

Tivawsyevilusi

\%

SPECIAL FEATURES: Patented Receiver Offset Control (RIT) permits $\pm 2 \mathrm{ks}$ adjustment of receiver frequency, independent of transmitter, for round-table, net or CW operation. Hallicrafters exclusive Amplified Automatic Level Control.
FREQUENCY COVERAGE: Full coverage provided for 80, 40, 20, 15 and 10 meters. All crystals provided for 38.0 to 30.0 mcs .

GENERAL: Dial cal., 1 kc . Linear gear rive with less than 1 kc readout. Adjustable IF noise blanker. Provision for plug-in external VFO/DX adapter. Built-in VOX plus break-in CW and PTT. Built-in CW sidetone. Hi-Low power switch useable in CW
or SSB.* 2.1 kc crystal lattice filter. S-meter-RFO-AALC and final screen metering.* Two-speed blower, 100 kc crystal cal. VFO covers 500 kc .
TRANSMITTER SECTION: Two 8122 output tubes. Variable Pi network. Power input, 2000 watts P.E.P. SSB; 1000 watts CW. Carrier and unwanted SB suppression, 50 db ; distortion products, 30 db . Audio: 500-2600 cps @ 6 db .
RECEIVER SECTION: Sensitivity less than $1 \mu \mathrm{v}$ for 20 db S/N. Audio output, 2 W .; overall gain, $1 \mu \mathrm{~V}$ for $1 / 2 \mathrm{~W}$. output.
*Meters for final plate current and voltage built into P-2000AC power supply. Also Hi-Lo power switch.

amateur net: $\$ 109500$

less power supply

theres a reason for the $\mathrm{S} /$ Lines's reputation

The main reason is performance. Amateurs around the world praise the S/Line's clean, strong signal. But there are design reasons, too. The S/Line is an engineered system. Each unit augments the others to provide single sideband operation at its best.

You can operate the system as a transceiver, or transmit with the $32 \mathrm{~S}-3$ and receive with the $75 \mathrm{~S}-3 \mathrm{~B}$ on separate frequencies. The S/Line offers upper and lower single sideband and CW operation . . . plus AM reception.
Two linear amplifiers, 500 watts or 1000 watts PEP, round out the fullperformance $\mathrm{S} /$ Line.

See your Collins distributor for details on the most respected system in the amateur field.

COLLINS

STAFF
JOHN HUNTOON, WILVQ Editor.
E. LAIRD CAMPBELL, WICUT Managing Edftor GEORGE GRAMMER, WIDF Technical Editor
DONALD H. MIX, WITS DOUG DE MAW, WICER WALTER F. LANGE, WIYDS Assilstant Technical Editors EDWARD P. TILTON, WIHDQ V.H.F. Edftor

LEWIS G. McCOY, WIICP
Beglnner and Novice ROD NEWKIRK, W9BRD WILLIAM SMITH, WB4HIP LOUISE MOREAU, WBGBBO JOHN TROSTER, W6ISQ Contrlbuting Editors

LORENTZ A. MORROW, WIVG Advertising Manager EDGAR D. COLLLNS Advertising Assistant
J. A. MOSKEY, WIMM Circulation Manager R. J. RINALDI, WICNY Assistant Circulation Manage.

OFFICES

Newington, Connecticut 06111 Tel: 203-666-1541

Subscription rate $\$ 7.50$ per year postpald. U.S. funds. in Canada and U.S.; st elsewhere. ARRL Membership, ncluding ($Q S T$, available only to individuals with a bona tide interest in amateur radio: $\$ 6.50$ per year U.S. Yunds, in Canada and U.s.: $\$ 7$ elsewhere. Single coples. 75 cents. Forelgn remittances should be by international postal or express money order or bank draft negotiable in the in U.s. funds. an equivalent amount second-class postage paid at Hartford, Conn. and at additional malling omices. Copyright 1968 by the American Radio Relay League, Inc. Titie registered at U.S. Patent OAfice. International copyright secured. All rights reserved. Quedan reservados todos los derechos. Printed in U.S.A.

INDEXED BY
Applied Science and Technology Index
Library of Congress Catalog Card No.: 21-9421

CONTENTS-
TECFINTCAL -
A Transceiver For 7-Mc. C.W.
John P. Rasor, W6DMK 11
A Multiband Ground-Plane Vertical Antenna With Tuned Feeders. Arthur S. Gillespie, Jr., W4VON 18
An RTTY Bandpass Filter For 2125-2975 c.p.s.
Edward E. Wetherhold, W3NQN 19
An Integrated-Circuit Electronic Keyer
Richard P. Halverson, WOZHN and Ronald A. Stordahl, KOUXQ 22
Evolution of an Amateur Weather-Satellite Picture Sta- tion (QST Extra). . Charles H. McKnight, W4MKM 28
Magnetic Keyer Paddles
Steve S. Nurkiewicz, WA2 YBR 35
Guidelines For Transistor Transmitters
D. W. Nelson, WB2EGZ 37
Gimmicks and Gadgets:
A Milligallon For 15. Wes Hayward, W7ZOI 40
Using Sun Noise 42
Recent Equipment:
Heathkit SB-620 'Scanalyzer' 50
Technical Correspondence 54
BEGINNER AND NOVICE-
Getting Rid of Low-Frequency Harmonics
Lewis G. McCoy, WIICP 26
OPERATING -
1967 Sweepstakes Results Bob Hill, W1ARR 62
Which Approach? 76
GENERAL -
Crystal-Stable Frequency Control With Your Old V.F.O.Wayne Waller, W4TZB46
Dummy Loads from the Junk Box
Ernst F. Schroeder, DJ7HS 47
A Study of Hertz vs. Cycles Per Second
Noble Hale, WOJIH 48
An Index of QST Items on Commercial Gear
Bill Wageman, WOBUR and Carol Wageman, WOHQH 56
Portable and Mobile Regulations 81
Those Higher-Class License Examinations 86
ARPSC 76
ARRL QSL Bureau 114
Coming Conventions
Correspondence From Members 94 94
FeedbackHamfest Calendar36
Happenings of the Month 8461
Hints \& Kinks.
How's DX? 97
Index to Advertisers 182
It Seems to U
It Seems to U 9 9 IARU News 92
Now Apparatus 21, 36
New Books $\begin{array}{r}36 \\ 110 \\ \hline\end{array}$
Silent Keys 166
Station Activities 117
World Above 50 102
25 Years Ago in QST. 93

Don't gamble on your future

FIELD ENGINEERS... there's a good deal for you at Raytheon Service Company

Pick your specialty from Raytheon's wide variety of career assignments. Raytheon's broadbased company activities are growing and expanding throughout the world. To qualified field engineers, the Raytheon Service Company offers immediate openings ranging from permanent and travel assignments within the U.S., to travel assignments world-wide.
Career opportunities are now available at all levels of technical capability for experienced personnel acquainted with operation - maintenance - installation training - and publication of handbooks and operating manuals.

Raytheon's comprehensive benefits program includes hospitalization, surgical, major medical, life, disability, travel and accident insurances, company-sponsored education opportunities, and other allowances and benefits.

Total compensation includes attractive starting salaries, overseas and overtime bonus, and per diem as applicable.

To arrange a convenient interview, send resume to, or call collect, Kenneth H. Slovin, Employment Manager, Raytheon Service Company, Dept. 20, Second Ave., Burlington, Massachusetts 01803. Telephone: (617) 272-9300, Ext. 209.

CODE PRACTICE OSCILLATOR AND MONITOR

MODEL OM

A combination code practice oscillator and CW Monitor. ! No connection to transmitter required. I Transistorized. Has built-in speaker, tone cuntrol and headphone jack.
Model OMK, Kit
less batteries).
Wired and...... 8.95 (less batteries) $\$ 15.20$ Similar unit, but without CW RF Monior featire. Model OCPK, Kit (less batteries)................. $\$ 7.95$ (less batteries) $\$ 10.50$

GOMPLETE HAM RIGS

Receivers, transmiitters, VFO, Pre-amplifiers, converters, code practice oscillators, cade recerids, thenry and ligense hooks.

PASS NEW ADVANCED AND EXTRA CLASS LICENSE EXAMS WITH NEW AMECO LICENSE GUIDES

New Ameco License Guides contain simple, detailed, easy-to-understand answers for FCC study questions, plus a sample FCC-type exam, using multiple choice questions.
Advanced Class Guide \#16.01 (32 pages)

Extra Class Guide \#17-01 (48 pages).
AVAILABLE AT LEADING ḦAM DISTRIBUTORS Information included in new catalog.

Division of Aerotron, Inc.
P. O. Box 6527

Raleigh, N. C. 27608
Write for name of your local Ameco dealer and free catalog

NUVISTOR CONVERTERS FOR 50, 144 and 220 Mc . HIGH GAIN, LOW NOISE

Deluxe line of Ameco VHF Converters uses three RCA Nuvistors to obtain an extremely trol is included to reduce the gain if necessary. These converters do NOT become obsolete when the receiver is changed.

Model CN-50W, CN. 144W or CN220W wired, (specify IF)...0

Model CN-50K. CN. 144 K or CN-220K in kit form. (specify IF)
$\$ 34.95$
PS-1 Power Supply, Wired and tested...

NOVICE TRANSMITTER KIT

Ideal kit for the beginner who requires a reliable TVI-suppressed transmitter. Keying is clean and chirp-tree kit is simple to build and easv to operate. Crystal Controlled. Pi-network Output, Includes AC Power Supply. For 40 Kit with coil for any 1 band including
Extra coil kit for any 1 band, CK-1.

Section Communications Managers of the ARRL Communications Department

Reports Invited. All amateurs, especially League members, are invited to report station activities on the first of each month (for preceding month) direct to the SCM, the administrative ARRL oificial elected by members in each Section. Radio club reports are also desired by SCMIs for inclusion in QS'. ARRL Field Organization station appointments are available in areas shown to qualified League members. General or Conditional Class licensees or higher may be appointed ORS, OVS, OPS, OO and UBS. Technicians may be appointed OVS, OBS or V.H.F. PAM. Novices may be appointed UVS. sCMIs desire application leadership posts of SEC, EC, RM and PAMI where vacancies exist.

Equip Your Amateur Station Or Service Herch With

International's Model 1110 Secondary Frequencoy Standard

All Transistor Circuits

Using any general coverage communications receiver the Model 1110 provides the necessary standard signal for measuring frequencies. Easily calibrated against WWV to provide an accuracy of 1×10^{6}. Long term stability of ± 10 cycles over range $40^{\circ} \mathrm{F}$ to

Write for our complete Catalog
$100^{\circ} \mathrm{F}$. Designed for field or bench use with self contained battery. All transistor circuits provide outputs at 1 $\mathrm{MHz}, 100 \mathrm{KHz}$ and 10 KHz . Zero adjustment for oscillator on front panel.
Order direct from International Crystal Mfg. $\mathbf{C o}$.
complete $\$ \mathbf{\$ 1 2 5}$

CRYSTAL MFG. CD., INC. 10 NO. LEE OKLA. CITY. OKLA. 73102

${ }^{\text {rhe }}$ AMERICAN

RADIO RELAY
LEAGUE, inc.,
is a noncommercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is noncommercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.
"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in the nation and has a history of glorious achievement as the standard-bearer in amateur affairs.
inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite, although full voting membership is granted only to licensed amateurs.

All general correspondence should be addressed to the administrative headquarters at Newington, Connecticut.

Past Presidents

HIRAM PERCY MAXIM. WIAW, 1914-1936 EUGENE C. WOODRUFF, W8CMP, 1936-1940 GEORGE W. BAILEY, W2KH. 1940-1952 GOUDWIN I. DOSLAND, WOTSN, 1952-1962 HERBERT HOOVER, JR. W6ZH, 1962-1966

Officers

President
ROBERT W. DENNISTON, WØNWX Box 73, Newton, lowa 50208
First Vice-President WAYLAND M. GROVES, W5NW 1406 West 12 th Street, Odessa, Texas 79760
Vice-Presidents .
CHARLES G. COMPTON, WØBUO GILBERT L. CROSSLEY, W3YA
Secretary . JOHN HUNTOON, WILVQ
Treasurer
DAVID H. HOUGHTON
225 Main St., Newington, Connecticut 06111

Honorary Vice-President FRANCIS E. HANDY, WIBDI

General Manager
JOHN HUNTOON, WILVQ Communications ManagerGEORGE HART, WINJM Technical Director GEORGE GRAMMER, WIDF Assistant General Manager . RICHARD L. BALDWIN, WIIKE Assistant Secrefaries PERRY F. WILLIAMS, WIUED WILLIAM I. DUNKERLEY, JR, WA2INB
225 Main St., Newington, Connecticut 06111

General Counsel
ROBERT M. BOOTH, JR., W3PS 1100 Vermont Avenue, N. W., Washington, D. C. 20005
Associate Counsel
ARTHUR K. MEEN, Q.C., VE3RX
Suite 2212, 44 King St. West, Toronto 1, Ont.

DIRECTORS

Canada

NOEL B. BATON....... Ontrio
. VE3CJ Box 660. Waterdown, Ontario Vice-irrector: Volin C , vumbrille. IVE2BK 116 Oak Kidge Drive, Bale d'irre, © ¿uebec

Atlantic Division

GILBERT L. CROSSLEY.
W3YA
 Tice-1)irctor: Harry A, AcConaghy......WUEFC 8708 Fenway ir. Potomac, Bethesda. Mid. 20034

Central Division

HHILLIP F. H.1LLER.WHPG
 Fice-1 irector: Filmond A. Motzger, . . . W91. WR 1.520 south lourth st., springtield, ilinols 62703

Dakota Division

CHARLES ©. COMPTON..............WBTO Box 226A K.K. 1. south \&t. Paui, Nilinn. Sis075
T"ite-Lircctor: John A. MausWMABD Gakdale Addition, st. Cloud, iilnn. stbul

Delta Division

PHILIP P. SPENCER W5LDH/W5LXX 575 Amethyst st., New Orleans. La. 70124
Vice-firector; Max irnold. W4WHN 612 Hogan Ro:ki, Nasheille, Tenn. 37220

Great Lakes Division

ALBAN A. MICHLLW8WC 3.59 Botham Rd., C'lncinnati, Ohlo 45215
 4×72 Calvin Drlve, Columbus, ن̈hio $43 i 227$

Hudson Division

HARRYJ. DANNALS.W2TUK

V'ice-siarector: stan Zak.........................izsjo 13 Jennter Lane. Yort ©hester, New York 10573

Midwest Division

sUMNER H. HONTER....................WDGQ :210 Goblin's Gully Dr. ibi., Cedar Rapids, lowa
Vice-mrector: Kalph V. Anderson Kon L 6,2 K Montana Ave., Holton, vansas öbi 38

New England Division
ROBERT YOKK CH.MPAIAN.........WIQV 2s south Road. Groton, Conn. $063 \div 0$
Vice-shrector: Bigelow Circct. W' IEAE 11 Law's trook Rd., South Aeton, Musis. 01771

Northwestern Division

HUHER'T R. THIIRSTON............... WPGY 770031 st A ve.. N.E., seatile, Wash. G×115
V'ice-Lirector: R. Kex Roberts...........WTCPY 837 Park Hill Drive, Billngs, Mont. bitluz

Pacific Division

 luxiss Willowbrook Way, cupertino, Cullf. 95014 Fice-Directar: G. Donald Liberlein.iii. .iNOYHM P. O. Box +75 . Palo Alto, Callf. 94302

Roanoke Division

 12427 1יples Head koad, Ciliton, va. 22024
 +א21 Hill Ton Road, Greensboro. N.C. 27407

Rocky Mountain Division

WOBWJ
l'ice-1iupertor: John FI, Sampson. Jr.. W7Or.s 3618 Nount Ugden Drive. Ogden, Utah $8+403$

Southeastern Division

Vice-shrertor: Albert t. Hamel...........is4sJH $:: 20$ N.E. ¿5th street, Pompano Bearh, bilu. 33064

Southwestern Division

JUIIN R. URIGGS.
. 116 GKW

Vice-1strector: Thomas J. Cumningham W6PIF 1105 Eust Acadia . Ave., El Segundo, Calif. 20245

West Gulf Division

RUEAER O. RFET... P.U. Box 185B. © orpus Chrlstl, Texas $78+0,3$ rice-! irector: Kay K. Bryan.............W5UYQ $2117 \mathrm{~S} . \mathrm{WV}$. 61st Terrace. Oklahoma city, Okla.

Third of a Series

ARRL And The
 COMMUNICATIONS DILEMMA

The word "communications" has specific connotations for League members - first, as it applies to the art itself in which we as amateurs are engaged, and second, as it relates to the special functions of our Communications Department.

But communications has a broader meaning, and in this sense, oddly enough, it is one of the special problems in ARRL affairs.

Amateurs generally, and we League members in particular, tend to hold rather strong opinions where our ham activities are concerned. This may be attributable in part to our dependence upon a government regulatory agency, or in part to the independent nature of amatcurs themselves. In any case, to a disconcerting degree, these strong opinions occasionally seem to be predicated on dubious information or judgments too quickly formed. With our instant communications, a particularly juicy rumor or hot bit of gossip gets very rapid circulation indecd. Sumehow, a colorful fallacy is almost always more fascinating than a dull fact. And quite often "the League" - or to put it more accurately, the Board and/or the headquarters staff - finds itself right smack in the middle.

Psychologists tell us that opinions are formed on the basis of what we understand or believe to be the facts. Wnderstanding or belief, in turn, is the product jointly of the quality of the information received, related judgments already made, and the emotional involvement in the situation. There are probably not very many hams, for example, who get very excited, one way or the other, about Zulu heraldry. Or the practice of witcheraft in New Guinea.

The fact that controversy often occurs in the League is evidence of (1) a very proprietary interest on the part of its members - which is exactly as it should be, (2) an active rather than a passive management approach to the current and future problems of the organization, and (3) a vigor and vitality that are the best possible assurance of continuing strength. Controversy is certainly desirable and can be enormously productive so long as it is based on well-informed, sound judgment.

Perhaps what we need is not so much instant communication as it is instant perspective.
[5F-

The basic Murphy's Law is, "If anything can go wrong, it will." And with the publication of "Edsel Murphy's Laws" in February QST, it did. The piece is largely a duplication of an original by Dr. Donald L. Klipstein, Vice President of Engineering, Measurement Control Devices, Philadelphia which appeared in the August 1967 issue of "EEE," a Mactier publication. W5ACL did indicate to us the source of his material, but we failed to follow through with a request for permission and use of a credit line. The article is first-rate, as evidenced by our readers' comments. But to Dr. Klipstein and "EEE" belong the plaudits:

Mail delay problems, again. To some areas, New York and New Jersey in particular, QST has taken as long as a month in transit. (And it works both ways; from Ridgefield, Conn. to Hq., one piece of mail took 12 days -- in the same state yet! -- and a first-class letter from W4KFC in Virginia took ten.) Newspaper and magazine publishers and printers are complaining vociferously to the Post Office -- but no results yet.

Even parcel post is getting a beating -- literally. Despite use of the same oareful packing which worked well for years, our 1968 Handbook individual shipments have produced some amazing results. One broke open in transit and was repacked by the Post Office -- with two radio books from Howard Sams! A similar incident brought a ham, in our Handbook carton, a sweater! We wonder what pretty young thing may be somewhat confused by receiving a Handbook from some apparel company?

On a brighter note: For several years the League, along with many other non-profit societies, was under detailed appraisal by the Internal Revenue Service to determine whether any revenue activities -- in particular the sale of publications -fell under the classification of "unrelated business income" and would thus be taxable. We are pleased indeed that, after extensive filings and conferences with IRS personnel, a ruling has been issued in our favor, in effect confirming long-standing decisions of the Treasury Department. As an entirely separate matter, however, IRS has decreed that advertising revenue from publications of all non-profit societies will henceforth be taxable.

Each month we receive one or more notices of hamfests or other.special affairs just too late to get into QST in time to be useful. We're as sorry as you. Please remember -- normal deadline is the 15 th of the second month preceding date of issue. E.g., for the June issue, we should have material by April 15.

We've compiled an initial list of active v.h.f. stations, with calls, frequencies, power, etc., as a help to those who would like to make more contacts, both on the air and in person. A business-size (\#10) self-addressed stamped envelope to Hq. will bring you one.

A perennial problem of democratic institutions -- from the Government to membership societies -- is the contention that "one small voice among so many just doesn't count, so why try." As a League member, you have not one but several channels for registering your opinion where it will be heard and where it will count. Your ballot is the most important, of course -- but there is also your SCM and other members of the ARRL field organization, your own affiliated club, and your division director who can represent you effectively only when you let him know your opinion. That's what he's there for, and he wants to hear from you.

Solid-State Design for a Compact QRP Station

BY JOHN P. RASOR.* W6DMR

0Ne would wonder why, in this age of high power, that consideration should be given to a low-power transceiver. There are several reasons. By full utilization of inexpensive solid-state components, a practical design can be developed that will allow the construction of a complete transceiver in a small, lightweight package. Furthermore, because of the low energy requirements primary cells (dry batteries) are a practical source of power. Being independent of the power line or lead-acid storage batteries enables one to operate in locations and under conditions where a.c.-operated rigs would not be practical. Apart from this, a transceiver of this type makes an excellent standby unit for emergency purposes.

But still, there is no better reward for the time and effort of building a low-power rig than working your first DǍ siation with a two-lanternbattery power supply!

The Receiver Circuit

The circuit of the transceiver is fundamentally rather simple. Figs. 1C and 1D show that the receiver section comprises an r.f. stage, mixer, intermediate-frequency amplifier with crystal filter, detector, and one stage of audio.

Of the foregoing, everything is straightforward with the possible exception of the use of complementary circuits in the r.f. and i.f. amplifiers. The complementary circuit was favored after a number of earlier r.f. amplifiers had been bugged with instability when maximum gain was required. To insure stability with common-emitter circuits it is usually necessary to introduce sume form of mismatch-i.e., comecting the transistor cullector completely across the coil, over-

* 118 East Are. San Juan, San Clemente. Calif. 92672.
coupling, or swamping the collector coil with a resistor to lower the Q. With the complementary circuit the second transistur can be operated at maximum gain with no sign of instability. Also, with sufficient gain in the i.f. only one stage is required, which sumewhat offsets the added components required by the complementary design. The complementary circuit requires a fixed bias potential of 1.4 volts. This is easy to obtain by using two cheap silicon diodes in series in the collector return circuits of Q_{10} and Q_{13}.
The crystal filter is a simple but effective one, and has the advantage that both the filter crystals and the b.f.o. crystal (Fig. 1A) can be of the same frequency and are easily obtained from a number of surplus sources. A 60-pf. trimmer rapacitor is placed in series with one of the filter crystals. Sufficient frequency shift cau be obtained by varying the capacitor to result in a

Fig. IA—The v.f.o. and heterodyne crystal oscillator circuits. S.M. indicates silver mica capacitors; other fixed capacitors are disk ceramic. Resistors are $1 / 2$-watt composition.
$\mathrm{C}_{1}-365$-pf. variable, t.r.f. type.
$\mathrm{C}_{2}, \mathrm{C}_{3}$-For text reference.
C_{4}-8-60-pf. miniature mica trimmer (Arco-Elmenco 404).
$\mathrm{L}_{1}, \mathrm{~L}_{2}$-See Table I.
$Q_{1}-\mathrm{N}-\mathrm{p}-\mathrm{n}, 2 \mathrm{~N} 1305$ or equivaalent. $\mathrm{Q}_{2}, \mathrm{Q}_{3}-\mathrm{N}$-p-n, 2 N 3905 or equivalent.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}$-Miniature 100- $\mu \mathrm{h}$. choke, encapsulated. Y_{1}-Approx. 5000 kc .

Fig. 1B—Transmitter mixer and amplifiers. Capacitors with polarity indicated are electrolytic. Except as indicated below, other fixed capacitors and resistors are same type as in Fig. 1A.
$\mathrm{C}_{5}{ }^{-} \mathrm{C}_{6}-8-60-\mathrm{pf}$. miniature mica trimmer (Arco-Elmenco 404).
$\mathrm{C}_{7}, \mathrm{C}_{8}-100-550-\mathrm{pf}$. mica padder (Arco-Elmenco 304) with $180-\mathrm{pf}$. silver mica in parallel.
$\mathrm{C}_{9}-0.01-\mu \mathrm{f}$. mylar, 400 volts.
$\mathrm{C}_{10}-0.2-\mu \mathrm{f}$. ceramic, 25 volts.
$\mathrm{CR}_{1}, \mathrm{CR}_{3}$-Silicon diode, 250 ma.
CR_{2} - iN34A or equivalent.
J_{1}, J_{2}-Phono connectors, chassis mounting.
$\mathrm{L}_{3}-\mathrm{L}_{8}$, ncl.-See Table I.
very desirable passband for c.w., and by careful adjustment a satisfactory 2 - to $3-\mathrm{kc}$. passband for s.s.b. is entirely possible. Adjustment of the filter can be made on received signals, but care should be taken to keep the input level down so as not to overload the filter.

The second detector is not operated as a true product detector but rather as a combination
$M_{1}-0-1$ milliammeter, edge mounting.
$Q_{4}-N-p-n, 2 N 3905$ or equivalent.
$Q_{5}-N$-p-n, 2 N697 or equivalent.
$\mathrm{Q}_{6}-\mathrm{N}-\mathrm{p}-\mathrm{n}, 2 \mathrm{~N} 2195$ or equivalent.
$Q_{\text {s }}-P_{-n-p, 2} 2 \mathrm{~N} 1305$ or equivalent.
Q_{x}-Unijunction, 2N2646 (GE).
RFC_{3}-Miniature 100- $\mu \mathrm{h}$. choke, encapsulated.
RFC_{4}-See Table I .
S_{1}-S.p.s.t., on gain control, R_{1}, Fig. IC.
detector and amplifier. This choice was made because if the detector overloads on strong signals it does not impair readability in c.w. reception, and operating the stage this way results in appreciable gain. The audio stage is conventional, with the collector operating directly into the magnetic earphones. More than enough gain is available to "ratile the cans."

Interior view from the panel end. The receiver occupies the right-hand half of the etched-board chassis, with the r.f. amplifier at the rear and subsequent stages in order progressing toward the front. The transmitter, the left half, begins at the panel with the v.f.o., the final amplifier being at the rear. The final tank circuit is mounted on the lefthand half of the rear wall of the cabinet.

Powdered-iron-core toroids are used for all of the r.f. tuned circuits except the v.f.o. 'The toroids offer a number of advantages, both from the standpoint of economics and, even greater, in operation and installation. The electric field is concentrated within the toroid so that coils can be placed close together with little if any field interaction. As the core permeability is high, fewer turns are required for a given frequency and, of course, the Q is very high. For the home builder, winding an i.f. transformer is a simple matter with the toroid cores.

The Oscillators

The v.f.o. uses the familiar Colpitts circuit, Fig. 1A, followed by an emitter-follower stage for isolation. Silver-mica capacitors are used in the tuned circuits. By proper adjustment of the d.c. bias on the base of the v.f.o. transistor, Q_{1}, good frequency stability can be achieved for collector-voltage changes between 12 and 14 volts. With a $365-p f$. tuning capacitor and a $15-\mu \mathrm{h}$. adjustable inductor, the 40 -meter band (7.0 to 7.3 Mc .) occupies 160 degrees of the dial. An inexpensive 6:1 ratio planetary ball-bearing vernier (Jackson Bros. type $4511-\mathrm{DAF}$) provides exceptionally smooth tuning. These drives can be purchased from Arrow Electronics ${ }^{1}$ and

[^0]are well worth the $\$ 1.50$ price. The output of the v.f.o. is lightly coupled to the emitter follower, Q_{2}, which stage feeds both the receiving and transmitting mixers.

Operating the v.f.o. at a relatively low frequency has sume definite advantages - better stability with temperature variations, less frequency shift due to collector voltage change, and higher output with a high- C tank circuit. However, the problem of harmonics and "birdies" from mixed products between the v.f.o. and the fixed heterodyne oscillator can become a problem with low-frequency v.f.o.s. In this transceiver, a v.f.o. range of 1,990 to $2,290 \mathrm{kc}$. was chosen so that the third and fourth harmonics lie below and above the output frequency of 7000 to 7300 kc. To complete the v.f.o. isolation an r.f. choke is included in the collector supply lead; transistor circuits are low impedance, and signals can pass along the power leads between the various stages.

The heterodyne crystal oscillator and b.f.o., Q_{3}, uses a very simple circuit in which the crystal is placed between the collector and the base of the transistor. The collector coil is fixed-tuned because it is not critical and a variable capacitor is eliminated. A 60 -pf. trimmer is in series with the crystal so the frequency can be changed slightly to make the b.f.o. conform with the filter passband.

Fig. 1 C -Receiver front end and i.f. filter. Fixed capacitors and resistors are same type as in Fig. 1A.
$\mathrm{C}_{11}-\mathrm{C}_{14}$, incl. - 8-60-pf. miniature mica trimmer (ArcoElmenco 404).
$C R_{4}, C R_{5}$-Any silicon diode.
$\mathrm{L}_{7}-\mathrm{L}_{1}$, incl.-See Table I.
$Q_{0}, Q_{12}-N-p-n, 2 N 3905$ or equivalent.

Transmitter Section

The 2-Mc. v.f.o. and 5-Mc. b.f.o. outputs are mixed in Q_{4}, Fig. 1 B , to produce the $7-\mathrm{Mc}$. output frequency. The transmitting mixer feeds a driver stage, Q_{5}, which is biased slightly forward for optimum gain and harmonic reduction. The output from the driver is fed to the final amplifier, Q_{6}, which is zero biased. The collector of the
$Q_{10}, Q_{11}-P-n-p, 2 N 3906$ or equivalent.
$R_{1}-15,000-$ ohm linear control, with switch (S_{1} Fig. 1B). Y_{2}, Y_{3}-Approx. 5000 kc . (Y_{1}, Y_{2} and Y_{3} should be identical in frequency, but frequency chosen for the group is not critical).
final has a double-pi network in the output circuit which, with the values shown, will load $20-$ to 80 -ohm antennas very easily. A number of other output circuits were tried but all had excessive harmonic content.

The b.f.o. and v.f.o. outputs are fed into the transmitting mixer with r.f. voltage levels of approximately 1 to 2 volts peak-to-peak. The

Another inside view, showing the rear-panel controls and connectors. The components mounted on and near the front panel are visible in this photo.

Fig. ID-I.f. output, detector and audio amplifier. Fixed resistors and capacitors are same type as in Fig. IB.

Table 1
 Coil Data

$L_{1}-$ Approx. 15μ h.; 20 turns No. 27 enam. close-wound on 3 -iuch diam. slug-tuned ceramic form (Miller 4400). Note: No. 26 or 28 wire may be substituted by modifying the number of turns, if necessary, for the desired frequency range.
$L_{2}-25$ turns No. 28 enam. on toroid core (Arnold A4-380-125EP); 4-turn link.
L_{3} - Same as L_{2}, except 3-turn link.
L_{4} - 25 turns No. 28 enam. on toroid core (Arnold At-380-125EP); tapped 8 turns from cold end: 2 -turn link.
$L_{5}, L_{6}-3.4 \mu$ h.: 13 turns No. 20 enam. on toroid form (Arnold A4-680-250)EP).
$L_{7}-30$ turns No. 28 enam. on toroid form (Arnold At-380-125EP); tapped 2 turns from cold end.
$J_{, 8}$ - Same as L_{7}, but tapped 12 turns from cold end and with 6 -turn link.
$L_{9}-30$ turns No. 28 enam. on same type form as L_{7}, tapped 10 turns from cold end; link 8 turns center-tapped.
$L_{10}-29$ turns No. 28 enam. on toroid form (Arnold A4-380-125EP).
$L_{11}-30$ turns No. 28 enam. on same type form as L_{10}, tapped at center: 6-turn link.
RFC4 - App. $0.5 \mu \mathrm{~h}$; 11 turns No. 22 enam. on turoid core (Arnold A4-380125 EP).

Note: Arnold A4-380-125EP cores are \%-inch diam. by 1 -inch thick, with 3 亿-inch diam. center hole. A4-680-250EP cores are $11 / 6$-inch o.d. and $1 / 4$ inch thick, with $\%$-iuch center hole. The cores are made by Arnold Fingineering, Marengo, Ill. 60152. See January 1968 QS' 7 for data on equivalent cores made by other manufacturers.
C_{15}-8-60-pf. miniature mica trimmer (Arco-Elmenco 404).
J_{3}-Open-circuit phone jack.
L_{11}-See Table 1 .
$Q_{13}, Q_{11}-P-n-p, 2 N 3906$ or equivalent.
Q15-P-n-p, 2NI 305 or equivalent.
mixer is link-coupled to the driver transistor (25, which transistor is biased slightly forward so that the no-signal level of collector current will be between 30 and 35 ma . with a collector supply voltage of 12 to 13 volts.

An unbypassed emitter resistor of 4.7 ohms is used in the driver circuit, and it might be well at this point to consider emitter resistors in the interests of saving transistors. An unbypassed emitter resistor does several things for a cummouemitter transistor amplifier. First, and most important, it supplies degeneration which tends to stabilize the amplifier, although it does so with : loss of gain. However, at best, an r.f. transistor amplifier like this is a compromise between gain and stability, and for the experimenter a loss in gain for the sake of stability is very desirable. The emitter resistur also raises the input impedance, which in many cases is desirable for matching power-amplifier stages. In general, beware of r.f. power-amplifier circuits without emitter degeneration, as they are real transistor destroyers when used with power supplies of low internal resistance.

The final-amplifier circuit is operated zero hias (beyond cutoff) which allows it to be connected to the collector supply at all times. 'This eliminates the necessity for running the high current of the final amplifier through the keying transistor, Q_{7} (see below). The collector (output) circuit of the final is a double pi net which the writer thinks is the minimum circuitry for adequate harmonic suppression. Transistor r.f. amplifiers are more effective harmonic generators than their tube counterparts, and for this reason more than ordinary care should be taken to sup-

Bottom view of the etched circuit board. A few small components are on this side of the board - so located either as "afterthoughts" or for convenience.
press harmonics. Rather high capacitance values are required in the pi net, but these can easily be secured with variable compression-type capacitors which, in addition to their high capacitance, are very small in size. This output network will fully load a mobile antenna and a full-size dipole, a good range of matching.

The 2 N 2195 final amplifier requires a heat sink. Any of the clip-on commercial types will be adequate for the collector current range of this amplifier.
The transmitter and tone oscillator are keyed through the keying transistor, Q_{7}, which supplies collector eurrent for the transmitting mixer, driver and tone oscillator. The very simple sidetone oscillator circuit comprises a uninjunction transistor, Q_{8}, two resistors and a capacitor. The values shown will produce a 500 -cycle tone. This tone is capacitively coupled to the receiving audio amplifier. As can be surmised, this system provides instant and complete break-in and is a real joy to operate.

An inexpensive ($0-1$ milliammeter with a diode and resistors is utilized for an output indicator, which aids loading adjustments.

Construction Details

Although this particular rig is assembled on a printed-circuit board, etched-circuit construction is not essential: a prototype model was built on Vectorboard with plenty of spare room. The transceiver is housed in one of a new line of enclosures which is now being marketed especially for home builders by Justin, Inc. ${ }^{2}$ It is called the "Gear Box," and a number of sizes are available. The $3 \times 5 \times 7$-inch size was chosen

22662 No. Lee Ave., South El Monte. Calif. 91731.
for this project. With this enclosure, the top, bottom and sides can be removed so that access to the underside of the circuit board can be had without unfastening either the front or rear panel assemblies - a very handy arrangement for the home-brew artist.
The board was divided into three sections, approximately one half being allocated to the receiver from the r.f. to and including the audio amplifier. The other half has sufficient space for the v.f.o. and follower, b.f.o., transmitting mixer, driver and final amplifier. The pi-networl components, antenua jack, key jack and utility plug are mounted on the rear panel. A seven-pin miniature plug provides comnections for the power supply and such useful external connections as may be wanted. The front pauel controls include the tuning dial, r.f. gain control with onoff switch, phone jack, and r.f. output indicator.

Check Out

For those of the fraternity who are just getting their feet wet with transistor circuits, there are several precautions that should be taken to prevent losing a handful of trausistors. There is no such thing as a "smoke test" with this type of gear, becanse the semiconductors are long gone before anything can even get warm. Do nut use a power source of very low interual resistance, such as a lead-acid or ni-cad battery, for checkout because this is to invite trouble. A much sater way is to use an ordinary dry-battery source, such as two lauteru batteries, so that in case of a wiring short components will not be damaged. Always connect a silicon diode in series with your power source so as to prevent damage to transistors in case of an accidental polarity
reversal. The latter is nut too serious when the transistors are running at low level, as in a reveiver where there is a large value of emitter resistance to prevent excessive current flow, but in the case of driver and power stages where built-in protection does not exist, a polarity reversal would be fatal to the transistors.

Once the v.f.o. is operating, adjust the tank coil, L_{l}, so that the $365-\mathrm{pf}$. tuning capacitor will tune the range 1990 to 2290 kc ., which range should cover about 160 degrees of the dial. With the values shown, the receiver should peak up nicely from the r.f. to and including the i.f. stage. If one of the tumed circuits does not peak with capacitor adjustment, resonance should be checked with a grid-dip meter. With toroidal coils this operation requires a little different technique than with ordinary cylindrical cuil construction. The coil should be wound with the appropriate number of turns, leaving about a 2 -inch-long lead on one end. This large end can be formed into a loop about $3 / 4$ iuch in diameter. The two coil ends are then connected to the capacitor and the grid-dip meter coupled to the loop to indicate resunauce. The coils have very high Q, and a sharp dip will be seen at resonance.

By carefiul adjustment of trimmers C_{14} in the crystal filter and C_{4} in the crystal oscillator, an extremely shar'p cutoff of the upper sideband cau be obtained, resulting in a true "singlesignal" receiver. Sensitivity, signal-to-noise ratio, and sideband rejection are excellent, and the receiver suffers only to a degree with some crossmodulation which seems to be inherent with transistor front ends in which field-cffect types are not used. However, cross-modulation and frontend over-load can be reduced to a very low value by use of the r.f. gain control.

After the receiver is operating, the transmitting section is ready for tuuing up. This requires a receiver (with b.f.o.) that can be tuned from 7 to 7.3 Mc . and which has an r.f. gain control. The final amplifier and driver transistors should be removed from the circuit and the transmitting mixer tuned to maximum at 7.1 Mc., as indicated in the external receiver. Keying the mixer should produce a clean stable c.w. signal.

The driver and final-amplifier transistors both are operated at a rather high power level, and with this type of operation these transistors should be loaded during tune-up - or, as a matter of fact, at any time. An effective method of loading the driver withoul affecting the output circuit is to disconnect the collector of the finalamplifier stage. The final amplifier can easily be loaded with a 2 -watt, 47 -ohm resistor. Flashlight bulbs will indicate relative r.f. out, but it should be remembered that they also change impedance with current, and do not always look like 50 to 70 ohms when illuminated.

The driver should be tuned in the same manner as the mixer and a peak noted when the stage is tuned through resonance. The normal collector current level of the driver should be 30 to 35 ma .
With a dummy load in the output jack, and using the output meter to indicate maximum, the
pi network of the final can be adjusted. With a collector supply of 12.5 to 13 volis the collector current of the final amplifier should be from 125 to 150 ma ., depending upon the gain of the driver and amplitier transistors. With the 2N2195 in the final the supply voltage should not be higher i.han 14 to 15 volts for safe operation.

Operating QRP

Operativg at very low power levels can be either frustrating or a really satisfying experience, depending upon the equipment and the operator using it. C.w. operation is much the better mode for QRP because the intelligence can be received with a passband of minimum width. A receiving station that has sharp filters or a Q multiplier can zero in through QRM and make copy on c.w. when a phone signal would be completely unintelligible. Also, by nature and by operating experience, it seems that a c.w. operator will exercise more patience in working through QRM than the phone man who would much prefer "armchair" copy. The present phone operating tendency in the low-frequency bands toward round tables makes a weak-signal intruder less than welcome.

In a band such as 40 meters a crystal-controlled QRP transmitter is at a distinct disadvantage, because the majority of listening after a CQ is done un or very close to the transmitting frequency. Also, calling CQ with low power is a rather unproductive way of muking contacts becuuse on a practical basis a station scanning the band will choose a stronger signal to answer unless he is looking for DX.

A v.f.o. in a transmitter greatly extends its usefulness. Again, rather than call CQ at great length (which is poor operating anyway), it is much better to tune for a station calling CQ or to call a station which is signing off with another. As a nurmal thing, one can assume that loud received signals indicate that the propagation is good between you and those transmitting stations, and your chance of making a contact is much greater than when a received signal is weak. This thesis scems to hold rather well, because cven high-power stations sink rapidly in strength when the propagation is poor.

The best operating time on 40 meters, when using low power, appears to be during the daylight and early eveming hours. Later the skip gets longer and the general level of signals lowers. Daylight paths of from 30 to 600 miles seem very stable, and c.w. stations with one watt are able to make plenty of contacts within this range.

For the DX man, watching the general level of signals on the band at night will give a clue to the possibility of $2000-$ to 4000 -mile contacts. This condition occurs rather often, and when it does that is the time to go after it. The author has worked many east-coast stations with a very ordinary antenna system - and believe it or not, many 200- to 600-mile stations from the car, using a mobile antenna of standard commercial design.
[15F-

A Multiband Ground-Plane Vertical Antenna with Tuned Feeders

BY ARTHUR S. GILLESPIE, JR.,* W4VON

IN recent, years, the multiband tuned-line cen-ter-fed antenna has enjoyed a return to popularity. Yet, few amateurs realize that the same principle may be applied to a vertical ground-plane configuration. For several years, the author has experimented with several versions of this antenna and has found them to be most satisfactory. The antenna shown in Fig. 1 provides not only outstanding performance on 10 , 15 and 20 meters, but performance on 40 and 80 meters equivalent to most mobile-antenna installations. Full efficiency on these latter bands can be realized by making the vertical and radial portions proportionately longer.

The anteuna system consists of the radiating element, ground-plane radials, an open-wire feeder of any convenient length, a transmatch
*317 East Second Ave. Gastonia, North Carolina 24052.

Fig. 1-Sketch of W4VON's simple multiband antenna

Fig. 3-Suggested method of mounting radiator element without drilling holes in aluminum tubing.
capable of either series or parallel tuning, and an :antenna s.w.r. bridge. This combination is shown in Fig. 2.

Antenna and Radial Lengths

The author preferred to ent the autenua for resonance on oue particular ham band 20 meters), but it is nut necessary that the antenna be resonant on any band. Efficiency will suffer, of course, on bands where the length is significantly shorter than $1 / 2$ wavelength. Whatever the length chosen for the antenna, the radials should be of about the same length.

Construction

Constructional details are shown in the sketch of Fig. 1. In the event the specified aluminum tubing is not available, thin-walled galvanized electrical conduit, aluminum conduit, or copper pipe may be used.
it is recommended that the vertical element not be supported by drilling holes through the tubing, as this will substantially weaken the structure. An alternative mounting arrangement is shown in Fig. 3. The insulators are porcelain standoff types with a lag-screw insert. They will be found at electrical supply houses (also at Sears), atud are sometimes reterred to as "saddle"-type insulators. The hose clamps are stainless-steel gear type.

Adjustment

Operation of the antenna is simple. The transmatch (a suitable one, including s.w.r. bridge, is described in the 1966, 1967, and 1968
(Continued on page 170)

Fig. 2-Recommended setup for coupling antenna line to low-impedance transmitter output.

An RTTY Bandpass Filter For 2125-2975 c.p.s.

Modern Filter Design Applied to Standaral Tone Frequencies

BY EDWARD E. WETHERHOLD,* W3NQN

Up to now, the ouly RTTY $2125 / 2975$ c.p.s. bandpass filter designs available were those of W2JAV, first published in 1956 ${ }^{1}$, and K3NIO, published in a $Q \mathrm{~S}^{\prime} T$ article ${ }^{2}$ in 1965. The attenuation responses of these two filters are plotted in Fig. 1 along with the response of an entirely new bandpass design of the ellipticfunction type. This article will review some of the aspects of the bandpass filter requirements and will discuss the design and construction of the elliptic-function filter.

Bandpass Filter Requirements

In the CQ RTTY column of April 1961 and on page 178 of the New RT'TY Handbook ${ }^{3}$, the importance is discussed of the bandpass filter attenuating those tones whose harmonics, accentuated by the TU limiter, would fall into the 2125 and 2975 e.p.s. channel filters of the cunverter. An example is given of the second harmonic of a 1500 -c.p.s. Weat note causing interference in the 2975 c.p.s. space-channel filter. The solution is to attenuate the unwanted $150(1-c . p . s$ s signal before it gets to the limiter. One of the requirements, therefore, of a $2125 /$ 2:975 c.p.s. bandpass filter is to have, if possible, maximum attenuation at one-half the channel frequencies or at 1063 and 1488 c.p.s. The next important requirement of the filter is a bandwidth sufficient to accummodate both the 850 c.p.s. frequency shift and at least the third harmonic of the 60 -w.p.m. keying frequency. On page 24 of the New RTTY Handbook ${ }^{3}$, the optimum bandwidth is calculated to be between a minimum of 987 c.p.s. and a maximum of 1200 c.p.s.
Unfortunately, the simple elliptic-filter design to be discussed can provide a maximum attenuation at only one of the two previously mentioned frequencies. To obtain the best skirt selectivity, 1488 c.p.s. was chosen as the desired maximumattenuation frequency. In addition to the mini-

[^1]mum filter bandwidth of 987 c.p.s., an extra 150 c.p.s. is provided to allow for signal drift, inaccurate tuning and filter component tolerance variations. This makes the final filter bandwidth requirement about 1140 e.p.s. The following discussion will demonstrate how these requirements of the bandpass filter are met through the application of modern filter design procedures.

Filter Circuit Design Procedure

The tables of elliptic-function filters, A4-1 and A4- 2 on page 145 of Geffe's Simplified Modern F'ilter Design, ${ }^{4}$ were investigated to find a design which would simultaneously meet the requirements of the 1140 c.p.s. bandwidth and the 1488 c.p.s. attenuation peak. After some experimental calculations, a design based ou the tabulated data of Table $A 4-1$ for $A_{A}=35 \mathrm{db}$. was found to be the optimum choice. The selected prototype design parameters, from which the bandpass design is derived, are: $f_{c o}=1140$ c.p.s., minimum stopband attenuation $\left(A_{\mathrm{s}}\right)=35 \mathrm{db}$., maximum passband attenuation $\left(A_{n}\right)=1.0 \mathrm{db}$., and source and load resistances $=6000$ ohms. The low-pass prototype tilter component values were calculated from the nurmalized tabulated values of L_{1}, L_{2}, L_{3}, and C_{2} which are associaied with the filter prototype schematic of Fig. A4-2 on page 145 of Geffe's book. The reader is referred to Chapter 3 of this book for details regarding the prototype-to-bundpass transformation procedure. The final bandpass filter schematic and component values are shown in Fig. 2.
The calculated parameters of the bandpass

[^2]Making use of inexpensive $88-\mathrm{mh}$. toroids, both modified and unmodified, for the inductances, the author has worked up a filter having steeper skirts than designs previously available, along with a low-frequency re. jection point to suppress the sub. harmonic of 2975 c.p.s.

Fig. 1-Relative attenuation vs frequency for three types of 2125-2975 c/s bandpass filters.

A-W2JAV filter, $R_{0}=600$ ohms; B-3-pole Butterworth filter, $R_{0}=3300$ ohms; C-Elliptic-function filter, $R_{\mathrm{o}}=600$ ohms.
filter design are: $f_{\mathrm{co}}=1978$ and 3118 e.p.s., $f_{\text {tren }}=2480$ c.p.s., skirt frequencies at 35 db . attenuation $=1.583$ and 3918 c.p.s., and the frequencies of theoretically infinite attenuation $=$ 1488 and 4138 c.p.s. The bandpass filter values of A_{s}, A_{p}, and K_{0} are the same as for the prototype filter. Fortunately, the resulting design is such that all inductance values may be realized conveniently and inexpensively with six surplus ss-mh. toroids.

Construction

It is suggested that two packs of 88 mh . toroids, five per pack, be obtained from Buchanan ${ }^{5}$ at a total cost of only $\$ 3.00$ postpaid. (Note that Buchanan has reduced the price of a pack of five toroids from $\$ 1.75$ to $\$ 1.50$ postpaid). Of the ten toroids received, only six will be used and of these six, four will be modified by removal of turns to achieve the desired inductance.

The two $155-\mathrm{mh}$. inductances are made up of an unmodified 88 -mh. toroid connected in series with a modified toroid. The modified toroid has tis turns removed from each of the two windings, which are then connected in series aiding to give an inductance of 67 mh . To obtain the $17.9-$ and 20.4 -mh. values, remove 37 turns from both windings of an $88-\mathrm{mh}$. loroid and 13 turns from both windings of another $88-\mathrm{mh}$. toroid: then, for both toroids, connect the windings in parallel aiding. This completes the modification of all the toroids.

The required capacitances are made up of either mylar or polystyrene capacitors connected in parallel, where necessary, to obtain the design values within a few per cent.

Two phenolic boards, $17 / 8 \times 41 / 4$ inches, were cut from a sheet of 32 AA 18 Vectorbord and the toroids sandwiched between the boards as shown in the photographs. Additional construction details may be obtained from a previous article in

[^3]which the construction of a similar type of bandpass filter was discussed. ${ }^{6}$

Filter Performance

The elliptic-function filter was evaluated in a 600 -ohm system and the measured attenuation response is shown in Fig. 1.

The accuracy of modern filter design procedures in predicting the attenuation response is demonstrated by comparing the calculated parameters with the measured parameters of the filter. The bandpass cutott frequencies were predicted to occur at 1978 and 3118 c.p.s., which means that at these frequencies the rise in attenuation will just begin to exceed the maximum passband attenuation (A_{p}) of 1.0 db . Referring tin the measured attenuation curve, this increase in attenuation is seen to occur at about 1970 and 3120 c.p.s. Equally good agreement is noted between the calculated and measured values at the 35 db . skirt frequencies and the frequencies of maximum attenuation. Nso, the minimum attenuation of 35 db . in the stopband and the slightly greater than 1.0 db . attenuation in the

Fig. 2-Circuit of the $2125-2975 \mathrm{c} / \mathrm{s}$ bandpass filter. Inductances are in millihenrys and capacitances are as indicated. Circled_numbers indicate octal-plug pin connections (see photographs).

The bandpass filter assembly before mounting in the Minibox. If a plug-in unit is not necessary, the Minibox and octal plug may be omitted, simplifying construction.
passband are in accord with the predicted filter performance.

For comments regarding the resistive termination of the filter input and output terminals, the reader is referred to the author's previous RTTY bandpass filter article. ${ }^{\text {b }}$

To achieve the expected shape of the attenuation response, it is imperative that the shunt inductors of 17.9 and 20.4 mh . have 9 's in the order of 100 at about 2 kc . In comparison, the series inductors of 155 mh . may have a much lower $\ell($, at least 25 , without degrading the attenuation response shape. The main effect of the lower Q of the series inductors will be merely to increase the overall insertion loss of the filter by one or two db., which is relatively unimportaut. This distinction in the Q specification between the shunt and series inductors is important. It means that the relaxed Q requirement of the series inductors permits the use of a much smaller inductor than the largensized surplus toroids specified, and if a single standard inductor can be found with 155 mh ., a much more compact filter will be possible.

Completed bandpass filter assembled in a Minibox, less cover. Interconnections between the 2490-pf. and 0.0215$\mu \mathrm{f}$. capacitors, mounted on the top side of the perfboard, can be seen in this view.

Bandpass Filter Comparisons

Comparing the response of the three types of bandpass filters, each is seen to have several particular advantages and disadvantages. The W2JAV filter is simple to construct, has symmetrical attenuation and the desired 600 -ohm impedance level, but lacks selectivity. The 3-pole Butterworth filter is also simple to construct, has excellent low-frequency attenuation but has a poor high frequency attenuation and a nonstandard 3300 -ohm impedance level. The ellipticfunction filter has the most selective response of all, provides the highest attenuation at 1488 c.p.s., and has the standard 600 -ohm impedance level; however, the filter response drops to a $35-\mathrm{db}$. minimum and some care in the selection of capacitors is required to achieve the desired attenuation response.

The RTTY experimenter-operator now has three $2125 / 2975$ c.p.s. bandpass filters to choose from. He must determine what particular characteristics of the filter are desired and then select the filter which best meets his requirements.

DST

- New Apparatus

ATV Research Focus-Deflection Coil Kit

FIor many years kits have been available for those interested in receiving and transmitting a.m., c.w. and s.s.b. Now kits are being marketed for the slow-scan TV buff. The No. 65A/S focus-deflection coil kit shown in the photograph is sold by ATV Kesearch, P.O. Box 396, South Sioux City, Nebraska 6×776, for less than $\$ 20$. It includes one focus coil, two vertical deflection coils, two horizontal deflection coils, a shielded target connector, a yoke form, an aluminum electrostatic shield for the yoke, a brass electrostatic shield for the focus coil, and a mumetal magnetic shield for the focus coil. Also provided, but not pictured, are complete assembly instructions, and a reprint of a three-part construction article on a slow-scan TV camera. ${ }^{1}$ The components

[^4]
furnished are of good quality and the directions are clear. It appears that it shouldn't take more than an hour or so to put the kit together. - WIYDS'

Completed keyer chassis with two flashlight D cells for size comparison. The shiny black object in the upper left corner is the epoxy-cased 2 N 4888 output transistor.

RICHARD P. HALVERSON, WØZHN* and RONALD A. STORDAHL, KøUXQ**

ALTHo才if many solid-state electronic keyer articles have appeared in the literature in the last few years, the circuit described here has several novel features which should be interesting to those "home brewers" who like to explore the frontiers of technology. The basic transistor circuitry of the keyer, exclusive of the output transistor, is contained in threc inexpensive integrated logic circuit chips. These circuits allow construction on an etched circuit board about two inches square, in a volume of about one cubic inch.

There is no weight control. The self-completing dots and dashes are timed by a reliable logic timing chain which drives integrated Hip-Hops to form perfectly-spaced code independent of speed adjustment. The timing chain starts in proper phase relationship by closure of the paddle contacts, and shuts itself off at the proper time when is character is completed. Speed is adjustable with one control over a range of about 860 w.p.m. using the component values shown, and could easily have a wider range if desired.

The best feature is the cost. All parts for the keyer, exclusive of paddle, wan be purchased for less than ten dollars amateur net! Since the (ircuit uses a total of 39 high-quality transistors (in four packages), that's much less than a comparable discrete-component unit with the same performance features.

Basic Logic Circuits

The basic logic devices in the keyer are integrated RTL (Resistor Trausistor Logic) or more

[^5]properly, modified DCTL (Direct Coupled Transistor Logic) circuits which are now available from several manufacturers ${ }^{1}$ in very inexpensive injection-molded epoxy cases. The Motorola units used here have a 14 -pin lead configuration in the "dual in-line package" which lends itself well to homemade etched circuit construction.

Figs. 1A and 1B are schematic diagrams and logic symbols for the basic circuits used. Resistor values are such that the transistors operate either saturated or cut off. If either or both inputs of the 2-input gate are high, their corresponding transistors conduct and draw the output down to : low level, within about 200 mv . of the emitters. If both inputs are low neither transistor conducts, and the output is drawn to the high level, near $+V_{\mathrm{CC}}$, by the collector load resistor.

If one defines a high level as a logic 1 (true) and a low level as a logic 0 (false), then the circuit performs a logic or followed by a logic inversion or negation. In logical nomenclature, the output

[^6]The electronic-keyer circuit described in this article fits on a circuit board less than two inches square, less the speedcontrol variable resistor and flasblightcell pou'er supply. Three integrated circuits (total cost $\$ 4.16$ in the 1968 catalogs), seven fixed resistors, two miniature capacitors, and one transistor complete the circuit. For simplicity of assembly and lou' cost it's hard to beat!
(A)

INVERTER

LOGIC SYMBOL

(B)
?-INPUT GATE CIRCUIT DIAGRAM

LOGIC SYMBOL

RI $=450$ OHMS $\mathrm{R} 2=640$ OHMS

Fig. 1-Schematic diagrams and logic symbols for (A) the integrated inverter (one of six in the MC789P package) and (B) the integrated 2 -input NOR gate (one of four in the MC724P package). Transistors normally operate either saturated or cut-off. Typical circuit delay is $\mathbf{1} 2$ nanoseconds.
is "not true" (false) if input 1 is "true" or if input 2 is "true."

The logic symbol for the circuit, Fig. 1B, shows the logic functions performed. The shield (triangle with curved edges) is the standard symbol for a logic Or: the circle at the output represents logic negation. The circuit is called a 2 -input NOR (Not-or).

The basic flip-Hop (one of the two units in the MC790P) circuit is shown in Fig. 2A, and its logic symbol in Fig. 2B. This bistable multivibrator has basic set (S) and clear (C) inputs which are gated by a negative-going voltage transition on the trigger (T) input. The small circles on the logic symbol at these inputs mean that logic inversion takes place there; that is, the set and clear are actuated by "false" (i.e., low-level) external inputs. When the tlip-flop is set. (by a low-level S input grated by a negativegoing T iuput), it is said to store a logic 1 or "true" value.

The outputs are also negated; thus when the flip-flop is set to logic 1, the output from its 1 side is low or "false" after the logic inversion represented by the circle at the output. Each Hip-flop also has a noninverted, nongated preset input shown at the side (pins 10 or 12).

This t.ype of bistable is called a J-K flip-flop in the industry. This term means that if both set and clear inputs are actuated (low level) when the gate pulse appears at T, the flip-flop will "toggle" or change state. Thus if both S and C are at a low level with the flip-flop in the set condition, a negative-going trigger input will cause it to change to the cleared state; the 1 side output (e. g., pin 9) will change from low to high, and the zeros side output (e.g., pin 8) will change from high to low voltage.

Bottom view pin connections to the three integrated circuits used are shown in Fig. 3.

Fig. 2-Schematic diagram and logic symbol for the integrated J-K flip-flop (one of two in the MC790P package). Negative set (S) or clear (C) levels are gated by a negative-going trigger (T) input. If both S and C are at low level, the T input causes the flip-flop to toggle, or change state.

Fig. 3-Bottom-view pin connections to the three integrated circuits used.

The Keyer

A logic diagram of the keyer is shown in Fig. 4. There are iwo principal sections: i.he timing chain eonsisting of inverters $I N V_{1}, I N V_{2}, I N V_{4}$, and gates $\mathrm{NOR}_{2}, \mathrm{NOR}_{3}, \mathrm{NOR}_{4}$: and the dot-lash forming section eonsisting of flip-flops $F^{\prime} F_{1}$ and $F F_{2}$, inverters $I N V_{3}, I N V_{5}, I N V_{6}$, gate $N O R_{1}$, and the 2 N 4888 output transistor.

The timing chain generates negative-going trigger pulses at $I N V_{2}$-pin 2 to actuate the dot Hip-Hop $F F_{1}$. The width of these pulses is about $\$$ milliseconds as determined by the $R_{3} C_{3}$ combination. The time between pulses, which determines the code speed, is controlled by $C_{1} R_{1} R_{2}$. This time varies from about 15 milliseconds (over $60 \mathrm{w} . \mathrm{p} . \mathrm{m}$.) to 150 milliseconds (about $8 \mathrm{w} . \mathrm{p} . \mathrm{m}$. under the cuntrol of the speed potentiometer, R_{1}.

The timing chain starts and stops under control of circuits NOR_{3} and $\mathrm{NOR}_{2}-\mathrm{NOR}_{4}$ which artually make up a eross-coupled fip-Hop with set inputs to $\mathrm{NOR}_{2}-\mathrm{NOR}_{4}$, and clear input from $I N V_{4}$ to VOR_{3}. This flip-flop is set whenever the dot (pin 6) or dash (pin 13) levers are pressed, or when a character is in process (pin 12). INV 4 tries to clear the combination during every space interval. A successful clear by $I N F_{4}$ stops the timing chain action after the space is concluded.
$F^{\prime} F_{1}$ generates the basic dot timing. Since both set, and clear inputs are low (at $-V_{c o}$), trigger

Fig. 4-Keyer logic diagram (positive logic). Pin $11(\mathrm{VCc})$ of each integrated circuit is grounded, and Pin 4 (—Vcc) is connected to the negative supply voltage. Q_{1} is a high-voltage $p-n-p$ transistor which switches a negative-potential key terminal to ground.
$\mathrm{C}_{1}-6.8$ - $\mu \mathrm{f}$. tantalum, 15 volts.
$\mathrm{C}_{2}-0.56$ - μ. tantalum or ceramic, $3-10$ volts. $\mathrm{C}_{3}-\mathrm{C}_{5}$, incl.—Disk ceramic.
$\mathrm{FF}_{1}, \mathrm{FF}_{2}$-Both in dual J-K flip-flop (Motorola MC790P). $\mathrm{INV}_{1}-\mathbb{N N V}_{6}$, incl. - All in hex inverter (Motorola MC789P).

NOR $_{1}-\mathrm{NOR}_{4}$, incl.-All in quad 2-input gate (Motorola MC724P).
Q_{1}-High-voltage p-n-p transistor (Fairchild type 2N4888, 2N4889; or 2N398).
$R_{1}-50,000$-ohm control, reverse log or linear-taper. R_{2} - $\mathrm{Rs}_{\text {, incl. - Composition, } 1 / 2 \text { watt or less. }}$

Fig. 5-Suggested etched circuit board layout (viewed from bottom) and top-view photograph of the keyer, actual size. Note the two jumpers required. C_{3} and C_{4}, Fig. 4, are not included in this layout but their use is recommended.
pulses at pin 6 toggle $F F_{1}$ to produce successive, equal-length dot and space time intervals.

Pressing the dash lever raises the input to $/ N V_{G}$; this inverter places a low voltage at the clear input (pin 1) of $F F_{2}$ which is normally at rest in the set condition. In this case, the lowgoing ontput of the one side of $F^{\prime} F_{1}$ (pin 9) during dot initiation callses $F F_{2}$ to toggle to the clear condition. (leared $F F_{2}$ presents a logic 1 to gate $N O R_{1}$ during a complete dot-space eycle of $F F_{3}$. Initiation of the second dot period in $F F_{1}$ produces another negative-going trigger pulse to $f F_{2}$ which sets it (regardless of its clear input level since it will either unconditionally set if pin 1 is high, or loggle to the set condition if pin 1 is low). During this third interval, $F F_{1}$ holds pin 2 of $N O R_{1}$ high to complete a 3 -interval dash. Dashes override dots when both paddles are pressed.

The output of nor gate $N O R_{1}$ passes through $I \mathrm{NT}_{3}-I \mathrm{NI}_{5}$ to the $2 \mathrm{~N} 48 \times \times$ output transistor which turns on, raising its collector to near ground potential. The delay here is negligible
(approximately 12 nanoseconds per inverter). The output of $I N V_{3}$ also holds $N O R_{4}$ pin 12 high to allow timing chain continuation until a complete dot or dash cycle is concluded.

The output transistor is a new silicon p-n-p made by Fairchild Semiconductor which is rated at 150 volts $V_{\text {CER }}$ and 300 milliwatts free-air collector dissipation. 'This transistor easily switches 50 ma . (within the collector dissipation rating) and replaces the 2 N 398 of ten used here. The transistor must see a negative potential with respect to ground, as is typical in grid-block keying systems. However, it can easily drive an n-p-n transistor or a relay to switch positive voltages.

Although the design-center supply voltage for these circuits is $3.6 \pm 10 \%$ volts, experiments have shown that the keyer performs well over a voltage range of 2 to 6 volts. Oceasional errors due to flip-flop malfunction can be detected at voltages below about 2.5 volts: this serves as a check on supply voltage in case batteries are used. Two flashlight batteries in series (positive ground) make an adequate power supply; however, battery life is not great siuce the keyer draws about 60 ma. at 3 volts. Two size D cells will last several weeks under a normal operating schedule before errors can be detected.

The logic circuits are rugged and hard to damage by misapplication of voltages, soldering-iron heat, or mechanical shock. Reversed power supply polarity caused no damage during one unscheduled experiment. However, the low voltage swings aud fast response of the circuits makes their error-free performance somewhat sensitive to free r.f. in the shack. Bypass capacitors C_{3}, C_{4}, and C_{5} are recommended, and it would be wise to mount the bourd in a grounded metal box.

Construction Hints

A suggested etched-circuit board layout and a completed board are shown in Fig. 5. All holes except the four corner mounting holes can be drilled with a No. 60 drill ($0.040^{\prime \prime}$). However, the professional machinist may want to use the proper size, No. 72 ($0.025^{\prime \prime}$), drill for the integrated circuit connection leads.
Good drilling practice with these small drills is to use a drill press with a small chuck ($1 / 4$-inch or smaller), run at high speed, and let the drill cut its own way through the board at minimum pressure. However, a quarter-inch hand drill will work if a very light touch is used.
soldering of leads to the back of the board should be done with a 30- to 50-watt iron with : small tip; the inexpensive imported irons available at many hardware (or grocery or drug) stores work very well. Of course, a printed-circuit soldering pencil is ideal. After soldering all leads, check for solder bridges and reheat such joints to let excess solder drip off.

Values are not critical, except of course that the timing (speed) range is determined by $h_{1} K_{2} C_{1}$. A larger value of C_{1} would allow a
(C'ontinued on page 168)

Getting Rid of Low-Frequency Harmonics

Four Easy-To-Build Half-Wave Filters

BY LEWIS G. McCOY, WIICP*

Abstract

Unless the unsuspecting Norice is lucky be may find bimself in difficulties with the FCC because of harmonic radiation. Here is some cheap and easy insurance.

0NE of the requirements for Novice operation is that the transmitter be crystal-controlled. Crystal control helps the Novice make sure that he is transmitting on a band he is supposed to be on. However, crystal control only helps; it doesn't provide positive insurance against off-frequency radiation.

Let's take a typical Novice station consisting of a crystal-controlled, two-stage rig, operating at 3725 kc . and feeding a multiband vertical antenna with one end of the coaxial line connected to the transmitter and the other end to the base of the antenna. This setup probably sounds familiar to many Novices. How can such a transmitter-antenna combination, with the transmitter erystal-controlled, cause signals on other than 3725 kc . to be radiated? Believe it or not, it is quite easy.

One of the problems in generating radiofrequency energy is that while we only want one signal to be produced, we usually generate many undesired siguals along with it. For example, in addition to the 3725 kc . signal in the final amplifier, multiples of that frequency also will be present. There would be energy at 7450 kc., twice the fundamental, and at $11,175 \mathrm{kc}$., three times the fundamental, and so on. If these signals are strong enough, and if there isn't enough selectivity in the transmitter tank circuit or in the antenna circuit to discriminate against them, they will reach the antenna and be radiated-- and quite likely cause interference to sume other radio service, since the frequencies are all outside the amateur bauds. If you are lucky, an ARRL Official Observer will spot your signal and let you know. If you're unlucky it will be a "(2SL" from the FCC -... and none of us want that type of confirnation!

Spurious Radiations

In addition to the harmonic problem there are other types of signal that can be generated.

* Novice Editor.

These are called "parasitics." It is quite possible to have parasitics and not know it. The most common type is the very-high-frequency parasitic, a self-oscillation ustally wecturing above 50 Mc . Incidentally, any signal other than the fundamental or desired one is classed as a "spurious" radiation; the term includes harmonics as well as parasitics.
In addition to generating spurious signals, a trouble that many Novices get into is mistakenly tuning up on the wrong band. Even though your transmitter may be switched to 80 meters, for example, it is quite possible that it can be tuned to 40 with the same band-switch setting. Another, and even more common, mistake is to tune up on what you think is 15 meters but actually is 20 or 10 meters.

The pill boxes are mounted on the dividing wall by means of screws and nuts. At the right rear are the two 40-meter coils and the two front coils are the 20 -meter units. On the left side at the rear are the 80 -meter coils with the 10 -meter coils at the front.

Harmonics and mistuning are not necessarily the fault of the transmitter. The output of every transmitter has harmonic content, to greater or lesser degree, and mistuning can happen, depending on the antenna luad.

How To Tune Your Transmitter

First of all, if your transmitter is commercially made, be sure you read the instruction manual that comes with it. The manufacturer may have special precautions you must observe and you can be assured that the instructions are there for a purpose. Let's suppose we are going to tune up on 80 meters. First, if your transmitter has an adjustable loading control in the tank circuit, and most Novice rigs these days have such a device, the loading control will be a variable capacitur. In sume transmitters, in addition to the variable there will be fixed capacitors that can be switched in or out as required. The first step is to switch all the capacitors into the circuit and set the variable at maximum capacitance (plates fully meshed). Don't depend on the dial markings; they can be misleading. Actually look at the capacitor to make sure it is meshed. Next, adjust the tuning capacitor for a "dip" (minimum reading) in the plate current. If two dips occur be sure to take the one near maximum capacitance; the other dip is likely to be the 40 -meter resonant point. Next, gradually reduce the loading capacitance, and as the plate current increases keep the circuit in resonance by dipping the tuning control. Gradually bring your plate current up to whatever the rated amount is (by your instruction book). Also - and this is important as far as harmonic generation is concerned do not use more than the rated grid current or drive as specified in the instruction manual. Too much drive will increase the harmonic output of the final amplifier.

Such tuning procedure will usually result in uperation on the right band, but since nothing is certain, the safest thing to do is to actually check the frequency. One way of doing the job is with an absorption wavemeter or a grid-dip meter. These are very handy iustruments for this purpose and are easy to make ${ }^{1,2}$.

However, even a wavemeter or grid-dip meter won't provide a pusitive indication of harmonic radiation. But one thing you can be sure of -if either instrument shows a harmonic on the feeders or antenna, that harmonic is strong enough to be heard somewhere far off.

Are Your Harmonics Getting Out?

If you have a ham friend a couple of miles away, get him to listen on the harmonic frequencies. Not a ham next door or very close by, because your fundamental will be so strong that his receiver is likely to overload, causing it to generate harmonics within itself. If a ham a

[^7] February, 1968.
${ }^{2}$ McCoy. "Are you Putting Out On 'The Correct Band?": (STT, March, 1967.

Fig. 1-Circuit diagram of the half-wave filter. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-3.5 \mathrm{Mc}$. : 820 pf. mica, 500 volts.

7 Mc.: 470 pf. mica, 500 volts.
14 Mc.: 220 pf. mica, 500 volts.
21 Mc.: 150 pf. mica, 500 volts.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ —Phono jacks (8 required).
$\mathrm{L}_{1}, \mathrm{~L}_{2}-3.5 \mathrm{Mc}$.: 8 turns, close wound.
7 Mc.: 8 turns, 8 turns per inch.
14 Mc.: 4 turns, 4 furns per inch.
21 Mc.: 3 turns, 3 turns per inch.
All coils wound with No. 18 enamel. Coil forms are 1-inch. diam.
few miles away hears any harmonic signal you know you have too much harmonic being radiated.

However, even if the ham a few miles away doesn't hear any harmonics it doesn't necessarily follow that you are clean. The only safe assumption is that you do have harmonics and must do something to clean them up.

How To Get Rid Of Harmonics

What is needed to clean up harmonic radiation is additional selectivity in the output stage of the transmitter. One method is to use a transmatch between the transmitter and antenna. The transmatch will provide the required selectivity to attenuate any undesired harmonics to a point where they shouldn't cause interference. For those interested in this device a recent QST article 3 described construction of a transmatch plus a multiband antenna.

Still another system of attenuating harmonics is by using half-wave filters in the coaxial line feeding the antenna. Many types of filters have to be matched to the impedance of the line they are used with - or to put it another way, the standing wave ratio on the feed line must be very low in order for the setup to work properly. 'This isn't true of the half-wave filter. The impedance that it "sees" at its output end will be repeated at the input side. Therefore, the filter can be inserted in the line without upsetting the load on the final amplifier.

The half-wave filter isn't critical of the s.w.r. on the line, and a single design will work equally well in either 50 - or 70 -ohm coax. Mismatches of about 3 to 1 can be tolerated in the line without upsetting the performance of the filter. The only reason for this limit is that when : mismatch exists higher than normal voltages and currents are developed and the components in the filter are likely to be damaged.

One disadvantage, but not a serious one, is that a separate filter is required for each band. In other words, when you change bands you must change filters. However, this is easily taken care of by using phono connectors on the

[^8]
EVOLUTION OESNKAMAIEUR WEATHER-SATELLITE

BY CHARLES H. McKNIGHT,* W4MKM

Tue elusive but fascinating pursuit of satellite weather pictures began at $W \downarrow M K M$ early in 1966, inspired and guided by KこRNF's brilliant article in November 1965 QST. ${ }^{1}$ The writer had been looking for a challenging project in tune with the times to fill his retirement years; and leisure time, a bulging junk box, and a little money for radio still in the budget made up his assets.

Progress in the project may be divided into three stages: The first, the initial building and testing period at the writer's Richmond, Va. QTH, extended over the first quarter of 1966 . The second stage was marked bya move to Chesapeake Bay near Deltaville, Va, the erection of a helical antenna, receiver improvements, construction of a dark room; and the printing of many pictures from ESSA II siguals, The third period, from early 1967 to date, involved experi-

[^9]W4MKM was one of the first to go to work on Wendell Ainderson's rolling-pin picture reproducer described in November 1965 QST. He has obtained many successful pictures from weather satellites, and just recently shifted over from negative to direct-positive readout, using ordinary photographic enlarging paper. This is the story of his experiences in setting up an amateur weatherpicture station.
mental work aimed at faster operatiug techniques with positive printing from Nimbus II.

Inlifial Building and Testing

All bf the eircuitry of $K: 2 R N F$'s article was assembled on a dismantled sideband chassis measuring $11-$ by 17 by 3 inches. The panel, \& stilf power supply good for 300 volts at 200 ma ., an auxilary filament transformer, and a VR-105 atrangement for negative biasing voltage were left in place. Some tube sockets were relocated for better layout. The countdown chain for Fig. 9^{2} was built on a $51 / 4$ by 3 by 2 -inch Minibox with its base bolted to the back of the panel well above the chassis, with tubes mounted horizontally to the rear, and with control knobs on the upper side for access. The isolation of this circuit proved advantageous. To the main chassis were added threc VR-150s and a four-stage (lass-A amplifier with a tube line up consisting of a half12AT7 preamp., 6Ct driver, 6L6 driver, and 65.50 output. The last three were given fixed grid bias, with 250 volts on plates and screen grids. The 6 L 6 was first tried as the ontput tube but the 6550 had to be added to take the drum motor load at 115 volts a.c. with a good sine wave. The impedance match was good at 2600 ohms, with the motor fed through five $1-\mu \mathrm{f}$. 600 -volt capacitors in parallel.'The motor holds sync speed down to about 80 volts. The 1 -volt peak-to-peak from the count-down is controlled at the 12AT7 grid to regulate the voltage output to the motor.

No great difficulty was encountered except that synchronization became restless at times. To eure this a separate small power supply

[^10]was built with two VR-150s separately feeding Figs. 8 and 9 . At K2RNF's suggestion the grid of the 6 CL 6 , Fig. 6 , was isolated by a 1000 -ohm resistor with a $30-\mu$. electrolytic behind it to ground the wide voltage fluctuations at the 6CL6 grid.

If it were being done over again, all four of K2RNF's circuits would be built in separate shielded boxes with a VR-150 on each box. Good isolation, however obtained, is important.

Before going further, a few changes made by K2RNF after publication of his article should be mentioned. These are given below, together with minor changes in facsimile construction made by the writer and an explanation of certain control functions.

Drum Assembly

The drum and carriage :assembly of Fig. 5 was built on a 13 - by 29 -inch piece of $3 / 4$-inch marine plywood with black Formica applied to the upper surface with pressure cement. Two $3, /$-inch square rails were cut from the base material and fastened to the base with screws to form the track. Formica pieces $3 / 4$ by 1 inch were glued to the bottom and sides of the front and rear carriage legs to provide smooth bearing surfaces. All burrs were sanded smouth. The rolling pin was equipped with two $1 / 4-$ inch stub shafts of drill rod. Ifter the shafts were cemented in with epoxy, the drum was mounted in $1 / 4$-inch ball bearings in the end pieces of the carriage. A small pulley was temporarily fixed to a shaft end and the drum was driven in its bearings for sanding to a smooth concentric tinish of uniform diameter. A small planetary universal joint, made of thin sheet rubber of extreme flexibility, was used to couple the drum to the motor, which was mounted with adjusting screws for alignment. The $3 /{ }^{\prime \prime}{ }^{\prime \prime}-24$ transverse screw was carefully selected for straightness. It was coupled to the motor shaft with a short piece of 3 16 -inch i.d. tubing cemented to the motor shaft and screw with epoxy. The serew was lined up true, with minimum wobble, just before the epoxy glue set. The drum magnet, about $3 / 16$ inch square by $3 / 4$ inch long, came from the corner of a cloth potholder. The pickup coil was made with a $1 / 4$-inch stack of $1 / 4$-inch U laminations cut from E's, with about 1200 turns of No. 42 enameled wire.

It was found later that even a slight wobble in the screw caused banding in the picture, while a slight misalignment of the drum motor shaft cansed the drum to oscillate with resultant wiggles in the picture, most apparent in the fiduciary marks. The black strip of tape shown on the drum in Fig. 5 is used to locate one edge of the film, which is fastened to the drum with double "stickum" tape applied to the upper and lower

An unusual satellite view of two hurricanes, Doria and Chloe at left and right in the lower half of the picture, over the Atlantic Ocean. This direct-positive print is from a tape recording of the signal transmitted from Nimbus II on September 16, 1967. The pattern along the right-hand margin is a code which gives Nimbus Il's orbit number, the date, and time the picture was taken.
back edges of the film. The lower edge is pressed down on the drum against the edge of the black tape guide and then wrapped around the drum, and the other edge pressed down to hold the film firmly on the drum. It would appear that overlapping to some degree is advantageous, depending, of course, on the size of film used. The guide tape must be located experimentally with respect to the magnet, depending also on the film size and direction of rotation.
The two black squares near one end of the drum in Fig. 5 are part of 15 equally spaced markings of uniform size around the drum. When viewed under a stroboscopic lamp with line a.e. voltage these marks stand perfectly still when the drum is rotating at 240 r.p.m. or 4 revolutions per second, the speed synchronous with the frequency of 60 c.p.s. divided from the satellite carrier frequency of 2400 c.p.s. The markings, although remaining relatively stationary, may uscillate to some degree. This is usually caused by slight binding of the drum motor shaft. In aligning the motor by means of the adjustment screws the disappearance of oscillations will coincide with very little or no noise from the motor gear train.

Receiver

While the electrical circuitry and facsimile were being built a single dipole cut for 137.5 Mc. and fed with 52 -ohm coax was erected about 15 feet above the roof. An Ameco 2 -meter converter very similar to the 144 -Mc. converter described in Chapter 16 of the ARRL Handbook was used. No difficulty was experienced in peaking the converter for 137.5 Mc . in and 43 Mc . out for the i.f. strip of a modified TV chassis to which a tunable oscillator was added. As the i.f. strip was an open-air job and 43 Mc . is just off the Virginia State Police frequency, this interference coupled with the traffic noise in the center of Richmond made the receiver impractical, although it did work well in the absence of QRM. A wide-band Monitoradio Receiver (Model MRC-33B) was purchased and the converter erystal changed for a clearer spot between 45 and 50 Mc .

Fig. 101-Sketch of the helical antenna built for weathersatellite reception by W 4 MKM. Dimensions are for 137.5 Mc . The tubing and fittings used in the frame were obtained from Sears. Rotator shafts are clamped tight to pipe nipples with U bolts; rotator leads and coax cable are fastened to the pole and looped at the top to clear the counterweight. The antenna end of the matching transformer is fastened in the hole in the center plate with screws and nuts, using four angle clamps held on the tube with short sheet-metal screws. After assembly the Plexiglas washer should be doped with epoxy for waterproofing. The aluminum end cap is made of sheet material fastened to the tube with sheet-metal screws, and is mounted after the inner conductor is soldered to the coax fitting. The cost of the antenna, exclusive of rotators, was about $\$ 20$.

Fig. 102-Lamp and lens mounting. Dimensions are for a lens having a focal length of 1 inch. Height of this assembly should be adiusted carefully to put the light spot exactly on the drum center line, and the beam should be at right angles to the drum surface. For lenses of other focal length, dimension B should be three or more times the lens focal length. Then

$$
A=\frac{B F}{B-F}
$$

where F is the focal length.

The dipole brought in strong but rapidly fading signals from Essa II - enough, however, to peak the converter and test out the whole rig for synchronization, lamp modulation and general stability. No attempt was made to print pictures at this stage.
Having no experience in operating techniques, the writer arranged a visit with K2RNF at, his New Jersey QTH. He generously demonsifrated every phase of operations, to the extent of receiving and printing a picture from Essa II while his visitor looked on. A 4 -turn helix autenna had recently been erected at K2RNF, its must original features being the rotator mountings and an axial boom of aluminum tubing. The writer made a few notes and resolved to build a similar antenna at his summer QTH on Chesapeake Bay as soon as possible.

Notes on Synchronization

In discussing the matter of syachronization, K2RNF suggested two changes in Fig. 7 of his article to improve the operation of the lockedphase uscillator: the addition of two 1 N1763 diodes, back to back, in parallel with the 220 K resistor at pin 4 of the 6 SN7 clipper tube, and a 68K resistor instead of the 150 K resistor at the 6BN6 plate, pin 7.
The writer's experience in attaining reliable synchronization involved the following procedures:

With a 7 -volt peak-to-peak signal at Point A, Fig. 6, from a tape recording of a satellite signal with a 4 -cycle pulse and 2400 -cycle carrier, the vertical oscilloscope input was connected to the output of the oscillator, pin 5 of Fig. 8. R_{2} was
adjusted until oscillations started and synchronized on the scope at 2400 c.p.s. The signal was removed and the frequency drifted. It was interesting to see the wave pull into synchronization when the signal was again applied to Point A. R_{2} was carefully adjusted close to the sync point, and the d.c. voltage at pin 7 of the 6BN6 plate was measured on a v.t.v.m. h_{1}, the $80(0)-$ onhm resistor in the 6 BN6 grid circuit, was then adjusted to give the same voltage both with and without a signal at Point A. After this the scope pattern remained unchanged for an appreciable time after the signal was removed to simulate a short fade in the signal from a satellite.

With the oscillator performing well in locked phase condition the dual potentiometers $K_{1} k_{2}$ in the countdown chain, Fig. 9, were adjusted to give a small 60 -cycle output across the resonaut tank, the capacitor of which (C_{1}) was adjusted to give an vutput of about 1 volt peak-topeak. The 240 -r.p.m. drum motor was connected to the Class-A amplifier, which was adjusted for 115 volts output. Rotating in response to the 6if-cycle input, the drum showed the 15 equallyspaced lines on the drum surface as standing perfectly still, indicating good synchronization with the signal at Point A.

At this point the resistances of the dual potentiometers of Figs. 8 and 9 were measured. A pair of matched $\%$-watt resistors corresponding to the measured resistances of R_{3} and K_{4} was substituted for those potentiometers, which seemed to be noncritical. R_{1} and R_{2} were replaced by a $10,000-\mathrm{ohm}$ dual pot with $6800 \mathrm{ohm} 5 \% / 1 / 2$-watt resistors in series with each leg.

The $500,000-\mathrm{ohm}$ pots were used to replace the $1-\mathrm{meg}$. dual pot R_{2} of Fig. 8. Matched 470 K 2-watt resistors were connected across the outer terminals of the 500 K dual pot with no series resistors.

These changes made subsequent adjustments much easier. In discussing the changes with $\kappa 2 R N F$, he remarked that he had used poteni.iometers on hand rather than invest in new ones. The writer appreciated this after first trying inexpensive pots only to find that the best available are none too good.

If after the above adjustments the synchronization is still unstable the trouble is probably due to the pulse getting into the countdown chaiu, most likely through the power-supply lines. This will explain why the writer went to extremes to isolate the $15(1)$-volt lines to the various sections of the overall circuitry.

The Helical Antenna

The second stage of progress began with the huilding of the helix at Deltaville, Va. A few details of the writer's method of construction will be given. Dimensions were culculated for 137.5 Mc. from data given by WICER in his article on helical beams. ${ }^{3}$

[^11]

The 137.5-Mc. circularly-polarized helical antenna built by W 4 MKM for reception of weather satellites. It is rotated in both azimuth and elevation.

The antenna is supported on a 2×4 pole mounted between two oak 2×4 's, Fig. 101, anchored in the ground. The anchoring bolt at the lower end of the pole is removed when the antenna is lowered for servicing by means of a rope tied to the end of the pole. The bolt is replaced to provide a convenient hitch for the hauling rope.
When the boom was ready for the helix wire it was supported horizontally at a convenient height. Starting 9 inches from the screen, rings were scratched around the boom tubing at intervals of $7 \frac{1}{6}$ inch. Three notches 120 degrees apart were filed in the end of the tube, from which three lines were stretched tant and fastened to the screen so that they were parallel to the tube axis and 120 degrees apart all the way. At points of intersection between these lines and the circular spacing lines, $3 / 8$-inch holes were drilled, with $1 /$-inch holes at the opposite side of the tubing. These holes progress spirally at 120 degrees outward toward the end. Thirteen pieces of -inch doweling were cut to 14 -inch length, and heveled slightly at both ends. A $1 / 4$ by $1 / 8$-inch deep slot was filed in one end and a $1 / 8$ inch hole drilled about one inch deep in the center of the other end. The inside ends were anchored with 1/s-inch nails pushed in lightly.

In mounting the helix wire on the radials, a coil of about 35 feet of aluminum clothes line was worked out into a 30 -inch diameter and one end hooked into the wire screen near the transformer terminal. The coil was then drawn out over the dowels and the wire loosely tied to the radial ends as the turns moved out. Then by workiug back and forth the helix was formed with uniform diameter and spacing and lashed firmly into the slots of the radial supports. The nails anchoring the radials in the boom and the wire lashings were doped with epoxy cement. The outer end of the helix was clipped at about 1/8 turn beyond four full turus, and the other end was curved down and inserted into the transformer inner tube. A small hole was drilled and tapped
EXCEPT AS INDICATED, DECIMAL VALUES OF CAPACITANCE ARE IN MICROFARADS ($\mu \mathrm{f}$.); OTHERS ARE IN PICOFARADS (pf . OR $\mu \mu \mathrm{Hf}$.);
 RESISTANCES ARE IN OHMS; $K=1000$.

Fig. 103-The W4MKM lamp driver and preamplifier for positive printing. This circuit is a modification of Fig. 6 in K2RNF's article in November 1965 QST. The 6BH8 was substituted for the 6SN7-6AG5 combination in the original circuit because the pentode section of the 6BH8 has relatively high plate/screen current, desirable for the R-1168 lamp. Capacitors with polarity marked are electrolytic; others are ceramic or mica. Unless otherwise indicated, fixed resistors are $1 / 2$-watt composition. The series resistance in the cathode circuit of $V_{3 \mathrm{~A}}$ (shown as 330 K above) should be adjusted to obtain proper control of $V_{3 B}$ grid bias through R_{4}.
I_{1}-Modulation glow lamp, Sylvania type R-1168.
J_{1}-Phono connector.
$\mathrm{M}_{1}-0-30$ d.c. milliammeter.
R_{1}-Audio-taper control.
through both members. A small brass screw and uut tightened the joint, which was then taped with plastic adhesive tape. A counterweight of about two pounds was fastened to the rear end of the boom. The dowel radial supports were varnished with spar varnish and the assembly set aside in a warm dry place where the epoxy would cure before being exposed to the weather.

In mounting the boom on its pad the rotators were lowered and the completed antenna was hauled into position. (Before raising or lowering, the rear boom extension should be tied to the pole to hold the boom parallel with the pole: this avoids undue strain on the rotator gears.) The coax cable was connected to the transformer and dressed together with the rotator control cable to avoid interference with the boom end when traveling in a vertical position. Goud braking is necessary on the vertical rotator. Uhannel Master Rotators with updated automatic braking were used.

While the front-to-side ratio seems good, the front to back ratio is not very good. This could no doubt be improved by elipping the end and checking with a small signal from a remotelylocated oscillator. In the present location this has not yet seemed necessary. The location is relatively free from man-made noises, but unfortunately is surrounded by tall trees with very little sky in the clear. Despite this the antenua works well in most directions. There is some fading from Nimbus II as it travels at a low angle
R_{2}, R_{3}, R_{4}-Linear-taper control.
S_{1}-3-pole single-throw, any type.
T_{1}-Driver transformer, $3: 1$ primary to $1 / 2$ secondary 30 -ma. primary (Stancor A-4723 or equivalent)
from due south. This may be due to Doppler shift, as the receiver discriminator appears to be a little off center. There is no fading as the satcllite recedes to the north where the forest is just as thick. This problem has yet to be explored.
Tracking is easily done visually since the antenna is only 25 feet from the shack and in plain view. K2RNF tracks successfully by watching the rotator indicator compass bearings. W 4 RNT has devised an ingenious device which tracks

Fig. 104-Peak-to-peak a.c. voltage at point A, Fig. 103 vs. current in I. The curve was made by using a 2400 c.p.s. audio voltage applied through $J_{1} . R_{t}$ was set for 20 ma. lamp current with no signal, and R_{3} was set for 2.5 ma. lamp current with 7 volts peak-to-peak at point A, in obtaining the solid curve. Dashed curves show effect of changing the setting of R_{3} with R_{4} left unchanged.
from a tape, punched for a predetermined orbital path. However, tracking has been one of the least of the writer's worries since most passes can be tracked with only four or five movements, and good pictures in certain directions have been made with no movement of the antenna for over three minutes.
Considering the fact that the helix is mounted directly under an ancient oak tree with a dozen or more tall oaks and pines within 50 yards in all directions, it would appear that man-made noises, especially automobile ignition noises, are the worst enemy to good reception and not intervening objects. Pictures have been made from signals 10 degrees above the horizon with trees running from directly overhead to a half mile in the direction of the satellite.

Receiver Changes

When the helical antenna was hooked up the receiver performed much better. In fact, quite a number of acceptable pictures were made from Essa II with this setup, including the hurricane shot shown in September 1966 QS'T. However, the absence of limiting made it necessary to ride the tuner -- a bothersome chore - while watching the antenna for tracking.
This led to a search for a receiver with double erystal control and good limiting qualities. Such a receiver was found. A Sensicon PA8616A-12 chassis bought at very low cost from a surplus list. It came with a front-end crystal in an oven, which called for a converter crystal to deliver 49.540 Mc . to the receiver. Two such crystals were obtained from International, for Essa II and Nimbus II. At the same time a small International transistor oscillator with interchangeable crystals for 136.95 and 137.5 Mc . output was purchased. This little oscillator has earned its cust as a check on antenna, converter and receiver performance.
The Sensicon " A " chassis with its 18 good tubes also had a second i.f. conversion crystal, two stages of limiting, a Permakay 8436A wideband filter, a differential noise silencer, and a convenient control-switch sucket. The control switch was mounted on a small chassis with a 150)-volt power supply and a $0-200$ microammeter to indicate deviation. A high-impedance source was found ahead of the audio power tube for connection to the mike input of the tape recorder. Receiver audio output was adjusted to a medium level and volume controlled at the recorder amplifier.

Lamp Change

In midsummer 1966 a Sylvania modulation glow lamp, type $\mathrm{R}-1168,{ }^{4}$ having a rated life of 150 hours with an average current of 15 ma ., was substituted for the AR-3 lamp. It was mounted in one end of a thin-wall brass tube with the lens fitted at the other end. The tube is supported on a sliding base for focusing.

[^12]

Direct positive print of a Nimbus II transmission on September 19, 1967. This picture, centered just above the tip of Yucatan, shows Hurricane Beulah centered about 300 miles due west of the spot (indicated by plus mark) at which the picture was taken. Florida and Cuba are visible near the right margin.

The 800 picture lines on a 2 -inch drum have approximately 0.008 -inch spacing. A light spot of 0.006 -inch diameter was thought to be about right. The lens mounting dimeusions are given in Fig. 102.

The thickness of the wooden base is such as to bring the light spot level with the drum center. Screws through the slots at each side are permanently tightened when the lens is in focus. The brass tube, a plumbing item, was found in a hardware store. One end is slightly larger than the main tube diameter and fits suugly over the R-1168 base. To avoid reflections from the glass tube end, the end is cuvered with black adhesive tape or paint except for a small circular aperture at the center. Diaphragm opening, not shown, is :adjustable from $\mathrm{f}: 32$ to $\mathrm{f}: 1.9$. A 1 -inch focallength lens is convenient for compact design, but lenses with other focal lengths can be used. The lens speed should be at least $\mathrm{f}: \mathrm{t}$. The lense is focused wide open and then stopped down accurding to the sensitivity of the film in use.

A darkroom adjacent to the operating bench has proved to be most convenient. A room four fect square was constructed of Masonite at one end of the bench, which extends through it. Inside the room, the top of the bench was enclosed for a height of 24 inches, with a sliding pancl in vertical grooves for access to the enclosure. The drum mechanism is located on the bench inside this inuer darkroom, and control wires run through the main darkroom wall.

A safelight in the outer darkroom is kept on while loading and unloading the drum. After the drum has been loaded and its position checked, closing the sliding panel makes the inner enclosure light-tight.

Positive Printing

With the helix antenna, a good receiver and the

The cloud formation at the left accompanied an intense weather disturbance over Michigan, another directpositive reproduction of a Nimbus 11 transmission. The picture was made on the day when several sky divers were lost over Lake Erie.

R-1168 lamp in operation, many good pictures were captured during the fall of ' 66 - so many, in fact, that the cost of about 70 e per picture for film and paper became a matter of concern. Also, working in total darkness and the long waits for films to dry were somewhat tedious. All of this created a state of mind that made the writer most receptive to W7UGV's scherue for positive printing, as outlined in "Teehnical Correspondence" in December 1966 QS'T'. However, after mulling the situation over, it was decided to try for positive printing within the framework of K 2 RNF 's circuitry.
First came the matter of finding a photographic paper with enough seusitivity to respond to the small amount of available light. Correspondence with the Eastman Kodak (\%. brought sympathetic response from Mr. R. D. Anwyl, with samples of exceptionally fast papers, but with the uutation that the papers were not available except in prohibitive minimum quautities. He suggested Kodabromide Grade 1. as vur best chance. Some Kodabromide F-1 sheets were obtained and printed as negatives. With lampcurrent peaks of 20 ma. sume good negative prints were made.

The next step was that of inverting the lamp drive for positive printing. The diodes at the center tap of T_{1}, Fig. 6, were reversed. Then came the cut-and-try process of adjusting the bias of the cathode-follower tube, its cathode resistance, and the other circuitry of Fig. 6 to give a good grey scale. The final circuit as modified for positive priating is given in Fig. 103, and the lamp current in relationship to signal voltage at point A is charted in Fig. 104. All work was concentrated on optimum biasing for positive prints ou Kodabromide Grade I paper.

Fig. 103 shows the biasing arrangement as it is at present. Although there is no assurance that this is the final auswer, scores of acceptable positive prints have been made from Nimbus II signals. Landmarks have shown up from the Pacific Coast of Southern Mexico to the eastern coast of Labrador. All of the past seasou's hurricanes were captured, some with landmarks to orient them accurately. The photographic work has been speeded up to the point where a picture shot by Nimbus II over Cuba can be inspected in daylight while signals are still coming in from the same pass to the north. The paper is insensitive to an amber safe light, so the paper cau be applied to the drum and all photographic work done with fair visibility. Finally, the cost has come down to about 10 cents a picture. Kodabromide F-1 paper with standard processing using Ektol developer, a stop solution, and hypu fixer make up the photographic procedure.
Since duplicates are seldom needed it is the writer's practice to print the picture as it is being received. Recordings are useful, however, for ehecking synchronization or for making duplicate pictures. For this, the tape recording heads must he frequently cleaned and the reel tensions kept within specifications. However, even with the best of care the taped pictures are seldom as good as those printed directly from the satellite signals.
In Fig. 103, R_{3} is used to adjust the lamp current to near cutoff with 7.5 volts peak-topeak at point $A . i_{4}$ is used to adjust the maximum lamp current with no signal at point A.

Practice is required in adjusting the gain wheu pictures are printed directly, since adjustments during the transmission period usually result in banded areas. The signal level is more easily set with a tape recording, as a test run cau first be made. In positive printing, experience is the best guide in setting R_{3} and R_{4} for the paper used. In addition to audible monitoring with a sinall speaker, the scope pattern at point A is observed, preferably on a calibrated scope. The writer has also monitored with a v.t.v.m. connected to point A, using a 14 -volt peak-topeak scale, but this gives only a rough idea of sigual peaks because of meter damping. Here, also, some experience is helpful. This problem has not been completely resolved.

In clusing, it may be said that the endless opportunity for experimentation is one of the most appealing aspects of this activity. It is something new, and the surface probably hasn't been seratched.

At the N.A.S.A. Satellite Coordinating Offices in Washington and Greenbelt, Md. everyone has been most helpful in sending technical information, chart material for plotting orbital paths, daily predictions of the time and longitude of ascending nodes (sent bi-weekly), and similar information. Only recently N.A.S.A. sent notice giving W1AW transmission schedules covering WX Satellite Orbital predictions. There scems to be an outstretched hand at N.A.S.A. welcoming the amateur!
[品7]

Magnetic Keyer Paddles

BY STEVE S. NURKIEWICZ, * WA2YBR

Becatise I've never been completely satisfied with the feel of commercially-made keyer paddles, I decided to try my hand at some improvements, beginning with a standard Vibroplex paddle.

As you can see from Photo A, I first substituted maguets for the spring that controls dot-lever tension. Une of a pair of magnets from a couple of old b.c. receiver speakers was epoxied to the end of the lever and the other to a screw that was mounted on a threaded post. "Tension" is adjusted by changing the gap between the magnets, running the screw ou which the movable magnet is mounted in or out. The closer the magnets approach, the more the force that's needed to make the dots.
I tried the same arrangement on the dash side too. It can be done, and it worked tine, but there isn't a great deal of spare space on the paddle so it got pretty clattered up. Photo B shows this type of conversion on another Vibroplex paddle.
To improve the action further, I also removed the stock friction bearings on which the pivot normally rides, replacing them with tiny ball bearings - the kind which are normally used for hopping up model slot racers. You can get these bearings at any good hobby shop.

It was inevitable that I should try building a paddle from scratch. In my early attempts I had to machine a number of parts myself, but Photo (P is a shot of a later scratch-built jub that is much easier because many of the parts can be bought right out of a catalog. This is the PIC catalog -.. obtainable from PIC Design Corp, 477 Atlantic Ave., East Rockaway, N. Y'. 11518.

There are PIC authorized re-sale agents practically in every state, major cities and in a number of foreign countries, so you might be able to pick up the parts yourself.

You can't buy a base, but most of the other metal parts I used came from stock. I made a base from a slab of sieel, preferring that heavy metal because I have a very heavy hand. Aluminum would be easier to machine and will do the job, if it is screwed down to the operating desk to keep it from walking away.

Photos D and E show my latest attempt to build the paddle I've been looking for, and I think I have done a good job.

The design is different. It has separate dotdash arms pivoted in ultra-precision ball bearings, double shielded and greased for life (PIC No. E4-6, $\$ 3.02$ each). Four are needed. The maynets

* 177 Landau Avenue, Floral Park, N. Y. 11001

(A)

(B)

(C)

（D）
used in the earliest models have been replaced by ones much smaller in size but equally strong （Lafayette Radio \＃1．4C3309，39\＆each）．They are predrilled，so epoxy isn＇t needed．

You will also notice that only two magnets are used in this model．Standard steel bolts with filed－down heads have been substituted for the other two．The magnetic field is strong enough to do the job．

There are many old bugs and keys around collecting dust and just asking to be put to use again，with a little effort and spare time．Why not make them magnetic？

（E）
Many of my CW operators friends have tried my pardlles，and without exception think they＇re tine．The lever action is extremely smooth，yet positive，and every trace of the side－play you find in cummercial paddles has been eliminated．
［品7］

New Apparatus

Kirk Broad－Band Baluns

Kire broad－band baluns are designed to handle the amateur legal power limit in the 3－to 30－ Mc．range．Two impedance ratios are available as are two case styles．A 1：1 ratio balun is supplied for matching 50 －or 75 －ohm unbalanced line to 50 －or 75 －ohm balanced londs，and a $4: 1$ ratio balun is furnished for matching 50 －or 75 －ohm unbalanced line to 200 or ：300－ohm halanced loads．Model 5075－D is designed for use with dipoles while model $5075-\mathrm{B}$ is str－led for use with beam anteunas．
Model 5075－D（top half of the photograph）is constructed to replace the center insulator of a dipole．Although the justallation instructions recom－ mend that the coax cable and dipole connections to the balun be soldered，nuts，bolts and crimp lugs are provided so that only mechanical connections need be made if the user desires．A clamp at the

bottom of the case helps to relieve the strain of leuvy coax line on the balun＇s innards．

Model 5075 －B has two lug－terminated sinch leads for connecting the balun to the driven ele－ ment of a beam antenna．Included in the instructions are details of a hairpin matching system for raising the normally low driving－point resistance（5 to 30 ohms）of a beam to the characteristic impedance of the feedline．In addition，hardware is provided for attaching the balun to a boom．

The top and bottom section of each balun case is metal（looks like aluminum）and the center section is heavy－duty plastic．Inside the hollow center sec－ tion are many turns of heavy wire on a ferrite core． Model 5075－j）is 7 inches iong and weighs 9 ounces， and model $5075-\mathrm{B}$ is 6 inches long and weighs 6 ounces．The manufacturer is Kirk Electronics， 6151 Dayton－Liberty Road，Dayton，Ohio 45418，and the price class is $88 .--W / Y D S$

2nstrays处

Feedback

Footnote 3 on page 29 of QST for February 1068 failed to mentioned the publication．The reference should read：Lancaster，＂Using New Low Cost Integrated Circuits，＂Electrnnics World，March 1966，p． 50.

The wiring of the bridge gate circuit．$B G_{1}$ ，in Fig．12，page 39，February Q $s^{\prime} T$ ，was incorrectly shown．The proper wiring（internal if the bridge is purchased as a unit）is given in Fig．9，page 36.

－•••一

K6AW points out that＂contact D＂mentioned in the end line of the 4th paragraph，page 61， ＂Semi－Automatic Key Adjustment＂hy Murphy in $Q S T$ for February 1908 should read，＂eontact F．＂

Guidelines for Transistor Transmitters

BY D. W. NELSON,* WB2EGZ

Lcк has very little to do with your success as a builder, particularly when the project is a transistorized transmitter. The primary limitations of a transistor in (lass C - its low gain and its power restriction - present a new challenge to the amatcur. Because the transistor is a low-impedance device, careful attention must be paid to the reactive component of the impedance, whereas this factor is of little concern with most vacuum tube circuits. Until recently, when several electronics manufacturers were able to apply computer-aided design techniques, the transistorized transmitter was the result of a series of experimental approaches, and (it was thought) the phase of the moon.

Empirical information gathered by the author in his work on 6- and 2 -meter transmitters, as well as techniques used by others, will be discussed in this article. Certain do's and don't's will have less importance below 30 Mc .; however, the principles are still pertinent.

Let us use a block diagram of a transmitter (Fig. 1) for purpuses of discussion. 'Typical circuits will then be shown for each block.

The Oscillator

In the oscillator circuit, power-rated transistors are preferred to give greater output. Low-power oscillator types which may be useful in receiver local oscillators are inappropriate in a transmitter. It is advisable to use all oscillator of the highest possible frequency; i.e., at or near the transmitter's tinal frequency. As will become evident, the harmonics that are generated in successive amplifiers may become troublesome.

Osillator instability is a problem encountered which has dictated the use of crystal control in the author's experiments. Not all crystal oscillator circuits work satisfactorily, but Fig. '2 shows one that does. We find this circuit to be non-
*9 (ireen Ridge Rd., Ashland, N. J. 08U34.
eritical with respect to crystal activity. It will accept lower-activity erystals which fail to operate in a Pierce circuit which has been widely used. If the crystal is an overtone type, it will be necessary to assure that the loaded Q of the tank is sufficient to select the desired mode of the crystal. Probably this requirement will dictate the use of a buffer stage. Tapping down on the coil is also useful.

Buffers, Multipliers and Drivers

A buffer, as here defined, is a Class A circuit requiring little or no drive power from the oscillator. By providing an isolating interface between the oscillator and the Class (slages, the butfer maintains the stability of the oscillator. Power is delivered by this stage to the succeeding stage. It may be practical to combine the multiplier with the buffer in spite of the use of Class A operation.

Even harmonics are dominant in the transistor multiplier shown in Fig. 4. Use of a series of doublers in preference to triplers may prove to be a very practical matter, and should be kept in mind when beginning your design. For the hest purity of output, multiplication should be done at low power levels and high- Q tank circuits should be used.

Several driver stages, Fig. 5, may be necessary at the final frequency - particularly at v.h.f., where transistor gain is low. As the power capability of the transistor increases, so does its reactive component of impedance. While simple tanks, LC eouplings, and link couplings are appropriate at low power levels, we now must become aware of the reactive component in our impedance matches. Matching networks in the form of $\pi \mathrm{s}$, Ls and Ts are eommon in this application. These will generally not reject unwanted harmonics and subharmonics sufficiently, and we are therefore justified in our effiorts toward single-frequency purity prior to the power stages.

Inexpensive transistors should be chosen at the lowest power levels, with high-power types only its the final stage(s). It is appropriate in all stages of a transmitter to use a transistor having the lowest rated frequency consistent with your needs. Higher-frequency units are not only more

Fig. 2-Overtone crystal oscillator circuit for 50 Mc ., also useful at lower frequencies with fundamental-type crystals. For 50 Mc . approximate tank values are C_{1} 33 pf.; $L_{1}, 5$ turns of No. 22 on a Miller type 4500 form, tapped $1 / 2$ turn from supply end, when using a 2 N 3118 or RCA 40080. For other bands, $\mathrm{C}_{1} L_{1}$ should be selected for resonance with the particular crystal frequency used; normal LC ratios are satisfactory. The tap on L_{1} should be adjusted for sufficiently-high tank Q to permit crystal oscillation. C_{2} is the coupling capacitor to the next stage; 20 pf. to 100 pf. ordinarily will be satisfactory, although a variable capacitor may be necessary for optimum output in some circuits.
expensive, but may also be unstable. Along these lines, sume success has been attained by substituting cheaper transistors when a stage is initially tuned. The intent is to approach the correct tuning of the stage with a transistor which is more rugged. A transistor may be destroyed by incorrect tuning. In fact it may not survive the tuning procedure! More on this comes later.

Voltage and power ratings on Class C transistors may limit the available gain. For example, the semiconductor in question may have a breakdown ($B V_{C E R}$) rating of 60 volts. Its gain is best using a 28 -volt supply. This is an acceptable voltage for f .m. or linear service where the β Veer need only be t.wice the supply voltage. On the other hand, amplitude modulation will have peaks of four times the supply voltage. Hence we are limited to a 15 -volt supply and lower gain for the stage.

Keeping an r.f. power transistor cool is an extremely important cousideration. Beyond the understanding of temperature vs. power charts are the unknown factors of impedance changes and effective change in breakdown ratings. The writer has seen transistors which when tuned hut became completely untuned after cooling; this was a rare case which also interested the manufacturer, but the detuning phenomenon may be expected to a lesser degree in all r.f. power trausistors. The change in breakdown rating concerns the "second-breakdown" characteristic. Basically we may say that lower peak voltages are destructive at higher temperatures. C'urves are not generally available, although a good bit of work has been done toward developing a new rating sometimes called the "locus of second breakdown."

Modulation

Modulating a transistor rig involves a few new concepts. F.m. is desirable from the standpoint of fewer audio parts and higher-gain r.f. stages. In f.m., there are no basic differences from the principles employed in tube designs. On the other hand, amplitude modulation offers a challenge! R.f. drive power is a signiticant part of the output power of the transistor; therefore, at power levels of a watt or more it will be necessary to modulate r.f. driver stages. The fewer driver stages you modulate, the easier will be the tuning.

A push-pull modulator for a.m. will spare the aggravation of burned-out finals. In a singleended modulator where current is always flowing in one direction in the audio side of the modulation transformer, there will be a violent surge when power is removed. There is a good possibility of destroying some or all of the modulated r.f. stages. Granted that with proper phasing and judicious switching the danger is eliminated. But most of us can't afford the first mistake.

Tuning

While no single procedure will suffice for all transistorized transmitters, a few hints are listed below.

1) Dip tanks when possible. Network couplings may also show resonances at frequencies other than the one of interest, on the g.d.o.
2) Keep a reseiver tuncd near the transmitter frequency to monitor for oscillations.
3) When possible, disconnect succeeding stages until first stages are tuned.
4) Never insert or remove a transistor with voltages applied.
5) If an amplifier breaks into oscillation, remove power immediately. Check for excessive heating of the transistor.
6) Check transistors for heat during tuning. If too hot to touch, remove power until the transistor is cool.
7) Use a g.d.o. or absorption wave meter as a frequency indicator to be sure your tuning is correct. Other frequencies (usually harmonics

Fig. 3-Class A buffer amplifier. $C_{1} L_{1}$ is tuned to the operating frequency, usually, but frequency doubling also is possible at v.h.f. For 50 Mc . operation C_{1} can be 22 pf . and $L_{1} 7$ turns of No. 22 on a Miller type 4500 form, using an RCA 40404. For other frequencies, remarks under

Fig. 2 also apply to constants in this circuit.
of the basic uscillator) may accidentally be tuned in some stage.
8) A high v.s.w.r. may indicate the presence of strong harmonics rather than a mismatch at the desired frequency.
9) Tune for best amplitude modulation after the r.f. output is peaked, by starting at low modulation levels using a single tone. Increase modulation gradually, retuning at each level for lowest distorion. The process is more difficult at higher frequencies where a.m. may also f.m. slightly as the oulput reactance of the final transistor changes.

