$\square 5$

(c) e V (o) \& ©
 e $\mathrm{m}^{\ddagger} \mathrm{i}$ ire

 亿 (0)

HERMETIC
POWER
COMPONENTS
Military, Industrial

FILAMENT 400 CVCLE

And Special Units to Your Specifications

UNITED TRANSFORMER CORPORATION

[^0]

HT-40 TRANSMITTER, $\$ 79.95$

A perfect match for the handsome SX-140, both in quality and appearance. Hallicrafters' transmitter leadership is evident in every precisionengineered feature of this crystal-controlled 75 -watt beauty-features as important to oldtimers as they are to novices.

- FEATURES: You get excellent CW performance as well as AM. Full band switching, 80 through 6 meters. Enjoy easy tune-up and crisp, clean styling that has efficient operation as well as appearance in mind. Unit is fully metered, TVI filtered.
- SPECIFICATIONS: Maximum D.C.powerinput: 75 watts. Power output in excess of 35 watts CW, 30 watts peak AM phone. (Slightly less on 6 meters.) Frequency bands: 80, 40, $20,15,10$ and 6 meters.
- TUBES AND FUNCTIONS: 6DQ5 power output; 6CX8 crystal oscillator and driver; 12AX7 speech amplifier; 6DE7 modulator; silicon high voltage rectifiers.
- FRONT PANEL: Function (AC off, tune, standby, AM, CW); Band Selector (80,40 , $20,15,10,6$); Drive control; Plate tuning, plate loading, Crystal-V.F.O.; Grid Current; Meter; AC indicator light; RF output.
- REAR CHASSIS: Microphone gain; antenna co-ax connector; remote control terminals; AC power cord.

halli-kits tom \mathbf{G} hallifratters
 Chicago 24, Illinois

SX-140 RECEIVER, \$94.95

Doesn't it make sense to team up your skill with the experience of a company who has designed and built more high-performance receivers than any other in the world? Especially when the result is the lowest-priced amateur band receiver available?

- FEATURES: You get complete coverage of all amateur bands 80 through 6 meters, with extremely high sensitivity and sharp selectivity. Unit has RF stage; S-meter; antenna trimmer; and XTAL calibrator. Tuning ratio is 25 to 1 .
- CONTROLS: Tuning; Antenna Trimmer; Cal. Reset; Function (AC off, standby, AM, CW-SSB); Band Selector; Cal. on/off; RF Gain; Auto. Noise Limiter on/off; Selectivity /BFO; Audio Gain; phone jack; S-meter Adj.
- TUBES AND FUNCTIONS: 6AZ8 tuned RF amplifier and crystal calibrator; 6U8 oscillator and mixer; 6BA6 1650 kc . IF amplifier and BFO; 6T8A 2nd detector, A.V.C., ANL and 1st audio; 6 AW 8 A audio power amplifier and S-meter amplifier; (2) silicon high voltage rectifiers.
$\mathfrak{G} U L \square L$ distributors are proud men . . . and they have reason to be. Not only do they deal in the finest amateur radio equipment made . . . but they're rather special people themselves. Each Collins distributor is a specialist who can give you expert advice on installing and maintaining your Collins system-engineered station. Collins training programs are provided for each distributor. And each Collins distributor is carefully selected for ethical and financial responsibility . . . your guarantee of reliable service when you deal with him. Visit your Collins distributor. You'll quickly discover why he's proud of his Collins equipment, and why Collins is proud of him.

HERE ARE YOUR AUTHORIZED COLLINS DISTRIBUTORS

ALABAMA
Birmingham Ack Radio Supply Co.
ALASKA
Anchorage Yukon Radio Supply, Inc.
ARIZONA
Phoenix Southwest Whsle. Radio, Inc.
Tucson Elliott Electronics, Inc.

ARKANSAS

DeWitt Moory's Whsle. Radio \& App.Co.
Texarkana Lavender Radio \& TV Supply Co., Inc.

CALIFORNIA

Burbank Valley Electronic Supply Co.
Burlingame Amrad Supply, Inc.
Los Angeles Henry Radio, Inc.
Radio Products Soles, Inc.
Oakland Elmar Electronics
San Diego Western Radio \& TV Sup. Co.
San Jose Quement industrial Electronics
COLORADO
Denver Radio Products Sales Co.
CONNECTICUT
Harfford Corky's of Hartford, Inc.
New Haven Radio Shack Corp. of Conn.
DELAWARE
Wilmington Wiliard S. Wilson, Inc.
DISTRICT OF COLUMBIA
Washington Electronic Wholesalers, Inc. FLORIDA

Jacksonville Peard Electronic Supply Co.
Melbourne Electronic Supply Co.
Miami Amateur Radio Center, Inc.
Electronic Supply Co.
Pensacola Grice Electronics, Inc.
St. Patersburg Broad Radio
Tampa Kinkade Radio Supply, Inc.
GEORGIA
Atlanta Ack Radio Supply Co.
Specialty Distributing Co., Inc.
HAWAII
Honolulu Kaimuki Radio Company, Ltd. ILLINOIS

Chicago Allied Radio Corp.
Newark Electronics Corporation
Peoria Klaus Radio \& Electric Company

INDIANA
Fort Wayne Brown Electronics, Inc. Indianapolis Graham Electronics Sup., Inc. South Bend Radio Distributing Co., Inc.
IOWA
Council Bluffs World Radio Lab., Inc.
Des Moines Bob and Jack's, Inc.
Radio Trade Supply Co.
KANSAS
Topeka The Overton Electric Co., Inc.
KENTUCKY
Lexington Radio Equipment Company
LOUISIANA
New Orleans Radio Parts, Inc.
MASSACHUSETTS
Boston DeMambro Radio Supply, Inc. Radio Shack Corporation
MICHIGAN
Ann Arbor Purchase Radio Supply
Detroit M. N. Duffy \& Company
Kalamazoo Warren Radio Company
MINNESOTA
Minneapolis Electronic Center, Inc.
Lew Bonn Company
St. Paul Stark Radio Supply Company
MISSISSIPPI
Jackson Swan Distributing Co., Inc.
MISSOURI
Butler Henry Radio Company
Kansas City Burstein-Applebee Company
St. Louis Walter Ashe Radio Company
MONTANA
Great Falls Electric City Radio Supply
NEW HAMPSHIRE
Concord Evans Radio
NEW JERSEY
Mountainside Federated Purchaser, Inc.
Newark Hudson Radio \& Television Corp. of N.J.
NEW YORK
Albany Ft. Orange Radio Distr. Co., Inc.
Amsterdam Adirondack Radio Supply
Buffalo Genessee Radio \& Parts Co., Inc.
New York Harrison Radio Corp.
Harvey Radio, Inc.

NORTH CAROLINA
Asheville Freck Radio \& Supply Co.
Winston-Salem Dalton-Hege Radio
Supply Co., Inc.
HIO
Cincinnati Steinberg's Inc.
Cleveland Pioneer Electronic Sup. Co.
Columbus Universal Service
Dayton Custom Electronics, inc.
Toledo Selectronic Supplies, Inc.
OKLAHOMA
Oklahoma City General Electronics, Inc.
Tulsa Radio, Inc.
OREGON
Portland Portland Radio Supply Co.
PENNSYLVANIA
Philadelphia Radio Electric Service Company of Pa., Inc.
Pittsburgh Cameradio Company
RHODE ISLAND
Providence W. H. Edwards Co., Inc.
SOUTH DAKOTA
Watertown Burghardt Radio Supply
TENNESSEE
Memphis W. \& W. Distributing Company
Nashville Electra Distributing Company
TEXAS
Abilene Howard Radio Company
Austin Hargis-Austin, inc.
Corpus Christi Electronic Equipment \& Engineering Company
Dallas Amateur Electronics, Inc.
Central Electronics
Crabtree's Wholesale Electronics
El Paso McNicol Inc.
Houston Busacker Electronic Equipment Company, inc.
San Antonio Modern Electronics Co. Radio \& Television Parts Company
WASHINGTON
Spokane Northwest Electronics Distr.
Tacoma C \& G Radio Electronics Co.
WISCONSIN
Fond du Lac Harris Radio Corporation
Madison Satterfield Electronics, Inc.
Milwaukee Amateur Electronics Supply

PUBLISHED, MONTHLY, AS ITS OFFICIAL ORGAN, BY THE AMERICAN RADIO RELAY LEAGUE, INC., WEST HARTFORD. CONN., U. S. A.: OFFICIAL ORGAN OF THE INTERNATIONAL AMATEUR RADIO UNION

STAFF

JOHN HUNTOON, WILVQ Edito:
RICHARD L. BALDWIN, WIIKE Managing Editor

GEORGE GRAMMER, WIDF Technical Editor

DONALD H. MIX, WITS BYRON GOODMAN, WIDX Assistant Technical Editors
EDWARD P. TILTON, WIHDQ V.H.F. Edito:

LEWIS G. McCOY, WIICP
E. LAIRD CAMPBELL, WICUT

Technical Assistants
ROD NEWKIRK, W9BRD
Contributing Editor, $D X$
ELEANOR WILSON, WIQON
Contributing Editor, YLs
SAM HARRIS, WIFZJ
HELEN HARRIS, WIHOY
Contributing Editors, V.H.F.

LORENTZ A. MORROW, WIVG Advertising Manager EDGAR D. COLLINS Advertising Assistant
Chris Dunkle and Associates
740 S. Western Ave. Los Angeles 5 California Representative

DAVID H. HOUGHTON Circulation Manager
J. A. MOSKEY, WlJMY Assistant Circulation Manager

OFFICES

38 La Salle Road
West Hartford 7, Connecticut Tel.: ADams 6-2535
Subscription rate in united States and Poisessions. \$5.ol per year. bost naid: $\$ 5.25$ in the jominion of Canada, $\$ 5.00$ in all wiser eountrles. Single copies. 50 cents. Jorelan remittances anould be by international postal or express moriny order or bank dralt negotiable in the U. 8 . and for an equivalent amount in U.S. funds.
second-class bustage patd at Hartord, Conn.. and at additional malling ottices.
Oopsright 1960 by the American Radio retay Leanue, inc. Title registered at li, s. Patent Ofice. International copyight secured. medran reserrados lodos las derechos printed in U. S. A

[^1]
-CONTENTS -

TECFNICAL -A Parametric Amplifier for 1296 Mc.
W. O. Troetschel, K6UQH, andH. J. Heuer, KH6CYI13
Transistor Antitrip for the 20A
R. L. Anderson, WA2JDF 26
New Apparatus:
Mobile Burglar Alarm 27
S.C.F.M. - Improved System for Slow-Scan Image Transmission (Part I)Copthorne McDonald, WA2BCW 28A 4-400A Amplifier for C.W., A.M. or S.S.B.Kenneth C. Lamson, WIZIF 33
Timing Adjustments in a Sequenced Change-Over SystemGrady B. Fox, jr., W2VVC40
Some Applications of the Semiconductor Diode
James G. Lee, W6VAT 42
Brief-Case Portable Antenna
Jo Emmett Jennings, W6EI 43
Recent Equipment:
National NC-270 Receiver 46
The Heath Model VHF-1 Transmitter 48
Technical Correspondence 60
That Professional Touch 65
BEGINNER \& NOVICE-
A Novice T. R. Switch. L. G. McCoy, WIICP 20
MOBILE-
Not Just a Novelty Davis A. Helton, WOPME 22
OPERATING -
Annual ARRL Novice Roundup Competition 76
27th ARRL International DX Competition 77
ARRL Countries List 80
GENERAL -
"Bud" Retires 11
Communication on 52,000 Mc.....M. C. Gale, K2UND 52
A Dead Art? 55

4-65A Radial-Beam Power Tetrode
Smallest of the Eimac internal-anode tetrodes, the 4-65A has a plate-dissipation rating of 65 watts and is ideal for deluxe mobile as well as fixed-station service.

	CW	AM	SSB
Plate Voltage	3000 v	2500 v	3000 v
Diving Power	1.7 w	2.6 w	0
Input Power	345 w	275 w	195 w

4-400A Radial-Beam Power Tetrode Ideal for high power amateur rigs, it will easily handle a kilowatt per tube in CW, AM or SSB application. Forced-aır cooling is required.

	$C W$	AM	SSB
Plate Voltage	3000 v	3650 v	4000 v
Driving Power	6 w	4 w	0
Input Power	1000 w	1000 w	1000 w

4E27A / 5-125B Radial-Beam Power Pentode
The Eimac 4E27A/5-125B is intended for use as a modulator, oscillator or amplifier. The driving-power requirement is very low, and neutralization problems are simplified or eliminated entirely.

	CW	AM	SSB
Plate Voltage	3000 v	2500 v	4000 v
Driving Power	1 w	2 w	0
Input Power	500 w	380 w	360 w

4CX1000A Ceramic Power Tetrode
Specifically designed for SSB operation, the ceramic-metal 4 CX1000A Class AB, linear-amplifier tube achieves maximum rated output power with zero grid drive.

Plate Voltage	3000 o
Driving Power	0
Input Power	2700 w

Information on these popular tubes for amateur applications is available from our Amateur Service Department.

EITEL-MCCULLOUGH, INC.

SANCARLOS, CALIFORNIA
The World's Largest Manufacturer of Transmitting Tubes

4-125A

4-250A

4CX300月,

It pays to insist on

PR crystals

STANDARD OF EXCELLENCE SINCE 1934

AMATEUR TYPES

40 and 80 Meters, PR Type Z-2
Rugged. Low drift. fundamental oscillators. High activity and power output. Stands up under maximum crystal currents. Stable, long-lasting; ± 500 cycles.
$\$ 2.95 \mathrm{Net}$
Third Overtone, PR Type Z-9A
Hermetically sealed; calibrated 24,000 to 24,666 and 25,000 to 27.000 Kc., ± 3 Kc.; . 050 " pins.. $\$ 4.95$ Net

6 Meters, PR Type Z-9A
Fifth overtone; for operating directly in 6 -meter band; hermetically sealed; calibrated 50 to 54 Mc ., $\pm 15 \mathrm{Kc}$.; . $050^{\prime \prime}$ pins. $\$ 6.95 \mathrm{Net}$
CITIZENS BAND CLASS "D"

Type Z-9R, Transmitter FCC assigned frequencies in megacycles: $26.965,26.975,26.985$, $27.005,27.015,27.025,27.035$, 27.055, 27.065, 27.075, 27.085, $27.105,27.115,27.125,27.135$, $27.155,27.165,27.175,27.185$. 27.205, 27.215, 27.225; calibrated to $.005 \%$. (Be sure to specify manufacturer of equipment)...... $\$ 2.95 \mathrm{Net}$

CITIZENS BAND CLASS "D"

Type Z-9R, Receiver

Specify I.F. frequency, also whether receiver oscillator is above or below transmitter frequency. Calibrated to $.005 \%$. (Be sure to specify manufacturer of equipment.)
$\$ 2.95$ Net
Type Z-9R, Radio Control
FCC assigned frequencies in megacycles: 26.995, 27.045, 27.095, 27.145, 27.195, 27.255; calibrated to $.005 \%$. (Be sure to specify manufacturer of equipment)...... $\$ 2.95 \mathrm{Net}$

Type 2XP

Suitable for converters, experimental, etc. Same holder dimensions as Type Z-2.
1600 to 12000 Kc ., (Fund.) $\pm 5 \mathrm{Kc}$ \qquad $\$ 3.45 \mathrm{Net}$
12001 to 25000 Kc . (3rd Overtone) $\pm 10 \mathrm{Kc}$.
\$4.45 Net
ALL PR CRYSTALS ARE UNCONDITIONALLY GUARANTEED. ORDER FROM YOUR JOBBER.

COMMERCIAL TYPES

Commercial Crystals available from 100 Kc . to 70 Mc . Prices on request.

Type Z-1, MARS and CAP Official assigned frequencies in the range. (alibrated to $.005 \%$. 1600 to 10000 Kc.........\$3.45 Net
Type Z 1, TV Marker
Channels 2 thru 13.... $\$ 6.45$ Net 4.5 Mc. Intercarrier, $.01 \%$.......................... $\$ 2.95$ Net 5.0 Mc . Signal Generator.
$.01 \%$.......................... $\$ 2.95$ Net 10.7 Mc. FM, IF, $.01 \%$
\$2.95 Net
Type Z-6A, Frequency Standard
To determine band edke. To keep the 1 FO and receiver properly calibrated. 100 Kc .

PETERSEN RADIO CO., Inc. 2800 W. Broadway COUNCIL BLUFFS, IOWA

Section Communications Managers of the ARRL Communications Department

Reports Invited. All amateurs, especially League members, are invited to reportstation activities on the tirst of each month (for preceding month) direct to the SCM, the administrative ARRL ofticial elected by members in each Section. Kadio club reports are also desired by SCMs for inclusion in QST. ARRL Field Organization station appointments are available in the areas shown to qualified League members holding Canadian or FCC amateur license, General or Conditional Class or above. These include ORS, OES, OPS, OO and OBS. SCMs also desire applications for SEC, EC, RM and PAM where vacancies exist. OES appointment is available to Novices and Technicians.

[^2]
Fron TMC COMPLETE COMMUNICATIONS SYSTEMS and EQUIPMENT

Carefully planned•thoroughly tested • Completely integrated

to meet your most exacting performance standards . . . to meet your every requirement for HF Telecommunication systems.

TRANSMITTING SYSTEMS • RECEIVING SYSTEMS • TRANSMIT/RECEIVE STATIONS

Point-to-point . . . Ship-to-shore . . . Shore-to-ship . . Mobile . . . Fixed . . . Transportable . . ."Fly-away."

Engineered by men with many years of practical experience and a vast knowledge of those communication problems peculiar to every part of the world, TMC systems planning in.
cludes all phases of layout, installation, operation and maintenance to assure optimum performance under all conditions. Full details are available upon request.

THE TECHNICAL MATERIEL CORPORATION IN CANADA: TMC (CANADA) LTD.

THE AMERICAN

RADIO RELAY

LEAGUE，inc．，
is a noncommercial association of radio amateurs，bonded for the promotion of interest in omateur radio communication and experimentation，for the relaying of messages by radio，for the advancement of the radia art and of the public welfare，for the representation of the radio amateur in legislative matters，and for the maintenance of fraternalism and a high standard of conduct．

It is an incorporated association withouf capital stack，chartered under the lows of Connecticut．Its affairs are governed by o Board of Directors，elected every two years by the general membership． The officers are elected or appointed by the Directors．The League is noncommerifol and no one commercially engaged in the manu－ facture，sale or rental of radio apparatus is eligible to membership on its board．
＂Of，by and for the amateur，＂it numbers within its ranks practi－ cally every worth－while amoteur in the nation and has a history of glorious achievement as the standard－bearer in amateur affairs．
Inquiries regording membership are solicited．A bona fide interest in amateur radio is the onl；essentiol qualification；owner－ ship of a transmitting station and knowledge of the code are not prerequisite，although full voting membership is granted only to licensed amateurs．

All general correspondence should be addressed to the adminis－ trative headquarters at West Hartford，Connecticut．

Past Presidents

HIRAM PERCY MAXIM，WIAW， $1914-1936$ EUGENE C．WOODRUFF，WBCMP，1936－1940

GEORGE W，BAILEY，W2KH，1940－1952

Officers

President
GOODWIN L．DOSLAND，WOTSN Moorhead，Minnesora
First Vice－President
WAYLAND M．GROVES，WSNW P．O．Box 586，Odessa，Texas
Vice－President
FRANCIS E，HANDY，WIBDI
38 La Salle Raad，West Hartford，Connecticut
Vice－President
ALEX REID，VE2BE
240 Logan Ave．，St，Lambert，P，Q．，Canado
Secretary
JOHN HUNTOON，WILVQ
Treasurer
DAVID H．HOUGHTON
38 La Salle Road，West Hartford，Connecticut

Serretary \＆General Manager Emeritus．A．L．BUDLONG，WIBUD

General Manager
Communications Manager
Technicai Director
Assistant Secretaries

IOHN HUNTOON，WILVQ FRANCIS E．HANDY，WIBDI GEORGE GRAMMER，WIDF PERRY F．WILLIAMS，WIUED
GEORGE STEVANS，JR．，KILVW
38 La Salle Road，West Hartford，Connecticut

DIRECTORS

Canada

NOEI，R．FATON FATON B．Burijngton．Ontario

Atlantic Division

Vice－1）irector．

GILBERT I．CROSBLEY

V＇ice－pirector：Edwin E ．Van Deusen．
．WF3ECP
3 3i1 Mckinlev St．．N．W．．Washingion i5．D．C． Central Division
JOHN G．DOYLE．．．．．．．．．．．．．．．．．．．．．．．．．W9GPI 4：3：31 N．Whdwood A ve．．．Milimaukee ii，wis． Vice－Dtrector：Phlin E：Halicr ．．．．．W9HPG 6000 s．Tripn Ave．C＇hicago 29 ，iil．

Dakota Division

CHARIFAG COMPTON．．．．．．．．．WOBUO
1011 Falmount A ve．．sit．Paui 5 ．Minn．
Vice－1）trector：Martha J．Shirlev．．．．．．．．．．．W＠ZWL
Hox 78．1k2rk Hawk．४．

Delta Division

SANFORD B．DE HART．．．．．．．．．．．．．W4RRV
227 B ．purdue Ave．．Uaik kidge．Tenn，
Vice－Directar：Victor Cantield．．．．．．．．．．．．W5BSR 414 Weber Bldg．．Lake ©iaries．Lä．

Great Lakes Division

DANA E．CARTWRIGHT．．．．．．．．．．．．．．．．．．．．
2979 Observatory Ave．，Cincinnati 8 ．Ohto
V＇ice－1）trector：Robert R，Coosuer．．．．．．．．WRAQA 132 Guild St．．N．E．．Grand Rapids 5，Mich．

Hudson Division

MORTON B．K゙AHN．．．．．．．．．．．．．．．．．．
I＇tce－7）trector：Harry J．Dannals．．．．．．．．W2TUK RFD 1，Arhor Lane，isix Hills，Huntington，L．I．，

Midwest Division

ROBERT W．DENNIRTON．．．．．．．
．．W0NWX
box 631．Newton．Iowa
Vice－litector：sumner H．Foster．．．．．．．．．WOGQ 2：315 Linden Dr．．B．E．．Cedar Kapids，lowa

New England Division
MILTON F．（：HAFFlEF． \qquad WIEFW
53 Homeddale Ave．，内outhington，conn．
V＇ice－1．hrector：Blgelow Green．．．．．．．．．．．．．WIEAE 12．Glourester St．．Boston 15，Mass．

Northwestern Division

Vice－1）irector：Rohert B．Thurston．．．．．．W7PGY .7003 ist Ave．N．E．，Deattle 15，Wash．

Pacific Division

HARRY M．ENGWICHT ．．．．．．．．．．．．．W6HC 770 Chamman．san Jose 26 ，©aili． Vice－Dtrector：Ronald（i．Martin．．．．．．．．．．WV6ZF 1573 Baywood Lane，Nana，Calif．

Roanoke Division

Vtee－1）trector：Josenh $\begin{array}{r}\text { ．Abernethy } \\ \text { i．W4AKC }\end{array}$
768 Colonlal Drive．Kock Hili：s． C ．

Rocky Mountain Division

CARL L SNAITH．ist．，De．．．ever zio，Colo．
WgB WJ

Southeastern Division

JAMES P BORN，JE． \qquad a．W4ZD JAMES 25 First Ave．．N．E．．．Xitianta i7．Ga． Vtce－Ntrector：Thomas M．Moss．．．．．．．．．W4 4 HYW P．O．Box 644 ．Aunicinal Airnort Branch． itlanta 20．Ga

Southwestern Division

RAYMOND E，MFYERS． 717 Anderson Wiay．San Gabriel，Callf．
Vice－Iterector：Howard F Shepherd，Jr．．．．WhiQJW 127 South Cltrus，Los Angeles 36 ．Callf．

West Gulf Division

ROEMFR O．BEST
P．O．Box 1656．Corpus Ciristi，Texas
Vice－ritrector：Hay K゙，Bryan．．．．．．．．．．．．．．．W5SYQ 2117 S．W． 6 ist Terrace，Oklahoina City 19，Okla．

"It Seems to Us..."

THE YEAR IN REVIEW

Father Time's note pad for 1960 is again a story of unlimited horizons stimulating the imaginative interests of amateurs, with v.h.f.u.h.f. records and communication at the top of the list.

Heralding a challenge, amateur groups climaxed weeks and months of detailed and careful preparation by creating a DX record that's going to be hard to beat! For the first time, amateurs achieved two-way contacts by bouncing signals via the moon, July 21 , on 1296 Mc., between San Carios, Calif., and Boston, Mass. Spanning the two points 2700 miles distant, but with a half-million mile roundtrip for the signals, team-working hams of the Rhododendron Swamp V.H.F. Society (W1BU) and the Eimac Radio Club (W6HB) are credited with the first contacts. The moon-bounce QSOs came just 10 years after the first moon experiments by hains on 144 Mc. Another entry went into the DX record books, too, when a 265 -mile QSO was carried out on July 31 between W7JIP/7 and W7LHL/ 7 on $10,000 \mathrm{Me}$.

Continuing this accent on v.h.f. are W6NLZ and KH6UK, who were presented the 1960 ARRL Merit Award for pioneering work on 144- and $220-\mathrm{MI}$ c. tropospheric propagation. Last summer, the two continued attempts at 432-Mc. contacts between the mainland and Hawaii but equipment failure at one end prevented an actual completion of another startling record.

One of two FCC decisions during 1960 also dealt with v.h.f. amateur bands, creating c.w. sub-band segments at $50.0-50.1$ Me., and 147.9-148.0 Mc. In another Commission action, phone sub-band privileges were granted at 14,300-14,350 kc. Still awaiting FCC decision are proposals involving Extra Class license incentives and a change in the rules to make it easier for American citizens living overseas to obtain Conditional Class licenses. Canadian amateurs received welcomed news of expanded phone sub-bands, from 7 Mc. through 28 Mc., after a survey of the desire of Canadian amateurs by their Department of Transport.

Amateur license applications get a "new look" during 1961 with revision of FCC Forms 610 and elimination of the old Form $405-\mathrm{A}$. FCC license exams also got the new look, ton: applicants from now on will be marking IBM
answer sheets for faster grading. Under the new system, applicants will have to recognize circuits and catch errors or omissions in diagrams, on a multiple-choice basis, instead of actually drawing the schematics.

FCC announcements during the past year also made it easier for amateurs in another way: new agreements with Venezuela, Honduras, Haiti and Paraguay bring to 14 the number of countries with which U.S. amateurs are permitted to exchange third-party traffic.

In other international matters, the government of Iran at mid-year withdrew its objections, filed with the ITU ten vears ago, to communications between its :amateur and those of other countries, and was removed officially from the banned countries list. Laos, however, was returned to the banned list.

ARRL General Manager Budlong, acting in his capacity as Secretary of the LIRU, attended the fourth Region I IARU conterence at Folkstone, England during June. Mready concerned with the outlook for the next international radio conference, the IARU gathering discussed Europeun amateur allocations, governmental liaison, ITU's forthcoming Panel of Experts (to study allocation methods) and a general review of the recently concluded Geneva conference.

Imericans can be proud of the election of Gerald C. Gross, W3GG/HB9IA, as SecretaryGeneral of the International Telecommunications Union, the first amateur to hold this key administrative post.

Other American amateurs pitched in to help, internationally. Project IIope, a mercy ship and floating hospital, beran visiting foreign countries giving free medical aid; the ship is outfitted with amateur gear and operates on 14 Mc./MM under special FCC authority, with W8OLJ at the mike.

Turning again to stateside matters, dramatic evidence of the ingenuity of two teen-age hams was the bouncing of 15 -meter signals off passing earth-satellite trails. Over the New York-to-Bethesda (Maryland) path (about 200 miles), K2QBW and K KJTTE claim two-way contacts through aid of satellite trail "scatter," possibly involving the "Kraus effect."

As Old Father Time ticked along, he also encountered vicious Hurricane Donna which lashed the entire Eastern seaboard. Imateurs
from the Florida keys through New England offered emergency communication facilities and handled emergency traffic. Mother Nature taught Father Time another lesson in the disastrous Southern California forest fires, where hams again provided valued assistance.
These emergencies proved the continuing need for AREC and the RACES programs with membership in both groups reported up again over the preceding year. At year-end, there was also the steady-pace growth in traffic nets with net registrations at ARRL inounting to an all-time high.
Participation in the annual Field Day, ARRL DX Contest and Sweepstakes responded to growth in the amateur ranks, but less spectacularly as we drift toward the downivard side of the sun-spot eycle. DXhunting was heightened by the addition of

12 new countries to the ARRL DX Countries List, more than double the usual number during a normal year. Award-hunters continued in great numbers with the Rag Chewers Club certificate still the front-runner in demaud, especially among newcomers.

Checking off the items for 1960: It was notably a year of teamwork-experimentation with many forward strides in our growing hobly. Recounting the u.h.f. records gives gratifying proof that amateurs have only begun to tap the potentialities of that spectrum. Amateurs will try new modes to make the new year another history-making period, with plans well along for annateur transmitting and transponding gear in an earth-orbit satellite.
A hearty wish for another productive and rewarding year, OMs and YLs!
[15F-

OUR COVER

Tune in next month for a discussion of some practical operating hints for 1215 Mc. W'1HDQ has been working up some good dope that you megacycle men will enjoy, and the story may even excite the imagination of some of you who hang around on the sio-called "d.c." bands. Our eover this month shows some of the antenna gear that W1HDQ and W1CUT have been playing with. And our photographer had a great time with this month's table-top photography.

5

Florida - The Tropical Hamboree of 1961 will be held on January 14 and 15 at the Bayfront Park Convention Auditorium, 5th and Biscayne Blvd., Miami, sponsored by the Dade Radio Club. The headquarters hotel is the Biscayne 'Terrace, 340 Biscayne Blvd., one block from the auditorium. This is a combined ham equipment show and hamfest, with many equipment displays and all sorts of rontests, technical talks, open forums, and a ham auction. Activities go on each day from 0930 to 1700 . There will be a banquet Saturday evening at the hotel, where W4BPD is scheduled to describe his recent DXpedition. Hamboree registration is $\$ 1.00$, while banquet tickets are $\$ 5.00$. Ohtain reservations by writing to the Dade Radio Club, P.O. Box 104, Miami 1.

"Strays"

Here is the January sehedule for the Air Force MAIRS Eastern 'rechnical Net, meeting on Sunduys at 1400 EST (1900 (SMT) on 3295 7540 , and $15,715 \mathrm{ke}$.
Jian. 8-Exotic Applications of Semiconductors.
Jan. 15 - Passive Satellite Communications.
Jan. 22 ---Some Aspects of Fixtra-Terrestrial Communications.
Jan. 20 - Plasma Physics.
Feb. 5-Titration With H.F. Radiation.
Feb. 12 - The Electron Emissiun Microstope.
The Third Army Technical and Educational Net will meet on 5850 kc . at 0000 GMT on the following dates.
Jan. 7 - Radiotelephone Procedure.
Jan. 14 - Operating Procedure on a C.W. Net.
Jan. 21 - Procedure for Radioteletype for MARS Amateur Operation.
Jan. 27 - What Makes a Good Net Operator.
-...-
A 1960 replica of a 1903 Oldsmobile has embarked un a :3300-mile endurance test from Los Angeles to New York. K8KEC is accompanying the expedition, traveling in a separate house trailer and operating on 14,310 ke., and he will be relayiug reports on the progress of the antique replica. The 425 -pound vehicle is equipped with a four h.p. engine and will do $25 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

"Bud" Retires

Arthur l. budlong, WibUD, Secretary and General Manager of the League and Editor of QS'1, is retiring at the end of 1960 after a period of League service spanning 37 of the ARRL's 47 years of existence. In an unprecedented action, the League's board has specified that he be designated as secretary and general manager emeritus, und page 8 of this issue of QST refiects this directive.

Bud has seen the League grow from 16,000 members to 100.000 ; its headquarters staff from 19 to 65 ; its operating gross from $\$ 150,000$ annually to ten times that figure. A large part of this progress took place under his own supervision as Secretary and General Manager the past twelve years.

Such growth is, as he is the first to contend, the product of many hands at 38 La salle Road. But mere energy without direction gets nowhere, and no one knows better than we at Hq. the vital importance of the leadership and guidance which our "boss" has supplied, the application of experience and outstanding ereative thinking to provide the right decision at the right time whether they be crucial moments involving the safeguarding of amateur frequency allocations. or in the daily routine involving the activitics of all operation grossing some $1 \frac{1}{2}$ million dollars annually. It has been a steady and capable hand at the helm.

Few can match his half-century experience as a ham. A native of Washington, D. C., in 1911 Bud became interested in a magazinc article concerning "wircless"; he scraped up enough money to buy a silicon crystal, from which he then constructed a detector, a single headphone
and the wire and brass strip for a single-slide tuner (using, believe it or not, the then traditional rolling-pin!). With this gear he listened faithfully but fruitlessly every night until he was finally rewarded when NAA began putting out a whopping signal from nearby Arlington. He had already built a Ford spark-coil rig and was on the air signing - but for a while not working -- with the call "AB." Eventually, the contacts eame along and he was in business. In March of 1917 he was persuaded by a friendly Department of Commerce official to take the examination for the relatively new government amateur license; his first-class operator ticket came through promptly but World War I was declared while his separate application for a station license was being processed in Baltimore.

With every expectation of pursuing a newspaper and writing carcer Bud joined the staftio of the Technical News Service in Washington in the early '20s; in his spare time he wrote several articles for QST, based on home experimentation. He became assistant division publicity manager for the Washington area in the League's famous "Inkslingers", a volunteer group of writer amateurs dedicated to publicizing amateur radio's feats. When the League needed an editor for its new syndicated newspaper column "Current, Radio" it turned to the young Washington newspaperman and brought him to Hartford, in February, 1924. Unfortunately, press interest in radio was then on the decline, after a temporary surge with the initial broadcast boom, and the uroject was soon dropped. Bud, for a brief period, was acting traffic (communications) manager; a particular accomplishment, started while he was

Arthur L. Budlong, WIBUD
Secretary and General Manager Emeritus, ARRL
This photo was taken in the office he has occupied for the past 12 years, surrounded by mementos of 37 years of service with the League.

still in Washington, was the organization and supervision of the l'RR Emergency Net for the Pennsylvania railroad - the first amateur net devoted solely to emergency communications preparedness and still remembered by those in it for its stiff requirements and high morale. (It was in this group that QRR - now QRRR) came into being as the amateur's land-NOS signal. When then-assistant secretary Charles Service (now W4IE) resigned in 1926 to become a Floridian, Secretary Kenneth Warner picked Bud as his new assistant and right-hand man. Un Warner's death, in September, 1948, Bud became Secretary and General Manager.

Probably no amateur is more widely traveled. Bud, until his retirement, set an example in his oft-expressed belief that the hest way to keep in touch with amateur radio is to visit amateurs. He his spoken before convention and club groups in every state of the Union, Puerto Rico, Guam, Mexico, several South American countrics, most of Canada. Ireland, England, Germany, France, Italy, and Switzerland: in the process he has also been present, in his capacity as secretary of the International Amateur Radio Union, at three of the four conventions of the Region 1 (Europe and Africa) section of the Union. The guy gets around!

Although constantly supervising the general activities of the League and its Headquarters, Bud's extra-special field has been international regulation of radio and frequency allocations the latter perhaps the single subject most important to the amateur radio service. He has been involved, one way or another, in every international radio conference siuce the opeuing of the short waves in the middle 1920 s , and tirst represented the amateur service at the InterAmericun Radio Conference in Chile in 1940. This sort of background ticketed him, in World War II, for the post of Chief of the Frequency Allocations Section of the U. S. Coast Guard, when he was commissioned in that service (his preference was for a deck officer's assignment, and to that end his application gave the address of a relative in another USCG district where he hoped the name Budlong would not ring a beil-but in vain). Uuring the war he was a member of the allocations committees of the Joint and Combined Chiefs of Staff and, perhaps more significant, a member of the all-important, lnterdepartment Kadio Advisory Committee (IRAC) and for his last two years of service Chairman of its Technical Subcommittee, which established the basic pattern for the 1945 general reallocation of the frequency spectrum and, in effect, became the Atlantic City world allocations table (im which, among other things, we gained our 21-Mc. band). During the war, he attended the Bermuda Telecommunications Conference, 1945, was a government delegate to the London conference on Radio Aids to Marine Navigation and, using some of his accumulated leave, was a member of the IT. S. delegation for ARRL to the 1945 interAmerican conference at Rio de Janciro. Yostwar, for ARRL, he participated in the Moscow Five-

Power Radio Conference in 1946; the Atlantic City Kadio Conference, 1947; the fourth interAmerican Radio Conference at Washington, 19.49; the Extraordinary Administrative Radio Conference, Geneva, 1952; and the Geneva Radio Conference which ended a year ago, once again with remarkable results for the amateur radio service in that every frequency privilege U. S. and Canadian hams now enjoy is provided for in the basic international table.

We're sure that Bud, a man of many interests and skills, won't have an ille retirement. Recently, he mentioned he already had a varicty of projects lined up that will occupy his time for at least the next five years. He's going to get back to hamming, for one thing. There's work on his place on Long Island Sound and his house there fevery inch of which, incidentally, be designed and which he and his wife then built with their own hands); a sailing enthusiast all his life and an expert sailor and deep-sea navigator, be hopes to get some real use out of his boat which has lain dormant on land much too long because of the demands of League duties in recent years. When it comes to other activities, we hesitate to speculate: one of the most widelyread people we've ever known, his interests range in many directions: he's made free-fall parachute jumps, is a cruck shot (he was on the State small-bore military ehampionship team), draws and paints with more than average ability, has raised a varicty of livestock from mink and rabbits to bees, is an expert cook, once "crammed" on the one-hand sign language in order to be able to converse over a long week end with a deaf-mute host on one of his trips, and probably will take up a few additional languages to add to the French in which he is already reasonably proficient. (In this connection, Cunadian League members will recall his recent "farewell" speceh at the Montreal convention, where he delivered his address in English, then proceeded to repeat it in acceptable French; our favorite story, however, concerns his welcoming address at the 4th Inter-American Conference to one of the series of fabulous League international convention dinners when, knowing no Spanish, he delivered his remarks in that language, amid much hilarity and a complete breakdown of formality!).

His interest is in people as well as things; at ARRL he is responsible for putting through the 5-day week (although his actual weekly hour sehedule is longer!), extra vacation time for longterm employees, our pension plan, a slidingscale annual bonus plan for all employees (except himself) and yearly comprehensive medical exams for key personnel - some of these long before they became accepted business standards.

In the late 1920 s , Bud served as Radio Aide of the First Corps Area organization of the ArmyAmateur Radio System. On his retirement from that activity, New England ham members of AARS presented him with a certificate proclaiming him "Onehellofaswellguy."

We of the H.q. staff couldn't put it better ourselves.

D57-

A Parametric Amplifier for 1296 Mc.

Try This on Your Crystal Set!

BY

W. O. TROETSCHEL,* K6UQH, ex-W7LVO

AND H. J. HEUER,** KH6CYI

IF YoU are interested in parametric amplifiers, or have some sort of 1296-Mc. receiving capability, this article is for you. It describes an easy-to-build parametric amplifier for 1296 Mc . that will provide at least $25-\mathrm{db}$. gain with a noise figure less than 2 db . Two of these amplifiers are eurrently operational at the authors' respective stations.

While present-day theories of parametric amplitiers are heavily encrusted with mathematics, certain general rules are evolving for an intuitive understanding of what goes on. Previous articles ${ }^{1}$ have gone into the theory and are recommended reading. The amplifier to be described here uses
*3405 Kenvon Drive, Santa Clara, California.
** 616 Sperry Loop, APO 915, San Francisco. California.
${ }^{1}$ Bateman and Bain, "New 'Thresholds in V.H.F. and U.H.F. Reception," QST, January, February and March, 1959.

The choke flange at the left end of the amplifier connects to the pump unit, and the $9200-\mathrm{Mc}$. pump signal enters the guide at this point. The screws on top tune pump and idler cavities which are formed by irises fitted into slots in the guide and a plate across the far end. Between the pump and idler tuning screws is the cap which holds the varactor crystal in its mounting. Below the guide section is the signal tank. The BNC fittings are for the input and output signals; which is used for which doesn't matter (until the amplifier is tuned up, that is!). The fine tuning screw is near the middle of the tank, and hidden on the other side is a screw for coarse tuning. Farther down the side of the tank is the feed-through capacitor at which bias is applied. Two of the four screws holding one end-plate bypass can be seen just below the waveguide.

cate that the choice of a pump frequency on the order of 6 to 10 times the signal frequency is desirable.
3) Best noise figure and amplifier stability occur in the amplifier when all tuning adjustments are in the direction of reducing pump power for a given gain value. A recommended "roundrobin" tune-up procedure will be described. Since the pump power is an important tune-up indicator, a good method for attenuating pump power is essential. Simply coupling a grid-dip oscillator to the circuit is the way to madness.

From these general rules we see that in order to amplify at 1206 Mc . we need a pump frequency of at least 7800 Mc . The 2 K 25 ($723 \mathrm{~A} / \mathrm{B}$) reflex klystron available on the surplus market can provide 10 milliwatts output at $10,000 \mathrm{Mc}$. In testing this klystron we found a mode which tunes nicely through 9200 Mc. Choosing 9200 Mc. for the pump frequency then establishes that our idler frequency will be approximately 7000 Mc.

The heart of the parametric amplifier is, of course, the diode. There are several diodes on the market which operate nicely on this amplifier. The authors recommend the Microwave Associates MAH-U diode ${ }^{2}$ as the least expensive approach. Other good diodes (but expensive) are the

MA $450 \mathrm{C}, 1)$ or E and the $460 \mathrm{C}, \mathrm{D}$ or E . One of the new silvania diodes was tested and found to work very well. Other diodes such as the Hughes HPA series were tested but cannot be used in this amplifier design. They are self-resonant at approximately 1600 Mc., and require pump powers greatly exceeding the capability of the 2 K 25 klystron.

Pump and Power Supply

The klystron is mounted on a $10-\mathrm{cm}$. length of standard X -band waveguide ($1 \times 1 \times$-inch outside dimensions) with one end closed and the other equipped with a flange for connection to the amplifier. This waveguide section is mounted on top of the $3 \times 5 \times 10$-inch power-supply chassis near one end as shown in the photos. The klystron probe should project into the waveguide 1.1 cm . from the closed end. The probe has a metal jacket which covers all but about $1 / 1$ inch of its length. The end of this metal jacket should be just flush with the inside surface of the waveguide. The jacket is above ground by the $+B$ voltage, so cover it with insulating sleeving where

[^3]

Fig. 1-Circuit of the power supply for the klystron pump. Capacitances are in $\mu \mathrm{f}$; capacitors marked with polarity are electrolytic, others are paper. Resistances are in ohms, and resistors are $1 / 2$ watt unless otherwise specified.
$C R_{1}, C R_{2}, C R_{3}, C R_{4}-150$ ma., 100 p.i.v. germanium diode (G. E. IN91).
L_{1}-Filter choke, 8 hy., 70 ma . (Stancor Cl 355 or similar).
$\mathrm{R}_{1}-0.2$-megohm, 2 -watt control, audio taper.
R:-0.1-megohm, 3- or 5-watt, 10-łurn control, linear taper (Borg Model 11118 or 205 "Micropot').
S_{t}-D.p.s.t. toggle.
T_{1}-Power transformer, 600 v. c.t., 70 ma.; 6.3 v., 2 amp. or more (Thordarson 22RO2 or similar).
T_{2}-Filament transformer, 6.3 v., 1 amp. (Thordarson 21 FO8 or similar).
it passes through the guide wall.
If you don't have a klystron socket, use an octal socket and drill out Pin 4 to accommodate the probe. Make a copper or brass cylinder ahich fits around the socket in order to mount it the proper distance above the waveguide. Heater and shell connections are made to the socket through holes in this cylinder. Be sure to provide some sort of shield around the klystron, as its outer shell is about 300 volts above ground. The pump power attenuator consists of a piece of resistance paper ${ }^{3}$ which is inserted in a slot in the waveguide. The amount of insertion is adjusted with a small planetary dial. The slot is cut in the upper surface of the wareguide and runs lengthwise along the guide. It should begin 5 mm . back from the flange and be about 1 mm . wide by 35 mm . long. The resistance paper is shaped like the rotor plates of a straight-line frequency capacitor so that insertion area is nearly a linear function of rotation angle. Shape the paper so that 180 degrees of rotation results in complete penetration. A flexible coupling between the dial and the $1 / 1$-inch shaft will compensate for slight irregularities in the alignment of the supporting brackets. The resistance paper is cemented to a 1/-inch shaft coupling which facilitates assembly and adjustment.

The power supply diagrammed in Fig. I provides all necessary voltages for the klystron. One point of interest is the use of d.c. on the klystron filament. Klystrons at their hest are noisy oscillators, and all this noise shows up when you attempt to obtain the maximum gain that is available from the parametric amplifier. We found that much of the noise was being coupled to the electron beam from the filament circuit, so 6 volts d.c. was obtained from four germanium diodes in a full-wave bridge operating from filament transformer T_{2}.

[^4]The output voltage from T_{1} and full-wave rectifier V_{1} is electronically regulated by V_{3} and V_{4} and applied to the klystron shell. R_{1} sets this voltage to 300 volts, the desired value. Hall-wave rectifier V_{2}, working from half the secondary of T_{1}, operates VR tubes V_{5} and V_{6} which provide a reference voltage for the electronically-rugulated supply. R_{2} is connected as part of a voltage divider across the VR tubes and used to adjust the negative voltage on the klystron repeller. The 10-turn potentiometer specified for R_{2} is strongly recommended since its high resolution makes tuning up the amplifier much easier. However, if cost is very important, a standard 2-watt composition potentiometer can be substituted at the expense of more critical adjustment.

Construction of the power supply is not critical - just a little crowded with the chassis size specified. Power leads are brought out through the top of the chassis and terminate at a barrier strip for convenience.

Amplifier Construction

The amplifier is made from $1 / 8$-inch brass stock and X-band waveguide. Lighter brass stock can be used, but we do not recommend thicknesses less than 1,16 inch because of mechanical and thermal instability. Silver plating is not required for good operation, but if you have the facility, go ahead: it won't hurt a thing. Figs. 2, 3 and \& show the construction details, and the photographs show the appearance when completed.

The waveguide section is 6 inches long and equipped with a choke flange at one end for connecting to the pump waveguide. Λ choke flange is one that has a $1 / 4$-wavelength groove cut around the rectangular opening in the face. The groove is to prevent r.f. leakage out of the joint when a Hange-to-flange connection is made. Actually, only a very small leakage will be experienced at this power level, and two plain flanges will work nicely, but the choke type costs little more and was used for the sake of purity.

The 9200-Mc. pump energy is transferred from the transmission line part of the waveguide into the pump cavity by means of a resonant iris. The diameter of this iris is 516 inch and is quite important. If you choose a pump frequency other than 9200 Mc. you will probably want to experiment with different size irises to minimize the

Fig. 2-Top and side views of the waveguide section used in the amplifier assembly. Note how the guide is slotted from the top to accept the pump-coupling iris and from the sides to take the two halves of the inductive iris. The latter slots should end between $1 / 32$ and $1 / 16$ inch from the crystal mounting holes. The holes for the tuning screws should be centered in their respective cavities. Cavity dimensions shown are for standard X-band waveguide (1 $\times 1 / 2$ inch outside) and must be modified as explained in the text for guides of a different size.

Fig. 3-(A) The iris used to couple pump energy into the pump cavity. The $5 / 16$-inch hole is centered horizontally and off-center vertically by one wall thickness. (B) Details of the crystal mounting and the inductive iris used to couple the crystal to the pump and idler cavities. Both irises are 1/32-inch brass.
v.s.w.r. between the pump generator and the pump cavity. Alternate methods of adjusting the line v.s.w.r. are all right, but the fewer knobs you have to adjust during alignment the better.

The pump ravity is made slightly less than a guide half-wavelength long at the pump frequency to allow tuning with the No. 10 screw plunger. If you use standard X-band waveguide, the pump and idler cavity dimensions shown are valid. ${ }^{4}$ If you use other size guide, the guide wavelength can be found from the formula

$$
\lambda_{\mathrm{g}}=\frac{\lambda_{\mathrm{o}}}{\sqrt{1-\left(\frac{\lambda_{n}}{\lambda_{c}}\right)^{2}}}
$$

where λ_{g} is the guide wavelength, λ_{o} is the freespace wavelength, and λ_{c} is the guide cutoff

[^5]wavelength. The latter is equal to twice the longer inside transverse dimension of the waveguide for the $T E_{1,0}$ mode used here. The sume units should be used for all three wavelengths in this expression.

As an example, another available K-band waveguide measures $11 / 4 \times 5,8$ inch outside and has a $1 / /_{6}$-inch thick wall. The cutoff wavelength is therefore $2 \times\left(1 \frac{1}{4}-1 / 8\right)=2 \frac{1}{4}$ inches, or 5.72 cm . The frec-space wavelength corresponding to 9200 Mc . is $30,000,9200=3.26 \mathrm{~cm}$. From the formula above, $\lambda_{g}=3.97 \mathrm{~cm}$., and the cavity lengths should be adjusted accordingly.

At the back of the pump cavity the parametric diode is centered in an inductive iris which couples the diode to both the pump and idler cavities. This iris should clear the crystal by at least $1 / 32$ inch and not more than 1/16 inch. These dimensions represent rather loose coupling, which is desired. This contrasts sharply with other amplifiers which have been described and is probably the key to the ease of tune-up, stability and the very small amount of pump power required for proper operation. The loose coupling allows excellent Qs to be attained in all of the tuned circuits. Four different amplifiers have been built and tested with operating powers on the order of 8 db . below a 10 -milliwatt level.

The crystal holder was made by drilling out the center of a microphone jack to a snug fit for the crystal cartridge. The jack must also be cut and filed down until only the flange and a couple of threads remain, so that the bottom end of the brass ferrule of the crystal comes just flush with the inside surface of the waveguide. This will provide the necessary clearance at the other end of the crystal where the tip goes through into the signal tank. The fitting is then soldered to the

Bottom view of the amplifier with the signal tank cover plate removed. The input and output connectors are near the left end, and the tuning screws are in the middle. The lower screw with the nut soldered to the end is used for coarse tuning, and the upper screw gives a fine adjustment. The $500-\mu \mu$. feed-through capacitor and the 1500 -ohm $1 / 2$-watt resistor for supplying bias to the diode are near the right end.

Fig. 4-Details of the signal-tank inner conductor and end-plate bypasses. This assembly should be mounted in the signal tank so that the center of the inner conductor is 0.8 cm . below the bottom surface of the waveguide section. The piece of $1 / 8$-inch brass tubing soldered into the inner conductor slips over the tip of the diode.
guide. A "cap" to hold the crystal in place can be made from a nut which will screw onto what's left of the mike connector. Solder a washer into the threads of the nut where it will bear on the end of the crystal when the nut is screwed in place. The rear end of a BNC screw-type chassis conmector can be similarly manhandled to provide an alternative mounting.

Particular care should be used when constructing both the resonant iris and the inductive iris to be sure that no burrs or filings are left in the cavities. After soldering and cleaning, run a sharptipped screwdriver or scribe point along the solder head to verify that you have a clean metallic joint rather than a film of solder flux.

In back of the inductive iris is the idler cavity with its tuning screw. This screw is shown mounted on a machined r.f. choke which would he hard for most builders to duplicate. However, the simple screw and locking nut used for the other adjustments will work fine here, too. Do not solder the end plate on the idler cavity until you are satisfied that the iris and the crystal mounting are completely satisfactory. Hold the end plate tightly in place with tape until you have tested the amplifier; then solder it in place.

The signal-frequency tank is the part of the amplifier built from sheet stock and mounted below the waveguide section. The side pieces of the tank are soldered to the sides of the guide, and the bottom surface of the guide becomes the top of the tank. The tank ends and bottom plate are lastened to the side pieces with serews as shown.
The diode is coupled into the signal tank through a hole the diameter of the crystal body in the bottom of the waveguide. When properly positioned, the part of the brass tip which connects to the ceramic body of the crystal cartridge should just clear the bottom of the waveguide. This is eritical since it is a part of the r.f. choke which prevents the pump energy from getting into the signal tank.

The tank inner conductor is made of $5 / 16$-inch diameter brass tubing (available from hobby shops) and is mounted off-center to contain the field as far up in the tank as possible. This allows adjustments to be made with the bottom plate off. A 3 -inch square brass plate is soldered to each end of the tubing. These plates, separated from the ends of the tank by 0.01 -inch Teflon or Mylar, form bypass capacitors and ground the inner conductor at each end for r.f. In the original amplifier, four 4-40 nylon screws were used to hold each bypass "sandwich" together. If such serews cannot he obtained, use metal ones with insulating washers where they pass through the end walls of the tank.

Since the line is insulated from ground for d.c., biasing voltage for the diode can be applied to one of the end plates. The resistor that feeds the bias to the line is a combination non-critical r.f. choke and an important diode protector in case you accidentally apply an improper amount of bias voltage.

The diode tip is connected to the inner conductor with a short piece of $1 / 8$-inch diameter brass tubing. One end of this tubing is soldered into a hole drilled into the inner conductor, and the other end is slotted to fit snugly over the brass tip on the crystal.
The tuning screws for the signal tank are located at the center of the tank (r.f. voltage maximum point) and tune the tank capacitively. One screw has a nut soldered on the end and is used for coarse tuning. The other, left plain, provides a fine adjustment.

Close-up of the pump klystron and attenuator mounted on one end of the power-supply chassis. The flange connects to a similar one on the amplifier unit. The resistance paper vane, shown partially inserted in the waveguide slot, is supported between brackets in front and in back of the guide and is adjusted with the planetary dial (Lafayette $\mathrm{F}-348$) fastened to the front of the chassis. The other knob is for setting the repeller voltage. Power connections are brought out to the barrier strip, and from there wires run through holes in the brass cylinder used to mount the klystron socket above the guide.

Bottom view of the pump and powersupply chassis. From left to right across the front panel (top) are the power switch, control R_{1} for setting the klystron shell voltage and the 10 -turn "Multipot," R_{2}, for adjusting the repeller voltage. The fuse holder is on the rear panel. Parts placement is not critical, but the upper surface of the chassis at the right end must be left clear for the klystron and attenuator. In this version, the power transformer is at the left, and the six rectifier and regulator tubes are grouped in the middle. Chokes L_{1} and L_{2} are mounted below chassis on the left end and on the rear apron next to the fuse.

Filament transformer T_{2} appears
in the lower right corner.

The input and output links are placed at the opposite end of the tank from the diode for symmetry. At these frequencies it is possible to escite various undesirable modes of operation, and lack of symmetry may suppress the very mode you want. The links are mounted on the BNC serew-type input and output fittings (Amphenol 31-102) and should be 1 16 to $3 / 32$ inch from the inner conductor. The fittings screw into threaded holes in the sides of the tank 1 cm . from the inside surface of the end plate and allow adjustment of coupling during alignment. Then they can be secured for normal operation by tightening the mounting nuts. In gencral, you will find that the antenna coupling must be a little tighter than the output coupling. Don't be misled by appearances, though, as a slight difference in the positioning of the links can mean a vast difference in the degee of coupling.

Tune-Up and Operating Procedure

First you must determine whether or not the klystron pump generator and the pump cavity are compatible. To do this install a test diode such as a $1 N 21$ in the amplifier. Measure the rectified diode voltage with a v.t.v.m. connected to the hias feed-through capacitor. The pump cavity serew should tune well out of the cavity when you are close to 9200 Mc. with the klystron. The exact frequency used docs not matter except that the difference between it and the signal frequency must be within the tuning range of the idler cavity. Adjust the pump cavity tuning and the klystron tuning (repeller voltage) for maximum diode voltage. This should be 5 volts or more, depending on the test diode used. The exact value is not important: all you are after here is to check the pump generator for output and the pump cavity for tuning.

Now replace the 1 N21 with the parametric diode and repeat the tuning process. No external hias is used yet. You should note two things at this time: (1) The diode voltage is quite low, on the order of 0.3 to 0.7 volt. This is all right you have a poor rectifier, but possibly a good voltage-tunable capacitor. (2) The pump cavity probably had to he retuned considerably beause of the capacitive reantance of the diode.

Now with everything tuned up for maximum diode voltage, caretully tune the idler cavity through its range. At some point the voltage should kick up to between 0.9 and 2.0 volts. If it dossn't kick up, try another combination of pump frequency and pump cavity settings because it is likely that you are out of the range of the idler cavity tuning (assuming that the diode is not detective). Set the idler tuning at the kick point for now. Some diodes have a sharp kick, while others have a generally broad rise in voltage as the idler is tuned. Either indicates that the signal circuit is oscillating, and if it is not operating at an undesirable mode it should be oscillating around 1300 M c. At this point you should be able to connect your present $1296-\mathrm{Mc}$. erystal set to the paramp and hear the oscillation as a loud, rasping buzz.

A signal source, preferably tone-modulated, is needed for the next step. If you don't have one, simply follow standard operating procedure for the 1296-Mc. band and telephone one of your friends for an appointment to turn on his transmitter for you.

Connect the antenna or signal source to the paramp input and your present equipment to the output. Apply bias to the diode, using a reversebias voltage of approximately 0.7 volt. 'The bias supply can be a 10,000 -ohm 10 -turn potentiometer (similar to R_{2}) connected as a vcltage divider across a 1.5 -volt battery. Again a regular composition potentiometer can be substituted if necessary. With no pump power applied (maximum attenuation) adjust the signal tank coarsetuning screw for maximum signal in the receiver. Now increase pump power to maximum and carefully tune the idler cavity until you hear oscilliations in your receiver. Reduce pump power until oscillations just stop, and then retune the idler cavity for oscillation again. At this point you must start a systematic round-robin procedure or you will get lost. Refer to Rule 3 near the beginning of the article and proceed as follows:
(All adjustments are for either oscillation or for a given value of signal gain with reduced pump power.)

Retune idler
-- reduce pump power

Adjust bias toward zero - reduce pump power Adjust repeller voltage - reduce pump power Retune signal tank -reduce pump power (fine tuning screw)
Adjust input and output links- reduce pump power Retune pump cavity - reduce pump power
At some point in these proceedings you may find that the gain is still rising and that you have reached zero hias voltage. Simply reverse your bias polarity and continue the round robin, slowly increasing the bias voltage in the forward direction. The value of bias voltage that you end up with is a function of many things; you just have to find it for the diode you are using and the amplifier you have built. Typical values for approximately 15 diodes tested ranged from 0.3 -volt forward bias to 0.7 -volt reverse !ias.

When you have reached the point where no further adjustments cause a gain in signal or a reduction of pump power for a reference signal, you are donc. Now the pump power attenuator is your gain control. You should notice that an increase in pump power produces an increase in signal gain. A further increase in pump power will result in a small drop off in gain, and then as the power is further increased, the amplifier
will break into oscillation. This gain reversal is quite convenient, as it allows a nice broad operating point and permits stable operation with minor variations in klystron pump power. Minor adjustment of the diode bias may be needed for maximum amplifier gain as the pump power is increased.

Once tuncd up, this amplifier will remain stable over long periods of time without any adjustment other than the repeller plate voltage. Next time you set up the unit it will only be necessary to adjust the bias to the correct voltage, ride herd on the repeller voltage, and adjust pump power to the desired value.

This amplifier will provide a dramatic experience the first time rou put it ahead of your crystal-mixer converter. With 25 db . plus of stable gain, the noise figure of your receiving setup is that of the parametric amplifier. Our units are currently providing a 5 S-unit gain on 75A-2 and $75 \mathrm{~A}-4$ receivers. If that looks like nearly 30 db . of gain, you are correct. Lucal Bay Area tests by K6UGH with $1560 H O$ and K6ONM have been very gratifying. Combined with a little transmitter power and a high-gain steerable antenna, this little gem should be just the thing for moon bounce.

QSF

OStrays歇

Back Copies and Photographs

Back copies of QST referred to in this issue are currently available, unless otherwise indicated, from our Circulation Department. Please send cash or check ---50\& for each copy with your order; we cannot bill small orders nor can we ship c.o.d.

Full size (8 by 10) glossy prints of equipment described in QST by stafi members (only) can be furnished at $\$ 1.50$ each. Please indicate the QST issue, page number, and other necessary indentification when ordering, and include full remittance with your order - we do not bill nor ship c.o.d.

When old-timer 7UD got interested in ham radio again, his first project was to build the HBR receiver described in QST by W6TC back in July of 1957. (Apparently 7 WD added something, because the original was called an $\operatorname{HBR}-14$!) Next step was to study up for the General Class license and apply for K7WD, which he now holds. Nice piece of construction, isn't it! (It would be interesting to know how many fellows have built. some version of the HBR receivers. If each one of you who has would send a QSL card to W11KE, we could tally up the score - and perhaps have a pretty interesting display of QSLs for future use in QS'I'.)

- Beginner and Navice

This photograph shows the completed unit. The only components mounted on the top of the chassis are T_{1} and the GAH6. At the left front is S_{1}.

More Operating Convenience

for Your Station

BY LEWIS G. McCOY.* WIICP

A Novice T.R. Switch

During last Field Day the writer had occasion to use a transmitter with a built-in t.r. switch that was designed by Ed Hart, W2ZVW. Never having used a t.r. switch to any great extent, it was interesting to note how smoothly this particular unit worked. What was of even greater interest was the simplicity of the t.r. circuit. Here was something any Novice could build, didn't cost much, and would simplify the operating controls of his station.

How the T.R. Switch Works

It is always to the amateur's advantage to use the same antenna for both transmitting and receiving. Many amateurs accomplish this with switches or antenna change-over relays. This, in turn, calls for a manually-operated switch which actuates the relay when going from transmit to receive. A t.r. switch is an electronically-operated device requiring no manual operation.

Fig. 2 shows how the t.r. switch is used in two types of installations. One method shows how the unit is installed in a system where an antenna coupler is used. The other setup shows the installation of the t.r. switch where coax is used directly between the transmitter and

[^6]antenna. Now look at Fig. 1, the circuit of the t.r. switch.

The operation goes like this: When the transmitter key is closed, a signal is sent out along the coax line. Attached to the line is the t.r. switch. A portion of the r.f. voltage appearing on the line drives the 6AH6 grid positive. The rectitied voltage then biases the 6AH6 so very little power is fed to the recciver. When the key is opencd, any signal coming down the line from the antenna is not strong enough to cause bias to be developed. The 6AH6 then acts as a cathode follower feeding the signal into the receiver. A cathode follower, while not having any gain, does have a broad-band characteristic in its output circuit which is ideal for this application.

Construction Details

The unit shown in the photographs was built on a $2 \times 5 \times 7$-inch chassis. The t.r. switch described here has its own power supply. However, many receivers and transmitters have power takeoffs, and if yours does, the cost of the t.r. switch can be lessened by eliminating the power supply. Power requirements for the 6AH6 are approximately 100 volts d.c. at about 10 ma . and 6.3 volts at 0.45 amp .

T. R.SWITCH

CR_{1}-Selenium rectifier, 50 ma . (Sarkes-Tarzian Model 50).
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$-Coax chassis receptacles, or phono jacks. $\mathrm{R}_{1}-220$ ohms.
$\mathrm{S}_{1}-$ S.p.s.t. toggle.
T_{1}-Power transformer, 125 volts, 15 ma., 6.3 volts, 0.6 amp . (Stancor PS8415, Knight 61G410).

Fig. 1-Circuit diagram of the t.r. switch. Unless otherwise indicated, decimal values of capacitance are in $\mu \mathrm{f}$., others are in $\mu \mu \mathrm{f}$., resistances are in ohms, resistors are $1 / 2$ watt. Capacitors marked with polarity are electrolytic.

If you decide to use an external power source, the plate voltage should be fed into the 6AH6 at the point marked X. The resistor R_{1} serves the same purpose as an r.f. choke, but is, of course, much cheaper. In connecting an outside power source you'll need three leads, one for the plate voltage or B plus, one for a ground connection, and a lead for the 6.3 -volt heater line.

When installing the socket for the 6AH6 mount it as close to the terminals J_{1} and J_{2} as possible. This is done in order to keep the lead length between J_{1} and J_{2} to the grid of the 6AH6 as short as possible. 'This reduces the chances for stray pickup of r.f. which may tend to "block" the receiver when transmitting. For the same reason, a short length of shielded wire is used hetween the cathode, Pin 7, and a tie point mounted at J_{3}. The $0.01-\mu$. capacitor is connected between the tie point and the terminal of J_{3}, keeping the capacitor leads as short as possible.
Regular coax chassis terminals were used for J_{1}, J_{2}, and J_{3}. However, phono jacks can be used instead, thereby cutting the cost of the unit.

Installing the T.R. Switch

Fig. 2 shows two examples of how the t.r. switch should be installed. There is one important point to keep in mind about the t.r. switch. If the voltage appearing at the grid of the 6AH6 is too high there is a danger that the tube can be ruined. For this reason, the standing-wave ratio on the coax line should not be over 2 or 3 to 1 for Novice powers of 75 watts input or less. In any event, it is always a good idea when using a coupler to have an s.w.r. bridge ${ }^{1}$ installed in the coax line to show when the coupler is correctly adjusted. The t.r. switch can be used for power imputs up to about 300 watts if the line is well matched.

If your system has direct coax feed from the transmitter to the antenna, the t.r. switch should be installed close to the transmitter. If you live
'See measurements chapter, The Radio Amateur's Handbook.

Fig. 2-Two methods of installing the t.r. switch in your station.
in an area where TVI is a problem (who doesn't!), a low-pass filter should be installed on the coax line between the t.r. switch and the antenna. Most t.r. switches are harmonic generators and this one is no exception.

The t.r. switch described here was tried with three or four different makes of receivers. In no case did the signal pickup block the receiver when the transmitter was keyed. The signal was loud enough so that it was more comfortable listening with the r.f. sain reduced during transmission, particularly if the listening was done on ths eame frequency as the transmission. An ideal system would have means for receiver muting whenever the key was closed. However, any such system would be more complex than the simple t.r. switch shown here.

Note that the 6AH6 socket is mounted close to the coax terminals. This is done to keep the lead lengths short. $C R_{1}$ is the rectangular object at the top center. Just above the rectifier is the dual $20-\mu \mathrm{f}$. electrolytic capacitor, mostly concealed by the chassis flange in this view.

Not Just a Novelty

The Secret of Mobile C. W. Operation

BY DAVIS A. HELTON,* WøPME

0VER the past few years there has grown quite a crowd of active mobile 40 -meter c.w. men. I know I haven't worked them all, but I think l've worked my share - W2BO, WØDIC, WØBNQ/W5BMI, W5BXN, W8NZ, W9MIO/W9EDO, W5EZG, W9EVA, W5MU, K5VLG, a few W6s, and even a couple of Novices. Most of them work c.w. as easily from a car as they would from a fixed station and even manage to keep schedules while in motion. The surprising thing isn't how well they get out, but how many times they have to answer the question, "How in the world do you manage to key and drive, too?", from otherwise competent c.w. men.

For the benefit of those who are interested in handling a mobile c.w. rig, I'd like to pass on a few hints on how to rig the mobile station for ease of operation. Behind these kinks are more than 50,000 miles of mobile c.w. work on 40 meters. I doubt if most of the mobile c.w. gang will agree with all of my theories on the subject, but I do believe that they will agree with most points.

Keep Things Simple

First, if you are building up the rig from scratch, kecp everything simple. Preferably, the only controls on the receiver should be the r.f. gain control and the dial knob. If the transmitter has a number of tuning adjustments on the front panel, the change-over switch should have a much larger knob than any of the other controls to facilitate locating it without taking one's eyes off the road. If you are of the type that must dip the final every QSO, you will find that a pilot light in the final $B+$ lead makes a much better tuning indicator than a meter, since you can see it from the corner of your eye while driving.

V.F.O. vs. Crystal

Most of the mobile c.w. gang prefer the v.f.o., but I still stick with crystal control since I run a fair amount of power aud can punch through anything but the kw. gang on the low end of 40. By using crystal control one can save the power drain of a buffer and the VR-tube bleeder, and thus run a little more input to the final. Crystal control has the added advantage of kecping your transmitter where you think it is, no matter how rough a road you're traveling. It also means that there is no v.f.o. dial to watch when you should be watching the highway ahead.

[^7]> This article is a compilation of various bits of pertinent information gathered in over 50,000 miles of successful 40 -meter mobile c.w. operation. It covers everything from the antenna to the log book.

Transmitter

The circuit diagram of my 100-watt mobile 40 -meter c.w. transmitter is shown in Fig. 1. It consists of a 12 BY 7 in a grid-plate oscillator circuit driving a pair of neutralized 1625 s in parallel, with low-impedance link output coupling. The neutralizing capacitor C_{i} consists of a strip of aluminum approximately $1 / 2$ inch wide and 2 inches long, bent $1 / 2$ inch from one end to form an angle. A hole is drilled in the short end and the angle is mounted on a ceramic feedthrough insulator placed in the chassis at a spot midway between the two 1625 s and slightly to the rear of center. The surfaces of the two tube plates serves as the other member of the capacitor. The bottom end of the feed-through insulator is connected to the oscillator plate tank circuit mounted on the underside of the chassis.

Excitation may be adjusted by varying the screen voltage of the oscillator. The rig is keyed in the cathode circuit of the amplifier. It will be noticed that there are no meters; a dial lamp in series with the plate-supply circuit and a neon bulb coupled to the output tank coil serve us as indicators for output adjustment.

The control and change-over functions are performed by a threc-position six-pole rotary switch, S_{1}. The first position is "off." In the second position the transmitter filaments are turned on. In the third position, the plate and screen voltages are applied, the antenna is transferred to the transmitter and the receiver gain is reduced. The circuit arrangement for the latter is included in Fig. 1.

A good addition to the mobile station is some sort of field-strength meter. If your mobile rig has grid-drive control, the best procedure is to tune the final for maximum output and then adjust the drive control for maximum output. Then, after you become accustomed to the normal field-strength reading at a certain distance outside the car window, you can recognize certain characteristic troubles, such as a slipped contact in a variable-tap mobile loading coil, a damp loading coil, intermittents, and others.

Antenna

The secret of any good mobile signal lics in the antenna system. If you're married, use the higgest "hat" capacitance the XYL will allow; if you're fortunate enough to be single, use a hat about twice as big as any you have seen on anyone else's rig. In addition to the hat, use

Fig. 1-Schematic of the simple mobile transmitter. Unless indicated otherwise, resistances are in ohms, capacitances are in $\mu \mu \mathrm{f}$., and resistors are $1 / 2$ watt. Capacitors not listed below are disk ceramic.
C_{1}-Midget variable.
C_{2} - 1000 -volt variable.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}$-Mica.
C_{1}-Neutralizing capacitor (see text).
$I_{1}-150$-ma. dial lamp shunted with 47 -ohm $1 / 2$-watt resistor.
J_{I}-Open-circuit jack.
$\mathrm{J}_{2}, \mathrm{~J}_{3}$-Chassis-mounting coaxial receptacle (SO-239).
$L_{1}-18$ turns No. 24, $3 / 4$-inch diam., $9 / 6$ inch long ($B \& W$ 3012 Miniductor or Air Dux 632).
some sort of impedance-matching network between the base of the antenna and the coa. feeder. My matching network for 40 is shown in Fig. 2. It consists of a 2 -inch-diameter coil, 8 turns per inch, with one end grounded to the car, with the base of the antenna tapped about 4 turns up from ground, and the coax line tapped about $1 \frac{1}{2}$ turns up. It is doubtful if this particular combination would work for all cars, but it gives a general idea of what to expect. With a Heath reflectometer in the coax line, the entire system was resonated for 7040 kc . At 7005 kc . the s.w.r. was $1.35: 1$, and at 7100 ke. it was $1.5: 1$. At 7150 kc . the s.w.r. had jumped to 2.5:1. Thus, it may be seen that the band-width restrictions are not nearly so severe on 40 as on 75 meters.

For those who aren't happy until they have the ultimate in radiation efficiency from their mobile untennas, a worthwhile improvement over the conventional 8 -ft. center-loaded whip was found
L. -10 turns No. 14, $1 \frac{1}{2}$-inch diam., $11 / 2$ inches long (Air Dux 1206).
L_{3} - 3 -turn link at ground end of L_{2}.
$\mathrm{L}_{4}, \mathrm{~L}_{5}-5$ turns No. 16 wound on associated resistor.
$\mathrm{R}_{1}-50,000$-ohm 2-watt control (Ohmite CU5031 or similar).
R.2-25,000-ohm 4-watt control (Mallory M25MPK).
S_{1}-3-section 6-pole 3-position rotary switch (CRL 2525, 3 of 5 positions used).
$V_{1}-1 / 4$-watt neon bulb mounted near hot end of L_{2}.
hy replacing the common 39-inch lower antenna section with one made from a 39 -incher welded to one of the 18 -inch types. This raises the loading coil farther from the car body, and increases the radiation resistance on the lower-frequency bunds.

Since the amount of loading inductance required is largely determined by the size of the top section and capacitive hat, there will be very little change in loading-coil adjustment when this change in antenna length is made.

In the few months that the new antenna (about 11 ft . over all, including the loading coil and mounting spring) has been in use, it has been found that it improves signals, coming or going, by about one S unit. Several of the 40 -meter c.w. gang in the midwest have volunteered the observation that the signal from WØPME/M is the strongest mobile signal they have ever heard on the band.

Receiver

Now for the receiver: Probably some of the best single-band mobile receivers are conversions of the ARC-5 series. My receiver is a muchmodified BC-455 that, in its present form, will copy a 0.5 -microvolt signal if I'm parked in a quiet space, and which has sufficient audio output to override the wind and motor noise in a small foreign ear while traveling at the speed limit. In addition, it has a crystal-lattice i.f. filter with about a hali-kc. bandwidth to enable me

Fig. 3-Circuit of the audio filter-amplifier stage added to the BC-455. Unless indicated otherwise, resistances are in ohms, resistors are $1 / 2$ watt, and capacitances are in $\mu \mathrm{f}$. Capacitors marked with polarity are electrolytic; use paper or ceramic for others.
to sort out the signals on the low end of 40 with no more eftiort than would be required on some of the more expensive ham receivers.

The receiver conversion followed the best points of a number of conversion articles. All but two rotor plates in each section of the tuning capacitor were pulled. Each capacitor section was then shunted with a zero-temperaturecoefficient $50-\mu \mu \mathrm{i}$. ceramic trimmer. The realigned receiver covers 7000 to 7700 kc .

Audio

An audio filter-amplifier stage was added between the detector and 12A6, and the audio output trausformer was replaced with one of the " $6 \mathrm{~V} G-$ to-voice-coil" variety. This revision is shown in Fig. 3. The filter has a design cutoff frequency of 2200 cyeles. ${ }^{1}$

B.F.O.

It was found that while the drift of the h.f.o. in normal operation was but a couple of kilorycles, the b.f.o. drifted several kilocycles while warming up and wandered about under primary voltage fluctuations as the engine speed varied. Therefore, the b.f.o. transformer assembly was removed and the b.f.o. circuit was changed to a Pierce crystal circuit as shown in Fig. 4.

Fig. 4-Circuit of the crystal-controlled b.f.o. Capacitances are in $\mu \mu \mathrm{f} . \mathrm{C}_{1}$ is an air trimmer. R_{14} and R_{15} are original BC-455 components. See text for Y_{1}.

Crystal Filter

A 28:31-ke. half-lattice erystal filter was constructed following the general circuits presented in earlier issues of QSTT. ${ }^{2}$ The circuit is shown in Fig. 5A. Rather than become involved in a lot of r.f. measurements, I purchased about a half dozen surplus $2831-\mathrm{kc}$. rocks ${ }^{3}$ and made some rough

[^8]frequency measurements. The lowest-irequency crystal was used in the b.f.o. Uf those remaining, the two with the greatest frequency difference (actually a fraction of a kc.) were selected for the lattice. In operation, a double hump appears in the response characteristic, but it is so slight that it was not felt necessary to etch one of the rocks. In individual cases, it may be beneficial to alter the value of the filter load resistor (shown as 2700 ohms in Fig. 5-A), going as low as 470 ohms, if necessary, to reduce the humps. The lattice filter is fed from a link, L_{A}, wound over the cold end of the coil in the tuned circuit in the first i.f. can in the BC-455, as shown in Fig. 5B. The output of the lattice is used to drive an added i.f. stage which more than makes up for the insertion loss of the filter. The output from this stage is used to drive the original first i.f. stage in the 455. The lattice assembly and the added i.f. tube were mounted in a small Minibox which was mounted on the side of the receiver adjacent to its first i.f. ean. Connections between the i.f. and filter links are made with shielded wire run through slots in the i.f. can and the receiver cover.

Most authors of recent erystal-filter articles serm to write with the impression that a good r.f. toroid coil can be foumd in any respectable ham junk box. Mebbeso, but I had to make my own. To make a couple of cheap toroids for highfrequency lattice filters, obtain a slug from the final tank coil of a Command transmitter. This slug is about $5 / 8$ inch in diameter and 3,8 inch long. Slice this in half, as shown in Fig. 6A. Drill out the hole in each of the resulting wafers until the toroid has an approximately square cross section, as shown in Fig. 6B. Dope the toroid well and, after it has dried, wind on a bifilar winding of about 75 turns of Litz wire taken from an old r.f. choke or r.f. transformer, as shown at B. After this winding is complete, add a 10-turn link at the ground end of the winding. It's the cheapest toroid you can find. L_{1} was made by scramble-winding litz wire from an old r.f. choke on the core of a Miller 4.5-Mc. sound trap. The number of turns was adjusted until the circuit resonance checked at 2830 kc . on a grid-dip meter. Any other convenient type of winding may be used in the same manner.

Some purists might add a noise clipper to the converted receiver, but with the extreme skirt selectivity from the lattice filter, it is my opinion

Fig. 5-(A) Circuit of the crystal half-lattice filter. Uniess indicated otherwise, resistances are in ohms and capacitances are in $\mu \mu \mathrm{f}$. Resistors are $1 / 2$ watt. See text for L_{1}, T_{1}, Y_{1} and Y_{2}. Terminal numbers on T_{1} refer to Fig. 6 . (B) Revision of first i.f. transformer assembly in $B C-455$. L_{A} is a 4 -turn link at the $B+$ end of $L_{6} . L_{6}, L_{7}, C_{12}, C_{13}$ and C_{14} are $B C-455$ original components.
that a limiter just isn't necessary. When one is driving along a truly noisy R.E.A. line with a 12 -volt Ford following, no limiter will help, anyway.
Since one needs single-switch change-over control with a mobile rig even more than in a fixed-station, the monitoring system should not require adjustment. The simplest system consists of an auxiliary r.f. gain control, mounted in the transmitter, which is shorted by the changeover switch in the receiving position (see R_{1}, Fig. 1). This control can be of the screw-driveradjusted type, and can be mounted almost anywhere, since it will seldom require adjustment.

The Answer

When I first began mobile c.w. operation, nearly all the active boys used straight keys mounted either on the stecring post or on small shelves hinged from the center of the dash. Since a couple of hitches in the Army cured me of any desire to use a straight key anywhere, I decided that a bug lying on the seat cushion would be the answer. After consulting several experienced 40 meter mobile operators, I learned that this was impractical and would likely cause the bug to dive through the fire wall at the first fast stop. Because I still disliked straight kevs in any form, I went ahead and laid the bug out across the seat cushion in such a position that my right arm would be supported by the eushion when keying. Not only has this been satisfactory, but I find that the weight of the bug causes the feet to sink far enough into the seat cushion so that any tendency of the bug to jump off is curbed. Eventually I acquired a Dow-Key which features
the rotating head. This allows me to adjust the weight of the dots while driving down a road by rotating the head of the key until the lever is working in a level plane. The adjustable head also proved to be an advantage when traveling on country roads with a high crown where the bug would normally be tilted to the right enough to prevent the dot contact from closing.

About the only places I have found where this arrangement is unsatisfactory is in working through some tight switchbacks in the mountains in the West. Around left-hand turns, the centrifugal force may prevent the dot contact from closing. Since this condition probably would be seldom encountered, it is doubtful that it wouid be considered an inconvenience. In adjusting a bug for mobile use, it should have the contacts opened to at least twice the normal gap preferably more. Then, the spring tension on both dit and dah sides should be increased to the point where you can still send even code while driving down a rough gravel road. The increase in eontact gap and heavier springing will prevent the dot side from making up its own code on rough roads.

Fig. 6-Sketches showing (A) how the toroid core is cut from an iron coil slug, and (B) how the bifilar winding is made.

Logging

If you keep a complete log, as I do, you will find the ARRL mobile log book a little small for entering all of the desired information. A good substitute is the standard ARRL book. This one won't fill so quickly, and the "other data" column can be ruled off on the right edge to record such items as your location and route. In addition, to prevent filling the \log with unsuccessful

C(Is, you can rule off the bottom margin to log these times. However, if you pay sufficient attention to your antenna installation, you won't often find this necessary.

For those of you who begin your QSO with any mobile c.w. station with "How in the world do you do it?'', that's how. I hope that I am fortunate enough to QSO you from somewhere on the highway.

Q5F

Jransistor Antitrip for the 20-a

Simple Unit of Small Dimensions

BY R. L. ANDERSON,* WA2JDF, ex-W8KZM

Abstract

As most s.s.b. operators know, a voice-controlled change-over system requires some means of preventing the loudspeaker output during the receiving period from feeding back into the microphone and thus operating the change-over system. The simple unit described here requires only a handful of inexpensive components.

T${ }^{1}$ HIS article describes an antitrip circuit for the $20-\mathrm{A}$ s.s.b. exciter. It contains only a single $n-p-n$ transistor, two diodes, a capacitor, transformer, and a handful of resistors. The circuit can be built in a more compact package than the eonventional type using one or more vacuum tubes. The author constructed the circuit in a standard $2 \times 15 / 3 \times 23 / 4$-inch Minibox, which plugs into the socket provided in the $20-\mathrm{A}$ exciter for the C.E. QT-1 unit.

The circuit, shown in Fig. 1, operates on a different principle than the vacuum-tube version, and is nothing more than a limiting circuit whose limiting value depends on the collector voltage of Q_{1}. The circuit contains a gate or "clamping" diode that is connected between the VOX-tube grid and the collector of Q_{1}. The transistor is off when a signal does not appear across the speaker terminals. Under these conditions, the collector

[^9]voltage is approximately 20 , and the diode $O R_{2}$ is reverse-biased for all voltages on the grid of the VOX tube not exceeding +20 volts. The $20-\mathrm{A}$ VOX circuit will operate normally, since it requires approximately +11 volts on the grid of the VOX tube to operate the VOX relay.

When a signal appears across the speaker terminals, it is rectified by $C R_{1}$, filtered and applied to the base of Q_{1} as a d.c. signal which is proportional to the speaker output. If the input level is high enough, Q_{1} conducts, the collector voltage is reduced to below 11 volts, and the input to the grid of the $V O X$ tube is clamped by C_{2}.

The circuit time constant of approximately 0.15 second is provided by R_{2}, R_{3}, and C_{1}. The bias network, resistors R_{4} and R_{5}, reduces the amount of dead band (minimum base voltage at which Q_{1} will start to conduct) in the input circuit. The base-to-emitter voltage of the average transistor is 0.6 volt. The hias network was de-

R_{1}-Carbon control.
$R_{2}, R_{3}, R_{4}, R_{5}-10$ per cent tolerance (see text).
T_{1}-Output transformer: 825 ohms to 3.4 ohms (Thordarson TR-29 or equivalent).

Fig. 2-Graph of Q_{1} collector voitage vs. signal input. When the collector voltage is less than 11 volts, the VOX circuit is clamped off. The setting of the sensitivity control (Fig. I) determines the slope of the conduction line.
signed to give about 0.4 volt of bias, thereby reducing the dead band to 0.2 volt. The network also prevents the collector-to-emitter voltage from exceeding its maximum rated value (40 volts). The sensitivity of the circuit is set by R_{1}, which determines the slope of the conduction line in Fig. 2.

Fig. $: 3$ shows a sketch of the unit. The octal plug is mounted at the bottom end of the aluminum box, and the sensitivity-control potentiometer on top where it is conveniently accessible for adjustment.

Fig. 3-Sketch showing the mounting of the plug and sensitivity control on the transistor antitrip unit.

Adjustment of R_{1} is relatively simple. First, the VOX gain on the $20-\mathrm{A}$ is set in the desired position, and then R_{1} is turned so as to increase the circuit sensitivity until it is no longer possible to trip the VOX by audio output from the station receiver.
[5F]

- New Apparatus

Mobile Burglar Alarm

Ture photograph below shows an alarm system manufactured by Zimco Alarms, 2005 Atlintic Ave., Brooklyn 3i3, N. Y. It can be mounted in any vehicle for the protection of expensive radio equipment. The alarm consists of a siren which is mounted in a rugged cast aluminum bell; six push-button switches that can be mounted on the doors, hood, or trunk; a key-operated switch; and sufficient wire for an average installation. The system is wired so that a siren will sound if any of the push-button switches are keyed by opening a door, hood, or trunk. A latching relay located in the siren housing keeps the siren

running, even if the push button that triggers the alarm is returned to the off position. The only way the siren can be turned off is by use of the key-operated switch which is usually mounted on a fender. This same key switch is used to put the system in a "ready" position. About the only thing the alarm does not do is remind the owner to switch the system off when returning to his vehicle. He may get caught in his own trap!

$$
-E . \text { I. C. }
$$

20 Straysty

A newspaper account of the W1BU-W6HB moon-bounce experiments explained that its success lay in the fact that the upper sideband oscillated with the lower sideband to produce TVI harmonics and therefore amplify the signal to produce the wavelength.

A group of American amateurs will be touring Europe this spring, visiting six countries between April 22 and May 10. They will be greeted by many European amateurs, and a number of parties, receptions, and other personal QSOs are being planned. There will also be tours of industrial sites, and in addition a Parisian style show for the XYLs. The total price for the trip is $\$ 1065$, and a postcard to Hugh Tinley, KøGIKK, 6741 North 35th St., Omaha, Nebraska, will bring you a brochure with complete details.

S.C.F.M. - An Improved System for Slow-Scan Image Transmission
 In Two Parts

Part I-Slow-Scan Modulation Tests and Proposed Standards
BY COPTHORNE MACDONALD,* WA2BCW

Abstract

In the author's original slove-scan system, a $20(0)-$ c.p.s. subcarrier was amplitude modulated uith rideo information and sync pulses. Since then he has developed subcarrier frequency modulation gear for doing the same job more effectively. That it does is rather well demonstrated in the tests reported here. Suggested standards for s.c.f.m. slow-scan image transmission are also included. A succeeding article will cover circuit details of the modulating and demodulating equipment.

Amentioned in previous articles, ${ }^{1,2}$ the video output of a slow-sean flying-spot seanner or camera has important frequency components close to d.e. Therefore, this signal cannot be fed directly to the usual ham modulator which has poor low-frequency response. Instead, the video must be used to vary the amplitude or frequency of an audio tone situated within the pass band of the modulator.
There has been considerable doubt that the subcarrier :t.m. system used in previous amateur slow-scan work was the best method of processing the video for transmission. For one thing, fading produced streaking and shading in the picture. Secondly, to maintain anything like consistently good synchronization in the presence of fading, the hlack level had to be limited to about one half the sync level. The transmitter was modulated only 50 per cent, at most, between syne pulses, and the peak video sideband power was thus only 25 per cent of what the transmitter was capable of producing.
Since interest in amateur slow-sean is growing rapidly, it is important to establish standards as soon as there is a sound technical basis for doing so. The main question to he resolved has been the method of subcarrier modulation. Recently a number of tests were made to compare the subcarrier a.m. (s.c.a.m.) and subearrier f.m. (s.c.f.m.) methods of modulation for amateur slow-scan. The results of these tests and the proposed slow-scan standards follow. The circuitry used will be described in a succeeding article.

[^10]
S.C.A.M. vs. S.C.F.M.

To resolve the subcarrier question, a threephase test program was initiated. Ed Piller, Director of the First Army MARS Technical Net, is interested in slow-scan as an aid to on-the-air technical talks. He handled phase one of the program. Slow-scan tapes were recorded by WA2BCW and aired over Ed Piller's station, A2KPQ, on 4030 kc . after the regular net sessions. These transmissions were received and taped by amateurs in various parts of the country. The tapes were then sent to WA2BCW for evaluation.

The second phase involved FCC-sanctioned 10 -meter test transmission by WA2BCW. In the third phase, the two systems were compared in the laboratory by observing performance when measured amounts of random noise and heterodyne interference were added to the signals.

A word about the system parameters used in the tests: In general, the greater the deviation in an f.m. system, the better the signal-to-nnise ratio in the presence in a given amount of interference. The maximum allowable deviation is determined by the bandwidth available and the maximum modulation frequency. Commercial facsimile operations have standardized on a frequency shift from 1500 to 2300 c.p.s. to represent the transition from black to white. When used with radiotelephone equipment having essentially Hat response from 1200 to 2500 c.p.s., modulating frequencies from 0 to 900 c.p.s. can be reproduced. If the "white" frequence is made much higher than 2300 c.p.s., it will be attenuated by the audio cutoff characteristics of some transmitters and receivers. If the "black" frequency is made much lower than 1500 r.p.s., the number of subcarrier alternations per picture element drops to too low a value, and horizontal resolution is lost. 1500 and 2300 c.p.s. were therefore adopted as the standard "black" and "white" frequencies with shades of gray being represented by frequencies in between.

One problem not encountered in conventional facsimile is the transmission of syac pulses. To retain the advantages of amplitude limiting for the transmission of syne as well as video, a sync frequency, 1200 c.p.s., was employed. A horizontal syne pulse was transmitted as a 5 -millisecond burst of 1200 c.p.s. tone, and a vertical sync pulse as a 30 -millisecond burst. To permit the transmission of horizontal resolution equivalent to 120 lines, a horizontal sweep rate of 15 c.p.s. was selected. To give a 120 -line raster, a vertical scanning rate of 8 seconds was used. The
same sweep rates and sync pulse lengths were employed with s.c.a.m., but in this case the subearrier was a 2000 -e.p.s. tone which was varied in amplitude at the video rate. In most tests, black level was set at 50 per cent of sync level.

Test Transmissions from A2KPQ

The A2KPQ MARS transmissions on 4030 kc . were made during March, April and May, 1960. Among the amateurs who recorded the signals were K1MID, W1CUT, WA2CAQ, WV2HLY, K5UYF, K9AUE, W9NTP, K2KAQ/9, Һ00HO and WOPB.

A2KPQ was located in New York City and ran a power input of 1 kw . Test transmissions were made with s.s.b. suppressed carrier and single sideband a.m. carrier inserted). As expected, the suppressed carrier s.s.b. was superior in all cases. A condition not discovered until the test series was completed served to invalidate a direct comparison of s.c.a.m. and s.c.f.m. It was finally learned that because the tapes were recorded on one machine (WA2BCW's) and played back on another (A2KPQ's), the level at which a $2300-\mathrm{c} . \mathrm{p} . \mathrm{s}$. tone was transmitted was 10 db . less than the transmitted level of a 1200e.p.s. tone. The signal-to-noise ratio in the white areas of the picture was thus 10 db . less than when the corrert level was transmitted.

The effect of 10 db . less signal strength in the white areas is shown in Fig. 1. At frequencies such as 40:30 kc., in the evenings, a transmitted signal may arrive at a distant point by a number of routes. The signal received by the most direct route is usually the strongest and, of course, arrives first. A number of echoes follow. In Fig. 1 the echoes of the 1200-c.p.s. sync pulses (lefthand edge) were often greater in amplitude than the 2300 -c.p.s. white signal. When this situation existed, the 1200-c.p.s. echo "took over" the limiter, and the reproduced image shows black. Note that 1500-c.p.s. black echoes also took over in some areas of the picture.

Fig. 1 - Image reproduced from a recording by WA2BCW of a 4030-kc. s.c.f.m. transmission from A2KPQ. The white frequency was being transmitted 10 db. down in level from the sync frequency, causing the black echoes at the left edge. The wavy right edge was caused by wow in the tape recorder.

Fig. 2 - S.c.a.m. signals transmitted by A2KPQ as received by KIMID. The sync pulse echoes on the left in the upper photo are the result of multipath propagation, and the white bar in the lower one was caused by a severe
fade. Tape recorder wow produced the wavy edges.
The tape made by K1MID, Hillsboro, N. II., illustrates the effect of fading and multipath propagation of s.c.a.m. In Fig 2 (Top) the sync pulse echoes and shading variations are quite apparent. Multiple images and a severe fade (white bar) can be seen in Fig. 2 (bottom).

In several tapes the signal-to-noise ratio of the received signal was too low to produce a recognizable image. For instance, the tape sent by K5UYF, Albuquerque, N. M., showed only sync pulses on a "snowy" background.

While the MARS tests did not provide a valid comparison of s.c.a.m. and s.c.f.m., valuable information was gained about the effect which multipath has on s.c.a.m. The need for transmitting all s.c.f.m. irequencies at the same amplitude was also pointed up.

10-Meter Tests by WA2BCW

The 10-meter transmissions from WA2BCW did provide a good comparison of the troo systems. The transmitter ran 25 watts input and was plate modulated. The antenna was a threeclement beam. During the transmissions a $10-$ second segment of s.c.f.m., a 10 -secoud segment of s.c.a.m. and a 10 -second voice announcement were alternated. This "program" was recorded on a continuous tape loop which repeated the entire series every 30 seconds. The fact that a

Fig. 3-(Left) S.c.f.m. and (right) s.c.a.m. transmissions from WA2BCW on 10 meters as received by K9UTI. Power input was 25 watts.
complete s.c.f.m. frame and a complete s.c..a.m. frame were transmitted every half minute meant that any slow shift in conditions would not favor one or the other as might happen if, for instance, five minutes of s.e.f.m. were followed by five minutes of s.c.a.m. The s.c.a.m. black level was set at 40 per cent of sync level. K9UTI, Metropolis, Ill., recorded eight minutes of the May 14 transmission. He made the recording by picking up the sound coming from the speaker of his receiver with the tape recorder microphone. Fig. 3 (left) shows a typical s.c.f.m. frame from his tape, and Fig. 3 (right) shows the s.c.a.m. frame which followed immediately after. An analysis of the tape shows that 70 per cent of the s.e.f.m. frames were equal to or better than the s.c.f.m. frame in Fig. 3 (left) while only 20 per ceut of the s.c.a.m. frames appeared as good as or better than the s.c.a.m. frame in Fig. 3 (right). During the eight-minute tape, the worst single s.c.f.m. frame was about the same quality as the hest single s.c.a.m. frame. S.c.f.m. synchronization reliability was about 95 per cent while the s.c.a.m. reliability was ouly about 50 per cent.

Fig. 4 - Attenuation characteristics of the band-pass filter used ahead of the slow-scan monitor in the closedcircuit tests to simulate the response of typical phone transmitters and receivers.

Closed-Circuit Tests

A number of closed-circuit tests were made to determine the effect of random, or "white," noise and audio tone interference on the tiro systems. In all tests, a filter with the attenuation characteristics shown in Fig. 4 was used at the input of the slow-scan monitor to simulate the band-pass characteristics of typical radio equipment. Resistance-type isolating networks were used so thite the desired amount of noise or tone could be added to the slow-scan signal without affecting its level.

Fig 5 (left) is s.c.f.m., and Fig. 5 (right) is s.c.a.m. In both cases the r.m.s. random noise level is 17 db . below the maximum r.m.s. subcarrier level, as measured at the filter output. The s.c.a.m. black level is 50 per cent of sync level.

Fig. 6 shows the relative severity of the interference caused by a tone 20 db . lower in amplitude than the maximum subcarrier level. The designations of "light," "medium," etc., were, of course, subjective. Fig. 7 illustrates the effect of such a tone at a frequency of 1400 c.p.s. As can be seen from the graph, the s.e.f.m. photo (Fig. 7, left) illustrates what this cbserver considers to be "medium" visible interference, and the s.c.a.m. photo (Fig. 7, right) shows the degree of degradation corresponding to a "heavy" rating.

The test results just presented clearly point up the superiority of the s.c.i.m. system. The advantages gained in performance are:

1) A better quality picture in the presence of heterodyne interference.
2) A less "snowy" picture during weak signal conditions.
3) Relative immunity to fading.

Proposed Standards

An intensive effort was made to select standards which would give the best possible slowscan system for amateur use. The history of commercial facsimile standards was thoroughly explored, from the original a.m. days, through the pulse-width modulation of the ' 20 s and ' 30 s . to the s.c.f.m. and radio-frequency carricr-shift techniques employed today. The reports of the National Television System Committee were read. These reports covered the development of

Fig. 5-Closed-circuit comparison of (left) s.c.f.m. and (right) s.c.a.m. with a random noise level 17 db . below the maximum subcarrier level.

TABLE I
 Proposed Amateur Slow-Scan Standards (120-Line S.C.F.M.)

	60-Cycle Areas	$\begin{gathered} \text { 50-Cycle } \\ \text { Areas } \end{gathered}$
Sweep Rates:		
Horizontal	$\underset{(60 \text { c.p.s.s. }}{15 \text { c.p.s. }}$	$\begin{aligned} & 162,3 \text { c.p.s. } \\ & \text { (50 c.p.8. 3) } \end{aligned}$
Vertical	8 see.	7.2 sec.
No. of Scanning Lines	120	120
Aspect Ratio	1:1	1:1
Direction of Scan:		
Fiorizontal	Left to Right	Left to Right
Vertical	Top to Bottom	Top to Bottom
Sync Pulse Duration:		
Horizontal	5 millisec.	5 millisec.
Vertical	30 millisec.	30 millisec.
Subcarrier Frequencies:		
Sync	1200 c.p.s.	1200 c.p.s.
Black .	1500 c.p.s.	1500 c.p.s.
White	2300 c.p.s.	2300 c.p.s.
Required Transmission		
Bandwidth.	1.0 to 2.5 kc .	1.0 to 2.5 kc .

the present U. S. commercial television standards and discussed many things germane to the slow-scan standards problem. Fconomic and regulatory factors were considered since no system is feasible if the equipment is too expensive or if the slow-scan operation would cause undue interierence to other amateur activities. When the standards began to jell, many tests were run, some on the air and some closed-circuit. A few of the more significant tests have been reported above. The end result of the over-all effort is Table I. Headings will be discussed individually. 6O-Cycle Areas, 5 (l-Cycle Areas: It is desirable to have the sweep oscillators at the transmitting location synchronized with the local power line,
not only because the power line provides a convenient frequency standard, but berause ripple in the video equipmenc or the transmitter will have least detrimental effect. Most of the world is divided into areas of $50-\mathrm{cycle}$ power and areas of f0-cvele power. It is essential that an amateur in a 50 -cycle area be able to receive transmissions from a 60 -cycle area and vice versa. With the standards selected, the only change which is recciving station must make in going from a 60cycle area signal to a 50-cycle area signal is a slight readjustment of the herizontal hold control.

Sweep rates: The horizontal sweep rates are submultiples of the local power-line frequency. The vertical rates are selected to give a 120-line raster. With the $1: 1$ aspect ratio used, the horizontal resolution is also in the neighborhood of 120 lines. With a 7 - to 8 -second scan, the brightness of a particular point on a P7 screen drops to a marginally useful level just before the point is rescanned. This is a desirable situation for transmitting information which is apt to change from frame to frame, such as a person's facial expressions: also, there is little carry-over of QRM effects from one frame to the next.

Aspect ratio: With a limited resolution system such as this, the tendency is to transmit images of objects or small groups of objects rather than panoramic views. The $1: 1$:tspect ratio gives equal picture detail in the horizontal and vertical directions and is ideal for the "spotlight" type of viewing which is done with slow-sean.

