
CIRCUITI **ELEMENTARI** Trasduttori elettrici lineari passivi e reattivi

Supplemento al n. 1 di Sped. in Abb. Postale Gruppo III/70

Rivista mensile di elettronica pratica : Editore: J.C.E. - Direttore Responsabile: RUBEN CASTELFRANCHI - Direttore Tecnico: SALVATORE LIONETTI Coordinatore Tecnico: GIANNI DE TOMASI - Laboratorio: FILIPPO PIPITONE, ANGELO CATTANEO - Contabilità M. GRAZIA SEBASTIANI, CLAUDIA MONTU - Diffusione e abbonamenti: PATRIZIA GHIONI, ROSELLA CIRIMBELLI - Direzione, Redazione, Amministrazione Via dei Lavoratori 124 - 20092 (Dinsello Balsamo (MI) - Tel. (02) 61 72 671-61.72 641 - Sede Legale: Via V. Monti, 15 - 20123 Milano - Autorizzazione alla pubblicazione Trib di Monza n. 258 del 28/11/1974 - Fotocomposizione: LINEACOMP S.rl. - Via Rosellini, 12 - 20124 Milano - Stampa: GRAFICHE PIROVANO - San Giuliano Milanese (MI) - Concessionario esclusivo per la diffusione in Italia SODIP - Via Zuretti, 25 - 20125 Milano - Spedizione in abbonamento postale gruppo III/70.

L'autore sarà felice di ricevere commenti o suggerimenti e di poter dialogare per iscritto, al telefono o a voce con i lettori.

JACOPO CASTELFRANCHI EDITORE

• Tutti i diritti di riproduzione e traduzione degli articoli pubblicati sono riservati.

Mensile associato all'USPI Unione Stampa Periodica Italiana Capitolo : 00

00 Presentazione

Paragrafo : 00.0

00.0 Esposizione Generale

Argomento : 00.01

Descrizione strutturale dell'opera

00.01

1

STRUTTURA DELL'OPERA

Questo libro è costituito da una raccolta di fogli che trattano ciascuno un solo argomento come risulta dalla intestazione unificata.

L'argomento trattato su ogni singola pagina, viene esaurito nella stessa pagina.

In questo modo si evita che le figure possano trovarsi in pagine diverse da quelle del testo e perciò la lettura viene facilitata.

CARATTERISTICHE

Il libro può essere trasformato in una raccolta di fogli mobili semplicemente staccandoli dal dorso, forandoli opportunamente e raccogliendoli in apposita copertina con anelli che si trova in qualsiasi cartoleria.

Questo sarà opportuno farlo:

- 1) qualora il lettore intendesse aggiungere suoi appunti
- 2) qualora il lettore volesse inserire dei cartoncini separatori per facilitare la ricerca e per meglio suddividere i capitoli
- 3) per inserire eventuali fogli aggiuntivi che nel futuro venissero pubblicati
- 4) per poter effettuare confronti di analogie con altri fogli della raccolta.

A questo scopo si segnala che il codice decimale di collocazione, posto accanto alla testata unificata, vuole ottenere lo scopo di permettere l'inserzione di fogli senza interferire sulla struttura stessa della pubblicazione.

Il lettore può dotare di linguette sporgenti con il richiamo del codice ogni foglio relativo ai vari indici.

In questo modo si facilita la ricerca e la consultazione.

Non si è voluto predisporre questo vantaggio in sede redazionale per non rendere troppo costoso ogni volume.

METODO DI SPIEGAZIONE

Si è voluto dare alle figure un valore preponderante usando il testo come ausiliario esplicativo delle stesse.

Questo metodo, che si allontana dall'ortodossia tradizionale, è stato gradito dai lettori della precedente esperienza editoriale (v. introduzione al vol. 1°).

Essi hanno riconosciuto in questo metodo una forza comunicativa notevole e molto più vicina a quella della viva voce dell'insegnante che spiega alla lavagna dialogando con gli allievi.

Vorremmo che il lettore apprezzasse quanto questo metodo abbia richiesto maggior dedizione da parte dell'autore e della Redazione e maggiori costi da parte dell'Editore.

CONTRASSEGNI SULLE PAGINE

I contrassegni riportati sulle pagine in alto a destra hanno il seguente scopo:

nessun contrassegno

pagine sufficienti per coloro che vogliono accontentarsi di una conoscenza superficiale.

una stella 🖈

pagine destinate a coloro che desiderano una maggior conoscenza della materia, ma non possono essere trascurate dai lettori delle sole pagine senza contrassegno per quanto

riguarda le conclusioni.

due stelle *

pagine destinate solo a coloro che desiderano un maggior approfondimento.

APPUNTI DI ELETTRONICA		Sezione	: 0	Propedeutica	
Codice	Pagina	Capitolo	: 00	Presentazione	
00.01	2	Paragrafo	: 00.0	Esposizione generale	
		Argomento	. 00.01	Descrizione strutturale dell'opera	

CRITERIO DI NUMERAZIONE DECIMALE DEI FOGLI

A) SUDDIVISIONE

L'opera è suddivisa in 10 sezioni
Ogni sezione è suddivisa in 10 capitoli
Ogni capitolo è suddiviso in 10 paragrafi
Ogni paragrafo è suddiviso in 10 argomenti

B) CODICE DI NUMERAZIONE DELLE PAGINE DI TESTO

Normalmente ogni foglio è individuato da un

codice di quattro cifre

suddivise in due gruppi di due cifre (due cifre intere e due cifre decimali)

Le due cifre intere sono
stampate in corpo maggiore per evitare confusioni

12.345

Una quinta cifra può esistere se si vuole suddividere ulteriormente il soggetto relativa alla cifra recedente

Ogni cifra si riferisce ad una suddivisione del soggetto relativo alla cifra precedente.

C) ESEMPIO:

Il foglio intitolato: "Analisi armonica delle forme d'onda rettangolare" appartiene alla 10.51 1

Sezione 1 del piano dell'opera (Grandezze fondamentali)

Capitolo 10 (Nozioni preliminari)

Paragrafo 10.5 (Analisi delle oscillazioni)

Argomento 10.51 (Onda quadra)

relativa al medesimo numero di codice

1975 - A. T. Gilcart - Proprietà riservata a termini di legge - Riproduzione vietata senza conseriso

Fontl di Informazione

Sezione : 0 Propedentica
Capitolo : 00 Presentazione

Paragrato: 00.0 Esposizione generale

Argomento: 00.02(5) Bibliografia per il presente volume

APPUNTI DI ELETTRONICA

Codice

Pagina

00.02(5)

1

BIBLIOGRAFIA

- LIBRI -

Abbreviazione	Autore	Titolo	Editore
Mondani	F. Mondani	Elementi di elettronica e di elettrotecnica	Trevisini 1966
Cupido	A. Cupido G. Lotti	Esercizi di Elettronica generale	Tecno Editrice Fermo 1975
Jacobowitz EMS	H. Jacobowitz	Electronics made simple	W.H. Allen London 1965
Giometti	R. Giometti F. Frascari	Elettrotecnica Elettronica Radiotecnica	Calderini 1973 1974
MdE	Elektor	Manuale dell'Elettronico	J.C.E. 1983

- RIVISTE -

Sigla		Editore
S.P.	Sperimentare	J.C.E.
S.E.	Selezione Radio TV	J.C.E.
E.O.	Elettronica Oggi	Jackson

-		
	*	

Sezione

: 0

Propedentica

Capitolo

: 00

Presentazione

Paragrafo

: 00.0

Esposizione generale

Argomento : 00.03 Indice analitico

APPUNTI DI ELETTRONICA

Codice

Pagina

00.03(5)

1

INDICE ANALITICO

Avvertenza

Ricordando il criterio di codificazione espresso in 00.01-2

se l'indicazione è rappresentata con:

una sola cifra

(es.: 1)

due cifre

(es.: 12)

tre cifre

(es.: 13.7)

quattro cifre cinque cifre

(es.: 12.42)

(es.: 13.24-1)

significa che la voce cercata è trattata: nell'intera sezione relativa alla cifra indicata nell'intero capitolo relativo alle cifre indicate nell'intero paragrafo relativo alle cifre indicate nell'intero argomento relativo alle cifre indicate

nella pagina relativa alle cifre indicate

1975 - A T. Gildart - Proprietà riservata a termini di legge - Riproduzione vietata senza consenso

Fonti di Informazione

00 03	2 Paragrafo : 00.0 Esposi	iziono gonorale	
00.03	Paragrafo : 00.0 Esposi	zione generale	
	Argomento : 00.03(5) Indice	analitico	
20.10.6	Adottatori di impedanza	31.02-4	— — (calcolo grafico compl.)
30.12-6 30.03-3	Adattatori di impedenza Altoparlanti (simboli grafici)	30.03-4	Jack (simboli grafici)
30.03-4	Antenne (simboli grafici)	30.13-4	Kirchhoff per correnti alternate (principio)
30.12-6	Approssimazioni nei calcoli	30.13-3	— — continue (principio)
31.1	Attenuazione (v. singoli circuiti)	30.13-2	— — tensioni alternate (principio)
30.03-3	Batterie (simboli grafici)	30.13-1	— — costanti (principio)
30.03-4	Cablaggi (simboli grafici)	30.03-3	Lampadine (simboli grafici)
31.03-2	Calcolatori (simboli componenti)	30.03-2	LED a 7 segmenti (simboli graf.)
31.02	Calcolo grafico	30.02-3	Linea di condotta
31.01-2	Caratteristiche fondamentali di un circuito	30.11-3	Maglie
30.11	Circuiti	30.03-4	Massa (simboli grafici collegamenti)
31.2	 costituiti da due elementi lineari in parallelo 	30.03-4	Microfoni (simboli grafici)
31.1	in serie	31.1	Modelli di calcolo grafico (v. circuiti singoli)
30.1	— e operatori	30.11-3	Nodi
30.11-1	— definizione	30.14-4	Norton per corrente alternata
30.02-2	(criteri di tracciamento)	30.14-3	continua
31.19	Circuito CC	30.02-2	Operatore attivo
31.18	— CL	30	-
31.17	— CR	30.12-2	— passivo
31.16	- LC	31.01	— — (fisionomia)
31.15	- LL	30.12	Operatori
31.14	— LR — RC	30.12-5	— completi — elementari
31.13 31.12	— RL	30.12-5 30.12-2	— elettrici
31.12	— RR	30.12-2	elettronici (classificazione)
31.29	-C+C	31	passivi e reattivi
	— C + L (non trattato)	30.12-4	Partitore di corrente
	— C + R (non trattato)	30.12-4	— — tensione
31.26	- L + C	31.01-2	— — tensione
31.25	_ L + L	31.02-1	— — — con resist. variabile
_	— L + R (non trattato)	31.02-2	— — in c.c. e c.a.
31.23	-R+C	30.11-4	Potenziometro (influenza generatore)
31.22	-R+L	30.11-3	(scelta della resistenza)
31.21	-R+R	31.01-3	Pratica
30.03-4	Collegamenti di massa (simboli grafici)	31.01-3	Precisione e pratica
30.12-5	— fra operatori	30.03-4	Prese c.a. (simboli grafici)
30.11-2	— in parallelo	31.01-4	Presunzione
30.11-1	—— serie	30.13	Principi di Kirchhoff
30.11-2	— misti	30.11-4	Punti di vista (circuiti)
30.03-1	Componenti a semicond. (simboli grafi)	30.02-2 31.01-4	Raccomandazioni Rendimento del trasferimento
30.02-1 30.02-1	Comunicazione fonte di progresso Comunicazione tecniche	30.14-3	Resistenza equivalente parallelo
30.03-3	Condensatori (simboli graf.)	30.14-1	— — serie
30.03-3	Conoscenza della materia	30.03-3	Resistori (simboli grafici)
30.12-6	Corrente di accoppiamento	30.11-3	Rete elettrica
30.03-3	Cristalli piezoelettrici (simboli graf.)	31.10-4	Rifasare
30.02	Criteri di comunicazione		Risposta al gradino (v. singoli circuiti)
30.02	di esposizione grafica	30.03-4	Schermi (simboli grafici)
30.01-1	 progettazione di un circuito 	30.03-1	Semiconduttori (simboli grafici)
30-02-2	 tracciamento circuiti 	30.03-4	Sezionatori (simboli grafici)
30.03-3	Cuffie (simboli grafici)	30.03	Simbologia dei componenti elettronici
31.20-1	Elementi parallelo	30.03-3	Strumenti (simboli grafici)
30.02-3	Esposizione grafica	30.14	Teorema di Norton
31-01-4	Fascino e raccomandazioni	30.14	— Thevenin
31.01	Fisionomia del trasduttore passivo	30.14-2	— — per f.e.m. alternata
30.03-3	Fusibili (simboli grafici)	30.14-1	— — costante
30.03-4	Generatori (simboli grafici)	30.03-4	Testine di registrazione magnetica (simbolo
31.10-4	Impedenza coniugata	20.02.2	grafico)
31.1	— di entrata (v. singoli circuiti)	30.03-3	Trasferimento di corrente
31.1	— uscita (v. singoli circuiti)	30.12-6 30.12-6	Trasferimento di corrente
30.03-2	Indicatori a LED (simboli graf.)	30.12-6 30.10-4	— — potenza — — — massima
30.03-3	Induttori (simboli grafici)	30.12-6	— — tensione
31.02-3	Influenza del carico	30.03-3	Trasformatori (simboli grafici)
		55.55 5	(Simboli granol)

Propedentica

Presentazione

: 0

: 00

Sezione

Capitolo

Pagina

APPUNTI DI

ELETTRONICA

Codice

Sezione

: 3

Circuiti elementari

APPUNTI DI **ELETTRONICA**

Capitolo

: 30

Indice della sezione

Codice

Pagina 0

Paragrafo

: 30.0

Indice dei capitoli

30.00(5)

Argomento: 30.00

Indice dei paragrafi contenuti nel volume

SEZIONE 3

CIRCUITI ELEMENTARI

cap. 30 -

Nozioni preliminari

par. 30.0 — Premesse

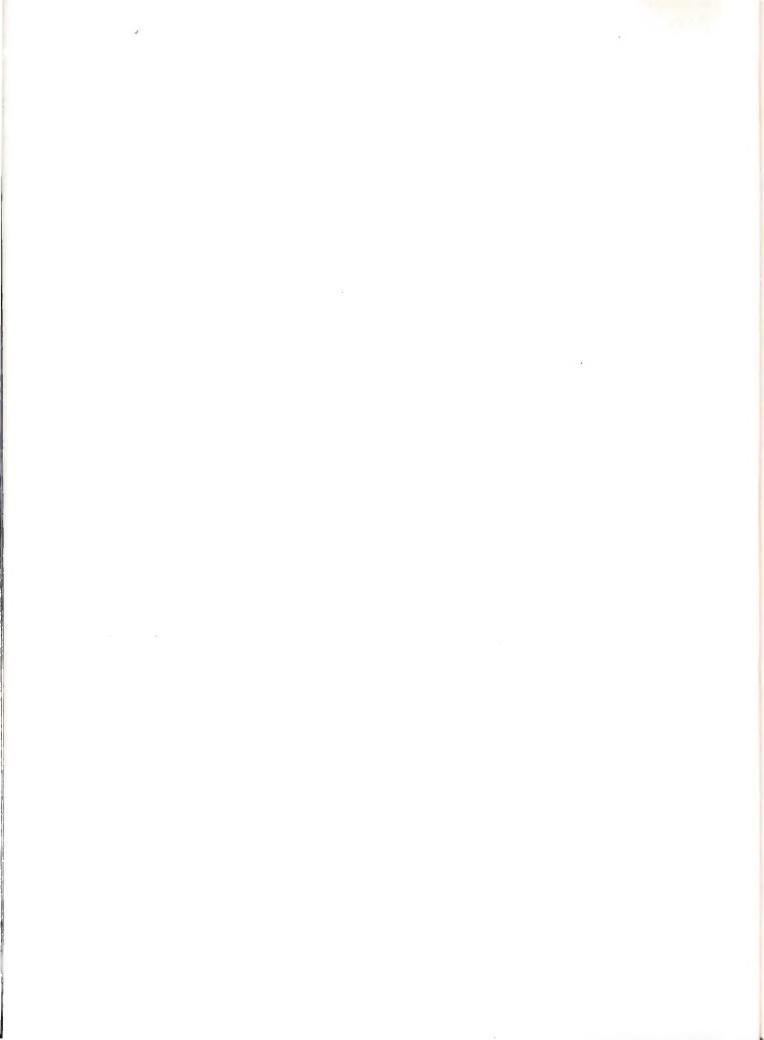
par. 30.1 — Circuiti e trasduttori

cap. 31 -

Operatori passivi e reattivi

par. 31.0 —

Nozioni generali


par. 31.1 —

Circuiti costituiti da due elementi lineari in serie

par. 31.2 -

Circuiti costituiti da due elementi lineari in parallelo

Fonti di Informazione

Sezione

: 3

Circuiti elementari

Capitolo

: 30

Nozioni preliminari

Paragrafo

: 30.0

Premesse

Argomento: 30.00

Indice dei paragrafi

APPUNTI DI ELETTRONICA

Codice

Pagina

30.00

00

CAPITOLO 30

NOZIONI PRELIMINARI

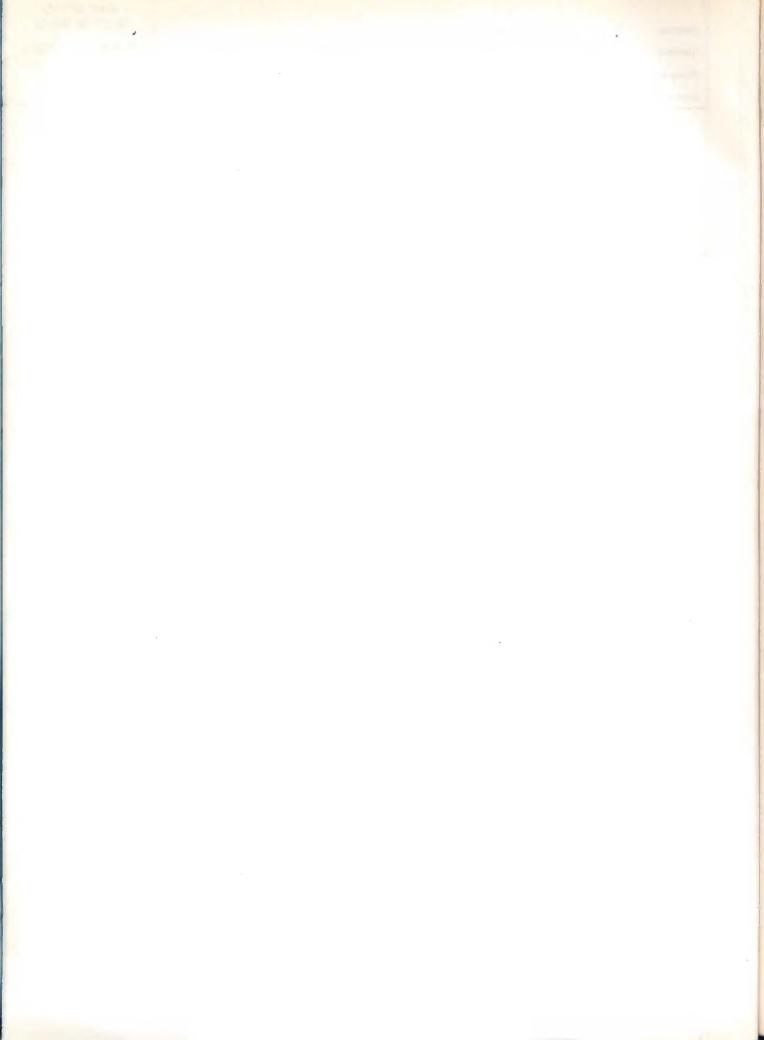
par. 30.0 — Premesse

arg. 30.00 - Indice del paragrafo

30.01 — Conoscenza della materia 30.02 — Criteri di comunicazione

30.03 — Simbologia dei componenti elettronici

par. 30. 1 — Circuiti e operatori


arg. 30.10 — Indice del paragrafo

30.11 — Circuiti

30.12 - Operatori

30.13 — I principi di Kirchhoff

30.14 — I teoremi di Thevenin e di Norton

APPUNTI DI **ELETTRONICA**

Codice

30.00

: 3 Circuiti elementari Sezione : 30 Nozioni preliminari Capitolo

: 30.0 Paragrafo Argomento: 30.00 Indice

Paragrafo 30.0

PREMESSE

arg. 30.01 — Conoscenza della materia

Premesse

pag. 1 — Criteri di progettazione di un circuito

2 — Caratteristiche fondamentali di un circuito

" 3 — Precisione e pratica

4 — Presunzione, fascino, raccomandazioni

arg. 30.02 — Criteri di comunicazione

pag. 1 — La comunicazione fonte di progresso,

Qualità della comunicazione

Modi di comunicare

Le comunicazioni tecniche

2 — Raccomandazioni

3 — Linea di condotta seguita nell'esposizione grafica

4 — Esempi generici

arg. 30.03 — Simbologia dei componenti elettronici

pag. 1 — Componenti a semiconduttore

2 — Indicatori a Led a 7 elementi

Simboli per calcolatori

3 — Cristalli piezoelettrici

Batterie

Resistori

Condensatori

Induttori

Lampadine

Trasformatori

Fusibili

Strumenti

Altoparlanti

Trasduttore elettrostatico

Cuffie

Cablaggi

Collegamenti di massa

Microfoni

Generatori di tensione alternata

Sezionatori

Schermi

Jack

Prese c.a.

Antenne

Testine di registrazione magnetica

T. Gilcart - Proprietà riservata a termini di legge - Riproduzione vietata senza consenso

Fonti di informazione

Sezione : 3 Circuiti elementari

Capitolo : 30 Nozioni preliminari

Paragrafo: 30.0 Premesse

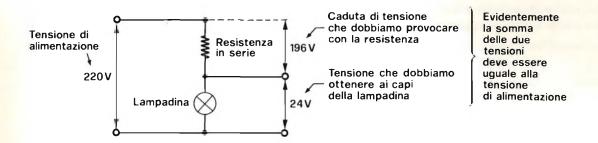
Argomento: 30.01 Conoscenza della materia

APPUNTI DI ELETTRONICA

Codice Pagina

1

30.01


CRITERI DI PROGETTAZIONE DI UN CIRCUITO

Questa sezione della raccolta ha l'intenzione di dare una panoramica generale dei circuiti che in pratica si incontrano nelle apparecchiature elettroniche, dato che il lettore a questo livello, dovrebbe già essere in grado di formare circiuti e capirne il funzionamento.

Qui il lettore però non troverà circuiti pronti per l'uso con gli elementi già bell'e calcolati perchè è praticamente impossibile pretendere che un determinato circuito possa essere inserito tal quale in qualsiasi apparecchiatura.

Facciamo un esempio molto semplice.

A questo punto dello studio, ognuno sa che, per alimentare una lampadina da 24 V con una tensione da 220 V nel modo più semplice, è necessario interporre una resistenza in serie alla lampadina stessa come in figura.

Nessuno, che abbia un po' di pratica di elettrotecnica, si sognerebbe di pensare che, una volta calcolato il resistore necessario, questo vada bene per lampadine di altre caratteristiche non solo, ma si guarderebbe bene anche dal collegare agli stessi morsetti più lampadine della stessa specie.

Ciò significa che con un semplice resistore non si può costruire un riduttore universale. Così avviene in generale per la maggior parte dei circuiti.

Esistono dispositivi di impiego universale, ma anche essi posseggono dei limiti all'impiego stesso.

Prendiamo, come esempio di questo tipo, il trasformatore.

Esso è un'apparecchiatura di impiego universale però entro i limiti per i quali è stato costruito: tensione primaria, tensione secondaria, potenza massima ecc.

Al suo secondario si possono collegare una o più lampadine adatte alla tensione prodotta, ma entro i limiti di potenza per la quale è stato costruito, se non lo si vuole vedere bruciare miseramente.

Infine, nella progettazione finale di un'apparecchiatura, ci sono altri fattori, come il costo, l'ingombro ecc., che richiedono particolari accorgimenti di calcolo.

Vi renderete conto che sarebbe inutile, costoso e scomodo introdurre un trasformatore adatto ad una centrale elettrica per alimentare un'apparecchiatura che richiede pochi watt di potenza!

Fonti di Informazione

APPUNTI DI ELETTRONICA

Codice Page 30.01 2

Pagina Capitolo

Sezione

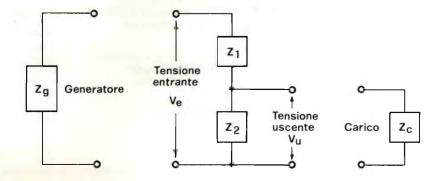
: 3 Circuiti elementari: 30 Nozioni preliminari

Paragrafo : 30.0

Premesse

Argomento : 30.01

Conoscenza della materia


CARATTERISTICHE FONDAMENTALI DI UN CIRCUITO

I circuiti elementari che verranno esaminati in questa sezione della raccolta, saranno classificati a seconda della funzione che essi svolgono.

La funzione di ogni circuito sarà accuratamente descritta, ma sarà bene mettere in evidenza subito, tanto per chiarire quanto detto in precedenza, che anche il generatore che inserisce il segnale nel circuito e il carico che sfrutta il segnale elaborato, hanno una influenza diretta sul comportamento del circuito stesso.

Noterete poi come la maggior parte dei circuiti elettronici si riconducono ad un tipo solo di circuito: il partitore di tensione che prendiamo subito come esempio per dimostrare quanto abbiamo affermato.

Osservate la figura e tirate le conclusioni che seguono.

È chiaro che in questo semplice partitore di tensione la:

Tensione entrante

dipende dalle caratteristiche del generatore che vi applichiamo.

Infatti, nel caso più semplice, un generatore con una resistenza interna piuttosto alta, farebbe abbassare il valore della sua tensione di uscita al punto da crearci delle sorprese quando lo colleghiamo al partitore.

Si vede perciò come il partitore vada studiato per adattarsi anche alle caratteristiche del generatore, e qualora questo non fosse possibile perchè non conveniente o scomodo, bisognerà cambiare tipo di generatore.

Come generatore si intende anche lo stadio di uscita di un circuito che precede e che fornisce il segnale sottoforma di tensione (alternata, continua, ecc.).

Tensione uscente

dipende dalle caratteristiche del carico che vi applichiamo.

Infatti, nel caso più semplice, un carico con una resistenza interna piuttosto bassa, farebbe abbassare il valore della tensione presente ai terminal di uscita del partitore al momento in cui esso viene collegato al carico a causa della maggior corrente che richiama.

Si vede perciò come il partitore vada studiato per adattarsi anche alle caratteristiche del carico e qualora questo non fosse possibile perchè non conveniente o scomodo, bisognerà cambiare tipo di carico.

Come carico si intende anche lo stadio di un circuito che segue e che riceve il segnale manipolato dal partitore sottoforma d'una nuona tensione (alternata, continua, ecc.).

vietata

consenso vietata senza Riproduzione ō ter Gilcart - Proprietà

Sezione

: 3

Circuiti elementari

Capitolo

: 30

Nozioni Preliminari

Premesse

Paragrafo : 30.0 Argomento

: 30.01

Conoscenza della materia

APPUNTI DI **ELETTRONICA**

Codice 30.01

3

PRECISIONE E PRATICA

Il lettore si è reso conto, da tutto quanto precede, che pratica in elettronica significa sì, mettere insieme circuiti predisposti come schemi, ma significa anche calcolare accuratamente i loro elementi.

l calcoli andranno poi intelligentemente arrotondati per poter reperire gli elementi che la industria mette a disposizione secondo determinati valori unificati.