Aids to a Successful Transmitter

Emitter hiasing is preferred to other techniques. Some manufacturers have shown optimized circuits where no emitter resistor is used, but don't you try it. Some current limiting is needed for tuning purposes and surge protection.

Bypassing of the emitter and supply voltage points may require two or mure capacitors of unlike values. The second bypass should be 5 to 10 times the capacitance of the first. Gond capacitors for this application are feedthrough, disk ceramic, and laminated-ceramic types. Incomplete bypassing may cause low-frequency parasitics in the stage due to its higher gain at Jower frequencies. A seennd problem which is greatly reduced is incomplete bypassing due to lead inductance.

A typical base return on a power stage would be a low- Q choke. Not so easily found, you say. One suitable substitute is a low-resistance wirewound resistor. 'Two t.u t.en ohms would be appropriate values. The Q of a regular choke may be reduced by shunting it with a luw-value resistor ur by placing ferrite beads on the choke leads. But why all the fuss about low Q? Simply that the motorboating mentioned earlier will be suppressed. Use of a coil of heavy wire in the

Fig. 4-The Class C frequency multiplier. The transistor is at or slightly beyond collector cutoff with no base-bias network. $C_{1} L_{1}$ is tuned to the desired multiple of the input frequency. Representative values for doubling from 72 to 144 Mc. using an RCA 40404 would be $\mathrm{C}_{1}, 5.6 \mathrm{pf}$., and $L_{1}, 21 / 2$ turns of No. 22 on a Miller type 4500 form. The r.f. choke should be $6.8 \mu \mathrm{~h} . \mathrm{C}_{2}$, the coupling capacitor to the next stage may be a variable to match the nextstage input by proper łuning.

Fig. 5-Class C power amplifier circuit used for drivers and finals. 1 f one of the circuits in Figs. 3 or 4 precedes this one, C_{4} will not be needed since it performs the same function as C_{2} in the other circuits. $C_{1} L_{1} C_{2}$ is a pi network with constants appropriate for the operating frequency; other types of network such as the T also are usable. See text for remarks on bypassing. Typical values for the transistor types indicated:

4 Mc .	50 Mc .	144 Mc .
$\underset{\text { mica }}{\mathrm{C}_{1}-170-780 \mathrm{pf}}$	$\begin{aligned} & \text { 25-280 pf. } \\ & \text { mica. } \end{aligned}$	0.9-7 pf. mica.
$\begin{aligned} & \mathrm{C}_{z}-0.003-0.005 \mu \mathrm{f} . \\ & \text { mica. } \end{aligned}$	50-480 pf. mica.	4-40 pf. mica.
LI-1.3 $\mu \mathrm{h}$.	$0.1 \mu \mathrm{~h}$.	3 turns No. 16, $1 / 4$-in. diam.
Q1-RCA 40444	2N3375	2N3375
$\mathrm{R}_{1}-1$ ohm; n.i.**	1-3 ohms, n.i.* ${ }^{*}$	1-3 ohms, n.i.*
$\mathrm{RFC}_{1}-68 \mu \mathrm{~h}$.	4-ohm, 3-watt wire-wound or $6.8 \mu \mathrm{~h}$. low -Q.	2.4-ohm-3-watt wire-wound or $1.0 \mu \mathrm{~h}$. low-Q.
RFC ${ }_{2}$-App. $68 \mu \mathrm{~h}$.	4 turns No. 16, $1 / 4$-in. diam.	$11 / 2$ turns No. 16, $1 / 4$-in. diam.

* Noninductive
cullector circuit of the final amplifier, rather than a conventional choke, will also reduce the tendency to oscillate.

Chokes in the base return are preferred to resistors because of the enhancement of the col-lector-to-emitter breakdown. Reverse biasing of the base-emitter junction would be still better except that the transistor is more susceptible to second-breakdown in that type circuit.

A high-conductivity chassis is recommended for low losses. Copper or silver-plated chassis are best. An urderly layout on the chassis is also beneficial. Trying to compress the size of the transmitter may create losses and instability.

Power supplies with poor regulation are undesirable for use with a transistorized transmitter. The worst case would be a cur's power system. Not only will the output power vary drastically, but detuning will occur. By using the highest a vailable voltage (compatible with requirements already discussed) transieuts and line variations will have the least effect, but a good regulated supply is ideal.
(Continued on page 168)

A Milligallon For 15

BY WES HAYWARD,* W7ZOI

Aamateur activity of increasing popularity is experimentation with Inw-power solidstate transmitters. The appeal of QRP work is derived largely from the simplicity and portability of the equipment used. However, most of the equipment described in the literature is designed for the so- and 40 -meter bands, where the circuitry is of minimal complexity. This is unfortunate in that current propagation conditions make the 10 - and 15 -meter bands very attractive to the low-power enthusiast.
The "milligallon" rig shown schematically in Fig. 1 was designed for the 15 -meter band and uses two inexpensive (64 cents) epoxy-cased silicon transistors. 'The rig's simplicity is realized by operating the oscillator, Q_{1}, in its third-overtone mode. Garden-variety 7 -Mc. crystals are used. The amplifier, Q_{2}, operates in the commonemitter contiguration and has a power input of almost one watt. Hence the name "milligallon." With a $1 \because$-volt power supply, the measured power output was one-half wat. into a 50 -ohm resistive load. With the transistor shown, the supply potential should not exceed 12 volts and modulation should not be applied to the Q_{2} collector. Dinde $O R_{1}$ and its associated circuitry provides a convenient means for tuning the transmitter and may be used with a v.o.m. or v.t.v.m. A method for measuring power output is included in Fig. 2.
The transmitter is built on the 2×3-inch

* 1801 11th Ave. N.W., Puyallup. Washington 98:371

printed-circuit board shown in Figs. 3 and 4 , and the finished circuit card is mounted inside a small aluminum box of suitable size. The crystal socket and p.c. board should be mounted so that the interconnecting lead length is small. The author included a ceramic wafer switch in his unit which serves as an antema changeover switch. Extra terminals also remove the power supply from the transmitter during receive periods.

Fig. 2-Dummy load and peak rectifier for measuring power output. The fixed capacitor is ceramic.

Tornid coil forms ${ }^{1}$ are used for buth of the tuned circuits for reasons of compactness, shielding and economy. After the transmitter has been built, a $51-o h m$ resistor should be temporarily conmected to the antenna terminals to serve as a dummy load. Adjust capacitor $G 1$ for good keying as monitored in a communications receiver, and tune the output tank capacitor, C_{2}, for maximum

[^13]Fig. 1-Circuit diagram of the $21-\mathrm{Mc}$. "milligallon". Fixed resistors are composition, $1 / 2$ watt or smaller. Fixed capacitors are ceramic.
$\mathrm{C}_{1}, \mathrm{C}_{2}-7-100 \mathrm{pf}$. midget compression mica trimmer (EImenco 423).
L_{1}-App. 2.5 fh.; 30 turns No. 28 on ferrite toroid form (Arnold type FE-0437-0501, 0.437 inch. o.d.; see also footnote 1).
$L_{2}-5$ turns No. 28 on same form as L_{1}.
$L_{3}-5$ turns No. 22 on same type form as L_{1}.
L_{4}-App. 0.8μ h.; 17 turns No. 28 on same form as L_{3}. $L_{5}-4$ turns No. 22 on same form as L_{2}.
$Q_{1}, Q_{2}-2 N 3641$ (Fairchild) or equivalent.

Fig. 3-Circuit board layout (bottom view), full size. Shaded area is copper; white area is etched out.

power output as indicated by a voltmeter connected to the meter terminals or the peak-reading r.f. voltmeter connected to the dummy load (Fig. 2). The transmitter should be used only with a well-matched 50 - or 70 -ohm antenna. If the s.w.r. is excessive the builder should consider an autenna tuner such as the Γ network described by Johnson ${ }^{2}$. Capacitor C_{2} should be repeaked when the antenna system is connected.

Since the total current drawn by the transmitter is about 100 ma ., power may be economically supplied by a 12 -volt lantern battery. If a

[^14]line-operated power supply is desired, the circuit used in the author's receiver ${ }^{3}$ would be ideal.

The results obtainable with the milligallon will amaze all but the seasoned QRP-er. In the first month of operation, the author made contacts all over the U.S. and Canada and with several stations in Japan. The antenna was one of the popular trap verticals. When conditions are good, a $10-\mathrm{db}$. pad is inserted in the antenna line to add to the challenge. For five bucks worth of parts and a couple of evenings work, the rig is certainly hard to beat.

प57-

[^15]

Fig. 4-Plan-view photograph, full size, of the Milligallon. Principal components are identified in this view as an aid to assembly; ones not labeled can easily be recognized by referring to Fig. 1. The dark areas are copper backing on the opposite side of the translucent circuit board and correspond (reversed left to right) to the layout shown in Fig. 3:

BY DON LUND, WAOIQN

M NE may hear the question "How many db's of sun noise do you get?" asked among serious v.h.fr-men. Checking systen performance of aurat vanced v.h.f. station by measuring therinount of noise received from the sun can be most usetul, but there are some pitfalls that inust be avoided. Our sim here is to sel out the relationship between the power radiated by the sun, the antemna characteristics, and the receiver performanice. If re know any two of these sets of parameters, we can miessure the third. Finally, we'll explore some of the pitfalls inherent in talking about "db's of sum noise",

Solarir Temperature, Antennas and Receivers

'Twenty years or so ergo, astrophysicists were arguing over whether the onter itmosphere of the sun was hotter than the visible surface. Radio astronomy provided some of the evidence that the outer atmospherewas much hotter that most astrophysicists hadepreviously imaginod. The result was that the "apparent temperature" of the sun increased with wavelength, at all wavelengths longer than a centimeter or so. (Apparent temperature comes in because the size of the sun is different at different wavelengths. So the sun is taken to be the same size as the optical sun, and appareut temperature is the temperature it would have, to radiate the measured power, at given wavelength, from this size of disc.)

What happens if we point an antema at the sun? If the beamwidth of the antenma is just exactly the size of the sur, the antenna temperature will be the same as the temperature of the sun at this wavelength. Antenna temperature doesn t mean that we could burn a finger on the antenna; it means that the antenna is delivering the same amount of power to the transmission line that would be delivered by a resistor heated to the antenna temperature. This means that if we took a 50 -ohm resistor, and heated it to $400,000^{\circ} \mathrm{K}$, it would generate the same amount of noise at 432 Mc . as would be delivered to a 50 -nhm resistor by an antenna with a $1 / 2$-degree beamwidth pointed at the sun.

Antennas used by hams are not that, sharp. If an autenna with a 10 -degree beamwidth were pointed at the sun, its gain would be less, and it would deliver less power to the transmission line than a $1 / 2$-degree antenna. Said differently, the antenna temperature would be lower for the broader antenua. In equation form

[^16]where T_{n} is the antenma temperature, T_{n} the apparent temperature of the sun, S_{s} is the solid siigle subteuded by the visual sun (7×10^{-5} steradians), and Ω_{n} is the solid angle corresponding to the half-power beam widths of the antenna ${ }^{1}$. If θ_{H} and θ_{V} are the half-angles to hälf-power beamuidths in the fiorizontal and vertical planes in degrees, then
$$
\Omega_{\mathrm{a}}=\frac{\frac{1}{1} \frac{\theta_{\mathrm{H}}}{487.3} \theta_{\mathrm{V}}}{57.3} \text {, approximately. }
$$

For illustration, an antema which was 15° f the -3 db . points in the horizontal platie and 10° in the vertical plane would "see" a solid angle $\mathrm{s}_{\mathrm{r}}=\frac{7}{4}\left(\frac{7.5}{57.3}\right)\left(\frac{5.0}{57.3}\right)-8.99 \times 10^{-8}$ steradians

The antenna is connected to a feed line which has some loss. If we call the feed line loss, when expressed as a ratio, A, te have

$$
T_{\mathrm{b}}=A T_{\frac{\mathrm{S}}{\mathrm{a}}}^{\Omega_{\mathrm{a}}}+(1-1) T_{\mathrm{n}}
$$

for T_{b}, the temperature at the receiver terminals due to the power received from the sun. T_{0} is the earth's temperiture, usually taken as $290^{\circ} \mathrm{K}$.
With no signal iuput, the receiver temperature is

$$
T_{\mathrm{R}}=(N-1) T_{\mathrm{o}}
$$

where N is the noise factor of the receiver (noise factor is related to noise figare in the following way eif we express noise figure as a ratio, and add 1; we have the noise factor. A 6-db. noise figure corresponds to a noise factor of 5.).

If the sun noise at the output of the receiver is d decibels above the receiver noise, and if we converted to a ratio, call it D, then $d=10 \log _{10}$ D, and combining all the above, we have:

$$
A T_{\mathrm{a}} \frac{!}{S_{\mathrm{a}}}+(1-1) T_{\mathrm{o}}=D(N-1) T_{\mathrm{o}}
$$

The answer to "how many db.'s of sun noise" then is

$$
D=\frac{1}{N-1}\left[A \frac{\left.T_{n} \frac{\Omega_{n}}{T_{0}} \frac{L_{a}}{S}+(1-A)\right]}{}\right.
$$

An equation much like this has appeared here before ${ }^{2}$; perhaps this presentation, which shows where such an equation comes from, will help in understauding what will be said later.

Let's work an example, showing how practical results may be predicted. If the receiver has a noise tigure of 5 db ., then $N=4.16$. If the feedline loss is 2 db ., then $A=0.631$, and if we are interested in 432 Mc . the apparent solar temper:ture is about $500,000^{\circ} \mathrm{K}$ for a condition when the sunspot number is 50 (see below). T_{o} is $2!0^{\circ} \mathrm{K}$

[^17](about room temperature) and $\Omega_{5}=7 \times 10^{-5}$. If the antenna beamwidth is 10° by 10° to the half-power points, its half-beamwidth to halfpower points is 5° hy 5°, and $\Omega_{a}=6.0 \times 10^{-3}$. Then
\[

$$
\begin{array}{r}
D=\frac{1}{4.16-1}\left[0.631 \frac{5 \times 11^{5}}{2.9 \times 10^{2}} \frac{7 \times 10^{-5}}{6.0 \times 10^{-8}}+\right. \\
(1-0.631)]=4.14
\end{array}
$$
\]

Converting this back to decibels, the sun noise should be almost 6.2 db . above the receiver noise for this system. There is one problem with this calculation: The sun radiates noise of both vertical and horizontal polarization (usually equal amounts) while most antennas accept only one polarization. If this is the case, the antema only accepts half the incident radiation, and we must subtract 3 db . for polarization loss. In such a case, the sun noise would be 3.2 db . above receiver nuise.

Making Measurements

The radio astronomer would measure $N,-1$, and the antenna parumeters, and then knowing these would measure T_{s} daily by measuring daily values of D. As hams, we are probibly more interested in measuring the antenna parameters, or in monitoring our receiving system to make sure everything is working the way it should. This way leads to some trouble, simply becuuse we don't. know enough about T_{s}. At frequencies below about 1000 Mc., the apparent solar temperature isn't very well known for several reasons. The first is that not too many solar observatories have measured solar temperatures daily over a long period of time in this frequency range. While Potsdam, Ottawa, and Toyokawa, among others, measure daily solar temperatures between 1,000 and 10,000 Mc., and have over most of a sunspot cycle by now, not very mauy protracted measurements are available for the frequencies we are talking about. The secoud reason is that the solar temperature varies from day to day. Radiation at these frequencies comes from high in the solar atmosphere, and there is still much to be learned about this region of the sui. Therefore, solar temperatures often show little correlation with sunspot number, which is really a measure of activity in the lower part of the sun's atmosphere. The best guess that can be made as to solar temperature as a function of frequency, and the amount it increases for a Wolf Sunspot Number of 100, is shown in Table 1.

TABLE 1		
Frequency	I'emperature (Sünspot Vo. $=0)$	Percentage Increase SSunspot No. $=100$)
144 Mc .	$1.100,000^{\circ} \mathrm{K}$	10%
$\because 0$	1,100,000	12%
432	400,000	50
1296	150,000	100

These values have been obtained by comparing the reported results of Allen ${ }^{*}$ with the daily values reported by the Toyokawa Observatory of the Research Institute for Atmospherics of Nagoya University. The accuracy of these values is not very good.

With this caution in mind, some good information can be obtained from monitoring solar temperature. One thing that can be done is to find, experimentally, what the beamwidth of an antenna is. If D turns out to be more than a (that is, 3 db . above receiver noise), we can find the half-power beamwidth (20_{H} and $9 \theta_{\mathrm{V}}$) by pointing the antenna at a point in the sky that the sun will cross, and letting the sun slowly drift through the antenna pattern. When the sun is in the center of the antenna pattern, put a $3-\mathrm{db}$. attenuator between the antenna and transmission line (not between the converter and i.f. strip). Such an attenuator is easily made from coaxial cable (about 29 feet of $\mathrm{RG}-58 / \mathrm{U}$ for 432 Mc.). Clock the times at which the receiver output from sun alone is the same as with the sun at the center of beam and the $3-\mathrm{db}$. attenuator in line. Since the sun drifts one degree every four minutes, dividing the minutes (between calibrated -3 db . points) by 4 gives the halfpower beamwidth in degrees (2θ). Turning the antenna on its side and repeating will measure the beamwidth in the other plane. If the antenna dues not give more than 3 db . of sun noise, you will have to use a signal generator, and rotate the antenna to measure these beamwidths.

Knowing the beamwidth and the feed-line loss, one can measure the receiver noise figure (assuming a value for T_{s}). This can be compared with the noise figure measured by using a noise generator. If by measuring solar temperature, using the values you think are correct for your system, you come close to the values shown in Table 1, then you can be sure that your system is performing properly. By measuring these things daily, you can check the performance of your total system.

Summary

In the preceding sections, we have discussed how to measure receiving system parameters, and how to monitor system performance to guard against deterioration. Should you suddenly get 1 db . of solar noise, when you have been getting 3 db., you know that your system needs some cbecking. Finally, we discussed some of the reusons why this is not an exact measurement, but rather should be taken as an indicator of system performance.

[^18]
SWITCH TO SAFETY!

IMPROVING THE VU2JN TRANSMITTER

I[N case some experimenting amateur has diffculty trying to build "A Transistor Transmitter From India" as described by VU2JN on page 16 of QST for November 1967 , here is a possible remedy. The oscillator in my unit would not oscillate with any of my seventeen 40 -meter erystals. As shown in Fig. 1, the problem was solved by adding a $33(1-\mathrm{pf}$. silver mica capacitor, C_{1}, between the base and the emitter of the OO171. Now the oscillator starts readily with any f()-meter erystal. - Bob Richardson, W'GI'HM

Fig. 1-Diagram showing W 6 WHM's modification to the VU2JN transmitter. The only added component is $C_{i,}$ a 330-pf. silver mica. Resistances are in ohms.

CLEANING CRACKLE FINISHES

AHint \& hink in QST, August, 1966, suggested that an art-gum eraser be used to clean crackle finishes. However, better results ran be obtained by cleaning the tinish with Nylene and then applying a cuat of Krylon clear lacquer. If xylene is hard to get, use gasoline. -- W 1 A N^{2}

The August 1966 Hint \& Kink on cleaning erackle finishes is ton slow. For quicker results, get a bottle of Soil-Off or Mr. Clean. Either one will lift the dirt off and put on a nice sheen. -Carl E. Brawn, ITrHRV

ALUMINUM FINISHES

IN reference to W3KOC's article, "Aluminum Finishes," in QST for October 1967, there are two other convenient places, which the author neglected to mention, for cleaning, etching and dyeing aluminum: the bathtub and the toilet bowl. The toilet bowl has a flushing feature which, besides its obvious benctits, may be
altered to facilitate dyeing with a hot solution. By reaching inside the toilet tank to close the flush valve when the water level in the bowl is low, you can substitute a pot of hot water for the bowl's contents. --. Irilliam J. Davenport, W.120ZV

IMPROVED METHODS FOR WIRING 83.1SP (PL-259) PLUGS

Wiring 83-1SP plugs can be annoyingly difficult. Many amateurs do not follow the manufacturers' instructions to tin the braid before inserting the coax into the plug, becaluse they find it impossible to fit cable with tinned braid into the body of the $5: 3-1 \mathrm{SP}$. This is due to the fact that the diameter of the shield increases when the braid is trimmed, since it is impossible to cut the shielding without disturbing it. However, if the method to be described is used, the shiclding is not upset, the tinned braid does not become overly large, and the plug can be screwed onto the cable without difficulty. Here is the procedure:

1) Referring to Fig. 2, remove $13 / 16$ inch of the vinyl jacket.
2) Remove $13 / 16$ inch of the braided copper shielding. This is easy to accomplish with a small fine-ridged file. First cut the braid with a corner of the file. Then remove all the stray ends of the wire shield, by rubbing the Hat side of the file against the edge of the vinyl jacket.
3) Bare $3 / 6$ inch of the center conductor and tin the wire.
f) Remove 5/16 inch of the vinyl jacket and tin the exposed braid.
b) Sarew the plug on the cable. At the four body holes, solder the braid to the connector, and solder the ceuter conductor to the tip of the plug.
4) Screw the coupling ring on the assembly. --Samuel Ansel, WB2MOI

Fig. 2-Coaxial cable as prepared for insertion into an 83-1 SP plug. See the text for details.

For about fifteen years I have been using the following method to install 83-1 SP counectors on couxial cable. Although over a kilowatt has been run through the conncetors, there have never been any breakdowns. The prepared cables look professional, and the continuity of the outside conductor is about as good as it can be.

Remove about two inches of the vinyl cover. With a lut-watt suldering iron, tin the braid from about 3 inch from the vinyl to near the end. After the shield has cooled, cut the braid and polyethelene dielectric $5 / 8$ inch from the vinyl. In order not to nick the center conductor, cut only part way through the dielectric. Flex the polyethelene at the cut and it will break free. Place the coupling shell ou the cable and then attach the connector. Thread the end of the vinyl into the plug until the braid bottoms. Put a dab of solder in one hole of the body, being sure that the heat transfer is from iron to body to) braid to sulder. For good continuity between the braid and the eommector, it is very important that the heat from the braid melts the solder. It is not necessary that the hole be filled with solder: the solder should run inside the body and help complete the commection. Finish the jub by suldering the center couductor to the tip of the plug. Frank A. Eberhardt, W6VLI

Fig. 3-Steps for preparing RG-8/U for installation in 83-1 SP connectors.

Sgome hams do not tin the braid of RG-8/U when wiring $8: 3-1 \mathrm{SP}(\mathrm{PL}-259)$ plugs to the cora, because they find it hard to insert a tiuned cable into the connector. The result can be pour shield-to-connector cuntact or a pussible short circuit between the center conductur and stray wires of the braid. However, these problems don't need to ocear, since there is a satisfactory way of preparing timned braid. Keferring to Fig. BA, remove $11 / 8$ inches of the vinyl jacket, and tin the braid as shown. Then using a tube cutter, such as the type used to cut copper pipes, remuve 13/16 inch of the braid (Fig. 3B). Next move the cutter toward the end of the coax and remove $3 / 4$ inch of the dielectric. With this
method, you can cut as deeply as you wish, and the work can be inspected as you go along. To conuplete the installation, slide the coupling ring on the coax, insert the cable into the plug, solder the shield to the hody, aud solder the center conductor to the tip of the connector. - E'pps Griffin, 1 F 5 HBD

Fig. 4-The two meters shown on this d.c. supply have homemade faces. See the text for details.

NEW FACES FOR OLD METERS

Rhoently I built a regulated d.c. power supply using transistors. Not having a well-stocked junk box, the unly devices I could find for monitoring the output voltage and current were two surplus VU meters. The meters were the right size and they worked well when properly shunted. However, the meter faces were hurrible. They had uneven orange graduations on a black background.

The faces were too small to be redrawn by hand, since they measured only 1 by $11 / 4$ inches. In addition, my fingers are not very small and my drafting capabilities are extremely limited. These factors caused me to use the photographic method to be described.

A Poloroid Land camera with a close-up lens attachment is used to photograph a hand-drawn template of the desired scale. At a focusing distance of $93 / 4$ inches, any object on the finished print will be half its original size. By drawing the scale twice its original size - a rather simple undertaking - you can easily produce the exact meter face needed.

A compass, ruler and scissors are the only tools required to make the template. Draw the meter face on bright white drafting paper. A lettering set for the numbers will add to their appearance. but it isu't a must if a little patience is used.

Two 75 -watt lamps near the template will provide sufficient light for the photograph. Once the picture is taken, cut a hole for the meter pointer and two mounting screws, and then trim the print as required.

Remember that since the finished picture from a Poloroid is $31 / 4$ by $41 / 4$ inches, any meter face below this size can he made. Hach black and white photograph custs only 25 cenis. As can be seen from Fig. 4, the results are professional looking. John Michacl Shaw, K2LRE/KL7

Everyone has a junk bor full of goodies. The following articles show two new ideas for utilizing old gear, and we hope will lead to other inspirations.

Crystal Stable Frequency Control With Your Old V.F.O.

BY J. WAYNE WALLER,* W4TZB

ANYONE who has tried operating s.s.b. with a v.f.o. not designed for less than 200 cycles drift per hour has found that this is a sure way to quickly become unpopular in a round table. The strict drift requirement has no doubt discouraged many would-be homebrew s.s.b. rigs, as the design and construction of a very stable v.f.o. is beyond the ability of the average amateur. By using two mixers, one taking the sum and the other the difference of the input frequencies, it is possible to cancel the effiect of the v.f.o. frequency on the output frequency and make the output variations due only to the changes in frequeucy of a ervstal oscillator. If a temperature-sontrolled oven-type erystal were to be used, a drift of only a lew eycles per year could be obtained; but even with ordinary amateur-type erystals the drift is only a few cycles per day.

Description of the System

To sce how the system functions, consider Fig. 1 which shows how a 9-Mc. output is obtained with a v.f.o. frequency of 3.9 s Mc. Now suppose in the course of several hours the v.f.o. (assumed to be unstable) drifts 10 kc . to a frequency of 3.99 MI . Fig. 2 shows the new con*3610 Sevier Heights Rd., Kinoxville, Tena. 37920

Fig. 1-System block diagram showing output for an input of 3.98 Mc .
ditions and how the output is still 9 Mc. Note the added feature that the output can be made almost any convenient frequency needed for a particular s.s.b. system simply by choosing the proper erystal frequency. Theretore older v.f.o.s

Fig. 2-System block diagram showing output for an input of 3.99 Mc .
having a 3.5 to 4.0 Mc . output can be used with 455 kc., 5 Me, or 9 Mc. s.s.b. systems. Fig. 3 shows clearly how variations of the v.f.o. frequency are cancelled and any drift in the v.f.o. results in no change in the output frequency. Fig. 4 shows the sensitivity of the output frequency to the crystal frequency. It is therefore important to use a high quality erystal along with a well designed oscillator circuit.

The Circuit

A three-fube version of the system is shown in Fig. 5. It uses two BCS6 pentagrid mixers

> The system described here permits the use of an old v.f.o. for stable s.s.b. applications. Any variation of the v.f.o. frequency is cancelled by double mixing.
and a $6 \mathrm{C} \neq \mathrm{erystal}$ oscillator. V_{3} operates in a modilied triode circuit noted for its eonstant output voltage and excellent frequency stability. Its output feeds, one of the 6 (NS 6 tubes as a regular pentagrid: mixer giving a sum output, while the second tube, r_{1}, is cathode driven (as in grounded-grid). A detailed explanation of these three circuits will be omitted as both are to be found in any recent Handhook. While con-

Fig. 3-Output frequency vs. v.f.o. frequency.

Fig. 4-Output frequency vs. crystal oscillator frequency.

Fig. 5-Three-fube version of the double mixing system
struction is not. eritical, leads less than two inches should be avoided since the decreased reactance of the longer leads may canse the oscillator to quit.

Operation

The circuit described has been in use for several months with an old Heathkit VF-1 as the v.f.o. and no detectable change in the output frequency has oceurred during that ime. Don't throw away that old v.i.o. - give it a new chance with this special cireuit.

प5T-

Dummy Loads from the Junk Box

BY ERNST F. SCHROEDER,* DJ7HS

IF you decide to build your own durnmy load, you will discover a very fundamental problem to deal with: the input impedance of an autenna system represents a complex value that varies with frequency. For transmitter tune-up you therefore need a dummy load having exactly identical impedance (or you will have to retune the transmitter after switching over to the antenna).

* 48 Bielefeld. Froetelstr. 68 W. Giermany

No high-power carbon resistor or similar deyice meets this requirement. That is indeed theoretically impossible and not due to technological difficulties. Sume digging into the theory of transmission lines will show this.
let us assume that we have got an antenna with a matched coaxial transmissiun line. This means that we will find an input impedance at the transmitter end of the cable equal to the Z of the caible. If we happen to know the distributed
line constants of that cable ($R^{\prime}, G^{\prime \prime}, L^{\prime}, C^{\prime}$), we an calculate the Z by Equation 1.

$$
\begin{equation*}
Z=\sqrt{\frac{R^{\prime}+j \omega L^{\prime}}{G^{\prime}+j \omega C^{\prime \prime}}} \tag{1}
\end{equation*}
$$

Equations 2 and 3 give us j and ω.

$$
\begin{align*}
& j=\sqrt{j} 1 \tag{z}\\
& \omega=n_{f} \tag{3}
\end{align*}
$$

This leads us into the middle of the problem: Nobody can exmstruct or adjust a resistor or network to a value given by a square ront (with the exception of such values as $\sqrt{49}$, of course). Furthermore, Eq. 1 shows that Z varies significantly with frequency, f. This shows, that there can't he a network of lumped elements having the same impedance-characteristic as a transmission line.

The consequent use of the theory of transmission lines ran show us the way out of the problem to a new and simple design:

If we terminate a length of coaxial rable with its Z we know now that we cannot construct ihis Z, but let us assume we had a "black box" representing this Z at its terminals), we will measure this Z at the other end of the cable, regardless of the length of the cable. We now terminate the end of another length of the same cable with the input of the former. Now the input of the new length of cable shows the Z. By using only electrical measurements we can never tell the black box with cable from the black box alone (Fig. 1). At last we replace the

Fig. I-If the black box represents the true impedance of the cable, it is not possible to tell the length of the cable by measuring the input impedance.

Fig. 2-Connection of the transmitter, antenna and the dummy load.
black box with the remaining free end of the rable.
The resulting device is a ring of crax. If we make connectious to the inner conductor and to the shielding braid, we can measure the Z of the cable at any point of the ring.
The rest is fairly simple: We take about 10 inches of RG $\$ / \mathrm{U}$, connect the ends by means of a u.h.f. "Tee" and connect the remaining receptacle to the transmitter (Fig. 2).

Measurements have shown the exrellent quality of this dummy load. The frequency response of the v.s.w.r. is entirely flat over a frequency range from 160 to 2 meters. The v.s.w.r. is exactly $1: 1$ in this frequency range.

If the dummy load is made from the same cable as the antemna feed line and if the trimsmitter is tuned up on the dummy load and then switched to the antenna, there will be no mismateh at all.
Power capability is 1 kw . c.w. for periods up to one minute. As the r.f. power is not radiated but dissipated, the dummy load gets quite warm after that time. This can be tolerated, as the tune-up of most amateur linears does not last longer than half a minute. If more power capability is to be achieved, a longer piece of cable has to be used. This will reduce the v.h.f. capability of the dummy-load, at the length of the cable should not exceed $2 / 8$ at the highest frequency to be used.
Simplicity and cust of this new design cannot be compared with any other dummy load. You can build this more-than-excellent dummy load from your junk box. If everyone used it. for tuuing purposes, there would be less QRM on our bands.
[5F]

A Study of Hertz vs. Cycles Per Second

BY NOBLE HALE,* WØJIH

THE various ramifications of a new program usually are uot fully apparent until some time has passed during which program im-
${ }^{4} 836$ N. Clay, Firkwood, Mo., 63122.
plementation has survived the attarks of detractors and footdraggers. So it has been with the changeover from cycles per second to Hertz. The author has expended considerable investi-

Fig. 1
gative effort in an attempt to simplify the application of Hertz, and herein presents the results of the study.

Shortly after the new terminology was announced, a preliminary study revealed a not, unexpected relationship between the two fields of thought. The McDonnell Data Processing Division was brought into the picture and generously offered the use of its latest model computers. From the thousunds of matrix points that poured from the machines, a sufficient number was selected to prepare the conversion chart shown on semi-log graph paper in Fig. 1.

Fig. 2

Realizing that the emotional reaction to the Hertz program introduced whstacles to its immediate acceptance, it was decided to field test the impact of the curve of Fig. 1 before further effort would be scheduled. Accordingly, the completion date of the project was slipped to aceommodate the necessary psychological interpolations.

Feedback from uscrs quickly revealed an interrelated pattern of need for a more uniformly
acceptable mode of presentation. A nomograph was suggested inasmuch as the engineer of today is accustomed to using shortcuts and approximations in his approach to prototype designs. Fortumately the relationship could be reduced to such a nomograph through the use of a eonstant, and Fig. 2 was released.

Fig. 2 was an instant success and untold quantitites of the nomograph, now in its 6 th printing, were distributed at no cost, and application was made to NASA for approval.

Comments from Washington (paralleled by those from Cupe Kiennedy) were to the effect that although the project seemed to have demonstrated the eatse of using the now system, i.e., the nomograph, a fister means of application was desirable.

At that, point in time, all the available information was fed into Fortran computers in an English language program. In retrospect it really wasn't much of a gamble, but at the time we held our collective breath, while we waited for the printout.

INSTANT NOMOGRAPH
Fig. 3

That the effort paid of is quickly apparent from a study of Fig. 3. This is the Instant Nomograph that is now universally used. Its utter simplicity encourages memorizing it in its entirety. The nomograph itself can be filed for oceasional reference.

The author invites correspondence from those who have difficulty in grasping the nature of the siludy. Permission is hereby granted for unlimited reproduction and distribution of the eharts and nomographs.

Q5F-

AnStrayss

Interested in a career in electronics? If so. Electronic Industries Assinciation has a free booklet, "Planning a Career in Electronics." It's colorfully illustrated and gives an interesting history of elec. tronics, some statistics on the industry, along with educational and career information. Get yours 1 s writing L. M. Rundlett, W:3/A, Flectronir ludustries Assuciation, 2001 Eye St., N.W., Washington, D. C. 20006 .
-
"A Complete Two-Band Station for the V.II.F. Beginner".-... a reprint of four articles that apprated in Muly, August, sptember, and Oarober, 1961 Qs'Ts - is still available for sud (no stamps. please from the ARIRL, 225 Main Street, Newington, Connecticut U6111.

Heathkit SB-620 "Scanalyzer"

IrF the term "spectrum analyzer" rings no - familiar bell for the average amateur, surely "panoramic adapter" does. The two have the same roots. The panadapter is the box camera of the family while the analyzer is the fancy job. Like the cameras, the panadapter and spectrum analyzer operate on the same principle.

To appreciate the difference, you need to understand how the panadapter works and must have some comprehension of its limitations. Stated briefly, the panadapter displays as vertical "pips" on a scope tube the signals that happen to be present in a selected portion of the r.f. spectrum. The horizontal spacing between the pips is approximately proportional (0) their freçuency differences, and the pip heights are approximately proportional to the various signal amplitudes. 'The panadapter manufactures this display by rapidly and repetitively tuning over the same band of frequencies; it amounts to an automatically-tuned superhet receiver designed to work from i.f. signals in your regular communications receiver.

The spectrum analyzer does the same thing but, like the lens in a fine camera, is capable of showing considerably more detail - its "resolution" is better.

One important factor in panadapter or spec-trum-analyzer resolution is the selectivity of the intermediate-frequency amplifier built into the adapter. A single frequency going through the amplifier is that and nothing more, but the display on the scope-tube face is a trace of the amplifier's output as the signal is swept through the i.f. passband. The selectivity of the i.f. amplifier in the garden-variety panadapter is not particularly high. Fig. 1A shows what might happen in a hypothetical case. A single continuous unmodulated signal is centered in a narrow spectrum, 10 kc ., at the left. The panadapter display at the right is the result of sweeping the signal through an i.f. amplifier having : $\mathrm{t}-\mathrm{db}$. bandwidth of 2 kc ., the sigual amplitude being on a linear scale. Although the signal actually occupies essentially no spectrum
space, it appears to occupy nearly half the 10 kc . band.

Now if there are two signals 1 kc . apart, as in Fig. 1B at the left, there is a considerable portion of the sweep time during which there is i.f. output from both signals. A response of the i.f. system to such a combination might look something like the pattern at the right. (The pattern will vary from instant to instant, since the deHection amplitude depends on the relative phases of the signals at the instant a particular part of the i.f. band is swept - - i.e., it depends on the sweep rate.)

If the panadapter's i.f. bandwidth is reduced to, say, 100 c.p.s. the scope pictures are quite different. Fig. 1C shows how, at the right, the same single unmodulated signal would look with the highly-selective i.i. system. Now when there are two signals, each produces a separate pattern as shown at the right in Fig. 1D. The increased resolution with the narrow i.f. justifies calling the device a rpectrum analyzer instead of a plain panadapter.

However, bandwidth is not the only factor. The higher the selectivity the higher the effective Q of the i.f. amplifier. A high- Q circuit has a mechanical analog in a heavy flywheel; both have high inertia, electrical in the circuit case and mechanical in the Hywheel. They tend to resist. being started and stopped. This modifies the i.f. response to a signal that may be swept through the passband. If the sweep is slow enough, the actual selectivity curve will be traced with reasonable accuracy, as in Fig. 1E at the left. i fast sweep, however, will find the i.f. circuits lagging behind, and the amplitude never builds up to its real value. Neither does it decay as fast as it should. The pattern displayed by the scope might look like the right-hand drawing in Fig. IE.

Thus high resolution comes only at a double price -- high selectivity and slow sweep speed. In practical use, this means that the spectrum of a group of rapidly-varying frequencies, such as the frequency components of a voice-modulated signal, cannot he displayed with any
accuracy. The frequencies and amplitudes of such a composite signal vary far too rapidly for all of them to be "caught" by a sweep moving slowly enough to give good resolution. To be displayed properly, the components of a modulated signal must be unvarying in amplitude. Steady tone modulation (a two-tone signal if s.s.b.) is necessary.
One other feature usually distinguishes the spectrum analyzer from the panadapter. A choice between linear amplitude response (pip height directly proportional to relative amplitude) and logarithmic response generally is available. With the latter, decibel comparisons can be read off the scale directly.

Now that the background has been trod we can get down to the specific piece of equipment. The Heathkit SB-620 "Scanalyzer" is a panadapter with the extra features discussed above that make it useful for closer spectrum analysis.
Bear in mind that the Scanalyzer, like uther panadapters, is basically a fixed-frequency amplifier working in what is usually called the intermediate-frequency range. Its output is detected by an ordinary rectifier, and the d.c. from this detector is used to deflect the beam of a cathode-ray tube vertically. The horizontal movement of the beam is controlled by a sweep circuit. In order to get the frequency display the amplifier must be preceded by a frequency couverter having its uscillator tuning controlled by the same horizontal sweep voltage that moves the c.r. beam. Thus the spectrum to be displayed is tuned in synchronism with the horizontal movement of the bright. spot on the tube face. Each signal in that spectrum shows up on the screen as it is automatically tuned through the selective amplifier.

The converter could shift signals from their "natural" frequencies directly into the adapter's

The input circuits (amplifier and mixer) are between the panel and the power transformer in this top-of-chassis view of the SB-620. The i.f. amplifier with its two-crystal filter runs from front to back alongside the shielded cathode-ray tube. The switches on the panel are the sweep-width (left) and amplitude-scale selectors.

Fig. 1-Effect of selectivity and sweep rate on cathoderay patterns. A, B: medium-selectivity with sweep rate appropriate for the selectivity; C, D : high-selectivity and appropriate sweep rate; E , high-selectivity with suitably-slow and too-fast sweep rates.
i.f. amplifier, but the conventional panadapter looks at them at some point in the i.f. chain of a communications receiver; the receiver supplies a first conversion. This is also the seheme built into the Scanalyzer. The converter in the $S B-620$ is designed to work from a receiver i.f.,' and suitable components are supplied so that you can set it up for whatever intermediate frequency may be used in the receiver you have. Any signal. you wish to look at must first be converted to that i.f. You can look at any incoming signals your receiver can pick up, by this method, and you cau also look at your own transmitter if your receiver can operate while you transmit. 'This lets ont the transceiver because the receiver in such a set is out of commission whenever the transmitter is on.

Fig. 2-Block diagram of the SB-620. Owners of the now-superseded HO-13 "Ham Scan" will recognize basic similarities in circuit to the earlier model, which was described in "Recent Equipment" in November 1964 QST.

To take care of this situation, among others, there is an input, arrangement on the back of the sicanalyzer for introducing an outboard oscillator to convert the actual frequency of your transmitter to the Scanalyzer's input frequency. Thus transmitter checks can be made without the aid of a receiver.

This is all shown in the block diagram, Fig. 1. The input tube, l_{1}, operates as an amplifier at. the communicalions receiver's intermediate frequency when the scanalyzer is used for putioramic reception. Its plate is coupled to the mixer, F_{ea}, through a circuit that, in general, will have a bandpass (at least 100 kc .) depending on the receiver's intermediate frequency. Since the i.f.s in present receiver designs vary from about 6 Mc . to 455 kc ., no one coupling circuit will serve for all receivers. The kit supplies parts for all of them, and you make vour choice at the time of assembly. (once the choice is made, the input through " B " t) V_{1} must be at the chosen frequency if the $s \mathrm{~B}-620$ is to function as a panoramic adapter.

However, the signal input to F_{1} through " A " can be at any frequency you like if a second r.f. voltage is introduced through " B " to beat with it and produce the selected intermediate frequency. In such a ease V_{1} becomes a mixer rather than a simple amplifier. A circuit change is made by a rear-mounted switch which disconnects the cathode bypass capacitor that is used when V_{1} is a straight amplifier. In this mode of operation, the $5 B-620$ is an independent piece of equipment (except that the external oscillator is required) and does not need to be used in eonjunction with a receiver. An oseillator signal of at least 100 millivolts is required for good mixing. It can be supplied by a signal generator or test oscillator, or by a tunable oscillator you make up for the purpose. In the case of some conversion-type transmitters having provision for connection to the v.f.o., the v.f.o. output could be used for supplying the beat frequency to look at une's own signal; this depends on the conversion setup.

Whatever the i.f. chosen, it is converted to 350 kc . in $V_{2 a}$. The beating oscillator, $V_{2 \beta}$, for this mixer is regularly swept through an
adjustable bund of frequencies (which also depends on the i.f. ehosen - the parts are furnished in the kit) in synchronism with the horizontal sweep voltage for the c.r. tube. A voltage-variable capatcitor (Varicap) whose capacitance is varried by the sawtouth sweep voltage provides the recurrent tuming. As each signal goes past 350 kc. it causes a response in the narrow-band (approximately 200 c.p.s. passband) (rystal filter which is then amplified in two 350-kc. stages, V_{3} and V_{4}, and finally rectitied in the diode section of V_{5}. The triode section of V_{5} is used as a d.c. umplifier to provide adequate vertical deffection voltage for the 3RP7 cathoderay tube. This is a flat-face 3 -inch tube having a long-persistence phosphor so that the slowsweep pattern will be visible long enough for inspection.

The sawtooth oscillator is a slow-charge $R C$ circuit using a neon bulb for fast discharge. To get reasonably constant horizontal sweep speed across the tube face the bulb is driven through a high resistance from about 600 voits d.c., su that ouly the nearly-linear part of the charge characteristic is used. The sawtooth ontput voltage drives Γ_{B}, the horizontal deflection amplifier, which incorporates phase inversion to get a push-pull deflection voltauge for the er. tube. One tube section of this stage also drives the Varicap frequency modulator.

Switch-selected sweep widths (width of frequency band scanned) of 10 and 50 kc . are provided, and there is a third position on the switch for adjustable sweep width (a separate control is used for this). The sweep rate or speed at which the spot moves hori\%ontally is tied in with the sweep-width switch. In the narrowband position the spot takes nearly two seronds to move across the screen; it is faster in the 50-kc. position, and ranges from 5 to 15 per secoud in the variable position, depending on the setting of a separate sweep-rate control.

Among the nine front-panel coutrols there is an amplitude-scale switch having three positions: linear, in which the vertical deflection is directly proportional to signal amplitude: log, calibrated in decibels: and a 2()$-\mathrm{db}$. position which retains the \log scale but inserts 20 db . of attenuation.

This last pushes the normal $40-\mathrm{db} . \log$ range up t.) 60 db., so a wide range of signal levels can be examined on a decibel basis.

Assembly of the kit is straightforward; a large part of the wiring is in a preassembled harness. The complete job, from opening the shipping carton to completion of alignment, took about 25 hours: about 19 hours of this was actual asisembly and wiring. There is a certain fascination about the alignment process for anyone having an interest in measurements; the temptation is to spend hours at it in an attempt to get the last possible refinement in accuracy. The instruction manual details two methods of going about it, one using a calibrated signal generator, having an accurate attenuator, and a wide-range audio oscillator (which the builder may or may not have available), the ot her making use only of the receiver with which the instrument will be used as a panadapter. There is a built-in $20-\mathrm{db}$. attenuator in the r.f. input (spectrum aualyzer) line that can be used for checking.

Some of the adjustments cian be a bit tedious .-. for example, getting a fixed-frequency pip to stay put at the center of the screen when the sweep-width switch is moved through its three p:ssitions and the variable sweep-width control is turned through its range. Three interlocking adjustments are involved. Likewise, a lot of time can be spent on getting the log amplitude scale as right as pussible. It is relatively easy, with a good signal generator, to get the $20-\mathrm{db}$. and $40-\mathrm{db}$. points to come out where they belong on the scale supplied for the c.r. tube face, but (in our case at least.) the $10-$ and $30-\mathrm{db}$. deflections didn't want to match the scale marks exactly. By giving a little here and taking a little there it was possible to get the log scale deviation to be within a maximum of about 2 db . - estimated,

Bottom-of-chassis view. The i.f. amplifier runs horizontally at the center. Power-supply filter capacitors are at top center, with high-voltage circuits for the cathode-ray tube at the bottom. The row of variable resistors along the rear apron of the chassis (left) are non-operating controls used in initial setting up.

Heathkit SB-620

Height: $65 / 8$ inches.
Width: 10 inches.
Depth: $101 / 2$ inches.
Weight: 10 pounds.
Power Requirements: 120 or 210 volts a.c., $50-60$ c.p.s., 10 walts.

Price Class: 120 .
Manufacturer: Heath Company, Benton Harbor, Mich.
since the scale has only $10-\mathrm{db}$. calibration marks -.. the inicceuracy being greatest at the 30-db. point. This is adequate accuracy for most amateur purposes, of course, and is mentioned principally in the (probably vain) hope that users of the instrument will be a bit more realistic about their readings than most hams are about the s.w.r. that they "measure" with an ordinary bridge, or the decibels that they "measure" with an si meter.

The frequency sweep, which wats set up for 455-ke. receiver i.f. in our kit, was reasonably linear; the frequency scale was compressed about 20 percent at the left-hand edge of the sereen as compared with the right. There is no independent adjustment for this, and since it depends on how well the sweep voltage is matched to the uscillator tuning, which in turn is determined by the Varicap characteristics, it may possibly vary somewhat from kit to kit. It may also depend $0 n$ the receiver i.f., since different components are used for different groups of intermediate frequencies.

Probably the major application of the Scanalyzer in the amateur station is as a panoramic adapter, and for this purpose it has much more to offer in both resolution and flexibility than its predecessors. Spectrum analysis of one's own transmitter is not the sort of thing to be indulged in constantly since it is a project in itself. For regular monitoring an ordinary scope is much better, as a practical matter, since a spectrum analyzer won't show much of quantitative value on normal signals. But for a detailed, if necessarily time-consuming, look at the things coming out of a transmitter, the sB-620 can show very much more than any panoramic adapter that we have met previously. With the necessary accessory equipment - a coutinuouslyvariable (and stable) signal generator or uscillator capable of covering as much of the r.f. spectrum as possible, a two-tone andio generator, a dummy :untenna and, preferably, sume good altenuators that are not frequency sensitive (so some of the r.f. at the dummy antemma can be applied safely to the Scanalyzer) - it is possible to get a pretty good picture of all the things, wanted or unwanted, that the transmitter is putting out. 'The experience can be a real education. The instruction manual tells how to go about making many of these tests, as well as giving a good deal of information on typical signal displays.- W1DF'

TRIANGULAR LOOP ANTENNA
Technical Editor, QST:
An easily-constructed rotatable antenna which may surprise vou with its excellent performance is the triangular loop of one-wavelength periphery. This antenna is equivalent in gain to a one-wavelength circular or square loop; that is, it exhibits about $0.5-\mathrm{db}$. yain over a horizontal half-wave antenna at the same height above ground. Its horisontal pattern is a figure eight with two horizontal main lobes at right angles to the vertical plane of the loop, a pattern similar to that of the dipole antenna as shown in the AKRL Handbook. It has a hetter front-to-side ratio than the dipole, however.

This antenna is easy to construct with hand tools, is quite light in weight, has a low wind profile, low susceptibility to fading of DX signals, and is eusily turned by a TV rotator.

Triangular loops for several bands may be strung concentrically on a single supporting structure consisting of three bambor or fiberglass arms and may be fed from a single feed line. The radiation resistance of a one-wavelength periphery loop of this type is ahout 140 ohms. As it is a balanced-to-ground antenna, a balanced feed line is recommended for lownoise reception. When fed with a balanced feed line the loop antenna will respond onlv to the magnetic component of a nearby interfering radio-frequency field (noise). It will not respond to the electrostatic field of the noise. The recommended feed line is $125-$ ohm twin coax with the shield grounded and a balanced impedance-matching device used between line and receiver or transmitter. The length (L) in inches of the loop may be found from $L=11,800 / f$, where $j=$ frequency of operation in megahertz.

One way of constructing the triangular loop is shown in Fig. 1: Other simple methods may be used. For example, a spider can be constructed using four pieces (one piece for the mast support) of $1 \times 1 \times$ $\frac{1}{8}$-inch angle welded together. The method shown in Fig. 1 for joining the wire loon and feed line works quite well for any antenna. The piece of Plexiglas can he anchored to the mast for a single-element loop or allowed to hang free in multielement arrays.

Fig. 1

Antennas covering four bands can be strung on one frame structure using closed loops for 10,15 and 20 meters and an open-ended triangle for 40 meters. The 40 -meter antenna is a half-wavelength wire folded triangularly on the support with the two upper ends insulated from each other where they meet at the vertical supporting arms. All the antenna wires are fed at the center of the bottom horizontal leg as shown in Fig. 1. The triangular loon can he ociented with its apex toward the ground and fed at this lower apex. Gain is the same with the apex down as with the apex up capex up shown in Fig. 1); however, the author's conclusion is that the antenna is more susceptible to fading of DN signals with the apex of the triangle oriented toward the ground, as determined by listening tests over a six-months period with both orientations mounted on the tower.

Multiple element rotary beam antennas can be constructed using the one-wavelength triangular loup as a basic element. A beam using four elements on 10,15 and 20 and two elements on 40 meters is in use by the writer. - Norman B. Watson, F6DL,

BINARY-DECIMAL COUNTER READOUT

Technical Editor, QSTT:
Since publication of the article by William Skeen, K6YRQ, on a home-built frequency counter for measurement of audio frequencies ($Q S T$, January 1965), I have accumulated parts to huild a similar unit. For a long time I have had wishful thoughts about building a counter, but the inclusion of all

Fig. 2
the desired circuitry (totalizer, readout display, reset, timing gate, etc.), I felt, tended to mut it out of the amateur class. After all, the least expensive commercial units cost a few hundred dollars. Mr. Skeen's article presents a simple and vet compiete approach to a rather complex requirement.

Perhaps one deterrent for amateurs considering building his unit is its rather inconvenient hinary display readout, and the resultant necessity to add a column of digits to realize the total count represented. With a quite simple circuit change, it is possible to have a combination binary-decimal readout. Each significant decimal digit is found by adding binary numbers, so one need never add to a figure higher than 9 . The changes reduce the total count capability for a given number of flip-flop stages, but the readout system is more quickly interpreted.
The changes eonvert four consecutive FF stages into a decade divider section by adding two feedback loops. Feedback is used from Pin 1 of the

Fig. 3-Two-band quad Matching

Fig. 4-Standing-wave ratio curves taken with a laboratory-type v.s.w.r. bridge. Measurements were made at the transmitter ends of the transmission line with the antenna array mounted on a steel tower 44 feet above ground.
third stage to Pin 7 of the second stage (see Fig. 2, page 33. January $1965 Q S^{\prime} T$) and similarly from the fourth to the third stage of a decade section. The connections for feedback consist of a 120 -pf. capacitor and a 470 K resistor in series. This simulates six extra pulses in the chain of four stages, so that all four will reset to zero on the count of 10 instead of the normal 16. Thus, 12 FF stages will indicate to a count of 999. The numeric values assigned to the neon indicators of a decade section with this feedback system are 1-2-2-4 for the four FF stages, counting from the input stage. It the end of a counting period, the value of each decimal digit of the total count is obtained by adding values for four lamps from the appropriate decade section. Arranging the lamps vertically in sets of four would probably contribute to faster readout. Fig. 2 represents a total count of 7536 , using 16 FF stages (4 decade sections).

As a matter of some interest in using a power-line controlled counter, I have made several long-term checks on the accuracy of the 60 -cycle line irequency and find it to be quite good - a second or so a week error is common. However, the shortterm stability is less. Cherks made recently indicated errors at times of as much as 4 parts in 10^{4} (although the average is about 2 parts in 10^{4}), in 5 -minute periods during the week. The error appears to be higher on weekends than during the week: The error may be tolerable for audio work, but if a counter was built to count directly to 10 Mc ., for example, a erystal-controlled time base would definitely be preferable.-.Jerry Hall, L゙1PLP, 15 E'rulleigh Avc., Pinchurst, Mass. O18tic.

TWO-BAND QUAD MATCHING

Technical Editor, QS'T:

While experimenting with a two-element twohand cubicul quad antenna the problem of matching the antenna to a $\overline{\mathrm{E}} 0$-ohm transmission line arose. The antenna is a "plain vanilla" quad built around information in WGSAI's book, Quad Intennas. My
method of feeding the antenna did not produce fantastic front-to-back ratio or forward gain. It merely made the standing-wave ratio more acceptable to the $32 \mathrm{~S}-3 \mathrm{~B}$ used at the home QTH.

After building the two-band quad I checked it with a General Radio 1606 impedance bridge and found the 10 -meter antenna to be about 118 ohms and the 15 meter antenna to be about 91 ohms at resonance. This is 2.36:1 and 1.82:1, or approximately $2: 1$ for a 50 -ohm transmission line. The feed svstem I. describe here made the v.s.w.r. much nearer the desired $1: 1$.

The heart of the system is a ferrite-core autotransformer. The measured impedance ratio is very close to $5(1): 107$ ohms. The insertion loss is less than 0.2 db . from 15 to 30 Mhz . when terminated in 107° ohms. When it is terminated in 50 or 200 ohms the insertion loss is less thau 0.35 db . from 15 to 30 Mhz. Several transformers were built before these figures were obtained, and after a suitable design was achieved it was connected to the quad as shown in Fig. 3. You do not have to sacrifice F / B ratio for a more acceptable v.s.w.r. by detuning the reflector stubs; simply adjust the tuning stubs for maximum F / B ratio and then design the transformer for the proper impedance ratio. Also, lowering the v.s.w.r. places a larger portion of the desired band within an impedance range the average pi-section tuner will accept.

In answer to on-the-air inquiries: yes, performance of the antenna varies considerably from one end of the band to the other.

This antenna feed system is a broad-band device. on don't forget to use a low pass filter. - - Toney L. . Magnino, 15 MVK, Carrollton, Texas.

> SWITCH TO SAFETY!

An Index of QST Items on Commercial Gear

BY BILL WAGEMAN, WøBUR/K5MAT*, AND CAROL WAGEMAN, WøHQH*

TTHE radio amateur or SWL who is interested in purchasing used commercial gear is confronted with a bewildering choice of equipment in all price ranges. This index, an attempt to make it easier to find appropriate information, presents most of the interesting reviews, advertisements, and modification articles in (QST on the great bulk of commer-cially-made transmitters, receivers, and transceivers that have appeared since World War II. An effort has been made to be as complete as possible, but undoubtedly there are a few omissions. Nothing has been skipped because of prejudice.
Unfortunately, because of space limitations, it has not been possible to include other pieces of gear that might he of interest (for example, power supplies, converters, V 'FOs, etc.), but in many cases this information may be found in conjunction with an assuciated item.
The list is alphabetically by manufacturer, with each model in alphabetical-numerical order. References for each piece of equipment are given in the order of their appearance, with the abbreviations A for advertisement, R for reviews. and M for articles dealing with modifications. Page numbers are given only when it is not obvious from the table of contents or index of advertisers as to where the information may be found.
Manufacturers listed here are not nccessarily still in business nor are addresses still correct. Consult the "Index of Advertisers" in recent issues of CST for the names of current manufacturers engaged in the amateur radio business.
Thus. central electronics, $100 Y^{\text {a }}$ a Dec. 57. M Dec 62 p 63 reters to an ad in the December 1957 issue of $Q S^{\prime} T$ and a modification described on page 6.3 of the December 1962 issue, both of which are concerned with the Model 100 ' It would be necessary to look up the manuiacturer in the index of advertisers to determine the location of the ad mentioned. In a few cases it may be necessary to look under one of the alternate manufacturers names to find the proper ad.
ADAM ELECTRONICS CORP. - 110 , A Apr. 55; 1010. A Apr. 55

ALLIED RADIO (KNIGHT-KIT) - Lincoln. A Feb. 61; R-55, R Sept. 01 ; R-100A, A Nov. 62; SX-25.5, A Feb. 50; T-60, K Apr. 62; 'T-150, R Jan. 03; T-100, A Oct. 59; TR-106, K Uct. 06; TR-108. R Oct. ©7; Y-226, R Oct. 5 x
AMERICAN ELECTRONICS CO. (AMECO) - R-5, A Aug. 67; TX-62, A Aug. 04; 'TX-86, A Nov. 60
AMERIGAN GELOSO ELEGTRONICS-G209-R, R July 59; G2:2/ / RR, A Nov. 59

* 1114 North Iana Circle, Santa Fe, New Mexico 87501.

AMPLEX RADIO PROD. - KW゙-62, R July 58
AMPLIDYNE LABS - 621, 1 Dec. 64
AUDAR (TELVAR and MECK IND., JOHN) -T60-1, A. Aug. 40;' $\mathbf{~ 6 0 - 2 . 2 . ~ A ~ S e p t . ~} 48$

AUTOMATION ELECTRONIGS (PIERSON) -КЕ-93, R May 58

BABB ELECTRONICS - TRA-6, R Jan. 59; TRA10, A Mar. 59

BABCOCK - MT-5A, A Apr. 53; MT-5B. A Mar. 54
BARKER \& WILLIAMSON-L-1000-A, R Sept. 50; L-1001-A, A Jan. 58; LPA-1, A Noy. 60; 5ISB, K Mar. 55; 5100, K Mar. 55; 5100-B, A Dec. 55: 10100 , R Sept. 63

BRAD THOMPSON IND. (B. T. I.) - LK-2000, A Nov. 60
CARDWELL- Fifty-Four, A Aug. 46
GENTIMEG ELEC'TRONICS - 132, R Feb. 00
(EENTRAL ELECTRONICS - 10A, A Nov. S2; 10B,
R Aug. 54; 20A, R Jan. 54 p 47 , M Dec. 03; 100 V , A Dec. 57, M Dec. (i2 p 03; 200V, R Aug. o1, M June 62 p 59; 600L, d Mar. 55

CLEGG ASSOGIATES - Cruiser, A Dec. 67
ClegG laboratories (Mso See SQuiresSANDERS) - Apollo Sis, R Nov. o5: Apollo 700, A July 64; Interceptor, A A pr. 02 : Interceptor B, A Dec. o3: Thor II, R July 6.3; Venus VI, R Sept. 64; Zeus, R Sept. 61; 22’er, K Apr. 65; 62T10, A. June 56; 66'er, R Apr. 67 ; $99^{\circ} \mathrm{er}$, A June $01 ; 250-6 \mathrm{C}$, A Feb. 58

COLLINS RADIO-KW-I, A Oct. 50; KWM-1, A Aug. 57, M May 59, M Nov. 5y; KiNM-2, A Nov.
 A Mar. 55, M Mar. 00 p 48, M Nov. of p 58; 30K, 1 June th: 30L-1, K Nov. 61; 30S-1, i Nov. 58; 32S-1, A Nov. 58, M Nov. 59 p 54, M Apr. 62, M Dec. 63, M Nov. 64, M Dec. 04. M May 06, M Apr. 67 ; 32S-3, R Feb. o3, M Dec. 03 , M Noy. 64, M Dec. 04, M May oo, M Apr. 67; $32 \mathrm{~V}-1$, A Der. 47, M Apr. 54, M Oct. $65 \mathrm{p} 45 ; 32 \mathrm{~V}-2$, A Mar. $50, \mathrm{M}$ Oct. 65 p 45 ; 32V-3, A Sept. 51, M Oct $65 \mathrm{p} \mathrm{95;} \mathrm{32W-1} ,\mathrm{~A} \mathrm{Mar}. \mathrm{55;}$ 5i.J-1, A Nov. 49;5IS-1, A May 03; 62S-1, R Nov. 63 ; $7 \mathbf{5 A} \mathrm{~A}, \mathrm{R}$ Sept. $47 \mathrm{p} 54, \mathrm{M}$ Jan. 54. M Feb. 56 p 47; T5A-2, A July 50. M Sedt. 54 p 39, M July $55, \mathrm{M}$ Feb.
 M Feb. 56 p 47, M Apr. 58 p 62; $75 \mathrm{~A}-1, \mathrm{~K}$ Apr. 55 , M Feb. 56 p 47, M May 58 p 76 , M May 63, M July $64 ;$ i5S-1, A Nov. $58, \mathrm{M}$ Dec. 64 ; $7 \mathrm{~J} \mathrm{~S}-3$, R Feb. $02, \mathrm{M}$ Apr. o7; 75S-3B, A Mar. ot; 310-B, A Mar. 49
COSMOS INDUSTRIES-Cosmophone 35, R June 58; Cosmophone 1000. A Sept. 59

CRAFTRONICS—CT-120, Λ Jan. 62
('REATIVE ELECTRONICS (TRANSCON)Transcon, R Dec. 57;'Transcon 6, A June 00; Transcon 10, A June (0)

DAVCO ELECTRONICS - DR-30, R Jan. 67
DeWALD - 6 M Radio-Phone, A Mar. 61
DOLLAR-ROBERT - 222, A Feb. 53 ; $2: 26$, A July 53
DRAKE, R. L. - L-1, A June o6; R-1, d Feb. 65; R4A, A Dec. 67: T-4, R May 60; 'l-AN. R May 00 ; TR-13, A Feb. 03, M June no; 'IR-1, R Dec. 65 ; l-A, K Nov. 57; 2-A, R July 60; 2-B, A July 01 ; 2-C, R Dec. $60 ; 2-N$ T, R Dec. 60

EBY SALES CO. - PCI'100, A Feb. 55
EICO - 720, R July 59; 723, R Mar. 01; 753, R Mar. 60

ELDICO-MR-2, A Sept. 52; MT-2, A Sept. 52; SSB Jr., A Sept. 52; SSH-100, R Feb. 56; SSB-100 A, A Mar. 50 ; SSB-100F, K Feb. 58 ; SSB-100M, A Mar. 58; SSB-500, A Mar. 50; SSB-1000, R Jan. 57; SSB((K)OF, A Apr. 58; 'TR-1TV, R Oct. 54; 'TR-75'TV, A Sept. 52

ELECTRO-COMM CO. - ER-6, A Apr. 56; IIT-2, A Nov. 55

FLECTRO-MECHANICAL MFG. COO. - EMI.60-6,

HLECTRONIC ENGINEERING CO. (ELENCO) Commander, A Nov. 58: SS-75, R Dec. 52 p 42; X-4, K Dec. 53 p 58; 77, A Nov. 54; 400-T3, A Jan. 54;

ELECTRO-VOICE (RME)- KME-1300, R Oct. 56 ; RME-1350, A Mar. 57; RME-1350A, K Sept. 58; RME-6900, R Feb. 61

LLENCO (See ELECTRONIC ENGINEERING CO.)
ELMAC (See MULTI-PRODUCTS CO.)
EL-TRONICS - AE-30, A Mar. 48

EMESCO (See MODERN SPACEMASTER PRODUCTS)

EQUIPMENT CRAFTERS, THE (TECRAFT) -
Hawk V1, A Sept. 00 ; Sidewinder, A Sept. 00 ; TR20, R June 56; 220, A Nov. 55

GALAXY ELECTTRONICS (Sce WORLD RADIO LABS)

GLLOSO (See AMERICAN GELOSO ELEC-
TRONICS) GLOBE ELECTRONICS (See WORLD RADIO LABS)

GONSE'T -Commander, A May 52; Commander 11, A June 55; Communicator, A Aug. 54, M July o3 p i4, M Nov. o4 p 5y; Communicator III, K Mar. 58. M Oct. 58 p 74. M Nov. of p 5y; Conamunicator 1H. K Apr. $61, \mathrm{M}$ Nov. $64 \mathrm{p} 59 ; 1$;-28, A June 58 ; (;-33, A Sept. 58; G-43, A Jan. 59; G-50, A Apr. 59; (;-63, A Dec. 59; G-66, R June 56. M Mar. 58 p 59; (;-76, K Mar. o1, M Feb, 02 p 33; G-77. R Apr. 57; (;C-102, i Dec. i2; GC-105, R July oz; GR-211, A Üct. ol; GR-212, R Apr. 62; 1;SB-100, R Sept. 5y, M May 60 p 83 ; GSH-101, R Aug. 60, M June 60 p 41 ; (7SB-201, R Feb. 62; MSB-1, A Dec. 60; Sidewinder (900A), A Aug. 63; Sidewinder (910A), K Aug. 05; 2M Lincar, R Uct. 55; 6MI Communicator. R May S5, M Nov. o4 p 59; 6M Linear. A Oct. 55; 500-W, R Dec. 54; 903-A, R Aug. 65; 913-A, K Aug. 65
HALLICRAFTERS-FPMI-200, A Aug. 57; HA-2, R Sept. 02; HA-6, R Sept. 02; IIT-1G, A May 50;

II'T-17, A July 47 ; IT'-18, A July 47; IIT-19, A Jan. 19; Il'-20, A Nov. 52; IIT-30. A Uct. 55; II'-3i, i June 55, K Jan. 56; HT-32, R May 57. M Feb. 60; HГ-32R, A Jan. 63; IIT-33, A Feh. 57; IIT-37, K
 A Nov. 63; HT-15. A May 64; HT-16, R Aug. 66; $\mathbf{S - 3 8}$, A June $40 ; \mathbf{S - 1 0 A}, \mathrm{K}$ July 46, M A pr. 54: S-1013, A Aug. 50; S-53, A Apr. 48; S-76. A June 53, M Nov. $54 ; \mathrm{S}-77$, A Dec. 50 ; $\mathbf{S}-85$, A Oct. 54, M Dec. 58 p 69; S-102, A Apr. 56; S-103, A Apr. 56; $\mathbf{S - 1 0 7}$, 1 Nov. 59 ; S-108, A Nov. 59; SR-31, R June 59; SR-12, R July 65 , M Feb. 60 p $\mathbf{i 0}$; SR-16, K july 65, M Feb. 60 p 70; SR-75, A Mar, 51; SR-150, K June 63; SR-160, A Dec. 63; SR-500. A June 65; SR-2000. R May 67 ; SX-42, A Dec. 46, R May 47 p $48, \mathrm{M}$ June 50 п 56 ; SX-43. A Jan. 48, M May 51, p 136; Si-71, A Feb. 50; SX-73, A May $52 ; \mathbf{S X}-88$, R June $54 ; \mathbf{S} \mathbf{- 9 6}$, R June 55; SN-99, A Jan. 55. M Mav 59 p 50; Si-100, K Dec. $55 ; \mathrm{SX}-101, \mathrm{R}$ Oct. $57 ; \mathrm{SX}-110$, A May 60 ; SX-111, K May or; S.i-115, R Mar. 62 ; S. R May 03 ; SX-122, i Apr. ot: SX-130, A May 06 ; SX-110, R Dec. 01 ; SX-116, R Apr. 60

HAM CENTER (See HERBACH \& RADEMAN)

HAMMARLUND - Four-20, A July 47; IIQ-88, i Sept. ot; HQ-100, K Jan. 57; HQ-100.1, R Dec. ol; HQ-105TR, R Dec. 61 ; $110-110$, K Aug. $58 ; H Q-1101$, A May 62 ; $110-129-\lambda, R$ June $46, \mathrm{M}$ Nov. 50 p 106 , M Sept. 55 p 48 ; 110-110- I, A Aug. 53; 11Q-1 10-NA, A May $50 ; 11 Q-115$, R June 59 ; IO-115A, A May 64 ; HQ-1 15X, R Dec. o1; HO-150, R Dec. So; HO-160, R Oct. 58; 11Q-170, R Feb. 59; HO-170A. A Nov. 62; IIO-170A-VIIF, A June 64; HO-180, K June 60 ; IIS-50, R Mar. 63 ; IIX-50A, A Jan. 05 ; IIX-500, R Oct. 60; IIXL~1, K June 64; PRO-310. K Apr. 56; SP-600-JK, A Aug. 52

HART INDUSTRIES - IIart 75, R Feb. 56
HARVEY RADIO LABS. - 100-' , A July 46
HARVEY-WELLS - Bandmaster, A July 51; R9, A Jan. 55; R9A, A May 58; 190, R Sept. 55 ; CBS-50, A Dec. 47

HEATHKIT - Apache, R Mar. 59, M June 59 p 62. M Dec. 59 p 52, M Mar. 60 p 48, M Nov. 00 p 54; AR-1. M May 53; AR-2. A July 53; AK-3, A Mar. Só AT-1, A July 53, M Oct. 55, M Dec. $55 \mathrm{p} 90, \mathrm{M}$ June 56 p 77, M Nov. 5o, M May 57; Cheyenne, R Apr. ot, M Üct. 60 D 51; Chippewa, R July ou; Comanche, K Apr. of; DX-20, A $1 \mathrm{Jec} .56 ; 11 \mathrm{~N}-35, \mathrm{~K}$ Sept. So, M June 58 p 71 ; D-10, A Dec. 57 ; DX- 0 O, R July ol; DX-100, R Dec. 55, M June 50 p 77, M Aug. 56. M Feb. 57 p 59, M Feb. 58 p 09, M Sept. $58, ~ M$ Apr. 59, M June 59 p 62, M Aug. 59 p $53, M$ Nov. 59 p 55. M Feb. 00 p 50, M Aug. o 2 p 56, M Sept. o2, M July 64 p 81 ; D.-I010B, A Mar. 54; HA-1.1. K Nov. us; HA-20. A Oct. 62; IIR-10, R July 63; IIR-20, R Mar. o4, M Oct. 67 p 47 ; IIW-12, K Jan. 64, M Apr. o5; IIW-16. A July $67 ; H W-19$, A Apr. 00; HW-2: R, R Jan. (i4. M Apr. 65; IIW'29, A Apr. oU, M Oct. 60 p so; HW-29A, A Nov. 00 ; HW-30, K Nov. 60 ; IIW-32, R Jan. 64 , M Apr. 05; HX-11. A Sept. 61, M Dec. ol p. 62; HX-20, R Mar. 64, M Mar. 60 p 44 ; HIX-30, R May 03; Marauder, R Oct. w2; Mohawli, K Dec. 58; Mohican, R Lec. 60, M July 62 p 5.3; Pawnee. R Jan. 62, M Aug. o4 p 64; SB-100, R Sept. 60, M May 07 p 49, M Nov. 07 p 50; SH-101, A Feb. nT; SB-110, K Feb. o6; SB-200, K May 6.5; SB-300. R July o4. M Dec. to; SB-301, K Mar. 67 ; Sb- 100 , K Jan. o5. M July ós p 80, M Dec. 66 ; SH-101, R Mar. 67; Sencea VHF-1, K Jan. 61; Warrior, K June oi

HENRY RADIO - 2-K, R June 65 ; 2K゙-2, R Nov. 67
HERBACH \& RADEMAN (HAM CENTER)-ECO-1, 1 Oct. 46

HUNTER MFG. CO. - Hand-It 20B, A Uct. 50; ISandit 2000A, 1 Feb. 63; Bandit 2000B, A June ot; Bandit 2000C, A Sept. 67; Cyclemaster 20 A , is Oct. 48

INTERNATIONAL CRYSTAL - AOR Series, A Oct. 63; AOT-50, A Oct. 03; liB-1, A Nov. 59; SBA50, R Sept. 6ї; SBX-9, R Sept. 67;STP-50, A Oct. 58; T-12, R Dec. 57
INTERSTAR-SR-700E, R Aug. ©7; ST-700E, R Aug. 67
ITT MAGKAY MARINE - 3010-B, R Apr. 67
JOIINSON, E. F. - Adventurer, K Aug. 55 , M Sept. 58; Challenger, R Dec. 59; Courier, R Aug. 58; Invader, R July 61; Invader-2000, A Sept. 00; Messenger, A May ou; Navigator, R May 58; Pacemaker, K Apr. 57; Ranger, K Sept. 54, M Nov. 57 p 89, M Jan. 59 p o1, M Feb. 59 p 49, M Apr. 59, M Feb. 60 p 51, M Jan. 01 p 59; Ranger 11, A Scpt. 61, M Sept. 00 p 85 ; ' 'hunderbolt, R July 58; Valiant, R Sept. 57; Valiant II, A June 62; Viking Kilowatt, R Feb. 55; Viking Mobile, A Aug. 52, M May 58 p 78; Viking 1, il Sept. 50, M June 52, M Dec. 52, M Oct. 53 p 47 , M July 54 p 39 ; Viling 11, A Jan. 53, M June 55; 6N2, R Mar. 57; 6 N 2 Thunderbolt, R Jan. 00; 500, R July 57
JUSTIN-Mobiltrans, R Oct. 64

KNIGHT-KIT (See ALLIED RADIO)

LAFAYETTE - HA-144, R June 07 ; HA-295, A Jan. 6.5; 11 A-230, A Apr. 65 ; $11 \mathrm{~A}-250$, R June 00; HA-200, A Oct. 67; HA-350, R Dec. 64; $11 \mathrm{~A}-110$, A Sept. 66 ; HA-160, A Sept. o6; $11 \mathrm{~A}-650$, K Mar. $06 ; 11 \mathrm{~A}-750$, A 1 Jec. 07 ; 11E-10, see KT-200; HE-25 Voyager, A Feb. 61; HE-30, R Nov. 61 ; IIE-45, A Dec. 61, M Feb. 67 p 49: $11 \mathrm{E}-50$, A Oct. 01; ME-80, A June 63; IST-200, A Sept. 59; IST-390 Starflite, A July 62
LAKESHORE INDUSTRIES - P-100-GG, A July 50; P-500, R Mar. 55; Phasemaster Jr., A June 54 : Phasemaster II, A Oct. 55; Phasemaster II-A, A Nov. 57; Phasemaster II-B, A Apr. 58
LETTINE RADIO--2 2 , A July 50; 262, A Aug. 60 LW ELECTRONIG LAB-LW-50, K May 54; LW-51, R Dec. 59; LW-51 DeLuxe, A Aug. 60; LW'-51 Double Deluxe, A Fcb. 02; LW-90, A July 57

LYSCO -..-Transmasters (Mobile), A Mar. 51; 600, A Aug. 50; 600S, A Dec. 51; 650, A Feb. 52
MARS (See PAUSAN CO.)
master mobile mounts-Mobile GO Power, A Apr. 63

MECK IND., JOHN (See AUDAR)

MEISSNER (See THORDARSON-MEISSNER)
MICAMOLD - XTR-1, A Mar. 48
MILLEN-90800, -1 Feb. 4o: 90801, R July 54; 90810, A Oct. 47; 90881, A Feb. 47

MODERN SPACEMASTER PROD. (EMESGO) -TR-6, A May 02

MORROW - Falcon. A Feb. 57; MB-6, A Feb. 58; MB-560, A Sept. 55: MB-560 1 , K Nov. 56; MB-565, A Feb. 58; M1BR-5, R May 56; I'W Series, i June 00 ; SBT, 1 Uct. 58

MOSLEY ELECTRONICS-CM-1, A Sept 61

MULTI-PRODUGTS CO. (ELMAC) - A-51, A Dec. 51 p 108, M Feb. 53 p 59, M Mar. 53 p 62; AF-67, A Nov. $53, \mathrm{M}$ Oct. 58 p 75 . M Jan. 59 p 58. M May 59 p 48; AF-68, A Feb. 60; PMR6-A, 1 Feb. 53; PMR-7, R July 56
NATIONAL - HFS, A Apr. 48: IIRO-7, A Jan. 49; HRO-50, A Mar. 50, M May 64; HRO-50-1, 1 May 51; IIRO-60, 1 July 52, M Feb. 55 p. 38. M Apr. 66 ;

IIRO-500, A Oct. 64; NC-33, A Mar. 48; NC-16, A Mar. 46; NC-57, A Nov. +8; NC-66, A Dec. 57 ; NC-88, A July 53; NC-98, K Aux. 5t; NC-105, K 1 Dr. 02; NC-109, K Jan. 58, M lune 59 p ol; NC-125, A Oct. 50; NC-155, R July 62 ; NC-I73, R July 47 p 40 ; NC-183, A Jan. 48; NC-183D, A גpr. 52; NC-188, A Aug. 57; NC-190, K Oct. o1; NC-270, K Jan. o1; NC-300. A Nov. 55, R Jan. 50, M Oct. 57 p 90. M Mar. 58, M Apr. 58, M June 00 p 41 ; NC-303, R Apr. 59 ; NC-100, R Fcb. 60 ; NCL-2000, R Feb. 05 ; NC. -3 , A Oct. 62; NCX-5, i Sept. of; NCX-5 Mark 11, \dot{A} Aug. 05 ; SW-51, A Jan. 51; 200, R Dec. 67

NEIL CO. - Alpha 6, A Nov. 58; Beta, A Oct. ©iÓ; Mobileer, A Aug. 60

P \& H ELEGTRONICS-L200M, A Dec. 58; L600NI, A Dec. 58; LA-100, A Feb. 56; LA-100-B; A June 57; LA-100-C. A Apr. 59; LA500M Spitfire, A Aug. 03; 2-150, A Sept. 62; 6-150, A Feb. 62

P \& K ELECTRONICS - 501C, A Aug. 56; 501DK, A Apr. 57; $501 \mathrm{~K}, \mathrm{~A}$ Aug. 56
palco engineering-Bantam 35, a Apr. 55
PAUSAN CO. - Mars Thunderbird, R Mar. 00
PIERSON (Also see AUTOMATION ELECTRONICS) - KiP-81, A Aug. 46

POLY-COMM (See POLYTRONICS LAB.)

POLYTRONICS LAB. (POLY-COMM)-PCR2, A Dec. 62; PC-6, R Apr. 63; 6-2, A Aug. 00 ; 10, A Aug. $00 ; 62 \mathrm{~B}, \mathrm{R}$ Apr. 62

RAGAL COMMUNIGATIONS - RA-17, R Oct. 65 RADIO INDUSTRIES - Loudenboomer Mark II, R June 62

RADIO MANUFACTURERS ENGINEERS (RME, Also see ELEGTRO-VOICE)-RME-15, R Oct. 46; RME-81, A Mar. 47

RADIO SHACK - Realistic DX-150, A June 67
RADIO TRANSGEIVER LABS - IIFM-25, A May 46; 1IT-141, A Dec. to

RADIOVISION - Commander, A June 50 p 81 REALISTIC (See RADIO SHACK)
REEVES INST. (RELIANT)-L-103, A Apr. 02 RELIANT (See REEVES INST.)

SERVO CORP. - R5200, A Apr. 50
SIDEBAND ENGINEERS-SBI-LA, R Scpt. of ; SB2-LA, A Jan. o5: SB-33, R Apr. 64 ; SB-31, R July 66, M Feb. $67 \mathrm{p}+8$

SILVER, McMURDO- 700, A July 4i; 701, A Nov. 47; 702, A Nov. 47; 703, A Nov. 47; 800, A July 46; 801, A Nov. 47; 802, A Nov. 47

SOLAR ELEGTRONICS-Solar System VI, A Sept. 60

SOMMERKAMP ELECTRONIG-FL-200B, A June 66; FL-1000, A June 60; l'R-100B, A June 60

SONAR RADIO CORP. - CD-2, R May 55; MB-26, A Oct. 51; MB611, A Aug. 47; Mono-Bander, A July 62: MR-3, A Oct. 52; MR-1, A Mar. 53; SR-9, i Oct. S1; SRT-120, A Dec. 52; VFX 680, A Apr. 47

SPEGIAL DESIGN PRODUCTS -SDP-1000L, A Dec. 57

SQUIRES-SANDERS -SS-1R, R May 64

STANCOR (See STANDARD TRANSFORMER CORP.)

STANDARD TRANSFORMER CORP. (STANCOR) --ST-202-A, A Uct. 47; ST-203-A, A June 48

SUBURBAN RADIO (SUBRACO) - MT-15X, A Aug. 48; 75T, A Oct. 48

SUN RADIO - PA-500, Λ Dec. 47
SUPREME TRANSMITTER CORP. - AF-100, A Jan. 47

SWAN ENGINEERING CO. - Mark I, A July 65; Mark II, A Aug. 07 ; S $W^{Y}-240$, A Feb. 63; 100 Scries, R Aug. 62; 250, A May 60; 350, K Sept. 65; 100, A May 64; 500, A Mar. 67

TAPETONE-Sky Sweep, A Dec. 58
TECHNICAL MATERIAL CORP. (TMC)-GPR90, R Oct. 55; GPR-90RX, A Jan. 58; GPT-750. i Jan. 56; GPT-750D, A Apr. 58; PAL-350, A May 58; SBE-1, A Apr. 58

TECRAFT (See EQUIPMENT CRAFTERS, THE)
TELVAR (See AUDAR)
TEMCO (See TRANSMITTER EQUIPMENT MFG. CO.)

THORDARSON-MEISSNER - Signal-Shifter, A Aug. 48, M Oct. 53, M Apr. 54 p 49; 2-CW, d Jan. 53

TMC (See TECHNICAL MATERIEL CORP.)
TRANSCON (See CREATIVE ELECTRONICS)

TRANSITRON - 500, A Apr. 55
TRANSMITTER EQUIPMENT MFG. CO. (TEMGO) - R S Serics. A July $47 ; 75 G \boldsymbol{A}, ~ \Lambda$ May 46; 500 CA A A Aug. 46

TRANSTEGH - 432T, R Aug. 59
UTICA COMMUNICATIONS CORP.-6.30, A Mar. 64

VOCALINE - AT-30, R•Jan. 59
WHIPPANY LABS-1.il Lulu (R), A Jan. o5; Lil Lulu (T '), R Aug. 63

WILCOX ELECTRIC-99A, A June 46
WORLD RADIO LABS (See also GALAXY ELECTRONICS. GLOBE ELEGTRONICS, WRL ELECTRONICS - dilas 2 KW , A July 63 ; USB-100, R Dec. 58; DuoBander 81, R Nov. 60; Galaxy 11I, R Oct. 64; Galaxy V', A Jun. 64; Galaxy V Mark II, A Feb. 07 ; Galaxy 300, K Uct. 63; Galaxy 2000, R. Jan. 66: Globe Champion, A Sept. 48; Glohe Champion, R Feb. 58; Clobe Chief, R Oct. 50 Globe Chief Deluxe, K June 60 ; Glohe HiBander, A June 58 ; Globe King, A Oct. 47; Globe King 100B, i May 52: Globe king 500, A July 54; Globe ling 500B, A Aug. 50; Globe Scout, A Oct. 52, M Oct. 55 p 44; Globe Scout 66, A May 57; Globe Scont 680, A May 57; Globe Scout Deluxe, R June ov; Globe Trotter, A June 46; 1IG-303, A Mav $62 ; L A-1$, i Nov. 57; Meteor SB-175, R Dec. 62; Mobiline Six, A July 60; TC6A, A Nov. 64
YUBA-DALMOTOR - DM-1000, A July 60 ; DM4000, A July 00

Western Hams Get Into The Swing of Incentive Licensing

A^{s}a soon as definite information on incentive licensing came out, a group of harm operators in the Portland, Oregon area holding general licenses organized a class and presented it to the Portland Community College, requesting that a theory class be taught. They found ready response from the directors and a teacher was secured who already has had years of experience in teaching radio theory. Hal Potter, W7MYG, the competent instructor, guided fifteen hams through an eleven week course of theory study aimed at improving their knowledge of their hobhy and preparing for Advanced Class FCC examination and license. Classes were held at the Community College Monday and Wednesday nights from $7: 30$ to 10:00 P.m. and the attendance throughout the eleven weeks was 100 percent. Some of the members came from ont of town to attend, which showed real effort on their part.

It was interesting to note the various occupations of these hams who were so vitally interested in their hobby of ham radio and signed up for the course: K7PQF, Veterinarian: K7KWA, Dentist; WA7AHW; Printer; K7HKTV, Construction; K7QBA, Medical Technician; W7DXY, Accountant; K7KWM, Registered Nurse; K7ANC, Sales Engincer; K7BII, Personnel Assistant; W7ZLC, Warehouseman; K7ADI, Electronics Supply Clerk; K7HUT, Shoe Salesman; K7PHP, Garage Owner/ Mechanic; WA7DRO, College Student; K7MSZ, Landlord, retired. The instructor, W7MYG, is an Avionic Technician, in private business, and also

K7KWA instructing the incentive licensing class at the Portland, Oregon Community College.
a certified electronics instructor for Portland Community College. K7KWA says "The rourse was a complete success and all of us felt that incentive licensing was a good thing for us. It got us off our operating stools and into the classroom. Instead of "beefing" on the air about the pros and cons of incentive licensing we got into the spirit of the thing. We got the message from FCC and we are having a real 'trip'."

astrayss

This station made quite a hit at the North East Ohio Boy Scout Jambo last October, showing amateur radio to the scouts. At the operating position are (I.) WA8SIL and WA8SJC, both Star Scouts of Chesterland, Ohio Troup 195

Spark rigs are not out of the picture yet. Here are two operated for demonstration purposes by Ralph Thetreau, W8FX and Harry Walsh, K8DX. K8DX gave a short lecture and demonstration with the able help of W8FX at the November meeting of the South Eastern Michigan ARA in Detroit. A QSO was carried on between the front and back stage before a very interested group of hams. W8FX was working mobile as can be seen! The two brass pounders still have their original calls having started with 8FX and 8DX.

The Braille Technical Press has printed sample questions and answers for the Advanced and Extra Class licenses in their January and February 1968 issues respectively. Braille editions (Grade II) are available at 60 cents each. 'Talking Book ellitions ($16 \frac{2}{3}$ r.p.m.) are available at $\$ 1.00$ each. The Braille Technical Press, Inc., 980 Waring Avenue, N. Y., N. Y'. 10469

Here are three former League directors representing over 150 years of amateur radio activity. From left are W7ZC (West Gulf Division), W2ZI (Atlantic Division), and W 6 MLZ (Southwestern Division).

LeRoy Langhaar, W 2FRK was awarded the First Army MARS trophy for outstanding public service. Shown (from left) are Lt. General Seaman, W2FRK, Commanding General Ist U.S. Army, Ed Liscombe, K4KNV, Chief Army MARS; and Bob Sheridan, W3REH, 1 st U.S. Army MARS Director.

Is your XYL in favor of ham radio? W5CVW's is. This is the ham shack/den which she designed. Bill has been a League member since 1922 and was first licensed as 8BWK in Cleveland, Ohio.

Colorado - The Boulder ARC will hold its annual auction at the National Guard Armory, Boulder, Colo., April 28 at 1:00 p.m. Further information from Don Hanaford, WA@NFO, 303-4:43-2386.
Florida-The Orlando Radio Club will hold their Hamiest April 27 and 28 at the Statler-Hilton Inn, 3200 W. Colonial Urive. Orlando, Florida. There will be meetings for Army, Navy and Air Force MARS, KACES, ARRL, QC:WA, and Floridoras; forums on v.h.i., sideband, ATV, and $D \mathcal{L}$; transmitter hunts and c.w. contests and, of course, the displays of the many manufacturers of ham equipment.

Georgia -... The Columbus ARC will hold their annual Hamfest on April 6 and 7 at the liine Arts Bldg., located at the l'air Cirounds in Columbus, Cia. Bingo for the XYLs and harmonics. Communications will be on 3985 ke . For reservations or information contact Harold DeVaughn, W4FIZ, 380.1 Condrad Dr., Columbus, Gia. 31904.

Illinois - The Chicago Suburban Kadio Assn. will hold their annual auction on Wednesday, April 3, at National Hall, 3907 Prairie Ave., Brookfield, Ill. at 8:00 p.m. For more information contact WA9CCQ. Karl Weisshappel, 3122 Clinton Ave., Berwyn, 11. 60102.

Illinois - The Moultrie ARC is having its 7th annual Hamfest at Sullivan, llinois in the American Legion Pavilion, April 28.

Illinois - The Seventh Annual Dinner Dance of the 6-Meter Club of Chicago will be held at the Park Manor V.F.W., 1301 W. 87 th St., Chicago, on Saturday, April 6 at 7:00 p.m. Tickets from members or by mail from Mike Corbett, K9RNZ, 5215 73rd Court, Summit. Ill. 60501.
Indiana - The honuring of old timers will be the theme of this year's annual Banquet of the North-Eastern Indiana RC to be held at the Library in Waterloo, Saturday, April $\because 0$. A place will be available at $2: 00$ p.m. for those who wish to come for eye-ball QSOs and to talk over old times. The evening meal will be at $6: 45$ with a program following. Reservations may be made with WA9GNA, Harold McEntarfer, Waterloo, Indiana 46793 before April 15. The price of the evening meal will be $\$ 3.00$.
Kansas - The Cotfevville ARC Hamfest is April 21 at Ptister Park, Coffeyville. No advanced registration needed, bring; covered dish. Tulk-in on 3.920 and 145.1 Mc .

Maine - The PAWA will hold its Annual Banquet on April 20 at the Holiday Inn in Portland.
Maryland - The B\&O/C\&O Railroads ARC will hold its 9th Annual Banquet on April 20 at the Barn Kestaurant, 750 Kitchie Mighway, N.E., Glen Burnie, Md. Tickets are $\$ 5.00$ each prior io April 10 and $\$ 8.00$ after that date. Hlease make your reservations early to Joseph W. Zorzie, W3LBC, K "CO"' Telegraph Úttice, B \& O U'entral Bldg. 107, Baltimore, Md. 21201 .

Ohio - The Davton Hamvention April 27. Wampler Arena Center, Dayton, Ohio, sponsored by Dayton Amateur Radio Assn. QSO in person at the nations foremost radio event of the vear. Technical Sessious, exhibits, hidden transmitter hunt. Bring the XYL for an outstanding Ladies Program. Join the satisfied participants who return year after yeur in celebrating Ohio Amateur Radio Weck. For information write Dayton Hamvention, Box 44, Dayton, Ohio 45401 .

New Jersey - All RTTY stations in the Delaware Valley are invited for the meeting to discuss plans for organizing an RTTY assn. for the area. The metting will be held at National Park Boro Hall, Grove and Lakehurst Sts., National Park, N. J., April 15 at 8:00 p.M. For more info write RTTY Committee, jt Barlow Ave. Woodbury, N. J. 08096.

New Jersey - The Second International V.h.f. Conference being held Mav $2 \cdots 4,19168$ will feature top v.h.f.ers from everywhere! VK3ATN has already indicated he will attend. All threc days will feature talks, symposiums and wther events at the Garden State Plaza, Kts. \& \& 17 , Paramus, N. J. in conjunction with the Ham Radio Expo (sce March US'T', pg. 69). Activities will culminate in the Banquet, Saturday, May 4, at $7: 30$ p.mi. A program of first class entertainment headlined by star entertainer Jean Shepherd, K20RS, speaker of note, prizes, together with a superb top sirloin of becf dinner at the luxurious

Champaune Towers, Rt. 17, Lodi, N. J. will interest OMs, XYLs and Y'Ls alike! Banquet tickets at $\$ 7.95$ - I Ls and XYLs at \$i.95 - are available from the Fast Coast VHF sinciety, WA2WEB, Box 1263, Paterson, N. J. 07509.

New York - The Rockaway ARC Spring Auction will take place Friday evening April 26 at 8:00 p.m. at the American Irish Hall at Beach Channel Drive (At Beach 8lst St.), Rockaway Beach, N. Y. Doors will be open at $8: 00$ p.m. to accept items for sale. One dollar donation accepted at the door. For information write to Rockaway ARC, P.O. Box 205, Rockaway Park, N. Y. 11694.

Washington - The Skagit Club Hamfest has been set for April 20 at Arlington.

COMING A.R.R.L. CONVENTIONS
April 26-27 - Michigan State, Lansing. June 1-2-New England Division, Swampscott, Mass.
June :-9 - NATIONAL, San Antonio, Tex.
June 29-July 1-Saskatchewan Province, Saskatoun.
June 29-30 - Rocky Mountain Division, Cheyenne, Wyoming.
Junc $\mathbf{2}^{2}$-3n - W'est Virginia State, Jackson's Mills.
August 3-1-Central Division, Springfield. 111.
August 31-September 2-Southwestern Division, Phoenix, Arizona.
Soptember 28-29 Roanoke Division, Greenboro, N. C.
October 12-13 - Hudson Division, Tarrytown, N. Y.

ARRL MICHIGAN STATE CONVENTION

Lansing

April 27 \& 28
The ARRL Michigan State Convention will be held in Lansing on Λ pril 27 and 28, 1968 at the Jack Tar Hotel. Registration, manufacturer's displays and hospitality room activity will start at 2 p.m. on Friday. That evening there will be tours, a technical session, and initiation into the Royal Urder of the Wouff Hong. The ladies will have a special program while the Wouff Hong session is in progress. Saturday morning the registration, swap and shop, and manufacturer's displays will open at, 8 a.m. There will be net mectings, council of clubs metting, ARRL Forum, DX Forum, an outstanding ladies program, and technical sessions throughout the day. The saturday evening program will be a family type program with professional entertainers. Registration is $\$ 2.00$ in advance (before April 25) or $\$ 2.50$ at the door. For further information write convention chairman Currin Skutt, W9FSZ, 119 North Foster Avenue, Lansing, Michigan 4×912.

. Strays" ${ }^{3}$.

Interested in 160 meters? Hams in the New England and Middle Atlantic states have formed the Northeastern States 160 -meter Assuciation to promote fellowship on the band. Membership inquiries may be directed to Association president. WiEUB.

REPORTED BY BOB HILL,* WIARR

Jowls weat unshaven, leaves went uuraked, homework went undone: the Silly Season was here again. The OMI muttered incoherent warnings to the rest of the family and disappeared into the shack, slamming the door behind him. It was the 34 th ARRL November SS!
This year's wild doings (Nov. 11-13, 18-20) resulted in 842 phone and 1088 c.w. logs adding to the mailbag sag at Hqs., with some interesting trends to be noted. Phone activity edged ever closer to parity with c.w. as many participants found that QSOs went faster and were more numerous on sideband. Section-hunters flourished: 59 marksmen (21 voice, 38 code) found the range for all 75 multipliers - quite an increase from last year's total of 26 . A third and somewhat peculiar phenomenon: of the 1947 logs submitted, $31 \pm$ (aimost one in six) represented either portable, multi-, or "guest" uperation.

Logs, logs, logs. About half a dozen were computer printouts, while W4BVV went one better with a computerized dupe sheet. Some handwritten logs, like W7FCD's, were almost works of art in their neatness and precision: otherswell, we were unable to award the Larson E. Rapp Memorial Booby Prize to the deserving entrant because we couldn't read his name or address, and he didn't put his call down auywhere anyway. Nearly everyone had something to say, so don't feel offended if your comments didn't make the writeup: we'd have to print a special issue of QS'T to include them all! But remember that all comments are read and all suggestions evaluated.

As usual, most comments fell into one of tive categories: (1) "Had a ball," (2) "Where was [fill in a section]?" (3) "Murphy," (4) "Wait

[^19]till next year," and (5) "Let's-drop-let's-add-let's-change." We had the customary quota of broken bones, defunct rigs, tilt-over towers that weren't supposed to, babies being born between NR 286 and NR 287 - make your own list! Suggestions for improving the is included: drop the power multiplier, increase the power multiplier, change the criteria for a score multiplier, go back to two weekends, more hours, fewer hours, restore signal report to the CK-and a few strange characters even said they like the SS just the way it was. Several guys still stuck on a.m. commented sadly on the hopelessness of it all: several eomments about that cloddish clique that runs a kilowatt (or more) and claims the low-power multiplier, implied that sume entrants who signed the "I-have-observed-all-competition-rules" must have observed them from a considerable distance. And to you fellows intrigued by what effect the new FCC regs will have ou the ' 68 Sweeps: you'll have to wait another year, since both weekends of the upcoming fracas will be over before November 22!

LED SECTION BOTH		
KODES		
K1GAX	WANQA	K7RAJ
K1LPL	W4USM	W9YT
W1BGD/2	K5RHZ	WA9ITB
W3BES	Ki2EIU/5	WAOCYS
W3GAU	W5WMIU	VE1APP
K+BAI	KZ5FX	VE2BMS
K4PUZ	WGBIP	VE5US
K+W.JT	WAIVN	VE7EI
W4BVV	KH6IJ	3C8BB

"Long may that haunting DIDIDIT-DIDIDIT ring out across the airwaves." - K2KUA

For the third year, a thousand-point bonus was offered to euch entrant attaching an SI message in proper form with proper handling data included. One-third (647) of the troops went forth to battle this MSG dragon; 70\% succeeded in slaying the beast, but the others returned with nothing but singed sideburns to show for their efforts. If you were in the latter platoon, most likely you (1) omitted the precedence, (2) miscounted text word-count for the CK, or (3) put down inadequate handling data.

1s long as we're on a military kick, let's look at the big guus for ' 67 :

Phone. Single operator: K4WJT 193,918, W2RLM 189,550, K8DOC (WA8LEO, opr.) 178,707, K1LPL 176,904, WA6IVN 176,400, WA4PXP 174,886, K5RHZ 168,276, K4PUZ 167,610, W3GRF (K1ANV, opr.) 167,056, W5WMU 166,140. Multinperator: WAøCHH 172,563, K0VVY 167,112, WA9HEU 133,809, WA@CJU 129,717, W3ZKH 108,091.
C.W. Dingle operator: W9YT (K9ZMS, opr.) 139,563, K1LPL 138,883, W6RW (W6DQX, opr.) 135,563, W1BGD/2 134,313, K4(aSU $/ 3$ 131,123 , К2EIU $/ 5$ 130,281, WA9ITB 130,028, W3BES 128,813, K4PUZ 125,013, W9LKJ 124,921. Multioperator: K4VDL 128,438, K5LZO 125,550, WA3EPT 117,250, KøVVY 115,610, WAøDKA 103,410.
(Parenthetically, VE5US deserves honorable mention for topping Canada both modes: 151K with VE5DK behind the mike: 115K with VE5UF sending Morse. Extra-FB performances from VE-land!)

Intra-sectional struggles are always a highlight of any SS. Most of the real Pier-sixers were on c.w. this time. In EMIass, W1MX (K3QDD, opr.) nosed out K1EUF by nine points (98,790 to 98,781) ; in WPa we had a thriller among WA3BLE (104,843), K3HKK (K3AHT, opr.) (104,483), and WA3IXN (103,660); Michigan was the scene of a spirited struggle among L88UDJ, W8UM, and W8SH, operated by K8MFO, W8CQN, and K1ZND, respectively. ()ther close races were in SNJ (WB2TEN and W2HDW), Miss. (K5AEU and K5IIN), NLI (W2GGE and W2AJR), NNJ (WB2RKK and W2NNL), Vt. (WA1HXU and W9BLQ,1), Alaska (KL7JDO and KL7MF), SJV (W6QMC and K6RTK), NC (W4NQA and K4MPE) and Alberta (VE6ATH and VE6VV). Only four sections had really intense hattles on phone: MDC (W3GRF and W3AZD), Wis. (W9YT and K9LBQ), Nebr. (WAgHSX and KøCVA) and Va. (W4BVV and K4CG). It doesn't pay to let up even for a minute!

Novice entrants were paced by Minnesota's WNORAG with a score of 8,505 ; other IVN certificate winners were WN1HGS WN1HHIA IWN1IUE WN2ANI WN2ARD WN2BND WN2CAL WN3HOM/3 WN4GTG WN6VXJ WN8WIA WN9ULI and WN9UOP.

Clubs

Forty-six ARRL-affiliated clubs submitted the necessary three individual entries and secretary's letter in order to vie for the haudsome cocobolo gavel that goes to the highest-scoring club earch year. For the fourth year in a row, the potent Potomac Valley Radio Club crew grabs that gavel! PVRC's active Activities Manager W3TMZ had what one car manufacturer calls "a better idea": rather than split the boys into just two large intra-club competing teams, Jack appointed ten team cuptains, each to have nine or ten members on his squad. The result was spectacularly successful, as 92 PVRCers turned out, blitzing the opposition by a margin of more than two million points! Special recognition goes to K1ANV, whose stout performances from W3GRF (on phone) and W4BVV (on e.w.) led the club on both phone and c.w. - uo easy feat when you look at that roster of Potomackers.

Oddly enough, one man topped both modes for the second- and third-place clubs, too. W3BES stands at the head of runncrup Frankford Radio Club's 64 entries, and W8QXQ is champ of the fast-rising Indian Hills Radio Club, whose fine effort moved them from eighth in '66 to third in '67. Central Michigan ARC was the only other club to go over the million mark. Connecticut Wireless, with nearly the same

If the faces aren't familiar, the voices should be. At left is KøCVA, whose 834 phone contacts was fourth high nationally; at right is WAøCHH, chief op of the Missouri multiop effort that garnered a "multi-top" 172,563 points and a "75 sweep.' Behind CHH is an unidentified stationary object.

FB total as last year, still slipped a bit from third to fifth. Germantown RC's talented teenyboppers moved up a notch, from 7th to 6 th . The top ten is rounded out by the University of Rhode Island RC, Miami Valley Amateur Radio Contest Society, and South Jersey RA.

Here are the standings by mode:

Phone	Rank	C.W.
Potomac Valley RC	1 P	Potomac Valley RC
Frankford RC	2	Frankford RC
Lndian Hills RC	3	Indian ITills RC
Germantown KC	4	Conn. Wireless Ass'n
Miami Valley ARCS	5	Central Mich. ARC
Central Mich. ARC	6	Minn. Wireless Ass'n
Univ. of Rhode Island RC	7	Nittany ARC
South Jersey Radio Ass'm	S	Massillon ARC
Gonn. Wireless Ass'n	9	Univ. of Rhode Island RC
Synton ARC	10	South Jersey Radio Ass'n

We look forward to at very interesting future competitive situation in Minnesota, where two new and promising clubs have recently beeu formed: the Minnesota Wireless Association, whose membership is 100% ARRL and which, under the guidance of WOTKX, gathered over 586,000 points in its initial venture; and the Viking Amateur Radio Society, which, in the words of Secretary WØBMY, "has dedicated itself to becoming a real factor in anateur radio," and whose club station WADCJU turned in a cool 130 kilopoints multiopping phone. So have at it, you two clubs, and Gopher that gavel next year!

Musings

. . . on Doing Better. "Didn't have much operating time, but did real crummy, even for 20 minutes. Will no all out next vear and break the 2ij-point barrier." - IFBGYAX. . . . Germantown RC's WA3DNV broke suid barrier, going from 24 phone points in 1966 to 14,040 this year. A 5.850% score increase is not, to be sneezed at. . . . "I. think the SS is trying to tell me sumething about my c.w. By switching to phone this year my score is cight times as high. Now ii oniy 1 could do the same next year." WADOTE. Now if you unly could, Jim, you'd wind up with - um - (i42,818 points, a very creditable showing indeed. . . .
. on Time, the Subtle T'hicf." Been in every DS since H1, the marathon affair which lasted nine days, like the Novice Koundup." --. IF $S B I P$. At least two other original SSers were still at it this year, W7EKE (ex-IV9ERU) and the 1930 winner, W1.IDIV. who says the SS is better than ever. ... ${ }^{-1}$ nominate $W 2 W E$ longest licensed in the contest (CK 13)." - WAGJDT'. Waal, W6ANI has him beat by a year. "It's good to meet old friends in the is," Don says. . . . 'It is a sohering thought to find that out of 3.43 stations worked, only 11 lave licensing dates older than mine. Time QRQs." ---. W'RLEJ. . . . "Nice contest a lot like old times back in the 30's." - W' " A certain WB2 gave me CK 71 three times, until I told him what it was." - IF.A8ROJ. Best wishes to that WB2 for his next 96 years in ham radio, too. . . . "My CK 17 (first licensed as 1 ABW Feb. 1917) really caused 'ern to Hip." - WR1P. "Enjoyed meeting again many of the oldtimers I used to work years ago as W6PBV from SCV Section." - K KYOK. . . .
. . . on Sureppiny Clean." A funny thing happened on the way to a clean sweep: needod SF and couldn't find one, so called CQ SF. W6BIP answered and it shook me so, I almost lost him. VE8ML was an anticlimax." .-.... W $4 F R O$. "What a delight working VE8NIP for my 75th section. The DX contests really teach you how to dig for the hard stuff." ... K $8 H Z U$. "Didn't mean to be very active this year, but once I heard the normally-rare sections blast-

CLUB SCORES

Clean sweeps were numerous this year, and pictured right (top to bottom) are three reasons why. Neatness and portability are the characteristics of the setup at WAøNTY ("Nuts To You-it's cold in North Dakota"), a popular signal in the phone affair. The Heath-line equipment is mounted in a $3 / 4$-inch plywood console that can be readied for shipping in just half an hour, should Al ever feel the urge to silently steal away to a more temperate clime-like maybe South Dakota. . . . KP4BJD looks muy contento in his VP9 shorts, and no wonder: he had 500 A3 QSOs, with over 200 on 28 Mc . alone, to go along with the balmy weather in Santurce. Bien hecho, Gabriel. . . . If your c.w. operation didn't include 40 or 15 you probably didn't work Nevada, because you didn't work WATGCY (below). Mark and helper WATGUF sent out sparks from Sparks to 137 eager section-chasers.

ing through on 15 I decided to try for the clean sweep. KV4AM saved the day by providing the West Indies Section. 1 never eveu heard any of the KP4 gang." K8KFP. Al got all 75 in 100 QSOs and only 14 hours of brasspounding.
. . . on Beino Rare Game. "The pileups for Maine were great fun and I hope I didn't miss too many that needed the multiplier." - K1GAX. "At some of the reactions sume people gave when they learned my section, you'd think I was the only ham in Wyoming! "-- WAFETC. Local QRM is provided for Bruce by WA7DNZ, who lives across the street. And the same section's IVrTSM unauxiously awaits the mess of QSLs that his SS activity is sure to stimulate.

Reliable KZ $\delta F X$ offers a chilling thought: "Next year I'll be a W, and who from $\mathrm{K} Z 5$ will make clean sweeps possible?" Who indeed? Say it ain't so, Clem! . . . Here's why you missed W.I. on c.w.: " Relay went out in rig between phone and c.w. contests, so wasn't able to keep promise to be back for c.w." - KP 4 DBJ. "Ordinarily, being a California ham is not much of a treat. But during the sweepstakes any station here in the Santa Barbara Section does cause a sensation!"-- W6RFU (IFB6DPV, opr.). Jim took the '64 SBar award with 30 watts of a.m. and 80 QSOs. . . " "Enjoyed working SS from Nevada; it's almost like being a DX station. First SS in about 10 or 12 years for me. Last one was using my other call. K6BWD. Ran into several longtime friends." -.. ${ }_{1}{ }^{\prime} \sim E J U$. "I must have been the only VE2 in the contest. Now 1 know what the DX feels like, and they can keep it! Even had a K 2 on c.w. pick me up in the Canadian 75meter phone band and entice me above $\$ 8800$. We must have been really rare." -... VERBMS. "Had fair propagation the first day lof the phone reekend|, was all set for a big second day, but condx were the worst I ever saw during SS; also had power interruptions on Sunday ior appruximately 31/3 hours. Glad to give some stations a NWT multiplier." - BC8BB. Marsh even managed to work his own call-area on c.w. by nabbing VE8YM.
on Cheating. "I cannot but feel that misuse of the QRP multiplier must result in a hollow victory, if you win and God-only-knows-what if you do not." - II $4 B R B$. . . . 'After hearing a couple of guys on the air bragoing about their always cheating in the SS by running high power and claiming low power, I decided I would get my linear vut of the house for the weekend so no one could

accuse me of cheating. So I dropped it off at W5UKK's house for safe keeping. I am going to do this everv vear, because I have no desire to have anyone include me in with such a bunch of siobs."-… WhilaIT. . .."KILL SS cheaters!" - If ASFHB.

Vox Pop

"There were some contacts given same number due to error in my logkeeping. Next year I'll use ARRL logs." W6JVA. And what about you other nonconiormists? "My first SS, and I should not even have attempted it without a direct-readout numerical clock." . WB $4 H F J$. "We gave up a weekend leave to operate the SS. and we're ylad we did," enthuses Navy's HBADO. "Losing to Navy doesn't make us too happy but it did provide a lot of good experience for our new ops," counters West Point's I'Z ${ }^{\prime} G Y$. ..." Worked KHGIJ through a IV6 pileup!" W.A4UAZ. "Special thanks to Dick, FiV4AA, who is ulways there on 14081 when you need W.I." .-... W8UM (H'8CQN, opr.). "Many sections rare in CD Party easy here, but many easy in CD rare here." --IFA8.MCQ. "Ever try to send with a cast on your thumb?" -- IrA8UPU. . . . K9ZMS and IF4USM, among others, mentioned the contlict with pro football on TV. Wish Pete Rozelle would get sinart and reschedule the games - after all, we were here first. . .
" Using last year's check-sheet, after having crossed out the old call letters. I was surprised to see tost, of the same stations back in the contest this year, on the same bands."

