$. Shid F.o.b. WSYEO, $2817 \mathrm{~S} . \mathrm{W} .62 \mathrm{nd}$, Oklahoma city 19, okla.
SEIL: Like-mew condx, HO-100 w/clock, $\$ 100.00$ Lettine 240 xmtr, w 10 pass filter, coils and xtals. TR sw., $\$$ SU.00; Wilcox$\$ 3500$. Call Rich, $k 2$ GTG. Fairbanks 4 -6071. Bronx, N. Y. SELL: ARRL map, \$1.00, Knight signal zenerator, \$12.50; Knight CPO, \$1.00; OF-1. \$0.50. WPE70L, 421 Sth St., Sidney, Montana.
WANTED: Coils E and F for HRO^{-60}. Quote price. Dr. \& Vernon Pace, 203 Sycamore Dr.. Paducah, Ky.
516 -t-1 power sunply, $\$ 175$; KWM-1 mount and cable, $\$ 25$, both $\$ 185$. W4KGR. 2333 Elizabeth. Winston-Salem. N. (.) FOR Sale: Eimac 4-1000A. \$27.50; Collins 70E-8A uscillator. $\$ 30.00$. Both in excellent condx. W8DYA, Box 1275, Bluefield, West Virginia.
TWO sood 4-1000A tubes at $\$ 25.00$ each. K4RLO.
WANTED: HRO60 15 -meter bandspread coil and scale. 6 -meter coil and scale in exchange or for cash. Burton Bacher, K KJZS , 10104 Nadine Avenue, Huntington Woods. Mich.
SALE: Collcge bound, everything EOEse: All in exc. condx: SX-99, spkr, multiphase Q-mult., S121.50: National ${ }^{6}$ mer. con\$ $\$ 35$. Write Bob lander, WAL 1302. Ithaca, N. Y^{2}.

RANGER, Viking, for sale, in excellent condition: $\begin{aligned} & \$ 155.100 \\ & \text { Gone SSB, J. }\end{aligned}$ Brock, 4 Nassau Road, Poushkeepsic, N. Y. Tel. GL. 4-5238.
SELL: HT-32, used 5 hrs. Three extra 10 M xtals. $\$ 450.00$; package 400 V 2ne mil 6 D DC, \$10: Cash palkage 110 GBD . Bob Gold, 1107 W . Albion Ave., Chicasu 26, III. FOR Sale: Heath DX-35 transmitter, Hallicrafters SX-42 rcvr. both operating. Many hish quality components for 600 watt
amplifier and high level modulator. Bargain prices. W1UKV, ampifier Sherwhizh level, modulator. Barg.
Resides. Sherwood Road, Ridgefield. Conn.
 appearance, $\$ 100$. Cash only. Krim, W3STA, 122 E. 65 th Ave. Phila. 20, Penna. Tel L 18 -6779.
200 Watt amplifier for 220 Mc . Exc. condx $\$ 39.00$ including年
FOR Sale: Hallicrafters HT-30 exciter and HT-31 linear. ${ }^{3}$ watts P.E.P. $\$ 400.00$ for both ot them. Mark Grossman.
K2CON. 1665 Monroe Ave., New York 57, N. Y.
SAVE $\$ 666600$, Oollins gear, priced for quick cash and carry sale: $75 \mathrm{~S}-1$ with factory installed noiseblankr; $32 \mathrm{~S}-1$ and 2 Retail cost, $\$ 2866$. Yours tor a firm price of $\$ 2200$. Radchex, Box 431 I Jasper. Alabama.
FOR Sale: One DX-20, $\$ 30.00$. Bill Jacobs, KSWTA, Mclonurne, Arkansas.

 for list. W7HNV, 3113 Rocky Point Rd., Bremerton, Washinston.
B\&W $5100-\mathrm{B}$ in exc. condx. Used very little. Pick up deal only. Cash. Certified check $\$ 400$. Firm. WiOTS, 141 Calderwood $312 \mathrm{~A}-1$ Collins speaker wanted. Norman Feitelson, 22 Darbrook Rd., WestDort, Conn.
SELL: DX-40, in perf. condx: $\$ 60.00$. Pete Tryon, 7 Robin St., SELL Or trade: New 4CX300S, socket and chimney, best offer.
WA2AJP. 62 Astor Dr., New Hyde Park. N. Y. 1-503-A Ielrex 20 meter beam and manual: $\$ 80$. Nan Lee Fleming, KL7CAN, 1169 South St., Blair, Nebraska.
lONG lsland tube headquarters. We stock more than 1000 ypes of tubes. Surplus and recent production at maximum discounts. Maritime International, 199 Front St., Hempstead,
L. I., N. Y. Tel. IV 5-2040.
MODEL 26 teletype with table and Automate, $\$ 70.00$ or trade for tape gear. Bob Blaney, K.R. 4, Decatur. Indiana.
LOOK! B\&W 5100-B, brand new, \$300; SX-101, matching Rpeaker, perfect, \$250. Ed Savage, WA2JXU, 147° Ridgecrest
PACEMAKER in mint condition, onlv $\$ 300$. Unused HO 1700 in sealed carton, $\$ 303$. K2SHX, Bob lieberman, 117-01 Park

CANADIANS! HRO with bandspread coils. Excellent condx Best offer over $\$ 95$. Hott, 46 Foothills Drive, Bell's Corners, Ont., Canada.
S.S.B. Xirmrs. Exact type for "W2EWL Special", and uther sideband units, brand new set of 3 for $\$ 3.00$. Brand new her-metically-sealicd half-ampere bias power xirmrs, 13 Lbs., ${ }_{51} 4.00$.

WANTED: Pi-network inductor B\&W 850A; filament transtormer, 5 volts ${ }^{15}$ amps. Selli: Rotary inductor. Johnson 229-.
202 . ncw, $\$ 7.00$ W9WUU, Bob Ruffer, 2035 So. 24 th Ave., Broadview, III. Phone FI 4-2319.
MEGGER: (Biddle) 1000 merohms. 500 -volt hand-crank modinsulation resistance, filter with heavy-duty leads. For checking paths in electrical circuits. \$100.E. Heubach, 132 S . Main Paths in electri,
LEARN Code. Qualify for Amatcur or Commercial Licenses. Free Book. Candler System, Dept. Q-11, Box 9226. Denver 20 , olo
VIBRO-KEYER, \$109, Kleenschmidt and Bow inme automatic c.w. ccuipment. W४RMH, 1910 Longpoint, Pontiac, Mich.

