

10 reasons to buy Hallicrafters' new SR-400 Cyclone

FEATURE	Hallicrafters SR-400	Collins* KWM-2	Drake* TR-4
Power Input	SSB $=400$ watts $C W=360$ watts	SSB $=175$ watts $C W=160$ watts	$\begin{aligned} & \text { SSB }=300 \text { watts } \\ & \text { CW }=260 \text { watts } \end{aligned}$
Accessory 'dual receive" VFO available	Yes	No	No
Noise Blanker	Yes	$\$ 135.00$ Accessory	No
Receiver incremental Tuning	Yes	No	No
Built-in notch Filter	Yes	No	No
Sharp CW Filter	Yes 200 cycles	No	No
Sensitivity	$\begin{gathered} .3 \mathrm{uv} \text { for } \\ 10 \mathrm{db} \mathrm{~S} / \mathrm{N} \end{gathered}$	$\begin{gathered} .5 \mathrm{uv} \text { for } \\ 10 \mathrm{db} \text { S/N } \end{gathered}$	$\begin{aligned} & .5 \mathrm{uv} \text { for } \\ & 10 \mathrm{db} \text { S/N } \end{aligned}$
1 kHz dial readout	Yes	Yes	No
Carrier Suppression	60 db	50 db	50 db
Unit Price	\$799.95	\$1,150.00	\$599.95

Now: can you think of one reason why you shouldn't?

Superb sensitivity, 400 watts RF, 200 cycle CW selectivity, receiver incremental tuning, 1 kHz readout, amplified automatic level control, exclusive notch filter! There's even the HA-20 dual receive VFO for sensational, award winning DX operation. No matter what specifications or features you choose as a standard of comparison, the exciting new SR-400 fixed/mobile transceiver is
 unsurpassed. Unsurpassed feature for feature. Unsurpassed for rugged dependable performance in all environments. Unsurpassed in value and versatility. Prove it to yourself. Write for complete specifications in a four page brochure. See your Hallicrafters' distributor today.

hallicraffers

600 Hicks Road
Rolling Meadows, Illinois 60008 A Subsidiary of Northrop Corporation

SR-400 Cyclone Transceiver

Export: International Dept. Canada: Gould Sales Co.

(E).The holes in the top, sides and rear of the Electro-Voice Model 664 make it one of the finest dynamic cardioid microphones you can buy. These holes reduce sound pickup at the sides, and practically cancel sound arriving from the rear. Only an Electro-Voice Variable-D ${ }^{\text {® }}$ microphone has them.

Behind the slots on each side is a tiny acoustic "window" that leads directly to the back of the 664 Acoustalloy ${ }^{*}$ diaphragm. The route is short, small, and designed to let only highs get through. The path is so arranged that when highs from the back of the 664 arrive, they are cut in loudness by almost 20 db . Highs arriving from the front aren't affected. Why two "windows"'? So that sound rejection is uniform and symmetrical regardless of microphone placement.

The hole on top is for the midrange. It works the same, but with a longer path and added filters to affect only the mid-frequencies. And
near the rear is another hole for the lows, with an even longer path and more filtering that delays only the bass sounds, again providing almost 20 db of cancellation of sounds arriving from the rear. This "three-way" system of ports insures that the cancellation of sound from the back is just as uniform as the pickup of sound from the frontwithout any loss of sensitivity. The result is uniform cardioid effectiveness at every frequency for outstanding noise and feedback control.

Most other cardioid-type microphones have a single cancellation port for all frequencies. At best, this is a compromise, and indeed, many of these "single-hole" cardioids are actually omnidirectional at one frequency or another!
In addition to high sensitivity to shock and wind noises, single-port cardioid microphones also suffer from proximity effect. As you get ultra-close, bass response rises. There's nothing you can do about
this varying bass response-except use a Variable-D microphone with multi-port design* that eliminates this problem completely.

Because it works better, the E-V 664 Dynamic Cardioid is one of the most popular directional microphones for demanding communications applications. To learn more about Variable-D microphoncs, write for our free booklet, "The Directional Microphone Story." Then see and try the E-V 664 at your nearby Electro-Voice microphone headquarters. Just $\$ 85.00$ in satin chrome or non-reflecting gray.

*Pat. No. 3,115,207

ELECTRO-VOICE, INC., Dept. $782 Q$
631 Cecil St., Buchanan, Mich. 49107

Barefoot to Ninety North

Four hundred seventy-five air miles-825 actual land miles-over the Arctic pack ice. Forty-four days on a frozen sea with temperatures down to 63° below. Finally: the Pole. Collins' KWM-2 furnished reliable communications every rugged mile of the Plaisted Polar Expedition. Just an example of the KWM-2's reserve performance and rugged dependability.

IOHN HUNTOON, WILVQ Editor
E. LAIRD CAMPBELL, WICUT Managing Editor
GEORGE GRAMMER, WIDF Technical Editor
DONALD H. MIX, WITS DOUG DE MAW' WICER WALTER F. LANGE, WIYDS Assistant Technical Editors EDWARD P. TILTON, WIHDQ V.H.F. Editor

LEWIS G. McCOY, WIICP Beginner and Novice
ROD NEWKIRK, W9BRD
WILLIAM SMITH, WBAHIP I.OUISE MOREAU, WB6BBO JOHN TROSTER', WGISQ Contributing Editors
JOYCE E. SMITH Editorial Assistant
L.ORENTZ A. MORROW, WIVG Advertising Consultant R. J. RINALDI, WICNY

Assistant Advertising Manager
EDGAR D. COLLINS
Advertising Assistant
I. A. MOSKEY, WIJMY

Circulation Manager
CARL E. SMITH, WIETU
Assistant Circulation Manager

OFFICES

225 Main Street Newington, Connecticut 06111 Tol.: 203-666-1541

subscription rate $\$ 7.50$ per year postpaid, U.S. funds. In Canada and U.S.; including ere., ARRL Membership. individuals with a bona nue interest in amateur radio: $\$ 6.50$ per year U.S. funds, In Canada and U.S.; $\$ 7$ clsewhere. single coples, 75 cents. Forelgn reindtances should be by international nostal or express money order or bank drait negotiable in the in in lis. funds an equivalent amount in U.s. funds.
second-class postage paid at Rartford, onn. and at addttional malling oftces. Onpyright 1968 by the American Radlo Relay League. Inc. Title registered at U.S. Patent Ottice. International ouyright secured. All rights reserved. Printed in U.S.A.

INDEXED BY Applied Science and Technology Index. Library of Congress Catalog Card No.: $21-9421$

口

PUBLISHED MONTHLY. AS ITS OFFICIAL ORGAN, BY THE AMERICAN RADIO RELAY LEAGUE INC., NEWINGTON, CONN., U. S. A. OFFICIAL ORGAN OF TIE INTERNATIONAL AMATEUR RADIO UNION

-CONTENTS-

TECHNICAL -

The M.A.B.A.L. Antenna. . William S. Bridges, KlKLM 11
Digital Logic Devices Norman Pos, WA6KGP 17
Integrated-Circuit Frequency Dividers
John W. Staples, K9CPZ 22
Gimmicks and Gadgets:
The Clipboard R. W. Thorpe, W6WYD 28
Some Ground Rules For Sweep-Tube Linear-Amplifier Design 30
Kill That Mobile Noise! Joe Carr, K4IPV/4 36
The "Double-Bazooka" Antenna
Charles C. Whysall, W8TV 38
Technical Correspondence 40
Recent Equipment:
The Clegg Associates Classic-Series V.h.f. Converters. 44
Knight-Kit KG-666 Power Inverter/Charger 45
BEGINNER AND NOVICE-
Where Did the Signal Go?...Lewis G. McCoy, WIICP 14
OPERATING -
1967 ARRL International DX Competition High Claimed Scores 50
We Learned Some Things 56
GENERAL -
Instant DX QSL Service . Ralph A. Dage, W8PHZ 51
Try The FMI Charles L. Wood, W2 VMX 54
Amateur Radio Expo. 60
Those Higher-Class Licenss Examinations 62
A Pictorial Report on the 1963 ARRL Board Meeting 74
ARPSC. 56
ARRL Museum 85

IARU News.

IARU News. 9 9
League Lines. 81 81
ARRL QSL Bureau. 82
Coming Conventions.
Correspondence From Members 83
Feedback.67, 88Hamfest Calendar. 48
Happenings of the Month 48
Hints \& Kinks 42
How's DX?. 94
Index to Advertisers 166
47
Operating News 99
Silent,Keys. 134
Station Activities 103
World Above 50 Mc 89
YL Nows \& Views 86
25 Years Ago in QST. 88

Field engineers who are going places...

Raytheon has aworld of places.

Pick a location from a Raytheon world bursting with exciting growth assignments.
The Raytheon Service Company is new, imaginative, growing every day. That means you'll grow too, in Sonar, Communications, Digital, Heavy Ground Radar, Microwave, and Hawk and Sparrow Missile Systems. In these exciting fields, we're looking hard for Field Engineers familiar with maintenance, installation, training, publication of handbooks and operating manuals. We also need engineering writers.
Openings are plentiful both in and out of the country, on traveling or permanent assignments.
Raytheon's comprehensive benefits program includes hospitalization, surgical,
major medical, life, disability, travel and accident insurances. Plus companysponsored educational opportunities, and other generous allowances and benefits.

Important too, are attractive starting salaries, overseas bonus, and per diem as applicable.
Raytheon is growing throughout the world . . . and that world is at your fingertips. So pick up a pen and write Kenneth H. Slovin, Employment Mgr., Raytheon Service Company, Dept. 44, Second Ave., Burlington, Mass. 01803.

RAYTHEON

An Equal Opportunity Employer

MODEL R-5 ALLWAVE RECEIVER
An exceptionally fine receivet for the short wave listonet and beqinning amateur operator. fully transistor-izud-solid state. Covers .54 through 54.0 Mc in five ized-sulid state. Covers .54 through 54.0 Mc in tive
continuous bands. Includes standard broadcast band, all toreign broadcast bands. all amateur bands from 160 alloreign broadcasi bands, all amateur bands from 6 me through 6 meters. all 27 Mc CB Channels. all $2 \cdots a y$
tadio trequencics from 30 to so Mc including many police and tire departments. Controls include Variable Beat Frequency Oscillator, Noise Limiter, Bandspread. Compare with tube-type units costing as much!
Kit . $\$ 64.95$ Wired and tested

VFO-621
VFO tor 6,2 and 11,4 meters. Transistorized soillator plus buitt-in coner dode regulated highest stability Ideal match tor TX-62 and other VHF transmitters, Wired and tested. $\quad \$ 9.95$

TX-62 TRANSMITTER
In responst, to the demand tor an inexpensive, compact VHF transmitter, Ampon has brought out its 2 and 6 meter transmitter Theres no other transmitter like it on the market. 75 watts input. phone and CW. Built-in solid state power supply. Broadbanded circuits make tuning Wired and tested . $\$ 149.95$

CODE PRACTICE OSCILLATOR AND MONITOR

A combination code practice oscillator and CW Monitor. INo connection to transmitter required. I Transistorized. Has built-in speaker, tone control and headphone lack.
Model OMK, Kit
(less batteries).
Model OM, wired and tested . $\$ 9.95$ (less batteries) $\$ 15.20$ Similar unit, but without CW RF Monitor Feature. Model OCPK, Kit
(less batteries)
Model OCP, wired and tested. 7.95
MODEL OM
(less batteries) $\$ 10.50$

COMPLETE HAM RIICS

Recevivers, transmiitters, VFO, Pre-amplifiars, converters, code pracibe oscillators, codie reocrids, theory and libense books.

160 THRU 6 METER
TRANSCEIVER PRE-AMP

MODEL PT
Low noise, nigh gain preamplifier. Built-in power supply. Intercunnecting cables included. Station power entitrol epenter-ong switch controls everything. Automatic changeover, transmit to prepeive fremels and mutes second recriver. Wired and tested

NUVISTOR CONVERTERS FOR 50, 144 and 220 Mc. HIGH GAIN, LOW NOISE

Deluxe line of Ameco VHF Converters uses three RCA Nuvistors to obtain an extremely low noise fiqure and high qain. A qain contory Thesu cunverters do NOT become ubsolete when the leceiver is changed.
 Model CN-50W. CN-
144W or CN220W
wired, (specify IF)...
$\$ 49.95$

Model CN-50K, CN144 K or CN-220K in kit form,
$\begin{array}{r}\text { (specify IF } \\ \$ 34.95\end{array}$

PS-1 Power Supply, Wired and tested...

PASS NEW ADVANCED AND EXTRA CLASS LICENSE EXAMS WITH NEW AMECO LICENSE GUIDES

New Ameco License Guides contain simple, detailed, easy-to-understand answers for FCC study questions, plus a sample FCC-type exam, using multiple choice questions.
Advanced Class Guide \#16-01 (32 pages)........ 506 Extra Class Guide \#17-01 (48 pages).............. 75%
AVAILABLE AT LEADING HAM DISTRIBUTORS
Information included in new catalog.

Division of Aerotron, Inc.
P. O. Box 6527

Raleigh, N. C. 27608
Write for name of your local Ameco dealer and free catalog

NOVICE TRANSMITTER KIT

MODEL AC-1
deal kit for the beginner who requires a reliable NVI-suppresseit transmitter Kruing is clean and churp-tren. Kit is simpie in build and easy to operate. (instal Controned. Pinnework Coutput, includes AC Power Supply. For 40 and 80 meters c. 15 Watts input.
Kit with coil for any if band, including tubes. $\$ 21.95$

Section Communications Managers of the ARRL Communications Department

Reports Invited．Ill annateurs，especially League members，are invited to report station activities on the first of each month（for preceding month）direct to the SCM，the administrative ARRL oificial elected by members in each Section． Radio ciub reports are also desire bv SCMs for inclusion in QNT．ARRL Field Organization station appointments are available in areas suown to qualified League members．Leneral or Conditional Class licensees or higher may be appointed ORS，OVS，OPS，OO and OBS．Technicians mav be appointed OVS．OBS or V．H．F．PAM．Novices may be appointed UVS． sicms desire application leadership posts of SEC，EC，RM and PAM where vacancies exist．

ATLANTIC DIVISION							
Delaware	मउलिG	John L．Penrod	RED ${ }^{\text {R }}$	Townsend 19734			
Pastern Pennsylvania	W3HE	George s．Van Dyke，Jr．	4607 Convent Lane	Philadelphia 19114			
Maryland I）．	K3JYZ	Cari li．Indersen	14801 Claude Lane	Sllver Spring，Md． 20004			
routhern New Jersey	W2ZI	Edward G．Raser	19 Blackwood Drive	Wllburtas ciardens，			
Western N	K2HUK	Charles r．Hansen	Warner Gulf Rd．	Holland 1 tosu			
Western l＇ennsylvanla	W3NLM	Kodert Fi．Gibrryla	1463 N. Allen st．	State College 16801			
Indiana	W9Bua	William C．Johnson．	2¢3¢ Hillside itve．，	indlanapolls 46218			
Wiscousin	KYGSC	Kenneth A．Ebneter	ج22 Wiauna Trall	Portage 53401			
North Diakota	WODM	Harold L．Sheets	21 Euclld Ave．	Orand Forks 58201			
South Diketa	に0アざW	seward 1＇．Holt	Hox 58	\because－${ }^{\text {a }}$ ar Lake 37226			
Arkintias							
Loulstan：	165 PM	J．Allen swanson，Jr．	RFD 1．Box 354－E゙	Covington 704：33			
Missussipul	W56MM	S．M．Hibirston	［．j11－36th Ive．	Merldan 39301			
Tennessee	h＋RC＇	Harry A．Phillips	6200 Oak Meadow Ave．	Memphis 38128			
Kentucky	WA4KFO	Lawrence F．Jetrrey	16.15 Antler ave．	Owensboro 42301			
Allehigan	W8FE	Kinlph P，i＇hetre：su	27209 W．six Mille Road	Detrolt 48240			
Ohlo		Rimbard A bixbert	fi79 Ked fox Hoad	Keynoldsburg 43068			
UDSON DIVISION							
	WSEFU	Genrge IV．Tracy	1138 North Country Club D	schenectady 12309			
N．Y．C．\＆Long Island	K21DB	blalne s．Johnson	2ibs cypress nt．	Massadequa Park，L．I． 11762			
	W2LQP	Louis J．Amorosu	1 yO Pleasiant ave．	Bergenteld 07621			
	InWa M－M						
Kinusas	NStSM．	Hubert M．summers	3045 North 72nd	hidnsay clity 68109			
Alissourl	Wiscis	turred E．Schwaneke	Ronte 1．Box 169	Rolla 65401			
Nebrıska	KøO．AL	V．A．Cashon，	334 Pline st．，Box 488	chadron 69337			
1－4istern Alassachusetts	W1aL1	Frank L B Bker，Jr．	85 solar Ave．	Bralntree 02185			
Malne	KlDYG	Herbert A．Diavis	RFD 1	Franklin 04634			
New Hampshire W18WS／	hlyst	Kobert Miltehell	130x 1：37－A，RFD	Chester 03036			
Thode islind	hiAlv	Jonn E．Jonnsou	30 Frult st．	Pawtucket（\％860）			
V ：rmont	KIMPN	lis．Kexinald Murray	3 IIllerest Drive	Montjeller 05801			
Western Massachusetts	WISTR	Norman P．vorest	36 Valley R4．	Springtreld 01119			
		NORTHWESTERN DIVI					
		Albert F．Weber	Box 735	College 99735			
Idaho	W7ZNN	Toonald A crisp	340 s －xth 8t． F	Lewiston 83501			
Montana	W7TYN	Joseph A．D＇arcy	1916 Hakgin Ave．	Anacondia 59711			
Oregon	K7WWR	Dale T．Justice	： $7+1$ firmood Lane	F＇orest Grove 97116			
Waishington	W7BQ	Willam 16．Watson	1005 E．1st Ave．	Ellensburg 98926			
	Kbl．RN Richard Wilson PACIFIC DIVISION 629 Blue Ridge I）						
Fist Bay				Martinez 94．553			
Haw：${ }^{\text {a }}$	KH6B\％	Lee R．Wical	45－601 Luluku Rd．	Kancohe 96744			
Nevadis	W7PBV	Leonard M．Norman	652 Utah st．	Boulder Clty 89005			
Sacramento Valley	WA6JDT	John Fs Minke， 111	6230 R1o Bonito Drive	Carmichael 95808			
tan Francisco	WABAUD	Hugh Cassidy	77 Coleman Drive	San Hafiael 94901			
\％in Joarquin Valley	W6JPU	Raiph Saroyan	6204 E．Townsend Ave．	Fresno 93702			
Sinta Clara Valley	Whavis	E．dward T．Turner	2837 Frrnwood Rd．	Sdn Mateo 94403			
North CarolinaNinuth Carolina Nouth $\begin{gathered}\text { Nita } \\ \text {＇irginlat }\end{gathered}$ W＇est Virginta							
				Sallsbury 28144			
	144 LNJ	clark MI．Hubbard	124 Fint Lane	Union 29379			
	W4：HJ	H．J．Hopkins	8buo Hammett Ave．	Norfolk 23503			
	WV8JM	Donald B．Morris	1138 Morningat ${ }^{\text {r }}$ Linc	Fairmont 26554			
ColoratoNew MexicoWtithWsoming				Idato dprings $80+52$			
	W5WEK	hemmeth D．Allls	Rt．1．Box 654 F	Albuquerque 87102			
	W7Vis	Gerald F ，Warner	20；Nu．Clason IVe．	Price s 4501			
	W7CuL	Wayne M．Smore	142 South Montanid Avé．	Casper 8＇2601			
fimstern Florida	W＋MVB	Jesse IT．Morris	I．O．Box 1241	Jacksonville Beach 3：050			
Tieurglit	W＋RZL	Howard L．sebonher	P．O．Box 190%	Golumbus 31902			
West Indies	KP4DV	Albert K．Crumley，Jr．	P．O．Box 10073	Caparra Helghts			
Western Florida	W4REI	Frank M．Butler，．J．	323 Elllott Rd．，S．E．	Fort Walton Beach 32548			
	W7FKK－Hoyde Colyar SWESTERN DIVISION						
Arizona				Phnentx 85017			
ios Angeles	Kbけaiv	Donald R．Ftheredge	12040 Redbank st．	sun Valley 91352			
－rance	W6DEY	Roy R．Miaxson	$1+34$ Snuth Olive st．	Santa Ana 9：707			
Ni：Dlego	WB6taim	James ti．Emicrson，Jr．	fisfl moyle Way	San Dlego 92117			
Sianta Burbira	WAbOKN	（eecll 1）．Hinson	1933 Coventry Court	T－housand Oaks 91360			
Northern Texas Wilthuma Bouthern＇rexas	WEST GULF DIVISION						
	W5BNG	E．L．Harbla	4515 Calmount	Fort Worth 76107			
	WSPMIL	Cecli C．Lerry sears	${ }_{5634}^{18}$ Emith Ave．	Liswton 735＇）1 Houston 77023			
	W5AIR	C．D．Jerry sears	5634 Eskirdge st．	Houston 77023			
तlthera	VEfT	Tharry Harrold CANADIAN	Dİ3＋－5idh Ave．， N ．	Lethbridge，Alta			
	VF．7FB	H．E．Suvage	4553 West 12 th Ave．	Vancouver 8 ，B ． \mathbf{O} ．			
ailanitoba	－19410	Jihn Thomıs Stacey	19 Cottonwood Cires．	trandon			
\iaritime＊	VEINR	Villam Glllis	Rural Ronte 6 shediac Rd．	Moncton，N．R．			
Ontario	VFishlix	Koy A．White，	5 Northwood cirescent．	Bulleville			
yuebec	YT2OJ	Jimpliey	17\％i broskdale Ive．	Dorval，P．Q．			
Saskatchewan	VESHP	Gordon C．Pearce	1003 Onnnausht St．	Regina			

NOWA low cost Crystal for the Experimenter

International

- LOW COST
- MINIMUM

DELIVERY TIME
$3,000 \mathrm{KHz}$ to $60,000 \mathrm{KHz}$

SPECIFICATIONS: International Type "EX" Crystal is available from 3,000 KHz to $60,000 \mathrm{KHz}$. The "EX" Crystal is supplied only in the HC-6/U holder. Calibration is $\pm .02 \%$ when operated in International OX circuit or equivalent. CONDITIONS OF SALE: All "EX" Crystals are sold on a cash basis, $\$ 3.75$ each. Shipping and postage (inside U.S. and Canada only) will be prepaid by International. Crystals are guaranteed to operate only in the OX circuit or its equivalent.

COMPLETE OX OSCILLATOR KITS

Everything you need to build your own oscillator. Two kits available. "OX-L" kit 3.000 to 19.999 KHz . "OX-H" kit 20,000 to $60,000 \mathrm{KHz}$. Specify "'OX-L" or "OX$H^{\prime \prime}$ when ordering.

Postage Paid

MINIMUM DELIVERY TIME We guarantee fast processing of your order. Use special EX order card to speed delivery. You may order direct from ad. We will send you a supply of cards for future orders.

ORDERING INSTRUCTIONS

(1) Use one order card for each frequency. Fill out both sides of card.
(2) Enclose money order with order.
(3) Sold only under the conditions specified herein.

CRYSTAL MFG. CO., INC.
10 NO. LEE - OKLA. CITY. OKLA. 73102

the AMERICAN RADIO RELAY

LEAGUE, inc.,

is a noncommercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is noncommercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.
"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in the nation and has a history of glorious achievement as the standard-bearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite, although full voting membership is granted only to licensed amateurs.

All general correspondence should be addressed to the adminisrative headquarters at Newington, Connecticut.

Past Presidents

HIRAM PERCY MAXIM, WIAW, 1914-1936 EUGENE C. WOODRUFF, WBCMP, 1936-1940 GEORGE W. BAILEY, W2KH, 1940-1952 GOODWIN L. DOSLAND, WOTSN, 1952-1962 HERBERT HOOVER, JR. W6ZH, 1962-1966

Officers

President
.ROBERT W. DENNISTON,* WøDX Box 73, Newton, lowa 50208
First Vice-President WAYLAND M. GROVES,* W5NW 1406 West 12th Street, Odessa, Texas 79760
Vice-PresidentsROEMER O. BEST, W5QKF P. LANIER ANDERSON, JR., W4MWH

Secrełary
JOHN HUNTOON, WILVQ
Treasurer DAVID H. HOUGHTON
225 Main St., Newington, Connecticut 06111

Honorary Vice-President FRANCIS E. HANDY, WIBDO

General Manager
JOHN HUNTOON,* WILVQ Communieations Manager GEORGE HART, WINJM Technical Director GEORGE GRAMMER, WIDF Assistant General Manager . RICHARD L. BALDWIN, WIIKE Assistant Secretaries PERRY F. WILLIAMS, WIUED WILLIAM I. DUNKERLEY, JR, WA2INB
225 Main St., Newington, Connecticut 06111

General Counsel ROBERT M. BOOTH, JR., W3PS/K4PS 1100 Vermont Avenue, N. W., Washington, D. C. 20005
Associate Counsel ARTHUR K. MEEN, Q.C., VE3RX
Suite 2212, 44 King St. West, Toronto 1, Ont.

DIRECTORS

Canada
NOEL B.EATON
hox tify, wiatcrdown Ontarlo
VE3CJ
Ticc-Istretor:Colln C. Dumbrllle. VE2B 116 Oak Rellge Drlve. Bale d'Üre, CQuebec

Atlantic Division

G11BERT L. CROSSLEY.
W3YA
-3.4 West boster Avenue, state coliege, i.a. 16801 lice Ierector: Harry A. MeConaghy...... W3EI'C sios Fenway Dr. Fotomac, Bethesda, Md. LuU3z

Central Division

i-IILIP 1\% HALLER W0L1'G

viet-1)trertar: Filmondi A. Metzger WgPRN 1520 south Fourth sit., bipringncli, ilinnols $0: 203$

Dakota Division

(IIARLIS G COMPTON*WQBUO
 irece/nector: John M. Maus.............WhMBD Gakdale Addition, st. Cloud, Minn. 56301

Delta Division

1'HLII 1'. SHENCER........W5LDH/W5LNX 5i.) Amethyst St., New Orleans. La. 70124
lice bircetor: Max Arnold. W4WHN bl2 Husan Roall, Nashivile, Tenn. 37220

Great Lakes Division

AIBAN A. MICHEL.WWC sis Bonham kd., cincinnail. Öho 45215
Vice-litrictor: Charles ©. Miller. W8JSU twit Calvin Drive, columbus, Uhto 43227

Hudson Division

HARRY J, DANNALS* RFD 1, Arbor lanc, Dix ifilis, Huntington.
 13 Jennfer lane. l'ort Couester, Now York 10573

Midwest Division

GMMNER FL HOsTER WUGi(2 $\because 110$ Goblin's Gully i)r., i.E., Cedar Rapidus, lowa
lice-1)ircctor: Yaiph v inderson
kONL :i2b Montana Ave., Holton, hansas ibitio

New England Division

LOBERT YORK CIIAPAIAN.........iail 1 UV RT South Road, Groton, Conn. úbiaii
Tict-1)irertnr: Bigelow (ircen. W1EAE 11 Law's kronk led., south Acton, Alass. U1771

Northwestern Division

lec)BERT R. THIURSTON IV7PGY 770031 st Ave., N.E., Scattle, Wash. 98115
rice-firector: R. Rex Roberts............. W7CPY sis l’ark Hill Drive, Billngs, Biont. 5ylot

Pacific Division

J. A. i)nc ratrinn..................... WgZRJ iosses Whilowbrook Way, cupertino, çalif. 95014 fice-/)irctor: (i. Donald Eborleln...... WOYMM 1: U. Box 475 , l'alo Alto, Callf. 94302

Roanoke Division

-ICTOR C. (LARK.......................W4RFC deyz 7 Popes lifad looad, clifton, va. 2ene loirf-1)irctor: L. l’hll Wicker..............W4ACY $\ddagger 8: 21$ HIII Top Road, Grectisboro, N. $\because 27407$

Rocky Mountain Division

©.ARL L. BMITII* $\ldots . .$. loru Locust st., Denver, Colo. suxie Vice-1)ircetor: John H. Sampson, Jr. W7OCX 3618 Mount (ugden 1)rive, Ogden, Ưtah 8.4.403

Southeastern Division

©MARLEA . BULVIN.......................4LVV $2: 10$ d. W. : 7 th Lane, Mlam, Fla. 33133 rire-/nirector: Abbert L. Kamel.Ki48JI 2:0 N.E. 25 th Street, 1 'ompano Beach, Fla. 33004

Southwestern Division

 $1142: 2{ }^{2}$ elzah A ve., Granada iilily, Cailf. 913.14 Vice-/sirctor: Chomas I. Eunnengham..... WGIIF 1105 Last. Acacla Ave., El Scgundo, Calif. 90245

West Gulf Division

RAX K. BRYAN..
 - "ici-1) Sircctor:
: Member Executlve Committce

"It Seems to Us..."

Paul M. Segal, ex-9EEA, W3EEA, former director (1924) from the Rocky Mountain Division, and General Counsel of ARRL from 1928 to 1961, passed away in Washington, D.C., May 24, 1968. Of his many achievements and contributions to the advancement of amateur radio (sce page 40), January 1962 QST), we know of no more fitting tribute to his memory than to reprint here the six "commandments" he authored more than 40 years ago, and which principles are still applicable today.

THE AMATEUR'S CODE

- ONE •

The Amateur is Gentlemanly . . . He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

- FOUR •

The Amateur is Friendly . . . Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and cooperation for the broadcast listener; these are marks of the amateur spirit.

- TWO •

The Amateur is Loyal . . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

The Amateur is Progressive . . . He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

- FIVE •

The Amateur is Balanced . . . Radio is his hobby. He never allows it to interfere with any of the duties he owes to his nome, his job, his school, or his community.

- SIX •

The Amateur is Patriotic . . . His knowledge and his station are always ready for the service of his country and his community.

- Paul M. Segal

League Lines

A hundred thousand members are too many to invite as quests to an ARRL Board of Directors meeting, but the minutes in the Happenings Department -- and particularly the picture story intermingled therein -- we hope makes it almost an "I-was-there" experience.

Special 50 - and 25-year League lapel pins will soon be in production to recognize holders of those terms of continuous (no breaks permitted) membership. There's no charge, but requests will be handled on a first-come, first-served basis. So please let us know promptly (postcard will do, with your complete name, call and current address including zip) if you qualify for one of.these distinctive pins.

Field Day is not affected this year, nor is any other club communications activity up until November 22, but remember that thereafter your club station may operate only in the subbands authorized to BOTH the trustee and the operator on watch. For full use of all band segments, make sure your trustee gets the Extra Class by this autumn.

Conflicts between amateur gatherings (conventions, hamfests) the same weekend, with sponsors unaware of each other's plans until too late, has occasionally caused much gnashing of teeth. Responsive to Board direction, Hg, will act as a registration center for coming events during the next two years. Please let us have information on any plans you or your club has for major gatherings -- conventions, hamfests or other affairs covering more than local territory. We'll keep a master and send a copy of the current calendar listings to anyone furnishing an s.a.s.e. This will not guarantee complete protection for your own dates, but will at least give you a chance, when you start your own plans, to avoid the same weekends already picked by others.

Effective Tuesday July 2 (GMT), on a temporary trial basis, an extra ten minutes each of 20 and $25 \mathrm{w}, \mathrm{p}, \mathrm{m}$, code practice will be transmitted by W1AW during the 0130 GMT code practice period (Tuesdays through Sundays GMT). It's an additional service for Extra Class applicants.

Two amateurs from Kentucky have been indicted by the Department of Justice for use of obscene and profane language. They were participants in the rubbish which has been appearing all too often on 75 -meter voice (see January League Lines), apparently under the guise of "free speech." Those of us thoroughly disgusted with such antics, which badly damage amateur radio's image, can be reassured that enforcement authorities are not ignoring the problem, but are taking the necessarily-slow steps to solve it.

When was the last time your club held open house -- inviting family, friends and neighbors to a special meeting? Can be great fun for all, especially if the progran includes a demonstration of something reasonably new like RTTY, amateur TV, etc. See pages 79 and 60 for ideas on how both small and large projects can be accomplished.

We've recently updated our list' of source material for blind amateurs -- Braille texts, tapes, records, etc. -- and will be glad to send a copy on request. A self-addressed envelope will speed our handling.

Loop and tuning unit mounted on author's sedan. Supporting braces toward rear are of aluminum tubing, which must be insulated from the loop.

The MABAL Antenna

Mobile All-Band Amateur Loop

BY WILLIAM S. BRIDGES,* KIKLM

Icommon with most other mobile operators, the author has never been quite satisfied with the performance of the loaded-whip antenna, in respect to either performance on the lowerfrequency bands, or facility in changing bands. Therefore, an article that appeared in a recent issue of Electronics describing a loop-type antenua ${ }^{1,2}$ was of more than passing interest.

In attempting to apply this principle to a mobile installation, the chief difficulty was in solving the mechanical problems. It was obvious that vertical mounting of a loop of such size un a car was impractical. However, it was reasoned that, since such a loop is essentially nondirectional, it should work in a horizontal position. Accordingly, several models were built and tested. The final arrangement is shown in the photographs.

Although 75-meter operation was the prime objective, it was found that the loop could be resonated, and a match to 50 -ohm line obtained, at frequencies from 2.5 to 7.3 Mc., and from 14 to 22 Mc. with the matching and tuning

[^0]values available. It was also found possible to extend the coperation to as high as 30 Mc . with anl s.w.r. not exceeding 3 to 1 .

Gareful comparisons made by rapidly switching between the loop and a conventional centerloaded whip invariably have shown the loop to be better by 6 to 10 db . In some instances, fixed stations have reported an improvement of as much as 18 db . No directional characteristics are apparent.

In spite of its size, the loop has some physical advantages over the whip. It is possible to drive directly into the garage without having to get out to telescope a whip. (However, an encounter with a car-washing machine is not recommended!) The loop-type antenna also lends itself well to installation on station wagons and panel trucks where whip anteunas often present problems.

Control Circuit

As shown in Fig. 1, the loop is fed with a capacitive network. The balanced network suggested by Patterson was tried. Although the loop could be tuned to resonance with this configuration, signal reports were down. (I suspect that this may be a result of some capacitive effect between the car body and ground.) The fixed capacitors used are some that I happened to have ou hand. The Vitramon capacitors had been tested earlier and found to be capable of handling the necessary r.f. current. 'Trans-mitting-type mica capacitors would probably be equally satisfactory, although they take up more space.

To make adjustment of the antenna compalible with the Hexibility of the multiband

Fig. 1-Wiring diagran of the renote tuning systen for the mobile loop antenna. If desired, relay-contact connections may be altered to connect in the 85-meter padding in the unenergized position.
C_{1}-Dual t.r.f. variable, approx. 500 pf. per section.
C_{2}-Parallel combination of fixed capacitors. These capacitors must be capable of carrying significant r.f. current. The combination used by the author consists of two 500 -pf. $20-\mathrm{kv}$. ceramic TV "doorknob" capacitors, and two $1500-\mathrm{pf}$. 500 -volt ceramic capacitors (Vitramon) in parallel. C_{3}-Same as C_{1}, sections connected in parallel. $\mathrm{I}_{1}-\mathrm{I}_{1}-12$-volt indicator lamp.
J_{1}-Chassis-mounting coaxial receptacle.
$\mathrm{K}_{1}-12$-volt d.c. d.p.s.t. relay, 25 -amp. contacts, poles in parallel.

Fig. 2-Method of making loop corners to minimize resistance.
S_{1}, S:-S.p.d.t., center off, spring-return lever switch (Switcheraft 3033, nonlocking, suitable). Each may be replaced by two momentary-contact push-button switches, one button for forward, and one for reverse.
$\mathrm{S}_{3}, \mathrm{~S}_{1}$-Limit switch (included as part of motori. Motors are available from Electro Sales Co., 356 Mystic Ave., Somerville, Mass. 02145, Stock No. M4012EVB3 ($\$ 9.50$ each). These are actually 28 -volt motors, but operate very satisfactorily at 12 volts.
S_{3} —S.p.d.t. toggle switch.
transceiver used, it was decided to provide for remote operation of the tuning and matching eapacitors from the driver's seat. This was arcomplished by using small motors (surplus aircraft control actuators) to drive the two multisection variable capacitors, C_{1} and C_{3}. A relay is used to switch in additional capacitance ($C_{1 \Lambda}$ and Q_{2}) for 75 -meter operation.

The motors used have built-in limit switches. These switches can be adjusted to limit rotation to anything between 45 and 180 degrees. When intation has reached the limit for which the switches have been set, rotation in that direction reases automatically, and a lamp ($I_{1}-I_{4}$) lights, signifying that the limit has been reached. ddjustment is monitored by means of an s.w.r. meter permanently installed in the coax line, while a field-strength meter is used for output indication.

Construction

The importance of low r.f. resistance in the loop circuit was stressed by Patterson. In constructing the mobile loop, both aluminum TV'

This view shows the general construction of the tuning-unit housing, and the manner of fastening it to the roof of the car. One side of the loop feed point may be grounded; the other side must be kept insulated from ground.
masting and plain rectangular aluminum downspouting were tried initially. However, both presented difficulties in achieving reliable low-loss juints. In the final and most-satisfactory model, copper-plated aluminum down-spouting was

Interior of the tuning unit, showing remote-control motors coupled to the variable-capacitor shafts. The original motor covers have been removed. The shaft coupling must be insulated for at least C_{3}. The 80 -meter relay and padding capacitors are af left center. The relay at right is for the insertion of additional capacitance for future expansion to 160 meters. Notice the insulating
sheet between the loop feed-point ends at the top of the photograph.
used. This material has the advantage that it can be readily soldered for good low-loss joints.

The dimensions of the loop used by the author are approximately 4 feet wide by 8 feet long. The downspouting comes in 10 -foot lengths, so three lengths are required. To minimize r.f. resistance, it is advisable to make the loop with as few joints as possible. The eorners should be made as bends in the downspouting, as shown in Fig. 2, rather than to attempt to join two pieces together at this point. The two rear rorners should be made by bending a single length of downspouting approximately 3 feet from each end. All joints should be made watertight by the generous use of solder and patching plates (not to exclude water, but t.o assure maximum elestrical contact).

The housing for the tuming unit was made of sheet over plywood top and bottom pieces fashioned to teardrop shape. All connections in the unit should be made with the shortest possible leugths of heavy copper braid, or wide copper strap.

Adjustment

Tuning is simply a matter of adjusting the two variable capacitances for maximum output as indicated on the lield-strength meter, and minimum s.w.r. as indicated by the s.w.r. meter. Segments of about 50 kc . can be covered on 75 without readjustment of the tuning or matching. By making slight readjustments, an s.w.r. of 1 to 1 cau be maintained across the entire band.

In conclusion, I would like to thauk all those who assisted in testing and evaluating the antenna, especially WA1BHU, and also my wife, Penny, for her patience and understanding.

- Beginner and Navice Where Did The Signal Go?

How Your Signal Gets To The Other Guy's Station.

BY LEWIS G. MCCOY*. WIICP

T'd like a set that will work at least 500 miles; how much power will I need?" Or, "I want to work foreign comutries, can I do this as a Novice?" These and similar questions frequently asked by newcomers point up the need for understanding what to expect when operating on the different bands available to the Novice. How far one can work and what power is required depend on several factors, the more important of which are the choice of band, time of day, and radio propagation conditions. While power is a factor, it is not nearly as important as many newcomers think.

Many Novices have the mistaken concept that all bands (frequencies) are the same. They assume that if an s0-meter signal can go 500 miles at a given time, a signal on any of the amateur bants can do the same. Actually, each band is different and has its own characteristics, as will be shown.

Possibly your first interest in getting into amateur radio is to "talk to far away places, with strange sounding names." Or perhaps you would just like to talk to local hams, or do both. Whatever your desires are, it is a good idea to know how your signal reaches another station, or vice versa. Once you have at clear picture of how this happens, then you can choose the bund hest suited for the purpose.

To keep your thinking as clear as possible, let's dispense with transmitters and receivers for

> Whbich is the best band to use for local contacts? Is bigh pou'er necessary to uork DX? What are the best DX bands. These are some of the questions covered in this article on radio urace propagation, uritten especially for the beginner.

the moment and just visualize an antenna from which radio signals are radiated. Think of the radio waves as you would think of light traveling from a light bulb, in all directions. In actual practice, sume antennas concentrate the radiation in certain directions just as a flashlight would concentrate its light in a beam. Other antennas would "broadcast" the signal in all directions. In our discussion, we'll be talking about component parts of the light being radiated, or rays. Radio waves, like light, travel in a straight line until they are bent, refracted, or reflected.

When radio waves leave au antenna, some of the rays travel along the surface of the earth. These are called ground wares. As the wave travels along the surface of the earth it continually Inses power in the earth's resistance; thus the "attenuation" of such signals is quite rapid. This attenuation puts a rather strict limit on the distance a ground-wave signal can travel.

The Ionosphere

If ground-wave signals can only travel relatively short distances, then how is it possible to communicate with stations on the other side of the earth? Some of the rays leaving our antenna travel up into the sky and this part of the signal is called the sky waur. Of course, if these waves traveled up into the sky and then out into space, with no way of returning to earth, they would be useless for long-distance communication. Earlier we said that the rays travel in :t straight line until they are bent, refracted or retlected; fortunately, this is exactly what happens.

Extending around the earth is a region in the atmosphere known as the innosphere. If you could see the earth from space and the ionosphere were visible (it isn't), you would see a halo or aura around the earth, extending from about 35 miles above the earth's surface to approximately

200 miles up. The ionosphere is made up of three layers or regions of ionized, rarified air. The lowest layer is called the " D region" and starts about 35 miles high, extending up to approximately 70 miles. At $60-70$ miles we have the "E layer" which goes up to about 175 miles. Extending above this is the " F layer." During daylight hours, the F region breaks up into two layers, called the " r_{1} " and " r_{2} " layers. The lower, or k_{1}, layer starts at about 140 miles and the F_{2} layer at about 200 miles. See Fig. 1 for an illustration of the ionosphere.

The amount of ionization is believe to be controlled by the sun's radiation, since the intensity of ionization in the various layers goes through pronounced changes from daylight to darkness. In fact, the lowest region - ... the D region doesn't even exist after darkness. The E layer similarly disappears at night or is considerably weakened, although sporadic clouds of ionized air sometimes exist in this region at night.

For signals to travel any appreciable distance they must go via the sky, and this is where the ionosphere gets into the act. As an example of how the ionosphere affects a signal, let's say we are transmitting on 3700 kc., at noon, local time. Our signal leaves the antenna and travels up into the ionosphere. The first region it encounters is the D region. The D region does not reflect radio signals, it only weakens them. After our signal -- or what's left of it. - gets through the D region it enters the E layer. The E layer serves as a reflector and reflects our signal back down to earth. Of course, the signal has to pass through the D region to get back to earth and this further weakens the signal. Fig. 2 illustrates this process. The interesing point abont 80 meters under the conditions just described is that in order to work sumebody say 10 or 20 miles away, your signal has to travel about 150 miles $-\cdots$ about 75 miles up and 75 miles back. A ground-wave signal would usually be attenuated to the point where it couldn't be heard 10 or 20 miles away.

During the daylight hours, only the highangle components of your signal are useful on so meters. Low-angle rays have to travel considerably farther through the 1$)$ region and consequently are completely absorbed. After dark, the lower two regions disappear and the lowerangle signals are reflected back from the F layer, permitting contacts of several thousand miles. Not only are the signals reflected back to earth, but on reaching the earth again they can be reflected back up to the F layer and again back to earth. Depending on the condition of the F^{\prime} layer and the amount of absorption in the earth at the reflection point, many such "hops" can take place, extending communication to large distances. When a signal is reflected successively in this way it is called multihop transmission. Fig. 3 shows it.

Fading, or QSB

After a little thought, it should be apparent that a radio signal can travel by several paths

Fig. 1-This drawing shows the ionosphere as it would be during the daylight hours. After dark, the lower layers would disappear, leaving just the F_{2} layer (Not drawn to scale).

Fig. 2-During daylight hours, signals on 160,80 and 40 meters are influenced by the D region. The higher-angle rays would be the only ones refurned to earth. This is apparent from the distances the signals must travel through the D region. Note that with the high-angle signal the distance from A to A_{1} is much less than B to B_{1}

Fig. 3-The skip distance is the distance from the antenna to the first "bounce" back to earth. This drawing shows some of the multihops possible. In addition, there can be reflections from both the E and F_{1} and F_{2} layers to further complicate the picture.
to reach the same destination. Taking the overall signal, one ray may arrive hy one hop while another ray takes two, and still others may even take several hops. Since each path is a different length, the signals may or may not add up together to be "in phase" at the receiving location. When the signals are exactly in phase at the receiving point, the received signal will be the strongest. Any other condition call cause the signal to be weaker. If the ionosphere cunditions stayed perfertly fixed, the signal at the received end would be more or less constant. But this isn't the case, because the ionosphere is always changing and the various hops constantly change. This in turn changes the phase of the signals arriving at the final destination, causing the signal to rise and fall in amplitude - or, to put it another way, we have fading. In radio parlance, this effect is called "QSB."

The Higher Frequencies

As we go higher in frequency the D region has less and less effect on the signal. In fact, as far as amateur frequencies are concerned any frequencies above 14 Mc . are not affected by the D region.

On 80 meters the average daytime distance that can be covered is on the order of a few hundred miles, with much longer contacts possible after dark. However, on 40 meters, while there is some absorption of the signal by the D region, the loss of signal is not as pronounced as at so meters. Lower-angle signals can get through the D region to be reflected back, and daytime distances of up to 1000 miles are possible. At night, when the low absorptiou favors multihop transmission, distances ou the order of 5000 miles or more are quite common.

On 20, 15 and 10 meters we encuunter some entirely different effects as far as the ionosphere is concerned. As we said, the D region has little, if any, effect on these signals. Let's take another example and see how it works, say $21,100 \mathrm{kc}$. at noon, local time.
The high-angle rays - those that go directly upward - leave the antenna and first go through the D region, then through the E layer, and then on through the F layer and out into space, without being reflected back to eurth! This is explained by the fact that the augles at which these rays travel through the E and F layers are such that the layers don't get a chance to bend or reflect them back to earth. The highest angle that gets returned to the earth is know as the critical angle. This means that there is an area around the antenna, extending out several hundred miles, where no signals are returned. 'This area is called the skip zone.
However, rays leaving the antenna at lower angles will be bent and returned to earth by either the E or l^{\prime} layer, if there is sufficient ionization. If neither layer is sufficiently ionized, the signals will pass on through and into space. When there is adequate ionization and the signals are returned, the band is said to be "open." Also, when these bands are open, the
signals at several thousand miles out will be much stronger than for the same distances with 80 -meter signals. The reason for this is that the absorption in the iunosphere of the high-frequency signals is much less than with 80 -meter signals. In fact, it is possible to work almost anywhere in the world on 15 and 10 meters using only a few watts input. One amateur we know of worked from the East Coast to Australia with a transmitter running 100 milliwatts iuput -one-tenth of a watt!

Sunspots

One point that bears mentioning in relation to the innosphere is the sunspot cycle. Over a period of several years the number of sun spots increases to a peak and then gradually decreases to a minimum. This time period from one maximum to the next usually covers about 11 years. When the sunspot number is at the maximum, the ionization of the higher bands is at its best, and excellent DII or worid-wide communications are possible. We are nuw approaching a sunspot maximum, so the next few years should be excellent on the 20 -, 15 - and 10 -meter bands. At the sunspot minimum, conditions for world-wide contacts on 10 meters are very poor, with the band seldom open. However, distances up to 1.00 to 1.50 miles can be worked cotsistently on this band, depending on the terrain and on the antennas used.

Above 10 Meters

Something we haven't mentioned up to this point is the maximum usable frequency, or the highest frequency that can be reflected back to earth by the ionosphere. Let's assume for a minute that we have an antenna that sends a ray straight up from the antenna, and that we start at a very low frequency and increase it as much as we desire. At the lowest frequency the vertical signal will enter the ionosphere and be returned to earth, but as we raise the frequency. eventually a frequency will be reached where the ionosiphere doesn't hend the signal back but lets it escape into space. The highest frequency that does come back is called the critical frequency.
Next, suppose we gradually lower the ray angle of our signal and repeat the frequency run. As we continue to lower the angle, we find that we can go progressively higher than the critical frequency and still have our signal return to earth. However, we eventually reach a frequency that isn't returned, even at the lowest possible ray angle. This frequency is referred to as the maximum usathle frequency, or m.u.f., and usually is about 2.5 times the critical frequency.
The critical frequency aud, in turn, the m.u.f., depend on many factors - time of day, time of year, cundition of the sun, and others. During the last sumspot maximum the m.u.f. got as high as $60-$ to 70 Mc . It may drop below 7 Mc . during a sunspot minimum. One interesting point is that the closer your frequency to the
(Continued on palye 144)

Digital Logic Devices

Symbols, Nomenclature, and Principles

BY NORMAN POS.* WA6KGP

"Digital logic" is the term used to describe an overall design procedure for electronic systems in which "on" and "off" are the important words, not "amplification", "detection", and other functions well known to all amateurs. It is "digital" because it deals with discrete events that can be characterized by digits or integers, in contrast with ordinary (linear) systems in which an infinite number of levels may be encountered. It is "logic" because it follows mathematical laws in which "effect" predictably follows "cause." Digital logic is not new to QST. So far, however, explanations have been scattered through articles describing equipment. Here the fundamentals are assembled in one place.

DURING the past few years there has appeared an increasing number of articles in QST and elsewhere dealing with digital-circuit contrivances useful around a ham shack. Although most of these have been keyers of various sorts, it seems clear that the future promises inereasing usage of these circuits in various phases of communicatious, their role in computer design being already quite firmly established. Accordingly, to aid the amateur in keeping up with these developments, and to accumulate in one article most of the current terminology and symbology, this article will describe with some generality how these devices work. The emphasis will be mainly on microcircuits, although the same principles apply to discrete-component rircuits.

In years gone by, homebrew construction evolved away from the actual construction of components to construction of equipment using purchased components, with the possible excepception of r.f. coils. The present-day development of digital devices is sceing a similar evolution away from the use of discrete components toward the use of microcircuits which perform quite complicated functions. Not the least reason is that one microcircuit costis far less, and is much more reliable, than the equivalent circuit built from discrete components. In addition, the logical functions are much more easily followed when the diagram is logical in nature, rather than a forest of resistors and tubes and what not. Recall that it was not necessary to understand space-charge physics, or cathode work functions, to use vacuum tubes intelligently. Likewise, one need not really be too concerned with the insides

[^1]of microcircuits to be able to use them. This article will speak mainly of the "input-output" characteristics of these devices.

Before proceeding, it should be realized that there is no broad agreement yet in matters such as logic symbols, equation symbols, and terminology. ${ }^{1}$ However, matters are improving, and in this article the more common usages will be employed. Also, this article will be restricted to two broad categories of logic elements, "gates" and "flip-flops," because these represent nearly all of the more common applications.

Gates

There are three primary logic functions which gates perform. 'They are the and, or, and the Nor fuuctions. These may be combined in fancy ways to form other types of gates, but essentially these three cover the field.

Logic elements deal with "ones" and "zeros". These refer to specific voltage levels, and vary between manufacturers and devices. Nearly always, a " 0 " means a voltage near ground, while a " 1 " means whatever the manufacturer says it means. Actually, the corresponding voltages in both cases are approximate because there

Fig. 1-The AND gate. (A) the symbol used in logic diagrams; (B) truth table, which shows the output state for every combination of inputs; (C) Boolean-algebra equation of the AND gate; (D) graphical representation of the possible states.

[^2]is a "noise margin" over which the devices will work. This is nice because it allows (within limits) uncritical wiring and noise pickup without ill effect. One must distinguish between "positive Ingic" and ""egative logic." In positive logic, a l is more positive than a 0 , though both may be negative voltages, and in negative logic, the reverse is true.

Fig. 1 shows an and gate, drawn for positive ingic. 'The four parts of Fig. 1 are entirely equivaleut and are different ways of depicting the same thing. Fig. 1A is the symbol for a two-input and gate. Gates may have many imputs, but using just two will make things clearer at first. Extension to more than two inputs is direct and straightforward. The inputs are labeled A and B, and the output is labeled C. These alphabetic names are called "variables". In plain English, the output is 1 only when both inputs are 1. Fig. 1B shows what is known as a "truth table" for the AND gate. All the possible combinations of inputs are listed, together with the resulting output. In Fig. 10 we have the logic equation which describes the same action analytically. These Ingic equations should not be confused with ordinary algebraic equations. They are known as "Boolean" equations, and are quite a bit simpler. The dot is used to mean AND, a little ∇ (or sometimes a plus sign) means or, and a bar over a variable means not. Variables are either 1 or 0 in value. So equation $1 C$ means that C is 1 only if A and B are 1. Fig. 1D shows a time plot of the voltages at A, B, and C, and again exhibits exactly the same properties as the rest of Fig. 1. Different folks find one or the other of these various methods of depicting the logic action most appealing. The reader is free to choose his favorite, although all should be understond.

A little circle at either input or output is used to mean not on a circuit diagram. Fig. 2 shows a not gate, also called an "inverter." The interpretation of Fig. $2 \cdot$ is simply put: The output is not the input (no pun intended!).

NOT GATE
(A)

(B)
$\frac{A \mid B}{.010}$
(c) $B=\vec{A}$
(D)

Fig. 2-Simple gate with inversion (NOT gate), the level reversal being indicated by the small circle attached to the gate symbol. (B), (C) and (D) give information corresponding to the same parts in Fig. 1.
(A)
NAND GATE

(B)

(C)

Fig. 3-The NOT- AND or NAND gate, an AND gate with inversion.
(A)

INCLUSIVE OR GATE

(B)

(C)
$C=A v B$

(D)

Fig. 4-Inclusive OR gate. The word "inclusive" indicates that the gate will be operated by any combination of logical I inputs as well as by any single I input.

If Figs. 1 and 2 are combined, we have the not-and gate, usually contracted to nand. This is shown in Fig. 3. Note that the result is just the opposite of Fig. 1. For internal reasons, the nand gate is somewhat more common than the and gate.

When we cume to the or function, we have to be careful. I may say, "either it will rain tomorrow, or it will not." This is called the "exclusive or" since the "or both" possibility is evident nonsense. On the other hand, if I say, "Harry will make DXCC if he receives a (QSL from Saudi Arabia or Malawai," it is still true if the lucky fellow receives both cards. 'This is called the "inclusive or" function. There are no common contractions for these t.wo or functions
because until recently the inclusive or dominated the market, again for internal reasons. Unless otherwise stated, an unspecified or in the literature probably means an inchusive or.

The inclusive or is shown in Fig. 4. In a manner similar to the nand gate, we may produce a NOR gate, which is shown in Fig. 5.

The exclusive or is shown in Fig. (i. The equafion 6 C has to be writiten in this expanded form in order to specifically exclude the ease when fort A and B are 1. Equation $6 C$ says that C is 1 if we have A and not B, or not A and B, but not both. In this case, the time plot of 6 D may be somewhat clearer.

We are now in a position to observe something curious and interesting. If, in Fig. 1, we employ
(A)

NOR GATE

(B)

$$
\begin{array}{c|c|c}
A & B & C \\
\hline 0 & 0 & 1 \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & 0
\end{array}
$$

(C)

$$
C=\overline{A v B}
$$

Fig. 5-NOR gate. It is similar to Fig. 4 except for the inversion indicated by the circle.

EXCLUSIVE OR GATE
(A)

(B)

(C)
$C=(A \cdot \bar{B}) v(\bar{A} \cdot B)$

Fig. 6-Exclusive OR gate. In contrast to Fig. 4, the exclusive $O R$ gate will operate only when only one input is a logical 1 .
(A)

$$
\begin{aligned}
& F=A \cdot B \cdot C \\
& G=D \cdot E \\
& H=F \cdot G=A \cdot B \cdot C \cdot D \cdot E
\end{aligned}
$$

Fig. 7-Cascaded AND gates to reduce loading.
negative logic, without doing anything to the actural circuit, by ealling a more negative voltage a 1 and vice versa, we see that $(6$ is down (is a 1) when A or B or both are down (are 1s). 'Thus, in a sort of magical hocus poens which just involves mame-calling, we have changed an and gate into an inclusive or gate! A mathematician by the name of DeMorgan realized this long ago before the advent of digital circuits, which goes to show once again how academic mathematics truns up applications in the mosi unexpected ways. What DeMorgan said in effect was, "if you not everything in a Boolean expression, then swap uris and ands, and then Not the enfire result, you haven't changed anything." That is, $A \vee B=A \cdot B$.

What this means to the praciical man is that it is always possible to coonstruct a logical system (not always most economically) with just one Havor of gate. This shows the essential identity between the AND and OR functions, and also points up the essential way in which the exclusive OR of Fig. 6 differs. Recently, several manufacturers have bowed to these facts and have added exclusive or gates to their lines.

One important specification for logic gates is the so called "fan-in" and "fan-out." Fan-in specifies how many sources may be applied to the imput of a gate before performance is degraded, while fan-out specifies how many loads may be connected to an output. Along this line, there is defined by the manufacturer something called a "nnit-load" in terms of which fan-in and fan-out are specified. The manufacturer will scale the required drive currents into the various inputs of a product line according to some rule of thumb, and give the results generally as a small integer or possibly a simple fraction. When designing a digital system, one adds up the total unit loads which a gate (or flip-Hop) is to drive, aud ensures that the sum does not exceed the fan-out rating of the driving device. Actually, the usual result. of overloading a gate is a degradation of rise and fall times before the logic voltage levels are too seriously affected.

GATE WITH A NODE

Fig. 8-AND gate with a node connection.
Similarly, if one finds that more sources are to be connected to an input than it can take by its fan-in rating, then one must cascade down through intermediate gates. The price une pays for this is delay time, since it takes a finite time for a gite to respond. Most of the time this is no severe restriction siuce gate response times are generally quite fast. As an example, if I desire to apply five imputs to an and gate which is rated for four, I might solve the problem by the meaus shown in Fig. 7. With some gates there is a so"alled "node" provided through which one can introduce more inputs than are provided for at the gate input. (Fan-in usually exceeds the number of artual input wires provided.) 'These modes usually have to be "buffered" through diode clusters which are part of the same manufarturer's line. The symbol for a node is shown in Fig. 8.

As a closing comment on gates it might be pointed out that aside from putting excessive operating voltage on them, or actual mechanical damage, in most cases anything might be connected to anything without damage. They are rather forgiving of wiring errors. Some of the more recent microcircuits which have an FET type of construction are a little more fussy, however.

Flip-Flops

A tlip-flop is a device which has two outputs that can be placed in various 1 and 0 combinations by various input schemes. Basically, one output is a 1 when the other is a 0 , although situations do occur (sometimes on purpose) where both outputs are alike. Since the flip-flop is essentially a symmetrical device it really doesn't matter which side is which, but from an application viewpoint the manufacturer labels them and for reasons of cousistency, it is wise to stick with his labels. Naming the leads and defining some terminology go hand in hand. One output is called the " Q " or "set" output, and the other is the " \bar{Q} " (read not Q) or "reset"" output. If Q is 1 and Q is 0 , the flip-flop is said to be "set", or in the "one state", while for the reverse, the Hlip-Hop is "reset" or "cleared" or in the "zero state". If both outputs are alike, the state of the flip-flop is indeterminate. Similarly, there are at least two inputs, the "set" and the "reset" inputs. It is the intention that the appropriate status of the outputs result from a specified status of the inpuls. This is done in a variety of ways.
There are essentially two types of inputs, the so called "d.c." or "level-sensitive" type, and the "a.c." or "transition-sensitive" type. As the
names imply, a d.c. input does its work according to the voltage levels applied, and is also called sometimes a "static" or "nonsynchronous" input. An a.c. input does its work with a transition in voltage, and is also known as a "dynamic" or "synchronous" input. A given Hip-Hop may have some or all of these types of inputs, depending on the intended application, and the interaction of the inputs results in some very thexible operations.

It should not be concluded that an a.c. input is capacitively-coupled in. This was true for discrete component Hip-Hops, but reasonable capacitors just don't fit in microcircuit dimensions. The construction of an a.c. input uses a cute trick known as the "master-lave" principle, about which more later.

For an example of a quite generalized flipflop, refer to Fig. 9. A device such as this is typified perhaps by the Motorola types MC664 or MC845. sd and C_{d} are d.c. inputs and unconditionally override all of the other inputs, as shown by the truth table of Fig. 9B. Note the small circles at the inputs. As mentioned under the description of gates, these indicate that the inputs are negated. This agrees with Table 9B, where a not input effects the corresponding output. Since S_{d} and C_{d} override, they can alter the state of the Hip-Hop at any time, hence the term nonsynchronous. When both S_{d} and C_{d} are 1, the "front end" inputs are effective. These are synchronous in the sense that changes of state of the Hip-Hop oucur synchronously, if at all, with a transition of the "clock puise" ($C P$) input. Specifically, since the CP iuput is notted by the little circle, transitions take place only at negative going (1 to 0) transitions of CP. Whether or not, and in which direction, the flip-flop changes state is controlled by the two pairs of S and C
(A)

(B)

Fig. 9-(A) Logic symbol for a generalized flip-flop. If there is only one S and one C input terminal on the actual device, the AND-gate symbols are not needed and the symbol is a simple rectangle. (B) is the flipflop truth table.
inputs. 'These are sometimes called "steering" inputs since they serve to steer the $C P$ to either set or reset the flip-flop. Since the pairs of S and O inputs enter through two and gates, the action at a negative-going CP is as follows: If both S 's are 1 and at least one C is 0 , the Hip-Hop sets. If it is already set, nothing happens. If both C's are 1 and at least one S is 0 , the flip-flop resets.

The way in which master-slave operation results in an apparent a.c. input for CP can now be described. Inside the microcircuit there are really two flip-flops connected as a shift register (about which more later) with some assortment of gating between them. The first is the master, and the second is the slave. When the $C P$ is 1 , the status of the S and C gates is transferred directly to the master. When CP transits to 0 , the status of the master transfers to the slave, aud appears at the output. Note that both of these actions are really level-sensitive, but the combined effect is to produce an apparent shift in output synchronized with the trausition of $C P$. The S_{d} and C_{d} inputs are tied to the slave directly, which explains why they override the other inputs.

At this point it is well to point out that generally, but not always, an unconnected input results in an automatic 1 at that input. Some manufacturers require that unused inputs be tied to ground or to a logical 1 voltage for proper operation.

A flip-Hop such as this may be externally wired in a variety of ways to produce a shift register, counter, or any other of the many uses possible. In many instances the flip-flop comes internally wired by itself or to others in the same microcircuit to provide specific functions. Two common uses for flip-flop follow:

The Shift Register

A shift register is a series of flip-flops connected serially as shown in Fig. 10. When the $C P$ makes its transition, the status of each flip-Hop transfers to the right down the chain by one step. Shift register, counter, or any other of the many and in typewriter code machines. Often, but not always, all of the C_{n} inputs are tied together as in Fig. 10 and called a "common reset" or "clear" input. The S_{d} inputs may or may not be provided.

Fig. 10—Flip-flops combined to form a shift register.

Fig. 11-Flip-flop connected for counting, or giving one output pulse for each two clock pulses. A series of these "divide-by-two" circuits in cascade will sum up the number of negative-going clock pulses for a period, determined by the circuit design, before "clearing" and repeating the count during the next interval.

When only one each of the S and C inputs is provided in a specific flip-flop, the and symbol is generally not drawn in, since a single-input gate clearly performs no and function whatever. If the shift register of Fig. 10 is constructed from individual flip-flops like that of Fig. 9, then one each of the S and C inputs would not be used. As mentioned earlier, these unused inputs are usually automatically in the 1 state.

Flip-flops used in shift registers are sometimes referred to as "Type D" flip-flops. The name refers to the application rather than to the nature of the flip-flop circuit itself.

The Counter

If the outputs are cross-connected to the inputs as shown in Fig. 11, the result is a counter. Since the 1,0 pattern at the output is reversed at the input, application of the CP will cause the flipHop to "count" or "tnggle" or "divide by two" (the terms are synonymous). For microcircuits which are internally wired in this manner, a special terminology has arisen wherein the inputs are named " J " and " K " and the tlip-Hop is called a "JK flip-flop," in contrast to that of Fig. 9 which is sometimes called an "RS flipflop." The same comments about the S_{d} and C_{4} inputs for the shift register also apply here when several stages are provided in one microcircuit. To coustruct an "up counter," " one connects each Q nutput to the $C P$ input of the following stage. To construct a "down counter," one connects each \bar{Q} to the $\bar{C} P$ of the following

[^3]

The author's frequency standard, removed from the case. The 15 ICs are visible in the foreground, with the batteries across the rear. The frequencyselector switch and out-put-level control are on the left and the output coax is connected to the level control.

Integrated-Circuit Frequency Dividers

And An Application to the Amateur Frequency Standard

BY JOHN W. STAPLES,* K9CPZ

THE recent price reductions on certain digital integrated-circuits (ICs) have placed them well within the financial reach of the average experimenter. Devices can be built with ICs at a fraction of the cost of discrete components. Moreover, ICs are proving to be more reliable, more economical of power, and more compact than conventional circuitry. ${ }^{1}$
Integrated circuits can be roughly classified into two categories, digital and linear. Digital ICs are used in logic circuitry where signals are represented by voltages that have only two nominal values, "on" and "off," or " 1 " and " 0 ", or somehow characterized as having two states. On the wther hand, a linear IC responds with an output that is proportional to the input: it is usually some form of amplifier.

The distinction between digital and linear ICs is a result, among other things, of the relatively loose tolerances of the components in the circuit. A linear circuit is usually fairly sensitive to variations of the component characteristics from nominal values. The characteristics of the transistors must be well controlled, and the tolerances of the resistors must be fairly tight. On the other hand, digital circuitry allows for wide component variations as long as two states, "on" and "off," can be handled.
The digital circuits discussed in this article are known as "saturated logic," since a transistor is

* Physics Department, University of Illinois, Urbana, 111 .
${ }^{1}$ For a general discussion of integrated circuits, their physical and electrical characteristics and applications, see DeMaw. "A Look at Integrated Circuits," QST, March, 1968. - Editor.
either turned on to the point of saturation, or turned off, with no intermediate state. Another digital approach, known as "non-saturated lugic," does not saturate the "on" state, thus eliminating a property known as charge storage, which causes a slow-down in the turn-off time of the transistor.

The Dual Gate

A typical logic function is shown in Fig. 1. This configuration, called a NAND/NOR gate, consists of two transistors and three resistors, with two such units in one package. This is one of the simplest circuits available, but also one of the most useful. Depending on how it is used, an output will occur when both inputs are activated (the and configuration) or when either input is activated (the or configuration). Fig. 2 shows truth tables for the and and or functions. The 1 s and 0 s do not refer to voltages, but to the two states defined below.

[^4]

Fig. I. Two-input NAND/NOR gate. The resistances are nominal values. Two gates occupy one package.

Fig. 2. Truth table for AND and OR functions. 1 and 0 do not refer to specific voltages, but to two states that may be variously defined.

In order to get one circuit to function either as an and or an or, we must define the 1 s and 0 s differently for each function. Take the or function first. If both inputs are at ground potential, neither transistor conducts, and the collector voltage is equal to the supply voltage. But if either (or both) of the inputs are biased positively, the collectors (connected in parallel) will be pulled down near ground potential. If we call 0 in the truth table ground potential, and 1 in the table positive potential, we see that the output of the circuit corresponds to the or columu in Fig. 1, except that the 0s and 1s have been interchanged. This interchange of 0 s and 1 s is called a Not function (not $0=1$, and vice versa), so the circuit is called a not or or NOR circuit.

On the other hand, if we define 0 as a positive voltage and 1 as zero voltage, it is not too hard to see that the circuit provides a NOT AND or nand function. Thus a single circuit can provide t.wo different logical functions, depending upon the so-called "positive" logic or " negative logic" definitions of the 0s and Is.

The Flip-Flop

Another type of logic circuit is the flip-flop or bistable multivibrator, which can be set to one of two allowed states. A pulse on the toggling input changes the flip-flop from one state to another, and a pulse on the preset input places the flip-flop in a known and predefined state. Two other inputs are provided, but not used in the circuits described here. ${ }^{2}$

We can represent various ICs by symbols rather than drawing their entire schemaiies. This "systems approach" is always used, as the IC provides a certain specific function, in just the way the squares in a block diagram do. Giates and flip-flops are shown in Fig. 3, together with
"Further information is given in another article in this issue (Yos," Digital Logic Devices"). - Editor.
actual basing diagrams. These units are standardized, with pin 4 going to ground and pin 8 (the flat side) going to the supply voltage, $+3.0 \pm 10 \%$ volts. The $\mu \mathrm{L}$ (standing for microlugic) 914 contains two nand/NOR gates, and the $\mu \mathrm{L} 923$ contains one JKi flip-flop, consisting of 12 transistors and 16 resistors. These particular ICs are made by Fairchild Semiconductor, and are available at low cost. ${ }^{3}$

Hooking Them $\boldsymbol{U}_{\boldsymbol{p}}$

An IC block diagram is essentially the actual wiring diagram. Once a function is decided on, a block diagram is drawn, the power connections are added, and the schematic is complete. Occasionally, discrete components are also used, to modify the action of a particular circuit or to build a circuit that cannot be handled by an IC alone. Since these circuits have a reasonably low impedance, wiring is not critical. Certain rules have to be followed, however, when working with ICs.

One rule is not to load the output of a circuit too heavily. Certain "loading rules" exist which set an exact upper limit of how many inputs may be connected to any output without overloading the output capability of a circuit. A rule of thumb is that about four circuits can be driven by a single output with the IC's used in this article. Another thing to keep in mind is that ${ }^{8}$ Fairchild transistors are not available through supply houses normally patronized by amateurs, but can be obtained from Fairchild distributors. For the name of the distributor nearest you write Fairchild Semiconductor, Marketing Services Department. P.O. Box 1058, Mountain View, California 940.10. Delaware Electronics Supply Co. 220 West Fourth St., Wilmington, Delaware 19801, will also accept mail orders from amateurs for Fairchild semiconductor products. - Editor.

Fig. 3. (A) μ L914 NAND/NOR gate, top view. Pin 8 is the supply voltage; pin 4 is grounded. Pins 6 and 7 are the outputs for the two units. (B) μ L923 JK flip-flop, top view. The set and clear inputs work together with the toggle input to define the output state. A preset pulse causes Out1 to be zero, Out2 to be positive. A toggle pulse reverses the state of the flip-flop.

Fig. 4. Two flip-flops in a divide-by-four counter.
all these circuits are direct-coupled and can therefore be used down to zero frequency. The transition time (time taken to go from a 0 to a 1 state, or back) is fairly fast, about 20 nanoseconds (0.02 microsecond).

Fig. 4 shows a circuit using two Hip-flops. This is a divide-by-four counter using the toggling inputs. Initially, both Hip-flops were in the 0 state, because Out 1 and Out3 were 0 , implying that Out 2 and Out 4 were both 1 , assuming positive logic. The Hip-Hop changes state when the toggle input goes from 1 to 0 , so the first flip-flop divides the incoming pulse train by two. The second flip-flop does the same, and the total effect is a divide-by-four counter.

Fig. 5 shows a nand gate wired to Out 2 and Out 4 . When both of these outputs are 0 the gate output is a 1 , otherwise the output is a 0 . By wiring together several Hip-flops and gates, complex waveforms can be obtained.

Counter Circuits

We have seen that a single Hip-Hop can divied a frequency by two. Then n flip-flops can divide a frequency by 2^{n}, if the toggle input on a HipHop is connected to the output on a previous HipHop and this is done for n Hip-flops. But suppose we don't want a division ratio of 2 or 4 or δ or

Fig. 5. Two flip-flops and a NAND gate. Out5 is 1 when Out2 and Out4 are both 0.
so on. By using gates in cunjunction with HipHops we can get, in principle, any division ratio we want, given enough circuits to work with. Division ratios of five and ten are particularly convenient to have.
'There is a general rule (which holds true for all division ratios) to follow when designing a counter. Disume we want a counter that will divide a frequency by sume number p. Then for every p th input puise the divider produces an output pulse and resets to its initial state. We could label the input pulses with numbers, $1,2,3,4, \ldots p-1, p ; 1,2,3,4, \ldots$, but it is more envenient to label the imput pulses starting with zero; viz., $0,1,2,3, \ldots, p-1$; $0,1,: 2,3, \ldots$, etc. Starting with \%ero signifies that all Hip-Hops are set to the 0 state. Then $p-1$ pulses arrive and set the Hip-flops to various states. The next (p th) pulse resets all the flipflops back to the 0 state. So p pulses applied to the input generate one complete cycle in the counter.

The basic idea in setting up a eounter is to modify a binary counter of n stages (which divides by 2^{n}) to reset at some count p where p is less than n. Tu get a decade (divide-by-ten) counter we need $n=4$ flip-Hops to get a basic division ratio of 16 , and then modify it to divide by ten. Fig. 6 shows a four-stage binary counter counting to 15 and then resetting on the 16 th pulse (labeled 15 in nur notation). The four Hip-Hops are given the designations $1,2,4$, and S because the values of the "on" flip-flops, added together, correspond to the number counted within the pulse train. For example, on the 13 th pulse the 1,4 , and 8 Hip-Hops are on.

To modify this divide-by- 16 counter to count by 10 , some method of resetting the flip-flops on the tenth input pulse must be found. Notice that upon receiving the tenth pulse the 2 and 8 tlipHops are on and the other two are off. Furthermore, the tenth pulse is the first pulse in the train which meets this condition. Therefore a gate circuit sensing the \because and the 8 Hip-flops together will be activated on the tenth input pulse, and can be used to reset all the Hip-Hops back to rero. But since unly the 2 and the δ Hip-flops are on at this time, ouly these two must be set back to yero. This can be stated as a general rule: to divide an input pulse train by a number p, reset A and B and C and . . . and Z where $A+B+C \ldots+Z=p$. In the case of the decade, reset flip-flops 2 and s $(2+S=10)$. If $p=2 n$, no gates and no reset function are needed.

Notice that in order to obtain an AND function with the gate, negative logic must be used, as discussed earlier. The Hip-Hops provide two outputs, one the complement of the other: when one output is positive, the other is zero. We can consider one output to produce positive logic and the other output to produce negative logic. The negative-logic output is used to eontrol the nand gate, which in turn generates a positivelugic reset signal.

For certain division ratios, more than two

Fig. 6. States in a 4 -stage binary counter dividing by 16.
signals must by anded together. The $\mu \mathrm{L914}$ gate has only two inputs per gate. Two threeinput gates available are the $\mu \mathrm{LOO} 3$ and the $\mu \mathrm{L} 915$; the $\mu \mathrm{L} 907$ is a four-input gate and the $\mu \mathrm{L} 929$ provides five inputs. Basing diagrams can be obtained from the manufacturer.

Suppose we want to divide au incorning pulse train by five. For this we need three flip-flops, numbered 1,2 , and 4 . Since $1+4=5$, the 1 and \& flip-flops are anded together to generate a reset pulse, which resets the 1 and 4 Hip-Hops. Referring to Fig. 7 , the diagram of a decade idivide-by-fen) counter, we see that it actually consists of a divide-by-two counter followed by a divide-by-five counter. This principle can be extended indefinitely to produce auy countdown ratio.

Since the eounters are direct-conpled, there is no lower frequency limit that can be handled. The practical upper limit, however, is about 5 MHz. for udd division ratios, and abunt \times MHz. for even ratios, for which the first Hip-Hop is not externally reset. In general, the more complex the division ratio - that is, the larger the number of gates required - the lower the maximum frequency of operation. This a consequence of the fact that it takes a finite time for the signal to pass through a gate. More suphisticated IC's are capable of much faster operation, and the technology is advanciug rapidly. In addition, it should be mentioned that there are other ways to achieve a fixed frequencydivision ratio which have not been mentioned in this article. The method outlined above, however,
is a simple and versatile way of achieving good results with medium-speed ICs.

A Frequency Standard

Now that we have covered the fundamentals of frequency counters, let's put the counters together with the additional needed circuits to bild a frequency standard. The standard that we want must generate several convenient frequencies from a single reystal oscillator. We would then expect our unit to cousist of an oscillator, some frequency dividers, a lowimpedance output circuit, and a power source. Fig. 8 shows a typical standard which includes two dividers. The crystal might generate a $1-\mathrm{MHz}$. signal, and the dividers could both be decades, generating $100-\mathrm{kHz}$. and $10-\mathrm{kHz}$. signals.
d great advantage offered by fixed-ratio dividers is that large division ratios can be oblained. Suppose you have an "odd" erystal in your junkbox, say 1700 kHz . A divide-by-17 divider can be built with five Hip-flops and one gate to generate a $100-\mathrm{kHz}$, signal. "Nice" crystals usually are somewhat more expensive because of demand for them, but cheap "odd" erystals may be used instead, in conjunction with a divider to produce useful frequencies for calibration purposes. The reader is encouraged to use erystals on hand or ones he can obtain inexpensively, and to design a divider chain that suits his requirements best.

The circuit in the author's frequency standard

Fig. 7. A decade frequency divider.

Fig. 9. Complete circuit of the author's frequency standard.
Unless otherwise specified, resistances are in ohms; resistors are $1 / 2$-watt composition. Capacitor with polarity marked is electrolytic; others are silver mica or ceramic. The integrated circuits used in this assembly are lessexpensive epoxy-cased versions of the $\mu \mathrm{L914}$ and $\mu \mathrm{L923}$ specified in Fig. 9. They are designated 9914 and 9923, respectively, and also are manufactured by Fairchild. Base connections are as shown in Fig. 3; pin 8 is indicated by a flat on the case, but the tab used in the metal-case version is absent. Motorola types MC715P (dual 3 -input gate) and MC723P (JK flip-flop) may be substituted.
S_{1}-Six-position two-pole rotary switch.
$B T I$-Two size D flashlight cells in series.
C_{1}-4.5-25-pf. ceramic trimmer.
C_{2}-Value used in author's circuit; different crystals may require different values.
$\mathrm{C}_{3}-50$ pf. for 50 -ohm antenna systems; 10 pf . for 300 ohm antenna systems.
R_{1}, R_{2}-Values used in author's circuit; different crystals may require different values.
R_{3} - 500 -ohm carbon potentiometer, linear taper.

The output waveform at 500 kHz . The scope sweep speed is $1 \mu \mathrm{sec}$ per cm ., and the fast rise is clearly evident.
uses a $2.5-\mathrm{MHz}$. crystal oscillator, three dividers, and an output circuit. The first two dividers divide by five, to produce $500-\mathrm{kHz}$. and $100-\mathrm{kHz}$. signals, and the last divider is a decade, producing a $10-\mathrm{kHz}$. output. A $50-\mathrm{kHz}$. signal is taken ont, of the first flip-flop of the last divider chain. The output circuit generates about 2 volts peak-topeak into 100 ohms. The output waveform is rectangular with very fast rise and fall times, producing harmonics to more than 100 MHz . Two flashlight batteries are used for power, and the entire unit is enclosed in a small aluminum box.

Fig. 9 is the complete circuit of the standard. The erystal oscillator is a arms-coupled multivibrator producing a nearly square wave at 2.5 MHz . Two outputs are tiaken, one to drive the first divider and the other, through a Nor gate used as a buffer, to the output selector switch. The values of the resistors and capacitors are chosen for reliable starting, and the ones shown in Fig. 9 represent only a starting point: different crystals will probably require different values. One interesting phenomenon was noted in the operation of this oscillator: if the supply voltage is applied tou suddenly, the oscillator will not start. Evidently, the supply voltage must be turned on slowly so that the multivibrator goes through a "linear" region in urder that oscillations may build up. Once started, however, the circuit operates in the saturated mode. The decoupling network in the supply lead to the oscillator IC provides a slow voltage build-up and therefore completely reliable starting. To trim the frequency of the erystal upward, at sinall trimmer is included in series with it. If the reystal frequency is still too high with the trimmer all the way in, resonnect the trimmer between ground and the junction of the crystal and the $\$ 200$-ohm resistor. If your crystal won't ascillate, it probably lacks in activity.

Three divider chains are included, constructed according to the rules given above. The output of the dividers is a rectangular wave with a duty factor of 20 per cent and a rise time of 20 nanoseconds. The desired output signal is selected hy S_{1}, passed through another bulfer, and amplified by an emitter follower. The emitter follower is an musual application for a dualgate IC. The normal outputs, connected to the collectors of the transistors, are in this case commected to the supply volage and pin s,
normally the silupply voltage terminal, is left unconnected. Pin 4 , internally connected to the emitters and normally grounded, is the nutput connection in this application. This IC replaces a 2N709 used in an carlier circuit, works just as well, and costs about a quarter as much. A $500-$ ohm potentiometer connected to the emitters controls the amplitude of the output. The output cable, a length of 93 -ohm coax, is terminated in a 100 -ohm resistor, and the signal is coupled to the receiver through a small capacitor. The overall spectrum has a $1 / f^{2}$ power dependence, and the capacitor helps to remove this dependence and produce a constant output from the fundamental to almost 20 MHz .

The unit is assembled on Vectorbord and enclosed in a $3 \times 5 \times 7$ inch aluminum box. The output level control and frequency selector switch are mounted at one end, and a UHF coaxial connector mounted at the other. The terminating network on the end of the coaxial cable is momed at the receiver antenna terminals. The frequency-adjustment trimmer is located behind a hole in the top of the case. The unit draws 140 ma . from the batteries, which should last a year with normal use.

One caution in construction: The circuit should he grounded to the aluminum box at only one point. This ground is made by the shield braid on the cuax which connects the output connectur to the level control. All circuit grounds should be tied together and connected to the low end of the level control, as should the other end of the shield braid. If this is done, it will be possible to turn the output level control all the way down and have no signal leakage.

This frequency standard replaces a vacuumtube unit built several years ago. The divider chain in the old standard used 6.56 multivibrators, which had to be carefully adjusted to obtain the proper division ratio. More often than not, they wandered off to some other frequency. They also had poor spectral purity in the form of hash and noise iu the output. The spectral purity of the 1 C device is excellent, and since the division ratio is wired into the dividers, no adjustment whatever is needed in the counters. The entire unit costs about $\$ 20$, and uses 138 transistors in the $141 / 2$ ICs that are wired into the circuit.

In conclusion, the author wishes to thauk Mr. William Fears, withont whose prodding this project would have never taken shape. [DST-

Strays算

From August 5-10, GB3NEW will be operated from the Barry College of Further Education Radio Suciety at the National Eisteddfod of Wales. This event is a festival of Arts held annually at a different location in Wales. Uperation will be in the 3.5, 7.0, 14.0, 21.0 and 25.0 MHz . bands using s.s.b. and ew. A commemorative certificate will be available to each station contacted.

The Clipboard

a Simple Experimental Circuit Breadboard

BY R. W. THORPE,* W6WYD

Eprembmenting with transistors man be lots of fun. Ustally the eircuits are simple, supply voltages are low, and the components, including the transistors, are relatively inexpensive. If you use printed or etched circuits or possibly integrated circuits, you soon find that you can package an amplifier that will fit in the corner of your eye without making you blink.

Before the final packuging, however, most of us want to build a breadboard to check the basic operation of the circuit --.-. 1 he validity of our bias calculations, the operating-point stability, or what have vou. Conventional brealboarding techniques, which usually involve soldering, may make it inconvenient to subsititute components. If resistor and capacitor leads are cut to fit the
${ }^{*} 2131$ N. Wilkie Drive, Pomona, California 91767.
breadboard, it may be economically hard on the fellow who buys his own materials and intends to reuse the items in the final package. The problem gets worse when other experimenters in the family start using the same facilities.

The solution at my house was the "Clipboard" experimental breadboard shown in the photographs. The transistors to be used are plugged into the sockets, and all the wiring is done by inserting component leads or short jumpers into the appropriate Fahnstock clips. Is many as three power-supply voltages may be brought to the clips at the top of the board and be controlled simultaneously by the toggle switch shown. Tic-points and ground connections are located wear the power connection terminals to permit the installation of special filtering circuits or

Top view of W6WYD's transistor breadboard.

Fig. I-Layout details of the Fahnstock clips adjacent to one of the four transistor sockets. Clips are positioned around the other three sockets in a similar fashion. Parts placement was determined by picking convenient points on $a 5 / 8$-inch grid. The clips labeled C in the drawing are connected to the collector contact of the adjacent transistor socket, those labeled BA to the base, and those labeled E to the emitter. Each clip or pair of clips marked T is independent and not connected to any other clips on the board. The remaining clips are color coded with a dab of paint to indicate their function. Clips labeled G (black) are ground connections, those labeled R (red) are connected to one power line, those labeled Y (Yellow) are connected to another power line, and those labeled B (blue) are connected to yet another power line. Circle S represents the transistor socket.

Zener diode regulation. Under-board wiring, shown in one of the photus, distributes the power to couvenient locations across the board. Several floating clips are provided near each transistor
sucket and serve as tie-points or input-oufput connectors. The power transistor and its associated clips were added for a special switching application and have since proven to be very useful.

Sơme features were found to be essential: plenty of ground terminals, floating input-output connectors, and the simultaneous switching of all power supply voltages (some circuits may be damaged if a voltage is applied to part of a circuit before another voltage is connected to a different part.). The use of three (lips for each transistor terminal proved its worth during experimentation with Hip-flops having set, reset, and internal trigger-steering capabilities.

Construction of the Olipboard is simplicity itself. The basic board used here is a piece of $1 \% \times 107 / 8 \times 12 \frac{1}{4}$-inch hard phenolic. Any insulating material with adequate strength and machinability could be used, and of course the dimensions are quite arbitrary.

Fig. 1 shows the location of the clips adjacent to one of the small transistor sockets. Clips are pusitioned around the other three sockets in like fashion. The exact location of the power-supply connectors, the switch, and the puwer transistor and its commectors is not given because of the wide varicty of components available. The clips used for power distribution are color coded for ease of identification. All holes for mounting the clips, except those for the power supply and power transistor comnectors, were drilled on :
(Continued on page 142)

Under-board wiring of the Clipboard.

Some Ground Rules For Sweep-Tube Linear-Amplifier Design

BY DOUG DeMAW*, WICER

Abstract

Putting TV suceep tubes to work in linear amplifiers takes a bit of doing if maximum efficiency and reasonable life "re to be realized. This article focuses un some techniques that can be applied to all TV su'eep tubes suitable for use in linear amplifiers - the guidelines for smoother operation and feucer tube fail ures.

IT wasn't too many years ago that some of us who were s.s.b. experimenters learned that a buck could be saved by "operating" on certain brands of 16:25-type tubes, thus making them suitable for use in grounded-grid amplifiers. 1t. was necessary to saw a window in the tube base, locate and separate the cathode and beamforming plate leads, and bring them out i. individual base pins. At roughly 25 cents apiece, surplus prices, it was no strain on the pin-money fund to put four of them to work in parallel and rum them at approximately 500 watts d.c. input. In fact, many a "pair of shoes" was built along such lines and driven by exciters capable of 20 to 50 watts peak output. Little thought, if any, was given to the matter of proper balanciug of the tubes in order to assure equal load sharing.

* Assistant Technical Editor, QST.

Similarly, little attention was given to tube cooling. After all, at 25 cents per copy, it didn't matter too much if one had to replace a set of tubes every three or four months.

Things have changed considerably since the early 1950s, at least where the matter of tubes for use in linears is concerned. The emphasis has been on the use of big, somewhat-expensive tubes of the $4-1000 \mathrm{~A}, 3-400 \%$, and 4 CX 1000 A species. These fubes can provide the legal maximum-power levels for amateur operation, while performing with minimum distortion, but require costly hardware and expensive power supplies to reach the 1000 -watt d.c. input-power level. TV horizontal-sweep tubes, especially those intended for color receivers, ${ }^{1}$ oflier the builder a low-cost approach to linear-amplifier design while still permitting reasonable signal quality and power output. ${ }^{2}$ This article is based on tests performed on an experimental 800 -watt-d.c.-input linear amplifier. Four GE 6KDD6 tubes are used in the grounded-grid, parallel-connected arrangement of Fig. 1.

[^5]

This experimental sweep-tube linear amplifier uses four Shurite edgewise plate meters to allow each of the four 6KD6 tubes to be independently monitored as discussed in the text.

Fig. 1-Schematic diagram of the experimental 800-watt sweep-tube amplifier. Capacitors of decimal value are disk ceramic. Fixed-value resistors are composition. K_{1} permits the exciter or transceiver to be switched through the amplifier for low-power operation, and so that the operator can receive through the amplifier.
B_{1}-High-speed cooling fan (see text).
C_{1}-Transmitting variable (from Command Set transmitter).
C_{2}-Three-section broadcast-type variable, all sections in parallel.
$\mathrm{J}_{1}, \mathrm{~J}_{3}$ —Phono jack.
J_{2}-Coax fitting, chassis-mounting (SO-239).
$\mathrm{K}_{1}-$ D.p.d.t. 24 -volt d.c. relay, 10 -ampere contacts.
$\mathrm{L}_{2}-18$ turns No. 12 wire, $21 / 2$-inch dia., 3 inches long (made from B \& W 3900-1 coil stock, or Polycoils 1774). Tap at approximate midpoint.
L;-5 turns No. 14 wire, 3 -inch diameter, approximately

Sweep-Tube Ratings

Although there are many ways to rate a vacuum tube's performance capabilities, we will confine our discussion here to the manufacturers' design-maximum ratings. Under this heading we can find the limiting values of operating and environmental conditions which apply to what the manufacturers call a "bogey" tube - a tube of a given type, with average characteristics. These ratings are set to assure reasonable tube life in television receivers. Any departure from them is at the designer's risk, and will depend upon the life he expects from the tube in his particular circuit.

Table I lists the design-maximum ratings of the GKD6 tube as given by General Electric Co. (A check of the tube manual showed that RCA rates their 6KD6s the same way.)

Since 990 volts is listed as the recommended maximum, a 900 -volt d.c. supply was chosen to
$3 / 4$ inch long (or 5 turns from Polycoils 1779 stock). Mount over ground end of L_{1}.
$\mathrm{M}_{1}-\mathrm{M}_{4}$, inc. $-0-300 \mathrm{ma}$. d.c. meter (Shurite edgewise meters used in this model).
$R_{1}-R_{4}$, inc.-10,000-ohm linear-taper control (Ohmite 2-watt carbon type, or equal).
$\mathrm{RFC}_{1}-\mathrm{RFC}_{4}$, inc.-2.5 mh., 250 ma . (Millen 34102).
$\mathrm{RFC}_{5}-200 \mu \mathrm{~h}$. (see text for particulars).
$Z_{1}-Z_{4}$, inc.-Parasitic suppressor; 8 turns No. 22 enam. wire wound over the body of a 56 -ohm 1-watt carbon resistor. Use pigtails of resistor as anchor points for the coil.
power the amplifier. This voltage permits the maximum desired input power (800 watts) to be reached while operating at a lower plate current than would be needed if a 500 - or 600 -volt plate supply were used. The lower voltage would require that more tubes be employed to obtain the same d.c. input power without exceeding the 33 -watt plate dissipation rating of each tube. Also, the higher plate voltage and lower total plate current result in a plate-load impedance (higher) that is less difficult to match. In this instance the impedance is of the order of 500 ohms, using 900 volts at 890 ma . to obtain the desired 800 watts c.w. input. If a 500 -volt supply were used, with six tubes in parallel and 1.6 amperes of plate current, the load impedance would be roughly 150 ohms - a difficult value to deal with when using a conventional tank circuit.

The filament requirements are 6.3 volts at 2.8 amperes per tube. By operating the filaments

```
D.C. Plate-Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900) Volts
Peak Positive Pulse Plate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %000 Volts
Positive D.C. Beam Plate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Volts
```



```
l'eak Negative (Irid-Number 1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 V'olts
Plate Dissipation (Absolute-Maximum Value)........................................... . . . . . Watts
```



```
Peak Cathode Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1400 Ma. 
Heater-Cathode Voltage
    Heater Positive with Respect to Cathode
        D.C.Component.
        100 Volts
        Tutal D.C. and Peak. . . . . ...................................................... . . . . . OOU Volts
    Heater Negative with Respert to (athole
        Total D.C. and Peak. . . . . . . .......... .. . . . . . .. .. . . . . . . . . . . . . . . . . . 200 Volts
Grid-Number 1 (ircuit Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... 2.2 Megohms
Bulb Temperature.
2250.
```

TABLE I
in parallel one can use a 6.3-volt transformer, but the current rating must be 11 amperes or better. To get around this high-current requirement the four 6KD6s were eonnected for series-filament operation. Happily, the transformer ratings called for 25.2 volts at 2.8 amperes -a standard transformer type available from Allied-Kinight or sitancor. Of course a series-parallel arrangement cuuld also be used with a 12-voll transformer, if desired. This would call for a current rating of at least 5.6 amperes.

Since the circuit of Fig. I uses the tubes in a grounded-grid hookup, the screen grids and he:amforming plates are grounded and do not have : d.c. operating voltage applied to them. The current they draw varies with the level of the driving sigual voltages at a given instant. 'Tubes operated this way perform as high- μ triodes, and the drive required is below the level that would cause the grids and beam-forming plates to exceed their safe dissipation ratings. The tubes in this amplifier have been in service for several months with no noticeable change in their performance-a good indication that the grids have not been damaged by excessive current.

A negative bias voltage, approximately 7 volts, is applied to the control grids of the tubes to set. their resting plate currents, for class AB operation, to 25 ma . per tube with the plate voltage specified here. With 500 volts on the plates it is possible to operate the tubes at zero bias, sime the static plate current will be low enough to keep the plate dissipation at a safe level (roughly ss watis) with no signal applied.

A safe bulb temperature must be maintained at all times if one does not want the tube's envelope to melt or crack. For maximum life the tubes should be operated at temperatures well below the 22.5 degrees 0 . that the manufacturer specities. An example of the catastrophic results of improper cooling can be seen in an accompanying photo. Generally, sume type of forced-air cooling should be employed to insure against lamage from heat.

Individual fuses are used to protect each plate line of the amplifier. They can be seen between the two variable capacitors near the front of the chassis. A toroidal-wound cathode r.f. choke is mounted at the center of tube sockets. Four bias-adjust controls are located on the rear apron of the chassis, permitting the resting plate currents of the tubes to be equalized. Each tube is set for 25 ma . resting current. This requires approximately -7 volts on the control grids. Tubes other than 6KD6s would require different bias values. The unused control at the right center of the chassis is for experimental purposes.

What About Matched Tubes?

Whenever power-handling tubes are operated in parallel some provision should be made to assure equal- or near-equal load sharing. The d.c. plate current should be closely matched during both the no-signal and applied-signal periods. Some manufacturers of s.s.b. equipment: have solved this problem by careful grading of the tubes, using only those that have similar dynamic characteristics. Handpicked tuhes do not come easy for the home experimenter, however, because it might be necessury to purchase as many as twenty in order to get six whose characteristics are closely matched. At $\$ 3.85$ per 6KDC ($\$ 3.47$ each in ten lots or more) one might have to spend $\$ 70$ to obtain six matched tuhes worth only $\$ 23$ - an impractical solution indeed!

By experimenting with the bias voltages of the four tubes in the amplifier of Fig. 1, it was learned that the no-signal plate currents could be matched when using auy four tubes from a set of ten 6KD6s which were on hand. Separate bias-adjust controls permit each tube to be set for the class of operation desired. Fortunately, the platecurrent readings tracked within 10 percent over the entire range from no signal to maximum signal when this method was used. (Initial tests were made with a single 300 -ma. d.c. meter to avoid errors which could have resulted if four separate meters of unknown tolerance had been employed.)