Direction of scan: The direction of horizontal scan is rather unimportant, and the universallyused left to right was arbitrarily picked. The direction of vertical scan was the subject of ex-

Fig. 6-Relative severity of interference to s.c.f.m. and s.c.a.m. caused by tones of various frequencies when 20 db. below the maximum subcarrier level.

Fig. 7-Interference to (left) s.c.f.m. and (right) s.c.a.m. images from a 1400 -c.p.s. tone 20 db . below the maximum subcarrier level.
perimentation. At rather rapid scan rates (1-to-2second vertical period) Bill Stapleton of Dublin found the bright "writing line" of the P7 phosphor to be less distracting if the picture was scanned from bottom to top. At the slower sweep rates, however, a top-to-bottom scan seems more satisfactory, especially with written material, since this is the normal reading order.

Sync pulse duration: The 5-millisecond horizontal pulse is a satisfactory compromise between several factors. A sync discriminator bandwidth of 300 e.p.s. can be obtained with an inexpensive inductor, yet this bandwidth is narrow enough to give good sync in the presence of noise and QRM. The sync pulse must be long enough to build up to maximum amplitude in the tuned circuit of the discriminator and short enough so that retrace time is not excessive. The 30millisecond vertical pulse is six times the length of the horizontal puise and is thus easily sepirated. It is also much shorter than the duration of a horizontal line and therefore will not disrupt the following horizontal sync pulse. The vertical pulse starts at the beginning of the first line of the raster.

Subcarrier frequencies: The reasous for choosing these particular subcturier frequencies have already been discussed.

Required transmission band: The over-all amplitude response of the amateur transmitter and receiver should be flat to within a few db. between the frequencies of 1000 and 2500 c.p.s.

Tolerances: The various sweep frequencies are not at all eritical and may be plus or minus 10 per cent or more without seriously affecting the usefulness of the picture. For best results the sync frequeucy should be kept within 50 cycles of 1200 e.p.s. "The "black" and "white" subcarrier frequencies may be ofi 100 c.p.s. without rausing trouble. A plus or minus 20 per cent tolerance on the sync pulse durations should be all right.

Acknowledgments

In addition to those already mentioned, thauks are extended to a number of hams, including

GisAST, VP9XX and K4KYY, who were, for one reason or another, unable to reccive the test transmissions.

The actions of the FCC and MARS Director First Army, Captain Joseph Fischler, in permitting the test transmissions on amateur and MARS frequencies, are sincerely appreciated. $\square 5 F-$

FEEDBACK

The diagram on page 40 of the December issuin of QST showed C_{5}^{\prime} and R_{4} shorted out by an erroneous connection between L_{4} and L_{5}. The diagram below shows the corrected portion of Fig. 2 on page 40 of December.

In the letter from Julian F. Oberg which appeared in the December issue, the call of Pat Husk was erroncously given as K9EUG. It. should have been shown as K9EUQ.

The formula for frequency on page 38 of the November, 1960, issue of QST gives f in e.p.s. instead of Mc. as stated.

Here the 4-400A amplifier and its control unit are mounted in a 21 -inch gray hammertone rack cabinet (Bud CR1727). Shelf brackets (Bud SA-1350) are mounted on both sides of the cabinet to hold the amplifier chassis. The meters are for grid, screen and cathode currents and plate voltage. Below them, from left to right, are the filament pilot light, key-type a.c. switch, Class $A B_{1} / C$ bias switch, screen autotransformer, plate switch and plate pilot light.

Something Different in High- Power Tank Circuits

BY KENNETH C. LAMSON,* WIZIF

Abstract

How long since you've seen a kilowatt pi network that didn't use a commercial rotary or switched coil assembly and maybe a costly vacuum variable capacitor besides! 'This rig's plate circuit combines a novel home-brew switching system, two air variables and a storebought coil set into a tank that's economical as well as efficient. Bias and screen supplies, plus control and metering circuits, are all included. All you have to furnish are the h.v. and a few watts (or volts on s.s.b.) of drive.

Have you been looking for a hilowatt final that doesn't take 100 watts of drive? So many amplifiers today are of the grounded-grid type and require large exciters. Any transmitter delivering about six watts will drive the amplifier described here to rated output on all h.f. bands. When used as a linear for sideband, a peak driving voltage of about 150 is required, and a $10 B, 20 \mathrm{~A}$ or similar exciter will provide adequate drive.

The amplifier can be run at a kw. input on e.w., 880 watts input on a.m., and about a kw . input p.e.p. as a Class AB_{1} linear. (Maximum input with a two-tone test signal is (850 watts.)

The plate tank circuit of the amplifier is made from reaciily available parts. No expensive plate inductor or vacuum variable capacitor are required. The amplifier is fairly economical to build and operates with excellent efficiency. Bias and sereen supplies plus all the necessary control circuits are included.

4-400A Amplifier

Checking Fig. 1, it can be seen that the amplifier uses the conventional grounded-cathode, tuned-grid configuration. The grid tank consists of a link-coupled, parallel-tuned circuit, switchable from 80 through 10 meters. $S_{1 B}$ shorts out the unused part of grid coil L_{2}, and $S_{1 A}$ modifies

[^11]the input link, L_{1}. Ci peaks the input circuit within each hand. A Harrington Electronics subassembly was used in the original rig, but an equivalent circuit can be built from standard parts if desired.

The amplifier is ncutralized by the capacitive bridge system with neutralizing capacitor C_{2} connected from the plate of the amplifier tube to the bottom of the grid eircuit. C_{2} and C_{3} form a caparitive voltage divider, and their ratio determines the amplitude of the feedback voltage used in neutralizing. C_{2} must have adequate insulation to withstand full peak plate voltage.

The amplifier output circuit is a shunt-fed pi network capable of working efficiently into 50 or 70 -ohm loads on all bands from 3.5 through 30 Mc. A choice of two different tuning capaccitors is available; the smaller capacitor, ('10, is used on 20,15 and 10 meters, and the larger one, C_{11}, is paralleled with it for tuning 80 and 40 meters. Having two plate-tuning capacitors allows a desirable L, C ratio to be maintained at all frequencies without having to resort to a vacuum variable.

The output side of the pi network has a $650-$ $\mu \mu \mathrm{f}$. variable loading capacitor (two 325- $\mu \mu \mathrm{f}$. variables ganged) and three additional fixed micas which can be paralleled to give an additional $1000 \mu \mu$. The r.f. "safety" choke shunted across the output is to short the plate voltage to ground in the event blocking capacitor C_{7}^{γ} should

Fig. I-Circuit of the amplifier (upper part of the diagram) and power supply/control unit. The grid circuit, $C_{1} L_{1} L_{2} S_{1}$, can be made up from the parts specified, or a Harrington Electronics GP-2OL can be used. Interlock switch connectors f_{6} and J_{3} are connected by a length of line cord with a Cinch-Jones P-202-CCT plug on one end and an Amphenol 61 FII socket on the other. Millen 37001 safety terminals are used for the h.v. connections. Resistances are in ohms, and resistors are $1 / 2$ watt unless otherwise specified. Capacitors not listed on the facing page are 600 -volt disk ceramic except those marked with polarity which are electrolytic.
fail. This insures against d.e. appearing on the pi network or feed line.

A 17 -c.f.m. blower supplies adequate forced air cooling to the $4-400 \mathrm{~A}$ base and plate seals. The blower is connected across the $4-400 \mathrm{~A}$ filament transformer primary and operates whenever the filament is energized.

Control Circuitry

Included with the amplifier but mounted on a separate chassis are all required control and metering circuits. Meters are provided for amplifier grid current, screen current, cathode current and plate voltage. To comply with the FCC rule regarding measurement of input powers over 900 watts (section 12.131), the control grid and screen currents should be subtracted from the total cathode current, and the result is multiplied by the plate voltage to determine the plate power input.

The amplifier is fixed biased at -225 volts for Class C and -150 volts for Class AB_{1} operiution. VR tubes hold the bias voltage constant. The full-wave rectifiers in the hias supply are silicon diodes, so there is no warmup time involved and full operating bias is applied to the amplifier when the power switch, S_{6}^{\prime}, is closed. Time-delay relay K_{1} operates K_{2}, which is in series with the screen supply primary. Thus
B_{1}-Blower-motor assembly, 17 c.f.m. (Ripley, Inc., Middletown, Conn., type 8433).
$\mathrm{C}_{1}-140-\mu \mu \mathrm{f}$. midget variable (Hammarlund APC-140-B).
C_{2} - $10.6-\mu \mu \mathrm{f}$. neutralizing (Johnson N 250).
$\mathrm{C}_{3}-500$-volt mica.
$\mathrm{C}_{4}-0.001-\mu \mathrm{f}$. feed-through (Centralab FT-1000).
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{17}, \mathrm{C}_{18}-0.001$ - $\mu \mathrm{f}$., 3000-volt disk ceramic (Centralab DD30-102).
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-500$ - $\mu \mu \mathrm{f}$., 20,000-valt ceramic (Centralab TV-207).
$\mathrm{C}_{10}-30-\mu \mu \mathrm{f}$. variable, 0.25 -inch spacing (Barker \& Williamson CX-30C butterfly, one section used).
$\mathrm{C}_{11}-150-\mu \mu \mathrm{f}$. variable, 0.25 -inch spacing (Johnson 150D90).
$\mathrm{C}_{12}-650-\mu \mu \mathrm{f}$. variable (two Hammarlund MC-325Ms ganged and paralleled).
$\mathrm{C}_{13}, \mathrm{C}_{14} \mathrm{C}_{15}-2500$-volt mica (Aerovox 1652L).
$\mathrm{C}_{16}-200$-volt molded paper.
$\mathrm{CR}_{1}, \mathrm{CR}_{2}$-500-ma. 600 -volt peak inverse silicon diode (Sarkes Tarzian F-6).
$\mathrm{I}_{1}, \mathrm{I}_{2}-115$-volt pilot lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Coaxial receptacle, chassis mounting (SO-239).
$J_{3}, J_{4}, J_{5}-115$-volt plug, chassis mounting (Amphenol 61-M1).
$\mathrm{J}_{6}-2$-contact socket (Cinch-Jones S-202-B).
$J_{7}-J_{10}$, inc.-115-volt socket (Amphenol 61-FI).
$\mathrm{K}_{1}-S . p . s . t$., 115 -volt 60 -second time-delay relay, normally open (Amperite 115 N 060).
K_{2}-S.p.d.t. relay, 115 -volt a.c. coil (Potter \& Brumfield KA5AY).
$\mathrm{K}_{3}-$ S.p.d.t. relay, 2500 -ohm 7.2 -ma. coil (Advance GHE/1C/2500).
$L_{1}-33 / 4$ turns No. 18 insulated wire on cold end of L_{2}; tapped 2 turns from ground end.
$\mathrm{L}_{2}-50$ turns No. 24 tinned, $13 / 4$ inches long on $3 / 4$-inch diam. ceramic form; tapped $5,8,13$ and 25 turns from grid end.
Ls- 3 turns No. 10 tinned, $5 / 8$-inch diam., 1 inch long.
there is a 60 -second delay hefore screen potential can be applied to the amplifier tube. The screen supply rectifier (V_{4}) filament is not controlled by the time-delay circuit.
Likewise, the accessory a.c. socket, J_{8}, and the high-voltage filament transformer socket, J_{9}, are energized as soon as power switch S_{1} is closed. The h.v. plate transformer is turned on by a relay plugged into J_{10} and controlled by the time-delay relay. With this arrangement, it is impossible to apply a.c. to the plates of the high-voltage rectifiers before the filaments have had a chance to warm up.
A variable autotransformer in series with the screen-supply primary allows the screen voltage to be adjusted from zero to about 800 volts under load. This makes a convenient arrangement not only for resetting the screen voltage when changing from Class C to Class AB_{1} or vice versa, but also for adjusting the power input of the amplifier.

A screen overload protection circuit is also included. If excessive screen current flows, K_{3} is energized and is kept energized by the current through $R_{8} .{ }^{1}$ To reset the relay the screen voltage must be momentarily turned off so that the relay will return to its unenergized condition.
'A somewhat more foolproof protection scheme was described by W9HRH in QST for October, 1900. - Ed.

L4-Pi-network coil assembly (Air Dux 195-2 available from lllumitronics Engineering, Sunnyvale, Calif.); see text.
L.s-8.5-hy. 50 -ma. filter choke (Knight 62G136).

Li-8.5-hy. 200-ma. filter choke (Knight 61G409).
M_{1}, M_{2}, M_{3}-D.c. milliammeter.
M_{4}-D.c. voltmeter; includes $R_{2}-R_{5}$, inc. (milliammeter can be substituted; see text).
$\mathrm{R}_{1}-50$-ohm 10 -watt noninductive wire-wound (Sprague 10NIT).
$R_{2}-R_{5}$, inc.-Part of M_{4} if voltmeter is used.
$R_{6,} R_{7}$-10-watt adjustable.
R_{x}-See text.
R_{9} - 200 -watt adjustable; set tap at midpoint.
$\mathrm{RFC}_{1}-10$-mh. r.f. choke (National R-50-1).
$\mathrm{RFC}_{2}-120-\mu$ h. plate r.f. choke (Raypar RL-101).
$\mathrm{RFC}_{3}-4-\mu \mathrm{h}$. r.f. choke (National R-60).
$\mathrm{RFC}_{4}-2.5 \mathrm{mh}$. r.f. choke (National R-50).
S_{1}-Miniature ceramic rotary, 2 poles, 6 positions, 1 section, shorting, 5 positions used (Centralab PA-2002).
$S_{2}, S_{:}$-Homemade, see text and Fig. 2.
S_{4}-Ceramic rotary, 9 positions, 1 section, progressively shorting, 4 positions used (Centralab PISD section and P-270 index assembly).
S :-S.p.s.t. snap-action (Unimax 2HBW-1).
S_{6}-S.p.p.t. lock switch (Arrow-Hart \& Hegeman 81715-L).
$S_{i}-$ S.p.s.t. toggle.
S_{x}-Ceramic rotary, 1 pole, 6 positions, 1 section, nonshorting, 2 positions used (Centralab 2501).
T_{1} —Filament transformer, 5.2 volts c.t., 24 amp . (Triad F-IIU).
T_{2}-Power transformer, 460 volts c.t., 50 ma . (Stancor PC-8418).
T_{3} —Filament transformer, 5 volts c.t., 3 amp . (Thordarson 21 FO3).
T_{4} —Power transformer, 1200 volts c.t., 200 ma. (Thordarson 22R36).
T_{5}-Variable autotransformer, 0-132 volts, 1.75 amp. (Superior 10B).

This can be done by opening t.r. switch S_{7}. The current at which the overload relay throws is set with shunt resistor K_{7}.
'The plate voltmeter can be purchased as such or made from it milliammeter. The voltmeter circuit shown in Fig. 1 consists of a 0-1-ma. meter in series with four 1 -megohm resistors. The meter resistance is very low in comparison to megohms, so with 4000 volts across the series combination, the current will be very nearly 1 ma ., and the meter will read full scale. The meter reading can be multiplied by a conversion factor (4000), or the meter face can be recilibrated to read $0-4000$ volts.

Amplifier Construction

The amplifier is built on a $4 \times 13 \times 17$-inch chassis and uses a 14 -inch rack panel. All major components are visible in the photographs. The Harrington grid circuit, output loading capacitors and switch, and filament transformer are all below the chassis. Mounting the filament transformer in the center helps keep the weight evenly distributed.

This view of the amplifier shows the band-switch trap door, air-exhaust port and hole (center, left) for adjusting neutralization, all in the top of the shielding enclosure. The large knob on the left of the panel is for the 20/15/10meter plate tuning capacitor, and the matching knob adjusts the capacitor used on 80 and 40 . Farther down, from left to right, are the grid band switch, grid tuning control, variable loading adjustment and loading switch.

Because the rotor of grid capacitor C_{1} can be as much as 225 volts negative in respect to the chassis, un insulated coupling must be used between the rotor and the shaft going to the grid tuning knob. Leads from the grid circuit are brought out through a 3×5-inch aluminum back plate via a feed-through capacitor and bushings. The input link is connected to the coax receptacle through a length of $\mathrm{RG}-58 / \mathrm{U}$. The Hanged eover of a $5 \times \pm \times 3$-inch Minibox is slipped over the grid assembly, and this cover is secured to the back plate with four self-tapping screws and to the main chassis with four 6-32 spade bolts. This enclosure provides adequate shielding for the grid circuit and minimizes r.f. feedback which would cause instability.

The ganged loading capacitors $\left(C_{12}\right)$ are mounted off the chassis on 1 -inch metal spacers. Connections in the output circuit are made with copper or brass strapping to provide low-inductance leads.

The 4-400A tube socket is held by four tabs that are evenly spaced around a $33 / 4$-inch-diameter circular cutout as shown in the bottom view. This arrangement allows maximum air flow around the $4-400 \mathrm{~A}$ glass bulb. An Eimac chimney (SK-406) channels the air around the tube and up toward the plate seal. A cork gasket bef.ween the chassis and the chimney provides a

The control unit. On the chassis, counterclockwise from the upper left, are the screen overload relay, cage containing voltmeter multiplier resistors, screen power transformer, filament transformer for the 5R4 screen rectifier, 5R4, screen filter choke, bias transformer, bias VR tubes, bias supply choke, time-delay relay and jack for the leads from the interlock switch. On the rear of the chassis, from left to right, are a terminal strip for ground, screen and grid connections, a.c. input plug, fuse holder, a.c. output for the h.v. rectifier filament transformer, a.c. socket for the amplifier filament transformer, accessory a.c. socket, a.c. socket for the h.v. control relay and standby terminals. The free terminal on the second meter from the left connects to the amplifier cathode.
tight seal with minimum air leakage. The fourinch square of cork stock used in making the gasket should be obtainable from most automotive supply stores where it is sold for gaskets, or from a floor-covering supply store which carries cork tile. A 3-inch-diameter hole covered with perforated sheet aluminum ("do-it-yourself" type) is located directly above the 4-400A tube. in the shiclding enclosure. This hole allows the cooling air to escape from the enclosure.

The blower is mounted on the rear apron of the chassis by four $6-32$ spade lugs attached to the walls of the hlower output housing. A $11 / 4$ $\times 11 / 8$-inch hole must be cut in the rear apron of the chassis to accommodate the blower, and another cork gasket is used here between the plastic blower housing and the amplifier chassis.

The chassis should be as airtight as possible to provide maximum air flow to the $4-400 \mathrm{~A}$ tube. This requires sealing any small holes such as exist in the corners of the chassis. These holes cun be covered with tape or filled with Duco cement. The bottom plate must, of course, be solid (not perforated) aluminum for the same reason.

Plate Tank and Enclosure

The plate tank coil, L_{4}, band switch, S_{3}, and plate tuning capacitor switch, S_{2}, arc mounted on two Lucite plates in the center of the chassis. The tank coil comes prewound on one Lucite plate which is positioned $31 / 2$ inches above the chassis on ceramic spacers. Mounted $31 / 2$ inches above this, again on ceramic spacers, is the $41 / 8 \times 8$-inch Lucite band-switch plate detailed in Fig. 2. When drilling this plate be sure to use a slow speed: otherwise, the Lucite will soften and produce irregular holes. Hard rubber washers

Fig. 2-Layout of the $1 / 4$-inch Lucite or Plexiglas plate used to mount the band switch and capacitor switch. Suitable material can be obtained from most plastic supply stores. The large holes are $3 / 8$-inch diameter, and the small ones are drilled to pass $6-32$ screws. Holes for stator jacks (marked with frequencies) are spaced $7 / 8$ inch apart along their respective arcs.
(the type used for packing faucets) are inserted between the ceramic spacers and the Lucite plates to provide a tight fit.

The actual band switch is made from a $31 / 4$-inch

Most of the enclosure has been removed here to show the lowand high-frequency plate capacitors (left and right), the coil and band-switch assembly (center) and the 4-400A in its glass chimney. The neutralizing capacitor is behind the tube in this view. The cork gasket can be seen between chimney and chassis. Across the rear apron are the output jack, filament a.c. plug, cathode and ground terminals, high-voltage connector, ground post and blower; the latter hides another barrier strip (for bias and screen connections) and the input jack.
aluminum utility handle (Bud UH-71A), two jumbo banana plugs (Johnson 108-770) and six banana jacks (Johnson 108-760). The capacitor switch is of similar construction, using one utility handle, two banana plugs, and three banania jacks. In order to strengthen the soft aluminum utility handles used for the switches, cross supports are run from one end of each handle to the other.

Counting from the blocking capacitor end, the plate coil is tapped at 4 turns ($0.4 \mu \mathrm{~h}$.) for 10 meters; 7.5 turns ($1 \mu \mathrm{~h}$.) for 15 meters; 10.5 turns ($2.33 \mu \mathrm{~h}$.) for 20 meters, 14 turns ($5.2 \mu \mathrm{~h}$.) for 40 meters, and 24 turns (16.4μ h.) for 80 meters. (All the figures include the 4 -turn coil made of $3 / / \mathrm{s}$-inch strap.) The lugs provided with the tank coil assembly should be securely soldered to the coil at these points. Strapping should then be run from these taps to the appropriate bandswitch terminals. It should be noted (Fig. 2) that the band-switch terminals do not progress in consecutive order, but rather are arranged to provide the shortest possible lead lengths.

One end of the blocking capacitor, C_{7}, is threaded onto the stud that anchors the free end of the 4 -turn 10 -meter tank eoil, and the other end of C_{7} is connected to the plate r.f. choke with strapping. The output end of the tank coil assembly is connected via a feedthrough bushing and more strapping to the variable loading capacitor.

One precaution - be sure no iron or steel hardware is used in the band-switch assembly, or for that matter, anywhere in the plate tank circuitry of the amplifier. Each piece of hardware should be checked first with a magnet to insure that it is neither iron nor stecl before being used in the plate circuit.

The shielding enclosure is made from aluminum
shect and angle stock. The two side pieces measure 10 by 13 inches, the top 13 by 17 , and the back 10 by 17. The back, top and sides of the enclosure are fastened together with lengths of the angle stock (Reynolds Item 6A) drilled and tapped for 6-32 screws. The enclosure is also secured to the chassis and front panel backing plate by $6-32$ serews. This arrangement makes a tight enclosure with minimum leakage.

The mounting feet of hutterfly capacitor C_{10} are screwed to the side of the enclosure. Long screws and spacers (like the ones used to mount C_{11}) connect the front plate of C_{10} with the panel.
In order to get to the band switch and capacitor switch, a trap door is provided in the top of the enclosure. Snap-uction switch S_{5}^{5} is installed so that it is actuated by the trap door. The four screws holding the microswitch can be seen directly behind the trap-door hinge. The leads from S_{5} are brought out to a jack, J_{3}, located on the back wall of the enclosure. A plug-in cable connects J_{3} and J_{6} on the control unit. Lifting the trap door makes it impossible for the sereen or plate supplies to be energized. The trap door measures $61 / 4$ by 7 inches and the rectangular cutout in the top of the enclosure is $43 / 8$ by $6 \frac{1}{4}$ inches. Tbis provides adequate overlap to prevent any leakage of r.f.

The Control Unit

Construction of the switching/metering/power unit is pretty much conventional. The front panel is spaced $21 / 2$ inches out from the chassis to provide room for mounting the auto-transformer and plate and filament pilot-light assemblies. For the most part, component placement is noncritical. Screen-supply bleeder R_{9} gets rather hot and should be isolated from other components. Ventilation holes are drilled in the chas-

Bottom view of the amplifier. At the lower right is the Harrington grid circuit with the Minibox shield cover removed, and to the left are the loading capacitors, switch and "safety" choke. The filament transformer is in the center. At the upper right is the amplifier tube socket mounted on four tabs spaced evenly around the cutout in the chassis.
sis above K_{9} and also above sereen overload resistor R_{8} to help provide cooling. Multiplier resistors R_{2}, K_{3}, R_{4} and R_{5} are mounted on a phenolic board and enclosed in a metal cage as a safety precaution. The voltmeter input connector is mounted on top of the cage.

Adjustment and Operation

First, determine that the control unit is operating correctly. Apply 115 volts to J_{5}, insert the tubes, and turn on the key switch, S_{6}. The green filament pilot light, I_{1}, should go on immediately. There should also be power at receptacles J_{7}, J_{8} and $J_{9} . J_{7}$ and J_{9} are for the amplifier and plate supply filament transformers; J_{γ}, an accessory sorket, is provided so that external equipment such as the station receiver can be controlled by \aleph_{6}. There should be no power at J_{10}, the plate transformer control socket.

Next, adjust R_{6} until the VR tubes just begin to glow. Be sure the standby terminal jumper from Pin 5 of V_{3} to ground is in place. Operating S_{8} should change the bias from-150 volts in the Class $A B_{1}$ position to -225 volts for Class C in the other. With S_{8} in the linear position, and a voltmeter on the output ot the bias supply, temporarily lift the standby jumper from ground. The output voltage should rise from -150 to approximately -300 volts. The standby terminals provide a convenient way to bias the +-400 A beyond cutoff during standby and receiving periods. This will prevent any annoying diode noise generation.

Open S_{6} and connect an a.c. voltmeter to J_{10}. Put a temporary jumper between the two contacts of J_{6}. Close S_{6} and S_{7}, and after 60 seconds there should be power at J_{10} and the red plate pilot lamp should light. Replace the jumper across I_{6} with the leads from the interlock switch. Lifting the trap door should deenergize J_{10}, and the plate pilot bulb, I_{2}, should extinguish.

Next, connect a d.c. voltmeter to the output of the screen supply. By adjusting T_{5} it should be possible to vary the output from 0 to approximately 850 volts. Finally, adjust R_{7} so that K_{3} trips when 40 ma . is drawn from the sereen
supply. This can be checked by connecting a resistor (620 ohms or less at 1 watt) across G_{17} and running the voltage up from zero until the drain is 40 ma . This completes the testing of the control unit.
The amplifier must now be neutralized. Set the grid and plate hand switches for 28 Mc., and disconnect the screen and plate leads at the amplifier terminals. Couple a sensitive indicating wavemeter to the output end of the plate tank circuit and apply the required- 225 volts of hias. Apply drive, resonate the grid circuit and adjust the output of the exciter for rated 4-400A Class C grid current. Neutralizing capacitor C_{2} should then be adjusted for minimum r.f. in the plate tank circuit. The plate tuning capacitor should be retuned for maximum wavemeter reading after each change of C_{2}. After rated plate and screen voltages have been applied and the amplifier loaded, the neutralizing capacitor should be touched up so that minimum plate current and maximum grid and screen currents occur simultaneously as the plate tank is tuned through resonance.

Notes

If the amplifier is to be used for s.s.b., the h.v. power supply should have a minimum output capacitance of $8 \mu \mathrm{f}$. For best voltage regulation, the plate transformer should have a 220 volt primary. The output of the h.v. power supply should include a 1 -ampere fuse to protect the supply from excessive overloads.

If the amplifier is to be plate modulated, a choke, approximately 10 hy. at 50 or 100 ma., should be inserted in series with the screen lead of the $1-400 \mathrm{~A}$. An external switch can be used to short out the choke when using the amplifier for c.w. or s.s.b.

The high voltage lead from the plate supply can be made from $\mathrm{KG}-8 / \mathrm{U}$, which is readily obtainable and has a $400($) volt d.c. rating.

Even though the transmitter is adequately shielded to prevent direct harmonic radiation, it is a good idea to use a low-pass filter to minimize the harmonics getting out via the transmission line.

Strays

The Arctic Amateur Radio Club of Fairbanks, Alaska, will hold a " 49 Below for the 49th" Winter Field Day on January 7 and 8. The customary ARRL Field Day rules will apply. Fairbanks calls will be either KL7AD or KL7KC. Stations will be operated from 1800 GMT on Jan. 7 until 2400 (iMT on Jan. 8, using all bands 80 through 6 meters. Certificates will be awarded to "tirst state contacts" contacted by the Fairbanks club, and other clubs in Alaska are being urged to participate in the same fashion.

Ies, the temperature really does get down to 49 below, and then some!

Please Write
 Your Postal Zone Number

> - By including your correct zone numher each time you write your address you can speed delivery of your own mail and help cut Post Office costs. The Post Office must do extra work to deliver pach letter, parcel and magazine that does not show the correct postal zone number in the address. It will help you - it will help the Post Office - and it will help us. Thanks.

Timing Adjustments in a Sequenced Change-Over System

BY GRADY B. FOX, JR.,* W2VVC

APREVIOUS article by the author ${ }^{1}$ included some discussion of the contact performance of relays. Graphs were presented which illustrated the influence of contact bounce on the time which must be allowed for the contact to establish a solid connection. It was pointed out that failure to make due allowance for bounce may be responsible for arcing at the antenna relay contacts if transmitter power is applied before firm contact is set up at the antenna relay. Also, unnecessary pops and clicks may be introduced in the receiver if the receiver is not silenced before other change-over operations take place.

It seems obvious that these problems may be overcome simply hy operating the relays in proper sequence and making the delay interval hetween the operation of one relay and the next sufficiently long to assure that one operation is complete before the next one is started. However, if one wants a VOX-operated change-over system that does not clip the initiating speech, the delay time must be cut to the minimum required for proper sequencing. The adjustment of timing then becomes a matter of accuracy that cannot be attained without the employment of some method of checking having a capability beyond that of any of the five senses.

In making the timing graphs that were a part of the previous article, a Tektronix 535 scope was

[^12]
Abstract

In an earlier QST article, the author pointed out the importance of operating change-over relays in proper sequence to avoid unnecessary noise in the receiver and arcing at the an-tenna-relay contacts. If one is to arrive at the minimum delay intervals required for fast I'OX operation, some method of checking the timing is an invaluable aid. The latter is the subject of this article.

used. This scope has a long-persistence screen and a sweep whose speed is accurately calibrated. With this scope and a few resistors, a good check of the relays in the adapter was obtained.

However, the number of amateurs who have Tektronix 535 s at their disposal must be quite low. So it was decided to see what could be done with an instrument which is more common in amateur stations - the v.t.v.m. Using the test circuit to be described, the period of time between the closure of a relay contact, after bounce has stopped, and the time when the next relay starts to operate can be measured. This is the critical period to be checked to make sure that proper sequencing is obtained.

Test Circuit

Fig. 1 shows the test circuit conneeted to the relays in the unenergized, or listening, condition. The test circuit, as shown, is connected so as to

Fig. 1-Circuit used in testing relay sequencing. Resistances are in ohms, and resistors $1 / 2$ watt unless indicated otherwise below.
C_{1}-1- $\mathrm{\mu}$ f. 200-volt paper, 10 per cent.
$C R_{1}$-Silicon diode: 360 p.i.v., 200 ma . (Sarkes-Tarzian K-200).
K_{1}, K_{2}, K_{3}-Relays under test (see Footnote 1).
K_{4}-S.p.d.t. 6000 -ohm coil (Sigma 11F-6000G/SIL).

[^13]Fig. 2-Graph showing the relation between relay-functioning times using the circuit values of Fig. 1 The upper time scale applies when R_{3} is 68 K , and is used in checking the "operate' 'time. The lower scale applies when R_{3} is 204 K , and is used when checking "release" time. See text.
measure the period of time between the complete and solid transfer of the receiver-relay contact (X_{1} of K_{1}) and the start of the antenna-relay contact (Y_{1} of K_{2}) movement. The period to he measured corresponds to the time between the instant that contact
X_{1} arrives at the X_{3} contact, and stops bouncing, and the instant that contact Y_{1} leaves contact. Y_{2}.

A time measurement occurs as follows: When contact X_{1} reaches $X_{3}, 140$ volts through contacts Y_{1}, Y_{2} and the timing resistor R_{3} itarts to charge O_{1}, the timing capacitor. C_{1} will charge until K_{2} operates and Y_{1} breaks contact with Y_{2}. The voltage which appears across C_{1} during this period is a function of the period of time which we want to measure. The period of time which this voltaige represents can be calculated, since the charging voltage of 140 volts, the value of R_{3}, and the value of O_{1} are all known.

Eliminating Effects of Bounce

The unfortunate fact that X_{1} bounces when it makes contact with X_{3} complicates an otherwise simple measurement. 'The period of time we want to measure starts when X_{1} stops bouncing. The purpose of diode $C R_{1}$ is to discharge any voltage on C_{1} that accumulates while X_{1} is still bouncing. To understand how $C R_{1}$ does this, note that when 140 volts is applied to R_{3} and C_{1}, is bias is also applied to $C R_{1}$ through the voltage divider $R_{1}-R_{2}$. This bias prevents conduction of $C R_{1}$, except for an unimportant leakage current. Now if X_{1} should bounce even for a few tenths of a millisecond, the bias will be removed from C R_{1} and C_{1} will now be discharged through $C R_{1-}$ R_{2}. (C_{1} will discharge to about 0.5 volt, which is the threshold voltage of $\left.C^{\prime} R_{1}\right)$. The fart that $C^{2} R_{1}$ will not eompletcly discharge C_{1} makes the measured timing periods just slightly longer than the actual value, but this inaccuracy is absorbed in the tolerances allowed for K_{3} and C_{1}.
K_{4} is necessary because the leakage through $C R_{1}$, even when the latter is biased off, is large enough to affect the voltage on C_{1} during the period of time required to read the voltage on the v.t.v.m. K_{4} opens the circuit between C_{1} and $C^{\prime} R_{1}$ (via K_{2}) when Y_{1} makes contact with Y_{3}.

Time Calculation

The period of time which the voltage on Cl represents is calculated by the equation

$$
t=-2.30258 \log _{10}\left(\frac{140-10 e}{1+0}\right) R_{3} C_{1}
$$

where

$t=$ time in seconds
$e=$ v.t.v.m. reading
$k_{3}=(0.068)\left(10^{6}\right)$ ohms (for 10 ms . timing) or $=(3)(0.068)\left(10^{6}\right)$ ohms (for 30 ms . timing) $\mathrm{C}_{1}=$ (1) $\left(10^{-6}\right)$ farads.

Fig. 2 is a graph of time (t) plotted against the v.t.v.m. reading, using the values shown in Fig. 1. Two time scales are shown. The 10 -millisecond time scale is for use when making relay operatingtime measurements. ${ }^{1}$ For these measurements R_{3} should be 68K ohms. The 30-millisecond time measurement is for timing the release periods, ${ }^{1}$ and three resistors each having b8K ohms are used in series for R_{3}.

The resistors associated with the v.t.v.m. give a $10: 1$ voltage step-down for the conventional meter which has an input impedance of 11 megohms when the one-megohm probe isolating resistor is included. The voltage plotted in Fig. 2 is for the actual reading using this divider.

In measuring the operating-time difference between K_{2} and K_{3}, connections 1 and 2 go to Y; and Y_{3}, and 3,4 and 5 go to Z_{2}, Z_{1}, and Z_{3}, respectively. In measuring the relcase time between K_{3} and K_{2}, connections 1 and $: 2$ should go to Z_{1} and Z_{2}, while connections 3,4 , and 5 should go to Y_{3}, Y_{1}, and ζ_{2}, respectively. In checking the release time between K_{2} and K_{1}, connections 1 and 2 should go to Y_{1} and Y_{2}, while connections 3,4 , and 5 go to X_{3}, X_{1}, and X_{2}, respectively.

In checking the release times, it should be pointed out, the timing capacitor will receive an initial charge if the 140 volts is applied to the circuit before the relays are energized to set them for a release measurement. Either the relays should be energized before applying the 140 volts, or the timing capacitor should be shorted to discharge it after the relays have been enersized, just before making a measurement on release time.
The power supply used to operate the relavs is the source of the 140 -volt test voltage. Since this is a transformerless type of supply, care should be used during the test to be sure that the case of the v.t.v.m. does not become hot with respect to ground. Proper polarizing of the a.c. power plug will solve this problem.

05 F

Some Applications of the Semiconductor Diode

Simplified Keying and Control Circuits

BY JAMES G. LEE.* W6VAT

Aiyone who scans literature in the electronic field soon becomes aware of the rate at which new uses are being found for semiconductors. Their small size and weight, low operating temperatures and freedom from the need for a filament supply make them attractive in a multitude of applications. Particularly when modifications are to be made in a piece of existing gear, it may prove worthwhile to consider the possibility of substituting semiconductors for vacuum tubes, since they do not require the cutting of new socket holes and in other ways often facilitate a job that would otherwise be impossible to accomplish.

One example of the many ways in which advantage may be taken of these features is the combined differential keyer and automatic power-

Fig. 1 -Circuit of W6VAT's differential keying and control circuit. Capacitances are in $\mu \mathrm{f}$.; resistances in ohms. Resistors are $1 / 2$ watt unless indicated otherwise.
C_{1}-Paper or ceramic.
C_{2}-Electrolytic.
CR1-1N91 germanium rectifier (G.E., Sylvania).
CR_{2}-Silicon diode, 10 megohms or more back resistance (Hughes Aircraft HR10211).
$K_{1}-10,000-$ ohm d.c. relay (Potter \& Brumfield type LM).
$R_{1}-100,000-$ ohm control.
$R_{2}, R_{3}, R_{4}, R_{5}$-See text.
$\mathrm{R}_{\mathrm{i}}-1$-megohm control.
$\mathrm{R}_{7}-50,000$-ohm control.
V_{1}-See text.
control circuit shown in Fig. 1. The differential keying system (A) is based on a circuit described a few years ago by W5JNM. ${ }^{1}$ In this instance, one of the vacuum-tube triode sections has been replaced with a 1 N 91 junction rectifier, $C R_{1}$, while the v.t. triode section it replaces has been put to use in the power-control system (B).

With the key open, bias on $V_{1 A}$ is adjusted by means of R_{1} so that $V_{1 \mathrm{~A}}$ draws plate current through R_{2} to cause a voltage drop across this resistor sufficient to cut off the oscillator. Capacitor C_{1} in the amplifier grid circuit charges to full supply voltage which is adequate to cut off the amplifier tube.

When the key is closed, current from the supply flows through \dot{R}_{3}, all but a small portion of it via $C R_{1}$. This increases the drop across R_{3} sufficiently to cut off $V_{1 \mathrm{~A}}$, the drop across R_{2} disappears, and the oscillator is turned on. R_{2} is now merely a part of the oscillator grid leak. Activation of the amplifier is delayed because C_{1} must discharge through R_{5}.

At the instant of opening the key, C_{1} will start to charge, the principal charging path at this instant being $R_{3}, C R_{1}$ and R_{5}. The charging current is in such a direction as to tend to maintain cutoff on $V_{1 \mathrm{~A}}$. However, as the voltage across C_{1} rises toward the supply value, the charging current will decrease and $V_{1 A}$ will start to draw plate current which, of course, Hows through the cathode resistor R_{3}. This develops a voltage drop across R_{3} which is in opposition to the voltage charging C_{1}. However, $C R_{1}$ isolates the charging circuit from this opposing voltage to the extent that after a point in the charging cycle is reached where the voltage across R_{3} exceeds the voltage across R_{4}, all charging current will fow through R_{4}. Prior to this, charging current will flow in the two parallel branches in inverse proportion to their effective resistances. (The effective resistance of the $C R_{1}-R_{3}$ branch includes the effect of the opposing voltage due to $V_{\text {IA }}$ cathode current.) By suitable adjustment of R_{1}, the proper delay between amplifier cutoff and oscillator cutoff may be obtained.

Control Circuit

Another interesting application of the semiconductor diode is in the power-control circuit of Fig. 1B. Assuming C_{2} to be charged to a voltage that will cut off $V_{1 \mathrm{~B}}$ with the key open, C_{2} will be discharged immediately upon closing the key, the discharge current flowing in such a

[^14]
direction that C_{2} is conductive. The power relay therefore operates immediately. Upon opening the key, however, C_{2} must charge through R_{6}, since the charging current is in such a direction that $C R_{2}$ will not conduct. Therefore, the key must remain open for a certain length of time before K_{1} is de-energized. In this instance, $\bigcirc R_{2}$ must have a back resistance high compared to the value of the shunting resistance R_{6}. The delay time may be adjusted over a wide range by means of R_{f}. Since this adjustment will also affect the yoltage to which C_{2} will ultimately charge, R_{7} is used to compensate for this. With R_{6} and R_{7} ganged to a single control, the capacitor voltage will remain more or less constant with adjustment of the time delay.

Simple Delay Circuit

Another circuit for which many uses may be found is shown in Fig. 2. In this circuit, both relays will be energized immediately when the switch is closed. However, upon opening the switch, K_{1} will be de-energized immediately, but

Fig. 2-Delay control circuit. K_{1} operates instantly on both make and break. K_{2} operates instantly on make, but the delay on break may be adjusted by R_{1}. Resistance values are in ohms.
C_{1}-100- $\mu \mathrm{f}$. 250 -volt electrolytic.
CRI-G.E. IN92 germanium junction diode.
$K_{1}, K_{2}-10,000-o h m$ d.c. relay (Potter \& Brumfield type LM).
R_{1} - 100,000 -ohm 7 -watt wire-wound control (Mallory El00MP).
R_{2}, R_{3}-See text.
S_{1}-See text.
K_{2} will not release immediately because C_{1} must discharge through R_{1} and R_{2} (with R_{3} and the resistance of K_{2} in parallel). The discharge current of C_{1} flows in such a direction that $C R_{1}$ will not conduct, and therefore K_{1} is isolated from the delay circuit. The delay is adjustable from about one-half second to three seconds. If S_{1} is one pole of a keying relay, K_{1} may be used for muting the receiver in a break-in system, while K_{2} may be used for controlling the power supply.

There are many other ways in which the crystal diode may be used, one of the more recent examples being the differential keying system described by W2HUG ${ }^{2}$ in QST for April, 1959. And don't overlook the possibility of applying these devices in other circuits than those designed for keying and control. Their characteristics make them very useful in almost any circuit of the "go-no-go" type. $\square 57$ -
"Reich, "Diode Time-Sequence Keying for the DX-100." QST', April, 1959.

The "Brief-Case" portable antenna with sections extended.

A Brief-Case Portable Anten Loaded Dipoles for so Through 10 Meters

BY JO EMMETT JENNINGS,* W6EI

Ma.vy books and articles have been written on just as many types of antennas for portable use. The answer to the need for a truly portable antenna having wide frequency capabilitics and being very small was not found in conventional designs. Although the whip antenna as used in mobile equipment has done a remark-

[^15]ably fine job, it still does not lend itself to truly portable operation such as in hotels, in the rural areas, or in areas where a vehicle is not available. The antenna to be described fills the nead for this type of service.

Loss Factors

The design for this radiator (see photographs and Fig. 1) does not follow the general pattern.

Fig. I-The loaded arrangement shown at A is used on 80,40 and 20 meters. The loading coils, L_{1}, for all of these bands are wound with No. 12 or 14 wire, 4 turns per inch. The 80 -meter coil has 80 turns, 3 inches in diameter (two full lengths Air Dux type 2404T), the 40 -meter coil has 40 turns, $21 / 2$ inches in diameter (one full length Air Dux type 2004T), and the 20 -meter coil has 10 turns, 2 inches in diamater (Air Dux type 1604T). In all cases, the outer conductor of the 50 -ohm coax line is connected to the center of the coil. The capacitor C_{1} (a $100-\mu \mu \mathrm{f}$. air or vacuum unit) is tapped on at 8 turns for 80 meters, 4 turns for 40 meters and 2 turns for 20 meters from the center. Loading coils are not used on 10 and 15 meters,
the capacitor C_{1} serving as a matching capacitor.
Although a radiator with the center loading inductance was not recommended as being satisfactory, the first model made with an open loading coil proved to he very effective, and steps were tiaken to dress up the unit by putting on a plastic housing as well as a plug-in mounting for each coil. After ronstruction wis completed, accompanied by an increase in ere appeal, the antenna was connected to the same exciter, whereupon an attempt was made to establish contact with other stations. The results were most disappointing. The few stations hearing the signal complained of an extremely weak signal, while others couldn't hear the signal at all. The revision was disearded in favor of the original open design. Tests were carried on with the roil

Fig. 2-Sketch showing details of the antenna coupling unit. One of these units is provided for each band, except in the case of 10 and 15 meters, where the coil is omitted and the same unit is used for both bands with the connections shown in Fig. 1B.
in its original condition to assure us that all was working as well as before. From these experiences it was clear as to what had happened. Loss in efficiency was attributed to the capacitive loading of the enclosure and mounting. It also became evident that the loading coil was the eritical component in the system. The loading coil should he free from other objects, either eonductors or dielectrics. Loading capacitance from end to end was also important, as was the capacitance between turns. If such an antenna is to function effectively, the ideal condition lrould indicate the use of a large inductor with wide sparing between turns and as long as possible. This latest bit of information explains why many antennas have not been satisfuctory when the loading coils used in short versions of an antenna have been accompanied by external or internal capacitive loading.

Adjustment

In the tuning adjustment, it first requirement is that the antenna be in exact resonance at the

Close-up view of the 20 -meter assembly.

Antenna tuning units

 with and without the telescoping antenna units aftached. The units, from left to right, are for 20 meters, 40 meters and $10 / 15$ meters.

The antenna sections collapse into 15 -inch lengths. This view shows the 20-meter tuning unit in place.
transmitter frequency if a low s.w.r. is desired. Also, a small capacitor is used in series with the center conductor of the coax line. As can be noted in the diagram, the shicld of the coax is firmly grounded to the center of the inductor, while the center conductor of the coax connects through the series capacitor to a tap on the coil. The position of this tap is not critical and generally two or more turns are employed, depending upon the frequency. The lower frequencies, of course, require more turns than the higher frequencies. The series capacitor is adjusted to bring the s.w.r. to its lowest point. After a few attempts at tuning, the operator will find it simple and fast to make adjustments on any frequency, since tuning procedures are the same for each frequency. It is very common to get minisum readings where the meter will not move on the reflected power side, but will show full power in the forward position.

Antenna Sections and Capacitor

The sertions of this particular antenna were taken from surplus equipment and bear the designation AN29. They are made of aluminum and collapse down to 15 -inch length. Extended they are approximately 12 feet long. Our models use a small adjustable vacuum rapacitor known as the GSLA 120 (Jennings), having a maximum rapacitance of $120 \mu \mu \mathrm{f}$. For those not having such a capacitor available (and probably no one else does), a small air variable eapacitor having a maximum rating of 300 to 400 volts will work very well in this service. Approximately $80 \mu \mu \mathrm{f}$. is required for tuning. We have examined a collapsible whip antenna made by Kaar Engineering in Palo Alto, which is nuch stronger than the

AN29, but considerably heavier. It extends to about 15 feet and is available, we understand, in Palo Alto.

Various insulating materials may be used to support the antenna inductor assembly. In fact, the voltages developed on the higher frequencies are extremely low, but as the frequency decreases the voltage obviously will increase quite rapidly. We have operated these antennas up through to meters, and although they will operate on 80, much more care and skill is required in the tuneup. The Q on this frequency heromes much higher and with it a much narrower frequency range is permissible.

Operation

After using a portable antenna inside as well as outside of buildings, and at various locations, with different operators making the adjustment, this method seems to present a practical and interesting approach to portable antennas for those who cannot take the time, or tolerate the weight or space required for conventional jobs. One of the big advantages, of course, is that no ground is required on this system and, should the operator he on top of a building he can, in : fiew minutes, set up to operate a transmitter and compete with many other stations on the air, with satisfactory results as compared to ronventional stationary "quipment. It is helieved that an antenna could conceivably be used outside of a steel huilding and produce a curtain effect. Someone may find this out and report later as to results.

It is actually a pleasure to use a brief-case portable. I have worked across the continent as well as to the Islands with a 100-watt exciter. पFF-

- Recent Equipment-

National NC-270 Receiver

A^{L}LL too often in the past, reccivers which cover all amateur bands through 54 Mc . have been deficient in image rejection, stability, sensitivity, tuning rate, and freedom from hum modulation on 6 meters. Double conversion, improved tubes and components, and the tendency toward limited-coverage receivers have combined to bring usable reception on 50 Mc . within the realm of practicality for the receiver designer. This is not to say that all receivers that make a stab at tuning the 6 -meter band do it in an acceptable manner, but several models now on the market do. The NC-2 20 is certainly one of these.

The new "Cosmic Blue" National NC-270 is a double-conversion ham-band receiver that not only tunes the usual 80 -through 10 -meter range, but also includes the popular (i-meter band. It is housed in a blue-with-red-trim cabinet that measures only $85 / 8$ inches high, $155 / 8$ inches wide and 9 inches deep. At the base of the cabinet is a unique "Flip Foot" device which swings out from under the base and tilts up the front of the receiver. You can tuck the "foot" back under the cabinet and the set then rests in a flat position. The receiver also features a patented filter using ferrite-core coils, along with :t more conventional T-notch circuit. Together these provide at degree of selectivity which should fit the needs of c.w., sideband and a.m. enthusiasts.
The block diagram in Fig. 1 shows the lineup of the receiver, which is designed for low-impedance unbalanced input on all bands. A $100-\mathrm{kc}$. erystal calibrater. $V \times \mathrm{s}$, which may be turned on or off from the front panel, is connected to the antenna input circuit. Signals from the antenna are tirst amplified in the 6 BZ6 r.f. amplifier, V_{1}.

Next, they are converted to the first i.f. of 2215 kc . in the first converter, V_{2}, a 6BE6. The oscilliator, which is above the signal frequency by 2215 kc. on all bands except six meters, contains temperature compensating components for stability. All tuning, including that of the r.f. amplifier, first mixer and first conversion oscillator, is done with the single main-tuning control, which is a large knob centered on the NC-270 pancl. The knob's rotation is stepped down in a 12 -to-1 ratio with a rim pinch drive. This drive in turn moves the three-gang tuning capacitor. The tuning mechauism is also string-coupled to the pointer on the slide-rule dial, which is calibrated for the six amateur bands. The actual tuning range of each band is 3.5 to 4.0 Mc., 7.0 to 7.3 Mc., 14.0 to 1 t .4 Mc ., 21.0 to 21.5 Mc ., 23.0 to 29.7 Mc ., and 50.0 to $5+.0 \mathrm{Mc}$.
The $2215-\mathrm{kc}$. signal from V_{2} is converted to the second i.f. of 230 kc . in the crystal-controlled 6 BE6 second converter, V_{3}. From the second converter, the $2: 0-\mathrm{kc}$. signal is coupled into the filter, $F L_{1}$, mentioned earlier. A simplified circuit of this filter, which consists mainly of two tuncd circuits, Z_{1} and Z_{2}, is shown in Fig. 2. The inductors in these circuits are constructed of special materials which give them extremely high Q_{s} - in the order of 500 at 230 kc . A frontpanel selectivity switch, S_{1}, controls the coupling between these two tuned circuits ($S_{1 B}$) and also switches in capacitance to change their resonant frequencies ($S_{1 \mathrm{~A}}$ and $S_{1 \mathrm{C}}$). This gives stepped tuning through the pass band for convenient upper- or lower-sideband selection and, in addition, gives the following degrees ol selectivity: 600 eycles, 2.5 kc ., 3.0 kc . and 5.0 kc . at 6 db . down.

Fig. 1-Block diagram of the NC-270 receiver.

Fig. 2-The 230-kc. filter, composed primarily of two tuned circuits, provides four steps of selectivity and instant sideband selection in s.s.b. reception. Unless otherwise indicated, all capacitances are in $\mu \mu \mathrm{f}$.
The sideband switch mentioned in the caption for Fig. 2 is possible only in the $2.5-\mathrm{kc}$. selectivity position.

After leaving the filter, the $230-\mathrm{kc}$. signal is amplified in a 6 BA6 i.f. amplifier, V_{4}, and is fed into a T-notch filter, $l: L_{2}$. This circuit has its familiar notch and depth controls accessible on the front panel. When in the a.m. mode, the output from $F^{\prime} L_{2}$ is amplified in a second i.f. amplifier, V_{j}, and then demodulated in a diode detector, $V_{6 A}$. However, when in the c.w. or s.s.b. mode V_{5}, a 6 BA 6 pentode, functions as a pentode product detector with oscillator injection furnished by the b.f.o., $V_{\gamma A}$. The b.f.o. is automatically switched on when the mode switch is turned to s.s.b./c.w.

An S meter is part of the circuit of V_{4} and V_{5} and is calibrated in the usual S units. Although the instruction manual states that a $50-\mu \mathrm{v}$. signal will give an 59 meter reading, the model we had registered an S 9 (on hoth 28 and 50 Mc .) with a much smaller signal.
A.g.c. voltage is applied to the i.f. amplifier, V_{4}, and the r.f. amplifier, V_{1}. However, in the case of the r.f. amplifier, an a.g.c. clamping diode, V_{60}, is used to give a delayed a.g.c. action. Positive bias, supplied from the cathode resistor of audio amplifier V_{7}, prevents the clamping diode, $\mathrm{T}_{\text {fiD }}$, from couducting and, with the absence of a.g.c. voltage, the r.f. amplifier runs wide open. However, when sufficient a.g.c. voltage is developed to overcome the positive hias, the diode will conduct and the a.g.c. voltage will be applied to the r.f. amplifier. This allows the amplifier to work at maximum gain under weaksigual conditions but with a.g.c. protection under strong-signal conditions.

Following the a.m. detector, $V_{6 A}$, is another diode, ${ }^{\prime}{ }_{6 B}$, which functions as an automatic noise limiter. This limiter caan be turned on and off from the front panel by means of the mode switch.
Signals from either the a.m. or c.w./s.s.b. detector are amplified in two stages of andio amplification, $V_{6 \mathrm{C}}$ and V_{7}. An audio gain control is located in the grid circuit of the first audio amplifier. Maximum audio output is rated at 3 watts, or at about 1.5 watts with 10 per cent distortion.

The $\mathrm{NC}-270$ power supply delivers 105 volts regulated for the first converter and b.f.o., about 145 volts for the remaining stages, and the necessary heater voltages for the tubes. Power requirements are 105 to 125 volts, $50-\mathrm{fi} 0$ eycles, 75 watts.

Front-panel controls on the receiver include an r.f. gain control, depth and notch controls (for adjusting the T-noteh filter), b.f.o. pitch, antenna trimmer, standby/receive switch (which silences the receiver during transmit and has a spare set of contacts for controlling an external circuit or relay), earphone jack (which silences the speaker when an earphone is inserted), crystal calibrator on-off switch, and the dial SET control, which provides for lateral motion of the entire dial scale to bring the tuning pointer and calibration mark directly in line. On the rear of the chassis are the line cord, terminals which connect to the panel standby/receive switch, S-meter adjustment screw, 3.2 -ohm speaker terminals, and terminal strip and phono fitting for connecting the antenna.

Performance on 6 Meters

From ou-the-air use and laboratory tests, the performance of the 270 on 50 Mc . shapes up well. With the conversion frequencies used, the image responses are from signals $4 \pm 30 \mathrm{kc}$. below the indicated dial settings. This separation is enough to keep amateur images out of the band, but a strong local station between 45.57 and 49.57 Mc . might ride through in the band, even with the $\mathrm{NC}-270$'s rated $30-\mathrm{db}$. image rejection figure. Images can be reduced greatly by the addition of a low-pass filter, or even a simple antennacoupler circuit ahead of the receiver. The image in the second mixer is 460 kc . below the dial setting, but as it is 57 db . down, it will cause no trouble unless there is a service in the 49- to $50-\mathrm{Mc}$. region very close by. (Rejection of com-

[^16]parable images on the 10 -meter range of the NC-270 increases to 37 and 70 db ., respectively.)

Stability, both mechanical and electrical, is exceptional in the 270 , and the sensitivity on 50 Mc. is more than adequate. Tuning rate on six meters is probably as good as can be ohtained on a range that covers four megacycles. The c.w. note, while not absolutely T9, is good enough to satisfy all but the most critical c.w. men. There is no audible hum modulation on phone signals.

The NC-270 works well enough on 50 Mc. to encourage a v.h.f. enthusiast to design his converters for the higher bands so that they will work into the 6 -meter range rather than into lower bands. This would give him full coverage of the 144-Mc. hand and a four-megacycle spread in anv of the bands from 220 Mc. up that he may care to explore, and he can skip the construction of a $50-\mathrm{Mc}$. job. The NC-270 should do all he'll need in that range. - E. P. 'T'/E'. L. C.

The Heath Model VHF-1 Transmitter

ONCE upon a time. v.h.f. men had to build their own gear from scratch: there wasn't any other way to enter the world above 50 Mc . Surplus and, more recently, the marketing of a certain one-package station changed all that, of course. Those interested mostly in talking bought transceivers and were happy. Technically savvy fellows continued to roll their own. With a few exceptions the great swing to kit construction seemed to bypass v.h.f., and what units were put out in kit form were usually also available readymade. Many of us felt that v.h.f. gear was just too critical to put on a "yellow wire to pin 7 of $V_{11}(N S) "$ basis.

The number of Heath Model VHF-1 Senceas one hears on 6 and 2 these days (you can't miss identifying their controlled-carrier phone) would seem to prove that a fellow can put together a successful medium-power v.h.f. transmitter on the kitchen table. The Seneca is more than that really, for it has a few wrinkles most home con-
structors would think twice about including. Everything - r.f. section, power, audio, metering circuits and even a r.f.o. - is built into one $165 / 8 \times 101 / 8 \times 10$-inch decp package. Such construction isn't the usual thing at v.h.f., nor is oneknob band switching between 50 and 144 Mc., at least not in rigs that can run 140 watts c .w. input on 6 and 110 watts on 2 .

Circuit Information

The v.f.o. is an electron-coupled (lapp using a 6AU6, r_{1} in Fig. 1. The oscillator has two separate tuning ranges, $8.3333-9.000$ and $8.000-$ 8.222 Mc., for the 6-and 2 -meter bands. A single coil wound on a heavy ceramic slug-tuned form is used for both ranges. The tuning capacitor is a dual unit with dissimilar sections, and each section is shunted with fixed and variable padding eapacitors. One of these parallel combinations is switched in series with the coil for 6 meters, and the other is used on 2. The output of the v.f.o.

Fig. 1-Block diagram of the Heath Seneca transmitter.
is also switched between two slug-tuned coils. A 47 -chm resistor in series with these coils lowers their (Qs enough so that v.f.o. output is fairly constant across the band.

To minimize temperature variations the v.f.o. is built in a separate chassis with the tube outside and the chassis itself mounted as far as possible from other heat sources. A negative-temper-ature-coefficient capacitor mounted on the grid coil helps compensate for temperature changes that do occur.

The next two stages are mounted in another small subchassis and connected to the v.f.o. output with a short piece of coax. $V_{2 a}$, the pentode section of a gAN8, triples the v.f.o. output to the $24-\mathrm{Me}$. region or functions as a crystal oscillator/tripler. A five-position switch connects the v.f.o. or one of four crystal sockets to the $V_{2 \mathrm{~A}}$ grid and shorts out an r.f. choke in the cathode circuit when the stage is not supposed to oscillate.

The output of the oscillator/tripler is tuned by a panel-mounted capacitor and capacitancecoupled to the triode section of the bAN8. This stage either doubles to 50 Mc . or, when the rig is working on 2 meters, triples to 72 Mc . Another bund-switch section puts one of two plate coils across a second panel-mounted variable capacitor. Both 6AN8 sections are cathode-biased for protection in case excitation should fail.

The $50-$ or $72-\mathrm{Mc}$. output from the 6AN8 is capacitance-coupled through a length of coax to

Top view of the Seneca out of its cabinet. The meter, mounted behind the panel, is at the upper right, and the mechanism running the rest of the way across the panel is part of the v.f.o. dial and drive. Below it at the upper left is the v.f.o. subchassis. The length of coax connects it with the oscillator/multiplier subchassis below the meter. On the top surface of this subchassis are four crystal sockets. The enclosure near the middle of the main chassis houses the p.p. 6146 amplifier tubes and plate circuit. The tubes are at the lower end with the neutralizing switch and wires between them. The knife-type rotary band switch is at the opposite end of the plate lines. The pulleys and cord outside the amplifier enclosure allow the swinging link to be adjusted from the panel. The large black components are the power transformer (right) and h.v. filter choke. The audio tubes are at the lower left, and the rectifiers, VR and clamp tubes are to the right. On the rear apron are mike and output connectors, a ground post, the key jack and a socket for remote and relay control.

Fig. 2-The arrangement used to switch the 2E26 driver plate circuit from a parallel-tuned $50-\mathrm{Mc}$. tank to a series-funed $144-\mathrm{Mc}$. one.
the grid compartment of the 2 E 26 driver. This stage is mounted in a compartment underneath the main chassis. The 2 E 26 works straight through on 50 Mc . or doubles from 72 to 144 Mc . Fig. 2 shows how one coil and c:apacitor are switched from a parallel-resonant tank for 50 Me. to a series-tuned one for 144 Me. Working straight through would give much more output than doubling, of course, so the band switch cuts the screen voltage in the 6 -meter position to prevent damaging the final amplifier grids. The driver has cathode bias, also, to limit its no-drive plate current. C.w. keying is done in the 2 E 26 cathode circuit.

The push-pull 6146 amplifier grids are switched between self-resonant coils for 50 and 144 Mc. This is done by the same switch wafer that handles the driver plate circuit, and both grid coils are inductively coupled to the plate coil of the 2 E 26 .

The 6146 plate band-switching system is similar in principle to the one used in the $61466-$ and Z-meter amplifier described in the 1955 through 1958 editions of the ARRL Handbook. Lengths of silver-plated $1 / 4$-inch tubing function as leads to the $50-\mathrm{Mc}$. plate coil or as quarter-wave lines when the coil is shorted out. The shorting operation is performed by a special knife-type rotary switeh which is also silver plated. Plate voltage is applied through a 6 -meter r.f. choke to the center tap of the 6 -meter coil, and the coil itself acts as a e-meter r.f. choke. A single buttertly eapacitor, comnected plate-to-plate and mounted on an insulating board, tunes both bands. The swinging output link is a hairpin with a single turn coil in the middle and couples to both the quarterwave lines and the 6 -meter coil. This link can be adjusted from the panel via a cord and several pulleys, and a panel-operated loading capacitor is also provided.

Neutralizing $61+6 \mathrm{~s}$ on just one v.h.f. band is sometimes a task, and Heath has come up with a novel way of doing it simply on two bands. The self-resonant frequency of the 6146 is around 100 Mc., so 50 and $1+4$ Mc. require different types of neutralization. At 50 Mc ., crose neutralization (capacitance from each grid to the plate of the other tube) will do the trick. At $14 t$ Mc., adding additional grid-plate capacitance to each tube will cancel the effect of screen lead inductance and stabilize the amplifier. How to get both? Just provide two wires running up alongside each tube where they can "see" the plate and connect the grids to either the crossed-over or non-crossed wires with another switch section!

Fig. 3-The two-band neutralizing system. Curved lines represent lengths of solid wire which run up alongside the tube envelopes and couple capacitively to the plates.

The scheme works. too, and it proved quite simple to achieve good neutralization on both bands.

A 6AQ5 clamp tube, V_{9}, is connected so as to draw heavy current through the 6146 sereendropping resistor when excitation is removed from the final. This drops the screen voltage to a low value and proterts the 6146 s.

Un phone, final-amplifier screen voltage is derived from the cathode circuit of the carrier con-
 tion of the 6 Dl 7 which has 7 watts plate dissipution. The lower-rated triode section is used as a direct-coupled driver. $V_{7 B}$ is hiased sufficiently to limit its conduction (and the 6146 sereen voltage) to a low value; this results in a low resting carrier level. When audio from the 12A.J7 speech amplifier is applied to $V_{7 A}$, the conduction of $V_{7 B}$ is varied in accordance with the average voice level. This gives the controlled-carrier effect, and at the same time the audio signal is superimposed on the sereen voltage.

A single power transformer is used for both low- and high-voltage supplies. The l.v. supply delivers 300 volts at 125 ma . to the modulator and all r.f. stages except the final. A VR tube operating from this supply fixes the v.f.o. screen voltage at 150 . The h.v. supply (choke input, 62.5μ l. of output capacitance) delivers 600 volts at up to 250 ma . for the 6146 s .

The panel meter can be switched to measure (with suitable shunts and a multiplier) doubler/ tripler grid current, driver grid current, final grid current, final plate current and tinal plate voltage. This is everything one needs to know to tune the rig up and measure power input to the final.

On-off, t.-r. and mode switching are handled with a single four-position function switch. The SPEECH AMP.
positions are orf, e.w., standby and phone in that order, so that once the rig has warmed up with the switch on standby, e.w. or phone operation can be selected by tbrowing the switch to the left or right. The 6146 screens are then eonnected either to a dropping resistor or the modulator, and 115 v . a.c. is applied to a relay which grounds both power-supply center taps.

A spring-loaded push-button spotting switch which turns on just the l.v. supply is also provided. This switch is handy for tuning up the rig through the driver plate circuit and for checking the v.f.o. frequency without putting the rig on the air. The same switch also grounds the driver cathode so that its function will be the same if au open key is in the keying jack.

The rear-mounted accessory socket provides 115 v . a.c. which can be used to actuate a receiver muting or antenna relay during transmissions. Two other terminals are shorted by the function switch in the Seneca on standby and opened when the switch is in the phone or c.w. positions. Shorting two more terminals puts the rig on the air for phone operation when the function switch is in that position.

Construction

The Seneca's 102-page manual is awe-inspiring at first, but getting through it is just y matter of following one step after another for 35 to 40 hours of construction time. The instructions are quite specific for the most part, but it pays to cross check with a diagram wherever possible. The exact lead lengths which are given for all connections should be especially helpful to the beginner. It doesn't pay to skip the couple of hours it takes to check the parts against the parts list; there probably won't be anything missing, but the experience helps one to reach unhesitatingly for a dual linkage plate or a pinion gear stop later on.

The first bit of actual construction is the v.f.o. subassembly. Wiring is a little tight, but parts are assembled on "L"- and " U "'shaped pieces which then go together to make a box, and this helps keep things out in the open. Heath was smart to have constructors start off with the v.f.o. while they were fresh and alert. Not only is it the most critical part of the rig, but it is practically inaccessible once all the subassemblies are fastened and wired together. For the latter reason, DRIVER MOD.

Fig. 4-The two-tube audio section used in the Seneca for controlled-carrier a.m. Resistances are in ohms; unless otherwise indicated, resistors are $1 / 2$ watt and capacitances are in $\mu \mu$.
we suggest connecting filament and +B voltages to the v.f.o. as socn as it is done and checking it out then and there. If there are any fanlty components or wiring errors, it will be much casier to correct them at this stage than later.

Next comes the multiplier subussembly which makes up into a small box much like the vil.o. Following through with the subassembly technique, the builder then wires the driver mounting bracket and puts together the final amplifier housing. Then and only then does he start in on the main chassis. After the sockets and such are mounted, one wires the 6146 sockets and the audio section and power supply. We hit our first snag when the flexible coupling on the driver plate tuning capacitor failed to clear the bottom surface of the main chassis. This meant filing down the bakelite disk of the coupling until it. rotated freely. Then the two forward sel serews of the coupling had to be shortened (with a tile) to clear the nut holding a spade lug to the driver housing.

Gur other mechanical difficulty came while assembling the ingenious system of linkages which enables one knob to throw hand-switch sections scattered all over the seneca. The $6-32 \times 3 / 8$-inch serews just wouldn't catch on their nuts when the called-for lockwashers and plain washers were sandwiched together with the spacer, linkage plate and linkage arm. Perhaps this was because the washers called for in the parts list (and supplied in the kit) were 1 -inch o.d., $5 / 32$-inch i.d., while the linkage diagram specified No. 6 washers. Anyway, we could have substituted $\%$-inch screws, but it was Sunday and the stores were closed. Instead, we tiled down the $1 / 8$ inch spacers until the serews would cateh.

The v.f.o. dial and drive assembly is put together next. This goes smouthly until one gets to stringing the $50!\frac{1}{2}$-inch dial cord. At this point., make up the bent wire stringing tool and get off in a quiet corner with the tool, the dial cord and the v.f.o., and don't come out till you've mastered them all.

From then on the seneca takes shape rapidly. The v.f.o. and multiplier subchassis and the meter are mounted on the pancl, and one cud of the elaborate wiring harness is used to hook them all together. Next, the panel and chassis are joined, the harness is led around the chassis and wired in at numerous points, and the rig is linished.

Adjustment and Calibration

The step-by-step adjustment procedure given in the Seneca manual is complete and easy to follow. If you have upper and lower hand-cdge crystals for 6 and 2 meters, you can use them to tune up the rig and suve the v.f.o. calibration until last. Otherwise, start off by getting the v.f.o. on frequency. The manual tells how to do it using a frequency meter, a crystal calibrator or Whatever 6 - and 2 -meter erystals are available. The table of fundamental vs. output frequencies oomes in handy here.

Initial tune up is mostly a matter of sceing that

Bottom of the Seneca with shield covers removed. The 2E26 driver and its plate circuit are in the bottom center compartment along with the 6146 sockets and grid coils. The audio section and l.v. filter choke are at the lower right, and to the left are power-supply filters and bleeder resistors. Above them is the oscillator/multiplier subassembly. Visible to its right are a dial cord for tuning the 6146 plate capacitor and part of the elaborate band-switch linkage. That lengthy wiring harness comes ready to install.
the various tuned circuits eover all of the bind or hands they're supposed to. If not, you stretch or squeere the air-wound enils until they do. This wasn't necessary in our case, although we did have to move both 6146 grid coils slightly away from the driver plate coil to get optimuin eoupling.

The final is neutralized by coupling a grid-dip meter or indicating wavemeter to the 6146 plate (ircuit, applying drive and bending the neutrali\%ing wires for minimum indication on the meter. This proved to be as simple as it sounds. Then all that remains is to put plate and screen voltages on the biltis and practice tuning up the final, using a dummy load.

Operation

One thing about the Seneca which seems to mpress users of home-brew v.h.f. gear (besides the handsome two-tone green packaging) is the ease with which one can change bands. It takes longer to change the antenua than it, does to throw the band switch, retume the multipliers and driver and redip the final. At least that's true if ruu're on v.f.o. or have the crystal you want Ioaded in one of the four sorekets. We thought till we tried it that changing crystals through the trap door in the top of the cabinet would be impossible. Actually, the operation is merely difficult, ralling for long-nose pliers to position the rock and a blunt object to shove it in.

The Suncca v.f.o. will satisfy some and displease others. Those who want their a-meter signals to sound like the better h.f. ones won't be satisfied with anything but erystal control or a heterodyning or V'JO frequency shifter. Remember that, an 8-Mc. signal must be multiplied six times to get to 50 Mc . and 18 times to get to 144, and you will see that getting an absolutely stable, huzz-free, f.m.-iree signal from a conventional tuned-circuit v.f.o. is well-nigh
(Continued on page 1054)

Communication on 52,000 Mc.

W2 BXK and W2 BXK/2 Work 500 Feet on Highest Frequency Yet Used by Amateurs

BY M. C. GALE,* K2VND

A2:50 r.m. EST, November 4, 1960, we copied the words, "According to late news Khrushehev is out of office - how copy now?" The "news" amazed us no more than the fact that we had done it. We had copied an unarrauged message on $52,400 \mathrm{Mc}$! In the next twelve minutes, allowing 60 seconds for manual switching, we sent and received three messages altogether, at about 7 to 10 words per minute. Other meaus of communication were not used during the QS(): we copied all messages 100 per cent.
"We," in this case, were the Polytechnic Radio Club, W2BXK, situated in our own shack eight Hoors ahove street level at the Polytechnic Institute of Brooklyn, and W2BXK/2, on the sixth floor of Microwave Research Institute, about 500 feet away. (With the antennas used, this meant we were operating within the Fresnel region.) The frequencies used were $52,400 \mathrm{Mc}$. at W2BNK, and $51,500 \mathrm{Mc}$. at W2BNK/2.

Background

On July 27,1958 , Dr. A. H. Sharbaugh, W2UKL, and R. L. Watters, W2RDL, worked two-way (phone) at $50,000 \mathrm{Mc}$. over a distance of 150 fect. ${ }^{1}$ In the fall of 1959, the Polytechnic Radio Club, W2BXK, under the skillful prodding of Profs. Charles A. Hachemeister and Saul W. Rosenthal, determined to extend the record both in frequency and in distance. The combined facilities of the Polytechnic Institute of Brooklyn and Microwave Research Institute were made available to the club. The first two problems were

The 5 -foot parabolic reflector used for 50,000-Mc. communication at W2BXK. Workers are, left to right, John Anderson, David Zink, K2VOL, and Richard Barth, W2BWZ.
to get a sigual on the air at MRI and to get a dish on top of the shack at W2BNK.

W2BXK "Fixed Portable"

The transmitting equipment was first set up on the fiith floor of MRI. with the antenna inside the room fiacing the window. (The window was open during all tests.) In the late spring of 1960 , however, it was necessary to ab:andon the fifthfloor site and move the equipment up to the sixth floor. Dave Zink, K2VOL, and several of the other hams in the club lent an active hand in securing the equipment table firmly to the Hoor, so that it would be absolutely rigid during all tests, and in moving the equipment and setting it up. The wavelength used was so rmall (about 6 mm . or $1 / 4 \mathrm{inch}$) that the slightest movement of the equipment would cause variations in the transmitted signal. By the end of June, 1960, the power supply, modulator, klystron, associated hardware and 3 -foot (diameter) dish antenna were mounted firmly in place, and W2BAK/2 was on the air.

The Big Dish

Prof. Rosenthal had illready procured a chrome-plated copper searchlight retfector, five feet in diameter and with a focal length of $251 / 2$ inches, measurcd from the center of the dish to the focal point. It was now necessary to design and build a framework to support the dish on the roof of the shack, nine stories above strect level, capable of withstanding heavy winds and at the same time permitting the dish to be moved up and down, and sideways, so that the dish could be precisely aimed at the other antenna. The writer was given the job of designing the wooden antenna-supporting structurc. After the drawings had been made, Profs. Hachemeister and Rosenthal, who assisted throughout, arrauged for needied materials. Within weeks, the lumber ap)peared in the PIB carpentry shop, and MRI gladly furnished hardware. Other expenses were paid by the Student Council.

The antenna support was built in the spring of 1960 by Fred Brenker, a school carpenter, with the willing assistance of the club members, and was carried to the roof for assembly. The hams then gave the structure two coits of gray paint, and in June the dish was carried over from MRI, skidded up to the roof, and bolted in place.

These dishes have heen used as solar furnaces. We had to be careful, when working in front of the dish, nut to get too close to the focus. The dish had to be protected from the wather, so a tarpaulin was used to cover it when not in use.

Horizontal or Vertical?

It was then found that although vertical polarization was used at MRI, the horn at the PIB end was Lorizontally polarized. K2VOL drilled the necessary holes in the rim of the dish at PIB (W 2 BAK) and rotated the tripod horn mount 90 degrees. With both antennas now vertically polarized (the long dimension of the waveguide and of the horn was vertical), it was possible to begin tests.

The Early Tests

At both locations, the horn was located at the focal point of the parabolic dish, facing it, so that a narrow pencil beam could be aimed from one dish to the other. At the W2BXK end, an E-H tuner was bolted to the horn, and a 1 N34 erystal was connected to the tuner. An amplifier meter amplified the rectified square-wave output of the erystal diode. A surplus scope, donated by Barry Schindler (no call), was also used to display the 1000-cycle square-wave modulating signal directly.

The dish at W2BXK was aimed first optically, using a clear 200 -watt bulb at the focal point (the image of the filament could be seen clearly on the other building), and then more accurately by observing the meter on the crystal amplifier while a signal was being sent from the other end. An inexpensive telescope, bolted to the frame on which the dish was mounted, was used to check alignment.

Successful one-way tests were made during the summer. K2VOL had to get the klystron operating properly at. MRI (and sometimes this could take hours), then walk over to W2BNK and copy his own signal. He measured the path loss, plus transmitting-antenna insertion loss, and found it to be 8 to 9 db . This meant that the power at the receiving end was a little more than one tenth the power fed into the transmitting antenna. He also calculated the theoretical gain of the threefoot transmitting dish and found it to be 51 db . over an isotropic source, or approximately 48 to 49 db . over a dipole.

Several times during the summer other members of the club visited the shack and observed the erystal amplifier meter and the scope themselves. At one point, with all the attenuators at the transmitting end out, we read 100 volts on the meter. This meant that the received signal strength, at the detector, was approximately one millivoli! Considering that the rated output of the Raytheon QK295 reflex klystron used at MRI is 2 milliwatts (2 milliwatts peak power or 1 milliwatt average power using square-wave modulation), we were doing pretty well.

Two-Way Communication at Last!

In Scptember and Uctober, John Anderson (no call) assembled the setup used at W2BXK. Preliminary tests showed that though the klystrons were "identical," the one used at W2BXK/2 tuned best at $51,500 \mathrm{Mc}$., and the tube used at W2BNK delivered the most power at $52,100 \mathrm{Mc}$.

Tests conducted in October showed that two-

The other end of the 500 -foot path, $W 2 B X K / 2$. At the extreme left is the audio amplifier, atop the klystron power supply. The author is switching the antenna waveguide from transmitter to receiver. K2SFZ is at the key. Equipment shown includes speaker, monitor, tuned amplifier, crystal-bolometer-amplifier for tuning the klystron, blower, klystron and plumbing and dish.
way communication was possible. Since the klystron power supply aud modulator weighed 200 pounds, it was not feasible to take it to the roof of the shack. The power supply was left on the rool of the eight-story building, and an 8 -wire harness was run from the supply to the klystron and receiving equipment, located on the roof of the shack near the dish. Telephones in the shack and at W2BKK/2 at MRI provided liaison during the preliminary tests and immediately before the November + QSO.

The QSO

During the November 40 SO . Dick Barth, W2BIVZ, keyed the W2BNK transmitter, while John Anderson (no call) made the change-overs from transmit to receive between transmissions. Bob Reasenherg, K2SFZ, keyed W'2BXK/2, and KこVND switched the equipment during the 60 seconds (previously agreed on) between transmissions. A magic-tee directional coupler, which ideally acts like a t.r. switch at microw:ave frequencies, was tried during the tests and it was found that it introduced so much loss that the received signal was below the noise level. To minimize noise when receiving, the gain of the second amplifier at $W 2 B . X K / 2$ was set at a

Fig. 1-Schematic diagram of the $50,000-\mathrm{Mc}$. klystron, showing voltages used at $\mathrm{W} 2 \mathrm{BXK} / 2$. Beam (cathode) current was 19 to 20 ma.

Fig. 2-Block diagram of W2BXK/2. Equipment at the fixed station was similar, except for the use of a 5 -foot dish, and an isolation transformer for keying. Dashed line shows point where waveguide connection was made mechanically to either transmitter or receiver.
low value (approximately one fifth maximum) and the first-amplifier gain control was used to bring the signal up to the desired level. The messages were sent and received at 7 to 10 w.p.m., although specds up to 20 w.p.m. were readable. Reception was a solid S9 at both ends.

Technical

Raytheon QK295 reflex klystrons were for transmitting both ends. A reflex klystron is a microwave oscillator. A schematic diagram of the klystron is shown in Fig. 1. The repeller (or reflector) voltage was modulated by a 1000-cycle square-wave signal generated inside the power supply/modulator. The square-wave mordulation was detected by a 1 N 34 crystal diode at the other end, and then amplified in a tuned amplifier and fed into a loudspeaker.

Because the two stations were only about 500 feet apart, noise was not a proilem. Tnerefore, no noise-limiting filters had to be used ancad of the detector, and fairly wide lrequency muifts could be tolerated. The actual frequency drift during the tests was less than one part in one thousand, but at $50,000 \mathrm{Mc}$., this could mean a drift of as much as 50 Mc .

It is not difficult, then, to transmit a steady tone (1000 cycles). In order to send information, however, it was necessary to key the klystron. This was accomplished by breaking the line between the repeller and the power supply and inserting a key in series with a 110 -volt relay. At W2BXK, a $1: 1$ isolation transformer was used between the relay and the key to prevent sparking at the key.

RG- $98 / \mathrm{U}$ waveguide, operating in the $T^{\prime} E_{10}$ mode, was used to couple the klystron to the pyramidal horn at the focal point of the reflector. $\mathrm{E}-\mathrm{H}$ tuners were used in the line to insure maximum transmission of power to the antenna. In addition, an attenuator was used immediately after the klystron to prevent any reflected power from feeding back to the Klystron oscillator. Its purpose is similar to that of a buffer stage in a v.f.o.-controlled transmitter, but it does not provide amplification. At W2BNK/2, a slotted section, a probe and an amplifier meter were used to tune the oscillator for maximum output.

The transmitter at W2BMK was pretuned at W'2BIK/2, so that the probe was not needed.

Switching the antenna from transmitter to receiver was accomplished manually. S'tout metal clips were used to hold the waveguide sections together at the break point, instead of the usual serews. Sixty seconds were allowed between transmissions for switching.

The receiver consisted of an E-H tuner, a crystal, coax, a tuned amplifier and a loudspeaker. At W2BXK/2, a hi-fi amplifier was used aiter the tuned amplifier.

Acknowledgment

The club members who participated in the project were: Dick Barth, WこBWZ, president; John Anderson, no call; Howie Blonder, K2OIN; Steve Fabricant, K2RDP; Dave Goldman, K2YOW; Ed Pearlman, K2YAE; Bob Reasenberg, K2SFZ; Fred Reed, K2RHG; Barry Scinindler, no call; Dave Zink, KivOL; and K:2VND. The experiment would not have been possible without the help of Profs. Saul W. Rosentnal and Charles A. Hachemeister, and the school carpenters and others too numerous to mention.
[5F-

mostraysto

Remember that cute photograph on page 38 of December, 1960, QST: G. Ross Parsons, the Savannah Morning News photographer who snapped it, got his first exposure to amateur radio when he was assigned to cover the Field Day operations of the Savannah Amateur Radio Club. The "bug" bit him hard, he has become an active member of the Club, and is boning up for his own ticket!

A new edition of the Ham's Interpreter is at hand, although its publisher (DL1CU, Box 585, Stuttgart, Germany) does not indicate the price to U. S. buyers. The Ham's Interpreter now enables you to carry on (2SOs in nine languages English, French, Spanish, Italian, German, Swedish, Finnish, Serho-Croat, and Russian.

WøKQZ has done an excellent job in hiding a l-kw. linear and s.s.b. exciter behind this $101 / 2$-inch rack panel. The limits of the uniform tuning ranges were based on a desire to cover the 10 -meter band in one range.

New Horizons for Those Who Still Like To Roll Their Own

A Dead Art?

Wно builds his own gear any more? Why, the parts alone would cost more than a complete manufactured rig. And look at all of the headaches!

Strange as it may seem to the average operatortype ham, there still remains a sizable group who get more relaxation out of the hack saw and soldering iron than with the key or mike, and more satisfaction from a rig made by their own hands than a wallful of certificates. There is plenty of evidence to show that the do-it-ycurself trend is not confined to patios and pienic tables and that the number of hams who do much of their own construction is on the increase again. Even the once-impregnable receiver field is once more being attacked with renewed fervor hy those who feel that ther can turn out a job that suits them hetter and at lower cost. And if you've been misled to believe that homebrewing is for Willie and his two-tube blooper, take a good look at the compact kilowatt s.s.b. masterpicce turned out by Harold Bourell, W0KQZ. It was built in what free time he could find outside his regular duties as Engineer-in-Charge at the FCC office in Kansas City, with the aid of little more than an electric drill, a hacksaw and a few files.

Circuit

Before delving into the constructional end, which includes several ingenious imnovations, let's look at the block diagram of Fig. 1. The carrier from a push-pull $450-\mathrm{kc}$. oscillator is suppressed in the bridge-type balanced modulator using four $1 N 65 s$. The desired sideband passes through an 8-crystal lattice filter and 6AU6 buffer amplifier to a 12AT7 balanced mixer. (Carrier insertion, when needed, is provided through a 6 C 4 amplifier which bridges the balanced modulator and filter.)

In the balanced mixer, the $450-\mathrm{kc}$. sideband beats with the signal from a 6CL6 quadrupler driven by a Collins PrO operating in the range of 1587.5 to 2012.5 kc . The quadrupling provides a $1700-\mathrm{kc}$. tuning range for each band. The multiplied v.f.o. signal is balanced out in the mixer, and the resulting 7-Mc. beat is fed through successive amplifiers to a Class A 2E26 which drives the parallel 4×250B $A B_{1}$ final. Tu change bands, the signal from a 6AK6 erystal oscillator is mixed with the 7 -Mc. signal in the 6 X 8 , the oscillator frequency in each case being suitable to provide a beat at the desired output frequency.

The power chassis contains five separate supplies, one delivering 2000 volts for the final, and two delivering 300 volts for the final screen and exciter, in addition to two bias units.

Fig. 1 -Block diagram of WØKQZ's s.s.b. transmitter. Details are discussed in the text.

Tuning Systern

Seven circuits between the v.f.o. quadrupler and the grid of the final amplifier are inductively tuned, the tuning being ganged to the PTO and adjusted to track with it. The three circuits following the 6×8 are hasically tuned to the 80 meter band. To tune these circuics to the higherfrequency bands, fixed inductors are switched in parallel with the inductors of the basic circuits. A conventional pi network with tapped coil is used in the output of the final.

A unique feature of the circuit is the automatic drive control shown in Fig. 2. This circuit is similar to one used in the Collins KWS-1. If the final amplifier starts to draw grid current, the
voltage at the tap on the bias-supply voltage divider will increase. This slight increase in voltage will be fed, through an isolating rectifier and time-constant network, to the grid of the 6AU6 buffer feeding the 12AT7 balanced mixer resulting in decreased output from the GAU6 and the stages following.

Construction

Most builders would have difficulty in finding rcom on a standard 17×13-inch chassis for a kilowatt final. In this unir, W@KQZ has included the complete v.f.o. and s.s.b. exciter while still avoiding an overcrowded appearance. Some of the mechanical features rival Rube Goldberg's in principle without straying from the strictly

Below deck, the high-frequency stages are individually shielded. The row of banana jacks serve as guides for the bottom ends of the ganged exciter tuning slugs. The long shaft at the center is the band-switch control, mechanically linked to the exciter and final switches near the front, and to the driver switch at the rear of the chassis. The box in the lower right-hand comer contains the r.f. chokes and feed-through capacitors of the filters used in all power leads entering the chassis.

Fig. 2-Automatic drive-cortrol system. If the final is driven into grid current, the voltage change at the bias tap is reflected through the 6AL5 and time-constant network as an increase in bias on the GAU6, one of the tubes in the exciter chain, and drive to the final is reduced. Capacitances are in μ f. and resistances in ohms. R_{1} is an adjustable resistor.

practical in application. The final-amplifier compartment has a 5 -prong plug in the bottom, and the section can he removed for easy servicing by simply removing four hold-down serews. The 2 E26 driver stage is also removable. Perhaps the most ingenious is the system used for ganging the tuning of the exciter stages with the PTO. Referring to the top-view photograph, the train of gears near the panel, operating from the tuning shaft of the PTO, drives the long shaft to the right of chassis center. This shaft carries a pair of eccentric (for linear tuning at a rate proportional to the v.f.o. tuning rate) pulleys which wind up or unreel short, lengths of dial cord which serve in raise or lower a narrow aluminum rack carrying six of the seven ganged tuning slugs of the exciter. The slugs drop through holes in the chassis into the roils below deck. The rack is visible just to the right of the shaft. A Z-shaped arm attached to the rack, near the rear of the chassis, works through a slot in the wall of the 2E26 compartment to operate the seventh slug which tunes the 2E26 plate circuit. Each end of the slug rack carries a bushing which rides up and down on a $1 / 4$-inch guide post fastened to the chassis. A compression spring between a washer at the top end of the guide post and the
rack stabilizes the arrangement mechanically, and removes all backlash. Tubular housings covering the guide posts and springs may be scen at the ends of the rack. With this system, the r.f. output voltage of the 2 E 26 varics less than 10 per eent over the complete frequency range of the transmitter, including 10 meters.

The band switches of the final, driver and exciter, part of which are above the chassis and part below, are ganged to a common cuntrol shaft through mechanical linkages, all fabricated hy hand. An extension of the band-switeh shaft at the rear of the chassis permits mechanical coupling to a coaxial switch if a combination of antennas is used in covering the various bands. Still another feature is the hairline indicator on the dial which shifts automatically with the sideband-selector switch to maintain calibration. The slide-rule dial was printed on glossy paper from an electro made from a draftsman's original.

The project consumed spare time over a period of three years and four monthe, about six months of which was spent in cutting and trying to get the tracking system working properly. The total t:ost for components was $\$ 640$, which is reasonable indeed for a unit of this caliber.

The kilowatt final is in the shield box to the left, the pi-network inductor and switch mounted above the input and output capacitors. The fitting at the rear of the amplifier housing is for a blower which discharges into an air-tight subchassis on which the $4 \times 250 B$ s are mounted. The PTO unit is at top center with the 2E26 driver stage below it. To the right of center are the ganged-tuned stages. Audio, voice-control and low-frequency r.f. circuits are to the extreme right.

RACK MOUNTING HEAVY EQUIPMENT

TThe sketch shows a method of mounting heary equipment in standard panel racks to avoid the necessity of fumbling for the right hole while supporting the equipment with one hand. Place the mounting serews in the proper holes but from the rear of the ratck. The screws should protrude far enough in front to support the panel and to allow a nut to be placed on them. The head of the sorew should be jammed hard against the rack and a lock washer used to prevent it, from turning when the nut is tightene ' on the front. For better appearance, use "acorn" or oval-head nuts.

- Llewellyn Melbert, I'1l'SH

Fig. I-WIFSH's method of mounting heavy rack equipment.

ADAPTOR PLUG

TTHE sketch in Fir 2 shows an exploded view ol an adaptor plug which ad:apts a conventional u.h.f. series eomnector for mating with a phono jack. To assemble the plug, solder a 1 -inch length of No. 12 copper wire to the eenter conductor of an S(0-2:3! connectar. X̌w. sweatsolder the rap eud of a phono plug into the small end of an 8:3-1H hood. Slip the hood and plug assembly onto the B()-2:39 eonnector so that the No.. 1 \because wire inserts in the center conductor of the phono plug. Attach the hood to the connector with machine screws and solder the wire that is in the tip of the phono plug.

- Rolobert .J. Jarmutousti. KGIT'S

Fig. 2 -U.h.f. series-to-phone-plug adaptor.

HIGH-OUTPUT OSCILLATOR

TTHE circuit shown in Fig. 3 provides a higher Ootput than is normally obtained from a Franklin oscillator. I found that the 6AW8A tube performed hest in the circuit and that other triode-pentode tubes, such as the 6AN8, did not
do so vell. The $27-\mu \mu$ f. capacitor C_{3} has a critical value and, if made any larger, produces squegging. When connecting the cathodes to ground. eonnect the lead first to Pin 1. then through the center socket sleeve to Pin 6. and then to ground. With the tuned circuits $L_{1} C_{1}$ and $C_{2} L_{2}$, tuned to 80) meters, the output voltage measured about 40 volts r.m.s. across a 22,000 -ohm load. When truning $L_{2} C_{2}^{2}$ to 40 meters, the output voltage measured 15 volts r.m.s.
--.. Osrar l'. ''orth, W33IMR

Fig. 3-Modified Franklin oscillator. Unless otherwise indicated, capacitances are in $\mu \mu \mathrm{f}$., resistors are $1 / 2 \mathrm{watt}$.

TEMPORARY COAX CONNECTOR

Twramating oona to a conventional roax - connector is time-oonsuming and irritating when you are experimenting with different lengths of coax. The sketch in Fig. t shows a method for making temporary coumections. A binding post is soldered to the ceuter terminal of a PL-259 coax connector and is used to terminate the coax center conductor. A hose clamp holds the shield of the coax.

- Henry E. J. similh, IV5DAI

Fig. 4-Temporary coax connector.

EMERGENCY TRANSMITTER OPERATION

0casionally I have found it necessary to operate my HT-32 transmitter on frequencies for which I do not have an antenna to match the fixed 50 -ohm impedance of the pi-section output. Lacking an antenna tuner, I found that the simple arrangement shown in Fig. 5 will work satisfactorily with most random-length antennas.
The normal 50 -ohm pi-section output circuit is shorted to ground by means of a shorting plug which is inserted into the transmitter's output jack. This converts the output circuit into a simple $L C^{\prime}$ tank circuit ($L_{1} C_{1}$) which may be tuned to the cperating frequency by means of the regular output tuning capacitor, C_{1}. The antenna, which in my case consisted of a 10 -meter folded dipole with the lead-in wires tied together, is attached to a lug on the hot end of the final tuning capacitor frame. An isolation capacitor, C_{2}, is connected between the frame and the antenna. I used a $100-\mu \mu i$. mica capacitor, although a variable capacitor could be used. With the antenna connected, the final tuning capacitor is adjusted for peak output. In the case of the HT-32, the output level meter is sensitive enough to give an indication even though the output circuit has been shorted.

It should be noted that the scheme described here may degrade harmonic suppression characteristics. However, in the case of the HT-32, no difficulty was experienced with spurious radiation. Here is another word of caution: The high voltage remains on the plates of the 6146s when the HT-32 is in the stand-hy position. Be certain that the transmitter is off before removing the final-amplifier cage!
— Richard I'. Burns, IV9NVC

Fig. 5-The pi-section output circuit of the HT-32 is converted into on LC tank circuit by means of a shorting plug inserted into the transmitter's output jack. C_{1} and L_{1} are the regular capacitor and coil of the original circuit. C_{2} is an isolating capacitor and may be a fixed or variable unit.

TOOTHPASTE-TUBE KNOBS

TTry using the lid from a toothpaste tube as an attractive knob. Select a rubber grommet with an outside diameter that will fit tightly inside the toothpaste lid and at the same time will fit tightly over the control shaft, so that the comhination will not slip. There are many styles, sizes, shapes and colors of toothpaste lids available.

- Larry IV. Cannon, KØSFV

MOUNTING OF SMALL COMPONENTS

WHEN constructing transistorized gear, f:ow often have you looked for a suitable way to support the components and transistors, particularly when the transistors are to be permanently installed in the circuit?

A very simple and effective support can be made using a standard miniature 7 - or 9 -pin tube socket. Place the component leads in the lugs and after all the wiring is complete, but before lugs are soldered, install the transistors. Hold their leads with a pair of long-nose pliers and then solder all circuit connections. The socket can then be mounted inside the chassis by running a small machine screw through the center hole and fastening it with a nut and lock washer. Here at W2JIO, we've been making some of the newer transistorized gear with this method.

- Bob Gunderson, IFZJIO

PREVENT DIAL CORD SLIPPING

${ }^{5}$that dial cord on your receiver slipping? Dissolve a small picce of resin in alcohol and then paint the solution on the cord. The alcohol evaporates; the resin will prevent the cord from slipping.

- Bob Seals, L9.AHK

RANGER HEAT REDUCER

Too combat the v.f.o. drift caused by heat from the power supply in my Viking Ranger, I substituted silicon rectifiers for the $5 \mathrm{U} \neq$ rectifier in the Ranger power supply. I mounted the diodes on a small fiber board which was cut to fit into an old octal tube base that had been removed from a burned-out tube. The diodes were wired as shown in Fig. 6 and connected to the proper tube pins on the base. Then the assembly was plugged in the 5U4 tube socket on the Ranger. The new semi-conductor rectifier reduces the heat by at least 50 per cent and, since the voltage drop through the diodes is very low, the output voltage is higher by about 45 volts. Best of all, the v.f.o. now stabilizes in about $1 / 3$ the previous time. I used the Sarkes Tarzian $1 \mathrm{~N} 2489 / 6 \mathrm{OH}$ diodes that have a PIV rating of 600 volts and can handle about 750 ma . The diodes retail for about $\$ 1.83$ each.

- Louis A. Gerbert, IV8NOH

Fig. 6-Heat is reduced in the Ranger power supply by substituting semiconductor diodes for the $5 \mathrm{U4}$ rectifier. Points A, B, and C in the diagram are connected to the corresponding tube pins shown on the tube base.
CR_{1} through CR_{8} are $1 \mathrm{~N} 2489 / 60 \mathrm{H}$ diodes.

"HIGH-FREQUENCY FILTERS FOR S.S.B."

Shawan Road

Cockeysville, Md.
Technical Editor, UST:
My good friend Herman Shall, W3BWK, has pointed out an error in $\mathrm{m} /$ October, 1960, QS'T article. ${ }^{1}$ The statement "BT-cut crystals have C_{ρ} / C ratios around 4000 minimum" isincorrect. Herman tells me that the high ratios I measured on FT-243 surplus crystals result from the nature of their mounting. Actually, BT-cut crystals can exhibit ratios as low as 400, and some of the FT-243s on the surplus market may be AT cut. AT-cut FT-243s may have ratios around $\because 000$, and AT-cut crystals which are plated can have ratios as low as 200 . If the ratio is other than indicated in the article (around 4000) then the termination tuning will be slightly different. However, the range of tuning available with the specitied coils should be adequate for any surplus crystals available.

The itupedance formula on page 39 should read

$$
R_{0}=\frac{1}{2 \pi C_{0}^{\prime}}\left(\frac{f_{1}}{f_{1} f_{2}-f_{\infty}{ }^{2}}\right)
$$

Footnote 9 on that page outlines one way to find the motional capacitance, C. A somewhat better method which I have used consists of connecting a small capacitance, C_{1}, in series with the crystal (see accompanying figure), and

measuring the shift in resonant frequency. The resonant frequency of the erystal alone is

$$
f_{\mathrm{r}}=\frac{1}{2 \pi} \frac{1}{\sqrt{L C}}
$$

If $f_{r 1}$ is the resonaut frequency of the crystal and C_{1} combined, then

$$
f_{r 1}^{2}=f_{r}^{2}\left(1+\frac{C}{C_{1}+C_{n}}\right)
$$

Since $\frac{C}{C_{1}+C_{0}}$ is much less than 1 .

$$
f_{r 1}-f_{r} \approx \frac{f_{r}}{2}\left(\frac{C}{C_{1}+C_{0}}\right)
$$

or

$$
C=2 \frac{\Delta f}{f_{\mathrm{r}}}\left(C_{1}+C_{0}\right)
$$

where Δf is the difference ($f_{r 1}-f_{r}$) between the resonant frequencies.

Finally, that long equation from Herzog should read as footnoted below‥
The objective of this urticle was to provide the ham with a design for a good high-frequency s.s.b. filter using surplus crystals. Other designs would be employed if plated crystals were available. The difference is that the filter described can be built at a cost of less than $\$ 5.00$ and an interesting expenditure of time, if one is an old-time-type ham. Modern types who have not operated with tank coils wound of bell wire on shellacked Mother's Oats boxes might be better advised to purchase a crystal filter from one of the several companies making good ones!
-D. J. Healey, WYHEC

[^17] October 1960 , p. 35.

UNIDENTIFIED NOISE "SIGNAL"

7618 W . Palestine Ave. Chicago 31, Illinois

Technical Editor, QST:
Here is another "strange signal" report for the file. This signal was quite similar to those deseribed by K1JPH, K4PZJ, K0SIIN and others in "The World Above 50 Mc ." in the October 1960 issue of QST'. The main dissimilarity was that it occurred on ten meters.
The signal was heard on October 13 between 0145 and 0215 GMT in the Chicago area. It had a well-defined band width of about 2 Mc . and extended from about 28.0 Mc . to 30.0 Mc . There was nu carrier since it produced no beat note against by b.f.o. or against the a.m. stations it obliterated. One strong peak was noted at 28.8 Mc . with two weaker peaks at 28.5 and 29.2 Mc. With the exception of these peaks, the signal strength was almost constant. There seemed to be very weak "tones" apparent at the main peak and it had the ability of making even stronger a.m. signals unreadable. My beam antenna showed a slipht peak in the south. The signal can best be described as sounding like extremely strong thermal agitation or tube noise generated in a receiver.

The noise subsided rapidly, but not instantly, and when the band returned to normal, K6ALJ/9 and W9LYP, both 30 miles north of my QTH, were contacted. Notes were compared and it was found that the signal levels were the same and the apparent direction of origin was the same. We decided that if the signal originated locally, the power output must have been tremendous to get the coverage it did. If not local, of course, its origin or retlected origin was in the sky, even though the band was "closed."

