For all two-way radio enthusiasts

Construction: A Simple Ni-Gad Charger

Evolution of the Radio Receiver

Three User Reviews: The Grundig Satellit 500 World Receiver, the Aztex TVTX 24cm FM ATV Transmitter and the ULNA 23-24cm GaAsFET Preamplifier

THE ORIGINAL SURPLUS WONDERLAND!

MONITORS

MONOCHROME MONITORS

THIS MONTH'S SPECIALI
There has never been a deal like this onel
Brand mpenking new \& boxed monitors Brand *penking new \& boxed monitors
from NEC, normally selling at about C 140 , These are over-engineered for ultra rellablity. $9^{\circ \prime}$ green screen composite input with etched non-glare screen plus switch able highnow impedance input and output for dajsy-chalning. 3 from controls and 6 at rear. Standard BNC sockets. Beautiful high contrast screen and attractive case with quantity usersi $£ 39.95$ each (D) or 5 for $£ 185$ (G) CALL FOR DISCOUNTS ON HIGHER QUANTIIES! Zenith ZVM-1240-EA brand new \& boxed 12" amber fiat screen
with opitonal swivel and tilt base. Sumfex filter with dat timt Standard TTL PC compatible. 18 mhz bandwidth. Very attractive "state of the art" tapered grey case. Standard 9 pln D plug (supplied) on 1 metre cord and mains cord terminated with IEC solute gift at: $\quad \mathrm{ESO}$ (D) 10 c 500 (G). Swivel/tilt bese E 405 . Very high reeolution, fully cased $14^{\prime \prime}$ green or amber screen monitor with non-glare screen and swivel/tilt base. The very latest technology at the very lowest pricel Fully compatible and plug compatlble with all IBM PCs and clones fitted with a high res Hercules or equivalent cardl Enables supert graphics and resolution, all at a give away prtce. Has many extra features inclucling aux $+5 \& 12 v$ DC outputs to power at least 2 disk drives, If your PC power supply is getting hotI Supplied BRAND NEW and boxed. State whether amber or green screen required.

$$
\begin{aligned}
& \text { Amber .-...... } \mathcal{E} 79 \text { Green, } \operatorname{E69} \text { (E) } \\
& \text { ang green screen } 12^{\prime} \text { chassis monitor with composite vid }
\end{aligned}
$$ input. Adjustable for tilt. Requires 12 volc. Brand new and boxed In perfect condition. Only E30 each or 2 for E75 (F) Motorola M1000-100 5" black \& white compact chassis measur Ing only $11.6 \mathrm{H} \times 12 \mathrm{~W} \times 22 \mathrm{D}$. Ideal for CCTV or computer applications. Accepts standard composite or individual H \& V

syncs. Needs 12 vdc at only 0.8 a. Some units may have minor syncs. Needs 12 volc at only 0.8 a . Some units may have minor screen blemishes. Fully tested with 30 day guarantee and full data. Fata.
Fulty cased as above in attractive moulded desk standing
swiver. Dim $12 \times 14.5 \times 26 \mathrm{~cm}$.
$E 30.00(\mathrm{C})$ JVC 751 ultra compact chassis monitor for 12vdc 0.7 a . Dim 11 $\times 14 \times 18 \mathrm{~cm}$. Simple DTY data Included to convert to composite vidoo input .Full data. BRAND NEW
£65.00(B) $20^{\text {" }}$ Blieck 8 white montiors by Aztek, Cotron 8 National. Al applications. Standard composite video inputs with integral audlo amp and speaker. Sold in good used condition-fully tested whth 90 day guarantee. COLOUR MONITORS
Decca $16^{*} 80$ budget range colour monitor. Features a PIL tube, beautiful teak style case and guaranteed 80 column resolution, features usually seen only on colour monitors costing 3 times our pricel Ready to connect to most computers or video outputs. tested surplus, sold in lith Integral audio amp a speaker. Fully full RTB guarantee. Ideal for use with video recorder or our Telebox ST, and other audlo visual uses. ce9(E) 3/22(5)(G) HLDEFINTION COLOUR MONTORS
Brand new Centronic 14^{-}montitor for IBM PC and compatibles at a lower than ever prical Complelely CGA equivalent. Hh-res Mitsubushil 0.42 dot pltch giving 669×507 plxels. Big 28 Mhz
bandwidt. A super monitorin attractive style moulded case.Full 90 day guarantee. Only E149 (E)

$$
20^{\prime \prime}, 22^{\prime \prime} \text { and } 26^{\prime \prime} \text { AV SPECALS }
$$

Superbly made UK manufacture. PIL ail solld state colour monitors, complete with composite video \& sound inputs. Attrac
tive teak stye case. Perlect for Schools, Shops, Disco, Clubs. In EXCELENT Ittie used condition with full 90 day guarantee. 20"....£155 22"....£170 26"....£185 (f)

COMPUTER SYSTEMS

TATUNG PC2000. Big brother of the famous Einstetn. The TPC2000 Professional 3 piece syslem comprises: Cuality high resolution Green $12^{\prime \prime}$ monitor. Sculptured 92 key keyboard and
plinth unit containing Z80A CPU and all control circuits. PLUS 2 plinth unit confaining Z80A CPU and all control circuits. PLUS 2 other leatures include dual 8° IBM format disk Serial and parallel outouts, full expansion disk drive support. Serial and parallel outputs, full expansion port, 64 K ram and ready to run sortware. Supplied complete with CP/M, Wordstar and Basic. Brand new and covered by our famous 90 day guarantee and backup. Normal price of this unit is over E1400

V22 1200 BAUD MODEMS

We got a tremandous buy on further stocks of this popular 1200 baud mone 212 microprocessor coniroled V22 fuldplex 1200 baud modem - we can now bing them to you at hafileet advertaed price/ Fully BT approved unit, provides standard V22 high speed dala comm, which at 120 cos, can save your phone bill and connect time by a staggering 75\%I Ultra sim 45
mm high. Full featured with LED status Inclcators and remote mm high. Full featured with LED status incicators and remote
error dagnostics. Sync or Async use; speech or data switching: error dagnostics. Sync or Async use; speech or data switching;
bullt in 240 v malns supply and 2 wre connection to BT Units bult in 240 v malns supply and 2 wire connection to BT. Units are In used but good condition. Fully tested prior despatch, with
data and a full 90 day guarantee. What more can you ask for and at this pricell ONLY 169 (D)

FLOPPY DISK DRIVES

BARGAINS GALORE!

NEW 51/4 inch from E29.95!

Massive purchases of standard $5^{1 /} / 4^{\circ}$ drives enables us to

 (uniess prate product at industry beating low pricesl All units and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from $+58+12 \mathrm{vdc}$, are of standard size and accept the standard 34 way connector.SHUGART SA405. BRAND NEW
SHUGART SA405. BRAND NEW
TANDON TM100-2A IBM compatible DS
TANDON TM101-4 80 Track DS
TANDON TM101-4 80 Track DS
CANON,TEC etc.DS haff height. State 40 or $80 T$
20.95 (B)

E39.05(B)
ع49.95(B)
TEAC FD-55-F.40-80 DS half height. BRAND NEW $\begin{gathered}\text { E99.00(B) }\end{gathered}$
31⁄2 INCH BRAND NEW AT $219.95!!$
Never before seen price for a $31 / 2^{\prime \prime}$ drive. Standard size believed
to be by Canon. Brand new and packaged - mint conditionl 40 track SS, run from $+5 \&+12$ vdc with standard power connec-

E19.05 or 2 for $234.50(B)$
CHOOSE YOUR 8 INCHI
Shugart 800/801 SS refurbished \& lested
Shugert 851 double sided relurbished 8 tested
E125.00(E) E250.00(E) SPECAAL OFFERSII
Dual $8^{\prime \prime}$ drivee with 2 megabyte capacty housed in a smart case with built in power supplyl Only E499.00 (F)
Ideal as exterior drives!
End of tine purchase scoop! Brand new NEC D2246 8* 85 megabyte of hard disk storagel Full CPU control and industry standard SMDimerface. Ultra hi speed transfer and access time leaves the good old ST506 interiace standing. In mint condition
and comes complele with manual. Only........................EMO(E)

MAINS SUPPRESSORS \& FILTERS

The "Filtan" from Crotan is a Brtish made high current mains spike suppressor and RF filter In one, capable of handiling up for your equipment plug and a flying lead ferminat 13 amp socket for your equipment plug and a flying lead ferminates in a quality plug (to BS 1363A standard) to go to the malns socket. There is an intemal tuse plus one in the plug. Two LED indicators, one forpower on and the otherights if the intemal fuse falls. Dims: 6° $\times 3^{\prime \prime} \times 2^{\prime \prime}$. Brand new. Distributor's ptice - $£ 65.001$ Continental plug version Fit-C. Elther only 815.95 each or 2 for 829.95 (B) amps maximpe L2127 malns RFI filters rated at 250 voits 3 (Englishaximum. Comes complete with a built in mains cable et and a mating plug to go to the equipment. who are bugged by RF interference. Very compact Ior those $\times 25^{\prime \prime} \times 15^{\circ \prime}{ }^{\circ}$

IBM KEYBOARD DEALS

A replacement or backup keyboard, switchable for IBM PC PC-XT or PC-AT. LED's for Caps, Scroll \& Num Locks. Standard 84 keyboard layout. Made by NCR for the Engllsh 8 US markets. Absolutely standard. Brand new \& boxed with manual and key
template for user slogans on the function keys. Altractive emplate for user slogans on the tunction keys. Altractive belge,grey and cream firish, with the usual retractable legs underneath. A generous length of curly cord, terminating in the
standard 5 pIn DW plug. A beaulful clean plece of manufacstandard 5 pln DN plug. A beaulfiful clean plece of manufac-
turers surplus. What a deall Brand new and boxed 84 key PC.AT keyboands in standard BM grey with very attractive motted finish and "clicky" solld feel keys. 10 tunction keys on side. English layout and £ sign. Green LEDs for Caps, Scroll \& Num locks. E29.95 (B) 5/E135
CALL FOR DISCOUNTS ON HIGHER OUANTITES!

RECHARCEABLE BATTERIES

LEAD ACID

Moinsmance free seeled long lite. Type 4300. 12 volts 12 volts 3 amp hours
6 volte 6 volts 3 amphours
12 volte Centre tapped 1.8 amp hours. RFE
12 volts 24 amp hours. A200. RFE NICKEL CADMIUM
Ouality 12v 4ah cell pack. Originally made for the Technicololor video company. Confalns 10 GE top quality D nicad cells in a smart robust case with a DC output connector. Ideal for portable Ex-equipment NICAD cells by GE. Removed from Equipment and In good, used condition: D size 4ah ifor E5(B)

SPECIAL INTEREST		
Hitecht 10 pen A3 plotter - HPGL - New		
Trio 0-18 vdc bench PSU. 30 amps. New		

Calcomp 1056 large drum 3 pen plotter
Thurtby La 160A logic analyser
1.5kw f15v 60 hz power sounce

Weyna Kerr RA200 audlo real time freq.res.analyser.
VG Electronice 1033 Teletext Bridge
Tektronice R140 NTSC TV test signal standard.
Sony KTX 1000 VIdeotex system - brand new
DECLST1/02 CPU board
ADOS 2020 VDU teminals - brend new
15

ANALOG to DIGITAL and DICITAL to ANALOG CONVERTERS

Brand new and boxed Amdek
ADA-200 analog to digital and digital to analog converter packmost popular PC's; 2 channel input 8 output by software selec-
tion; integral inpuloutput filters and address decoder, input pre-amp; over-level delecter, trigger signal detecter drcuit; expansion avallability and more. Input level 25 mv to 50 v p-p Max. sampling frequency is 44 khz and Input gain variable to 200 times. Designed for use with almost any personal com puter, allowing conversion of analog signals to digital data for processing by the computer plus conversion back to analog signals. The 26 page manual supplied includes data on the 6800 connection to various CPU's including the 8080, 2-80 6800,6502 and 6809 families plus dataand schematics for use modification of VO filler cut-off frequencies. Complete with 50 way ribbon cable and edge connector to go to the computer and

POWER SUPPLIES

An PSUs 220-240vac Input and are BRAND NEW undeae theted. Meny typee renging from 3v to 10kv always in stock. Fine Op-9619 20 watts switch mode. +5 v © $2 \mathrm{a} .+12 \mathrm{v} @ 1 \mathrm{a}$, 12v@0.1a. $5 \times 3 \times 1-1 / 2$. $\mathrm{E} 15.95(\mathrm{~B})$
 Greendele 19ABOE 60 walts switch mode. $+5 v$ @ $6 a, \pm 12 v$ @ $1 \mathrm{a}, \pm 15 \mathrm{v} @ 1 \mathrm{a}$. RFE and fully tested. $11 \times 20 \times 5.5 \mathrm{cms}$. $\mathbf{E} 24.95$ (C) Conver AC130. 130 watt hi-grade VDE spec. Switch mode.+5v
© $15 \mathrm{a},-5 \mathrm{v} @ 1 \mathrm{a}, \pm 12 \mathrm{v} @ 6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms} \quad$ ع49 $95(\mathrm{C})$ Boehert 13000 . Switch mode.ldeal for drives \& system $+5 v @$ $6 a_{1}+12 v @ 2.5 a_{4}-12 v @ 0.5 a_{1}-5 v @ 0.5 a^{2}$ E20.95(B) Famell C6/40A. Switch mode. 5 v @ 40a.Encased E05.00(C) Fernell G2A5S. As above but 24v © 5a.

COOLING FANS

Plense spectly $\mathbf{1 1 0}$ or $\mathbf{2 4 0}$ volte for AC tans.