W'ZQFQ. "An outstanding iactor was the disc:repancy in the times of contacts. My clock was checked against WIVV, but I noticed variations of 2 to 4 minutes in reports received. Lack of transceive capability was very detrimental to speed of zeroing in." --- W $4 Z . V A$. "ren-meter phone was excellent. Like we say here in San Juan, " Fistaba. de pelicula." -....KP KBJD. "To minture Novices: learn to listen more and send less- it helps in picking up seretion tuntipliers." --... $11 N 7 H P K$. " Drank 2.7 G gallons of coffee and 6 quarts of beer. IIic!" - $\|^{\prime} B 6 B B C$. "Sending © Et SV was 'tringue-twister' in e.w.; either that. or I have a lonsy fist." - W"AGJDT. "NI.' stupendous score is directly a result oi Murphy's Law. After 13 years in amateur radio, this was to be my tirst attempt at the SS. Aud how I planned it! Alas, come Saturday at 5 p.m. my wife presented me with the wiumer: my $\# 1$ son, who scored 8 ths.. $8 \mathrm{oz} .$, a good one in that league. hi." - Kiz $\mathcal{H} G E$. "Nearly
went permanently QRT when lightning hit 100 feet away from my antenna." --WB2ZSG. "They sure do send fast. don't they!" - WBEUZU. "I wouldn't wish having 73 multiplierson my worstenemy. You could have a nervous breakdown looking ior the other two. I wonder what it raust be like winding up with 74." - K $2 B M I$. "'To pad out my low score a bit I draited my first message and set about trying to get it into a net. Broke into the GreyHruce Net with my twenty-five 80-meter watts and found the NCS. VE3FGV, was most cooperative and even took the trouble to make some kind comments at the end of the sessiun. If I'm not careful I'll find myself hooked on traffic handling - have to find some use for the rest of my pad of message-blanks." --- VESFXZ. "My 2nd op never called, never showed, and I haven't heard from him since." -TBEMJD. "My tirst big c.w. venture since Novice Roundup in 1953!"-- WOPAN. "Bumped into 3C8BB right at the start of the SS again - honest, no sked! Surprised to see N.H. among the hard-to-work this year for the first time in ages."--. $11 / 4 \mathrm{KFC}$. "One fascinating aspect of the Sweepstakes is looking at the statistics after the contest. 1 tested the high-power vy. low-power argument this year, and a complicated analysis of my statistics convinces me that high power produced no more than 10% more QSOs than low power would have (and I threw away that 1.25 score multiplier to do it). To heck with high power!" -IF $4 D V^{\prime} T$. "What an exercise in the gentle art of zero-beating. ('Too bad some of us tunked the course.)"- IV $4 Z M$. "One could feel the tension on 15 metres a few minutes before Z hour as everyone watched their clocks count down. Thereaiter it was sheer bedlam, but the contest was a rag nevertheless."--VETBHN/Wの. "This was my first contest. Hope to do better next year with more operating time." - K $9 Y N G$, who led Ill. on A3 with 114 K . "Passed wut after my 527th QSO. and that ended it." - W $A 9 L V J$.

We salute: WOIYH, who operated 20 s.s.b. only and still got all 75 mults; Technician $W^{\prime} B 2 V V Z$, who worked six stations on 6 meters with 5 watts to a 40 -meter dipole; and 15 -year-old W $A 7 C S K$, who ran 100 watts on c.w. for 14 hours with an indoor dipole in a house at the bottom of a deep gulley -- and made the clean sweep in just 170 exchanges. . . . "My sincerest thanks to WA3IID, who missed his first chance to operate an is and probably the last chance for the next five vears, for loaning me his receiver so I might operate."--WASGKI. "As usual, managed to get the hard sections and miss the easy ones." IVBCSZ. "QRM was heavy on the Novice bands." -... IFNSHYJ. (Yeah, aad about those other bands . ..)
"First 8 S for me since '63; been QRL as DL4LA." IF5QGZ. "Three cheers and a tiger for all those guys like 3 C8BB and KL7AIZ who took a spin up into the Novice band to give us peons (hi) a chance at the goodies," praises IFNORAG, who deserves some cheers himself for piling up the highest Novice score in the affair. Tim adds, "My biggest kick was working F3VN/W2 in NN.J. Made the afternoon more enjoyable for me and I hope he liked our American-style cuntest." Okay, let's find out: "Really enjoyed my first iss. I was impressed by the courtesy of the pperators. in spite of the high level of activity and QRM -but where were the old-timers? I felt like a grandfather passing out C5 50 !" - $\mathrm{F}^{\prime} 3 \mathrm{BN} / \mathrm{W}$ 2. The Gallic touch was evident in the second call area. as F 2 YS also was on helping out at k2RDM. Vive les Suipstecques! . . ."I worked California on 80 meters!"- IVNBYYV. . . . K1KDP used the phonetics "Kosher Dill Pickle" and found they attracted more attention than his section, WMass. . Not every member of the Potomac Valley Radio Club is an enthusiastic SSer. K3.VPV did his duty and participated both weekends, but John's comment is merely "Bah. humbug." . . . WA8TKW, at the tender age of 12 , ran up

"WHAT A GOMR\}SUG AND NOISY CHALLENGE!"
almost 50 K in the A3 portion and may have his Advanced ticket by this time. . . . "Who sez you can't work anyone on 6 meters-K8MMM gave ime NR 286 after only : hours contest time!" - WA8NVW. Hmmm . . . "Forty meters never closed. I was constantly surprised by the Sixes that called me in the wee hours; couldn't even get a catnap. Biggest thrill was 3C8BB coming back to my CQ." -KZUAR/\$. . . " I thought some Novice operators were better than some General Operators. Had to go hunting through the Novice band to get the last of 75: Oklahoma!" - WAøKXJ. . . . This year's Edsel Murphy A ward goes to the crew at $I V G H Z$, who report, "We heard on ten meters Sunday morning that the hamburger drive-in across the street was robbed. We had a clear view of it all night but nobody was watching." \qquad What a pleasant jolt to get 49 c.w. logs from Connecticut and tive multioperator phone entries from - of all places - Montana.
"First evening of phone SS 75 meters was skipping to East Coast as if it were 10 meters." -- W6VUZ. "The East and West Coasts have one thing in common: the Midwest stations with big signais." - K $\xi D V S / 6$. "Had so much trouble finding an S.JV station last year that I decided to pack my gear and portable quad and no there myself. But near the end of the contest I heard another SJV station giving numbers well above 500 ." - $\mathrm{K}^{\prime} 6 \mathrm{Y}$ V V / 6
"Borrowed about 20 crystals -- almost as good as a v.f.o." - ITN1HHA. "Would have put in more time, but the USA skip up this way real good for only about 9 or 10 hours a day. The rest of the time you might as well spare the iron, for they just don't hear you." - K'L7JDO. "I've had it! After nine years of Sweepstakes, I've decided that to go all out one more time would be sheer suicide. You can only go so far, and after a while operating skill becomes irrelevant, with physical endurance taking over as the deciding factor." - KiCTI. Want to bet that Mac won't be in there dispensing 600 -rr-so Montana QSOs aqain next year? . . . "Enjoyed contest very much. Hardest part was recopying the score sheet into my station log. Didn't tind one lid in the entire contest. Everyone was very patient and considerate in the heavy QRM. My congratulations to everyone connected with Sweep-stakes."-- WA9LED. "Missed San Diego-thought 1'd worked it eariy!" - W3GAU. "What a roaring and noisy challenge," marvels 15 -year-old VE1AKA. "It was a weekend of constant distraction, with out-of-town visitors galore and domestic chores aplenty, but I did manage to have a ball and meet a new friend: K 5 IIN dropped in a week after the SS to shake hands and visit awhile. Next year we will both 'come out fightin' again, but until then we are the best of friends, hi." $\mathscr{K} 5 A E U$. Attention W4KFC: K5IIN lives on Signal

The loudest noise from Potomac-land was generated by KIANV, who led PVRC on both phone (from W3GRF) and c.w. (from W4BVV). Gene was a big reason for that whopping club total!

Hill Drive. . . . "One of the higgeat advantages of using VOX is that you don't get the mike-stand dirty while you're eating." --. ITBGKPN. "Wasted many minutes trying to get my section across. One W's even argues that there was no such section as Orange!"- KOGJD/6. "Suggest an expedition to Maine in 1968." - W3AXW. "Murphy struck about two ocinck: my mother." WASAMIH. . . . One Central Division entrant was verv emphatic in his avowal that he had operated alone, by himself, with absolutely no outside help, aid, or assistance. His score: 3. . . "With everybody calling CQ SS. who's left to come back to 'em?" --WA9RPD. "Srreech-owl perched on dipole all night long - added two s -units to my signal." - IWN2CAL. Calling H0OT, no doubt. . . . "If this year's SS can be used as an indication. WPa may one day be as competitive as EPa and MDC!"- $\$ \$ K . N O$. "Ever try to find a drugstore that has a 6CL6 at 12:15 Saturday night?" - VERBMS. "I wish that the only VO1 was answering calls instead of choosing who to call, and that the KP4 had given me an exchange, but that's life on $7 \mathrm{Mc} .!$ This was the best-mannered, most profes-sional-sounding SS I have ever heard. It was as if everyone cared enough to send his very best." - $\mathrm{I}^{\prime} 5 \mathrm{FI} Q \mathrm{QN}$. "Forty meters was really great until the BBC came on." IFNSIJR. "Worked a KL7 for 50th state. Also worked nther 'easy' sections like NWT, Wyo., KZ5, etc., but never even heard a San Diego or SF."- WA9IXF. "My apologies to those who had to QRX while I replaced the fuse in my keyer. Luckily I discovered the problem
 heater to ward off frostbite in my uninsulated $5^{\prime} \times 8^{\prime}$ shack up on kickapoo Mountain." - W.ABATX/B. "My cold made my ears ring so had I couldn't tell the dits from the dahs." - W3Q.177. "Next year, back to the old VE3 prefix instead of 3 C 3 , which I'm sure emntused a lot of people. Missed Idaho for 70, because a W7 there refused to work anybody in the Test." - -3 OSEEW. . . . After being dormant for 15 years, l'E2PJ rejuined the SS madness and says, "My innpression is that today there are more suod c.w. uperators than ever before.'
"Happy to hear 10 open on Sunday. KHGIJ and KH6GGU/ mobile running Sy with the beam the other wav. Heard many rare sections: KLZ. ǨP4. VE8. Wyoming, Nevada." - KgllCR. "Hirst phone entry in several years and I overestimated my antenna and underestimated the QRM." -- K. $9 H C K$. " After 4500 revolutions in 24 hours my "(Q) Sweepstakes' voice tape-loop and me were worn pretty thin. The tape-ioop seemed to pull them in better than $[$ could do live. Hmmm . . ." $-\cdots K Q B Q$. . . . in a thrilling intra-iamily c.w. contest, W2ZVW nosed out sibling rival WINJM, 1756 to 3760 . . . "Murphy, you dirty rat. Got in uuly 13 hours operating because of having to work both Saturday night and Sunday afternoon, thus few contacts - lotta tears. Going back to 2 meters, where I know f won't work anybody." - K5A I'I'. . . . W9SZR and U'SD I'O, at the latter's QTH, racked up 611 two-wavs in 73 sections on 40 e.w. Ra.y reminisces: "I was on the key and SZR was presumably asleep in the next room. He ran in and yelled, 'Get that NIVT CQ' when I was fishing around and did not hear him and SZR zeroed the receiver for me. The guy apparently sleeps with one ear open ior DX when there is a speaker blasting in the vicinity." W9SZR enjoyed no small measure of fame as HI8X.AL. . . . "I feel left out. didn't work W $4 \mathrm{KFC!}$ " K.3VXV/3. Never mind, there were several people that didn't. One, two, three . . . "Sending with a straight key for 15 hours sure gets the arm tired." ---IVB2ZEU. "Herewith my ARRL Sweepstakes log ior 1967. 1 have several excuses for it, like this: (a) Since I do not expect to be around for the next Canadian Centennial in 2067. I decided to use my Centennial 3C prefix. This is detinitely a handicap, in bauds! (b) Could not work the contest full time due to lack of sleep, as I was brutally forced to attend a wild party the night beiore the contest. (c) I need a new receiver. (d) Everybody else nopds a new receiver. (e) A temperature inversion over Alliston during the contest. I couldn't get out! (f) A diabolical plot on the part of sections such as Vermont, Nevada, VE8. Oregon and others not to work me. (ig) There must be others, but either I can't think of them or prefer not to mention them! It was a most interesting contest. though, and 1 hope to overcome all the aiorementioned obstacles for the one next year!" - BCuTNN.

THIRTY-FOURTH SWEEPSTAKES CONTEST

Scores are grouped by Divisions and Sections. . . . The operator of the station first-listed in each Section is award winner for that section unless ntherwise indicated. Likewise the "power factor" used in computing points in each score is indicated by the letter A or B. . . . A indicates d.c. power up to and including 150 watts (multiplier of 1.25 c.w., 1.5 phones), B over 150 watts (multiplier of 1).

The total operating time to the nearest hour, when given for each station, is the last figure following the score. ... Example of listings: W3GAU 112, 333-508-74-A-19 or final score 112,333, number of stations 508 , number of multipliers 74, power factor of 1.5 , total operating time 19 hours. . . . An asterisk denotes Headquarters Staff members, ineligible for awards. Superscript one denutes Novice certificate winners. Multi-operator stations are grouped in order of score following single-operator station listings in each section tabulation.

ATLANTIC DIVISION

	Delaware
W3GAU	112.333-50x-74-A-19
W3CK゙	$2 \mathrm{2}, \mathrm{x86}$-201-49-A-11
K3NMY	: $6.391-233.57-\mathrm{B}-12$
W3DR1)	$21.79 \times-173-63-\mathrm{B}-12$
WA3DITM	1.5.112-147-32-A-15
W:3IYE	14.766-107-48-A-9
W3.NNK	1350)-25-18-A-

faxtern Pennsylvania	
W3BES	153,144-714-7\%-A-24
k3MNJ	1:20,999-553-73-A-21
WASCQW	113.033-567-67-A-24
W3Gima	105, 15,5-507-70-A-20
K3GUV	9 9.560-50j-83-A-19
R゙3CQGQ 3	93.66x-453-69-A-24
h3TOF	911.576-448-6x-A-17
WASDCM	8K,784-4.52-64-A-24
WABCE,	71,082-361-68-A-19
K3DP'(62.985-324-65-A-21
K3BNS	60.705-429-71-B-22
K3H1Z	56.2U11-4113-6.9-B-16
k3P'SW	52,868-269-66-A-18
W36MIZ	$42.545-32 \mathrm{U}-67-\mathrm{B}-15$
W3.1WC	42.252-253-56-A-12
WABFte	12.210-340-63-3-21
W3kr	31.659-173-61-A-13
W3EAN	31).210-266-57-B-12
WA3DSZ	30,04()-220-44-A-10
WA3EVU	29,232-174-56-A-14
W3GRY	23.187-131-54-A- 9
W3BGN	20,664-161-42-A-
hzaco	1892011×-48-A-9
w3cer	16.014-157-51-B-10
WA3DNV	14.010-121-34-A-14
W3BUK	5640-80-29-B-4
kisgrs	$4 \times 115-80-31-8-8$
WA3BSC	3864-56-23-A-3
W30)	1998-37-18-A- ${ }^{\text {- }}$
W3KDF	1581-31-17-A-2
K3LBG	1075-5-5-A-1
W3EQA	B16-22-14-B-1
WA3GFZ	369-41-3-A-5
W3PNL	$75-5-5-\mathrm{A}-1$
WA3CMD	75- 5-5-A-
WABEMQ Gil- 10-2-A-6 WABEGD (4 oprs.)	

W3YP (5 oprs.) $111-272-47-A-24$
WABAAN (W8.010-265-68-B-21
WABAAN (WABSAAN HGX)

Maryland-D. C.	
W3GRF (K1	
D	
W3DP'	10
3EIS	9.9 .0515
Wa3ame	76,356-40
J\%	
WA3FHB	6צ,891-368
A3AUS	
WA3DS	59.400-3:30
W3.JPT	44,920-24
K3NPV	37.842-31
W3CSZ	36.423-214-
W3 ${ }^{\text {WMV }}$	24.559-169-
W3FYM	29,104-214-68-B-
3EF7	$2 \mathrm{~K}, 850-150-5$
W3HVM	$21,840-182-6)^{\prime}-\mathrm{B}-13$
3AXW	\% $1.294-169-63-\mathrm{B-9}$
3HRE	1.8.986-149-38-A-17
3 CY	
iv30T0	14.445-110-45-A-17
3MSR	1170
W3kDP	7245-69-3
3 McG	2887-38
W3'raz	1520-20-1
3 DVA	1351-13
WA3DNH	601- 20-1.
3UAE	495-15-11-A
W3ZKH (K3ESTM W3s TAIZ	

W3MVB (W3MIVB. W9SZR) WA3EPT (7 oprs.) $600-70-\mathrm{B}-23$ W3ADO (4 oprs.) | $62.136-432-72-B-24$ |
| :---: |
| opr. | 11)O-4 15-70-B-24 K3IVO (6 oprs.)

КЗАНВ (КЗАНВ 3L,995-197-54-A-19

Southern New Jersey

WA2BLV 101,008-46:3-7:2-A-20 W2ORA $80.64(0)-3 \times 5-70-A-24$

 $\begin{array}{ll}W B 2 B Y F & 54,549-277-66-A-21 \\ 4537-233-66-A-17\end{array}$ WB2CGW $\quad \begin{aligned} & \text { W. } \\ & 29,250-15()-65-A-16\end{aligned}$ $\begin{array}{ll}\text { K2ACGU } & 29.250-15(1)-65-A-16 \\ 25.610-197-65-B-16\end{array}$ W2QDY e3s, U110-195-59-R-15 K2CPR $\quad 22,750125-58-\mathrm{A}-11$ WA2DVU 21;240-177-60-B-10 WB2'EN/2
WB2UVB 19.836-174-3x-A-23 W2OWA 19,026-151-42-A-20 WB2FOM $16,254-197-42-\mathrm{H}-19$ W2LKO. W2QRJ W2DA. $W 2 P F Q$
W2ZUL W2ZUL
$W^{\prime} A Z B Z V$ NAZBEV WA2EAB W2 W EWN W2ITG K2IEO K2IEO WB2SCK
 WB2Z.JR $72.820-3+6-70-A-23$ WB2S WRP Z.JK) WB2CPS (K2YBN. WB2CPS) 1.4,352-151-48-B-17

[^20]K3FC
WASEK $\quad 4.5,000-250-60-A-20$ V3KGD W3hQD KTS1 WA3LinG WA3BRE WA3BRE W3NEAL V3NLU あるUとN い3WL゙ $1,013-217-63-A-20$
11,20 ค，4ン－1 1 1－5x－A－16 $24,336-169-72-\mathrm{B}-16$ 20，115－149－75－A－18 $14,580-110-45-A-12$ 13．2UY－119－37－A－20 $8743-89-29-4-5$
$: 500-75-36-B-5$ 5 （）25－67－25－A－16 WASCHU（4 opris．）
W ASHAE（1）：2UU－350－64－A－24 HMV）（V．3．484－212－57－B－24 VA3DE＇（WA3s BHN UE゙は＇）

CENTRAL DIVISION

lluinois

K9YNG $\quad 114,161-560-6 y-A-18$ WAYLVJ $104,319-520-67-A-20$ WYJCK GAYEUS いAYEUD Hylite いリC゙ZU WAYilvB IITikU WAYRJL WAJUTD WGKHV KYIDQ WAYU（SE：Y
WA9NWK $\mathbf{4 . 5 . 5 4 0 - 2 2 0 ゙ - 6 4 - A - 1 9}$ 1．Ayl K $+2.930-239-60-.2-23$ 1） $0,300-221-55-18$ Waym ：3，26t－200－56－1－15 WA9KAQ WYJJ＇ WA9FBC WAGNJB HyYD Ayyudo WAyHAI wagutif WAYQCH Wgous Wyy．ix WYJNY
WYVBV WGNLW
KYBQL WAYtikJ WAYHEU $81.156-4106-12-\mathrm{A}-24$ $6.581-386-67-A-16$ $75 . i 62-366-69-A-21$ 8：） $1 \angle 4-3 \angle+6(-1-21$ f3， $8 \times 5-310-70-1-23$ ij， $014-412-67-B-21$ $1,918-255-65-A-22$ 49，190－515－51－A－21 $4 \times, 10 J-25 J-65-A-20$ 4×．19ふ－277－5४－A－10
$45,540-220-n 4-.19$ 36，3UU－221－55－．1－18 32， $718-29=-57-\mathrm{H}-17$ $21,88 ช-160056-A-16$ $22.688-13 y-55-1-12$ $20,140-116-5.5-A-11$ $19.14 U-116-5.2-A-8$
$17.955-143-63-13-12$ 17，955－143－63－13－12 17，2リJ－120－4．5－A－13 $16,38(1-105-52-.4-12$
15,43 no－135－39－A－11
 $12,120-101-47-\lambda-1.3$ $1,468-81-35-10-10$
StuU－ $1-35-10$ 5510－70－31－A－4 480U－50－32－A－5 $4220-60-36-\mathrm{B}-6$ （multiopr．
1333，8Uリ－611－73－1－2：3 WA9NDK（WAYs NDK（UBND） W9EUN（7 oprs．）

51，054－387－67－B－22 WYBXU（WA9s K゙LU UNS） WA9NPS／9（kyUKど，

WAYNYO＇
TVA9TQW（WA 12－282－58－B－19
WN9UDX）590－206－52－A－94 WA9KVA（WAYy KVA HAN） 2－52－B－24

Indiana
WA9ITB（WA9NFS，opr．）

W9ZRX $111,8 ర ช-505-74-A-18$ 100，013－447－75－A－24 KyCDI $\quad 70,409-323-73-A-2:$

 WATWHN／9W9CUC $59,904-312-64-A-20$ WAYACRZ $\quad 35,400-25 U-63-A-14$ WA9SAIN $\because 3,379-242-59-H-13$ K9UBE $\because 2,54.3-222-34-A-17$ W9RDJ $\quad 18,144-168-54-\mathrm{B}-13$ WAGTJK \quad G1145－1U1－3U－A－1： W9．JVE $\quad 3820-110-31-B-4$ K9HE：K WGVDB WGDGA K9JKM $/ 9$ \＄18U－15－6－B－2 WYUFM1／ $756-21-12-\mathrm{A}-1$ WAYNPM（VA9s N1へI TKH

だisconsin

WYYT（K9KGA，our．）

179LBQ VYRGIN WAGJVY W9GAV W9agE゙しく WGYKJ WVASO WA9HCZ WGZHE KYHねR WAGNSR E9VU．J W゙gUNQ WA911RK WGNYJ

47．298－664－74－A－21 $+2,75!-676-70-A-24$
$35,576-616-73-4-24$ $35.576-616-73-A-24$
$6(1), 40-321)-6.3-4-16$ $61,480-3211-6.1-A-16$
$55,168-296-61-A-18$ $55,168-296-61-A-18$
$44,68 U-312-70-B-2 U$ $+4,68(39-212-70-B-20$
$+4,239-2.50-5 K-A-20$ $4, .65-218-65-A-18$ 31），733－18x－53－A－18 30．4＋77－199－51－4－24 ：x，6UU－221－65－B－ 9 $1 \times, 136-119-48-A-12$ $13,168-104-39-A-8$
$10,388-106-49-8-10$ 93xt－64－52－A－18 $7446-73-34-A-6$
$6991117-20-A-7$

DELTA DIVISION

WA5RTG WASQR＇ rkansas $45,14: 3-233-65-\mathrm{A}-16$
$37,982-225-57-\mathrm{A}-15$ $7122-225-57-A-15$
$710-80-30-A-10$ Liouisiana W5VFAIU 166．14U－789－71－A－24 91，9i4－6＋1）－72－B－24 WA5L（iO 103．275－459－75－A－21

＂CLEAN SWEEP＂HONOR ROLL

Worked All 75 Multipliers

Phone：W2RLM WA2BVU W4KFC K5AEU K5IIN WA5CBE WA5LGO WGTZN WAGIVN WB6WEG W7BUN WA7FFU KSHZU WA8MCR KgDVZ W9JCK Wa9ITB WOIYH WOSOZ WAdCHH＊WAgSDC

C．W．：K1EUF W1BIH W1EOB W1TS WA1DJG W1BGD／2 W＇2SZ＊Ǩ3HTZ W3BES W3DPJ W3GHM WA3EPT＊ KtAEV K 4 BAI K゙せCG KtVDL＊W4DVT W4FRO W4KFC W4MCM W4NQA W4PTR WA4UBH／4 K2EIU／5 K5LZ（）＊ К6aEH W6RW K゙7CTI KīRAJ К7UKC WA7CSK KishFP Kisun．Wssh wsun W9YT WaøkXJ WagSDC
＊multioperator

DAKOTA DIVISION

 AI innesotaWAOKDS WAtIBEQ WgRYM
WAgJKC WAgJKT
WbIVZ WAUQAK
KGBF＇T 99．671－484－69－A－22 86，184－400－72－A－24 79，853－413－65－A－22 85，637－334－68－A－24
$49,093-319-64-\mathrm{B}$ $49,093-349-69-\mathrm{B}-22$ 24，771－150－53－4－9 $74111-65-38-\lambda-7$ WADVWC／0 4176－87－16－A－9 WAgl WC／O 4176－87－
WUAA（WY＇KX．onr．）
W๒YUX $\quad 116: 39-27-19-A-6$ Wり1くJ 1601－14－6－8－2 WAbCJU（8 oprs， WDYC（5 oprs．）

North Dakota	
WOHEC（WAgHII，opr．）$154,505-719-73-\mathrm{A}-23$	
WVAGNTY	Y 75，275－376－67－A－24
WAgr＇K	（i）48，564－284－57－A－16
WAGLJM	1 28，305－1×5－51－A－17
K6F＇R1＇	12．168－105－39－4－12
WAyLJN	V 5856－ $\mathrm{H}^{(1-32-A-8}$
KgRsA ${ }^{\text {a }}$	（）1716－33－26
S＇uuth Dakota	
WAOCPX	X 110，947－551－67－A－21
にすぐうV	19，45＊－138－47－A－ 8
WADOMIL	L 4617－62－27－A－16
WAVQNIV	V 624－16－13－A－3
K゙のVVY（W8GKB，IVAOQCC） 167，112－775－73－A－24	
$\begin{gathered} \text { WOBXO (WAUS ARZ DNG } \\ \text { MWN } \\ 67,600-373-60-A-22 \end{gathered}$	

 WA5AMAD $34,733-211-55-A-23$ W5（2］＇s $\quad 31,92(1-191)-56-A-16$ W5JFB $\quad .5 .480-165-51-A-6$ | Mississippi | |
| :--- | ---: |
| K5IIN | $102,(175-681-75-\mathrm{B}-24$ |
| K5．AEU | $85.575-575-75-\mathrm{B}-18$ |
| K 5 SVC | | 8．5．575－575－75－B－18

$76.212-438-58-A-14$

Tennessce

167．610－7．58－74－A－24

W4NQE $\quad 5+60 J-28: 1-70-A-21$

WB4CXM
5．182－78－32－A－6
VATYNE 2754－51－18－A－4
WA4ZUI 300－10－10－4－15
W4（）DR（WA1EVN WBGEIU WADAKF）
WA4UCE $\left(\begin{array}{c}58,145 \\ 5\end{array}\right.$
WB4EHK（WB4s EHK FNN）
2550－51－25－B－16

GREAT LAKES DIVISION

Kentucky
K4RZK
WA＋JAZ
W4CVI
W4NWT
W4K7F
WB4HTQ

54．769－4 15－72－B－24 55． $460-392-7(1-B-14$ 5i），932－229－7：3－A－1．5 $49.72)-2: 32-70-A-23$
$11 . \times 81-93-39-A-11$ 11． $881-93-39-A-11$
9241－82－38－A－

KHIIA／4 WB4AXQ
WA WA4SNS
WAHZIR WA4ZIR
WHLDL

2795－42－23－A－4 $792-4+18-A-4$ $756-19-14-A-3$
$663-17-13-A-1$ $600-25-12-\mathrm{B}-1$

AItchtoan

FSBZU $1+9.163-660-75-A-23$
 $10,517-52(1)-71-A-24$
$31,273-368-65-.1--20$ 69，34U－34（1）67－A－20 62，125－451－71－B－23 54，378－06：73－A－24
 49，57 $2-36$ í－68－B－20 47，286－22：－71－A－18 47，286－222－71－A－18 35， $772-172-67-\mathrm{A}-17$ 35．772－172－67－A－17 $35.256-105-6+-1-14$ 21，3 $24-24+4: 2-\mathrm{B}-11$ $20,880-1 \times 3-5 \times-\mathrm{B}-7$ 15，872－1：4－64－B－ 8 $14,670-163-3(1-1-19$ $11.4 \cup U-11+5 i-H-13$ $6090-70-2 y-1-2$ 5175－7U－25－A－5 $376 U-4 U-23-A-5$
$3212-73-22-B-5$ $3212-73-22-B-5$
$2862-53-27-B-8$ $2862-53-21-\mathrm{B}-8$
$1733-2 x-21-1-4$ $1733-2 x-21-A-4$
$1486-20-y-A-7$ $1486-2 U-9-A-7$
$1125-25-15-A-3$ $160-242-14-B-3$
$300-10-10-1-1$ WYV1＇ W४UWG WA8RUJ W3＇BF／8 kstivj W8QQL
WAKGGN
WYELE／
W8DQL W४DUS
W8TWA／8 WAXVVU WYMF hVAFOKO WARBKPE HABKML W8NBN WASNICG WAXADAM WYYVWY WAYVGQ $300-10-10-1-$
WAXSKG
GU－
W－A－ WAXLAY（IV8CRP，WAठS LAY UCW） 60．480－280－72－A－21 K8HKM（K8HKM，W8TJN） WA8LBH／8（multiopr．） WA8FVD（ WA
VE3DOA）
21，656－184－67－B－17 Ohto
K8DOC（WA8LEO，opr．）
W8ILC $\quad 77,707-8 \pm 1-71-A-24$ WAYMCR 146，913－651－74－4－24 WA૪MCR 146，913－651－75－A－21 WYAEL $135,420-610-74-A-21$ W8QXC \quad Y3， $807-419-74-A-2$ WASRWU $81.342-36 \times-73-A-20$ WA甘＇ZA $81,282-437-62-A-20$ K४BYS $77,800-4(1)-64-A-10$ W8BPA $\quad 77.800-40(0-6-A-10$ KXEHU WYHSK WA8TKW W8SU8
WAIXO KXBSNI VABUQE W8YBU W8WDU WA8SLW WAXVGK
KYRNK
W8CEA
WYVQI
W8TAI
W8UPH
W8DVV
W8HQE
K8GVK
WABVE
W8LHV
WA8TKM
W8U8F
WABFBZ
W8FFK
WABCXV
W४OYI
WAXCWD
W81C8
WAYAIQP
WAYSif WAYZCC W8ETU ト४EKG WA\＆UHN WAYJUT WYDLE W8UYL
W8NHO
W8IDMI
WABEVA
KXISO
WABZUK
W8VYU
WAXI＇LL
WYIJZ
K8NEB
W8BMI
WA8FZS
$17.880-419-60-A-24$
$70,720-332-7 U-A-23$
62，38U－341－6U－A－19 $49.647-247-67-A-18$ $49,446-246-67-\lambda-19$ $4 \times, 606-225-71-A-15$ $47,88 \mathrm{U}-33 \mathrm{U}-71-\mathrm{B}-1$ 47，637－237－67－A－18 46，647－219－71－A－21 $44,313-264-55-4-22$ 43，875－225－6．5－A－20 $43.578-269-54-A-24$ $42,102-26 U-53-A-13$
$40,187-185-73-A-13$ 39，544－176－73－A－13 ：37，401－275－68－R－2． 36．326－194－61－A－17 KisGWD WAY＇YF W\＆ENH W8EXI KXHED W8GME WAXNYS WXAEB K8C：QA W8TWJ
WA
WRCN WYYOR VABIGD
KASEV IVABSCZ WA WSCZ W＇AXNYV WA8SGV WA甘LIVH W8MIOH WANWSP W8＇TNF k81Is VVABVBV
$2.08 x-77-72-B-7$ $1.920-1194-35-.4-15$ 0．750－130－25－A－12 （70X－64－44－A－6 $7830-87-30-A-4$ $6630-65-34-A-6$ $6515-64-35-A-6$ 6612－87－38－B－ 6200－65－40－A－7 $1594-62-29-A-5$
$42-25-4$ 3564－ $50-24-A-4$ 3264－ $58-24-\mathrm{A}-6$ $220-37-24-\mathrm{B}-:$ $924-37-20-\mathrm{A}-3$ 824－38－24－B－4 $1750-25-10-\mathrm{A}-$ $408-32-22-\mathrm{B}-2$
$405-46-3-4-16$ 1405－46－3－A－16 $1) 77-26-1-\mathrm{A}-8$
$986-29-17-\mathrm{B}-6$ $986-29-17-\mathrm{B}-6$
$675-25-9-\mathrm{A}-3$ $675-25-9-A-3$
$405-15-9-A-3$
1110 111－37－1－A－
81－$\quad 9-3-A-$ $12-\quad$ B－ $1-\mathrm{H}-$
$3-1-1-A-$ K8WBL（4 oprs 69，510－499－70－B－2： W8EDU（ 6 oprs．） 56，1000－415－88－B－24 WA8IXI／8（8 oprs．）
N8GYG（Kis） $11.610-130-45-\mathrm{B}-7$

HUDSON DIVISION

Fastern New York

 W1BGD／2 72．62U－380－63－A－11 K＇2UAR／2 $50,268-285-54-A-24$ WCHES WB2UUD WB2ELEZ 29．484－182－54－A－14 WB2RUU 23．2： $2 \mathrm{U}-1 \times 0-43-\mathrm{A}-13$ WB2YILW2IP 7161－77－31－A－ WB21．XB $1425-25-19-A-4$
$360-15-12-\mathrm{B}$ W＇2SZ（7 oprs．）
につRDMI（F．Y，860－473－69－B－24 56．680－447－65－B－24 W2KGY（7 oprs．）
W2AEE（WA28 BNK INN） 15．545－121－43－A－1
New チoot C＇ity－long I sland W2RLM $1 \times 9.550-849-7.5-. A-24$ WARBVU $154.238-690-75-A-24$ W＇A2F＇S $\quad \underset{W}{ } 9,970-637-70-B-24$ WB2ZI＇$\quad \begin{array}{ll}4.9() 4-443-64-A-24 \\ \text { WA2OLB } & 62370-330-63-A-20\end{array}$ W2AJR（WAVUWA，opr．）
W：2LEJ \＆1．846－343－61－B－2 WB2Y．JZ 38．115－231－55－A－24 WB2UZU 32．712－18K－58－A－15 WB2YKL U6． $100-150-58-A-18$ 6． $100-150-58-A-18$ V2ZVBM ， 1．16U－120－56－A－16 $19,476-149-62-B-10$
$1 \times .840-15(4)-4()-A-18$ K2RAR 17．192－154－56－B－8 IVB2VIA $\begin{array}{ll}\text { WB2AIJD } & 702(1)-78-30-A-6 \\ \text { WB2 } 82 Z & 6816-77-32-A-6\end{array}$ 6816－77－32－A－ 6 WA2ALC $\quad 4526-74-31-B-15$ WB2R（SV 2160－4．5－16－A－8 $\begin{array}{ll}\text { WN2DBA } & 1434-64-7-A-17 \\ \text { IVB2HTIV } & 1380-19-10-B-3\end{array}$ WB2HTW $1: 38(0-19-10-\mathrm{B}-$ W2TUK 105()$-25-14-A-$
$1023-3-3-A-$
 $\begin{array}{ll}W B 2 N F & 240-10-8-A- \\ \text { WUNB } & 1211-11-4-A- \\ 6 & 36-5-4-B-\end{array}$ $\begin{array}{lc}\text { K2HGR } & 36-5-4-\mathrm{B}- \\ \text { WB2OLD } & 10-3-3-\mathrm{B}-\end{array}$ WB2VYM（WB2s MVA

VYM VZC）
WB2UIY 101．760－530－64－A－24 IY（VB28 UMY Z．GG） WB2ZAB（WB2s ZAB ZQE） WA2PXB（41．62U－316－65－A－22 WA2PXB（4 oprs．）
v2DSC（W $5,600-458-60-B-24$ W2DSC（WA2s AN＇1 UNC） WB2UNT（wB2s AGH （IN＇）24，040－177－55－A－18 WB2UOA（WB2s UOA JDB） 16，667－139－4 1－A－12

Northetn Ncw Jersey

 IVB2SSZ 116．513－605－65－A－20 W2JKH 87，296－646－67－B－24 W2NNL W2DNJ WB2WIX W2VE WB2UAQ WB2KNN WB2RKK WARANAI F3VN／W゙2WB2ZC1 WRQFQ W＇2QFQ HB2YLC 6．500－375－68－A－20 2．252－336－72－A－19 $43,66{ }^{6} 1-371-59-\mathrm{B}-1$ 25．984－2（）5－64－B－16 21．204－186－38－A－24 17．760－186－38－A－2 17，URH－1 1 1－53－B－1 16．06（）－146－55－B－13 $16.060-148-55-\mathrm{B}-13$
$15.415-155-31-\mathrm{A}-13$ $1 \because, 460-135-48-\mathrm{B}-14$ 1． $5.530-135-26-A-13$

VB2ZCJ 11．125－125－27－．A－13 WIBIE 72．388－331－72－． WB2TIY WB2JYA VB2LUV HB2Q（iB 10．120－110－46－R－ ．348－66－27－A－4 610（）－75－34－B－5 4051）－5（1－27－A－3 2205－35－21－A－ 3 WB2YBE（WB2KKK．opr．） 142め－ $3 \dot{4}-14-A-1$ W2CiLQ／2（4 oprs．） WB2IILH（WB．2s HLH HMIS） 56．476－276－67－A－18

MIDWEST DIVISION
lova
FAOLJW 1307．28－636－72－A． 4 WAØOTE KOYVU WA日PUJ WADKXS WADKXS
WOIYH WA日P＇TV WAØJSD

KyRNZ WGECV／D WAULGis VA9KDJ WADPGI WUS1＇F WULXA VAysRZ

IVAgEMIS VOQW8 KøDEQ WODEQ KOVVH／0 E日REV KDFCW KøJPL WりSOZ WAのPFU KOETY WyDSW VADPUL WAりCHH WAøJBY
WOZLN

WAgHBX

ห（V） $125.542-611-68-4-23$ $\begin{array}{lr}\text { KgCVA } & 121,764-8: 34-73-\mathrm{B}-22 \\ \mathrm{~F} \text { 2LFA } & 60.522-450-66-\mathrm{B}-14\end{array}$ $\begin{array}{ll}\text { KGVVO } & \mathbf{4 5}, 504-320-72-\mathrm{B}-19\end{array}$ WAOGVJ $30,600-170-6(1)-A-8$ WADOPQ WAyKAQ／ 1
KOOUF $\quad 12.160-94-40-A-11$

NEW ENGLAND

DIVISION

Connecticut
K1HTV
W1CBM
W1CNY＊
10x，676－5（）1－72－A－24 KT7MF 27：265－4 $115-71-A-24$ 84．214－414－67－A－23

WIAKR／1 WADPBR WA1FGN Walwju K1LWC WAIIED K1MOT WA1DJG $5:, 02 \dot{0}-437-60-B-13$ 411，455－220－62－A－1K 34， $\mathbf{3 4} 7-291-39-A-24$ 32， 256 －2 $24-4 \mathrm{H}-\mathrm{A}-12$ $2.545-167-45-A-12$ $2,313-21+53-\mathrm{B}-1 \times$ $14,184-99-48-A-G$
$10.824-123-44-B-10$ $10.824-123-44-B-10$
$6(145-65-31-A-4$ $61145-65-31-\mathrm{A}-4$
$11145-3-3-\mathrm{A}-1$ 1145－5－3－A－ （K1s WIM YXK） WA1C．JE（WAis CIJECYT）
$15.210-130-39-$
1fassachusetts

astern 11.	
$\begin{aligned} & \text { KIKNI } \\ & \text { WAIEOT } \end{aligned}$	91,825-435-70-
WA1FZK	42，770－3：3： $65-\mathrm{B}-16$
WAlHRG	31，266－195－54－A－17
	30．739－266－59－B－23
K17RG	25，821－151－57－4－13
WLP「，	7181－ Ct －43－ $\mathrm{B}-9$
W1EIC	5560－611－3x－B－10
W1RPF	528（）－55－32－
WALZEW／1	1 47（14－50－32－．A－10
ふこ．1JA	627－19－11－A－
W1KBN（4	oprs．） $95.77 \pi-483-67-A-23$
W1FW（5 oprs．）	
	（t）
WA1FMM（WAIS FMM HES）	
	29，253－200－49－A－16
	Maine
1GAX	55，94＊－395－71－H－16
hlvidu	－1，22\％－174－61－B－12
WICEJ	¢400－1（）（）－47－R－8
W1DI8	2704－52
New Hampshire	
W1BUT	47，411－432－55－B－19
WA1HXH	11．736－163－24－A－12
Ihnode Island	
W1YNP 100．232－75．5－67－B－20	
WA1FNK	49，860－277－6）－A－19
K1kYI 45，933－251－61－A－23	
ぶ1HAO 39，564－314－6：3－B－24	
WA1EEJ	11．488－152－23－A－111
KiYDA 090）（132－2．5－A－11	
WAIGND	3692－71－26－B－10

W9BLQ／1 Vermont 1 1－1－B－1

Westcrn Massachusetts	
K1KNQ	98．601－476－69－A－23
KlKDF	S7．536－436－67－A－24
K1DGQ	48，39：3－2x 3 －57－A－21
WA1GIH	21．242－14．5－49－A－12
W1EOB	17．464－9x－56－A－ 8
W1YK（K18	THC）TK8．

WEOB $17.464-9 \times-56-A-8$ WIYK（K18 THC）TK8．

NORTHWESTERN DIVISION

Alaska

：33．8（0）－26U－85－B－14

Whether he＇s in lowa，Michigan，or Ouagadougou，enthusiastic WAøSDC can always be counted upon for a superlative performance in any con－ test．Tom（who formerly operated W8UM while at the University of Michigan）demonstrated his SS versa－

 K3DVS／6 \quad ifin－ $23-17-\mathrm{A}-3$ sian Joaquin Valley KGYNB／6 $118,114-5.3+74+-\mathrm{A}-21$ W6TZN 77.550 －517－75－B－24 W6HYK i612－31－26－B－3

Santa Clara Valley
WB6\％GJ $59,2293-442-67-\mathrm{B}-19$ WB6AIOE $22.272-193-58-\mathrm{B}-17$ $\begin{array}{ll}\text { W6ISQ } & 5310-59-45-B-7 \\ \text { WA6TZN } & 424-13-11-A-2\end{array}$ K6LY（5 oprs．

81．622－565－74－B－24

ROANOKE DIVISION

N4NQA \quad North Carolina WA4FFW $56.780-427-68-\mathrm{B}-21$ WA4IWE $31.584-189-58-\mathrm{A}-19$ K4EOF $2!.448-98-71-\mathrm{A}-14$

South Carntina		
K4WJT	$193,918-870-74-A-24$	
W4YDD	$108.524-517-71-A-19$	

V＇irginia
W4BVV $112.887-512-74-\mathrm{A}-19$
K4CG（K3WUW，opr．）
W4KFC $111.528-776-72-\mathrm{B}-24$
W4KFC 106,9011$)-706-75-\mathrm{B}-20$
K4CGR $\quad 93.820-442-70-4-19$
K4CGC $\quad 92,556-429-72-A-23$

W4DKU
V4ZM
K4VDL
WYGY
40RO
W4．IVN
K4ZA
W3IZI／4
W4WBC
K4AEV
K 4 ASU
W4MO
W4 1
K 4 JQO
K4CFB
WB4 W
WAF
WAYKC
W4Y7C
WB4BTIJ
$\begin{array}{ll}\text { WA2ULIL／4 } & 1160-29-20-\mathrm{B}-4 \\ 1018-3-3-1\end{array}$
West Virotnia
FA8VQT 60．940－558－55－B－24
WABTVUR $\begin{array}{lr}\text { KABYG } & 88-102-2-4-10 \\ 2-2-B-1\end{array}$ 61．588－306－66－A－15 $51,084-2711-66-\mathrm{A}-19$ $33,06+-27(1-66-A-19$
$4 \times, 250-226-70-A-17$ 42， $2515-2288-60-\mathrm{A}-17$ 39．（）6（）－211－62－A－1． ： 36 26， $8250-161-66-5(0)-11$ 3．3，230－143－52－A－14 21．532－160－45－A－ 6 91）． $400-150-68-\mathrm{B}-6$ $20.224-180-54-\mathrm{B}-17$ $12: 218-92-45-\mathrm{A}-10$ $10.2811-129-40-8-12$
$4938-138-36-B-16$ ب93R－1：18－236－B－16 $9319-107-29-A--$
$9: 1620$ 9：162－100－46－B－6 8876－90－44－B－6 7095－22－11－A－3． $2: 54-49-23-\mathrm{B}-6$
$1160-29-20-\mathrm{B}-4$ －est Virginia

ROCKY MOUNTAIN DIVISION

Colorado
WAOCVS 148，355－702－71－A－23
kOJGF
WGEYY
W5NMILに WGNGVL W゙ひGVA
WUHEP／ WgATA $88.775-669-67-\mathrm{B}-16$
$54.492-3102-61-\mathrm{A}-17$ $54.992-3(1) 2-61-\mathrm{A}-17$
$15.616-87-56-\mathrm{A}-\times$ $15.616-87-56-A-\times$
$8992-74-36-A-{ }^{-1}$ $8992-7+36-A-5$
$4154-67-31-\mathrm{B}-6$ ＋154－ $67-31-\mathrm{B}-6$
$2565-45-19-\mathrm{A}-6$

New Mexico
WA5QJQ W5MYA WA51＇OK k5STL

K7R．1．J
W7GXC
WA7AUW A7HQU／7 WA7HQU）
WA7EVI（W5．205－311－70－A－24 A7s EVI GQD） 25．3（1）－176－5（）－B－22
Wyomino
WA7EWC W7TSA
WA7DNZ $99 .(187-463-71-A-24$
$44, \times 56-405-56-B-18$ $44,856-4105-56-\mathrm{B}-16$
$8991-81-37-\mathrm{A}-3$

K゙HIMG 171 prs．） 19．58（）－181－55－B－12 WHSVX（K4GLE，W4SVX WA4COD）

16，072－185－49－B－21

réeroia

K4BAI $137.944-635-72-\mathrm{A}-24$
WBEDVWD $120,8555-589-70-A-15$
K4RIN \quad S6．（1） 1 H－3．39－52－A－15
WB＋AEJR／4 52，740－293－60－．1－17
$\begin{array}{ll}\text { WB＋AJR／4 } & \text { 16，952－161－52－B－} 9 \\ \text { K4PIA } & 4959-57-29-A-5\end{array}$ K4PIA

4959－57－29－A． 5
WB4ISG $3712-58-32-B-3$
KYYSG
WB4FWK） $77.72+3 \times 3 \times-68-A-24$ WR4EMF（WB4N EMF GDQ）
WB4FAM／4（W＋WKP．
WB4FAM1 1158－34－17－B－3
W＇cstern l＇lorida
WA4VIY 57，960－415－70－B－24 WA4EPH 20（0）－4（1－25－B－4 W AtECY（4 oprs．）
$83,785-644-65-B-24$

KP4BJD B7，728－505－68－B－20

WAOG（具）
$22.275-165-45-\mathrm{A}-13$

SOUTHEASTERN DIVISION

Alabama

W4USM
W4AKS
W4DN
W4ZNI WA4QVQ
K4IKR
W4NLI
W4NLI
WA4RBE
WB4EOW
WB4BNO
39，367－203－63－A－9 28．275－192－50－． $4-13$ 2：3．272－128－58－A－11 $18.492-134-69-\mathrm{B}-13$ 16．146－104－52－A－12 $15.444-99-52-A-6$ $15.180-110-46-A-4$
3864－43－23－A－ 4
（WB48 BNO RNP）
60，882－280－73－A－24

KZ5FX

Canal Zone

47，817－255－63－A－－

WVA4PXP 174．886－798－73－A－24 W4PZV（WA48VO，opr．）
WA4VLQ WA4 LFP
WA WA4VBN WA4UF W4ILE

75．516－5711－78－A－24 76．582－371－68－A－2．3 65． $189-363-61-\mathrm{A}-20$
$58,080-305-64-\mathrm{A}-15$ $58 .(180-305-64-A-15$
$55.068-354-52-4-1 \times$ $55.068-35+-52-A-1 \times$
$4884-64-38-B-16$ 297－11－9－A－1

SOUTHWWESTERN

 DIVISION
Arizona

K7PXI 114，099－521－73－A－22

 W7FCD $33,174-194-57-A-10$ $\begin{array}{lr}\text { WOHNF／7 } & 9177-81-38-A-6 \\ \text { WA7EREE } & 2040-34-20-4-1\end{array}$ios Anoeles
WB6HGU 107，139－507－71－A－24
WB6YKM 94，424－642－74－B－24
WB6UEF $72,863-364-67-A-24$
WB6KPN 67，001－356－63－A－22
$\begin{array}{ll}\mathrm{K} 6 \mathrm{YFZ} & 62,928-305-R 9-1-17 \\ \mathrm{~K} 6 \mathrm{BEP} & +464(1)-242-62-\mathrm{A}-22\end{array}$
K6BEP $\quad+4,6411-242-\mathrm{B} 2-\mathrm{A}-22$
WB6TSN（K6OIZ，opr．）
W6SBR $\quad \begin{aligned} & 22.792-206-56-B-14 \\ & 21: 218-136-52-A-14 ~\end{aligned}$
$\begin{array}{ll}\text { W6SBB } & 21.216-136-5: 2-A-14 \\ \text { WB6TVH } & 2,727-141-49-A-24\end{array}$
WB6．JOI
W6EIG
WB6ROR
W60YR
WGQYR，
WBGZEP，
WABSTJ
WABST．
K6CFG
WB6ARH
WA6RQQ
$20,727-141-49-A-24$
$16,832-116-49-A-13$ 13．745－94－49－4－9 12．771－99－4：3－A－13 $\begin{array}{r}2.7() 4-119-34-B-5 \\ \hline\end{array}$ $7440-8(1-31-\mathrm{A}-9$ $7161-77-31-\mathrm{A}-9$
$4752-73-33-\mathrm{B}-11$ $4752-73-33-B-11$
$34.56-49-24-A-5$ $2553-37-23-A=-$

Orange
UGJD／6 151．416－701－72－A－24 WB6ITDC $99,980-49$（J－68－A－22 W＇B6WEG 89，213－399－75－4－211 WB6FCR 63．05k－339－62－A－23 WA6WFW 16．335－149－55－B－18 WB6YPK（W6DLE，WB6s WHEKZID） 78，660－380－69－1－12 San 1）iego
K6JLJ 21，709－117－59－A－12
Santa Barbara
W6RFU（WB6DPV．onr．）
38，38U－270－6×－B－14 W6GEB $17,316-111-52-A-$ W6BHZ（WA7CWMI，opr．） 11，880－90－45－A－12

WEST GULE DIVISION

Northern Tcxas

K5RHZ WA5CBE WA5LUM W5TMZ K A5QXD W5BWK WA5NGH W5Qciz W1ZGH／5 K5WIQ／5 WA5QQQ VFA5QEZ

68．276－758－74－A－22 $+4.788-64+75-.4-24$
$94,470-770-70-4-23$ 4．973－509－63－A－2 $\times 6.940-621-70-\mathrm{B}-21$ 66，980－502－64－B－24 63，44ก－522－61－B－24 62，937－335－6：3－A－22 58．500－300－65－1－21 3i．432－199－65－A－－ 3．342－199－18－A－ 6 WA5S C 2 （2 Q QQRR） VA5s PPG GFFiZ） 38．830－353－55－B－23
Oklahoma
K5JIT 5．5，965－288－65－1－19 K5HWO $1275-38-17-\mathrm{B}-5$ （WA5s GIQ RMMF）
$37,497-221-58-A-24$
Southern Texas
K2EIU／5 132，202－591－74－A－24 K5ATT \quad K7，888－304－64－A－1．3 WA．5SFO $31,311-215-49-1-18$ K5JCC $\quad 24,675-239-35-4-5$ WASAOI $22,278-159-47-A-6$ WA4YPM $/ 5$

18．750－188－50）－B－16 WB2LZF／5 9916－74－67－B－13 WA5GZX（WA5s GZX QVE RLZ）\quad（0，174－384－61－A－23

CANADIAN

DIVISION
Marttlme
VEIAPP
4726－46－27－A－9

Here＇s a talented trio of Californian SSers．Air Force Capt KøGJD／6（upper left）piloted＇his Swan 400，TA－33 and V－4－6 vertical to a supersonic victory in the A3 mission John soared over the opposition with 700 two－ways 151 K ，and highest altitude in both Orange and the South－ western Division．（Yes，W3－—，there is an Orange Section．）．．．Contest QSOs from San Joaquin Valley are seldom plentiful，but this year K6YNB／6 and Fresno＇s W6TZN（bottom left）handed out a total of more than 1050 exchanges during the voice weekend．One of 21 mikesmen to cross off all 75 on the multiplier list，Art became a firm believer in transceive operation as a result of his Sweepstakes doings．

WA6IVN totaled 1456 contacts and 300,000 points for two weekends＇ work－which，may we say，is making hay in a big way in East Bay．Steve，who pleads for an end to unnecessary repetition of preamble info on c．w．，utilized a Gonset GSB－100 transmitter to pump r．f．into a TH6－DX at 78 feet， 40 －meter rotary dipole up 65 feet，and an 80－meter wire vertical．

VEINV (V	$\begin{aligned} & \text { E1s AKW NV) } \\ & 52,650-411-65-B-23 \end{aligned}$
	Quebec
YF2BMS	75，028－398－62－A－21
VELWA	558－16－12－A－ 1
	Ontario
VEREVZ	46．045－231－65－A－16
3 C3ES	29，382－166－59－A－ 8
3C3CKW	13，630－145－47－B－10
VE3GLZ	7980－86－35－A－6
VE3DPG	7752－69－38－A－B
VFSBDMU	3872－88－22－B－
VE3EZM	3－1－1－A－1
	Maniloba
VE4SD	57，392－434－68－B－20
3045	20，706－179－58－B－15
VFi4UM（8 oprs．）	
	34.6 Јj－313－66－B－24
Saskatchewan	
VE5US（VE5DK．opr．）	
	151，626－686－74－A－24
305 TO	21，988－132－53－A－21
	A Lberta
VE6AGV	34，580－266－65－B－16
VEBMA	29，621－4（）3－49－A－13
British C＇olumbia	
VE7EH	63，28（）－452－70－B－18
V H7BAV	7278－79－27－A－22
Yukon－Northwest Territorics	
3C8BB	19， 488 －192－52－B－17

C．W．Scores

ATLANTIC DIVISION
 W3IYE $\quad 4,3,120-308-70-\mathrm{B}-16$ K3COO $\quad 33,940-219-61-\mathrm{A}-12$ W3DRD W3NNK $19,575-135-58-A-13$
$10,335-106-39-A-17$

Eastern Pennsulvanta

W3BES 128．813－687－75－A－24 W3YUW $114.6 \mathrm{US}-623-74-\mathrm{A}-23$ W3GHM 101，313－535－75－A－22 WSNOH F3MNJ W3BGN WABDSZ WA3DCM h3HTZ W3KDF

WSISEE
 WSBIP

 WA3A＇TX／3W3MWC
W3K＇T K3LWR／3 W3EER WABCEJ KJMCO IV3EAN WAJEG． WA3GAT WABENY W3CGB V3CGB WSMPX KJRFB W3INH k3FSV WA3GLX $12,275-110-41-\mathrm{A}-7$ W3EQA 10，140－108－39－A－14 W3DVC WA3LPR
WN3HOM／3

	6145－7t－28－
WA3EMO	6130－77－27－A－8
W3GOR	$5475-73-30-\mathrm{A}$
F3EUR	5325－71－30－A
W3ADE	4756－82－2y－B－6
WA3ABN	＋165－60－28－A－19
W3BUR	4125－50－25
WN3HMU	3760－51－24－A－24
WA3CTW	3476－52－27－A－7
K3HNP	3378－52
K3SXR	2S28－39－29
¢	2375－50
WA3GM8．	216x－51－17－
W NSIPE	2125－48－20－A
K3LBG	$21112-29-19-\mathrm{B}$
K3ZOL	15．51）－31－21）－A－
WN3HYJ	1238－31－14－A－
W3STA	1200－30－20－8－
WSCJEI	108）－27－16－A－
W3CxO	11880－31）－18
h3DPQ／3	65010 － 21 －13－A
WA3CMD	601 －19－13－A
W N3IQU	385 －16－11－A－19
WA3DNV	315－15－9－A－
W3PNL	150－10－6－A－
K3P8W	23－33－3－A－

W3YP（4 oprs．）

> W3GRF W3CRE W3AEL W3JXS W3MF．1／3 V3CSZ W3AXW W3TMZ K3JYZ
K3TVF K3TVF W3AFMI
W3FYS WA3GZM WA3DYW W3MCG W3RNY
W3EFZ W3EFZ WABAMH K3CYA W3MNE
WA3GMC WA3GUI W3K1UP WIQMM／3 W3TN W3KMV
WABGAU
WA3HAN
W32CB

W3DYA 2540－28－22－A－5 WA3DNH $1178-31-19-\mathrm{B}-10$

WN3IMG（ivN3s
1×76－44－19－A－12
Maryland－D．C.
K4GSU／3 $131.123-720$
W3EIS $131.323-72(2)-73-A-24$ W3M8R W3AZD（KJOAE，opr．）
$\begin{array}{ll}\text { WA3HKF } & 4719-77-25-A-9 \\ 4219-53-25-A-22\end{array}$

WA3GFN（8 oprs．）
W3DVO（117．250－621－75－A－24 WDVO．W9SZR）
W3AVB（W3AIVVB，WA 1－73－B－24

WB2OYE／2
WB2YCH WA2PCW WA2BEX WA2BPH WA2BPH W2＇TFI． WB2SMID W28EI WA2UXZ K2khi W2DJSW W2GB WB2ZVQ
W2D1Z W2D1Z W2LY
WA2AIV WB2VVW WB2YQO W2PDS WB27CC
$W^{W} \mathrm{~N}_{2} \mathrm{CAL}^{1}$
W2ZCZ
W2Z等
WN2ZOW
$W N 2 A Y H$
WN2AWX
W1BUS／2
K2UAN
WN2BSG 0，559－385－63－A－23 56，875－350－65－A－20 $36,653-273-54-A-2.2$
$36,225-230-63-A-10$ 35， $1225-230-637-57-A-10$ $53,930-247-57-A-1$
$32-A-21$ $33,930-261-52-A-21$
$32,940-2161-61-A-20$ $31,123-211-59-A-19$ $37,123-211-59-A-19$
$27.859-221-51-A-14$ $7,530-140-70-\mathrm{B}-1$ $21,945-154-57-\mathrm{A}-10$ $1,315-203-42-\mathrm{A}-15$
$1 \times 696-165-57-\mathrm{B}-9$ $1 \times, 696-165-57-\mathrm{B}-9$
$14,040-160-45-\mathrm{B}-1$ $14,040-160-45-\mathrm{B}-1$
$13,50(0) 120-45-\mathrm{A}-1$ $1,270-98-46-\mathrm{A}-18$
$7995-82-39-\mathrm{A}-8$ $7995-82-39-A-8$
$81000-100-24-A-9$ $81000-100-24-A-9$
$4880-61-32-A-20$ $488 U-61-32-A-20$
$4030-820-26-A-13$ $3300-62-26-A-13$
$330-22-A-$ $3500-80-22-A-$
$30-26-\mathrm{A}-3$ 3250－ $50-26-\mathrm{A}-\mathrm{B}$ 2356－42－19－B－ $52-25-\mathrm{B}-20$ 058－ 26 2－18－ $18-24$ 144（1）－32－14－A－ 1375－ $12-18-\mathrm{A}-1$ 170－26－18－A－14 1040－26－18－A－14 $618-19-1: 3-\mathrm{A}-9$
$399-15-11-\mathrm{A}-4$ $330-12-8-A-3$ 175－14－ $5-\mathrm{A}-15$ WA2CZQ 10－4－4－B－ W2－ $25,200-210-60-\mathrm{B}-21$ W2TOP（W2TOP WA2CUZ WA2BCI（WA2BCI，WB2

Southern Newo Jersey		TVestern Pennsylvanta
		$B \perp E 104,443-571-73-$
WB2TEN	92．440－508－72	104
W2HDW		WA31XN 1013
WB2MOQ	75，140－442－68－A－21	K3KMO 78.0
WA2BLV	70．125－425－68－A－－	W 2 KAT 35
	61．425－351－70－A－23	W3LMM 45
$2 \mathrm{CPR}$	41，42．5－231－70－A－14	W3NEM
K2AGU	27，720－199－70－3－12	W3KQD
W2EBW	24，650－213－58－B－22	WA3GNR 23.430
		ト33FCK 19．4
	21，	RZE 10
W	18．49x－151－49－A－17	WABCiPK
K2brC	16，125－150－43－A－15	K3UGM
WB2VHO	18，100－184－35－A－18	WA3GZQ 1200－
WB28CK	16．048－131－4．4－A－13	K3HXK 1080－
K2BG	13．950－140－50－B－9	WA3CQG／3 935－
WB2UEY	10，413－119－35－A－21	K3CFA
HB2ZEU	$71120-108-26-\mathrm{A}-15$	W A3HM
WB2ZPB	$5135-79-26-A-14$ $+756-829-24-\mathrm{B}-2$	A3HAL（ $4: 9.34-204-59$
$21 E 0$	$4740-79-24-A-6$	

CENTRAL DIVISION

lutnots

W9LKJ 124．921－687－73－A－23 W9．JCK 1．14，333－6233－73－A－24 WA9HEU 106，215－582－73－A－23 W9NPC 92．288－535－69－A－2 W9YYG 84，952－574－74－B－23 KYTKT（K9UIY，opr．） B8，580－383－72－A－22 63， 496 －378－67－A－23 $59,438-425-55-A-2$ 56，605－337－66－A－2

DIVISION LEADERS

Phone			C．W．	
Sinole Operator	M ultioperator		Sinole Operator	Multioperator
W3GRF	W3ZEH	Atlantic	K4GSU／3	WA3EPT
WA9ITB－	WA9HEU	Central	W9YT	W9JDJ
WめHSC	KøVVY	Takota	WADHYI	kbVVY
K4PUZ	W4ODR	Delta	K4PUZ	WA4UCE
K8DOC	K81VBL	Great Lakes	K8UDJ	K8BFT
W2RLM	WB2VYM	Mudson	W1BGD／2	W2SZ
WAgEMS	W．${ }^{\text {W }}$（ ${ }^{\text {a }}$	Midwest	WAgSDC	K゙りGXR
K1LPL	W1KBN	New England	K1LPL	KIDFC
W7BUN	WA7BKW	Northwestern	K7CTI	W7TRE
WA6IVN	K6LY	Pacific	WA6IVN	WB6QIT
K4WJT	．．．．．．	Roanoke	W4BVV	K4VDL
WAgCVS	WA7HQU／7	Rocky Mountain	WAgCVS	
WA4PXP	W．44ECY	Southeastern	K4BAI	WA4UBH／4
KyGJD／6	W136YPX	Southwestern	W6RW	WB6NWK
k5RHZ	WA5GZX	West Gulf	K2EIU／5	K5LZO
VE5US	VEINV	Canadian	VE5US	VE3EZM

K9DWG W．A9NWK WAYになる W9KOI WYC；F＇F WAGMIMT WYRC．J WA9QBAI に！！）MIV WA9R．TL WA9SLM Y．9RE WA9UOS WA9TAAK wior W． 9 9QQR －9EFC F9FPG WA9．IIS WgidiAI WAGRFE W9C）WM W．i9QMB layvir によएDB／9 iv Agsvir W＇AGVPD WA9RPD W9．JJN WVgULIt W9YAC W9VBV VNGUTTQ
WN9VQF VA9klu W9EUN（4 oprs．）
（70－$\quad 3-4-1-17$
 WA9RDX（WÄ9s KVA RXX）

7972－8：3－42－B－ 5 － $146-79-3: 3-A-16$ 15：31－54－32－A－17 406．3－64－26－A－1 3375－511－27－A－12 110．5－46－27－A－22 231－40－19－A－14 $641): 37-2$. 6＋1－32－ $3-\mathrm{A}-$ 4 oprs．）
19，392－20．3－48－B－17

DAKOTA DIVISION

Iinneenota
WGAA（WOCKX，upr．）
に゙けZNE S．，449－160－71－A－20 VA夕LKLL 76．631－4B3－67－A－23 VGUJL 76．41א－445－69－A－21

WAOKDS

WOIYP
KOCNP
WAGPRT
WULAJ WUS＇AN WNORAG VNosEN $74.520-418-72-A-24$
$64.571-342-67-A-20$ 6．3． $054-439-71-\mathrm{B}-24$ $15,975-142-+5-A-7$ 13，600－160－34－A－21 $1.340-110 x-42-A-8$
$8800-100-44-B-7$ 41）－1＋－12－A－3 WNGRIVI 10－ $2-3-A-$ WA WAOCJU（ 6 oprs．）
WNORVN（5 OMrs．）

WA9ITB WAYAIIN G9CUY ¿GMIMII －9J（0） VA91：HR／9 Wocrer 19DGA W＇A9NXY G9FICK
に9TKAI／9
V9RDJ IORD WMNO／ب WN9UJB W＇isconsin
W9YT（kyZ NiS，upr．）
WYRGM $1: 34,583-743-75-1-24$
 VI9NVY 6 1． V19．JGO 57．600－32＇）－72－A－19 V91＇JT $55,625-38 \cdot 2-73-\mathrm{R}-22$ VAGFRS \ddagger R，935－3（1）－63－A－－ W9NUW（WAGRAK uDr，

VA9HCZ W9GOC（W $\mathbf{1 9 \mathrm { LB }} \mathrm{N}$ ．onr
38.48()$-170-64-A-12$ WA9NSR WA9AICC いo
KGGDF
WA9SQN

F4UWH WHYVYL W＋1）RT WAtZUI WB4DAN
WBtFNN WB＋FNN WATUCE $51,000-30(1)-68-A--2$
$37.193-259-58-A-2$. （5B）U－66－40－A－5 5895－67－36－A－16 $+1150-710-30-8-8$ $39110)-6(1-26-A-8$
$650-23-13-A-7$ oprs．）
$32,450-275-59-\mathrm{B}-24$
GRFET DIVISION

kitntucky

W4CVI

 WB4AIN／4 WAtUAZ f． $4 \mathrm{LIA} / 4$ W．iliAF W4YDL WA4UII WB4BESOWA4SMI W゙4NWT $\mathrm{K}+\mathrm{YZU}$ WB＋FOT W．41DL 83，6U：3－447－74－A－22 56，4311－3＋2－66－A－2．3 $+4.90-184-65-1-12$ 29．625－167－50－A－19 $18.976-163-47-A-1: 3$ $16,932-173-51-\mathrm{B}-16$
 S45－57－34－A－5 $2351)-27-20-4-4$
23 $195\left(1-39-2.5-\mathrm{B}-\frac{-}{5}\right.$
$1750-35-20-A-1$ 1750－35－2（1）－A－5 210－12－7－A－1

Michroan

K88UD．J（KyMFO，opr．）
 WとTIM（W8C（C）N，0pr．3－75－A－24

 V8SH（ 120．90J－8（16－75－B－24 ZND，opr．）VYDDL 14y，183－6t1－75－A－24 W8CRD 89，63 ज． 8 V1＇\quad ช9．113－591－70－A－23 W8L＇GW（WA甘RSD，opr．） WA8LWK $\quad \mathbf{7}: 365-4+4-67-A-22$ WA8UNNZ $64.040-399-64-A-15$ WА甘MAM 6：3，5：38－4（1）2－6：3－A－24 WABKAIE $62.305-366-67-A-24$ W8FFNN $53.544-338-65-A-24$ W8HFNI（WAX（2AF，U॥r．）
KRHKMI $\quad 51,120-286-72-A-23$ Kメ11ZU 19，685－301－66－A－15 W8ELLE／8 $3 \times, 837-275-71-\mathrm{B}-20$ W8：HV［T 27．41：3－215－51－A－11 WABOFW WABACO W8DOI W8T．JQ W8Msk WABUSU W8EGI WAXUNLL
WAXVRB W\＆JUP WN४VJT
KYETU KXETU
WYSSS Wと8N10D WABUPU K゙×BGZ WNXIOQ WRVW
WRRFN
 Z（DR） $5950-70-34-i-19$ WABRWL（multiopr．）

W8QKQ
WRCJUH
W8AEB WA8ZGC W8OY゙I
W8E゙IU WBEIJ F甘RMK K8NGB
WABLVT WBLA： Y 8 H W8BHSK W8HSK KREHU WA8OCG WA8TWC
（1）hio
110，774－60．3－73－A－24 （11．，．35－558－73－．4－24 97，36（1－529－73－A－22 8．305－567－68－A－24 $92.30(1-520-71-\mathrm{A}-19$ 87．685－475－73－A－2 86．250－51）2－69－A－24 85．085－505－67－A－2： 4．3533－489－69－A－2． 1．560－1．52－6．3－． $1-1$ ． $813-429-65-4-2$ 4.970 － ＋．965－451－52－ 63．2メ（1－318－72－A－2 6．3．28（1）－34B－72－A－23 6．3，135－4 $14-61-A-24$
62．583－357－69－4－2 6．583－3．57－69－A－2：3
$6=36(1-385-64-A-19$ 61． $46: 3-357-67-A-17$ 58，720－367－64－A－24

K8BPE W＇XUPH W88 WA每TYF WAXREN WABRIMN WXLHV WARRWU W8DWF W8囚Z Kxcien KXGVK W8VCII W8AIXO
W8WDU WYNIIO KXVAK
W8GOE WRFFK H8SWE WXYP「 WYYZ．JNI WABREN W8IDM KXIKO WARNX8 WARJUY KOKFP
K×BSAI WREXI WAYLWH WYVZE
WYNKR WYNWR WA8MIGD
WARVNU WAXVBV K甘KRN WAXUY゙ WREDU（

WA8MICR
W8YME
W8KMF
WAXKKN W8GFH
WASGRR WASGRR WYICS WABRJA WABGYT W8ENE W8ELCX WABRZD WABCIVIA W． WAXOPD KXKEG KYSEV VABRXA WN8WGX WKWPC
KRBF7 WNBWYW W8VDF WN8YYV WANSLW WARVB WAREY WARZDF WN8YRV WN8YJG
WNXYIN WNIHINQ／8 WA8NVW． K४BFT（k8s BGY－ $1-5-A-x$

54，750－300－73－1－14 $51,040-417-60-8-21$ $4 \times, 914-333-74-B-21$ $4.632-3.50-67-R-14$
$43,240-321-66-B-14$ $43,20(1)-270-64-A-20$ $+3.713-255-67-\mathrm{A}-16$ $4.529-300-71-\mathrm{B}-20$ $+1.063-245-73-A-17$ $411,45.5-30 \times-6.5-\mathrm{B}-15$ 411，10（1－2．31）－6K－A－17 $39,5711-266-58-A-17$ 39．125－25（）－61－A－2 36，228－231－61－A－21 3：3．51）－250－67－R－20 29，869－205－59－A－13 $2 \times, 581-204-55-\mathrm{A}-18$ $2 \times .557-252-57-\mathrm{B}-23$ $28.28 \times-185-59-A-16$
$25.76+227-57-B-14$ $25,750-165-60-14$ $25,750-165-60-A-12$
4
$4,795-171-58-A-15$ ＋，375－150－65－A－15 23，165－1711－52－A－ 9 23．165－171－52－A－-7 2． $2: 815-169-54-A-19$ 21，18 2 －162－5（）－A－12 2（1，140－132－58－A－ 19．89．5－174－46－A－19 19．759－175－43－A－13 $19.360-1: 36-54-4-20$ $1 \times .750-100-75-\mathrm{A}-14$ 17．8U（）－15（）－56－B－$=$ $17 .+15-129-54-A-10$
$16.675-145-46-A-1.3$ 16，6055－122－52－A－14

WB2YBQ	7000－75－32－A－
WA：BHN	3410－44－21－A－4
WN2BNDI	：315．5－51－26－A－10
WN2BR1	1475－20－10－4－12
W2FSL	975－26－15－4－5
WN2BHK	735－22－14－A－11
WB2UHZ	494－19－13－3－1
WN2（）RW	45－6－3－4－
K2hCiE	10－2－2－A－
WB2tITD	10－2－2－A－
W2SZ（5 opr	

New York City－Long 1 sland WVGGGE 98．272－666－74－B－23 W2A．JR（IVA2U WA，onr．）
に2ZYR 78． $744-55-71-A-24$
VB2F゙AJ＊4， 00 ）－100－64－A－2．
WA2KSD WVG2KZ WB2YYKL
W2ZV V2ZV WB2SEQ W2IIG W2IIG WB2BCI W2HAE WB2U．JS WB2ROV W2UAL K2HGR WH2QIL
IVAZURD VA2URD VB2VFF W2LIA WB2WXR VB2WXP WN2ARD V2OH27 IVB2H1R WB2H1R IVN2ZW＇
 VB2ZAR VB2VIA W2UNS V2TNI WB2TTZU WB2BF！ WB2UZX WB2OLD WNZAVX WB2AXH WB2YCC

VB2RKK
WH2NZU $\checkmark 2 C O R$ VB2TFK
IVB2SSZ WAンASM W $\mathrm{F} 2 . \mathrm{JYM}$ WB2RJJ
WB2UEK WB2YEW WAONOH／2

WV2DMIJ WB2ZCI W2GBY WB2ZSH V2WE W2ECO IVB2QQU WVIBZ W2IBZ W．2FIVZ W2OPE WB2NSV OSBIV VIZEP WB2OHK W2VJN V2ABL WN2ANI： W2CIY WN2AXY W＇2JKH VN2AMM WN2CHJ W＇2LRO K3PL．J／2 W2M1PP WN2BRW

WB2VTAI WB2s HLH HME） WB28 H LE1
i $4,6+(1-373-72-B-22$
VB2s YCC YKU 35．630－255－56－A－24

Northern New Jersey $53,76()-420-64-A-17$ 39．836－3266－71－B－1 39．836－266－73－B－12 47，240－176－62－4－20 27．070－158－62－4－2 3．5，530－181－52－A－12 $23,530-181-52-1-12$
$2(1.273-159-57-4-16$ 17，425－206－．34－A－19 16，875－150－45－A－ 12，095－118－41－A－1 11，869－106－45－A－ 10， $051-45-43-A-14$ $8625-115-30-A-14$

$8265-123-27-A-11$ 811メ－1） 70ก（）－ $10(0-24-A-16$ 8107－10（1－31－B－ 6 560n－ $80-28-A-12$ 4900－7（0）－24－A－10 $4089-71-29-\mathrm{B}-6$ 4088－67－30－4－16 3800）－ $5^{\prime} 1-2 x-B-6$ 444－48－29－A－7 3063－49－25－A－14 1775－＋2－21－A－11 | $275-35-25-A-11$ |
| :--- |
| $5-A-11$ | $125-35-15-A-11$

$1152-32-1 \times-8-3$ 11563－25－17－A－ 1 $\times 2.5-311-11-4-=$ 5．53－17－13－A－7 $375-15-10-A-4$ $193-11-7-A-2$
$176-11-8-\mathrm{B}$ 176－11－ $\mathrm{K}-\mathrm{B}-2$ 83－6－6－A－4 $96,030-5: 34-72-A-2:$
$91,263-5222070-A-24$ $91,263-522=70-A-24$
$89,750-5111-71-A-23$ $76.466-493-63-A-23$
$75.464-417-73-A-2.2$ 65．464－4 17－73－A－2
$72.1(1)(1)-40(1)-4-24$ 72，00（）－40（1）－72－A－24
64．790－43（）－62－A－15 $6+.790-430-62-A-15$
$61.450-391-62-A-21$ $61,450-391-62-A-21$
$55,913-355-63-A-17$ $55,913-355-6.3-A-17$
$35,438-3.5-65-4-17$ $37,89(0-264-56-A-16$
$: 37,500-30()-50-A-19$

32．463－245－53－A－19

 30， $80(1)-193-64-A-9$ 27，355－2．51－42－A－15 $24: 38(1-184-53-A-16$ $21,130-245-33-4-17$ 15．813－128－5（1－． $4-16$ $15.210-117-52-A-15$$14.125-150-35-1-2$. $13.725-150-35-A-22$
$13.21(1)-A-18$ $13,750-11(1-5()-A-1:$
$13,090-154-34-A-9$ $13,090-154-34-A-9$
$12.250-70-7()-A-11$ 10．125－150－27－A－11 84（） $15115-2 \times-B-6$ $6(011-1010-24-A-17$
$6(1)$ 54（））－9（1）－30－H－ 7 $5400-911-21-\mathrm{A}-6$
$4608-82-22-\mathrm{B}-\mathrm{S}$ 4464－9：3－24－B－ $4332-57-38-\mathrm{B}-4$ ＋185－62－27－A－19 330）－55－3（）－B－7 2588 －46－23－A－16 2375－6：3－19－B－ 3 237（1－4（1－24－A－7 1995－38－21－A－ $1710-36-19-A-2$
$1705-31-22-4-3$ $1705-31-22-4-3$
$633-2: 5-11-4-2$ 635－17－14－A－

QSO LEADERS （Single－operator）			
ItWJT	870	WSUM	806
W2RLM	849	KlLPL	761
K8DOC	841	W9YT	743
l゙øCVA	834	W6RW	724
K1LPL	819	K4GSU／3	720
WAOSDC	805	W1BGD／2	711
WA4PX゙P	798	WA9ITB	707
W A6IVN	793	WIMİ	699
W5WMU	7 89	K2EIU／5	690
K．UKC	786	K．1PUZ	689

F3VN／W2 72－6－B－B－3 KIMOT WVHDT（ 5 oprs i－ $1-1-A-1$ W1BIII 625，975－377－70－A－24 WA1D．IC： W2GI，Q／2（5 oprs．）
W2BSC（WA2HLH．WB2CRR）

MIDWEST DIVISION

Lowa
IVAOSDC
 VA6K WAGSSD WhQVA WAgQY
WGYSE Wも．J＇T＇C WOTLA WNGQND
WWQZR／G WADRJ $122,875-652-75-4-23$
$83,60(0-473-70-A-18$ 83，60（）－473－7（）－A－18 67．825－4＋7－75－B－24
$27,825-210-53-4-16$ 18， $20 J-210-53-4-16$ $18,8 U J-2()(1-47-B-9$
$14.331-119-45-A-20$ $4.331-119-4.5-A-20$
$8009-75-43-A-11$ $8009-75-4.3-A-11$
$5694-73-39-\mathrm{B}-9$ 36：7（）－55－24－A－10 $327(1)-55-24-A-10$
$31561-47-21-A-18$ 183x－35－21－A－13 KGGXR（KوGXR．V $5 \mathrm{~L}, \underset{Z}{\mathrm{Z}}$ ） WOGHZ（4 oprs．）

KดBWI KけPVV KUKED
WUYRN WAgKDJ VA 9 L に

Kansas

3x，28（1－24（）－66－A－16 8．800－161－47－A－18 6．680－162－49－B－11 Y22．5－91）－4 1－A－13
fR（1）－ $66-35-A-7$ 64（）४－52－52－B－ к37MII，opr．）

WUQQQ（5 oprs．） 3094－50－25－A－4
～イ． 07 2－246－58－B－15

KOJPL ivbolvs KめISEQ WAGELM WQKCG
K6JPL Kめ．JPL VADPUL VAbLJV WNもRVR KVIGR
WNOQR WAGl＇FU WOQEV（5 oprs

66，$+09-391-67-A-24$ WりEFF（WA＠S（XIILKI QXÖ） 5t．736－394－72－B－23
vøULO ．Vebraska
$\begin{array}{lr}\text { WAUGVJ } & 41.95(1-260-63-A-4 \\ \text { KUUAL } & 3565-46-31-4-4 \\ \text { KGODF } & 2: 38.3-27-19-A-3\end{array}$

NEW ENGLAND DIVISION

Connecticut

W1FCA

 W1CSMK1．JHK
17．18（1－6：32－74－A－24 97.67()$-565-68-\mathrm{A}-23$ 67．184－494－68－8－18 64，00n－4（）$)-6.3-A-20$

That proud smile belongs to Larry，WA3BLE，c．w．winner for WPa after a furious struggle with K3HKK and WA3IXN －would you believe three 100 K －plus scores from that section？BLE did the trick with a DX－60，Drake 2B，TH6－DX， inverted vee，and a dipole．You＇ll be hearing him from Lehigh University next year．

Eastern Massachusetts
W1MX（K3QDD，opr．）

KIGAX 29．915－19：3－62－A－9 $\begin{array}{lr}\text { W1GKJ } & 13.440-140-4 \times-\mathrm{B}-7 \\ \text { WIKDN } 1 & 32-4-4-\mathrm{B}-1\end{array}$

New Hampshire．
W 1 DXB 5×．82：3－357－66－4－22 WIEEF $3,52(1)-451-6(1-\mathrm{B}-23$ W1BU＇T 1： $052-131-46-8-8$ IVA1FCN X：305－76－44－A－1 K305－76－44－A－1
3） 1 B3－ $511-25-A-8$ 1725－31－2：3－A－ 4

Rhode Island
K1LPL 138．883－761－73－．A－24 W1KMV（KlJYN，opr． （1） WAIFNK $4: 701-2 \times 0-61-A-24$ W1FIR $\quad \therefore 1 \mathrm{~T}, 921$－2：30－56－A－19 GITAV $918 \times-105-35-A-12$ KIYDA \quad Y67 $1-1(122-34-A-13$ $\begin{array}{ll}\text { WA1HBG } & 1 \times()(1)-4(1)-1 K-A-9 \\ \text { WA1GND } & 124()-31-2()-B-9\end{array}$ Fermont
WA1FXU $34.716-289-66-B-18$ WYBT．$/ 1$ 32，98K－2177－6．5－A－14 VIPPEG 13，563－157－4．5－A－12

Western ．Has．sachusetts
W 1EOB $101,875-538-75-4-22$ K1KDP 60，210－3：35－72－A－24 VIEZD 47．232－369－64－B－1．5 VNIHHA1 $18.59(0)-1511-52-A-1$ K1DGQ 1838－35－21－A－： WNGVKN；1 1823－2．4－14－A－ WN1HFF 3（4－16－$-4-4$ KIDFC（K1DFC，WA1FEH） WAIHEC（4 oprs． 22，968－20（）－58－B－23

NORTHWESTERN

 DIVISION
．A laska

KL7JDO $3 \times .354-255-61-A-15$ 38．052－302－63－B－12

Missouri＇s 13－year－old WNøRVR breezing along on a TO keyer en route to 5,950 Sweepstakes points．Tom＇s FB setup also includes a Drake 2NT transmitter，2C receiver and a 14 AVQ vertical．

KL7FRZ KL7EWA Kl．7AIZ（厅	15．520－134－55－8－20）	WN7HPK	2073－33－13－．－ 17
	11，98＊－115－54－B－15	WATEYN	1657－39－17－A－16
	5 oprs．）	W7DRA	14！6－2！－21－A－5
	50．317－378－67－B－24	WA7GLC	1403－26－22－A－7
		K7RSB	1350－27－20－A－ 8
W7IUOK7CLC	1 daho	W＇TEVT	1250－25－20－．-3
	5）．49（）－312－66－A－24	W7BUN	3－1－1－A－1
	13．536－111－49－A－6		

PACIFIC DIVISION

WAbATY／7
KTLTV 77 22．545－167－54－A－13
WATBQS $450-15-12-A-2$

F7BPR $9+.276-530-71-A-24$
K7WWR 708（）－76－32－A－－
WA7DGF $\quad 1460-37-20-\mathrm{B}-8$
WA7HGD $48 \times 17-13-A-8$
58，658－：362－6R－A－23
－ashington
K7UKC $93,656-504-75$
K7ETZ
K7EXT
WTGYF
WA7CSK
WA7FOE
WTIETJ
WA7CXD
W77ZOI
W7ERH
K7VPF
K7BFL
Einst Bay
VA6IVN 121，268－66：3－74－A－24
K6AUD $\quad 46.901-28(1) 67-A-17$ KABXI $\quad 15.608-371-64-\mathrm{B}-22$ $\begin{array}{ll}\text { WB6FTTY } & 10.975-248-65-4-24 \\ \text { WB6BBC } & 34,650-220-63-A-24\end{array}$ $\begin{array}{lr}\text { WB6BBC } & 34,650-220-63-A-24 \\ \text { K6LRN } & 213-\quad 0-4-4-2 \\ 166 F A R & 3-1-A-1\end{array}$ WN6WFN（WN6S WFN YA－B） 1418－35－18－4－9

Harrait
$\mathrm{KH} 6 \mathrm{IJ} \quad 80,24()-591)-68-\mathrm{B}-18$
WA7GCY
Nevada
14．548－137－46－A－2
$93,6565-504-75-\mathrm{A}-24$
$61,132-45: 3-68-\mathrm{B}-19$
Sactamento Valley
W6NKR 65．213－353－74－A－21
W6EGK $\quad 51,405-34 א-6 y-A-20$ WA6JDT $19,415-127-5 \times-A-12$ 8075－85－3X－A－ 9
San Francisco 47，508－3221－74－B－20 35．720－218－64－A－19
san Joaguin Valley 15．180－132－50－A－2．2

It looks as if K8MFO，operator of K8UDJ during the A1 event，is trying to tell us something about the key to a clean sweep．Don obviously knows whereof he speaks， since he got all 75 ，plus the Michigan winner＇s certificate， in a close race with W8UM and W8SH．All three lads made the sweep：could it be something in that bracing Michigan air？

> 路

WB6RSS $14,025-128-44-A-15$ WN8YCD（WN8s YCD YCE） $\begin{array}{lr}\text { W6BYH } & 10.238-41-45-A-7 \\ \text { WB6AICA } & 6.48 U-81-32-A-19\end{array}$

Santa Člara l＇alley
KfFBB $110,980-608-73-.4-24$ K6QEZ（WA6AMIW．Opr．）
－ $\mathrm{A}-24$ $96,915-549-71-A-24$
$32, \times 15-253-63-\mathrm{B}-24$ $\begin{array}{ll}\text { WA6LAA } & 32,815-253-63-B-24 \\ \text { WAG＇YN } & 25,296-172-59-A-13\end{array}$ $\begin{array}{ll}W A 6 T Z N & 25,296-172-59-A-13 \\ W 6 G J V & 23 \\ W\end{array}$ WN6YNK $\quad 5 \times 6 \times-62-33-A-2$ WB6AIG WB6QIT（4 oprs．）

8（），808－546－74－B－2 K6LY（4 oprs．）

B4．440－449－72－B－24

ROANOKE DIVISION

North Carolina

W4NQA 98， $475-653-75-\mathrm{B}-23$ K4NPE $\quad 97,108-5212-74-\mathrm{A}-24$

 W $4+\mathrm{FFW} \quad 64.9+(3-3 \times 7-68-A-2$ K4FOF $\quad 59.625-3511-67-A-19$ W4VON $16,808-155-52-8-18$ KH6FUN／4 $14.606-143-41-A-19$ $\begin{array}{ll}\text { WA4WSU } & 9975-95-42-A-22 \\ \text { WB4BGL } & 4750-60-25-A-2\end{array}$ $\begin{array}{ll}\text { WB4BGL } & 4750-60-25-A-2 \\ \text { W4BNU } & 40(0)-50-30-4-7\end{array}$

WøQZR／ø had 35 contacts， 21 sections and 13 hours of fun with this mini－power rig．The transmitter consists of a 2N918 oscillator，2N918 doubler and 2N3866 final； the receiver is a Regency transistor converter working from a pocket radio；the antenna was a dipole taped to the ceiling．Soe＇s signal may not have been a rock－ crusher，but it was at least a stone－ grinder（No？How about a pebble－ pusher？）
SV4YGY 99，050－530－74－A－18 WOGKY／4 22， $875-150-61-A-16$ K4CG（K3WUW．opr．）WB4EOW His Н4DVT \quad Y6，30U－642－75－B－24 W4YFN 3063－33－25－A－ W4NH $\quad 77.62:-45(1-64-4-21$ WB4BNO（WA4RNP．

W4ZMI W4NNU W4DKU W4YGO K＋PQL W4TER W4YZC W2IWP／4 W4NHX K4CよFB W：3ZKH14 K4ORG W4KNV W4WBC W4MIOJ KHMXF
H＇B4DRD W．A4 W＇JJ WA4YOX W4LA（W4＇1 W4PNIK K4ARUV WN4GTG ${ }^{1}$ WN4GTG W4．JAT KHUYY
WBHOU K4VDL（ －2．968－423－69－A－18 $2.968-723-69-\lambda-20$
71.91()$-40(0)-72-A-22$ By，11．36－52 $1-66-\mathrm{B}-24$ $68.42+-410-67-\lambda-23$
$62,24(1-39: 3-64-A-24$ $62,24(1-39: 3-64-\mathrm{A}-24$
$\mathrm{fI}, 149-345-71-\mathrm{A}-20$ $61,149-345-71-A-20$
$53.159-373-56-A-18$ $49.725-3077-65-A-15$ $4 \times, 060-267-72-A-19$ $45.90(1)-3(1) 6-6()-.4-21$
$45.135-306-50-.4-18$ $45,135-3(16-59-4-18$ $4+, 330-252-71-A-23$
$41.391-332-63-B-21$ 41．391－3．32－63－B－21 35． $419-21911-65-A-18$ $31.74+248-64-B-16$ 31），55！J－24（0－6．5－B－2．3 $27,509-200-53-A-11$ 27，28（）－25（1）－44－4－23 2．313－125－65－A－15 WB4DVD．Opr．）
$20.055-191-42-$ A

WXHRQ WARPOS WAS＇TWR／8
WARRDW WXJWX WN8VLMI WA8UIS（W

K4VDL（K4VDU4－ $51-23-4-13$ 13．035－16．）

128，438－688－75－A－24
West 「＂irainia
（3） $92-33-4-10$ 9＋30－93－41－A－4 3520－94－4（1－8－6 －20） $450(51-32-A-18$ 5695－51－3 $3408-47-29-A-4$ DO4X－51－23－A－ $25.440-260-47-\mathrm{B}-9$
13，86（1－154－36 $12,100-122-46-4-13$
$11.6810-108$ $1.6611-106-44-4-13$
$1030-55-31-A-16$ 4030－55－31－A－16 A．3LAQ．Opr．）
$2200-4+-25-B-11$

ROCKY MOUNTAIN

DIVISION

Colorarto
VAOCVS 120．345－680－71－A－24 W5NMIL＇（）62，600－390－64－4－24 VETBHN／WO
KणEDG $\quad+1,974-270-63-A-21$ WOLBL $\quad 38,280-221-63-A-2.1$ WوKAU IR．18t－14R－52－R－6 HЮUAT $12.760-96-48-A-6$
 WgFEP 96－$\$-6-\mathrm{B}-1$

V5Q．TH 107．500－6（11－71－A－24 K5S＇1L $\quad 51.228-331-62-A-14$ VA5NHEK $4.715-271-66-A-23$ WA5ROU 1B．233－153－4．3－A－ $1.623-22-A-18$ trals
K7RAJ 117．438－625－75－A－24 W7（）I）M 110．760－626－71－A－24 $\begin{array}{lr}\text { K7VGW } & 20.719-169-51-A-15 \\ \text { WA7BSG } & 1829-20-17-A-1\end{array}$ IFyomeng
WA7EWC 63．813－377－67－A－23 W7TSNI $49,265-4 ; 3(1)-59-\mathrm{B}-21$ WA7CLF
W7HRNI
S7，320－227－64－A－14 $\begin{array}{ll}\text { W7HRN } & 4514-61-37-\mathrm{B}-6 \\ \text { KiBUVJ } 77 & 5299-47-29-1\end{array}$

SOUTHEASTERN

 DIVISION
tlabama

 Alabama104，3：3－559－74－A－23

$20,250-180-45-A-16$
ianal Zone
KZ5FX 72，870－529－70－B－13
Eastern Filorida
Ǩ4TIG／4 1U8，719－615－71－A－24 V4BRB $78.366-4+4-71-.4-22$
 $\begin{array}{ll}\text { W4 FRO } & 66,13!)-39(1)-68-A-24 \\ & 62,156-333-75-1\end{array}$ $\begin{array}{ll}\text { WALROW } & 62,156-333-75-1-22 \\ 43.291-245-59-1\end{array}$ WAtU1W 43．291－295－59－1－23
 W4HOS $\quad 14.89(1-113-52-A-\dot{4}$
 N＋71AZ $10.0155-8.8-58-.1-17$ $\mathrm{F} 41 \mathrm{LJ} \quad 75(\mathrm{~J}-75-4()-\mathrm{A}-6$ $\mathrm{K} 4 \mathrm{I} \mathrm{LG} \quad 5938-6: 3-38-A-$
$4 \times 40-5: 3-32-A-$ W4LE＇P WA4YNP $4 \times 1-19-11-A-12$ WNHFQK WA4OAB iWAtOAB，WB4B AMY CГC！
WA4RIJ（WA4RIJ 8．900－171－45－A－18 （1）P （PP FHA）
$15,708-155-51-\mathrm{B}-13$ ciamgia
K4BAI $\quad 118,18 \times-625-75-A-24$ K4RIN 101，561－558－73－A－24 $\begin{array}{ll}\text { K＋NCM } & \text { Y！} 1, \dot{B} U U-6(H-75-\mathrm{B}-24 \\ \mathrm{K}+\mathrm{PIA} & 38,974-272-54-4-15\end{array}$
 WN4FLC $114-\times x-7-A-7$ WA4UBH／4（WA4UBH，
WB4AJR）
WB4EMF（WB4S EMF GDQ） HB4s EMF GDQ）
$15.625-150-34-A-22$

WA4QPL (WA4VOA,
WN4FJ($)$
2438-5:3
Western. lelorida
WB4DUZ $23.595-226-5.5-\mathrm{B}-2$
WB4GYX $14.385-122-44-\mathrm{A}-1$
WA4ECY (WA2VIV
WB4HKM, WA9.J WI)

KV4AM $\begin{array}{r}\text { W'cst Indies } \\ 3312-72-23-B-4\end{array}$

	Atizona
W7EEE	118,165-639-73-1-23
W7FCD	28,215-199-57-A-12
W7KRW	3478-51-33-A- 4
WA7FCV	A78 DAZ F

WB6FTGU WGE.JJ WB6KPN WB6UHF VASBB

W6RCV WGUME

 W6LS (WBDDB $2.3 .798-171-57-\mathrm{A}-19$Һ6BEP $23.585-178-53-A-\overline{17}$

WB6KVA
WNBVXJ1
WBBICT
WBR7,FI k6CDW
WB6VVS
$3273-77-38-A-7$
$8275-37-\mathrm{A}-5$ R273- $57-37-\mathrm{A}-$
$5525-\mathrm{BF-34-}-7$
$5456-59$ $5+56-59-31-\mathrm{A}-$
$4 \times 88-5 \times-34-\mathrm{A}-$
 $\mathfrak{k 6 Y F Z}$
$1575-35-18-\mathrm{A}-15$
ioss Anocles
W6RW (W6DQX. opr.) K6AEH 123.156-661-75-1-24
85.470-581-74-B-24 75.790-416-72-A-24 70, $115-420-67-\mathrm{A}-24$ 58.123-347-67-A-24 $54.513-313-70-\mathrm{A}-15$
$32.915-247-52-\mathrm{A}-14$
$26,164-211-62-\mathrm{B}-17$ 2.3 798-171

WB6VBM $10-2=2-A-2$ VE1AE $13.065-134-39-A-17$
WB6NWK (WB6s NWK WB6NWK (WB6s NWK VE1AKA 6U4U-78-32-A-12 WB6RZH (WB6s RJH VFJ) WA6WZD (WA6s WOY W'LD) WB6WMT (HB 66 S PRA RGO WAIT) $22.880-208-55-\mathrm{B}-16$ WNGVOF (4 oprs.)
WN6WCS (WN6s WCS WQA)
WNGYUQ (WNBA YUP YUGQ)
VE3GCE 3C3ON VE3DGB
WB6NRK Orange
WB6WEG $\quad 74.983-4832-7()-A-21$
 $\begin{array}{ll}\text { WB6TYZ } & 15,100(120-47-\mathrm{A}-14 \\ \text { kBOVJ } & 13.380-113-48-\mathrm{A}-1.3\end{array}$

	Sin Diego
W6JVA	
K6CAG	$60.52828-342-71-A-15$
	$14,445-107-54-A-7$

W6GEB 75:004-407-73-A-23
W6BHZ (WA7CWMI, opr.)

$36,450-261-60-A--$	
WEST GULF	VE4EO
DIVISION	VE4YZ
Vorthern Tcxas	VE4AR
VE4UM (V	

19.500-196-40-A-24

Quebec

$91,125-515-70-\mathrm{A}-24$ 38.588 -221-70-A-13 .5.25-74-25-B-4

untario

61.58:3-357-69-A-21 43,555-2*2-62-A-1 $35.84(0-225-64-A-16$ $24.050-17158-A-14$ 24,650-17158-A-15 22,800-136-64-A-15 16.425-146-45-A-13 14.688-129-47-A- 8 $11,025-123-4.5-\mathrm{B}-9$ $10, \times 90-122-36-A-13$
$8559-85-41-4-11$ $8559-85-41-A-11$
$3900-58-20-A-8$ 1480-35-17-A- 4 1093- 23-19-A- 9 $200-10-8-A-2$
2035 56.610-3.38-68-A-24

Manitoba

16.445-158-44-A-16

B46-19-17-B-1
VE48 EIJI IAG)
42.903-352-63-B-20
K5RHZ
WA5CBE
W5DVF
W5QGZ

W50GZ $\quad 73.695-439-68-A-13$
WA5PQ1 60.235-354-66-A-23
W5ONL $45,8500-345-52-A-17$
K5YED $\quad 40.19+319-63-\mathrm{B}-22$
$\begin{array}{ll}\text { WA5RAI } & \text { in73- } 43 \text {-23-A-16 } \\ \text { WA5NHI } \\ \text { W10 }\end{array}$
WN5SXS 450-2(1)-10-A-12
WA5QEZ (IVA5s PPG QEZ)
K5OCX Oklahoma $\begin{aligned} & \text { 120,970-675-72-A-24 }\end{aligned}$

Southern Trexas		
K2EIU/5		
W5JAW		
W50.281-690-75-A-24		
W5,		

W5WQN $\quad 112,85(0-61.3-74-A-24$
$\begin{array}{lr}\text { KXIAE/5 } & 21.195-159-54-A-21 \\ \text { W5FLT } & 3675-56-28-A-10\end{array}$
$\begin{array}{lr}\text { W5FIT } & 3675-86-28-A-10 \\ \text { W5AR } & 2750-58-25-B-13\end{array}$
K5LZO (K5LZO, WA5LES)
125.550-848-75- B-21

CANADIAN
 DIVISION

.Maritime
saskatchewan
VE5US (VE5UF, opr.)

VE6ATH $36,359-225-63-A-15$
VE6VV
VEBFN
VE6A1A
VE6AUH
36,359-225-63-A-15
23.779-189-51-A-11
$23.684-151-47-A-12$
$3031-55-25-A-15$

British Columbin	
VETEH	73,225-449-7()-A-20
VETAX	68,000-400-68-A-24
VE7AC	$22.94 \times-185-59-\mathrm{B}-12$
VETBAV	2i. $560-155-56-\mathrm{A}-22$
VE7AGN	1760-32-22-A-9
VE7RZ	1105-3

Yukon-Northwest Territorics
3C8BB 57,915-353-66-A-23
Check logs: (Phone) W1AW (m altiopr.). WB2YBA W3AYS. WA9.JFU/8: ${ }^{(C) W}{ }^{(W)}$ W2DAIG, W2BLL, WB2VZV, W3AYS. K7GLD, WA9.JFU/8. WA9SYD.
VE1APP $27.198-237-46-A-13$
K7GLD, WA9.JFU/8. WA9SYD

LoStrays影

A contest without W9YT would be like a BPL listing without W3CUL. Operators K9KGA (left) and K9ZMS (right) wound up at the top of the Wisconsin heap on both phone and c.w., respectively, with the AI entry also high score among Central-Division competitors. The boys enjoyed the luxury of a photoelectric CQ-wheel and a voice
tape-ioop.

QST congratulates . . .

W. Walter Watts, W4VI, on his promotion to senior executive vice-president of RCA .
Paul Kinas, WN9VKF, on his appointment to the Merchant Marine Academy.
Frank A. Gunther, W2ALS, named President of the Armstrong Memorial Research Foundation.
Cho Yo-Sung, HM1AA, on receiving his doctorate in enuineering from Yale University.
Mary Stockstill, WB6SSZ, the first deaf-blind Novice, on receiving her Conditional Class license. Wayne E. Overbeck, K6YNB, appointed editor-in-chiei of the Daily Record-Gazette (Banning, (Calif.).
Stuart D. Cowan, W1RST, on publication of his boek (co-ituthored with Dr. W. R. Guild) Vigor for Men Orer 30.
Arthur K. Meen, VE3RX, ARRL Associate Counsel, on his election to the Ontario Provincial Parliament.
Dr. Harold Rosen, W5JKW, named "Edisull of spare" for his design of the Early Bird satellite.
Kenneth M. Gleszer, W1KAY, presented (Yonnecticut's special achievement award for service to the handicapped by Gorernor Dempsey.

CONDCTED BY GEORGE HART,* WINJM

Which Approach?

LAST month our lead dealt with the question of which mode to use in performing our public service communications. This month we deal with a subject much more basic, touching as it does on the very concept of public service and actually bringing up the possibility that our approach is basically wrong and has been all these vears.

It started with a letter from WØLIQ responding to our bit on "Whither Public Service?" which appeared in Oct., 1967, QST. The League, said WØLIQ, seems to be in a dilemma regarding arguments for "justifying" ham radio, having pushed the concept of public service for so long. The argument that public service is paramount, he contends, is losing ground rapidly.
"Most hams," he goes on, "conceive 'hamming' as a pastime game that does not include public service activity. This meaus that the game hamming and the game public service are in conflict if these are to occupy the same frequencies at the same time. It seems more reasonable for us to shift uur justification for ham radio to a more substantial and enduring base, and do a selling job that is easier to defend. Is not amateur radio a tremendous demonstration of civil and international freedom of speech? Do we not find the minds of our youth excited about their scientific futures by this fostering of their creativity? It seems to me that the public service responsibilities of ham radio are becoming a weak argument."

In connection with this same ARPSC lead we received a number of other letters, some of them agreeing heartily with the thought that in an emergency we shall always have to improvise, su why all the emphasis on preparedness? Now OM WGLIQ comes along with the suggestion that our basic approach is wrong, that if public service isn't popular, then we should push what amateurs are interested in doing, and ereate justification for doing it so that we may continue to occupy frequencies.

Admittedly, Roy's thought is somewhat revolutionary. It proposes, in effect, that the League devote its energies exclusively to what amateurs want, without any regard for what is really in the best interests of amateur radio as a whole, now and in the future. The latter, after all, could be a matter of opinion.

We suppose that from one standpoint it could he argued that democracy is based on popularity, either of an individual or an idea. But there is more to it than that - quite a bit more,

[^21]because enlightened people sometimes have a funny habit of voting for what they believe to be must bencficial for the whole, regardless of personal conveniences, aud elected officials very often exercise their judgment based on what they think is best, not solely on what they think their constituents would like most. If our founding fathers had taken the path of least resistance, we wouldn't be here today. 'True, they sometimes get the axe as a result, but you'd be surprised how many beneficial measures are put into effect this way.
So it seems to be a question of two different approaches. Either we amateurs base our efforts on what appears to be most bencficial, or we start with what is most popular and work to justify it as beneficial. Which approach should be used? A little of each, maybe? - W1NJM.

Preparedness Its Own End

In our ARPSC source material file we came across a memo from КØOAL, SEC Nebraska, with which he enclosed a note from a Nebraska amateur who volunteered to undertake an EC assignment. "At present," the uute said, "I am not a member of ARRL. I alsu do not know of any amateur here that is. But I will be glad to join . . . and help you get this under way."
We consider this a most admirable attitude, one which we wish more of our dedicated amateurs cuuld adopt. This particular a mateur didn't say he, or his local colleagues, were anti-ARRL in general, but it is implicit in his note. What is

Gettysburg, Pa., members of Adams County Amateur Radio Society are shown working on two 432-Mc. transceivers that will be used for emergency communications. Left to right are K3ONW, WA3ECI, K3EUG and W3DMV. Photo by W3KGN.

CD-85 is the form to use when reg. istering your net for the net directory. Don't have one? They're available from ARRL Headquarters. A facsimile can be used, just follow the form and refer to instructions elsewhere in this column.
Direct coverage...
Purpose of Net...NTS?..........
Liaisons..

Net Deaignation (if any)............Freq............Mgr................. (Call)
\qquad

Previously registered? . .Sukmitted by..
(Your call)
CD-85 (R664)
admirable is that despite this, he (and we hope at least some of his townspeople) wants to join the League so he can become EC and do a public service job which the League sponsors. Whatever it is that has turned him away from the League, it is not the public service program, which he considers necessary and beneficial and worthy of his support.

There are probably thousands of amateurs who stay out of the League because of one thing, for one reason, one incident. What is it? Incentive licensing? DXCC policy? QRM from League-sponsored contests? A sharp letter received from headquarters? Dislike for the current SCM or director? One such item (or even two) is hardly sufficient cause to withdraw or withhold support of all the other things the League does, many of which you must approve. Are you against public service? Don't you want the amateurs to be represented before FCC, at international allocations conferences? Are you upposed to the program of international good relations we are working so hard on?

No matter how hurt you have been at something the League has done, if you stop to think of it you will find the balance strongly in favor of support of the majority of its programs. It's axiomatic that we can't please everyone, that the League's policies and programs can't be 100% popular, but there are so many of them and they cover so many facets of the hobby that it's just as impossible to displease everyone, or even to displease anyone 100%, if he stops to think about it.

The Nebraska EC candidate stopped to think about it, and joined the League so he could take a job that is a lot of work and pays no money. We know he'll be a good EC because he will be critical and keep everyone on his toes, including his SEC, SCM and headquarters. We wish we had 1500 more like him. --W1NJM.

Trans Canada Net

In operation for the past five years, the Trans Canada Net, although not a part of the National Traffic System, is a part of the ARPSC family. It meets Sundays at 1800 GMT on $14,140 \mathrm{kc}$. There
are three net control stations: VE3FLG is Eastern NCS: VE4NN is Central NCS and net manager: VEGADI is Western NCS. The net is called at the appointed time by each NCS, a preamble read and a 15 -second pause for emergency traffic observed. Both formal and informal traffic are handled.

The net is called by VE call areas, in an order determined by the NCSs prior to net call-up time. In each call area, NCS will call for stations with traffic only. After all stations with traffic are in, these stations will be directed to call the station wanted. Stations thus put in contact will move to another frequency. When their tratfic is cleared, they return to net frequency. Only after all stations with traffic are cleared will the NCS call for check-in by other stations.

When checking in, stations state their calls, locations, and traffic, if any. They are then expected to remain in the net until excused by the NCS. No casual QSOing on the net frequency is permitted. At the close of the net, all NCS will make a closing statement.

That's the 'Trans Canada Net, gang. It's allCanadian from coast to coast, a modern version of old Trunk Line I.

Is Your Net Registered?

We expect that the 1968 edition of the Net Directory will be particularly valuable because of many net frequency changes as a result of the amateur regulations effective Nov. 22. There is also another change that is very significant and that is the widespread observance of the practice known as Daylight Savings Time.

Take a look at your 1967 Net Directory (only edition that has appeared on $81 / 2 \times 11$ sheets) and look up the date of last registration. If your net is properly listed and the date shown is Jul7 or as a squeaker Aug7, you need not make a new rexistration. Also, if you have sent in a registration after July 1967 and no changes have been made in time, frequency, etc., olease do not send a new registration at this time. Otherwise, now is the time to register in order to assure your net's appearance in the 1968 edition of the Net Directory.
There are five items required for a registration: (1) Name of net; (2) Frequency; (3) Day or days of the week per GMT; (4) Meeting time in GMT (followed by * if net meets one hour earlier during periods of daylight saving time); (5) Statement of the Public Scruice performed. Note that only nets operating in the amateur bands and rendering a public service are eligible for listing in the Net

Jim Benson, W8OUU, Ohio SEC, seated at his operating position. Note the control unit Jim built which contains antenna switch, rotator, timer and clock. The plywood cabinet is finished in maple to match living-room furniture; the inside panel and drop lid are covered in formica.

Directory. Please use the CD-85 Net Registration card (available from ARRL) or a reasonable facsimile for each net being registered. Incorrect or slonpy registrations, or those showing local time instead of GMT may result in your net appearing incorrectly or not at all. Please observe the following instructions when making your net registration.