I have heard this signal only on this one occasion, but I and the others will be looking for it in the future and hope to make further observations. Other stations that heard and commented on the "strange signal" were K9RSB, WGJMIL and K9INW.
---James li. Su'ansan, K'YQEB

RADIO BELOW 500 KC.

O26 Woodgate Ave., Elberon, New Jersey
'rechnical Editor, QSTT:
Some months ago, in talking with a group of electronics people. I happened to make a casual remark about radio signals at 16 kc . There wiar evebrow raising, and a rather new electronics engineer exclaimed, " 16 kc. . why, that's audio. There are no radio transmissions ou frequencies like thit!!' This flat statement, coupled with the fact that the v.l.f. regions have recently been the subject of renewed interest - witness the Prociedinus of the IKE for June 19.57 .-... made me think that a rehash of m.f., l.f., and ri.f. information might be of interest. I also think that the Hallicrafters advertisement in $Q S T$ for July 1960 may have generated some thoughts in the minds of hams about the lower frequencies.

Years ago, most amateurs knew all about the stations operating at the low frequencies ("long waves," as they then were called) in that a considerable amount of time was spent listening in this segment of the spectrum for code practice, press, weather and time signals. Contact any old-timer and he will thrill to tell you how he used to copy NAA, Arlington. Virginia, 2500 meters; POZZ, Nauen, Uermany, 12,600 meters; Y'N, Lyons, France, 15.000 meters; GB, Cilace Bay, Nova scotia, 7500 meters: IDO, Rome, Italy, 11,000 meters; and many others.

The first practical radio use of s.s.b. was on the "lows" when the A.T. \& T. Company opened up a transatlantic radiotelephone circuit in 1923 on 55 kc . This radio circuit continued after the advent of the high frequencies as an emergency link when magnetic storms would put the short waves out of operation.

In the mad rush to the higher frequencies in the early '20s, the average amateur forgot that activity continued on
$z_{\text {Attenuation, }} \mathrm{db}=10 \log _{10}\left[1+\left\{\frac{\left.\left[q_{3} \sqrt{q_{2}^{2}-1}+q_{2} \frac{\left.\sqrt{q 3^{2}-1}\right)\left(S_{3}-Z\right) Z\left[Z^{2}+\left(2 q_{14}-1\right) Z+2 q_{14}\left(q_{14}-1\right)\right]}{\left.2 q_{14}\left(Z+q_{14}\right) Z-q_{21}\right)(Z-q 3)}\right\}^{2}\right]}{q_{3}}\right.\right.$
the lows, even if in a more limited degree. Ifowever, I would suggest that the present-day ham whoisinterested in copying some good solid long-distance signals listen now and then in the real low end of the radio spectrum.

Let us take a look at what we have available for copy at this time, the latter part of 1960. The lowest group of reguIarly active stations is in the segment 15 to 20 kc . The lowest station appears to be our old friend NSS at Annapolis, Maryland, who is very busy on about 1.5 .5 kc . and other frequencies within this band. Next, we run into GBR at Kugby, England, who is on 16.0 kc. NBA, Balboa, Canal 7one, on 18 kr. is quite easy to tind in that he sends time ticks at one-second intervals 24 hours a day and signs his iall on the hour. NPG, San Francisco, is on about 19.0 kc .; and NPM, Pearl Harbor, Hawaii, can be heard on about 20.0 kc . GBZ, Griggion, Wales, has been read on 19.6 kc ., and we used to copy FUB, Paris, France, but it has been many months since he has heen heard. NKL at Jim Creek (near Seattle, Washington) did appear for quite a period in this band, but has been among the missing for a long spell. I am looking forward to hearing NA.A once again, but when he comes on the air his QTH will be Cutler, Maine, rather than Arlington, Virginia. According to the "Berne List," NAA is scheduled to be on 14.8 kc . when he bernmes active.

The band from 20 to 100 kc . seems to be quite unoccupied although in the international assignments every existing channel has one or more stations listed. At a favorable location one might hear VHP in Australia sending time signals on 44 kc . NSS runs RTTY at about 65 kc . and regular A1 on about 88 kc . The National Burean of Standards, Boulder, Colorado operates a standard frequency station, KK2XEI, on 60 kc ., but we have not heard it here on the east coast of the United States. There is a Loran (1) station or stations operating on about 100 kc .

In the band $100-200$ kc. there are numerous stations. One can copy NSS on 121.95 and 162 kc ., NPG on 144.95 , NOM on 130.05 and NBA on 147.85 kc . In this range 1 used to copy NAF. Newport, Rhode Island, and NAM, Norfolk, Virginia, but botn stations have not been heard in over a year. At times there is a considerable amount of activity with CFH. Halifax, Canada, 115 and 113 kc .; WCC, Chatham, Massachusetts, 130.35 and 147.5 kc .; WSL, Amagansett. New York, 133 kc .; and WSC, Tuckerton, New Jersey, working in this band. These stations handle shore-to-ship trailice, weather reports and press. WCC aends press every day on 147.5 at 0300 GCT. CFI and NSS also transmit RTTY on their regular frequencies. The stations listed above are some of those heard on the northeast coast of the United States, and the list will not necessarily be valid in other parts of the world.

In the range 190 to 400 kc ., one will find a large number of marine radiobeacons, aeronautical radiohparons and aeronautical range stations. These stations transmit a characteristic signal by A1 or A2, and many of the range stations give local weather at intervals using A3. A somewhat unusual station is the CONSOLAN station, TUK at Nantucket, Massachusetts, on 194 kc . CONSOLAN is a longrange navigational aid and one can obtain a bearing from this station by counting the number of dots and dashes received and using special tables as contained in U. S. Navy Hydrographic Office publication H. O. 117 (formerly H. O. 205).

From 400 to 50 kc . one will run into a large number of stations engaged in ship-to-shore traffic. Since 500 kc . is the international calling and answering frequency and distress frequence, it is always active except during the compulsory quiet periods, which are from 15 to 18 and from 45 to 48 minutes after every hour. On clear, cold, winter nignts it is nowsible to hear some real DX on 500 kr

What does one do for a low-frequency receiver!' Well, if he was smart enough to hang on to a set of honeycomb coils, like Joe Vogel at W1AEH, he has it made. Or, if one has a World War I Navy SE1420 receiver with loading coils, like Ed Raser, W2ZI, or Colonel Fred Elser. W6FB, he also is in husiness. There may be some of the old SE143s around, but I have not seen any. The same applies to the Wireless Specialty Co. IP500, which is the commercial version of the SE1420. Whatever became of the Navy RE recerver which used Western Electric peanut tubes (215A) and tuned down to 10 ke.? This equipment will do a dandy job if it can be found. Most of us can still find World War II surplus receivers such as the Navy RAK and RBL. 'These equipments cover the range of approximately $15-600 \mathrm{kc}$. The extremely well-heeled ham could consider the British Racal RA17, which with its l.f. converter RA37 will give him continu-

018 and most excellent coverage from 12 kc . to 30 Mr . And while it may sound like heresy, it is still possible for the average ham to build a one-tube autodyne v.l.f. receiver or a t.r.f. job that will give adequate performance!

One will find that at times there is much more static at the low frequencies than he is accustomed to hearing in the amateur bands. However, some time when aurora borealis or aurora australis puts you out of husiness on that 40 -meter sked, tune down to 16 or 122 kc ., and copy some good, solid signals, day or night, summer or winter. What is more important, you will berome acquainted with a large portion of the radio field which today is neglected by most amateurs.
-... IFilliam B. Gould, W'1NP

FIXED BIAS WITH AUDIO A.G.C.

87 Cecil Park
Pinner, Middlesex
England

Technical Editor, QST:
Regarding the article by W9IK, "An Improved AudioDriven A.G.C. Circuit,' ' in September QST, as an additional advantage this circuit can be modified so as to provide fixed hias to the grids of the a.g.c. controlled stages. This enables the cathodes of these tubes to be directly grounded, thus avoiding the use of crthode resistors and their attendant capacitors, which are only a source of noise. This method of applying a d.c. bias is not new but is becoming more popular; one recent receiver to employ it is the Geloso G209-R. ${ }^{1}$ However, it is often difficult to apply without a lot of complicated switching and extra components, and this is especially true if separate a.m., s.s.b. and a.m.c. detectors are employed. It is, however, relatively simple to apply if the u.g.c. voltage is generated after the detectors.

In the circuit diagram shown in Fig. 1 of W9IK's article. only one half of a 6AL5 diode is used, and the other half can most usefully be employed to apply a d.c. bias through the a.g.c. line to the controlled tubes. The diode acts as a simple clamp for the cathode of $V_{i A}$ thus ensuring that at no time will the a.g.c. line go more positive than the fixed bias chosen for the tuhes.

The take-ofi point for the a.c.c. can be adjusted to compensate for this added bias by the appropriate change in circuit parameters as mentioned in the article. The accompanving diagram shows these modifications and is selfexplanatory.

- K... K. Tr. Cranficld

I "Recent Equipment," QST, July, 1959.

THAT OSCILLATING CRYSTAL

Box 412
Sedona, Arizona
Technical Editor, QST:
l was interested to see the letter from K 7 HQN on page 49 of November QST, but think it more likely the oscillation came from a negative-resistance effect with back bias. For example, in Sylvania's " 40 Uses for Germanium Diodes," page 34 , it is stated, " When a germaniuin diode is connected in the 'back direction' ... in a suitable circuit it. will oscillate. Sustained operation of the crystal in its oscillating negative resistance condition produces appreciahle internal heating and will ultimately destroy the unit. Nevertheless,
(Continued on page 160)

Director Election Results License Application Forms Revised Examination Schedule

ELECTION RESULTS

The 1960 autumn ARRL elections have resulted in the reelection of four directors and two vice-directors, and election of two new directors and four new vice-directors.

John G. Doyle, W9GPI, received 2931 votes in the Central Division director race, as against 1161 votes for Harold Sever, WYFM. Milton E. Chaffee, WIEFW, retained the New England directorship with 13367 votes to 808 votes for Ernest i. Coons, W1FOE/W1JLN, and 382 votes for Robert Y^{\prime}. (Chapminn, WIQV. The Northwestern Division returned R. Rex Roberts, W7CPY, as director by 961 to 860 for Harold W. Johnston, W7PN, and 270 for William H. Bennett, WTPHO. In the Roanoke Division, P. Lanier Anderson, W4MWII, was reelected by 918 votes to 844 for Bannic L. Stewart, W4CE.

Ciari L. Smith, WのBWJ, becomes Rocky Mountain director, defeating Charles M. Cotterell, WOSIN, 612 votes to 185 . OM Smith, who lives in Denver, is a pilot and captain with Western Air Lines, Inc. No stranger to League alfairs, Carl was vice-tirector of his division in 1957-1958, and an assistant director 1955-1956. On February 11 he will romplete a two-lear term as Section Communications Manager (SCM) of Colorado; in 1955 he had served for a time as arting SCM. Carl is a past president of the Denver Radio Club, and was advertising manager of its paper, The Roundtable for two years. He is a member of the Amateler Radio Emergency Corps.

In the West Gulf Division, the new director is Dr. K. O. Best, W5QKF, of Corpus Christi, Texas. Texas and Oklahoma hams east $1+(0)$ ballots for him and $\overline{3} 36$ votes for Charles M. Sandidge, W5AZB. Dr. Best, a dentist, has been president and treasurer of the Corpus Christi Amateur Radio Club. A member of ARLSC, "Jack" Best has served for the pust four years as Section Emergency Coordinator for the southern Texas Section of ARRL. Though he can add "Lt. Comdr., USNR, Ret." alter his name, he serves as Texas State Coordinator for Air Force MARS.

Kounoke Division hams reelected Joseph \mathbf{F}. Abernethy, W4AKC as vice-director, by 1009 votes to 745 for Phil Wicker, W 4 ACY . John H. Sampson, jr., W70CX, was returned to the vice-t!irectorship in the Rocky Mountain Division, garnering $\overline{5} 10$ votes to 290 for Lester M. Richards, WOICR.

Bostonian Bigelow Green, W1EAE, won plection :s victellirector of the New England

Division with 2251 votes compared with 701 for Jeffrer I. Weinstein, W゙1JMIN. OMI Green is : technical writer emploved hy United Engineers, Inc. First licensed in 1927 as 111 AKC , he has held his present call since 1931 . He is past chairman of the Greater Boston imateur Radio Soriety, and holds appointments as Route Manager and Official Relay station. In the past your W1EAE has organized and helped to instruct several classes for prospective imateurs sponsored by the Boston Museum of Sicience.

Northwesterners chose Robert B. Thurston, W7PGY, for their vice-director, giving him 1291 votes to 797 for Mrs. Elizabeth II. 'Taylor. W7NJS. A eivilian telephone installer and repairman for the Naval Aur Station at Sund Point, the Beattle ham has served as treasurer of the North Seattle Amateur Radio Club and is currently its secretary. OM Thurston is on his second two-year term as SCM for Washington, and is PAM for the section. He is manayer of an lir Force MARS net, and is also an NCS for R.N7 in the Leque's Natioual Traffic sirstem. A 76 -month string of BPL attests to his activit: and skill as ORS and (OPS. OM Thurston also holds appointment as an Official Observer, and is a member of AREC.

Attorney Howard F. Shepherd, jr., W6QJW of Los Angeles, becomes vice-director of the Southwestern Division, having tallied 1938 votes to 728 for Lỵle Garner Farrell, W6KGC. Howard has on many occusions assisted amateur radio clubs and their members with legal problems: heeurrently serves as legal adviser to the los Ingeles Area Council of Radio Clubs and was its chairman in 1957-1958. He has been an assistant director of the Southwestern Division for the past two years, and is a past president and past direstor of the 50 Club of California, Inc. Fery active in emergency work, OM Shepherd is RACES Coordinator for California's Region 9, Deputy Chief Communicutions Ufficer of the Lus Angeles County Disaster Authority, and chairman of the Civil Defense frequency alloc:tion committee for his region of the state. He is adso Los Angeles SEC, and an OBS.

In the West Gulf Division, Ray K. Bryan, W5UYQ, unseated present vice-director Robert D. Reed, W5KY, by a vote of 1355 to 790. The Oklahonia City amateur is employed by the Federal Aviation Agency as chief of the radar engincering unit at the Ficcilities and Material Depot. Ray is on his third term as president of the Acronautical Center Amateur Radio Club. He is also Oklahoma State RACES Coordinator and ARRL Section Emergency Coordinator for ()ktahoma. Since he was first licensed in 1931,

OM Bryan has worn out the calls W6GLT, W3GLT, W4RMW, W8FXJ, and W9NLI. He's Chief Warrant Officer, USNR, Retired, and holds an ARRL Official Phone Station Appointment.
The two-year term of office for these elected officials, as well as those previously declared elected (page 78, QST for November, 1960) begins at noon on January 1, 1961.

LICENSE APPLICATION FORMS REVISED

Discontinuance of renewal Form $405-\mathrm{A}$ in the amateur service is the highlight of a number of changes in application forms and procedures just announced by the Federal Communications Commission. The present three-part 405 form, providing a renewal endorsement instead of a new license, has been a headache both to amateurs and to the Commission in the nearly nine years of its use in our service. When the revised uystem gets underway, a renewal application will be submitted on the usual Form 610 (which is being suitably revised) and a new license will be issued for the new tive-year term.

Also discontinued will be Form 602, currently used for applications for amateur stations set up on military posts as a recreational activity.

There will soon be only two forms for amateur applications. One is Form 610, which will be used by applicants for new amateur operator-only licenses, combination operator and station licenses (the usual case), or for a station license when the applicant already holds an operator license only. This form will also be used for applications for renewal or mudification of the above types of license.

The second is a new Form 610-A, which will be used by applicants for an additional amateur station, in amateur club station, and for an amateur station for recreational use under military auspices. This form will also be used for applications for renewal or modification of such licenses.

Use of the new forms will commence as soon as they are in distribution, which will be around the first of the year. However, all forms currently in use may continue to be filed until June 30, 1961.

Another important change in rules is the time limit within which an amateur may apply for renewal. At present, an amateur may so apply any time after 120 days prior to the date of expiration of his license. FCC has now ehanged this to 60 days; in other words, using the new Form 610 when available, applications for renewal should not be submitted earlier than two months before license expiration.

'PEAC'

The 1959 Geneva radio conference, like its predecessors, found a major problem to be the allocation of the extremely-crowded frequency range between approximately 4 and 27.5 Mc . That task was so difficult, in fact, that Geneva was unable to solve it directly. Instead, the conterence set up machinery for the ereation of a
"Panel of Experts", to consist of the heads of the four permanent organs of the International Telecommunications Union (Secretariat, International Frequency Registration Board, CCIR, CCITT) plus up to seven additional highlyqualified technical experts from various parts of the world. This panel is assigned the task of studying the congestion in $4-27.5 \mathrm{Mc}$. and coming up with proposed solutions. It is now contemplated that this panel, when chosen this coming Spring, will meet in Geneva next September, and again in the autumn of 1962 . Its report would then be laid before the ITU Administrative Council for approval, and the possible ralling of another radio conference should that be necessary to accomplish the proposed solutions.

For the immediate purpose of nominating one or more U.S. candidates for the Panel of Experts, the Department of State recently extended invitations to a limited group of experienced people to participate in a Panel of Experts Advisory Committee, or "PEAC." General Manager A. L. Budlong, W1BUD, and Asst. General Manager .John Huntoon, W1LVQ, were asked to serve on this committec. At this writing, only one preliminary meeting of the group has been held; another was in prospect for December. While the current series of meetings deal primarily with selection of the U. S. candidate for the panel, it is expected that PEAC will develop into at least the core of the group to proceed with lurther plans, as they may develop, for the next conference. We shall report developments as they take place.

W3PHL LICENSE SUSPENDED

Violations of FCC rules 12.113 and 12.133 at various times between April 26, 1956 and March 20, 1959, have resulted in the suspension of the Advanced Class amateur radio uperator license of Frederic C. Doughty, W3PHI, for a six-month period beginning October 17, 1960.

The Commission first ordered the suspension on May 6,1959 , citing the licensce for sideband frequencies extending outside the limits of the amateur band (in violation of Section 12.113); for failure to reduce or eliminate spurious radistions intense enough to cause interference in receivers of good design; and for not employing means to assure that his transmitter was heing modulated within the limits of proper technical operation (violation of Section 12.133). W3PHL filed a timely request for a hearing, and the suspension was automatically stayed. Two hearings were held, one in Washington and one in Philadelphia, and both the FCC's Safety and Special Radio Services Bureau and Mr. Doughty filed extensive briefs and proposed findings of fact. W3PHL contended, among other things, that he was using (on 7206 kc .) a special system of high-level modulation with reduced carrier, and that the Commission's monitoring equipment was not capable of accurately measuring his particular type of emission. However, a 21-page initial decision issued by the FCC hearing examiner in

August of this year found that the violations had occurred as charged, and that a six-months' suspension was in order.

At this point Mr. Doughty got in touch with the League's General Counsel, contending that FCC had applied its "commercial" rules to his case: that FCC monitoring equipment could not evaluate his signal properly; and that his oscilloscope should be adequate insurance as to whether his signal complied with regulations. He telt that the results of his hearing constituted an unfavorable precedent which could be used against other amateurs. Counsel, after a thorough examination of all the documents and consultation on technical points with members of the Le:ague staff", found that the "commercial" rules were in reality Part 2, which are general regulations for all FCC services; that there was adequate evidence to show that W3PHL had many times transmitted with excessive handwidths and spurious emissions above 7300 ke.; and that an oscilloscope is not necessarily insurance of proper operation - rather, in questions such as whether there is intense spurious radiation outside the amateur band, it gives no indication one way or the other. Counsel therefore found no danger to the amateur service as a whole resulting from the proceeding against W:3PHL.

The docket was finally brought to a close on Ortober 12, 1960, when the Commission :adopted the initial decision of its hearing examiner and ordered the suspension into effect as of October 17, 1960.

EXAMINATION SCHEDULE

Tnue Federal Communications Commission will give Extra and General Class amateur examinations during the first half of 1961 on the following schedule. Remember this list when you need to know when and where examinations will occur. Where exact dites or places are not shown below, information may be obtained, as the date approaches, from the Engineer-in-Charge of the district. Even stated dates are tentative and should be verified uith the Engineer as the date approaches. No examinations are given on legal holidars. All examinations begin promptly at 9 a.m. except as noted.

Albuquerque, N. M.: April 8, at 11:00 A.M.
Anchorage, Alaska, 53 U. S. Post office Bldg. : By appointment.
Atlanta, Georgia, 718 Atlanta National Bldg., 50 Whitehall St., S.W.: Tuesday and Friday at 8:30 A.m.
Bakersfield, Calif.: Sometime in May.
Baltimore 2, Md., 400 McCawley Bldg.: Monday and Friday, 8:30-10:00 a.m. and by appointment.
Banzor, Me.: May 10.
Beaumont. Texas, 301 P. O. Bldg.: By appointment only.
Billings, Montana: Sometime in May.
Birmingham, Ala.: March 1, June 7.
Boise, Idaho: Sometime in April.
Boston, Mass., 1600 Customhouse: Wednesday through Friday y:00 a.m. to 10 a.m.
Buffalo, N. Y., 328 P. O. BIdg.: 1st and 3rd Fridays.
Charleston, W. Va.: Sometime in March and June.
('hicago, Ill. 826 U. S. Courthouse: Friday.
Cincinnati, Ohio: Sometime in February and May.
Cleveland, Ohio: Sometime in March and June.

Columbus, Ohio: Sometime in January and April.
Corpus Christi, Texas: March 9, June 8.
Dallas. Texas, 401 States General Life Insurance Bldg.: Tuesday.
Davenport, Iowa: Sometime in January and April.
Denver, Colo., 521 New Customhouse: 1st and 2nd Thursditys, 8 A.m.
Hes Moines, Iowa: Sometime in March and June.
Detroit, Mich., 1029 Federal Bldg. : Wednesday and Friday.
El Paso. Texas: June 15.
Fairbanks, Alaska: Sometime in May.
Fort Wayne, Ind. : Sometime in February and May.
Fresno, Calif.: Sometime in March and June.
Grand Rapids, Mich.: Sometime in January and April.
Hartford, Conn.: March 1.5.
Ilonolulu, Hawaii. 502 Federal Hldg.: Monday through Friday.
Houston, Texas, $3: 6$ U. S. Appraisers BIdg.: Tuesday and Friday.
Indianapolis, Ind.: Sometime in February und May.
Jackisun, Miss. : June 7.
Jacksonville, Fla.: April 23.
IInnean, Alaska, 6 Shattuck BIdg.: By appointment.
Kansas City, Mo., 3100 Federal Office Bldg.: Thursday and Friday, 8:30 A.m. to 1 :(K) p.m.
Klamath Falls, Ore. : Sometime in May.
Knoxrille, Tenn.: March 22, June 21.
Little Rock, Ark.: February 1, May 3, 1:00 p.m.
Los Angeles, Calif., 849 Sio. Broadway: Wednesday, 9:00 A.m. and 1:00 P.m.

Louisville, lentucky: Sometime in February and May.
Marquette, Mich.: May 10, 10 A.m.
Memphis, Tenn.: January 12, April 6.
Miami, F'lu., 312 Federal BIdg.: Thursuay.
Milwaukee, Wisc.: Sometime in January and April.
Mobike, Ala., 419 U. S. Courthouse and Customhouse: Wednesday by appointment.
Nashville, Tenn. February 3, May 3.
New Orleans, La., 608 Federal Bldg.. 600 South St.: Monday through Wednesday; code tests Monday at 8:30 A. N.
New York, N. Y., 748 Federal Bldg., 641 Washington St.: Tuesday through Friday:
Norfolk, Va., 102 Federal Bldg. : Monday through Friday except Friday only when code test required.
Oklahoma City, Obla.: Jantary 18, April 19.
Omaha, Nebr.: Sometime in January and April.
Philadelphia, Pr., 1005 New U \&. Cuntomhouse: Monday through Wednesday, code tests 8:30-10:00 a.m.
Phoenix, Ariz.: Sometime in January and April.
Pittshursh, Pa.: Sometime in February and May.
Portland, Maine: April 11.
Portland, Ore., 201 U. S. Courthouse: Friday, 8:30 a.m.
Rapid City, S. D.: May 13, 8 A.m.
Roanokc. Va.: April 1.
St. Louis. Mo.: Sometime in February and May.
St. Paul, Minn., 208 Federal Courts Bldg.: Fri., 8:45 A.s.
Salt lake City; Utah: March 10. June $9,1: 00$ P.m.
san Antonio, Texis: Fehruary 9-10. May 4-5.
San Diego, Calif.. Fox Theater Bldg.: Wednesday; by appointment.
San Francisco. C'alif., 32:3-A Customhouse: Friday.
San Juan, P. K., 323 Federal Bldg.: Friday.
Savannuh, Ga., 214 P. U. Bldg.: By appointment.
Schenectady, N. Y.: March 15-16, June 14-15.
Seattle, Wash., 802 Federal Ottice Bldg. Friday.
Sioux Falls, S. D.: March 21, June, 20. 10 A. m.
Spokane, Wash.: Sometime in April.
Syracuse, N. Y.: Sometime in Januars and April.
Tampa, Fla., Koom 201, 221 No. Howard Ave.: By appointment.
Tucson, Ariz.: Sometime in April.
T'ulsa. Okla.: February 16, May 18.
Washington, D. C.. 718 Jackison Place, N.W.: Tuesday and Friday, 8:30 a.m. to 5 p.m., Code tests 9:30 A.m. and 1 p.м Wichita, Kansas: Sometime in March.
Williamsport, Pa.: Sometime in March and June.
Wilmington, N. C.: June 3.
Winston-Salem, N. C.: February 4, May 6.
NOTE: Only General Class and Amateur Extra Class license examinations are given at FCC offices and examining pointslisted above. All examinations for Novice, 'Technician and Conditional Class liceuses are conducted by volunteer supervisors.
(Continued on paye 158)
A and B are completed die sets. The set at A has a die made from sheet steel. In B the die is made from steel rod. C shows the completed rivet setter described in the text. The extra hole is not functional.

Special Tools for Cleaner Jobs

BY C. E. MILLER.* WIISI

That Professional Touch

IN the building of homebrew gear for the ham shack most amateurs strive to achieve the clean appearance of factory-built equipment. Often one of the chief hindrances in attaining this objective is the lack of special tools needed to do a proper job. The trend toward professionallooking construction has been helped a great deal recently by the appearance in wholesale houses of inexpensive hand tools outside the normal line, such as shears, hand brakes, nibblers and other aids of similar nature. Two problems which have received less attention are those of joining sheet metal (as in fabricating a chassis) and of making the small rectangular holes required for transistor sockets. eertain types of connectors and other fittings.

Tools to do these jobs can be made quite easily with no more than a drill press and a small assortment of files. Of course, there is little point in spending two or three hours making a tool that will have only occasional use. However, the more ardent in the ranks should find these items well worth the time and effort required to make them.

Joining Sheet Metal

There is no question but that a spot welder is the ideal tool for putting a chassis together. However, steel and aluminum require welders of different types and most of us have access to neither type. Thus we normally resort to machine serews and nuts. These have the disadvantage of size and often require more than desirable clearances. The author has been using rivets in this application for some time now with very gratifying results. Flathead aluminum rivets (tapered head like the head of a flat-head screw) make the job easy and result in a nice clean appearance with a minimum of projection. The rivets are easy to obtain from most surplus outlets at reasonable cost. It was found expedient to standardize on a rivet approximately 0.1 inch in diameter for strength, and $1 / 2$ inch long. They can be easily cut to shorter length if necessary with diagonal cutters.

[^18]An easily-made rivet setter is shown to the right in photograph 1C. The shank is a piece of -inch steel rod one end of which is turned down slightly to form a shoulder. This end is then forced into a hole drilled at one eud of a $1 / 2$-inch square steel bar which serves as a holder. The shank end of the holder is filed down to slightly more than the diameter of the shank so that it can be used in cramped corners, as shown in photograph 2. A conical depression is made in the business end of the shank by carefully locating its axial center and then cutting out with the end of a 1 -inch drill. If a spherical burr of the right size is available, the conical depression can be transformed to one of spherical shape to give the finished rivet a more rounded appearance.

Using the Rivet Setter

The two pieces of material to be riveted together should be clamped to maintain alignment while the rivet holes are being drilled. The rivet holes should not be too snug since the rivet shank will expand as the rivet is being set. Any burr that remains after drilling should be removed. The holes should be countersunk slightly on one side to receive the rivet head, but the countersinking should not be deep enough to bring the head flush with the surtace, since this may prevent the rivet from drawing up securely. On the other hand, if the countersinking is too shallow, most of the rivet head may be shaved off, resulting in a weak bond.

After the rivet has been put in place, the assembly should be turned over with the rivet head resting firmly on a flat metal surface while the shank is cut off with diagonal pliers. A little practice will show how long to leave the shank to get a clean result with your setting tool. This length is usually longer than one might at first expect. With the shank of the riveter against the cut end of the rivet, several light blows with a hammer against the shank end of the holder are usually sufficient to set the rivet. The head of the rivet will be forced to conform to the cavity made by the countersink, and any excess is easily carved off flush with a knife.

Cutting Rectangular Holes

Making clean holes in a chassis is sometimes a problem. For round holes there are various punches, cutters and sars available which are quite satisfactory. Such is not the case for rectangular holes, although there is a limited choice of punches for making square holes. Making holes for transistor sockets is particularly annoying. In addition to the work of drilling and filing out the hole, it scems that if the fit is not perfect, the socket either won't go in at all or it falls completely through. The author has developed a very simple yet extremely effective punch for these holes. Two types are shown in photographs 1A and 1B. Both types consist of three parts - the punch with guide pins, a guide block, and the die. The main problem associated with rectangular punches is in maintaining accurate alignment between the punch and the opening in the die. Unless this alignment is accurate, hoth the chassis and the die may be mangled. The guide block assures this alignment.

In use, two holes are drilled for the guide pins. The ends of the pins are ground to points so that they may be used as a prick punch in accurately spotting the hole centers. With the guide pins inserted in the holes, the guide block is slipped over the pins on the opposite side of the chassis, and then the dic is slipped over the guide block. If the die is of the type shown in photograph 1 B , it should be placed on a firm flat surface when cutting the hole. If the die is of the Hat-plate type, shown in photograph 1A, an opening must be provided underneath for the punch and guide block to pass after going through the dic. With either style of die, a single sharp blow with a hammer on the punch end is all that is required to make a clean hole in aluminum of ordinary chassis weight.

Making the Punch

If a piece of bar steel having a cross section of

The rivet setter is designed so that it can be used in cramped quarters. This view also shows some of the completed rivetings.
the same dimensions as the desired hole canuot be found, a piece of larger cross section may be ground and filed down. This was done in the case of the punch in photograph 1B.

A sufficient length should be trimmed down to allow the guide block to be made by cutting it from the end of the punch. This will assure that the punch and the guide block will have the same cross-sec-tional dimensions which is highly importaut. 'The length, or thickness, of the guide hlock should preferably be approximately the sume as the largest dimension of the hole to be cut. This will make the broader sides of the blork approximately square.

Before cutting the guide block off, the holes for the guide pins should be drilled, remembering that the holes must have sufficient depth to go well into the punch after the guide block has been cut off. After scribing the line where the cutoff is to be made, make a prick-punch mark on either side of the line to serve as a key in reassembly. With a handmade job like this, parts will seldom fit perfectly except with the original orientation. The pins should have a diameter no greater than half the width of the punch. Steel rod or even the shanks of old drills may be used for the pins. The pins should make a force fit with the holes in the punch. If the fit is so loose that the pins fall out, they can be tightened by Hattening them slightly with a hammer and then forcing them into the punch. Prick-punching the sides of the punch, directly over the guide-pin holes, will also help. The guide block should slip over the pins with finger pressure. The holes may be reamed out, if necessary, to accomplish this. Ii the fit is too loose, the pins may be sprung apart a hair to provide a little friction. As mentioned previously, the pins should be ground to a sharp point before inserting them in the punch.

Particularly for the larger sizes of punches, cutting may be facilitated by filing the cutting face of the punch in slight V shape both laterally and longitudinally. This has been done with the punch in photograph 1A.

The fussiest part of the job is in making the die, although it is not too arduous since most of the cutting can be done ou a drill press. The die can be made from sheet steel $1 / 2$ inch or more in thickness, as shown in photograph 1A, or of large-diameter rod as shown in photograph 1B. The hole outline is scribed on the face of the die and a series of holes is drilled within these boundaries. The remaining metal may then be removed by filing. With a good assortment of files,
this job isn't as difficult as it sounds. Care, of course, should be used when working close to the seribed line, and repeated trials with the punch should be made until a snug fit is achieved. When finished, the punch should pass freely through the die but with no noticeable slop. In the final fitting stage, the punch should be inserted as far as possible into the die. Then if the set is held to a light, the points where binding is occurring may be determined.

When rod stock is used for the die, a similar process is followed, but the bottom end of the die is drilled out with a large drill to within die thickness of the other end, as shown in the sketeh of Fig. 1.

Fig. 1-Sketch showing how steel rod is drilled out before cutting the die opening. The drilled hole should have a diameter slightly greater than the longest dimension (diagonal) of the die opening.

Material

Although the use of hardenable steel might be desirable, the tools shown in the photograph were made of mild steel. This appears to be satisfactory for use on relatively soft materials. Neither punch shows much sign of wear and both are continuing to make clean holes after being used more than 100 times on aluminum. It is felt that the ideas presented here may be improved upon, and it is hoped that others may find these aids as useful as has the author. $\square 5 F$

. . . 98-MIc. activity was at an all-time high, with 21 stations reporting working all continents. W6FQY did it on phone.
. . . George Grammer descrihed a series of bread-board 28-Me. rigs of medium power, and it's a good thing there was no TV in those days!
. . . W9NY won the award for the most raluable and consistent work in the development of the 10 -meter hand during 1934.
. . . Technical articles included design notes for speech amplifiers and construction particulars on some pocketsized superregenerative receivers. One of the hints for experimenters this month showed how to feed a.c. to an antenas in order to melt the ice from it.

The National Company pasted a real Christmas seal onto its ad on page 49 of erery copy of this issue of ("s' 1 '.

Bilent keys

IT is with deep regret that we record the passing of these amateurs:
W1CB, Leo H. Daykin, Burlington, Mass.
K1COV. Harold T. Shervington, sr., Groveland, Mass.
W2IBS, Ozelious Clement, Brooklyn. New York W2QQA, Richard V. Young, Rochester, New Joork
K2UIU, Eugene D. Kiunzler, Augusta, (ia. W3IID, David F. Danner, Lemoyne. Pa. W3KTZ. John S. Dickey, Meridan, Pa. W3LJO, Alton H. Goud, Willow Grove, Pa. W'3ROA, Elmer C'aldwell, Altoona, Pa.
K4CPO, Jesse R. Yewitt, Nashville, Tenu.
$W 4 N W$, Harold P. Danforth, Orlando, Fla. W4OEV, William H. Echols. Nashville. Tenn. hishied, Harry C. Fritm, San Antonio, Tex. W6ESR, Samiel A. Greenlce, Manhattan Beach, Gelif.
K7DIN, Kobert L. Burnett. jr., Portland, Oregon W'7SUQ, Henry A. Thornton, Seattle, Wash. W'8BBC), Perrin J. Sines, Toledo, Ohio W8MIO, Kobert B. 'Toaz, Detroit, Mich. Ǩ8NOW, Raymond .I. McMahon, Detroit, Mich. W8TPT, James P. Fettig, Saginaw, Mich. W8YIN, M. P. Unger, Huntington Woods, Mich. WY.JNP, sheldon B. Deobler, Chicago, III. V'E2AOK, F. Lefort, Iberville, Que., Canada
VE3AVS, Dudley E. W. Ryder, Kapuskasing, Ont., Canada
VE6EY, W. L. Careless, Edmonton, Alt., Canada
VE6YE, George G. Sparks. Jasper, Mlt., Canada VE7AR, S. V. Keith, kamloops, B. C.. Canada

Strays

Seeing the description of KlIJB's Nuvistor preamplifier in September 1960 QST fired up the interest of VE3DUU in trying to improve his 2-meter reception. But there were problems, not the least being that not a Nuvistor was to be had in the Toronto area. A few nights alter his fruitless search VE3DUU was telling his troubles to KisBBO, Erie, P:a., on 6 meters. It turned out that the latter had a Nuvistor that he would be willing to donate to the cause.

Not a man to let an opportunity like this pass, the Jeusen family were off on the long jaunt to Firie the next morning --... in the rain. On the way back he stopped off in Buffalo to track down it sorket for his treasure; no easy task, as sockets for Nuvistors were even scarcer than the little tubes themselves. But finally a sorket was located, and VE3DUU hurried back home to spend the rest of the week-end laying out his preamplifier.

There was one more hitch: a small feedthrough bypass wats needed, and there were none in the junkbox, so the project was delayed until the local radio stores were open again. Bright and early Monday morning, VEBDUU appeared at the parts counter and - you guessed it - he was greeted with: "Say, weren't you looking for Nuvistors a while barck? We got some in Siaturday!"

CONDUCTED BY SAM HARRIS,* WIFZJ

WHile we have been busy trying to instill the spirit of progress in yon, we may have overlooked the fact that there is always more than one way to accomplish any given task. While I don't claim to be in complete agreement with the following remarks presented by John Yimmer (W2BVU/KlJIN), I must admit that they io represent a workable theory.
"The stability requirements imposed on transmitters and reonivers for + ffective long-hatul communications becomo prohibitive at frequencies much over 1000 Mc . it doesn't seem reasonable to expect that rhough hams will ever be able to put rervstal-controlled transmitters and rereivers on even 2300 Mc . to make possible the kind of bevond-the-horizon weak signal work we are used to on 144,220 , and 182 Mc . The activity to date on tine 2300 -, . $6: 50$ - and $10,000-\mathrm{Mc}$. bands has att. \cdot mpted to imitate the lower frequencies but has fiallen far short due to the low average transmitter powers and wide rereiver handwidths used. Pulse modulation, however, can provide performance similar t.o what we are accustomed to on the u.h.f. bands, but with equipment complexity winich is less in many respects than what is now being used on 432 Mc. Why is this so? The reason is basically that the receiver bandwidth which gives the best signal-to-noise ratio for reception of a
*P. O. Box 334. Medfield, Mass.

Just to prove that the 7 's have antennas, too. Reading from the bottom up, 50 Mc., 144 Mc ., 220 Mc . This one belongs to K7GGJ.
pulsed signal is wide the shorter the pulse. the wider the bandwidth). For a one microsecond pulse, the optimum bandwidth is about one megacycle. For such bandwidths instatilities in the transmitter or the receiver local oscillator which cause a frequency drilt as great, as 100 kc . have little effect on the signal-to-noise ratic.
"But exactly how does the signal-tonoise ratio which can be achieved with pulse modulation compare with :a typical cew. case? 'Tais can be accurately determined in at straigitforward manner as follows.
"Assume we have a typical 220 or 43ン-Mc. station with a converter working into a communications rewiver using an i.f. bundwidth of 1 kc. Assume also that by using the b.f.o. We are just able to drteet a carrier, when the i.f. signal-to-noise ratio is unity (this is about the normal situation). Jet's say tise transmitter being heard is rumning one watt. Forgetting that pulse is illegal on 220 or $4: 20$ Mc. so that we can use the same antennas and converter noise figure, let's go to pulse modulation now such that the transmitter is putting out 1000 watts in one microsecond long pulses, and there are 1000 of these pulses transmitted each second. The result is, first of all, that the transmitter is still running an average power of one watt since $P_{\text {ave }}=1000$ watts $\times \frac{1}{1,000,000}$ seconds, pulse $\times 1000$ pulses $/$ see. $=1$ watt.
"At the receiver, we must use an i.f. amplifier having a wider bandwidth which, for this case, will be one megacercle. The amount of noise getting through the receiver will now be 1000 times greater than the rew. asie winere our handwidth was 1 ke. The signal, however, is also 1000 times more powerful than bofore so that the pulse signal-to-noise ratio is also unity. The signal will again be just detectable when using the proper atudio circuits (these are simple and will he described later). The fact that the signal is not continuous, hut coming as pulses, does not make it harder te detect. The pulse modulation system, then, is capable of getting through as well as the e.w. technique in this example.
"Of course, it's possible to do much better with c.w. techniques by using narrower bandwidths before and alter detection than in the case described here. But
the point is that until the amateurs can approach i.f. bandwidths of one kilocycle on the hands above 2300 Mc., pulse can give superior performance. The chances of enough amateurs being able to afford to put transmitters with this kind of stability on the s.h.f. bands to make things interesting is unlikely. It's safe to say, however, that any ham capable of putting 50 watts c.w. on $4: 32 \mathrm{Mc}$. would be capable of putting an effective pulse system on 2:300 Mc. or 3300 Mc."

Will ECHO Work for V.h.f. Men?

"Since the first talk of putting reflecting satellites into orbit around the earth, v.h.f. enthusiasis have pondered the question stated above. Hducated guesses indicated that, at least for the 100-foot ECHO , trying to bounce a signal back to earth on amateur frequencies, with amateur power levels, and within the practical limits of antenna size for amateurs, was something of a lost cause. Within a few days of the launching Aug. 12 many hams made tests, on bands all the way from 7 Me . up, for it is in the amateur tradition to try anything.
"There was a rash of $50-\mathrm{Mc}$. reports at first, but these were mostly charged off as resulting from the presence of the Perseid metcors in the first days of ECHO's swings around the earth. Tests on 144 Mc . and higher frequencies were practically without positive result. Various peculiar happenings on frequencies lower than 50 Mc . were too involved with other forms of long-distance propagation to be readily sorted out. Most of us were content to accept the logical conclusion that use of ECHO was a matter for people with many kilowatts, 85 -foot dishes, and things like masers, at their disposal. But not everyone!
" $W^{\gamma} 4 Z B Q$ and K.KYYL, Knoxville, Tenn., had noticed many times in the past that, though they are only a few miles apart, they could find beam headings that made their $50-\mathrm{Mc}$. signals inaudible at the other's station. A high ridge between them contributed to this, and the nulls in their 9 -element Yagi were very deep. Thus they occasionally heard one another by F_{2} back-scatter, aurora, and various other modes of long-distance propagation, with little or no direct signal. Would not this be a perfect setup for testing the reflecting qualities of ECHO I?
"Beginning the night of Aug. 14, the two ran tests regularly at times when the satellite was in the right places. There were some false hopes raised by. signal increases that turned out to be iue to distant aircraft, aurora, meteors, and the liie, but there were also what looked to be the real tiling: weak signals on a frequency somewhat removed from that of the direct signal. Here was something to work on!
"By Thursday, Aug. 17, they had Dopplershifted signals both above (satellite coming toward the receiver) and below (going away) the direct-path signal. Recordings have also been made of continuous combination ol direct and
reflected signals (no b.f.o. on) which show steadily rising and falling beatnotes. Sumples of the lattor are ou tile at ARRL Headquarters and are presently being subjected to analysis.
"Reception of this kind was achieved several times during the fall. What makes this circuit work? The limited number of sehedules thus far kept successfully does not rule out the possibility of some aiding propagation, such as aurora or sporadic- E ionization, but the character of the tape records we have here does not suggest this. We hope to have more on this soon, but meanwhile, we repeat our question: Will ECHO work for amateurs? You tell us! --E. P. T.'"

50-Mc. DX News

Because of the lack of high m.u.f., F'2 skip, etc., we are not receiving too much six-meter liX news. However, we do occasionally hear from some of the LIX boys themselves the ones that we in the U.S. consider DX, that is. One of these is Bob Crowe, Vh6ZCF, who we still hope to work on 50 Mc. at least once during our lifetime. Bob informs us that quite a few of the six-meter boys in VK-land have been fiddling with transistorized transmitters, converters and receivers with amazing results. Principal transistors used are O('170 and OC171. VK6BU (member of the R.S.V.H.F. Society?) maintained contacts un six meters while in the hospital with a transistorized transmitter/ receiver. It used a $50-\mathrm{Mc}$. O.T. crystal and push-pull output, superregenerator and $1 / 4$-wave whip. VK6'ZCF's efforts so far have been with a two-transistor superregen which was completed during a $T L^{\prime} E^{\prime}$ opening to Japan. (Nice timing!) Bob did hear the Jts although at times fade took them below audibility. As for an antenna - Bob is using a standard four-element beam fed with 300 -ohm feedline, and according to him does a very good job of listening although only twenty feet high. Always nice to know what the DX is doing, if efforts are along the same lines all over the sixmeter world.

Anotiler of our friends from outside the U.S. A. is JAIAAT, Mitsuo, Saito, who contributes some information from Japan. He has worked sixteen countries un 50 Mc --- JA, W, CE, CX, DU, KG6, KH6, KL77, KR6, KX6, LU, PY, VE, VK, VK9 and ZL. Just a little rifferent kind of DX from that we hear in the states, although personally we have heard some of 'em, such as W, VE, KG6, KL7, LU, PY, guess we'll have to listen harder to hear the rest of 'em. Mitsuo has worked seventeen states on 50 Mc . phone and c.w. during the 1957-58 seasons, one of his e.w. contacts being Delaware. As elsewhere on six meters, conditions are very poor during the present season between lapan and North America.

A DX note which makes us sit up and take notice is the news that ZF1BS, Cook Island, has been hearing TV stations in Hawaii with an KCA 8-inch portable TV tied to a Sterba curtain. Uceasionally Channel 2 in Los Angeles overrides Channel 2 in Honolulu. Makes very good hearing for the 50-Mc. man in that area.

V'E news comes from Cleoff, VIE2AIO, who is now doing quite a good job predicting openings. Geoff started leeping records the first part of 19fi0, on aurora and E openings. Says the work is now paying off. Automatic keyer is now "in the works" at his QTIF and will be used to keep sehedules with VE8BY and also with G-land on iO Mc . So far results have been negative across the orean. although the m.u.f. was almost high enough on November 12. VE2LQ is now on 50 Mc . and feeling out the band with a Gonset C'ommunicator. VE3RM has bougit a KW'MI-2 and is talking about adding s.s.b. to his 50-Mc. operation. VE2ABE is planning to operate on six meters during his trip to FPRBG next summer.

A prospertive " first" on 50 Mc. could possithy be W9AV'M who has heen assigned to Lillsworth Station which is located on the eastern side of the Filchner Ice shelf in the Weddell Sea area. Ellsworth is just outside of the auroral belt and is located 40 meters above sea level. According to llave it might not be too good a start for 50-Mc. activity as there are many, many "ifs" concerning the project. "If" the icebreaker can get into the base, "if" they can obtain the equipment necessary for 50 Mc . operation, "if" thev can then
get the equipment to the base when they do obtain it，plus 4．number of other smaller＂ifs．＂However，Bave seems quite confident that he＇ll be able to overcome most of the＂ifs＂ it some manner，and of course we＇re all hoping that he＇ll be successful．

H4DZP reports that during the last nart of October Iflorida stations had an opening into Hawaii with S9 re－ ports Hying back and forth．He himself missed the opening of course，but his states worked total is 3.5 ．Report of an opening and back－scatter contacts in 6－land on October 25 iwonder if that was the same opening as the one reported by K4DZP？），with beams un South America．Fives and zerus were netting through．November 12 aurora was the grand－ daddy of them all in Firesno，according to W6BJI，although no JIX was worked．LUSDC＇A and LUMALA came through to 6 －land for nearly an hour on November 16，with good signals，althougir late in the day ay compared to previous yearn．Ciih say＇s the E ，has been more prevalent in the last month（Oct．5－Nov．20）than in previous years with open－ ings on Oct．：27，24，Nov．10，14，and 18．On November 20 F_{2} rose as high as 46 Mc ．and may have hit 50.17 for a few moments around 1045 PST．at that time Gib heard an un－ identified signal with F_{2} fade for ahout 30 seconds．

Kemember WTWLV in Salt Lake City，Utah，during the good ole six－meter skip days？Jay moved to California （where there are thousands of 50－Mc．stations）and re－ ceived the call of k6BNR．He is hoping once again to get his old call W7WLV back on the air and this time from Empire，Nevada－his new location．Elevation at Empire is 5000 feet and Jay hears six－meter skip on an average of threr times a weel from the southeast and the nortowest．

News from New York includes the following information from Bob Ragland，WA2MMW．About 0700 on November 14，W4TDZ was neard calling K 1 BH ；no response from the W4 when Bob called him．Shortly after 0730 a（2s）be－ tween K4VZN，W4EFF and a W＇was neard in N．Y．C． but once again Bob could not break the frequency．At 0754 W4EFF finally heard WA2MMW and they excoanged re－ purts，E－ 3 to W4EFF and 5－6 to WA2MIMW．Bob was also hearing a paging service from St．Petersiourg，Florida and comments that tiesc services helow the 50－Mc．band make very good beacons to indicate progress of tae m．u．f．Otner suggestions from W．A2MMW－－tune more than the first 200 kc ．of the band．W4EFF was worked on 50.55 ，W4EFF on 50.38 ．Final comment－more than 50% of tile stations Bob has heard could easily increase their modulation by at least 10 db ．，su work on your modulatnr．K9EID has worked KHOCK for the second week，on semedule，with the hand apparently dead otherwise．Bob is always on the air from 0130 to 0300 and from 0900 to 1800，and is open for e．w．or s．s．b．sciedules during those periods． k 7 BBO reports aurora on Oct． 6 when W7EGN in Montana was worked by the Tacoma and Seattle boys．Oregon also worked during this uurora．Dave worked VE6OH on c．w．On Oct． 18 he worked WA6FCU in Imperial Beach，Califo：nia，about two miles from the Nexican border．Report on this sume aurora from kiansas and KøGIC who neard Oklanoma，Iowa， Nebraska，Souti Dakota，Minois and Missouri．Heard に゙0UDZ calling KL7FLC．（Tncy left Fletcier＇s Ice Island approximately September 15．）Anotaer aurora report from ［Jon，W7RUX，Arizona，who worked WbIJR during the aurora of November 12，but heard nothing else on either six or two meters．Lion usually operates 30.008 Sunday mo nings between 0830 and 1000 MST with a kw．to an 11 － clenient Spiralray．Stan，W．A2BAH，reports new state worked during september fith yuroza was West Virginia． VE4CV was heard，and Stan called W7RT about 0100 with no luck．Heard KIIZM working W7RT．During September 9－11，Mike，KZPPUT，was aero－mobile demonstrating ama－ teur radio to the punlic at the Harvest Home Festival in Cincinnati，Ohio at an altitude of 8500 feet．Afraid tıat Mike wil never be satisfied now until he ran get his tower that hign．Already has started a 65－foot tower wuich leaves 8435 feet to go．Good luck，Mike！From slidell，La．，comes the news that Grorge Barry，W5UQR，worked XE1FU on October 1．Heard XE1PFE working the 4th call area and also heard XE1DIDD．K5MHH worked into W0 land on Urtnber 19．WA6BFC reports working into Mexico on the 20th of October．

Clubs and Nets

In Central Arkansas v．l．f．activity is stirred by the Arkansas VHF Club and its associated nete，the Central Arkansas Emergency Net and its axsoriated club．The

Arkansas VHF Cluh had its beginning back in 1956，Present president is Ike Roland，KJLOW．Six－meter club net covers from West Memphis to Conway and from Searcy to＇Texar－ kana，with relay coverage of the entire state．At present the net numbers 3 it members un six meters and nine members on two meters，with 57%＂cherk－in＂on six and 50% on two．Frequency， 51 Mc．，145．05．

The Central Arkansas Emergency Net rovers Pulaski country and the counties that touen 1 t ．At present there are 26 mobile units on n．h．i．m．with almost eumplete eoverage of the area．＂Cherk－in＂about 75% ．Frequeucy－i0． 25. 51 Me．

In addition to the above there are two A．F．MIARS Nets operating in the are：on six meters．The 51.0 irequency is monitored alnost constantly from 1700 ＇til 2300 ．

The cyncaburg Amateur Radio（luh oí Lexncnburg，Va．， has completed the serond edition of its $W^{\circ i a}$ e Band $F M \in$ and 2．Meter Netr．Revised edition may be obtained by sending a stamped self－addressed husiness envelone to Thomas A Mckee，K47AD， 508 Oakridge Blvf．，Linchburg，Va．

220－and 420－Mc．STANDINGS				
220 MC			W9JCS．．．．．．．s	：40）
			W9JtP．．．．．．9	\％${ }^{\prime}$
W1ALK．．．．．${ }_{\text {W }}$	3	412 4 4	W9utip．．．．．${ }^{4}$	＋ 405
W100P．．．．．il	4	4	W9ZIE ．．． 10	$5 \quad 500$
W1RFU．．．．． 15	5	4×1	KbDGE．．．．．．	5 3 3 15
W1UIEE．．．． 11	t	385	にH6UK… ${ }^{\text {¢ }}$	2540
widoc...... is	，	4230	VESADB．．．．． 7	4 450
K2CBA．．．．．i0	4	325		
K21）IG．．．．${ }^{4}$	3	140	420 MC	
W2DWJ．．．． 15	6	740	420 NC	
W2DZA．．．．．i2	5	410	W1HDQ．．．．．．	$3 \quad 210$
K2KL3．．．． 12	4	300	WIMFT．．．．${ }^{\text {W }}$	$3 \quad 170$
	5	250 300	W1RFU．．．．．ioi	4 $: \quad 110$ 390
ド2Pロて．．．． 11		190	W1．AJR．．．．．．s	230
W2lwi．．．．． 11	4	400	W1UHE．．．．is	430
K2QJQ．．．．．． 13	5	540	Weation ic ${ }^{6}$	48
W3AHC．．．．it	3	180	W2bLV．．．．．1㟧	5 is60
W3FEY．．．． 10	4	296	W2DWJ．．． 10	$4 \quad 196$
W3KRN．．． 10	${ }_{5}^{4}$	\％55		3
W3LLZD．．．．．．is		425	W2NTY．．．．．s	2100
W3RUS．．．． 9	5	4.50	WOOTA ．．．．．g	$3 \quad 200$
W3UJG．．．．． 13	5	400	K？UUR	175
W3ZRF．．．．．． 5	4	112	K2k1B	100
	\pm	${ }_{+00}^{400}$	K3EOF，．${ }_{\text {Wher }}$	$3{ }^{3} 250$
W4UMFF．．．．il	5	420	W：3RUW	$\stackrel{2}{2}$－${ }^{\text {a }}$
W5AJG．．．．．${ }^{\text {S }}$	2	11050	W＋HHK	$4 \quad 3.50$
W5RCI．．．． 8	\％	700	W＋VVit．．．．． 6	$4 \quad 10$
WBNLZ．．．．． 3	\because	2540	W5HTT．．．．．．${ }^{\text {W }}$	＋100
kingta	1	8.40	W6GTP（．．．．．．．${ }^{1}$	1si）
WBAMMU．．．．．	1	225	W5RCL ${ }^{\text {W }}$（LHL．．．．．． 9	3 600 1 180 180
Kxaxu．．．． 10	5	1050	W8ricc．．．．．．${ }^{\text {W }}$	$2 \quad 355$
W8IJG．．．．．．． 9	5	475	WYHRC	2250
W8LPD．．．．．． 6		480	W8JLQ．．．．．t	275
WYNRM．．．．io	$\stackrel{+}{5}$	390	W×NRM	330
WXPT．．．． 10	5	4 tin	W8RQ1	370
W8SVI．．．．．．． 6	4	520 600		$\begin{array}{ll}3 & 310 \\ 4 \\ 8\end{array}$
W9EQC．．．．．ii	5	740	W9．AG．．．．．${ }^{\text {c }}$	$: 375$

144－Mc．News

V．h．f．ers never fade awisy－they all move to Morida． latest neurd from is uur old friend，W9EQC．Dick now re－ sides at RD $\#$ ，Sout！Venice，Florida，and is sporting a new call．K4DLi．He is on 50 Nic．（250 watts）， 144 Nic．（ 500 watts），and thinking about 432 Mc．Anvone need Florida on 220 Mc ．？Drop Dick aline，maybe be＇s open for sciedules．

The first reported instance of meteor scatter contact on 144－Mc．s．s．b．came from K1LSY．Joe has beeu keeping skeds with Red（W4RFR）for several months．The Persieds came througit with just enough to teave them und on October 22 tine Orionids provided a full exchange of sig－ naly．K1LSY uses a pair of 4 X250B＇s in the final with a home－made 13 －element vagi 20 feet off the ground．Hank， $W 4 \mathrm{RFR}$ ，is running 300 watts p．e．p．Their success is only the beginning of a new erain meteor scatter．Modern tech－ uiques in receivers and transmitters allow frequency setting accuracy sulficient to receive intelligence on the first burst． Voice techniques allow ：s much faster exchange of informa－ tion．Congratulations are in order for both Joe and Hank， and I＇ll bet they are both open for skeds．Speaking of skeds， Cilles（VE2ABF）is looking for skeds on 144.340 Ne．He has been hearing VE1CB on 144.199 Mr ．during aurora．Art （W5ML）notes that a little work on the input cireuit of his 417A converter did wonders in eliminating TV hash from his 2 －meter converter．（Suggest you try a coax filter，

Art.) Somehow Louie (WgIOX) has snuck up to 19 states on 144 Mc. This mav not sound like much to someune from Ohio, but from Colorado -!!! Louie caugit numbers 18 and 19 (W8PT, Michigan, and W8SD)J, Oaio) on tiae tremendous November 12/13 session. Band was nreen from sunset to sunrise for Louie. Jack (W8PT) upped his 144-Mc. tntal to 36 on this one. Band was open from Massuchusetts to (Golorado for him. Ho passes the following frequencies along for your help: WøAZT, Col., 062; k7HKD, Wyo., .127; KøAQ.J, Kansas, . 010 ; W5.JSR, Okla., . 069 ; and K1LSY, Mass...096. Clif, WgAZT, was in there pitching on this one, he caught Michigan, O'aio, Lientucky and Illinois to bring his total up to 17. Paul ($\mathbf{W} 4 \mathrm{HHl}$) was in on this one too. He ran into a tropo onening at about 2300 which extended up to nortiern Ohio, but the auroral signals faded out at about 2200 . 'The fact that Paul has thirty-seren
states may have some beariug on his going (or R at 2345 EST.) Southermmost report comes from W4TLV in Demopolis, Alahama isouthern Ma.). W4TLV and W5RCI Missiseippi) hoth observed the aurora visually and on 144 Mc. W'5AJG recorded number " 30 ' on his metenr scatter contacts, with W'gENC, South Dakota (First 'lexas/s'. Dakota contart). leroy has his 32-element 4:32-Mc. antenna up and is ready to zip un to 432 Mc. at a moment's notice. WgENC gave Ernie (WIFYZ) a new one during the Orionids. Ernie also ohserved the November 12 aurora in Louisiana. He heard Kentucky (W4H.JQ) and Colorado (W'GMOX) but both were busy and faded out before he could nail them. Bob (W'7PUA) notes considerable 144-Nc. activity in VE7 land: VE7MIV, VLE7BBA, VE7BBL and VE7FJ. Don (VE7BBL) runs 15 watts to a 2t-element beam and has contacted W7.IIP in McMinnville, Oregon, for a 300-mile haul. The 175 -mile path from Bob's location at Eatonville to the VET's is bridged under auy conditions.

220 Mc . and Up

W4HHK logged W4TLV on 431.977 Mc . on the evening of November 17 (almost a new state). The rig at W'4FIFK's is a 4×150 doubler, crvstal eonverter with 416 B g.g. preump and a single 13-element vagi at 50 feet. Paul is using a IN21B diode mixer in his converter, and finds a s.n. improvernent of almost 6 dt , over his old 6.56 mixer. If 4IIHK miantains regular schedules with WSRCI and in addition to hearing W4TLV (Alabama) has been hearing W5JWL and W4RFR. W5RCI has heard signals from W5AJJG (425 mi .) and has worked W4JFJQ (375 mi .). W 5 RCI is operating on 432.1$) 4()$ and Paul (W4HHK) is on 432.035 .5 Me. W3CGV has provided a new state (Delaware) for W'2NTY on 220 Mc. and K2KIB on 432 Mc. This brings Larry, W2NTY, up to 1.2 states on 220 Me. and .Jim to 4 states on 4.32 Mc.

W'g.AZT reports four local efforts to get the APX-6 outfits on the air. This siould result in some mountain topping next summer from Colorado and environs.

One-way sciedules with W'IBU transmitting and W8IIO receiving are continuing on 1296 Mc . Signals received at W8LIO are strong enough to rebroadcast on : lower frequency, so that adjustmenta on the transmitter are possible. So far no sucecssful roice transtuissions have heen made. Both W8LIO and W1BU are open for 1206-Mc. moonbounce sciedules. W6NLZ has his 3 CX 100 A5 going on 1296 Mc. and reports good activity on 220 Mic., 4.32 Mc. and 1296 Mc. in tile Los Angeles area. W9AP'Z reports interest in 1296 Mc. by the Purdue amateur radio club. They have obtained the use of an 8 -foot by 20-foot parabola, and the help and advice of some of the faculty (plus machine stinp facilities). (1 might work a new state yet!) KøRMIQ calls our attention to the lack of information in the AKRL, Haudbook on the design of parabolas. Wl'ГQZ has written an article for LS'T on the construction of a suitable parabolic antenna, and it is scheduled for an early issue.

O.E.S. Notes

WA2RDT --... No experiments in progress. Operation on six meters indicated normal six-meter conditions.

K4EUS -- Working on 432-Mc. converter as per Handbook. 828B rig for six meters in "de-bugging" stage. Activity on 144 Mc . netted W1(iCZ and W2RTO on November t.

K2Q(il) - Active on 144-Mr. band.
WA21NB - Caugit Ort., if aurora, managing to contact VELAX on 2 meters. Looking for skeds about 14.5 M . .

KICIG - Aretive on both six and two meters. Still workink on transistorized six-meter walkie-talkie.

KliUUY -.. Keplacing his beam which hlew down in hurricane.

K1AII - Active on 144 Mc. Had good tropo enntacts with W8KAY on september 6 and 7. Conducting pen recording tes ts on 5ll Mc.

WINKA - Active on six meters. Took his six- and twometer bean down for hurricane, soing back up higher than ever.

W8FZ -- - Starting construction on new 144-Mlc. transmitter.

K8PBA - Active on 2 meters. Contacted VE2LI on October 6 aurora. Conducting experiments on 40 kMc . in conjunction with W8NINT

W8PYQ - Working on new 220-MIc. converter. Using 6AM4's with diode mixer. Still holding skeds with W8PT 3 times a week. Anyone in the Michigan area please drop him a card for skeds.

Most hams intending to build a $50-\mathrm{Mc}$ ．rig for 300 to 500 watts input go for the hottest v．h．f．tube they can find． K8DJK went the other way and used the old familiar 813．With a little care in layout，this inexpensive tube can be made to do quite well on 50 Mc ．and it pays an unexpected dividend：its relatively high output capacitance makes for low efficiency at harmonic frequencies，and thus less TVI．K8DJK＇s layout shown here has an exciter ending up with a 6146，under the chassis．Running 400 watts input，the 813 delivers 200 watts to the antenna in c．w．service on 50 Mc ．

W8NOH－Active on 144 and 220 Mc．Working on 3－ transistor erystal converter for mobile operation．

N8BCiZ－Letive on 6 and 2 meters．Worling on 2 meter s．s．b．Lear．

に3kllN－Active on 50 and 144 Me．Working on 144－ Mc．walkie－talkie．
k3BY゙1）－Working on transistor rig for 6 meters．Ac－ tive on both 50 and 144 Mc ．

K3HIDW－Molding metcor sehedules on 144 Mc ．Re－ sults so far very noor．

K4F．JZ－－．．．Active on 50 Mc ．Constructing 3－element cubical quad for 50 Mc ．and 200 watt $4 \times 150 \mathrm{~A}$ grounded－ aridlinear．

W4CIN－Worling on s．s．b．exciter for 50 Mc ．
kH1QU－Working on 5－transistor handie tallies．Dron him a card to find out band．

KGOXY－Active oll 144 Mc ．Is transmitting daily irom 1600 CRT Monday through Friday and 1000 （SST on Saturday and Sunday．Frequency approx．50．03．Will ap－ preciate any reports．

K9RRS－Active on 50 Mc ．Working on new 500－watt final using pair of 811．A＇s．

KPMWQ－Active on 144 Mc ．Finished new two－meter trans！nitter using 829B＇s．

Kí1DZP－．．．．Working on sideband filter exciter for v．h．f． use．P：arametric ：umplifier efforts temporarily stalled．Man－ amed to contact liawaii during month of Ortoher on 50 Mc ．

WOLLF－Active ot 50 Mc．Heard HClFS on 50．001 during the Octoher it aurora．Holding Saturday morning skeds with WglinC．South Dakota．Would be interested in
trying m．s．skeds with stations east and west of Colorado． Working on 417A preamp for six meters．

K5UYF－Active on 50 Mc．
E®RWC－Working on S0－Mc．gear．Two－meter activity very poor in Kiansias．

W7ZVY－Working on converting surplus gear for 60 Mc．

W5FPB－Reports W5BFH，K5UNK and Li5WGE ac－ tive on 2 O Mc．in New Mexico．

KigGIC －Active on 50 Mc ．and 144 Mc ．Using BC342 a．s i．f．

K6GTG－Active on 144 Mc．Mad skeds with WØENC， W0MOX and W7JRG during Orionids Showers，good pings and bursts but no contacts．Had eompleted automatice $30-$ second sequencer for m．s．skeds．Drop card for details． Working on new pre－amp for 144 Mc．and up．Using the new 6CW4 nuvistors．

K6SIX－Poor conditions on 50 Mc．during last month hut did hear une Texas station．Eixperimenting with ca－ pacity hat on $1 / 2$－wave 6 －meter whip．

Ḱ゙＇TVC－．．．Operates 50 Mc．around 2200 PST．Where is everybody？Just erected two－element ZL special up 18 fect． Any questions？Drop him a card．

W A6FBA－Hust completed two－meter transceiver for portatle use．

K4KYL－．．．Active on 50）Mc．Caught alurora opening on six and spuradic to midwest on the 16th and 19th of Oct． Still continuing tests Echo I reflected signals．Call CQ nightly on 145.015 Me．with beam eust，north，west and wouth．Starting time 2100 EST ．

W4NVV－．．．Heard HCIFS on tith of October．Cqueht aporadic opening on the $19 t h$ when he worked KgYNW． constructing $2: 0-\mathrm{Mc}$ ．transmitter and converter．

W4GSH－Constructing s．s．h．extiter for v．h．f．bands．
W＇4ADH－Caught sporadic to Missouri on the 16 th atd into Texas on the 19 th of October on 50 Mc ．Working on s．s．h．exciter．

K6RCK－．．．Active on 50－Mc．（DD work．Monitoring 50 to 50.1 for c．w．activity．Working on $432-\mathrm{Mc}$ ．portable transceiver．

WGIEY－－．50－Mc．activity，also 144 and $2: 20$ Mc．Build－ ing s．w．r．bridge for 220 Mc ．Have 432 Mc ．and 1296 Mc ． amberter working．

にNりYWI）－－i esigning new 2－meter antenna．
WOPNL：－．s0－．Mc．artivity has netted ground wave sig－ mais most evenings but no skip vikuals during last month． Missed the aurora on the lith of Oetober．

WAGBFC－－Observed so－Mc．hand upening toward Mexien on 20 th at $11: 30$ P．M．PS＇T．Rebuilding molite equip－ ment．

NiCRN－Piclied up two new states on 2 meters in Sontember 4 opening．Has 220 －Mc．transinitter operating into a dummy load．Needs antenna．

WA2biA11 … Workme on 22U－Me．rig．Looking for skeds for the danuary contest．Looking for skeds with a Maine station on 144 Mc ．

Y＇F，ABE－Aetive on $144 \mathrm{Mc} .$, looking for skeds．
W7EGN－Experimenting on home－made $50-\mathrm{Mc}$ ．re－ miver．

WSUQR－－Worked XEIFI on 50 Mc ．during October． Heard XEIPFE working fourth call area．Ilso heard XDII）DD．Active on two meters but needs antenna on mast hriore gund results can be expected．

K8PUT－Working on new tower for v．h．f．beams．New 11－element 220 －Mc．beam going on top of CO －foot tower． Luoking for skeds．
［可］

Strays ${ }^{2}$ ．

The Southern California Chapter is sponsoring this year＇s Quarter Century Wireless Assn．Party seheduled for 1800 PST Feb． 10 through 1800 PST Fel．12．Logs should show contact number， date，time，station worked，location，frequency， name and QCWA number．Frequencies：3655， 7005，14110． 21110 ，and 28110 kc ．on c．w．； 3810 ，

3950，7230，14240，21340，28900，and 50200 ke．on a．m．：3990，3999， $7204,7218,7299,14345$ ， 21440,28690 ，and 50210 ke ．on s．s．b．： 7105 ， $14140,21150,28280$ on RTTY．A plaque will be presented to the member who contiacts the most QCWA members．Logs to：Ted Lowe，K6FH， 425 West Almond Street．Compton ：3，Calif．

CONDUCTED BY ELEANOR WILSON.* WIQON

ENit 1960, enter 1961, but for our records, first one backward glance at the state of Y L activity during the old year.

Round the world, ou the air, in traffic nets, in emergencies, in contests, in clubs, at conventions, on Field Day, the YLs were "there," imparting that unmistakable feminine touch to ham radio. In the year 1960 a.d., having already been accepted in the fraternity of amateur radio operators for almost half a century, it seemed safe to conjecture that YLs might stay in the ham picture in the next half century too, possibly until hamdom be done!

Without much doubt, most Y Ls consider themselves amateur radio operators first, and YLs second. This is as it should be. On the other hand, sex is a factor that does come in for consideration, otherwise this very QST department, for example, would not even have heen initiated. (Hirst things first, we always say. - Ed.) These truthe heing self-erident, just what did the girls do in the year 1960 - how did they contribute to the state of the art?

In the field of traffic a $Y L$ continued to reap the highest of BPL honors, as she has done consiste:tly since $19+9$! It seems almost incredible that Mae Burke, W3CUL, attains the staggering traffic totals that she does month after month, year after year. In 1960, once again. she placed first or sccond on the BPL list each month. Other YLs who made BPL during 1960 are Ceorgianna Mezey, W2KEB; Bertha Willits, WgLGG; Irene Craft, WøKQD; Clara Reger, W2RUF; Lydia Johnson, WøKJZ; Jeri Bey, W6QMO; Gladys Biggs, K4LVE: and Louise Moreau, W3WRE. (Have we missed anyone?)

From JA1AEQ to W4VCB operating KL 7 in the Aleutians to UA3CU to ZS6GH, the girls were heard on all hands. Y'L activity on six meters seemed noticeably heavier this year. More ILs switched to single sideband and some 25 nets for Y'Ls ouly welcomed many new check-ins.

KN1MJA was licensed at the age of eight, and WIZR continued to be active at eighty-four, having been licensed since 1919. W4LZI and K9PDS deflated the notion that a gal might be too busy with a family to get on the air. Frances and Gerry have 23 children between them. K01LM certified in the Connecticut Wireless Association high speed code program at 5.5 w.p.m. W6NAZ was awarded a plaque in appreciation of the four years of schedules she has maintained with the servicemen at KG1FR, Sondrestrom Air Force

[^19] W1QON's home address: 318 Fisher St., Walpole, Mass.

Base. In comjunction with the 1950 Edison Radio Amateur Award a special citation was issued to WgKQD for her emergeney and traffic organization. KIICA and W4YEK and others were recognized for outstanding work in emergency situations.

Squaw Valley, Field Day, and the 1960 AllWoman Transcontinental Air Race all drew kecn Y' participation. Among the assorted hamfests and get-togethers the Third Internawional Convention of the YLRL at Cambridge, Mass. in June, made the most history. Membership in some 25 Y L cluhs around the globe was growing and several new YL certificates were instituted. The annual YL contests, the YLRL Anniversary Party and YL-OM Contest, thrived.

Immediate prospects for 1961 included a new v.h.f. contest for YLs to be conducted by the YLRL and the answer to the question who will hecome the 1000 th Y'LRL member.

In all 1960 was a tine vear. A page is completed - a new one is turned up. May 1961 be of the best for everyone.

KEEPING UP WITH THE GIRLS

Clubs:

YLRL - WGPJU placed first in the club membership contest. K6EXQ was second, W8.ATB third. All three were given Camellia Capital Chirp cookbooks. A special prize will be awarded to the YL who becomes the 1000th member of the club. Memberslin is up to 877 .

Texas Yl Ronsid-lp Net-New officers are Pres. W5JCY; Y.P. ǨōMD; Secy.-Treas. W5ERH; Publicity W5IZD. K55GBX was named custodian of the club certiticate. Mp-to-date directories may be obtained for 2id from K5GBX. W5LGY will edit a club newsletter.

WROVE-- New otticers are Pres. W1HOY; V.P. KlıDY; Secy.-'l'reas. W1Z.IS; Membership KilJV; Hospitality K1ICW. The club now has 134 members from the six N. E. states.

Geordia Peaches - New officers are Pres. K4LVE; V.P. K4DNL: Sery, KıLIV; Treas, K\&BIJZ.

PARKA - New officers are Pres. KL7DLA; V.P. KL7BJD; Sery. KL7CHV; Treas. KL7BLL. Evelyn Wikoff, W4VCB/KL7, is the new YLRL district chairman for Alaska. Ev's address is U. S. Station, Box 4, Navy 230, c/o Postmaster, Seattle, Wash.

Chicaul YLRL Inc. - The club's Dark Eyed Queen's Certificate is now available to $8 W \mathrm{Ls}$.

GAB-is the name of a new Texas YL club reported by K5BJU. The initials stand for "Gals in Brownfield." No further details yet.
Floridorn YLS - New officers are Pres. K4RNS; V.P. K4RED; Treas. K4HSC; Secy. K4OYB; Certificate custodian W3WFD; Publicity K4PPX; Directory K4ANR: Historian W4HRC; Membership W4BIL.

Miscellany:

YLRL Pres. K5BNQ became member toc of K6BX's Certiticate Hunter's Club and the first Yi to produce evidence of nossession of over 50 amatcur wehievement awards. . . . In a letter to W4HIF, GibyL. Barlara, confided that she would like to see the whole amateur world give really low nower a good try, "pspecially the U.S. A." ... Marge, K\&RNS, would like to start a six-meter YL net in the Ginlf area. Anyone interested? . . . CR7LU, Lucia, is helping with QSL service for Mozambique. . . . W1TRE, Barbara, of Topsfield, Mass. is operating as 1)L4ZO in Germany for a while. . . VKIYL expects to the at Brookhaven, N. Y., for a year starting in March, the Atomic tinergy Conmmission permitting. Denise's OM is VKIATR. . . W4NIUY, Dot, whose gift shop at Ft. Meyers Bearh, Fla., was almost a total loss after hurricane Donna's visit, has received over 200 cards and letters from well-wishing ham friends. \qquad G3IYL's daughter Joan is now (M M3NYG. Stella is a hospital X-ray technician in Essex, England. Joan works in Scotland, henee the GM call sign. . . . The first woman to hold the office, W4HYV, Babs, has been appointed Director of the Florida District MARS. . . . K5BJU. Harriett, writes "The Sideband, Sorority" each month in the Sidebander edited by Dot, K2MGE, and Irv, K2HEA, . . . K4LCiU, Ruth, is qeneral chairman of the Girl Scont Fair Committee for 1961 in her state. The fair, which will involve some 8000 girl scouts of Virginia, will be held during February in Fairfax. Claire, W4TV'T, is co-chairman of the l'ennant Committee for the same fair. \qquad 'The Philippines' only 1L, DU1AJ, operates $14 \mathrm{c} . \mathrm{w}$. and phone. Aleli works as a technician in a Manila

The new Vice President and Secretary of the YLRL for 1961 addressed some 35 YLs gathered for the annual Fall luncheon of the Women Radio Operators' of New England at Framingham, Mass. on Nov. 5. On the left, Vice President Onie Woodward, WIZEN; Secretary Blanche Randles, KIIZT, is on the right. (photo courtesy KIEKO)

Work six members of the Bay Area YLRC of San Francisco and you will receive the club's new Mermaid Certificate. Esther Given, W6BDE, displayed the certificate at the ARRL Pacific Division Convention at San Mateo, which was attended by about 35 YLs. (photo courfesy WGUSE)
electronics firm. . . . Lois, ex-K.A2YL, is K4C'XJ/ø, 785 Kadar Sign. Finley AF Stn., No. Dakota, und will be clad to confirm her past N゙A contacts from there. . . . The new call of Wl'TUD is WA2OK.J. Alice's OM accepted a new FCC monitoring assignment in Wentern N. Y. state. Ex-IV5EGD, 1960 Y'LRL V.P., is uow K3NLU. Lillian's new address is 92: lient Ave., Baltimore 2s, Md.

More YLRL Certificates

Two more certificates issued by the YLRL can be added to the list of Y'L certificates and awards available, as published in last month's eolumn.

The Continumus Membership Certificate is issued to any YL who has been a member of the YILRL, for $5,10,15$, or $2(0)$ vears. Send request giving year which you joined YLRL to custodian Bettie Mayer, K7BED, 2015 S.E. Grand Are., Portland, Oregon.

The YLRL Aftiliation Cortificate is isnmeri to YL clubs only. Those liL clubs with at least 50 per cent of their members belonging to $Y: L R L$ are eligible. Send request with membership list to current YLRL secretary.

Maine YLs are still fairly scarce, but here's an active one. Peggy Harnois, KIGSF, of Westbrook, is on 75 and 10 phone and is a regular of the Cumberland Co. Emergency Net. Peggy, who operates from a wheel choir, recently provided ham radio with some nice publicity via
a state-wide TV program.

Howdy Days Results

From ontgoing YLKL Vice President Lillian Reebe， K3NLU，come the following results of the 1960 YLRL Howdy Days contest．Harryette Barker，WGQGX．worked the greatest number of YLRI，members（52），and Doris Anderson．K5BNQ，worked 22 non－厂LRL members．Two points were given for eac＇Y YRL member worked；one point for each non－Yl，RL member．W6Q（iX will reccive either a YLRL pin or clubs stationerv．K5SBNQ will receive one vear paid membership in YT．RI．

Station	I＇LRL Members Worked	Non YLRL Mrmbers llinoked
W6Qて： X	\because	7
K4RNS	14	18
KıBNQ	43	2：
L．jli	43	1s
W4HWR／2	－	t
W61）XI	$2 f_{i}$	1
WA6CCR	2%	\％
K8LlfF	$\because 1$	？
WIKIEN	21	：
Ktioqn	15	0
K̇UHEC	15	；
W5RFK／2	14	4
W＇7NJS	1：	111
WAGEVU	12	\therefore
К2Tl）G	4	：
K1EKO	7	2
klADY	3	4
	Coming Event	

F＇loridora $Y^{\prime} L$ IVerk：－．．．．Jan．8－15．1961，conducted by the Floridora YLs of Florida．Work as many as pussible of the 8：members．The eluh certificate is awarded for contact with 10 members for U．S．operators， 5 for others．
YLr（0）M Contest－sponsored by the YLRL．Phone section Feh．D：j－2k；C．w．sertion March 11－12．See rules below．

TWELFTH ANNUAL YL－OM CONTEST of the YLRL

PHONE Contest－
Starts：Saturday，Feb，25，1961， $1:() 0$ p．m．EST
Finds：Sunday．Feb．26，1961， 12 Midnight EST
C．IV．Contest－
starts：Saturday，March 11，1961，1：00 r．m．EST
Finds：Sunday，March 12，1961， 12 Midnight EST

KiLIGIBILITY：All licensed OM，IL，and XY＇L operators throughout the world are invited to participate
OPER．ATION：All bands may be used．Cross－band opera－ tion is not permitted．
－ROC＇EDIIRE：OMIs call＂CQ－YL＂．ILs call＂CQ－ON＂． E．YCHANGE：QSO number，RS or RST report，name of state，U．S．Possession．VE district or country．
SCl／RI．VG：（a）Phone and c．w．contests will he scored as separate contests．（b）One point is earned for each station worked，YL to OMI，or OM to YL．A station may be ron－ tacted no more than once in each eontest for credit．（c） Multiply the number of QSOs by the number of different states，U．S．Possessions，VE districts and countries worked． Maryland and District of Columbia count as one state．（d） Contestants running 150 watts input or less at all times may multiply the result of item（c）by 1.25 （low power multi－ plier．）
EOGS：Copies of all phone and e．w．logs，showing claimed score，must be postmarked not later than March 31，or they will he disqualificd．Please file separate logs for earh mode of speration．Send logs directly to YLRI，Vice President Onic Woodward．W1ZF．N， 14 Emmett St．，Marlboro，Mass．
AWARDS：YL－First Place Phone－Cup First Place C．W．．－．．．Cup
OM－First Place Phone－Cup First Place C．W．－Cup
The winner of the phone cup is also eligible for the c．w．cup． Gertificates will be awarded to high place phone and c．w． winners in each district．U．S．Possession and country．

YL NETS AND ROUND TABLES

（＇u：

liren.	I）${ }^{\text {ay }}$	Time	Narne and NCS
3750	Monday	$1200 \operatorname{CSS}^{\prime}$	Lark，W9MYC
$\because 150$	Wednesday	0930 CST	K日FDH
7104	Thursday	0，900 EST	K4 ${ }^{\prime} \mathrm{ZP}$
50， 160	Thursday	Qun EST	N4PPX
： 18.5	Friday	1330 E\％「	KN4．ANR
Phone			
3890	Monday	1500 l＇ST	Monday YL， W7HHH
7205	Monday	（\％）＂EST	Bustle，K41FF
72：35	Monday	1909 MST	Clothes Line， IIOMNI
28，800	Monday	2000 EsT	W＇RONE，W1RLQ
3900	＇Tuesday	08．30 ESST	Blue Ridge， K4CZP
29.130	Tuesday	1300 EST	Hairpin，libJPY
51.000	Tuesday	2000 EST	R．I．Y＇，W1GSD
3403	Wednesday	い8゙3 16ST	Yiunkee Lassies， K゙1IJV
3900	Wednesday	0830 C＇ST	W＇elcome，W8ATB
Wednesday			
14，260	Wednesday	13 （1）CST	SSB，li5BJU
21.390	Wednesday	1300 CST	Crows Country． KZ5VR，W0ZWL
146．1 Mc．	Wednesday	1900 PST	LA．Y＇L，İ6BUS
3915	Thursday	2000 PST	（＇hirp． L 6 HHD
721\％	＇Thursday	\％，00 ES＇1	l＇riendly Forty， W3IITC
7235	Thursday	1000 C＇s＇r	Texas I＇L Round－ up，K5BWM
7260	Thursday	0900 EST	Georgia Peach， K4DNL
14，240	Thursday	1400 EST	Tangle，kigEPE
72.50	Friday	M，MMPST	Roundtable， WGQCX
29，000	Friday	2200 （ST	L．ARK゙，W9BCA

Strays＂

If you have any evelets left over after applying K8MME＇s eure for rig fever（ QSS^{2}＇），September， $1960, p .49)$ ，you can use them for a trick that some set manufacturers employ．If the eyelets are set carefully，you＇ll get a neat hole in the chassis which has no raw edges；in a pinch this will be as good as a rubber grommet for feeding leads through without danger of chewing up the insulation．
$-W 2 Q P Q$
Buring Uetober WHGPE spent，a night at a motel in North Carolina，and discovered that of the 15 cars parked there，two othor amateurs were also registered．So W4gPE，K3DHM，and W8RIM had a private little hamfest of their own．

W7GHM would like to hear from any hams who passed their lixtra Class test while 16 or younger．

Last August（page 78）we asked for comments on a new type of binding that we tried in the 19f（0）Handboak．We received letters from less than one tenth of ons per cent of the people who bought 1960 Handbooks，but these comments were very helpful for our future planning．Our 1961 Handbock，waich is currently being printed， will go back to a type of sewed binding which is almost indestructible．

Tenth ARRL Novice Roundup Competition

THIS is a contest of, by, and for the Novice amateur. The Roundup of Novices begins on Janlary 28. 1961 at 1800 local time. Here's how it, goes. Novices are to contact as many other Novices and non-Novices as possible, exchanging OSO number and section. Operating. listening, and logging time must not exceed 40 hours. The contest runs through February 12 at 2100 local time. To get on the bandwagon, just call " $\because \mathrm{Q} \mathrm{NR}^{\prime}$ " or answer such a call.

Scoring

To obtain the final score simply add the total number of your NR (NSOs to the highest w.p.m. from your Code Proficiency certificate. Multiply this sum by the number of different ARRL sections (page 6) worked during the contest. A check of last year's scores shows that having a CP award determined in some cases who was a section winner, as the scores came that close. So let a word to the wise be sufficient. Besides, what a terrific way to get that code speed up.

Novices should heep a close eye out just above and below the Novice frequencies (3700-3750 kc.; 7150-7200 kc.; 21,100-21,250 kc.; 145-147 Mc.) for the higher power (ienerals who will be calling outside the Novice bands to help cut down the sure-to-be QRM.

How To Partıcipate

KN5ZMU in the New Mexico section hears KN0VMG in South Dakota calling CQ NR. A correctly negotiated QSU would go something like this:

CQ NR QQ NR CQ NR DE KNØYMG KNøVMG KNøVMG K
KNøVAG KNøVMG DE KN5ZMU KN5ZMU KN5\%MU AR
KN5ZMU DE KNøVMG R HR NR 3 SDAK BK

KNOVMG DE KN5ZMU R HR NR 5 NMEX BK

KN5\%MU DE KNgVMG R TNX ES 73 SR゙ DE KNøVMC:

That's all there is to it - another point and possibly another seetion added to your score.

Study the rules below carefully, and drop a line to the ARRL Communications Dept. requesting the free log forms. Good luck in the NR. Don't miss this golden opportunity to really have fun!

Rules

1) Eligibility: The contest is open to all radio amateurs in the AKRL sections listed on page 6 of tais WS'T.
2) Time: All contacts must be made during the contest time indicated elsewhere in this announcement. Time may be divided as desired but must not exceed 40 hours total.
3) QSOs: Contactes must include certain information sent in the form as shown in the example. QSOy mist take place on the $80-40$ - (.)- or 2-meter bands. Crosstiant? contacts are not permitted. С.क. to phone, c.w. to c. w., phone to phone, phone to c.w. contacts are permitted. Valid points can be scored by contucting stations not working in the contest, upon acceptance of your number and section and receipt of a number and section.
4) Scoring: Each exchange counts one point. Only one point may be earned by contacting ayy one sitation, regardless of the frequency band. The total number of ARRL sertions (sice pare 6 of this ($2 S^{\prime} T$) worked during the contest is the "section muitiplier." A fixed scoring credit may be eurned by entrants who hold ARRL Code Proficiency certificates. If an entrant does not hold a CP award he can apply for credit by attaching to his Roundup report a copy of qualifying run from W6OWP, January 5 or February 1, or from W1AW, January 20 or February 11. CP credit equals the w.p.m. speed indicated on the latest certificate or sticker held by the entrant. The tinal score equals the "total points" plus "Code Proticiency credit" multiplied by the "section multiplier."
5) Reporting: Contest work must be reported as shown in the sample form. Reporting forms and a map of the
(Continued on page 154)

1961 ARRL International DX Competition

Phone：Feb．3－5 and Mar．3－5；
C．W．：Feb．17－19 and Mar．17－19

CONTEST TIMETABLE				
Phone Section：				
T＇ime		Starts	Eiruis	
GMT	Feb． 3	2400	Feb． 5	2400
． $15 T$	Feb． 3	2000	Feh． 5	2000
EST	Feb． 3	1900	lieb． 5	1900
®S＂	jieb． 3	1800	Feb． 5	1800
MST	Jeb． 3	1700	Feb． 5	1700
Ps＇I	lieh． 3	1600	Fieh． 5	1600
	The seco starts at hours M	d period ese same 3.	The sec ends at hours	period same
C．W．Section：				
GMT	Feb． 17	2400	Feb． 19	2400
Ast	liph． 17	2000	Feh． 19	2000
HiST	Jieb． 17	1900	Feh． 19	1900
（ $\mathrm{S}^{\prime \prime} \mathrm{T}$	Feb． 17	1800	Feh． 19	1800
MST	Frb． 17	1700	Feb． 19	1700
PST	Fiob． 17	1600	Fich． 19	1600
	The secu starts at hours Ma	d period ses same 17.	The sec elids at hours M	period same 9.

Atenention DNers！The 1961 ARRL DA Con－ test is on the way．This gives the DX sta－ tions a chance to complete states for the WAS certificate as well as put their operating skill to the test．U．S．A．－Canada stations will be looking for new countries for DXCC ，of course， besides proving their skill in working DX．This 27 th ARRL International DN Competition will be held over four week ends，two for phone and two for c．w．Of course，the phone contest is for all brands of voice like s．s．b．，a．m．，n．b．f．m．etc． Will this be the year the sideband boys out－score the a．m．crew？Sec above for dates and times．

The rules are unchanged from last year with DX stations out to work as many W－K゙－VEVO－ $\mathrm{KH} 6-\mathrm{KL} 7$ stations as possible and U．S．A．－ Canada stations on the watch for DX contacts．

Certiticates are awarded to the top single－ operator phone and c．w．scorer in each country and ARRL section．A special category recognizes multiple－operator stations in sections and coun－ tries from which at least three such entries are received．Also within ARRL－affiliated clubs， sing！e－operator members may compete for certifi－ cates lor the highest c．w．and phone efforts．A gavel will again be awarded to the club which ecmpiles the highest aggregate score．

The award and scoring system is designed to encourage the widest use of our hands；so flexi－ bility of operation is the thing（no certificates are offered for one－band work）．Repeat QSOs on additional bands are permitted．For example， when W3ECR and G4CP exchange coutest in－ formation on $10,15,20$ ，and 40 meters，the contact－point total，multiplier，and seore rise for both entrants．For the DX，the multiplier is the
sum of the U．S．A．－Canada licensing areas worked per band，while the W／VE multiplier consists of the sum of different countrics（see ARRL Countries List，p．80）contacted per hand． No eredit for W／VE－to－W／VE QSOs is allowed．

It．is suggested that W／VE c．u．entrants refer to this tabulation in indicaling states and prov－ inces．Overseas competitors may use it as a check－cff list of states and provinces and for logging abbreviations．

```
\(\mathbb{T} 1, K 1-\) GONN MAINE MASS NH RI VT
W2, Kま. H'AZ-~N.J NY
IIS, ks - INEL MD PA DC
"H4,Kム-ALA FLA GA KY NC SC TENN VA
W\% - ARK LA MISS NAEX OKLA TEXAS
I'я. K6, H'A \(\mathcal{H}\) - OAL,
KH6 - HAWAII
I' \(7, K \gamma-A R I Z\) IDAHO MONT NEV ORE UTAII
    WASH WYO
K゙L - ALASKA
KR, K8 - MICH OHIO WVA
HO: K 9 - ILL IND WIS
HØ. KO-.. COLO IOWA KANS MINN MO NEBR
    NDAK SDAK
IEI - NR NS PEI
FE2-QUE
\(1^{\circ} \mathrm{ES}\)-ONT
VE4-MAN
I'E5-S.ASK
VEG - ALTA
re7-BC
VE8-NWT YITKON
VO-NFLD LAB
```

U．S．－Canadian amateurs have quotas on c．w． （sce rule 10）but none ou phone．DX amateurs have no quotas；they will QSO as many stations as they can in the $21 \mathrm{~W}(\mathrm{~K})$ and VE／VO licensing areas on each hand．

Be sure to keep a neat and careíul log．Send a copy to ARRL，in the form shown，at the conclu－ sion of the contest．It must be postmarked by April 28，1961，to be eligible for awards and QST listing．All reports are welcome．Convenient log sheets are now available free on request from the ARRL Communications Dept．

Sample of report form that must be used by W/VE c.w. participants. When a station is worked for less than the maximum number of points allowed, the additional contact to make up the points not earned in the first contact should be entered at the bottom of the sheet. Canadian entrants should allow two blocks for each country, but may record no more than eight contacts therein. A separate set of sheets should be used for each band.

Rules

1) Lligibility: Amateurs operating fixed amateur stations in any and all parts of the world are invited to participate. 2) Object: Amateurs in the United States and Canada will try to work as many amateur stations in other parts of the world as possible under the rules and during the contest periods.
2) Conditions of Entru: Each entrant agrees to be bound by the provisions of this announcement, the regulations of his licensing authority, and the decisions of the ARRL Award Committec.
3) Entry Classifications: Entry may be made in either or both the phone or e.w. sections: c.w. scores are indenendent of phone scores. Entries will be further claseified as singleor multiple-operator stations. Single-operator stations are those at which one person performs all the operating functions. Multiple-operator stations are those obtaining assistance, such as from "spotting" or relief operators, or in keeping the station log and records.
(5) Contest Peliods: There are four week ends, each 48 hours iong: two for phone work and two for e.w. The phone section starts at 2400 GMT, Frida. February 3 and Friday, March 3, ends 2400 GMIT, Sunday, February 5 and Sunday, March 5. The e.w. section starts at 2400 (iMT, Friday, February 17 and Friday, March 17, ends 2400 GMTT, Sundiv., February 19 and Sunday, March 19.
4) Valid Contacts: In the phone section, all claimed credits must be made voice-to-voice. In the telegraph section. only c.w.c.w.w. contacts count. Crossband contacts may not be counted.

LOG, 27th A.R.R.L. INTERNATIONAL DX COMPETITION

Banil ${ }^{14}$ W			IRRL Sectron. shret of		
Countru	Station Worked	Date	$\begin{gathered} \text { T'ime } \\ (G M T) \end{gathered}$	Sent	Receired
空	$1: 8 y^{\prime} \mathrm{J}$	$2 / 18$	1300	58900NN	479075
	FOZF	$2 / 18$	1345	569CONN	579080
	- .-- -				
	(120P	218	1306	5890 ONN	+69150
	G4HJJ	2,19	12+5	579CONN	169125
	G2KP	2;19	1255	569CONN	579100
	(3) ${ }^{\text {C }}$	3/18	1430	4690% NN	5591000
	G6QT	3/19	1822	579CONN	589125
	(351 BG	3:19	1851	46aCONS	459075
	1) 22 HC	$2 / 18$	1315	559CONN	+40050
	DLIBZ	$2 / 19$	1149	4690ONN	559080
	D.) J 2 KR	3/18	1502	$559 C O$	559015
				- -	-

Sample of report form that must be used by W/VE phone entrants and all participants outside U. S. and Canada, phone and c.w. This example is a U.S. A. phone log. Foreign competitors, of course, would have reverse information in the "Sent" and "Received' columns; their "Received'" column would show exchanges like "579CAL," "5890NT" (or, on phone, "46 Vermont," " 58 Georgia," etc.), indicating signal reports received and different states and provinces worked; their "Sent' column would carry signal reports and power indicators transmitted.

LOG, 27th INTERNATIONAL DX COMPETITION

7) Erchanges:
a) Amatents in 1. S. and Canada will transmit a threefigure number, representing the RS'l report, plus their state or province. The latter may ennsist of an appropriate ebbreviation.) Phone participants will transmit a twofigure number consisting of the readability-strength report wlus the state or province. Escample: W6YY might transmit "579(JAL" on c.w., "57 California" on phone.
b) A mateurs n:btside $W^{\prime}\left(K^{\prime}\right)$ and $V^{\prime} E / V O$ will transmit six-figure numbers, each consisting of the RST report plus three "power" numbers; the fower indicator will represent the approximate transmitter power input. Phone contestants will transmit five-figure numbers, each consisting of a readsbility-strength report and the three "power" numbers. Example: VK2GW, with 100 watts input. might transmit " 569100 " on r.w.. " 56109 " on phone. If the input power varies considerably on difierent bands, the "power" number should be changed accordingiy.
8) Scoring:
a) Points: One point is earned by a W (K) or VE/VO station upon receiving acknowledgment of a contest exchange sent, and two points upon acknowledging an exchange received. Two points are earned by any other station upon receiving acknowledgment of a contest exchange sent, and one point upon acknowledging an exchange received.
b) l'inal Score: W (K) and VE/VO stations multiply total points earned under Rule $X(a)$ by the number of countries worked on one band plus the number of countries worked on each other band. .Ill other stations multiply total points earned under Rule 8(a) by the sum of the numher of W (K) and VE/VO licensing areas worked on one hand plus the number of $\mathrm{W}(\mathrm{K})$ and $\mathrm{VE} / \mathrm{VO}$ licensing areas worked on each otier band.

Conntries will be those on the ARRL Countries List. Titere are 21 licensing areas: 12 in the United States (W1-0, KH6, KL7), 9 in Canada (${ }^{(W O} \mathrm{O}$. VE1-VE8). ISee (Countries List on p. $80-1 \mathrm{E}$. 1
(1) Repent Contacts: The salue station may be worked argun for additional points if the contact is made on a different frequency band. The same station may be worked again on the same band if the complete exchange for a total of tirce points was not made during the original contact on that band.
10) Quotas: The maximum number of points per country per band which may be earned by $W, K, K L 7$, KIIf stations in the c. w. section is 18 , and contacts made on the same band with the same country after the quota is filled will not count. Thus complete exchanges with 6 stations in one country on one band fill the band quota for that country. The maximum number of points per country per band which may be earned by VE/VO stations in the c., m. section is 24 , and contacts made on the same band with the same country after the quota is filled will not count. Exchanges with 8 stations in one country on one band are thus permitted Oanadian participants. There is no quota for stations in the c.w. section outside of the U.S. and Canada. There is no quota for any stations in the phone section.
11) Reporting: Contest work must he reported as shown in the sample forms. Each entry luust include the signed statement. Contest reports must be mailed no later than April 28. 1961, to be eligible for LSS' listings and awards. All DX Contest logs become the property of the American Radio Relay League and none can be returned.
12) Awards: To document the performance of participants in the 27 th ARRL International DX Competition, a full report will be carried in QS'T'. In addition, special recognition will be made as follows:
a) A certificate will be awarded to the high-scoring singleoperator phone and to the higa-seoring single-operator c.w. entrant in each country (as shown in the ARRL Countries List) and in each of the mainland IT. S. (plus Alaska and Hawaii) and Canadian ARRL sections isee page 6 of any
(Continued on page 154)

Sample of summary sheet that must accompany all reports.

SUMMARY, 27th A.R.R.L. INTERNATIONAL DX COMPETITION

Fintru Call,
. $1 R R L$ Section. \qquad
(C.W. or Phone)

Name.
Address
Transmitter Tubes Power Input

Receiter. Antenna(s).
(Lows from W(K) and VE/VO show number of foreign countries worked. Logs from other countries show number of UI.S.A. and ('anadian call areas worked.)

Bands	$\begin{gathered} 1.8 \\ M C . \end{gathered}$	$\begin{aligned} & 3.5 \\ & M c . \end{aligned}$	$\stackrel{\tilde{\gamma}}{M c .}$	14 Mc.	$\begin{gathered} : 1 \\ M c . \end{gathered}$	$\begin{gathered} 28 \\ \text { MC. } \end{gathered}$	$\begin{aligned} & 50 \\ & M c . \end{aligned}$	Total
No. C'ountries (2SOd		2		4		3	1	10^{1}
No. of C'ont.cts		2		4		6	1	13

Number of Ditierent C'ountries Worked.
.Number of Houra of Station Operation.
Assisting Person(s): Name(s) and Call(8).

(Name of (lub)
I certify, on my honor, that I have observed all compatition rules as well as all regulations established for amateur radio in my country, and that my report is correct and true to the best of my belief. I agree to be oound oy the decisions of the ARRL Award Committce. !