If reasonable balance is not effected between paralleled tubes - especially if a single meter is used to monitor the total plate current, there is no way of knowing whether one tube is drawing all of the no-signal plate current while the remaining tubes are just loafing along. 'This could mean that, the safe plate-dissipation ratings of one or t.wo tubes in a group of several could be exceeded while idling! For this reason it is prudent to monitor the plate current of each tube in the amplifier, either by using a single meter and a suitable switching arrangement, Fig. 2, or by using four separate meters as was done here. The latter permits simultaneous monitoring of plate currents, permitting instant comparison of uperating conditions. Four low-cost meters run approximately the same as one top-quality meter, so it's pretty much an even-stephen proposition where cost is concerned. The less-costly meters (Shurite in this instance) have a i-percent accuracy rating as opposed to the usual 2-percent accuracy of the more expensive instruments. This could mean a difference of as much as 30 ma ., at full scale between any two 300-ma. meters, but since 30 ma . represents only a 10 -percent error in operating currents it is well within the ball park aceording to the sufe operating limits determined in these experiments.

Parallel Operation

With the circuit of Fig. 1, the total plate current is 800 ma . (800 watts $(\cdot, \mathrm{w}$. input). The smaller r.f. ehokes canot handle such high ramrent. ('hokes that cau take high values of d.c. are ex-

Fig. 2-Alternate method for metering the plate currents of the tubes. This system allows the use of a single 0-1 ma. meter. Meter shunts R_{1} through R_{4} should be calculated to provide a full-scale meter reading of 300 ma .
pensive. In this circuit four 200-ma r.f. chokes are used, each tube having separate d.c. feed. This keeps the cost down and makes possible the independent metering of each tube's plate circuit. Initially, four 1-mh. chokes were used and were promptly destroyed when the power output of the amplifier reached upwards of 200 watts. The four chokes in parallel had a series resonance in the x 0 -meter band - sure death to r.f. chokes in power circuits. Watch out for series resonances when selecting r.f. chokes for a given band of uperating frequencies. A grid-dip meter cuan he used to locate the series-resonant frequencies of an r.f. choke by checking with the choke terminals shorted. This should be done with all operating voltages removed, but with the circuit connected for otherwise-normal operation.

To offer some protection to the plate meters, a 250-ma. fuse (don't use slo-blo fuses) is installed in each plate lead. Should one of the tubes short ont during normal operation, the fuse will open the circuit and protect the meter. As a bonus feature, the defective tube will be turned oti and the operator can continue his transmission by reducing the drive to a sate level. Repairs can be made later, when it's more convenient. Each meter is shunted by a $0.01-\mu \mathrm{f}$. disk ceramic eapacitor to prevent damage by r.f.

All four cathodes are returned to d.c. ground through a single homemade $200-\mu \mathrm{h}$. choke. Its value is not especially critical provided its impedance is high compared with 50 ohms. In Indiana General CF-117-Q2 toroid core was wound with 90 turus of No. 24 enameled wire to provide the inductance used here. ${ }^{3}$ Alternatively, a cathode choke could be made by close-winding No. 24 enameled wire to a coil length of approximately 4 inches on a $3 / 8$-inch-diameter, $41 / 2$-inchlong piece of ferrite rod. ${ }^{4}$

It is customary to keep the heaters of indirectlyheated tubes above r.f. ground in cathode-driven linear amplifiers, the usual procedure being to install a bifilar-wound inductor in series with the heater feed to the tubes. Since a peak driving power of only 40 to 50 watts is needed to fully excite this amplifier, and the exciter used iu these tests was capable of producing up to 100 watts peak output, the filament chokes were omitted since sume extra loss could be tolerated. This also worked well on 7 Mc . However, if the amplifier were to be used on 14, 21, and 2 S Mc., it would be wise to include the heater chokes.

An eight-inch long, close-wound layer of No. 20 enameled or Formvar-insulated wire on a 10inch length of 3.5 -inch diameter ferrite rod would be suitable. Two such windings would be used, one in series with each the filament leads to the 6 KD 6 s , as close to the tube sockets as practical. For even better coupling efficiency between the exciter and the amplifier, a tuned input circuit can be used. ${ }^{5}$ Such a circuit offers an improvement in the linearity of the output waveform of the amplifier. ${ }^{\text {. }}$

[^6]

Here is an example of the damage that can be caused by e-cessive heat. The envelopes of these tubes softened and, then were sucked in toward the anodes until they cracked. These tubes were taken from a piece of equipment whose p.a. tank compartment was abnormally small. No forcedair cooling was used.

The Matter of Cooling

If we were to adupt an appropriate slang expression regarding the operating temperatures of sweep tubes, it would no doubt be "don't lose your cool." Heat is the worst enemy of sweeptube r.f. amplifiers. It not ouly reduces tube life hut is the primary factor that limits the safe input. For these reasons a great deal of emphasis was placed on the matter of tube operating temperature in this circuit.

Some earlier work was done on this subject by T. F. Jeffrey, WA+KFO, an applications and test engincer at the G. E. tube plant in Owensboro, Ky. "Jeff" wrote aut interesting and informative paper, jointly with P. E. Hatfield, W9GFS, in which 6KD6 operating temperature versus life was discussed. ${ }^{7}$ They established some test conditions to simulate typical ham-style s.s.b. operation and measured the bulb and plate temperatures of the tubes with special laboratory equipment. During the tests an input power of $4+8$ watts p.e.p. (two tubes) was used, without forcedair cooling. The bulb temperature varied between 135 and 160 degrees C. , and the plate temperature varied between 290 and 160 degrees (. They indicated that plate temperatures in excess of 500 degrees 0 . will detinitely shorten tube life. The temperature can easily rise above the safe 500 -degree maximum if the tubes are contined in a small space and do not have forced-air enoling (such was the case with the three melted tubes in the lower left photo).

Jeffrey and Hattield made additional tests with the same setup, but with forced-air cooling on the two tubes. The resultant bulb temperature fluctuated between 35 and 55 degrees (.) while the actual plate temperature ranged between 265 and 450 degrees C . These reduced temperatures offer a worthwhile safety factor.

A high-speed cooling fan with a blade length of $11 / 2$ inches - 3 inches overall diameter - is used in the amplifier shown in Fig. 3. The fan blades are located approximately two inches away from the tubes. Air is directed against the tubes even when the amplifier is in standby. Additional cooling effectiveness is assured because of the spacious cabinet in which the amplifier is housed (Fig. 4). Large-diameter air vents are localed on the top and sides of the cabinet. The rear of the cabinet is enclosed (for 'TVI purposes) by a sheet, of perforated aluminum to enhance the "breathing" capabilities of the assembly.

There is a trend these days toward compactness in transmitting equipment, and this can lead to unhappy results if proper attention is not given to adequate veutilation. To be ou the safe side when designing a piece of power-handling equipment allow plenty of cabinet space so air can circulate freely. Lucate the exhaust vents near the t.up of the enclosure: the intake vents should be near the buttom, just above chassis level.

[^7]

Fig. 3-A high-speed cooling fan is mounted on the chassis just behind the four 6KD6 tubes to provide plenty of air flow across the envelopes. The plate r.f. chokes and blocking capacitors are grouped between the tubes. Plate coil L_{1} is mounted on a Millen jack-bar assembly, permitting greater flexibility when experimenting with L/C ratios.

Although heat-dissipating anode connectors were not used in this amplifier, they are worth onsidering in any permanent design. With air howing across them, the plate temperature should drop even lower than with the present arrangement.

If a more compact amplifier is desired, the builder might consider using chimneys around each tube and a squirrel-cage blower to direct a heavy air stream up through the bottom of the chassis and around each tube sucket. A ring of 1 -diameter holes could be drilled in the chassis around each tube socket to allow the air to flow up through the chimneys. Of course the underside of the chassis would have to be airtight to insure against reduced air flow around the tubes. The chimneys could be fashioned from ordinary food containers such as canned vegetables come in. Each chimney should be painted inside and out with flat black paint to prevent the heat from being reflected back into the tubes. Heat-resistant dull black Bar-B-Q paint is available from most hardware stores in spray cans and is quite suitable for this.

Stability Considerations

Parasitic suppressors are used in the plate leads of all four tubes. They should be instatled as a matter of course when building any power-type r.f. amplifier. Each screen-grid terminal on the
tube sorkets (pins 3 and 11), and each beam-forming plate pin (4 and 10), is grounded directly to the chassis with heavy buss wire, using the shortest lead length possible. This minimizes stray inductance - an aid to stability. Pins 5 and 9 connect to the control grids and each pin on all four sockets is bypaised to the chassis with a $0.005-\mu \mathrm{f}$. disk ceramic capacitor. Good r.f. bypassing is imperative here if the amplifier is to be "tame." Random oscillation can cause excessive currents to melt a sweep tube faster than a blow torch can dispatch an ice cube!

Performance Notes

We do not attempt to rate this experimental amplifier at more than S 00 watts c.w. input. If the builder of such an amplifier wants to risk shortened tube life he can raise the power to 1000 watts. This amplifier has been tried on c.w. at 1000 plate volts with a loaded plate eurrent of 1 ampere: no bad effects were observed after a few hours of such operation. The grids and beamforming plates of the tubes no doubt would be operating near or at their critical dissipation ratings with this kind of power input. A 6-tube amplifier would be a more satisfactory approach to the higher-power level. During the foregoing tests a power output of 600 watts was measured into a 50 -ohm dummy load on both 7 and 3.5 Mc . No evidence of harmonic TVI was observed on au IRCA color TV set operating in the same room when the amplifier was connected to an S0-meter
(Continued on prige 146)

The Post Office Department promises faster mail service with the new Zip codes. Use yours when you write League Headquarters. Use ours, too. It's 06111.

Fig. 4-Good ventilation is imperative if tube life is to be preserved. Large vent holes in the top of the amplifier cabinet serve as exhaust outlets for the heat. The holes on each side of the cabinet just above chassis level act as intakes. The rear of the cabinet is enclosed with perforated aluminum stock to permit the cooling fan to draw fresh air into the cabinet. Screening is used to help in TVI reduction.

Kill That Mobile Noise!

Some Hints and Kinks on a Common Problem

BY JOE CARR,* K4IPV/4

0Ns: of the headaches that invariably befalls the mobile operator is automotive noise. After several years of working in the auto radio field, I thought I was acquainted with every type of known noise, but automobile manufacturers continue to add to the symphony of possible noises. Even so, tracing down mobile noise can be less of a chore than most people believe; suppressing the noise is usually even easier.
*511 New York Ave., Norfolk, Virginia 23508.

The first step in solving the problem is to gain an idea of what canses automotive noise. Of the many types of noise generators in a car, the ignition system, of course, is the main noise maker. Other sources include the generator ur alternator, regulator, brake lights, gas gauge, air conditioner, heater or blower motor and horn. The battle is half won when you identify the source (sec Table l).

If it can be ascertained how the noise is entering the set, your job is less of a hunt-and-peck

Table I			
General Types of Mobile Noise			
Sound Made	Couse	Cure	Comments
Popping static at regular rate, varies with engine speed	Ignition system	Use resistive wiring between eoil, distributor and plugs or use special in-line $10,000-$ ohm resistors. Bypass plus terminal of coil to ground with $0.5 \mu \mathrm{f}$.	Check antenna lead (sce text).
High-pitched howl, varies with engine speed	Generator	Bypass generator armature terminal to ground with $0.5 \mu \mathrm{f}$. Do not bypass field terminal.	If the unit is not marked, the armature wire is the heavy wire.
Whistle, varies with engine speed	Alternator	L-section tilter at receiver (see text).	May indicate diode trouble in alternator.
Flutter when receiver is set at low volume level	Breaker points	Bypass plus terminal of coil to ground with 1000μ f., 15 -volt electrolytic.	Motorola AK゙-300 made especially for this purpose.
"Frying eggs"	Voltage regulator	Bypass the generator and battery terminals to ground with $0.5 \mu \mathrm{f}$. Also see the Handbook and the Mobile MIanual.	Mallory eoaxial bypass eapacitors have the same thread as most regulator terminals. A proper stud will connect the two.
Popping al regular rate, no change with engine speed	Cas gauge sending unit	Bypass lead-in wire to ground with $0.5 \mu \mathrm{f}$. 'This wire is usually just under floor mat of trunk (above gas tank).	By rocking the car to slosh the gas in the tank, the rate cau be varied.
Pup when brake is depressed	Brake light	Use 0.5μ f. across brake light switch.	
llorn noise	Horn	Use $0.5 \mu \mathrm{f}$. across horn.	
Electric motor nuise	Blower, seat, or convertible t.op motur	Bypass motor power lead to ground with 0.5 μ i.	

procedure. This tidbit of knowledge cau be gained simply by disconnecting the antenna at the receiver (not at the fender). If the noise disappears, it's a good bet that the noise is eutering the set on the antenna lead. If, however, the noise is still present, the power lead should be suspect. The troubleshooting procedure is determined by the path by which the noise enters the set.

If you find that the noise enters via the autenna, check for an open or resistive joint between the cour shield and ground (car body). The coax should be grounded at both ends. Points to check are: (1) comector to coas, (2) coax to antenna base plate, (3) antenna base plate to car body, (4) receiver to car body, and (5) car body parts to car hody parts. The time to think about points 3 and t is when you make the first installation. The receiver and antenna support are often left toating above ground if the installer fails to scrape paint from around mounting holes. The use of star w:shers between mounting brackets and mounting surfaces will improve the connection. In case of doubt, run a ground strap between the receiver case and the fire wall; squeak-reducing compounds used between dashboards and fire walls on modern ears often float the dash above ground, so make the installation of a ground wire a normal procedure. Point 5 is oiten overlooked by amateurs. Be sure that the hood, fenders (around engine compartment and where antenna is installed), and engine have good, strong ground ennnections. Special spring clamps for grounding the hood are available at car radio shops and car dealers. If your car has a fiberglass hood molded on a screen wire form it behooves you to pick up some of these clamps before the installation is even hegun. One car radio manufacturer ${ }^{1}$ recommends that a ferrite choke be placed in series with the antenna lead. A suitable choke can be made from a $\frac{1}{4}$-inch o.d. toroid wound with three turns of No. 22 eumeled wire. In order for the device to be elfective, the lead between the antenna connector and choke must be as short as possible.
Noise entering the rig via the power lead can usually be filtered out by :a simple Lrsection filter. I have made several of the coils for these filters by taking a ferrite slug from an old car radio tuner or from the antenna coil of a Japanese transistor radio and winding several layers of enameled or hookup wire over it (see Fig. 1). If you make a filter, be sure (1) the wire can handle the current drawn by your receiver, and (2) the wire isn't so long as to cause a large voltage drop.
A persistent case of mobile noise may indicate receiver trouble. Be sure that the input filter (Fig. 2) in your power supply isn't open, especially if your receiver is an all-transistor unit or a hybrid model using tubes such its 12BL6s or 12AD6s. These tubes operate with 12 volts in the plate, directly off the uisy power lead.
The procedures ibove will not be successful

[^8]

Fig. 1-L-section filter for receiver power lead. $\mathrm{C}_{1}-0.5 \mu \mathrm{f}$. (standard car radio bypass capacitor). L_{1}-Three full, close-wound layers of No. 20 enameled wire on $3 / 6$-inch diameter, $11 / 2$ - to 2 -inch long ferrite slug. See text.

Fig. 2-Input filter commonly found in transistor and hybrid mobile receivers. C_{2} is a spark plate capacitor. C_{3} is usually a 400 - to $500-\mu \mathrm{f}$., 15 -volt electrolytic. Although usually found where shown, C_{3} is sometimes located on the other side of $R F C_{1}$; it is almost always part of a multisection capacitor. $R F C_{1}$, when present, is usually 15 or so turns of No. 12 wire on a $1 / 4$-inch form. If C_{3} is a multisection electrolytic and the negative lead opens, as it sometimes does, a symphony of oscillations, motor noise and motorboating will occur.
if the proper noise-suppression eomponents are not installed in your car. For this, the procedures discussed in the Radio Amateur's Handbook and the Mobile Manual are your best bet. The majority of the car radio shops use these same techniques; there are few if any hush-hush trade secrets. In general, there are several steps that you should take:
(1) Use resistive ignition wiring (standard on all new U.S. cars). This wire deteriorates after awhile, so check it before the old buggy starts missing.
(2) Keep all leads as short as possible.
(3) If there are regular bypass capacitors already in use, disconnect them before hooking up coaxial bypasses.
(t) Be sure :all metallic objects entering the passenger compartment via the fire wall are grounded. I ne:urly lost, my mind once because of :an emergency brake cable in a 1961 Ford. A bond strap restored my stanity.

With the aid of Table I, your next trip into the mobile noise ficld should be a little more pleasant than the last one.
[95]

SWITCH TO SAFETY!

"Double-Bazooka"

Antenna

Broad-Band Dipole Using Coaxial Construction

BY CHARLES C. WHYSALL,* W8TV

Center support for the antenna and feed line. It is made of two pieces of Lucite bolted together to form a mechanical support and protect the joint from the weather.

Somf years ago the staff at M.I.T. developed a coaxial dipole antenna for use in radar. This antenna used air- or gas-insulated coax with a velocity factor near unity, and therefore the diameters of the inner and outer conductors could be correctly proportioned for any desired surge impedance. As can be seen from Fig. 1, the antenna consists of a half-wavelength section of coaxial line with the outer conductor opened at the center and the feed applied to the open ends. The outside of the coax thus operates as a half-wave dipole. The inside sections, which do not radiate, are quarter-wave shorted stubs which present a very high resistive impedance to the feed point at resonance. At frequencies ofi resonance the stub reactances change in such a way as to tend to cancel the antenna reactance, thus increasing the baudwidth of the untenna. ${ }^{1}$

The antenna can be adapted for amateur work using readily available cable, and while the de-

[^9]
sirable condition mentioned above cannot be exactly met, the losses involved are not significant. As can be determined by reference to many handbooks, the resonant length in feet of a length of coax is $492 / F_{\text {Mc }}$. multiplied by the velocity factor of the cable. For solid polyethylene this works out to be $325 / F_{\text {Mc }}$. and for nitrogen foam insulation the factor becomes $393 / F_{M_{0}}$. These factors apply at any frequency. However, the cable velocity factor does not apply to the outside of the cable, which acts as a simple conductor. For ex:mple, a piece of RG-58A/U 83.3 feet long will be a half wavelength at 3.9 Mc . inside, but the outside, which does the radiating, would be resonant above :5 Mc. This is too short for the design frequency of 3.9 Mc ., and therefore it is necessary to build out each eud of the antenna to the necessary overall length. Ladder line is excellent for the built-out sections as it has a

Fig. 1 - The original coax dipole system, using air-insulated coaxial line. Velocity factor is essentially the same both inside and outside the line in such case.

Fig. 2-Electrical construction of the antenna. In preparing the center opening, first cut off a 1 -inch section of the vinyl covering, being careful not to nick the braid. Then cut the braid at the center, without cutting the polyethylene, and strip the braid both ways from the center to form pigtails to which the coax feed line can be connected.
greater effective diameter than an ordinary wire conductor, and the reduction in length-todiameter ratio contributes to lowered radiator Q.

An antenna built in this way is shown in Fig. 2. Ideally, parallel-conductor line should be used to feed the antenna, since it is a balanced system, but many prefer to use coaxial feed. Little distortion of the field of the antenna will result if the feed line is carried away from the antenna at right angles for the maximum distance possible. ${ }^{2}$

The problem of strength at the center has been solved here by the use of two pieces of $3 / 8$-inch Lucite, 3 inches square. As shown by the photograph, a $3 / 16$-inch hole is drilled through the length, and another halfway through at 90 degrees to the first. A cavity nibbled out at the junction of the drilled holes accommodates the soldered connections at the feed line and two braids of the antenna sections.

Advantages and disadvantages can be listed for almost all antennas, and this is no exception. This is definitely not the antenna for the ham

[^10] 3.ड-Mc. system. --… Eiditor.
who wants one for all bands. It is a one-band jub and will radiate practically nothing on the second harmonic since the siubs represent a short circuit at twice the design frequency. However, radiation will take place on the 20 -meter band if the antenna is made for the 75 -meter phone band, but the losses in the stubs will rise. Another disadvantage is that considerable care is required in construction. The advantage of the antenna is that an s.w.r. of between unity and 2 to 1 can be maintained over the 3.5-t Mc. band if the anteuna is cut for about the center frequency. Fig. 3 shows s.w.r. measurements made with two different lengths, the coaxial section (cut by formula for 3.9 Mc .) being the same in both cases.

Extensive experimenting by W8NSM and myself indicates that RG-58A/U coax has ample mechanical and electrical strength for this application. Hundreds of hours of legal-limit operation on RTTY, c.w. and s.s.b. have proved this.

Credit is due to Dave Walker, KSVPB, for the photo of the center construction, and to Burt Hayhurst, WSIZQ, for the s.w.r. curves. [SF-

Fig. 3-Representative s.w.r. curves with the overall antenna length adjusted for resonance at 3700 kc . (solid line) and 3850 kc . (dashed line). In both cases the coax section of the antenna was the same, cut by formula for 3900 kc .

20 Straysis

The wide spread of ages and interests among aspirants to ham radio is apparent in this code class conducted by Rich Reichenbach, W1SBK, on behalf of the Manchester Radio Club of Connecticut. Rich is in his 17th year of helping beginners in this way. At the left are Jeff and Greg Ennis, age 9, already taking 10 w.p.m. Opposite them is Frank Ennis, their father. Next comes Zygmut Boresko, 74, another youngster, Paul Dumont, and, with back to the camera, Ernie Larson. Class meets each Tuesday in C.D. Headquarters of the Manchester Town Hall. It would be hard to estimate the number of hams in the Greater Hartford area who owe their competence with the code to the patient persuasion of WISBK.

MICRO-TO AGAIN

Terhnical Editor, QST:
I huilt the Micro-TO kever from Ausust 1967 Qゝ'l', and it has been running for two months now with good results. I have a few comments on it that might help others:

T'ry to keep it away from heat-generating equipment. as the integrated circuits and transistors :are sensitive to heat and cold. I had my keyer on top of my Ranger at first, but since the Ranger temperature goes up to about 135 degrees F . in my case, the keying became erratic after a time. The kever was moved to a cooler spot and has worked satisfactorily ever since.

The transistors specified are made only by Fairchild, so far as I know. In my case, I used a 2 N 3 n :38, a 3642 , and a 2 N 699 (in place of the 3543) in the pulse generator. The output transistor was another 2N699, and the relay was a 36 -ohm type, with a 1N34 across it. The 220 -ohm resistor was left out, since it was not needed with grid-block keving. In the power supply, I used a bridge rectifier circuit since I did not have a center-tapped transformer. The rectifiers were of the top-hat variety. A little juggling of a dropping resistance is needed to come up with 3.6 volts. All transistors and IC's used the xame voltage. About 450μ. was used for C_{4}, while G_{3} is 100μ f. Anything ahove 450μ f. may be used for $\left(i_{4}\right.$, but below that there is too much ripple in the output of the power supply.
I would like to thank WA1HSN for all his assistance with this project. - Dan Shine, WA1GGN, 9 Colnnial Blvd., West Haven, Conn. O6: 16.

10-METER "LAZY QUAD"

Technical Editor, QST:
Among your readers that like to tinker with antennas there may be sume that would like to try the antenna shown in Fig. 1. The basic idea came from a station using a somewhat similar configuration on 15 meters, and I make no claim of originating the idea. However, I have never heard of anyone using the antenna on 10 meters. Since it is currently nameless, and has features similar to both a Lazy II and a quad, perhaps it should be known as a "Lazy (2uad."

The major advantages of the antenna are: (1) extreme simplicity, (2) feasibility of installation on a light unguyed pole, (3) small horizontal space requirements (as compared to a horizontal dipole), (t) low QRN in receiving (as compared to a vertical dipole), (5) ability to withstand high wind loads and (6) broadband operation.

When looking at loop 1 we see a horizontallypolarized full-wave loop radiating broadside, with maximum currents along the top and bottom horizontal wires H_{1} and H_{2}. When looking at loop 2 we seee a similar horizontally-polarized loop with maximum current on wires H_{2} and H_{3}. When looking at wires H_{1} and H_{3} we notice two in-phase horizontal wires spaced a half wave, both rarrying maximum current. Minimum currents appear on the vertical
portions of the loops where the tuning stubs are inserted.

I operate mostly on 10 -meter c.w. and have the antenna peaked at $2 \mathrm{~S}, 050 \mathrm{MHz}$. In my specific case the length of each stub is 6 inches for this frequency. Loading is almost constant from 28 to 310 MHz .

The coax feed line is run straight down the pole (wood) to the ground, and there is little antenna effect on the feeder.

Results have been consistently better than had been obtained with vertical or horizontal dipoles previously installed at the same effective height at the same location. Indications are that it outperforms some beams of the same approximate height, perhaps hecause of the broad vertical pattern (which allows longer QSOs under critical skip conditions), as compared to the beams.
’erhaps some of your readers might be urged to try this basic idea with a reflector of the same basic configuration as the driven element. It would appear that the Double Lazy Quad would be anything but lazy in operation. - Dave Harilacker. W6P [Z, 1547 Tellesley Ave., Lus Angeles, California פ003亏.

Fig. 1-W6PIZ's "Lazy Quad" for 10 meters. The loops are No. 14 wire, with the horizontal sections mounted on 8-foot lengths of 1×2 wood. The adjustable stubs are of the
16°
Ground
1
same type wire and are self-supporting since the length is only 6 inches. The antenna at W6PIZ is mounted on an unguyed wooden pole 32 feet high.

BASE INSULATORS

Technical Editor, QST:

I read with interest the article entitled "The Verti-Vee" by WISNN (QST, July 1967, p. e2()), with its reference to the " giant beehive deck insulator (from a battleship), designed to support a telesconing vertical radiator (from the same source). . . ." Actually, such insulators are in common use throughout the Navy, although we do not use telescoping radiators. From the photograph of the antenna included with the article, the insulator appears to be identical to the IL-18/U Insulator Assembly, while the autenna appears similar to the Navy Type NT-66047 Whip Antenna Assembly (35 feet long, aluminum, in five 7 -foot sections, which fit together by means of serew-on joints). Being a Navy Chief Electronics Technician as well as a ham, I couldn't resist the opportunity to pass along a few maintenance hints which several years of experience with these antennas have brought to light.

First, the antenna section threads should be coated with anti-seize compound to allow disassembly at a later time. Likewise, all threaded surfaces on the insulator assembly should be similarly coated (grease will do the trick, or Dow-Corning

No. 4 silicon compound). Since the insulatur cap on which the whip is mounted is cast phosphor bronze while the whip is aluminum, galvanic action will cause corrosion of the interface of the two surfaces. To insure good electrical connection and the least possibility of random radio-frequency interference, these two surfaces should be wire-brushed every six months. We do it every three months, but we have salt spray to contend with.

Second, manufacture some soft neoprene gaskets from 1.8 -inch thick gasket material to install between metal surfaces and the ceramic insulator bowls. This will require four gaskets, and will prevent chipping the bowls when the whip flexes. If the bowl is chipped and the unglazed portion is not sealed in some manner, the bowl will absorb moisture like a sponge!

Third, file a couple of $1 / 8$-inch deep notches across the bottom face of the whip to allow water to escape. The whips will accumulate water, and on occasion we have had as much as a quart pour out of the whip when it was removed. Needless to say, we wasted no time filing those notches.

Fourth, use as short a piece of wire or tubing as possible between the tuner and the whip - five feet at the most. Quarter-inch conper tubing is ideal, and polishing the tubing surface and ripraving with Krylon will keep surface resistance to a minimum.

Fifth, mount the antenna assembly as close to the ground as possible, and use as many radials as possible for best results.

Sixth, keep the insulator bowls clean, especially if running a high-power rig. The whip will handle several kilowatts of r.f. if clean and in good shape.

Hope that these hints may prove useful to any hams who come across an old battleship (the same antenna is used on virtually every type of ship, including ocean-going tugs!). - ETC Paul H. Bock, .Ir., USN, K4MSG, RE Div. USS Belmont (AGTR-4), c/o FPO, New York, N. Y. 09501.

REGULATED POWER SUPPLY

Technical Editor, QST:
In the March 1967 issue of QST (page 32) WIYDS described a very useful transistor power supply. However, he reported some difficulty in obtaining a precise output voltage. 'The following note is offered as a possible improvement.

In the original circuit, part of which is reproduced in Fig. 2A, the output voltage is equal to the Tener voltage minus the base-to-emitter voltage of the regulator transistor, as stated by W1YDS.

In the revised circuit of Fig. 2B, two components have been added: a forward-biased diode in series with the Zener diode and a resistor l (which will be discussed later).

From Fig. 2A, the output voltage is now equal to the sum of the Zener voltage and the voltage drop of the forward-biased diode minus the base-toemitter voltage of the transistor. For a forwardbiased diode, the voltage drop is usually between 0.4 and 0.7 volt, depending on the type of diode (either germanium or silicon) and on the current flowing through it. The ratings of this diode are not particularly critical, so long as the diode is capable of carrying the full Zener current.

For purposes of illustration, assume the Zener voltage to be 11.6 volts, the base-to-emitter voltage of the transistor to be 0.3 volt, and the diode voltage drop to be 0.6 volt. In the original circuit, the output voltage would be $11.6-0.3=11.3$ volts. In the revised circuit, the output voltage would be 11.6 $+0.3=11.9$ volts, under the same conditions. This is closer to the desired output of 12 volts.

(B)

Fig. 2-(A) Series regulator used in March 1967 circuit (Gimmicks \& Gadgets) with (B) addition of diode in series with Zener reference to effect a small change in reference voltage and thus in the output voltage. (C) Adding several diodes which can be switched in as required to adjust the output voltage. This switch can be used to compensate for voltage variations which result from load changes.

If more variation in output voltage is desired, more diodes of adequate rating mav be added in series with the Zener diode. Fig. 2C illustrates a possible arrangement. Switch S_{1} allows any or all of the diodes to be inserted for any output voltage. The range of S_{1} will be from zero to about 2 volts in approximately 0.5 -volt steps. These diodes also add some temperature compensation to the circuit.

Under certain combinations of load and current drain, the power supply may tend to oscillate at a high frequency. The $0.01-\mu \mathrm{f}$. capacitor in the original circuit should take care of this. But, in any case, a 100 -ohm resistor at R will serve as a "stopper" resistor.

It is sincerely hoped that these ideas will help in overcoming any problems.-R. W. Mouritsen, VE3GIM, Algonquin Radin Obsernatnry, Lake Tramerse, Ontario, C'anada.

DETERMINING THE LENGTH OF AN INVERTED V

Asearcir throngh the literature on inverted V antennas doesn't reveal any hard and fast formula for determining antenna length. This is understandable because so many factors can get into the act from one installation to the next.

One simple way around the problem is to make the inverted V so that its length can be easily adjusted. Fig. 1 shows a simple way of changing the overall length at both ends of the V. The ends of the auteuna are fed through the end insulators, and then the wires are clipped back on themselves. Once the correct or resonamt length is found, the guys are made permanent.

The adjustment method consists of installing an s.w.r. bridge in the coaxial feed line, tuning up ou the desired frequency, and then chauging the length of the V until the s.w.r. is reduced to minimum. The point where the s.w.r. is lowest is the approximate resunant frequency of the V . As a starting point for the overall length use

$$
\text { Length }(\mathrm{feet})=\frac{515}{\text { Freq. }(\mathrm{Mc} .)}
$$

For example, for 3.8 Mc . the overall length would be 136 feet and each leg, of course, would be half of this (6 S feet).-- II $11 C P$

(A)

Fig. 1-Sefup (A) for resonating an inverted V antenna, and a closeup (B) of one of the end insulators and shorting clips. The clips are used to progressively shorten each side of the antenna by an equal amount until the s.w.r. is reduced to a minimum.

EQUIPMENT LABELING

Iuse india ink for equipment labeling and get results at least comparable to press-on letters. Employed are a special lettering pen ($\$ 2.50$ three years ago) and special Ifttering guides (\$3
to $\$ 5$ each). They are made by WRICO (WoodRegan Instrument Company), Nutley, New Jersey, and can be ordered through or obtained directly from most office supply or statiouery stores. Lettering guides come in a wide variety of letter sizes and styles, with the recommended size of pen tip increasing with the size of the letter. I find the VCN 120 lettering guide and the No. 7 lettering pen excellent for normal panel labeling. A larger guide, the VCN 200, works fairly well with the No. 7 pen, although it was intended to be used with a pen having a thicker tip.

An almost unlimited variety of markings can be made with any one lettering guide. Added Hexibility lies in the fact that india ink is available in at number of colors. If one makes a mistake, he can easily remove the ink from bare or painted metal surfaces by licking a tinger and rubbing the mark away. After the lettering is completed it should be covered with a transparent eoating. I have successiully used both Krylon crystal clear spray lacquer and finger nail polish, the latter being a little tricky to apply to some types of painted surfaces. To be sure the coating will cause no harmful effects, one should experiment first on a hidden corner of the surface to be covered.

A little practice with this lettering method can lead to some really good-looking results. A disadvantage is the initial cost. Once a pen and lettering guide are purchased, the expense is negligible since a bottle of india ink is both inespensive and hard to use up. For best results I recommend that the pen be cleaned with a cloth and warm water after each use. -- Tim IVulling, K9APS

T4X HINT

IF you have an early model of the Drake T\&X transmitter and operate both s.s.b. and c.w., the following information should prove helpful. It came directly to me from the Drake Company in answer to an inquiry.
"Early models of the Drake T4X transmitter have an operational shortcoming which makes for inconvenience if you want to change from c.w. to s.s.b. or vice versa. To go from s.s.b. to c.w. you have to reach around and plug in the key, and the reverse when going from c.w. to s.s.b. There is a very simple remedy for this inconvenience, which allows the entire operation to be controlled by the function switch just as it is done in the later models of the TtX. With the $T+\lambda$ bottom turned up and the front panel facing you, observe the rearmost switch water of the function switch. There is a terminal on the
rear switch wafer close to the chassis that is unused. Connect a wire to this unused terminal, run it straight back to the injection jack at the chassis rear and ronte the wire through the uotch in the corner of the injection shicld to the terminal on the key jack to which the white wire is attached. Lead dress is important and the added wire should be installed just as described. This modificat ion allows the function switch itself to coutrol the changeover and will not alter the uperation of the T4N in any other way." -- W1ETU

GROUND ROD REMOVAL

Imave had good luck in removing ground rods hy taking an 18-or 24 -inch pipe wrench and rotating the rod several times before starting the pulling process. This seems to effectively break the adhesion between soil and rod and polishes the rod somewhat, with the result that the pulling process is made less difficult. N. E. Loofboro, WOI(QB

SIMPLIFIED METER SWITCHING

T
Tue writer recently built a simple $6146 \mathrm{c} . \mathrm{w}$. power amplifier to follow a small transistor transmitter. A 6AQ5 clamper tube was used to protect the amplifier, and a 0-1 milliammeter and suitable shunt and multiplier resistors were employed to indicate either grid or cathode current. However, as shown in Fig. 2, a s.p.s.t. toggle switch, S_{1}, was used to do the meter switching, rather than the usual multiple pole switch. When S_{1} is closed, M_{1} and R_{1} serve as a voltmeter to indicate the potential drop across the 5.1 -ohm cathode resistor, len. When S_{2} is opened, the voltmeter indicates the potential drop across the $2 \cdot 10$-ohm grid resistor, K_{3}. The full scale cathode and grid current readings are approximately 200 ma. and 5 ma., respectively. - Wes Haywurl, WrZOI

Fig. 2-Only a s.p.s.t. toggle switch is necessary to do the meter switching in this amplifier. Resistances are in ohms; $K=1000$; resistors are $1 / 2$ watt unless indicated otherwise.
$\mathrm{M}_{\mathrm{I}}-0-1$ milliammeter.
R_{1}, R_{2}, R_{3}-For text reference.
S_{1}-S.p.s.t. toggle switch.

Fig. 3-A length of plastic-covered wire makes an inexpensive support for a mobile microphone.

CHEST MICROPHONE

AFTER operating mobile for a iime, I found that VOX should be used. As a result I whipped up the chest microphone arrangement shown in Fig. 3. A length of No. 10 hard-drawn copper wire was covered with transparent plastic tubing and bent to the configuration pietured. Then a very inexpensive crystal mike was attached. 'The resulting arrangement is extremely light, weight and has been must satisfactory. Russ Alexander, I'61EL

REPAIRING SOLDERING PENCIL TIPS

TTHE ceramic around the tip of a soldering pencil will of ten crack after the iron has had extended use. Eventually the clement will become unusable due to the lonseness of the tip; however, the tip can be repaired with muftler cement, a substance usually found at auto supply honses. A tube of this cement is very inexpensive, and it can be used for other minor repairs involving heat because it, will stand up to temperatures as high as 1200 degrees F. - Milie. Grecnumy, K4TBN

VIBROPLEX KEY

By placing a Vibroplex semiantomatic key inside a plastic bag (houschold Baggie), you can prevent dirt from getting on the contacts. The key can be operated easily through the plastic container. - F'red E'lser, IT6F'B

CLEANING CRACKLE FINISHES

INN an April Hint \& liink it was suggested that gasoline be used to clean crackle finish pancls. I suggest that solvent be used instead. (iasuline is dangerous and particularly so if used from an open can. - Ralph Gibbons, WンiKV

The Clegg Associates

 Classic-Series V.h.f. Converters

Uvtil recently if a manufacturer produced v.h.f. converters that offered low noise figure, guaranteeing optimum weak-signal rewption, he fell that his obligations had been discharged. Factors like freedom from overloading, good rejection of out-of-band signals, atcurate frequency calibration, and adaptation to the many kinds of communications receivers were routinely left to the purchaser. 'This situation may not be markedly changed today, as tar as inexpensive converters are concerned, but we are seeing more attention being paid to refinements of the kinds mentioned above, in the higher price brackets.
The Clegg Classic-Series v.h.f. converters are fine examples of designing for maximum effectiveness, accuracy and convenience. The work of a long-time v.h.f. enthusiast, they reflect his conrern for the "finer things" in communication above 50 Mc. They offer uptional combinations for receiving the $50-$ and $1.44-\mathrm{Me}$. bands with just about any communications receiver, and aceessories to till every operating need.

If you have a receiver that can tune 14 to 15 Me., such as a $75 \mathrm{~A}-4$, the Clegg Model 614A has a "front end" that is essentially Hat from 48 to 53

Closeup view of the Clegg 50-Mc. converter, showing the toroidal circuits used in the r.f. and mixer stages.

Me., and it can be supplied with crystals that will enable you to cover this whole range in $1000-\mathrm{kc}$. segments. As supplied, it has two erystals, for 50 to 51 Me. and 51 to 52 Mc., but the others can be furnished on order, and the switch has 10 positions. It also has a window and a dial that tells you what range you're on. The i.f. output circuit is Hat from 14 to 15 Mc ., which is easily accomplished. Switching injection erystals, as done here, is desirable, even if the receiver can tune a 4000 -ke. spread, as broadbanding the i.f. over 14 to IS Mc. is not so easy.

If your receiver tunes ouly 1 it to 14.5 Me., which is more eommon these days, the Model 61.4 B switches erystals for each $500-k e$. segment. It is supplied with those for 50.0 to 50.5 and 50.5 to 51 Mc ., but the others are available.

Even more choices are offered in 14t-Mc. converters. Their front ends are aligned for 143 to 149 Mc., with i.f. bands 1000 or 500 kc . wide at 14 or is Mc. These also have provision for up to 10 erystals, with two supplied (three in the Model 208B, which has $500-\mathrm{kc}$. ranges starting at 28 Me.). All models are also available with 200 -ke. segments, for use with S-Line reccivers. All have dials with frerquency-indicating windows.

The (lassic-series onverters have operating conveniences to match. Gain may be controlled from the front panel, over a range in excess of 20 db., without alfecting the converter noise tigure. This enables the owner to accommodate wide differences in receiver yain. The converter output level can be set to approximate the level of ineoming signals on the toming range used, thus permitting one setting of the S -meter to give realistic readings on both h.f. and v.h.f. reception. If the communications receiver should be over-load-prone, the converter output level can be set with this in mind.
'Two screwdriver-adjustment trimmers on the panel are for pulling the converter crystal oscillator frequency and the frequency of the built-in frequency standard oscillator slightly, so that the converter ran be put "on the nose" in every in-

Interior of the Clegg 50-Mc. Classic-Series Converter, Model 614B. Range switch, upper right, has provision for up to 10 converter crystals. Power supply occupies left side of the assembly. Oscillator and multiplier stages, if used, are on the vertical circuit board. R.f. amplifier and mixer stages are on the horizontal board.
stallation. The frequency standard has a harmonic amplifier, to produce signals in the actual frequency range of the converter.
The r.f. amplifier and mixer stages use field-effect transistors, for freedom from front-end overload, and both long-term and short-term stability. Tuned circuits are toroidal, minimizing the possibility of radiation of unwanted frequencies from the oscillator and multiplier stages. Bandpass coupling circuits between the injection stages and the mixer help to keep the injection pure, an im-
purtant consideration in keeping down unwanted responses to out-of-band signals. Power supply output is Zener-regulated for stability, and the line-cord connection is made through a tilter, to prevent pickup or radiation via this suurce.

Each converter is given a thorough performance check, atud detailed results are supplied with the unit as sold, for future reference. Such features and altention to detail do not come cheaply. The price range for the Classic-Series converters is higher than some hams pay for complete receivers, but if optimum v.h.f. reception is your objective, and you don't want to do the design aud construction yourself, these converters should be of interest.

- W1HDQ

Clegg Associates Classic-Line V.h.f. Converters

Height: 4 inches.
Width: $73 / 4$ inches.
Depth: 6 inches.
Weight: $21 / 2$ pounds.
Power requirement: 115 volts, 60 cycles, a.c. (Built-in power supply.)

Price Class: $\$ 115$ to $\$ 135$, depending on model. Extra crystals $\$ 5.95$ each.
Manufacturer: E. T. Clegg Associates, Box 376, Morris Plains, N. J. 07950.

Knight-Kit KG-666 Power Inverter/Charger

THE amateur who decides to take the a.c.powered transceiver out of his hume and operate it in his car usually has to purchase a separate mobile supply for the rig. A look at power supply price tags - $\$ 65$ to $\$ 200$ for a mobile supply, depending on the transceiver -.. shows this to be expensive. However, a considerable sum can often be saved if one or two 115 -volt inverters are purchased instead of the mobile supply.

If a car is equipped with a suitable inverter, it isn't necessary to buy a different mobile supply for each new rig. And, of course, an inverter can be used to provide a.c. power for devices other than transceivers. Within its power rating, an inverter will ruu TV sets, test equipment, solder-

ing irons, small portable electric tools, electric lights, shavers, small kitchen appliances, electric toys, hair dryers, and so forth.

The Knight-Kit KG-666 inverter shown in the photographs has a coutinuous power rating of 200 watts. If more power is required, two or more units may be comected in parallel. The a.c. sutput of the inverter is a $55-$ to $65-\mathrm{Hz}$. square wave, whose exact frequency depends on the battery input voltage and the load placed on the inverter. A slide switch in conjunction with the tapped secondary of the power transformer permits the selection of either 105 or 120 volts.

T'wo features, which this writer hasn't seen in other inverters, appear in the $K(x-666$: an output socket that provides either 105 or 120

volts of untiltered d.c., and a function switch that converts an inverter into a battery charger. The d.c. is used for operating small universal motors - such as those found in electric drills and shavers - that don't operate very well from square-wave a.c. Battery charging starts off at a \mathfrak{b}-ampere rate and gradually tapers off as the battery becomes charged. If a lower charging rate is desired, the slide switch mentioned above can be used to reduce the effective turns ratio from transformer primary to secondary.
A fuse is included in the $\mathrm{KG}-666$ to protect the unit from damage when it is being used as an inverter, and a circuit breaker is employed to safeguard the unit when it is functioning as a battery charger.

Fig. 1 is a partial schematic of the KG-666 operating as an inverter. Knight-Kit has added several components to the usual one-transformer, push-pull switching circuit to improve its performance and make it more versatile. Rather than the common resistive-divider starting network, a diode starting circuit consisting of $C_{3}, C_{5}, C^{\prime} R_{7}, C R_{x}, R_{1}$ and R_{2} is employed. When the inverter is first turued on, the trausistors receive a large forward bias voltage via R_{1} and start oscillating readily. As soon as base current begins to flow, $C R_{7}$ and $C R_{8}$ conduct and reduce the bias supplied by the network to a lower level. This arrang ment dissipates less power than a straight resistive network (there is no bleeder current), and it is less temperature seusitive.

The transistors are protected from switching transients by a capacitive despiking network, $C_{1} C_{2}$, and a diode despiking circuit, $C R_{5} C R_{f_{-}}$ $C_{4} R_{4}$. In the latter circuit, C_{4} is kept charged to the peak voltage across ' T_{t} 's prinary through
$C R_{5}$ and ℓR_{6}, which are therefore back-biased. Any trausients that try to exceed the hias voltage stored in C_{4} are short-circuited through $C R_{5}, C R_{6}$ and C_{4}.
$C R_{1}$ through $C R_{4}$ convert the a.c. output of the inverter to pulsating d.c., and S_{2} selects the proper tap on the transformer for a.c. and d.c. outputs of 105 and 120 volts.

Interior view of the KG-666 shows an uncrowded layout. Two transistors are mounted on a heat sink at the rear of the unit, and one transistor is mounted on each of the cover's sidewalls.

When the k (C -6f6t is employed as a battery rharger, the circuit of Fig. 1 is used more or less in reverse. Instead of a.c. being taken out of the transformer secondary, a.c. is fed into it. T_{1} acts as a step-down transformer rather than step-up. The function switch (not shown) discomectis the base circuit illustrated and connects the base of each transistor to its corresponding emitter. As a result, each transistor becomes a diode, with the former collectors becoming anodes and the former bases becoming cathodes. The charger rectifying circuit formed is a full-wave affair, with two diodes (partially shorted transistors) in eachleg.

The KG-666 is a compact unit, measuring only $43 / 4 \times 8 \times 81 / 4$ inches. Ventilation holes are provided in the top, bottom and back of the cabinet to help cool the l.ransformer and other components inside the case. A handle on top makes it easy to carry the inverter/charger from place to place. For those interested in color schemes, the unit has an anodized green cabinet and a silver and green front panel.

On the front panel of the KG-666 are a fuse holder, a neon pilot lamp, a three-position (invert, off and batt charge) function switch, a slide switch that selects the output voltage level when the function switch is at invart out and the charging rate when the function switch is at batt charge, color-coded battery terminals, a polarized socket for a.c. output, and a polarized socket for d.c. output. On the back of the $\mathrm{KG}-666$

are a sucket for attaching a line cord (furnished) for battery charging, a ground connector, and the reset button of the circuit breaker.
'The kit was tested in the ARRL laboratory and performed satisfactorily. It only took a few hours to wire it, and no constructional difficulties whatsoever were encountered. The Knight-Kit praclice of mounting resistors and diodes on labeled sheets of cardboard specded up the assembly. Both the wiring and operator's manuals were clear and informative. Included in the manuals are details of a lower-powered inverter, the 125-watt KG-662. This unit is similar in appearance to the inverter described here, except that it uses only two transistors and has a different transformer. - - W $1 Y D S$

- New Apparatus

IC Amplifier Kit

TY) introduce the integrated circuit to the hobbyist, RCA has brought out a kit containing all the parts needed for the construction of a high-gain audio amplifier and code practice oscillator, packaged along with an uncarped IC so you can see what the device actually looks like (you need a magnifying glass to inspect it!). The integrated circuit is the RCA CA-3020 linear amplifier. An etched circuit board is provided for mounting and connecting the parts, and there is a booklet telling about IC's in general and the CA-3020 in particular, along with information on assembly of the kit. The :accompanying photograph shows the amplifier after assembly.

The amplifier has sufficient gain to be used with a crystal or ceramic phono cartridge, and enough power output (550 milliwatts with a 9 -volt supply) to operate a speaker at moderate volume. Possibly of more interest to amateurs is the fact that all the necessary parts for the audio end of a receiverconstruction project are included, which solves the problem of getting everything needed for an amplifier such as the one in Doug DeMaw's receiver in June QSTT. The amplifier is converted into a tone oscillator simply by adding a capacitor and resistor (furnished) to the circuit, and although the booklet doesn't say so specifically, this can be done without

affecting the amplifier's operation at all so long as the key is open. Thus the beginner can practice code at will, even if the amplifier is incorporated in his receiver.
The kit should be available soon through distributors of RCA products, and will be priced at about $\$ 10$.

- W1DF

Alberta - Nake your rexistrations now for the International Glacier-Waterton Hamfest to be hell at Waterton Lakes National Park, July $\because 0-!1$. Supper will be sorved at b: ©0 p.m. Saturday and Brakfast sunday morniner at 7:30 A.ar. Lots of program material for all. Make your own arrangements for accommodations. Pre-registrations 8:3.00 per amateur and family. Send all moner to llamfert Committec, P.O. Box 5.t. Red Deer, Ilberta, Canada.

Arizona - The Amateur Radio Council of Arizona will sponsor a hamfest in Flazstafi on July 26,27 , and ≥ 8, at Fort 'Tuthill in Coconino County Fairgrounds. Included in the events scheduled will be games of skill, contests, swap table, auction and a pot-luck dinner on Sunday. Froe sites for camping . . . cumpers and trailers are oka, Kest room facilities are available. There are motel accommodations available in Flagstaff just north of the fuirurounds. Talk-in statione will be on 3.878 and 50.34 MHz. For more information write Amateur Radio ('ouncil of Arizona, P.O. Box 6002, Phocnix, Arizona 85005.

Cillfornia - The Amateur Radio C'lub of Elcajon plans to hold a pienic Jnly 14.

Illinois - The facksonville Area AlRC will holl their hamfest on July 7 at the Morgan County Fairerounds, + -HI Building, Jacksonville, Ill. Talk-in on 3.875 l.s.b., J0.ㄹ, and $1+5.58 \mathrm{MHI}$. Tickets are $\$ 1.50$ cach or 4 for $\$ 5.00$.

Illinois - 'The i)e Witt County ARC will holdits annual Harnnic at Weldon Springs State Park, 4 miles south and саst. of Clinton, Ill., on Sunday August 4. Potluck dinner, no admission charge, everyone is invited. Monitoring 3.940 MHz.

Illinois - 'The Quad-Co. ARC. Inc., will sponsor the 11 th Annual Hamfest of the "Breakfast Club" on July $\because 0$ and 21 at Terry Park, 3 if mile eist of Palmyra. Ill. All other groups are invited to meet at the hamfest giving prior notice to the hamfest committee. There will be dancing and movies saturday night. Bring your own basket lunch, sandwiches and soft drinks are available on the grounds. Talk-in on 3.873 MHz . from noon Saturday to 11:00 A.m. Sunday. Games, contests, kolfing and fishing. Bring your ewap pear. C'amping facilities open from Priday afternoon until Monday morning. Pre-rexistration until Julv 7 is 81.00 , S1.50 at the gate. For more infurmation write Hamfest. \% Quad-Co. ARC, Inc., Box 3こ3. Chatham. Ill. 62629

Illinois - The Shawnec ARA, Inc., will hold their ham picnic at Herrin Illinois City Park Pavilion on August 4. All park facilities available for family outing including sivimming. Registration at pienic or through club members.

Indiana - The Wabash Vallev ARA will hold its 30th annual V.H.F. Pienic Siundav, July 28 at Turker Kun State Park (about 40 miles north of Terre Taute on U.S. 41 and Ind. 47). One dollar registration at the gate only. Full day of events scheduled. Contact E. Clchouse, KigeJU, 925 Barton Ave. Terre Haute, Ind. 17803.

Indiana - The IRCC picnic will be hold at Brown County State Park on July 14.

Indiana - The Tri-State ARS's twenty first Annual Uamfest will be July 21 at the $4-1 /$ Center on North 41 Highway near Evansville, Indiana. Large air conditioned auditorium, ladies bingo, swapper's row, overnight camping, fun and games for all the family. Advance rexistration $\$ 1.50$, $\$ 2.00$ at the door. For details contact li9L.AU, Jack Young, P.O. Box 492 , Evansrille, Ind. 47711.

Kentucky - The Paducah IRC will hold their annual Ham Pienic at the Noble Park Community Center, Paducah, hiv. It will be an all-day affair on July 14. Lunch will be served on the krounds. Bring along your swap material and equipment. Further information irom 1)on l'uller, WA4LME, 247 Seminole Drive, Paducah. Kv. 42001.

Kentucky - The annual Iranfest of the Henderson ARC will be held on Sunday, July $\because \underset{8}{8}$, rain or shine, at the Audubon Raceway. For more information contact WA4WTE, Box 83. Henderson, Kentucky $424: 20$.

Manitoba - The tifth annual International Hamfust will be held this year on July 20 and 21 , on the American side of the Peace Gardens.

Massachusetts - 'The VARC is planning a July pienic at Look Park on the 1.1th of July.

Minnesota - The OCSS 5th annual pienic will be held at Gunn Park near Grand Rapids on July 14.

Missouri - The second Annual C'entral States V.h.f. Conference will be held Aug. 16-17-19 at the IIoward Johnson Lodge, Route 54, on the Lake of the Ozarks.

The technical program features talks by Gerome R. Reeve, WøKEI, U.h.f. Carity Lesion; Pitt Arnold, WgIPE, Antennas: William 1). McCaa, K0KZJ, I'ransmission Lines and Matching: Allen K. Burson, L55WXZ, Noise and Voist: Blankers; and Edward P. Tilton, W1IDDQ, V.h.f. Editor, (KST. A $43:-M c$. Intenna Measuring Party will be conducted, and visitors are invited to bring arrays of any kind, matched for 50 ohms, and titted with N or BNC eonnector.

A hlock of rooms is heing held until July 15. Rescrvations should be made directly with Moward Johnson's Motor Lodge, Lake Ozark, Mo. B5019. No deposit required. Conference reservations ($\$ 3.00$ per personi should be made with Joe IIall, K9SGD, 315 W . College, Bparta, Ill. 62286. More information on the Gonference may be picked up sundey everings at $9: 30$ CST, on or about 381.5 kHz .

Missouri- The Zarn Beaters ARC will hold their annual Hamiest Aukust + at Washington, Missouri -- City l'ark from 10:00 A.s. until 5:00 r.m. 'The st. Louis ARC's Imateur of The Year I ward will be presented. Swap allev, fond and drinks, entertainment for the children and the KYL. Write Zero Beaters ARC, WAglYA, Box 24 , Dut\%ow, Mo. 633.ty.
Nebraska - The Central Nebraska ARC will hold its annual Steak-Fry at Victoria Aprings State Park near Inselmo, Nebraska on Sunday, July 28. For those that come before Sunday there will be a weiner roast and get-together Siaturday eveuing July 27 . Registration will be $\$ 1.25$ per person for aces 7 and up. For further details contact or write the Glub Secretiary, Paul Hartman, WAøLXD, Box 15. Arnold, Nebraska ty 120.

New Jersey - The Knight Raiders VLF Club is holding their annual IKamfewt (picnic style outiloors) on Saturday July 20, 10:00 a.m. till dusk, Weasel Drift Picnic Grove, Garret Mt, Reservation, West laterson, New Jerser. Talk-in on 146.898 and 50.4 MHz . Rain date July 27 . Coffee and refreshments are available. Swap and shop area, kids play area, pienic tables, barbecue pits and manufacturer's equipment displays. More information and directions from K2DEL.

North Dakota - The 5th annual International Hamfest will be held at the international Peace Ciardens on tha border between North Dakota and Manitoba on July 20 and $\because 1$. A nice program is being planned with activitics for the YLs, XYTa, and children.

Ohio - The Van Wert ARC will hold their annual Hamfest and picnic on July :'8 at Jubilee Park, Van Wert, Ohio.

Ohio-The Wood County ARC aunounces its 4 th annual IIam-A-Rama on Sunday, July 7 at the liairgrounds, Bowling Girecn, Ohio. Write W8PSE, $32 \pm$ South Grove sit., Bowling (ireen, Ohio 43402 for details.

Ohio - The first annual joint Ohio Section News pienio is Julv 27 at WRFD Pienic Park, north of Worthington. Betails on any section net.

Pennsylvania - The 31st annual Hamfest of the South Iills Brass Pounders and Modulators, Inc. of Pittsburgh, will be held Sunday, August 4 from 1 to ti p.at. at St. Clair Beach (Old Paris Lake) 5 miles south of Mt. Lebsnon on Route 19. Plenty of pienic space for the family. Talk-in on W3PIQ on 10 and 6 meters. Registration $\$: 00$ at the door or $\$ 1.50$ in advance. For more information or prerekistration write L. K. Hendry, WA3GKL, ㄹi8 Skyport Grive, West Mifflin, Pa. 1512:.

Pennsylvania - 'The two Rivers ARC, Inc. of McKeesport, Pa. will hold its fourth annual Hamfest on Sunilay July 21 at the Balkan Hotel grounds near McKecsport. The event will start at noon, with refreshments, swap and shop, awards and registration. Repistration will be $\$ \geq .00$. lor more information contact K 3 CHD , Don Myslewshi, 45 McMahon Drive, Irwin, Pennsylvania 156.12.

Tennessee -.. The Crossville Hamfest is scheduled fur July 20 and 21.

Tennessee - The Oak Ridge Radio Oparator's Club will sponsor the 18 th Annual Crossville Pienic at Cumberland Alountain State Park Julv 20 and 21 . For information, write 'The Oak Ridge Radio Operator's Club, Inc., l'O. Box 291 , Oak Ridge, Tenn. 37830.

Texas - Ham and CB Swapfest, Sunday August 4 at City Park in Levelland, Texas. Sponsored by the Northwest Texas Emergency Net and Local CB Club. This is an event
for the entire family. Bring your own pienic basket. Registration begins at 9:00 s.m. Lunch at 1300. Nobile talk-in is thenet frequescy 3.950 MIIz. and channel 11 for the CBurs. lor noure information write John K. Nell, W5NGX, 208 Pat St., Levelland, Texas.

Washington - The Washington State Hamfest will be held July 13 and 14 at the Yukima Gounty Fairgrounds. Registration starts at $10: 00$ 1.m. Saturday. Eivents un this day include YL and children's program, softball and pre-school fun hour. $2: 00$ r.s. meeting of all ARRL appmointecs. $4: 00$ r.m. meeting of new State Council of ARC. (6:3i) r.m. bancuet followed by ARRL program with W1NJM as kuest speaker. Sunday program includes pancake breakfast followed by 10:00 A.m. meeting of Wash. state AREC members, bingo, mobile judging, c.w. contest, and auction. Registration fee is $\$ 4.00$ which includes banquet and 5 drawing tickets. Children under $12, \$ 2.25$. Breakfast is $\$ 1.50$. For presale tickets contact Yakima AKC, K7MGA, Secretary.

Washington - The Okanogan Valley International IIamfest will be held this ycar in Conconully state Park, Conconully, Washington on July 27 and 28. Reqistration
for hams is $\$ 1.50$ and a "piece of junk." XY' Ls $\$ 1.00$. There will be activities for hams, NYLs, and children. Potluck dinner Sunday noon. Everyone invited and bring the family. For further information contact Secretary, WA7DFP, Harlan R. Tverberg, P.O. Box 1420, Omak, Wash. 988!1.

Wisconsin - The 1965 Wisconsin Nets Asso. Picnic will be held Julv it at Fond Du Lac, Wisconsin in Lakeside Park on the south shore of Lake Winnebago. Events will include a mobile contest, a code receiving contest and ladies weuts. For further information contact KgGSC, Kenneth A. Ebneter, 8:2 Wauona Trail, Yortage, Wisconsin 53:01.

Wyoming - The 1968 Wyoming Hamfest will be of interest to the manv amateurs vacationing in liflowstone and Grand Teton National Parks this summer. The dates: Julv 27 and $\because 8$. The location: To-Giwo-Tee Lodge, about 35 miles west of Dubois, Wy. and only 50 miles from the South Giate of Yellowstonc. It is 8500 fect in elevation, overlooks famous Jackson's Hole and commands a beautiful view of the Teton Range. Farilities fur meals, lodging, camping and trailers are available. For information or reservations write to Ralph Schaefer, W7NKR, 505 E. Park, Riverton, Wy. 82501.
[5T-

COMING A.R.R.L. CONVENTIONS
August 3-1-Central Division, Springfield, III.
August 17-18- Florida State, Melbourne
August 30-31-Kentucky State "Louisville Ham lienvention," Louisville.
August 30-September 1 - South western Division, Phocuix, Arizona.
September 28-29 - Roanoke Division, Grcensboro, N. C.
October 12-13 - Hudson Division, Tarrytown, N. Y.
June 20-22, 1969 - National, Des Moines, Iowa.

ARRL CENTRAL DIVISION CONVENTION

Springfield

August 3-4
Boasting an array of speakers, top-notch entertaiument, social and business meetings and a gala program for the YLs and XYLs, the ARRL Central Division Convention will be held at the St. Nicholas Hotel, Springfield, Illinois, on Saturday and Sunday, August 3 and 4.

Saturday afternoon forums will include demonstrations of RTTY; s.s.b., with Doug Horner of Collins; traffic with RMI Lloyd Hopkins, W9EVJ, and his traffic handlers; RACES; ARPSC; Red Gross with the SCMs and SECs from Illinois, Indiaua and Wisconsin: antemas and Novice programs with Lewis G. McCoy, W1ICP, of ARRL headquarters. Other forums on Sunday include Navy and Army MARS; ARRL program; and, factory representatives explaining their new products. Question and auswer panels will follow each program.

YLs and XYLs with registered amateurs will be treated to a grand and glorious two day event. Saturday noon, a pool side brunch and swim party at the Lake Shore Club on the shores of Lake Springfield (children will be guests of the Senate Theatre ior a theatre party and treats), and Sunday morning, an hour program with coffee and rolls with Lewis G. McCoy entertaining with his famous comedy slide show. Reserva-
tions must be made in advance for this event.
Other highlights include the Hiram Percy Maxim Memorial, prizes for the best of mobile iustallation, QSL cards and hidden transmitter wimners, Royal Order of the Wouff Hong initiation ceremony. Ray Birren, W9MSG, QSL Manager of the W9-K9 bureau and Phil Haller, W9HPG, Central Division Director of the League will be present to answer questions.

An exhibit hall featuring the equipment of some of the nation's finest manufacturers of amateur equipment will open both days to the registrants. The governor of the state of Illinois will present certificates to the high scores of the Illinois Sesquicentennial QSL Contest to the winners who are present. This will culminate the amateur's role in the state-wide celebration.

Edmond A. Metzger, W9PRN, is general chairman of the convention. Registration is $\$ 5.50$ per person; banquet tickets are $\$ 5.50$. A YL or an XYL of a registrant is iree (banquet $\$ 5.50$). Wouff Hong fee is $\$ 1.00$. Further information may be obtained by writing to the "Land of Lincoln Convention Headquarters," 104 North 6th Street, Springtield, III. 62701.
[157

Se-Strays"

The Pankandle ARC of Amarillo, Texas will sponsur a QSO party commemurating the discovery of helium on the sun in 1868, and a century of progress in the use of the element. This is in conjunction with the completion of the Helium Time Columns and Science Exhibit in Amarillo where artifacts and records were sealed in the stainless steel columns on May 17. Various sections are to be opened in 25,50,100 and 1000 years. Uperation of the station, W5WX, will begin at 1700 GMIT on July 133 and 14 in the center of the 20 - and 40 -meter phone bands and the center of the 40 -meter Norice band. At 2300 GAIT on each day, uperation will cormmence in the approximate center of the 80 -meter phone band and the center of the 80 -meter Novice band. Operation in all instances, will continue until midnight CDST. A total of 500 special (2SL cards have been printed and will be sent to the tirst 500 stations worked. The cards bear serial numbers and only 500 will be issued. (F^{\prime} rom KīIBI)

1968 ARRL International DX Competition－High Claimed Scores

Trame once again for an early peek at how the big boys made out in our annual February March global grallimaufry．C．w．scores （thanks mostly to whocver pulled the plug on teu meters the second weeken（）appear to be down sumewhat：phone tallies weigh in around the same tonnage as those of last year．

In the fullowing compilation of high claimed scores（representing logs received by May 15）， read，in order，total score，multiplier，number of contacts．Please don＇t submit DXCC－credit claims based on log confirmations till the final results are in print－Murphy willin＇，that should be Oetoher QSTT．
－W1．ARR

W／VE－C．W．

Single Operator
IV9WNV／2 ．．1，843，965－405－1521 W1BPW．．．．1，530，792－373－1368 KIDIR ．．．．．1，482，624－351－1408 W4KFC．．．．1，421，350－350－1357 IV2VJN ．．．．．1，414，793－38？－121．3 WIAX．．．．．． $1,402,59 \mathrm{f}-351-1332$ W3GM ．．．．．1，356，736－344－1321 W3MVB ．．．．1，274，490－357－1190 โ4BAI．．．．．． $1,161,270-345-1122$ W9AQW ．．．1，104，506－327－1126 W3MFW ．．．．1，050，396－323－1084 W8SH（K1ZND，opr．）

1，045，992－32\％－1063
W1BGD／2 ．1，027，620－33）－1038 WB2CKS．．．1，020，760－302－1134 W5JAW ．．．．1，007，424－318－1056 WIBIH．．．．．．UU6，470－318－1056 W4LCP ：．．．．．964，896－30t－1058 W9LKJ．．．．．．．941，934－287－109 W2GGE ．．．．．886，256－288－1040 W2 P＇CJ，．．．．．．．．8U2，452－287－941 W3NOH．．．．．．．762，072－281－904 IV3MWC ：．．．．737，880－286－860 W3WPG．．．．．．722，250－250－963 W4BRB．．．．．． $704,439-261$－ 907 LKNNA ．．．．．．．703，086－226－1037 WA4IKU ．．．．．085，377－301－759 W2WZ．．．．．．．677，820－2ß0－869 W5BRR．．．．．． $777,502-283-798$ W3HHK ．．．．．674，622－279－ 806 K2KNV．．．．．．671，346－302－741 W5DWT ．．．．．．663，35t－269－823 W4GRG．．．．．．． $659,712-256-859$ W3GN ．．．．．．．655，920－240－911 WA8LYF ．．．．．654，360－266－820 W7EKE ．．．．．．612，300－260－785 W6EWN／3 ．．600，348－294－682 W5LGG $598,635-265-753$ W＇6HVN（WABVAT，opr．） 598，503－243－821 K9CUY．．．．．． $586,920-268-750$ K．3HTZ．．．．．．．．586，332－267－732 W2SUC ．．．．．．584，640－240－8112 W50CYS．．．．．．583，263－283－687 W6DFY．．．．．． $582,68+236$－ 823 W＇2HO ．．．．．．． 374,368 －248－ 772 IVBTZD ，．．．．．539，136－216－832 K2DJD．．．．．．．537，912－241－745 W3EYF ．．．．．．537，023－277－633 W8ZJM ．．．．．．531，202－266－667 K5RFJ．．．．．．．522，801－289－603 W5WZQ．．．．．．．j2u，212－308－563 W8ZCT ．．．．．．519，135－265－6．53 VE2YU ．．．．．．508，326－247－6S6

Multioperator

W3TMZ．．． $4,791,960-493-3240$ W4BVV．．．．．4，183，470－470－2971

W6RIW ．．．．2，569，668－39t－217t W 4ZXI ．．．．． $2,229,180-385-195 \uparrow$ W3YUW ．．．．1，873，04t－369－1692 WA2BLV ．．． $1,552,320-352-1470$ К47，A／4．．．．． $1,522,605-357-1423$ W4KXV ．．．．1，＋28，726－338－1409 WA3EPT ，．．1，119，040－362－1307 IV 9 YT ．．．．．．．．388．166－338－1369 W3VKD ．．．．，2235，080－308－1338 K．3．J．．．．．．．．U76．124－322－1114 W7SFA．．．．．1，072，197－279－1281 WGANN ．．．．1，068，210－286－1245 W9EXE ．．．．．．928，184－314－986 W5EQT ，．．．．． $62,685-283-946$ W6WX．．．．．．．715，176－258－924 W4JK．．．．．．．．670，454－271－828 W3GHS ．．．．．．664，734－266－833 K3．JYZ．．．．．．．645，402－263－ 818 W6ITY．．．．．．．．． 3 31，902－241－ 874 W6GQK．．．．．．567，522－246－769 WA6IVN ．．．．．54t，419－251－723 K2AHQ．．．．．．．505．485－239－705

W／VE－PHONE
 Single Öperator

W3BGN ．．．．1，873，272－356－1754 KÍDIR ．．．．． $1,440,992-344-1406$ W7ESK．．．．．1，419，528－273－1672 W6KR ．．．．．．．，385，100－300－1539 W 4 QBKK ．．．．1，136，220－348－1091 WIAX．．．．．．1，130，940－305－1236 W8SH（KiZND，opr．）

1．079，154－334－1077
K4YYL．．．．．．1，050．192－312－1122 ǨษYBU．．．．．1，038，888－28：2－1228 W9EWC．．．．1，U05，114－314－1087 W9AQV．．．．．．985．188－298－1 102 W5KTR ．．．．．948，012－309－102：3 WIOKG．．．．．．． $8+1,776-284-988$ K4YFQ．．．．．．792，966－283－934 にitBAI．．．．．．．．．791．934－286－923 K9TZH．．．．．． 761,748 －292－ 873 WA6EKL．．．．．742．531）－265－934 W5JATV．．．．．．．．． 2 2982－299－ 806 W9ZRX．．．．．．711，936－288－824 K9CUY．．．．．．．．705，740－284－873 W3BQN．．．．．．．685，143－269－849 WIBIH．．．．．．．676．736－272－830 W2JSX．．．．．．．666，660－271－820 W3GM．．．．．．．663，138－277－798 W9DIB．．．．．．．646，352－243－ 888 WA6ZQU ．．．．．643，572－236－909 W4NBV．．．．．．624，780－270－771 Lis．TH（K3JLI．opr．）

602，172－258－778
W5IOU．．．．．．．．583，704－268－738 W5NMA ．．．．565，503－251－751 W9BZW．．．．．．556，920－255－728 WB6RZH（WB6NWK，opr．） ＊50，077－211－869 K゙7ADD／3．．． $5 \nmid 8,496-234-792$

K8HZU ．．．． $311,671-247-731$ WøLBS．．．．．．．．j11），768－262－688 WA4LMD ．．．． $537,840-240-747$ W4SYL．．．．．．．i32．656－274－662 WA4IKU．．．．． $52 \times, 525-261$－ 1875 にøCVA．．．．．．．．510．372－252－687 W4KFC．．．．．．501，396－254－658

Multioperator

W37．KH／3 ．． $4.882,410-507-3210$ W＇ 413 VV ．．．．．．s．i76，222－442－2697 W8UM ．．．．． $1,737,000-38$ K－1．50n WA4HTR．．1，500，480－360－1390 W7SFA ．．．．． $1.185,030-266-1485$ W3HHK．．．．1．097，400－310－1180 KtCG ．．．．．．．U79，391－331－1087 W9BGX．．．． $1,050,600-340-1030$ K゙6UHJ．．．．．I．U29，216－28t－1214 W9EXE．．．．．．9y1．452－319－1036 W8NGO．．．．．．960，813－303－1057 WB2CKS．．．．． $53 \pi, 69 \pm-282-1003$ VE3FHO ．．．．．836，635－295－ 951 IVøLOL ．．．．．．724，152－286－844 V6CCP ．．．．．．698，328－243－95 W9YT ．．．．．．． $886,340-279-82 i$ IVA6IVN ．．．．．628，716－242－866 W5AC．．．．．．． $627,720-25$ 亿－ 815 K6DXM ．．．．．610，878－226－901 WøICH ．．．．．． $578,088-214-888$ WGBAA ．．．．．．530，145－231－765 W3KT ．．．．．．．529，200－252－700

DX－C．W．

Sinule Uperator

HK3RQ．．．．．3，310，907－263－4203 ZD8J．．．．．．．．．．2，271，116－258－4560 YP2VL ．．．．\quad ， $08+300-298-3450$ ḰH6IJ．．．．．今，051，270－270－3767 PY2SO ．．．．． $2,809,131-247-3956$ HK3BAE．．． $2,638,725-233-3775$ PY2BGL．．．2，603，259－243－3598 PZ1AH．．．．．．，074，698－237－2921 VK2EO．．．．．1，962，900－225－2908 （iI3OQR．．．．1，i46，528－226－2576 HPIXHG ．．． $1,662,336-234-2368$ IE2AAG．．．1，655，698－233－2370 K゙2sLL／KH6 1，402，512－244－1916 （i2RO．．．．．1，362，561－213－2134 VК3АРЈ．．．． 12269,81 1－199－2336 VP7DX．．．．．1：263，339－231－1828 （ $14 \mathrm{CP}1,235,406-218-1966$ OA＋PF ．．．．．1．163，076－208－1882 IJJ5BV ．．．．．．，160，352－20t－2055 K゙L7IR ．．．．．1，154．352－228－1688 KА7АВ ．．．．1，152，333－201－1911 （＇R6CK．．．．．1，137，780－180－2107 НВ9【1．．．．．1．U23，640－163－2167 PAØLOU．．．．1，009，428－197－1750 JAICWZ ．．．1，057，304－188－1786 （ G C3IEW．．．．．957，972－194－1646 \＃3FXB ．．．．9t1，319－199－1624 HB9JG．．．．．．．900，900－182－1653 DL6WD．．．．．． 8 © DLAEG ．．．．．．．861．300－174－1650 HI8RV ．．．．．．353，142－163－1802 L，A8AD ．．．．．．． $20 .+16-192-1426$ （jW3ITZ．．．．．．8ن5，68U－180－1511 Y V5AGD．．．．．779．259－169－1537 EI9J．．．．．．．．． $715,817-173-1387$ PY1NO．．．．．．．638，608－167－1278 I1AMO ．．．．．．．$\dagger 26.65 \%-156-1317$ ON4XG．．．．．．． 6 18，168－172－1198 Y＇V1DP．．．．．． $008,130-145-1398$ JA2．JA．A．．．．．．544，872－146－1244 HI8LC．．．．．．．542，358－174－1．041 fr8VJ．．．．．．．． $530,376-16 t-1079$ SVOWP．．．．．．．518，190－115－1502 DJ3Wण．．．．．．．515，319－158－1153 OZ5DX．．．．．．501，837－161－1039

Multioperator

TJU8DQ．．．．2，219，681－233－3200 ET3FMA．．．1，513，920－100－2656 ЗМ6CKV．．．1，351，560－210－2327

G16VC ．1，103．436－20t－1803 UAøKFG．．．1，088，256－192－1907 DLIVU．．．．．1，026，162－186－1839 HB9Z．．．．．．．．819．158－178－1534 UA3KBO．．．．．684，520－157－1499 ET3USA．．．．．．631，785－145－1411 PJ5MJ．．．．．．．560，205－177－1058

DX — PHONE

sin le íperator

KH6IJ．．．．．．．． 7 ，799，063－246－5149 HK3RQ．．．．．．3，$, 755,000-250-5010$ I＇SI XEE．．．．2，721，888－208－4362 EA．3JE．．．．．．．2，052，819－211－3243 xKI（ヶ．．．．．．．2．U50，428－241－2836 XE1AE．．．．． $2 . U 39,688-252-2698$ 1SH6BZF．．．．1，654，209－197－2799 PY7AFQ．．．．1，640，520－217－2659 DJ5BV．．．．．1．613，040－208－2682 Z．S6DW，．．．．1，439，670－185－2594 KV\＆AMF ．．．．1，420，440－178－2661 F3KW．．．．．．1，382，400－180－2560 OA＋JR．．．．．1，371，192－191－2356 UP1JC．．．．．1．362，753－223－2037 OE2EGL．．．1，2156，126－191－2262 にA7AB．．．．．．1，295，36t－106－2203 HC4TB．．．．．1．259，086－179－2345 LAØAD ．．．．．I，151，280－180－2132 VK2APK．．．1，132，950－182－2075 （）L4EG ．．．．．1，129，089－169－2227 （it，JZ ．．．．．．．1，107，540－180－205！ VK3ATN ．．．1，074，780－210－1708 VR3DY．．．．．1，Ūป，116－188－1869 TT1BH．．．．．1，039，248－168－2062 KZ5NF．．．．．1，037，160－172－2010 5W1AT．．．．．1，029，299－191－1797 7P8AR．．．．．．1，005，993－159－2109 （3IAR．．．．．．．．981，948－172－1903 HCIDC．．．．．．．972，650－175－1856 PA0XPQ．．．．956，550－175－1832 CN8FV．．．．．．．913，275－165－1845 （T1MW．．．．．．864，149－143－2017 ZD8HAL．．．．．8386，703－171－1631 OA6BU ．．．．．． $836,640-168-1660$ DU1FH．．．．．807，884－154－1754 SVøWL．．．．．．．798，790－151－1767 PA9FE（PAgHBO，opr．） 35，969－167－1469 ZD7KH．．．．．．．723，502－138－1780 TTICN．．．．．．．726，773－173－1401 HI8LC ．．．．．．．703，690－165－1422 EP3AM．．．．．．700，560－140－1668 5W1AS．．．．．．．697，809－141－1653 SM5EAC．．．．．．681，750－150－1515 VK90N ．．．．．．655，860－170－1280 K＇し4UsM．．．．． $642,390-133-1610$ 5НЗKJ．．．．．．．593，020－149－1419 VP2AC．．．．．．．．．579，912－146－1324 VP7NA（K4IIF，opr．）

577，809－171－1126
I1CAQ．．．．．．．522，560－136－1405 ĽL7GAC．．．．．562，37t－157－119t SM6AEK．．．．．5ิbu，538－149－125t K01LI／KG6．．．549，582－121－1514 ON4ZU．．．．．．．541，008－136－1326 0） $08 \mathrm{RA}534,534+154-1157$ 975JT ．．．．．．528．756－139－1268 SM4CMG ．．．．511，488－1 48－1152 0H2BH．．．．．．．504，44t－127－1324

Multioperator

XE1AC．．．．2，994，179－251－3977 DLøVR ．．．．2，577，222－201－4274 UH5SM．．．．．2，2559，912－191－4042 GB2SM．．．．．．1，839，786－206－2977 आ3WWO．．．．1，585．700－180－3014 ［）L4RM．．．．1，292，99t－174－2477 （13SME．．．．．．1，285，438－187－2292 KA9MF ．．．．1，190，700－180－2205 G3VZT／A．．．1，140，890－170－2139 ЈАЗКBO ．．． $1,091,840-160-2337$ YU1BCD ．．．1，061，226－174－2035 ET3USA．．．．．913，836－161－1892 IICZW ．．．．．．．i28，091－147－1651 ［r50．J．．．．．．．．．．is $81,048-151-1285$

Instant DX QSL Service

BY RALPH A. DAGE,* W8PHZ

Fig. 1-The first "Instant QSL" as received by W8RLH.

Pfirgaps the greatest problem eucountered by avid DXCC members is that of obtaining rare QSL confirmations promptly for submission to the Awards Committee. All of the currently known methods employed in procuring DX cards, such as IRCs, SASE, bureaus, managers and "green" stamps, have their peculiar drawbacks and leave something to be desired.

It has recently been suggested that perhaps the DX uperator could transmit his QSLs directly by facsimile reproduction or teletype to his supporters for immediate submission for D.SCC credit. Others have suggested that tape recordings made of the contact might be used to verify the QSO. Since each of these suggested methods lacks the actual operator's signature they might. not, be acceptable by the AIRRL.

It is my belief that the problem of instantanenusly transmitting a QSL card complete with the operator's signature in ink has now been solved.

Don Machenzie, WSRLI, and I came across the idea of transmitting actual signatures over the air by means of anateur radio while we were observing a new trouble-dispatching system in operation at the clectric power utility where we are employed.

We immediately petitioned the Federal Communicatious Cummission for permission to conduct certain experimental two-way transmissions of handwritten messages on 29 MHz , since we were not equipped with facilities for At operation on the frequencies authorized above 50.1 MHz . Subsequently, we were granted authorization by the FCC, to conduct our At emission tests on 29.005 MHz , for a period not to exceed one week. One of the local representatives who leases and sells communication equipment of this nature kindly loaned two transceiver units for our tests.

[^11]We simply matched our transmitter microphone inputs and receiver audio omiputs to the 600-ohm transceiver terminals and immediately began the thrilling experience of writing, drawing diagrams and even playing tic-tac-toe over the air.

A copy of what is believed to be the first "Instant QSL" ever received on an amateur radio frequency is reproduced in Fig. 1. 'This method of QSLing is unique in that not only did Don receive my signature in black ink on his QSLL, but I also received his signature, in return, acknowledging receipt of my card. It should be pointed out that since the tests were conducted under rather hurried conditions, some of the transceiver adjustments had not been optimized. Some improvement in fidelity would have resulted if we had properly set up the vertical linearity adjustments.

While I cannot be certain that the Awards Committee would accept such a card for credit, I san be certain that this mode of transmission, at least in its present state, will not hecome popular on the amatenr bands, because the cost of a transceiver unit is approximately $\$ 1485$!

For our tests we used two Electrowriter transceivers, products of the Victor Comptometer Corporation of Chicago. These transceivers instantly transmit handwritten communications over the air, as we have done, or in the conventional manner over private lines or ordinary telephone lines. There are three basic units available: a transmitter, a receiver and a transceiver which both sends and receives. There is no limit to the sending distance or the number of

Fig. 2-Copy of an "Instant QSL" with coordinates, showing vertical and horizontal transmitting frequencies involved.

NOTE: IWO YUSIIIUN HIVE VOLE TRANSMIT-RECEIVE (RELAY) i,IICH SHOIIN IN RECEIVE POSITION.

Fig. 3-Electrowriter Transceiver Block Diagram.
sending and recciving units. The units will receive messages whether or not there is someone in attendance.

The following brief description of the techuiques involved may prove interesting to those terbnically inclined. The method used to send instantaneous handwriting over communication circuits ennsists basically of transmitting two simultaneous audio-tone frequencies - one frequency determining the ordinate and the other the abscissa of the $3!6 \times 5$-inch writing area. As can be seen in Fig. 2, the pen can be muved to any point on the paige simply by sclecting any frequency between 1310 and 1490 Hz . for the vertical position aud another frequency between 2060 and 2340 Hz . for the horizontal position. For example, the pupil in Lincoln's eye was reproduced by transmitting 1400 and 2136 Hz . A frequency shift of only one cycle will move the pen .025 inch vertically or .021 inch horizontally. Faithful reproduction by s.s.b. was much more difficult to achieve than by a.m. since precise

Fig. 4-Electrowriter Transceiver, product of Victor Comptometer Corporation, Business Machines group, 3900 North Rockwell St., Chicago, Illinois.
syuchronization between the trausmitter and receiver b.f.o. frequencies was required.

A block diagram of the Electrowriter transceiver used during our tests is shown in Fig. 3. This unit is a transistorized analog device capable of direct transmission of handwriting, sketches, or any other form of graphic data involving two coordinate positioning. Reproduction is instantaneous and faithful from one unit to another, or among several inter-connected units in a system. Information can be transmitted over any radio or telephone voice grade circuit regardless of distance. The transmission will also pass through dial telephone systems.

In the transmit mode the messages are also recorded locally on the transceiver's writing surface by meaus of a pen attached to the unit's pantograph. As the pen is moved parallel to the writing surface, the eorresponding vertical and

Fig. 5.--Telautograph Transceiver, product of Telautograph Corporation, 8700 Bellanca Ave., Los Angeles 45, California
horizontal channel servo motors and position frequency transducers vary the frequencies of the courdinate oscillators. is described above, each point on the writing surface is thus specified by two discrete audio carrier frequencies. The relatiouship between position and frequency is eurvi linear for each coordinate. When the pen is depressed down on the writing surface, the horizontal coordinate oscillator is frequency modulated with a 120 Hz . signal.

Since it is impractical to achieve the frequency stability required in this particular application by conventional variable inductors or capacitors, a position frequency transducer is employed. This transducer consists of a rotary transformer with a stator and rotary pickup coil. The ratio between the pickup coil voltage and stator voltage is a function of their angular position.

Each coordinate oscillator includes two emitter follower stages which couple a highly stable tank circuit resonant at the center frequency to the rotary position transformer. The rotary position

Fig. 6-Ralph Dage, W8PHZ.
transformer is then used to adjust the value of the transmitted frequency above or below the center frequency. This arrangement is mique in that it permits independent range and center frequency adjustments. The sine wave output signal is taken from an isolated winding on the position transformer and coupled to the communication channel through the appropriate band pass filter. This particular unit was designed to produce a $-3 \mathrm{db} . \mathrm{m}$. output signal into a $600-\mathrm{ohm}$ line.

In the receive mode, the transceiver responds to the pair of incoming variable frequency signals with input levels as low as $-38 \mathrm{db} . \mathrm{m}$. The signal -omponents are initially separated by the horicontal and vertical band pass filters, then amplified by two successive class A amplifier stages. Limiters are utilized to eliminate any amplitude variations in the received signal level before it reaches the discriminator transistors, and also furnish a low level output voltage to a phase shift rircuit. 'The 90° phase shifted component generated at resonance is applied through a gate transistors to the emitters of the discriminators. The incoming signals are then fed into a tuned tank circuit which acts as the irequency determining portion of the discriminator. The same position transformer used in the transmit mode and described above now serves as the discriminator tuned tank circuit in the receiver mode.

The rotor winding of the position transformer picks up an a.c. signal component in or out of phase with the phase shift voltage depending upon the direction of shaft rotation from its center position. When the position of the shaft corresponds accurately to that called for by the incoming signal frequency, the d.c. discriminator output is zero and the rotor remains stationary. The rotor is mechanically coupled to the pen and motor so that for each resonant discriminator frequency there is a corresponding pen position on the writing surface. As the incoming frequency signal varies during the transmission of intelligence, there is a corresponding d.c. error voltage generated in the discriminator output. This
unbalanced output voltage is then applied to the servo amplifier which in turn energizes the servo motor and drives the pen. When the pen has eompleted drawing the line and reaches the correct position, the discriminator output becomes balanced and the pen remains fixed in position. The peu is then lifted from the writing surface at the same instant the sender lifts his pen, since no 120 Hz . signal componemt is being recovered from the horizontal discriminator output.

Other features available for use with such transceivers include the following: squelch control, automatic paper feed, paper winder, signal lamp and buzzer and an acknowledgment lamp. Two commercial transceivers curently available for lease or purchase are illustrated in Figs. 4 and 5. Thousands of these units are in daily use throughout the world, providing a variety of business and industrial applications, such as maintenance dispatching, traffic and transportation eontrol, production and quality control, time reporting, etc. Another unique and novel application is called the "Remote Blackboard" which permits the viewing of transmitted drawings or notations by large groups. The Remote Blackboard will project Electrowriter transmissions up to blackboard size or larger. It can be, and presently is being, used to teach eollege, extension classes in remute cities, courses from colleges to industry, or courses in several rooms of one building. Voice and visual transmission are simultaneous - t.wo-way conversations, student to teacher and back, are as easy as phone calls.

My thanks are extended to Claude Clouthier for the loan of the equipment and to my artistneighbor, Ray Tinney, who transmitted the sketches which appear on the (QsL cards.

I am particularly interested in corresponding with any amateur or group now contemplating a DCDedition to the country of Albunia. If permission is granted for entry and radio operation from this rare spot, I will do my utmost to see that one of these transceivers is made available. My ulterior motive is to attempt to ohtain a rare $/ / A$ confirmation directly in the event that the \log books covering the DXpedition's operation do not become readily available.
[DF:

Fig. 7-Don MacKenzie, W8RLH.

Not for the experts, but for those who baven't attempted it,

TRY THE FMT!!!

BY CHARLES L. WOOD,* W2VMX

You can try the FMT, and it's fun! The letters FMT signify Frequency Measuring Test. Twice each year, in February and September, and two additional times for those serving the fraternity as Official Observers, ARRL hadquarters station W1AW provides a service to the amateur world by transmitting signals for FMT purposes. On each test these siguals go out on the 80,40 - and 20 -meter bands, at two different times in the evening, spaced three hours apart. With this diversity of signals to copy, almost every amateur can make at least two measurements, and some can measure all six different frequencies.

What is the purpose of FMT? The object is to provide for you an index of your skill in measuring the frequency on which WIAW is transmitting for the special test period. The farniliar bulletin aud code practice frequencies are not used for this purpose. Instead, "unknown" frequencies are transmitted. QST carries a listing of the approximate frequencies to be transmitted during the two FMTs each year which are open to all interested persons.
What do you do? You simply tune to W1AW, on or near the announced spot, and then make a measurement - as accurately as you can - of the transmitted frequency. Then, you mail your findings to ARRL. At headquarters, your data are compared with those supplied to ARRL by all independent laboratory. You will receive, by direct mail from ARRL headquarters, the results of your personal readings. The individual report on the ARRL Frequency Measuring Test tabulates the official reading, the submitted reading, the difference in cycles per second, the percentage error and the error in parts per million. At W2VMX there is a file of these FMTT repurts going back to 1955. Based on the many observations accumulated through the years, the following hints are offered to those who would like to take part in the sport.
The basic idea, as we have said, is to measure the frequency on which W1AW is transmittiug. The best way to do this is to proceed from some known frequency or measuring point. There are at number of different ways of doing this, some much more accurate than others.

The Simplest Way

In the beginning, an FMT may be attempted with no more equipment than a simple crystal

[^12]
oscillator and a medium-grade receiver. Suppose W1AW is to tramsmit on or near 7090 kc . In your erystal box you find that you have two units, one labelled 7108 and the other stamped $\mathbf{0} 084$. One of these is above the unknown frequency, the other below it. The evening of FMT, turn your gear on well ahead of time, to minimize errors due to warm-up. Tune in, and listen for W1AW, and suppose that you hear the signal sumewhere around 7090 . Looking at the seldomused logging scale (most general-coverage receivers have something of this kind), you note that it reads 53 . Now, you key the 7084 crystal in your oscillator and note the logging-scale point on your receiver. Let's say it is 49. The 7108 signal comes in at 61. The two crystals are 12 logging-scale units apart, and they are marked for frequencies 24 kc . apart. The logical conclusion is that for this portion of this particular band, each unit on your logging scale signifies a 2 -kc. step in frequency. Since W1AW was heard 4 units above the lower crystal, then W1AW frequency must be 4×2 or 8 kc. above the 7084 point, or 7092 kc .

In actual practice, it would be rare for each division on a logging scale to represent exactly 2 kilocycles, or any other whole number of kiloeycles. It would be very rare indeed for three signals to each be heard right on the scale division marks. The numbers in the illustration were set up simply to illustrate the basic process, called interpolation, by which an unknown signal between two known points can be mathematically computed. It :also illustrates the point that FNT can be done with very simple equipment.

At W2VMA, we actually did three FMITs with nothing more complicated than an HQ129X and a boxful of crystals. Each of the three F'MT's included $80-40$ - and 20 -meter readings. For the series of nine measurements the mean
error was 315.7 parts per million, within the requirements for Class II in the Official Observer program.

Stepping U_{p} The Accuracy

If you find that you have been bitten by the measuring bug, be assured that there is no antidote: you will have the disease for a long time to come! One symptom is a strong urge to acquire the next logical piece of equipment, a secondary frequency standard. That's a fancy name for a device which will provide you with reliable and valid signals at known intervals throughout your receiver range. lou already know that if you key your rig with a 3525 crystal in it, you can readily hear signals in your receiver at such places as $7050,14,100$, and so un. Suppose you had a crystal of $1,000 \mathrm{kc}$. . . . you'd then be able to find a marker signal every megacycle along the dial. Useful, but not too much so. It would be better if the marker siguals appeared every 100 kc ., or even every 10 kc . A 100 kc . erystal oscillator is available commercially as an optional accessory with many receivers. A suitable unit, with a 10 kc . multivibrator, was described in a fairly recent issue of $Q S^{\prime} I^{\prime} .^{2}$ Every such device should be equipped with sume provision for varying the frequency of the crystal. This is true because a $100-\mathrm{kc}$. crystal seldom just happens to vibrate at 100.000 kc . The frequency depends upon temperature, voltages, and other circuit constants. A typical solution to this problem is a small trimmer capacitor which permits you to zero-beat the signal with WWV. Always zero-beat with the highest available WWV signal; any error you may make in this process at, say, 2.5 Mc., is magnified about six limes on the 20 -meter band.

With a $10-\mathrm{kc}$. signal accurately zeroed in on WIVV, you can read accurately any signal which happens to be an exact multiple of 10 kc . In the above example, it would be clear to you where 7090 and 7100 signals would appear on your dial. To compute the frequency of W1AW, you need only to note the logging scale readings for 7090, the unknown, and 7100 . The arithmetic is the same as before. Here at W2VMX, using nothing more than a $1000 / 100 / 10 \mathrm{kc}$. marker, the logging scale, and a slide rule, we have made more than 75 observations over a period exceeding ten years, and we have never lost our Class 1 status in the Official Observer program.

An ideal addition to the station at this point would be an audio uscillator, calibrated in cycles per second and reading from the lower limit of hearing to 5000 cycles. ${ }^{3}$ There would be no need for an uscillator calibrated abuve 5000 eycles,

[^13]for it is not possible for any unknown frequency to be more than 5 kc . from a known point when the 10 kc . multivibrator is running. In using the audio generator, the amateur zero-beats either the marker signal or the W1AW signal, and then uses the tone ascillator to match the resulting beat note as heard on the recciver. You must use care so that you subtract and add when the particular process is appropriate! Returning to the above example, let us say that you zero-beat 7090 and hear a note of about 2000 cycles in your receiver. Using the calibrated andio oscillator you find a reading of 2535 cycles, and you add this to 7090 , for an indicated reading of 7092.535 kc . because the unknown was atrove 7090 on the dial. W1AW frequencies which are more than 5000 cycles above the marker (c.g., 7096, 7098, etc.) would call for subtraction from the ne.rt higher marker, 7100 kc . in this case. ${ }^{4}$

Simple tone oscillators of the kind used for code practice can be built and calibrated for this purpose. If you have difficulty matching tones hy ear, you can connect both the usillator outpul and the receiver output to an oscilloscope (one to the horizontal, one to the vertical) and attempt to make a circle -- which tells you that the frequencies are exactly matched. If the tone is high in pitch, and your oscillator calibrations are very close to one another at that point, try creating Lissajous patterns ${ }^{5}$ and making the necessary mathematical computations to find the unknown frequency.

Sometimes, you can use your imagination in obtaining readings on an unknown signal. One way to do this is to measure up from the lower 10-kc. marker, then down from above, averaging the readings. Sometimes you will uncover major interpulation errors in that way. An interesting, if inexact, interpolation device used at W2VMX for one FMT was a tape recording made at the parish hall piano. The tape cousisted of a series of anmouncements like, "F-5", "F\#-5," "G-5" followed by striking the appropriate note on the piano. These notes were compared with the received notes from W1AW, and frequencies were read from a table of musical tone frequencies. Did it work? Well, returns showed that our mean error was 247 cycles. Quite probably, not all of our error was in the audio department . . . but at any rate our mean error in p.p.m. was 43.2 parts per million, well within the required 71.43 p.p.m. for Class I OO. The lack of a continuously-variable tone source precluded any capital-P precision with this method, but it stands as one more in a long line of ex-
(Continued on page 146)

[^14]
We Learned Some Things

With destructive tornadoes racing through Arkansas and other midwestern areas as this is written, perhaps this is a good time for some reflections on emergencies and emergency preparedness in general. In researching this general subject, what comes to light is a piece written in the Rochester (Minn.) Amateur Radio Club's Flyer of about a year ago, in which there was a rundown of a tornado which occurred then. It seems that Minnesota's PICONET played an important role in this emergency, but this is just another chapter of the glorious past history of amateur radio public service. What is most intriguing about the piece is the information appearing under the heading "We learned some things."