Ed è proprio per la necessità di:

- scelta del tipo di circuito
- calcolo dei suoi elementi
- criterio di approssimazione

che è indispensabile la profonda conoscenza della teoria.

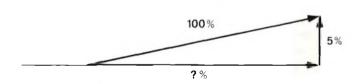
Conoscenza della teoria non deve significare memorizzazione di dati che invece si possono comodamente ricercare nei manuali, ma deve significare conoscenza dei concetti fondamentali, che solo lo studio e l'esercizio possono fissare nella mente in modo indistruttibile. Insomma, bisogna sapere come e cosa cercare nei manuali!

È evidente che lo studio preliminare richiede un certo impiego di tempo per realizzare una apparecchiatura, ma sarà tempo vantaggiosamente guadagnato dopo, quando la realizzazione sarà avvenuta.

Infatti si eviteranno sorprese e, qualora ne comparissero, non sarà difficile trovare la soluzione e decidere il rimedio.

Pratica, poi, significa sapere, con l'aiuto della teoria, in che direzione si possono fare degli arrotondamenti o fino a che punto certi fattori possono essere considerati trascurabili.

Facciamo un esempio.


Supponiamo di dover fare il seguente calcolo.

Si abbiano due grandezze, la cui somma sia uguale ad una terza.

La prima è il 5% della terza. Si vuole conoscere il valore della seconda.

La persona sprovveduta risponde subito: il 95% ma è facile che sbagli.

Infatti la persona avveduta invece controlla prima come queste grandezze debbano essere considerate. Se sono vettoriali per esempio può succedere che esse siano disposte così:

In questo caso è facile constatare che la grandezza incognita è quasi uguale al 100% (cioè alla terza) e non si esita a considerarla tale (infatti il suo valore, calcolato sarebbe 99,9%).

APPUNTI DI ELETTRONICA

30.01

Codice Pagina

4

Sezione :

: 3 Circuiti elementari: 30 Nozioni preliminari

Paragrato : 30

: 30.0

Premesse

Argomento

: 30.01

Conoscenza della materia

PRESUNZIONE FASCINO RACCOMANDAZIONI

I calcoli logicamente approssimati, ragionevolmente accettabili e arrotondati, confortati magari da un calcolo di verifica, non vi daranno mai delusioni nelle vostre realizzazioni.

Non dimenticate che anche gli elementi dei circuiti e i materiali che li compongono, che si trovano in commercio, vengono costruiti con una certa tolleranza sia per quanto riguarda i dati di funzionamento, sia per quanto riguarda i dati costruttivi.

Invece, i calcoli grossolanamente sbagliati per inconscia ignoranza della teoria, non potranno mai portarvi a conclusioni soddisfacenti.

Il difetto in cui spesso incorre l'appassionato di elettronica è la presunzione di conoscenza.

Questo fra i difetti è il più pernicioso in tutti i settori del sapere, perchè esso mantiene l'individuo inconsapevole del livello della propria ignoranza, lo rende poco incline a documentarsi e poco desideroso di approfondire le sue vaghe conoscenze.

Non parliamo poi di coloro che fanno schemi e collegamenti senza rendersi conto di come deve funzionare il loro dispositivo.

Il fatto che qualche volta riescano ad ottenere qualche risultato, non vuol dire che ne conoscano il funzionamento.

Infatti, non sapranno mai spiegarsi come lo stesso dispositivo collegato fra apparecchiature diverse non dia i medesimi risultati.

E brancolano nel buio.

Avrete già capito come queste parole non siano dirette a voi per il fatto stesso che umilmente e pazientemente state seguendo queste dispense dove lo scrivente non ha la pretesa di insegnare, ma di studiare e di approfondire insieme a voi questi affascinanti problemi (vedi 00.01) (vol. 1°).

Il giorno che avrete nel sangue i fenomeni che dominano il campo della elettronica, sentirete per loro lo stesso fascino che si può provare per il più bello spettacolo della Natura.

Perchè anche l'elettronica è Natura!

Ed infine vi sentirete dei privilegiati, non perchè superbamente sentirete di sapere più degli altri, ma perchè la Natura qui si rivelerà attraverso delle panoramiche che solo voi sarete in grado di apprezzare.

Fonti di Informazione

Sezione

: 3

Circuiti elementari

Capitolo

: 30

Nozioni preliminari

Paragrafo Argomento : 30.0

Premessa

: 30.02

Criteri di comunicazione

APPUNTI DI ELETTRONICA

Codice 30.02

Pagina

LA COMUNICAZIONE FONTE DI PROGRESSO

Il motivo del rapido sviluppo del progresso umano sta essenzialmente nel fatto che gli individui, comunicando ad altri le proprie esperienze, arricchiscono le conoscenze altrui e mettono tutti coloro che ne vengono a conoscenza di farne altre e di comunicarle a loro volta.

La comunicazione è dunque indispensabile al progresso umano in generale e tecnologico in particolare.

QUALITA' DELLA COMUNICAZIONE

Parlando di comunicazione, diventa importante la qualità della stessa se si vuole che il messaggio, l'informazione diventi intelligibile e utile.

Un cattivo messaggio diventa inutile, se non dannoso, quando è incomprensibile o quando ne diventa faticosa o sibillina l'interpretazione.

MODI DI COMUNICARE

Si può comunicare a voce o per iscritto, ma oggi (data la possibilità di registrare tutto ciò che si fa o che si dice e dato che registrare significa, in senso lato, scrivere) il modo di comunicare, si riconoduce ad uno solo: lo scritto.

Se andiamo ad analizzare le varie attività del genere umano, troviamo tanti modi di comunicare: infatti l'avvocato scrive come parla, il giornalista parla come scrive, lo scrittore scrive e non ha bisogno di parlare, il deputato parla e si guarda bene dallo scrivere ecc. E i tecnici?

Ora veniamo a noi, tecnici.

La comunicazione del tecnico è fatta di parole e di disegni e certamente più di disegni che di parole.

Purtroppo ancora oggi i tecnici, forse a causa dei retaggi artistici e letterari della scuola primaria, sono ancora più inclini alla parola che al disegno, visto anche il prevalere di una certa moda didattica di lasciare che ciascuno si esprima come vuole.

E parlare è certamente molto più facile che scrivere.

LE COMUNICAZIONI TECNICHE

Disegnare invece, quando non si tratta di estro artistico diventa una cosa faticosissima, perchè significa disciplina e autocoscienza del comunicato e conoscenza della molteplicità di fattori intellettivi a cui il comunicato, sottoforma di istruzione, si deve rivolgere.

Purtroppo molti tecnici sottovalutano questi problemi e compilano i loro comunicati con estrema leggerezza. Avete mai provato a cercare l'informazione che vi serve, nel libretto delle istruzioni della vostra auto o di un vostro elettrodomestico?

È evidente che nella spasmodica corsa all'efficienza e alla produttività si lesina attenzione tempo e denaro sulla qualità dell'informazione.

Nel nostro caso specifico le Aziende si affannano a buttar giù disegni e schemi alla svelta, per aumentare la produttività dei disegni.

I simboli diventano sempre più incomprensibili, il modo di rappresentare i circuiti sembra fatto apposta per far risparmiare tempo solo a chi li disegna.

Non importa il tempo che impiegheranno tutti coloro che dovranno interpretare quel disegno prodotto a tempo di record!

Generalmente per fare un disegno bastano una o poche persone.

Saranno tanti invece coloro che dovranno leggerlo, anche in seno alla medesima Azienda, quando non si tratti di disegni destinati ad altre Aziende.

In questo modo le Aziende si danneggiano da sè oltre che reciprocamente.

Purtroppo anche le tipografie aggiungono confusione sia nel pur lodevole scopo di far costare poco il libro.

APPUNTI DI ELETTRONICA

Codice 30.02

Pagina 2

Sezione

agina Capitolo

: 3

Circuiti elementari Nozioni preliminari

Paragrafo : 30.0

Argomento

.0 Premesse

: 30.02

Criteri di comunicazione

RACCOMANDAZIONI

La morale della favola, qui, è quella di raccomandare al lettore di non lesinare chiarezza nel fare uno schema o un disegno perchè agevolerà anche se adesso, soprattutto quando dovrà rivedere quel disegno a distanza di tempo.

Eviti il lettore di risparmiare perfino il superfluo, eviti di scimmiottare gli americani per darsi le arie da grande iniziato:

- il disegno di un circoletto attorno agli elementi attivi rende più evidente la loro presenza nel circuito
- il reiterato rifacimento di uno schema per evitare incroci dei collegamenti, angoli inutili, o per renderlo comunque più chiaro, significa agevolare coloro che poi lo dovranno leggere
- l'impiego di un modo solo di rappresentare una determinata funzione di un circuito, significa far riconoscere a prima vista di che circuito si tratta.
- ecc.

Ogni Azienda che abbia la volontà di capire questo problema dovrebbe sentirsene agevolata.

L'Autore si è prefisso questo scopo nella sua esposizione e si sforzerà di mantenere questo proposito, a costo anche di apparire ... antiquato!

Se poi, qualcuno insistesse, magari con sussiego, che anche i disegni all'americana o alla tedesca, sia pur dissimili fra loro, sono chiari per "tutti" ... okay ... ogni opinione è valida!

L'Autore ha espresso la sua.

Fonti di Informazione

: 3 : 30

Nozioni preliminari

Circuiti elementari

Paragrafo

: 30.0

Premesse

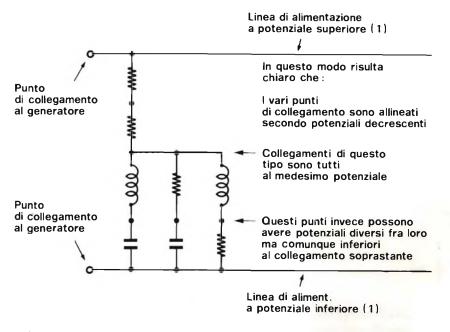
Argomento: 30.02

Criteri di comunicazione

CRITERI SEGUITI NEL TRACCIAMENTO DEI CIRCUITI

Quante volte due circuiti uguali ci sembrano diversi solo perchè disegnati in un modo diverso.

Ciò affatica chi deve apprendere e crea notevoli perdite di tempo e di efficienza.


Se si riuscisse a stabilire una regola unica, si potrebbero disegnare gli schemi e i circuiti secondo questa regola e riconoscere a colpo d'occhio di che cosa si tratta o a seguire più facilmente il gioco delle grandezze elettriche che fanno funzionare un dato dispositivo.

Ispiriamoci dunque al criterio degli schemi funzionali per gli automatismi dove i conduttori di alimentazioni sono rappresentati con due linee parallele orizzontali esterne a tutto lo schema.

Scopriremo che la maggioranza dei dispositivi è costituita da partitori di tensione.

Queste tensioni di solito si paragonano, si fanno equilibrio, si sommano, si sottraggono.

Esempio preliminare

(1) In caso di alimentazione in corrente alternata questi potenziali possono essere anche assunti arbitrariamente

Fonti di Informazione

1975

Codice 30.02

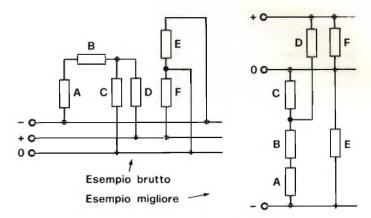
Pagina 4

Sezione Capitolo

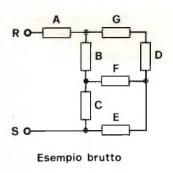
Circuiti elementari : 3 : 30 Nozioni preliminari

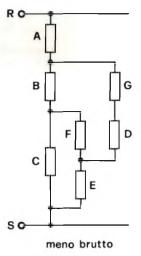
Paragrafo : 30.0

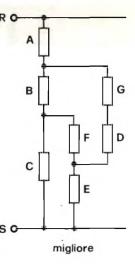
Premesse


Argomento : 30.02 Criteri di esposizione

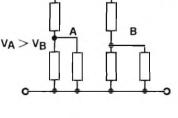
LINEA DI CONDOTTA SEGUITA NELL'ESPOSIZIONE GRAFICA

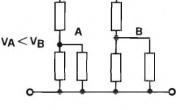

Seguendo le indicazioni esposte alla pagina precedente riassumiamo qui di sotto le regole che ci siamo imposte nei limiti del possibile per una uniforme esposizione grafica.


Negli esempi che seguono si sono rappresentati con rettangolini i componenti di tipo qualsiasi.

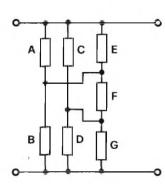

Nelle parti estreme (più alta e più bassa) ci segnano le linee di alimentazione: se ve ne sono più di due, si segue la regola del livello relativo di potenziale.

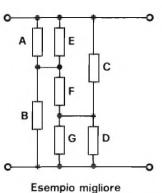
Ogni linea orizzontale simbolizza un medesimo potenziale e perciò non vi si devono inserire simboli di componenti. Essi sono rappresentati solo lungo le linee verticali: pertanto i tratti verticali diminuiscono di potenziale man mano che passano da un componente all'altro





Il livello di ogni linea orizzontale corrisponde relativamente all'incirca a quello del suo potenziale (non sempre è possibile se ci sono componenti di valore variabile).


Eliminare gli incroci: ciò è possibile almeno in 9 casi su 10. Quando non è possibile usate il segno n per evitare dubbi.



Eliminare le linee a zig-zag: questo è possibile sempre.

Inserire i punti di alimentazione a sinistra e fare in modo che il disegno si legga da sinistra verso destra (v. esempi precedenti)

Esempio brutto

Fonti di informazione

30.02

Circuiti elementari

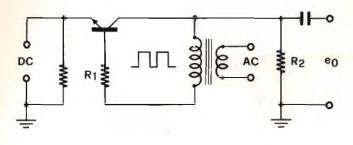
Nozioni preliminari

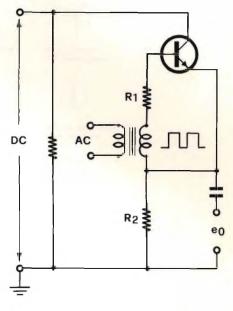
Capitolo

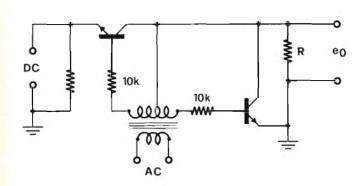
Paragrafo

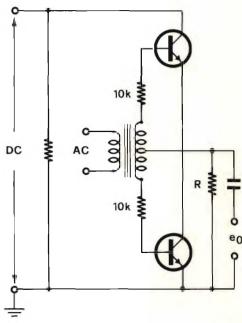
: 30.0

Premesse


Argomento: 30.02


Criteri di esposizione


ESEMPI GENERICI


Osserviamo qui sotto due esempi di schemi tratti a caso da un libro: qui mancano anche i circoletti evidenziatori dei transistors e la linea comune all'alimentazione e al segnale è indicata con il segno di "terra".

Osserviamo da questa parte come detti disegni sono stati modificati secondo le regole enunciate per capire meglio il funzionamento.

Si tratta di dispositivi che vedremo in seguito per la trasformazione in tensione alternata di segnali in tensione continua.

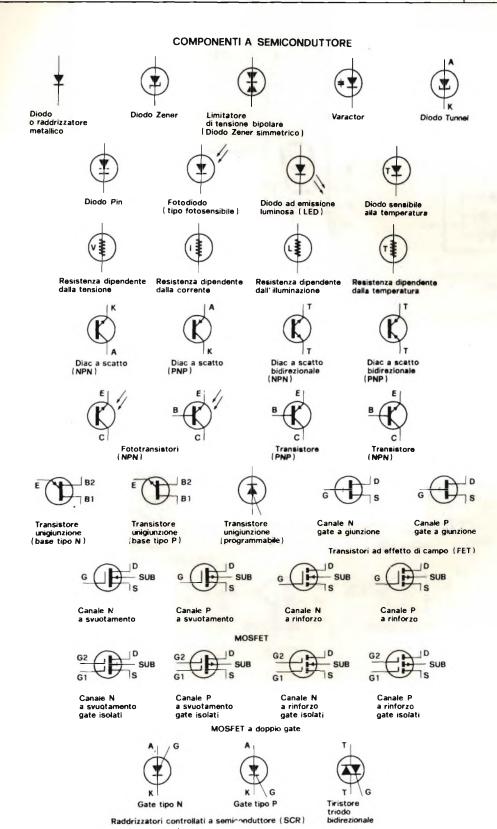
Infatti i dispositivi presentano:

- due terminali di entrata del segnale DC da trasformare
- due terminali di uscita del segnale eo trasformato
- due terminali di entrata AC di un segnale di pilotaggio

: 30.0

Paragrafo

Circuiti elementari


Premesse

Argomento : 30.03 Simbologia dei componenti elettronici

APPUNTI DI **ELETTRONICA**

Codice **Pagina**

30.03 1

vietata senza consenso

di legge - Riproduzione

Proprietà

Darlington

Transistori PNP a base polarizzata trasversalmente

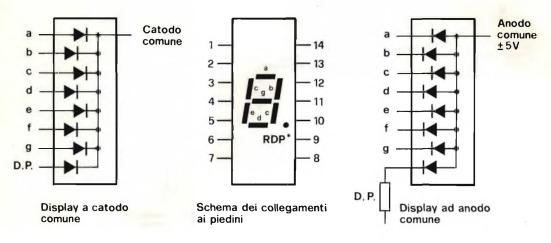
APPUNTI DI ELETTRONICA

Codice 30.03

Pagina 2

Sezione Capitolo : 3 Circuiti elementari: 30 Nozioni preliminari

Paragrato : 30.0


. 50.0

Premesse

Argomento: 30.03

Simbologia dei componenti elettronici

INDICATORI A LED A 7 SEGMENTI

· Specificare se il punto decimale deve essere a destra a sinistra o ad entrambi i lati

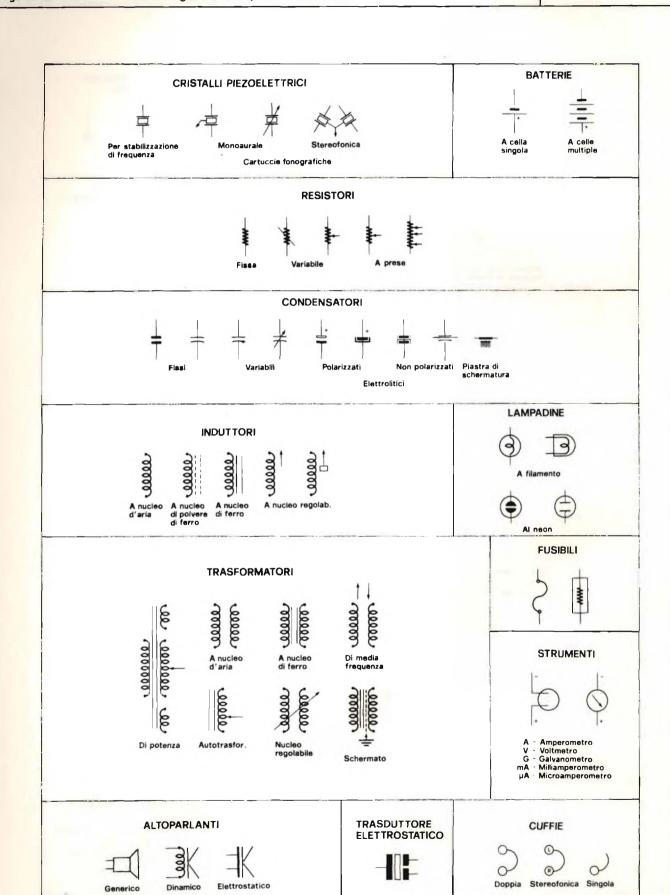
SIMBOLI PER CALCOLATORI ELETTRONICI

MdE pag. 45

Nozioni preliminari : 30 Capitolo

: 30.0

Paragrafo


Simbologia dei componenti elettronici : 30.03 Argomento

Premesse

APPUNTI DI **ELETTRONICA**

Codice **Pagina**

30.03 3

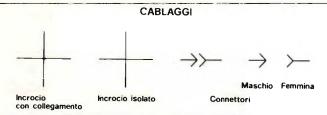
APPUNTI DI **ELETTRONICA**

Codice 30.03

Pagina 4

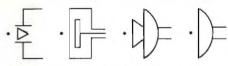
Sezione : 3 Capitolo : 30

Circuiti elementari Nozioni preliminari

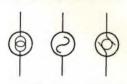

: 30.0

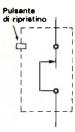
Paragrafo

Premesse

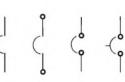

Argomento : 30.03

Simbologia dei componenti elettronici

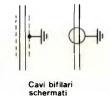




Indicare il tipo con una nota per esempio: ceramico a cristallo, dinamico ecc...


GENERATORI DI TENSIONE ALTERNATA

SEZIONATORI

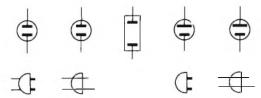


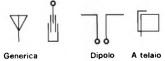
Fili schermati

SCHERMI

Gruppo schermato

JACK




PRESE c.a.

Non polarizzate

Polarizzate

ANTENNE

Telescopica

Dipolo A telaio

TESTINE DI REGISTRAZIONE **MAGNETICA**

Indicare il tipo con una lettera

R = Registrazione R/P = Registr. / Riproduz. P = Riproduzione E = Cancellazione

Fonti di Informazione MdE pag. 47

Sezione : 3 Circuiti elementari

Capitolo

: 30 Nozioni preliminari

Paragrato : 30.1 Circuiti e operatori

Argomento : 30.10 Indice del paragrafo

APPUNTI DI ELETTRONICA

Codice Pag

30.10

Pagina 0

Paragrafo 30.1

CIRCUITI E OPERATORI

arg. 30.11 — Circuiti

pag. 1 — Generalità sui circuiti

Definizione

Analisi

Collegamenti in serie

2 — Collegamenti in parallelo

Collegamenti misti

3 — Rete elettrica

" 4 — I circuiti sotto due punti di vista

arg. 30.12 — Operatori

pag. 1 — Richiamo ai criteri grafici di rappresentazione dei circuiti

2 — Fisionomia dei trasduttori

" 3 — Struttura elementare dei trasduttori attivi e passivi

4 — Nomenclatura

" 5 — Operatori speciali completi ed elementari

Collegamenti

" 6 — Criteri di calcolo dei parametri e scelta degli elementi

arg. 30.13 — I principi di Kirchhoff

pag. 1 — Per le tensioni costanti

' 2 - Per le tensioni alternate

' 3 - Per le correnti continue

" 4 — Per le correnti alternate

arg. 30.14 — I Teoremi di Thevenin e di Norton

pag. 1 — Thevenin per tensione costante

" 2 — Thevenin per tensione alternata

' 3 — Norton per corrente continua

" 4 — Norton per corrente alternata

: 3

Circuiti elementari

Capitolo

: 30 : 30.1 Nozioni preliminari Circuiti e operatori

Paragralo

Argomento: 30.11

Circuiti

APPUNTI DI ELETTRONICA

Codice 30.11

Pagina 1

DEFINIZIONE

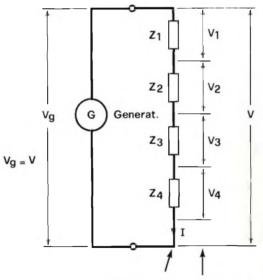
Ripetiamo qui un ennesimo tentativo di definizione.

Per circuito si intende un insieme di componenti opportunamente collegati fra loro in modo da formare comunque una catena le cui estremità si collegano ad un generatore al fine di far passare una corrente elettrica che si ramifica e attraverso opportunamente i componenti a seconda delle loro caratteristiche.

La parola circuito dunque non è scelta a caso: la corrente circola in un anello chiuso col generatore.

GENERALITA' SUI CIRCUITI

Come abbiamo già visto fin dagli argomenti 10.12 e 10.13 e come abbiamo incontrato varie volte, non dovrebbero esserci più dubbi su ciò che costituisce un circuito.


ANALISI

Se analizziamo un circuito complesso, anche se tracciato in modo caotico, possiamo suddividere i collegamenti fra gli elementi in due gruppi ben distinti:

- 1. Collegamenti in serie
- 2. Collegamenti in parallelo

COLLEGAMENTI IN SERIE

Il circuito serie è caratterizzato da un'unica corrente che attraversa l'intero circuito Z₁ Z₂ Z₃ Z₄ Elementi qualsiasi del circuito Ogni elemento è dunque attraversato dalla medesima corrente

Corrente che attraversa il circuito Tensioni che si formano ai capi di ogni elemento a seconda delle caratteristiche di ciascuno. (Legge di Ohm v. 10.21)

Tensione totale $V = V_1 + V_2 + V_3 + V_4$ corrispondente alla tensione fornita dal generatore

V = Vg

Attenzione la somma $V = V_1 + V_2 + V_3 + V_4 \\ \dot{e} \ valida \ sempre, \\ anche quando \\ si \ tratta \ di \ somma \\ vettoriale$

Naturalmente anche qui vale la proprietà associativa della somma (v. 10.12-2) **ELETTRONICA**

Codice 30.11

Pagina 2

Sezione

Capitolo

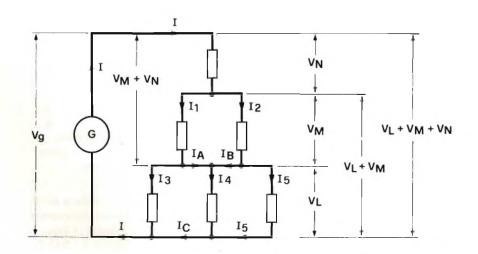
Paragrafo


: 3 : 30 Circuiti elementari Nozioni preliminari

: 30.1

Circuiti e operatori

Argomento : 30.11 Circuiti


COLLEGAMENTI IN PARALLELO

COLLEGAMENTI MISTI

Riprendiamo il circuito illustrato in 10.12-2 che costituisce un esempio tipico di circuito misto. Lo abbiamo generalizzato e corredato di un maggior numero di informazioni.

$$| 1 + 1_2 = | 3 + 1_4 + | 5 - 1_5 = | 1_4 + 1_5 = | 1_4 + 1_5 = | 1_$$

: 3

Circuiti elementari

Paragrafo

: 30 : 30.1 Nozioni preliminari Circuiti e operatori

Argomento

: 30.11

Circuiti

APPUNTI DI **ELETTRONICA**

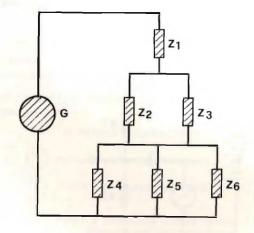
Codice

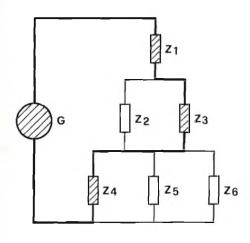
Pagina

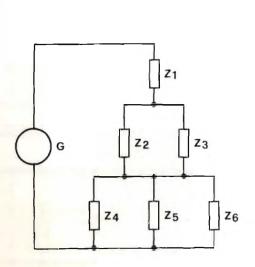
30.11

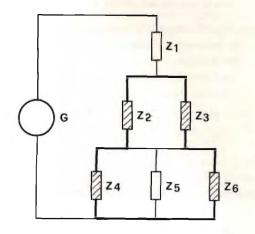
3

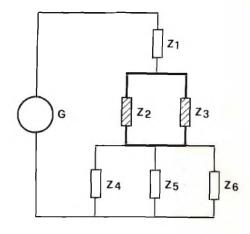
RETE ELETTRICA


Riprendiamo in considerazione l'ultimo circuito esaminato nella pagina precedente: esso, nel suo insieme, costituisce una rete elettrica.