COLLINS $32 \mathrm{~V}-1$, factory modified to $32 \mathrm{~V}-2, \$ 275.00$: S-76, new \$ondx, \$90.00; Irap antenna, relays, etc. extra complete supplies and accessories etc.; extra. Cumplete \$172.50. John

VIRING Ranger, \$175.00 foob Pertect A-1 condx. Used vy little. Latest model: Bob, K2UFP, Box
SELI: Viking II, VFO-122, (push to-talk); \$234.50; new HO-145 (calibrator), $\$ 237.50$. Albert Johnson, KlliK, Newport, N. H. $\because 2 V-3, ~ i n ~ e x c . ~ c o n d x, ~ i n c l d g ~ c o a x ~ a n t e n n a ~ r e l a y . ~$
$\forall 315.00$
.
SURPLUS-Of-The-Month-Club!! Details, sample: 46! Dick Hinz, WGDIE, 833 7th Ave., Sacramento 18. Calif.
SELL: N C-183D, want: 800 cycies F455BO8 filter for 75A-3, also Ham-M rotor. W20Q.
HEATH 0-10 oscilloscope, RCA 45 RPM attachment, Motorwa. FM mobile xmtr w/ cables, eitc. Misc. items. Send for list. E. K. Tagsart, W9RBM, Nashville, Ind.
75 Meter mobile: BC-654-A transceiver, PE103A, whip, mike, and all cables. Used under 20 hours, $\$ 75.00$
UNW. 4210 Wanetah Trail, Madison. Wis.
FILTER Chokes: 10 hy., 150 Ma 150 ohm. new, cased, ceramic standoffs, $51 / 2 \mathrm{lbs}$. postpaid $\$ 2.00$. D. Bates, 82411 th St., Portsmouth, Ohio.
SELL: SX-100, clean, in orig. carton $\$ 200.00$. L. W. Stuber, W8PJH, 125 Orchard Hill, Amherst. Uhio.
HT-32A, in exc. condx, used 30 hours. No time to operate. \$550.00. K9CYS, 651 Saratosa, Chicago Heights. III.
TEST Osc. TO- $\$ 10.00$; tube tester, $\$ 30$; Gonset Triband converter, $\$ 12.50 ; \mathrm{BC} 348 \mathrm{Q}$, vy cln. wi A.C. supply, $\$ 60.00$. You pay shipping. K7DHL, Box 189 Grand Canyon. Ariz.
SELL Complete station. Viking I, VFO, time sequence keying. \$125; NC-300. 100 kcs , standard, spkr, \$240. F.o.b. Westwood,
Gi(DNSET Tri-band converter, \$9.00; TNS, \$1.00; cight new 3-4 Mc . ARC5s, $\$ 2.00$ each; meters 25 each; QSTs complete run from 1920 , like new condx. Gonset communicator 11 . SX104, trailer Ned prinsco 600s. Moving to new ori. Need house ron lists of hundreds of ham items at giveaway prices. W $3 \mathrm{HDL} / 2$. Albemarle Rd., Hamilton Square, N. J.
FOR Sale: AVR-20, RCA, Aircraft Rcvr., $\$ 30$. WA2FOE, 20
Henrv Ave., R. D. \#, Albany, N. Y. SELL: Viking Ranger, push-to-talk A-1 cond. \$180: SX-101 Rutherford, N. J. Tel. WE 9.3885 .
HIGHLY Effective home-study review for FCC commercial phone exams. Free literature. Wallace Cook (Ot1), Box 10634, Jackson 9. Miss.
WANTED: Communications equipment, late model, base station iand mobiles. Also filters for 75A3 revr. Geosge Tate, WANTED: SX-28 and BC779. K57PK.
SALE: Microphones, two E-V 664 Cardioid. See p. 117 Sept. new condx. E. T. Schorle, 3172 Colony Lane, Plymouth Meeting, Penna.
HQ-129X for sale, in gud condx. Make your best offer. W2CXM, barton Hall, Ithaca, N. Y.
GO Sideband-entire station: HT-32. Heath Mohawk rcvr, PP x1 is final 500 watt reflected power meter, Dow-Key relay,
i) 1)-104 mike, LM tres. meter with power supply. A steal at RECONDITIONED: Terms: Guarantec: Hallicrafters S-53A \$180.00; National SW-54 \$37.00: HRO-60T $\$ 345.00$; NC-173 $\$ 114.00$; NC-183D $\$ 234.50$; RME-84 $\$ 59.00$; Gonset Super 12 $\$ 54.95: 3-30 \quad \$ 34.50 ;$ Globe 6 OMC-1 $\$ 17.00$; Regency ATC-1 toliL A mplifier $\$ 299.00$; Collins KWS El $\$ 999.00$; 32 V 3 \$ $\$ 399.00$; Elenco $77 \$ 299.00$: Eldico SSB-100A $\$ 349.00$; Globe CB-100 Transceivers $\$ 89.95$; Scout 65A $\$ 59.00 ;$ Champ $300 \mathrm{~A} \$ 344.00$: King $400 \mathrm{C} \$ 255.00$; King 500 B , $\$ 565.00$; Gonset 500 Linear $\$ 149.00$; Heath Apache $\$ 265.00 ;$ Johnson Pacemaker $\$ 295.00$ Globe 755 VFO $\$ 37.00$: Leo. WoGFQ, Box 919. Council Bluff's. Iowa-World Radio Laboratories.
FOR Sale: Rack mount CE20A, \$170: Lakeshore Bandhopper $\$ 6.00$. All in new condition. Will ship in factory cartons with instriction book. First certified check or money order takes one or all. Charles Richman. 778th Acwron. Havre AFS, Mont. HT32A, 75A3. Skylane quad, \$850. W2MHL, 147 Fairview,
Paramus, N. J.