Every emergency is an education in itself. No emergency uet is so well drilled and prepared that the actual emergency operation is humdrum and routine. PICONET is reputed to be one of the best, but here are some of the things it learned, apparently through bitter experience, in the April, 1967, tornado:

1. An established net meets the need during an emergency better than a random group of uurelated stations.
2. (Good band conditions, even with stormy weather, are a real help. (But not much we can do about this!)
3. Power counts! We should all have kws.
4. Proper message form is essential. Memorize the ARRL form: use "time filed."
i. Clarification of "precedences" for messages should be developed. "Health and welfare" traffic is important, but should not be placed ahead of "priority" traffic.
5. All messages should be signed by a responsible authority.
6. In a weather emergency, sume knowledge of the best ways (the Weather Bureau way) to report weather conditions is very helpful.
7. C.w. can get through QRM and QRN when phone can't.
8. Use of different frequencies for "incoming" and "outgoing" traffic for an emergency area should be considered. Traffic coming out of an emergency area rates the higher precedence, other things being equal.
9. If two or three towns are "hard hit," maybe a separate frequency should be used for each, with a powerful control station to keep the frequency clear.

[^15]

On May 9 at the Red Cross Chapter House in Cincinnati, Volunteer Services Chairman Bachrach (left) presented recognition pins for 25 years of assistance to W8SVU (right) and W8MXR (not shown). Seventeen other amateurs were similarly honored.
11. Lucal nets in 10,6 and 2 meters are important.
12. When local newscasts and weather forecasts indicate the possibility of storms or other emergencies, the local emergency net frequency should be checked frequently.
Imagine, all these things learned in one little emergency! Trouble is, half of them will have been forgutten by the next time unless you keep harping on them, making them a part of your preparedness activities, puting them in your literature. The principles of emergency operation should be basic, their observance automatic, almost a reflex action. You don't acquire these sharp operating reflexes by reading about them. You have to practice them, frequently, regularly. This is why nets have regular drills and tests, and why the operator who says "I'll be there when you need me" and never prepares is often worse than useless. - W $1 N J M$.

National Traffic System

The third formal meeting of the Eastern Area Staff of NTS took place in Syracuse, N. '.., on April 27-28, 1068, with all ten members in attendance.

The proceedings were completely tape-recorded, as were those of the two previous meetings. Also in attendance was W1NJM and, part of the time. N YS Manager W2MTA, as observers and advisors. The lineup of the EAS: Chairman and member-at-large, W2ZVW: 1RN, W1EFW; 2RN, W2FR; 3RN, K3MVO; 4RN, W4SHJ; sRN, W8CHT, ECN, VE3BZB; EAN, K2KIR; TCC-Eastern, W3EML; Member-at-Large, W4UQ.

The first matter of business was the election of a new member-at-large (MAL) to fill the vacancy created when WA2G(27, resigned as 2 KN manager and MAL W2FR was appointed in his place. It was pointed out that there was nothing mandatory about filling the vacancy, but the staff preferred that there he an odd number of members.

The following NTS adherents in the Eastern A rea were nominated: W1BJG. W1EMG, W1EOB, W2GKZ, W2MTA, K2RYH, W3NEM, WA4EUL, WA4FJM, W4NLC, W4ZM, W8RYP, VE3AWE. What a choice to make! It was observed by many staffers that any one of them would make an ideal member, so each was discussed in detail before balloting. The first ballot found no candidate polling a majority, so a second ballot was ordered containing only the two highest (W1EOB and W8RY'P), with W8RYP winning out by a close vote. Paul, who happened to be present as an intended observer (but not during the discussion or balloting) then was seated as a member of the staff.

Next, Chairman W2ZVW announced that he was relinquishing the ehair at the conclusion of the meeting and called for an election of a new chairman. Again, the nominations and balloting were spirited. Those nominated were WIEFW, W2FR, K2KIR, W4UQ and VE3BZB. After the first ballot, two of the nominees were eliminated and the second ballot was among the three remaining. W4UQ polled a bare majority in a close vote.
So EAS has a new MAL in W8RYP, and a new chairman in W4UQ.
The next procedure was the preparation of some kind of an agenda. Each staff member was asked to mention those items which he would like to have discussed, and from this the chairman prepared a tentative agenda. The staff then settled down to detailed discussion of each agenda item. At the end of this go-around, each staff member was given another opportunity to bring up matters for discussion that had occurred to him since his original statement.

No model of parliamentary procedure, the Syracuse EAS meeting was nevertheless reasonably orderly, harmonious, and much was accomplished. Anyone who wants to take the trouble to listen to the tape recording will readily perceive that these NTSers know what they are talking about and are dedicated to the system's functioning in every respect, at every level. Here are some of the things the LiAS recommended for further study:

1. "Daylight saving" time. At the upper NTS levels in particular there is considerable opposition to this, and the possibility of staying on the same (iMT the year around should not be shelved.
2. Sequence of NTS net meetings. A vigorous discussion of the feasibility of the Public-Service-Manual-recommended sequence versus other possibilities resulted in a recommendation that "late" region and section nets (i.e., after the Area Net metting) be pushed. Late section phone nets, in particular, can perform a very useful function.
3. An "unannounced" SET. After extended discussion, it was decided that an unannounced SET in the true sense is totally impractical, and that
consideration should be given to an "unplanned" SET instead. During the discussion the possibility of a simulated power blackout in NTS might give an idea of the system's versatility in a real emergency. Perhaps an "emergency power hour" during the SET?
4. NTS statistics. Their value and importance was discussed at length, with the general feeling that there can be some question regarding the significance of some of them.
5. It was decided that EAS meetings should be "crpen" to those invited by staff members to observe. It was also the sense of the meeting that the chairman would serve for not more than two years before a new vote is taken as to whether he should continue.
6. Status of NTS Area Staffs. Discussion of Board proposals for advisory committees and proposals for revising content of NTS Area Staffs. The EAS went on record as giving full support to the present setup.
7. Uniform application of standards to all NTS nets. It was noted that some nets indulge in radical departures from standard NTS procedures, particularly with respect to meeting times.
8. Rigidity of net procedure. How "tight" should the net be? Who should be allowed in? How much tolerance should be shown stations who do not properly zero beat, who do not follow regular net procedure, who do not represent an NTS entity?

9 . The place of phone nets on NTS. Both the 4 RN and 8 KN managers had experiences to relate on use of phone for NTS in their regions, and new MAL WRRYP was able to make some contributions along this line. It was the feeling of the staff that phone might well succeed where c.w. has not come through in late (i.e., after EAN) sessions at region and section level.
10. Relation of NTS functions to SCM appointments. Specifically, is an NTS net manager necessarily an RM, or vice versa, and should some sort of relationship between NTS functions and SCM appointments be established?

The Eastern Area Staff was in session approximately 8 hours over a two-day period. - W $1 N J M$.
(April reports on next paje.)

The Post Office Department promises faster mail service with the new Kip codes. Use yours when you write League Headquarters. Use ours, too. It" 06111.

A strategy meeting before the Canoe Race at Crawfordsville, Ind., (see writeup) finds bossman K9BJL (1) conferring with WA9PAL (partially hidden), K9EJJ, WA9CVT, WA9IJF and WA9MNQ.

During the Greenwood tornado emergency（see writeup），contact was maintained by amateurs between Greenwood and Fort Smith．Shown at left is the Greenwood station，K5UAJ，operated by K5BOC（at mike）and WA5TJQ．At right is the fort Smith station，W5ANR operated by（front to rear）K5YMU，WA5NOB and WA5LLX．

April reports：

Net	Sem－ sions	Trajife	Riate	$\begin{aligned} & \text { A cer- } \\ & \text { age } \end{aligned}$	Represen－ tation（\％）
1RN	60	4.52	． 3103	7.5	91.2
2RN	ti	542	． 705	4.7	97.0
3 KN	60	831	．5150	13.9	99.2
4 HN	52	614	． 407	11.8	81.0
RN5	60	727	． 125	12.1	96.3
RN6	80	1216	．SO1	20.2	99.9
RN7	59	517	．384	8.8	4.5 .7
SRN	61	579	．3．78	$9 . \%$	42.3
9RN	60	551	． 473	4.8	92.5
TEN	60	488	． 504	8.1	71.0
ECN	57	186	．2：30	3.3	72.2
TWN	49	276	．24t	8.6	57.4
E．AN	30	1940	1.391	64.7	97.8
CAN	30	1244	1.079	41.4	97.8
PAN	30	ltitil	1.185	i5．36	100.0
TCC Eastern	123	1021			
TCC Central	40	675			
TCC Pacific	123	1275			
Sections ${ }^{2}$	1824	13581		7.4	
Summary	2613	28426	EAN	9.4	－
Recurd	2704	28169	1.391	19.1	－

1 TCC functions，not counted as net sessions．

\therefore Section andior Local nets reporting（59）：Falls City
 WIN，WSSN（Wis．）；NYS（N．Y．）；BUN（Utah）；RISPN （R．I．）FAITN，VEN，QFN（Fla．）；MDDS（Md．－D．C．）； QIN（Ind．）；PTTN，EPA，PFN EPA 6 Meter（Ha．）； PTN（Me．）；GSN（Ga．）：TTN．TEX（Tex．）；Md．－D．C．； IINN（Colo．）；NCNL，NCSSB（N．C．）；Nich．6－meter， QMN（Mich．）；VSB，VN．VSN（Va．）：Passaic Valley T \＆E，NJEPTN，NJN（N．J．）；BN，Ohio SSB：MEPN （Ad．）；IVSN（Wash．）；OZK（Ark．）；Vt．－NH；LaN（La．）； （PPN（Conn．）：MSN，MJN（Minn．）；W．Fla．Fone；MNN， MTN（Mo．）AENM，AENR，AEND，AEMH，AENT （Ala．）；WMN，EMINN，EMN（Mass．）；RTQ（Que．）；Qlis＇ （よ̌ацв．）．

Fine 1RN Bulletin by Manager IV1EFW points up need for a＂late＂session of 1RN，perhaps on phone，perhaps on （3）or 2 meters．Many changes in prospect on 2 KN ，se\％ W2FR；NYC－LI continues to be weak in representation． Easter traffic gave 3RN a boost；certificates to K゙3Hんk， W．13JC． 1 and W3PRC．W9QLW puts out a monthly 9RN news letter at report time，containing statistics for the month and brief＂Disa and Data．＂South Dakota is making a comeback on TEN，but attendance now very light on early session；W．10HTN earns a certificate．ECN＇s early session on 7040 kc ．is being met with mixed reaction； local signals are weak，but the VE1s come in better．h7NHL sez TWN traffic and representation are down，but QRN is up！Getting all reports is the big current problem．K゚にはIR tiggers LRN will kill us this summer．W9DYG savs all tine un CAN．then lists a string oi troubles as long as your arm．

I＇ranscontinental Corps．Every time we look over the three TCC reports we have to reflect admiringly on the job being done by this group of crack traffic operators and their three dedicated directors；working closely together
as they do in both good and bad conditions requires the utmost in cooperation，patience and compatibility．I spot on T＇CC is sumething sought after by NTS operators，a position of honor and respect．Yuu can just assume that those functions listed as＂unsuccessful＂were given a sood try before an alternate route was sought．

W3EML reports that simultaneous meetings of E．AS and PAS were responsible for some of the month＇s unsuccessful functions．WøLCX＇s analysis of April activities indicates that troubles were caused by adverse conditions．W7DZN＇s monthly renort shows all functions filled at the Pacific Area end and only eight unsuccessful functions．

April Reports：

	Func－	O Suc－		Out－of－Net
Area	tions	cessiul	Traffic	Traffic
Hastern	123	87.8	2.146	1021
Central	90	96.6	1368	875
Pacific	123	93.5	2630	1275
Summary	336	92.3	6444	2971

The TCC roster：Eastern Area（W3EML，Uir．）－ Wis BJG EFW EOB NJM，W＇zs FR GKZ MTA，H2RYH， WA\＆s BLV UWA，WBzs OYE RKK，W3s EML NEM． K3MVO，WA3CTP，W48 NLC UQ ZM，K4KNP， WB4DXX，Wes CHT RYP SQO UM，K8EMIQ，TVASs U（VG ZGC．Central Area（WøLCX，dir．）－IVfoGG， K＋DZM，IV $44 s$ AVMI WWT，WB4AIN／4，W5KRE， WA5SKI，W9s CXY DND DYG VAY．IF $0 s$ INH LCX， Kios AEM YBD，W．Ios DOU MLE．Pacific Irea（W7DZA dir．）－－IFGs［3GF EOT HC IPW TYM VNQ VZT，K6s DYX LRN，WAGs LFA ROF TB6s HVA RSY，IF A．1F／6 KZ IIMLA ZB ZIW，K7HLR，WA7CLF，VE7ZK．

Diary of the AREC and RACES

On Mar． 30 VE7BOQ，EC for Powell River，B．C． received a request for communications facilities for search for a missing 13－year－old bov．All available AIRPSC operators were mobilized，along with 3 －meter mobiles and an 80－meter base station． $V E 7 A S R$ held down the fort in town on 3755 kc ． V＇ETBIIJ manned s（）－meter and z－meter base stations at the search marshalling point．VE7BO（ and VETALZ operated a 2 －meter station in the former＇s car following logging roads，collecting re－ ports and relaying to base．Seven frequencies were mouitored，with z－way communication on six of them．VETCC assisted materially in keeping 3755 kc．clear and relaying，along with other B．C． stations．

The story has a happy ending．The lad was found unharmed after 30）hours lost in rugged，mountainous sountry．

On April 7 at 0800 local，members of the Glens Falls（N．Y．）area dREC were asked to conduct
ommunications between Red Cross HQ and their disaster unit at a bad church fire in Hudson Falls. The request went to WB2ZTP to EC W2AIQ who contacted W2FEM and the latter immediately proceeded in his mohile unit to the scene of the fire. K2MUG went to Red Cross headquarters to assist WB2ZTP. WA2AQD heard the activity on 51 Mc ., checked into the net and was dispatched to the fire to relieve W2FEM who was en route to meet K2AYQ to pick up the AREC's six-meter portable unit which was used at the fire scene relaying direct from the fire to the Red Cross disaster unit parked a short distance away and being manned by WA2AQS/mobile and WB2BZJ/mohile, W2BOR WB2UEX acted as relay stations from their homes. 'The net secured at $1025 .-K 2 A Y Q, E C$ Glens Falls area, N. Y.

A tornado struck Falmouth, Ky., on April 23, WA4YDO, K4DLG and K2VJE, traveling from the University of Kentucky at Lexington, established a portable station on 3960 kc . at a local schoolhouse. Operational traffic from the site to Louisville and the Cincinnati Red Cross, together with health and welfare traffic, were efficiently handled both into and out of the area. K4YZU and K4CSH took care of the Louisville end. The wisdom and efficiency of formal over informal traffic was again demonstrated -... TH $4 O Y I, S E C K y$.

On April 19 a devastating tornado hit Greenwood, Miss. Fort Smith EC WA5DMT was among the first on the scene and started organizing the amateurs. A communications center was established at a local church, and mobiles were in operation a little over two hours after the tornado struck. Amateurs from the Fort Smith Amateur Radio Club set up their equipment in an office next to the Red Cross and made contact with the club station at Red Cross headquarters in Fort Smith.

For seven hours the only communication available out of Greenwood was amateur radio, and for three days the amateurs remained in operation handling health and welfare traffic to supplement overloaded wire lines. The amateurs were also useful in putting up anteunas, and checking out trouble spots. WA5PRZ and K5BOC assisted the EC through their jobs as managers of the SSB Razorback Net, and over 500 messages were handled via the Na tional Traffic System. WA5NOB served in both Greenwood and Fort Smith. WA5AER did considerable leg work checking out damage in Booneville and elsewhere. WA5LLX was outstanding at the Fort Smith station. WA5JOD served in an important position at Sparks Hospital. Three of the Fort Smith hams were doctors at the hospital. W5HOT, WA5TBN and K5YRC were outstanding from their home stations, along with many others. Communications were maintained with Little Rock and North Little Rock also. Other amateurs assisted in clearing the great quantity of trafic, such as requests for food, shelter, heavy muving equipment to assist in clean-up. closed vans and trucks to move and store materials and supplies, and coordination for the Red Cross, civil defense and other agencies. The Oklahoma Emergency Net and the Sooner Traffic Net were among those outstanding.

The Greenwood station used the call K5UAJ, and the Fort Smith station used the club call, W5ANR. The station in Greenwood was closed down Sunday evening, but a long period of clean up and "come hack" followed in which EC WASDMT participated. All concerned were effusive in their praise
of efiorts of the amateurs to restore and maintain communications to stricken Green wood.
—...——
On May 3 at $2255 Z$ W8YHU/mobile was in QSO with W8TNF when the former came upon an auto arcident. W8TNF called police via landline and they were immediately on the way. Another small service by amateur radio, possibly saving a life. K8DHJ, EC Stark County, Ohio.

Orange County's (Calif.) Garden Grove High School has instituted during March a program through its amateur radio club station, WB6WPK, of sending messages over the National Traffic system on behalf of its faculty. The program is under the custodianship of W6RJX and W6IXN - WAGROF.

On Mar. 31, Madison County (Wis.) Amateur Radio Club station W9EJII assisted the Red Cross in a communications demonstration at its Open House. K9SJR operated W9EJI and maintained contact with WA9QNM (K9ATV at the controls) at the chapter house. Some 15 other amateurs were contacted, some of them mobile in motion throughout the area.

The West Coast Amateur Radio Service on April $2 x$ provided communications for a number of cycling events sanctioned by the Amateur Bicycle League of America. WA6AEH acted as control at the starting line while WB6YFT served as communications chairman. Stationed at strategic points along the course were WA6IGU, W6YOB, WB6OEZ and WB6LXP. - W6MLZ.

On April 20 and 21 the hams of Montgomery County, Ind., handled communications for the amnual Sugar Creek Cance Kace at Crawfordsville. Working with the local b.c. station and the Sheriff's Department, units were set up at key points along the $151 / 2$ mile course keeping track of 125 canoes in the race. Amateurs have assisted in this event for six consecutive years, with K9BJL serving as chairman each year. Communications were handled on six meters. K9FUE and W9URS set up their amateur TV station at the finish line, enabling spectators to see the finish of the race. Eighteen amateurs took part. - KgBYL, v.p. Montgomery County ARC.

Forty-five SECs reported April activities, representing 16,108 AREC members, a gain of five reports over last year but a loss of some 800 members. Three sections reporting showed no membership figures, so the loss of membership is probably on paper onls. Following are the March reporters: W.Pa., Alberta, So. Dak., La., SCV, N.C.. Colo., Me., N.N.J., Conn., Sask., E.Fla., Tenn., Nebr., So. Texas, Wash., Ark., S.N.J., Mo., Sac.V., Mont., Orange, W.Va.. E. Pa., Ala., San D., Mich., Ohio, Del., Nev., W.N.Y., San F., Kans., Utah, W.Fla., E.Mass., Que., Okla., Va., N.H., B.C., Ga., Maritime, $\mathrm{N}^{\prime} \mathrm{C}-\mathrm{LI}$, Ill.

Miscellaneous V et Reports:
Net
Mike Farad Ses.
Coast Guard
QTC:
HBN
Interstate SisB
North American SiSB
20 Meter SSB
T240 Traffic
Clearing House

Semsions	Check-ins	Traffic
it	474	3619
22	375	40
$2:$:773	6.57
80	:393	\%09
(1)	1065	6:37
$\because 6$	H9\%	103:3
22	472	\%405
45	99 t	1998
30	1450	287
		Q5\%

Amateur Radio Expo!

Unique Event Brings Together
Radio Amateur and General Public

RRecritle, a group of amateur radio clubs in the Hudson Division got together to launch a new kind of amateur radio event. The Garden State Amateur Radio Exposition. held May 2-4, 1968 featured 7000 sq. ft . of exhibit area, numerous operating amateur radio stations, programs for the general public, and meetings and symposiums for radio amateurs. The location was the Garden State Plaza in Paramus, New Jersey, one of the world's largest shopping centers!

While many of the component attractions of Expo are not unfamiliar to arnateurs, the unique combination added up to something spectacular. Fixhibits prepared by participating clubs depicted the many facets of amateur radio to the public, and also showed many long time amateurs some of the fasrinating areas of the hobby they had not encountered. Exhibits included an antique wireless display, a station operated by blind amateurs, presentations from MARS, NASA, the International Mission Radio Association, and displays of f.m. communications, space techniques, home hrew gear, QSLs, certificates, ham license plates, etc., and more. Throughout the event, automatic telet, machines printed greetings and other information to visitors of the exhibit floor.

Expo's location at a major shopping center proved excellent. It was easy to Incate, had ample parking, included impressive exhibition and auditorium facilities and had a steady flow of public traffic.

The shopping center's staff were especially helpful in working with the Expo sponsoring clubs, and welcomed the opportunity to host the amateur radio event.

The following groups are responsible for Expo's success: Bergen Imateur Radio Association, East Coast VIIF Society, Englewood Amateur Radio Association, International Mission Radio Association, Knight Raiders VHF Olub, Land Rovers Amateur Radio Club, MARS. NASTAR (Nassau College Satellite Tracking Amateur Radio), New England F.M. Repeater Association, North Jerrey I)N Association, North Jersey Radio Association, Quarter Century Wireless Association, Stevens Institute of Terhnology Radio Club, 「ri-County Radio Club, Watchung Hills Ifigh School Radio Club, and the Oakland 550 Club. As a result of Expo, most of the participating clubs have organized into the Garden State Amateur Radio Clubs, Inc.

The Paramus Fxpo is a dramatic example of a gala meeting between amateurs and the general public. Amateur radio gained much publicity from the event, area radio clubs' Novice classes swelled, amateurs had many purposeful meetings, and many annateurs had an opportunity to observe all facets of amateur radio in action. What say, will your group be the next to sponsor an amateur radio expo?

- WAきINB (Photos by WB2DLW).

Attention was given to aftracting youth to amateur radio. Above, a group of scouts are shown observing one of the on-the-air stations. Left, Hq. staffer, W IARR, relates a tale about amateur radio to a captive audience.

Above, visitors watch as an amateur station is constructed before ${ }^{-}$their eyes. As shown right, many visitors of all ages made their first amateur radio transmissions and received 'Certificates of

Communication" as tokens thereof.

An extensive message center operation was one of the many highlights. Red Cross personnel accepted traffic from the public to be transmitted via amateur and MARS channels to distant servicemen, friends, and relatives.

Here amateurs and the public caught a glimpse of what the future has in store with the demonstration of a modulated laser associated with the space communications booth.

Interest of the prospective Novice and old timer alike was attracted by the demonstration of 2 -way amateur television communication.

Those Higher-Class License Examinations

In Six Parts - Part V

Propagation, Antennas, and Transmission Lines

THis section takes up those questions in the FCC sample list that have to do with the general subject of antennas and propagation. The questions are drawn from the Advanced and Extra Class study guide published by FCC. Although they are for the most part quite general in nature, calling for qualitative understanding of the subject rather than knowledge of the design details, there are some that do require numerical work.
The Radio Amatour's Handbook and The ARRL Antenna Book (1960 or 1964 edition) contain the information you'll need. The questions fall into three categories:
Radio Wave Propagation: Chapter 15 in the Hanulbook, both the 1968 and 1967 editions; Chapter 1 in the Antenna Book.
Antenna Systems: Handbook, pages 345-370 (1968) or 367-393 (1967); Antenna Book, pages 25-37, 137-166, and 170-185.
Transmission Lines: Handbook, pages 329-337 (1968) or 349-357 (1967): Antenna Bonk, pages 67-80, 100-106, 108-112.
Some of the material in the sample questions to follow will not be found in the Handbook because of the concise treatment necessitated by limited space. The Antenna Book therefore should be consulted in addition to the Handbonk. In both, some details in the various sections
listed above need not be studied closely, although they contribute to the overall picture and should be read; the sample questions below will give you a good idea of how much of this "sidelight" information you will need to assimilate.

There are several formulas you should memorize before taking the examination. A check of the sample questions shows that numerical solutions may be asked for dipole length, length of a quarter-wave matching section, characteristic impedance of a quarter-wave section to match two resistive impedances, the relationship between load resistance, line characteristic impedance and standing-wave ratio, relationship of current maxima and minima (and similarly, voltage) to s.w.r., reflection cuefficient, and power ratio expressed in decibels. The last probably will be confined to a few of the more common numbers, such as 3,6 and 10 db ., since you will not be expected to carry a table of logarithms with you to the examination room.
The FCC sample questions below have been grouped together in subject matter. Those from the Advanced examination are indicated by (A); those from the Extra are marked (E).

And once again, there are a few examinationtype multiple-choice questions for you to practice on, at the end. Certain questions from earlicr parts are discussed following the answers.

FCC Sample Questions

(A) What is meant by describing a radio wave as horizontally or vertically polarized? Which type is most suitable for sky and ground wave propagation?

A radio wave is made up of electric lines of force and magnetic lines of force, at right angles to each other. Polarization is determined by the position of the electric lines. 1 vertical antenna radiates vertically-polarized waves, and a horizontal antenna horizontally-polarized waves.

Either horizontal or vertical polarization is suit:able for sky-wave communication. In groundwive propagation (wave travelling in contact with the earth) any horizontally-polarized com-
ponent of the wave tends to be short-circuited at the earth's surtace, so the useful energy is vertically polarized, or very close to being vertically polarized.

Note: A distinction must be made between the "ground" or "surface" wave (which, as the name implies, travels in contact with the earth) and the "space" wave. The space wave is frequently used for short-range communication at line-ofsight distances, particularly at v.h.f. It consints of two components, a direct riay which travels directly from the transmitting antenna to the receiving antenna, and a ray which is reflected from the earth before arrival at the receiving
antenna. The reflected ray in turn may consist of several components, depending on the number of objects, such as buildings, that may be between the transmitter and receiver, and that may be capable of reflecting a ray toward the recciver.

(A) Define maximum usable frequency.

The maximum usuble frequency (m.u.f.) is the highest frequency which cean be used to transmit over a specified distance via the ionosphere. Any higher frequency would not be reflected sufficiently by the ionosphere and thus would "skip" over the desired receiving point.
(E) What determines the skip distance of radio waves?
The frequency and the state of the ionosphere.
(A) What factors affect the state of ionization of the atmosphere?
Ultraviolet light from the sun is thought to be the primary cause of ionization of the upper atmosphere. Thus the extent of ionization depends on the time of day (or night) as well as the seuson of the year. Additionally, the extent of ionization changes over an cleven-year period, termed the "sunspot eycle," associated with eyclical changes in the number of spots visible on the sun's surface. Ionization of this nature is regular in occurrence and predictable. In addition, "sporadic" ionization oceurs at heights of the order of 60 miles; this may happen at any time during the day or night, and the cause has not been determined. Isolated patches of ionization also uccur in the auroral regions, and intermittent ionized "trails" are generated by meteurs as a result of the intense heat generated when the meteor enters the atmosphere. At times, ionization may be greatly affected by the arrival of streams of particles thrown off the sun because of abnormal surface activity (solar Hares). Such orcurrences are known as "ionosphere storms." The usual effect is to disrupt the normal communication via the ionosphere.

Although there is no established correlation between ionization and surface weather conditions, propagation at v.h.f. in the troposphere is affected by weather (however, ionization is nut involved in this type of propagation).
(A) How does the sunspot cycle affect wave propagation? What are the best frequencies to use for day and night, short and long distance communication during the cycle?

Ultra-violet light and possibly other forms of radiation from the sun produce ionization in layers of the upper atmosphere. These ionized layers bend radio signals back to earth at distances depending on the layer height and ionization intensity and the radio frequency in use. The sun's output of ionizing radiation varies over an 11-year period known as the sunspot cycle. Generally speaking, the greater the suuspot activity, the more intense the imization and thus
the greater elfectiveness of the ionized layers.
Uuring periods of heavy sunspot activity, in the daytime suitable bands for short-distance communication would be 3.5 or 7 Mc ., for long distances, 14, 21 or 28 Mc . At nighttime, 1.8 or 3.5 Mc. would serve for short distance contacts, and 7 and 14 Mc . for longer distances.
During periods of low sunspot activity, in the duytime suitable bands for short distance communications would be 3.5 or 7 Mc .; for long distances, 14 and 21 Mc . At nighttime, 3.5 or 7 Mc. would serve for short distance contacts, and 7 or 14 Mc. longer distances.
V.h.f., not normally affected by ionization, would be suitable at all times for short-distance communications-say up to 200 miles. At sunspot cycle peaks, F_{g} layer skip may be ohserved in the $50-\mathrm{Mc}$. band. The incidence of auroral reflection at v.h.f. is :also related to the sumsput cycle.
(E) What are aurora-reflected v.h.f. signals? If such a signal is heard, what does it sound like?

Aurora-reflected v.h.f. signals are those which reach a distant point by being reflected from the ionized region in the atmosphere that is responsible for visible aurora. Such signals sound rather rough and fluttery.
(A) Which amateur band is the most suitable for daytime communication over a distance of about $\mathbf{2 0 0}$ miles?
Considering ionospheric propagation during the daytime, the skip distance for sky-wave transmission on the $14-\mathrm{Mc}$. and higher-frequency amateur bands is normally greater than 200 miles, so these bands could not be relicd upon for the desired distance. On the $3.5-$ and $1.8-\mathrm{Mc}$. bands the daytime absorption is high and the signals from stations at distances of this order are relatively weak or cven inaudible. The 7-Mc. band offers the hest possibility for reliable innospheric eommunication under the specified conditions.

In the troposphere, weak but reliable signals can be proparated over the given distance in the u.h.f.-v.h.f. range. This type of propagation is relatively iudependent of frequency; the most importunt limitations are transmitting power and recciver sensitivity, tropospheric path attenuation, and terrain.
(E) Describe briefly some well known types of antennas and antenna systems used by amateurs which do, and do not, reduce harmonic radiation.
l'ractically a any simple antenna, such as a dipole, will radiate harmonics equally as well as it riddiates the fundamental signal; this is because the antenna is a linear circuit and inherently is resomant at multiples of the fundamental frequeucy. An ungrounded antenna will be resonaut at :all multiples; a system in which one end of the antenna is grounded will be resonant only at ould multiples of the fundamental. The grounded
antenna therefore discriminates against even harmonics. With dipole antennas, harmonies can be discriminated against by using a trans-mission-line system that is matched at the fundamental frequency but hadly mismatched at the harmonics. For example, a dipole fed at the center can be matched by coaxial line at the findamental, but is badly mismatched at even harmonics, so radiation at the even harmonics is poor. However, the mismatch on odd harmonics is only moderate, becuuse of the way in which the renter impedance of the dipole changes with frequency, so odd harmonics ran he radiated. These statements apply to all dipoles, whether used alone or in directive arrays.
In eases where a matching network is used between the antenna (or driven element in a heam antenna) and transmission line, the diserimination against all harmonics is usually good berause the line is matched to the antenna only at the frequency for which the matching section is :udjusted. However, this is not true of all linear matching seetions, particularly quarter-wave " $?$ " sections, because these have harmonic resonances similar to those of the antenna itself.
In systems in which no attempt is made to match the antenna to the line, such as a centerfed or end-fed dipole with an open-wire parallel anductor line ("tuned" line) there is no inherent discrimiuation against harmonics. However, in most cases it is necessary to provide a tuned $L C$ matching cireuit at the input end of the line in order to transfer power from the transmitter to the line. The selectivity of such a circuit, properly designed and adjusted, ordinarily gives better harmonic discrimination than any of the systems discussed above.
A multiband antenna which, by the use of traps or similar devices, attempts to match the antenna and transmission line at harmonic frequencies in order to be useful in harmonicallyrelated amateur bands, will offer no discrimination against harmonics in those bands in which it is designed to operate, and little against odd hirmonics of the operating frequency.
(A) How can the resonant frequency of an antenna be increased? Decreased?
The resouant frequency of an antenna is inversely proportional to its (electrical) length. Thus the resonant frequency may be increased by shortening the antenna; the frequency may be decreased by lengthening the antenna.

An effect equivalent to lengthening an antenna can be obtained by inserting a "loading" inductance which will tune the system to a lower frequency; similarly, an effect equivalent to shortening can be obtained by inserting a capacitance in the antenna to raise the frequency of the system. The frequency cannot be raised to more than twice the natural resonant frequeney by the latter method, however.

Thickness of the anteunat clement is also a factor: increasing the diameter of the ennductor decreases the resonant frequency. In practice this effect is not significant except at v.h.f. and higher.

An antenna, usually vertical, can be "top loaded" with radials or a similar structure to provide capacitance, which reduces the resonant frequency.
(E) List some different types of beam antennas.

Beam antennas may be classified broadly into three types: long-wire, driven arrays, and parasitic arrays. Examples of the long-wire type are the rhombic and V antennas. In driven arrays, the antenna elements - dipoles of the order of one-half wavelength long, usually - :are all fed through transmission lines from the transmitter. The elements may be spaced and phased so that the maximum radiation is perpendicular to the line along which the elements are placed. Arrangements of this type are known as broadside arrays; examples are parallel elements fed in phase, or collinear elements fed in phase. Such antennas are bidirectional, but can be made unidirectional by the use of a second (and similar) array of elements properly spaced and phased with respect to the first. An end-fire array is one in which the elements are arranged in line in the desired direction of maximum radiation and phased properly to enhance the "forward" radiation; arrays of this type are substantially unidirectional.

Parasitic arrays differ from driven arrays in that a driven element is associated with others that have no direct connection with the souree of power through a transmission line. The "parasitic" elements receive power by electromagnetic coupling to the driven element, and reradiate it in amplitude and phase dependent upon the spacing between elements and the tuning of the parasitic elements. These arrays (the Yagi antenna is an example) are essentially unidirectional.

Many enmbinations of both types of arrays are possible. Large loops also may be used as elements in directional antennas, the "quad" type being an example. A loop having sides a quarter wavelength long is approximately equivalent to a pair of short parallel dipoles, and mar be treated as such in the construction of driven or parasitic arrays.

(E) What constitutes a parasitic antenna

 element?A parasitic element is one receiving power from a driven element by coupling through the electromagnetic field, rather than receiving power directly from the transmitter through a transmission line. It is usually similar in construction to a driven element and is placed parallel to it at a distance which may be as much as one-half wavelength, but is generally less than one-quarter wavelength. It is usually tuned, by adjusting its length or by other couvenient means, so that the phase relationship between the current induced in it and the current Howing in the driven element, in conjunction with the element spacing, will give a desired directive pattern for the system as a whole.
(E) How does the directivity of an unterminated " V "' antenna and parasitic beam antenna compare?

An unterminated V antenna is bidirectional along a line bisecting the V, while a parasitic heam antenna has its main lobe extending in one direction only. Both types of course have a number of minor radiation lobes.
(A) What are the advantages and disadvantages of using the same antenna for receiving and transmitting?

Using the same antenna for receiving and transmitting takes advantage of any directional and other propagation characteristics of the untenna; thus iul area from which a received signal is strong is also one to which the transmitting signal will be propagated at a high level.

The disadvantage of using the same antenna is that some method of switching between transmit and receive functions, or diplexing, is necessary. This can be a simple switch or relay control; it can also be aucomplished electronically, as for example an electronic t.r. switch, which is the desirable method for fast break-in operation at h.f. In the v.h.f.-u.h.f. range, a diplexer can be employed to use the antenna for duplex operation.
(E) What are the current and voltage characteristics along a transmission line when it is matched and mismatched?

If the line loss is negligible, the current measured along a matched transmission line will everywhere be the same. This is also true of the voltage along the line. If the line has appreciable loss, the current and voltage will both decrease smoothly as the point of measurement is moved from the input end of the line toward the load. The greater the loss, the smaller the current and voltage at the load as compared with their values at the input end of the line.

In a mismatched line the current as measured along the line will vary continuously between maximum and minimum values with the maxima and minima separated by a distance equal to one quarter wavelength (the length measurement must take into account the velocity of propagation in the type of line used). The voltage varics similarly, but the voltage maxima occur at the points where the current is minimum, and vice versa. The positions of these maxima and minima of voltage and eurrent depend on the relationship between the characteristic impedance of the line and the impedance of the load in which the line terminates. If the line loss is negligible, all current maxima have the same value; likewise all minima have the same value. This is also true of voltage. If the line loss is appreciable, the maxima will hecome smaller and the minima will become larger as the measurement point is moved from the load end of the line toward the input end (that is, the st:anding-wave ratio decreases going from the load toward the input end.) This behavior becomes more pronounced with an increase in line loss per unit length of line (that
is, the s.w.r. at the load is proportionately higher with increased line loss, than that at the input end of the line.)
(A) What happens to the voltage, current and impedance along a transmission line with an s.w.r. of 1 ?

When the standing-wave ratio on a transmission line is unity, the load is perfectly matched to the line. In such a case there is no variation in the amplitude of either the current or voltage along the line, and the voltage and current are in phase. The impedance looking into the line toward the load at any point is constant, and is purely resistive. ('These statements are strictly true only if the line has no loss, but are accurate enough for most practical purposes if the line losses are reasonably low.)
(Λ) What is a good indication that a high standing wave ratio (s.w.r.) is present on a transmission line? Where is the best point on a long transmission line to measure the s.w.r.?

In the absence of equipment for checking the standing-wave ratio on a line, one indication of a high s.w.r. might be difficulty in making the final amplifier in the transmitter load properly when its output circuit is adjusted. Another would be extreme sensitivity of transmitter output-circuit tuning to small changes in operating frequency (i.e., a small shift in operating frequency necessitates readjustment of loading and tuning controls). When operating with high power and a line having relatively high loss, "hot spots" (spots where the line temperature is high) may be found along the line. If a parallel-conductor line is used, moving a neon bulb or indicating wavemeter along the line will show variations in current or voltage along the line (with a properlymatched line the indication will be constant everywhere along the line). The best check, however, is one made with a reflectometer or bridge designed to show relative forward and reflected power or voltage.

If the line is long and has appreciable loss, the standing-wave ratio will be highest at the load and will decrease with distance away from the load. It is therefore best to measure the s.w.r. at the load end of the line.
(A) A transmission line that feeds an antenna has a power loss of 10 db . If 10 watts are delivered to the transmission line input, how much power is delivered to the antenna? List possible causes of power loss. How can the s.w.r. of the line be made as low as possible?

A figure of 10 db . indicates a 10 to 1 power loss; thus only one watt would be delivered to the antenna. Power loss is caused by conductor resistance and dielectric loss in the line, and in some ceases by radiation from the line. The loss is increased by a stiunding-wave ratio (s.w.r.) greater than 1:1. A low s.w.r. can be obtained by matching the impedance of the antenna to that of the line as closely as possible.
(E) Can a lossy transmission line be used to transmit signals? Explain.

A lossy transmission line can be used to transmit signals, but if the losses are high only a relatively small part of the signal power delivered to the line will reach the output end. That is, the line efficiency will be low. line losses are usually given in decibels per 100 feet, as a function of frequency, for the condition where the impedance of the load is matched to the characteristic impedance of the line. The actual loss of power under a given set of circumstances can be calculated from this information, provided the stand-ing-wave ratio is known.
(E) Explain the properties of a quarterwave section of r.f. transmission line.

A quarter-wave section of r.f. transmission line shorted at the far end acts like a parallelresonant $L C$ circuit; open-circuited at the far end it acts like a series-resonant $L C$ eircuit. That is, the input impedance of a quarter-wave line with the far end shorted is a high resistance (some thousands of ohms) and the input impedance with the far end open is so low as to be practically a short-circuit. These statements are true when the applied frequency is that for which the line is resonant - that is, the frequency at which the line actually is a quarter wavelength long, electrically. (At frequencies sumewhat removed from resonance the line becomes reactive.)
The quarter-wave line also can be used as an impedance transformer or inverter; for example, a resistive load at the far end that is higher than the characteristic impedance of the line itself will be transformed into a resistance that is lower than the characteristic impedance as viewed looking into the input end. The converse also is true. The relationship is

$$
Z_{1}=\frac{Z_{0}^{2}}{Z_{2}},
$$

where Z_{0} is the characteristic impedance of the quarter-wave line, Z_{1} is the resistance presented by the line at its input end, and Z_{2} is the load resistance at the far end.
(A) A 70-ohm half-wave antenna operating on a frequency of 7300 kc . is to be matched to a 50 -ohm transmission line. Calculate the characteristic impedance of a quarter-wave matching section and the physical length of the antenna at the frequency given. What is the s.w.r. between the antenna and transmission line without a matching section?

A transmission line can be matched to an antenna of different impedance by a quarterwave line section having a characteristic impedance equal to the square root of the product of the two impedances being matched. Thus the desired matching section should have an impedance of approximately 59.2 ohms (the square root of 3500 , from 70×50 ohms).

Antenna length in feet can be found from the approximate formula $468 f_{\text {Me. }}$, and in this case (7.3 Mc .) is approximately $6+$ feet. The matching section length would be $246 \mathrm{~V} / \hat{f}_{\text {Mac }}$., where I is the velocity factor of the particular type of line used in the matching seetion. In practice, eut-and-try adjustment of both antenna length and matching-section length would be necessary for obtaining maximum performance.

Standing-wave ratio is the ratio between the impedance of the load (antenna) and the chararteristic impedance of the line, without the matching section. In this case it would be 70:50, or 1.4 to 1 .
(E) A 70 -ohm transmission line is connected to a $35-\mathrm{ohm}$ antenna. Calculate the standing wave ratio (s.w.r.), the reflection coefficient, and the percent reflected power. If 10 amperes are flowing in the antenna terminals, what is the current in a transmission line node?
The standing-wave ratio is found by dividing the characteristic impedance of the line by or into the impedance of the load terminating the line (the smaller number of the two is used as the divisor). In this case, the line impedance is higher, so the 8.w.r. is $70 / 35$, or 2 to 1 .
The reflection coefficient is the percentage of voltage (or current) reaching the load that is reflected back toward the input end. The formula

$$
l_{i}=\frac{S \cdot W \cdot R \cdot-1}{S \cdot W \cdot R \cdot+1}
$$

The reflection coefficient in the question therefore is

$$
l_{i}=\frac{2-1}{2+1}=1 / 3=0.333
$$

The reflection coefficient is in terms of current or voltage ratios, so the reflected power is proportional to the square of the reflection coefficient. The reflected power is therefore $(1 / 3)^{2}$ or the power reaching the load, or 11.1%.

If the load on the line is resistive, as in this case, current nodes or loops occur at the load. If the load resistance is larger than the characteristic impedance of the line there will be a current node at the load; if smaller, there will be a eurrent loop. The loops (or nodes) repeat at half-wave intervals along the line toward the input end. In the question, the load resistance is smaller than the line impediance and the current is maximum (current loop) at this point. Since the s.w.r. is the ratio of the current at a loop to the current at a node, the current at a node will be 102 , or 5 amperes.
(A) When can a low-pass filter be installed in a coaxial cable without causing a large power loss?

Filter constimts must be selected for a specific load resistance, so ats it matter of design the filter impedance must match the nominal characteristic imperlanee of the line in which the
filter is to be used. However, the filter will not "see" this impedance unless the line itself is terminated in its characteristic impedance at the load end; therciore, for minimum loss the line must be properly terminated. It is taken for sranted, of course, that the frequency to be transmitted is below the cutoff frequency of the filter.
(E) What effect does a transmission line which is not properly terminated have on the plate tank circuit of a transmitter?

If a line is not properly terminated, the impedance that the input end of the line presents to the transmitter's output circuit is not equal to the characteristic impedance of the line (as it is when the line is properly terminated). Thus both the tuning and loading adjustments of the tank circuit will be affected. In some cases this may mean that the desired amplifier loading cunnot be obtained, if the tank circuit is one thiat has been designed to match a particular line characteristic impedance and has little or no range of adjustment. Also, since the input impedance of a mismatched line usually is reactive as well as resistive, it may be impossible to resonate such a tank circuit when the standingwive ratio is large.

Examination-Form Questions

Q1. A half-wave dipole cut for 7150 kc . is center-fed through a 55 -foot length of $\mathbf{3 0 0}$-ohm solid-dielectric parallel-conductor line ("twin line"). The impedance of the antenna is 68 ohms, purely resistive. What is the impedance at the input end of the transmission line?

A -68 ohms.
$13-300$ ohms.
(.)- -143 ohms.
I) -75 ohms.

E- 138 ohms.
Q2. In the antenna system of Question 1, what is the standing-wave ratio on the line?

$$
\begin{aligned}
& A-1 \text { to } 1 . \\
& B-4 \text { to } 1 . \\
& \mathrm{B}-4.4 \text { to } 1 . \\
& \mathrm{B}-5 \text { to } 1
\end{aligned}
$$

Q3. A Yagi antenna is classified as what type of directive array?

A-Long-wire.
B-Collinear.
(\cdot In-phase.
T) - Find-fire.

E - None of the above.
Q4. At what part of the sunspot cycle would the nighttime maximum usable frequency be closest to the 7 -Mc. amateur band?

A - At the sunspot miximum.
B - At the sunspot minimum.
C - Midway between the maximum and minimum.
D - The m.u.f. never goes below the $14-\mathrm{Mc}$. band.
E-The sunspot eycle does not affert the 7Mc. band.

Q5. A solid-dielectric coaxial line is operating with a standing-wave ratio of 2 to 1 at a frequency of $14,250 \mathrm{kc}$. What is the distance in feet between a current loop and the nearest voltage node?
$\mathrm{A}-34.5$ feet.
$\mathrm{B}-32.8$ fect.
$\mathrm{B}-22.8$ feet.
$\mathrm{B}-11.4$ fect.
$\mathrm{E}-0$ fect.

Q6. Measurement with a reflectometer shows that the forward power in a transmission line is 225 watts while the reflected power is 25 watts. What is the voltage standing-wave ratio?

A - (lose to 1 to 1 .
B-9 to 1 .
$\mathrm{O}-8$ to 1 .
D -3 to 1 .
$\mathrm{E}-2$ to 1 .
(Ansurers on page (\#8)

20 Strays

Feedback

Because of a typographical error the call in the Stray on page 56 of $Q S T$ for May 1968 (the first item under "I would like to get in touch with . . .") should have been WgHQG.

Some of the antenna dimensions given in Fig. 101 of W4MKM's article on his weather satellite receiving setup, April 1968 QST, were incorrect. The diameter of the helix turns should have been $263 / 4$ inches, the distance between turns $211 / 2$ inches, and the length of the matching transformer should have been $205 / 8$ inches.

Referring to the summary of the 1968 V.H.F. Sweepstakes appearing in June QST': (1) W3KWH (Western PennsyIvania) should have been listed in the multioperator category, and WABISY as the single-operator winner for that section. (2) The operator of K 0 TLM (Mo.) was WA2BXE. (3) The Fastern Mass. multioperator entry listed as WA1DGH should have appeared as W1AF, with K1PAM and WA1DGH as operators. (4) Certificate winner for the Ranconas Valley ARA was WB2LWZ, whose call appeared as WB2LZW. Apologies to all our victims!

In the Novice Roundup summary in June QST, the call of WN1IDP, who placed third in the Eastern Massachusetts section, appeared as WN1DP. Sri, OM.

1968 Board Meeting Minutes
Mail Exams For Shut-Ins
Canadian Changes in 160 Meters
Some Techs Eligible For Norice

WA4 QSL BUREAU CHANGES

The (2SL Burean for W.t. WBt and WNt amateurs has been transferred from Richard Tesar, W.AtWIP, to J. R. Baker, W'4LR

140: Orange Street
Mrlborme Beach, Florida 32951
Mr. Baker formerly operated the W1 QSL Burean, when he held the call W 1JO.J.

Hearty thanks to WAłWIP for a job very well dane! (Other info on the Bureau: page 82 this isisile.)

TECHNICIANS ELIGIBLE FOR NOVICE

A new interpretation of its rules by FCC permits Techuicians who have never had any other license to take the Novice test. The new privilege came in a letter answering the guestion of an individual. Pertiment purtions are:
"The Commission's Rules permit a current holder of a Techuician Clitss umateur license who has never been issued a Novice Class amateur license or never hats been a former hulder of an anateur license of any class to apply for the Novice Class license. . . "' finmes E. Barr, Chief, Safety und Speciul Laadio Scrviess Burcau.
Applicants for Novice locate a volunteer examiner themselves. This person must be a citizen uver 21 , who holds a (eneral, Advanced or Extra Class license: or who holds a commercial radiotelegraph license issued by FCO: or is currenily the operator of a manually-operated radiotelegraph station in the service of the U.S.

The applicant secures an FCO form 610 from atuy office of the Commission. He gets together with his volunter examiner and takes the code lost. He then sends the form 610 and a letter hy the examiner certifying to the resiults of the code test to the FCC, Gettysburg, Pa. 173:5. (ARRI, forms is-tis may be used in place of the letter: send a stamped, self-addressed envelope to Hq. with your request.)

The test papers will be sent in two or three week to the enaminer, not the applicant. The material must be returned in twenty days.

CANADA REVISES 160 METERS

Toaccommodate the expansion of the Loran-t r. Lionavigat ion service, reported here last month, the Calazdian Department of Tramsport has drafted a new list of frequency atssiguments for 1.s to 2.0 MHzz . (See chart on p.69). The probable effective date of the rules chauge is July 1.

QST regrets to report the death, on May 13, 196s, of Jack Doyle, W0GPI -- ARRL director from the Central Division for more than eight years, and a member of the ARRL Executive Gummittee for nearly half that time. He had to resign bott posits in January 1963, when the illness of a soll required him to put more time ints the family automobile agency in Milwaukee, Wis. Jack was a past president of the Wisconsin Comuril of Radio Cluts, a Life Member of the Milwankee Radio Amateur Club, served several hitches as vice president and director, and at the time of his death was editor of its paper, Hamutour Chatter. In 19\%, W0GPI served ats general chairman for the ARRL National Convention in Milwaukec. Jack will be keeuly missed by the amateurs in the Central Division, and by the gang "hehind the Codfish Curtain," as Jack referred to amything east of the Hudson.

MORE AMATEUR RADIO WEEKS

Amateur Radio Week has been proclaimed in Florida by its Governor for the past 12 years: this year it:s June 16 through 23 . In Cleveland, it was Ipril $23-30$, keeping step with the state of Ohio, whose date coincides with the Dayton Hamvention. Back east, the "whaling city," New Bedford, Mass., chose May 26 through June 2 for its observance.

VISITORS MAY USE VOX

Another in a series of FCC interpretations of its rules concerns the use of voice-rperated break-in by unlicensed visitors. Again, this is unt a new rule, but it is worth an occasional repeat.
"Siection 97.79 of the Rules provides that whon an anmateur station is used for telephony, the station licensce may permit any person to transmit by voice, provided, that during such transmissions call signs are annomuced as preseribed by section 97.57 of the rules and a duly licensed amateur operator maintains actual control over the emissions, including turning the carrier on and off for each tramsmission and signing the station off after communication with each station has been completed.
"It will be noted that while unlicensed persons may not manipulute the controls of an amateur traumitter, they may transmit by voice and announce call signs, except for signing the station off after communication with each station has been empleted. The same limitations apply in
the ase where a telephone station uses vuice controlled operation (VOX)."

The Commission ubviously equates "turning the carrier off and on" with action of a switch: thus, the fact that the transmitter comes on when the visitor talks does not make his use of the transmitter illegal in itself. Note, however, that the liceused operator must be in a pusition to flip the switch in case of improper comments.

Elsewhere, the rules require the name of every person who speaks over the mike directly or otherwise to be entered in the log.

SHUT-INS WIN MAIL EXAMS

The Federal Communications Commission has adopted new rules proposed in Docket 17989 which allow shut-ins to take Advanced and Extra Class examinations under the supervision of a voluntecr. The League and one individual filed in support of the Docket: there were no opposition comments. The new regulations, which hecame effective June 17, are outlined below.
s97.28 Mail examinations for disabled applicants for Amateur Extra and Advanced Class licenses.
(a) The Commission may permit the examination for an Amateur Extra or Advanced Class license to he administered by a volunteer examiner selected by the applicant when it is shown by a Commission supervised examination because of protracted disability.
(b) The volunteer examiner for an Amateur Extra or Advanced Class license examination shall be at least 21 years of age and shall be the holder of a
class of amateur operator license equal to or higher tham the class of license for which the applicant is heing examined. The written portion of the examination shall be obtained, supervised, and submitted in accordance with the procedures set forth in §97.29(b).
$\$ 97.29$ Manner of conducting examinations.
(a) Except as provided by $\$ 97.28$, the examination for Amateur Extra, Advanced and General Classes of amateur operator licenses will be conducted by an authorized Commission employee or representative at locations and at times specified by the Commission. Note: When the applicant is entitled to examination credit for the code test under one of the provisions of $\$ 97.25$, an application may be submitted without regard to the 10 day limitation. The examiner's request should then state that a code test was not administered for that reason. The applicant should furnish details as ton the class, number, and expiration date of any Commercial radiotelegraph license involved.
$\$ 57.35$ Additional examination for holders of operator licenses obtained by mail.
(a) A licensee who holds an amateur license which was obtained by a mail examination under the supervision of a volunteer examiner may be required to appear for a Commission supervised license examination at a location designated by the Commission. If the licensee fails to appear for this examination when directed to do so or fails to pass such examination, the operator license involved shall be subject to cancellation. When a Novice, Technician, or Conditional Class license is cancelled under this provision, a new license will not be issued for the sume class operator license as that c:l :celled.

Draft Canadian Amateur Frequency/Power Level Plan in $1800-2000 \mathrm{kHz}$. Band

	A	B	C	D	E	F	G	H
British Columbia North of $54^{\circ} \mathrm{N}$. Lat.	1	0	0	1	0	0	0	0
British Columbia								
South of $54^{\circ} \mathrm{N}$. Lat.	0	0	0	0	1	0	0	1
Alberta	1	0	0	1	1	0	0	1
Saskatchewan	2	0	0	2	2	1	1	:
Manitoba	3	1	1	2	2	1	1	3
Ontario								
North of $50^{\circ} \mathrm{N}$. Lat.	3	1	1	0	0	1)	$1)$	2
Ontario								
South of $511^{\circ} \mathrm{N}$. Lat.	3	2	1	0	0	0	0	1
Province of Quebec								
North of $52^{\circ} \mathrm{N}$. Lat.	1	0	0	1	1	$1)$	0	1.
Province of (quebec								
South of $52^{\circ} \mathrm{N}$. Lat.	3	1	1	0	0	0	0	0
New Brunswick	3	2	1	0	0	$1)$	$1)$	0
Nova Scotia.	3	2	1	0	0	$1)$	$1)$	1)
Prince Edward Island	3	2	1	0	0	0	$1)$	0
Newfoundland Is. .	3	1	1	0	0	0	0	$1)$
Labrador.	2	$1)$	0	11	11	$1)$	0	11
Yukon 「erritory.	2	0	()	1	0	0	0	0
I istrict of MacKenzie	2	11	0	\because	1	0	0	1
I)istrict of Keewatin	1	0	0	1	\because	1	1	;
District of Franklin.	0	0	0	11	1	11	11	1

Frequency Band

A	1800-1	Hz.	E	1900 -- 1925
B	1825 ---1850	"	F	1925-1950
C	1850-1875	"	(1)	1950 --.. 1975
D	1875-1900		H	1975-2000

$"$
", $\quad 1-2.5$ night $\quad[011$ day
$\begin{array}{lllll}" & 2-50 & " & 200 & " \\ " & 3-101 & " & 410 & "\end{array}$

Behind the Diamond

Number 6 of a Series

After three months "on the road," Bichind the Diamond returns to Newington to talk about L. A. Norrow - much better known as Pete, W'IVG (but how Lorentr. gets abbreviated to Pete is beyond me!). He came to League headquarters in 1947 as assistant advertising manager and became manager four yeurs later.

Pete started in ham radio in 1.913 with a spark coil and the call WI in Springfield, Ohio. By 1916 he had the more-official designator SIOF , and after the First

World War became IVC at Cambridge, Mass. He moved to Hartford in 1920 as the first employee of the C.D. Tuska Company, formed by the ARRL's co-founder-secretary-QST editor, Clarence Tuska, to make radiof receivers. Our photo shows the two duriugh fecent visit (Yete at the left) examinigthe Tuska Type 225 ham receiver. After IV保, , ur subject held the calls $8 B Z J$, BAB, WMNI, WSDIE and W9VKF before trinding git 35 LaSalle Riond. Along the wiyePete werved as a Navy commutioulonisoficer it the South
 a lieutenaut cornminder:-
$W^{\prime} 1 V G$ is no slippigh ant from behind the diamond; he zrotired ffom full-time service as advertion manitger on May 3, but remains a condiftide to the hq. staff. But he'll have lots forto - he remains an avid temis player $\overline{\text { wa }}$ DI chaser, and likes contest operatin ion, mostly on c.w. He is also a contributor to the Hartford Surday Courant Magazine, with a weekly eryptogram. In the latter vein, ZRXT RV ARRL YHPY XR EUNU BRGGRJ VGRB DZZ ZUDIHU BUBNUGT DCL QST EDZT Dİ QF.

BOSTON EXAMS ONLY THURSDAY AND FRIDAY

The District FCC office at 1600 Custom House, Boston, Mass., 02109, will henceforth conduct exams for commercial and amateur licenses only ou Thursdays and Fridays: no appointment is necessary. Applicants should appear for examination between $8: 30$ and 10:30 A.m., and should apply for the highest class of operator liceuse for which they have prepared.

MINUTES OF THE 1968 ANNUAL MEETING OF THE BOARD OF DIRECTORS

The American Radio Relay League, Inc. May 3-4, 1968

1) Pursuant to due notice, the Board of Directors of The American Radio Relay League, Inc., met in anuual session at the shoreham Motor Hotel, IIartford, Connecticut, on May 3. 1068. The meeting was called to order at 9:33 a.m., with President Robert W. Denniston, WODS, in the Chair, and the following directors present:

Roemer O. Best, W5QKF, West Gulf Division Charles J. Bolvin, W4LVV. Southe:astern Division Robert Yurk Chapman, WleV, New England Division
Victor C. Clark, W 4 KFC, Ruanoke Tivisiou
Charles G. Cumpton, WOBUO, Dakota Division Gilbert L. Crossley, Wi3IA, Atlantic Division IIarry J. Dannals, WreTUK, Iudson Division Noel B. Eaton, VEBCJ, Camadian Division Sumner H. Foster, WOGQ, Midwest Division
J. A. Gmelin, WfiZRJ, Pacitic Division

John R. Griges, W6KIV, Southwestern Division Philip E. Haller, W@HPG, Central Division Alban A. Michel, WsIVC, Greal Lakes Division John H. Sampson, Jr., W7OCX, Rocky Mountain Division, (Vice Director, Acting)
Philip P. Spencer, W5LDH, Delta Division
Kobert B. Thurston, W7PGY, Northwestern Division
Also in attendance, as members of the Board without vote, were Warland M. Groves, W5NW, lirst Vice President; and John Huntoon, W1LVQ, General Manager. Also in attendance, at the invitation of the Board as non-participating observers, were Atlantic Division Vice Director Harry A. McConaghy, W:3EPC; Central Division Vice Director Edmond A. Metzger, W9PRN; New England Division Vice Director Bigelow Green, W1EAE; and Roanoke Division Vice Director L. Phil Wicker, W4ACY. There were also present Treasurer David II. Houghton; Honorary Vice President I'rancis E. Handy, W1BDI; Ceneral Counsel Robert M. Booth, Jr., Wiss ; Assistant General Manager Richard L. Baldwin, WIIKE; Communications BIanager George Hart, W1NJM ; Senior Assistant Secretary Perry F. Williams, W1UED; and Public Relations Consultant Don Waters.
i) On motion of Mr. (Chapman, the assembly stood in a moment of silent tribute to the late Dina E. Cartwright, WठUPB, former Great Lakes Division Director.
3) On motion of Mr. Best, unanimously VOTED that the Board adopts the agenda as distributed by the Secretary.
4) Un motion of Mr. (iompton, unanimously VOTED that the minutes of the 1967 Annual Meeting of the Board of Directors are approved in the form in which they were issued by the Secretary.
5) On motion of Mr. Chapman, untanimously VOTED that the Annual Reports of the Officers to the Board of Directors are accepted and the same placed on file.
6) Mr. Eaton, is Chairman, presented the report of the Finance Committee; Mr. Dannals, as Chairman, presented the report of the Plauning Committee; Mr. Best, as Chairman, read the report of the Membership and Publications Committee; Mr. Haller, as Acting Chairman, presented the report of the Public Relations Committee; Mr. Groves, as Chairman, presented the repurt of the Merit and Awards Committee; Mr. Denniston reported on the Frequenry Allocations Study Committee. During the course of the above, Associate Counsel Arthur k. Meen, VE3RX, and Techuical Director George (irammer, W1DF, entered the meeting.
7) On motion of Mr. Thurston, unanimously VOTED that the Annual Keports of the Directors to the Board of Directors are accepted and the same placed on tile.
8) At this point, supplementary oral reports were offered by the Officers of the League and the Geueral Counsel.
9) The Board was in recess from 10:43 A.m. until 3:35 P.m. for the purpose of informally discussing the contents of the committee reports and other matters not requiring formal action by the Bnard, and for luncheon.
10) On motion of Mr. Chapman, unanimously VOTED that the Board commend President Robert IV. Denniston, WODN, (eneral Manager John Huntoon. W1LVQ, and League (imsultant Phil Rand, W1DBM, for their outstanding work with the various governmental akencies resulting in obtaining additional operating privileges in the 160-meter band.
11) On motion of Mr. Chapman, after discussion, unanimously VOTED that the Planning Committee study the feasibility of ARRL recommending limited segments in amateur hands for select contest operations.
12) On motion of Mr. Chapman, after extensive discussion, unanimously VoTED that the League iponsor achievement awards for tive-band DXCC ronfirmed contacti, identified as 5B-DLCCC; amy authorized mode of communication would be recognized, and rules and regulations set forth for this achievement would be promulgated by the liummunications Manager; only contacts made after date of promulgation will be considered.
13) On motion of Mr. ('hapman, unanimously VOTED that the Board authorizes and encourages the General Manager to continue the employment of professional public refations consulting services.
14) Moved, by Mr. Chapman, that the utfices of second and third vice presidents of the League he urcunied by persons other than directors on vice directors presently holding office. But after discussion, with the consent of the second, the motion was withdrawn.
15) On motion of Mr. Chapman, after discussion, manimously VOTED that each director, at his own discretion, is authorized to attend one Executive ('ommittee meeting each vear, with funding chargeable to authorized director division expenses.
16) On motion of Mr. (hapman, unanimously Vo'TED that a study under the direction of managsment be made that will provide the League with guidance for best serving our government in the event of total mobilization for war or national emergency purposes, this study to consider the utilization of ARRL employed personnel, building and laboratory farilities, as appear's suitable and practical.
17) Moved by Mr. Thurston, that the General Counsel and General Manager eontact the Post. ()ffice Department as soon as possible, but no later than December 31, 196 , concerning the feasibility of establishing procedures for the handling of overseas shipment of (2SL cards; if feasible, that necessary steps be taken to establish the outgoing OSL Burean as recommended in the Planning Committee's Report dated May 1, 1068. After extensive discussion, on motion of Mr. Bolvin, VOTED to amend the motion by striking all after the words. "if feasible," and replacing with, "the (ieneral Manager shall prepare a presentation on proposed methods and costs, for consideration hy the Executive Committee." The question being on the motion as amended, the same was ADOPTED, 12 votes in favor to 4 opposed.

1x) On mution of Mr. Cmelin, unanimously VoTED that the (ieneral Manager institute a study on the feasibility of establishing a dialogue with manufacturers of solid state hi-fi equipment with the view of estahlishing procedures for eliminating r.f. interference to home audio equipment and sound s.ystems.
19) On motion of Mr. Cimelin, after discussion, unanimously VOTED that the Membership and Publications Cummittee study the possibility of instituting a new League publication in the area of f.m. and a.m. repeater equipment and techniques.
$20)$ Moved by Mr. Gmelin, that the name of The American Radio Relay League be changed to the "American Amateur Radio League," to better reflect the actual composition of the organization. But, after discussion, with the consent of the second, the motion was withdrawn.
21) Moved, by Mr. Gmelin, that the General Manager and General Counsel contact the Federal Communications Cummission with the suggestion that the FCC provide for all data for the Novice examination be placed in the form 610 , thus eliminating the reparate volunteer examiner's letter now required; but there was no second, so the motion was lost.
22) Moved, by Mr. (imelin, that the Board of Directors instruct the Communications Manager to rewrite Article 4 of the Rules and Regulations of the Communications Department by adding the

OFFICERS' REPORTS AVAILABLE TO MEMBERS

Vach year the officers of the league make comprehensive written reports to the directors. The Board has made these reports available to interested members, in a volume which also includes reports of the directors. The cost price is $\$ 1.00$ per copy, post paid. A cony of the financial statement only is available without eharge. Address the General Manager. IRRL, Newington, Conn. 06111.
following: "No person shall hold the utfice of Section Communications Manager while at the same time holding the office of Director of the League." After discussion, moved hy Mr. Thurston, to amend the motion to exclude dual holding of National Tratfic System positions as well; but there was no second, is the motion to amend was lost. After further disrussion, on motion of Mr. Bolvin, VOTED, 14 votes in favor to 1 opposed, to strike the text and substitute therefor the following: "that the President appoint a committee to study the current field organization, both elective and administrative; the committee shall recommend to the Board such changes in structure and qualifications as it finds necessary." Mr. Chapman requested to be reported as voting opposed. The question then being on the motion as amended, the same was unanimously ADOPTED.
23) Moved, by Mr. Gmelin, that the General Manager is instructed to institute a study to find new ways of combatting malicious interference problems found on the amateur bands. After extensive discussion, moved by Mr. Bolvin, to amend the motion by striking the text and substituting therefor the following: "that the Board recognizes the serious developments relative to malicious interference and use of questionable language in our umateur bands hy a relatively small number of amateurs. The Board favors a program to assist regulatory agencies and the courts in bringing such practices to a halt." After further discussion, on motion of Mr. Chapman, unanimously VOTED that the matter is laid on the table.
21) Moved, by Mr. Gmelin, that the uffice of Secretary/General Manager and Editor of QST be held hy separate individuals, each responsible directly to the Board of Directors. After extensive discussion, the motion was rejected. Messrs. Gmelin, Griggs and Spencer requested to be recorded as voting in favor.
25) Moved, by Mr. Cmelin that the Board of Directors through the Communications Manager establish rules and regulations concerning affiliated radio networks as follows:

A double coup was pulled off by the Cleveland gangthey secured proclamation of amateur radio week in Cleveland by Mayor Carl B. Stokes, and got the mayor on the mike from City Hall, sending a message to Councilman Margaret McCaffery's son. Left to right seated, the councilman, the mayor, the operator WA8QFK; standing, WA8PQL, W8UDG, K8ONA, K8LMF, W8SZH.
(Photo by WA8PCT.)

1. In addition to maintaining aud encouraging a National Traffic System, the League shall invite other traffic and emergency networks to affiliate with the ARRL and be so publicized.
2. A network may affiliate with the Letgue if it expresses the sympathy with and allegiance to the aims and policies of the League in uc cordance with the regulations determined by the Communications Manuger, and which, upon investigation, is found to be worthy and qualified.
3. The network man:uger or president of an affiliated network mav apply to the Communications Manager for a supply of ARRL ARPSC Affiliated Netiwork certificates, which may be issued by the net manager or president to any qualified member of the network.
4. The affiliation of any such network may be terminated by the Communications Manager at any time for any cause deemed prejudicial to the best interests of the League, or by the net officers, if they so desire.
5. The Communications Manager shall be responsible for the general supervision of the ARPSC affiliated networks and their welfare, and for the relations existing between them and the League; he shall keep records and conduct the necessary correspondence with them to effect these relations.
After discussion, on motion of Mr. Dannals, unanimously VOTED to amend the motion to provide that the matter is referred to the conmittee making a study on the overall field organization. The question then being on the motion as amended, the same was unanimously ADOPTED.
26) The Board was in recess for dinner from 6:20 P.M. until 8:06 P.M.
27) On motion of Mr. Clark, after discussion, unanimously VOTED that the Board of Directors (1) establish trial Rules and Regulations Concerning Advisory Committees, (2) that these conform in principle to the guidelines set forth below, and (3) that a Working Group be authorized to accomplinh any retinements deemed necessary to improve clarity and cogency of the proposed guidelines, and to develop, within the next ninety days, detailed supplemeutary procedures to facilitate implementation of such Advisory Committees, as these committees may be voted into existence by the Board of Directors. said Working Group to consist of three Board members appointed by the President, with the General Manager serving as a fourth and ex-officio member of the group, and, further, that not more than two such advisory committees be established for an experimental period of eighteen months.

RULLES AND REGLTLATIOVS CONCERNIVG ADVISORY COMMITTEES

The following rules and regulations provide for the establishment of national advisory committees, composed of qualified amateurs, to undertake studies, review proposals. and to communicate advice, recommendations and expertise from the League's membership to its management in various sipecialty areas of amateur radio:

1. The rreation (or dissolution) of any Advisorv Committee shatl be the determination of the Board of Lirectors or Executive Committee at a regular meeting.
2. The petition for establishment of an Advisory Committee shall outline the purpose of the Committee, the proposed scope of its activities, and the means hy which the Committee pro-

Foothills ARC president WA6QIC and ARRL Pacific Division director W6ZRJ present the February QST Cover Plaque award to David M. Krupp for "Attache Case RTTY," and congratulate WA6NIL, right, for winning the "homebrew" equipment contest judged by W6ZRJ and Mr. Krupp.
poses to communicate among its membership for the purpose of discussion, debate, and to reach a consensus on matters under study. This petition is to be presented to the Board by the sponsoring Director.
3. The initial membership of the Advisory Committee shall be selected by the President of the League, employing such consulting assistance as he may deem desirable to seemre the services of those best able to provide the expertise sought.
4. Committee membership, for practical reasons, should be limited to fewer than ten, and the exact number and any geographical or other proposed limitations on committee make-up shall be outlined in the original petition for ereation of the Committee.
5. A method shall be proposed by the petition for selection of a Chairman, and his responsibilities shall be outlined in detail.
6. A specified term of office shall be established for Advisory Committee members, and a practical method of selection of replacements outlined. New members are to be recommended by the committee and appointed by the President prior to taking office.
7. Advisory Committee authority shall be limited to the preparation of recommendations within its specialty area, based upon consultation with segments of the membership and upon Committee studies; these are to be presented to the Staff and/or Board as appropriate to the situation.
8. One member of the Board of Directors shall be designated by the President as a consultant and ex-ofticio member of the Advisory Committee, acting as a point of contact between the Committee and the Board.
9. One member of the Headquarters Statf shall be designated by the President as a coordinator and ex-officio member of the Advisory Committee, to provide Staff assistance. where required to assure viability of the Committee through adequate communication of information pertinent to the
activities of the fommittee, to initiate action to replace members who resign, to secure the rexignation of those who berome inactive, and to assist in any way possible to improve (yommittee effectiveness in proriding a link to the membership and performing as a sounding board for management reference.
10. Headquarters Staff persunnel, wherever appronriate, shall refer membership inquiries and proposals to the Chairman of the cognizant Advisory Committee for consideration and comment, routinely informing Advisory Committee members of substantive matters impinging upon the Committee's specialty area and soliciting the Committee's views, although these need not be binding.
11. The identity and addresses of the Advisory Cummittee members shall be routinely carried by $Q S^{\prime} T$, to facilitate direct member contact.
28) (On motion of Mr. Clark, after discussion, unanimously VOTED (Mr. Eaton abstainiug) that with reference to Docket 15928, Report and Order, dated August 24, 1967, the Board instructs the (ieneral Manager to petition the FCC to modify the amendment to Section 97.7 of the Commission's rules to hold in abevance any action concerning the frequency segments $50.0-50.1 \mathrm{MHz}$. and 50.0 to 50.25 MHz ., so that pending further study these frequencies will continue to be available to amateurs holding Technician Class and higher grade licenses.
29) On motion of Mr. Bolvin, after discussion, unanimously VOTED that the Membership and l'ublications Committee give early consideration to a publication directed at the potential amateur in the 12 - to 16 -vear age group.
30) On motion of Mr. Bolvin, after discussion, unanimously VOTED that when more than one QSL Bureau is established in a single call area, each bureau is to be considered a separate entity for the purposes of expense allocations.
31) Moved, by Mr. Bolvin, that the President assign to the appropriate committee a study directed at eventual relocation of Novice licensees from $: 1$ Mc. to $2 \mathrm{~s} M \mathrm{c}$.; subject to such relocation, the study would also consider expansion of the $21-\mathrm{Mc}$. phone sub-band. After discussion, on motion of Mr. Dannals, unanimously VOTED to amend the motion by striking the text and substituting therefor the following: "that the President assign a committee to study overall band utilization, particularly addressing itself to the various modes of operator preference in use; this study should continue over a two-year period, ending early in 1970, and should
(Continued on page 76)

BOARD THANKS VOLUNTEER A.R.R.L. OFFICLALS

In reviewing the work of the League for the past vear the ARRL Board of Dircetors again found that much of our progress is due to the volunteer efforts of elected and appointed officials in the administrative and field organization of our association. By unanimous action the Board has again expressed its sincere thanks to the Vice-Directors, assistant directors, SCMs, SECs and QSL Managers - an action which we know all amateurs will heartily endorse.

Portrait of a working Board. Here New England Vice Director Green (standing-upper left) and Central Division Vice Director Metzger (standing-right) act as tellers for election of Executive Committee.

Canded $7 \mathrm{mpresscons:}$

A Pictorial Report on the 1968 ARRL Board Meeting

BY DON WATERS*

Cme, sil, here with me as a silent spectator at the 1968 Annual Meeing of the Board of Directors. Here, eacth year, the men who represent a great membership organization assemble to make its policies and direct its aftairs. 'This is the culmination of weeks and months of correspondence, on the air communications and club visits by each Dirertor and his field staff, of year-round meetings of the Executive Committee and other working committees of the Board, and of concentrated effort by the headquarters staff.

As spectators we can only listen and observe. But there are no silent spectators among the sixteen Board members present. Each of these men represents a lifetime of deep personal involvement in amateur radio. Each is here, nut for personal gain - the positions of Directors and Officers of the League carry no pay - but
*Public Relations Consultant, ARRL.

After dinner sessions are standard at Board Meeting often lasting into late hours. Here group listens to report on public relations program.
hecullse each has won his pusition of leadership by virtue of demonstrated ability, commitment and service.

From morning to late at night, for three days, the present and future of amateur radio are discussed, argued, explored: constituent views and regional problems are expounded: and months of field work and committee activity come into focus.

There is a feeling of common purpose here, but differences of opiniou are frequent and sometimes sharp. Proposals reflecting much thought and effort are made: sume get short shrift, but all are heard. Compromises are made; good ideas are explored, hammered into practical form, and become formal Board actions.

This is representation really at work, the democratic process at its most visible. This is an ARRL Board meeting.

057

Concentration and attention are mirrored in faces of (from left) Pacific Division Director Gmelin, Southwestern Division Director Griggs, First Vice President Groves and Midwest Division Director Foster.

Ballots are collected following a vote, while Dakota Division Director Compton (standing-right rear) raises a new point.

Treasurer Houghton (center-arm outstretched) discusses League finances as Finance Committee members Compton (left) and Eaton listen attentively.

Roanoke Division Director Clark presents a Planning Committee recommendation as Board colleagues follow the text.

Canadian Director Eaton (left) and New England Director Chapman give thoughtful consideration to a proposal.

"Silent Spectators" at Board Meeting invited guest table include Communications Manager Hart, Public Relations Consultant Waters, Roanoke Division Vice Director Wicker and Central Division Vice Director Metzger.

President Denniston, here in a thoughtful mood, is effective meeting chairman and occasional umpire.

After many hours of informal and formal sessions, Board members may have lost some of their energy but none of their concentration.

RULES FOR LIFE MEMBERSHIP

1．The Board of Directors has established a provision for Life Membership in The American Radio Relay League， Inc．，etfective August 1， 19667.
2．Life Membership is granted only by the Executive Committee，upon proper application from a Full（U．S．or （anadian licensed）Member．
3．The Life Membership fee is twenty times the ammal dues rate，or currently $\$ 130$ ．
4．An applicant may chouse an alternative time－payment plan of 8 quarterly in－ stalments，$\$ 16.25$ each．In such instance he will be provided an interim two－year Full Membership certificate．Upon wompletion of the payments，life Membership will be granted．
5．Life Memberships are non－fransferable， and dues payments are nom－refundable． In the event an applicant is unable to complete payments on the instalment plan，he will be given a term of mem－ hership，at the annual dues rate，com－ mensurate with payments received．
6．Other licensed amateurs in the same family，and at the same address，of a Life Member may retain or obtain Family Membership upon payment of the annual dues of $\$ 1$ ，but without receipt of（QST．The dues of the Family Member may be prepaid for any number of years in advance，but there is no special rate．
7．Application forms are available upon request from the Secretary，ARRJ， Newington，Comn． 06111.
（Continued from pape グふ）
consider the effects of the new regulations as they luecome effective．＇The question then being on the motion as amended，the same was unanimously ADOPTED．

32）Mored，hy Mr．Bolvin，that the Board authorize travel expenses for vice directors to attend one official Board meeting during his term of office； it is the intent of the Board that the vice director utilize the authorized expenses to attend the first official Board Meeting after his election but such authorization shall not he limited to a specific meet－ ing．After discussion，un a roll－call vote，the motion was rejected， 6 votes in favor to 8 opposed．Those directors voting in favor were Messis．Best，Bolvin， lannals，Griggs，Haller and Sampson；those voting opposed were Messrs．Chapman．Cumpton．Crossley， Eaton．（imelin．Michel，Spencer，and Thurston； Messrs．Clark and Foster abstained．
：3i）Moved，by Mr．Bolvin，that nets which are effectively clubs，with＂on the air meetings，＂may affiliate with the League under the existing rules for affiliated sucieties．But，after discussion，the motion was rejected．

34）On motion of Mr．Griggs，after discussion， unanimously VOTED that the General Manager is instructed to authorize a change in D．XCC require－
ments for additional country credits hermitting DXCC members having 300 countries or more to send in CSL cards in additional increments of 5.
35）On motion of Mr．Griggs，after discussion， unanimously VOTED（Mr．Eaton abstaining）that the General Manager and General Counsel are hereby instructed to confer with the Federal Com－ munications Commission relative to its adoption of a policy in conducting amateur license examina－ tions that will permit an applicant to receive credit for passing the code test for（ieneral Class or higher whether or not the applicant also passes the written test taken at the same time，and to permit the appli－ rant to return within $1(0)$ days for reexamination on the written test．

86）Moved，by Mr．Griggs，that the（ieneral Manager is hereby instructed to authorize a change in the ARRL DNCC contest rules to allow scoring and separate listing of single operator，single band operation．But，after discussion．the motion was rejected， 6 votes in favor to 11 opposed．Messrs． Griggs and Thurston requested to be reported as voting in favor．

37）Moved，by Mr．（iriggs，that the General Manager is hereby instructed to permit the sale of League publications at a discount to Section Com－ mumications Managers and to limit such sales to one copy each year of each publication desired． After discussion，on motion of Mr．Clark，unani－ mously VOTED to amend the motion by striking the text and providing that the Cieneral Manager shall forward a free cupy of the latest edition of the ARRL Handbook to each Section Communications Manager upon election．The question then being on the motion as amended，the same was unanimously ADOPTED．

38）Moved，by Mr．Criggs，that reation of an advisory committee for DX be approved in ac－ cordance with the Rules and Regulations concerning Advisory Committees，with any additional data re－ quired for compliance with the rules，as published， to be furnished by the sponsor and approved by the lixecutive Committee prior to implementation of the committee．But，after extensive discussion，on motion of Mr．Chapman，the matter was laid on the table．Mr．Griggs requested to be recorded as op－ posed to tabling．

39）On motion of Mr．（．riggs，after discussion， unanimously VOTED that creation of an advisory committee for VHF Repeater operation be approved in accurdance with the Rules and Regulations con－ cerning Advisory Committees，with any additional data required for compliance with the rules，is published，to he furnished by the sponsor and ap－ proved by the Executive Committee prior to imple－ mentation of the committee．
（0）On motion of Mr．Best，unanimously VOTED that the Board expresses its sincere thanks and appreciation for the untiring work and devotion to the League and to amateur radio by the vice direc－ tors，assistant directors，SCMIs，SECs，USL Man－ agers and all the members of the League，and it is the sense of the Board that their contribution to amateur radio has done much to enhance amateur radio in the field of public service，convenience and necessit．y．

41）On motion of Mr．Best，unanimously I＇OTED that the League expand its program of assistance to amateur organizations overseas，with particular emphasis on local＂rlub－to－club＂liaison，in urder to continue the development of the growth and strenkth of amateur radio throughout the world．

WHO THE DEVIL IS WHO?

Fourth in a Series of Call Contersion Charts

Here are additional calls of amateurs taking advantage of new rules which allow Extra Class licensees licensed 25 years ago or Ionger to accuuire two-letter calls. If you should be listed here, let us know by post card right away.

Now	Was	Nom	Wus	Nom	1Fix	Nomo	1 Fas
W1DB	W10.3()	$\mathrm{K}+\mathrm{AQ}$	MB+CTH	K6.10	W6VTR	1188 CH	K8LNA
W1ES	WiAlASM	K+A'T	W+DIY	K6isA	W6FHI	$118 \mathrm{D} \%$	W8FGX
W1FE	WIALJ	K+CR	W+DYX	K6BB	W6BBE:	W8EC	W8WNF
WIE,	WILFR	64DC	W+SZT	W6BL	WRSKJ	W8ED	W8BJD
WiHF	W1JJZ	K+FS		166 CB	W6trha	WREN	W8ZVC
W2AC	W2MSQ	W4HO	Wd2MMN*	K6CW	W6LEE)	W8EX	W810F
W'2BK	W2LNP	WtLK	W+LPW	K6DM	W'6LHZ	W8F:	IV8URD
W2BU	W2sHz	W40Q	Wtrok	K6DR	W6EOU	W9AD	W9DPI
W2DD	W'eVZV	Wtor	W4BYR	W6DO	K6PII	W9BE	W9.JKC
K2DX	W2VC\%	Wrab	W+ZYS	K6DY	WOZWK	$W^{1 / 9 C T}$	WGEUT
W'2HE	WB2CPPE	Wtirs	W'2EDF	K6EL	W6AHC	W9CV	K9KND
W20K	W'2ALK	W+WS	Wto HA	W6FP	W6QWG**	W9DC	W9SGB
W2PK	W'zZHI	W'YF	W ${ }^{\text {H/HAV }}$	WG.JO	WGIYYM	W9DE	W9MFW
W2QL	K2DTZ	W5EU	W5DOV	W6NM	W'2NOJ	W0BN	W'ouk
W3EI	W3BCM	W'5F.	W5RIH	W6RJ	W6BNK	W¢¢C	W5PHB
W3NL	K3VAB	W5GR	W5LGG	W6WH	WhFis'T	Migue	W6O2N
W3NK	W3RMI	W5HB	W5QPI	W7IR	W7PGX	Wugi	WGNLH
W3NW	W3RBE	W5HF	k5IIX	W7IV	K7HQN	WhH11	WYDFHC
K4AC	W4YJJ	W'5KX	W5LNK	W8BP	W\%SBQ	WoHQ	W'ロPBU

42) The Board was in recess from 9:52 until 10:00 р.м.
43) On motion of Mr. Best, the following resolution was unanimously ADOPTED:

WHEREAS, one of the many objectives of the Federal Communications Commission and the American Radio Relay League is to attract voung men and women to amateur radio and the technical studies which pursue therefrom, and, WHEREAS, the cost of administrating the amateur radio service, including giving and conducting operator license examinations is borne by the applicants and the ansiteurs, and, WHEREAS, the young men and women whom the Commission and the League are desirous of attracting to amateur radio are usually attending sehool except on Saturdays, Sundays and holidays, and, WIIEREAS, many others desirous of undertaking examinations fur original or higher licenses in the amateur radio service are employed on week days except on Saturdays, Sundays and holidays, NOW, THEREFORE BE IT RESOLVED that the Learue request the Nederal Communications Commission to hold examinations for application to the amateur radio service from time to time on Saturdays.
44) Moved, by Mr. Best, that with no criticism of the Executive Committee's negative report on Minute 63, 1967 Board meeting (Directors' Letter 1291), to allow 'Technicians to operate in the Novice bands, power limitations and rules as applied to Novices to be the same as contained in the Rules and regulations of the FCC, a survey be made as to the opinion of League members, especially Novices and Technicians, whether this would be helpful in their advancement to a higher class license as recommended in the League's advocation of incentive license. After discussion, moved by Mr. Dannals, to amend the motion by striking the text and substituting therefor the following: "The League requests the Federal Communications Commission to amend Section 97.9 (f) of the annateur regulations to permit an opportunity to obtain a Novice license by present holders of the Technician Class license as well as by presently-unlicensed former holders of any class of amateur radio license."

After further discussion, on motion of Mr. Bolvin, VOTED, 9 votes in favor to 4 opposed, to further amend the motion by adding the restriction that former license holders shall be limited to a waiting period of not less than two years; Mr. Thurston requested to be recorded as voting opposed. and Messrs. Chapman and Eaton as abstaining. The question then being on Mr. Dannals motion as amended, the same was ADOPTED, 12 votes in favor to 2 opposed. Moved, by Mr. Crossley, to further amend the motion to provide that a Novice license can be obtained not more than two times. After further discussion, on motion of Mr. Gmelin, unanimously VO'TED that the matter is laid on the table.
45) On motion of Mr. Haller, after discussion, unanimously VOTED that the General Manager is authorized to negotiate with David Bell Productions to produce a color film on amateur radio slanted to interest young people in the hobby.
46) On motion of Mr. Haller, the following resolution was unanimously ADOPTED;

WHEREAS, L. A. Morrow, WiVG, has served the American Radio Relay League faithfully and well as Advertising Manager for 21 years, and. IVIEREAS, he has been throughout that time an example of utmost devotion to duty and thereby has contributed to the growth and stature of the League and amateur radio, and, WHEREAS, he retires from the League's active staff on May :3. 1!68, NOW THEREFORE, BE IT RESOLVED that the Board of Directors of the American Radio Relay League in Annual Meeting assembled do hereby express to L. A. Morrow, W1VG, their deep appreciation for his long and diligent service to the League and amateur radio.
47) On motion of Mr. Spencer, after discussion, unanimously VOTED that the 1969 Annual Meeting of the ARRL Board of Directors will be held in the Oity of New Orleans.
48) On motion of Mr. Spencer, after discussion, unanimously VOTED that in order to give proper recognition for the outstanding contributions of deserving individuals, a certificate of merit be added

Abstract

25 and 50 Year Pins The Board of Directors voted to establish 25 and 50 year pins for those ubo bave been continuously members of the League for those lengths of time. If you qualify for either mark, please send a postcard to Hq. with your complete name, call and address the one you use for QST, pleasef complete uith zip code, so ue may start on a mailing list. Pins uill not be arailable for sereral weeks, but we'll bandle requests on a "first come, first served" basis, so let's bave your request promptly.

to the list of certificates now available to Section Communications Managers and Directors for issuance within their respective iections and/or divisions.
49) Moved, by Mr. Spencer, that the Planning Committee study the feasibility of an alloration for Technicians on the 10 -meter band from 29.5 to 29.7 Mc., phone and/or c.w. But, after discussion, the motion was rejected, :3 votes in favor to 12 opposed. Messrs. Griggs and Spencer requested to he recorded as voting in favor, and Mr. Eaton as abstaining.
50) Moved, by Mr. Michel, that in the belief that the Grandfather's Clause of 1952, whereby amateurs who were licensed in 1917 or prior thereto were granted the Extra Class license without examination, is now outdated and unjust, that ARRL propose to the Federal Communications Commission through accepted channels that the 1952 clause be updated and changed from a time span of 35 years from the date that the amateur received his first amateur license. But, after discussion, the motion was rejected (Mr. Eaton abstaining).
51) On motion of Mr. Dannals, unanimously VOTED that the Board commends the members of the Intruder Watch for their fine effort, and the Assistant General Manager for his management control of this valuable program; it is recommended that the activities and results of actions initiated by this dedicated group of amateurs be reported neriodically in our official journal QST.
(62) On motion of Mr. Dannals, unanimously VOTED that the creation of an Advisory Committee for Contests is approved in accordance with the Rules and Regulations concerning Advisory Committees, with any additional data required for compliance with the rules as published to be furnished by the sponsor and approved by the Executive Committee prior to implementation of the Committee.
53) On motion of Mr. Crossley, unanimously VOTED that the General Manager is hereby authorized to reimburse the division directors for actual expenses incurred by them during the year 1968, in the proper administration of ARRL affairs in their respective divisions, up to amounts as follows:
Canadian Division Director $\$ 1500$
Atlantic Division Director 400
Central Division Director

Dakota Division Director 800
Delta Division Director. 2400
Great Lakes Division Director 2400
Hudson Division Director 2200
Midwest Division Director 1500
New England Division Director. 4400
Northwestern Division Director 2200
Pacific Division Director. 3000
Roanoke Division Director 1500
Rocky Mountain Division Director 1600
Southeastern Division Director 2000
Southwestern Division Director 2 S00
West Gulf Division Director 400
54) On motion of Mr. Chapman, unanimously VOTED that to continue the Board's policy of reimbursing Section Communications Managers and QSL Managers of the League for certain travel in furthering ARRL organizational activities, the General Manager is hereby authorized to pay during the year 1968 a total amount not to exceed $\$ 12,500$ under terms prescribed by the Communications Manager for SCMs, and the General Manager for QSL Managers, following the general pattern established by the Board.
55) On motion of Mr. Thurston, unanimously VOTED that, to continue the Board's policy of reimbursing section Einergency Coordinators for certain travel in furthering ARRL organizational activities, the General Manager is hereby authorized to pay during the year 1968 a total amount not to exceed $\$ 9,500$ under terms prescribed by the Communications Manager following the general pattern established by the Board.
56) On motion of Mr. Griggs, unanimously VOTED that to continue the Board's nolicy of reimbursing National Traffic System officials above the section level for certain approved travel in furthering ARRL organizational activities, the General Manager is hereby authorized to pay during the year 1968 a total amount not to exceed $\$ 6,000$ under terms prescribed by the Communications Manager following the general pattern established by the Board.
57) On motion of Mr. Best, unanimously VOTED that the General Manager is hereby authorized to pay during the period January 1, 1969, and the 1969 Meeting of the Board, expenses against usual authorizations for administrative and committee operations in no greater amounts than 1968 authorized amounts.
58) On motion of Mr. Spencer, VOTED, 11 votes in favor to 4 opposed, that the Board recesses at $11: 22$ р.м. The Board reconvened at $9: 10$ А.м. on May 4, with all directors and other persons herein hefore mentioned in attendance except Messrs. Grammer, McConaghy, and Waters.
59) On motion of Mr. Bolvin, after discussion, unanimously VOTED that the League provide an award for members who have held unbroken League membership for 25 years, consisting of a lapel pin with the figures " 25 " in a small attached block below the diamond. During the course of the above, Secretary Huntoon departed from the meeting and Mr. Baldwin assumed the duties of recording the proceedings.

6(1) Moved, by Mr. Bolvin that since, in accordance with the direction of the Board at the May, 1967 meeting, the Merit and A wards Committee has considered the various forms for an award to recognize amateurs licensed 50 or more vears ago and recommends the following form in award requirements, the 50-vear award whall consist of an appro-

priate League lapel pin which shall include figures and words, " 50 Year Amateur." The qualification requirements shall be as follows: (1) The applicant must have been licensed as an amateur operator a minimum of 50 years prior to the date of application, (2) At the time of application the applicant must hold a valid and current amateur license of any grade as issued by his Government, (3) At the time of application the applicant must be a member of the League, (4) The burden of proof of eligibility will be the responsibility of the applicant; however, these items will be accepted as sufficient proof: (a) U.S. or Canadian certificate of amateur status (b) Foreign government certificates clearly indicating amateur or equivalent status. After discussion, moved by Mr. Gmelin, to amend the motion to yrovide that the applicant must have been a League nember for five years prior to application; but there was no second, so the motion to amend was lost. After further discussion, moved, by Mr. Spencer, to amend the motion to provide that recognition shall he for 50 vears of ARRL membership, in lieu of 50 years of amateur license; on a roll-call vote, the motion to anend was ADOPTED, 12 votes in favor to 4 opposed. Those voting in favor were Messrs. Best, Chapman, Clark, Compton, Crosslev, Dannals, Eaton, Ciriggs, Haller, Sampson, Spencer. and Thurston; those voting opposed were Messrs. Bolvin, Foster, (imelin and Michel. The question then being on the motion as annended, on a roll-call vote, every director voted in the affirmative so the motion was unanimously ADOP'TED.
61) On motion of Mr. Eaton, unanimously VOTED, at 10:10 A.m. that the Board does now resolve itself into a Committee of the Whole for ronsideration of the General Manager's sulary. By request, members of the Headquarters staff departed from the meeting. The Committce arose at 11:10 A.m., and staff members returned to the meeting. On motion of Mr. Eaton, unanimously VOTED that the Board adopts the report of the Committee of the Whole. At this point, Secretary Huntoon resumed the recording of the proceedings.
(62) On motion of Mr. Thurston, unanimously VOTED that the Board take up items 12 and 11 of the Agenda, concerning election of officers and members of the Executive Committee. 'The President appointed Messrs. Green, Metzger aud Wicker as Tellers.