1. Name of Nct. Write or type the name of your net exactly as you wish it to appear in the directory. We have found that some of the best nets are those with short, concise names. Please use abbreviations such as AREC, SSB, CD, FM, ARC, PON, etc.
2. Net Designation. Many nets have designations used in the call-up, or brief combination of letters, or numbers and letters, by which the net is generally known. If you have one, let us know. Examples are EAN for Eastern Area Net, M6TN for Michigan 6-Meter 'Traffic Net, etc.
3. Frcquency or frequencies in kc. If your net operates on more than oue frequency be sure to correlate them with the day and time. Frequency bands or segments are not sufficient.
4. Cull of Net Manajer. Just his call letters: if no official net manager, give the call of the amateur who can supply further information about the net. This is usually the call of the person who registers the net, or who should be making the registration.
5. Days. Tell us which dav of the week the net meets per GMT (Zulu) time. If the net meets daily, this is 365 days per year; if it meets Mon. thru Fri., put MI-F, etc. Be extra careful that the day is in GMT as well as the time e.g., if your net meets Sunday by local time at 2000 EST, enter Monday 0100Z).
6. Net starting time (s) and ending time or duration. All nets are registered in GMT only. If the net meeting time shifts an hour during periods of daylight savings time show this by an usterisk (*). If the time is shown in other than GMT, the net may not be listed. Instead of ending time, put the length of a typical directed net session in minutes, or the usual time the net is free for informals.
7. Dirct Coverage. The coverage area assigned the net (if part of a svstem) or the coverage provided by regular participants. Do not include cuverage provided by liaison with other nets. Use abbreviations where possible and if the net covers a county,
city or ARRL Section, show this. If vour net name includes the town name or county, simply show the ARRL Section or State, because this is usually more meaningful than a fortnote. National Traffic System nets have definite boundaries which are well known so do not jeopardize listing as NTS by showing coverage that is contrary to NTS principles.
8. Purpose of Net. Just a word or two showing the public service performed. Does it fall in the category of an emergency net (E), a trattic net (T), a weather net (W) etc.? If it is some special purpose, describe the public service performed.
9. National Traffic System? Indicate if vour net is part of the National Traffic System. Note that Lucal nets meet weekly or more of ten, and maintain liaison with the Section NTS net; Section nets meet at least tive times a week, usually 7 or 14 , and maintain liaison with the Region NTS net.
10. Liaisons. NTS nets show their proper liaison net. Other nets may show nets with which they maintain regular liaison. Please do not show liaison with non-amateur services such as CB, MARS or CAP.
11. Previously registerch: Give us the year in which the net last appeared in a Net Directory. If it is a new net or the name has changed, show either No or old net name.
12. Submittcd by. Give us your call letters. If you have more than one call, use the une by which you are best known. This makes you responsible for all the information in the registration. Unauthenticated or unsigned registrations will not be entered.

Don't forget that we start compiling the information in July and if your registration comes in after fuly 15, your net may not appear until the 1969 Net Directory.

Diary of the AREC \& RACES

On Sept. 28, W3DWG/VR6 on Pitcairn Island made an urgent appeal for medical assistance K9TRW in Chicago, operated by W9JFT, answered the plea. There was no doctor on the island but only a resident nurse with limited medical facilities. In casses of serious illness, patients had to make a 3400 mile voyage to New Zealand. After obtaining some details. W9JFT called a doctor and briefly described the situation. The doctor then came to station K9TRU and talked with the island nurse via amateur radio. The doctor took notes and prescribed treatment considering the limited facilities available, and promised to consult again the next day. On Sept. 29, the nurse reported that the patient was feeling better and responding to treatment. On Oct. 3, the island nurse requested assistance regarding another person and by mid Octuber, buth patients were doing well and the nurse felt that no further assistance was needed. --. WOJFT.

On Oct. 30, seven tornadoes hit the Miss. Gulf Coast area. K.5TYP, uperated by 24 different amateurs, handled 289 messages in a multi-station setup with transmitters on 80 , 40 , and 20 meters. There was also some activity on 6 and 2 meters. Most of the traffic was handled the first night although the station was manned for one 38 -hour continuous stretch. The Miss. Sideband Net on 3888 kc . was in operation for $71 / 2$ hours with W5EBF and K5S IG doing an outstanding job in the affected area. WA5KEY operated almost continuously with WA5PTE and W5ODY relieving at times. Because all stations on or near the net frequency were cooperative and simcere, the net could not
have had better coordination.- IH5EMM, SCMI Miss.

On Dec. 13 at about 00157, VE2AJS of Quebec West broke into the Reseau De Telephone Du Quebec Net on 3780 kc . and asked for some important information from the operators of dams in Kanide Blanc Beaumunt, La Tunque and La Tranche. VE2ASK of La Touque was able to deliver some messages to the operator of the (Quebec Hydro at La Touque, and seud back replies. There was a period of nearly three hours during which La Touque had no communications with Shawinigan or Trois Rivieres. At U325Z VE2EB of Shawinigan announced that normal communications had been restored between Trois Rivieres and La Touque. VE2AQC, who had been net control for the period, checked and found that normal communications had been restored. He then thanked all those who relayed and obtained information and closed the net.--VEZAJD E'C Trois Rimieres, Quebec.

From Dec. 24 to Jan. 28 , thirty different amateurs utilized the facilities of the West Coast Amateur Radio Service ou 7255 kc . to report eleven different aceidents and two vehicle fires to authorities. 'There were also a number of cases of stalled vehicles and obstructions reported to the Highway patrol. On Jan. 23, WB6CGA called in on 7255 kc . to locate a station in San Francisco in order to relay emergency medical information to a doctor in San Francisco. VBB6CBIV and WB6BSD moved to 20 meters and made direct coutact with HRIWM and passed the information. - WB6IZF

On Jan. 26, VE2BAI relayed two messages between VE2BUC of Iles de la Madeleine and VE2LG of (2uebec City because of difficult band conditions on 3781 kc . The messages relaved involved interurban communication system failure and probable time of restoration of service. $-V^{\prime} E^{\prime} Z B A C, E C^{\prime}$ Jonquiricrs, Quebec.

On Jan. 26 at about 0500Z, K5DGS reported an explosion and fire at a chemical plant in Deer Park, Texas, via the 2 -meter f.m. repeater WA5QLA. Pasadena Radio Officer WA5OIS and the e.d director placed the local emergency plan into effect. Fortunately there were only 4 injuries. The operation was completed about 0645%, but while several of the amateurs were drinking coffee, there was another hlast and they saw a ball of tire shoot up into the sky. WA5BUV, EC/RO Montgomery County, reported a ship-barge collision near the BaytownLaPorte Tunnel, about 7 miles south of the plant explosion. W5CWL and K5HAR headed to the location and again the local emergency plan was activated. W5RZM, K5SCR and K5GNK went to the north side while W5CWL and K5HNR went to the south side of the channel. K5GNK used his marine mubile equipment to talk direct to the vessels involved. Kequests for the sheriff's Dept., Coast (yuard and Immigration officials were then relayed via amateur frequencies. No casualties resulted, but property damage was heavy. Amateur operation was completed by 0745 Z . As a matter of coincidence, WA5OtS had planned his simulated Emergency Test exercise around such an emergency to be carried out Jan. Es. WA5OPK and K5HNR had also completed plans parallel to the actual disaster. - K5HXR, EC/RO Harris County, Teras.

On Dec. 14, operation Santa Claus was held in Des Moines, Iowa, under the sponsorship of the Des Moines Radio Amateur Association and the Cencral Iowa VHF Club. A local radio station put out requests for items which might brighten the Christmas of uthers. Over 1100 calls were made in a $61 / 2$ hour period. Amateur Radio operators dispatched the calls from the studio via remotely controlled equipment on three amateur hands. Thirty mobile units and eight cars without radios were driven over 1800 miles throughout the afternoon and evening. This 18 th amnual operation made Christmas a little brighter for 700 Des Mloines area families.

On Dec. 18 and 24, Alabama Emergency Net R on 6 meters was called into session for weather alerts. W 4 WGI asked WA4DBQ to use the mobile unit to check several areas of Huntsville, Ala., for flooding. It was soun realized that more than fooding conditions prevailed and actually a small tornado had been through the area. The information was radioed back to the control station and the c.d office. Police were directing traftic in a heavily damaged area but information had not been given to other organizations. This alert emphasized the need for inter-agency communications. - W $14 D B Q$, OVS, Huntsville, Ala.

Forty-three SEC repurts were received for December activities, representing 16,105 AREC members, a drop of 1109 members from the Dec. 1966 report. The following sections reported: Ala, Alta, Ark, BC, Colo, Del, EFla, EMass, Ill, Ind, Kans, Ky, La, Me, Mar, Mich, Mo, Mont, Nebr, Nev, NH, NLI, NC, NNJ, Ohio, Okla, Org. Que, SF, SCV, Sask, SDak, SNJ, STex, Tenn, Utah, Va, Wash, WVa, WFla, WNY, WPa.

We received 496 SEC reports from 57 different sections in 1967, a drop of 63 reports from 1966. We are very pleased to report that twenty-seven sections reported every month in 1967. This is one more 100% section than for 1966 . In accurdance with usual custom, we list herewith the 100% sections, with number of consecutive 100 \% years in parenthesis: EFla (16), NLI (14), Mich (9), SDak (8), Alta (6), Ala (5), NC (5), NNJ (5), Mo (4), Sask (3), Colo (2), Del (2), EMass (2), Mont (2), Okla (2), Org (2), IVPa (2), Ark, Conn, Ill, Mar, Nebr, Que, SNJ, Utah, Va, WNY. Missing unly one report for 1967 were: Gi, Ind, Kans, Ky, Nev, Ohio, SCV, STex, Wash. The following sections submitted no SEC reports for 1967: Alaska, Ariz, C.Z., EBay, ENY, Ida. Iowa, Man, Minu, NDak, NMex, RI, SC, SJV, Vt, W.I., WMIass. Wyo.

National Traffic System

April is the month that "daylight saving" time goes into effect. We have previously expressed our opinion of this institution, but have been told that the columns of QST are not the place to rir our personal opinions. So we'll refrain, this time - if we can.

But as you all know, DST is the practice of advancing the clock an hour so we can all kid ourselves into thinking we're following the same old daily routine, when actually we're doing it an hour earlier. Thus we get up an hour earlier, eat lunch an hour earlier, quit work an hour earlier (this gives us more daylight before bedtime, hence the name), usually dine an hour earlier, and finally

WATAEL and WB6CBW are shown operating the official station of Sahara Amateur Radio Operators Convention at the Hotel Sahara, Las Vegas, Nev., on January 4 through 7. This station was set up and manned by members of the West Coast Amateur Radio Service.
retire an hour earlier. It works, too. It doesn't work with animals, only humans, because animals don't have our high order of intelligence. 'They can't fool themselves.

There we go again!
Anyway, since just about every state (maybe all of them this year, we haven't heard) is officially changing, it becomes necessary for NTS to change ton. So, effective April 29 at 0000 (XMT, NTS will commence operating one hour earlior in all its operations. That is, not actually one hour earlier, because the clock will - er, no, it is actually one hour earlier, but the clock will stay the same. What we mean is, it will be but it won't be. See? (iully, we're a little confused ourselves.

But don't panic, we'll get it straightened out. What you have to do is go right on keeping all your skeds the same as you have always kept them, at the same times by your clocks. That is, unless you keep your clocks on GMT, which everybody is supposed to do but hardly anybody does. If you do (use GMT, that is), then all your skeds are an hour earlier than you usually keep them. OK? Phew! Of course if vou're one of these guys who has two clocks, one on local time and one on (GMTT, and you advance your local clock an hour on April 2 x . then there'll be one less hour between your local time and GMIT than there was hefore. Then, because you'll be keeping your skeds an hour earlier, you'll keen them by the normal time on your local rlock, but an hour earlier on your GMIT clock. Get it?

Perhaps an example will help. Let's say you're an east coast amateur. Better make that a west coast amateur, or we'll be accused of being regional again. You're a west coast amateur, sitting in your shack on Sunday. April is. Your clock (local) says it's 1830. lour GMT clock savs it's 0130 (April 29). Your net usually meets at 1900 by your local clock. 0300 GMTT. But now, since it's after the time your local clocks are changed, your net will meet at 1900 (no change here, because the nets meet an hour earlier local) and at 0200 GMT, an hour earlier than before.

Got that straight, now? See you on the net, April 29 at - ahhh - 1900 , or 0200 GMIT, or is it 0300 (FMT? See you some time around then! - IF 1 NJM.

Januarll reports:

Net	Sessions	Traffic	Rate	Arerage	Representation (\%)
EAN.	. . 45	3080	1.445	68.4	91.8
CAN.	. 42	2220	1.142	52.8	100
PAN.	. 41	1978	. 960	48.2	100
1RN.	. . 72	96.5	. 398	13.4	94.0
$2 \mathrm{RN}{ }^{1}$.	. .58	586	. 612	10.1	95.2
BRN.	. 70	782	. 453	11.1	100
4 KN .	. 74	1218	. 455	16.5	83.4
RN6.	. 86	1686	. 643	19.6	100
RN7.	. 63	741	. 323	11.9	52.5
8RN	. . 58	609	. 426	10.5	97.7
GRN1.	. 54	t70	. 609	12.4	91.0
TEN ${ }^{1}$.	. 62	764	.560	12.4	90. 4
ECN	. 82	343	.223	4.2	75.2
TIVN.	. 50	3.2	. 218	7.0	52.8
Sections ${ }^{2}$.	. 2808	18866		6.7	
TCC Eastern .	. . $168{ }^{3}$	1425			
TCC Central.	. $124{ }^{3}$	1082			
TCC Pacific. .	. . 165^{3}	1171			
Summary.	. 3665	38.538	EAN	1.8 .6	--
Record.	. 2981	28192	1.158	12.5	-

${ }^{1}$ SET information not included.
${ }^{2}$ Section and Local nets reporting (88): AENB, D, H, M. O, P, R, T, LM (Ala.); OZK (Ark.) ; HNN (Colo.); OPN (Conn.) : FAST, FATT, FMIN. FPTN. FSBEN, GN, QFN. SATN, TPTN, WFPN (Fla.); GSN (Ga.); QIN (Ind.); ILN (Ill.); Iowa 75; KPN, KSBN, OKN, OKS, PI (Kans.) ; KRN, KTN, KYN (Ky.); LAN (La.); PTN (Me.); MEPN. MDDS. Termite (Md.-DeL.); EMN, WMN (Mass.); MGTN. QMN (Mich.); MIJN, MSN MSPN (Minn.); MNN, MTTN (MLo.); NEB (Nebr.); NJN, AREC. NJPN. PVTEN (N.J.); Roadrunner (N.Mex.); NLI, NYS (N.Y.); NCN, NCSB (N.C.); OSSB (Ohio); OLZ, SSZ (Okla.); EPA, EPEN, PFN, PTTN, VHFTN (Pa.); RISPN (R.I.); SDN (S.Dak.); RTPN, TN, TPN, TSSB, TTN (Tenn.) ; NTTN. TEX (Texas) ; BUN (Utah); VTNHN (Vt.-N.H.) ; VN. VSBN, VSN (Va.); WSN (Wash.); WVPN (W.Va.); BEN, SIVRN, WSBN (Wisc.); APSN (Alta.); GBN, RPQ (Ont.-Cque.).
${ }^{3}$ TCC functions performed not counted as net sessions.
January SET reports were included where possible; however, the number of net sessions during $8 E T$ is an estimate.
.Ianuary TCC reports:

	Func-	\% Suc-		Out-of-Net
Area	tions	cessful	Traflic	Tralfic
Eastern	168	91.1	3769	1425
Central	124	88.8	2328	1082
Pacific	165	89.1	2044	1171
Summary	457	89.8	8141	3678

TCC roster: Eastern Area (W3EML, Dir.) IT 18 BJG EFW EMG NJM, W\&s GKZ MTA SEI, Kzs KTK RYH, WA\&s BLV UWA WBA, TFB\&s OYE RKK UIIZ, W. 38 AIZ EML NEM, K3MVO, WA3BLE, W4s DVT NLC ZM, K4KNP, W'8s CHT RYP UM, K8KMQ, WA8s OCG POS ZGC. Central Area (WaLCX, Dir.) W4O(iG, K48 BSS DZMI, WA4WWT, WB4AIN, W5KRX, W'gs CXY DYG JUK VAY, Wgs INH LCX TDR, Kgs AEM YBD, WAgs DOU MLE. Pacific Area (W7DZX, Dir.) HGs BGF EOT HC IPW TYM VNQ, KGs DYX LRN IBI, WA6s BRG LFA ROF, WB6s HVA RJX, W\%s AAF HMA ZB ZIW, WA7CLF.

Other Net Reports:
Net
7290
Mike Farad
Coast Guard
QTC
New England Teenage East Coast Traltic HBN
75 Interstate
20 Interstate
EATN

Sessions	Check-ins	Traffic
± 4	2174	1063
57	507	378
22	656	33
22	333	258
31	354	325
24	105	52
61	469	496
31	1152	538
22	481	3207
25	326	318
27	616	392
2	792	126
		$\square 57$

Portable and Mobile Regulations

A Summary of the Regulations for Operations Away from Home

Alast, it's Spring. Now we cau start contemplating those trips away from home. It's time to brush up on the rules for ham operating from a portable location, from a car or boat. Some changes were made last Winter, too -- so you should read this even if you think you're with it.
Anytime you are going to operate away from home for more than 48 hours without a return to the address shown on your license, whether portable or mobile, you need to be covered by a notice to FCC. Formerly, such notices were valid for 30 days; under present rules they are valid for periods up to a year provided there is no change in the facts contained in your notice. For example, if you always go up to your country place the last week end of the month and operate from there, you can now send one notice for the whole year, giving the expected dates and the other information mentioned in this discussion. If you're a traveling salesman who always follows the same route, again you may submit one notice a year, giving the approximate dates and places for all your trips. If, after sending in a notice for either type of activity, you deceide to change the routine in any respect, then an additional notice is required; othersise, you need send a notice only once a year.
There are 24 FCC districts seattered around the country and its possessions, cach headed by an Engineer-in-Charge and encompassiug a certain amount of real estate. The approximate district boundaries are shown on the map; a list by counties can be found in the ARNLL License Manual. You mail notices to the Engineer-inCharge of each district in which you plan to operate. The point is that FCC wants to be able to reach its licensecs within a reasonable time, and if you're not home it wants to know just where you can be reached. You may mail a postcard, carbon copy or even mimeographed notice early enough for the notification to reach each engineer before the operation begins. It's wise to make a notation in your log as well.
The following rules tell you exactly what information is required when sending notification of portable or mobile operation.

[^22](g) In the case of mobile operation, the oflicial name, registry number or license number (including the name of the issuing state or territory, it any) of the aircrait, vessel, or land vehicle in which the mobile station is installed and operated.

Canada: American hams whose vacation travel will take them into Canada can get permission from the Department of Transpurt, Uttawa, ()ntario (or its Regional Uffices) to operate under their U. S. calls in Canada. (Since there is no Canadian equivalent of the U. S. Novice and Technician Classe hulders of these classes are not eligible.) You should request the necessary forms from the Dipartment of Transport a few wecks before youk planned departure through Ottawa or the neafest of these: 739 West Hastings Street, Vancouxer 1, B. C.; Federal Building, 9820-107th Strect; Edmonton, Alta.; Winnipeg Gen'l. Post Office Bldg., 266 Graham Avenue, Winuipeg 1, Maritoba; 25 St. Clair-Avenue Fast, Toronto 7, (int.; Regional Administration Bldg., Montreal I P. Q.i. Federal Bld̆., P.O. Box 42, 1081 Main Street, Moncton, N. B. A reminder: when a U. S. licensee operates outside the country, he is required to notify the FCO Engineer of his home district in advance.
Canadians coming sonth can get application blanks from the Secretary, Federal Communicutions Commission, Washington, D. C. 20554. The VEs also notiry FCC Engincers for the distriets in which travel is contemplated, in the same manner as W/K licensees.
Mexico: As a unilateral courtesy, without a fornal agreement of any kind, Mexieo has from time to time permitted U. S. amateurs to secure mobile licenses. For current information, write the Liga Mexicana de Radio Experimentadores A. C., A partado 907, Mexico 6, D.F., Mexico.

New Identification Rule: When you are operating mobile you need no longer show your approximate geographical location. Under rules adopted in 1967, the word "portable" or "mobile" is followed by the number of the call sign are: in which you are located, for phone operation: ". . . W1XXX mobile three." When you operate c.w. away from home, it's just ". . . W3XYZ/6" whether you're portable or mobile.

On the high seas, you now indicate the region of the International Telecommunications Union in which you're operating. Region 1 is roughly Europe, Africa, the Near East and all of the U.S.S.R. Region 2 is the Western Hemisphere, including Hawaii. Region 3 is the remainder of the world, most of Asia and most of Oceania. For phone operation from a ship or airplane two hundred miles from Australia, you'd say ". . . W7QRK mobile Regiou 3 "; on e.w.

United States Radio Districts

Address the District FCC Engineer-in-Charge

1. India and State Streets, Boston, Mass. 02109
2. 641 Washington Street, New York, N. Y. 10014
3. 2nd and Chestnut Streets, Philadelphia, Pa. 19106
4. Gay \& Water Streets, Baltimore, Md. 21202
5. Granby \& York Streets, Norfolk, Va. 23510
6. 240 Peachtree Street N.E., Atlanta, Ga. 30303
7. 51 S.W. First Avenue, Miami, Fla. 33130
8. 600 South Street, New Orleans, La. 70130
9. 515 Rusk Avenue, Houston, Tex. 77002
10. 1314 Wood Street, Dallas, Tex. 75202
11. 312 No. Spring, Los Angeles, Calif. 90014
12. 555 Battery Street, San Francisco, Calif. 94111

W7QRK R3." The words "aeronautical mobile" and "maritime mobile" and the c.w. equivalents "AM" and "MM" are no longer a part of the identification. Nor is it necessary now to send your complete latitude and longitude under such circumstances.

Examples of Notices: First, a two-week vacation involving portable operations:

Engineer-in-Charge
Federal Communications Commission
Iudia and State Streets
Boston, Massachusetts 02109
Dear Sir:
This is notice that amateur station W4ABC will be operated in portable status at Johnson's Camp, Algonquin, Maine, between April 25 and May 10, 1968.

John A. Smith, W4ABC 1357 W. Evergreen Ave. Springville, Ala. 35146

Another for an extended mobile trip, with multiple copies in separate envelopes addressed to each district involved.
13. 620 S.W. Main Street, Portland, Ore. 97205
14. 909 First Avenue, Seattle, Wash. 98104
15. 19th Street at California, Denver, Colo. 80202
16. 6th \& Market Streets, St. Paul, Minn. 55102
17. 601 E. 12 th Street, Kansas City, Mo. 64106
18. 219 South Dearborn Street, Chicago, III. 60604
19. Washington Blvd at Lafayette, Detroit, Mich. 48226
20. Ellicott \& Swan Streets, Buffalo, N. Y. 14203
21. 502 Federal Building, Honolulu, Hawaii 96808
22. 322 U.S. Post Office, San Juan, P. R. 00903
23. 4th Avenue at F Street, Anchorage, Alaska 99501
24. 1919 M Street, N.W., W ashington, D. C. 20554

Engineers-in-Charge
Federal Communications Commission
Districts $18,17,15,11$
Gentlemen:
This is notice that amateur station W9XYZ will be operated in mobile status along the itinerary and for the dates shown below. Installation is in a 1968 Ford sedan, Illinois license plates 327-918.
May 4-6, 1968 U.S. Routes 30 and 6, Chicago to Omaha May 7-9, 1968 Routes 6 and 30, Omaha to Denver May 10-12, 1968 Routes 40 and 189, Denver to Provo, Utah
May 13/16, 1968 Route 91, Provo to Los Angeles, (\% Mayfair Motel, Ocean View Ave., Los Angeles, Calif.)

Yours truly,
John A. Smith, W9XYZ
327 Brandon Avenue
Glen Ellyn, Illinois 60137
Or, to make things simpler, send a self-addressed stamped envelope to ARRL IIq., with your request for Forms S-43 (a) which the League has made up to help you filc your Notice of Operation Away from Home.

Mobile Laws

In several states and municipalities, there are laws which deal in one way or another with mobile radio communications. While they affect normal amateur operation but little, it is well at leust to know about their existence. We present herewith a summary of such laws on which we have been able to obtain information, with no guarantec of its completeness:

California: Los Angeles has a city ordinance prohibiting the installation in a motor vehicle of receiving equipment which can tune to municipal (fire and police) frequencies.

Connecticut: The law prohibits the operator of a motor vehicle from using two-way radio while such vehicle is in motion, but is intended primarily to cover subscribers to the telephone company's mobile service, and specifically exempts amateurs, RACES, and most other mobile services.

Florida: The law prohibits the use in a motor vehicle of equipment capable of receiving on police frequencies; however, amateurs are specifically exempted.

Indiana: Prohibits use in motor vehicles of equipment c:apable of receiving on public frequencies.

New Jersey: Prohibits use in motor vehicles of equipment capable of receiving on police frequencies, unless user has a permit from local chief of police.

New York: Same as New Jersey
North Dakota: Prohibits installation and use of mobile short-wave receivers without a permit. (Like many others of this uature, the law was originally passed to give authorities a means to control "ambulance-chissers." To our knowledge it has never been applied to amateurs, though technically it could be.)

South Dakota: Same as North Dakota.
As a matter of interest, the states of Connecticut and Vermont prohibit the installation of a
television set in a motor vehicle in a location where it can be seen by the driver!

It goes without saying that any amateur operating mobile should double-check to make certain he has his motor vehicle operator license, registration, and amateur license always in his possession.

Keeping an Amateur Station Log

The FCC requires every amateur to keep a complete station operating record. It may also contain records of experimental tests and adjustment data. A stenographer's notebook can be ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a \log be maintained that shows (1) the date and time of cach transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input power to the last stage of the transmitter, (4) the frequency band used, (5) the time of ending each QSO and the operator's identifying signature for responsibility for each session of operating. During a period of continuous mobile operation, the time of each transmission may be omitted, provided that the dates and times of commencing and terminating such mobile operation are entered in the log. Messages may be written in the log or separate records kept - but record must be retained for one year as required by the FCC. For the convenience of amateur station operators ARRL stocks both logbooks and message blanks, and if one uses the official \log he is sure to comply fully with the Government requirements if the precautions and suggestions included in the log are followed.

Complete FCC Rules

Complete FCC amateur rules and explanatory comment are contained in the Radio Amateur's License Manual, available from ARRL, Newington, Conn.06111, for 50\& postpaid. $\square 5 \mathcal{F}$

NEW BOOKS

Amateur Radio Incentive Licensing Study Guide, by Robert M. Brown, K2ZSQ/W9HBF, and Tom Kneitel, K2AES, published by Editors and Engineers, Ltd., New Augusta, Ind. 160 pages, $51 / 2 \times 81 / 2, \$ 2.75$.

[^23]to those in the ARRL License Manual. Unfortunately for the reader, the similarities are to an outdated manual and many of the sample test questions are based on the older FCC exams, not the current ones. On regulatory questions, their answers are often in error. E.g., one question refers to the 1947 Atlantic City documents, which have not been in effect for nearly 10 years; others give years-old suballocations for high-seas mubile, and for f.s.k. operation. ${ }^{1}$ Several references in the text and promotional material indicate we hams total $200,000-$ a figure applicable to 1960.

All of which belies the claim that "all material is fresh and up-to-date," and points to the conclusion that for someone who wanted to upgrade his license five or ten years ago, this might have been a very useiul book. - W1LVQ

[^24]
Happenings of the Month

ADVANCED AND EXTRA FOR SHUT－INS

Plugging a gap in the preseut incentive license structure，the Federal Communications Com－ mission has proposed new rules to ：tllow volun－ terers to conduct examinations for Eixtra and Advanced Class．The suggested text would apply to applicants for the higher classes who are unable to appear at an FCC exam point because of protracted disability．The applicant would have to furnish a physician＇s certificate as is now done under the disability rule for Con－ ditional Class．The examiner chosen by the applicant would have to hold a license equal to or higher than the elass of license for which the applicant is being examined．Otherwise，the rules already in effect for tests supervised by volunteers would govern．

The proposal is known as Docket 17989．Any interested party may file comments with FCC on or before April 1．Replies to the comments of others may be filed until April 15．Formal participation ealls for an original and fourteen eopies，but the Commission customarily takes into eonsideration informal comments in letter form submitted by individuals．It is also possible that these deadlines will be extended if FCC is requested to do so．

The ARRL Executive Committee will be mecting as this issue goes to press to consider this docket and handle routine business．

LICENSE SUSPENSION

The First Class Commercial and Advanced Class Amateur licenses of Arthur H．Joner，Jr．， W3IRL of 4017 Cold Spring Lane，Baltimore， Maryland，were ordered suspended for a period of three months in an Lnitial Decision issued by

The QST article，＂Transceive with Transistors（Almost），＂ won the December Cover Plaque for author Varouian Karentz，WIYLB．Making the award are Middlesex ARC prexy WIILP，ARRL Director WIQV and Vice Director WIEAE．（Photo by WAICDW）

WHO THE DEVIL IS WHO？

A Two－Letter Call Conversion Chart

One of the nun－controversial features of the incentive licensing program was a change in the rules governing issuance of two－letter calls（e．g．，W6XX）making these calls available on request to Extra Class licensees whose first license was ob－ tained at least twenty－five years eurlier．
dfter some delay，FCC＇s computer started turning out these choice monikers in February；here are some early results：

Noın	Was	Now	Was
W1AM	W1CNB	W＋MC	WrFFE
W1aU	WiKHW	W4AW	W4VCS
WIAX	WIJYH	W5AK	K5PNI
WICE	WIJBI	W5CX	K5SYL
H1CW	WIWPO	W6CP	W6CPU
W2AH	W2KIT	W＇6IDC	W6IFJH
W＇2BJ	W＇2PEO	W6DL	WB6RTC
W2CS	W2VRU	W6DM	WBYTA
H2CY	W2PZI	W＇6DQ	K6BPR
W2DF	W2NRV	W6DZ	K6RWO
W2FR	$\mathrm{W}^{\prime} 2 \mathrm{SEI}$	W6EJ	K6HOR
W2GA	WA2WEE	IT6EL	K6CYG
W2GS	W2BBP	W6EM	W6MTO／FDY
W2 2 HI	W2KIR	W6FJ	W＇6EZL
W2IN	W2TQ7	W6FN	W＇6GKK
W2IW	W2GFX	W6FU	W6VFB
W2IZ	W2MET	W6GP	W6YMD
W3AC	W＇3．JM	W6JH	W6SFG
W3BI	T3MQY	W6MI	W6YZD
W3BQ	E3COR	W6RR	V6ITA
H3C：2	W＇3TXQ	W7BE	W7POU
W＇3EB	630KX	W7BK	WaJYZ
W3FU	E303A	W＇7BP	K7TJN
W＇3GO	K3BEK	W7BT	K7KGG
W3CN	W3MSR	WTBQ	K7JHA
W3CZ	W3FMC	W8AN	W8TZO
W3HK	W3ELI	W8AO	W8RGL／TPW
W4BW	W\％CXA	W8BJ	WA8QYK
W＋DD	（FtL．JF	W8BQ	W8DJD
WTDM	WHPTR	W8CC	W8IQS
H4DN	WHNFR	W9AE	W＇9EOV
$\mathrm{F}+\mathrm{ECT}$	W＋YHW	W9an	W9JFA
W＇tEY	K゙IJGL	W9BQ	W9KQL
W W FF	WHQDF	W9CB	W9VUD
W4FY	W＋EIE	WØAW	W6VBR
W4HM	W＇YGY	WøAY	W＇anck
$\mathrm{W}^{+} \mathrm{HO}$	WA2MMW	WのBB	KのWPZ
W ${ }^{\text {I }}$ C	W＇4HUE	WGBV	KyYGR
		WgCC	Wgabd

Hearing Examiner Chester F．Naumowicz．Mr． Jones was found to have fraudulently assisted an applicant to obtain an operator＇s license．

The hearing examiner stated that Mr．Jones， acting as a volunteer examiner，certified to the Commission on September 11，1962，that William A．Azmon had passed the prescribed five word a minute Morse Code test which is part of the examination for the Technician Class Amateur license．On November 4，1966，when Mr．Azmon was intervicwed in the FCC Baltimore field office，he was able to identify only five Morse Code characters correctly．Under questioning he revealed that Mr．Jones，who had been his

Ham radio was represented at the Mid-America Boat Show at Cleveland's Public Auditorium. Chairman WA8OFT, K8ONA and K8IMF surround "Miss North America" (Lynda Hydock) as she poses at the exhibit's rig.
business partner in 1962, had certified him as proficient in code to enable him to get the license he required for the business. Mr. Jones did not testify in his own behalf.

In setting the three month suspension the hearing examiner stated that the offense threatens the integrity of the volunteer examiner system. While there are mitigating circumstances, in that except for the single incident Mr. Jones has earned a reputation for professional competence and integrity in his community, Hearing Examiner Naumowicz concluded that "the offense is too severe to be entirely without consequence."

The initial decision became final on December 20, 1967.

A number of revocations, fines ind suspensions of amateur licenses are in various stages along the legal road, and will be reported in QST from time to time as the penalties become final.

NEW JERSEY LICENSE PLATES

Speaker of the Assembly Albert Smith of New Jersey has introduced a bill, A-265, providing for call letter license plates for amateurs in the state. It is co-sponsored by Assemblyman Louis K. Aikins, W2VJH and has been sent to the transportation committec. Governor Richard I. Hughes is known to be opposed to the measure and can be expected to veto it. Supporters feel, however, that if the majority of amateurs and radio clubs support the bill, a veto can be overturned.

In Georgia, a bill has been introduced to allow "vanity plates" for an extra $\$ 10$, but amateurs on the scene have taken steps to see that the amateur plates, which cost only a dollar, are not, affected by the bill.

Behind The Diamond

Number 3 of a Series

About thirty-five years ago a young college instructor had to take keys to the hamshack away from his best brasspounder who was in imminent danger of flunking out. The two are still in close contact today: the student was (yeorge Hart, W3AMR,W1NJM, now communications manager of ARRL; his sympathetic but strict mentor was Gilbert L. Crossley, W3YA, ARRL director from the Atlantic Division, member of the Executive Commitlec and since 1966 a vice president of the League.

Gil not only represents the largest ARRL, division, but one which is always
 hyperactive in League elections. (iil has been on the ballo eight times since 1953, has always had af leagt, one opponent and 15 in all, and has falded a total of 18,652 votes to 14,20 for th other candidates combined.

Two factofs stañ aility tenacity and travel. Direct or Crôssicy ${ }^{\text {un as }}$ stuck with good ideas introlucing dimm repeatedly at Board hootmaguntidedetion. As for travel, Gil'sumrentreporf hows 42 hamfests, dinncis or club mestings visited and 9552 miles loeged during 1907 alone.

Gil was first liceused $\frac{1915 \text {, and has }}{0}$ held the Extra CVadsinite 1954. A League member since 1023 find now a Charter Life Member), wive elected as furst section communicitig th manager for Western Pennsylvania in 1928. For eight. years he held appointment under former director Brad Martin, W3QV, as assistant director. He has been in official relay, official phone and official bulletin station. (iil has been radio officer for Centre County and deputy radio officer for the State of Pennsylvania rivil defense. He was also public relations officer for the U.S. Civil Defense Amateur Radio Alliance. He's presently assistant state director for Army MARS. (iil tanght electrical engineering at Pennsylvania State University for 14 vears, retiring with the title Emeritus Professor. He and his wife Navonne have iwin sons and a daughter. One of the boys is Ed, W3SMF, also a Life Nember.

Q5F-

In Six Parts - Part II

IN our rearrangement of the FCC sample questions for the Advanced and Extra Class examinations, described last month, the second broad grouping included those that could be classified as dealing generally with circuits and their operation. This is the subject of the present installment. As there is no way to draw a really sharp line between "gencral" questions and those dealing with specific problems of transmitting and recciving, the selection of material is of necessity somewhat arbitrary. The studying you do for this section probably will be more comprehensive than actually is necessary, yet it will not be time wasted-later groups of questions will cover the extra ground you now explore.

Examination of the FCC samples below shows that they range through applications and characteristics of components (for the most part included in the study suggestions in Part I of this serics), basic methods of operating amplifiers and oscillators, cathode ray tubes and displays, and some measurement procedures. As before, the study material is to be found in the Handbook. We recommend the following:

Components and applications: IIandbook pages $52-55$ in the 1967 and 1968 editions.
Rectificrs and associated filter data: Pages 326-335 (1967) or 304-313 (1968).
Amplificr circuit types and operating classes: Pages 59-75 in both editions; pages 81-86 (1967) or 80-87 (1968); pages 154-158 (1967) or 150-154 (1968).

Oscillators: Pages 73-75 in both editions; page 86 (1967) or 87 (1968); page 101 (1967) or 103 (1968); pages 149-154 (1967) or 145-150 (1968).

Measurcments-basic, frequency, and the c.r. tube: Pages 518-529 (1967) or 528-539 (1968); pages 550-553 (1967) or 561-563 (1968).

It is necessary, too, to reiterate that you may get actual questions similar to those on related subiects in the Ceneral Class exam.
The FCC sample questions below are marked (A) and (E) to indicate, as before, that they come from the Advanced and Extra Class ex-
aminations, respectively. They are followed by a short quiz of our own in multiple-choice form. There aren't any formulas to be memorized for this group of questions, although actual questions may call for the use of some of those listed in last month's installment.

FCC Sample Questions

(A) How are bypass capacitors used? How should their impedance compare to the element they shunt?
Bypass capacitors are used for providing a direct route for signal-frequency current through at part of a circuit where there is a possibility that it might take an undesired path. (As an example, the signal current should not be permitted to flow through the power-supply circuits of an amplifier stage.) The impedance of the bypass capacitor must be low compared with the impedance of the circuit to be bypassed. As an approximation, the impedance of the capacitor should not exceed 10 percent of the impedance of the circuit into which the signal current is to be discouraged from flowing.
(A) Why does a type 6146 tube have 3 prongs connected to the cathode?
The 6146 (and other types of tubes intended for v.h.f.) have multiple cathode leads to reduce the lead inductance between the actual cathode inside the tube and the ground point external to the tube. At v.h.f. the small inductance of the cathode lead can cause undesirable feedback from the plate circuit to the grid circuit. Connecting scveral leads in parallel reduces the total inductance as compared with the inductance of a single lead.
(A) How does a full-wave bridge rectifier operate? What is the schematic diagram of this rectifier circuit?

A full-wave bridge rectifier consists of four rectifying components, two operating in series on each half of the cycle; one rectifier is in the lead to the load, the other is in the return lead. The current Hows through two rectificrs during one half of the cycle and through the other two rectifiers during the other half of the cycle. The basic schematic is shown on the next page.

Full-wave bridge rectifier
(A) Compare the pentode, tetrode, and triode for use in an r.f. amplifier stage. Give advantages and disadvantages of each.

Tetrode and pentode r.f. amplifier lubes designed for use in receivers have very low plate-to-control-grid capacitance, so feedback is generally insufficient to cause self-oscillation. Hence the stage can be operated without neutralization. The plate resistance of such tubes is very high; thus the tube does not load down the output tuned circuit to lower its Q and impair selectivity.
'Transmitting pentodes and tetrodes also have low grid-plate capacitance, but its value is larger in power tubes than in small receiving tubes and fecdback, although small, frequently is the cause of self-oscillation. In such cases neutralization is necessary. These tubes, particularly the tetrodes, have very high power sensitivity (ratio of r.f. output power to grid driving power), and many are capable of operating at full output without grid current (no driving power except that nceded for supplying circuit losses) in Class $A B_{1}$. A disadvantage is the uecessity for a screengrid power supply, and the fact that with plate modulation the screen grid must be modulated along with the plate to obtain linear modulation.

A triode always requires bigh driving power for full output, and because of its relatively large grid-plate capacitance must be neutralized to prevent self-oscillation in conventional griddriven eircuits. In cathode-driven circuits neutralization may not be necessary with triodes designed for this type of operation.
(E) Why is there a practical limit to the number of stages that can be cascaded to amplify a signal?

Although there is no theoretical limit to the number of amplifying stages that can be cascaded, it becomes difficult to maintain stability in a practical amplifier when the overall gain is very high. With very high gain an extremely small fraction of the output power, when inadvertently introduced into the amplifier's input circuit, can cause self-oscillation. Such feedback is difficult to prevent in practical construction. It is particularly difficult in amplifiers operating at radio frequencies. Also, there is a practical limit to usable gain because signals weaker than the noise (thermal noise and shot noise) generated in the amplifier's front end remain masked by the noise no matter how great the amplification, since both signal and noise are amplified equally.
(E) How are grounded-grid amplifiers used in electronic circuits? List some advantages and disadvantages of their use.

The grounded-grid or cathode-driven amplifier has found little or no application at audio frequencies, but is used extensively for r.f. amplification, both receiving and transmitting. The grid is maintained at ground potential and the signal or driving voltage is applied to the cathode, the output being takeu between plate and ground. The feedback capacitance from the output to the input circuit of a triode tube operated in this way is considerably less than the feedback capacitance when the cathode is grounded and the grid is driven; as a result, triodes of suitable internal construction can often be used without neutralization at h.f. and even v.h.f.

In grounded-grid operation the cathode circuit and plate circuit are, in effect, in series. The driving stage therefore contributes to the total output power, in addition to supplying the normal driving power (if any is needed) for the amplifier tube. Since the driver is supplying its share of the output power at low voltage, the impedance it "sces' in the eathode-driven cireuit is relatively low. Because of this extra "fedthrough" power taken from the driver the power gain of a grounded-grid stage is comparatively low, but the output is high and the plote efficiency is otherwise comparable with groundedeathode operation. As a linear amplifier for s.s.b., the grounded-grid amplifier provides a better load for the driving stage than a groundedcathode amplifier operating Class AB_{2} or Class B_{2}. This is because the relatively high ratio of fed-through power to power actually consumed in the grid-cathode circuit of the amplifier tube makes the load on the driver fairly constant; thus no "swamping" is needed as would be the case with a grid-driven amplifier in which grid current flows over part of the modulation cycle.

The grounded-grid amplifier is useful as an r.f. amplifier in v.h.f. receivers because a triode, which has lower noise than a pentode, can be used with very simple ncutralizing circuits or none at all, while ncutralization of a groundedcathode amplifier that must be tuned over a considerable frequency range would be difficult at these frequencies. The low input impedance readily can be matched to the antenna system for maximum signal-power transier.

As compared with a grounded-cathode amplifier in transmitting applications, the principal disadvantage of the grounded-grid amplifier when used as a Class-C amplifier for e.w., f.m. or f.s.k. is that more driving power is required. Also, for amplitude modulation it is generally necessary to modulate the driver along with the amplifier if 100 -percent modulation is to be secured. In s.s.b., the grounded-grid amplifier's extra driving power requirements are a disadvantage only when compared with Class AB_{1} operation with grounded cathode; in Class $A B_{2}$ or Class B_{2} the power required from the driver for low distortion is roughly the same because of the necessity for swamping.
(A) When is an amplifier operating Class A? Class B? Class C?

A Cluss A amplitier is one operated in such a way that the waveform of the signal output voltage is identical with the waveform of the signal input voltage. With vacuum-tube amplifiers this is achieved by using a valuc of grid bias that places the operating point in the center of the linear portion of the grid-voltage/plate-current eharacteristic and confining the signal amplitude to the linear part of the characteristic. Usually, the grid is not driven positive with respect to the cathode in Class A operation. In transistor amplifiers the base bias is chosen so that the relationship between base current and collector current is linear uver the entire signal cycle.
A Class B amplifier is one in which the signal output power is proportional to the square of the signal input voltage. (This relationship also is true of power and voltage in a simple resistance, a "linear" device, so the Class B amplifier is a "linear" amplifier.) Class B operation is achieved by choosing an operating point such that the amplifier takes little or no d.c. power in the absence of signal, and then driving the amplifier into conduction over the linear portion of its grid-voltage/plate-current curve, in the cuase of a vacuum-tube amplifier, and over the linear portion of its base-current/collector-current characteristic in the case of a trausistor amplifier. Since the amplifier is operated near its "cut-off" point (for plate current or collector current) it is beyond cutoff during most of one half-cyele of the signal input, so the output is delivered in approximately half-cycle pulses. In a Class B radio-frequency amplifier the pulsating output is made sinusoidal by the use of a tuned output tank circuit, which tilters out the r.f. harmonics generated in the amplification process.

The Class B amplificr can be used for audio amplification if tro such amplifiers are connected in push-pull. The amplifiers then conduct on alternate half cycles and the combined output reproduces the complete waveform.

The Class C amplifier is primarily one in which the signal power output varies as the square of the instintaneous value of the plate voltage that is, it is an amplifier that is capable of being modulated linearly by an audio source. With vaccuum tubes, Class $\dot{\mathrm{C}}$ operation is achieved by making the plate current How in short pulses, the amplitude of which depends on the instantaneous plate voltage. As the plate-current pulses must have a duration of less than one half cycle of the signal input, the grid bias must be well beyond the value that gives plate-current cutoff. Similar considerations apply to the collector current and base bias of transistor Class C amplifiers. The Class C amplifier is used at r.f., where the tuned output tank circuit filters out the harmonics generated in amplification and makes the r.f. output essentially sinusoidal.
(E) List several advantages and disadvantages each for Class A, Class B, and Class C amplifier operation.
The principal advantage of the Class A ampli-
fier is that its output is a reproduction of the entire waveform of the input signal, usually with little or negligible distortion. As commonly used, the vacuum-tube Cluss A amplifier also takes no power from the signal source (this, however, is not truc of Class A amplifiers using the conventional type of transistor). The fact that the actual signal waveform is reproduced without distortion makes the Class A amplifier useful in broad-band applications, because resonant circuits are not required for suppressing harmumics. The disadvantage of Cluss A operation, in power amplification, is that the amplifier efficiency (ratio of useful output power to powersupply input power) is low - of the order of 15 to 25 percent in most cases. Also, the maximum power dissipation uccurs when there is no input sigual, since in a Class A amplifier the input power remains constant with or without signal. Thus an amplifying device having relatively large power dissipatiou cupability is required if appreciable power output is to be secured.
The principal advantage of the Class B amplifier is that its efficiency is relatively high --of the order of 75 percent at maximum signal input, with modern vacuum-tube tetrodes and with transistors. With proper adjustment, the alternating output voltage across a load resistance is proportional to the signal voltage applied to the input of the amplifier - that is, the relationship between input and output is linear. However, since the plate or collector current flows over only a little more than one half eycle of the input waveform the simple Class B amplifier is not suitable for audio amplification; the distortion in the output signal would be intolerable. 'The amplifier may be used at radio frequencies if au output circuit having sufficiently high Q to suppress the r.f. harmonics created by Class B amplification is used. In such case, the linear relationship is used to advantage in the amplification of modulated signals, since the modulation envelope will be reproduced in the output with relatively little distortion. In general, Class B :mplifiers require power from the driving-signal source over part or all of an input half cycle. This may cause distortion uness proper precautions are taken to maintain good voltage regulation in the driving source under the varying load represented by the Class B amplifier's input circuit. Class B operation can be used at audio frequencies if two tubes or transistors are used in push-pull (or its equivalent), in which cuse one amplifier supplies one half of the output waveform and the second supplies the uther, thus reproducing the entire signal input waveform. The push-pull circuit also can be used at radio frequencies, although it is not necessary for linear operation since a single amplifier can reproduce the modulation envelope of a modulated signal as explained above.
The Class C amplifier operates at the highest efficiency of any type and therefore is capable of developing more output power, for a given dissipation rating in the tube or transistor, thau Class A or B amplifiers. However, the operating condi-

tions (plate or collector current flowing during less than half the signal input cycle, and peak driving voltage such that the amplifier is driven into plate-current or collector-current saturation) cause the output waveform to be highly distorted, and the relationship between driving voltage and output voltage is not lineur. The Class C amplifier therefore is not suitable for the amplification of modulated signals, or for any applications -... as at audio - where low distortion of the input signal is required. In Class C r.f. : mplifiers the waveform distortion is substantially eliminated in the output by the use of tuned circuits having sufficiently high Q to suppress the harmonics generated in the :amplifier, but the nonlinear relationship between input and output voltage remains. Class O operating conditions are favorable for direct modulation of an r.f. amplifier, and this type of amplifier is almost invariably used in the modulated stage of an amplitude-modulated transmitter. In practice, Class C amplification requires considerable driving power from the input signal source, so the power amplification ratio of a Class C stage is considerably lower than in Class B or Class A amplifiers.
(E) What improper operating conditions are indicated by the upward or downward fluctuations of a Class A amplifier's plate current when a signal voltage is applied to the grid? How can this be corrected?

Upward fluctuation of Class A amplifier plate current with excitation indicates excessive negative grid bias: hence, the grid bias should be decreased. Downward fluctuation of plate current with excitation indicates insufficient negative grid bias; hence, the bias voltage should be increased. (Either condition also may be caused by overdriving, for which the remedy is obvious.) The correct bias is the value which allows the plate current to remain unchauged when a signal is applied to the grid circuit. (Because of unavoidable nonlincuritics in practical amplifying devices, Cluss 1 power amplifiers operating at maximum drive and output will show a small upward shift in plate current in normal operation, although there would be no such shift in an ideal amplifier.)
(E) What improper operating conditions are indicated by grid current flow in a Class A amplifier?

This indicutes that the tube is being overdriven - that is, the driving-signal voltage is too large. (Note: In Class-A operation as normally used, the grid is never driven positive. However, this is not a necessary condition for Class A; the basic definition is that a Class A amplifier is one in which plate current Hows throughout the signal cycle. The grid can be driven positive, and thus result in grid-current flow, provided the driving stage can deliver power into the variable grid load without distortion.)
(A) What are some common types of oscillators employed in amateur equipment? How can each be identified in circuit diagrams? What part does feedback play in these oscillators? What points in the circuits should be coupled to provide good feedback?
(See earlier Handbook references for circuits and identification.)

Fieedback is a method of introducing a small amount of the output power into the input circuit, in phase with the input signal, to sustain oscillation. In a vacuum-tube oscillator, the plate and grid circuits should be su coupled.
(E) What factors determine the frequency at which a quartz crystal will oscillate?

The factors determining the frequency at which a quartz erystal will oscillate are its physical dimensions (in high-frequency crystals, principally the thickness) and mode of vibration, the angle at which it was cut with respect to the optical axis and the manner in which it is mounted. The exact frequency is also a function of the erystal temperature and the electrical characteristics of the circuit in which it is used, particularly the circuit ciupacitance that may be in shunt with the erystal.
(E) What frequency should a crystal oscillator circuit be tuned to for maximum stability?

Minimum power dissipation in the crystal and consequently less heating and frequency change will occur when the feedback in the oscillator is such that the least r.f. voltage, consistent with the required output amplitude, is applied to the crystal. If the oscillator circuit is one having an adjustable tuned circuit, the tuning should be set as far as possible from the resonant frequency of the crystal while maintaining satisfactory operation.
(E) What determines the fundamental operating range of a multivibrator?

The fundimental operating range of a multivibrator is determined primarily by the time constants of the RC feedback circuits. It is also affected by the characteristics and operating voltage of the tubes or transistors used in the circuit.
(E) How does a cathode-ray-tube operate? How should the plates of a cathode-ray tube be biased?
In the cathode-ray tube, a narrow beam of electrons, formed in an electron "gun," is directed toward a fluorescent coating on the front transparent face of the tube. On striking the coating, the beam causes the Huorescent material to emit a spot of light. The position of the spot can be changed by deflecting the beam, after it leaves the gun, by applying voltage to pairs of "deflecting plates" set at right angles. Alternating voltages cause characteristic patterns to be formed on the tube face. The plates should be biased so that the spot, when at rest, is at a desired position (usually the center) on the tube face.
(A) What are Lissajous figures in oscilloscope operation? What scope patterns would be produced if the signal applied to the horizontal input has a frequency equal to two, three and four times the frequency of the signal applied to the vertical input? Lissajous figures are oscilloscope tracings showing the amplitude, frequency and phase relationships of two a.c . signals, one applied to the vertical deflection plates and the other to the horizontal plates. A signal applied to the horizontal input with twice the frequency of that applied to the vertica: input would produce a figure-8 pattern. This and the other examples are illustrated for the case where the signals are in phase.
$v=f$

$\mathrm{H}=2 \mathrm{f}$
$\mathrm{V}=\mathrm{f}$

$\mathrm{H}=3 \mathrm{f}$

$\mathrm{H}=4 \mathrm{f}$
(E) Should a voltmeter have high or low internal circuit resistance? Explain.

A voltmeter should have high internal circuit resistance. A low-resistance meter would draw a relatively large current from the circuit under test, and if the circuit itself has high resistance, the reading will be low as compared with the true conditions existing without the meter in the circuit.
(E) What means may be employed to measure low frequencies? High frequencies? V.h.f. and u.h.f.?
In principle, the same basic methods can be used for all frequencies. All methods use, ultimately, some well-established standard as a reference.

Measurement at amatcur frequencies for example, is generally based on standard-frequency transmissions from WW'V. For radio frequencies one widely used system employs a $100-\mathrm{kc}$. crystal oscillator and its harmonics, which are useful up to $30-50 \mathrm{Mc}$. as a rule. A $1000-\mathrm{kc}$. crystal oscillator also is frequently used, the
harmonics being detectable to 150 Mc . and higher. In either case, some means for adjusting the oscillator frequency is always provided so a harmonic cau be set to exact zero beat with one of the several standard radio frequencies transmitted by WWV. Although such oscillators provide only "cheek points" at $100-\mathrm{kc}$. or 1000-kc. intervals, they establish with high accuracy the limits of many amateur bands and sub-bands. For smaller intervals frequency dividers generating signals at subharmouics of the oscillator frequency -- e.g., $50 \mathrm{kc} ., 10 \mathrm{kc}$., etc. - can be used for equal percentage accuracy at intermediate points.
Measurement is accomplished by using a receiver to determine the pair of adjacent check points between which the unknown signal lies. A more exact measurement of the frequency can be made by using the receiver dial for interpolation between the check points, after calibration (the dial can be calibrated from a series of check points) or by comparing the audiofrequency beat note between the signal and a check point with a calibrated audio oscillator set to the same tone.
An alternative method is to use a heterodyne frequency meter, a tunable oscillator covering some fairly-low-frequency range, such as $1750-$ 2000 kc . or $3500-4000 \mathrm{kc}$. and thus limited to amateur-baud coverage, and carefully calibrated against known check points such as those from a 100 -kc. crystal oscillator. The signal (and its harmonics) from the heterodyne frequency meter can be adjusted to zero beat with the unknown, using the receiver, and the frequency read from the calibrated dial of the meter. For checking the station transmitter, a simple detector can be built into the frequency meter as a detector for zero beat, the receiver sensitivity not being necessary in this case because the transmitter signal is strong. The disadvantage of the heterodyne frequency meter is that its accuracy is not comparable with that of the standard against which it is calibrated, in the absence of a continuous check against the standard, because of frequency drift and other factors that affect the frequency of self-controlled oscillators.

Frequency measurement in the audio range is usually by means of a variable audio frequency oscillator. An accurate calibration can be made by using the standard audio frequencies transmitted by WWV as modulation on its r.f. carrier. An assortment of calibration points can be obtained with Sissajous figures on an oscilloscope pattern, using the standard audio frequency signal on one set of plates and connecting the oscillator output to the other set.
For rough frequency measurements around a transmitter where r.f. power is available, an absorption wavemeter may be used. The wavemeter is a simple tuned circuit, usually provided with some type of indicator which either shows the relative r.f. current in the circuit or the relative r.f. voltage developed by the circuit; either will be maximum when the wavemeter
circuit is tuned to resonance with the unknown frequency. In some cases an indicator may not be necessary, since the circuit being checked may itself be capable of indicating the resonance setting of the wavemeter; a sharp change in the plate current of an amplifier is an example.

In the u.h.f. range there may be practical difficulties in applying the standard check-point method described above. In such cases a linear variation of the absorption wavemeter - Lecher wires, for example -- will serve for measurement of the wavelength, which can then be converted into frequency. Measurement accuracy is not as high as might be desired, however.

Examination-Form Questions

Q1. What principal advantage does a grounded-grid amplifier have over a grounded-cathode amplifier for linear amplification of single-sideband signals?

A --It doesn't need a grid choke.
B - It gives mure puwer ontput than a grounded-cathode amplifier.
C - - It never needs to be neutralized.
D - It inherently provides a constant load for the driver.
E-It can be coupled more easily to the exciter.
Q2. If the frequency of a vacuum-tube crystal oscillator drifts noticeably in a short period after a cold start, which of the following are the most probable causes:

A - The plate power iuput is too high.
B - Tube heater voltage is low.
C.-. Feedback is excessive.

D - Grid-leak resistance is too low.
E-There is not enough feedback.
Q3. If the plate voltage on a Class Camplifier is reduced to one-half, what should happen in its output circuit?

A -The power output should be one-half its former value.
B - There should be no change in power output.
C . The plate current should not change.
$D-$ The plate current should decrease to one-half its former value.
E-Both the plate current and power output should decrease to one-fourth the former values.
Q4. What is the purpose of a multivibrator in frequency-measuring equipment?

A-- It stabilizes the oscillator in a heterodyne frequency meter.
B - It can be used as a substitute for a orystal in a secondary standard.
C -It acts as a frequency divider and harmonic generator.
D--It is an efficient frequency multiplier.
E - It controls the feedback in a crystal oscillator to improve the waveform.
Q5. Name a distinguishing feature of Class A operation with a transistor amplitier.

A - The d.c. wollector eurrent does not change when a signal is applied to the base-emitter circuit.
$\mathrm{B}-$ The amplifier always has a bias resistor in the emitter return circuit.
C - The base and enaiter are at the same d.c. potential.

D - Transformer coupling has to be used.
E-Class A operation is usable only at audio frequencies.
Q6. Which of the following statements is true?
$\mathrm{A}-\mathrm{A}$ Class C amplifier is useful in radiotelephouy only when ii is platemodulated.
B-The plate efficiency of a Class amplifier is essentially constant at all levels of plate voltage.
C- A Class A amplifier makes a good frequency multiplier.
D - Class A, B and C amplifiers require different basic circuits in r.f. amplification.
$\mathrm{E}-\mathrm{A}$ Class B amplifier is usable only for linear r.f. amplification.
Q7. What is the purpose of plate decoupling circuits in multistage transmitters?

A - To prevent intrastage parasitic oscillations.
$B-T o$ avoid overdriving the final amplifier.
Q --- To regulate the coupling to the antenna circuit.
D - To prevent generating harmonics in the TV bands.
E-To reduce the possibility of feedback between stages.
(.Ansuers on pate 166.)
(Please note: In the answers to questions in Part I, page 148, March (2ST, the captions for the drawings should be transposed.)

Back Copies and Photographs

Back copies of QST referred to in QST issues are available when in print from our Circulation Department. Please send cash, money order or check --75́ for each copy - with your order; we cannot bill small orders nor can we ship c.o.d.

Full size (8 by 10) glossy prints of equipment described in QST by staff members (only) can be furnished at $\$ 1.50$ each. Please indicate the QST issue, page number, and other necessary identitication when ordering, and include full remittance with your order - we do not bill nor ship c.o.d.

Sorry, but no reprints of individual QST articles are available, nor are templates available unless spccificcolly mentioned in the article.

I.A.R.U. News

INTERNATIONAL AMATEUR RADIO UNION

GB2LO AT CITY OF LONDON FESTIVAL

An unusual feature of the 1968 City of London Festival, July sth to 20th, will be the amateur radio station installed and operated by the Radio Sociciy of Grcat Britain.

Equipment will be operated by volunteers on the :imateur frequencies in the $10,15,20,40$ and 80 meter bands under the call of GB2LO. 'The Society's Public Relations personnel will be on hand to explain the station and its function to visitors.

INTERNATIONAL MEETING WILL SIGN VKIEC

This month, the Economic Commission of Asia and the Far East (ECAFE) will hold their 24th Session in Canberra, Australia. This is a very important international conference and many top government officials will be present.

Because of the importance of the occasion, the call VK1EC (Economic Commission) has been issued for the three weeks of the Conference. Operation will center on 20 -meters s.s.b. and conventional a.m., and possibly some $40-$ and 80 -meter activity. All stations contacted will receive a special (2SL for the event.

EAGITU

During the CCIR sessions (broadcasting study groups of the International Telecommunications Union) at Palma, Majorca, April 27 -May 10, it is expected that EA6ITU will be in operation.

QSL BUREAU CHANGES

The following are new QSL bureau addresses; as complete bureau list will appear in the June issue. Norway: Norsk Radio Relae Liga, P.O. Box 21 Refstad, Oslo 5, Norway. Canada: (VE2 Bureau) J. Ravenscroft, VE2NV, 353 Thorncrest Ave., Dorval, P.Q., Canada. Australia: (VK3Victoria) E. Trebilcock, 340 Gillies Street, Thornbury, Vic. 3071. (VK4- Queensland) Inwards QSL Officer, Box b38J, CPO, Brisbane, Qld. 4001. (VK5, VK8 - South Australia) G. W. Luxon, VK5RX, 27 Belair Rd. Torrens Park, S.A. 5062.

Here are some of the gang you may have worked in the Bermuda contest sponsored by the Radio Society of Bermuda: From left are (seated) VP9FW (Bermuda's only YL), VP9DL, VEIPL (last year's contest winner), VP9CP, VP9BY, VP9AX, (standing) VP9FK, VP9FU, VP9AK, VP9FO, VP9BN, VP9FW, VP9L, VP9FX, VP9BO, and VP9FJ.

At the October, 1967 meeting of the VK6 Branch of the Wireless Institute of Australia, VK6RU received an award for his 21 years of service as VK6 QSL Manager. (Photo by VK6KK.)

DJ6QT is shown receiving an ARRL DX Competition award for top European phone score from Deutscher Amateur Radio Club president DLI QK.

FAREWELL RSGB BULLETIN

Starting with the January, 1968 issue, the name of the official publication of the Radio Society of Great Britain has changed from RSGB Bulletin to Radio Communication. RSGB points out that the name change was made not to imply a change in direction, but to better indicate to the uninitiated the area of interest covered by the journal.

SPANISH CONVENTION

The Union de Radioaficionudos Espanoles will hold their II Convention Internacional de Radioaficionados en Espana in Zaragoza, May $22-26,1968$. The program will include meetings, tours, luncheons and dinners. Detailed informatinn and registration cards may be obtained from: Delegacion URE, Apartado 86, Zaragoza. Registration deadline is April 15.

MEXICAN CONVENTION

Liga Mexicana de liadio Experimentadores announces that their National Convention will be held in the city of Monterrey from May 30, to June 1, 1968 (the weekend before the ARRL National Convention in San Antonio). Visiting U.S. amateurs will be able to obtain temporary

Above are Floro Spinelli, LU7CK, President of the Radio Club Argentino, and (right) Secretary Justino Gimenez, LU9AW.
licenses to operate from Mexico. For further details write LMRE, \% Antonio Pita M,. XE1CCP, Paseo Echegaray 106, Echegaray, Mexico.

April 1943

Editorially, K. B. Warner comments on WERS, not only as an emergency network applicable to situations directly caused by acts of the enemy, but also as a highly useful and necessary facility to be used in the case of natural disasters, such as floods, hurricanes and the like. Some inland communities seem to believe that they are immune to enemy action and have been slow to take up and implement WERS aud it is hoped that the realization of their potential usefulness in the case of natural disasters affecting the public safety will stir some of the lazy communities to action.
. . . We have previously paid visits to the Army, Coast Guard, Air Force and Navy. This month Clinton B. DeSoto, W1CBD, takes us on a tour of Camp Lejeune, N. C. where the Marines are busy transforming ordinary young fellows into tough, highly-trained fighting men. Kadio operators here are also tighting men, as is every Marine. Copiously illustrated with photographs supplied by the Marine Corps, you get a real good look at what goes on at this and other camps.
. . . Want to build a siphon tape recorder so that you can see what kind of fist that high speed artist has? 'This recorder, described by J. P. Gilliam, W9SVH, won't record music or speech but produces a wavy line resulting from c.w. signals. These have been in use commercially for quite some time and some operators can copy code from the tape at a speed fifty percent faster than by ear. This writer
knew a couple of fellows who read the tape at 65 to 70 w.p.m. for two hours at a stretch. The device looks a little complicated to build, but might well be done as a club project. Samples of the tape are shown.
. . . George Hart, WINJM, Acting Communications Manager, points out that a seeming conflict in rules governing WERS is easily resolved if one remembers that normally FCC is in control of WERS operations, but in case of enemy action the army takes over. Under the former, call signs must be given at the beginning and end of each transmission of whatever length. During an attack, say, no call signs are to be used and transmissions must he limited to 30 seconds duration and then no oftener than once every two minutes.
...George Grammer, W1DF, continues this course in elementary a.c. mathematics, this time discussing such things as average and effective values. You should read this one, if your old issues are handy.
. . . Having previously referred in this column to various WERS rigs employing self-excited oscillators and sometimes m.o.p.a., we now have a crystalcontrolled transmitter for WERS purposes. This is described nicely by F. E. Brooks, Jr., W5JLZ.
-W1ANA

EnStrayss

Bulletins of local weather conditions, astronomical events, and other scientific data of interest to radio amateurs are transmitted daily from WA1IOX at the Talcott Mountain Science Center (see June, 1967 QST, p. 56). Bulletins begin at 1630 GMT on 145.54 Mc . and are followed by a period of listening for other stations.

TECHNICAL ABILITY

(1. Your salute to Kod Newhirk caused me to go back :6 years with some nosialgia and the thought that perhaps there is a hidden message of sorts here for the young amateur of today and the proponents of limited licensing and limited technical ability etc.

In 1942 there developed a critical need for high ripeed radio operators and the plea went out accordingly. A group of very young amateur radio operators volunteered for such work with radio station IVAR.

It was certainly no small tribute to amateur radio to see these 20 -vear-old boys within a few weeks take their seats alongside the finest radio operators in the world and become respected by their superiors and fellow operators.
It was my pleasure to have been one of those boys along with Rod Newkirk. I also recall a skinny individual named Len Chertok, W3GKF, and very clearly remember a handsome devil coming in one day for his first day's work and paying more attention to all the good-looking girls in the station than the business at hand: Bob Denniston, WONWX.

In later vears as a Marine Corps communicator I saw a transition from the usual stroke of koud luck to have a radio amateur assigned to your unit to recent wears where having an amateur radio background means little or nuthing on the record.

Whose fault is it that the state of the at has become so simplified that so many radio amateurs ure just not interested in going behind the on-off switch? I think amateur radio has lust something along the line but I am also thankful that something like this comes up to remind us of the days that were a bit different to say the least. - Norman Gcrtz, Proridence, Rhode Island.
(1. Quite a few people maintain that amateur radio doesn't lead anyone to a career, as it did in the past. I don't know if one case means anything. However, for what is is worth, my case seems to refute the critics.

Like many who choose astronomy as a career, my decision was made at a very early age (about 12!). All of my education beyond high schoul has been devoted to preparation for the Ph.D. in Astronomy. In my particular case, I had envisioned myself as an uptical astronomer. lou know the type -... long hours at the evepiece of a large telescoupe in any kind of clear weather, even longer hours interpreting the resulting data.

In 1965, I was introduced to :amateur radio by my younger brother, Andy, WB2RZU who had just become a Novice. Anopheles Marconi bit and I got my Novice, and Ter:h., and then General, principally due to the code practice from W1AW. I did then and do now get considerable enjuyment from amateur radio. The kind of enthusiasm that amateur radio creates is bound to spill over into wher areas.

My advisor must have noticed the shift in my interests because when I successfully passed the Ph.D. qualifying exam in the beginning of December, he surprised me with the suggestion that I might like to do a thesis in radio astronomy. This is highly unusual because this institution has
never had anyone do a thesis in radio astronomy! It was doubly a surprise since the work was to be done at the National Radio Astronomy Observatory, the finest institution of its kind in the world.

As a result, it would appear that I am going to become a radio astronomer. It is clear to me that anateur radio will be responsible for my career. Now I can spend those long hours munitoring radio nuise. Anyway, the control room is heated. Hi! W'illiam J. Wंebster, Jr., IF B2TiNC, National Radio Astronomy Obscrvatory, Charlottesville, Virginia.

FREE AIR?

(1. I am aroused to the point of concerned anger by continual assertions that we owe our use of the radio spectrum to the fact that the government feels amateur radio to be in the public interest. This may very well be true but if so it is a shameful state of attairs unless the "public" in whose interest amateur radio uperates, consists of the quarter of a million or more radio amateurs.

Eivery citizen in this country and especially those who are directly involved in its goverument had better realize that the government (including the FCC) exists because it is in the public interest and not vice versa. Otherwise we will soun see the completion of the metamorphosis of our "free" country into a socialistic totalitarian state which will eventually be dissifived into anarchy by the rebellion of those who have had a taste of freedom. It isn't difficult to see these very trends in our society today.

Two facts seem clear: (1) A large proportion (probably a majority) of those interested in personal use of the radio spectrum for the purpose of transmission as well as reception are radio annateurs. (i) The air is free, no one has more nor less of an a. priori right to it than anyone else. Therefore, the only point of view that will keep our country free demands that we take the position illustrated by the following summary: We who are interested in amateur radio have organized into various amateur radio societies in order to increase our enjovment of the hobly. We insist on a propurtional share of the spectrum and we invite the Government, in the torm of the $\mathrm{F}^{\circ} \mathrm{CC}$, to regulate our activities in order to establish suund operating procedures and put the force of law behind them. We do this because it is in our best interest to do so, because we enjoy our hobby most when it is so regulated. But the regulations which are in force must, for that reason, be so because we request them and not at the whim of sume government agency.

Is I see it, your editorial of February 1068 refects a lamentable state of affairs. When are we going to wake up and return to the ideal of government of the peuple, by the people, and for the people? -Richard B. Davidson, WB j VSP, Los inpieles, Citifornia.
[Ediror's Note: If OMI Davidson's premiscs were followed, then a million CBers - who have ay much "right" to "iusist" su we - could properly claim five times as much spectrum as amateurs have. Thank goodness access to the apectrum is determined mostly on the basis of contribution to the public interest and not ou sheer numbers or cther political bases. |

ADVANCEMENT

(1. After going into amateur radio only a year ago and receiving my General as my tirst license, I was a little unhappy when the new licensing procedure was announced.

But I bought a new copy of the License Manual and began studying all over again. This morning I passed my Advanced Class on the tirst try.

I now think the licensing procedure is better in many ways. As soon as my two years of holding a license expire in May of 1969, I will try for the Extra Class.--T'. L. Caldwell, WA3HTS', Audobon, Pennsulvania.
(1. You may be interested to know that I started my study in amateur radio in July 1967.

I passed my Novice in November, 1967.
I passed the Technician December, 1967.
I passed the General January, 1968.
I passed the Advanced February, 1068.
When my two years waiting period is up I will take the Extra Class. Thanks for your helpful publications. 1 am 50 years of age --enjoying amateur radio very much. - F. Theodore Wilder, WB4ICZ, Griffin, Georgia.
(1) At first I was very skeptical about the whole idea of "incentive licensing." In fact, it sounded terrible. Like many other hams I didn't really learn the theory - just kind of. Now I'm ready to improve myself. I don't care to be a run-of-the-mill ham operator. - James H. Larscn, H'AりLPK, Ames, Iowa.
(1. Thauks for helping me to get my Extra ticket today.

The code practice sure comes in handy. QST also helps a lot with theory not to mention the Handbook or the License Manual.

Let me say 1 was in favor of the new system of licensing; had it not been for the extra incentive I would have been later in getting the Extra Class license. All of us are a little lazy to say the least and this was just the kick in the pants I needed to get going or be left behind. - Pcter Cl. Johnson, Ǩ1VCH, Somersct, Massachusetts.
(I I recently took the new Advanced Class examination which, as I had expected, was a formality somewhat easier, in my opinion, than the General Class test I took eleven years ago. P'robably this was unavoidable, as there simply is not enough difference between the General and Extra Class technical requirements to permit any real gradation of difficulty in an intermediate test. What I do not see, is why anybody from now on is going to bother with the General Class license. Any man who has passed the 13 w.p.m. code test is a fool if he does not go for the Advanced directly; there is so little difference between the two tests that if he can pass one he can pass the other.

The predictable result will be the transformation of the General Class into a very large static group of holdovers, most of whom, being relatively inactive, will never bother trying to go higher. And to $\begin{aligned} \\ \text { are }\end{aligned}$ these gentlemen the trouble of showing up at an FCC field office, the rest of us are about to be atflicted with an insimely complicated system of reserved sub-bands, with all the makings of a citizens-band type of enforcement mess.

The League's original proposal, in RM-499, would have avoided some of this by phasing the General Class out entirely in the major high-frequency
'phone bands. I supported this proposal, even though the League apparently thought better of it. Before very long, they may have reason to revive it. Jonathan T. Morey, W2HXF, Princeton, Ncw Sersely.
(1. A few days ago I received several back issues of QST' and was surprised to ind that incentive licensing had been approved. Having expected this I successfully qualified for the Extra Class license in March 1967.

My amazement was not with the passage of the regulation, but with the comments some of my fellow hams have made. You don't know how sorry I am for them. It must be absolutely terrible to require a person to know what goes on behind the shing emblazoned panels of their "guaranteed for 90 days" equipment. No, I'm not an advocate of homebrew gear, but I do know how my signal is produced, how to control it, and how to fix it when it ails.

Why do I say all of this? Simple! I was able to find enough time and interest to further my knowledge of electronic principles and circuitry when employed as an intern in a very busy hospital. Besides working daily and every third night, I wanted to know the idiosyncrasies of advanced techniques in electronics.

I did it because I love amateur radio and what it stands for. I take personal pride in successful accomplishments. All I can say to anyone who claims he doesn't want to know any of the advanced technology required by modern day communications is, "shape up or ship out." There is no roum for stagnation. Anyone who sincerely appreciates achievement and is willing to put forth honest ettiort to do so will succeed. I have wearied from the sad laments of those who would condemn a little bit of proficiency. We don't need you, and had we the power, we may not want you.

Tos the ARRL, continued success for the program of advancing the state of amateur radio. - Stephen A. Ǩriso, M.D., ĽZOMP, FPO, New York 09501.

I I am 63 years old and it is with great pity I read the pros and cons regarding the changes which are a part of life. I for one at 6.3 can clearly see most of our troubles are the failure to accept change and to conform with the times and if the young could see this there would be less of the nonsense written in complaining about changes.

I'm glad I'm an ARKL member! I'm glad the use of the choice sections of the bands must be earned! I have no fight with anyone. The a.m. boy cun clobber me with carrier, the s.s.b. hoy can run his pallon on top of me, the c.w. man can turn his electronic key up to 55 w.p.m. and I'll take him on with joy. I listen with patience to the griper and the know-it-all. The stumbling Novice is my friend; 1 even like OBers - they may someday be converted. I like QST, CQ, 's and even Popular Electronics - they all offer me tidbits I like. If at 6:3 one hasn't learned that none is perfect but all have some beautiful sides to them he's a lost case. I guess its great to be an idiot, Hi! - Bill Nagata, W $\sim E G I$, S'yosset, Long Island, Ncw York.

OP MANUAL

(1) In the iwenty one years that I have had an amateur license I have never been more impressed with an ARRLL non-techirical publication than The Radio Amateur's Opcrating Manual. I think it is ierrific and wish 1 had purchased one when you first advertised it. - D. S. Webber, W1PCD, Bangor, Mainc.

INFORMATION PLEASE

（1）Recently I have had surgery in the form of a thoracotomy whereby myorcardial electrodes were inserted in the heart，and the pulse generator was implanted subcutaneously below the diaphragm near the abdominal wall．The pacemaker（pulse generator）is a mercury cell－powered transistorized blocking oscillator working into a saturable cure transformer followed by a transistorized amplifier which discharges a tantalum electrolytic caparitor and thus provides a pulse that is basically rec－ tangular in shape，has a duration（pulse width）of 1.5 to 2.0 milliseconds，and is biphasic（current of opposite polarity is delivered during the interval between pacing pulses）．The rate（pulse／min．）and current（amplitude）are adjustable．
（Quite naturally，I am concerned about the in－ fluence of external fields on an implanted pace－ maker inasmuch as I expose myself to many different types of electromagnetic fields of varying intensity． In response to my query about the effect of r．f． currents generated by my transmitter（ 1 kw ．）at frequencies ranging from 3.5 to 30 megacycles，the manufacturer reported they would conduct such tests at one of their employees homes who also has a kw ．rig．They reported that they were unable to detect any adverse effects upon the pacemaker＇s performance．On the strength of their report，I have since then confirmed this by operating my station and noting no change in my pulse rate．Of course，I have no means at my disposal to measure the amplitude（output）to see if it is constant．

There are many unanswered questions，however， such as what would be the effect of r．f．fields in the multi－kw．range as is usually the ease with com－ mercial induction heating and welding units？What is the effect of strong d．c．fields？

Although my interest is inherently a selfish one， inasmuch as I am directly affected，it follows that my queries may elicit information from sour readers which would benefit others who also are living with implantable pacemakers（either endo－ cardial or myorcardial）．

I shall deeply appreciate hearing from anyone who has had first hand experience with such prob－ lems or who may have access to clinical data con－ cerning these questions，which I believe to be valid and in need of investigation．－－V．L．Spolcy， IV～ASF，Bron．mille，New York．
（1）A year or so ago I thought my hearing might be deteriorating faster than the uormal frequency response due to age．I had my hearing cherked and was advised that at ahout 4000 cycles there was a dip in the normal curve which would indicate damage due to noise injury．We need a frank and informative article on fow to treat ears，describing what is excessive nuise，how to know when you have reached the danger point，and how to avoid it．Is there an expert who could undertake the writing of such an article？I am sure the fraternity would he ever grateful．

I have enjoyed ham radio since before my first QSO in about 1920 ，and I have always thought it was something to retire to in my old age．I do not want to limit my accomplishing this by damaging my hearing！－（Name withheld by request）．

EDSEL MURPHY＇S LAW

（1）Congratulations on Edsel Murphy＇s laws（Febru－ ary $196 \times$ ）．I have been an amateur only a short time， but I find these laws holding quite true．I had a
piece of coax cut off so short that it had to be spliced； by a shovel falling down along a wall：to mention just one of many．Hi．Thanks for the great rag，keep it up．－Rimald K．liundberg，WN7IFA，Redmond， Trashimpton．
（I）Notwithstanding the frustrations，I guess that ＂Old Murph＂hit on the magic ingredient that keeps us old time s＂rolling our own＂ham gear．If it worked the first time we would soon tire of the whole alfair and give up for lack of interest．I wonder if that is not why so many of our fraternity who consider themselves＂commercial＂hams lose interest in their hohby and fall by the wayside．Edsel Murphy wasn＇t so bad after all！－James P ．Gillespic， W＇チLQC＇／TSBK゙K，Vashoille，Tenncssee．

I believe the author overlooked one very impor－ tant law in the＂trouble shooting＂eategury．This law will be found to hold in most shacks．
＂After climbing the 100 －foot tower to adjust the vagi＇s matching device it will be observed that the high s．w．r．was caused by loading into the transistor－ ized receiver instead of the beam．＂Yariations of this anyway．－Gury Straub，H．18RXQ，Marion，Uhio． ［Editor＇s Note：Sce＂League Lines，＂page 10.1

FET，EME，PDQ，ETC．

（1．Saw an interesting looking article in the January number entitled＂A Layman＇s look at E．m．e．，part ［I．＂Recognized that I did not know what e．m．e． is，so looked it over．Could not find anything but the initials，oo hunted up the first part．Looked it over carefully also，but still nothing but initials． I＇m frustrated．for I just cannot concentrate on the article until 1 know exactly what it stands for！Can guess Moon Echo．but what＇s the first one？Elec－ tronic？Please explain．Would it not be a good idea to assume that there is some reader who has for－ gotten or never knew，and print it out sumewhere near the first of the article？－Greg M．Euans， WoC．1s．C＇usfer，south Dakota．
｜Edrror＇s Note：sorry，we get into the hahit of using abbreviations and sumetimes forget that they ean be cryptic to the reader seeing them for the first time．Anyway． e．m．e．is an aceepted term for moonbounce，coming from the Gierman equivalents of the words＂earth－moon－earth＂ －－fortunately the initials are the same．！

DISTRESS

1．The data contained in＂Amateur Radio and Dis－ tress Information＂（QS＇T，Jan，＇68）should be kent haudy in the shack of every active ham．Chief Dean， a top operator in every sense of the phrase，has done a fine job of compiling this info．Distress and emergency calls do originate daily，and not just on emergency frequencies．So，don＇t say，＂I＇ll never hear anything like that．＂You might be the one who intercents a call today，tomorrow or maybe next week．Be ready！－－．Panl F．linlmshore，RiMI，U．S． Coast Guard，W＇AtBRS／MM，FPO，SAan F＇rancisco， California．

QST EXTRA

I When I want to read a QST＂Extra＂article，I have to grit my tenth，wrinkle my nose，and pull my eyes out an extra ten diopters to read the print underneath that red ink splasued across the page． Why make it su hard to read？Don＇t any of you gnys sit down and read QST after it gets printed？ it would serve you right！－Red－eyed but cordially． －Larry Triegs，W乌YBK゙，Fairport，Ncw York．
（EDitor＇s Note：Sorry，OM！We＇re using a lighter overprint this month which should make the text easier to read． 1

CONDUCTED BY ROD NEWKIRK,* W9BRD

How:

The DX Century Club Award is one of the most popular and sought-after awards in all of amateur radio, and among the most difficult to aequire. Its issuance is carefully supervised at ARRL headquarters. . . .
-.... The Rudio Amateur's Handbook

Fig. 1-Bob White's Tricky Toboggan Run.
In the fourth decade of ARRL's DS Century Club, hamdom's most widely coveted circle, we find almost three hundred long-haul experts qualified for QST's DXCC Honor Roll listing. There are 300 -country men in abundance. Most deservingly, the DX limelight tends to focus on them. They've brought the state of the art of D. X pursuit to a highly polished summit in what :amounts to the greatest DXI contest of them all.

The excitement of this high-level chase tends to obscure the importance of DXCC's threshold, the 100 -country goal. If now there are thousands of DX enthusiasts pressing toward their 300th rountry, how many more are in the lower QRM lityers nearing No. 100?

Fig. 1, derived from statistics supplied by W1s CW and YYM of ARRL's Communications Department, gives a vague but impressive idea. The graph's shaded area, like the submerged portion of a huge iceberg, holds a vast number of 70-, 80- :and 90-country folk! Were it to shrink, so would the future eminence of DXCC.

Thus we should appreciate one of the most important complexities of the jub done at ARRL's DXCC Desk. While still satisfying exuberant demands of the endorsement-hunting triple-DACC gang, W1CW if Co. must see to it that the award's basic values aren't whittled in the process.

New DICCC members of today and tomorrow deserve an award as worthy as that curned by

[^25]yesterduy's applicants. This stability is even more important to the DX talent toiling far higher on the DXCC ladder. Who wants to be king of the hill without a hill?

Better late than never, here's a newsclip from last yeur's "How's" miscellany file of probable import to those battling toward DX big-gun rating:

F.A.A. BANS TOWERS HIGHER THAN 2000 FT.

> Washington, Julv 11 (UPI) - The Federal Aviation Agency today banned the construction of television antenna towers and other similar structures higher than 2000 feet.
> The new regulation labels any structure higher than 2000 ieet "inherently a hazard to air navisation aud an inefficient utilization of the air space.
> F.id said anvone proposing to build a tower higher than 2000 feet will have the burden of convincing the a, ency that it will not endanger air traffic. . "no hazard" finding, the FAA added, will be issued "only in exceptional cases."

Hmm-would still needing Albania be an exceptional case?

That doggoned Novice Round-up - pile-ups near 7160 kc . get wilder every year. It suddenly dawned on us, after sweating out a Nebraska WN0 in mid-February, that this is a potentially

-- Reprinted from March, 1958, QST

explosive situation. More and more higher-class types rush the beginners in each NR while the supply of Novices holds fairly steady. Which reminds us that we gotta hit the book, Jeeves. As W9CxFF points out, FCC is sponsoring its big Extra Round-up come November.

What:

Sure we want your log for the 1968 ARRL DX Contest. Whether you made just one QSO or one hundred, it's your contest and you ought to vote. April 20th is postmark deadline, OMI - mail away!-. - We haven't docu mented DX doings on $14-M c$. voice since December, so let's hitch old Pegasus to the "How's" Bandwagon and hit the road. As usual, "UJ8KAA (110) 15 " means that UJ8KAA is reported ncar $14,110 \mathrm{kc}$. around 1500 GMT.
20 phone, described by Ws 2DY 2VOZ 3DWG/VR6 3HNK 4 YOK 5QGZ 8YGR 9LNQ, Ks tHQD +TWJ YTHB, WBS , DRJ 1GXE 6.JDT 7AUW XMCQ 8WSI Stherens, uffers the audio of APIS AD (18i) 3, MIR (205), SG (212) 18, CEs 1 FC 1 IIU 3AEO 2 , 3BD 3C'N 4AJ (100) $\because 4$, $\because 6 \mathrm{~T} 6 \mathrm{EQ} 84 \mathrm{~A}$ 8CP 9AT (100) $16-18,0 \mathrm{AE}$ (225) $2-4$. CNs 2AR (202) 8, 8BC 8BV 20, 8FV (2:20) 5, CO8MN ($\because 18$) $23-4$, CPs 1 EE (157) 0 , 1 GF 5 AO 5 BH 23 , 6 GC (145) 20, 8BB, CRs 4AE O, 4.AJ (255) 0, 4.AK (119) 19. 4BC (180) 0-8, 4BL $0-3,4 \mathrm{BO}(204) 21,5 \mathrm{SP}$ (185) $21-22$, $6 \mathrm{AI} 23,6 \mathrm{BX}(195) 7,6 \mathrm{O}$ (197) $21,61 \mathrm{HI} 20,61 \mathrm{~K}$ 61S 175) $4,6 \mathrm{IV}$ (155) $22,6 \mathrm{JW} 6 \mathrm{KR} 7 \mathrm{BV} 15,7 \mathrm{CD} 23,7 \mathrm{CI} 5$, 7 CQ (143) $4,7 \mathrm{DS}(331) 0,7 \mathrm{GF}$ (198) $15,7 \mathrm{IZ}$ (1.40) 17 , CTs 1 LN 1 PK (175) $\mathrm{H}, 2 \mathrm{AO}$ (200) 18, CXs 5BR 5 CS 7 BY (178) $0,8 \mathrm{BM}, \mathrm{DM} 4 W \mathrm{PL}$. DUS 1 FH (205) $22,1 \mathrm{BSP} \because 2 A F$ 9FB (190) 17, EAs 6BC (110) 19, 8CP 9AQ (234) 17, 9EJ (200) 17, EIs 4.J 7AF 9Q, ELs 2AC 3, 2AJ 3C 8B (205) 2:, SH (210) $5,8 \mathrm{I} 8 \mathrm{~J} 18-21$, EPs $2 \mathrm{BQ}(19.1) 16,2 \mathrm{DA}$ (194) 1t., 2DW 15, 3AM (196) 'i, E'「3s REL (130) 17. USA (1́t) 15. F9RY/FC, FB8ZZ 8, FC2CD (155) 19, FG7s TH XL (332) 20 , XT (175) 10 , FK8s BK (105) 8, BL,
 AN 23, BQ BS (2:21) 8, BV 4, FP8CY (175) 20, FR7s ZD (196) 3-4, ZG (145) 19, ZN (145) 20 , FW8RC ($\because 40) 4$, FY7s YG (190) $20, Y \mathrm{Y} \dot{0}, \mathrm{YM} 4$, GCs 2 LU (215) 8, 8HT, HBOAG (210) 17, HCs 2 LX i, 5MP 8RS (190) 19-0, HH9DL (338) 23, HI8XDA 23, HL9s AA (223) 13, KP (217) 12, KR (213) \because KY TT TY (210) 4, US 1, HKs 6AAY 6AZQ OAI 5, OBIS (180) 6. 0BKW (185) 2, HP1XYZ 3, HRs $1 \mathrm{MLD}(330) 13-14,1 \mathrm{KS} 21,2 \mathrm{VFB}(315) 3,6 \mathrm{~EB}$ (OO5) 4 , taboo HSs $1 \mathrm{AZ} 1 \mathrm{RZ} / 3$ (120) 16 , 4 AK (105) 17, HV3SJ' (154) 19, IS1s PPB (160) 17. TDW (296) : IT1s CDN 17. LTF (107) 16, JAs 1AEA 1ANG 1BU 1CC 11.AN 1DFQ $1 G T S$ 1IB 1ZZ 3KHB 6AD 6BAA 6DCE 7NA 7 NZ SADQ 8GY 8HK 8KH 8LL 91G 8AXV, JTIKAA (112) 13 , JV5YG (205) $19-20$, JXs $3 \times \mathrm{K}$ 6RL (170) U, K8NHW/XV5 (132) y, KAs 2 KA (180) 1-2, 2NY (1.10) $8,9 \mathrm{MF}, \mathrm{KCB} 4(\mathrm{SSB}(160) 10-23,4 U S G(292) 4$, 4USF 4, 4USL 4USM 4USN 8, 4USQ 16-0, 4USV 1-3, 4USX (2622) 4, 6BY (250) 8, 6CL (320) 11, 6CNI 6JC. KGs 4AM 4CX (300) $2,6 . A \mathrm{LY}(2: 0) 7,6 A Q G 6 A Q S$ 6FAE 6IG ($\because 10$) 16, 6IF 6SA. KJ6BZ ($\because 0)$ (i, KM6DE $\because(2) 5, K R 6 \leq$ BD GF ($\because(02) 12$, KN MIH MU WH, KS6CL $10, \mathrm{KV} 4 \mathrm{~s} \mathrm{AB} 4, \mathrm{AD}$ BW (207) 4, FA, KW6EJ (200) 8, KX6s DQ (232$)^{8} 8$, DB FA (297) 5 , FN IN, LJ JX (328), LX1s LB WR (127) 19, M1B (225) $6-7$, MP4s BBW (185) $4, \mathrm{BCC}$ (129) 14, BGE MBC (190) 19, OA8 3 Г 4AG 0, 4CV tTX 3, 5AY 6BU (300), 8D/3 9L (185) 21, OD5s $\mathrm{BZ}(210)$ 4, EJ 19, FC (210) 4, OEs 7 UD) (205) 16, 9ZBJ (155) 2, OHOs AA (160) $23-0$ NI, OXs B3S $20,3 \mathrm{DJ} 2:$ SDAI (239) 4, tAA (221$) 2,1 A C, 4 A D 5 A B 5 A C 1,5 A M$ 5 AK (262) 15, OYs $1 \mathrm{AB} 2 \mathrm{Y}^{\prime} \mathrm{L}(252), 3 \mathrm{~B} 2$, 40 V 9IM (15) 17, PJs 2CE ($\because 23) 15,2 \mathrm{CT} 2 M I$ (200) 18, 2 IJ 3CC,
 PZ1s BF' BW' (2:2 (6) 4, BX' (210) 4. CI (130) 20, SL2ZI.

HS4AK, on the International Telecommunications Union ban list at time of writing, has hopes of early authorization for $\mathrm{W} / \mathrm{K} / \mathrm{VE} / \mathrm{VO}$ contacts. Meanwhile we can only listen to Arno's FB signal near $14,105 \mathrm{kc}$. around 1700 GMT. (Photo via WI JMY)

SM-COP, SPs 8CA 9ANH 18, SVs 1BN gWL \wp WEE, TAs 1AX' (20:'), 1LY (130) 18, 2BK (332), TFs 2WKD' $21,2 W 5 P(175) 13,2 W K R$ (191) $1,3 E A$, TG9s DF (310) 17, RN (23i3) KU (295) 2, TIs 1EVA (105) 22, 2AB (2:35) 1, J('MLR (210) 3, TJ1s AG (182) 21, QQ (197), TN8s AA (1y0) $15, \mathrm{BK}^{\prime}$, TR8AG (101) 20 , 'TU 2 s A ${ }^{\prime}$ (195) 22 , AY (117) 24, BA (175) 0-4, BL 6, CA (260) 0, CC, U5ARTEK of the Cirimea, UAs 2AO 2KAW 2KBD (105) 18, 9 KDL (230$) ~ 12,9 T E$ OIE 0NM 7. UB5s KAW (150) 7, KMI $14, O T$ (195) 4, WF, UC2s BF (202) 3, CK 15-16, UF6s BG (211) 18. CUW (175) 19, KPA (203) $14, \mathrm{KTM}$, UG6s AW (211) 18, KAA (120) 16, SG (143) 10, UH8BO (255) h, UI8s AG 3, LC (130) 14, UJ8KAA (110) 15 , UL7s FA (113) 21, JA 3, LA, UM8s F'L (200) 9-13, KAB, UO5PK (112) 17, UR2s AK 14, KAW, UWs 9XZ 1 IIH (215) 2. VEXS GN KCSRX, VKs $1 G D$ (250) 13, 9AN 9DR 9KS 9OM 90N 9XI (116) 13-16, 6IA (160) 17, 0JP 12, vTO, $V P_{s} 1 C P 10 L 1 \mathrm{FR}(320) 17,1 \mathrm{LL}(332) 23-2,1 \mathrm{PV} 2 \mathrm{AA} 3$, 2.1C $2 . A Z$ (195) 17, $2.1 W$ 2GAE (190) 23, 2 GBC (202) 4 $2 \mathrm{GN}(190) 23-0,2 \mathrm{KM}(230) 11-12,2 \mathrm{LA}(213) 1,2 \mathrm{MH}$ (162) $17,2 \mathrm{MJ}$ (168) $23,2 \mathrm{MO} 2 \mathrm{SM} 2,2 \mathrm{SY}(219) 11-13$, $5 A A(20 ้ 2), 5 \mathrm{AB} 2,7 \mathrm{NF}(180) 7-8,7 \mathrm{NS} 8 \mathrm{FL}(172) 1$, SHZ (202) 1, 8IE (188) 23, 8IG 8IU 4, 8JC 8J (325) 19 , 8JF 8 JI 16 , 8JN $8 . \mathrm{JK} 2,9 \mathrm{BN}$ (138) $14,9 \mathrm{DC}$ (138) 15 , 9FK $9 \mathrm{~F}^{\prime} \mathrm{C} 9 \mathrm{FX} \mathrm{X}^{\prime} 23,9 \mathrm{VV}$, VOs 8 BI (193) $16,8 \mathrm{BZ}$ (202) 14 , 8CA 13, 8CC' (195) 17, 8CDC (239), 8CG 8CI 13, 9JF 9V (203) 18, VRs $1 \mathrm{~L}(2: 0) 5-6,2 \mathrm{CC}(185) 20$, $2 \mathrm{DI}(220) 19$, 2DK (137) $4,6 \mathrm{TC}(205)$ ४, VS8 6CO 6DO 9MB (170) 20, VU2s BK 12, CQ (20y) 13, DKZ (203) $15-16$, r'N 13, GM KV 17, LE KM, WA2CWG/OA6 2, XE1s ©B DDP KB WS XQ, XP1AA' (258) \&, XW8s AZ 5, BQ (19t) 1, BS (200) $13, \mathrm{BV}$ BX (205) 13 , YAs 1 DAN (216) 3, $2 K A T, ~ Y J 8 B W$ (195) 8, YKLAA (160) 14, YN3KM (330) 13, YSஃ 1CPE (326) $4,1 \mathrm{MAX} 1 \mathrm{VPE}(247) 5,1$ XEE (320) $20,2 C E N 17$.
 4 AU 2.' ZB2s A AP (250) 18, AY, ZC4s A ' 15 . BI (175) 5. ©N (180) 4, ZDs 3D 7 FF (238) $23-0$. 7 KH (332) 22-1, 8AB 8DX 3, 8HAL (173) $1,8 J E S ~ 8 R H$ 8WK 9BE (260) 18, ZEs $1 \mathrm{CX}(332) 23,5 \mathrm{JU}$ (325) 8KY, ZF1GC (186) 23, ZP5s CF (14U) 20, JB (212) 1 , JU, ZSs 3JJ (158) 18-19, 3 LU (180) 4, 9 H 9 L (207) 20, 3A 2s CL MJC (120) 8, 4S7s BR (140) 16, PB 17,4U1ITU (218) 16, 4W1s II 18, MI (135) $15,4 \mathrm{Xts} \mathrm{BL}$ (195) $4, \mathrm{DK} \mathrm{FQ}$ (202) 15 , MQ RW, $4 Z+\mathrm{AO}, 5 \mathrm{~A} 4 \mathrm{AB}(210) 6,5 \mathrm{H} 3 \mathrm{~s} \mathrm{JL}(240) 19$, JU KJ (155) is, $5 N 2 \mathrm{~s}$ AA5 AAX (160) 18 , ABK (188) 21 , ABW, 5R8s AS (199) 16, AU (145) 17, AZ (162) 17, BC BP (135) 17 , $5157 \mathrm{~s} \mathrm{AK} \mathrm{AL} \mathrm{(210)} 22$, AN (221) 0,5Vs ZAB (106) 8, 2 ZRQ 150) 18 , $4 \mathrm{EGG}(148) 17,5 W 1 A T$ (210) $5-6,5 Z 4 \mathrm{~A}$ AA (155) 18, AN IR 16, JL (198) 21 , JW 18, KO (202) 15, LG (176) $19,601 \mathrm{~GB}(103) 21,6 \mathrm{W8s}$ BE BM (218) 8, CMI DK (201) 23,6 Y5s AM (2:4) 15, CB (185) 20. EM GB (20U) 0-3. LA (225) 15, RA (225) 15-16, 7P8AR 16, 707s AM (140) 1.7, EC 6, LZ PBD, 7Xs 2AR 9 AH (175) 17, 8P6s AII (207) 13, AM AZ (192) $21, \mathrm{BX} 1, \mathrm{CC} 7, \mathrm{CE}, 8 \mathrm{R} 1 \mathrm{~s}$ है (210) 5, G 3, J P S, 9F3USA 22, 9G1s BB UY GA (340) 0 , GM 0 , KT 16, YJ YK, $9 H 1 M$ (332) $14-17$, 9 J 2 s AP (120) 18, BC BK 16, IE (255) 4-5, JC LK, 9 K 2 s ANI BY, 9L1s DW 9, GQ JJ 23-3, TW (174) 2'3, 9M2s DX 23-0. NF 17, PO (183) $10-13$, 9N1MM (190) $10-11,9 \mathrm{Q} 5 \mathrm{~s}$ BY (135) 6-7, EB 19, PI (195) 17, PT, 9U5s BB (165) 1y-20, 11 I (235) $19,9 \mathrm{VIs}$ MS (184) 13, OMI, 9X5s AA (220) 20, CE LB PB SA (197) 16. SM 22, WE (103) 17, 9Y4s AR (153) $21, \mathrm{LP}$ (180) $14-15$ and VT (200) 23 , all but a few using monosideband. And this is only a sampling!

Next month we hope to spot-check $20 \mathrm{c} . \mathrm{w}$. with the aid of Ws 1AYK $\because A A D P 3 H N K ~ 4 Y O K ~ 7 P O U ~ 81 B X ~ 9 L C G ~$ Y1.NQ, Ks 2BMI 4TWJ 5MIHG/6 5YUR 6OZL 0NAJ, WAs ICYT 1DJG 1 FHU 1 GXE 2 PZD 3 HRV 5 PUQ *MCQ 8PVN 9THB, WBンs SSK ZQE. ILER, followed by further treatments: (15 c.w.) Ws 3HNK trok tPOU 91.NQ, K5s MHG/6 YUR, WAs 1CYT 1DJG 1 FIIU 3 DSD 5 MIN $8 P V N$, WB2s FPG SSE, I1ER, WNs 1 ION $3 D S D$ 5MIN 8PVN, WB2s FPG SSK, I1ER, WNs 1 ION
tiSN 4GTI 4IIF; (15 phone) Ws 2 DY 3DWG/VR6 4.JVN 9LNQ, K4TWJ, WAs 1DJG 3DSD 5PIF 7AUW; (10 o.w.) Ws 4YOK'5QGZ, WAs 1CYT 1DJG 5PIF 8NICQ 9QBM ; (10 phonei Ws 4YOK 5QGZ 8YGR 9LNQ. K4TWJ, WA1s CYT DJG, KG6IC, KII6BZF, P. Kilroy; (t) c.w.) W8 3HNK 4 YOK 8YGR, K5MIIG/6, WA iCYT 1 DJC 1 FHU 3DSD 5MBC 5 PUQ 8MLCQ 8PVN, WB2FPG, WNs 3INI +1IF: (10 phone) Ws 3I) Líc/VR6 8YGR, Mr. Kilroy; (80 c c.w.) Ws ISWX 4YOK, WAs (YT IFHU 1GXE 8MCQ, WN1ION; (160 c.w.) W1BB, WA1s FIIU and GXE with more reporters to tile. Got your 1()-meter double-I)XCC yet?

Where:

H^{E}EREABOUTS - Plenty of "QSLers of the Month" this month - CN8BV. CR5CA, DL+EO, EL2s AK I), FPAMMK, FP8DJ, G6YL, GD3A 'MI, (1155^{\prime} AFF AIF, HAs 3MB $4 K Y B 6 K V B$ 8GK $\emptyset L L$, HByAG, HPIIE, JA1KSO, JH1BBU, KH6EDY, KL7FPM, KX6DB,
 TCGAA, 'JJ1QQ, TU2CA, UF6AM, 'VE8NE, VKs tOP GGN, VR1L, VP'EEB, VS9ARS, WḂPXZ,VP9, XW8BX, IN3KM, JOs 2 KF GGP, ISLWIEE, YU1VR, YV5s
 ZS1ACD, $4 X 1 C J, 5 H 3 K J, 5 R 8 C Q, 6 W 8 B F, 8 P 6 B U$, 9J2s W WR and $9 Y+T W$, plus QSL, managers Ws 15 Y I DCTN 4DQS 4YWX 6CUF 5 KGG 7 VRO , Fs t KJN $1 R C S$ GMHD and WB2UKP, all commended for snappy QSL comebacks by "How's"" contributors Ws ISWX SIBX 8YGR, Ks LNFY 5YUR, WAs 1FHU $2 H I U$ 3ATX BDMII 3DSD 3FRL $5 M I N$, WBㄴZQE, hG6AQI and s.w.l. hilroy. Any prompt pasteboarders you'd like to applaud? .-.-.- Halp! These italicized colleagues seek assistance toward glomming Qils from holdouts men-

 FG7TH, PJNAE, TH3AB, VP1MW, FSIW, ZEIS, 7P5CF, 4M44, 5U7AK and YY4L.J. Anv 'alp? In this connection W8IBX observes, "In your 'linlp!' section I see calls of stations from whom I've gotien cards after months and, in sotne cuses, years of waiting., In many instances 1 guess the kry word is 'patience.', 1 h , impatience is characteristic of all new generations, especially Hedgling DX generations who have yet to discover that a two-way QSL exchange via bureau is not unusually a matter of months and months. W9NN recently received an African QSL fifteen vears after QSO. What's the rush, ONs? -- - WA $\mathrm{O} P \mathrm{QQ}$ volunteers for QSL managerial dities should any overseas types be needful.-.-- WA50CG's tour as YN1FR QSL tenderstarts with QSÖs of February 8 , 1968- "Ex-ZD8HL has been active as VP'AC," records W2GHK. "His QSLs are handled by "DXpedition of the Month.'" ARRL Assistant Secretary WIUED indicates that $K Z Z G S$ is arranging to assume charge of the Canal Yone burean...... K6KDS, noting evidence of spurinus ZF1DX activity, points out that he used the call only from 2050 GMIT, October 23,1967 , to 1830 the 28th of that month - "All cards received are auswered 100 per cent via bureaus," declares OA8V "except those with s.a.e. (self addressed envelones) and IRCs (International Keply Coupons) which I send back direct. My Callbook address is undependable since mule train over the Andes is rather slow." Paul's best mail route appears in the listings to follow .-...- D. N Neus-sheet adds to last month's Barbados call correlationships: XP6s AE (VP6AK). AI (VP6AP, AU (VP6FD), BN (VP61, X) and CA (VPGUN), addresses unchanged...... In ISVL's Monitor we see that W4ORT's KG4AA QSiL rexponsibilities ro only for wSo of September and Uctober. 1965 NCDXC' D Xer sagely cautions tuat QSLs sent irect to remote regions be addressed as plainly as possible, giving minimal indication that IRCs or other goodies are illside -:- - W VQKC takes over KøTCF's share of IV9WNV's
 prietorship tor HKøs BKiV and BKX begins with QSOs of Vecember 18, 1967.

ASIA - VS6AZ's QSL aide, W6GB, is former K6GMIA, A. address unchanged. Walt, who also manages ZL3AB and ZS5PG QSLs, rernarks, "There are too many fellows who do not understand what s.a.s.e. means, or are just freeloaders by nature. With increased postage rates, no selfaddressed stamped envelope means no QSL." New ur casual UXers usually are insufficiently aware of the supply-vs.-
demand QSL problem. GC81IT explains it: "A rure DX station, or a mere handful of stations in places like ($\mathrm{x} D \mathrm{C}$ C 7 C 79 LI , etc., face a potential 280,000 -plus ops in the U.S.A. and some $1+5,000$ in the rest of the world, almost half a million. The only solution to the confirmation problem is for all of us to help by following necessary QSL instructions.".- UA1CK/JT1 QSLing neared completion in Fehruary but was complicated by receipt of hundreds of cards that didn't jibe with Vlad's logs.

AFRICA - W4HUE becomes W4IC, address the same. A and Doc writes, "VQYTC has left the Seychelles but $!$ expect. to receive his logs. Hope the buys will be patient."
.-.... - WA states. "Still have logs and QSLs for 9Q5AB and 7X2AII contacts but I am not QSL manager for 7X@AH."
"I send very few QSLs direct from Morocco," savs $\overline{\mathrm{C}} \dot{\mathrm{N}} \overline{8} \dot{\mathrm{~F}} \overline{\mathrm{~V}}$ (W1NTH), recommending the services of his QNL agent, W2GHK W3HNX can coufirm 5A3TX cuntacts scored from Uctober ' 64 to July of ' 66 but has no counection with subsequent users of the call...... VQ9J W's islandhopping QSOs in the Aldabras bailiwick can be contirmed through wociHK's J) Xpedition of the Month facilities FyMI tells VERON's D.Xpress he holds FB8YY logs for QSÜs on March 9 to December 13, 1967

1) Xeursheet has it that South Yemen, formerly Aden, will use the 7OA-7OZ pretix block. ..-.- LIDXA's D.' Bulletin suggests (i. Barrett, c/o 'The Lodge e, Hanslope, Woverton, Bucks., England, for ZD7IP convincers.-.-. CR5SP, VQ94, ZD9BE, 7Q7PBD and 9X5GG are behind schedule with' log shipments to W2GHK - patience, please. Stu's UXotMI activities will mark a fifth anniversary next month, some 400 kiloQSLs handled so far.

O^{c}
CEANIA -.." "I'll be on Guam for two more years," notities KCinAQI. "Best QsiL routes are via WAgPQF" or the KG6 bureau, the former being fastest. This also holds fur Barrigada Amateur Radio Club's KGGALW contacts for which I have logs.'
-at his
should not be sent, his way via the Gilberts or Ellice kroup unless vou're willing to tack on three or four munths transit time.-. - - WA9OMIR and ZK2AE, who vught to know, testify that ZK2AU's nersistent operation is unauthorized. In fact ZK2AE is sure he's the wuly ham on the island......-KH6GLU (KPGAPV R3DY) undertakes Qsising for past, present and future VR3C contacts on the customary basis of s.a.s.e., or s.a.e. with IRCs. "I'll schedule VR3O regularly for latest C)SO information because Fanning receives only two ship calls a year, these from Australia." '- $\mathrm{F}^{-} ;-$DX Venss-sheet suggests Rev. IV. Handin, 1131 NW 2 th St., Uklahoma City, Okla.. 73106, for '67 KC6BW cards, ylso noting that V KGIA of Macquarie isle wants QSLs via N. Foxcroft, VK3UO, 181 Victoria Rd., Northcote, Victoria, 3070, Australia.