3 inch

$31 / 2$ inch
4 inch
4 inch
10 inch
62 mm
92 mm
4 inch
4 inch
AC ETRI slimiline. Only 1^{10} thick.
AC $110 / 240 \mathrm{v} 11 / 2^{\prime \prime}$ thick.
Round itick
Round. 312 thick. Rotron 110 v
DC 12v. 18 mm thick. $6 / 12 \mathrm{v} .814 \mathrm{24v}$.
DC $12 v .12 w 11 / 2^{-2}$ thick
DC $24 v 8 w .1^{=}$thick.
THE AMAZINGTELEBOX!
ع $8.50(\mathrm{~B})$
ع $9.95(\mathrm{~B})$

Converts your colour monitor Into a QUALTY COLOUR TVII

Brand new high quality, fully cased, 7 charnel UHF PAL TV tuner system. Unit simply connects to your TV aerial socket and colour vioo monitor turning same into a fabulous colour TV. Dont worry your monitor does nt have sound, the TELEBOX even has an integral audio amp for driving a speaker plus an auxillary oufput for Headphones or HI R syslem etc. Many other features: LED Status indicator, Smart moulded case, Malns powered, Built to BS safely specs. Many other uses for TV sound
Supplied BRAND NEW with full 1 year guarantee
Telebox ST for composite fult y year guarantee.
Telobox ST for composite video input monitors......... $\mathbf{E 2 9 . 9 5 (B)}$ Telebox STL as ST but with integral speaker............E34.95(B)
Telebox RGB for apalow RGB monitors........... 865.95 (B) surab or iem or Clone type colour montors.

BRAND NEW PRINTERS

Epson MX-90 F/T One of the most popular printers around Bi-directional prinuling with full logtc seeking. 9×9 dot matrix for aniarged,bold, condensed elc. Standard parallel Inferface. Brand paper. OK with IBM PC and most others. A tremendous buy FORA UM TED TIME ONL Y.............................. 120.00 (E) DED DPG21 minlature ball polnt pen printer plotter mechanism includes clrcult dlagrams for sirnple driver electronics...... F e(B) Centronice 150 eeriee. Always known for their rellabily in continuous use. real workhorses in any ervironment. Fast 150 cops with 4 fonis and choice of interfaces.
150-SN up to 9.5° paper.

Specliy whether serial or parallei required.
H155.00 E
CALL FOR THE MANY OTHERS IN STOCK INCLUDNG DAISY WHEELS.

LARGE QUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI

	MAIL ORDER \& OFFICES Open Mon-Fr 9.00.5.30 Depl Aper Norwood. Upondon SE 19 3XF.	LONDON SHOP 100's of bargains! Open Mon-Sat 9-5.30 215 Whitehorse Lane, South Norwoog, London, SE25	DISTEL © The Original Free dial-up database! 1000's of liemstinfo On Line 300 bd 081-679-1888. 120075 bd 081-679.6183. 1200 1200 bo 081-679-876 ${ }^{\circ}$	ALL ENQUIRIES 081-679-4414 Fax-081-679-1927 Telex- 894502

Electronics-

		ateus		Λ
		Straight \& Level The latest news, comments and developments on the amateur radio scene Software File Stephen Phillips with a program to design a Quad aerial		Evolution of the Radio Receiver Ian Poole G3YWX Iooks at the developments which have led to today's radios Short Wave Listener Trevor Morgan GW4OXB looks at electromagnetic radiation and the latest
Advertise Maria Smi		he Grundig Satellit 500 orld Receiver Michaelson G3RDG		The Aztex TVTX 24cm FM
Subscriptions: 081-6849542		looks at this commercial receiver which receives fax		TV Transmitter and the LNA 23-24cm GaAsFET
Publlsher: Peter Williams		weather pictures		eamplififier ike Wooding G6IQ
On sale: Last Thursday of the month precedi cover date	10	World of Data Don Field G3XTT looks at the advantages of a		eviews this Tx and preamp om Aztex
Next issue: Cover date July on sale 28 June 199		broadcast protocol for VHF packet radio		oming Next Mon
Published by: Amateur Radio Sagazines, Brentwood Esse, CM14 4SE, England (0277) 219876	12	Second-hand Hugh Allison G3XSE looks at voice synthesiser boards and low/mid/high band	36	Project Book Martin Williams with an LED Circuit which checks the voltage of battery operated equipment
Printed: In England ISSN: 0264-2557		ansceivers		the Beam
News Trade Sales by: S M Distribution, 6 Leigham Court Road	15	DX Diary Don Field with this month's news for HF operators		Glen Ross G8MWR with the latest news on VHF, UHF and microwaves
Streatham SW162PG Tel:081-6778111 Cover: The Yaesu FT-1000 HF Transceiver	18	Bits to Build Rev George Dobbs G3RJV builds the JDO13 audio	We regret to inform readers that owing to the continually rising production costs and to enable us to maintain the high standard o content in Amateur Radio the price of the magazine will be $£ 3.45$ from this issue	
			SERVICES 29 Subscription Order Form 39 Free Classified Ads 42 Advertising Rales and Information 42 Advertiser's Index	
	24	A Simple		
		d		
readers is reliabie. We cannot however guarantee it and we cannot assume leg responstbilty for it nor for any effects howsoever caused.		arger using a battery		
		iminator and readily		
		available components		

E

PHONE

TELEX 0474560521 FAX 0474333762

Semiconductors

ACl25	0.30	AU106	6.95
Cli26	0.45	BCl07A	0.11

AC 125	0.30	AUl06	6.95
AC126	0.45	BC107A	0.11
AC127	0.20	BC 1078	0.11
AC128	928	BC108	0.10
AClzBK	0.32	BC108B	0.12
AC141	0.21	B(109	0.10
AC141K	0.34	B (1098	0.12
A(142K	0.45	BC114A	0.09
A (1/6K	0.31	${ }^{8} 1115$	0.55
AC187	0.25	BCl16A	0.50
AC187K	0.24	$8 \mathrm{Cl17}$	0.19
AC188	0.25	BC119	0.14
AC188\%	0.37	BCl^{25}	0.25
ACY17	1.15	BC140	0.31
AD142	2.50	B(14)	0.25
AD149	1.50	${ }_{8}{ }^{\text {c }} 142$	0.21
ADI61	0.50	${ }_{8} \mathrm{C} 143$	0.24
AD162	0.50	8 BC 1478	0.12
Af 106	0.50	BC148A	0.09
AFl14	2.50	B(149	0.09
Aflis	1.95	8 BC 153	0.30
Af116	2.50	8C157	0.12
AF117	2.50	BC159	0.09
Aflle	3.50	${ }_{\text {B }} 161$	0.55
AF121	0.60	BC1708	0.15
AF124	0.65	$\mathrm{BC}^{\text {c }} 71$	0.09
Af125	0.65	BC1728	0.10
AF126	0.45	BC1738	0.10
4F127	0.65	BC174	0.09
AF 139	0.40	BC177	0.15
Af150	0.60	B(178	0.15
AF178	1.95	BC182	0.10
AF239	0.42	BC182 ${ }^{\text {B }}$	0.10
44^{4527}	0.35	BC183	0.10
4SY77	1.50		

BC18418	0.09
BC204	0.25
BC2078	0.25
BC2088	0.20
BC212	0.09
8(2124	0.09
BC213	0.09
BC2134	0.09
BC214	0.09
BC214C	0.09
8 8214	0.09
B(237B	0.15
BC238	0.15
BC239	0.15
B 251 A	0.15
B (252A	0.15
BC258	0.25
BC258A	0.39
BC284	0.30
BC300	0.30
B(30)	0.30
BC303	0.26
BC3078	0.06
B(327	0.10
B(328	0.10
BC337	0.10
BC338	0.09
BC347A	0.13
BC46)	0.35
B(478	0.20
BC527	0.20
B(547	0.10
BC548	0.10
BC549A	0.10
BC550	0.14
BC557	0.08
BC5S8	0.10
BC639/10	0.30
BCY33A	17.50

SAS590	2.15	STK437	7.95	TA7609P 3.08
St9018	7.95	STK439	1.95	TA7611AP 2.95
St9178	6.65	STK461	11.50	TA7629 ${ }^{\text {L }}$
St1310	1.50	STK463	11.50	TAA320A 3.80
St1327	1.10	STK0015	7.95	TAA350A 2.05
St13276	1.10	STK0029	1.95	TAAS50B 0.05
SN7414	1.50	STK0039	7.95	TAAS70 1.95
SN7421	0.85	TA7061AP	1.50	TAA6320S 2.95
SN76110N	0.89	TA7072	2.65	TAATOO 1.70
SN76115N	1.25	TA7073	3.50	TAA930 3.05
SN76131N	1.30	TA7108P	1.50	TBAIz0AS/B/C
SN762260N	N 2.95	TA7120P	1.65	1.00
SN76227N	1.05	TA7129P	2.50	SA/SB/TU
SN76228N	2.95	TA7130P	1.50	TBA395 1.60
SN76533N	1.65	TA7137P	1.00	T8A396 0.78
SN766SON	1.15	TA7146P	1.50	TBA440N 2.58
SN76660N	0.90	TAPITSAP	2.95	TBA4800 TBA510 2.95
STKO11	7.95	TA7203	2.95	TBAS100 2.50
STKO14	7.95	TA7204P	2.15	tBA520 1.10
STK015	5.95	TA720SAP	1.15	TBA5200 1.10
STK018	7.95	TA7208	1.95	TPA530 1.10
STK025	11.95	TA7222AP	1.80	TBA5300 $\begin{aligned} & \text { 1.10 } \\ & \text { TBA540 } \\ & \text { 2.50 }\end{aligned}$
STK032	7.95	TA7227P	4.25	TBA5400 $\mathbf{2 . 5 0}$
STK078	11.95	TA7228P	1.95	TBA5400 2.60
STK085	8.95	TAT310p	1.20	
STK415	1.95	TA7314P	2.95	
STK435	7.95	TA7321P	2.25	

R2008B
R2009
R
R2009
R2010B
R2322
R323
R2322
R323
R2S40
R(A) 6024
R(A 163 .
R(A) 6029
R(Al 6039
$\begin{array}{ll}\text { R(Al } 6181 & 0.2 \\ \text { RCAl } 6336 & 0.80 \\ \text { R(Al } 6335\end{array}$
R(A16335 0.4
R(A16572 0.25
S20600
S20s00
SKESF
T602
T602
$T 6029$
$T 6036 \mathrm{~V}$

TDA1001
TDA1003A
TDA10005
TDA1035
TDA1037
TDA1044
TDA1170
TDA1180
TDA12700
TDA1327
TDA202
TDA2003
TDA2010
TDA2020
TDA2030
TDA214
TDA2150
TDA2151
TDA2160
TDA2524
TDA2530
TDA2532
TDA2540
TDA2511
TDA2560
TDA2576 TDA2576

TDA2581	2.95
TDA2582	2.95
TDA2593	2.95
TDA2600	6.50
TDA2610	2.50
tDA2611A	1.95
tDasas0	3.50
TJaz655	4.50
TDA2680A	2.75
TDA2690	2.45
TDA3310	1.95
TDA3510	3.50
TDA3560	3.95
tDa4050	2.95
TDA4600	2.50
tDA9503	3.15
TEA1009	1.35
UPC 41C	3.50
UPC560H	2.95
UPC575C2	1.50
UPCIOOIH	1.95
UPC 1020	2.95
UPil024H	1.50
UFE1025H	1.95
UPC 1028H	1.95
UPC 1032H	0.95
UPC 1158 H	0.75
UPC1167	

UPC 1181 H	1.25
UPC 1182 H	1.50
UPCIIBSH	3.95
UPCII91V	1.50
UPC 1350	2.95
UPC1353X	2.45
UPC1360	2.95
UPC1365C	3.95
UPC 2002H	1.95
UP021141C	2.50
555	0.35
556	0.60
723	0.50
741	0.35
747	0.50
748	0.35
7808	0.50
7805	0.50
7812	0.50
7815	0.50

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{2}{|l|}{A SELECTION FROM OUR STOCK OF BRANDED VALYES} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\begin{tabular}{l}
2489 39.50 \begin{tabular}{l}
25806 \\
25068 \\
\hline 2.75 \\
205 \\
\hline
\end{tabular} \\
 \(29 \mathrm{C} 1 \quad 10.80\)
\end{tabular}} \& \begin{tabular}{l}
2050A GE \\
4212 H 280．00
\end{tabular} \\
\hline 18.00
8.80 \& E810F \& \& \& \& \& \& \& \& \& \\
\hline \({ }_{\text {37 }}^{37}\) \& E1 \& \& \& \& \& \& \& 1.50 \& 150 \& \begin{tabular}{ll}
5559 \\
5636 \\
\hline \& 53.00 \\
5.50
\end{tabular} \\
\hline \& \& \({ }_{\text {EF800 }}\) \& Ms50 195.00 \& \& Whe \& \(4 \mathrm{C} \times 125\) \& 1.80 \& 4.0 \& \& \\
\hline 2003 21 \& \& ， \& \& Mula \& \& Emac \& \({ }_{6 C G 7 G E} 9.28\) \& \({ }_{2.5}^{2.85}\) \& \({ }^{30512}\) \& 5643 \\
\hline \multirow[t]{2}{*}{\({ }_{\text {Acser }}{ }^{\text {and }}\)} \& \& \multirow[t]{2}{*}{} \& M5199 \({ }^{2}\) \& \& \& \multirow[t]{2}{*}{} \& \& 1.98 \& \(\begin{array}{ll}\text { SOFL12 } \& 0.05 \\ 305 L 13\end{array}\) \& \\
\hline \& EAT9 1.08 \& \& M8079 \({ }^{203.00}\) \& \& \& \& \& \& \({ }^{205 L 14}\) \& \\
\hline AC／／2PEN \& \multirow[t]{2}{*}{EAC91} \& \& M 808287.50 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \& \& \& \& \\
\hline АСт22 \& \& \& \& \& \& \& － \& 1.25 \& 0. \& 500 \\
\hline \({ }^{\text {AH221 }}\) \& \({ }_{\text {EBE }}^{\text {EB4 }}\) \& EL32 0.095 \& 96 \& \({ }^{\circ}\) \& \& \& \({ }_{3} .93\) \& 2．00 \& \& \({ }^{667} \quad 4.50\) \\
\hline AHz38 39．00 \& \& \& \multirow[t]{2}{*}{м8099} \& \multirow[t]{2}{*}{（esineme} \& \& \& \({ }_{\text {BLC6 }}{ }^{2.35}\) \& \& \& 6960 4.50 \\
\hline \& \& \multirow[t]{2}{*}{} \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\({ }_{6}^{60 . J 8888} \mathrm{Spectial}\)} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\({ }^{30819}\)} \& \\
\hline \& \& \& \begin{tabular}{lll}
M8136 \& 7.00 \\
M8137 \& 7.06 \\
\hline 1.05
\end{tabular} \& \& \& \& \& \& \& \\
\hline \({ }^{\text {AfPP3 }}\) \& \& \(\begin{array}{ll}\text { El36 } \& 2.80\end{array}\) \& \begin{tabular}{lll}
M8137 \\
M8161 \& 7.05 \\
\hline 8.50
\end{tabular} \& ． 12 \& \& \(4 \mathrm{C} \times 1500 \mathrm{~B}\) \& \multirow[t]{2}{*}{} \& \({ }_{\text {loge }}^{10 \mathrm{COK}}\) \& \multirow[t]{2}{*}{30 PL 130.00} \& \({ }_{2} 3.50\) \\
\hline \({ }_{4} 2.8\) \& \& EL38 4.80 \& \begin{tabular}{lll}
M8162 \& 8.50 \\
\hline 153 \\
\hline 1505
\end{tabular} \& Qvos． 25 \& \& 1500A \({ }^{\text {a }}\) \& \& \({ }_{\text {11E3 }}\) \& \& 龶 \\
\hline \& \& \& \& \& \& \({ }^{1100000}\) \& 6DO6B