Per poterne effettuare l'analisi e calcolarne i parametri distingueremo quanto segue.


MAGLIE


Qualunque parte di una rete che contenga elementi presi uno alla volta in modo che formino un chiuso costituisce una maglia sul solito circuito abbiamo evidenziato tre esempi di maglie.

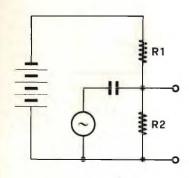

Possono anche non comprendere il generatore.

NODI

I punti dove convergono e si dipartono le correnti si dicono nodi.

Qui a fianco è mostrato l'intero complesso di nodi che esistono nella rete elettrica in esame.

Fonti di Informazione

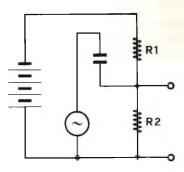

Circuiti e operatori

Argomento: 30.11

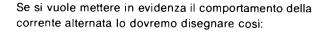
Circuiti

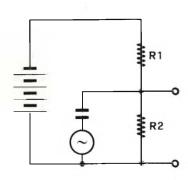
I CIRCUITI SOTTO DUE PUNTI DI VISTA

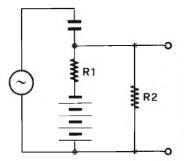
Osservate questo circuito:



Esso figura collegato a due generatori:


- un generatore di corrente alternata
- una batteria


Oh, scusate, avete ragione: sto proprio razzolando male, dopo tutta la predica che ho fatto!


Il circuito avrebbe dovuto essere disegnato cosi:

Se si vuole mettere in evidenza l'alimentazione in corrente continua va bene come lo abbiamo disegnato, anzi andrebbe ancora meglio il seguente.

Concediamo una certa sorpresa al lettore, ma non si deve meravigliare:

i due resistori sono proprio in parallelo, data la posizione del generatore di tensione alternata!

Situazioni come questa sono molto frequenti in elettronica.

Fonti di Informazione

Sezione : 3

Circuiti elementari

Capitolo

: 31

Operatori passivi

Paragrafo

: 31.1

1.1 Circuiti e operatori

Argomento : 31.12

Criteri grafici di esposizione dei circuiti

APPUNTI DI ELETTRONICA

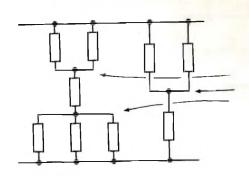
Codice 30.12

Pagina

Come già avrete potuto osservare anche nelle sezioni precedenti della raccolta, gli elementi del circuito sono sempre stati disegnati in posizione verticale.

Questo criterio grafico non è stato scelto a caso, ma ha il preciso scopo di far trovare su una verticale tutti gli elementi del circuito che si trovano a potenziali decrescenti verso il basso o crescenti verso l'alto, come mostra la figura seguente, dove le didascalie devono essere lette secondo l'ordine numerico.

Schema di disposizione grafica verticale degli elementi del circuito e relativa definizione motivazionale


IN SENSO CRESCENTE 4 Punto a potenziale massimo De punto a potenziale massimo Punto a potenziale ancora maggiore Punto a potenziale ancora minore Punto a potenziale superiore Potenziale di riferimento detto anche "massa" e di solito collegato a terra IN SENSO DECRESCENTE Punto a potenziale massimo Punto a potenziale inferiore Punto a potenziale minimo preso come riferimento detto anche "massa" e di solito collegato

La regolare variazione della tensione non è sempre verificabile nel circuito soprattutto quando si ha a che fare con le correnti alternate, ma questo criterio grafico risulta sempre valido come regola ordinatrice dei concetti.

Seguendo lo stesso concetto, metteremo allo stesso livello i punti che si trovano al medesimo potenziale.

I collegamenti, che hanno proprio lo scopo di mettere allo stesso potenziale, tutti i punti collegati saranno effettuati con linee orizzontali.

Per questo motivo eviteremo di disegnare elementi del circuito in posizione orizzontale dato che essi provocano sempre differenze di potenziale e perciò i loro estremi si trovano sempre a potenziali diversi.

Esempio

Tutti i collegamenti sono ovviamente equipotenziali e sono disegnati con linee orizzontali.

a terra

In particolare

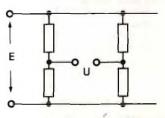
questo collegamento si trova ad un potenziale superiore a questo, il quale si trova ad un potenziale superiore a questo.

Non sempre sarà possibile adottare questo sistema soprattutto quando gli schemi si fanno piuttosto complicati, ma proviamoci: quanti schemi convenzionali incomprensibili mi sono diventati chiari dopo averli trasformati in, questo modo!

Eccezioni

Può succedere, come nei circuiti a ponte, che due punti possono trovarsi, a seconda dei casi, l'uno a potenziale maggiore o minore dell'altro.

In questo caso resterebbe l'indecisione di disegnarli.


E QU

In questo modo

E U

o in quest'altro modo

Allora faremo un'eccezione: li disegneremo in questo modo

e così risolviamo il problema!

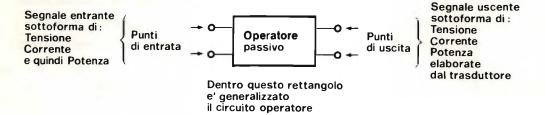
APPUNTI DI : 3 Circuiti elementari **ELETTRONICA** Sezione Codice Pagina Capitolo : 30 Nozioni preliminari 30.12 2 : 30.1 Circuiti e operatori Paragrato Argomento : 30.12 Operatori

FISIONOMIA DEGLI OPERATORI

Definizione di operatore

Col nome generico di operatore, si intende qualunque dispositivo che traduce una grandezza fisica in un'altra trasformata in funzione di determinati parametri.

Qui ovviamente ci occuperemo unicamente degli **operatori elettrici**, cioè di quei circuiti operatori di grandezze puramente elettriche, come **tensione**, **corrente** e **potenza**.


Essi constano di elementi del circuito opportunamente collegati.

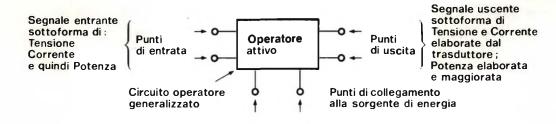
Se il circuito contiene elementi o dispositivi elettronici si hanno gli operatori elettronici, ma poichè essi manipolano sempre grandezze elettriche non cessano in ogni caso di essere operatori elettrici.

Essi sono costituti da:

- due punti di entrata ai quali viene applicato il segnale sottoforma di tensione, corrente e potenza.
 L'applicazione del segnale avviene collegando i due punti di entrata, con i due punti di uscita del dispositivo che lo fornisce.
- due punti di uscita da dove le tre grandezze entranti escono modificate dall'operazione che l'operatore ha effettuato.

Da questo punto di vista l'operatore non è che un dispositivo che fornisce un particolare segnale.

Classificazione rispetto a tensione e corrente


A seconda del tipo di grandezza rispettivamente entrante e uscente con le quali si intende operare si possono avere operatori:

tensione-tensione, tensione-corrente, corrente-corrente, corrente-tensione

Classificazione rispetto alla potenza

Per quanto concerne il trasferimento di potenza fra entrata e uscita, chiameremo:

- passivi quegli operatori che manipolano soltanto i fattori della potenza entrante, rendendo una potenza uscente sempre inferiore alla potenza entrante a causa delle inevitabili dissipazioni di energia.
 Negli operatori passivi includiamo anche quelli che contengono elementi reattivi.
- attivi quegli operatori che non solo manipolano i fattori della potenza entrante, ma prelevano energia da una sorgente ad essi collegata per rendere una potenza uscente generalmente maggiore della potenza entrante.

: 31

Operatori passivi

Paragrafo

: 31.1

Circuiti e operatori

Argomento

: 31.12

Struttura elementare degli operatori attivi e passivi

Codice

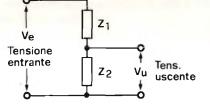
Pagina

30.12

3

Grandezze in gioco

Ripetiamolo, negli operatori le seguenti grandezze in gioco non sono mai separate fra loro sia alla entrata che all'uscita: tensione e corrente e quindi potenza.

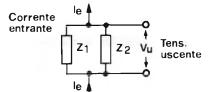

La classificazione che segue tiene conto del tipo di grandezza entrante e di quella uscente che maggiormente interessano.

Non dimenticate che tutte e tre sono sempre in gioco: tensione, corrente e potenza.

Operatori passivi

Tipo:

Tensione - Tensione



È essenzialmente un partitore di tensione.

Ovviamente in esso circolano le due correnti, entrante e uscente, e le relative potenze.

È il più usato.

Corrente - Tensione

Corrente

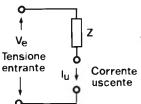
uscente

La corrente è entrante come segnale anche se entra ed esce nel circuito.

Serve per creare una differenza di potenziale a spese di una corrente esistente in un circuito.

È molto usato.

Lo si può anche vedere come un partitore di corrente.

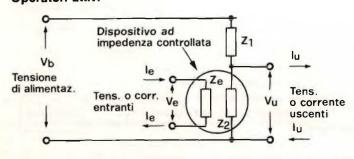

le Corrente entrante z_1 Corrente - Corrente Ιu

La corrente è entrante come segnale anche se entra ed esce nel circuito.

Serve per alimentare un carico modesto a spese di una corrente circolante nel circuito.

Non deve creare apprezzabili cadute di tensione per non alterare il circuito di cui fa parte. Anch'esso è un partitore di corrente.

Tensione - Corrente



È un tipo un po' ibrido e un po' banale.

Se si richiede all'entrata anche una determinata corrente, il circuito diventa come il precedente.

Con il carico collegato il sistema assomiglia anche ad un partitore di tensione.

Operatori attivi

Questo tipo di circuito è valido un po' per tutti i tipi di grandezze da operare.

Infatti è il tipo di dispositivo ad impedenza controllata prescelto che opererà sulla grandezza che vogliamo.

Confronti

La differenza sta nel fatto che:

- gli operatori attivi -
- formano il segnale di uscita a spese dirette del segnale di entrata
- gl' operatori passivi -

formano il segnale di uscita a spese della sorgente di energia sotto il controllo del segnale di entrata.

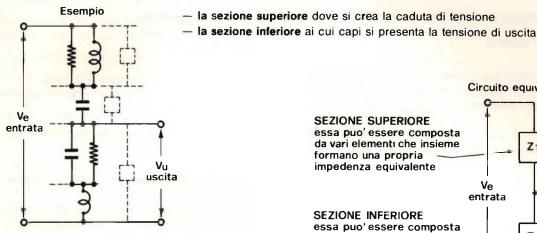
di Informazione

: 30.1

Sezione

Paragrafo

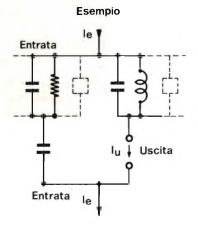
Capitolo : 30 Nozioni preliminari


Argomento : 30.12 Operatori

NOMENCLATURA

Circuiti e operatori

Partitore di tensione


Data la regola che ci siamo imposti, comunque sia composto il partitore di tensione nell'interno dell'operatore, distingueremo sempre due sezioni:

Partitore di corrente

Comunque sia composto il partitore di corrente nell'interno dell'operatore, distingueremo sempre due rami:

- il ramo primario che non comprende il carico
- il ramo secondario la cui corrente attraversa il carico.

II RAMO PRIMARIO puo'essere composto da vari elementi che insieme formano una propria impedenza equivalente

> Circuito equivalente

SEZIONE SUPERIORE

SEZIONE INFERIORE essa puo' essere composta

formano una propria impedenza equivalente

essa puo' essere composta da vari elementi che insieme formano una propria impedenza equivalente

da vari elementi che insieme

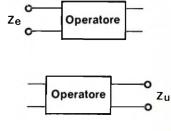
II RAMO SECONDARIO puo essere composto da vari elementi che insieme formano una propria impedenza equivalente Entrata z_1 z_2 Uscita Entrata

Circuito equivalente

Z2

uscita

۷e entrata


Comportamento esterno degli operatori

Impedenza d'entrata

All'ingresso essi presentano le caratteristiche di un carico qualsiasi con la sua caratteristica impedenza differenziale per le componenti alternate del segnale entrante e con la sua caratteristica resisenza statica per le componenti continue del segnale stesso.

Impedenza d'uscita

All'uscita essi presentano le caratteristiche di un generatore con la sua caratteristica impedenza differenziale interna per le componenti alternate del segnale uscente e con la sua caratteristica resistenza statica interna per le componenti continue del segnale stesso.

9 1975 - A. T. Gilcart - Proprietà riservata a termini di legge - Riproduzione vietata senza

Fonti di Informazione

consenso

Sezione : 3 Circuiti elementari

Capitolo : 30 Nozioni preliminari

Argomento: 30.12 Operatori

: 30.1

Paragrafo

APPUNTI DI

Codice 30.12

Pagina 5

OPERATORI SPECIALI COMPLETI ED ELEMENTARI. COLLEGAMENTI

Operatori che svolgono funzioni particolari possono avere più entrate o più uscite come dagli esempi che seguono.

A più entrate:

miscelatori di segnali

Circuiti e operatori

in uscita si ha un segnale che è funzione della miscelazione dei segnali entranti;

ricompositori di segnali

— l'operatore provvede a ricomporre le parti di un segnale che vengono introdotte alle entrate.

A più uscite:

Selettori di banda

--- l'operatore scinde il segnale entrante in vari segnali ciascuno appartenente ad una banda di

frequenza prestabilita;

selettori di fase

come sopra, ma per fasi prestabilite.

Senza entrata:

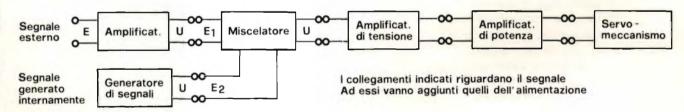
non sembri paradossale: si tratta degli oscillatori (generatori autonomi di oscillazioni). In essi il

segnale entrante è una parte, in fase, del segnale uscente.

Altri operatori apparentemente «senza entrata» sono i servogeneratori come i microfoni, le sonde termometriche ed in genere gli apparecchi per la trasformazione di altre grandezze

fisiche in segnali elettrici.

Senza uscita:

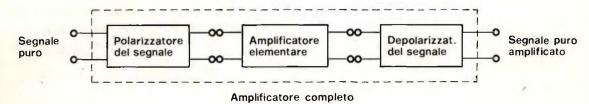

sono i servomeccanismi, cioè gli apparecchi finali che rispondono alle sollecitazioni che gli operatori, per essi costruiti, gli imprimono. In realtà l'uscita di questi apparecchi esiste pure, ma non è elettrica: ad es. gli altoparlanti (uscita acustica), i motori (uscita meccanica) ecc.

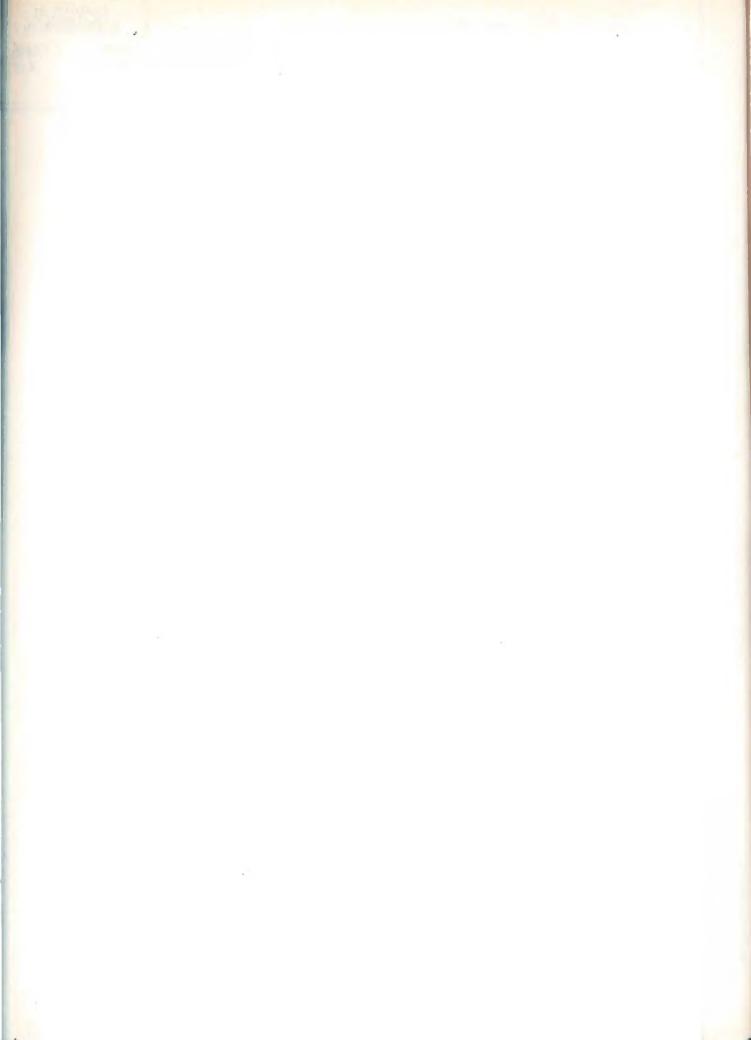
Collegamenti fra operatori

Una volta chiarite le funzioni elementari dell'operatore, il collegamento fra operatori diventa un problema molto semplice, purchè si faccia attenzione a:

- la polarità dei suoi terminali anche se si tratta di corrente alternata, perchè essa determina la fase del segnale
- i collegamenti equipotenziali detti "comuni" o "massa".

Facciamo un esempio: supponiamo di dover pilotare un servomeccanismo in funzione di due segnali troppo deboli per azionarlo direttamente: la soluzione è nello schema sotto riportato.


Operatori completi e operatori elementari


Un operatore completo può essere costituito da più operatori elementari.

Più operatori completi formano una apparecchiatura (es. regolatore di temperatura, o di altre grandezze fisiche, trasmettitore, ricevitore, ecc.).

Gli operatori che compongono un'apparecchiatura spesso prendono il nome di "stadi" (es. stadio amplificatore, stadio rivelatore, stadio oscillatore, ecc.).

Come esempio di operatore completo prendiamo un amplificatore: esso è costituito dai seguenti operatori elementari:

30.13

: 30 : 30.1 Nozioni preliminari Circuiti e operatori

Argomento

: 30.13

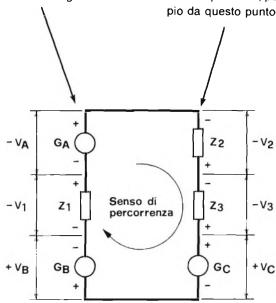
Principi di Kirchhoff

PRINCIPIO DI KIRCHHOFF PER LE TENSIONI COSTANTI

Enunciato

Questo principio dice praticamente che la somma (algebrica o vettoriale) delle tensioni in un circuito, che comprenda anche uno o più generatori, è uguale a zero. Cioè: $V_1 + V_2 + V_3 + ... + V_n = 0$

oppure $\Sigma V_n = 0$


I principi di Kirchhoff si applicano essenzialmente ai circuiti e servono a calcolare correnti e tensioni in quei casi dove la sola legge di Ohm non è sufficiente.

Per dar corpo a questo fatto sarà bene fare alcuni chiarimenti soprattutto sul modo di procedere.

Modo di procedere

Supponiamo che il circuito sia questo e che le polarità si presentino come segnato.

Stabiliamo ora un senso di percorrenza dell'anello del circuito partendo, per esempio da questo punto.

Stabiliti sperimentalmente i valori delle tensioni, e le loro polarità che segneremo sul disegno avremo cura di controllare che le polarità degli elementi passivi Z siano tutte dalla stessa parte rispetto al senso di percorrenza perchè diversamente non può esse-

Le polarità dei generatori invece sono così come le esigono il progettista o le condizioni del circuito.

Seguendo il circuito secondo il senso di percorrenza che abbiamo stabilito, attribuiremo il segno meno (-) alla tensione se incontreremo prima il polo negativo del relativo elemento del circuito, mentre attribuiremo il segno più (+) se incontreremo il polo positivo.

Nel caso della figura, il principio di Kirchhoff per le tensioni afferma la seguente relazione algebrica:

$$-V_2 - V_3 + V_C + V_B - V_1 - V_2 = 0$$

Per il momento possiamo limitarci a constatare che l'applicazione di questo principio è comodo per determinare una tensione incognita presente nel circuito.

L'enunciato vale anche quando si intende per circuito una sola maglia chiusa di una rete elettrica (v. 30.11-3).

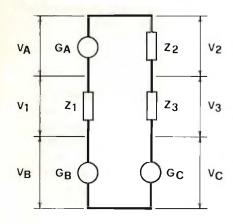
Sezione

Capitolo

: 30.1

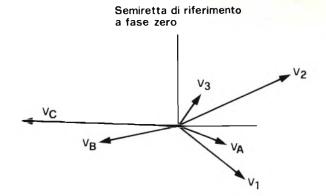
Circuiti e operatori

Argomento


: 30.13

I principi di Kirchhoff

PRINCIPIO DI KIRCHHOFF PER LE TENSIONI ALTERNATE Esposizione grafica:


Validità anche per il caso vettoriale,

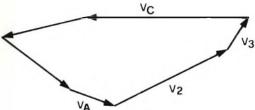

Circuito della pagina precedente

Diagramma delle tensioni

Ricordiamo che i principi di Kirchhoff si applicano essenzialmente ai circuiti e servono a calcolarne correnti e tensioni in quei casi dove la sola legge di Ohm non è sufficiente.

Le fasi vengono riferite a qualunque tensione presa come riferimento o ad una semiretta qualsiasi riferentesi quale "fase zero".

tato.

Come è noto (10.32-2) vol. 1, la lunghezza dei singoli vettori è proporzionale alla tensione che essi rappresentano, secondo una scala prestabilita.

Riprendiamo il circuito della pagina precedente e supponiamo che le tensioni alternate

siano rappresentate col grafico sopra ripor-

Ripetiamo che l'enunciato di questo principio vale anche quando, per circuito, si intende una sola maglia chiusa di una rete elettrica (v. 30.11-3)

Se una tensione è incognita, per determinarla è sufficiente tracciare la poligonale per le altre e poi chiuderla con la tensione incognita: la lunghezza del suo vettore, letto con la scala prestabilita e l'angolo che forma con la direzione presa come riferimento daranno la risposta cercata.

Questa poligonale è stata tracciata trasferendo parallelamente a se stessi i vettori delle tensioni date.

Essa può essere anche tracciata secondo un diverso orientamento purchè ne vengano mantenuti gli angoli rispetto al riferimento scelto.

Questa poligonale è chiusa su se stessa e perciò dimostra di avere una risultante di valore zero.

Questo valore è tale in qualunque punto del circuito.

Fonti di Informazione

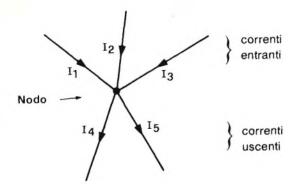
1975 - A. T. Gilcart - Proprietà riservata a termini di legge -

senza

Riproduzione vietata

Codice 30.13

Pagina 3

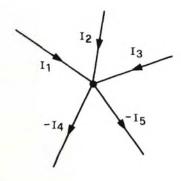

PRINCIPIO DI KIRCHHOFF PER LE CORRENTI CONTINUE

Enunciato

Questo principio dice praticamente che in una rete elettrica la somma (algebrica o vettoriale) delle correnti che entrano e escono da ogni nodo è uguale a zero.

cioè
$$l_1 + l_2 + l_3 + ... + l_n = 0$$

oppure $\Sigma l_n = 0$


L'enunciato dovrebbe essere abbastanza evidente: in un nodo, collegando più conduttori, attraverso i quali si fanno entrare nel nodo stesso più correnti, è indispensabile che la somma di esse esca dallo stesso nodo attraverso uno o più diversi conduttori.

$$somma = I_1 + I_2 + I_3$$

$$somma = I_4 + I_5$$

L'evidenza ci dice che le due somme debbano essere uguali, cioè $l_1 + l_2 + l_3 = l_4 + l_5$

Questo equivale a dire che $I_1 + I_2 + I_3 - I_4 - I_5 = 0$ cioè, nel bilancio delle entrate, abbiamo preso col segno meno (—) le uscite

Ricordiamo che i principi di Kirchhoff si applicano essenzialmente ai circuiti e servono a calcolare correnti e tensioni in quei casi dove la sola legge di Ohm non è sufficiente

Codice 30.13

Pagina 4 Sezione Capitolo

Paragrafo

: 3 Circuiti elementari: 30 Nozioni preliminari

: 30.1

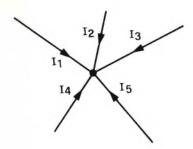
Circuiti e operatori

Argomento: 30.13

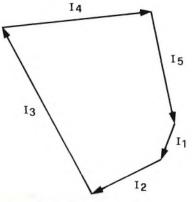
13

I principi di Kirchhoff

PRINCIPIO DI KIRCHHOFF PER LE CORRENTI ALTERNATE


Validità anche per il caso vettoriale

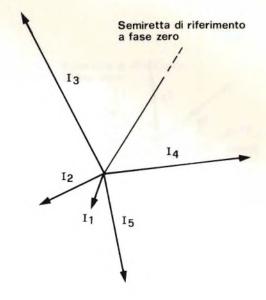
Qui è già più problematico parlare di correnti entranti e di correnti uscenti.


Sarà meglio riferirci alle correnti come se fossero tutte entranti e poi dire che esse si aggiustano in valore e fase in modo da annullare la somma vettoriale.

La figura della pagina precedente diventa così

Ricordiamo che i principi di Kirchhoff si applicano essenzialmente ai circuiti e servono a calcolare correnti e tensioni in quei casi dove la sola legge di Ohm non è sufficiente

Dimostrazione


Questa poligonale è stata tracciata trasferendo parallelamente a se stessi i vettori delle correnti date.

Essa può essere tracciata anche secondo un diverso orientamento purchè ne vengano mantenuti gli angoli rispetto al riferimento scelto.

Questa poligonale è chiusa su se stessa e perciò dimostra di avere una risultante di valore zero.

Esposizione grafica

Diagramma delle correnti date

Supponiamo che le correnti alternate siano rappresentate mediante il grafico sopra riportato.

Le fasi vengono riferite ad una qualunque corrente presa come riferimento o ad una semiretta qualsiasi presa come riferimento di fase zero.

Come è noto (10.32-2), la lunghezza dei singoli vettori è proporzionale alla corrente che essi rappresentano secondo una scala prestabilita.

Se una corrente è incognita, per determinarla è sufficiente tracciare la poligonale per le altre e poi chiuderla con la corrente incognita: la lunghezza del suo vettore, letto con la scala prestabilita e l'angolo che forma con la direzione presa come riferimento daranno la risposta cercata.