[^20]

CONDUCTED BY ROD NEWKIRK,* W9BRD

Whereas:

Polly:anna usually is the guest of prominence at the birth of any new year. But, patient readers, we must record here the passing of a DX milestone in reverse. Statistics on the monthly quantity of sunspots, those happy phenomena mainly responsible for beefing up our globe-girdling ionosphere and countries totals, show a retreat to the 100-mark after falling monotonously throughout 1960.

Gee - the sunspot tally hasn't been so low since back in February of 1956 when it hit a smouthed 99 en route its positive peak of 201 (winter of 1957-58). Could be worse, though. Matter of fact, it will be. In a few years the figure is expected to reach a feeble 4 or 5 . Practically speaking, band characteristics now are perceptibly "moving down one." Ten meters will try to make like 6 as we now know 6 , fifteen and twenty will act somewhat like 10 , forty will impersonate 20 to some degree, and so forth. Indeed, if you ignore the markings on your dials, the antennas required for given h.f. propagation results are insidiously growing longer.

This shallow simplification could lead one to surmise that DX possibilities might hold about the same if we all follow the m.u.f. and shift our favored operations to the next-lower frequency band. However, DX logs for the periud 1953-'54, while revealing remarkable long-distance work on 40,80 and 160 during that sunspot minimum, give evidence of clinkers in such a theory. Ionospheric absorptions bite surprising chunks out of long-haul paths when the sunspot count is low; the skip may be right, but where are the signals? Also, the effects of routine ionospheric disturbances are more pronounced.

Another thing: There's the steady expansion of world-wide radio communications to deal with. Our bands below 14 Mc. :re shared allotments in part, and commercials as well as amateurs will be drifting downward. Portions of poor forty already support a booming broadcast band, and 80 will be under increased legitimate point-topoint attack in various overseas regions. It's obvious that the serious lower-frequency DXer must aim for steep-notched receiver selectivity and rock-like transmitter stability to slash this hash.

Amateur radio's ace lead under these circumstances is a decade's improvement in equipment and technique; our trump card, that old redoubtable ham spirit. The Porter heroine would heartily welcome the coming opportunity to really put these factors to the test. We don't, particularly but we'll make out.
*7862-B West Lawrence Ave., Chicago 31, Ill.

What:

Meanwhile, down on the DX ranch. "How's" hands are raking in plenty of long-haul hay. Reminder: In the activity analysis to follow. frequencies, where uvailable, ure siven in number of kilocycles above the lower hand-limit: (27) would represent $14,027 \mathrm{kc}$. if the pararraph treats on 20 meters. Times appear withont parentheses to the nearest GiMT whole hour. saddle up! . . .

20
c.w. ought to commence the new year in its rightful place us kingpin and lead-off, so K1s IMP JTL, W2s GVZ (2fi6/2h1 countries worked/contirmed), JBL ($156 / 152$), K2s TDI UYG, WA2KMI ($106 / 80$), K3s BVV CUI KHK, W4NO, Kıs DFT KY'B, K5YAA (5ti/30), W'Gs JQB OIV R.CV, Kヒ́s (JF (115/106), ROU ($107 / 45$), WA6JQB OIV R.CV Kíns JF (115/106), ROU (107/45), WA6-
FCX $(82 / 48)$, W7 DJU POU ($74 / 52$), K7s DASINO, W8s IBX ($213 / 200$), KMLL (297), KX (199/188), YGR, J8s ICB (141/119), QEX TJW', K9PYB ($67 / 43$), Køs JPL ($98 / 84$), VXU (13/3), VE4.JT, EL4A, I1ER and ZS2U give us the grods on AC5PN (65) 13, AP2Q (32) 14, BVITIS, BY1PK (67) 13 of Peking, CEs 1AD 3DV tEC 5EF 9AL (62) (1-2, 9AR 9AV OAD 5, CM8RM. CNs 8MB 9CK. COs 2[JJ 2PY 3BU (35) 20. CRs 4AH 4AX ((i0) $3,6.1 P 6(? . j$ (.54), $7 \mathrm{BC} 7 \mathrm{LU}, \mathrm{Crs} 2 \mathrm{BO}$ (13), 3AV, plenty of CXs, DMs 2 AQB 7, 3 YDA. DUs 1OR (64) 'fi'V (79) 13, 7SV. EAs 6AZ 6GE 18. 8BF (12) 5. 8C:G (43) 2, EL4A, EP5X (5) 4, EQ2AT, FA:3LO/sh of the Sahara, FB8s XX ZZ, FF4BC (30) 1ñ, FG7s XA XF (13) 11, FK8AH (36), FM7WP (48) 21, FO8s HO HP (11) 21 , HW (2:') 5 . FY7s YF (50) 21 , Vi (10) 21 , HA5s FX KDQ, HH2s AR (75) 2, ML (45), OT,
 BR (13). SB, HRIMIMI, HZIAB (35), ISIZUI, ITI's AGA AQ CDS, scads of JA friends, JT1 KAC (97) 1;3-14 and 23, JZOPO, KøSLD/KW6, KA2s AB (54), КJ FiS IA, KGs 1AA 1 BB 1CO $1 F D$) 4AB 6.J.JT, KM6s BI (9) ti, BT, KR6IQ (65) $13, \mathrm{KV4s}$ AA (81) $22, \mathrm{BQ}$ CI $/ \mathrm{mm}$, LJ3G of Norway, LUs 3×0 7ZL, LZ1CF, OAs $4 \mathrm{~F}^{\prime}(5)$, $4 K \mathrm{KF} 71 \mathrm{CO}$ OD5CQ, OEBVP OHONC (25), OR4TX (25) 22.23 of Belgian Antarctica. OX3s AY (20) 0, BQ U1.), PJ2s AC ME, PZ1s AG BH BP BR. SMI5s BUG KV both $/ 905(20)$, SU1AL. SVøs AT/mm W7/Crete, TF3AF, TİOL, UA9s A.A BW (ti0) 3, CN (14) 3, DN JR, KDL KDM 6, MC SA (77) 14, IG I'V, UADs AZ BI BP (14) 3, CI EQ JB K.AE (32) 4, KFMI KID KKS KYB (97) 13. LN RD. UB5s KAB (i) 5, KBO 5, MZ, UG2s AR (5), KAA LE WP 6, UD6BB UH8s BI (21) 2, DA (86) 2 - 3 , KAA, UJ8KAA. UL7s AW GY (81)
 UO5KAA (70) 8, UP2AS, UQ2s 1)F KBA. UT5s CB CC (27) 5, VEs 8RX ØMIC, VKs 8EW 9NT 9RH OIT of Macquarie, 0.JM (45) 21 of Davis base. VPs 2AR 21)(2 2MB 2SL $3 \dot{\mathrm{YG}}(45)^{1,4 \mathrm{TX}} 6 \mathrm{LN}$ (40) 7 BK 7 BP 8 FD 2 I , 9CX

4-4 4

ZC41P
2020 CP
9AIF 9HB 17, VR2DK, VR3L, VSs $1 E D$ (15) $16,1 \mathrm{KQ}$ (25). 9MB of the Maldives. 90A. VU2s A.J IR MD (50) 13. NR RA, XE3BL, XZ2TH 18, YA1BW, YN4AB, YOs 3 CMI (17), 3FF 17. 7 DL (30), YS1O (45), YVs 1DP 4 BF (40) 2, $5 A C$ 5ANI 5ASY. ZBs 1 FA 1 HC 2AD (15) $21,2 \mathrm{I}, \mathrm{ZCB}$ 4SS 5AE (80), ZD7SA 8, ZEs $2 \mathrm{JC} 3 . \mathrm{IG}$ (50). 8JJ (87) $15-16$, 8JV, ZK1AK'(35) 5. ZP5s LS OG, ZSs 3T 7M 15. 4X4s JÚ
 7G1A 19, 9G1AQ (40) 1. 905EH 16, 9U5s FW and MC 17. 20 phone, where asterisks indicate single-sideband ernplovment, was host to conferences between W2DY, K2TDI*, K4KYB, K5YAA*. K8JCB*, VE4JT and a quality collection of andiophiles. with R. Keme and KN8VIX listering to BV1USB, CE2CC*, CN8MB*, COs

 ${ }^{2} \mathrm{~T} T \mathrm{KCH}$
 GNAA* KJ6BV* KR6MB*, KM6BO* KV4AA*, KW6s
 4CV*, OD5CT*, OHGNC*, PJs 2, AA* 3AJ 2, PZ1s AX* HF* B.J* BR*, SVIAE*, TF 2 WVLZ*, TL2WR*, UAs 1AB* (310) 8, $4 \mathrm{~F}^{* *}$ (310) 8, 41F (316) 8, UB5KAB*, UD6KAB*, UL7JA* VK6s GR* RU*.VPs 2AR 23, 21)A 13, 2VA 3,
 VSIJV* YU2s BK NR* RNi* several XE1s. XE2FC*' YNIs M W* TAT* YVICP 1 , YSIMS*, $2 \mathrm{KIRS}^{*}(310) 8$,
 $9 \mathrm{N1s}$ Cij* MD* SM ${ }^{*}$, 9 G1BQ* and $9 \mathrm{Q} \mathrm{SUS}^{*}$.
$15 \begin{aligned} & \text { phone has a wider spread of "How's" hoosters and } \\ & \text { holds } \\ & \text { its own as our current No. }\end{aligned}$ by a narrow squeak over lively 20 and io. DiIMiP. W2D MY, K2TDI* K 3 KHK , К 4 s [DFT KYB MPE, K 5 K OUE YAA* K $6 R O U, K \bar{K} K P M, W 8 K M L, ~ K 88 ~ J C B * ~ T J W, ~$ KN8VIX auditing, K9s OR'C PYB, VE4JT and listener R. Kemp document the $21-\mathrm{Mc}$. modulations of CE 3 HZ , CN8HX (240), CP5FL*. CR9AN (252) 0, GT3AV*, DU6IV, ELE $1 \mathrm{C}^{*} \mathrm{HL}^{* *} 81$ ($240123, \mathrm{FFs} 4 \mathrm{AB}(253) 23,8 \mathrm{CK}(261)$ $21-2.2$. FG7XII. FO88 AE' $(245), 21$, HT (240) 21 . FS7RT* (368) 28 GD3ENK*, HC2s LX 21, ND*, HH2MIL, HI8DGC, HP1AP, HRs 2HA* 3PD I , HVICN* HZ1AB* JAs iACB (212) $2.7 \mathrm{AD}, \mathrm{KB}$ 4SDC/CN8* USLI)/ KWb^{*} (455) 2, KC4USH*, KGs 4AT 6FAF* (396) 4, KM6BI*

FF4AB's eighty watts, doublet and HQ-140X make the lvory Coast available for world-wide countries hunters, 21 Mc. preferred. (Photo via K2UYG)

(414), KP64O* KR6DI* (396) 23, KV4AA* KX6BQ* OA5G*, PJ2s AA* MC (96) 22, PZ1s AR 2. A SV1AR' (273) 17, TF2WFF*' TG5HC. TIB 2DiAM 2OE 2RO 5 RV, UP2 $\mathrm{KCK}, \mathrm{UQ2AN}$, UR2AR. VE8s AF BL, VPs 2DA (240) $22,2 \mathrm{DQ}$ 2LS 2SI*3AD i251) $23,3 \mathrm{EFG}$ (250) 23. 6AM 6/VR 7BM, VOs 2WZ 3GL* 4RF*. VR2DE, XEs $2 W \mathrm{C}$ GALP ${ }^{2}$ YNs 1.JK $1.1 T A T *$ 6HH 0 YSLMMI 13, YV5s AGD AMI, ZB1USA, ZF7JV, ZK1BS*, ZPGBB*
 7G1A, 9G1DH (245), 9M2GA, 905s MP and RU. The stars ${ }^{(*)}$ denote s.s.b. action, as usual.

15

c.w.'s crew of communicational cosmopolites comes
 K3KHK, K48 DFT KYB MPE (105 countries on 15). 1558 OUE YAA. WFTCV, K6s CJF ROUS. WAGB FCX IVMI, W7s DJU POU. K78 DAS INO KPM. W8s IBX KX YGR. $K 88$ JCB QEX TJW, K9s ORC PYB SPO UKM, VE4.JT, EL4A, I1ER and ZS2U compile confabs with CEs IBD' 4 EC , CNs 2 AQ 2 AY 8 CJ , CRs 5 AR (54) $18,6 \mathrm{BX}(48) 21$. 7LU, CT1s JY KD, CXIFB, DL5s AW (4U) 19. A) RIF, DU7SV, EA6AM, ELs 3B 4A 18, FAs $2 V C$ 3CT 8TT 9RW, FB8XX, FF8BF (30) 21, FO8s AG HP (53) 20 , GD3FBS (70) $19, \mathrm{HAs}$ 1SP 5 RW , HCs $1 \mathrm{JU} 2 \mathrm{IU}, \mathrm{HH} 2 \mathrm{CB}$, 11 K 7 ZT . HM1AD, HZ1HZ, much JA fare including JA5s US and FQ: $\mathrm{Ks} 57 \mathrm{PK} / \mathrm{VO} 121, \operatorname{GSLD} / \mathrm{KW} 6$ (50) 3, KAㄹRB, KG4AB, KM6BI, KV4s AA (80) $19-20$, CI/mm. KW6DF $2, L Z 18$ kNB Kíz, OA3D, OEs IHJ чEJ, OHOs NC NE (95) 13 , OR4TX $22,0 Y 1$ R, PJ2CQ (95) 20 . Fernando's PY7LJ (55) 18, SV6WQ, TFs 2VFF 3MB. Ti2s CMF ES LA, UAs 9JR OEH (25) i. 0GF (58) 1 UB5s UG WB, UC2s BB CB, UN1AB, UR2KAE, VK9XK (30), VPs 7NT 8E1H 8 EZ (55) $23,8 \mathrm{FD}$. VOs $2 \mathrm{CZ}(40) 19,3 \mathrm{HZ} 4 \mathrm{DW} 4 \mathrm{GQ} 9 \mathrm{HB}$, VS9MB 15. W6UNP/KH6, WH6DPF, WL7DNK, WP4AVW, XEs 1 H 1 PJ 2 AY 2 HU , YOS 2 CD 3 RI , YV5ANP. ZBs iFA $1 F T$ 2AD, ZC4s AK' 16, SC (62) 16, SS, ZD2s
 ZKIAK, ZP5B GF $1 \times$ LS $17-18$, ZS3HT, 3V8CA (18) 20 , 5A2AE, 7G1A, 9G1AW, 9K2AD 15, 9Q5B IG Lí and US.

Novice comers KN5FKD, WV6s HNO and MWG are
outnumbered but undismayed by CE4EC, CR5AR, CX2AM, DM3KALL, numerous II, S, DLs. DU7SV, F8VN, G38 KMA NSY, KH6DKI, KZ5s BBN HNN TJ, LU7AU', PY4AUM, UAIKAS. VK× $2 Q R 2 S G 3$ TX. WH6B LND DRT DWT, WL7s DKE DLH DMO DOB. WP4s ANN AWA, XE1PJ, ZLs lCA 3 GU and 9 U5VS. Hmm-are $21-\mathrm{Mc}$. WN/KN/WV diggers closing the shaft before the mine is worked out?

10
phone, with its global network of eagle-eared operatives determined to squeeze the last DX drop out of painstakingly-wrought 'L K5SBN. K6ROU, WA6IVMI', K7B INO KPM', W8IBX, K8JCB, KN8VIX a-tuning. K9s PYB SPO. WGTCX', KøTKN, VE4JT and Mr. Kemp logging luscious CE3PY, CN2s AQ AX, CRs 4AX 21. 6AT 19. 6CZ (345) 17, 7CK 19
 14. 3AI 14-15, CXB 5BR 6CG. DU3QX, ELs 2 U 4M 5 A ,
 LAA, HHs 2GR 19. 2 JH 이 5DM, HI8s D(iH GA. HKs 1NT 13, 4BQ, MP1AP (4)(א) 19-21, JAs in every call area save the 5 th plus JAtriI. KAs $2 J \mathrm{~L} 8 \mathrm{LF}, \mathrm{KG} 4 \mathrm{AT} 6 \mathrm{AIG}$ 6.JJT GAKA 6NAA. KR6s DO IMI KC KT. LAIFA, PJ?2L 14, PZ1BK 16, SL6BA of Sweden, SP7LA 16. TGs $6 \mathrm{HC} 9 \mathrm{FI}(360) 0$ UA8 $1 \mathrm{AEV} 14.1 \mathrm{KAG} 3 \mathrm{KNB}+\dot{\mathrm{k}} \mathrm{WB}$ UB5s ${ }^{\text {BBG BWG' } 14 \text {, UP2 AS ONE } 14 \text {, UR2BU. VE8NH }}$ 19. many Vhs plus VKowII, VPs 1DX 16. 2GAQ 13, 3EMIG 14. 5BL 6JC 6 TR (370) $16,8 \mathrm{ENM}^{2} 9 \mathrm{MAI} 9 \mathrm{WB}$, VOs $2 \mathrm{~L}^{\circ} \mathrm{C}$ 2 JR 2 WZ (400), 4DT 4 Fir 20 . VU2BK $13-14, ~ W+Z \mathrm{CB} /$ KH6, XE28 R (465) 15, SO, YNIEDB, YO2BAL 17, YV8 1EE 3DL $5 A M I$. ZB1HC, ZD2s AMS FNX JKO. ZES IJN $4.5 \mathrm{~S} 7 \mathrm{JV} 8 . \mathrm{HA}(450) 19, Z \mathrm{SB}_{3} 3 \mathrm{D}(450) 18,3 \mathrm{KW} 3019$, 3 R 7 L (275) $19,4 \mathrm{X} 4 \mathrm{~s} \mathrm{FR}$ JU, $5 \mathrm{As} 3 \mathrm{~S}^{2} \mathrm{~L} 5 \mathrm{TF}, 9 \mathrm{G} 1 \mathrm{~s}$ CW'DN (275) 18, DP 21, 9NIGW, 9U5s DM 21 and PD.

10
c.w., when phone frequencies get rough. is alwavs good for casting. K1IMP. W:WAS, KiYPE. WALKMY, K3GCS, K4s DFT KYB, W6RCV, LGROU

OLTAH EAACR FFIAJ FRBAP

EA9AP A EO1
等 viphen

WAGIVMI, KZINO, K8s JCB QEX, K9s PYB SPO, Køs OGII RNK TKN, EL4A and IIER hook such iridescent rainbows as CN2AQ. CR4AX, CT1s HX JY, CX2AZ (75) 23. DM?s ACO ATH, EA9AP. EL4A. HAs 5KAG 8CF 17, HE9LAA. HHOLD U. ITIAGA, JA8 $4 H M 4 \mathrm{~KB} 5 \mathrm{KM}$ and a slew of other Japan entries, K9SLD/KW6 (50) O. KW6DF, LAs $7 Y$ 8NF, OD5s ©N CQ. OE $2 U R$, PJ3AD, curious PX1AI. SPs kalore, SVIAAA, TF3AB, ample UAB, UB5JR. UC2AA, UH8 BI. a VK or two, VPs 7NT 9DR, VO3HH, XE1PJ' (25) 22.1 YN1RH (100) '2?. YV5ACMI, ZD2JKO', ZE8JG. quite a few ZLA and ZKIBS.
40 c.w.s DX propensities are explored by KiIMP, KGC W2WAS K3s BVV KHK. K+KYB. W6RCV. KCB WAGIVAI. W7s DJU LZF, K7s DAS INO, K8s such bandmarks as COs $\ddot{\mathrm{CP}}$) 9 , 20) $4-6,7 \mathrm{NB}$, DU7SV, EA73Z, EL 4 A (8) 7, EP1AD ($10 i^{\circ}$ B, FY7YF (9) 2, GC 2 FZC (25) $6-7$, HCIJU, IT1AGA, JAs IANO 1 BI 1 BTH ICZG
 6AOY 7AKQ 8JC 8QN 8VMI 00 P GXG. KR6CA, LAGCF/ mm in the Paciic. OHONF (20) 18, TF2WEM, UA0s KAR KID 5, VE8SA, a Hock of VKs whis VK7MZ, VP7NA, VR2I)K (21) 7, VS6BK, VU2CQ, W7QMU/VE8, some XE neighburs, YNiOC, YVVAN (2U) 3-4, ZC4IP and a tistful of $Z \mathrm{~L}$ colleagues. $\cdots \overline{\mathrm{V}} \dot{\mathrm{V}}$ - Our lone 7 -Mc. Novice collab-
 and Alaska in the Norice noteh up-band.-.-. Forty phone treats K3BVV and W8IBX to XE2SG and MP1AC, respertively. W8IBX comments. "I wish the Spanishspeaking stations who hover between 7050 and 7120 kc . would listen in the J . S. forty-meter sector for SpanishHuent Americans. Perhaps a frecnency such as 7280 kc. could he designated for Spanish-speaking W/K/WA stations desirous of DX QSUs with stations in the lower part of the band. If the Latin-American hoys knew exactly where to lonk in the American phone band for Spanish-speaking IDXers they might be encouraged to do so more often." Eighty's YX front is obscure at this writing, but $\mathrm{K} 4 \mathrm{~L} \mathrm{~N} \mathrm{E} E$, stationed in Scotland with the USAF, consistently copies 75 -meter phones from the east half of the IT. S. A. Rav notes particularly strong signals from Ws LLSW and $3 S V L$, to ext specific.
160 c.w. now has a bulwark of 1DJ/DL actives to help out the British Isles 1.8-Mc. rewulars, this thanks tn suecial authorizations reported hy DLIFF to W1BB and friends. Long-wires over salt water, kites and monstor rerticals will he pressed into 160 -meter action as the lowband lads prepare to concentrate Innk-haul effiorts in the Transatlantic and World-Wide Tests set for the 8th and 2 ind of this month as announced by ringleader W'1BB cerning - By the way, check with W8QHW and 177 HDB concerning new certifications wailable to those who demonstrate a necessary amount of 160 -meter 1 DX nrowess. Have you confirmed, say, ten countries on 1.8 Mc? No? Give 160 a try and find out how easy it isn't.

Where:

Africa - "As snon as a new order of QSLs arrives from, the States ETMUS cards will go out to all who a wait them." assures Kagnew statiman W4GVM. "Wnfortunately, all club records and logs prior to Fehruary 22, 1958, have heen destroyed. We will QSL 100 ner centt for QSOs made from that date forward, so long as our logs indicate valid contacts. In the future we intend to answer all cards as received."
'l'll have the tinal log cony for ex-ZD1AW shortly," states Alf's QSL chief, W3KVQ. "I aill continue to acknowledge all QSL requests accompanied by the usual s a.s.e. [self-addressed stamped etlvelopes]. With ZD1AW's shutdown, Sierra Leune will still be active through ZDICM who has about a year to go on his current duty tour."

HH2V of Port-au-Prince is noted for a persistent DX performance on 10 through 160 meters with his Viking, HQ-160 and Mosley array plus long-wires. Victor also serves as secretary, Radio Club of Haiti. (Photo via K2YFE)

January 1961

W3KVQ also does QSL honors for CT3AV, VP2AR, VIT2RM, ZDICMI and 4 S7WP...-. K3DLX naturally desires s.a.s.c. in carrsing out VQ:FC eonfirmatorv services - -KQQXC remarks. "As QSL manager for the ZSIRM/ZS8-ZS1OU/ZS8 DXpedition of October 8th-17th. I report that every card has been sent out where a selfaddressed stamped envelone was received. Biggest drawhack: fellows confusing local 2 t-hour time with Cirenwich Mean Time.' \qquad I handle QSLs for EL2Q." contirms K9ECE. "S.a.s.e. please." \qquad (b) " "ou April I go on holiin response to QSL a arrivink here after March lst."
Now via HGDXC. After thirty days without application W8TMA released YQ5 YM QSLs via the bureans ronte. same gues for applicants who failed to supply QSL transwortation (s.a.s.e.) \qquad h4KYB aftirms that ex-V'G3FS-ZS3ES still welcomes QSt, inquiries via the Oanadian QTH specitied in last September's "How's"
NCDXC, from (SR5AE: "My trouble is the QSL handing, although I'm a tine QSLer. 130 per cent: hi! I've sent out over 500 , cards within a month, and have 200 to go at present.'

Asia - FP1AD advises W1UED of ARRL that his military address turns out to be more expeditions than the club box number previously specified. See following
 acknowledging joyfully the receipt of Mirek's QSL for a $19 t 0$ rummertime QSO XW8AL took a breather during local civil excitement., and his friend K4KTR writes: "I have Phanh's lugs for North and South America and U.S. Possessions fur yll of 19tj0. I'll QSL on the usual self-addressed stamped envelope hasis."- "Kindly advise the gang that I now act as QSL manager for VSfiAE," says WGIDIX. "S.a.s.e. required for all cards."
 home from Singapure. "ALI VSIJU contacts were QSLd, but should anyone who QSOd me not have received his card, a line to my (i3LK address will do the trick." Phil, by the way, once signed EP3H.

Oceania - "VR?AP cards have been handled by me since last. July," writes WGUYE. "l have some QSLis ou hand made out personally by Al; s.a.s.e. required for forwarding.". .-. George Harding, an airman and a future ZL3, regretfully tells us: "VR?DR met untimely death in a shooting accident shortly after his return to New \%ealand. So far 1 have nut beeth able to locate his radio Ings. There are a few avenues I have not yet explored, however, and nossibly one of these will produce them. I would be most happy to send out VR2DR QSLs when and if 1 find Boh's records." George can be reached at Ground Radio Section, No. ${ }^{\text {' }}$ Hangar, RNZAF Station Wigram, Christchurch, N. Z. - "I received a declaration from W5GB$\dot{K} H 6 \dot{\mathrm{G}} \overline{\mathrm{L}}-\mathrm{K} \dot{\mathrm{P}} \overline{\mathrm{f}} \mathrm{O}$ that he is the only licensed operator on Palmyra," reports W'iRCV. Seratch a few . . . - . - s.w.l. J. Howard says that $W 80 L J / m m$ of Project Hope has a dandy QSL for your collection - "I hope to clear up verification of all contacts as soon as possible," promises KCGCJJ of Ponape. Extensive traveling holds him up. Father-and-son tean KW6DF-K9SLD/KW' testify. "We return QSLs 100 per cent, via bureaus. Those who sumply s.a.s.e. get response by return airmail Please stress that

postal rates here are the same as in the States．Surface mail， incidentally，arrives veru slowly by boat．
K9W＇TMI has the logs of KR6s KP and ZT，both having raturned Stateside．＂1 QSL for them 100 per cent．direct where feasible，utherwise via bureaus．Any stations uot in receipt of deserved cards by now are invited to apply with s．a．s．e．to KyWTM．＇
Hereabouts－．．．＂I now act as QSL manager for VP2DU＇s QSOs since October 1，1960，and for FY7 YT＇s since Novem－ ber 1，19fi0，＂specifies WRAYI）．＂Sia．s．e．or International Reply Conpons are necessary for direct reply．
＂Before I left the Antaretic I QSLd absolutely 100 per cent，＂ asserts ex－VP8CE－VP8DN，autive on the Grahamland wast from Jebruary，195\％，to February of＇ 59 ．＂One large parcel of cards was entrusted to a friend aboard USCGC Northuind－one George E．Gritlin，PO．Box 207リ， Freeport．Texas．I assumed that these QSLs had been delivered but apparently this is not so．for I now receive cards requesting QSLs．If even a few stations got my QSLs from this batch in question 1 would know that the package was posted．＂Anybody know（ieorge＂．．．．－－NCDXC＇s 1）Xer hints that W1ZZK may be able to assist in PY7AFN Fernando de Noronha QSL matters if all else fails．－．．．．．．
HH2V，savs KこYFE，is among Haiti＇s most staunch card－ HH2V，says ǨュYFE，is among Haiti＇s most staunch card－ upplands KilJTL．－．．．．．K2SWZ／W3EKK disengages him－ self from the QSL，problems of PIDNIE because of inadequate liaison．He suggests you petition PJ2ME direct
Hampton Roads Radio Club，K 4 kTR correspondent，will assist PJ2AF＇s QSLing for contacts dating after November 15，1960．K4OGT has respunsibility for the buverwork

Report from the brr－r－r north and VE8 QSL Manager VF8．4T：＂VE8s ML TU and YT have hot sent s．a．s．e．to this Bureau for their CSLs．I have advised them of huge piles on hand for them but they do not appear to want them．I advise DXers to send cards to these stations lirect．Also．W／K／VE hams should be reminded that their CQSLs are not supposed to go to VE8s through the ARRL Bureau．I＇m quite busy enough handling cards properly incoming from UX stations！＂．．．－＂I＇m arnazed at the number of contacts claiming me as their tirst KL 7 QSOs．＂notes $\mathrm{K} L 7 \mathrm{DRM}$ ．＂My military address is cumber－ some，so I request ciSLs through W WZQV．＇
W3IWS is interested in determining just what Leewards island VP：DAA operated from in April of 1949 ．HW？
$K 2 S W Z / W 3 F K K, K \pm D W U$ and K8JWC iffer their good oftices as GSL agencies for rare－WX operators in bona－fide need of such assistance－．．．．．．．．．．．．．From W1QLT of KEgQLT／XE5：＂Our QSLs are late because of delay in get－ ting the special etching completed．＂Many are itching for that etching ．－－A salute to W＇ls UEI W WP，K1s IMIP JTL LVW，W2s FGD GVZ JBL WAS．K2s TDI UKQ
UYG，WA2KMY，K3s BVV CUI GCS KHK，Kts KTR KYB，W5IRJ，W＇is JQB NTR，K6ROU，WA6FCX，W78

1．）IU LZF POU UVR，K8JCB，KN8VIX，K9s OKD ORC， VEs 4．JT 8AT，DL4BS，KL7PI，ZS＇2U，s．w．l．s J．Howard and R．Kemp，Hamfesters（Chicago）Kadio（＇lub Ham Gah．International Shurt Wave Leauue Monitor，IRTS ＇Eire）News，Japan 1）N Radio Club Bullotin．MARTS Malayan Radio Amaieur，Newark News Radio Oilib Bulle－ Amateur Radio Association E＇ther Haves，RSC（Ceylon） 4NO～Bulletin．Universal Radio DX Clinb liniversalite， VERON itfolland D．I press and West Gulf DX Club DX Bu！letin for the following recommendations：

CEOAD（via CE3HL）
GO2DO，J．de Lios，82b No．520，Miramar，Havana，Cuba DL5DU，R．Porter，U．S．Army Area Support（omponent， 1 PO 757，New York，N．Y
EA7JZ，M．Munoz．Box 262，Malaga，Spain EL4L，Box 80，Monrovia，Liberia
EL4M，Mary Knowles，Box 80，Monrovia，Liberia
EP1AD，H．Leith（Kí）RQ），MAAG，APO 205，New York，
ET3MA，P．O．Box 1t．Harar，Fithiopia
FF8AU，M．Grivaud．P．O．Kox 971，Dakar，Mali
FK8AH．R．Ciarbe，Box 29 ．Noumea，New Caledonia FY7YI（via W3AYD；see preceding text）
GM3OIO，J．Howie， 11 Chapelton Ave．，Bearsden，Glas－ ruw．Scotiand
HC2LX，P．O．Box 145，Guayaquil．Ecuador
HC7F7．，F．Zander，Box 1007．Quito，Ecuador HC8VB（via W＇8EWS）
HH2ML，P．O，Box 671 ，Port－au－Prince，Haiti
HK1HV，H．Verano，Box $15+5$ ，Barranquilla．Colombia HK1QQ，P．O．Bux 3＋！．Barranquilla，Colombia
HM1AD，Nam－he Oh， 3 Y＇ounjidong，C＇honerokn，Seoul， Korea
I1CVM，MI Cristofoletto，Zenson di Piave，Treviso，Italy JAIFPS．H．Yuhara， 892 Ohitsuke－Shinden，Tone－Machí， ibaraki－ken，Japan
JY1ZA，Box ：5，Imman，Jordan
ex－JZOHA，cio Shell（＇o．．Qatur Ltd．，P．O．Box 47，Doha， Catar Persian Ciulf
K4CDZ／VE8，r^{\prime} ．Ashworth．y20th AC\＆W Sqdn．．Resolu－ tion Island．N．W．T．．via Montreal，P．Q．，Canada
K4SDC／CN8，Box 6, Nay 214, FPO，New York，N．Y． KA2AB，V．Smith，：875th GEEIA Sqdn．，Box 154，APO 3\％3，San Francisco，Culif．
KA8PB，P．Beal，jr．（W＇1CHL），1953rd AACS Sqdn．，APO 41！，San Francisco，Calif．
KA9CG，USCG Loran Stn．．APO 181，San Francisco，Calif． KC6GJ（direct or via KH6BPF）
KJ6BV，USCG Loran Stn．，APO 105，San Francisco，Calif． KL，7DRM（via WGZQV）
KP4TIN，R．T＇aylor，jr．，A partado 216．Aguadilla，I＇．R． KR6IO，1．R．S．．APO 239 ，San Franciscu，Calif．

Flavorful Malaya DX atmosphere is provided by these views of the exterior and interior of 9M2EB，Kuala Lumpur．Gear includes a 25 －watt Panda Cub，Eddystone 680X receiver，Mosley TA－33 twirler and＂G8KW＂dipole．You may have worked Eric previously as VSIEB or ZBIEB．When the long skip is right，9M2EB is workable on 28 through 3.5 Mc ．

KR6KV，R．Duncan，3rd USASA Fld．Stn．，Box 12，APO \％31，San Francisco，Calif．
KW6DF，L．La Baume．Box tis．Wake Island
KX6BO，Navy No．572，1．PO，san Francisco，Calif．
LAILG／＇p，c／o Norwegian Embassy，Reykjavik，Iceland （or via NRRL）
M1C，P．O．Box 20 ．Remublic of San Marino ex－MP4DAA（to 5．43CAA）
OA7F（via W＇2CTN）
OD5CQ，c／o U．S．Embassy，Beirut，Lebanon
PJ2AF（ria KıOGT）
PY4GA，I．（iomes，Box 314，Belo Horizonte，MI．（i．．Brazil
PZ1AR，P，O．Box 431 ，Paramaribo．Surinam
PZ1BK，P．O．Box 160，Paramaribo，Surinum
PZ1BP，P．O．Box 162，Paramaribo，Surimarn
RAEM，E．Krenkel，Charligin St．．1／A，kv．42，Moscow， U．S．S．R．
SM5BUG／905（ria SLSA）
SP6FZ（ria W＇2JWK）
SU1AL（via K4IEX）
TI3GGM，P．O．Box 230，Cartago，Costa Rica
TI5AX，cio Sala，Apartado XX，San Jose，Custa Rica
UA1CN，M．Pugachev，Svyazi 21，Tikhvin．Leningrad， U．S．S．R．
UA3FG，Box 570，Moscow，U．S．S．R
UA3IE，G．Nesterin，B．Pochturaia 18／20，Box 11，kv． 57. Moscow，U．S．S．R．
UA4LE，i．Orlov，Postbox 20% ，Ulianorsk，U．S．S．R．
UA6LI，O．Ivanov，ul．Chekova 36，kv．8，Rostov－on－Don， I．S．S．R．
UADKQB，IOSAAF Radio Club，u．Varoslarskogo II， Yakutsk，U．S．S．R．
UB5AQ，V．Shpilevoy，Radio Club，Dnepropetrorsk， Gkainian S．S．R．，U．S．S．R．
UB5UG，Postbox 5́s．Kier 1，Ukrainian S．S．R．，U．S．S．R．
UB5WF，V ．（inncharsky，Box 41，Lrov，Ukrainian S．S．K．， U．S．S．R．
UC2AA，V．Banzar，Postbox 41，Minsk City，Byelorussia， U．S．S．R．
UO5SA，A．Suftjuk，Oknitza，Moldavian S．S．R．，U．S．S．R．
UT5BK，E．Kazakov，Vladimirskaya 15，Kiev 25 ，Ukrai－ nian S．S．R．，U．S．S．R．
VE4JT，I．Stacey（ex－VEBEIL）， 106 ± 12 th St．，Brandon． Man．．Canada
VE8DG，D．Gordon，c／o Dept．of Transport Aeradio． Teslin．Iukon，C＇anada
VE8XM，H．Doepel，cio Dept．of Transport Aeradio．Ver－ million，Alta．．C＇anada
ex－VK8GU，H．Meycr，WlMFI，c o o Pickard \＆Burns．Inc．， 240 Highland Ave．．Needham 14, Mass．
VKOs DM ID JH NB RL（Antarctica：via WIA）
VP2AR（ria H：3KVQ
VP2DA（via H8VI）J
VP2DAO（ria K9UTI）
VP2DU（via WSAYD：see precerding text）
VP2VH（via W2「TH）
VP7NA，H．North．P．0．Box 5197，Nassau．Bahamas ex－VP8s CE DN，P．C＇atlow， 22 New St．，Lancaster．Lanca－ shire，England
VPREZ（via CiロRF）
VO1B（via W＇TO）
VO2FC（W／hs via K3DLX）
VQ9A（via Wit
VR2AP（via WGiYF
ex－VR2AZ，J．Regan，ZIDAXC：it Roberts St．．，Linden． Wellington， N Z ．
VR6AC（via W＇GRCD）
ex－VSIJU（to（i3Lk）
VS6AE（via W6DIX）
VS6EP（via HKARTS）
ex－VS9OC，Upl．T．Uwen（（i3KHMM），Sig．Section，RAF， sit．Mawqen．Newuuay．Cornwall．England
W7OMU／VE8，USCG Luran Stn．Gave Christian，Batfin Island，APO，ies，Neu Y゙ork，N．Y．
W8OLJ／mm，R．（＇harberteal，Project Hope，P．O．Box 9808，Washington 15，D．©．

YO9IA，B．Cortun，P．U．Box 91，Ploesti，Roumania
ZB2AD，Officers Mess．RAF，Gibraltar
ex－ZDIAW（ria W3KVQ）
ZE8JJ（via k5Al）（）
ex－2L5AC（to ZLDACV）
ZP5HZ，e；o U．S．Émbassy，Asuncion，Paraguay
ZS2U，A．Akers， 5 ． 3 Clarence St．，Westering，Port Elizabeth， S．Afr．
5A2TZ（via W40HX）
5A3CAA，A．Gooduin，P．O．Box 263 ，Benghazi，Libva $5 A 5 T A$（via Kもl）
601MT，M．Tessieri，Box 397，Mogadiscio，Somalia 9G1DP．${ }^{\prime}$ ．O．Box 1981．Kumasi，Ghana
9Q5EH，Box 2124．Elizabethville，Katanga．（ongo Re－ inblic
9Q5HF，Rev．F．Schwit，A．I．Mission，Kasengu，Mahagi， Congo Republic
9U5MC，Box 78，Kigali，Ruanda－Urundi
Note：Perhaps some of the furerunning would go well in the April issue，but careat emptor as usual．Don＇t forget self－addressed stamped envelopes when seeking the services of Stateside osiL representatives（non－W／Ks supply IRCs）． And do you have euvelopes properly on file with your call area ARKL QSL Bureau Manager？

Whence：

Europe－1）ARC（iermany）invites amateur radio－ telegraphers throughout the world to participate in the Sixth W＇AE DN Contest scheduled for 0.500 GM＇T，January 14 th．to 2300 on the 15 th．Non－European stations will swap RST001．RSTOO2，etc．，serials with Europeans once per band at one point per contact two points per $3.5-\mathrm{Mc}$ ． QSO）．Additional points are vours by sending＂QSO reports＇＂（Q＇TC）to European stations at one point per Q＇TC． Each QTC consists of il time in GMIT，（2）station call， and（3）QSO number of any previous WAE Text contact． For example，W9XIZ raises DJ7．JJ and earns a contact point thereby；W＇9XI＇7 previously worked（i3BS at 1207 GMT for Ci3BS＇s 96th Test QSO．So，besides the QSO point for his serial trade with DJ7．J．，another point accrues to W9XYZ if he sends＂ $1: 00$／（ $3.3 B S / 096$＂to TJJ7 J．J．W＇9XYZ can work ID．57．J．again later on the sume hand，but only for QTC purposes．During the entire Test period each Q＇TC can he transmitted to Furope by W9X ${ }^{-1} Z$ but once．and IJ7．JJ can accept no more than 10 QTC per band from W9XIZ． （1t figures that the more Test QSOs accumulated，the more QTC are available to parlay into additional points．）scon－ ING：Multiply combined QSO and QTC points collected on all bands by the combined numbers of multipliers collected on all bands，the latter deriving from DARC＇s Worked－All－ Europe Countries List－CT1 CT：DJ／DL／DMI EA F，AG EI F FC G GC GD GI GM GW HA HB HE HV I IS IT LA IX LZ M1 OE OH OHy OK ON OY OZ PA PA SM SP SV TF UA1－G UB UC UN UO UP UQ UR とO I＇U ZA ZB1 ZB2 3A2．GMI Shetland，La／p Jan Mayen，LA／p Spitzberken，SV Athos Republic，SV Crete，SV Rhodes．TA Furope and TA Franz Josefland．（DARC strenses that UD （IF and UC：are Asia．not Europe．）Entries go to the I）ARC． IN Bureau，Berlin－Rodow，Germany．postmarked no later than March 31，1961．The highest scorer in each continent and country for call area）will earn a certificate of merit： second－and third－rlace awards also will be considered．BY the way，a large self－addressed envelope sent to DARC together with a pair of IRCs（for airmail reply， 5 IRCs） will bring back convenient score sheets for transcript and summary．Sec you on the North Atlantic path！． Say．consult ON4QX regarding rules changes for the WOSA certification iesued by the Antwerp（：W．I）N Cluh．－－－－ After a five－vear campaign W9EHW finally attiched him－
sedf to USKA（Sritzerland）Helvetia－X XII diploma No． 788 seff to USKA SAKitzerland）HClvetia－XXII diploma No． 278 Little＇Rissington，Glos．，writes W1IKE：＂RAF clubs are always nleased to work into the States；skeds will he wel－ come．At the moment Gi3NGZ runs 75 watts to a Mosley three－bander．＂．．．．．．．Through KこUKQ and W＇1WPO

 i). $\dot{\text { e }}$ as as mainly homebrew on 20 and 80 meters.

Asia - EPIAD tells WIUED that a new batch of EPEQs is hatching. KL7PI's former neighbor, ex-KL7TI, is wre of these. having arrived Tehran with a Viking and $75 \mathrm{~A}-1$ after grabbing D XCC in Alaska. EP1AD continues to hit the $1+$-Nc. Eiast Coast around 1300 GMT, Westerners a little later on the other path Listener J. Howard has the $W 80 \mathrm{LJ} / \mathrm{mm}$ Project Hope s.s.b. frequencies as $14,345, \geq 1,445$ and $28,650 \mathrm{kc}$. Kalph has a kilowatt aboard the floating medical center, an installation that made quite a. hit recently in Indonesia - - - AC5PN tries 14064 kc . serves that boorish swampers regularly drive Chhawna QRT .-.- Japan notes: W1CHL and XYL K1JFD tired up KA8PB's BC-610. 51-Jt and doublet on 20 after earlier IDX work as KH6AWT and KX6RB. . . KA2AB
 with an Apache sender. . . WITS advises K6CJF to watch his JA-collecting laurels. Don has 221 worked, 152 QSLd and 3% prefectures contirmed. The tree-propped uround-plane and Valiant combo of W1TS accounted for its $500 t h$ Asian QSO recently. "Hurricane took my radials down and, being too lazy to get out the ladder. I just tied them up, at arm's reach. Scems to work just as well.
WA6IVM estimates his own JA collection at over 30\%, mostly on 7-Mc. c.w. .- :- - V'ERON DXpress boosters are all set for the laccadives DXcursion of VU2NR which may come off any time now under the call VU2NRM.

Africa-EL4A (W7VCB) has something to whet the interest of club activities chiefs: "I'll visit castern U.S.A. in late April, hoping to meet sume of the many fellows slides of Africa and several thousand feet of $1 \mathrm{ti}-\mathrm{mm}$, color film (I formerly worked as a professional photog)." Ken hopes to visit AKKL Ha.. the New York area. Washington (D.C.) and W9/K9-land - conventioneers and hamfest chairmen please note-. W8KML and others would be delighted to see some emphatic DX action from the Dahomey, Niger and Voltaic republics, DXpeditionary or otherwise ...-. - CR7CI, a pilot on the C'R7-VQ2-ZE゙-ZS circuit. intends to add single-sideband to his already estensive $1+$ Ac. c.w. program. This ia W9NLJ
Ex-ZDIAW, relaxing back home in Belfast, advises $\bar{W} 3 \bar{K} \dot{V} \dot{Q}$ of another DX assignment upcoming in May. "Alf may return to Sierra Leone, but nothing detinite as yet. ZDiAW was closed down with considerable regret aiter thirteen months of DX pleasure." . .i.- If you've a hankering to catch Eritrea on 80 meters, W $4 G \mathcal{V} M$ of ET2US can arrange schedulen.....- K2UYG remarks, " 9 OU MC is the only regular 14-Ac. c.w. man from his area and often shows up Saturdays. 2000 GMT, with leisurely $14,025-\mathrm{kc}$.c.w. Darued ZS3ES is heading for sierra Leone ZS3ES is heading for sierra Leone with his KWM-1, expecting much 20 -meter sideband work there." tips k4KYB. Burt signed VE3FPS for a spell before returning overseas near (:T1TT, expecting return to Bissaurning arum Hortugal July. Jose figures to have a new 3 -el. spinner to eomplement his 90 watts and HRO-M ...- According to W'GDXC, ZS6IF is contemplating the pussibility of mon-bounce exchanges with the North American gang, seeking more worlds (and satellites) to conquer after an outstanding DXpeditionary series.

Oceania - "Since mid-August we have had nearly three kiloQSOs and will continue to help the fellows with Wake lsland." writes the father-and-son KW6DF-K0SLD/KW6 combine. "We are active on all bands and will have the rix going in all major DX contests." Young Layne should be signing his own new KWG sulfix by the time this gets rround -- K2QX(i enlighteus: "Ny friend $\begin{aligned} & \text { has been selected for an } 11 \text {-month tour at Wilkes station, }\end{aligned}$ Antarctica. As much spare time as pussible will be devoted to hamming. Steve is an excellent operator and hopes to add the call VK6VK to his existing VK2VK-VK4VK status." K 2 QXG may arranke to handle Steve's QSL8 $\dot{Z}^{-1} \dot{F}^{-\cdots-}$
WSIRJ confirms the passing of VR2DR, an RNZ tice placing the date as April 18; 1960. Meanwhile, WGUYE understands that V'RこAP continues as the only Fiji single-
sideband buff, rock-bcund on $14,336 \mathrm{kc}$. $-\overline{-}-\overline{\mathrm{New}}$ - LU8BF is limited to listening while stationed at his New Zerland consular pust, unable to gain licensing without British citizenship. lou may recall Lucho's $1957-$ ' 58 WX activity as HSIMQ. Bangkok. LU8BF can be reached c/o Argentine Gieneral Consulate, P.O. Box 1621, Wellington, N. \%.
"ZL2GX expects new Kermadec Islands activity in the near future," cheers K2UYG. And how about somehody to fill ZL4.JF's Campbells shoes. Jock? . - .-. - K6BX is apprised that the rapid and sudden turnover in Marianas Amateur Kadio Club olficers oceasionally holds up issuance of Worked-Guam certifications. KG6AJR has the spees on this one s.a.s.e. with inquiry $-\quad$ WGDXC hears that
$W+R H E$ is oft to W4RHE is off to Darwin with a KWMI- That's not far from CR16!

South America - "It is a great pleasure to inform you of the foundation of the Uruguay DX Club,", writes CX8AW. "A meeting of Uruguayan DXers on September 16, 1970, originated this organization which will group almost ${ }^{\text {all }}$ nur c. $\mathrm{w} . \mathrm{CX}$ enthusiasts." Provisional ofticers are YAJ, reserve. Best wishes to the UDXC gang at Box 806. Montevideo! --:- - W6NTR learns that HC7FZ. newly active on 20 e.w., is a missionary pilot who expects to he buzzing the Ecuadorian jungles for the next two years
 Peter \& Paul Rocks, 'tis ssid, while PY'BEO and associates gim toward further Trindade doings. . . . IN1s (AA and TAT anticipate renewed San Andres action. . . . VP2VB/ (Continued on page 156)

ZSIOU and wife ZSIRM entertained the DX gang with an extensive operational visit to Basutoland last autumn. Jack and Marge will bear watching for further DXpeditionary developments in the new year. (Phofos via KLIPI)

Correspondence From Members-

The publishers of QST assume no responsibility for statements made herein by correspondents.

HAM TOWER OKAYED

(1. I wish to express my sincere gratitude to the ARRL for the courteous and prompt assistance given me when the Town of W'est Orange denied me a building permit to erect an amateur radio tower in the yard of my residence without first oftaining a zoning variance.

The opinion of the ARRL Cieneral C'ounsel, siegal and Marmet, was so well presented and documented, that when presented to the Town Attorney, it resulted in an immediate instruction to the Building Department to issule the permit without resort to a hearing by the Board of Adjustment (Zoning).

Had it heen neressary to appear before the Board for a variance, it would have involved a legal notice in a local newspaner, notification in person of approximately thirty neighbors of my intentions, a $\$ 30.00$ application fee. legal fees, to say nothing of the possibility of being denied the variance, in which case the only resort would have been to institute a lawsuit.

Only an amateur who has faced this situation, in which in apparently unassailable barrier to the full enjoyment of his radio interest has been raised, can appreciate the full meaning of the comforting assistance rendered by the ARRL at such a time. - Franklyn M. Grosso, KzMLB, Hest Oranye, New Jersey.

SOLID MEMBER

(1) . . . I want to take this opportunity to congratulate the League on putting out such a fine publication and for doing so much for the harn fraternity. I squirm when I read about how many penple griped when the dues were raised from four to five dollars a vear. If the dues went up to ten you would probably find me still among your members . . . - John Ellis, KøMMI, McC'allie Si:hool, Chattanonga. Tinnesser.

IMPROVED V-DIPOLE

(1. Thanks very much for K7GCO's article on the inverted V-rhaned dipole. I constructed a similar antenna here and it has worked considerably better than the horizontal dipole that I have had up. Mine is cut for 40 meters and I fed it with 300 -ohm T win-Lead. I found that results could be improved if a s.w.r. indicator, such as the Monimateh, and an antenna tuner were used.

I agree with K7GCO that sloping the wire results in a lower angle of radiation but I think it would be of interest to Mr. Glanzer that sloping the wires of a dipole is suggested as an alternative in the Handbook if room does not permit a horizontal dipole.

It was not neccessary here to make the cage used for broadbanding the antenna because an antenna tuner was used. One unusual thing was noticed: the inverted V-shaped dinole does not seem to be as good a receiving antenna as the regular dipole. - Mike Doherty, K1MZG, I'est Hartford, Contr.

DIVISION OF OPINION

(I) I have a gripe which I feel is verv legitimate and likewise feel that ARRL should take up the cudgel for its members and do something about it. Here tis.

Since the beginning of s.w.h. there has been more or less an unwritten agreement between the hams particularly on the $14-\mathrm{Mc}$. band that a.m. wouid operate 14,200 to 14,250 and the s.s.b. boys would operate 14.250 to 14,300 . This arrangement has worked very well in the past. However, since the FCC has allowed phone operation in the s0-ke. area above 14,300 , it has been wy fecling that the sideband bovs would move up to a new area of uperation from 14,275 to 14,350 which would allow the a.m. stations the area from 14,200 to 14,275 and would again divide the 20 -meter phone hand into equal sections.

The sidebanders have not as yet been gracious enough to move all their operations to the area above mentioned and I feel it's high time a movement was started to bring the light to s.s.b. operation as above mentioned.

Another gripe which I think will bring agreement from all voice operation, hoth a.m. and s.s.b., is phone nets identifying themselves with MARS operating within the confines of the amateur frequencies when special frequencies outside the ham bands are provided for surh operation. This operating procedure occurs on all the hands as. I have beetu requested more than once to "please stand hy" or "please move to another frequency as we are handling trattic on this irequency." When I learn that a couple of the boys are handling trattic (no net) or if it is a civilian net i accede to their wishes to keep from deliberately interfering with their operations hut I will not stand by or QSY for a MARS-type net. How do you fellows feel about the situation? - Arthur W. Plummer, W\$EQK, Baltimore, Maryland.
© . . . Enjoyed the editorial in October QST regarding self-policing in the 20 -meter band. I hope that many amateurs read it. - A. J. Kuzniewski, K9.MNZ, Milwouker, Wisconsin.

IT Whether you like to work JXX or not. I'm sure that if you look at the problems ohjectively, you will agree that if a very small portion of the 20 -meter hand were set aside for exclusive use of foreign s.s.b., it would do amazingly wonderful things for the betterment of international contacts, without depriving the Americans of any significant portion of the hand. The is ke. between 14,295 and 14,300 could be devoted to this worthy purpose, provided all American amateurs especially those not primarily interested in UX) could he persuaded to cooperate.

I have volunteered to observe and promote the following operating practices on 20 -meter sideband. Furthermore 1 am making at least 10 copies of this letter and mailing it to " W" sidebanders I have heard on in the past month. I sincerely hope you will do the same; it would be difficult to find a worthier cause in the interest of harmonious 20meter s.s.b. operation.

1. Starting immediately I will consider the region 14,295 to $14,300 \mathrm{kc}$. exclusively for the transmitting use of s.s.b. amateurs outside the continents of North and South America. It will therefore be my listening region for good, QRM-frce DX, including DXpeditions, 24 hours a day.
2. This segment is selected in preference to 14,345 to 14,350 in order to provide two hand edges for calling. 3. I will never transmit in this region. nor will I ever operate so close to it that my sidebands QRMI the region (particularly my uppersideband when I am below 14,295). I will call and contact foreign s.s.b. stations by setting my transmitter frequency above 14,301 or below 14.292 kc .
3. 1 will voluntarily honor this reservation as proposed hy the Mark IV I)X Assn 24 hours a day even though at times at my QTH I can hear no activity in this section of the band. It is understood that nothing is implied in this arrangement which will prevent s.s.b. DX from using other transmitting frequencies, if they su desire.
:5. If I find occasion to ash a brother American ham to QSY out of this DX reservation, I will do su with all the politeness and diplomary at my ommmand. - Dale Kentner, W゙2ZS, Marlton, N.J.

CLEAN-CUT HAM ON 160

©i Have we lost 160 meters, completely? According to the new equipment advertised in QST , we have. I hope someone writes to the active $160-$ meter stations and let us know if (Continued on paye 150)
F. E. HANDY, W1BDI, Communications Mgr. gEORGE HART, WINJM, Natl. Emerg. Coordinator JOHN F. LINDHOLM. WIDGL, Ass't. Comm. Mgr., C.W.

HOBERT L. WHITE, WVIWPO, DXCC Awards
LILLIAN M. SALTER, WIZJE, Administrative Aide
ellen white, WIYyM, Ass't. Comm. Mgr., Phone
ARRL Activities Calendar 96 94
Brass Pounders League...................... 93 Frequency Measuring Test Results. 92
CD Party Results. 90 Net Directory Supplement. 96
Code Proficiency Program. 96 Traffic Topix
DX Century Club Awards 93 With the AREC.93
DXCC Notes. 94 WIAW Schedule. 94

FCC Exam Failures Running High. Many hundred examinations for General Class Amateur license are conducted by FCC each vear. Many given at amateur conventions courtesy of the Fingineers-in-Charge as well as at scbeduled cities and FCC offices. The License .IIanual includes a schedule and list of regular FCC examining points. The Commission tell us informally of one fairly typical General Class exam in which 92 amateurs turned up for the test. Twenty passed: 61 failed the code test, and 11 the technical part.

Now this gives pause for thought. Sixt. y-six per cent failures is just too much. Note that two out of every three failed the code test, and this was at a mere 13 w.p.m. It is rather silly, we think, to turn up for examination, if one had not made suitable preparation. If the figures were in reverse with 6() to 70 passing, that would be more like it. This business of getting the code down pat really is just a matter of adequate practice. The Novice who sticks at his key on 40 or 80 meters and goes after his WAS can often qualify for his General in half his apprentice vear. Wr A.AW puts out a whole hour of tape-sent practice, nightly. $W^{\top} 1 A W^{\prime}$'s ()fficial Bulletins (18 w.p.m.) are sent simultaneously on all our frequencies, an hour and a half before, and agsin two and one hall hours alter the start of the code practice.

Further Commentary on This Code Business May Help.
(1) No, 18 w.p.m. isn't too high a speed to listen to after you have memorized the code sounds. Copying at speeds higher than that which permits copying consecutive chauracters is the best way to speed up oue's copring powers. (Thousands learned their code well in those days when all there was to copy was commercial and goverument transmission that seldom slowed below this speed.)
(2) Some of those exam failures were on sendin! tests,: you must be able to send good code as well as receive it. That means that you must practice goods pat ing of characters and words. Practice sending: it will speed up the process of receiving well also.
(3) Practice, and more practice, with regular operating on the air is the way to make the code language your very own.
(4) To avoid wasting time in flunking the exam, here are some final finals in the suggestion department.
--- Get an ARRL CP-15 or even CP-20 certification before you take a General Class or Conditional examination.

Test yourself for perfect copy two or three times on the 15 w.p.m. W1AW runs. This should save you from losing out if vou get exam jitters.
-. - Have a good operator give you frank criticism on your sending and some advice on handling a key. Send in step with W1AW on those dates where specific practice text is followed.

See page 96 this (LST for code proficiency data. Avoid being like some newcomers who can hardly send their own calls properly.

A Challenging 1961 ! In the new year will you complete WAS? Is your code ability cortified all the way to CP-35? Are new DI cards on the way to achieve your DXCC or another sticker for ten new ones? Are you reporting to your s('M? Are you ORS, OPS, or OES yet? What about that SCM appointment based on your station work that you never quite got around to last year?

Uperating activity, once you get your FCC amateur ticket, is an open road to increasing proficiency and radio accomplishment. Each earned appointment and award helps test and perfect one's station. AREC and NTS are practical ARRL communications frameworks to shape patterns for greatest success in handling emergency and every day traffic. Participate in the field organization of the League by registering in the Emergency Corps, reporting into your Section Net, or holding one of the Station Appointments. Get personal credit and give amateur rim dio a boost as woll.

Get into radio events and accept operating opportunities "as they come in 1961." Regarding each 1961 operating activity, compare how we stuod last year with how we stand this year, to progress ahead. Shall we see the ARRL Activities Galendar and other league references, and get with it?

On Giving Novices a Lift．Ed Wolfe， KNOYQU，writing for SS blanks，also expresses thanks for local help he received．
＂Ifter a 35 －minute rag－chew on 40 c．w．KgKRT．Willie， ealled me by telephone．We had an hour informative chat． バøにRT makes a practice of calling all new Novices be can work locally to give encouragement and help Novices get their Generals．Now if some of the hams that are hasty to condemn the Novice license also would help a Novice to advance，I think they could get quite a bit of eujoyment．＂

Several old timers have written in this past vear to tell ARRL of some prime satisfactions in life from their current work with new operators． In their view it is a rare privilege to work with unsophisticated，appreciative Novices，Tech＇s，or any persons wanting to enjoy all facets，and work all bands，rather than be confined to Tech．－ Novice horizons．

Ours is a full and satisitying hobby．We do hear this also from club workers assisting newcomers． All praise to these men and clubs，especially for eonducting classes and examinations．We must all be mindful of the importance of maintaining prop－ erly high standards in the conduct of operating exams，such as given in FCC＇s behalf！This is as much a benefit to the person being examined，as to the fraternity he is joining．A wish expressed in at least one letter was＂to return in some measure the know－how in amateur operating and some－ thing of the band capabilities and history and tradition，reccived from others ．．．＂We suggest that old timers share their amiteur background， lore，and abilities with neweomers．This can be， for many 0 Ts ，a brund new and wholly good and interesting experience．

Dates，in GMT Logging．K2IIW and W5CA mention the matter of chauging the DATE indi－ cation in one＇s log，whenever（in whatever brand of time）he completes one day at 2400 ，simul－ taneously starting the next day with 0000．Only time and date tell the whole story，a point to be considered when you read WIAW＇s dates for sending Code Practice．Mon．，Wed．，Fri．，Sun． are the duys for slow speed practice in（iMT，but listeners receive this on Sun．，Tues．，Thurs．，Sat． nights in terms of EST－CNT－MST－PST．J．C． Ward，W2ITX，who can speak with authority in the field of either navigation or radio net operat－ ing，stresses that any GMT time specification should always be accompanied by the（iNIT－date． He suggests obtaining a Standard Time Chart of the World，H．O．5192，as published by the U．S． Navy Hydrographic Uffice，Washington 25，D．C． at 60\＆．This helps in date matters，and is a ref－ erence to all the time zones of the world；each is designated by zone number and letter，between 15° meridians，east and west of Greenwich．

GMIT has already been put into wide use for amateur operation in accord with the Board＇s recommendations．We were surprised to find a full 85% of our first－week November SS exchanges in terms of GMT．This is readily understandable， if you note that times－of－QSO as part of an ex－ ehange rompare＂on the nose＂when expressed in GMT，wherever in the nation one lives in terms of time zones．It is harder to compare across the
zones when people insist on speaking in different time－zone languages．

In August 1960 QST we included with some other remarks on GMT，a useful time conversion table．The November issue ol（QST took the sub－ ject a step further；the fall CD Bulletin pointed out for ease of logging that the simplest scheme of all is to put one＇s station clock right on GMIT．The 4－figure designations make for straightliorward log entries．In summary，for log keeping purposes， a fellow starting to log in（XMT notes his transi－ tion from any one day of the week to the next， and enters the new date as the time gues through $\underline{2} 100 / 0000$ ．Also in setting up skeds by radio，it becomes quite important，to make it clear that you are talking a GMT－date as well as giving the time in GMT，to make sure you both get together！

Be Truthful in RST Reporting．May we call to mind Mark Twain＇s admonition：＂When in doubt，tell the truth．＂Our dictionary says truth is complete conformity to fact or reality．Perhaps some of us are plain prevaricators or feel it should be a matter of opinion as to how to use the truth？ Our RST reporting system is a sharp，practical system；it is built on definite and exact，R－S－T meanings for each point of readability，strength， tone scales．Use Operating Aid No．2，The R－Si－T System，available from ARRL on request by radiogram or otherwise，and you can hardly go wrong．

We get letters railing at dishonest reporters and those who misuse the tone indications par－ ticularly．＇Tis increasingly apparent that the re－ port which through carelessness or flattery is dis－ honest，is a disservice to the man who receives it ．．．also to the one who gives it．Iet＇s all cease lulling fellow amateurs into complacency．It is a rude awakening indeed，when an FCC eitation for a poor note or otherwise defective signal ar－ rives？Keep those RST definitions hefore you， as you operate．Consult them．（rive honest re－ ports，and you can render your fellow amateurs and yourself a real service．

V．H．F．SS and Coming Events．The V．H．F． Sweepstakes dates are Jauuary 7－8．If you can work on any frequency above 50 Mc ．we suggest you refer to the contest rules on page 70 of De－ cember QST．This is an opportunity to look for some new states and ARRL sections，as well as to give your v．h．f．station and any new antennas a real workout．For v．h．f．ers out in the remote areas，and those on the lookout to work them，the SS is alwavs welcome．Take part and send in your reports，large or small．

IRRL＇s International DX Competition（the 27 th running）comes in February and March． The minnouncement and rules run on page 77 of this QST．Intensive spadework has been com－ pleted in mailing direct advance information to IARU societies and to some rure DX stations that we hope can be in the fray．Theres just about time to complete any tinal setting up or overhaul of equipment to be ready for the DX Test．Don＇t miss out．
－F．E．H．

This is the impressive setup at W3GQF，Johns Hopkins University，that produced a record phone CD Party score． Multi－oping it were K3GJD at the mike（in photo）and W3WZL assisting to a claimed score of 50,960 points．Bravol

RESULTS，OCTOBER CD PARTIES

The（：D Party has always been a chance for stations to swan appointment exchanges with other appointees．Of course，these appointments are identitied with the station and operator．Therefore，the © Г Party has always been an alfair of single onerator competition with only a smattering of multinle－operator entries．The latter usually were from clubstations that found a group of CD appointees all eager to participate with but one rig available．Such is the case of many appointees away from home attending college．Thus the eollege clubstation gets a real workout．These were ex－ wetly the type of stations that produced the top scores in the Ortoher（＇ D Part． ．
M．I．＇．＇W1MX with K2KIR and W1WAJ．old CD ad－ dicts，teaned up to key 622 QSOs in 65 sections for the top score of 204，100．On phone a similar story from Johns Hop－ kins University，W3GQF．where W3WZL and K3GiJD reg－ ixtered the highest score ever produced in a phone C C party with 191 QSOs in 52 sections（！）for 90.960 points．So bent was this duet in scoring a high spation multiplier that easy Fastern Penny－lvania was the 50 th section wurked out of 52. Likewise multiple－operators W9YT at Wisconsin U．and W＇IYK at Worcester Tech．scored 36,750 and 34,320 re－ spertively．

In the regular single－sp category W1EOB getting in prac－ tire for tiweepstakes hauled home 622 QSOs in 64 sections to lead the c．w．scorers with 201,280 ．Next in line were K5ZBS，W＇4DQS，W9RQM，and W3I）QC．

Activity on phone was phenomenal．A year＇s campaigning finally drove home the idea that 29.6 and 21.3 Mc ．are the meeting places on sunday afternoon．＇This time it tinally paid oft as juicy sertions never hefore heard in the phone （＇l）Party were on．hi2EIU took full advantage of this to eash in the top score with a record 206 QSOs（first to break 200 ）in 44 sections to score 46,640 whalloping points．Fellow Hastern New Yorker WA2EKF，was back somewhat with 30.030 followed by W＇8NOII，K4UBR，and K2QDT．Note that W＇7BSW from Washington state made the high claimen list by a comfortable margin．The list below has representa－ tives from every call area but the 5th and 6 th．Who will be the first from those areas to make the list？．＇The Phone Party finally has taken on a nation－wide aspeet！Sideband is also coming into more prominence，although there were a．m

NATIONAL RTTY CALLING AND WORKING FREQUENCY

3620 kc.

7140 ke．
stations who should have listened on the＂low end＂just a little eloser to discover the sidebandere uere in the CDD Party．

I＇he following are the high claimed scores．Figures show the score claimed，number of QSOs，and the number of differ－ ent sections worked．Final and complete ofticial standings will appear in the January C＇D Bulletin．－－W＇1DGL

C．W．

W1	
K57，BS	199，040－615－64
ITHDQS	186，165－584－63
W9R．QM	170．880－527－64
W3DQG	166．780－534－62
W9YT ${ }^{\text {a }}$	160，020－50t－63
K4RAD	159，705－502－63
W＂6BES	159，520－501－63
K8MTI	158，100－505－62
K5BSZ	155．245－504－61
W3GYP	150，255－472－63
W3YO7	1 17，915－51＋－57
K4BAI	146，100－180－60
K1JDN	145，000－500－58
KtPuz	142，780－180－59
KøLUZ	135．780－438－62
WHYE	．134．805－466－57
W3MSR．	． $133.920-425-62$
＇9MAK	．126，170－100－62
KtCFD	．126．040－400－62
W9QQG	125．860－401－62
K．5IYT．	．124．000－100－62
KıFJ	123，250－119－58
K2IAK	120，645－10＋－59
K8．JLF	120．640－110－58
KOORK	118，125－369－63
W＋ALLF	117，705－394－59
KusNG．	117．150－35．5－66
K5ABV	116，730－381－61
W4BZE	115．995－102－57
$\mathrm{K}^{7} \mathrm{CHH}$	115．710－401－57
L4TEA	114．000－376－60
W4PNK	109．725－385－57
W1F．J	108，585－375－57
W＇øPHR	107，700－352－60
W1TS	104，265－32＋－63
WhtruO	103，84（1－348－59
K9RFW	1011500－329－60
1 MX	65
MHM	6，150－430－58

PHONE

K2EIU．．．．．．．．．46，640－206－4t TA2EKE ．．．．．． $30.030-150-39$ W8NOH．．．．．．．． $25.530-106-46$ K＋JPR ．．．．．．．．． $21.860-106-14$ K2QDT．．．．．．．．． $1.8290-1+6-34$ H10Q6．．．．．．．．28，750－12i－35 W4 4 BGP．．．．．． $21,470-11: 3-38$ IBCI 4 ．．．．．．．． 0 000－11t－35 1DE：．．．．．．．． 0 000－125－32 W7RSW゙．．．．．．．．．．．．．．．．000．165－85－32 W9PNE．．．．．．．．．14．105－ $81-31$ WHJUJ．．．．．．．．．．．．13．5C0－8：3－30 WA2BAH ．．．．．．13，000－100－26 4PUZ．．．．．．．．12．845－75－3 KllXG ．．．．．．．．．11．850－74－30 V2EFN ．．．．．．．．11，550－73－30 13DQ（．．．．．．．．．．． $10,080-811-2 \frac{1}{2}$ IITFJ．．．．．．．．．．．．．． 7 720－75－2 WiNJL．．．．．．．．．．．436（1－72－24 KンJTU ．．．．．．．．．．9830－ $9150-61-2 t$ KGLUZ ．．．．．．．．．．8580－6i3－26 IV3MSR ．．．．．．．．．8450－58－26 （8NYH ．．．．．．．．．．8160－68． $2 t$ K๖EPT．．．．．．．．．．．．．．．550－56－2 K8HID ．．．．．．．．．． $3320-56-24$ KiLGZ ．．．．．．．．．． $2280-52-28$ WRIRX．．．．．．．．．．b்195－54－21 K1KSH．．．．．．．．．．．6175－600－19 W＋LK．．．．．．．．．．．．．6090－58－21 WIDCTL ．．．．．．．．．5420－53－18 K8MTI ．．．．．．．．．．53755－38－25 II＇9ACU．．．．．．．．．． 50 ！0－41－21 K＋LPR ．．．．．．．．．．．．．．5000－40－25
 W11K ${ }^{8}$ ．．．．．．．． 34.320 －169－39
${ }^{1} \mathrm{~K} 9 \mathrm{ELL} \mathrm{C}$ ，opr．；${ }^{2} \mathrm{~K} 2 \mathrm{KlR}$ ，W1W．A．J，oゅrs．；${ }^{3}$ K1MHM， K゙1BYL，oprs．${ }^{4}$ W1ECH，opr．${ }^{5}$ W1WPR．opr．${ }^{6} \mathrm{~K} 3 \mathrm{G} . J \mathrm{D}$
 PHF，KliAII．oprs．

BRIEF

Unconfirmed report has it that by WX Contest time． Nigeria will change its prefix from \％D2 to 5 N 2 ．

One of the more prominent CD Party c．w．sigs is K5ZBS whose big scores are made with this $4-400 \mathrm{~A} \mathrm{kw}$ ．and 6146 exciter．A Gonset 3 －element tribander and 80－ and 40 －meter dipoles take care of the radiating chores．Earl is formerly W6WNI．

Much of the information we receive on work done by amateurs is extraneous. This is perfectly all right, except when it detracts from the subject at hand; what the amateurs did. Quite frequently, we get clippings or articles dealing with an entirely non-amateur subject, sent to us oniy because amateurs sometimes have a communications connection with these subjects. For example, a complete lescription of a Weather Bureau communications setup, or page after page of pictures of a hurricane's destruction, or details of the Red C'ross's blood donor program, or civil defense projects and problems which may include communications but have nothing to do with amateurs.

Although personally we may find these thingsinteresting, utHcially the only thing of interest to us is amateur radio. "Tne line must be drawn, somewhere, to exclude diversionary material. This line is not always sharply defined. Suppose for example, a group of amateurs operate Forestry l. Jepartment equipment on non-amateur government frequencies. Is this amateur radio? Of course not, and logically it is of no more official interest to us than participation by people who happen to be radio amateurs in a camera club activity. We'll never forget the fracas we got into with an EC who wanted to offer a Public Service Award to an amateur who used his personal boat to rescue a number of families in a flood. His argument was that the guy had rendered a public service and that he was an amateur, therefore he should receive an award; we contended that although his was a very definite public service, it was not an amateur radio service and we had no business trying either to recognize it or take credit for it. Later, it turned out that he had used amateur radio in his boat, but this was incidental to the real service he rendered - the use of his boat at great personal risk. (P.S.: He got his PSA.)

Yes, things like this keep life as NEC from becoming dull. We frequently have to ask ourselves: is this something to do with amateur radio, or isn'tit? The answer is not always clear cut and definite, but usually hinges on whether or not the service was performed in the name of amateur radio, by licensed amateurs on amateur frequencies; for we are not civil defense communicators, nor Red Cross communicators, nor Weather Bureau or Post Office or CAP or military or pulice or Forestry Department communicators, and it always burns us to a crisp to see amateur operation on amateur frequencies referred to in the name of some agency instead of in the name of amateur radio.

But it's entirely our own fault. Many of our amateur leaders are amateurs only incidental to their occupational pursuits of an allied field, or a field that becomes allied through circumstances - or they become amateurs when it uppears that amateur radio can be used for some selfish organizational purpose. In most cases, there is no doubt of their sincerity; but amateur exploitation has been largely a result of divided loyalties, of the fact that we have never developed sufficiently our seuse of unity. All amateur organizations are of necessity voluntary in nature, and a great many of us dearly love to wear quasi-otficial "hats."

There are many who wear AKRL "hats," too, and wear them proudly. This is uut only gratifying, but we could not long endure as a membership organization withoutit. Every amateur's outside activities are his own business; all we usk is that when operating in the umateur bands you wear your "amateur hat." ARRL has long worked to make this hat a proud one to wear, but in the final analysis the pride with which we can wear it is directly proportional to the magnitude of the service for which it stands. We at herulquarters can compile and display the overall results ever-

The Kern County Amateur Radio Club, W6LIE, recently conducted an emergency test. November QST showed their truck installation, but we couldn't resist this encore of their entire setup.

New Mexico has lost its SEC. Len Norman, W5CIN, who served as N. M. SEC for two and a half years, and did an excellent job, has moved to California and will make his home in Santa Barbara. Look for him at W6JLY.
lastingly to prove our values and virtues to the public and to the government, but you fellows in the field have to do the leg work for amateur radio to create and maintain the strength and reputation of our Amateur Service which makes this possible.
-. W1NJM.
Addenda: In the Hoods of March 28, around sioux City, lowa, the following amateurs took part in addition to those listed on page 83, July 1960 QST: W' $\|_{s}$ AYD CXN FBY GVX BQG EFG GQE WWM CRF FZO KYQ BGB, Køs AHV UIS LXC UAH WIZ WVS DON YGN EQN ISU SVD UAE DPH GBL QRX WLX EJS JUK MFY UAF WVS WVR. $-K^{\prime} \cup E X N, S E C$ Iowa.

The SET in Corpus (Christi, ' Texas, was in competition with a real emergency situation arising out of tornadoes in the area. More about the SET elsewhere. 'Throughout the morning of Oct. 16 four tornado clouds were sighted in the Corpus Christi area, resulting in the Red Cross disaster chairman declaring a state of emergency at 1305 and alerting the EC for Nueces County. Mobile stations were putinto action on 3885 and $146,802 \mathrm{kc}$. and equipment was putinto operation at Red Cross headquarters. Contact with mobiles was conducted from W5AQK and W5SIL. W5MS was activated at Red Cross headquarters at 1330, and assumed control on 3885. Both W5AQK and W5SIL lost commercial power, but both continued on emergency power. as did W5MS. W5INN was assigned auxiliary control and W5RPH, on emergency power, was standing by to take control if necessary. At 1415 W5RPH reported water rising in his shack and that he was preparing to secure; but later the water receded and thanks to emergency power he never left the air. At 1345 W5MS assumed control on both 3885 and 146,802 and AREC proceeded to assist in providing communications for first aid and evacuation activities.

W5HQR/mobile and W5INN/mobile established a 2 meter link between the weather bureau at the airport and Red Cross headquarters to provide continuous weather service. As much as 13 inches of rain fell during the day in some areas. W5QKF/mobile coordinated movement of supplies between evacuation centers and Ked Cross headquarters.

At 1730 W5HQR was secured at the weather station and transferred to an evacuation center, from which communication was maintained with net control W5MC until 2015, when telephone communication became adequate and the AREC secured. W5GMT activated and managed the net

The Mobile Control Center of Burlington County, N. J., RACES, K2DGE. The crew shown, left to right, are K2MOV, K2HJY, K2JAK, W2WKI and K2VKS.
control station, W5MIS.
Because of severe atmospheric noise caused by the thunderstorm activity. communication wis much better on 2 meters than on 75. Also noteworthy is the fact that the AREC in Corpus Christi is so well organized that it was able to conduct its scheduled SET at the same time it provided adequate emergency communication for the Ked Cross in a rew emergencs:

From the gak Ridge "ROC," a bulletin put out by the Oak Ridge (Tenn.) Radio Operator's Club, we hear that an explosion at the Tennesser Hastman plant in Kingsport in early November brought the amateurs into artion. l'erhaps we will have more information on this in a future issue, but the story we get from the ROC : is that SCM W4ijiO headed up a gromp of amateurs on 3980 to handle personal welfare and emergency traffic. Six amateurs were so involved in kingsport, with many others assisting both inside and outside the state, but we have no further identifications at this writing.

Western Florida amateurs obtained medical aid and other assistance at the seene of a highway accident on $\overline{\mathrm{j}}$. S. Highway 98 between Yensacola and Fort W'alton Beach on Nov. f. The emergency interrupted a transmitter hunt of the Whipsnappers, a mobile radio club, when the hidden transmitter, K4LOL/mobile, heard W4EWG/mobile, who was of the way to join the hunt, reporting that a car had overturned just ahead of him and one ferson was seriously injured. K4LOL/mobile, not himself in a position to help, contarted K4PlQ/mobile, who stopped and telephoned the Highway Patrol. W4FWG remained at the scene until police and an ambulance arrived. Operation was on 29.560 ke., communication between W4EWG/mobile and K4LOL/ mobile being a distance of about 25 miles. - ${ }^{11} 4 R K H$, scM IVestarn l'lorida.

The Florida State Road Department has agreed to make available to AREC, on Inan, for emergency use, pasoline generators rated from 1 to 5 kw , subject to limitations imposed by their own requirements for use of the generators. A regular procedure has been set down for application, delivery and pickup of the generators in cooperation between the FSRD and the section AREC and is administered by the SEC and one of the local ECs.

This is mentioned here in the hope that other ECs and SECs may be able to make similar arrangements with their state highway agencies to improve AREC efficiency in emergencies.
——...-
Twentu-four SECs reported for September, representing 9353 AREC members, a considerable drop from last September's record of $33 / 11,375$. Los Angeles reported for the first time in 1960, bringing the number of different sections for the sear to 41 , one section more than last year at this time. Other sections reporting: Md.-Del.-D. C., E. Mass., K. Texas, NYC-LI, Ga., Mich., San Joaquin Valley, Nevada, E. Bay, ind., Wash.. Okla., Iowa, Maine, Ohio, Ore., Santa Clara Valley, E. Pa., Ala., Colo., Utah, Wyo.. S. Dak., Minn.

RACES News

Amateurs in Burlington County, N. J., participated, June 4 and 5 , in one of the largest c.d. evacuation drills ever attempted. Over 250 families had to he evacuated from their homes to a point over 40
 miles away. The c.d. control station, K2QGE, was activated at 0800 on June 4 on 2,6 and 10 meters. Nobiles were activated in each muniripality in the county and maintained contact with the control station and with each other, and each convoy was thus always in touch with control. Ten of the mobiles were supplied by W2KG, c.d. radio coordinator for Camden C'ounty. Burlington County (:1).'s mobile control center was driven to the reception center at Chatsworth and set up to maintain contact with main control at Mit. Holly; this consisted of two Z-meter stations, a $\hat{6}$-meter station and a 10 -meter station, antennas on a crank-up tilt-over 70 -font tower mounted on the batek of the van. After all convoys had arrived, they were dispatched to campsites to stay over night, and the mohile control center was dismantled and moved to its over-night location, where it was set up akain. Much traffic was handled regarding food, cots, kasoline. emergency nolice protection, bug bombs and medical supplies. Six meters proved the hest band for eonsistent coverage.

On sunday morning all camps reported in to the mobile control center and arrangements were made for the return trip. In this phase of the exercise no convoys were used and cars returned singly, so communication was not a part of the problem.
$K 2 C M N$. to whom we are indebted for a fine, detailed report of this extensive operation, included several pages of valuable critique which we wish we conld reproduce in full. Under the circumstances which exist, the best we can do is summarize them in this fashion: (1) Ten meters was not too successful, and two meters little more so; communication on six meters was by far the most consistent. (2) Linear finals on the commercial equipment used were not 100% satisfactory. (3) Ground plane and coaxial antennas might better he replaced with "J" or collinear types for more gain. (4) Tighter tolerances on oscillator frequencies are required; even with 0.005% crystals in "identical" equipment, constant scanning across a portion of the band was necessary.

An operation as extensive as this requires a lot of planning and hard work. (ireatest credit is due W'2W'KI, K2HJY and W3DEP for the effort they put into both planning and operation.

RESULTS, SEPTEMBER FREQUENCY MEASURING TEST

The September 16-17. 1900 FMT, open to all amateurs, brought entries from 260 participants who made a total of 1013 measurements. Of these, 133 ARRL Official Observers submitted 594, and 127 non-OOs made 419 readings. All taking part have received individual repurts of their readings. The standings accredited to the more precise in each group appear helow ; all listed show ability of the highest order in Frequency Measurement. February QS'T will announce details on the next ARRL FMT

Obserbers	P'arts/ Million	VorObserners	Parts/ Million
W8CUT.	1.0	W8GQ	0.2
W8GBF.	0.0	W1PLJ	11.3
W4CVO	0.0	W3SPL	0.3
W4.JUI.	0.0	W6KT	0.3
W5NKH.	0.1	W8VLI.	0.4
W3EIS.	0.4	G6J.J	0.5
W1VW	0.5	W7LTK.	1.3
K6RTD.	0.6	W9TZN	1.4
ḰOUVQ.	0.7	K4itOB/DL4YR.	2.1
W2AIG.	0.9	K6IKG	2.7
K6EC.	1.7	W8EZE.	2.9
W6GQA	1.7	K611I.	3.1
W2RSL.	1.9	W6YAW.	3.7
VE6HM	4.2	W400S.	4.0
W7FIS.	5. 2	W8JLI.	4.5
W6HU	5.3	W2DGQ/DL4VQ.	4.9

The extent to which Greenwich Mean Time (GMT) has been accepted by the amateur fraternity in general and by the traffic fraternity in particular is amazing. Probably this is simply because amateur radio communication is definitely not a local proposition. Certainly, the general public has not yet accepted it; in fact, the general public hasn't even accepted standard time, judging by the way most people change the bands of their clocks whenever this becomes the local fashion.

Those who oppose its use oppose it most vociferonsly, and some of their arguments are valid. But there is always some confusion when changes are made, and it must be said that those amateurs who oppose the use of GMT appear to be a minority. In the sweepstakes enntest, about four out of five

BRASS POUNDERS LEAGUE Vinners of BPL Certificate for October Trathc:				
Call irto.	Recd.	l	lipl.	tal
W3CUL. 572	2931	2102	794	6399
W6WPF. 104	1140	1116	24	
W6BPI.............. WVBDR 42	927	835 642	92 98	1896 1590
WHLGG. 40.4	. 578	525	55	1563
K6MCA 40	696	684	11	$14: 31$
KUONK. 125	615	588	27	1355
		589 827	-27	1322
W6REY ${ }^{\text {W9 }}$	577	413	56	1078
WbLCX. 12	524	462	62	1060
W7BA W7DZ	503	491	12	1014
W9PIDA.in6	489 48 8	429 425	48	974 960
W4PL. ${ }^{\text {\% }}$	+58	411	25	961
W18MUi6	3ti3	394	13	788
W3IVS................ 64	355	338	17	774
W91PYG............ 31	384	:31	- ${ }^{\text {¢ }}$	764
W5ZHN 5.51	3.58	279	65	753
10¢CLS/6.............s0	354	304	14	727
WMDAE. 42	347	253	52	694
W6Tus. 58	224	:372	:19	642
	262 235 235	$\underline{193}$	18	675 667
¢2UAT.288	190	149	39	666
	310	2×4	26	$65 \times$
W2EZB 13	311	277	: 4	6335
	291	2.56	5	$62 \times$
WA2CIG..............39	280	278	3	600
W4OGG 52	265	251	13	581
N2RBW 2 295	134	114	20	563
\&9BTE, 13	273	275	$\stackrel{3}{7}$	563
	274	-226	12	561
w6EOT. 10	275	210	:22	527
K6EPT. ${ }^{7}$	255	127	128	517
W9ZYK............... 18	252	205	28	503
KTIEY 26	249	225		500
VF2AL Report:				
W5ZHN (Sept.)389	$\begin{aligned} & 845 \\ & 2.57 \end{aligned}$	$\begin{array}{r} 223 \\ 173 \end{array}$	$\begin{aligned} & 18 \\ & 84 \end{aligned}$	$\begin{array}{r} 1714 \\ 553 \end{array}$
More-Than-One-Operator Stations				
Call Orta.	Keca.	liel.	tel.	Total
	1141	1109	32	23488
W6YDK........... 1438	236	$\underline{209}$	22	1905
K4UUO Report: (Nept.) 233	412	17	414	1076
BPL for 100 or more ortainations-plux-deltrertes				
W4ODR 398 W7QMV/VFi	139 W	TXL		107
K7BKH 188 K6IVAH	136 W	$2{ }^{2} \mathrm{CF}$		105
K2UBG $168 \mathrm{~K} 4 \mathrm{BSS} / 5$	131 k 2	(1FT		10.5
W9GJS 150 K8KMQ	125	RRL		104
W2FW 147 W9DGA	124 Kl	CIF		
K2OE1 143 KILAH	122	ate Re	orts:	
KøLTJ 141 W 3 TN	113 W	SFEO	ept.)	
h4FSS 140 W9Tt	$10 \times \mathrm{W}$	42 EBR	(Aug.)) 101
More-Than-One-Operator Stations W4NDJ 287 WIAW 175 W2DMJ 140				
BPL medallions (see Aug. 1954 QST. p. 64) have been awarded to the tollowing amuteurs since last month's Histing: K2UFT. W4BAZ.				
The BPL is open to all amateurs in the Inited States, Canada. Cuba and U. B. Possessions who report to their sCM a message total of 500 or more or 100 or more originations plus deliveries for mily ralendar month. 111 messages must be handled on amateur frequencies within 48 hours of receipt. in standard ARR), form.				

exchanges used GMT rather than local time. In the net directory, now being compiled, a large percentage of net times given are in GMT only. In trattic preambles, more and more filing times are in "zulu" time. It's definitely taking hold, and we predict that before long it will be almost uni versal, if it isn't already.

Some of those who appear willing to use CMIT, however, do so incorrectly. Occasion:ally we find cases in which the local time is merely expressed in 21 -hour terms without being converted to GMT, which is always expressed in $21-$ hour terms. Eiven more often we tind cases of incorrect conversion brought about hy the addition or subtraction of the wrong number of hours.

Probably not too many traffic men are hi-lingual or multilingual, but one of the best ways of learning to speak or read a foreign language is to learn to think directly in that language, without having to go through the extra mental step of translating it to English. The same principle applies to GMT. If you really want to use GMT, you forget, temporarily, what time the local clocks say and get used to thinking directly in terms of GMIT. For example, if you live in the midwest, you start thinking of rising time as 1300 (not 0700 or 7:00 A. M.) , of lunch time as 1800 (not 1200 or 12:00 noon), of hedtime as $\mathbf{1 5 0 0}$ (not 2300 or 11:00 P.M.). Your traffic schedules are made and kept on the same basis. If the people around you change their living schedules and require you also to do so, by arbitrarily moving the hands on their clocks, you simply move your schedule up an hour where or as necessary there is no (ireenwich "Daylight Saving" Time). But, if you insist on converting your local time to GMT, or vice versa, each time, you're going to be a confused kid, kid!

Yes, it takes getting used to, und this can't be accomplished over night. Give it time, let it jell. So what if the date does change at what you customarily think of as seven o'clock in the evening? In time, you'll get accustomed to thanging the date at 2400 (0000) Greenwich, regardless of what time your local clocks sav, even though it may still be daylight. Sure this seems strange, at first - but is not the adoption of one standard in place of 2.4 worth it? Come on out of your goldfish bowl and swim in the ocean for a while; the water is fine!

- $H^{\prime} 1 N J M$.

We quote from " (qNC," the bulletin of the Eastern Area Slow Speed Net, edited (we think) by K2ZHK: "' Please begin to perambulate toward the immediate vicinity of the area in which 1 am standing.' That sure is a hard way to ssy 'come here.' That's how not to operate in a net. Rememher that a net is not a stheduled meeting of the Kag Chewers Club, but rather an institution for the promotion of traffic handling as fast from one place to another as possible. When the NCS calls, you don't have to go into a soliloquy, just send ' C ' to indicate yes or ' N ' to indicate no, or whatever the answer is, keep it short. When you check in, use 'BK' to get the attention of the net control and wait for acknowledgment, then sign your call. It is not necessary to identify yourself every time you make a dit. Every time you go to send something, think of a shorter way to seud it, then send it shorter than that."

October net reports.					-....		
Net	Sessions	Check-ins	Traifio				
Mike Farad E \& T	51	520	1071				
Eastern Area Slow	31	959	126				
Dixie Early Birds	31	651	241				
Early Bird Transcon	31	\ldots	225				
N. E. States Trafic	30	307	220				
7290 Tratic	38	1167	400				
N. E. Barnyard	24	524	13				
Interstate SSB 75 Meter	\ldots	1171	419				

National Traffic sistem. We want you to meet the leaders of NTS at region, area and TCC level. They do change from time to time, und the average NTSer can't keep up to them. Some don't know their nwn leaders. Some of the leaders don't even know each other. 'This is bad. NTS is supposed to be a group of nets that work closely together.

At area level we have W8SCW (Eastern). W9DYG (Central) and K0EDK (Pacific). At region level we have W1BVR ($1 R N$), W2PHX (2RN), W3UE (3RN), KHAVU (4RN), W5GY (RN5), W6RSY (RN6), W7QLH (RN7), W8DAE (8RN), W9ZYK (9RN), WøLCX (TEN). VE3BZB (ECN) and KøEDH (TWN). And at TCC level, we have W1SMIU directing the Eastern Area, WOBDR directing Central Area and W6EOT directing Pacific Area.

Chese amateurs are what you might call the "generai staff" of the NTS. Each is concerned primarily with his own functions and his own net, but secondarily all are coneerned with the operation of every other net in the system.

We have often thought that there isn't enough contact between N'TS net managers at these "higher" levels for them to be familiar with each other's problems and situations. Of course all are included on the LÖ list and eligible to participate in LO Parties, but perhaps it would be a good idea to have occasional get-together so we could get to know each other, swap ideas. cry on each others' shoulders, etr.

NTS also has net managers at section level. There are too many of them and they change ton fust for even us to keep un with, but they are definitely o. part of the team, as are the net participants at all levels. Thus, NTS is a tightlyknit group of traftic handlers who are proud of their accomplishments and ever on the alert to improve themsilves. October reports:

Net	Sessions	Traftic	Rate	Representation	
				Average	(\%)
1RN.	83	$44:$. 324	11.4	77.1
2 KN .	ti2	686	. 545	11.1	94.5
3 KN .	62	543	.877	8.8	95.2
4RN.	62	5:31	.223	8.6	87.1
RN5.	62	819	. 404	13.2	81.1
RN6.	39	975	. 362	18.5	8 8. 4
KN7.	B)	540	. 268	4.0	32. 4
8RN.	til	359	. 589	5.4	90.2
yRN.	61	626	. +13	10.3	68.4
'I'EN.	90	906	. 993	10.6	68.1
HCN	19	37	. 102	1.2	57.91
TWN.	31	317	. 271	10.2	$74.1{ }^{1}$
FiAN.	30	1212	. 807	40.4	97.2
CAN.	31	1304	. 829	45.2	100.0
PAN	31	1576	.840	50.5	110.0
Sections ${ }^{2}$	973	5451		5.6	
TCC Eastern.	1023	993			
'TCC Central. .	933^{3}	1155			
TCC Pacitic.	123*	1041			
Summary...	1777	20020	PAN	9.5	(AN/PAN
Kecord,	1742	24452	. 92%	12.3	100.0

${ }^{1}$ Region net representation based on one session per night. Rest are based on two or more sessions.
${ }^{2}$ section nets reporting: VFN (Va.): SCN (Calif.); BUN (Utah); WSSN \& WIN (Wis.); MDDS (Md.-Del.-D. C.); N.JN (N. J.) ; EMIN (Mass.); CCW (Colo.): ILN (III.); NEB (Nebr.) ; MSPN Eve, MSPN Noon, MJN, MSN, (Minn.) ; hPN, KYN. MKPN (Ky.); NJQ (S. Dak.). s. Dak. 7J. S. Dak. CW; QNIN (2 Mich. nets); FMITN, FPTN, JPTN, GN (Fla.); AENT, AENP Morn, AENB, AENP (Ala.) ; NHN (N. H.) ; C'PN (C'onn.) ; WSN (Wash.); WVN (W. Va.); SGN (Me.).
${ }^{3}$ TCC functions performed, not counted ax net sessions.
Well, it finally happened. We finally failed to break a total traffic record for a month. October's high NTS traffic total was made in 1959, 450 higher than the total in October, 19fil). We barely eked out a record number of seswions and also fell short in record rate and average per session. Although Oct. 1959 was one of the most active NTS months we have ever had and for that reason our failure to exceed it in 1960 was understandable, it is nevertheless logical to assume that from now on, with operating conditions on the downgrade, we are going to have continued trouble breaking previous records.

W'1BVR advises that 1 KN is now running two phone and two ew. sessions per night; attendance on the late e.w. session is very low. A $1 R N$ certificate has been awarded to W1DXS. WA2COO has received his 2 KN certiticate. W3WRE and W3EML are doing a big job of tilling 3RN vacancies; MDDC: has degenerated from the best represeatation to the poorest. W4MLE, E4QWQ and K4FUO have received their 4 RN certificates. W5CEZ is acting manager of KN5 until Doc, W5GY', gets bark on the air. Nevala representation is 'way down on KN6; the rest of the sections are holding up well. As his last oflicial act for \&RN, W8DSX, now established in Culif., has issued region net certificates to the following: For 1954, W゙8s QQO FWQ (\because C DAE QLJ PAIJ Z I'L B7K, Kisa JLF HFL IIGI HID. For 196(). I'ss FWQ OCC JKX DAE PMJ BZX, f8s JLF OTJ HGI HID. TWN held double sessions during the holiday seuson only, to help clear up the Christmas traffic. A $\because A N$ certificate has been awarded to W2MITA/9, and KJAXF has received a PAN certificate.

Transcontinental Corps. The boys on I'CC are having pretty rough going in the magnetic storms we've been having, but the traffic is still moving. A principal difficulty is in getting the trathic from the west coast to the east coast in good time. At present, most of it is being relayed through midwestern stations, but since this is ugainst the "finw of time," delays are encountered. Thus, more stations " 1)" are required. October reports:

Area	Functions	\% SUuccessful	Traffic	Out-of-Net Tralific
Eastern.	102	91.2	1441	993
Central.	93	93.5	2364	11.55
Pacifir	123	41.4	2051	$1(1) 1$
Summar	318	42.1	5856	:3189

The TCC roster: Eastern Area (W1SMU, Dir.) - W18 AW EAIG NJM OBR SMU WEF, VE2AZI/W1, Kะ\& UFT FEB, W.Azs Al' C COO, W3WG, K4KNP, W8UPH. Gentral Area (W0BDR, Dir.) - K4AKP. W9s DO CXY TYK. H\% LCX SCA BNR, KgORK. Haritic Area (W6EO'I', Dir.) - W4DNU/6, W5ZHN, Kës TPL (iID, WGs EOT ELQ HC WPF QMO, I'AGs ATB NCE, W78 GMIC BDU \%B [)ZX, K̈̈s CLS/6 EDH EDK, WOs Fri)/7 W゙ME KQD.
NATIONAL CALLING AND
EMERGENCY FREQUENCIES (Kc.)
3550
14,050
[THring periods of communications emergency these channels will be monitored for emergency traftic. At other times, these frequencies tans be used as general calling frequencies to expedite general traffic movement between amateur stations. Fimergency traffic has precedence. After contart has been made the frequency should be pacated immediately to accommodate other callers.

The following are the National Calling and Emergency Frequencies for Canada: c.u. - 3535, 7050, 14,060; phout - 3765, 14,160, 23,250 kc.

DXCC NOTES

Announcement is hereby made of the addition to the ARRL Countries List of Kaliningradsk Region. A territory of the Russian Socialist Federated Soviet Kepublic, Kaliningradsk Region is situated between Poland and Lithuania. This addition is in accordance with Point 3 of the country criteria as explained in the April, 1960, issue of QST on page 80. DXCC credit claims may be made for this addition starting March 1, 1961. Confirmations for contacts with Lialiningradsk Region must be dated November 15, 1945 or later. DXCC elaims received for tialiningradsk Region before March 1, 1961, will be returned without credit.

In the September, 1960, issue of $2 \mathrm{~S}=1$, announcement was made regarding the indition to the ARRL Countries List of the Mali Federation. In view of the short existence of the Mali Federation, we are deleting the listing of Mali Federation and replacing it with the two Listings of Mali Republic and Senegal Republic. These two Republics are the ones that made up the Mali Federation. (The Mali Republic was formerly known as the sudanese Republic.)
lif DXCC credit already has been given toward the Mali Federation listing, credit will be automatically transferred to the appropriate listing. For example, if credit has been given toward the Mali Federation listing for a contact with FF8CK, then that credit will be entered as credit toward the Senegal Republic. However, in this particular example, no new credit can be claimed for a contact with the Mali Republir until March 1, 1961. Contacts in hoth cases must have been made June 20, 196i), or later.