6076A \& \& \&

\hline \& \& \& \& \& \& \& 3．00 \& ${ }_{12}^{12123}$ \& ${ }_{3}^{3115156 C 1589}$ \&

\hline \& 0.8 \& ELa1 6.98 \& 1196 8.50 \& － ar3－12s $^{\text {a }}$ \& \& 4032 \& ${ }_{665} 3.96$ \& （206 \& \&

\hline \multirow{3}{*}{${ }_{\text {cher }}$} \& \& $\begin{array}{llll}\text { EL83 } & 7.50\end{array}$ \& \& \& \& \multirow[b]{2}{*}{} \& ${ }_{\substack{\text { 6EAFGE } \\ \text { GEAB }}}^{\text {a }}$ \& \multirow[t]{2}{*}{} \& \& 50

\hline \& \multirow[b]{2}{*}{EC70} \& \multirow[t]{2}{*}{ELB4 Mullard} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{${ }^{\text {ar }} 4.400 .110 .00$} \& \multirow[t]{2}{*}{YJ1060 28s．00} \& \&	6EAB
$66 B 8$	\& \& ${ }_{3}{ }^{\text {C5 } 5}$ \& \multirow[t]{2}{*}{}

\hline \& \& \& \& \& \& \& \& 1.78 \& \&

\hline c115 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \& ${ }_{12}^{12 A T} 7{ }^{\text {a }}$ \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{}

\hline ， \& \& \& \multirow[t]{2}{*}{ME14010．90} \& $$
\begin{aligned}
& \text { R18 } 2 . E \text {. } \\
& \text { RG1-240A }
\end{aligned}
$$ \& \& \& \& 12ATTMA \& \&

\hline ${ }^{125}$ \& C90 1.05 \& \& \& \multirow[t]{2}{*}{RG3－250A ${ }^{14.50}$} \& Y11290 68.00 \& \& \multirow[t]{2}{*}{| 6EU8 | |
| :--- | :--- |
| $6 \times \mathrm{V} 7$ | 2.9 |} \& U6 \& \& ${ }_{5847} 5848$

\hline \& \& \& \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$4 \times 500 \mathrm{~A} 590.00$} \& \& \multirow[t]{2}{*}{} \& $40 \mathrm{KG6A} 4.95$ \& \multirow[t]{2}{*}{5879}

\hline \& \multirow[t]{3}{*}{} \& L85 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{38.00} \& \& \& ${ }_{6 E W 6} 1.50$ \& \& \multirow[t]{2}{*}{} \&

\hline \& \& \multirow[t]{2}{*}{} \& \& \& $\begin{array}{ll}23022 & 1.200 \\ 72350\end{array}$ \& \& \& \& \& ${ }_{5} 886$

\hline CVNos pric \& \& \& \& qR3－250 15.00 RR3－1250 \& \multirow[t]{2}{*}{${ }_{72750}^{2780}$} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$\begin{array}{ll}\text { 6F5 } \\ 685 & 8.30 \\ 687\end{array}$} \& \multirow[t]{2}{*}{${ }^{\text {12Axatige }} 2$} \& \multirow[t]{2}{*}{S0C5} \& \multirow[t]{2}{*}{5699}

\hline \& \multirow[t]{3}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { S1E12 } \\
& \text { Sus.00 } \\
& 350.00
\end{aligned}
$$} \& \& \& \& \& \&

\hline \& \& \& \& \& \& \multirow[t]{2}{*}{（} \& \& \multirow[t]{2}{*}{${ }^{12 A X X W A}{ }^{2} 50$} \& \multicolumn{2}{|l|}{}

\hline \& \& ${ }^{\text {EL360 }}$ \& \multirow[b]{3}{*}{} \& \& \multirow[t]{2}{*}{} \& \& \& \& \multirow[t]{2}{*}{| $503 Y 6$ | |
| :--- | :--- |
| 53 KU | 2.08 |
| 4.50 | |} \& \multirow[t]{2}{*}{${ }_{6058}^{6058}$}

\hline 1 \& \multirow{2}{*}{$$
\begin{array}{lll}
E_{C C C 35} & 3.50 \\
E C C 81
\end{array}
$$} \& EL509 1.98 \& \& \& \& \& \& \& \&

\hline ${ }^{22,80}$ \& \& \& \& \& 0.00 \& \& \& \& 1.50 \&

\hline \& $\begin{array}{ll}\text { ECC82 } & 0.95\end{array}$ \& EL802 3.65 \& 2.00 \& \& ZM1162 \& \& 2 \& ${ }_{2}$ \& ${ }^{750} 14.50$ \& 8． 50

\hline 0.4 \& \& \& \& \& 0 \& \& 6f53 \& 128 \& $\begin{array}{ll}80 \\ 83 & \\ 8.50 \\ 8.50\end{array}$ \&

\hline \& \& \& 2.20 \& \& \& cisiba \& \& \& ${ }_{\text {Q3A1 }}{ }^{\text {a }}$ \&

\hline \& \& \& \& \& \& \& ${ }_{6}^{6 F H 8} 8$ \& \& ${ }^{8551}$ \&

\hline \& \& EM81 \& \& \& ${ }_{102} 1 \times 2{ }^{2}$ \& \& 退 \& \& \&

\hline \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \&

\hline \& \& EM87 2.80 \& \& \& K3 ${ }^{2.80}$ \& \& \& \& \&

\hline ${ }^{35}$ \& 1．50 \& \& 0.4 \& \& \& \& ${ }^{3.6}$ \& ${ }^{12 \mathrm{C} \times 66} 1.09$ \& ${ }_{92 \mathrm{AGG}} \mathbf{2 8 . 0}$ \& 2．30

\hline \& \& \& 0．e \& \& 20.0 \& 4.0 \& \& \& \&

\hline \& \& EY51 0.0 \& \& ${ }^{T 175}$ \& 1.80 \& \& \& \& \&

\hline \& \& \& \& \& \& \& ${ }^{\text {SGW8 }}$ \& \& \&

\hline 1.00 \& ECC139 \& EYY1 \& PCCasas 0.70 \& \& 1.75 \& 4．50 \& ${ }_{2.80}$ \& 1211438.00 \& ${ }_{15082}^{1506}$ \& 3.80

\hline \& ECC801s \& EYa3 1.50 \& ${ }^{\text {PCCCOOO}}$ \& TY6000 12 \& U5 1.5 \& \& \& 127×5 \& K \&

\hline \& \& \& \& Tr2－125A \& $1 \times 25 \quad 2.50$ \& 0 \& ${ }^{\text {6H6GT }} \mathbf{2 8 5}$ \& \& 2. \&

\hline \& \& EY86／87 0.68 \& 0.65 \& \& $23^{3} \quad 12.15$ \& \& \& \& \&

\hline 1.50 \& \& \& \& \& 11. \& ${ }_{3}^{2.80}$ \& \& ${ }^{121556 T} 3.05$ \& 1.9 \&

\hline DK92 1.30 \& \& Ersood 2 \& \& \& \& \& 2.80 \& \& $\begin{array}{ll}2300 & 18.00\end{array}$ \& 6550AGE

\hline \& \& EY802 0.7 \& \& \& \& \& \& \& \&

\hline （103 \& \& EET30 \& 2018 \& U37 \& 23.0 \& \& \& \& \& ${ }_{68888}^{686}$

\hline 2.50 \& \& 3.50 \& ${ }^{1.25}$ \& 4410.90 \& 37，900 \& SAH6 ${ }^{\text {a }}$ \& 3.8 \& 12 K \& \&

\hline 2.5 \& \& 0.76 \& \& U50 3.00 \& \& \& \& 1254 \& \&

\hline ${ }_{\text {DL92 }}$ \& \& EZ790 \& \& ${ }_{0.70}$ \& 00.0 \& 2．00 \& \& \& \&

\hline 1.50 \& \& FW4－000 4.50 \& \& 41921.00 \& 2.8 \& 2.80 \& 4.18 \& 125674.75 \& 713A 28.0 \& ${ }^{70255}$

\hline $1{ }^{10} 19.30$ \& \& \& | PCH200 |
| :--- |
| PCL |
| 0.05 | \& ${ }^{41938}$ \& － \& 6AL5 0.80 \& WUBA GE 0.5 \& \& 23N／B 75. \&

\hline （10）${ }^{16}$ \& \& \& ${ }^{\text {PCCIE33 }}$ \& U80 \& 2．18 \& | 6AMA | |
| :---: | :---: |
| 6AM | 3.20 |
| 4.80 | | \& $\sim^{\text {a }}$ \& $77^{1.30}$ \& 27． \& \％ 00

\hline 0.50 \& \& \& \& \& ${ }^{19.0}$ \& \& \& \& \& 00

\hline pod－006 \& \& \& ${ }^{\text {PCLLE86 }} 0$ \& \& 21558 \& \& \& \& \&

\hline \& 1.50 \& \& \& \& 80．0． \& 1.78 \& \& 4.5 \& 805 \&	7199
7247	
10.50	
8.50	
8.50	

\hline 586／87 0.8 \& ${ }_{1}^{1.75}$ \& GC10 \& 2.00 \& UEF99 ${ }^{\text {UKP30 }}$ \& 2×28850.00 \& 6acs \& \& $1307 \quad 3.20$ \& ${ }_{807}$ \&

\hline 0.8 \& 1.30 \& GS10 \& \％ \& \& $\begin{array}{ll}\text { 2K48 } \\ \text { 2K56 } & 10.000 \\ \text { 230．00 }\end{array}$ \& 20 \& SK8G ${ }^{\text {3，00 }}$ \& \& \& ${ }_{7527}^{7456} 125.00$

\hline 2．0 \& 1.00 \& ${ }^{\text {GSI20 }} 1212.00$ \& 3.00 \& Uc \& \& \& \& ${ }_{1351} 145$ \& 3 Philips \& 3.90

\hline 12．50 \& 1.50 \& guro \& 1200 \& 1.0 \& \& 1.75 \& ${ }_{6}^{66664}$ \& 13EM7 3.5 \& \&

\hline 20．80 \& ECLL33 \& Guso \& \& \& \& \& $1.6 G C$ 3．80 \& 14866
14.50 \& \&

\hline \& \& GxU1 \& \& \& \& \& \& 3.5 \& ${ }^{623}$ \& ${ }^{5897}$

\hline 12.00 \& ECL36 \& $\mathrm{G}_{\mathrm{GXU} \times 50}$ \& ${ }^{\text {Plab }}$ \& \& \& 1.9 \& $616 \mathrm{tax}^{3.8}$ \& | 156 |
| :--- |
| 16403 |
| |
| 1.95 |
| 1.50 | \& \& 815 50．50

\hline 4.8 \& ECL205 0.05 \& GY501 \& PLL88
PLR3 \& \& ， \& \& \& \& ${ }_{8}^{845} 8$ \& ${ }^{8.50}$

\hline \& \& Gr802 1.50 \& \& UC \& \& 6A338 \& 3.18 \& 0.40
0.40 \& ${ }_{8}^{872}$ \& 935

\hline E8LL \& \& \& \& \& \& ${ }^{684}$ \& ， \& ${ }_{17 \mathrm{~A}}^{17 \mathrm{~A}}$ \& ${ }_{9}^{873}$ \&

\hline \& \& G234 4.50 \& PLI58 ${ }^{\text {a }}$－00 \& 228 \& 1．85 \& $686{ }^{680}$ \& \& 17AX4GTA \& 955 \&

\hline \& \& 337 \& \& 1，780 \& \& \& \& 78E3 ${ }^{\text {20，}}$ \& 18021950. \& 5

\hline \& 4.50 \& \& 0.00 \& UF89 ${ }^{2} .00$ \& $3822 \quad 25.00$ \& \& \& WA 2.25 \& \& 2．50

\hline 2.05 \& 3．30 \& ${ }^{\text {H290 }}$ \& 3．305 \& UL4．4 \& \& ${ }_{68 \mathrm{Ca}}^{68 \mathrm{Ca}}$ \& SO7CT 2.85 \& A \& | 1927 |
| :--- |
| 2040 |
| 25.0 | \&