Fonti di Informazione Giometti EER vol. 1º pag. 22

Gilcart - Proprietà riservata a termini di legge - Riproduzione i

vietata senza consenso

Sezione

: 3

Circuiti elementari

Capitolo

: 30 Nozio

Nozioni preliminari

Paragrato
Argomento

: 30.14

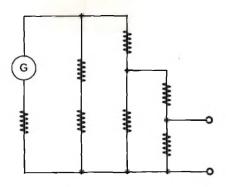
: 30.1

Circuiti e operatori

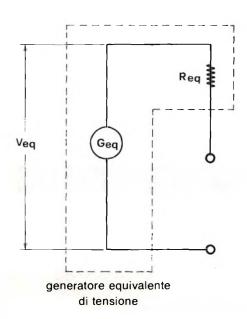
I teoremi di Thevenin e di Norton

APPUNTI DI ELETTRONICA

Codice F


30.14

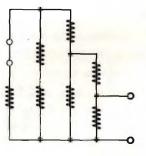
Pagina


IL TEOREMA DI THEVENIN PER GENERATORE EQUIVALENTE DI F.E.M. COSTANTE

Il teorema si applica essenzialmente agli operatori e costituisce un comodo artificio per il calcolo matematico del comportamento in tensione di un trasduttore rispetto ai suoi terminali di uscita.

Schema originario

f.e.m. equivalente del trasduttore. È quella che è presente all'uscita del trasduttore senza carico (v. schema originario) e che si immagina prodotta da questo generatore equivalente.



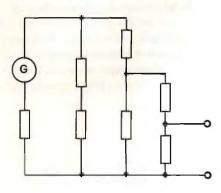
Enunciato Questo teorema dice essenzialmente che:

Un trasduttore, costituito da una rete elettrica e completo di generatore, equivale ad un generatore di tensione con resistenza in serie in cui la f.e.m. e la relativa resistenza (interna) dipendono dai parametri degli elementi che costituiscono la rete e si dicono equivalenti (v. par. 13.7).

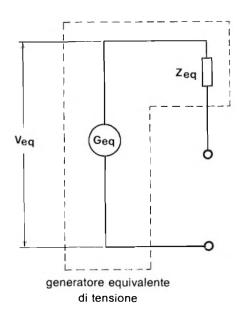
In sostanza il teorema dice quanto segue:

Un operatore, costituito da una rete elettrica per quanto complessa e completa di generatore, si comporta come un generatore di tensione la cui f.e.m. equivale a quella del generatore reale modificata dai parametri del circuito e la cui resistenza interna serie equivale a quella dell'intera rete ivi compresa la resistenza interna del generatore reale.

Resistenza equivalente serie: È quella che risulta dal calcolo della resistenza della rete originaria vista dai terminali di uscita con un semplice collegamento in corto al posto del generatore : 30 : 30.1 Nozioni preliminari Circuiti e trasduttori


Argomento : 30.14

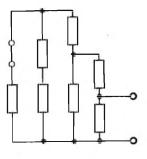
I teoremi di Thevenin e di Norton


IL TEOREMA DI THEVENIN PER GENERATORE EQUIVALENTE DI F.E.M. ALTERNATA

Il teorema enunciato alla pagina precedente è valido anche per i regimi alternati purchè si sostituiscano le impedenze alle resistenze e il calcolo sia effettuato vettorialmente (v. 13.5 e 13.6).

Schema originario

f.e.m. equivalente dell'operatore È quella che è presente all'uscita del trasduttore senza carico (v. schema originario e che si immagina prodotta da questo generatore equivalente



Enunciato per il regime alternato

Un operatore, costituito da una rete elettrica e completo di generatore, equivale ad un generatore di tensione con impedenza in serie, in cui la f.e.m. e la relativa impedenza (interna) dipendono dai parametri degli elementi che costituiscono la rete e si dicono equivalenti.

In sostanza il teorema dice quanto segue

Un operatore, costituito da una rete elettrica per quanto complessa e completa di generatore si comporta come un generatore di tensione la cui f.e.m. equivale a quella del generatore reale e la cui impedenza interna equivale a quella dell'intera rete compresa l'impedenza interna del generatore reale.

Impedenza equivalente serie:

È quella che risulta dal calcolo vettoriale dell'impedenza della rete originaria vista dai terminali di uscita con un semplice collegamento in corto al posto del generatore

Fonti di Informazione

Sezione : 3 Capitolo

Circuiti elementari

: 30 : 30.1 Paragrafo

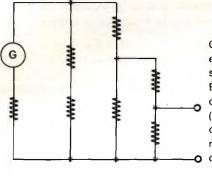
Nozioni preliminari Circuiti e operatori

: 30.14 Argomento

I teoremi di Thevenin e di Norton

APPUNTI DI **ELETTRONICA**

Codice


30.14

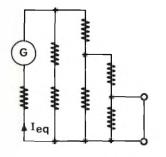
3

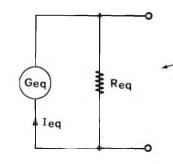
IL TEOREMA DI NORTON PER GENERATORE EQUIVALENTE DI CORRENTE CONTINUA

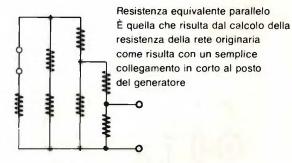
Il teorema si applica essenzialmente agli operatori e costituisce all'occorrenza un comodo artifizio per il calcolo matematico del comportamento in corrente di un trasduttore rispeto ai suoi terminali di uscita.

Schema originario

Corrente generata equivalente (di valore sempre costante). È quella che è fornita dal generatore (schema originario) quando il carico è rappresentato da un corto cicuito


Enunciato


Questo teorema dice essenzialmente che:


un operatore, costituito da una rete elettrica e completo di generatore, equivale ad un generatore di corrente con resistenza in parallelo, la cui corrente costante generata e la relativa resistenza (interna) dipendono dai parametri del circuito e si dicono equivalenti (v.par. 13.7).

In sostanza il teorema dice quanto segue:

Un operatore, costituito da una rete elettrica per quanto complessa e completa di generatore, si comporta come un generatore di corrente la cui corrente generata (di valore costante in qualunque condizione di carico) equivale a quella del generatore reale, modificata dai parametri del circuito e la cui resistenza interna parallelo equivale a quella dell'intera rete, ivi compresa la resistenza interna del generatore reale.

Commento

Il concetto di generatore di corrente è sempre problematico perchè poco intuitivo rispetto quelli di generatore di tensione.

Vediamo di effettuare una analisi comparata dei due concetti per scoprire una perfetta analogia (v. 11.33-2).

Non dovrebbe sorprendere il fatto che la resistenza interna R abbia il medesimo valore in entrambi i casi.

Il generatore di tensione

È costituito da un generatore di f.e.m. e da una resistenza interna in serie R (30.14-1).

Coi terminali di uscita aperti (carico assente) la tensione fra di loro è uguale alla f.e.m., mancando la caduta di tensione ai capi di R.

Coi terminali di uscita in corto circuito si forma una corrente di corto circuito

I = E/R.

Per qualsiasi valore di carico la tensione ai terminali di uscita (e quindi anche ai capi del carico) si troverà fra zero e il valore E della f.e.m.

Il generatore di corrente

È costituito da un generatore di corrente sempre costante I e da una resistenza interna parallelo R.

Coi terminali di uscita aperti, (carico assente) la tensione V fra di loro è uguale a RI perchè tutta la corrente I generata non può che passare attraverso R.

Coi terminali di uscita in corto circuito, la corrente generata non può che passare tutta attraverso il "corto" mandando a zero la tensione e perciò nessuna corrente può attraversare R.

Per qualsiasi valore del carico la tensione ai terminali di uscita (e quindi anche del carico) si troverà fra zero e il valore

V = RI

Una parte della corrente prodotta attraversa R. l'altra il carico

Che la tensione possa variare quando il generatore produce sempre la medesima corrente è dimostrato anche dal fatto che resistenza interna e carico sono in parallelo fra loro e perciò la loro resistenza globale è una variabile in funzione del carico stesso.

APPUNTI DI **ELETTRONICA**

30.14

Codice Pagina

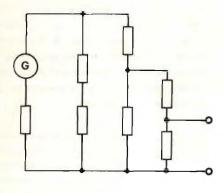
Sezione Capitolo : 3 : 30 Circuiti elementari Nozioni preliminari

Paragrafo

: 30.1

Circuiti e operatori

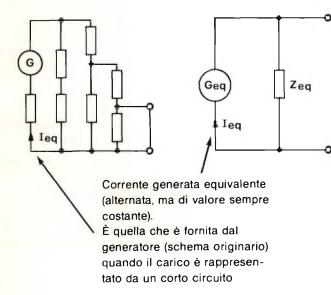
Argomento: 30.14

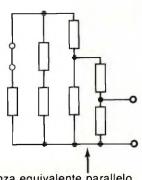

I teoremi di Thevenin e di Norton

IL TEOREMA DI NORTON PER GENERATORE EQUIVALENTE DI CORRENTE ALTERNATA

Il teorema enunciato alla pagina precedente è valido anche per i regimi alternati purchè si sostituiscano le impedenze alle resistenze e il calcolo sia effettuato vettorialmente.

(V. 13.5 e 13.6)


Schema originario


Enunciato per il regime alternato

Un trasduttore, costituito da una rete elettrica e completo di generatore, equivale ad un generatore di corrente con impedenza in parallelo, la cui corrente alternata generata e la relativa impedenza (interna) dipendono dai parametri degli elementi che costituiscono la rete e si dicono equivalenti.

In sostanza il teorema dice quanto segue: Un trasduttore, costituito da una rete elettrica per quanto complessa e completa di generatore, si comporta come un generatore di corrente alternata la cui corrente generata (di valore costante in qualunque condizione di carico) equivale a quella del generatore reale, modificato dai parametri del circuito e la cui impedenza interna parallelo equivale a quella dell'intera rete ivi compresa l'impedenza interna del generatore reale.

Avvertenza: Chi avesse delle perplessità legga i commenti alla pagina precedente

Impedenza equivalente parallelo È quella che risulta dal calcolo vettoriale della impedenza della rete originaria come risulta con un semplice collegamento in corto al posto del generatore.

1975 - A. T. Gilcart - Proprietà riservata a termini

di legge - Riproduzione vietata senza consenso

Sezione

: 3

Circuiti elementari

Nozioni generali

Capitolo

: 30

Operatori passivi e reattivi

Paragrafo

Argomento: 31.00

: 31.0

Indici

APPUNTI DI ELETTRONICA

Codice

Pagina

31.00

00

CAPITOLO 31

OPERATORI PASSIVI E REATTIVI

INDICE

par. 31.0 - Nozioni generali

arg. 31.01 — Fisionomia dell'operatore passivo

arg. 31.02 — Calcolo grafico

par. 31.1 — Circuiti costituiti da due elementi lineari in serie

arg. 31.10 — Indice e impostazione generale del modello

arg. 31.11 — Circuito RR

arg. 31.12 — Circuito RL

arg. 31.13 — Circuito RC*

arg. 31.14 — Circuito LR

arg. 31.15 — Circuito LL

arg. 31.16 — Circuito LC

arg. 31,17 — Circuito CL

arg. 31.18 — Circuito CL

arg. 31.19 — Circuito CC

par. 31.2 — Circuiti costituiti da due elementi lineari in parallelo

arg. 31.20 — Indice e impostazione generale del modello

arg. 31.21 — Circuito R + R

arg. 31.22 — Circuito R + L

arg. 31.23 — Circuito R + C

arg. 31.24 — Circuito L + R (non trattato)

arg. 31.25 — Circuito L + L

arg. 31.26 — Circuito L + C

arg. 31.27— Circuito C + R (non trattato)

arg. 31.28 — Circuito C + L (non trattato)

arg. 31.29 — Circuito C + C

Sezione Capitolo : 3

Circuiti elementari

Paragrafo

: 30

Operatori passivi e reattivi

: 31.0

Argomento: 31.00

Nozioni generali

Indice del paragrafo

APPUNTI DI **ELETTRONICA**

Codice

Pagina

31.00

Paragrafo 31.0

NOZIONI GENERALI

Indice

Arg. 31.01 — Fisionomia dell'operatore passivo

pag. 1 - Definizione

Terminali

Grandezze operanti

Operazioni che l'operatore può compiere

Ricapitolazione sul partitore di tensione

Arg. 31.02 — Calcolo grafico

pag. 1 — Partitore con una resistenza variabile

Traduzione geometrica delle grandezze. Retta di carico

2 — Funzionamento del partitore in corrente continua e alternata

3 — Influenza del carico sull'ampiezza del segnale uscente

Diagramma geometrico completo sull'influenza del carico

Capitolo

: 31 : 31.0 Operatori passivi Nozioni generali

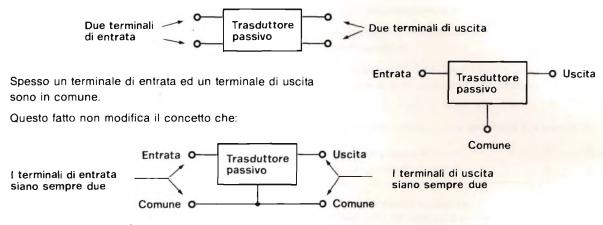
Paragrafo Argomento

: 31.01

Fisionomia dell'operatore passivo

Codice 31.01

Grandezza caratteristica


Definizione

Per operatore passivo, come abbiamo detto in 30.11, si intende un quadripolo costituito da dispositivi a due terminali come resistori, induttori, condensatori, raddrizzatori, ecc.

In esso la potenza in uscita è sempre minore della potenza in entrata.

Terminali

L'operatore è sempre caratterizzato dalla presenza di:

Grandezze operanti

Le grandezze che generalmente sono implicate nel circuito sono le seguenti:

◆ tensione◆ corrente◆ potenza

e possono essere messe in relazione fra loro come è illustrato in questa tabella.

Può essere che all'entrata o all'uscita dell'operatore tensione	del segnale		
o corrente interessino più che la potenza. Resta comunque il fatto imprescindibile che all'entrata e all'uscita sono presenti sempre tutte e tre. In ultima analisi noi effettuiamo sempre un'operazione potenza-potenza. Infatti, all'ingresso e all'uscita l'operatore si presenta con una	entrante tensione corrente corrente tensione tensione	uscente — tensione — tensione — corrente — corrente — potenza	
propria impedenza caratteristica, la quale fa si che per ogni tensione applicata si produca una corrente, o che ogni corrente che attraversi un circuito produca una tensione.	corrente potenza potenza	— potenza — tensione — corrente — potenza	

In entrambi i casi il risultato è uno: si è sempre in presenza di potenza per grande o piccola che sia.

Operazioni che l'operatore può compiere

Nell'interno del circuito che costituisce l'operatore si possono compiere operazioni tali che:

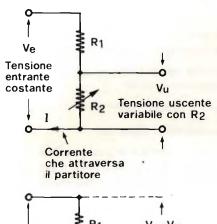
- data all'entrata una grandezza (segnale)
- otteniamo all'uscita:
 - a) la stessa grandezza generalmente attenuata
 - b) la stessa grandezza, ma che si comporta diversamente
 - c) un'altra grandezza di valore e comportamento diversi.

La grandezza di entrata e quella di uscita sono legate fra loro dall'operazione algebrica effettuata dal circuito. come vedremo nei dettagli.

: 31 Operatori passivi Capitolo

Nozioni generali

Paragrafo : 31.12 Calcolo grafico Argomento


: 31.1

APPUNTI DI **ELETTRONICA**

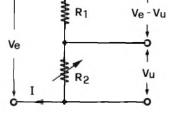
Codice

31.02

PARTITORE CON UNA RESISTENZA VARIABILE

Supponiamo, come spesso succede nell'elettronica degli operatori passivi, che la resistenza R2 del partitore sia di valore variabile.

Per quanto detto in precedenza, la tensione Vu che esiste ai capi R2 varierà in conseguenza.

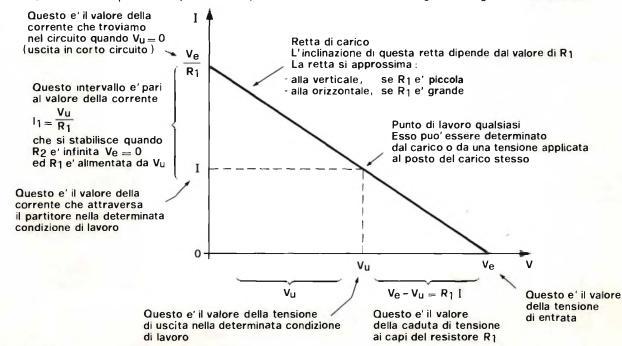

Vediamo di trovare con quale legge essa varia, cioè cerchiamo una relazione che leghi la corrente I che attraversa il partitore con la tensione Vu che si forma ai capi della resistenza R2 variabile.

Cercheremo cioè la cosiddetta caratteristica di uscita o caratteristica tensione-corrente dell'operatore.

Per far questo è sufficiente applicare la legge di Ohm alla resistenza fiss R₁ esprimendo la tensione ai suoi capi come differenza fra Ve e Vu, cioè

$$V_e - V_u = R_1 I$$

Questa equazione si può esprimere in due altri modi più espressivi



Ve Vu I = 1) la corrente che attraversa il partitore consta della corrente che vi si stabilisce quando R2 R₁ è in corto circuito ($V_u = 0$) diminuita della corrente che vi si stabilisce quando R2 è infinita (circuito aperto) e- $V_e = 0$

2) la tensione di uscita constadiminuita della caduta di tensione ai capi di R₁ tensione fissa di entrata

TRADUZIONE GEOMETRICA DELLE GRANDEZZE. RETTA DI CARICO

Tutti i modi di esprimere l'equazione del partitore, sono sintetizzati nel seguente diagramma cartesiano:

consenso

senza

ō

31.02

Sezione

Capitolo

Circuiti elementari

Paragrafo : 31.0

: 31

Operatori passivi Nozioni generali

: 31.02 Argomento

Funzionamento del partitore in corrente continua e alternata

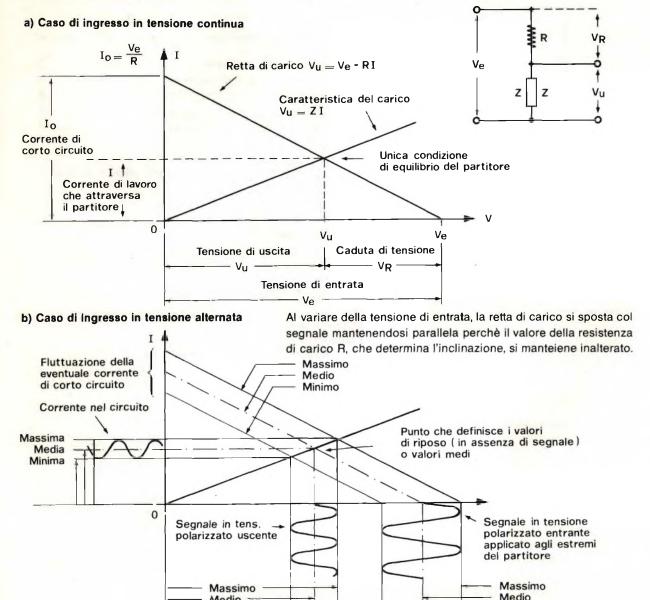
Definizioni e chiarimenti

Carico

Pagina

2

Purtroppo una consuetudine, dettata da altri motivi pur validi che vedremo, ha creato alcune ambiguità di definizione che ora dobbiamo chiarire e cioè: Resistenza questa, che potrebbe essere chiamata resistenza limitatrice, è invece normalmendi carico te chiamata resistenza di carico,


mentre questo è ciò che normalmente viene chiamato carico, intendendosi con questa definizione la potenza elettrica che esso richiama.

L'impedenza di questo carico ha una componente resistiva che chiameremo resistenza del carico o resistenza dell'utilizzatore.

Attenzione dunque alle differenze di significato quando la preposizione «di» è articolata (del).

Caratteristiche combinate: quella del partitore con quella del carico che esso alimenta

Se al diagramma che rappresenta il comportamento della corrente che attraversa il partitore in funzione della tensione di uscita Vu (retta di carico), sovrapponiamo il comportamento della resistenza del carico, il cui andamento rettilineo passa per l'origine (vedi 11.70), potremo trarre le seguenti interessanti considerazioni.

Medio

Minimo

Fonti di Informazione

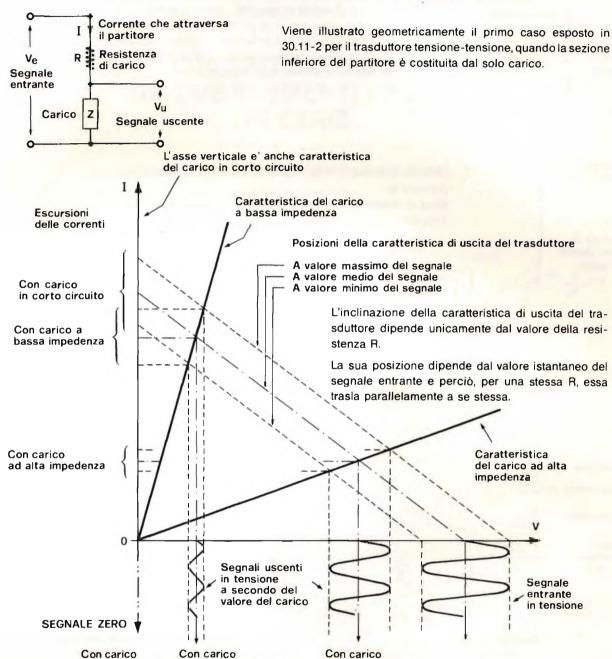
Minimo

Fonti di informazione

Sezione : 3 Circuiti elementari

Capitolo : 31 Operatori passivi

Paragrafo : 31.0 Nozioni generali


Argomento : 31.02 Calcolo grafico

APPUNTI DI ELETTRONICA

Codice Pagina

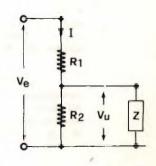
31.02

INFLUENZA DEL CARICO SULL'AMPIEZZA DEL SEGNALE USCENTE

ad alta impedenza

Come si vede, a parità di ampiezza di segnale entrante, il segnale uscente è tanto minore quanto più bassa è l'impedenza del carico. In particolare, il segnale uscente è zero quando il carico è in corto circuito.

a bassa impedenza


in corto circuito

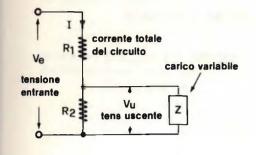
Osservazione

La rappresentazione geometrica vale anche per un partitore completo con il carico collegato alla sezione inferiore, come in figura.

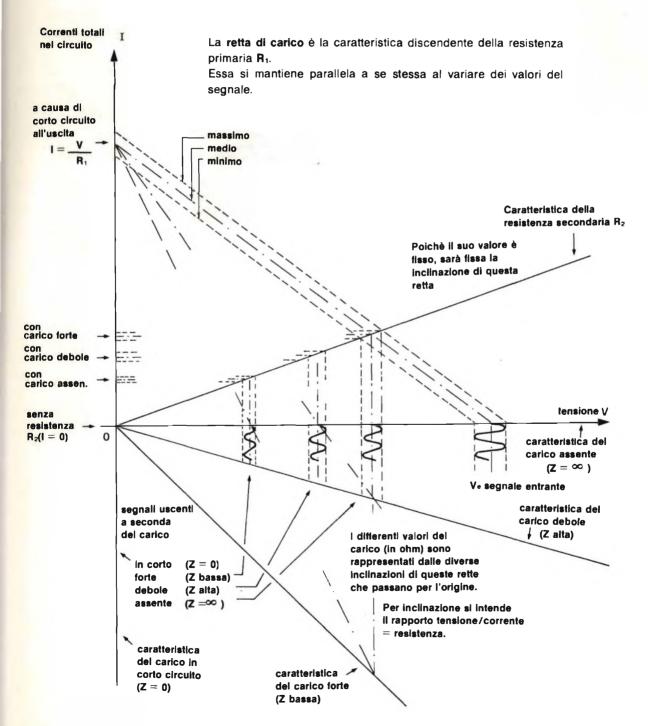
La validità è effettiva quando, come caratteristica del carico, si prende la caratteristica globale del carico con la resistenza R₂ in parallelo.

Anche in questo caso, però, si può usare un artificio geometrico che viene illustrato nella pagine seguente.

31.02


Paragrafo

: 31.0


Nozioni generali

: 31.02 Argomento

Diagramma geometrico completo del carico

Si studiano, mediante un artificio geometrico, le varie ampiezze che un segnale in uscità può avere in funzione della variazione di valore di un carico collegato in parallelo alla sezione inferiore di un partitore di tensione. È un esercizio interessante e che sarà molto utile per lo studio di molti circuiti elettronici.

Sezione

Circuiti elementari

Capitolo

: 31

Operatori passivi

Paragrafo

: 31.0

Operatori passivi e reattivi

: 31.10 Argomento

Indice e impostazione generale del modello

APPUNTI DI **ELETTRONICA**

Codice

Pagina

31.10

0

Paragrafo 31.1

CIRCUITI COSTITUITI DA DUE ELEMENTI LINEARI IN SERIE

INDICE E IMPOSTAZIONE GENERALE DEL MODELLO

arg. 31.10 — Indice e impostazione generale del modello

pag. 0 - Indice del paragrafo

1 - Scelta degli elementi

2 — Impostazione generale di calcolo delle impedenze

3 — Determinazione dei valori delle impedenze di entrata e di uscita

4 — Condizioni di massimo trasferimento di potenza

arg. 31.11 — Circuito RR

pag. 1 — Generalità

2 — Comportamento vettoriale dei parametri in alternata

3 — Il potenziometro. Criterio di scelta del valore della resistenza

4 — Il potenziometro. Influenza dell'impedenza del generatore

Circuito RL arg. 31.12

pag. 1 - Generalità

2 — Comportamento vettoriale dei parametri in alternata

" 3 — Comportamento delle tensioni in alternata

4 — Comportamento delle tensioni nei fenomeni transitori

arg. 31.13 Circuito RC

pag. 1 - Generalità

" 2 — Comportamento vettoriale dei parametri in alternata

3 — Comportamento delle tensioni in alternata

4 — Comportamento delle tensioni nei fenomeni transitori

Circuito LR arg. 31.14

pag. 1 — Generalità

2 — Comportamento vettoriale dei parametri in alternata

3 — Comportamento delle tensioni in alternata

4 — Comportamento nei fenomeni transitori delle tensioni

arg. 31.15 Circuito LL

pag. 1 — Generalità

2 — Comportamento vettoriale dei parametri in alternata

Circuito LC arg. 31.16

pag. 1 — Generalità

2 — Comportamento vettoriale dei parametri in alternata

3 — Comportamento delle tensioni in alternata

" 4 — Comportamento nei fenomeni transitori delle tensioni

di Informazione

Codice

31.10

Sezione : 3 Circuiti elementari

: 31

Paragrafo : 31.0 Trasduttori passivi e reattivi

Indice e impostazione generale del modello Argomento: 31.10

Trasduttori passivi

Circuito CR arg. 31.17

Pagina

0

pag. 1 — Generalità

Capitolo

Comportamento vettoriale dei parametri in alternata

3 — Comportamento delle tensioni in alternata

Comportamento nei fenomeni transitori delle tensioni

Circuito CL arg. 31.18

pag. 1 — Generalità

" 2 — Comportamento vettoriale dei parametri in alternata

" 3 — Comportamento delle tensioni in alternata

4 — Comportamento delle tensioni nei fenomeni transitori

arg. 31.19 Circuito CC

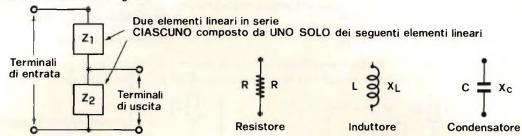
pag. 1 — Generalità

" 2 — Comportamento vettoriale dei parametri in alternata

Circuiti elementari

Paragrafo

: 31.0


Circuiti costituiti da due elementi lineari in serie

: 31.10 Argomento

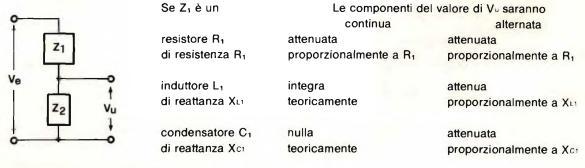
Impostazione generale del circuito modello

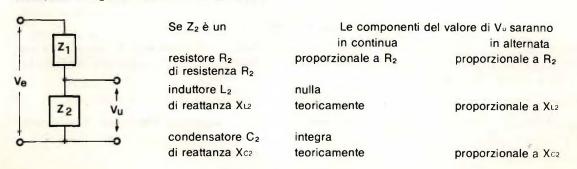
SCELTA DEGLI ELEMENTI

In tutto questo paragrafo 31.1 esamineremo il comportamento degli operatori essenzialmente costituiti in generale come indicato in figura.