The Candlewood Amateur Radio Club of Danbury, Conn. recently held an open house at the Danbury airport. A crowd examines typical ham gear in the left photo, while (above) WAIAWX uses himself as camera subject during an amateur TV demonstration. (Photos by KIOQJ).
63) The Chair announced the opening of nominations for the office of President. Mr. Thurston nominated Mr. Denniston. On motion of Mr. Chapman, unanimously VOTED that the nominations are closed and that the secretary cast one ballot naming Robert W. Denniston, WøDN, as President of the League for the ensuing term (Applause).
64) The Chair announced the opening of nominations for the office of lirst Vice President. Mr. Compton nominated Mr. Groves. On motion of Mr. Spencer, unanimously VOTED that the nominations are closed and that the Secretary cast one ballot naming Wayland M. Groves, W5NW, as First Vice President of the League for the ensuing term (Applause).
65) The Chair announced the opening of nominations for an additional Vice President. Mr. Chapman nominated Mr. Best. Mr. Haller nominated Mr. Crossley. Mr. Clark nominated Mr. P. Lanier Anderson, Jr. Mr. Dannals nominated Mr. Compton. Mr. Spencer nominated Mr. Carl I. Smith. On motion of Mr. Gmelin, unanimously VOTED that the nominations are closed. The Tellers announced the result of the balloting as follows:
Mr. Best. 7
Mr. Crossley . 1
Mr. Anderson . 3
Mr. Compton. 3
Mr. Smith . 2
Whereupon Roemer O. Best, W5QKF, was declared elected as a Vice President of the League for the ensuing term (Applause).
66) The Chair announced the opening of nominations for an additional Vice President. Mr. Clark nominated Mr. P. L. Anderson, Jr. Mr. Haller nominated Mr. Crossley. Mr. Dannals nominated Mr. Compton. Mr. Spencer nominated Mr. Smith. On motion of Mr. Foster, unanimously VOTED that the nominations are closed. The Tellers announced the result of the balloting as follows:
Mr. P. L. Anderson, Jr. 7
Mr. Crossley. 3
Mr. Compton . 2
Mr. Smith . .4
Whereupon P. Lanier Anderson, Jr., W4MWH, was declared elected as a Vice President for the ensuing term (Applause).
67) The Chair announced the opening of nominations for Honorary Vice President. Mr. Chapman nominated Mr. Handy. On motion of Mr. Thurston,
unanimously VOTED that the nominations are -losed and that the Secretary cast one ballot electing Francis E. Handy. W1BDI, as Honorary Vice President of the League for the ensuing term (Applause).
68) The Chair announced the opening of nominations for Secretary. Mr. Compton nominated Mr. Huntoon. On motion of Mr. Bolvin, unanimously VOTED that the nominations are closed. On motion of Mr. Chapman, unanimously VOTED that newlyelected Vice President Dr. Best cast one ballot electing John Huntoon, W1LVQ, as Secretary of the League for the ensuing term (Applause).
69) The Chair announced the opening of nominations for the office of Treasurer. Mr. Eaton nominated Mr. Houghton. On motion of Mr. Spencer, unanimously VOTED that the nominations are closed and that the Secretary cast one ballot electing David H. Houghton as Treasurer of the League for the ensuing term. On motion of Mr. Best, the Board unanimously expressed to Mr. Houghton deep appreciation for his 28 years of devoted service as Treasurer, (Applause).
70) The Chair announced the opening of nominations for director members of the Executive Committee. Mr. Chapman nominated Mr. Dannals. Mr. Thurston numinated Mr. Smith. Mr. Best nominated Mr. Compton. Mr. Haller nominated Mr. Crossley. Mr. Dannals nominated Mr. Eaton. On motion of Mr. Chapman, unanimously VOTED that the nominations are closed. The Tellers announced the results of the balloting as follows:
Mr. Dannals. 14
Mr. Smith . 16
Mr. Compton. 14
Mr. Crossley . 5
Mr. Eaton . 15
Whereupon Harry J. Dannals, W2TUK, Carl L. smith, WgBWJ, Charles (夭. Compton, WgBUO, and Noel B. Eaton, VE3CJ, were declared elected as members of the Executive Committee for the ensuing term (Applause).
71) On motion of Mr. Haller, unanimously VOTED that the Board extends its appreciation to the Field Engineering Bureau and the Amateur \& Citizens Radio Division of the Federal Communications Commission, and to the Telecommunications Division of the Department of Transport, for their continuing assistance and cooperation in administering affairs of the amateur body during the past year.
72) On motion of Mr. Haller, unanimously VOTED that the Board expresses its deepest appreciation to the several Vice Directors present for their demonstration of interest in League affairs by their attendance at this meeting, since Vice Directors incur the expense of attendance out of their own pockets and are to be commended for their interest in the American Radio Relay League and actions of the Board, their attendance and interest as well as their devotion to the League going beyond the call of duty.
73) On motion of Mr. Michel, unanimously VOTED that, to avoid conflicts between hamfests, conventions and similar events, the headquarters establish on a trial basis a register of such events for the next two years and publicize its existence in QST.
74) At this point the General Counsel rendered an extensive report on the lawsuit initiated in the Federal District Court of San Francisco by Dr. Donald A. Miller, W9WNV, against the League and its General Manager.
75) At this point, in view of his election as a Vice President, Dr. Best submitted his resignation as Director from the West Gulf Division, effective as of the conclusion of the meeting, and expressed his appreciation for the honor bestowed upon him as a vice president.
76) The Board was in recess for luncheon from 1:08 to 1:15 P.M
77) Moved, by Mr. Dannals, that the League request the Federal Communications Commission to amend Part 97 of the amateur regulations to enable former Novices, currently-licensed Technician Olass amateurs, and Novices now holding a one-vear Novice license, to apply for one additional Novice license having a term of two vears. After discussion, moved by Mr. (Imelin, to amend the motion by deleting reference to Technician Class amateurs; but the motion to amend was rejected. The question then being on the original motion, the same was unauimously ADOPTED (Mr. Eaton abstaining).
78) On motion of Mr. Chapman, the following resolution was unanimously ADOPTED:

VHEREAS, on December 21, 1067, Edgar D. Collins completed 25 years continuous service to the American Radio Kelay League, be it RESOLVED, that the Board of Directors, inceting in , Hartford, Gomecticut, on May 4, 1968, in recognition of Edgar D. Gollins' untiring effort in behalf of the League, does hereby express its deep appreciation of his lovalty, fidelity and intelligent devotion to the best interests of amateur radio.
79) On motion of Mr. (hapman, unanimously VOTED that the President direct that appropriate steps be taken to enable benevolent-minded people to establish memorial funds by the contribution of money or property, by will or otherwise, to the League for the advancement of interests of amateur radio.
s0) On motion of Mr. Chapman, unanimously VOTED that funding not to exceed $\$ 200$ be authorized as administrative expenses for the Advisory Committees.
81) On motion of Mr. Gmelin, VOTED to take from the table his earlier motion and pending amendments concerning malicious interference on the amateur bands. After extensive discussion, with the consent of their respective seconds, Mr. Bolvin withdrew his motion to amend, and Mr. Gmelin withdrew his original motion. Whereupon, on further motion of Mr. Gmelin, unanimously VOTED that the Board express its concern uver a number of recent instances of malicious interference and improper language on the amateur bands and commends the Federal Communications Commission and other government agencies on their efforts to take corrective action. During the course of the above, Messrs. Haller and Metzger, under the necessity of returning to their homes, departed from the meeting, and the Board was in recess from $2: 10$ to $2: 20$ P.м.
\$2) On motion of Mr. Amelin, unanimously VOTED (Mr. Eaton abstaining) that the General Manager study ways of simplifying the mail examination procedures. At this point, Mr. Foster, under the necessity of returning to his home, departed from the meeting.

S3) On motion of Mr. Bolvin, unanimously VOTED (Mr. Eaton abstaining) that the General Counsel explore the possibility of revision of the
(Coutinued on page 186)

INTERNATIONAL AMATEUR RADIO UNION

NEW THIRD-PARTY TRAFFIC AUTHORIZATIONS

United States amateur stations and amateur stations of United States forces personnel in West Berlin may now exchange third-party communications. Eligible West Berlin stations may be identified by call signs such as DLt()and DL5Q. Third-party communication with anateur stations in other parts of Germany is not authorized.
U.S. amateur stations operating portable from a U.S. base in Barbados, under FCC call signs, are authorized to handle third-party traffic with other FCC licensees and with countries having third-party agreements with the U.S. Such traffic may not be handled with Barbados licensed stations using the prefix 8 P.

KG6I WILL BECOME KAl

Japan will soon have a new call district, KA1, necessitated by the reversion of the Bonin, Volcano and Marcus Island groups to Japanese sovereignty. Upon ratification of the reversion agreement by the Japanese Diet and signing by President Johnson, all amateur operation will cease and U.S. call area KG6I will no longer be authorized in those island groups.

Amateurs on Iwo Jima (Volcano Island group) and Marcus Island plan to continue uperation by obtaining AMRS (Auxiliary Military Kadio Service) authorizations from the Commander,
U.S. Forces, Japan. Under terms of the U.S. -- Japan Telecommunications --- Electronics Agreement, these stations will operate within the sume baud and power limitations as do the KA2-KA7 statious at the present time. (Info via J. P. Hogue, Major, USA, Ohief, Frequency Allocation Branch, Mq., U.S. Forces, Japan.)

PK REMAINS SILENT

A recent report from Indonesia indicates that hopes for the lifting of the amateur radio ban have fallen. Several PK7 and PK8 stations are operating under license of the Central Java Police; however, political problems still inhibit the determination of a national licensing policy.

EI COURTESY LICENSES

The Irish Radio Transmitters' Society reports that amateurs may obtain visitor licenses for operation in Ireland. Call signs will have EI2-9 prefixes and VAA-VZZ suffixes. Amateurs seeking EI visitor licenses should write IRTS, B. R. Fogerty, EI6X, Secretary, 9 Wellington St., Dun Laoire.

NRRL CHANGES ADDRESS

The new address for the Norwegian Radio Relay League is P. O. Box 21, Refstad, Oslo 5, Norway. All correspondence should now be directed to this address.

Here are members of the Southern California and Mexico Amateur Radio Mobile Group and the Mayors of the sister cities Navajoa, Sonora, Mexico, and Santa Fe Springs, California. From left are W6ZOM; K6IPG; Archie Beason, Mayor of Santa Fe Springs; W6UPB; XE2IL, Mayor of Navajoa; W6EIF; WBGPJU; WGDEY; and, W6OZD. (photo by WGYOL.)

U.S. - GUYANA RECIPROCITY

The Inited States and Guyana have entered a reciprocal operating agreement which was signed and became effective May 13, 196s. The U. S. now has 34 such agreements: a full tabulation appears helow.

DX OPERATING NOTES

Reciprocal Operating

(Bold face indicates changes since last list.) United States Reciprocal Operating Agreements currently exist only with: Argentina, Australia, Austria, Belgium. Bolivia, Canada, Chile, Colombia, Costa Rica, Dominican Republic, Leuador, El Sialvador, Finland, France, Germany, Gilyana, Honduras, India, Israel, Luwait, Luxembourg. Netherlands, New Zealand, Nicaragua, Norway, Panama, Paraguay, Peru, Portugal, Sjerra Leune, Switzerland, Trinidad and Tuhago, Inited Kingdom and Venczuela. Several other foreign countries grant FCC licensees amateur radio operating privileges on a courtesy basis; write headquarters for details.

Canada has reciprocity with: Bermuda, France. Germany, Israel, Luxembourg, the Netherlands, Senegal, Switzerland, United Kingdom and U.S.

Third-Party Restrictions

Messages and uther communications and then only if not important enough to justify use of the resular international communications facilities - may be handled by U.S. radio amateurs on behalf of third parties only with amateurs in the following countries: Argentina, Barbados (only U.S. stations/8P) Bolivia, Brazil, Canada, Chile, Colombia, Costa Rica, Oominican Republic, Etcuador, El Salvador, Germany (DL4Oand DL5Q-stations only) Greenland (XP calls onlyi, Haiti, Honduras, Izrael, Liberia, Mexico, Nicaragua, Panama, Paraguay, Peru, Uruguay and Venezuela, Permissible pretixes: CE CM COCP CX DL4Q- DL5QHL HC HH HI HK HP HR LU OA PY TI VE VO W or K/8P XE N.P I'N I'S IV ZP $4 X$ and $4 Z$. Canadian hams may handle these sume type third-party messages with amateurs iu Bolivia, Chile, Costa Rica, El Salvador, Honduras, Israel, Mexico. Puru, U.S. and V'enezucla. Permissible prefixes ure: CE OP HR K OA TI W XE Y'S IV and $\pm \mathrm{Z}$.

DX Restrictions

U. S. amateurs licensees are warned that international communications are limited by the following notifications of foreign countries made to the ITU under the provisions in Article 41 of the Genera (1959) conterence.

Qambodia. Indonesia (including West New Guineat, Thailand and V'ietnam forbid radio communicution between their amateur stations and such of other countrics. U. S. amateurs should not mork HS XU XV 3 W8 or $>\mathrm{F}$. Canadian amateurs may not communicate with Cambodia, Indonesia, Laos, Thailand, Vietnam and Jordan. Pretixes to be avoided are HS JY XU XV XW8 $3 W 8$ and $8 F$.

A.R.R.L. QSL Bureau

The function of the ARRL QSL Bureau system is to facilitate delivery to amateurs in the United sitates, its possessions and Canada of those QSL cards which arrive from amateur stations in other parts of the worid. All you Lave to do is send your QSL manager (see list below) a stamper self-addressed envelope about $41 / 4 \mathrm{~b} y 91 / 2$ inches in Aize, with your name and address in the usual place on the front of the muvelope and your call printed in capital letters in the upper left-hand corner.
('ardo for stations in the United States and Canada should be seut to the proper call area bureau listed below. Recent changes are in bold type.

Wl, K1, WA1, WN1 - Hampden County Radio Assuciation, Box 216 Forest Park Station, Springfield, Massachusetts 01108.
W2, $\mathrm{K}_{2} 2, \mathrm{WA}_{2}, W^{2} 2$, WN2 - North Jersey DX Assn., P.O. Box 505 Ridgervood, New Jersey 07451.

W3, K3, WA3, WN3 - Jense Bieberman, W3KT, RD 1, Valley Hill R.d., Malvern, PennsyIvania 19355.
Wt, Kt-H. L., Parrish, K4UXF, RFD 5, Box 804 , Hickory, North Carulina 28601 .
WAt, WB4, WN t^{1}-J. R. Baker, W4LR, 1402 Orange St., Melbourne Beach, Florida 32951.
W5, K5, WA5, W'N5-Hurley O. Saxon, K5QVII, P.O. Box 9915, bl Paso, Texas 79989.
W6, K6, Wid. WBti, WN6-- San Diego DX Club, Box i0209, San Dicgo, C'alifornia y2 106.
W7, K7, WA7, WN7-W'Wamette Valley DX Club, Inc., P.P. Box 555, Portland, Oregon 97:07.

W8, L8, WA8, WN8 - t'aul R. Hubbard, WA8CXY, 9:1 Market St., Zanesville, Ohio $\$ 3701$.
W9, K9, WA9, W'N - Kay P. Birren, W9MSG, Box 519, E'mhurst, llinois $\mathbf{6 0} 216$.
Wg, Kø, WAg, WNo-tiva Smith, WoDMA, 238 East Main Sli.. Caledonia. Minnesuta, 55921.
VE1-- L. J. Fader, VE1FQ, P.O. Box bif3, Hulifax, N. S.
VE2 - John Ravenscruft, VE2NV, 353 Thorncrest Ave., Dorval, Quebec.
VE3 - K. H. Buckley, VE3UW, 20 Almont Road, Domnview, Untario.
VEt--D. E. McVittie, VE $4 O X$, 647 Academy Road, Winniper 9, Manitoba.
VE5 - Hred Ward, V'E5OP, 899 Connaught Avc., Moose Jaw, Saskatchewan.
VEb - Karel Tettelaar, Ve6AAV, Sub. P.O. 55, N. Edmonton, Alberta.
VE7-H.R. Ilough, VE7UR, 1291 Simon Road, Victoria, British Columbia.
VE8-George T. Liondo, VE8 ARRL QSL Burcau of Department of Transport, Norman Wells, N.W.T.
VO1 - Ernest. Ash. YO1AA. P.O. Box o, st. John's, Newf.
VO2-Goose Bay tmateur Radio Club, P.O. Box 232 Goose Bay, Labrador.
KH6, WH6 - John H. Oka, KHGDQ. P.O. Box 101, Aica, Oahu, Hawaii Yti701.
kL7, WL7 - Aleska QsL Bureau, Star Route C, Wasilla,

swL-Ceroy Waite, 39 Hannum St., Ballston Spa, New Yurk 12020.
${ }_{1}$ These bureaus prefer 5×8 inch or 50 manila envelopes.

Straysts

Stolen Equipment

A $\mathrm{R}-390 \mathrm{~A} / \mathrm{URR}$ receiver, serial number 29, has been stolen from the University of Iowa ARC. Some particular characteristics of this receiver are: when the erystal ovens are switched on, the frequency jumps each time the thermustat kicks in: and, the tuning is "jerky." Notify the University of Iowa ARC, Electrical Engineering Build., Lowa City, lowa

COMMUNICATIONS ESCALATION

(1. The answer to the question "How can we escalate our communications?" in the May editorial is very simple, and is implied in the fifth paragraph of the same editorial - eliminate all official recognition of number of "countries" worked, whether by Dİ Ceutury Club, or score in a DX contest.

As long as we attach more value to a piece of paper or a fine-print listing in a magazine than to a genuine communication with the onerator of a $D . E$ station, most foreign contacts will continue to be as meaningless and unsatisfying as they are at present. Surely, one good half hour ragchew with a DI station is worth more than a dozen contest type exchanges of signal reports.

Let's start a DN Ragchewer's Club! - Robcit V. MeGraue, 1 :2LYH, Riverhead, N. Y.
(1. . . It seems difficult to suggest a practical means of effecting "communications escalation" without downgrading to some degree the currentlypopular operating phases of DN-QSL hunting, or contests. A ham's operating time is limited and he will devote it to those activities he finds most fulfilling. This expended time is rewarding to many in terms of DXCC status or contest scores.

If a similar competitive incentive could be attached to communication per se, the desired escalation might be attained. The League's KCC award is a small though rather ineffectual step in this direction - only one (2SO is required. Perhaps a new rammunications award is the answer. The new award would be issued, say, for a minimum of 100 half-hour QSOs with as many different stations . . . - Donald F. Meadous, WGZGM, Marysville, Culifornia.
(1. This problem of person-to-person communication has bothered me for sume time and even delayed my attempt to get an amateur license for several y ears because of the fact that the conversations that I heard on the air between amateurs seemed to be rather inane and pointless.

I also have a real complaint against the numerous contests and agree fully with the notion that it creates "organized (2KM" .-... and all on weekends. which is about the only opportunity I have to get on the air . . .

The only idea that I can come up with is a kind of reverse contest which could be a continuing affair over a period of six months or a year and could be for U.S. as well as D.I contacts. The point system could be a sliding scale with points a warded on the basis of repeated contacts with the same station, time on the air during each (2SO, and possibly points for personal information exchanged, etc. - Sam illessi, Jr., WB2YQG, Jamestoun, N. Y.
1 We can have a communications escalation if we really want it. We can make DX friendships rather than contacts if we really want to. It should be obvious by now that talking about the rommunications dearth will not solve the problem. Writing
ahout and editorializing the problem does not eliminate it. We must do something! And this is the something that I propose:

1. Eliminate all 1$) \mathrm{C} C\left(\begin{array}{c}\text { credits and recomnition }\end{array}\right.$ for contacts made on the 80 through 10 meter bands except for those made during official LARU approved D.I contests.
2. Limit each IARU country to a maximum of two DC contests per year. (One could be world-wide and the second one regional.)
These two steps will spread DX fever and ingenuity into the now mostly unused and much wasted amateur bands. DN will become a real and exciting challenge again. liighty through 10 meters will be opened for world-wide communications rather than closed by "DNing" QRMI as is presently the case. And now! Will the INX contests ever be hot!

I trust that we the radio amateur, the ARRL, and the IARU) really do want a communications escalation to establish $D N$ friendships and will give this proposal prompt and proper consideration. --W. Len Bremer, KSNPC, Malvern, Pennsyivania.

IMPROVED EMERGENCY COMMUNICATIONS

1. ARRL and the American Red Cross have longstanding agreements in the field of disaster comnumications and these agreements have formed the bulwark of the movement of messages in time of crisis. However, in practicality the Red Cross did not find a reliable source of local communications until extensive use of v.h.f. f.m. was established.

During the past few vears the use of v.h.f. f.m. has multiplied the effectiveness of the Red Cross job by many fold with the advent of the numerous repeater stations located in major metropolitan areas. Passing of emergency traffic has been amplified to the highest art of science and the effectiveness of this type of communication to the individual who has suffered cannot be minimized.

We visualize in the next few years additional effectiveness in emergency communications through the establishment of intercity relay stations, whereby disaster communications can be handled on a noisefree, crystal controlled. reliable system, rather than the hodge-podge low frequency nets now in operation. For example, should a major tornado strike St. Louis, a relay link to Springtield, Illinois or Evansville, Indiana, could mean the centering of health and welfare traftic into one of these cities by telephone, low frequency amateur radio, or TWX and then handled efficiently on v.h.f. f.m. into St. Louis, therehy avoiding massive delay and pile-up in the St. Louis communications centers.

To create maximum effectiveness this type of communications system will require recormition on the part of the FCC of the repeater-relay station operation in the v.h.f. f.m. spectrum and the reliability of these stations utilizing the technical fail-safe techniques now available. 'To continue the present licensing requirementis of continuous mon-
itoring (versus monitoring capability) and total station lopging (versus user station logging) acts as a natural deterrent to establishing a disaster communication system of the highest quality and utilizing the advanced state of the art.

W'e congratulate the American Radio Relay League for its current interest in v.h.f. f.m. and repeater operation and we look forward to a bright day in amateur radio to come. - Vorman. E'. E'liman, IV.10Q.MI, Dirctor Public Kelations, Midurstarn Irra, Imeriran V'ational Red C'roses, Dt. Lamix. Missouri.

TECHNICAL SKILL

(1. . . The attitude of hams is choking ham radio Today amateur radio is not a hobby. Or if it is, it is not enjoyed. Today every ham dreams of a Collins S Line, a tower, a tri-bander (vagi), with that IIamM rotor. It's nice; but, is that what ham radio is about?

Most amateurs who build anything today from a code monitor to that homebrew heam are always being asked "Why did you build it?" And then their products are compared to the commercial stuff. What happens? Either the ham becomes a professional builder of his equipment (paint, lettering, e:abinet design etc.) or else chucks up the loot for the much easier commercial stulf. The commercial stuff is prettier, probably works a trifle better, and has that status - but costs (and how!) . . .

Amateur radio is a great (the greatest) product. But, it isn't selling. How many hams heard of the ARRL promoting what sort of hohhy it is before they thought of obtaining a license? The League is crabbing about its drop in members; but, where was it before when I, by chance, picked up a SHL book that mentioned ham radio? Ur, before when you first heard the word amateur radio? Sure, they support radio clubs and promote in radio magazines. But that's like advertising to a sold rustomer. People who go to the radio clubs or read the mags are already interested.

The "professional" amateur (?) attitude allows nothing more. How can the unelectronicallymotivated masses be expected to lay out some $\$ 300$ plus on the initial outlay? It's easier to keep the ham mystique of the select few "electronic genuises" (ha!). Face it people, our days are numbered. If we don't promote ham radio as a popular hobby, this elite few with their attitude of "professionalism" and high priced equipment will lose frequency ufter frequency 'till the end.

The fellows down on 11-meters, for all their faults, are ponular because they gave the public what it wanted: hobby radio. And they publicized it. They didn't keep it a dark hidden secret. Kead your QsTs, ARRL, and see how often you have mentioned the "golden days" of amateur radio. The time is 1968, not 1920. Have you ever had an article enrisioning the future of ham radio as a social hobby? The ham population has changed, but your attitudes have not.

So plug away to the general public. Take olf that serious mask of "professionalism" and tell the people the fun of ham radio. - Robert Porlesjinski, WB․MPE, Irvington, New, Jersey.
(1. When I went into ham radio, I did so becanse I wanted a relaxing hobby after a hard day's work. I atill feel the same way. KeOMP (April QST) wants to tinker and I want to talk. He can have his fun, and I'll have mine, but 1 don't tell him or anyone e'se who doesn't agree with me, and the things I like, to "shape up or ship out." Some like c.w.,
others like phone: that's fine. I like e.w. su f'm going to get my Advanced license and I think I'll be able to find a 2 SO somewhere on the frequencies allotted to me. If I'm an Advanced for the rest of m y life, that's good enough for me.

If my set won't work, 1 just might be able to find a canable licensed techniciau with the instruments needed to make it work.

If I had decided to become a radio technician, I would have gone to school.

As a Novice of six months and with six crystals, I have WAS, WAC, (.P. 15, RCC, and well on road to DICCC, so I've done all the "shaping up" I intend to do and I don't intend to "ship out." - E'arl E'. Payne, TVVOSXZ, Aurora, Colorado.

C For the benefit of those who "gripe" about inceutive licensing and Docket 15928, I can say from repeated tirst-hand experience that amateurs never had it so good! For the puast three weeks I have been in ground school on the Boeing 720-B; this school is conducted in the Western Air Lines training center in Los Angeles. Simulator procedures and actual Hight training will start for my group next week and will continue for a month. Fill examinations are really rough and I must go through three of them before I receive my rating on Boeing jet equipment: first a four hour oral examination on operational theory and the mechanics of the airplane - next another four hour simulator check ou all emergency Hight procedures (and you can do everything in a simulator that you can in a plane except kill yourself) - and finally a two hour light check in the airplane - all of this before a hardhearted, merciless, eagle-ered FAA inspector. It's rough, but I would have it no other way, for when you finish all of this and receive your rating you know the equipment and you know you can "cut the mustard '! All of this, incidentally, occurs on each new piece of equipment that an airline captain Hies - not just the first time he starts flying as a captain. Somehow, RM-499 and Docket 15928 doesn't seem so insurmountable to me as it does to those who do all the erying! - Carl L. Smith, $\Gamma \emptyset B \Pi J$, Denver, Colorado.

II notice that the Radio Amateur Section of the FI.A wants to undo all that Docket 15028 is attempting to accomplish by having the standards for the Novice license lowered still more than they are now. We should fight this group with all that's within us. If a person can't study and pass the Novice exam as it is at the present time then they should be introduced to the 1750 meter band where a license isn't needed and they can advance through study to an amateur license. I still believe that it was a mistake for a period of two sears on the Novice license. - Ral ph Testgrund. IF IJJJ, Tacoma, Washinuton.

WHAT IS IT?

(1. Perhaps it is the anxious excitement when that newly homebrewed piece of equipment is about to be plugged in for the first time $-\cdots$ and the overwhelming sense of pride when it comes to life.
()r may be it is the thrill of recognizing your call as the DIX chaser that a "rare one" has singled out from a pileup.

It might be the satisfaction you feel when the newly erected antenna shows a SWR of 1:1-to say nothing of the s 9 plus that you receive from the first station that you call.

It is perhaps the feeling that most resembles relieved thankfulness when you finally discover and
fix the bug that had heen wreaking haver with the pertormance of your rig．

It could be the challenege of scrounging for the parts which you need to build that gardget that will place you on top of the heap．

Perhaps it is the fat envelope from the bureau that the postman just delivered．

It might be the unusual accent of the VK who is returning to the O that you called when the tirst rays of the morning sun just hegan to stream over the horizon．

Maybe it is the verbal handshake of＂glad to meet you for the first time Old Man．＂

It might be the enjoyment of friendships that transcend the mundane and material aspects of life．

I could probably list many more answers to that question so often posed by the unin tiated，＂what is it that is so fascinating about your hobhy？＂－－
 Maryland．

BOUQUETS

（1．Many thanks for several enjoyable evenings． 1 have just finished building the three－transistor receiver you described in the March issue of QS＇T＇． It was a lot of fun putting it together and figuring out why it didn＇t work right off when I had finished．

The performance of this receiver has been a pleasant surprise to me．It pulls iu s．s．b．stations hetter than my superhet．

Thanks again to you and QST for enriching the pleasures available in amateur radio．－Freal 1＇． ． 1 mundsen，IV $1 A B C$ ，Nsedham，Massachuserts．

CI．＂Quads and Yagis＂is as excellent a QSTT article as I have seen in a long time．It should go a long way in clearing up these＂facts＂about the quad antenna tossed around in amateur radio circles such as low angle，vertical component，large aperture and etc．
lour recommending the article for the＂antenna－ minded＂should mean all ham station owners as the cost in time and money for the antenna should be about that of the other basic units，receiver and transmitter to give a good performance of both．
 Florida．
（1）I wish to comment on the excellent issme of QぐT for March 1915s．The iswle was ontstanding for its variety of interesting and informative articles．

I rannot recall of ever receiving previously such a fine issue of $Q . S T$ ．I realize that it is difficult to consisteutly publish material of universal interest or of exceptional quality，but the March issue was a high point in a series of improvements noted over recent months．
lour staff is to be eungratulated on its noted efforts to improve the quality，interests，and service of the journal and $m y$ hest wishes to you for every success in your efforts．－John W^{W} ．Reiser，$W^{2} \approx B L R$ ， IFilliamsnille，Vew York．

SPECIAL ENDORSEMENTS？

C Reading May QST the article＂Those IVigher Class License Examinations，＂I noticed the ques－ fions about RTTY and synchronizing pulses trans－ mitted with TV signals．

Those interested in radio communication should not be forced to learn about RTTV or＇TV trans－ mission if they are not iuterested in it．＇These topics should be obtained by a special endorsement with a special examination if needed，without imposing to study these topics ou every licensee．－hoffer Leclaire，S．J．，Shairmen，Institute of Astronomy， Sudhur！，Ontario，C＇anada．

SPEECH EXAM？

（1）I＇d wager a pretty penny，not one ham in 1000 could nossibly get a job as announcer for a broadeast station．
To rid the air of 99% of the useless repeats，no one，specially the Advanced hams，should be al－ lowed to get a ticket until they passed a speech exam．What good is it to he able to know the most intricate electronic problems only to go on the air with highest legal power and then garble words．It was bad enough wheu all was a．m．modulation but now with s．s．b．and fluctuating b．f．o．s．

How about monitors that sent small pieces of tape to these thoughtless souls that mess up our spectrum．I can just see they are the same ones that drive in the middle of the road and take up three parking places．

We sure could do without a lot of them until they make sense when they do get on the air．－las． Art Wilson，Vero Beach，Florida．［口5F］

CONDUCTED BY LOUISE RAMSEY MOREAU* WB6BBO

YL-OM 1968

A contest is a contest is a contest to those who view the many different types of scrambles for contacts with a jaundiced eye. But is it? Is there one amateur, who really gets deep into contest operation, who finds that any two are really alike? To each person who participates a contest has a very special appeal. It is a deadly serious operation; a carnival; a compelling drive for points: a roller coaster ride; a test of equipment; or a side show complete with barkers. It's very careful planning, and its "warm up the filaments momma, we're working the big one tonight!" We do it for kicks, for laughs, and we do it with charts and aids, and check lists, and propagation reports. And we set our contests within contests, those little personal competitions of ourselves against a friend, or fellow club member. But outside of that "hargain basement" atmosphere that upsets so many non-contest amateurs, there is one necessary element: Operating ability. It is the skill of boring down under layer on layer of QRM to get some hard to get section or comntry. It's band consciousness and which one to work during certain hours, as well as stubborn stick-to-it-iveness that keeps the contest addict working during conditions that make the casual operator give up in disgust. Only the traffic gang catl match the contest people for stick to it until you get it even if your family thinks you are nuts.
For nineteen years the I'LRL has sponsored the annual YL-OM contest in February and March of each year. For the OMs this is the one time when "cherchez la femme" is as simple as listeuing for that "CQ OM" that identifies a feminine call. But beyond the interest in discovering that the call belongs to a $Y \mathrm{~L}$, there are fringe benefits for men aud woman alike. For the OMs it is a fast way to increase the total contacts for the YLRL certificates like YLCC, WAS-YL, WAC-YL, or catch the necessary gals needed for a club sponsored certificate. For the women it adds the advantage for DXCC, WAS, WAC, not to mention all the other awards given for so many contacts. For everyone who loves the excitement, and the melee, it's a contest! One of the most interesting activities in amateur radio.
The YL winners of the 1968 contest were dominated by DX, with PY2SO taking first

[^16]

WB2SXX, Larry, one of the active OM participants in the YL-OM '68. (WA2BXK photo.)
place in both c.w. and phone. C.w. second place went to VE3BII, who always has a very high score in all YL contests, while K8ONV was in third place. K8ONV took second place in the phone segment, while K9LUI was third.

For the OMs, the fifth call area was dominant. K2EIU/5 settled into second place honors in both c.w. and phone. In c.w. W5WZQ was top man, and W1PYM took third place. In OMI Phone, K5MDX held first place, and K $4 \mathrm{MYC} / 4$ placed third.
W4TVT, Contest Chairman, and YLRL Vice president, sends her thauks to all the participants for their careful preparation the the logs. No one was disqualified for illegilibility. If logs were eutered and the eniry is not included in the list it is because of non-observance of the rules.

Congratulatious to the winners. For those who are anticipating the next one mark your calendar, the dates are: Phone, Feb. 22, 23 , 1969, c.w. March 8, 9, 1969.

Pete Olson, WA2BXK took a picture of his station that helped maintain the high OM scores in the YL-OM '68.

IL C．IF．
PV：2SO ．．

YL PHONE

OM C．W．
W5WZQ ．．．

0．M PHONE
に5MDX．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．7．619＊
K2EIU／5 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．4．444＊
K゙4MYC／4．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 ，180＊

YL C．W．

İINEI．	．17，556
K1QFD．	12，488＊
K゙1WXF．	．3，469＊
IVA2WHE．	16，575＊
WB2OQQ	12，760＊
IVB2JCE	8，160
W2EBW	5.977
WR2PYI．	4，498
K3SJS．	．21，525＊
W3SLS	．8，360
W3CDQ．	1．740
IWA3AOJ	．．341＊
IVA4VKG．	．21，525＊
WA4BVF	21．087＊
W4NGE．	12，525
K4RHU．	． $5,484{ }^{*}$
K4VDO．	．3，397
WA5SKI	16.905
W9MLE／5．	3．325＊
k80NV	．22，761
WA8USU	16．820＊
WA8FSX	13，787
WA8KMT．	13．760
WA8EKQ．	12，184＊
WA80FW	．9，490
WA8ENW．	5，499
WA9HLW．	7．975＊
WA9WNI．	．2，664
WA9CCP．	2，275＊
WAgPPK	11．344＊
WGAYL	． 7.632
VE3BII．	．37，661＊
VESSITI	．13，520
VE5DZ	5，400
VE6ANK	．4，278
DJ9SB	．3，248
HA5KDQ	3，104
OH5RZ．	．3，140
OK1AZQ	．3，570＊
PY゙2SO	．61，380
SP6AZY	7，166＊
SPEYL	．2，723＊
UA17X	． 70
Vk3LS．	19，256＊
ZL2JO．	．，980＊

Confirmation lons：
L． 16 ZH
VEGABV

UM C．W． WIPYM．	
	$\begin{aligned} & 3,150^{*} \\ & 1.519 \end{aligned}$
W1JVZ．	546＊
WA1EUJ．	414＊
WlGKJ	374
W1MRW．	．276＊
WA1FHU	． 240
に2DDK゙	2，814＊
WB2FRE	2，08：3＊

II． 19 NSR	80＊
W日LRIV．	2，170＊
WGKCG．	1，890＊

KのEZZH ．．．．．．．．．． 1.305

にのリTNV／G．．．．．．．．．．607

VE2．AQO ．．．．．．．．．．．825＊
CR7IZ ．．．．．．．．．．．．．．．．． 9
D．190Z．．．．．．．．．．．．．124＊
E．12HR ．．．．．．．．．．．．．．70＊
（：3IDG ．．．．．．．．．．．．．．90＊
IT1AGA．．．．．．．．．．．425＊
J．12CUS．．．．．．．．．．．．．．．． 45^{*}
ISIU．．．．．．．．．．．．．．． 25
L．18PF ．．．．．．．．．．．．．．．．38＊
OH3MF ．．．．．．．．．．．． 263
OH5OD ．．．．．．．．．．．．．．．．．．． ．*

OK2QK．．．．．．．．．．．．300＊
ค7
SP8M．I．．．．．．．．．．．．．．．．． 144
U．I1ZX．．．．．．．．．．．．． 70
ズF1RD．．．．．．．．．．．．．．．646＊

Confirmation Logs：
W3CDBF
（V）LIN／2
W9WR
HP1BR
LA6ZII
SP5ATO
VE7．1．J

YL PHONE	
W2OIVL	7，065
K3W．LJ	19，110
WA3AOJ	11.825
W134BOJ	20，440＊
W．14UWに	． 6.690
KıRIIU	4，156＊
WA5OVX	22，328
FSD．AB	18，368
WA5QQR	．6．938＊
WA5SKI	2，920＊
W6PQI	13，644＊
K7R：MM	13，702
KTUHN	10，009＊
K8ONV	44，712
WVA8ENW	13，050
WA8FSX	12，350＊
H8PXX	．9，010
WA8KMT	． 7.191
W87NO．	．6，204
W．A8UY゙J	5，512
WA80FW	．3，744
kghul	36.450
WagVkB	24．880＊
W9GHO	14，700＊
W．19FRS	11，310＊
W．1ดPPK	26．163＊
WG．JUV．	15，288
K日EPE．	11，024
WGAYL	． 3.280
KL7FQQ	：30．640
VE4ST	20，231＊
VE3BBO．	11．645＊
VE3GTI	10．431
I1SGZ	2，695
（E6CO	．8，178
DL3LS	21，318
JH1GME	．2，300＊
PY2SO	90，216
VK3KS	8，702＊
ZL2JO．	21，525＊

WA3GMN, Peg Sayre, is a part of a real "ham family." OM is WA3GMO, son WA3CRS, grandson WA3LBS is now in Viet Nam, and a son-in-law is WB6QYI. Peg is a National Rifle and Pistol instructor, and has participated in national matches.

LA-YLRC 1968-69 Officers

The newly elected officers of the LA-YURC for the vear 1968-1969 are:

President: Vada Letcher, WGCEE
Vice President: Maggie Moore, WA6VDK
Corresponding Secretary: Gladys Eastman, WGDXI Recording Secritary: Terry Lockwood, WA6RAO
Treasurer: Roberta Baldwin, WB6DFN
The membership of the club is composed of women who hold amateur radio licenses in the greater Los Angeles area. There are several members who are from Santa Barbara, and San Diego as well.

WA5KRI, Deanna Mercurio

When Deanna "discuvered" :amateur radio. and confessed her desire to become a part of the amateur fraternity to the OM, she found that she didn't need to put on any pressure at all for she had touched one of his secret desires. So they both were licensed in $196{ }^{\circ} 2$ as WAgDFA. Deanna, and WA0DFB, Sam.

But being in radio wasn't just the normal type of "hamming" to Deanna. She talked the school administrators into permission to put a station in her Spanish Lab, and then as she puts it, "the fun really began." She kept schedules with Spanishspeaking countries and her students learned the

Deanna Mercurio, WA5KRI
language by using it on the air. so that the course became mure than just words in a text book. The experiment was a great success.

In 196t the family moved to Texas, and Deanna received her present call W.15KRI, and the OMI became WA5KRJ. A member of JLRL and TYLRUN, Deanna also belongs to GAYLARK and the Houston Amateur Radio Club.

WA5KRI will he heard mostly on s.s.b. on 20,40 , and 75 meters. Her operating hours are "when the children are asleep." During these "quiet hours," when she isn't involved with Angela, 5, and Phillip Lee, 15 months, she enjovs just plain visiting and meeting people on the air. When not on the air, or caring for the family Deanna enjovs bridge, and puttering around the kitchen trying out new recipes.

Feedback

The list of YLCC totals in the $1 \times \mathrm{L}$ Column in June 1968 should also have listed Marge Campbell, K4RNS, with 900 YLs for her YLCC.

WB6RMX, Audrey McRevey, is a "graduate" of the W6OWP Code Practice sessions. In two years she has progressed from a "scared Novice to a proud General." Thanks to W6OWP. Audrey holds a 35-w.p.m. endorsement and is dreaming of Extra Class.

July 1943

. . . K. B. Warner, in his editorial, addresses himself to new operators in the Armed Forces, olfering congratulations that they are now full fledged operators. A great many of them have learned the grt in service schools and of these, a goodly percentage will become amateurs after the war is over. They will then learn the joys of operating their own rigs.
. . . Charles Service, TW4IE, urges amateurs to be on the look-out for spies and saboteurs who are known to be loose in the country.
. . . Warner announces the appointment of Clinton B. DeSoto, W1CBD, as Editor of QSTT, enumerating his many qualifications and outstanding recurd as a ham and journalist.
. . . We have a new tyne soldier in the Services. He is known as a "Tank Destroyer," horn of the (Continued on pape 13z)

CONDUCTED BY BILL SMITH,* WB4HIP

Impulse Noise Reduction

NTorse is the primary limiting factor in v.h.f. communications. If we could effectively eliminate all noise, including that generated electronically, previously masked signals would hecome apparent and path attenuation would be the ouly limiting factor. Al Burson, K5WWXZ, has spent untold hours studying methods of noise reduction, with results that include the design of a widely used impulse-nuise blanker. Here, in the first of two parts, is a report on that study.

Much has been written on white noise or smooth noise, and most of us are familiar with low-noise r.f. amplifiers and the factors involved in lownoise receiver design. Once you have a "low-noise receiver," another type of noise becomes apparent. Impulse noise then becomes the major limitation in amateur reception, especially in the v.h.f. bands.

Impulse noise, as used here, means power line buzz, auto ignition, electric motor noise, most other forms of man-made noise, and rain static. One could include radar interference, but not natural static (atmospherics).

A study of this impulse noise with an oscilloscope having wide bandwidth, or with the home TV set, brings out some interesting facts. The noise has a very high peak-to-average power ratio, much like radar. Most all impulse noise has a very fast rise time, 0.1 microsecond or less (or it wouldn't bother at 144 MHz .) and a short pulse length, generally under 1 microsecond. Most power line interference has a pulse about every :00 to 1000 micro-seconds. If the receiver could be shut off during such pulses, we would only lose $1 / 500$ of the signal and the noise could not be heard.

Inspection of these pulses at the output of a typical $144-\mathrm{MHz}$. converter, with a baudwidth of 23 MHz ., would show them to be millivolts or volts in level, while the desired signal is in microvolts. If these pulses could be limited to our desired-signal level they would not canse much harm either, since the noise is only there $1 / 500$ th of the total time. Why is it then the noise pulses cause so much trouble? One has to take into account receiver selectivity, and what happens to a fast pulse applied to a band-limited amplifier.

Borrowing some more facts from radar design, a given pulse input has an optimum bandwidth ion reproduce the pulse at the output of an ampli-

[^17]fier. Wide bandwidths give good reproduction but permit more smooth noise to appear at the output, lowering the signal-to-noise ratio. Narrow bandwidths alter the wave shape and stretch the pulse. The output pulse length is no longer related to the input pulse, but depends on the bandwidth of the amplifier. With the narrow bandwidths needed and used today, impulse noise is lengthened and reduced in amplitude until the pulses run into each other and produce continuous noise at the receiver output. We can no longer silence the receiver part of the time and gain anything. We would lose as much signal as noise, hecause both are present. The amplitude also hecomes comparable to the signal, so we can not achieve any help with amplitude limiting. From this we can state a rule that to effectively "operate on" the noise the work must be done beiore the selective circuits of the receiver. The wider the bandwidth before our operation, the less time the noise is present; therefore the less time needed to silence the receiver. If the noise is limited to the signal amplitude, the wider bandwidth reduces the amount of time the signal is contaminated with noise.

At this point we need to make a decision. There are two ways to prevent the noise from causing much trouble: limiting and blanking. The likelihood of encountering strong local and open-band signals affects the method we choose. The necessary overall bandwidth of a receiver depends on the modulation of the received signal: about 200 Hz . for c.w., 3 kHz . for s.s.b., and 6 kHz . for a.m. What we have to worry about is what happens when someone turns on a transmitter arross town, say 50 kHz . from the frequency of a weak signal we are trying to copy. Let's consider our selectivity to be lumped; that is, we use erystal or mechanical filters. This unwanted signal will not pass through our filters since it is 50 kHz . away but it is close enough to pass through the r.f. mixer and i.f. stages ahead of our filter, at full strength, since no a.v.c. is developed.

For a given amplifier, tube or transistor, there is a dynamic range the device will pass without objectionable distortion. The lower limit will be set by the noise figure of the device. Let's say the device we choose can handle a range of 100 dh. total. This is quite close to the dynamic range needed in the first r.f. stage. From the weakest signal down in the noise to the strongest local, we would find 100 db . difference or so. In many cases it would be more.

If we set the top limit our device can handle at $100-\mathrm{mv}$., we can see from Fig. 1 what happens to

Figure 1. Reduction of dynamic range in multistage amplifiers without effective automatic gain control.
our multistage receiver. If the r.f. stage has a gain of 20 db . and is followed by a mixer with a 100 mv . top limit, we must decrease the input signal level by the r.f. stage gain or we will overload the mixer. This, in effect, decreases the dynamic range of the signals we can look at to 80 db., because the r.f. stage noise sets the lower limit.

A typical modern day h.f. receiver uses double conversion. There is an r.f. stage followed by two mixers before we reach the filter. At 14 MHz ., a typical i.f. used with v.h.f. converters, one may have 30 db . of gain in the r.f. stage and first mixer, for a signal that is only 50 kHz . down the band. This means that if the second mixer is able to handle a dynamic range of 100 db . the range of the signal level at the input would have to be 30 db . less to prevent exceeding the overload limit. Now we must take our $70-\mathrm{db}$. dynamic range left and subtract 30 db . of gain for our v.h.f. converter. At the input to our converter we have now a range of only 40 db . in signal level that the total system can handle before overload. Filters determining selectivity should be as close to the antenna as possible: right after the tirst mixer. This also means we should use not over one r.f. stage. Writh the advent of FETs, v.h.f. mixers with a noise figure under 3 db. at 144 MHz . are possible.

When we start working on impulse noise we must eonsider what effects noise circuits will have on the ability to handle strong signals. Let's examine the widely-used Handbook limiter. The circuit has two high gain stages. The second stage will be the reference for overload and the first stage gain will be 20 db . This 20 db . of gain must be added to 30 db . of converter gain for a total of 50 db . reduction in dynamic range. This does not cousider the efferts of the diodes which will make the actual situation much worse. Obviously, we should search for some better way. If we try the blanking approach we can divide the
blanker into a signal channel and a noise chamel as seen in Fig. 2. The input signal from our converter is applied to a high-gain, wide-band, i.f. amplifier to amplify the noise pulses, and also to the input of a delay line. The uoise amplifier should be designed using conventional pulse i.f. amplifier techniques such as used in radar rereivers. At the detector output we want a pulse out for every inpulse noise pulse at the input, and we must consider delay times, blocking, pulse stretching, and other typical radar i.f. problems.

The detector is followed by several pulseshaper stages, to generate the final pulse that controls the gate, which has several requirements that must be met. It must have a large amount of attenuation when turued off during the noise pulse, but no loss when passing the signal, and there must be no cross-modulation produced when passing the desired signals. The rise and fall times inust be controlled, so not to produce too much noise by upening and closing the gate.

Since it takes a specific amount of time through the noise channel to develop the gating pulse, the desired signal path must be delayed to insure that the gate is closed by the time the noise pulse in the signal channel reaches the gate, and that the gate will not reopen until after the end of the noise pulse. The gating pulse is made longer in the pulse shaper of the noise channel. In the signal channel, the signal is starved with a passive delay line, which is really no more than a low-pass filter. Design the delay line for whatever impedance you want, usually 50 ohms, and, with care, the loss can be kept low.

The gate itself is a transistor used as a switch. Biasing the base turns the switch on; the resistance between collector and emitter becomes very low. Reverse biasing turns it off: the resistance between collector and emitter becoming very high. The transistor is connected across one of the last sections in the delay line. We can now short the delay line to ground when the transistor is on, and when the transistor is off the delay line will have no effect on the circuit. Since the delay line is around 50 ohms impedance, and uses a large amount of capacitance to ground, compared to the capacitance of the transistor in the off condition, we can ignore the effect of the transistor. We must, however, consider what happens if the desired signal is large enough to forward bias the collector-base juuction of the

NOISE CHANNEL

Figure 2. Blanking method of noise reduction using separate signal and noise channels.
transistor：cross－modulation oceurs．A transistor with a high base－to－emitter breakdown rating should be chosen，so the bias in the off condition at the base may be set higher in voltage than the peak signal level arross the delay line when re－ ceiving a strong local signal．

More to come！

OVS and Operating News

so MHzz has really heen poppin＇．The E．season got into full swing in early May for most areas of the country although K4MGX，Florida，and K6EDX say＂not too good．＂However，reports reaching us hefore deadline tell of openings nearly every day between various areas of the country during the first three weeks of May．The initial openings were over predominantly north－south paths beginning mostly in the early evening hours and in some in－ stances，lasting until after midnight．VP7s NA and NS，KP4CPK and $W 1 \mathrm{HOY} / \mathrm{KP} 4$ are adding just a taste of DN to the annual serving of E_{0} ．And if one doesn＇t believe the s．s．b．transceiver hasn＇t changed six，well，you just haven＇t listened！

Thanks to W1HDQ，WA1DPA，WB2s，UVB VFX，ZDP，W3KWH，K4FKO，K4MGA，K4RCT， IrA5FPS，K1ZAT／5，K7ICW，W8CVQ，WA8EOW， WA9SDT and KOGJX for their reports of E ， openings．

Last month we touched upon the widespread E_{0} and F－layer activity of April 20．We＇re still getting reports on that one！K6EDI relays word from Ar－ gentina＂s widely－worked LU3DCA，＂．．．fantastic conditions to the United States weekend of April 20－21st．On 20th I worked Wisconsin，Illinois， Florida，Texas，South Sakota and California．On the 21st I worked California，Penusylvania，Colo－ rado，Missouri，Nevada，Utah．Texas，Florida，Ala－ hama，Arizona，Mississippi along with the＂usual＂ KP4s， $\mathcal{L E s}$ and TI2NA．Our standing is now 34 states on six meters．＂LU3DCA＇s potent signal emits from threc 4CX250Bs and a 4 －element lagi．

During the same weekend，K6EDD heard or worked CE2BM，C：E3s BQ，QG，LU1MBJ，LU2DLS and LU3DCA by F－layer propagation，and most areas of the U．S．on single－and double－hop E_{8} ．

Now from around the country，these reports of DN： worked the third weekend of April．W3KWH： LU3DCA；氏゙4YSN：LU3DCA；IT：TAX：HC1FS 16 watts a．m．to vertical dipole）；W．JPDD： ON6BW；WA LU4DFN：IF \sim FN：CE3B（2．CE3QG（Seattle to （Chile；best D． OA4C：WA7ECY：CE3BQ，CE3QG；THOEKB： CE3QG；WのØWKB：CEßClG；KOGJX：CE3QG， LU3DCA，LU4DFN．The same South dmerican stations were worked by dozens of other stateside operators，but these are the stations which reported contacts and they illustrate the conditions that existed between 1900 and 2300 （GMT，April 20 and $\because 1$ ．

The following weekend was nearly as productive， at least from southern California．WA6HNW reports isorking the following between 1900 and 2100 （iMTT， April 28：CX6BW，LU5CK，LU1DMA，LU6DLB and CE3QG．That path distance is roughly 6000 miles．On May 1 and 5，WGABN reports working some of the same South Americans．He and WA6HXW note 17 days of F－layer propagation from the Lus Angeles area during April！W6DOR repurts working CE3QG on the 29th and the Chilean mentioned having heard Japan at 2：355（iNTT．A few minutes later WGDOR says he heard a JA sta－
tion but was unable to get the full call because of fading．We have unconfirmed reports from K6EDX that CE3QG worked Japan and CT3AE，Madeira Islands，during the third week of April．K6EDI says he strongly suspects the reports are valid and has written CE3QG for confirmation．CE3QG was worked as late as May 9th at K6EDX，and Bob also reports YV5BTS，Caracus，active on 50．04， with 30 watts and a 4－element Yagi．K6EDI and K6RNQ are preparing a report on Cycle 20 50－ MHz．DI which will appear in these pages shortly． It should be extremely interesting．

Looking in the opposite direction，W6DOR in－ forms us that he will be operating in Alaska during the middle of July．He has applied for a KL7 call for the period，but if it does not come through in time he＇ll be／KL7．He＇ll be in the first 100 kc ．on e．w．，the second hundred on s．s．b．，and the third on a．m．，watching closely for signs of DX．

Mel Wilson，W2BOC，who has been studying 50 MHz ．propagation for at least 30 years，has an－ other study underway．He is looking for information on long，single－hop paths（ 1500 to 2500 miles）on nights of large auroras．During the past ten years there have been numerous reports of such contacts at various geomagnetic latitudes，with signals being dear and strong，without auroral buzz．Most re－ ported occurrences have been between 2000 and 2evo hours local time．Mel suggests that the follow－ ing dates，plus or minus a day，may produce auro－ ras；June 21，July 13 and August $\dot{\succ}$ and 20．Please report any instances to W2BOC and this column．
$14-12 H z$ ．news this month is highlighted by meteor scatter．The April Lyrids shower was fair to good，and early reports appeared in last month＇s column．K4INC worked KıMTJ，Maine，on the 19th，after many previous unsuccessful schedules． K1MITJ also worked WA4LTS，South Carolina， on the 21 st ．K4IXC says his antenna is down tor repairs and enlarging－now I wonder just how large he is going to make that array？One would think he will find it difficult to improve on his already fat signal．W5ORH，the Oklahoma cow－ boy，worked K4QIF，Virginia，and K4GL，South Carolina，on the 20th．The contact with K4GL took but $21 / 2$ minutes．And in addition to the Lyrids successes，W5ORH reports several on random meteors，adding，＂．．．these guys can make good contacts anytime if they will just get on and run． You don＇t need shower help on paths up to 1200 miles．＂True，and now is the peak time of year for random meteors．As previously reported， WOEYE and W3KWH cosered a 1335 －mile path between Colorado and Pennsylvania on the 21st， and on the 22nd W3KWH worked W5HFV in Oklahoma，after hearing him calling（Q on the 144．1 E_{x} and m．s．watch frequency！The contact took about one hour to complete．K6JYO says， ＂not much of a shower＂after unsuccessful sched－ ules with VE7BQII，B．C．，and W7UBI，Idaho．

The Aquarids shower produced a May 1 contact hetween K4QIF and K5WXZ，Texas，giving KtQIF his 30 th state from V irginia in about 9 months． Iowa＇s KดMISS found the shower good，with the peak on the 4th．Dick rontacted WA4LTS，South Carolina，on the 1st，W2CRS，New York，on the 3rd， and W3BDP，Delaware，on the 4th．Delaware was state number 42 ，and the last needed eist of the Rocky Mountains．They＇re going to get tough now， Dick！

Good late April tropo reports come from two Florida stations，W4UUF at Pensacola and K4IXC． W4UUF reports a handful of contacts along the Gulf Coast as far west as Texas，but bemoans the
lack of activity compared to past years．He also worked CO3NR，Cuba，on April 20．K＋INC like－ wise worked stations in Texas，Louisiana，and Alabama un several April nights．Apparently tropo in other areas of the country has not been up to par，judging from the lack of reports．

For those interested in records，W6YK has laid belated claim to the first two－way U．S．A．contact through Uscar III．He worked K6HALS on orbit 9 at 0936 GMT，March 10，1：965．K9A．A．J and KこIEJ have been recognized as establishing the U．S．A． ＂first＂during orbit 13，although the true first contact was between HB9RG and DL6EZA．See Qs＇T，pave \bar{t} May， 1065.

Because of the length of the column this month， the states－worked boses will appear next month， with a considerable number of additions．We＇ve still got room for yours！
？2． 11 Hz ．reports are more numerous this month． K 4 I C ，Florida，（ 20.072 ）is scheduling KtGL， south Carolina，（ 220.059 ）over a nearly 500 －mile path．K4IAC says KlABR，Rhode Island，is probably running high power hy now and that they will be seheduling．K4LIC is disappointed that he has not been able to find more＂takers＂for 220 tropo and meteor scatter schedules．He runs a kw．， and a lagi stack at 80 feet．

VE2DFP，Beaurepaire，Quebec，will accept Au－ gust Perseids schedules．Don has a pair of 11 －element
liagis and 120 watts，s．s．b．and c．w．And W1YTW， Kittery，Maine，has come to 220 with 160 watts output．K4GGI／1 says the Portland area station has plans for more power and a large antenna． WIITW is a guod c．w．uperator and is probably interested in tropo and m．s．schedules．

W2SEU，Freeport，New York，says the states－ worked box revision prompted him to dust off his ？on－watter and go looking for new states on $2 \cdot 0$ ． Fred has 12 states worked and would no doubt ac－ cept schedules．WVSEU＇s comments．＂I want to thauk you for the updating．This should have been done before．（ lood work－it got me moving on 220 again．＂Fred was near the top of his call area when the revision struck him from the list．Nearly 50 others have favored the revision．See the March column for details，and send in your records．

At Hopewell Junction，New Yurk，K2DNR will resume m．s．sehedules with K4ISC shortly after having worked WBCOV，Md．，state number 7 via the trono route．And KIYON reports two new $2: 0$ stations in Connecticut：WAlGTP，Essex．and WA1ION゙，Avon．
420.1 HHz ．interest continues，but activity report：s are scarce．At Richmond，Virginia，W4FJ＇s schedules are paying ofti handsomely．Ted is up to nine states， to lead the fourth call area，after a 345 －mile contact with K4GL．W．4FJ is also scheduling K2YCO and （Continued on page 140）

Second International V．h．f．Conference

The Second International V．h．f．Couference sponsored by the East Coust VHF Society， WA2WEB，was held May $2-4,1968$ in Paramus， New Jersey in conjunction with the Garden State Amateur Radio Exposition（see pg．60）． This was perhaps the largest and most diverse assemblage of v．h．f．ers ever held．From outside of the U．S．came VE1CL，DJ3RG，VE3ENZ， VE3BPR，HB9RG，PA0FB，VK3ATN，JA1BMI， and VK5\％EI．U．S．participants include W6DNG， W1JSM，K2TKN，WG（२ED，W2UK／KH6UK， WGOLO，KIABR，W2IMU，KigIJN，W4（iJO， W2AZL，KこUYY，WASUTB，WHIDQ， WA5BPS，W7ELQ，h6MVH，W＇3SDZ，K4MOC， WB6IOM，and W2AMJ，just to mentiou a few！ Meetings and forums on a variety of v．h．f． topics took place over the three day period．

The moonbounce forum brought together a large number of the world＇s notable moon－ bouncers．The question arose of what motivated the conference participants to engage in amateur moonbounce activity．Almost unauimously，the reason was for the challenge of doing something almost impossible．

WB6IOM pointed out that there is great satis－ faction in making moon－bonnce contacts since accomplishments come as a direct result of at carefully engineered system and operating skill， unlike wher propagation modes which rely on the chance of propagation anomalies．W6DNG said that his interest in moonbounce was sparked from a study of matter transfer by electronic means．W2IMU added that current experimental moonbounce work may eventually lead to its
wide－spread use for everyday amateur activi－ ties．

Other topics and questions raised related to choice of frequency band，antenna polarization， equipment problems，and future prospects for moonbounce．Agreement was reached on a cir－ cular polarizatiou convention：trausmit right－ hand，receive left－hand．Little unanimity was found，however，in selection of a frequency band． While engincering considerations point to $1: 46$ MHz as an ideal amateur moonbounce frequency， there is still a large following for $\%$－meter work． In concluding remarks，W2IMU expressed the feeling that promotion of moonbounce might best be accomplished by education in the form of good written articles on the subject especially on equipment realization for u．h．f．

The national i．m．repeater session was well attended with representatives of repeater groups from all over the U．S．Many f．m．techuical topics were discussed including the use of time division multiplex on a repeater chamel in heavily populated areas．The problem of availability of information about f．m．techniques was in－ vestigated．It was found that greater QST cov－ erage could be achieved if f．m．ers would produce more articles on the subject．Plans were an－ ulumced for expanded coverage of f．m．in the （196）edition of the Handtonk．A discussion of repeater regulatory matters centered on the petition to FCC by the Buffalo，N．Y．repeater group．While most of those present had minor disagreements with the proposial，now RM 1209， a cousensus of support was achieved．

Here are photo highlights of the International V.h.f. Conference sponsored by the East Coast VHF Society at the Garden State Plaza, Paramus, N. J. Upper left photo shows VK3ATN (standing) being greeted by his moonbounce correspondent W 21 MU and an unidentified kangaroo, while an airline stewardess looks on. Upper right, PAØFB (center) is welcomed at the airport by K2GNA (left) and Dr. Hoogstraten. Center left, WIHDQ addresses one of the many v.h.f./u.h.f. forums. Center right shows the well attended national f.m. repeater meeting with (from left) WA8UTB, K2IEZ, WA5BPS, and K6MVH. Lower left, KøIJN, W2IMU, and K2UYH ponder several moonbounce problems. Lower center shows ARRL First Vice-president W5NW at the East Coast VHF Society's banquet. Lower right, HB9RG tells of the Swiss-German moonbounce effort. (Photos by K2HHS, WB2DLW, K2LME, and WAIIUO.)

July 1968

Hows DX?
 3

CONDUCTED BY ROD NEWKIRK,* W9BRD

Why?

Everybody has a pet theory as to why our world seems to be turning kookier by the minute. Yours may be as valid as the next person's. In this game originality counts as much as rationality, and any number can play.

In that connection, and as a continuation of DSHPDS dir Pollution Committee observations, we now call attention to a provocative article from the Wayland (Mass.) Town Crier of September 22, 1966, generously forwarded by WAZIPC. It reports on interesting testimony given at a public works hearing concerning prop sials to erect a local overhead high-voltage a.c. transmission line. We excerpt:

Are werhead electric power transmission lines as dauserous as they are ugly? Is electromagnetic radiation an air pollutant of surts? A newly arrived Wayland resident William Siaxton, Ph.D., of Oak Hill Rd. - opened up this area of concern in voluntary testimony. . . .

Dr. Sixton, who earned his doctorate at Harvard, is an army reserve captain called up last January because of the Vietnam war. He is stationed with the Army Electronics (©ommand, Fort Monmouth, N. J., currently assigned to temporary duty at Harvard where he is involved in a restarch project.
"There is no question in my mind," he told the crier, "that there is a definite relationship between electromugnetic radiation and the workings of the human anatomy." He reported on a recent paper by Russian scientisty concerning the effects of this radiation.
"No doubt," Dr. Saxton said, "from this and other research, the radiation does have an effect on the central nervons system." He emphasized that it will he "several
*7862-B Weat Lawrence Ave., Chicago, Ill. 60656
years" before science really knows how much of a detriment electromagnetic radiation is to human functioning. but it has been found that those persons most exposel and most susceptible to it are at best "more fidgety, more nervous" than is ordinary.
"Results of most studies," Dr. Baxton related, "arc incomplete. but carly evidence indicates that electromarnetic radiation has a pronounced effect on human beings." He said that overhead power lines emit direct radiation at a frequency of 60 cycles per second, which might prove - iangerous for anyone exposed to it for long periols of time because many activities of the human body take place at frequencies of 20 to 100 cycles per second. A matter for research is what happens to those human pulsations when influenced by a force of anuther tio-cycle pulsation eutering the hody from an external source. . . .
"There is no longer any doubt that certain forms of radiation are detrimental to human functioning. I predict that this will be a focus of national attention in a few years." 1)r. Saxton also mentioned the increased interference to television and radio caused by high-tension lines.

He emphasized to the Crier that the result of this electromagnetic radiation is evident to the eve or to the ear insotar as television and radio are concerned but is not detected by the senses when it enters the human body. Thereiore its effects are not casily measured. He stated that electrical companies and utility agencies could be severely criticized in time for ignoring the potential danger of electromagnetic radiation.

Another naper used by Dr. Saxton was prepared by a team at Sivracuse Veterans Administration Iospital, hearled by Dr. Robert O. Beck. In a report of its tindings Dr. Beck's group noted an increase in the number oi psychiatric patients in areas which had experienced intense magnetic storms. Radiations from a magnetic storm, Dr. Waxton said, are in the same frequency range as that of power lines. (Reprinted by permission of the WaylandWeston Town Crier)

In an era when students dictate to faculties, when criminals haul policemen to court, when spending is more virtuous than saving, and when ill-bred DK hogs are tolerated by their brazenly victimized brethren, who knows? Maybe we are being bugged by a great big buzz-zz-zz.

HMIAJ, shown here with wife HMIAM, is chief Korea s.s.b. DXponent on $14,190-14,230 \mathrm{kHz}$. where he watches for W/Ks around 0600 and 1200 GMT with his quad pointed Statesward. Cho busily puts the finishing touches on his ARRL DX Century Club application.

What：

Continuous ware gets our DX spot－check spotlight this month as promised，except for 14 MHz ．which we usually treat separately for space reasons．Man，the code clan is really cleaning up from 10 through 1ti0 meters as this ride on the＂llow＇s＂．Bandwagon clearly shows．As usual， parenthesized figures stand for kHz ．above the lower band limits，uumerals outside parens representing Gircenwich whole hours．Giddan，Yegasus！．．

15Novice DXploits，overdue for documentation，loom large in the logs of WNs IION IISH 3JAB 4GRN 4GSS 4GTI 4IIF and 8 YHN：CN8FV 21．CO2DL（132） 15，CRs 4BA（152）2：23，6AL，CT1s TT LQ 2：CX1JM， two dozen D．J／DK／DL customers，DMs 2BKN 14，2UFA 3UFA 4 EL 4 WKL，DU7SV，EAs 7CL（108）1t，8ET 18 ， 8FE 19．ten Frenchmen，FG7s XT．XZ（101），FP8CS loads of G8，GI6TK，GMs 3AWH：20，3IMZ 3JDR 5AFF fiRI，GW3KUY，HAs IVI 5AW 5DJ 16，6VK 8IIF，HB9s AGHOC OC 19，RX 16，MI7ATK（180），I 1s BDK 13－14，SF 15，IT1s MNG 18，PLA，JAs 1DDZ GHKC，KC4USM （108）2，KH6s ERQ FRF 2．，CHB NF 2\％，KL7GCK 1， KP4BBN（111），KV4CK 18，KZ5s（iN（153）22，HK20， IQ NG R1N LAs 2TA 7TH 15，LUs IBR 1，1DNY 0， HOD 0，LZs 1 KBD $15,2 F A, O A 4 N Z P=2$ 5CA 5ANL 15－16，5NKL 6RAG 18－19，7AZ，OHs 3KL 14， 6AA 14，6NS 6UW 6WY，OKs 1AUZ 1CG 1SC 1VK 2BI $14,2 \mathrm{KR} 3 \mathrm{KGP} 21,3 \mathrm{KFU} 3 \mathrm{KHE}$ ．ONs 4 LD 5 BI 5 IG 19. 5L＇W 5TO，OX4AB 20，OZGHS，PAøs CMIZ GRH 18，LV SOL 15．ZAV 18，eighteen Brazilians，twenty Swedes，SPs こBBD 3AIS 2AJO 23 ． 5 AFL 5C．JL 9KILQ 20，TG9s Cl．EP TI2DO 20，UAs 9BG9RZ，16，9XU 19，oM M，UB5s DV 15，＇ JR KED 16，TQ 14，UC2AZ，UQ2AS 20，UT5CC，UW3FW 15，VO1s GF 21．JK 21，VPs 2AR 9GA 18，VOs 8CO 19， 9R，WA3DVO／8P6，W2PXZ／VP9，WIIGs（iKD（132）0， GLB（180），WL7s GIC（108）20，GOU（153） $2 \because, 1$ N9VPX／－ KP4 2\％，WP4s I）AJ（118） $13-14,1)(: L 21, ~ D C R(140) 23$ ， XEs LGL $1 M N$ INNR $1 X X$ 2CCI，YOs 2CI $18,8 G L$ ， YUs $1 A G 14,1$ NEO $20,1 \mathrm{NHB}$ ¿NEG 15.3 TFR 18 ， YVs 3is 19，5BWJ（111），5CKJ（110），5（12R／1（12．1） 18－19，ZD7GS，ZE1CY，ZL1HW 1，ZSs 4IO 19，4JU 20， 5 BK （180），6BGE $6 \mathrm{VJ}, 4 \mathrm{U} 1$ ITU 14 and 5Z4SS．

15
c．w．below the Norice slot is even more prosperous， according to mail from Ws 1AYK 1DAI， 1 VAM 2ICO 3HMR 4YOK 7BE 8IBX 8YCR 9INQ bCVZ，Ks 1FKW OUPD 5MIIG WYUR，WAS 1CJE 1CYT IIIT IFHU IION 3IDS SIIRV 4YOK 5MIN 5PUQ 7BE 8NICQ 8PVN 8VRB 9TFMI 日RVR，WB2s JPG SSK ZNZ and I1ER：CEs $1 \mathrm{AV}(27) 22,37 \mathrm{~K} 4 \mathrm{LQ}$（40） $20,7 \mathrm{AQ}$（48） 20 ， 7 BV （40）19，CM1AR（15）20，CNs $2 \mathrm{AY}(77) 14,8 \mathrm{CC}$ צNIII（17）10．8MVV 19，8MZ，CO2s BB（77）16，RL（37）， CPs 3CN（70） $22,6 \mathrm{FN}$（92） 20 ，CRs 3AD（90）13，4AG 4BB 5SP（56）19，6AI 6AL（54）20，6BA（80）18，6CK （50） $13.6 \mathrm{CN} 17,6 \mathrm{CX} 6 \mathrm{EI}$（26） 17.6 FA （85） 20 ，6IfC（ 40 ） $11,6 \mathrm{IX}(33) 20,6 \mathrm{~KB}$（6t） $19,7 \mathrm{BN}$（ 60 ） $18,7 \mathrm{IZ}(7 \%) 18$ ， CTs 1BJ 1ITT 2AA（42）14，3． $\mathrm{CS}^{(22)} 20$ ，CXs 1 BBO （36） 20，1BBV 7AP，DJ2IB／Ci3 21 ，DMs 2 ADC （4）2CPL
 （76）18， 9 AQ （90）20，EIGJ 17－18，ELs 1 NJ 2AJ 2AY 19， NJ 2 NY （26） $18,2 \mathrm{RL} / 812,2 \mathrm{Y}$（ 22$) 16-17$ ，EP $2 \mathrm{HB}(12$ ） 12．ET3s FMIA（65）17，USA（13）19，FG7s XE XJ XT （162），XX（50）21，FH8CE 19－20，FMフWO（21），FO8s A A HV，FP8CY，FW8RC（12） 1 ，G6ZY／CN（49） 12 ，GCs 3 IEN 4 KI, GD3AIM（35）12，HAs 1 KSA 1 SB （40） 17 ， MMU（13），3GF 3KNA 5DJ 5KDQ（26），5KFZ（55），7PJ （30），8（YY（92），8UD 8UH，IIC1GC（26） 20 ．MI8IBC（51） 21 ，HKs 3RQ（55）10－11，7UL，HL9US（51）10，HM5BF （79） 10 ．IS1PPB（10）12，IT1s AGA MNG，JAs 1AGW IBRK 2ACA 2CHS 2IPE 3FGE（ 100 ） 0 ，6AF 7ARW（ 55 ） 1． 7 CRU 7 SN 7 Y FA 820 9CAF 9YCE．JH1s AGW CW\％， JT1KAA（43）8，K1FNA／KG6（40）12，KAs 2KS（22） 2 9AA 9，KC4USM（28）2，KGs 4CX（28）22，4DF（16）19， 4 DK （47）．6．AAY（40） 23 ，KL7s IR MF＇（52） $16, \mathrm{KR}$ s ，iAI（48）17，6UD 8T）K（42）14，8PA（3）11．KV4s CI（3） 11．CK EX，KX6s 1）B 0，ER（47）1ッ，FN FX i40）11， KŻ5s AJ（75）16，（1O（15）9，RP（80），LA 0.1 D 18，many CUs，LN1CF（39）： 0 ，LZ1s（I）（49），KAA（30）11，KBG， MP4s B（xU（50）17，DAT（1．5） $13, \mathrm{MBC} 17$ ，OAs＋ HF tUO 7 RI（ 94 ）．OD 5 s BZ（ 21 ） 16 ，LX（1）17，OEs 1 MFW 16，1RG（10）， 1 RS 3VP 5ALIL（10） $19,5 M I P L$（17），5PX， OX 3 s AB 16．SA（ 25 ） 16 ，OYs 2 EL （30） $11,2 \mathrm{H}$（34） 18 ， 1R（36）18，PI1KAIA，PJs 2ME 3CC（15）18－20，3CJ（50） 17，many PY friends，PZ1AII（Y）1：，SPs galore，SVgs WF WP（40）15，TF2s WKU WLC（26）14，TGs 4SR（60） $\because 3,9 \mathrm{CD}(94), 0 \mathrm{AA}(5) 15, \mathrm{TI} \because \mathrm{s}$ DO（100）20，LA，TJ1AS （1）18，TL8CMI，U5ARTEK（35）8，UAs 21C 9RZ OKFG OLH OLS（52）10，0MA（30）13，0MD OMX ORS（5）15， UB5s KBA LEDI（2y）10，KLD MZ TR，UGGAB（25）18， （1H8：BO）（7t）10，KAJ（78）11，U18s AM（95）AX（50） 1.5 ，＇B（15）9，KBA（ $9 \dot{3}$ ） 7 ，UJ8AB（55）1 2 UL7s BJ（71） 11, BX（ $(2+1) 11$ ，KAA（ $\because 7)^{\circ} 10$ ，XG，UM8s AP（30）11， I．${ }^{\prime}$（33）13，KAA（60）12，UN1KAMI（18） 14 ，UP2s KBC （16），NW（ 69 ） 11 ，IIT5TL，（54），UVGFF（59）10，UW3s IU（33）15．FW，VKs 8UG 9GN，VPs 2 MK （50） 18 ， 2 MO 2 NT （ 50 ） $1.5,2 \mathrm{MQ}(16) 20,2 \mathrm{VL} 16-17$ ． 7 NF 15， $7 \mathrm{NQ}(5 \because) 20,8 \mathrm{IU}(45) 20,8 \mathrm{JHT}(54) 20,8 \mathrm{JG} 9 \mathrm{BK}(10) \geq 0$ ，

OX3FS uses this homespun four－watter to work all conti－ nents consistently on 20 c．w．from Narssarssuaq，southern Greenland．Finn likes the low edge of the band at 2200． 2300 GMT．He works as an engineer in Denmark＇s space program．（Photo via WB2OZW）

VOs 8CC（50）17，8C：J（45） 11.9 B （47）20，9．J（20）2： VRs 1（ 2：3C 5AC 2：V＇Ss 6A．A（89）14，6EY゙（35）23－1， 6 FX （28）12，9MB（50）11，VU2s（M（48）7，JA（17） 16 ，
 XEs 1AAG 1F．JR（30） $2: 1 \mathrm{NNW}$（45）2AAG 21，XT2FA （9）17，XW8s BP（29）16，（ 14 L （ 29 ）16，YAIZC（30） 7 ， YOs $2 B_{S} 9 A E M$（32），91OC（13），YSs 1 WKE（23） 17 ， 2OB（58）21，a gob of Y＇Us，YV5s（IY（55）17，CKR／i （1：4）18－19，ZB2s A（70） 21, BF（19） 13 ，BO 18－19， ZC4s BI（17）10，（iMI 15，GB（4），JU（50）11，MC（95） 9．RB（60）9，ZDs 5X 7GS 8A．J（65），8．J（50）23．8RC（18） $00,8 \%$, ZEs $1 C Y$（35） $18-14,1 \mathrm{JL}$ 4JS（9）18，ZF1s DX 18 ， （iC 17，several ZLs，ZP6AY 14，ZS3s HF（69）19，LU （24） $20,3 \mathrm{~A} 2 \mathrm{CL} 16-17,4 \mathrm{As} 1 \mathrm{PR}$（70）16． 12 V （70）16， 2AG，4S7s DA（20）19．EC（60）17，4U1I＇TU（30）18－19， 4Xts CX HQ 21，QA（30）13，4Z4s AG 17－18，BG 2؛， $5 A 3 T P, 5 H 3 \mathrm{KJ}(88) 20,5 N 2 A A F(15) 13,5 R 8 C Q(45)$ $16,5 \mathrm{Us} 2 \mathrm{AB} 2 \mathrm{~N} \mathrm{~S}$（33）14，7AN $17,5 \mathrm{Z4s} \mathrm{KL}$ SS $17-18$ ， 6W8s AW（53）18，HL BF（40）19，DQ DW（10）13．7Q7s AM 17，PAX（35） $17-21,7 \times 2 \mathrm{~s}$ ED（88） 16 ，WW， 8 P 6 s $\triangle A$ BU（32） 20 ，9A1B，9G1s GC HM（33） $18, \mathrm{HQ} 17$ ， 91I1s AK（34）11，AV A7（10）18，Q（70）16，952s BC（11） $\because 0$ ，CL IIZ（18） $20, ~ M X(40) 18, V B(30) 17,9 L 1 T L$ ， 9 M 2 LN （50） 16 ， 905 s CD（5） 23 ，EII（30）7，PT（ 8.5 ） 13－14，TII（78）18，WS（3） $20,9 \mathrm{~V} 1$ \＆LI（32） 16 ，NV（ 60 ） 17－18，OK if，OR（50） 17 ，OS（43）18，OV（12） 15 ，9X5s PS（50）18，SA（55）18， 9 Y4s AT（49） 11 and RA．
40 c．w．，usually piled high with DX armament near its low edge，comes through for Ws 1DAL 1 VAII 3HNK＋YOK 7BE 8YCiR，Ks 5MIHC 9UIY，WAs 1CYT IDJG 1 FHU IION 3DSD 5MBC 5PUR XIICQ 8PVN， WBs 2lF＇PG and tUBC with COथDR（6） 4 ，CRs 4 BB （7）， 61）A，CT2s BO \％A（5） 4 ，loads of DJ／DK／DL friends．
 1PL，EAs 2DT 8FJ，ETBFMA，numerous lis，FP8s AP 1）P（ti）7，DY（14），lD（10）1－5，（i6ZY＇ON（25） 2 ，GCs
 （7）．九「J（5），7PP 8（K（8），8UP（5），HCs 2SZ（51），8liN 2．3．HIs 7JMP t，7NMC（3），8KV 4，HKs 3APT（27）： tPP 2 TXI（ 64 ），ISLCZQ（5） 21 ，IT1AGA（9），JAs $1 A A T \%$ CNT（1） 8,3 ）GC（17） $9,4 D B Q / m m$ tik，JH1DTC （1）8，KC4USM 11－12，KG6．A．AY（t） 8 ，KH6s $I T D Q 12$ ， KP4s RBN BCL（5），DAC（19），UW，KV4s AM CI， KZ5s（iN FX，sundry LUs，LZs 1 DF （ 8 ）， 1 KPG （5），
 こKLC？IIRM（15），MP4BEU，OAtUO，OES INY 3PWWं （16），3SRW（3），5（A 5NT（6），5SGA（2），ample Olis
 （6），OYGFRA，PJ3CC 4，a hatful of P＇s．PXIKT（3） $\because 3$（1，PZ1s AH（27）3，CQ（7）5，SMs 1CJV（21），2DU゙ （t）and others，sixteen SPs，TAlNC（15）23，TGs tSR （12）BA．4，UAs $2 \mathrm{CA}(5)$ ，9KAB（1EQ（5）8，UB5s HA IL（10），IU（9）21，KAG（25），KFF（16），KNI（4），Kİ （3），W） 2, PG 4，UC2s KAK（7），KBC（7），UD6BV（3），
UG6AG（10），UO5WT，UP2KNI（9），UQ2s AS（5），KCS

VP2KW（WøCA）poured out plenty offdelicious Anguilla QSOs this spring from an old hurricane－smitten police barracks， the island＇s highest elevation at 213 feet a．s．l．Nick is better known as former WøIIC．（Photos via WICW）
（15），MR（3），UR2JW（24），UT5s BL BP（3），NG（5） OZ（5），NG（5），PK（35），UA，some UWs，UY5s MV＇ RV（5），UU（4），XG（6），VESME（20），ten VKs，VOs 1 AW （12） $2,1 \mathrm{DE} 2 \mathrm{AW}, V \mathrm{Ps} 1 \mathrm{PV}$（3），2AR（23）4－5，2MO（5） $5,2 \mathrm{VL}$（7） $2,8 \mathrm{JD}, \mathrm{VQ8CC}$（2） 2 ，VR2DK 11，XE $2.4 A G$ ， XV5PC（3） 24, XW8BP（2） 14 ，forty YO－YU codehounds， YN3KM（53），YVs 1EN 4．JJ 4OY 4TI 5BPG（4），ZC4CB， ZDs 5X 8J 2－3，8Z，some 2Ls，3A日EJ（19）18，4Xis RD VO（3），8P6CJ（49），7XøAH 9，9A1B（5），9J2VB，9L1TL （22） 4 and 9ViLK，7XØAH 9，9A1B（5）9J2VB，9L1TL 4GTI and 4IIF knocked off CT3AM（175），an HK or two， WH6GMW，WN 4 IOR／KH6 and other nifties amidst the howling SW＇BC bedlam．

80C．W．，at least for the summer up north，finds the blush off its DX rose，although DX prettics may pop out of the static for Ws 1DAL ISWX 1 VAH $4 Y O K$ ， WAs 1CYT 1 FHU 1GXE 8MCQ，WN4IIF and others un－ daunted by high noise levels．Oh，stuff like CR6NK， CX2BBT，DJs 20U 2RT 4PX 6SI 7IK 8SW，DKs 1BN 2NB，DLs $1 A Y$（30），1GN IRK（7）， 1 VU 9CC（2），DMs 2AJE 4，YCZL 3BE 3OC 3WYF 4＇ZWL（6），4ZXH（4）， EI9J．ET3FMA（5）19，Fs 2PO（2），30A 5IE（7），8TMI （10），＇is a－plenty，GI3s＇OQR SKH，GW3s ITZ SV＇，HAs 1SX（5）．3GF 3MB（7），5DI（4），5KDQ（3），9PH（7）， HBs 9EO 9LN（6），0SJ（1）19，HI8RV，HK3RQ，MP1XHG （10），I1IZ（7），JAs 1BRK 7XF，KV4．4M（10），LAs 1 XI 6EI（7），6U（10），LU6HEE，LZs 1KAA 2KKZ（7），OEs 4 JMB 5 OEL （6），OHONH，a mob of OKs，ONs 4 HC 4 XG $5 G K$（5）8，OZs 1 LO 4 DX 4 UN （5） $1,7 \mathrm{X}$ ，PA日VLK PY1BTX．PZ1s AH（10） 7 ，CF（10）6，a dozen Poles，SMs 4 BIJ （7），5WI 6CKV，TI2WR，UAs 9GW 9KAZ（6） 17 ， 9 KCO 9 KCW OKFG＇，UB5s kAA WJ，UC2s AA AR UD6AM，UF6DF，UG6AD，UH8CS，UI8s AI AP，UL7s UG GW，UO5AR（10）23，UP2KNP（6）7，UO2s AN（10）， MR，UT5s BJ KDP MG（7） $2, ~ M M$ ，VK＇ $2 E O 2 N S$ 2VN 3APN 3EZ 7SM，VOIAW＇（8）0，VPs 2MJ（2）3，2VL 7BG 7DX，YOs 3RF（7），4WW（4），YUs 2FVW ： 4AAW，ZL2AFZ 9－10，3A2AC，4L3A 1，4U1ITU，4X4VO， 5ZAKL，9H1s AG AM（10） 23 and AN．
10 c．w．performs admirably for Ws 1 AYK 1 VAII 3IIMR 4YOK 5QGZ 8YGR，Ks 1FKW 3CUI．WAs 1CYT 1DJG $1 F H U$ 3IIRV 5PIF 5 PPZ 8AICQ $9 Q B M$ and IIER， thanks to CE2CR，CO6RM，CRs 6CK（50） $12,6 \mathrm{HC}$（50） $9,6 \mathrm{HG}(51) 8,6 \mathrm{ID} 19,6 \mathrm{~KB}(45) 18,7 \mathrm{BN}$（ 40 ） 9 ， 7 IZ （50）16－17，Cr3AS（80），CX8 2 FD （56） 12.45 JK （50） 18 ， DJ2LB／CT3（15） 17 ，DM2s ACC（47），A＇゙J（41），BYG （67）．EI9s J（23），S（71），EP3AM（30）15，E＇T3s FMA USA （ $\because 2$ ） 15 ，FH8CF（ 20 ） 10 ，G GiZY／CN（81）16，GCs 2FMV（90），3WMR／a（46），3WQE／a（12），HAgLL（12）， HGs 2KRD（90）13，6NC（47），HI8IBC（25）17，HK3s AVK BAE（45）19，IT1AGA（43），JAs ICWZ（20） 9. 3DGC 9，3HCJ $8,3 N O C$ 10， 40 GG $10,5 B E E 7 E R F$ $9 \mathrm{JGO}, \mathrm{KGs} 4 \mathrm{CX}(80) \quad 20,6 \mathrm{APD} 22, \mathrm{KRs} 6 \mathrm{KJ}$（45） 11 ， 8EA，KV4AD（86） 15 ，KX6FN 2，KZ5s GO 23 ，TS（20） 19，LA 6 AD（2＇） 10 ，LUs 3EX（62）16，४DQ，OEs 1 RG 18 ， 5 CA （47），OYs $2 \mathrm{H} 5 Q$（14）18，PJ3CC 14，tahoo PK1AA （1） 13, PY8 $\because B G L$ 2SO 14,5 ASN（30） 11, SPs 3AIJ 14 ，
 19．＇TA1QR（30）8，TJIs AG AJ（68）17，A＇s（30）14－15）， QQ（40） 15 ，UAs 9CP 10 ，0MIX 10 ，UB5s KAB（ 5% ），LS （ 4 2） $18-19$ ，UD6CR（30） 8 ，UF6DR（30） $11-12$ ，UH8AE （70） 14 ，UI8BI（40） 11 ，UL7JT（34）10．UM8s ABC（15） $1 \because, A P(35) 10$ ，UP2NX（41），UQ2KCS（15） 14 ，UV3AAM （ 49 ）．UW9KCW（50） 10 ，UY5AN（47），VKs 8HA（35） 12 ， XNO 2，9GN 22. VO1s AW（32）15，HN（100）18－19）， VPs 2MK（40）15，2VL 21，7DX 8．JG（45）18，8JII（50） $19,8 \mathrm{JT}$（37） 17 ，VQs 8CC（25） $14,9 \mathrm{~B}$（35）19，VS6lix
（35）10，XE1JD（56）17，XW8BP（35）11，YA1ZC（47） 10，YOs $2 \mathrm{BV}(43)$ ， 7 VJ （39），YS2OB（25）17，YU3s EK （17）ER（38），ZC4s BI（30） 10 ，JU（58）17，ZDs 5X（ 29 ） i5，8J（33）17，ZEs 1AS（44），3JO（60）19，ZS9Q（75）19， 4L3A 13，4S7RN（3．5）12，4Z4AG（20） $19,5 H 3 K J$（38） 1 b゙－17，5U2AB（55） $10,5 Z 4 \mathrm{SS}(75) 19,6$ Y5s AR（16） 6 Е＇Г，7P8AB（73） 17,7 Q7LZ（85）9，7X＠AP（95）10，8P6BÚ （19）15，9G1HM（5\％）15，9V1s LK（15） $10,0 \mathrm{C}$（37） 11 and 9 Y4AT（15） 20 ．
160 c．w．＇s following grows steadily with Ws 1BB 3I）PJ 9PNE $6 \hat{V} X U$ ，WAs 1 FHU and GIVMI in the＂How＇s＂ $1.8-\mathrm{MHz}$ ．vanguard．After ycars of struggle and sweat the first Nine top－band WAC apparently has fallen to W9PNE．＂I was about to give up entirely this year when I heard our lieague President，WoNWX，work KA9MF．I couldn＇t hear KA9MF but decided to continue scheduling Asians and try a different 2．40－ft．wire for 1995 kc．March xth I tinally worked KA9AK！＂WgVXOA keeps adding more JA／KA contacts to his（Colorado log ， sometimes switching successfully to s．s．b．W3DPJ finished his tirst year on 1.8 MHz ．with 13 countries，tive continents and 48 states，working 5Z4LE in March，and ZL3RB as late as April 27 th．Other possibles on various 160 －meter 1） X lists are CE3CZ，DJs 4 SS （28）23，7YR（25） 21 ， DL9KRA，EIs 4 AL（70）0，4．4N 9．J（25）23，F3BQ，dozens of U．K．candidates i ncluding GCs 3IEW（20） 5 and 8 HT ， IB9YL，JAs 1BHG 1RST 2CLI 3AA +10 7AO 7CQB 7 NI 6BD，OE2JG（26）23，thirty OK／OLs，PAgs BRAI （27）23，FCMI GMU゙，PY2BJH（27），PZ1A甘（27）5，VKs 5 KO （2） $20-21$ ，9GN，VO1FB（5），VPs 2VL（3）4，7DX， YV1OB，ZB2s AP AY（ 25,75 ）．ZC4RB（74） 21 and ZE3JO＇ （1）3－5．How wiil revised stateside 160 －meter regulations sffect DX doings＇：In the old Class B and C License days of thirty years axo the band was one maring mess around the clock－plenty of short－hanl fun！But we shall sce．
－•••
That＇s all we have room for this trip but later on we＇ll scar other loggings，especially the phone doings of $(\because 0)$ Ws 1AYK 1DAL 2DY 2VUZ tuTS 7BE 8IBK 8YGR 91，NQ，Ks 2UPD 4TWJ 9UIY，WAs 4WIP 5PPZ 5PUQ 6JDT 3 KkE 8NICQ 9TFM，J．Stevens；（15）Ws 2 DY $4 A J J$ tGTE 8YGR，WAs 3HRV BJDT 9＇TFM F3VN／W Ir．Stevens；（10）Ws $2 \mathrm{VOZ}+\mathrm{YOK} 8 \mathrm{YGR}, \mathrm{K} 4 \mathrm{TWJ}$ ．WAs 1 IED 3IIRV $8 M C Q 9 T F M$ ；and，sooner or later，the $20-$ meter c．w．ledgers of Ws $1 \dot{L} A L 21 C O$ tEAY 7BE 8IBX 8YGR，WAs IFHU IION 3HRV 5PPZ 6．INT 9TFAI， $W B \because Z N Z$ and $I 1 E R$ ，plus informants to file．Sunspots， keep it comin＇！

Where：

IOUTH AMERICA－VP8．JG（Ci3UAU）writes from Stonington island，＂I will QSL all QSOs eventuall：． However，at this antarctic location I receive ouly one mail a year．Much also goes astray．I request all cards be sent via CX2AA or，preferably，through RSGB．＂．．．－．－Lack of liaison caudes W3IINK to relinquish management of YV5CEY QSLs，but WBGTEE continues to repri－ sent $x^{\prime} V 5 C I L$ cardwise and prumises one－day service for s．a．s．e．（self－addressed stamped envelope）petitioners pro－ vided log transcript is at hand ．－．．．－LDX New oshleet mentions F：，Chilvers， 1 Grove Rd．，Lydnev，Glos．．Eingland， as a possible source of assistance toward QSLs from VP8s FL and JH．－．－＂I＇ve sent out some 24,000 QSOs for HKøAI since 1957，about half of these ut my own expense，＂ reports WYWHM，feeling that nobody should have tmuble confirming this one ．．．－．－A postalstrike impeded most
©hile mail this spring，including outbound CE9AT paste－ hoards．
GUROPE－＂UY5AD QSLd direct from Kicv，＂com－ 1 ments WheAY，＂the tirst Kussian QSL wier received here outside bureau channels．＂．．．．．．．．WB．IF＇JO says he can help expedite UA1KAC contirmations
 un December 17， 18 and 21 ，19tbi，as well as April $t-6$ 1968，can be contirmed via WBooOP－．．－WBERLK undertakes NAI7CRW QSL dutios as of May f， 1968 ．．．．．As a GSL route to EA6ITU 1）X Veurisheet recommends the Leayue＇s Sird call area bureau branch，at－ tention W＇3NR ．－．W．ANIP skeds（TPLAR（WAt－ LEX）each Thursday for up－to－the－minute log transcripts that make for quick s．a．s．e．response．K゙ッAGZ may now be of assistance toward CTEAS contirmations ．．－－Calls， （I＇lis and other data pertaining to rumored Albanian ainateur action threaten enough＂How＇s＂space to neens－ sitate their omission．Thanks，nevertheless，for passing ihlong word of all those＂h． 1 ＂eacounters．Eiventually one may pan out！
A FRICA－＂W7FFF logged some six thousand QSOs as $\%$ D8BB in $1965-$－ 66 and the QsiL chore got rough，＂ remarks WhEAY．＂I＇ve asked Race to furnish mo with his lons，so anvone still minus a ZD8BB card may write to ＂ither of us．＂．．．．．－．－＂I＇m now QSiling for（！RfLF QSUs on or after April 16，1968，＂notities W3HNK，already

 iterates that QsLe for $5 Z$ LDW should go direct or by way oi RSGB，not via the KSEA bureau．．．．．．－VQx́C won－ lurs why he＇s a＂QSLer of thr Month＂in one es＇l＇，a Qsit－wanted item in the next．stere＇s a thorough QSLer． lirect in response to International Reply Coupons，other－ wise via bureaus ．．．．－． ZE IJE of RSR announcos， ＂Special multicolor QSLs have been printed and will be sent to all stations working／EE1WPC during its ten－lay （April－May）period of operation．＇

O^{c}CEANIA－WAbMIWG relieves KifZDL as KGfIG＇s QSL tender．＂Please be assured that we have nll lngs for KGGIG，＂writes Prte to W1CWW，＂and there will be nu interruption in QSLing．＂WAGMIWG and XVL Jes in also inanage the confirmations of NK8AC，FO8BQ，HC：5NW， （1M2BD，KH6BIH and KJGI）A

Noste the new wheres for W3DWG：KH6／KS6／VR6 in the catalog to follow．Kon answers s．ass．c．requests direct，uthers via lirreau，and wants no U．S．A．－issued IRC．Yun may be runuing into Rou ou 15 as KilWU．．．．VFRON＇s OL presssars S W AT beramesW1AR in April，still Q．SLing through WIZXI ．－．．．．－＂I have VR2DI logs for QSOs from March 2：3，1968，＂＇ulvises VE6TK，Bill＇s QSL manager since this April 1st．Dunc reminds W / K applicants that U．A．postage isn＇t usahle in（＇auada，so sub）mit s．a．c．With TRCs when patroni\％ing VE／VO QSL agents KHGGJW（WBGGF．S is unable to assist with $\dot{V} \mathrm{R} 3$ I）\dot{Y}^{\prime} KIIGGLU QSLs and recommends reaching Ed via Box
 EDY＇s oprrator Jid tells W6EIM his activity has been on $\because 0$ only；scratch the 21 －MIIz．c．w．model active this spring－VF－－LIDXX＇s DS bulletin observes that Nauru s VK9R．I is an avid philatelist who appreciates hrlp with his collection ．．．VKøLA QSLs go via
 latter＇s advice to W＇6RFB ．．．．．－P．O．Box $21 \because 7$ ，Dja－ karta，and P．O．Box 8，Bandoeng，are possible QSL paths

5Z4SS is a widely worked member of the Nairobi DX gang． Ernie particularly enjoys the current $21-\mathrm{MHz}$ c．w．boom． （Photo via WA3HRV and WN3JAB）
to Indonesia＇s reviving ham population \qquad An Aus tralian post otlice fire apparently destroyed some untbound VK5XKK／VKiz QsLs．If vour Lord llowe pasteboard is urerilue，recheck with VK5XK．．．．－＂If VK9KS manares to ket on from the Dolnmons as planned，I＇ll handle his QSLs，＂forewarns W1IRC．
FEREABOUTS－＂WOOFB has agreed to undertake QSL chores for HI8s Glid and LC for February 1，19fis，＂states W9SZR／4．＂Ex－HII8RVD has gone the equivalent of incentive licensing with the result that his call now is HI8RV．K3EST continues to he manarer of his cists for quis after Jannary 1，19t8．No logs are available for III7JMP and III8RVD QSOs prior to 1968．＇
Chapter－WRA prescribes reference to the lostal Manual Chapter \because ，International Mail，Subchapter $2: U$ ，Part $2: 1.25$ ，for discussion of International Reply Coupons in minute detail ．－．－．WB6SSO is QSL rep for TI8ABL and XELIDP no others \qquad and DE men recognized the author of id 500－Watt Power Inverter＇in May US＇T as old $\mathrm{K}+\mathrm{NI}$ of $19: 8 \mathrm{Navassa}$ island fame，＂muses Withz．＂I houked him forty years ago with the standard＇10 Hartley，indoor wire and（）－V－2 blooper． Ten years later I spotted his name as author of another is＇T article，wrote him and not his KINI QSL for 19：38 i） $\mathrm{XC}($ ！credit．＂．．．．．．－WGN now holds all $W 9 \mathrm{WNV}$门Ypeditionary logs at his old WgQKC wdress．＂Cards will be answered directly if enough IRCs or postage is included with requesis．Otherwise $Q S L s$ will be sent via bureaus．．．．Within a year or two everyone making contact with these DXpeditions shonld receive cards．＂

W NJU1IG andes his call to the list of those otfering to perform as（2SL，managers for I） \mathbb{C} stations in nead，and s．w．l．J．Stevens is establishing a pool of such volunteers known as QSL Managers International at 1703 E．．Wash－ ington St．，Bloomington，H1．，1i1701．＂We will mostly enlist whort－wave listeners wanting to take on managerial duties but will welcome hams as well．＂．．．－．－W5PM designates W5BUK as lici7TC＇s QsL aide un the traditional s．a．s．c． or s．a．e．with IRCs，basis \qquad $1: 2 \% / 86$ countrics worked／contirmed ratio is pretty measly． but it seems to be in line with general lindings．All depends uu how fast vou work＇em and how diligently you dig for gNL holdutats．By the war，WtJUK and WAtWIP sook word on CEgXE；WtGTS is stumped by JYiBA and ST 2 PO；W8NLLT bunts for ex－F7CP：WA3EFII dies for contirmations from $\mathrm{FB} 8 \mathrm{I}^{\circ} \mathrm{Y}$ OIIUNL，OX3s KI LI， ［＇XIGS，VP：2AZ，VQ9B，VSGASP，XPIAB and 7Q7RM＇． Any＇alp）？．－．－Your＂（2SLers of the Month＂turn
 USA，FO8BS，（iᄅMI，（ic3cis，GD3RFK，IKOBKX， ISAT，ḰSUCQ，LZIBW，OHथBIRR，PI5NMM，SKGAB
 GN XI，YOIAW，Y゙K1AA，ZD3D，tAlLLS，JU7AL， SPGAY， $9 M \because L N$ and $9 N L M M$, plus WSL tenders W＇s QCN EGIIK ： 3 KVQ \＆OPM 9JVF，K9GCE，WA6AIIF und VE3IC，each specially commended in this month＇s ＂ispsatches from front－line＂1low＇s＂correspondents Wis
 Fi3VN／W2 for pastcboard punctilio．Any quickies you want saluted here：＇
A SIA－HMM1AJ writes，\because My QSL manarer since A February 10，1968，is W＇2CTN．Cards with Interna－ tional Reply Coupons will also he answered direct by myself， 100 per cent．＂．．．．－WoCSZ finds that MP4TBO OSLs are issucd by $\dot{V} \bar{E} i \bar{A} \dot{S} \bar{J}$ only on reccipt of reports of S .3 or better．Oil up that i－meter！．－．－．．．．S．a．s．e．or s．a．e．With IRCs from non－W／hs，will secure $4 Z+H F$ QSLs from WB2WOU，an arrangement efticctive April 1， 1968 K1TWJ disclaims XW8 QSL connections，but FiÜiY still manages 9 VIMS－9M8Ms pasteboards and savs， ＂Many cards arrire with no s．a．s．e．or IR（＇s courtesy．Most of these seem to be from newer DXers who are unaware of customary exL procedures．＂Time tu restate that for direct reply，unless specitically waived，self－addressed stamped enveloper（self－rdidressed envelopes with Inter－ national Reply（＇oupons when appropriate）should be in－ cluded it mailings to QSL managers herein desienated． This is proper practice when sreking postal response from anvone，for that matter．Now for a scamper through indi－ vidual specifications sugersted in＂How＇s＂mail，being mindful that each recommendation is necessarily neither ＂otlicial，＂comphete nor aceurate：

CP8AZ，Box 6 it，Riberalta，Bolivia
CR6LF（ria W＇3MNK；seotext）
CR7IC，1＇．U．Box 135，Porto Amelia，Mozambique，E．Afr． CTIRT，P．O．Box 3，Olireira de Azemais，Portuga
DL4JP（via K7YUC ur IIDFE）
F3VN／W2，P．Turillon， $3 \dot{X}$ Skytop 1）r．，Ramscy，N．J．， $07+16$
F（；TTF，G．Snnsscing－Luzio， 2.5 tue Bebian，Pointéa－ Pitre，Gualeloupe
FHBCF，l＇O．Box 304，Moroni，Comorn Ixlands
FO8BX，P．O．Bnx 545 ，rapeete，＇Tahiti
FR7ZR，J．P．Viode，Stn．Sieistnolvgique de la Plaine des riafres，Rennion lsland
FR7ZS，M．Daverat，Box 130，St．Picrre，Reunion Island

HC2RZ, Box 6500 , Quito, Eicuador
HI8s GGG LC (via W?OFB; see text)
HM1s AJ AM (via W2CTN; see text)
HR4ET, Box 3, Amapala, IIonduras
IIDFE, P.O. Box 421. APO, New York, N. I.. U929:3
15IJ, T. Privitera, I1IJ, 10 Piazza Bologna, 001 ij, Home. Italy
10ART, P.O. Box 511, Florence, Italy
KOBAC/8P6, D. Jessen, USNavliac, FPO, New York, N. Y., 09553

KS6GT, W. Hallberg, Dept. of Education, Pago Payo, U.S. Samoa, 96420

MP4TCF, Amatcur Radio Club, KAF Sharjab, BFPO (is PK8YGR, P.O. Box 8, Bandocng, Indonesia
SK5AJ, Box 6, Mjolby, sweden
SM7CRW (via WB2RLK; see text)
TAB 1AM 1IB 1RT 2SC, via K. cinard, jr., KitEPI, P.O. Box 754:. Patrick AFB, Fla., 32925
SP5CLK (via W1RLY'; see text)
TI2WAS, Box 3461, , San Jose, C.R.
UY5AD, P.O. Box 533, hiev 4, Ukrainian S.S.R.R., U.S.S.R. VP2s GBG GBH (via VE3DLC)
VPs 5RS 7CC (to ZD8CC)
VO98 B, DHI, P.O. Box 191. Mahe, Seychelles
VU2DIA, B. Heegde, IPWS Stn., Panjim, (iou, India
W3DWG/Ki16/KSÓ/VR6/mm, R. Mapics, K +DWW U , Rt. 3, Box 12 , Fuguay-Varina. N. C., $275^{22} 6$
YUZLBC (via K7YUC or IiDIFE; see text)
ZD8CC, R . Strong, \% RCA/MITP, Ascension, Patrick AFB, Fla., 32925
4Z4HF (via WB2WOU; see text)
5VZAB P.O. Box $3 \mathrm{~h}^{2} 2$, Lome, Togo
707WW, Box 453, Blantyre, Malawi
8P6CA, J. Richardson, Warners Terr., Christ Church, Barbados
9K2BJ, P.O. Box 8419, kuwait

CN8GE (via W2GHK)
GR7FLM (via LREM)
CT2AR (via WA4WIP)
DJ2IB/CT3 (to DJ2IB)
FG2GD (to F2CD)
FG7TG (via W5BUK)
FG7TI/FS7 (via K9GCE)
FK8AU (via VE3ACD)
FO8CA/P (to F2RS)
GB3MHE (via G3RAD)
GB3PRC (via (i3WGW)
GC5ASF/a (via RSGB)
GI3AOB (via WB6RYN)
HBDWN (to HB9WN)
HI8RV (via K3EST)
II8RV (via K3EST)
HSIBD (to $W 6 \mathrm{HDO}$
HS3DR (via K7CBZ)
HS3TM (via K3LTU)
HS3ZZ (via K3FYS) HV3SJ (see text)
10ARI (sia Illilag)
1Z6KDR (via VE3ACD)
JY1HRU (via JA1EZM) K5HOR/KS4 (to K5HQR) KG6IG (via WA6MWG) KH6GLU (see text)

KM6DE (to K6LVJ)
KW6GH (via H2CTN) PX1KT (to F3KT) PX1SZ (to DL6SZ) PX1VV (to DL3VV) TF2WLG (via WA4PFD) UAIKAC (see text. VK9KS (via WIYRC) VKOVK (via VKGCD) VP2VP (to KP4DBU) VP8JG (via RSGB) VR2DI (via VE6TK) VR3DY (see text) W4AMP/KH6 (to K4BS) WA9ROV/KG4 (via WigisG
XEOEUQ (to W8EUQ)
YU7LAE (to SM5PPV) YV5CIL (via WB6TEE) ZB2BC (via \% B 2 A) ZC4RAF (to ZC+AK) ex-ZD8BB (via WGFAY) ZEIWPC (via RSR) ZF1RD (via K8LSG) 3A0EJ (to DK1KO) 5Z4LK (to VQ8CC)

Your committee on QTHs this run: Ws 1CW IDAL 2DY
 HSZR, Ks 3UZZ 3WUW 4TW'J 6BIA 8SLG, WAs 1 FHU IIED 2WGS 3HVR +WIP 8AICQ 9TFM, WBs $\because / 2 N Z$ Bififl, F3VN/W2, KH6GJW, ZE1JE, Canadian DX Association Long Skip (VE3DLC), Columbus Amateur Radio Association $G A R$ Ascope ($\left.{ }^{\prime} 8 Z C Q\right)$. DARC's $D X-M B$ (DL3RK), DX News-Sheet (G. Watts, 62 Belmore Rd.. Norwich, Nor.72.T, England). Far East Auxiliary Kadio , eazue (MI) News (KA?LL), Florida DX Club DX Report (W4BRB), International Short Wave League Monitor

VP5CB (K3NAU), very popular on 10,15 and 20 phone with his one-element triband quad, expects to represent South Caicos until March of '69. Charlie favors 28,650, 21,350 and $14,337 \mathrm{kc}$., the latter in a Coast Guard net Mondays through Fridays at 1600-1700 GMT. VP5s AA and $A B$ also are frequently available from the Turks
\& Caicos. (Photo via K3WUW)
(A. Miller, 62 Warward Ln., Selly Oak, Birmingham, ㅇO , England), Japan DI Radio Club Bulletin (JAIDM), Lonr island DX issociation 1)X Bulletin (W゙2GKZ), Newark News Radio Club Bulptin (L. Waite, 39 Hannum St., Ballston Spa, N.Y, $1: 2001$, North Eastern UX Association 1) X Bulletin (KIMMP), Northern California 1)X Club
 Southern California DA Club Bulletin (WAGGLD), Utah DX Association Bulletin (W7LEB), VERON'S D.lpress (PAgs FX LOU TO WWP) and West Coast DX Bulletin (WB6UJO).