\hline \& 4.85 \& ${ }_{\text {KTİC }}$ \& 0.50 \& Vis \& ${ }_{3828}^{3885}$ \& 2．09 \& \& \& \&

\hline \& \& KT36 \& 0.50 \& \& cas 30.50 \& SBE6 1．50 \& \& \& \&

\hline OF 7.08 \& ${ }^{1.20}$ \& ${ }^{K 744} 50.85$ \& $\begin{array}{ll}\text { Pr81 } \\ \text { PY82 } & 0.85 \\ 0.88 \\ 0.88\end{array}$ \& UM95 \& $\times 3000$ \& ${ }^{6064}$ \& 6scr \& \& \&

\hline CCC ${ }^{\text {a }}$ \& 3.50 \& \& 0.85 \& UU6 0.00 \& \& 1．80 \& \& 19avac \& OPEN MON \& UR 9AM－5．30PM

\hline \％${ }^{\text {cose }}$ \& \& ${ }_{\text {kT663 }}$ \& ${ }_{\text {Preme }}{ }_{\text {Preod }}$ \& UU7 \& ${ }_{\text {3021A }}$ \& ${ }_{68 \mathrm{~J} 6}$ \& ${ }_{6 S 57} 1.9$ \& \& \&

\hline \& ${ }_{\text {dis }}^{0.85}$ \& KT66 USA \& pryso \& \& \& ${ }_{6816} 6$ \& \& 19．30 \& HOU \& SWERPHONE

\hline \& \& GEG \& \& \& \& 6818 \& \& 1966 \& \&

\hline \& \& 25．00 \& ${ }_{0}$ ¢83－7750 \& \& \& \& 1．95 \& \& cess \& arclurcamo

\hline 4．50 \& \& \& $$
08
$$ \& V238A／K \& \& 68N8 3.08 \& 3．6 \& $20 \mathrm{CV} \quad 0.50$ \& PHOWE OR \& ME

\hline ${ }^{0.0}$ \& \& 167 \& \& V_{246} \& \& \& \& ${ }^{2001}$ \& UkOR \& RS P8P £1

\hline c \& \& ${ }_{\substack{\text { KTV } \\ \text { Kion } \\ \text { Gold }}}$ \& OOEE02．512， \& \& \& \& ${ }_{6} \mathrm{EVGG}$ ¢ 1.4 \& 2051 \& 硅E \&

\hline 12． \& 1.6 \& \& ОоеЕ3－20 \& \& \& 6 6857 5.8 \& 6VGGT 2.8 \& 2091 \& EXPORT OR \& NELCOME

\hline \& 2.18 \& ${ }_{\text {KT¢88 }}{ }^{\text {¢ }}$ U ${ }^{7}$ \& OCED \& \& \& 6 6\％ 68.8 \& r6G 3.8 \& 1.15 \& Child \& eat Cost

\hline \& \& 12. \& \& \& \& \& \& 0 \& LEASE \& ENO YO

\hline \& Efer \& \& \bigcirc \& \& 41000 A 486 \& \& \& 4．08 \& － \&

\hline 17.50 \& EF988 \& Selectron 15.00 \& \& （eat \& （18074 \& （ \& 6x8A $\quad 2.25$ \& \& \&

\hline
\end{tabular}

Her introd Space LED.

LED SPACERS

Hero Electronics have roduced a range of LED pacers for 3 mm and 5 mm

The height of the spacers ranges from 4.5 mm to 20 mm , in approximately 0.5 mm steps.
For further information contact Hero Electronics Limited, Dunstable Street, Ampthill, Bedfordshire MK45 2JS: Tel: (0525) 405015.
WARRIOR'S NEW STATUS On 5 April 1990 HMS Warrior 1860 was granted a permanent callsign - GB4HMS.

The Victorian battleship is the weekend home of the Fareham Radio Club, who operate from the assistant surgeon's cabin. Previously they used a temporary callsign.
This latest move has elevated the ship to a status enjoyed by few other amateur radio stations in the UK. These include the National Wireless Museum on the Isle of Wight, the Science Museum in London and HMS Belfast on the Thames.

News of the ship's new status has already started to spread via the amateur radio media, and operators on board have noticed a marked upsurge in interest from other amateur radio operators.

NaW LICENSING SCHEME

A new licensing scheme for amateur radio novices announced on 19 April by the DTI's Radiocommunications Agency, aims to encourage more young people to take an interest in the hobby.
The scheme, planned for introduction within the next twelve months, will allow novice amateurs to operate at low power and on limited segments of the wavebands allocated to amateur radio.
There will be two classes of novice licensee.
Class A novice licensees, who will have had to pass a 5 wpm Morse test, will be able to operate on HF, as well as VHF and higher sub-bands.

Class B novice licensees will be limited to VHF and higher bands.
The Novice Licence (A) will be available also to holders of the full Amateur Radio Licence (B) of at least a year's standing, provided that they have passed the 5 wpm Morse test.

E NEW SATELLITE SERVICE

Visnews has started a regular satellite service from Moscow. Since 23 April Visnews has made three transmissions to London each day to meet the increasing demand for news feeds out of the Soviet capital.
Each feed carries coverage of Soviet news and reports from television correspondents now based in Moscow.
The new service is transmitted via the Intersputnik satellite following an agreement with Soviet authorities.

CLUB NEWS

The Stevenage and District Amateur Radio Society meets every Wednesday at the ground floor lecture room, 'D' Block, Ridgemond Training Enterprise, Ridgemond Park, Stevenage.
For further information contact P Daly. Tel: (0438) 724991.

The Bury St Edmonds Amateur Radio Society meets on the third Tuesday of every month at the County Upper School, Beetons Way, Bury St Edmonds.
The club's programme of events for June includes a talk by Margery Hey, entitled The Work of the RAIBC on 17 July and a talk by Pat Gowan, entitled Satellites and Their Working.
For further information contact lan Gowan GOKRL. Tel: (0359) 70527.

The Spalding and District Amateur Radio Society will hold a Club Rally on 3 June at Springfields Gardens, Spalding.
For further information contact the acting secretary, D Hoult. Tel: (0775) 750382.

The Royal Naval Amateur Radio Society will hold its twenty-ninth Annual Mobile Rally on 10 June, from 10.00am to 5.00 pm , at HMS Mercury, East Meon, Petersfield, Hampshire.
There will be a large variety of amusements to cater for all ages, as well as a talk-in on 2 m and 70 cm . Parking is free. Admission costs $£ 1.00$ for adults, children free.
For further information contact C G Harper G4BZU, 34 Neva Road, Bitterne Park, Southampton, Hants SO2 4FJ. Tel: (0703) 557469.

The Newbury and District Amateur Radio Society will hold a radio boot sale on 17 June at the Ackland Hall and Recreation Ground, Cold Ash, Newbury, Berkshire, between 10.00 am and 3.00 pm .
There will be refreshments available and admission and parking will be free.
For further information contact Mike G3VOW. Tel: (0635) 43048.

The Wimbledon and District Amateur Radio Society meets on the second and last Friday of each month at 7.30 pm at the St Andrew's Church Hall, Herbert Road, London SW19.
The club's programme of events for June includes a joint meeting with the Sutton Library Computer Club on 8 June, and a quiz between CATS and WDARS on 29 June.
For further information contact Nick Lawlor G6AJY, 115 Bridgewood Road, Worcester Park, Surrey KT4 8XS. Tel: 081-330 2703.

The Reading and District Amateur Radio Club meets at a new venue from 14 June 1990.

The new venue is the Woodley Pavilion, Woodford Park, Haddon Drive, Woodley, Reading.
The meetings will continue to be on the second and fourth Thursdays of the month.

For further information contact the club secretary. Tel: (0734) 744042.

THE SOFTWARE FILE

by Stephen Phillips

Program notes

This month's program is written in GWBasic for use on IBM computers or clones such as the Amstrad series. However, it is written very loosely so as to make it easily portable to other dialects of Basic. Because of the loose writing, serious programmers will throw up their hands in horror. The point is that the program assumes a simple Basic on a simple machine so that it can be used by more people.

The program

Previous programs in this series which have dealt with aerial computations generated a lot of letters. If this is what you want, then here is another one to add to the collection.
This program will design aerials of the Quad variety. These aerials are characterised by high gain, broad bandwidth and ease of matching, thus, making them supreme candidates for home construction.

The listing

CLS in line forty clears the screen. SCREEN 2 selects a graphic display and KEY OFF blanks the function key help line at the bottom of the screen. The LOCATE x, y statement in line 110 and other places simply locates the cursor at a specific line and column before printing to the screen. If your machine does not support this or a similar statement, simply leave them out; all the printing will then take place at the lefthand edge of the screen.

Inputs

Line 120 asks for the design frequency and line 130 checks that it is within acceptable limits. Lines $160-300$ give a menu choice of element spacings and lines 310-370 take the input and set a variable to the required figure for later computation. Line 390 calculates the various lengths and spacings and these are displayed in lines 410-560. Line 570 and up asks if you want to rerun the program and then takes the appropriate action.

Checking

To check the program enter Freq ... 30 and use spacing choice 3. You should get the following answers (all dimensions in feet): driven length... 32.8; driven sides ... 8.20; reflector length . . . 34.44; reflector sides . . . 8.61; spacing ... 6.56.

```
10 REM
20 REM \ \star * COPYRIGHT AMSOFT 1990 * * *
30 REM
40 CLS:SCREEN 2:KEY OFF
50 LOCATE 10,17
60 PRINT "This program will design two element QUAD aerials."
70 LOCATE 12,15
80 PRINT "It is usable over a frequency range of 2 to 150 MHz.
90 FOR T=1 TO 5000:NEXT T
100 CLS
110 LOCATE 10,20
120 INPUT "Frequency in MHZ ................";F
130 IF F>2 OR F<150 THEN }16
140 BEEP:LOCATE 10,57:PRINT
150 CLS:GOTO }11
160 CLS
170 LOCATE 5,30
180 PRINT "Element spacings."
190 LOCATE 6,28
200 PRINT "
```

\qquad

``` --"
210 LOCATE 10,20
220 PRINT "For .1 spacing .................. 1"
230 LOCATE 12,20
240 PRINT "For . }15\mathrm{ spacing ................. 2"
250 LOCATE 14,20
260 PRINT "For .2 spacing .................. 3"
270 LOCATE 16,20
280 PRINT "FOR . }25\mathrm{ spacing ................ 4"
290 LOCATE 19,20
300 PRINT "Which choice
```

\qquad

```
310 AN$= INKEY$
320 B=VAL(AN$)
330 IF B<1 OR B>4 THEN 310
340 IF B=1 THEN A=.1
350 IF B=2 THEN A=. }1
360 IF B=3 THEN A=.2
370 IF B=4 THEN A=. 25
380 CLS
390L=984/F:D=L/4:T=L*1.05:R=T/4:S=L*A
400 LOCATE 5,19
410 PRINT "Design for a";F; "MHz QUAD with";A; "spacing"
420 LOCATE 6,17
430 PRINT "------
440 LOCATE 8,20
450 PRINT "Driven element length in feet ....";USING "###.##";L
460 LOCATE 10,20
470 PRINT "Length of each side in feet ......";USING "###.##";D
480 LOCATE 13,20
490 PRINT "Reflector length in feet .........";USING "###.##";T
500 LOCATE 15,20
510 PRINT "Length of each side in feet ......";USING "###.##";R
520 LOCATE 18,20
530 PRINT "Element spacing in feet .........";USING "###.##";S
540 LOCATE 19,17
550 PRINT "-------
560 LOCATE 22,20
570 PRINT "Rerun or end the program R / E ...."
580 AN$=INKEY$
590 IF AN$= "R" OR AN$= "r" THEN 100
600 IF AN$= "E" OR AN$= "e" THEN STOP ELSE 580
```


GRUNDIG SATELLIT 500 WORLD RECEIVER

The Grundig Satellit 500 world receiver is a commercial receiver designed for the home market and follows in the footsteps of the well-known Satellit 400. The Satellit 500 incorporates many new features and is a complete departure from its predecessor. In spite of this, it measures only $30.5 \mathrm{~mm} \times 17.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$ (WHD). The case is made of rigid plastic with a black metallic finish.

Brief description

The left-hand side of the front panel is taken up by the loudspeaker, and the right-hand side comprises most of the controls. The LCD measures $40 \mathrm{~mm} \times$ 95 mm and, if used with a mains power unit, such as the Grundig NR90, is illuminated from the left-hand side; the keypad switches are lit from the rear. Fifteen different sources of information are shown at any time, excluding the frequency figures.

Twenty-four hour clock

When the receiver is off the twentyfour hour clock, which takes the time from the second clock in the machine, is shown on the right-hand side of the display area. The top line of the display shows which clock is in use, ie, time 1 or time 2.
The set is switched on by pressing the left-hand white key on the top row of switches under the mode title. This key is not marked 'on/off' but has a vertical line in the centre with a circle on the left, and a broken circle with a vertical line through it on the right. This marking replaces the standard on/off logo.
The clock figures move to the left together with the mode in use, FM or AM appears next to them.

Below this is the indication batt check which appears for ten seconds. The bar above shows the condition of the batteries or Ni-Cad cells if used. After ten seconds the battery charge indication disappears and is replaced by a field strength meter. The current required at 12 V dc is around 300 mA , varying as the volume is altered.
There are seven boxes along the top of the display area and these are, from left to right:

Automatic (showing that the switching times for on and off have been programmed); sleep (for programming-the sleep time); time $1 /$ time 2 (controlled by two switches in the column marked timer); bandwidth; LSB; synch (giving 100 Hz fine tuning on AM) and USB.
Bandwidth, synch, LSB and USB are selected using the front panel switches under the mode title. The reception in use (FM or AM) is shown next to the time indication. Above this is an indication showing whether the reception is in mono or stereo.