W1AW OPERATING SCHEDULE

(All times are in (ircenwich Mean Time - GMT)* WiAW is now on its Fall-Winter operating schedule. General operation covers all amateur bands on which

W1AW has equipment．Novice periods include operation on $3.5,7$ and 21 Mc．（see footnote 2 in box，page 88，Nov．QST＇）． Printed master schedules showing complete W1AW opera－ tion will be sent to anyone on request．

Operating－Visiting Hours．

Monday thru Friday：2000－0800（following day）．
Sunday：0000－0730 and 2000－0330（Mon．）．
Exception：W1AW will be closed from 1730 Jan． 1 to 2000 Jan． 3 in observance of New Year＇s Day，and from 0800 Feb． 22 to 2000 Feb． 23 in observance of Washington＇s Birthday．

A map showing how to get from main highways（or from Hq．office）to W1AW will he sent to amateurs advising their intention to visit the station．
＂fficial ． $1 R R L$ Bulletin schedule：Bulletins containing latest information on matters of general amateur interest are transmitted on regular schedules．

Frequencies（kc．）：
C．w．：1820，3555，7080，14，100，21，075，28，080，50，700， 145，800．

Phone：1820，3945，7255，14，280，＊＊21，330，29，000，50，700， 145，800．

Frequencies may vary slightly from round figures given： they are to nssist in finding the W1AW signul，not for exact calibration purposes．

T＇imes：
Monday thru Saturday： 0100 by c．w．； 0200 by phone．
Tuesday thru Sunday： 0430 by phone； 0500 by c．w．
General Operation：Use the chart on p．88，Nov．QST，for times and frequencies for W1AW general contact with any amateur．

Code Proficiency Program：Practice transmissions at 15， $20,25,30$ and 35 w．p．m．on Tuesday，Thursday and Satur－ day，and at 5， 7 h2， 10 and 13 w．p．m．on Monday，Wednes－ day．Friday and Sunday are made on the above－listed frequencies（except 1820 kc ．）．Code practice starts at 02：30 each day．Approximately 10 minutes of practice is given at each speed．On Jan． 21 and Feb．12，instead of the regular code practice．W1AW will transmit certificate qualifying runs．On Feb．16，W1AW will transmit a frequency meas－ uring test in place of code practice．
＊W1AW schedule is shown in GMT per recommendation of ARRL Board of Directors that use of（iMT for amateur communications be encouraged．For AST subtract four hours；for EST subtract five hours；for CST subtract six hours；for MST subtract seven hours；for PST subtract eight hours；for ．Jaska time（central part）and Hawaii subtract ten hours．Don＇t forget to change the day（to previ－ ous day）when subtracting takes you through 0000.
＊＊Single sideband．

DX CENTURY CLUB AWARDS

	HONOR ROLL	
\％IAGX．．．．． 300	W1ME．．．．：296	W1GKK．．．．293
W1FH．．．．． 300	W4DQH．．．． 296	W2BXA．．． 293
W9NDA．．． 299	W6EBG．．． 296	W7AMX．．．． 293
W3GHD ．．． 299	W9YFV．．．．295	W6ADP．．． 293
W8HGW．．． 299	W6ENV．．． 295	Cri3ali．．．． 292
W6AM．．．． 299	W7GBW．．．． 295	W8UAS．．．．．292
PY2CK．．．．． 297	W7GUV ．．． 294	W5ADL ．．． 292
W4BPD．．．． 297	W5．tDG．．．．．294	W61ZZZ．．．． 292
WXJIN ．．．． 297	W8DMD ．．． 294	ZS6BW．．．．．292
W2AGW．．． 297	WRBKP．．． 294	W3BES．．．． 292
W2HUQ．．．． 297	W9RBI．．．．． 294	W6NNV ．．．． 291
W8BRA．．． 297	W3KT．．．．．． 294	W6T＇．．．．． 291
W6SYG．．．．．297	ZL1HY．．．．． 294	G4CP．．．．． 291
KV4AA．．．．． 297	G3AAM．．．． 293	W4TM ．．． 291
W6CUQ．．．．296	（\％2PL．．．．．．293	LU6DJX．．．． 291
W3JNN．．．． 296		W8KLA．．．．． 290
	Radiotelephone	
PY2CK．．．．． 297	W1FF．．．． 289	W6AM．．．． 287
VQ4ERR．． 992	WYHGW．．． 288	W8KML．．．． 286
ZS6BW．．．．． 292	W9RB1．．．．． 288	4X4DK ．．． 286
WXGZ．．．．．． 292	W6YY．．．．．．28\％	W7PHO．．． 285
W8BF．．．．．． 290	WRPCQ．．．．． 287	OX2CO．．．． 285
W3JNN ．．．． 290	ZIIHY．．．．． 287	WYNDA．．．．283
W3RIS．．．．．こと9		W4DQH．．． 279

From October 1，to November 1， 1960 DXCC Certifi－ cates and endorsements based on postwar contacts with 100 －or－more countries have been issued by the ARRL Communications Department to the amateurs listed below．

NEW MEMBERS

W4LRN	172
W70C	123
DJ2U8	123
1）1．6TQ	121
D1．6WD	116
K6I，GH	113
CE1DC．	113
KH4AIS	113
OH7PJ	113
YT4XZ．	113
W7STC．	112
W7UVR．	112
gi3MIX．	112
VE7BW	111
W1RFQ	110
W4TDZ．	110
K゙わRQR．	110
K0DSL．	1111
3 CO	107

W55LJT	107
W6HVN	107
KxIUZ	107
（i3BEJ	1117
1）J5GG	． 105
OD5CT	． 105
SP8EV	． 105
W2DVC	． 104
W4ALJ	104
CO7AH．	104
DJ2EO	104
PAONIR	104
S12BF：	104
к⿴囗口⿺𠃊	103
K9JQA	103
JA1BNK	103
W＇1DOZ．	102
K47VA	112

Radiotelephone

ENDORSEMENTS

VK3KB．．．．．281
W3ECR ．．．280
W6FOZ．．． 273
W2CNT．．． 270
W6TJ．．．． 268

W A2IZ8 ．．．． 241	K゙2LGN．．．．． 173
W1LZE．．．． 240	W27KQ．．． 173
W6LN ．．．．． 240	W 5RHW．．． 173
WVANF．．． 240	W5FJE．．．． 172
IT1TAI．．．．．235	W9KQD．．． 172
W1GYE．．． 234	VE2HV．．．． 171
W2GNQ．．． 231	W2GUR．．．170
W1IJB ．．．．2：9	Whsilb．．．． 170
W9HKL．．． 224	W4IUO．．．． 170
G3EYN ．．． 224	3M5AJけ，．． 170
WゆUQV ．．．． 223	WURSZ．．．． 169
W1JNV．．．． 220	G3JNX．．．． 168
W4JII．．．．． 220	\％P5LS．．．．．． 166
W7AQB．．． 218	W1AZW．．． 163
781RM．．．． 217	W6KXG．．．． 163
7S1OU ．．．． 212	SM3AZI．．． 163
W8ZCQ．．．．．211	に1FFI ．．．． 162
W96RRO．．． 211	W31＇N．．．．． 160
SM5BCE．． 211	K4OMR ．．．． 160
W4UKA．．．． 210	K4RJN．．．． 160
W7ACD．．． 209	G8QZ ．．．． 150
F9RM ．．．．． 207	DL3JV．．． 159
KUDWI．．．． 205	1）I． 8 （1）．．．． 157
W1BGY ．．． 200	¢ 530 V ，．． 156
K4KOY．．． 200	W3HTF．．． 153
K4SXR．．．． 200	W9NLJ．．．． 152
W 1 FQA．．．． 198	W1KMY．．．．151
DL． 1 EL．．．． 196	W2WMG．．．151
К2DGT．．． 195	W8BIE．．．． 151
W6CDE．．．． 192	W2GND．．． 150
W97RG．．． 192	K4TFI．．．． 150
GM2TW．．． 192	W4UHC．．． 150
VK5RX．．． 190	W A6AMZ．．． 150
W9MZP．．．184	W8BQV ．．． 150
113ZI．．．．． 183	VE3EHR ${ }^{\text {P }}$ ．． 150
SM7TQ．．．． 183	KP4AOO．．． 149
K2BSMI．．．． 182	W6JKJ．．．．． $14 \times$
W2JVZ．．．． 182	OK3FA．．．． 148
W9GHK．．． 180	F．A4GA．．．． 144
V12AYY．． 180	W 1 ML．G．．． 142
JA2UN．．．． 177	に5ESW．．．． 142

W9TMU．．．． 142
W1DBM．．．． 141 KリRAL．．．．．141 W1UQP．．．． 140
WA2DIG．．． 140 VA1Jよ ．．．． 140 W9POH．．．．．． 137
K4TEA．．．． 134

W4LCY．．．． 132
IIZCN．．．．． 132

K8GHG．．．．131
W9CiH
W9YZ．．．．． 131
K9D．
W9YZA．．．．．．131
K9DJN．．．．．130
DJ3GX．．．． 130
DJ3QX．．．．． 130
YG1BQ．．．． 130
K4GEA
K4GLA．．．． 128
W7WDM．．． 128
WOCKC．．．． 125
FL4A．．．．．．． $1: 24$
JAUAC．．．．．． 12
TI2CMIF．．．． 123
TVQR
W6GRX．．．． 122
W91JR．．．． 122
W9GRR．．．． 122
K7GCMI．．．． 120
DLICF
DLICF．．．．．．120 120
EA31H．．． 120
＇V3OS．．．．． 119
KЗAMH／4．．．118
WABDTA．．． 118
FINAB
WHHNA．．．．114
K5BHV．．．．．．113
VF／3AHU／SU
W1YU．．．．．． 1110
W3GYP．．．． 110
WRNAN．．．． 110

Radiotelephone

WOANF	
K2ZNV	133
ITITAI	131
W1 ICVV	130
19% PE	130
1RJAZ	124
W5．TY	123
W．SIO	120
W：VCZ．	120
WYI，XW	120
VE2WY	120

K6BX……110

S	Canada	Area and	Con	Vral	Leaders
KH6CD	261	Volnx	． 235	VE6NX．	．．．． 256
K1，7PI	3： 1	VE2WW．	． 276	$V \mathrm{~F} 7 \mathrm{ZMI}$ ．	285
WOELA	2x9	VE31）IF．	． 260	V FiNa V	．．．． 195
\checkmark ELPQ．	． 252	YF4XO．	．200	4 X 4 DK ．	．．．． 289

W2BXA．．．．274
W5BGP．．．260
KH6UR．．．254
KH．7AFR．．．． 190
WVAIW．

Radiotelephone
VE1PQ．．．．． 151
VO1DX．．．． 123
VF2WW．．．．20
VE3WA ．．．．241

VE6TF ．．．． 172

CODE PROFICIENCY PROGRAM

Twice pach month special transmissions are made to enable you to qualify for the ARRL Code Proticiency Certificate. The next qualifying run from WIAW will be made Jan. 20 at 2130 Eastern Standard Time (0230 GMT, Jan. 21). Identical texta will be sent simultaneonsly by automatic transmitters on $3 \mathbf{3} 5.5 .7080 .14 .100,21,075$, $2 x, 080,50,900$ and 145,800 kc. The next qualifying run from WGOWP only will be transmitted Jan. is at 2100 PST (0500 GMIT, Jan. b) on 3590 and 7129 ke .

Any person can apply. Neither ARRL membership nor an amateur license is required. Send copies of all qualifying runs to ARRI, for grading, stating the call of the station you copied. If you qualify at one of the six speeds transmitted, 10 through 3.5 w.p.m., vou will receive a certificate. If your initial qualification is for a speed below $35 \mathrm{w} . \mathrm{p} . \mathrm{m}$ you may try later for endorsement stickers.

Code-prartice transmissions are made from W1AW each evening a.t 2130 FST (0230 CAIT). Approximately $10 \mathrm{~min}-$ utes' practice is given at each speed. Reference to tests used on several of the transmissions are given below. These make it possible to check your copy. For practice purposes, the order of words in each line of QsiT text sometimes is reversed. To improve your fist. hook up your own key and audio oscillator and attempt to send in step with W1AW.

Date Subject of Practice Text from November QST Jan. B: It siferms to lis, p. y
Jan. 4: The Gamma-Matched Ground Plane, p. 15
Jan. 12: . 1 V'.H.F. . . . Cipstal Exciter, p. 27
Jan. 17: A Better ITay to Install Fittings p. 29
Jan. 2:3:50- and 144-Me. Reception at Lere Cost, p. 39
Jan. 26: Planning Ahead. n. 5\%
Ian. 30: The Amateur and the Army, p. 58

A.R.R.L. ACTIVITIES CALENDAR

Jan. 5: CP Qualifying Run - W6OWP
Jan. 7-8: V.H.F. Sweepstakes
Jan. 11-15: CD Party (c.w.)
.Jan. 20: CP Qualifying Run - W1A WT
Jan. 21-22: CD Party (phone)
Jan. 28-Feb. 12: Novice Roundup
Feb. 1: CP Qualifying Run - W6OW'P
Feb. 3-5: ID Competition (phone)
Fieb. 11: ©P Qualifying Run - WiAW
Feb. 15: Frequency Measuring Test
Feb. 17-19: DX Competition (c.w.)
Mar. 2: CP Qualifying Run - Wrotw
Mar. 3-5: DX Competition (phone)
Mar. 17-19: DC Competition (c.w.)
Mar. 20: CP Qualifying Run - W1AW
June 10-11: V.H.F. QSO Party
June 21-25: Field Day

OTHER ACTIVITIES

The following lists date, name, sponsor, and page reference of gis'T issue in which more details appear.

Jan. 14-15: WAE D. Contest (c.w.), BARC (page 85, this issue).

Jan. 14-15: New Mexico QSO Party, Sandia Basc Radio Club (page 136, this issue).

Jan. 21~22: Seventh Annual VEl Contest (c.w.), New Brunswick Amateur Radio Assn. (page 146, this issue).

Jan. 28-29: Massachusetty OSO Party, Merrimack Valley Amatcur Radio Club (page 161, last month).

Jan. 28-29: Kansas Centennial QSO Party (page 118, this issue).

Jan. 28-29: Seventh Annual VEI Contest (phone).

Feb. 10-12: QCWA QSO Party, Quarter Century Wireless Assn. (page 72, this issue).

SUPPLEMENT TO NET DIRECTORY

The following listing will supplement und correct the listing on page 88-89, November @心T. Please inform us promptly of any errors or omissions so that they can be included in the March QST' imstallment. This brings the record up to date as far ax Nov. 18. 1960. Registrations received ufter that date will appear in the March QST list.

Only nete which registered between Sept. 22 and Nov. 18 are included in this list, except for corrections and previous omissions. Net registrations that do nut show a public service purnose are not included. Net registrations that do not give the five required items of information (see p. 90 . Sept. 1960 (2ST) have also been omitted.

Insofar as possible, nets are registered errurtly as received, except that certain common abhreviations in net names are: used to conserve spare. Under rolumn headed " Days," the following abbreviations are used: Sn, Sunday; M. Monday; T, Tuesday, W, Wednesday; Th, Thursday: F, Friday; B̈, Saturday; Uy, Laily, including Sunday; 1/M, first Monday of month ($\&$ similar) ; $1 / 3 \mathrm{M}$, first and third Mondays of month (\& similar).
. 111 net times are given in Greenuich Mean Time (GM MT). Tf it is necessary to convert this to local time, refer to conrersion chart. p. 81, August QST. Don't forget that in converting to local time the days of net nperation will be the days previous to those shown if converting takes you through 0000.

Important note: QST' net listings are for information only. Listing in QST' or the annual cross-indexed Net Directory does not signify necessurily that nets listed have any otticial status, does not entitle them to prior or exclusive right to the frequency or frequencies on which registered, and is in no stense a form of apyright.

Name of Net
Adams County AREC Net
Addison County Eimerg. Service Net (Vt.) - ACES'

Akron (. D. (Uhio) Net
Ala Emerg. Net "I" (AENI)"
Ala. Emerg. Net P (AENP) ${ }^{1}{ }^{2}$
Ala. Emerg. Net " R " (AENR)'
Ala. Emerg. Net " T " (AENT) 1,2
American Lexion Amateur Radio Net, Inc.
Anniston Emerg. Net Y (AENY)
A.K.C.-Ked ('rose Disaster Siervices Net

Arrowhead (ivil Defense Net (ACDN)
Atlanta 10 Meter Phone Net
Baltimore ('ounty Emerg. Net (BCEN)
Bedford CD \& AREC Net (Mass.)
Belleville ('.D. Net (N. J.)
Berks ('ounty C.D. Kadio Net (Pa.)
Berrien ('ounty Emerg. Net
(BCEN) (Mich.)
Blackstone Valley Radio Net
Boone County RACES Net (Ind.)
Hoston Hed Cross Net (BRCN)
Brazoria Amateur Radio Club Net (Texas)
Breakfast Club Net
British Columbia Emerg. Net (BCEN)2
Broward Emery. Net (BEN) (Pla.)
Brown County Emerg. Net (BCEN) -Wis.)
Buckeye (Ohio CW') Net (BN) (Ohio) ${ }^{2}$
Burlington County RACES Net (N.J.)

Buzzards Bay, Cape Cod \& Islands
Emers. Net (Mass.)
Calif. Intra-state Traffic Net (C.I.T.N.) $145.080 \quad 1900$ M-F
California Net (CN)
Calumet Area Emerk. Net (CAEN) ${ }^{2}$

F'req.	$i_{i} M T$	IT7.1/8
3865	1800	Alt/Sn
145,800	1800	$\mathrm{D} y$
50,700	2400	M
3885	18:30	in
3955	$\because 400$	D) y
	1400	Sn
50,550	0115	N-F
3905	2.230	Dy
	14.30	S
3975	0:300	1)y
1+6,570	0:330	[)
3830	0230	T
50,700	0130	Th
29,600	11:330	W-F
2?,600	03300	M
29,250	11130	: T
29.120	0100	T
146.250	$1+30$	sn
145, 400	0100	'r
29,610	1930	Last/sn
29.000	$\because 400$	M
50,675	00:30	'Th
52,5:5	1730	in
147,300		
29,650	0100	'r
3930	0100	F
3873	1000	Dy
3650	0300)	Dy
	0tiou	Dy
29,610	0200	T
50,445	0130	T
3950	1930	Sn
3580	2400	Dy
29,580	0030	Th
51,000		
1+6,320		
145, 69	2100	M
145.080	1900	M-F
3555	0200	Dy
7125	2000	M-F
1805	2400	Dy

Cambria County Civil Defense Net（Pa．） $29,470 \quad 0100$ W
Capital Area Radio Emerg．Net 145，350 21000 in （CARE）（N．Y．）
Carbon County Emerk．Net（Pa．）
（Carroll County Net（Md．）
（＇atalpa Amateur Kadio Society Net （CARS＇）
Cedar V＇alley 6 Meter Civil Defense Net （Iowa）
Central Fla．Operational Area C．D．Net $145,200 \quad 2400$ M－Th （CPOA）
（＇entral Gulf Coast sisB Net
Central Illinois Not（CIN）
（＇entral Kans．Phone Net
（＇entral New England Net（CNEN）
Central Texas Emerg．Net（Centexen）
Centre County Six Meter RACES Network（Pa．）
Champlain Valley VHF AREC Net
Charlotte（ID）Net（N．（．）
Chatt：nooga Amateur Radio Emerg． Net（＇ARE）
（＇hemung County AREC Net （（CAREC）（N．Y．）
Chicago Area KACE：Net
The C＇hicago Civll Defense Corp 6 Meter Net
Chittendon County Emerg．Net （AREC）（CCEN）（Vt．）
Clark County．Ohin Civil Defense V et
（＇lermont C＇ounty Emerg．Net （CDEN）（Ohiol
Clinton County KA（EES Net iN．Y．）
（＇olnnie Amateur Net（N．Y．）
（＇olorado（C．W．Net（CC）$\left.{ }^{\circ}\right)^{2}$
（olumbia Basin Net（C．B．N．）
Comatuche County AREC Net（Okla．）
Communimations Club of New Rochelle Not（N．Y．）
Confederate signal Two Meter Net （（ SC 2 M$)$
Conn．Nutmeg Net（CN）${ }^{2}$
（＇onn． 6 Meter Phone Net（C6MPN）
Conn．Training Net（CTN）${ }^{2}$
Conn．VHF Tfr \＆Eimg．Net
Cook County Kaces Net（1II．）
Chosa Valley Emerg．Net（CVEN）（Ga．）
Copper itate Net（CSN）${ }^{2}$
© Q Radio Cluh Net（Conn．）
Cumberland Countr Emera．Communi－
cations Network（CCF（CN）（Me．）
Cumberland Vallev Amateur Radio （lub Net（Pa．）
Cuyahoga（＇ounty Zone Ten RACES （Uhio）Net
（Uuahoga Falls Radio Net（Ohio）
Dade Emera．Net（DEN）
Dade Emerg．Net（Miami，Fla．）
Danvers Emerg．Net（DFN）（Mass．）
Defiance Co．Emerg．Net（DCE）
Delaware（ $\mathrm{C} . \mathrm{AKLC}$（ Net（ Pa ．）
Delaware Emerg．Net．
Delaware है Meter Net（DsiN）
Dixie Early Birds Net（DEB）
Dnghouse Net（DHN）
Dover Delaware six Meter Net
Du Page County Emera．Net（DECN） （III．）
Lhit hess County AREC＇ 10 Meter Net（N．Y．）
Dutchess County A．R．E．C．a Meter Net（N．Y．）
Early Bird Transcontinental Net （EBTN）
East（＇entral Ind． 6 Meter N．t （ECl6M）
East（ oasst Teletype Net（ECTN）
East Tenn．Net
Eastern Area Net（EAN）：
Eastern Area Silow Net（EL．ASN）
Eastern Arctic Coust（iumrd Net
（EACGN）

3810
1100 is $29,3011 \quad 0 \because 00 \mathrm{~T}$ ：3：0 14：0 in 50， 100 0200 Th 3025 2：330 Dy $1815 \quad 1430$ in 3930 13：30 8 $3812 \quad 11+5$ M－S ： $8: 001100$ in 50，380 6300 sin
$1+6.820 \quad \because 00 \mathrm{~T}$
：88 5 18：30 in
$50.100 \quad 0130 \quad \mathrm{M}$
36050200 M
$1+5,200 \quad 0: 00 \mathrm{~F}$ $50.510 \quad 0300 \quad \mathrm{~F}$
$145.800 \quad 1700 \mathrm{in}$
$3860 \quad 18100 \quad 1 / 3 \mathrm{Sn}$
$145.260 \quad 0200 \mathrm{~T}$
$24,5000100 \mathrm{M}$
50,500 0inu M
$146.820=300 \mathrm{~T}$
．3742 2000 Dy
3652 0：30 T－S
3040 nis：3 by
3885 1！010 in
145，380 ：30
$145,350 \quad 0100 \mathrm{~T}$

3640	29.5	1
	0300	Dy
50.580	$00+5$	TF
3610	$1 \div 00$	Sn
145，980	0136	TThs
50，680	0130	T
3450	$18: 30$	Sn
：880	0 $2: 3$	T－S
146.700	$\therefore 100$	T
\％910	1730	in
$\therefore 9.400$	0：300	M

$29.600 \quad 0130 \quad \mathrm{~T}$
$53.520 \quad 2345 \quad$ II
50,250 nol：30 ir
29，500 0100 ＇「＇Ex3
$20.455 \quad 2345 \quad \mathrm{M}$
$7120 \quad 23030 \quad \mathrm{IFF}$
$29.050 \quad 0230 \mathrm{M}$
： 30105 2330 S
50.1000200 W

7235 1230 I Dy
$38 \mathrm{tiO}=340 \mathrm{M}$
$50,300 \quad 0100 \mathrm{~F}$
$50.280 \quad 0330 \mathrm{~B}$
29,490 （1200 F
$145,800 \quad 0: 00 \mathrm{~s}$
$38+5 \quad 1000$ Dy
50） 100 10200 1＇ブก
$36 \div 0=400 \mathrm{~W}$
3ب80 $1110 \mathrm{M}-\mathrm{F}$
3670 11130 1）y
$\therefore i+8$ 2300 by
$1+280 \quad 1100$ M－F
$\because 1,+10$ ：200 M－F

Eastern Canada Net（ECN）${ }^{2}$
Fiastern Mass．Net（FiMN）${ }^{2}$
Fiastern Mass． 2 Meter Net（EM2MI？
Eisastern Penna．Net（EPA）${ }^{2}$
Eastern States Net（ESN）
Ezklin AfR／Fort Walton 10 meter Emerg．Net（HAIR）（Ela．）
Eglin AFB／Font Walton 2 meter Emerg．Net（rla．）
Fighth Regional Net（8RN）${ }^{2}$
Evrrgrern Emergency Net（Wash．）
WARM Net（Friendly Amateur Radio Messages）
Fla．Emerg．Phone Net（PGPN）
Fla．Mid－Day Traffic Net（kMTN：
FInrida Net（CW）？
Nia．Phone Trattic Net（EPTN）2
Foreign Legion Net
Fourth Kegional Net（4RN）${ }^{1,2}$
Fox Hiver Valley b mete：Eimer． Net（Wis．）
Jiranklin County AREC Net（O）hio）
Fulton County Amateur Net（ILI．）
Firlton County（Ohio）Net
Geneser Comity Fimerg．Net（Mich．）
（iforgia Cracker Mobile Net
leorgia state Net（ BriN$)^{2}$
Golden Empire Amateur Radio society
（＇ivil Emerg．Net（Calif．）
Grand Canyon state Phone Net
（iranite sitate Phone Net（GSPN）${ }^{2}$
Grave Yard Network（IYN）
Greater Atlanta Six Mrter Net（iiAN）
Green MIt．Net（GMN）（Vt．）${ }^{2}$
Grey－Hruce Net（GBN）t，2
Hambutcher Net
Hamilton Chunty AREC Net（Ind．）
Hamilton County Eimerg．Net（Iowa）
Hampton Koads Emerg．Net（ Va，I
Hancock Co．AREC Nct（Ind．）
Hardin County Emerg．Net（HCN） （Ohini
Hawkeve l＇hone Net（Inwa）
Heap Big Net（HRN）
Hi－Hlains Emerg．\＆Tratfic Net
Hudson Tratic Net（HTN）
Huntington（WVA）Weather Net（HWN）
Illinois CW Net（ILN）²
III．Weather Net，Ine．${ }^{1}$
INO h－Meter Traffic Net
Ind．I＇hone Net（I．F．N．）
ind．State＇Traffic Net（QIN）${ }^{2}$
Ind．State Training Net（以LN）
Inter County Net（Miami，Fla．）
Inter Mountain Amateur Radio Net （IMARN）
Intermountain Weather Net
Iowa 160 Meter Emerg．Net
lowa Trall Corn Net（＇ILCN）${ }^{2}$
Jackalope Nrt
Jasper Conunty ARWC＇Net（lowa）
Kanawha（＇ounty Six Meter Emer．
Vet（KCEN）（W．V＇a．）
Kiunsas Phone Net（KPN）${ }^{2}$
Kans．Section（TV Net CQKSIM，
Kepp Minn．（ireen Net（Fone）（KMI（t）${ }^{2}$
Kennehooshce Emerg．and Trattic Net （Ga．）
Kentucky Novire Net（KNN）
Kentucky l＇hone Net（KPN）${ }^{2}{ }^{2}$
Killeen－Hell County Emorg．Net
（KREN）（Texas！
Kings（＇ounty AHEC＇（＇D Net（N．Y．）$\quad 34.6400200$ T
Kings County ． $4 \mathrm{RE}\left(\mathrm{C}^{\prime} \&(\mathrm{C})\right.$ Net（N．Y．）145，260 0130 T
KW 6 Meter Vimerg．Net（KIVN）$\quad 50,550 \quad 0: 300$ T
lancaster Emerg. Net (LEN) (Pa.) lawrence Co. Emerg. Net

Linn C'ounty Emerg. Net (LCEN) (Iowa)
Long Beach C.D. 10 Meter Net (Calif.)
Long Beach C.D. High Two Meter Net (Calif.)
Long Beach C.D. Low Two Meter Net (Calif.)
l.orain County 160 Net (Uhio)

Louisiana Cyy Traffic Net (LAN) ${ }^{2}$
La Delta 75 Meter Net
Louisville Area Radio Emerg.
Net (LAREN)
Madison County Emerr. Net (MCEN) (Ind.)
Madison County (1ll.) Weather Uhservation Nets
Madison Mobilc Net (MMN) (Wis.)
Maine Slow-speel Net
Malden Emerg. Net (Mass.)
Manitoba Phone Net
Maritime AREC Net (MAREC)
Maritime Phone Net (MPN)
Maryland Delaware \& Dist. of Columbia Net ${ }^{2}$
Mason Ked Cross Disaster Net (Mich.)
Mass. Phone Net (MPN) ${ }^{2}$
McDonough C'ty 6 Meter Emerg. Net (MON) (lll.)
Md Six Meter Emerg. Net
MDD AREC Net

Medford C.D. Net (Mass.)
Medina County 160 Net (Uhio)
Memphis b Meter Einerg. Net
Memphis Ten Meter Mobile Emerg. Net
Memphis Two Meter F'M Net
Miami Valley Emerg. Net (Ohio)
Miami Valley VHF Net (Davton, Uhio)
Mich. Emerg. (Sun) Buzzards Roost (Week) Net (BK/MEN)

Michigan 'Thumb Net (MTN)
Middletown Intercom Net
Mike Farad Emerge and Traffic Net (MFN)
Minn. Junior Net (MJN) ${ }^{2}$
Minn. Sertion Net (CW) (MSN) ${ }^{2}$
Minn. Single side Band Net (MSSB)
Minn. State Phone Net (MPN) ${ }^{2}$
Minn. State Phone Net (EVE) (MSPN) ${ }^{2}$
Missouri Emergency Net (MEN)2
Mo. Slow Speed Net (Mo.)
Montana Phone Net
Monterey Bay Radio Emerg. Net (Calif.)
Montgomery County AKEC, Ill. Net (MCD2)
Montgomery Co. Operational Net
Morning Ky. Phone Net (MKPN) 1.2
Muskegon County Civil Defense and Red Cross Amateur Radio ('ommunication Network iMich.)
Muskrgon County Civil Defense
6 Meter Net (Mich.)
Muskingum ('Sunty) Emerg. Net (Ohio)
Muskogee County Net (MCN) (Okla.)
Naples Amateur Net (NAN) (Fla.)
Nassau County 10 Meter Net (N. Y.) Nebr. Slow Sipeed Net (NSis)
NETEN (North East Texas Emerg. Net N. H. CW Tratic Net (NHN) 1,2
N. J. Civil Defense Net (CW) (CDNJ)
N. J. Civil Defense Net (Phone) ($\mathrm{NJ}-2$)
N. J. Emerg. Phone \& Traftic Net (NJPN) ${ }^{2}$
N. M. Brass Pounders Net (NMBP)
N. M. Breakfast Club Net (NMBC)
N. M. Emerg. Phone Net (NMEPN)

146,800	0300	T
3860	00:30	1/W
50,100		
:9915	1400	Sn
29,550	$0+15$	T
147,300	04:30	T
145,460	03+5	T
1805	1801	Sn
3615	0100	T-S
3505	13330	So
29,500	0130	T
53,600		
147.300		
50,400	$0: 00$	M
29,640	03100	1/3F
50,540	0460	$1 / 3 \mathrm{~F}$
29,620	0100	W
3726	2.20	TThSSn
29.540	00:30	T
3760	0100	1)y
3790	2215	Sn
3750	2300	Dy
3650	0015	'T-Sn
3920	0200	T
3870	2300	M-S
50,350	0200	W
50.250	0:00	Th
3521	0100	W
3900		
$70+2$		
50.700		
145,660		
29,520	2400	M
18:0	1800	Sn
50.500	0:00	TS
29.627	0100	TS
145,500	0130	T
18:0	1400	Sn
50,510	0:00	Sn
146,520		
:9930	2230	M-F
	2100	M-F
	1100	Sn
3850	1:300	Sn
146,250	0200	T
7238	1700	M-F
3610	0500	Dy
3595	0100	Ly
3595	10.30	Dy
3805	1730	M-F
38:2	1805	Dy
38:0	2160	M-S
3885	2400	MWF
3715	2830	M-F
3910	0100	TWS
147,160	0400	T
145,500	0130	W
147,300		
24,520	1200	Th
3960	13.30	Dy
145,216	0:00	Tb
50.418	0200	TF
29,616	0:300	S
3742	0130	F
51,000	2330	Dy
28,720	0100	T
3750	2300	M-F
3970	1400	Sn
3685	$23: 30$	M-F
	1515	in
3505.5 3993	1430	Sn
3900	2300	M-S'
	1400	Sn
3570	1)200	TThS
38.38	1400	M-S
3838	$1+30$	Sn
	0100	WF

NYC-LI (:W Net ${ }^{2}$

N. Y. C.-L. I. Yhone Net (NYCLIPN) ${ }^{2}$
N. Y. C.-I., l. VHF Tfc Net
N. Y. State C.D. Command Net (CW) (YCD)
N. Y. State ('.1). ('ommand Net (YCD)
N. Y. State Phone Tratfic \& Emerg. Net Net (NYSPTEN)
N. Y./V't. RTTY Net (NY/VT RTTY)

Newfoundland Net (Phone)
Newport County Emerg. Net (K. I.)
Newton, Mass. (Tivil Defense Net
Nite ()wl Net (Ill.)
Nite O_{wl} Set (Uhio)
No Name Phone Nit
N. C. RACES Net
N. C. Single Sideband Net (NSCBN)

No. Central Phone Net (NCPN)
N. C. CW Net (NCN)
N. C. 6 Meter Net
N. Dak. 75 Meter Phone Net

North Eastern States Traffic Net
(NEST)
N. Texas CWV Traffic Net (NTX)2
N. Texas Eimerg. Net (NTEN)

Northeast Area Harnyard Net
Northern C'alif. Net (NCN) ${ }^{2}$
Northern Va. Emerg. Net (NVEN)
Northwest slow Speed Net (NSN)
Nutley Amateur Radio Net (N. J.)
Dak Ridge Emerg. Net (ÖREN) (Tenn.)
Ohio Emerg. CW Net (OEN) ${ }^{2}$
Ohio Emergency Net (UEN)
Ohio Emergency Net (OPN) ${ }^{2}$
The Ohio Phone Net (OPN) ${ }^{2}$
Ohio Slow Net (USN) ${ }^{2}$
Okla. Night Uwl Net
Okla. Slow-®peed Net (SSZ)2
Oklahoma 'Trafic Net (OLZ)'
Ontario Fone Net (OFN) ${ }^{2}$
Ontario Quebec Net ${ }^{2}$
Orange County 6M Emerg. Net (Texas)
Oregon A.R.E.C. Net
Oregon state Net (OSN) ${ }^{2}$
()ttawa C'ounty Rares Net (Mich.)

Pacific Area Net (PAN) ${ }^{2}$
Pembina County AREC-RACES Net (N. Dak.)

Pennsylvania (ivil Defense (CW) Net Net (PaC'D)
Penna. Central Area Net (Civil Defense)
Penna Eiastern Area Net (Civil Defense)
Penna. Phone Net (PFN) ${ }^{2}$
Penna. state Net (Civil Defense)
Penna. Western Area Net (Civil Defense)
Phila. Electric Co. Employees Assoc.
Amateur Radio Cluh Net
Pictured Rocks Net (PRN) (Mich.)
Pierce County Kaces Forum Net (Wash.)
Pine True Net (Me.) ${ }^{2}$
PLAN (Piedmont Local Area Net) (S. C.)
Post Road Emerg. Net (Mass.)
Pothole Net, Ottawa Valley Mobile
Radio Club
Poweshiek County Emerg. Corp. Net
Prince Georges County AREC Net (PCAREC)
Prince Georges County Civil Defense Not (PGCD)
Pub. Int. Con. or Nec. Net (Minn.)
Queen ('ity Emerg. Net (QCEN)
Qucens Countr, N. Y. AREC Net
Quiney Emerg. Net (Mass.)
Randolph (\mathcal{C}-D-Net (Mass.)
Ked Kocks Amateur Radio Club Net
(N. M.)
$3510.5 \quad 1400 \quad \mathrm{Sn}$

3993	1 $1(\mathrm{~K})$	sn
3925	$\because 0$	Dy
147,150	2300	M-F
3785	2130	Dy
29,530	15011	in
53,745	11200	M
29,640	0 OHO	F
50.700	0130	S'
7250	1300	1)y
3880	2400	MTh
3895	00:30	T-s
3915	$1: 45$	M-S
3547	2:330	Dy
3610	0:300	Dy
50,285	is:311	in
3845	2400	M-S
3915	$2: 10$	Dy
3770	10100	T-Sn
	(1)100	
3930	1330	Sn
3960	1:300	M-S
36635	0300	'r-sn
29,200	1730	int
3700	1;500	T-Sn
29,400	1830	\therefore
50,700	2400	M-F
3580	0100	Sn
3850	$\because 3011$	Th
3850	0100	1
3850	2200	M-F
3580	28330	M-F
50,250	12:30	W-M
3682.5	03:30	T-Sin
3682.5	0100	[-S'n
3770	$\because 100$	M-S
3535	$\therefore 100$	M-S
50,080	1100	Dy
3875	0:300	T-s
3585	0230	- $\mathrm{\Gamma}-\mathrm{S}$
50,418	2400	M
3675	0330	Dy
1990	0.300	Th

3503.5 1400 Sn

3997	1300	Sn
3997	1400	Sn
3850	2300	$\mathrm{M}-\mathrm{F}$
3997	1210	Sn
3997	1330	Sn
29.450	0200	T
28.800	0130	Th
29,510	0100	M
50.600		
145,650		
3596	2400	Dy
50.200	0030	T
29.400	2400	M
3760	1500	SSn
3775	1500	Sn
3835		
145,660	$\mathrm{v}: 00$	W

845,620 (1100) F

38.10	2200	Alt/
29,600	0100	T
50,700	0100	Th
29,500	0130	T
146,800	1500	5 Sn
	0015	T
145,700	$0 \div 00$	C
7250	0415	Th

Rhode Island Net CW (RIN) ${ }^{2}$
R. I. State Phone Net (Rlisen) ${ }^{2}$

Kiver liorecast Net (KHN)
Koane (${ }^{\text {O}}$ ounty Emerg. Net ('Tenn.)
Rock Island County RACES Net (III.)
Rockford Emerg. Net (REN) (III.)
Kome CD Net (N. Y.)
K'TNET (Southern Calif. RTTY Net)
RTTY and Telegraphy Net (RATE)
San Bernardino AREC Net (Calif.)
San Diego AREC for 7.5 Meters Net (Calif.)
San Diego CD Metropolitan Net (Calif.) San Difgo CD 75M Monitoring Net (Calif.)
San Dieg̣o IOM Metropolitan Net (1 OMAREC) (Calif.)
San Diego 'T'wo Meter Net (Cal.)
Santa Clara County Emerg. Net (Talif.)
Sakk. A.R.R.I. Phone Net
Satellite Data link Net (SDL)
Sichenertady Emerg. Communications Net (SEC)
SchenectadyEmergency Communications Six Meter Net (SEC-6)
Scioto County Emerg. Net
is'('.E.N.) ((Hhio)
Sea Gull Net (Me)
Sector 2D Stoughton, Mass. Net
Seneca Kadi Club - 2 Meter Net (Ohio)
Sector 2-D M.C.D.A. Net (Mass.) 7240 Traffic Net

Seventh Region Net (RN7) ${ }^{2}$
Seymour Amateur Radio Club Net (Inc.)
Shore Emerg, Net (N. J.) ${ }^{1,2}$
Short skip Radio Club Net (SSRC)
in Meter Cross-Band Traffic Net
The six Meter Net of the Apple
Pie Hillers (N. J.)
Sixth Regional Net (RN6) ${ }^{2}$
Skokie Six Meter Indians Net (SSMI)
Socal 6 Net (Metro Div.)
(Valley Div.)
Simner Nooner Net
Sinoner Traffic Net (s 'TN)
South Bay C.D. Net (Calif.)
S. C. Emerg. Phone Net (SCEN) ${ }^{2}$

South Carolina Net (SCN) ${ }^{2}$
South County Amateur Radio Society CD Net (SCARS) (Calif.)
Sinuth West Va. Civil Defense Net
Southern Alameda (lounty Emerg.
Net (SACEN) (Calif.)
Sonuthern Calif. Net (SCN) ${ }^{2}$
Southern Michigan Net
southwest Mich. Two Meter Net
St. Clair County Emerg. Net (SCEN) (Mich.)
Southern Peninsula Emerg. Communications Sirvice Net (Calif.)
Spokane Radin Amateurs AREC
Net, Inc. (Wash.)
St. Louis and St. Louis County
50.55 R.A.C.E.S. Net
st. Louis and St. Louis County 29.640 R.A.C.E.S. Net
siteuben County AREC Net (Ind.)' steuben County ('D Net (N. Y.)

Tennessee CW Net (TN ${ }^{2}$

3645	0145	Dv
	0.330	Jy
3540	2400	$\mathrm{M}-\mathrm{F}$
50,600	2330	Dy
3656	1400	Sn
50,300	2330	$\mathrm{M}-\mathrm{W}$
50,580	0230	W
	0300	W
28,700	0300	T
50,600	12000	T
147,850	0400	W
3620	0200	W
29,200	0300	T
3825	1700	Sn
50,510	0330	T
3991	0300	T
29,500	0,300	W

$145.500 \quad 03030$ W
$50.500 \quad 0: 100 \mathrm{~T}$

3780	1130	Dy
3820	2300	'TTh
3950	1!00	Sn
50,640	1900	Sn
3845	1600	Sn
3940	2200	Dy
29,490	01330	T
47.325		
+5.440	0130	F
45.325	0030	T
7290	1500	M-F
	1900	M-F
3565	0345	Uy
	0.530	Dy
6750	0100	1/Mn
47,300	2100	1/Sn
21,111	0103	W
28.800	0510	Sn
50,850	0030	M-F
50,250		

3615 0345 Dy 0.530 Dy
$50,298 \quad 0.300 \quad \mathrm{~T}$
50,400 0:300 T-S
51,000
7235 1820 M-S
3850 2400 M-S
146,960 0:300 'T'
$39.30 \quad 0030$ T-S 1330 sn
2030 Sn
$3795 \quad 2400$ Dy
50,710 0330 '
145.490

3835 1300 sn
39850500 M
$50,250 \quad 1100$ F
$\begin{array}{rrr}3600 & 01300 & \text { Dy } \\ 50,700 & 0100 & T i t h\end{array}$
50,700 0100 TTh
$145,260 \quad 11100$ T
29,610 1100 T
29.500

146,000 0345 T
$29.600 \quad 0300$ W
$50,550 \quad 0200 \mathrm{~T}$
$29,640 \quad 0200 \mathrm{~W}$
52,525 2315 Th
$50,580 \quad 1430 \quad \mathrm{Sn}$ 0200 F
36350100 T-Sn

Tenn. Phone Ne
Tenn. Slow speed Net (TNSN)
Third Region Net (3RN) ${ }^{2}$
Totrm Emerx. Net (Wash.)
Traffic Hounds' Morning Watch (MW)
Trans Coutinental Relay Net
(TCRN1)
(TCRN2)
('TCRN3)
(TCRN4)
Treasure State Net
Tri-County Net (Calif.)
The Tri-state Traffie and Emerg. Net (TTEN) 1
Tropical Phone Trafic Net (Fla.) ${ }^{2}$
Trumbull County Emerg. Net (Ohin)
Turson Emerg. Net (A.R.E.C.) TENAREC) (Ariz.)
Tulare (hountr Net ('TCN) (Calif.)
Tularosa Basin Two Meter E.P. Net (N. M.)
Turlocl ARC Alternate Tuesday
Nite Net (Calif.)
"'Tuxedo" Net (FMN-1) (III.)
2-4-6 Net (Calif.)
Union County N. J. Amateur Radio
Emerg. Corns Net
United Trunk Lines (Central) (UTL)
United Trunk Lines (East-West
7 Mr .)
Upper Level Hillbilly Net (N. C.)
Upper P'eninsula of Mirh. Emerg. Net (UPEN)
Vanderburgh County AREC \& RACES Net (Ind.) ${ }^{2}$
Vermont Emerg. Phone Net (VEPN)
Virginia Net (VN)?
Walpole Emergency Net (Mass.)
Waltham ('D Net (Mass.)
WARTS (Washington Amateur Radio Traffic Systemi Net
Washington County AREC Net
Washington County Emerg. Net (Ohin)
West Fla. Phone Net (WFPN)
West (iulf Emerg. Net (Texas)
West Nebr. Emerg. Net (WNEN)
West Park Radiops Emerg. Net (Ohio)
West I'hila. Kadio Assn. Net
West Virginia CW Net (WVN) ${ }^{2}$
West Virginia Phone Net²
Western Mass. Novice Net (WMNN)
Western Mass slow s'peed 'l'raffic Net (WMSN) ${ }^{2}$
Western Nebraska Net²
Western Penna. Traffic Net (ORS) ${ }^{2}$
Westmoreland Co. C.D. Net (Pa.)
Whiteside County Civilian
Defense Net (WCCD) (III.)
Whittier Emerg. Net (Calif.)
Wichita Kadio Emerg. Net (WREN)
(Kans.)
Winchester CD RACES Net (Mass.) $\quad 147.100$ no45 Th
inston-salem 2-Meter Civil
Deferse Net (N. C.)
Winthrop Emerg. Radio Net (Mass.)
Wis. Intrastate Net (WIN) ${ }^{2}$
Wisconsin Rares Net
Wis. Slor Speed Net (WSSN) ${ }^{2}$
Wolverine Net (Mich.)
Wood-Ridge, N. J. Civil Defense Net
Wyoming County, N. Y. C-D and
Emergencv Net (N. Y.)
Wyo. Pony Express Net
York Emergency Net
YO Net ${ }^{2}$
1 ('orrection from previous listing; ${ }^{2}$ ARRL National Traffic System.

SZM－SIN
－All operating amateurs are invited to report to the SCM on the first of each month，coveringstation activities for the preceding month．Radio Club news is also desired by SCMs for inclusion in these columns．The addresses of all SCMs will be found on page 6 ．

ATLANTIC DIVISION

EASTERN PENNSYLVANIA－SBM，Allen R．Breiu－ r，W3ZRQ－SEC＇：DUI．PAM：IV＇S．RM：AXA．The new EC for Philadelphia County is D．JW，b904 City Aye H3JLW is a new OPS and K31PK is a new ORS． H3GAY was midded to the list of OESs．KNL spent two weets vacation from W6－Land back here with his OM1，who is AMIC．who in turn has now left for the hills of Nevada until the holidavs．K3BHU has taken his place as NCS for Wed．on the PHEN K3MLO is spending a few davs in the Cleveland Area． WA2ANR，from New Jersey，will locate in Yardley，Pa． h3DCB has set up portable with 10 watts at the Carson Lung Institute．New ollicers of the Delaware Lehigh ARC are SAP，pres：NNT，U－e－pres．；h3DVF，treas．： h3MAAZ，secy．The lork linad RCs ufficers are $\angle Y^{\prime} O$ ores．；EOS，vicepres．：SOB，treas，AIX．sery．K3CAH still is tinding it difficult to freeload some apple pies． KMD had his rig down for repairs for three weeks and it irlt like three yerrs．When it rains it pours for our RM A．F．A．His ford stopped＂fording＂the store＇s cash regis－ ter kave up the ghost，his X＇lis washing machine stopped gyrating，his typewriter went west．then for the elincher his rig blew up and is now QRP．PAMI IVS has been appointed net manazer of the Pennsylvania Post been appointer net manajer of the Pennsylvania Post and is looking for $220-$ Alc．activity in the area．After receiving regular monthly reports from LEEZ for more then is year we are surprised to find out that he was SCM in lowa back in the 30s．New Gear Dept：To YLI． a bird－cage beam，which he says is a mouster；to $A E Q$ ${ }_{c} \mathrm{kw}$ ．find awaiting a low－pass filter；to $V \mathrm{~V}$ a 40 －meter bean，a 50 －lb．monster；to K3EOS a new skvwire raised by BUR；to EML a new paint job for the shack．His Ky＇L thought it so nice she decided that he should do the whole house．We legret to record the passing of EU＇s mother．For 16 months ADE has iust placed a big 3 in his activity portion of his monthly from 1 card． May we add to it by wishing each and every one in the section it Very Joyous Holiday Season and a Most Happy and Prosperous New Year．Tratfic：（Oct．）．W3IVS 774 ，VR 628，EMLL 418．HNK 319．K3BHIT 101．W3AXA 78，AEQ 64．UIU 60， $13 H E X$ 7．W3NNL 55，KMD 52 ．斤3CAH 50．JLW 39，CRU 31，W3ZRQ 31，K3HTZ 24. MVO 23．W3BLIR 21，Һ3JیX 20．W3ITL 19，K3ALD 18， W3NVO 18，RFF 17，NQB 16．K3D（＇B 14．W3ADE 12. AMC 10．h3ANU 10，W3OY 6，K3AKN 4，W3DUI 4，BNR 3，EU 2，ELI 1.
MARYLAND－DELAWARE－DISTRICT OF CO－ LUMBIA－SCM．Thomas B．Hedges，W3RKE－SEC： CVE．MDD T＇rattic Net meet，on 3650 kc．Mon－Sat．at 0015Z：the MEPN（phone）on 3820 kc．Mon．，Wed．and Fri．at $2300 Z$ and Sat．and Sun．at 18007；the MDD AREC Nets every W＇ed．at 0100% on 3521 and 7042 kc ．：also i^{2} and 2 meters．New appointments：QQS and JSL as GRSs K3BRS and YOZ as OESs；K3JIQ and K3NKX as OPSs K3BRS and HC as OOs．K3．JDN is the new EC for Sussex Co．，Del．Sixteen MDD section operators par－ tioipated in the Sept． 16 F゙NIT．TN made the RPL．CVE is bringing this sertion hack on the AREC map and is doing a bang－up job！There still are a few EC vacan－ cies to be filled．K3ADS just completed his new 120 －watt， fi－meter rig and reports it works tine．$A H Q$ maintains his usual high level of OO activity．AY＇D won the VP9 Contest and is plamuing his trip to Bermuda．The new dipole at K3ANA has one leg in Md．and one leg in D．C． BUD reports St．Mary＇s Co．AREC scored 96 nuints in the SET for the greatest ever．K3BYD savs his new beam is retting out fine．CDG has a new Hornet Tri－ band．CDQ is helping with the Washington Radio Olub code class．K3CRF attended the Weil．Emergency Net

Pienic．The Free Sitate ARC whibited its mohile emer－ eency van at the F＇ort Meade Fire Prevention Jamborce． N゙3DCP is doing a fine jub with the laltimare ARC Bul－ ietin．K3EJF reports 2 －meter activity．EOV conducted a c．d．drill by watching fire hoves fur the local police during Halloween．K3ATA has moved to a new qITH． EQK has the new 450 －watt rig working fine．$\$ E X M / 3$ works on phone．FYS is temporarily at UC：LA doing rusurch．H3GBV is antive in the PG AREC Net． iK3GLF is starting ：unother 10 －week lecture series on atomic energy．h3GZK would like to stir up more inter－ est．in the NId．Slow Net．HCE has a B－meter yagi un a is－ft．tower．K3HDV wonders why more 2 －meter locals cun＇t copy e．w．HLS expects to strp up activity this winter．h $3 \mathrm{KP} \neq$ got his $20-$－w．p．m．sticker and reports a new club at lowson High School．K3ICZ reports plenty of DX．The Washington KO had a working molel satel－ lite transmitter at its Oct． 7 meeting．K3IZM reports a $2-$ meter openimk on the night of Oct． 20 ．K3JIQ is huild－ ing a new keyer for contest work．KIJJYD reports in with his traflic total．K3JYZ has a new transistorizell r．f．－ powered monitor．J\％i＇operated from a fire tower during the V．H．F．Contest．KDV is building a high－power rig． KHA reports great interest at Juhns Hopkins ARC． K $3 K H N$ says Calvert Hall College suon will have a sta－ tion on．K3LFD is a new reporter and likes tratlic work． KN3LLR is trying a new antenna．MCG has a new heant on a $70-\mathrm{ft}$ ．tower．K3MDL got his General Class ricket．The PV＇RC hat bisiAl as a speaker Oct． 10. h3MLY blew three $6146 s$ ，so is modifying the rig．MSR is now EC for Howard County．KN3NFJ is now an RCC metnher．OSF cherk in．KOP1Vi3 is roing a good job as NCS for MIDD．RNY is raisille a new $45-\mathrm{ft}$ ．tower on the shack．TMIZ is proparing for the contest seasou． I＇N keeps up his traffic autivity．UE reports attendance and interest is keeping a good pace in 3 RN ．K3WBJ ends in another gond traflic score irom Walter Reed Hospital．WG reports．YTW is now in Faston and pro－ viding a yood Eastern shore outlet for trallic．Z．AQ has a Tri－bander at his new Q＇TUI．ZNW is loing a fine job in the MDD and AREC nets．Trallic：（Oct．）．W3（SJE 257．K〇〇PIV／3 204．W3TN 191．K3JIQ 115，W3MCG 111． KKE 102．K3WBJ 99．KPZ 67，W3AHQ 4n，ZNIV 46．WG 40．FUD 33．EOV 19．K3JYZ 18，W3CDG 12， $53 J$ JD 8 ， MDL 8，EJF 7．DCP 6．GZK 5，W3EQK 4．K3HDW 4， ［VO 1，KN3NFJ 1，W＇3Y＇TW 1．（Sept．）．E3GZK 1.

SOUTHERN NEW JERSEY－SCMI Herbert C． Brooks．K2BG；－SEC：W2YRW．RMs：W2BZJ，W2HDW and W2ZI．New appointees ure WA2IBG and L2MIOV： hoth members of the levittown（N．J．）Radio Cluh and －ery active in Burlington County ALECC Nets．Recom－ mendation for their appointment as OBS was made by K2ECY，Burlington Co．EC．W2EZM，Maple Shade，at－ tended the Hudson Division Convention．W2SXV Highstown，reports on activities during the recent 125 th Inniversary Parade of Hightstown Engine Co．\＃1．Over 2n！messages were handled．＂Those taking part were K2DOV．K2DPS．K2JPO．WA2LHS．WV2KHY KN9YZO，W2ZI，K2SNK．K2CDH．WA2AAI．K2MIHD W2LZZ，K2BBT，K2VCT，W3WDV＇，W2HX and W2CQF． Yery lavorahle public reaction was received．K2IIW， Trenton．reports increasing artivity in Mercer County R．ACES drills．W2BLV，SJRA＇s Harmonics news and libel writer，keeps the rombers up to date on tropo and ulurora conditions．W2ZX，ulso SJRA，supplies the DX news．WA2I ${ }^{\prime} \mathrm{J}$, Levittown，has returned from Greenland． Notice the big increase in K゙2RXB＇s traffic t．ntal：also that of K2DEI，who made BPL again．N．J．Emerg．and l＇fr．Net totals for Oct．： 31 sessions，QNI 639．traffic 206．W2\％I，net manager，sports a new receiver．K2SNK has been QRL with antennas getting ready for winter DX．We regret the passing of WA2HEA as the result of in auto accident．WA2ARJ．Millville OBS，supplied the ahove information，also that the Bridgeton Area Kadio k゙lub assisted in the Halloween Patrol．W2RXL，NJN manarer，keeps the net members well informed with his monthly bulletin．All cluhs and AREC groups are urged to send me reports of their activities．A list of newly－ clerted officers also is desired．Truffic：（oct．）．K2DEI 221．W2RG 161 ，ז2RXB 142．W2ZI 64．WV2BZJ 63， K2SNK 17，K2JJC 15，W2SXV 11，WA2ARJ 5．（Sept．）． W＇2SXV 44.

WESTERN NEW YORK－SCM，Charles T．Han－ sen．K2HUK－SEC：W2LXE．RMs：W2RUF and W2－ ZRC．PAM ：W2PVI．NYS C．W．meets on 3615 kc．at 1400. ESS on 3590 kc ．at 1800 ，NYSPTEN on 3925 kc ．at 1800 ． NYS C．D．ois 3510.5 and 3993 kc ．at 0900 Sun．．TCPN

2nd call area on 3970 kc．at 1900，IPN on 3990 kc．at 1600．W＇2EZB and WA2CIG again onp BPL honors， WA2KVN has been appointed GES．Happy New Year everyone．I hope the New Year brings each of you suc－ cess and happiness．So far，the comments for a new section name revolve around either＂Empire sertion＂ or＂New York State Section＂．What do you think＂？ W2ETY writes with thoughtful reflection regarding in－ creased emphasis on more inter－club activity for greater strength，organized amateur contribution to charitable organizations，not monetary，but in the form of service and from the hobhy angle with reference to technical skills．A good example of this is＂The SEARC Library for Blind，＂for which W2IRU is the radio digest editor．He reads articles from QST＇and ARRL Bulletins plus other items on magnetic tape for distribution to sightles hams．W2ETY would he glad to hear from others in－ terested in similar activities．It would be nice if we could get some type of section organization coordinating activi－ ties of this nature．both in the interest of elficiency and public relations．＇The Syracuse V＇．H．F＇．sponsured V．H．F． Roundup was the hest yet，with wer 600 in attendance． The Kenmore HS RC elected K2NTV，pres；；W2RQS， vice－pres．；K2IYR，rec．sery．；WA2BQB，corr．secv． and WA2GJV，treas．The club plans to build a cluh transmitter to a kw ．and arquire a Viking V＇aliant．The North Chautauqua ARC elected K2TKD，pres．；W2CDX， vice－pres．：and W2SB．secy．W2IRI＇F has a $75 \mathrm{~S}-1$ receiver． I would like to take time this month to eompliment the effiorts of the editnrs of the many club bulletins received eftorts of the editnrs of the many，club buletins received
here．The RARA Rag，edited by WiPM，Rochester ARA l＇he T，AR．A I＇ARA，edited by K2ZWG，Tioga ARA；QRA edited by W2YIY，Corning ARA：Ham Bulletin，monthly newsletter of the Champlain Y＇allev ARC，edited by WA2GCH；The Squano lelani Smoke Signal，edited by W2UTH／FRL，SlARC．Canandigua；IF $2 O D T$ ，Adiron－ lack RC，Clens Falls．These are monthly efforts and there are others such as $Q L F$ ．edited by W2QCI of lockport and The OId Timer＇s Bulletin．edited by W2ICE：also The Barkuare by Auhurn AIRA．Trallic：（Get．）．W2EZB 335 W．A2CIG 600，W2RUF 307．W2OE 233．K2SSX 216．に21YP 138，W2FEB 126，K2QD＇ 96 ，K2RTQ 75，K2OFV 59 WA2CRH 5x，K2TDG 57，K21MF 19，K2GQU H WA21YB 39，K21NK 35．WA2RFI 35．WA2HEC 31
 K2BBJ 30，K2AUQ 25，W2QQK 22，W2PGA 17，W2UZJ
17．Li2 17．K2rCA 15，K2DG 12．W2TPV 11，K2EE 7，W2PVI
7，K2RYH 7，W2BLO 2，W2EMIW 2．（Sept．）K2JBX 25.

WESTERN PENNSYLYANIA－SCM，Anthony J Mroczka．W3UHN＝－SEC：OMIA．RMs：KUN，GEG and NUG．The WPA Trafic Net meets Mon．through Fri． at 1900 EST on 3.585 kc ．It is with deep regret we record the deaths of ROA，of Altonna，and K3KTZ，of Meridi－ dian．Pa．New appointments：K3AKR and SYY as OES． $A O H$ as ORS．K3EDK is home from the hospital with hoth legs in a dast．MFB is interested in starting slow－speed trafic net on 80 meters around 1800 EST tnyone interested，contact Bill Hann at Brockway，Pa ISS is getting ready on 2 meters．Congratulations to KSDKD on making DXCC．Joe is one of or the first $k 3$ to make it．Up Erie why：KNQ received the Radio Operator of the lear Award；the RAE conducts code and theory classes at the IMCA on Thurs．；MBC is radio officer of CAP．The Coke Genter KC reports：TTV and K3HTR have modified their Hy－Gain beams；RUK and BTR are using Hornet beams．New officers of the ATA of WPA are UGV，pres．；NUG，vice－pres．；ZJZ， sery．：UL，treas．；KQF，LTH and HOU directors．The Etna HC reports via Gscillator：New otficers are OVM pres．：TOC，vice－pres．；K3KLP，treqs．D DMK．secs． K3ERO is attending the U．of Cincinnati．The Nittany ARC repurts via QST ie $K B H K K$ ．POP came through with the top W3 score（ 7 th place in the（I．S．A．）in last vear＇s RSGB $21 / 28-\mathrm{Mc}$ ．telephony contest ；JTS is holdet of an A－1 certificate：the Centre County Six－Meter Net participated in the S．E．T．The Washington County ARC reports：A new Tech．licensee is K3KYQ；HWU handled emergency tratfic during Hurricane Donna：the club vis－ ited radio station WESA in November．The Greater Pittshurgh V．H．F．Society reports：K3GEG is attend－ ing Penn State College；the POOS（Pettycoat Operators Of Six）elected the following new officers： $1 Z Z$ pres． FTV，net mgr．，EDO，secy．．COP treas．；K4QOU／3 is now living in Library：the GPVHF Society is doing a nice job cleaning up the birdies on 6 meters．L3BWI received his Extra Class ticket．OEZ still is in the loral hospital．K3GZE is a new General around Butler．New hospointee：MRI as OBS．BWU was guest speaker at the appointee：MRI as OBS．BWU was guest speaker at the the Centre County Six－Meter RACES Net．Traffic （Oct．）．W3WRE 185，MFB 98，K3HWL 95，GHA 79 W3KUN 76．LSS 36，UHN 24，K3COT 6，W3KNQ 6. （Sept．）．K3HWL 16.

CENTRAL DIVISION

LLLINOIS－SCM，Edmond A．Metzger，W9PRN－ Asst．SCM：Grace V．Ryden，9（xME．SEC：PSP．RM ：

USR．PAM：RYU，EC of Cook County：HPG．Sec－ tion net：ILN， 3515 kc ．Mon．through Sat．at 1900 CST． work preparing for one of the finest meetings of this divi－ sion which will he held Aug． 26 and 27 at Springfield， III．Make your vacation plans and visit Springtield during these dgys．MC：E，LYP and PRN are T）Xing with new TA－33 heans，K9KHZ is now on 2 meters and looking for many new contactis．K9YRI，who recently suffered a coronary，is now in Dwight Veterans Hospital．K9．AUB is running his new home－hrew b00－watt rig on 40 －meter c．w．Litclitield has forined a new amateur radio cluh for that area．KN9．1CC is a new Novire rall heard．TZN， REC，QGL，ZIV，K9OCU，K゙9hIM，K9CIL．K9BHD． HPG and K9JDR patticinated in the recent Frequency Measuring Test．＇The North Central Phone Net handled 128 messages duriug Getoher and the IIN＇s trattir count was 1.50 messages for the same perind．A trelated septem－ ber report for the $\{1 / N$ includes a tratic report of 210 messages．KigIDW is Acting EC：of MleDonough County following the resignation of k9BIV．sk has joined the ranks of QSI manutacturers．lamsing c．d．has gone to 2 meters and soon will have mohiles on the same trequency． The Sangamon Connty c．d．furnished 6－meter comunini－ cations for the V＇ice－President＇s Parale held in Spring－ field commemorating the 100 th year of Lincoln＇s inati－ guration to the presidency．GDI has 242 countries con－ firmed on his DXC？．This column extends sympathy to dNN and his iamily on the death of his mother．PNY＇s new heam is a Hy－Gain．A new rall in Glenview is K9WGM，ex－KøUVO，ex－K5COO．K9CIL＇s new antenna is a Thunderbird mounted on a $120-\mathrm{ft}$ ．tower and he claims he hears signals that he has never heard before． $K Q L$ has a new Heath HD－19．JEC is now on 432 Mc ． with a 4 X 150 A tinal．K91．XX is using a Hy－Gain five－ element vagi on 2 meters．The 6－Meter Club of Chicago held an area pxhibition of amateur radio techniques demonstrating a filtered TV set and an unfiltered set．which was opened to the public at Evergreen Shopping Plaza． The Joliet Amateur Kadio Societv cooperated with the Iocal police with mobiles in patrolling for Hallowern． K9MFK is s．s．b．with a 20．A and kw．linear．K9TK＇T has finished his home－brew 2：0－watt a．m．rig and is bringing in the JX．BPL and ADY were elected presi－ dent and secy．－treas．of the Fulton Country Amateur Ra－ dio Club．From all reports received．the Octoher sil：T was very successful and all those who participated re－ ported FB signals．The Kishwaukee Radio Club is start－ ing a Novice（lass and Pres．LissLAl invites prospective members to get information from K9SLM or coltir to meetings，the 2nd Mon．evening of each month at Jelialb High School．Tratfic：（Oct．）．W0Int 960，L9B＇E 563 ， W91O 416 ．K9UGY 267，W9ISR 224，URT 149．K9AUR 116．UN 102，W9．IXV 82，K9LXC 39，RAS 38．GNR 32. Q．AE 20．UJT 20，W9PRN 19．M9BIV 14．WODUA 14． MAK 13，SKR 6，VAR 6，K9KEJ 4，LLA 4，W9KQL 3， K9OCU 3．W9WPC 2，K゚OLSP 1．KHU 1．isept．）． W9USR 192，FAW 48，K9GDQ 47，ClL 28，OXW 8.

INDIANA－SCM，Clifford M．Singer，W9SWD－Asst． SCM：Arthur（i．Evans．9TQC．SEC：SNQ．PAMs： K9AOM，BKJ，RVM and TKX．RMs：DGA．TT and Y＇IY．Net kerk：IFN 0900 laily and 1830 MT－F on 3910 ke．；LSN（s．s．b．） 1930 daily on 3920 kc．；QLN （training） $1800 \mathrm{M}-\mathrm{W}-\mathrm{F}$ on 3745 kr ：（ A AEN（ 160 meters） daily at 1900 on 1850 kc, ：（IN 1900 daily and RFN 0700 Sun．on 3656 kc ．New appointments：K9GEL as EC for Hamilton County，K9VEC as EC for Fulton County and UPI as EC for Randolph County．K9l）（iV and K $9 P F Q$ are OPSs．KgOES is OES．Thirty－three clubs were represented by delegates at the Indiana Ra－ din Club Council meeting held at Purdue University Get．2．Five new clubs were accepted for membership in the council：Calumet ARC of East Chicago，South Bend ARC，Michigan Eity ARC，Indiana Memorial Union AAC of Bloomington and Hancock ARC of Greentield．The RCA Radio Club of Indianapolis ottered to host the Council＇s Annual Summer Hamiest．Date and location is to he announced．Newly－elected officers of the IRCC are TQC，KT，RTH and LYU．Directors are： $1 H O, K 9 N D, ~ D K R$ and MHP．The invitation of the Bloomington ARC and the Indiana Memorial Union IRC was accepted for the spring meeting．which will he held at Indiana University Apr．9．K9VQK has heen snagging a lion＇s share of DX on 1.5 meters．K9RMQ has a new Ranger．The Home－brew RC of Brownshurg held its annual weiner roast on Oct． 16 with 50 amateurs registering．VAY will manage the QIN Training Net as well as continue as RM for the regular c．w．section net． QIN．ZI＇K continues to do an FB job as manager of the $9 R N$ and reports that Indiana is represented 100 per cent every month．New AREC nets are the Hancock County，which meets each Fri．on 50.55 Mc ．at 2200，and the Tippecanoe County，which meets Tue．gt 1930 on 50.40 Mic ．The Madison County AREC Net meets on 50.40 Mc ．each Sun．evening．Amateur radio exists as a hobby because of the service it renders．October net re－ （C＇mtinued next page）
purts：IFN 435．ISN 180．QIN 364．QIN（training）28， LRF＇N 104，CLEN not reported．Those making RPI，： KYK．TI＇，GJS and DGA．Tratlic：（Uct．）．W9\％K 503 ， ＂T 350，CJS 290．VAY 228．DGA 149，MAI 124．SNQ 123， K9RMQ 115．W9RVM 103，RTH 102，FJR 97，K9GBB K2，WCSWD 78，K9UBK 75，AUM 59，LXD 5B．W9BVR 33．K9TCG 53．W9QYQ 50 ，S1＇L 50 ，FWH 48．1a1U 45. K9GMH 35，ILK 29．WORKJ 28，10KK 28，YR 28，CC 27
 YEP／9 18．W9YYX 18．EJW 17．BIQ 14，KDG 13 ； K9KRN 13．KN9WET 10．k9HMC 0．W9OCC 8，BDP 7．NZZ 5．K9BSUl 4．MAA 4．WSV 4，W9AQW 3，K9BPD 3．SSI 3．KN9YIC 3．k9UAN 2．WST 1．（Sprt．）． K9BSU 44，W9TQC 32．K9RMQ 28．WुoOCC 7 ．K？LZ．J 6.

WISCONSIN—SCM，George Woida．W＇9KQB－SEC： YQH．PAMs：NGT and NRP．KMs：V＇HP and VIK． IVIN certaticates were issumb to ONI and li9E（）（）．Three clubs elected new oflicers．＇The Nancorad＇s officers are K9EOS．pres．：（iND，vire－pres．；and DYC，serv－treas． The Lia Crosse Club electerl k9KPE，pres．；ligcUT， vire－pres，；（ify．secy．；L9HTG，treas．The Gentral Wisconsin Cluh at Wisconsin Rapids elected K9UTQ． pres．；ICM，vice－pres．；hN9YYJ，secy．：and K9R1Y＇． treas．ZB is collenting stamps via urw－Iomul iriencls con－ tracted in foreign conntries．HDZ，K9s LCL，SGG，TGP and UZR covered 250 miles in 4 hours in aiding the Fond du Lac pinlice patrol on Hulloween．Ki？s LiMM， WML and KN9V＇BZ operated from the police station． SAA now is a participating member of the Wisconsin Post Office Net on 3860 and 3620 kc ．GDW and $\mathfrak{N} 9 \mathrm{MDT}$ organized the（＇hinpew：Valley Mobile Cluh，which took part in the SET and rereived congratulations from the Ked Cross and the Sheriff＇s Dept．for sulceess in the lindertaking．ABO，ex－OZXT，is back in Wisconsin after 22 vearx in North Dakota athl is active from Washhurn． R＇TP is handling the c．w．urganizing in the traffic com－ mittee of the（I．oi Wis．Chnh，EC K9k．JT．of Milwankee． reports full 48 －hour operation by the Milwauhee Emer－

 K9HMQ took wat in the FMT with good accuracy．A T－page bulletin named Sparks is heing isslued the 34 memhers of the sun Prame Cluh．K91WV is editing the Waupaca Club hulletin．Instructions hy K9MIF aud K9RIY produced six new Novies and one（ieneral at Junction City．The Oshkosh Cluh reports shecessfil SET uperations．Traffic：（Ont．）．W9DYG 764，CXY 346，KQB 118．SAA 93，VHP 74．ZYG 47．K91）TK 37. W＇9CBE 29，K9GSC 26．W4YRD 925 ，W90（）TT，19．NWQ 18，K9GDF 16．W9KKM 15，YT 14．V＇TK 13，K9LWV 12，EQQ 11．JQA 11．WOZB 10．K9HDL 9，W9LFK 8， ONI 8，CCO 7，WJH 7．（Sept．）．W9SIZ 7.

DAKOTA DIVISION

NORTH DAKOTA—BCM．Harold A．Wengel，WOHVA SEC：KGKBV．PAM：KøKJR．KM：KTZ．Your SCM has a new job，working for WWI，at Tony＇s \＆－Way Communications and a new address， 1416 6th Ave．，Wil－ liston．HVA has just put his rig on the air at his new address．KØGRM has his 1st－elass raliotelephone li－ cense．HOLVQ has been rherking into the Tenth Re－ gional Net．KOOSV and OSW have a new Valiant．OSV is attending college．A new ham in Fargo is LN NEAN． The 75 －Minter Phone Net reports for Sept． 23 sessions， tetal check－ins 500．maximum check－ins 28 ，minimum 16 ； 58 picces of formal tratic． 46 informal，and 6 relavs；for Ont． 21 sessions，total check－ins 394，maximum cherk－ins 29．minimum 6： 78 pieces of formal traffic． 41 informal and 10 relays．KळQWY and NQ tonk the Gitneral Class exams in st．Paul last summer and passed them．Traffic： （Oct．）．K甲ITP 101．TYY 37，KiJR 30．NVQ 23．GRM 19. MPH 18．WOYCL 11．KOVIIN 10．TVI 8．WODNJ 7 KØPVH 7，RLF 7．WOAQR 4，THM 3，IAN 2，KØIBBV 2．WØOA1 2．KøAJW 1．WØBHF 1，KgRRZ 1．（Sept．）． KøGRM 24，IVQ 7．GGI 3.

SOUTH DAKOTA－SCM，J．W．Sikorski，WORRN． SEC：SCT．Director Compton visited the Black Hills ARC and the Signal Hills ARC in Ortoher．Those at－ tending Huron College are KOs TKN，TKO．QFS．UZW and KN〇DD7．TKN worked all continents on 10 －meter $\Leftrightarrow w$ ．in a week．Kios shJ and TGX yualified as Class I ous in the recent FAIT．KØs YIV．TPF and TVI are yttending Southern State Teachers College．Inits from Meade．Tripp，Hrown．Brookings．MrPherson and Law－ rence Counties participated in the SET．WEN passed the General Class exam in St．Paul．OCL，of Kansas City，is working in Sioux Falls．GDS is operating RTTY． ALU got his heam un on the serond attempt．Traffic： WØZWL 371，SCT 353，DVB 217．KØHSW 52．WGCTZ 32．LøWJT 25．WØOFP 24，I＇QC 24，LOVYY 17，SZJ 14．DUR 10，VIZ 10，INZ 8．IHHA 5，SEZ 3，WØØYVF 3， 14．DVR 10，VIZ 10，INZ 8．1）HA 5
K゙ØPDW 2，WØRWX 2，KøACG 1 ．

MINNESOTA—SCMI，Mrs．Livdia S．Johnson．WUKJZ， －A．st．，S＇SM：Rollin O．Hall．ØI．ST．SFC．：TV：S．A＂st SFC：HQEVC．li．ls：LUOLD and IRIQ．Asst．RN： PET．PAMs：OPK and KOEPT．QIN kave a talk on 2 －meter operation at the Mankato（Vluh．BBX＇is active on RTTY．KOFWC has a new mosition hs engeneer and announcer for KTOE：O（iP put up ：Hornet Tri－ bander．KOZWV and his XiL had a haty winl re eutly． lioOTH built all antenna tuner．OFS NYAI reponts nu artivity on H meters．KAI KOIZD is off the air hecathet of hervy schnol sturlies，so $1-\mathrm{t}$ ．KMI WOPET is m charge of MJN．KØLJV，in Outing，worked liLG．in Dassel，with $11 / 4$ watts phone．KOJCF has at 1 ． in the air．KØJBC is pmploved at KWAD．Wadena，a： an unnouncer．\＆C KøGIII was visitod hy Asst．Hir． KLG．KØSNG has a Viking II．KOSBB reports that the Rochester Police Dept．ashed the talio eluh to fur－ nish mohiles to assist in patrolling the streets on Hallo－ ween．Six mohiles participited stecessithly．New olficers of the Winona Amateur Radio Club are lWG，ures．； QKK，vice－pres．FoDHI，secy．－ireas．The Winona State Gollege Radio Club＇s officers are KØにIN，pres．
 Fir Oimsted Co．is KosBB．LiNOWNU participated in the FM＇L meces fully．KDGIW renewed his EC appoint－ ment．KØMNY renewed his OPS．TUS and liめÖRK
 at the St．Cloud Radio Cluli．All radio clubs are re－ guested to montact your Drector．Your SEC and your SCM if vou wish to have same speak at your cluh．We are urged to appear at as many cluts as possible．Nov－ ices interesterl in traffic－training，send vour call，QTU． name and crystal frequency to vour SC：M．Som will he placed on roll－rall and called hy the NCS on MIN at

 KOSNC 101．WOKJZ 100，HQUKU 95，WOPET 8 ． TWG 50．VO 76 KOSBB 73．WOMEN 72 R R10） T1．KOGIW 70，WOOKLG 5B．THY \＄4，KØPML 50. WOUMA 38．OPK 36．KのSNG 33．F．PT 27，WOW＇M． 22．KOJYJ 20．\GT 2\％，WดNYM 18．KめI以K 15. ẄのRQJ 14．KOJCF 13．WONIW 11．FGP 10．O．IH 10.
 7．WOBUO 6．DYC 6．KOKYK क．WOLST B．NORHA B．V＇WX 6．WYV 5．MAI 4．VPJ 4．VPP 4．KNGCIB 2．WめWVT 2．（Sept．）．WOしTYR 6．（Ang．）．WのたS．J 91．

DEITAA DIVISION

ARKANSAS－ECM．Ilmon IT．Goings．W5ZZY－ SEC：KSCIR．PAM：Ю＇T．RM ：KSTYW．At this writ－ ing the voting for the new SCM is feing rarried on and the retiring SCM will continue his duties until the new one is named．9PETR，who has heen rway in school．has returned to his duties with MARS at Blytheville AFR． K5ABE recentily purchased a FC－b60．The Kressink brothers．K5RFH and K5SGE，have purchaved ol IN： 100 and have put up a $30-\mathrm{ft}$ ．tower with a three－eldment he：an aton．By coincidence，the hrothers hought the tire from a father and son．K5TXO and TWZ．K5TST has t new three－element heam．a 50 －ft．tower， 400 －watt linear and a new $\mathrm{V}-104$ mike．H5TCJ has hilt a new 6 －meter rig．The Arkansas Emergency Phone Net meets Mon．through Sat．at 0600 on 3885 ke．The O7K（！W． Net meets Mon．through Fri，at 1900 on 3700 ke ，Fivery amatelir is urged to see that his town or rommunity has representation on these section traflic nets．Let us try to get the Arkansas traffic delivered via amateur radio as near its destination as possible．

LOUISIANA－SCMT．Thomas J．Morgavi，WSFMO The Greater New Orleans Amatemr Radio Cluh now holds plertions in a brewery．New officers are K5BIB． pres：QQK，vire－pres．；GPS．treas．K5PME，rorr． secy．：UUC＇，1ec．sery．：MX（2．EC．KSLiSX has heen up－ pointel OPS．He is on the air with Collins s．s．b．equip－ ment．KSPGV has heen appuinted ORS．He has hern acting net control for LAN．Congrats to K 5 ZOZ on his Cieneral Class ticket．A new Novice at Caville is KNSFOV．OFS UQR sent in a nice report on v．h．f．activ－ ities which was forwarded to the v．h．f．editor．K5SBF－ like have moved to Bumkie．Thev have stitited a new ham scraphook so all visitors will have to silhmit in heing photographed for the new project．Ki5Kido recently received a bundle of QRM at his shark：his wite pre－ sented him with twin hoys．K5MIAF is waiting for his new Viking 500 to arrive．Ksllyt，is artive in I，AN． KN5 and LARC．K゙5USO has lust about recovered from the New Orleans Hamfest．Our SEC，MXU．has heen making sume trips meeting with clubs over the state． Contact him and make at sked to have him address your elub．CEZ，is back home pounding brass．KSARH is get－ ting a ham eluh started at McNexse state College．The club has a DX－ 100 and an NC－125．DP．J，Olis in shreve－ （Continued on page lis）

PUTTING SATELLITES TO WORK IN AMATEUR RADIO

PART I: Noise as a System Design Limitation

7HE recent successful Moon Bounce and Echo satcllite communication tests have enhanced the interest of hams in communications via satellites. Accordingly, some of the considerations which arisc in "putting satellites to work in amateur radio" will be discussed.

eommunication satellites may be classified as either "active" or "passive" depending upon whether they contain an active repeater with its associated power supplies, antennas and control svstems. Communication via passive satellites utilizes the ability of satellites to reflect or seatter radio waves which fall on their surface; hence, passive satellites should have large physical dimensions but can be very light in weight. Even though great effort is being made to promote the launching of an active satellite for amateur use, the following remarks are directed toward the utilization of passive satellites such as Echo.

7he basic limiting factor in the design of a satellite communication system is the noise appearing at the output of the receiver. This noise originates partly in the receiver and partly outside the receiver. 'The external noise is picked up by the antenna; hence it is frequently referred to as antenna noise.

ANTENNA noise at UHF and microwave frequencies is largely duc to thermal radiation from surrounding objects; however, some antenna noise originates in cosmic sources, and from the random absorption of the signal by oxygen and water vapor in the rarth's atmosphere. Receiver noise is usually considerably greater than antenna noise for most microwave receivers; but the development of low-noise preamplifiers of the maser and parametric types has enhanced the relative importance of antenna noise. By utilizing highly dircctive horn or parabolic antennas whose radiation pattern sidelobes are at a very low level, antenna noise originating in thermal radiation from ground objects can be reduced to such a low level that cosmic and absorption noise becomes dominant. Cosmic noise per unit bandwidth decreases as the operating frequency is increased. Absorption noise increases very rapidly at frequencies greater than $10,000 \mathrm{Mc}$. Absorption noise also decreases as the angle between the antenna and the horizon is increased. For minimum antenna noise, it follows that the operating frequency should be chosen at the highest feasible value in the 500 - to $10,000-\mathrm{Mc}$ range.

7HE amount of noise appearing at the output of a receiver is proportional to the width of the receiver's pass-band; the receiver-bandwidth requirement is determined by the type of modulation being utilized and on the frequency stability of the system. If the frequency changes very slowly with time so that receiver retuning is feasible, a receiver bandwidth of at least 2,000 cycles per second is required for single-sideband modulation, 4,000 cycles for amplitude modulation, while 100 cycles per second or less is needed for CW.

7he required level of received power $P_{k l}$ should be greater than the combined receiver and antenna noise power by a factor of 100 or more; in mathematical form, $P_{R}=100 \times 1.4 \times 10^{-23}$ $\Gamma_{k} B$, where $\%_{E}$ is the effective noise temperature and B is the bandwidth. Assuming a T_{E} of $500^{\prime \prime}$ Kelvin as a measure of antenna plus receiver noise, the required level of received power must be of the order of 1.4×10^{-15} watts for $\mathrm{SSB}, 2.8 \times 10^{-15}$ watts for AM , but a level of approximately $.7 \times 10^{-16}$ watts would suffice for CW signals.

7
N a later issue of $Q S T$, other system considerations will be discussed.

- Dr. Robert E. Beam, W9BGZ
Paulfaleyingr. L J. Holeygu WAAC hallicrafters

1961 EdITION

> e A_{N} invaluable reference work and text for everyone-radio amateurs, engineers, lab men, technicians, experimenters, students, purchasing agents.

Reeping pace with progress, this big, new edition of the ever useful Handbook contains many descriptions of new equipment. Semiconductor and vacuum tube listings and tables are brought up to date. Every important aspect of amateur radio is covered: fransmitting, c.w., a.m., sideband, radioteletype; receiving; mobile; v.h.f.; propagation; antennas; construction; theory; charts; diagrams; transistors; vacuum fubes; station assembly and operation. The complete handbook!

The American Radio Relay League, Inc. West Hartford 7, Conn.

 Wiking ACGESSORIES
"6N2" VFO-Replaces 8 to 9 mc . crystals in frequency multiplying 6 and 2 meter transmitters. Output range: 7.995 to 9.010 mc . With tubes and power cable.
Cat. No. 240-133-1 . . Kit . Amateur Net $\$ 34.95$ Cat. No. 240-133-2. . Wired and tested. Amateur Net $\$ 54.95$ "6N2" CONVERTER-Instant front panel switching from normal receiver operation to 6 or 2 meters. Available in following ranges: 26 to 30 mcs ., 28 to 30 mcs ., 14 to 18 mcs ., or 30.5 to 24.5 mcs. With tubes. Cat. No. 250-43. . Kits. Amateur Net $\$ 59.95$ Cat. No. 250-43. . Wired. Amateur Net \$89.95 PRE-TUNED BEAMS-Rugged, semi-wide spaced with balun matching sections. 3 elements, boom and balun.
Cat. No. 138-420-3. . 20 Meters. Amateur Net $\$ 139.50$
Cat. No. 138-415-3.. 15 Meters............................... Amateur Net $\$ 110.00$

"MATCHSTICK"-Fully automatic, pre-tuned vertical antenna system. Bandswitching 80-10 meters. Remotely motor driven. With 35^{\prime} mast. Cat. No. 137-102..Pre-tuned. Amateur Net $\$ 129.50$

250-23-3

250-30-3

VIKING AUDIO AMPLIFIER-Self-contained 10 watt speech amplifier, with power supply and tubes.
Cat. No. 250-33-1 . Kit Amateur Net $\$ 73.50$ Cat. No. 250-33-2. . Wired and tested Amateur Net \$99.50
LOW PASS FILTER-Wired and pre-tuned.
Cat. No. 250-20. . 52 Ohms impedance. Amateur Net $\$ 14.95$ Cat. No. 250-35 . 72 Ohms Impedance. Amateur Net $\$ 14.95$

CRYSTAL CALIBRATOR—Provides accurate 100 kc check points to 55 mc . With tube and crystal.
Cas. No. 250-28 . . Wired and tested.
Amateur Nei \$17.95
"SIGNAL SENTRY"-Monitors CW or phone signals up to 50 mc . With tubes.
Cat. No. 250-25 . . Wired and tested Amateur Net \$22.00
T-R SWITCH-Instantaneous break-in on SSB, DSB, CW or AM. With tube, power supply and provision for RF probe.
Cal. No. 250-39 . . Wired
Amateur Net \$27.75
"MATCHBOXES"-Completely integrated antenna matching and switching systems for kilowatt or 275-watt transmitters. Bandswitching 80 through 10 meters.
Cat. No.
Amateur Nef
Cat. No.
250-23-3 . 275 Wafts , with directional coupler and indicator $\$ \mathbf{8 6 . 5 0}$ 250-23 . . 275 Watts, less directional coupler and indicator. . $\$ 54.95$ 250-30-3 . Kilowatt, with directional coupler and indicator. . $\$ 149.50$ 250-30. . Kilowatt, less directional coupler and indicator. $\mathbf{\$ 1 2 4 . 5 0}$

DIRECTIONAL COUPLER AND INDICATOR-Provides continuous reading of SWR and relative power in transmission line.
Cat. No. 250-37 Coupler
Amateur Net $\$ 11.75$
Cai. No. 250-38 . Indicator.
Amateur Net \$25.00
ATTENUATORS—Provide 6 db attenuation with required power dissipation to enable various units to serve as exciters for Viking "Thunderbolt".
Cat. No.
Amateur Ne
250-42-1. . For Viking "Ranger" or similar.
Amateur Ne
250-42-3. . For use with HT-32 or similar unit.

KEYS AND PRACTICE SETS - The E. F. Johnson Company also manufactures a complete line of special and deluxe semi-automatic keys; heavy duty, high speed, and standard keys; practice keys; practice sets; learner sets; telegraph sounders; and key accessories. See them at your nearest Johnson distributor.

Free Catalog

Write for your free copy of our newest amateur equipment cat-alog-complete specifications, illustrations and schematics on

Pick your features and

power from the popular TRANSMITTER
LINE

"ADVENTURER"

"6N2"

"6N2" TRANSMITTER

Rated 150 watts CW and 100 watts phone-offers instant bandswitching coverage of both 6 and 2 meters. Fully TVI suppressed-may be used with the Viking I, II, "Ranger", "Valiant" or similar power supply/modulator combinations. Operates by crystal control or external VFO with $8-9 \mathrm{mc}$. output. With tubes, less crystals.
Cat. No. 240-201-1 . .Kit. \qquad Amateur Net \$129.50 Cat. No. 240-201-2 . . Wirod \qquad Amaleur Net $\$ 169.50$

10-METER "MESSENGER" TRANSCEIVER

Complete 10 -tube (including rectifier) crystal-controlled transceiver. 10 watts input-pre-tuned for 29.4 to 29.7 mcs -covers any 5 frequencies within a 300 kc segment of 10 -meter band. Excellent receiver sensitivity and selectivity. ANL, AVC, and positive-acting Squelch. With tubes, push-to-talk microphone, and crystals for national calling and emergency frequency ($29,640 \mathrm{kc}$).
Cat. No. 242-201 . . 115 V only. Amateur Net \$129.75 Cat. No. 242-202 . . 115 V and 6 V Amateur Net $\$ 139.75$ Caf. No. 242-203 . . 115 V and 12 V Amateur Nef $\$ 139.75$

"ADVENTURER" TRANSMITTER

Self-contained . . . 50 watts CW input . . . rugged 807 transmitting tube . . instant bandswitching 80 through 10 meters. Crystal or external VFO control-wide range pi-network output-timed sequence keying. With tubes, less crystals.
Cat. No. 240-181-1. . Kit.
. Amateur Net \$54.95

"CHALLENGER" TRANSMITTER

70 watts phone input 80 through 6; 120 watts CW input 80 through $10 \ldots 85$ watts CW on 6 meters. Two 6DQ6A final amplifier tubes. Crystal or external VFO controlTVI suppressed-wide range pi-network output. With tubes, less crystals.
Cat. No. 240-182-1 . .Kit. \qquad Amaleur Net $\$ 114.75$
Cat. No. 240-182-2 . . Wirod.
Amateur Net $\$ 154.75$

"NAVIGATOR" TRANSMITTER/EXCITER

40 watts CW input . . . also serves as a flexible VFO Exciter. 6146 final amplifier tube-bandswitching 160 through 10 meters. Built-in VFO or crystal control. With tubes, less crystals.
Caf. No. 240-126-1 . .Kit . . \qquad Amateur Net \$149.50
Cat. No. 240-126-2 . . Wired. \qquad Amateur Net $\$ 149.50$
Amateur Net $\$ 199.50$

"COURIER" AMPLIFIER

Rated a solid 500 watts P.E.P. input with auxiliary SSB exciter as a Class B linear amplifier: 500 watts CW or 200 watts AM linear. Self-contained desk-top package-continuous coverage 3.5 to 30 mcs . Drive requirements: 5 to 35 watts depending on mode and frequency desired. TVI suppressed. With tubes and built-in power supply.
Cat. No.
Amateur Net
240-352-2.. Wired and tested.. . $\$ 289.50$

"THUNDERBOLT" AMPLIFIER
The hottest linear amplifier on the market-2000 watts P.E.P. (twice average DC) input SSB; 1000 watts CW: 800 watts AM linear. Continuous coverage 3.5 to 30 mcs .- instant bandswitching. Drive requirements; approx. 10 watts Class $\wedge B$, linear, 20 watts Class C continuous wave. With tubes and built-in power supply. Cat. No.

Amateur Net
240-353-1. . Kit. $\$ 524.50$
240-353-2. Wired and tested... $\$ 589.50$

"6N2 THUNDERBOLT" AMPLIFIER
1200 watts (twice average DC) input SSB and DSB, Class AB $1 ; 1000$ watts CW, Class C; and 700 watts input AM linear. Continuous bandswitched coverage on 6 and 2 meters. TVI suppressed. Drive requirements: approx. 5 watts Class ABI linear, 6 watts Class C CW. With tubes and built-in power supply.
Cat. No.
Amateur Nef
240-362-1. .Kit. $\$ 524.50$
240-362-2 . . Wired and tested. . . $\$ 589.50$

The world at your fingertips!

VIKING "KILOWATT" AMPLIFIER

The only transmitter that provides maximum legal power in all modes-SSB, CW, and plate modulated AM. Two 4-400A tubes in Class AB_{2} easily deliver 2000 watts P.E.P. (twice average DC) in SSB mode- 1000 watts input AM with two push-pull 810 tubes in Class B modulator service--1000 watts input Class C CW. High efficiency pi-network output circuit. Excitation requirements: 30 watts RF and 10 watts audio for AM: 10 watts peak for SSB. Pedestal contains complete unit. With tubes.
Cat. No. 240-1000 . . Wired and tested Amateur Net $\$ 1595.00$
Matching desk-top and three-drawer pedestal.
Cat. No. 251-101-1.................................FOB Corry, Pa. 5132.00

The very finest SSB equipment you can buy!

INVADER

The transmitter you've been waiting for-with more exclusive features than any other Transmitter/Exciter on the market today! Instant bandswitching 80 through 10 meters-no extra crystals to buy-no retuning necessary. Rated 200 watts CW and SSB input: 90 watts input on AM. Unwanted sideband and carrier suppression is 60 db or better! Wide range pi-network output circuit. Fully TVI suppressed. Self-contained heavy-duty power supply. Wired and tested with tubes and crystals.
Cat. No.
Amateur Nef
240-302-2.
-302-2.......................\$619.50

HI-POWER CONVERSION

Take the features and performance of your "Invader". . . add the power and flexibility of this unique Viking "Hi-Power Conversion" system ... and you're "on the air" with the "Invader-2000"--a solid 2000 watts P.E.P. (twice average DC) input SSB, 1000 watts CW and 800 watts input AM. Completely wired and tested-includes everything you need-no soldering necessary-complete the entire conversion in one evening!
Cat. No. 240-303-2 . . Hi-Power Conversion, complete Amateur Net $\$ 619.50$

INVADER-2000

Here are all of the fine features of the "Invader", plus the added power and flexibility of an integral linear amplifier and remote controlled power supply. Rated a solid 2000 watts P.E.P. (twice average DC) input on SSB: 1000 watts.CW; and 800 watts input AM! Wide range output circuit (40 to 600 ohms adjustable). Final amplifier provides exceptionally uniform " Q ". Exclusive "push-pull" cooling system. Heavy-duty multi-section power supply. Wired and tested with power supply, tubes and crystals.
Cat. No.
Amateur Net
240-304-
..... $\$ 1229.00$

Free Catalog

（Continued from page 102）

port，ean hardly kecp up with tie Official Bulletins ARRL is sending hin．41，DM／5 reports that traffic is picking up．NUH，net control fin the Dixie Early Bird Niet on 7235 ke．．reports 31 vessions for the month of October，with 651 checking in and 241 pieces of traffic． If you handle traffic on phone or c．w．，you sloould be an ORS or an OPS．Ask the SCM for information．＇Iratfic： W5CEZ 378，MXQ 82，W4LDM／5 64，W5NUH 54，K5UYL 47，USO 32.

MISSISSIPPI－SCM，Flovd C．Teetson，W5MIUG－ A meeting to organize R．ACES in Mississippi was held in Jackson recently．There were 46 umatelurs present． l＇hree nets were formed．These are the Northern，Cen－ tral and siouthern Regional Nets．They meet on 3850 ． 3885 and 3890 ke．at 3 p．ar．Sun．Anyone interested may call in and join up．Delta Division Director $4 K R V$ was a recent visitor to Jarkson．Various fellows from the section met with us in the club rooms of the JARC．We discusser our needs for such appointments as OO．OPS， ORS，OES．Should any of you want one of these appoint－ ments，please contact me．The Magnolia Net had 618 check－ins for the month and handled 57 pieces of traf－ fic．NCSs were K5s PPI，IHQ，VAK，VVM，QXH，ZSU， SQS and W5NRU．

TENNESSEE－SCM，R．W．Ingraham．W4TIIO－ SEC：K4EJN．RM：FX．PAMs：UOT and PAH．K4KTC is converting an ARC－4 for 2 meters and reports that JVM．TDZ．K4s VYP and IXN showed their mobiles on Qhattanooga TV．WBK announces that Alt．ECs for Memphis are K4s CPM and ENA．JVM reports that 6 meters really has taken hold in Chattanooga with 15 mobiles and more under way and b－meter CARE Net Q．VI at 32．We welcome old－timer Z．IY back to the C．W． Net and the reporting list．TD7 is using a $75 . A-4$ now． Thanks for reports：SET－JVM and K4OUK：net－ PAH and UOT；OBS－WBK，TDZ and L4AKP：OO－ TIOZ，K4s RIN and KTC；OES－TDZ and K4KYL． New appointments：K4YOF as UO，K4TOS as OBS． Renewals：K4OUK as ORS．Thanks to those in Kings－ port who heldped during the plant disaster．Traffic： （Oct．）．K4AKP 1322，W4PL 901．OGG 581．OHR 445 FX 157，ZJY 95，K4ANC Ti，W4JVM 74，PQP 58．K4OUK 44．BWS 42．F＇NR 37，W4V＇J 31．LIO 27．HPN 13．L4VOP 8．W4TDZ 6．TYV 4，UVL 4，VNU 3，SGI 2，VTS 2. （Sept．）．W4SZI 4.

GREAT LAKES DIVISION

KENTUCKY－SCM，Robert A．Thomason，W4SUD－ Asst．SCM：W．©．Alcock，4CDA．SEC：BAZ．RM ： L4CSH．PAM ：SZB．V．H．F．PAM：K4LOA．The traffic and QNIs on our section nets are picking up with the cool weather；however，not quite as fast as we would like．The Gentucky Novice Net is now operating（ 3720 kc．． 1700 （ST．Mon．－Fri．）under the able direction of K4PXW．This has always heen an excellent training and recruiting net for KYN．KYN net certificates went to K4MPR and W8IF．MKPN certiticates to K．JP．SI＇E． ＇TRO．VNJ，K4UMN，PEQ．CSH，MIQ．SFD，OLT，RTA＇ and VDO．CDA reports a successful Scout Camporee using emergency equipment．Good reports on the SET were received from Louisville and Uwonsboro．The Owensboro Amateur Radio Club is working with city commissioners in planning a big expansion of c．d．com－ commissioners in planning a big expansion of contions． K 4 ZQR is sending code practice on 6 meters． The Louisville v．h．f．group is metting regularly with good attendance．JCN soon will be back on our section nets．K4PGH is shooting for BPL during the holidays． K゙N4SXC and Dad KN4SWZ moved into Kentucky from Tennessee．K4LOA reports the Kentucky and MARS Six Meter Nets going well．OES reports were received from ADH and GSH；OO reports from W4SZL，K4ZQR from ADH and GSSH；OU reports from W4SZL，K4ZQR W4SUDRRA．BAZ 136 ，K4VDO 44 ，W4SZB 33 ，K4LOA 27．W4CD．A 25，ADH 24．K4LHQ 22，W4YYI 19，KNF 15．K4OZI 14．W4TUV 13，KJP 10，K4OLT 9．W4WVU 8．K4HSB 7，W4SZL 5，K4NZW 4，W4VJV 4，K4ZQR 3， ZRA 1.

MICHIGAN－SCM，Ralph P ．Thetreau，W8FX－ SEC：YAN．RMs：SCW，OCC，QQO and FWQ．PAMs： AQA，K8CKD，K8JUG and ATB．V．H．F．PAMs：NOH and PT．EC appointments went to K8CIS，PQO and QFQ； ORS to MGQ，NOH and RAE；UPS to HPR；OBS to FNJ．New officers of the Genesee Co．RC are I8JXXR， pres．：IFK，RUV and K8JZV，vice－pres．；JAC，secy．； pres． $\mathrm{IFK}, \mathrm{RUV}$ and K8JZV，vice－pres．；JAC，secy．；
$\mathrm{K} 8 \mathrm{M} Q$ ，treas．；Holland Area RC＇s new officers are

QOL．pres．；LAI，vice－pres．；K8EMV，secv．，K8PVY，
 officers are EMID，pres．；K\＆DBY，vice－pres．；L®DDVL， secy．／editor；K8JBQ：act．editor．Nice bulletins were received from Flint，Holland，Kazoo，Saginaw and De－ troit．OES reports were received from K $8 B G Z$ ．I＇Z． EMID，NOH，K8PBA，PYQ，K8HNQ and PT．The GCWA Net，on 3900 kc ．，is going well each sun．at 0800 ． FZ has an LW－51 for 50 Mc．Bav（ity will have the Alichigan ARRL Convention next Mar． 25 at the Wen－ ona Hotel．©TY and LNE have a new Drake 2.1 receiver． R＇TN takes organ lessons！Met K 8 NHC ，the Cleveland Convention，QMIU got a nice notice in the Lansing paper for helping to save a Brazil ham＇s life．Kyl＇BAt is doing very well on 144 Mc．PT and PYQ hold a sked 3 times a week on 220 Mc ．and want skeds with lansing．Cirand Rapids and Jackson on 220 Mc ．NOH built a 3 －transstor crvstal converter for the car for 50 and 144 Mc． KixhMQ made the BPL un otiginations and deliveries． JTQ moved to Jackson．K8GJD made W．AC．KジiW\％ rehuilt the 813 rig． FDO is back from Oklahoma．A new QMNer is K×MEG．UWN has a new $太 X-101$ ．WiX has a new 350－watt 813 final．K8CKD has a new ir opera－ tor．AHV and UGO visiter the Michigan Historical Mluseum and suggest that more Michigan hams do the sume．QMI also is a new QMNer．QBA tinished the GC $813 \mathrm{~s}, 500$ watts．ALG has a new $60-\mathrm{ft}$ ．EZ Way tower． k8NHC got Swedish WAV．İ8EFY says that 13 NCSs from the BR Net met．KisKCO is in a new GTH－no more antenna lead cutting－he hopes．I＇HZ wues x, s, h ． IBB finished a new vif．o．like that in Oct．QS＇T．MGQ has a Viking II on 1820 kc ．Form I cards not here hy the 5th go in a month late，as＂Late Reports．＂Tratfic： （Oct．）．W8FWO 217．K＇lN 165，JKX 149．OCC 141， K8FMQ 135 ，W8ELW 95 ，Y．AN 93 ，K8EXE 74，W8F 71 ，JTQ 60．K8LZF 53 ，IJJQ 44，W8EU 38．K8GJD 33. NEY 30，W8NOH 27，K8GWZ 26，W8FDG 23 ，K8AEG 18，W8HKT 17．OQN 17．CQU 16．SC＇W 15．QNX 14. NFS 14，ILP 13，KXJED 12．W8AUD 11，L8EW＇1 11. NAW 11，W8ZHB 10．K8CKD 8，W8AHV 6，K8LPV 6． W8QBA B，＇TBP 6，EG1 5，ALG＇4，K8HLR 4．NHC 2， W8WVL 2，EMD 1．（Sept．）W8ILP 42，TBP 38，UFS 24. lBB 6.