EYUROPE - W2CTN's QSL service for OY'fFRA, Faroe club installation, commences with QSOs of last November, according to word from OY7MI- ISWL's Monitor remarks that France has gone into the Ffo pretix after gobbling up two-letter FI possibilities - DX
 per cent by E. KronkI, RAEM, Chapligin St. 1-A, Moscow, U.S.S.R., but Eirnst gets Ings from Franz-Josef Land only thrice vearly.- WB2IEC aflirms that he does North and South Amrrican aSLing for 9H1R .-....- LA6U of NRRL savs W9WNV's 3 YøAB label is the only call gurrently valid for Bouvet isle .-...- IFV3SJ assures Ki. Y'UR he works nu c.w., spurious contradictory evidence mondithstanding -.- Now a few specific nostal recomsarily accurate, complete nor "otticial":

EL9s C and B, left and right, operate from a remote mining camp in Liberia's jungle. Ben and Wim prefer 15 meter. You may also work EL9B/2 and EL9B/8 now and then, for Wim's work sometimes puts him on the road. (Photos via Ws 8RWP and IIKE)

CR4BK, ©.P. 90, Sao Vicente, Cape Verde Ls.
CR4BL, Box ét, Praia, Cape Verde Is.
DL40G, SP/ 4 Sexton, Helm. Spt. Det., APO, New York, N. 1

HG2KROD. Box 147, Veszorm, Hungary
HKOs BKW BKX (via WAGAHF)
HL9US, Sig. Sect., 8th U.S. Army, AC or SCE, APO, San Francisco, Calif., 96301
IIR4SN, S. Navarrete, P.O. Box 2, Isla Tigre, Amapala, Honduras
US4AK, A. Kosko, J\&B, OSD/ARPA, R\&D Field Unit, APO, San Francisco. C'alif., 9634 A
I1KN, CL.P. 113. Perugia, Italy
JA9BTW, N. Nishida, 3-29-12 Higashiyama, Kanazawa,
Japan
JX6RL, co Norwegian Fmbassy, Reykjavik, Iceland (or via NRRL)
KoILI/KG6. O. Johnson, P.O. Box 10:18, APO, San 'rancisco, Calif. 96334
KC4USF/mm, USCGC South Ir ind (WAGB-280), \% FPPO, New York, N. Y.
KH6GLU, E. DeYoung, 1942.A Iwaho Pl., Honolulu, Hawaii, 9t8819
OA7BI, E. Črvero, Box 26, Maldonado, Peru
OA8V.P. Wyse, Casilla 2492 , Lima, Peru (or via RCP)
OY4OV, O. Petersen, Box 184, 3800. Torshavn, Faroe Islands
SMs 5CAK 5CBN 5EAC 6CPI 7CPI (via W.A9AEA)
TA1IB, P.O. Box ti99, Istanbul, Turkey
TG4SR, Box 20 Guaternala ('ity, Guatemaia
TJ1AR, B.P. $\because 5$, Garoua, Cameroon
TJIAS. R. Zanotti, Box 49, Y'aounde, Carneroon
TT8AN, P.O. Box 443 , Fort Lamy, Tchad
TU2BX, Box $\because 01547$, Abidjan, Ivory Coast
UC2AA, P.O. Box ti, Minsk, Byelorussian S.S.R., U.S.S.R. VP8HZ (via RCU of Uruguav)
VP8JH, "́ E. Chilvers, 1 Grove Rd., Lydney, Clos., England
VP9FC, Tudor Hill Lab. \% FPO, New York, N. Y., 095fio WB2PXZ/VP9, J. Marclitto, Box 3161, APO, New York, N. Y. 09856

YNiRER, Box 1272, Managua, Nicaragua
YU3TXT' P.O. Box 53 . Idrija, Yugoslavia
ZK2AE, H. Coleman, P.U. Box 57, Niue Island, So. Pac. 4J7B, Box 88 N, Moscow, U.S.S.R.
5VZAB, S. Dal)urow B.P. 362, Lome, Toxo (or to D.reVZ)
SWIAT, \% H. Berham, GPO. Apia. W. Samoa (or via H'7ZXI)
7P8AB, Dr. A. Jaques, P.O. Box 389, Maseru, Lesotho 707AM. Box $\equiv 15$, Lilongwe, Malawi
707 PAX . V . Kletzien, P. O . Box 700, Blantyre, Malawi 8P6AM. W. Dowrich. Whitehall Rd..St. Michael. Barbados $9 \times 5 A V$, H. Verjus. P.O. Box 104 , Kigali, Rwanda
9X5BW, W. Berger, P.O. Box 1008 Kigali, Rwanda
CP1EO (via WAgFtR)
CR7GJ (viaCT1FL)
GP2DA (via WथM XB)
EP2DW (via W5IXQ)
G3WYX (via G3RUV)
HC8RS (via HC2GRC)
HK3BLD (via LCRA)
IT5FRU (to I1ZIZ)
JW5YG (via NRRL)
KG6GG (tia NRRL)
KL7FRY (to W8DGP)
OY6FRA (via WVCTN)
TF2WKR (to K2AQG)
VK9GJ (to VK4CJ)
VK0IA (via VK7ZKJ)
VKoJW (see text)

VP2AC (see text)
VO9TC (see text)
VR3G (via KH6GLU)
VR3DY (to KH6GLU)
VS6AZ (see text)
YNIFR (via WA50CG) YSIWKE (via KtRCS) YSIXEE (via W'B+BOJ) ZD9BH (via $\operatorname{ZS6} 6 \mathrm{XL}$) ZISAB (see tsxt)
ZL4RB (via (i3VIR)
ZS5PG (see text)
5VZRO (ria VERAFC) 7P8AR (via W4RRF)
7P8YL (to 7P8AR)
7X8 2AH OAH (see text)

8P6BU (via WB2UKP
9H1R (see t-xt)
9 905A (see text)
Ws 1 TNIY 1 SWX eadp edy 2 VOZ 4 G C 8IBX 9 LNQ , Ks 2MFY 5YUR 9YRA, WAs LGXE 5PUQ, WB2s IEC ZQE, KG6.AQI, OY7ML, Columbus Amateur Radio Assuciation CARA-scope (W8ZCQ), DARC's DX-MB (DLisR(), DX Neveshiet (G. Watts, 62 Belmore Rd.: Norwich. Nor. 72. T, England), Florida DX (lub D:Z liepurt (W.4BRB). International Short Wave Leaguc Monitor (A. Miller, טiz Warward Ln., Selly Oak, Birmingham 20. England, Japan WM Radio Club Bulletin (DADM), Long Island 1) A Association DX Bulletin (We (iKZ), Newark News Radio Club Bulletin (L. Waite 39 Hannum St., Ballston Spa, N. Y..), North Eastern DX Association LXX Bulletin (Kilip), Northern California 1)X Club D Xer (Box 608 . Menlo Park, Calif., Y:1025: attn. K $6(Q F)$, Ontario 1 XX Association Long Skip (VE3DLC), Southern California DX Club Bulletin (WAGGLD), Utah DX Association Bulletin (W7LEB) and, last but hardly least. VERON's famous DX press (PA ${ }^{(P)}$ FX LOU TO VDV WWP) deserve your thanks for the preceding data. More!

Whence:

E
UROPE - Those who are still airworthy after the annual ARRL affair will find other I) \dot{C} contests on the docket this month and next. From 1500 on April "0th to 1700 the: 21 st , USKis (Switzerland) holds its annual I elvetia-z'2 D.X Contest on 10 through 160 meters, c.w. and phone efforts combined. The usual RST- or RS001, RS00:3, etc., serials will be exchanged hetweeu Swiss amateurs and the rest of the world. Each HB station can be worked once per l,and at 3 points per contact, this point total to be multiplied by the number of Swiss band-cantons worked, for tinal score (watch for these canton designators appended to HB calls: -G AR BE BSFR GE GLGR LU NE NW SG SH SO SZ TG TI UR VD VS ZG and ZH). Logs postmarked within 30 days of the contest for shipment to M. Koschy, HB9SR, USKA Trattic Manager, Chemin Grenadiers 8, 1700 Fribourg, Switzerland, will be migible for possible certificates of merit to be awarded high scorers. Good chance to gun for the 22^{2} QSLs necessary to qualify for USKA's coveted $\mathrm{H}-\mathrm{N}_{2}$ certification! -.-. The International T'elegraphic Contest, an aunual aifair sponsored by Russia's Central Radio Club takes place from $\geqslant 100$ GMT on the th of May to 2100 the Sth, 3.5 through 28 Mic. Eversbody works everybody in this one, except that "contacts" hetwecu amateurs in the same city are not allowed." You may use the entire $\because 4$-hour contest period but each log entry must , cover no more than vour best solid 12 -hour stretch. "CQN" is the contest call, and the usual RSTOO1, RSTOO2, etc., serials will be exchanked by non Ustations. U.S.S.R. entrants will transmit RSTs plus oblast (district) numerals, and a given station can be worked but once per band. Each completed contact with a station (a) on your continent counts one point (no intracity $(\mathcal{S O} \mathrm{Os}$), and (b) outside your continent counts three points, this total to be multiplied by the number of different countries accumulated. Lok entries qu to the Central Radio Club, P.U. Box 88, Moscow, and must be mailed by June 1, 1968. Certificates of merit will be arailable to certain high-scoring participants and your submitted logs may help y ou qualify for such U.S.S.R.-issued shecpskins as W-100-II and R-150-s. Good huntin'! - . - - The International Amateur Radio Club (Switzerland) - 1968 Provagation Research Competition runs solid through this month, each participant invited to pursue colleagues in the 89 other Contributed to Pronagation Research zones world wide on 160 through 10 meters via voice, code or printer. Serial exchange consists

HB9s AFM and GJ (left and right) become HB \emptyset_{s} AFM and GJ from time to time, an old Swiss ham custom inspired by Liechtenstein's alpine splendor and your ARRL DX Century Club. (Photos via WAIDJG)

OX3DM teaches physics, chemistry and math in Godthaab when not visiting with DX friends on 20, 15 or 10 meters. Ole's favorite phone spot is $21,333 \mathrm{kc}$.
of RS or RS' plus one's two-digit CPR zone indicator at 1 point per contact, 2 points per mobile contaet, or 3 points per mobile-to-mubile QSO. Rush large s.a.s.e. to contest chairman W3ZA for the complex zone data and full details.
ASIA - ARRL President WONWX jarred the 160 -metcr A DX world at $1305-1300$ GMIT last January 28 th by working KA9MF, 1880 to 1998 kc , for his final top-band continent. Bob's homespun 50-watter wax hooked to 700 feet of copper. W1BB, reporting this feat, finis that W8ANO was also heard at kA9MIF --.- HL9US, manned by WAgFLX and WB6POH, is available daily on $14,050-k c$. c.w. around 0030 FMIT, 21,390 -ke. phone at $\because 300$. Bob and Grant point out that Korea's Kimchi award is no longer issued .-. . . - TRC (Turkey) is on the receiving end of a two-vear helping of OST thanks to NCDXC's ing end of a two-vear helping of (WT thanks to NCDAC
WAGAHF . -. - W2ADP found IIB9BJ at the kry of 9N1BUZ •-.-- VUEMSK (N゙: MASK) tills Mq.'s WIYYM that the VUE gang was primed and ready for the ARRL Test. No fair sikning ' $\because \mathrm{m}$ up with the ''otomac Valley bunch, Ed..... - Wi3HNK's newly married friend +X4RD is thinking about DK again- kRGs eve near-by Thaito and Rosa isles lideursionally
JTs 1AB 1AD 1AG 1AJ 1 KAE and vAA are roportied workable on c.w. IKAA on sideband, while across the border UABs KYi Y'C YO I'R and IT' abound on $14-M c$. c.w., E and Y On voice.
AFRICA- Liberian jungle notes courtesy W8WRP via \therefore W1IKE: EL9sA, B and C, uperating at a mining camp 100 miles from Monrovia, are the sole muans of mitside communications for their community. All do DXine on 21 Mc., ELYA with a IR-3 and homelorew 3 -elrment bearn, EL9B a 350 and similar radiator, and EEL9C a T4-5/T4-A and TA-33 up 55 feet- Ex-CR5CA tells K2KBI he expects to be a (CR7 soon - - . . VE:AFC"s buddy GVZRQ likes $14,135 \mathrm{kc}$. around -100 (init
KlATY visited recently with ZS6LJ and other South Africar amateurs. "It was heartwarming to see: all those brautiful trihanders so far from home.' tells W3HNK he's back on 15 rew. rarin' to go
"Much fun in the Test," exclaims CN8I.V, due to depart Morocco in Junc.-...- . Ifrican items via literature of aforementioned clubs and gromps: TP8AB, a 15-meter c.w. fan, is ZS6BME's OM, and neighbor 7PGYL is the wife of 7 PBAR . . . Tristan's $\angle \mathrm{D9BE}$ likes sideband while Giough's 7D9BH holds to straikht a.in. . both around 14,110$14,150 \mathrm{kc}$. at $1900-2: 00$ (MMT. . . . ZSS9s Ff and I on 20 kidehand at $1600-1900$ GMT, and \mathcal{G} on $21,030-\mathrm{kc}$. c.w. at
1800 or so keep Botswana boiling. . Many EAGs, IIN ls, etc.. appear and disappear 80 frequently because Swiss Red Cross radiomen work six-week hitches. IB9PL
has eight fW1 QSLs in tile. . . . V'G8BZ's Rodriguez trip as VC28HZR produced lit December two-ways.
FH8CI's layoff leaves the Comoros un to FH8CE, 21.200 ke. at 1500 (iMT. . . . Two CR4 contacts since Februar. 8, 1968 , may qualify you for a special Cape Verde certification. Check with ('RtA.J. . . . TJIQQ's EADAH effort resulted in 1463 contacts, 893 with W/hs.
() CEANIA - The Indonesian decree of late December allthorizing ham radio quickly produced hundreds of licenses and considerable activity. ARRL Assistant General Manager W1IKE understands that Indonesia intends to remove itself from International Telecommunications Union banned status shortly. Monitor W1AW!
"In five wonths I. made more than five thousand contacts with stations in 140 countries," reenunts Pitcairn's W3DWG/V'R6...... K8WXC of KG6IC writes from Iwo, "KG6IJ has no operator at this time but you may hear the station in contests operated by KiA9JP. KC6BL puts Y'ap on 14,250 or $14,330 \mathrm{kc}$. almost daily, also 28,635 kc. un week ends, $2 \because 00-2400$ GMIT. KC6BY, KG6s IC and S.A experiment with radioprinters near it,190 kc." .-..- "I work VR1L rexularly and will be glad to arrange skeds with Bob," ofters KG6AQI . - . - . - Niuc soloist ZK2AE writes, "Later this vear I'll have an SB-401 on all DX bands. Meanwhile I operate 75 phone with tifty watts of a.m." --.-- W'?GHK says that VK9DR should soon be back at it on Christmas after mainland leave $\dot{Z} \dot{Z} \dot{\mathrm{~V}} \dot{B}-\mathrm{Z} L \mathrm{~Pa}$ fic patter via the clubs press: Ex-ZL1AB7KL.5AA. . OVB.IX $/ \mathrm{mm}$, $14,3 \geq 5 \mathrm{kc}$. at 1730 (MIT, operates aboard Rutha Dan with an Australian Antarctic expedition. . KC6s AO CIL CMI and JC otfer Eastern Garolines, KCGs $A Q B Y C D C K$ and CO represent the Western version, $\mathrm{EC} 6 \mathrm{C} O$ due to complete work on a Lee Marvin movie this month. . . You may previously have hooked Macquarie's VKgJW as VSlJW, 9Ms i.fW, 6JW, 9V1.JW, VKs 2 B.IK or 4 GU. John likes $14,075-\mathrm{kc}$. c.w. and $14,125-14, \because \because 0-\mathrm{kc}$. simgle-sidrhand. . . . VK 6 IZ is supposed to become VK2BKK in Svdney. $\because H S 3 D R, 9 M 2 \mathrm{BBD}$ NF and XX mav be signing VS5RCS in Brunci on 1.8 through 28 Mc. about now.
COUTH AMERIGA- $\cdot 1$ IX conditions next to the Werfuator seem to be outstanding," exults OA8V, exKP4.AVH, "In forty hours of 10 -meter contest work I made 1100 QSOs with 93 countries. I've also been working (Continued on puge 170)

OA8V radiates on 75 through 10 meters from Yarinacocha, a jungle spot eight degrees off the equator. Paul, who deals with some of Peru's thirty languages for Wycliffe Bible Translators, formerly signed KP4AWH.

CONDUCTED BY LOUISE RAMMSEY MOREAU,* WB6BBO

In the Beginning

Radio began as a "man's game," for there is no record of a woman being present when the letter "s" was sent from Poldhu, in 1901, nor do any existing pictures show a woman in the room itt St. Johns, Newfoundland as Marconi received that signal. In fact, history doesn't even hint at a. feminine touch when wireless was in the pablum stage. The only possible woman appears in 1907, when a Miss Lillian Todd, helped organize the Junior Aero Club of U.S. In 1909, this group became the Junior Wireless Club Limited, with Miss Todd as the honorary president. So far as is known, she is the first woman to be connected with radio.

Most records state that 1915 was the first year to see a woman operator listed. There have been vague hints of others, but none have been verified nor has any evidence been presented to back these suggestions. Now, after sixty-odd years of amateur radio operation, it is worth while to know just who were the gals who spoke familiarly of sync-gaps, decrement, audions, detectors,

* Y'I, Editor Q S'T'. Please send all news notes to I'B6BBO's home address; 1036 East Boston St., Altadena, ('slif 91001.

It is unusual to have twelve licensed Y Ls in one radio club. Seven showed up for this picture of the Jayhawk ARC YLs. Left to right: (front row): Patricia Beard, WAøEMQ, Judy Caldwell, WNØSCW, Cleo Mahoney, WAØSHE. (back row): Vivian Ryburn, WA $\emptyset P S L$, Anita Suptic, WAøHSK, Charlotte Crozier, WAØNDG, Irene Nichol. (Not pictured Ella Koons, WøAYL, Wanda Beattie, WAøPLC, Kathy Draskovitch, WA Susie Powell.)
and who watched the blue spark jump across the electrodes, and remember the ozone in the shack. Thanks to the research of E. A. Rasmussen, W6YPM, with his historical library of all the Government Call Books, the Aylesworth Agency Call Book, and the Gernsback Blue Books, it is possible to give a fairly complete list of the ladies who were a part of the court of King Spark.

1910 Gernsback Blue Book FNFN, assigned to Herrold and Glass. Herrold was Doc Herold, and Glass was a $Y^{\prime} L$.

1911 Aylesworth Call Book
NI, Inez Kinney, Ocean Park, California 1913 Government Call Book 2 INN, Vivian Carrougher, Brooklyn, New York 2IA, Winifred Royce, Brooklyn, New York 6GK, Gladys Kathleen Parkin, San Rafael, California

1913 Government Call Book:
(Supplement \#1, October 1913)
sEZ, Mary Alice McConaughy (no address given) 1914 Government Call Book: (Supplement \#2)
1VO, Shirley Haskell, Essex, Connecticut. 1915 Government C'all Book 8NH, Emma Clandler, St. Mary's, Öhio 1916 Government Call Book 1NV, Margaret L. Ciampbell, Kockport, Massa. chusetts
1ASP, Helen B. Colson, Watertown, Massachusetts 1WX, Miss Cecil Powel, Hartford, Connecticut GSOO, Kathleen Parkin, San Rafael, California 9TZ, Rea M. Lamb, Kenosha, Wisconsin

1917 Government C'all Book
7FG, Winifred Dow, Tacoma, Washington
1919 Government Call Book
1 RO, Edith Rotch, Boston, Massachusetts
1920 Government C'all Book
1DBE, Mae Smith, Manchester, New Hampshire 1PAE, Winifred H. Campbell, Watertown, Massachusetts
4DG, Mable T. Lewis, Ft. Lauderdale, Florida 6BP, Kathleen Parkin, San Rafael, California 1921 Government C'all Book 10 X , Harriet El Lee, Marlboro, Massachusetts 1CDP, Eunice Randall, New Bedford, Massachusetts
2AEZ, Beverly Clark, New York, New York 2AXB, Gertrude MicCollum, Long Branch, New York 2.JW, Augustine Wirth, Newark, New Jersey 3 AFZ, Della Maskell, Bridgeton, New Jersey ZBCK, Marion Giarmhausen, Baltimore, Maryland 50 S , Delma Pearl Anderson, Enid, Oklahoma 5PJ, Mrs. Julia Garrett. Ft. Worth, Texas 9 ACB , Lorraine F. Jones, Kirkwood, Missouri
"YL News and Views" is most grateful to W6YPM for doing this research for the column.

Kay, KøBTV, and Marte, KøEPE, Convention co-chairmen, going through the file drawer on the coming convention.

Hostesses for the YL activities of the ARRL National Convention The Alamo YL Club. Seated left to right: Ruth Jank, K5OPT, Ella Munsch, W5TSE, Frances Bruemmer, W5KQG, Aileen Turnage, K5OPV. Standing: Peggy De Lay, WA5GZO, Gerry Buckanan, K5YCE, Inez Cole, W5WXT. Not present when the picture was taken Katherine Pirrie, K5TSZ. (Photo by W5KHL.)

Elaine, WØHEM, and Marge, WAøEGG. Registration Chairman, and YLRL Convention treasurer, with net for paperweight favors.

Spark began to give way to c.w., and, from 1922 on the list of licensed YLs grows in numbers. There may have been others in the earliest days before the licensing laws, if so, the fact that they are women operators is not indicated. The above list gives us the pioneers in what is sometimes called "the distaff side of amateur radio."

There is no record of whether Miss Lillian Todd actually operated a wireless station in 1909, probably as in the case of Annie Ellsworth, and Samuel Morse she gave badly needed moral support. However, the entire amateur service owes Miss Todd a grateful vote of thanks, for her encouraging leadership of the Junior Wireless Club Limited, that later became the highly respected Radio Club of America, that has given so much to the communications field.

The whole picture has changed radically since a YL named Glass operated with the call FN, in 1910. If 2IA, $2 \mathrm{MN}, 6 \mathrm{GK}$, and 8 EZ , were to check over the list of International Abbreviations that they received with their licenses in 1913, they would find many different meanings from the present day list. Two they would find are the same now as they were 55 years ago. QSL has never changed, and QRV meant then the same as it means to every member of YLRL - "I am ready."

Time is Getting Shorter and Shorter!

YLs who suddenly remember "Omygawsh! I hope I'm not too late for the two major YL gatherings this summer - " still have time to register.

ARRL National Convention, San Antonio, Texas, June 7, S, 9. Plenty of YL activities have been planned, including a Friday night party, "A Get Together," Coffee Session with a special program, and a ladies luncheon. There will be tours, and, of course the Saturday night dance.

YLRL International Convention, June 13-16, Denver, Colorado. They are working towards the deadline in Denver, and everything looks great. These affairs happen only once in four years, and the Colorado Club has something for everyone who attends. Be sure to get your registration in by deadline time. Not one gal who attends will be sorry.

Trillium Memorial Week Winners

Albert Theodore Jensen Memorial Trophy Steve Cody, VE3BBC

Runners up: Cliff Peterson, VE3AST
Bill Harje, VE3EFX
L. Passingham, VE3ARI

The Trillium Memorial Week is to be an annual affair, with a trophy for the winners. Next one will be November 1968.

TI2JAA, Clemencia Acuna

TI2JAA, is the first woman to receive the Ezzio Mazzali Cup, awarded by the Radio Club of Costa Rica, for humanitarian work. Clemencia's activity in emergency net operation, making arrangements to give assistance to those in need takes up about six hours a day. It was for her tireless work in this field that she received the 1967 award. The inscription on the cup reads: "For the best humanitarian work by a Ham operator for the year."

TI2JAA has been operating for six years, and has been very active in both the Interamerican, and

WN9UDV, Mary Kay Mitchell, a senior at New Trier HS plans to lose her Novice call soon.

WN9RJJ, Helen "Muffy" Koch, Secretary of the WNTH ARC. Also a senior at New Trier High School, Winnetka, Illinois, she plans to take her General Class soon, as well as the Second Class Radiotelephone exam.

Panamerican Nets. The eutire Acuna family are licensed amateurs. OM. Jose is TI2JA, and their daughter, Julietta, is TI2KI.

W6QVK-"Gene" Sheetz

Happiness, to Gene, is painting, millinery, the Hammond organ, her family, genealogy, and, of course amateur radio. A member of YLRL, ARRL, the YLRC-LA, and activity with both the Ramona Radio Club of San Gabriel, as well as the

Gene Sheetz, W6QVK.

Monterey Park Radio (lub, she has no time to he bored.

Gene became interested in amateur radio while she was a journalism student at the University of Nevada. She received her license after the Sheetz family had moved to California in 1937, and has been active ever since.
Her journalistic background made Gene the natural choice for the posts editor of the Monterey Park Radio Club paper, a term as publicity chairman for the Los Angeles YLRC, as well as Ramona Radio Club's Historian. For her work in compiling their history, she was presented "Ham of the Year" award of the Ramona Club in 1962. But that didn't stop either (iene, nur the awards for in 1967, she was again named "Ham of the Year," this time by the Monterey Park group.

As with all of us her family is her main interest and love, but unlike most of us she has extended the interest to the genealogy field, and has compiled a family history that has included tracing over 1000 descendents of her great-great Grandfather Clark.
W6QVK, and OM, Charies, WGPTF, are one of the ferw husband and wife teams that are members of QCWA.
[5F7]

Astraysis

The Foundation For Amateur Radio, Inc., with headquarters in Washington, D. C. announces the sixth John W. Gore Memorial Scholarship for either graduate or under-graduate study. The Scholarship for 1968-1969 consists of a $\$ 500.00$ award. It may be re-applied for in succeeding yeara

Licensed radio amateurs who intend making a career in electronics or related sciences may now apply for the 1968-1069 scholarship application.

To be eligible, applicants must have completed one year in an accredited college or university and must be enrolled in a course of studies leading to a hachelors or higher degree. They must also be radio amateurs holding a valid FCC license of at least a General Class rating. Prefereuce will be given to applicants from the area served by the Foundation - the District of Columbia. Marvland and Virginia, although those living elsewhere are not excluded.

Scholarship applications should be mailed not later than August 31, 1968, and shouid be addressed to: Chairman, Scholarship Committee, Foundation for Ámateur Kadio, Inc., P.O. Box ${ }_{k} 5902$, Bethesda, Maryland 20014.
The Foundation for Amateur Radio, Inc., is a non-protit organization devoted to the advancement of Amateur Radio. It is composed of trustees representing radio clubs in the District of Columbia, Maryland and Virginia area.

John W. Gore, IV3PRL, in honor of whom the Scholarship was named, was until his death in 1900 the President of the Foundation. A prominent radio amateur in Baltimore for many years, he was a vice president of the Bethlehem Shiphuilding Corporation there.

The Post Office Department promises faster mail service with the new Zip codes. Use yours when you write League Headquarters. Use ours, too. It's 06111.

CONDUCTED BY BILL SMITH,* WB4HIP

VK3ATN/KøIJN QSO on 144

A^{N}Nother in an ever-increasing number of 144Mc.e.m.e. (moonbounce) contacts was made February 12, when VK3ATN worked KøIJN at Minneapolis, Minnesota, between 0843 and 0907 GMT.

VK3ATN's capabilities are well-known, but not KøIJN's. Henry Theobalt, KøIJN, has worked alone quictly at his e.m.e. project except for advice rendered by $\mathrm{K}^{2} \mathrm{MY}$ ' C. Henry built his 160 -element collinear array on a 34 -foot long, $31 / 2$-inch diameter boom and mounted the nearly 600 -pound array on the side of a rotatable tower. The center of the array is 63 feet above ground. The rotating tower handles azimuth positioning, but his elevation control is unique - and likewise difficult to describe. The array is actually mounted on an 'arm' which is moved by a winch arrangement from the ground, selsyns are used for position read-out.

The amplifier is a conventional pair of 4 CX 250 Bs delivering 650 watts to the antenna through $7 / 8$-inch Heliax. A change-over relay and tube pre-amp (Minnesota winters are too cold for transistors!) are mounted at the feedpoint. In fact, all of the equipment Henry used is commercial except for the antenna, patterned after K6MYC's design, and the mount and control mechanism.

Previous to the contact, Henry had never heard his own moon cehoes, and had hurriedly prepared for the schedule with VK3ATN. Several stations on the West Coast were aware of the test and several minutes before KøIJN's schedule with VK3ATN, K6MYC called KøIJN blindly and Henry answered him! The time element before the scheduled test and some automobile ignition noise prevented a possible contact bet.ween Henry and Mike. But VK3ATN and KøIJN heard each other immediately as their schedule began. Signals were well above the noise level and the contact was easily completed. Henry said his only problem was ignition noise and a stiff Minnesota wind buffeting his array, calusing some aiming difficulty.

VK3ATN heard other signals during the test period but was only able to contact køIJN; high line noise at VK3ATN probably prevented contacts with K6MYC and W6YK. KØIJN heard

[^26]

A 160 -element collinear mounted 63 feet in the air was used by K $\emptyset I J N$ for his e.m.e. contact with VK3ATN. This retouched photograph illustrates the unique elevation method; the entire tower rotates, allowing aximuth control.
bolh California stations, and K6MYC heard all three stations plus his own echoes!
The approximately 9405 mile contact between Ray and Henry is the second-longest on record, surpassed only by the 10,417 -mile VK3ATNK2MWA/ 2 contact on November 28, 1966. Conyratulations, gentlemen!

International V.h.f. Conference

The East Coast V.h.f. Society is sponsoring the conference May $2-4$, in connection with the Garden State Amateur Radio Exposition at P'aramus, N. J. The exposition is being held in one of the world's largest shopping centers, the Garden State llaza, at the intersection of Routes 4 and 17 .

Concluding the three-day event is the Saturday night banquet featuriug an address by Ray Naughton, VK3ATN, of moonbounce fame.

Tickets are available from the East Coast V.h.f. Society, Box 1263, Paterson, New Jersey for $\$ 7.95$. and $\$ 6.95$ for Y Ls and XYLs . Write now because no tickets will be sold at the door.

220-and-Up Directory Ready

Copies of the long-awaited directory have been mailed to all OVS appointees and those who submitted a completed questionnaire. Additional copies are available upon request, accompanied by a stamped self-addressed envelope, with 12ϕ postage.

VE2HW built this 1296-Mc. cavity amplifier from the article by WB6IOM, page 17, January 1968 QST. The builder says the amplifier tunes as easily as a $3.5-\mathrm{Mc}$. final.

U.h.f. Signal Source

VE2HW's OVS report last month mentioned a signal source for 432 and 1296 Mc . Obviously this is a useful device for the u.h.f. man, so I asked him for the details. The schematic and photographs provide the necessary information. There are two antenna connectors on the case, one each for 432 and 1296. The antenna whips are $63 / 4$ and $21 / 4$ inches long, respectively.

VE2HW's address is Don Watters, 427 Hampton (.ourt Road, Dollard-des-Ormeaux, Quebec, Canada.

The VE2HW 432 and 1296 Mc. signal source puts out a signal audible for several city blocks. The "osc" trimmer is C_{1} on the schematic.

Some Thoughts on 432

Within the past 24 months interest in " 432 Mc . has grown markedly. Now many of us are exploring our lowest u.h.f. band, discovering its possibilities for trop? scatter, aurora, e.m.e. (moonbounce), ATV and interference-free f.m. operation. The 30Mc. wide band has been mostly void of amateur signals except a few hardy souls who pioneer, and government radar. Solid-state developments now make low-noise reception easily obtainable and the varactor tripler allows the builder to inexpensively and easily produce r.f. Twenty watts, typical of a varactor tripler output, and a good antenna, have proven enough for tropospheric DX.

Experience at this frequency is gained mostly through the school-of-hard-knocks. Fortunately some of those so educated have agreed to share their know-how. "Grid," W4GJO. Sarasota, Florida offers the following observations.
"We never used to think of 2 meters as an especially noisy band, but it is, when compared with 432. When tropo conditions are good, 432 is often open longer (sometimes by days) and signals stronger, for a given power level, than 144. Easily

The VE2HW signal source is built into a standard $51 / 4 \times$ 3×2 inch utility box. The trough line is made of a piece of .032 brass sheet $4^{\prime \prime}$ long and $3 / 4^{\prime \prime}$ on a side. The center conductor is a 4 -inch long $1 / 4$-inch brass rod.
worked long-distance paths on 432 may be marginal on 144, and those who wait for favorable conditions on 144 before trying 432 are missing many exciting possibilities. We'll never appreciate 432 until there is much more random operating by well-equipped stations.
"As on all bands, the antenna is the weak link in too many cases. There are some very poor commercial 432 antennas on the market, and many hambuilt ones are no better. Of all the antennas described in various publications, those that perform the best with duplication are the 'Tilton Yagis and the extended-expanded collinears. The latter usually win the antenna gain contests, but I suspect this is largely because their greater size, and the fact that the collinear is more tolerant than liagis of sloppy construction and inaccurate physical measurements. Hours of optimizing can be negated in a moment if Yagi dimensions and construction are not scrupulously followed. Low-loss feedline is a must; RG-8/U is not good enough.
"An aid for evaluating antenna and receiver performance is a stable signal source. I use a crystalcontrolled transistor oscillator placed in a garage several blocks from my station. It runs continuously

Fig. 1-Schematic diagram of the VE2HW 432 and $1296-M c$. signal source. It is powered by two 9 -volt batteries, all resistors are $1 / 2$-watt, or smaller.
$\mathrm{L}_{1}-7$ turns No. 22, $1 / 2$ inch diameter, $1 / 2$ inch long. Link is 2 turns No. 22 at cold end.
$L_{2}-8$ turns No. 22, $1 / 2$ inch diameter, $1 / 2$ inch long.
$L_{3}-4$ inch long $1 / 2$ inch brass rod, tap 1 inch from one end. Solder rod into trough at both ends.
L4-Link 1 inch long No. 20, $1 / 8$ inch wide, bent into loop,
and is perfect for providing a signal of known strength and direction.
"Most ham-built parametric amplifiers I've seen leave much to be desired. Unstable pumps and poor mechanical design are two redsuls. When they're good, they're still great, and the Q of the device is helpful. But today's transistors come so close in performance, that one need not despair at not having a good stable paramp, especially if you don't have a nearby high-power 432 station."

Al, WØDRL, Tupeka, Kansas, an enthusiastic 432 fan, has these comments.
"I've been licensed for 20 years, worked much ehoice DX and hold DXCC, WAC and WAS, but my best amateur experience was the night I turned on the 432 gear, called CQ, and there was W9AAG answering. I worked five different stations that evening and all the work I'd put into 432 was worth those contacts.
"Since then I've discovered 432 doesn't require the ultimate of equipment. Under favorable conditions I've worked 325 miles with four watts, a pair of Tilton Yagis and 100 feet of RG-8/U. A varactor tripler driven by an existing 2 -meter transmitter is an excellent way to begin.
"Propagation is primarily tro pospheric, necessitating a study of the daily newspaper weather maps. One soon begins to predict when and where the band is going to open. I have a file of maps for days when the band was good, and studying them is quite educational. Winter conditions have surprised me. I worked W9BRN in Indiana, about b00 miles, one December night. But the most fun is working tropo scatter - at least I think that's what it is. W9WCD at DeKalb, Illinois has been worked 150 times since last summer. I'm putting 300 watts into 100 feet of half-inch Heliax and a 44 -element Tilton Yagi array. I can change the height of the antenna from 30 to 75 feet and still hear the Illinois station 95 percent of the time. The signal usually peaks ai about 50 feet, but varies from day-to-day. Another phenomenon I've noticed on this path is a constant flutter or echo effect on the signal. On several occasions I've turned my antenna slightly North of true and separated his signal into two different

> close to L_{3}.
> C_{1}-9-pf. air variable
> C_{2}-No. 8 brass machine screw with $3 / 8$ inch diameter brass nut soldered on thread end, forming capacitor plate after mounting trough, but soldered before L_{3} is installed. Use a nylon lock nut on outside of box.
frequencies, 100 to 200 cycles apart. Returning the antenna to its original true bearing again produced a single signal with an echo.
"A ham willing to put forth some effort in building equipment, studying, and using his ideas, can greatly contribute to the art of amateur radio. For a number of years 2 meters was considered a "local" band, but due to dedicated efforts we've proved the band is capable of excellent DK. I feel 432 is in the same position today; we really haven't given it a chance. The amateur should give serious thought to how he fits into the space communications picture, and if he begins work now, he is sure to be in on the exciting moments ahead."

Al Olcott, K7ICIV, at Las Vegas, Nevada has these suggestions.
"The important thing is an antenna that works, whatever it is. There is no such thing as a bad antenna, only bad procedures and methods of using the hardware. West Coast antenna ineasuring contests have revealed some poorly operating antennas, both commercial and homebuilt. My persunal observations of all v.h.f./u.h.f. arrays is that rarely does one exceed 18 db . gain over a dipole. The ARRL V.h.f. Manual is very good in its description of tuning 432-Mc. antennas. However, it should be stressed that results may be misleading if the transmitter is putting out r.f. on other frequencies, as well as 43%.
"A protection system is necessary in converters using bipolar transisturs, to prevent burning out the first-stage with r.f. The use of a shorting-type coaxial relay, or one from the APS-6 equipment, provides protection for all but high-power operation. In that case, a time constant delay may be necessary. The use of hot-carrier diodes or r.f. shunt diodes in the front end of my converter has proven intolerable for weak-signal work at $4: 32$. I'm still looking for a diode that will introduce little shunt capacitance; they should have low capacitance, fast rise time and be of the germanium type. Mounting the converter close to the changeover relay is necessary for weak signal detection, to avoid one-quarter and odd-multiple resonant lengths of coax between the relay and the converter. K7ZIR says experi-

Hans Lohmann Rasmussen, OZ9CR, Aasum Odense, Denmark, OZ9FR and several Copenhagen University students built this 25 -foot parabolic antenna. It is built of onecentimeter thin-walled steel tubing, obtained from a Danish shipbuilding yard, and covered with wire mesh. The entire antenna, including the drive system, cost less than $\$ 200$ and has an interchangeable feed dipole for 432 and 1296 Mc. Parametric amplifiers for both bands have been completed and high power transmitters are under construction. (W3BLC photo)
meuts with 432 transmitters indicate that tuned lines are ineflicient and that the cavity method is be.s."

Al also notes tropospheric variances over mountainous paths, and that a parallel between 144 and 432 conditions can not be established in that terrain. In Canada, most 432 activity is confined to Quebec and Ontario. VE2LI, active on 432 since 1062, says:
"I started with a 6252 tripler, 5894 amplifier, and a single 4CX250B in a square box cavity. My first contacts were arranged by schedule, after it became apparent there wasn't much activity. The antenna was a $: 3$-element collinear and the converter used a 416 B r.f. stage, noise figure unmeasured. A parametric amplifier was built, and it worked well as long as the impedance of the array remained constant. It was quite impressive to hear the signal from a test oscillator increase as pump voltage was applied, and the noise remain unchanged, but the paramp was useless in wet weather because the antenna impedance varied.
"There is no great secret to 432 propagation. Watching the harometric pressure has been my labor for years. The low and high pressure areas give one a good indication of what to expect. (Stalled or slow-moring areas of high pressure muly produce wcellent tropo conditions.) In January the barometer often reads very high and signals are extremely good, Winter signals are generally less subject to deep fades than summer signals because there are no pockets of warm air. In the summer, unless the barometric pressure is very high, signals are strong but exhibit very deep fades in a matter of seconds.

For long hauls, however, September and Ortober seem to produce the best signals hecause of warm days and cold nights, triggering temperature inversions. The most favorable time appears to be between 2100 and 2300 local time." (S'unrise conditions should be equally good due to the hrating of the upper air. or the cenerse of evenins atmospheric conditions.)
Several conclusions may be drawn from these notes: low power and a well-matched array fed with low-loss transmission line are adequate for many interesting contacts: most commercial and many homebuilt antennas are poorly designed and constructed: a certain amount of simple test gear must be built for ultimate equipment performance; watching 144 for favorable 432 conditions is unreliable, and more random use of the band is needed before its potential is developed.

Aurora contacts have been made on $4: 32$, and WAgIQN says theory indicates that 432 aurora signals should be approximately 23 db . down from 144. Amateurs could contribute greatly to the study of aurora above 400 Mc .

The following articles and publications are suggested for further study of 432 practices. QST, March 1966, W1CER's discussion of varactor multipliers, including an easily constructed tripler; QST, April 1966, W1HDQ's article, "Yagi Arravs for 4:32 Mc.;" The Radio Amatcur's V.H.F. Manual (ARRL), a 4.32-Mc. cavity amplifier plus many construction tips, and VHF for the Radio Amateur published by $C Q$ Magazine, page 35 , extendedexpanded collinears.

There has been nothing offered here that is new, but we hope this brief symposium will develop still further interest in the $420-\mathrm{Mc}$. band. There is no time like this summer to get started.

OVS and Operating News

50 Mc . DXers were disappointed that there was no recurrence of the early January F_{2} openings near the first of February. The m.u.f. hovered several megacycles short of 50 Mc. But on February 11. WA6HIIW, near Los Angeles, reported the m.u.f. above 50 Mc. at 1939 (XMT and KH6NS laying a potent signal into Southern California. WA6HAW also worked KH6BZF and KHGGKL. All three Hawaiian stations were using s.s.b. in the first 15 kc . of the American phone band. The F_{2} opening, which lasted until 2115 GMT, came on the heels of an excellent aurora between 2100 CMIT, February 10 and 0800 GMT the following day. The aurora reappeared about $9: 300$ GMIT, but was not as intense as the initial display. Numerous aurora contacts were reported during the two sessions.

During the previously reported late December and early January F_{2} openings, IW5SFW, Amarillo, Texas worked his 5ilh 50-Mc. state, KH6NS. Comyratulations, Phil! W'5SFW says a 5 kw . beacon is now operating at Point Barrow, Alaska on 46.374 Mc. beamed towards Anchorage.

Keports of Es during January and February were received from WA1DPX, Massachusetts: K2TXB/2, New York; W3BIVU, Pa.; W6DOR; WA7GFP. Oregon; W4FJ, Virginia and WA8EOW, Michigan. Uuring an opening at 0030 GMIT, February 1 , K2TAB/2 worked into Southern California on multi-hop E's.

W6PUZ/7, Mercer Island, Washington works his 50-Mc. scatter with 60 watts input and a 3 -element Yagi 30 feet high. But it has been sufficient for nearly 200 scatter contacts since late November, including more than 00 with WB6NMIT wer a 1100-mile path! W6PUZ $/ 7$ says schedules with WB6NMT produce good residual signals and
nearly 50 per cent copy. Signals during the December Geminids and January Quadrantids meteor showers were nearly solid, but the meteors actually distracted from the weak, residual signal. K7ICW, at Las Vegas, submitted his usual detailed report, including a number of scatter contacts such as an sou-mile haul to WøJSK/7, Idaho. At Beaurepaire, Quebec, 16 -year-old Don Falla. VE2DFO, recently hecame interested in s.s.b. scatter, and reports several nice contacts using a SB-100 and 5-element Yagi. Don says the VE2s would appreciate W/Ks looking north more frequently.

144 Mc. aurora openings Dİcited many operators in the northern latitudes during late January and in February. Aurora was reported on January 19, 28,29 and February 10 and 11. K2HLA, New York, says the Jauuary 19th opening was of short duration, and that he worked WA8RQJ in Ohio. The January $2 x-29$ opening was reported by K2HLA and W3KIVH in Pennsylvania. W1s. 2s, :3s, $8 \mathrm{~s}, 9 \mathrm{~s}$ and 0 s plus VE2 were worked, the hest DI appears to have been W3KWH's exchange with K0MQS, Iowa. The evening of February 10 proved interesting as W3KWH worked W18, Ys and $y^{\text {s }}$ including KøMQS, Iowa. WøRLI, Minnesota and W9HHA, Wisconsin. W3BDP, Delaware, and W9YYF, Illinois, each worked a new state when they contacted one auother over an approximately 700 -mile path. K 0 MQS heard W3BDP, about 9.50 miles, but W3BDP could not hear the Iowan. The time was 2045 EST; auroral conditions lasted from about 6 p.s. until midnight, EST. The aurora returned about sundown the 11 th and lasted until at least : 3 а.м. the 12th. W3KWH worked WA9DOT, Wisconsin, and K4QIF in extreme Southeastern Virginia worked W9BRN, Indiana, and heard W9YYF, Illinois, about 700 miles distance. Two stations, VE2BGJ and K9AWV. Illinois, worked their first aurora and reported contacts with many stations, and the Illinois station heard Vermont's K1BKK, about 800 miles. Also during this session, K8AIU, Ohio, heard K2CBA in New York on $2: 2 \mathrm{Mc}$. Aurora was also noted the evening of the 12th, but the intensity was not nearly ats good as the previous two nights. WA2EMB heard nothing on 432.

While tropo conditions were geuerally poor, the last two days of January were quite good from Iowa through the Mississippi and Ohio Kiver valleys into Western New lork. On the 30th, K2TAB/2 worked K0NIQS with extremely strong signals.

Several hardy souls continued random meteor scatter schedules through the annual doldrums of m.s. activity, but you won't convince KøMQS it wasn't worth the effort. Dick worked K7NII, near Phoenix, on February 4th at high noon. The contact was made on a handful of short bursts and gave Dick state number 41.

Remember Tommy, W2UK/KIf6UK? He is reported active on 2 meters once again from New Jersey. If you ever have an upportunity to hear 'Tummy speak, don't miss it!
E.m.e. news comes from K6MYC. Mike says $5 V 1 \mathrm{AB}$ in Greece is now allowed back on the air after that country's political problems. And because of complications resulting from an extreme drought in Australia, VK3ATN has had to abandon e.m.e. plans for 432 and 1296 , but will continue on 144 with his present proven system.

20 Mc . is showing some suggestion of increasing ocrupancy. W1DZA, Stratford, Connecticut added his contribution to my previously barren 220 portfolio, saying he has completed a 15 -element liagi,
enaxial filter and converter for 220, and is at work on a 300-watt amplifier. Headquarters staffer W1ARR noted on a sweepstakes log from IVB6NTL that the Californian is running s.s.b. on 220, has at :32-element collinear, is building an amplifier. and wants schedules. W2SEU says 220 is far from dead. and lists W1NOC, WB2CNK, K2JDI, K2GHU. WA2FFB, W2BPU and WB2KSZ as active. He says the New Jersey stations are active early in the evenings. K1ABR, Cranston, Rhode Island sury he now has 20 watts and an 11-element lagi on 220. K4EJQ, Tennessee, and K4MHS in North Carolina are both said to be readying 221 equipment. And in the Boston area, K4GGI/1, K9AQP/1, WA5IOD $/ 1$ and WIMIX are all active. WA5IOD/1 runs a 5894 into a 9 -element Yagi, while $\mathrm{K} 9 \mathrm{AQP} / 1$ has a $832 \mathrm{~A}, \mathrm{FET}$ couverter and 8 -element lagi. K1 YON reports many of the same stations and says that Tuesday night remains 220 night in New England.

Boh Cooper, K6EDXI, has the following comments on 220 activity, "The lack of activity and real interest can be traced to a lack of equipment. It may be a 'chicken and egg' situation, but let's face it, without sume type of incentive there isn't going to be much equipment built, and without the equipment there won't be any contacts. I, too, agree the 220 standings are shameful - by the very apathy they indicate on all of our parts." Bob goes un to suggest inecial multiplier credit for 220 contacts during League v.h.f. contests. However, previous Contest Committee experience has shown little is gained, except to anger operators in the less populated areas of the country. Surely someone, somewhere has a equitable rules system that will help solve some of the contest problems, but alas, there is always some 220 activity during contests, but it disappears immediately thereafter until the next contest.

42-Mc. conditions were good on several cold winter nights, keeping interest in the hand at a high level. On January $2:$ W3RUE, Pennsylvania, worked his 13th 4:32-Mc. state. Tennessee's K4EJQ, and a slow-moving high pressure area opened the band from the midwest to the east coast on January ys and $2 y$. K8ANU, Ohio, and W9BRN, Indiana, worked on the 28 th, 800 miles, and WA9HUV, Illinois was heard by K8ANU in extreme Eastern Ohio. K4QIF, Virginia, caught a good coastal opening as the high pressure area drifted east on the 29th. Rusty worked 13 different stations in four states, the best DX being about 400 miles. And
(Continued on paye 168)

Al Tyler, W $\emptyset D R L$, has made Kansas readily available on 432 with this homespun station ending in a pair of 4CX250Bs and sixteen 11 -element WIHDQ Yagis.

GEORGE HART, WINJM, Communications Manager
ELLEN WHITE, WIYYM, Deputy Comms. Mgr.
Administration: LILLIAN M. SALTER, WIZJE
Contests: RORERT HILL, WIARR
DXCC: ROBERT L. WHITE, WICW
Training Aids: GERALD PINARD
Public Service: WILLIAM A. OWEN, WIEEN

Poll Survey. What in tarnation, you may ask, is a "poll survey"? ARRL appointees know, because they have received the response sheet, and over 600 of them have returned it, sometimes elaborately decorated with their scribbled comments (although we asked them not to!). Affiliated clubs also received it, and a couple dozen returned a consensus. What it is, is a sheet containing a number of proposals of current interest with a request that each recipient's reaction be expressed by a simple "yes" or "no." All these questions had been discussed previously, either in QST or a CD) Bulletin.

A poll survey is not a referendum, or a membership vote, or an election. It's merely oue tool of several used to try to ascertain how a representative segment of active amateurs feel about certain topics of current interest in the operating field. It is not binding, but advisory; however, where the consensus is overwhelming one way
or the other, it seems advisable either to look to the validity of our sampling or to take immediate steps to implement or withdraw, as the case may be.

The operating membership will be vitally interested in what results have heen obtained in this poll survey. A complete analysis and conclusions have heen presented in a bulletin to appointees and aftiliated clubs, and these will be used as a guide in making changes which seem to be indicated. Many of the return sheets were accompanied by modifying or qualifying letters, most of them extremely well thought out. Although 600 returns from a mailing list of 6,000 or so does not seem particularly impressive, we were pleasuntly surprised to get that many. Briefly, here is a rundown of the results based on the first 600 sheets received:

1. Should the number of CD parties per year be reduced? Yes, 123. No, 349.

OPERATING EVENTS (Dates in GMT) ARRL-IARU-SCM-Affiliated Club-Operating Events		
April	May	June
1-30 LARC Propagation Research Competition (p. 75, Feb. QST). 5) Qualifying Run, W60WP 6 LO Time (League Officials only) 16 Qualifying Run, W1AW 20-21 H-22 Contest (p. 100, this issue). 20-22 CD Party (c.w.)* 27-28 Ohio QSO Party (p. 104, March QST'). Wisconsin QSO Party (p. 122, this insue). PACC Contest (p. 91, March QS'T). 97-29 CD Party (phone)* * Learue Otficials and Communications Dept. Appointees only.	2 Qualifying Run, W6OWP 4 LO Time (League Officials only) 4-5 Russian Contest (p. 100, this issue). Nebraska QSO Party (p. 134, this issue). 11 FMT (ARRL Official Observers, only). 11-13 Georgia QSO Party (p. 154, this issue). 15 Qualifying Run, W1AW	1 LO Time (League Officialsonly)S-9 VHF QSO Party13 Qualifying Run, W1AW14 Qualifying Run, W6OWP$21-23$ Field DayJuly 13-15 CD Party (c.w.)$20-22$ CD Party (phone)Sep. $2-8$ VHF QSO PartyOct. $12 \cdots-1+$ CD Party (phone)$19-21$ CD Party (c.w.)Nov.$9-11 ~ S S ~(p h o n e) ~$ $16-18 ~ S S ~(c . w) ~$.

2．Apply versatility rating to appointments．Yes， 185. No， 188.
\therefore Revise the ARRL appointment structure．Yes， 171. No， 211.
4．Eliminate power multipliers：
a．In the Field Day．Yes，106．No， 416.
b．In the Sweepstakes．Yes，177．No， 371.
5．Give more credit for 100% emergency power in Field Day operations．Yes，416．No，62．
6．Give more credit for traffic handling during Field Day．Yes，306．No， 181.

7．Limit time for setting up for FD．Yes，344．No， 143.
8．Put into effect some version of an unannounced Field Day．Yes，238，No， 239.
4．Use a geographical multiplier in Field Day．Yes， 253. No， 147.

10．Put into effect some version of an unannounced Simulated Emergency 「est．Yes， 224. No， 91.

11．Move NTS operating schedules one hour earlier from May through October．Ies， 223. No， 137.

12．Substitute a new over－all point system for the present BPL column．Yes， 162. No， 102.

So，on the basis of this survey alone，what changes are indicated？Well，if you go strictly by majority vote，we should give more credit for 100% emergency power on FD，give more credit for traffic handiling on FD ，limit time for HD setups，use geographical multipliers on FD，have an unannounced SET，put NTS on＂daylight saving＂，time，and replace the BPL with a ＂point＂system．Seven changes，out of 12 ques－ tions．But remember，this is a sampling，not is membership vote．In order to be sure of the trend of sentiment，we have to examine other methods of judging it and combining them with

DXCENTURYCIUBAWARDS

From January 1，through January 31，1968，DXCC Certificates hased on contacts with 100－or－more countries hare been issued by the ARRL Communications Department to the Amateurslisted below．

Nem Members

UBSKAF．	－
VE2BF！．	108
JA1AZR	107
W3UER	117
KlLWC．	106
W＇3FLZ	106
h5PKil	1115
WVGCWS	115
i） 1.5 NI	104
UB5TN	104
W41＇EW	10

Radiatelephone

W6EBO	104
WAXTYE	104
1）TaYQM	103
K4VHP．	103
KりDEQ	103
W11＇T	113
D．TGON．	102
K6．J．	102
UA3GO	102
WB2EUU	102
IV4CBG．	102

WB2SAF．．．．IUS W6ZC．．．．．．．． 103 YT1PG．．．．．102
W2VDX．．．．． 102

K7VPF．	0
K8AFW	100
だリUYO．	100
IVA1CJE	100
WH2SLQ	100
WAiscicr	100
WB．reT．	100
W3C7．V．	100
WA5OUV	100
WA90NB	

W4PEW ．．．．Wex	W3AXW．．． 100
PKICE．．．．． 101	WA4UNE．． 100
W4DQ1．．． 101	W7ZZC．．．． 100
W2BFIK ．． 100	IV8HXR．．． 100
WB2HBV．．． 100	9NI6NQ．．．．IUU

Endarsements

Endorsements issued for confirmations submitted from January 1，through January 31，1968，are listed below．Endorsement listings through the $30(j)$ level are given in increments of 20 ，above the 300 level they are given inincrements of 10 ．The totals shown do not necessarily represent the exact credits riven but only that the participant has reached the ondorsement grcup indicated．

320	280	240	VE3XK	W2FLD	IU2NEG	（1B5ND	HFOS
	WA2HUV	DJ5AA	W3BWZ	W4KN		W1PEG	K2DDK
W6WX		）H2LA	WB4BDO	WA5RQA	160	W2NEP	L4RBZ
		W1MDO	WA6CAL	W6MPY	［3TK	WB2QKT	b8UZX
310	260	W2LWI	WB6CIY	W＇7TLG	HB9AIJ	WiPsK	$1 . \mathrm{ABHI}$
h2UkQ	DL1QT	WB2FoV	W9OVF	WA7FIG	K4CFR	WA4PFD	OZ6HS
TVIUOP	DL7BK	W6FLT	WA®CPX	WQHNA	K90，	W5TXN	W2VJO
W＇a2dic	HK3AFB	W7RVM			W3CAA	W6QNJ	WB2JOX
W＇3KDP	K1CDN	W8NPF			W5GZR	W．ABTKQ	WB2NZU
W¢ade	K40EI	WA8MCR	200	180	W7BCV	WA6ZQN	WB2RSW
Wbaub	K0BLT	W9YT	DL1AM	K3BSY	W8KC	W8ZNO	W4LXA
	VE1AFY	WUMAF	K1SLZ	K9ALP	W8wisk	WABPYL	W40НP
300	VP7NS		K．5VTA	LA8PF＇	WA8ENM	W9JCK	W4WWG
K2TQC	WA4GCS		KibYIP	SM5BFJ	WA8TPL	W9TQA	WSIRG
WB2FsW	WAYHOM	220	UZ4FF	UC2WP			W5ZWX
WB2HXO	W7ATV	JA4XW	PYIBTX	WA1ABW	140	120	W＇EST
W61sQ	W9WGQ	kiJHX	VEASK	WB2PWU	DLITV	D， 120 EC	WGOJW
W6KTE	WのCKC	L－THA	W1PYM	WOPFG	KtiNVI	F．A3KT	W8KVF
Padcatelefhene							
310	280	TEIAFT	220	180	K1SLZ	W＇50T．C	120
W＇UOP	L81KB	W2CES	HP1JC	11 LGG	PADUC	WA5RQA	F5S．J
WA2RAU	PY4KL	W2FXA	W9HPS	K4PSR	VEAAS		K2DGI
	SM5CZY	W3NIG	WGMAF	WA4WTG	VP7NH	W6AOI	KgGSV
	WB2HXD	W9DNE		WA6AHF	W3KEK	WA6DOR	WB2QKT
300	260	240	200	WA6DET	WA8S＇NM	W7RPH	W4IXL
WB2NSW	HK3AFB	DJ5AA	WB2HZG			W7WS	W8GEM
W66 X	KıOEI	JA2ADH	VE3BSJ	160	140	YU2NF．J	WA9PZ
W8BGU	OA4CV	WA4HOM	VE3EVU	K1DRN	VE3BIF	YV3CN	YV4QG

this poll. Where the opposition seems to represent more than, say, a third, it's pretty strong opposition. So, as a rule of thumb, perhaps it would be wise to proceed with caution where the results in the survey alone show less than a 2 -to-1 ratio. 'This would narrow the prospective changes down to three, because our sampling feels very strongly only about (1) 100% emergency power on FD, (2) limiting time for setting up FD and (3) having an unannounced SET. For corroboration on other matters, we have to look at other methods.
Don't kid yourself about the amount of work involved in conducting such poll surveys - or iu the results of soliciting comments either, for

BRASS POUNDERS LEAGUE

Winners of BPL Certicicate for January 'rrathc:				
Call Orio.	Niced.	tect.	(1) 2	Total
上6BPI. 522 x	1783	1605	178	8788
K00NK. 62	2289	2227	37	$+615$
W3CUL/4. 2388	552	227	:17	1754
W7B.t........... ${ }^{\text {g }}$	769	69.3	74	1544
H5TEx. ${ }^{8}$	$\checkmark 18$	697	4	1525
WALUVA......... 1 ± 5	730	620	10	1505
W50BD........... 27	659	657	0	$13+3$
WA1FVH......... ${ }^{62}$	563	349	177	1151
fixaly 103	523	4.53	8	1087
WB6GGL. ${ }^{0}$. 0.14	\% 314	10	$104 \times$
WAtExB. 15	493	$39+$	99	1001
W6R¢Y ${ }^{\text {¢7 }}$	459	352	106	984
WA7DXI........... 51	479	116	32	978
WUIES............ 53	419	446	2	420
W3EALL. 48	473	377	1	899
W6KVQ........... ${ }^{\text {a }}$	418	+19	0	${ }_{7} 38$
W6GYH.......... 73	350	320	23	766
WA1FEJ.......... it $^{\text {d }}$	\%61	$\because{ }^{\circ} \mathrm{C}$	29	728
	359	28.5	-3	692
	3	276	14 14	691 690
w3CUf............ ${ }^{102}$	398	$\stackrel{276}{2 \times 1}$	14	690 671
wblex............ ${ }^{\text {e }} 4$	361	263	17	664
W2SE1............. 2	318	299	9	648
WB2NKN.......... 21	310	291	19	641
K3NBN	191	149	42	6339
WA7UMIA......... 9	300	309	7	835
WAtsck.......... 33		285	${ }^{7}$	806 578
$\begin{aligned} & \text { huyBD............ } 17 \\ & \text { W7HA1A........ } \end{aligned}$	298	-238	31	578
wb6BBO.......... 33	272	262	5	572
WAøDOU 12	278	278	0	568
W6EOT	277	274)	557
WA4WWT. 46	261	241	0	548
WAlEYY.........	258	198	+7	547
W7Z1w........... . 24	2.57	252	2	540
KøјPJ. 17	255	947	18	537
WBAILF W6BGF 1 lul	197	219	4	52
	203	230	230	514
WB4DXX......... ${ }^{\text {IS }}$	$\because 46$	$\because 41$	2	517
W3FGQ 32	270	1.51	83	506
WAgMLE. 122	222	154	8	5106
Late Reports: k3M Y8 (Nov.)..... 53		464		104 !
WAgDOU (Dec.) .. ${ }^{\text {I }}$	$\begin{array}{r}273 \\ \hline 268\end{array}$	273 10	217	558 531

BPL for 100 or more originations-plus deltecrics K1DGQ 302 W2OE 121 W3TN 107 K7PXA 207 W+RZL 120 KGBI KgZSQ207 WA4SNIO 120 K\&RME 105 WB2LIL 205 WB6INO 119 WA2TBS 104 WB2URP 202 WA9MHU 119 WASEEC 104 WYIV184, WAgQBAL 118 WATDYL 104 WA2UCP 163 WB2PJH117 VE2ANE 104 K7NQX 156 W1LYQ 116 W3M1X 103 WABBYZ 143 WASJCA 116 WAHWQU103 WAPNB WA3F(P) WB WBCGC 111 Late Reports: WB2NSV 125 WABCRO 110 WA×ARJ (Dec.) 12 WA4WSW 125 WABAUD 110 WB6TYZ (Dec.) 117

More-Than-One-Operator-Stations

WgKX 380 K7PEA 207 K6QEH 111

BPL Medallions (bee Aug., 1954, p. 64) have been awarded to the following amateurs since last month's KH6Ginz.

The BPL is open to all amateurs in the United States. Canada and U.S. Yossesslons who report to their \bar{S} (XAI a thessage total of 500 or a suin origination and delivery messages must be handled on amateur frequencles within 48 hours of receipt in standard ARRL form.
that matter; but we have this thing about being accused of being high handed and arbitrary about decisions on contest and other rules. Therefore, solicitation of opinions and poll surveys on operating questions will continue from time to time, as the time and people to do the work on analysis become available. Your opinion is thus solicited. We can't guarantee that it will make things go your way, or even that it can be acknowledged, but it will be considered and will have some weight. This much we can promise.

Those New Calls. It's starting. The masthead of this column will show at least one call change in the department, with perhaps more to follow. In all our operating activities we are starting to hear new calls identitying some oh-so-familiar fists and voices. Some of the holders are having a lot of fun mystifying old friends. "(Guess who I am?" is getting to be the name of a new game in amateur radio.

This is fine, for those who want to play it. It's a little less funny to your Circulation Department, which must change mailing stencils for all of them, and to the administrative branch of your CD, which must change its mailing stencils for appointees and the like. But it's necessiary, so we'll handle it somehow.

When it comes to reissuing all certificates showing the new call in place of the old one, we have to ask for mercy. Please, gang, have a heart! We understand your pride and joy in at new two-letter job replacing that cumbersome three-letter call you've been struggling with all these years. But if you achieved an award under that old call, isn't it appropriate that this be the call that should be shown on the award? It's even possible that at the time the award was achieved, someone else held the two-letter call now assigned to you. Changing your call is like changing your name. Suppose you changed your name from Jack Smith to Joe Jones, and you have a closet full of bowling trophies containing the former name. Would you ask the bowling alleys who gave them to you to change the name? Do you think they would take kindly to it if you did?
Besides, why would you want to change your name? - ${ }^{\text {W }} 1 \mathrm{NJM}$.

ELECTION NOTICE

To all ARRL members in the Sections listed below:
You are bereby notified that an election for Section Communications Manager is about to be held in your respective sections. This notice supersedes previous notices.

Nominating petitions are solicited. The signatures of five or more ARRL full members of the Section concerned. in good standing, are required on each petition. No member shall sign more than one petition.

Each candidate for Section Communications Manager must meet the following requirements prior to deadline date listed below: (1) Holder of amateur Conditional Class license or higher. (2) A licensed amateur for at least two years immediately prior to nomination. (3) An ARRL full member for at least one year immediately prior to nomination.

Petitions must be received at ARRL on or before 4:30 P.M. on the closing dates specified. In cases where no valid nominating petitions were received in response to previous notices, the closing dates are set ahead to the dates given
herewith．The complete nume，address，zip code and station call of the candidate and signers should be included with the petition．It is advisable that eight or ten full－member signa－ tures be obtained，since on checking names against Head－ yuarters tiles，with no time to return invalid petitions for additions，a petition may be found invalid by reasons of ex－ piring memberships，individual signers uncertain or ignorant of their membership status，etc．

Elections will take place immediately after the closing dates specitied for receipt of nominating petitions．The ballots mailed from Headquarters to full members will list in alphabetical sequence the names or all eligible candidates．

The following nominating form is suggested．（Signers should be sure to give city，street address and zip code to tacilitate checking membership．）

Communications Manager，ARRL
Place and date
$2: 25$ Main st．，Newington，Conn． 06111
We，the undersigned full members of the．
． 1 RRL Section of the．
Division，hereby nominate．
RL Section of the．．．．．．．
as candidate for Section（ommunications Manager for this Section for the next two－year term of office．

You are urged to take the initiative and file nominating petitions immediately．This is your opportunity to put the man of your choice in office．
－George Hart， $\mathbb{I}^{r} 1 N J M$ ，Communications Manager
Present
Santa Barbara．．．．．Apr．10， 1968 Ceril D．Hinson．．．Aug．10， 1966
Bastern New York．Apr．1U， 1968 George W．Tracy．．Feb．10， 1968 East Bay．．．．．．．．．A Apr．10， 1968 Richard Wilson．．．Feb．10，1968 Wyoming Apr 10 1968 Louisiana．．．．．．．．．．．．Apr．10， 1968

Quebec．．．．．．．．．．．Apr．10， 1968
Eastern
Massachusetts．．．Apr．10， 1968 South Carolina．．．．A pr．10，1968 Arizona．．．．．．．．．．．．．May 10， 1968 Utah．．．．．．．．．．．．．．．．．．．May 10， 1968 Western

Pennsylvania．．．．June 10， 1968 Iowa．．．．．．．．．．．．June 10， 1968 Tdaho． June 10， 1968 Western New York ．Sune 10， 1968 San Josq in Valley．June 10， 1968 Montana．．．．．．．．．July 10，196א Northern Texas．．．．July 10， 1968 Wayne M．Moore．．June 9，1968 J．Allen Swanson，
r．．．．．．．June 10， 1968 Jim Ibey．．．．．．．．．．．．．June 11， 1968 F＇rank L．Baker，

Jr．．．．．．．．．．．．June 15， 1968 Clark MI．Hubbard．June 26， 1968 Floyd C．Colyar．．July 14，1968 Gerald F＇．Warner．July 15， 1968

Robert E．Gawryla Aug．7， 1968 Owen G．Hill．．．．Aug．17， 1968 Donald A．Crisp ．．Aug．17， 1968 Charles＇T．Hansen．Aug．17，1968 Ralph saroyan．．．．Aug．20， 1968 Joseph A．D＇Arcy．Dept．9， 1968 L．L．Harbin Sept．I2， 1968

ELECTION RESULTS

Valid petitions nominating a single candidate as Section Manager were filed by members in the following Sections， completing their election in accordance with regular League policy，each term of olfice starting on the date given．
Southern New Jersey Edward（1．Raser，W2ZI Mar．4， 1968

Georgia
Connecticut
saskatchewan

Howard L．Schonher，W4RZL Mar．26， 1968 John J．McNassor，W1GVT Apr．11， 1968 Gordon C．Pearce，VE5HP Apr．11， 1968

JANUARY CD PARTIES

Previous phone score and QSO highs wilted under a barrage of firepower from the cannons of K2EIU／5 and K6QPH／7（doesn＇t anybody ever stay home＂），both of whom riddled the previonsly untonchable target of 400 contacts by a fat margin；fien，in fact，hit the bullseye for uver 500 two－ways，while Alan finished a solid second with a FB performance from Wyoming：K4BA1 and K1CEC also racked up over 100 K on voice．A3 activity was spiced by operation from VE4NE and KL7FLS－welcome to the fun，Bess！

So much for the sunshine；now a few dark clouds．（i） Some entrants whose scores would normally appear in high－claimed did not bother to list their times of nperation． （ 2 ）Concerning club operation，both the operator（s）and the station must hold CD appointments．About half ：t dozen fellows disregarded this rule．（3）Several of the gang commented on the juvenile and highly questionable oper－ ating tactics of a certain very active phone participant． Such dismally boorish manners have no place in any activity ．．．．．．and eertainly not in CD Parties，which are supposed to attract the savviest ops！We hope the offender wises up in a hurry．
Glaimed scores，QSOs，sections，hours．

C．W．
K2EIU／5 80．840－819－68－20 W8UM（K2SIL，opr．）
$279,390-827-67-20$
WAgSDC $\quad 264,520-772-6 \times-18$
K2KIR $\quad 264,2 \div 5-8(66-6 \%-17$
W8SH（K1ZND，opr．）
56，750－783－6．5－20
WA91TB 250，240－731－68－20
K노A1 247，0UU－753－65－19
W3EI W 213，52．5－651－65－20 202．15）－62：－65－14
192，465－60i－63－20 186，79．5－58た－63－14 MBAIN／： H4RIN 185，280－579－64－19 WGTDR $\quad 1 \times 0,180-541-66-20$ WB2NZU $\quad 159,25 \mathrm{~J}-186-65-18$ WB2RIK 157，480－501－62－17 WA8ZGC VE2DCN： 156，16U－181－64－11 155，295－488－6；3－20 W4DVT 1.17 735－262－63－14

1：32，370－427－61－10
W8RYP $128.405-41+1-61-18$
KOORH 127，440－426－59－10
WOINH 120，780－359－66－11
WA8TYF $\quad 12(0,600-397-60-13$ K8HKM
W9PJ＇${ }^{\prime}$ $120,305-398-6(1)-20$ 116，565－405－57－17 WA4WWT 114，165－38（1－59－12 WA7DMA 113，765－3ட4－ち1－18 WB2UHZ 108，750－369－58－15 VE7ASY K1AEC KIAE， WHEE W4BZE W9AQW h50c： WA3JCA K4PUZ WPPU 06．2002410－54－19 （ $15.610-35$ 1－5．5－15 104，690－35＋58－16 $104,460-388-59-10$ 103．545－351－59－6 102．555－981－53－9 102，480－366－5\％－20 W1JYH 102，030－351－57－7

CODE PROFICIENCY PROGRAM

Twice each month special transmissions are made to enable you to qualify for the $\Lambda \kappa R L$ Code Proficiency Cer－ tificate．The next qualifying run from $W 1 \Lambda W$ will be made April 16 at 0230 GMIT．Identical testas will be sent simul－ taneously by transmitters on listed c．v．ir oquencies．The next qualifying run from WGOWP only will be transmitted April 5 at 0500 （rreenwich Mean Time on 3590 and 7129 ke．CAUTIONI Note that since the dates are given per Greenwich Mean Time，Code Proficiency Qualifying Kuns in the United States and Canada actually tall on the eve－ ning previous to the date given．Eixample：In a converting， 0230 （iMIT April 16 beenmes 2130 EST April 15.

Any person can apply．Neither ARRL membership for an amateur license is refuired．Sond copies of all qualifying runs to AKRL for grading，stating the call of the station you copied．If you qualify at one of the six sipeds trans－ mitted， 10 through 35 w．p．m．，you will receive a certificate． If your initial qualification is for a speed below 35 w. p．m． you may try later inr endorsement stickers．

Code practice is sent daily by W 1.1 W at 0030 and 0230 （iNIT，simultancously on all listed c．w．irequencies．At 02：3U GMTT Tuesday，Thursday and Saturday，speeds are 15202530 and 35 w．p．m．；on Monday，Wednesday，Friday and Sundays．speeds are $571 / 2101320$ and $25 \mathrm{w} . \mathrm{p} . \mathrm{m}$ ．Hor practice purposes．the order oi words in each line inay be reversed during the j through 13 w．p．m．tests．It UUZU GMT daily，speeds are $101: 3$ and 15 w．p．m．The 0230－ 0：320 GMIT runs are omitted four times each year，on desig－ nated nights when Frequency Measuring Tests are made in this perion．To permit improving your fist by sending in step with W＇ 1 AW （but not on the air！）and to allow check－ ing strict accuracy of your copy on certain tapes note the GMIT dates and texts to be sent in the 0230－0320（INIT practice on those dates：

Date Subject of Practice Text from February QS＇T
Apr．1：It Neems to Us，p．！
Apr．t：A Kero－Keuting Method，＊p． 17
Apr．10：The IVoorien Y゙uyi，p． 41
Apr．18：Amateur Kidio foblic Service Corns，＊p．ifis
Date subject of Practice lext from Understanding Amateur Radio，First Edition
Apr．20：Screen Modulation，p． $8 t$
Apr．$\because \mathrm{OL}:$ Carrier is．Talk Power， p ．8：
${ }^{*}$ Speeds will be sent in reverse under，highest specd first．

W1AW SCHEDULE, APRIL 1968

The ARRL Maxim Memorial Station welcomes visitors. Operating-visiting hours are Monday through Friday 3) p.m.-З a.m. EST, Saturday 7 p.m. -2:30 a.m. EST and Sunday 3 p.m.-10:30 p.m. FiST. The station address is 225 Main street, Newington, Conn. about 7 miles south of Martford. A map showing local street detail will be sent upon request. If you wish to operate you must have your original operator's license with you. The station will be ciosed April 12, 1968, Good Friday.

M.1T T^{*}	Sunday	Monday	T'uestay	Wednesiday	'Thursday	Friday	Saturday
0000					R.TTY OBS ${ }^{3}$,		
00:30			Code Practice Daily ${ }^{1} 10-13$ and 15 w.p.m.				
0100		C.W. OBS ${ }^{1}$	C.W. OBS ${ }^{1}$	C.W.OBS ${ }^{1}$	$\therefore \mathrm{CV}^{\text {Cr }} \mathrm{OBS}^{1}$	C.W. OBS ${ }^{1}$	C.W. OBS ${ }^{1}$
0120-0:2004			7.080	3.555	7.080^{6}	$3.5 .55{ }^{6}$	7.080
0:200		Phone OBS ${ }^{2}$	Phone OBS ${ }^{2}$	Phone OBS ${ }^{2}$	Phone OBS ${ }^{2}$	Phone OBS ${ }^{2}$	Phone UBS ${ }^{2}$
0:05-02304			3.945	60.7	1.45.f	1.82	3.64 .5
0:30	Code Practice Daily ${ }^{1}$ 15-35 w.p.m. TThSat., 5-25 w.p.m. MWFSun.						
0:330-0.4004			3.555	7.080	1.805	7.080	3.5 .55
0400	KTTY OBS ${ }^{3}$		RTTY OBS ${ }^{3}$	RTTY OBS ${ }^{3}$	RTTY OBS ${ }^{3}$	RTTY OBS ${ }^{3}$	3 RTTY OBS3
0410-0.4304			3.625	14.095	7.0.4.	14.095	3.625
0+30)	Phone OBS ${ }^{2}$		Phone OBS ${ }^{2}$	Phone OBis ${ }^{2}$	Phone OBS ${ }^{2}$	Phone OBS ${ }^{2}$	Phone OBS ${ }^{2}$
0435-0.500 ${ }^{4}$			7.255	3.945	7.255	3.945	7.255
0.500	C.W. OBS ${ }^{1}$		C.W. OBS ${ }^{1}$	C.W. OBS ${ }^{1}$	C.W. OBS ${ }^{1}$	C.W. OBS ${ }^{1}$	C.W. OBS ${ }^{1}$
05:30-0t004			3.555^{6}	7.080^{6}	3.555	7.255	3.555
06500-0700			7.080	3.945	14.100	3.555	7.080
0700-0800			14.280	7.255	3.945	14.100	14.280
21100-2100		14.180	$21 / 285$	14.095	$21 \% 8^{5}$	14.280	
$\because 100-2: 00$		14.100	14.280	14.100	14.280	14.100	
2300-2345		7.255	$21 / 285$	$21.1{ }^{6}$	$21 / 28^{5}$	7.255	

${ }^{1}$ C.W. OBS (bulletins, 18 w. p.m.) and code practice on $1.805,3.555,7.08,14.1,21.075,50.7$ and 145.6 Mc.
2 Phone OBS (bulletins) on 1.82, 3.945, $7.255,14.28,21.41,50.7$ and 145.6 Mc.
${ }^{3}$ RTTY OBS (bulletins) on $3.625,7.015,14.095$ and 21.095 Mc. $170 / 850$ cycle shift optional in KTTY general operation.
${ }^{4}$ Starting time approximate. Operating period follows conclusion of bulletin or code practice.
5 Operation will be ou one of the following frequencies: 21.075, 21.1, 21.41,28.08 or 28.7 Mc .
${ }^{6}$ W1AW will listen in the novice segments for Novices on band indicated before looking for other contacts.
7 Bulletin sent with 170 -cycle shift, repeated with 850 -cycle shift.
Maintenance Staff: W1s QIS WPR. *'Times/days in GMT. General operating frequencies approximate.

A.R.R.L. QSL Bureau

The function of the ARRL QSL Bureau system is to facilitate delivery to amateurs in the United States, its possessions and C'anada of those C 2 SL cards which arrive from annateur stations in other parts of the world. All you have to do is send your QSL manager (see list below) a stamped self-addressed envelope about $4,1 / 2$ by $91 / 2$ inches in sice, with your name and address in the usual place on the front of the envelope and your call printed in capital letters in the upper left-hand corner.
('ards for stations in the (Inited States and Canada should be seut to the proper call area bureau listed below. Wl. K1, WA1, WN1 - Hampden County Kadio Association, Box 216 Forest Park Station, Springfield, Massachusetts 01108.
W2, K2, WA2, WB2, WN2 -.... North Jersey DX Assn., P.O. Box 505 Ridgewoud, New Jersey 07451.

W3, K3, W'A3, WN3 - Jesse Bieberinan, W3KT, RD 1, Valley Hill Rd.. Malvern, Pennsylvania 19355.
W4, Kt- Il. L. Parrish, h4HXF, RFD 5, Box 80 1, Hickory, North C'arolina.
WAt, WB4, WN4 ${ }^{1}$ - Kichard Tesar, WA4WIP, 2666 Browning St., Surasota, Florida 33577.
W5. K5, WA5, WN5 - Hurley O. Saxon, K5QHV, P.O. Box 9915, El Paso, Texas $79 y 89$.
W6, K6, WA6, WB6, WN6 - San Diego DX Club, Box duzy, San Diego, California y 2106.
W7. K7, WA7, WN7 -- Willamette Valley DX Club, Inc., f.0. Box 555, Portland, Oregon 97:07.

W8, K8, W.A8, WN8 - Yaul R. Hubbard, WA8CXY, 921 Narket St., Zanesville, Ohio 43701.
W9, K9, WA9, WN9 - Kay P. Birren, W9MLSG, Box 519, Elmhurst, Mlinois tollo.
Wø, K0, WAg, WNØ-Alva A. Smith, WりDMA. 238 East Main St., Calcdonia, Minnesuta $559 \because 1$.
VE1 - L. J. Fader. VE1FQ, P.O. Box tic3, Halifax, N. S.
VE'2 --... John Kavenscroft, VE2NV, 135 Thorncrest Ave., 1) orvai, Quebec.

VE3-- K. H. Buckley, VE3UW, 20 Almont Road, Downview, Ontario.

VE4-… E. McVittic, VE4OX, 647 Academy Road; Winnipeg 9, Manitoba.
VE5 - Fired Ward, VE5OP, 899 Connaught Ave., Moose Jaw, Saskatchewan.
VE6 - Karel Tettelaar, VE6AAV, Sub. P.O. 55, N. Edmonton, Alberta.
VH7 - H. R. Mough, VE7HR, 1291 Simon Road, Victoria, British Columbia.
VE8-George T. Kondo, VE8 ARRL QSL Bureau of Tepartment of Transport, Norman Wells, N.W.T.
VO1 - Ernest Ash, VO1AA, P.O. Box 6, St. John's, Newf.
VO: - Goose Bay Amateur Radio Club, P.O. Box z32, Goose Bay, Labrador.
KH6, WH6 - John H. Uka, KH6DQ, P.O. Box 101, Aica, Oahu, Hawaii 96701.
KL7. WL7 - Alaska QSL Bureau, Star Route C, Wasilla. Alaska 99687.
SW'L - Leroy Waite, 39 Hanum St., Ballston Spa, New York 12020.
'These bureaus prefer 5×8 inch manila envelopes.

IMPORTANT NOTICE

Changes of Address

Important postal changes in handling second-class mail matter are now in effect. Please advise us direct of any change of address. Four weeks notice is required to effect change of address. When notifying please give old as well as new address and your zip code. Your promptness will help you, the postal service and us. Thanks.

EIMAC

 3-500Z's used in Drake's

 3-500Z's used in Drake's linear amplifier for linear amplifier for $2 \mathbf{k W}$ PEP at 3.5-30 MHz

 $2 \mathbf{k W}$ PEP at 3.5-30 MHz}

The R. L. Drake L-4B linear amplifier shown here uses two of EIMAC's new 3-500Z zero-bias triodes in grounded grid circuitry to achieve 2-kW PEP SSB input and $1-\mathrm{kW}$ dc input on CW, AM, and RTTY. Drive power is 100 watts PEP and 75 watts CW, AM, and RTTY.

Drake chose EIMAC 3-500Z's because these rugged, compact, high-mu power triodes are ideal for grounded grid operation. They can provide up to 20 times power gain in a cathode driven circuit. And the two tubes have a total plate dissipation rating of 1000 watts.

For more information on EIMAC's line of power tubes for advanced transmitters, write Amateur Services Department, or contact your nearest EIMAC distributor.

3-500Z TYPICAL OPERATION* DC Plate Voltage 2500 V Zero-Sig DC Plate Current** 130 mA Single-Tone DC Plate Current 400 mA Single-Tone DC Grid Current 120 mA Two-Tone DC Plate Current 280 mA Two-Tone DC Grid Current. 70 mA Peak Envelope Useful Output Power 500 W Resonant Load Impedance 3450 ohms Intermodulation Distortion Products -33 dB *Measured data from a single tube **Approximate

EIMAC

We knew you weren't satisfied with ordinary push-to-talk mobile and airborne UHF/VHF communications systems. Why? They took up to 60 seconds to warm-up. You needed more power and you needed it with "instant talk" speed.

The EIMAC metal ceramic $\times 2099 B$ is the only tetrode combining 500 watts of plate dissipation with instant warm-up. The quick-heat cathode in the X2099B takes only 250 milliseconds to warm up to half power or 70% of peak current. You can drive the $\times 2099 \mathrm{~B}$ with low level solid state, and you can air cool it.

The X 2099 B is available only at EIMAC. We're ready to talk whenever you are. (415) 592-1221.

Contact your nearest distributor or Varian Field Office for further information. Offices are located in 16 major cities. Ask information for Varian Electron Tube and Device Group.
has a rugged 500 watt tetrode that is ready to talk before you are.

EIMAC
Division of Varian
San Carlos, California 94070

- All operating amateurs are invited to report to the SCM on the first of each month, covering station activities for the preceding month. Radio Club news is also desired by SCMs for inclusion in these columns. The addresses of all SCMs will be found on page 6 .

ATLANTIC DIVISION

DELAWARE—SCM, John L. Penrod, K3NYG—RM : W3EEB. PAM: W3DKX. K3LGC is back in Delaware and active on 2 meters. W3FEB made the BPL in Dec. W3JYG has been appointed to "Intruder Watch.". The recent SET was a huge success. WA3IIX is mobile on 0 meters. W.A3FYS has a new v.h.f. receiver and is very active in lower sussex County. W3DKX has a new Galaxy 5. We regret to announce W'3JFR as a Silent Key. W3RDZ is doing a terrific job as OO. Those interested in joining a local radio club in New Castle County are asked to see W3KET or WA 3DYG. In Kent County see K3NVV or W3CZS and in Sussex County WA3GSM. These amateurs will fill you in with the details. Net traffic: DEPN, QTC 59, traffic 15: DSMN, QTC 83, traffic 18; DTMN, QTC 34, traffic 1. Traffic: (Jan.) W3DKX 27, W3HKS 26, K3NYG 26, WA3DUM 10, WA3DYG 5, WA3GSM 4, WA3HWC 3. WA3IID 1. (Dec.) K3NYG 66, W3DKX 31, W3HKS 10. WA3HWC 9, WA3FYS 4, WA3IID 2.

EASTERN PENNSYLVANIA-SCM, George S. Van Dyke. Jr., W3ELI (now W3HK) -SEC: W3AES. RMs: W3EML. K3M NO, K3YVG, W3MPX. PAM: K3MYS. V.H.F. PAM : W3FGQ. EPA, QNI 383, Q TC 410; PTTN, QTC 285: PFN. QNI 532. QTC 522: EPA V.H.F.. QNI 263, QTC 324; EPAEP\&T, QNI 558, QTC 263. OOO reports were received from IV3FGQ, K3HNP, W3BFF, K3RDT, W3NNC, W3KEK; OBS from WA 3AFI, K3WEU; OVS from W3FGQ.' WA3EEC, WA3CQO' K3YAX, W3CL. Those making the PPL: WA 3CQO, WA3JCA, K3MYS. W3EML, K3NSN. W3FGQ, K3VBA, WA3GAT, WA3FEC, WA3FCP, W3MPX, W3CUL. New officers: ARTICS ARC-K3UZO, pres.; WA3HDJ, vice-pres.; WA3GTL, secy.; WA3BCE, treas. PENN Wireless ARC-W3LCY, pres.: K3ZFD, vice-pres.; WA3HBT, corr. secy.: K3HNP, rec. secy.; K3JQH. treas. Delmont ARC-Ki3WNO, pres.; $\dot{K} 3 M Q R$, list vicepres. ; W3PSM, 2nd vice-pres.: WA 3FZX, secy.; K3J. IO, treas. Donald Traves, 341 Miller St., Bangor, Pa., needs help to get his ham ticket. Any volunteers? WA3FPM is organizing an explorer troop. WA3BSV is cut oft from ham radio at school this term. WN3HMK passed the Tech. Class exam. WA3CXZ has a brandnew OV'S certificate. The XYL of W3SAO spoke at the R. F. Hill ARC Banquet. WA3CND has a new antenna. WA 3HVR made 100 SS contacts on 6 meters. From Splatter to Splatter says that W3CAU has had 40 years of ham radio starting with spark and now is s.s.b. W3CUL still is basking in the sunny south. WN3HMU passed the big "G." The Bucks Co. HS ARC is runming a car wash to raise money for ham gear. K3HNP complains of key clicks from too many active local hams. W3MVO still is in there strong. W3NNL is busy building a complete solid state station. W3C'ID is going great on the traffic net. W3MPX is using a Russian tank receiver on MARS. K3WEU finally made WAS. The U. of P. ham station is active in traffic. WA3EWV is conducting code classes for Marion ARC. K3MDG operated in the SET from the State Health Center at Valley Forge Hospital. A club display of ham gear boosted interest in a ham club at school, reports WA3EMO. W3LI needs help at the Phila. Shrines Hospital to conduct code classes and operate the station. Any volunteers? Looks like the Mt. Airy V.H.F. Club has done it again. Traffic: K3MYS 1087, W3EML 899, W3CUL 690, K3NSN 639, W3FGQ 506. WA3JCA 395, W3AIZ 286, K3YVG 256, K3MVO 248, K3PIE 243, W3MPX 240, WA3ATQ 239, K3VBA 230, W3AES 213, WA3CTP 209. WA3CQO 189, WA3CKA 180, WA3GAT 180, WA3EEC 173, WA3FCP 154, W3VR 147, WA3FPM 117 , W3ELI 116, WA3AOJ 115, WA3EXW 102, K3WAJ 101, K3RTX 100, W3CID 94, WA3EMO 90, W3FPC 87,

K3WEU 82, K3KJJ 74, K3BHU 73, W3NNL 61, WA3AFI 60. WA3CXZ 59. K3PSO 58, WA3GLI 53, WA3CND 52. WA 3EMQ 48, WA 3HGX 46, K3RUA 41. W3ABT 38, W3.JKX 37 K3SLG 37, WA3HIT 36, K3NIDG 35, W3RUR 32, W3OY 30, K3KKO 23, K3UZO 23, W3RV 20 , WA 3BSV 10, K3HKW 9, W3GSX 7. W3HNK 7, K3FOB 4, WN3HMK 4, W3VAP 3, W3ADE 2, WA3BJQ 2 , T3CL 2, WA 3HVR 2, WA3IAZ 2, K3YAX 2, W3BFF 1. WA3RIV 1, W3CAƯ 1, W3EU 1, WA3EWV 1, WN3HMU 1, W3KEK 1. (Nov.) K3MYS 1049.

MARYLAND-DISTRICT OF COLUMBIA-SCAI, Carl E. Andersen, K3JYZ-SEC: W3LDD.

Net

Freq. Time Days Sess.QTC QNI
Mar.
Are.

New appointees: WA3GTX as OO Class I (upgraded from Class IV); W3VDU as EC for Cecil County: W.АЗВMM as EC for Montgomery County; W3CDA as EC for Wicomico County; W.A3CGT as Asst. EC for Wicomico County: K3OAE as Asst. SEC for MDD perrations; WA3GDB and WA3GLP as Asst. ELs for Frederick County. Endorsed appointments: W3JZY as PAM for vhf. nets. OPS and ORS; W3NICG as RMI and ORS. W3TN again made the BPL. WA3EOP reports activity on MSTN at 2200 EST on 50.4 Mc . WABGAU, now Advanced Class, is the new pres. of the CARC. WA4QLP/3 is the operator behind the key at W3 DDO. U.S. Naval Academy. W3LQY is active again on MEPN. K3LFD renorts a full-blown SET from Anne Arundel County, including newspaper publicity. W3ATQ rebuilt his power supply in 3 hours to herat Murphy's Law in the SET. W3GEB is overcoming his space problem for an 80-meter antenna with a basement counterpoise symtem. W3TMIZ has started a new paper for the PVRC called The $P \Gamma R C e r$. Flu and two term papers wiped out WA3CFK in the SET. WA3GLP also is a victim of school work but has completed a couple of antennas. W37NW is performing liaison work between MDD and $2-m e t e r$ nets. W3JPT has been QRL monitoring phone stations. W3TXQ will now be known as W3CZ and F3CYA is W3FU. W3QA has been spending his time in Rome, N.Y., and K3OAE commutes between Florida and here. WN3IYS was active in the Novice Roundup. Your SCMI enjoyed a nice visit with the simpingbronk High RAC and net a fine group of young men interested in amateur radio. W3RKK, pres. of the Baltimore ARC. reports an upgrading class for General Class that meets each Wed. evening. Traffic: (Jan.) W3TN 238. W $43 H T Q$ 192, K3GZK 143, W3CBG 141, K3JYZ 127, W3ATQ 126, W3CWC 78, WA3CFK 74, WA 4QLP/3 58, WA 3ERL/3 51, W3LDD 51, K3LFD 47, W3LBC 46. W3ZNW 44, K3ORW 17, W3GEB 16, W3UE 16, W3LQY 14, WA3GLP 13, T3EOV 12, K3LFN 12, K IYS 6, WA3FRL 4. (Der.) WA4QLP/3 7.

SOUTHERN NEW JERSEY—SCM, Edward G. Rasper, W2ZI-Asst. SCM: Charles E. Travers, W2YPZ. \&EC: W2BZJ. RMs: W. $2 \mathrm{KIP}, W \perp 2$ R LV. PAM and NJPN Net Mgr.: W2ZI. N.JN reports QNI 418 stations, traffic 327. NJPN reports QNI 796 stations, traffic 284 . W2BZJ reports the SET activity was better than last year. W. 2 ANL is a new OBS: K2SOL. IFB2BGH, WB2FJE and WB2SFX are new OPS; W2PU, Princeton U., is a new ORS. SCARA's officers are W2RY'W pres.; WhyFIS, vice-pres.; W'2CXC, secy.; WA2SIP, treas. EC WA2ANL reports two new nets in his area: The 8 Meter Net meets at 10 P.M. on 50.4 Mc., the 10 -Meter Net at 9:30 p.3s. on 29 Mc . W. W2DNG sent in his lng for the V.H.F. Contest. W2SJI has been in Florida for several weeks. W2MZR is touring California. WB2GTE is trying to contact his daughter in the Peace Corps in Korea. WB2BGH made the BPL in Dec. W2ZV'W received his Extra Class ticket. A new NJPN Net Roster was issued Jan. 1, 1968, printed by W2YPZ. If you wish a copy send a radiogram to W2ZI. WA2DID joined Air Force MARS. WB2VMIQ and WR2NiNF received their Advanced Class licenses recently. WB2WXA is the new Asst. EC for Haddonfield. New officers of the Burling-
tw County RC are W2GFL, pres.; WA2QZQ vice-pres. W 32 WLS, secy: WR2OUC, treats. Rancocas V'alley AR. itthicers are $122 Y B N$. pres.; WB2ZMY, vice-pres.: WB2LWZ, treas.; WB2ZEU, secy. W2ZI and $\hbar 211 B W$ are rerovering trom the flu. Traffic: (Jan.) WA2KIP 145 , WB2U'B 135, W2ZI 94. W2BZJ 75, W2PU 65. W2ChF 64, WA2ANL 82. W. 24 UPC 57, WB2VAR 42 . W2YPZ 31. WB2APX 25. WA2DVU 21. K2LOL 21. W2ZVW 19 W2ORS 17, WB2BGH 13, K2ABBV 13, K2SHE 13, WB2MNF 12, WA2ABY 9 , WA2DID 2, WB2FJE 2 WB2WXA 1. (Dec.) W2YPZ 10, K2MBW 8.

WESTERN NEW YORK-SCAI, Charles T. Hansen, K2HUK-SHC: W2RUF. P.AM: W'2PVI. RMI: W2EZH and W2FEB. NYS C.W. Net meets on 3670 kc . at. 1900 . ENS on 3590 kc . at 1800 . NYSPTEN on 3925 kc . at 2200 GMIT, NYS C.D. on 3510.5 and 3993 kc . (s.s.h.) at 0300 sum. and 3510 kc at 1930 Wed. ICPN and Call irea oh 3070 ke. at 0045 and 2345 GMT, NYS County Net on 3510 ke. at 1400 GAIT and 2345 GMIT on Mron. Congratulations to W2OS and W2SEI on making the RPL. The Walton Radio Assn elected K2FZI, pres.: W2THO ?ice-pres.; W2OSL. secy.: WB2AGK, treas. ; WB2VNB
 RAIE. pres.; WB2DJJ. vice-pres. F KJVE. secy-treas. W.12LFI, punlicity. W2RLF has resigned as manager of the NYS C.W. Net hecause of the pressure of wther luties. namely as mar. of the NYS County Net and the very important job of NEC. W2RUF has heen with NYS C.W. sn long that her name has herome almost Eyonomus with its mention. The SCM of E.N.Y. and 1 wish to onvey our thanks to Clara for her long vears of dedicated service to the juh and for the istence of one of our finest nets in NTS. W2MITA, of Newark Vallev, has agreed to take ofer as manager. However, he has asked that Clara remain as a consultant to give the net the henefit of her 20 vears experience as net mar. I :"m sure that W2RUF still will be an active rall on NYS E.W. NFDNA has decided to operate Field Day from Gradl Monntain and has issued its ammal challenge to RDNA. Don't forget the W.N.Y. Hamfest and V.F.F. Confrence Sat., May 11. at Vince's 50 deres, The latest report from RARA is 97 new members, hringing the cluth total to well over 400. The Fulton ARC plected WA2SOO. pres.: WA2-
 K2LUR, director-at-large. All amateurs are invited to report monthly to their SCM via Form 1 report cards, available from Headquarters for the asking. The North Country Radio Club elected W2BYZ. pres.; E2SAC, vice-pres.: W.A2HEC. eecy.-treas. W2CY is the hew call for ra-W2PZI. W2SEI takes over as acting 2 RN mer. from WA2GQZ. Traffic: W2SEI 648. W2OE 483. W2MTA 142. WB2OYE 380 . WB2GAJ, 261. W2RUF 254. I22RYH 219, W2LYG 168. WB2SMD 168. WB2VSL 144. W2HYM 140. WA2NDC 120. W2FEB 90 . K2DNN 64. WB2YUT 38, W2RQF 31. K2OFV 30. W'B2ZDK 2s. W2FCG 26 . W2CFP 20. W. ${ }^{2}{ }^{\prime} F I 20$. K2IAII 17. W2PZL 17, WB2YIP 15. K2QDT 14. W.A2ANE 13, W2RLO G. K2RWK \& W2PVI 7, WB2FPG 3, W.A2GLA 3, K2SSX 3, WB2VND 3, WA2WVF 1.

WESTERN PENNSYLVANIA-SCM, Robert E. Gawryla, W'3NEM-SEC: F3KMIO. PIMI: K3VPI (r.h.f.). RMs: W3KUN, W3MFB. W3UHN, K3SOH. Trattic nets: WPA. 3585 kc. daily at 7 P.m. local time. ${ }^{1} \mathrm{SSN}, 3585 \mathrm{kc}$. Mon. through Fri. at 6:30 P.m. local time. W3YA was island-hopping in the West Indies during the cold snap. K3ZGI is now in California. K3UPC lost his beam and tower to a sleet storm. K3QAY and K 3 WTZ have beon operating 8 -meter f.m. regularly in the Erie area. W3UHN has a new two-element quad for 20 meters. W3MIZ is now renuperating at home from an operation. The Indiana County $A K C$ reports it is sponsoring code and theory classes this spring; W3PHD and K3VDE are using new SB-101s. Kilo Watt Harmonics reports W3KPI has a new swan 500; W3SHT is in Florida: W3TQN is attending Penn. Tech.: the Stel City ARC has installed a 84 -element 2 -meter colinear array 60 feet hight. The Nittany ARC reports that ton honors in the 1967 Pennsylvania $2 S 0$ Party go to WB2UFV as high-scoring non-Pennsylvania station and K3ILC as high-scoring Pennsylvania station. tll participants suhmitting loss will receive the complete results of the QSO Party in the mail. WA3EPQ is now running 1 kw . with full break-in. W3KUN reports WPA was very active in the SET nperation this Pear with 18 sessions, 103 QNI and 143 messages. The WPA Traffic Net for Jan. had 31 regular sessions. 216 messages, 408 QNI nlus 10 visitors. Traffic: IF3KUN 300. W3NEM 299 WA3BLE 268, K3PYS 217. W3LOS 162, WB2TNB/3 14.5. WA3AKH 141. W3BLZ 128. K3HKK \&6 (W2K.AT. K3AHT, WA3F.AL nps), K3SOH 53 , WA3HAL 38. K3FCT 21. W3KPJ 19, W3LOD 19. WA3GPK 18, WA3HSI 18. K3RZE 12. K3ASI 8, W3UHN 8. WA3IPU 5, K3EMO 2, K3SJN 2. W3YA 2.

CENTRAL DIVISION

ILLINOIS-SCME, Édmond A. Netzger, W9PRNSEC: W9RYU, RM': W9EVJ. PAAs: WgY'J. WA9CCP. WA9kL. (w.h.f.) Cook County E.C: W9HPG. Net reports:

Net	Freq.	Times	Days	Tfe.
CEN	3940 kc .	1400\%	bun.	133 (39 Dec.
ILN	3'60 kc.	04002	Daily	$3: 34$
N('PN	: 41.5 kc .	1300%	Mon.-Sat.	158
NCPN	3915 kc .	17007	Mon.-Sat.	158
II:PON	3925 kc .	9300\%	Mon.-Firi.	830
Ill Pon	517.28 Mc.	0200\%	Mon. © Thurs	No report
IIIPON	145.5 Mc .	1200%	MWF	$: 37$
'l'NT'	145.36 Mc.	(1) OUZ	Sıın.-F'ri.	No report

WA9RGZ, WADEBM and W9IOG were elected officers of the Peoria Area Amateur Radio Club. Sept. 15 has heren set for the club's Annual Hamiest in Peoria. The Ninth Regional Net accumulated a tratic total of 1159 iluring January. W9HPG introduced WODNP, W9RE.A W'ADQNU and WOKPC as the new officers of the JARS (Joliet) at. the elub's inauguration dinner. The Waukegan V'.I.F. Soriety and Anateur Radio Club (W.A9LIV) has its z-meter f.m. repeater in uperation. New ap pointments include WAOQBM as ORS: WADIAF and W9KFQ as GBS's und W'AOQVK as ($)$, WN9WPE is a new Chicago all. WA9UNR was elected president of the Monitnr Cluh. K9PKK's new QTH is Phoenix triz. K9PIW is now a missionary in Bangalore, India and will operate from there soon. W9KMN is a new Extra Class licensee. K9FIKJ was elected secretary of Wistrict 72 schonl Board. W9MIsG. KOPGN, Ii9AQJ and W9YMF were elected officers of the Chicago Area Radio Cluh Gouncil. Inc. WN9VKO is now : General and W.A9UAG pasised the Advanced Class exam. WA9QNT would like Novices to rheck into his WN Net and those interested may contact him. The (hicago Radio Suburhan Association held its Old 'limers' Nite Pot-Luch Dinner feb. \%. K9TEJ has installed a new 18.4 VQ vertical antenna and is nnerating on all bands. On Feh. 18 the Rockford Amateur Radio Assoriation held it Hamfest and swapfest. Make a rlate for the (entral Division Convention Aug. 3 and 4 to be held in Springficld, Ill. Write to 104 North Sixth Street for details. Also write to the Illinois Sesquicentennial Commission, 107 South Fifth Street in Springtield, for information on its QKL awards. New officers of the OATS are K9AQJ, W9ABC, W9GRW and WA9MEQ. The CATS has passed the 200 membership mark to herome the largest KTTY club in the world. WA9MFU and W.A9QBM are recipients of the BPL award for Jan. traftic. Traffic: WA9MIHU 296, W9EVJ 183. WAOCTD 172, WA9QBM 142. K9KZB 116. W9JXV 100, W.49CCP 86. WA9QXT 78. K9BTE 52. W. A9SPA 45. W9FPG 42. W9HOT 39. W9LDU 38. WA9IDD 37. WA9TOC 25. WA9PI. 22. W9PRN 22. WA9SFB 21. K9HKJ 18, W9IDY 13. W9INQ 9. WN9VOX 8, K9HSK 6. WA9KQD 5, WA9FIH 4. K9HRC 4, WADQFT 4, K9\#V'S 2, W9KFQ 2, K9TXJ 2.

INDIANA-SCM. William C. Johnson, W9BUQ-Asst.凡(CM: Mrs. M. Roberta K roulik, K9IVG. SEC: WA0LTI.

Nets	Freq.	Time	Tfe.	Mgr .
TFN	3910	1330 Daily $2300 \mathrm{M}-\mathrm{F}$	316	K9IVG
ISN	3910	000 Z M-F 2300) Sat.-Siun. 2130 M-S	489	K9CRS
OIN	3656	010nz Daily	210	W9HRY
IPON	3910	12507 Sun.	16 U	K9EFY
IPON	:0.7	0200Z M-T	160	WAgNLE

W9KAG reports for the River Forecast Net Jan. traffic 36. K9Y'ST reports for the White River Valley AREC Net Jan. traffic 18. W9ILU reports for the Great Lakes Emergencer Net Dee. tralfic 75. QTN honor roll: W9BDP 30. WA9MTY 23, WA9KAG 24. W9UQP 21. K9DHC 18, K9HYV 18. WA9MXG 16, W9JUK 15. WOQLW 15. Your SCM listed the following call wrong in Jan. OST': W9JUX was listed as WA9.JUX and K9JUX. K9HYV was lister as K9HYY in both Jan. and Feh. GST. Kokomn ARC's new officers are WA9GKT, pres.; K9VIB, vicepress.; WA9VZW, secv.; W9BFD, traes.; W9MZN, di-rector-at-large: NC nfficer. WA9QEQ: FC. K9CWG. The Kokomo Emergency Net meets at 020n7, Mon. on 50.7 Mc . K $91 \mathrm{~V}^{\prime} \mathrm{G}$ had antenna trouble. WN9WKA is a new Novice at Hobart. WAOITB passed the Advanced Class exam. W9BLQ's slow-scan is about ready. At the Indiana Amateur TV and U.H.F. Club's meeting Jan. 27 G3EKE was the speaker on British Amatcur Radio and TV. The SET was a surcess in Indiana. The Red Cross Chanter of Indiananolis had its bomb shelter test to rnordinate with the SET. WA9LGQ. Ked Cross ARC was activated to handle wimpency. All messoges were on 50.7 Mc. starting at 2030 GMT Sat, the 27th until
(Continued on page 12w)

ver•sa•til•i•ty (vur'se-til'e-ti), n., the quality or state of being versatile; specifically, a) competence in many things. b) ability to move freely in any direction.

the definitive ham rig... Heathkit SB-101 Transceiver with SB-640 External LMO and SB-200 KW Linear

Versatility has real meaning when you operate with this Heathkit trio. With the SB-640 \& SB-101 combination you have five frequency control options . . . external variable control of transmitting frequency internal or external variable control of transceiving frequency . . . or crystal control of transmitting or transceiving frequency . . . almost enough versatility to put you in two places at the same time. In operation, whether you are a DX hound. net control, contest operator, or just a guy who likes a lot of action, you'll appreciate being able to move freely anywhere. And with the SB-200 KW Linear you'll be heard anywhere.
Order the SB-101 for the best value in SSB transceivers. Front panel selection of upper or lower sideband; SSB or CW filters; PTT or VOX control; plus built-in CW sidetone; built-in 100 kHz calibrator; 1 kHz dial calibration; true linear tuning; fixed or mobile operation.
Order the SB-640 for the most versatile use of your SB-101. It's like adding a second receiver; provides external frequency control by LMO or either one of two crystals: features same calibration and smooth dial mechanism as SB-101; powered by SB-101.
Order the SB- 200 for maximum power output at lowest cost. 1200 watts PEP, 1000 watts CW; drives with 100 watts: built-in SWR meter, antenna relay, solid-state power supply; ALC; shielded, fancooled amplifier compartment: pre-tuned cathode input; circuit breaker protected; 120/240 VAC.
Kit SB-101, transceiver, 23 lbs .
$\$ 370.00$
Assembled SBW-101, transceiver, 23 lbs. $\$ 540.00$
SBA-301-2, optional 400 Hz CW filter, $1 \mathrm{lb} .$. $\$ 20.95$
SBA-100-1, mobile mounting bracket, 6 lbs. $\$ 14.95$
Kit HP-13, Mobile power supply, 7 lbs. $\$ 64.95$
Kit HP-23, Fixed-station power supply, 19 lbs. $\$ 49.95$
Kit SB-640, external LMO, 9 lbs. $\$ 99.00$
Kit SB-200, KW linear amplifier, 41 lbs........................ . . . $\$ 220.00$
Assembled SBW-200, KW linear amp.; 41 lbs.

Compare the Specifications

 PARTIAL SB-101 SPECIFICATIONS - RECEIVER SECTION: Sensifivity: Less than 1 microvolt for 15 db signal-plus-noise to noise ratio for SSB operation. SSB Selectivity: 2.1 kHz minimum of 6 db down, 5 kHz maximum of 60 db down - $2: 1$ nominal shape factor - 6:60 db. CW Selectivity: (With optional CW filter SBA-301-2 installed) 400 Hz minimum at 6 db down, 2.0 kHz maximum at 60 db down. Spurious response: Image and IF rejection better than 30 db . TRANSMITTER SECTION: DC power input: SSB: 180 watts P.E.P. continuous voice. CW: 170 walts -.. $50^{\circ} \%$ duty cycle. Oscillator feedthrough or mixer products: 55 db below rated output. Harmonic radiation: 45 db below rated output. Transmit-receive operation: SSB: Push-to-talk or VOX. CW: Provided by operating VOX from a keyed tone, using grid-block keying. CW side-tone: Internally switched to speaker in CW mode. Approx. 1000 Hz tone. Carrier suppression: 50 db down from single-tone output. Unwanted sideband suppression: 55 db down from single.tone output at 1000 Hz reference. Third order distortion: 30 db down from two tone output. Noise level: At least 40 db below single-tone carrier. RF compression (TALC): 10 db or greater at . 1 ma final grid current. GENERAL: Frequency stability: Less than 100 Hz per hour after 20 minutes warm.up. Dial accuracy -- "reseflability": Within 200 Hz on all bands. Electrical dial accuracy: Within 400 Hz after calibration at nearest
SB-640 SPECIFICATIONS - Frequency output, LMO: 5 to 5.5 MHz . Frequency outpuf, crystal: 4.975 to 5.525 MHz . Frequency stability: Less than 100 Hz per hour after 20 minutes warmup from normal ambient conditions. less than 100 Hz for $\pm 10 \%$ line voltage variations. Visual dial aceuracy: Within 200 Hz on all bands. Electrical dial accuracy: Within 400 Hz after calibration at nearest 100 kHz point. Dial mechanism backlash: Less than 50 Hz . Front panel controls: Main (LMO) Yuning dial; LMO/XTAL switeh; Crystal Selector switch - XIAL 1/XTAL 2. Panel light: ON when transmitting or tronsceiving frequency is controlled by External LMO. Rear apron facilities: Connector to SB-101. Frequency Adjust trimmers XTAL 1 and XTAL 2. Power requirements (from SB-101 Transceiver): 150 VDC at 5 ma .12 .6 VAC at 450 ma . Dimensions: $6^{\circ} \mathrm{s}^{\prime \prime} \mathrm{H}$. (plus feet) $\times 10^{\circ} \mathrm{W} . \times 11 \frac{3}{9^{\circ}} \mathrm{D}$. (including knobs). SB-200 SPECIFICATIONS - Band coverage: 80, 40, 20, 15 \& 10 meters. Maximum power inpul: 1200 watts P.E.P. SSB, 1000 watts CW. Driving power required: 100 watts. Duty cycle: SSB, continuous voice modulation; CW, 50 个 (key down time not to exceed 5 min.). Third order distortion: 30 db or belter at 1000 watls P.E.P. Output impedance: 50 to 75 ohm unbalanced; variable pi-output circuit. SWR not to exceed 2:1. Input impedance: 52 ohm unbalanced; broad-band pretuned input circuit requires no tuning. Meter functions: 0.100 ma grid current, 0.1000 ma plate current, 0.1000 relative power, $1: 1$ to $3: 1$ SWR, 1500 to 3000 volts high voltage. Front panel controls: Load; Tune; Band; Relative Power Sensitivity; Meter Switch, Grid.Plate-Rel. Power-SWR.HV; and Power Switch, on !off. Tube complement: Two 572B/T-160-L (in parallel). Power requirements: 120 volts AC (ai 16 amperes (max.), 240 volts AC (ai 8 amperes (max.). Cabinet size: $147 / \pi^{\prime \prime} \mathrm{W} \times 63 / \mathrm{g}^{\prime \prime} \mathrm{H} \times 13^{3} / \mathrm{r}^{\prime \prime} \mathrm{D}$. Nef weight: 35 lbs .

FREE '68 CATALOG
Describes these and over 300 other Heath. kits. Save up to 50% by building them yourself. Use coupon and send for your FREE copy!

SWAN 410C FULL COVERAGE EXTERNAL VFO

The Model 410C Frequency Control Unit is designed for full coverage of $80,40,20,15$ and 10 meters. It is intended for fixed station operation and plugs directly into Model 500C. It may also be used with Model 350 C . Eight ranges, 500 kc each, 5 kc calibration.