WANT 6 Kc . filter for 75A4 rcvr. In exc. condx. State price in your tirst letter. Sell ASB-S 440 Mc. recvr, brand-new, unW3CLP, 707 Edgemoor Rd., Wilmington, Del.
FOR Sale: F.o.b. Detroit. Will ship Viking Navigator xmtr used for 10 hours. $\$ 140.00$; Bud Codemaster, $\$ 8.00 ; \mathrm{KVV} 4 \mathrm{coax}$ ratiometer. $\$ 18.00$. Model 152T: Hy-Gain Triband beam, $\$ 40.00$ You pick up beam. W8GRN, Phil Girard, 14025 Norborne, Detroit 39, Mich.
BRAND New Hammarlund HX-500 transmitter, in factorsealed carton with warranty, \$645.00. W9DOO F.o.b. Madison, Wis.
CANADLANS! 20 A VFO (covers 10 meters, matching case). 250.00 ; APA38 Panadapter 110 V . supply, $\$ 25.00 .06146$ transCarruthers, 255 Dufferin Ave., Belleville, Ont., Canada.
INTERNATIONAL Reply-paid OSLs. Standard: 25, \$1.00. Per, Birmingham, Michigan. $\mathrm{K} W \mathrm{~S}-1$, all modifications by factory, spare tubes. including 2 unused $4 X 250 \mathrm{Bs}$. Can ship in factory containers. $\$ 1195$ F.o.b. Conn.
SELL: Gift certificate, $\$ 27.00$. Worth $\$ 50.00$ on Mosley TA-33. W4 4 XE .
FOR Sale: Elmac AF67, PMR7, M1470 power supply, Dow 12 V . relay. mounting racks for rcyr. and xmtr. all connecting cables
included. In gud shape. College. $\$ 310.00$. K 5 JLF , Troy Morrow, Station ACC. Box 834, Abilene, Texas.
VALIANT, factory-wired, serial No. 29181, \$350.00; SX-100, Mark II, $\$ 225.00$ both like new. less than a year old. W4OEF/2,
SELL: DX-40. VFI, $\$ 60.00 ; \mathrm{S}-40 \mathrm{~B}, \mathrm{QF1} \$$,65.00 . In gud condx. Ave., Little Neck. L. I., N. Y HEATHKIT DX-100 transmitter. Sell $\$ 125.00$ or swap even for Place, Norwalk. Conn
SALE: AR88D, receiver with "S" meter in perfect condx. \$160: Dumont (245) scope, $\$ 50.00$ Gonset Super Six converter with $\$ 10.00$; Milien absorption freq. meter set, $\$ 10.00$: SCRS22 (new), \$15.00: numerous VoMs. meters. tubes. Colic. E. SELLING KWSI, 1573 . 75A4. 75S1, new Gonset 101 linear. Make cash offer. Will consider trade. W0BNF, Box 105, Kearney, Nebr.
SINGLE Sideband generator as described on page 26 August Q, \$35.00. Longhorn Electronics, Inc., Box 157, Wolfe City,
GONSET 144 Mc Communicator 11 in like-new condx. in factory carton; Lysco 600 S , all-band xmttr; three-specd disc recorder complete with piayback unit, speaker, microphone, instructions, etc Transmitter power supplies. chokes, transformers,
capacitors. Pilot Super Wasp. Crystals. tubes. etc. Moving to capacitors. Pilot Super Wasp. Crystals. tubes. etc. Moving to xraphic and hobby equinment. Need $75 A 1$ and 32 V 1 or similar. Send stamped addressed envelope for complete list. W3HDL/2, 3 Albemarle Rd.. Hamilton Square. N. J.
Fuk Sale: Hammarlund HO-170, 2 vri, $\$ 250.00$; Gonset GSB00. in sud All in gud condx and first check gets it or all in one. Donald WANTED: Transmitter, Collins 32 V 2 or 32 V 3 : Apache: DX-
100 . State condx. lowest cash price. Joe Harms, Plaistow, N. H. SELL: DX-40, VF-1 in vy xud condx, \$75; balun. \$8.00: Mass
CRYSTALS Airmailed: SSB, MARS, Net, Novice, Commercial,
 $\$ 1.49 .110$ or more $70,000 \$ 2.25$, All frequencies 604 additional for HC-6" uphermetic holders. Builders crystal packaces: Novem-
 other magazine construction projects. All types, if you don't see it. be specific, write. Airmailing ye per crystal. Crystals since
1933, C-W Crystals. Box 2065 Q , E1 Monte. Calif. SELL: Collins 75A1, in exc. condx. \$225. Durland, 27 Edgerton, Darien. Conn
WANTED: Apache, Gonset Communicator I 2 Meter, SB10,
Super Pro. W2CE.
HALLICRAFTERS S-38C, $\$ 20$ and postage. Cotton, 831 Virginia Ave.. N. Behmore, L. $1 .$. . . 1 .
FOR Sale: Alpha 6 Xmtr., f/w, $\$ 64.50$: C.E. 20 A w/458 VFO,
 KWM-1 (exc.) $\$ 610.00$; KWS-1 $\$ 1250.00$; ${ }^{\text {AF }}$ AF-67, $\$ 127.50$; Globe Chief, 52.50 ; Globe Scout 680 , $\$ 65.00$ G Globe Champ
 \$335.00: Meissner EX signal shifter, \$26.50; LA-400, \$145.00: Urake 1-A. \$199.50: PMR-7, \$119.50:G-66B W/3.way pwr.i Mk.111, $\$ 275.00$; HQ-110. $\$ 196.50 ; \mathrm{HO}-160, \$ 279.50$. Write Art Wayne. Ind.
SALE: SX-100, Hallicrafters, $\$ 180 ;$ R46B, spkr, $\$ 10$. In exc. condition electronically and physically John R. Ottinger, $91-34$
Lefferts Blvd., Richmond Hill. N. Y.
SSB Rig tor sale: CE 10-A. Deluxe 458 VFO, B Slicer, 400 watt linear. Write for details. WINFG
SACRIFICE! Rotobeam rotator. Will turn anything. Cost $\$ 375$ 250 THs . $\$ 15$; RK4D32s, $\$ 15$. Send for additional parts list. Don Cordray, 6803 Amestoy Ave., Van Nuys, Calif. DIckens

WORLD'S Best reconditioned equipment. Shipped on approyal. Trades. Terms inanced by us. Central 20A $\$ 159.00$; Collins $32 \mathrm{~S}-1 \quad \$ 449.00$, K WM-1 $\$ 549.00$; Gilobe Scout $\$ 59.00$; Hallicratt
ers $\$-76 \$ 99.00$, SX-99 $\$ 109.00$, SX-100 $\$ 199.00$. SX $-101 \$ 279$,

 Apache $\$ 239.00$. Johnson Adventurer $\$ 39.00$, Viking II $\$ 179.80$ HRO-60 $\$ 34900$; National NC-173 $\$ 99.00$ NC-300 $\$ 209.00$ Butler, Missouri.
SELL: Perfect HRO-7 with 4 coils, pwr supply, and spkr, \$175. CQ 1954. Make offer. K2DZS, 58 Wayside Lane, Trenton 8 , FOR Sale! Complete sets Electronics. RCA Review, Control Angincering. OST (less 10 issues), IRE Proccedinss since 1928 Aiso runs of cle-Tech, Radio News. Radio-Electronics, Popu
 a.

MODULATION Transformer. Collins 150 watt. Primary: 5500 Sucondary: $2400 \delta_{3}$. Potted; herm. Sealed. New. \$6.95 postpaid. PAM Electronics, 3438 S . Burrell, Milwaukee 7. Wis.

HT-33, $\$ 575$ with extra tubes. HT-32, $\$ 500 ;$ SX-101. $\$ 290$. All like new condx, not a scratch. You pick up. No shipping, sry. SELL: Complete station 10 thru 80 , pertect condx in two 68 in. cabinets; TV1 suppressed, monitor-scope VFO phone c.w. clipnot ship, sry. W2YKW. Tel. GE 8-8979, E. Rutherford, N. J. SX-43 Receiver, Excellent. \$125.00. W8VDA/5. 203 Harding St. . Big Spring, Texas.
SELL: SX-101A. Mark III, AT-32, \$700. Unaltered. One owner. Clameda Ave., Douglaston 52 , Bob Hertzberg, W2DJJ, $241-16$ 5-5383.
WIRED And Tested Heathkits, new and unused. Apache transmitter, $\$ 29.5 .95 ;$ DX-100B, $\$ 229.50$ and others. Send orders LEECENEVIILE 50 amp. rectifier. $\$ 5.00$; 24 V 10 amp. 110 vol selsyns,. \$3.00. Trade high vacuum ump tor SSB sencrator. B. Kucera, 10615 So. Hishland ve., Cleveland 25, Ohio.
KWS-1, all modifications, \$1000; 75A-4, excellent. \$475: 1960 nodel 20A, \$185, unopened 100 V , $\$ 595$. HT-37, $\$ 355.00$, unopened $325-1, \$ 575$. W8WGA.
EIMAC 4-125As, new, sealed cartons, \$15.00 each; 304TLs, never used, $\$ 10$: also new 24G tubes and Gonset $100 \% \mathrm{R}$ modulation indicator. Used, but in gud condx: PE-103 dynamotor and cables and pair Stancor C1415 chokes. 500 M.A. Best offer.
W 2 IWS. Curtis. Box 125. RFD $\# 1$, Utica. N. Y.
KNIGHT R-100, Vy FR with spkr, S-meter, cal. Will be willing to ship in the WI-W4 area. \$100. Paul DeBonis, K1NKV, 67 o. Uaker Lane. West Hartford. Conn