OHIO－SCM，Wilson E．Werkel，IV8AL－Asst．SCM ： J．C．Erickson．SDAE．SEC：HNP．KMs：DAE and VTP．PAM：HZJ．F＇indlay RC＇s The WRFT Neu＇s named DP，a ham for nearly 49 years，an its Ham of the Month．QKO was discharged from the Air Force． HUX＇s OM，BBO，has joined Silent Kevs．Kis BHC and FJX moved to Bloomville and KN8WIP．the X＇Y of JWM，is a new Novice．BXB joined Silent Keys．The Cuyahoga Falls RC＇s officers ate K8EGY pres．：NNS． vice－pres．；K8COT，secy．：（LLO，treas．；K8CTP，radıo officer．The club meets the 1 st and 3rd Wed．of the month．The Ganton ARC＇s Feedline states that GBJ has a new HQ－170：K8QOA has a new KWM2；1JCW has a new TA－33；OYV worked 9U5KU for a new eutn－ try；K8KTM lias a new TA－33 Jr．；K४USK and KN8WLQ（ the XYL of VYU）are new hams in Catiton． Springfield ARC＇s e－5 tells us the cluh＇s new ufficers are EHW，pres．；K8KLG，vice－pres．；KJP，secy．；WAU， treas．；and ENS，DCJ，VZE and KJT on committees． l＇E writes that the Greater Cincinnati ARA＇s new of－ ficers are PKD．pres．：QBJ，1st vice－pres．；K8HKP． 2nd vice－pres．；KisIMC，corr．secy．；LPC，rec．secy．；and NOV，treas．The eluh eelehrated Inited Nations Week by operating a station in Shillito＇s store win－ dow with three operators showing the public how we work other stations in this country and around the world using G8UN as the call．The club＇s code and theory classes have 73 enrolled．The Seneca RC showerl a sound film．＂Treasure For Xour Tuble，＂about giass－ making．K8RNH has his General Class license．The Lancaster and Fairfipld County ARC operated its club station at the civil defense exhibit in the fairgrounds． Columbus ARA＇s Garascope informs us that IIV spoke on amateur RTTY and K8QAD has 63 Ohio counties confirmed．＇Tnledo＇s Ham Shack Gossip named K8HVN as its＂Ham oi the Month＂and tells us that kN8s $V Y W, W D L$ and WEH are new hams，and the＇rolerlo RC held its annual family night．The Geneva ARA con－ ducts code and theory classes．DVA is attending Gam－ mon College．The Great Lakes ARRL Division Conven－ tion held recently in Cleveland attracted about 2500 people． 1200 registered with about 250 attending the ban－ quet． 125 took the General Class license examinations and 75 took the Novice and Technician Class exam－ inations．AZU won a KWM－2，3NMP a CDR Ham－M rotator，K8USF a mobile $\mathfrak{f - m e t e r}$ transmitter，CWV a transistor power supply，OOP and K8BKF each a Na － （Continued on page 114）

Heathkit Amateur Gear tops in quality and economy

HERE'S A NEW HEATHKIT GROUNDED GRID KW LINEAR AT A RECORD-SMASHING LOW PRICE . . . JUST \$22995

The new Heathkit "Warrior" is a completely self-contained, desk-top kilowatt linear, loaded with special features, at half the cost of comparable units! Compare feature for feature, quality component for quality component, you'll find no shortcuts . . . only the finest watt-per-dollar value in a linear amplifier on the amateur market today!

Maximum power input: SSB-1000 watts P.E.P., $\mathrm{CW}-1000$ watts, AM -400 watts (500 watts using carrier controlled modulation), RTTY -650 watts. Driving power required: 50 to 75 watts-depending on fre. quency. Output circuit: Variable pi-network iSO to 75 ohms). Input circuit: Broad banded-requires no tuning. Input impedance: Approx. 70 ohms. Band coverage: $80,40,20,15,10$ meters. Panel metering: Switch-selected, grid current, plate current, high voltage and relative power output for ease of loading. Tube complement: 4-811A. 2-866A. Size; 191/2" W $\times 11 \%{ }^{*} \mathrm{H} \times 16^{*} \mathrm{D}$.

This Inside view shows the neat circuit layout and husky components that emphasize quality. Note the internal shielding of plate circuit for maximum protection against TVI.

CHECK THESE FEATURES . . .

Completely self-contained . . . HV, Fil. and Bias supplies built in. Versatile . . . May be driven by any 50 to 125 watt transmitter or exciter-no matching or swamping network required.
Efficient . . . Stable grounded grid circuitry allows most driving power to appear in output for up to 70% efficiency.
Oil-filled capacitor . . . And 5-50 henry swinging-choke provide the excellent dynamic regulation required for high peak power output with low distortion.
Inexpensive tubes . . 4 paralleled 811A's and 2-866A's, forcedair cooled by silent built-in fan.
Design . . . Special low-capacity filament transformer-requires less driving power-eliminates broad band filament RF choke. Exclusive . . . Internal RF shielding of plate circuit for maximum TVI suppression.
Interlocked switching . . . prevents accidental application of HV before switching on filament and bias.
Neutralized . . . For the last word in stability in conjunction with grounded-grid operation.
Rugged construction . . . 16 gauge steel chassis- $18^{\prime \prime}$ aluminum front panel-welded one-piece cabinet.
Easily assembled . . . Average time 8 hours.
Model HA-10... 100 ibs.... $\$ 23 \mathrm{dn}$., $\$ 20 \mathrm{mo}$..
.$\$ 229.95$

you get twice as much for your budget

- Tracked VFO \& Exciter Stages for single knob tuning
- 10-watt RF output to antenna6360 final
- Built-in low pass filter
- Built-in 3-way power supply for $117 \mathrm{VAC}, 6 \mathrm{VDC}, 12 \mathrm{VDC}$
- Push-to-talk ceramic element microphone

more features, better performance in this new Heathkit transmitter

PHONE AND CW TRANSMITTER KIT (DX-60)

Smart modern styling . . . clean, rugged construction . . . and conservatively rated components all add up to ease of assembly, trouble-free operation and fine performance in the new DX-60 Transmitter. Offering far more than any other unit in its price and power class the DX-60 features a built-in low pass filter for harmonic suppression, neutralized final for high stability, grid block keying for excellent keying characteristics and easy access to crystal sockets on the rear chassis apron. A front panel switch selects any of four crystal positions or external VFO. Modulator and power supply are built in. Single knob bandswitching for 80 through 10 meters and the pi-network output provide complete operating convenience. A tune-operate switch provides protection during tuneup and a separate drive control allows adjustment of drive level without detuning driver. Panel meter shows final grid or plate current. A fine kit for the beginner as well as general class amateur, the DX-60 may be run at reduced power for novice operation. Operates CW or AM phone with crystal or VFO control. Power input is 90) watts peak, carrier controlled phone or CW. Construction of the DX-60 is a breeze, with its clean circuit layout, precut and cabled wiring harness and the complete, informative instructions furnished. The handsomely-styled finished unit measures only $133 / 4^{\prime \prime}$ W x $111 / 3^{\prime \prime}$ D x $61 / 2^{\prime \prime} \mathrm{H} .29 \mathrm{lbs}$. Model DX-60... $\$ 8.30 \mathrm{dn}$., $\$ 8 \mathrm{mo}$.

new transceivers for 6 \& 2 meter nomads VHF TRANSCEIVER KITS (HW-10 \& HW-20)

"Mobile" or "Fixed", the new "Shawnee" 6-meter or "Pawnee" 2-meter transceivers bring you unp-ecedented performance, for each is a complete AM \& CW Transmitter/Receiver combination with features unmatched at this price. . . just connect an antenna and you are in business! Transmitters feature a built-in VFO with all frequency determining components mounted on a "heat sink" plate for temperature stability and four switch-selected crystal positions for novice, CAP, MARS or net operation. VFO and all exciter stages are tracked for convenient single knob tuning over any 500 kc band segment (greater excursions require simple re-peaking of final). A VFO "spotting" switch is provided to "zero in" signals with transmitter off-the-air. The 6360 dual-tetrode final RF amplifier provides 10 watts of power output to the antenna and a built-in low pass filter is incorporated to suppress harmonics and other spurious radiation. The duai-purpose modulator provides a full 10 watts of audio for high level plate modulation of the final RF amplifier or 15 watts of audio for paging or public address use, selectable with pushpull switch. Superheterodyne receivers feature double conversion with first oscillator crystal-controlled. All oscillators are voltage regulated for stability. A large slide-rule dial and vernier tuning provide more than ample bandspread for both receiver and VFO. RF gain, BFO, ANL, Squelch, AVC on/off and transmitter controls are front panel mounted. Tuning meter is automatically switched to read signal strength or relative power output. Units come complete with built-in speaker, heavy duty AC \& DC power cables, primary fused relay, adjustable mounting bracket and push-to-talk ceramic element microphone with coil cord \& mounting clip. $6^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{D} .34 \mathrm{lbs}$. each. Model HW-20 (2 meters) . . $\$ 20 \mathrm{dn} ., \$ 17$ mo..... $\$ 199.95$ Expected Shipping Date Feb. 25.

Attn. HW-29 owners: Convert your "Sixer" to the new improved " A " model with this easy-to-install conversion kit. Allows use of 8 mc crystal for maximum stability.
Model HWM-29-1 1 1b. \$4.95
lowest cost transceivers on the air

- Operate from low-frequency crystals for greater stability
- Push-to-talk Transmit/Receive switch
- Variable receiver tuning
- Built-In AC power supply-easy conversion to mobile operation, using accessory vibrator power supply

2, 6 \& 10 METER TRANSCEIVER KITS (HW-30, 29A, 19)
These three outstanding transceiver models bring you top performance at the lowest prices offered in complete amateur facilities. Each model has a crystal controlled transmitter and tunable, superregenerative receiver with RF preamplifier. Receivers pull in signals as low as $1 u v$ and the 5 watt transmitters are ideal for emergency work or "local" net operation. Features include push-to-talk transmit/receive switch, metering jack, ceramic element microphone, and two power cables. Less crystal. 10 lbs. each.
Model HW-19 (10 meter)... $\$ 4$ dn., $\$ 5$ mo....................... $\$ 39.95$
Model HW-29A (6 meter)... $\$ 4.50$ dn., $\$ 5$ mo..................... $\$ 44.95$
Model HW-30 (2 meter)... $\$ 4.50$ dn., $\$ 5 \mathrm{mo}$.

with Heathkite Amateur Gear

FREE CATALOG

Lists over 200 kits. Send for your free copy today!

ORDER DIRECT BY MAIL OR SEE YOUR HEATHKIT DEALER
HEATHKIT* ט DDAYSTROM

HEATH COMPANY
Benton Harbor 9, Michigan
ORDERING INSTRUCTIONS
Fill out the ordet blank below. Include charges for parcel post according to weights shown. Express orders shipped delivery charges collect. All prices F.O.B. Benton Harbor. Mich. A 20% deposit is, required on all C.O.D. orders. Prices subject to change without notice.
Please send the following HEATHKITS:

ITEM	MODEL NO.	PRICE

Ship via () Parcel Post () Express () COD () Best Way () SEND MY FREE COPY OF YOUR COMPLETE CATALOG Name

Address
City \qquad ZoneState \qquad Dealer and export prices slightly higher.

AN APPEAL TO INTELLIGENCE

A product that is consistently advertised in QST month after month, year after year, has to be good. Over 10,000 GOTHAM antennas have been purchased by QST readers. Even the "price-is-no-object" customers choose GOTHAM antennas on the basis of performance and value. Select your needs from this list of 50 antennas:

Airmail Order Today - We Ship Tomorrow

GOTHAM Dept. qst

1805 PURDY AVE., MIAMI BEACH, FLA.
Enclosed find check or money-order for:

TWO BANDER BEAMS

A full half-wave element is used on each band. No coils, traps, baluns, or stubs are used. No calculations or machining required. Everything comes ready for easy assembly and use. Proven (iutham Value!
6-10 TWO BANDER $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
10-15 TWO BANDER $\ldots \ldots \ldots \ldots \ldots$
10-20 TWO BANDER $\ldots \ldots \ldots \ldots \ldots$
15-20 TWO BANDER $\ldots \ldots \ldots \ldots \ldots \ldots$
TRIBANDER

Do not confuse these full-size Tribander beams with socalled midgets. The Tribander has individually fed (52 or 72 ohm coax) elements and is broad banded. It does not have baluns, coils, traps, or other devices intended to take the place of aluminum tubing. The way to work multiband and get gain is to use a Gotham Tribander Beam.
$\left[\begin{array}{lllll}{[70-10-15} & \$ 39.95 & 10-15-20 & \$ 49.95\end{array}\right.$

2 METER BEAMS

Gotham makes only two different two meter beams, a six-element job and a twelve-element job. They are both Yagi beams, with all the elements in line on a twelve foot hoom.
7 Deluxe 6-Element
9.95
12-EI
16.95

6 METER BEAMS

New records are being made every day with Gotham six-meter beans. Give your rig a chance to show what it can do, with a Gotham six-meter beam.
Γ S
Std. 3-El Gamma match 12.95
T match 14.95
\square
Deluxe 3-El Gamma match 21.95
T match 24.95
J Std. 4-El Gamma match 16.95
T match 19.95
Deluxe 4-El Gamma match 25.95
T match 28.95

10 METER BEAMS

Ten meter addicts claim that ten meters can't be beaten for all-around performance. Plenty of D. and skip contacts when the band is open, and $30-50$ miles consistent ground wave when the band is shut down. Thousands of Gotham ten meter beams have been perking for years, working wonders for their owners, and attesting to the superior design and value of a (iotham beam.

CITIZENS BAND ANTENNAS • Any of our ten meter beams or the V40 vertical is perfect for the CB operator.

FREE CAIALALOG

Name
Address
City .Zone \qquad State

Newl Ruggedized 6, 10, 15 METER BEAMS

Each has a TWIN boom, extra heavy beam mount castings, extra hardware and everything needed. Guaranteed high gain, simple installation and all-weather resistant. For 52, $\mathbf{7 2}$ or 300 ohm transmission line. Specify which transmission line you will use.
\square Beam \#R6 (6 Meters, 4-El) . . . $\$ 38.95$
\square Beam \#R10 (10 Meters, 4-EI). 40.95
\square Beam \#R15 (15 Meters, 3-EI) . . 49.95

15 METER BEAMS

Fifteen meters is the "sleeper" band. Dun't be surprised if vou put out a quick, quiet $\mathrm{C}(2$ and get a contact half-way around the world. Working the world with low power is a common occurrence on fifteen meters when you have a Gotham beam.

\square Std. 2-El Gamma match	19.95	\square T match 22.95
\square Deluxe 2-El Gamma match	29.95	\square T match 32.95
\square Std. 3-El Gamma match	26.95	\square T match 29.95
\square Deluxe 3-El Gamma match	36.95	\square T match 39.95

20 METER BEAMS

A beam is a necessity on twenty meters, to battle the QRM and to give your signal the added punch it needs to over-ride the high power boys. Hundreds and hundreds of twenty meter beams, working year after year, prove that there is no better value than a Gotham twenty meter beam.
\square Std. 2.El Gamma match $21.95 \quad \square$ T match 24.95
\square Deluxe 2-El Gamma match 31.95
IT 34.95
Std 3-EI Gamma match
Deluxe 3-El Gamma match 46.95 T T match 49.95
(Note: Gamma-match beams use 52 or 72 ohm coax.
T-match beams use 300 ohm line.)

IS K6INI THE WORLD'S CHAMPION DX OPERATOR?

Judge for yourself! Read his letter and count the DX he has workedwith only 65 watts and a $\$ 16.95$ Gotham V-80 Vertical Antenna.

2405 Bowditch, Berkeley 4, California January 31, 1959
GOTHAM
1805 Purdy Avenue
Miami Beach 39, Florida

Gentlemen:

I just thought I would drop you a line and let you know how pleased I am with your V-80 vertical antenna. I have been using it for almost two years now, and am positively amazed at its performance with my QRP 65 watts input! Let me show you what I mean:

I have worked over 100 countries and have received very fine reports from many DX stations, including 599 reports from every continent except Europe (589) I I have also worked enough stations for my WAC, WAS, WAJAD and ADXC awards, and I am in the process of working for several other awards. And all this with your GOTHAM V-80 vertical antenna!

Frankly, I fail to see how anyone could ask for better performance with such low power, limited space and a limited budget. In my opinion, the V-80 beats them all in its class.
I am enclosing a list of DX countries I have worked to give you an idea of what I have been talking about.

Wishing you the best for 1959, 1 am
Sincerely yours,
Thomas G. Gabbert, K 6 INI (Ex-TI2TG)

FACTS
 ON THE GOTHAM

V-80 VERTICAL ANTENNA

- If K6INI can do if, so can you.
- Absolutely no guying needed.
- Radials not required.
- Only a few square inches of space needed.
- Four metal mounting straps furnished.
- Special B \& W loading coil furnished.
- Every vertical is complete, ready for use.
- Mount it at any convenient height.
- No relays, traps, or gadgets used.
- Accepted design-in use for many years.
- Many thousands in use the world over.
- Simple assembly, quick installation.
- Withstands 75 mph windstorms.
- Non-corrosive aluminum used exclusively.
- Omnidirectional radiation.
- Multi-band, V80 works 80, 40, 20, 15, $10,6$.
- Ideal for novices, but will handle a Kw.
- Will work with any receiver and xmitter.
- Overall height 23 feet.
- Uses one 52 ohm coax line.
- An effective modern antenna, with amazing performance. Your best bet for a lifetime antenna at an economical price. ONLY \$16.95.

YOU COULD
WORK WONDERS WITH A GOTHAM VERTICAL ANTENNA!

FILL IN AND SEND TODAY!

Airmail Order Today - We Ship Tomorrow GOTHAM Dept. qst 1805 PURDY AVE., MIAMI BEACH, FLA. Enclosed find check or money-order fur,V40 VERTICAL ANTENNA FOR 40, 20, 15, 10 AND 6 METER BANDS. ESPECIALLY SUITED FOR THE NOVICE WHO OPERATES 40 AND 15
\$14.95V80 VERTICAL ANTENNA FOR 80, 40, 20, 15, 10 AND 6 METER BANDS. MOST POPULAR OF THE VERTICALS. USED BY THOUSANDS OF NOVICES, TECHNICIANS, AND GENERAL LICENSE HAMS... \$16.95

\squareV160 VERTICAL ANTENNA FOR 160, 80, 40, 20, 15, 10 AND 6 METER BANDS. SAME AS THE OTHER VERTICAL ANTENNAS, EXCEPT THAT A LARGER LOADING COIL PERMITS OPERATION ON THE 160 METER BAND ALSO........... $\$ 18.95$

HOW TO ORDER. Send check or money order directly to Gotham. Immediate shipment by Railway Express, charges collect. Foreign crders accepted.

Name
Address.. . .
City.

VERSATILE VHF EQUIPMENT

6 m or 2 m Ham Bands
or any 30.170 Mc service
LW-6I CONVERTER
Use on Communications receiver or car radio for VHF reception, AM-FM-SSB, 1.0 uV sensitivity. Std outputs 7/11, 14/18, or Broadcast.

Only $\$ 18.50$ complete

Wired \& Tested POSTPAID 12v 50c extra

Special outputs $\$ 2$ extra, 3/7, 5/9, 6/10, 26/30, 28/32, $30 / 35$, Mc or as required.

Output range may be changed later to suit new receiver.

Add the LW-80 Pre-Amplifier at any time for ultimate performance 20 Db gain at only $\$ 12.50$ postpaid

12 volt 50c extra
Especially useful on receivers that 'also tune Six'

Write for free literature

27

ELECTRONIC

 LABORATORYROUTE 2, JACKSON, MICHIGAN
tional VFO Model 62, NZD an NC-60 receiver. GSX a Turner Model 250 mike and LKD a 4-400 tube. We had the distinct honor and pleasure or having 1BI)I (from IRRL Headquarters), UPB (our Great. lakes Hivision Director) and FX (the SCM of Michigan) with us. New appointeer are K8A.AG as OBS. HZJ and LQB as ECs. IBX received his KZ5-25 award. K8 ${ }^{\prime} L D$ is a new General in Canton, GBJ has a new 11Q-170, K8GZT is in the Navy. K8TWH receined his General Glass license. DAE and UPH made the BPL in October. ZYU has his Ranger working again and is in BN. The Clermont County AREC Net meets everv Sun. on 29.6 and 50.7 Mc. MMJ ioined Silent Keys. QCUU has a new $\mathrm{HQ}-180$, K BMF F received his WAC-Phone wettificate, AL received his Chix on Six certificate and a book, The Wayside Pulpit, written by EEQ. Mt. Yernon appointed K8AKK as eity c.d. director and K8LFA as Radio ") cer. CPU, FEMI, OLZZ, K8s AKK, LFA, OBE, ULZ and TGit helped local police on Halloween using 2 -meter mobiles. Traffic: (Oct.) W8DAE 694. UPH $561, \mathrm{HZX} 223$, ZYU 132, (YM 115, K8ONQ 82. QHH 56, OEX 52 NIFY 24. EPG 17, W8OXN 17, QCU 12, YGR 12, AL 10 , WYS 7, KYAIYG 5, W8BIS 4. K8HEJ 4, TKW 4, KSN 3 . QOJ 3, DDG 2. W8IBX 2. (Sept.) K8QHH 43. MTI 22, W8CTZ 19, K8MFY 15, IKK 13, W8AEB 4, K8BLS 4 HEJ 3. MKW 2, LTA 1. (Aug.) K8iIFY 54, RMW 12,

HUDSON DIVISION

EASTERN NEW YORK-SCM, George W. Tracy, W2EFU-SEC: W2KGC. RM : W2PHX. PAMs: W2IJG and W2NOC. Section nets: NYS on 3615 kc . at 1900; NYSPTEN on 3 y 2 s kc . at 1800 : IPN on 3980 kc . at 1600; ENY (emerx.) on 29.490 Mc . (Thurs.) and 145.35 Mc. (Fri.) at 2100; MHT (Novice) on 3716 kc . Dat. at 1300. Findorsements: $1 V 2 \mathrm{HO}$, V 2 ZTZ and K 2 GCH as ECs. Nice to hear that WA2AKK is attending Stevens Tech. I new Telrex Spiralray 2 -meter beam rotates over the shack of K2DENI. The new Hornet TR-500 beam increases the DX at W.2EKE. K2BGU reports good tests from his new $220-\mathrm{Mc}$. rig. The IBM Radio Cluh is conducting theorv classes one night a week. Also on 220 Mc is K2CNP. Two new E.N.Y'. stations on the NYS are W2'THE and W. 2 KUS . Sain Harris. W1FZJ, was ;ieaker at the schenertady Club. SEC W2KGC reported receipt of 28 messages during the SET. K21OM was auctioneer at the Yunkers Club auction. Among the prize winners at the HARC (Hudson Division Convention) were K2BFU. K2CON and K2MBU. K2BIY has a new 75.A-1 to match his $32 \mathrm{~V}-3$. The RPI Club. W2SZ, is handling traffic for the students on a nightly hasis K2ULM was speaker at its Oct. 19 meeting. The "Whopping log Hollow" v.h.f. kroup meets twice monthly in Albany, sparked bv W2RKH. A new General Class licensee is W2 2 KI . Expanded net.s on 80 -meter c.w. as well as 40 - and 8 -meter phone are planned by the New York State Ked Cross Mutual Aid Net (first Sun. of month on 3875 kc . it 1200), according to the net bulletin. Contact W2KCR for complete details on their nperation. Traffic: (Oret.) W2EFU 265, W2PHX 143. K2MBU 100 , K2OZT 91, K2RKY 78, W2THE 32. K2SJN 28, K2HNW 19. K2C'KG 15, W.22EkE 1. (Sept.) K2MBU 137, k2BGU 3.

NEW YORK CITY AND LONG ISLAND-SCAI, Harry J. Dannais, W'TUK-SEC: W2ADO. RM: W2GXC. PAM: W2UGF. V.H.F. PAM : W2EW. Section nets: NLI, 3630 kc . nightly at 1930 EST (regular session) and 1815 EST (early session) and Sat. and Sun. at 1915 EST; NYC-LIPN, 3908 kc Mon. through Siat. from 1730 to 1830 LST: NYC-LI AREC, 3908 kc . Sult. at 1730 WST; V.H.F. Traffic Net, 145.8 Mc., Tue. Wed. and Thurs. at 2000 EST. BPL cards were earned by K2UAT, K2RBW, L2UBG, W2EW and K2UFT, the latter three on originations plus deliveries. W2EW thus earns his seventh BPL exclusively on the V.H.F. Traffic Net. L2UFT has now earned the BPL medallion for his fine traffic work. A pair of 811As is helping Dick with his long-haul work with TCC. W2GKZ added a Heath Chippewa KW final to his all-Heath layout. In answer to several requests here are the Emergency Coordinators for each of our county areas: Bronx-W2DUP, KingsK2OVN, Manhattan-K2JVB, Nassau-W2FI, QueensW2LGK, Richmond-W2VEF and Suffolk-W2KNA, Please contact the above AREC leaders for information relative to AREC/RACES activity in vour area. W2PF visited KP4-Land. K2QBW, attending M.I.T.. spoke to the Waltham ARA on "Satellite Scatter." K2OKX has been appointed Asst. EC for the Kings 2-Meter AREC. K2QGT is active on 20 -meter s.s.h. and 6 and 2 meters. WA2AED sends regards from college at Fort Wayne, Ind.. where he operates W9BHR on 20 -meter s.s.h. K2UYG installed a new three-element wide-spaced 20meter beam. Bill is attending Villanova and uperates W3YP. New officers of the Mohawk RC are K2IUT, (Continued on page 116)

BASE STATION TO VEHICLE in both directions

STATIONMASTER
 Cat. No. 201-509 Base Station Antenna

The STATIONMASTER consists of a number of collinear radiating elements fed inphase and encapsuled in a continuous weatherproof Fiberglass housing and withstands winds in excess of $125 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

CARMASTER
 Cat. No. 181-509 Collinear Gain Antenna

The CARMASTER is a new development in vehicular antennas. It consists of two half-wave and one quarter-wave radiating elements, excited inphase. Catalog No. 181. 509 is designed for cowl mounting.

Nominal input impedance

Nominal input
impedance 50 ohms
VSWR
$1.5: 1$
$+1.0 \%$
Bandwidth $\pm 1.0 \%$
Max. power input. 75 watts
Omnidirectional gain. 4.2 db
Feedline 10' of RG-58/U
Frequency range.450-470 mc

INCREASE YOUR RANGE BY 30\% YOUR COVERAGE AREA BY $\mathbf{7 5 \%}$

-with these advanced design antennas

Percentages listed are measured values

P.O. BOX 5767 TAMPA5, FLORIDA
pres.; K2TAQ, vice-pres.; W2III, secy.; and W2MGV, treas. An urgent radio call for a special blood type for K2SBH, the XYL of K2GCA, brought ahout response irom the following amateurs who assisted on and off the air: W2PRH, W2VYE, K2JFL, WA2AFX and WV2NPU. To those and others who aided go the heartfelt thanks of K2GCA and K2SBH. It is with deep regret that 1 report the membership of K2KQG in silent Kieys. WA2GAF is on the air with a liking I, an HQ-$120-\mathrm{X}$ and a vertical antenna. WA2IKN is now using a DX-100. IVA2Al' has left the section for a new assignment with the Navy in Brunswick, Maine. Our loss is Maine's gain. Guod luck, Norm!' Incidentally, Norm snagged state No. 50 just a few weeks before pulling the big switch. W.A2LKY, WA2AVY, K2KCK, WA2EEP and WA2BWM wish the very hest to W.2.AFA at his new QTH in Maine. Vol. 1, No. 1, of the Mid-Ixland Sixer, the net paper for the Mid-Island Six-Meter Net, published hy WA2EQK, is a fine init. Offierss of the net are WA2EQK, net control; K2KOA, alternate NCS; W.A2HCP, alternate NCS; K2YMV, secy.-treas.; and WA2DLS, act. mgr. Here we are at the beginning of another new year. Did you make any new or renewed resolutions? It not, how ahout considering PICON? Ragchewing and chasing UX are fun, but has your station participated in any public service event? Happy New Year to gll and hope to see yoll in '61. Traflic: (Oct.). K2UAT 666. K2RBW 563. K2UBG 480. W2EW 286, K2UFT 276. W.A2GPT 179, W. A2FBC 159, WA2CZG 147, K2THY 14i, V2GXC 89, W2GKZ 58 , W2GKU 53 . 142CMIJ 42, VV 2 KWZ 39 , K2DNY $2 \underset{\sim}{\mathrm{~K}}$, K2RHG 14 , W2.JBQ 13. W2LGK 12. L2YQK 12, W2AEE 9, W2UAL 8, W2PF 6, W2GP 4, W2MDM 3, WA2IKN 2, K2QBW 2, K2ADL 1, K2MEM 1. (Sept.). W2LGK 12, K2SJP 4.

NORTHERN NEW JERSEY-SCM, J. Sparbs Remeczky, K2MFF-NEC: WA2APY HM: K2VNL. PAM: KiSLG. V.H.F. PAM: K2KVR. Section nets: NJN daily at 0000 GMT on 3695 kc ., NJFN daily at 2310 GMT on 3900 kc., N.J. 6 \& 2 Thurs. and Sun. at 0400 GMT on 51.15 Mc. and Wed. at 0100 GMT on 147.75 Mc. NJN reports 31 sessions, attendance b66 and 419 messages handled. NJFN report 31 seswions, attend ance 639 and 206 messages handled. N.J. $6 \nless 2$ reports 18 sessions, attendance 173 and 5 messages handled. New appointments: $\kappa 2 \mathrm{JRJ}$ as OBS, WA2CCF as FC and WA2IGQ as EC. WA2ASM snagged hoth WAS and WAC. The new officers of the Freehold Regional HSRC are: K2KOD, pres.: W2GIX. vice-pres.: WA2IDM, treas.: WA2EJZ, secv. WA2AXR has moved to Yardley Pa. K2UKQ received the AHC and CHC awards. The State Line Radio Club's new officers are K2IEF, pres.; K2BPG. secy.; WA2DMY, act. mgr. WA2GQI was the top N.J. operator in the N.J. QSG Party with 12.402 points. WA2CCF, WA2COO and W2D:MJ earned BPL cards for October traffic. WA2MNK, WA2JIC and WA2JNJ are new Generals in our section. W2CY'W won the code-copying contest at the HARC Division Convention at 55 w.p.m. Compared to his barefoot v.f.o. WA 2 KKH is running high power with a new DX-40 WA2IDM's tongue is hanging out. He has 99 countries to date. The Raritan Bay Radio Assn. got its new season off to a flying start with a lecture hy W2AZL on v.h.f. techniques. W2VPO is the new MARS director for N.J. WA2GQZ is teaching coile and theory at the Garden State ARA classes. K2VNL was elected manager of NJN for 1061 at the aunual meeting Nov. 5. K2YLH has heen married only two inonths and has almost ronvinced his wife to become a ham. WA2INB worked a VE2 on 2 meters during the auroral disturbance Oct. © Attention, readers! If you want news of your activities in QST. I must have the information in my hands by the seventh of the month. Let me hear from pou. Traf fie: (Oct.). WA2COO 531. WA24PY 251. W 4 ? AD . 24.5 K2UCY 238, W2DMJ 220, K2VNL 216, WA2JHQ 207, W2QNL 183, K2ETS 168, W2OPB 150, W2RXL 122, WA2CCF 117, WA2EJZ 110, WA2GQI 96, WA2MNK 75 W.A2EDG 69, K2MFF 50, W2 2 LEH 45 , K2CBG 42, K2PVH 38. K2NFX 37. W2EBG 34. K2SLG 25. K2R1VO 24 K2EQP 23, WA2AKM 22, WA2CNV 20, WA2DBF 17, K2J'TU 17, K2AGJ 1B, WA2ERR 16, W2DRV 14 W2CVW 13, W2ZYW 12. W2ANG 11. WA2APT 9, W2AZZ 9, W2NIY 3, K2PTI 2, WA2KKH 1. (Sept.). K2PVH 102. K2ETS 48, W2ZV'V 38, K2EQP 33, K2AGJ 32 WA2EBR 22, K2JTU 5, K2UKQ 4, K2RHN 1. (Aug.). WA2FBR 165.

MIDWEST DIVISION

IOWA-NCM, Russell B. Marquis, WOBDR-Asst. SCM: Walter G. Porter, ØUJC, SEC: KøEXN. PAM: MFX. RM: 1'ZO. NWX set a new record in the AKRL DX Contest operating as VP1JH. He marle 4037 QSi)g in 86 hours. Bob showed colored slides of his trip at the Central Iowa Cluh and the Story County Club meetings. New officers of the SUI Radio Club are JNJ, pres.; (Continued on page 118)

Complete tuning versatility to meet any SSB reception problem-that's performance you can hear-and that's what you get in a Hammarlund $\mathrm{HQ}-180$.

The general-coverage SSB HQ-180 offers true professional performance at an amateur price. It offers more features, more real quality and far more listening pleasure per dollar than any receiver in its class. Prove it to yourself-see and try the HQ-180 at your Hammarlund dealer.

SSB at its best

HAMMARLUND HQ-180

- Triple conversion, 18 -tube superheterodyne.
- Full dial coverage from 540 KCS to 30.0 MCS.
- Bandspread calibration for 80, 40, 20, 15 and 10 meter amateur bands.
- High frequency crystal filter for improved selectivity and shape factor of ist If amplifier.
- Razor-sharp, adjustable slot filter for up to 60 db attenuation.
- Separate linear detector for CW and SSB reception.
- Adjustable If amplifier for maximum selectivity.
- Selectable sideband, upper, lower or both.
- Built-in crystal calibrator.
- Selectable AVC obtained from 60 KCS IF.
(Optional Telechron Clock-Timer $\$ 10$ extra)

HAMMARLUND
 MANUFACTURING COMPANY, INC.

 460 West 34th Street, New York 1, New Yorkan affiliate of TELECHROME

Export: Rocke International, 13 E. 40th St., New York 16, N. Y. Canada: White Radio, Lid., 41 West Avenue, North., Mamilton, Canada.
$\boldsymbol{T}_{\text {Hat pal }}$ of yours－the one you ragchew with two or three times a week－is he a member of the Ameri－ can Radio Relay League？He should be；the more hams who are，and the more interest they take in their organi－ zation，the stronger the League will be．The stronger the League，the stronger all of ham radio will be，for ARRL is the recognized spokesman for amateurs in the U．S．and．Canada， and the leader of organized ama－ teur radio internationally．
© $A_{\text {nd say！}}$ Additional licensed am－ ateurs residing in the same household with a full member may join the League for only $\$ 1$－without having to obtain a subscription to QST．

QST and ARRL Membership \＄5
\＄5．25 in Canada，\＄6 elsewhere

THE AMERICAN RADIO RELAY LEAGUE，INC．

West Harlford 7，Connecticuł

KOUJJ，vice－pres．；RAP secy．－treas，IO，the eluh sta－ tion is active on 75 through 6 meters．HNA received an EC appointment．TGQ renewed his EC appointment and BAJ renewed his ORS．The TLCN reports QNS 246．QTC 496， 26 vessions．The 160 －Meter Net repurts QNS 410，¢＇TC 22．New otheers of the O＇Brien County Imateur Radio Asin．（OCARA）are KOREF，pres．； OIV，vice－pres．KØVDY，secy．－treas．ligBSZ has moved to Marshallown．Sorry to lose you is the 75－ meter phone net manager．Ed．KØMFX，of Nevada， was elected by the hoard of directors to be the new net manager．The Sioux City Amateur Radio Assn．reveived a certificate of incorporation from the State of lowa． KNØEFF，of near Rock lallev，is a radio oprerator in the U．S．Navy on hoard the guided missile rruiser．USS Topeka，$K \varnothing C B C$ is visiting the Southland and IHC also is on vacation．Traflic：（Oct．1．WQBDR 1590．LGG 1563．SCA 1297．LCA 1060．PZO 356．DWA 278，KめにTP 242．IVØNTB 68．KØHBD 58．WØLJW 47，KØPOI 38， EXN 29．RTL 28．WONWF 25，BTX 19，GQ 18．VOZ 17， YDV 16．QVA 15．KめYLN 15．WดBLH 13，JPJ 12， KØMFX 12，GXP 11．GO＇I 10，WOREM 10，KめRRE 9， WดPTL 9，KØVSV 8．L．DN 7．WUEEG 5，KりSEW 5， WVK 4，K K 2，LVZ，2，RTF 2，VDY 2．KBX 1， WØTBR 1．（Sept．）．KOTGT 3，WØNWX 2.

KANSAS－SCMI．Ravmond E．Baker．WØFNS－SEC： YZM．Asst．SEC：LOW．RMI：QGG．PAM：ONF． V．H．F．PAMI：HAJ．Section nets：KPN， 3920 kc．Mon． through Fri．nt 0845，Sun．at 0800，ugr．ONF NCSs KØQKS，$た \emptyset E F L$ ．KOIZM rnd AMJ．QKs． 3810 ke． daily at 1×30 ，mgr．QGG，NCSs SAF．TOL，FNS and KgBXF．HBN． 7280 kc ．Aon．through Fri．at $1200 . \mathrm{mgr}$ ． KOBAF．HBN．
KOHGI．The following six Mansas stations qualified for Class I OO in the September Frequency Measuring Test：KØRIKR．KøJWS．ECF，LEW，DEL and RYV． The Kansas Centennial QSL cards are now available for postage charge．These eards were designed hy MXG，of Toneka，in cooperation with the Federation of Kansas Amateur Radio Clubs．The Kansas Nehraska Radio Club elected the following otticers：KØUNE，pres． K ${ }^{\circ} \mathrm{LMU}$ ．vice－pres． JEO ，treas．：WXY．secy．The SET proved its worth in Kansas this year with a great per－ centage of amateurs active in all zones．Traffic：（Oct．）． KØHGI 203．एФSSAF 203．FNS 173．ABJ 84．QGG 84， ＇ZM 67．ORB 58，TOL 56．IFR 26．AMJ 25．LIOTNV 21，WOBYV 17．KøQKS 14．UAX 11．SMQ 7，WØWIZ 6，KOEFL 5．VGWFD 4 FGWUD 3．QOB 2．（Sept．）． WĐØQGG 61，KØBXF 56．WOBII 12.

KANSAS CENTENNIAL QSO PARTY

January 28 and 29
The Kansas Federation of Amateur Radio Clubs invites world－wide participation in the Kansas Centennial QSO Party starting at 1400 GMT Saturday，January 28 and ending 2359 GMT Sunday，January 29．Kansas stations will work other Kansas，W／K and DX stations．Non－ Kansas entries will combine c．w．and phone con－ tacts to make one entry．There will be separate c．w．and phone contests for Kansas stations．The exchange will consist of signal report and ARRI． section or DX country．Kansas stations will send their county．The same station may be worked on more than one band．Kansas－to－K ansas QSOS， will not exchange counties but send＂Kansas．＂ Each contact will count one point．Final score will be the number of QSOs multiplied by the number of different location－multipliers（sections or counties）．A county，sections．or country will count only once as a multiplier．Suggested fre－ quencies are 3550，3900．7050，14，050．14．250． $21,050,21,350,28,050,29,000,52.000$ ，and 144,500 kc ．Certificates will be awarded to the winner of each section and country．Certificates will be awarded to the top 25 Kansas c．w．and top 25 phone entries．Send logs to：Kansas Centennial QSO Party Committee， 414 Avenue＂C＂． Wichita，Kansas．Logs must reach the Committee by March 15， 1961.

MISSOURI－SC＇M，C．O．Gosch，WØBUL－SEC： KøLTP．RMs：OUD and KQONK．PAMs：BVL and OVV．Net reports：（Oct．）MEN（3885 ke． 1800 C＇S M－W－F） 11 sessions：QNI 338，QTC 257．NCSs li＠ONK B，OVV，OHC 2，BUL 1：MON（3580 kc． 1900 CST M－S） 26 sessions；QNI 156，QTC 124；NCSs：OllD 9. KIK 7，KøONK 5，LGZ 2，OJC，PFF，EFF 1．SMN （3850 kc．Sun 1600（STT） 4 sessions：QNI 14：QTC 5； NCS：OUD．MSN（ 7115 kc ． 1630 CST M－F） 19 sessions： QNI 118；QTC 67，NCSs KØONK 12，BXF 2，VAY 1 ， （ Continued on page 120）

The most copied grounded-grid 1-KW linear amplifier by those who build their own.

AMPLIFIER KIT

LPA-1 Kit-(less tubes, cabinet and blower) $\$ 269.50$
Blower-(optional for warm climate use) 19.95
Cabinet-. 48.75
Adapter panel for rack mounting 9.95
LPA-1 Amplifier-Factory wired and tested
Complete with cabinet, blower and tubes

$$
375.00
$$

POWER SUPPLY KIT TOO

LPS-1 Kit-(complete with cabinet but less tubes)... $\$ 169.50$
Adapter panel for rack mounting 9.95
LPS-1 Power Supply-Factory wired and tested
Complete with cabinet and tubes
205.00
(See Nov. QST, page 115 and Nov. CQ, page 21, for outsfanding features)

Kits Available in February

LPA-MU Matching Unit Price $\$ 36.00$
LPA-MU-2 Matching Unit Price $\$ 36.50$
Factory wired and tested
LPS-1 Power Supply for LPA-I

Barker \& Williamson, Inc.

Canal Street and Beaver Dam Road - Bristol, Penna.
Foreign Sales-Royal National Corp., 250 West 57th St., New York 19, N.Y.

A Word from Ward ．．．

GOOD

7 f you watched the 17th Olympic Games in Rome last September，you must have been impressed－as I was－at the whale of a difference a few inches make！

Remember the rhubarb that developed over the $\mathbf{1 0 0}$ Meters Free Style Swimming Event？ That match was so close that when it was over，the Australian representative（who was awarded first place）claimed that，in his opinion，the American had won！
7
n the shot put，running broad jump，hammer throw，foot races，and practically all other events，the difference between good，better and best－was often a difference as little as a couple of inches or one or two seconds！Yet that difference，fractional as it was，was big enough to determine whether the gold medal went to the U．S．A．，U．S．S．R．or Germany．
n running a business，as in athletic com－ petition，a little difference can mean a lot．
ere，at trusty old Adirondack Radio，we have never forgotten that truism．

e don＇t claim－and never have claimed－ to swamp our opposition in every category． But we do make a sincere，honest attempt to provide that＂little extra＂that makes the difference．Our inventory is just a little newer， a little cleaner．We try to please our customers a little harder with service that＇s a lithe better． We answer inquiries a little sooner and give you a proposition that＇s a little fairer．

t＇s little things such as these that have kept us alive，and growing，since 1936.

before you buy or trade any new OR USED GEAR，SEE WARD，W2FEU Write for Our Latest＂Used＂List ADIRONDACK RADIO SUPPLY

185－191 W．Main St．，Amsterdam，N．Y．
Phone：VIctor 2－8350
Ward J．Tinkle，Owner

BHM 4．KOMMR reports his county was active in the SET；he also reports $\mathrm{K} \emptyset Z W R$ ．TGG and NZI as new members of the AREC；MMR lost her 7－3．8－Mc．daub－ let in a wind storm．GCL is QRL building a K4EEU sidebander．WAP now is keeping a shed with JUR on 2 meters．EEE has a new Drake 2A receiver．KøJPJ reports activity on $14.2-\mathrm{Mc}$ ．sideband．KØJPL reports HC8，OD5，HH2 and UM8 as DX contacts，but is have－ ing trouble getting that elusive No： 100 country． KØMOD reports from Florida that he is now W4RXS and is attending the U．of Fla．（club station 4DFU）． LQC has returned to his teaching duties at SWMSC after a full year of graduate study at the U．of No． KøIQH spent a recent leave from the U．S．Navy at home． RVA reports activity on 50－Mc．$A-1$ emission．Both OVV and KØDOK report losses suffered to mobile equipment because of theft while their cars were parked and unattended．The MON Key，edited by KøLGZ， had its initial publication recently．Items of special in－ tersest to cow．traffic handlers in the State，included a roster of MON Net members．KOONK has a new ri－ band beam；those assisting in the installation were MKJ，KりVPH and KøVIQ．Traffic：KøONK 1355, LTJ 345，WØ．NNT 149，KIK 118，KØMMR 94．WØMKJ 80，OUD 68，BVL 64．OVV 51．K＇TW 46．KØV．AY 35． WØBUL 33，GBJ 28．KØLGZ 26，VPH 26，ICB 25，WNZ 16．PCK 10，WのWAP 10，KøRPH 9，WØVFP 4，KøOJC 2，VXU 2，MAU 1.

NEBRASKA－ACM，Charles E．McNeel．WØEXP－ SEC：KØTSU．The Nebraska Section C．W．Net，NY U as NC，had 28 sessions， 186 QNI， 99 QTC．The Nebraska Emergency Phone Net，ZOU as NC，had QNI 435， QTC 27 and for September reported QNI 402．QTC 16. The new net manager for this net is EGQ．The Western Nebraska Emergency Net， $\mathrm{H} \emptyset \mathrm{RRL}$ as NC，reports 31 sessions．QNI 507 ，QTC 240，KゆTUH and PZH， 100 per cent check－in．The Nebraska Morning Phone Net KøDGW as NC，reports QNI 715，QTC 147．The West．－ en Nebraska Net，NIK as NC，reports QNI 51．5，QTC 401．KøTUH 100 per cent check－in．The Sand Hills Radio Club of Charon and the Alliance Radio Club used mobile rigs to patrol on Halloween night．KØUKN is operating portable from Creighton University in Omaha．The Blue Valley Radio Club is conducting a se－ rises of code and theory clasps at seward．Traffic： （Öct．）．KØT［iH 437．WØGGP 360．KaRL 219．IJW 139．WVZJF 110，N1K 80，KØQFK 79，LGW 70，UFO 53.
 35，KØRQE 35，UKN 31，SCM 30，WØRDN 29．OKO 27，KดMZV 25．WQOFP 24．KQKTZ 2\％，Vi t 22 WØBQQ 21，VZJ 19，KøMSS 18．KNØVRQ 18．KøKDW 15，UWK 15，WØEGQ．13．LFJ 13．KØWPG 13．WEP 8. WØVEA 7，KøYDS 7，PTH 6，VAZ 6，PTH 5，SBP 5．FLU 4．WØWKP 4，HTA 3．KØSLB 3，WØYFR 3. ḢOP 2．K $\emptyset K L B ~ 2, ~ W G R W X ~ 2 . ~$

NEW ENGLAND DIVISION

CONNECTICUT－Acting SCM，Henry R．Spraque， W1CHR SEC：KOR．RM：KYQ．HF．PAM：YB． V．H．F．PAM：FHP．Traffic nets：（PN，Mon．－Sitt． 1800 Sun． 1000 on 3880 kc ．； CN ，daily 1845 and 2200 on 3640 kc．；CVN，Mon．，Wed．and Fri． 2030 on 145.98 Mc．；CTN，Sun． 0900 on 3640．Vic＇s transfer to Arabia is our loss but I＇m sure you will join me in wishing him and his family the best of luck．Until you elect a new SCM，I＇ll do my best to fill his shoes．II y thanks to those of you sending me your hest wishes．K1L．AH and AW made BPL on origination plus deliveries． IYQ reports early CN handled 481 messages averaging 15.5 per session．Attendance averaged 7．8．Three late sessions handled 16 messages．High QNI were KilLAH．OBR，AW， KIGGG and VB．QPD，RAN，VW，OJR，LIG，IRX and K1NQJ participated in the Sept．Frequency Meas－ bring Test．APA is hark with a half kw ．and hopes to be on s．s．b．soon．K5OEA／1 finally is settled in Groton and expects to be an active traffic－handler．His XYL， K5SPD／1，operates s．s．b．on the low end of 40 meters mostly．K1IVR finds school homework is cutting into his radio activities．While FHP was vacationing in the South he visited ex－K1BML，now W4SHD，and ex－ K1BMM，now W4SHE（SHE is a he！）in Coral Gables He also reports that CVN held 12 sessions and handled 16 messages．New stations were K1KJR，KN1PUG， KN1PIG，K1MNX，K1NML and K1OEQ．YBH says CPN held 31 sessions，handled 260 messages or 8 per session average with daily attendance averaging 27. session average with daily attendance averaging 27. High 2NI Were YBH 31， 27 ，K1BSB 28，VQH 25．The Manchester Radio Club＇s Basic Electronic Course got off to a flying start with 47 in attendance．EOR is one of the instructors． FOM is immersed in u．h．f，construction．ZPV is search－ ing for maximum wallop from the smallest size $432-\mathrm{Mc}$ ． antenna possible and is building a 2 －meter s．s．b．－c．w． rig to hoot．Appointments renewed ：CUH as ORS．New appointments：K1HTV and K1KSH as OOh；WCG as （Continued on page 1 \＆\％）

WINNER AND STILL CHAMPION

in Communication Antenna Systems

Caf. No. 200-809
 STATIONMASTER ${ }^{\text {© }}$
 Collinear Gain Antenna

is designed to meet the ever increasing need for high antenna gain in minimum space and at lowest cost.

SPECIFICATIONS

- Frequency Range 144-174 Mc
- Omnidirectional Gain 5.8 db
- Maximum power input. 500 watts
- Nominal input impedance 50 ohms
- Bandwidth . \pm 0.3\%
- VSWR . 1.5 : 1
- Rated wind velocity 100 MPH
- Weight . 30 lbs.
- Element housing length . 19'

Communication Antenna Systems for American Business

MARLBORO

COMPACT FILAMENTS...

Minimum size is characteristic of Triad filament transformers, yet minimum temperature rise is achieved under continuous operation. Good regulation and long life are also built into them. Write for Catalog TR-61.
 350 North Briant Street, Huntington, Indiana

ORS. Reports rereived: OO from EQV, VW. KllFJ. K1GUD. K1HTV. K1KSH, K11YR and K1EFI: UES from FVV, FOM and ZPV. Tratic: W1AW 491. OBR 386, EKJ 279. WCG 197, KYQ 193, EFW 188, YBH 155, KlGGG 151. LAH 143. WIBDI 114. K5SPD 11 107. OEA 11 105, WIFHP 66. ULZ 62, K1CBE 39, AQE 34. WIOV 30. FTE 29, RFJ 26. K1MBA 19, W1VIY 16. K1HWF 11. DGK 10. LQO 10. W1CHR 9, CUH 7. HJG 7, JZA 7, APA 6. K1BSB 5, CTI 4, BNB 3, ŹPV 3.

MAINE-SCM, Jeffrey I. Weinstein, W1JMN-Well. here it is 1961, and a brand-new year of hamming unfolds in the Pine Tree state. The State of Maine concluded the year 1960 as one of the hest organized and most active sections in ARRL. My sincere thanks to all my appointes. AHM, BDQ. BXI. CXX, DUG. DYG. EFR, FNI, FV, GKJ, GRG, GVQ. $1 A A, I N L$, ISO. JDA. KAK, KFR. KFY. KSG, LHE. MBM, MIJN. OTQ, SWX and TKE, and to all the other radio amateurs int our section who rendered their support and worked so diligently for the furtherance of our goals of hecoming better operators and maintaining close productive relations with the public and its governmental agencies. We're encountering 1961 with the prestige and respect for the State of Maine at the highest level it ha: been in atmateur radio history! Let's build on our status by narticipating acticely in the State of Maine Amateur Radio Emergency Corps. the Seit Gull Net, the Pine Tree Net, the Maine slo-Speed Net, and in all ARRL contests, functions, and organizational efforts, whether they are sponsored by this office or conducted by ARRL Headquarters. If everyone shares in this effort. we'll have very little difficulty in placing at the top for 1961 . Best oi luck for the elnuing year! Traffic: (Oct.). K1MPM 82. KSG 73. WIGRG 40. FV 16, KMIZB 14. WIEPN 13. JMN 12. K1MBM 9, BLC 8, LMJ 8, OAZ 6 . DYG 2. WISWX 2, KNIOJH 1.

EASTERN .MASSACHUSETTS—SCM. Frank I. Baker, jr.. W1ALP-SEC: AOG. Many cities and towns in titis section do not have an Emergency Cordinator. The requirements are that one must hold a General Class license, be a member of ARRL and have an interest in doing this kind of work, It has heen our policy where possible to make the Radio Officer also the EC. If interested in this appointment, write to AOG of ALP. GOL is a new OO. KIMVN is a new OES. Novices and Technicians can hold only the OES appointment and Generals must have three vears minimum experience to hold OO appointment. K1COY is a sitent Key. Heard on 75 meters: K1DOJ, IMU, KLO and JNM. K1HYF, Milton, General Class, has a Ranger on the air. TUP has gone to St. Pete, Fla.. to work. K8RUA/1, Quincy, is on 10 meters. WK has an SX-101A. GLW is in CAP aing with the Braintree Club, and K1NPL is in CAP. Heard on 2 meters: GQF, K1PKX, CLL, LNN OSN and OMS. K1KUY has a new mobile rig and is putting up a new heam. Z.PU has a $55-\mathrm{ft}$. tower. The following took part in the sept. FMT: BGW, PLJ, RB, KIGUU, NIDSA, KYC, KILJK, AYG. K1BBU, YHY and KiJIU. NKA has a whip for 6 meters and heams koing up higher. CB is a Silent Kev. SS has heams up ior several bands. The Framingham Oluh and the QR.A held auctions. ZWJ showed slides on his West Coast trin to the Framingham Cluh. QPO gave a talk to the QRA. The Barnstable Radio Club plocted NPR. pres.: Y.AN. vice-pres.; K1BEL secs.-treas. ; BCN . K1GAZ, FZH, K1BIF and K1BID, advisory board. The rlub meets in the Fire House in Barnstable 'illage. EGZ got married. KILEK and his XYI have a new harmonic. On B meters: BLM. YBY. KN1GFN. K1RIG and BIF. A code and theory class is being held with LIGRP and FZH doing the instructing. K1JZZ has a Halo on 6 meters. FVD moved to Phoenix. Ariz. KILUT has a Ranger. A nice cony of Ham Neurs was received from the Yankee Radio Club. V'I is the editor. PTR is ex-4PTR in Wellesley. IHC is at Ft. (iordon Ga. K1GSK is on 2 and 6 meters and has a Valiant and tri-band heam. K1ARL has all Apache and a fourelement beam. 'TRC has an Apache. KSB is on 10 and 6 meters. K1DIW has a Globe Scout 680A and an S40-A on all bands. k1MVN is on 2 meters with an eleven-element beam and will he on 220 Mc . BB is husy getting ready for the 160 -meter tests. K1GVR/1 is in Roxbury. OFK, our Somerville EC. says drills are held on Sun. night. EEF. and DDF spoke on how to win the SS Contest at the El Ray Clith. liAAII is building a tape deck to record signals. YYZ. NVV, KINKQ and DSW are going on a DXEpedition to camp in Palermo. Me. K1JIUf: JAW. MHM, BYL. BUF Wis FJJ and MX are active in the 40 -meter traffic nets. WA2EBR visited IIJAW. Our Eastern Mass. 2-Meter Net now operates Mon. through Fri. It had 25 sessions. with 363 stations and a traffic total of 201. KSZ has a 8N2. K1KAL has a Ranger and an NC183D. KINGI has Tech. (lass license. EIIUS is on 75 meters. The 'T'-9 Radio Cluh met at KON's. LQQ is busy on a new QTH in Newhuryport. WFO is Alt. (Continued on page 194)

Gonset does it again! Communicator IV for 220 mcs!

Here is no micro-power peanut whistle! An input power of 20 watts-substantial for VHF-capable of a man-sized signal. "Big ears" also--real ability to copy the weak ones-a sensitive, triple conversion receiver with a very good noise figure. This is 2 -way equipment of the highest quality built for effective communications on an amateur band with great potential ... "one-and-a-quarter-meters"...220-225 megacycles.
This new model features a triple-conversion receiver which is continuously tunable over the frequency range of 219.7 to 225.3 mcs. In order to comply with OCDM requirements, additional provision is made for spot frequency reception on one crystal controlled frequency. Receiver sensitivity is 1 microvolt for 10 db signal-plus-noise to noise ratio. Noise figure of $3-5 \mathrm{db}$ is exceptional for equipment of this general type.

Transmitter is crystal controlled, offers choice of six frequencies. (Required crystals are within the range of 8.148 to 8.333 mcs .) Power input to PA is 20 watts (power output approximately 10 watts), amplitude modulated by P.P 6BQ5's operating in Class AB-1. High-level speech clipping and audio shaping are incorporated.
All the many convenient features for fixed and mobile operation incorporated in the 2 -meter Communicator IV are retained. The same, easilycarried, highly compact housing, the built-in 2 -way power supply for $117 \mathrm{~V} A C$ and $12 \mathrm{~V} D C$-the latter with transistorized power supply. A flexible, snapback handle on one face of the housing facilitates carrying. Available universal bracket kit allows simple under-dash vehicular mounting.
Communicator IV-220 \#3351

39450
(Less microphone, crystals.)

It's The World's Biggest Electronic Catalog 1600 pages - more than 175,000 items - with specifications, illustrations and prices. Contains hundreds of items not found in smaller catalogs.

It's New

Covers all the latest products - new citizen's band, SSB and mobile ham gear - remote control radio equipment - components and equipment for microwave and telemetering. stereo equipment - miniature and sub-miniature components - new transistor types • plus every new electronic product for experimenting, design and maintenance.

It's The Easiest To Use

Quickest way to get current catalog data on the products of more than 330 manufacturers. Systematically organized in 32 product sections for rapid reference.
It's An Indispensable Aid to Amateurs If you're building a ham station, constructing kits, buying ham gear, designing or experimenting, you'll get the right product to do the job best because you're shopping in the electronic supermarket.

... And It's Now Available At Your Local Distributor 1961 MASTER

$\$ 395$ at parts distributors $\$ 4.95$ in Canada

FREE FROM YOUR DISTRIBUTOR . . .
valuable Foreign Tube Interchangeability
Guide, or write direct enclosing 25c.
The Radio-Electronic MASTER, 55H Sewell St., Hempstead, N. Y.

RO and Asst. EC to ACB in Quiney. FQA had his 200th 1)XCC contirmed. Our Eastern Mass. C.W. Net on 3660 kc . is looking for more members. LiBUF has a "Tener." K1MEM is on 160 meters and is building :H1 electronic key. K1LCQ says the Mass. V.H.F. Club conducted a patrol in Holbrook on Halloween. The Neighhorhood Net meets on 3825 kc . each Sun. at 1400 GMT . KILU.T is founder. AUQ is working in Andover now Appointments endiorsed: K1GYM Winchester. IVZ Kandolph. Vis Weston, UDF Watertown. BR Winthrop, SS Lincoln. TRC M1aynard as ECs; ZSS, SS and K1GYM as OPSs: K1JAW, K1BUF and SS as ORSs; RB and SAD as OOS: NKA as OES: KIBUF as ORS: SAD as RM[for 20 -meter c.w. JOS has a Viking II and an NC-183D on all hands. KN1POW is on 2 meters, Traffic: (Oct.), K1GNR 369. W1EMG 280, K゙1LLX 260 W1EAE 127. PEX 126. ZSS 44. HGN XR. OFK 79 K1MHM 70, BUF 63. MEM 60. W1FJJ 54. H1JAW 53 W1SIV 28, K1DTJ 24. W'1HIX 16. KIGTX 13. W1VYS 13. K1CMS 12. W1RQI, 11, K1DIO 10, LCQ 10, WILJK 3. NUQ 2. BB 2. (Sept.). WIVHY 26.

MASSACHUSETTS QSO PARTY

January 28 and 29
The Merrimack Valley Amateur Radio Club reminds all amateurs of the Massachusetts QSO Party, January 28 and 29 . The contest starts at $6 \mathrm{P} . \mathrm{m}$. EST Saturday and ends 11:59 r.m. Sunday. "CQ MASS" will get you started. Logs must be postmarked no later than February 18. See page 164 of last month's QST for full details.

WESTERN MASSACHUSFTTS—Sc:M, Percy C Noble, W1BVR-SEC: BYH. RM: KIIJV. RAMI UNS. WMN meets ot 3560 kc . at 7 P.M. Mon. through Sat MPN meets on 3870 kc . at 6 P.M. daily. WMNN meets on or near 3744 kc . at $6: 30 \mathrm{P} . \mathrm{m}$. Mon., Wed. and Fri. The new slow Net (WMSN) meets on 3560 ke. "Tue. and Thurs. at $6: 30$ P.M. RM K1IJV sent out 125 bulletins to West. Mass. Novices in the interests of the WMNN That sure should get some results! The new First Region phone sessions are going very well under the direction of DXS, with all New England sertions represented with the exception of Eastern Massachusetts New officers of the Springfield Tech. High Radio Clut are K1GCV, pres.; K1ISQ. vice-pres. KILWS, secy.: $K 1 M K F$, treas. The rlub call is GCR. ZPB reports that the M1t. Hermon sichool Club has 8 hoys taking e.w. and theory for their Novice tickets and 4 for General K1APR/W1BYH is having more than his share of rig trouble at his new QTH. KIMGK is at Worcester dunior College instead of at W.P.I.. as previously reported here. K1IQZ has been checking into the new W'MSN and says that it's too had some of the phone bove don't check into a net like this to at least get some practice on their c.w.! RMI KIIJV has completed the list of WMN NCSs and 1RN representatives for the spason. BV'R's antenna at his new QTH is doing Oli. RFII, BGV, and STR are playing chess via hann radio on 6 and 2 meters. AZW and WF attended the N.E. DX Assn. dinner and meeting at Albany. K1JGZ has a new DX-40 and an HQ-100. GRZ has retired after more than 40 vears at Simonds Naw and Steel Company

 WIDVV \&. KIIQZ 2 .

NEW HAMPSHIRE-SCM. Ellis F. Miller. WIIIQSEC: KIIQK. RM : KICIF. PAM : KVG. GSPN meets Mon. through Fri. at 1900 and Sun. at 0930 on 3842 kc . NHN (c.w.) meets Mon. through Sat. at 1830 on 3685 kc. CNEN meets Mon. through Sat. at 0645 on 3842 kc . New appointments: KVG as PAM, K1CIF as RM KMH as OFS and OO. YHI and IIQ both thank all for their support in the recent SCM election. Thanks to Bob Wright for a splendid iob as SCM. Hope I can do as well. The Manchester Kadio Club is nffering code and theory classes to those interested. Its members plan a 22nd anniversary celebration in February. We need ECs for Grafton. Belknap. Coos, Strafford and Cheshire Counties. How ahout it. gang". I.fts get hehind the AREC. IVG made DXCC. KIGAA has returned from Korea and is now stationed at Pease AFB. Welcome home. Ben. The Manchester Emergency Net meets Fri. at 2400 GMTT on 29.000 kc.. 50.4 Mc. and 145.27 Mc . Tralfic: (Oct.). K1IIK 199, CIF 105. W1CIFF 94. K1ITS 81, W1TA 56 . ZUR 54, ZUS 42. K1JDN 2Y. WIIIQ 25 . KIIEE 12. WIATJ 8. KIGQH 8. IFH 7. WIYHI 4. (Sept.). K1CIF 30. W1AIJ 6.
(Continued on page 126)

Highly sensitive, selective SUPERHET (not regenerative) receiver with $51 / 2$ dual function tubes and RF stage. Continuous tuning over all 23 bands. Exclusive Super-HushiB noise limiter. AVC. $3^{\prime \prime} \times 5^{\prime \prime}$ PM speaker. Detachable ceramic mike. 5 watt xtal-controlled transmitter. Variable "pi" network matches most popular antennas. 12-position Pasi-Lock(N) mounting bracket. 7 tubes and 1 xtal (extra xtals available). Covers up to 20 miles. License available to any citizen over 18 no exams or special skills required; applicaskilis required; applicaAntennas optional.
Additional crystals $\$ 3.95$ each.

Most EICO distributors offer budget terms.

	NEW! 60-WATT CW TRANSMITTER \#723 Kit \$49.95 Wired $\$ 79.95$ Ideal for novice or advanced ham needing low-power, stand-by rig. 60 W CW, 50 W external plate modulation. 80 through 10 meters.		 TV 5" OSCILLOSCOPE \#460 Kit $\$ 79.95 \quad$ Wired $\$ 129.50$ 5" PUSH-PULL OSCILLOSCOPE \#425 Kit $\$ 44.95$ Wired $\$ 79.95$
	90-WATT CW TRANSMITTER* \# 720 Kit $\$ 79.95$ Wired $\$ 119.95$ *U. S. Pat. No. D-184,776 "Top quality" - ELECTRONIC KITS GUIDE. Ideal for veteran or novice. 90W CW, 65W external plate modulation. 80 through 10 meters.		PEAK-TO-PEAK VTVM \#232 \& *UNI-PROBE(R) Kit \$29.95 Wired \$49.95 *U. S. Pat. No. 2,790,051 VACUUM TUBE VOLTMETER \#221 Kit $\$ 25.95 \quad$ Wired $\$ 39.95$
	HIGH-LEVEL UNIVERSAL MODULATOR-DRIVER \#730 Kit $\$ 49.95$ Wired \$79.95 Delivers 50W undistorted audio. Modulates transmitters having RF inputs up to 100W. Unique over-modulation indicator. Cover E-5 \$4.50.		$\begin{array}{ll}\text { RF SIGNAL GENERATOR \#324 } \\ \text { (150kc-435mc) } & \text { Wired } \$ 39.95 \\ \text { Kit } \$ 26.95 & \\ \text { TV-FM SWEEP } & \text { GENERATOR } \\ \text { 2 MARKER \#368 } & \\ \text { Kit } \$ 69.95 & \text { Wired } \$ 119.95\end{array}$
	GRID DIP METER \#710 Kit $\$ 29.95$ Wired $\$ 49.95$ Includes complete set of coils for full band coverage. Continuous coverage 400 kc to 250 mc . 500 ua meter.		dYnamic conductance tube \& TRANSISTOR TESTER \#666 Kit $\$ 69.95$ Wired \$109.95 TUBE TESTER \#625 Kit $\$ 34.95 \quad$ Wired $\$ 49.95$
33-00 Northern Blvd., Long Island City $\mathbf{1 , N}$. Y.	EICO, 33-00 N. Blvd., L.I.C. 1, N.Y Show me how to save 50% on 72 models of top-quality: Ham Gear \square Test Instruments \square \square Hi Fi \square Send free Short Course for Novice License. Send free catalog and name of neighborhood EICO distributor. Send 36 -page	SS. \qquad \qquad Guideboo	e. \qquad State

CITIZEN BAND-CLASS "D" CRYSTALS

All 22 Frequencies in Stock

3rd overtone. . 005% tolerance-to meet all F C C requirements. Hermetically sealed $\mathrm{HC} 6 / \mathrm{U}$ holders. $1 / 2^{\prime \prime}$ pin spacing-. 050 pins 8.093 pins availabie, add 15 s per crystall.
The following Class "D" Citizen Band frequencies in stock (frequencies listed in megacycles): 26.965, 26.975, 26,985, $27.005,27.015,27.025,27.035,27.055,27.065,27.075,27.085$, 27.105, 27.115, 27.125, 27.135, 27.155, 27.165, 27.175, 27.185, 27.205, 27.215, 27.225.
Matched crystal sets for Globe. Gonset. Citi-Fone and Hallicrafters Units . . . $\$ 5.90$ per set. Specify equipmert make.
RADIO CONTROL CRYSTALS IN HCG/U HOLDERS
In stock for immediate delivery (frequencies listed in megacycies) sealed crvstals $26.995,27.045,27.095,27.145,27.195,27.255$, folerance $.005 \%$ 1 $1 / 2^{\prime \prime}$ pin spacing . . . pin diameter .051 .093 pin

FUNDAMENTAL FREQ. SEALED CRYSTALS in HCS/U holders
From 1400 KC to 4000 KC. . 005% Tolerance. $\$ 4.95$ ea. From 4000 KC to $15,000 \mathrm{KC}$ any frequencr
$.005 \%$ Tolerance.. $\$ 3.50$ ea.
$.005 \%$ Tolerance

SEALED OVERTONE CRYSTALS

Supplied in metal HC6/U holders
Pin spacing .486, diameter .05C
15 to 30 MC .005 Tolerance.
. $\$ 3.85$ ea.
30 to 45 MC .005 Tolerance $\$ 4.10$ ea.

QUARTZ CRYSTALS FOR EVERY SERVICE

All crystals made from Grade "A"i mported quartz ---ground and etched to exact frequencies. Un. conditionallv guaranteed Supplied in:
FT-243 holders MC-7 holders DC-34 holders FT-171 holders Pin spacing $1 /^{\prime \prime} \quad$ Pin spacing $3^{3} 4^{\prime \prime}$ Pin spacing $3 / 4^{\prime \prime} \quad$ Pin spacing $3 / /^{\prime \prime \prime}$ Pin diameter .093 Pin diameter Pin diameter Banana pins
MADE TO ORDER CRYSTALS • Specify holder wanted 1001 KC to $\mathbf{2 6 0 0}$ KC:
$.01 \%$ Tolerance. 2601 кС to 9000 кс:
9001 кс to 11,000 кС:
\qquad $\$ 2.00$ a.
$.005 \%$ Tolerance.
. $\$ 2.75$ ea.
$.005 \%$ Tolerance.
$.005 \%$ Tolerance.
\qquad $\$ 2.50$ ea. . $\$ 3.00$ ea.
Amateur, Novice, Technician Band Cryslals
$.01 \%$ Tolerance... $\$ 1.50$ ea. -80 meters 13701.3749 KCl , 40 meters $17152-7198 \mathrm{KC}$), 15 meters $17034-7082 \mathrm{KC}, 6$ meters (8335.8650 KC) within 1 KC
FT-241 lattice Crystals in all frequencies from 370 KC to 540 KC Pall except 455 KC and 500 KC .
Pin spacing $Y_{2}{ }^{\prime \prime}$ Pin diameter 099 ?
Matched pairs ± 15 cveles $\$ 2.50$ per pair
200 KC Crystals, $\$ 2.00$ ea.; 455 KC Crystals, $\$ 1.50$ ea.; 500 KC Crystals, $\$ 1.50$ ea.; 100 KC Frequency Standard Crystals in HC6/U holders' $\$ 4.50$ ea.; Socket for FT- 243 crystal 15 c ea.; Dual socket for FT- 243 crystals, 15 t ea.; Sockets for MC-7 and FT- 171 crystals 25 t ea.; Ceramic socket for HC6/U crystals 20t ea.
Write for new free calalog \#860 complete with oscillator circuils
ASK YOUR PARTS DEALER FOR TEXAS CRYSTALS
See big red displav... if he doesn't stock them, send us his name and order direct from our Florida factorn
NOW ! Engineering samples and small quantities for prototypes
now made either at Chicago or FI. Myers Plant. 24 Hour Service! IN CHICAGO, PHONE GLadstone 3-3555
Rush Order-use coupon below for Ist Class shipmen 1

Dept. Q-11, 1000 Crystal Drive, Fort Myers, Florida For exira fast service, Phone WE 6-2 100

ATTACH THIS COUPON TO YOUR ORDER FOR SHIPMENT

 VIA IST CLASS MAIL AT NO EXTRA COSTTERMS: All items subject to prior sale and change of price without notice. All crystal orders must be accompanied by check cash op M.O. with PAYMENT IN FULL. NO COD'S.

126

RHODE ISLAND-SCM, John E. Johnson, KlAAVSEC: P.AZ. RM: SMU. PAM: TXL. Appointments: K1LSA. K1PNI, K1KAZ, K1DZX as OES's. Endorsements: K1BKK as ORS. The R. I. State Phone Net held a meeting at the home of the PAM and elected K1DZX net manager. Those attending nere KiGRC, GRA, PNI. EBX, AAV, W1BQH, TXL, SMU and JHF. KISPN reports 31 sesmons, $5 B$ traffic and 206 QNI. NIN reports 21 sessions. 73 trafic and 67 QNI. The W1AQ Club of East Providence reports activities of members as iollows: JZI has completed a home-built quad for 10 meters. K1CZI) now has his SB-10 operating. BDN is in the process of plate modulating his DX-35̃. LiN1PEL and KNINSY are studying hard for their Tech. Class license. KIIMIN and OXK comprise a father-and-son teatn on 8 meters. Present officers of the Koger Williams V.H.F. Society are MDT, pres. K1ALI, vice-pres.: KEM, secy-treas.; KBD and ICI, board neinbers. Pawtucket Tolman H.S. has formed a radio elub with 28 members and I'L as trustee. The R.I. Mobileers were called on to provide communication during a fire at the State Prison. K1PNI, ex-К8IZF, has just completed a quad for 6 meters. Traffic: (Ort.) WíSMU 786. TXL quad for 6 meters, Trafic: (oct.) WiSME 786. TAL 18, K1PNI 10. AAV 9, W1WED 7. (Aug.). K1BBK 12.

VERMONT—SCM, Mrs. Harriet Proctor, W1EIBSEC: K1DQB, PAM: HRG. RM: KRV. 'ermont trequency: (..w. 3520, phone 3855. RTTY 3620 kc . Nets: C.W., Mon.-Sat. at 1830: GMiN. Mon.-Sat. at 1730; VPN,' Sun. at 0900 ; VEPN, Sun. at 1730. Congratulations to K1BSN on his new XYL. His new c'IH is Essex Junction, and he has a new job at G.E. Kay Minor, ex-W1SCJ of Williston, has taken the exam to get back on the air. Our best wishes go to new uperators KN1PPK in Essex Junction and KN1PPN in so. Burlington. K1PZL, ex-K2UYI, has come to Essex Jct. K1HDB will be attending electronics school in Washington. D. C.., until lebruary. The BARC and CVARC both put out club news letters. They sure can develop interest. We need more news items from the southern end of the State, and we need more tratic originated in Vermont. How about it? Traffic: (Oct.). W1HRG 39, EIB 28, KJG 13, K1OXD 1. (Sept.). VE2AZI/W1 1714, EIB 28, K 17.

NORTHWESTERN DIVISION

IDAHO-SCM, Mrs. Helen M. Maillet. W7GGVFARM Net check-ins and traffic picked up considerably during October. Reports on activities during the SET during Octoler. Reports on activities during the lo. The District 480 -Meter Morning C.D. Net terminated in favor of 6 -meter nperations. K7ATT is the new prexy of the Ricks Gollege Qlub. Southeast Idaho Club's new officers are ISY, prexy; KN7LCW, veep; and K7DUX, sery. W7QIS/6 visited the Pocatello Club and gave a talli on 2 -meter mobile installation. He also and gave a the club project of vertical and dipole antenna installations ot K7JIK's ranch home. Lois showed appreciation by serving a steak dinner. A new Novice in Pocatello is KN7NQ1. Thase dropping the "N" from their calls are K7LKD, Kirie. and K7JWZ, Idaho Falls. KN7MBL is now active on 80 meters. LQU, working for WAS on 20 meters, copped a couple of choice DX stations, EL4A and OHITN. K7HDW has a new son. FARM Net traffic: 40. Traffic: W7GGV 47, VQC 19 K7BWV 17, W7DWE 6, EMT 6.
MONTANA—SCM, Rav Wooils, W7SFK--SEC: BOZ. PAM: YHS. RAI: K7AEZ. The MPN meets Mon.-Wed.-Fri. at 1800 on 3910 kc. TSN meets Mon. through Fri. at 1200 on 7230 kc. MSN meet. Tue.-Thurs.-Sat at 1830 on 3530 kc . HJM and ZJZ are at Hingham with a hotel in operation. Glad to hear that UWY recovered from a successfill operation and is hack on the air. UPR is on a vacation in California. K7EGA passed his exam. Some new calls in Montana are K7JAZ and K7NSL. We hear that GDE is leaving Montana. IDK is starting Novice classes in Havre. YZQ will be doing the same thing at Billings. Lots of hunting yarus are on the air in Montana as the ambiturs wind up the hunting season. New calls in Billings are K7NPV, K7EZI and K7NPJ. TDW is hack on s.s.b. again. The stamp "net" can be heard some mornings in this area. The Helena Radio Qlub report.: hig things for this winter. New appointments are COH as EC, K7CTI as OBS. W7TDW as OPS. K7BKH made BPL again. Traffic: K7DCI 389, as OH 276, DCH 68, BYC 21, W7IDK 18, TGM 5, YQZ 4, К7CTI 3.

OREGON-SCM, Hubert R. McNally, W7JDXK7EPA is busy building an ultramodulator these days. LT is going for $D \mathbb{X}$ again after all these years! A nice SET report was received from (iWC. K7EPO has joined the "left wingests," whatever that is. K7JWY is busy inventing things which will make someone's hair (Continued on page 128)

An unsolicited letter that speaks for itself-

ALL-FLORIDA CDMMUNICATIONS CD.

10 N.E. 3RD AVENUE MIAMI, FLORIDA

TELEAHONE

FRANKLIN 3-7245

December 1, 1960

Communication Products Co., Inc. Marlboro, N. J.

Gentlemen:
Attached is an order for more of your Cat. No. 181-509 450 Mc gain antennas.

I have tried many types of antennas for 450 Mc and have come to the inescapable conclusion that this is the finest 450 Mc vehicular antenna of them all. My tests have been made at extreme fringe areas as well as closer in and have included comparative $A-B$ tests as well as the changing of antennas and returning to a given location.

Not only do your antennas perform far better than anything else tried, but they are good looking as well. In fact, one customer who gave up his radio because he was moving to another area, wanted to keep his antenna because it looked so good on his car.

As a result of the great advantage over the roof-top whips, I have now discontinued using roof-top antennas altogether on new subscriber installations and am going to your Cat. No. 181-509 gain antennas. As the old installations are traded in, or show a need for better coverage, they also will be replaced with your new antennas.

In short "you-all" make a mighty good antenna!
Very truly yours,

Alan H. Rosenson Owner and Chief Engineer

AIR-PAGE - AIR-COM

Communication Antenna Systems for American Business

Another Quality made compact antenna

THE FIRST MULTIBAND COAXIAL ANTENNA for 6-10-15-20 Meters

needs no ground plane radials -

Ideal for . . .
Emergency nets and citizens band wherever omnidirectional coverage is desired.

Campers and apartment residents or wherever space is a problem.

A second antenna for low angle radiation.
The New C-4 features.. . - Full electrical half waves on all bands... eliminating the need for awkward ground plane radials.

- Easy, inexpensive mounting with regular TV hardware such as simple chimney mount as shown.
- Compactness . . . only 12^{\prime} over-all height.
- End-loaded to provide maximum radiator current for maximum radiation. - Quick installation . . . about $1 / 2$ hour. - Power rating . . . 300 watts AM.
- Feed line . . . RG58AU or equivalent. - SWR...less than 1.5 to 1 at resonance.

Model C-4

amateur net
$\$ 34.95$
Two other 6-10-15-20 meter antennas:
Model B-24 Four Band Beam
Element length $11^{\prime}-$ boom length 5^{\prime} Turning radius 7'

amateur net
 $\$ 54.95$

Model M-4 Four Band

Mobile - 5'-3' ${ }^{\prime \prime}$ high
Fits all standard mounts
amaieur net

$\$ 16.95$

The above antennas are also available for 6-10 or citizens band operation.
Write for literature and the name of your nearest Mini-Products distributor. Patents pending

1001 West 18th Street
Erie, Pennsylvania
SPECIALISTS IN COMPACT ANTENNAS
stand on end. like a memory machine which will store up log-hook information. DIC is having trouble ketting things mailed. K7CLL still is busy studying law in Salem. I nice card was received from Ketty, (PV). DEM is trying to show up the SC:M with all of his fishing tales, It looks like Chas had quite a trip on the Hogue River. Also ZB went deer hunting with the same luck such as JDX has fishing. A new :upplicant for OPS appointment is K7KBK. AJN is looking for bootleg valls and having success. Fine RACES work was reported at c.d. headquarters during an open house there. (iLZ, GWB, GWT. JDX, HIO, NGW, H7BCX and K7DV'K took part. There was bat news for HACES with the death of K7DIN in a hunting aceident. K7EZP is busy on 6 meters. A nice letter was received from Beth, NJS, wur PAM, with plans for the future. K7JS.I is experimenting with $5600-\mathrm{Mc}$. gear. GUH continues listening for harmonics, ete. A tine AREC report was sent by UQI. We understand Red expects to be very busy in 1961 in other lines so we tnas have to serure a new SEC soon. Traffic: (Oct.). K7AXF 2ธ0, W7BDU 199, ZB 86. K7CBA 53. (PV 27. W7DEA 23. MTW 19, JN 15. K7CLL 13. W7DIC 10. K7EPO 10. W7GWC 8. LT 7. D'TT 5. JDX 4. К7EZP 3. EPA 2. isept.). V77B 467.

WASHINGTON-SCM. Robert B. Thurston. W7PGY -SFC: HMQ. KM : AIB. PAMs: LFA and PGY. Washmgton nets: CBN, 3960 ke. 2100 PST Mon. through sat. ESN. 3920 ke. 1800 PST Mon.. Wed. and Fri. NSN, 3700 kc 2100 PS'T Mon. through Fri. WARTS. 3970 kc . 1830 PsT Mon. through sat. WSN. 3535 kc . 1900 PST Ann. through Fri. New ofticers of the Spokane Amateur Kadio (lub are h7BEO, pres. K7EUA, vice-pres.; lio.J, treas.: K7AGI, secy.: HC.J. ZNN. OPR, EQU and K 7 AFE , trustees. The new $\dot{\text { EC }}$ for the spokane Area is WIL. The Richland Area AREC received newspaper mverage through the Red Gross during the SET just. anmpleted. K7BBO renewed his OES aupointment. OM() was issued a Section Net certificate for WSN. ACA and K7IEY are very active in the WSN and K7IEY made the BPL. UOI is NCS for the Spokane Irea AREC Net on 146.16 Mc . each Tue. K7GZB has new nine-element 2 -meter beam. NUN was the NCS on the Totem Emergency Net (Seattle) during the EET. The net now has 66 members. $K 7 C W O$ moved to a new (\&TH in Belleviue and works for Boeing. HCJ and EQU ate new OO appointess in the Spokane Area. AMC sonn will have i portathle ham station and will travel. K7GYA is active on 10 meters. BTB says conditions were very had for skeds to KL7-Land. IIB retiurned wrom it Reno and Lake Trahoe vacation. Li7CHH makes DXCC. Nrw EC appointees are TJJA for Asotin County and FGi for Kittitas County. A total of 129 SET pieces of traftic was received by HMQ. the SEC. NICU was a visitor at the VARC meeting. HMQ helped kick oft Lewis County AREC activities. ISC is doing a fine job as EC. The Boeing gang (BEARS) has applied for a station license. CGA attended the Air Force MARS meetstation license. CGA attender the Air Force MARS meet-
ing in W6-Land. Frank is State Coordinator. VI received his 2nd-class phone license. Trattic: W7BA 1014. 1VZX 974. K7IEY 500, W7.APS 95, KZ 94. K7HIL 8B, W7AMC 54. ACA 39, BSW 34. YFO 29, EHH 24. LFA 24. GYF 23, JEY 20, K7A.JT 19, W7AIB 15, K7ASY 12 , ЮDQ 11, BTB 10, K7CHH 6, W7OMO 6.

PACIFIC DIVISION

NEVADA-SCM. Charles A. Rhines, W7VIUK7FDB will be active again soon. BFM now is at Carson Uity with the Department of Education. JHB is a new hain at Sparks. AGZ operated mobile while on a hunting trip. CNG spent some time in the hospital but is OK again. JDI is in Korea awaiting his discharge. ZT has $10-k w$. emergency power supply and remote control from his concrete fall-out shelter. TPS is hack in Elko. VR is on fixed and mobile with a KWM-2. VIU received his WAC-YL. WAC-Phone and WAP certificates. He has his new shack finished and since ham radio doesn't keep him busy enough he is the new local chairman for his union. Boulder City had a sillecesful SET with JU, BVA. PWE, HJ, BJY. SNP. TKV, YRY. CXQ. TGK, YCT and HQS participating. WA6AML/7 is a new ham in Reno. NARA supplied communications for the Admission Day Parade in Carson City. Traffic: W7VIU 2.

SANTA CLARA VALLEY—SCM, W. Conley Smith, K6DYX-Your SCM will welcome notice of results of club elections for his records and for publicity. K6BBD. EC for Santa Clara County, also is the new trustee of W6UW, SCARA Red Cross station. The MARS Club in Santa Clara held a 2 -meter transmitter hunt Nov. 5 . This group, including W6ASH, W6VCI. K6ZVC, K6MOB, K6PAV and K6BAM, again provided communications for the Sianta Clara Columbus Day Parade. (Continued on page 130)

1000 KC to 137 MC - . 01% TOLERANCE

Wire mounted, plated crystals for use by amateurs and experimenters where tolerances of $.01 \%$ are permissible and widerange temperatures are not encountered.
Just any crystal in any oscillator will NOT combine to produce spot frequencies. These crystals are designed to operate into a 32 mmf load on their fundamental between 1000 kc and 15000 kc. Overtone crystals operate at anti-resonance on 3rd mode and series resonance on 5 th and 7 th mode crystals.

- HOLDERS: Metal, hermetically sealed. FA-5 and FA-9 are HC/6U pin type while the FM-9 is an HC/18U pin type.
- FREQUENCIES (Specify crystal type and frequency when ordering.)

| Fundamental | FA-5 and FA-9 | Price | FM-9 | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $1000-1499 \mathrm{kc}$ | $\$ 5.75$ | Not available | |
| | $1500-1799 \mathrm{kc}$ | $\$ 4.95$ | Not available | |
| | $1800-1999 \mathrm{kc}$ | $\$ 4.40$ | Not available | |
| | $2000-9999 \mathrm{kc}$ | $\$ 3.30$ | $8000-9999.999 \mathrm{kc}$ | $\$ 5.00$ |
| | $10000-14999 \mathrm{kc}$ | $\$ 4.40$ | $10000-15000 \mathrm{kc}$ | $\$ 5.50$ |
| | $15000-20000 \mathrm{kc}$ | $\$ 5.50$ | $15001-19999.999 \mathrm{kc}$ | $\$ 6.50$ |
| | $10-14.99 \mathrm{mc}$ | $\$ 4.40$ | Not available | |
| Overtone (3rd) | $15-29.99 \mathrm{mc}$ | $\$ 3.30$ | $20-39.99 \mathrm{mc}$ | $\$ 5.00$ |
| | $30-59.99 \mathrm{mc}$ | $\$ 4.40$ | $40-59.99 \mathrm{mc}$ | $\$ 5.50$ |
| | $60-75.99 \mathrm{mc}$ | $\$ 4.95$ | $60-89.99 \mathrm{mc}$ | $\$ 6.50$ |
| Overtone (5th) | $76-99.99 \mathrm{mc}$ | $\$ 7.15$ | $90-100 \mathrm{mc}$ | $\$ 8.50$ |
| | Not available | | $101-110 \mathrm{mc}$ | $\$ 10.00$ |
| Overtone (7th) | $100-137 \mathrm{mc}$ | $\$ 9.35$ | Not available | |

Overtone crystals are calibrated on their overtone frequency. They are valuable for receiver-converter applications aid are NORMALLY NOT UTILIZED IN TRANSMITTERS, i since only a small amount of power is available under stable operating conditions.

- CALIBRATION TOLERANCE: $\pm .01 \%$ of nominal at $30^{\circ} \mathrm{C}$.
- TEMPERATURE RANGE: $\cdot . . .40^{\circ}$ to $+70^{\circ} \mathrm{C} . \pm .01 \%$ of freqvency at $30^{\circ} \mathrm{C}$.
- DRIVE LEVEL: Recommended, maximum 3 milliwatts for ovịrtones; up to 80 milliwatts for fundamentals, depending on frequency:

ONE DAY PROCESSING . . .

Orders for less than five crystals will be processed and shipped in one day. Orders received on Monday through Thursdays will be shipped on the day following. Orders received on Friday will be shipped the following Monday.

The WONDEROD whip is, of course, fiberglass (-all Shakespeare antennas are). And, because the fiberglass sheath (-a rod formed by exclusive Shakespeare process so that it won't take a set) is loaded dielectrically, the best impedence match is made with a shorter rod. Thus, you get full quarter wave efficiency from your 96" WONDEROD - with a full $6^{\prime \prime}$ more clearance than standard 102" metal whips.
Fiberglass gives WONDERODS other advantages: insulation to reduce operating hazards under live wires high impact and flexural strength . . . a surface that won't rust, even in salt spray, etc. . . . a light weight that cuts road noises, and reduces sway.

Still wonder whether you're getting it all in 96'? Just try itl

W6WCT yave a fine talk on video tape-recording before the Palo Alto ARA. K6DYX won the 2 -meter limit held by the Fort Ord MARS club. The Monterey Band Jammers enjoyed a pizza party Nov. b. Lick-Wilmerding High School RC, K6JS, is on the air with a kw. donated by W6CHE. Bill Orr's and Paul Wolf's problems involving antenna towers and city ordinances are the subject of sympathetic interest hind concern by all fellow amateurs. The latest winds from the North hear the omnous news that san Mateo is dratting an ordinance requiring a fifty-dollar permit on all radio broateasting facinties! WA6JUV and WA6KUW, an unclenephew team, are active with an Apache. W6MMG :and W6ZXS study technical writing at San Mateo Collece night selioul. K6FL has a new Thunderbird on 5.5 - ft . tower. W6YBV now runs 200 watts to a 4-125A. W6H.SY is rearranging the shack. "W $6 R F{ }^{\prime} F^{\prime}$ is going high power. K6ZCR is "expecting"-: new transmitter! Traffic: (Ôrt.). W6RSY 1078, Ki6ZCR 352, li6DYX 305, W. $60 . A Q$ 176. W6YBV 145, W6.AIT 103 , IVA6HZA 103, W6IDEF 99, W6FON 74. W6HC 60. L6LiZ 32. W6YHM 24. W6OII 23. li6YKG 21, W6RFF 13. W6ASH 11, N6 EQE 11. W'AGHRS 2, (Sept.). WBASH 12.

EAST BAY—SCM, B. W. Southwell. W6UJW—BEC: K6DQM, ECs: K6JNW, K6VXK, K6ESZ, K6TYス,

 check-ins ou NCN and WA6HED is haison to RN6. WA6GCS has Gunet Mohile twans. Kibolif has departed the section for San Diegu. W6PIR is installing Gonset twins. W.A6HSQ got her (ieneral Class ticket. Congrats. The East Bay liadio Cluh nuw meets at John Hinkle Park Chibhouse. The RARC held a pienic in Gakland Hills Oct. 16, K6JHV lought K゙6CUH's riz and is on 75 -meter phone. WAGIVG is a new General Class licensee in Richmond. FB. K6B.AJ is attending U.C. K6TGA and WA6AFF got ind-class radiotelephone rommercial tickets. Thirty-two hams turned out for the state (.ID. Drill on Oct. 1. WbMIE and W.AbCNW are new (ieneral class licensees in the Walnut Creek trea. li6LVH is working ou his rntenna. The CCRC met at the san Francisco Chapter of the Red Cross for its Octolier meeting. W. A6OAK is the rall of the Castro Valley High Sclinol Radio Club. KBDQM and his XYL. WA6HYO. visited the HARC. WV6L'TG has a new DX-35. W6NYK is on 75-meter phone with a DX-100. K6BD is the call of the Hayward High school Radio Clut, W.A6IMC is a new Te:hnician Class licensee. W.A6CSI has a new 10 -meter transcemer. WAGGUM is back from Salt Lake City. Trattic: (Oct.). W6NBX 28i. K6GI 40, W6OT 17, h6OSO 8. isept.I. W6OT 19.

SAN FRANCISCO-SCM, Leonard R. Geraldi, K6ANP -The Northern Califormia Net (NCN) metets on 363 j kc. at 1000 Mon. through sat. All c.w. operators in the section are welcome to check in. New oflicers of the Sin thon are welcome to eheck in. New oflicers of the san
Francisco Radio Club are L 6 MUZ , pres, W6UDI, vice-pres.: K61PM, secy.; and W6HVN, treas. Guest speaker at the Nuvember meeting was Mr. N. Landry, engineer in charge of the loC. During the October meeting, the Bandspanmers voted to disband and join the ranks of the san Francisco Radio Club. The treasury was donated to the American Cancer Society. W6MXJ is the proud owner of a new 100 V . WGQ 10 is putting out a very fine signal with her 30%. W6CQQ is back on the traflic nets after his usual summer layoft. W6BII and W6GQA were active in the October CDD Party. In the September Frequency Measuring Test, W6GQ. made a tremendous soore of 1.7 parts per million. Nice going, Al. K 6 LWC was winner of the 6 -meter hidden transmitter hunt in November. Reports from clubs and individual amatems in the section are cordially invited. Send your news to your SCM. It will he a pleasute to serve you. Traffic: W6QMO 434. W6GQY 203 , W6RIP 84, W6GGC 58.

SACRAMENTO VALLEY-SCM, Jon J. U'Brien W6GDO-Asst. SCM : William van re Kamp, W6CKV: The RAMS, ever on the run, visited the historic town of Virginia City, Nev., on Oct. 2, Golrlen Gate Park and Planetarium on Oct. 9 and leather River Canvon on Oct. 23. On Uct. 30 several local hams went to the races, they provided emergency communications for the Golden State One Hundred Mile Auto Race at the Golden state One Hundred Mile Antn Race at the BND, GDO. HQF, MLN. li6s GDS. HHD. OYY IVK, WA6s GNB and JTO. The GEARS had youd weather and rielicious steaks for their tmnual Steak Bake Uct. 1. Twenty-eight people attended. The North Hills Radio Club showed a film at its Oct. meeting, one of the many available to alfiliated clubs for this purpose from ARRL. IV6.AF completed his hig trip through the north and sonthwestern states. He rovered 7600 miles, funting and fishing. and savs he can notr sectle down to work for a while.
iContinued on page 132)

FOR THE PROFESSIONAL AMATEUR

Clobe Scout Deluxe, Model SD-75A, is a modern new bandswitching 6-80M transmitter for 90 w CW, 75 w phone input power with relay controlled circuitry. Final amplifier works straight through on all bands, pancl control for antenna loading on all bands, high level plate modulation, pi-net output on $10-80 \mathrm{M}$-. tuned link on 6M, matching into low impedance beams, built-in power supply for 115 VAC. Extensive TVI precautions including separate shielding of final amplifier and meter. Convenient rotary switches. Functional design. 15 $1 \times 6 \times 14 \%$.

Wired \$15995
MOST DISTRIBUTORS OFFER TERMS OF 10% DOWN PAYMENT AND 18 MONTH PAY PLANS.

Wired, $\$ 59.95$
Kit, \$49.95

Globe VFO 755A

The Globe VFO 755A comes complete with well-filtered power supply with voltage regulation. Output: 40 and 160 M . Vernier Drive. 13:1 tuning ratio. Approx. 50 KE volts out. put. Ternperature compensated for utmost. stability for USB. $A M \& C W$.

Clobe's FCL-1 Speech Booster

Globe's FCL-1 Speech Booster is a peak limiting audio preampifier, increases modulation intensity for most penetrating Hudio, with harmonic suppression. Adapts to most transmitters.

Wired, $\$ 24.95$
Kit, \$15.95

Tecraft DEPENDABLE and priced right

TECRAFT CRYSTAL CONTROLLED CASCODE CONVERTERS
For Amateur, Commercial And Special Services

CRYSTAL-CONTROLLED CONVERTERS FOR 10 AND 15 METERS
$\begin{array}{ll}\text { Model C-3-21 } & 15 \text { meters } \\ \text { Mode } \\ \text { C-3-26 } & 10\end{array}$ Choose IF output between 2 and 6 mc . to suit your receiver.

TECRAFT VHF TRANSMITTERS

For Mobile And Fixed Stations

Model TR 20/21 (10-15 meter band) 6AU6 Osc. 5763 buf/dblr. - 6360 Power Amplifier. $20-25$ watts input. Model TR 20/50 (6 meter band) 6AU6 Osc. 5763 buf-dblr.-6360 Power Amplifier. 20-25 watts input. Model TR 20/144 (2 meter band or CAP) 6AU6 Osc. $5763 \mathrm{buf} /-\mathrm{dblr} 5763 \mathrm{buf} / \mathrm{mult} .-6360$ Final Amplifier. 20 watts input.
Model TR 20/220 (11/4 meter band) 6AU6 Osc. 5763 buf/-mult.-6360 buf/mult.-6360 Power Amplifier. 20 watts input.

A.C. POWER SUPPLIES

MODEL PTR2
Provides power for any Tecraft transmitter. It will also power the companion converter.

SAN JOAQUIN VALLEY-SCM, Ralph Saroyan W6JPU-On Uct. 22, the Tulare Connty Amateur Kadio Club held a dinner honoring W6GCS on his foth birthday with 23 persons attending. K6VWV and $W 6 Z K H$ are conducting code classes for Novices and Technicians. W7LUJ was a recent visitor in Fresno on his way to Formosa, where he will operate from VB1US. K60LN is working on an ARC-5 rig. K6UZL and K6ROU made DXCC. W6HYR is recuperating from a tecent weration. W6HYG still is working DX. W6FXV is working over a BC-4.53 for s.s.b. operation. W6NJF was a recent visitor to fresno. The Annual Marsfest was held in frestu on Oct. 22, with 116 in attendance. W6NKZ won a Halo 6 -meter antenna in a contest. The Fresno Radio Club traded in an $5 \mathrm{X}-100$ tor a 75A-2 for use in the emergency trailer. 'The trailer can operate on all bands with B\&V and Gonset equipment. K6GTI still is working on a transistor power supply for his mobile rig. K 6 $A H Q$ has an all-band transistor receiver. KitBQ is heard on 75 -meter mobile. W6BAN got a new pick-up and is accumulating parts for his mobile. K6UGX won a $5^{\prime \prime}$ 'scope at the Fresno Radio Club fund-raising alfair. W6NLZZ is working a tuned Cavity for the 2-meter repeater of the Fresno Kadio Club. I would like to wish all of you a very Prosperous and a Happy New Year. Trafic: K6ROU 147, K6OZL 26, K6OLN 7, W6ARE 3 W6FXV 2.

ROANOKE DIVISION

NORTH CAROLINA-SCM, B. Riley Fowler, W4RRH PAM: DKC. V.H.F. PAM: ACY. KM: PNM. INN4WLX reports on a Novice net that meets Mon., Wed. Fri. and Sat. at 2300 GMT on 3720 kc . Paul reports a membership of 12, and urges other Novice operators to join the net. 'The net is known as the "Heap Big Net.' Seems to me this is a mighty good place for Novice uperators to begin their training in net uperation. RNH reports that the Belmont anateurs have reorganized for the coming year. Tom is secretary and OOG is president. I suggest that all clubs write Ed Handy, of ARRL, and secure the list of training aids and booklets helpful in club programming. Many reports arrive here too late to get in the current month's activity. You must know by now that material sent in any month will appear two months later in QST'. Please keep this in wind when writing. For example, a club putting on a hamiest should let me know two or more months it advance of the date you plan your meeting. $3 \mathrm{JWN} / 4$ and 4 LEV qualified for BPL in September, but their reports arrived too late for listing with the september activity. I believe that 3.JWN/4 has qualified for a BPL medallion. Try to get all tratfic reports to me before the fourth of the month to be included in the section activity.