Whence:

GOUTH AMERICA - LCRA announces this year's allmode Indrpenilener of Colombia $D X$ Contest slated to run from 0001 (iMT July 20 th to 2359 the 21 st on 10 through \&) meters. North American stations carn 3 points per Hik coutact, 1 point per non-HK contact, and for tinal seore multiply contact-point total by the sum of IIF call areas and band-countries worked (no crossmode work allowed). 'Irade the usual RS- or RST001, RST00\%, ete. serials. Loks, a separate nheet for each band and mode, zo to Colombia Independence Contest, \%, LCRA, Box 58% Bocota. Colombia, for arrival no later than September 30, 19ti8, to be eligible for trophy and certificate awards -...-. -I ve bren active in Grahamland for the past sixteen months, acknowledges $\begin{gathered}\text { have had hundreds of contacts with } W / K s \text { who display a }\end{gathered}$ tine standard of e.w. nperating." VP8JG will have singlesideband gear available henceforth- KC4USI swaps local $14-\mathrm{MHz}$. QRM with neighbor $\overline{Z L 5 A A}$ on Ross island.
FUROPE - DARC (Germany) invites amatcurs It throughout the world to participate in its if $A E D N^{5}$ Contest, No. 14 in the series, scheduled for c.w. from zero GMT, August 10th, to 2400 the 11 th, and phone on September 14 th-15th, same times. Non-Luropeans will trade. RST001, RST002, etc. (no "T" on voice of course) with Europeans once per band at one point per giso (i2 points per $3.5-\mathrm{MLHz}$. QSU). Additional points are yours by sending "(2TC" (QSO repurts) to Liuropean stations at one point per QTC. Each QTC consists of (1) time in CMIT, (2) station call, and (3) QSO number of any previous W'AE Test cuntact. For example, WA9BRC raises DJ9YL and carns a contact point thereby: WA9BRC previously worked © $i 3 \mathrm{LUV}$ at 1207 (iMT for G3LUV's 91ith Test into. No besides the QSO point for his scrial swap with IJJYL, another point goes to WA9BRC if he successfully transmits " $1 \times 07 / \mathrm{G} 3 \mathrm{LUV} / 096$ " to D.J9 YL. WA9BRC can work i) $59 Y \mathrm{~F}$ later on the same band only for sending additiona QTC. Over the entire Test period each QTC can be sent to Europe by WA9BRC but once, and DJ9YL can accept no more than 10 QTC per band from WA9BRC. Thus the more Test QSOs accumulated, the more QTC are available to parlay into additional points. Scoring: Multiply combined (2SO and QTC points collected on all bands by the combined numbers of multipliers collected on all bands, the latter deriving from DARC's Worked-All-Europe Countrics Lis - OT1 (T2, Germany, Spain, EAG, El F FC G GC (il) GI, Scotland, Shetlands, GW HA, Switzerland, Liechtenstrin, IIV I IS IT, Norway, Bear Island. SW IX LX LZ, san Marino, OE OH OIIO OK ON OY OZ, Holland, PA Sweden, SP, Grecce, Rhodes, Crete, European Turkey, TI TA/UV/UW1-6 UB/UT/UY5 UC UN UO UP UQ UR, Franz Josef Land, YO YU ZA ZBE 3A and 9H1. Entries yo to W. Skudlarek, DJ\&QT, An der hilostermauer 3, D-6471 llirzenhain. West Germany, postmarked no later than September 15, 1968 (c.w.) or Octoher 15, 1968 (phone). Ton Test performances in many regions will be revarded with tentimonials of merit. Note: Work no more than 36 of the 48 available hours each week end, und split the 12 hours not used into no more than two rest periods TF2WLC is manned by WA4BNI at Keflavik airport, and WA4PED says Wayland will be there for the Navy till next January - DM2ATL's research indicates that DMs 3YP1) 3 LOG 3 MSF 3 PA 3 BF 4 SBO 2CPL 3ZIC $2 C^{\prime U O}$ and $4 W K L$ finished in that order in the c.w. section of this year's ARRL DX shebang. The ' 68 WADMI D. Test is scheduled for the third week end of October, more hetails subsequently .-.-. WB6.JKQ and K7YUC help kecp IIDFF active on 10, 15 and 20, c.w. and s.s.b. 'JKQ is angling for San Narino D. Npeditionary fun - - - special REF activity honored pionerr French physicist Gustave Ferrie on May: 25 th-26th, and Sevran Radio Club's F5KD promoted feverish anniversary DX activity in April on 7,14 and $\because 1$ MHz. .-.- - - That May IZ 6 KBD outburst occurred on the rare isle of Ponza, according to (Continued on page 148)

Operating
 News

GEORGE HART, WINJM, Communications Manager
ELLEN WHITE, WIYYM, Deputy Comms. Mgr.

Administration: LILLIAN M. SALTER, WIZJE Contests: ROBERT HILL, WIARR
DXCC: ROBERT L. WHITE, WICW Training Aids: GERALD PINARD

BPL Medallions. At the bottom of each BPL column there is reference to a 1954 issue of (OST for details about the BPL Medallion. This seems a long time back, and it has been requested that the information be repeated; so here goes.

At the Board Mecting in 1954, it was moved and carried that medallions be issucd to each amateur who "made" BPL the third time. These took the shape of small bronze miniatures with a ring at the top for dangling from a watch chain or otherwise affixing to one's clothing. It was to be a sort of status symbol, something to be worn by traffic men who have achieved the BPL three times or more since June 1, 1954.

The BPL medallions are issued automatically by headquarters, without necessity for application, on the basis of records kept of BPL listing for each amateur who makes it. The third time his call appears on the BPL list, he is sent a small affidavit card on which he indicates that all traffic was handled in standard ARRL form on amateur frequencies. When he has signed the card and returned it, a blank medallion is sent down to the engraver's to have the call letters engraved on the back. It is then shipped to the expectant recipient - free all the way.

There is only one medallion to a customer. You don't get one every three times you make the BPL, only the first time. It's a one-shot award. You also don't get it immediately after you submit your third BPL total. The BPL has to be included in your SCM's report and printed in QST, then the wheels begin to move. In general,
allow six weeks after you send in your third BPL total before you begin to feel you have been overlooked.

As with all contests and awards, questions keep popping up. For example, a husband and wife team make BPL jointly. Someone changes his call. Someone else moves. How about MIARS traffic? How about clubs and club stations? All these questions (an be answered (we hope) by the essential rule that only individual amateurs working at their own stations are eligible for this award. You cannot qualify by operating someone elsc's station, nor can the person whose station you operate qualify on traffic you handle for him. Club and military-base amateur stations are not eligible. MARS traffic (i.e., the traffic handled on MARS frequencies) does not count. No "joint" traffic totals can be counted-... if husband and wife use the same gear that's quite all right, but they have to use their own calls in handling the traffic and in counting it.

All OK on BYL medallions, now? The note at the bottom of the box will now be changed to refer to July, 1968, QST'.

Dummy Loading. How often have you tuned around the band and found a lot of "dead" carriers blazing away, or been bothered by them during a contact? Plenty, we'll bet. The FCC requires that you log and identify each transmission made, but we'll wager very few operators either log or identify a transmission made simply to tune up an antenna. Or listen ou the frequency before doing so either, in all probability. At least

that's the impression one gets from tuming across a band during the busy part of the day. For every station in contact or trying to make contact, it seems there are half a dozell tuning up.

Natter of fact, quite a few letters are being received commenting that Wl. W's frequency during bulletins and code practice seems to be a popular antenna-funing-up spot; but that's another story.

Fior most tuning purposes, a dummy luad dues the jub. How do you make a dummy load? Easy, just solder an electric light bulb outo the end of a piece of coax and comect the ot her end to vour transmiter output. If the bulb blows, use a larger one. Of course you can use a large resistor instead, but the bulb has the advantages of visibility for tuning to maximum output. If you want to be suphisticated, there are some good dummy loads available commercially. For testing the output of an amplifier, throw that dummy onto the output: don't do your testing on the air.

When it comes to finding out how an antema loads, or if it will load, or how to make it load, rou have a slightly different situation. Dome on-the-air testing is often necessiry: not as often as you think, but once in a while. sume pencil-and-paper calculation and careful measurements can avoid a lot of fiddling around. If you colt a dipole to length, feed it with coax, make sure the output is matched to the input, it'll load. Same with a beam, yagi or quad or what-have-you. Construct it right and you'll have a minimum of cutting and trying. If you do have to put a signal on the air while you're loading up, take a
listen first. Avoid rlobbering a QSO or a net. Even if the band is crowded, there is usually some spot you cau use for your non-communicating emissions. Nothing is so maddening as having some idiot with a warbulating carrier plop on a frequency you are using and send twiddle-detwa, twiddle-de-twa, a few NST's aud more warbulating carrier - or a "Ifllononoooo test" and a slow connt from one to fom und back. Sometimes the band sounds like a bunch of harmonicas.

How about some mutual cooperation in keeping this kind of garbage to a minimum, fellas? - - IV $1 N J M$.

CODE PROFICIENCY PROGRAM

Twice rarh month mecial transmissions are made to enable you to qualify ior the ARRL Code Proticiency C'erlificate. The next qualifying run from WIITW will he made Julv 12 at 0130 (IMT . Identical texts will be sent simultaneously by tranamitters on c.w. listed frequencies. The next qualifying run from W'GOWP only will be transmitted July 11 at. 0400 (ireenwich Mean Time on 3590 and 7129 kc . OALTION! Note that since the dates are given per GreenWich Mean Time, Cude Proficiency Qualifying Runs in the United States and Canada actually iall on the evoning frevions to the date siven. E'xumple! In converting, 0130 GiNT July 12 becomes 21:30 EDST July 11. Each month the ARRI. .letivities Calendar notes the qualifying run dates for $W 1: 1 W$ and W GOWP for the coming 3 -month neriod.

Any person ean apply. Neither . A RRL membership nor an amateur license is required. Dend copies of all qualifying runs to ARRL for grading, stiting the call of the station you copied. If you quality at one of the six speeds transmitted, 10 through 35 w.p.m.. you will receive a certiticate. Lf your initial qualifications is for a speed below $35 \mathrm{w} . \mathrm{p} . \mathrm{m}$. you may try later for endorsement stickers.

Code practice is sent daily by W1AW at 2330 and 0130 GMT. simultaneously on all listed c.iv. frequencies. At

WIAW SCHEDULE, JULY 1968

The ARRL Maxim Memorial Station welcomes visitors. Operating-visiting hours are Mondiy through Friday
 is 225 Main Street, Newington, Conn., about 7 miles south of Hartiord. A mao showing local street detail will be sent upon request. If vou wigh to operste su mist have vour original operator's license with you. The station will be closed July 4-i, in ubservance of Independence Day.

@MT*	sunday	Monday	Puesday	Werneariay	T'hursilisy	Friain!	Saturdan
O)U0		CV-OBS1	(WV-OI3s ${ }^{1}$	OW-OMS ${ }^{1}$	OLV-OBS ${ }^{1}$	CW-OBS ${ }^{1}$	CIV-OBS ${ }^{1}$
$00 \leq 0-01004$?.3.30	14.1	14.1	7.08°	14.1
Oldo		Lhone-O1302	Piono-O13s ${ }^{2}$	Phone-03siz	Phone-OBS'	Phone-OBS*	Phone-()BS ${ }^{\text {a }}$
0105-01304		14.3 .6	3.945	14.7.f	. 0.7	1.82	21.41
0130	Code Practice Dıily ${ }^{\text {i }}$ 15-35 w.p.m. PrhSat., 5-25 w.p.m. MWFSun.						
0230-15:3014			3.5.5	-.08	1.80:	7.08	3.305
0300	RTTY-OBS*		KTTY-OBS ${ }^{3}$	RTTY-OBS ${ }^{3}$	KГTY.OBS ${ }^{3}$	KTTY゙OBS ${ }^{\text {a }}$	RTTY-OBS ${ }^{3}$
0.310-1133304			3.625	14.095	8.f2\%	14.095	3.h25
11330)	Phone-UBS ${ }^{2}$		Phone-(1382	Phone-OBS?	Phone-O14S ${ }^{2}$	Phone-O138 ${ }^{2}$	Phone Ulss ${ }^{2}$
03535-1) 400^{4}			7.255	3.945	7...is	3.94 .5	\%.255
(1)40)	CIV-OBs ${ }^{1}$		CW-OBS ${ }^{1}$	CW-OBS ${ }^{1}$	GIV-OBS	OW-OBS ${ }^{1}$	(iV-OBS ${ }^{1}$
1) $420-0.500^{4}$			3.55.56	7.08	3.445	$7.08{ }^{6}$	8.555
1700-1800		$21 / 28^{5}$	$21 / 28^{3}$	$21 / 28^{5}$	$21.28{ }^{5}$	$21.28{ }^{5}$	
1:300-2000		14.28	7.255	14.28	7.250	14.28	
$\because 000-2100$		14.1	14.28	14.095	$21 / 23^{5}$	7.08	
$\because 200-2: 300$		$21 / 285$	21.075^{6}	$21 / 2{ }^{5}$	7.255	14.28	
2300			Code Practice Daily 10, 13 and 15 w.p.m. ${ }^{\text {RTM }}$				
2:330							

1 CW.OBS (bulletins, 18 w.p.m.) and code practice on 1.80.5, 3.5.5.5. 7.08, 14.1, 21.075, 00.7 and 145.6 Mc.

s K'TTI' OBS (bulletins) on $3.62 .3,7.0$, 14.0% and $21.09 .5 \mathrm{Mc} .170 / 850$ cycle shift optional in KTTY general operation.
${ }^{4}$ Starting time approximate. Operating period follows conclusion of bulletin or code practice.
i_{0}) peration will be on one of the iollowing irequencies: $\geq 1.07 .2,21.1 .21 .11,28.08$ or $2 \times 2 \mathrm{Mc}$.
\therefore WIAlV will listen in the novice sesments for Novices on band indicated before looking for other contacts.
\because Bulletin sent with 170 -crole shift. repeated with 800 -cvele shift.
Maintenance Staff: WlelS W1WPR. *. All times/days in (iMP. seneral operating frequencies are approximate.

0130 GMT Tuesday，Thursday and Saturday，speeds are 15202530 and 35 w．p．m．：on Monday，Wednesday，Friday and Sundays，speeds are $571 / 2101320$ and $25 \mathrm{w} . \mathrm{p} . \mathrm{m}$ ．For prnctice purposes，the order of words in each line may be reversed during the © through 13 w．p．m．tests．It $2: 330$ （iMT daily，speeds are 1013 and 15 w．p．m．The $0130-0220$ GMIT runs are omitted four times each year，on desig－ nated nichts when Frequency Measuring Tests are made in this period．To permit improving your fist by sending in step with TV1AW（but not on the air！）and to allow check－ ing strict accuracy of your copy on certain tapes note the GMIT dates and texts to be sent in the 0130－10220 GMT practice on those dates：
1）ate Subject of Practice Text May QST．
July 15：It Seems to 1／s，p． 9
Inly 22：League Lines，p． 10
July 25：Aurnal Notes，＊p． 36
Iuly 30：QRP Cersus QRO，＊p． 54
Date Subject of Practice Text from Under：tandina ． 1 ma－ teur Radio，First Edition
Aug．5：Controlled－Carrier Sicreen Morlulation，p． 88
Iug．9：Linear Amplifierx，p． 83
＊Speeds will be sent in reverse order，with highest epleed first．

C．D．ARTICLE CONTEST

This Communications Department article con－ test，a continuation of the very successful $Q S^{\prime} 1$＇ Irti－ cle Contest during the 1964 anniversary year，needs your best ideas（in $800-1200$ words）relating to League organization，clubs，training exercises，and uperating techniques．Periodically，the best articles submitted for the＂CD Contest＂will be chosen to af．pear，with the winner electing to receive（a）a bound Handbonk：or（b）a QST binder，League emblem and the ARRL DX map．Our wiuner this month is Ross A．Sheldon， $\mathrm{K} 4 \Pi \mathrm{KD}$ ，and his article appears below．

TO CALL OR NOT TO CALL

Ross A．S＇heldon，＊K4HKD

Some years ago QST contained an editorial comment in the trattic handling section deploring the dependence upon ＂iron men＂in the traffic system．

The point made was that，although＂Olld Reliable＂al－ ways got the traffic through，the purnose of the traftic in training AS MANY HAMS POSSIBLE in tralfic handling －－against the time when a real emergency crops up sud－ denly requiring all available hams．In such cases a few iron men couldn＇t be spread that thin and often would not be available．

Both the Alaskan earthquake and Topeka tornado re－ sulted in a few hams pulling a disproportionate load of the traffic work．

What has been said of traffic nets can be said double for the telephone call list of＂old reliables＂used for local －ruergencies．

We cannot afford the luxury of thinking that a tornado will wait for our＂iron men＂to get off work and get houne to await a call．We should have ILL known tuobile units on the list and alert 1 LL who have indicated their willing－ ness to he called－whether all are needed or not．

There would be several advantages to this．
More hams would have the experience of being called from the table to＂get on the road＂immediately．Any difficulties that showed up in the process would be a lesson to the ham concerned in keeping his mobile erfuipment on a ＂ready－to－go＂hasis．lirequent calls would keep all from being lax in preparation，or rusty in operation．

Net managers would benetit from spotting the hottle－ necks in both the alert system and the periormance of iudividual operators．Nothing is more disconcerting to a net than a slow－witted，hesitant－voiced operator acting as a net control station．Lucal whe nets frequently have this ype of NCS because＂kood old Joe wught to he siven sumething to do because he is one of the founders of the club．＂
＊3313 Avery，Huntsville，Ala． 35805.

The operation oi specitic individuals under stress in a genuine tmergency provides many surprises．
is a retired army iniantry soldier I can recall many a ＂hard－head＂who become equally bull－headed in overcom－ ink obstacles and continuing to function in an emergency－ whereas the＂nice guy＂folded up helplessly in a situation where＂getting along＂with a situation must give way to mastering it．

Oiten the most unlikely individuals turn out to be the ones who come through in a pinch．

And when the pinch comes，the lucal emergency net needs all who will＂come through．＂

Ind it will have them only it it has trained them．

APRIL CD PARTIES

Interminuled with the juyous sounds of springtime were two other noises：（1）a loud crash，caused by the toppling of the 300K－and 900－（2SO hurdles on c．w．；and（2）a kind of whomp，reminiscent of a dull thud，＂hich is how the phone Party went over，thanks to lack of activity and atrocious high－band conditions．

New A1 champ だンドIR still managed to tind a couple oi Hies in the ointment： 900 contacts meant lots oi work with the dupe－sheets－and Bud also missed three sections that were active！．．．Alabamians responded nobly to the com－ plaints in the Ipril CD Bulletin－no less than tive of the buys kept the Cutton state ultra－uvailable．．．．Wi．kN （secrecly W1JYH）glommed ti8 sections in just 4 hours． ．．W1BB＇s 160－meter CD \log shows only tive contacts． Where was everbody at 0330Z？．．．HitQPH bids adieu to Wyoming and will be rackin＇＇em up trom South C＇aro－ lina henceiorth．

As always，the following are clutimed scores isubject to merciless blue－penciling liy our alert and akgreseive statf of computerized log－checkers）；tinal results will appear in the July C＇D Bulletin．Following the total score：number of contacts，sections，hours of operation．－WI．1／Rli

	C．W．	WB4GTs	111，601）－353－62－8
K2KIR	305，185－904－67－10	W6B11	110，105－35 5 －61－13
W8SH（K1	ND，opr．）	hyuscl	
－	290，490－835－6\％－20	htBSo／4	
W9YT（K9Z	Ms，opr．）	$1168 V$	106，155－330－63－14
	287，300－832－68－17	h8ELSG	$1106.140-3+2-61-10$
K2EIU／5	266，700－755－70－15	W＇2ZVW	105，850－358－58－9
WAgSDC	254，100－720－70－16	L3EXE	105，531）－346－61－19
W6DGH	3 13，880－721－67－20	W4CEQ	105，300－387－5t－15
VE7BDJ	217，1＋U－651－66－20	W2CVW	105，02J－349－5y－15
W9JCE	216，745－640－67－20	W1AX	
W3LN	215，07U－636－67－20	K3HNP	103， $820-353-58-12$
WHUQ	213，860－6222－68－17	Withec	102，785－330－61－ 4
WA9AUM	211，050－624－67－20	WB2TEN	100，345－325－61－16
K50cX	204，930－615－66－19	WA3HTC	100，005－339－59－13
WB2NZU	203，45（）－621－65－19	W2SZ（IV	DPT，WB2FAJ）
WBtAIN／4	198，660－5j6－66－20		1100，200－328－60－7
WB2REK	191，425－582－65－20		HONE

$\mathrm{K} 2 \mathrm{ELU} / 5 \quad 129,025-390-65-10$
K1CEC $\quad 102,300-325-62-20$
WRBL 76，545－237－6：3－15
 21，225－252－55－8
K2KNV $\quad 67,+80-235-5 \beta-12$
W＇1FJJ $\quad 99,280-202-57-8$
W3GN 5：3，530－195－53－9
W31N $\quad 52,360-181-5 \mathrm{fi}-8$
W3K．JJ $\quad 46 ; 320-187-48-12$
Kll：AU／4 $4.3,430-182-1: 3-13$
W8：
W＇A\＆UAZ $\quad 42,625-150-55-7$
K2QDT $\quad 41,250-161-50-\frac{1}{4}$
WBDGII \quad 41，006－157－50－7
WASIIN $\quad 40,500-15(6-50-8$
WIETTU $40,+20-172-47-9$
$\begin{array}{ll}\text { KITKS } / 1 & 39,000-150-511-8 \\ \text { VA9LAF } \\ & 36,505-190-10-5\end{array}$
WA9LAF $36,505-1+9-49-9$

＊ 3 t．270－142－46－5
K1JHX $3:, 970-150-42-12$
K3SJS $\quad: 31,605-120-10-12$
WBGAI $\quad 30,745-1+3.43-10$
KUUWH $\quad 30,+50-1+0-12-7$
WDINH $\quad 29,070-122-45-5$
KZ5F＇X $27,930-126-42-8$
H3JW 26，550－111－45－8

$\begin{array}{ll}\text { W．A1EEJ } & 25,710-163-36-0 \\ \text { W．AgSDC } & 25,140-100-48-3\end{array}$
WB2RKK $25,020-132 \sim 36$－ 6

DXCC NOTES

Is a rexalt of discussions at the May meeting of the AKKL Board of Directors，ware nleased to announce the following with regard to UXC（ ${ }^{\prime}$ endorsements．

To review current policy，submissions for DXCC ent dorsement are made on a basis of 20 for those whose totals ure below 300 ．For example，it you have a present actual total of 120 confirmations now credited，you should not make a further application until you have 20 （or more） eards to submit．This would let you reach（or pass）the next 20 －level endorsement，i．u．110．－inuther example：If you have a prestut actual total of 125 confirmations cred－ ited，you would not make further applications until you have 15 （or more）cards to submit，allowing you to reach （or pass）the next $\because 0$－level endorsement，i．u． 140 ．

Effective July 1，1968，for those having an actual ac－ eredited total of 300 or better the submission basis will be 5 ， rather than the previous basis of 10 ．For example，should vou have an actual total of 300，you will be able to taake a further application when you have 5 （or more）cards．This would allow vou to move up to the 305 level．If，for exampie， your current actual accredited total is 3033,2 （or more） cards would be acceptable since that too would bring you up to the 305 level．Please note that no endorsement stickers will be issued for these intermediary levels．sitickers will continue to be given for eren 10 －level marks and the（ $\mathrm{s}^{\prime} T$ endorsement listings will be whown at the appropriate 20－mark level（betwcen 100 and ：300），and the 5－mark levels above 300.

Honor Koll credit．submissions will continue to he ac－ cented during March and September only，for the June and December gST Honor Roll listings．If you are not currently on the Honor Roll，but have enough curds to bring your new total up to（or past）that of the last－place position shown on the previous Honor Roll listing，you may submit the new eards during March and September．

Announcement is herchy made of two deletions to the AKRL Countries List．These deletions are l＇S $9 H$ ．．．Kiuria ．I／uria and $Z C O$ ．．．Polestine．

Quntacts made with Kuria Muria November 30， 1967 and aiter will he consideren the same as contacts with Sultanate of Muscat \＆Oman（MP4M．VS9O）．
The ZC6．．．Palestine listing，comprised of the UN Truce Area bordering on［arael，no longer exists and therefore that listing is beting deleted．

Honor Roll totals which will appear in the Uecember， 1968，issue will have these two deletions made to them auto－ matically．
－•••
Keference is made to the DXCC Note appearing in the May，1Yty，issue．The VP2ME confirmations and operation mentioned in that DXCC Note are not concerned with the operation by ZD8HL，ZD8WZ and ZD8RD in January． 196t，us VP2ME．QSLs for VP2ME contacts dated Jan－ hary 25 to $\% 8,19616$ ，can be，and have been，accepted for 1） XCC credit．
（Continued on 1SE）

DXCENTURYCYUBAWKRDS
From April 1，through April 30，1968，DXCC Certificates based on entacts with 100－or－more countrieshave beenissued by the ARRL（ommunications Department to the Amateurlisted below．

New Members

HB9M	25.3
WGIDW	
W9AE．	155
WuDAD	147
K4BBK	142
SM4DJE	
W1DTY．	137
PY7AOD	
WGLQN	1：31
W1L	

$\cdots 1 / 2 \mathrm{R}$	
WUWU	
Cmbce	
W＇ $\mathrm{B}+\mathrm{AnL}$	1
K7lne	119
YH1AL	116
DLsA．	115
PA3CE	
1）Lisx	
Y1NO	

¢：PEJ．．．． 106	W4．AsT ．．． 103
门1，xĩ＇．．． 105	W6NEズ．．．．103
GisVDL．．．． 105	H．\1KVA．．．10
1．17QI ．．． 1105	トりトVR．．．．10\％
9FizHVI．．．． 105	のだこBC11．．．102
W゙3DN1．．．． 105	－M3ABG．． 102
ブ03ん1	WrkYD．．． 102
IIMMM ．．． 104	WbLZO ．．．102
（）LIARN．． 104	D1．K（21）．．．．．101
［．）L4s＇V ．．．．． 103	K゙Z5AJ．．．． 101

VEl2T．	101
VF，6VV．	101
W1．1GA	101
納1．14F	101
C：31DG．	1011
K1KNQ	（1） 0
klUJX．	1011
だこZSK．	100
にt！	100
だT\％J	iUU

6＊VBA	100
WAIGY「．	100
WA2CFD	100
WB2UITZ．	lin
WB4FJO．	100
W A SLSP	100
WAYTFAI．	100
V＇eiscA．A．	100
VF4AF．	100
TO9月1	100
YU5NID．	100

Radiatelephane

WQD．ND．B． 125
WA5LAGG．．． 121
W1DTY．．．119
YI2R．IZ．．．．119

WB4．AMT．． 114

	WB4EFM．．． 104
	К21XX．．．． 103
	OEICEVV．．． 103
	W4As＇T．．．． 103
	W80VM

OP5ED．．．． 102
（i3VZD．．．． 101
WH2BDIf．． 101
W6A8A ．．． 101
W．A9FZCL $=. .101$

K＋DPG．．．．100
KR6TAB．．．100
WK1ZL．．．．100
WB4CGY．．．100

WK1ZL．．．． 100
जyUHD． 100

Endarsements

Endorsementsissued for confirmations credited from April 1，1968，through A pril 31，1968，are listal below．Endorsementslist－ ings through the 300 level are given in inerementsof 20 ，above the 30 level they are given in increments of 10 ．The totalsshown ifo not necessarily represent the exact eredits given but only that the participant has reached the endorsement group indicated．

$\begin{array}{r} 330 \\ \text { W6UOV } \end{array}$	WB600P	WAtLXX	に゙わざP	IV7YBX	WravT（	IV himos	WOECF
	K2PXX	W91JTC	W1PYM				WA9LMY
	に6EDE	WGPAH	WATFIG			140	W9VCQ
$\begin{array}{r} 320 \\ w 9 \mathrm{HB} \end{array}$			W＇9．vC	180	160	1M5AFF	
	280	240	W＇A9IVL	DLICT	KDNL	［15\％E	120
	PY7YS	バれ		GIEN	（ 15 PQ ）	にこD゙ロK	DJ310
	9\％7x	N15		にもうUI	HB9．20	$\mathrm{K}+\mathrm{RSM}$	K200
	WF6RGG	PTovo	200	VES5．JS	（）h2PO	PY5QW	VF2BUW
310	W6gliku	Wavo	D．14X．${ }^{\text {d }}$	WA2UBC	SMI3C．ID	VE3FiF	WAlFJU
K2CPR	Ye2YP	W49［B＇	11 LCL	W3GJJK	VE3BXI	W4PEW	WA2QFE
SM7QY	A， 2 P	WA9IBT	k3nsy	W4．JD	VE4XN	W＋WHK	II＇EXO
Wider			W1MIJ	IV tusm	VE5DP	WAtFFW	W 4 HY
W＇4RLS	260	220	WB2PIVU	WB6CPE	WA2LOR	WA4SYA	W＇A5LMG
W5EZE	OK1ZL	K50HS	W＋EJL	iV9BMD	W3UHN	W5IRG	W7GXC
			Padiatelefkame				
330	W2FGD	240	W6DZZ	K5QHS	ぶせRHL	W＇9DOR	120
DLIIN	W0MLY	K0BUR	W＇6RGG	K8VCB	に゙tRQ\％		К8THT
W2HTI		W5GXP	！ 18 couz	\checkmark Y7NH	KılPL	140	K0YIP
	280		W8LUZ	W2SS＇C	VEAAS	DUFFH	WA1BJY
310	PY7YS	220	W9WkU	W4thas	WQYY＇	FSSJ	WAIIHN
K6CYG	V1VCTO	Fista	TPsAR	Wgrers		WBこRLK	W5LXX
W2MEs	－${ }^{\circ} \mathrm{L} 2 \mathrm{P}$	HYRK		SE1MMM	160	W3MDJ	W5NQR
W +KLE		WIWKO			1129	WTPEW	WA5NQJ
		W2MOH	200		WB2OLN	WRZC	WB6OYM
300	260	WB2W（）！	11 Li	180	W132R1K	W8FIXR	W8P（）${ }^{(1)}$
W＇9HB	PY3AH．J	W5RNG	11LCL	K2bとU	W7YBX	WGSHY	W9COK

ATLANTIC DIVISION

DELAWARE－SCAI，John L．Penrod，H3NYG－RM： W3EEB．PANI：W3DİX．W3DNN has been appointed hy Chief Army MARS to handle telephone melav trattic： II． $13 C D V$ vacationed by camping at Indian River； W．A3GSM has a new antenna system；a new Galaxy transceiver boosts h3CVZ＇s air time；new Novice WN3
 station to 300 watts and 44 －element anteuna；W3DKX， W3TKM，W3C：ZK and li3URP have volunteered to man the civil detense RACES station at the state C．D．Cen－ ter．W3WR visited W3MK and talked at．long lengeths about the olden days of ham radio．Evervone attending the Army MARS Dinner reported that they Hijoved themselves．Net reports：DEPN，QTC S，（2N1 66 ； 1）TMN，QTC 12．QNI 20：DSMN，QNI 54，QTC 1. Trattic：W3EEB 184．W3DKX 50，WA3GNA 15，WA3－ HWC 5，L3NYG 4，W．A3DUM 2.

EASTERN PENNSYLVANIA－SCM，George S．V： Dyke．Jr．，W3HK－SEC：W3AES．RMs：W3EMLL．K3－ YIG，K3MVO．W3MPX．PAM：K3MIS．V．H．F．PAM： W3FGQ．EPA，QNI 383，QTC 630；PFN，QNI 566， （〕TC 678；PTTN，QTC 442；EPI V．，H．F．，（ZNI 2×1． QTC 446；EPAEP\＆TN，QNI 547，QTC 324．UU reports were received from W3FGQ，W3BFF．W3NNC．K3HNP． L3EAIA，K $3 W$ WU and h3RDT：iNS reports trom W3FGQ．WA3EAIQ，W3CL，WA3EEC，WA311IT，W．A3－ IIZ and W．A3RJC；OBS reports from K3RDM，W：I3－ E．EC，W．A3AFI and E3WEU；FMT reports trom W3－ BFF，W3P＇T，L3LPD．W＇3KNG，W3．JET，W3HILL，W．A3－ ト＇BP＇に3DEY，WA3BGN，W3NNC，L3HNP，K3EAA and lisRDT．EPA hit another record month in April． Liaison between EPA and EPAEP\＆TN is developing． Penn state ARC will be on with at kw．soon．Ki W ELi＇s Book leview Net is going along nicely on 6 moters． W．A3AFI was temporarily rochbound when his vilu． developed voice problems．K3MDDG reporis that traffic from patients at lalley Forge Hospital．K3JIHQ，is in－ creasing．WA3INC is enjoving PTTN and DA on the side．W3KV has moved out of the cellar．W3ENIL reporis a successful EAS meeting．W3HNK has added（＇R6LH to his QsL service．W3FAF still is ritudying hard．W3－ KNR＇s XYL presented him with a ir．operator．k3iRlid temporarily is on the sick list．The Del．V＇alley（ XCW． Net will move to 3917 Sun．Murnings．K3MIV still gets lots of traftic esen though he is traveling half of the month．The following stations moved up to Advanced Glass：W．A3EIO，W．A3EMQ，W．13GLZ and W．A3HGN． Nice weather is eutting into W3CUL＇s skeds．K3NSN in buack on day work and relaying trattic on 15 and 20. WN3JCJ is working on his hig＂G．＂New oflicers of the U．of P．IHC：are WA3FRP，pres．：h 3 WJ ，vice－pres．； WA3EQW，secy．－treas．；WA3CJU，public ralations nfli－ cer．WA3EMD will be operating W3AEQ this summer． The following made the BPL：W3MPN，W3CID，W． 3 － HDI，W3CUL，W3VR．WA3CTP，WA3HHU，W3EML， K3MYS．WA3AFI and K3WEU＇．The Central Bucks High Schoul ARC call is WA3KBI．All F：PA appointees are invited to foin the Mt．Airy V．H．F．ARC Pionic sun．，lug． 11 at Flourtown，Pa．Trattic：W3CTLL 2903, K3MYS 1218，K3NSN 1188，W3VR．884．W3EML 787． W3FGQ．763．WA3CTP 592 ．F3V＇BA 383．IV3CID 329． W3MPX 323，K3LNW 252．WA3ATQ 238．WA3HDI 231. К3MVO 217，W3Y＇G 187，W．13FEC 170．WA3AFT 156. W．A3G．AT 144．WA3HHU 139，W．A3AOJ 128．L3PIE 126. К3WEU 123．WA3EXW 119，WA3FPM 107，W＇3HK 103. VN 3 JCJ 84．WA3HVR 78，W3KJJ 78，W＇．13GLI 75．W3－ FPC 74．W3NNL 69，K3WAJ 65．W．A3FNO 61．WA3FAB 57，W．A3FCP 51，K3FOB 50 ，K3JHQ 46．W3VAP 45， WA3CFU 42，WA3CND 40，W．A3CEA 31．WA3IOR 31， WA3BSV 26，W3JKX 21．W．A3FAIU 17．K3PSO 16．L3－ RUA 15．W3ADE 14．W3BUR 13，K3MDDG 9，W3RV8， W3OY \％，W3BNR 4．W3HNK 4．W3PYY 3．W．A3BJQ 2 W3CL 2 ，W3FAF 2，WA3IAZ 2，WB2 WHO／3 2．W3BFF 1，W3BNR 1．W3EU 1，WA3INC 1．W3OMIL 1.

MARYLAND－DISTRICT OF COLUMBIA－SCA， Ciarl E．Andersen，K3JYZ－SEC：W3LDD．

Net	Freq．	Time	lays	Sess．	UTC	$\begin{aligned} & \text { UNI } \\ & \text { dig. } \end{aligned}$	Mgr．
MDD	3643	2300Z	Daily	31	351	12.4	WA3HTQ，RM
MDDS	36：13	0030Z	Daily	30	94	6.8	W3CBG，RM

－All operating amateurs are invited to report to the SCM on the first of cach month，covering station activities for the preceding month．Radio Club news is also desired by SCMs for inclusion in these columns．The addresses of all sCMs will be found on page 6 ．

MEPN	3920	2200Z	$\mathrm{M}-\mathrm{W} \cdot \mathrm{F}$	22	100	21.5	K3NCM，PAM
		1700Z	S－S				
MDCTN	3920	2：200z	T－T－S－S 1		85	12.7	W3SRC, PAM
MSTN	$\xrightarrow{50.4}$	0000 Z	$\mathrm{Su}_{\text {Th－S3 }}$				WA3EOP
CVTN	$\begin{aligned} & 145.62 \\ & 28900 \end{aligned}$	$\begin{aligned} & 0200 \mathrm{Z} \\ & 0200 \mathrm{Z} \end{aligned}$	$\begin{aligned} & \text { Th-Sa } \\ & \text { Th-Sa } \end{aligned}$	8	3	3.8	WA3CFK

New appointments：WA3HTQ as RM of MDD to re－ place K3O．AE，who has resikned；W3NRC as PAM of the new Marylund－District of Columbia Traftic Net： $W 3 D P J$ upgraded from 00 （lass 111 to 00 （lass I． Endorsed appointments：W3CDQ as OBS； 53 FLD as P．IM，OHS and UPS：W3ECP as ORs：W＇3TN as uld tor the rleventh year；K32DC as ORS；K3QUD as ORS；W3PRC us RM and ORS：WA3CVN as ORS： W3EOV as OPS．W3TN still has a pertect record of the solo BPLer for MDC as he earns it again this month． W．ABCFK published a good article on 2 －meter f．m．in the Anteitam RA magazine．WA3ERL＇s XYL is a new Novice，WN3EC．A．W3AI＇s is now W3NB and will be on from Kent（＇o．in the coming MDC－QSO Party．W3CZ has heen harnstorming varions Mrd．counties with his mini－watt transistorized gear．WA3FRL tried out his high schoul French on VE2Bi）O．W．A3EOP／3 is ou 220 Mc．W3PRC reports making WAC and W．AS after 21 years．K3L．FD is turning to antenna farming．WA3G．IU claims credit for getting the first new Advanced Class ticket in MDC on Nov．24，＇67．W3ZNW soon will be on RTTY．WA3JBY will be on a cance trip in July．st Johns College ligh School ARC has the new club call， W．A3JBE，and new Novices WN3s J工H，JJV，JJW，KDB KDC and JNI．WN3IYS is now General Class．W3Fi tinds that planning is easier than the physical effort re－ quired for antenna transplants．W3JPT was reclected chairman of the［MCO suh－committee on radio commu－ nications． $113 E C P$ rennets the promotion of W3C．AY to Col．，USAR，and that W3AVQ is on the ailing list． W3GEB has improved his signal with a rlropping dipole antornna．W3DP．I has worked ZL3RB on 160 meters as well as fiZ4LE．The ：mnual PVRC－FRC Lett－tngether was at great＂rag－chaw＂highlighted by W3MQ，of FRC， presenting the PVRC／FRC ARRL DN Trophy to PVRCer HI8X． $1 \mathrm{~L} / W 9 S Z R / 3$ ，and W1ARR，ARRL Hq．， preseluting the sis club gavel to PYKC president，W4ZAI． Trattic：（Apr．）W3＇N 326．WA3HTQ 314，W3CBG 259 ， に3JYZ 119，W．33EKP 112．K3GZK 100．K3ZLE 100， W3．ATQ 84，W3ADO 74，WA3CFK 68．W＇N3IY＇S 63，W．43－ JBY 55．W3PRC 13．Fi 3 LFD 42 ．W3PQT 37，W3GEB 36， WA31 RQ 26．W3ECP 25，K3LFN 19，K3OKW 1K．W3－ ZNW 18，W3FA 17，WA3HUJ 9，WA3FRL 8．K3WUW 8， W．A3EOP／3 2．W． 3 JHP 2，W4TFA／3．（Mar．）WA3CFF 16，W3ZNW 22，K3L．FD 18，WN3IYS 14，W3LBC 8.

SOUTHERN NEW JERSEY－SCM，Edward G．Raser W27I－Asst．SCM ：Charles B．Travers，W2YPZ．SEC： W2FK．RMs：W． $22 \mathrm{KIP}, ~ W A 2 \mathrm{BLV}$ ．P－1M and NJPN Net Mgr．：W27I．Conerats to W．A2UVR，who made the BPL． N．IN reports QNI ot 520 and trattic total oi 369 ．NJPN reports（QNI of 385 ，tratfic total of 254 ．W2LV＇W will be vour new SEC when W2Fİ（ formerly W2BZJ）leaves for Hlorida in June for good．sorry to lose Walt；he did a great iob．W＇2ZI exhibited part of his historical wirelexs rollection at the Amateur Radio Expo put，on by the Garden State Amateur Radio Cluh．Inc．，at Garden State Plaza，Paramus，N．J．May 2， 3 and 4．K2LS．its call，handled 5000 messages with il stations in opera－ tion，complete with message center．W．A2KIP．NJN Net Mgr．，returned from Naval Reserve duty in Puerto Rice June 3．WR2BGH made $\mathrm{xlog}, 000$ points in the Apr．C．W． $C D$ Party．WA2BLV expects to be inore active now that his work load is settling down．W2PU made 149,000

MARYLAND-D.C. QSO PARTY

Alıgıst 3-4, 1968

All amateurs are invited to participate in the third MD-DC QSO Party, sponsored by the Maydale ARC (MARC), in order to promote friendship and operating ability among the Radio Amateurs of the world.

Kules: 1) The party begins at 2200 GMT August 3 and ends at 2200 GMT August 4. 2) A station may be contacted only once on each band and mode (i.e. c.w.-phone-RITY). Separate logs must be submitted for each mode. 3) Exchange: MD-D.C. stations send QSO number, RS(T), and county. (Independent cities, Baltimore and Washington, D.C. count as separate counties). All others send USO number, RS(T) and ARRL section or country as applicable. 4) Scoring: MD-D.C. stations score one point for each number sent and one for each received, multiplied by each diffierent ARRL section of country. All others score one point for each number sent and one point for each number received, multiplied by each different Maryland county, (25 total). 5) Certificates will be awarded the highest scoring station (total all modes and bands) in each ARRL section and country. When more than six stations submit logs from one section, second place will be awarded. More than ten, third place will be awarded. 6) A readable copy of the $10 g$ showing contest station call and location, OSO numbers sent and received, county and/or ARRL section or country should be mailed to C. E. Andersen K3JYZ, 14601 Claude Lane, Silver Spring, Maryland, 20904 (post-marked before Sept. 1, 1968). Each entry must include a signed statement that the operator has observed all the regulations of his country and that the decisions of the contest committee will be accepted as final. No logs will be returned. Enclose an s.a.s.e. if the contest summary is desired. 7) Suggested frequencies: $357538507075727514.075 \quad 21.075$ 14,275 21,325; 50.2 and 145.2. Novices 37357175 and 21.110.
points in the CD Party. K2SOL is trying to stimulate points in the Net for hetter delivery outlets. WB2SZi 1 s huilding $432-\mathrm{Mc}$. gear. K2ARY reports sending his regular O BS skeds of times this month on 146.88 Nic. WB2.IPX has a new Swan 500-C. WB2SFX also enjoyed the Apr. ('D Piurty working 40 meters. W2ORS and WB2SZK submitted OO reports. W2WJ keeps skeds with IVB2VEJ, our new 81 -year-uld ORS. The SN.J V.H.F. jeet operates on 50.25 Mc. at 1000 local time Sat. and fun. unly. WB2UVB is NCS. Trattic: WB2UVB 619 W. $22 A B Y$ 284, W2YPZ 153, W2ZI 117, W2PU 105, WB2VMQ 79, W2OKS 70. WR2BGH 69, WA2BLV 38, WA2INL 25, W2CKF 22, WB2VEJ 16. WB2SFX 13, K2SHE 12, WB2APX 3, WA2K.AP 3, WB2SZK 1.

WESTERN NEW YORK—הCM, Charles T. Hansen, K2HUK-SEC: W2RUF. PAMI: W2PVI. RMs: W2MTA and W2RUF. The NYS C.W. Net meets on 3675 ke. at 1000. ESS on 3590 kr. at I 000 . NY'SPTEN on 3925 ke. at 2200 GMIT, NYS C.D. on 3510.5 and 3903 kc . at 0900 inn. and 3510 ke . at 1930 Wed.. TCPN 2nd Call Area on 3970 kc . at 004.5 and 2345 GMIT, NYS County Net on 3675 kc . at 1400 GMT Sun. and 3510 kc . at 2345 GMIT Mon. Please note the changes listed ahove. W2MTA, as Net Mer. of NYS C.V., has heen appointed RM'. Many thanks to W2FEB, who has been an R'N for seven vears. Keith has resigned as R'M but continues as ORS and as a valuable net member. WB2NNA has been "udorsed as oo. Please note the frequency changes in \therefore Y'S C.W. and NYS CN above. They went into rffect in dune. W2LYG has changed his call to W2QC. WH2V'SL passed the Advanced Class exam. W2PVI announces that the NYSPTEN Pienic will be held Aug. 17 at Cooperstown. The Utica ARC has changed its club call from town. The
W Whatica
WR $12\left(2 F^{\prime}\right.$ has retired and is now a member of the Old Old Timers Cluh. W'2F'R reports that he :und E2KIR hosteil the Eastern Area Staff meeting in Syracuse the latter part of April. The mecting was most snecesstinl mith all members present and W1NJM as guest. WB2SMD, who is 15 years old, got his Extra. Congratulations! The WARC announces that since this is Centennial Year for Ggdensburg it will issue a certiticate for working two rlub members. Send upplications to the OARC, l,ois Irrlan, 725 Proctor Ave., Ogdensburg, N.Y. 13669. W2TMI went on a Caribbean cruise and operated as a l'P2 and as PJ3CC. Now he's working on QSL cards. Hi. IVB2VVZ and WR2V'SA got their Advanced Class lirenses. The FRATS (Frontier Radio Amateur Telatyp-
writur Society) had a meeting and distributed more gear which had been released by W.U. W2ZIA presented is eolor film talk on his D. .pedition to the Cook Islands to the ARATS. Rudy visited the Islands to make iono--pheric measurements during the solar erlipse. Traftic: (Apr.) WB2GAL 415, W2FR 399, WA2HSB 259. WB2UYE 251, W2MTA 140, W2RUF 133. WB2SAD 119, W2QC 108, W2FEB 62. WB2VND 57, W2PZL 39. W2RQF 37. WB2VSL 35, K2OFV 24, W2FCG 23, WA2GLA 18 , WiA2.ANE 16, K21MI 13, W2C.FP 11. K2DNN 11. K2BWK 8, W2PNW 8, WB2WZG 7, WA2PZD 5, W2BLO 4, W2PV' 4, WB2RWR 4. WA3EEC/2 1. (Mar.) K2CC 209.

WESTERN PENNSYLVANIA-SCM, Robert E. Gawryia, W3NEM~NEC: W3KPJ. PAM: K3VPI (v.h.t.). KMs: W3FUN, W3NFB, W3UHN, H3SOH. Traffic nets: WPA. $35 \delta^{5}$ ke. dally at 7 P.M. local time. K30TY was the winner of the "William G. Walker Memorial Iward" fur 1967. W3KUN was linnorable mention. It is with dere regret that we announce W3IVWL, ex-W.WOE, as a silent liev. He was a past SCM of WPA. QA4SO, son of OA4OS, pres. of the Peruvian Radio Club, is a new student at Pennsylvania State University. He was accompanied to Penn state by his mother, O.A4AJ. She spent 4 tew davs in the area as the muest of the W3LNW family. K30'TY' put up a new CL33 tri-band beam. K3WWP is now transmitting bulletins via antomatic tape pre-recorded. WA3ELB has a new NCX-200 on the air. WA3FFO. WA3HLN. WA3CIV and WA3AWB are now on KTTY from the Erie area. 'The Venango Mike and Key Club held its annual limer Apr. 27 at Seneca, Pa. W3UHN now has 160 DX stations confirmed. New Advanced Class licensees in the area are E3OTY. WA3AYC, WA3AZY, WA3HAE and WI AHEV. WN3HQM is n new General Class license holder. W3RBE had his identity chionged. He is now W3NW. Kilouratt IIarmonics reports that W3SHT will he attending school in Filorida until June. N3OLG had a write-up in three radio cluh hulletins hesides the l'ittsburgh t'ress for his excellent handling of an SOS distress call from a sinking ship. The incident took place last Nlarch. Now that spring weather is here, tratfic totals show it decline. Traffic: (Apr.) WA3HLI 312, WA3IPU 22s, W3NEM 197. W3KUN 153, W3IOS 128,反3SOH 118, K3HKK 75, (V2KAT K3AHT. W3NEM, ops.) W. 3 AKH 67, WA3HSI 60. WA3GQJ 37, L3PYS 33. K3SJN 25. K3HCT 24. K35MB 19, I 3 ASI 16, K3RZE 13, W3MFB 10, W3YA 8, WA3ELB 7. W2K.AT/3 6. W.A3GPK 4, W3LOD 2.

CENTRAL DIVISION

ILLINOIS-G(:M, lilnomi A. Metzger, W9PRNSEC: W9RYU. KMI: W9EVJ. P.AMs: WA9CCP and W.AORL.t (v.h.f.). Cook County EC: W9HPG.

Net	Freq.	Timos	Dalis	
IEN	3040 kc .	1400 Z	Sun.	21
ILN	3060 ke .	0:002	Daily	170
NCPN	3915 kc.	12010%	Mon.-sat.	
NCPN	3915 kc.	1703Z	Mon.-sat. $\}$	102
III. PON	3425 kc .	17.)0\%	Mon.-Firi.	517
III. $\mathrm{P}(\mathrm{ON}$;) 1.25 Mc	2.)30 ${ }^{\text {2 }}$	Mon. \& Thurs.	No report
III. PON	$1+5.5 \mathrm{Mc}$.	2100	M.W.I.	81
TNT	14.5 .36 Mc .	2101	Nun.-liri.	No report

WOWYB, K9WMP, L9RAS, W9LNQ, W9JUV/II9OSO, WOHPG, W9CNC, LOBLB, W9DGV. W9INF. K9KEP, K91, WV', W9MKL, W9VOX, W9TZN, W9RWD, WA9RVY, KOORP and K9A.AJ participated in the league's rerent Frequency Measuring Test. The Ieague's Executive Committee approved the Northern Illinois UN Assuciation, lnc., the Wood Dale Radio Club, Inc., and the Naperville Community High School Radio Cluib tor Le:ague altiliation and declared them duly atfiliated sncieties. W9LYA's new QTH is Skokie, with a new XYL and an Advanced Class license. WA9QYK has a new 18AVQ and would like to get in touch with some KTTYers in his area. W9QLW reports that the Ninth Regional Net passiol 551 pieces of trattic during . Ipr. WA9:FR is now an Advanced Class licensee. The Indian Hill Amateur Radio Club at the Bell Telephone Lahoratorins at Naperville. Ill., is on the air with a Galaxy MK12 and the call WA9WSL. Nominations are ropen for the [llinois Amatenr of the lear Award. Contact the Hamiesters at 6000 South Tripp. Chicago, for details. This is your last reminder to make reservations for the Central iJivision ARRL Convention which will he held in springtield. Ill.. Fri. and Sat., Alug. 3 and 4. Write Convention Committre at 104 North Sixth St., Springfield. III. PAM W9EVJ celebrated his 32nd wedding anniversary in April. The new officers of the Skokie Six Moters Indians are W9BOD and K9BDJ. K9KZY received his Mastrr's I Jegree and is now working for ['nited Airlines. W9GY'Y has a new Swan and has he-
wne an avid D．Eer．WAgUHA received his W．AS cer－ thicate．WgDOQ is the new acting net secretary of the \triangle C＇PN because ot the muve of A 913 TE to ：n mell（t＇lI of Rockford．W．A9VOL and WA9OMN passed the Gen－ eral class exam．W＇9（1HD reveived his WAC＇C erttoticate W9KFQ is the new secy．of CATS．K9WWP is building a new HW－100．This column＇s sympathy is extended to W9RYI whose wite．W＇AgMZB，pansed away recently． K9WEH received WAZ No． 2400 ．W9BGX，the North－ western University Club station，has a recently－acquired Hunter Bandit 2000 and FH 6 DX beam to help to brimg in DX sioures．WA9MHU is the only BPL recipient this month．Traffic：（Apr．）WA9M1HU 566．W9KII 361．K9－ KZB 306，W9NXG 102．WA90＇TD 93，W9EV＇J 82．W9Y＇H 77．W9HOT 63，WA9PPA 61，WA9TUM 55，W9DC） 53. WA9YOZ 41，K9WMP 33．WA9QBM 2\％，W＇A9RCQ 20 W9CWH 19．W9KVF 12，W9LNQ 8，W9KFC 7．W9PRN 7．W9IDY 6．WA9PFB b，WA9SDT 4，W9S工L 4．W．A9－ TCN 4，K9HRC 3，K9RAS 3，W9UHD 3，WA9BRZ 2 ， WA9QZE 2．WA9UHA 1．（Mar．）WA9TUM 54．WA9－ QXT 27，K1DGQ／9 26.

INDIANA QSO PARTY

August 17－18， 1968

All radio amateurs are invited to participate in Indiana＇s QSO Party sponsored by the Indiana Radio Club Council，Inc．Certificate hunters will tind this party an excellent time to work for the Hoosier＂500＂Award．For full particulars on HFA，SASE to Hewitt Mills，WA9LTI，IRCC Sec＇y， 289 West Sumner Ave．，Martinsville，Ind． QSO Party Rules：1）The Party will begin at 2300 GMT Saturday August 17 and end at 2300 GMT Sunday August 18，1968．2）The general call will be＂CQ IND＂with Indiana stations adding＂from IND＂to avoid confusing with other ninth call area stations．3）All bands and modes may be used．Valid contacts are made be－ tween stations on the same band and mode．Same stations may be worked on different bands or mode for additional contacts only．4）Exchanges must include contact number，call，Indiana county，state，province，or country．Indiana sta－ tions may add HFA points after county．S）USO Party scoring：Indiana stations multiply all con－ tacts by number of different states，provinces， or countries worked．Others multiply the number of contacts by the different Indiana counties worked．6）Awards：Plaque to highest scoring station within and outside of Indiana．Certificates to highest scoring station in each Indiana county， tach state，province，or country．Multi－op sta－ tions are eligible for certificates only．Judges de－ cisions final．7）Submit logs showing date，time， contact number，calls mode，band，county，date， province，or country，and point summary．Block print your cull，mailing address including zip code，and operating address if different．Include signed statement that all rules have been ob－ served．Send logs（no HFA．please）to Robert A．Lyles，K9HYV， 706 Spring St．，Michigan City， ind． 46360 on or before September 16． 1968. Please enclose S Λ SE for copy of results．Good luck．

INDIANA－sCM，William C．Juhnsun，W9BUQ－Asst． SCM：Mrs．M．Roberta kroulik，Liv＇G．SEC：WA9－ KWH．

Net	Freq．	T＇ine		Migr．
IfN	3910	1330Z Daily 2300Z M－F	29.5	K9IVG
ISN	3910	（1100Z M－F 2300Z sat．oniun． 2130Z M－ふ்	666	KyCRS
QIN	3656	0000Z Daily	196	W9HRY
IPON	3410	1250\％Sun．	44	K9EFY
IPON VHF	50.7	11200Z M－I＇	80	WA9NLE
Indiana V．H．	F．N		91	W9PMT

WA9KAG，mgr．of the River Forecast Net，reports Mar． trathic as 43 ，ipr，traffic as 42 ．$W 91 \mathrm{LU}$ ，mgr．of the Cratic Lakes Emergency Net，reports Mor．tratlic as biv． ＇To all v．h．f．nets：Make your repurt to W9PMIT，PAM for the v．h．f．nets．W9AKI is back on the air with a romplete Collins s／Line．W9YB has a complete f．m．vet III）on 6 and 2．WA9KWH，Ray E．Keichard， 816 W．Wa－ tur St．，Portland，Ind．47371，is the nuw SEC for Indi－ ana．K9A＇TV reports that the Madison County Chapter Imerican Red Cross held open house with communica－ tion by the following amateurs：W9EJH，W9OJH，WA9－

UIN，WA9UKN，WA9SCY，Li9HAB，WA9TQD，WA9－ （WE＇／9，K9MGW，WA9HLA，W9OBH，W9VCF／M9，L9－ FHX，KOVCP，WAOCWE and lig．iTV，Net Control． The tollowing are due for ammal endorsement in July： The tollowing are due tor anmual endorsement in July：
 ana Amateur＇IV and U．H．1．（lub met May 4 at the Nival Avionics Radio Cluh．W9N＇T＇said slow－scan is being seen in four continents．WA9EUN gave a talk on u．h．f．antennas．W9HW＇X gave a demonstration on rilor TV for amateurs．QIN Honor Roll：W9BDP 30， K9ソしH 28，WA9MTY 25，W9KII 23，WA9VZM 23，W9－ QLW 21，WA9KAG 19，WA9KOH 19，WA9FDQ 16， N．19MXG 15．Imuteur Radio E゙xists because of the ser－ viee it remilers．A BPL certiticate fur Apr．tratic went to K91VG．Tratlic：（Apr．）K9IVG 1126，K9FZX 291，WA9－ 1．TI／WA9MTY 242，W9HRY 208，WA9KAG 144，WA9－ $M X G 78$ ，K9CRS 66 ，K9EFY 66，W9BUQ 53 ，WA9BGI 40 ，WA9KOH 39．W9UEM 38，K9HYV 37，K9VHY 37， W9FWH 35，L9C＇BY 31．W．A91PS 26，K9HZY 24，L91KWQ－ 21，WA9BHG 20，W9SNQ 18．W9WGN 18，W9Y＇X 17 ， W9JBQ 14，W9R＇H 14，K＇9FUJ 12，W9GJZ 12，WA9AXF 11，K9JQY 11，W9CUC 10．W9DZC 9，W9BDP 8，WA9－ JLX 8，W9PMT 7，K9ILK 6，WA9QXM 6，W9DOK 5， K9QVT 4，K9GBR 3．（Mar．）W9GLW 103，WA9MAC 45．W9QU＇H 9．W9AQW 2.

WISCONSIN—SCM，H゙emeth A．Ebneter，K9GSC－ SEC：W9NGT．RMs：W9DND，W9CBE and K9KSA． PAMs：W9NRP．WA9QNI，WA9QLE，WA9IZK and K9DBK．

Net	Preq．	Time	Ditys	QNI	QSP	Mgr．
BWN	3985 kc ．	1145 Z	Mon．－Sat．	445	289	W9NRP
BEN	3985 kc ．	1700\％	Daily	774	165	WA9QLP
WSBN	3485 kc ．	2200Z	Daily	1347	292	WA9QNI
WIN	3662 kc ．	（01）4．5Z	Daily			W9DND
WSSN	3780 kc ．	2330\％	Sat．	392	40	K9KSA
WRN	3825 kc ．	23302	Nat．	28	－	W9CBE
SWRN	50.4 Mc ．	0200Z	Mon．－Diat．			K9DBR
SW2RN	145．35 Mc．	0130Z	Daily	173	38	WA9IZK

Net certificates weut to W90DD for WIN and W9GPV for BEN．New appointees：K9UIY and WA9SAB as ORSs．Kenewed appointments：W9ONI，W9BUG，K9－ QKG and W9CFS as EC＇s，W9GOC as OPS，W9GOC and W9RTP as ORSs，W9KHH us OVS，W9NRP as PAM and WgVSO as OU．The WNA Pienic will be held duly 14 at Fond Uu lac．For information ask on any of the nets．FMT results：W9BCY 4．5，K9GSC 6.9 and WA9EZU 109.5 p．p．m．error．The Central Division Con－ vention will he held Aug． 3 and 4．W9UKR passed the Advanced Class test，and made CP－20 w．p．m．It is with decp regret that we record the passing of former Division Director W9GPI．WA91PKM passed the Advanced Class test，and his sun passed the Novice the same day．W 19 － KAK was elected pres．of the Wis．Valley Rudio Assn． The Robert M．LaFollette HS ARC is now affiliated with 1 RRL．Tratfic：（．Apr．）W9．AOW 515 ，W9BCII 362．W9DND 247，WA9QKP 240．W9ESJ 232，W9DYG 219．W9CXY 114．WA9（2NI 111，K9KSA 110，WA9RAK 108，K9FHI 80，K9CPME 03，WA9SYD 56，W9GXU 50， WA9GJU 48，W9ODD 47，W9AYK 42，WA9SSH 40， WA9TUP 38，WA9VNJ 38，K9JPS 37．W9NRP 37，W9－ UXV 33，WA9LRW 28，WA9PKM 26，K9GSC 19，ke－ TBY 17，W9IRZ 10，WA9SAB \＆K9ZMS 4，L9GDF／9； 2．WA9OFF 2，W9ONI 2，WA9WYR 2．（Mar．）W9CX户 176，W9GIU 56.

DAKOTA DIVISION

MINNESOTA—CAM，Herman R．Kopischke，Jr．，WO－ TCK—SEC：WAØIEF．RMs：KøORK，WAØEPス． PAMIs：WAØMMV，WAØFRM．MSN meets daily on 3685 kc．at 23307 ．MIJN meets Tue．－Sun．on 3685 ke．at 0000 Z ．Noon MSPN meets Mon－Sat．on 3945 kc ．at 1705Z，Sun．and holidays at 1400Z．Evening MSPN meets daily on 3945 kc at 2315 Z ．Appoimtments renewed： WØBUC as EC Crow Wing Co．，FOZRD as EC Wa－ hasha Co．and KOUXQ as ORS．WØUWG has a new Hunter Bandit 2000 C along with \＆Swan 350 which he loads into a three－element Triband beam．WAøOVV is using a Swan 350 into a two－element quad．WVOZSA is using a home－hrew linear，driven by a TR－3，into a （wo－tlement＇Trihand quad．WOQXK has his new siB－ 101 working $F B$ ．WØLOL，WØPAN，WAQMIZW and WOBE operated WOAA in a recent WPA rontest． KOUYN，WØHEN，K6IYF－WAØPVP and WØISJ particinated in the Feb．FMT．Wonder how many opera－ tors have built the I－C electronic keyer designed by WOZHN and EøUXQ that was described in April OSTY If you have been thinking about a keyer，this ohe is hard to beat．To make it easier，complete parts， including circuit hoard，are available from WØZHN． 1 reminder to Novices：If your license was issued for
uine sear hefore ther neve rexulations towik clinet it is gorod minly for one vear. If in doubt chark with the FCC mather than get into prohlems trom hear-saty reports, Tratic: (Apr.) hOZRD 185, KOORK 154. WAQMAI 1118. WADIATV 106. WAOOES 97, WAOEPX 71, WOHEN 54, WaOhrat 47. WOTCK 43. WaOIYM 35, WOKYG 35. Kiosnc 30. W. IOODB 27. WaOKWO 26. WOIMI 21. WAODOT 20. IFOBEC 19. KOZZBI 18, KODEF 15. WAODFT in WOXAS 10 WAOJPR 9. WHOLVK 9 WOKLG 6, WOERO 5. WOKNR 5, KOLITK 5, KO-
 WMOPST 1. WIossen 1. (Mar.) livori 86, W. 10 MDB 29, WMOKWO 22. WOBE 1.

MINNESOTA QSO PARTY

July 21, 1968

All radio amateurs are cordially invited to participate in the third annual Minnesuta QSO Party, sponsored by the Viking Amateur Radio Society.

Rules: () Contact will be between a Minnesota station and a station outside of Minnesota, or between two Minnesota stations. Valid contacts may be made once on c.w. and once on phone: on the same band. 2) Time periods are as follows, in GMT: Phone operation (N)OO to 0.400 and 1600 to 2000 . C.w. is from 1200 to 1600 , and 2000 to 2400.3) Suggested frequencies: C.w.$3580 \quad 7080 \quad 14.080$ 21.080. Phone-3 3×807280 $14.280 \quad 21.380 \quad 28.680$ and 29,600 (channel 60) Contacts on any other bands or frequencies are valid and are encouraged. On all bands, but es pecially on 75 and 80. please listen carefully tor nets and avoid them. 4) Scoring for Minnesota stations: Multiply total QSOs times your multi plier which is the total number of different ARRL sections and countries worked on c.w. PLUS the total number of different. ARRL sections and countries worked on phone. Minnesota may be counted as a section, if worked. Countries mus be listed on the ARRL countries list and may not include or be a part of any ARRL section 3) Scoring for stations outside of Minnesota: Multiply total Minnesota QSOs times your multiplier, which is the total number of different Minnesota counties worked on c.w. PLUS the total number of different Minnesota counties worked on phone (Possible 87 on each mode) b) Exchange: Minnesota stations send QSO num ber. RS(T), and county. Others send QSO num ber. RS(T), and section or country. 7) First place award certificates will go to the highest scoring station in each section or country, pro vided that station makes at least 5 QSOs, and to the highest scoring station in each Minnesota county, provided that station makes at least 20 OSOs. Certificates will also be sent to the highest coring Minnesuta station and the highest scor ing station outside of Minnesota. 8) Logs mus contain all of the contact exchange information plus date. time, band, mode, multiplier lists, and score computations. Logs must be post marked on or before Aug. 12, and a self-ad dressed stamped envelope should be enclosed if certificates or the published results are desired 9) Send logs to: Viking Amateur Radio Society, Box 3. Waseca, Minnesota 56093.

NORTH DAKOTA-sCM. Hnrold L. Sheets. WODM-SEC: WAØAYL. OBS: KOSPH. PAM: WØ©IQ. KM: $\mathbb{W}^{\prime} A O E L$. The NDNi huld its Annuad Hamfust May 5 with uver one hundred in attendance. Thr tuain speaker was WOCO, who dates the ham activity batck to 1913. WOMBD, Dakota Division V'ice-Director, attended. W.SOAVL was MC. Your SCM made a fow romarks. The County Award from the NDSU went to W.AORWM and KOGGL, Clasx E and WAO.JPT. Class 1s. WNOUDC, the XIL of KORSA, fond the hidden transmitter. WoTUF is hack after a few werks vacation un the West Const. The Forx Cluh, has started another sories of radio classes for the Novice Class. The Bisulirek club has heen doing well with its classes with IrOOAT working with them. WODM has wound up his Henser at the l':elley Jr. High. LOOVE is in Jetroit Wich.. un an asxigument. He will be mohile while there WNOLDB is a new call in Grand Forks. WAGIYA and KIL WONYT. WOMABD and WORF were gitest. ot IV.AOGRA and WQGB during the Hanifest :t NDSU.
WOBIH is feeling hetter. WCODM took a side trip and

tisited WOTXXQ at Detroit Lakes. Won't forcet the Lnlernational Hamfest erming up on July 20-21 at the International Peace Garden. If you have any questions get in touch with WAQKRI. Munich, N.D., | |
| :---: |
| 1552 . It is | being held on the American side at the Main Lodge this wear. KOSPH savs that he las ratired now and can ham a lot. I would like to thank all who worked so well this past winter as net controls. in nets and the rest of the tine amateurs in Nosth Daknta for their efforts in promoting amateur radio in the true ipirit of the annateur.

Net	Sesk.	Cherk-ins	Tfc.	NCSA
PON	12	!10	12	WagHUD
IL WX Net,	15	222	15	WAgGRX - IFAbMND
ND RACES'	21	690	79	ҺUSPH, KøP7, WGGF

Tretfic: WAOELO 121. WAOHUD 18. KOSPE 21. WØDM 15, WOQNI'G 10, WAØMND 8, W.IØJPT 3, W.IOTBR 3.

SOUTH DAKOTA - SCM, Soward P, Holt, KOTXW -NEC: WAOCPY. PAM: WAOCWW. RM. WOTPF Net Managers: WAOPNB, W.IOLLG, W.IORIQ nad W.IOPZ. Net Manazer iFAOPNB has arrnnged to have a "Ham of the Month" sirlected in rur section. We are hapny to eongratulate W.OOLLG an being the unanimous selocetion for Ipr. [Tngraded licenses: Extro Class W.AOCPY. WAOCPX, WOBDV. Arlvanced $\cdots-W$ IORIQ. WAORCX, W.IOPNB and W.IOBZD. New tickets: General-W.IOSTK. Norice-WNOSFS. WNGTRS. WNOTYQ, WNOCES, W.IOSNW, IFIOEGKN. Net reports;

Noo Two Net
NJU Net
Farly Session Net
Tate Tession Net
WX Net $1 / 2$ mo.,
Morning Net 1/2 шо.,
SD C.W. Net,

Traffic: WOZWL 273. W.LOPNB 205. WOSCT 122, WAOLLG 68, W.AOMYS 53, W.AOPDE 24, WOYYY 24 WAORIQ 23, WAOCPX 20. WVAOPZA 15. W'ODVB 12. WOD.JO 11. KOYGZ 10, W.AOJUM 7, W.IOJNH 1 WIONZY1.

DELTA DIVISION

ARKANSAS-SCM. Curtis R. Williams. WSDTRSEC: WASIIS. PAM: WA5PPD. RM: W5NND. The EC appointment of W.A.KQU has been extended another year. Many Irkansas amateurs are to be complimenter on their outstanding efforts during the (ireenwood tornuto disaster. WSOBI) has gualified for his 87 th BPL! He now has 98,742 traffic points to his reedit, undoubt ably the highest in Arkansas. Finrt smith iud Chotral Irkansas 1 KC's e:ach report that 8 memhers of their Novice elases have pasiof the rode exam. How about gigning "ID for the AREC with your EC todav. We now !atir 115 AREC members in Arkansas. N'et reports for Apr.:

Net	Freq.	Time	Sesk.	Tfc.	Stations	Mor.
OZK	3770	$0000 Z$	29	38	266	W5NND
RN	3815	23307	30	68	818	WA5PPD
APN	3885	$1100 Z$	26	21	635	K5ABE
APON	3925	$2130 Z$	22	169	305	W5MIJO

ARCU.A reports a successful drill with the Washington County ked Cross. The Irkansas Aevere Weather Net has heon very active on 3990. Yuu can heln make this net mure effective by offoring your assistance during periods of severe woather warnings. Traffic: W5OBD 1236. WA.AVO 306. W5NND !K, WA5KEF 61, WASPPD 44. W5DTR 28, W5SMS 19, K5EDH 5.

LOUISIANA - SCM. J. Illen swanson. Jr.. WSPMNFC: W5R[K. RM: K5ANS/5. V.H.F. P.ANs: W゙.15UX.A, WSUQR.

Net	Fren.	D.)ays	Time/G:MT'	NetMor.
LAN	3615	Daily	23330/0300	WSMBC
Deltat 75	3905	Sun.	1330	WA5EVT
Lap'UN	3915	siun.	1300	WSKC
LARTTY	: 312.5	Sit.	0100 (Sun.)	WSTHP

It is with sincere regret that I have accepted the resignation of WSCEZ ts R.M. Cart has heen named Stute Dir. La. Irmy MAKS. The hew RMI is K5.ANS/5. Almost 400 turned out for the BRARC Annual Banquet and Hamfest. W5BJG has moved to filorida but we welcome WIItNBT/5. K5.ABA went from Conditional to Extra Cllass in one dav, taking Cien., Ide. and Extra.

W5VWH is a new USS．W．A5HAP and K5DKR are actice on 2 meters and in Air Force MLARS．WSHRMI has been uppointed EC for Jeftierson Parish and W．A5QVW tor Onachita Parish．W5BUK was La．winner in the Va． aso Party．W．A5KLF is reworking his antenna farm． IV5RY，W5CEW．WA5CAU and W5HKR had a＂3000＂ breaktast at BR．W5．AC＇ in the（OUT Club！ $\mathbb{1} A 5 L Q Z$ mate 1×7 contacts in the recent OD Party．Hatus in the Ratmop－Monroe area assisted the lomal＇TV atation in the（rombal Palso 1 rive．W．15LGO has berm operating portable W＇sNok is
 is looking for ：new elah site．Kishlil has herel retu－ mended for helning mare thatn ten fellows get．Novice licenses．The GNOARC is isstung r rertificate comb－ menorating the e250th Anniversary of the fonding of Now Orleans．Send extract of log showing three ron－ tacts with N．O．stations to WA5CS＇T．The gunk in La－ fayete recently saw the film Sleutian skywatch．Wis－ 1．UH held a mereting in Biloxi with his Asst．Herectors， GCMI and SECs prior to his attendance wi the Board Meeting．WhPlis gave a short dissertation on F＇CC exams at the BR Hamfest．h5JBC＇is chasing 1）X on 14 and 21 with a quad．W．A5GrB and W．A5FAlK are now Advanced Class．CE8DK recently visited W5TNN． Tratlic：W5KRX 213，W5CEZ 104，W5MBC：70．W5MIO th，W．A5LQZ 59 WA． $50 H \mathrm{H} 55$ ，WA5GYB 18．WA5QVN 17．W5EA 10．W5KC \＆WSPM 6．WASIGO 4，W：A5OlG 4．W．A5NYY 2，WA5KLF 1.

MISSISSIPPI—KC：M．S．II．Hairston，W5EMLM—SF：C： W5JDF．The Gulf Coast sidehand Net has rhauged to 18：30 C：ST on 3925 ke．dallv and the Miss，stidehand Net now meets at 1915 （ST on its new frequency． 3947 ke． daily．WNSEIM is reallv tickled uow to he WASNLM． K5NIDX in．Natchez lost his quad in a storm and now lias a Mosely＇l＇A－ 3640 up．He finally has boen able to get his NCL－2000 on the air to betef un his lurakeline hate－ foot．The Natcher Club is conpernting with eivil defense and has a taletype unit and a 29．6－N1c．f．m．unit in－ stalled in the club defense rommunication room．The net controls for the Mississippi Sidehand Net have proven to be rery faithtil and of rourse the prep－ present W5JHS does a tremendous job with the Gulf （＇onst Sirlehand Net．W5EMM is most proud of his new granddaughter．Trallic：W5BW 59，W．15JWD／5 10，W．A5－ SIM 1.

IENNESSEE－SCM，Harry A．Phillins，K4RCT— Asst．SCM：Llovd Shelton，WA4YDT．PMMIs：W．A4－ CGK．W4PFP，WA4EWW，W．A4CRU．KN：WAAYEM．

Net	Freq．	Day／8	Time	Sess．	QNI	QTC	Mgr．
TSSB	3980	M－Sat．	2330 Z	26	1522	175	WA4CGK
T＇PN	：39\％	M－Sat．	1145	30	1063	102	W＇4PFP
		Sun．	1300				
ETPN	3980	M－F	11140	22	493	66	WA4EWW
TCN	3980	Thurs．	1100	iWe	night	ST）	W40G6
I＇N	：3635	Daily	（10）0	311	214	120	WAt＇EM
TTN	7290	Daily	2100	30	411	10.5	W＇A4CRU

Appoinments：WB4ANX as OBS，WA4CRU as PAMI． WB4EHD reports lots of 2 －meter activity in middle Tennesset un 145.35 nightly．Acoording to at hetter re－ coived by k4trilW from the Cummissianer of the Dept． of Revenue．new automobile licersse glates will be issinery to amateurs instoad of the decals in the iuture．W4DIY is now K4AT．W 4 DC＇H is now W4N．A．Mothmer Dav mes－ saces were handled by the Frye ARC at the Eastapate ：hopping center at．Chattanonga．K 4 FFGO is stockpiling haby food jars for small parts as a risult of the arrival oi at laughters Apr．1．Inproximatelv fill hams turned out
 sufternd from lack of 1 MIO． 1 am hapyy to report that．I prpresented 42% of the Tuague members in the Delta Divisiun athl was loaded with sugyestions from Tennes－ spe at the liirestor－cilled mecting in Biloxi，Miss．W＇4－ GIPN did verv well in the FM＇T with an average error of less than 4 Hertz．Trattic：W4FX 231．W4OGG 220 WA4YEA 154．W4SQE 123 ．K4AT 98 W W4ANX 95. WB4ESE 91．WA4TWL 57．WA4YDT 57，WA4GLS 38， W4PFP 38．WB4FEC 37，W．A4NEC 2B．WA4CRII 25. K4MQI 24．WA4KHD 22，WA4CGI 21．WB4EID 15. W4SG1 14．WR4DGI 13．WR4HYY 13．W4PRY 11．W＇B4－ FCF 10．H4UMTV 9．K4PC\％8，WA4BNF 7，WA4EWW b，IVB4EKI 5．WA4URA 2，WA4YFG 2.

GREAT LAKES DIVISION

KENTUCKY－SCMI，Lawrence F．Jeffrev，WAtKFO WVEC：W4NYT．Ipnointments：WB4FOT as ORS， l＇ZU as EC for Louisville．Endorsements：IVB4AIN and W4CDI as ORSs，litliZII as OO．

Net	lire\％．	110．4s	I＇MT	Mur．
KKN	3960	N－1－	1030	Kthis
MKPN	：960	Daily	1230	K4TRT
hTN	3960	Daily	2300	WA4ACH
KYN	3600	Daily	$23068 / 0200$	W4BAZ
HCATN	51）． 7	T－1\％	1）200	WB4BK（；

Note that all Keutucky nets are on Daylight＇Time． Please try and get all reports to the scM hy the fifth
 ：tribauder heam．WB4F．AY set．up ar station at．the scout Camporee uear Owensboro．The fullowing station： wre known to he active dumg the tormado disaster at F：amouth，Kiv．WI 4 Y＇DO．K2VJE．Kit）LG，W4RHZ． W．D4ACHE，K4YZU，WA4ERE，K4CSH，K $4 M A N$ and ther（QCEN control．W8TVL．W4．JP；4，the UK station． was the call useal at．the site．In emergency drill was comducted by the Fundrrson proun with the following taking part：W4SWL as NCS，W4CBN，W＇4NUQ．W4－ OGB，W4TBE．WOHAK，\＆4．IDE，L4NNN，K9EKV， K9JRI，WA4RHO，WA4，NZ，WA4WTE，WB4FGE．K4－ RGL and IIAMAN．W4iOls reports that．W4HCX also is Jh6KP．＇Trathr：K4YZU 12．5．WA4KFO 110，WA4－ W＇SW 110．W4B．AZ 108，WA4AGH 94．WA4W WT 74，E4－ AIAN 71．W＇B4．AN／4 62，W．A4NUE 62，W．A4UAZ 40. i゙ $4.1 \mathrm{P} / 445$ ，K4TRT 34．WB4IBG 28．WB4FAY／4 25，W4－ （IT 21，WA4SMS 21，K4HOE 20．W．A4THR 18，WB4－
 FOT ？．W4KiJP 9，W4YOK 1.

MICHIGAN—SM，Kalph P．Thetrean．W8FX－ SFC：K8GOU．RMS：W8FWQ，W8RTN，WA8OGR， M\＆MMQ．P．MMs：W＇OIVF，J\＆JEJ．V．H．F．PAMs：WS－ © IO，W४YAN．Appointments：K8AYM，K8CJQ，k8－ HPO，W8LUH．W8MPD，W8RTVI as ECs；K8HLR， W．A8ZGF is OO\＆．KxHLR，WA8LXY，WA8VBL as 1 HRis：W8TWF as OPS；WA8MCQ．WA8VPU as OBSs． sileut Kívs：WXHIK，W8PDB，W8YFL．BPLers：E8－ M．MQ，WA8MCQ．

Net	F＇req．	Time	Days	QNI	$Q T$	ess．	Mor．
GMN	36 E 3	2200	Dy．	936	bi31	60	W8FWQ
W＇SSB	＂9：35	2300	1） y ．	990	181	30	K8WRJ
UPEN	3920	2230	Dy．	696	57	30	K8ZSM
PON－DAY	3935	1500	M－sat．	248	116	26	Wasucir
$\mathrm{PO} \mathrm{N}-\mathrm{ClV}$	3645	2300	M－Sat．	133	41	26	VE：3DPO
B／R	3930	2130	M－Firi．	78.5	43	22	W8ZBT
M6MTN	50.7	2：300	M－sat．	301	32	25	WABLRC
LENAWEE 2	145.36	0100	1） y ．	25.5	34	29	WA8UWQ
N（ON 50	30.41	1600	M－Sa	188	(1)	± 6	WA8FXR

Michigan Council of Clubs officers are h8HKM，pres．； K゙8ETU，secy．New officers of the TASYLS are W．A8－ ＇Al＇，pres．；WA8ARJ，vice－pres．：W．48TIYJ，serv．；K8－ LHF ，treas．WA8KMF and WA8MCQ plan an yth area OKP newsietter．W8CI！P ran hatirle any＂thumb＂trat－ tic．W． $18 \mathrm{~V}^{\prime} \mathrm{BL}$ finds a 40 －meter dipole with tuned feeders works well on foll hatile is haing indoor dipoles and 50 watts．W80WG has a new tri－hand vertical．W8DY＇B and K8L）made＂p，tra．＂WA8TG（ lost his 80／40 dipole in a windstorm．K8OIC swapped his NC－303 for a $2-$ woter transeciver．（＇U at the II．P．Hamtest．Aug． 3 and 4．W8YTVF is recovering from surgerv．as is W8NOII． W8OQH has a new SR－160．WA8MIEE is getting married in Aug．W． 88 G． $\mathrm{A} / 4 \mathrm{now}$ is in Florida on 20 －meter s．s．h． W8I．1，tinally is out of the hospital and home．K8MIFO is bow in the amy．W＇．18GLH recently got marrind． W．18RZS now has W8LN＇s RTTY station．WA8NPII has an H．1－1200 mohile with a bird cage un 2．KyZYI now is on 166 mohile with a ronverted Gonset G76． ＇Praftir：（Apr．）LivkMQ 432，WA8MCQ 307．WA8SQC 966．К×M． 140，W゙8IWF 132．WA8OGR 115，W8QQR 108．W．A8VBL
 W8ITTC 57，K8Z．JT 57．W8EU 54．W8F X 50，WA8ORC 48，
 38．WA8K．RC 31．W．18KRH 30，W8YAN 27．WA8IAQ 26， W8WVL 24．K゙8FILR 20．W8CTIP 16．W8SCW 15．W8ATiD 12．W8FWQ 12．W．18KME 10．WA8TSB 8．W8SS 7．W8－以E 6．W8OW＇G 6．W8THP 6．K8VDA 4，WA8WIIG 3 ， WA\＆EOW 2，W8YKT 2，W8AAM 1．（Mar．）L $8 H L R$ 75． にメリにな 69.

OHIO－SCM，Richard A．Eghert，W8ETU－Asst． AC：M：Rnger Karnett．K8DDGG．SEC：W8OUU．IRM： IV8IMI．PAM：K8UBK．V．H．F．PAM：WA8ADU．

Net	QNI	＂T＇＇	Sesk．	Fireq．	Time	Mor．
BN	438	368	58	35810	2300 \＆0200Z	WRIMI
Osisk	1834	930	9．7	3972.5	2． 4 2Z	K8UBK
ORMtrN	138	57	$31)$	50.6	2300 Z	WA8ADU

The Ohin Six－Meter Net is now a full－fledge section net． IVA8ADU invites rheck－ins．The tirst Annual Joint Ohio Section Nets Picnic will be held Julv 27 at．WRFD Pic－ nic Park，north of Worthington．Details will be given
on any active net．W8C＇HT reports（2CEN suphilied emerkency rommumeations durng the April tomado disaster at Newtonsville，Ohio，and Fialmouth，liy．
 W．A8PRF，W．A8PSN and Fi＇TS＇s received Public sir－ ve Awards for participation in the silver bridge dss－ aster in December．J＇arma RC＇Bulletin reports foneter rode practice by W．A8KOK＇The．and Thus．at $2330 Z$ on 50．940．K゙8LFI，Lucas Co．RCC，writes a eolumin in
 of the AKEC plan．The contire pan will he preverated in lhrae insturs．New ofticers elected at the March（o 1 AKC neeting are W．IsCPI，chamman：W8LS，vice－rhatr－ man；W8oldU，secy；WsFank，treas．All clubs and nets are urked to join the ohio Council of hasters Radio Clubs．Dues are dive eats per member ber sear． Contact $\| 8$ OUUU for detalls．Luar SC：M altended the Dayton Hamvention and held meetings with the A sat． SCDI，SEC，KM and P．AM．C＇mennati E＇nquorer＇s Ham Gall column thy W．A8CO．A reports that W－A8TYF did anne hilltopping from beniuckys Black Mountam on 2 meters．best contact was florida，hearly 700 miles． Westpark Radiops say＇s the fRKL DN contest akere－ gate score was over 1.5 million points．At．Vernon KC ＇s Newsletter tells us that the conle and theory chass is graduatang 6．QCEN＇s Lixteming loost published dope on converting atuturula i．m．＇l Revod to 6 meters by II8C＇HT；also the conversion data los R19－TR1 t．mi． ceceivers tor 0 be K8JKA．The C IRA is runming a home－ brew contest in two eathegoress，Novice and others．bib－ IIV＇Z reports that the lhenry（oounty RC has whtamed fen police f．mi units to be cumserted to o meters tor use in its R．ACES program．W8\＆DS is ou artive duts with the USAF iu Vietnam．Lima Area ARC＇s new ufficers we WA8RWK．mes；WB8AbI，vice－pres．W8LEV，
 is the hew dssi．EC in Massillum．W8．1N got a mew 35－w．p．m．code certiticute．The uld one was 20 years old． Van Wert $A K C$ will hold its annual Picuice and Hambert Muly is at Jubilee Park．Is part of the S＇Cl job． 1 ex－ peet to visit as many of the clubs in the section as pussible．Please invite tue to your mectinss，eluhs． Continuance oi leadership appointments is contingent upon dischargum the duties prescribed by the appoint－ ment and upon resular reporting to the scom．Pleasp make regular reports，either by radiugram or on Form 1. Chock your certiticates to soe whether they still are eur－ rent．Trattic：W8LPH 442，W8QZK 400，W．A8．ALZ 250， W8izU 233，W81A11 227，W．A8P（2L 183．W8NAL 159， KYUNA 157，WA8FSX 153，W8GIN 151，W8LPI 134， W． $\mathrm{W} 0 \mathrm{COG} 12 x$ ，W8FRD 116，W8QCT 112 ，W゙8CनT 110 ， W18MHO 110，W8EFB 98，W．A8SED 97，W81FGD 84．
 W．18MTS 61，WA8（2FK 58，W४DAE 57，W४（）E 57，K8－ IGA 55．K8DDG 52 ．W8GOE 50，WABPPK 50 K KBYR $4 \times$. K 8 DHE 45．WA४MVV 42．W．A8KWK 40，W8IWX 38， W． 181 NU 37，WА WIIZ 29．İ8iCW 27．WA8．ADU 24．W8HNP 22，K४WZI
 118（2NQ 13．W8TV 10，WA8KPN8，W8IBA 0，W．A8IL）B

HUDSON DIVISION

EASTERN NEW YORK－SCAL，George IW，Tracy
 IJ G．Section nets：Nis ou 3670 ke，niglitly ：it 2400 CiATT： NYPTEN on 3925 kc ．nurhty at 2300 GMT ：ESS on
 The KII Cluh，$W 2 \mathrm{EZ}$ ，is repairing winter antenna damate and ereet ing ：a new tormeter bean and tower．The New Hochelle（：Tinb had a－prater from sonotune who dix－
 hatteries．Nice to harar that the SIt．Vormon H．S．（luh i．hack in full operation．The cluh＇s new whicers include
 W．N2．1NK，lwas．W2EY（ex－W2TER），truster．Imrid was Iuction Nite at the Nbany Cluh，The Weetreeter
 ＂ill＂＇pecialized S．s．B．Terhniques．＂This elnh hais it twhnical net（Wed．on $2 x .0 \pm 0$ Ne．at 2000 ）tor instructing members ont the livanced Clans licensew．Congrats．WB2－ MOI and WB2MOS are new ．Divanred Clnss licelnse hinders．＂The schenectady club held＂Home Brew Nite＂ with prizes awarded the wianers in various rategories．
 the（learing ilouse Net．Congrats．Dureas．Ninee this is his lant column，fur sc＇M takes this opportunity to thank all sertom usembers for then putience and conpera－ tion owet the yeare and ofter evory sumess in the new fortion Communicutions Manager．Ky all means，kiep
 V＇T 1＋1．W． 12 BH N 116 ，WB2VJB Kn．IVR2FOI 57, W2C「R $3 \times, W 2 C C$ 30．W2ANV 22．W2LRP 21，W．I2－ WGS 9．WB2RBG 7，WB2LEQ14．W2SZ 3.