\$115

DUAL VFO ADAPTOR

Provides for the addition of second VFO for separate control of transmit and receive frequencies. Plugs directly into Model 500C and may also be used with Model 350C and other Swan transceivers.
MODEL 22 $\$ 25$

MARS OSCILLATOR

Five crystal controlled channels with vernier frequency control. Plugs directly into Model 500 C and may also be used with Model 350C and other Swan transceivers.

MODEL 405X (less crystals)

SWAN 500C SSB-AM-CW TRANSCEIVER

Five band, 520 watts for home station, mobile and portable operation.
The new model 500C is the latest evolutionary development of a basic well proven design philosophy. It offers greater power and additional features for even more operator enjoyment. Using a pair of the new heavy duty RCA 6LQ6 tetrodes, the final amplifier operates with increased efficiency and power output on all bands. PEP input rating of the 500 C is conservatively 520 watts. Actually an average pair of 6LQ6's reach a peak input of over 570 watts before flattopping!
The 500C retains the same superior selectivity for which Swan transceivers are noted. The filter is made especially for us by C.F Networks, and with a shape factor of 1.7 and ultimate rejection of more than 100 db , it is the finest filter being offered in any transceiver today.
For the CW operator the 500C includes a built-in sidetone monitor, and by installing the Swan VOX Accessory (VX-2) you will have break in CW operation.
Voice quality, performance and reliability are in the Swan tradition of being second to none.

SWAN $17 \times C$ MATCHINC AC POWER SUPPLY

Complet R.C. sumply 117 vols 50-50 cyces, in a miditis cabuet with spether, phone lack and ind cator tight fachues power cable with Duz for thasceint and ac. The cort reay bi its in dit operse.
$\$ 105$

SWAN 14C DC CONVERTER

Convert's the above IIXC A.C. power supply io 12 yolt DC. - input for mobile, portable, of emersency operation.

POMER

SWAN MARK II LINEAR AMPLIFIER

Two Eimac 3-4002 Triodes provide the legal power input: 2000 Watts P.E.P. in SSB mode or 1000 Watts AM or CW input. Planetary vernier drives on both piate and loading controls provide precise and velvet smooth tuning of the amplifier. Greatly reduced blower noise is provided by a low RPM, high volume fan. Provides full frequency coverage of the amateur bands from 10 through 80 meters and may be driven by any transceiver or exciter having between 100 and 300 watts output.
\$395

PLUG-IN VOX UNIT

Plugs directly into Model 500C, and may also be used with Model 350C and other Swan transceivers.
MODEL VX-2\$35

SWAN 350C SSB-AM-CW TRANSCEIVER

Our improved standard 5 band model, now in production and still only.

MARK II POWER SUPPLY

May be placed beside the Mark II, or with its $41 / 2$ foot connecting cable, may be placed on the floor. Silicon rectifiers deliver 2500 volts D.C. in excess of I ampere. Computer grade electrolytic filters provide 40 mfd capacity for excellent dynamic regulation. A quiet cooling fan allows continuous operating with minimum temperature rise, thus extending the life and reliability of all components. Input voltage may be either 117 or 230 volts A.C.
\$235

SWAN 14-117

12 VOLT DC SUPPLY

Complete D.C. supply for 12 volt mobile or portable operation. includes cables, plugs, and fuses. Will also operate from 117 volt A.C. by detaching the D.C. module \& plugging in 117 volt line cord. Negative ground standard. Positive ground available on special order.

 Brathes with the pyowed: :

 tevom he elrwith zojge: infigumailivestinalis thenkwiothemercelficer: ofthe inghbrequeticy andelifiticemileremeder
 hewoikseyoue vil meve:
 mostareatinemightismo: themaresevall isemite= stinting ereativer sulecer:dviverio semshivive hes:
 the whentime mevehem:
 noinsemetce optratine

 itorghoue ine worl ere mon tulifiliseroniloo: themeopleri Exhentitise
 oite the incest communte

 orionice
in

0330 QMTT Sun．the 28 th． 65 messages werc handled by 14 amateur v．h．f．stations．On 50.250 MIc．there is it net at $0100 Z$ every evening．WA90LM is net control most of the time．This net is in the southern part of Indiana．W9HRY reports that 1967 was the best year for QIN for cheok－ins although he fus uot been able to top 1959 in total traflic of 6099．Amateur radio ex－ iats because of the service it renders．Traffic：（Jan．） K9IVG 464，W．49LTI／WA9MTY 454，W9HRY 353，W9－ QLW 308，K9FZX 305，K9HYV 172．WA9FDQ 160， WA9VFM 140．WA9KAG 131，WA9WFE 119，K9EOH 102 ， K9STN 84，W9BLiQ 75．K9CRS 67．以゙A9LGQ 65， K9VHY 62．W9SNQ 61．WODKR 4B，WA9BGI 45，W゚9－ I！QP 43，K9YST 40，W9JUX 36，L9ZLB 36．W．A9BHG 32．K9ZBY 32，K9RWQ 29．W9YYX 29，K9EFY 28. WA9CFW 2．5，W9FWH 19，WYRTH 17，W9PMT 18， WA9AXF 15，K9ILK 15，W9DZC 13，WA9GJZ 13．K9～ KFMI 13 W9LG 13．WA9TKZ 13，W9DGA 11，W9RDT 11，K9FUJ 10，W9CMIT 9，W9WGN 9，K9JQY 8，WOCUC 7．K＇9GBR 6，WA9ABI 2，WA9RNT 2．（Dec．）WOJUX 194，WA9MIXG 67，W9RTH 45，WA9BNX 9.

WISCONSIN－SCM．Kenneth A．Ebneter，K9GSC－ SEC：W9NGT．RM：WA9NIO．PAMs：W9NRP，WA9－ QNI and WA9QKP．

Net	Freq．	Time	Days	QNI	QTC	Mor．
BWN	3985 kc.	$1300 Z$	Mon．－Sat．	430	252	W9NRP
SEN	3985 kc	$1800 Z$	Daily	732	191	WA9QKP
WSBN	3985 kc	$2300 Z$	Daily	1347	254	WA9QNI
WIN	3662 kc.	$0115 Z$	Daily			WA9MIO
SWRN	$50.4 \mathrm{Mc}$.	$0300 Z$	Mon．－Sat．		3	K9DBR

New appointees：W9ODD as OPS，ORS and OBS．Re－ newed appointment：W9PJT as OVS．K2LXY is in Wisconsin for 3 years of studies．The Wisconsin QSO Party will be held Apr． 27 and 28 ．W．A9NDV has made WAS．WA9NBU is operating out of WA8CQR and cor－ responding with a ham in Ghana．WA9LRW has added an SB－610 to his shack．K9CPM has his shack all set． with emergency power．W9ODD has equipped the shack with a Drake R4B／T4X－B and Hunter Bandit 2000 C ． The Wisconsin WNA Pienic will be held July 7 at Fond Du Lac．New Mancorad Radio Cluh officers are W9KQB， pres．；K9RFZ，vice－pres．：WA9EZU，secy．－treas．WA9－ Sy＇D has a new 10 －meter antenna，passed the Advanced Class exam and is NCS on BEN．Many stations report participating in the SET．Congratulations to all for the fine showing．Traficic：（Jan．）W91）ND 414，W9DYG 331．W9CXY 330．W9ESJ 210．W9IFS 185，WA9NVY 184. WA9NDV 150．WA9QKP 140，W9AOW 123，WA9RAK 109．WA9QNI 89，K9KSA 83，K9FHI 71，W9DXV 69, W9AYK 68．W9ODD 57．W9GXU 51．WA9GJU 50．WA9－ IZK 48．K9CPM 44，W்9NRP 43．K9GSC 41．W9KRD IZK 48．K9CPM
38．WA9SYD 26 ．WA9NBU 22，K9JMP 21，W9RTP 20. WOCRE 19，WA9PKM 17．W9MWQ 12，K9TRY 12， W9YT 9．K9EMG 8，W9GOCC 8，W゚ 0 BCH 5；W9IQW 5，

WISCONSIN QSO PARTY April 27－28， 1968

Wisconsin SCM K9GSC alerts Wisconsin ama－ teurs only to the QSO Party to be held April 27 and 28 ，between 1600 and 2300 GMT both dates． Categories are phone $160-10$ meters，phone 6 me－ ters and up and c．w． 160 meters and up．Exchange consecutive QSO numbers，starting with number one．RS（T）and county．You may work each station only once in each category and separate logs for separate categories are required．Cross band，cross mode and multiple transmitters are not permitted．Contacts are not permitted on nets in session．Logs must show time，station worked， reports，band，emission，input，numbers ex－ changed and county names．No power limit．Score one point for each contact，add the message credit if applicable and multiply by the number of coun－ ties worked． 25 points can be added to the contact points（before multiplier）if a message is sent in correct ARRL form to the SCM stating the cate－ gory，county and input．This must be sent within two days after the contest ends．A copy of the message with handling data must accompany the log for credit．Suitable trophies（for first place winners）and certificates with ribbons will be awarded．Suggested frequencies： 36623985 $50,400 \quad 145,350$ and 146,940 ．Logs must be post－ marked no later than May 29,1968 and sent to Wm．Wachholz，K9HJS， 918 North Third Ave．． Wausau，Wisconsin，54401．Any violation of the contest or FCC rules may result in disqualifica－ tion．Decisions of the contest committee are final．

K9KiSA 5，WA9LRW 5，WA9EZU 4，W9IRZ 4．（Dec．） W．A9IZK 92，K9VUJ 2.

DAKOTA DIVISION

MINNESOTA－SCM，Herman R．Kopischke，Jr．，WY－ TCK－SEC：WAQIEF．RMs：KQORK．WAOEPA PiMs：W．AØMMV，WAgHRM．MSN ments daily on 3685 kc ．at 1030 Z ．M1JN meets Tue，－Sun．on 3685 kc ． at 0100Z．Noon MSPN meets Mon．－Sat．on 3945 kc．at $1805 Z$ ，Sun．and holidays at 1500 Z ．Evening MSPN merts daily on 394.5 kc ．at 23157 ．Congrats to WिAØHIRM．new Evening MSPN PAM．Dive took over the duties from WAØJKT，whose college studies prevented him from devoting the time he felt he should to it．Our sincere thanks to WAØJFT for his services these last two years， and to WAØHRM for accepting the uppointment．Ap－ pointments renewed：WOHEN as EC，OO and UPS and WAQMMV as EC，PAM and OPS．Our thanks to W．ADMMV for accepting the PAM duties on the Noon Net tor another year．WØZMU，TI2RGS．HC1RT，enjoy－ ing a well－earned vacation，showed slides of the fa－ cilities of HCJB，the shortwave missionary broadeast station in Quito，Equador，where he is an ungineer． EC WAOFFU reports the Lake Superior AREC Niet is having excellent activity．WAODOT passed the Extra Class exam and has his XY＇L studying for Novice． WAOPAT has gone 6 meters with a mobile using a halo and a five－element beam at his hase．OO VADIAW reports sending 9 violation reminders．KøERQ is hack on the nets since KOLWK and V＇PJ helped get her antenna back up．The Minn．YLs are trying to reorganize on 3820 kc ．at 9 A．M．Mon．EC KOICG recently returned from Cal．Where he and his XYL visited relatives．＇Traf－ fic：（Jan．）KOZRD 275．WAOIAW 251，KOORK 158. WA＠EPX 118，KØSRK 105，WOTCK 71．WAØHRM 51．WGATO 47，WAGMMV 46，WQHEN 39，WQKNR 36．WQBUC 34，KOFLT 30，WAQODB 30，WAOOLA 30，K®ZBI 22，WAØDFT 18，WAழ．TKT 18，WA＠OEJ 18．WØKLG 16．WAØJPR 15，WØSZJ 15，WAØLVK 13 ， WAODOT 12，WAØPIF 12．WAØIYM 8．WOISJ 6， WAØNQH 5．WØOET 5，KØ்SXQ 5．KØCNC 4，Wด－ FQO 4．WAØEZQ 4，WÅÐPLM 4，WAØSSN 4．（Dec．） WЮKLG 10，WN9VXM／Ø 8，WØUMIX 8，WAØPXTT 7.

NORTH DAKOTA－SCM，Harold L．Sheets，WODM SFC：WAOOYL．OBS：KØSPH．PAMI WØCAQ． KM：WAgELO．The Minot Amateur Radio Assn．held its 5th Annual Banquet．Harold Carnahan，c．d．direc－ tor．was the guest．New officers are WOHJU，pres．： WØ゙HVA．vice－pres．：WAØLXB，secy．－treas．：KøYAF， sct．at arms．WQDQX has transferred to Blaine，Wash． KOSPH was under the werther for awhile but is back again．WAØHUD and WAgELO have been doing a nice job on TEN Net．WAOHUD has heen working on the quad to get hack on 10 meters．WAØOVW got the gremlins out of the SB－401 in time for the DX Con－ test．The International Hamfest date was set for July $20-21$ on the American side of the Peace Gardens． WOECX reports that there will be a Ham Picnic at the Kindred Park on June 30．WONMV has heen build－ ing a new SB－200 and will soon have it on．The SET program went off with the RACES Net．PON and N，D． CW Net participating．Thanks to WAOAYL．KOSPH． WAOHED．WAOFLO．KØRSA for doing the job of setting it up．WOTUF has all the bugs out of the SR－150． WCOCBM is on with a new Swan 500 and works 40 meters more．WOVBE recfived his Extra Class license．WAO－ ELO passed the Arlvanced and Extra Clasx exums and WOHBR reports that his son WAOQBD，who is in the aprice，passed the Extra Class also．WODM gave three Novice tests and continues to teach others for the Gen－ cral tests．WめTXQ，from Detroit Lakes，was his quest for a lew days．WAOTBR is recovering from eye surgery． The Forx Amateur Radio Club has started Novice classes． Mectings are held at the home of $\mathrm{K} \emptyset \mathrm{RSA}$.

RACES Net 22 sess．	790check－ins	Tfc． 84 KøSPH
YLWXNet 24	413	7 WAgMND WAgGRX
CW Net 14	57QNI	39 WAGELO
NDPONNet 8	161	48 WAgHUD

Traffic：WAgHUD 184．WAØAYL 130，WAOELO 87. W9QNI／G 32，WQWWL 28，KGPZK 21．KORSA 21， WAØGZA 20，WODXC 17．WAดJPT 16，WØDM 15， KOSPH 15，WAOMND B，WAØTBR 5.

SOUTH DAKOTA－SCM，Seward P．Holt，KOTXW SEC：WQSCT．KM ：WOIPF．Phone Net Nianagers： KOBSW．WAOLLG．KOHBD $/ 2$ and his $X^{\prime \prime} L$ announce the arrival of a $n \cdot w$ raughter Fels．2．KOFKK has heen issued the call DL4RE and is mounting a beam for contact home．WAOMRY has completed bis kever 7．W．AOHMP and WAOPNB passed the Advanced Class exam．Net Manager KOBSW thanks ull who helped to make the net participation greater this past year．RMI WOIPF amnounces that hy 10 QNIs with in three months

sixpack

National offers six of the world's finest receivers to meet your particular requirement.

Receiver number one provides greater amateur band performance and features than any amateur receiver ever built. Receiver number two has the widest frequency range (from 5 Kc to 30 Mc) of any general coverage communications receiver ever built for lab or commercial application. - Receiver number three is completely solid-state for high reliability, versatility and portability. It operates from 12/24 V.D.C. or $115 / 230$ V.A.C. This receiver draws less current than a couple of dial lamps (when its dial lamps are switched off), and provides instant-on operation. $\begin{aligned} & \text {. Receiver num- }\end{aligned}$ ber four incorporates specific features for high selectivity and has a six-pole filter to provide built-in steep-skirted $500 \mathrm{cps}, 2.5 \mathrm{Kc}, 5.0 \mathrm{Kc}$, and 8 Kc bandwidths with passband tuning for CW and SSB. Also AGC threshold control to knock out background QRM. Also a 50 db notch filter. $\begin{aligned} & \text { meceiver }\end{aligned}$ number five has a phase-locked frequency synthesizer to replace conventional high frequency oscillator crystals for superior stability and over-all calibration. Receiver number six offers frequency meter performance with 1 Kc dial calibration and accuracy over its entire tuning range, 24 feet of bandspread per megacycle, and 10 Kc per turn tuning rate.

Each of these receivers is called the HRO-500. National's new HRO500 , at $\$ 1675$, is the finest total receiver you can buy . . . at any price. Interested in trying out National's new sixpack? See your National dealer for an opener.
vult intiv receive a s. Dak. Section Net certificate. Traffie nets: N.JQ Net. 278 QNi. 25 UTC, 42 intormal. Eveling Yhone Net, 1275 QNI, 90 QTC, 152 informals. S.D. O.W. Net, 33 QNI, 24 Q'TC in 14 sessions. Sioux Falls 2-Meter Net, 22 QNI in 4 sessions. Traffic: WOZWL 383, K WOSCT 42. WAOMIWN 29, WØIPF 25, W.AORIQ 21. WAØPNB 10, WAQQNV iñ, WODIB 9 , WAOPVA 9 . WAOFUZ 6, WAOMRY 6. WORWM B, WAOHOJ 5, KOZTV 5, WAgBWJ 4, WAOCFH 4, WOFJZ 4, KOHOY 4, WA

DELTA DIVISION

ARKANSAS—BCM, Curtis R. Williams, W5DTRSEC: WA5IIS. PAM: W A5PPI). RM; W5NND. The Ceutral Arkansas Radio Emergency Net (CAREN) has elected W5OFD as net mer., W. 15 F .4 V as asst. net mgr. and WA5FDR as secy.-treas. C.AREN has a 2 -meter repeater working with input 146.3 and output 145.5 using the call W5DI. WA5LUY and WA5OOY have a repeater working with iuput either on 50.32 or 146.34 and ontput. on 50.5. New ufficers of the Central Arkansas ARC are W5DTR. pres.: WA5OOY, vice-pres.. WA5QWY, secy.treas.: and WA5QAK, act. mer. Several AREC groups had good exercises during the SET. Net reports for lan.:

Net	Freq.	Time	Sess.	Tratice	UNIs	Mgr.
OZK	3790	$0100 Z$	31	56	268	W5NND
IRN	3815	011307	37	137	8102	WA5PPD
APN	3885	$1200 Z$	27	12	684	W5ABE
APON	3825	$2130 Z$	22	106	412	W5MSO

Activity during Jan. was good with many new stations reporting into our section nets. Traffic: (Jan.) W5OBD 1343. W5NND 241. W5DTR 93. W5MJO 88. W A.5PPD 82, W5QFU 81. WA5IIS 47, WA5LYA 21. WA5KEF 17, IVA5PLAO 13, WA5TLS 13, K5TYW 11, WA5QPI 9. (Dec.) W5QFU 54.

LOUISIANA-SCM, J. Mlen Swanson, Jr., W5PMAEC: W5BUK. RM: W5CEZ V.H.F. PAMIS: WA5DX.A. W5UQR.

Net	Freq.	Days	Times/GMT	Net Mor.
LAN	3615	Daily	W0 $30 / 1040$	W5MBC
Delta 75	3905	Sun.	1330	WA5EVU
LaPON	3870	Sun.	1300	W5KC

The Lake Charies gang will put on a hamfest this vear. I) Stails later. W5SW'S han hern mohiling a lot lately. WA5QVN reports the Twin City hams have started ande and theory classes. WAstyFB in the new mall of the Winnsboro High ARC. K5ANS/5 transmits Official Bulletins via RTTY on 3625 kr . Mon. through Fri.. except Wed.: at 0000 Z . Congrats to W5NYY on his new Idvanced Class ticket. W.55EID is plagued by schnol skeds. WA5OJG says the Batron boys are noying with joining civil defense. The Springhill AlREC group had a very excellent SET exercise with the mayor, cuuncilmen. and press ohservime from mohiles uperated hy When, and press ohserving from moniles uperated hy and VSSQO. LAN cperated Sat. ind Sun. for many hours. The ONO.ARC also had sperial exercises. WA5OHF is working on gear for 6 meters. W5GZR. irnm the Teche Bayou Country, has up u atw three-element quad, homebrewed. WA5KLF is working on RTTY equinment. W5EA is mot too active excent in MIARS. W5JFB says the first week end of the ARRL DX enntest was exceedingly hot with QRAI. IV5PBQ heads the OARC for 1968 in Slidell, K5AGI is the proud nossessor of an Extra Class ticket. WN5TKF, of the OARC, hecame the first ham to reccive a license in 196\% through the NOLA District Office of the FCC. W5LHS, New Grleans West Bank FC, reports a very tine SET exercise with a visit to the fixed station by the director of the NOLA Red Cross. WN5TZL is a new ham in Sit. Martinville, a kraduate of W5EXI's school. W5NQQ will continue an editor of the LARK. My term as your SOM expires in June. Watch QST for request for nominaexpires in June. Watch 25 , W5KR requet 146. W5M nomina- 125. W5MBC 105, K5ANS/5 89, WA50HH 66, W5GZR 47. W5PM 15, W5EA 14, K5WOD 12, W.A5NYY 8, WA5QVN 7. W5KC 4. WA5EID 3, WA5KLF 2, WA5OJG 2, WA5C.GO 1.

MISSISSIPPI—SCM, S. H. Hairston, W5EMM-SEC: IV'5.JDF. It is amazing that W.A5SKI handles as much traftic and still make such suod gradps in college. W5LLiA still is doing a fine job as NCS, uperating c.w., r.In., s.s.b., 80 through 10 meters, with nd Navy experience being helpful. W5ODV has taken uver as resst, net mar. and seev. of ISBN and is doing ar gond joh under the leadership of Net Mgr. WA5KEY. Thirty-one sowsinns were called, with 1301 eall-ins and 113 emergency and priority messames delivered. We are plad to Welcome Kis IVP and his mew hride to Jackson and

Hso ath old friend with a new call. WA5TNQ. We are Lways wiad to have new amaterus in Mississippi, ni we welcome W A5TSU, WNSTEE, WN5TTG, WNSTTQ WN5TRJ, WN5TRF. W'N5TQC․ WA5TPP. WN5TOD. WN5TON, WN5TNN, WA5TNQ, WN5TWZ aud WN5TWI. Brothers W'5BW and K2l)E had a fine rilimion. getting together on the Cuast and comparing pictures of their rigs from 1915 to the present. Cherk into oum nets: Gulf Coast Sidehand Net, daily 1730 CST 3925 kie. Miss. Sideband Net. Laily 1815 (STT $3 \times 8 \times$ ke. Niss. C.W. Net, duily 3647 kc. ut 1845 CST. Tratlic: WA5SKI 210, W5BWV 71, W5EMM 22, W.15RXV 17.

TENNESSEE-SCM, Harry A. Phillips, K4RCTAsst. SCM: Lloyd Shelton, WiA4YDT. PAN1s: W4PFP W.A4C'GK, WA4EWW, WB4GHL.

Net	Freq.	Days	Time	Sezs.	QNI	OTC	Mor.
TSSB	:980	Tue.-Sun.	0030Z	29	1990	285	WA4CGK
TPN	3980	M-Sat.	1245	33	1434	245	W4PFP
		Sul.	1400				
ETPN	3980	M-F	1140	23	522	23	WA4EWW
TCN	39810	Thurs.	021010	We	night	ST)	W40GG
TN	3635	Daily	0100	31	273	213	
TTN	7270	Daily	2200	31	40	114	WB4GHL

Siction nets were in session for two 8 -hour nerinds on $39 \times 1) 3635$ and 7270 kc . during the SET. The traffic total was approximately 435 . The Nashville AREC Not operates on 50.3 Me. Tue.. Thurs. and Sat. at 2100 CST. W4SGI has a new rall. WB4IED. Nomination forms for the asard of Outstanding Amateur in Tenn. are uvailable from Tenn. Coumcil serretary, V4PRY, 3×10 Redford Ave., Nashville 37215. The deadline is May 1 Presentation will be made at the Crossville Picnic in Tuly. Our thanks to W4IDY for serving as trmporary RM. Tratic: W4OGG 315, W4VIY 313. W4FE 183. W4SQE 168, WA4ITRA 99, W4RUW 95, W.A4NEC 90 WB4EEI 88, K4OUK 54. W4WZH 4x. W4PFP 44, W4WBK 43. K4FKO 30, K4ARI 25, WA4GLS 24, WA4CRU 23. WR4ANX 22, W4PQP 19, WA4CGK 17. WB4EHD 7. K4PUZ 17 WA4TJJ 16, WB4FCE 14, W4PRY 12 W.A4EWW 10, W4SGI 9, WA4AJB ४. W.A4'்T 8.

GREAT LAKES DIVISION

KENTUCKY—SCM, Lawrence F. Jeffrey, WA4KFO SEC: W4OYI. Endorsements: WA4FMIY as FC. WA4GHQ and W4VNH as OVSs, WA4WTVT as ORS.

Net	Freq.	Days	GMT	()NI	QTC	Mror.
KRN	3960	M-F	(130)	424	$\times 11$	E4LIS
MKPN	3960	Daily	1330	395	214	K4TRT
KTN	3460	Daily	0000	1002	887	WA4.ACH
KYN	3600	Daily	01000/0300	173	$8+8$	W 4 BAZ
FCATN	30.7		1200	94	28	WB4AFI

WA4SIQ is Inoking for stations for the N.E. Eentuck: V.II.F. Net. WA4WWT tnns lientucky in trattic ugain. W4CDA is working hard to promote a 2 -meter net in the Danville area on 144.35 . New officers of the Northern Kentucky Amateur Radio Club are W4VLA. pres.; W.14T.PC, vice-nres. ; W A KVI. xec. secy.: WA4NXD corr. secy.; W4OTM, treas. K4RZK is the new sem. of the GVARA. W4PII is mres. of the Quern oits Fmergency Net. WN4IEN is a new Novice in Centril City. Congratulations to W.A4WWT on heiug named Gentral Area TCC Operator of the Year. The sincond Innual Kentucky Traffic Mereting was very siliccessful. thanks to the efforts of W4B-AZ. Who anted as chairman. Traffic: (Jan.) WA4WWT 548. WA4DY゙L 495. W4RAZ 366. WA4ACH 281. WA4WSW 246, WA4UAZ 224. WB4AIN 216, W4NBZ 185. W.A4SMS 175. WA. 4 VUE 168. WA4KFO 133, K4MAN 125, W4YOQ 104, W4OYI 93, WA4GHQ 90, WA4B7S 64. W4CDA 56, W4GVU 56, WB4BKG 52, WA4IRG 47, K4TRT 44, W4BTA 35, WB4FOT 3.5, WA4UHR 32, WA4WQ7 32, WA4UGQ 24 . ITHKJP 22, K4VDO 22, W4MWX 20, WB4BTM 19, G4UMN 16. K4HOF 15. WB4AFH 14. WB4CIY 13. W4SZB 12 WIt KKG 11. K4LOA 11. K4FPW 9, W4ADO \&, WB4CJM 1. W.A4SIQ 1. (Der.) lí4HOE 19, E4UMN 13.

MICHIGAN—SCM, Ralph P. Thetreau, W8FISEC: K४GGOU. RMs: W8FWC. W8RTN. WA8OGR, K8KMQ. PAMs: W8IWF, Li8JED. V.H.F. P.IAIs: IFsClQ W8YAN. Appointments: KRTGQ and WA8MDK as ECs; WA 8IAQ as ORS: W8OWG as OPN. Silent Ley: W.lsUDA. W8NOL is Lhome and on the air.

Net	lireq.	Time	Days	UNI	QTC?	Sess.	Mgr.
(MNN	:1663	2:300	Dy	1094	585	63	W8FWQ
ITSSB	3935	0000	Dy	426	96	$\because 1$	K8AYJ
PON-DAY	3935	1600	M-Sat.	. 386	319	27	WA8OM:
B/R	:930	2:30	M-F	888	77	23	K8JED
PON-C.W.	3645	2100	Mi-sat.	. 153	42	27	VESDPO
M6MITN	50.7	2100	M-Sat.	. 321	18	26	W'A8LRC

Ealayy lit ill bullis sue!

NOW, a competitively priced receiver for the most exacting professional performance ... the solid-state R-530 by Galaxy. The result of 3 years of exhaustive research, the R-530 was designed for the exacting standards of laboratory, amateur, broadcast and HF monitoring and point-to-point complex system communications. The R-530 incorporates the finest components, the most desirable features and the most up to date engineering possible. It provides accuracy of 1 KHz tuning throughout the 0.5 to 30 MHz frequency spectrum. Its frequency stability is amazing... less than 100 Hz drift after turn-on.

We, at Henry Radio, are proud to sell the R-530 and we are confident that the owner of this fine receiver will share our pride. We cordially invite you to come in or write for complete specifications.

Henry Radio has a great antenna package program ... big savings. Write for literature.

EASY FINANCING • 10% DOWN OR TRADE-IN DOWN • NO FINANCE CHARGE IF
PAID IN 90 DAYS • GOOD RECONDITIONED APPARATUS • Nearly all makes \& models. Our reconditioned equipment carries a 15 day trial, 90 day warranty and may be traded back within 90 days for full credit toward the purchase of NEW equipment. Write for bulletin.
TED HENRY (WGUOU) BOB HENRY (WØARA) WALT HENRY (WONRV)

> When you write for our condensed high fidelity SPEAKER, ELECTRONICS or MICROPHONE catalogs

you really get a brief progress report on the state of the art in sound.

Both FREE for the asking, of course.

UPEN	3920	2230	Dy	472	30	31	K8ZSM
LENAWEE2	145.36	0200	Dy	276	60	30	WA8UWQ
MEN	3930	1400	Sun.	275	23	4	K8JED
SWM2	145.26	0100	Tue.	125	20	6	W8CVQ
OWN	7160	2230	M-W.F 30	20	15	WA8VOG	
NOON 50	50.41	1700	M-S.S. 204	4	27	WA8FXR	

New officers: Amáteur V.H.F. Assn.-W8JXU, pres.: W8CLH, vice-pres.: W8HKO, secy.; W'RU', treas. Edison RAA-W8EMP, pres. W8EQY, vice-pres.: WA8CLG. secy.-treas. ; WA8JKC, W8VRB and WA8SVA, board. Calhoun ARC-WA8LRC, pres.: K8IWX vice-pres.; WA8VXE, secy.-treas.; WA8UDT, fin. secy. Sorry to hear that W8TDil's son was killed in it car crash near Uscoda. Among the many clubs out for the "March of Dimes" were the CMIARC. SVARA. Plymouth ARC and Hiwwatha ARA. The SVARA will put on the Woutf Hong ceremnny for the CMARC Lansing convention, Apr. 26 and 27. W8C.AM has been running code practice again on 1804 kc. and the Semara has hern running code and theory classes through advanced weekly. The NVARA starts a new slow rode net at $1800 Z$ in the 3.7 Mc. band. The Van Buren Co. ARC is running a code/theory class for 11 werks. Thanks to W8ZKL, the Catalpa Club now meets in the I'FW Hall in Royal Oak. WA8DEX has a new Collins exciter. K8DX now is on 160 "tobacco roan." K8WOZ now is the father of t wins-"push-pull?" SVARA's new hoard: K8IIB, W8CTY, W8KNB, W.A8GRI, W8GAI. In 1967 none of Michigan's OH: lived up to ininimum requirements. HPLers: K8. KMQ, W8IV. WA8ARJ, WA8MCQ is QRP 800 MW, 23 states including Calif. W8IHD made W.AC on 21 Mc. Traffic: (Jan.) W8IWF 470, K8KMQ 411. WดGXQ/8 327. W8JTQ 267. W8IV 189, WA8OGR 168. W8BEZ 185. W8QQK 120. W. A8LXY 113. F8MLXC 112, K8ETU 110 K3KRS/8 109, K8ZJU 108. W8IUC 93, W8FX 77, WA8IAQ 73, W8RTN 62. WA8KME 58, WA8MCQ 55, WA8UPB 52. W8EU 51. K8GOU 47, W8TDA 40. W.A8ORC 38. WA8UWQ 38, IVA8LRC 32. W8FWQ 31. W8MO 31 . W8YAN 30, K8JED 29. W8UFS 27. WA8VOG 27, W8TBP 20. W8OWG 18, W8OAF 17, W8CNL 16. W8IHD 14, W8RHF 14. WA8TSD 14, W8WVL 14. W8MIRM 13 , WA8GTMI 12, W8ILP 12. WA8KRH 12, W8AUD 10 , W8SCW 10. WA8VHG 10, W8HKT 9. WN8VRJ 9. WA8GRI 8, W8MWG 8. W8NOH 8. W8MGM 7. WA8LPI 6, WN8WQS 6, W8DSE 5. W8ZHB 1. (Dec.) WA8ARJ 147. K8HLR 30, WA8JDF 18, WA8AXF 15, WA8UPB 14. WN8WZF 9.

OHIO-SCM, Wilson E. Weckel. W8AL-Asst. SCM : J. C. Erickson. W8DAE. SEC: W80UU. RM: W8IMI. PAM : K8 8 UK.

| Net | ONI | OTC Sess. Are. | Freq. | Time | | Mor. | |
| :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| BN | 836 | 534 | 83 | | 3580 | $000 \& 0300 Z$ | WA8CF, |
| OSSBN | 1925 | 1029 | 58 | 17.8 | 3972.5 | $2345 Z$ | K8UBK |

Hope that all of you have heen getting your station ready to enter the Sixteenth Innual Ohio QSO P:urty Apr. 27 and 29, sponsored hy the Ohio Council of Amateur Radio Clubs. K8LMF and K8ONA vacationed in Florida and received an engraved plaque from the Muscular Dystmphy Assm. for their efforts in the recent cular for funds. K8ONA received the Florida Merit Award. Inter-City RC's IRC Neuss Bulletin tells us that a number of its members brought receivers, transmitters and transceivers to the club meeting and all were in working operation so now the members know how each piece of gear works, what the nwner likes and dislikes about it. W8WEG tells us WA8FVF, joined the Silent Keys following an auto accident in Okla. K8BXT says Warren ARA's 1068 oflicers are W8TTQ, pres.; W8HCL, vice-pres.; K8BXT. secy.; W.ARVNU, treas.; WA8SRB, trustee: WA8KIG is active on 145 Mc ., WA8ANV is building a 2-meter solid state transceiver. W8TTQ is building an electronic keyer, WN8RFY is now WA8ZMY and W8HSP was married. Southeast IRC's Ham-Fax says WA8AHU is home recovering from surgery. WA8BZR recrived his Extra Class license. WN8ZB. A and WN8ZNC, father and son, are new Novices. K8PJH is home from the hospital recuperating. The Ohio SixMeter Net meets daily at 0000 Z on 50.6 Mc. Write to $\mathrm{K} 8 \mathrm{~V} C W$ if interested in organizing a davtime c.w. traffic net on the Novice bands for training and service related to school clubs. Toledo's Ham Shark Gossin informs us WA87FB and W.48ZJF received their Gen. Class, WA8ZGO his Condi. Class. WA8ZHU his Tech. Class and WN8ZFL, WN8ZIF and WN8ZIG their Novice Class licensps, k8KFP graduated from 'Toledo U, and is moving to Chicago, K8QZK is in Viet Nam and W8TZO is now W8.tN. Smoke Signals from the Indian Hills RC tells us Santa brought W8POR an SB-300 and SB400. also W8ICS a scope and Hickok tuhe tester. MassilIon ARC changed the name of its bulletin to MARC Frrdhark. suggested hy WA8HZO. W'3OIIT and WA8CFJ passed the Extra Class exams. K8DIU is in Viet Nam. According to Springtield ARC's \& Fiver W8OG spoke to the club on the DX he has been working since

How did Gotham drastically cut antenna prices? Mass purchases, mass production, product specialization, and 15 years of antenna manufacturing experience. The result: The kind of antennas you want, at the right price! In QST since '53.

QuadsWorked 42 countries in two weeks with my Gotham ()uad and only 75 watts . . . W3AZR

CUBICAL OUAD ANTENNASthese two element beams have a full wavelength driven element and a reHector; the gain is equal to that of a three element beam and the directivity appears to us to be exceptional! ALL METAL (except the insulators) - absolutely no bamboo. Complete with boon, aluminum alloy spreaders; sturdy, universal-type beam mount; uses single 52 ohm coaxial feed; no stubs or matching devices needed; full instruction for the simple one-man assembly and installation are included; this is a foolproof bean that always works with exceptional results. The cubical quad is the antenna used by the DX champs, and it will do a wonderful job for you!

10/15/20 CUBICAL QUAD SPECIFICATIONS

Elements: A full wavelength driven element and reflector for each band.
Frequencies: 14-14.4 Mc.; 21-21.45 Mc., 28-29.7 Mc.
Dimensions: About 16' square.
Power Rating: 5 KW.
Operation Mode: All.
SWR : 1.05:1 at resonance.
Boom: $10^{\prime} \times 11 / 4^{\prime \prime}$ OD, 18 gauge steel, double plated, gold color.
Beam Mount: Square aluminum alloy plate, with four steel U-bolt assemblies. Will support 100 lbs ; universal polarization.
Radiating elements: Steel wire, tem-: pered and plated, $.064^{\prime \prime}$ diameter.
X Frameworks: Two $12^{\prime} \times 1^{\prime \prime}$ OD aluminum 'hi-strength' alloy tubing, with telescoping $7 / 8^{\prime \prime}$ OD tubing and dowel insulator. Plated hose clamps on telescoping sections.
Radiator Terminals: Cinch-Jones twoterminal fittings.
Feedline: (not furnished) Single 52 ohm coasial cable.

Now check these startling prices-note that they are much louer than even the bamboo-type:
10-15-20 CUBICAL QUAD $\$ 35.00$
10-15 CUBICAL QUAD $\ldots \ldots \ldots \ldots . . .30 .00$
15-20 CUBICAL QUAD
TWENTY ME IER GUBICAL QUAD. 25.00
FIFTEEN METER CUBICAL OUAD. 24.00
TEN METER CUBICAL QUAD..... 23.00
(all use single coax feedline)

The first morning 1 put up my 3 element Gotham beam (20 ft) I worked SP9ADQ. and 4U11TU. THAT ANTENNA WORKSIWN4DI'N

Compare the performance, value, and price of the following beams and you will see that this offer is unprecedented in radio history! Each beam is brand new! full size (36^{\prime} of tubing for each 20 meter element, for instance);
 absolutely complete including a boom and all hardware; uses a single 52 or 72 ohm coavial feedline; the SIVR is $1: 1$; easily handles $5 \mathrm{KW} ; 7 / \mathrm{s}^{\prime \prime}$ and $1^{\prime \prime}$ aluminum alloy tubing is employed for maximum strength and low wind loading; all beams are adjustable to any frequency in the band.

2 El 20.	\$16	4 E1 10	\$18
3 E1 20.	22*	7 El 10	32*
4 E1 20.	32*	4 El 6	
2 El 15.		8 El 6	28*
3 El 15.		12 E1 2	25*
4 E1 15.	25*	*20' boom	
5 El 15.	28*		

AIL-BAND VERTICALS

"All band vertical!" asked one skeptic. "Twenty meters is murder these days. Let's see you make a contact on twenty meter phone with low power!' So K4KXR switched to twenty, using a V80 antenna and 35 watts AM. Here is a small portion of the stations he worked : VE3FAZ, T12FGS, W5KYJ, W1WOZ, W2ODII, WA3DJT, WB2FCB, W2YHH, VE3FOB, WA8CZE, K1SYB, K2RDJ, K1MVV, K8HGY, K3UTL, W8QJC, WA2LVE, YS1MAM, WA8ATS, K2PGS, W2QJP, W4JWJ, K2PSK, WA8CGA, WB2KWY, W2IWJ, VE3KT. Moral: It's the antenna that counts!
FLASH! Switched to 15 c.w. and worked KZ5IKN, KZ5OWN, HC1LC, PY5ASN, FG7XT, XE2I, KP4AQL, SM5BGK, G2AOB, YV5CLK, OZ4H, and over a thousand other stations!

> V40 vertical for 40, 20, 15, 10, 6 meters
> $\$ 14.95$
> V80 vertical for $80,75,40$, 20, 15, 10, 6 meters. $\$ 16.95$
> V160 vertical for $160,80,75$, 40, 20, 15, 10, 6 meters . . \$18.95

How to order: Send check or money order. We ship immediately upon receipt of order by railway express, shipping charges collect.

ABSOLUTELY NEW TRI－EX W－51
 FREE STANDING TOWER．

SUPPORTS 9 SQ．FT． OF ANTENNA．

Shown with internal Ham M rotator and $2^{\prime \prime}$ mast．

INCLUDES

－FREE：RIGID BASE MOUNT
－PRE－DRILLED TOP PLATE－For TB－2 thrust bearing．
－HIGH STRENGTH STEEL TUBING LEGS．Solid rod，＂W＂bracing．
－EASY MAINTENANCE－ No guys or house brackets needed．
－RISES TO 51 FT．－ Nests down to 21 ft．
－HOT DIPPED GALVANIZED AFTER FABRICATION！ All welding by certified welders．

IMMEDIATE DELIVERY \＄36260

FREIGHT PREPAID INSIDE CONTINENTAL U．S．A．

7182 Rasmussen Ave．，Visalia，Calif． 93277
his retirement．From the Treaty City ARA＇s The Heain we learn that the 1968 officers are W8LRE，pres．；WA8－ KZR ．vicn－pres．：WA8KQQ，：ecy．－treas．The Lorain C＇ounty ARA＇s The Monitor informs us that 1968 offi－ cers are W．A8WUU，pres．：WA8THF，vice－pres．；Kodney Bendik，secy．－treas．，WA8WNG is a new Tech．K8UBK has moved to Grcenville．There are seron jicensed amateurs in W8BU＇s family．From WA8COA＇s column in the Cincinnati Enguirer under Ham C＇all we learn The Oh－Ky－In V．H．F．Society＇s officers are K8OPH， pres．；K8GYH．vice－pres．；WA8LOW，corr．secy．；WA8－ YXB，secy．；K8THT，treas．．Queen City Emergency Net＇s officers are W4PII，pres．：WA8GRR，vice－pres．： WA8STX，treas．；WA8COA，comm．mgr．W8SVU，edi－ tor．Officers of the Ohio Valley ARA are W8BV＇F，pres． WA8CDP，vice－pres．；K4RZK，secy．；W8ZJM，treas．： WA8ECQ and WA8NXD spent a tew davs in Mexico． Evendale AR Society＇s officers are WA8STX pres．； W8GAN vice－nres．：W A8STW，secv．：WA8BGK，treas． and W．A8TYF trustee of K8LUC；K8YII and K8YNF are back on 50 MIc．after spending 1963 and＇ 64 in Ethiopia as missionaries and the OVARA awarded T8RVF a Drake wattmeter on being the umateur of the vear． West park Radiops＇officers are K8GVK，pres．；W8IPA， vice－pres．；WA8YWX．seev．：WA8VNW，treas．；k8－ RKF，trustre．Six Meter Nomads＇officers are K\＆PXR． pres．：K8SY．J，vice－pres．：W．A8TTB，secv．；WA8TTO treas．；W8INT，K8VGF，E8VJB，trustees．Canton ARC＇s Fecedline tolls us thev heard an Ohio Rell man spenk on＂Communications from Cavaman to the Pres－ ent．＂W．A8TITC is a mew OBS．Traffic：W8RYP 329. W8IMI 272．WA8VNU 228，WA8TYF 224．W8NAL 214. W8OTIU 20®，W．A8PQL 203．W8C＇HT 192．WA8OCG 185． W8SZU 181，W8GVX 162，W8QCU 1．61，WA8UPI 132, W8ERD 122．W8GOE 119，WA8NTA 117．WA8LAM 113. W．t8FsX 99．W8D．tE，89，W8PMJ 86，W8FGD 85．Ki8ONA 78．WA8SHP 68，W8WDG 68．W8OE 65，WA8MTS 64，W8－ DHD B3．WA8MHO 53．WA8UNE 48．WA87GC 46，W8EII 4．5，W8EFB 40．W．A8PPK 39．WA8DWL 35，K8V＇CW 35 ． WA8PMN 33．K8T）DC 32．WA8URR 29，K8BYR 26，W8－ FRY 26，W8TV 19，WA8ADU 18，WA8QFK 18，WA8－ VTX 18．WA8MVT 16．W8QXQ 16，W8VND 15，K8LFI 14．WA8WJR 13．WA8UFM 12，W8LAG 11，W8ARW 10， WA8KPN 8，W8LZF 8．K8QYR 8，K8EKG 5．WA8AJZ 4， W8EEQ 4，W8WEG 3，WA8COA 1，W8GQD 1.

HUDSON DIVISION

EASTERN NEW YORK－SCM，George W．Tracy， W2EFIだ心EC：W2KGC．RMI：WA2VYS．PAMI：W2IJG． Section nets：NYS on 3670 ke．nightly at 2400 GATT； NYSPTEN on 3925 kc ．nightly at 2300 GMT：ESS on 3590 ke．nightly at 2300 GMIT．Ippointment：WB2UUD as OVS．Our congrats to WB2NKN on making the BPL in Jan．Aiter 34 years in E．N．Y．，W2HVR is now W1ERI in Hopkinton．Mass．，on the lonkout for old friends on the air．In Poughkerpsie，WA2FDN is a new Cimeral Class while in New Rochelle，K2SJN is the proud pos－ sessnr of an Advanced Class ticket．W．A2BRF reports n new 832 rig on 2 meters：he also is studying for Ad－ vanced Class．Jan．set a new E．N．Y．traffic remord with 28 reports received．Congrats to all our traffic stations． It the sichenectady Club．W2ZL and K2EJL presented a program on linear r．f．amplifiers．WB2KHH is the new editor of the rlub＇s iARA．Neurs．The New Rochelle Club seated its new officers at the Jan．meeting．NYS－ PTEN member W． 2 UZZ is the net＇s new 1st asst．mar． Congrats，Jean．WB2VUK，WB2WAG and WB2WUS arc huilding 2．meter transwerters．The thany eang，it－ cluding W2JKI，WB2OIM and WB2RGB，were artive during the V．H．F．SS．Among those autive on 220 NIc．in Dutchess County are K2DNR．K2GXJ，W2HF and WB2－ HXZ．The Ponchkeepsie repeater on 2 meters，W2CVT． is reported hark on the air after minor relay problems． K2DNR is looking for DX skeds on 220．Sam runs 100 watts to a ten－element vagi．Traffic：WB2NKN 641， WR2UHZ 365，W2THE 176，WA2VYT 146，W2EAF 144， WB2Y＇S 144．WA2VYS 138．WB2YEM 101．W2EFU 45， K2S．JN 35，WR2HZY 33，WB2FOA 32，WB2V．JR 30，WB2－ YTIK 18．WA2WGS 15．WB2ZEC 15，W2URP 14，WA2RTZ 12．WB2UEQ／1 11，W2OחC 9．WB2UUD 9，WB2SHU 8，WB2YBQ 8，W＇A2JWL 3，WA2BRF 2，WA2BUF 1

NEW YORK CITY AND LONG ISLAND－SCMI． Bla，site S．Johneon．K2IDB－Avst．NCM：Fred J．Brunjes， K2DGI．SEC：K2OVN．PAM：W2EW．

NLI＊	3630 kc ．	1191.5 Nightly	WA2UWA－RM
NLI VHP＊	145.8 Mr ．	1930 MTWTF	WR2RQF－PAM
NLI Phone＊	3932 kc．	1600 Daily	WB2UQP－PAAI
NLS Slow＊	3715 kc ．	1845 Nightly	W＇S2UQP－RM
Clear Hse	3925 kc ．	1100 MTWTF	WA2GPT－Mgr．
Mic Farad	3425 kc ．	1300 Ex．Sun．	K2IJBG－Mar．
Mic Farad	3610 kc ．	0001 Nightly	K2UBG－Mgr．
All Sve	3925 kc.	1300 Sun．	K2AAS－Mgr．
NYSPTEN	3925 kc ．	1800 Daily	K2AAS

SINGLE SIDEBAND and RF COMMUNICATIONS are synonymous.

As this country's first and most prolific designer and manufacturer of Type Accepted Marine Single Sideband Radiotelephones, RF Communications, Inc. stands as the acknowledged leader in this exciting and fast-growing new communications medium. RF products have earned the respect of those who own, use, and maintain them because they are built to the uncompromising standards of Commercial Grade construction.

If your future plans contemplate SSB communications, you owe it to yourself to review the equipment that brought SSB into a practical reality for maritime service.

New state-of-the-art products have just been introduced which truly add a new dimension to effective marine communication. We have a free 12-page brochure available which furnishes all the details. Simply write for yours.

Commercial Grade Communications is our business . . . our only business.

RFCOMMUNICATIONS, INC.
1680 UNIVERSITY AVENUE - ROCHESTER, NEW YORK 14610

For employment opportunities, send your resume to the Personnel Director. An equal opportunity employer.

Dif laxitis to 100 walls

Operate in any position

- No spilling or leakage
E Broad frequency ranges (DC to 11 GHz)
- Power Ratings of $1,5,20,50$, and 100 watts
- Low VSWR (max. 1.5 to 11 GHz)
- Low, direct-to-user prices

Five convection-cooled 50 -ohm loads in the Sierra 160 line provide stable termination of r-f power while testing, adjusting, and aligning CW, AM, FM, TV, and radar transmitters, and power sources. Dry construction ends coolant leakage, permits operation in any position. They're rugged, lightweight, ideal for use on-site with mobile equipment and at field installations. They can be operated at 50% average power overload for 5 minutes, or 100% overload for 1 minute.

Cast aluminum bodies stabilize performance at full-rated power. Finned construction maximizes heat radiation (confirmed by infrared tests). Allmetal, non-porous housings minimize r-f leakage. Models rated at 50 and 100 watts accept popular Sierra "Twist-Off" connectors for fast, convenient field changes.

Model	Avg. Power Rating (Watts)	Connector Types	Frequency Range	Price
160.1	1	N	DC-11 GHz	\$20.00
160-5	5	N	DC. 11 GHz	\$25.00
160.20	20	N	DC. 6 GHz	\$30.00
160-50D	50	"Twist-Off'"*	DC-5 GHz	\$49.00
160-1000	1.00	"Twist-Off'"	DC. 5 GHz	\$75.00

"'Twist-Off'" connectors available: Types C, N, HN, LC, BNC, TNC. UHF, $1 \frac{1}{8}$ " rigid line, male and female.

FREE 1968 Sierra "Power Generation and Measurement Equipment" catalog on request. Mail coupon today!

PHILCD

FHILCD-FORD CORPDRATIDN Sierra Electronic Operation Menlo Park, California •S4025

Sierra, 3885 Bohannon Dr., Menlo Park, Calif. 94025 \square Enclosed, \$ Please send
Model(s)
50-ohm coaxial loads.
\square Please send FREE 1968 "Power Generation and Measurement Equipment' catalog.

Name
Company
Address

City

${ }^{*}$ (California residents, please add 5\% sales tax)
*Section nets. All times shown above are local. WN2CVM and WN2COU are two new Novices from Northport. K2QPF has 3 kw , of home emergency power which he frequently tests. $\mathfrak{k} 2 \mathrm{HTX}$ now has a Ranger on 80 meters. W2HAE has a Polycomm 82 on v.h.f. but still manages to sked 9Y4RA on 15-meter c.w. for some of the family in Brooklyn. WN2DMP picked up an EICO 720 transmitter in Dec., but frosty weather has limited the antenna to the wire coat-hanger variety. WN2DMI built his first transmitter from plain nold raw materials, not that greasy kit stuff! The Krons Amateur Radio Trirphone Organization recentily added a durable oid HQ-129X to its station on the 6th floor of the Bronx. Ittention all riub officials: The policy of the suffolk County Rarlio Cluh is reserve monthly mectings for quest speaker, eye-hall us()s and aeneral sucinlizina. Routine business is handled by an executive rommittee composed of rlected othicials, committeemen mad appointed committee chairmen. That policy can't be too had, because for the five vears that this one has known the club its membership has averaged a steady 180 mem hers! Give rou any ideas? The Great Neck North ienior HSRC is awaiting its new station license. The five statinns making BPT, this month are WB2PJF. WB2QIL, WA2UCP. WB2LQP and WA2UWA. WA2UCP, EC Kings County. says it was the best SET they've ever had! K2UBG reports the Mike Farad Net was on the NET for 16 hours with 26 stations. WB2DZZ had his traffic total cut to pieres by N.Y.U. tinals which had a little help from a blown receiver front-end. W'B2HYK has a Model 15 printer ready to go on the RTTY mode. WB2YKL has a TH-3 Junior up around 15 feet for 10 and 20 meters. WB2ZEL has been working feverishlv on his SB-101 and should have it completed by now. WR2PTS, who recently made WAC, is using a 10 -watt $40 / 80$ c.w. rig. W2DBQ is getting involver in KTTY on MARS where it is called RATT (?). K6GIL and W2PF ran the Q(PW. booth at the SAROC Harnfest in Las Vexas, whern 10 OCWA members simed in and attended the QCWA Breakfast Jan. 16. W2BCB reports old Santa is late with some of that brand-new up-to-date equipment that's on order! W2BFN and W.A2.JZ.S mot to gether to design and build a conple of 160 -meter rigs whirh puts them hoh on that jollv nid band. Tratic WA2ITWA 1505. WR2UOP 322, WB2QIL 315, W. 12 TVCP 267 K2UBG 248, W2 2 GKZ 195, WR2PJH 169. W2EW 152. WB2RQF 137. WR2DZZ 129, WR2HYK 85. WR2YKL 64, WB2AEK 42. WR2MIZE 31. WB2ZEL 31, WR2PTS 30 W2DBQ 27. W. 2 LLJS 24. W2EC 11. WR2TGP 11. K 2 IDB 10, W2PF 10, WB2RES 3, WB2RWD 3, WA2Q.JT 2.

NORTHERN NEW JERSEY-SCMI. Louis J. Amoroso. W2LQP-isit. SCM: Edward F. Erickson, W2CVW. SEC: た2ZFT.

	ARPSC Section Net Schedulos						
Not	Fren.	Time	[) 218	Ṅess.	ONI	$T f c$.	1/gr.
NJN	3695	7:00 p.m	Dy	31	418	327	W2BVF
N.JPN	3928	B:OO P.M.	M-Sat.	31	796	284	W2PFV
N.JPON	3928 kc	B:00 P.Mr.	Sur	4	108	59	WA2TEK
N.TAN	50,300 kr	8:00 P.M.	M-F	30	267	154	WA2KZF
ECTN	$146,700 \mathrm{kr}$	9:00 r.a	Dy	38	424	276	WB2IYO
PVETN	145,710 kc	7:30 P.мı.	M-F	31	305	319	K2KDQ

New appointment: K2BMI as OO. Endorsements: W2ING and WB2RKK as ORSs; WB2QLF as OPS; W2DMIJ as EC for Wonl-Kidge and viemity; WB2BCS as EC for Red Bank and vicinity; K2KDQ as EC for Passair and vicinity; WR2IYO as rips: K2AGZ an (o) Class I through TV. K2ZFI, nur SEC, reports an excellent turnout for the 1968 sET. W2.JDH is wandering how he can get a QSi, from one of the 5 Colorado stations he worked for his W.AS. W2EW'Z met IE2AGY on a recent trip to St. Johns. They QSOed on 40 c.w. in 1955. K2MFX is working on his 2 -meter kear. WA2CRF now is on 80 through in with 2 meters on the side. W 2 CV W added a 432 ronverter to his gear smiun. K2GPK has a new quad. K2IEF put up a uew dipole for 80. WR2TKP reports he st.ill is trapped by school work. WA2BMR has a new Gleosn receiver. IV $22 E K N$ is the newest mamher of the Gonvagie Net. WB2MIV passid the Advanced (Mass exarn. W'2BBK pher:ted PJSMIJ during the TAS Test. Business sent WR2RUM to G-Land. WB2KQC is bark from IA-land. WB2RJJ is enjoying his new HiW32. WN2D7.E is a nuw ham in Bergenfield. K2V VI wont \%s.h. with a Swan 500. W2PBZ added 7 new ones huring the $1 R R L$ DI Test. WB2FES is ex-W 1 ONOH. His QTH is Flanders and he is on with a INX-40 and an HQ-170. WN2DR.J had a hall in the Novier Roundup using the OM Intenna System. Hmmm. WN2CW'P is studving for his General. WB2RKK was in hoth CD Parties and the virginia QSO Party. WB2ZGP is in 2meter m.c.w. W.22ZD.A is in the "3" Nin. Net and uses an HQ-110 and a DX-100. WB2RFK has offered to start a new slow net in the section. WR2Q.JI has his antenna system up again and built a GG 811. WB2ZCI joined the

You work where the action is when you're in 2-Way Mobile Radio Servicing-with police, airline crews, fire fighters, and other mobile radio users. Many, like CIE-graduate Ed Dulaney (above), own their own mobile radio businesses. Says Dulaney, "My CIE electronics course was the best investment I ever made. CIE deserves full credit for greatly expanding my technical background. I am much better off financially and really enjoy my work."

You carn a man's pay as a Broadcast Engineer, putting glamorous radio and TV entertainers on the air, covering sports events and big news developments. "Now I am a Broadcast Engineer," wrote Don Fosco after taking a CIE course. "and earn $\$ 150$ more a month." Once you get your FCC License and some broadcast experience under your belt, you can earn $\$ 185$ to $\$ 215$ a week at big city stations. (Photo above posed by models.)

Want a real man's job and pay? Your best bet today is Electronics!

Electronics is a great life for a man! And breaking in is easier than you think. Here's how you can prepare right at home.

What does a real man want from his job?

A man's pay, for one thing. Money enough to raise a family) comfortably...take some exciting vacation trips... send the kids to college.
But you want a man's satisfaction on the job, too. You don't want to be just a workhorse harnessed to routine chores. Nor do you want to sit behind a desk and push a pencil all day. You want the feeling of doing something important-of being needed. Of having dozens, maybe even thousands, of people depend on you and how well you do your job.

Offers High Pay and Excitement

For that kind of satisfaction-a real man's job and a mansized pay check to go with it-your best bet today is Electronics. This booming field really separates the men from the boys. Every year more good jobs open up, and there just aren't enough good men to fill them. The unprepared don't stand a chance. But the fellow who takes the trouble to learn what it's all about can write his own ticket.

For instance, how would you like to meet with top political leaders and sports celebrities-put glamorous radio and TV stars on the air? As a Broadcast Engineer you'll be an "insider" in the exciting worlds of show business, sports and news reporting.

Or how about getting out "where the action is"-working with your local police, firemen, airline crews, etc.? You can, by getting into 2 -Way Mobile Radio Servicing. It pays considerably better than fixing television sets because you hold a Government FCC (Federal Communications Commission) License. You can even become your own boss-start your own service shop-come and go as you please.

How to Become "The Man in Demand"

And these are just a few of the many golden opportunities in the great wide world of electronics today. Computers...elec-

Cleveland Institute of Electronics 1776 E. 17th St., Dept. QT-63, Cleveland, Ohio 44114
tronic automation...electronically guided spacecraft...the whole world is going electronic. And the man needed to keep it all running, the electronics expert, will be "king."

Breaking into electronics does call for some training. But you needn't quit your job or turn your life upside down to get it. You won't even have to set foot in a classroom. CIE can teach you electronics right at home...in your spare time.

Over the past 30 years we have developed special home study methods that take the mystery out of electronics...even for men who've had trouble with other studies. Your instructor, an expert in electronics, will give you all the personal. help you need.

Send for 2 Free Books

We offer two free books that tell all about career opportunities in Electronics, and how to prepare for them without previous training. Just fill out and mail the coupon below. No obligation. And the books may open the door to an exciting and rewarding life in electronics...doing a man's job and earning a man's pay. If coupon is missing, write to address below.

ENROLL UNDER NEW G.J. BILL

All CIE courses are available under the new G.I. Bill. If you served on active duty since January 31, 1955, or are in service now, check box in coupon for G.I. Bill information.

Cleveland Institute of Electronics
 \section*{1776 E.17th St., Cleveland, Ohio 44114}

Please send me without cost or obligation:

1. Your 40-page book "How To Succeed In Electronics" describing the job opportunities in Electronics today, and how your courses can prepare me for them.
2. Your book on "How To Get A Commercial FCC License."

[7 Check here for G.I. Bill information
Accredited Member National Home Study Council QT-63

PSSssst！！

4TH Ention

$\#$ey Bud！You say you＇re a ＂dyed－in－the－wool＂a．m．op？And you＇re not courageous enough to mention your twinkling interest in s．s．b．to the old a．m．gang？ Well listen OM，we＇ve got just the thing for you：Single Side－ band for The Radio Amateur． It＇s a digest of the best s．s．b．arti－ cles from QST．The newcomer as well as the experienced s．s．b．user will find it indispensable．

It includes discussions of theory and practical＂how－to－build－it＂ descriptions of equipment．Cov－ ers reception and transmission． By the way OM，it comes in a plain brown wrapper！
$\$ 2.50$ u．s．A．
\＄3．00 Elsewhere
The American Radio Relay League，Inc．
Newington，Connecticut 06111

PON．New oflicers of the State Line RC are WB2－ NHD，pres．；K2LBK，vice－pres．；W2BZA，secy．；W2－ NYU，treas．Now oifirers of the Blnomtion Imaterur RC are WB2TUY，pres．；WB2NCE，vice－pres．；WB2－ NCG．sete．：W2ELM，treas．This group merts the 2nd and 4th Wed．ut the Bloomiteld Civic Center．Traffic： （Jan．）WB2RKん 439，W． 2 TBS 390．$\leqslant 2 \mathrm{KDQ} 370$ ，WB2－ SEZ 221，WB2VLC 219．WB2ZSH 214，W2LQP 211，WB2－ DDQ 204，IVB2BNE 185，ITB2NSV 181，WFA2T．AF 95 WA2ACJ 73．W2PEV 71，WA2TEK 70，WA2CRF 57．WB2－ NZU 57．WB2ZCJ 49．W2CVW 48，WB2PIO 44，WA2CCF 3B，WB2CGI 34．WA2NJB 33．WA2YQP 31，WA2KZF 27 WB2ZDA 26 ，W2EWZ 20 ，WR2WFO 1B，WB27CI 16， WB2SJH 15．W．${ }^{2} 2 \mathrm{JSB} 13, \mathrm{~K} 2 \mathrm{NFF} 11$ ，WB2VGL 11，WB2－ RCS 10．W． 2 （il． 8 ．WB2ZGP 7．WR2IPQ 6，WB2KPD 5．K2JSJ 4，WB2TKP 4，K2DEL 3，WN2DRJ 3．（Dec．） W＇B2IY（）162，WA2CRF 73 ，WA3TEK 34．W＇2DRV 25， WB2ZCI 2.

MIDWEST DIVISION

IOWA－BCM．Owen G．Hill．WOBDZ－Asst．SCM ： Bertha V．Willits．WOLGG．SEC：KOBRE．WONWX reports working K．A9MF on 160 in complete W．AC on that hand．WOEMA was Iowa winner in the Conn．and Del．QsG Yarties，working them simultaneously．Wh－ PFP managed to work 58 statinns in 24 sections during the V．H．F．Sis on 50 Mc．WOLCX has been uppointed director of the Central Area of the National Trallic Dys－ tem．Under spunsorship of the Jes Moines ARC and the Central Ia．V．H．F．Club，Operation Santa Clrus was made possible．This deall with the collection of toys food，elothing，eice，for the less fortunate at Christmas time．Another old－timer，WOONF，is now a Nilent kev ． KOGEY has been appointed OV＇S．KØUYN lost his 8－ meter be：m with the $50-\mathrm{ft}$ ．boom．

Iowa 75 Meter Net	27 Sess．	QNI 1349	QTC 188
Iowa 180 Meter Net	31 Sess．	थNI 875	QTC 10
Tallcorn Net（Dec．）	23 Sess．	（2NI 103	QTCC 23

Traffic：WØOLCK 664．WOLGG 300．WØCZ 287．KOBRE 84，WAODAG 50．WØEMA／ด 47，KØEVC 29，WAOMIT 28．WONGS 21．KOTDO 14．WAOOTE 13，WAgJUT 9， WØGQ B，WA＠IAW 6，KØGHH 2

KANSAS－SCM．Robert M．Summers，KoBXF－ SEC ：KØEMB．YAM ：K゙ØJMF．RMB：WAØMLE，WAØ－ JFV．Y．H．F．PAMs：WAQCCW，WOHAJ，WAØLSH． New OKSs are WAQKPE，WØAVY and WØCGZ．New OBSs are WAOHZS and WAOKDJ．New OPSs are KOPSD and KOGIG．KioTCG is now an OO．The Kansas WC Net．QLS，on 3610 daily at 0100 and 04007 reports first session QNI 259，QTC 104；second session QNI 166，QTC 49．A group in the midwest．has suggested 7255 kc ．as a mobile calling frequency and is cooperating with WØLXA on this efiort．WA贝IYX reports 42 states worked onl 160 meters．The Kansas Post OHice Net re－ ports for dan．QVYI 792．Q1C 126：Kansas sidehand Net CNI 773．QTC 160；Kansas Phone Net Sun．UNI 23 QTC 9，week days QNI 79，QTC 9．New officers of the Newton ARC are KøEMB．WNळSXL，WAØFZG and WAØSWC．OKN，the Gunsas Novice Net，reports in Jan．QNI 29，QTC 18；the Kansas 2－Meter PI Net QNI 82，QTC 2y．A．REC zones 7， 11 and 15 combined with ACARC 2 Wichita．Coffeyville 2－Meter，NCK 2－Meter and Newton $2-$ Meter Nets reports 48 sessions， 214 QNI． 89 QTC．WAØJII and．JIJ are looking for QSOs around 14．5．35．WAOBHG reports ior the Hambutcherd Net QNI 776．QTC 133．Coffeyville ARC has announced Apr． 21 as its hamtest diate．New officers of the ACARC are WOSPF，pres．；WดAPG，WAØCCX，WØHYR and KØKCs，dirertors．If your club puts out a bulletin be sure and add your SCM to the mailing list．Tratfic： （Jan．）WAOMLE 50B，W゙ØINH 487，KOBXF 240，KO－ LPE 202．KめEMB 200，KØJMF 195，WØLXA 161，VAØ－ LLC 133，WAGJTT 130，WOAVX 113，WAØJOGG 113, WAØCCW 107．WØFII 88．WAఏQ̨OH 84，KØUVH 72， WAOKPF，68．WAOJQV 56，J〇OMRI 46．KØHGI 45， WAØKDQ 37，KøDVN 35，KØGZP 33，WAØOZP 31， WOCGZ 29．VO1LB 23，WAOLSH 22，KoGII 17．WO－ FDJ 11．WAळLLR 10．KめGIG 8，KØJID 5，WØWFD 5， WAØJFV 4．WNOTAS 4，WNØTCM 3．WAOJFC 2, WNØRQG 1，WNØTEF 1．（Dec．）WØZGY 65，

MISSOURI－CCM，Alfred E．Schwaneke．WQTPK－ SEC：WOBUL． 1 am sorry to report that WOIJA is now a Silent Key．WAOEZT，a former member of UMC RC （WGZLN），was killed in Vietnam．एOKY received ORS appointment．WA＠LEK was appointed club technician for W WZLN replacing WOITH，who graduated．SEC WOBUL renorts receiving 164 individual station SET messages． 87 net reports for 9 extra net ressions held during the SFT．WØOBUL also reports 108 confirmed for DXCC．WAQOZO is now Advanced CI．WAØIPQR had WA9GIII as a visitor in K．C．and both passed the Adv． Cl．exam．KØJPJ is back on RTTY．WAØPFU hought an HQ－170 from the local club．KøWIL and WØAMO

The Hammarlund HQ-215

The solid state receiver for those who want to be one-up.

The Hammarlund $\mathrm{HQ}-215$ brings to amateur radio a fully transistorized receiver offering a new high in sensitivity, selectivity and drift-free operation. Revolutionary unitized I-beam construction coupled with modularized design provides an unusually high degree of electrical and mechanical stability. A unique carousel dial with 22" of frequency calibrations means easy reading and resetability to within 100 cycles. And heat free operation gives you long set life at peak operating condition. Here are the facts:
FREQUENCY COVERAGE: COMplete ham band coverage, 80-15 meters; 28.5-28.7 mcs on 10 meters. Provision for 13 optional crystals providing 200 kc segments from $3.4-30.2$ mcs built in.
IRANSCEIVE OPERATION:
Provided.
FREQUENCY READOUT: Visual dial accuracy is ± 100 cycles on all bands.
FREQUENCY STABILITY: Less than 100 cycles per hour.

I-beam construction for strength

Modularized for electrical stability

TRANSISTORS: 26 transistors, 13 diodes and 2 Zener regulator diodes.
SELECTABLE FIITERS: 2.1 kc mechanical filter supplied. Plug-in space for two optional filters. Any filter may be switch-selected from front panel.
MODE: Selectable USB, LSB, CW, OR AM.
SERVICE: SSB, CW, AM, and RTTY. SENSITIVITY:Better than 0.5 microvolt for 10 db signal-to-noise ratio.

SELECTIVITY: SSB-2.1 kc mechanical filter, 2.1 shape factor. DIMENSIONS: Size: $6.8^{\prime \prime} \mathrm{H} \times 15.8^{\prime \prime}$ $W \times 14^{\prime \prime} \mathrm{D}$.
WEICHT: 21 lbs.

CAREER OPPORTUNITY

Exciting things are happening at Hammariund. We need electronic engineers qualified in RF, SSB, and FM engineering. Enjoy mountain vacation land living. Send resume to Directar of Personnel.

MANUFACTURING COMPANY

NEW
 17TH EDITION of the world－famous RADOD HANOBOOK

－Most comprehensive how－to－build－it source
 －Problem－solver for designers \＆builders

Completely revised and enlarged by William I． Orr，W6SAI．This is the comprehensive com－ munications manual which is the industry standard for electronics engineers，technicans， and advanced radio amateurs．Explains in authoritative detail how to design and build all types of radio communications equipment．

LATEST HOW－TO－BUILD DATA

The new 17th Edition of the RADIO HANDBOOK presents design data on the latest amplifiers，trans－ mitters，receivers，and transceivers．Includes greatly enlarged sections on single－sideband equipment and design，and semiconductors．Gives extended cover－ age to r－f amplifiers，special vacuum－tube circuits， and computers．All equipment described is of modern design，free of TVI－producing problems．

THOROUGHLY REVISED \＆UPDATED

Provides a complete understanding of the theory and construction of all modern circuitry，semicon－ ductors，antennas，power supplies；full data on work－ shop practice，test equipment，radio math and cal－ culations．Includes aspects of the industrial and military electronics fields of special interest to the engineer and advanced amateur．The 17th Edition of the RADIO HANDBOOK provides the broadest coverage in the field－complete information on build－ ing and operating a comprehensive variety of high－ performance equipment．All data is clearly indexed． 832 pages； $61 / 2 \times 914^{\prime \prime}$ ；hardbound．Invaluable for amateurs．electronics engineers．and designers．

NEW 17TH EDITION OF THE FAMOUS RADIO HANDBOOK

No．EE 167 Only $\$ 12^{95}$

Order from your electronic parts distributor or send coupon below．

EDITORS and ENGINEERS，Ltd．
P．O．Box 68003，New Augusta，Ind．， 46268
Ship me EE 167，the new 17 th Edition of the KADIO HANDBOOK at \＄12．95
\＄＿＿＿＿enclosed．\square Check Money Order
Name
\qquad
Address
City
State
Zip
gave a demonstration of alnatenr ridio to a North In．C． Boy scont troop．A new tower whs erected at Liberty ior Glav Co．RACES and PHD ARA．The atitenna is a d－pole tor 2 meters．＇Two ，it the newest，members ot PHD ARA are WJOENS and his pupil，10－vear－old Novice Cl．Frank Wonschik．WAGTTU is hack un the air after replacing a burned－out power transformer． Net certiticates for MON go to KOJPJ，WidOPZI， KOIFAI，WA＠ETN．Net reports：

Net	Freq．	T＇ime	Da48	Soss．	QNI	$\ddot{Q 2}$	3Igr．
MFN	3885	2300\％	M－W－F	15	223	20	W＇gBITL
MON	3585	0100 Z	Daily	41	144	335	WGTDR
MNN	7083	1900\％	M－Sat．	27	122	128	WVOUT）
MoSSB	3！ 963	2100 Z	M－sat．	27	688	177	W＇arto
PHD	50.4	（1：30\％	＇Iue（GMTT）	5	104	20	WAOLDH
MTTN	$39+0$	2300\％	M－F	20	203	$\dot{8}$	WAOELM
MTTN	（Dec．）			18	$2: 37$	78	

Traffic：KØONK 4615，KØY゙BD 578，İØJPJ 537，TVด－ KY 410．KOAEA 216，W＇OBUL 199．WOOUD 182．WO－ IDR 128，WAOPZI 107，WAOHTN 9R，WAØJiH 70. WOZLN 49，WAOKUH 4s，WORTO 30，FOJPS थ1， KOGOB 22，WAOOZO 17，WAOPFU 1．5，WOBFL 13， WAOHQR 12，KøORB 12，WA＠IMV 4，WAORMW 3.

NEBRASKA—Acting SCMI，V．A．Cashon， E ©OAL －Monthly net reports for Jan．：Nehr．Emergency Phone Net，WAØGGEZ，QNL 1312，QTC 136．Nebr．Morning Phone Net，WAGJUF，QNI 1115．QTC 75．West Nebr． Phone Net．WのNIK，QNI 712，（QTC 38．Nebr．C．W．Net （NEB），KøАKK，0100Z session，QNI 102，QTC 64； 0400Z session，QNI 96．（TCC 41．AREC C．W．Net．WAg－ EEI，QNI 11，QTC 1．Nebr．Storm Net，WÅøLOY， 2330Z एx，ion，QNI 10．52，QTC 107；00307 session，（NI 1386，QTC 169．160－Meter Phone Net，WAOCBJ，（jNI 598，QTC 8：Cornhusker Ternage Net，WADOOW，UNI 418，Q＇TC 126；Nebr．SET Net，QNI 84．UTC 107．SET participation was excellent．Nehr．C．W．Net requests more QNI．Speeds are being reduced to 15 W．p．m．and below to ellopurage this．for more intormation．check with RAI KøAKK．AREC Phone Net，IVØIRZ，QNI 190，QTC 16．Dead End Net，WAOMCX，QNI 250，UTC 14．For net repost comparison：Jan．1367，QTC 1811 ； Jan．1968．QTC 2621 ．Tratfic：（Jan．）W．${ }^{2}$ DOUT 568 ， WAOGHZ 514，WAQQMZ 156，KOAKK 142，WAØORO 134，KOOAL 105，KOJTW 86．WAQLOY 60，WAQOFO 54，WAのGVJ 52，WAØODH 52，WA OOCW 49，EØLDP
 KOFJT 21，WAgPIE 24．WAØPOC 24，WCAGK 21， KØDGW 21，KఏVTD 21，WAOBOK 20，WAOIBB 2n， KOIXY 20，WONIK 20，KØODF 18，KØJPP 17．WAØ－
 12．WAOPCC 12，WAดPSN 12，WAOTVF 11．WAØOQX 11．WØVEA 11，KGRRL 10．WOYFR 9，WAOGAT 8， WØHOP 7，WAØEEI 6，KøHNT 6．WดBFN 5，WAØ－ IKG 5．WOATU 4，WAØIVV／Ø 4．İØECE 3．WAØRPB 3．WAOJKN 2，WAØLRQ 2，KØSFA $2, \dot{K} \emptyset U D W ~ 2$. WดWZR 2．WØKFY 1，WøPHA 1．（Dé．）WAgDOÚ 558，WAØOMY 40.

NEBRASKA QSO PARTY
 May 4－5， 1968

Rules：Starts 1600 GMT May 4 and ends 2200 GMT May 5，1968．Use all bands，c．w．and phone； a．m．and s．s．b．classified as phone．The same sta－ ion can be worked and counted for QSO points on each band and mode．Single operator stations only．Uut of station stations send QSO number． RS（T）and ARRL section．Nebraska stations send QSO number，RS（T）and county．Out of state stations count 3 points per <2 SO．Nebraska stations count one point per QSO．Out of state stations multiply the number of Nebraska con－ tacts X 3 points X counties；Nebraska stations multiply ARRL sections worked［plus a maximum of ten foreign countries］by the total number of QSOs．Suggested frequencies： $1815 \quad 3525 \quad 3982$ $7125 \quad 7225 \quad 14070 \quad 14290 \quad 21070 \quad 21370 \quad 28050$ and 28600 kc ．Be alert for Nebraska mobiles changing counties which may be worked again on the same frequency．Top station in each Nebraska county will receive an award．The top scorer for each AKRL section and foreign country also receives award．（The Awards Committee will issue addi－ tional certificates where deemed appropriate．） logs must show date，time in GMT，exchanges， band，mode，points，a summary shect with scoring and name and address in block letter．All logs must be received by June 10．Send to：The Lin－ coln Amateur Radio Club，c／o Gerald L．Corning， KOO1X， 3829 ＂W＂Street，Lincoln．Nebraska 68503．Please include a large s．a．s．e．for results．

Select Quality....
...Specify LV/as/ay

Masley chame

Classic 10-15
A new beam for 10 and 15 meters. Revolutionary broad band capacitive matching.* Full power rated. Weatherproof metal encased traps. Lightweight: 27.5 lbs. assembled. May be stacked with 20 and/or 40 meter beams.

* (Pot. Pond.)

Classic 33

Hard working for extra gain on 10, 15 and 20 meters. Wider element spacing and improved clamping. Broad band capacitive match** full power rating. Weatherproof traps for constant frequency stability. *(Pat. Pend.)

TA-33

Excellent results for full ham bandwidth. Full power rated for 10, 15, and 20 meters. Strengthened center sections of the 28^{\prime} maximum length elements. Weatherproof traps for constant frequency stability. May be converted to 40 meters.

TA-33 Jr.
A low power beam with "authority." Rated at 300 watts AM/CW, and 1000 watts P.E.P. on SSB. May be converted to MP-33 for higher power rating. Max. element length is $26^{\circ} 8^{\prime \prime}$

For more information on these, or any of Mosley antennas see your nearest authorized Mosley dealer, or write.
4610 North Lindbergh Blva. Bridgeton, Mo. 63042

NEW ENGLAND DIVISION

YOU EARN YOUR FCC FIRST CLASS LICENSE or your money back!

5 NRI COMMUNICATIONS COURSES INCLUDE FCC LICENSE TRAINING

Earning an FCC License can be quick and easy the NRI way. You can concentrate on a short FCC License course"specialize" by training in Mobile, Aviation, or Marine Communications-or go all-out with the job-simulated NRI course in Complete Communications. It is the only homestudy training plan that includes professional lab equipment specifically designed to give you on-the-job, "hands on' experience as you train.

Whichever NRI Communications course you choose, with an FCC License you're ready to operate, service and install transmitting equipment used in broadcasting stations, aviation, on board ships, and in mobile and Citizens-Band radio. And you MUST PASS your FCC exams or NRI refunds your tuition in full. Can you do it? The NRI record of success is outstanding. 87% of NRI graduates pass their FCC exams.

Get full details today about five courses that include FCC License preparation, plus seven other training plans offered by NRI, the oldest and largest school of its kind. Mail coupon. No obligation. No salesman will call. NATIONAL RADIO INSTITUTE, Electronics Div., Washington, D.C.

APPROVED UNDER GI
 BILL. If you served aince January 31, 1955, or are in mervice, check GI line in coupon.

MAIL NOW for FREE CATALOG

CONNECTICUT-SCAI, John J. MreNassor, W1GVTSEC: W1PRT. KM : W1ZFM. PIMI: W1YBH. Net reports ior Jan.:

Net	Freq.	DRys	Time	Sers.	QNI	UTC
CN	3640	Taily	1845	44	512	854
CPN	3880	Mon.osat.	1800			
		sun.	1000	82	583	309

Eigh QNI: CN-WA1ESN, TV1ZFM and WA1IUL. CPN FIEIC 29, W1YU and WAIIEG 28. W1GVT 27, W1$\mathfrak{Y} \mathrm{BH}$ and W1LUH 26, W1MPW 25, WA1HEW 24, K1BOP 22, K1DGK 20. KISRF 10, WA1BDA 17, WAIEEJ 16. The Pi-Conn Bulletin is sent to all ECs by our hardworking SEC, WIPRT. Please take action on it. This made ECs tware of the SET and the need for partiripation. All clubs: Pleasp make sure there is an active EC in your area. Ippointees: Please check your certificate date and send tor renewal when due. The iN report includes 15 SET sessions and 278 QTC! The Candlewood AR.I is holding a membership drive. The Talcott MIt. U.H.F. Society Club project: 420-Mc. transceivers! Interested? Director W1QV attended \& DX meeting in WB-Land. The increase in $2-$ and B-meter activity indicates the need for a V.H.F. PAM. singgested volunteers and nominees are wanted! Congratulations to W A1F'VH (1151 total!) and W1EFW on Jan. BPL; W.A1HEW on getting his 25-w.p.m. certificate; WNIIZN, : new Novice, on his C'P-20 stucker; WA1HLP on his new Gen. Class ticket; WA1GEK on the V.H.F. Newsletter: and $K 1 Y O N$ on being the most active 2aMc. station. W1AGJ is building a 2 -meter repeater. WICNY is adding K'TTY. WALFNJ is getting a 2 -mpter station. With deep regret we add W1ZTQ to the list of Silent Keys. 10, 15 and 20 meters euable anateurs in the trmed Forces to work Stateside. Please make uvery effort, to work them. Traficic: (Jan.) WA1FVG 1151 W1EFW 692. WA1HSN 405, W1YU 344, W1WCG 268 W1LVQ 232, WA1HEW 224. W1BDI 220, WA1FNJ 202 , W1NJM 198, WA1IEG 197, W1AW 168, K1UDD 158 , WA1GYP 151. W1KAM114, W:AFGN 109. WA1GGN 93 W1GVT 91. WA1CYV 90, W1MPW 71, K1SXF 71, W1EEN 67. WA1GFW 59. K1TKS 55, WA1FJU 53. Wi'BH 41 WA1HWX 23. WA1GOI 27, K1SRF 27, W1CTI 25, W1QV 25, W1PRT 21. K1TGS 13. W1CSM 12. W1CUH 12. W1EIR 8. KILMS 8. WNIIYG 7. WIRNB 6, W1ZL 5, K1CIEC 4, WICNY 2. (Dec.) W1NJMI 178.

EASTERN MASSACHUSETTS-SCAI, Frank L Baker, Jr, W1ALP-W1ACG, our NEC, received reports trom W'UJJF and WADDI and many SET messages. Sorry to have to report three Silent Keys, W1LBY, W1HIL, K1TCK. W1ZQQ passed the Advanced Class exam. W1IH has a new s.s.b. rig. K1EKO has her Extra Class. W1FWD is home after a stay in the hospital. TAIDWS is a new OBS. W1TRD is now RO and EC for Maynard. W1ZQM and k1BUF have a new s.s.b. transmitter on the way. W1EUJ has an SB-110A and antennas for all v.h.f. hands. The Norwood 1 RC elected K1HRV, pres.; WA1HRV, vice-pres.: WA1EOT, becy.; WA1DLU, treas. Meetings are held Mon. nights with code and theory classes. W1KBN did a nice job during the SET handling tratic for the Red c'ross. W1BNS/3 is in Butler, Pa., and on 75. The EMN had 31 sessions, 223 QNIs, 257 traffic. EHM2MN had 21 sessions, 117 QNIs, 287 traffic. W1ZMO is the new RO for Danvers. K1NFZ is on many hands. WA1BCS is on B m.c.w. IFN1ION worked VQ8CC with a new antenna on 15. W1EE is home from the honnital. WNiIZB ix new in Helmont. WA1EKV is building a $1-\mathrm{kw}$. rig. WIFJI has a pair of 813 s on. KlC'LM has a 275 Matchbox. W1E.AE tinok a group to W1AW. WAIIM, in Weston, is ex-WB6NRO and has DXCC. W6.JCF/1 now is a major in the Air Forte and is hack in WB-Land. The B-Meter Cross Band Net had 23 sessions, 160 QNI, 32 traflic, reports K1OKE. K1SLZ spoke on the "Legal Aspects of Amateur Radio" at the Framingham Club. WiMO.J is working on a sked for Kaytheon hams around the world to talk with each other. WA1GTU is on 20-4n. W1MV has his Extra Class license. W1HXK is having antenna problems. WA1DPX worked into Wt-Land on B. Many locals worked 'ГI2NA on 6 . K1ZCU is working on dynamic transdurers. W10OP spoke at the Wellesley ARS. WAls FSI and DRC are teaching the Novice course and WA1CON the General. K1YTY is in Air Force MARS. WAgGSA/1. on leave, visited K1PNB. K1MGP now is sncy. of the Chelmstord ARA. W1AQE has owr 1600 renunties. Appointments eadorsed: W1EMG, W1OJQ. W1AQE, K1BUF as ORSs; W1MOJ. W1QFN as ECa; W1HGT as OVS. W1AQE RM for 15. W1AIP spoke at the Massasoit ARA with tapes and pictures of the fmateur Radio Oscar Satellite Project. W1BB's group still is active. The Yankee RC had W1MCE disciss and nutline the Imateur Extra course that he is going to conduct. The South Shore Radio Club will hold an auction Apr. 18 at the Viking

We guarantee that we will ship all orders for 10 erystals or less within 24 hours of receiving the order.

Buy The Best

SEND FOR OUR 1968 CATALOG OF PRECISION QUARTZ CRYSTALS AND ELECTRONICS
 FOR THE COMMUNICATIONS INDUSTRY

SENTRY MANUFACTURING COMPANY 1634 Linwood Boulevard-Oklahoma Bity, Oklahoma 73106

RHONE: 405-232-1431-TELEX: 071-361-TWX: 910-831-3175
Glasdramat-ics-continuous strands of fiberglass simultaneously woven, wound and drawn-then impregnated with epoxy resins.

$$
\begin{aligned}
& \text { ONLY } \\
& \$ \mathbf{5 9 5}
\end{aligned}
$$

POLY tri QUAD ANTENNA KIT

2 element....tri-band... power gain comparable to 3 el yagi . . . lower angle of radiation . . . greater capture area . . . more efficiency.

- 8 Zip Glas Spreaders (13')
- 2 Universal Starmounts
- I Boom/Mast Adapter
- 1 Instruction Manual

${ }^{\$ 5} 9^{95}$

3 el Kit............... $\$ 89.95$
4 el Kit................ $\$ 119.95$
Not Ready For Tri-Band?
...you get the same quality with POLY duo QUAD Kits (15-10) starting as low as $\$ 54.95$ and 10 meter POLY mono QUAD Kits.

The Spreaders with the Ultra-Violet Shield ...greater flexural strength...superior to anything on the market... more durable ...each Zip Glas section is finaldipped in rich, sky-blue epoxy paint...this final coat resists all types of weather deterioration...blocks out even the sun's destructive raysadds years to spreader life.

For further specifications plus complete list of kits and individual components, write . . .

POLYGON PLASTIC CO.
Division of Plas/Steel Products, Inc.
Dept. 18817, 64 Industrial Park
Walkerton, Ind. 46574, Phone (219) 586-3122

Club with Whaly as Mc. The One-Land (dSO Party wh Apr. 27-28 is sponsorm by the New Encland C'HC Chapter 32. Write to KIVGM for information. F9AQB/1 is working on a 432 -MIc. converter. W1MA is on 220 Mc. WIJFG spoke on DX at the Framingham RC. WAIEYY and KIPNB made the BPL. W'N1s IIE. ITK and IJI play chess on 2. Anyone interested? The EMN had 31 spesions, 137 QNIs. 2.50 traffic. 24 strtions. EMNN had 13 sessinns, 50 QNI, 23 traffic. K1FJM has a Central Elecs. $10-\mathrm{A}$ ow.b. rig. W1RPF has nn NCX-5 also K1YGV, WA1GFT is on 10. K1PQG is on 2. K10JQ has a kw. for 2. WAIETC was endorsed as OVS, Trattic: (Jan.) WA1EYY 547, W1OJM 420, K1PNB 346. W1EMIG 259, W1FJI 258. W'A1FAD 256. WAIIAF 188, KICLA 148, W1DAL 105, WA1DPA 82. W1ATX 74, W6JCF/1 74, WA1FKQ 54, W1C'TR 50. W'A1DEC 22, K1LCQ 21, W1DOM 20 , K1OKE 17, WA1AJN 15. WIDXE 13, W1PEX 13. WIDKD 12, WAICLR 9. WAIMI 8. W1CT 7. WA1DED 6, WA1DFL 4. WA1GBT 4, K1HEN 3, WA1DJC 2. (Dec.) W1KBN 74, WBJCF/1 68, W1IKN 2. (Nov.) WA1FAD 340.

MAINE-SCM, Herbert A. Davis, K1DYG-SEC: K1CLF. RM: W1BJG. PAM : WAlFLG. Traffic nets: : Ba Gull Net, Mon. through Sat. on 3940 kc at 1700 . Pine Tree Net, daily on 359 k kc, at 199 , $\mathbf{c} \mathbf{W}$. With deep regret we pass on that K1ZVN and W1TU are Silent Kevs. Charlie was one of the old reld-timers :and was with Naval radio during WWI. Jack was an old-timer with a young all. He was very active in our nets and on Army MARS, also passing much traffic. The Ellsworth High school has formad an active radio cinb with fifteren members with Ron Fortier, pres.; Wes Linscott, vicepres.: Bob Meliay treas. Phil Laffin, past treas. hax moved to 6 -Land. We welenme K1CLF as our sEC. He has been very attive in emerkenty communications frif some time, being with the AREC and RACES. Al is a member of Irmv MARS. The PAWA has elected K1RQE, pres. ; K1TJK. vice-pres. ; K1TEV, chief op. The club welcomes all to its meetings. Traftic: W1BJG 413, W1GU 123, K1SOW 21. W1NND 16, K1TMJ 11.

NEW HAMPSHIRE-SCM, Robert C. Mitchell, W1NWX/E1DSA—EEC: K1QES. PAM: K1APQ. RM: K1BCS. Endorsements: W1BXM and KIPSR as OVSs; W1RCC as OPS; KIIIK as OO, ORS and OPS. Please note that your new RM is KiBCS and I am pleased to see a good c.w. man active ngain. Welcome brick. Press. KIMOZ has moved to California. Pete was one of our OBSs. Welcowe to new hams: WA1IWH. WN1IYR, WA1IYY and WN1IXZ. 160-meter man KINBN has heen working Europe. WiGGX is now a silent Key. He will be missed by all of us. W1RCC is working $D X$ on 10 maters. K1LZG reports 123 check-ins and 108 traflic for VTNHN. Yours truly recently worked a UL7 and a III8 on 80 meters. George said the heam didn't work. Hmmm. K1QES reports 105 check-ins and 24 tralfic for the NHAREC Net. Don also reports an excellent turnout for the Simulated Emergency Test. The MVAREC report by K1DWK shows 171 check-ins and 13 traftic. W.A9TDL is looking for a New Hampshire contact on phone, so all you phone men stay alert. Traffic: b1BCS 152. WA1EIJ 72, WA1HXH 70. K1PQV 54, W1MHX 49. KIQES 21. WNIIIH 2, W1SW天 2 .

RHODE ISLAND-SCM, John E. Johnson. K1AAVSEC: K1LII. RAI: W1BTV. PAM: IFITNL. V.H.F. PAM : К1TPK. RISPN reports 31 sessions, 333 QNi. 103 trattic. SET messages were received from W1YKQ. W1ZPG, K1ARR. WIVXL. W1BTV WA1EEJ. WITXL, W1JHF K1ZFD, K1YGY, WA1AIIL, W1JFF, WA1DRB. W'B2T'RK and K5CB.A. "nder the new incentive licensing W1CNB now hats n new two-letter call. W1.AMI Congratulations. The WiAQ Club of Rumford rlected the following officers: K1AGA, pres.: K1AMG. vicepres.; K1LII, treas.; W1W.AC, secy.: W1EJ. trustee. W1AQ has started to prepare for Field Way and elected KLAMG as chairman of that momittee. The dub has planned some renovations to the building and hopes to have them completed hefore this frll. The sCAI still has several appointments open and any ham who can qualify should rontact the SCM for applications. Cluhs wath special activities or programs should have their club secretaries send information on them to the sCMI inr publication in QST. Traffic: WA1EEJ 726. W1TXL 373, W1YKQ 193, W1BTV 190, K1YEV 67, W.A1CSO 31, K1TPK 19.

VERMONT-SCM, E. Reginald Murray, KiMPN-

Net	Preq.	Time	Days	ONI	QTC	Mor.
Gr. Mt.	38.55	9230Z	M-S	776	39	WIVMC
Vt. Fone	38.55	1400 Z	Sun.	270		W1UCL
VTNH	38.55	23307	M-F	123	100	KIUZG
VTCD	39901/2	$1500 Z$	Sun.	30	19	WIAD
VTSB	3909	2230Z	M-S	554	62	W1CBW
		13307	Sun.			

DRAKE MODEL TR-44B Communications Station

The TR-44B consists of an R-4B Receiver and a T-4B Transmitter in the same cabinet with built-in speaker. Ideal package for Ham Radio, Mars, RACES, Civil Defense, National Guard, Semi-Military, Government or Commercial.

Basically a 120 watt output AM-SSB-CW transceiver with provision for ten crystal-controlled channels and ten 500 kc tuneable ranges with 1 kc dial accuracy. Receive and transmit on different frequencies by using crystal controlled transmit and tuneable receive. Receive and transmit on same frequency, either crystal-controlled or tuneable.

Operates on frequencies from 3 to 30 MHz (except no transmitting 5.0 to 6.0 MHz and no tuneable range for transmitting 11.0 to 11.5 MHz). It also operates 1.8 to 2.3 MHz standard or 2.3 to 3.0 MHz on special order. Receiver section of TR-44B may be operated 1.5 to 30 Mc with the exception of 5.0 to 6.0 MHz . Crystals for fixed frequency channels and for tuneable ranges available.

Two power supply units for TR-44B: Model AC-4 operates from 120-240 V, $50 / 60 \mathrm{cps}$ source. Model DC-4 operates from 12 V DC. Both these supplies operate transceiver on any mode continuous duty.

TR-44B is housed in a perforated metal cabinet $111 / 2^{\prime \prime} \mathrm{H}$ x $103 / 4$ " $\mathrm{W} \times 121 / 4$ "D. Unit less power supply weighs 30 lbs.

TR-44B offers all the advantages of a transceiver plus features found only in a separate complete receiver:

- Four bandwidths of selectivity, $0.4 \mathrm{kc}, 1.2 \mathrm{kc}, 2.4$ kc and $4.8 \mathrm{kc} \bullet$ Passband tuning - Noise blanker Notch filter and 25 kc crystal calibrator - Product and diode detectors - Crystal lattice filter - Solid state permeability tuned VFO \bullet AVC \bullet Minimum overload and cross modulation.

MORE MUSCLE!
 DRAKE L-4B LINEAR AMPLIFIER

- Two new Eimac 3-500Z tubes give 1000 watts total plate dissipation
- Built-in RF directional watt meter calibrated 300 and 3000 watts forward and 300 watts reflected
- Vernier plate tuning control
- Front panel AGC threshold adjustment and stand-by switch
- Epoxy finish and eye-ease panel
- Frequency Range: Ham bands 80 thru 10 meters. All frequencies 3.5 to 30 Mc covered with some retuning of coils - Plate Input: 2000 watts PEP-SSB, 1000 watts DC on CW, AM and RTTY. Class B grounded grid with inverse feedback - Drive Requirements: 100 watts PEP-SSB, 75 watts CW, AM and RTTY - Input Impedance: 50 ohms. Broad band tuned input for low distortion, high efficiency - Output Impedance: Adjustable Pi-Network matches 50 ohm line with SWR not to exceed 2:1 - Built-in Antenna Relay - Two Taut-band Suspension Meters Quiet, low velocity, high volume blower - Power Requirements: $230 \mathrm{~V}, 50-60$ C, 15 amps or $115 \mathrm{~V}, 50-60 \mathrm{C}, 30 \mathrm{amps}$ Tubes: Two $3-500 \mathrm{Z}$ L-4B $1315 / 1_{6} " \mathrm{~W}, 77 /{ }^{\prime \prime} \mathrm{H}, 143 / 0^{\prime \prime} \mathrm{D}$. Wt.: 32 lbs. Power Supply $63 / 4{ }^{\prime \prime} \mathrm{W}, 7 \%{ }^{\prime \prime} \mathrm{H}$, 11"D. Wt.: 43 lbs.
* Power Supply is included in price of L-4B. Solid State, excellent dynamic and static voltage regulation. Separate for a more flexible installation.

For more information, see your distributor, or write:

NEEDED!
 Research Ship Electronics Technicians

We're looking for some very fine and unusual ET's to serve aboard our oceanographic/ASW research ships operating out of Miami. These are fulltime, permanent posts. We're also interviewing for a one year billet aboard one of our ships operating out of Japan...start in June... and for a lab man for duty in an Antarctic research program.
The ET aboard our ships is responsible for repair and maintenance of SSB and AM radio, radar, echo sounders, and often, some scientific instrumentation. He reports to the captain and assists Navy and other scientists aboard. Working ashore between cruises, he works on our vessels, yachts, and other commercial craft.
A 2nd phone license. preferably with radar endorsement, is required...2nd telegraph for the Japanese billet. The license is the least important qualification. As the sole radioman aboard ship, the ET must be a good troubleshooter and repairman. Working with scientists, he must be diplomatic and personable. Working at sea, he must be a thinking, inventive, "can-do" man who is able to solve problems with a limited parts and equipment inventory.
'This work is challenging and may involve over 50% sea-time on cruises ranging from a few days to several weeks...usually in the Caribbean, the Bahamas, and the Western Atlantic.
If you are a U.S. citizen with an urge to do interesting work with other competent people, we'd like to hear from you.

Send your resume, salary history, and references to: Rubin Smulin,
Projects Electronics Manager

MARINE ACOUSTICAL SERVICES
1975 N.W. SOUTH RIVER DRIVE MIAMI, FLORIDA 33125
(305) 374-1776/Cable MASINC/TWX (810) 848-7267 An Equal Opportunity Employer
P.S. We're growing, and our Marine Superintendent is looking for licensed and unlicensed seamen and diesel engineers.

The Vt. Trading Post Net had 38 check-ins. Welcome to Novice WNIIZD (Brattlehoro) and congrats to new Advanced (lass WAlIIK (S. Hero). Operation Educational Amateur Radio has scored again with a radio exchange between Montreal and Burlington grade schools. Congrats, fellows. WA1GUV has been active on 160 -meter c.w. Remember Mar. 31 is the deadline to get your logs in for the Vt. QSO Party. Traftic: K1BQB 260. W1FRT 66, K1MPN 44. K1UZG 42, W1NIRW 16, H1SLU 12, WA1GUV 11, W1EJG 2.

WESTERN MASSACHUSETTS—, CM , Norman P. Forest, W1STR-KiN: W1DWA. FMI: N1DGQ. SEC: Open. Western Mass. (c.w. net) reports 31 sessions and total traffic of 122. Ittendance in the order of activity is W1DVW (100\%), K1AEC, K1WZY, K1IJV, WAIISJ, WIDW. and WiAMI. The phone uet reports dan. as a very good month with special thanks to W1FJT for helping out with net control. Art is in Eastern Mass. Nike has done a very fine job getting the WMIPN started but wouldn't you know, his company is transferring hum to Illinois. A new PAM will be needed if the net is to survive. iny takers? Total QNNI 251, total tratfic 312. The HCR.AI is having George Grammer, W1DF at its Apr. 5 meeting. The topic will be s.s.b. The VARC is having a culor-slide show featuring the ham shacks of the members. The Hilloppers (HARE) has a new cast-iron stove and 3 -gallon coffes pot. K1DPP is building a curtain urray for 432 and 1296 Mc. Fis 12 -vear-old hoy is studying to take the Novice exam. The HCRAI 10-Meter Net, which operated on 23.990 Mc. has in average of 11 stations calling in on Wed. nights. The Connecticut Valley V.H.F. Net continues to attrart quite a few stations (145.35 Mc., Mon. at 9 p.m.) WN1HPM built a 75 -watt linear for 2 . Trathic: K1DGQ 3n2. W1EOB 209, K1.IEC 156. KIIJV 144, W1DWA 118, W1DVW 103. WIVKR 60, WA1G.AB 46. W1ATR 38, WA1EYF 32, W1AMI 18, W.11ISJ 14, W1ZPB 9, WA1ABW 6.

NORTHWESTERN DIVISION

ALASKA-Acting $\mathrm{D} C \mathrm{CM}$, Abert F. Weher, KL7AEQKL7EVO erected his new sixteen-element 2 -meter ros linear with the help of KL7GBG. KLTFRZ spent the month of January repairing his 753 . KL7EKZ reports from Sitka that the Sitka Club lias started Novice classes, and KL7EM. 1 is back from the University and on the air. The Arctic Club of Fairbanks also has started Novice classes, and is pushing hard to get everybody on c.W. KL7EKZ also reports that he has ordered a new HQ-180 for the station. WIICB/KL7 will be suending most of the summer out on the chain doing field work. Now that the davs are getting longer, the gang around Fairbanks is talking about bunny hunts, and we aren hear talk about a surprise winter field Dity like a few years back. It could happen. Traffic: KL7C.AII 299.

IDAHO-SCM, Donald A. Crisp, W'7ZNN-SEC: I77THX. The FARA Net eonvenes at 1200 (iMT on 393. Lc. week davs. L57ECV is reported recovering after u serious illness. K7HLR is moving to litah. WA7BDD was active with SET traific on PAN and RNT. K7AFZ is building a new high-power supply. IF7IBG has a new SB-34. W7IWV is in the lospital. W7OWA again is active after a serious illness. W7ZNN has worked 300 -mile 4)X with a single transistor on 80 -meter c.w. K7THX. Idaho SEC, reports very fine participation during the sET and lots of interest among Idaho hams in building a strong Idaho Emergency Corns. FARM Net repert: $\$ 38$ eheckins, 104 traffic handled. Trallic: W.77BDD 229, K7O.1B 70. WA7ETO 37, W7GGV 23, W7ZNN 13, WA7EWV 12.

MONTANA—SCM, Joseph A. D'Arcy, W7TYN—SEC: W7RZY. RA : WA7DMA. PAM: W7ROE.

Montana Traffic Net,	3910 kc	0100 GMT	M-F
Montana PON	3950	1515 GMT	sun.
Montana RACES	3996.5 ke.	1600 GM'T	1-3 sun.
Montana Section Net	3950 kc .	1700 GMST	Sun. ON1 48 (1TC 81

The Annual SET was held in the state of Montana with the following areas holding on-the-air tests: Harlowton. E7CHA EC; Billings, KTUPII EC; Bazrman W7NPV EC; Butte, LIMMRZ EC; Helcna, E7PFQ; Laurrl. W7LBE EC; Great Fulls, L7EGJ: Anaconda W7VNE. There was a record turnout around the state. If you are not now a member of the AREC, check with your local EC and get signed up. If vou are interested in the section c.w. net, check with WAFDMA and he will fill you in on the details. If you are inerested in helping out with the WIMIU hamfest, write W7WIG :at Great Falls. Montana PON traffic: 34. Traffic: WA7DMA. 625, W7RZY 296, L7PWY 121. W7TYN 117, 亡7DCH 10 K7EGJ 59, W7LBE 59, WABAIDL/7 45. WA7DBN 21. W7SMY 12, K7SIK 10. W7CJN 7, W7OIQ 6, K7ELW W7FIS 4, W7FLB 3, W7IUM 3, E7JAT 3, L7MOW 3 L7TVRH 3, F9INR/7 3.

TOMORROW'S TRANSCEIVER TODAY BY YAESU FTox-400

Latest arrival on the American scene, Spectronics presents the FT dx 400. Yaesu engineers have looked into the future to provide the present day amateur with a complete station in one package.
The usual "accessories" are standard equipment in the FT dx 400. Features built-in power supply, dual calibrators - 100 KC and 25 KC , break in CW with sidetone, fully adjustable VOX system, four switch selected crystal controlled transmit channels in addition to VFO positions, and varactor controlled clarifier offers receiver offset tuning capability.
Remember, all these extras are included in this new imported transceiver. Check the specs and ask your local dealer for a demonstration dx trip with the FT dx 400.
$\$ 599.95$ including power supply and all accessories except speaker.

SP-400 matching speaker $\$ 14.95$

RCA hasallnew FCC license training

Get your licenseor your money back!

Now RCA Institutes Home Study Training has the FCC License preparation material you've been looking for - all-new, both the training you need and the up-to-date methods you use at home - at your own speed-to train for the license you want!
Pay-As-You-Order-lesson by lesson. You match your program and your budget to meet your own situation. Choose the FCC License you're interested in - third, second or first phone. Take the course for the license you choose. If you need basic material first, apply for the complete License Training Program.
SPECIAL TO AMATEURS. This course-while designed for Commercial license qualification, contains much of the new material called for by FCC Docket 15928-advanced and extra class you'll want to qualify for before November of 1969. QRX until you get the information.
Mail coupon today for full details and a 64-page booklet telling you how RCA Institutes Home Training can show you the way to a new career-higher incomeand your FCC license.

RCA INSTITUTES, INC. Dep't BA-48 320 West 31 Street, New York, N.Y. 10001
Please rush me without obligation, information on your all-new FCC License training.

Name
Address
City
State \qquad Zip

OREGON-SCM, Dale T. Justice, KTWWR-RM: W7ZFH. PAM: K7RQZ. Section net reports: WA7AHW aports inr the AREC Net, sesisions 31, check-ins 741. contacts 83. traffic 32. QS'Ts 4 and maximum number of counties 17. W7ZFH reports for the OXN. setsions 22. rheck-ins 108. trattic 85. WA7HOR is nperating maritime mobile from the USCG mutter lIodor off the Oregon coast. WA7GCE is operating a code practice net at 0.50 Z Wed.. Thurs. and Sat. un 3743 kc . Kusti has frequent check-ins from as far away as Alaska and Indiana. She also has several students at her shack for eith session. K7BPR has a suner flea-power rix (96 mw .) on 10 - and 15 -meters cow. He has worked 35 states and two countries. Quite impressive! Luok for him nn 21.075 . 21.021. 28.022 and 28.050 Mc. Thurs, aiternoons and ali day Fri. and Sat. The January SET was extremely successful with a large anount of traffic and some excellent local simulated disasters giving the mobiles and fixed otations a real workout. Reports were received from the Portland area. Josephine County, area and the Yamhill County area. The Portland Area Two-Meter AREC Net now meets at 0330\%. Tratlic: (Jan.) K7RQZ 359. K7IFG 161. W7ZFH 120, K7WWR 106. W.A7DCC 67. K7NTS 66. WAFDPK 31. WA7BYP 28, K7OUF 27, WA7HKV 21, WA7AHW 20, W7DEM 17, WA7EES 16, WA7GLP 9. K7EZP 5, WTETG 5. (Dec.) WA7EKV 45, WATEZJ 17.

WASHINGTON-SCMI, William R. Watson, K7JEA (nnw W7BQ)-SEC: W7UWT. PAM: W7BUN. KM: IF7©TP.

The 1968 SET is now history with the most active Washington narticipation ever attained. New apnointments: W7JHR as EC; WA7FKM, W7ZHZ, K7MGA, K7THG. E7YF.J as OP's. A Yublic Service Award went to W7BTB for his FB job during the Alaska Flood. The Yakima Club is proceeding on plans for a state-wide hamiest to he held in July. New officers of the Rodeo City Radin Club are WAFEXX, pres.; K7OOMI, secy.treas. The Clark County Amateur Club reports a number of Novice graduates awniting licenses. Another fine bulletin was receivod from the Mt. Baker Club. Over 70 net certificates were issned to new menbers of the NTN and WARTS Nets in a good kick-off for 1968. KTVNV and W7OEB hyve goud Novire and Gencral classes under way. The Richland Club reports that K7RSM is a member ni the Pucblo crew being held in North Kores. Clallam County ARC has 30 students in amateur classes at Peninsula College. W7AXT had an FB write-up in the local press during the SET. W7HMA passed the 35 w.p.m. CP run. VI7ZIW passed the $30-\mathrm{w} . \mathrm{p} . \mathrm{m}$. CP run. Grays Harbor ARC reports activity is picking up on the 6 -meter FA Net. WN7GYR is nuw WA with a new General. He also reports the largest Novice class ever held. W7ZA, W7EQY and K7MCA now are loneted in new QTHs. WNTFUF received the 1967 Tacoma Club prize for siening up the most new members. K7UDG has a new Galaxy 5. W7UWT has a set of slides with taped narration on the ARPSC available for club meetings through the ECs. It is recommended that the XYLs also he invited to see it. W7JY presenterd an FB exhibit of amateur museum pieces at the Boeing Club meeting. We regret to report the passing of W7ZJM Jan. 29. SCMI note: We have dropped all inactive Washington appointees and supplanted new and interested amatpurs. Appointments are, as always, subject to continuing activity and interest. Traffic: W7BA 1544. WA7DXI 978, W7DZX 671, W7HMA 573. W7ZIW 540, L7PXA 357. WAFDZL 330, W7PI 328. K7CTP 243, W7KZ 207, W7.IEY 148. K7JHi 146. WZUWT 136. W7BTB 134. K7TCY 129, WTIEU 115, WZACW 108. K7TiDG 100, W7AXT 80 . WATACQ 54, K7VNB 48. K7OVN 42. WA7HKR 37, K7THG 35. W7APS 34, WA7FEM 33. W7GYF 33, W7OEB 24, W7BUN 23 , W7AIB 21. WA7GVP 21. K7OXL 20, WA7ESJ 19. WA7DRQ 17. W7AMC 16. K7MIGA 15, W7RXH 14, K7YF.T 14. W7SYE 11, W7ZHZ 10, K7SUX 9, W7AJV 6, K7EFB 5. W7UU 2.

PACIFIC DIVISION

HAWAII-SCM, Lee R. Wical, KH 6 BZF - SEC : KHOGHZ. PAM: KH6EEM. RM: Vacant. RACES Nets ($40,10,6$ und 2) coordinate with hHBAIN.