Studieremo perciò il comportamento dei vari circuiti serie che risultano dalla combinazione di questi tre elementi presi a due per volta.

Essi sono 9 come potrete constatare sfogliando gli argomenti che seguono.

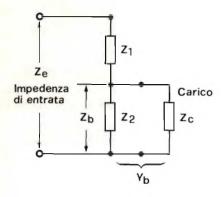

Non dimentichiamo che lo studio parte dal principio di


Pertanto, dato un tipo di tensione Ve entrante, la scelta di Z1 e di Z2 ha il solo scopo di determinare delle modificazioni algebriche in modo da ottenere un altro tipo di tensione Vu uscente.

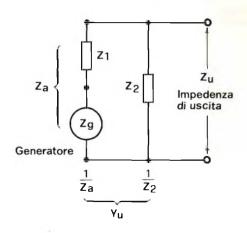
Esamineremo ora per grandi linee come intervengono gli elementi lineari sulle possibili caratteristiche della tensione entrante Ve.

Influenza di Z₁ sulla tensione di uscita V₁

Influenza di Z2 sulla tensione di uscita Vu

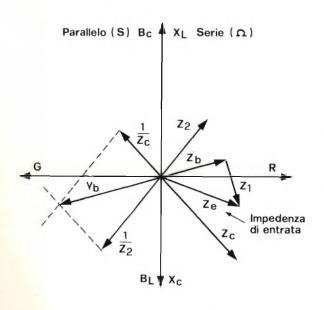

di informazione

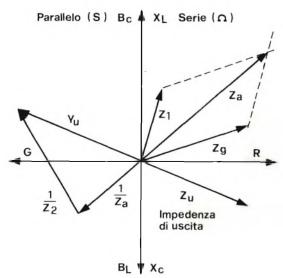
0


Argomento : 31.10 Impostazione generale di calcolo delle impedenze

Si considera l'influenza dell'impedenza del generatore (Z₃) e del cario (Z_c) - vedi paragrafi 13.7, 13.8 e 13.9

IMPEDENZA DI ENTRATA Schema di calcolo


IMPEDENZA DI USCITA Schema di calcolo


L'impedenza di carico fa parte integrante della impedenza di entrata dell'operatore.

L'impedenza del generatore fa parte integrante dell'impedenza di uscita dell'operatore.

Modello di calcolo grafico

Modello di calcolo grafico

Osservazioni

Se una impedenza Z è data con le sue componenti serie (resistenza R e reattanza X), per arrivare alla determinazione della relativa ammettenza Y, bisogna prima calcolare l'impedenza Z come somma vettoriale di R + X e poi si calcola l'ammettenza Y = 1/Z.

È sbagliato, e fate la prova se non ci credete, che Y sia uguale alla somma vettoriale di 1/R + 1/X.

Si può calcolare G = 1/R e B = 1/X solo quando queste grandezze formano da sole l'impedenza Z (che coincide con l'una o con l'altra).

Circuiti elementari

Capitolo

Operatori passivi

Paragrafo

: 31 Circuiti costituiti da due elementi lineari in serie : 31.0

: 31.10 Argomento

Impostazione generale del modello

APPUNTI DI **ELETTRONICA**

Codice

Pagina

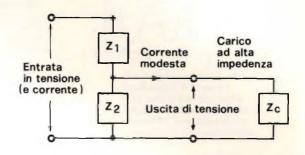
31.10

3

DETERMINAZIONE DEI VALORI DELLE IMPEDENZE DI ENTRATA E DI USCITA

Premesse

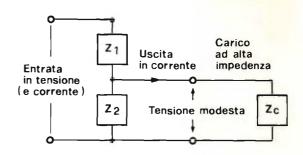
Riprendiamo gli argomenti già trattati in 30.12-6 per adattarli a questo caso.


I principali tipi di operatore che si possono creare con i circuiti costituiti da due elementi lineari serie sono i seguenti.

Si considera tensione la grandezza entrante, ma nulla vieta di considerare anche la relativa corrente come grandezza entrante, essendo le due grandezze legate fra di loro tramite l'impedenza di entrata.

Operatori tensione-tensione

Viste le premesse, la grandezza uscente è una tensione quando il carico presenta un'impedenza così alta, mentre l'operatore presenta una impedenza di uscita così bassa, da rendere la stessa tensione di uscita insensibile a ragionevoli variazioni di impedenza del carico.


Il valore della corrente di uscita è molto basso.

Operatori tensione-corrente

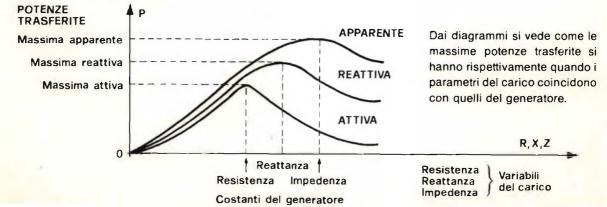
Viste le premesse, la grandezza uscente è una corrente quando, il carico presenta un'impedenza così bassa, mentre l'operatore presenta una impedenza di uscita così alta, da rendere la stessa corrente di uscita insensibile a ragionevoli variazioni dell'impedenza del cari-CO.

Il valore della tensione di uscita è molto basso.

Operatori potenza-potenza

Il trasferimento di massima potenza si deve intendere come il trasferimento della massima potenza apparente.

$$P_a = Z I^2 = \frac{V^2}{7}$$


Ciò si verifica quando

l'impedenza di uscita del carico è uguale e coniugata a quella del generatore.

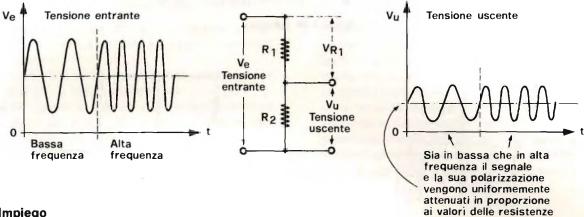
Questo significa che

- le resistenze del carico e del generatore devono essere uguali
- le reattanza del carico e del generatore devono essere uguali ed opposte, cioè, se il carico è induttivo il generatore deve essere capacitivo e viceversa.

Valori diversi fra le due impedenze trasferiscono potenze inferiori come si può facilmente constatare. Si osservi il seguente diagramma generale.

Codice

31.11


Sezione : 3 Circuiti elementari Operatori passivi Capitolo : 31

: 31.1 Circuiti costituiti da due elementi lineari in serie Paragrafo

: 31.11 Circuito RR (partitore resistivo di tensione) **Argomento**

GENERALITA' SUL CIRCUITO RR

Schema illustrativo - per tensione entrante alternata di varia frequenza e polarizzata.

Impiego

Riduttore di tensione insensibile ai valori della frequenza e quindi attenuatore ideale per l'alta fedeltà.

Coefficienti di attenuazione

componente alternata del segnale in uscita

$$V_u = \frac{R_2}{R_1 + R_2} V_e$$
 componente alternata del segnale in entrata

componente continua del segnale in uscita

$$U_0 = \frac{R_2}{R_1 + R_2}$$
 componente continua del segnale in entrata

Vantaggi:

Economicità di costo

Alta fedeltà di risposta

Svantaggi:

- Esercizio dispendioso a causa della dispersione di energia causata dai resistori principalmente nel caso in cui si debbano manipolare correnti forti.

Osservazioni

La tensione di uscita V_u è stabile solo se il carico applicato rimane costante.

Per diminuire le variazioni di tensione in funzione delle variazioni di carico, bisognerebbe diminuire proporzionalmente i valori delle resistenze R₁, e R₂ in modo da aumentare la corrente che attraversa il partitore.

In questo modo le correnti che attraversano il carico risulteranno molto inferiori a quella che attraversa il partitore ed influenzeranno poco la caduta di tensione di Va.

Ovviamente, però, aumenta la potenza dispersa.

Codice 31.11

Pagina 2

Sezione

Circuiti elementari : 3

Capitolo : 31 Paragrafo

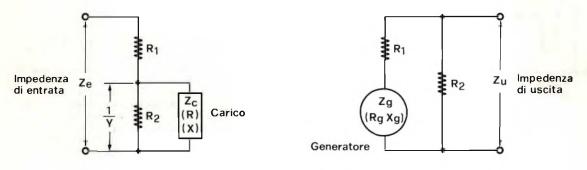
Operatori passivi

: 31.1

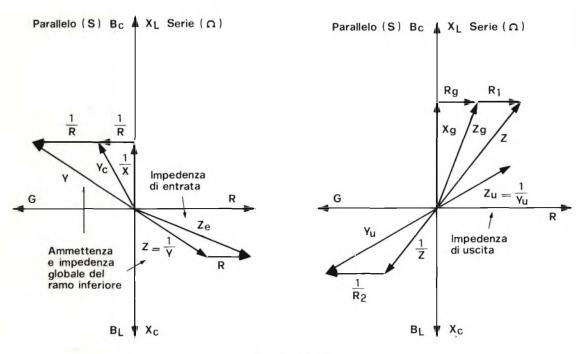
Circuiti costituiti da due elementi lineari in serie

Argomento: 31.11

Circuito RR


COMPORTAMENTO VETTORIALE DEI PARAMETRI IN ALTERNATA

Si considera l'influenza dell'impedenza del generatore (Z₉) e del carico (Z_c) - vedi paragrafi 13.7, 13.8 e 13.9.


IMPEDENZA DI ENTRATA

IMPEDENZA DI USCITA

Schemi di calcolo

Modelli di calcolo grafico

Osservazioni

La presenza del carico influenza notevolmente il valore di Zc.

L'impedenza di entrata dell'operatore è insensibile alle variazioni di frequenza quando il carico possiede una impedenza molto alta o costituita dalla sola componente resistiva.

La presenza del generatore influenza notevolmente il valore di Zu.

L'impedenza di uscita dell'operatore è insensibile alle variazioni di frequenza quando il generatore possiede un'impedenza molto bassa o costituita dalla sola componente resistiva.

Sezione

: 3

Circuiti elementari

Capitolo Paragrafo : 31

Operatori passivi

: 31.11 Argomento

: 31.1

Circuiti costituiti da due elementi lineari in serie

Circuito RR (partitore resistivo di tensione)

APPUNTI DI **ELETTRONICA**

Codice

31.11

Pagina

IL POTENZIOMETRO

Criterio di scelta del valore della resistenza

Premessa

Il potenziometro (v. sez. 2) è un componente di largo impiego in elettronica e perciò vale la pena di dedicargli alcune pagine.

La composizione del suo nome farebbe pensare ad uno strumento per la misura dei potenziali.

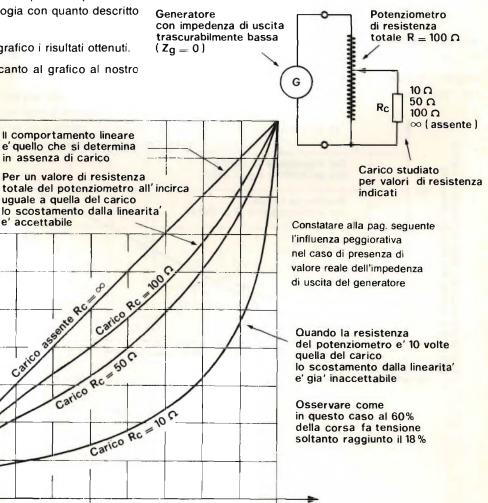
In realtà, quando è costruito con estrema precisione esso è il componente fondamentale di un apparecchio un po' più complesso per la misura dei potenziali.

In vasti settori dell'elettronica non è necessaria una perfetta rispondenza fra la posizione del cursore e il valore di resistenza da esso abbracciata.

La scelta del valore della sua resistenza totale in funzione del valore di impedenza del carico è estremamente importante per non avere delle sorprese.

Vedremo dunque come un valore troppo alto di resistenza rispetto a quella del carico, riduce il campo di variazione verso l'estremità della corsa, mentre un valore troppo basso richiamerebbe troppa energia inutile che il generatore, magari, non è in grado di fornire.

Vedremo come la condizione ottimale è quella di usare un potenziometro di resistenza uguale a quella del cari-


Studio

Abbiamo preso ad esempio il circuito a fianco riportato ed i valori che si sono scelti.

Abbiamo fatto i calcoli che non riportiamo per la loro semplicità ed in perfetta analogia con quanto descritto alle pagine prècedenti.

Abbiamo invece riportato in grafico i risultati ottenuti.

I commenti sono esposti accanto al grafico al nostro solito modo.

100

Valore percentuale della posizione del cursore

50

Il comportamento lineare e' quello che si determina in assenza di carico

uguale a quella del carico

e' accettabile

riservata a termini di legge - Riproduzione

Proprietà ...

Gilcart

1975

della tensione di uscita

rispetto a quella del segnale generato

Jalore percentuale

50

vietata senza consenso

100

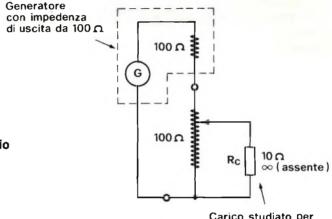
Capitolo

Paragrafo : 31.1

Circuiti costituiti da due elementi lineari in parallelo

Argomento: 31.14 Circuito RR (Partitore resistivo di tensione)

IL POTENZIOMETRO

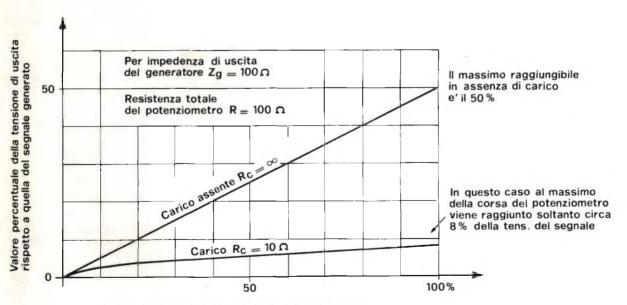

Influenza dell'impedenza del generatore sui risultati

Premessa

Non a caso nella pagine precedente abbiamo immaginato nulla l'impedenza del generatore.

Infatti questa è l'unica condizione che ci permette di avere il 100% del segnale generato al massimo della corsa del potenziometro.

La presenza di questa impedenza peggiora la situazione soprattutto per valori molto superiori a quello del carico.



Carico studiato per i valori di resistenza indicati

Studio

Abbiamo preso ad esempio il circuito a fianco riportato ed i valori che si sono scelti.

A calcoli effettuati abbiamo riportato in grafico i risultati con i commenti.

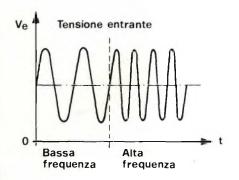
Valore percentuale della posizione del cursore

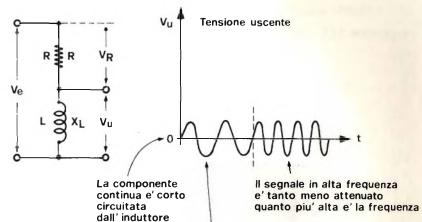
Sezione : 3 Circuiti elementari

Capitolo : 31 Operatori passivi

Paragrato: 31.1 Circuiti costituiti da due elementi lineari in serie

Argomento: 31.12 Circuito RL

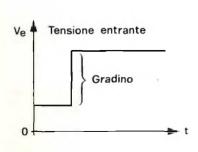

APPUNTI DI ELETTRONICA

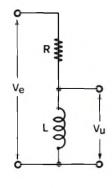

Codice Pagina

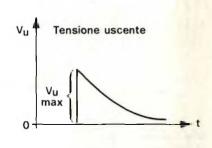
31.12 Fagin

GENERALITA' SUL CIRCUITO CR

Schema illustrativo per tensione entrante alternata polarizzata e di varia frequenza.


Confrontare con circito CR: l'azione è qualitativamente identica, ma per un processo opposto


Il segnale in bassa frequenza e' tanto piu' attenuato quanto piu' bassa e' la frequenza (l'attenuazione avviene perche' XL e' bassa e ne favorisce il by - passaggio : cfr CR in 31.17)


Impiego

- a) Operatore preferenziale per alte frequenze in casi particolari
- b) Circuito sfasatore di tensioni alternate. Attenzione: (v. pag. 3)
 - , La tensione di uscita ha un estremo in comune con la tensione entrante (v. pag. 3) La tensione di uscita e la fase variano con la frequenza

Risposta al gradino

Capitolo Paragrafo

: 31 : 31.1 Operatori passivi

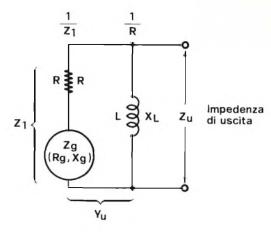
Argomento : 31.12

Circuiti costituiti da due elementi lineari in serie Circuito RL

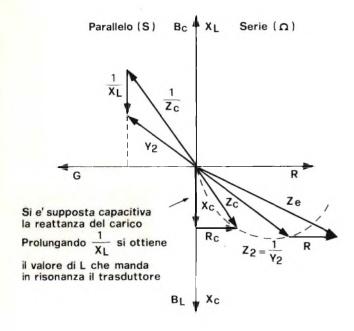
COMPORTAMENTO VETTORIALE IN ALTERNATA DEI PARAMETRI

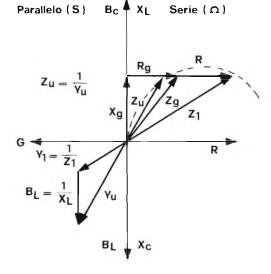
Si considera l'influenza:

dell'impedenza del generatore (Z₉) e dell'impedenza del carico (Zo


v. paragrafi 13.7, 13.8, 13.9. (vol. 1)

Schemi di calcolo


IMPEDENZA DI ENTRATA


₽R R **Impedenza** di entrata z_2 Carico Y2

IMPEDENZA DI USCITA

Modelli di calcolo grafico

Osservazione

Questo sistema non può andare in risonanza data la presenza pure induttiva dell'impedenza Z₉ del generatore.

Capitolo : 31 Operatori passivi

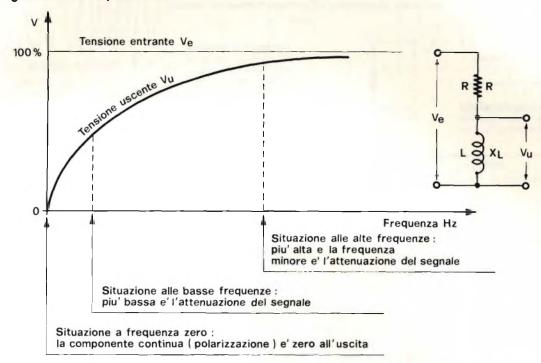
Paragrafo : 31.1 Circuiti costituiti da due elementi lineari in serie

Argomento: 31.12 Circuito RL

APPUNTI DI ELETTRONICA

Codice Pagina

31.12 3


COMPORTAMENTO DELLE TENSIONI IN ALTERNATA

La limitazione di questo caso consiste nel supporre:

- trascurabilmente bassa impedenza del generatore
- trascurabilmente alta l'impedenza del carico

Comportamento della tensione di uscita al variare della frequenza della tensione di entrata (per dettagli v. paragrafi da 13.5 a 13.9).

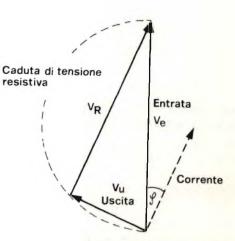
Diagramma di comportamento

Espressioni algebriche

$$V_u = \begin{array}{c} \frac{X_L}{Z} V_e = \begin{array}{c} \frac{X_L V_e}{\sqrt{X_L^2 + R^2}} = \begin{array}{c} \frac{X_L V_e}{\sqrt{\omega^2 L^2 + R^2}} \end{array}$$

 $V_u = N_e \operatorname{sen} \varphi$

Sfasamenti fra tensioni di entrata e di uscita


La fase varia con la frequenza a causa della presenza di Vu che è reattiva.

La fase a frequenza costante varia anche con Roltre che

Si può fare perciò un variatore di fase con la sola R variabile.

In questo modo la punta del vettore Vu percorre la semicirconferenza essendo questa il luogo geometrico che mantiene retto l'angolo fra Vu e Va al variare di essi.

Relazioni vettoriali

La corrente che attraversa il circuito e' sfasata di 90° in ritardo rispetto alla Vu che e' induttiva

Codice

31.12

: 3

: 31.1

Circuiti elementari

Capitolo : 31

Sezione

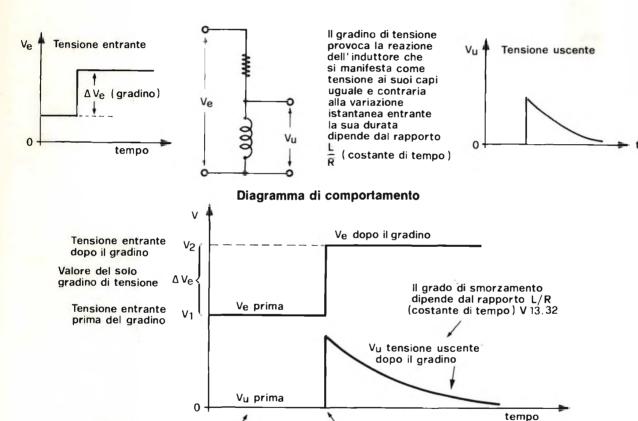
Paragrafo

Operatori passivi

Circuiti costituiti da due elementi lineari in serie

Argomento: 31.12

Circuito RL


COMPORTAMENTO DELLE TENSIONI NEI FENOMENI TRANSITORI

Abbiamo che l'eventuale componente continua della tensione entrante rimane praticamente esclusa in uscita.

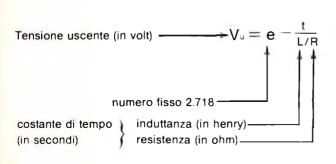
Il circuito è però sempre sensibile alle variazioni di questa componente continua.

Qui esamineremo la risposta al gradino, cioè la risposta in uscita alle variazioni di tipo istantaneo della tensione entrante.

Schema illustrativo di comportamento teorico

Espressione algebrica

Diamo l'equazione della tensione uscente in funzione della tensione entrante e dei parametri del circuito.


Prima e dopo il transitorio non esiste

componente continua ai terminali di uscita

Questa espressione è ampiamente trattata nel paragrafo 13.3.

Istante in cui avviene

la variazione a gradino

Tempo-trascorso dall'inizio del fenomeno (in secondi)

gradino di tensione entrante (in volt).

Come si nota, il valore della tensione-uscita non dipende dal valore della tensione entrante ma solo dalle sue variazioni istantanee ΔV_e .

Sezione

: 3 : 31 Circuiti elementari

Capitolo

Paragrafo Argomento

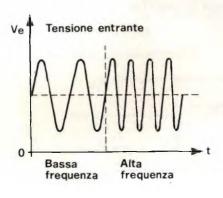
: 31.1 : 31.13

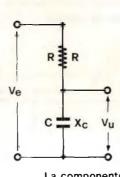
Circuito RC (resistore-condensatore).

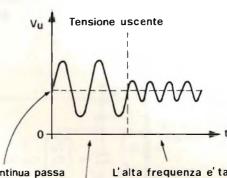
Circuiti costituiti da due elementi lineari in serie

Operatori passivi

Pagina

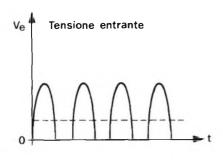

APPUNTI DI **ELETTRONICA**

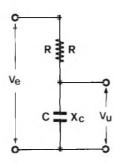

Codice 31.13

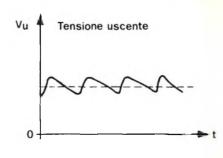

1

GENERALITA' SUL CIRCUITO RC

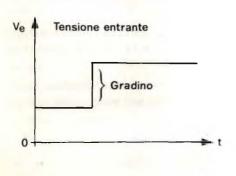
Schema illustrativo per tensione entrante alternata di varia frequenza e polarizzata

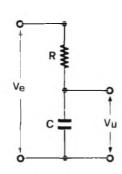

La componente continua passa anche se attenuata a causa della corrente richiamata dal carico

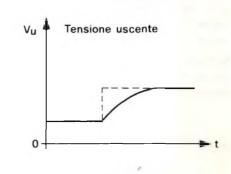

L'alta frequenza e' tanto piu' attenuata quanto piu' alta e' la frequenza


La bassa frequenza e tanto meno attenuata quanto piu' bassa e' la frequenza

Impiego


Livellatore di ondulazioni eventualmente presenti nella corrente continua.





- Operatore preferenziale per le basse frequenze. b) Attenzione: uscita polarizzata (vedi schema illustrativo)
- c) Circuito sfasatore La tensione uscente è sfasata rispetto alla tensione entrante (vedi pag. 3)
- Circuito ritardatore della tensione in uscita Una eventuale variazione della tensione entrante produce una variazione ritardata della tensione uscente. L'entità del ritardo dipende dal prodotto RC (in ohm e in farad) = costante di tempo (in secondi).

31.13

Pagina 2

Sezione : 3

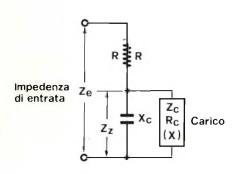
Capitolo

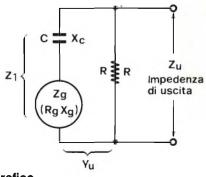
Circuiti elementari : 31 Operatori passivi

Paragrafo : 31.1

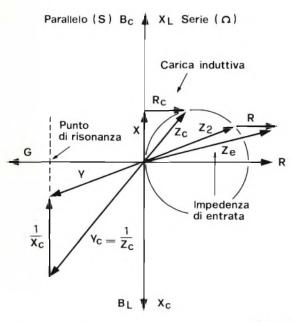
Circuiti costituiti da due elementi lineari in serie

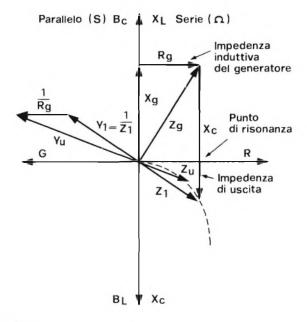
Circuito CR Argomento: 31.13


COMPORTAMENTO VETTORIALE DEI PARAMETRI IN ALTERNATA


Si considera l'influenza dell'impedenza del generatore (Z₉) e del carico (Z₀) - vedi paragrafi 13.7, 13.8, 13.9.