SOUTH CAROLINA—SCM, Dr. J. O. Dunlap, W4GQV-FFH and VIW both did exceptionally well in the September Frequency Measuring Test and have been appointed OO. New in Orangeburg is AYG. formeriy OXO of 'Texas. The Low Country ARC's booth at the Charleston Fair attracted much favorable womment. In September the S.S.B. Net had 429 stations check in with 45 formal and 68 informal messages. The Phone Net had 774 stations check in with 40 formal and 103 intormal tratfic. The Rook Hill ARC is receiving much favorable comment on the two net supvers and the hamiest sponsored by the club. \& combined affair of all the nets, to he called "The S.C. Section Meeting," is planned for next year. At the sed supper meeting a great variety of subjects were discusied by AKC, vice-director, and GQV, SCM, SEC K4PJE romplimented the net on its recent hurricane activities. IIE discussed phone net activity. All invited the group to join and support RAC'ES. FFH inanager of the S.L.B. Net, stressed the importance of cuordination of all modes of operation. CE gave a deseriptive picture of activities in the early days. MWH, Roanoke Division Director, conducted a question and answer period of ARRL policies and actions. The Ontoher issue of $\operatorname{SC} N$ Neu's is most excellent. Traffic (Öct.). W4KNI 115, K4AVU 114. W4NKC 81, K4ZHV 79, HDX 65, W4FFH 44, VIW 32, K゙4HJK 31, W4CHD 22. PED 21. K4KIT 14.

VIRGINIA-SCM, Robert I. Follmar, IV4QDYPAM: BGP. RMs: K4QER, K4KNP and QDY. VSN1830 to 1900 EST and VN at 1900 and 2200 EST on 3680 kc. VFN meets at 1900 ES'T on 3835 kc . October was a busv month what with the SET and other activities. DV'T, one of our URSs, has moved to Philadelphia. Pa OOL, reports that the SVARC had 9 mohiles and 2 tixed stations working with the police on Halloween. CHK was first place winner of the Va. QSiO Party, with CXQ second and JUJ third. JSJ/4, a new outlet in Hampton, is doing a nice job. RHA also is coming to life again. (Continued on page 134)

FIGHTS STORMS

Cat. No. 175-509 STORMYMASTER is designed for service in areas where maximum physical strength and/or resistance to precipitation static is required. This design results in a reduction of precipitation static interference in the order of 20 db .

- Frequency range . 30-50 Mc
- Nominal input impedance 50 ohms
- Maximum power input . 500 watts
- VSWR . $1.5: 1$
- Bandwidth . $\pm 1 \%$
- Rated wind velocity. 100 MPH with $1 / 2^{\prime \prime}$ of ice
- Weight . 80 lbs. at 30 Mc

MARLBORO
 NEW JERSEY

Communication Antenna Systems for American Business

BARRY'S SPECLILS

MOBILE 10 METER XMTR: CBS 5516 final. Wt. 7 lbs. \$13.95.
VHF XMTR : For 2 meter and/or $11 / 4$ meter conversion. (Ises two 0201s into single Amperex 0301 twin tetrode. Complete w/A 心̌ B battery pack. connection cable. schematic and conversion info. $\$ \mathbf{1 5 . 0 0}$.
Mosley Antennas in stock: New Model TA-36: 4 elements un 10-3 elements each on 15 and 20, \$129.50. T.A-33, \$99.75; TA-33 Ir.. \$69.50; V4-6, \$27.95; TD3

Hi-Par Antennas in Stock: Type S-1: "Saturn Six" Mobileer, \$16.95: Type $6 \mathrm{M}-5$: 6 Meter 5 Element Beam \$14.95; Type 2M-6: 2 Meter o Element Beam $\$ 6.95$; Iype $2 \mathrm{M}-8: 8$ Element Wide Spaced 2 Meter Beam, \$14.95. Ppd. USA and Canada.
Tri-Ex Towers: Write for prices and literature.
CD AR22 Rotator \$32.77.
CD Ham M Rotator, \$117.10.
FOLLOWING IN STOCK. Late Serial Nos. Factory Sealed Cartons. Hammarlund HQ145C, \$279.00; HQ110C $\$ 259.00$. S-100 Spkr.. \$14.95. Ppd. USA and Canada.
NATIONAL NC270, \$249.95; NC270 Speaker, Model NTS-3 \$19.95; HRO-60 \$645.00; NC303 \$449.00; NTS-3 $\$ 19.95$; HRO-60 \$645.00;
NC400 $\$ 895$. Ppd. USA and Canada.
CENTRAL ELECTRONICS. 100-V SSB smtr. \$795.00. Ppd. USA and Canada.
Complete stocks of xmtg, special purpose and receiving tubes. Sensible prices. First quality only. Tube specials of the month: $2 \mathrm{E} 26, \$ 1.95 ; 4 \mathrm{D} 32 . \$ 17.00 ; 4 \mathrm{~F} 27, \$ 6.50$: $4 \times 150 \mathrm{~A}, \quad \$ 12.00$; $4 \times 250 \mathrm{~B}, \$ 27.00$; $4-125 \mathrm{~A}, \$ 25.00$; $4-250 \mathrm{~A}, \$ 30.00$; $4.400 \mathrm{~A}, \$ 35.00$; $4-1000 \mathrm{~A}$, $\$ 85.00$; $35 \mathrm{TG}, \$ 1.50$: $450 \mathrm{TL}, \$ 37.50$; $723 \mathrm{~A} / \mathrm{B} ; \$ 4.00$; 803 , $\$ 3.95 ; 805, \$ 3.75$; 807, \$1.10; 815, \$1.95; 826, 60ф; $829 \mathrm{H}, \$ 7.50$; $832, \$ 4.00$; 837, $90 \mathrm{c} ; 860 \mathrm{~A}$. $\$ 1.90 ; 1625$,

Modulation Transformer: 2500 watts max. audio. Pri. impedance: 12 K ohms. Sec. imp. 7500/5000 ohms (150 to 3500 CPS plus ur minus 3 db .) New, in orig. Kenvon wooden box, \$75.00.
BC-640B VHF Xmtr (100 to 156 Mcs.) Push-Pull HK24Gs modulated by pr. of 811 s . Orig. crate. Unused, $\$ 395.00$.
SPECIAL PURCHASE: Stancor Filter Choke C-1420, 16.0 Hy . at 80 Ma . DC. DC resistance: 300 Ohms . Insul. Test: 1500 V RMS. $\$ 2.50$.

WRITE FOR 1961 CATALOG BARRYEMECROMCS CDRP.

512 Broadway Dept. Q-1 New York 12, N. Y. WAlker 5-7000
Minimum
TWX: NY 1-3731

EASY TO LEARN CODE

It is easy and pleasant to learn or increase speed the modern way - with an Instructograph Code teacher. Excellent for the heginner or advanced student. A quick, tapes from beximner's alphabet to typical tapes from berinner s alphabet to typical
messages on all subjects. Speed range 5 to 40 WPM. Always ready, no ©KM, beats having someone send to you.

ENDORSED BY THOUSANDS!
The Instructograph Code Teacher literally takes the place of ann operator-instructor and enables anyone to learn and master code
 ivithout further assistance. Thiousands of sucSyssil operators have acguired the code with the instructograph

INSTRUCTOGRAPH COMPANY

4709 SHERIDAN ROAD, CHICAGO 40, ILLINOIS 4700 S. Grenshaw Blvd., Los Angeles 43, Calif.

Our PAM, who aiso is OO, OBS and OPS, is sporting an ART-13 these days and says it's working tine. The TMRC furnished fommunications for the filizabeth City Roat Races on Oct. 1-2. Reports are that the Ortober CD Party was fast and furious. K4AL reports that there was too much QRM in the Party and he seored only 11. Hi. There is some agitation for more ros.h. ot VFN. K4FM.J is getting his feet wet in DX. IA is bark trom the Pacific and glad to be home. Welcome, Ev! K4LPR is making contacts on 160 -meter phone. 5RKR/4 has a kw. ready for all-band s.s.h. KgCVJ/4 also has gone s.r.h. JUJ's new wall paper is IJVQ and LARK. He also picked up two more countries and now has a DX count of 161. ©VO still is oll the road a lot; Former sCM KK now is pushing a "store-houghten"; transmitter, which is the first "hought" job in 36 years on the air! K4IKF reports a new radio club in Roanoke called the Rnanoke Valley Imateur Radio Cluh and says that he is going mule s.s.b. Traffic: (Oct.). K4MXF 297. W4QDY' 262 , K4LRL 226 . FSS 155 , W4DVT 114, UOL 77, SHJ 77, K4SGQ 75. W4CHK 70, JNJ/4 61, RHA 59, BGP 49, K4AL 47 , W4LK 39.144 LX 36, K9CVJ/4 29, K4FMJ 27, W4IA 27, K4MKO 24. W4BZE 12. AAD 8 . OWV 7 . KHCHA 6, W4CVO b, dUJ 6, K4L.PR 6, W4KX 5. (Sept.). K9CVJ/4 37, K4IKF 2. (Aug.). W 4 CXQ 45.

WEST VIRGINIA—SCAI. Donald B. Morris, W8JMI It is with deep regret that I report the passing of NCS of Richwood. New otticers of the Clarksburg ARC are K8MAU, pres.; ESQ, vice-pres.; K8ARA. sec.treas. ; K8LGI, act. mar. DYA is a new OBS with 100 V and 4-1000-A. New ofticers of Nountain State Transmitter 1 RC at Eilkins are k४C'HW, pres.; Б8TPF, vice-pres.; Nicholas Loudin, secy.-treas.; GIU', act. mar., who is also trustee tor club station K8VNQ. Congrats to WUB for a tine phone net hulletin. New ufficers of the Greenbrier ARC at Kainelle are kyELJ, pres.; K80ML, vice-pres.: K8OLY, secy. KN8VBD, treas. K8UCD is a new IL operator at Martinsburg. UHK alerted the Barbour-Taylor County EC Net when a plane rrashed near his home. New otticers of the MARA ARC at Fair-
 tress.; IXG, act. mgr. KyliZF now is attending W.V.U. and reports that nure than 20 amateurs attended the first meeting of the new rudio rluh at W.V.U. H8JSX is active in OBS and AREC work. K8PCF is building for 420 Mc. Traffic: (Oct.). K8HID 114, W8PBO 105, K8KFh 97, QXS 53, W8ELX 47, K8CNB 43, W8NYH 41. K8JLF 2\%. W8CCR 13, JM 12, SNP 11, WUB 11, h8QYG 4, W8ESH 3, K8JSX 2.

ROCKY MOUNTAIN DIVISION

COLORADO—SCM, Carl J. Smith, WgBWJ-Asst. SCM: Howard Eldridge, KUDCW. SEC: NIT. KMs: WME and MYB. PAMs: CXW and IJR. UBS: KODCC. New rppointments during October: 1 UF as $\dot{\mathrm{O}} \mathrm{ES}$, VEO as OPS, KøOVQ as Class I OO and KOUQM as EC oi Rio Blanca and Moffet Connties. New editors oi rTN.N are Klos YL.A and Y'KV. News irom the cluh bulletins: RF Carrier. Western Slope Radio Club ofticers are RJD, pres.; 1QV, vice-pres.; and R'TO, secy. FikY is home trom the hospital and feeling much hetter. splatter Chatter. YAE has returned to C.S.U. as hear of the EE Dept. HRS and JTZ have new 2 -meter beams. The Roundtable: WRO has been awarded DACC. HOO is president and WJF secretary of the new Roaring Fork Amateur Kadio Club in Carhondale. Net news: YFL is now NCS of CEPN with CXW and NIT as aiternates. now NCS of CEPN with CX Nervo NIT as Miternates.
KNOZNV is NCS of the Nervous Novice Net that meets at 2030 the 2 nd and last Sun. of exeh month on 3720 kc . Novices and old-timers are all weleome to report. V.h.f. news: Aurora conditions provided IliF with trkansas for his 6 th state and MOX with Lowa. Missouri and Kentucky for a total of 17 on 2 meters. Definition: Experience is something that cuables vou to recognize a mistake when you make it again! FEO made BPL. Traftic: Mrt. I. KGEDK 429 , EIH 363 , WWD 324. WØFEO 234. KQDCWV 160, QGO 143. WOAIYR X2. ENA 61, ACD 33, KOEVG 29. C'BI 12. (ient.). WOFEO 219.

UTAH—BCM, Thomas H. Miller, W7QWH-Asst. SCMI: John H. sampson. 7OCX. SEC: K7BLR. 'The Ogden ARC really is pushing the AREC along with its civil defence program and it shouldn't be fung betore we have an active AREC unit there. OCX. QWH and F7BDX received BRAT iswards for work on BUN. MWR has heen on 20 -meter c.w. iately. K7BHE. HVF and V'TI. operating, 10 -meter mobile assisted by KN7KIE and KN7KDF, helped assemble and pace the steal bav Parade held in American Fork on Labur Day. K7EAY and MAC have SCR-522 rigs on 2 meters. 2 -meter activity really is picking up in Utah. Most of the fellows in Salt Lake are vertically polarized. QWH has been ap(Continued on puge 136)

- peration: 40 meteres:

Not working 40 meters? We suggest you give this band serious thought! There's fine "'rag-chewing" and good DX to be found on 40. You'll enjoy this fun-filled band even more with efficient, maintenance free Mosley antennas. DX-Rated for top performance.

40-D DIPOLE LOADING COIL

Make an inexpensive, fine performing dipole transmitting and receiving antenna at about $\%$ the length of a full size dipoleiust 37 feet! Only one coil necessary. Rated to a full KW.

Amateur Net $\$ 7.95$

TD-2 TRAP DOUBLET

Resonates at 40 and $75 / 80$ meters providing a typical figure eight, $1 / 2$ wavelength pattern at each resonant frequency. Overall length is 114 feet, 11 inches. Mosley "Sr." traps are aluminum enclosed and are frequency stable through wide climatic conditions. End insulators are high grade ceramic. Center connector securely holds No. 14 copperweld wire. Rated to 1 KW . A complete antenna ready to go!

Amateur Net $\$ 37.75$

VPA-40-2 "Vest Pocket" BEAM
Ideal for low cost 40 meter operation - and this wonderful little DX antenna is only the size of an ordinary 20 meter beam! Rated to in excess of 1 KW .

Amateur Net $\$ 74.95$

TA-20-40 THE BIG SIGNAL BEAM FOR 20 AND 40 METER OPERATION
For those radio
amateurs who will not
accept less than
the finest...
Performance to satisfy the $D X$ enthusiast!

Built for operation at maximum amateur legal power. Frequency stability under all weather conditions. Tilting head included for ease of installation. Fully rust and corrosion proof - guaranteed! Holes are factory pre-drilled and elements color coded. Just one coaxial feed-line needed. Assembled weight with tilting head, 150 pounds.

Amateur Net $\$ 337.50$

4610 N. Lindbergh • Bridgeton, Missouri
Mosley Dipole Connectors and Insulators are available to make it easy for you to construct your own 40 meter antenna using the 4(1)D Dipole Loading Coil.

THEY'RE ALL HERE!

And Many More Besides -

RESOLVE THIS NEW YEAR TO CHECK AT CORKY'S FOR
\star CENTRAL ELECTRONICS
\star COLLINS

* CuSHCRAFT
* DRAKE
* HALLICRAFTERS
* HAMMARLUND
* HY-GAIN
* JOHNSON
\star MOSLEY
\star NATIONAL \star ROHN
- TELREX
e full line of top ham equipment and components maintained at all times and on terms hams enjoy!

CORKY'S of HARTFORD

203 Ann St.
-
Hartford 3, Conn.
Tel. CHapel 6-5691

TWO-WAY COMMUNICATION CRYSTALS

UNCONDITIONALLY GUARANTEED
FAST-24 HOUR SERVICE
American specializes in two-way communications. Frequency correlation data for G.E., Motorola, R.C.A., Collins, Gobe, Johnson, Lear, Narco, Hallicraf ers, Link, Gonset, Heath, Bendix, Aero ron, U.S. Gov't. and many other com-

frequency range	CALIBRATION TOLERANCE	PRICE
2501 KC to 9999 KC	.002\%	\$3.00
15 MC to 32 MC TM	.0025\%	\$3.00
32 MC to 50 MC	.0025\%	\$4.00
10 MC to 17 MC Fund	.002\%	\$4.00
2001 KC to 2500 KC	.002\%	\$4.00
50 MC to 60 MC	.0025\%	\$6.00
1000 KC to 2000 KC	.002\%	\$7.50

AMERICAN CRYSTAL CO.
 P.O.BOX 2366 • KANSAS CITY 42, MO.

pointed director of communications for Salt Lake City Civil Defense. Traffic: (Oct.). W7OC 153, WけFVD/7 64. W7QWH 20. (Sept.). W7MWR 12, E7BHE 9.

NEW MEXICO-SCM, Newell F. Greene, K'5IQLAsst. SCM: Carl W. Franz, 57HN. PAM : ZU. 10-meter PAM: LQM. V.H.F. PAM:FPB. RM: ZHN. The Breakfast Club meets Mon. throngh Sat. at 0700 MST on 3838 ke. NMBP meets Mon., Wed. and Fri. at 1900 on 3750 kc . TWN meets daily at 2000 on the same frequency. NMEPN meets Sun. at 0730 and Tue, and l'hurs. at 1800 on 3838 ke. Amateur radio took an actise part in the search for two missing university students. Following that event, a "Search and Rescue (ouncil." compriser of all groups who can take part in such elliergencies, held an orkanizational meeting. The AREC was well represented, The Red Rocks A RC, of Gallup, again is attive, says li5RXN. 1WKJ/5 at White Sands has abnut finished his "Perseids Powerhouse" and will he looking for skeds, Traflic: (Ont.). W5ZHN 753, UBW 71. K5DAB 26, W5VC 24, に5KBJ 23. GO.J 11. DAA 2. (sept.). W5ZHN 553.

2ND NEW MEXICO QSO PARTY

January 14-15, 1961

The Sandia Base Radio Club of Albuquerque announces its 2nd New Mexico QSO Party and invites all amateurs to participate. New Mexico hams are urged to work as many out of state stations as possible, so that those interested can earn credit towards WAS and the Sandia Base Fellowship Award.

Rules (1) Time: 36 hour period from 0800 MST Saturday Jan. 14 to 2000 MST Sunday Jan. 15. (2) No time limit or power restrictions: all bands can be used. (3) Scoring: New Mexico stations count 1 point per contact and multiply total by the number of states. U. S. Possessions, Canadian Provinces, and countries worked. NonNew Mexico stations count 3 points for each New Mexico station worked; multiply total by number of counties in New Mexico worked. (4) Stations can be worked once per bund. (5) A certificate will be awarded to the highest scoring station in each state, and to the highest scoring station in each country, Canadian Province, and U. S. Possession; plus a certificate to the highest scoring non-New Mexico station in the U.S.A. A certificate will be awarded to the 1 st, 2nd, 3 rd . and 4th highest scoring station in New Mexico. Special certificate for multi-operator groups. (6) A Sandia Base Fellowship Award is given to any station who contacts 25 different stations in Albuquerque. Party logs showing required data will be accepted in lieu of QSL's. (7) General call: "CO NM." New Mexico c.w. stations should identify by signing "DE NM (call) K." Phone stations say: "New Mexico calling." Frequencies to watch $3600,3835,7050,7250,14.050$. 14,250, 21,050, 21,300, 28,100, 28,600, 29,000, 29,600 , and $50,280 \mathrm{kc}$. (8) Exchanges: New Mexico stations send QSO number, RS or RST, and county. Non-New Mexico stations send (2SO number, RS or RST, and state, possession, province or county. (9) Logs must be sent postmarked no later than Feb. 15, 1961 to: Sandia Base Radio Club. c/o John C. Kanode, K5UYF. $4081 / 2$ Cornell Drive S.E., Albuquerque, New Mexico.

WYOMING-SCM, Lial D. Branson. W7.AMU-SEC : UQL. The Pony Express Net meets siun. at 0830 MST on 3920 kc . The Wyoming Jackalope Net meets Mon. through Fri, at 1200 MST on 7255 kc . for traflic. The YO Net is a E.w. net on Mon., Wed, and Fri. at 1830 MST un 3610 kc . The Casper Kadio Club is planning to move the club house and install a full basertent for the use of the communication equpment with auxiliary power plant. The main floor will he used for mettings and social events. We have a get-together every morning between is and 7 A.M. with from two to eight hams answering in on 3920 kc . LKQ has a new building to move into with his two-way radio business. BXS has a new HT-37 Hallicrafter transmitter and a Drake 1A receiver, LKQ has a new 111 Hallicrafter recewer. OQL has an 813 tinal, We had a well-attended civil defense meeting with the state Radio Officer. RACES nets will be autivated in the near inture. Traffic: W7BHH 65. HH 39, LKQ 25, C'QL 18. K7KLE 14, W7YWW 14. K7IAY 11, W7AMU 6, AEC 2, BHI 2, UFB 2.
(C)nntinued on page 13 B)
 \& A. E. Rogers (Senior Consultant, ELECTRONIC ASSOC., INC.)

Anyone having the slightest knowledge of engineering or physics will derive great benefit from this remarkable "pic-tured-text" course (3 volumes in one cloth binding). If you are a practicing engineer, you will be made familiar with the analog computer-with the suitability of this device for your design needs-and with the programming requirements. If you are a training director responsible for training maintenance technicians, or a teacher in a college or a technical institute, you will find this an effective "pic-tured-text" course that is easy to use. If you are a computer maintenance technician who is ambitious, you can gain a familiarity with this advanced computing technology. If you are an engineering college student looking toward a computerized technology, you can easily acquire a thorough understanding of the analog computer. More than 400 illustrations reinforce the ideas discussed in the text to make it completely understandable.
Beginning with the simple idea of learning by experimentation, it progresses through the basic types of analog devices, introduces the reader slowly to the mathematical concepts involved, explains in detail the workings of modern generalpurpose electrical analog computers and rounds out the course by presenting worthwhile practical applications of the computer.
volume I includes descriptions of many kinds of a a alog computers and devices including: INTRODUCTION TO ANALOGS (what is an analog? a nalogs and physical laws; problem solving with analogs) ; WHY ANALOG? (analog charac-
teristics, analog devices vs. analog computers; analog computers vs. digital computers); COMPUTERBUILDING BLOCKS (building blocks, multipliers, building blocks: function generators) MATHEMATICS OF COMPUTING (variables, integration, differentiation, differential equations, integrators).
volume il gives detailed attention to the computer that is most flexible and easy to use-the D-C Electronic differential analyzer. It includes: GENERAL PURPOSE COMPUTER TYPES (passive-element computers, active element computers); D-C ANALOG COMPUTER: LINEAR COMPUTING COMPONENTS (attenuators, voltage amplifiers, the summing amplifier, the integrating amplifier); D-C ANALOG COMPUTER MULTIPLYING COMPONENTS (the servomultiplier, the electronic multipliers, implicit uses of multipliers); D-C ANALOG COMPUTER FUNCTION GENERATION (fixed furction generators, variable function generators).
VOLUME III presents some of the programming techniques and interesting applications common to the field of analog computation. It includes: MONITORING AND CONTROL (voltmeters, recorders and plotters); PROGRAMMING AND PROBLEMS (using the D-C analog computer, automatic programming); APPLICATIONS (real time simulation, real time joint analog-digital simulation).
Questions and problems are included at the end of each section to enable you to check your progress. \#256-H, 3 vols. in one cloth binding, $\mathbf{\$ 1 2 . 5 0}$.

BASICS OF DIGITAL COMPUTERS ('Pic-

 tured-Text' Course) John S. Murphy. Basic theory of computer arithmetic, circuitry, logical building blocks and memory. JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY ". . . the 'picture book' form is extremely effective. The text itself is terse and to the point, and supplemented as it is by pic-tures on each page turns out to be easy to read and understand. There are no obvious compromises with accuracy of statement for ease of presentation. For the purpose it was written, the book does a very good job; and even for coders who would like to know more about how the machines really vork, it is worth reading." 3 vols., \#196, soft, \$8.40; \#196-H, cloth, \$9.50.

These and many other Rider titles are available at
bookstores, electronic parts distributors, dept. stores or direct. Send for new catalog.
Buy these books today-No matter where you buy these books, we guaran- Depl. Q-1 tee satisfaction, or your money back within so days of purchase.

6 Meter Antennas

3 ELEMENT BEAM	$\$ 13.95$
Model \#A50.3 Boom	$6^{\prime} \times 11 / /^{\prime \prime}$
5 ELEMENT BEAM	$\$ 19.50$
Model \#A50-5 Boom	$12^{\prime} \times 11 /^{\prime \prime}$
6 ELEMENT BEAM	$\$ 32.50$
Model A50-6 Boom	$20^{\prime} \times 112^{\prime \prime}$
10 ELEMENT BEAM	$\$ 49.50$
Model \#A50-10 Boom $24^{\prime} \times 112^{\prime \prime}$	

$\$ 13.95$ Model \#A50-3 Boom $6^{\prime} \times 11 / \mathbf{h}^{\prime \prime}$ 5 ELEMENT BEAM $\$ 19.50$ Model MASO-5 Boom 12×132 Model A50-6 Boom $20^{\prime} \times 11 / 2^{\prime \prime}$ Model \#A50-10 Boom 24'xly ${ }^{\prime \prime}$

STACKING
KIT
availabie

SEE YOUR DISTRIBUTOR -or write for Free Catalog.

CUSHCBAT $\begin{gathered}\text { G21 HAYWARD ST } \\ \text { MANCHESTER N. H }\end{gathered}$

If you are a ham who likes to trouble-shoot in rigs . . . who has built your share of homegrown equipment-and if you have the foresight . . . initiative . . . and ambition . . . to rise into a five-figure income in your own radio business-THEN YOU ARE ONE OF THE HAMS TO WHOM THE COUPON BELOW IS DIRECTED!
This coupon will bring your FREE copy of "HOW TO MAKE MONEY IN MOBILE. RADIO MAINTENANCE". You will learn how other hams are earning big money in the fastest-developing field in radio.

There soon will be over $2,000,000$ two-way mobile radios-many of which will be maintained on a regular contract basis by qualified service engineers. There is a need for such a man right

in your own home town!
 To be sure you are the one
 who will profit in your area-
 MALL COUPON TODAY!

Thero's no obligafion

LAMPKIN LABDRATDRIES, INC.

MFG. DIVISION, BRADENTON, FLORIDA
at no obligation to me, please send me "how' TO MAKE MONEY IN MOBILE-RADIO MAINTENANCE', - and data on Lampkin Meters.

NAME

ADDRESS

eITY
STATE BRADENTON, FLORIDA

SOUTHEASTERN DIVISION

ALABAMA-SCM. William D. Dotherow, K4AOZ-SEC: JDA. RM: RLG. PAMs: PHH, BTO and JJS. New appointments: K4CFD is ORS h4LNi as 0U Class 1. K4FFJZ as GES, K4ZSX as OBS. Welcome to AENB: SEZ Madison, LAGRA Northport, EAW Atlanta, GaNB: K4CFD and USM on CP-35 hold daily skeds on 3.575 ke. at 1815 CS'T at 40 to $50 \mathrm{w} . \mathrm{p} . \mathrm{m}$. using electronic keyers. We welcome $K 4 Z X X$ back to AENB after an absence of several months. MI is having good results with it Thunderbird Tri-Bander on 10, 15 and 20 meters. K4PIIH urges all CD appointees to participate in the quarterly (D Paties. Ki4ZNI has a new all-band mohile. kifiHC now has 6 watts sis.b. rlatking up the -tates. K4RIL moved to a new QTH in Sheffield. Congrats to K $4 Z X X$, the new mamager of AEN'T, teenage het. K4GXS works Tuscaloosa, Holt and Northport on $3!5 . \mathrm{kc}$. Li4AUP, WHW, EFF and PKA report successful SET drills during Oct. li4AUP reports that Ki4WIF and li4TZJ have dropped the " N " from their calls. CWO is racking up DX on 10 - and 15 -wieter phone. Congrats ts 7SA and his XYL on a daughter born Uct. 27. Congrats to $Y E R$, new liaison captain for ANNP. WHW urges all Mobile County hams to join 4 ENG on 29.560 Siun. at 1930 CST. PKA reports Decatur AKC niembers HQQ , NME and K4JSL provided laison communications to Huntsrille for the Huntsville Sports Car Rally. PKA has appointed BFM. HVK, K4LEC and K4JSL as Asst. ECS. Six-Meter Neu's: MI is getting good reports on a new eight-element beam. K4AJF worked lllinois, Minnesota and South Dakota Oct. 19 cluring a 2 -hour opening. El'F reports 73 per cent of the AENX members checked it during October, also AENX was on emergency stathelly Oct. \& bectuse of tornado warnings. JJX reports: OIK is on 6-meter d.s.b. using a modified Globe Sidebander driving a liomebrew kw. linear. ZRZ now is on of meters after sidehanding on the lower bands. It is with remret thait we announce the resignation of K4OCW as V.H.F. KM. K4AOZ is on 6 meters with 7 watts and : dipole antenna. RACES: DFE. Jefferson County R.ACES chief, reports the 6 -meter Network "E" on 50.7 Mc . is operating very successfully with approsimately 20 checking in each ifed. at X ram. Also participation is mereasing on Network "(") 145.350-A1c. i.m. at 7 P.m. each Wed. Jefferson County has received 2 meter equipment to be installed at Wrarrior, Ala., c.d. control headquarters. DFE also reprots large attendance at the c.d. "hey to survival" brieling sessions held in Ortolier. Trallic: (Ort.). W4RLG 212 , PVG 51 , K4JDA 49. PHH 49. W4KIX 48, K4ZXX 39, ACV 36, W4OKQ 36. K4BTO 32, W4M1 29, K4CFD 23, GXS 19 , RCA 17, W4C'IU 15, K4KIIC 12, TDJ 9. W4WHW 9 , K4ZNI 7. RIL 6. W4R'Q 6. JRO 5. LAHJM 4, RSB 4. W4DGH 3. K4HFX 3. W47SH 3, K4:AAU 2, W4CWO 2. II4UIJ 2. FJZ 1. JSP 1. (Sept.). K4ZRX 4.

EASTERN FLORIDA-KC:M. Iolin F. Porter. W4KGJ-SLEC: IYT, KM: K4SJH. PAMs: SDR and K4LCF. V.H.F. PAM: RMU. We regret to report the passing of NW. who died of a heart attack Üt. 31, Harold will he mised by his many friends in annateur radio. The Florida DX Club (ail I)XCC) now has about 25 members. They are making application for League atiliation. The Hillshorough (County R.ACES now has communications on 2-neter i.mı, on 147.25 Mc . On Sept. \& a message originated at Jacksonville reached $2 E S X$ one linur and 6 minutes later via $144-M c$. relay. LMI'T has a hew BN2. SIB swapped his NC-125 for a new SX-101A. K4RNS receivel a Conch certificate. K4IW'T, ARCACS, paticipated in the SET as NCS for Fiorida Red Cross and ARIRL trattic. (KB handled á distress message for a rare lrug for PY6JD. K4UUO handled 1076 messages in 120 hours of operation during and atter Hurricune Donna. MIEE did an excellent job of kcepitg the press infommed of the momes of "Ionna." H4Usk will instruct the Nuvire rode class for the sit. Pete ARC' this year. If you know of anyone interested in the area have thell contact the club at P.O. Box 4026, st. Petershurg. Fla. The DEN (Darle County) is now operating its i-nacter net from the 18 th floor of the Court House. FJE did a fine job for the "1.aty in Spain" Fienta at St. Augustine. 'Chose helping out were UHC. EIE, FHG. AGM, LQR, K4QBP. BWO and KN4WIG. Don't forget the Tropical Hamboree in Miami lan. 14 and 15. There will he tellonical talks. a MARS meeting. a banquet and plenty of ereball QSOS. Write P.O. Box 104. Miami 1, Fla.. for more details. This hamfent arain is sponsored by the Diade Radio Club, [nc. Traffic: 1Oct.). K4SJH 675. W4SDR 255 , K4LCD 226. LC'F 218, IDDN $200, W 415 \mathrm{~T}$ 158, K4ILB 132. W4TRS 132, 14 BY 100. W4AKB 72. GJI 70. K4INT 70 . DRT 68 . W4BKC 59.1 DF 49 . K 4 BLMI 48 , RNS 46. W41WM 45. NGR 39. K44KQ 38. W4CNZ 38. K4MTP 32. FMA 30. IOQ 27. W4SGY 26, ISA 25. K4BOO 24. W4LAT 24. SMK 18, DPD 16. K4VNA 15. OSQ 13. D.AD 11. W4DQS 8. LV' 6. SVB 6. NVV S, (Continued on mutat 140)

291	27.2	293	29.4	29.5	29.6		29.7
28.5	28.6	28.7	288	28.9	29.0	Ste tipme	29.7
28.0	28.1	28.2	283	28.4	28.5	He:that	28.1
3.5	36	37	3.8	3.9	4.0		$\begin{array}{r} 28.6 \\ 4.1 \end{array}$
7.5	7.4	7.3	72	7.1	70		6.9
145	14.4	14.3	142	14.1	140		13.9
21.5	21.4	213	21.2	21.1	210		20.9
500	400	300	200	100	0	-	-100

R.t. DRAKE CO-

MODEL 2 A COMMUNICAYION RECEIVEX

Discriminating sidebanders have acclaimed the performance of the Drake 2-A yet its low price and simplicity of operation make it an ideal receiver for novices, who have the assurance that it will continue to serve their needs, whether CW, AM or SSB, when they graduate to general class or higher. For detailed free brochure, write to R. L. Drake Company, Miamisburg, Ohio.

THE NEW Pa
 LA-400-C 800 WATTS PEP SSB LINEAR AMPLIFIER

NOW 800 WATTS PEP FOR ONLY $\$ 164.95$ THE "BEST BUY" YET

NEW modern styling! NEW high efficiency 3 element band-switching pi net. Puts more power into any antenna or load from $50-70$ ohms. For SSB, DSB, Linear AM, PM, CW and FSK. All bands $80-10$ meters. May be driven to 800 WATTS PEP SSB with popular 100 watt SSB exciters. Uses four modified 1625's in grounded grid. On customers order, will be furnished with 837's. (note: 1625's and 837's are not directly interchangeable, since sockets are different.) Typical P\&H Low Z untuned input. TVI suppressed. Parasitic Free. Meter reads grid drive, plate current, RF amps output. Heavy duty power supply using 816's. NEW modernistic grey cabinet measures approx. $9^{\prime \prime} \times 15^{\prime \prime} \times 10^{1 / 2^{\prime \prime}}$. Panel is recessed. WANT TO SAVE MONEY? BUY IT IN KIT FORM. It's a breeze to assemble and wire. BEFORE YOU BUY - SEE the New La-400-C AT YOUR DEALERS.

LA.400-C Kit complete with tubes. $\$ 164.95$
LA.400.C Wired and Tested. $\$ 219.95$

ELECTRONICS INC
424 Columbia
Lafayette, Ind

franky the Frogamor
 says:
 The hells of the NEW YEAR are ringing for you

 at THE AMATEUR HEADQUARTERS of Southern New England.Let the SIX-HAPPY-HANDY-HAMS help you to a DXer's delight by showing their complete stock of name brand equipment which includes COLLINS, ELMAC, GONSET, HALLICRAFTERS, HAMMARLUND, IIY-GAIN, E. F. JOHNSON and NATIONAL RADIO.

W. H. EDWARDS CO., INC

116 Hartiord Ave., Providence 9 R.I. - Tol. GA 1-6158-6159-6614

K4TDN 4. DSH 3. (Sept.). K4UUO 1076, W4NDJ 357, K4EHY 244, W4RUO 86, GOG 25, LN' 24, CKB 20, RAIU 1.

WESTERN FLORIDA-SCM. Frank M. Butler. Jr. W4RKH-SEC: HKK. PAM: K4RZF. RMI: K4UBR. Tallahassee: MLE is a new EC, with $\dot{H} 4$ VLE as assist ant. They have done an FB job organizing hams in that area to neet any emergency, A revised R.ACES Plan has been submitted, and a directory of hams in the ares has heen mablished. Steinhatchee: IZZB. Incal EC, held his SET Grt. 15 with 8 AREC members taking part. Perrv: KQP has 37 members in his high school radio club. Marianna: Hams are sptting up a radio net to link the Florida School for Boys here with 6 other smmar sehools throughout the State. Qumey: 1s4QDN has joined the W, Fla. Phone Net. ruming 40 watt. hetinnak: HQN had 294 (gSo) in 62 sertions during the recent C'D Party. Bill's antenna farm includes five "l." heans, each with $700-\mathrm{ft}$. legs! Separate kw. rigs are used for each hand. Panama (ity: 29.560 Mce is hecoming minre sutive, with 15 stations rhecking into the PCARC Net. K4AHV and K4FQQ ate mobile on 10 meters, $\mathrm{K} 4 \mathrm{BOE} / \mathrm{BOI}$ have a new tri-hand healli. Ki4CXG is back of with an ARC-s: an 813 rig is hrewing. Gulf Breeze: K4ZMIV is increasing OBS schpedules and hunting DN on 20 and 15 meters. Pensacola: K4FYL scored high in the sept. FMIT. New r.H.F. Club nfficers are LGC, pres. K KQZP, vice-pres. RWY sery: and K 4 FTI. treas. The V.H.F. Ham of the fest Award was won hy EQR. Much traflic was handled at the fair radio booth set up by the PARC and the V.H.F. Club. 1HGL kepps the NAS Clut station hot, handling traffic. Traflic: (Oct.) K4SWQ 218 , W4HQN 36, K $4 V^{\prime} N D$ 25. DAD/4 11. ZMiV 6.

GEORGIA—BCM. William F. Kennerly. W4CFJSEC: PMJ. PAMs: IXE and ACH. RMI: UUY: GCEN meets ont 349.5 kr. at 1×30 Fnst on The. and Thurs. 0800 Es'f on Sun. (iSN meets Mon. through siun. on 3595 kc . at 1900 EiST. wath Di)Y as NC. The 75 -Meter Mohile Net mepts each sun. on 3995 ke. at 1330 EST with K4YID as NC. The GPYI Net meets each Thurs. on 7260 ke. at 0900 ENT with K 47 ZZS as NC. The AtI. TenNeter Phone Net meets Sun. on 29.6 Mc. at 2200 EST with W4BGE as net mgr. i'he (ia. S.SH. Net meets pach Nlon. through kri. on 3970 ke. at 2000 EST with K4RHB as net mge. A group of amateurs mut git Macon. Ga.. on the week end of Oct. 22-23 and formed an assoriation called the "Georgia Single Sideband Asworiation." Also at this meeting the constitution and by-laws were adopted. Their hoard ,if directors is $k 4 \mathrm{RHB}$, pres. K4RZL, vice-pres. : K4SUD. swy.-treas. K4AUMI and W4PMIJ are members-at-large. The nesident is the net. mgr, Clie net is primstilv a training net. but traffic will he passed on the net. Sure sorry to loce Ki4LVE and ETD to Ocala. Fla. Their address is now 3152 Corinth Rd., Ocala, Fla, Gladys sure puts out a fine signal on 40 meters from there. WWH transmits official Bulletins regularly on 144 NTc. ING has ghst finished writing \therefore chapter on "rhe R.F'. Link" for a new textbook on

- Dreospace Telemetry." MA. in Temple. sure has been doing a lot of listing lately. Traflic: W4F.AW 144 , K4OGG 58. BVD 40, Li'E 33. PHA 11. PKí 9, TEA 6, HAI 1, QPT. 1.

WEST INDIES—SCM. Willian Werner KP\&DJSEC: AAA. KD is back on from his hew OTH with a hiram and a Heath Sixer yud collected 12 new KP4s for a W'PR-50n sticker and $18 \mathrm{~K} P 4$ - towards the WPR-$2550-$ He. Award. KD reseived the fertiticate Hunters Cluh certificate. IDD and AAA had trap troubles in the Tri-bantler betmis. KiD worked son Li4PLJ for the booth time. Ex-AM is a silent liey. IPI writes from rornell that lip experts to work fixed aurl mobile on 50 Mr. while here for the Christmas holidavs. Notus de Mayaguen: El K de Ort KV4CI'mm visitó at la Absela WT. le fizo una "interview" tomandole una mrabarion al mismo tiempo. para la Vo\% de Imerics. Il fin Mavagute salio en 6 metros y communicó con la las este es Jose Luis Hernandez. hermano de KE. WT skeds the Antilles Fmergency Weather Net at 7 A.m. and 5 P.sr. on 7245 kc . daily and Antilles MARS at H P.M. on 7 Mc. AWH, at dibonito, ordered a Heath sixer for fixed and mobile use with a saturn halo in V'W. aud put up inverted " V 's" for 80 and 40 meters for the sineepstakes. $\triangle \mathrm{MH}$ is out of hospital from where lue worked the 6 meter gang using a Heath Sixer and is at lonme in Vega Baja usimg an $\mathrm{HQ}-110$, $\mathrm{T}^{\prime} \mathrm{BS}-50$ and a four-element heaum 40 feet high. NJ writes from Japan that he rlimbed to the top of Mt. Fuji. AIS's younger brother is now IWP4.ANO on 15 meters. AAR says his lettine 6 and 2 transmitter works heautifully. His sister, AEU, is on 6 meters with a Heath Sixer and halo antenna from Rio Piedras. W8CW is vacationing in KP4-Land. $A L Y$ went mobile on 6 meters using a Heath Sixer and a Saturn haln aud almost immediately contacted sta(Continued on puge 142)

COMPLETELY NEW . . . FROM HORNET

MODEL TB 1000-4
Cash Price $\$ 119.50$

Superb construction and unequalled performance has gained world wide acceptance for Hornet antennas. ASK THE AMATEUR WHO OWNS ONE!

Budget Terms only $\$ 9.85$ per month

> Rated I KW

Four working elements on all three bands.

AND

ITS SO EASY TO BUY

- Use the order form below
- Check the model of your choice
- Mail coupon

Your antenna will be rushed to you for 'try-beforeyou buy' evaluation.
Thousands of amateurs who have used this plan have found that there is no better way to investigate value in relation to cost, before buying.
If you desire, use time payment plan-low monthly payments.

Budget Terms only $\$ 6.35$ per month Rated 750 watts

ALL MODELS

- Are Pre-tuned and Easy to Install
- Have Custom Fittings of Cast Aluminum
- Use a Single 52 ohm Coaxial Transmission Line
- Have completely weather-sealed Fire-quency-Dividers*

- Have 6061-T6 Aluminum in the Elev. tents *Pat. Pend. Prices subject to change without notice

MAIL YOUR ORDER TODAY - NO MONEY REQUIRED WITH ORDER

HORNET ANTENNA PRODUCTS CO. P. O. BOX 808 - DUNCAN, OKLA.

Please Rush My Hornet Tribander for a 10-Day FREE TRIAL. If Fully Satisfied, 1 Agree to Pay as Checked Below. If Not Satisfied, I Agree to Return the Beam Prepaid Within 10 Days Without Further Obligation. ALL PRICES F.O.B. FACTORY.
\square I prefer the Model TB $1000-4$. $\square 1$ will pay cash within 10 days, if fully satisfied. $\square \mid$ will pay $\$ 12.00$ within 10 days and $\$ 9.85$ per month for 12 months.
\square I prefer the Model TB 1000. \square I will pay cash within 10 days, if fully satisfied. \square I will pay $\$ 9.00$ within 10 days and $\$ 8.15$ per month for 11 months.
\square I prefer the Model TB 750. \square I will pay cash within 10 days, if fully satisfied. \square I will pay $\$ 7.00$ within 10 days and $\$ 6.35$ per month for 11 months.
\square I prefer the Model TB 500 . Π I will pay cash within 10 days, if fully satisfied. $\square I$ will pay $\$ 6.00$ within 10 days and $\$ 5.40$ per month for 11 months.

MY CALL
NAME
LETTERS ARE
ADDRESS
CITY
STATE

A Combination Squeich and Automatic Noise

 LimiterOnly 12 volts B+ required
Will fif any area - Only $11 / 8$ inches high
The new AMECO SquelchANLimiter provides full squelch and automatic noise limiting to any auto or home receiver used for short wave reception. It will quiet receiver when no signal is being received; will reduce noise from ignition systems and other sources.
The SquelchANLimiter requires only 12 volts $\mathrm{B}+$; ideal for modern 12 volt auto receivers. Uses 12 volt hybrid tubes (12U7, 12AL5) in an exclusive AMECO designed circuit. Very compact - only $11 / a^{\prime \prime} \times 4^{\prime \prime}$ panel, makes mounting easy. The SquelchANLImiter has an adjustable squelch control and a switch for the noise limiter. Also available for 6 volt operation.

$$
\begin{aligned}
& \text { Model SNL- } 12 \text { for } 12 \text { volt sets 17.75 Not } \\
& \text { Model SNL- } 6 \text { for } 6 \text { volt sets } 17.75 \text { Net }
\end{aligned}
$$

The Automatic Nolse Limiter is also available without squelch, for reduction of pulse noise in auto or home receivers. Panel is only $1^{\prime \prime} \times 13 / 4$ ".
Model ANL- 12 for 12 volt sets
7.95 Net
Model ANL-6 for 6 volt sets
7.95 Net

AMERICAN ELECTRONICS CO. 178 HERRICKS ROAD, MINEOLA, L.I., N.Y.

CALL-IDENT TYMETER

10-Minute Station Call Reminder with 24 Hour Tymeter Clock

Model 22.50
plus applicable tax 10-minute repeating timer buzzes warning ton sign in your call letters.
Walnut or ehony plastic, case, ${ }^{\text {Ho }} \mathbf{4}^{\prime \prime}$ Wh. $710^{\circ} \mathrm{V}_{60} \mathbf{4}^{\prime \prime}$ cy. AC. ${ }^{3}$ t-Yr. guarantec. 12 Hour System $\$ 112 . . .17 .50$

A) Your Dealer . . . or WRITE to

PENNWOOD NUMECHRON CO.
7249 FRANKSTOWN AVE. PITTSBURGH 8, PA.

ORDER YOUR COLLINS KWM-2 NOW from

AMATEUR ELECTRONIC SUPPLY

3832 W. Lisbon, Milwaukee 8 , Wis. Phone: WEst 3-3262

Steve WGEAN

Be Sure to Get Our Top Trade-In Allowance Before Trading....Free Used Equipment Lists.

Also see Collins KWM-2 at Harris Radio Corporation Fond du Lac, Wisconsin on Fri. 7-9 Sat. 9-3
tions in Texas and Mexico on a hand-opening late one afternoon. AV'B/m with the same type of equipment broke in and also worked the Mexican station. $1 \mathrm{LI}^{\circ} / \mathrm{m}$ is on 50.106 Mc . KD is on 50.2 Mc . MO and ABD worked 50 -Mc. mobile from Barranquitas high in the mountans. Six-meter band openings to Argentina were frequent recently. LU3EX has been contacted by every hP4 on ${ }^{6}$ meters. CKi is now on 6-meter mobile with a Heath Sixer and a halo antenna. A new station on 50 Mc is AXC at Caparra Heights using a Gonset Gio and an eight-element Hy-Gain beam. "A.AN uses an and an eight-element Hy-Gain beam. A. Thuses un amplifier for DX. SV doubled the power-cutput of the Heath Sixer by changing from 6.AU8 to 6.AW8A and adding a stnall r.f. choke and resistor. ALY is modifying his Heath sixer to use 8-Mc. crystals. AV'B built a 40-it. tower. AWL is on 50 Mc . with a Scout Delinge und a three-element beatil from laguas. HH has ordered a $32-$ S1 and a $73-S 1$. DJ added an RME phasing type sidehand sele tor to the MRO. Traffic: KP4AOD 87 , WT 75.

CANAL ZONE—ACM, Thomas B. Dedeis, KZ5TDThe LZ mohile members of the AREC assisted in the collection of pledges for the linited Fund Telethon held Oct. 28. On the Pacific side, KZ5VR acted as dispatcher. Mobile units were operated by liV. EP, HW, IJJ and RU. Atlantic Side participants were AD, CD, BK. AR. GM, MM, RA and OB with mobiles AD, MM, RA and OB. The two areas were not tied in by radin and acted as separate nets. VR6AC, from Pitcairn Island, delivered an interesting talk and slicle show to the CZARA at its monthly club meeting. Flovd and his XIL are on their way back to Pitcairn Island after a Sitateside visit. Floyd will he back on the air with an HT-37, an SX-111 and A TA-33. OB/OA put up n new three-band Gammamatched quad. V'F now s.s.h. with it 20A and a 4-250.A tinal. CD now has : D)SB-100 and a Gonset linear. CiC and CR will be moving over to the Atlantic linear. AC and CR will be moving over to the Atiantic preparatory to setting up a new. 40-meter net for phone. LC is back from his vacation with a new $k w$. rig. KR assisted TD in putting up a 20 -meter ground plane for the Sweepstakes Contest. HC8GI is working KR and TD regularly Mon. nights on 21.220 kc . and ${ }^{\text {g }}$ new quad is to he set up on the Islands shortly. SE is using a " V "' hean. Traffic: KZ5KQ 66. JW 51, TD 46, CD 27, OA 27, AD 23, SB 18. OB 6, KR 3.

SOUTH WESTERN DIVISION

LOS ANGELES—SCM. Albert F. Hill. jr.. W6JQBSEC: W6LIP. RMS: WBBHG and K6HLR. PAMs: W6BUK and W6ORS. The following stations tarned BPL for the month of October: W6WPF, K6MCA KgCLS/6, W6GYH, K6EPT and K6WAH. (ongrats, fellows! New ufficers of the Ramona Radin Club are K6KUB, pres., KbVNX, vice-pres.; Marilyn Meyers, secy. : W6OIV. treas. WABDJB reports the 6 -meter link to San francisco is holding up fine. K6GTG is putting up stacked twenty-element spiral beams on 2 meters? $\mathrm{K} \emptyset C L S$ is $/ 6$ put up a new tri-band beam. W6BUK enjoved his visit at Headquarters. K6CDW reports more stations oh during the Phone (CD Party. W6FB has the hig a.m. rig about ready to go. F6KUU cleared un had noise interierence. KBOQD has the new 2-meter RTTY rig on the air. W6CK did a wonderful job with CAP on a search mission. WA6HUO repurts 10 meters is opening up very well. New oflicers of the southeast imatenr Radio Cluh are WA6CGV, pres.: WAGF(IY, vice-pres.: WV6NPZ, secy.; Neal Miller, treas. W6GAA has been mobiling around California. The So. Calif. DX Club reports IX still is pretty good in spite of poor conditions. New officers of the Tri-County Amateur Radio Assn. are W6OP, pres.; K6QWO, vice-pres.: WA6LXY. serv.: K6OSY treas, It looks like W6BES was top man in the recent ©D Party. WA6DWP is now asst. manager of the California Net. WA6BFC rebuilt the mobile gear. K6TV'C has r new "ZL Special" heam on 6 metpis. Support vour section nets: On r.w., the Southern Cali-
 the soCal 6 Net meeting at 0300 GMT on 50.4 Mc . Traffic: W6WPF 2384, I6MCA 1431, KØCLS; 727 , W6GYH 607, K6EPT' 517, K6LVR 403, Kヒ́WAH 306, WA6DJB 250. K6OZJ 214, W6BHG 133. W6USY 70. WA6DWP 66. WA6CKR 44. K6SHZ 28. WV6KZZ 25 , W6CK 21, W6YOZ 19. K6SIX 18, WA6FED 16. WA6H「O 5. W6BUK 3, W6HRM 2. K6CDW 1. (Sept.). WA6GKK 222. K6PZM 91, K6JSD 69.

ARIZONA——C:M, Kenneth P. Cole. W7Q7H-PAMI: OIF. The Copper State Net meets at 1930 NST Mon. through Fri.; the Grand Canyon Net Sinn. at 0800 on 7210 lic. : the Catalina Emergency Net Wed, at 2000 on 29.627 and 145.8 Mc.: the Tucson AREC Net Werl. at 1900 on 3880 ke. 6 IIT . Southwestern Division $A R R L$ (Continued on page 144)

MM-2 Kit ... (less IF adaptor). \$119. 50 Wired . . . (less IF adaptor). \$149. 50 Plug-in IF adaptors (wired only) RM-50 (50 KC). RM-80 (60-80 KC). RM-455 (450-500 KC)... ea... \$12.50

THE MULTIPHASE MODEL MM-2 RF analyzer

- Monitors the RECEIVED and TRANSMITTED signals. Shows flat-topping, overmodulation, parasitics. keyed wave shape etc. Silent electronic switching keyed by transmitted RF.
- No tuning required. Broadband response flat 1 MC to 55 MC at power levels of 5 watts to 5 KW .
- New variable sweep control for transmit and receive.
- RF attenuator controls height of pattern. Calibrated in 3 DB steps.
- Function selector for ENVELOPE, TRAPEZOID and BOW-TIE patterns on transmit. For SSB, DSB, AM and CW.
- Built-in 1 KC audio oscillator, less than 0.5% distortion. With $3^{\prime \prime}$ scope, is ideal for complete alignment of SSB exciters.
- For use in series with 52-72 ohm coax lines. A short pickup antenna may be used with other systems.
- Plug-in adaptors available to match $50 \mathrm{KC}, 60 \mathrm{KC}, 80 \mathrm{KC}$ or 455 KC receiver IF systems. Only one simple connection to receiver.
THERE IS NO SUBSTITUTE FOR A SCOPE IF YOU WANT THE CLEANEST, MOST PERFECTLY MODULATED SIGNAL YOUR TRANSMITTER CAN PROVIDE. THE MM-2 IS BY FAR THE MOST DEPENDABLE and EASIEST TO USE, SINCE IT WAS DESIGNED STRICTLY FOR THIS PURPOSE.

ENVELOPE

SSB-AM

AM TONE

AM VOICE
 SSB TONE

SSB VOICE

RFTRAPEZOID

LINEAR

RF OUT IN EXCTR.OVER BIAS

FLAT TOPPING

PARASITICS

LO-LEVEL MOD.

AFTRAPEZOID

AM 100%

AM 75\%

NON-LINEAR

AM TRAPEZOID

HI-LEVEL MOD.

100%

REGEN.

OVER MOD.

OTHER FINE C.E. PRODUCTS

Model 600L Broad-Band Linear Amplifier $\$ 495.00$

* Model 20A Bandswitching SSB Exciter . $\$ 299.50$
* Model 10B Multiband SSB Exciter . $\$ 193.50$
* Model GC-1 . . . Gated-Compression Amplifier \$66. 50
* Model B Sideband Slicer with Q Multiplier \$104. 50
* Also available in kit form

2 AND 6 METERS ON ONE CHASSIS With separate rf sections LETTINE MODEL 262

Powerful 45 to 50 Waft VHF Transmitter With Mobile Connections and A. C. Supply
The : $: 6 y$ contains the identical KF sections of the 2 meter $\because 4:$ and the θ meter 942 transmitters on one chassis. with A single $\because 4 \underline{2}$ audio and luwer supply section. The only switching necessary to change bands is in the tilament cirruit. The separate RF sections make RF switching unnecessary. providing the same high efficiency of single hand transtuitters. bach $K F^{\text {b }}$ section has its own tubes and circuits, comprising 4-5i63's as oscillators and drivers, 2-6146 s as tinal amplitiers. HATT crystal mike amplifier, off audio Siriver. rectifier. Two separate antenna outputs are prorided with coaxisl connectors on the front of the transmitter. These With coaxial cunnectors on the front of the transmitter. These panel. Inatching antennas from 32 to 300 ohms. The 262 uses banel. inatching antennas ird x me. crystals and will operate with the Lettine standard 8 me. crystals and will operate with the Lettine rabinet $\times \times 17 \times 8$ inches. Weight 32 lbs. Will operate mobile from a pli-103 dynamotor. rompletely wired and ready to uperate.

Price with eleven tubes and two erystals $-\$ 137.50$.
Send Full Amount or 525 With Order-Balance C.O.D.
LETTINE RADIO MFG. CO.
62 BERKELEY STREET VALLEY STREAM, L. I., N. Y.

G4ZU INCREASING G4zu par." POWER?

Do It Efficientiy - the Gazu Way No Traps No Colls No Interlaced Elements

$W_{\text {ith }}$ G4ZU Booms you have the "Biq Signol" no mattor whot input you choose.
20-40 Meter Birdeages-Single 52 ohm feed gives you DX Ammunition with a 14 pound beam just barely larger than a 10-meter beam. (Now available without mast). \$87.25
25' zoom-up mast designed for the Birdcage. $\$ 7.25$
10.15 and 20 Meter Minibeam-Single feed, 52 ohms. Famous over six years. This 16 pound beam with $13^{\prime \prime} 6^{\prime \prime}$ radius -the best of them all. $\$ 89.50$
Rohn Towers-Sturdy-Strong-Made for Amateurs. \#6, Single Beams; \#25, Stacked; \#45, "Christmas Tree Arrays".

$\begin{array}{llll}\# 45 & 108.35 & 142.55 & 176.75\end{array}$
All Specifications Available
G4ZU DOES IT AGAIN!
ALL DRIVEN "METEOR" COMING SOON

Director, spoke at a joint meeting of the Salt River Amateur Radio Olub, the sicottsdale Amateur Radio Club, the Motorola Amateur Radio Club and the Arizona Amateur Radio Club. The meeting, held at the Salt River Project Administration Building, was well attended. In addition to a discussion of what ARRL was doing for the amateurs. Kay gave an excellent talk on his experiences as rudio operator with the submarine Nautilus l. the first submarine to make exploration under the Arctic ire fine. 'The Verde Valley Radio Club sponsored by K7GWX, reports that sthool field trips will be facilitated by inter-vehicular communication on 10 meters. The school is to be congratulated on its "first high schonl radio convoy." May 26. 1961, is the definite date for the Southwestern Division ARRLConvertion to be held in Phoenix. Arizona. Farts not fiction! K7MEZ, mohile, in his Volkswayon. was traveling a highway about 50 miles north of Phoenix. He was in QSO with 9SUI, DeKalb, III. A truck careened across the highway. K7MEZ's car was struck. A call for help was made to 9SUI who immediately called for any Arizona station. ZMM. Tucson, answered the call, was given the facts and called the Highway Patrol. A patrolman. patroling the highway, was immediately dispatched to the swne, He arrived minutes after the accident occurred. Moral: Keep your mobile transmitter warmed up. It may come in handy. Where is the datalina News Bulletin?

SAN DIEGO-SCM. Don Stansifer, W6LRU—New officers of the San Diego Council of Amateur Radio Organizations for 1961 are K6BPL, chairman: K6EDA vice-chairman; K6SSX, secy.; and K6HQJ, treas. WA6DJS is now active from El Cajon High School with a DX-100. W6HU and K 6 EF (ex-6LA) are planning an old-timers dinner in Orange County. W6IAB is now net manager for the MCAN-7 net, and has a new operator from KH6BGS. K6RCK, OES in Santa Ana, has a new YHF-152 and a Gonset $G-50$. New officers of the finllerton Club are W6ECV, pres.: K6TGB, vice-pres.; K6LMX. secy. ; and K6ATK. treas. New othcers of the Newport Club are K6RCK. pres.; K6GPG. vice-pres. ; W6OYS, secy.: and WA6KPF. treas. VR6AC showed his colored slides of Pitcairn Island at a special meeting of the san Diego IIX Club, held at the home ot W6BKZ in late October. Over thirty members and wives attended. Your SCMI, W6LRU, spoke to the Newport Cluh on "Mobile Manners" and ARRL appointments in late October. I'm happy to report that RF again is heing published Ly the Orange Connty Amatelur Radio Club. Inc., with WA6KRW as editor. If you live in Orange County and want to know what is going on, read $\overrightarrow{R F}$. Traffic: W6IAB 3348 , W6YDK 1905 , KGBPI 1896, W'6EOT 527 , K6LKD 221, WA6ATB 154 WA6CDD 95 , WA6DJS 33 . W6ELQ 8. K6RCE 6, W6HU 2.

SANTA BARBARA-SCM. Robert A. Hemke, K6CVR-The Poinsettia RC Fishy Hamfest was a big success with 59 hams and 143 XYLs and harmonics attending. K6RWP did his escape act and a little hit of singing and guitaring. K6EGC moved to a better reception area after 30 years in a hotel room. The RADIO RC has transmitter hunts apart from the club program. WA6BEZ, trom Guadalupe. dropped in for a visit at RADIO RC. WA6IIU is mobile on 75 meters with a DX-3s transmitter. A new mall in Paso Kobles is WV6OJN. The Tri-County Net is trying out two frequencies. 3810 kc for \approx s.b. and 3×20 ke. for a.m. The net meets daily at 12 noon. K6LFQ is looking for a 10 -lh. all-hand four-element heam. Congrats to WV6NXL on getting his Novire Class license. Stay in there. OM, and get that Gen. Class ticket, Traffic: W6JPP 16, W6'CF 9, W6FYW 5. W6ENR 3.

WEST GULF DIVISION

OKLAHOMA-SCM, Adrian V. Kea, W5DRZ-

 K5KTW is the new SEC for Oklahoma. Ali EC reports should go to him. MGZ is uwner of a new HQ-180. He also ronducts a Novice class at Southwestern Sitate College. 155 FL C is a new General Class licensee at Holdenville. K5LUS and KN5AWC are new amateurs at Pawhuska. K5MBK is buek in the State and stationed at Ft. Sill. EHC is ranning a regular sked to ZL-Land. K5VQW has a Drake 2-A receiver. K5TMY sqys his $\mathrm{BC}-460 \mathrm{D}$ is really the thing for 20 meters. K5DLJ has a home-brew mobile, making four mobiles in Uttawa a home-brew mobile, making tour mobiles in OttawaCounty. K5CAY is building a new shack. GIQ is the new EOS tor Payne County. State AREC has many new emergency units mounted on trailers: typical is that of K5SWL, who says he is ready to go. ADC is determined to get a 2 -meter signal across the state and now has a new more-powerful 2 -meter rip. Oklahoma gave a good account of itself in the SET; a record number of AREC groups participated. A tip of the hat to UYQ for the long hours he put in. We hate to (C'nntinued on page 146)

Let HARRISON help you keep your NEW YEAR'S RESOLUTIONS! $\sqrt{1}$ To put out a cleareer sigmal! Use the new Millen 90932 Cathode Ray Trans- mitter Monitor to watch the output of your rig, and see the distinctive pattern displays that tell you exactly what is causing any trouble or distortion of your signal, or when you have perfect modulation (AM or SSB).
 Read all about this essential accessory for good operating, on pages 18 thru 22 of December QST. Designed specifically for Ham use, it should be in every shack!
 $\begin{array}{ll}\text { Millen } 90932 \text { Transmitter Monitor. } & \$ 87.00 \\ \text { 2BPI Cathode Ray Tube. } & \$ 19.05\end{array}$

$\sqrt{2}$. Toput out a signal with more sook!

To ride thru QRM, and to give more solid pleasure to your QSO's, these Millen commercial quality test and measuring instruments will enable you to get more power out of your transmitter into the air!

GRID DIP METER

The most useful and versatile tool, and Millen's is one of the best. Direct frequency reading 1.7 to 300 Mc for measurement and adiustment of every tuned circuit of receiver, transmitter, and antenna system, of inductance and capacitance, indication of Q, signal generator, etc.

Works on 115 volt AC, or batteries.
Model 90651 - $\$ 61.50$
4 Coils to extend range down to $220 \mathrm{Kc}-\$ 6.72$ each coil.

TONE MODULATOR

Plug this compact transistorized unit into the phone jack of the Grid Dip Meter and it modulates the RF output at around 800 cycles. In mike jack of transmitter,
it provides tone modulated CW. For code pructice, connect a key and headphone to it. Only $4^{\prime \prime} \times 1-5 / 16^{\prime \prime} \times 1-5 / 16^{\prime \prime}$, it contains a mercury battery for long life.

Model 90751 - $\$ 15.00$

ANTENNA BRIDGE

A sensitive bridge for accurately measuring impedances of 5 to 500 ohms at frequencies up to 200 Mc . The easiest way to adjust. every part of your radiation system to match impedances - and matched impedances give the strongest signals! Readily driven by the 90651 Grid Dipper, or reduced power transmitter.

Model 90672 - \$45.00
Baluns, for direct reading of balanced 20 to 2000 ohm impedance loads. Plug into Antenna Bridge.

Per Ham band, each - $\$ 7.50$

ARE YOU EMPLOYED IN THE ELECTRONICS FIELD?

Please tell your Buyers and Purchasing Agent that our Industrial Department maintains the greatest inventory of Millen components for immediate delivery at factory OEM prices.
His request, on Company letterhead, will bring him our new 300 page INDUSTRIAL ELECTRONICS CATALOG, presenting more than 100 top Industrial product lines.

Both he and we will thank you!

SWR BRIDGE

An easy and inexpensive way of measuring the Standing Wave Ratio on antennas using coaxial cable feed. Insert in the coax line, and, connect any 0-1 DCMA meter to its terminals. Complete instructions provided.

Millen 90671 - $\$ 16.80$

CHARGE IT!

Enjoy the benefits of using this FB equipment, now! No down payment. Pay as little as $1 / 10$ each month.
Ask for your Harrison Charge Account!

NEW IN ALL RESPECTS!

COAXIAL RELAYS

Hor quieter operation and ressstance axainst moisture, all Gils are encrusuler in an epoxs rexin. Add to this: low ontact pressures - paiented receiver protecting connector optional) - biturcated DPDF external contacts (optional) and many other mechatical and electrical features, all of which are foutd in the NEW Unw I)K 60 series. $\$ 10.90$ to $\$ 14.20$

GTHER FINE, DOW-KEY PRODUCTS:
1.) KOU-T2-Transter two or more antennas - 1 KW capacity - price (with standard U.H,F. connectors) $\$ 10.90$ to $\$ 12.65$.
$T-K$ switches - s models -.. self powered and non self-now. wred. Also available for special COMMERICAL, irequencies upto 2.50 mc . Fingineering inguiries solicited. regulat models
$\$ 12.50$ and $\$ 27.75$.

We invite inquiries for coaxial relays using types ' N ' ' ' HN' BNC 'atu 'UHF' connectors.
Catalog sheets available from any of our 700 dealers and fistributors in lJ.S. and Canada or from the main ottice.

EVEHY MAM NEEDS THIS FAMIDUS VibROPLEX

 Hachining and is acclaimed ny thousauds of the nnest operators. Adjustable to anly sheed and will not tire the arm or upset the nerves, Good for 30 or more years even under rough usiake, Comes in the models, 8tandard or deluxe atid is
priced at only $\$ 15.95$ to $\$ 29.95$.

THE VIBROPLEX CO., JNC.
833 Broadway New York 3, N. Y.

lose him as SEC. KSCAI is ready for the storm seasot with a new kilowatt rig. Traffic: K5IBZ 294, W50OF 193, UYQ 165, DRZ 107, K5JGZ 93. C'AY' 52, DUJ 193, AUX 47, ELG 46. نLP 39. W5JXAI 36, K50OV 35 JOA 29, MYF/5 25. W5WAF 25, MFX 23, K5LZF 22 W5KY 21, CCK 17, K5ZEP 14. CRA 13 , BNQ 12. UJD 12, W5PNG 12. VLW 12, K5LYM 10, EZM 5, W5WAX 5, EHC 2. К5HQE 2.

SOUTHERN TEXAS—SCM. Hoy K. Eggiestun WSQEM-SEC: QKF. PAM: ZPD. RM: K5BSZ. K5JEH has a new Hornet Tribander and rotator. New officers of the san Antonio Amateur Radio Club are HHE, pres. : IWE, yice-pres.; K5VCR, secy.: K5TYI, treas. ; and K5SJB, sigt. at arms. DHO and LLS visited the Corpus Christi Amateur Radio Club. ETA, QliF and QEM visited the San Antonio Amateur Radio Club and with the Convention Committee at Kerrville. The sET was well worked in the Southern Texas sertion I understand that the Chamber of Commerce is going to pay the expenses of the Corpus Christi Amateur Radio Club, and have the members mo somewhere eise to hold theirs in 1961. In 1959 the problem was a simulated tornado that struck in Corpus Christi, and in less than 24 hours there was 4 real one. This year the problem was supposed to start at 1355 . At 1200 we received a call from the Red Cross because of high water, flooding and a tornado. It had rained from 7 to 16 inches in whout 18 hours and some residences on the south side of the eity had to be evacuated. One tornado struck in a suh-division that was being bunlt and another one at Sinton, only 30 miles away. The Chamber of Commerce thinks it would be cheaper to send SET participants out of town, probably to New Braunfels. h5MXO is the new net manager of the 7290 Traffic Net. The net had 38 sessions with 1167 stations and handled 400 messages. Traffic: (Oct.). K5WIC 304, MVI 301. K4BSS/5 266, K5MXO 72. W5ZPD 53, K5JFP 16, MWC 1. (Bept.). K5: A B 327, BSZ 310.

CANADIAN DIVISION

MARITIME-SCM, D. E. Weeks, VEIWB-Asst. SCMs: A. U. Solomon, VEIOC, and H. C. Hillyard. VOICZ. SEC: BL. New appointments include PK, EC for Sydney. G6CJ was a recent visitor to the homes of DB. EK. OM and PQ. QV has erected a tower for his new quad. PV is doing post-graduate work in geology Ht the University of St . Louis. 3AMQ. formerly of Goose Bay and Oftawa, has been transferred to shearwater. 2UY (ex-1MS) now resides in Montreal. Comgratulations to PQ , top ran for VE1s in both the phone and c.w. sections of the 1960 ARRL $\bar{D} X$ Contest. FQ recently attended the c.d. college at Arnprior, Unt.

SEVENTH ANNUAL VE1 CONTEST

Jan. 21-22 and 28-29, 1961

All VE1 amateurs are invited to participate in a contest sponsored by the New Brunswick Amateur Radio Association. The contest this year will be divided into two sections, phone and c.w. The highest scoring contestant in each section will be awarded an engraved cup, the NBARA Trophy.

RULES: 1) The c.w. contest will begin at 2000 AST Saturday. Jan. 21 and end at 2000 AST Sunday, Jan. 22. 2) The phone contest will begin at 2000 AST Saturday, Jan. 2 S and end at 2000 AST Sunday. Jan. 29, 3) Any and all amateur bands may be used but only c.w. to c.w.. or phone to phone contacts will count. Any contestant may participate and be eligible for awards in both sections. 4) The same station may be counted but once for credit (in each section) reyardless of band used. Mobile. purtable, and home stations covered by the same station license constitute the same station. 5) The general call is "CQ VE1." 6) Exchange signal reports county, province, and operator's name. Local Q[H is not required. 7) Logs should show band. type emission. signal reports, county, province. time, and date. 8) Score one point for information sent. Multiply total points by the number of individual counties worked in the three provinces to determine final score. 9) Decisions of the contest committee will be final. logs must be postmarked not later than Feb. 8 and should be in committee hands not later than Feb. 15. Forward all entries to: Contest Committee, P. O. Box 366 , St. Stephen, N.B.

IN STOCK AT HARVEY

You can take this G-76 out of your car, use it - with matching AC power supply and speaker assembly - for excellent 6 band fixed station operation. Here's opportunity to add new enjoyment -and DX --with operation on another lively amateur band, 6 meters. G-76 is a full-blown, star performer on 6 as well as the other five widely used $10,15,20,40$ and 80 meter bands.

While G-76 is properly called a transceiver because of some common audio circuitry, transmitter and receiver are separately tunable. Receiver can be set to out-of-band DX, transmitter VFO anywhere within the band. Iransmitter VFO is intended to be spotted on receiver dial. Frequency control may be either by VFO or quartz crystal. (Except on 6 meters which is crystal controlled only.) Transmitter and receiver oscillators are both compensated so that drift with temperature is negligible. Oscillator circuit has very low drift even with exceptionally wide excursions in both plate and filament supply voltages.

HIGHLIGHTS: Transmitter power input 100 watts AM, 120 watts CW ; pi network output for 52 ohms - Dual conversion receiver - BFO for CW/SSB reception - Automatic noise limiter . Sensitivity: approx. 1 microvolt at 50 ohms for $6 \mathrm{db} S+N / N$ ratio - Selectivity: 3 to 3.5 kc bandwidth at 6 db down, 14 kcs or less at 60 db down.

> G-76 less power supply and speaker, \#3338 . 376.25 G-76 transistorized 12V DC power supply (neg. ground), z3350. 145.00 G-76 power supply for 117V AC w/speaker, \#3349.

THE HAMS FROM HARVEY WISH YOU ALL A HAPPY NEW YEAR

FIELD STATION ENGINEERS

Several qualified engineers will be selected to join in a program which is advancing the state-of-the-art of

IONOSPHERIC PHYSICS

and the study of

BACKSCATTER PHENOMENA

Background in these areas will be developed through a training program in our Electro-Physics Laboratories, located in Bladensburg, Maryland. Engineers selected will become part of a team extending experiments of the Research and Development Department to the field, in both Domestic and Overseas assignments, and will have ample opportunity to develop technically.

They will possess a combination
of the following requirements:
\checkmark BSEE, or equivalent consisting of combined civilian or military technical school plus work experience.
\checkmark Presently employed as a Field Engineer or Project Engineer.
\checkmark A good command of some of the following:
-RADAR, preferably High-Power

- HF Long-Distance Communications Systems
-rropospheric or lonospheric Scatter Systems
-Meteor-Burst Communications Systems
-Propagation Prediction-computation of propagation for long-distance communications
-lonospheric Sounder Operations
-RDF Systems
-Doppler RADAR Systems
-Amateur Radio Enthusiast
FCC License. 1st or 2nd Class.
They must be willing to accept assignments for periods up to one year. Differential paid for overseas assignments.

Applications Are Also Being Accepted For SENIOR SCIENTISTS ENGINEERS (All Levels) ELECTRONIC TECHNICIANS

for permanent assignment at our Electro-Physics Laboratories in Bladensburg, Md.

Please Send Resume To: Professional Employment Department

ACF BLECTRONICE DIVISION ADIE INTDUETHENEEE incorporated
RIVERDALE, MARYLAND

2PY, formerly operating VEONA, is now signing/VE1 from the Halifax Area. 3CJ, AKKL Ganadian Division Director, is planning it visit to the Maritime section early in 1961. Details of his proposed visit will he announced as soon as plans have been completed. Revision of the list of appointment holders in the section is now under way. Should vou wish your present appointment renewed or wish a new one, we would appreciate hearing from you. Best. wishes and top operating in 1961. Traffic: (Oct.). VE1BL 53. OM 18, ADH 12.

ONTARIO-SCM. Richard W. Roberts, VE3NGSEC: KM. PAMs: CFR. 'TX and AMT. Oetober was a good month for the Ontario hams. Good weather was evident throughout the Province as the reports from the mobiles piled up. The Boy Frouts were on the prowl once again. Their Jamboree was a hure success, according to reports. To the amateurs, a very big thanks from their Leiders. The S.S.B. Association held its Annual Dinner in Toronto sand a registration of 73 was recorded. DTO is in V'E6-Land. Yuur SCM and SEC met with the PAMs in London. Your Canadian Director met with the gang from North Bay and Sudbury in \mathbb{N}. Bay. A new net is being formed on 75 -meter phone. This net will carry on where the Muskea Net left off. The net manager will be AKL. of Coppercliff. The net will meet on 3755 kc . Mon. to Fri. at 1900 and will tover Northern Ontario from west to past and liaison with the Ontario Phone Net. The Niagara Penn. RC is issuing an award for ten member cuntacts. The secretary has details available. All heing well Toronto will be home to an Ontario ARRL Convention in 1961 . TX is back no. E.AW does F'B work for the S.S.B. Assn. 1)UU had a heart attack but is better now. What has happened to the $t-1$ Operator award? Those who have this award. are letting it die! DZ is on 40 meters, BTL has a $46-\mathrm{ft}$. tower. The Quinte ARC's present officers are CBE, pres. : DGC, vice-pres. BND, secy.; and BOB. treas. COB is home from the hospital. DAT won a prize for his FR mohile it the Montreal ©onsention. The Algoma ARC has elertions coming up. Traffic: (Oct,). VE3CWA 242, NG 102, LPO 99. 亡M 83. LK 6B. SIL 44, CFR 43. EAQ 41. RZB 40. DTO 35. BUR 27. DWN 23. NO 15, AMT 14, EAM 14. EHL 12 . (Sept.). VE3AIL 43.

QUEBEC-SCM. U. Skarstedt, YE2DR-This month we salite the Montreal Amateur Mohile (lub, rapidly becoming a well-known organization. Purnose of the club: "To develop a group of efficient amateurs who, in the event of local or national contingency, could he available to the appropriate allthorities to expedite emergency communications," Fisercises are held pedite emprgency communications, Fisernises are hed
to familiarize members with emergency work. Weekly meetings are held on 375.5 and 29.240 at 1100 Sun., phone or c.w. to allow out-of-town mobiles to report traflic for local delivery. During the recent Scout Jamhoree members took an active part and placed vehicles at convenient locations allowing scouts to get on the air and get a feeling of hamming. Elsewhere, home stations cooperated during the Jamboree. PD kept open house, both radio- and refreshment-wise. BB also did his part. YV xports a new rar and a brand-new Gonset G-76. ER reports that Shawinigan hams gre very enthusiastic on 2 meters. ED wees a DX-40 hut is dreaming of a V'aliant. WT. OQN mgr. 43.335 kc . at 1900) reports 25 sessions. 134 stations reporting. 60 messages handled. OES ARF was active, especially juring Aurora npenings. Through the courtexy of K2DEI we learn that new nets operating are lianding traftic from the N.W.T. and Yukon areas. A sked is set up for $14,280 \mathrm{kc}$. at 1130 GMT. Any assistance will he appreciated. We regret the passing of AT, formerly of Girand Mere. BGP is a newcomer at Yamachiche. W7QNTV/VE8 has a new relrex beam. AG had a nice visit from W1BCR, of "Deep Freeze" fame. Happy hunting in 1961 to all of voll. Traffic: W7QMV/VE8 212, VE2BG 45, WT 45, DR 43, EC 34, TA 4.

BRITISH COLUMBIA-SCMT, Peter M. McIntyre, VE7JT-The scont Jamboree was ably coordinated hy XI with many stations throughout the V'E7 listrict taking part and making it a success. FY is now the call of the RCARA, in memory of the liste Sherlev Craig. Three new ouperators in the RCARA are ABG, BEZ and BES. ST, ex-xSI. now is in New West. minster. $A D F$ and IDR have s Hew OTH. YX has moved to Penticton. Sorry to hear that 6 YE ioined Silent Keys. George was r ronsistent check-in to the VE7 AREC Net., Get your thinking caps on to determine who vou want as SCM for the next term. I helieve one person should not hold the post ton inng and as yours truly does not have the time, for business reasons, to give the job the time that it deserves the position has suffered. You have a lot of active. well-qualified amateurs who are capable of handling the job if (Continued on page 150)

40 MEIER MONOBANDER WITH THE REVOLUTIONARY NEW "LINEAR LOADING"

The Beta Match - The famous Hy-Gain Beta matching system is factory pretuned. SWR guaranteed less than 1.5 to 1 . Without further adjustment.

Linear Loading-The new linear loading concept reduces element length and maintains higher efficiency than coil loading.

Stacking--because of its light weight and convenient size, the Hy.Seven may be easily stacked with your existing tri-bander installation. Complete data furnished for proper installation.

NOCOILS

Now you can make 40 meters come alive with true beam performance for your rig. For the first time the Hy-Gain Hy-Seven two element 40 meter beam develops excellent forward gain and front to back in a reduced size, light weight antenna without the use of lossy loading coils. Reduction in element length is accomplished by the introduction of the new concept of linear loading. It results in three important new advantages:

1. A small easy to install antenna, that stays up!
2. Much higher efficiency than coil loaded types.
3. Virtually impervious to all weather conditions. Like all Hy-Gain beams, the Hy-Seven is factory pretuned ready for quick and easy assembly. It's also tops in mechanical construction - with a 1 year guarantee to prove it!

SPECIFICATIONS
Mechanical: Boom, $16^{\prime} \times 2^{\prime \prime}$ O.D.; Longest Element, 43'; Material, all aluminum, high impact; Cycolac plastic and irridite treated steel hardware. Net weight only 24 pounds.
Elsctrical: Element spacing . 13 wave lengths; Matching system, adjustable Beta; SWR at 52 ohms, 1.0 to 1 .
also available on commercial frequencies

AUTRONIC KEY-For better, faster CW. Easy to use. Velvet touch. Heavy silver alloy contacts. Fully adjustable. Superior quality to last a lifetime. Contact bounce eliminated regardless of lever movement or keying pressure. Properly weighted base will not walk. Attractive and streamlined... $3^{\prime \prime} \times 31 / 2^{\prime \prime}$. Can be used with any electronic keyer.

AUTRONIC KEYER-FOR better DX. All transistorized with improved digital circuitry...no relays or tubes. Compact and lightweight for portability. (7" $\times 5^{\prime \prime} \times 2^{\prime \prime}$) Can be used automatic or semiautomatic. Precisely proportions pach dot, dash, and space...all self completing. Makes the novice sound like a pro, and takes out all the work for the or. Superior readability...makes CW a real pleasure. instantly variable speed from 6 to 45 wpm. Self contained speaker for monitoring or code practice. Use vertically or horizontally in any type of fixed or mobile station.

ELECTROPHYSICS CORP.
2500 West Coast Highway
Newport Beach, Califorhia

See your dealer or i ${ }_{20}$ rite direct for info and prices.

MOBILE POWER SUPPLY

MODEL
A12/600/200
NOW $\$ 59.50$

This 12 V input de to de transistorized converter is conservatively rated for continuous output of 120 watts at 600 V or 300 V , or any combination of 600 and 300 volt loads toialing 120 watts.

High efficiency, small size, and light weight, plus freedom from maintenance, conserve your battery and increase the enjoyment of mobile operation.

> ELECTRONICS DIVISION GLOBE INDUSTRIES, INC.

525 MAIN STREET
belleville, new Jersey
they will take it. I have endoved the assoriation during the past 8 years and want to thank all those who have helped in many ways. I will always be interested in the activity and will do anything I can to heln and further the cause of amateur radio. Tratic: V'E7AAF 6.5. JQ 2s, AOT 25, ALZ 17, BDC 13.

MANITOBA—SCM, M. S. Watson, V'E4JY゙-The highlight of the ARLM Uctober menting was a demnnstration by KF of 6 -meter equipment at which g groun of Boy scouts were interested spectators. IX wave sil arcount of his 6 -meter contacts with the lee 1sland expedition reporting nine two-way Qiocs during the season. KF has organized a 6 -meter group for winter activities and reported 20 active in the W'innipeg Area and a number in Brandon. IF, former SCM, is putting in an FB signal from his holiday retreat at Lee River. OX reports good IXX having 107 montries on his ing, including Mongolia. Ex-VE3EIL, formerly Incated at Toronto. now is VE4JT at Brandon. Crystal (ity now has an amateur, VE4TV. RR, of 'The Pas, and FF' and NW, of F'lin Flon, are three of the monsistent northern net regulars. 'The "5s" gre well remresenter on the MAN Net by YR, GO. DAs and LD. Traflic : IE E4JY 17, PE 15, PW 5, QD 4, RR 4, AY 3, AN 2.

SASKATCHEWAN-SCM, Harold R. Horn, IESHR --Sorry there was no report last month as your SCM was on holidavs. QC is doing a fine iob as president of the Sask. Amatenr Radio League. 'There still are inur district managers needed. Intormation can be oitained from QC or HQ. BY, IL. JI, LAI. KE and BU are district managers for Districts 1, 4, 5, 7. 8 and 10 . Our best wishes to JK and his bride. HJ is joining the staff of Inspectors Oftice, Department of 'Transport, at Naskatoon. UD yisited in W6-Land. NQ has the new c.w. net started. New members are welcome and check in ou 3685 kc . Mon. Wed., Fri. and Sat. at 7 r.M. MST. IR has been transferred and will be signing liE3. Moose Jaw has picked 3745 kc . as its local mohile frequency. This is x good sten and a mohile irequency ior all Saskatchewan would be better still. Xour idess on this will be weicomed either by myself or the NiARL. Youlr monthly activities would be appreciated, rellows, for without them this column camnot be written. News is required for the first of each month. May the New lear be a healthy and prosperons one. Trattic: 1 EFFIG 22 (MI 16. HQ 9, (UR 4. ()L 4. NR 2. PU 1.

Correspondence

(Continurd from page 87)
we are operating on frequencies not assigned to amateur service. I guess the manuiacturers would receive that information before we hams on the band. There are ruite a few clean-cut, and friendly hams on 160 meters that would certainly appreciate hearing from any manufarturer that would tell us why they don't include 160 in their new equipment, but include "channel 2 " instead. --... Josepph . M. Abad, K8ONP, Detroit, Michigan.

N.B.F.M. - NO FUSS, NO MUSS!

© In re Cal Hadlork's letter about n.b.f.m. (os T, October): I have been using n.b.f.m. since ! 3.56 , both tixed and mobile, on 75 and 40 mostly. Based on a modicum of science, a little bit of common setnet, and a whole lot of experience, I would like to throw in a fiow eomment:.

Of the several thousand stations 1 worked very few recognized 1 was on n.b.f.m. My modulator cost me 晾; I have a discriminator to tie on to my SX- 88 which cost about $\$ 5$. (6 BN 6 circuit): I can run 30 watts or inn watts on my V-70D's simply by turning the link. I have worled WAS, Japan, Alaska, Hawaii. New Zealand, Australia, the Canal Zone, Canada and Mexico on 40-meter h.b.f.m. phone, most of the time with good reports. Oh, I have had some troubles, but how much trouble can you have with a 12AX7 and a 1 N34?

The real point of all this is that n.b.f.m. is inexpensive, reliable and uncomplicated. There is no trouthle tiguring legal power limits. QRN and QRN are reduced. TVI, BCI and hi-fi interference problems are reduced. The final is simpler and cun operate at high efficiency: no splatter, no fuss, no muss and not much bother. Figure it out on a slip stick if you want to, but I have had a lot of tun, filled a few log books, sent a few QSLs and made a lot of frifends - ull at hobby pricesi -- John S'hallenberger, H6HDX: \emptyset. Littleton, Colorado.
(Continued on page 152)

NAME: CALL
\qquad
\square
\qquad

WEBSTER Band Spanner MOBILEANTENNA.

Streamlined, highly effective
NEW!
Now with shorter,37" fiber glass column for convenient rear deck
mounting center-loaded antenna covers 80-40-20-15-10 meter bands.
Top, stainless-steel whip has 5-band calibration for fast band change. Whip has positive lock. Overall height of antenna with whip fully lowered, $57^{\prime \prime}$.
"Package" . . includes Band Spanner and plated, heavy-duty spring mount. 38.00

Antenna only, less mount. . 24.75

317 ROEBLING ROAD, SOUTH SAN FRANCISCO, CALIF.

CANADIANSI-we now have the all new Geloso V.F.O. and dial, also transmitters and receivers in stock. Price of V.F.O. \$29.95.

THE CRAWFORD RADIO
P.O. BOX 617
"VE3YR
119-121 JOHN ST., N.
HAMILTON, ONT.

HEATHKIT ENGINEERING OPPORTUNITIES

$R_{\text {ecent promotions have created openings for qualified }}$ project engineers with experience in the design and development of amateur radio products.
$\tau_{\text {he men }}$ we are seeking have these qualifications: College degree, or equivalent; 3-5 years' experience with engineering design of communications equipment, preferably amateur radio. Single Sideband experience. Active, licensed hams preferred.
$\mathcal{E}_{\text {xcellent salary, liberal benefits program, ideal work- }}$ ing conditions in modern plant on the shores of Lake Michigan.

Send complete résumé to:

> D. J. McNamara
> Director of Personnel
> THE HEATH COMPANY
> Benton Harbor, Mich.

STRANGE SIGNAL

© For the past few months I have been noticing an unusual signal on the 75 -meter band during my regular early morning contacts (between 3 A.M. and 6 A.m.).

The signal is an r.f. carrier, usually quite weak, and it has a relatively raw a.c, hum on it. There is no other discernible modulation present. The most unusual feature oi this signal is the slow, mechanically precise, scanning of the frequencies. When listening to another station on the band the scanning carrier moves smoothly and slowly into the bandpass of the receiver creating a weak, ever-changing pitched heterodyne. It requires about 15 seconds to pass entirely by and usually passes by every 6 or 7 minutes. It does not seem to create any disturbance with normal communications but I have become very curious as to its origin.

One particular time I noticed it was during a 3-hour period early in the morning of November 5,1960 . It way heard by operators in Indiana, West Virginia, Michigan, and Pennsylvania at that time.

If you at ARRL headquarters or your readers know of the origin of such a signal, I would appreciate hearing from them. - Waune L. Norton, W'9EQL, Kidgeville, Indiana.

Editors Note: Hq. has been in touch with the FCC about this signal but is unable to offer any positive identification. Amateurs hearing this signal should report its signal strength and other characteristics to .Hq.

ROTTEN JAMMING

(1) Pursuant to a resolution adopted at a regular meeting of the Rochester Gallon Club, a Committee on Kotten Jamming was appointed to report on the conditions resulting in occasional complaints published regarding the employment of one kilowatt input power by amateur radio operating stations.

The Committee reported (in substance) that the power input was not the probable cause of the jamming. Regarded us more probable causes were:
(1) the use of high gain antennas (receiving and transmitting).
(2) propagation conditions.
(3) the large number of amateurs in the U. S. A.
(4) aggressive operating practices.
(5) the human beings' tendency to complain.
(6) the wider bandwidth resulting from modulation.
(7) rotten selectivity of modern receivers.
(8) the additive effect of signals on the same frequency.

The Committee reported (in substance) that the writers of complaints of jamming by U. S. amateurs appeared to be singularly unimaginative in their selection of "high power" as the cause of the trouble, and further that a reduction in the power employed would leave all the other eight (8) factors unaffected.

The real solution to the problem would be to attack all nine factors at once!
The Committee therefore recommended (in substance) that amateurs throughout the world should join in a concerted movement to accomplish this by:
(1) using only low gain (possibly buried) antennas.
(2) avoiding years, frequencies, und times when propagation is good.
(3) petition FCC to revoke as many licenses as possible.
(4) discourage aggressiveness in amateur radio in the U. S. A.
(5) encourage human beings to make a better adjustment to their environment.
(6) discourage the use of modulating systems, including keving.
(7) encourage the use of better receivers among distant operators.
(8) invent signals that are not additive.

A minority report was received as well, indicating that a dissenting member of the Committee would agree to only recommendations (5) and (7), as he comsidered the other recommendations destructive of the purpose of the hobby.

The Committee was thanked for its detailed and searching analysis of the situations contributing to Rotten Jamming, and as the following order of business was the elention of Officers, the Chairman called for nominations.

By a singular coincidence, there was a unanimous expression of sentiment in favor of the lone dissenting member Continued on prape 1.04)

NEW! LAFAYETTE HE-25"VOYAGER" 6 TO 80 METER TRANSMITTER
 A Sensational Value for Your Ham Shack

- Single Knob Bandswitching- 80 Through 6 Meters
- Full 120 Watts CW, 70 Watts Phone
- High Q Pi Network Output Circuit Matches Antennas From 40-600 Ohms
- Filtered and Shielded for TVI Suppression
- Clean Keying-Minimum of Clicks or Chirps

The perfect Transmitter for Novice, Technician or General. Completely self contained with efficient Class C Final amplifier operation on all bands. Tubes: 6AU6 crystal oscillator, 6DQ6A multiplierbuffer, 2-6DQ6A final amplifier beam tetrodes, 12AX7 dual triode audio amplifier and a 6AQ5 clamp tube modulator. Shpg. wt., 38 lbs .

LAFAYETTE PROFESSIONAL QUALITY COMMUNICATIONS RECEIVERENGINEERED FOR THE AMATEUR

- Superhet Circuit Utilizing 8 Tubes and Rectifier Tube
- Built-in "S" Meter with Adjustment Control
- Full Coverage 80-10 Meters
- Covers 455 kc to 31 mc

KT-200WX
in Kit Form
64.50
5.00 Down
HE-10WX
Wired
and Tested
79.95
5.00 Down

- Variable BFO and RF Gain Controls
- Switchable AVC and Automatic Noise Limiter
The Communications Receiver that meets every amateur need - available in easy-to-assemble kit form or factory wired and tested. Signal to noise ratio is 10 db at 3.5 MC with 1.25 microvolt signal. Selectivity is -60 db at 10kc, image reflection is -40 db at 3 MC. $77 / 8^{\prime \prime} \times 15^{\prime \prime} \times 9^{\prime \prime}$ Shpg. wt., 22 lbs.

165-08 LIBERTY AVENUE, JAMAICA 33, N. Y.
OTHER LOCATIOHS

NEW YORK, N. Y. \mid NEWARK, N. J. \quad BRONX, N. Y. \mid PARAMUS, N. J. ${ }^{2}$ BOSTON, MASS. \mid PLAINFIELD, N. J. 100 6th Avenue 24 Central Avenue 542 E. Fordham Rd. 182 Route 17110 Federal Street 139 W. 2nd Street

FREE 324-Page

 1961Catalog No. 610
Cut Out \& Paste
on Post Card

Lafayette Radio Dept. VA-1 P.O. Box 190 Jamaica 31, N. Y.
\$............Enclosed. Send Stock \#.. \qquad \square Rush FREE 324 Page Catalog 610
p............Down Payment Enciosed for Stock \#
..................... . Lafayette Easy Pay Application Will Be Forwarded Upon Receipt of Down Payment Name
Address
city \qquad Zone stato
eftractive black and gold ARRL emblem decals are available to League members from Headquarters. They measure approximately 4 by 2 inches, will adhere to almost any surface, metal, glass, wood, plastic, and come complete with directions for applying. Use them to dress up your car, station equipment and shack. They're supplied at 10 cents each - no stamps, please - to cover costs.

AMERICAN RADIO RELAY LEAGUE

West Harlford 7, Connecticut

Abstract

WANTED $\mathcal{A}_{\text {ctive Radio Amateur familiar with }}$ Sound and Amatcur Equipment for Counter Sales with Electronic Distributor. Write giving experience and salary desired to: electronic wholesalers, Inc., Post Office Drawer 1655, Melbourne, Fla. Attn: F. L. Gantz, W4ICE.

FACTORY AUTHORIZED SERVICE

ON RECEIVERS AND TRANSMITTERS
$\boldsymbol{P}^{\text {Epairs, modernization, ealibration and alignment by }}$ R competent engineers using factory standard instruments. Collins, Globe, Hallicrafters, Hammarlund, Harvev-Wells, National Co. Service representative for Hickok and RCA Test Equipment. Factory parts. All work guaranteed. Our twenty-fourth year.

DOUGLAS INSTRUMENT LABORATORY

176 Norfolk Avenue
Boston 19, Mass.

1 OUAD BEAMS	
10-15-20 Meters	
STANDARD MODEL \$59.95	
- Hi-Gain and $\mathrm{Hi} \mathrm{F} / \mathrm{B}$ ratio	
- Single Feed Line	
- Very light-TV Rotor turns - Aluminum Boom with Hardwood InserI	
hardwood Inseri - Bamboo Spreaders	
DELUXE MODEL $\$ 79.95$ - Same specifications as standard model, except aluminum spreaders with ribbed standoff insulators.	
Write for Free Brochure SKYLANE PRODUCTS	
406 Bon Air	Tampa 10, Florida

of the Committce on Rotten Jamming. He was accordingly elected for the forthcoming year, to all offices of the Club. \cdots Homer Side Cizse. Sec'y., Rochester (N. IV.) Gallon Clibb.

Recent Equipment

(Continued from page 51)

impossible. The Seneca does as good a iob of it as most similar rigs. Its v.f.o. is all right for 50Me. phone and usable for 50-Mc. e.w.: on 2 meters, the v.f.o.-controlled phone signal sounds pretty fair until you start bearing down with the selectivity or checking it with the b.f.o. on. For '-meter c.w. you'd better use crystal if you want other c.w. men to think highly of you.

The final stage efficiency of the Seneca shouldn't displease anybody; it's surprisingly good for a two-band v.h.f. rig. On 6 meters, the recommended input is 140 watts; this gives 81 watts output for an efficiency of 58 per cent. Heath says to reduce the input to 110 watts on 2 meters for longer tube life, and this input gave us exaetly 50 watts out for an efficiency of 45 per cent. These measurements were made with a Bird Thruline wattmeter working into a 50 -ohm resistive load. - H. F. S.

Q5F-

Novice Roundup
 (Continued from page 76)

United States will be sent gratis upon request. Indicate starting and ending times for each period on the air. All Roundup reports become the property of ARRL and must be postmarked not later than March 3.
6) Aurards: A certificate award will be given to the highest-scuring Novice in each ARRL section.
7) Disqualifications: Failure to comply with the contest rules or FCC regulations shall constitute grounds for disqualification. ARRL Contest Committee decisions are final.

DX Contest

(Continued from page 79)
(ss' 1 ') from which valid entries are received. In addition, a certificate will be awarded to the high-scoring multipleoperator station in each section or country from which three or more valid multiple-operator entries are received.
b) A suitable certificate will be awarded to the operator making the highest single-operator phoue score in each ARRL-affiliated club, provided the club secretary submits a listing of a minimum of three phone entries by members of the club and that these scores are confirmed by receipt at ARRL of the individual contest logs from such mewbers. The highest single-operator c.w. scorer in tach club will be awarded a certificate under the same conditions. Only a bona tide resident member, operating a station in local club territory, may compete for club certificates.
c) ARRL will award a gavel to the affiliated club submitting the greateat aggregate phone and c.w. score by its members, whether single- or multiple-operator entries, provided such scores are coufirmed by receipt at ARRL of the individual contest logs from such members. Only scores of bona fide resident members. operating stations iu local club territory, may be included in club totals.
13) Judges: All entries will be passed upon by the ARRL Award Committee, whose decisions will be final. The Committee will void or adjust entries as its interpretation of these rules may require.
14) Disqualifications: Each participant agrees to ohserve the contest rules as well as all regulations established for (C'ontinued on paje 156)

[^21]
EDDYSTONE

GEARED SLOW MOTION DRIVE
For Amatuer Radio \& Communications RECEIVERS \& TRANSMITTERS
ef high grade assembly, flywheri loaded, manufactured to fine tolerances, provides a smooth positive drive with a reduction ratio of $110: 1$. The vernier with its 100 divisions rotates 5 times for one pcinter traverse, giving 500 divisions with posilive reset readings. A cam adjustment on the vernier assures correct zero setting. A spring loaded jockey arm maintains tension of the pointer drive. Overa! dimensions $93 / 16^{\prime \prime} \times 53 / 4^{\prime \prime}$.

Manufactured by
Stratton \& Co., Lid. (Eddystone) PRICE \$15.00 NET Birmingham, England

Postpaid
Distributed bv

BRITISH RADIO ELECTRONICS, LTD. 1833 Jefferson Place, N.W. WASHINGTON 6, D. C.

amateur radio in his country. Violation of any regulation, as confirmed by a single FCC citation or advisory notice or two ARRL accredited Official Observer reports, may constitute grounds for disqualification. Some examples of practices which can result in disqualification: off-frequency (out-of-band) operation, harmonics, spurious emissions, low tone reports in logs, key clicks, splatter, excessive sidebands. $W(\mathrm{~K})$ stations working banned countries. Q 5 F -

How's DX?

(Continued from page 86)

min and shipmates rank up several thousand QSOs as HC8V'B in October and November, then set out for FO8 revions aboard Yasme III.