Net	Freq.	Time (GMT $)$	Thys
League Appointces	7.290 Mc	0700 Z	Wed.
Friendly Net	7.290 Mc.	2030 Z	M-F
Pacific Interisland	14.330 Mc.	$0830 Z$	M-W-F

My apolngies for missing Jan. QST column, but business commitments no Midway Island precluded my return to Honolulu in time to file that report. The 10 - and 15 meter bands continue to improve for the best DX propagation. May I say our . Mohas to KH6GGR. KH6BJ/6 writes from his new eTH, 1574 Mary Avenue. Sunnyvale,

PHASED

DOUBLETALEK ANTENNAS

Guaranteed impressive, superior performance overa single antenna system. Most uniform signal pattern superior to any single mounted antenna because of uniquely detailed phasing design. More consistent communication with virtually no fading or blind spots when changing direction in travel. No matter what your needs -HUSTLER will be the only antenna system you'll ever need to buy!

If you have been a happy mobileryou already have the Hustler mast and resonators. Now for the very best mobile signal, duplicate your present mount, mast, resonators, and buy the Double Talk 20 foot harness.

Model DTLS . . User Net $\$ 7.95$

Now... 2000 Watts P.EP.
Full Power/Minimum Size FOR APARTMENTS• SUBURBAN HOMES Marine and Portable Operation
Packaged for APO and FPO Shipping

Bands	$6.10 \cdot 15-20$ Meters
Power Rating	2000 Watts P.E.P.
El. Length	11^{\prime}
Turn. Radius	7^{\prime}
Total Weight	11 lbs.
Single Feed Line	52 ohm
SWR at Resonance	1.5 to 1.0 max.

6-10-15-20 METERS
The time proven B. 24 4.Band an. tenna combines maximum effi. ciency and com. pact design to provide an excel. lent antenna where space is a tactor. New end loading for maxmum radiation efficiency. No Model B-24 Net $\$ 59.95$

MULTIBAND COAXIAL ANTENNA

for 6-10-15-20 METERS
Needs no ground plane radials. Full elecrical $1 / 2$ wave on each band. Excellent quality construction. Mount with inexpensive TV hardware. Patented.

Power Rating	2000 Watts P.E.P.
Total Weight	5 lbs.
Height	11^{\prime}
Single Feed Line	52 ohm
SWR at Resonance	1.5 to 1.0 max.

Model C4 Net $\$ 34.95$
Send for Free Brochure
If there is no stocking distributor near you order direct from factory. We pay
shipping to your Q th if in Continental U, S. A.

1001 W. 18th Street • Erie, Pennsylvania 16502

- leaders in compact antennas •

M \& M's Electronic Keyer the "DAH-DITTER ${ }^{\circledR 3}$ " MODEL EK-1A

ONLY \$34.95
Assembled and Tested

All solld state with space age integrated circuits Fully self-completing on both Dah and Dit Fixed 3/1 Dah/Dit ratio for perfect code - Builtin AC power supply - Fully isolated reed relay output - Built-in side tone oscillator and speaker Speed range 5 . to 40 WPM.

Send your order direct to:
M \& M ELECTRONICS
6835 Sunnybrook, N.E., Âtlanta, Georgia 30328
alif. 040.56. Hed like me to pass his address to the many readers in hopes that you'll all drop him a line. Those of you who want those "call plates" for the autos. : contact at City Hall is Lt. WeMello, phone 941-3311 ext. CD dexk. Lately we've been hearing old familiar roices on the bands with brand-new two-letter ralls. News has reached me that many have passed the idbanced Class test and received their new tickets. 1 reminder: Fior those of you on the Island of Oahin, the Idvance and Extra Class tests are ronducted at 8 A.M. sharp Tue. and W'ed., Room 502. l'ederal Bldg. (downtown Post. Office Bldg), Honolulu. EIGCHZ is teeling fine after minor eye surgery. IH6GEW was elected pres. of the Honolulu ARC. Outside islands, please forward your election results to your SCM for publication. KH6EEM folded his antennas and moved into his new quarters. The ARRL DX Test was a success again this year. These mast two vars, where KHBers are l)X hunting the W/K. Y'E/TOs during this contest have demonstrated an exrellent decision on the part of the ARRL Contiest Awards Committee at the prompting of your SCM and such prominent DX contesters as KH6IJ, to name a tew. Those of vout who have asL encelopes on tile with KH6DQ. QSI Mgr. Hawiii, are reminded that postal rates were increased several weeks ago. Help KH6DQ. the Postal Dept. and vourself for continued service by sending that increased postage rate to the KH6 Bureau. Box 101, Aiea, Hawaii 96701. The Honolulu DX Assn. is gaining in momentum. Keep those reports coming in to your SCM, see page 6 QST for his address.

NEVADA-SCM, Leonard M. Norman, W7PBVSEC: WA7BEU. WA7ESM has qone KTTY with a Model 15. WOFKY/K7ZOK is now running 800 watts p.e.p. on 6 meters. W7PBV has a new W-51 Trier. tower and is back on 2 meters. W7PRM and WA7CQS have their a.f.s.k. units completed for KTTY. W6KAY/7, trustee for K7GQD, reports all club station metivities at Jackass llats, Nev. have ceased hecause of lack of equipment. The Southern Nevada i.m. repeater is down for moditications. W7TYC has a new f.m. bise station and handie-talkie. W7CSB has a new Rohn Crank-up tower. A QCWA chapter has heen tormed in Nevada. W7YRY has a new Spaulding tower supporting a yuad for those siznals down under. W7CJK and sum, WN7DKL, have a new Spaulding tower and three-element quad. WN7DKL passed the General and is hounding the postman daily for his new license. W7TVF is on 14.015-Me, e.w. daily $0300-05007$ and will OSL those neediny Nevada. K7ZOK is the new EC for Las Vegas. W7AKE received the first NNARC certificate using 2 -meter f.m. Traffic: WATBEU 41, W7YDX 8, W7PBV 2.

SACRAMENTO VALLEY-SCM, John F. Minke, III, WA6JDT-KM: W6LNZ. ECs: WB6MXD, K6KHW W6SMU, WB6RSY, WA6TQJ.

Net	Freq.	Time	Days	Mar.or NCS
NCN	3630	$030 \cap Z$	Daily	WB6HVA
NCN/2 (Slo-speed)	3630	04307	Daily	WB6HVA
YoloCo (VD	146.94	0130%	Tue.	WA6TQJ
SCEN	146.25	$0500 Z$	Wed.	WA6CXB

The above listed nets are ARPSC nets (NTS and . RREC). If you wish your net listed, is in that category, and operates solely within the Sacramento Valley section. give me the details. WB6RSY, Kedding, and K6KRL, Colusa, received Section Net certificates for their nurtisipation in the Northern California Net (NCN). New nfficers of the Sacramento ARC are WB6MZX, pres.; W6PUI, vice-pres.; WA6CXB. serv.; WBBRVR, treas. The John F. Kennedy Senior H.S. Electronics Club is a new club in Sacramento with WB6W.JO, pres.; WN6YQQ, vice-pres. : WB6VKK, tristre. New officers of the Ornville ARS are K6ZNL, pres.; WB6FMII, vice-nres.: W6BLW. secy.: WB6RPM, treas. New officers of the Chico gang ($\dot{A} E A R S$) are WB6K.AI, pres.; K6UHD. vire-pres.; W.A6SC.J, secv.; WA6AMI, treas. Club builetins were received from the Sac'to ARC, KAMIS. GEARS. (iroville IRS, NHRC and AF MARS. WBZ.IW is putting up a new beam. WB6YBB lost his new quad in the Jan. winds. OPS WB6MAE is getting ready for the Extra Class. Traffic: (Jan.) W6LNZ 70. W6NKR 57. WB6MAE 36, WB6RSE 28, K6KRL 7. WB6QZZ 6. WA6JDT 5, WA6CXB 1. (Dec.) WB6RSY 49, K6KRL 15.

SAN FRANCISCO—SCM, Hugh Cassidy, WA6.AUDW6IiVQ marie the BPL again. WBWLV's total included it int of SET traffic. W6HVN. of AMRADs in san Francisco. was the speaker at the Feb. 'Marin Radio Cluh meeting. The Humboldt Amateur Radio Club now mects the ist and 3rd Tue. at WB6DG.J's QTH. W67C was voted into the Northern California DX Club. New wficers of the Humboldt County Radio Club are W6JSY, pres.: Ľ6SBI, vice-pres.: W6SLX. wey.-treas. W.f6RNM, Marin County OO, is at Ocridental College

The Total Growth Gompany

Hallicrafters is entering an exciting new era of growth. Our recent affiliation with Northrop Corporation has opened new areas of engineering challenge. At our new ultra-modern Engineering \& Administrative Center, located in northwest suburban Chicago, we are engaged in R\&D activities which will lead to the development of a new generation of highly sophisticated techniques and equipment.
Here you'll become an integral part of a small, dynamic task group and enjoy an environment conducive to professional growth and achievement while working with pride and a continuing dedication to product excellence.
If you're a professional who thrives on this concept of personal growth and creativity, you're invited to share these goals. Together, we can grow as far as professionals like yourself can take us.

ELECTRONIC ENGINEERING

SYSTEMS EXPERIENCE

- Radar Systems
- ECM Systems
- Vulnerability Evaluation
- Tracking Loop Analysis

MICROWAVE SYSTEMS

- Semiconductor Circuit Design
- Microwave Circuits
- Solid State Power Design

CIRCUIT EXPERIENCE

- Electronic Countermeasures
- Solid State Power Supplies, Regulators \& Modulators
- Microwave Applications Design
- Video Signal Processing Design

MECHANICAL ENGINEER

Apply your knowledge \& experience in the design \& innovation of equip. ment packaging.

We invite you to "come grow with us." Please submit your resume in confidence to: Roy C. Anderson, Professional Placement.

Engineering \& Administrative Center 600 Hicks Road, Rolling Meadows, Illinois 60008

An Equal Opportunity Employer

POLICE FIRE MARINE ARCRAFT - AMATEUR CALLS

ALL NEW 1968 X LINE TUNAVERTERS! CRYSTAL \& TUNABLE $=$ VERSATILITY usablitit

Tunable plus Crystal controlled (selectable with switch) solid state converters to change your auto and home radios into excellent, sensitive, selective, calibrated VHF receivers!

THE BEST-CALIBRATED 6-1 TUNING-PLUS-DRIFT FREE CRYSTAL CONTROL-PLUS-COMPLETE INTERCHANGEABLE CRYSTALS WITHIN BAND!!!!

- For auto, home \& tran- - 1 year guarantee on parts sistor radios.
- Includes coax, mount \& Size-2 $21 / 2 \times 31 / 2 \times 41 / 4$
\& labo screws.
- New FET transistor osci- American Made with Amerlator \& circuit.

ican Parts

W2AU BALUN LETS ENTIRE ANTENNA RADIATE!

STOP WASTING YOUR SIGNALI REMEMBER, YOUR ANTENNA IS THE MOST IMPORTANT PIECE OF GEAR YOU OWN.

- No Radiation from Coax
- No Center Insulator Needed
- Perfect for Inverted Vees (Use Hang-up Hook)
- Built-in Lightning arrester
- Broad-Band 3 to 30 Mc .
- Takes Legal Power Limi
- Two Models

1:1 50 ohm coax to 50 ohm balanced
4:1 75 ohm coax to 300 ohm balanced

- A must for Inverted Vees, Doublets, Quads, Yagis and Multiple Dipoles.

$\$ 12.95$ AMATEUR

W2AU Complete pretuned Fiberglas Quad $\$ 99.95$
W2AU Complete pretuned Vinyl Quad.
$\$ 64.95$
UNADILLA RADIATION PRODUCTS
Unadilla, New York 13849
in Southern Qulif. New ORSs are WB6JQP and WB6FLT. W6BIP. W6GQA and W6WLV were active in the Jan. (D Parts. liotWJ represents the section on the Golden Brar Net while W6KVQ. W6NLM and K6TZN are heard on the Mission Trail Net. The Marin Club has changed its Sun. morning Red Oross Net to 3915 kc . W6EAJ is working on a luO-watt solid state transmitter for his 160 -meter work. Also active on the 160meter band reeently were W'6ERS and W.A6IVM WAGPYN reports working liH6-Land on 6 meters. WARNDZ has his mobile unit operating. If vou have not received a copy of the Ban Francisco Section Courier, in its 4th vear of mblication, dron a line to the SCAI. W6CYO handled an emergency situation recently in connection with a death its the inngle interior of South America. W.A6BYZ handled a large amomnt of siET tratic ens the outlet for the NCN in San Firancisco. Also active was W6CXO at Red Cross Regional Hq. in San Francisco with the oneration direct by W6JWF. sieveral clubs in the section were represented at the Pacific Division meeting in Oikland in Mar. The appearance of JTIKAA on 20 meters in early Feh, found W6PTS, W6ZC and W.A6.AUD working the Mongolian station for Zone 23. The Cathay Radio Club in San Francisen is trving to renrganize. It interested contact $56 K Q N$. The San Francisco Section Net meets reguiarly on 3900 kc . at 183 n local time. Mon. and Fri The NCN is looking for a regular Marin County outle on this c.w. traffic net. 3630 kc . st 03007. Those needing code practice should try the NCN slow-speed session at 1430% same trequency. Tratlic: W6LVG 83x, W.A6BYZ 248. W'6WLV 197, WA6AUD 190, K6TW.J B7 W6BWV 24. W6CYO 9

SAN JOAQUIN VALLEY—SCMI, Ralph Sarovan, W6JPU-The Northern California and southern California DX Clubs held their innual (innvention in Fresno on Jan. 27-28, 1968, with 268 in attendance. dmong those seell there were WGKTW. WA6WIP. WBRJRL, KbRPH. W6JTK. W6JPU. W6KUT and W6HYG. WB6ETQ is operating XEØETQ in Mexico and is on 40 -meter s.s.b. around 6 P.m. daily. The Fresnn Amateur Kadio Hamfest is around the eorner. Kemember the date, the first week end of Mav, and send in your reservations to FARC, P.O. Box 783, Fresno. Cilif WB6DCP has a Collins station on the air. W6JUK is using a BTL hnear amplifier. The sET rombueted by WB6TFU was snccessiul. WB6TFU and IVB6ETR have been operating the Fresno Veterans Hospital 'Studio' for over a year, handling many messages hy radio, and sending them over land lines. W6NKJ is building a 2-meter converter. The Kern County Amateur Radio Cluh is holding rode and thenry classes with W.A6SCE and WB6ZWG in charge. W6.ADB still is active on NCN W7AAF/6 and IVB6PCQ are le:irning the Morse conde WBBINO is recuperating from surgery, and is very active on WCARS. WB6JZH is on 2 -meter f.m. Traffic WB6HVA 356, WB6INO 311. W7AAF/6 224, WA6SCE 202, WbADB 116, K6KOL 75.

SANTA CLARA VALLEY-Acting SCMI, Edward A Gribi. WB6IZF-Asst. SCM: Ed. Tumer, W6NVO. SEC: W6VZE, RM : WGQMO. Sectinn meeting places: Bay Aren AREC Net, 3900 Sun., 1830 GMT Northern California Net, 3630, Dailv. 0300 GMIT
Monterey Bay Émergency Net, 147.16, Tue. 1400 GMT. Gur hest wishes to WfZRJ, past sic:M, now Protic Livixion lirector. Lor can often be found monitoring 7255. WCARs frequency. during the day. SEC W6V'/E has been husy stirring the AREC pot. The Menlo ParkRedwood City-Palo dito gang was partimbarly ingenious in suliciting participation contest style in the 1968 SET under the leadorship of ECC WGOEF and R()s K6ANN and WA6QGX. WGUOK, IVB6MED and WABVGR took the "win." "place" und "show" rwards. The Palo Alto Amateur Radio Chuh, under new pres. WB6WLIH, was very active in originating SET messages to the outside worid. Others who rpports ints of sET trafic were EC W6PLS and W6YBV. W6PLS also ploughed through QRM in the Old Old Timers Club First QSO Party. WBOII cuntinues to work the netsMission Trail, Gulden Bear. Weather, ITCARS, ete. WBAUC was MC at the Annual QCWi Dinner. WiAOXE is now out of the hospital and active on 7255 and 3952. Now that W'GHC, retired Division Dire tor. has more spare time is it possible that we heard him ons more spare time is it possithe that we heard him Jersey, now in San Mateo. Greetings to WB6JGS, who comes to Palo Alto from Coucord. W6HXY tuns the Monterey Bay Eimergency Net and recently had 32 check-ins on the Mon. night check-in. H6T)YX keens the RTTTY elatter going on the RATTS Net on 3620. WB6LID is handling hulletins on v.h.t. teletype. Asst. SCM W6NVO attended the Christmas Dinner of the Central California Radio Council. TYBMMG reports that the San Carlos Radio Club had 23 show up for new code classes. The club has a new shack for its station,

better sent... better received

with Belden wire and cable

... easy to use packaged lengths.

Antenna Rotor Cables

Sturdy, flexible, plastic insulated cable for rotor applications. Color coded. Chrome, vinyl plastic jacket resists sun and aging.

Power Supply Cables

Excellent mechanical and electrical characteristics for long service life. Special jacket offers maximum resistance to abrasion and ozone. Use as power supply cords and interconnecting cables. Ideal for remote control circuits, special press-to-talk microphone circuits, and other applications.

Shielded Hook-Up and Grid Wire Provide most effective TVI suppression. Vinyl insulated with tinned copper braid shield. Available from 24 AWG to 12 AWG.

Coiled Microphone Cable Provides low impedance for mobile microphone applications. Neoprene jacket remains flexible at low temperatures. Available with or without shielded conductors.

Ham Transmission LinesParallel Type
Uniform quality control provides uniform impedance. Brown polyethylene for best weather resistance and lowest losses.

Ham Transmission LinesRG/U Type
Designed for lowest losses, longer service life, and maximum dependability. Cables are essentially flat with no peaks in attenuation to reduce signal on either high or low frequencies.

FOR FULL INFORMATION CONTACT YOUR BELDEN ELECTRONIC DISTRIBUTOR
The Belden line gives you maximum efficiency with lowest losses under ham transmitting and receiving need. Shown here is only a small portion of this complete line.

Handbook Companion...

A concise, clearly written text for use with the Radio Amateur's Handbook, A Course in Radio Fundamentals is ideal for the beginner but just as useful for the more advanced amateur who wants to brush up on his radio knowledge. For radio theory classes it is one of the most practical books available.

Complete with study assignments, experiments and examination questions based on the Radio Amateur's Handbook.
"You get more fun out of a radio if you know how and why it works."
$\$ 1.00$ postpaid
U.S.A.
\$1.25 Elsewhere

EXTENSIVELY

 REVISED> 7HE STANDARD reference work and text for everyone-radio amateurs, students, experimenters, engineers, lab men, technicians.

τ he 1968 Edition, through this extensive revision, continues its tradition of presenting the soundest and best aspects of current practice. Containing 35 new construction projects, The Handbook has more new material than ever before! Considerable emphasis has been placed on solid-state devices, with revised chapters on their theory and also on their practical use in construction projects. Every important aspect of amatcur radio is covered: transmitting, c.w., a.m., sideband, radioteletype; receiving; mobile; v.h.f.; propagation; antennas; construction; theory; charts; diagrams; transistors; vacuum tubes; station assembly and operation. It is the up-to-date and complete Handbook.
$\$ 4.00$ U.S.A. and Possessions, $\$ 4.50$ Canada, $\$ 5.50$ Elsewhere. Clothbound Edition, \$6.50 U.S.A. Possessions and Canada, \$7.00 Elsewhere.

${ }^{\text {Jhe }}$ American Radio Relay League, Inc.

2 ELEMENT－3 BAND KIT SPECIAL CONTENTS
－ 8 Fiberglass Arms－skyblue color
－ 2 End Spiders（1 pc．castings）
－ 1 Boom／Mast Coupler－h．d． aluminum
only \＄59．95
－ 16 Wraplock Spreader Arm Clamps Add $\$ 3.50$ for PPD
－ 1 CUBEX QUAD Instruction Manual
2．3－4 or more element Quads available Write for FREE BROCHUKE and Price List

CUBEX COMPANY
 P．O．Box 732，Altadena，California 91001

 Phone：（213）798－8106YOU CAN＇T SAY＂QUAD＂BETTER THAN＂CUBEX＂

THE LEAGUE EMBLEM

With both gold border and lettering， and with black enamel background，is available in either ！in（with saiety clasn）or screw－back button type．In addition，there are suecial colors，avail－ able in the pin style emblem only，for Communications bept．appointees．

Redenameled background for the SCM．
\rightarrow Green enameled background for the RM， PAM，SEC or EC．

Blue enameled background for the ORS， OVS，OBS，OO or OPS．

THE FMBLEM CillT：a mounted printing electrotype，＂5＂high，for use by members on amateur printed matter，letterheadls，Lards，etc．

Pin，Button or Cut： $\mathbf{5 1 . 0 0}$ Each，Postpaid

AMERICAN RADIO RELAY LEAGUE

Newington，Connecticut 06111

PFB is surv．pro tem．Ki8GAG moved to Charlenton． いperating R＇TTY in the Mnrgantown area are L58LGS／8，
 The WVU＇Club station，IV8CLL has 4 onerating posi－ tions．emergency iwwer and all－band operation，any mode．The West Va．Phone Net reports 31 sessums with 1114 stations litandling is7 messiges，WI．18ÖPM，W．AS－ YYZ．W．18＊HT and K8FHHV were antive in the WVN Oif Net．This nei with 31 sersions handled 157 mexsames． A ivint meeting of the Sitate Radio Council and Con－ pention Assn．was held in Charleston．Traffic：W＇8S（）O Ex3，byAIYU 253，W＇IRPOS＇158．W8IRN 79，WA8RQB 76 W W8YSA 6if W8CKX 57．W8HZA 57．K8BIT 50 W8IMA 23 ．WुHQB 23 ．W 18 TWR 22，W8JM 21 ，W． 8 － NDY 20．WRGEL 13，W．A81，AL 13．W＇ロWEJ 13，W8IYD 11．WIRWCK 10．K 82 ZDY \％．IV8TGF 4，WA8UIII 4. WA8IIZ 4．W8UPH 3．K8ICTW 3．W＇A8CINN 2，W8－ IHC 2，W＇A8TFZ 2，W8MILX 2，K8PRC \％，W8QEC 2 K8OYC；2，W．18BUM 1，K8CFT 1．WA8C＇RW 1．WxFiTF 1，WARFZS 1．W8GWR 1．W8KBM 1．WA8KQE I． W．IRLFW 1，T8OOL 1，KとKLC 1，L゙8SOR 1．W．18UFX 1，W゙४VUI 1，WA8WIX 1

ROCKY MOUNTAIN DIVISION

COLORADO－SCMI，Kichard Hoppe，KGFDH－Asst． SCAI：1．FO，Hankinsom．W．AQNQI，SEC：WOSIN． PAME：NOCXW．Coloradin Snctional Nets all partici－ pated in operation SET in ond of the busiont noperations we have had．Congratulations to the Columbine Net on taking top hnours with ：t．QNI of 1053 handling 270 formal messages．The Colorain Conde Net．ilso was valuable in seheduling＂xtra sessions for maintaiuing a continuous liaison with TWN during the SET．We were sull sorre to learn of the passing of Ray s．Eldridge． KiOPGQ，ull Jan．9．Rav＇s contributions to amateur radin．particilaty in hulning Novices with c．w．．will he greatily missed by his many friends．The Boulder Ama－ trur Rario Clut will hold its Annual Iuttion Apr．Ė it 1 Y．s．：t the National Guard Armory in Boulder． You＇re all invited tin colle and browse through the goodies．Anyone willing to coordinate 2 －meter nets with NTS？Please drop me a line．A late report from f （ ZSQ shows that she earned BPL last Dec．with a total of 531 ．Traffic：Jan ）WOIES 920．KO7SO 411，W゚OT．RN 313．WGK．AT 238．WAØMNL 218．KOECR 63，WOSIN B3．KOMNO 2Å．KGGVA 11，KOIGA 10．WAOJTB 8 （Dec．）Kロ7SQ 531.

NEW MEXICO－\＆icM．Kenneth D．Mills．W5WZK－ Asst．HCM：Martv Petsonk．WA5MCX．SFC：K5KTQ． PAMI：W5DMG．RM：WA5FJK．ORS：K5MAT．W．15－ FJK and K5MAT have succreshed in forming a new net on 3.760 Mc．at 1900 MST on rue．for the purpose of handling traffic．The net call is NAN for the New Merim Net．Ifl chork－ins are invited for practice in c．w．traffic－handling．W．A5FFJ，reports he has been han－ ciling tolephone relays at the rite of two or three a week on the Interenntinental S．S．B．Net on 20 meters． W 15FFL was uperaded to Extra Class in Nov．＇B7． The first menting of the NMN hall a QNT of 5 guci ： tratlic count of 5．Ki5MAT is Net Control．K5MIAT worked New ITampshire for W．AS．Attend the Division Convention in Chevenne．Wyo．．Jimn 29 and 30．Traffic： （，Ian．）K5MTAT 43 WA5FTK 38 ，KSDAB 20 ．WSNON 19．W5AYM 16．WTA5NNC 10．VSNTI 9．WA5BLI 7， W5BWV \＆．W．15MIY 5．WA7SBV／5 2．（Dec．）K5MAT 75.

UTAF－SCM．Gerald F．Warner．W＇TVSS－SEC：W7－ WよF．RMI：IV7CON．Traffic nets：

BUN	Taily	3272 kc ．	1930Z
UARN	Sat．－sion．	$49 \times 7.5 \mathrm{kc}$ ．	1.510 Z

Several of the Northern Mitnh Clubs partiripated in the －1RRL SET．A few indisiduals also generated mescames in the SFTT indicating interest in the ARPSC．IV．17－ HSW ramitied ine of net rertifiente for his high level of participation in the BUN．WA7I．1W is nearing com－ phetion of a wew kilowatt amplifier and inmmosed rerniver setup for 2 metors，Attendance during the UARN Not sorsions is on the increase up hearly 50 percent in the last． 9 months．F．m．activity on 2 meters in Jtah still is yrowing on 146.94 Me ，WI．I7．ARI．K7－ AWY and WA7BEX，in SLC，are remularly heari on $2-m e t e r$ f．m．Nominations for sCAI in the l＇tah suction are heing areapted until May 10．Rules for nominating atn he found in us＇T uperatink news，Truffre：IV70CX 157．W A7BME 102，К7SOT 78．K7CLS 64，L7ERR 16.

WYOMING－SCM．Waune M．Moore，W7CQL－SEC： K7NQE．RM：WA7CLF．PAMs：W7TZK，K7SLM， OBSs：K7SLM，K7NQKi．Nrts：Pony Express，Sun．at

THE COMPUTER comes to amaleurr radio!

HAMS! could you afford $\$ 1,000,000$ worth of electronic equipment?

NOW YOU CAN by joining the COMPU-HAM Club

WHAT IS COMPU-HAM?

With COMPU-HAM, which means COMPUterized Handbooks for AMateurs, you can, for the first time, use the computer to improve the effectiveness of your gear.

CHECK THESE FEATURES

- accurate and reliable

This new and unique computer service exclusively for amateurs from Automation Technology, Inc., a respected name in the computer industry, brings the speed and accuracy of the electronic computer to the amateur radio community.

- PERSONALIZED AND MODERN

By using the COMPU-HAM HANDBOOK series, imprinted with your name and call-letters, you will become a member of the rapidly growing number of people who are benefiting from history's greatest technological development; the million dollar electronic computer.

- time SAVING AND FUN

Why waste another second of your air time performing tedious calculations or guesstimating with 19th Century methods? Let our 20th Century computer serve you. Join the COMPU-HAM CLUB and receive your time-saving, personalized AUTO-BEAR Handbook today.

INTRODUCTORY OFFER

For your COMPU-HAM Club Membership fee of $\$ 3.95$, you will receive as a bonus absoJutely free the AUTO-BEAR (AUTOmatic BEARing) HANDBOOK. This handbook is the first in a series of COMPU-HAM Handbooks and services offered exclusively to amateur radio enthusiasts. Although, this handbook, as described opposite this offer, is in itself alone worth more than $\$ 3.95$, you will in addition be entitled to receive any and all future handbooks and computer services at the club
members special price. There are no other membership dues ever!.
CONTENTS OF YOUR AUTO-BEAR HANDBOOK

1. The angular bearing specially computed from your location to 500 cities world-wide.
2. Your distance from these 500 cities in statute miles.
3. The time difference in hours between your location and these cities.
4. Your deviation from True North.
5. Your latitude and longitude.

All you need do is complete and return this coupon with your check or U.S. Money Order for $\$ 3.95$ to:

CDMPUEMAM

Automation Technology, Inc. 11141 Georgia Avenue
Wheaton, Maryland 20902

Yes, enroll me as a COMPU.HAM Club member and rush my postpaid copy of my AUTO-BEAR® Handbook.
Enclosed is $\$ 3.95$ (Add 50\% for overseas delivery.)
My Name
My Call Letters
Call Letters and Frequency of AM Radio Station Nearest Me
My Address is:
Street
City \qquad - State \qquad Zip \qquad

Do you have any other ideas how a computer can help you? Let us hear from you with your order.

＂．．．IN THE DOG HOUSE？＂ MOVE IN

WITH DESIGN INDUSTRIES

 WIFE－APPROVED COMMUNICATIONS DESK
．would YOU believe ．．．SOME hams are per－ mitted into the house ．．．perhaps even the living room when their station includes a Design Industries Communications Desk or Console？

Send Today for Our Special Wife Pacification Kif （Descriptive Brochure）
DESIGN INDUSTRIES，inc．

P．O．Box 12365
（214）－528 0150

Dept．T
Dallas，Texas 75225

0800 on 3920；YO daily at 1830 on 3610；Jackalope NTon． through sat．at 1215 on 3920；WX Net． 0630 Mon through sat．ou 3920．The Rocky Mountain Division Convention will be held June 29－30 at the Hitching Post if Cheyenne．New appointment：K6UVJ／7 as EC for Chevenne．W7VEDZ now has it rouple of heams up and is on the air e．s．b．W7BXS is traveling the southland for a ronple of months．Inother new Casper ham is WA7JES．The SET went very well in the state．It＇s not too early to start nlanning for Field Iaty．©asper now holds the traveling trophy．Traflic；Wa7CL，F 367， K7NQA 2s9．WI7EDC 164．L7ITH 73，W7TZE 64， WA7FUX 50，W7YWW 17．W7DNV 36，h7EIW $2 x$ K7VWA 22．W7NKR 13，K7TEG 11，WA7BDI 5，W7－ HLA 4，W7GSQ 3，E7JED 2.

SOUTHEASTERN DIVISION

ALABAMA－GCA！．Edward L．Stone，K4WHW－SEC ： W4FPI．RM ：W．A4EXA．PAM：W．14EEC．New ECs：
 K4KMG，Bibb County．WN4IDZ is a new onerator in Athens，W． 4% WU is a new beratur General，The Hunts－ ville and Vecatur Cluhs now have classis in session eovering Novien to Advance（lass．A real good place to learn c．w．net procedure and improve your operating ability is on 3725 ke ．at ：； 30 P．M．CST with the AEND Training Net．WrAfliXC，net mer．，will be most happy to have you QNI．Your sem and SEC wish to rou－ gratulate the Alahama nets and operators tor the fine effort during the SET．The inereased reporting of sta－ tion activities this month looks good．If you did not get your report in this month，make it a mist nest and all succeeding months．V．h．f．ers：Start getting ready for the summer openings and the F．H．F．乡si Party．All clubs and Firld Day grouns should have their rommitters working hard：June 21 will soon he here，Traffic：（Tan．）WA4EKB 1001，E4PXR 417，W．44－ AVAI 302，K4WHW 161，W4FVY 157，K4AOZ 134．W4－ FPI 118，Ћ4BSK 84．W．A4MTG 76．WAtIEK 72. WB4DIN 69，WA4FYO 64．K4PMO 5s，WA4．JQM 52 ， W＇A4UXC 29 ，K4TNS 51．WB4EFJ 43，WB4BAS 42 ． WA4EXC 22, K4TNS 51 ，WB4EKJ 4．WB4BAS 42. WA5TOT／4 23．WA4GGD＇22，W4WLG 22，K4KMG 21 ． WAt1VG 21．WA4AZC 20，W．A4ROP 20．W＇B4．1DT 19 ， WR4RLX 17．W4CDJ 14，K4DRQ 11，WA4PIZ 11， K4CZZ 8．WiDGH 8．K4RSB 6，W．14DYD 5，K4UUC 5．K4EAO 4，WB4GZW 4．（Dec．）WAVUG 36，WA4－ 5．K4EA
ZFA 36.

CANAL ZONE—SCM，Russell E．Oberholtzer．KZZOB －－．The CARC and the Panama Radio Cluh were guests of the CZARA on a moonlight cruise through Gulliard Cut on the Pan Canal Las Crieces．About 50 KZ 5 s at－ trnded：also W2AFZ．TG9RU／HP1，TG9RC／HP1 and TG9LN．K2RPMI．W5ENZ and W 4 DXJ were recent visitors to the Zone．Pacific Siders ryport netivity on 6 and 2 meteri，KZ5MW（WA5SHN）Qsiss to N．Caro－ lina for a discharge．The CARC club station，KZ5P． is on the air again with a Drake TR4，RV4 and L4． C．PIFG visited with KZ．JJC．KZ5LM finally joined the s．s．b．ranks with a Swan s00．KZ5CT and KV5S． 1 put up a new so－ft．tower and expect to be going real strong with their TR3 and a new Hunter Bandit． KZ5AJ raised a two－plement quad．Tratic：KZ5WH 185．KZ5AD 96，KZ．5OA 93，KZ5NH 84，К75MV 50，KZ5－ FX 45，にZ5WR 36，KZ5OB 27，KZ5JC 18.

EASTERN FLORIDA—SCMI，Jesse H．Morris．W4－ MVB－Asst．©（MI：William J．Blasingame，Jr．．WI4－ NEV．SEC：W4IYT．Asst．SEC：W4FP．RMI C．W．： W4ILE．RMI RTTY：W＇tRW゙M．PAMI 75MI：W4（）cIX． PAM 40MT：W4SDR．V．H．F．PAMI：WA4BMC．WA4NEV has been appointed Asst．SCM of Eastern Floridn．This has berome netessary hecause vour regular SCM must spiend two or three months out of the state．In my absence Bill will attend to the traffic reports and all routine matters．．Il correspondence directed to me will he forwarled by Bill．The resignation of W4TUB as PAM for 75 meters has brought about a rhange in the PAM status．It was decided to loave the number at two ior the time heing，with W4OGX taking over us PAM for 75 meters and W4SDR remaining as P．AM for 40 meters．It is with deep regret that we must announce that the followine Florida amateurs have joined the Silent Kevs：W4WSW，W4GOX，K4HNS，W4DVK．W4－ HDC and K4HH．Gur sympathins are extended to all the families．WN4FLW now is WB4FLW．Ted received his Advance Class licnnse and is already at work on the traftic nets．The SF．T in Florida has hern termed a success by W4IYT．It is too early to toll hut the change in time might bring about our best effort in Eastern Florida．W＇3CUL and W3VR have ruturned to Florida inr the winter，as is obvious by the tratfi－listing below．Welcome bark，Mat and Al．Vero Beach ARC officers for 1968 are W4LF．P，pres．：WB4ABN，yice－ pres．；K4EL，secy．；W．A4QVJ，treas．North Florida

LATEST EDITION OF THE

 A.R.R.L.

 A.R.R.L. WORLD MAP

 WORLD MAP}

COMPLETELY REVISED!

C 1 new edition of the $A R R L$ WORLD MAP containing completely revised up-to-the-minute data. It is printed in eight colors by Rand-McNally, expert map makers.
e $\AA_{\text {s soon as you hear a }} \mathrm{DX}$ station, you can see exactly where he is - the country prefixes are not just listed in the marginal index; they're printed on the countries, themselves. Continental boundaries and time zones are plainly marked.
\boldsymbol{P}^{2} high, this new ARRL World Map is easily read from your operating position.

$$
\$ 2.00 \text { POSTPAID ANYWHERE }
$$

The American Radio Relay League, Inc.
 NEWINGTON, CONN. 06111

Amateur Radio Society otficers for the now year are K4DSN，pres．；WA4VZF，vice－pres．；W4ORT，secy．： W．A4T IQ．ireas．：W．AlfJ． W3CUL／4 1754．WA4SCK 606，WB4EPD 435，W4ILE 359， WB4．1IW 234．W4FP 276．W＇A4W＇ZZ 262．W゙I4FCII 230 ． W．A4NBT 224，K4YSN 21s．W4FPC 209，W3VR／4 175 ， W4SDK 149．W4ぶMK 142．L4LEC 137，Б4EBE 119． W．A4OHO 108，K4COO 101．W．A4UDH 98，W．A4TWD 83 ， W．A4NBE \％W，W4AKB 79．W4GUJ 78．WB4DDO 71． W4EHW 71，K4SHJ 71，W4MVB 69，W4TRS 66，K 4 EBO 61．K4D．AX 59 ．W4OGX 59．WA4FJA 58．W4SME 57. WB4DSP 50 ．W4TYT 46．WA4CIQ 44，WB4HKP 33. W4YPX 33，W4PBK 32．W4ZAK 29．W4DVO 27，K4I．PA 25．WA4EYU 23，Ki4EX 23．W4KHY 22，W4LEP 22. W4．NGR 22．W4TJM 21．WN4FSF 20．W4GDE IS， W4CWI 17．WA4UFO 17，W4VPQ 17，WN4FLW 15．W4－ BKC 11．W．14TJS 11，W．A4PWF 9，K4BLA 7．W4MSH 7，K4RCP 7，W4YJY 5．W4CBE 1．（Dec．）WA4EYU 26.

GEORGIA－SCM．Howard L．Schonher，W4RZL－ 1sst．S＇M：James W．l’arker，Sr．W4KGP．SEC：W4－ DDY．KM：W4CZN．PAMs：WA4WQU，K4HQI．The Georgia single sideband Net is ennsidering the possi－ bilities of a late session．K4HQI and WB4FMJ report gnod 50－Mc．activity，pussible F゙2 TIX Jin． 2 and 3 with Whes in aboit noon each day．KH6NS was reported heard about the same time．On the th and 5th the W5s were coming through．Muring this period MUF checked to the the Mr．Athens area 2－meter artivity was tripled during＇67．The Lanierland Amateur Radio Club worked 13 states during the V．H．F．SS．IF4FEW has ： new TR－108．K4UJL is active again on v．h．f．WN4CTB has a 22er and is building a dream shack．WB4EMQ has a 32 －element colinear．The Atlanta Area 2－Mnter Net operates 14.5 .350 at 0105．WB4 1 PC QRD Yiet Naus．

Net	Freq．	Days	Sess．	ONI	OTC
GSSB	3975	2000 DV.	47	1291	549
GSN	3595	$0000 / 0300 \mathrm{Dy}$.	82	662	381
GTN	3718	2900 Dy.		132	35

WB4EMF built a 300 －watt transmatch for $\$ 5.00$ ．Li4RIN， it mraduate sehool，has four more hours ior MS in Phvsics．W4ISS has starked＂J＂beams for 2．W4HYTW went hack to hamming atter wasting time with higher learning．Traftic：W4RZL 48R，W4FOE 474，WA4WQU 295．WA4RAV 191．W4FDN 174．W4PIMI 143．K̈4BAI 103. W4IDDY 81．K4．JFY 73．WB4．1．JR 62．WB4COD 57 WB4EMF 50，WA4JES 38，WA4LLI 33，K4RIN 33，W4－ ARH 9，W4ISS 3，K4TAK 3，W4HYW 2，WB4APC1．

GEORGIA QSO PARTY
 May 11－13

The seventh annual Cicorgia OSO Party is sponsored by the Columbus Amateur Radio Club， Inc．and starts 2100 GMT Saturday May 11 and ends at 0300 GMT Monday May 13． 1968.

There are no time or power restrictions and contacts may be made once on phone and once on c．w．on each band with the same station． Exchange：OSO number，RS（T）and OTH； county for Georgia stations；state，province or country for others．（Georgia to Georgia contacts are permitted．）Scoring：Each complete contact counts 2 points．（ieorgia stations multiply their total QSO points by the number of different states and Canadian provinces worked．DX sta－ tions mav be worked for OSO noints hint do not count as multipliers．Out of state stations will use the number of Georgia counties worked for their multiplier（a possible total ot 159）．Awards： Certificates to the highest scoring station in each state，province．country，and Georgia county． Second and third place awards will be made in sections where additional recognition is decmed to be warranted．A plaque will be presented to the Georgia station submitting the highest s．s．b． score and one to the station with the highest overall Georgia score．Placques will also be awarded to the highest scoring out of state entry and to the Ceorgia club with the largest aggregate soore．Frequencics：c．w．， $1810 \quad 3590$ $7060140602106028060 ;$ s．s．b．． 3975723014290 21410 28600；Novices 3725717521110.

Your log should show date and time of con－ tact．stations worked，exchanges，band，type of emission and multipliers claimed．Include a signed declaration that all contest rules and operating regulations have been ubserved and mail your entry no later than June 3 to：Colum－ bus Ámateur Kadio Club，Inc．，att．Charles K Epps K4BVD， 1638 Forest Avenue，Culumbus， Georgia 31906.

See a Factory Demonstration of the complete line of WATERS EQUIPMENT, including the new 381 Transceiver System, 10 A.M. to 4 P.M., Saturday, April 20th, at ARROW, 97 Chambers St., New York City.

10-15-20 METER MONOBEAMS

FOR

MORE

DX PUNCH

Cush Craft-Monobeams combine superior elec.

 trical ond mechanical featuros. with - the bost qualty maferials and workmanship. They will F . grovide erelíbble doy do day amateur communicotionswand thot waxtra- DX purch, when n neided:

A28-3 10 Meter, 3 Element, Boom 10'
A28-4 10 Meter, 4 Element, Boom 18'
A21-3 15 Meter, 3 Element, Boom 12'
A21-4 15 Meter, 4 Element, Boom 22'
A14-2 20 Meter, 2 Element, Boom 10^{\prime}
A14-3 20 Meter, 3 Element, Boom 20^{\prime}
$\$ 31.95$

SEE YOUR DEALER OR WRITE WFOR CATALOG

Grand Central Radio, New York midtown headquarters for famous Hallicrafters.

New! Hurricane SR 2000 Transceiver $\$ 995$. P-2000 AC Power Supply \$395.

Now a 5-band amateur transceiver from Hallicrafters with professional electronic engineering. Exclusive amplified automatic level control. Full coverage provided for $80,40,20,15$ and 10 meters. See it at Grand Central Radio.

> All Hallicrafters in stock for immediate delivery. Complete Audio Demonstration Department.

Write or see us for the best deal. You know you can depend on us.
 Grand Central Radio
124 East 44th Street. MU 2-3869. One door east of Lexington Ave.

WESTERN FLORIDA-SCM, Frank M. Butler, Jr., W4RKH—SEC: W4IIB. FAMs: (H.F.) WA4ZGI. (V.H.F.) W4UUF. RM: W'4BVE. Section nets:

Net	Freq.	Trime	Days	Sos8.	QNI	UTC
WFPN	3957 kc .	2300Z	Daily	31	701	94
(2FN	3651 kc .	2330/0300Z	Daily	62	\cdots	

Pensacola: The Five Flags ARA now has its own quarters at the Red Cross office and a Clega 2eer. loaned by h1ZER/4. WABSWGi4 is moving to Milton. W4UUI has been appointed V.H.F. PAM and OVS. W'7BNR/4 improved his signal on WFPN with a new 75 -meter antenna. Fort W'alton/Eglin AFB: The EARS station. W4SRC, is back on :ill hands with the erection of tri-band beam. EC WB4FER conducted a surprise SET drill ou 145.2 Mc. Detuniak siprings: L4liEV/4 is nuw equipped with 2 kw . of emergency power. Panama City: Buy Gounty G.D. moved its 2 -meter net to 145.2 Nic. to be compatible with wther N.W. Fla. counties. Port Sit. Joe: EC K4RZF installed anteumas ior 75 : and : meters at the new county C'D. IIq. Trallahassee: W'4.JGD was rppointed URS and acts as liaison between QFN and WFPN. Cross City: K1FVW/4 is stationed here with the USAFF: he runs 2011 watts to a vitienl. here with the
Traffic: K4VF 426. W4IKB 197, W4BVE 110, WB4GI'S 79. WB4DHZ 42. W7RNR/4 33, WA4JIM 32, WB4FLF 12, WA4EOQ 8, WA4EPH 4.

SOUTHWESTERN DIVISION

ARIZONA-SCMI. Floyd C. Colvar. WTFKK-PAM : W7C.AF. RM: K7NIIL. Congratulations to K7NOS on receiving his General Class license. WA7ERH has u new mobile installation in a Chevy II. ORS K7MITZ is recovering atter a period of time in the hospital. The wheels are turning toward preparations for the 1968 1 KRL Southwestern Convention to be held in Phoenix this fall. K7PIO is doing a fine iob as editor of the Trio Neurstetter, a publication of the Arizona Amateur Radio Club. Congratulations to WA7IFD on receiving his ARRL Code Proticienc: Certificate for 20 wiving his trime The Tucson amateurs welcomes ull newcomers to the area to meet them on 145.350 Mr . New wffiers of the Arizona Amateur Radio Club are $W 7 \mathrm{LXX}$, pres.; W7CEL, vice-pres.; W7CsZ, treas.: W.17DGY, werv.; W7CAF, act. mer.; K7PLO, editor. Truflic: K7NHL 302, K7U'Y 146, WV.17IFD 18, W7FKİ 11.

LOS ANGELES_SCMI. Donald R. Etheredge, KB-UMV-NEC: K6QPH. Assi. SEC: KBiVQ. P.DM: W6MLZ. RMs: W6BHG, WA6KZI, WB6BBO. Congratulations are in urder tor WB6GGL, W6GYT, W B6BBO and W6MLF on making the KPL on dan. traftic. Late kudos to WB6PKA on making the BPL in Dec. 'R7. hibefg now is licensed as W6EL. A new member of the WhLS Clmb is K6YDM. The Los Angeles Council of Radio Clubs has elected WGMLZ as chairman and WGUEI rice-vhairman. Operation "Hello Mom" for servicemen in Vietnam handled 600 pieces of traffic from the Southwesteru. Division Convrution iocation. The Qucen Mary is being prepared for amateur radio operntion by the Associated Kadio Amateurs of Long Bearh. The output of the KOMYK repeater is heing changed. K6E. 1 is doing some antenna maintenates after his vaeation. WGFD is host to out-of-state gulests presently WB6UHF is telephone melnving. WB6KPN recentlv introduced a park of ('ub scouts to ham radio. WB6OLD notes a new :addition to the gear collection. namely an NC-270 receiver. WB6TQS is a newly-qualified ORS appointer. WB6KGi is newly-tlected to NC:S uf SOCON 2. WGHEJ finds time a premium because of job requirements. W'6.AM reports hetter recrption is it result of cooperation of the Edison Cn. WGRCV reports a 40 -meter dipole up. WVKKW, Southwestern bivision ARRL Director, is Jistributing a questionnaire to Lengue members in preparntion for the leakue's Bonrd Meeting. John also has a new SR-2000 transceiver. WB6GAB is Inoking for 432 -Mc. wallip-talkie ruthusiasts. WGTXJ has been doing quite a bit of 40 -meter motiling recentlv. The Rolling Hills HS Kadio club reports WB6YVO prexy: WB6PKil. vice-nrexy: WBOWMIF. treas.: WBE'TOV and WB6TOA. directors. The TRW Radio Club now hocts licensing classes. Contact WB6WDS. The sin. (:al. V.H,F. (luh). K6BPC. is attempting to secure equipment and parts for the Aalesund Rallo Club of Norway. Free transpurtation in all donations of any size/weight has been arranged. The club is interested in component parts for v.h.i. wh.f. use. Inyone interested in tratfic-handling or AREC activities is invited to enlifict the si:M for mill particulars. Traflic: (Jan.) WH6GGL 1048, IFGGY゙H 766. WB6BBU 572. WOMILF 522. F6CDW : 10 , WAGKZI 194. WB6TMC 90 W'B6OLD 84. WB6TOS 83, WB6PK. 79 , T6BHG 67. KRASK 2. W6PCP 18 . W6HLIJ 16. WB6.AFL 12, K6EA 12, K6UMV 12, WGAM 10, WGUSY 8, WB6-

THE DAYTON AMATEUR RADID ASSOCIATION

17
 ${ }^{\text {rh }}$ ANNUAL DAYTON HAMVENTION

Sałurday，April 27， 1968
WAMPLER ARENA CENTER

DAYTON，OHIO

－Technical Sessions
－Women＇s Activities
－Exhibits －Flea Market
－Awards
－Banqueł

FOR INFORMATION．MAP，ACCOMMODATIONS，WRITE DAYTON HAMVENTION，BOX 44，DAYION，OHIO 45401

ATTENTION，HAMS！

 PRICES CUT！

AVAILABLE THROUGH YOUR LOCAL DISTRIBUTOR

EFFECTIVE NOV．15， 1967
DOW－KEY COMPANY
2260 INDUSTRIAL LANE
BROOMFIELD，
COLORADO 80020

QMF 7，W6FD 6，WB6SXY 5，W6TN 5，W6YRA 4， F6DGH 3，K9ELT／6 3，W6RCV 2．（Dec．）WB6PKA 144. （Sept．）W6FD 8U．W6HUJ 19.
ORANGE－SCM，Roy R．Maxson，W6DEY－ Congratulations to SEC WVA6ROF，RM K6IME and the 1007 turnout of ARPSC officials and members and fel－ low amateurs of the Orange section on their participa－ tinn in the SET．A number of messages addressed to the SCM indicated activity of various members and groups and your sEC received 71 messages from AREC members，which represented many sources of disaster information．Kindos go to EC WB6KVM for the excellent job he did as NC of the 75－Meter Net and the planned use of mobiles and emergency－powered stations during simulated disaster tests．Thanks to all for your as－ sistance，and if you missed this one be prepared for the next．W6CPB telephone relayed from the USS Froniter to OC．K6IBI has RTTY and is having a hall．WBolvMX is a new General．W6BUK is getting tired of rramped quarters and hopes to have 4 new mohile home shortly．W＇6FB had as visitors IF6．AX． W6BTM．W6CWT and WA6DZR．He also participated in the SFT and in the OOTC QSO Party：W／E nt Tan．27．WB6CQR，EC 2 meters has appointed as Asst． ECs WA6VPP，WB6WOO and WB6HJL．K6GMA worked Encland on 75 meters．Traffic：（Jan．）K6IBI 355，F6－ LEFH 341，WB6．IFO 309, WA6ROF 248 ，K6IME 90 ． WB6RVM 74．WB6TYZ 59．W6WRJ 47．K6MCA 39， W6PQA 8．WB6TIF 7，IT6FB 6，IVB6UCK 6，WGCPB 2．（Der．）W＇B6TYZ 222.

SAN DIEGO－SCM，James E．Fmerson．Jr．，WB6－ CNMM－After eight hardworking years as SEC for the San Diego section WBSK has decided to take a well－ deserved resi．Stepping into these all important shoes is WA6KHN．Even though Walt is one tough Marine he＇ll need your help．The San Diego County Amateur Radio Council＇s new officers are W6BKZ，chmn．；K6KX rice－rhmn，；WA6TAD，secy．；W6NSR，treas．With our Division Convention heing held in San Diego in＇ 69 these neople have a lot of hard work ahead of them． Let＇s all wive them uur support．The S．D．V．H．F Cluh＇s officers for this year are WA6OSB，pres．；WB6－ AXW，vice－pres．；WAGSKT，secv．－treas．Aporting a new 1．1－kw emergency generator is WA6QAY．Our annual SET was a huge success，thanks to WB6KSA，your newly－appointed PAM．W6BGF made the BPL in Jan SNix local hams aconunted for 142 check－ins during the〇⿵⿰丿㇅口⿺辶 67 SCN ressinns．As a result we have 3 new ORSs in our section，K6CAG．WA6QAY and IV6YKF The SOBARS reports the following officers：W．A6DDD， pres．：W6GBF ，vice－pres．：WA6TAD，secy．WB6RES treas．UC at SD boasts a new ARC with WB6KMH in the pres．chair，WR6WSV，vice－pres．；and WB6WSU， secy．－treas．This cluh provided communications at the National Glider Meet at Correv Pines in Heb Traftic K6BPI 8788．W6EOT 5．57，W6BGF 516，W6VNQ 435 K6CIC シ2x．WFT．RU 215．W6ECP 124．WB6GMA 91 ． W⿵冂人 VKU 2.

SANTA BARBARA—SCM，Ceril D．Hinson，WA6－ OKN－SEC：K6GVr．W6ORW was active during the CD Party with 176 contacts in 51 sections．W6ORIV is very active and I had the pleasure of working him during my recent artivities in TI2－and TI8－Land．Look for W＇ 60 RW on 2 meters also as he is completing his v．h．f． rig．WR6BVZ has a Model 18 from MARS and will be R＇TTY as sonn as the converter and a．f．s．k．units are monstructed．K6GY was active during the recent SET lutal his KWAT－2 failed．Our SEC，I6GV．reports some 13 other local stations active during the sET W6OED is a prospective KMI appointe．WB6VKN just received his General．W＇6PPZ has onmpleted a home－ brew 1.5 －meter beam．W6／RRR is working old South Dakota buddies on 14．240．WB6FOG is recovering from his illness．K6TOE is on c．w．aguin after trying phone for six years and is having a hall，WA6QDA hss moved to Arrovo Grande but still is active in the Estero ARC． WNGYRZ is trying his hand at 15 and 40 meters．WN6－ YWF has 3 months Novice experience on 15 and 80 WA6QD．A is putting up a new＇rH3 beam．lours truly is happy to be hark after a month on the sailing schooner The Strit nf Insritch during which time the TR－3 performed well and l had the pleasure of talking to many friends from as far away as 5 degrees north． Traflic：WGOED 12．W＇6ORW 9．W＇6JTA 8.

WEST GULF DIVISION

NORTHERN TEXAS—SCM，L．L．Harbin．IV5BNG tsst．SCM：E．C．Pool，W5NFO．SEC：W5PYI．PAMI． W5BOO．RN：W5LR．I am worried about the attitude of many hams，at least in the Northern＇Iexas section， about the new inceutive liceusing regulations rerently adopted by the FCC．I am still getting complaints abolit the new regulations adopted by the ARRL．The lieague did offer suggestions along with sume 200 hams who

ORDER: ZZMA103 package. \$279.95 (\$14 monthly)

OR...

A Complete 80-40 Meter FIXED STATION PACKAGE!

Includes 1 ea.: Duo-Bander 84, AC48 250 watt supply, 80/40 Duo-Doublet Antenna kit, 350 mic., Mic. Plug, PL259 Plug, UG176/U Reducer and 100 ft . RG58/U coax cable.

ORDER: ZZMA104 Package. \$205.00 ($\$ 10$ monthly)
ORDER: ZZMIA105 Package. $\$ 235.00$
(Same as above with 400 watt AC supply) (\$12 monthly).

WORLD RADIO LABORATORIES, Inc.
QST-g28
3415 West Broadway Council Bluffs, lowa 51501
Please ship me the following:
i] Duo-Bander 84 66MA059 \$159.95
\square Duo-Bander MOBILE Package ZZMA103 @ \$279.95*
\square Duo-Bander Fixed Package ZZMA104@ \$205.00*
1) Duo-Bander Fixed Package ZZMiA105 @ $\$ 235.00^{*}$
\square Your FREE 1968 HAN1 Catalogr
II My Check or Money Order for \$ \qquad is attached.
LI Charge it to my WRL, charge acct. \# -
*Sorry - these reduced prices are without trade. Write us firr trade-prices
Name \qquad
Address
City \qquad State \qquad Zip

BALUNS

＂THAT DON＇T BREAK DOWN＂ BROAD BAND 3.4 to 50 MC 1：1 OR 4：1 RATIO
NOW baluns made the way they should be MADE．ONE FOR DIPOLES－ONE FOR BEAMS，AND AT THE RIGHT PRICE．

Order from your Distributor or Direct． Direct Shipment Prepaid．

6151 DAYTON－LIBERTY ROAD DAYTON，OHIO 45418 PHONE：AREA CODE 513 －． 835.5028 ＂The Quad People＂

had the necessary energy and interest to write to the FCC about its proposed rule－making．Why don＇t you read up on the regnlations and tind out who actually makes the rules．I believe you will find that the League does not make the rules so why hlame thern．WXGIU／5 is doing a fine job as OO．W5PBN has been anpointed OO．W5HRM was invited to give talks to two civic clubs in Mineral Wells，Tex．According to the write－up in the Mineral Wells paper he did a tine job explaining the why and wherefore of the amateur offering a public service．Ralph explained how the amateurs got started and their contributions to radio in general．Ralph is EC for Paln Pinto County and is very active in RACES． The $\overline{\mathrm{K}}$ C C Club of Ft．Worth，the Irving ARC and the Arlington ARC are holding classes it theory and code for upgrading licenses．K5W＇XW has a new four－element 10 －meter heam．W5SDHR is now a real live sailor nper－ ating MM and is near the Azores．Gene is on 14.317 s．s．b．Listen ior him on that trequency．K5IMD has made DXCC．W5GYE，at active v．h．f．ham，is in Waco now．Bill recently moved to＇Trexas from Alabaua．The 7290 Traffic Net reports 44 sessinns， 2174 stations with 1063 G＇TC．Tralfic：（．Jan．）K5BNH 691．W．A5Q（2R 70. W5PBN 45，W5．JSM 33．W5BNG 17，W8GIU／5 16，IF5LR 5．（Dec．）WA5QQR 63，W5PBN 41.

OKLAHOMA－SCM，Cecil C．Cash．W5PMI－SEC： WA5AOB．PAMs：75－W＇5MFX．40－K5TEY．6－W．A5JCU． 2－K5ZCJ．New ECs：W゙A5DZP，Ponotoc Cn．：W5KOZ Okla．Co．Congratulations to Extra Class K5TCG and Griprals WA5SER and W．15SEC．The new pres．of the Central V．H．F．Club is W5MXL．Yice－pres．is G．5VRL， with WA5QYK，secy．：WA5，JGU，treas．WASKZA has completed the hasic electronics extension course from U．s．Army signal school．The Jan．NET operation was a great success．The Okla．Co，proun simulated a tor－ nado（for which Ukla．is so famous）and operated out of the c．d．emergency shelter and the mobile van on 75． 6 and 2 meters，plus constant contact with the WX station，Highway Patrol．Police．Sheriff＇s Dent．，Fire Dept．．（．AP and Red Cross．Garfield Co．was on 75 and 2 meters with two－state coverage through Wichita and Tulsa 2 －meter relavs rud simulated a lost man in the wilds of the great plains of Western Okla．Comanche Co．was on 75 and 2 meters with direct contact of all outlying communitips with the e．d．．Red Cross and Police，simulating radiation fallout checks and reporting to the hase station by mobile．Mnskogee Co．was on $7 \dot{\circ}$ with trallic to National and State Hq．Net reports：

Net	Sess．	ONIs	OTCs	Net	Sess．	ONIs	OTCs
OTZ	23	98	167	SSZ	19	77	159
OPON	26	184	70	STN	26	672	208

Traffic：K5TEY 1525，W8V＇DA／5 147．W5PML 65．WA5－ IUB 52．W． 5 KKZ．47，W5KOZ 42．W5MFX 41，W5FKL 40．K5DLP 38．W゙5TOR 29．W．A5D\％P 28，WA5IMO 27. TV5UYQ 23．WA5QIQ 19．W5PWG 13，L5CAY 10，K5－ CBA 8，K5ZCJ 8，K5N PP 6，H5UCX 4.

SOUTHERN TEXAS—SCM，G．D．Jerrv Sears，IV5－ AIR－ぶEC：K5QQG．PAM：W5KLV．RM：W5FZY． Congrats．fellows，on partictpation in the \＆ET，the tirst Southern Texas has had simulated．F＇or several vears it soems it．always turned wat to be the real thing． E2EIU／5 reports 1325 contacts in the Phone and C．W． CD Party．WA5QkE now has his Adranced Clasm li－ cense and is working on his Extra．W5AC has a new ESCO RTTTY monverter and will be on the air with 19 and 100 soon．K5LQJ，for W5．AC reports operution an both phone and c．w．in the ARRL UX contest． The first wreek end on phone over 200.000 points were made．PIMT W5KLV reports good response for the Na － tional ARRL Convention，also the STEN Convention coming up in lierrville Mav 3，4 and 5．FC K5UZR advises he had plenty of practice during the flood on Jan． 18 in San Antonio so did not nperate in the SET． F．C W5TFW advises that new ofticers of the port Ar－ thur $4 R C$ are WA5JTZ，pres．：WA5DC＂G．Vice－pres．； W5CNH，secv．－treas．；W．A5HGH，uct．；W5FCD，his－ torian．The El Yaso．W．5ES．bulletin mports the rinh is starting new eode and theory classes．Goliad County now has a licensed aunteur．W A5TMT．Cint．William Nills now is located at Fort NInnmouth．N．J，in thi Signal Corns．．operating as W． $15 \mathrm{TMIT} / 2$ ．Brownsville HC W5ER＇s Off Reannane hulletin lists new officers for the Texas Southmost ARC as WA5GZI，pres．W5KFI vice－pres．；W5KR，secy．：W．A5ISM，treas．；W．A5HBI， K5SJA and KSEIIY，directors：and ulso indicates two new amateur radio clubs are heing formed．W5HBL heads a group of Union Carbide mmplovees and a new clah is being formed at St．Joseph＇s Academy．Traflic： （Jan．）W．15INT 344．K2EIU／5 182．WASQKE 127，W5－ R，JA 109．WA5GZX 107，W．A5NRC 107，W．A5T．VJ 101. W5EZY 98．J5TIZR 98，W5．AC 01．W5SBQ 79．W5KLV 55，WA5DIK 42，WA5MIXY 38，WA5IQL 37，W5AIR 33，

BARRY ELECTRONICS

METERSI New Lot JUST ARRIVED. ${ }^{\text {J MADE IN U.S.A. All unused in original manufacturers cartons. This }}$ special purchase allows us to offer these high quality meters at about half the uriginal price. For example:

	2! $2^{\prime \prime}$ Square Plastic Case	3!" Square Bakelite Case	$316^{\prime \prime}$ Square plastic Ciase	41/2" Square Bakelite Case	42" Syuare Plastic Case
Ideal Model\#:	\#250P	7350 B	7350 P	${ }_{7} 4600 \mathrm{~B}$	460 P
"D.C. VOLTMETERS"		\$4.99		\$6.99	\$6.99
0-15 VDC		4.99	\$4.99	6.99	6.99
0-50 VDC		5.99	5.99	7.99	7.99
0-60 VDC				7.99	
0-150 VDC	\$4.99	4.99	4.99	6.99	6.99
0-250 VDC	4.99	4.99	4.99	6.99	6.99 6.99
"A.C. VOLTMETERS"					
0-3 V.A.C.		4.99		6.99	6.99
0-10 V.A.C.			4.99		
0-15 V.A.C.			4.99	6.99	6.99
0-50 V.A.C.			4.99	6.99	6.49
0-100 V.A.C.		4.99	4.99	6.99	6.99
0-150 V.A.C.					7.99
"D.C. AMMETERS"					
0-1 Amps.		5.99		7.99	7.99
(-2 Amps.				7.99	
0-3 Amps.		4.99	4.99	6.99	6.99
0-5 Amps.		4.99 4.99	4.99 4.99	6.99 6.99	6.99 6.99
0-15 Amps.		4.99	4.99	6.99	6.99
0-25 Amps.		4.99	4.99	6.99	6.99
"D.C. MILLIAMMETER					
0-1 Ma. D.C.		5.99		7.99	
0-5 Ma. D.C.	4.99	4.99	4.99	6.99	6.99
0-10 Ma. D.C.	4.99	4.99	4.99	6.99	6.99
0-25 Ma. D.C.	4.99				
0-50 Ma. D.C.	4.99	5.99	5.99	7.99	7.99
0-100 Ma. D.C.	4.99	5.99	5.99	7.99	7.99
0-115 Ma. D.C.					7.99
0-200 Ma. D.C.	4.99	5.99 5.99	5.99 5.99	7.99 7.99	7.99 7.99
0-500 Ma. D.C.	4.99	5.99	5.99	7.99	7.99
"D.C. MICROAMMETE					
0-50 Mu. D.C.			8.99		
0-100 Mu. D.C.		7.99			9.99
0-200 Mu. D.C. 0-500 Mu. D.C.			7.99	9.99	9.99

FULL-WAVE RECTIFIER PLUG-IN TUBE SUBSTITUTES. Replaces 5U4, 5V4, 5Y3, etc. $\mathbf{\$ 2 . 9 5}$ PREMIUM 5R4 TYPE PLUG-IN SUBSTITUTES. Rated for 4,000 PIV (@) 1 Amp. F.W.C.T. \$4.95. JENNINGS UCSL-1000 VAGUUM VAR. CAPACITOR. 10 to 1000 Mmid , $\boldsymbol{\omega}_{\mathrm{u}} .3 \mathrm{KV}$. With Tuning Motor, which can be removed. Unused, orig. Gvt. boxed. Lab-tested and certified O.K. $\$ 79.00$.
JENNINGS UCS 300 VAGUUM VARIABLE GAPACITOR. Tuning Range: 10 to 300 Mmfd @ 7.500 Volts. Supplied with tuning head and mounting brackets. Shaft dimensions: $1 / 4^{\prime \prime}$ diameter x $1^{\prime \prime}$ Long. Unused, Lab Tested. $25 / 8^{\prime \prime}$ W $\times 2!2^{\prime \prime}$ H $\times 91 / 4^{\prime \prime}$ Long. $\$ 65.00$ including shait. (Cat. $\boldsymbol{t} 19-249(\mathrm{rA})$
KW TRANSMATCII KIT (using all Millen new factory parts) ... (See Oct. 60 ()ST article on Lew McCoy's Transmatch page 38) Less Chassis. Meter and Coils. KW Kit (a) \$45.66. 150 Watt Kit (a) $\$ 34.00$. Each F.O.B. New York City. With coils $\$ 7$ extra.
TS-323/UR HETERODYNE FREQ. METER.

Like new. W/xtal \& Cabinet (less calibration book) Ideal for VFO \& other expermt'l use. $\$ 69.00 \mathrm{FOB}$ warehouse, (ra.. (Cat. $\frac{H}{119-254 \mathrm{GA} \text {) }}$ THERMADOR MOD. XFMR. Pri: 6000 Ohms. C.T. Sec. 2200, 4600 Ohms. Freq. plus or minus $1 \mathrm{db}(200-4000$ CPS). 「est: 5000 V. Will Modulate 1 KW R. F. Inusued, Cat. \#19-255Crit. F.O.B. warehouse, Cra. $\$ 33.00$.
2.0 MHY (त̆b 100 MA. RF ENCAPSULATED CHOKE. 25ć each. (100 or more $20 ¢$ each) ('at. "19-142.
B \& W \#3004 MINIDUCTOR. ${ }^{\prime \prime \prime}$ Biam. $^{\prime \prime \prime}$ Long; 32 turns per inch. Cat. \#19-143. Inductance: approx. 13.7. (Keg. Net 70ć) Special $25 d$ each (100 or more (ä) 20 d each.)
FACTORY FRESII TUBE TYPE 572B AT $\$ 15.95$ (two or more at $\$ 14.95$ each)

ALUMINUM DIE-CAST BOXES

Excellent for equipment building. Endless applications for Mfrs.. Labs, Experimenters, etc. Excel. for Junction Boxes. All have unique guide slot mounting systems for circuit boards. High standard of construction. Flanged edge construction (inner lip, insures tight seal). Strong, Kugged-1 Light: five sizes:

$$
\begin{aligned}
& \text { For } 50 \text { or more of each size write. }
\end{aligned}
$$

1,000 Volt (P.I.V.) @ Amp. Diodes. 30 c each (100 for $\$ 25.00$)

Also save on unused, lab-certified (R.F. tested) surplus
and factory terminations. lobber-boxed receiving tubes in stock at $\mathrm{oU}_{\circ}^{\prime \prime} \%$ (and better) oti list.

[^27]Namc . ritle

Company .
Address. .
City . State Zip

GLEN SEZ:

Call or write for our special deal on good used equipment. Here is a partial list of our inventory.

National NCX5 MKII with AC power supply
\$529.00
Hallicrafters SR160 with DC power supply
249.00

Drake T4X with AC power supply 380.00

Hallicrafters HT44 249.00

Heath HW-12 90.00
Heath SB300
239.00

Drake R4A with speaker 339.00
National HRO500 900.00
Drake L4
575.00

Squires-Sanders SSIR with SSIRs and SSIS

Adirondack Radio Supply, Inc.

185-191 W. Main St.
Amsterdam, N. Y. 12010 518-842-8350

RADIO TELETYPE EQUIPMENT TELETYPE MODELS 28 ASR, 28 KSR, 28 LPR, 28 LARP, 28 LXD, 28 LBXD1, 14, 15, 19, Page printers, Perforators, Reperforators, Transmit-ter-distributors, Polar Relays, Collins Receivers 51 J-3, R-388, 51 J-4, R-390A. Iammarlund SP600JX. Frequency Shift Converters.
all TRONICS-HOF ARD CO.
Box 19, Boston, Mass 02101 Tel: 617-742-0048

Sending becomes fun instead of work with the SEMI-AUTOMATIC Vibroplex. It actually does all the arm-tiring nerve wrecking work for you. Adjustable to any desired speed. Standard models have polished Chromium top parts and gray base. DeLuxe modcis also include Chromium Base and red finger and thumb pieces. Five models to choose from, priced at $\$ 19.95$ to the 24 K Gold Plated Base "Presentation" at $\$ 39.95$.

VIBRO-KEYER

Works periectly with any Electronic Transmitting Unit. Weighs 28 多 lbs., with a base $312^{\prime \prime}$ by $41 / 2^{\prime \prime}$. Has Vibroplex's finely polished parts, red knob and finger, and thumb pieces. Standard model \$18.95; Detuxe model includes Chromium Plated Base at only $\$ 24.95$.

Oider today at your dealers or direct
THE VIBROPLEX CO., INC.
833 Broadway New York, N. Y. 10003

K5HMF 25, W5TFW 20. K5WYN 5. (Dec.) K2EIU/5 170, W5AC 119, W5Q.J. 94, W.15MAY 90. (Nov.) WA5INZ 52s. W5.1C 80.

CANADIAN DIVISION

ALBERTA-SCM, Harry Harroid, VEGTG-sEC: V'E6l'K. PAM IPSN: VE6ADS. ECs: V'E6SA, VE6SS, V'E6XC, VE6PL, V'E6AFQ. ORSs: V'E6BR, V'E6ATH, VE6.'TG. UPSs: JE6HM, I'E6SS. JE6AFQ. UU: VEGHM, VEGTY. OBS's: V'EGHM, VEGAF. Make your registrations now tor the International Giacier-Waterton Hamfest to be held at Waterton Lakes National Part July 20-21. Suppre will be served at 6 p.as. Sat. and breakfast Sun. ut 7:30 A.m. with a good program for all. Make your own arrangelnents for accommodations. Preregistrations $\$ 3.00$ per amateur and family. All monies should be sent fis the Hamiest Committee, P.O. Box 54, Ked lleer. Alberta; preregistrations cut-off postmarked July I. Ve regret having to report the passing oi VE6AHW, Hinton, Aherta. The Vulcan Club should soon have another class ready for exams. Calgary, Edmonton and Red Deer are busy these days making for the liternational Hamfest, riong with provincial ARLA, with the Border Area Club looking after the supper and breakfast and the lulcan Club looking after commmencations. Traffic: VE6ATH 160,
 VE6SB 19. VE6SS 17, VE6.JM 16, VE6AO 15, VE6ARU 12. VE6ATG 10, VE6TG 10, VE6IC 8, VE6AKA 5 V'EGBL 4, VEG.1FQ 3. VE6PZ 2.

BRITISH COLUMBIA-SCM, H. E. Savage, VE7FB The SET was the best yet tor B.C.; 3755 had 110 check-ins during the twelve hours in two parts. The East Kootenuy IRC is looking for the history. Iny past menbers have information? VE7AS had six teet of water on his basement during our heavy rain. Most of his equipment and tools were damaged. The Beaver Valley ARC sends along very interesting member uetivities, crystul-grinding, etr. Fort George ARC's officers are l'E7BGE. pres.: VE7BC'F, secy. V'E7OF found that antenna blows rigs up if left off. VE7JF has returned from the Cunary Islands. Roval City ARA's otticers are VE7YM, pres.: VE7ABS. vice-pres.; VE7APJ. seey.-treas. VE7ATG is IIdernian of Fort St. John. The BCARA Centennial Dogwood QSO Party winners were out-nt-B.C.. W'8.AJW: B.C.. I'E7EH. Penticton $A R C$'s officers are l'E7DB, pres.; V'E7APV, vice-pres.; VE7BNU, stcy. VE7IR/9V1OQ is r.s.b. on 20 in the Canadian portion. VE7JF returned from the Canary Islands and reports only two days of sun and that was not. there. It seems VE7BK's island in B.C. is the sun spot rif the wrorld. Kight. Barry? Tretfic: (Jan, 1 V' E7APF 40, VE7BLO 37, VE7BHH 36, VE7AC 29, VE7BLS 28. VETFQ 25, V'E7AAJ 5. (Dec.) VE7BHH 83, VE7AS'Y 76.

MANITOBA_SCM, John Thomas Stacey, VE4JTVE4OT has moved to Alherta and VE4RV is now operating from Swan Kiver. V'E5MW is now a resident of Flin Flon and VE7BPK is awaiting transfer there by the fir Force, VE4NE took part in the CD Contest on phone. VE4HII. VE4HK, VFAOL and V'E4TC are on phone. ing snow-shoe race. The M.A.ARC has lecided to name its newsletter T'he Manitoha Amateur with issues slated in Feb., May, Jum. and Nov. VE4HI is pditor. VE4EL now has his General. VE4GV sports a new Galaxy V and V'E4All a new Warrior linear. VE4DQ assumes dintips as mublie relations offier for the Brandon ARC. The Fifth Annual International Hamtest will be helid July 20 atud 21 on the Imerican side of the Pataco Gardens. Only the C.W. Net was active in the 1068 SET. VE4ST reports that she is the only VE4 member of CLARA and invites all distuff muaternes to rentart her reqarding mombership. The CLARA Net meets Sat. at 1700 GMT on 14140 kr . Net reprits: Phone Netsessions 31. QNI 720. QTC 25. C.W. Not-se-sions 32. QVI 183. QTC 124 . Traffic: (Jan.) V'E4EI 124. V'E4JT 78, I'E4NE 54, VE4RW 43, \'E4FO 14, VE4YC 12,
 VFAGN 3, VEAFX 2. VEAIW 2, VE4JF 2, VE4RB 2, I'E4SC 2, VE4I)Q 1. (Dec.) VE4FO 14.

MARITIME-deting sCM, William J. Gillis, VE1NR - Asst. SCMI: R. P. 'Thorne, VO1EI. SEC: VEIM.J. This is my tirst collmm as Acting SCMI and I will do my hest to serve the section butil a new sCM is elected. It is with deep regret that we record the passing of VE1RT and VE1CNI into the ranks of the Silent Keys. Sympathy is extencled to V'E1HJ, whose father receutly passerl away. VEiAED is now in Cyprus with the Canadian Armed Forens. IF,AMIC has acquired an IIQ-170 and VEI.ILS an IIRO-60. VO1.AQ received his

- the latest in technical ideas and home construction ...

E featuring Jim Fisk, W1DTY, the well known amateur radio editor . . .

- and including articles by your favorite authors.

how different? - $-*$

It looks different - it is different! It's easier to find information . . . easier to read . . . easier to understand . . . easier to build from . . . it's a magazine you'll find it easy to like.

[^28]!

WORLD PREFIX MAP - Full color, $40^{\prime \prime} \times 28^{\prime \prime}$, shows prefixes on each country DX zones, time zones, cities, cross referenced tables postpaid $\$ 1.00$ RADIO AMATEURS GREAT CIRCLE CHART OF THE WORLD - from the center of the United States! Full color. $30^{\prime \prime} \times 25^{\prime \prime}$, listing Great Circle bearings in degrees for six major U.S. cities; Boston, Washington, D.C., Miami, Seattle, San Francisco \& Los Angeles. postpaid $\$ 1.00$
RADIO AMATEURS MAP OF NORTH AMERICA! Full color. $30^{\prime \prime} \times 25^{\prime \prime}$ - includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones, FCC frequency chart, plus informative information on each of the 50 United States and other Countries. . . . postpaid $\$ 1.00$ WORLD ATLAS - Only atlas compiled for radio ama. teurs. Packed with world-wide information - includes .11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica - a complete set of maps of the world. 20 pages, size $83 / 4{ }^{\prime \prime} \times 12^{\prime \prime}$. postpaid $\$ 2.00$ Complete reference library of maps - set of 4 as listed above

See your favorite dealer or order direct.

> 7
> an give you personal service on helping you select better gear per ollar for your operating pleasure. Over 30 years'experience. Big trades, easy terms. Used bargains.
> VAN SICKLE RADIO SUPPLY CO. Gent Van Sickle, W9KJF Owner 4131 N. Keystone Ave. On the northeast side of Indianapolis, Indiana 46205

ALL-BAND ANTENNA CONNECTOR

HYE-QUE 1 molded connector has cselets for sccuring antenna elements, heary copper leads, coax PL259 connector for feedline, and tie-noint for antenna support. Drip-cap protects connector. lieinforced. At your dealcr ${ }^{\text {is. }}$ or $\$ 2.95$ postod. Companion insulators. 2 for 99 npd . Instructions included.
BUDWIG MFG. CO., P.O. Box 97A, Ramona, Calif. 92065

TELEVISION

TELEMETER

TELEMETER PAY TELEVISION
 PROGRAM SELECTOR-

Choice af 3 programs that ate tone operated in the VHF band, with provirequired for each program as indicated on the roin register. and that also shows a credit balance when an over-paytuent is made. A pre-recorded tanc will gire program information when desired. With Tubes $1 / 1213 \mathrm{H}_{6}, 1 / 6 \mathrm{RF} 6$. $1 / 6 \mathrm{BA8}$. $2 / 6198$: $4^{\prime \prime}$ speaker, oin mechanism, tape magazine, etc. size: $15 \times 7 \times 7^{\prime \prime}$ Wt. : 55 lbs. \#1001/5

$\$ 14.95$
LM Navy Type FREQUENCY METER-125- 20.000 KC crystal calllrated indicating equipment. heterodyne type.
AN/PDR-27 RADIATION DETECTOR-Used: $\$ 19.95$
Irices F.O.B. Lima, O.- 25% Deposit on C.O.D.'s BIG FREE CATALOG-Send for sour cony today. Dept. Q

WV.AVE and Centennial Awards. KOIDU has a new SR-101A and VOIIR is on s.s.b, with an HW-12. Niw Labradnr calls are lO2EH, VO2GB and VO2GD. YO2AL has a new Heathkit kever. 'The ARCOWL held a very successfil Christmas Party for the ehildren of Wabush. APN, sesisions $82, ~ Q N I ~ 475 . ~ Q T C ~ 124 . ~ T r a t f i c: ~$ (Jan.) VE4AMR *8, VE1MX 87. LEIARB 60, VE1RO 32, VE1OM 31, VE1ABs 29, \'EIIT 16, VE1RY 2. (Dec.) l'E1.ABS 30.

ONTARIO-SCM, Rny A. White, VE3BUX-AREC Asst. National Coordinator: VE3IC. SEC: VE3ECiM. The big nems in Jan. was the SET Exercise. 'The uctivity was good and a sperial thank you to all thono who worked so hard. 'The e.w. hoys did a good job and their traffic-handling skill guickly separated the men from the hoys. It was pretty to see the way s.s.b. and c.w. punched its way through when the going was tough. Odds and Ends. The Ottawa Valley Mobile Club has 35 or more on the 2 -meter repeater setup und Ottawa-tn-Montreal mobile-to-mnhile is quite the thing. I'E3CIL finally broke down und went s.s.b. and I'E3ESE is increasing his power on 2 and 10 to a gallon. Wow! OFN still is lonking tir good cuntrollers with s.s.b. equinment but able to eony a.m. and c.w. ton. Any takers? VE3EUM is looking for ECs. If this is up vour alley, give him a call. It would be appreciated. VE3CGO has iust be $+n$ appointed District Commissinner for the Guides and Rrownies. Congrats, Doreen! Sorry that V'E3YC has given up as EC for the Ottawa district hut thanks for as swell job, Jack! We are goine to miss yon. Your SCM, with VE3CJ and VE3FUM, attended the RSO exceutive meeting in Oshawa to talk about mutual prohlems. It's nice to experience that sott of cooperation. By the wav, hats off to the RSO for a splendid job on behalf of the thind amateurs in (Intarin. A lot of the hoys are going to he surprised to find that their IRRL appointments are null and void unless they get their cortificates into the SCM for endorsation, so please get with it, fellows. Better rhark that membership status too! Traffic: (Jan.) VE3BZB 189, V'E3DV 135. V'E3GCE 131, V'E3GI 120, V'E3.ATI 124. VE3EBH 101. VE3DPO 98. VE3FGV 73, VE3DBG 68. VE3RQL 63, VE3EHL 59, VE3ATVE 55, VE3BLZ 47 V'E3AUTV 30. VE3NO 26. VE3DTU 24. VE3BTR 18, VE3ETAI, 18. V'E3EBC 12, VE3EXW 12, VE3GID 11, VE3DH 7. VE3DVE 6. VE3VD 4. (Dec.) VE3EBH 101, VE3DU 33.

QUEBEC-SSM, J. W. Tbey, VE2OJ-SEC: VE24LE. RM: VE2DR. PAMs: VE2BWL. VE2AGQ. To ssy the Jan. SET was a success in this section would be rn understatement. The fine work of those participating deserves nur thanks. VE2ASL, formerly of St. Jean, is now VE2ASL/LX. There are now six ARRL affiliated clubs in nur section. VE2SD is going great with his $\mathrm{KW}-2000$. The tine translation into F'rench, of some important, thases of ARRL urganization by VE2BWL deserves praise as also dines the six-page $N T Q$ Neusletter by VE2BRD. VE2ADE and VE2ALE made the BPL. Sincères félicitations a VE2AP qui u convolé en pleine période des fêtes. Tous les amis lui souhaitent le bonheur qu'il mérite. Le congrés annuel de R.1QI aura lieu cette année í Plessisville et déia plusieurs amateurs do cette localité travaillent féhrilement à l'nrgunisation du Congrés. Le Radio Club de Québec (V'E2CQ) a rẹ̀u les duchesses eit le bnnhomme Carnaval lors d'une soirée sociale du mois de janvier dernier. Biencenue aux nomvealix amateurs an'on peut entendro rếnulièrement sur le 80 mètres: VE2AJT, VE2BYO. VE2AIIZ, VE2DGN, VE2DEJ. Traffic: VE2ALE 22. 'E2BT'Y 2nn. V'E2OJ 171. 'E2BWL 167, Y'F2DR 156., VF2ADE 154, VE2AJD 71. VE2BRD 69. VR2AGQ 64, VE2DCW B1, VE2BWL S8, VE2WM 39, VE2EC 22. VE2BIIS 17, V'E2CP 10, VE2BAI 4.

SASKATCHEWAN-Acting SCM, Gordon C. Pearce, VE5HP-Information on the SET exercise will be outlined in the next issue as reports are not in and one area test still is to be carried out. Intere it in teletype is increasing in Saskatoon, Estevan and Regina. The wailability of used RTTY equipment still is a problem. PAMI VE5PZ is doing a good iob. The AREC ECs. all confirmed: VE5DO, VE5NX. VE5RJ, VE5BO and V'E5IL. Start thinking of the saskatchewan Hamfest, to be held in Saskatoon June 29 to July 1. Jirertors of our S.ARL Districts are VE5WC, VESLA, TESTN, VE5RE, VE5NX, VE5EO, VE5LU, I'E5YR, V'E5SF', V'E5IL and V'E5FA. Let's hear from them on all phases of their districts. New hams reported to have cbianed thirir tickets are 'E5KKE, VE5SJ, Y'ESYB, VESSE, V'E5AE, IE5DH, V'E5FP' VE5RT, VE5KR, VE5DJ, VESSP, VE5VO, VE5NH. VE4FY (a newcomer), VE゙ Os, VE5SD and VE5DE. Traffic: VE5HP 57. V'E5RJ 53. VE5LM 19, VE5RE 8. VE5BO 7, VE5LQ 7, VE5CF B. VE5OG 6, VE5PZ 5. VE5TVL 4, VE5EQ 3, VE5O(3. VESTS 3, VE5AQ 2, VE5FU 2, VE5IG 2, VE5LL 2. VE5QN 1.

ALL In excellent condition: Valiant, factory-wired, $\$ 250.00$; NC. 300. calbrator and speaker. $\$ 225.00$; $M M-2$ Wave Ana1yzer, $\$ 55.00$. Johnson 275 -watt coupler; $\$ 45.00$. Hcath AM-2
Reflectometer $\$ 10.00$ W $5 \mathrm{LZL}, 500$ Cliffside Drive, Dallas, Texas 75080. Tel: 214-231-3895.
IMPRESSIVE Executive style ham stationery. Inexpensive.
Write K3GWD Press, Harry Veon, RR 2, Wampum, Penna. Write K3GWD Press, Harry Veon, RR 2, Wampum, Penna.
EICO 753 SSB transcciver, HB power supply, $\$ 180.00$; Eico ${ }_{80}^{460}$ 'scope, $\$ 80.00 ; \underset{\text { signal }}{\mathbf{H B}}$ transmitter, AM modulator, VFU , RLC Bridge, other misc. test equipment. Contents of large spare-parts collection offered very cheaply, including tubes. sockets, resistors. capacitors. controls, meters, much more. Goldstein, WA2ITQ, $245-30$ Grand Central Parkway, Bellerose, New York 11426. Tei: 212-428-8103.
VIKING Ranger, push-to-talk. Used less than 20 hours. Gonset Super 12 rcvr, built-in side-tone generator, $\$ 60.00$; converter, $\$ 10.00$; Gonset Super Six, $\$ 10.00$; surplus erystals, \$1.00; Dow DK-60 coaxial relay, \$6.00; Lafayette burg, \$7.00. to-talk mike $\$ 10.00:$ Drake 1000 low-pass $\$ 5.00$. Pushceiver with V Vase, $\$ 10.00$; Lafayette HE- 50 W $10-$ meter transford Dr., No. Grafton, Mass. O1536. Tel: 839-6054.
FOR Sale: SB-100 modified with two crystal filters, HP-13 rauder HX-10, $\$ 200$. All arc in mint condx WA2DLX, R.S. Caverbill', stanley Road. Cazenovia, N. Y. 13335 .

GONSET G-66 mobile receiver, $6,12,115$ volts. 6 bands, Talge Hall, Collegedale, Tenn. 37315.
SSB Transceiver, Transistor, tube driver-final. Sce Dec. 1967 QST. Set of printed circutt boards, $\$ 20.00$. Boards for other projects. Send for list. Jvan Whitehouse, 16911 S.E. Foster Rd., P
WANTED: 1932 Ford Majestic Radio. Manufactured by Gibson and Gruno in Chicago, lllinois. Consists of two metal boxes $6 \times 9 \times 8$ inches (one has a motor generator in it and the other a series of tubes), wooden speaker box and a control head with remote control cables. ${ }^{\text {J }}$, ${ }^{2}$.
21485 Silchester Circle, Northville, Michigan 48167.
HOWARD Radio: 75A-4; serial No. 5591 , $\$ 395.00 ; ~ S W-140$, $\$ 119.00$ R RAA , $\$ 269.00$ N NC-300, $\$ 159.00$: $\mathrm{GSB}-100, \$ 179.00$;
 Bonner 4 w/ 8 Servos, $\$ 240.00$; Poly-calls. $\$ 29.00$ Free list.
Box 1269 . Abilene, Texas 79604 . Tel: a.c. 915 -OR 2-9501. SELL: HRO, rack. spkr, coils 1 to 7 power supply, and revr. Section. Good operating condx
420 iWillard Ave., Newington. Conn. 06111.
FOR Sale: Transistor TV camera (AT.V. XT-1A) with separate p / s and extra $1^{\prime \prime}$ Vidicon, $\$ 95.00$ f.o.b. C. A. Weed, WA1BDJ. COI.LINS 75S3-B, $312 \mathrm{~B}-4,32 \mathrm{~S}-3$, $516 \mathrm{~F}-2$, cables, manuals, factory cartons, all like-new, sell for $\$ 1.100$ or your best offer. 53225 . Fill: $414-466-2184$.
75A1, mint, $\$ 150$. Pick-up deal only, sry, Lafavette Precon,
$\$ 25.00$. WB2AXH, 94 Brittle Lane, Hicksville, L.I., New York 11801.

KWS-1 in top shape, no alterations. This is top-flight SSB-KW but haven't used it twice in 5 years and 1 am koing to sell it to best cash offer in 30 days or less. Will ship. Also G-E 30 to 54 Mc . FM xmtr, 500 watts to $\mathrm{PR} 4-125$; complete in 6 ft . cabinet, with meters. $\$ 350.00$. 30 K W diesel power plant. 1200
rpm for continuous duty. $230 / 115$ VAC. W9DSV, Box 87. Webster, Wis. 54893.
SELL: Perfect Novice station: Collins 75A-1 ravr. Homebrew 30 watt Handbook xmtr. Coax switch. $\$ 175.00$. Will con-
sider breaking up. Adam Kerner, Ex/WN2ZTL, 25 Crescent sider breaking up. Adam. Kerner, Ex/ WN2ZTL; 25
Rd.. Great Neck, L.I., N. Y. 11021 . Tel: (S16)-466-8927.
NATIONAL NC-270 receiver. Excellent condition. 80-6 inters, c.w., A.M. and SSB with Hallicrafters R-47 communications Wantagh, New York 1i793. Tel: (516)-PEI-07222.
ESTATE Sale: K7AX. DeLuxe Hallicrafters demnn. station; SR2000 s/P-2000 power supply; HT-46 and SX-146 combo: and 18AVQ verticals; TH6DX beam: Ham-M rotator, many other accessories. All items new or used less than 6 months. Manuals and original shipping boxes. Sell as packare or individual items. Write for complete list and prices. Bruce Duncan Estate, 517 Dexter Avenue N.. Seattle, Washington 98109.
TOROIDS: 88 mhy, unused, center-tapned. $5 / \$ 1.50$ postpaid. Heath DX-60A, new, \$55.00; matching HG-10 VFO. new. \$20. 3 head Tee-Dee with sync, $\$ 50$. Johnson 250-39 TR, $\$ 18.00$; brator, $\$ 7.00$; Eico 753 transceiver with p.s.; $\$ 160.00$: National NCX-3 transceiver, $\$ 165$. 00 . RTTY page-printer paper, $\$ 5.501$ case. Wanted. Clegg $22^{\prime} \mathrm{er}$, Gonset Communicator for 2 M , W2DLT, 302 Z Passaic, Stirling, N.J. 07980 .
WANTED: Collins $51 \mathrm{~J}-4$. Will swap Nikon F Photomic with also Nikon SP with 35 mm w/a lens, 135 mm F:3.5 telephoto lens. Camera cquipment in mint condition with little use.
W. Garrett, 114 Ossington Avenue, Flint, Michigan 48507 . Phone 313-233-6449.
SAVE On new/used National-SBE-Ameco: callbooks. Jackaloupe Engincering, Box 1054, Laramie. Wyoming 82070.
FOR Sale: Jones SWR meter, B\&W low-pass filter, Mark heliwhip and base; Heath HO-10 'scope, 08 'scope sweep generator audio generator electronic switch. Intercom variac 500 Schofield, 301 North 3 rd St., Lantana, Florida 33460 . NEED 500 microsecond sonic on masnetic delay line or what have you? Louis Patla, 1357 Ocean, Santa Monica, California 90401
 \$10.00; Mint concx. HA-350, $\$ 115.00$. Write WA3HLI, 805
Indiana Ave., Monaca, Penna. 15061.

FOR Sale: HRO-60, 80-6 meter coils, speaker, \$249.00; CE$20 \mathrm{~A}, \mathrm{duxe} 80-10 \mathrm{FO}, \$ 110.00 ; \mathrm{P} \% \mathrm{H} 600 \mathrm{~A}$ 6-meter transVerter, $\$ 15.00$; Elmac AF-67, $\$ 39.00$ or you make offer. F.o.b. WA4TNU, George Reeves. Rte. 4. La Grange. Georgia 30240. $75 A-4$, serial No. $5640 ; 3$ mechanical filters. $\$ 475$. 00 ; Eico 460 scope, $\$ 75.00$; Sony 464-D tape recorder, \$75.00; Viking Invader 0000, $\$ 450.00$. All one owner, with manuals. O. C. Lindsey, WSOBX, 1919 Ramada. Houston. Texas 77058.
DRAKE TR-4 with a.c. power supply, never used! In orisinal dete station $\$ 50000$ First check gets it Kicronhone, comrighter, 403 Sunset Dr., Wilmette, IMinois 60091 . Tel: AL61504.

WANTED: Johnson or Heathkit SS-B adapter. KiKKU. Tel: (914)-668-3677

SELL: HT-37, Mohawk RX-1, $\$ 300$ pair, or will sell separately. Both factory reconditioned summer 1967. Both perfect. WA9AUM, Box 63, Wiley Hall, Hanover, Indiana 47243
X-101A Hallicrafters receiver in perfect condx: $\$ 185.00$. Charles Clark. 2910 Orchard Lane, Wilmette, Illinois 60091 . KWM-1, matching a.c. supply. Immaculate: $\$ 250.00$. Charles laeger. 436 Bellevue, Öakland, Calif. 94610.
WANTED: Used National Technical Schools FCC license course \$3. J. J. Moran, 4205 Arthur St.. Hollywood, Florida 3 3 821 .
FOR Salc: SX-110, clean, like new: $\$ 93.00$. Shipping and insurance paid. John, K8TVO, 331 Hillside Dr., Canfield, Ohio 44406.
FOR Sale: SR-150 transceiver and SWR bridge, PS-150 (with pit. mike) A.C. power supply; PS-12 D.C. power supply; mo00,40 , 20 , 15 wtronic whip antennas with loading coils for offer. Sry, no breaking up. KiVWI, 140 Gealen. New Britain, Conn. 0b0si.
SX-101 Mark lllA, and speaker, $\$ 140.00$ and Lettinc. 40 watt SX-100 for sale in excellent condx for SSB, AM and c.w.)-52 28th St., Fair Lawn. N.J. 07410 . VIKING Ranger F/W $\$ 110.00{ }_{10}{ }^{8 C-221,} \$ 45.00$. 250 OSTS 1933-1960: $\$ 30.00$. A. Úrquhart, 198-26 Epsom Course, Hollis,

HEATHKIT MR-1 receiver, in gud condx, $\$ 50.00$; Homebrew 2-8111A 500 -watt linear, w/ supply, $\$ 80.00$; Hy-Gain $40-10$ trap doublet, $\$ 12.50$ j Hy-Gain 15 -meter beam, $\$ 20.00$.
STATION Sellout: DX-100. HQ-170, NC-88, Viking Matchbox, Heath SWR, Headset, keys, manuals, all mint condx Guaranted. $\$ 400$ takes package. Will sell senarately, all inquiries answered. K3ANU, 1305 West Russell St., Philadelphia, Penna. 19140.
WANT KWS-1 and/or 75A-4. Must be in excellent shanc. KWS-1 must also be over serial number 1200. Also
201 . Name price. Henry, W B2CNA. Tel: $201-327-9090$.
SELL: Harvey-Wells TBS-50, CW-AM xmtr, w/ pwr supply and 40 mtr. VFO, rreat condx, $\$ 50,10$; Heath GR-64 SW and Novice revr
$\$ 40$. Heath
WX-1 voice-control $\$ 10 . ~ \$ 80 ~ t a k e s ~ a l l . ~ G o n e ~ S S B . ~$ Mark Franz, WASSHT, 5107 Harvest Hill Road, Dallas, Texas 5234.
-METERS. P'ate modulated 500 watts, $\$ 125.00$. Twoer, $\$ 30.00$. Gonset $111, \$ 140.00$. K1MBA. John Iempleton, 49 Saw Mill Dr., Waminsford. Conn.
SALE: Unused (3 pcs): Gonset G-76 with AC, DC supply; Hallicrafters SR-34 transceiver. All clean and in vy gud condx. Also Stenman monitorscope, antennascope, Hentot OF-multp. Write for prices, etc. MrS. Dan Riordan, 1708 Park Blvd..
West Sacramento. Calif. 95691 . SAI.E: Viking II, with matching VFO and KW low-pass filter:
\$85.00. Command xmtr, $\$ 5.00$. F.o.b. K 3 BYJ, 111 Elm Ave., $\$ 85.00$. Command xmtr, $\$ 5.00$. F.o.b. K3BYJ, 111 Elm Ave., Morrisville, 1'enna. 19067
KEYER Sale: Omega DA digital automatic I.C. keyer (with N. Wilcox. Hollvwood. Cailif. 90028 .

KWM-2, PM2, CC2, excelnt condx. Sale or trade for 32 s and 75s/PS. Need separate operation for MARS. K7HRW, 1775 Mill $75 \mathrm{~s} / \mathrm{PS}$. Need separate operati.
SELL: Drake 2B, in mint condx, DX-40 with VFO, both in gud ondx, sell separately or all for $\$ 225.00$. Michacl Phillippe, RR \#1. Versailles. Indiana 47042
"HoSS Trader" Ed says if you don't buy your ham gear from in factory sealed cartons, while they last. New Swan 500 Transceiver, Regular Price, $\$ 495.00$, Cash Price $\$ 395.00$: One-new Drake TR-4, Serial \#26n33, Regular Price $\$ 599.95$, Cash Price and new Eico 751 Kit AC supply with speaker. $\$ 249.00$, Cash rrice $\$ 0$. 95 . New 18strat Equipment with factory warranty: Demo . DemRotor, \$94.50: Displayed Swan Mark II Linear, \$495.00: New Demo SB-34. \$329.00: Demo Drake T-4XB. \$359.00: Demo Drake R4-B, \$369.00: Special Rohn 50 ft . Foldover Tower, prepaid: $\$ 185.00$. Ed Moory Whnlesale Radio Co., Box 506, DeW itt, Arkansas 72042. Phone 946-2820.
QSTS 1420 to date: 1920-6 copies $1954-10$ copies; other yars pages. in poor condition; 1933-1936 half ditto. $1937-1948$ about three torn covers per year; 1949 to date KoOd condition. good condition. $\$ 90.00$. Plus transportation. W2ML, 42 Prescott, Goarden City, N.Y. 11535.
HAM, cver 18 to instruct at a children's camo in the Pocono Mountains in Penna. Own equipment required. Please explain type equipment and further qualifications to Pocono Highland
Camps. 6528 Castor Avenue, Philadelphia, Penna. 19149 . $\mathrm{SB}-300$ Heath SSB receiver, with AM filter, $\$ 225.00$ or your hest offer. Includes shidping. M. Pollack, East Larchmont Drive, Colts Neck, N.J. 07722.

THE NEW CPC

-2
Cat. No. 522-509 ($406-470 \mathrm{Mc}$) ${ }^{*}$

100 db Isolation for 2 Mc or Greater Separation -

Graph shows response curves when tuned for 2 Mc spacing
*Exact frequencies must be specified

This new custom-engineered CPC Duplexer consists of six cavities - one band-pass and one reject cavity on the transmitter side, and two band-pass and two reject cavities on the receiver side. Aperture coupling is used throughout, eliminating many cables and connectors ordinarily required for multi-cavity duplexers. It is designed to fit a standard $19^{\prime \prime}$ rack, and is shipped pre-tuned to specified frequencies. Write for Catalog 667.

EHUNER \ni

NEW wattimeter
 NOT A KIT!
 ONLY
 $\$ 59.95$
 SOLD ONLY BY:
 Impedane: 52 ohms (no clumsy R.F. cabling!) Impedance: 52 ohms
 Power capability:
 Frequency: 10 thru 80

 Power Lass: Negligible size of coupler: $25 \times 0^{5} \times 5^{5} \times 31 / 4^{*}$
 P.O. Box 1128, Des Moines, lowa 50311
 BANDIT 2000C
 - Full 2000 Watts PEP All Bands - Built-in Direct-Reading Wattmeter - Kit Form
 TUBES FURNISHED FOR $\$ 60$ A PAIR IF ORDERED WITH KIT

THE CLEANEST TALK AROUND
through. Provision is also made for push-to-talk operation. The AutoLevel is not a clipper compressor - all regulation is accomplished with a fastorating photosensitive resistor that electronically regulates the input with a minimum of distortion. If you would like to increase your average output and still maintain a clean signal, the AutoLevel is the volume compressor for you . ..
Features:

- 14 db of compression (minimum)
- 115-volt ac power supply
- Input bypass switch
- All silicon transistors
- G-10 fiberkiass printed circuit board volume processing in vears. This unique device segulates the input signal to provide 14 db of compression. It is ideally suited to SSB and AM and may be used with ALC systems. A built-in bypass switch allows you to feed the microphone stralght Dealerships available in some areas

CQ de W2KUW BEST OFFER!!

Paid for any piece of aircraft or ground radio units, also test equipment. All types of tubes. Particularly looking for 4-250 - 4-400 - 833A - 304TL - 4CX1000A - 4CX5000A ef al. 17L - 51X • 390A - ARM - GRM - GRC - UPM - URM - USM units. TED DAMES CO., 308 Hickory St., Arlinaton, N.J. 07032

 HAM RADIO COUNSELOR,
 Male, for Co-Ed Camp in the Berkshires, Mass. Able to instruct campers in the fundamentals of ham radio. Fully equipped Ham radio station. Write to Robert Kinoy, Camp Taconic, 451 West End Ave., New York, N.Y. 10024

lower minimum speed. A value of R_{1} larger than about 50,000 ohms may cause erratic performance. Keducing liz will increase the maximum zpeed. C_{1} must be a good quality capacitor; the small imported electrolytics do not work well, and the tautalum capacitor specified is recommended. (A puper capacitor would be ideal, but larger than all the rest of the circuitry.)

Resistors R_{4} through R_{9} and capacitors C_{3} through C_{5} cau casily vary over a 2 to 1 range with no degradation in performance. In fact, the circuit works with R_{4} and R_{5} shorted and $R_{6}-R_{7}$ open! So use what's in your junk box.

To prevent r.f. pickup, keep the leads to the kever paddle, speed pot, and power supply as short as possible.
(Note: send a post card to the first author, WøZHN, for printed-circuit board and parts availability and assembly information.) $\square S F$

Guidelines For Transistor Transmitters

(Continued from page 39)
There is no end to the list of suggestions which apply to the subject of solid state transmitter design. The intent of this article is guidance; it is not intended to be absolute. Several sources of information are referenced below; however, the author invites comments and additions from people who are knowledgeable in this field. पSF-.

References

Nelson, D. W., " A Solid-State AM Transmitter for TroMeter Operation" RC.A Ham I'ins Vol. 26 No. 4, Fall, 1966.

RCA Silicon Power Circuits Manual, March, 1967, pp. 294-355.

Minton, R., "Design trade-offs for r.f. transistor power amplifiers" The Electronic Eingincer, March, 1967, p. 70.

Turner, Carl, "Exploding the Second-Breakdown Myths" EEE Vol. 15, No. 7, July, 1967.

World Above 50 Mc . (Continued from page 109)

WดDRL in Kansas worked W9FZD, Wisconsin, for what is likely the first 432 contact between their respective states. In Southern California, WB6NMT says he hopes to schedule KIT6EEMI on 432 this spring and summer.

Those reporting building projects underway in anticipation of scheduling by the time you read this include 500 -watt finals at K8A.NU and W4ET, Virginia, and K4GL, exIV8PT, has a kw. and a 9fielement collinear ready in South Carolina.

1296 Mc. was highlighted this month by the e.m.e. efforts of the Crawford Hill V.II.F. Club, W2NFA. At the time of this writing they had arranged at least four schedules for the two-day test period. K6MYC, WB6UAP. K6HCP and K6UQH were organizing a joint effort for a contact with W2NFA using a hybrid WB6IOM amplifier and an 8-foot dish, and K4QIF was hoping to have his 10 -foot
(Continued on page 170)

Now... Tune your Antenna for Optimum Performance

with this new antenna noise bridge from
omega-t ... only *\$24.95!
Test antenna system for both resonant frequency and operating impedance.
Replaces VSWR bridges or other antenna test equipment.
Tests beams - whips - dipoles - quads or complete antenna tuner systems. For use over entire range - 1 to 100 MHz .

FFreight included in U.S.A. Complete applications data and operating instructions included. If no distributor near you, order direct.
 Dealership inquiries invited. For descriptive literature, write:
omega-t systems incorporated
516 w belt line road • richardson, texas 75080 • (214) ad 5.5286

EXCELLENT SELECTION-AT EXTREMELY LOW PRICES-48 HOUR DELIVERY

Thousands of frequencies in stock. Types include HC6/U, HC18/U, FT-241, FT-243, FT-171, etc.

SEND $10 \notin$ for catalog with oscillator circuits. Refunded on first order.
2400C Crystal Drive, Ft. Myers, Fla. 33901

EXCEPTIONAL BUY!

1200 V. P.I.V. Silicon 6 Ampere Stud Rectifiers, $74 \notin$ each, 15 for $\$ 10.00$. We Pay Postage on $\$ 10$ or over orders.

LINCOLN RECORDS, Inc. 134-5 Wheatley Road
Glen Head, N.Y. 11545

LRL-66 ANTENNA 66^{\prime} LONG. 80 THRU IOM

YOUR TAPE RECORDER IS READY TO TEACH CODE!

That's right! Your tape recorder is ready to help your code study. The CODEMASTER tapes give you professional instruction via your own tape machine. Now generated by digital computer, the CODEMASTER tapes are unsurpassed for timing accuracy. Whether you're just starting, going for your Amateur Extra, or somewhere in between, the CODEMASTER tapes are your besí code-learning buy! Find your CODEMASTER tape below!

CM-1: For the beginner. A complete course of instruction is on (3) the tape. Practice material at $5,7,9$ WPM. Prepares you for Novice exam. Includes code groups and punctuation.

CM-1 $1 / 2$: An intermediate tape, es. pecially for Gieneral class exam ${ }^{1}$ \& study. No instruction; just practice. $1 / 2 \mathrm{hr} 11$ WPM; 1 hr 14 WPM; $1 / 2 \mathrm{hr}$ at 17 WPM . Includes coded groups and straight text.

CM-2: For Extra-Class license study. Mostly straight text; some (ian) code groups. 1 hour at 20 WPM; $1 / 2$ hour each at 25 and 30 WPM. For real $Q R Q$, play this tape at twice speed!

CODEMASTER tapes are 2-track monaural; available in two sizes: 7 -inch reel ($33 / 4 \mathrm{IPS}$) and $31 / 4$-inch reel ($17 / 8$ IPS). Will play on any but full-track machine. SPECIFY both type and size of tape you want. Any tape, $\$ 5.95$ postpaid USA 4th class. Any two tapes, $\$ 11.00$; all three, $\$ 15.00$ PPD. Immediate delivery. CODEMASTER tapes are made only by Pickering Radio Company. Satisfaction guaranteed. Dealers: inquire.

TEATE

Preferred by beffer operators
ELECTROPHYSICS CORP.

898 W. 18th St., Costa Mesa, Calif.

STANDARD
 SIGNAL GENERATOR

MODEL SG-83B $\$ 295.00$

50 Kc-54 Mc. 1% dial accuracy. 1 Mc. xtal. Calibrated output 0.6 to 160,000 microvolts. Pure sine AM to 50%-no FM. All transistor. Bat tery or AC powered. Write for complimentary copy of instruction book with schematic.
Clemens Mfg. Co. 630 S. Berry Rd.. St. Louis, Mo. 63122

(Continued from page 168)
dish mounted and fed with 100 watts in time for the test. We hope to have a full report on the results next month, deadline permitting.

Q5F-]

Multiband Ground-Plane

 (Continued from page 18)ARRL Handbooks) and s.w.r. bridge are counected, and the tuning network adjusted for maximum forward and minimum reflected power. Initially, it will be necessary too determine experimentally whether series or pitallel tuning is required for the particular combination of band, feeder length, aud anteuna length selected.

The tuned-line-fed ground-plane vertical autenna gives excellent performance, can be easily constructed in just a few hours even by a beginner, requires a minimum of installation space and costs less than five dullars, excluding the transmatch and s.w.r. bridge. The tuned circuit of the trausmatch provides excellent discrimination againsi harmonic output from the iransmitter. Ease of construction and portability make this antenna au ideal one for Field-Diy use.

In case one wonders about the mismatch between the line and the antenna, the secret is in the use of open-wire line. The loss in such a line with an s.w.r. of 25:1, at 10 meters, is less than the luss in RG-58/U when the latter is matched.

How's DX?