COLLINS 75A3, in exc. condx, $\$ 330$; SX-101A, less than year old, $\$ 269$; $5 p \mathrm{kr}$. $\$ 4.00$; Johnson 6 and 2 meter converter. facC.W. xmtr, bandswitching $80-10$ meters, fully metered. Collins FO. fully shielded and TVI suppressed, a real beauty, only 3.j Have KM-2 and little time for radio. Henry Hayes, tis. a, Futton, IIL Tel. ALbany 3718.
GONSET G-66B with 3-way power supply, \$210; Gonset G-77A with 3-way power supply and Electro-Voice mike, xud, \$250.00. All are in excel
Helena, Mont.
GREAT SURPLUS VALUES! ! BC-603 Recciver New $\$ 23.00-$ BC-683 New \$37.00-R-26/ARC 5 Rec 3-6 mc New \$15.00-
 $\$ 39.00-\mathrm{BC}-603$ AC-Supply $\$ 9,45$-Synchroscopes Model TS34/AP \$49.00-Sound-Powered Dynamic Phones Pr \$4.75-Rec. watt 811-PP to 813 final $\$ 3.95-R A-62-C$ Mod. Xirmer 100 for SCR-522 VHF $110 / 60$ cyc. New $\$ 59.50-\mathrm{Kits}$ only for above, $\$ 17.00$-Ground-plane VHF antennas $30-200 \mathrm{MC}$, New
 459 7-9.1 mc. New $\$ 12.00$ HiMu Electronic Sales Company 133 Hamilton Street New Haven 11. Connecticut
FOR Sale, New York City/North Jersey area: Elmac AF-67, \$5.00: James power: Gonset $3-30, \$ 20$; Gonset noise-limiter, BC- $\mathbf{3 4 8 \mathrm { Q }} \mathrm{w}$ /spkr (AC') $\$ 55$, Meissner signal shifter with coils, $\$ 20$ Master Mobile 666 all-bander and base. $\$ 15$, S. MCKeown. W3KTF, 345 Boulevard, Hasbrouck Heights, N. J. Tel. ATlas 8.2055°
SX-25 with 12 tubes w/matching speaker and QF-J., KNSAEE,
Bloomfictd. N . M . Bloomfield. N. M.
WANTED: Excellent BC-348, TCS-12 with accessories, manuals if available. State condx, prices. Daniel Lee, 3167 E. Green St., Pasadena. Calif.
RANGER And Matchbox, $\$ 250.00$; NC-300 with calibrator, \$275, All for $\$ 500$ in mint condx wimanuals. E. Jones, bert 3-0991.
SALE! 10B, extra coils, QT-1, VFO, \$89. Want: Panadaptor. Clarke, K6TWL, 4749 Rollinshills Way, Castro Valley. Calif. NC-300, in xlont condx, xtal calibrator, 6 meter converter,
$\$ 215 ;$ B\&W $1-1000-A$ linear, like new condx, $\$ 300$. Instrux \$215; B\&W l, 1000-A linear, like new condx, $\$ 300$ instrux books and oris. cartons for both items. F.
Penna. Walt Clevenstine. 711 Arch, W3CUO.

FOR Sale: NC-183DT and DTS spkr, exc. condx, HT18, gud. Make otfer. J. T. Hoffman. W4MVN, 1503 N. Jackson St., Tullahoma. Tenn.
$\$ 1,400,00$ Replacement Cost. K2RRG 75 Foot Antenna System. Consists of Tri-Ex Model HZR-354 Rotating Tower (\$749.50), BMP-61 Motorized Kaising Winch (\$43.95), Weatherprooi Electric Motor ($\$ 40.001$,
form $\$ 22.77$, TB-2 Thrust Bearing ($\$ 17.50$), H-8 Plattric ($\$ 22.77$). BPR' Rotor Bracket ($\$ 43.95$), T.irex R-100 R R-
form
tator and Indicator ($\$ 158.75$), 30 Foot Stecl Mast $(\$ 60.00$), tator and Indicator (\$158.75), 30 Foot Steel Mast ($\$ 60.00$), Two Telrex 6M-6C Antennas $1 \$ 57.50$ Each), Special Telrex Matching Harness ($\$ 17.00$), and 200 Fect RG-17/1 ($\$.58$ Ft.). Tower delivered free within 50 Miles of N.Y.C. Entire System $\$ 575.00$ or individual components at $1 / 3$ above prices. K2MLB,
45 Rock Spring Avenue, West Grange, N. J. Phone RE-1-5064.
SELL: 75 A 4 Ser. $\$ 5103$, spkr 3 Kc filters $\$ 625.00$; Call-Ident clock. \$18; Morrow Conelrad monitor (M-3. $\$ 30$: D-104 mike w/stand, $\$ 20$: Gonset Triband beam, $\$ 95 ;$ Ham-M rotator, W75: 4-250A tubes. \$18: KW-1 modulation transformer, new, \$65; Collins low-pass filter, \$20. WRRWZ, 1210 White Oak Dr . Snringfield. Ohin, FA 4-1219.
REGENCY ATC-1, \$55: Heath SSB SB-10. \$75, Seneca VHF $6 N 2$ transmitter, $\$ 165$, RME DB-23, VHF-152A, tape recorder, mobile equipment. multiphase SSB analyzer, $\$ 65$: $\mathrm{BC}-453 \mathrm{~s}$. transistor course, Gonset Monitor, vacuum variable, electronic flash, telescope. miscellancous list. W4API, 1420 South Randolph, Arlington 4, Virginia.
APT-1 Front end, uses 832, 829-B \& (2) 6C4. Makes ideal 2 -meter final, like new. without tubes, post paid. $\$ 5.00$. Bauer Industrial Sunnly Co. 17170 Redford. Detroit 19 . Mich. WILL Swap: New Hallicrafters SX-104 Mask 1 F.M. 30 to 50 Mc police revr for NC-188 or NC-160 revr. Baker, Box 656, Gallatin. Tenn.
HO-145, timer, calibrator, also Ranger transmitter. Both in like-new çondx, \$200 each. WV2LIM. Box S05. Jamaica 24,

NOVICES Attention! Johnson Adventurer 50 watt xmtr, gud condx, $\$ 30.00$. Gilbert Traverse. 1200 Locust St.. Alva. Okla-
homa.
KILOWATT. For sale, B\&W LPA-1 and LPRS-1 तinear amplifer and power supply), bittle use in past seven months. in guarantecd exc. condx. Will sacrifice
SELL: P \& H LAA 400 linear amp . 585 : DR23 Preselector,
 xfrmr, \$7.00. swinging choke, $500 \mathrm{Ma.}$. \$7.00. W6SRF, 1240 N. Alamo St., Anaheim. Calif.