Stereo reception on FM

When an external speaker or headphones is inserted into the 3.5 mm external speaker socket an FM decoder is brought into circuit, resulting in FM
stereo reception and the indication of a double O above mode FM.
The mono/stereo key, when pressed for mono will also activate a trimming device which affects the input circuit selectivity. This tuning knob can be turned to achieve the best reception possible, and makes an amazing difference to the quality of the received signal. Normally, though, the automatic circuit trimming works well enough.
Reverting to the mode selection buttons, when the AM button is pressed LW, MW and SW are shown in sequence. Continually pressing this key selects the particular band you want to use.

The second horizontal row of keys are A-Z/0-9, mono/stereo and bandwidth. The A-Z/O-9 key incorporates one of the most ingenious uses of memory I have

The table

Specifications of the Satellit 500

Power supply requirements
Batteries $4 \times 1.5 \mathrm{~V}$

External dc supply
HP 2 batteries or accumulators IEC K35/62 Built-in rechargeable lithium battery for data protection Mains unit NR 90 or 9-12V dc

Output power

Mono and stereo
Mains/music power
according to DIN 45324
Peak power
7.5 ohms

1 or $2 \times 1.5 \mathrm{~W}$
1 or $2 \times 3 W$

Built-in aerials

Telescopic aerial
FM and SW
MW and LW

Connecting sockets

To drive amplifier installations and for mono tape recordings: Line out (phomo socket)
Headphones with 3.5 mm jack-plug, 32-2000 ohms, and for stereo tape recordings External loudspeaker (left-hand channel) with 3.5 mm jack-plug
External aerial: DIN 45325 (75 ohm coaxial socket for all wavebands)

Wavebands	
FM	$87.5-108 \mathrm{MHz}$
SW	$1612-30000 \mathrm{kHz}$
MW	$513-1611 \mathrm{kHz}$
LW	$148-353 \mathrm{kHz}$

IF frequencies

FM $\quad 10.7 \mathrm{MHz}$
AM IF 154.5 MHz , IF 2450 kHz
come across. It records all twenty-six letters of the alphabet and figures 0 to 9 , as well as a star and hyphen. This enables the operator to choose a name for the particular station on that memory channel. It works in the following manner.
Under the frequency display is a blank space. When the A-Z/O-9 key is pressed, a cursor flashes in the left-hand side. When the tuning knob is rotated, single letters followed by figures 0 to 9 appear in sequence. You just stop at the desired letter or figure and press the key again. The cursor moves one space to the right and the same sequence is repeated for the other two positions.
When the correct four letters and/or figures are shown, a final press of the key enters them into the memory, together with the tuned station and memory channel used. Every time you want, say, memory channel number five, the name you have allocated to it will also appear below the frequency readout with the number of the chosen memory channel.

Memory scan

The third horizontal row of keys in the mode area comprises two keys, free and store. One press of the free key gives the next free channel, but if it is held down the set displays all of the free memories in sequence. The store key, coloured yellow, stores a station in the memory.
The next row consists of memory scan and USB. Memory scan can be pressed at either end to allow scanning up the memories (1 to 42) or down (42 to 1).

The first line in the mode assembly consists of the search and LSB keys. Search can also be pressed at either end. In the short wave range, if search is pressed briefly the unit selects the various metre bands and will scan in 5 kHz steps if it is held down. At the end of the selected band the scanning mechanism reverts to the start. Further information is given if the scanning passes through a frequency which is already stored in the memory; details will appear in the memory section of the display, including any name which has been assigned to a particular station.

Direct key Input

The right-hand side of the control area is taken up with the direct key input, figures 1 to 0 , a decimal point and CL (clear). Below these are two more keys, frequency m-band and memory. Any frequency can be keyed in and immediately made available by pressing the frequency m-band key. It is also possible to key in up to twenty-two short wave bands by pressing, for example, four-nine. The figures have to be in metres, not frequency.

The right-hand side of the set contains the tuning knob and an AGC or variable RF control. The tuning knob has a finger detent and rotates in steps which are altered according to the mode used. With

The front panel

AM reception each notch alters the tuning frequency by 1 kHz , but when in SSB mode or in the synch position, each notch moves the frequency by 100 Hz . This makes the tuning of amateur SSB signals very easy. In the case of FM (VHF) reception, each notch moves the frequency 25 kHz .

Next to these controls is a Belling-Lee type female socket for an external aerial, together with two small slide-switches: one for external or internal aerials, and the other is marked sensitivity DX/Iocal.

The left-hand side of the unit comprises four rotary controls and five sockets. From top to bottom, these are: treble, marked with the musical treble clef and \pm; the next one down alters the bass response, marked with the bass clef and \pm; volume control, and lock control, which is used to prevent the tuning being altered.

In addition there are five sockets, from top to bottom: line out (phono), headphones, external loudspeaker and switch output (for controlling an external unit) - all are 3.5 mm jack sockets - and, lastly, a 5.5 mm socket for an external power supply.

The unit is fitted with a telescopic aerial and concealed handle, which is released from the back. There is also a support which can be extended from the back so that the receiver is supported for easy operation.

Operation

The standard of construction and sound output is of a high quality and is superior to many similar receivers. When used on FM with an extension speaker, it can be used as a normal radio.
Operating on SSB on the 20 m amateur band is excellent, particularly when
making use of the switchable bandwidth, which gives a choice of 1.9 kHz (narrow) or 3.4 kHz (wide).

The AGC/MGC knob gave good variable gain control when in the MGC position and the stability is of a high order, being around $\pm 20 \mathrm{~Hz}$.

This stability enabled RTTY signals to be copied on SSB and the reception of fax weather pictures from a number of stations. I prefer listening to Offenbach DCF 54 when receiving fax but its frequency is 134.2 kHz , just below the range of the Satellit 500, which only goes down to 148 kHz . To overcome this problem, I used a Datong VLF converter, which brought the signals out on the 10 m band, 28132.4 kHz to be precise. The unit was stable at that frequency and gave perfect pictures.

I then tried tuning in several stations on the 7 MHz band by adjusting the switched bandwidth, synchron demodulator and the manual gain controls as necessary and, in most situations, they managed to pull the station out of the QRM.

Conclusion

The Satellit 500 is suitable for any class of short wave listener. The beginner can get the general feel of receiving stations, whether those stations are strong broadcasters or weak $D X$, and the experienced user will derive great satisfaction from its advanced technology, excellent sensitivity and selectivity.
In fact, as the receiver can be used as a communications unit, it is comparable with those receivers used for the reception of RTTY and packet on fax. The Satellit 500 costs $£ 299.00$ including VAT, and is available from most large department stores.

The World of $\mathrm{D}|\mathrm{A}| \mathrm{T} \mid \mathrm{A}$

BY DON FIELD G3XTT

Data communications is now so much a part of my amateur radio activities that I wonder how I ever managed without it. To start with, the bulletins which circulate on the packet network allow me to keep in touch with what is going on in the amateur radio world from day to day.
I can read the RSGB weekly news bulletin even before it goes out on a Sunday morning. The VK2SG RTTY notes, put on to the UK network by G3XTL, keep me in touch with RTTY activity world-wide. Then there's the Chiltern DX Club Packet Cluster system, which I like to be connected to whenever 1 am around the shack so that I don't miss any alerts of HF band DX activity (a second Cluster, GB7DXC, is now operational from Cheltenham on 144.650 MHz , run by John G4PDQ). From the Cluster I can also get propagation forecasts, beam headings, QSL information, and much more.

RTIY DXIng

Turning to the HF bands, I get a lot more satisfaction from RTTY DXing, which tends not to be so frantic as SSB or CW DX chasing. For example, I have worked 3W3RR in Vietnam and YVOAA on Aves Island in the Gulf of Mexico for new ones on the mode. The latter was interesting in that it was a data modes only expedition. They simply didn't bother with CW or SSB. Definitely a sign of the times! Also on HF, of course, there is increasing AMTOR activity to be chased, as well as AMTOR and packet mailboxes.
All in all, I am beginning to find that one terminal unit simply isn't enough, and neither is one computer! That's even before I start using the PC to type this column, or desk-top publish the Chiltern DX Club newsletter! To some extent these limitations could be overcome by using a multi-tasking operating system such as desquiew and, of course, some TNCs allow both an HF and VHF session to take place simultaneously. A year or two back, though, I would not have expected this facility to be needed.
My current project is to connect my TS940 to the computer to allow frequency selection via remote control, again interfaced to the packet system, but what
is holding me back is that I am already using both COM ports on the PC for other things (the TNC on one and a land-line modem on the other). Oh dearl It's all a far cry from my original Sinclair ZX81. I wonder how the rest of you cope?

Data Convention

The RSGB has decided not to hold this year's Data Convention at the same time as the AMSAT Colloquium. Instead, it is likely to take place in late October or early November, somewhere in London. If you can't wait that long the organisers of the McMichael Rally, which takes place on 22 July at the Haymill, Burnham, near Slough, are planning a mini-Data Convention to be held in parallel with the rally.

Connectionless mall protocol

The March issue of Connect International carried an item by Derek G1TLH, which proposed a connectionless mail protocol for VHF packet radio. His article echoes some of the things I have been saying here previously. He argues that the majority of traffic flowing on our VHF packet network is bulletin traffic as against personal mail, if only because most bulletins have to be forwarded to every mailbox in the country.
'Why restrict ourselves,' he writes, 'to a protocol designed for wire-based networks? Why not develop a broadcast protocol which allows a message to be received simultaneously by every mailbox in range of the transmitting station, rather than having to send the same message several times?'
In my own area in the Thames Valley, one mailbox takes bulletins from the main network and then forwards them to five other mailboxes in the area, so there could be a great saving in congestion; albeit this forwarding now takes place on 70 cm and does not, therefore, contribute to congestion problems on 2 m .
Of course, the problem associated with a broadcast protocol for packet radio is that one, or more, of the receiving stations may miss packets and require a retransmission. Therefore, some means must be found to allow this to occur. For
example, the transmitting station can leave a quiet period after each transmission to listen for any requests for a retransmission. The basic idea certainly seems sound, though I suspect it will not take off.
Derek also argues that as amateurs we should justify our rights to valuable VHF frequencies by pushing forward the boundaries of technology, rather than just borrowing from the commercial world.
In practice this has, to an extent, already happened. Amateurs took a step forward by making the X. 25 protocols work over a radio link in the first place. From now on, though, any advances will be constrained by the vast number of AX25 TNCs already in use, representing a major financial investment which. amateurs will be unwilling to change overnight.

The G3XTT shack with HF and. VHF radios, PK232 TNC and the computer

Of course, firm-ware can be changed relatively easily, and mailboxes are all running PCs of some description, whose application software can be changed. But any change will require a coordinated response and, as I have said here before, the major problem with an amateur organisation is that co-ordination cannot be legislated (even in the professional world agreement to change can take a very long time).

Mallbox co-ardinator

Having said that co-ordination is wellnigh impossible, there are those who do their best. John G4MTP has recently stepped down as RSGB mailbox coordinator, and Neil G6HIU has taken his place. Not an enviable job - almost by definition the mailbox co-ordinator can never please everybody all the time, but please give Neil your support.

Contest results

The March issue of the RTTY Journal carried the results of the 1989 Allesandro Volta RTTY DX Contest and the 1989 SARTG World-Wide RTTY Contest.

In the former contest, G4SKA took second place on 14 MHz , while GOATX took top honours on 21 MHz , with W6/GOAZT coming in fourth. In the latter contest, GOATX took the world ninth position in the all-band category behind some of the very big boys (HD8S on the Galapagos Islands came in first), W6/G0AZT came thirty-second, and G4SKA was the world leader on 14 MHz single band. G1DPL entered the SWL category, coming third. It would be nice

to see more UK entries in these various events.

RTTY

While on the subject of RTTY, I have said on a number of occasions that multimode TNCs are inevitably a compromise on this mode. If, like me, your TNC is in constant use on VHF, you might like to buy or build a separate terminal unit for RTTY.
What you may not know is that the BARTG (British Amateur Radio Teledata Group) is able to supply two such terminal units. The best known is the ST5MC, which can interface to both mechanical teleprinters and computers, and comes ready-built and tested for £79.00.
The other model is the Versaterm, designed especially to work with computers. This is supplied in kit form only and requires an external power supply. The kit costs $£ 51.95$ plus $£ 4.50$ for p\&p. In this form it provides a TTL output. An RS232 board is also available and this costs £1.99.
The ST5MC is available from Stuart G3PPD, and the Versaterm from Peter G6LZB. Suitable software to drive these terminal units is available from a number of sources, such as G4VRQ and G4BMK.

Software spot

Not directly related to datacomms, but I thought it would be interesting to mention some useful amateur radio software from time to time. After all, almost all of those who use datacomms use a PC of some variety (though, I know that some of you still stick with mechanical teleprinters or with 'dumb' terminals).
One shareware package I have been playing with during the last few days goes by the name of Geoclock. Geoclock runs on an IBM PC (or clone) with a hard disc and EGA or VGA monitor, and paints a map on the screen with major towns marked. On to this it overlays the position of the sun and terminator (dawn/dusk boundary). These are then updated every few seconds.
The time is taken from the PC's internal clock, or you can set any time and date you want.
The shareware version of the program is supplied with a world map, but if you register with the author you get a whole series of maps for different parts of the world. The program has a number of other features, such as being able to draw lines on the map and calculate distances between any two points on the earth's surface. The program supports a mouse as well as the keyboard, so selecting locations can be very fast indeed.
I can provide an evaluation copy of the software in return for a blank formatted disc (any variety) and the return postage. Registration costs $\$ 30.00$, and full details
of how to register are provided on the disc.
This is one of a number of software packages I hope to be able to demonstrate at the RSGB HF Convention at the end of September. Basically Geoclock is similar to the computer version of the popular DX Edge, but is cheaper and more versatile.