(Continued on puge 101)
75-meter s.s.b. with FA7AB, VS6DO and $9 . M 2 N F$ right throuzh our jungle QRN. My linear blinks all the camp lights so 1 hold it down to about 1 jOO watts. Antennas are a 42-ft.-high quad for 10,15 sud 20 meters, qud a 610 -ft. rertical for 40 and 80 assisted by ten buried radials pach about 50 feet long." - 9 Y.4VU tells W8IBI his new homebuilt electronic keyer takes two hours to warm up ior proper operation. Almost human!.-.-. PZ1CF, according to W3HNK, welcomes Stateside QSOs on 14,332 kc. at 1000-2000 C\&NT.
HEREABOUTS - "We have night or ten active OX3 stations up here." asnesses OX3DM, leaching at Godthaab, "OX3s are,")anish or Greenlanders, OXts and OX5s are Americans." .-..... - W3HNK savs 'ГİJCC hopes to sign " "2" from Syracuse T. soon, also that KV'4EY is going barefoot after popping tilters in his linear supply .-. -.- "Clearing the frequency of a rare W. station seems to be the problem of the duy," comments W2ADP, also mentioning his QSL collection for QSOs with thirtenn other ADP-sitflixedstations...... Wis $36 \cdot \mathrm{ER}$ and 4 YKH may sign ZFICP or other Gavman call on 7 and 21 Mc. later next month WNIION. digging for dsia and Oceania, is horrified by the prohistoric phone signals that come drifting and splashing through the \%1-Mc. Novice segment - - - K7VPF clains a new wet-string antenna DX record aftrr raising two $5 A 18$ and a $K W 6$. $-\cdots$ - If you hear $\mathrm{K} 6 \mathrm{VVA/7}+\mathrm{Fill}$ be Nevada. - - - Giant-killer KınnFY closed out the old year with $105 / 85$ eountries worked/contirmed via his 4.5 -watt Adventurer, dipoles and unipoles. "DICC this year." yows Ed In a irontal attack on the language barricr. WB2ZQE devises friendly conversation pieces in a varicty of forcign tongues. Wै tried this lone ago with Spanish and got a QRC burial by an eager CM1́ . - . . - UL8VQ N: greets Furopean friends on c.w. from Syracuse these davs .-...- W1WQC finds Narasea isle still otlicially off limits for [)Xpeditioners ..-- The NE: YBTC batch of U.S. Sixes thned up in the Test for possible Revilla (iigedos [)Xcitement .-.... Whr DOI) and KG were selected as co-DNers of the Year bv Northern California i) X Club cohorts. Wifint gained like distinction among Southern California UX C'lıb brethren.
-...- QSF-
The Post ()ffice I.)epartment promises faster mail service with the new Zip codes. Use yours when you write deague Headquarters. Ure surs, too. It's 06111.

Enjoy World renown TELREX performance, value and durability! Send for PL68 tech. data and pricing catalog, describing professionally engineered communication antenna systems, rutator-selsyn-indicator-systems, "Baluns", I.V. Kits, Towers. "Mono-Pole", "Big-Berthas", accessories, etc. etc.

110-120 VOLT

A.C. 1,500-watt, 60 -cycles at 3600 RPM. Light Plant. Fanbolt driven from pickup or small gas engine. Operates saws, drills, lights. even T.V. Weight 25 pounds. Guaranteed. With Voltmeter, switch. and pulley. Regular $\$ 89.50$, now $\$ 49.50$. Send check or money order. Specify 6 or 12 volt vehicle.
VIrden Perma-Bilt, Box 7066 QST, Amarillo, Tex. 79109

THE FASTEST GUN IN THE EAST

No horsing around, we pay fast . . in 24 hours . . . and we pay more. We'll swap or trade new equipment too . . . We quote fast too. We also pay for shipping, insurance, etc. You call fast, now, collect, for fast quote.

SPACE ELECTRONICS

div. of MILITARY ELECTRONICS CORP.

4178 Park Avenue. Bronx. New York 10457, (212) CY 9.0300

口Xer's

Now . . . accurate great circle bearings and distances custom-computed from your exact transmitter location.
Enables precise antenna aiming, eliminates error from using map centered on some location other than your own.

- We compute the bearings and distances of over 350 cities selected to give you coverage of the world's land areas. Through the use of spherical trigonometry and the IBM System/360 Computer the bearings you receive are accurate to $1 / 10$ th of one degree. All this for only $\$ 7.00$ and a dollar off if you furnish us with the latitude and longitude of your transmitter location to the nearest minute.
- Any area not covered, with which you plan to be in frequent contact. will be computed for you at 30c per location. Merely provide us with location name and latitude and longitude of each point.
- Complete and mail the coupon below with check or money order PAYABLE IN U.S. CURRENCY, surface postage paid.
(If air mail is desired compute additional cost at 2 oz . or 60 gm. .)
GLOBAL Computations
\qquad
MAILING
CALL SIGN
ADDRESS
\qquad
\qquad LAT LATs LONG How would you like the distances \square MILES $\square \mathrm{KM}$
location to nearest minute lat and long, deduct $\$ 1.00$ from your price. If not. attach sheet describing exact transmitter location.

Priced from only $\$ 14.95$ to $\$ 49.95$ Many new models available from .45 MHz . to 450 MHz . Some with dual gate MOSFET R. F. stages and mixers. Crystal-controlled oscillators, full wave UHF diodes for transistor protection and many more desirable features. Send for your free converter catalog. Vanguard. Labs., 19G-23 Jamaica Ave., Hollis, N.Y. 11423.

VANGUARDLABS

Sales From Our Factory Made by Mail Only 196-23 Jamaica Ave. Dept. S-4 Hollis, N.Y. 11423

RADIO OFFICER TRAINEES

A limited number of openings are available to men willing to train for the interesting and wellpaid career of Marine Radio Officer aboard U.S. Flag merchant vessels. An F.C.C. 1st or 2nd Class Commercial Radiotelegraph license is required. These openings will be particularly appealing to younger men who have completed their military obligations. Write to The Radio Officers' Union, Room 1315, 225 West 34th Street, New York, N.Y. 10001.

Getting Rid of L.F. Harmonics

(C'ontinued from page $\left.\begin{array}{c} \\ 7\end{array}\right)$
filters and the feed line. The use of ordinary switches is not feasible beciause of the danger that harmonics will leak around the switch contacts and reach the antenna. With phono plugs and jacks it takes ouly a few seconds to chauge bands.

Half-Wave Filters For Four Bands

'The unit shown in the photograph consists of four half-wave filters, one each for $\$ 0,40,20$, and 15 meters. 'The circuit of Fig. 1 is used for each of the four tilters. None is included for 10 meters because for this band a low-pass filter should be used to take care of harmonics falling in the television channels. A low-pass filter for TVI was described in a recent issue of $Q S T^{3}$.

A $4 \times 5 \times 6$-inch aluminum Minibox is used to house the tilters. Any metal enclosure could be used, such as a chassis with a bottom plate to insure good shielding. Cost of the unit shown was kept low by using plastic pill boxes for coil forms and a single wire size for all cuils. We cherked with several drug stores and all of them had the boxes in various sizes and shapes (we paid 15 cents for 8 boxes). The unes we used are 1 inch in diameter and 2 inches long. With the exceptiou of the $\delta 0$-meter coils, the length on cach coil is 1 inch. The eoils are mounted by drilling a hole in the bottom center of the form and then bolting the cuil forms end-to-end on the partition in the Minibox.

Tu use the filter, merely open the coax line near the transmitter, install phono plugs on the line, and connect the filter in series with the line. Be sure to chauge filters when you change bands or you might burn out the capacitors.

The capacitors and coils used in this model will easily haudle 75 watts with a maximum s.w.r. of 3 to 1 . Some readers may want to build filters for higher power, but unfortunately we don't know of any source of mica capacitors capable of haudling higher power, at least without paying au arm and leg for them. For the high-power gang a transmatch is the logical route to follow.

Some Additional Information

Many newcomers have the mistaken idea that a dipole cut for a given band won't radiate harmonics because it is essentially a oue-band antenna. This isn't true. Any antenna will radiate harmonics. Also, it should be apparent that either trap-type multiband antennas or multiple dipoles with a simgle feed line make excellent harmonic radiators.

A Novice - or for that matter any higherclass license holder - should always make sure that each stage of his rig is tuned up properly. Never use more than rated driving power 11 each slage. Nways assume that you have harmonics and take steps to keep them from being radiated. If you keep these things in mind you should be able to stay ont of trouble with the F.C.C. Equally important, you won't be causing unnecessary interference to other hams. पST-

zou don't have to be a builder or experimenter. For every DXer or ragchewer there comes a time when he needs some technical answers-to troubleshoot, modify or just to improve performance. And just to keep up with new developments in amateur radio these days is hard enough.

This is where League membership can pay off many times over. As a member, you get your own copy of QST every month with the best coverage of what is new and important in our art-right now. Your own personal technical information service via ARRL's top technical staff. All this and much more for just $\$ 6.50$, your annual dues. Can any ham afford not to be a League member?

THE AMERICAN RADIO RELAY LEAGUE, INC. NEWINGTON, CONNECTICUT 06111

Please enroll me as a member of ARRL. Enclosed is $\$ 6.50$ (for Canada and the U.S.; $\$ 7$ elsewhere) to cover my membership dues for one year and twelve issues of QST.

NAME \qquad CALL \qquad
STREET \qquad
CITY \qquad STATE ZIP \qquad
(Please see other side of this page for list of available League publications.)

THIS IS THE micro-ultimatic...

- The original IC electronic keyer
- Squeeze or conventional operation
- Linear speed control 10-60 WPM
- Built-in monitor oscillator
- Relay or transistor output option
- One year warranty
- \$85 Amateur Net
- Send for descriptive folder

PICKERING RADIO COMPANY
Post Office Box 29
Portsmouth Rhode Island 02871

QUADS

(SOLD ONLY DIRECT TO THE AMATEUR)
FIBERGLASS SPREADERS each \$ 6.00
QUAD KITS from 39.95
6 METER QUADS from 23.95
COMPLETE QUADS from . 49.95

Skylane PRODUCTS

406 BON AIR . TEMPLE TERRACE, FLA, 33617

88-108 MC FM RECEIVER
10 tube crystal controlled FM receiver with tubes. Volume, tone controls. 4 watt output, 115 v .60 cycle. Metal cabinet $8^{\prime \prime}$ high, $12^{\prime \prime}$ wide by $10^{\prime \prime}$ deep. With diagram, less crystal and speaker. Removed from service by Muzak when they went solidstate. $\$ 14.50$ each; 2 for $\$ 25.00$, plus shipping. Shipping weight 22 lbs.
LEEDS RADIO CO.
57Q Warren St., New York. N.Y. 10007 Tel: (212)-267-3440

"HOW 10 MAKE MONEY Mobile Radio Maintenance"

AUTHORITATIVE GUIDEBOOK
ABOUT THE BOOM IN TWO.WAY MOBBLE.RADIO.
GIVES FACTS. FIGURES, PAY RAIES. FREE
WRITE TODAYI
LAMPKIN LABORATORIES, INC. Mfg. Div. BRADENTON, FLA.

7would like the following League publications shipped to me postpaid. I am enclosing payment of $\$$ \qquad (These prices apply only to the USA.) Ship to this address:

NAME CALL

STREET
CITY
STATE ZIP

ARRL HANDBOOK $\$ 4.00$
The standard comprehensive manual of amateur radiocommunication
UNDERSTANDING AMATEUR RADIO \$2.00 Written for the beginner-theory and how-tobuild it.

VHF MANUAL
$\$ 2.00$ A new and thorough treatment of the amateur v.h.f. field

LICENSE MANUAL 50ф Complete text of amateur regs, plus Q\&A for amateur exams

HOW TO BECOME A RADIO AMATEUR $\$ 1.00$ All about amateur radio and how to get started

A COURSE IN RADIO FUNDAMENTALS $\$ 1.00$ Use this in conjunction with the Handbook ANTENNA BOOK
$\$ 2.00$
Theory and construction of antennas
SINGLE SIDEBAND FOR THE RADIO AMATEUR
The best s.s.b. articles from QST $\$ 2.50$
THE MOBILE MANUAL $\$ 2.50$
The best mobile articies from QST
HINTS AND KINKS $\$ 1.00$ 300 practical ideas for your hamshack OPERATING MANUAL $\$ 1.00$ The techniques of operating your amateur station-DXing, ragchewing, traffic, emergencies, etc.
(Please see the other side of this page for an application for membership in ARRL and 12 issues of QST) THE AMERICAN RADIO RELAY LEAGUE, INC., NEWINGTON, CONN. 06111

QUALITY MERCHANDISE - QUALITY SERVICE SO WHY PAY MORE FOR THE BEST!

MERCHANDISE IN STOCK - PROMPT DELIVERY NATIONALLY ADVERTISED BRANDS, THE LATEST MODELS

INSTANT SHIPMENT on all cash orders of new equipment. TRIGGER ELECTRONICS has the most complete inventory of amateur radio equipment and accessories in stock, for your convenience. Shipment is usually made the same day your order is received!
\$5.00 DOWN STARTS ANY BUDGET TIME PAYMENT! Order your goodies from this ad!

MIDWEST BANK CHARGE CARDS HONORED.

TRIGGER ELECTRONICS is conveniently located near the west city limits of Chicago on the main street of North Avenue (State Route \#64), 3 blocks west of Harlem Avenue (State Route \#43). Just 10 miles due west of downtown Chicago, or 20 minutes southeast of OHare Airport. Plenty of free parking. Come in and browse. See the latest in ham gear attractively displayed.

TRIGGER ELECTRONICS - Exclusive Ham store - is as near as your phone or mailbox!
another important
TRIGGER service:
WE BUY USED HAM
GEAR TOR CASH
PROMPT SERVICE :
PROMPTCASH!

ALL PHONES: (AREA 312) 771-8616

> STORE HOURS
(CENTRAL TIME)

WEEKDAYS . . . 11:00 A.M. - 8:00 P.M. SATURDAYS . . . 9:00 A.M. - 3:00 P.M.

HAM-ADS

(1) Advertising shall pertain to products and services which are related to amateur radio.
(2) No display of any character will be accepted, nor or part capital letters be used arrangement, such as all one advertisement stand out from the others. No Box Reply Service can be maintained in these columns nor may commercial type copy be signed solely with amatcur call letters. Ham-ads sizned only with a bux number without identifying signature cannot he accerted. (3) The Ham-Ad rate is 356 per word, except as noted in parasranh (h) below
ance m fuif must accompany copy, since tract discount or arried on our books. No cash or con(5) Closing date for Ham-Ads is the 20th of the second month preceding publication date.
(6) A special rate of $10 ¢$ per word will apply to advertising which, in our judgment, is ohviously noncommercial in nature. Thus, advertising of bona fide surnlus equipment owned, used and for sale by an individual or apparatus offered for exchange or advertising inquiring for snecial equipment, takes the 104 rate. Address and signatures are charged for. exicept there is no charge for zipcode, which is essential yon furnish. An attempt to deal in apparatus in cuantity for profit, eren if by an individual, is commercial and all adver-
tising so classified takes the $35 \&$ rate. Provisions of paratising so classified takes the $35 \&$ rate. Provisions of para-
graphs (1), (2) and (5), apply to all advertising in this column regardless of which rate may apply.
(7) Because error is more easily avoided, it is requested copy, simnature and address be printed plainly on one side of paper onif. Typewritten copy preferred but handwritten siznature must accompany alf au(8) No advertiser may use more than 100 words in $3 \mathrm{D}^{2}$ one advertisement, nor more than one ad in one issue (9) Due to the tightness of production schedules, cancellation of a Ham-Ad already accepted cannot be guaranted beyond the deadline noted in paragraph (5) above.
Having made no investlgation of the advertisers in the classified columns except those obviously commercial in character, the publishers of OST are unable to vouch for their integrity or for the grade or character of the products or services advertised.

INVITATION: New York Radio Club invites New York Area hams and SWLs to its regular monthly meetines the second Monday ot each month, thru June 1968 at the Hotel
Genrge Washington, Lexington Ave. and 23 rd Street at Genrge Washington, Y-exington Ayc.
DAYTON Hamvention April 27, 1968: Wampler Arena Center, Dayton, Ohio. Sponsored by Dayton Amateur Radio Association. the year. Teechnical sessions, exhibits, hidden transmitter hunt. Bring the XYL for an outstanding I adies Program. Join the satisfied narticipants uho return year after year in celebrating Ohio Amateur Radio Weck. Watch the 44. Dayton. Ohio 45401.

BREAKFAST Club Hamfest July 20 and 21, Palmyra, Illinois. Frrol Workman. K9CIL.
SPRING Auction of the Rockaway Amateur Radio Club will be held Friday evening April 26. 1968, at 8:00 PM at the American Irish Hall, Beach Channel Drive iat Beach 8ist St.), Rockaway Beach. Come to the best auction in the New York area. For detailed directions, write to
Rockaway Park, N.Y. 11694 . A1. WA2TAQ.
A.W.A. Historical Radio Meet for old time amateur and commercial operators, historians and collectors, Smithsonian, dall. A.W.A. Treas., for details.
ROCHESTER, N.Y. headquarters again for the big Western New York Hamfest and VHF Conference, Saturday, May 11 For free copy of program of tickets, write P.O. Box 1388, Rochester, N.Y. 14603.
MOTOROLA used FM communication equipment bousht and sold. WSBCO. Ralph Hicks, 813B No. Federal Hiway, Fort Lauderdale. Fiorida.
PRE-WORLD WAR I operators will find many of their old buddies are members of the Old Old Timers Club. Pictures and thumbnail sketches will also appear in the coming Blucbook. We welcome all applicants whose first wireless contact was more than 40 vears ago but sive special considerat on to those Write to WSVA, Secretary of the Old Old Timers Club, P. O. Box 840 . Cornus Christi. Texas 78403 .
TRADE ARRL 1968 Handbook for one of 15 old Handbooks not in W4AA historical library. Need govt. Amateur Callbooks 1922 through 1926, tarly wireless magazines and cataloss. 1922 through 1926, tarly wireless
TUBES Diodes and Transistors wanted. Astral Electronics Corp., 150 Miller St., Elizabeth. N.J. 07207.
SELL. swan and buy ancient radio set and parts magazines. Laverty, 118 N . Wycomb. Landsdowne. Yenna.
TUBES Wanted. All types hixher prices paid. Write or phone Ceco Communications, 120 West 18th St., N.Y. 11. N.Y. Tel: Ceco
$242-7359$.
DUMMY Loads. 1 KW , all-band, $\$ 7.95$; wired, $\$ 12.95$. Ham Kits. P. O. Box 175. Cranford. N.J. 07016.
WANTED: 2 to 12 304TL tubes. Callanan. W9AU, 118 S. Clinton, Chicago 6. 111 .
MANUALS for surplus electronics. List 10¢. S. Consalvo, 4905 Roanne Drive, Washington, D.C. 20021.

QSLST? America's finest!! Large variety samples, 25\&. DeBuxe 218 . Holland, Michigan 49423.
Bot 4 Ret
OSLS "Brownic" W3CJI, 3111 Lehizh. Allentown. Penna. 18103. Samples 10t. Catalog 256 .
QSLS stamp and call brings samples. Fiddie Scott, W3CSX, Fairplay, Md.
C. FRITZ QSLS that you're proud to send, bring kreater returns! Samples $25 \$$ deductible. Box 1084, Scottsdale, Arizona 85252 formerly Jolict, Illinois).
OSLSS-SMS. Samples 104. Malgo Press. Box 373. м. $\overline{\text { O. . Toledo, }}$ Ohio 43601 .
DELUXE OSLS Petty, W2HAZ, P.O. BOX 5237. Trenton, N.J. 08f.38. Samples, 104.
10 Brings free samples. Harry R. Sims, 3227 Missouri Avc., St. Louis, Mo. 63118.
OSL, SWL, cards that are different. Quality Card stock. Samples 106. Home Print, 2416 Elmo Ave. Hamilton, Uhio 45015 . CREATIVE OSI, (ards. Personal attention. Imaginative new designs. Send 256 . Receive catalog, samples, and sod refund coupon. Wilkins Printing, Box 787-1, Atascadero, Calif. 93422. RUBBER Stamps $\$ 1.15$ includes tax and postage. Clints' Radio, W 2 UDO. 32 Cumberland Ave., Vernna. N.J. 07044.
QSLS, finest YI.RL's. OMs samples 10c. W2DJH Press, Warofis. Professinnal, neat. 104. Filmerafters, Box 304, Martins
OSLS, SW $\overline{L S}$. XYLOMS (sample assurtment anproximately Q_{c} covering designing. planning, printing, arranging, mailing, eye-catching comic, sedate, fabulous. OX-attractive, prototypal, snazzy, unparagoned cards (Wow!) Rogers KøAAB, 961 Arcade St., St. Paul. Minn. 55106.
$3-D$ OSL cards. recosnized leader among raised desisns. Comnliments aplenty! Prized collector's item. Samples 254 (refundable). 3-1) QSL Co., Monson. Mass. 01057 .
QSLS, SWLS, WPE. Samples 156 in adv. Nicholas \& Son Printery. P.O. Box 11184, Phoenix. Ariz. 85017.
QSLS 300 for $\$ 4.35$ samples 104 . W9SKR. George Vesely. Rte. \#i, 100 Wilson Road. Ingleside. III. 60041 .
OSLS , 3-color Rlossy 100, \$4.50. Rutgers Vari-Typing Service. QSLS-100 3-color glossy $\$ 3.00$; silver globe on front, report
 Mo. 64116.
ORIGINAL EZ-IN double holders display 20 cards each in plastic. 3 for $\$ 1.00$ or 10 for $\$ 3.00$ prepaid and guaranteed. Frec sample to Dealers or Clubs. Tepabco, John, K4NMT, Box
198T. Gallatin, Tenn, 37066 . 198「. Gallatin, Tenn, 37066.
OSIS: 3-color glossy: 200, $\$ 6.99$ postpaid. Samples. 106. Gates Print. 31711 th Avenue, Juniata. Altoona, Penna. 16601 .
QSL.S's: Quality with service. Samples frec. R. A. Larson Press, Box 45, Fairport. N.Y. 14450 .
OSLS's. Free samples, attractive designs. Fast return. W7IIZ Press. Box 2387 . Eurene. Ore. 97402.
OSIS. Kromknte glossv 2 \& colors, attractive, distinctive, different. Choice of colors 100- $\$ 3.00$ up. Samples. $15 \&$. Agent
for Call-D-Cals. K2VOB Press. 240 West Kinney St., Newark. New Jersey 07103.
QSLS Glossy coated. 100, $\$ 2.00 .3$ and 4 colors. Samples, dime. Bob Garra. Leishton. Penna. 18235.
PICTURE OSI, Cards for vour shack, etc. Made from your Shotorran 20t. Raum's, 4154 Fifth St., Philadelphia, Penna. Dampl
0
OSLS by K1FF, $\$ 2.00$ for 100 . Others at reasonable prices. Samples 25 deductibie. KIFF QSLS, Box 33 . Melrose Highlands, Mass. 03177
OSLS Gnrgeous rainbows, cartoons, etc. TaD quality Tow prices! Samples $10 \notin$ refundable. Joe Harms. WA4FJE/W3COP. 905 Fernald, Edgewater, Fla. 32032.
EXCLUSTVE OSLS. Picture, custom. standard. Over 350 styles available. Samples dime. KiNCZ Press, 535 Walpole St., Dent. C, Norwood, Massachusetts 02062
RAISED Tettering OSLs. Ace Printing, 6801 Clark Ave., Cleveland. Ohio 441 m^{2}.
OSLS by Jansen, K2HVN samples 254. 860 Atlantic St., Lindenhurst, New York 11757.
QSLS, samples, 20c. Fred Teyden, WINCZ. 454 Proctor Ave. Revere, Massachusetts 02151 .
RUBBER Stamps, Return mail delivery, postraid. Basic price, chart. Fulton Rubber Stamps, Route 216-A. Fulton, Maryland
OSL Free Samples. CBM Printers, 5161 N. Hopkins, Milwaukee, Wisconsin 53209.
OSL cards. Finest quality. Economical nrices. Fast service. Free vamples. Little Print Shon, Drawer 9848. Austin, Texas HUNDRED QSLs. $\$ 1.25$ and up, postraid. Samples, dime. Holland. R3, Box 649. Duluth. Minn. 55803.
RUBBER Stamps. 3-line address \$1.50. J. P. Maguire Comnany, 448 Proctor Avenue, Revere, Massachusetts 02151.
CANADIANS: Mntorola two-meter repeater 50 watts AN/ TRC 34-20X20X16 with two receivers. $\$ 160.00$. VE2AJP, 8740 Notaire Girard, Montreal 38, Que. P.. Canada.
CANADIANS! Halicrafters mobile supply
\$99.00. MR-150 mount. $\$ 30.00$. VEGGN, 49 Holiand St., Calgary, Alta., Canada.
SFI, L: Heathkit SB300E with all filters, pius speaker U.S. \$230.00: SB-400E, U.S. $\$ 315.00$. Both together for IS.S. $\$ 500$. Canada.

HAM'S Spanish-Enslish manual $\$ 3.00$ Ppd. Gabricl, K4BZY, 1329 N.E. 4 th Ave., Fort Lauderdale, Florida 33304.
TUBES, test equipment, transmitters or receivers. Any and all types buyht for cuash ur trade on new or used ham gear. Air Ground Electronics, 64 Grand Place, Kearny, New J ersey 07032 .
1916 OSIS needed for personal collection. Price secondary. Ted Dames, W2KUW, 308 Hickory Street. Arlington, New lersev 07032:
FOR Sale: $S B-101$ and SB-200. Wanted, kits to wire. Heath preferred, $12: 30$ of cost, some in stock. Professionally wired.
Lan Richter, K3SUN, 131 Florence Drive, Harrisburg, Penna. 17112.

WE buy all types of tubes for cash, especially Eimac, subject to our test. Maritime International Co., Box 516. Hempstead. N.Y.
SUMMER Camp ham radio instructor wanted, at top N.H. boys camp. Counsellor and instructor age $19+$ Must have Gencral license or higher. We have cumplete equipment for
training and operation. Vrite to Camp Cody, 99 Park Avetraining and operation. Vrite to Camp Cody,
nue, New York City 10016 . Tel: (203)-226-4389.
JOYSTICK Variable frequency antenna systems solve space problems. Available immediately. SWL Guide, 218-S Gifford, Spracuse. N.Y. 13202.
CASH Paid for your unused Tubes and good Ham and Commercial equipment. Send list to Barry. W2LNI, Barry Elec-
tronics, 512 Broadway, N.Y., N.Y. 10012 . Tel: (212) WAlker tronics,
$5-7003$.
GOODIES. Cash for Teletypewriters, parts. List. Typetronics, Bnx 8873, Ft. Lauderdale. Fla. 33312.
WANTED: Tubes and all aircraft and ground radios. Units like 171, $51 X, 618 \mathrm{~F}$ or S. R388, R390, GRC. Any S1 series Collins unit. Test equipment, cverything. fair dealing. 'Ted Dames Co., 308 Hickory St.. Arlington, New Jersey 07032.
HAM Discount House. Latest amateur equipment. Factory sealed cartons. Send self-addressed stamped envelope for lowest quotation on your needs. HDH Sales Co., 170 Lockwood Ave., Stamford. Conn. 06902.
INTERESTING Sample copy frce. Write: "The Ham Trader," Sycamore, Illino:s 60178.
WANTED: For personal collection: Learning the Radiotelegraph Code, Edition 4: How to Become a Radio Amateur. Editinn 9: The Kadio Amateur's License Manual, Edition
12. W1CUT, 18 Mohawk Dr., Unionville, Conn. Of085.
RTTY gear for sale. List issued monthly, 88 or 44 Mhy toroids, five for $\$ 1.50$ postpaid. Elliott Buchanan \& Assoc. Inc. Buck,
W6PVC, 1057 Mandana Blvd., Oakland, Calif, 946io.
 W2ONV. 243 Harrison A
Area code (201)-773-3320.
WE'RE Trying to complete our collection of Callbooks at Headquarters. Anyone have extra copies of Government Callbooks
$1922-1925$ 1922-1925 and Radio Amateur C'allbooks 1928-1934? ARRL, 225 Ma:n St., Newington. Conn. 06111.
TUBES, test equipment, transmitters or receivers. Any and all types bought for cash or trade on new or used ham gear. Air
Jersey 07032 .
WANTED: Model $\$ 28$ Teletype equipment. R-388, $\mathrm{R}-390 \mathrm{~A}$. Cash or trade for new amateur equipment. Alltronics-Howard Co., Box 19, Boston. Mass. 02101.
SELL: CQ, OST. Handbooks. old radio masazines, any auantity. Buy old radio kear and publications, Erv Rasmussen, 164 Lowell, Redwood City, Calif. 94062.
NOVICE Crystals: $40-15 \mathrm{M}, \$ 1.33,80 \mathrm{M}, \$ 1.83$. Free list. Nat Stinnette, Umatilla. Fla. 32784.
TOROIDS, 88 mh uncased. $5 / \$ 2.50$. Postpaid. Humphrey, WA6FKN, Box 34, Dixon, Calif.
WANTED: Military and commercial laboratory test equip-
ment. Electronicraft. Box 13 . Binehamton, N.Y. 13902 . ment. Electronicraft. Box 13. Binghamton, N.Y. 13902.
SAVE On all makes of new and used equipment. Write or call Bob Grimes, 89 Aspen Road, Swampscott, Massachusetts,
617-598-2530 for the gear u want at the prices u want to pay. MICHIGAN Hams! Amateur supplies. standard brands. Store hours 0830 to 1730 Mnnday through Saturday. Roy J. Purchase, W8RP. Purchase Radio Supply, 327 F . Hoover St., Ann Arbor, Michigan 48104, Tel. NOrmandy 8-8262.
RTTY Channel filters, octal monnted, 2125/2975, \$5.95 pair. Special filters for TT/I, $=2$. SASE for information. 88 Mh. to roids. uncased, S for $\$ 2.50$. Herman
Selby Ave., Los Angeles, Calif. 90034 .
TOOOORES. Tranzeesters. New, guaranted. 6(:W4, \$1.40: $811 \mathrm{~A}, \quad \$ 4.25$; 6146B, $\$ 4.00$: 6146A, \$2.55. Also transistors. Write needs. Free catalog. Note new address. Vanbar Distributors, POB
WANT: Gianinni Microtorque potentinmeters. Must be linear taper. Thompson, 5 Palmer. Gorham, N.H. 03102.
CLEARWATFR, Florida 33516 , Save on new Galaxy MK-2 with AC-400. Kichard Leis, W4UHO, 1300 Milton St.
 T4-XB, $\$ 43.00$; factory-sealed boxes, fully guarantced $\$ 580.00 ;$ W-4, $\$ 43.00$ factory-sealed bexes, fuly suaranteed. Mel Palmer,
$914-299-8767$.
WANTED: Military. C $n m m e r c i a l$. Surplus, Airborne, (iround, Transmitters, Receivers, Testsets, Accessories. Soecially C'ollins. We pay cash and freight, Ritco Electronics, Box $156-$
0.35 , Annandale, Virginia 2203 . Phone $703-569-5480$ collect. HO-100 Hammarlund receiver. In exeint condx. $\$ 75.00, \mathrm{R}$.
Will. 1900 Chicaxo. Minneapolis, Minn. 55407 .
GOVERNMENT Amateur Callbonk for 1924 wanted. KiNP. とh W norlgate Ave.. Elbernn. N.J. 07740.
WANTED: Parabolic dish for radio astronomy and 1215 mon bounce. Bill, WAYPWR, 509 Fifteenth Ave., Green Bay, Wis.
s4303.

FOR Sale: Make offer in your Ist letter: Johnson T-R switch 250-39; DB 20 Presclector; BC-348R, 24 hour clock, Precision sig. gen. E-200. Sylvania CRT SBP1, Century tube-tester SS-1, Hallicrafters $S \dot{X}-42$, Knight xmtr $50 \dot{W}$. Heath Kits, Audio Ren. HGi-8, RF ken. SG-X, capac. tester Cí-1, linearity pattern gen. LP-1, Eico scope 460, scope 425, Modulator 730 , battery climtus Ave. Closter, New Jersey, 07624. Call 201-768-1884.
1000 PIV oin 1.5 amp. epoxy diodes, includes by-pass capacitors and resistors. 10 for $\$ 3.75$ ppd U.S.A. Fully guarantecd. East Coast Electrontcs, 123 rd St. Boniface Road, Checktowago, N.Y. 14225.

ESTATE Liquidation. SSAE brings list quality equipment. Paradd Engineering, 284 Koute 10, Vover, N.J. 07801.
VIKING 500. in exclnt condx, spare 4-250, manuals. Will ship C.o.d. yuaranteed no bugs: $\$ 195,00$. NC-303, like new condx rotor, used one year, complete. Ship c.o.d. \$50.00. New Eimac 4-400, $\$ 20.00$. Never used. L. D. McCreary, 319 College, Franklin. Ky. 42134.
WANTED: Commercial and Military Test Equipment, Wavekuide and Coaxial Components by Hewlett-Packard. Tektronix. kuide and Coaxial Components by Hewlett-Packard, Eektronix. Company, Box 1050. Garland, Texas 75040 ..
NEED 500 microsecond sonic on magnetic delay line or what have you? Louis Patla. 1357 Occan, Santa Monica, California 90401
WANT KWS-1 and/or 75A-4. Must be in excellent shape.
KWS-1 must also be over serial number 1200 . Also want SC. KWS-1 must also be over serial number 1200 Also want SC:
201. Name price. Henry, WB2C'NA. Tel: $201-327-9090$, 201. Name price. Henry, WB2C'NA. Tel: 201-327-9090.

2 METERS plate modulated 500 watts, $\$ 125.00$ Twoer, Mill Dr.. Wallingtord, Conn. (f649?.
COLLINS 7SA-4 with $.5 / 2.1 / 3$ filters and Panadapter, $\$ 450.00$: 75A-3 with . $8 / 3$ filters $\$ 250$; Valiant $\mathrm{f} / \mathrm{w} \$ 145, \mathrm{HA}-1$ and siamese paddle, $\$ 50.00$. Dumont 'scope, $\$ 35.00$. KW linear with spare 813 s . manual, etc. $\$ 125.00$. All guarantced. F.o.b. Cincinnati. College iorces sale. Malcolm Montgomery, 3414-101-
ford Street, Apt. 1. Cincinnati. Ohio 45220 . Tel: 5i3-281-1046. MY Drake $2 B$ for sale: $\$ 160$ lampkin $105-B$ frea. meter. $\$ 210.00$. A. İ. Albright, 1524 Dean St. Sulphur, La. 70663. HAMMARLUND SPC-10 wanted. W2ADD.
CLFGG 22'er. \$180.00. WASHTS.
SX-100 for sale, in excellent condx. for SSB, AM and c.w. reception. First $\$ 175.00$ takes it. W2TIW, phone: 201-796-2936. Q-52 28th St., Fair I.awn. N.J. 07410.
CLEANING House: Perfect Drake TR-3 with AC-3, \$365.00: bombe, $\$ 180.00$; New 4-400A in carton, $\$ 12.50$; pair a real 784.3 s with new Johnson sockets. Complete, $\$ 21.00$. P\&H Model AFC-2 compressor, huilt-in sunply. Switchable three position audio filter, like new. cost $\$ 55.00$. Sell for $\$ 15.00$. Pair of
supply for Heath compact linear, new $3-400$ Zs, $\$ 25.00$ each. DC supply for Heath compact linear,
only 10 hours use. $\$ 69.00$. Money-back kuarantee: all items nnly 10 hours use. \$69.00. Moncy-back Huarantec: all items
freight paid in USA. Jack Yeoman, W8VHY. RR \#4, Washfreight paid in USA. Jack
ington $\mathrm{C} . \mathrm{H}$., Ohio 43160 .
FSK Info wanted for Swan 500. Also, RTTY converter, RTTY Fransmitter. W1CNY, 228 Hickory Hill Lane, Newington, Conn. 06111.

ESTATE liquidation of W9FEH: Hammarlund HQ-145X w/spkr, 132. Eico VTVM 555, Hickok tube checker 51 X . Mosley V-4-6. QSI's 1945 to 1966 . CQs 1947 to 1954. Xtals, meters, tubes, and canacitors. SASE for list. All reasonable offers considered Write Mrs. F, J. Gerard, 1521 S. Dixon Road, Kokomo, Ind. 46901 or tel: (317)-452-1761.
TR-3 and AC-3 supply, $\$ 400.00 ; 75 S-1$ with Waters notchfilter, $\$ 290.00$: Heath SB-200, \$175.00. All in perfect condition 46320. 46320.

SALE: Hammarlund HO-180. $\$ 275.00$; Heath MT-1 Cheyennc $\$ 45.00$; HP- 10 mobile supply, $\$ 15.00$; HP-20 AC supply. $\$ 25.00$: Viking $11 . \$ 75.00:$ Hallicratters HA-5 VFO. \$30.00. C. H. Wil-
lard W2EZB. 110 Winchester Dr., New Hartford. N. Y. 13413. GilOBE Scout 680-A, kood condition. \$35.00: vertical antenna x0-6 meter, 23 ft . $\$ 15.00$; first check takes it. Tel: (614)-4518870. Dave Gibb, 2171 Pinebrook, Columbus. Ohio 43221

FOR Sale: 75A4, serial $4190,5,2.1,3.1$ filters with SB-610.
$\$ 475.00$. HT-37, 3 xtals full 10 mtr. coverage. $\$ 250$. B\&W 1000 . linear with input tuned ckts. $\$ 175.00$. HX $\$ 250$. B\&W HP-20 plus mobile mike: $\$ 250,00$, Joseph Soroka, Jr., W3LGD, P. O. Box 88. Irwin. Penna. 15642.

Fr)R Sale: Model 19 RTTY with w/TD: 2 high-voltage A66/D.S. OBE 6 and 2 meter tranmsitter, $\$ 85.00$: 2 meter converter il.OBE 6 and 2 meter tranmsitter, $\$ 85.00: 2$ meter converter 25.00 : 6 meter beam, $\$ 12.00$: B\&W $5100-\mathrm{B}$ transmitter, $\$ 115.00$:
afayette $\mathrm{HA}-225$ receiver. 80 to 6 meters, $\$ 80.00$. Bruce, $80-42$
s0th St. Bellerose. L.I..N.Y. 11426 .

FOR Sale: Heath TX-1. $\$ 165.00$ HO-140X with speaker, $\$ 125.00$ xtal mike with stand, $\$ 6.00$. Vibroplex Original $\$ 15.00$: operat ing desk for above, \$20.00. \$300 takes all. Pete Steensma. WANTED: License Holder (as on ARRL License Manual) and an inexpensive "bug." John Ross. WNØSTQ, $845^{\circ} \mathrm{W} .57$ St. Kansas City. Missnuri 64113 .
oST's. March 1927 through 1960 . Complete run. in binders. Exclnt condx. Make offer. Mrs. Sylvia Allen, 5300 Fifth Avenue Apt. C'2, Pittsburgh. Penna. 15232.
RECEJVER: Hammarlund HQ-10nC. with clock. Mint condiion. Worth $\$ 185.00$ new. Asking $\$ 95.00$. Dr. M. L. Turoff, 36 Timer Mill Road. Stamford, Conn. 06903.
QRP Xmtr wanted. (Abt. 5 watts) and miniature receiver must be battery powered. WB6VUS, 3128 Camino Avenue, Hacienda Heiphts. Calif. 91745.
SALE: Bound OSTs 1958 thru 1966. Red binding, gold markings. Advertising and miscellanenus removed. Front covers retained. $\$ 4.00$ each. Lot for $\$ 35.00$. Unbound 1967 for $\$ 2.00$. WSLZL.
500 Cliffside Drive, Richardson, Texas 75080 .

PROP Pitch rotors, brand new, small 10:000:1. \$45.00. John Link, 1081 Aron St., Coca, Fla. 32922.
WRL's used gear has trial-guarantee-terms. SB300. \$249.95

 lower prices on hundreds more Free "Blue Book', listing.
WRL, Box 919 , Council Bluffs, Iowa 51501 .
RADIO Shack transistor requlated d.c. supply $0-20$ volts metered, $\$ 12.00$: Knight C-577 audio comnressor, wired. A
must for trans with no ALC, $\$ 15.00$; Four Cetron $\$ 72 \mathrm{~B} / \mathrm{A}$ Tinust for trans with 10 hours at $\$ 1 / 2$ rated voltage, $\$ 48.00$: Tw 811 As bought surplus for spares. Tested but never used. $\$ 3$ s each. 2 coax ant. relays 115 v.a.c. with extra externai spdt. certif. check, above exuaranteed new condition. Mail m.o. or difference. Also have heavi-duty hi-voltage suncily tapped 2200 2600 v.d.c. in rack pancl. $\$ 45.00$ local. Will deliver up to 150 miles north of Boston. $\$ 5.00$ ext. W1JGJ. J. Haskell, Jr., 25 Whitney St., Saugus. Mass. 01906.
COMPLETE Station, Swan 350 transceiver/power pack, Turner microphone, used 4 months. Hornet Tribander beam
 4457.

WANTED: KWM-2 late model, in mint condition, mobile Supply, and mount. Russell Hobert, 520 Homestead Ave., Mt. Vernon, New York 10550.
SELL: Eico 753 transceiver (solid state VFO) and 751 AC power supply, $\$ 175.00$. Byron Crawford, 725 Woodhaven, Raton Rouge. La. 70815.
T-O Keyer, Model HA-1. $\$ 50.00$: Autronic Key, $\$ 10.00$; both are in mint condition. WA8RPC, Terry Minsel, 916 Wilhelm St. Defiance. Ohio 43512.
WANTED: Hallicrafters HA-6 transverter Please include price and condition in your first letter. K9KFR, Robert Johnson, 5230 Forest Ave, Fort Wayne. Ind. 46805.
TWO Meter SSB. Gonset GSB-2 SSB Communict Communicator 900 B with 901 A a.c. power supply Three months old.
$\$ 315.00$ F.0. W9OEO. Box 25 M Mekena, Ill 60448 . $\$ 315.00$ F.O.b
HALLICRAFTERS HT-32, $\$ 240.00 ; \quad$ SX-101A
\$185.00: SR-160
with PSeciver,
$\$ 235.00 ;$ All are in mint condition. List of others available. W2FNT, 18 Hilicrest Terrace, Linden, N.J. 07036. Tel: 201-486-6917.
WANTED: "Radiotelegraph Key" tie clip (was RCA advertising gift). Price and condition? W2ML, 42 Prescott, Garden

WANTED: Drake 2 -LF low frequency converter for Drake
2-C receiver. Write 2-C. receiver. Write
UIm, Minn. 56073 .
400-B Globe King, very clean. manual and spares. $\$ 100$ or hest offer. Elliott, K6ILM, 8.35 Valencia St., San Francisco, 94110.

SELL Swan 350 . in excellent condition. $\$ 350.00$ Dr. Patrick. Box 100. Caldwell. Idabo 83605.
SELL: Collins mechanical filter FL-1 part 526933700 for $32-$ \$1 Exciter. $\$ 35.00 ;$ also 500 -cycle filter for $75 S-1$ receiver,
$\$ 15.00$. K 6 RWO, 2423 Daventry R Road, Riverside, Callif. SWAN 500 and $117 X C$: like new. Used about 20 hours. In orisinal cartons. Sell as package. $\$ 50000$ or hest offer. Steve Zumbrun, K9YTL, 11 Kessler Blvd., West Drive, Indianapolis. Ind'ana 46208.
WANTED: Collins 30S-1 linear. Give number, year, condition and price. Bunge, Box 4099, Tucson, Arizona 85717. Tel:
TX-62 months old $\$ 85.00$ Ameco ${ }^{3} \mathrm{mtr}_{\text {i }}$ Onv. W/n.s., CN144k. \$25.00: ${ }^{\text {k }}$ kw amplifier 4-811A, 2500 v p/sunply, Road. New Milford, Conn. 06776. Tel: 203-354-5460. 75A4 for sale. In excellent condition: $\$ 395.00$. N. Konos, W1LMP, $81 / 2$ Summit Avenue, Salem, Mass. 01970.
SALE: X-10 crystal calibrator, \$8.00: Dow-Key coaxial antenna relay DR-60C 32 C . $\$ 18.00$: Ameco c .w. oscillator-monitor. $\$ 4.00$. All for $\$ 25.00$. WB4FJO, Sherm, 1509 Carolina, Kingsport, Tenn. 37664
WANTED to huy: Gud clean Collins 51 J 4 or 5151 receiver. Bob Anderson, WILBA, 428 Central Ave., Milton, Mass. Bob
02186.
SEILL: QST 1935-1965 run. Four for \$1.10. 1935-36-37-38-3940 bound, each year $\$ 5.00$. Also have duplicate copies. W1KMN, Huro Eekman, 9 Blaine Avenue. Augusta Maine.
SEIL: Hallicrafters Hurricane $S R-2000$ transcciver factorysealed, unopened cartons. Sorry, reason for selling this beautifill professinnal cauipment:- illiness. $\$ 1300$ or your offers. \mathbf{E}. Grieco P.O. Box 549. Meriden, Conn. 06450 .
SELL: Best offer: Heathkit Mohawk receiver RX-1 with speaker crystal calibrator. and manual. Factory alirned. IO-
160 M including SSB $2-6 \mathrm{~m}$ rapability with converter. new. J. A. Kuzneski. ${ }^{2}$ Concord Drive, Middletown Rhode new. J. A. 1 Ruzneski. 02840 . Tel: $401-847-5410$.
DRAKE R-4A, T-4X. AC-3. MS-2. Turner mike. Practically new original cartons. Shipn
Box 2. Wylie. Texas 75098 .
FOR Sale: National NC- 303 receiver. in excellent condition. $\$ 150.00$ F.o.b. Gary, Indiana. Joschh Kijawik, 2249 Crest Road, Gary, Indiana 46408. Phone 8873845.
MOVING into an apartment. Selling SX-111 with speaker, $\$ 160,00$; HT-41 amplifier, \$175.00; Ham-M rotor with cahle, $\$ 90.00$ Presentation key, $\$ 25.00$. Call C. I James Kirek, 203-521-6008. 98 Risgs Avenue. West Hartford, Conn. 06107. EXCELLENT F/W Ranger, PTT, \$100; mint condx Dow-

 B\&W coil. $\$ 8.00$ Ship ur cost. WTGXC, 414 Fountain Circle,
Murray, Utah 84107 .

SAVE: Spring sale. Swan 500 and 117 XC , \$489.90; Galaxy V MK 2 and AC-4, $\$ 439.90$ D.C. 3. $\$ 88.00$; Drake rR-4. AC4 and MS-4, $\$ 599.00$: T4X or R4A. $\$ 315.00$: T4XB or r4B,
 MK2, Ham-M, \$95.00; Mosley TA-33, \$98.00; Hy-Gain TH3MK2, $\$ 95.00$: RG/8-U 104 ft. with purchase of any beam. Special. New ARRL Handbooks, \$2.95. Sce "U-All" at the Dayton Hamfest. Ham's Best in the Midwest. Evansville Amateur Kadio Supply 1629 S. Kentucky Ave., Evansville, Indiana 44174. Wm. ORg. WA9RMO.
SELL: TWO unused 4-400As. $\$ 15.00$ each. Jennings $20-750$ uufd, 10000 V vacuum variable, $\$ 10.00$. Make your own drive. All items Foob. Martin Peterson, 1311 West 5 th St., Winona, Minn 55987.
SELL Or Swap: Yintage de Forest D-12, Freshman Masterpicce, Atwater-Kent Model 40 receivers. For interesting ignition model ensines. Oifers to R. O. Knutson, 1000 23rd Ave. SW, Austin, Minnesota 55912.
WANTED: History of W2CT. Need information about Awards, activities, etc., of previous licensecc. Will deal for QSL cards or equipment. F. S. Wilcox. 2607 Broadview Dr., Yorktown Heights, N.Y. 10598. Tel: 914-245-4120.
COLLINS 75A-4 and KWS-1 in excellent condition; 0.5 , 2.1 and 3.1 Kc filters. snare pair 4-250Rs. For sale at $\$ 1000$. $832-5227.1800$ W. First St., San Pedro, Calif. 90732, fonc SWAP BC-221 with power supply delivered for new SKvmaster 2-element Tri-E Fiberglass quad kit delivered. WA5EN.. 218 Karen Drive, Lafayette, La. 70501
WANTED: Borrow or buy Ranger I assembly manuals. WA4QPN, R. Kump, 341 W. Blue Heron Blvd., Riviera Beach. Fla. 33404.
R-100A Kinight revr. In exclnt condx. $\$ 50.00$. WA@NSY. Mark Meyer, 1613 Highland Court, Rapid City, South WANTED; Collins CC-2, CC-3 carrying cases, 136B-2 noise blanker. Heinlein. 107° Wyoming, Boulder City, Nevada 89005.

WANTED: Polycomm two meter transceiyer. Joc Birenbaum, K1QFN, 309 Ocean Avenue. New London. Conn. 06320.
SX-111, in exclnt shape: $\$ 125.00$ or your best offer. WA9-
SELL: HW-22A and AC power sunply. Professionally wired. NCX-3 plus NCX-A p/s. In original cartons. \$255. K2OSA 249 F, Shore Drive, Massadequa, L.I., N.Y. i1758. Tel: 516-54-1322.
SWAP: In mint condx, NCX-3: Heath GW-14 CB for Hi, UORSA, 519 Brown, Pueblo, colorado 81005. crafters Panadapton SP-44, $\$ 15.00$ F PEP, $\$ 23000$ Halli63 Connecticut Ave., Massapequa, L.i., N.Y. 11758 . Tel: 516-541-3172.
FOR Sale: Lafayette HA-350 receiver, DX-60 xmtr, HyGain
$\$ 0-10$
$\$ 200$
m. 0.0
takes it. Ind. 46711 .
WANTED: Johnson Model 240-305 SSB adaptor. Advise crndition and desired price in your first letter. A. Corrado, 208 Second Street. Hood River. Oremon 97031.
COLLINS 75A4, in mint condx. Late serial number with vernier dial and $2.1,3.1,{ }^{6}$ kc. mechanical filters. $\$ 425.00$. Mass. 02536. Tel: 617-548-5671.
SWAP: Want: Have two Collins R388s in excInt condx, for ne R390A or R391 in same condre. Neediollins PTO
\#70HIZ. Inquiry or offers invited. P. F. Collins, K9BNJ, tel: A 317 -4526iry or offers invited. P. F. Collins, K9BNJ, COITINS KWM-2. $30 \mathrm{~L} 1,312 \mathrm{B5}, \mathrm{~F}_{2}, \mathrm{MP} 1$, mike, 351D2, T-O keyer MM-2 RF analyzer. new Webster Bandspanner and mount, Ham-M rotor. Hy-Gain 3-hand beam and ficld$\$ 1500$ complete, or wili sell individually. Paul Jacokes, 618 Hammond St.. Durham. N.C. 27704. K4R.ST.
COLLINS 75A-4 Serial 4213. Clean and in original packine
$\$ 400$. No modifications. Ivan Fry, 202 W. High St. Minerv. $\$ 400$ NO modifications. Ivan Fry, 202 W . High St., Minerva Ohio 44657.
HFATH DXGNA HR10. and GH10B, nerfect condition. $\$ 125.00$ WBGVU̇S, 3128 Camino Ave., Hacienda Heights, Calif. 91745.
WANTED Grebe CR18. Keith Olson, W7FS, Star Rte. 1, Box 398. Belfair, Wash. 8 sith.
CERTIFICATE will be issued by Henry Ford Museum to any station that works the Motor City Radio Club station W8MRM, during the 24 hours prior to the Old Timers Night banquet. Work W8MRM on May 4 (GMT) on or near 3.663 .
$3.900 .7 .070,14.300 .50 .178,145.350$ or 146.96 Mc . SL for certificate., Peter Tipnt Radio Club. Greenfield Village, Dearborn, Michigan 48124.
(Novice contacts by schedule.)
WR have tuvers for used ham gear, Collins, Drake, Swan.
WRL, Hallicrafters, Hammarlund, National, Johnson, SBE to. Tet us sell your used ham kear for you. Vrite KBE WøZCN, Electronic Engincering \& Equipment, 1028 Centril Ave., Fort Dodge, Iowa 50502.
CHRISTIAN Ham Fellowship now heing nraanized for licensed amateurs for the purpose of Christian fellowship and distributing gossel tracts among amatcurs all over the world. to Christian Ham Fellowship, 5857 Lakeshore Drive, Hol land, Michigan 49423. (Request free folder "Twice-born Hams'.)
FOR Sale: Homebrew $20-m e t e r$ SSB exciter $\begin{gathered}\text { fith lincar }\end{gathered}$ $\$ 50.00$: Drake 1 A rcvr, in mint condx. $\$ 130.00$. Globe xmttr N.Y. 11801 . Cail (510)-WE1-6033 after 4:30 PM. St. Hicksville

COLLECTORS: First time offered: 262 issues OSTs dating from 1923; 143 CQs dating from 1945. Masy other old items. Ronks. parts, etc. Send for complete list. L. S. Comyns, 10067 Pico Vista Rd., Downey, Calit. 90240
WENT SSB. Yaliant. $\$ 135$ NC-125, $\$ 50000$ New $4-1000$, $\$ 45.00=$ Shure 51 S mike, $\$ 5.00$ New Dow-Key relay, $\$ 11.00$. WIBNH, 8 Peach Hishlands. Marblehead, Mass 01945.
HALLICRAFTERS SX-146 recciver. excellent condition. 140.00. Will deliver to 100 miles radius. T. Rustick, 48 Emerson Road. Člark. N.J. 07066.
HALLICRAFTERS $S-40$ receiver, sud cond, $\$ 49.00$. Richard Demaret, 6451 Spring Terrace, Falls Church, Virginia 22042 .
SELL OSTs 1954 thru 1960. Best offer. F.o.b. W8KOE, 23515 Drake Road, Bedford, Ohio 44146.
SELL: Ranger, II \$125.00. W2DTE, 29-29 213 Street, Bayside. L.I.. N.Y. 11360 .
SB- 34 with calibrator. mike, mobile mounting platc. Alsn R RL Trake W-4 directinal Wattmeter. Nearly new Must Sell! Best first offer
Park,
Filaccive
32073.
DX-60. \$60.00; HR1O, \$50.00; HG10 $\$ 30.00$, All in like-new Condx. W. N. Giles, 128 Manor St., Roanoke, Va. 24019.
GREBE CR8 wanted. Please state condition and price. Also tubular audiotron double filament tube. burned out filaments OK. W7EH, I, ee Faber, 4348 East Palo Verde Dr., Phoenix, Arizona 85018 .
F-Z Way $41-\mathrm{ft}$ galvanized tower. Ham-M rotor. Hy-Gain W2EI. F . Fl : 201-962-4167, 67 Catherine Court. Ringwood, N.J. 07456.

NOVICE station: \$70.00. New Conar 3-band recejver factory aligned; matching $25-w a t t$ transmitter, key, crystal, jel: 9370314 . Ronald Polk. 3121 W . Lanc. Phoenix. Arizona 85021
NATIONAL NC.X-5 Mk II with NCX-A AC power sunply
console. Perfect salesman's sample. $\$ 500$. Will finance. K4console. Perfect salesman's
AET. Gwynn. Va. 23066 .
WANTED: Swan 350 or 500 . Complete with 110 v AC supp, and spkr in A-1 shape, or an SSB transciever equivalent, A-1 shape. Fairly priced. W3PFD, 20257 th Ave., Beaver Falls, Shape. Fairly
Penna. 15010.
FoR Sale: Hallicrafters HT-32A transmitter, $\$ 25000$; Hallicrafters $S X-101 A$ receiver, $\$ 175.00$. L.ate models in as new condition, very stable and reliatle. No trades. Prices f.o.b. 27410 .

SONY Transistor TV camera. video output. $\$ 150.00$ Collins KWM-1 with a.c. sunply. DX adapter, noise thanker and | speaker. All like new condx: $\$ 400$. Needs: 75A-4. Write |
| :--- |
| $W 2 P N T, ~ R i c h a r d ~ R o o s, ~$ |
| $136-66$ |
| 71 |
| Rd., Flushing. L.I., N.Y. | W2PN

11367.

FOR Sale: Quadruplex Mark II radio control set with servos and batteries. WA3FBP, 206 Cecil Ave., West Lawn, Penna. 19609 .
COIJINS 75S3B mint condition: $\$ 450.00$ W6FEX 4900 La. Calandria Way, Los Angeles, Calif. 90032. Tel: 2i2-2551 eventngs.
ART-13 W/AC nower supply of 3400 V CT ciil . 400 a . All other AC-DC voltages, filters, conds, All you need for top
quality linear. $\$ 50.00$. F.o.b. W6RTD, 31 Celine Dr., Santa quality linear. $\$ 9.00$.
WRI're, phone or visit us for the best deal on new or reconditioned Collins, Drake, Swan, National, Galaxy, Gonset, Hallicrafters, Hammarlund, Hy-Gain, Mosley, Waters, SBE, Henry linear, BTI linear, towers, rotators, other equipment. We meet any adrertised cash price un most equipment. We try to sive you the best service, best nrice, best terms, best
trade-in. Write for nrice lists. Your inquiries invited. Henry Radio. Butler, Missouri 64730.
(oLLINS KWM-2 and AC nower sunnly. Perfect. WICPI, tel: 401-783-2702.
FOR Sale: KWS-1 \$595, and 75A4, \$395, guaranteed likenew. Waters Model 331 grid dip meter, brand new, $\$ 75.00$,
(Kegular $\$ 129.75$). Shipping charges extra. J. Ogle, W1LSS, 304 Bushy Hill Road. Simsbury, Conn. 06070. Tel: 203-658$40: 9$.
SELL: HO-1G0 receiver, like new, with original box and SELL: HO-1 $\$ 170.00$. W'R Rau. Box 136. Henderson. Minn. $\$ 6044$. FOR Sale: all in like-new condition with manuals. Orikinal
 HA-2 with $n / s, \$ 175.00 ;$ SR-42 with mnbile n/s kit. \$150.00:
Hammerlund $H Q-170 A C$. $\$ 275.00$; HX50, $\$ 250.00$. Idoni
 Sat. and Sunday afternouns.
GALAXY V Mk II with matching calihrator. AC-35 mpply. speaker, new in original factory cartons $\$ 42500$. Galaxy 2 . Kw linear, new, in original factory cartons, $\$ 375.00$ incluxdins power sumply. Like-new Heath HW-12 with calinrator, AC supply in perfect condition. Tel: of 2-966-9921.
WANTED: Transmatch. Send description and price. Kirt Fanning, 6021 Edgewood, La Grange, Ill, hll.525.
URAKE R-4, $\$ 240.00: S B-400, \$ 240.00$ Used very little. Richard Petersen. 1207-28 St., S.E., Cedar Ranids, Iowa $\therefore 2403$.
NC-300 like-new condx, \$150 nn firm! First check takes it. Nel (614)-451-8870. "Dave," 2171 Pinebrook, Columbus, Ohio 43221 .
ELMAC Wanted, comnlete station. State electrical and physical condx, lowest price, Wilber Cox, K9UIV, 810 Pendleton Ave., Anderson, Ind. 46014. Tel: 642-2233
CriLINS Transmitter COL-52318 $\mathrm{u}_{4} \mathrm{kw}$ phone/cw. New in original packing. $\$ 350.00$ or Will swap for FM communications sets, freq. meter, etc. W2OEA, Higley. 1196 Elberon
Ave. Elberon, N.J. 07740 . Ave. Elberon, N.J. 07740.
 manuals. W6MWF, 10213 Las Tunas, Rancho Cordova, Califi' 95670.

SACRIFICE: Heath SB-300 receiver Professionally wired. Mint condition. On air ten hours Ail three filters $\$ 250.00$. Knght $1-60$ Novice transmitter. Excellent. few crystals, \$40.00. First certified check. J. F. Huffman, 69 Fairview Road, Clark. New Jerses 07066. Tel: 201-381-7451.
FOR Sale or trade: Akai X-355 tane-recorder. ost $\$ 800$. NCL 2000 linear, Swan 140 modified to Triband with power supnly, speaker, ptt mike. Need Heathkit SB-200, SB-110, HD10, SB-640. Any reasonable offer accepted.
answered. WB6MJQ, Box 12, RCABMEWS. APO New York answer
09023.
SELL: HW-12. Clean, $\$ 75.00$ plus shipping. W4LXA, 752 Hish St., Harrodsburg. Ky. 40330 .
SALE: New Eico 753 multi-band transceiver, wired AC and Fifth Ave.. Ant. C-2. Pittsburgh. Penna. 15232 .
WANTED: Regency ATC-1 transistorized mobile converter. Andy Nelson, WB2CHU, 205 West End Ave., New York, N.Y. 10023 .

SELL/Swap: OSTs 1934-1960 missing Anril 1937. January 1944, October and November i945., July 1446. and April 1953. ash or trade toward a Rood receiver. M. F. Steward, 1775 Ridge Road, North Haven, Conn. 06518
DXERS Table of Great Circle hearings, distances, centered on your OiH, Over 300 prefixes. $\$ 3.00$ airmailed. Radio Amateur Services. 400 Hillside Ct. \#1. E. Lansing. Michigan 48832.
MONIT Radios, MR-10, $152-174 \mathrm{Mc}$, and $33 \mathrm{~B}, 30-550 \mathrm{Mc}$., hoth $\$ 85.00$, Realistic RP-3050. $30-50$ Mc, and Hallicrafters signal booster, $\$ 20.00$. All in mint cundx. C. Harrow. 2081 S E 19 th Ave.. Pomnano Beach. Fla. 33062 .
SELLING Globe ${ }^{\text {fPMC }} 6 \mathrm{M}$ converter. power supply. $\$ 15.00$; Heath IM-10 service hench VTVM. \$35.00: HM-10 tunneliode GDO, With manuals. Stuart, 511 Laughlin.
SB-10 wanted, in gud condx. Will answer all replies immediately. Jim Delaney, 1815 Ashland Ave.. St. Paul. Minn. 55104.
SELL: SX-110, Sneaker, manual. Good Novice rcvr, $\$ 80.00$ 50158.

HALLICRAFTERS HA-6 transverter and power supply, \$120.00: I afayette HA-350 ham-band receiver. with cal:brator, $\$ 80.00$ AF-h8 transmitter, $\$ 40$. 00 : Johnson 6 and 2 converter 10 -meter I.F. $\$ 25.00$: Heath UT1 nower sunply $\$ 15.00$: WRL SA63A nower supnly. \$15.00. Philip Schwebler, W9GCG, 4536 N. 50 th St. Milwaukec. Wis. 53218.
WANTED: Collins 312 B 5 PTO or 399C-1 PTO. Also want mobile transceiver. $\mathrm{K} 3 \mathrm{BHB}, 903^{\text {ar }}$ Western Ave., Jeannette, mobile transce
Penna. 15644.
SB-610 monitorscope, $\$ 75.00$: $\$ \times-88$ receiver, unmodified with manual, \$180.00. Variac $\$ 5.00$ F.o.b. Walt Joyce, 2118 East $0-5$ Ave., Palmdale. Calif. 9.5550 .
SELL, Swan, buy antique receivers. radio masazincs. cataloss, handbooks. Snencer. 44 Sabrina, Weilesley. Mass. 0218i.
FOR Sale: Heath Apache transmitter for \$130,00. In execllent condition. Will ship. WA4ZGO. Rodney Bland. 512 Roberts t. . Ahoskic, N.C. 27910.

HEATH SB-300 receiver, with SSB, AM and (WW filters. peaker mounted inside cabinet. In excellent condition: $\$ 240.00$ FOR Sale: Heath Adache TX-1. Very clean, \$90.00. Also like FOR Sale: Heath Apache TX-1 Very clean, \$9n.00. Alsn like
new Hammarlund HO-170C. $\$ \mathrm{H} 65.00$. K 1 MWF , L. Burns, RFD Plainville. Conn. 06062.
HALLICRAFTERS SR-42A new, never used original rarton, matching HA-26 VFO and Shure 404C mike, \$190.00. Jeff Rnssi 125-12 Cranston Ave., Rockaway Park. N.Y. 11694. YABSI FT-DX-400 transceiver for sale. W8AO, 2912 Riveriew Boulevard. Silver Lake. Ohio 44224.
MASTER Mnhile antenna Ro-20-15 bumper mount, new, $\$ 35.00$ postpaid; AR-22R antenna rotor, 100 ft . control cable, new. \$40.00. Postnaid.
dido, California 9?025.
SELL: DX-100. in pud condx. \$80.00: Heath VFI. \$15.00: Hallicrafters R-45. \$7e 00 ; Heath O-multiolier, \$5.00. All f.o.b. Heard S. Lowry, K4VFA, 915 Madison St., Manchester, Tenn. 3735.

HAMMARLUND HX-50, $\$ 225.00: ~ H Q-160$ with speaker, $\$ 165$; W25. meter trans in in cabinet with power Nupply metered, DTMMONT 304-H nscilloscope, like new. 2 spare CRTs, manual. \$50.00); won't shin. sry. Turner 254 X PTT desk mike, $\$ 8.00$ WA1AZW. 37 Foster Dr., Framingham, Mass. 01701. Tiel:
SELL: Collins 32 S1 with 516 FT power supp.. $\$ 395.00$ alsn National NCX-3. $\$ 1(0), 01$; all units very clean condx. Will shin n original cartons foob. Rnchester, N.Y. Richard Gillberg, K2DAT, 319 Lake Meadow Drive. Rnchcster, N.Y. 14612.
TRADE LM10, BC-312. ZEnith R-1000-1. SASE for list. T. iosman, 143 Roxton Rnad, Plainview. N.Y. 11803.
HAM Statinnery. Very impressive executive style. Inexnensive. K3GWD Press, RR \#2, Box 366, Wampum. Penna. 16157.
WANTED: Used 8 AVO or 14 AVO antenna for Novice statıon. Brian Blair. 7114 Meade St., Pittsburgh. Penna. 15208.
MAKE an ofter: These items must be sold-SX-117 Hallicraft. rs rcrr, crystal-filter transmitter. exciter HX1O Marauder by Heathkit. HA1Q kilowatt linear amplifier by Heathkit. Contact
D. Allen Frame. Kinsley. Kansas 67547 . D. Allen Frame. Kinsley, Kansas 67547.

USTS July 1424 through 1965. Best offer. Dlus shipping. E. Amarantes, 1643 Lincoln Aventre, San Jose. Calif. 95125.
SELL: Collins 32 V 2 transmitter and Hammarlund HO-170AC: W2ZEW. 5 Brook lane. Bordentown. N. 5 of fer. R. Schwendt, W2ZEW. 5 Brook Lane. Bordentown, N.J. 08505 .
SELL: 144 Mc . station; Sola 250 volt one amp. supply, SASE or description. WØDAK, 1641 Eleanor, St. Paul, Minn. 55116. Tel: 698-3054.

EICO 753, \$80; Hy-Gain 14AVQ vert, $40-10 \mathrm{M}, \$ 15.00$; 12V Heath supply, \$12.00; DX-35 Heath, \$15.00. R. Sumption, 142 E. Murray St., South Bend. Indiana 46637.

NOVICE Equipment, like new condx Knight R-100 receiver, Eico 723 transmitter, Callbnok, ARRL books, $80 / 40$ Dipole, coax. Make offer. Kim Miller. Route 1. Edgerton, Uhin 43517. AMPLEX 2 meter amplificr, 1000 watts c.w. and SSB: 600 watts AM pair ${ }^{4 \times 250 B s \text { Chimneys, }}$ maner and instruction
manual: $\$ 125.00$. Gcorge Heabler, 121 Parana Drive, Newark, Ohio 43055 .
FOR Sale: Antique RCA radiola 60 . early AC/DC superhet broadcast band receiver. Set is complete with speaker and onoperating. KOGVB, Giary Ernst RR 2, West Branch, Iowa 52358.

FANTASTIC Buy: Drake 2B with CRY/CAL Hallicrafters HT-37 brand new, Pair of 813 s liner amp and nower sumply: or write for individual low prices. K4TAS. Jim Williams, 3300 Margrave Rd., Columbia, S.C. 29203.
FOR Sale: Viking II and matching VFO, $\$ 85,00$: BC-348 with AC nower supnly, $\$ 35.00$; DX-40 and VFO, $\$ 40.00$: HO-110-C, \$85.00: HO-129X, $\$ 65.00$. TR-106 6 meter new, wired by experienced builder, $\$ 8400$. Will ship. All hayc manuals and all
are in excellent condition. H. Dale, WB4FB1. 22 Stonewall St., are in excellent condition.
COLLINS 75SB with 500 cycle filter. $\$ 500: 3253$, used only 2
 finals, $\$ 185.00$; new Drake TR-4, never plugzed in. $\$ 500$ no. with power supply 0 H 104 mike with it stand, $\$ 20.00$; WRE Gilobe Champ 300A, \$95.00 All Rear in gud wkg condx. K1Tel: 413-592-2952. Call person-to-person, pls.
LAFAYETTE HA-410 10 mtr. transceiver microphone, 12 ohn Bednarz RA11760225, 68-17A1. Box 175, 2nd Warrant Officer Candidate Company. U.S. Army Primary Helicopter Center, Fort Wolters, Texas 76067.
TH-6, $\$ 90.00: 80-40$ Cliff Dweller, $\$ 80.00 ; 32 \mathrm{Ft}$. Spire tower,
 Nebraska 68144. Tel: (402)-333-8i76.
GLEGG $66^{\prime} \mathrm{er}$, new, $\$ 195.00 \mathrm{cash} / \mathrm{m} .0$. cash \& carry. Stan,
SELL: Collins 62S-1, $\$ 700$: (perfect); Valiant, $\$ 95.00$ (perfect); HRO-7, A, B, C. D, E, F, \$85.00 dependable/clean), John Wagner. W8AHB. 3890 Tubbs, Ann Arbor, Michisan, 48103
PREPARE For new FCC exams! You need Posi-Check. Multinle choice questions, diagrams, explained answers, 1BM sheets for self-testing. Same form as FCC exams. General Class. $\$ 3.25$:
Advanced Class, $\$ 3.50$: Extra Class, $\$ 3.75$, 295 to 300 questions Advanced Class, $\$ 3.50$: Extra Class, $\$ 3.75$. 295 to 300 questions
or dianrams in each. Fach complete for a specific exam. Basic cuestions duplicated if they anply. Third class postage prepaid Add 26% per cony for first class mail: 544 for air mail Send
cheek or money order to Posi-Check, P.O. Box 3564 , Urbancheck or money order to Posi-Check,
dale Station. Des Moines, lowa 50322.
RADIC Operator experience sceking employment. Telephone den. L.I. N. Y. 11784.
SELL: HT-32A, $\$ 225.00$. R. Van Wuyckhuyse, 412 Humboldt St.. Rochester, N. Y. 14610
FOR Sale: NC-300. \$160.00: Viking Valiant I. $\$ 150.00$; will ship. Kenneth Lucas. 665 East 66th St., Indianapoils, Ind. 46220. Phone 317: 2550547.

REWARD For information leading to procurement of manual

Brilli.

WANT Swan Transceiver 350, etc. Will buy accessories. Must be in sood condition. Write giving details and price
minimum. R. Shaull, W8NBP, 1748 Hanley, LexinRton, Ohio

WEBCOR 2712 Tape-recorder, mike, carrying case and manual: $\$ 50,00$. $\$ 15.00$ each for R-47 speaker, Vibroplex Key with
wedge Johnson Signal Sentry with power sunnly, W9RTZ. wedge
60302.
PROFESSIONALLY Built Heath 75 M . Singlebander, AC suo ply, \$195.00; Kodak M-65 comb. 8 mm , Super 8 projector. $\$ 65.0 \mathrm{n}$ (trade?). Fverything brand new. Ruarantee cards. Harold Greene, 377 Oldham. Pembroke, Mass. 02359.
SCOPE Eico 460 allgned, calibrated, guarantred. $\$ 60.00$: HW32. First phone built. Heath updated, $\$ 75.00$ Heath SB-610 scope. Mint condx. $\$ 55.00$. Manvals. F.o.b. WASSKI, Lewis Trailer Patk, $\# 3$. Columbus, Miss. 3970 i.
MICHIGAN Area Harns! Single channel 4 ft . Snan r/c planc, 6 meter transmitter and receiver. Servos, ensine and acees-
sorics. Finished, never flown. Pick up in St. Clair, Michigan sorics. Finjshed, never flown. Pick up in St. air, Michiran for $\$ 70$. Also Twin City RTIY terminal unit. $\$ 40.00$. Globe Scout $65 \mathrm{~B}, \mathrm{~Sv} \$ 30.00$. R. Wanat.
$\$ 2 A$, Huntsville, Alabama 35805 .
VIKING Valiant I with manual. Clean, qood condition: $\$ 135.00$. Call after 6:00 PM, or write WB2VBT. Jerry Hermel, 51 Barry Dr.. Westbury, L.I., N.Y. i1590. Tel: (S1n)-334-7746. WANTED: September 1943 issue of "Electronic Industries"
Mrs. Jane Morgan, 402 Qak Grove Ave, Menlo Park. Calif. Mr3.5.
NATIONAL NCX-3 for sale. \$180. WOGEP, 907 Deandell, St. Louis, Mo. 63135.
WANTED: Johnson Matchbox, 275 watt. Jeff C. Schwartz,
WASTYX, 1013 Gorgas Circle, Fort Sam Houston, Texas WAST
78234.
 6nh31.
SFLL HO-100, excellent. especially good for Novice: $\$ 75.00$ Clock and speaker included. Tom Fitrnatrick, WB4FO'T, 1923 aford Cir., Apt. 5, Lexington, Ky. 40504.

WANTED: Complete station, transceiver or transmitter, reeiver, 20 and 10 beams. Ham-M, Ralvanized tower. power supplies. Barton Yayer, W4FC, 2271 E. Vina Del Mar Blvd., St. Petersburk. Ha. 3370 .
SELL: HA-10 Kw linear, in excellent condition. \$125.00: HO-13 Ham-Scan in exclit condx $\$ \$ 50.00$. Art Jones, 2214 Westmoor St. San Antonio, T'exas 7822 .
FOR Sale: NC-303, $\$ 18500$; HW-12, with HP-13 mobile power supnly, \$125.D0; R45/ARR7, built-in a.c. supply, panel controlled, $\$ 75.00$, J. Jones, W5BRQ, 931 National St., Vicksburs, Miss. 39180.
SELLING: Lafayette HA-63 receiver; Heath VF1, VFO and DX-61) transmitter. ${ }^{4}$ crystals. All for $\$ 85.00$. You pay shinping. 21403.

TR-4, AC-3, $\$ 435.00 ;$ HT-32, $\$ 215.00$; Tektronix S11AD 'scope, 8200 . All in mint condx, may trade. Nead Collins. Don Burns, NEW Swan S00C including 117 XC supply. Unopened sealed cartons, factory warranty: $\$ 495.00$ Three available. Don Payne, W4HKQ, ©io Payne Chevrolet Oldsmobile, Box 525, Springfield, Tennessee 37172.
POIY-COMM 6 meter transceiver for salc. Built-in VFO, fixed-mobile nower supnly, and Nuvistor front end. Jack Elias. WA3EVG. 2416 So. 7th St.. Phila., Penna. 19148.
LAMPKIN 105B frequency meter; 205A quad scale modulation meter. 111 PPM meter. All in new condition, with manuals. $\$ 400.00$ for all. John I eech. 9 Berkshire Road, West Chelmsford, Mass 01863 . Tel: (617)-251-8324.
WANTED: A 3 to 30 Mc converter: Kegency ATC1; Gonset Super Six. etc. State price and condx. Walt Kenyon, W61JA,
1695 North Point. San Francisco, Calif. 94123 . Tel: WA11344:
SEL.L 6.5 KVA generator, $\mathbf{1 2 0 - 2 4 0}$, single-phase 60 cycle waterconled on trailer. 40 hours since completc rebuild. $\$ 550.00$. K Ellis. 1356 Elizabeth, Las Vesas, Nev. 89109.
VIKING Valiant, F/Wired, rugged, denendable, $\$ 180.00$. HW-32, scratchless, few hours, $\$ 80.00$. K. Meyers, W81BX, ?160 E. Main St. Columbus, Ohio 43209.
VIKING II, Viking II V'FO. Viking 6N2, Viking GN2 YFO, National NC-300, National NC-300 converter cabinet with six meter converter and Ameco 2 -meter preamplifier. Gond working condition. $\$ 600.00$. K 5 GFB, Andy Anderson, ≤ 20 Pasallena Ave.. Metairie. La. 70 (ox 1.
NEW QTH. Can't erect 48 ft . Spaulding SS tower, AR-22 motator. Hy-(iain 203BA beam; BN12 balun, cables, used one year. Excellent. Ready for station wagon nick-up.
Wili sell for \$175.00. W2BKG. Tel: (201)-757-309i.
FOR Sale: KWM-1 Collins transceiver in mint condition, comnlete with DX Adaptor and variety of crystals and $312 \mathrm{~B}-1$ speaker cabinct; $516 \mathrm{~F}-1$ a.c. input and $516 \mathrm{E}-1$ 12-volt innut biy. All in excellent condition. $\$ 500$ all or and cable assembly. All in exeellent condition. $\$ 500$ all, or best offer! RTTY additional CV-7! IF. input unit; all like-uew conde. made by RCA. $\$ 150.00$. Wili prepare for shipment. Guarantecd satisfaction or will return money. Sy Hernander, W? BSA/1, River Road, RFD 1. Essex. Conn. 06426. Tel: (203)-767-1410.
DELCO AM-FM radio, late model, damased for parts complete $\$ 1.49 .8 \mathrm{lbs}$. Printed circuit boards Delco Kadio early model in various stage of production. DS-25, DS-26 transistors and other components 15ϕ per Ib. Postage extra. Art Taylor, W9FYC,
601 Rex St.. Muncie. Indiana 47303 . CRYSTALS Airmailed: SSB. Nets, MARS, Marine, etc. Novice 05% crystals \$1.50. Custom finished etch stabilized FT-243 $.01 \%$ any kilocycic or fraction 3500 to 8600 \$1,90, (Five or mnre this range $\$ 1.75$ each). incts, ten or more same frequency supnlied abo to 3499 and 8601 to 20.000 \$2.75 with overtoncs Add 50% each for 00.5% Add 756 each for HC-6/u metai miniatures above 2000. Many ARRL publication and QST builders crystals. sroups or sin81es. Be specific. Write for or-
der-bulletin. Crystals since 1433 . Airmailing $10 ¢ /$ crystal, surface der-bulletin. Crystals since 1433 . Airmailing 1
ié. C-W Crystals. Marshfield, Missouri 65706.
CoLLINS 75A-1 rcvr in excellent condition: $\$ 110.00$. I will ship. 7 Fis A. Write, WASRRW, Qtrs, $31-3$ N.A.S., Pensacola,
HO-170-C, $\$ 175.00$; DX-100 and SB-10. $\$ 150.00$. Yuu ship. SASE for small narts list. WøKVA, 2029 Calumet, Indenendence, Missouri 64050
WANTED: 2 meter AM transceiver with Squeleh. John Stiles. K7DGV. Box 114. Swectgrass, Montana 59484.
GALAXY 300 with PSA-300 AC supply and VX-1 VOX, $\$ 200$. HT-37, \$225. Peter Hanse
Road, Ann Arbor. Michigan 48105 .
REBUILDING Antenna? Write Walt's Ham Hardware Headquarters: Rrass. Stainless, Nylon Threaded, Washer, Hardware. Assorted Stainiess Washers. 354 Postpaid. Many packet bargains. Send stamp. W8BLR, Straesser, 29716 Briarbank. Southgains. Send stamp.
field, Mich. 48075.
TO settle the estate of Charles H. Ackerman. WAGISY, the following Colling equipment must be sold: best offer over $\$ 1700$ will buy all. Collins transverter 625-1: Collins receiver 756F2. Contact Ben Graves. 5539 N. Garfíld, Kansas City Mo. 64118 . Phone Ciladstone 2.5549.
ПRAKE TR4; sneaker/p.s. unit. As new, guaranteed. $\$ 500.00$. -FR9-0415.
NEW Drake TR-4 wia.c. and d.c. pwer and spkr, never used:
$\$ 550$. New G-50 w Rotron. \$190. W A 2 CO .
COLLINS $75 \mathrm{~S}-3, \quad 3775 ; 30 \mathrm{~L}-1$, $\$ 375$. Condx exelnt. L. Mácomber. 4 Yorktown Road. Setauket, N.Y. 11785. $\hat{D} \overline{\mathrm{R} A K E} \mathrm{R}-4 \mathrm{~B}, \$ 345.00$; Hammarlund $\mathrm{HO}-180 \mathrm{AC}, \times 345.00$ Just hought a siS1. Jack West, 6747 N. Octavia. Ćhicago, Illinois 60631
7SA-4 for sale. Perfect condition. Matching sokr. 6 and 3.1
KHz filters. S/N 4570 . Orisinal owner: $\$ 400.00$. W2OCG. 3 Henry St., Great Neck, L.L., N.Y. 11023.

DELHI 50 ft . self-supporting amateur tower: handles 30 lb . beam with no suy wircs. Now iondx: \$105.00.1. F. O. FayetteCOLLEGE Expenses force sale. HBR-8. \&bu. 00 , Uo your best otfer. BC-653-A xmer with extra parts. tubes.
power supply. David Muller, Drew University, Madison, New power supply.
WANTED: Plug-in coils for Pilot Superwasp and Nationa Thrillbox SW-S: Atwater Kent model 12 breadboard, Kadiolas Hansclman, 914 Columbian. Oak Fark, illinois 60302.
HEATHKIT HO-10 d.c. 'scone in excint condx. \$90.00; Heath Kit AM-2t VWR bridgc. $\$ 700$; Mcl land Lane, Matawan. N.J. 07747 . Telephone 1201)-566-5260.
 Hado
 Tel: (216)-758-1801.
COMPLETE Drake station, in mint condition: R4, MS4, 2 , ${ }^{\text {BLF}}$ BCB converter, fill 110 M , and 160 M cuverake, ${ }^{\text {T4X }} \mathrm{AX}, \mathrm{AC3}$ and all cables, $\$ 785.00$. Waters compreamp. $\$ 21.00 ;$ Vanguard recorder, \$125.00 WB2 WFR. Jue Heffler, 2200 Morris, Bronx 111453, tel: (212)-295-1694.
COLLECTOR'S Itcm: Thompson ${ }^{\&}$ l.evering Co, Philly .
 FOR Salc: 75S-1 receiver with Waters rejection tuning, S / N 1072. \$450.00. Both in like-new condition with oriz.nal shipning boxes. fackave for $\$ 700$. Will consider trades un entire package. Also Viking 500 transmittcr, in exc. condx $\$ 275.00$; 16 Jacqueline Drive, Paoli, Yenna. 19301. Prone (215)-6479750.

TOROIDS: 88 mhy unused, center-tapped, $5 / \$ 1.50$ post paid. Heath $D X-60 A$, new, $\$ 55.00$. 3 head Tee-Dee with sync. $\$ 50$.
National $N C X D$ mobile National NCXD mobile supply, s40.00. BC2210 frequency $\$ 35.00$. A. S. Dick 420 mimeosraph (fine for ham club bulletin $\$ 35.00$. A. B. Dick 420 mimeosraph (fine for ham club $\$ 16$ ultin Wanted. Matchbox, Ham-M. Clexg 2herer. Stamp for list. Van,
W2DLT. 302 Z Passaic, Stirling, N.J. O7980 ATV Camera, new, self-contained, power supply, video output
 Merrick
BUG, Vibroplex, perfect, like-new. \$11.00. K2TBZ. Tel: Brkiyn) 74×-7473.'
KNIGHT T-60. $\$ 40.00$ L Lafayette VFO. $\$ 20.00$ R Rider Ad-
 WANTED: NC200. TR 3 or similar w/ps. W $3 \mathrm{JAK} / \mathrm{MM}$, USNS Norwalk, F.P.O
SELL: 10 comilete sets OST 1951 thru $1960 \$ 25.00$ nlus shipping. M. A. Georke. 35 Ridgeway Ave.. Pittsfield, Mass. 01201.

 $\mathrm{CM}-1$ rcyr
Niles. Oh'
445446 .
CATHODE-Ray tubes for sale! 5 inch oscilloscope tubes: SBP1, SBP4, SCP1. Also 832, 371 B and others. Each under $\$ 8.00$ or will trade for equinment. Write, Box x08-308. Easton, RTTY: Model 14 T.Ds. rebuilt. refinished, ${ }^{60}$ speed with sync motor, \$48.00; with governed motor. \$35.00. Model 14 tvping eperts. cleaned, adjusted, heok speed with sync Priner, R.D. \#4. Princeton, N.J. 0×540.
HT-44 with PS-150-12n. \$240.00; Drake 2B with crystal calihraor, $\$ 190.00$. Selling both in excellent condition. Also available, B-33, \$140.0U: works well with Heathkit MP-10. \$1800. .o.b. Railex Lompoc, WA6PGA, RFD A-97. Nite rate fone less than \$1.00: 805-736-3762 for into
BANDIT 2000 B Used about 3 hours, and in perfect condition. $\$ 285.00$. John Harlin. 113 Fast Court, Iowa City, lowa 52240. 'OLLINS 32V-1, Hallicrafters HT-32B and SX-115, National HROSOr-1, all in exclnt condx. and little used (reason for selling. Hand usual station gear jend for descriptive list and deellaneous usual station rear. Will accent first sood offer innt or items). KiPTU, Extails. Will accent first sood offer (int or items).
W3DTD, 120 Montvale Rd.. Weston, Mass. 02193.
HOWARD Radio: SW140-\$11900: RAA-\$269.00; NC300-
 each; PCNB-Poly Com-\$89.00; NC183-\$99.00: KW350 w'AC
 A/C $915-0 \mathrm{R} 2-9501$
SELL: $5^{N \prime}$ wide-band Precision Instrument Corp.. Model S-55 Scope \$125.00; Paco, Model R-30 R.F. signal generator. \$35.00: 715 , Yransmatch complete antenna checker, $\$ 42.00$ Mercury Model 120 Tube-tester. checks all latest tubes, 40 Mo. All quipment in A-1 condition and suaranteed to be perfect! . W. Cnoner, 8258 Rrittany Place. Pittsbursh. Penna. 15237. (7) FICO sweep/marker generators \#368; Knight Flyback hecker, Paco in-circuit cap surcker. Suundax auto radin (1964 Rambler). will swan for SWI evuipment or sell. Derek
H. Rout, 1347 Easy St. N.. Glendale Heiphts, Illinois fo1.37. WANIED: Collins S/Iine. $75 S 3 B-C .32 S 1,516 \mathrm{~F} 2,312 \mathrm{~B} 4,30 \mathrm{~S} 1$, Mint condx. only. Preter Serial Numbers and ase. H. Castillo, 2323 Gatewood St., Los Angeles Calif. Yo031
WANTED: Taylor Windscope or senarate wind direction and speed indicator. or equivalent. W2EV.
WANIED: 80 and 40 m . broad hand final coils for C.E. 600 L amplifier. G. M. Schartau, WA4UKE, Rte. 4, Box 1737, Huntsville, Ala. 35803.

MOVING: Sell Gonset Comm. IV. 6 m with Ameco 621 VFO. Telrex beam, Drake filter, cables, $\$ 255.00$. Perfect homebrew 6M SSB Superhet revr, Dow retay, $\$ 30.00$. Many extras. Aul
 OX1-4711.
HOSS-TRADER Ed Moory has a limited supply of the following New Euuipment for cash: R4-A, $\$ 339.00$: SB-34, \$395.00: NCX-200 and AC-200 supply, \$349.00: New Swan $500, \$ 399.00$: KII IK-2000 Linear, \$675.00; Mosley A-33 Beam and Demo Ham-M Rotor, \$188.00: SPECIAL Kohn 50 ft . Fold-over Tower Prepaid, \$189.50: Drake L-4 Linear, \$559.00: SLIGHTLY USED

 mobile mount, $\$ 475.00$ Ham-M Kotor, $\$ 89.00$ Hactory Reconditioned S13-33, \$179.00: Galaxy 5 MK 11 , $\$ 339,00$: Swan KADIU (U)., Box 506, DeWitt. Arkansas 72042. Phone 946-2820. SELL: HQ-170AC receiver with S-200 speaker, in exclnt condx. $\$ 250.00$, with manual in original cartons. C. Russell, 101 Sunset, Vicksburs, Miss. 39180 .
HALLICRAFTERS SX-i46 recciver, Heath DX60A transmitter. Hy-Gain $14 A \vee Q$ vertical with 80 -meter loading coil, plus root mount. All less than y months old. All in pert. condx. ()riginally sold for over $\$ 375$. Will sacrifice for $\$ 275.00$. or trade for e.b. tquipment ur stereo tape-recorder of equal value. Steve Armeros. 1019 So. W'eadock, Saginaw, Mich. 4×601. $015 S$ and Q © tor salc. USTS: δ conies 1946, complete run 1947, 1948. 1949 . A few missing through 1950-1967. CQ. 1946. a tew missing in this run fair to copies each. 1950.; $\underset{\sim}{4} 4 Z B W, S 04$ Carol Way, Atlanta, Ga. 30327 .
FOR Sale: Linear amplifier, homebrewed, 4-250As grounded krid. $\$ 3$ in. cabinet on wheel castors. Necds a little dressing. \$upnio. picture tor sincere request. $32 \mathrm{~S}-3$ homebrewed power supply, \$50.0.). W8DFA, William S. McFadden, 29 Vernon
SFLL: Valiant. factory-wired, (ionset Communicator II, Mor row l'wins. MB-6 and MB-565 with mike and power supnly with cabics. All in working condition with manuals. All tor $\$ 350.00$. Will ship collect. A. Irabicki, W2ESS, RD \# 1 , Clifton Springs, N.Y. 14320.

SELL: Heath Seneca, \$150.00 or vour hest otfer. Wanted: colins 51J1-4. Send clatails. Fran Stengel, Jr., 349 Stony Road. Lancaster, N.Y. 14086.
MOVING ORT. Sell I)X-20 with 2 antennas, $T-R$ switch, \$1al, \$000 Knight VF-1, \$10,00; Vibroplex OrigiWilliamsburs. Va. 23185 . Bob WA4OUS, 112 Holly Road
FOR Salc: Johnson Matchbox with SWR meter; 275 watt model. Sell locally, \$65.00. W. Paskin, X Brighton loth Court, Brook-
lyn. N.Y. 11235 . 1 el: 212)- 646 -1832. lyn. N.Y. 11235 . 1el: (212)-646-1832. WANTFD: $75 S 3 B$ and $32 S 3$ with acecssories. Will pay cash.
Sry, no trades. Dr. Paul Powell, 100 S . McGee, Borger, Texas
70007 .
SC IFN(E Fiction or pulp magazines wanted. Have cuash or 1930 ARRL Handbook to trade. Horvat. P()H286, langent, ()regon. 97389.

HEATH SB-101, with SB-600 and AC nower sunoly inside. Excellent wiring and performance. Used only three hours. Guaraneeed perfect in every resnect. With manuals and carton, \$395.00 land. Maryland 21502 .
SACRIFICING 4-1000A linear, RF section in KWM-2 cabinet but twice height vacuum variables. Separate power supply, bu00 voits. Solid state variac eontrolled. A real beauty, \$395. Two Redrh has 3 , 16 me and $240 E E$. Each has 3 lense and case, both flawless. New each cost $\$ 375$. Amestov Avc. Van Nuvs. California 91406. Tel: (213)-344-6309. COMPIFTE Swan 240 rig, for base and $/$ or mobile. Includes: Swan 240 xcvr, Swan transmitter control unit with VOX and
 Ranchero Wy \# 15 , Sall Jose. Calif. 95il7. Tcl: (408)-246-6198, MODEL 15 Printer. Electrocom FSC. Vallant with accessorics. other ecsuipment, pick-up deal only, sry. Joe Bradley, W4KZH, 1402 D Ave., West Columbia, South Carolina 29i69, phone

KWM-2, PM-2, MP-1, 351 D-2, SM-1, Manuals, original cirr tons, mint. package deal: \$900.00. WA4AEB. Tryon, N.C. 28782. COLLINS 30L-1 w/spare Waters tubes: \$375.00: NCT 2000 linear, \$385.10. Want: Collins mikes MM-1. MM-2. and SM-1: DC mount and sumplv, h2s-1. 30 $\mathrm{S}-1$. BTI or Henry $2-4 \mathrm{~K}$. Have almost new. Sline as possihle trade. Ashton, WIWNY. Tel: 203)-6

SSB Xcvr. Eico 753 K transistor VFO. in exclnt condx: neat wiring, clean. unmodified all manuals. No $\mu . S$. $\$ 120.00$. Tel:
f64-K744. Garv C'onfrev. Rte. x 6 . Killingsworth. Conn. 16417 . SIXER in Rood conditinn. Mike and xtal. $\$ 30.00$. Boyd Nelson. Indian Hosnital. San Carlos. Arizona 85550.
HALLICRAFTERS SX-99 receiver. (inod for Novice. \$60.00. linht lockhart. Jr., 234 S Hillside Ave., St. Paul, Minnesota SELL: L'V power supply: Heath VF1, military clock (24-hours)
and some variable condensers. All for $\$ 5.00$. Frank Rodeo, and some variable condensers. All for $\$ 5.00$. Frank Rodeo, OSCILLOSCOPF: Heathkit Model 06. \$?0.00: HA- $\$$ transverter, $\$ 49.00$. Power supply for ARK-5 or Johnson 6 and OSTS 1948 through 1967: COs 1947 through 1967. Best cash offer F.o.b. Ouakertown, N.J. R. H, Asmus, Suite 423, i44 Fole Sale: Hy-ciain Hy-Cower, $\$ 50.00$: Suner Hustler Resonator RM75S. \$12.00: and a pup tent with floor \$15.00 (ficld-day item). All $\Lambda-1$ condition. K $0 \mathrm{AHO}, 45$ Green Meadow Fark, Clear Lake, Iowa 50428.

Designed for

THE NO. 37001
 SAFETY TERMINAL

An old favorite in the line of exclusive Millen ''Designed for Application' 'products. Combination high voltage terminal and thru-bushing. Tapered confact pin fits firmly info conical sockef providing large area, low resisfance connection. Pin is swivel mounted in cap to prevent twisting of lead wire. Easy to use. $1 / 4^{\prime \prime}$ o.d. insulation high volfage cable fits into opening in cap. Bared conductor passes thru pin for easy soldering to pre-finned tip of contact plug.

Standard 37001 available in either black or red bakelite. No. 37501 is low loss mica filled yellow bakelite for R.F. applications.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND EACTORY MALDEN MASSACHUSETTS

WANT MORE FOR YOUR MONEY?

If you want to get the greatest of operating pleasure, from a most reasonable investment, then you want Drake's new R-4B receiver and their new T-4XB transmitter. Add the new L-4B linear amplifier, and you'll have the BIG sock that brings plenty more satisfying solid QSO's!

And to get even more for your money, your new Drake equipment should bear the Harrison label. For top trades or cash allowances, easy terms, and more real value, all ways, it will pay you to deal with the acknowledged leader.

Come on in, or write to me today. Tell me all about your wants, what you have to trade, and what terms you prefer. Tnx.

${ }_{73}$ Bil Harrison wava

All NEW from DRAKE

R-4B RECEIVER

 with new solid state arcuitry

T-4XB TRANSMITTER with new double 8 pole crystal lattice filters

BEFORE YOU BUY any new ham gear you owe it to yourself to study the outstanding specifications of the new, ultra-modern design Drake equipment.
A visit, phone call, or a post card will place latest literature in your hands.

We stock the entire Drake line, and we guarantee your complete satisfaction with its performance.

Harrison

"HAM HEADQUARTERS, USA"©
20 Smith St., Farmingdale, L.I.,N.Y. 11735 (5 16) 293.7990
VISIT OUR NEW STORES

Good used Ham gear.
We will pay top cash... or make bigger allowances.

\$240!

NEW HEATHKIT ${ }^{\circ}$ HW-100 5-BAND SSB-CW TRANSCEIVER

You asked for it . . . a multi-band version of the Heathkit "single-banders" . . . low-cost SSB operation on 10 or 15 meters . . . an SSB transceiver equal or superior to many assembled rigs, but at much lower cost. That's the HW-100.
How did Heath do it? We expanded on the "singlebander". design . . . borrowed from the heritage of the famous SB-101 . . . took a look at the competition \ldots and produced the most SSB equipmeit you can get for the money.

Check the features and the specifications:

- Solid-state (FET) VFO - 80-10 meter coverage Switch selected upper or lower sideband or CW - 180 watts input PEP SSB - $\mathbf{1 7 0}$ watts input CW - Crystal filter. - Full coverage on all bands with $\mathbf{5 0 0} \mathbf{~ k H z}$ per band segment - Smooth vernier control of frequency with patented Harmonic Driverm dial mechanism -Built-in 100 kHz calibrator - Separate offset CW carrier crystal - TALC - Quiet, enclosed relays Fixed or mobile operation with HP-23 or HP-13 power supplies - Easy assembly with circuit boards and wiring harness
Kit HW-100, 18 lbs., no money dn., s22 mo. $\$ \mathbf{2 4 0 . 0 0}$
Kit HP-13, DC power supply, 7 lbs., $\$ 7$ mo............ $\$ 64.95$
Kit HP-23, AC power supply, 19 lbs., $\$ 5 \mathrm{mo} . \ldots \ldots . . .$.
Kit SB-600, 8 ohm speaker, $6 \mathrm{lbs} \$ 18.95$
HW-100 SPECIFICATIONS - RECEIVER. Sensitivity: Less than . 5 microvolt for 10 dB signal-plus-noise to noise ratio for SSB operation. Sefectivity: 2.1 kHz minimum at 6 dB down, 7 kHz maximum at 60 dB down (3.395 MHz filter). Input: Low impedance for unbalanced coaxial input. Output impedance: $8 \$ 2$ speaker, and high impedance headphone. Power output: 2 watts with less than 10\% distortion, Spurious response: Image and IF rejection better than 50 dB . Internal spurious signals below equivalent antenna input of 1 microvolt.

TRANSMITTER. DC Power input: SSB: (A3a emission) 180 watt P.E.P. (normal voice: continuous duty cycle). CW: (Al emission) 170 watts (50% duty cycle). RF Power output: 100 watts on 80 through 15 meters; 80 watts on 10 meters (50 S 2 nonreactive load). Output impedance: 50Ω to 75Ω with less than 2:1 SWR. Oscillator feedithrough or mixer products: 55 dB below rated output. Harmonic radiation: 45 dB below rated output. Transmit-receive operation: SSB: PTT or VOX. CW: Provided by operating VOX from a keyed tone, using grid-block keying. CW Sidetone: Internally switched to speaker or headphone, in CW mode. Approximately 1000 Hz tone. Microphone input: High impedance with a rating of - 45 to -55 dB . Carrier suppression: 45 dB down from singletone output. Unwanted sideband suppression: 45 dB down from single. tone output at 1000 Hz reference. Third order distortion: 30 dB down from two-tone output. RF Compression (TALC): 10 dB or greater at . 1 ma final grid current. GENERAL. Frequency coverage: 3.5 to 4.0; 7.0 to $7.3 ; 14.0$ to 14.5; 21.0 to $21.5 ; 28.0$ to $28.5 ; 28.5$ to $29.0 ; 29.0$ to 29.5; 29.5 to 30.0 (megahertz). Frequency sfability: Less than 100 hertz per hour after 30 minutes warmup from normal ambient conditions. Less than 100 Hz for $\pm 10 \%$ line voltage variations. Modes of operation: Selectable upper or lower sideband (suppressed carrier) and CW. Dial calibration: 5 kHz . Dial mechanism backlash: Less than 50 Hz . Calibration: 100 kHz crystal. Audio frequency response: 350 to 2450 Hz . Front panel controls: Main tuning dial. Driver tuning and Preselector. Final tuning. Final loading. Mic and CW Level control. Mode switch. Band switch. Function switch. Meter switch. RF Gain control. Audio Gain control. Side controls: Meter Zero control; Bias; VOX Sensitivity; VOX Delay; ANTI-TRIP; Neutralizing. Tube complement: OA2 Regulator (150 V); 6 AU6 RF amplifier; 6AU6 lst receiver mixer; 6AU6 Isolation amplifier; 6AU6 1st IF amplifier; 6AU6 2nd IF amplifier; 68N8 Product detector and AVC; 6AU6 VFO Amp.; 6CB6 2nd transmitter mixer; 6CL6 Driver; 6EA8 Speech Amplifier and cathode follower; 6EA8 lst transmilter mixer; 6EA8 2nd receiver mixer and relay amplifier; 6EA8 CW sidetone oscillator and amplifier; 6GW8 Audio amplifier and audio output; 12AT7 Heterodyne oscillator and cathode follower; 12AT7 VOX amplifier and calibrator oscillator; 12AU7 Sideband oscillator; 6146 Final amplifiers (2). Diode complement: 6 Germanium Diodes: Balanced modulator, RF sampling, and crystal calibrator harmonic generator; 9 Silicon Diodes: ALC rectifiers, anti-trip rectifiers, and DC blocking; 1 Zener Diode: cathode bias, Transisfors: 2N4304 FET- VFO; 2N3393 - Voltage regulator. Rear apron connections: CW Key jack; 8Ω output; ALC input; Power and accessory plug; RF output; Antenna; Spare. Power requirements: 700 to 850 volts at 250 ma with 1% maximum ripple; 300 volts at 150 ma with $.05 \%$ maximum ripple; - 115 volts at 10 ma with $.5 \%$ maximum ripple; 12 volts $A C / D C$ al 4.76 amps. Cabinet dimensions: $14.13 / 16^{\prime \prime}$ W. $\times 6-5 / 16^{\prime \prime}$ H. $\times 13-3 / 8^{\prime \prime}$ D.

FREE 1968 CATALOG

Describes these and over 300 kits for stereo/hi-fi, color TV, amateur radio, shortwave, test, CB, marine, educational, home and hobby. Save up to 50% by doing the easy assembly yourself. Mail coupon or write Heath Company, Bentor Harbor, Michigan 49022.

HEATH COMPANY, Dept. 9.4 Benton Harbor, Michigan 49022
\square Enclosed is $\$ \ldots$, plus shipping.
Please send model (s) 1] Please send FREE Catalog.
Name \qquad
(Please Print)

Address

City
ty \qquad State \qquad _Zip AM-192

Solid-State Projects for the shack

Build this high stability VFO

Here's an almost drift-free VFO built around the RCA-3N128 MOS/FET for flexible operation. After just 30 seconds warm-up, it tests out at less than 30 cycles drift in a two hour period.
Look in The Radio Amateur's Handbook, 1968 edition or write to RCA, Commercial Engineering, Section 037-SD, Harrison, N.J. 07029 for full design details, including parts list, schematic, and building tips.

All listed RCA devices are available from your RCA Industrial Semiconductor Distributor

Build this VFO calibrator

If you're interested in MARS and have just a "ham-bands-only" receiver, this may be your answer to VFO calibration outside normal bands. It uses two RCA-1N3193 rectifiers; two 1N34A signal diodes; one RCA-2N2614 and seven RCA-2N3241A transistors-provides calibrating beats at 100 kHz points as well as $50,33,25$ and 20 kHz . Handy, too, for calibrating test equipment.
Look in August 1967 QST or write RCA, Commercial Engineering, Section D37-SD, Harrison, New Jersey 07029 for August 1967 "Ham Tips." RCA Electronic Components, Harrison, New Jersey.

[^0]: 1900 Route 110, Farmingdale, New York 11735.

[^1]: * Honeywell Inc., Annanolis Operation, Test Instruments Division, P.O. Box 391, Annapolis, Maryland 21404.
 ${ }^{1}$ Kretzman, page 88, CQ. April. 1961.
 2 Hoff, "Mainline 'TT/L F.S.K. Demodulator, QST', August. 1965.
 ${ }^{3}$ Kretzman, " ${ }^{\text {The New RTTY Handbook," OQ Technical }}$ Series, Cowan Publishing Corp., Port Washington, N. Y.

[^2]: ${ }^{4}$ Geffe. Simplified Modern Filter Design, John F. Rider Publisher, Inc., New York City, 1963.

[^3]: 5. Huchanan and Associates, 1067 Mandana Blvd., Oakland. California 94610.
 © Wetherhok, "An RTTY Bandpass Filter for 1275/2125 e.p.s" QST; August 1967.
[^4]: 1 Macdonald, "A Slow-Scan Vidicon Camera," QST. une, July and August, 1965.

[^5]: * 21 Barton Ave. S. E., Minneapolis, Minn. 55414
 ** P. O. Box 126, Thief River Falls, Minn. 56701

[^6]: IMotorola Semiconductor, Fairchild Semiconductor.

[^7]: IMcCoy, "A Field-Effect Transistor Dipper," QST,

[^8]: Continued on page 172)
 ${ }^{3}$ McCoy, "Novice or General - TVI Can Be Tough," QST, March, 1967.

[^9]: *Stove Point. Deltaville, Va. 23043.
 ${ }^{1}$ Anderson, "Arnateur Reception of Weather Satellite Picture 'Transmissions', QST-November, '1965.

[^10]: 2 This and other single-digit figure numbers throughout this article refer to circuits and dramings in the article referenced in Footnote 1 . Drawings accompanying tho present article have three-digit numbers.

[^11]: ${ }^{3}$ DeMarw, "The Basic Helical Beam", QST, November, 1965.

[^12]: ${ }^{4}$ Available from Ionics Electronics Division, 65 Grove St., Watertown, Mass. 02172

[^13]: ${ }^{1}$ A kit of 2 small suitable toroid enil forms is available for $\$ 1.00$ postpaid from Alcom Filentronics. 2025 Middlefield Road, Mountain View, California, 94040. Fairchild transistors are available thmugh any Fairchild distributor.

[^14]: 2Johnson, "Band-Switching Fransmatches," QST', Uctober, 1967.

[^15]: ${ }^{3}$ Danghters, Havward, and Alexander, "Solid State Receiver Design using the MOS Transistur,' Part [I, QST, May. 1967, p. 25.

[^16]: * P.O. Box 1664, Boulder, Colorado 80301.

[^17]: ${ }^{1}$ For further discussion, see Pawsey and Bracewell, Radio Astronomy, Oxford University Press, Oxford, England, 1955, p. 21. Steradian: The solid angle subtended at, the center of a sphere by a portion of the suriace whose area is equal to the square of the radius of the sphere.
 "Sre LSray and Kirchner, " Intenna Patterus from the Sun." QST, July 19GO.

[^18]: ${ }^{3}$ Allen, "The Variation of Derimetre-IVave Radiation with Solar Activity," Monthly Notices of the Royal Astronomical Society, p. 174 (1957).

[^19]: * Assistant Communications Manager, ARRL

[^20]: Western New York
 WB2YNU 65.565-355-62-A-17 WB2RCB $47,025-275-57-A-13$ W2ADN $\quad 4.982$-206-51-A-19 43.216-296-73-B-18 W2DIZ WA2BEX WB2YGH WB2UCJJ WB2SND K2CEI W18148/2 $37,372-217-56-A-15$
 $35,401)-200-59-\mathrm{A}-\mathrm{y}$ $35,4011)-200-59-\mathrm{A}-9$
 $34,200-200-57-\mathrm{A}-11$ $34.200-2100-57-A-11$ $11,747-304-53-\mathrm{H}-22$

 $26.116-161-52-\mathrm{A}-12$ wasge K2kIR W28NI W2QY | 12 EQB |
 | :--- | W2ZCZ WA2WHA

 WB2YVP WA2SVW WA2KMI W2PDS WB2YQO WB2VVZ
 W2HNE W2HNE $\left.18-\begin{array}{c}15-X-A- \\ i-1-A- \\ i-1-A-\end{array}\right)$ WB2YUT (WB2AOYEY (TT) WB2VZV (multinor.)
 K 2 CC (WA2SSJC, WB2AFS)
 JC, WB2AFB)
 $3976-72-28-\mathrm{B}-4$
 Western Pennsyloania
 K3HKK (K3AHT, opr.)
 K3KMO $5,269-27 .-68-A-21$
 $\begin{array}{ll}\text { K3KMOV } & 54,969-272-67-A-21 \\ \text { W7,125-364-65-B-18 }\end{array}$

[^21]: * Communications Manager

[^22]: Section 97.97 Notice of operation. . . .
 The notice required by this section shall contain the following specific information:
 (a) Name of licensee.
 (b) Station call sign.
 (c) Authorized fixed transmitter location.
 (d) Portable location(s), or mobile itinerary as specifcally as possible, or temporary fixed transmitter location, or new permanent fixed transmitter location.
 (e) The dates of the beginning and end of each period of operation away from the location specified in the station license.
 (f) 'The address ai which, or through which, the licensee can be readily reached,

[^23]: "Something new is being created: 'exclusive reserved bands,' something the United States has never known in its . . . Amateur Kadio Service." When a knowledgeable reader finds such a statement in the opening paragraph of this new publication, he might wonder whether the remainder of the text could contain similarly-inaccurate information. And with good reason.

 One would think that two hams earning a living in the writing field would at least have done a little research and not have committed such additional inexcusable goofs as reproducing and recommending use of a renewal form for amateur licenses which was discontinued in 1961!

 Yet some of the material can be useiul; the circuit diagrams are certainly reliable. since nearly all are identical

[^24]: ${ }^{1}$ Interestingly enough, the same (and then correct) answers given in the $1959 C^{\prime} Q$ License Guide, a flagrant plagiarism of the ARRL Manuul, including wholesale copying of the schematics. - enrtor.

[^25]: *7862-B West Lawrence Ave., Chicago. Ill. 60656.

[^26]: * Send reports and correspondence to Bill Smith, IVB4HIP, ARRL, 225 Main St., Newington, Conn. 06111.
 ${ }^{1}$ Declination. Angle in degrees north or suuth of the colestial Equator (the circle that would be formed at a right angle around the polar axis).

[^27]: BARRY EI.ECTRONICS
 DEPT. Q-4
 512 BRO.ADWAY, NEW YORK, N. Y. 10012
 WALKER 5-7000' (Area Code 212)
 1 Finclosel is money order or check and my order. Prices FOB, NYC. Shipments over 20 lbs. will be shinped collect for shipping charges. less than 20 lbs include suticient postage. Any nverage will he refunded. Fragile tubes shipped via Railway Fixpress. Minimum order $\$ 5.00$.
 I] Send $10 c$ for 72 nage Greensheet Catalog 18. (Prices subiect to change) Write for your copy.
 \square Send information .

[^28]: Write for FREE copy . . . or
 One year for $\$ 5.00 \ldots$ or
 Get ONE YEAR FREE - 3 years for $\$ 10.00$
 to Ham Radio Magazine, Greenville, New Hampshire 03048. Be sure to include your name, address, call and Zip code.