FACSIMILE. For sale: two TT-IC/TC-1 facsimile transceivers complete with manual, one ream Teledeltos paper, sequires no darkroom processing. Also one additional transceiver minus motnr. clutch and power supply. Use for spare nazts. All three machines for $\$ 600$. Prefer not to ship. W9WKC.
ATTENTION Hams! Receivers, transmitters and test equipment serviced and calibrated by professional personnel. low rates. All work guaranteed! Also kits wired to order at 30%. Write Monarch Enginecring. 3058 Lehman, Hamtramck, Michisan.
COME And get it: HT-33A. used vy little. \$500. W1MJD.
W.ANTED: Pr 417As in gud condx. K2ARO, 112 Croton Ave.. Ossining, N. Y
FOR Sale: Globe king 500C. latest model with D-104 and stand. Spare 6156. \$500. Sry, cannot ship. W9BDG, 2533 Benedict, South Bend 15, Ind.
FOR Sale: Heath Mohawk RX-1 revr, \$250. In gud condx. KiMYA, Sheldon Brown. 250 Beaver St., Kuene, N. H.
OSTS: January 1950 thru December 1959; Eico Signal Generator Model A-200. NRI Electronic Multitester. Will aceept hest offer. W0OWK, 4018 Lyndale Ave. So., Minneapolis 9. Minn.
CLEAN Valiant quaranteed A-1, \$300. Hallicrafters SX-28, $\$ 90$. Wlll ship. KUOHTS. Jess Smith.
CALL-Personalized items advertised Page 106, October CQ.
Write for reprint. Chuck. K9TVA, 6429 H Glenwood, Chicago 26. III.
"HORSE Trader" Ed Moory, Lowers prices again! HT-37, used 2 hours. \$359. Like new, NC-300 receiver \$179; HQ: 170-C, new. \$235: new Johnson Thunderbolt linear in sealed Carton \$449: Collins KWM-2 Serial 777, Demonstrator, \$889; Collins $32 \mathrm{~S}-1$ Serial 2320 , $\$ 489$; Collins 30S-1 linear, two weeks old, \$1149. Terms cash. No trades. Ed Moory Wholesale FOR Sale: SX-101 Mark III, perf. condx. Bob Yarmus, FOR Sale: KWM-1 with A.C. supply, $\$ 550$: Gonset 0 -meter Communicator $11,117-12$ volts, $\$ 150$. K2YWO, 52 Delwood Rd., Merchantvilic, N.J.
FOR Spare parts FM eypt., some $30-50$ Mcs. mostly 150 Mcs. Removed working vehicles. 6V DCe Federals 144-172 Mcs. PP $5 \times 128 ; 1 \mu \mathrm{fd}$ revr cables control bux spkr. $\$ 85.00$. Shipped collect or moncy-order. Ken D. Morsan, KضlEG, Box 611 . Ft. Morgan. Colorado.
SELL: SX-100, \$190: Globe Scout 680, factory-wired (push-to-talk) and D-104 mike, $\$ 90$; Knight VFO, $\$ 23.00$; Skylane 3 band cubical quad, $\$ 20.00$; all for $\$ 310.00$ or without quad, \$295. K2CMF, 76 Glenview, South ()range, N. J.
FOR Sale: ${ }^{2}$ 4.400A tubes with one sucket and chimney, ment. Write for list. A. J. Tumas, 20 N . Euclid Ave., Villa Park; Ill.

FOR Sale: Two model 15 teletypes with keyboards, one exc. condx, other vy gud condx; stand, typing reperforator, 2 polar relays. make-break converter, spare parts. paper. Best oft'r on all or any. Cubex Mark Ill Deluxe 3-band quad, up only code machine with 15 tapes. both brand new. $\$ 3500$ ele eve ode machine with pwr. supplies, choke inputs. $1500 \mathrm{~V}-300 \mathrm{Ma}$. dual $1000 \mathrm{~V}-300 \mathrm{Ma.} 400 \mathrm{~V}-.30 \mathrm{Ma}$. Hest offers. KiGPS. Richard McGuire, 205 Poplar Ave., Marysville. Qalif.
HO-129X, in exc, conds, $\$ 130.00$. H. Stewart, 4187 Richmond Ave.. Staten island $12, \mathrm{~N}$. Y.
-Meter Transceiver, completely portable, tuneable, $\$ 30.00$; OM-3 oscilloscope, $\$ 30$: B-1 baluns, $\$ 6.00$: AC-1 antenna coupler, $\$ 9.00$ Ocean Hopper, \$10. Jim, K1IQZ, 14 Oak St., Greenfield, Mass.
KWM-2, \$820: used less than 10 hours: 12V supply. 5200 1416 Walnut St.. Murphysboro. 111. PHone 252.
RESTORING Collins Autotune, TCB2 xmtr. Need Technical Manual and some parts. What have you? KYSUV, Rt. 7, Green Bay, Wis.
RECEIVERS: Excellent (innset G66. to best offer; Hallicrafters S-77A, $\$ 50.00$: converted ARB . 1 to 9 Mc., $\$ 20$. hИBL(), PO. Box 437. Hiawatha, lowa.
$K W M-1$ and mobile mount, $A C$ and DC supplies so nca quarantee cards are supplied. $\$ 825$. Beautiful bandswitching parallel 4-400A conventional inear, vacuum variable, air sysRd., Cheshire, Conn.
SELL: SX-99m like new, \$99; VHF Aerotron 500, sud condx, w/cord, whip \& mike. \$125.00. T. P. Stewart, Jr., P.O. Box 17. Henderson, N. C.

FOR Sale: BC-456E with dvnamotor. BC-459-A. BC-696-A, BC-455B, BC-454-B. Make offer. All inquiries answered. W3YNB, 320 Carlisle Ave., Pittsburgh 29, Penna.
FOR Sale: National NC-98 receiver with speaker. In perfect condition: $\$ 100$. Glenn Krueger, W9TXU, 8420 So. Emerald Ave., Chicago 20. Ill.