IMPEDENZA DI ENTRATA


IMPEDENZA DI USCITA


Schemi di calcolo

Modelli di calcolo grafico

Ossevazioni

La presenza del carico influenza notevolmente il valore di Ze, ed in particolare, se esso ha una componente induttiva, il circuito può entrare in risonanza con un opportuno valore di C.

Se il carico invece presenta una reattanza capacitiva, il circuito non potrà mai entrare in risonanza con il carico stesso.

La presenza del generatore influenza notevolmente il valore di Zu.

In particolare, se esso ha una componente induttiva, il circuito può entrare in risonanza con un opportuno valore di C.

Se il generatore invece presenta una reattanza capacitiva, il circuito non potrà mai entrare la risonanza con il generatore stesso.

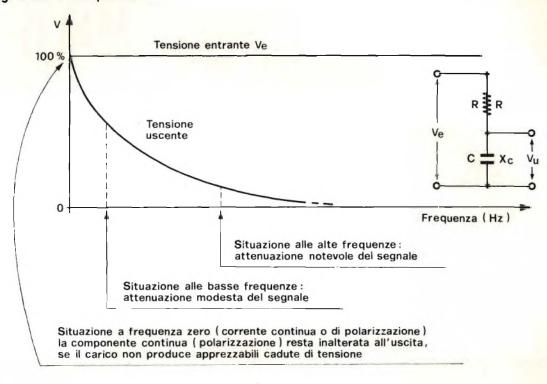
Capitolo : 31 Operatori passivi

Paragrafo : 31.1 Circuiti costituiti da due elementi lineari in serie

Argomento: 31.13 Circuito RC

APPUNTI DI ELETTRONICA

Codice Pagina 31.13 3


*

COMPORTAMENTO DELLE TENSIONI IN ALTERNATA

La limitazione del caso consiste nel supporre trascurabilmente bassa l'impedenza del generatore e trascurabilmente alta l'impedenza del carico.

Comportamento della tensione di uscita al variare della frequenza della tensione di entrata (per dettagli vedi paragrafi da 13.5 a 13.9).

Diagramma di comportamento

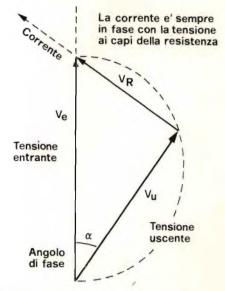
Espressioni algebriche

$$V_{u} = \frac{X_{c}}{Z} \quad V_{e} = \frac{X_{c} V_{e}}{\sqrt{X_{c}^{2} + R^{2}}} = \frac{\frac{1}{\omega c} V_{e}}{\sqrt{(\frac{1}{\omega c}) + R^{2}}}$$

 $V_u = V_e \cos \alpha$

Sfasamenti fra tensioni di entrata e di uscita

$$\cos \alpha = \frac{V_u}{V_e} = \frac{X_c}{Z} = \frac{X_c}{\sqrt{(\frac{1}{\omega})^2 + R^2}}$$


$$tg \alpha = \frac{V_R}{V_u} = \frac{R}{X_c} = \omega RC$$

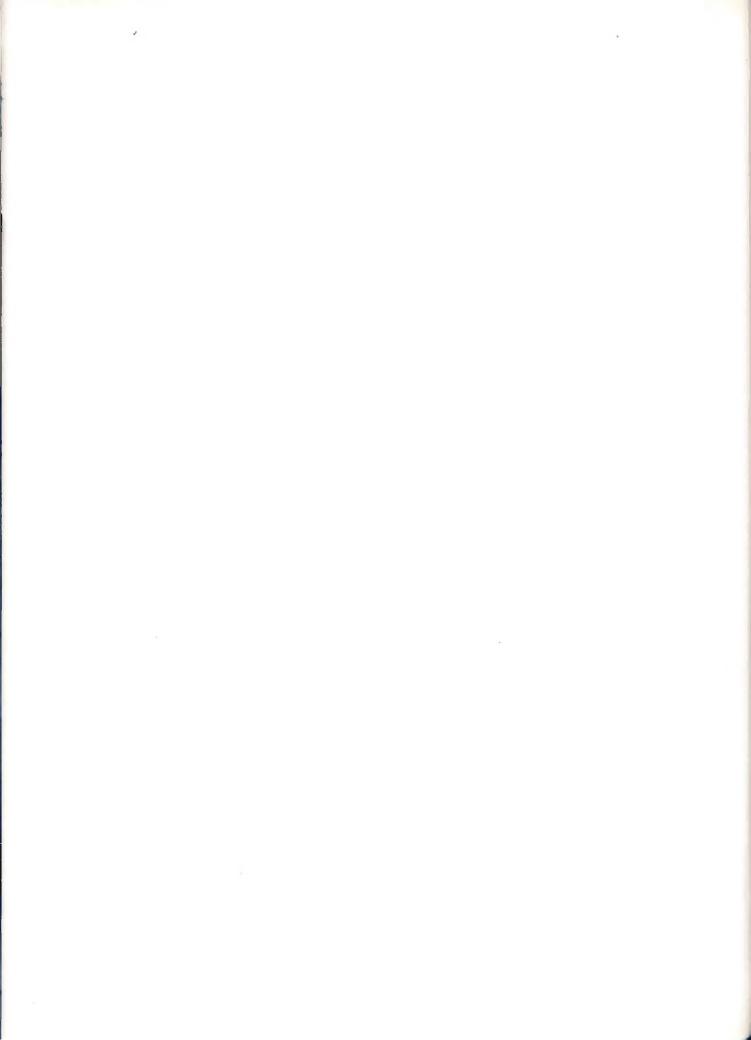
La fase varia con la frequenza a causa della presenza di C che genera una tensione V₀ reattiva.

La fase, a frequenza costante, varia con C oltre che con R.

Si può fare un variatore di fase, mettendo R o C variabili.

Relazioni vettoriali

onti di informazione


vietata senza consenso

egge

ē

Gilcart - Proprieta riservata a

In questo modo la punta del vettore Vu percorre la semicirconferenza essendo questa il luogo geometrico che

Senza Riproduzione vietata - abbai ō termini riservala a Proprietà Gilcart -

Fonti di Informazione

(0)

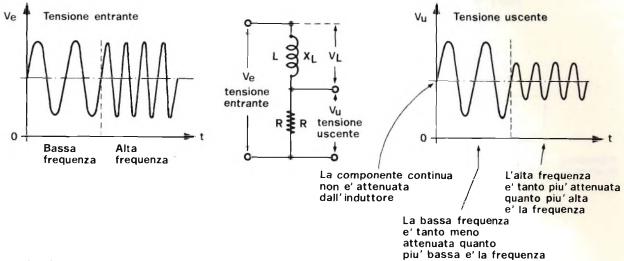
consenso

Circuiti elementari Sezione : 3

Operatori passivi : 31 Capitolo

Circuiti costituiti/tensione due elementi lineari in serie **Paragrafo** : 31.1

Circuito LR (induttore-resistore) : 31.14 Argomento


APPUNTI DI ELETTRONICA

Codice **Pagina**

31.14 1

GENERALITA' SUL CIRCUITO LR

Schema illustrativo per tensione entrante alternata di varia frequenza e polarizzata

Impiego

- operatore preferenziale per le basse frequenze
- filtro livellatore di correnti raddrizzate (per ottenere correnti continue) b)
- circuito sfasatore di tensioni alternate c)

La tensione uscente V_v è sfasata rispetto alla tensione entrante (v. pag. 3)

- La tensione uscente ha un estremo in comune con la tensione entrante

Svantaggi: - La tensione uscente e la fase variano con la frequenza

L'induttore è piuttosto costoso

Circuito di ritardo: quando si vuole che una certa tensione continua si produca con ritardo rispetto a quella d) impressa all'entrata (risposta al gradino).

Il tempo di ritardo dipende dal rapporto L/R = costante di tempo (sec.) (v. 13.32).

Partitore di tensione a bassa dispersione di energia (in alternata).

Se lo sfasamento fra le tensioni non interessa, questo impiego è interessante per l'economicità di consumo, ma non per il costo di acquisto: un induttore costa molto di più di un resistore.

Codice

31.14

Pagina 2

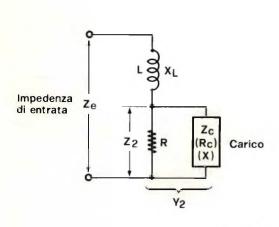
Sezione Capitolo : 3 Circuiti elementari : 31

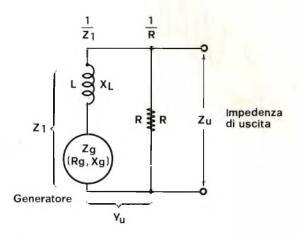
Operatori passivi

Paragrafo : 31.1 Circuiti costituiti da due elementi lineari in serie

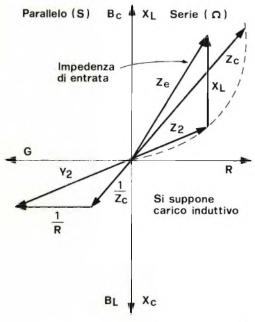
: 31.14 Argomento

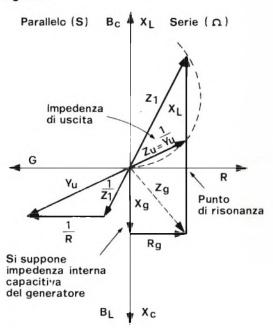
Circuito LR


COMPORTAMENTO VETTORIALE DEI PARAMETRI IN ALTERNATA


Si considera l'influenza dell'impedenza del generatore (Z₉) e del carico (Z_c) (v. paragrafi) 13.7, 13.8 e 13.9.

IMPEDENZA DI ENTRATA


IMPEDENZA DI USCITA


Schemi di calcolo

Modelli di calcolo grafico

Osservazioni

La presenza del carico influenza notevolmente il valore di Ze.

In particolare, se esso ha una componente capacitiva, il circuito può entrare in risonanza con un opportuno valo-

Nel caso qui preso ad esempio, ciò non può avvenire essendo induttiva l'impedenza del carico.

La presenza del generatore influenza notevolmente il

In particolare, se esso ha una componente capacitiva, il circuito può entrare in risonanza con un opportuno valore di L.

Nel caso qui preso ad esempio, ciò può avvenire essendo capacitiva la impedenza del generatore.

Capitolo : 31 Operatori passivi

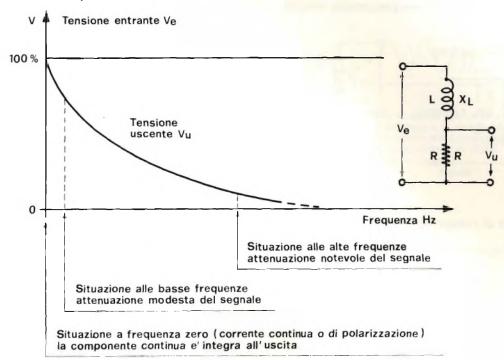
Paragrato : 31.1 Circuiti costituiti da due elementi lineari in serie

Argomento : 31.14 Circuito LR

APPUNTI DI ELETTRONICA

Codice Pagina

31.14


COMPORTAMENTO DELLE TENSIONI IN ALTERNATA

La limitazione del caso consiste nel supporre:

- trascurabilmente bassa l'impedenza del generatore
- trascurabilmente alta l'impedenza del carico.

Comportamento della tensione di uscita al variare della frequenza della tensione di entrata (per dettagli v. paragrafi da 13.5 A 13.9).

Diagramma di comportamento

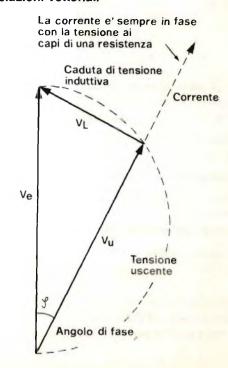
Espressioni algebriche

$$V_{\text{\tiny u}} = \quad \frac{R}{Z} \quad V_{\text{\tiny e}} = \quad \frac{R \; V_{\text{\tiny e}}}{\sqrt{\chi_{\text{\tiny L}}^2 + R^2}} \; = \; \frac{R \; V_{\text{\tiny e}}}{\sqrt{(\omega L)^2 + R^2}} \label{eq:vu}$$

 $V_u = V_e \cos \varphi$

Sfasamenti fra tensioni di entrata e di uscita

$$\cos \varphi = \frac{V_{\parallel}}{V_{e}} = \frac{R}{Z} = \frac{R}{\sqrt{(\omega L)^{2} + R^{2}}}$$


$$tg \varphi = \frac{V_{L}}{Z} = \frac{\omega L}{Z}$$

La fase varia con la frequenza a causa della presenza di Vu che è reattiva.

La fase, a frequenza costante varia con R oltre che con L. Si può fare perciò un variatore di fase mettendo R oppure C variabile.

In questo modo, la punta del vettore Vu percorre la semicirconferenza di diametro Ve essendo questa il luogo geometrico che mantiene retto l'angolo fra Vu e VI al variare di essi.

Relazioni vettoriali

Codice **Pagina** 31.14

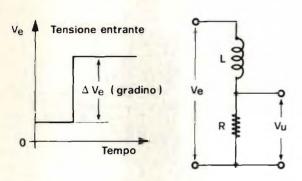
Capitolo

: 31

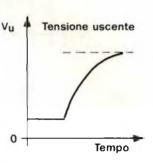
Operatori passivi

Paragrafo : 31.1

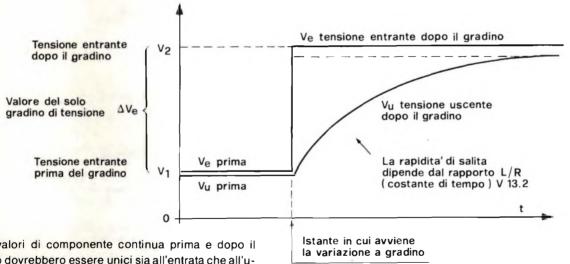
Circuiti costituiti da due elementi lineari in serie


: 31.14 Argomento Circuito LR

COMPORTAMENTO DELLE TENSIONI NEI PENOMENI TRANSITORI


Abbiamo visto che la componente continua della tensione entrante rimane praticamente inalterata all'uscita del circuito in argomento.

Il circuito però risponde sempre lentamente alle eventuali variazioni di questa componente continua. Qui esamineremo la cosiddetta risposta al gradino, cioè la risposta in uscita alla variazione istantanea della tensione entrante.


Schema illustrativo e di comportamento teorico

Il gradino di tensione provoca nell'induttore una reazione immediata che rallenta la sua carica La corrente di carica salendo lentamente crea una tensione proporzionale ai capi di R : la Vu La durata di questa salita' o meglio la rapidita dipende dal rapporto L/R (costante di tempo)

Diagramma di comportamento

I due valori di componente continua prima e dopo il gradino dovrebbero essere unici sia all'entrata che all'uscita se l'induttore fosse privo di componenti resistivi.

Osservare analogia, ma non identità, con il circuito RC (31.13-4).

Espressione algebrica

Diamo qui l'equazione finale della tensione uscente in funzione della tensione entrante e dei parametri del

Questa espressione è ampiamente trattata nel paragrafo 13.2.

 resistenza (in ohm) Tensione uscente $V_{u} = V_{1} + (1 - e^{-\frac{R}{L}}) \Delta V_{e}$ (in volt) gradino di tensione entrante (volt) Tensione iniziale di entrata (volt) numero fisso = 2,718istante considerato della variabile in induttanza (in henry)di tempo (in sec.)

Sezione Capitolo

Argomento

: 3

: 31

Circuiti elementari

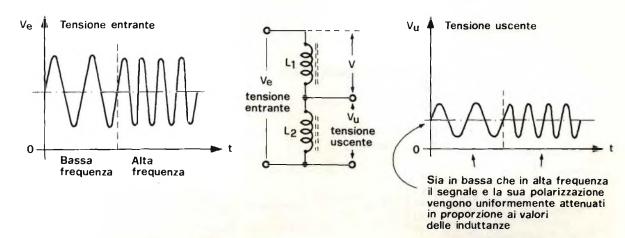
Paragrafo : 31.1 Operatori passivi

: 31.15

Circuiti costituiti da due elementi lineari in serie

Circuito LL

APPUNTI DI **ELETTRONICA**


Codice

31.15

Pagina

GENERALITA' SUL CIRCUITO LL

Schema illustrativo - per tensione entrante alternata di varia frequenza polarizzata

Osservazione

Questi induttori sono fra loro indipendenti, cioè non sono magneticamente accoppiati.

Per induttori facenti parte di un unico circuito magnetico (trasformatori) vedere: Sezione 2: Elementi del circuito capitolo: trasformatori (in corso di preparazione).

Usi

Il suo impiego come partitore di tensione è raro perchè costoso.

Può trovare una utilizzazione qualora interessi far interagine gli elementi reattivi con un carico con componente resistiva.

Infatti una eventuale tensione Vo entrante continua, verrebbe cortocircuitata - se attraversato da una corrente Io continua sarebbe sufficiente un solo induttore per rivelare eventuali variazioni di questa corrente (v. 13.32).

31.15

2

Sezione : 3 Circuiti elementari

: 31

Operatori passivi

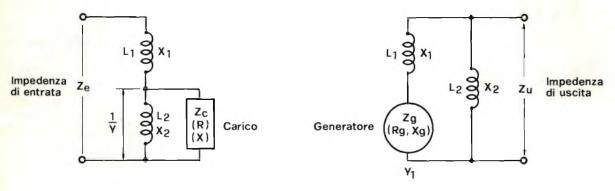
Paragrafo : 31.1

Capitolo

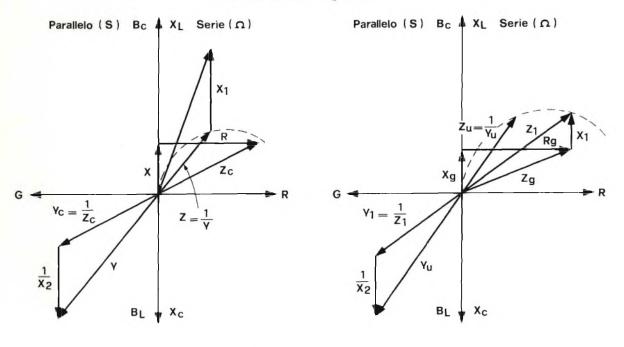
Circuiti costituiti da due elementi lineari in serie

Argomento: 31.15

Circuito LL


COMPORTAMENTO VETTORIALE DEI PARAMETRI IN ALTERNATA

Si considera influenza dell'impedenza del generatore Z₉ e del carico Z_c v. paragrafi da 13.7 a 13.9.


IMPEDENZA DI ENTRATA

IMPEDENZA DI USCITA

Schemi di calcolo

Modelli di calcolo grafico

Osservazioni

Se il carico presenta una componente induttiva, come in questo esempio, l'insieme non potrà mai andare in risonanza.

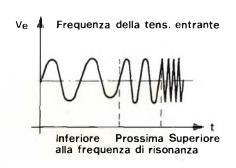
Gilcart -

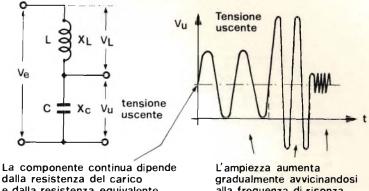
Fonti di Informazione

: 3 Circuiti elementari Sezione : 31 Operatori passivi Capitolo

Paragrafo

: 31.1 Circuiti costituiti da due elementi lineari in serie


: 31.16 Circuito LC (induttore-condensatore) Argomento

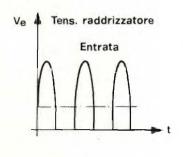

APPUNTI DI **ELETTRONICA**

Codice 31.16

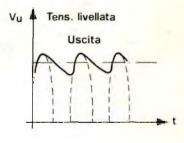
GENERALITA' SUL CIRCUITO LC

Schema illustrativo per tensione entrante alternata di varia frequenza e polarizzata

dalla resistenza del carico e dalla resistenza equivalente di uscita del circuito


alla frequenza di risonza per poi diminuire fino a zero per altissime frequenze

Osservazione


Alla frequenza di risonanza, le ampiezze Ve e Vu dipendono dalla corrente che attraversa il circuito. Poichè esse sono in opposizione di fase fra loro mandano in corto circuito la tensione entrante Ve.

Impiego

Per sfruttare la sola componente continua della tensione entrante, cioè ad esempio quale livellatore di una tensione pulsante creatasi in seguito a raddrizzamento di corrente alternata.

Per ottenere questo è necessario che la frequenza di risonanza sia molto inferiore alla frequenza fondamentale della tensione entrante (vedi paragrafo 10.5).

Per sfruttare una sola componente alternata della tensione (filtro di banda) È molto sconveniente causa le forti correnti che attraversano il circuito, essendo la frequenza prescelta molto prossima alla frequenza di risonanza.

Vantaggi

- Bassa dispersione di energia. È molto usato dove sono in gioco notevoli potenze, come ad esempio quelle di alimentazione. e perciò
- La caduta di tensione della componente continua non dipende praticamente dall'induttore L

Svantaggi

Costo dell'induttore piuttosto elevato. Esso viene spesso sostituito da un resistore, anche se non si ottiene il medesimo effetto (vedi 31.15).

Sezione : 3

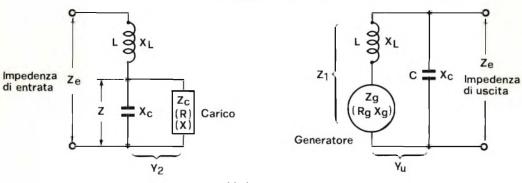
Circuiti elementari

Capitolo : 31 Operatori passivi

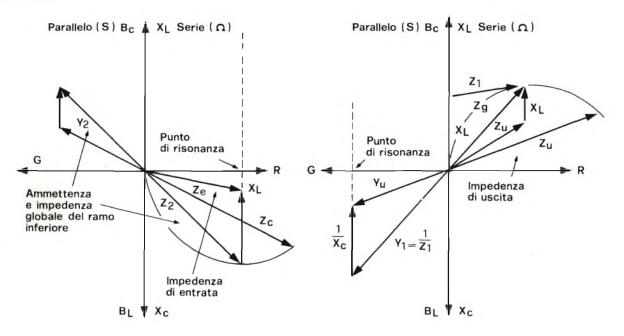
Paragrafo : 31.1 Circuiti costituiti da due elementi lineari in serie

Argomento: 31.16 Circuito LC

*


OPERAZIONI IN CORRENTE ALTERNATA

Si considera l'influenza dell'impedenza del generatore (Z₉) e del carico (Z₀) - (vedi paragrafi 13.7, 13.8 e 13.9).


IMPEDENZA DI ENTRATA

IMPEDENZA DI USCITA

Schemi di calcolo

Modelli di calcolo grafico

Osservazioni

La presenza del carico influenza notevolmente il valore di Z_e, ed in particolare le condizioni di risonanza.

La tensione di uscita (proporzionale a Z₂) può essere, come in questo caso, maggiore della tensione di entrata (proporzionale a Z₂) per modesti valori di XL

Al variare di L (e quindi di $X\iota$) la punta del vettore Z_e percorre la tratteggiata.

La presenza del generatore influenza notevolmente il valore di Z_u ed in particolare le condizioni di risonanza.

La corrente di entrata (proporzionale a Y_1) può essere, come in questo caso, maggiore della corrente di uscita (proporzionale a Y_0) per modesti valori di $1/X_0$ (e cioè per grandi valori di C).

Al variare di C (e quindi di 1/Xc) la punta del vettore Y_{ν} percorre la tratteggiata, mentre la punta del vettore Z_{ν} percorre una semicirconferenza (vedi paragrafo 13.9).

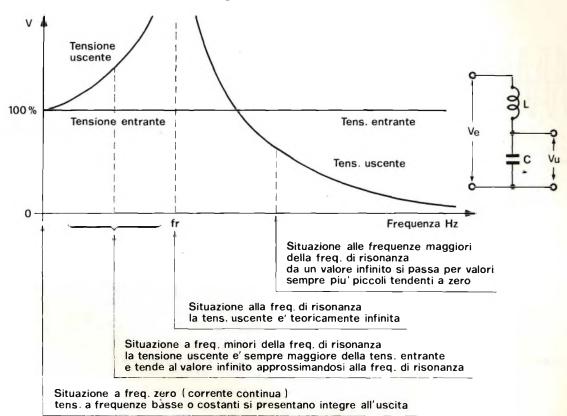
: 31 Capitolo Operatori passivi

Circuiti costituiti da due elementi lineari in serie Paragrafo : 31.1

: 31.16 Circuito LC (induttore-condensatore). Argomento

APPUNTI DI **ELETTRONICA**

Codice


31.16 3

COMPORTAMENTO VETTORIALE IN ALTERNATA DELLE TENSIONI

La limitazione del caso consiste nel supporre trascurabilmente bassa l'impedenza del generatore e trascurabilmente alta l'impedenza del carico.

Comportamento della tensione di uscita al variare della frequenza della tensione di entrata (per dettagli vedi paragrafi da 13.5 a 13.9).

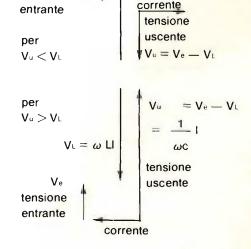
Diagramma di comportamento

Espressioni algebriche

$$V_{ii} = \frac{X_{c}}{X_{c} - X_{L}} \qquad V_{e} = \frac{\frac{1}{\omega c}}{\frac{1}{\omega c}} \qquad V_{e}$$

$$V_{u} = \frac{1/\omega c}{\frac{1}{\omega c}} \qquad V_{e}$$

Sfasamenti fra tensioni e corrente


Entrata
$$\cos \varphi = 0$$
 $\theta = 0$ θ

A causa della presenza dell'elemento capacitivo, la corrente si trova sempre in quadratura in anticipo sulla tensione di uscita.

Rispetto alla tensione di entrata essa si trova in anticipo o in ritardo a seconda che prevalga rispettivamente la reattanza capacitiva o la reattanza induttiva.

Relazioni vettoriali

tensione Ve

Sezione

: 3

Circuiti elementari

Capitolo : 31

Operatori passivi

Paragrafo : 31.1

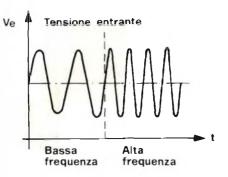
operator pacorn

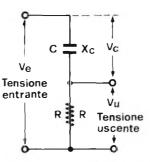
7

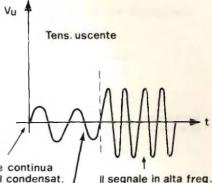
Circuiti costituiti da due elementi lineari in serie

Argomento: 31.17

Circuito CR (condensatore-resistore).