Bandplan

Finally, the news from the IARU Region I Conference in Spain is that the 20 m bandplan for data modes was confirmed, with packet and RTTY to share the existing RTTY segment (14070 to 14099 kHz). The idea is that, as far as possible, packet users should stick to the top end of this slot, and RTTY and AMTOR operators to the bottom end.
The decision will no doubt cause an outcry from those who believe packet requires an exclusive band allocation, though a 30 kHz bandwidth should be enough to accommodate around fifty separate QSOs, provided everyone uses narrow bandwidth filters.
From my own observations band occupancy is only this high during contests; as I have said before, the problem seems to be the wide or inadequate filters used by most RTTY and packet operators. It is quite practical to copy data transmissions through a narrow CW filter, whereas most operators use the SSB filter on their rigs. Of course, audio filtering can also be used, and BARTG can supply a circuit board for such a filter as I have mentioned before. The TNC manufacturers could also help by incorporating suitable filters in the on-board modems.

Datacomms is undoubtedly the fastest growing aspect of amateur radio at the moment, but the relatively low attendance at the RSGB data conventions and other similar gatherings suggests to me that only a handful of users are actually contributing to the way forward, and the rest can be classified as 'black box operators'. While it is not always possible to get along to conventions and rallies, a column like this can be a useful medium for an exchange of ideas.

So, do please send me your comments and input so that I can make this column as relevant as possible.

Rainham Rally

This rally got off to a great start. As I pulled into the carpark an amateur on a motorbike parked behind. He had the rig and aerial mounted on the bike, and the headphones and mike were inside his crash helmet. He turned his bike engine off and heaved the bike on to its stand. He then walked off towards the rally site. Unfortunately he was still connected to the bike by the mike and headphone lead, since he hadn't taken his hat off. The bike was pulled over and he was jerked backwards. He said lots of naughty words.
The rally itself was brilliant. One stall had a big box of ex-taxi transceivers at 10p a throw - I bought the lot, after a haggle, for a quid. One had a commercial, crystal-controlled toneburst in it (I suspect it had been used on 2 m at some time), which was ideal for a mate's 70 cm rig. l've already used a PA transistor out of another transceiver to repair a 2 m box for a hard-up friend.

I only spent $£ 25.00$, all-up, to purchase a standard car-bootful of assorted junk. This included an enormous $26 / 30 \mathrm{MHz}$ valve linear, which is now doing big things to my 29.6 MHz FM signal.
I noted second-hand IC2Es, boxed and in good condition, selling briskly at between $£ 75.00$ and $£ 90.00$.
All in all, an excellent show. As we drove away, my wife summed it up well when she said: 'What a friendly little do'.

Another bodge

Sometimes I get involved with some real oddball rubbish. On this occasion it was a Japanese HF all-mode, old bands rig made for the USA, 120 V ac. I'd never heard of Hero - the make - before.
Well, some hero had plugged it into 240 V . The fuse had blown so the owner had linked it out and plugged it back in I'll bet the fire was worth watching. The resultant heap had then been bought at a club junk evening by a friend, for a very reasonable fiver.
We surveyed the damage. The main PCB was burnt in one corner, mainly rectifiers and stuff, and the mains transformer was a charred heap. We performed the last rites on the latter, as it was a gonner.
Versatility is the name of the game and a toroidal-type mains transformer that was to hand seemed to have the right sort of voltages coming out - well, more or less. At least it had the right 240 V in . We could only guess at some of the rails by looking at the working voltages of the smoothing capacitors, and then trying three-quarters of them. By the way, the original transformer had been a proper laminations type, and our toroid didn't

Fi. 1: Linear mains input circuit C1 and C2 $=0.01250 \mathrm{~V}$ ac working 'filter' capacitors
really fit, but we got it in. All right, when I say that, the covers were a bit of a struggle to get back on. Looked OK though; well, from a distance maybe.
Anyway, we turned the mains on and I don't think there were two more astonished people on Earth when it burst into life first go. Unbelievably, it transmitted too. The new transformer was not running too hot, warm 1 admit, but acceptable.

No sdefone

We went on the air, and got good reports on SSB. We were elated. On CW all was well but there was no sidetone. This explained something that had been puzzling me. There seemed to be two audio stages and there were definitely two speakers. One of the audio stages had caught the full blast of the burn-up and was beyond reasonable repair. This must have been the separate sidetone oscillator and amplifier; unusual that. The new owner said he could live with this; an RF-powered oscillator would make a good project.

I prodded about with the 'scope probe. The keying rail went up the base of a transistor which could have been part of a multivibrator that gave the tone. This was still being turned on and off by the key but couldn't oscillate 'cos its mate was a gonner and all relevant tracks were vapourised.
Some time ago I read an article written by a brilliant man who had had the clever idea of using one of those self-contained bleep modules as a sidetone in a mini QRP rig. You know the sort of thing; quartz sounder with built-in oscillator. We had got a keying transistor keying nothing now, so it seemed worth a try; in one went, and it worked a treat. Strangely enough, it seemed a bit loud, but a length of Sellotape across its squarking hole soon quietened it down.

Safoty

I know this column has a bit of a reputation for making light of some
technical things, and it's quite hard to preach on a serious subject, but here goes.
An acquaintance, a confirmed CB freak, bought a valve, mains-powered linear. OK, very naughty, particularly as it had two EL509s in it. Anyway, he plugged the linear into the mains, turned it on, then went to connect the aerial into the linear, and the linear into the CB set. He had the PL259 in his hand and, as he steadied the linear to do up the PL259, he received, to use his own words, 'the mother and father of all belts'.
If you study Fig 1, you will see a normal mains transformer, 'filter', switch set-up. What you will not see is that the earth wire, mains, green and yellow, is secured to the chassis via a solder tag held on by a pop rivit. The rivit is aluminium, the chassis steel, and corrosion is rampant. The result is no earth connection to the chassis.
The two capacitors in the 'filter' now obligingly become a capacitive potential divider, the chassis whizzes up to 120 V and, with a weak heart or some other -3 dB fault in your life support system, it could be Silent Key time. The moral is: check the earth pin on the mains socket to chassis with an avo, on low ohms, every time you get a new bit of kit.

Naughty linears

OK, I've got to say this. How big is a foreign watt? I think it is twice the size of ours. Now, the above linear, resplendant with a new locknut and bolt securing earth to chassis, just had to be tried out on 29.6. It had a big meter on the front, 'calibrated' $0 \rightarrow 500$ watts in 100 W divisions.
We prodded the linear into action by worrying it with four watts from a legal Icom CB set on ten. Wham, the needle headed off for the 500W mark. A quick tweak and we'd got 500W indicated; most impressive. Shame the 50Ω Bird Termaline made it only 70 coming out. We provoked the linear with 25W FM from a Trio wonderbox - it stopped being linear
in a big way at 20 W in - and we'd got 175 W out. Incidentally, the valve tester had said the EL509s were good.
A scope on the EHT revealed the fault, it was woozy (ànother advanced technical term; means high voltage rail drops dramatically when you suck amps out). My guess was the EHT winding on the mains transformer was wound with too thin a wire. All in all, yuck.

Talking of linears

A friend bought a home-made linear, 4 \times PL509, for $£ 10.00$. 25 W up gave 25 out not too good really. He tested the bottles, which were OK. There were lots of volts in all the appropriate places. He quickly found the input coupling capacitor, marked 100 pF , had gone 1.5 pF - well, it had until the leg fell out of it.

Voice synthesiser boards

Over the past year or so l've bought several different brand new but surplus speech synthesisers. All have featured National Semiconductors chips and are of the 'only say what's programmed in' type, ie, an address in of 00001 will make it always say 'one'. I've paid between 10p and $£ 2.50$ for a board and all were in remarkably good condition. l've never bought a duff one yet.
I think I'm correct in saying that National have now made the range obsolete - certainly the reps I have spoken to know nothing about them. There is a lot of information about them in old (several years old) National data books. Incidentally, the boards are quite easy to recognise; you don't often come across boards with a dozen or so chips on them plus a loudspeaker.
Connections. There are three rows of pins, and careful examination will identify the rails. The audio output chip can be a great help here, often it's an LM386, so you can soon find the +12 rail. The boards often need -12 and +5 as well. The +5 can easily come from a regulator chip from your +12 . The idea is to look for an edge connector pin that goes round most of the chips, then see which way up the electrolytics on that rail are pointing. Ten minutes spent thinking it out should. enable you to get it going. I've got every one going that l've bought, and so far without the indignity of resorting to handbooks.

In use

The idea is that you load in the address of the word you need, then hit an enable line. With no address, ie, ' 0000 ', but with the enable line hit, most say: 'This is digitalker'. Beware of the address lines, which are of mega-high impedance and may rise up from 0 all by themselves. A 10/100k resistor on each address line, to hold it down to earth, may be needed to prevent gibberish.
l've given most of mine away to people who have used them in gizmos for blind
people. Sure, the boy and I have enjoyed mucking about with them as they are great toys in their own right, but I haven't found a serious use for one myself.

Belcom AMR104H

I was repairing this old eight-channel 2 m crystal-controlled scanning receiver, which was mains or 10V (power pack built in). It was not working on channel eight, and as the owner used his receiver a lot, he wanted all channels to work. It wasn't the crystal at fault, but the flexible PCB. As it was copper-based I bridged the break with a bit of wire and all was well.
I noticed that the receiver was really singing; the signal generator was on $10 \mu \mathrm{~V}$ output, 3 kHz deviation. Down went the attenuator. At $1 \mu \mathrm{~V}$ he was still going like a dingbat, so I cut the deviation and measured the quieting. It was 30 dB ! The signal generator would go down to $.1 \mu \mathrm{~V}$, but it must be admitted that there was plenty of leakage coming out. That said, most receivers have pegged out by then, only modern super gear will give 10 dB or so quieting at that level, yet the said Belcom was doing just that. Not bad for a ten-year-old heap.
When I handed the rig back to the owner I remarked on the sensitivity. He said that was why he kept it, it always seemed to work well.

Now here's a strange thing

I bought a new style transistor Pye Reporter, the library book-sized transceiver rather than the massive old valve heap (you know the one, empty the amps out of a car battery in half an hour). Well, 20 p seemed within my budget. It was 70 MHz , tuned up on the band, with simplex crystals - one Tx, one Rx. It had obviously been a low band $F M$ variant all its life, because the plate said the factory had made it to transmit on 71 MHz and receive on 86 . So why had it got a 1750 Hz made-for-the-amateur toneburst generator fitted in? Not that I'm complaining...

Digl scan 4+4

These are ancient, transistorised, VHF 'two band' crystal-controlled scanner/ receivers. They are laughably big and heavy when compared with today's 'lose-it-in-the-palm-of-your-hand' multiband super rigs. The Digi weighs in at a massive 8 lb and is a $91 / 2 \times 91 / 2 \times 3$ in lump. That said, there's plenty of fresh air under the covers, ready and able to take any modification. l've even seen transceivers made out of them.
Band coverage is stated to be $30-50$, $150-174$ and $450-470 \mathrm{MHz}$. The good news is that $30-50 \mathrm{MHz}$ will do either 10 m or 6 m (but not both). The $150-174 \mathrm{MHz}$ range will do 2 m , and the $450-470 \mathrm{MHz}$ range is happy on 70 cm . I don't know why they put such effort into building something that wasn't specified to do the amateur bands!

Now to explain the $4+4$ bit. The receiver was sold as a 10.7 MHz IF , in a box with a crystal oscillator and scanning electronics. You could then buy the appropriate front end boards for the various bands; it only takes two of the three options. All the ones l've come across have had 2 m and 70 cm installed. They aren't brilliant receivers, $1 \mu \mathrm{~V}$ for about 15 dB quieting, but are OK for local repeater or natter channel monitoring. Watching the built-in power supply, most are 120 V ac - run 'em on external 12 V .
The price is the best bit about them. $£ 20.00$, full of 2 m and 70 cm crystals, is tops. I bought one recently for 25p from a car booter. The seller told me: 'Bought the bloody thing new years ago. It's worked great on 70 cm but never worked on 2 m . I sent it back but they couldn't sort it out either.' Now, if you had a front end board with clip-in wires and the pins were silk screened, would you clip the yellow wire into a spade marked 'BRWN' and a brown wire into one marked 'YLW'? I thought it was a reasonable bet to swap them over, whereupon 2 m sprang into life. Arrgh.

Low/mid/high band

Low band taxi transceivers are roughly 60 to 86 MHz . These are thus suitable for 70 MHz conversion, your 4 m . Mid band transceivers are sort of 100 to 120 MHz , and are handy as spares. These aren't very easy to take down to 4 m ; the L/C ratio gets a bit swamped if you just add capacitors everywhere. The result is deaf receivers. They are also bad news to take up to 2 m . I've seen some reasonable airband receivers made. High band transceivers are roughly 135 to 175 MHz , and are very suitable for 2 m conversion.

Got all the above? Now comes the hard part. High/mid rigs. These were popular with the police, among others, who transmitted on one band and received on the other. It is possible to buy a rig set up to transmit on 160 MHz but receive on 100. You are a lucky man if the receiver will join the transmitter on 2 m . Now the good news. A lot of the older rigs had the receiver laid out on the main PCB, while the transmitter was on a separate metal chassis, connected into life-giving power etc, by just a few wires between the PCB and chassis.

Firms like GEC, Pye and Cossor, among others, did it this way. The trick is to dig deep into the piles at rallies. This old stuff is almost free at rallies, particularly 'odd mix' ones. Buy two. One $\mathrm{mid} / \mathrm{high}$, the other high/mid. Often the only information you will have is that on the identification plate, unfortunately with no instruction as to which band refers to the transmitter and which to the receiver. However, most have operating frequencies scratched on to the plate so you can soon work it out. Simply put the high band receiver out of one, and the high band transmitter out of the other -
and rip up the mid band stuff to repair the bits you bust in the process. The day of the under-a-quid 2 m solid-state rig has arrived!