WANTED: late 75A4. Thunderbolt or HT33A amplifier. Have trade NC.300. Bolex 16 mm movic with turret. 16 mm iquipment. Roy Tooman. KøPGZ, Muscatine, lowa.
DX-100, $\$ 165$; Mike D-104, $\$ 10$; Balun coils. $\$ 7.00$; Relay switch, $\$ 7.00$. cubical quad antenna complete with bamboo and © 20 A. indicator rotor AR 22 . Let it
6 METER Communicator 11I, in exc. condx. \$220. Ken Malkin. TR 3-5301. New York City, is West 81st.
KW. Completely self-contained, built-in modulator. Power supply and VFO exciter, \$180, or trade for Viking I or 11 . T. WANTED: HRO-S coils E, F, G, H, J. WSOMJ, 4742 Denton Dr., Dallas 19. Texas.
B\&W Low pass 75 ohm, $\$ 10$; PE103 6 \& 12 dynamotor, $\$ 9.00$; 80 mtr . base-loaded whip, $\$ 8.00$. Home-made trap ant., 50 ft . coax. $\$ 5.00$. T-17 mike, $\$ 4.00$. KxciHY.
SALE: Hallicrafters S-107 receiver. brand new and has never been worked. $\$ 75.00$. Globe Scout 680 xmttr, in A-1 condition, 75. Rig., receiver, xmttr, Dow-Key relay, code oscillator, $\$ 150.00$. Gerald Uwens, Box 345, Fort Pavne. Ala.
(ALJ. Books wanted. Department of Commerce, Amateur prior 1926. Commercial 1930 and prior 1926. W1NP/2, 926 Wood-
gate Ave., Elberon, N.J.

SEI.L.: Heath DX-20 and Heath VFO, \$48; SX-71 revr. \$130; Hy-gain 12 Av. 10-15-2.0 mtr. groundplane complete with base section. $\$ 19.00 ;$ ant. relay, $\$ 4.00 ;$ or complete rig for $\$ 180$.
K2viC, Hewitt, 451 Conger Ave, Collingswood, N J HALLICRAFTERS SX-101A, \$295: HT-32, $\$ 425 ;$ HT-33A. \$545: Central Electronics MM-2, \$85: Johnson Kilowatt Matchbox with coupler, $\$ 45$: Ham-M rotator, \$85: 2.El. Tribander Hy-
Gain beam with 100 ft . coax, $\$ 35$; Bud low-pass filter, $\$ 10$. All Gain beam with 100 ft . coax, $\$ 35$; Bud low-pass filter, \$10. All perfect. Very little usage. New in appearance and operating per-
formance. k en Reiter, K9DBL, 240 Powell, Clarendon 1Hills,
III. 3 - 0085 .

OOR Sale: $5 X-101 M K 3$ perfect condx, $\$ 275$; swap tor ham gear; 50 mm Kilfitt Tele-Kilar. 50 mm Tessar. Bob Yasmus. K2RGZ.

SELL: 75 S 1, \#2152 with CW filter. $\$ 425: 32 \mathrm{~S} 1 ., \# 1915$ with AC supply, $\$ 550:$ Eldico $1000 \mathrm{~F} . \$ 500$. W2KOY. 1740 Front St.,
East Meadow, L. $1 . \mathrm{N}$. Y. RME-45 exc. condx, \$95: VHF-152A converter. \$49.50. Money, \$35 All guaranteed. Gayie Wadsworth, 1555 Northeast
Pkwy, Wichita, Kans.
COLLINS KWS-1, 75-A4, master control SC-101, also Telrex ri-Band. \$1.600. Claude Lefond, VE2AWA, 80io De Giaspe it.. Montreal. Ouc. P.. Canada.

VANTED: LM freq. meter with modulation book. AC power Panadapter, Heath SSB generator. Have new pair of Vocaline ranscejvers, two TO-4 Sprazue Tel-Ohmike analyzers cone is newi Hickok 'scope. 300 watt portable power plant to trade. Morris Organ, KN8UMW. 13181 Poplar, Southgate. Michigan.
LLEANING Shack. Offering tubes, transformers. crystals, other components at savings to you. Send self-addressed stamped enOmaha 24. Nebr
FOR Sale: AF-67, \$135.00; PMR-6A, \$65.00: James C- 1050 Anchorage, Ky,
Ack Radio Supply Co Adirondack kadio suppiy 151
Aires Radio Corp. 175
alltronics-Howard 184
172 140
Amateur tilectronic supply
Amateur tilectronic supply
American Crystal c:o. 168
a merican Fiectronics
American Radio Relay League
American Radio Relay League

- nteñáa Rook 148
168
Gateray 07
\&bras o Kinks 160
Arrow Electronics. Inc. $16{ }^{6}$
Aohe Radio (Jo.. Walter 115
Harker \& Willamson, Inc. 115, 1.58
Barry E'lectronics Corp. 136
Belden Mig. Co 169
Lew Bonn Co. 163
1510
British Radio electronics, Ltd
British Radio electronics, Ltd 128
Brown Electronics, Inc 76
Burghardt ladllo sunply 173
Hurstein Applebe
176
Call-D-Cal
67
67
entimeg Electronlcs
119
119
ollins Radio Co. 116
ommun roducts Co
ommun roducts Co
ommunications froducts c'o.. inc. 44ommunications Equipment co.ontinental riectronics \& Bound Coorky's of HartfordCosmos industries.142Cush C'ruft129
150
Delehanty school Delta Products 173
Douslas Instrument i,ai, 170
Dow-Kry Co., Inc.. The 140
Edwards Co., W. H 175
tit
tit
10, ii1. 121
10, ii1. 121
Eitel-McCullough. Inc.
Eitel-McCullough. Inc.
170, 171
170, 171
Electronic Wholesalers, Inc.
Electronic Wholesalers, Inc. - 138
Fosilon Records. 1i8, 152. 158 16S. 175
Gort Orange Radio Distrlbuting Co., Inc 141
169
Fort Oranke Radio Distrib
Gardiner \& Co. 172
ceneral receision, inc 172
seneral Telene \&ilectronics
seneral Telene \&ilectronics 164
et Dlv 108.109Gotham
Cov. II. 1, 91
Cov. II. 1, 91
Hallicrafters Co. The
Hallicrafters Co. The
117
135
117
135
Hammarlund Mifg. C'o., Inc.
Hammarlund Mifg. C'o., Inc.
99-101
Harvey Radio Co., Inc 99-101
Henry Hadio se
156
156
Hornet. Antenna Products Co. 156
145
146
House of Antennas 103-105
Instructograph (oo.. Inc 168
107
Internatlonal Crystal Aige. Co., inc 106, 107
Johnson Co., E. F 43-96
walayette Radio 1.59
173
Lettine radio Mig. Co 154
Master Merhanic Mfg. Co. 154
Millen Arg 1×2
National Radio "o.. Inc. Cov. 1 III
Nelson Publectronics 149
149
Organs \& Electronics 164
$P \& H$ Electronics, Inc. 184
158
Pennwood Numerhron C.o. 158
Petersen Radio (o... Ine. 131
Preinax Products C'o., inc
130,147
Radio shack Corp. 147
Raytheon Mig, Co..154
IV
113
RCA Flectron Tube Div.. IV
113
RCA Semi Conductor Div. 113
152
Regi originals Rider Publisher, Inc., John F133
Rohn Mfg. Co. 142
152
ふ3avoy Electronics, inc.
$1: 34$
$1: 34$
skure Bros.. lac. 154
175
Solar Electronics Corp 140
SWartzania Electric Products, inc. 128
Tapedcode 150
Technica Materiel Corp. 122
Tecruit.Teleplex.:i66, i70,Telrex, Inc.rennalab...174
176
exas Crystal 132
Transcon Div 149
I'riad 'I'ransformer Corp. 148
120
U, S. Crystals. Inc. 162
II 8 Savings Bonds
II 8 Savings Bonds
162
Van sickle Radio Supply Co. 162
158
Vibroplex Co., inc., The i56., 166
Webster Mfg. Co. 174
Wilson, Inc., Willard 143, 174
Zimco Alarms. 174

The No. 90801

 EXCITER-TRANSMITTERThe No. 90801 Exciter-Transmitter is of the most modern design including features and shielding for TVI reduction, band-switching for the 4-7-14-21 and 28 megacycle bands, circuit metering. Conservatively rated for use either as a transmitter or exciter. 5763 oscillator-buffer-multiplier and 6146 power amplifier. 90 watts input for CW. Can be keyed in the oscillator and/or amplifier or by means of keyed external V.F.O. such as the 90711.67 watts input phone. Rack mounted $31 / 2^{\prime \prime}$ panel height.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICEAND FACTORY MALDEN MASSACHUSETTS

STEPHEN HERZOG (left), K5RMA, and George Mayo, K1LYE, check out marine radar equipment at a Raytheon Electronic Services Division service center in Boston, Mass.