APPUNTI DI ELETTRONICA


Codice


Pagina 1

GENERALITA' SUL CIRCUITO CR

Schema illustrativo per tensione entrante alternata di varia frequenza e polarizzata.

La componente continua e' arrestata dal condensat.

Il segnale in bassa freq. e'tanto piu' attenuato quanto piu' bassa e la freq. e' tanto meno attenuato quanto piu'alta e' la freq.

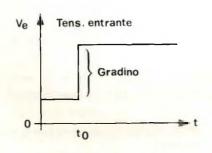
(l'attenuazione avviene perche' Xc e' alta e ne impedisce il passaggio : cfr RL in 31.12)

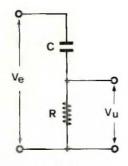
Impiego

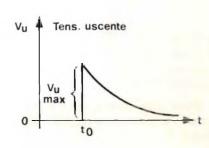
a) Operatore preferenziale per alte frequenze

b) Depolarizzazione di segnali

Confrontare con circuito RL:


le azioni sono qualitativamente


identiche, ma per un processo opposto


accoppiamento fra stadi detto "a resistenza-capacità" a larga banda passante

- c) Circuito sfasatore di tensioni alternate
 La tensione di uscita Vu è sfasata rispetto alla tensione entrante (vedi pag. 3).
 Vantaggio: la tensione di uscita ha un estremo in comune con la tensione entrante
 Svantaggio: la tensione di uscita e la fase variano con la frequenza, a meno che ciò non sia proprio desiderato
- d) Generatore di impulsi di tensione
 Gli impulsi si generano all'uscita quando all'entrata una tensione continua varia bruscamente (forma un gradino) vedi pag. 4.
 Il valore massimo dell'impulso è teoricamente pari al valore del gradino; poi si smorza più o meno rapidamente a seconda del valore del prodotto RC (in ohm e in farad) = costante di tempo (in secondi) vedi 13.12.

Risposta al gradino

e) Partitore di tensione a bassa dispersione di energia
Se lo sfasamento fra le tensioni non interessa, esso è interessante per l'economicità di uso e di costo di
acquisto, principalmente se R rappresenta il carico da alimentare.

Codice

31.17

Pagina

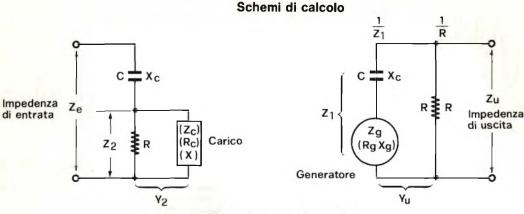
: 3 Sezione

Circuiti elementari : 31 Operatori passivi

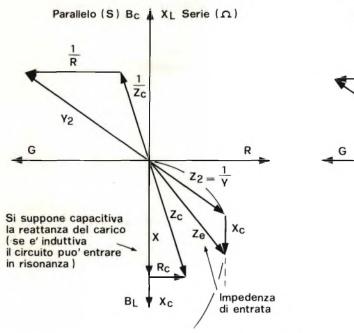
Capitolo Paragrafo

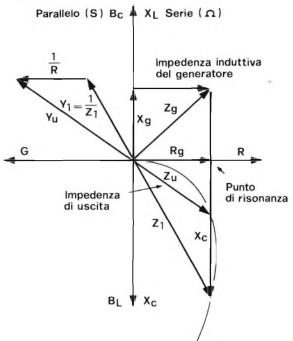
Circuiti costituiti da due elementi lineari in serie : 31.1

Circuito CR : 31.17 Argomento


\star

COMPORTAMENTO VETTORIALE DEI PARAMETRI IN ALTERNATA


Si considera l'influenza dell'impedenza del generatore (Z₉) e del carico Z_c) - vedi paragrafi 13.7, 13.8, 13.9).


IMPEDENZA DI ENTRATA

IMPEDENZA DI USCITA

Modelli di calcolo grafico

Osservazioni

La presenza del carico influenza notevolmente il valore di Ze, ed in particolare, se esso ha una componente induttiva, il circuito può entrare in risonanza con un opportuno valore di C.

In questo caso, invece, ciò non può avvenire, poichè abbiamo supposto il carico con una componente capacitiva.

La presenza del generatore influenza notevolmente il valore di Zu.

In particolare, se esso ha una componente induttiva, il circuito può entrare in risonanza con un opportuno valore di C.

In questo caso infatti è segnato per quale valore di X₉ il circuito entra in risonanza.

Capitolo : 31 Operatori passivi

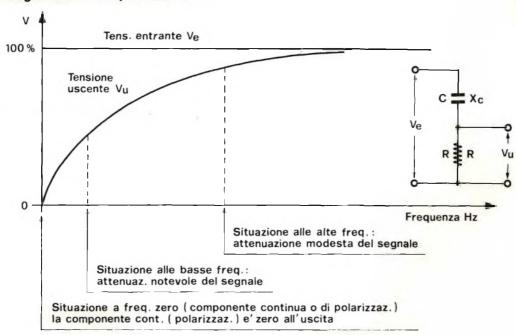
Paragrato : 31.1 Circuiti costituiti da due elementi lineari in serie

Argomento: 31.17 Circuito CR

APPUNTI DI ELETTRONICA

Codice Pagina

3


31.17

COMPORTAMENTO DELLE TENSIONI IN ALTERNATA

La limitazione del caso consiste nel supporre trascurabilmente bassa l'impedenza del generatore e trascurabilmente alta l'impedenza del carico.

Comportamento della tensione di uscita al variare della frequenza della tensione di entrata (per dettagli vedi paragrafi da 13.5 a 13.9)

Diagramma di comportamento

Espressioni algebriche

$$V_u = \frac{R V_e}{Z} = \frac{R V_e}{\sqrt{\chi_c^2 + R^2}} = \frac{R V_e}{\sqrt{(\frac{1}{4 U_c})^2 + R^2}}$$

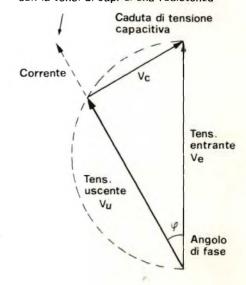
 $V_{\rm u} = V_{\rm e} \cos \varphi$

Sfasamenti fra tensioni di entrata e di uscita

$$\cos \varphi = \frac{V_u}{V_e} = \frac{R}{Z} = \frac{R}{\sqrt{(\frac{1}{\omega c})^2 + R^2}}$$

$$tg \varphi = \frac{V_c}{V_u} = \frac{\frac{1}{\omega c}}{R} = \frac{1}{\omega CR}$$

La fase varia con la frequenza a causa della presenza di V_c che è reattiva.


La fase a frequenza costante varia con Roltre che con C.

Si può fare perciò un variatore di fase mettendo R o C variabili.

In questo modo la punta del vettore Vo percorre la semicirconferenza essendo questa il luogo geometri. Il che mantiene retto l'angolo fra Vo e Vo al variare di essi.

Relazioni vettoriali

La corrente e' sempre in fase con la tens, ai capi di una resistenza

APPUNTI DI ELETTRONICA

Codice

Pagina

31.18 1

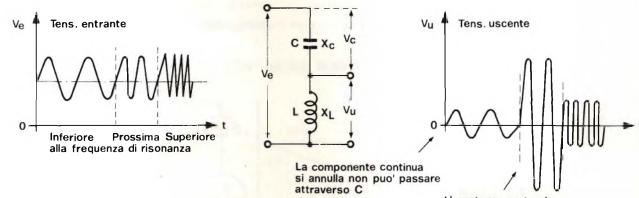
Operatori passivi

Circuiti costituiti da due elementi lineari in serie : 31.1 Paragrafo

Circuiti elementari

Circuito CL Argomento : 31.18

: 3

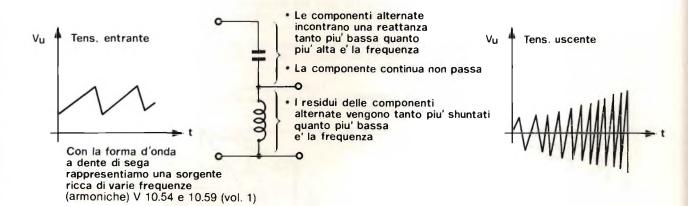

: 31

Sezione

Capitolo

GENERALITA' SUL CIRCUITO CL

Schema illustrativo per tensione entrante alternata di varia frequenza e poterizzata.


Osservazione

Alla frequenza di risonanza le ampiezze VL e Vudipendono dalla corrente che attraversa il circuito. Poichè esse sono in opposizione di fase fra loro. mandano in corto circuito la tensione entrante Ve.

L'ampiezza partendo da zero aumenta infinitamente avvicinandosi alla freg. di risonanza per poi tendere al valore della tens. di entrata Ve alle altissime freq.

Impiego

Essenzialmente come filtro passa-alto secondo il procedimento qui sotto illustrato.

Osservazione

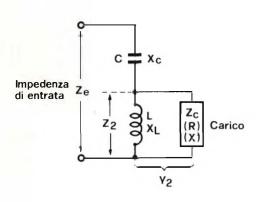
Provate a fare i confronti con le caratteristiche del circuito LC (31.15).

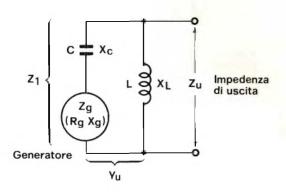
Paragrafo

Argomento

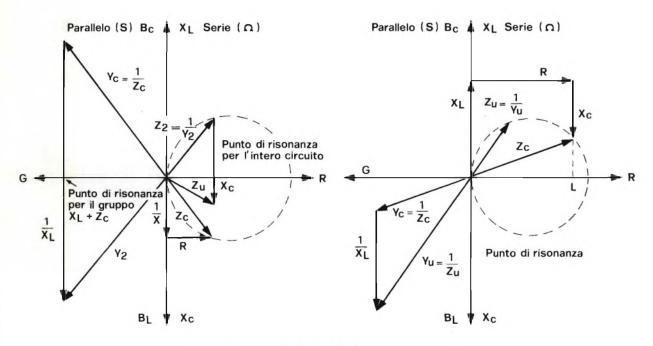
Operatori passivi : 31 Circuiti costituiti passivi da due elementi lineari in serie : 31.1

Circuito CL : 31.18


COMPORTAMENTO VETTORIALE DEI PARAMETRI IN ALTERNATA


Si considera l'influenza del generatore (Z₉) e del carico (Z_c) (v. paragrafi da 13.7 a 13.9).

IMPEDENZA DI ENTRATA


IMPEDENZA DI USCITA

Schemi di calcolo

Modelli di calcolo grafico

Osservazioni

Il carico Z_c è supposto induttivo.

Se risuona il gruppo parallelo $X_L + Z_c$, la presenza di X_O manda fuori risonanza l'intero circuito salvo dare a Xc valore zero, (cioè capacità C infinita!).

Si è supposta induttiva l'impedenza del generatore.

Solo un opportuno valore della capacità C per una data frequenza, può mandare in risonanza il circuito.

Capitolo : 31 Operatori passivi

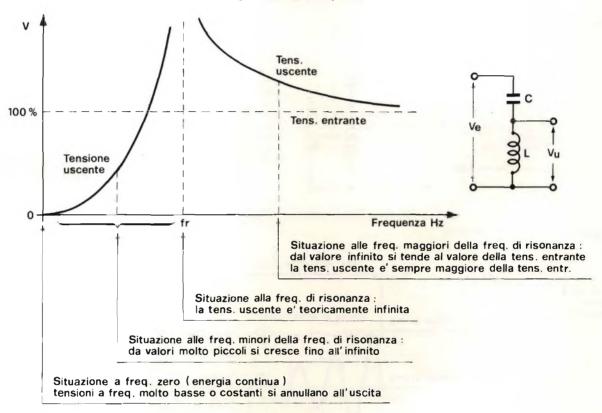
Circuiti costituiti da due elementi lineari in serie : 31.1 Paragrafo

: 31.18 Circuito CL Argomento

APPUNTI DI **ELETTRONICA**

Codice Pagina

31.18 3


COMPORTAMENTO VETTORIALE DELLE TENSIONI IN ALTERNATA

La limitazione del caso consiste nel supporre:

- trascurabilmente bassa l'impedenza del generatore
- trascurabilmente alta l'impedenza del carico

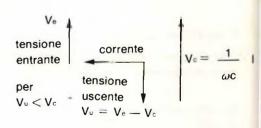
Comportamento della tensione di uscita al variare della frequenza della tensione di entrata (per dettagli vedi paragrafi da 13.5 a 13.9).

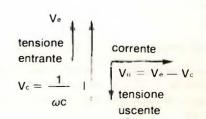
Diagramma di comportamento

Espressioni algebriche

$$V_u = \frac{X_L}{X_L - X_c}$$
 $V_c = \frac{\omega L}{\omega L - \frac{1}{\omega c}}$ V_e

$$V_{u} = \frac{\omega L}{1 - \omega^{2} LC}$$


Sfasamenti fra tensioni e corrente


Entrata
$$\cos \varphi = 0$$
 $y=90^\circ = \frac{\pi}{2}$ radiuscita $t_9 \varphi = 00$ 2

A causa della presenza dell'elemento capacitivo, la corrente si trova sempre in quadratura in ritardo sulla tensione di uscita.

Rispetto alla tensione di entrata essa si trova in anticipo o in ritardo a seconda che prevalga rispettivamente la reattanza induttiva o la reattanza capacitiva.

Relazioni vettoriali

Capitolo

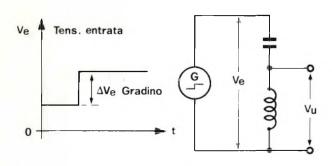
Sezione : 31 Circuiti elementari

Paragrafo : 31.1 Operatori passivi

Circuiti costituiti da due elementi lineari in serie

Argomento: 31.18

Circuito CL

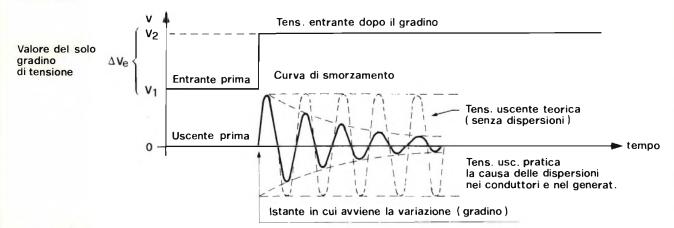

COMPORTAMENTO NEI FENOMENI TRANSITORI

Abbiamo già visto che la componente continua della tensione entrante si annulla all'uscita.

Può succedere che il circuito venga sottoposto a brusche variazione di tensione della componente continua entrante.

Risposta al gradino significa appunto studio del comportamento della tensione di uscita quando la componente continua entrante subisce una brusca variazione.

Schema illustrativo e di comportamento teorico



Il gradino di tens. provoca la carica dell'induttore e del cond i quali iniziano ad oscill. spontaneamente coinvolgendo nel circuito anche il generat. G che partecipa passivamente V 13.54

Tens. uscita

Diagramma di comportamento

Espressione algebrica

Diamo l'equazione finale della tensione uscente in funzione della tensione entrante e dei parametri del circuito.

Questa espressione parte dal concetto di energia immagazzinata nell'induttore e nel condensatore e poi lasciata al libero scambio fra di essi (14.22-1 e 14.23-3).

tensione uscente $V_{u} = \Delta V_{e} \cos \omega t$ istante di tempo considerato (in volt) (sec.) gradino di tensione entrante (in volt) pulsazione (rad/sec) $\omega = 2 \pi f$

Curva di smorzamento

La curva di smorzamento raccorda i valori massimi delle oscillazioni man mano si attenuano.

Essa segue le medesime leggi espresse nei paragrafi 13.1 e 13.2.

$$f = \frac{1}{2\pi \sqrt{LC}}$$

frequenza di risonanza caratteristica

Sezione

: 3

Circuiti elementari

Capitolo

: 31

Operatori passivi

Paragrafo

: 31.1

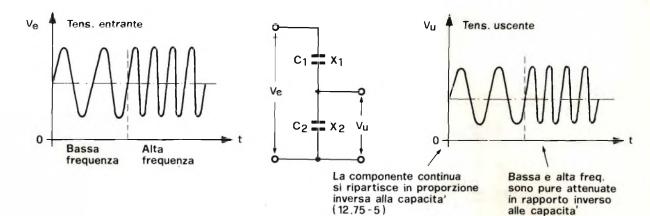
Circuiti costituiti da due elementi lineari in serie

Argomento: 31.19

Circuito CC

APPUNTI DI ELETTRONICA

Codice


Pagina

31.19

1

GENERALITA' SUL CIRCUITO CC

Schema illustrativo per tensione entrante alternata di varia frequenza e polarizzata.

Impiego

È largamente usato in elettronica come partitore di tensione soprattutto quando è necessario compensare i parametri reattivi del generatore o del carico.

Coefficiente di attenuazione

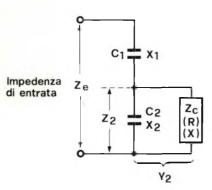
tensione
$$V_u = \frac{C_1}{C_1 + C_2}$$
 V_e tensione entrante uscente $C_1 + C_2$ coefficiente di attenuazione

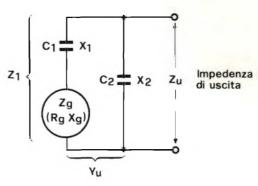
Paragrafo

Argomento : 31.19

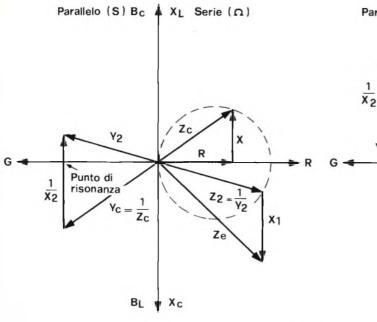
Circuito CC

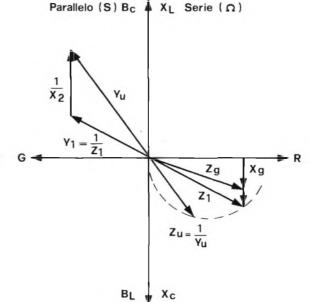
COMPORTAMENTO VETTORIALE IN ALTERNATA DEI PARAMETRI


Si considera l'influenza dell'impedenza del generatore (Z₉) e del carico (Z_c) v. paragrafi da 13.7 a 13.9.


IMPEDENZA DI ENTRATA

IMPEDENZA DI USCITA


Circuiti costituiti da due elementi lineari di serie


Schemi di calcolo

Modelli di calcolo grafico

Osservazioni

Si è supposta induttiva l'impedenza del carico.

In questo caso il circuito può andare in risonanza per un opportuno valore di C₁.

Se l'impedenza del carico è capacitiva il circuito non può andare in risonanza.

Si è supposta capacitiva l'impedenza del generatore. In questo caso il circuito non può andare in risonanza. Se l'impedenza del generatore è capacitiva il circuito può andare in risonanza. : 31.2

Paragrafo

Circuiti costituiti da due elementi lineari in parallelo

Argomento: 31.20 Presentazione del paragrafo

APPUNTI DI ELETTRONICA

Codice Pagina 31.20 0

Paragrafo 31.2

CIRCUITI COSTITUITI DA DUE ELEMENTI LINEARI IN PARALLELO

Indice

arg. 31.20 — Indice e impostazione generale del circuito modello pag. 0 — Indice
" 1 — Scelta degli elementi

i — Oceita degii elei

arg. 31.21 — Circuito R+R

pag. 1 — Operatore corrente-tensione

" 2 — Partitore di corrente

arg. 31.22 — Circuito R + L

pag. 1 — Operatore corrente-tensione

" 2 — Partitore di corrente

arg. 31.23 — Circuito R + C

pag. 1 — Operatore corrente-tensione

" 2 — Partitore di corrente

arg. 31.24 — Circuito L + R (non trattato)

pag. 1 — non trattato

arg. 31.25 — Circuito L + L

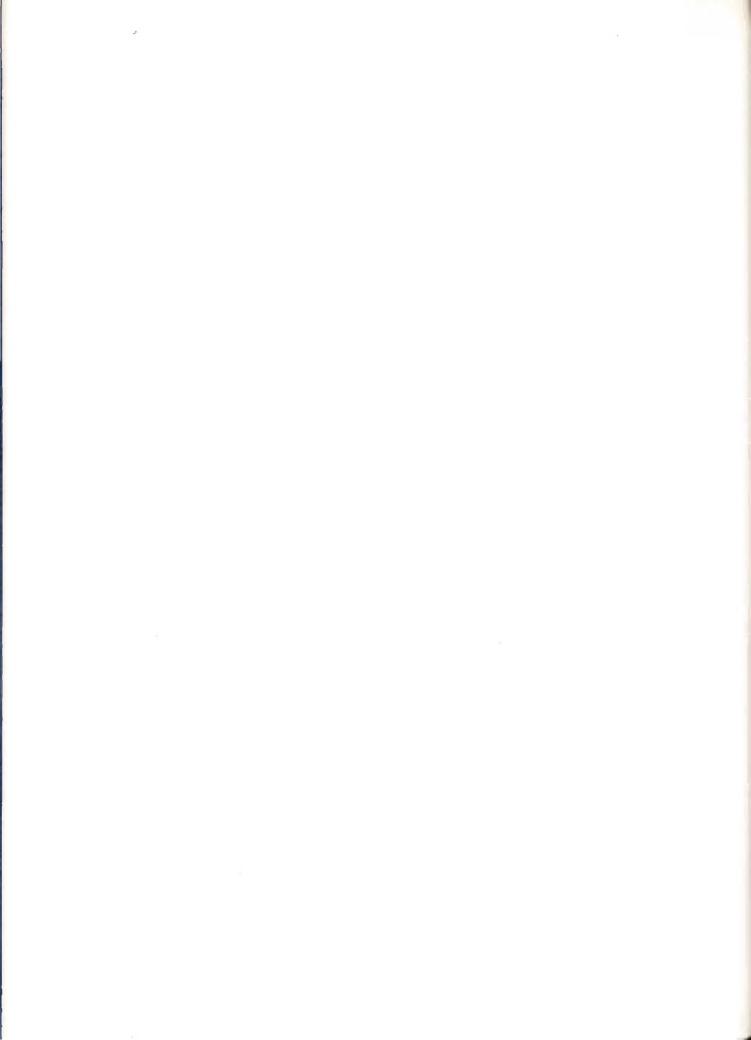
pag. 1 — Operatore corrente-tensione

" 2 - Partitore di corrente

arg. 31.26 — Circuito L + C

pag. 1 — Operatore corrente-tensione

" 2 - Partitore di corrente


arg. 31.27 — Circuito C + R (non trattato)

arg. 31.28 — Circuito C + L (non trattato)

arg. 31.29 — Circuito C + C

pag. 18 Operatore corrente-tensione

" 2 - Partitore di corrente

Fonti di Informazione

consenso

: 3 Sezione

Paragrafo

Circuiti elementari

: 31 Capitolo

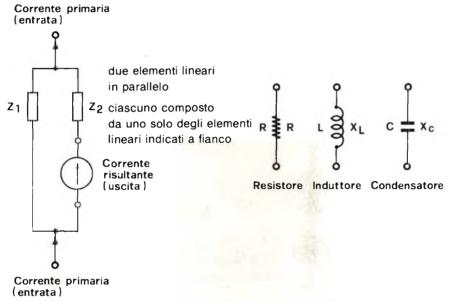
Operatori passivi

Circuiti costituiti da due elementi lineari in parallelo

: 31.20 Argomento

: 31.2

Indice e impostazione generale del modello


APPUNTI DI **ELETTRONICA**

Codice

Pagina 31.20

SCELTA DEGLI ELEMENTI

In tutto guesto paragrafo 31.2 dovremmo esaminare il comportamento degli operatori essenzialmente costituiti in generale come indicato in figura.

Abbiamo preferito invece mantenere la sequenza analoga a quella del paragrafo precedente anche se molti argomenti saranno mancanti per le ragioni anzidette.

Tutto ciò al fine di dare allo studioso la panoramica del problema e per insistere nel concetto di piena analogia fra tensioni e correnti, circuiti serie e circuiti parallelo.

Dovremmo studiare il comportamento dei vari circuiti parallelo come risulta dalla combinazione di guesti tre elementi presi a due per volta.

La trattazione rischierebbe di diventare monotona oltre che di scarsa utilità poichè questi tipi di circuito sono meno frequenti di quelli trattati nel paragrafo precedente.

Ci limiteremo ad un accenno superficiale delle combinazioni più interessanti, senza necessariamente sequire la traccia imposta.

Algoritmi e simbologia

Avrete notato, paragonando gli indici dei paragrafi 31.1 e 31.2 che i simboli dei parametri R, L, C si trovano accostati quando essi sono considerati in serie fra di loro (RL, RC, LC, ecc.) mentre sono separati dal segno più (+) quando essi sono considerati in parallelo fra di loro (R+L, R+C, L+C, ecc.).

È un algoritmo, che deriva dalla tecnica dei circuiti digitali ed è bene che cominciamo ad abituarci un po'.

Operatori passivi : 31 Capitolo

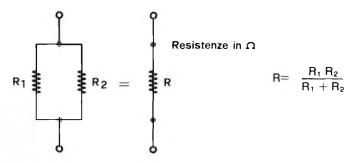
Circuiti costituiti da due elementi lineari in parallelo : 31.2 Paragrafo

: 31.21 Circuiti R+R Argomento

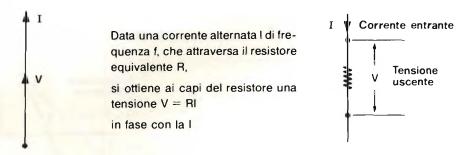
APPUNTI DI **ELETTRONICA**

Codice **Pagina**

31.21 1

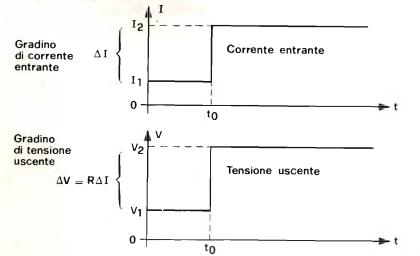

OPERATORE CORRENTE-TENSIONE

Indicazioni generali


L'operatore corrente-tensione costituito da due resistori in parallelo, si comporta come un unico resistore di valore equivalente, di cui riassumiamo il comportamento.

Serve generalmente a produrre una tensione ai capi del resistore equivalente a spese della corrente che lo attraversa, secondo la legge di Ohm.

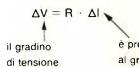
Valore globale dei parametri


Valore della tensione alternata prodotta

Valore della tensione continua prodotta

La componente continua segue le stesse regole della componente alternata.