A proper repair

The story goes something like this. The child of an acquaintance of a colleague had been given this radio-controlled boat by her grandfather. The boat and electronics had been made by the grandfather's friend
So how come I had to repair it? I don't know much about early proportional control systems - 1 thought it all started with a chip at one end and ditto at the other, but this thing had gone and done it with discrete transistors. The complaint was that it was intermittent.
My first move, as with anything intermittent and containing Ni-Cads, was to clean up the battery contacts and batteries. This obviously scored a hit of some sort - the receiver servos had been twitching away without the transmitter on (and receiver aerial disconnected), and they now sat quietly.
I next had to lavish care on the transmitter. A scope showed the level of the urge coming out (a technical way of saying RF output) was all over the placea loose screw securing the aerial. After
tightening, the 'scope on the aerial showed that a gentler tip of the transmitter case would give a pretty row of pulse out, whereon the receiver servos behaved as they should. Another tap and the pretty row of pulses disappeared and the servos whizzed round like things possessed.
I opened up the transmitter, which was very neatly made on a printed circuit board. A brief attempt at fault-finding revealed a horrifying number of multivibrators, astables and whatever - acres of board covered with bits that could be broken down to mainly two transistors, four resistors and a couple of capacitors. Circuits? You must be joking
A nightmare. Only one way out, the coward's way. I took the board out (which was surprisingly easy to do), up-ended it and re-soldered every joint. it took only five minutes.
I stuffed: it all back in the case, and bingo, it worked perfectly, no intermittents.
A proper repair.

Picketts Lock

I have heard various opinions on the first London Amateur Radio Show. However, there is one common theme: prices of second-hand gear were termed
'a bit strong'. Could this be the place to sell your junk, rather than buy? The bring and buy went great guns with even megaexpensive stuff selling quickly. New stuff was occasionally available at a reasonable discount - $£ 550.00$ gear going at $£ 500.00$, for example. As to the crowds, comments varied from: ' 1 could get round easily' to 'Bit of a crush at times'. As a local amateur put it: 'It was nothing to do cartwheels about, but I'd go again'.

Wythall

1 only discovered this rally last year, and thought it was good then. This year it was superb. Excellent signposting from the motorway; three large car parks, able to take 1,500 cars, full by 110° clock, and what bargains. There were 25W NEC full commercial specification UHF crystalcontrolled transceivers, in showroom condition, still on 420 MHz but able to be set up on 70 cm , selling for a tenner. (Mine is now on the local repeater and works a treat.) There were also matching hand-helds at the same price.

Gear was changing hands everywhere, from boxfuls of old rubbish at a quid the lot to new stuff selling for mega-bucks, and all business was conducted in a good-humoured, friendly atmosphere of well organised chaos.

RADIO OFFICER

ACAREERWITHADIFFERENCE

Government Communications Heodquarteis (GCHQ) are speciolists in all aspects af communications and as a RADIO OFFICER yau would be trained to undertake wide ranging duties covering the complete radiocommunications spectrum from DC ta light
Not only do we offer Comprehensive training but also:-

- Good Career Prospects - Compelitive Salaries
- Varied Work (opportunities for moves within UK and Overseas)
- Generous Leave Allowances - Job Security
- Non-Contributary Pension Scheme
and much more!
QUALIFICATIONS
a. You need to hold or hope to obtain a BTEC Nationol Diploma for HNC/HND) in a Telecommunications, Electronics Engineering or similar discipline. Speciol consideration will be given to applicants holding on MRGC Certificate. The C\&G777 (Advonced) or other qualification incorporating morse skills would be odvantageous but not essential. or
b. Have a minimum of 2 years recent relevant radio operating experience. Preference will be given to those capable of reading morse al 20 wpm . Preferred Age Range 18 to 45 years.

SALARIES (Reviewed Annually)
Atter a residential training course of between 29 and 52 weeks - depending on background experience the Rodio Officer Pay Scale ranges from $£ 12,678$ to £ 18,431 over 5 years with prospects for further promotion. (Salories include an allowance for shith and weekend work).
APPLICANTS MUST BE BRITISH NATIONALS
For further information ond applicotion form contact:-
Recruitment Office, Room A/1108, GCHQ, Priors Road, CHELTENHAM, Glos GL52 5AJ ar Telephone (0242) 232912 or 232913.

EHH/

AIR SUPPLY

 23b Nigh Street,Yoadon, Leods LS 19 TTA
Tal 0532509581 Fax 0532508772
(Shop just two minutes from Leeds Bradford Airport) Hours 1000-1300 1400-1750

AIR BAND RADIO SPECIALISTS

For the very best of hand-held. car and base receivers, scanners etc. $=$ Signal R537/5: RS35 (Full VHF and UHF MIL) WIN 108: Sony AIR 7: PRO 80: AOR 800E, 900.2002 and 500N, AOR 3000: HF 225: Uniden 100XL: 100XLT: 200XLT: 175XLT: 590XLT: 950XLT: Cobra 5R925: Black Jaguar MkIII: MVT 5000 (or Jupiter II) - the hand-held with full VHF and UHF MIL AIrband. Plus a full range of books, aerials and accessories, charts, etc, etc. If you would like our Information Pack, please send SAE and stamps to value of 50p.
(Hours vary due to fly-ins elc.
Closed Wednesday and Sunday)

Now that summer is here the HF bands will no doubt be full of portable operators, taking their radios with them to the sun. If you aren't able to join them, then this is the time to sort out the antenna farm (if that's not too grand a title for what most of us have in the back yard!) and take a break from perpetual scanning of the bands.
Although the summer season brings longer openings on the higher bands (because of the longer hours of daylight), most DX activity takes place between September and April when propagation tends to favour the Northern Hemisphere where the majority of the world's amateurs live.

Looking back at the DX season just past, there has been plenty to keep even the most ardent DXer glued to his rig. Not only the Bouvet Island operation, but Laos, a new country by way of Waivis Bay, and, more recently, operations from Bhutan (Jim Smith showed up in March as A51JS and was worked from the UK on 40 to 10 m on CW, SSB and RTTY), Bangladesh (a Japanese operation signing S21U, followed by K5VT signing S20VT), and Jarvis Island (AH3C/KH5J) which may count for a new one, but otherwise counts as Palmyra.
All these, and many less rare operations, have kept the bands buzzing, and caused DXers much lost sleep, days off work with 'DX-itis' and arguments with the other half as a result of spending too much time in front of the rig.
In that context it was interesting to see the Amateur's Code reproduced recently in several publications. The fifth point is often neglected by ardent DX chasers, whether HF or VHF inclined 'The amateur is balanced, radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school or community.' Now is the time to make amends!

The highilght of the month

I suppose the Jarvis Island operation was the highlight during April. It started up towards the end of a spell of poor band conditions. The ' A ' index had been over 50 for several days, with high levels of auroral activity, killing all propagation over the north pole on 10 and 15 m .
For the first day or so of the expedition, UK stations were only able to work Jarvis Island on 20 m , albeit with the band open for most of the day. Within days, however, 15 m provided strong signals from the
expedition, and they were also worked in the UK on 40 m CW .
While all this was going on KH8/VK2EKY was putting in daily appearances on 20 m (1 also managed to work him on 40); the Hungarian boys were active from Kampuchea as XU8CW and XU8DX, having failed to obtain permission to operate from Myanmar (or Burma, as most of us know it), and Ron ZL.1AMO was busy as ZK2RW from Niue.
A word about some of the other
operations which took place shortly before Jarvis island came on the air. At rather short notice, DJ6SI, DJ6JC and DK2WV showed up from Abu Ail, saying that this could be the last operation with Abu Ail counting as a separate country, because jurisdiction for this tiny rock plus lighthouse was being transferred to the Yemen. I have not been able to confirm this. Anyway, they were active, with big signals into the UK on 80 to 10 m , on CW, SSB and RTTY.

Remember this? The QSL card from the 1982 operation from 'Sealand', a wartime fort outside UK territorial waters. Do any readers know what became of this self-proclaimed principality, and Prince Roy and Princess Joan?

As I said, Jim Smith managed to get on the air from Bhutan and handed out several thousand contacts despite running barefoot to wire antennas, a very chilly operating room and hosts who insisted that he spend at least some of his time sightseeing (how unreasonable!). Let's hope that this operation, the first from here for many years, opens the door to further activity in the near future.

Cutting through bureaucracy

Bangladesh has also been off the air for about eight years, so it was a very pleasant surprise when JA1UT and JA3UB showed up signing S21U. They made only just over 1,000 contacts, mainly with Japan, but once again the significance of the operation was that somehow they had managed to cut through the bureaucracy and get permission to operate (the ARRL has already accepted the operation for DXCC credit).

Vince Thompson K5VT, who was in Nepal on business shortly afterwards, took advantage of the thawing of the licensing regime in Bangladesh and showed up as S20VT for an operation over the Easter period. Unfortunately Vince soon tired of the pile-ups, so many DXers failed to get a contact. However word is that the Japanese will return, so it's just possible that Bangladesh will once again become a regular on the bands.

One that didn't come off, at least it hasn't as I write this, is Spratly. 3W3RR continued to tell all and sundry that an operation would 'definitely' take place, but at the same time said that a large amount of money needed to be raised in order to charter a helicopter. Don't hold your breath!

Tracking your score

For many amateurs, DXing is about collecting countries, islands, states etc, just as others might collect stamps or train numbers. However, it can get very tedious keeping track of what you have worked, and which ones you have confirmed by way of QSL cards. Fortunately, there is now a number of computer programs available to help with this.

This month I will confine myself to one which I received recently from Pierre HB9AMO, best known as a top-band DXer. Pierre has written a program for the IBM PC (and compatibles) which allows you to keep track of which DXCC countries you have worked and confirmed on each of the nine HF bands. The program is menu driven and will instantly show your totals on the screen, or allow you to print out a complete listing. Pierre has also written a program to calculate sunrise and sunset times for anywhere in the world.

Both programs are freely available, and I am willing to provide copies to

UK AMATEURS ON DXCC HONOR ROLL

		Phone DXCC	
WIxed DXCC		GW3AHN	361
G4CP	367	G5VT	359
G3AAE	364	G5V	364
G3FKM	356		
GW3AHN	362	GI3IVJ	351
G3FKM	362	G3UML	342
G3FXB	359	G3NLY	341
G5VT	356	GM3BQA	340
GI3IVJ	353	G3JEC	339
G2FSP	353	G3KMA	334
GM3ITN	352	G3TJW	334
G3HCT	351	G3ZBA	334
G3IOR	349	G3MCS	333
G2FYT	348	G5AFA	331
G3KMA	342	G3SJH	327
G3GIQ	342	G3ZAY	326
G3UML	341	G3RCA	321
G5RP	341	G4DYO	320
GM3BQA	339	GW3CDP	319
G3HTA	339		
G3JEC	339		
GI3OQR	339	GW DXCC	
G3JAG	336		
G2DMR	335	G3KMA	318
G3LQP	335		
G3ALI	333		
G3MCS	333		
G3RUX	333		
G3KDB	332		
G3MXJ	330		
G3ZAY	330		
G3NSY	329		
G3VIE	325		
G3RCA	322		
G3YJI	320		
G4DYO	320		
GW4BLE	319		
G3RTE	313		

anyone who sends me a formatted disc (any variety) plus return postage. If you become a satisfied user, then a donation to HB9AMO would not come amiss.

Forthcoming DX

Time to look at what the coming month has in store. DX News Sheet reports that JAgIAX was due to arrive on Marcus Island (Minami Torishima) during May for a three-month tour of duty at the weather station. He will be very active on all bands, especially on CW, and will make a point of looking for European stations. JJITBB will handle the QSL chores.
A large US-Soviet team (eighteen operators in all) is planning to sign UF7V from Oblast 013 from 1 to 15 July. Operation will be on 80 to $10 \mathrm{~m}, \mathrm{CW}$ and SSB.
A Spanish group will sign ED9IC from the Chafarinas Islands from 14 to 17 June. This counts as AF36 for Islands on the Air chasers. KL7IEI will operate from Nunivak Island (NA74 for IOTA) from 27 to 30 May. And another one for IOTA chasers;
a group of W4 amateurs will operate as WA4VCC/C6 from Treasure Cay in the Bahamas (IOTA reference NA80) between 6 and 12 June.

N200, WA3TYF and SVOAA were scheduled to be in Rhodes signing /SV5 between 19 May and 3 June. QSL to their home calls.

South Atiantic

Some way off still, but WA4JQS is already sending out information about a major operation from South Georgia and South Sandwich, scheduled for 15 November until 15 December.
The plan is to land an eight-man team on each island, and to operate all bands and modes round the clock to soak up the tremendous demand (South Sandwich in particular is high on the list of Most Wanted Countries).

A large amount of equipment has already been pledged by various sponsors, so it looks as though the operation will get off the ground in a big way.

DXCC Honor Roll

The annual listing of DXCC membership (those who have updated within the past two years) appeared in the March issue of OST. There are far too many UK callsigns in the list to include here, so the table shows only those who have achieved-Honor Roll status. The country totals shown by the callsigns include deleted countries, and it should be noted that when the list went to press in CST there were 321 current countries (this has now increased to 324).,

It would be nice to see some other UK stations joining G3KMA in his solitary position as the only UK station on the CW Honor Roll. Sadly, at least two of the UK callsigns which appear in the Honor Roll listings are now Silent Keys, but several more recently licensed Gs are moving up the listings and should soon appear on the Honor Roll, especially following the recent spate of DXpeditions from rare countries.
At this point congratulations are in order for Mike Parker G4IUF, the latest UK amateur to receive the 5 -band Worked All Zones award. In many ways, this one is even tougher than getting on the Honor Roll.
Living in the north of England, Mike finds LF band DXing easier than for those of us in the south, but on the higher bands he often sits in frustration hearing southern UK stations working DX which is inaudible in North Yorkshire.