Hereabouts - W8WT scores " I) XCC^{2} " No. 35, missing the first all-phone feat by only two cow. USLs. Les, active $11 X$ nise since 1957, has rolled up 222 countries rocally Old VE3EIL now is VE4J'T, a juicier label. but Tom has to start his DXCC trail anew . - . . . - Much has been said arainst (excessive and ill-timed) CQ-TX calls, but KgTKN finds them just the thing to stir up $28-M 1 c . c . w$. when the band is playing 'possum .-..- W2WAS is intrigued by the QTH of KL7AGX, St. Paul island in the Pribilofs WfYY heoomes memher No. 100 in K6BX's (ertiticate Hunters ('lub. K5BNQ is the first YL to qualify at the 50 -sheepskin mark. W4HYW becomes No. 1 century man in Finland's similar A ward Hunters Club. by the way.....-W1QLT/1 of XEgQLT/XE5 sets liste lilly as tentative target date for his return to the Alacran reefs with 100 watts. - Ws $3 H Q O 4 O E F$ and others thoroughly enjoyed Gi3WW's Stateside visit late last year -. - - - Through WIWPO, W 4 DHZ tells of Norfolk's new Virginia DX Club. "Some glans in the nill to sponsor a few certifieates for the paper-chasers. All unr members are DXCC and all are 100 -per-cent ARKL." - This month's "How's" QSL-type ornamentation on the Happy UX New Year motif is credited to earlier "I) XCC ${ }^{2} "$ filines by DLIQT, ex-11KN, OKIKTI and WINLM - W'is FYM and UF' of the Eimac Radio Club disclose preliminary plans to operate as W6AY/7 in Nevada over April $2:$ ind24 th. The activity is intended to kite uverseas Divers a decent opportunity to work that rare state for WAS. Nore detailed info on WíAY/7 next month - QSL Manager VEBAT invites. "Any of the garig traveling up the Al̈can Highway toward KL7-land should drop in here for a visit and some colfiee. I'm listed in the Whitehorse phone book, or just check in at the RCAF uirbase." Smitty interspersed his late- $t i 0$ DX activities with some jo)-Mic. sport- K゙ュUXG spots another father-and-son DX enterprise that of HH2GiR and 15-year-old HH2AR....... Kis AGZ DWU ILU and KN+WQU are readving for a summer Swan Island sallv. $\overline{\text { sum }}-$ - Semilocal chatter via NCDAC, OVARA and $V^{\prime} E K N O N: K D C^{\prime} \Gamma^{\prime}$ s experiments would contirm that 7-Mc. Yakis don't bexin to perform properly until hoisted to the 80- or 90 -foot level. His own 41 -meter rotary is $10: 3$ feet high. . . . W6 (is AMI BY'B and K6CQM lead the NCDXC pack in band-comntries with 949. 672 and 691 , respectively. . . W6P1IF is said to have t72 and 691 , respectively.
joined $W 80 L J$
aloard Project
Hope...V VP9L $\& ~ G o . ~$ rocked the Hock with a stack of multiband and multimode VP:2VIf QS()s from the British Virains in mid-autumn.
Ten Years Ago in "How's DX?" - Famous US'T DX fiction of bygone years is nostalgically recalled in vour January. 1951, colurnn eve-upener . . . - [t's 8: countries on 80 meters for W4BRB. CN8MII, FA8BG, HR1AT, TI2PZ and V'S7KR tease the 3.5-Mc. s:un- Forty c.w. sp outstanding 11 X denizens include FM8AD. LB9AC of Spitzbergen, VP8s AI and AJ weaty s coae fans hunt the autographs of Cs 3 KS 9 AA, ET9X, KS 4 AC . LA $1 \mathrm{QC} /$ Antarctica, MI3AB, PJs IUF 5RE. PK8 +1)A 5.AA 6VK $7 \mathrm{NL}, \mathrm{TA} 38$ FAS GVU, Vk1s HV PG YG YM, VS7AQ, VU7AH, XU8SR, II3DYN, YJ1AB and ZS8MIK
 MD7HV, OE13EG, SV5UN, VR5CA and YJIAA
Ten phone is just the thing for EK1AQ, FLUR'T, HZ $1 \hat{\mathrm{KE}}$. MI3XX, MP4BAB, OQ5s BR DZ, VRIE. ZC6UNJ, ZDts AH and AX_...- E.w.2Y-Mc. specialists feast on FD3RG, VQ9AA and W4IKC/KW6 SARL (South Africa) anmuunces an imminent \dot{D} in contest, and we see that Sicily has adopted the IT1 prefix _...... Jeeves harasses the Cireat Sneezo with some ticklish r.f.. und photos of Jamaica Radio Club VP:5B, KR6CA (W2KZ̈Z) and EAgAB rather wrap things up.
[057-

MEMBERSHIP CHANGES OF ADDRESS

Four week's notice is required to effect change of address. W'hen notifying, please give old as well as new address. Advise promptly so that you will receive every isisue of QST without interruption.

Happenings of the Month

(Continued from page 64)
MINUTES OF EXECUTIVE COMMITTEE MEETING No. 277
November 21, 1960
Pursuant to due notice, the Executive Committce of The American Radio Kelay League, Inc., met in Wext Hartford. Connecticut, at 4:35 r.m., November 21, 1960. Present: President Goodwin L. Dosland, in the Chair; First Vice-President Wayland M. Groves; General Manager A. L. Budlong; Directors John G. Doyle, Milton E. Chaffee, Morton B. Kahn and Raymond E. Mevers; Vice President F. E. Handy; and Treasurer David H. Houghton. Lirector Gilbert L. Crossley and Assistant (ieueral Manager John Huntoon were also present.

General Manager Budlong reported on a recent conference between $F C O$ and League personnel concerning the matter of enforcement of amateur regulations. Extended discussion followed, and the Committee gave informal approval to several steps propused by the General Manager for further Leagne cooperation with the Commission in the tradition of self-policing.

General Manager Budlong reported that the Maritime Mo!ile Amateur Radio Club had filod a petition with the Commission seeting worldwide maritime mobile privileges on the $14-\mathrm{Mc}$. amateur band. It was agreed no action by the League was necessary unless and until the Commission might issue a notice of proposed rule making.

The Committee discussed the matter of a proposed "transponder" installation in an earth satellite, operating on amateur frequencies, and indicated the League wouid be receptive to a proposal to sponsor or coordinate such a project.

On motion of Mr. Chaffec, it was unanimously VOTED to approve the holding of a New England Division Convention in Swampscott, Alass., April $22 \cdots 23,1961$, and a Central Division Convention in Springfield, Ill. A August 26-27, 1961.

On motion of Mr. Kiahn, alfiliation was unanimously GRANTED to the following societies:

East Coast V.H.F. Society, Inc.. Saddle Brook, N. J. Northeast Wrashington Serens (N.E.W.7'r), Colville, Wash. Santa Cruz County Radio Club. Santa Cruz, Calif.

Without formal action the Committee discussed various additional matters at some length, with particular attention to preliminary plans for a proposed new Headquarters building and the financing problems attendant thereto.

There being no further business, the Committee adjourned at 7:45 Р.м.
A. L. Budiong

Secretary

"Strays"

WA2ENV thinks that some of our QST photos of amateur operating positions aren't very true-to-life, seeing as how they are always so neat. Thus, he sends along this picture of his own operating position, showing how it looks most of the time because he is always experi-
menting on something or other.

BIGGER "SURPRISE" TRADES on all New Hallicrafters equipment FROM WALTER ASHE

Hallicrafters SX-111 Receiver

This new dual-conversion, selectable sideband receiver covers $80,40,20,15$ and 10 meters in five individual bands, with a sixth band tunable to 10 mc . crystal calibrator calibration with wWV.

Shipping Weight 40 lbs .
Amateur net $\mathbf{\$ 2 4 9 . 5 0}$

ASHE TRADES HIGH!

Your used amateur transmitter or receiver, made since 1945, is worth a lot more in trade at Walter Ashe. Get our offer and we guarantee you'll be surprised!

EASIEST TERMS

If cash is short you can still get your new ham equipment at once thanks to Walter Ashe's easier terms. You can use your trade as a down payment!

GET RECONDITIONED LIST

Only top grade equipment is accepted in trade . . . and each unit is completely checked in our own shops. If you are interested in reconditioned equipment. ask for our current list . . . we probably have iust what you want at a rock bottom price!

NEW CATALOG OUT!

The new 1961 edition of the 144 -page Walter Ashe Radio Amateur catalog . . . exclusively amateur equipment, parts and supplies . . . is now ready. Be sure to check and mail the coupon for your copy. Do it now!

FOR FASTEST SERVICE PHONE
CHestnut 1-1125

Hallicrafters HT-37 Transmitter

The HT- 37 is a complete table top, high efficiency amateur band transmitter providing S. S. B.-AMor (CW output on $80,40,20,15$ and 10 meters.

Shipping W eight 80 lbs.

Amateur net $\$ 450.00$

ALL HALLICRAFTERS EQUIPMENT IN STOCK READY FOR IMMEDIATE DELIVERY

SX 101A 7 band receiver $\$ 399.50$
SX 1004 band receiver 295.00
SX 62A 6 band SW receiver 375.00
S-107 5 band receiver 94.95
S-108 4 hand receiver 129.95
HT 32A Transmitter . 695.00
HT 33A KW amplifier 795.00
HA-1 Automatic Keyer 79.95
SX 1104 band receiver 159.95
All prices f.o.b. St. Louis

WALTER ASHE RADIO COMPANY
Dept. Q-1-61, 1125 Pine Street, St. Louis, Mo.
1 am interested in
What is the Ashe "Surprise" Allowance on

Nome.
Address

[] Send 1961 Catalog Send Reconditioned Bulletin

Mr. Magoo says you can't afford to be near-sighted about cancer. Too dangerous. Too much to lose. Maybe your life.

Got to look ahead. Play it safe. Many cancers can be cured if detected early and treated promptly.

Be far-sighted. Have a health checkup every year. It could save your life.
AMERICAN CANCER SOCIETY

Are You
TRADING?
Let me make you a trade-in offer on your used amateur equipment. All name-brand equipment. All name-brand bers assured. Quick delivery.

WRITE TODAY!

COMMUNICATIONS EQUIPMENT CO.

518 State St., LaCrosse, Wis.
Phone 4-7373

Technical Correspondence

(Continued from page 61)

this circuit will be found extremely useful." The tunneling effect in junctiou diodes, as I understand it. is probably very much different; I suppose which effect was responsible for Pickard's oscillation will never now be known.
.-ت. John K. Green. W'6.M.MC/7
2523 N. 57 th St. Phoenix, Arizona
Technical Editor, $Q S T$:
. . W6MMC points out that the Sylvania diode manual sluwe a diagram of an audio oscillator using a crystal. While I have not seen the Stylvania manual, I believe it describes an oscillator using the well-known "thermal breakdown" effect. This occurs in the high reverse-bias region of some crystals, and produces a negative-resistance effect, but is not capable of producing high-frequency uscillations because of the long thermal time ennstant.

Other negative-resistance effects in erystals are known. A welded-contact germanium diode, when used as a mixer in a superheterodyne, exhibits a negative conductance at intermediate frequency. This is described in Crystal Kertifiers, Vol. 13, of the Kadiation Laboratory Series. It is presumed to be due to the variation of capacitance of the junction caused by the local oscillator. This book was written in 1948; today we have parametric amplifiers using this prineiple. But Pickard's crystal was not pumped.

We will probably never know just exactly what Dr. Pickard did use, since he died about five years ago. But I do not believe there is anything in either the quotation or disgram that can be used to prove that the crystal was not a tunnel diode.

Dr. Pickard patented the crystal detector in its familiar rat's-whisker form in 1006. The original material was silicon. Later on, galena, which is lead sulphide and contains germanium, became popular. Tunnel diodes can be made from both silicon and germanium, plus other materials such as gallium arsenate. I do not believe there is anything in semiconductor theory that excludes the pussibility of a point-coutact tunnel diode.

So, either by design or serendipity, Dr. Pickard could have discovered the tunnel diode.

Do I helieve that the device used in 1920 was a tunnel diode? Well, who knows?
-.... Harry R. Hyder, K7HQN
Box 412
Sedona, Arizona
Technical Editor, QST:
... It is clear that too little is known to come to any sersible conclusion ... (but) I do think it is worth explicitly stating that the oscillating diode was not neressarily a tunnel diode (or acting through the tunneling effect) as well as that which Mr. Hyder wishes - that it was not necessarily not a tunnel diode! . . . It would certainly be interesting to see the original laboratory notes, which perhaps are still available, on the oscillating diode.
-.Iohn K. Green, W6M MC/7

2eStrays枵

1 have amateur license plates on my car and when I purchased my city license for 1961, I found that the city was cooperative too. They issued license number 88 to me. At my age I think that number 73 would have been more appropriate!

- HOLYG

HAM LICENSE COURSES

Resident Classes-3 Evenings a Week

Thorough preparation in Code and Theory. Qualifies for NOVICE CLASS in 4 Weeks and for GENERAL CLASS in 2 Months.

Dept. A, DELEHANTY INSTITUTE
117 East 11 St., N. Y. 3
Phone GR 3-6900

FORTORANGE
 904 BROADWAY ALBANY 4 N.Y. U. S.A. AMATEUR HEADQUARTERS

Cable Address "Uncledave"

HALLICRAFTERS S-120
COVERAGE: Broadcast band 550-1600 kc plus three short-wave bands covers 1600 kc -30 Mc .

- FEATURES: Electrical bandspread with slide rule bandspread dial and separate bandspread tuning condenser.
- CONTROLS: Band selector, main tuning, bandspread tuning, standby/receive, B. F. O./selectivity, AC on/off volume.
- TUBE COMPLEMENT: 4 tubes plus one rectifier, 12BE6: Converter 12BA6 I-F amplifier, B. F. O.: 12AV6 audio amplifier AVC defector-50C5 Audio Selenium Rectifier.
\$69.95

HALLICRAFTERS HT-37
Phasing type SSB-AM-CW transmitter/ exciter . . . 144 watts infut . . . built-in VFO . . . VOX . . . 15 tubes plus 2 rectifiers and regulator... 80 through 10 meters,
\$450.00

HALLICRAFTERS SX- 111
10 Tubes plus regulator and rectifier... "Tee-Notch" filter, crystal calibrator, selectable sideband... covers 80 through 10 meters plus WWV...AC only...less speaker. $\$ 249.50$

HALLICRAFTERS SX-140

- FEATURES: You get complete coverage of all amateur bands 80 thrcugh 6 meters. - CONTROLS: Tuning; Antenna Trimmer; Cal. Reset; Function (AC off, standby, AM, CW-SSB); Band Selector; Cal. on/cff; RF Gain; Auto. Noise Limiter on/off; Selectivity/BFO; Audio Gain; phone jack; S-meter Adj.
- TUBES AND FUNCTIONS: 6AZ8 tuned RF amplifier and crysial calibrator; $6 U 8$ oscillator and mixer; 6BA6 1650 kc . IF amplifier and BFO; 6T8A 2nd defector, A. V. C., ANL and list audio; 6AW8A audio power amplifier and S-meter amplifier; (2) silicon high valtage rectifiers. Kit. $\$ 94.95$. W/T. $\$ 109.95$

HALLICRAFTERS HT-40

- FEATURES: You get excellent CW performance as well as AM. Full band switching, 80 through 6 meters. Enjoy easy tune-up and crisp, clean styling that has efficient operation as well as appearance in mind. Unit is fully metered, TVI filtered.
- SPECIFICATIONS: Maximum D.C. power input: 75 watts. Power output in excess of 35 watts CW, 30 watis peak AM phone. (Slightly less on 6 meters.) Frequency bands: $80,40,20,15,10$ and 6 meters.
- TUBES AND FUNCTIONS: 6DQ5 power output; 6CX8 crystal oscillator and driver; 12AX7 speech amplifier; 6DE7 modulator; silicon high voltage rectifiers. Kit . . . $\$ 79.95$ W/T.

> Wrife Uncledave W2APF
> with your needs and problems.

FREE!
 NET CONTROL - LOG SHEETS - MESSAGE PADS

TIME PAYMENTS

18 Months to pay. Life Insurance at no exiro cost

GLE DAVE'S RADIO SHACK
A SUBSIDIARY OF
FORT ORANGE RADIO DISTRIBUTING CO.

get
 SHURE quality \&

dependability in a completely equipped SSB MICROPHONE for less than $\$ 30$

- Complete With Grip-To-Talk Switch, Desk Stand, 2-Conductor Shielded Cable.
- Eliminates Need For Audio Filters-Sharp Cutoff Below 300, Above 3000 cps .
- Superb Intelligibility, Extraordinarily Rugged, Choice of 2 Models.
- Trouble-Free Controlled-Magnetic Design, Output - 52.5 db (100,000 ohm impedance).

MODEL 440SL-ONLY \$28.50* Complete with stand, grip-totalk switch, 7 ft . highest quality 2 conductor shielded cable. Cable connector equivalent to Amphenol MC3M plug.

MODEL 440-ONLY \$15.00* Low cost, same performance characteristics as 440SL. 7 ft . single conductor (shielded), less stand, switch, connector.
*Amateur Net Prices
SHURE BROTHERS, ING., 222 Hartrey Ave., Evanston, Illinois MICROPHONES, HIGH FIDELITY AND ELECTRONIC COMPONENTS

PREPAID ANYWHERE IN THE 48 (CONTINENTAL U.S.A.)

RECEIVER-BUIIIDER'S SPECIAL! kit six ransformer assemblies as used in the world famous BC - 348 K military receiver. Consists of four IF transformers. (:W osc. assembly. and Crystal fiter assembly with crystal. BC.-348R diagram supplied. New, unused material. Don't miss this bargain. Order nowl
\qquad

EURSTEIM-APPLEBEE CO., 1012 MEGEE ST., KANSAS CITY, MO.

Housed in Aluminum Case. Black Instrument Finished. Small-Compact-Quiet induction type motor. 110 Volts- 60 Cycles A.C.
Adjustable speed control, maintains constant speed at any Setting. Complete with ten rolls of double perforated tape. A wide variety of other practice tapes available at 50 c per roll.

GARDINER \& COMPANY
STRATFORD
NEW JERSEY

March 20-23, 1961

KWM-2 Transceiver

FOR
COLLINS EQUIPMENT SEE BROWN ELECTRONICS INC.

Whether you are interested in a KWM-2, a
 complete S line station or Collins accessories, Brown's have it in stock for prompt shipment.

We are sincerely interested in trading with you and will make the best possible offer on your used gear. All contracts are handled by us. Only 10% down payment required and you may take up to 24 months to pay the balance. Write for our trade in offer TODAY.

BROWN ELECTRONICS INC.

COMPLETE • CONVENIENT •

Shown with the KWM-2 are the Collins 312B-5 Speaker Console and 30S-1 Linear Amplifier. The units are easily arranged for complete and convenient station operation.

THE EGOLINEE MMM-2

available in the 50 th state at

HONOLULU ELECTRONICS

where you receive personalized service

- High frades
- Fast service
- 2 year payment plan
- 10% down
- 25 years experience

Authorized Collins Service
(Subsidiary of Kaimuki Radio Co., Lrd.)
819 Keeaumoku St., Honolulu 14, Hawaii, Phone 995466

JACK, KH6AND
TOM, KH6BM

Looking for
 A-1 Reconditioned EQUIPMENT?

LARGE STOCKS? LOWER PRICES? FREE TRIAL? GUARANTEE?

HENRY HAS IT!

Equipment at both Henry stores may be traded back in 90 days at full price on new equipment. Our time payments save you money because we finance ourselves. Write, phone or visit either Henry store to get better equipment at less cost on better terms.

RADIO CONSULTING ENGINEER

W8FAZ - Joseph Zelle, AB MA (MS) PE

IRE
ARRL
APS
AIEE
AMS
Practice limited to amateur radio
TELETYPEWRITER EQUIPMENT•COLLINS 51 J-3 RECEIVERS . 50-30.5 MC. Model \#14, 15, 19, 26 and 28 Teletype machines, Telewriter Receiving Converter and others. For general information $\&$ equipment list, write to TOM, W1AFN, ALLTRONICS-HOF'ARD CO., Box 19, Boston 1, Nass. RIchmond 2-0018.

NOW A 3-BAND
 SINGLE FEEDLINE

No relays, switches or matching devices required. Operate 10-15-20 meters with only one 52 or 72 ohm line, plus all the CUBEX MK III features at no increase in price. Only $\$ 67.50$ ready to install
HI GAIN. HI FRONT-TO-BACK RATIO• PRETUNED - NO STUBS . HUSKY CAST ALUM. SPIDERS. RUGGED $2^{\prime \prime}$ TUBULAR ALUM. BOOM. TV ROTOR TURNS•LARGE CAPTURE AREA•UNDER 30 LBS. Write For Free Brochure "SF"
CUBEX COMPANY
3322 Tonia Avenue
Altadena, Calif.

HALLICRAFTERS
CENTRAL ELECTRONICS
ELMAC - GONSET
W8EPI - "JERRY"
New location -
1524 OAK HARBOR RD. PHONE FE 2-5681

EMBOSSED STEEL LICENSE PLATES

with your call or name-up to 10 characters $2^{1 / 2^{\prime \prime} \times 7^{\prime \prime} \# \text { Q.3. }}$ K9TVA $\$ 1$ posipaid.
ENGRAVED LAPEL PINS on laminated Formica.
Black, Walnut, Red, Blue, Green or White. Statechoice. Give handle \& call. $\mathrm{Q}-32$, $\$ 1$ postpaid.

CHUCK BAER, K9TVA ENTERPRISES
$6429 Q$ N. Glenwood Ave.
Chicago 26, III.

For TOP-MAN-ON-
THE-FREQUENCY results... Install a Telrex antenna... dollar for dollar better in every way! Antenna systems from $\$ 6.95$ to $\$ 12,000.00$

COMPLETE...

THE 45th edition of the Radio Amateur's LICENSE MANUAL is complete, up to date and revised to include latest information on amateur licensing. Contains information on questions included in FCC amateur exams, all the dope on frequency privileges for the various classes of amateur licenses, the full text of R.ACES regs, details of the U.S.-Canada Reciprocal Operating Agreement, code-practice schedules, and the current FCC examination schedule. A uscful manual for all, newcomer and oldtimer alike.

e-ALL the dope between two covers . . . complete and easy to understand.

- NOVICE - CONDITIONAL
- 'IECHNICIAN • GENERAI - EXTRA-CLASS

The American Radio Relay League,Inc.

 West Hartford 7, Conn.
GUARANTIED CRYSTALS!

BUY NOW AND SAVE!!

ALL MARINE FREQ.-FT-243, DC. 34 Holders. Tol. .005.......... $\$ 2.00$ POLICE, C.A.P., CD, MARS. Tol. . 01%. $\$ 1.60$ CITIŻENS BAND-11 METERS-. 005% TOL. 26.965 to 27.225 MC, 3rd Over. Herm. Seal. or FT-243.
6741.25 to 6806.25 Kc , 4th Harm. FT- 243 only.

NOVICE BAND FT-243 Fund.
 80 Met. 3701-3748-Steps of 1 KC. FT-243
 40 Met. 7150-7198-Steps of 1 KC. FT .243 Dbl. to 40 Met. 3576-3599. Steps of 1 KC. FT-243
 15 Met. 5276-5312-7034-7083 Steps of 1 KC. FT-243

FT-243-2 Meters (Steps of 1 KC
FT-243-6 Meters (Steps of 1 KC

Open Friday Evenings until 9 P.M.

[^22]
YES, WE AND THEY SURE HAVE COLLINS - WILL TRAVEL

Get in touch with WILSO.N - "That's All"

 Excellent proposition for engineer with good commercial experience in the design of Ham transmitters, receivers and accessories to head up new Ham Department in New York vicinity. Firm presently engaged in defense work. All replies held in strictest confidence.
Morton Meltzer, 401 Broadway, New York, N.Y.

	can give you personal service on helping you select better gear per dollar for your operating pleasure. Over 30 years' experience. Big trades, easy terms. Used bargains. VAN SIGKLE RADIO SUPPLY CO. Gene Van sickle, W9KJF, Uwner 4131 N . Keystone Ave. On the northeast side of Indianapolis S, Indiana

SAYE 20\% BUY DREET

OFFICIAL COMMUNICATIONS CONVERTER

For state, local police and fire networks between 30 and 50 MC AM/FM

- Uses 12 V hybrid tubes - requires no B+ supply - Has built-in squelch
- Stable, drift free operation regardless of input operation
- Easy installation - plugs into cigarette lighter

Buy direct for only

Send 25% deposit, balance C.O.D. plus postage or send payment in full, unit shipped postpaid.

TRANSCON DIVISION
Northeast Telecommunications, inc. Danbury, Conn.

CATALOG ON REQUEST

Available from franchised distributors at slightly higher cost.

To QST Readers:

$T_{\text {He amateur radio business is still being run by amateurs, we're }}$ happy to report, in spite of the present trend toward sales of companies, stock issucs and mergers.

These amateurs are proud of being hams. Many of them use their own calls in their OST advertising. Their ads frequently list many other calls, too. During 1960 we counted 137 different calls* in the display ads of QST.

How many can you find?
Mail us your list showing each call and the name of the company whose ad it was in. If you find 100 we'll send you an ARRL Log Book. Please arrange your list by call areas and alphabetically within each call area.

73,
Advertising Department of ARRL L. A. "Petc" Morrow, W IVG

* Not counted because there are so many: The calls in the Hallicrafters ads in May and November, the Gotham ads, January through May, the Astatic ad in April, the Hy Gain ad in September and the Allied ad in December. Also not counted: The calls on the QSLs in the March RME/E-V ad. DO NOT put any of these on your list and DO NOT include Ham-ads.
 SHIPPED OK day recelved
- TRADE-INS ACCEPTED - USED HAM EQUIPMENT - SEND FOR SPECIAL FREE HAM BULLETIN

Pioneer ham suppliers since 1920. Specialists in HI-FI, TELEVISION and INDUSTRIAL ELECTRONIC EQUIPMENT.

DRI-FIT CONNECTOR Completely molsture proof. For use with coax cables thi-x. $\mathrm{kc}(\mathrm{i}-5 \mathrm{~s}$. $\mathrm{Hc}(\mathrm{c}-11$. KG-59 and 300 ohm twin tubular. Has eye pull up for inverted V 's.

Amateur Net \$2.95

See your Distributor or write CONTINENTAL ELECTRONICS \& SOUND co. 6151 Dayton Liberty Ral., Dayton Is. 0.

See Our Booth At
The 196I TROPICAL HAMBOREE
JANUARY 14th and 15th
bayfront auditorium, miami, florida
E-Z WAY TOWERS, Inc.

HAM-ADS

(1) Advertising shall pertain to radio and shall be of nature of interest to radio amateurs or experimenters in nature of interest the art.
can any display of any character will be accepted, nor or part capital letters be used which would tend to make or part capiral letters be used which would tend ot make Reply Service can be maintained in these columns nor may commercial type copy be signed solely with ama(eur call letters.
(3) The Ham-Ad rate is $35 t$ per word, except as noted in pararraph (6) below.
(4) Remittance in fuil must accompany copy, since Ham-Adds are not carricd on our books. No cash or contract discount or agency commission, will be allowed. month preceding publication date the 20th of the second month preceding publication date.
tising which, in our judgment, is obvis to advertising which, in our judgment, is obviousiy noncommercial in nature. Thus, advertising of bona fide dividual or apparatus offered for exchange or advertisink inquiring tor spocial equipment, takes the $10 c$ rate. Address and signatures are charged for. An attempt to deal in apparatus in quantity for profit, even if by an individual, is commercial and all advertising so lissified takes the 3 se rate. Provisions of paragraphs
(2) and (5), apply to all advertising in this column regardless of which rate may apply.
(') Because error is more easily avoided, it is requested copy, signature and address be printed plainly
on one side of paper only. Typewritten copy preferred on one side of paper only. Typewritten copy preferred thorized insertions.
one issue nor more than one ad in one issue. Having made no investigation of the advertisers in the classitied columns except those obviously commercial in character, the publishers of oST are unable to vouch for their integrity or for the grade or character of the drod-
ucts or services udvertised.

WANTED: Early wireless gear, books, magazines, catalogs before 1922 . Sens description and prices. W6GH, 1010 Monte Dr. Santa Barbara. Calif.
COAXIAL Cable. New surplus RB-54A/U. 58 ohms impedance -30 ft . prepaid, \$1.00. Radio magazines: buy, sell, trade. R. Farmer. 3009 No. Columbia. Plainvicw. Texas. ALL types of transmitting and receiving tubes wanted. Also aircraft or ground recelvers and ransmite s. famgear or test equipment. For immediate action or cash write or
MOTOROLA used FM communications equipment bought and MOTOROLA used FM communications equipment
sold W5BCO. Ralph Hicks, Box 6097. Tulsa, Okla.
sold WSBCO. Ralph Hicks, Box 6097. Tulsa, Okla.
 MICHIGAN Hams! Amateur supplies. standard brands. Store nours 0830 to 1730 Monday through Saturday. Roy J Purchase.
WRRP. Purchase Radio Supply. 327 E . Hoover St., Ann Arbor. WRRP. Purchase Radio Supply,
Michigan. Tel. NOrmany $8-826$.
HAM TV Equipment bought, sold, traded. Al Denson. W1BYX. Rockville. Conn.
CASH for your gear. We buy. Trade or sell. We stack Hammarlund. Hallicrafters, National, Johnson, Gonset, Globe, HyGain. Mosley and many other lines of ham gear. Ask for used waukee St.. Rockford. III.
"PIG-IN-A-POKE"? Not if you visit Ham, Headquarters, USA and see and choose from the hundreds of "Like-New" bargains in the world-tamous Harrison trade-in Center. More for ynur Terms., trades. Send postcard for mouth-watering photograph and price list $0-6$. For the hest in all new and used euuipment, it pays to come to "Ham Heaquarters, USA"! BCNU, ${ }^{73}$, Bii
Harrison, W2AVA, 225 Greenwich St., New York City, N. Y. KWMI and a few hish plate dissipation tubes wanted $304 \mathrm{Tl} /$ Th 4-10ce Arlington. N. , etc. Ted Dames, W2KUW, 64 Grand CHICAGOLAND Amateurs! Factory authorized service for Hal . licratiters, Hammarlund, Globe, Gonset. Service all amateur equipment to factory standards. Heights Electronics. Inc.,
WANTED: Old time commerclally built and unaltered amateur spark transmittins and audiotron receivins equipment. Al T. NEL. Camp Lakeview. Lake .
RECEIVERS: Repaired and aligned by competent engineers using factory standard instruments. Authorized factory service station for Collins. Hallicrafters, Hammarlund, National. Har: vey-Wells. Our twenty-fourth year. Douslas qatory, 176 Norfolk Ave., Boston 19, Mass.
SSBERS! Kecp up with SSB news and views! Join the Single Sideband Amateur Radio Association, dedicated to furthering rood SSB operating; promoting advancement of SSB equip. ment; and disseminating SSB technical information. Read "The
Sidebander", official publication of the SSBARA. Dues $\$ 3.00$ Sidebander", official publication of the SSBARA. Dues $\$ 3.00$
vearly. Write for membership application. sample "Sidebandyearly. Write for membership application. sample "Sideband-
er". to SSBARA. 12 Elm St., Lynbrook. N. Y. WANTED: 6 to 12 304TL tubes. Callanan. W9AU. P.O. Box 155. Barrington. Ill.

ATTENTION Mobileers! Leece-Neville 6 volt 100 amp . system.
 units. Herbert A. Zimmermann. Jr. K2PAT, 115 Willow St. Brooklvn 1, N. Y. Tel. DIckens $2-9121$ or JAckson 2-2857.

DISTINCTIVE OSLS! Finest, big variety samples 254 (refunded). Callbooks (Winter): American calls, $\$ 5.00$; Foreign calls, \$3.00. "Religious" QS1, samples 10¢. "Rus" Sakkers.
W8DED, Box 218. Holland. Mich. W8DED, Box 218. Holland. Mich.
OSLS. Twenty exclusive designs in 3 colors. Rush $\$ 3$ for 100 or $\$ 5$ for 200 and get surprise of your life. 48 -hour service. Satisfaction guaranteed. Constantine Press. Bladensburg, Md.
OSLS. Quality and economy complete samples dime. OSL Printing, 4319 Wuthering Heights. Houston 45, Texas
OSL-SWLS. Reasonable, Samples 104. Glenn Print. Att: M. L. Edmonds. 1103 Pine Heights Ave.: Baltimore 29, Md. OSLS "Brownie," W3CJI. 3110 Lehigh. Allentown. Penna. Samples. 10 c with catalogue, 25 c .
C. FRITZ for better OSLS! Samples 10\%. P. O. Box 1684. Scottsdale, Ariz.
OSLS-SWLS. Samples 104. Malgo Press. 1937 Glensdale Ave., Toledo 14. Ohio.
OSL'S New design lower prices, fast delivery Catalog 256 (coin only), refundable. Dick Crawford, K6 Whittier, Calif.
CREATIVE OSL and SWL Cards. Are you proud of your card? If not let us print your next order. Write for free samples
 cadero. Calif.
QSLS. Economy prices, prompt delivery. Send for samples. press, Box 183. Springfield, Oregon.
QSLS.SWLS. Samples free. W4BKT Press, 123 Main. McKenrie. renn
OSLS Samples dime. Sims. 3227 Missouri Ave., St. Louis 18. Mo.
OSLS. Taprint, Union, Miss.
SUPERIQR QSLS, samples 10¢. Ham Specialties, Box 3023. Bellaire. Texas.
OSLS, 3 ecolor glossy, $100-\$ 4.50$. Rutgers VariTyping Service. Fairfield Rd.: New Brunswick. N. J. your photosraph. 1000, \$13.00. Raum's. 4154 Fifth St., Philadelphia 40, Penna.
OSL's-SWL's: That are, different, colored, embossed card stick and "Kromekote." Samples 10\%. Turner, K8AIA Box OSLS-SWLS reasonable prices. Samples 10t. Robert Bull. OSLS. Lapel pins, samples dime. Kephart W2SPV. 4309 Willis. Merchantville, N.'
OSLS. SVWLs. XYL-OMs (sample assortment approximately 93/4 41 covering designing, planning, printing, arranking, mailing: cye-catching. comic, sedate, fantabulous, DX-attracting, proto.
typal, snazzy, unparasoned cards (Wow!), Rogers, typal, snazzy, unparagoned cards (Wow!), Rogers, KøAAB. 1200 Marshall Ave.. St. Paul 4, Minn.
GLOSSY OSLS. 100,4 colors, $\$ 3.50$ Others less, Samples 104. bick, W8VXK, 7373 No. M-18, Gladwin, Mich.
DELUXE OSLS. Petty, IV2HAZ. Box 27. Trenton, N. J. Samples. $10 c$.
DSis. Samples free. Phillips, W7HRG. 1708 Bridge St., The Dalles. Oregon.
OSLS-SWIS, 1002 color glossy, $\$ 3.00$; QSO file cards, $\$ 1.00$ per 100 . Samples. $10 c$ c. Rusprint. Box 7507. Kansas City if. Mo. QSLS-SWLS. Free Samples. Spicer, 4615 Rosedale, Austin OSLS, Kromekote 2 \& 3 colors, attractive, distinctive, difQSLS, Kromekote $2{ }^{2}{ }^{3} 3$ colors, attractive, distinctive, dif-
ferent. Free ball point pen with order. Samples 104 . K2VOB ferent. Free ball point pen with order. Samples 10t. K2VOB OUTSTANDING $111 / 2^{2}$ (all) OSLS, One style: 100, $\$ 2.75$: sample free. Gariepv. 2624 Kroemer, Fort Wavne. Ind.
QSLS: Cartoons, colors. samples 25t. Chris. W9PPA. 365 Terra Cotta Ave., Crystal Lake. Ill.
DON'T Buy OSLs until you see my free samples. Bolles, 7701 isdale, Austin 5, Texas. ATTRACTIVE QSLS. Pearce, 192 Osborne, Danbury. Conn. OSLS. Samples. dime. Printer. Corwith, Iowa.
OSLS, 100 3-color, $\$ 3.00$. Sample sheet, 10t. RBL Print M.R. OSLS. 300 for $\$ 3.95$. Free samples. W9SKR, "Gcorge", RR \#1, Box 208-A, Ingleside. III.
QSLS Attractive, colorful Variety type styles, backgrounds. Samples $10 \&$ Jack Crandali, K6QAO Press. $\$ 013$ Enfield Ave.: Encino, Calif.
QSL Cards printed in 2 -colors on glossy Kromekote cards, Two designs especially for mohile, $\$ 275$ for each 100 cards. $5 \&$ for
sample card and brochure. Williams Printing. P.O. Box 2597 . Van Nuys. Calif.
EYECATCHING OSLS—quick! Dollar-saving sample. Dime. kad'Oprint, Ojai. Calif.
OSLS: Samples $25 ¢$ (refundable), W6CMN, Wildcat Press, 6707 Beck Ave., North Hollywood, Calif.
FAST Service! Send stamp for OSL samples. K2 Press, Box
MAKE Your own photographic OSL cards. Complete kit of maMerials. Albertson. W4HUD. Box 322. High Point. N. C. QSLS: $\$ 1.75$ per 100 postpaid U.S. only. Glossy, red and green. All orders mailed within 10 days. Free sample. Hobby Print Shop, Umatilla, Fla
OSLS. Stamp brings samples. Eddic Scott. W3CSX, Fairplay. Md.

RUBBER Stamps for hams. sample impressions. W9UNY, Hamm, 542 North 93 . Milwaukee, Wis.
QSLS you'll like. Samples 104 . Dupli-Press, 1367 Gary St., Merritt Island, Fla.
TRI-COIOR QSLS. \$3.50. Dime. Filmcrafters. Box 304, Martins Ferry, Ohio.

GSLS. SWLS. Rubber Stamps. samples 56. Nicholas \& Son Printery, P.O. Box 11184 . Phoenix. Ariz.
QUALITY OSLS. Latest designs, samples 10c. Savory Press. 172 Roosevelt Kd.. Weymouth, Mass.
QSLSS-SWLS 3-colors 100 \$2.00. Samples dime. Bob Garra, Lehighton. Penna.
QSLS, reasonable, nice designs, samples dime, W2DJH Press, Warrensburg, N.
QSLS. Large selection styles including photos, Lowest prices. Fast service.
3-1) OSL cards. Excitinsly different! $\$ 3.95$ first 100 . Samples, 254. 3-1) Ont.. 5 Wood End Rd., Springfield, Mass

CARDS! QSL.S-WPE-Gax, business. Photo, rubber stamps. LaWels, stationery. Samples dime. Ricsland. Del Mar, Calif. collection. W4AA. Wayne Nelson, Concord,
COLLINS reconditioned: $51 \mathrm{J2}, \$ 495$; $51 \mathrm{~J} 3, \$ 675$; 75A-4, $\$ 545$; HQ-160, $\$ 275$; Hickok, $\# 188, \$ 69.00$; HRO-60, $\$ 325$; DX-100. ers. converters, etc. Alltronics-Howard Co., Box 19, Boston 1. Mass. Tel. R lchmond 2-0048.
KWS-1, SC-101 integrated control unit and 75A-4. A complete and superb station in top condition. Package $\$ 2000$. W2ADD. WON'T Fail FCC tests! Check yourself with a time-tested We pay the postage. Amateur Radio Specialties, 1013 Seventh Ave.. Vorthington. Minn
LOWEST Prices: Latest amateur equipment. Factory fresh sealed cartons. Selt-addressed stamped envelone tor lowest guotation on your needs. HDH Sales Co., 919 High Ridge Rd.. stamtord. Conn.
COMPLETE File of QST for sale: 1915-1951. Landa. R2. Clavion.
TOROIDS: Unused 88 mhy like new. Dollar each. Five, $\$ 4.00$ pp. DaPaul, IUl Starview, San Francisco, Calif. After Sept. Ist our address will be at 309 So. Ashton, Millbrae. Calif.
GREAT SURPLUS VALUES! ! BC-603 Receiver New \$23.00-BC-683 New \$37.00-R-26/ARC 5 Rec $3-6 \mathrm{mc}$ New $\$ 15.00-$ rransceiver with PE-120 \$19.95-T-47/ART-13 Transmitters 1 ransceiver
$\$ 9.00-B C-603$ ACC-Supply $\$ 9.95-S-4 n c h r o s c o p e s ~ M o d e l ~ T S ~$ 34,AP $\$ 49.00$-Sound-Powered Dynamic Phones Pr $\$ 4.75$-Rec. Microwave R-111/APR-S \$4.00-R Oins Mod. Xiormer 100 for SCR-522 VHF $110 / 60$ cyc. New $\$ 59.50-\mathrm{Kits}$ only for above, $\$ 17.00$-Ground-plane V HF antennas $30-200 \mathrm{MC}$ New $\$ 4.95-$ T-19/ARC-5 Transmitters $3-4$ me $\$ 9.50$ used-T-20/ $4597-9.1 \mathrm{me}$. New $\$ 12.00 \mathrm{HiMu}$ Electronic Sales Company 133 Hamilton Street New Haven 11, Connecticut
S.S.B. Xermis. Exact type for "W2EWL Special", and other meband unis, brand-ampere hias powe No c.o.d., include postage, S. A. Tucker. W2HLT.' Si-10 Little Neck Pkwy, Little Neck 62, L. 1., N. Y.
WANTED: Communications equipment, late model, base station and moniles. Also filters for 75A3 revr. George Tate. 200 Watt amplifier for 220 Mc . Exc. condx. $\$ 39.00$ includine 200 Watt amplifier for 220 Mc . Exc. condx
$4 \times 250 \mathrm{M}$ tube. WA6LEN, Box 602 , Cardiff, Calif
IONG island tube headquarters. We stock more than 1000 types of tubes. Surplus and recent production at maximum discounts. Maritime International, 199 Front St.. Hempstead. - \because N. NERS

BEGINNERS: Code memorized in one hour. New method. Used in armed services, Ham radio. Scouting. "Ketchum's Hour Code Course \mathbf{H} Ketchum. 10125 Flora Vista. Bellition back kuaranteed. O. H. Ketchum, 10125 Flora Vista. Bellinower, Calif.

SALE: Johnson Valiant, like new. in perf. condx: \$275. Ben Sherman. 2243 E. 26th. Brooklyn 29, N.Y. K2ZEX
FOR SALE: Johnson Matchbox, $\$ 35.00$: low-pass filter, $\$ 8.00$; standing wave bridge, $\$ 30.00$; Morrow $\mathrm{CM}-1$,
5100 and SiSB. $\$ 425.00$ J. J. Gillen. W3ARI,
WANTED: Typing reperforator late serial 75A4, new condition. reflecting telescope with drive mount W1WL
WANTED: Type CME 50063 RME Preselector in gud condx Write: Mike Delgado. Box i542, Caracas. Venezuela.
SALE: HT-32, all xtals included. New condition, \$450. C. R. Nissen, W4BWR, RR2, Box 190, Melbourne, Fla.
SELL: SX-100, \$190; Heath DX-20; \$30, Lettine VFO, \$20; Heath SB-10 $\$ 885$; Drake Q-multiplicr, $\$ 15.00$: or the whole works for time. Am lonking for Heath mobile gear. in in prescnt time. Am
$\mathrm{K} 2 \mathrm{GBN}, 174$ Ramsey St., Paterson
1 . N. N. Tel. MU 4-0690. FOR Sale: Viking Valiant $\$ 325.00$; koing mobile Also D- 104 mike and co-ax relay Martin Manes, K2ZGB, 148 West 23 rd St., New York 11. N. Y. AL5-1718.
WANTED: Teletype equipment. Tom Howard, WIAFN. 46 Mt. Vernon, Boston 8, Mass.
PLEASE Notice! Hams south of Boston, Massachusetts: Bob Graham now has another exclusive amateur radio store at 1105 28.th Main St.: Randolph. on Rte. 28. 1 mile south of Rte. 28. Telephine

SELL: HRO60T Super DX installation. Standard coils plus broadcast and hish sensitivity 10 m and 15 m coils. NBFM adap tor, xtal calibrator, GOSC, 2 comb. spkr. and coil storage rack.
New price, $\$ 989$. Good as new, $\$ 459$. W9ADN, Box 117 , New price, ${ }^{\text {Nocknort, Ill. }}$
CO-AX 80 ohm TV orisinal packed 300 ft rolls, $\$ 8.00$ each prepaid eastern U.S. J. Kelly Johnson, 184 South Ave., New Canaan, Conn.
COLLEGE Bound! For sale: HQ-150, DX-100B, AM-2 S.W.R. Bridge, Dow-Key coax relay, excint condx. First check for man, 216 Cobb Terr., Rochester $20 . \mathrm{N} . \mathrm{Y}^{2}$.
© LOBE Hi-Bander VHF-62 kit for sale. Make offer. W1EOO, 267 Rockwell St., Winsted. Conn.
COIIINS DC supply 516E-1 (\#1342), never used, $\$ 225$; 75S-1 (\#1088), $32 \mathrm{~S}-1$ (\#1167) and $312 \mathrm{~B}-4$, all three like new, $\$ 1020$; AC supply, $516 \mathrm{~F}-2$. $\$ 90$ and RCA $3^{\text {n }}$ oscilloscope $\$ 25.00$ Ali B\&W I. 1000 A. W2SIK. John F. Ashton, $224 A$ Rye Colony, B\&W I.1000A. W2SIK. John F. F .
HO-140X. \$130. Jim Connor, KODL, 33 Middle Rd., Bedford, Mass.
SX-100 receiver for sale. Perfect condition. \$195.00. N. Brooks, I). 4 VQ . Quarters 1106 A , Ramstein AFB. Ramstein. Germany, SELL: Receiver National 183D, in gud condx. Xmtr: Home brew ${ }^{90}$ watts. phoneic.w. 10-20-40-80 meters. Best oificr. rantcher

CANADIANS! Complete ham station sale for $\$ 299$; Heath DX-40. Heath VFr. SX-99 and loudspeaker. Heath o-mult Dow-Key pre-amp and coax ant. chanke-over relay; 729 Elec-tro-voice mike, Johnson key, headphones, spare revr and xmttr tubes. All in gud condx-used about one year. Will sell or SWap for RME DB23 Presclector Polaroid Speedliner Model 95A camera with carrying case, flash. filters, kud condx. M. D.
Kierans. VEIYR, 345 Hennessy St.. Bathurst. N.B., Canada. CANADIANS! For sale, DX-100, unmarked, unmodificd and only used a few hours: $\$ 200.00$ cash. Beadle (VE4PR), Officers Mess. Ft. Churchill. Manitoba. Canada.
CANADIANS: Collins 75S1 recvr with noise blanker installed, 32 S1 transmitter and 516 F 2 AC pwr supply. One year old and as new condx: $\$ 1100$ F. O.b. Winnipeg, Manitoba, Can. Will ship in original packing. Also RME VHF-152A. $2.6-10$ converter
in exc. cond. $\$ 45.00$. Call or Write $V E 4 A B$. W. H. Galpin, 175 Lanark St., Winnipes 9, Man.. Clanada.
CANADIANS: Avallable against ham equipment: wired new Heathkit ten transistors mohican receiver; 12 volts DC AT-1 Box 355. Riviere-du-Loup, Ouebec P., Canada.
SELL: HO-170. \$290; Globe 6NZ, \$100; Viking Kanger PTT, \$180; NC300-62 $1 / 4$ meter converters. \$340; Gonset 111 , $\$ 215.00$; Heath krid dip meter, \$18.00; P-104 mike, \$17.00, Ail in mint Chandler Drive, Prospect, Conn.
I Will accept a certified check for the tollowing items and you pay the shipping costs: kWS -1, all modifications by Collins.
$\$ 116.00$; Jones $S W R$ bridec and indicator. $\$ 51.00$; Astatic 10-D mike with stand, $\$ 22.20$. R. L. Pixler. Rt. 1 , Box 254 , Avon Park, Fla.
HALLICRAFTERS SX-1 10 receiver, practically new, in perf. condx. Will be shipped in factory box with manual, R-47 speaker included, 5129.00 ; Globe Chief 90 in exceptional conulator, wh manual. factory-wired. $\$ 34.00 ; 40$ watt plate modfessional, 8197 s . Sharp grey paint with technicals. looks protory aligned, $\$ 9.00$; Vibroplex Champion, used two weeks; shipped in factory box, $\$ 9.00$. College forces sacrifice of entire
station. Ron Schuster, K8KRM. 4346 West 193 rd St., Clevestation. Ron Sc
land 26. Ohio.
2-Meter Communicator HI, \$220.00: Regency ATC-1, $\$ 50.00$, Both in exc. condx, with all pluss. cables. factory cartons, and manuals. Marvin Wallach. K2GFZ, 217-57 Kinssbury Ave.,
FOR Sale: Deluxe Rotator. Model 160-003. Amphenol, American Phenolic Corporation; Flexo Action Gear Co., Merkle, Korff. Sisnal Squirter Dircction Indicator and cable. \$65.00. Claude M. Philips. W5KJ, 444 Hammond Ave., San Antonio, Texas.
FOR Sale: GPR raaio with dial tuning dials. Double conversion. In Pcrf condx. Price \$255.00. Sorry, pickun deal only. WANTED: Collins 2 and 6 Kc filters for 75 A 4 receiver. KDAEK, 4390 West 17 th Ave., Denver, Colo.
WANTED: Schematic for Springfield TRX-144A WalkicTalkie. Will pay good price. Wayne A. Smith, 128 Powers Rd., Bedford. Ohio.
WANTED: Cash for surplus tech manuais. one or one hundred. State condition and equipment type. W4FXQ. Box 2513, Norfolk. Va.
75A3, spkr, perfect condx, \$375; 10B exc. W/VFO, $\$ 115 ; \mathrm{KW}$ FOR Sale: Johnson Viking Pacemaker, $\$ 285.00$: Thordarson speech amplifier $2 A 3$ output, 10 watts, $\$ 25.00$. Henry Clark, SELL: Collins KWS1/75A4. Latest modifications and instruction books. Try out. pick up only. $\$ 1400$ cash. KøDRU. 2690 14th Ave., Marion, lowa.
HALLICRAFTERS S-53A rcvr with " S " meter: $\$ 65.00$. Will
 $9-8863$.
SELL: Excellent NC-98, Globe Scout 680, Triplett 631 VOM STVM. Best offers, All answered. Jecry Sutton, 1205 Gillespie Rd.. Chattanoosa. Tenn.
SELL: 75A-4 with speaker. Serial \#2560, \$505. David Talley,
W2PF, 130 Martense St., Brooklyn, N. Y.
SX-28, in A-1 condx, just serviced. Guarantced. $\$ 90$ Also 7198 Kenwood Rd., Cincinnati, Ohio.
COLLINS KWS-1 transmitter 75A4 receiver speaker mike, and pick-up, $\$ 2.000$ Commander $\$$ J. Zammit, U. S. Naval Radio Station (T), Cutler, East Machias, Maine.

ELMAC AF-67 and PS-2V supply, in exc. condx, both for \$150.00; guaranty shipping anywhere. C.o.d. Also Morrow MB-5ii) and its AC supply, and $\$ 200$. Also remains of my station. WIUGH. Dave Mello, 58 Packards Lane, Quincy 69, Mass. Tel. GR $2-4649$.
WANTED: 813 s, new or used. $0-1$ milliameters. Larry Kleber, K9LKA. Belvidere, 111.
SELL: SX-42, Comanche MR-1 with AK-7. UT-1. DX-100 with AM-2. YX-1. W3FJY. 501 Cambria St., Punxsutawney, Penna. NEW $4 \times 250 \mathrm{~B}, \$ 10.00$; socket and chimncy, $\$ 7.50 ; 4-65, \$ 3.50$. Mason Booth, K6UWD, 110 Olive, Piedmont, Calif.
SELL Or Trade for suitar: Eico yo watt xmtr. Heath VFO , $\mathrm{BC}-312 \mathrm{~W} / \mathrm{pwr}$ supply es matching spkr 14 AV vertical W/100
ft coax, bug, $\$ 180.00$. W.A.C., W.A.S: Jim Lichens. WA6DPR, t. coax, bug, $\$ 180$ U0. W. A.C.C.
1309 Kamona, Salinas, Calif.

COLLINS $30 \mathrm{~S}-1$ amplifier run 44 hours operation. In mint endx on air. Settle cestate, $\$ 1225.00$. \because Frank ${ }^{\prime}$, WA2FMC. Rt. 111 . Smithtown. N. Y. Tel. ANdrew 5-6137.
HAVE OId OSTs. Scnd your want list. Mrs. Conrad Beardsley, 119 Wythbarn Rd., South Portland 7. Maine.
WANT: Viking Nav gator: ${ }^{\text {4-2SOAS; Tri-band } K W \text { beam; } 600}$
watt mod. xfmr. Sell: RME DB-23 Pre-selector, $\$ 30$: PE-103 $\$ 20.00$; Dynakit 60 w amp. and preamo. \$95; new Shure 55 mike and low impecjance. xfmr $\$ 40.00$. Fairchild diamond
monaral cartridec. $\$ 13.00$. Sam Thomsson, 2187 N . W. Kcarmenaural cartridge.
ney. Portland. Ore.
TELREX 6-El. $10-\mathrm{m}$ ter beam, 36 ft boom, Model $10 \mathrm{M}-56$. 235 , in new condx, \$150.00: 4-ei . 20 meter beam, 36 ft boom, tip-over fittings, all alum num. Cost $\$ 200,00$ new: sale price, $\$ 85.00$. in perf. condx: Gonset 3220 Tr:band beam 3 -el. in exc, $\$ 125.00$: 80 ft. model it same tower, 1 year old, $\$ 165.00$. Frank Smith. RFD 3. Paw Paw. Mich.
FOR Sale: Adams linear amp, with spare 4-400A and spare plate xfrmer, clean. $\$ 350.00$. $\mathrm{W} 2 \mathrm{VCZ}, 30$ Pitca:rn Ave.. Hoplate xermer, clean
Ho -Kus. N. Tel. GI 4-3535.
HO-110. \$160. Globe H9Bander. $\$ 85.00$. K3EAN.
GOING To College! DX-100, \$150 00: D-104. \$1400: Mosley TD33, Jr, $\$ 60.50 \mathrm{ft}$. mast, is beam, rotator, $\$ 35.00$. K'SIUA: Box 1 . Pbonchatoula, La.
FOR Sa'c: Two 304 T 1 , one 304 TH . In arig:nal cartons. unused. 44 arantecd. $\$ 30$ each. Brewer. 2208 11th Ave., Greley, Colorado.
FOR Sale: Me:ssner Model EX S'gnal Shifter YFO, 80 thru 10 Power supply and NBFM. \$30. F.o.b. Marion, Ohio.
 two crystal positions, Crisn chirpless timed sequence key'ng.
Perfect condition. $W:$ red by electron ce instructor, laboratory Pcrfect condition. Wired by electron $c e$. nstructor, laboratory
calibrated. Factory carton, manual, $\$ 140,00$ express prepaid in the 48 continental upon receipt of certified check or money order. Prof. Lawrence Roberts. W4RVB. University of Tampa,
Tamna, Florida.
HOR Sale: Gonset Commun cator, 2-meters. S135 00; 2 Gonset
2 M linears, $\$ 85.00$ each. NC-98. $\$ 95$. Richard Lisht. 124 West 2 M linears, $\$ 85.00$ each. NC-98. $\$ 95$. Richard Lisht. 124 West 79th St.. New York City.
HALLLICRAFTERS S4OB with QF 1, clean. $\$ 50.00$. Bill King,
GONSET Twins: G-66B, with 3-way power supply: G-77A, complete with all cables and Shure 505 C mike. A-1 condx
electrically and phsically: $\$ 450.00$. Dick Kill. K8GNU, 2103 Karl Rd.: Bay City, Mich.
FOR Sale or trade: Factory wired Viking Valiant transmitter in mint condx trade Price $\$ 275.00$. E. R. Asms. W9PBL, RFD. I. WANTED: OSTs for nersonal collection: Jan, 1917, February 1917. May 1917 and September 1917. WICUUT, Box 1, West Hartford 7. Conn.
SELL: Heath mobile, Cheyenne, Comanche, power supply SX-101 Mark Mil receiver, Heathkit $0-11$ oscilloscope. Best SELL: Heavy duty prop-pitch motor. in exc. condx. $\$ 30.00$.
3. Savage. 2 Forest Ave., Old Tappan. N. J. HAMMARLUND HQ-110-C reciever with elock. like new condx, with manual, in orisinal carton. \$170.00. Gcorge Waldhondx, With manal, in orisinal carton. \$170. 0
WAS. DXCC Aspirants! Send Reply-Paid QSLs! Standard or Personalized, Five usabic samples. 25%. Hart, 467 Park. Birmingham. Michigan.
SELL: Apachc. in perfect condition, $\$ 250$. KøQJB, 1008 East Sixth, Sioux Falls, So. Dak.
rRADE KWM-1 with noise hlanker, 12 volt sunply, mobile mount. recent factory overhaul, in exe condx, for Questar. $W 2 H X G$. 105 State St., Seneca Falls. N. Y.
SELL: NC-98. \$95; DX-35, \$40: Knight VFO, \$20; or make offer. K8GWK. Trobridge. Union City, Ohio.
NC300, in exc. condx, $\$ 219$ with speaker. XCU 300 calibrator, $\$ 10$. WS $5 \mathrm{VDC} / 9,18 \mathrm{~N}$. Lewis Avc. W Waukegan. Mlinos.
FOR Sale: 4-1000As, $\$ 20 ; 4-250 \mathrm{As}$, $\$ 10$; 4-125As, $\$ 7.50$; 250THS. new. $\$ 7.50$: R101, $\$ 6.00$: VT-127As. $\$ 500$. Peter W. Thahl, K \emptyset BIT, si31 Oaklawn. Minneapolis 24 . Minn.
SOUTHERN California: Transmitters and receivers repaired, aligned, bandwidth. frequency, harmonics measurcd. Used ham gear boukht, sold, traded. Robinson Electronics, 922 W. Chapman. Orange, Calif. Tel. KEllog 8-0500.
FOR Sale: Hallicrafters $S \times-71$, Heathkit 1 X-100. Both in gud condx. Best offer. 1140 South Eim, Webster Groves 19. Mo. WILL Trade H'T33A, in mint condx. for KWM-1 power supply and speaker, in mint condx. W7HTB. 2709 5th Ave. So., Great
Falls. Mont. Falls, Mont.

SEIL: SX-101A Mark III. HT-32. \$700. Unaltered. One owner Deliver within 50 miles N.Y.C. Bob Herthberg, W2DJJ. $241-16$ Alameda Ave., Douglaston 62. L. I.. N. Y. Phone BÄyside 5-5384.
WANTED: Johnson Matchbox 250-23. WA2EKE
WON a Valiant. Quick salc. DX-100. $\$ 150$. Can be seen in operation. Will deliver within 100 miles. All replies answered. Ray Gianchetti. WA2CUB, 560 Barlow Ave.. Woodbury. N. J. GOING To college: Selling SR-34 AC, $\$ 290 ;$ SX $-99: \$ 100$; Globe Chicf 90A, $\$ 40$. All are in excellent condition. WA2CBS 144-11 Jewel Ave.. Flushing 6%. L. I.. N. Y
SELL Or trade: (ionset GSB-100, ${ }^{\text {like }}$ new, condition, price 335. KOKKL, Chuck Jovenal, 6923 "B" St., Omaha 6, Ne braska.
SELL: Gilobe Chief 90A, near new, $\$ 35$. KøWGA. kenneth Johnson. Cooperstown, N. D.
DX Adapter for KWMI for sale. Unused, new. Best offer takes it. Must he sold. Stephen Dames. 64 Grand Pl, Arlington. N. J. SELL: SX-28A, in Rud condx. with O Multiplier and spare tubes. \$75: Heath, \$WR meter. ${ }^{\$ 8.00 . ~ W A 2 B P Y, ~ R D ~ 1, ~} 4$
TRADE: Two new Scott-Atwater outhoard motors $4 \% 5$ horsepower both with forward. neurral. reverse shift for commerGive details in first letter K 500 O , Oiney. Texas Give details in first letter. K5OQQ, Olney, Texas.
FOR Sale: SX-96. in like-new condx, $\$ 149$. K2ZRU, 684 South Wash ngton Ave., New Market. N. J
WANTED: World War I French L-3 amplifier, Mu-Rad reeivers and R.F. transformers for electrical test. Buy. borrow rade. Also liV206. UV20x tubes. Grote Reber, Research Cottrell, Bound Braok. N. J
SELL Gonset III $12 \mathrm{~V} .-\mathrm{GM}$. In new condx. K2BPX, 709 Graisbury Ave.: Haddonfield, \dot{N}. J.
hargialn: Collins $32 \mathrm{~S}-1$ transmitter, $\$ 450$; 516 F 2 power supply, $\$ 80$ in exc. condition. will ship prepaid express, Frank Layton, W7IOS. 731 W . Dana, Mesa, Ariz.
UNMODIFIED equipment: DX-35 with VF-1. SX-99. Heath AR-3, all compactly contained in wooden cabinet, $\$ 135$. K6ULH. 1475 Rivura Dr.i Pasadena. Calif.
WWS.1. perfect electrically and mechanically. $\$ 1,025$. R Matthews. 4246 Woodfield Lane, N.E.. Cedar Rapids. lowa.
BUY. Sell or Trade short-wave ham receivers. transmitters. Chicago. Phone TUxedo 9-6429. Monday-Friday, $12 \begin{aligned} & \text { Forest, } \mathrm{NM} \text { : }\end{aligned}$ Sat.: 9 AM-5 PM.

 Brooklyn 10, N . Y.
TYPE AC 15 M bandspread coil for HRO-50, $\$ 20$. W $5 C P Z$, 2917 La Veta N.E.. Albuquerque, N. Mex.
SELLING Out: 75A4. $\$ 625$; G4ZU beam, unopened, \$70: CE 100 V factory buarantee, 5680 ; 75M Heliwhip, $\$ 7$; KWS-1 perfect, $\$ 975 ; 6 \mathrm{~V}$ mobile P PS.i $425 \mathrm{~V}-375 \mathrm{Ma}$. $\mathbf{5 2 0}$; Fisher PR 66 sterco preamp.. $\$ 18 ;$ Bell 3030 stereo preamp and amp.iss $\$ 100$; Roberts sterro 4 -track record and playback with preamps and
 10^{-}rels. 4 heads and room for sth, carrying cases. $\$ 690$. 103 reds. 1219 Yeads and room tor sticy Rd.. Morrisville. Pa.
SWAP 304 TLS new for 100 TH or 250 TH , also BC $610-\mathrm{H}$, new condx. Paul Ralston, 1501 E . 38 th St., Indianapolis 5 . Ind.
HALLICRAFTERS S-76, fairly good on SSB, \$99. Philip Paul, Box 2447 Area C, Wright Patterson AFB. Ohio.
FOR Sale: New. in orisinal carton. 4 CX 300 A with socket and himney. Best offer over $\$ 10.00$ takes it. WA2AJP. 62 Aster Dr.. New Hyde Park,
SELL: Pair Electro- Voice 664 Dynamic mikes serial nos. 26575 and 2657. $\$ 65$ per pair or $\$ 35.00$ each. Heath HW-19 0 -meter
 Homebrew 10 watt high fidelity amplifier. $\$ 15$ (see p. 55 Nom No 1193 Radio-Electronics. Weathers KLL- 1 turntable, \$52; ESV. Peter Stark. K 20 AW. 519 East 86th St., New York City, telephone RE 4-4513.
DX-100, S-38E, Heath O multiplicr, relay and Balun coils. First S200 takes all. WA2FCU, Robert Shafer, Margaretville. N. Phone 143 after

SELL: SX-99, A-1 condx. Best offer Leon Ste inberger, W2EVV, 55 Lenox Road, Brooklyn. N. Y. Tei. BU 2.4737 .
KWS-1 Transmitter, SSB, AM, CW, excellent condx, leavirg for college. Must sell immediately! Completc, with 10 D micro-

 PErshing 5-8903.
GONSET G-50 6 meter transceiver in excellent condx. Best offer over $\$ 220$ takes it. Robert Barnett, K2VDI, RFD \#5,
Box
,
FOR Salc: Complete single sideband station Cosmophonc 50
with AC supply, $\$ 500.00$. Write W2ZRA, Harry Paskin, $63-04$ with AC supply, $\$ 50000$. Write W2ZRA, Harry Paskin, $63-04$
Forest Ave.. Ridewood 27 . N. Y.
CUSTOM Euilt chassis for yous pet project. Frec estimates. Mail sketch or print. Browne Elec-Tool Associates, 5501 SW 25 th Court. Hollywood. Fla.
ARIZONA A mateurs. Surplus Electronic Parts. Beacon Electronics, 1226 S. 26th St., Phoenix, Ariz. Open evenings only and all day Saturday.

KWM-1 extra crystal, AC, DC. supplies, mobile rack, cables, new Heliwhip, 3-band mobile antenna and mount. \$735. Dr Gordnn, 12 N . 27 th . Camden. N. 1.
DX 1000 . yud condx. modificd for SB10. $\$ 160$: SB10 A-1 con-
dition. $\$ 90$. F. Graening. W9KHS. Tremont, IIl.
FOR Sale: Kack panel 20A factory built QU. 458 VFO. 160 10 meters. $\$ 190$. W5CZZ. Box 43, McGehec, Ark.
ESTATE of WIGBO. National NC300 with speaker and 100 Ke calibrator. $\$ 240$. Globe Champion model 300. $\$ 275$. Len Luther. W1BGiA, Phone PA 5-0675.
KILOWATT Pair 813s. \$500.00 Navy CME-50063 Preselector, new. \$50. Louis Hodges. Arcadia, Missouri.
BEGINNERS: Code memorized in one hour. New Method. Ised in Armed Services. Ham Radio, Scouting. "Ketchum's Hour Code Course'; \$1.00 postpaid. Money back guaranteed. Q. H. Ketchum. 10125 Flora Vista, Bellflower, Calif.

SACRIFICE, selling out. 400 watt phone/c.w. transmitter. Bandswitching. plate modulated, complete, \$16s. 100 watt plete, \$85. $3^{\text {m }}$ lab oscilloscope, $\$ 20$. 50,144 or 220 Mc . converters, crystal controlled. $\$ 12.00$ each. 2 meter portable battery, operated transmitter, \$9.00. Will ship any of the above. Let's yo! Howard Fruchter, WA2DCM, 589 Barnard Ave., Woodmere, N. Y.
GRYSTALS Airmailed: SSB, MARS, Net: Custom finished FT-243. 117% any kilocycle 3500 to 8600 , $\$ 1.49$ (10 or more 20.001 to $30,000, \$ 2.25$; add $60 c$ to prices for HC-6/u hermetics. Builders crystal., packages: Junc 1958 OSI, SSB Hand "Pok. "SSB Package"; ${ }^{5}$ mixer FT-243, $\$ 9.95$ Sets: Nov. 1959 p. 40. six matched filter, Crystals for all projects. If you
 Calif.
SELL: Everything from tower to tubes. Moving to apartment. High and low power components: modulation and power transformers. matching meters. rack cabinets, rack panels, new transmitting and receiving tubes, Rohn tower. Variacs. sockets chassis, oil capacitors, chokes, etc, $6 \mathrm{M} . \mathrm{KW}$; NC-300; SP-600 VHF-UHF dirctional coupler and much Mc converters. Jones local transaction but will ship. Send much, much more. Preter Larry Kohlman. K2BVC, 330 Beechmont Drive. New Kochelle, EICO $7201-K$ for sale, $\$ 75.00$ in periect condx, like new.
Doue Swanson. WA2KJP. 29 Oakwood Tr.. Sparta. N. J. Doue Swanson. WA2KJP. 29 ()akwood Tr.. Sparta, N. J. Ails. tubes, meters, condensers, rack police receiver, much more. Stamp for list. Claude, K4ODC, 213 Linda Lane, Madison. Tennesse.
HT-37 Xmtre-Exciter unit. Used ten months. Exc. condx. $\$ 355.0$ cash or check. No trades. A. G. Gibbons, 817 Merrificld St S.E., Grand Rapids 7, Michigan.

FOR Sale: Mint condition Harvey-Wells F-90 and equivalent 115 volt APS-90 supply, $\$ 100$; all band 813 linear or final with power supply, \$80. Fxcellent self-powered TR switch, \$12.00, good 0 multiplier. $\$ 6.00$: three months old Hy-Gain Triband receiver. $\$ 35.00$. Write for photos. diagrams. Jennings P,O. 7152, Greensboro, N. C.
OST, Radio, CQ 1937 through 1954. Some binders. Stamp for list. Box 1002 Lima, Ohio.
SALE: Valiant W T $\$ 325.00$; Hammarlund HQ-110C clock and speaker, $\$ 180$. Myron Caplan, 312 Hedserow La., Wyncote. ícnna.
COLLINS 32S-1, \$510; 75S-1, \$410; 30S-1. \$1175; 312B-4
 Ave.. Yonkers 2. N. Y. AC supply, \$90. K2TXR. o3 Burhan DX-40, will ship, \$50. K3JHG. 2789 Highland. Broomall. Penna. EL 6-0822.
SELL SX71 rcvr, \$15: DX20, \$25.00; Heath VFO, \$17; all in exc. condx. Bill Hewitt, K2ViC, 451 Conger Ave.. Collingswood. N.J. Tel. UL $4-0488$.
KWM-1 installed in 57 Olds Super 88, full power, air conditioned. A.C. supply. Write for detailed description. W2WK, 548 Brookside Ave.. Freeport. N. Y
WILL Swap for commercial receiver or transmitter-A brand new Bausch \& Lomb 500 watt automatic projector (won in raffer with remote control, case, etc. Stan Cokas. 16 Euge., Swampscott, Mass
SELL: NC-303 WWV crystal calibrator, spkr, \$340.00; Apache transmitter. \$220; DX Hound beam, \$20. The whole works\$535.00. Jerry. W
SALE: Station-Hammarlund HO170C, Viking I with VFO. $6 N 2$ with VFO, Teeraft 2 M conv. 30 ft tower 4 -element 10 M beam. S-el. iM beam. CDR rotor, $\$ 620$. John Entwistle,
K2ZZT. Medford Lakes. N. J. Tel. OLive $4-4643$.
COLLINS Complete station: $75 \mathrm{~S}-1$ with 500 cycle filter. $312 \mathrm{~B}-3$ w/stand; MicroMatch, Ohmite dummy antenna. 125 ft . nike, co-ax, Mossley mobile antenna, instruction books and factory cartons. Everything perf
Ave., Waterbury, Conn.
SELL: BC348N, $\$ 50$; BC314G $\$ 39$; BC455. new. $\$ 10$; used, \$6.00; Precision E200-C, $\$ 45.00$; DB23, $\$ 35$; parts for sale Stamp for list. M. J. Marshall. 455 Washington Ave., Dumont

WANT To sell: 32 V 2 with spare final tube, $\$ 225$, in exc. condx. Russell Dye, 1011 Boland, Richmond Heights. Mo.
HT32A, 75A3, quad. \$800. W2MHL.

COLLINS 32S1, 75S1. 516 F2 Serial \# above 2000: $\$ 925.00$. Ed Rosen. 229 E. 18th St., Brooklyn, N. Y. Tel. BU 7-0970, WANT National 1831). Will trade Unitron $2.4^{\prime \prime}$ refracting equatorial-mount astronomical telescope. K8BLL. 483 Ridgeway, St. Joseph. Mich.
SALE: 7 ft .7 in. rack. fully enclosed, black crackle finish $19^{\prime \prime}$ or trade for rack less IV3VDA. P.O. Box 1225 , Harrisburg, Penna.
MUST Sell, need cash! Johnson Viking II. VFO. Matchbox. low-pass filter. SWR bridge. Asking $\$ 215.00$. W3BUC, 309 Vine St.. Perkasic, Penna.
OST, 14 year run, 5 in binders $\$ 35.00$. CO 12 year run, ditto, $\$ 30.00$. crated. Want KWM-1 with AC power. VV8GWA. VF-1 VFO. Heathkit, \$15: K3SLR. Mike McCalley, 305 Worthington Rd.. Towson 4. Md.
SX-111. \$200: Temco 250 watt AM xmtr, \$110; 85 ft , crank-up and Triband, $\$ 195.00$; AF-67, $\$ 120 ;$ SX-28 and O mult.; \$80; Heath lab sig. gen. $\$ 35.00$ W Waterman
Johnson all-band coil, $\$ 12$. KGUYD. 650 Weope, $\$ 15.00$
West Rosa, Calif.
FOR Sale: SXIOA, 5325 ; Drake 1A, \$225: both in perfect like-new condx w/spkrs and books. Gonset Super Six conVerter. \$30.00, in gud condx freight prepaid in continental 500 cycle filter for 75A4, OCal or tia pick-up deal. Wanted: 125 New St.. Decatur. Ga. Tel. BUtler $4-2494$.
100 V for sale: used about 15 hours. $\$ 650.00$. Need the cash! MM2 with $\$ 0$ Kc adp. for Hallicrafters regr, like new, $\$ 100$. KYCNG, 839 N. 6 th St., Vandalia, III.
FOR Sale: 3 home brew transmitters, 200. 400, and 600 watts. Selling due to illness. Any reasonable offer accepted. W. Dixon. 1038 Boston Rd., W2BCY. LU 9.1420 .
75A2. Full AVC on SSB, \$275.00: 120 mfd, 3000 volt oilfilled cond., $\$ 35.00$ locally, $\$ 5.00$ to crate. $A C 348$ converted OtOAC, \$35.00. AU F.o.b. WSBIDE, 1411 LaVerne, Shaunce. SELL: DX-100B with MK-1 kit. built in for SSB and SB-10. Sell one or both
Memphis. Tenn.
SELL: Guaranteed new condition HT-37, \$400. W4PED. 112 Sheffield St.. Belvedere. S. C.
COMPLETE All-band mobile station. Palco 65-A xmttr. Harvev-Wells R9A revr, Heath HP-10 (new), transistor power supply, Dow-Key DK60G (new). E-V 210 s carbon mike, Mark Heliwhips $(10 \mathrm{~m} .15 \mathrm{~m}, 20 \mathrm{~m}$) and base mount, $\$ 300$ complete. Also James C-1470 $12 \mathrm{vdc} / 110 \mathrm{vac}$ mohile supply, $\$ 3000$; new Hy-Gain TGS-3 Triband beam. $\$ 65.00$. All above with manuals. KIGAW. 12.3 Maple Ave.. Windsor, Conn.
WANTED: Xmtr, revr, VFO. bug. xtal cal. Ted Besesparis, $32 V 3, \$ 375 ; \$ \mathrm{~S}-101, \$ 220$. beam, $\$ 50.00$. Don (rordon, 472417th St.. San Francisco 17. Calif.
Sx-100, in exc. condx, $\$ 180$ plus express. Danner, 840 South解
FOR Sale: FCV-2 model 144 converter with SIPM-1 cabinet. \$18. David Oliver. KN9VIJA. Godfrey. III.
VIKING II, excellent condition, with VFO, book, nuw 807s,
6146s inside. $\$ 200$. Will ship to point in USA. WA6AJD G146s inside. \$200. Will ship to point in USA. WA6AJD Carl Olson. 15436 Faysmith. Gardena, Calif.
SELL: Eldico 1000 F , perfect. Two 4CX300As at 2500 yolts: built-in scope, quiet rower supply and blower: su ohm resistive input: no padding required with 32 Sl or simitar exciter. Have KWS-1. SO Will part with this table-top beauty reluctantly
for $\$ 500$. W2KOY, 1740 Front St., East Meadow. L. I.. N. Y. ELMAC AF67, \$90; Gonset Tribander, \$17.50. In gud condx. W6HOJ. 2006 Hamner. Corona, Calif.
HT33A Hallicrafters Kilowatt Linear; new in Oct of 1959. Clean, excellent. $\$ 595.00$. Need the cash. W2PMR, 433 Abington. Bloomield, New Jersey.
FOR Sale: Collins transmitter KWSI and receiver 75A4, used vy little like new condx. $\$ 1800$. L. Klingel, Rte \#4, Lake View Drive. Pewaukec, Wisc.
GSB-100 for sale. In exc. condx, year old: $\$ 400$. Conflict of interest forces sale. jeorge scott. W2LFX. 6 Stuart Drive West. Cilen Cove. N. Y. ORiole 6-2088.
SELL: 75A4, Serial 4400, spkr, two filters, $\$ 550$; Collins 32 V 3 , \$400; both in excellent condx; shipped prepaid to highest certified check. W3SQN, Joseph M. Mazzei, 1314 Romine Ave., McKeesport. Penna. Tel. OR 2-0514.
SELL: Hi-Fi gear: ham gear, antennas and accessories. Write
TRANSMITTER, Etc. W2EWL design for 20 \& 75 , works tine. \$SO.00; some parts for pwr. supply-ARC5 (C)5r) with xtal
 \$25; Heath amplifier model A9. \$25; Johnson $\mathrm{K} \mathbf{W}$ Matchbox, \$75: Heath amplifier model A9, \$25; Johnson Ki W Matchbox, considered. F.ob. Washington, D. C.S. Ades, W3W'ON, 1924 COLLINS 32S1, brand new, unopened carton with warranty: \$575. W8WGA
SELL: NC-300, matching spkr, NC-2 meter converter. \$250.00. All in like-new condx. K2Y'EQ, 57 Mclbury Kd., Babyion.
WANTED: Two 805s, in gud condx. Also desire hams motoring through Asheville. N. C. to enjoy my first-rate motel with hospitality. Joc. W4OLU. Bennett's Motel. Asheville, N. © , MID South area, for sale: HRO-50 with A,B,C,D coils. NFM adapter, calibrator, and spkr. W4HHK. Box 4i7. Collierville, lenn.

INDIANA'S Oldest ham distributor offers the followins: 75A2 \$295; $75 A 4$ (spotless) \$550; 312B1, \$12.95: F4S5170, \$295; G66B l11; \$299; NC98. \$109; HO-150. \$219: HO-170. \$295; G66B Cyclemaster (clean), \$89: Heath DX100. \$169: SB10, \$85; Apache. $\$ 275$. many others. Write us on your needs. Radio Distributing Co., South Bend. Ind.
GONSET (i-50, excellent cendx, \$225. W4OPB, 207 Pollard St.. East Point, Ga.
SELL: Apache, $\$ 215$; SX-100 with R-46B spkr, \$190; AM-2, sin; UF-1, \$5; Dow-Key DKC GEE relay with connector. $\$ 8$. All equipment is in exc. condx. KIGUX, 143 Sproat, Middleboro. Mass.
SB-10 Heathkit sidehand adapter, exc. condx. \$79; Elmac PMR7 rcvr. \$115: BC779 Super Pro rcvr. orig. pwr. supply, book. beautiful, \$i15. All F.o.b. Rte. 2, Box 314W, Tallahassec, lila.
FOR Sale: $\mathrm{SX}-101 \mathrm{~A}, \mathrm{R}-48, \$ 290 ; \mathrm{HT}-32 \mathrm{~A}, 3$ mixer xtals. $\$ 440$; 32 it. KTV twr.. cumplete, $\$ 65,00 ;$ Hy-Gain RBX- ${ }^{\text {Rotator, }}$, old and F.o.b. A. J. Lebel, Maple St., Middleton, Mass.
NOISE, Blanker for KWM-2. never used, \$50.00. K0GRP, Estelline, S. D.
$K W S-1$, first come, first served! $\$ 900$ you pick it up. Virgil Shatier. 3165 Grove Court, Cedar Rapids. lowa.
FOR Collins in Detroit Area, it's Michigan Ham Headquarters, also a lad pe selection of trade-ins on display, M. N. Duffy Ham W. Electronic
WO $3-2270$.

VANTED: KWS-1 without power supply. Miller, 603 Bunkers Gove Road, Panama City, Fla.
SELL OST 1936-1959 nin, four or more. 25% each. W SELL OST 1936-1959 nin, tour or more. 25ck each.
Art A. Jablonsky, 1022 N . Rockhill Rd., Rock Hill 19. Mo.
ThRANSFORMERS (3) W2EWL Special, $\$ 3.00$ PP, Coils L1 thru LT, ${ }^{3}$ xfrmrs, temrlate for "W2
μP. ${ }^{\prime}$ itale, W2EWL. Denville. N. J.
BEGINNER'S Equipment: Instructorraph Junior with instruction book and tapes $1,2,3,4.5,6.7$ and $13, \$ 15.50 ; Q \mathrm{OF}^{-1}$ Qmultinlier and cabinet AR-3 receiver. factory aligned, both for
$\$ 30.00$: $T-1$ in-circuit capacitor checker. $\$ 6.50$. KIJZU, 13 Seagate Road. Darien, Conn.
IVANTED: Panoramic adaptor or similar display device for use with 455 Ke I.F. receiver. W8HMU:OR. J. Steiger, 1953 Withevicw. Trenton. Michigan. Tel. OR:G-5924.
WILL Trade Collins S Line 32 SL (with noise blanker); 30S1, 312 B 4 : MM-2 scope, Ail for late model car plus cash. if
necessary, K7EPD, 3850 E. Elm St., Phocnix, Arizona. CR neceessary.
$9-2824$.
SEILLING 32V2 completely TVI'd. \$300; 75A1 plus speaker,
 BARGAINS for "cash"; H' 37 Demonstrator, $\$ 319:$ KWM-2, used, \$769: Collins S-1 ine complete, \$895, 100-V, \$595; 30S-1 Linear. late ser. no. \$1099: HO-140X. pertect. \$139: Drake
iA revr. $\$ 209$. Ed Moory Wholesale Radio. Box 506 , DeWitt, 2A revr. \$209. Ed Moory Wholesale
WANTED: RAL with pwr. supply. Also double button mike. Scnsitive Scintillator also desired. Send details. W6QV, 4532 Paulhan Ave., Los Angeles 41, Calif.
SELL: 15 KW pwr. plant, mounted on two wheel trailer. $36220 \mathrm{~V}, 60$ cycle, wye connected generator, 4 eyl. Jeep enoine. Complete less battery. Gud condx. $\$ 425$ F. © b central Santa Ana, Calif.
SELL: SX-100: R-46B soeaker; Globe Scout 680, factory wired, push-totalk; D-104 mike. Best offer. K2CMF, 76 Gilenview Rd.. South Orange, N. j.
(iOING A way to college and must sell Heath DX-100. in excellent physical and operating condx. $\$ 170$ or your best offer!

FOR Sale: SX-101A receiver, in like new condx. only 3 months old. $\$ 300$. Nathan Freund, $48-53$ 44th St., Woodside, L. 1., N . Y. Tel $\$ \mathrm{ST} 6-4565$. Sry for price error in my last adv.
A-1 RECOONDITIONED equipment, On approval. Trades.

 AF-67 \$109.00; Gonset G66B, G77A, H50 GSB-100. GSB-
 l80; Johnson Adventurer $\$ 39.00 .6 \mathrm{~N} 2 \quad \$ 99.00$. Navigator $\$ 99.00$
 $\$ 349.00$, NC-183D. NC-303; Heath. Globe, RME other items. $\$ 349.00$. NC-183D NC-303; Heath.
List irec. Henry Radio, Rutler, Mo.
FOR Sale: Viking KW widesk: \$1100: (Sry, cannot ship KW); Viking audio amplifer, $\$ 60$; $75 \mathrm{~A}-3$ caliirator, product detecN.E., Hickory, N. $\$ 325.00$: HT32, $\$ 400$. W4ENH, 817-8th Ave.

FOR Sale or Trade: HT-33, $\$ 400$ or will trade HT32A, HT33 and SX101A on KWI and 75A3. H. C. Stamate, Box 76, Leesburg. Ind.
F.O.B. 4218 Herkimer Place, Bronx 70 N. Y. (2) $4 \times 250 \mathrm{~F}$ (new) each $\$ 25.00$; 6 ft . relay rack, $\$ 15.00$; all components for rack-mounting. KW supply, $\$ 30$. All prices firm. WA2EET.

FOR Sale: Collins 75A-4, in excellent condx: 3 K filter, $\$ 475$. Shipping charges collect. R. Littler, 640 Snowhill, Springfield, Ohio. Tel. FAirfax 2-8722.
SELL: N-183D with spkr, \$225. Cash \& carry deal. K2BEJ. 63 St. Johns Ave., Yonkers, N. Y.
FOR Sale: Valiant, $\$ 375$; HQ-170, $\$ 325$; CDR Ham-M rotor. $\$ 100$; Tele-Vue Tower. $\$ 125$; Gonset beam. \$95, or complete station including key, ceable.
3511 Redding Rd., Qhattanooga, Tenn.
HT-37, new last July, $\$ 315.00$; HRO60T complete set coils 50 Kic to 30 Mc . with xtal calibrator and product detector, $\$ 350$; Gwr. supply, \$15; Mosley TA 33 , $\$ 65$: $\$ 15$; Ameco 2 , $\$ 20 ;$ Res. pwr. supply, $\$ 15 ;$ Mosley TA
Rohn top
Section, $\$ 12.50 ;$
 condx. George Mowbray, Mt. Kisco 6-8507. WA2EFQ, 14 Condx Gerrge Mowbray, Mt. K.
KWM 2 for sale. $\$ 950$ w/ A.C. pwr supnly and spkr, late serial number; contact W WIZSZ ED $5-0502$, Weymouth, Mass. or WIEVX, WO 7-8874 at Ellsworth, Me.
SELLL: Complete 90 watt station. Albert Woods, 348 Bryn Mawr Rd., New Hyde Park, N. Y. Pi 6-6686.
HAMMARLUND HO170 revr: ${ }^{3} \mathrm{el}^{\mathrm{cl}}$ Triband beam. Howard Davis, 601 N.W. 16th Ave., Miami 35. Fla. Tel. FR 4-0000.
FOR Sale: Babbs 6 -meter transmitter/converter with two transmitting and 2 recciving crystals. Used only 6 hours, $\$ 60.00$ Rlier. \$60. KKEAE, G-5465 Calkins Rd., Flint 4, Mich. multiWANT, Need, must have: ML-203-B wind measuring equipment, as used during $W W-2$. Top price. Will take complete units od parts. Made by Lionel Corn. N. K. Thomeson, WILWV, y9 Water St.. Millinocket, Maine.
FICO \#720 xmtr, $\$ 75$; Eico \#730 mod-driver with cover, SO.00; Heathkit $V F O$ with pwr. supply, $\$ 20$: Heathkit $1 . a b$. Scope, \$65; all in gud condx: everything for \$195. Robert Jehu, K1GLL, 20 Lois St., Danbury, Conn.
BARGAINS In new and used surplus beams, rotators, transmitters, etc. Send self-addressed envelope tor complete lists Center, Mass. W1OZ. Golden, 42 Sun Hill Lane, Newton C'enter. Mass.
SELLING Completc station. No time to operate. HO-160 receiver and matching speaker: HT-37 transmitter and spare inals; Hy-Gain TH-4 heam; Ham-M rotator; fitty-foot. selfsupporting tower: Astatic $10-\mathrm{D}$ mike and stand; Gotham V-80 vertical; Dow hey antenna relay; and about 400 feet ot varinus Will show sales used seven months; all others, three months. plete, or sell individually. Ail inquiries answered. Alfred Volkuwitz. 414 East 59th St.. Kansas Citv. Mo.
HARGAIN: HT30 and P \& 400 , complete 400 watt SSB station. First offer of \$300. Call Adams 2-2544. Westficld, N, J. Pete. W2FDIU, 59 Sandra Circle.
SELL: KW mod. PP 810, variable 2500v power supply, screenbias supply. fully metered, enclosed in 6 ft . rack cabinet. Will include parts for 813 final plus many spare parts. $\$ 250$. K 9 HXY . 1139 Jefferson. Shelbvville, Ind

SELL Or trade. National VFO-62. New in factory-sealed carton. Convention prize. Best offer. K8BKF, 1168 Eibur, Lakewood 7. Ohio

FOR Sale: 6MT Tecraft trans.. \$30: Heath balun, \$5, 200 unmarked Ceramicons, mixed values. $\$ 1.00$. K2LJj.

SELL: CRSAC communications receiver with cabinct in exc. cundx, used only 2 months. 550 Kece to 30 Megs. Need money, $\$ 30$. Ron Munzert. WV2LIX, 73 Oakdale Ave.. New Hartford,

FOR Sale: SX-71, like new, in exc. condx, \$140, OSTs Aus. 1941 complete run to June 1948. Make otter. Lee Gale, W7IDT, Potlatch. Idaho.
COMPLETE Mohile rig for sale. AF-6\%, Gonset 12 converter. mike, SUSC Ranger. Mosley 3-band antenna, Collins twin dynamotors 440 V at 200 mill, and 250 V at 125 mill. changeover relays, cables. $\$ 225$. 25 it. aluminum tower, $\$ 20.00$ Seymour Kaftan. 65 E. 52 St.. Brooklyn 3, N. Y. Call HY 3-5773.
GONSET 101 for sale excellent condx. Cash and carry deal Only. No shipping. Asking \$3.50 Larry Frank, WA2IAF, 698 West End Ave.. N. Y.C.MO $2-3772$.
COILLEGE, Will sell Viking II and VFO. FW \$220; SX-1nI Mk III 3A, \$275. misc., vy gud condx. KgLUZ. Box 333, Jesup, lowa.

TRADE Or sell: Fr-102 Federal transmitter 200 watts c.w.: comper supply and mike: BC6 4 -B transmitter, Sonar, receiver, power supply and mike; BCOH -B speech ampliner: BC modulament, 4×5 press camera, power woodworking tools. W5FM, 229 Kenwood Ave.. Baton R ouge, La.

FOR Salc; NC-300 wis and xtal calibrator, in mint condx. $\$ 335$ or best offer. W WYPL. 104 Johns Ave., Gettysburg, Penna.

S38D revr. Morrow 3 band converter, new 30 watt oV \& 110 V kit PC-1 $12 V$ mo to and auditorium spkrs. phone top. Heathand accessories. Now 45 ft . Pipestone crankup tower. 2500 V and $1^{\prime} 1^{\prime}$ amp. pwr. supply. Eico $5^{\prime \prime}$ 'scope, Superior AM sig.
 ind:cator \& Mark II or Superhomer. WYDSV, Box 87. Webster, Wis.

Index of Advertisers

THE NO. 90932 MODULATION MONITOR

The No. 90932 Amateur Band Monitor Oscilloscope is a complete oscilloscope for monitoring the modulated r-f output of a transmitter. Built-in link-coupled tuned circuits cover all amateur bands 3.5 to 54 mc . All circuits and accessories are built in. The monitor will display the r-f envelope and/or the trapezoidal monitoring pattern of single side band transmitters or amplitude modulated transmitters. It shows the linearity or non-linearity of Class-B r-f amplifiers, parasitic oscillation, neutralization, and r-f output.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY MALDEN MASSACHUSETTS

STEPHEN HERZOG (left), K5RMA, and George Mayo, K1LYE, check out marine radar equipment at a Raytheon Electronic Services Division service center in Boston, Mass.

FIELD ENGINEERING WITH A FUTURE

From Boston to Seattle

Raytheon field engineers Steve Herzog, K5RMA, and George Mayo, K1LYE, are shown here on a special technical evaluation assignment at one of the Raytheon Electronic Services Division's 17 service centers, situated in major marine and industrial communities from Boston to Seattle, Duluth to New Orleans.

This time they're testing commercial marine radar. Tomorrow it might be an installation project or overhaul and repair. For Raytheon field engineers tackle a broad range of tasks all over the country and overseas. And, with con-
tinuing expansion of services, there is plenty of room for advancement to executive positions.

Perhaps you can qualify for a Raytheon field engineering future. Requirements: previous experience plus an E.E. degree or the equivalent in practical experience with guided missiles, fire control, ground and bombing radar or sonar.

Benefits: attractive salary, insurance, educational programs and relocation assistance. For details, please urite Ronald Guittarr, Electronic Services Division, znd \& South Ave., Northwest Industrial Park, Burlington, Mass.

NO OTHER RECEIVER KIT LIKE IT! check the features:
 - Better than 1.5 microvolt encies

 sensitivity on all SW frequenciesTunes 540 kc to 30 mc in 4 bands

- Continuously variable selectivity from 300 cps to 4.5 kc
- Calibrated electrical bandspread on 80 through 10 meter ham bands - Exclusive printed circuit bandswitch
- Built-in Q-Multiplier
- Exalted BFO Constant-running HF oscillator
- Minimum drift; VR B+ applied
to HF oscillator
- Printed circuitry throughout

free 1961 allied Catalog

For the complete line of Amateur KNIGHT-KITS, for everything in Electronics, see your 1961 Allied Catalog. If you haven't a copy, send for it now.

the ultra-selective "dx-getting"

Knight-kit

Amateur Communications Receiver Kit

ONLY This incomparable receiver kit has all $\$ 9095$ the features, selectivity and sensitivity of high-priced commercial units. Here $\$ 5$ down is remarkable Amateur kit superiority at tremendous savings. Here is a marvel of easy assembly, made possible by exclusive plug-in bandswitch and printed circuits. Includes tubes, all parts, handsome metal cabinet ($95 / \bar{x} \times 16 \frac{1}{x} \times$ $101 / 4^{\prime \prime}$) and step-by-step instruction manual. (Less phones, speaker and S-meter.) Shpg. wt., 31 lbs. 83 YU 726. Amateur Recciver Kit. $\$ 99.95$ 83 Y 728. Matching $4^{\prime \prime}$ Speaker 9.75 83 Y 727. S-Meter Kit for above. 12.95 83 Y 256. 100 KC Crystal Calibrator Kit. . . . 10.95

ALLIEDRADIO

100 N. Western Ave., Chicago 80, III.

Name.
please print
Address.

Cify \qquad Zone \qquad State

NATIONAL'S NC-303 HIGHEST MECHANICAL STABILITY LOWEST THERMAL DRIFT MAXIMUM SSB/AM/CW VERSATILITY

Three decisive reasons why National's NC-303 outperforms all other receivers in its price class:
HIGHEST MECHANICAL STABILITY-solid chassis and component construction, pre-loaded double-spaced tuning gang and positive detent bandswitch assure stability under extremes of shock and vibration.

LOWEST THERMAL DRIFT-National's exclusive "high-zero" temperature compensation, carefully engineered oscillator circuitry and ceramic coil forms provide thermal stability unequalled by competitive receivers.

MAXIMUM SSB/AM/CW VERSATILITY. For The SSB User: "IF Shift" selectable sideband / SSB noise limiter / Product detector / Fast attack, slow decay AVC / "Q" multiplier with separate depth control. For The AM Man: 3.5 Kc phone bandwidth / 8.0 Kc bandwidth for net or VHF operation / Automatic AM noise limiter / Tone control / AM AVC. For The CW User: 500 cycle CW selectivity / "Peaking" audio filter / External CW muting for break-in. For Everyone: 1 microvolt sensitivity / " X " band and $12^{\prime \prime}$ dial scales for VHF converters / Accessory socket / 2 Kc dial calibration and vernier tuning control.

Only $\$ 44.99$ down*
Suggested cash price: $\$ 449.00$ (slightly higher west of the Rockies and outside the U.S.A.). *Most National distributors offer budget terms and trade-in allowances.

NATIONAL RADIO COMPANY, INC. A WHOLLY OWNED SUBSIDIARY OF NATIONAL CO., INC.

Export: AD AURIEMA, INC., 85 Broad St., New York, N. Y. In Canada: CANADIAN MARCONI CO., 830 Bayview Ave., Toronto 17, Ont.

POWER TUBES • RECEIVING TUBES • SEMICONDUCTOR DEVICES... What's the best powd
tube for my final? Which tube combination will do the most for my receiver design? Which is the right transistor for my portable rig? You can get the answers to questions like these from the RCA publications pictured on this page.

Here, in easy-to-understand form, is a storehouse of technical facts you will want to krow aboul hundreds of RCA tubes and transistors. In these publications you will find operating conditions, quickreference charts, pages of circuits-application hints, installation tips, characteristics curves, all sorts of technical aids.

For copies of these authoritative ham-shack references, check the list above and contact youl RCA Tube Distributor. Or remit payment with your order-direct to Commercial Engiricering, Sectior A-37-M.RCA Electron Tube Division, Harrison, N. J.

The Most Trusted Name in Electronic: radio corporation of america

[^0]: PACIFIC MFG. DIVISION: 4008 W . JEFFERSON BLVD., LOS ANGELES 16, CALIF. EXPORT DIVISION: 13 EAST 4OTh STREET, NEW YORK 16, N. Y. CABLES: "ARLAB"

[^1]: INDEXED B!
 Applied Science and Technology Index
 Library of Congress Catalog
 Card No.: 21-9421

[^2]: Official appointed to act temporarily in the absence of a regular official

[^3]: 2 Available to hams only for $\$ 10.00$ from Microwave Associates, Bırlington, Mass. Be sure to specify the MAH-U along with your amateur call.

[^4]: ${ }^{3}$ suitable paper is commercially available but hard to locate. Old or surplus attenuators are one source. Kamage \& Miller, Inc., 3221 Florida Ave., Richmond, Calif., will sell to hams an X-band attenuator which uses nonstandard waveguide for $\$ 4.00$. This attenuator will provide two carbon-deposited vanes or might be used directly with some hard work in changing from one waveguide size to another. We have also had some luck in rubbing a soft lead pencil on a piece of paper and then coating the deposit with Krylon. This works ull right since accurate calibration of the attentation is not required. The problem is getting the graphite on heavy enoug' and holding it on so that the uttenuation value doesn't change.

[^5]: ${ }^{4}$ Standard $1 \times 1 / 2$-inch guide has a cutoff wavelength of 4.57 cm . and a guide wavelength of 4.65 cm . at 9200 Mc .

[^6]: *Technical Assistant, QS'T'.

[^7]: * Radio Division, Missouri State Highway Patrol, Jefferson City, Missouri. (ex-D4AGC, DL4CX)

[^8]: ${ }^{1}$ Fryer. "How To Design Low Cost Audio Filters,", $\overline{\text { Elec. }}$ tranics, A pril 10, 1959.
 z Vester, "Surplus-Crystal High-Frequency Filters," QST', January, 1959.
 ${ }^{3}$ Advertised in Qs' T.

[^9]: * Electrical engineer, Cieneral Electrical (Co. Home address: 122 West End Ave., Binghamton, New York.

[^10]: * Westinghouse Electric Corporation, P.O. Box 2×4. Elmira, New York.
 'Muedonald, " A New Narrow-Band Image Transmission System," QST', August and September, 1958.
 * Macdonald, "Slow-Scau Imake Transmission: A Progress Report," (SS゙1', April, 1960.

[^11]: * 53 Poquonock Ave., Windsor, Conn.

[^12]: * 545 Wegman Road, Rochester 11, New York.
 'See Fox, "The Fox VOX Adapter," QST, November, 1960.

 Note: In Fig. 1, p. 19 of the November issue, K_{3} should be 1000 ohms.

[^13]: M_{1}-Conventional v.t.v.m., 11-megohm input.
 $\mathrm{R}_{1}-20$ watts.
 $R_{2}-2$ watts.
 $\mathrm{R}_{3}-5$ per cent (see text).

[^14]: "Puckett. "Ue Luxe' Fieving Without Relays," QST, September, 1953.

[^15]: *970 McLaughlin Ave., Suan Jose, Calif.

[^16]: Top view of the National NC-270. The r.f. input coils are housed in the square cans located along the right edge of the chassis in the foreground. The dark cylindrical object in the center of the photograph and to the left of the 3 -gang tuning capacitor is the special ferrite-cored filter. Power-supply components are grouped at the left. Antenna input terminals and coaxial fitting are at the right rear of the chassis, and to their left are the speaker terminals, S-meter adjustment screw, external-relay control terminals and line cord.

[^17]: "Healey, "High-Frequency Filters For S.S.B." QST,

[^18]: * Engincering Department, General Radio Co., West Goncord, Mass.

[^19]: * YL Editor, QST': Please send all news notes to

[^20]: ${ }^{1}$ Figure in this box is multiplier.
 2 Count 3 points per completed (23); see rule 8a.

[^21]: "World's Largest Distributors of Short Wave Receivers"

[^22]: Include Sc per crystal for postage (U. S. Only) Calif. add 4\% Tax. No. C.O.D'S. Prices subpect to change. Ind. 2nd choice: subititution may be necessary. Min. Order $\mathbf{5 2 . 5 0}$.
 "The House of Crystals"
 U. S. GRYSTALS, Inc. 1342 S. La Brea Ave. Los Angeles 19, Gal.