Risposta al gradino di corrente continua



Relazioni generali

Le tensioni prodotte stanno fra loro come le corrispondenti correnti che le producono

$$\frac{I_2}{I_1} = \frac{V_2}{V_1}$$

Inoltre, per la legge di Ohm

è proporzionale al gradino di corrente

Il gradino di tensione uscente è contemporaneo con il gradino della corrente entrante

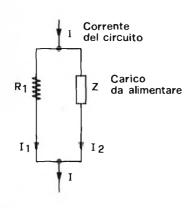
Sezione : 3

Capitolo : 31 Operatori passivi

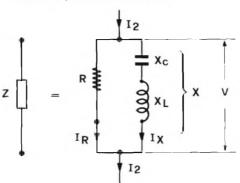
Paragrafo : 31.2 Circuiti costituiti da due elementi lineari in parallelo

Circuiti elementari

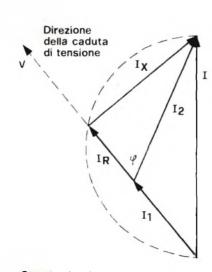
Argomento: 31.21 Circuito R + R



PARTITORE DI CORRENTE R + R


Applicazioni

Questo operatore serve ad alimentare un carico di cui si conoscono l'impedenza e la corrente necessaria, sfruttando una parte della corrente che circola in un circuito, sia essa continua e alternata.


Schema del circuito

Valori equivalenti del carico

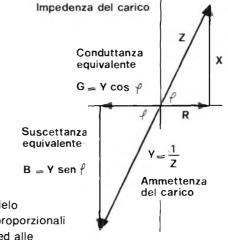


Diagramma vettoriale delle correnti

Questo circuito rende inevitabile che la caduta di tensione sia sfasata rispetto alla corrente, se il carico è reattivo.

Corrente del circuito

Nel circuito parallelo le correnti sono proporzionali alle ammettenze ed alle loro componenti

È evidente che la realizzazione è possibile solo se la corrente del circuito I è maggiore di quella l₂ del carico che si vuole alimentare.

$$I_{2} = \frac{V}{Z}$$

$$I_{R} = \frac{V}{Z} \cos \varphi = \frac{V \cdot R}{Z^{2}}$$

$$I_{X} = \frac{V}{Z} \sin \varphi = \frac{V \cdot X}{Z^{2}}$$

*

APPUNTI DI ELETTRONICA

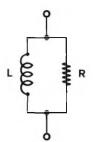
Capitolo : 31 Operatori passivi

Codice Pagina 31.22 1

Paragrato : 31.2 Circuiti cos Argomento : 31.22 Circuito R

Circuiti costituiti da due elementi lineari in parallelo Circuito R + L

TRASDUTTORE CORRENTE TENSIONE R+L

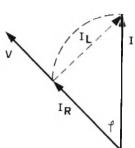

Indicazioni generali

In corrente alternata questo operatore serve a produrre una tensione ai suoi capi sfasata in anticipo rispetto alla corrente che lo attraversa.

In corrente continua esso serve a produrre un guizzo di tensione ad ogni variazione istantanea della corrente.

In presenza di entrambe le correnti serve a produrre una tensione soltanto alternata.

Valore globale dei parametri

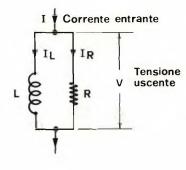

in corrente alternata impedenza in ohm $Z = \sqrt{R^2 + X^2}$ $X^2 = \omega^*$

$$X_L = \omega^{\bullet}$$
 $\omega = 2 \pi f$

in corrente continua costante di tempo in secondi

$$\tau = \frac{L}{R}$$

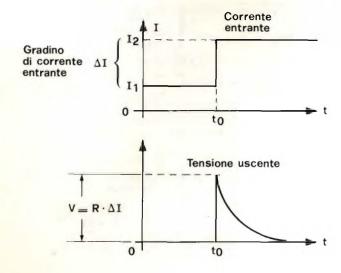
Valore della tensione alternata prodotta



Data una corrente alternata I di frequenza f che attraversa l'operatore RL parallelo

si ottiene ai capi del circuito una tensione V = ZI:

sfasata in anticipo di un angolo φ tale che le componenti le e la risultino sfasate di 90° cioè


$$n \varphi = \frac{1}{l} \cos \varphi = \frac{1}{l}$$

Valore della tensione continua prodotta

La componente continua della corrente non crea alcuna tensione ai capi del circuito $V_0 = 0$. Il circuito è sensibile alle sole variazioni di corrente.

Risposta al gradino di corrente continua

Comportamento generale

In seguito al gradino di corrente l'induttore risponde caricandosi secondo le leggi esposte al par. 13.2.

La tensione ai capi del circuito assume per un istante il valore

$$V = R \cdot \Delta I$$

ma la carica dell'induttore la riporta a zero con una rapidità che dipende dalla costante di tempo

$$Z = \frac{L}{R}$$

L'istante in cui inizia il fenomeno è contemporaneo a quello in cui si verifica il gradino. Sezione : 3

Paragrafo

Argomento

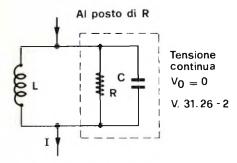
Circuiti elementari

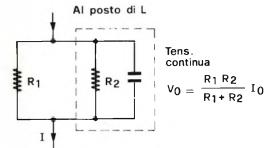
: 31 Capitolo

Operatori passivi

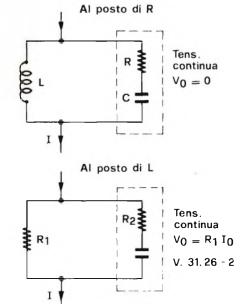
: 31.2 Circuiti costituiti da due elementi lineari in parallelo : 31.22 Circuito R+L

PARTITORE DI CORRENTE R + L

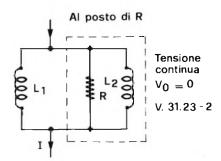

Applicazioni

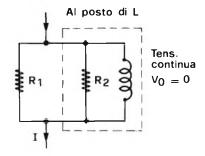

Questo operatore serve ad alimentare un carico di cui conosciamo l'impedenza e la corrente necessaria. sfruttando una parte di corrente che circola in un circuito.

Gli schemi che qui illustriamo sono già stati trattati in altri argomenti di questo stesso paragrafo e ad essi facciamo riferimento.


lo corrisponde alla componente continua della corrente I.

CARICO RC PARALLELO





CARICO RC SERIE



CARICO RL PARALLELO

CARICO RL SERIE

Capitolo : 31 Operatori passivi

Paragrato : 31.2 Circuiti costituiti da due elementi lineari in parallelo

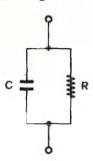
Argomento: 31.23 Circuito R+C

APPUNTI DI ELETTRONICA

Codice Pagina

31.23 1

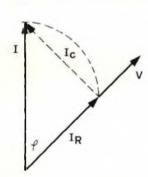
OPERATORE CORRENTE-TENSIONE R + C


Indicazioni generali

In corrente alternata questo operatore serve a produrre una tensione ai suoi capi sfasata in ritardo rispetto alla corrente che lo attraversa.

In corrente continua esso serve per produrre una tensione ritardata rispetto alle variazioni di corrente.

In presenza di entrambe le correnti serve a produrre una tensione soltanto continua.


Valore globale dei parametri

in corrente alternata impedenza in ohm

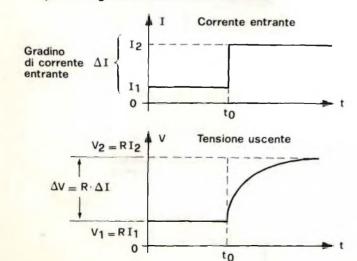
$$Z = \sqrt{R^2 + X_c^2} \qquad X_c = \frac{1}{\omega c} \quad \omega = 2 \pi$$

Valore della tensione alternata prodotta

Data una corrente alternata I di frequenza f che attraversa l'operatore RC parallelo

si ottiene ai capi del circuito una tensione V = ZI:

sfasata in ritardo di un angolo φ tale che le componenti l_0 e la risultino sfasate di 90°, e cioè


$$\operatorname{sen} \varphi = \frac{\operatorname{Ic}}{\operatorname{I}} \qquad \operatorname{cos} \varphi = \frac{\operatorname{IR}}{\operatorname{I}}$$

Valore della tensione continua prodotta

La componente continua della corrente crea una tensione che dipende unicamente dal valore della resistenza e cioè Vo = R · Io

Risposta al gradino di corrente continua

Comportamento generale

In seguito al gradino di corrente il condensatore risponde caricandosi secondo le leggi esposte al par. 13.1.

La tensione ai capi del circuito sale avvicinandosi al valore finale con una rapidità che dipende dalla costante di tempo $\tau =$ RC.

L'istante in cui inizia il fenomeno è contemporaneo a quello in cui si verifica il gradino. **Pagina**

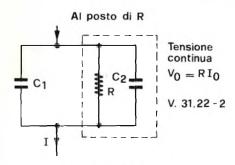
Sezione Capitolo

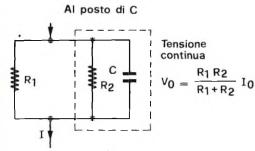
Circuiti elementari : 3 : 31 Operatori passivi

Circuiti costituiti da due elementi lineari in parallelo Paragrafo : 31.2

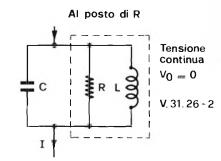
Circuito R+C Argomento : 31.23

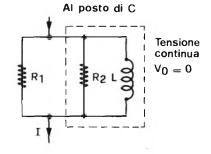
PARTITORE DI CORRENTE R + C

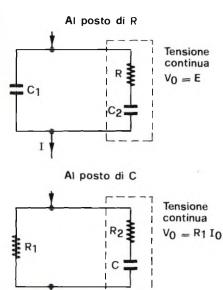

Applicazioni


Questo operatore serve ad alimentare un carico di cui si conoscano l'impedenza e la corrente necessaria, sfruttando una parte della corrente che circola in un circuito.

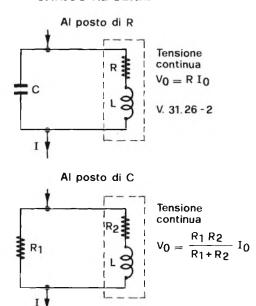
Gli schemi che qui illustriamo sono già stati trattati in altri argomenti di questo stesso paragrafo e ad essi facciamo riferimento.


lo corrisponde alla componente continua della corrente I.


CARICO RC PARALLELO



CARICO RL PARALLELO



CARICO RC SERIE

CARICO RL SERIE

Capitolo : 31 Operatori passivi

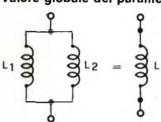
Paragrafo : 31.2 Circuiti costituiti da due elementi lineari in parallelo

Argomento: 31.25 Circuito L+L

APPUNTI DI ELETTRONICA

Codice Pagina

31.25


OPERATORE CORRENTE-TENSIONE

Indicazioni generali

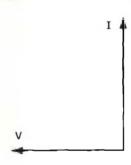
L'operatore corrente-tensione costituito da due induttori in parallelo, si comporta come un unico induttore di valore equivalente, di cui riassumiamo il comportamento.

Esso serve generalmente a produrre una tensione ai capi dell'induttore equivalente a spese ed in funzione della corrente che lo attraversa. Questa tensione è sempre in anticipo.

Valore globale dei parametri

induttanze in henry

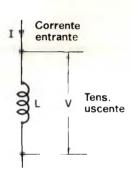
$$L = \frac{L_1 L_2}{L_1 + L_2}$$


reattanze in ohm

$$X_{L} = \frac{X_{1} X_{2}}{X_{1} + X_{2}}$$

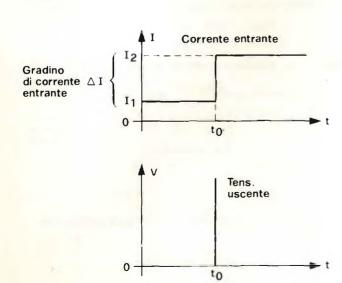
$$X_{L} = \omega L$$

$$\omega = 2 \pi f$$


Valore della tensione alternata prodotta

Data una corrente alternata I di frquenza f, che attraversa l'induttore equivalente L si ottiene ai capi dell'induttore una tensione

$$V = X \iota I$$


sfasata in anticipo di 90° ($\frac{\pi}{2}$ rad) rispetto alla I.

Valore della tensione continua prodotta

La componente continua della corrente che attraversa l'induttore non crea tensione ai capi di esso. Riassumendo: corrente continua, passa; tensione continua, assente.

Risposta al gradino di corrente continua

Comportamento generale

Il valore istantaneo della tensione (in volt) dipende dalla rapidità con la quale si verifica il gradino di corrente; più breve è l'istante e più alta è la tensione

$$V = L \frac{\Delta I}{\Delta t}$$

L'istante in cui si verifica il guizzo di tensione è contemporaneo a quello in cui si verifica il gradino di corrente.

La tensione è positiva se il gradino è in aumento; è negativa se il gradino è in diminuzione.

APPUNTI DI ELETTRONICA

Codice 31.25 Pagina 2

Sezione ina Capitolo : 3 Circuiti elementari

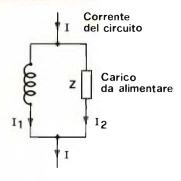
Capitolo : 31

Paragrato : 31.2

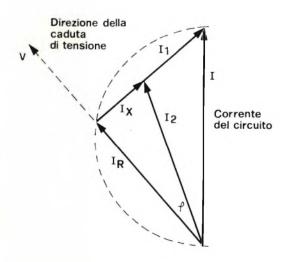
Operatori passivi

Circuiti costituiti da due elementi lineari in parallelo

Argomento: 31.25

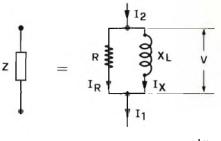

Circuito L + L

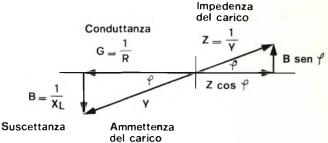
PARTITORE DI CORRENTE L+L


Applicazioni

Questo operatore serve ad alimentare un carico di cui si conoscono l'impedenza e la corrente necessaria, sfruttando una parte della corrente che circola in un circuito, quando il carico non è interessato alla componente continua della corrente.

Schema del circuito




Diagramma vettoriale delle correnti

Questo circuito rende inevitabile ce la caduta di tensione sia sfasata rispetto alla corrente, per qualunque valore del carico.

valori equivalenti del carico

Nel circuito parallelo le correnti sono proporzionali alle ammettenze e alle loro componenti

È evidente che la realizzazione è possibile solo se la corrente I del circuito è maggiore di quella I₂ del carico che si vuole alimentare.

$$I_2 = \frac{V}{Z}$$

$$I_R = \frac{V \cdot R}{Z^2}$$

$$I_X = \frac{V \cdot X_L}{Z^2}$$

Osservazione

Valori molto alti della induttanza L tendono a diminuire la corrente I₁ e ad interessare sempre più il carico alla componente alternata della corrente.

Capitolo

: 31

Operatori passivi

Paragrafo

: 31.2

Circuiti costituiti da due elementi lineari in parallelo

: 31.26 Argomento

Circuito L+C

Codice 31.26

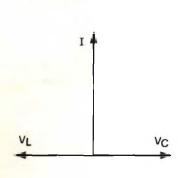
Pagina 1

OPERATORE CORRENTE-TENSIONE L+C

Indicazioni generali

L'operatore corrente-tensione costituito da un induttore e da un condensatore in parallelo si comporta da induttivo o da capacitivo a seconda di quale reattanza prevalga in funzione dei parametri e della frequenza. A parte il suo funzionamento come circuito oscillante per il quale si è fatta una trattazione separata (par. 13.9), esso serve generalmente a produrre una tensione ai suoi capi in funzione della corrente che lo attraversa. Questa tensione può assumere valori diversi e fasi in anticipo o in ritardo.

Valore globale dei parametri

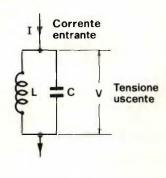

$$c = \int x$$

reattanza in ohm

$$X = XL - Xc$$
 $X_c = \omega L$ $\omega = 2 \pi f$ $X_c = \frac{1}{\omega c}$

Prevale la reattanza induttiva XL o la reattanza capacitiva Xc o nessuna $(X_L = X_c risonanza)$

Valore della tensione alternata prodotta



Data una corrente alternata I di frequenza f. che attraversa l'operatore LC parallelo si ottiene ai capi del circuito una tensione

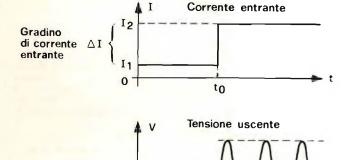
$$V = XI$$

sfasata in anticipo o in ritardo di 90° ($\pi/2$ rad) rispetto alla la seconda che prevalga la XL oppure la Xc.

In caso di risonanza la tensione diventa in teoria infinitamente grande: in pratica si annulla la corrente I.

Valore della tensione continua prodotta

Poichè la componente continua della corrente attraversa l'induttore senza creare tensione ai capi di esso, per l'intero operatore non è presente componente continua della tensione.


Riassumendo:

corrente continua, passa;

tensione continua, assente.

to

Risposta al gradino di corrente continua

Comportamento generale

Il gradino di corrente carica il circuito che si mette a oscillare alla frequenza propria di risonanza e con una ampiezza massima VM $= X \cdot \Delta I$

L'istante in cui inizia il fenomeno è contemporaneo al verificarsi del gradino.

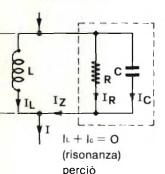
Paragrafo

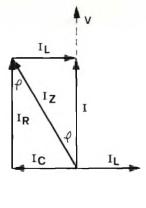
: 31.2

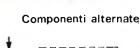
Circuiti costituiti da due elementi lineari in parallelo

: 31.26 Circuito L+C Argomento

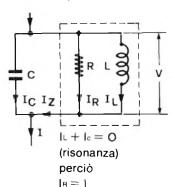
PARTITORE DI CORRENTE

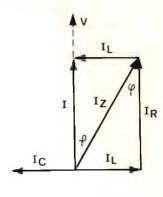

Applicazioni

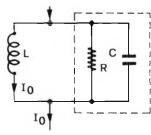

Questo operatore serve ad alimentare un carico di cui si conoscano l'impedenza e la corrente necessaria, sfruttando una parte della corrente che circola in un circuito.


Si esaminano alcuni casi in condizioni di risonanza a seconda della composizione del carico.

Carico RC parallelo

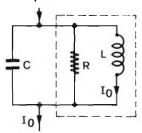

Componenti alternate





Carico RL parallelo

$I_R = I$ Componenti continue



La lo passa "indisturbata attraverso L, perciò

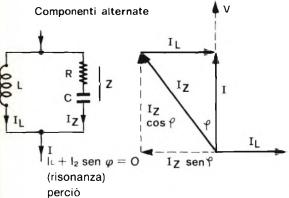
il carico non è interessato dalla corrente lo

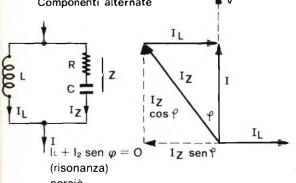
non c'è tensione continua al carico

Componenti continue

La lo attraversa la componente induttiva del carico e comunque

non c'è tensione continua ai capi del carico

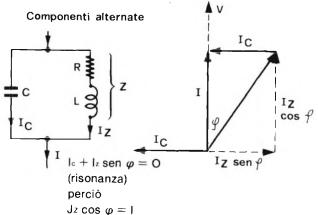

Carico RC serie

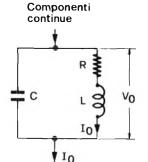

 $1z \cos \varphi = 1$

Componenti

С

 I_0





continue La lo, passa "indisturbata attraverso L ed inoltre non potrebbe comunque passare attraverso C perciò

> il carico non è attraversato da corrente continua e non c'è tensione ai suoi capi

Carico RL serie

La lo attraversa solo il carico e

si forma una tensione ai suoi capi di valore

$$V \circ = RI \circ$$

Operatori passivi Capitolo : 31

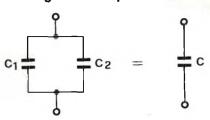
Circuiti costituiti da due elementi lineari in parallelo Paragrafo : 31.2

Circuito C+C Argomento : 31.29

APPUNTI DI **ELETTRONICA**

Codice Pagina

31.29 1


OPERATORE CORRENTE-TENSIONE

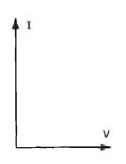
Indicazioni generali

L'operatore corrente-tensione, costituito da due condensatori in parallelo, si comporta come un unico condensatore di valore equivalente, di cui riassumiamo il comportamento.

Esso serve generalmente a produrre una tensione ai capi del condensatore equivalente a spese ed in funzione della corrente che lo attraversa. Questa tensione è sempre in ritardo.

Valore globale dei parametri

Capacità in farad

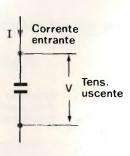

$$C = C_1 + C_2$$

reattanze in ohm

$$C = C_1 + C_2$$
 $X_c = \frac{X_1 X_2}{X_1 + X_2}$

$$Xc = \frac{1}{\omega c} \quad \omega = 2 \pi$$

Valore della tensione alternata prodotta

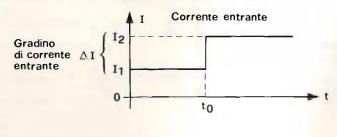


Data una corrente alternata I di frequenza f, che «attraversa» il condensatore equialen-

si ottiene ai capi del condensatore una tensione

$$V = XcI$$

sfasata in ritardo rispetto alla I di 90° ($\pi/2$ rad)


Valore della tensione continua prodotta

Mancando la componente continua della corrente che «non passa» attraverso il condensatore, la componente continua della tensione sarà presente interamente ai capi del condensatore.

Riassumendo:

corrente continua, non passa tensione continua, presente

Risposta al gradino di corrente continua

Valore di tensione raggiunta al momento Tensione del gradino uscente di corrente

Comportamento generale

La rapidità di carica (in volt/secondo) dipende dal valore della corrente entrante (v.

Il gradino di corrente fa variare la rapidità con la quale la tensione cresce uniformemente

$$\frac{\Delta V}{\Delta t} = \frac{1}{C} I$$

L'istante in cui avviene la variazione di rapidità è contemporaneo a quello in cui si produce il gradino di corrente.

La rapidità è maggiore ... se il gradino è 'positivo; è minore ... se il gradino è negativo.

Codice

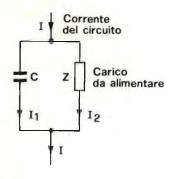
31.29

Sezione **Pagina** Capitolo : 3 Circuiti elementari Operatori passivi : 31

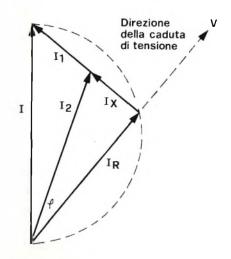
Paragrafo : 31.2 Circuiti costituiti da due elementi lineari in parallelo

Circuito C+C

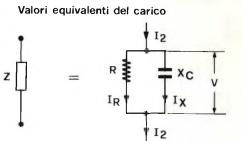
: 31.29 Argomento


PARTITORE DI CORRENTE C+C

Applicazioni


Questo operatore serve ad alimentare un carico di cui si conoscano l'impedenza e la corrente necessaria, sfruttando una parte della corrente che circola in un circuito.

Schema del circuito


2

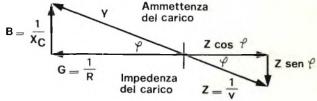


Diagramma vettoriale delle correnti

Questo circuito rende inevitabile che la caduta di tensione sia sfasata rispetto alla corrente, per qualunque valore del carico.

Nel circuito parallelo le correnti sono proporzionali alle ammettenze e alle loro componenti

È evidente che la realizzazione è possibile solo se la corrente del circuito I è maggiore di quella la del carico che si vuole alimentare

$$I_{2} = \frac{V}{Z}$$

$$I_{R} = \frac{V}{Z} \cos \varphi = \frac{V \cdot R}{Z^{2}}$$

$$I_{X} = \frac{V}{Z} \sin \varphi = \frac{V \cdot X}{Z^{2}}$$

Osservazione

Valori molto alti della capacità C tendono ad aumentare la corrente l₁ e ad escludere il carico dalla componente alternata della corrente.

AIUTATECI A SERVIRVI MEGLIO

Caro lettore

abbiamo bisogno della sua collaborazione, perchè non vogliamo accontentarci di constatare il successo degli "Appunti di Elettronica", basandoci soltanto sul soddisfacente conteggio delle copie vendute. Altri volumi dovranno essere pubblicati per trattare argomenti sempre più addentro nell'Elettronica e noi ci preoccupiamo di essere sempre più chiari nell'esposizione.

La preghiamo pertanto di compilare il questionario (riportato sotto) e di inviarlo in busta affrancata a:

J.C.E. (Appunti di Elettronica) Via dei Lavoratori, 124 20092 Cinisello Balsamo (MI)

Le opinioni sugli "APPUNTI DI ELETTRONICA"

I)	Comune e Provincia di resi	denza									
2)	Età ☐ 15 ÷ 20 ☐ 21 ÷ 35 ☐ 36 ÷ 45 ☐ oltre i 45	3)	Livello di istruz □ Elementare □ Media □ Superiore □ Universitaria	ione		4)	Specializzazione sco Elettronica o Radio Elettrotecnica Tecnica o Scientifi Altre	0			
5)		rno □ Serale corrispondenza	6)	scolastica □ Un pas	entemente dalla p n, l'Elettronica per satempo (hobby) e professionale						
')	Professione Operaio Impiegato Dirigente o imprenditore Insegnante Commerciante o artigiano	tecnico	non tecn.		Giudizio sui volu Volumi acquistat Quale il più inter Quale il meno int Giudizio sul meto U Valido	essa teres	ssante?	ferente	2	3 4	4 5
10)	Giudizio generale Troppo difficile Difficile Adatto Facile Troppo facile			11)	La preghiamo di di alcuni fogli fra I più incomprens Quelli che le han dei concetti	: ibi(i					
2	Osservazioni, suggerlmenti,										

TAGLIANDO D 20092 Cinisello	ORDINE da invia	are a JCE -	Via dei Lavo	oratori, 124 -	
	copia del Libro	Appunti di	Elettronica V	ol. 1° a L. 8.00	00
	copia del Libro				
☐ Inviatemi una	copia del Libro	Appunti di	Elettronica V	ol. 3° a L. 8.00	00
☐ Inviatemi una	a copia del Libro	Appunti di	Elettronica V	ol. 4° a L. 8.00	00
Nome Cognome _					
Indirizzo					
Сар	Città				-
Codice Fiscale (ind	ispensabile per le azio	ende)			
□ Allego assec	no n°		di L		

ASSICURATEVI LA RACCOLTA COMPLETA

versamento e non inviare questo tagliando.

Con questo quinto volume della collana "Appunti di Elettronica" destinata a chi vuole saperne di più... senza esagerare e per chi vuole tentare di capire con conoscenza di causa il linguaggio ermetico degli iniziati.

L'autore continua la sua trattazione intesa in un inquadramento sistematico dell'elettronica. In questo volume, come nei successivi, si analizzano i circuiti

cessivi, si analizzano i circuiti elettronici riducendoli a dispositivi operatori elementari che presentano due terminali per l'ingresso del segnale e due terminali per l'uscita del medesimo, modificato dal dispositivo.

Questi dispositivi sono gli stessi che i matematici chiamano quadripoli, la cui teoria però per il momento non viene trattata.

Osservando invece i circuiti che formano questi dispositivi operatori ci si accorge che tutti sono costituiti da semplici partitori di tensione che assolvono le varie funzioni a seconda degli elementi del circuito che vi vengono impiegati.