FIELD ENG\|NEERING WITH A FUTURE

From Boston to Seattle

Raytheon field engineers Steve Herzog, K5RMA, and George Mayo, K1LYE, are shown here on a special technical evaluation assignment at one of the Raytheon Electronic Services Division's 17 service centers, situated in major marine and industrial communities from Boston to Seattle, Duluth to New Orleans.

This time they're testing commercial marine radar. Tomorrow it might be an installation project or overhaul and repair. For Raytheon field engineers tackle a broad range of tasks all over the country and overseas. And, with con-
tinuing expansion of services, there is plenty of room for advancement to executive positions.

Perhaps you can qualify for a Raytheon field engineering future. Requirements: previous experience plus an E.E. degree or the equivalent in practical experience with guided missiles, fire control, ground and bombing radar or sonar.

Benefits: attractive salary, insurance, educational programs and relocation assistance. For details, please write Ronald Guittarr, Electronic Services Division, and \& South Ave., Northwest Industrial Park, Burlington, Mass.

biggest trading in our history brings you top values like these... ALL WITH 90-DAY NEW EQUIPMENT WARRANTY!

Hallicrafters	
S-38 E Receiver	\$ 42.50
S-40 Receiver	54.00
S-40 B Receiver	79.00
S-53 A Receiv	49.00
SX-71 Receive	149.00
S-76 Receiver	89.00
SX-99 Receiver	114.00
SX-101 MK III Receiver	259.00
S-104 Receiver	69.95
S-107 Receiver	74.50
HT-30 Transmitter	249.00
HT-31 Amplifier	249.00
HT-32 Transmitter	429.00
HT-32 A Transmitter	479.00
HT-33 Linear Amplifier	385.00
HT-33 A Linear Amplifier	569.00
Hammarlund	
HQ-110C Receiver.	189.00
HQ-140X Receiver	169.00
HQ-170C Receiver	269.00
Heath	
DX-35 Transmitter.	48.00
DX-40 Transmitter	54.50
DX-100 Transmitter	159.00
VF-1 V.F.O.	15.00
QF-1 "Q" Multiplier	6.95
Harvey-Wells	
R-9A Receiver.	79.00
T-90 Transmitter	79.00
TBS-50D Transmitter W/VFO	59.50
APS-50 Power Supply	15.00
APS-90 Power Supply	39.00

Johnson
Pacemaker Exciter \$289.00
Thunderbolt Linear 425.00
Viking II Transmitter 159.00
Knight
R-100 Receivers. 89.00
T-50 Transmitters 29.95
Morrow
MB-565 Transmitter. 179.00
MBR-5 Receiver 139.00
MB-560 A Transmitter. 125.00
Falcon Receiver W/BC Band. 139.00
National
SW-54 Receiver 34.50
NC-60 Receiver 42.50
NC-66 Receiver 59.00
NC-88 Recelver 79.00
NC-173 Receiver. 119.00
NC-183 D Receiver 229.00
RRO-60 Receiver 329.00
NC-303 Receiver. 329.00
RME
4350 A Receiver 159.00
VHF-126 Converter. 189.00
DB-22 A Preselector 29.95
Tecraft
6 Meter Converter. 19.00
2 Meter Converter W/Supply. 39.00
PTR-2 Power Supply 27.95
PS-1 Power Supply. 15.00

the "Cosmic blue" National's new hamband recelver

This newest and finest precision double conversion amateur receiver with 6 meter coverage, brings you an ease of sideband tuning previously available only in the most expensive equipment. The NC-270 features an exclusive "Ferrite Filter" for instant upper-lower SSB selection, and a degree of selectivity to conquer even the toughest AM and CW signal conditions. The solid $1 / 8{ }^{\prime \prime}$ steel panel, ceramic coil forms, double-spaced tuning gang, and full ventilation cabinet combine to give mechanical and thermal stability that will surprise even the most critical operator. Even the color of the NC-270 is outstandingly different, National's new duo-tone "Cosmic Blue." Write for detailed specifications.

And National Radio's patented "Flip Foot" makes operating the $N C-270$ so easy.

Suggested cash price: $\$ 249.95$. NTS-3 Matching Speaker: $\$ 19.95$ (slightly higher west of the Rockies and outside the U.S.A.). *Most National distributors offer budget terms and trade-in allowances.

MELROSE 76, MASS.

RCA-7360 Beam-Deflection Tube...

simplifies

- Balanced modulator-carrier oscillator functions within a single tube
- Product-Detection in One Tube (RCA-7380 needs no separate oscillator)
- At least 60 db of carrier suppression in balanced-modulator applications
- At least 40 db suppression of oscillator signal in balanced-mixer applications
- At least $80 \mathbf{d b}$ of carrier suppression in filter type of SSB exciters
- "Stay-put" circuit tuning over a wide temperature range, and throughout tube life
- Push-pull rf or af output for single-ended input - with one tube.

Specifically developed for SSB and DSB suppressed-carrier rigs, RCA-7360 is the small-butmighty tube that can "double-up" on a number of exciter functions at frequencies up to 100 Mc . It simplifies circuitry-makes it practicable to use inexpensive components.
Here's how it operates! The cross-section shows the main elements of the RCA-7360. The single flat cathode, control grid, and screen grid form an electron gun which generates, controls, and accelerates a beam of electrons. The total plate current to the two plates (at a given plate voltage) is determined by the voltages applied to the control grid and the screen grid. This total plate current varies with the bias or signal voltage on the control grid as in any conventional tube. The division of the total plate current between the two plates is determined by the difference in voltage between the two deflecting electrodes.
RCA-7360's are now available at your RCA Industrial Tube Distributor. For a technical bulletin on RCA-7360, see your RCA Industrial Tube Distributor. Or write RCA, Commercial Engineering, Harrison, N. J.

[^0]: - Official appointed to act temporarily in the absence of a regular omelal.