NEW YORK CITY AND LONG ISLAND－®̇（＇M Blaine s．Juhtison，K2IDB－inot．s＇CM：lised J．Brun－ ies．li2dGi．SEC：K2OVN．PAMI：W2EW．

NLI＊

Su，VHF＊ Ni．1 I＇hone NLS slow （ ＇lear t1se Mir liarac Mic farad All sive NISPTEN

36：30 kc． 145.8 Alc ． ；y， kc ． ：3T15 ke． ：92：ke． ：！12．0 kr． $: 3610 \mathrm{kr}$. 3Tin kr． $3!2, \mathrm{ke}$ ．

1915 Nixhtly【！．s0 ： 11 1＇ 1 TE in！o Daily 1815 Nigntly 110111115 （iall）ka．הun． （1．1．）Nightis 130）太un． ｜xim I）：uly

N＇A2UXI－RM I B2KUF－HAM ｜1 BZんEI－アAM
 W．42（il）－Mgr
 M2C＇Bli－． 11 gr sidis－Mrr

Seefen＂Detx．．II times shuwn ahove are local．WR2－ ZET visited Li2l＇s while at the r．h．i．shindig in Pura mus，N．．I．＂What a day to graduate trom goved old hirh sehoul．＂salyeth WB2DRW，Fieid Da！Sunciay！W2GF年
 helped IVN2CIN get on the air．W2EW has the anteung firm buck together again．UHS N゙o，it has been held hy H2DBQ tor 37 vears straight！New utlicers of thi QCWA aro W2ほ，W2CCD，pres．；W2ALS，vicu－pres． and W2B．IL，director．W2PF repaired the δ－ft．antemna aust（on a Manhattan apartment rout）ami the hean is a horizontal ohe again．W．A2UNU（ex－WVEUEE）i back on the air aftrr a 27 －year resinte．K2DDK allowa that April was exciting with scores of INX ONL n，at rood serore in the FMT and first Place Itard in the YLRL Second District＇s JL－GM C．W．Contart W2tiAL acquired a swan 350，which is to figure it everal new projects．L2DGil has OH2BZ us a summer guest irom June though Aug．Congratulations to 15.12 d．JU，who has been terted to Jita happa Nu，the netional E．E．Honor society．IF2RCB has so many radials tacked onto the trusty old ground plane that it＇s begimming to take on the aura of Prese Wireless Falk ahout jumping wut ot irsing pans，WB2．1WX praduates，trom CONY in early June and then kets married in too－late June．Her，W．A2ELS has 4 eal areas， 9 states and 260 miles way up there on 432 Me ．！ W2liWM has kone portable l＇Ei tir the summer．C＇on－ ratulations to WN2FME，is uew Novice in this land W．A2KSD has moved to Pittsburgh and we wish him the bert as he adds to the voice of the WPA section VB2QNL，retiable old ONS，till is dixging tway at MII．T．even though the course is rough．K2HTX and W2HAE have gune 6－and 2 －meter fim．The Larkfield ecy．treas．is now back on the air with the call WA2 $\because A K$ ．WB2TDK went vertical on 2 meters．K2PHS hopes the clatter of little RTTY＇s won＇t prompt the CII．to move the whole shebang into the hackrard The Suffolk County RC＇s paper，QTC，nieked W2TVN its in ：ssist．editor and the paper mereased by abollt three（well－written）pounds．Congratulations to li2－ OHK，WA2KKD and WB2ZZB，who passent the Id vanced Class test！Also congratulations to W2DID who went Extra Class！Tratfic：WB2ZET 411，K2UBG 1in7 NB2DKW 83，ITB2QLL 77，W2GEZ 68，WB2RQF 59 WB2JHK 45，WB2TQP 32，W2EW 31，WB2AFK a7 IVB2MZE 15．W2DBQ 10，W2EC 10，W2PF 8，W．12DN゙O 3.

NCRTHERN NEW JERSEY－SC•MT．Lutis J．Imo－ ras．W2LQP—Art．SCM：bilwarl F．Erickson． 112 （1／W，sEC：W．A2．1NM．RMs：W2BVE and WB2RKK PAMs：W2PEV．Ki2bDQ，IF．I2hZF，W．12TEK amd W32IYO．

IIPSEC Section Net schedule＇s

Not	Fre\％．	Time	Dapls	Sex	U．VI	Tfr	Mgr．
N．IN	3109 kc ．	7：00	Dav	30	520	369	WA2KIP
N．ISN	：if 25 kc ．	13：001）	M－F	s	： 1	19	W゙2RKに
N．JEPTN	3928 kc ．	13：01）	M－ía	：i）	585	254	$11 / 271$
N．JPON	3928 kc．	6：09 p．s．	sum．	＋	78	49	WA2TEK
NJTA	5i），301 ke．	S：01 r．m．	M－F	20	231	45	WA25ZF
PVETN	$14.5,710 \mathrm{kc}$ ．	$7: 80$	Dr	30	＋29	3：2	K2kD
ECTN	$1+6,700 \mathrm{kc}$ ．	9：00 r．m．	Dy	：0）	288	2x	｜138İO

N dorsemunts for this monti woulal take III ton much pace hat many thanks ior comtinuing on，kents．The dates far this reat＇s N゙．I．UNG Party are hug． 17 ath 18．Full letails next month．Can we rover all rounties this wear？（contact W ． 2 CC．F if sou have portab）pe plans． kitikQ reports passing the Fitra Class exam and he hat it l心．C total of 313 311．W2BSC：has it new Tri－ Banler and has ordered the Warrior．WB2（2．JI is DXing in 15．K2ITY is in the 2－meter tratfie nets，IFB2RTM is wh－meter NB f．m．wing CE gear．J2BMI is moving to Fili\％abeth．WB2FFX has ：new swan 2.50 ．K2EIF has 95 contirmed for WNCC．The Wert Morris Radio （＇lub is muw reperating on the fow bands．K2O．NT is on with an HW－16 and worked 18 for DMCC in 2 wiets using a dipole．WR2I）． 1.1 rocoind（ P－ 20 ．W2CIW re－ ports having tronhle fimling parts for his vih．i．home－
orew pear．WB2ZSH has been appouted Deputy RO for RACES．W2EWZ completed QSO No．21．000．WA2－ WHZ aud WB2CZN report passing the ind－class toolu－ Hercial exam．WB2sEZ got Extra add WB2rLC Ad－ vanced Class licenses．WN2YVG and WN2CWP passed the General Class exam．WN2CKU passed the Genrral （lass exam and had his Novice career score at 46／42 for WAS and 29／11 for DACC．WA2CCF＇s DXCC is up to 1．59．The Giarden state＂Expo＂was at hig success and I wish to thank all who assisted in making it at b！！！one．W＇e received many letters thanking the group for putting on such a fine show for the public．It may have been the first joint venture by the elubs in N．N．J． and the groups did an FB job．Igain，many thanks． ＇Traffic：（Apr．）WB2RKK 579，WB2SEZ 387，WB2VLC 248，K2KUQ 181，WA2TBS 174，WA2ASM 137，WB2DDQ 108，WA2ZDA 104，WB2IYO 96，WB2ZSH 75，WB2NSV 67．WA2CCF 56，WA2NJB 56，W2EWZ 49，WB2ZAN 39，WB2DAA 36，WB2BAK 34，WB2TKP 31．WB2－ WNZ 29，W2CLW 26，WA2TNA 23，WB2BKC 22，W2－ LQP，20，WB2CGI 19，W2TFM 14，WB2YYQ 14，W2BVE 12，WA2LZF 12，K2MFX 10，WA2GLI 7，WA2JWB 6， K2ITY 5，WB2TEC 5．WB2ZCI 4．K2JSJ 3，W2BAC 2 ， IVN2DRJ 2，WB2ZCI 2．（Mar．）WB2WNZ 12，W2BSC 6， W＇R2RUM 6，WB2QJI 1．（Feh．）WB2WNZ 16.

MIDWEST DIVISION

1OWA—SCM，Oxen（i．Hill，WODBZ－Asst．S（AI： Bertha V．Willits，WØLGG．SEC：KOBRE．FAM： WONGS．R＇M：WOTIU．WOPZO is now la，iit Phone Net Migr．KøLVB has moved to the country and has a new $56-\mathrm{ft}$ ．tower with a six－element 4 －hand beam． WØTYY has a new home－l）rew 4－1000 linear on रo through 10 meters．WAOQQB has his RTTY equipment in operation．Several（Charles City amateurs have heen preparing for Advanced and Eistra Class licenses in a rourse taught bv h〇YVU und WOKUS．Reports were received $\operatorname{trom} K \emptyset T D O, K \emptyset A Z J$ and WØMOW on the Feb．FATT．WØBDZ lost his Triband beam to one of those spring storms．WAØMLE（Kans．）is now operat－ ing at C．R．，Ia．He also is an OO．WNOSWM is n new Novice in West D．M．TLCN is now operating sun．at 0130 Z （Mon．）on 3560 kc ．slow speed．W 0 EKH reports $50-\mathrm{Mc}$ activity was very good in April．He also is getting set on 432 Mc ．sorm．KgTDO is constructing a．central control unit for his station，ohe switch．WQ－
PFP also reports lots of autivity on 50 Mc．and he PFP also reports lots of autivity on 50 Mc ．and he heard some UX．WQEIT hal a QsO with NCtish， ably because of rother activitits of the summer months． 1a． 160 Meter Net QNI 1855 QTC 6
 ＇Trattic：（Apr．）WØLCX 900，WØCZ 315，WØLGG 90. WAØMIT 15，（Mar．）KØHPO 16.

KANSAS－SCM，Robert M．Summers，KØBXF－SEC： KØEMB．PAM：KØJMF．RMs：WAØMLE．WAØJFV． V．H．F．PAMs：WA＠CCW，WØHAJ，IVAØLSH．A pro－ gram called＂Perspective＂hroadcast user radio station KSAC，Manhattan．Apr．12，highlighted emergency and public service of amateur radio．Participants were WO－ YWX，News Birector K－state Network，WAOJIH， WAOEHA and WOHLU．Officers of The Santa Fe Trail V．H．F．Club．Inc．，Gardner，are W．AめJYK，pres．： WAØPWE，vice－pres．；KØYNW，secy．－treas．The Wichita AREC group had a real test on Apr． 21 and 22 during Weather Watch and the later search for a lowned aircraft．KØQBA，now portahle 5 in Oklahoma will be moving to Hansas this summer．WØDHC is holder of an Old Timer＇s Club rertificate．V＇H．F．Hets combined total was 45 sessions， 204 QNI， 7 QTC．The nets included the PI Net，AREC Zones 7．11． 15 and club nets NCK and Coffeyville．WAOCAIU and WNØ－ TRO are both putting a fine sigual into C＇entral Kansas． as well as the new c．d．station at Cloud County．K $\emptyset-$ ciZP has a 40 －meter antenna up now．Ghs，versions 34，reports QNI 355，QTC 115．KøTCG has a new Mohawk receiver．The Lansas WX Net had onlv 2 special IVX watches in April with 40 stations participat－ ing．AREC Zones 7，9，11，13， 14 and 15 report．Inw－hami net activity with r total QNI 290，QTC 15．KPON re－ ports QNI 1060．QTC 207．QKN． 4 wessions．QNI 20 ， QTC 10；KPN，QNI 299，Q＇IC 34 K KBN．QNI 769 ， QTC 158 in 27 sessions：EC Net，QNI 41．（QTC 6 ；HWN， QNI 809，QTC 40．Traftic：（Apr．）WดINH 204．KØJMF 194，WAOMLE 164．W．AØLLC 126，WØLXA 124，KØHGI 115，WQZJY 47，KOBXF 44．WAONFP 44，KOEAIB 38. KЮLPE 35，WAØNDZ 26．WAQJOG 21．WAOJFV 18. WAOQOH 18，WADCCW 17．GØMRI 15，WGAVX 13 ． KØGII 13．WAØKDQ 8．WNØTAS 6．KØGZP 5，WAØ－ КHN 2，WNØVED 1．（Feb．）WØ．AVX 118.

MISSOURI－SCM，Alfred E．Schwaneke，WØGS－
SEC：WØBUL．WØKFQ，of hirksville．is now a silent

Key．He was an OT on MEN and MOSSB．WAOFLL re－ newed as GVS and OBS．WOBUL renewed as PAM，OP＇ and OBS．KOJXI passed the Extra C1．exam．WAØJIII passed the Adv．C1．test．WAOKUH reports that radio classes held by the PHI）ARC finished with 9 Nov．anil Terh．C1．， 1 new Gen．C1．and 1 new Arlv．C1．The new cluh call is WAOUGU．Other new Adv．（1．are IIS－ l：QP ：and W．AOKUH．New Grn．（11．in the PHD ARC are WAOR\｜V and WAOK＇J．WODJ is M－WORDR． First results of radio chatses at Kuskin High sichool ARC（W．IUTKV）are WNOUHT，WNOUD and spon－ sor－teacher，WNØTTV．Officers of the Ruskin HS AlRC are WAOOFO，pres．：WAØSAO，vice－pres．；WAØPLiL， sery．；W＇N゙ØUH＇I，treas．The cluh now has a complete Heath sB／Line plus a Classic 33 beam and RTTY on rh．f．A new Gen．C1．in Marshall is WOYZK．New in doplin is WAQTDD．WAGPAN will leave for the Naval scademy in June；WAUPZI and WADDGG have leit for military duty．WAØDGG will be at Ft．Wood for basic．WNØSBP，who is trying to beep MSN going， needs some NCS help； $0300 Z$ on 3715 daily．WOBUL re－ ceived DXCC c．w．iph－114 and ph－108 certificates．GX－ RPH has a new $\mathcal{N C N}$ ．The following participated in the Feh．FMT：WAØFLL，WAの日TN．WAØIHV，WO－ LIW，KØIKZ，KOONL，WØRWG，WØRWH，WØZKN．

Net	I＇req．	Time	D）ays	Sesx．	（NI	＠TC	Mgr．
MEN	：\％885	2230Z	M－W－H	13	151	18	WのBUL
MIUN	：358． 5	$\underline{1400 Z}$	Daily	311	199	162	LyYBD
MNN	7063	18002	M－Sat．	26	81	41	WøUUD
MosisB	3963	23008	M－Sat．	28	716	168	WดRTU
MoPON	\＄9930	2000%	M－F	22	277	130	W6HVJ
MTTN	34＋6）	22002	M－F	26	264	77	WAgELM
QMO	7075	2100%	sille．	4	，	6	WAgFLiD
PHD	50.4	24308	Mon．	；	109	8	WA0KU
MSN	8715	0300\％	Daily	31	28	14	WNGSBP

Traffic：（Apr．）KOONK 1847，KØYBD 280，LØAEM 1⒉ WOOTD 159．WAØHTN 114，IIQRPH 88，WOZLN 72．WØHVJ 6ஷ，WAOTIL 61，WOBV 56．WAOJIH 54. W．AOOZO 46，WAOUGG 33．WAØCXI 32，KøVVH 28 ， WØBUL 27，WAØFMD 20，KØORB 18，WAØELM 13, W．AOPFU 13．KØREV 12，WNOSBP 11，GgDEQ WOGBJ 6，WAQKUH 6，WOBVL 3．WAOFLL 2，WA＠－ ITU 2．（Mar．）HØAEM 253，KØ．JPS 31．（reb．）KØJPS 21．（Jan．）KøVVH 53.

NEBRASKA－Acting sCM．V．A．Cashon，KØOAL －SEC：KøOAL．Monthly net，reports ior Apr．：Nebr． Fimergency Yhone Net，WAØGHZ，QNI 1117．QTC 52. Nebr．Morning Phone Net．W．AQ．jUF，QNI 1009．QTC 35．West Nebr．Phone Net．WQNIK，QNI 762 ，eirc 24. Nebr．C．V．Net（NEB），W．AOQMZ，early session，QNI 55，Q＇TC 27；late session，QNI 55．QTC 27．Nebr．Storm Net．WAOLOY， 2330% session．（NNI 726，QTC 72；（o13－ Y session．QNI 987．（yTC 79．Cormhusker leenage Net．， WAQOCIV，QNI 268，Q＇TC 85．Dead End Not．WAO． MCX，QNI 145，QTC 2．160－Meter Phone Net．WAg－ （＇BJ，QNI 150，QTC 2．WAOMCX advises that the Drad End Net has suspended operations for the sum－ mer．Nehraska amateurs were quite concerned over the illness of WAØGHZ．We all hope she is now back in prood health．A new Novice is WNOUER．Nehraska clubs are requested to purticipate in the Nebraska Am－ atettr Radio Hall of fame program．＇Trattic：（Apr．） W＇GLOD 42．WAOQMZ 75，WAØCCW 65，KOJTW 4！． WOHTA 33，WAØLGY 32，KøJFN 31．WAØOMY 30. WAØIBB 25，WGGEQ 17，KØIXY 17．WAOOVL 17. WЖGGP 12．WAØGV．J 11，KØDGW 10，WAØPCC 10.
 1，WAOJRQ 4，WAOPIF 4，KøUDW 4．WAØJUF 3. WONIK 3，WGEGQ 2．KØFJT 2，WAØJKN 2，L゙ØODF 1．（Mar．）WA＠GV＇S 6.

NEW ENGLAND DIVISION

CONNECTICUT－GGM，John J．McNassor．WiGYT SEC：W1PRT，RM：W1GFM．PAM：W1YBH．V．H．F． PAM：K1SXF．Net reports for Apr．：

Net	F＇req．	İap／s	Time Sess．		QNI	OTC
CN	：3541	Daily	1845	30	：72	4.38
CPN	3880	M－S＇ 1800	Sun． 1000	318	598	220
V．H．F． 2	145.98	M－S	2200	18	43	25
V．H．F． 6	$5(5$	M－S＇	2110	22	236	39

High eN1：CN－W1CTI．W1ZFMI／WA1IGF．CPN－ WIGVT 30．W1BDA．WA1IEG and W1YBH 25，FIYGS 24．K1EIC 23．WAlliEK and WiLLiH 22，WA1EEJ 21. WA1HEW 20．WA1FXS and WA1IWN 18，WA1FZE 17. WIYU and WAgQVU／1 16．SEC W1PRT requests monthly reports from all ECs and would appreciate resignations from those no longer interesterd．K1SXF is our new V．H．F．P．AM．2－and 6－meter traffic operators know he has been monsistently active on both hands． Please contart him if interested in heing $\mathrm{N}^{\prime} \mathrm{Cs}^{\prime}$ on the 2－ Aroter Net．IVALCYV has hern 6－Moter Net manager for
quite some time and more check－ins are welcome on 6 muters．WIPRT visited the Hamden ARC to explain the value and necessity of EC work．He would appreciate the assistance of your club，also．W1GVT attended is meeting of Murphy＇s Maraulders at the WIICP QTH． The limitless enthusiasm of this new group indicates it will he the ton semring contest cluh out the bands！Gur Director，W1QV，presentel an ARRT，Charter to Miur－ why＇s Marauders at its recont meeting．Congratulations
 BPL：WAD MG nol W．MGGN on devancel Class ：wh． 1111L on Cirneral Clase：WN1．JKR，WN1．JKS and WN1－

 229，WA1IIEW 195，WA1GG．N 103．W1ARR 142．W1．1W 120．WAIIEG 114，K1RQO 10t．W．A1FNJ 85，WA1IGF 80，K1TDD 77，WA1FGN 74，WA1CYY 72．W1FAM 68， WA1FZE 65．WA1GIK 58，W1GVT 56，WA9QVT／1 56．

 CTI 22．W1QV 19，WA1HLP 18，K1LMS 16，K1YGS 15， W゚IMRD． $14.15 .11 F X S$ 12．W＇1CTM 11 ．W＇AIFJU 10. $1118 N B$ \＆L1CEC 4．WAILGG 2，WB2HHZ／1 2，W1－ WEE 1．（il：M．）K1CEC 3.

FASTERN MASSACHUSETTS＿SCM，Frank L ． Baker，Jr．，W1．NLP－Mir NEC，W1AOG．received reports irom W1s IJF JVZ．RPF N＇W1s EVI，DNI．Silent Kיx：LiFERC．W1HGII．W＇1BS．WA1BEY and W1BL． Wion was nill sitite Radin Citfirer for C．D．W1s AYG， BGW，PLJ，WTF，BEX．VIOO，EIQ．MA，OQF．Kls （M）R，ACO and W2．1ZO／1 took part in the Feh．jeMT． W1DOM is new nwards custodian for the Mass．Chan．of thw NABC．Send S．ASE for the awards program．K゙1－ ZCUU is working on modulated Hanes，in sterro fiames． KIFWH is working on a mixer and amplifior for ib．Ile ant LIZSE ate working on 2 APX6s．Ex－W1FWS is now ilitilR．WNIISH is now Gencral Class．The south shore Club had an auction．WA1EVD built a transistor transeiver for B and a three－element portable beam． W1KBO has Extra Class．W1LYN visited his brother， K3GIFF．SVew olfiers of the 128 Contust（luh are W1－ F．J．T，pres．：J1DIR，vice－pres．：W1．1X，treas．：W1BPW， mor．W $\mathcal{1} 1 J J=$ is new in Gloucester．W．ADDJC marle RCD．Nrw affirers of the Norfolk Coninty RA are W1－ PNT，pres．：K1EPL，vire－pres．W1HTR，treas．；K1－ IIRV，secy．IV 1 QV and W1．II．P attended the elibis nn－ nunl hamuet．it its $34 t h$ anniversarv the Tg Kadio Cluh ilected W1TYP，Mes．；W1KGH，vice－pres．： VIIGX．treas．；W1MNK．secv．INIWFZ is now RO and JiC for Burlington．W1TQS writes from KHB－Land that he will he living on the south Shore some．WA1JGO／I．A ＂rites from O－lo．Norwav，and is lnoking for DN on all hands，WMIN hat 30 se－ssions．QNIs 269．Q＇TC 192．WII．F． －W－IT，N is ative on 80 c．w．． 3 and Navy NARS， WNIIDP is morking lots of DXX on 15 with a DX－6iB and a dipole．W M1FHU，in our FMIN，has a T4X．SB－ $2 n m$ linar ard $R 4$ receiver．W1OJM and K1PNB made thin BPI W1 IFC had a booth at the YWCA Hohby shors．W．A1FHI is truster of W1KN．Tufts U．RA．W1－ ME is getting on 432 and 1200．W1，TDP is on 15－40－75． Now offinns of the M．I．T．Radin Snciety are ki3ZDR， pres．；Кँ3ODD，treas．；W．A4TTG．stn．mgr．：WB2RFE， irt．mer．W．NHFZ hias a WK゙－40 Anache，Seneca．W．L－ 1DPX has an SB－110t on 0 ．WIRSY was given a retire－ ment party for his 17 venrs serving the Mass．evivil Defense Agency．WA1FBH is an Asst．EC for W1RM in Newton．WiDYs is getting a Heath s．s．b．W1RM has a now uutenna for 15－40．K1EMT is husy with the sonits．W1FR visiterl his son in W4－Land．W1CFU will have an 813 on all hands．W1UVE visited in Florida． IFIRNG is on $6 \mathrm{t} . \mathrm{m}$ ．on the way to work．W1．1YA is s．s．b．in the car on 40，working on ci．w．to improve his first．W＇TATT is torking a course in ssiling and is huiding a rig with ：BHF5 for 160 and 15 ．W1NTV enoke on ＂The Quad＂＂t the Wrelleclov ARS．KIIDU spoke it the Mrassanit $4 R A$ on F．F．F．T．Converters． 1 groun risited the Dushury Conet．（illiril station．Ipoointments en－ dorsirl：W1s AFC and ITR as OPSs：W1s AFC．DIT． and Fi\＆as ORSs：W1FAE，as RMT K1s PNB．WFZ， NTQ．W1s BVV．SH and NZP as FCS：KINLQ and Wili）Pr as Or＇se：W1s lIR and T＇L．t as OPSa．W1－ SNO and w liFHU are new ORSs．The Capeway RC met at W1EY 「＇s．The Whitman（＇lih had a goonl aur－ tion．The \bar{n}－Weter Cross Band Net had 23 sesions． 169 oNis． 4 traflic．K1ENS is in the hospital in Koston． The FIINN had 13 sessions． 84 QNIs， 36 trafic．K4NS， er－WiNS，wants to nass his 73 th all the old gang． W1CTR morked W．A3EPC／1 on 2 from a Boston Hotel． Wi．TK．ex－IV1KT．I is Fxtra Class．Tratfir：（inr．）W1－ OTAT 535，W．11FYY 427．W1PEX 427 ．WA1FTM 229, K1PVB $188 . W A 1 F A D$ 170．WA1FSI 155．WIDAL 110. W1F，NG 108．K1CTM 67．W1CTR 49．W1AFC 19．W．A1－ FTTV 14，W IIFHTT 36．WIFIE 35．WA1NPE 33. TV1DOM 25．W1MX 25．W W1DFEC 21．W1AOC 1B．K1－ TCN 11 WiIDED 8，Ẅ 11 I．TN 4．TINKF 4．Wi．JNP 3.
 30．W．11GCII 20．W1MIX 13，W1KBN 12，WA1ITZ 7.

MAINE－NCM，Horbmt A．Datis，K1DYG－SEC： K1QLF．RM：W1BJG．PAM：WA1FLG．Tratic netr： The Sea Gull Net meets Mon．through sat．un 3940 kc ． at 1700 local time；the Pine Tree Net on 3596 kc ．c．w． at 1000 daily．The start of a new net，the state of Maine Public Service Net on 3940 kc ．at 0×30 Nun．is announced． This not is mostly for AREC，NTS and RACES lout is onon to all interested amateurs．There will be training． hews，handling of trallic and on forth．Whas）has huit ：1．QRl＇rig and plans on using it portahle．It＇s nire to huar all the familiar voices of our southern exposure friends and to ratch up on the ners．Tratlic：WV1BJG 3．74，W＇1CU 142．W＇1NND 64，WA1FLG 03.

NEW HAMPSHIRE—SCNT，Robert（ \because ．Mitchell，W1－ SWK／K1DSA－SEC：K1QES．PAM：K1iPQ．RM＇K1－ HCS．The GSPN meets at 00002 Mon．through Fri．and Sun．at 1430Z．The NHEPN meets at 0000% Sat．Botlu nets are on 3945 kr ．while on 3685 ke ．the c．w．net．VT－ NHN，starts at $2330 Z$ Mon．throngh Fri．Welcome to new appointee W1YMJ as an Official Observer．WA1DKD is mohiling to and from＇rexas on vacation．Welcome to new bans WN1JJII and W．A1J．JW．K1QES points out that the Belknan County AREC Net meets on 146.7 Mr． WillitF pens that the Manchestor Radio Club．W1－ ITPM，just hal its $30 t h$ amniversary．sheraking of statis－ tirs，the GSPN held its 1300 th eonsecutive sersion ns of Inr．30．IVA1IIT has replaced the UX－40 with in Inarhe．WA1FSKZ is huilding transistnrized gear for 6 aml 2 and would like to swap notes with other interested partios．Net reports slow K1．APQ and the GisPN with 769 cherk－ins．K1QES and the NH．ARECN 81 cherk－ins， while K1DWK shows 165 cherk－ins for old reliahle MV－ IREC．The recent FMT lists W1TCR，W＇1YMJ and SWL Robert Lindquist with excellent readings．K1IIIN and his new quad ate cleaning up the rare ones on 15 and 20 meters．Traffic：K1PQV 51，K1IIK 28，K1QES 5.

RHODE ISLAND－SCAI．John E．Johnson，K1AAV－ SEC：K1LII．RNI：W1BTV．PANI：W1TAL．V．H．F． PAM：K1TPK．KISPN report： 30 sessions． 391 GVI． 110 traflic．Congratulations to WIJJZ，who is now WiEMF located in Warwick．W．AEEEJ went to the Conn．Phone and C．W．Net Dinner Apr．6．He has heen appointed Waterfront Director gt Camp Meehan for the summer． K1NQG．the Fidelity RC．set up a station recently at the Mirlland Miall end．according to reports．the event was a surcess．The WiAQ Club of Rumford reports that W．MIIIM，W．MESP，and WAIICQ have recrived thrir General Class tickets．The club held a clean－up on the hilding program rolld hegin．Those helping were Til－ AGA．K1PEL．K1LII，K1．AMG and K1HMO．K1AMG did a banner job as chairman of the FD committer．The ciab held practice sessions with the hope of setting up with a minimum of inconveniener of the site．K1BDN risited the rlinh rerently and the membership was glad to see him．The NCRC Cluh of Newport held another successful alletion recently and was active on Field Day operating from Newport．Tratic：W．LIFEJ 1000 KIN－
 Y゙EV 66，K1V＇C 45．WA1CSO 42，IITPK 18.

VERMONT—SCM，E．Reginalle Murrav，K1MPN－

Net	Fireq．	Time	［．7）18	ONI	¢TC	Mar．
Gir．Mt．	：3855	21307	M－S	613	28	W1VMC
Vt．Fone	8855	1300\％	Sun．	121	－	WITTC，
VTNH	3685	2．20\％	M1－1	84	58	EIUZG
VTCD	39901／2	14007	Sun．	$: 9$	14	WIAD
Carrior	8855	1：007	M－F	352	3	WIKKD
VTSB	8009	2130 Z	M－S	758	57	W1CBW
		12：0Z	Sun．			

Welcome to new Novice WNiJTEE（Barre）and new Gen－ eral WA1JGK（Arlington）．The Lyndon Institute has a cluh call．Wr．I1JGQ．The 2－ripter f．m．Wpater stations on Mt．Mansfielil and Mt．Gillington are doing a great job throughout the－tate and activity is increasing．The B．AIRC is sponsoring International Finld Day in dug． Watrh for the esant date and QTH．Nrw officers of the CYIRC are KIMIPN，pres．；WA1FTV，vice－pres，F W1－ CRW，secv：K1MNQ．treas．Traffic：K1BQB 3il，Iー MPN 28，KIUZG 18．W1MRTV 13，WAIGUV 10.

WESTERN MASSACHUSETTS—הCMI，Norman P ． Forest．W＇1STR－RM W1DWA reports for WMN（c．w．） on 3500 kc ．dualy，tntal trattic 76． 27 sessions， 7.3 hours operating time PAM WA1EYF reporte for IVMPN 3913 kc ． 21 sessions， 142 QliNI total tratlic 57．The net will be discontinued mutil further notice heranse of lack of interest droing the summer monthis．W＇IIC reports xood attendance on the Central Now England Not．This net oper：ates on 3945 ke．Mon．－Nit．at $6: 30$ A．M．and u－ports 1204 QNI and total traffic of 63 for Apr．The Wed．Night Net had 30 QNI with trattic of 2 ．WiZPB，

Dit. Hermon Kadio Club, reports a titth Novice license attained this school vear. Aso, the Connecticut Valley Dit, v.h.f.-145.30 Mc., continues to attract a hood numle, un Nion. at $9: 00$ P.M. The I IARC newspaper. The Iscillator, has been awarded and honors for the "Acti"ities Coverage" and "Technical Articles" categories from the Anateur Radio News Service. WA1BRU, a himember and editor, is to he congratulated on his fine fforts. WIZOC was awarded the first VAKC ('Iub certificate for Worked VARC at the May meeting. VARC s. planning a picnic at Look Park July 14. Home Brew night seems to be taking hold as an interesting club activity. The HCRAI awarded prizes to WA1HPN. W1MTV and IVAICTQ in separate catagories ior outstand ing achievement. Also, Montathusetts made : similar award to KIYLU at its Home Brew Night activity. Traffic: W1EUB 182. W1BVR 66, K1AEC 63. W1DV'W 46, W1DWA 30, W1STR 29. WA1EYF 28, K1WZY 26 W.AlHII 14, W1IC 14. W17PB 14, K1IJV 5.

NORTHWESTERN DIVISION

ALASKA-Acting SCMI. Albert \mathfrak{r}. Weher, KL7AEQSEC: KL7FNX. OBS: KL7CAH. We would like to say big thanks to KL7GEF, our departing NEC, for a job well donc. KLTFNX takes over as of now. KLL7CAH re ports the sourdough Net will continue to operate at 1500 Z . The newly-formed QRP Net is holding forth on 3715 Mon. at 0500Z and the hest, DX so far from the Farhanks area has been KL7EVO's to Douglas, rumming ess than 1,2 -watt to a random length antenna. KL7AEQ hangs out there during the limited time he has for operiting. W8KNC/KL7 has it swan 250 and six-element heam up 50 feet, and is available for 6 -meter skeds. His uldress is 320 Bently Drive, East, Fairhanks, Maska 49701. It is reported that W7CNK is moving to Anchorage and will be operating B. The Northland ARC will set up at Nummit for its annual field exercise July 20 and will be working all bands. If interested in further details, contact KL7FLS. KL7GGV has a new SB34 uwaiting the arrival of his General Class ticket. KL7EWQ is urganizing the Yukon 800 boat races this year. KL7FRZ has leen down lietchiken way attending ACs tehool. KL7FLS's No. 1 son, KLTFLR, was home on two week's leave from the Navy and he and Bess's OM huilt up her 4-1000A linear. Traffic: KLTFLS 232, KL7CAH 174.

IDAHO-SCM, Donald A. Crisp, W7ZNN-SEC: K7THX. The FARM Net convenes on 3935 kc . week davs at 0200 GMT. New F'ARM Net otticers are K7OKA chicf net control, and $k 7 \mathrm{KBX}$, net mar. W7IUO worked WAS and received the section award for the 1967 C.W SS Contest. W'N7JLS is a new Emergency Corps member in Lewiston. The Lewiston Emergency Corps provided rommunications for a Suorts Car Kace up Winchester rade. ங7TMX. WA7FFZ, WA7EWV, KL7FOZ, WA7ETO and WZZNN operated mobile and were stationed along the route of the race course and W7OWA provided a link into Lewiston. A family in Lewiston asked amateurs to help locate a lady vacationing near Chapala lexico, to inform her ot it death in the family. Her exact location was not known. The ludy was contacted titer some difficulty. The wessage was relaved via W7$Z N N$. WB6LYR, W6ZOM and ZE2Y'E. FARM Net runort: 22 sessions, 88 trattic handled, 847 check-ins. Traffic: WA7BDD 117, WA7ETO 113, K7OAB 16, W7GGV 13, W7ZNN 13, K7CSL 4.

MONTANA-SCA, Joseph A. D'Arcy, W7TYN-SEC W7RZY. RM: WA7DMA. Endorsements: W7OIO as wVS. (feorge Hart, Communications Manager of the ARRL, will speak at a meeting of the Montana section hams. This dinner will be sponsored by the Butte Amateur Radio Club July 8. Several of the OV'Ss in Montana have lieen xetting on 2 -meter t.m. The Butte $2-$ meter f.m. frequency will be 146.760 Mc . W7PX, in Missoula, is now on 2 . New officers of the Sidney Hi Sky Amateur Radio Club are K7SYY, pres.; V7BQE, secy.-treas.; K7SZF, trustee. New ratls in the Bozeman area яre WN7JLE and WN7JOA. The Bozeman group provided ommunications for the Junior Nationals ski championships. W7NPV again showed up with a verv fine report in the annual FMT. K7PGN is now W7FJR. We stil tued ORSs and GOs in the section. If you are interested in any appointment drop vour SCM a note. Traftic W7LBK 81, K7EGJ 24, W7RZY 14, K7ELW 2 . W7QGJ 2 , K7WRH 2.

OREGON—SCM. Dale T. Justice. K7WWR-RM: W7ZFH. PAM : K7RQZ. Section nets:

Net	Freq.	Time	Days	Mgr.
AKEC	3875 kc .	020107	1)aily	WA7AHW
AREC	145.35 Mc .	123302	Tue.siat.	WA7DLE
USN	3585 kc .	1130Z	Tue.-Sat.	W7ZFH
BSN	3875 kc .	00)3nZ \& 19007.	Daily	K7IFG

II. I7.AHW reports for the AREC Net for Apr., sessions 30, che:k-ins 803 , cuntacts 80 , traffic 44, maximum numluer of counties 19. W'7ZFII reports for the OSN for Apr., sescions 21 , check-ins 120. trattic 50 . Niw appointments: hTVWR as OO and K7DXV as EC for klamath Gounty. WA7EZJ is asing a colinear antenna tor 80 meters. WA7ICD and IV.A7IJQ have become Generul Class. New Novices in the Grants Puss area are WN7IRT and WN7JQK. WN7JMY is on 2 meters with a Twore. WA7HRG has a new sivan 500. The Josephine County 2-Meter J.M. Net meets at 00037, Tue. on 146.76 Mc. W. 17 GCE reports 12 members in the license class meeting weekly. Her OM, WA7ELP, handles theory while she teaches code. The FatRs Practice Not meets Tue., Wed. and Fri, at 9 p.m. loral on 3743 ke. Listen for details on code proficiency certification. Don't forget the Rend Campout July 27 and 28 at Todd Lake. Tratfic: (Ipr.) K7RQZ 240, W7ZFH 118. K7N'1'S 65. W7ZB 58. K7WWR 35, WA7AHW 23, WATEZJ 15, W7DEM 13. W7BNS 10, W7MLJ 8, WA7BYP 7, K7RFO 7, W7WHY 3. (Mar.) WA7EZJ 10.

WASHINGTON-SCM, William R. Watson, W7BQSEC: W7UWT. RM: K7CTP. PAM: W7BUN.

| NTN | $: 8970 \mathrm{kc}$. | $1830 Z$ | Daily | QNI | 857 | Tfc. 312 | Sess. 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WSN | 3590 kc. | $1145 Z$ | Daily | QNI | 334 | Tfc. 493 | Siess. 30 |
| WARTS | 3970 kc. | $0100 Z$ | Daily | QNI | 805 | Tfc. 274 | Sisess. 20 |

The Washington State ARRL Hamfest, sponsored this year hy the lakima Amatpur Kadio Cluh, will he held the weok end of July 13-14 at the Fakima Fairgrounds. W1NJM Communications Manager of ARRL, is seherluled to speak at the sat. night hanquet. There will also be tueetings oi all Washington Section League appointees, ORSs. OPSs. OOs, (NDS, OBSs and EC's. The \therefore KEC will incet Sun. morning with SEC W7UWT. The now torming State Council of Amateur Radio Clubs will hold its tirst meeting Sat. afternoon. See the announcement in QST. Special commendation gues to W7HDL for being among the top three 00 stations in the country rendering a valuable service to the amateur fraternity. W7ABX received the Governor's Award tor 26 rears of OCD service. WA7DXI lost her antennas but founced back with an award from the Weather Net group. K7JRE reports his XYL is now WN7JST. WN7IUT is waiting for his General Class license to come through. The BEARS Club is pondering the site of a new club station. W7OS recpived honorary life nembership in the Radio Club of Tacoma. W7BX now is in his 52nd year of ham radio. PAM, W7BUN toteled a high 122.500 in the ' 67 SS . W7PGY traveled to Newington for the lionrd Meeting. SCM W7BQ visited the Gravs Harhor, Lake Washington and Bremerton Cluh meetings in May. W7LFA MCed the Bkagit Hamfest. K7CTP is doing an FB , iob as secy. for the Northwest Technical Net Sun. 3 r.m. (4 p.m. summers) on 3970 kc., and pinchhits for W7BQ. W7UU completed a photo trip to Hells Canyon. The Dial Twisters of Spokane is operating a new net on 3910 ke. W7EXM sends in an OO report and berws of a new linfar. Plans are underwav for Washinginn Amateur Week sent. 1-8, with the QSO Party the week end of srpt. 7-8. We regret the passine of W7SEM and W7DWG to Silent Kevs. Traflic: (Apr.) W7BA 1487. W7DZX 693, WA7DXI 627. W7ZIW 522. WY7MMA 466, W7AXT 344. WA7DZL 310. W7PI 250, K7CTP 184. W7KZ 173, W7JEY 116. W7IEU 89, W7BTB 71, W7BQ 66. WA7HKR 66, WATEYN 65, WA7EDQ 45, K7KP.1 43, K7THG 43, W7GY゙" 36. W7APS 29. W7BUN 25. W7AIB 20. W7ZHZ 15. WA7DBQ 14, K7YF.J 12. K7OXL 11. W.A7FKA 9. WTPGY 9, K7MGA 8. W7OEB 5. K7SUX 5 , W7UU 5. (Mar.) W7AMIC 6. K7EFB 2.

PACIFIC DIVISION

HAWAII—SCM, IAK. Wical, KH6BZF-WODX. fres. of ARRL and IARC, made his first sojourn to oint i,tilitiful Islands recently. Returning from an IARC Resion 1 II mreting in Sydney, Bob spent two wonderful days in the land of Aloha as the house guest of KH6IJ. Earlier a tormal dinner was held at Honolitu's Parific Club. Denniston spoke to the leading amateurs representing their clubs, rivil activities, MARS groups and ARRL field appointees. Ex-KH6EPW is now W6CYY. WดYZV called me when he was in town but unfortunatelv I wasn't home. KH6GHZ, ex-TA3MP and our able sEC Hawaii, is scherluled to show his slides of TMAMP at the next Aloha DX Club meeting. Those interested in obtaining more information on this club, should drop a tine to club secy. HH6GJW, P.O. Box 9471 Honolulu, Hawaii 96820. Ex-W9GRK/FH6 writes that he's now ivolikZ while in Turkey. Twenty meters continues to be the best hand to UX from Yawaii with 15 a close second. KH6BB has been quite active on 15 meters and reports many DX stations on. The chief operator at KH6A.JF is WB6TOP/ KI6 and he's doing a bang-up job as alternate NCS on the Marine Nat. Sern mohiling locally is W9BFI/M/KH6.

Net

League Appointees
Friendly Net
Parific Interisland

Freq．
7.290 inc.
7.290 Mc.
$1+.330 \mathrm{Mc}$ ．

Time（\％MT）
17700Z
2030%
$0830 Z$

Dalls
Wed．
M－F
M－N－F
the and Wed．of parch month at the rSSNTR．．Wl are invited to attend．WB6ZWG and W．A6SCE are traching ende and theorv to Novices．K6URK has r new 15 －meter heam．W7A．AF／6 is now W6IPC．K6KOL has a bow－tie dipole＂O 80 meters．Wbat）B savs that check－ins are invited on the PCN Net，whirh meets 12－1 daily on 7120 ke．W7A．AF 6 and W6UZA are runming trattic at $150 \mathrm{w} . \mathrm{p} . \mathrm{m}$ ． with great suceess．Trattic：WB6HV．A 358．W7A．IF：6 335 W6．ADB 216，W．16SCE 153，K6KOL 101，K6OZL 10.

SANTA CLARA VALLEY－irting SCMI，Edward A． Gitibi，WB6IZF－Asst．SCAI：Ed Turner，W6NTO．sEC： WBV＇ZE．RM：WA6LFA．
Bay Area AREC Net， 3900 Sun．，1830G
Northern California Net， 3630 IVaily，0300G．
Annterev Bay Emerkency Net． 147.16 Tue． 0400 （s．
WA6LFA is trving to cheek into the AREC Net Sun． morning．WGOII was on vacation most of Mav．FiCiOPS W61K．Halfmoon Bay，is active in contests and reports the hands have heen erratic．WhoDEF is busy as usual with NCN，the Weather Net．QCWA and in the AREC and reports that W6KRS is back from a 7 －reek trip to the Orient on the SS Canberra．WB6WLH is moving to Washington，D．C．W6RSY is URL on RN6．W＇GAUC is husy with traffic from Gllam and vacationing friends and maritime mohile．W6\％RJ，Paritic livision Director，is hinsy with many meetings and division busimess but tonk time to act as judge at the forithills RC＇homebrew eun－ test．KGDYX has at new KWM－2 and reports a new local net．on 25.650 at． 0230 G Wed，wilh K6LY as NCS．W6RFF is QRL with schonl but spent a few hours in the ．Ipril （＇D Partv．W6YBV is handling tratlic un NCN imd RN－6．WB6IZF was on a business trip most of May but in his spare time was active in the Wenst Coast Amateur Radio Service Net．Nerd to get a message to practicallv suny city on the West Coast？Just eheck into the WCARS Net on 725.5 kr ．days or try 3952 at night．Your report didn＇t get in this month？Blame some of it on the mail service and not WB6IZF as this report is being prepared by W6NVO．＂Trattic：W6RSY 912，WAGL，FA 213．K6DY＇ 187，W6YBV 126，W＇6DEF 107，W6VK 41，W6．JUC 26, WGOII 16，W67RJ 14，W6RFF 8.

ROANOKE DIVISION

NORTH CAROLINA－iCMI，Barnett．S．Dodd．W4－ BNU－Asst，SCM：Jamps O．Yullman．WA4FJM．NEC： WH4LWE．RM：K4CWZ．PAM：W4．AJT．V．H．F．PAM ： W4HJZ．We are deeply sorry to report the death of finmer North Gerolina NC＇MI．B．Riley Finwier．W＇ARRE． Morganton，N．C．，on May 3，1968．К 4 CHT recently re－ erived his Ph．D．in physics at NCSU and has accepted a position with Texas Instruments of Hallas．WB4BGL is now ith his new GTH．W4KQL savs．＂Ifter seven veats of inactivity an back on using $\mathrm{SB}-101$ ．My last QTH as an active was Winfield，Ala．，und my call K4Z．XX at that time．＂WA4KWC says he is in the process of upgrading his antenna＂farm．＂Heartiest congratulations to all nets and their members for a jub well done in Oneration Election．

Net	Freq．	Time	Days	OTC	Mgr．
THEN	3923 kc	（n13nZ	Daily	178	W477C
NCN（L）	3573 kc	$0200 Z$	Daily	91	WA4CFN
SSBN	3938 kc.	33307	Daily	50	WA＋LWE

Traffic：（Apr．）W4EVN 272 W4RWL 203．WB4BGL 88 ， W4ZZC 84，W4FDV 68．WA4VNV 54，WA4CFN 52，W．14－ \％LK 51．K4CWZ 37，iv $14.15 \mathrm{~N} ~ 31, \mathrm{~K} 4 \mathrm{VBG} 31$ ．WB4IJH 24．W4KQL 24．W゙ CBNO 21 ，W゙．44FJM 20，K4YCL 17, KiEO 16．W．A4GMC 16．W．A4KWC 6，WA4RII 2，历4－ JTN 2．（Mar．）W4LWZ 95，W．A4VTV 20.

VIRGINIA－GSuM．F．J．Hontins，W4SHJ－NEC：K4－ LMB．P．AM：W4OKN．RMs：WA4EUL，K4MLC．W4UQ was elected chairman of the Eastern Irea NTS Staft which thet at syracuse in late Apr．WB4DOY has ac－ guired a linear amplifier and a kever：the latter enablos him to check into the c．w．nets．WA4PSX．now operat－ ing as KA2PX．listens for Virginia amateurs on 14.210 ke．duilv between 1100 and 1400 GMIT．He will be return－ ing to the section in Dec．K4CG continues to handle vol－ ume message traffic from and to overseas points，dav－ time trattic operators tray find them on 14.337 at 1600 GMIT and 7240 at 1800 GMIT．W4OP and K．4KNP are the Offirial Bulletin stations for phone and c．w．．respec－ tively．Listen for them on or near the net froquencies． IrB4GTG claims his recent phone operation was not hy choice but coused by a broken kever，There are no more Wt two－intter calls available；W4SZT anplied and re－ ceived K4DC．Virginia nets meet dailv on these fre－ quencies and times：3680， 1830 to 1930 EDT；3935． 1800 and 2200 EDT： 3835.1900 FDT．Trattic：（Apr．）K4CG 815，K4KNP 391，WR4FDT 292．L4DC 236 ，W4NLC 221． W＇B4GAN／4 213，W4YZC 169，WA4EUL 167．WB4DRB 164，WB4GTG 142．W4UQ 118，W4ZM 116，WB4CYY 89，

EIMAC
The R. L. Drake L-4B linear amplifier shown here uses two of EIMAC's new 3-500Z zero-bias triodes in grounded grid circuitry to achieve 2-kW PEP SSB input and $1-\mathrm{kW}$ dc input on CW, AM, and RTTY. Drive power is 100 watts PEP and 75 watts CW, AM, and RTTY.

Drake chose EIMAC 3-500Z's because these rugged, compact, high-mu power triodes are ideal for grounded grid operation. They can provide up to 20 times power gain in a cathode driven circuit. And the two tubes have a total plate dissipation rating of 1000 watts.

For more information on EIMAC's line of power tubes for advanced transmitters, write Amateur Services Department, or contact your nearest EIMAC distributor.

3-500Z's used in Drake's linear amplifier for $2 \mathbf{k W}$ PEP at $\mathbf{3 . 5 - 3 0} \mathbf{~ M H z}$

EIMAC
The prototype Swan linear amplifier shown here uses two EIMAC $3-400 Z$ triodes in grounded grid circuitry to achieve two kilowatts PEP input at 50 MHz . Drive power is less than 100 watts PEP. The prototype amplifier features a tuned cathode circuit for low intermodulation distortion, and uses a pi-network plate tank circuit. The new linear may be driven with modern six-meter SSB transceivers, and offers real operational economy at 50 MHz .

Swan chose EIMAC 3-400Z's because these compact, high-mu power triodes are ideal for grounded grid operation. They can provide a power gain as high as 20 in a cathode-driven circuit.

For more information on EIMAC's line of power tubes for advanced transmitters, write Amateur Services Department, or contact your nearest EIMAC distributor.

3-400Z's used in prototype 6-meter linear amplifier for 2 kW PEP at 50 MHz

3-400Z TYPICAL OPERATION
(Minimum IM Distortion Products at 1 kW PEP Input)
DC.DC Plate Voltage. 2500 V
Zero-Sig DC Plate Current*. $\quad 73 \mathrm{~mA}$
Single Tone DC Plate Current. 400 mA
Single Tone DC Grid Current. 142 mA
Two Yone DC Plate Current. 274 mA
Two Tone DC Grid Current $\quad 82 \mathrm{~mA}$
Peak Envelope Useful Output Power. 560 W
Resonant Load Impedance. 3450 ohms
IM Distortion Products. $-35 \mathrm{db**}$
*Approximate
**-35 db or more below one tone of a two tone test signal.

We have a new brochure entitled "Linear Amplifier and Single Sideband Service." Write for your copy.

> EIMAC
> Division of Varian

San Carlos, California 94070

Lith＇SS 84，W40KN 64，Wr411E 58，K4MLC 47．WB4DU 39．К4「C＇Y 29，WB4IBF 28 ．W4RHA 28，LTTSJ 28，WB4－ GT8 24，WA4PBG 24，W4TE 21，W4KX 20，W．A4BOQ 14 WB4FLT 14，K4ASU 11，WB4GV＇T 11，W4SHJ 7．W4NK ถ̆，W． 44 WQG 4．W4JUJ 3，W゙B4GYV 2，WN4HUE 2，W4－ WG 2．WA4YiRH 2，WB4DQF 1．（Mar．）WB4DQF 2， に4LMB 1 ．

WEST VIRGINIA－siCMI．Nunald B．Mortis，W8．JM－ FFC：W81RN．RMs：K8MIYU，K8TPF．P．AMs：К8CHW， W＇8IYD．WVN（c．w．）meets at 0000 （iNIT daily on 3570 ： IV＇N（phone）at 2330 GMIT daily on 3890 ．The following stations are artice at the W ．Va．Tech．club station．W．8－ AHZ：WA8C＇PY，WA3EQG，WN2EMH，W．A8FJ．A，W．A8－
 lCG．WN8ACG，WN8AHE．WA8RQB received W＇AC＇W＇ No．48．W＇ÅDED nuw is operating as ZLA．ADC on 28.690 ． li8CRM／Ld is on 21，050 and W8BT，ex－W8PQQ．operated as（ON4 on a tour of dutv．W8DC＇now is sece．of the West Virginia State Radio Council and W8UUW is build－ ing a 1－kw．anplitior and rectronic kevers．W．A8FIE sehedules his daughter．WA8FID，at IV＇U．The WV＇N C．W．Net reports 30 sessions， 171 stations and 93 mes－ akes and the Phone Net reports 30 sessions， 971 stations and 162 messages．It is with regret that 1 report the puss－ ing of W．A8OUM and W8FTli．W．A8NDY received an AKRL Public Service award for emergency commmmica－ tion at the Point Pleasant Lridse disaster．WA8Y＇SB was wrive in the Intercolleginte laille Datch communications． $118 C L \mathcal{N}$ is installing $29.6 \mathrm{f} . \mathrm{m}$ ．gear in an excollent locution for state－wide eoverage，Tratlie：（Apr．）W8SQO 213 K8MYU 130．W8．AHZ 95，W．18RQB 67，WA81＇SB 61，W8－ IIZA 59，WA8CKN 36，W．A甘TVCK 36．WA8NDY 33，W8－ CLT 21，K8BIT 20，W8DUV 19．W8JM 18，W．A8KNZ 7 W8IVEJ 7，WA甘YOF 7，W8IRN 6，WA8CINN 5，W8IYD K8．MQB 4，WA8TWR 4，W＇A8WLX 4，W．A8LFFZ 3，K8CHW 2．WA8FIE 2，K8CFT 1．W8DJP 1，K8KRW 1．W．A8NCD 1，WA8NKW 1，W．A8ONI 1，W．A8PES 1，h8QQS 1，h8－ （ǰC 1．W8UPH 1，W8WVM 1，K8ZDY 1．（Mar．）WA8－ POS 47.

ROCKY MOUNTAIN DIVISION

COLORADO－SCMI．Richard Hoppe，LOFDHT－Asst． SCM：Albert E．Hankinson．WAØNQL．SEC：WOSIN． PAM：WOCXW．Congratulations again go to the Colum－ bine det for leading all other sectional nets in both QNI and QTC．We are all sorry to hoar that the net manaver． IVOGDC，has been ill，however．We all wish him a peedy and complete reavery．W．AORLQ．WのLEK． W．AUCHT and a few others helped with keeping track of the 1918 De：Haviland plane Hight trom California to the Smithsoniun Institute in commemoration of the 50 th vear of $\$ ir Mail service．WØEXR，WYY＇JY and WONIT have all been helping missionariss in Bolivia，Ecuador and Columbia to keen in touch with their families atud iriends in the colorado area．Tratlic hounds，note that this month＇s top honors are groing to the XYLs．Jratlic KOZSQ 8．11，W．1ØMNL 133，WØKAU 115，W゚けU゙AT 106 WOLRN 99，WOSIN 47，KOGDCW 30．HOFCR 28．Wり） 1．EК 27，WØLRW 25，KøIGA 9，KøMINQ 8，WAOJTB 5.

NEW MEXICO＿SCAT，Kenueth D．Mills，W5WZK－ W．15AICX has moved to Los Alamos．K5CQH spuke about the TVI wommittee at the Albuquerque ARC meeting．Vour SCA also made a presentation at the mecting．K5ECC was chief chef at the Mesilla Valler SRC Rennfeed and Hamiest．Close to 150 attended．In extremely good time was had by all．Put this one on vour calendar for next vear．DL5MG，ex－IV5LWR，will have the two－letter call IF5FZ when he cimes back to the tates from Gemmany next vear．Walt wants a sefecdult： with a Now Mexican．Write or contact me for his ail－ Cress．WSQDF is Net Control for the Bonanza Niet on 145.44 at 2000 MDT Sun．All nets have hoved to Thay－ lidht saving Time．Traflic：W5MIYM 23 ．IV5DMG 11. W5．N UI 7，WA5JNC 6，W5BWV＇4．W．J5MIY 3，W5QNQ 1.

UTAH－SCM．Gerald F．Warner，W7VSS－SEC：W7－ WGF．KM：W7OCX Traffic Nets：

Daylight Saving Time has ayain affected all nets in the Utah section except the FARM Net．See the above listing for worrect wet merting times．W7OCX uttended the IRRL Board Meeting to represent the Rochy Mountain Division．Dircetor Smith，WWBWJ，was umable to attend． I new ORS and OBS appointee is W7EM．Amateur rudio again will provide connmmications tor the annual Friendship Cruise，held in eastern Ltah＇s rugged Colo－ rade Kiver country．Traffir man K7HLR is now living in Eitah．having moved to Clearfield from Idaho．I hone to sou rou at the Division Convention at Cherenne，Wyo．
in late Junc．Trulfic：W7EAI 167．K77HLR／7 85，W7OCX 76，К7SOT 30，WA7BME 22，W＇7VSS 9.

WYOMING－SC．M，Wayne M．Moore，W7CQL－SEC： K7NQX．RM：WA7CLF．PAMs：IV7TZK，K7SLAI． OBSs：K7SLM，K7NQX．Nets：Pony Express，Sun．at 0800 on 3920 ；1O dailv at 1830 on 3610 ：Jack：alope Mon． through Sat．at 1215 oit 7260 ；Wx Net， 0630 Mon．through sit．on 3920．K7W＇RR visited Wyoming in Apr．and is now located in Orem，Utah．The University at Laranime now has its uld call back and is on the air using W7UBli． K7RFL has moved to a new QTH in sheridan．W7SD． has ：new trunseiver and is on the air more than ever． Dun＇t forget the state Hamfest July 27－28 at Togwotec Londee，west ot Dubois．K7SLM came home firm vaca－ tion with a new transceiver．The Casper C＇lub has started a program of studv for the Advanced and Extra Classes of license．W．A7CLD and WA7CLE（the Gray twins）were recent stars in the Casper High School plas．Inother mew voice trom Casper－W． $\mathbf{- 1 7 H F J}$ ．Tratfic：א7NQX 560， $57-$ DEJ 83，W．A7DNZ 83．К7TTH 75，W7TZK 65，W7YWW WA7EDC 49，K7VW．A 22，K7YPT 14，W．A7BDI 10，II7－ NKR 10，に7QJW 6，J7W＇RS 7，WA7EGK 3，L7JED 3， K7HHW 1.

SOUTHEASTERN DIVISION

ALABAMA－sCMI．Edward L．Stone，N4WHW—SEC： W4FPI．PAM：WA4LEC．RAI：WA4EXA．Inother tine Birminghantest is now history，but muny will never for－ get the most happy uccasion．W4ABW，W 4 WJX ，K4TNS and K4WHW wroe presented with the BARC awards． W4USM was presented the award for the highest sec－ tion scores in both phone and c．w．in the sweepstakes． K4WHV received the V．H．F．SS award．W．A4WIO and W4CiRG received the DX Contest awards for phone and ध．w．The Huntsville AKC received the Field Dav trophv and the club trophy tor the top SS cluh score．The North Alabama DX Club was presented the Cluh DX award． W4．AUP was presented with the fnnual Gitizenship award by the Birmmuham Club）．W4YXS has joined the silent Keys，along with K 4 NSC ．All Alabama nets are uperating on CDST．so if you have trouble locating them try obe hour earlier than the winter months iqarr）． Traflic：（Apr．）W．A4A＇M 166，W．A4FYO 143，W．A4EFC 103．W4NVM 80，WAflXC 53，L4AOZ 52，WB4EKJ 39， W．A4VEK 32，K゙tWHW 20．h4ßsk 24，W4NKU 24．Kt－ IISM 23，WA4ROP 17．W．14AZC 15，WA4NWI 15，KiKJJD 13，WA4NTG 13，W4FPI 12．WA4SNU 11．WB4ENX 8 ， W＇4DGH 7，K4LIMG／4 3，W4YER 3．（Mar．）WB4BLI 5 ．

CANAL ZONE－SCM，Russell E．Oberholtzer，KZ5－ （H）K－KZ5s were artive in Field Day．KZ5FN is on the air with a new FTDD 400 trinsceiver．Don＇t forget to act your self－addressed stumped envelopes on monetary de－ powit in to the new（ふLL Manager．Cloria．KZ5GS．Box 107．Ballooa，Canal Zone．Tratlic：KZ5．1．1 231，LZ5F U 135. にそうOA 134，にZ5WH 124，よZ 13.

EASTERN FLORIDA—SCM，Jesse IT．Morris，W4－ MVB－Asst．ACM：William G．Blasingame，Jr．，W．T4－
 ILE．RN RTTY：W4RWM．PAM 75M：W4OGX．PAM GM：WASDR．V＇II．F．FMM：W．ItHMC．With the com－ ing of spring trathe repuits have dropped uff．W4BEC reports that the Orlando Hamiest was a preat success in －bite of the set－barks that seemed to mop up．It was nice －eroing en many of the g：my ：getim．W．Aftis has moved to Lake Wales and will soon be on 2 through 80 metors． He is building a homebrew 2－meter transinitter．W4ILF reported that 25 people attencled the QF：N Breakfast．at the Orlando Hammest．Nso congratuiations are iu order tor his XYL，Ingie，why is now WN4JJH．Look for her on the Novice hands．WhlLE has completed the ser． ond edition of the Florida Tratlic Hancllers linuting （Guide．It is truly a work of cur and ：t＂must＂for any tratfic man in Florjda．C＇opies mav be obtained from liloricla Skip．WB4BN1R reports that there are now 6 amateras in Hendry Cominty and 5 of these are AREC members．The Beaches Amateur Radio Society is eon－ tinuing its classis for General．Advanced and Extra Class licenses．Neveral of those who appeared hefore the examiner recently have heen successful in ohtaining a higher class license．Florida experienced whe kood open－ inks on 2 meters recently hetwern dacksonville and Mi－ ami．Several of the f．m．stations had gond（2NO）s．K4 Y＇SN reports that a number of f．m．2－meter rigs are heing installed in cars in the Miams area．The south Floricha FM Isen．now has its repoater working． 146.340 input． and 146.760 out．Traflic：W． 44 SCK 943 ．W4FFTH 404 ． W． 4 NEV 342，W WIIIS 324，WA4FGI $24 \times$ ，W 4 FPC $1: 88$ ， WP41：LW 145，WA4HED 123，WB4FPD 121．W4IIE 105 ，
 WRADDO／4 80．W：14TWD 78．W4SMK 77．WA4F， 1 fin．

AMATEUR ELECTRONIC SUPPLY RECONDITIONED HAM EQUIPMENT

人 10 Day Free Trial [Lose only Shipping Charges) 30 Day Guarantee Full Credit Within 6 Months on Higher Priced New Equipment \rightarrow Pay as Little as $\$ 5.00$ Down - take up to 3 Years to Pay the Balance Krder Direct from this Ad!

AMECO	
CN-50 6 m conv.	\$ 29
PV-220 Preamp	9
PS-1 AC supply	8
TX-86 Xmtr	49
TX-62 VHF Xmtr	109
521 VFO	39
AZTEC	
B \& W	
$5100 \times \mathrm{mts}$	\$ 89
SISB SSB Adaptor 109	
CENTRAL ELECT.	
QT-1 Anti-trip	56
600 L Linear	199
MM-2 Analyzer	59
RM adaptor	9
CLEGG/	
SQUIRES-SANDERS	
22'er 2m Xevr	\$169
99 er 6m Xcvr	69
Thor 6 (RF only)	89
417 AC sup./mod.	75
418 DC sup./mod.	75
Zeus VHF Xmtr	375
Interceptor B Rec.	. 349
Allbander HF tuner	r 75
Venus Xmtr	225
6148 mm Conv.	75
COLLINS	
3108-1 Exciter	\$ 49
75A-2 Receiver	219
75A-3 Receiver	269
75A-4 (\#3190)	425
Speaker (AI, A2, A3	
75S-3C Receiver	499
51 J.4 Receiver	995
32 V -1 Xmtr	99
32V-3 Xmetr	175
30L-1 Linear	375
KWM-2 Xcvr	750
KWM-2A Xcvr	895
3128-5 Console	249

Large (S) SWAN Stock = Fast Delivery

RAY SEZ: "Why so much new SWAN in stock?" Simple! SWAN makes GREAT transceivers and AMATEUR ELECTRONIC SUPPLY is a GOOD place to do business with. The demand created by the SWAN and AES Combination requires a huge inventory of Factory-Fresh equipment to insure prompt delivery.

GOOD REASONS for buying your new SWAN from AES

TOP TRADES for your good clean equipment

STAY-ON-THE-AIR PLAN - Enables you to keep your trade-ins until your new gear arrives - Lose no operating time!

36 MONTH TIME-PAYMENT PLAN offers free 105-day pay-off option
PERSONAL SERVICE from fellow hams who understand your problems

SAME DAY SERVICE on most Orders and Inquiries from our Centrally Located Modern Facilities
Top Notch Service Department

LOQK at your low Monthly Payment AFTER JUST ${ }^{5} 5^{\circ 9}$ DOWN

SWAN 350C 80 -10m Transceiver
(14.98) \$420.00

SWAN 500C 80-10m - Deluxe.
(18.59) 520.00

SWAN 250 6m Transceiver.......... (11.55) 325.00
Mark II 80-10m Linear - w/'tubes . . . (14.08) 395.00
Mark 6B 6m Linear - w/tubes...... (14.08) 395.00
Power Supply for Mark II \& 6B (8.30) 235.00
TV-2 2m Transverter - specify if ... (9.38) 265.00
$117 \times C$ AC Supply w/spkr. in cabinet. (3.61) 105.00
14-117 I2v DC Supply w/cable...... (4.51) 130.00
405X MARS Oscillator - less crystals.... .. 45.00
406B Small Phone Band VFO................. 75.00
410C Full-Coverage VFO..................... 115.00
2106 Meter VFO................................ 120.00
VX-II Plug-in Vox. 35.00
22 Dual VFO Adaptor 32.00
100ke Calibrator kit for 350C 19.50
500kc Calibrator kit for 250 19.50
RC-2 Mobile Remote Control kit 40.00
45 Swantenna - manual. 65.00
55 Swantenna - remote control 95.00
Custom Contour Bumper Mount 24.95
Kwik-on Antenna Connector 3.25
14C 12v DC Module/cable................... 65.00
14CP As above, but Positive Ground....... 75.00
117X Basic II7v AC supply ONLY........ 65.00
230X Basic 230v AC supply ONLY......... 75.00
117 or 230 vac Line Cord (specify). 8.00 8' Cable w/plug (Supply to Transceiver) 6.00 230XC 230v AC Supply, speaker \& cabinet.. 115.00 14-230 12v DC supply wi230v Basic........ 140.00

AMATEUR ELECTRONIC SUPPLY
4828 W. Fond du Lac Ave.; Milwaukee, Wis. 53216 Phone (414) 442-4200
STORE HOURS: Mon \& Fri -9 am to 9 pm ; Tues, Wed \& Thurs - 9 am to 5:30 pm; Sat - 9 am to 3 pm

LICENSE ${ }^{50}$ MANUAL

 60 ${ }^{\text {TH }}$ EDITION！

Complete study guides for all Amateur Examinations：

NOVICE，TECHNICIAN， GENERAL，ADVANCED
 and the AMATEUR EXTRA．

Latest changes in FCC Rules and Regulations

Whether you are a newcomer try－ ing to obtain your first license， or an old－timer wanting to upgrade your license，you will find complete information in the 60th Edition of the Radio Amateur＇s License Manual．

still only $50 \not \subset$
POSTPAID

THE AMERICAN RADIO

 relay league，inc． NEWINGTON，CONN． 0611143．K4IEX 42．WB4GUH 41，WAtCIQ 38，K4COO 3x， W4EHW 37．WB4USP 34，W4IAD 28．W4OGN 23．W．44－ PWF 25，K4L．EC 22，K4BLM 21，WA4EYU 21，K4LPS 18 W4BKC 17，W4KHY 14，W4TJAT 14．W4PBE 13．K4SJH 12．W4SOMI 12．W4YPD 11，WA4TJS 9，W4VPQ 7，K4－ EBE 5．WB4BMR 2 ．

GEORGLA－SCM，Howard T．S＇rhonher，W4RZL－ sEC：W4DDY．Asst．SEC：WA4WQU．KMI：W4CZN． PAMs：WVAWQT，N4HQL．W4HTW narticipated in the Florida Q－a Party．K4TQU ix on of with a Ci－50．K4MQI
 W． 14 JCI are Hying to hamfests．W4BGK licked TVI on 1 B ．

Net	Freq．	Cays	Sess．	ONI	OTC
（iSN	3595	$0000 \& 0300 \mathrm{Dy}$	60		165
（FTN	3718	200 Dy.	30	181	30
GSSN	3975	0100 Dy.	Notreported		

W＇B4EMF，in addition to activities as not manager oi GTN，is organizing a Ga．Teenage Net for Mon．，Wed． and F＇rl．on 3925 kc ．W．A4LLI says no station was active in columbus to handle his report．Shame on me！K4TXI has a seven－element HB beam on 2．W＇4PGU＇s golf score is higher than his traflie total．WB4FMIJ renots the b－ meter band is wh the unswing with noenings to Tex．． Okin．，Miss．．Colo．，S．Dak．．Ohio，Fla．，Cuba and South Imerica．WB4FNS has a swan 250．K4HQI also reports is－metar exoellent with openings to 4，5，6，7．8．9，6，as well as L［i3，CO2 and CO5．W4PGU once more holds ant Ad－ ranced Class tirket．WhaDY is now sis．b．with a swan． Craflic：（Apr．）W4FOE 222．W4CZN 172．WA4RAV 102. K4．JFY 59，W4FDN 54，W4PIM 43．WB4ENIF 23．K＇4－ TKK 23．W．A4LLI 21，W4ARH 16，K4BAI 13，WN4IES 13，W＇4PGU 3．（Mar．）W4PGU 2.

WESTERN FLORIDA－SCMI．Frank M．Butler．Jr．， W4RKH－SEC：W4IKB．PAM h．f．：W7BNR／4．V．H．F．： W4UUF．RMI ：W4BV＇E．Section nets：

Net	F＇req．	Time	Days	Sess．	（）NI	QTC
WFPN	； 9557 kc ．	22007	Daily	30	705	89
QFN	3651 kc ．	2030／0200Z		bi		

Pensacola：W4AXP was in Baptist Hospital for several weeks，but is doing better now．WA5KAK／4 was ap－ pointed ORS．W．A4EPH reports good progress toward Extra Class and first Class Phonn．LitDO＇T tonk part． in the rerent FMIT．W4FRJ has a new HX－10n．W4UtF worked Havana．Cuba．on 2 meters．plus several states． during the Apr．band openings．Fort Walton：WB4CFQ and W4MMX passed the Advanced Class nxam．The re－ mote receiver tor the WA4EVU repeater was moved to the Destin water tank，：hout 180 ft ．high．W4UXW brought back several mobile rigs from the Orlando Ham－ test to honst 2－meter f．m．activity in the ares．WB4EQU and W＇B4CFPQ have theirs koing． $14 \mathrm{~A}^{2} \mathrm{~L}$ went high power with a siwan 500．trating his SB－34 to WA4IIH．Chipley： V゙4／KR is up to 14 rountries on 20 －meter RTTY．Mari－ rnna：We were sudilened to learn of the passing of W．A4－ 1）ED．He was nn matiring worker for the AKPSC and $A R R L$ ，and will be surely missed on WFPN．Tullahassee： WHAEOC got his all－s，s，b．WAS and WAC swards． W4GAN，the SilL of W4，JGD，is aetive on the Fla．Mid－ dav Trattic Net．Cross City：K1FVW／4 is transferring to Mississimpi，hut W7NQY／4 is taking his place．Trattie： WH4DHZ 128．W7BN゙R／4 110，W．A5KAKi／466，WB4GY゙天 40，W4．JGD 28, W4LKB 10 ．

SOUTHWESTERN DIVISION

ARIZONA—BC？M．Flovd C．Colvar，W7FKKーPAAI： W7CAF．KMI：K7NHL．The ARRL Southwestern Con－ yention is being held in Phoenix Aug．30， 31 and sept． 1. At the concention you will hear lectures by many authors of terhnical articles，view the latest amateur equipment and meet in person the manv amateurs you have con－ tarted．Please set aside the above dutes and plan to he in Phoenix for this wruderful event．From past experience． assurance is guaranted that it wall be an peout that you will tong remember．W7QHC and W7FEK have re－ timmed from lisle．III．．where they were students in DATA courses at the Bell System＇s Center for Terehnical Filucation．We wish to thank OBS B7MITZ for the fine way he transmits the Bulletins on hoth n．s．h．and c．r． We have recelved many fine comments．Keep up the gond work．Lou．KiNNHL reports the TWN now meets at 02002 and 04307 daily on 3570 and 7070 ke ．Congratula－ tions to WA7IFD on passing the Advanced Class pxam． Tratic： 157 NHL 214，W．A7IFD 104，F7MTZ 86，W7FKK 16.

LOS ANGELES－SCM，Honald Etherodge，KGUMV GEC：h6QPH．Asst．SEC：Kbato．The following stn－ tions were eredited with earning BPL for the month of Apr．：WBGGGL，W6ALF．WrB6BBO．W．16KZI and KB－ AsK．WB6OLD reports a new quad addition to his

2 MENER SINGL= SIDEEAND

144-148 mc 240 WATTS P.E.P. INPUT

THE NEW \leftrightarrow SWAN TV-2 TRANSVERTER

A receiving and transmitting converter for the 2 meter band, designed to operate with Swan Transceivers, models 250, 350, 350-C, 400, 500, and 500C.

SPECIFICATIONS:

14 mc intermediate frequency is standard. Thus, when operating the Transceiver from 14 to 14.5 mc , the Transverter functions from 144 to 144.5 mc . Additional crystals may be purchased and switched in for other portions of the 2 meter band, such as 144.5-145, and 145 to 145.5 mc . Three crystal positions are available.
Alternately, the TV- 2 Transverter may be ordered for an I.F. in the 21,28 or 50 mc bands, if desired. Of course, for use with a Swan 250 six meter transceiver, the Transverter must be ordered for 50 mc . Otherwise, the standard 14 mc I.F. is recommended since bandspread and frequency readout will then be optimum. The Transverter can easily be adjusted in the field for a different I.F. range, if required.
A 5894 B Power Amplifier provides a PEP input rating of 240 watts with voice modulation. CW input rating is 180 watts. and AM input is 75 watts.

Receiver noise figure is better than 3 db , provided by a pair of 6CW4 nuvistors in cascode.
Only a Swan Transceiver and Swan AC power supply, Model 117-XC, are required. The power supply plugs into the Transverter, and the Transverter in turn plugs into the Transceiver. Internal connections automatically reduce the power input to the Transceiver to the required level.

Tube complement: 5894B Pwr. Amp., 5763 Driver, 12BY7 Transmit Mixer, $2 N 706$ crystal osc., $6 E W 6$ Injection Amp., 6 CW4 1st rec. amp., 6 CW4 2nd rec. amp. in cascode, 6HA5 rec. mixer.

The Swan TV- 2 may also be operated with other transceivers when proper interconnections and voltages are provided. A separate Swan 117-XC power supply will most likely be required.
Dimensions: 13 in . wide, $51 / 2 \mathrm{in}$. high, by 11 in . deep. Weight: 13 lbs .
\$265

MODEL 250 $\$ 325$
MODEL 350C 420
MODEL 500C 520 ELECTRONICS

Oceanside, California A SUBSIDIARY OF CUBIC CORP.

hhoon and mpasirre P．Dower to 1，000 walls

■ Nine models（120，250，500，and 1000 w； 2 to 1000 MHz

－Multiple power ranges

－Wide 500－to－1 dynamic range
－Large meter with expanded scale
＂Twist－Off＂connectors for fast field changes
Four power ranges，selectable by a front－panel switch，speed and simplify r－f power measure－ ments on 50 －ohm systems at levels up to 1000 watts．Nine models in the Sierra 401A Series cover frequencies from 2 to 1000 MHz ．

Wide dynamic range and expanded meter scale simplifies measurement of low－level signals．You can read to 2 watts on the 1000 －watt scale，to 1 watt on the 500 ，to 0.5 watt on the 250 ．With one wattmeter，you could measure ouput of both low－power portable and base transmitters．A sim－ ple field adjustment calibrates the 401A with factory precision．

Sealed cast－aluminum housings（no bellows， no air vents）check coolant leakage．Non－carbon－ izing silicone outlasts conventional oil dielectric under repeated heat cycling．No external power or water connections needed．

Prices：$\$ 195$（ 120 w），$\$ 275$（250 w），\＄325 （ 500 w ），and $\$ 450$（ 1000 w ），with Type N or UHF connectors．All models accept Sierra＂Twist－Off＂ connectors，available in eight types，for fast， convenient field changes．

FREE 1968 Sierra＂Power Generation and Measurement Equipment＂catalog on request． Mail coupon today！

PHILCD

（8）
PHILCO－FORD COAPORATION Sierra Electronic Operation Menlo Park，California • 94025

Sierra， 3885 Bohannon Dr．，Menlo Park，Calif． 94025 $\square 1$ Please rush complete data on Model 401A Series R．F Termination Wattmeters，including prices and order－ ing information．
$\square]$ Please send FREE 1968 ＂Power Generation and Measurement Equipment＂catalog．

Name

Company

Address
City
＿＿＿Statan
State
Zip
equipment cupabitiow．KGEA reports home／MA aboard the Hawaiinn Rrmeher at this writing．WB6Y\％D has a ＂tolephone relay．＂tribander and an RCC certificate mided tr his station for the month．WB6SXY reports his wife is awating her amatur call after passing the test．Wo－ GEN reports working on FET converters for the 50－and 144－Mc．hands．K6QPH added in XIL to his station on Apr．1．Congratulations，Al！WB6IPN is now the nroud holder of in Fixtra Class license．N゙ゃw ritticers ot the W6LS Club are WA6RQQ，pres． WB6OSC vice－ pres．：WN6Z．1L secv．：WB6M12I，trean．；WB6QZF，ac－ tivities．WB6YFT，along with K6AEH and WB6OEZ． recently provided communications with a group of mobile stations for the＂Pre－Olympic Bicvole Races＂at（iritith Park．W6F（iQ is now active on 144－MIc．KTTI．Newly－ Plected otficers of the Marina ARC include W． 60 WH ． prexy；K6ARB，vice－prexy；WA6RIO，secy．－treas．： W．\＆6EYJ，WA6KZF，WB6TNG．WB6WAA，WB6WHT． directors．More Los Angeles area amateurs who now hold wo－letter calls are cold call／new call）：W6PYN／Ki6AC， W6FHI／K6BA，W6ECM／K6CS，W6LED／K6CW，W゚－ UXW／K6DJ，W6QWG／W6FP，W6ZPE／W6FQ，W＇6VEB／ W6FIt W6CAJ／W6IG．W6PIZ／W6IT．LEBSXR／W6NR， W1BSY／W6PM，W6MUB／W6QC and W6ZXL／W6ZD．I recent member of the K6BPC erew is WA6AWL．Other members of the So．Cal．V．H．F．HC recently smpported the Loyalty Day Parade with communications trom mo－ bile members．W6MN is now a nember of the SFCD crew in San Fernando．W6TXJ is nuw WAfCCXY ulso． us ：sevornd station license．Traffic：WB6GGL 878．W6－ VLF 783，WB6BBO 720，W6GYH 437．W6OAE 35．5， WA6KZI 307．K6．ASK 174，K6CDW 161，K6LJ 158，W6－ OEO 117，WB6YHD 70，WB6SCK 57，W6DQX 53，W＇ KHG 45，WB6OLD 34，WB6KGK 29，W6FD 25 ，K KKKA 24，I56CL 23，WB6TMC 22，W6AM 16，W6MN 15，K6E． 10．WB6VZD 10，K6TMMV 9，WB6SXY 8，W6TXJ 7. W6TN 6，W6HUJ 5．WB6．AEL 4．W6DGH 4，WB6OUD 3．WB6SLG 2，W＇6RCT 1 ．

ORANGE－SCM，Roy R．Maxson，W6DEY－Ki61L now is settled in Mesa，Ariz．WOPQA advises there is not much time to QNI while working nights．WA6ROF，SEC． in the Apr．OD Party made 43,470 points（ 158 QSOs and St sections）．WBBUK／OO，in Hemet，still is working on antenna poles and waiting for parts for transmatch． W6FB and his XYL attended the QCWA Dinner in L．A． and had as visitors W．A6YOR and W6HCD．WB6TLF， OKS，is studying for the Advanced Class license．WB6－ YPX，Autonetics ARC，has remodelled operating posi－ tions with provision tor MARS，General，v．h．f．and Novice．New equipment includes TX－4B，TR4－B，KWM－ 2． 32 Sis．z each henry 2－h．per s．H．King，vice－ples． W6QAT has a new QTH．Orange County R．ACES has a new communications van with emergency power plant trailer and has a B－meter， 24 －hour f．m．repeater in op－ eration．The AREC，with WB6QYK as NCS．and WAB Y＇WN，W6QAT，K2ARJ／6．WA6TSU，W6DEY；W6WRJ and others furnished communications for the Clf tennis matches，a vearly event．K6JTT，K6JNN and other local amateurs assisted in the Newport，Calif．，to Ensenada， Mexico．Boat Races．Traffic：（Apr．）WB6TYZ 275．WA6 ROF 228．WB6RVM 68，K6IME 46，W8ELW／6 19，W6WRJ 15，WB6TIF 3．（Mar．）W＇B6ULE 6．

SAN DIEGO＿SCM，James E．Emerson，Jr．．WB6－ GMM－WB6OLR，secy．－treas．of the Sian Diego D．C＇lut，
 pres．The May meeting was held at the home of W6OME． where 5R8AS presented a talk and slides on the Mala－ gasy Republic．One of our long－time OOs recently had his call changed from K6ENX to W6PT．W6SE is now on the air with a 2 －watt c．w．rik，completely sulid statc．The receiver uses a 9 －voit battory while the transmitter has a 12 －volt supply．The May meeting of the V．H．F．©lub featured 166 KX as guest speaker．while W＇6RKZ spoke at the Palomar Radio Club．The ARC of El Cajon hoids an informal c．w．net nightly at 2100 local on 21.180 and plans to hold a picnic July 14．IVB6KS．A has taken war the duties of Radio Otticer for the si．D．County C．D．He，theretore，had to resign as net manager of the s．1）．（Co．AKPSC．This position will be assumed by K6EDA．WA6KHN reports 165 AREC members in our section，with 10 emergency nets active．W6VNQ reports that W7DZX visited him in Apr．and helped run his TCC skeds．W6QJW fought the mechanical battle of in－ stalling his mobile rig in his new car and won．K7RWI＇6 now has a B－Land call to use on SCN．W．A6I）EI．Locals heard in the Apr．CD Party were K6CAG．WA6KHN， WBYRF and WB6GMM．This was K6CAG＇s last parts for a while．as he goes to sea in July．Effective July 1 WB6LKW will hecome the treas．for the North shorex ARC．as W6SK joins the ranks of the retired．Traffic： K6BPI 9248，WBV＇N゙Q 5117．W6EOT 348．WGCAG 215 W6LRU 185，WB6UMT 177，WA6QAY 119，W6YDK 60 ， W6QJW 37．H6HAY 14，W6YKF 11，K6YRF 10．K7RWI／ W．A6DEI 7，WB6GMMI 6．W．A6KHN 6.

GOTHAM'S AMAZING ANTENNA BREAKTHRU!!

How did Gotham drastically cut antenna prices? Mass purchases, mass production, product specialization, and 15 years of antenna manufacturing experience. The result: The kind of antennas you want, at the right price! In QST since '53.
 Worked 42 countries in two weeks with my Gotham Quad and only 75 watts . . . W3 $\rightarrow-$

CUBICAL QUAD ANTENNAS these two element beams have a full wavelength driven element and a reflector; the gain is equal to that of a three element beam and the directivity appears to us to be excep-
 tional! ALL METAL (except the insulators) - absolutely no bamboo. Complete with boom, aluminum alloy spreaders; sturdy, universal-type beam mount; uses single 52 ohm coaxial feed; no stubs or matching devices needed; full instruction for the simple one-man assembly and installation are included; this is a foolproof beam that always works with exceptional results. The cubical quad is the antenna used by the DX champs, and it will do a wonderful job for you!

10/15/20 CUBICAL QUAD SPECIFICATIONS

Elements: A full wavelength driven element and reflector for each band.
Frequencies: 14-14.4 Mc.; 21-21.45 Mi.., 28-29.7 Mc.
Dimensions: About 16' square.
Power Rating: 5 KW.
Operation Mode: All.
SWR: 1.05:1 at resonance.
Boom: $10^{\prime} \times 11 / 4^{\prime \prime}$ OD, 18 gauge steel, double plated, gold color.
Beam Mount: Square aluminum alloy plate, with four steel U-bolt assemblies. Will support 100 lbs.; universal polarization.
Radiating elements: Steel wire, tempered and plated, .064" diameter.
X Frameworks: Two 12' $\times 1^{\prime \prime \prime}$ OD aluminum 'hi-strength' alloy tubing, with telescoping $7 / 8^{\prime \prime}$ OD tubing and dowel insulator. Plated hose clamps on telescoping sections.
Radiator Terminals: Cinch-Jones twoterminal fittings.
Feedline: (not furnished) Single 52 ohm coaxial cable.

Now check these startling pricesnote that they are much louer than even the bamboo-type:
10-15-20 CUBICAL QUAD $\$ 35.00$
10-15 CUBICAL QUAD
15-20 CUBICAL OUAD 30.00

TVENT Y ME TER GUBICAL OUAD $\mathbf{2 5 . 0 0}$ FIFTEEN METER GUBICAL QUAD. 24.00
TEN METER CUBICAL OUAD..... 23.00 (all use single coax feedline)

BEAMS The first morning I put up my 3 element Gotham beam (20 ft) I worked YO4CT, ONSLW, SP9ADQ, and 4U1ITU. THAT ANTENNA WORISSIWN4DYN
 absolutely complete including a boom and all hardware; uses a single 52 or 72 ohm coaxial feedline; the SWR is 1:1; easily handles $5 \mathrm{KW} ; 7 \mathrm{~g}^{\prime \prime}$ and $\mathrm{I}^{\prime \prime}$ aluminum alloy tubing is employed for maximum strength and low wind loading; all beams are adjustable to any frequency in the band.

2 El 20	\$16	4 El 10	\$18
3 E1 20	22*	7 E1 10	32*
4 El 20	32*	4 E1 6	
2 El 15		8 E1 6	28*
3 El 15		12 El 2.	25*
4 E1 15			
5 E1 15			

ALL-BAND VERTICALS

> "All band vertical!"' asked one skeptic. "Twenty meters is murder these days. Let's see you make a contact on twenty meter phone with low power!" So K4KXR switched to twenty, using a V80 antenna and 35 watts AM. Here is a small portion of the stations he worked: VE3FAZ, T12FGS, W5KYJ, W1WOZ, W2ODH, WA3DJT, WB2, FCB, W2YHII, VE3FOB, WA8CZE, K1SYB, K2RDJ, K1MVV, K8HGY, K3UTL, W8QJC, WA2LVE, YS1MAM, WA8ATS, K2PGS, W2QJP, W4JWJ, K2PSK, WA8CGA, WB2KWY, W2IWJ, VE3KT. Moral: It's the antenna that counts!
> FLASH! Switched to 15 c.w. and worked KZ5IKN, KZ50WN, HC1I,C, PY5ASN, FG7XT, XE2I, KP4IQL, SM5BGK, G2AOB, YV5CLK, OZ4H, and over a thousand other stations!

> V40 vertical for $40,20,15$, 10, 6 meters $\$ 14.95$
> V80 vertical for $80,75,40$,
> 20, 15, 10, 6 meters $\$ 16.95$
> V160 vertical for $160,80,75$,
> $40,20,15,10,6$ meters . . $\$ 18.95$

How to order: Send check or money order. We ship immediately upon receipt of order by railway express, shipping charges collect.

MONOBEAMS

FOR
MORE
DX PUNCH

Cush Craft Monobeams combine superior elecirical and mechanical features with the best quality matarials ond workmanship.

| A28.3 | 10 mefer, 3 element, boom 10^{\prime} |
| :--- | :--- | :--- |
| A288.4 | 10 meter, 4 element, boom 18^{\prime} |
| A21.3 | 15 meter, 3 clement, boom 12^{\prime} |
| A21.4 | 15 mefer, 4 element, boom 22^{\prime} |
| A14.2 | 20 meter, 2 element, boom 10^{\prime} |
| A14.3 | 20 meter, 3 clement, boom 20^{\prime} |

A28-4 10 meter, 4 element, boom 18
4.95

A21-4 is mefer, 4 clement, boom 22
Ala-3 20 meter, 3 element, boom 20°
THE BIC WHEEL
HORIZONTALLY POLARIZED
360° GAIN ANTENNA
2 Merer \#ABW. 144
511.95

4 Bay Stacking Kit
3.95

VHF-UHF COLINEAR ARRAYS Lightweight High Gain Antenna Systems Cl. $116{ }^{2}$ meter, 16 olement
$\$ 17.50$ CL-216 11/4 meter, 16 clement 14.50 CL.416 3/4 meter, 16 clement 11.50

32864 Element Stacking Kits Available
MOBILE/FIXED SQUALO
Squalo is a full half wave, horizontally polarized, omni-directional antenna.
ASQ. 2 mefer, $10^{\prime \prime}$ square $\$ 9.95$ ASQ. 222 moter stacked 16.95 ASQ. 6.6 meter, $30^{\prime \prime}$ square 13.95

VHF/UHF YAGIS

Combine all-out
performance with optimum size for ease of assembly and mounting at your site. They can be mounted verfically, horizontally, in pairs, or quads.

A144.11	2	meter	11 element	$\$ 14.95$
A144.7	2	mefer	7 element	11.95
A220.11	$11 / 4$	meter	11 element	12.95
A430.11	$2 / 4$	meter	11 element	10.95
A144.20T	2	meter	Multi polarized	29.50
A 50.3	6	meter	3 element	15.95
A 50.5	6	meter	5 element	21.50
A 50.6	6	meter	6 element	34.95
A 50.10	6	meter	10 element	54.95
A 26.9	68.2	meter	10 element	29.95

HAM STRK 6-10-15-20 Moter \begin{tabular}{l}
Adiustable Dipole

Universal Mount
Ideal For Small Lots,
Apartments, Vacationing
FREE LITERATURE

\end{tabular}

SEE YOUR DISTRISUTOR OR WRITE FOR FREE CATALOG
Cush
621 HAYWARDSTREET
MANCHESTER, N.H. 03103

SANTA BARBARA-cic: Cecil D. Hinson, WAB-OKN-SEC: K6GY. WA6CPM turned in a trequency measuring error of onlv 2.8 parts per million during the recent contest. WB6UAX was rumer up during the same test. W.16TCA is active in Oxnard with n 75A-4 and 100 ${ }^{\circ}$ ot 10, 15 and 20 meters. Also artive, and a newcomer to Oxnard, is WA5RBU/6. W6ORW has revamped his station and built new RTTY gear. K6TOE reports on activity within the Estern ARC as follows: W6LB and WA6I)DQ are among the retired. W6BNF has $n \mathrm{kw}$. on 7 Mc . The Estero Club raised just, under $\$ 200$ in an old copper collertion. The ardiress of the Estern ARC is P.O. Rox 272, Morro Bay. K6CS, of Thousand Oaks, enlled to report a new cluth forming in Newbury Park. Those intere ster should contart W6IDU. The Simi Valley ARC meets the 2nd and 4th Wed. of each month at the Security first Bank. Kfici is el presadente The mailing address is P.O. Box 266. Simi. W.A6THG, in Santa Rarbara, passed the Advanced Class exam. Amone the most active in Tompne/Santa Maria is IFB6BWZ, the EC for that area. Traffic: W6ORW 10, WB6DPV 9, W6UED 6.

WEST GULF DIVISION

NORTHERN TEXAS—SCM, L. L. Harbin, W5BNG PAnst. SCM: E. C. Ponl, W5NFO, SEC: W5PYI. PAM: W5BOO. RM: W5LR. Thanks for the efforts of K5BIQ in securing the service of Mr. Glenn Scott. nublic relations man for the sinuthwestern Bell Tel. Co., in . verv fine nrogram presenting the picture telephone ind Laser. I was not able to attend hut I have seren Gienn's demoustration on other nccasions and I know the program was enjoved by all who attended. This program was presented at the KC ARC in Apr. New offiesrs ot the KC Club ate W.A5.JIJ, pres.: K5BIQ, 1st viee-pres.: WA5QOJ, 2nd viee-pres.; WN5TWU. secv. treas. W. 5 NSJ is in charge of the Field Dav operations and has appointed the necessary personnel to handle the nperation. W5EUY, the University of Texas ARC, is very active in the ICCN in passing news of the various colloge rampuses and is interested in getting other college cluhs to take part in this network. Storins that apprar in the campus newspapers are relayed to nther clubs that may be interested in the local hapnenings. This is an RTTY network and interested cluhs should and aro invited to check in on it. As many of yon have heard. W5QKF has resigned as West Gulf Division Director and has heen elected vice-pres. of the Leagne. I. regret that he has resigned as director hut want to rongratulate him on heing electer as a vice-pres. As all know. Doc has dinne n wonderiul joh as birector and our good wishes are extended to him in his new ioh. Traffic: WA5.1QG 381. WA5QQR 164. W.A5TYH A7. W5QG7 0. W5LR 7, K7NCG/5 7. W5BNG 5, W5MSG 2.

OKLAHOMA-SCM. Cecil C. Cash, WSPML_SEC: WA5AOB. RM: W5QMJ. PAMS: W5MFA. K5TEY, W.A5.JGU, K5ZC.T. New offieres of the Edmond Club are W.A5T.IS, pres.: WA5NRJ, vice-pres.; K̄5CBA, sery.; WA5NUM, treas. K5QAK, the daughter of nilr Division Director. WSTYQ, has moved to Dallas. W8V'D. -5 has finished at Okla. State U . and is moving to W6-Land. Congratulations in the Northeast Oklahoma Radio Amateur Club, now affiliaterl with ARRL. W.A5FVJ, Garfield County EC , held a 2-meter transmitter hunt Apr. 2 x , K5C.AY came in first, even thead of WA5OUD, with W5QMI holding a tem-element beam out the windor. There is more talk ahout the Enid 2-meter rolay. 7Q7EC is hack with O.S.U. after a 5 -year field trip in Africa with the O.S.U. extension service. Congratulations to exW'5TYU, now W5GC; also E 5 DZY and K5INB for upgrading to Extra Class and E5SKE to Advanced. Net renorts:

Net	Sexs.	ONI	QTr	Freq.	Prime (\%)
OPEN	4	194	-	38.50 kc .	1300
$\bigcirc \mathrm{OON}$	22	$25!$	104	: 2920 ke .	2200
STTN	2R	$\div 7$	147	: $6 \times 5 \mathrm{n} \mathrm{kr}$.	2230
OLZ	22	68	112	: 6882.5 kc .	0000
SSZ	18	52	40	3 6 8.5 skc .	0245
O.C. 6 Mftr .	6	49	'		

All nets moved up our hour with CDST.
Traffic: K5TEY 2.518. К.5YOZ 855. M5DLP 593. TV5PML 556, W8V'D.A/5 178. W5QMJ 92, WA5QIQ 76, W.A5JGT 68,
 W5MFX 34. WASIMO 31, K5SWL 21, WSFKL 19. WA5D7P 11, K5CAY 8, K5CBA 7, K5WPP 7, W5UYQ 3.

SOUTHERN TEXAS—SCM, G. D. Jerty Sears, IF5-AIR-NEC: K゙5QQG. PAM: W5KLV. RM: W5EZY. New aprointees: WASLEZ as EC Ipton County, WASKHE us EC Nacogdoches County, W.15GZX and K5HGB as GRSs and OPSs. Endorsements: WA5MXY. W5TFW, W5NGW. K5HMF. W.A5KIV and W.A5KHE. EC K5RMF is ready for the hurricane season with emergency power

Marine Communications at its very best!

For distances under 50 miles, VHF-FM is good! That's been adequately demonstrated time and again in public safety and commercial land mobile systems. For marine applications, VHF-FM has the positive advantages of high usable channel capacity and clear communications. What makes the RF-401 so special is the simple fact that it has been designed from the ground-up to be the finest marine VHF-FM that present state-of-the-art can provide. This no-compromise approach means that 401 owners get all of the performance they pay for.

If history repeats itself, others may attempt to copy this new RF Communications offering. But no one can duplicate the integrity of design and support behind every 401.

We know it's good. And previous users of our product know it's good. Send for our new 12-page brochure which gives all the details. Then you too will know!

Commercial Grade Communications is our business... our only business.

ABSOLUTELY NEW TRI-EX W-51
 FREE STANDING TOWER.

SUPPORTS 9 SQ. FT. OF ANTENNA.
Shown with internal Ham M rotator and $2^{\prime \prime}$ mast.

INCLUDES

- FREE: RIGID BASE MOUNT
- PRE-DRILLED TOP PLATE - For TB-2 thrust bearing.
- HIGH STRENGTH STEEL TUBING LEGS. Solid rod, "W" bracing.
- EASY MAINTENANCE No guys or house brackets needed.
- RISES TO 51 FT. Nests down to 21 ft.
- HOT DIPPED GALVANIZED AFTER FABRICATION! All welding by certified welders.

IMMEDIATE DELIVERY

 $\$ 362^{60}$FREIGHT PREPAID INSIDE CONTINENTAL U.S.A.

Tri-Ex TOWER CORPORATION
7182 Rasmussen Ave., Visalia, Calif. 93277
operational after minor repairs. EC L5SGDH reports the Rebels now have a fully-equipped trailer with 2 through 80 meters powered by a 5 -kw generator and plenty of alltenna equipment. WA5QLEE udvises the North Texas Traffic Nut now is the Trexas Tratlic Net. The south 'Texas Emergency Nets held their annual meeting at Ferrille and elocter the following officers: K5Jliv, the tirst \& 1 to hold the NCS otfice, PAM WSKLV. secy.-treas.; EC W5FBI, atternate N(S: W. $15 \mathrm{~F} \backslash \mathrm{H}$. PRU WSLMU tork first place in the tiansmitter hunt with W5AIR second and W5BKC third. WABLHE and WA5KIV report that W5HAJ operated at the Stephen F. lustin state College Carnivad with 75 trattic enntacts during the imitial club onening. P.MA WJliLV says W5SC got into the P.I Sysleme at the themistair. EC W5TFW advises that his 2 meter $1 . \mathrm{m}$. is working fine now and that W5IW.A 14 back on the air with a Swan 500C. W5HYD has a new NC-200. (1)W5NGW is busy with the El Paso C'lub bullet in wheli says that $\mathrm{f} 5 \mathrm{~T} M \mathrm{~L}$ is in Koreat as HL9TB. New menters of the El Pasu ARC are K1NCH and W. ASQFI. W5.LBQ sellt in a report on at 1926 issule of form 1. Tratfic: W.A5INZ 263. KJGDII 243. WA5QKE 242, W5QJA 135. WFJ.AG 81, W5RGE 72, KAHZR 64. K2EIU/5 $38 . W 5.1 \mathrm{BQ} 41$ W5KLV 21. W5TFW 10. W'.15GXZ 8, W5.HIR 4, K5LMF 3, W.DEKIV 1.

CANADIAN DIVISION

ALBERTA—ic: H, Harry Harrold, VE6TG—ELC: VE6FLI. PAM \backslash PSN: JE6ADS. ECs: JE6SA, IE6Si, VEGAC, V6PL, VE6IFQ. ORSS: VE6BR. \E6A'TH. VE6.1TG. OPSs: VE6MM, VE6SS, VE6.1TI, VE6.1FQ. OÓ: l'E6HM, VE6TY. UBSs: I'E6HM, I'E6AIF. The bands are hot and healy with comments of the 400\% increase in anateur heense tees. We hope that all have expressed their terlings with the Minister of 'Tramsport and your local MPs. Don't forget to help the AMA all you cean on the Inng week ends wi July and sept. . Ill reports are to be directed to AM.A. Edmonton. Don't forget to do your part in Field Day. Hope to sen you all at the Internationid Humtest July 20 and 21. It has been decided that IPSN will remam on its present. sked of 0130 every night and the same frequency of 3770 kr . with nu changes tor the summer. Congratulations to all who pussed the Advanced Class exum and hope to hear you on phone now. VE6.JUU retires in June. Tratic: VE6HM 50, VE6F'K 17, VE6NC 12, VE6F'S 6, VE6.1OO 4, VE6.\RU 2, VE6HN 1, VE6LiP 1.

BRITISH COLUMBLA—CM, H. E. Savage, VE7FB -hamloops boasts of VE7BHW, V'E7BTP and V'E7AWN. all now (lass A. Hast Kootenay $A R C^{\prime}$ s afticers are VE7ADI, pres.; VE7BIVW, secy. The clubs 2-meter relay station will be oferating as soon as the show leaves the muuntain. Fort George R.IC reports that VE7BIM is EC and $5 \mathrm{SM} \mathrm{I}^{\circ} \mathrm{C} / \mathrm{VE} 7$ leparts Prince George. The Beaver V'alley ARC's "Dry-run Field Day" looks Like it will be foimmg the ${ }^{*}$, Vpine Cluh." IE7BDN is oft tor the sand lots and fishing holes. BC'EN Net Manager I'E7.ISY has moved to Penticton and reports the BCEN is on at 0200 GN1T and the BCSN at 0300 Daylight Saving Time. The silow speed Net is increasmg in membership. VE7BJ' C reports he is engaged and come sept. will be a hisband. VE7.AU. 1 is having antenna and rig problems. li6YCX/SE7 reports in from Qualicum Bearh. VE7BHII will be R'ГT' soon and is looking for information about RTTY \&roups. VE7ZK is our newest ORS and is very artive on $B C^{\prime} E N$. VE7V.A is husy with it surver crow. There will be no BCAR.A Pienic this year. The International Hamfest in July will be held in the State of Washington. The North and West ARC repeater is working fine, :s is the L'HC rupenter. Traltic: VE7ZK 161, VE7BHH 86, VE7BLG 13, VE7:IC 35, VE7BLS 19.

MANITOBA——BCA, . John Thomas Stacey, VEIJTReports for March were sn fow thit at rolumn conild not be written. VE4FQ. VE4IA, VE4RD, V'E4II and VE4SW nimer, ted a station at the Manitoha rehool's sicience Fair under the call I'E4RD/4 and placed third in the Gemeral Science section. The Winniper D. Club is now an ARRL :thiliate with YE4BJ as pres. The Winniper 2 -meter crew, with V E4HI and I'E4HK at the helm, are trying to get a repeater going for the summer. VEAMP has retired as chamman tor M.A.ARC and his surcessor is VEAQL. IEAUM mourns the demise of its Maurauder and anticipates low activity until repairx can be madr. VEAEI is experimenting with 2 -meter mohile and reports reason:thle success. Would sugpest that you look at the expiration date on your appointment ertiticate and ship it along it it. neeris emdursement. Clubs are invited to semed therir bulletins for incorporation into this column. MTN still is in neel uf Winniney stations. Net reports: Nar. phome s+ainht 31. QNI 742, QTC 10. C.w. sessions 30. QNT 197. ZTC: 73. A1r. phone stamme 30 . QNi 611. (2TC 17. C.w. sesions 30. QNT 131, QTC 88. Tratfic: (Apr.) JFANE 4.5. V'E4.J 25. V'E4R1) 22, VE4NN 14. VE4(IT. 13. VE4GN 12, VE3FQ 7, V'E4JA 4, VE1Q. 4, VE4QK 4.

Free-a grain of salt!

Let's put it on the table! The Hammarlund HQ-215 is the fully transistorized receiver with:

FREQUENCY RANCE: 3.4 mHz 30.2 mHz . Crystal furnished for the following bands:
80 meters $-3.4-4.0 \mathrm{mHz}$
40 meters $-7.0-7.4 \mathrm{mHz}$
20 meters $-14.0-14.4 \mathrm{mHz}$
15 meters $-21.0-21.6 \mathrm{mHz}$
10 meters - $28.5-28.7 \mathrm{mHz}$
Provision for 13 additional 200 kHz segments anywhere between 3.4 and 30.2 mHz without disturbing ham band segments.
MODE: Selectable USB, LSB, CW or AM.
FREQUENCY STABILITY: Less than 100 Hertz per hour after 5 minute warm-up.
BACKLASH: Not more than 25 Hertz.
VISUAL DIAL ACCURACY: ± 200 Hz on all bands.
SENSITIVITY: Better than 0.5 microvolts for 10 db signal-plus-noise-to-noise ratio $\mathrm{SSB} / \mathrm{CW}$ mode with 2.1 kHz filter.

SELECTIVITY: SSB-2.1 kHz mechanical filter, $2: 1$ shape factor.

HARMONIC AND SPURIOUS RESPONSE: Image rejection better than -50 db . Internal spurious signals below 1.0 microvolt equivalent signal on all amateur bands.
A. G. C.: Selectable time constants: Slow and Fast. Attack time, less than .5 milliseconds.
"S" METER: Approximately 50 microvolts for S-9 to 60 db over S-9.

NOISE LIMITER: Self adjusting, series type.

REIECTION TUNING: Provides up to 40 db rejection of unwanted heterodynes and carriers.

AUDIO OUTPUT LEVEL: Better than 1.5 watts with less than 10% distortion.

AUDIO OUTPUTS: Speaker 3.2 ohms. Headphones 500 ohms.

CALIBRATOR: 100 kHz Crystal.
ANTENNA INPUT: 50-75 ohms, unbalanced.

AMBIENT TEMPERATURE: 0 degrees C. to +50 degrees C.
TRANSCEIVE OPERATION:
Provided.
TRANSISTOR AND DIODE COMPLEMENT: 26 silicon transistors, 13 diodes and 2 Zener regulator diodes.
POWER REQUIREMENTS: 117/234 Volt AC 50/60 Hertz. Power Consumption, 19 watts. 12-15 Volt DC Negative ground only. Current Drain (12 Volt Supply) 460 mA with external speaker at rated output; 75 mA with headset.
SIZE: $6.8^{\prime \prime} \mathrm{H} \times 15.8^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{D}$. WEIGHT: 21 pounds.

Quite an impressive list! But there's more! See your Hammarlund distributor now-He can give you the rest of the story. And - if you still feel that specs should be taken with a grain of salt, we'll send you one free -and throw in the shaker.

HATMPRLUND

Coommencing with the WHY and HOW, it continues with Balanced Modulators, Product Detectors, Crystal Lattice Filters. Then on to Exciters, Transceivers, and Linear Amplifiers. Finally it rounds out the subject with Adjustment and Testing and includes a few of the more commonly used accessories.

Now where else could you find such a wealth of information on SSB for the amateur?

Get this fth Edition and see for yourself how much you can get for so little!
\$2.50 u.s.A.
\$3.00 Elsewhere

VE4CR 2. (Mar.) VE4EI 58, VE4RIV 34, V'E4JT 31 VE4NE 21, VE4FO 16, VE4LG 16, VE4YC 14, VE4XN 6, VE4GB 4, VE4Q J 4. VEATE 4, VE4EX 3, VE4FV 3, VE4RO 3. VE4JA 2, VE4QF 2, VEAQK 1.

ONTARIO-SCA, Rov A. White, IE3BUX-The Relleville and Kingston Clubs held a joint auction with $V E 3 B E O$ and V E3BUX as muctioneers. VE3AHU spokn on the aims. etc. of RSO. One of the most informative and best attended meptings was the V.H.F. Night put on hy the Ottawa ARC. Slow-sean TV also was on the program. The Lakehear ARC was right in there at the Annual Sportsmans show under the call VE37CD/3. VE3EFW is wiring up a new SB-101 and V E3EBS is studving Dutch, Russian, French and Finnish. VE3CEB is now 'E3PW. VE3EDW graciously donated a receiver and transmitter to the CNIB in Port Arthur. V'E3GK advises the Canadian Radio Teletype Group (CARTG) will hold its 8th World-wide RTTY Sweepstakes Ont. 5 and 6. London's Annual "Inn" at the Geman-Ganadian Club was an unqualified success und congrats to those responsible. VE3CP and VE3CFR did their usual bangup job. Your SCAI was present and really enjoved it. There was lots nf artivity with the "Oxfam" walk in Apr. We haven't heard how many miles VE3FWS covered. VE3RS was one of his sponsors at 10 $\$$ a mile. V'F3DMU, of Ottawa, was as busy as a one-armed paperhanger and he and the other hovs there did Oxfam proud VE3AUU reports great activity in the CD Party. VE3RRQ has kindly offerel to do the Mav Write-nid while your SCA is in California. 'The Nortown ARC had a goud inneting with V'E3BSR giving the bovs the lowdown on antennas. The cluh also had a homebrew night. 'Twenty meters has bern gond lately with some excellent DX reported and quite a hit of 2 -meter artivity in the Oshawa area. VE3RR and his XYL are heading for Europe on vacation and VE3EXW. a strong c.w. addict, has been posted to Germanv. The bovs feel that the increase in license free from $\$ 2.50$ to $\$ 10.00$ is partimularly hard on the voung fellows trying to got started, on the hlind hams and on those with fired incomes. Representatinns still are heing made to the Minister of Transport. Traffic: VF3RZD 102, VE3DBG 59, VE3BLZ 51, VE3GAIQ 40, VE3FGV 20, VE3AFA 12.

OUEBEC-SCMI. J. W. Thfy, VE2OJ-SEC: VE2ALE. RM: JF2DR. PAMI (v.h.f.): VE2AGQ. PAM (h.f.) VE2BWL. Ipril saw great activity for amateur radio envering the Plaisted Polar Fxpedition and VF2.1UII with VE2FY, did a great joh. They not only kept in ronstant daily montact with the exnedition, but handled traffic from the expedition to friends and relatives. Some verv interesting points were brought up recently, such as VE2CP, an ORS since 1919 and still one of our very active net man: VE2BG, an OPS since 1934 and still the mainstav of the Professional Loafers Net each morning and repning; YF2EC has heen an ORS since 1947 and has never missed a monthly report to his SCAT in all that time; V'E2DR has held ORS since at ienst 1947 and still is our most ardent net man. Our AREC is holding its own with 67 more registered members than a year ago Ton't forget the AREC Net meets parh Sun. at 6 P.M. local time on 3790 kc . phone and c.w. Its net menager, VF2AGQ. will be leaving our country shortly. It is reported that the Quefier area is sumnd only to California in the number of active z-meter repeuters each with great activity. Traffic: I'E2DR 110 . VF.2OJ 104, V'E2BVY 75, VE2A.JD 74. VE2BRD 59. VE2ALE 51. VE2ADE 22 , VE2EC 20, VE2DCW 19, VE2CP 16. VE2CK 4.

SASKATCHEWAN-SCMI, Gordon C. Pearce, VE5HP - Our farming hams have had quite a suring-cold weather with not too much mnisture. Let us hope that the summer months hring irleal conditions for a real gnod crop. We have noticed these past months the large number of new hams joining our ranks. We weleome them into a great hobby. Noted also, are the ones who have taken off for gremer nastures-to the Went. (iur thoughts go als to the coming move of VE5LM to Viernon and district. The new publicatinn. From Spark to Space, by the Saskatonn Amateur Radio Club, will he off the press by duly 1 or shortly before. A tremendous amount of work has gone into this tine honk of amateur radio history and we suggest that you get your reservation in for a copv hefore the supply runs out. Traffic: VE5LM 13. VE5OF 11, VESRO 10. VE5OG 5, VESLQ 4. V'E5BD 2, V'E5EQ 2, V'E5IL 2. VE5Q.N 1.

Rilidililic puairy

vilut

 5060 cyces, $H 2$ nachut chict

 with plue for ta line cord Reaty n (Hig in ink 0pCRac
 joyment. Using a pair of the new heavy duty RCA 6LQ6 tetrodes, the final amplifier operates with increased efficiency and power output on all bands. PEP input rating of the 500 C is conservatively 520 watts. Actually an average pair of 6LQ6's reach a peak input of over 570 watts before flattopping!
The 500C retains the same superior selectivity for which Swan transceivers are noted. The filter is made especially for us by C-F Networks, and with a shape factor of 1.7 and ultimate rejection of more than 100 db , it is the finest filter being offered in any transceiver today.
For the CW operator the 500C includes a built-in sidetone monitor, and by installing the Swan VOX Accessory (VX-2) you will have break in CW operation.
Voice quality, performance and reliability are in the Swan tradition of being second to none.
\$520

ELECTRONICS OCEANSIDE, CALIFORNIA A Subsidiary of Cubic Corp

IYPICAL USES

Fairchild, Motorola, Etc. AC AMPLIFIER RIAA PHONO PREAMP DIFFERENTIATOR DC AMPUIFIER RINA PHONO MREAMP DIFFERENIIATOR OC AMPLIFIER
INTFGRAIOR MUITIPIER SWEEP GENERAIOR POWER SUPPIY

EPOXY TRANSISTORS \& IC's
Fairchild, Motorola, Texas, Bendix
I] 4-2N3563 NPN, 600 MC , 200MW 4-2N3643 NPN, 250 MC , 350 MW

\qquad

\qquadsis

GIANT SUMMERCATALOG ON: Parts, Rectifiers, L Transistors, SCRs, I.C.'s, Equipment, Etc. TERMS: include postage. Rated, net 30 days. COD 25%

Effective Tuesday July 2 (GMT), on a temporary trial basis, an extra ten minutes each of $\because 0$ and 25 w.p.m. code practice will be tranmitted by W1AW during the 0130 (xMT code practice period (Tuesday through Sunday GMIT). Let us know how it goes fellas!

Fifty Years of ARRL

A bound 152-page reprint of the gold-edged historical articles which appeared in the 1964 issues of QST is available from the ARRL for one dollar postpaid. Titled Fifty Years of ARRL, the book covers the highlights of ARRL and amateur radio history during the fifty years from 1914 to 1964, and will make a companion piece to the classic 200 Meters and Down, a reprint of which is also available from the ARRL for one dollar.

Higher Class License Examanations

(Continued from page 6'7)
Answers to license quiz: $Q 1-A$; $Q 2-\mathrm{O}$; $\mathrm{O} 3-\mathrm{D} ; \mathrm{Q} 4-\mathrm{B} ; \mathrm{Q} 5-\mathrm{E}$; $\mathrm{Q} 6-\mathrm{B}$.

A number of readers have asked us to show how the numerical answers to questions requiring them were worked out. Here they are, through Part IV (there were no such problems in Parts II and III):
Part I, March QST:
Q. 1 - The required impedance ratio is 2000 ohms to 50 ohms: that is

$$
\frac{2000}{50}=40 \text { to } 1
$$

However, the question asked for the turns ratio, which varies as the sipuare root of the impedance ratio. The square root of 40 is 6.3 .
Q. 2 .-.... The time constant in seconds is equal to the capacitance in microfarads multiplied by the resistance in megohms, or $I^{r}=R C$. Transposing,

$$
R=\frac{T}{C}
$$

Substituting the values given,

$$
\frac{3 \text { (seconds) }}{0.1(\mu \mathrm{f} .)}=30 \text { megohms. }
$$

Q. 3 - The reactances were given at 1000 c.p.s. The inductive reactance is proportional to frequency, and since the specified frequency (500 c.p.s.) is onte-half 1000 r.p.s., the inductive reactance is 125 ohms. The capacitive reactance is inversely proportional to freguency, so at 500 e.p.s. is turice 250, or 500 ohms. The reactance of the series circuit is equal to the difference, and is therefore

Mosley's World-Renowned TRAP-MASTER traps offer a new dimension in Vertical Performance . . . plus easy, low cost installation. Three New RV-Series Verticals with the Versatility of Six! New design - from the Simplified Ground Mount (no longer is a concrete footing necessary) to the addition of a 'Top Hat' where it counts most for a low. low angle of roof-top radiation.

Trap-Master Verticals will take you places . . . Outstanding Omni-Directional Radiation - Top DX-Ability. Whatever your needs. Mosley has a New RV-Vertical designed and engineered to give you a real 5.9 signal.

- Model RV-3C for 10, 15, and 20 Meter Bands - Model RV-4C for 10. 15. 20, and 40 Meter Bands - Model RV-5C for 10. 15. 20. 40, and 75/80 Meter Bands

For detailed Brochure on Specifications and Performance Data, see your nearest authorized Mosley dealer, or write factory direct: Dept. 170

Moes/er Electronicu. Ona. Bridgeton, Mo. 63042 NEW Hers/ey Clectronich Sna Bridgeton, Mo. 63042

EXCLUSIVE ZID GLAS TELESCOPIC FIBERGLASS SPREADERS

Glasdramat-ics-continuous strands of fiberglass simultaneously woven. wound and drawn-then impregnated with epoxy resins.

ONLY
$\$ 595$

POLY tri QUAD ANTENNA KIT

2 element...tri-band... power gain comparable to 3 el yagi. . . lower angle of radiation. . . greater capture area... more efficiency.

- 8 Zip Glas Spreaders (13')
- 2 Universal Starmounts
- 1 Boom/Mast Adapter
- 1 Instruction Manual

$4<0$

3 el Kit............... $\$ 89.95$
4 el Kit................ $\$ 119.95$
Not Ready For Tri-Band? ... you get the same quality with POLY duo QUAD Kits (15-10) starting as low as $\$ 54.95$ and 10 meter POLY mono QUAD Kits.

The Spreaders with the Ultra-Violet Shield ...greater flexural strength... superior to anything on the market ...more durable . . . each Zip Glas section is finaidipped in rich, sky-blue epoxy paint...this final coat resists all types of weather deterioration...blocks out even the sun's destructive rays... adds years to spreader life.

Exclusive Universal Starmount
At last, a spreader mount that grows... you can start with a 2" boom, later add more elements on a larger boom without discarding your original Starmount... die-cast of corrosion resistant aluminum alloy ... equally rugged aluminum alloy boom/mast adapter complete with hardware.

For further specifications plus complete
list of kits and individual components, write

POLYEON PLASTIC CD.
Division of Plas/Steel Products, Inc.
Dept. 16807, 64 Industrial Park
Walkerton, Ind. 46574, Phone (219) 586-3122
$500-125=375 \mathrm{ohms}$
Since the capacitive reactance is larger, the net reactance is capacitive.
Q. 4 - The shape factor, 2.3 , is the ratio of the bandwidth 60 db . down is ke. or 8000 e.p.s.) to the bandwidth 6 db . down. That is,

$$
\text { Shape factor }=\frac{60-\mathrm{db} . B W^{\prime}}{6-\mathrm{db} . B W}
$$

both bandwidths heing expressed in the same units (c.p.s., in this case). Transposing,

$$
6-\mathrm{db} . \mathrm{BW}=\frac{8000 \mathrm{c.p.s} .}{2.3}=3.480 \text { c.p.s. }
$$

Part IV, June QST:
Q. 1 - The deviation ratio is the maximum frequency deviation divided by the maximum audio frequency, and in the problem this ratio is 2 to 1 . That is, the maximum frequency deviation is 2×3500, or 7000 e.p.s. In frequency modulation this is the deviation at full (maximum) modulation regardless of the audio modulating frequency, so the answer is 7000 c.p.s. no matter what the modulating frequency.
Q. 3 - For 100 percent modulation the modulator would have to have a sine-wave output of 90 watts $1 / 2180$ watts, the input to the Class C amplifier). As its actual output is only 60 watts, the sideband power is $60 / 90$, or $2 / 3$ what it would be at 100 percent modulation. Since the modulation percentage varies with the square root of the sideband power, so the permissible modulation percentage is the square root of $\%$, or 0.816 , multiplied by 100 . Alternatively, the formula given in the answer to the second question in Part IV may be used. Transposed, this is

$$
\begin{aligned}
m^{2} & =\frac{2 P_{s}}{P_{0}}, \text { or } \\
\mathrm{m} & =\sqrt{\frac{2 P_{a}}{P_{0}}}
\end{aligned}
$$

Substituting,

$$
m=\sqrt{\frac{2 \times 60}{150}}=\sqrt{\frac{120}{180}}=0.816
$$

In percentage, this is 81.6 percent.
(2. $4-$ The problem states that the highest demodulated audio frequency in the output is to be 3000 e.p.s. Since the louer sideband is to be transmitted, the curresponding sideband frequency must be 3000 c.p.s. lower than the carrier frequency. Thus the carrier is 3000 r.p.s. above it, and since the lowest frequency passing through the filter is 9000 kc ., the carrier frequency therefore is 9003 kc .
Q. 5 - There is no absolute answer to this question, since the exact value of plate rurrent depends on several factors enumerated in the auswers to FCC sample questions considered in Part IV. The current certainly would not reach the p.e.p. value, and probably would not go as high as l p.e.p. (on the other hand, it would very probably be more than 50 ma. since the resting current is 3.5 ma . The most probable value is 100 ma .

tOMORROW'S TRANSCEIVER TODAY BY YAESU

FTDx-400

Latest arrival on the American scene, Spectronics presents the FT dx 400 . Yaesu engineers have looked into the future to provide the present day amateur with a complete station in one package.
The usual "accessories" are standard equipment in the FT dx 400. Features built-in power supply, dual calibrators - 100 KC and 25 KC , break in CW with sidetone, fully adjustable VOX system, four switch selected crystal controlled transmit channels in addition to VFO positions, and varactor controlled clarifier offers receiver offset tuning capability.
Remember, all these extras are included in this new imported transceiver. Check the specs and ask your local dealer for a demonstration dx trip with the FT dx 400.
$\$ 599.95$ including power supply and all accessories except speaker.

SP-400 matching speaker $\$ 14.95$

DEALER INQUIRIES INVITED

SPECIFICATIONS

FREQUENCY RANGE: $3.5-4 \mathrm{Mc}, 7-7.5 \mathrm{Mc}, 14-14.5 \mathrm{Mc}$, $21-21.5 \mathrm{Mc}, 28-30 \mathrm{Mc}$ (3 more 500 KC receiver bands can be added).
FREQUENCY STABILITY: Less than $100 \mathrm{c} / \mathrm{s}$ drift in any 30 minute period after warm up.
ANTENNA IMPEDANCE: 50 to 120 ohm unbalanced. MAXIMUM INPUT: 500W P.E.P. SSB, 440W CW, 125W A.M.
CARRIER SUPPRESSION: -40db
SIDE BAND SUPPRESSION: -... 50db (at $1,000 \mathrm{c} / \mathrm{s}$)
DISTORTION PRODUCT: Down at least 25db
AUDIO BANDWIDTH: $300-2,700 \mathrm{c} / \mathrm{s}$
RECEIVING SENSITIVITY: $0.5 \mathrm{uV}, . \mathrm{S} / \mathrm{N} 20 \mathrm{db}$ (14Mc SSB)
SELECTIVITY: $2.3 \mathrm{Kc}(-6 \mathrm{db}), 3.7 \mathrm{Kc}(-55 \mathrm{db})$
IF AND IMAGE RATIO: More than 50db
AUDIO OUTPUT: 1 watt @ 5% distortion
OUTPUT IMPEDANCE: 8 ohm, 600 ohm
TUBES AND SEMICONDUCTORS: 18 tubes, 9 transistors and 33 diodes
POWER SOURCE: AC 117 volts, $50 / 60 \mathrm{c} / \mathrm{s}$
DIMENSIONS: $153 / 4^{\prime \prime}$ wide $\times 61 / 4^{\prime \prime}$ high $\times 133 / 4^{\prime \prime}$ deep WEIGHT: 50 Pounds

See for yourself－ you won＇t regret it！

\＄4．00 U．S．A．and Possessions

\＄4．50 Canada．\＄5．50 Elsewhere Clothbound Eäition
\＄6．50 U．S．A．，Possessions and Canada
\＄7．00 Elsewhere
AMERICAN RADIO RELAY LEAGUE
NEWINGTON，CONN． 06111

Operating News

（Continued from paye 102）

BRASS POUNDERS LEAGUE

Call	Orio．	fiect．	Rel．	Del．	Total
K6B1＇I	． 49×0	21989	1990	184	9：248
W3CIT	． 332	1297	1201	73	2903
K5TEY		1：331	1174	4	2518
KUUNK	． 56	89.5	884	12	1 $\times 17$
117 BA	． 13	739	¢76	：910	$1+\times 7$
W5ORD	．＇s＇s	6114	6114	11	12：36
K3MYS	． 35	tils	S6． 4	11	$1 \geq 15$
h3NSN	． 6	591	5i91	11	1188
kylde		579	53.2	4	11：6
W．A1FEJ	.49	497	40\％	311	$1(1)$
WA48CK	． 35	468	＋4：	4	9.48
W6Risk	44	$t+1$	365	82	012
WりLCX	． 15	4×0	400	5	91011
W3VR	． 98	349	：71	16	$\times \times 4$
WBECL	． 4	437	41.4	$2: 3$	878
W6KVC	－ 5	406	$4: 6$	11	$\times 57$
Kん6Gr！	237	4.31	$11: 3$	64	$8+5$
R゙すZ心夊．	． 11	41.5	11	$+15$	$\times+1$
W3EML	21	43.4	：332	19	$\bigcirc 8$
W6MILF	241	273	264	5	7×3
W3FGR	． 15	399	2x8	Hi	78.3
WB6RBO	． 5	$3+6$	262	59	720
W7D7＊	21	856	31.2	4	$69: 5$
11.751	$\therefore 7$	308	36	26	627
WH2UVB	314	128	112	15	619
Kindry	11	2 y	2×6	5	293
W．A3CTr	． 19	2×4	254	14	592
WR2REK	19	2x3	274	is	979
WA9ME1U	． 31		217	43	566
K7NQK．	． $2 \cdot 1$	269	$0)$	287	5611
W5PML	． 18	269	263	6	5.56
W10JM	． 5	2\％ 5	261	5	5iss
W7ZIW	$2 \times$	266	22.4	4	522
W9AOW	． 42	239	220	14	615

K．5VO7．	855	0	$1)$	）
KlC	36	427	2115	147
W6VNQ	13	278	$\underline{16}$	0

BPL for 100 or more originations－plus delinerics
WARMICQ 197 W3MIP 120 WA1CGGN 11
K尺ABK 171 WA6BYZ 119 WB4FDT 11
KSKMCQ150 WRRTYZ 117 WBC：ID 110 WB4GAN／4144 WABAFI115 אL7FLS108 WB6UMT 444 KiPNR113 WAIFRZ107 K5GDH 140 W：37N 139 WABHLI 113

WAIFRZ 107

More－Than－One－Operator－Stations

K1NQG／1441 W4DFT 383
H⿰冫欠 Medalllons see ruly． 1488 ，p．Gig）have been gwarded to the following amateurs since last month＇s llsting：F3NSN．WA9MHU，KgIBD．

The BI＇L is open to all amateurs in the United states Gauda and U．S．Possessions who report to thelr SCM a mensuge total of 500 or a sum orlgination and dellvery messitges inust be handled on amateur froquencles within 48 hours of receint in standard ARKL form．

25 Years Ago
 （Continued fram page 88）

new to counter mauzer attacks．Radio plavs an important part in their operations and Clinton B. DeSoto，W＇lCBD has a piece on the training center at Camp Hood．Texas．As usual Clint＇s articles of this nature are accompanied be many official photo－ graphs，showing not only the strictly military phases but also the radio instruction centers．
．．．Jon Mix，V1TS tells how to rebuild the popu－ lar TR－4 so as to use non－priority tubes．He finds that one can replace the HY75 and the 1／Y615 with a 6V6 and 6．J．，although some socket changes have to be made．Mix mounts the new sockets necessary right over the old ones by means of pillars．Changes are necessary in the coils，ass well， due to the differences in tube characteristics．
．．．William Davidon，WンOKY，describes a nega－ tive resistance oscillator with some advantages over previous designs．This all brings to mind the old ＂pliodynatron＂circuits developed by G．E．in the early＇\because（）s．Such circuits are said to enjoy a high de－ gree of stability and relative freedom from har－ monics．
．．．B．C．Barbee，W2MMIX tells us how to build a 250 watt transmitter using 6 L 6 type tubes，two of

SPECIAL
 TV CAMERA PARTS KIT

ONLY
$\$ 99.95$

including vidicon and lens!

To meet the many requests for a low-priced solid state TV camera kit, we have made available from our factory stock the following parts which you can assemble at very little additional expense into a superb TV camera. Included in the kit are the following:

1) Completely assembled and tested video amplifier plug-in circuit board with a 10 -transistor 6 MHz bandwidth amplifier and keyed clamp with adjustable pedestal and sync mixer.
2) Completely assembled plug-in sweep circuit board with 8 transistor and 5 diode horizontal and vertical sweep generators and amplifiers featuring excellent linearity and more than enough drive for $1^{\prime \prime}$ vidicons.
3) Excellent quality deflection yoke and focus coil with beam alignment magnets and raster positioning adjustment. Also included is the vidicon tube clamp and target connector.
4) Camera tested vidicon excellent for amateur use and matched to the deflection assembly above.
5) Good quality F1.9 or better achromatic lens with matching lens mount.

Note: All items are brand new except vidicons which we guarantee will work with the parts kit supplied when assembled according to the schematic and adjusted according to normal procedure. Since step-by-step instructions are not available, we recommend this kit only to those who can follow a schematic.
Due to the low price and limited quantity, we cannot scll the above components separately.
When our present stock is exhausted, it will cost at least $\$ 160.00$ to repeat this offer. Order now to avoid disappointment.

VANGUARD LABS

Dept. S-7
196-23 Jamaica Ave., Hollis, NY 11423
them. They take a lot of puuishment, of course, but many old timers are used to this sort of thing, when one boasted that the plate of his 210 was operated close to the dripping point. Something to build and have on hand for the "Year V".
. . . George Grammer W1DF continues his series on "Elementary A.C. Mathematics." This time it is parallel circuits. All sorts of parallel combinations are dealt with, using vectors, a little trigonometry and lots of easy to arquire know-how.
. . Quite a few letters from correspondents all complimenting Olint DeSoto for his instructive stories on "Who Killed the Signal." - W1ANA

Bilent 齐cys

$\mathrm{I}^{\text {ºn }}$is with deep regret that we record the passiug of these amateurs:
kilah, Albert G. Francis, North Quincy, Mass. W1AUR, Harold Riley, Fayette, Maine WA1BEY, Raymond E. Hadley, Waltham, Mass. WIBS, Carl J. Johnson, Quincy, Mass. K1ERC, Karl T. Kempton, Rockland, Mass. W1HGH, James H. Hankins, Arlington, Mass. W2KPU, Leo Germain, Brooklyn, New York WB2LBL, Margaret Schultz. East Patterson, N. J. K3EJQ, Charles F. Swartz, Quakertown, Pa. K3JDF, Merrill F. Green, Baltimore, Maryland K3KKL, Charles K. Zaiunz, Watagh, New Lurk W3QBX, Joseph S. Miller, Irwin, Pennsylvania W4BFU, John D. Andrews, Montgomery, Alabama W4BG, John P. White, St. Petersburg, Florida W4CN, James E. Marshall, Louisville, Kentucky W'4DIZ, John J. "Jack" Aaron, Marietta, Gia. WB4FIC, Billy R. Givens, Dunmor, Kentucky W4LZB, Harry C. Miller, W. Palm Beach, Florida W4MAK, Floyd H. Busch. Louisville. Kentucky W4RRH, B. Kiley Howler, Morganton, North Carolina
WsIEQ. Carl L. Dawson, Oklahoma City, OLla. W5KIIZ, Leroy E. Chapman, Frederick, Oklahoma W5MIWT, James W. Mayfield, Norman, Oklahoma WA5TJL, Jack Crow, San Antonio, Texas
WhAP, Horace H. "Pat" Crow, fresno, California WhEbE, Jim Stirling, Belmont, California WN6SKR, Earl F. Tracy, San Francisco, Calif. WBGUNF, Lyle slaughter, Culver City, Calif. WA7ABB, Melvin "Miel" Barber, Enterprise, Ore. W7DEA, Lawrence Anderson, Iuma, Arizona W7DWG, Edward R. Giibson, Bremerton. Wash. W7SEM, Herbert E. Camphell, Sumner, Wash. W8BNP, Arthur L. Puffer, North Lïngsville, Ohio W8FIIW, Lawrence I'ugle, Cincimuati, Ohio W8FJM, Paul C. Pennell, E. Palestine, Ohio W8HIK, Howard Rash, Detroit, Michigan WA8JNC, Clare E. Ernst, Alger, Michigan W8PDB, Manley M. Phetteplace, Pontiac, Mich. W8PSR, R. E. Ramey, Huntington, West Virginia WA8SXU, Jack R. Goldie, Midland, Michigan W9CUS, Walter A. Prichard. Milwaukee, Wisconsin WgCYH, Harold L. Steinke, Chicaro, Illinois W9EKF, Ben W. Strachen, Ava, Lllinois k9EOS, Leonard E. Johanek, Manitowoc, Wisc. W9GPI, J. G. "Jack" Doyle, Milwaukee, Wisconsin W9HMC, William R. Briges, Metamora, Mlinois WA9LRP, Melvin Bockman, Cornell, Illinois K9MVF, Philip E. Wilson, knoxville, Illinois W90Vw, Leander Krickl. Wood, Wisconsin W9UCN, Harry Roscoe, Cllicago, Illinois WAøKRY, Alfred N. Cochran, Lexin\&ton, Nebr. PY1JB, Antonio P. de Souza e Silva, Rio de Janciro, Brazil
VE3IA, Eric Farquhar, Burlington, Ontario, Canada

Want a high-pay career in Electronics?

This free book may change your life

It tells how to go about getting the key to job success in the growing electronics boom-a Government FCC License

There's a big boom in electronics. And yOU can be part of it. You don't need a college education or any previous experience in electronics. The free book shown here tells you how.

In the last 15 years, the electronics manufacturing industry alone has grown from $\$ 2.7$ billion to $\$ 17$ billion, and is expected to hit $\$ 24$ billion by 1970.
'Thousands of trained men are urgently needed to help design, manufacture, inspect, test, install, operate, and service electronics marvels that are making headlines. If you qualify, it means a secure, steady high-pay job with a real future to it.

Maybe you'd like to become a broadcast engineer. . . put famous radio disc jockeys and television entertainers "on the air." Or be your own boss servicing some of the more than a million two-way mobile radio systems in taxis, trucks, trains, etc. Or work alongside famous scientists developing and testing such electronics miracles as picture-frame TV, desk-top computers, pea-sized hearing aids, rocket guidance and control systems.

Regardless of which you choose, the secret of "getting your foot in the door" is getting a Government FCC (Federal Communications Commission) License. It's govern-ment-certified proof. respected by employers everywhere, that you have passed a standard Federal exam on the fundamentals of electronics - that you're not just an electronics handyman, but a real "pro." Many jobs legally require it.

Now, because of the importance of getting your FCC License, Cleveland Institute of Electronics has prepared a valuable 24 -page book telling you how to go about it.

ENROLL UNDER NEW G.I. BILL

All CIE courses are available under the new G.I. Bill. If you served on active duty since January 31, 1955, OR are in service now, check box in coupon for G.I. Bill information.

You will find out why the Commercial FCC License is often called the "passport to success." You'll see how and why the Government issues these licenses. You'll learn how you can get your license . . . and qualify for top opportunities in Electronics.

With this book, you will receive a second free book, "How To Succeed In Electronics." It's the catalog of the Cleveland Institute of Electronics . . . first organization to offer an FCC License Warranty. (CIE will refund all of your tuition if you don't pass the FCC exam . . . on your first try . . . after completing the course designed to prepare you for it.) You will learn why better than 9 out of 10 men with CIE training get their FCC Licenses, even though 2 out of 3 without this training fail.

To receive both books without cost or obligation, just mail the coupon below. If coupon has been removed, write to: Cleveland Institute of Electronics. 1776 Fast 17th Street, Dept. QT-66 Cleveland, Ohio 44114. Do it now-it may change your whole life.

MAIL COUPON FOR 2 FREE BOOKS

E Cleveland Institute of Electronics 1776 East 17th Street, Cleveland. Ohio 44114
Please send me. without cost or obligation, your 24 -page book, "How To Get A Commercial FCC License," together with your school catalog, "How To Succeed In Electronics,". of licensepreparation courses.

Name
(please print)
Address.

Occupation

\square Check here for G.I. Bill information.
Accredited Member National Home Study Council A Leader in Electronics Training ... Since 1934 QT-98

Seeing spots before your eyes?
 It's time to replace your worn-out vidicon

Prices and quality have never been better.
The quality: brand-new Toshiba and Hitachi, fully guaranteed in factory-sealed cartons.
The price: these tube types sell as high as $\$ 147$ (distributor cost). Here's what you can buy them for: Hitachi 7735.A vidicon - $\$ 34.50$ Toshiba 7038.H vidicon-\$29.50 - Hitachi separate mesh vidicon $8507-\$ 74.50$ • Re. placement vidicon for Sony and Panasonic 7262-\$29.50.
All vidicons sold in lots of 5 (10% more for lesser quantities). Act today. These prices apply for a limited period. Write for GBC's free Encyclopedia of CCTV equipment.
GBC Closed Circuit TV Corp. 89 Franklin St.. N.Y. 10013 (212) 966.5412

Happenings of the Month

(Continued from page 80)
FCC amateur rule which currently does not allow previous holders of licenses above the grade of Novice to apply for Novice licenses.
84) On motion of Mr. Griggs, after diseussiou, unanimously VOTED that the v.h.f. repeater netition filed with the Federal Communications Commission recently by the Ruffalo Amateur Radio Repeater Assurciation, is referred to the V'HF Repeater Advisory Committee for study.
85) At this point, :mmouncement was made of committee appointments by the President as follows:
Membership and Yublica- Mr. Spencer, Chairman
tions Committee
Public Relations Committee

Merit and Awards Committee

Finance Committee

Planning Committee

Mr. Michel
Mr. Gmelin
Mr. Haller, C'hairman
Mr. Grigh:
Mr. Dannals
Mr. Groves, Chairman
Mr. Bolvin
Mr. Foster
Mr. Eaton, Chairman
Mr. Chapman
Mr. Compton
Mr. Crossley, Chairman Mr. Clark
Mr. Thurston
86) On motion of Mr. Groves, unanimously VOTED that the General Manager is hereby authorized to pay expenses for the operation of $A R R L$ Committees during the vear 1968, but not to exceed amounts as follows:
Finauce Cummittee . $\$ 2000$
Planning Committee . 1500
Membership \& Publications Committee 1000
Public Relations Committee 500
Merit \& Awards Committee 400
87) Whereupon, on mution of Mr. Groves, the Board adjourned, sinc die at :3:00 r.m.
88) (Time in session as a Board 11 hours, 36 minutes; as a Committee of the Whole, 40 minutes; total direct authorizations, $\$ 67,100.00$)

Johy Huntoon
Riceird L. Bildwin Secreiarics

MINUTES OF EXECUTIVE COMMITTEE MEETING

No. 321
May 2, 1968
Pursuant to due notice, the Executive ($\operatorname{committe}$ of The American Radio Relay League, Inc., met at the Headquarters offices of the League in Newington, Connecticut, at 3:10 p.m. May 2, 1968. Present: President Robert W. Denniston, WODS, in the Chair; First V'ice I'resident W. M. Groves, IV5NW: Directors Charles G. Cumpton, WOBUO, Gilbert L.

9
can give you personal service on helping you select better gear per dollar for your operating pleasure. Over 30 years'experience. Big trades, easy terms. Used bargains. VAN SICKIE RADIOSUPPI.Y CO. Genc Van sickle. W9KJF Ouner

4131 N. Kevstone Ave.
On the northeast side of Indianapolis, Indiana 40205

Here's How little America's Best Towers Cost:

MODEL	MAX HGT.	MIN. HGT.	DESCRIPTION		PRICE
HD. 40	40	23	LOW COST TOWER FOR SMALL 2 EL. QUADS AND POPULAR VHF BEAMS ONLY.	WITH BUILDING MOUNT WITH WONDER GROUND POST	$\begin{array}{r} \$ 159.00 \\ 208.00 \end{array}$
RBS. 40	41	25	POPULAR MODEL FOR 3 EL. TRIBAND BEAMS AND 3 EL. QUADS.	WITH BUILDING MOUNT WITH WONDER GROUND POST	$\begin{aligned} & 247.50 \\ & 320.00 \end{aligned}$
RBX. 40	42	27	EXTRA HEAVY DUTY TOWER FOR STACKED ARRAYS AND VERY LARGE ANTENNAS.	WITH BUILDING MOUNT WITH WONDER GROUND POST	$\begin{aligned} & 351.00 \\ & 503.50 \end{aligned}$
RBS-50	51	30	POPULAR MODEL FOR 3 EL. TRIBAND BEAMS AND QUADS.	WITH BUILDING MOUNT WITH WONDER GROUND POST	$\begin{aligned} & 321.00 \\ & 438.00 \end{aligned}$
RBX-50	52	32	VERY HEAVY DUTY TOWER FOR STACKED ARRAYS AND LARGE BEAMS.	WITH BUILDING MOUNT WITH WONDER GROUND POST	$\begin{aligned} & 424.00 \\ & 571.50 \end{aligned}$
6046	60	26	LOWER COST TOWER FOR SMALL 2 EL. QUADS AND VHF BEAMS ONLY.	WITH BUILDING MOUNT WITH WONDER GROUND POST	$\begin{aligned} & 292.00 \\ & 364.50 \end{aligned}$
RBX-60	60	26	STANDARD DUTY TOWER FOR 3 EL. TRIBAND ANTENNAS AND QUADS ONLY.	WITH BUILDING MOUNT WITH WONDER GROUND POST	$\begin{aligned} & 480.50 \\ & 596.50 \end{aligned}$
CRX-60	60	26	heavier duty version of above but WITH REINFORCED FOR LARGER BEAMS.	WITH BUILDING MOUNT WITH WONDER GROUND POST	$\begin{aligned} & 615.00 \\ & 838.50 \end{aligned}$
RBZ-66	66	33	EXTRA HEAVY DUTY FOR STACKED ARRAYS AND VERY LARGE BEAMS.	WONDER POST FOR CONCRETE ONLY	1259.50
RBX-70	72	31	STANDARD DUTY TOWER FOR 3 EL. TRIBAND ANTENNAS AND QUADS ONLY.	WONDER POST FOR CONCRETE ONLY	871.50
RBZ-75	75	35	EXTRA HEAVY DUTY FOR STACKED ARRAYS.	WONDER POST FOR CONCRETE ONLY	1426.00

E-Z WAY TOWER MODELS	SUGGESTED ANTENNAS FOR TOWER MODELS			
	MOSLEY	HY GAIN	TELREX	SKYLANE
$\begin{aligned} & \text { HD. } 40 \\ & 6046 \end{aligned}$	$\begin{aligned} & \hline \text { A. } 3106 \\ & \text { S. } 401 \\ & \text { TA. } 32 \mathrm{Jr} . \end{aligned}$	TH. 3 Jr .	$\begin{aligned} & 10 \mathrm{M}-518 \mathrm{~B} \\ & 20 \mathrm{M}-207 \mathrm{CM} \end{aligned}$	10/15 2 EL . QUAD
RBS 40 RBS 50 RBX. 60 RBX. 70	$\begin{aligned} & \hline \text { A-203C } \\ & \text { S.402 } \\ & T A-33 / 40 \end{aligned}$	$\begin{aligned} & \text { DB. } 24 \\ & \text { TH. } 3 \end{aligned}$	$\begin{aligned} & \text { TC. } 99 D \\ & 40 \mathrm{M} \cdot 217 \mathrm{M} \\ & 20 \mathrm{M} \cdot 3178 \\ & 10 \mathrm{M} .636 \end{aligned}$	3 EL . QUAD
CRX-60	$\begin{aligned} & \text { A. } 320 \\ & \text { TA. } 36 \end{aligned}$	TH.6	$\begin{aligned} & 15 M-532 \\ & 20 M-326 B \\ & 40 M \cdot 214 \\ & \text { DB-30C } \\ & T M \cdot 30 C \end{aligned}$	4 EL. QUAD Short Boom
RBX 40 RBX. 50 RBZ. 66 RBZ. 75	TA.20.40	2058	$\begin{aligned} & 20 \mathrm{M} \cdot 646 \\ & 40 \mathrm{M} \cdot 335 \end{aligned}$	4 EL. QUAD

And Here's Why You Should Buy One Today:

Join the thousands of Hams, worldwide, who enjoy the convenience and safety of E-Z Way Towers. Construction features high strength steel tubing which is hotdipped galvanized after construction. No guy wires are needed in most cases and our Wonder Ground Post permits you to install, yourself, with no concrete. Towers are shipped assembled, including all hardware, FOB nearest dealer.

ONE OF THE WESTERN HEMISPHERE'S QUALITY TOWER SYSTEM SUPPLIERS

Marine and Portable Operation
Packaged for APO and FPO Shipping

The time proven ${ }^{2}$ B-24 4-Band antenna combines maximum effi. ciency and compact design to provide an excelprovide an excelwhere space is a where space is a factor. New end
loading for maximum radiation efficiency. No center loading.
Model B-24
Net $\$ 59.95$

MULTIBAND COAXIAL ANTENNA
for 6-10-15-20 METERS
Needs no ground plane radials. Full elecrical I: wave on each band. Excellent quality construction. Mount with inexpensive TV hardware. Patented.

Power Rating	2000 Watts P.E.P.
Total Weight	5 lbs.
Height	11^{\prime}
Single Feed Line	52 ohm
SWR at Resonance	1.5 to 1.0 max.

Model C4 Net $\$ 34.95$

Send for Free Brochure
If there is no stocking distributor near you order direct from factory. We pay
shipping to your Qth if in Continental U.S. A.

RADIO OFFICER TRAINEES

A limited number of openings are available to men willing to train for the interesting and wellpaid career of Marine Radio Officer aboard U. S. Flag merchant vessels. An F.C.C. 1st or 2nd Class Commercial Radiotelegraph license is required. These openings will be particularly appealing to younger men who have completed their military obligations. Write to The Radio Officers' Union, Room 1315, 225 West 34th Street, New York, N.Y. 10001.

Crossley, WBYA, and Noel B. Waton, VEBC! ; : and General Manager John Huntoon, W1LVQ. Aso present were General Counsel Kobert M. Booth, Jr., W3PS, and various directors and vice directors of the League.
On motion of Mr. Crossley, afliliation was unanimously GRANTED to the following societies:
American Red Cross Emergency Radio Club, Jitmaica, New lork; Austintown Fitch Amateur Radio Club (H. S.), Youngstown, Ohio; The Central Florida Groundwave Club, Orlando, Florida; Columbia Amateur Radio Club, Trail, B. C., Canada; Fort George Radio Amateurs Club, Prince George, B. C., Canada; Greenbrier Valley Amateur Radio Association, Lewisburg, West Virginia; Iosco Amateur Radio Club, Tawas City, Michigan; Jefferson County Amateur Radio Association, Brookville, Pennsylvania; Land Rovers Amateur Radio (lub, Clifton, New Jersey; Massapequa Amateur Radio Club, Massapequa, New lork; Naperville Community Amateur Radio Club (H.S.), Naperville, Illinois; Northern Illinois DI Association, Inc., Arlington Heights, Illinois; Rohert M. Lafollette Amateur Kadio Club (H. S.), Madison. Wisconsin; Rowan Amateur Radio Society, Salisbury, North Carolina; Whitman Amateur Radio Club, Inc., Whitman, Massachusetts; Wood Dale Amateur Radio Club, WA9SIP, Wood Dale, Illinois.

On motion of Mr. Crossley, in confirmation of earlier mail action, unanimously VOTED to approve the holding of : Kentucky State Convention in Louisville on August 30-31, 1968, and a Koanoke Division Convention in Greenshoro, North Carolina, on September $28-29,1068$. The Committee noted the request of the Southeastern Division Director Charles J. Bolvin, W4LVV, for approval of a Florida State Convention in August, 1968, sponsored by the Platinum Coast Amateur Radio Society, but withheld formal approval pending receipt of necessary application papers.

Director Roemer O. Best, W5QKF, and Vice President Groves reported favorably on progress of plans for the National Convention in San Antonio on June $7-9$.

On motion of Mr. Compton, unanimously VOTED that Life Membership is conferred unon the following members:

Christine E. Haycock, WB2YBA
Leo W. Honea, Wocie
Jacob s. Kamburian, Jr., W1USP
Donald R. Kelly, W7NXJ/GMI5AFF
H. Gordon King, WB4BAP

Raymond W. Loewy, WA5PPD
John H. Mackinaw, W1OHB
Maurice Mansfield. W9PUM
Alexander A. Mckenzie, W2SOU
Yaul R. McKinnie, IV6EQB
James H. Peters, VE3GIK
Earl W. Tonjes, W4NG
George C. Wetmore, W3DPM
Gordon R. Zuchegna, W1VWP
On motion of Mr. Compton, unanimously VOTED that the Cummittee ratifies its earlier decision, reached by telephone, to employ the firm of Cooper, White \& Cooper, of San Francisco, California, with Edward Peck, K6AN, as co-tounsel, in vigorous defense of the action by Dr. Donald A. Miller, W9WNV, in the U. S. district court of California, for defamation.

There being no further business, the Committee adjourned, at $4: 30$ p.n.

Jofn Huntoon
Shertary

Any knowledgeable DX'er will tell you the secret is in the antenna. For over a year Henry Radio has provided an exciting beam antenna package program allowing the average amateur to own an efficient, and unbelievably economical antenna package . . . pre-engineered, prematched and pre-packaged to suit his pocketbook and requirements. NOW! This world famous antenna program moves forward. NOW! You can have the antenna of your choice at the same incredible saving.

Basic package No. HR-1
*Tristao CZ-337 New concept 40 ft. crank-up tower w/mast CDR TR-44 rotator 100 ft . RG-58 A/U Coax 100 ft . Control cable Complete with one of the following:
Hy-Gain TH-3 Jr. antenna \$325.00 Hy-Gain TH-2 Mk 3 antenna $\$ 325.00$ Hy-Gain DB 10-15A antenna $\$ 325.00$ Hy-Gain 203BA antenna $\$ 330.00$ Hy-Gain TH-3 Mk 3 antenna $\$ 375.00$
A savings of approximately $\$ 70.00$
Basic package No. HR-3
*Tristao CZ-454 New Concept 60 ft. crank-up tower w/mast
CDR Ham-M rotator
100 ft . RG-8/U Coax 100 ft . Control cable
Complete with one of the following:
Hy-Gain TH-3 Mk 3 antenna $\$ 560.00$ Hy-Gain 204 BA antenna $\$ 565.00$ Hy-Gain 402 BA antenna $\quad \$ 575.00$ Hy-Gain TH-6 DXX antenna $\$ 590.00$ Hy-Gain DB-24B antenna $\$ 620.00$ A savings of approximately $\$ 120.00$ tower $\$ 10.00$ extra All complete packages are priced freight prepaid to your door in the continental U.S.A. Substitutions may be made ... write for prices. And remember, you can buy on time. You can trade your used transmitter or receiver. You can rely on Henry Radio to supply the finest equipment and the best value.

Butler, Missouri, 64730 $816 \quad 679.3127$
11240 W. Olympic, Los Angeles, Calif., 90064 213 477.6701
931 N. Euclid, Anaheim, Calif., 92801
714772.9200

ALL NEW 1968 X LINE TUNAVERTERS! CRYSTAL \& TUNABLE= $=$ VERSATILITY USABILITY

Tunable plus Crystal controlled (selectable with switch) solid state converters to change your auto and home radios into excellent, sensitive, selective, calibrated VHF receivers!

THE BEST-CALIBRATED 6-X TUNINGDRIFT FREE CRYSTAL CONTROL-PLUS-COMPLETE INTERCHANGEABLE CRYSTALS WITHIN BAND!!!!

- 9 volt battery powered

1 year guarantee on parts

- Includes coax, mount \& screws.
- New FET transistor oscilator \& circuit.
Models for AM \& FM Tunable \& Crystal!

Models for AM \& FM BAND MODEL	Tunable \& Crystal! COVERS OUTPUT	PRI
CB \& 10 M 273 X	26.9-30 mc 1500 kc	EACH
6 meters $504 \times$	50-54 mc 1500 kc	
2 meters $1450 \times$	144-150 mc 1500 kc	\$32.95 ppd.
Police, firs,) $348 \times$	33.48 mc . 1500 kc	Less Crystal
Marine \| [1564 X	150-164 mc 1500 kc	
Aircraft 1828 X	118.128 mc 1500 kc	
Models for AM \& FM Tunable only		
Marine Marine	2.0-2.85 mc 550 kc	\$19.95
SW \& WWY SWL	9.5 -16 mc 1500 kc	\$19.95
Coupling Loop \& Ext.	Antenna for use with	
Mobile Battery Elimina	ator, 12 V to 9 V	\$4.95

Mobile Battery Eliminator, 12 V to 9 V
$\$ 4.95 \mathrm{ppd}$
. . $\$ 5.10 \mathrm{ppd}$.
See your dealer or:
AIR MAIL add $\$.85$ ea.
HERBERT SALCH \& CO.
Woodsboro QX Texas 78393 Tompkins radio Products
Marketing Division of

CQ de W2KUW BEST OFFER!!

Paid for any piece of aircraft or ground radio units, also test equipment. All types of tubes. Particularly looking for 4-250 - 4-400 • 833A - 304TL - 4CX1000A - 4CX5000A of al. I7L - 5IX • 390A - ARM - GRM - GRC - UPM - URM - USM units. TED DAMES CO., 308 Hickory St., Arlinaton, N.J. 07032

YOU WON'T BELIEVE WHAT WE SAY

 ABOUT THESE FINE NEW UHF BEAMS

BEAMS

$50 \mathrm{mC}$. .
$50 \mathrm{MC}$.
220 MC.
$220 \mathrm{MC.C}$
432
Arrays.
Arrays.
Towers, etc.
"Continuous reception over 141 mile path on $144 \mathrm{MHz}^{\prime \prime}$, writes W4ISS/A4ISS
\star Multiple driven elements \star Multiple reflectors \star Low SWR \star High front to back Ratio

Distributors invited
GAIN
INC., Dept. Q-7—Phone (312) 568-1973
27 E. 112th PL., CHICAGO, ILLINOIS 60628

World Above 50 Mc .
 (Continuad from page 9\%)

K2ACQ, New lork, with partial success. 'T'ed says 15 or 30 second calling sequences are a must for long-hanl tropo because of rapid signal build-up and fading. Sequences of a minute or more mas. leare many peaks wasted.

KBDEO, Cedarville, Ohio, keeps his interest in 432 by working K2ACQ for state number ten. He has recently completed a WICWJ kilowatt amplifier. and is looking for contacts into W0. K8DEO's frequency is 432.095 . K9AAJ, Quincy, Illinois, has taken down his 96-element e.m.e. array and is replacing it with 20 elements in hopes of some satellite work. Lee's 144 and 432 arrays share the same mast and are tiltable. And at Haddon Heights, N. J., W2BLY, who tops the second call area with 13 states on 432, vows more activity on our lowest u.h.f. band to add to his already impressive totals.
$1 \% 10.1 / \mathrm{Hz}$. reports center around the moonbounce (e.m.e.) activity at the Crawford Hill V.h.f. Club, WथNFA. At deadline last month, details of the April 1.3-14. (GMIT) tents were incomplete. Here are some of the highlights in a report from WeIMIU. Contacts were completed on April 13 between W2NLA and HB9RG, switzerland; G3LTF, England, and WB6IOM. On the 14th, contacts were again made with G3LTF and WB6IOM. Partial contacts were made both days with K6MIYC. GisLTF used a 17 -font dish, cross-dipole fed with 150 watts input. HB9RG's station included a 17 -foot dish and 300 watts output, and WB6IOM fed a 10 -foot dish with 500 watts from eight 20 C 39 s . Equipment problems hesieged the W2NFA effort and the anticipated 200 watts output may have been only 70 watts. Most of the problems were with the feedline and associated connectors, jumpers and relays.

Undaunted, the Crawford Hill group intends further 1296 e.m.e. tests and suggest a standardization of polarization for future tests. They propose circular polarization to avoid Faraday rotation fading, with the propagated signal right-hand, transmitting, and left-hand receiving. This uses the $I E E E$ definition: a wave traveling away from the observer and rotating clockwise is detined as a righthand cireularly polarized wave. K6M1'C discussed the problems of Faraday rotation in last February's column, page 80 . If a polarization standard can be agreed upon, station systems will be compatible with one another. The club also suggests that future active amateur satellites employ circularly polarized antennas for the same reasons.
W4API was une of many who built the VE2HW signal source described in the April column. But Andy points out an error in the schematic, the erystal tap point on L_{1} was omitted. It should be two turns from the crystal end. Andy apparently had trouble locating the suggested 2N706 transistors, but Polypaks and Kadio Shack have them at five for \$1. The crystals are available from JAN Crystals in Fort Myers, Florida for $\$ 1.50$. IV4API says the circuit works well and that drift is negligible. Uther stations in the Washington, D.C. area reported active on 1296 by W.4API include W3NG, W3AH(), W4ESS, W4UBY, and K4SUM. W3AIR. WBTUZ and W3RE are expected on soon. Most of the antennas are 32 -element collinears with A1 and A3 modes favored.

The Post Office Department promises faster mail service with the new Zip codes. Use yours when you write league Headquarters. Use ours, too. It's 016111.

A NEW Thoroughbred in Solitid-State Receivers

NOW-a Competitively Priced Receiver for the most exacting Professional Performance!

Phase-locked Frequency Synthesizer for Maximum Stability!

The superb, new R-530 by GALAXY

Designed for the exacting requirements of laboratory, broadcast and HF monitoring and point-to-point complex system communications, the R-530 is an advanced solid-state communications receiver. Its unsurpassed performance is the result of over three years of exhaustive research.

It receives selectible Upper and Lower Sideband, CW AM and RTTY signals... provides accuracy of $1 \mathbf{K H z}$ tuning throughout the 0.5 to 30 MHz frequency spectrum.

Unique front end design and crystal lattice filters insure optimum sensitivity and selectivity. An adjustable noise blanker minimizes interference ...background noise. Frequency stability is amazing...less than 100 Hz drift after turn-on!

Complete transistorization and modular construction provide maximum stability. Minimum heat generation and power requirements allow the R-530 to be used in field applications now impractical with vacuum tube equipment. The new Galaxy R-530 is compatible with existing systems. Beautifully styled, compact, weighing only 25 pounds.

ELECTRONIC COMMUNICATIONS EQUIPMENT 10 GRAHAM ROAD WEST

ITHACA, N.Y. 14850
TELEPHONE: AREA CODE 607273.9333

PRESENTS

THE SUITCASE STATION

What would you like included? All suggestions used will be rewarded with a merchandise certificate. See our display at: San Antonio - Springfield - Tarrytown - and others or write Dept. Q for further information.

Send for used equipment list.
 ELECTROPHYSICS CORP.
898 W. 18th St., Costa Mesa, Calif.

The Clipboard - a Simple Experimental Circuit Breadboard

(Continued from page zy)
$5 /-$-inch square grid. The clips used were $3 / 4$ inch long and $\mathrm{s}_{\text {i }}$ inch wide. Although larger sizes were available, the clips chosen proved to be fully adequate and permitted a more compact layout. In the interests of standardization aud economy, the double-ended clips were made by mounting two clips under the same screw. All the clips were mounted with $6-32 \times \%$ inch roundhead machine screws, and a No. 6 solder lug was put under each nut on the bottom side of the board. The use of No. 6 internal-tooth lockwashers between the clips and the phenolic board would probably prevent the clips from rotating during assembly of the Clipboard.

The suckets used take either the in-line or the in-i-circle transistor leads. Of course, if the transistor leads are not cut short, auy configuration may be used. If you plan on experimenting wilh tetrodes or transistors with a separate shield lead, you will need to improvise, or to use sockets with four contacts and provide an additional clip for connections. Most transistor sockets that mount with a retainer spring are not suitable for use in $1 / 8$-iuch material, so I used sockets with a molded-in mounting plate (Elco 3301) and fastened them to the board with $3-48$ round-head machine screws and nuts.

Although the photos show a d.p.s.t. switch for power supply control, it is recommended that three power lines be made available and that a 3.p.s.t. switch be used. Note that the ground connections are not switched.

The legs are $11 / 4$-inch ceramic standolf insulators which were fastened to the board with $8-32$ binding-head machine screws. Although no hanger is shown on the bourd, one is recommended to permit storage of the assembly on a wall or pegboard.

Applications for the Clipboard are limited only by the experimenter's imagination. Although I have used the Clipboard at broadeast frequencies and for digital circuits operating at 500 kHz ., it is basically a low-frequency device. 'There is no shielding, and circuits run side-by-side for several inches. In the case of a small operational amplifier, it was necessary to use stiffer stabilization than would have been required with better packaging of the circuit.

A word of caution on the heat sink under the power transistor: the one shown in the photos was used with a power transistor that switched about une ampere, and it was adequate for that purpose. A Class A amplifier handling significant power might require a better sink.
The cost of the entire board not including the power transistor was under $\$ 7.00$, and it took one evening to build, once the materials were at hand. I hope you get as much fun and satisfaction from your Clipboard as I get from mine.

2 SPEED DRIVE UNIT

For professional, sophisticated gear. Slow motion 4.5:1 drive shaft controlled from $1^{\prime \prime}$ dia, satin anodized aluminum knob. Direct drive operated by $11 / 2^{\prime \prime}$ dia. dial. Mounts on outside of any thickness panel.
Model 4832/2K \qquad . $\$ 4.95$

NEW 6/36 DRIVE

Improved model with improved clutch mechanism for even longer life. New black escutcheon is plastic coated to insure great durability. Co-axial spindle provides $6: 1$ and 36:1 under control of one knob.
Model 4103/A
$\$ 7.50$

Install a Judson Electronic Magneto, the only completely integrated electronic ignition system available. Provides positive ignition everytime, resulting in fewer tune-ups and better performance. Pays for itself. Get tomorrow's ignition system on your car today. Easy, do it yourself installation.
For 6 or 12 volt negative ground autos
\$3988
plus $\$.75$ shipping and handling

Model TX. 62 complete 75 W. phone \& CW transmitter has built-in power supply and modulator. Tunes easily by adjusting final plate and loading caps
$50-54 \mathrm{MHz} \& 144-148 \mathrm{MHz} x$ xal (8 MHz) controlled or can take VFO. Meter reads final grid or cathode current or RF out. Built-in, solid state power supply, fused, Mike Key jack \& xtal socket on front panel. Size $111 / 2 \times 91 / 2-6^{\prime \prime}$ high, shipping weight approx. 20 lbs. TX.62, wired and tested.
$\$ 149.95$

PRECISION
PLANETARY-VERNIER for exceptionally fine tuning Shown approximately actual size.
Superb craftsmanship by Jackson Bros. of Eng'and. Ball bearing drive. $1 / 4^{\prime \prime}$ dia. Shaft $11 / 8^{\prime \prime}$ long: 6:1 ratio. Vy FB for fine tuning. Easily adaptable to any shaft Comparable value $\$ 5.95$ Model 4511 DAF.
$\$ 1.50$ ea.
10 for $\$ 13.50$

COME VISIT ARROW'S NEW NEW YORK CITY STORE AT 97 CHAMBERS STREET

 212 - Digby 9.4411

516 - Ploneer 2.2290

THE LEAGUE EMBLEM

With both gold border and lettering, and with black enamel background, is available in either pin (with safety clasp) or screw-back button type. In addition, there are special colors, a a ailable in the pin style emblem only, for Communications Dept. appointees.

Redenameled background for the SCM.
Green enameled background for the RM, PAM, SEC or EC.

Blue enameled background for the ORS, OVS, OBS, OO or OPS.

THE EMBLEM CUT: A mounted printing electrotype, s/ ${ }^{\prime \prime}$ high, for use by members on amateur printed matter, letterheads, cards, etc.

Pin, Button or Cut: $\mathbf{\$ 1 . 0 0}$ Each, Postpaid

AMERICAN RADIO RELAY LEAGUE

Newington, Connecticul 06111

LOOK! A NEW ELECTRONICS SLIDE RULE

WITH COMPLETE INSTRUCTION COURSE
Professional $10^{\prime \prime}$ all-metal Electronics Slide Rute. Designed specifically for technicians, engineers, students, hobbyists. Has special scales not found on any other rule. Enables you to solve electronics problems quickly, accurately. Made to our rigid specs by Pickett, Inc. Slide Rule plus four lesson AUTO-PROGRAMMED Instruction Course with grading service, and top-grain leather carrying case . . . a $\$ 50$ value for less than $\$ 25$! Send coupon for FREE booklet. Cleveland Institute of Electronics, Dept. QT-123, 1776 E. 17th St., Cleveland, Ohio 44114.

Where Did The Signal Go?

(Continued from page 16°)
m.u.f., the less the attenuation. For example, you may find that both 20 and 10 meters are upen to a particular DX location. As a general rule although there are many variables that can geb into the act - the 10 -meter signals will be much stronger than those on 20 . The reason is that 10 meters is closer to the m.u.f., so the signal absorption is less.

The Institute for Telecommunication Sciences (ITS) of the Environmental Science Services Administration (ESSA) publishes monthly charts showing m.u.f. predictions over the world: these are available from the U. S. Government Printing Office, Washington, D. C. 20402 , at 25 cents for a single issue or $\$ 2.75$ for an annual subscription (12 issues). Instructions for use of the charts are given in "Handbook For CRPL lonospheric Predictions Based On Numerical Methods of Mapping," also available from G.P.O., for 40 cents.

As we mentioned above, the m.u.f. has been known to go as high as 70 Mc . during the peak of the sunspot cycle. Under these conditions (or when the m.u.f. rises abuve 50 Mc .) the $50-\mathrm{Mc}$. band is open for DX contacts. Normally, this band is not open for ionospheric contacts, but on occasion the necessary amount of ionization can occur in the E layer ("Sporadic-E" ionization) and contacts in the 1000 - to 2000 -milerange, or shorter distancess, cau take place.

On the 2 -meter band and higher, the majority of contacts are short range, with cousistent work possible up to about 50 miles, depending on the terrain and antennas used. Contacts via the E layer have taken place on this band but they are rare. More frequent are long distance coutacts via "tropospheric" openings. Such openings depend on atmospheric conditions that exist from a few thousand feet to several miles above the earth. Under favorable conditions signals will be refracted back to eurth, permitting long-distauce contacts. These upeniugs usually oncur when there is a temperature inversion, a layer of cold air over a layer of warm air.
Still another type of propagation that is frequent on this band is an "aurora opening". When there is an aurora borealis over the polar latitudes, signals tend to "bounce" off the aurora curtain, permitting long-distance contacts.
One phenomenou that wasn't mentioned was the solar Hare. You may someday turn on your receiver and not hear a single signal -- or, even worse, be listening to a crowded band and all of a sudden have your receiver go almost completely dead. Before you start packing the receiver up to ship it back to the manufacturer, wait a bit. While not common, a sudden disturbance on the sun can completely wipe out ionospheric communication, or degrade signals to the point where you think something is wrong with the gear. Wait a while before making any drastic decisions - the band will come back!
[5F-]

Galaíy Vmark

Galaxy V Mark 3	$\$ 420.00$
Galaxy AC-400 Power Supply	89.95
Galaxy SC-35 Speaker Console	19.95
Shure 444 Microphone	42.50
Hy-Gain TH3 MK3	$\underline{124.95}$
	$\mathbf{\$ 6 9 7 . 3 5}$

SPECIAL PACKAGE PRICE
$\$ 619.00$ - $\$ 21$. Month
$\$ 619.00-\$ 21$. Month
No Down Payment - Immediate Delivery

FEATURES

- New 500 Watt SSB Power
- Sharp, Crisp, Clear Audio
- New CW Sidetone Audio
- New Solid State VFO
- New CW Break-in Option
- New CW Filter Option
- New ALC Circuit
- New Precise Vernier Logging Scale

PHONE 806 POrter 2.8759 / 1316 19th Street / Lubbock, Texas 79401

ATTENTION, HAMS! PRICES CUT!

AVAILABLE THROUGH YOUR LOCAL DISTRIBUTOR

DOW-KEY COMPANY
2260 INDUSTRIAL LANE
BROOMFIELD,
COLORADO 80020

Try The FMT!!!

amples of the kind of make-do ingenuity which hams have been known for for years. And it worked.

Take a moment to try your best with the next open FAIT from W1AW. With repeated practice, you, too, will gradually approach the limits of the accuracy permitted by your equipment. You'll find it a fascinating challenge.

The September 14, 1968 (GMT) test will be open to all. Full rules will appear in August 1968 QST' Operating News.

Guod luck!

Sweep-Tube Amplifier Design (Continued from page s.5)

antenna. The TV antemna was 6 feet away from one end of the 80 -meter half-wave antenna.

At so0 watts input (c.w. conditions) an outpul of 500 watts was easily obtained, indicating an overall efficiency of 62.5 percent. This compares favorably with the performance of the WA4KFOW9GFS four-tube amplifier described in their technical paper. They used a pi-section output tank. This amplifier, Fig. 1, uses a tapped plate tank to obtain the right load resistance. Either method works well provided the right coustauts are chosen.

During tests with a two-tone signal a p.e.p. input of 1200 watts was established. The peakenvelope output power was approximately 700 watts (WA4KFO obtained slightly more), resulting in an efficiency of roughly 60 percent. It can be seen from this that a sweep-tube amplifier of this kind is capable of giving a worth-while boost to signals from medium-puwer transmitters. A "barefoot" exciter with 100 to 200 watts p.e.p. input might produce a marginal signal under some conditions. By adding a 1200 -watt sweep-tube amplifier (p.e.p. input), the signal level should rise S to 11 db ., a worthwhile increase when the going gets rough.

The circuit of Fig. 1 is wired for use with transceivers of the Heath HW-12 variety. That is to say, a relay is used to provide a switch-through feature so the amplifier can remain in standby when not needed, yet the transceiver can be operated through it.

1 finul word of warning! Sweep tubes are not desiged for continuous operating at these power levels. Do not attempt to use them as a.m. linear amplifiers except at extremely low power levels. In tuning up, dip the plate current quickly. Tuneup should always be done at very low power -..:0 to 100 watts output-limiting the key-down time to no more than 20 seconds. After initial tuneup the power can be increased to its peak value and the tuning quickly touched up. The for-ward-power reading on au s.w.r. indicator is helpful for optimizing the final adjustments.

The hints should help prospective builders of sweep-tube amplifiers to avoid some common pitfalls. The rules apply to all TV sweep tubes that are suitable for use in linear amplifiers, and there

BARRY ELECTRONICS

METERS

$3^{\prime \prime}$ SQUARE WACLINE 0-50 MICROAMMETER. New orig. box. \$6.95.
$3^{\prime \prime}$ SQUARE WESTINGHOUSE 0-3 AMPS D.C. METER. Orig. box. Type RX-35. \$5.95.
$\mathbf{3}^{\prime \prime}$ SQ. WESTON 0-250 VOLTS A.G. VOLTMETER. Uperates from 25 to 125 CPS. Weston Model 476. Orig. Weston Box. $\$ 5.95$.

CUSH CRAFT $11 / 4$ METER BIG WIIEEL Model ABW220. $\$ 10.95$.
CUSH CRAFT 2 METER BIG WHEEL 1 BIV 144. $\$ 12.95$.
HY-GAIN 203BA, 20 Meter 3 clement beam. $\$ 79.95$ (Ppd. 48 states).
HY-GAIN TH3 JR. (3 Flement Tri-Band) 10, 15, 20. \$74.50. (Ppd. 48 States).
HY-GAIN TH3 MK2. (3 Element Beam. Tri-Band) 10, 15, 20. $\$ 114.95$ (Ppd. 48 States). COURIER TRANSCEIVERS. Juit out. New protuction. " 23 Plus" 2.3 ('hannels. $\$ 179.00$. COURIER TRAVELLER, smallest 23 channel Transceiver for Mobile made. \$139.00.

MILLEN GDO Millen \#90651. 1.i to 300 Mcs. $\$ 78.50$ (Pnd. 48 States)
NOISE-GANCELLING CARBON COMMUNICATION MICROPIIONES. Brand New, hand held - PTT switch, with coiled cord. $\$ 4.95$ each. HY-GAIN TH6DXX is element) 10, 15 and 20 Meter Beam. $\$ 159.95$ (Pnd. 48 States).
MILLEN TRANSMATCH, JR. (300 Watts Peak) Millen \#92201. 5 Bands. $\$ 77.00$.
DRAKE MN-4 (200 WATTS) Antenna Matching Network. \$90.00.
DRAKE MN-2000 (2000 Watts P.E.P.) Antenna Matching Network. \$160.00.
TUBE HEADQUARTERS . . BRAND NEW FACTORY STOCK 572B (a) $\$ 13.95$; 811A $\$ 4.60$; $866 . \mathrm{A} \$ 1.65$; 872.A $\$ 5.95$; 6146B/8298 (m) $\$ 3.95$. (We also buy UNUSED Tubes).
VACUUM VARIABLE CAPACITORS, Amateur (ear and Military Test equipment). Write today for CASII offers.
TRADE IN SPECIALS: (subject to prior sale)
DRAKE TR-4, with DRAKE MS SPEAKER. $\$ 375.00$ for both.

> 1,000 P.I.V. © 1.2 AMPS.
> 1,000 VOLT (P.I.V.)
> (i) 1.2 Amp . Diodes 30 d each.
ALUMINUM DIE-CAST BOXES
Excellent for equipment building. Endless applica-
tions for Mfrs., Labs, Experimenters. etc. Excel.
for Junction Boxes. All have unique guide slot
mounting systems for circuit boards. High stan-
dard of construction. Flanged edge construction
(inner lip, insures tight seal). Strong, Kugged-
Light: five sizes:

GALAXY V, MARK 2 (5 Band SSB) TRANSCEIVER with Galaxy i.C. P.S. \$350.00 for both. SOMERKAMP FI,-209B (200 WATT SSB) 5 BAND TRANSMITTER. New. \$350.00.
(Same as above, but new Demonstrator $\$ 310.00$). FLEET COURIER 30B. 30 Watts Transceiver. Powered ior AM Business and commercial operation. Freq. range $25-45 \mathrm{mc}$. Completely selfcontained. $\$ 259.00$. We carry complete Courier equipment.

We carry Fanon Wireless and Wired Intercoms, and Intercom Phones. Advise your needs and we will suggest a system.

Also save on unused, lab-certified (R.F. tester) surnlus and factory terminations. Jobber-hoxed receiving tubes in stock at 60% (and better) off list.

Vacation: We will close for vacation July 1 ist and we will reopen on July 16th.

STILL SHECIALIZING IN TUBES AND SEMICONDUCTORS FRANCHISET JISTRIBUTOR FOK BOMAC, CETRON, EIMAC.ITT, JENNINGS, MACHIETT PENTA, KAYTHEON, VARIAN, WESTINGHOUSE AND MANY OTHERS.
 WALKER 5-7000 (Area Code 2t 2)
Finclosell is money order or check and my order. Prices TOB. NVC. Shipmentsover 20 lbs . will he shipped collect for hipping charkes. 1. ers than 201 bs. include suificient postage. Any overage will he refindell Frapile tubes shipperl via Railway Express. Minimum order $\$ 5.00$.
$7 . \mathrm{Send} 10 \mathrm{c}$ for 72 page (ireensheet Catalog $\$ 18$. (Prices subtect to change) Write for your copy.
4 Send information.

Namc... . Title

\qquad
City.... State Zip
\qquad
\qquad

- 16 Wraplock Spreader Arm Clamps Add $\$ 3.50$ for PPD
2.3-4 or more element Quads available Write for FREE BROCHURE and Price List

CUBEX COMPANY
 P.O. Box 732, Altadena, California 91001 Phone: (213) 798.8106

YOU CAN'T SAY "QUAD" BETTER THAN "CUBEX"

are many of them that work well. An inexpensive amplifier can be built by following the basic design described. It is worthwhile to consider a husky 'TV-set power transformer and bridgerectifier setup forbuilding alow-cost'powersupply. It should be possible to get 700 or 800 volts d.c. If a good stiff power supply is wanted, the output capacitance of the filter should be ou the order of $100 \mu \mathrm{f}$. Using an old TV transformer and this amount of capacitance can provide a powersupply with acceptable regulation for an s.s.b. amplifier of 600 to 800 watts d.c. input.

प5F-

Digital Logic Devices

(Continued from proe \% 1)
stage. Some flip-flops are so eonstructed that they become automatic counters if the S and C inputs are ignored entirely. The user must rely heavily on the published data to settle all of the "perhaps" and "sometimes" which have appeared in this article.

Of course, there is a lot more to this game than has been covered here. The author hopes that gathering all these loose ends into one article will serve as a guide and reference to those creative homebrew brethren among us who otherwise might be confused by all these new words in our old ham radio world.

प57

How's DX?

(Continued from page 98)

W2VOZ
W4GTS mentions W6KNH's skeds with HV3SJ, 21, 290-kHz. s.s.b. at 1600 GMMT.- $-\overline{5} \overline{\mathrm{D}}$ Ountinental comment courtesy club newshawks: $\bar{s} M \overline{5} \bar{P} \bar{W}$ vacationed in June as Y'U7LAE with an FT-100 and dipole. . . . CT1QFP was an Uporto Engineering College special in April and May. . . . WB6FCE dropped into HV3SJ for ti00 guest QSOs, visiting jovially with 11s HCJ MGM OVL WX and others. W6VPV, he says, has the big California signal in Italy. HB $A A G$, sole Liechtenstein ham resident, appars on $21,266 \mathrm{kHz}$. around 2030 GMTT. . . PAgVDV, a VERON DX ${ }^{2}$ press stati member for eleven vears, leaves Holland for three years in Curacao and vicinity.
A SIA-ZC+AK's Mick gives us the Cyprus picture via A WHAJJ: "This RAF club station's three operators work mostly s.s.b. on 10,15 und 20 meters. Among other actives, ZC 4 RB works Stateside reqularly on 20 phone, and is very keen for 40,80 and 160 ZCtGMI likes 20 sideband or c.w. with a KW-2000. ZCtTK occasionally operates c.w. but ZCiAC, another club station, is fairly inactive. W. Wat $Z \mathrm{CC} 4 \mathrm{~A}$ have our own personal gear but we' ve tapped RAF resources for a KW-2000, KW-600 linear (100 watts p.e.p.), $\mathbf{4 0 - f t . - h i g h ~ T . A - 3 3 ~ j r . , ~ k r o u n d - p l a n e ~ a n d ~ 8 0 - ~}$ ft.-high multiband dipole." Mick, John and Mike ar.. with RAF's mountain rescue team stationed at Akrotiri. ZCtAK signed ZC4RAF in April-May Royal Air Force 00th Anniversary doings - K3Uخ゙Z writes from Thailand that he's about to join HS3s UR and TM on 20 as HS3ZZ. "We can be heard around $14,170 \mathrm{kc}$. bctween 1500 and 2.400 (\ddagger INT." W'6HDO tells ARRL's WII) " (Got on 20 ()s.8.h. as HSIBD the other night and quickly ran into PK8YIMI." At this writing IIS stations still are incommunicado for W/Ks due to ITU/FC'C Ban status
KR6NR discloses, "On November \%.3, 1968, Okinawu Amateur Radio Club will sponsor a KRG Contest to kive the world an excellent opportunity to work Okinawa on c.w. und phone from 10 through 80 meters." We'll supply specitics in a later "How's".-. - Participation particulars will also be forthcoming for the Fifth VU/4S7 UX Coutest due September 7 th -8 th (c.w.) and 14 th-15th (phone) --.-" "Keyhan, TA1RT, is the first YL operator in Turkey," reveals KtEPI. "An IIW-32 is on the way to her. She's 20 and quite attractive." (Quick, Jeeves, the Istanbul bearing!).....-K'jUMW finds sidehand contost ace JA?CWX preparing a move to Seattle after completing engincering studics in Japan Orientations via the clubs press: (R9AH stavs in Hong hong but CR9AK may be workable. . . 9K2BJ favors 15 phone

Gateway

\author{

* HOW TO BECOME A RADIO AMATEUR
 * OPERATING AN AMATEUR RADIO STATION
 * THE RADIO AMATEUR'S LICENSE MANUAL * LEARNING THE RADIO TELEGRAPH CODE
}

Anyone starting out in amateur radio will find these publications a necessary part of his reading and studying for the coveted amateur radio operafor's ficket. Written in clear, concise language, they help point the way for the beginner. Tried and proven by thousands upon thousands of amateurs, these ARRL publications are truly the "Gateway to Amateur Radio."

\$2.00
 POSTPAID

The American Radio Relay League, Inc.-Newingion, Conn. 06111
$0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 00000 \cdot 0 \cdot 0 \cdot 0 \cdot$ ANTENNA STUFF

In 100 foot rolls only

450 ohm open wire．Per 100 feet $\$ 4.62$
300 ohm open wire．Per 100 feet 4.29
In 100 ft ．inferconnected coils
18 Copperweld．Per 100 feet \＄ 1.09
14 Copperweld．Per 100 fee 2.74
12 Copperweld．Per 100 fee 3.79
14 Copper－Solid．Per 100 feet 3.95
12 Copper－Solid．Per 100 feet 5.26
Times T4－50 L：Loss 8U．Per foot 18
limes T5－50 L．／Loss 58U．Per foot 10
Glass Line－guy wire．Per 100 feet 3.52
Hy－Gain Balun．Each 14.95
W2AU Balun．Each 12.95
Blitz Bugs．Each 4.95
（Canadian Amateurs Send U．S．Funds Only）f．o．b．HartfordInclude Postage
See CORKY，W1KXM，orWARD，W1WRQ
AtHATRY of HARTFORD100 High Street

Tel：203－527－1881 • Hartford，Conn． 06103
Connecticut＇s Oldest Ham Store

 MA give each other a chance for Nepal on $\because U$ sideband． － $\mathrm{v}^{\text {A }}$ APAR expects rarly arrival of s．s．b．apparatus． CW8．AX anticipates a three－year Laos $\mathcal{D X}$ caretr．．．． The last of the once legion VSYs is VS9MB，an RAF Mal－ dives effort on 15 －and 20 －meter code and voice around 1030 and 1630 CiMT．．．．JA AIIRU was behind JY1HRU＇s mike and key in April．．．．K．tこs DO and LS are now prez and verp of the Jiar East Auxiliary Radio League．New or renewed FEARL memberships are claimed by $\mathrm{KAs} 2 G W$ （WB6SLF），こHD（W3WZN），2OM（K6A8X），こRM （ K 7 VCX ）and 9AA（WAIDSN）．
A FRICA－BOICB keeps Somalia available on $14,2 \dot{Z}$ A．or 11370 ke．，uccording to QSL helper W1YRC duily on W 21,273 kc．at 1730 FPI scheduling $9 U 5 \mathrm{~GB}$ almost daily on $21,273 \mathrm{kc}$ ．at 1730 cinIT，the latter with carrier ．－．．．ZELWPC，ytaffed by $/ 2 E 1 \mathrm{~B}$ CL JE and others， operated from the site of the 15th World Ploughing Contest near Salisbury in April－May．If you QSOd this one and live other ZEs between OHO GMIT，April $\because 6$（ith，and 2400 ， June 30th，you ought to check with WPC iward，P．O． Box 2377 ，Salisbury，for specs on a dandy diploma
In a similar activity，CR7FLM hailed from the Agricultural． Commercial and Industrial fair of Mozambique in Lourenco Marques under LREM sponsorship ．．．．．．－Africa tidbits via aforementioned elubs literature： $\bar{Z} \dot{D} \overline{7} s$ M on ten sideband，Gs on 15 and 20 c．w．，and $5 H$ on 20 s．s．b． still olter sit．Helena．．．Libyan DN dichards are 5its $3 \mathrm{TP}, 14,050-\mathrm{kHz}$ ．c．w．at 200 GMT ，und 4 TZ on 20 voice． － $9 X 5 N I W$ yoes back to Belgium this month，logs and ali．．．．ZD8\％（W＇6BIV）helps clear paths for yU5NK＇s QRP and dipole around $21,260 \mathrm{kc}$ ．at 1930 GNT or so．
（）CEANIA－＂Ed of KH6EDY＂is due for rotation back to the States in June or July，＂notes W6EYMI．＂As vet no ham operator has been ordered to replace him at the Kure island USCG loran station．Ed＇s HW 32 keeps him on $\because 0$ meters where uperation is devoted to tratlic handling and as much I Xing as he can squeeze into utt－duty hours．＂ made－PK8YIM enjoys 20 －meter voice work with a home－ made 20 －watt 61.46 rig rockbound on $14,152 \mathrm{kHz}$ ．and an old BC－312 receiver at Bogor，western Jara．．．－．＂I＇ll be KA2IJ again thissummer，＂reports hH6IJ，＂then hopefully a VR2 for a while before going to Harvard in the fall as KH6IJ／1 or K1PND．＂．－．．．－W1YRC writes，＂VK9KS of New Guinea，uctive at $0700-1300$（iMIT on 15 and 20 meters as time und conditions permit，will make business trips to the Solomons in the near future．Depending on circumstances he will try to operate from VRt－land．＂ ．．．－－＂Have an SB－101 on the air from my Volkswagen，＂ הays W4AMP／KH6，foiling Navy restriction on gear in yuarters at his post．＂I also operate elub station KII6UL on week ends．＂Don formerly sikned KL7BPK
W6EAY helps W7FFF／mm（ex－ZD8BB），making Pacitic runs aboard Canada Bear，accumulate electronics goodies for the kG6NAS gang ．－．．．．－Dust off your western rhombics for the VK／ZL／Oceania DX Test due on the first two week ends of October，lads，details coming．
HEREABOUTS－Aw shuckins，two new＂countries＂ －1 didn＇t quite make it，judging from a Washington star clipping considerately forwarded by W9SZR／4．Abalonsa and Taluga were land－fill nations due to appear on Cortes bauk，a navigational hazard 110 miles off San Diego，until promoters were foiled，at least temporarily，by legal ob－ jections filed by Uncle Sam． \qquad －VP．2GAK of Grenada Ainateur Radio Club seeks ways and means to increase single－sideband activity down his way．Gear is scarce be－ cause of import obstacles ．．．．．－＂I don＇t work＇em all but I sure give＇rtu a try．＂declares giant－killer W2ICO，collect－ ing plenty of juicies with 35 watts and an indoor wirt on 15 and 20 c．w．．．．－＂There＇s so much $D X$ waiting to be worked on General bands I find no time to write Jer：vers about it，＂ruthuses ex－WN1ION with 6if e．w．countries in his first six days as WA1ION．WAlIIVL is another recent Novice grad who closed his WN log after $38 / 32$ countries worked／contirmed，WAC，WAS and a thousand gratifying QSOs．．．．－．WA1FHU says WgERV／mm，lately working $10 \mathrm{c} . \mathrm{w}$ ．from the mouth of the Amazon，returns from a year－ long vovage to India．．．．．－On the 13th－14th of this month you＇ll find portable serens vigorously pushing Wyoming QSOs near $14,0 \div 0,14,210,21,010,21,280,28,0.10$ and $28,580 \mathrm{kc}$ ．thanks to Utah 11X Association and K7ZIA －－ $\bar{y} \dot{Y}-$ MTRA，FLBRA，KA8RA，OH5RA，VK2RA and $\bar{y} \dot{Y} \overline{4} R A$ contirmed a hard－won＂RA－WAC＂for W $2 R A$ －－－WB2OZW relays OX3FS＇s four－watt offer to schedule Yanks interested in real QRP fun on 20 c．w． ．－．－．W4UF，one of hamdom＇s most expert YL $\ddot{D} \dot{X}$ practitioners，enjoys revived long－haul interest with a new beam and tower down Florida way．－．．．－Frustrated this spring by transportation impossibilities，XE2YP \＆（o． hope for productive Revilla（iigedos developments by October ．．．．－KHJLD（ex－6O6BW）keeps in touch from Rat isle＇s KL7GFN club station ．．．．．．WA6GYR departs OX5AQ and XPIAA this month ．－．－．－Check with Mexico＇s l／MRE fordata on fancy sheepskins awarded for sufficient contacts with XE and 4A brethren this year after March 21st ．．．－．W6s DOD and KG，lusme Foundation＇s dynamic $\bar{D} \dot{X}$ duo，expect to fire up from new East Bay quarters this month．

REQUIRING BUFFER STORAGE OR SPEED CHANGE

The Model 1300 Electronic Storage Unit provides buffer storage of standard $5,6,7$, or 8 level telegraph information. it is ideally suited to function as an "on-line" interface between telegraph circuits operating at different speeds or to store routine messages necessitated by busy circuits or high priority traffic. The unit is intended to directly replace conventional electromechanical punched paper tape equipment now used for similar purposes. Basic storage capacity . . . 14,400 bits (2,4005 -level characters).
Input is standard Serial 5, 6, 7, or 8 level teleprinter code, $60-200$ wpm. Output is standard Serial 5, 6, 7, or 8 level teleprinter code, $60-200 \mathrm{wpm}$. Solid-state digital design occupying $31 / 2^{\prime \prime}$ of standard $19^{\prime \prime}$ relay rack. Model 1300 Electronic Storage Unit / $\$ 2400.00$ FOB / Frederick, Md. / 90 days delivery

RADIO TELETYPE EQUIPMENT

Teletype Models 33, 32, 29, 28 ASR, 28 KSR, 28 LPR, 28 I,ARP, 28 IXD, 28 LBXD1, 11, 15, 19, Page Printers, Perforators, Reperforators, Trans-Dist. polar relays. tape winders, cabinets. Collins Receivers, $51 J-3,51 \mathrm{~J}-1, \mathrm{R}-388, \mathrm{R}-390 \mathrm{~A}, \mathrm{R}-220$. SP600,J, Frequency Shift Converters. D.C. Power Supplies.

ILLTRONICS-HOW ARD CO. Box 19, Boston, Mass. 02101

Tel: 617-742-0018

ENGINEERING
 AMATEUR STATION and EQUIPMENT

Design. Development, Construction for INDIVIDUALS and MANUFACTURERS

Carl N. Brooks, P.E.
Consulting Engineer
P.O. Box 4367B

Inglewood, Calif. 90309

M \& M's Electronic Keyer the "DAH-DITTER ${ }^{\text {® }}$ "
 MODEL EK-1A

ONLY \$34.95
Assembled and Tested

All solld state with space age integrated circuits Fully self-completing on both Dah and Dit Fixed 3/1 Dah/Dit ratio for perfect code Builtin AC power supply Fully isolated reed relay output Built-in side tone oscillator and speakere Speed range 5 to 40 WPM.