[^1]: * 4318 Hanover Ave., Richmond 21, Va
 ${ }^{3}$ Galeski, "The 'Imp' - a 3 -Tube Filter Rig," QST, May, 1960.
 C_{1}-APC-type trimmer, 5 plates double-spaced by removing plates from regular trimmer.
 $C_{2}-100-\mu \mu \mathrm{f}$. variable, 1000 volts (Bud MC-1875 or equivalent).
 $\mathrm{C}_{3}-365-\mu \mu \mathrm{f}$. midget b.c. type variable (Miller 2111 or equivalent).
 C_{4}, C_{5}, C_{6}-Mica.
 C_{x}-Tube and stray capacitances resonating with L_{1}. J_{1}-Coax receptacle, chassis mounting.
 $\mathrm{L}_{1}-20$ turns No. 28 enam. on $3 / 8$-inch diam. iron slugtuned form (such as Johnson 235-501-1 or Miller 4400). Input link, 2 turns No. 28 at cold end of L_{1}).

[^2]: *Cranbury Road, Princeton Junction, N. J.
 ${ }^{1}$ Bunce, "The 'Mickey Match,'" QST, November, 1958.

[^3]: ${ }^{2}$ Nose, "Notes on Parasitic Beams," QST, March, 1960.

[^4]: * 54.5 Wegman Road, Rochester 11, New York.

 1 Campbell, "Variations in TR Switch Performance," UST', May, 1956.

[^5]: ${ }^{2}$ See Sitein, "Some Hints on Kelay (Iperation," QST, June, 1956.

[^6]: 1 Greeublum, "Notes on the Development of Yagi Arrays." Part I, QS'T', August, 1956.

 ESilver, "Microwave Antenna Theory and Design, MIT Rad. Lab. Series, Vol. 12.

[^7]: *Apt. (-107, 1336 Brookline Road, Cleveland Heights 21, Ohio.

[^8]: * Wlectromechanical Research, Inc., Sarasota. Fla. (formerly with Geueral Electric Co., Ithaca, New York).
 ${ }^{1}$ Coats. "A Cool Kilowatt Plate Transformer," QST, September, 1959. This article should be used as a reference for several of the points discussed here.

[^9]: ${ }^{2}$ This simplified relationship does not include the considerations of power factor and transformer efficiency, buth of which will tend to increase primary and secondary currents above the values calculated here. However, the conservative choice of wire size should provide sufficient tolerance. Calculations assume a full-wave rectifier und chokeinput filter.

[^10]: 3 The Arnold Finginerering bulletin specified a factor of 10 instead of 50 but refers this to a shell-type transformer employing two C-type cores of the type number listed. For the core-type transformer described here, the factor should he 50 .

 * The actual 1 'A product is not given in the Arnold catalog, but is readily obtainable by multiplying together the figures for "Gross Area" and "Window Area." - Ed.

[^11]: TExperimental development of the pie winding, stiffening and wrapping techniques is credited to Mr. Robert Riker.

 * For preliminary transformer testing, the core may bo secured with a C clamp, carpenter's clamp, or vise.

[^12]: *Route 1, Box 10-1). Libby, Montana.

[^13]: * Rox 2382. Oregon Technical Institute, Klamath Falls, Oregon.
 ' Cross-modulation can also oereur in any nearby rectiEying circuit - such as a poor contact in water or steam piping in the strong field of the transmitting antenna-external to both receiver and transmitter. The filter deseribed here will clean up only what cross-modulation occurs in the receiver, but even this is an advantage, since it helps fix the blame where it belongs. - Ed.

[^14]: I The template will be sent at roo charge to those sending a stamped, self-addressed euvelope (4c) along with the request.

[^15]: ${ }^{1}$ Old, "Transistorized Electronic K'ey and Monitor" QST, May, 1959.

[^16]: * 45 Laurel St., Atherton, Calif.
 ' Troster, "What's Ur Top"'" QST, June, 1960, p. 38.

[^17]: * Major General, U. S. Srmy, Deputy Chief Signal Oiticer, U. S. Army. The Pentagon.

 1 QST Feb., 1960, W5PYU.
 2 QST Apr., 1960, p. 74.

[^18]: *P. O. Box 334, Medfield, Mass.

[^19]: * Based on Fig. 4-63, page 166,

[^20]: - CONTROLS: $111 / 2^{\prime \prime}$ Single Slide Rule Tuning Dial; Logging Scale.
 - COVERAGE: 80, 40, 20, 15 and 10 on 5 bands plus 10 to 11 mc for WWV or WWVH.
 - Peak Selectivity plus tunable "T" Notch.
 - Internal 100 ke Hermetically Sealed Crysial Calibrator.
 - 500 and 4 ohm Outputs.
 - Noise Limiter for SSB and CW, AM.
 - Separate Defector for Single Sideband.
 - S Meter Calibrated in $\mathbf{6} \mathbf{~ d b}$ Steps Above 59 for Befter Reading.

[^21]: ${ }^{\bullet}$ Patent Pending

[^22]: HIGHLIGHTS: Transmitter power input 100 watts AM, 120 watts CW - pi network output for 52 ohms - Dual conversion receiver. BFO for $\mathrm{CW} / \mathbf{S S B}$ reception. Automatic noise limiter. Sensitivity: approx. 1 microvolt at 50 ohms for 6 db $\mathrm{S}+\mathrm{N} / \mathrm{N}$ ratio - Selectivity: 3 to 3.5 kc bandwidth at 6 db down, 14 kcs or less at 60 db down.

[^23]: You'll prefer the 10-D or 10-C for their more intelligible signal, higher talk power, tailored response, less splatter, greater attenuation of unwanted side band. MODEL 10-D RECOMMENDED FOR USE WITH HT-32.

 | Model | Net Price | Model | Net Price |
 | :---: | :---: | :---: | :---: |
 | $10-\mathrm{C}$ | $\$ 17.82$ | $10-\mathrm{D}$ | $\$ 23.82$ |
 | G10-C* | $\$ 29.94$ | G10-D** | $\$ 35.94$ |

 *Complete with G-stand

[^24]: G76 (model 3338) is a handsome, designer-styled yet powerful 100w AM transmitter and sensitive dual-conversion receiver -two-way operation on 80 through 6 meters. Slightly over one foot long; less than six inches high for your desk top or under-dash auto mounting. Transistorized DC supply is separate. 120 w input for CW, pi network output for 52 ohms, BFO for CW/SSB reception, ANL, sensitivity : approx. 1 mv at .50 ohms for reception, ANL, sensitivity: approx. 1 mv at. 50 ohms for
 6 db plus N / N ratio. (WRL stock $\# 139 \mathrm{DFO} 27$). Net $\$ 376.25$.
 \#3349 power supply in matching cabinet for 115 V AC operution, complete with built in speaker. (WRL stock \$139DFO28). Net \$145.00
 \#3350 matching power supply for 12 V DC operation. Transistorized for minimum battery drain, less speaker. (Neg. ground only). (WRL stock \#139DFO29). Net \$145.00.
 \#3365 Universal mounting bracket kit for mobile mounting G76. (WRL stock \#86DO33). Net \$3.95.

[^25]: 3101 Fourth Avenue South
 Birmingham 5, Alabama
 Telephone FÁ 2-0588 Call W4ECl