Send your order direct to:
M \& M ELECTRONICS
6835 Sunnybrook, N.E., Atlanta, Georgia 30328

CAMP ALBERT BUTLER INVITES NOVICES \& TECHNICIANS OF ALL AGES TO TRY FOR YOUR GENERAL CLASS TICKET
THIS SUMMER! 9TH SEASON!
Also, courses for Advanced and Extra Class Licenses
T his Co-kd Amatcur Radio C'amp Y'MCA owned and operated. is designed for iust ou campers. There is no age limit but a Novice or Technician license is desirel rime will be divided between radio classes and the usual camp activities such as swimming, archery, ritiery. golf privileges, etc.
Cntire Staft consists of liernsed hams who have been instructors in C lifectrical Enginecring in some of our tinest colleges and universitics.
('amp upens on August 3rd and closes Außust 17th.
Tuition of $\$ 175$ includes usual camp expenses
books, textbooks. Health and Accident insurance.
C. L. Peters. K4DNJ

General Secrelary
General.secrelary.M.C.A
Elkin, North Carolina 28621
Please send me the kooklet and Application Blank for the Camp Albert Butler Kadio Session.
NAME
\| CALL
| ADDRESS
| CITY
.STATE.

Grand Central Radio, New York midtown headquarters for famous Hallicrafters.

New! SR 400 Cyclone Transceiver $\$ 799$. PS-500 Power Supply $\$ 119$.

Now a 5-band amateur fixed/mobile transceiver from Hallicrafters with professional engineering. Exclusive built-in CW filter. Ultra-smooth tuning drive with true 1 KHz readout. Amplified automatic level control. 400 watts (PEP). Buy it at Grand Central Radio.

All Hallicrafters in stock for immediate delivery. Complete Audio Demonstration Department.

Write or see us for the best deal. You know you can depend on us.

Grand Central Radio
124 East 44th Street. MU 2-3869.
One door east of Lexington Ave.
ALL-BAND ANTENNA CONNECTOR

HYE-QUE 1 molded connector has eyelets for securing antenna elements, heary copper leads, cuax l'L259 connector for feedline, and tie-point for antenns support. Drip-cap protects connector. Reinforced. At your dealer's. or $\$ 2.95$ postpd. Companion in sulutors. 2 for 99 ppd. Instructions included.
BUDWIG MFG. CO., P.0. Box 97A, Ramona, Calif. 92065

ENJOY EASY, RESTFUL KEYING With VIBROPLEX

 Bending becomes iun instead of work with the SEMI-AUTO MATIC Vibroplex. It actually does all the arm-tiring nerve wrecking work for won. Adjustable to any desired speed. Standard models have nolished Chromium top parts and gray base. DeLuxe mod els also include Chromium Base and red finger and thumb pieces. Five models to choose from, priced at $\$ 25.95$ to the 24 K Gold Plated Base "Presentation" at $\$ 43.95$

VIBRO-KEYER

Works nerfectly with any Electronic Transmitting Unit. Veighs $28 / 4 \mathrm{lbs}$., with a base $312^{\prime \prime}$ by $41 / 2^{\prime \prime}$. Has Vibropiex's finely polished parts, red knob and finger, and thumb pieces. Standard model $\$ 20.95$; DeLuxe model includes Chromium Plated Base at only $\$ 27.50$.
iJdertoday at your dealers or direct
THE VIBROPLEX CO., INC. 833 Broadway New York, N. Y. 10003

FREE Foldor

CALL-IDENT TYMETER

10-MINUTE STATION CALL REMINDER

\#124
22^{50}

10 -minute repeating timer buzzes warning to sign your call letters. Walnut or ebony plastic case. H4'", W73/4", D4". Wt. 3 lbs. 110V, 60 cy .1 year quarantee.

At Your Dealer, or WRITE TO
TYMETER ELECTRONICS

PENNWOOD NUMECHRON CO.

 7249 FRANKSTOWN AVE., PITTSBURGH 8, PA.HAM'S CARIBBEAN RETREAT!

". . . IN THE DOG HOUSE?" MOVE IN

WITH DESIGN INDUSTRIES WIFE-APPROVED COMMUNICATIONS DESK

. . . would YOU believe . . . SOME hams are permitted into the house .. . perhaps even the living room when their station includes a Design Industries Communications Desk or Console?

Send Today for Our Special Wife Pacification Kit
(Descriptive Brochure)
DESIGN INDUSTRIES, INC.
P.O. Box 19406

Dept. T
(214)-528-0150

Dallas, Texas 75219

demand the Iop signal on the band

ONLY
\$12.95
AMAT. NET
A 4 PURPOSE BALUN

USE A W2AU BALUN
WITH BUILT-IN SEALED TYPE LIGHTNING ARRESTER HANDLES FULL LEGAL POWER

ONLY
\$12.95
AMAT. NET
A 4 PURPOSE BALUN
the balun that has been proven and acCepted. now being used by the u.s. navy, COAST GUARD, AIR FORCE, ARMY, FCC, CIA, RCA, nbC, faA and canadian defense dept. and by thousands of hams in the usa and throughOUT THE WORLD. -ANOTHER FIRST-

Our exclusive sealed type lightning arrester helps prevent lightning damage to your valuable equipment, balun and coax. Don't wait until lightning strikes. Protect your investment now. DON'T BE MISLED! Our one style balun is adaptable to all antennas, Yagis, quads, inverted Vees and multi-bands.
Backed by 50 years of electronic knowhow Baluns "that don't break down" when instructions are adhered to.
Available at all leading dealers. If not, order direct. IT'S WHAT'S INSIDE THAT COUNTS

W2AU BALUN LETS ENTIRE ANTENNA RADIATE!

antenna partegn

CNUNE
\$ FOR \$ YOUR BEST BALUN BUY

STOP WASTING YOUR SIGNALI REMEMBER, YOUR ANTENNA IS THE MOST IMPORTANT PIECE OF GEAR YOU OWN.

1. Built-in lightning arrester
2. No Center insulator needed
3. Hang-up hook, perfect for inverted Vees
4. Broad banded-2.8 to 40 MC . Takes legal power limit. Two models;
1:1-50 ohm coax to 50 ohmbalanced antenna;
4:1-75 ohm coax to 300 ohmbalanced antenna or folded dipole.
A Must for inverted Vees, doublets, multi-band antenna quads, Yagis etc.

HELPS TVI PROBLEMS IMPROVES F/B RATIO by reducing line pickup

UNADILLA RADIATION PRODUCTS, Mfrs. of Baluns \& Quads, Unadilla, New York 13849

WORLD PREFIX MAP - Full color, $40^{\prime \prime} \times 28^{\prime \prime}$, shows pretixes on each country ... DX zones, time zones, cities, cross referenced tables postpaid $\$ 1.00$ RADIO AMATEURS GREAT CIRCLE CHART OF THE WORLD - from the center of the United States! Full color, $30^{\prime \prime} \times 25^{\prime \prime}$, listing Great Circle bearings in degrees for six major U.S. cities: Boston, Washington. D.C., Miami, Seattle, San Francisco \& Los Angeles.
postpaid $\$ 1.00$
RADIO AMATEURS MAP OF NORTH AMERICA! FuII color, $30^{\prime \prime} \times 25^{\prime \prime}$ - includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones, FCC frequency chart, plus informative information on each of the 50 United States and other Countries. . . . postpaid $\$ 1.00$ WORLD ATLAS - Only atlas compiled for radio amateurs. Packed with worid.wide information - includes 11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica -a complete set of maps of the world. 20 pages. size $81 / /^{\prime \prime} \times 12^{\prime \prime}$ postpaid $\$ 2.00$
Complete reference library of maps - set of 4 as listed above See your favorite dealer or order direct.

WRITE FOR fREE BROCHURE!

HAMS! MAKE $\$ 100$ to $\$ 500$ a month EXTRA

Measures CB and Business Radio and Marine and Aviation - and others!

Don't be caught short with a channel missing! Always be ready for a new customer . . . a channel frequency change . . . or band reassignment by the F.C.C.

Guaranteed Accuracy 0.001%.

 for FREE booklet "How to Make Money in Mobile-Radio Maintenance."
MAIL COUPON TODAY!

NAME
ADDRESS
CITY \qquad STATE \qquad ZIP

LAMPKIN LABORATORIES, INC. Mfg. Div., Bradenton, Fla. 33505

Cat. No. 522-509 (406-470 Mc)*

100 db Isolation for 2 Mc or Greater Separation -

Graph shows response curves when tuned for 2 Mc spacing
*Exact frequencies must be specified

This new custom-engineered CPC Duplexer consists of six cavities - one band-pass and one reject cavity on the transmitter side, and two band-pass and two reject cavities on the receiver side. Aperture coupling is used throughout, eliminating many cables and connectors ordinarily required for multi-cavity duplexers. It is designed to fit a standard 19" rack, and is shipped pre-tuned to specified frequencies. Write for Catalog 667.

QUADS
 SKYLANE

QUADS

6 meter
 \square

 up to 8 elements up to 6 elements11 meter
up to 6 elements from \$39.95

Quad Kits - or complete quads

Fiberglass Spreaders
$12^{\prime} 7^{\prime \prime}$ long
$13 / 8^{\prime \prime}{ }^{\prime \prime}$ butt- $1 / 2^{\prime \prime}$ tip

10-15-20 meters tri-banders of 2,3 , or 4 elements from $\$ 39.95$

Your choice-Single or 3 feed lines

Bamboo Spreaders 12' 7 " long
13/8" butt-1/2" tip $\$ 2.25$ each

Extra Special Offer to the purchaser of any E-Z Way Tower and any Quad, we offer 5% off the amateur net price and ship prepaid to your door in any of the 48 states.

Reflector Coils
Florida Authorized Distributor for E-Z WAY TOWERS SKYLANE PRODUCTS • Amateur Antenna Kits 406 BON AIR AVENUE, TEMPLE TERRACE, FLA. 33617 - Phone 813-988-4213

IMPORTANT ANNOUNCEMENT

 ALL VANGUARD CONVERTERS NOW USE

 ALL VANGUARD CONVERTERS NOW USE R C A DUAL GATE MOSFETS R C A DUAL GATE MOSFETS FOR BOTH THE RF AND MIXER STAGES

 FOR BOTH THE RF AND MIXER STAGES}

prices start at $\$ 26.95$
The performance and features of our new converters are so spectacular that they can only be fully described in our new illustrated catalog which is available FREE. Send for it today and see our entire line of converters, pre-amps and other communications equipment.
VANGUARD now makes the best converters. Buy one and be convinced.

Now. Tune your Antenna for Optimum Performance

with this new antenna noise bridge from omega-t . . . only *\$24.95!

Test antenna system for both resonant frequency and operating impedance. Replaces VSWR bridges or other antenna test equipment.
Tests beams - whips - dipoles - quads or complete antenna tuner systems. For use over entire range - 1 to 100 MHz .
*Freight included in U.S.A. Complete applications data and operating instructions included. If no distributor near you, order direct.
 Dealership inquiries invited. For descriptive literature, write:
omegat systems incorporated
516 w belt line road • richardson, texas $75080 \cdot(214)$ ad 5.5286

WHERE IN THE WORLD?

Find out at a glance from this 30×40 inch, eight color map. Printed on heavy map paper by RandMcNally, the ARRL world Map is easily read from your operating position. Country prefixes are on each country and listed in a marginal index. Continental boundaries and time zones are plainly marked. You can easily sec just where the DX station is located.

- with a MATERIAL DIFFERENCE!

Use, is one of the most dependable testimonials of endorsement, and Telrex products are in use in 139 Lands

"Beamed-Power"ANTENNAS,"BALUNS" I. V. KITS and ROTATOR SYSTEMS!

Most Technically-Perfected, Finest Communication Arrays in the World! Precision-Tuned-Matched and "Balun" Fed for "Balanced.Pattern" to assure "TOP-MAN-ON-THE-FREQUENCY" Results

Enjoy World renown TELREX performance, value and durability! Send for PL68 tech. data and pricing catalog, describing professionally engineered communication antenna systems, rotator-selsyn-indicator-systems. "Baluns", I.V. Kits. Towers, "Mono-Pole", "Big-Berthas", accessories, etc. etc.

EXCELLENT SELECTION-AT EXTREMELY

 LOW PRICES-48 HOUR DELIVERY CRYSTALS

Thousands of frequencies in stock. Types include HC6/U, HC18/U, FT-241, FT-243, FT-171, etc.
SEND $10 \&$ for catalog with oscillator circuits. Refunded on first order. 2400C Crystal Drive, Ft. Myers, Fla. 33901

SURPLUS EQUIPMENT WANTED TO BUY BY fls THE FASTEST GUN IN THE EAST

No horsing around, we pay fasl Ne if 24 hours . . . and we pay more. We'll swap or trade new equipment too . . We quote fast too. We also pay for shipping, insurance, etc. (iiil $A 8$, You call fast, now, collect, for fast quote. SPACE ELECTRONICS

You Bet!

I would like to become a member of ARRL and help support its many services to amateurs and amateur radio. Here's my $\$ 6.50$ (in the U.S. and Canada, $\$ 7.00$ elsewhere). Sign me up for a year's membership and twelve big issues of QST!

My name
Call
Street \qquad
City State Zip
(Please see the other side of this page for a list of available League publications.)
THE AMERICAN RADIO RELAY LEAGUE, INC., NEWINGTON, CONN. 06111
through. Provision is also made for push-totalk operation. The AutoLevel is not a clipper compressor - all rekulation is accomplished with a fast-acting photosensitive resistor that electronically regulates the input with a minimum of distortion. If you would like to increase your average output and still maintain a clean signal, the AutoLevel is the volume compressor for you...

Features:

- 14 db of compression (minimum)
- 115-volt ac power supply

The AutoLevel is the first maior breakthrough in volume processing in years. This unique device regulates the input signal to provide 14 db of compression. It is ideally suited to SSB and AM and may be used with ALC systems. A built-in bypass switch allows you to feed the microphone straight

- Input bypass switch
- All silicon transistors
- G-10 fiberglass printed circuit board
- Simple installation (installs in microphone lead). Dealerships available in some areas
F..."Meet Me in St. Loule": at
HAM RADIO CENTER
8342 Olive Blvd. St. Louis, Mo. 63132 Amateur Radio Equipment Sales \& Service

THE "MINI-BALUN"

Small - light -- efficient - weather proofed have your antenna radiate, not your feed line ".i.use for dipoles, doublets, yagis, inverted "V" etc. - has ferrite core. Coax fitting takes full legal power. 1 to 1 impedance ratio 3 to 30 mcs. Now with built-in lightning arrester. NET PPD in U.S.A.-\$9.00

BILADA MFG. CO.
P.O. Box 263

Manasquan, N.J. 08736

EASY TO LEARN CODE

It is easy and pleasant to learn or increase speed the modern way -- with an Instructograph Code reacher. Fixcellent for the
beginncr or advanced at udent. A duick vegictical and dependable method. Available tapes from hevinner's alphabet to tvpical messages on all subiects. Suee' range 5 to to WPM. Ahwavs reariv. No QRM. Beats having somene send to yon.

ENDORSED BY THOUSANDS!
The Instructugraph ciode Teacher literally takes the place of an operator-instructor and enables anyone to learn and mavier cole without urther assistance. Housands of suc.
 cessful operators have "acquired the code" with the Instructosraph System. Write toriay for full particulars and convenient rental plans

INSTRUCTOGRAPH COMPANY

5071-Q BROADWAY, CHICAGO, ILL. 60640 4700-Q. Crenshaw Blvd., LosไAngeles, Calif. 90043

$?$would like the following League publications shipped to me postpaid. I am enclosing payment of $\$$ \qquad (These prices apply only to the USA.)
Ship to this address:
NAME
CALL
STREET
CITY
STATE
ZIP ARRL HANDBOOK $\$ 4.00$ The standard comprehensive manual of amateur radiocommunication
UNDERSTANDING AMATEUR RADIO $\$ 2.00$ Written for the beginner-theory and how-tobuild it.VHF MANUAL
$\$ 2.50$
A new and thorough treatment of the amateur v.h.f. field

LICENSE MANUAL
$50 \neq$
Complete text of amateur regs, pius Q\&A for amateur examsHOW TO BECOME A RADIO AMATEUR $\$ 1.00$ All about amateur radio and how to get started
\square A COURSE IN RADIO FUNDAMENTALS $\$ 1.00$ Use this in conjunction with the Handbook ANTENNA BOOK Theory and construction of antennas SINGLE SIDEBAND FOR THE RADIO AMATEUR The best s.s.b. articles from Q.ST THE MOBILE MANUAL $\$ 2.50$ The best mobile articles from aST HINTS AND KINKS $\$ 1.00$ 300 practical ideas for your hamshack OPERATING MANUAL $\$ 1.00$
The techniques of operating your amateur station-DXing, ragchewing, traffic, emergencies, etc.
(Please see the other side of this page for an application for membership in ARRL and 12 issues of QST)

YOUR TAPE RECORDER IS READY TO TEACH CODE!

That's right! Your tape recorder is ready to help your code study. The CODEMASTER tapes give you professional instruction via your own tape machine. Now generated by digital computer, the CODEMASTER tapes are unsurpassed for timing accuracy. Whether you're just starting, going for your Amateur Extra, or somewhere in between, the CODEMASTER tapes are your best code-learning buy! Find your CODE-
 MASTER tape below!

STANDARD

SIGNAL GENERATOR

CM-11/2: An intermediate tape, especially for General Class exam
CM-1: For the beginner. A complete course of instruction is on IA the tape. Practice material at 4, 7,9 WPM. Prepares you for Novice exam. Includes code groups and punctuation.

CODEMASTER tapes are 2 -track monaural; available in two sizes: 7 -inch reel ($33 / 4 \mathrm{IPS}$) and $3 \frac{1}{4}$-inch reel ($1 / 8$ IPS). Will play on any but full-track machine. SPECIFY both type and size of tape you want. Any tape, $\$ 5.95$ postpaid USA 4th class. Any two tapes, $\$ 11.00$; all three, $\$ 15.00$ PPD. Immediate delivery. CODEMASTER tapes are made only by Pickering Radio Company, P. O. Box 29, Portsmouth, R. I. 02871. Satisfaction guaranteed. Dealers: inquire.

MODEL SG-83B $\$ 295.00$
50 Kc- 54 Mc. 1% dial accuracy. 1 Mc. xtal. Calibrated output 0.6 to 160,000 microvolts. Pure sine AM to 50%-no FM. All transistor. Battery or AC powered. Write for com. plimentary copy of instruction book with schematic. study. No instruction; just practice. $1 / 2 \mathrm{hr} 11$ WPM; 1 hr 14 WPM; $1 / 2 \mathrm{hr}$ at 17 WPM. Includes coded groups and straight text

CM-2: For Extra.Class license study. Mostly straight text; some (A) code groups. 1 hour at 20 WPM; $1 / 2$ hour each at 25 and 30 WPM. for real $Q R Q$, play this tape at twice speed 630 S. Berry Rd., St. Louis, Mo. 63122

BE SMART-BUY AND SAVE ON THE PLAN THAT FITS YOUR POCKETBOOK
Plan 1-Best terms-no finance charges-no trades! Plan 2--Best Cash Price-No Trades!
"Don't Delay-Write Today"
Drake-Hallicrafters-Hammarlund-Johnson National-SBE-Swan, etc. WILLARD S. WILSON, iNC. 405 Delaware Ave., Wilmington, Delaware 19801 Est. 1920 Willard-W3DQ Tel. 302•654-5344

Summertime
 Vacationtime!

Gummertime is also mobile and portable time. Why not take a rig along on your vacation? The Mobile Manual contains ideas and information for both types of operation. Compact mobile or portable equipment can be more fun than the big rig at home. Get yourself a copy of the latest Mobile Manual, 4th Edition, and start making your plans for a summer of operating enjoyment.

The American Radio Relay League, Inc.

NEWINGTON, CONN. 06111

QUALITY MERCHANDISE - QUALITY SERVICE SO WHY PAY MORE FOR THE BEST!

MERCHANDISE IN STOCK - PROMPT DELIVERY NATIONALLY ADVERTISED BRANDS, THE LATEST MODELS

TRIGGER ELECTRONICS - Exclusive Ham store - is as near as your phone or mailbox!

ALL PHONES: (AREA 312) 771-8616

STORE HOURS (CENTRAL TIME)

WEEKDAYS . . . 11:00 A.M. - 8:00 P.M.
SATURDAYS . . 9:00 A.M. - 3:00 P.M.

INSTANT SHIPMENT on all cash orders of new equipment. TRIGGER ELECTRONICS has the most complete inventory of amateur radio equipment and accessories in stock, for your convenience. Shipment is usually made the same day your order is received!
\$5.00 DOWN STARTS ANY BUDGET TIME PAYMENT! Order your goodies from this ad!

MIDWEST BANK CHARGE CARDS HONORED.

TRIGGER ELECTRONICS is conveniently located near the west city limits of Chicago on the main street of North Avenue (State Route \#64), 3 blocks west of Harlem Avenue (State Route \#43). Just 10 miles due west of downtown Chicago, or 20 minutes southeast of O'Hare Airport. Plenty of free parking. Come in and browse. See the latest in ham gear attractively displayed.

HAM-ADS

(1) Advertising shall pertain to products and services which are related to amateur radio
can any special typographical char will be accepted, nor can any special typographical arrangement, such as all one advertisement stand out from the others. No Box one advertisement stand out from the others. No Box may commercial type copy be signed solcly with ama teur call letters. Ham-ads signed only with a box numteur calt eetters. Ham-aus signed only with a box num(3) The Ham-Ad rate is 35% per word, except as noted in paragranh (6) below
Ham- Remittance in fuli must accompany copy, since tract discount or arred on our books. No cash or con(5) Closinz date for Hammission will be alhe second month preceding publication date
(6) A special rate of $10 ¢$ per word wili apply to advertising which, in our judgment. is obviously noncommercial in nature. Thus, advertising of bona fide surplus equipment owned, used and for sale by an in-
dividual or apparatus offered for exchange or advertisdividual or apparatus offered for exchange or advertisink inquiring for special equipment, takes the 104 rate. Address and signatures are charged for. except there is no charge for mipcode, which is essential you furnish. An attempt to deal in apparatus in quantity for profit. even if by an individual, is commercial and anl adver graphs (1). (2) and (5), apply to all advertising in this column regardless of which rate may apply.
quested copy, simature and address be print it reguested copy, simature and address be printed plainly but handwritten sianature must accompany preferred thorized insertions. No checking-conics can be supplicd (8) No advertiser may use more than 100 words in any one advertisement, nor more than one ad in one issuc. (9) Due to the tightness of production schedules, cancellation of a Ham-Ad already accepted cannot be guaranteed beyond the deadine noted in parasraph (5) above.

Having made no investigation of the advertisers in the classified columns except those obviously commercial in character. the publishers of OST are unable to vouch for ucts or services advertised.
A.W.A. Historical Radio Meet for old time amatcur and commercial onerators, historians and collectors. Smithsonian Washington, D.C. Oct. Sth. Write W2OY for details.
"SAROC" Fourth Annual Fun Convention scheduled January 8-12. 1969, in Hotel Sahara's new Space Convention center, 1.29 Vesas. Nevada. Advanced resistration closes January 1 , seminars: FM, MARS, RTTY, QCWA, WCARS-7255. Regis tration $\$ 12.00$ per person entitled "SAROC" Darticipant to special room rate $\$ 10.00$ plus room tax per night single or double occupancy, admittance to cocktail parties, technical seminars, exhibit area, Hotel Sahara's late show. Sunday breakfast equal to any banquet dinner. Ask any "Saroc" vet-
eran. Brochure planned November mailing for details OSP eran. Brochure planned November mailing for details OSP
OSI. card with zin. Southern Nevada ARC, Box 73, Boulder City, Nevada 89005.
LoUISVILLE Ham Kenvention. Executive lnn, Saturday, fugust 31, featuring fashions and wigs for the ladies, Manu forums, color ATV, semi-conductor seminar, Antennas, etc. vance to 648 South 4th, 40202.
HAMFESTERS Radio Club. Chicago, Illinois, proudly announces its 34th Annual Midwestern Hamtest, Sunday, August fith, at Santa fe park, ist and holt Road near chicago. He Hamfest features manufacturer and distributor exhibits. swappers row, awards and a variety of activities for all. Clowns and games for the children, activities for the XYL while you enjoy amatcur radio with friends and acquaintances. The Hamfest, cli thaxes illinots Amatcur Radio Keek August inf hruation by nroclamation of Governor
tickets write to Charles Borkowski, WA tickets write to Charles 8
BREAKFAST Club Hamfest July 20 and 21, Palmyra, Illinois. Errol Workman. K9ClL.
MOTOROLA used FM communication equipment bought and sold. WSHCO, Ralph Hicks, 813 B No. Federal Hiway, Fort Lauderdale, FTorida.
PRE WORLD WAR I operators will find many of their old buddies are members of the Old Old Timers Club. We welcome all anplicants whose first wireless contact was more than 40 years ago but qive snecial consideration to those pre-World War Protary of the Old Old Timers Club, P. O. Box 840, Corpus retary of the 78403 .
WELCOME To Maritime Mobile service net. 14317 Khz , daily $2130 L_{\text {. Amateur Radio's service to the fleet. Vic Barry, RDC }}$ USS Corry. DO817 FPO, N.Y., N.Y. 0950
TRADE ARRL $146 K$ Handbook for one ot 10 old Handbooks not in W4AA historical library. Need govt. Amateur Callbooks 1922 through 1926. early wireless magazines and catalogs. Wayne Nelson. Concord. N.C. 28025
SELL swap and buy ancient radio set and parts magazines. Laverty, 118 N . Wycomb. Landsdowne. Penna.
TUBES Warted. All types higher prices paid, Write or phone Ceco Communications, 120 West 18 th St.. N.Y., 11, N.Y. Tel:
DUMMY Loads, 1 KW, all-band, $\$ 7.95$; wired, $\$ 12.95$. Ham Kits, P. V. Box 175, Cranford, N.J. 07016.

QSL Cards?? America's Finest!! Personalized made-to-order V8DED Box 218 Holland Mich W8DED, Box 218. Holland, Michigan 49423.
OSLS "Brownie" W3CII, $\overline{3111}$ Lehigh, Allentown. Penna. QSLS stamp and call brings samples. Eddie Scott. W3CSX, Fairplay, Md.
C. FRITZ QSLs, samples 254. Stamps (deductible). Box 1684 Scottsdale. Arizona 85252
aSLS-SMS. Samples 104. Malgo Press, Box 373, M.O., Toledo Ohio 43601
I)ELUXE QSLS Petty, W2HAZ, P.O. Box 5237, Trenton, N.J. 08638 . Samples, 104.
104 Brings iree samples. Harry R. Sims, 3227 Missouri Ave., t. Louis. Mo. 63118

QSL, SWL, cards that are different. Quality Card stock. Samples 10\%. Home Print. 2416 Elmo Ave., Hamilton. Ohio 45015. CREATIVE QSL Cards. Personal attention. Imaginative new designs. Send $25 t$ Receive catalog, samples, and $50 \&$ refund
coupon. Wilkins Printing, Box $787-1$, Atascadero. Calif. 93422. RUBBER Stamps $\$ 1.15$ includes tax and postage. Clints' Radio, V2UDO. 32 Cumberland Ave., Verona. N.J. 07044.
QSLS, finest YLRL's. OMs samples 10c. W2DJH Press, War rensburg, N.Y. 12885.
3 - D OSL cards. recognized leader, among raised designs. Compliments aplenty! Prized collector's item. Samples $25 \$$ (refundable). 3-D QSL Co., Monson, Mass. 01057.
QSLS, SWLS, WPE. Samples $15 t$ in adv, Nicholas \& Son Printery. P.O. Box 11184. Phoenix. Ariz. 85() 17.
OSLS, samples, 20c. Fred Leyden. W1NZJ, 454 Proctor Ave., Revere, Massachusetts 0)2151
QSLS 300 for $\$ 4.35$, samples $10 \epsilon_{\text {. W9SKR. George Vesely, Rte. }}$ \#1. 100 Wilson Road, Ingleside, ill. 60041.
QSLS 3-color glossy 100, $\$ 4.50$ Rutgers Vari-Typing Service. Free samples Thomas St., Riegel Ridge. Milford, N.J. 08848. QSLS-100 3-color slossy $\$ 3.00$; silver globe on front, report form on back. Free samples. Rusprint, Box 7575, Kansas City, Mo. 64116 .
ORIGINAL EZ-1N double holders display 20 cards each in plastic. 3 for $\$ 1.00$ or 10 for $\$ 3.00$ prepaid and guaranteed. Frce Sample to Dealers or
Gallatin. Tenn. 37066.
PICTURE OSL cards of your shack. etc. from your photograph. $500, \$ 12.00,1000 \$ 15.25$. Also unusual non-picture deRigns. Gencrous sample pack. 4154 Fifth St., Philadelphia 19140.
OSLS: 3-color glossy: $200, \$ 6.99$ postpaid. Samples. 106. Gates Print. 31711 th Avenue. Juniata, Altoona, Penna. 16601
OUJALITY QSLS: Samples 25 (refundable). R. A. Larson Press, Box 45. Fairport, N.J. 14450.
OSLS's. Free samples, attractive designs. Fast return. W7IIZ Press. Box 2387. Eugenc. Ore. 97402.
OSIS. Kromkote glossy 2 \& 3 colors, attractive, distinctive, ilifferent. Choice of colors $100-\$ 3.00$ up. Samples 156 . Asent for Call-D-Cals. K2VOB Press, 240 West Kinney St., Newark, OSLS! WA6QAY Press. 15008 Orchid Ave., Poway, Calif. 92064 QSLS by K1FF. $\$ 2.00$ for 100 . Others at reasonable prices. Samples $25 \$$ deductible. KIFF QSLS, Box 33, Melrose Highlands. Mass. 03177.
RAISED Lettering QSL.s. Ace Printing. 6801 Clark Ave., Cleveland. Ohio 44102.
QSL cards. Finest quality. Economical prices. Fast service. Free samples. Little Print Shon. Drawer 9848. Austin. Texas 78757. OSLS. 100. $\$ 1.25$ and up. postpaid. Samples, dime. Holland, R3. Box 649 . Duluth. Minnesota 55803.
OSL Frce samples! CBM Printers, 5161 N. Hopkins, Milwaukee, Wis. 53209
RUBBER Stamps. Return mail delivery. postpaid. Basic price, $\$ 1.00$ first line, $50 \$$ each additional line. Request type style chart. Fulton Rubber Stamps, Route 216-A, Fulton, Maryland 20759.

RUBBER Stamps. Four lines with call letters. $\$ 1.50$ postoaid. finest quality, fastest service. Sherman's Stamps, Box 234, Natrona Hts, Penna. 15065.
PATTERSON Printing will continue the CSL SWLS XYL OMs cards service of the late Mr. Warren RoRers, KOAAB. Allus of Mew ideas and styles from time to time). Send dime for sample assortment to John Patterson, 961 Arcade St., St. Paul, Minn. 55106.
OSLS. Bix catalog, 10t. Filmerafters, Box 304, Martins Ferry, Ohio 43935
ATTENTION: New two-letter call amateurs and other hams: Your call letters engraved on executive desk stand. White letacrylic base. $\$ 3.25$, check or m.o. Lefor, W1DB, P.U. Box 164. Ridgeficld, Conn. U6877.

BADGES. Engraved laminated plastic $1^{\prime \prime} \times 3^{\prime \prime}$. Call and your first name, also for "XYL" and "Ir. Op". $\$ 1.25$ each, prepaid. Club NAMEPLATES, Call Letters, wall pressure-sensitive, $\$ 2.00$; desk type, $\$ 2.50$ Kronenberg, 1492 High Kidge Koad, Stamford. Conn. 06903.
COMPLETE Station package: SX-117, HT-44, tubes. antennas, test equipment. Zachary Botwinick, WB2QLU, 253-42 87th Dr., Bellerose. New York 11426.
WANTED: Military, commercial, Surplus, airborne, ground, transmitters, receivers. test-sets, especially Collins Airborne. We dale, Va. Phone: 703 -560-5480 collect. Box 156-C567, Annan
WANTED: 2 to 12 304TL tubes. Callanan. W9AU, 625 West Jackson Blvd., Chicago, III. 606066.

HT-44 and A.C. Supply \$250.00; SX-117. \$225.00; SR-42 and VFO $\$ 150.00$. All like new. W4MVC, 10 Carjen Ave., Asheville, N.C. $28 \times(14$.

MANUALS for surnlus clectronics. List $15 \$ \mathrm{~S}$. Consaivo, 4905 Knanne Drive, Washington, D.C. 20021.
HAM'S Spanish-English manual $\$ 3.00$ Ppd., Gabricl, K4BZY, 1329 N.E. 4 th Ave.. Fort Lauderdale, Florida 33304.
TUBES, test equipment, transmitters or receivers. Any and all types bousht for cash or trade un new or used ham gear. Air 1916 QSTS needed for personal collection. Price secondary. Ted Hames, W 2 KUW. 308 Hickory Street, Arlington, New Jersey 070132.

OOR Sale: SB-101 and SB-200. Wanted, kits to wirc. Heath preferred. 12 is of cost. some in stock. Professionally wired. I-an Kichter, K3SUN, 131 Florence Drive, Harrisburg. Penna. 17112. WE buy all types of tubes for cash, especially Eimac, subiect to our test. Maritime International Con., Box 516 , Hempstead, N. N.
iOYSTICK Variable frequency antenna systems solve space nrublems. Available immediately. SWL cilide, 218-S ciifford, CASH Paid tor your unused Tubes and good Ham and Commercial equipment. Send list to Barry, W2LNI, Barry Elec-
tronics, 512 Broadway, N.Y., N.Y. 10012, Tel: (212) W Alker tronics.
$5-7003$.
FOODIES. Cash for Teletypewriters, parts. List. Typetronics.
Bnx 8873 . Ft. Lauderdale, Fla. 33312.
WANTED: Tubes and all aircraft and ground radios, Inits like unit Test equipment everything. URM, AKM, GRM, etc Best offer paid. 22 years of fair dealing. Ted Dames Co., 30 ex Hickilly St., Arlington. New Jersey 07032 .
HAM Discount House Latest amateur equipment. Factory sealed cartons. Send selt-adiressed stamped envelope for lowest quotation on your needs.
INTERESTING Sample copy free. Write: "The Ham Trader," Sycamnre, Illinois 60178.
WANTED: For personal collection: Learning the Radiotelekraoh Code. Edition 4: How, to Become a Ratio Amateur, Edi-
tion 9 : The Kadio Amateur's License Manual, Edition 2,11 , t'on 9: The Kadio Amateur's License Manual, Edition 2, 11,
12. W' iCUT, 18 Mohawk Dr., Unionville. Conn. O6085. RTTY kear for sale. List issued monthly, 88 or 44 Mhy toroids. five for $\$ 1.50$ postpaid. Elliott Ruchanan
WGPVC. Assoc.. Inc. Buck, WE'RE Trying to complete our cullection of Callhooks at Headquarters. Anyone have extra copies of Government Callbooks
$1922-1925$ and Radio Amateur Callbooks 1928-1934? ARRL, 225 Main St. . Newington, Conn. Ofilli.
TUBES, test equipment, transmitters or receivers. Any and ali lypes bousht for cash or trade on new or used ham gear. Air Ground Electronics. 64 Grand Place, Kearny. New Jersey 07032 . WANTED: Model \#28 Teletype equipment. R-388, R-390A. Cash or trade for new amateur equipment. Altonics-Howard Co. Box 19. Boston. Mass. 02101.
SELL: CO. OST, Handbooks, old radio makazines. any quantity. Buy old radio pear and publications. Erv Rasmussen, 164 Inwell. Redwood City. Calif. 94062 .
NOVICE Crystals: 40-15M, \$1.33, 8uM, $\$ 1.83$. Free list. Nat Stinnette, Umatilla, Fla. 32784.
TOROIDS, 88 mh uncased $5 / \$ 2.50$. Postpaid. Humphrey. W'AgHKN, Box 34, Dixon. Calif.
WANTED: Military and commercial laboratory test equipment, Electronicratt, Box 13, Binghamton, N.Y. 13902.
SAVE On all makes of new and used equipment. Write or call Bob Grimes, 89 Aspen Road, Swampscott. Massachusetts. 617-$548-2530$ for the sear u waut at the prices u want to pay.
MICHIGAN Hams! Amateur supplies. standard brands. Store
hours hours
W. $8 R$ P. Purchase Radio Sunply, 327 E. Hoover St., Ann Arbor, W8RP. Purchase Radio Sunply. 327 E. Hoover St., Ann Arbor,
Michizan 48104 . Tel. NOrmandy $8-8262$.
RTTY Channel filters, octal mounted $\hat{\text { Sta }} 125 / 2975$. $\$ 5.95$ pair. Special filters for $171 \mathrm{~L}-2$. SASE for information. $88 . \mathrm{Mh}$. to: Selby Ave., Los Ángeles. Calif. 90034.
 TVXB, $\$ 360.00 ; \mathrm{MS}-4 . \quad \$ 17.50$; $\mathrm{KV}-4, \$ 83.00$; L-4B, \$580.00;
 8767.

1000 PVV 1.5 amp epoxy diodes, includes by-pass capacitors
 14225.

ESTATE Liquidation. SSAE brings list quality equipment. Paradd Engincering. 284 Rnute 10 . Dover. N.J. 07801 . HO-110 receiver, $\$ 135.00$: Johnson converter 6-2 meter, $\$ 35.00$;
Seneca VHF-1 transmitter. \$95: Heathkit scope Model OM-3. $\$ 35.00$; Eico modulator, driver model 730 . \$45.00. Howard Roberts. 635 Jayne Blvd.. Terryville, L. L.. N,Y. 11776 .
TOOORES Tranzeesters: New, unused, 6146B. \$4.00: 6CW4,
 AMATEUR Paradise Vacation. Livingstone Iodge. Mascoma l.ake, Enfield, N.H. Cosy cabin tor two weekly, \$55.00. Swimming, fishing, boats. sports. ham radin, Dartmouth golf tennis. Hot showers, fireplaces, light housekceping, children half. Lake
shore camn sites. Literature. A1. Q. Livingstone, W2OPN. 12-01 Ellis Avc., Fair Lawn, N.J. 07410.
pkop Pitch rotors, excellent, small 10:000:1. $\$ 45.00$. John Link,
$10 x 1$ Arnn St., Coca. Fla. 32922 .
HISTORICAI, Rare documents. Large number of OSTs from
1923 on to swap for Colin B. Kennedy longwave receiver. John 1923 on to swap for Colin B. Kennedy longwave
Brolley. 71941 st, Los Alamos. New Mexico 87544 .

TWENTY-Meter antenna system. Vesto HPX-100 tower, Telrex 20M-546 beam and A2675RIS rotor. \$1800 Fo.b. Alamakordo, New Mex. Write for details. Gary L. Grothen.
WVOMH, 710 Arnold, Alamazordo. New Mexico 883io.
KANGER. $10 / 11$ thru 160 meters. Excellent. $\$ 75.00$. Anderson. WOFPV, 639 North Wahsatch, Colorado Springs, Colo. 80903. SCHEMATICS For T-6I/AXT-2 transmitter. CRV-S9AAE cam-
era. CRV-60ABK monitor. Instruction manuals for follnwing era. CRV-60ABK monitor. Instruction manuals for following scopes. Type 241 Dumont. Hughes memo scope type 104. Jerry,
$K \bigotimes R H K$. 13312 Inverness Kd.. Hopkins, Minn. S5343.
SELL: Hallicrafters $\mathrm{SX}^{\mathrm{X}} 117 \mathrm{~K}$ R-48 speaker: Johnson Navigator transmitter: Heath HW-32, HP-23, PTT microphone: Hallicraftits. HA-1 keyer; Vibro-Key: Telex MRB-30 headset, new: Madel 15, p.sy table. spare keyboard and type basket; Essco W2JAV offer. Donald porter, WB2OKiD. 230 Merritt Dr., Uradell. New dersey 07649.
3000 V ${ }^{\prime \prime}$ in 3 Mf brand new GE Pyronal oil capacitors, $\$ 3.00$ each. Can mail. 3-1bs. each shinping weioht. FOB P. Wandelt. RD $\# 1$. Unadilla, New York 13849.
TELETYPE Gears, shifts, keytops, typebars. motors, torks, TDs, KSRs, ASRS, FSCs. toroids. vacuum variables. testsets, SRT subchasses. Buy. too! Typetronics. Box 8873, Ft. Lauderiale. Fla. 33312
HAMMARLUND HO-170C, factory installed I.F. noise blankEr. speaker. manual, 6 M preamp, $\$ 185.00$. No scratches. W2WANTED: Tubes. Diodes. Transistors and interrated circuits. Astral Electronics Corn. 150 Miller Strect, Elizabeth. N.J.
O7207. Tel: (201)-354-2420.
 AF67. $\$ 49,95$: Valiant $\$ 149.95$: Viking II, $90.95:$ inn I linear
 List. WRL, Rox 919 . Council Bluff. Inwa 51501 .
SELL: Collins S/Line: $75 \mathrm{~S}-1$, $32 \mathrm{~S}-1,516-\mathrm{F}-2$ w/speaker, cables and manuals. exclnt. \$57500: Collins, KWM-2, S1G-F2, exclnt. w/manuals. $\$ 700.00$: Hallicrafters HT-44 transmitter, nower nlete with cables, manuals. like new excint conde. $\$ 500.00$
 plattsburgh. N. Y. 1290) Tel: (518)-5h1-406s.
COUNSELLOR: Pennsylvania brother \& sicter camp seeks 1410 Ram E . 4 th man. Collere students contact Dronklyn. Navid Blumstein. OST and (O magazines back to 1954, for sale. In excellent condition. Reasonable. Ry the volume or save $\$$ ind take
all. W8RBW, 3267 Reddine, Columbus, Ohio 43221 . FOR Sale: (ronset GSB-100. S175.00; Hammarlund HO-11n, $\$ 125.00$: Globe Hishbander VHF-62 six and two meter $\$ 80$. 5 Lockwood I)rive. Roselle. N.J. 07203.
SEIL: Drake TR-4. MS-4. AC-3, D-104 with manuals and extras. All are in excellent condition, $\$ 500.00$, M. Tessler, 260-05 WIDOW'S Close-outs: Sola, floor model/power supply, rMC GSB-1 SSB receiver adapter, Collins $\begin{aligned} & \text { S1G-FL } 12 \text { V. mobile } \\ & \text { Supply. } \\ & \text { National } H R O-7, ~ A i l \\ & \text { coils, }\end{aligned}$ Supply. National HRO-7, All coils, speaker, power supply; 200 sig gen. Lerad 18 A frea. standard. E. Nrecision FSK Shifter FR-70-U, Bell 10 W . PA amo., black caninet 14×22 g 15. black cab. $36{ }^{x}{ }^{2} 22{ }^{8}$ is; Hallicrafters S-51. Army frea. one or all, as is where is. Mrs. Perle Gerard. Box 1. Frankfort, Ke. $40 \kappa 01$.
TRANSCEIVER HW-32. \$75: sterco amnlifier S0-watt. $\$ 7.500$. Amperex 4-400A, unused, $\$ 20.00$ C. Kump. WK7.YC. 1389 Chelsea Drive, Los Altos. California 94022. Tel (415)-9688037.

SX-111, $\$ 129.00:$ T-150 transmitter $\$ \$ 9.00$ RCA T- 1500 M
 First. Alamosa. Colorado 81101.
MORILTRAN-40, 40 watts. A.M. mobile, 40 meters, self-cantained 12 -volt D / s, self-contained converter for car revr $\$ 40$. CIEGG Zeus. Interceptor, Venus with nower supply. Mint condition. with manuals and factory cartons. Mak offer whole SB-100 modified with SSB and c.w. filters. HP-23 suma, 16146. 600 speaker, keycr. mike, extras. excellent condx. only $\$ 360$ for lot. N. J. Wali. WB2GCY. 834 Hawthorne ive.. Bound Bronk. N. J. 08805. Phone 2U1-356-51.58.
HEATH HW-16 XCVr. $\$ 85.00$. HG-10B VFO. $\$ 30.00$ IT- $11 \mathrm{ca-}$ Ronald Mayro. 1520 Spruce St.. Philadelphia. Penna. $141(12$. . SELL: Used two months: complete mobile or fixed station. Ne-200 transceiver. AC-200 supply. PS150-12 DC sunnlv speaker, E-D p.t.t. microphonc. key. Complete Hustler mobile resonators, cable. SWR bridge, complete. $\$ 385.00$ TR-33 JR Tri-band beam. AR-22 rotor, Cables. never used. \$100. Entire fier. Best offer. Kirschner, 2834 Alisdale. Toled. Ohin 4360 K . GONSET 2-meter transceiver Sidewinder 900A; 911A a.c. powRotunno WN2CKM 1219 Elder
 heavy-duty $12 \mathrm{VDC} P / \mathrm{S}, \$ 19,00: 312 \mathrm{~B}-4 \mathrm{Stn}$. Ctl., $\$ 13900$. Burs. 4410 Reading Road, Dayton. Ohio 45420 . Tel: (513)-256-0345.
KILOWATT Mobile, SBE-34, $\$ 300 ;$ SBE-"LA linear, $\$ 190.00$; SBE Inverter, \$190.00i, Mount, $\$ 5.00$: mike, S12.00. Package: Virginja 26554.

SEIL: Collins 7SA-4, 3.1/6 kc filters w/spkr. \$425.00: KWS-1 spare tubes, $\$ 675.00$; late models. on air, in excint wondx w/manuals, separate or package deal. Sry, no shipping. Bob

SELL: Norello 101 portable tape-rccorder, in exclnt condx: WRITE Phone or visit us for new or reconditioned Coilins. Drake. Swan, National, (ialaxy, Gonset. Hallicrafters. Hammarlund. Hy-Gain, Mosley, Waters. SBE, Henry Linear, BTI Linear. towers. rotators. other exuipment. We meet anv advertised cash price on most equipment. We try to pive you
the best service, best price best terms best trade-in. Write for the best service, best price best terms best trade-in.
nrice lists. Henry Radio. Butler. Missouri
G4730.
WRITE for our listing of tod auality American comnonents at lowest prices. Wescomm Electronics. 1491 Overlook. Alliance, Ohio 44601
WANTED: Collins 75A-4 in neriect condition. Serial Number must be above 4200 and priced reasonably, For sale Amnex 60 , professional portable tape-recorder, also K2iRZ, 156 Sandy Hollow Road. Northport, L.I. N.Y. Nind 11768. Tel: (516)-AN1-1516.
COMPLETE Station in mint condition: NCX-S with NCX-A P/s. \$49.5.00: NCL-2000, \$495.90. Will ship
COLLINS $32 \mathrm{~S}-1,516 \mathrm{~F}-2$ for sale. In excint condx. physically and electrically. $\$ 425.00$ or mikht trade for good 75A-4 or transceiver. Mike Elliott, WØHZC, 3060 24th Ave., Marion, lowa 52302
PACEMAKER SSB xmtr, $\$ 11000$; HE-45A xcvr and VFO and mike: \$80. Eicn mod. 470 'sconc. $\$ 35.00$, All sond and manuals. You nay freight. W.
l.vittown, Penna. j9ilst.
FOR Sale: Galaxy III with power sunnly and matching sneakmobil WAIBDA. Westbrook Road, Essex. Conn. 0 as 426 .
SELE: SO Mc K.W. C.W. amplificr. Includes built-in mixer
 $\$ 95$. Parks 6M converter, 7 m.c. IF. \$2. 9 : tube Realistic RPA $\$ 5.00$; with case, $\$ 8.00$. S. Savage. W6ABN, 101 N. Ladera Vista. Fullerton. Calif, 92631.
SELE: Heathkit HM-10A Tunnel Dinper, wired, mint condx, $\$ 25.00$, ported slide rulc in leather case, \$10.n0. H ckot 600A dvnamic mutual conductance tube-checker, $\$ 50.00$. Dnw-Kcy DKC
 Texas 76801. SWAN 250, new model, execllent condition. $\$ 220.00$. Ca!1 78?S.39R or write Mare Brown, 6545 Varna, Van Nuys. Calif. 91401. WBKWRI
SALE: Collins 32S-3 receiver, 75S-3 transmitter and nower 3 Nf . CW filter and 6 meter converter. $\$ 30000$: $\mathrm{SB}-401$. $\$ 285 \mathrm{nn}$: SB-200. \$220.00; all three nieces three menths ild: RTTY keneral-coverage Strombers Carlson CTT-46217 receiver.
 Threc Acrotron 2 meter AM transcelvers. \$100 each. Svincy
Horn, WASTEO, 343 Broad St., Lake Charles, i.ouisiana Horn,
70601.
NCX-3. NCX-A. NCX-D in good condition. \$250.00. August Karvonen. KxHHZ, Route \#1. Mass. Michigan 49948. EICO 753, acos and speaker. $\$ 150.00$ or hest offer. Roser A BUSINESS of your own. An industry leader shows you ho to get into the Sound and Intercommunications business on your own. Send today for a free brochure to: Action! Systems Company. 34 Cambridge Strect. Meriden. Conn. 06450 .
SELL: SR-150 with AC supnly. J. H. Wisneski, WAIDLM. Xil Hoover Ave.. Bristol, Conn. Ukilin.
$\mathrm{HT}-32 \mathrm{~B}$ for salc. Pampered like-new conditiin. Shinning nrepaid in 48. $\$ 295.00$. Roddick. K78DG, 510.5 East Sunset, Yakima, Wash. 9840
MOBILE (Tperation de luxe: Orisinal owners (2 adults) selling 1963 Deville Cadillac tdr hardton completcly wired for multi-band operation. Includes Webster BiR-K, (10000 watt) foldover antenna, remotely tuned from driver's seat with visual RF tuning monitor. Mounting for Swan 350 or 500. Under-hood mounted 550 -watt
factory air-conditioning,
tinted
xlass. nower supply. Car has has
transized factory air-conditioning, tinted klass. transistorized innition. controlled differential and many more extras. The air-condi(Steffan) 2819 Park Blvd., Oakland. Calif. 94610. Telephone 415-452-3466.
POLYCOM " 6 "' new condition. $\$ 155.00$: Drake 1 A receiver. $\$ 135.00 ;$ DX- 00 \$20.00: Knight K-55. \$45.00. Galaxy 300 with
 FNT, 18 Hillerest Ter., Linden. N.J. 07036. Tel: (201)-486-
 F.O.B. K91
Ind. 47906

DRAKE R-4A, T-4X, AC-4, MS-4, low-pass filter. Turner mike, practically new. Also electronic kever, double paddle K2JFD, H. R. Williams. ${ }^{2}$ Amherst Drive, Plainview, L..I. N.Y. 11803 . 「el: (516)-931-7653.

FOR Sale: Collins 75A-4 serial 4409 , KWS-1 scrial 1456. final tubes for the K WS-1. (Prefer packaxe sale) \$1000.01
 Arthur Tel: (207)-933-2869.
WANTED: TR-4, SR-150. KWM-1, 500-C with AC/DC surnlies and cables. Aiso G-76 AC power supply lester Harlow,

NCX-3 and AC and DC sunply, \$200; Johnson Viking 6 频 2 transceiver, $\$ 175.00$: Possible swap for $\mathrm{HO}-180$. Make swan ofter. WA3ITZ, 55 Ironwood Road. Levittown, Penna. 191157. Tel: (215)-945-37i2.

HY-GAIN Hy-tower. $\$ 50.00 ;$ SB-200, $\$ 180.00 ;$ SB-300. $\$ 210.00$; SB-400, \$220. K2GDP, Wheeler Ave., Fayctteville, N.Y. 13066. TFLETYPE Converter: RCA CV-57iURR, $455-500 \mathrm{kc}$ IF discriminator, wide or narrow shift. With manual, cabinct and connectors. $\$ 50.00$. J. vorn Sneidern, Jr., K2GTY', 43 Oriole Ave.,
Bronxville, N. 10708 , Bronxville. N.Y. 10708 .
KWM-2, \#12282, perfect, with S16F2 for $\$ 645.00$ and have SBline $300 / 400$ smart man's S/Linc. Sell or trade for Galaxy Mark III w/supplies. Mobile P \& H Spitfire, new, w: 12VDC KW linear: trade for transcciver. WØBNF, 1'.U. Box 105, Kearney. Nebraska h8847.
SELL: DX-60A. \$65.00; HG-10-B, \$25.00; Hallicrafters S-85.
 Fox 434. Washinston, North Carolina 27889.
\$ELL: Viking 11 VFO. \$85.00: HO-129X, O-mult. $\begin{gathered}\text { Snkr. } \\ \text { \$75.00. Bnth in xcint cond. Cash \& carry deal. W2UNT Vii- }\end{gathered}$ liam Van Horn. 4168 Nottingham, Trenton. N.J. 08690 . SEILL: Ameco CN-144 w/n.s., $\$ 25.00 ;$ Tecraft 2 M transmit-
 Strect. Trenton. Ohio 45067 .
HT-37. $\$ 200.00$ and Drake K-4A, $\$ 325$. Haruly used and in excellent condx. Bnth for $\$ 500$. George Ziegler, 710 North Palm Drive. Beverly Hills, California 90210. Tel: (213)-275-0721. $\underset{S}{\text { SELL: Heath GR-54, } 16 \text { months. Fithan R. Bush, WA2ASW, }}$ \$78-1917.
WANTED: Used 5×7 or 8×10 view-camera in good condition. Wesire lens system and sheet-film to kn with unit. Will consider swap for ham rear, or will pay cash if pricc is right. All inHa .
SEIL Fxcellent used Cetron $572 \mathrm{~B} / \mathrm{T} 160 \mathrm{Ls}$: new United Electronics S72B/T160Ls. W1HE7. KlTJM, ${ }^{7}$ Kirk, Springvale, Maine
COLLINS $75-S-38$, \#15585, $\$ 450.00$; Johnson $\begin{aligned} & \text { Invader } 200, \\ & 240.00, ~ b o t h ~ m i n t ~ c o n e x . ~ v y ~ i t t l e ~ u s e: ~ F i c o ~ \\ & 152 \\ & \text { unwired } k i t, ~\end{aligned}$ $\$ 240.00$, both mint congix. vy little use: Fico 152 unuired kit, Alabama 35×10.
SWAN 350 and 117 XC power supply, year old, hardly used. Not a serateh! Micronhone, Turner 454X: \$350.0U. Ev Sultan.
WR2VAC. 162 Holland Way, Merrick, L.I. N.Y. IIS66. Tel: (516 (6)-623-1892.
COMPLETE KW station for CW, SSB, AM. HT-44. HT-45, SX-117. PS-150 and P-45 nower supplies plus HA-8 splatter kuard, all interconnecting cables, relavs and SWR bridge. Asking \$900 for orisinal \$SON nackage. So-mile ravius delivery

HFIVLETT-PACKARD Frequency counter HP524B and HPSSB plug-in. $\$ 745$. Wheatstonc CW perforator, Boehme key-
ing head. $\$ 295.00$. HT-32B, $\$ 225.00$; Eico 460 , Scope. $\$ 50.00$. ing head, $\$ 295.00$. HT-32B, $\$ 225.00$; Eico 460 Scio
W Soc. iv.
H8.W S100B, 80-10 meter transmitter. \$85.00: Lafayette HA\$10.000. Bructer receiver. $80-42$ 250Th $\$ 70.00$ it., Bellerose, L. $1 .$, Neter beam, SWANTENNA \#55 remote control antenna; Swan \#412 DC power supply, both $\$ 130.00$, and in mint condx, new in January. Also Heath Ho- 13 o-multiplier, $\$ 9.00: \mathrm{S}-40 \mathrm{~B}$ receiver. Wud ciondx. you make ofter and nay shinnine. Me, Eingston Pike, \#9, Knoxville. Tenn. 37919 . SWINGING Choke needed. $25 / 5 \mathrm{H}$ or $20 / 4 \mathrm{H} 700 \mathrm{Ma} 3000 \mathrm{~V}$. min. rating. Also two Wiew. yienna. West Virginia 26101 .
R-390A in exclnt condx, with manuals: $\$ 700$. Will deliver within 200 miles. WA4TNR, 2905 Louisville Rd., Aususta. Ga. :0ч06. Phone (404)-798-7615.
SELL: Swan 400.420 VFO AC n/s. TH3 MKII beam, rotnr, 32 ft . Snaulding Tower. T-O kever. Yibronlex kev, all cables, mint condx. 2 vears old. F.n.b. this OTH. Package deal only.
WARRIOR Linear amplifier for sale New silicon diode power sunply. Immactiate. $\$ 150.00$. KiJPR, 22 Darbrook Road. Westnort. Conn. (06880).
WANTED: Power supply for AN/ART-13 transmitter, vlus Wables. Also manual. W3BIN, Apt. 3012008 Ft . Davis. S.E.,
OOLILINS 75A-2 receiver, in gud condx: $\$ 175.00$. Certificd check. C. Mefticy, Jr., Lewis Dr. Ridgefield. Conn. Tel: (203)-438-6108.

NOVICES: Conar 500 receiver for sale. $\$ 27.50$ postraid, or will trade for heavy-duty TV rotator. William Weir, 406 Prospect, Berea. Ky. 40403.
NC-300 receiver, $\$ 165.00$; DX-60A transmitter, $\$ 60.00$. Both or $\$ 210.00$. Jerry Aberg, 704 McKec St., State College, Penna. 16801.
SELL Multi-Elmac AEF-67 and PS-2V AC nower sunply in sood ondition. Make nffer. Landfield, 965 Gireen Bay Road, Winnetka, Illinois 60093
BFST offer over \$4.00 odd OSTS $1920-1924$; Some noor condx. ollins mechanical filters $360 \mathrm{Kc} \ddot{\mathrm{B}}$. 900 crcle 80 Kc . 900 cy.
$14 \mathrm{Kc}$.200 cycle. $\$ 1000$ each. Lane, West Hartford. Conn. 16117
 88310.

WANTED: Collins MP-1 power, sunply and 351112 mobile mount in unmodified. nike new condition state age and isage. R $\begin{aligned} & \text { Q085. Hammond, } 102 \text { Highfield Road, Villanova, Penna. }\end{aligned}$
D) You have technical questions-how to modify rig, solve TVI, want circuit design? Free dington, Reading, Mass. 01867 .
MUST Sell: New $i-50$ W/Rotron, $\$ 160,00$. Polycomm-2, in exclnt condx: $\$ 175.00$. Will ship. Want: 2 m . FM mobile and hasc. WA2COUQ. Dan Vermut, 250 Parkville Ave., Brooklyn, N.Y. 1230

WANTED: Heathkit RX-1 Mohawk or National NC303 receiver. Must be located in New York City area. Contact George Hawrysko, WB2GWU, 54 Boerum St., Apt. $10-D$,
Brooklyn, N.Y. 11206 . Tel: (212)-EV8-1893 between 4 and 7 PM: NEED Space. Kirk balun $1: 1$, new, $\$ 6.00$ BC-348-0, no power
 $\$ 1.50$ year. Some 1938. 1944 and 1945, 154 a copy. W8YMB. till: Collins 62S-1 \#ifirn4, imman
FOR Sale: DX-100, T-60. WAONJS, Wayne Groff. Lake Park. lowa 51347
DRAKE T4X. real hot clean, like new: $\$ 315.00$. W5DV, 4908 NW 31. Oklahoma City. Okla. 73122 .
RME 6900 ham band 10 mo meters c. W, SSB AM, WWV receiver, in exelnt condx: \$200. John
Buckingham Dr., Parma, Ohio 44129 .
ALEE: Collins $32 \mathrm{~S}-3,75 \mathrm{~S}-3 \mathrm{~B}, 516 \mathrm{~F}, \$ 950.00$. Mint condx Model McMartin tower with ladder and nlettorm $\$ 500$. Sixty-two foo $\$ 000$. Johnson Matchboxes, $250 \mathrm{WW}, \$ 40.00$. K $\mathrm{K} W$. $\$ 75$. K BC Gen eral Coverage receiver, $\$ 125.00$. LM freq. meter, $\$ 75.00$. Lyn eral Coverage receiver, \$125.00. LM fratins. K4VBU, Box 831 , Marginia' 24112 .
HALLICRAFTERS HT-37, perfect electrical condx. All ncw tubes. \$200. No trades, please. N.C. 28209
COLLINS 7SA-4. in mint condx. Late serial number, with vernier dial and $2.1,3.1,6 \mathrm{kc}$. mechanical filter. $\$ 425.00$ K1HNO. Stewart M18che7. 104 Teaticket HAM Station: Comanche, Cheyenne: AC PS, excellent, $\$ 100$. Will sell separately
ville, Tenn. 37212 .
HOR Sale: and Wanted Sell: Eico $3070 /$ Cortina solid state stereo amplifier, 70 watts, $5 \mathrm{HZ}-100 \mathrm{KHZ}$, 9 months oid, $\$ 100$, BIO amplifier, mod. Kc / s, 2 months old. $\$ 150.00$. Wanted: VIF receiver and ultrasonic or sunar transducer, $15 \mathrm{KC} / \mathrm{s}$. $50 \mathrm{KC} / \mathrm{s}$. J. L. Courtuntrasonic 222 S. Vale Drive, Lima. Ohio 45805 .
WANTEn: Collins DL-1. exelnt condx. Ch~rles M. Williams, WABAXQ; 4325 Drake Road, Cincinnati, Ohio 45243.
FOR Sale: Valiant, factory-wired, in exclnt condx. $\$ 175.00$. K8HLH. 1216 Vine Street, Sandusky. SR-150 and AC Supply, $\$ 375.00$ firm. $\$ \times-101 A, \$ 175$ firm
WAGOVE. 4340 Sunrise Road, Indianapolis. Ind. 46208 .
MOHAWK Receiver for sale: $\$ 110.00$. In perfect condx, realigned at Benton Harbor last summer. WA9AUM, 2415 West Main. Richmond 1 d
\$P-600-JX $\$ 225.00 ;$ 2-meter Communicator III, $\$ 110.00$; $5^{\prime \prime}$ $\mathrm{HO}-1$ Hallicrafters oscifloscupe, $\$ 70 ; \mathrm{BC}-453, \$ 15.00$. Deliver
reasonable distance. WA7FYU. Eugene Wood, 7754 N. Central. Portland, Ore. 97203.
NATIONAL NCX-5 Mk II VX-501, NCX-A, XCU-27, $\$ 600$;
 Robert
$313)-272-3856$.
KWM-1 with cummercial grade a.c. power supply and mobile mount, real clean: $\$ 300$. Will send photos. WØPVZ, Howard Niesen, 1418 Cheshire Lane, St. Louis, Mo.
HAM-TV, CCTV Camera, $\$ 110.00$: Toshiba 7038 Vidicon,
T 5.00 , new RCA $8507, \$ 00.00 ;$ GEC $7325, \$ 10.00$. WB2GKF, S15.00; new RCA 8507, \$60.00; GEC 7325 , $\$ 10.00$. NB2GKF, 07012 .
SALE: Hallicrafters SX-101, \$185.00; Johnson Viking conerter o-2, $\$ 35.00 ;$ Ameco TX 86 factory-wired for 12 volts,
din (01. All in exclint condx. Sry, will not ship. Leo. W2MNB, tel: (5i6)-OR6-7046.
FOR Sale: UX-100B and $5 B-10 ; \$ 140$ for both $\mathrm{NC}-183 \mathrm{MR}$ eceiver (military version uf NC-183D), $\$ 100$. Will deliver in $1)$ mile radius. Jerry WB2VMO, 112 Estaugh Ave., Haddon$75 \mathrm{~A}-4$ Serial No and 4000 s kc. and 500 cycle, $\$ 400$ firm. Kohnson Viking Soo extra relays. \$190. TA-3.3 Sr. \$50. Fiob. 18287 .
EICO 720 and 722 VFO . 80.00 : Hallicrafters $\mathrm{SX}-110$ and spkr, \$90; Vibroplex deluxe bug, $\$ 15.00$; relay, $\$ 5.00$. Package for $\$ 175.00$. All are in exiclnt condx.
FOR Sale: Hallicratters HT-41 grounded-grid KW linear amplifier, serial No. 341002812011 table-top. power supply self contaned), in perfect condition: $\$ 190.00$. Doug Lutz, K 8 HFJ Kte. 430 East. Mansfield. Ohio 44903. Tel: (414)-589-3914. FACTORY aligned Marauder and speed-X key, Shure 440-S mic with stand, antenna relay, $\$ 225.00$; HO 170 C e with clock-
 Phone (206)-364-642
Washington 9×155.
DRAKE K-4, speaker, $\$ 325$; Drake conyerter console, $2-6 \mathrm{M}$
 Cratt WM hears. S2s.00. pick-un dral only. WA8NNL, 1334 West Giles, Muskegon. Michißan 49445 .
BALE: Ballantine Labs electronic voltmeter, Model 300 . capahilities: millivolt to 100 volts AC. Make offer. Six-amp. $\$ 4.00 \div 100 \mathrm{MADC}, \mathrm{Model} 26 . \$ 3.00$. Ail plus carriage. W2TB: SELLL: SX-101A and HT-32; both in excellent condx, $\$ 43500$. Michael Prust, 514 North Washington, St. Peter, Minn. 56082.

FOR Sale: $\mathrm{BC}-221$ frequency meter, $\$ 60 ; \mathrm{HO}$-145-C, $5150 ;$ Ranger, $\$ 70$; Pe-iver, $\$ 30.00$. Shawnee 6 meter xcvr, $\$ 100$: Globe $\mathrm{VHF}-62$ xmtr, $\$ 50,00$. Ali items first check or your best offer. W9YT. 53706 . Clive Frazier. Secy. Treas, Amateur Radio Society, Elec. Eng. Bidg., University of Wisconsin. Madison, Wis. S3706.
COILINS 75A-1 with speaker and manual, mint condx. SSB T . SSB Transceiver, Eico 753 with solid state V VO and a.c.
power supply. Excellent, $\$ 150.00$. Ameco CN 506 meter conpower supply. Excellent, $\$ 150.00$. Ameco CNS 60 meter converter, factory-assembled. \$25.00. Knight R-100A with crystal
emalibrator. $\$ 50.00$. Write $W 2 Y$ EH tor details. 6678 Gates Lalibrator $\$ 50.00$. Write
Drive, Derby, N.Y. 14047 .
SELL: Swan 350 crystal calibrator VOX AC supply $80-40$ trap antenna 75 feet RG 8/U Turner microphone SWR Bridge Vibroplex Blue Racer headphones OSTs 1962-1968, 73s ${ }^{1961-}$
1968. New $\$ 750$. Best offer over $\$ 475$. David Levin. WAIFVH. 44 Seminole Circle, West Hartford. Conn. 06117.
VIKING II w/Viking VFO. \$70: SX-110 w/spkr. \$70: Lambda flectronics rexulated power supply $200-325 \mathrm{v}$ unused, $\$ 20.00$; Vibroplex, $\$ 8.00$. Ready to ship on first check. Might trade for 6 mtr, transceiver. R. B. Hines, Rte. 3. Box 206A, Ardmore, Okla. 73401 .
NOVICE Or (ieneral complete c.w. and a.m. station: $\$ 318.00$; Hammarlund HO-119, Johnson Challenger wiVFO-122. Plus Matchbox 275 w/directional coupler, electronic T-R switch, Speed-X key. Drake TV- 1000 low-pass filter: Astatic mike, WB6GIB, 12850 (vxnard St.. North Hollywood. Calif. 91606 . FOR Salc: DX-100B. mike, converted for SSB. $\$ 75.00$. Large oron pitch selsyns. gears, transformer. all $\$ 50$. TH6 and
BN12, $\$ 75$. Hy-Gain DB-io15 and BN12, $\$ 40.00$: Mosley 3 element $15,12^{\circ}$ boom, $\$ 25.00$, Mosley A 32014° boom $\$ 35.00$; 177 tube-checker and MX949 adaptor, $\$ 30.00$. Will take of-
fers. Paul Neveu, WICKA. P.O. Box $653, \mathrm{Bristol}$, Conn. 06010 . Ters. Paull 203) 582 -4885.
ESTATE Of W2KRV. Sell Cnllins $32 \mathrm{~S}-3.35 \mathrm{~S}-3 \mathrm{R}$ and $516 \mathrm{~F}-2$. Johnson Kilowatt Matchbox, BTI IK-2000: Microphones Astatic (2) Model 10 D-A (new) Shure Model \#404C inew). Turner Serial \#6495. Frequency Meters (2). BC-221 BTI (2) Vibroplex, ${ }^{3}$ power stats $90 / 60-20$ amps 2.8 max. KVA
Hallicrafters splatter guard mod. HA-8, plus tubes, wire 800 Hallicrafters splatter suard mod. HA-8, plus tubes, wire (800
ft. new) and various other smaller items and parts, All in excellent condition. Must sell as a complete unit Best offer. 8360 . 8360
C.W Crystals will close for annual vacation-July 7 , throunh ears. See you in August. C-W Crystals, Marshficld, Missouri 65706.

FOR Salc: Galaxy 300 with P S-300AC. \$175.00. In exclnt
condx. K3ZON. 26 Wildrose Lane, Levitown. Penna. 19054. WANTED. KWM-2 indrose lane, Levittown. Penna. 19054. WANTED: KWM-2-TR4-x $\begin{gathered}\text { SB-101 transceiver. Trade } \\ \text { or cash. Aiso want } 312 \mathrm{~B} 4 \text { and } \\ \text { d.c. supplies. F. } \mathrm{F} \text {. Coble, } 251\end{gathered}$ or cash. Also want $312 \mathrm{B4}$ and d.c. supplies. F. स., Coble, 251 IMPSCOPF. Heathkit oscilloscope for biological studies. for
 07974 . Wo H Linear amplificr LA-400C. \$95. Mrs. E. Willenx, 39 extra.
75A-4 Serial 4213 in orixinal nacking. No modifications. WANTED: Electronic counter, three decade with one-second date, or components to make same. W6EBY, 789 Garland,
ENTERPRISING Hams and dealers wanted to cash in on our sales of thousands of Gotham antennas yearly. Fxclusive franchise for your city given. Orders and inquiries referred to you.
Write for details. Gotham, 1805 Purdy. Miami Beach, Fla. $\$ 3139$.
 9383.
"Hess TRADER Ed Moory says if you don't buy your ham gear from him you may pay too much. One to a customer, please Display and demonstrator models with warranty: SB-34, $\$ 319.00$
 Swan Mosley beam. $\$ 19500$: special Rohn 50 ft. fold over ham newer, prepaid, $\$ 188.00$: BTI 2000 watt linear. $\$ 659.00$ ch ham outs on "new equioment factory warranty": Swan $500 . \$ 395.00$; price. $\$ 329.00$: T4-X, $\$ 299.00 \%$ R4-A. $\$ 295.00$ price $\$ 434.00$. Cash $\$ 359.00$; HT-37, \$169.00. Ed Moory Wholesale Rad $500-\mathrm{G}$ Po). Box 506. DeWitt, Arkansas 72042. Tel: a.c. (501)-946-2850, MUST Sell: HQ-170AC, noise immunizer. speaker, \$200; irXOI w/ 6146 B 's, $\$ 85$; TB-500 beam, $\$ 20 ;$ Knight 5 scone, $\$ 20.00$
or best offers. Manuals. boxes full of accessorics. Cail Jerry, or best offers. Manuals. boxes iull of accessories. Call Jerry, Ballwinn. Missouri 63011.
FOR Salc: Extra equipment Need the room. Viking II with VFO: Hallicrafters S38 all-band recvr; IW 2 meter and 6 meter xmtrs, built-in modulators, no P/S. Manuals, all work
goud. F.b. C. K. Loomis, 4328 State Road, Saginaw, Michigan 48603.
IDEAL KW power supply transformer: secondary: 2550-0-2550 primary: $190 / 210 / 230 / 240 / 260$. Brand new. $\$ 4500$ tuning tap; Las). David P. Callahan, K5SUI, 5509 Falls Road, Dallas, Texas 75220.

HT-37, $\$ 190.00$ or will swap for Valiant II. Eico 722' 723 . Conn. O68 77. . Tel: $(203)-438-4368$. Highview

TOROIDS, 44 and 88 mhy.. unused, center-tapped. 5/\$1.50 positaid. $11 / 16^{\prime \prime}$ reperf tape $\$ 3 /$ box. Page paper, $\$ 5.50 /$ case. Heath DX-6itA. \$55. Hammarlund HO-150, \$135.00. Tecraft 2 M Criterion, $\$ 35$. Dow-Key DK -6UG2C coax relay, $\$ 10.00$. Vibroplex Orisinal $\$ 15.00$. Want: Rotator. tower, Matchbox, stamp for list. Van, W2DLT, 302 Z Passaic, Stirling, N.J. (17980.
I.1CENSE Plate (bike size) with call and handle. Ten characters maximum, reflective letters, red background. $\$ 2.00$ prepaid postage USA. W7DUA, Gene, 3281/2-10 St., Seal Beach, Calif. 90740
PREPARE For new FCC exams! You need Posi-Check. Multiple choice questions, diagrams, explained answers, iBM shcets for self-testing. Same form as FCC exams. General Class. $\$ 3.25$; Advanced Class, $\$ 3.50$: Extra Class, $\$ 3.75$. 295 to 300 questions or diagrams in each. Each complete for a specific exam. Basic questions duplicated if they apply. Third class postage prepaid. Add 26 c per copy for first class mail: 54 for air mail. Send check or money order to Posi-Check, P.O. Box 3564 . Urbandale Station. Des Moines. lowa 50322 .
JOYSTICK Variable frequency antenna systems solve space problems. Available immediately. SWL Guide. 218-8 Gifford, Syracuse. N.Y. 13202.
MAKE Offer: 32S-3. \#101350, new 11/67: 516F-2 pis. TA-33, up six months only. TR-44 with control; Johnson KW Matchhox, like-new. Write: P.O. Box 1, New Rochelle, N.Y. 10804, Kink, WB2WWD.
SALE: Make an offer. Going into the Service. Eico 753 (solid state VFO): AC 751, D.C. 752: D-104 mike. Excellent. Packake deal only. Eight months old. S. Allen, 5300 Fifth Ave., Ant C-2. Pittsbursh. Penna. 15232.
COLLINS 75S3A, w/additional 500 hz . filter, $32 \mathrm{~S}-3$ and 516 F 2 power supply. All immaculate condx. \$900. Pick-up. no ship, sry. WA7FKY; 320 Echo Ianc. Phoenix. Arizona 85021 .
FOR Sale: Hallicrafters receiver SX-101A, Serial No 1011000 Also Hallicrafters transmitter HT-32A. Serial No. Q47122. Both used less than 24 hours. Like-new. Orisinal factory adjustments in perfect operating condx. Best offer takes botb. Dr. Bernard Wexler, 1801 N. Wood Ave., Linden. New Jersey 07036. Tel: 1201)-486i-4055.

SELL: Swan 500C, \$470: 410C, \$90.00: 117XC. \$85. Mosley TA-33, Jr.. $\$ 50.00$; AR-22 rotor, $\$ 20.00$. All items mint and in perfect nperating condx. Gene, K1FNO, 11 Drummond Rnad. Thomosonville, Conn. Tel: (203)-745-6209.
DRAKE 2.C. 10 hours. $\$ 190.00$. Drake 2-CQ. $\$ 35.00:$ Heath HW22A, $\$ 90$ HP-13 d.c. supply. $\$ 35.00$: Heath mobile k.w. inear, \$100: HP-14 d.c. k.w. supply, \$50.00. I. Weinman, W9HMO. 4718 N. 80th St.. Milwaukec, Wis. 53218.
STAMP (ollection wanted. Trade Swan transceivers k.w. amp., fio ft . tower and miscellancous. WA6RTD. 3874 S. Sycamore Ave., Los Angeles, Cal. 90008.
HT-32. SX-101. TA-33, Jr. beam, $\$ 400$. WAIEBJ, 40 No. Broadway, Haverhill. Mass. U1830
SWAN 350, latest factorv version. VOX other sideband and crystal calibrator, $\$ 300$. Tom Comport. 2851 Cataract Pl.. EI Caion. Calif. 9? 020 .
FOR Sale: SR-2000 and supply, new in January. Need money. Just bousht SR-400. Price is firm at $\$ 975.00$. Jack Yeoman W8VHY, R\#4. Washinston, C.H. Ohio, 43i60. Tel: (614)-335S29\%.
(LEGG Zeus, brand new units with full Clegs quarantee. Limited number available at $\$ 450.00$ Write or phone: Clesk Asso--:iates. I.ittell Road. East Hanover, New Jersey 07936.
YOUR Call engraved white plastic with black letters or reverse. Chnice lapel bar or tie-claso. \$1.45. Also $11 / 2^{\prime \prime}$ or' $^{\prime \prime}$ wall-signs $\$ 2.95$ E. W. Gorby, W2DF, Box 213 , Farmingdale. L.1., N.Y. 11735.

HALLICRAFTERS SX-100 Mark A receiver, in exclnt condx. With manual and spare set of tubes. $\$ 140.00$. W8JAY. BarberWith manual and spare set of the
TV-7DiU, chart and manual, or copies wanted. Gres Scott. WAONDH, 10617 Hill Park Ter., Independence. Mo. 64052 . WANTED: KWS-1, any condition. (ieo. Conn. W2TTA, 412 Old Boonton Rd., Boonton, N.J. 07005.
OOMPLETE Station package: $5 \mathrm{X}-117 \mathrm{HT}-44$, tubes, antennas. test equipment. Zachary Botwinick. WB2QLU, 253-42 87th Dr., Bellerose. New York 11426.
DAMAGED, but repairable equipment for sale. SBE-33. LA1A, G-76. AQ supply. Make offer or write for particulars. John i). Wilson. Box 351, Lakeview. Uhio 43331 .

POLYCOM II. A compact 2 -meter package with built-in mobile/ fixed power supplies and VFO/xtal control. $\$ 200$, including extras. Georke Burtness, W6TPZ, 216 Corte Madera. Menlo Park. Calif. 94025.
HALLICRAFTERS HT-32B and SX-115 AM. CW, SSB. Both are in A-1 mint condx electrically and physically. $\$ 850.00$.
Package deal only! Mike Matich. WA9NVN, 101 Ewing Ave. Chicayo, 111. 60617. Call 312-768-3099.

2orking together, the members of ARRL have for fifty years provided the base of support from which our great public-service hobby has grown and maintained the precious privileges that many amateurs now take for granted.

77 hrough membership in the League and affiliated clubs, many people pool their knowledge, their skills, their energy, and a small part of their material resources to help one another. The result is topnotch training programs and publications, top-efficiency traffic nets, community communications programs-and an amateur radio service which is useful to our country and deserving of its privileges.

newcomers gain from the experience of the old timers, and old timers gain from the enthusiasm of the beginners. The more we work together in the League, the greater will be our collective achieve-ments-and our security.

εach and every radio amateur is vital to the League, and the League is vital to each and every radio amateur. Join now with over 100,000 League members so that we can all share more fully in these mutual benefits.

Seague membership with QST $\$ 6.50$ in the U.S. and Canada, $\$ 7$ elsewhere. Additional family members at the same U.S. or Canadian address, \$1.

7f you are already a member, help strengthen your League by spreading this word to others!

THE AMERICAN RADIO RELAY LEAGUE, INC.

 Newington, Conn. 06111

The No. 90901
One Inch Instrumentation Oscilloscope

Miniaturized, packaged panel mounting cathode ray oscilloscope designed for use in instrumentation in place of the conventional "pointer type" moving coil meters uses the $I^{\prime \prime} 1 C P 1$ tube. Panel bezel matches in size and type the standard $2^{\prime \prime}$ square meters. Magnitude, phase displacement, wave shape, etc. are constantly visible on scope screen.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY MALDEN MASSACHUSETTS

Index of Advertisers

Alltronice-howard (n, i. 1.51
Amateur Electronicsupply
Amateur Electronicsupply
AMELCO subsidary of Aerotron. inc
165
idscals.1.511$1+4$Matepna!!Handbook....ial13
132
lfembutsitin$11 \times$
157
154Membershin.
poblications.$\begin{array}{r}157 \\ 8.58 \\ \hline\end{array}$sinule Sidehana? 2
Horld Man
I.
srrow electronles ine
$1+7$
Harry Electronics
$1.5 \times$
$1.5 \times$ 1.51
Bllada Manufacturing Co.
Bllada Manufacturing Co.
Brooks, H F.. C'arl N. 152
$i+6$
B. I'1. Amateur l.iv.
151
Camp Albert Butler
lomens Manufarturing $\subset \circ$ 13.5. 144
leveland institute of Filectronics 154
(ommuntcation products Co
1.84
148
1.84
148
c'ubex co.
1こ:
1こ:
lush (.raft
140
Dames Co.i Theudore: 152
Design Industries, Inc.
146
167
brake (O.. R. L. .

Fidwards Filectronics. 145 +
binctac: a diviston of variain.
binctac: a diviston of variain.
lectrophysics Corp. $1+3$
Frederiek Electronics (:orp 151
(iRC Closed Circult I'V Cors. 136
Gain lnc 1411
Gotham.
$1: 1$
152
Girand Central Radio Inc
Cov. II
Hallicrafters (io. ithe 158 154
1.25
Ham Radio Center.
Ham Radio Center.
fammarlund Manniacturing Co., Ine. 125
tarrison Hadio $15 \times$
Hatry of Hartford v. 111
Heath C'o. I'he
$13!$
$13!$
Henry Radio stores
Henry Radio stores
142
Hunter siales. Inc
1.58
Instructograph co.. Inc
Jan C'rystals 157
Lampkin Labs.. inc 153
1.59
I X M Finctronics 151 164
Wilitary Elertrontes Corp
Wilitary Elertrontes Corp
Millen Manufacturing Co., lnc., James. 38
Mosiey vilcetrontcs, inc 29
umega- Γ systems, Inc 156
rennwood Numechron C'o. 152
Mrkering Radio (lo. 147. 1.69
folygon liastic co., inc. 128
1311
Radin Amateur Callhook, Inc. 1.53
Radio Ofticers' I!nton 138
Raytrack co. 1.58
RCA Electronic Com ponents \& 1onvices Cov. IV
RF (ommunications ASsociates, Inc. $1: 2$
Rohn Manufacturing c'o.
$1+0$
salch \& Co., Herbert
Silerra/l'bilco
Silerra/l'bilco
15.5
15.5
skylane l'roducts
131
131
itellar Industries ijy. 127
swan Flectronies Corp.
swan Flectronies Corp.
157
$1: 4$
Pelrex Communication Eingineering Labs
Prigger Electrontes HU
rinadilla Radiation f'roducts 153
V an sickle Radio supply Co. 1:36
Vanguard Electronic Labs.152
Wilson. Inc.. Willard 8 159
148
World Radio Labs.

Some commments from warranty cards by owners of
 DRAKE TR-4
 SIDEBAND TRANSCEIVERS

"The TR-4 is the best rig I have ever known to be made. Glad to own one."

Dan Tangorra, WA7FWH Tacoma, Wash.
"Finally got what I wanted!"
Ronald E. Lyons, WB2BQX Oakhurst, N. J.
"A superb piece of equipment, no comments necessary.
C. G. Noakes, G3UHR/VO2

Labrador City, Newfoundland
"Great rig-First contact was an ON5 in Belgium."

Bill Busse, WA9TUM Mt. Prospect, III.
"Best gear I have had the pleasure of working with. Receiver is exceptionally sharp and stable."

Albert V. Mitchell, WA9BUP Jeffersonville, Ind.
"Nothing to comment, except that my TR-4 is a real jewel, and I am very satisfied with it. I would like to receive the catalogue of your products."

Joe Braz Ribeiro, PY4UK
Monte Carmelo (MG) Brazil
"A very F.B. piece of equipment. Audio very nice, especially on SSB, which is rare."

Thomas F. Totten, Jr. WB2GZR Saratoga Springs, N. Y.

"Running it with a Mosley "Classic" beam and proves a most fine and nice transceiver. Really proud of it ."

Orlando Escudero O., CE-3-0E Santiago, Chile
"Looks good-sounds good-very well pleased with performance."

Wayne M. Sorenson, WAØETL St. Paul, Minn.
"Have had Drake 2.B for three years. Knew that TR-4 was same Good Stuff." Charles E. Bishop, WA8FTT Columbus, Ohio
"Just what I always wanted."
Daniel N. Hamilton, WA4WXQ Ashland, Va.
"Why not build a good 6 Meter SSB \& AM Transceiver . . . hurry up, I'm waiting."

Harold A. Zick, WA9IPZ Creve Coeur, III.
"Excellent equipment."
W. T. Newell, wbsuzu Palm Springs, Calif.
"0.K. 100×100. RV-4: 0.K./W-4: 0.K./ L-4: O.K. Very Good!"

Franscisco Fau Campmany, TI-2-FAU San Jose de Costa Rica
"A beautiful piece of equipment. My second piece of Drake. The first was a $2 \cdot \mathrm{~B}$ and this sold one friend an R-4 receiver and another a TR-4. We are Drake-minded here in town. Many thanks."

Charles E. Boschen Jr., WA4WXR
Ashland, Va.
"I'm sure this, like the other Drake equipment I have, is the finest money can buy. you may quote me on THAT."
C. E. (Ed) Duncan, WA4BRU Greenville, S. C.
"I'm a real happy man with it. Does a real good job of getting thru."

Jerome D. Lasher, W2RHL Hamburg, N. Y.
"Replaces my TR-3."
D. G. Reekie, VE 6 AFS Calgary Alberta Canada
"Finest performing gear I have ever had the pleasure of operating."

Milton C. Carter, W2TRF Lakewood, N. J.
"PS Several months have passed . . . I now employ TR-4 as mobile unit and base station. I have logged more than 1000 contacts, many being rare DX. I am looking forward to owning a second unit to be used strictly for mobile. To date TR-4 has been trouble-free."

Milton C. Carter, W2TRF
Lakewood, N. J.
"Well pleased."
Rev. James Mohn, W3CKD Lititz, Pa.
"I am delighted with Drake gear. This is the second of your transceivers for me. I have used a TR-3 in my car for about $21 / 2$ years - only trouble: replacing a fuse!"

Guy N. Woods, WA4KCN
Memphis, Tenn.

"Ask the ham who owns a Drake TR-4"

WANT MORE FOR YOUR MONEY?

Make your present transceiver do double duty! Use it to let you join in the fun on 2 meters. Meet your friends on VHF SSB, CW, RTTY, AM, etc. (Stop QRMing the DXswitch to 2 meters for those local QSO's, rag chews!)

You can broaden your station's pleasure-giving capabilities just by plugging one of Swan's new TV-2 Transverters between your antenna and your present 20, 15, 10 or 6 meter transceiver, of any make.

And, to get even more for your money, your new Swan equipment should bear the Harrison label of satisfaction. For top trades or cash allowances, easy terms, and more real value, all ways, it will pay you to deal with the acknowledged leader.

Come on in, or write to me today. Tell me all about your wants, what you have to trade, and what terms you prefer. Tnx.

${ }_{73}$ Bil Harrison W2NVA

YOUR PRESENT:

SWAN 500

OR, SWAN 250 (6 METER)

OR, MOST ANY 20, 15, 10
OR 6 METER TRANSCEIVER

20 Smith St., Farmingdale, L. I., N.Y. 11735 (516) 293-7990
VISIT OUR NEW STORES

$[$FARMINGDALE. L.I. Route 110 at Smith St. (516) 293.7995 NEW YORK CITY - 8Barclay St. (212) BArclay 7.7922 JAMAICA, L.I. - 139.20 Hillside Ave. REpublic 9.4101

WANTED!

Good used Ham gear.
We will pay top cash... or make bigger allowances.

2-METERS FOR \$12995

NEW HEATHKIT ${ }^{\text {® }}$ AM TRANSCEIVER - make your move now

Another new Heathkit transceiver . . . this time it's a solid-state 2-Meter AM job that's just right for local ragchewing, NETS, DX, as well as CAP, MARS, and Coast Guard Auxiliary use . . . reasonable power output, sensitive receiver, easy-to-use features, and a low price tag.

The Heathkit HW-17 in detail. It's really a separate receiver and transmitter in one compact, versatile package (the only common circuitry are the power supply and the audio output/modulator). Frequency coverage is 143.2 to 148.2 MHz . The solid-state dual conversion, superheterodyne receiver with a pre-built, pre-aligned FET tuner has a lighted dial with 100 kHz calibration, automatic noise limiter, squelch, and 1 uV sensitivity. Selectivity is 27 kHz at 6 dB down, a figure that's consistent with band occupancy and easy receiver tuning. The front panel meter indicates received signal strength and relative power output. A 3-position switch on the front panel has a "Spot" position for finding the transmit frequency on the tuning dial, a Receive/Transmit position, and a Battery-Saver position that comes in handy during those long periods of monitoring while mobile (the receiver draws only 8 watts during this time). A $3^{\prime \prime} \times 5^{\prime \prime}$ speaker is built in.

On the transmitting end is a hybrid circuit including transistors and tubes with an 18 to 20 watt power input and an AM power output of 8 to 10 watts. Modulation is automatically limited to less than 100%. A front panel selector switch chooses any of four crystal frequencies or an external VFO (the Heathkit HG-10B VFO at $\$ 37.95$ is perfect for this job).

Front panel controls include Final L.oad, Final Tune, Crystal-VFO switch, Main Tuning, Squelch with ANL switch, Battery Saver-Receive/TransmitSpot switch; rear panel has S-meter Adjust, Headphone jack, Power socket, VFO power socket, VFO input, and Antenna connector (50-72 ohms, unbalanced).

The 15 transistor. 18 diode, 3 tube circuit is powered by a built-in 120/240 VAC supply. Circuit board construction averages 20 hours. It's all housed in a low-profile Heath gray-green aluminum cabinet measuring $141 / x^{\prime \prime} W \times 61 / x^{\prime \prime} H \times 81 / 2^{\prime \prime}$ D with everything in place. A ceramic PTT mic. and a gimbal bracket for mobile mounting are included.

Move up to 2 meter 'phone operation this new low cost way with the Heathkit HW-17.
Kit HW-17, 2M Transceiver, 17 lbs. $\$ 129.95$
Kit HWA-17-1, Transistorized DC supply, 5 lbs. $\mathbf{\$ 4 . 9 5}$
heath Company, Dept. 9.7 Benton Harbor, Michigan 49022
In Canada, Daystrom Lid.
-. Enclosed is \$ \qquad plus shipping.

Please send model (s)
\square Please send FREE Catalog.
Name \qquad Address
(Please Print)

City \qquad State \qquad Zip \qquad

Join the "big guns" on the bands...

On 'Phone, 9 of the top 10 DX'rs... on CW, 7 of the top 10 and... on VHF, 8 of the top 10... use RCA Tubes

Right across the ARRL "Honor Roll'"-'Phone or CW, low band or VHF-the top scorers were checked by an independent research organization. The findings: the largest percentage of the "big guns" use RCA transmitting tubes! Whether they run commercial or
homebrew rigs!
For dependable power that slices through QRM and QRNlets you break through the pile-ups and take full advantage of band conditionssee your RCA Authorized Industrial Tube Distributor for power tubes-rated "tops" by the leaders.

Small Size-

 BIG POWER!RCA-8122-paired for maximum legal input in CW and voice operations up to 500 MHz . See your RCA Distributor or write RCA Electronic Components, Commercial Engineering, Section G37M , Harrison, N.J. 07029, for data sheet giving full ICAS specs.

Reת

[^0]: *547 Bishop Drive, Orange, Conn. 06477.
 "Patterson, "Down-to-Earth Army intenna," Bilectroricx, Aug. 21, 1967. This antenna was also reported in QST for March, 1968.
 ? The advantages of loop-type mobile antennas have been pointed out by other amateurs in past issues of QST, e.g., W41HZ (Feb., 1951), W4TKL (July, 1953), and W4IMM (June, 1954), - E'ditor.

[^1]: * Box 1261, Chula Vista, California 92012.

[^2]: The basic logic-circuit symbols are covered by a US. Standard, ASA Y32.14, "Craphic Symbols for Logic Diagrams", but there is as yet no standard covering nomenclature or letter symbols. --.. Editor.

[^3]: (Continued on page 148)
 2"Up" and "down" counting refers to the internal arrangement of the counter: the "up" counter starts with $0,1,2,3$, etc. and continues until the desired number of digits has accumulated, while the "down" eounter starts with the final number and counts back to zero. The und result is the same in either case.

[^4]:

[^5]: ${ }^{1}$ A number of TV sweep tubes are used in commercial s.x.b. ham equipment. Some of them are: 6DQ5, 6GB5, bGE5. 6HF5, 6JS6, 6JE6, 6KG6, 6KD6, and 6LQ6. They have different maximum ratings and require different operating voltages, but they are all candidates for use in linear amplifiers.

 2 A rundown on intermodulation (IMD) distortion products, and power ratings for 'TV sweep tubes as linear amplifiers, was given by Bill Orr, WGSAI, and Boh Sutherdand, W6UOV, in Ham Radin. Ipril 1908, page 9.

[^6]: 3 "Toroidal-Wound Inductors," QST, January 19688, page 11.
 $48 / 8$ and $3 / 2$-inch diameter ferrite rods, 12 inches long, are available from Lafayette Radio Electronics, 111 Jericho Trk., Syosset, L.L.. New York 11791.

 5 "'Cimmicks \& Gadgets." (QST, May 1 بG8.
 OOrr, Rinaudo, and Sutherland, "The Grounded-Grid Linear Amplifier," $Q S T$, August 1961.

[^7]: T"Swerp 'Tubes In SSB Service." L. F, Jeffer. WA4kFO, and P. F. Hattichi, W9GFS. (An independent haper written and printed by these arnateurs.)

[^8]: ${ }^{1}$. Philco, in a recent bulletin concerning Philco reccivers made for the Ford Motor Company.

[^9]: * No. 9 The Woods, Marion, Ohio 4:3302.
 : The wame reasoning applies to the ordinary parallelconductor folded dipole, insoiar as the effect of the folded sections on bandwidth is concerned. However, the folded dipole also steps up the impedance at the feed point by $a+$ to 1 ratio. This does not occur with the coaxial system discussed here. - Editor.

[^10]: 2 It is of course possible to use a balun at the antenna if the direct coupling to the outside of the feed line causes "antenna" currents to flow on the line. With most random lengths of line these currents should be fairly small in a

[^11]: * 8078 Lochdale, Dcarborn Heights, Michigan

[^12]: * Holy Trinity Rectory, 114 Atlantic Ave., Ocean City, N. J. 08:26.

[^13]: ${ }^{1}$ The criterion of reliability refers to the fact that the marker signal will always be in the same place, and relatively constant with regard to its accuracy. The criterion of mulidity reiers to the fact that a properly zero-beated 100 kc . marker will be heard every 100.000 kc . up the dial, not 100.004 or 99.996 , or some other approximation of 100 kc .
 ? Hall, "The $\dot{H} H 6 E G L$ Frequency standard," usT, May, 1965. This circuit also includes a $1-k c$. multivibrator, which will provide still closer-spaced markers for trapping the unknown irequency. It may, however, be umitted if unly $10-\mathrm{kc}$, markers are wanted.

[^14]: 3 A suitable oscillator was described by Lange, " 25 to 2.5,000 Cycles," (S'I', July, 1967. It has three ranges, the tirst two covering $25-250$ and $250-2500$ cycles per second, respectively.
 I In this system, the absolute error tends to be rather constant. This means that the p.p.m. error is lowest on 14 Mc., roughly double at 7 Mc ., and much greater at 3.5 Mc. This is in contrast to errors oltained through the use of tunable oscillators such as the BC-221, in which absolute error is proportional to the irequency being measured.
 ${ }^{3}$ see chapter on measurements in the Handbook.

[^15]: * Communications Manager, ARRL.

[^16]: * YL Editor QST, Please send all news notes to WB6BBO's home address; 1036 East Boston St., Altadena, Calif. 91001.

[^17]: *Send reports and correspondence to Bill Smith WB4HIP, ARRL, 225 Main St., Newington, Conn. 06111.