1990 World Radiosport Championship

Amateur Radio has always been treated in the USSR and China on a par with other sports such as athletics, rowing or football. Radio amateurs compete under controlled conditions to select Masters of Sport and medallists. Now the idea has come to the West with the first US-USSR Goodwill Games which will be held in

Seattle between 20 July and 5 August.
These games will include all the usual sporting events, as well as cultural activities (for example, the Bolshoi Ballet will visit the US at this time), and there will also be a major international trade exhibition.
This all seemed too good an opportunity to miss and a committee chaired by Martti Laine OH2BH/W6 is organising an amateur radio event as part of the games. A number of identical stations will be set up in Seattle, each consisting of an Icom IC-765, an Icom IC-735, a triband beam, and wire antennas for the LF bands. Up to seventeen two-man teams from the US, the USSR and other invited countries (including the UK) will operate for ten hours using specially allocated callsigns to determine the winners.

The original aim had been to reschedule the IARU Radiosport contest to coincide, but this has not been possible. The event will take place from 2100GMT on 20 July, on 80 to 10 m , both SSB and CW . The competing stations will sign /WG (World Games) after their callsigns to identify themselves.

Amateurs around the world are asked to do their bit by working as many of the competing stations as possible. Special log sheets and further information are
available from WRTC, 4821 51st SW, Seattle, WA 98116, USA. I will try to get hold of a set myself to make available to DX Diary readers on request.
Of course, the reason for holding a contest along the lines I have just described is to remove as many of the variables, such as equipment and propagation, as possible and end up with a straight test of operator competence.
In practice I suspect it won't be quite like that. The Japanese competitors ought to have a head start in working Japanese stations (an easy path from W7land), while the Americans should be very familiar with propagation from what is, after all, their home territory. Still, it should be fun!

June contests

Getting back to the more run-of-themill contest activity, I suppose the main contest for June is the All Asia SSB Contest which runs for the whole weekend of 16-17 June. Contest exchange is signal report plus age, with $Y \mathrm{~L}$ operators giving ' 00 ' (there's discrimination for you!).
The World-wide South American Contest (a CW contest not unlike the CQWW events) is on 9-10 June, and the RSGB Summer 1.8 MHz Contest is on the
evening of 23 June. The latter is always an interesting one-lots of summer static but the occasional DX such as PY or LU. Finally, the Canada Day Contest takes place on 1 July.

Leningrad Hamvention

Finally, if you are of a mind to travel;' the Leningrad Hamvention takes place from 3 to 6 August, with presentations by top DXers and contestants and a chance to operate from the USSR. The Finnish Amateur Radio League has put together a tour package for Western visitors to the Hamvention, and further details are available from them at SRAL, PO Box 44, SF-00441 Helsinki, Finland.

July issue on sale at your newsagent's on 28 June

Millions of quality components at lowest ever prices. Mail order only. Send 30 p stamped addressed label for catalogue/clearance lists. All inclusive prices NO post, packing, VAT etc to work out and add on.

Brian J Reed Electrical 6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 0712235016

Start training now for the following courses. Send for our brochure without obligation or Telephone us on		
REF: ARE	0626779398	3
NAME	\ldots	Telecoms Tech 271 C ${ }^{\text {A }}$ G
	\cdots	
		micro- processor
		introduction to Television
Radio \& Telecommunications Correspondence School 12 Moor View Drive, Teignmouth, Devon TQ14 9UN		

AN AUDIO FREQUENCY SIGNAL GENERATOR

A quick look around many amateur radio constructors' test benches often reveals a gap in their range of test equipment. Many of them do not include a reliable audio signal generator. This may seem odd because, in theory. building an oscillator to produce audio signals is a simple matter. Amateurs may consider that radio frequency test equipment is all that is required, but we use audio frequencies in both transmitting and receiving equipment.

The truth of the matter is that a useful audio frequency signal generator is not easy to make. To be really useful it has to be more than an audio 'noise maker'.

A good audio frequency signal generator will produce a sine-wave output for audio test work capable of tuning all of the usable audio range and be stable at any given frequency. Ideally, it should also have an output with a fast risetime to drive a digital frequency meter, or provide syno pulses for digital equipment.

Such equipment is not cheap to buy and may be at the end of the list of required test equipment after the full range of radio frequency and dc test items has been obtained. Such a signal generator, although not difficult to build, does require careful design. Many audio oscillator circuits are not suitable as serious items of test equipment.

The JDO13 generator

This article describes the JD013 audio frequency signal generator, available from Jandek in kit form. It provides most of the facilities that the average radio amateur might require on his test bench.

The signal generator provides a sinewave output from 40 Hz to 40 kHz in six switched ranges. Each range overlaps to allow for component tolerance. The output amplitude is constant throughout the audio range for a given level control setting and constant load impedance.
The output impedance is 600 ohms. With the output set to 3 V peak-to-peak, it reduces to about 2 V peak-to-peak with a 1 kohm load applied. The current consumption from a 9 V power supply (or battery) should be about 12 mA . The supply may be from 8 V to 20 V .
The generator also includes an auxiliary output with a fast risetime for digital applications. This may be connected to a digital frequency meter to give an accurate indication of the oscillator frequency.

The auxiliary output voltage is dependent upon the supply voltage. With a supply of 9 V , it will be about 7 V peak-to-
peak. The waveform approaches a square-wave on the five lowest ranges. On the highest range, the amplitude will be reduced and the waveform distorted.

The circuit

The circuits used in the audio generator are shown in Figs $\mathbf{1 a}$ to \mathbf{c}. The circuit is a Wein Bridge Oscillator using a single operational amplifier (op-amp); IC2a is the generator. In the Wein Bridge

Oscillator feedback is provided through a network, which only allows zero phaseshift at one specific frequency.
If an amplifier, having sufficient gain, has positive feedback via such a network it will oscillate. In Fig 1, IC2a has a feedback path from pins 7 to 5 via the network in Fig 1b. The frequency at which the signal is sharply maximised, hence the oscillation frequency, is controlled by the values of resistance and

Figs 1 to c: Circuit diagrams of the audio generator

Fig 16
Fig 16

$$
\begin{aligned}
& \text { frequency }=\frac{1}{2 \times P i \times G \times R} \quad \text { eg if } C=33 n F \text { and } R=3 k 3 \text { then: } \\
& \text { frequency }=\frac{1}{2 \times \operatorname{Pi} \times 0.000000033 \times 3300}=1461 \mathrm{~Hz}
\end{aligned}
$$

Fig 2: Frequency selection and control circuit
capacitance in Fig 1b. The frequency is equal to $1 / 2 \mathrm{PiCR}$; an example is given in
Fig 1.
To produce a sine-wave, the gain of

IC2a must be maintained at exactly three. This is achieved via a simple gain control feedback loop around the FET Q1. The output of IC2b is rectified by D1,
and the resulting dc voltage is used to bias Q1. Q1 is then used as a variable resistance in the gain controlling feedback loop of IC2a. A preset control gives fine adjustment of the gain, which allows a sine-wave to be generated.
IC2b acts as a buffer and provides the voltage for the gain control loop. Two buffered outputs are taken from IC2b; one has a potentiometer to provide a level control to give the sine output via another buffer amplifier, IC2c. A direct output from IC2b drives another buffer, IC2d, for the auxiliary output. This harddriven buffer provides the high risetime output.
The op-amps IC2a, b and c require a dual-rail power supply. Naturally it is easier and cheaper to have a single rail supply or a single battery. The dual-rail supply is provided by the single op-amp circuit shown in Fig 1c. A PP3 9 V battery is an adequate supply source in this circuit.
The frequency selection and control circuit is shown in Fig 2. If you compare this diagram with Fig 1b, you will notice that the network consists of a series resistance and capacitance circuit and a parallel resistance and capacitance circuit. The frequency is controlled by the values of R and C.

Fig 3: Layout diagram of the JD013

Fig 4: Wiring diagram of S1 and RV3

Fig 5: JD013 board testing layout
Fig 6: Optional output attenuator circuit

In this arrangement the capacitance is switched to provide the ranges, and the resistance is varied with a pair of ganged linear potentiometers to allow coverage of the switched ranges. This requires the use of a two-pole, six-way switch (S1) and a ganged potentiometer (RV3).

The wiring of these components is probably the most difficult part of building this project. As suggested in the parts list, good-quality capacitors must be used in the circuit, because the stability of the oscillator depends upon the quality of these components.

Bullding the generator

The layout of the JD013 PCB is shown in Fig 3. The wiring for S1 and RV3 is shown in Fig 4. The PCB is simple to build, requiring only accurate component placement for it to work first time. Do not forget the link wire! Some components require correct polarity or pin placement, and these are IC1, IC2, Q1, D1 and D2.

Building a PCB is largely a matter of individual technique, but to avoid missing out or misplacing components, I follow a common convention: link wires (easy to forget), terminals or pins, resistors, capacitors, diodes, transistors and integrated circuits, then check for vacant holes or remaining components.

At this stage, check the board to see if it works before wiring S1 and RV3. This is done by adding one set of components for the Wein Bridge Network, as shown in
Fig 5. The values shown are for capacitors Cc with R10 and R1 added.

During the test set RV1 at maximum (anti-clockwise). The test shows the use of a digital frequency meter and an oscilloscope. If neither of these is available, the output can be monitored by connecting a pair of headphones or a crystal earpiece to the 'scope' output. If this method is used, RV2 will need to be set low.
Apply 9 V to the power connection terminals. There will be no output at this stage. Slowly rotate RV1 clockwise so that, eventually, a sine-wave is observed on the oscilloscope. As RV1 is advanced the amplitude will increase to the point where the top and bottom of the waveform become flattened. Slowly stop rotating RV1 to give a sine-wave output of about $3 V$ peak-to-peak.

The frequency of the output can be measured using a digital frequency meter at the auxiliary output, as shown, or it can be measured on the oscilloscope. It should be in the order of 1460 Hz , depending upon the tolerance of the components. RV1 should now be left in its present position.
If the output is only being monitored aurally, a more subjective set-up of the board is possible. RV1 should be rotated until oscillation is heard. On increasing RV1 to the point where flat topping occurs, the previously clean-sounding
sine-wave will become distinctly harsh. The final placement of RV1 should be mid-way between the point at which oscillation occurs and the onset of distortion.
Do not be put off by the lack of these items of test equipment. The aural method of setting up the board works well. Indeed, musical-oriented constructors may be able to calibrate the output against a known musical pitch.
After you have completed the board, the components wired around pins 0,1 and 2 for these tests, should be removed. The range switch and frequency control potentiometers may now be wired with care (see Fig 4).
The number and figure markings on the wafer switch refer to those on the switches supplied with the Jandek kit. A circular bus bar made from stiff-tinned copper wire provides a connection point for the ends of the capacitors which connect to point two on the PCB. Follow this diagram with care, checking the values and positions of the capacitors before and after they are mounted.
The output from the generator may be high for some applications, and an attenuator is a useful addition to the circuit when testing high gain audio amplifiers. The circuit for such an attenuator is shown in Fig 6. Values are - given for RA for attenuation of ten times or 100 times. Note that it is possible for constructors to add switching in and out for the attenuator.

Calibrating the generator

The calibration of the generator depends upon the test equipment available to the constructor. The simplest method is to connect the output to a digital frequency meter which reads down into the audio ranges.
A simple and cheap audio oscilloscope could be used to calibrate the frequency. It may not be of much use for higher frequency work but it will certainly calibrate this unit.
A more subjective method is to calibrate the output aurally against the notes of a piano (as far as possible) and look up the frequency on a pitch/frequency chart, often found in music books.
The housing for the generator is supplied by Minffordd Engineering and is an aluminium box, type A48, measuring $6 \mathrm{in} \times 4 \mathrm{in} \times 2 \mathrm{in}($ WHD $)$. The controls take up a lot of space, so I used the bottom of the box as the front panel. The layout is shown in Fig 7. The PCB was also mounted on the inside of this front panel. Fig 7 shows that the back of the case (originally the lid) can be removed, and the PCB with its controls can be removed via the front panel.
The frequency control knob should have a large diameter for ease of tuning. A scale can be added to this control, although space is limited for a

Parts List

Resistors

R1	10k	R2	$22 k$	R3	$100 k$	R4	1M0	R5	560 R
R6	1k0	R7	$68 k$	R8	$68 k$	R9	$1 k 0$	R10	$3 k 3$

RV1 1k0 preset
RV2 100k 1 in pot
RV3 10k dual in pot

Capacitors

C1 $\quad 100 \mathrm{n}$ polyester (marked with green dot)
Ca (2 off) 330n polyester
Cb (2 off) 100n polyester
Cc (2 off) 33n polyester
Cd (2 off) 10 n polyester
Ce (2 off) $3 n 3$ polystyrene
Cf (2 off) 1 no polystyrene

Semiconductors

Q1 BF256C D1 1N4148 D2 LED
IC1 741 operational amplifier
IC2 TL074 quad operational amplifier (or equivalent)

Miscellaneous

8 -pin DIL socket 5-pole 6-way switch 14-pin DIL socket
$12 \times 1 \mathrm{~mm}$ terminal pins

Fig 7: Casę layout (Minffordd box type A48)

six-line scale. In practice, I use the digital frequency meter via the auxiliary output to measure the output frequency. Other constructors might choose to add a logging scale and have a calibration graph.

Conclusion

The Jandek audio frequency signal generator is easy to build, and the quality of the board and components is high. The constructor has to provide the knobs,
sockets and on/off switch, but the rest of the components are supplied with the kit.
The kit costs $£ 9.75$ plus $£ 1.00$ p\&p and is available from: Jandek, 6 Fellows Avenue, Kingswinford, West Midlands DY6 9ET, tel: (0384) 288900.
The aluminium box, type A48, costs $£ 1.80$ plus $£ 1.00$ p\&p and is available from: Minffordd Engineering, Sun Street, Ffestiniog, Gwynedd LL41 4NE, tel: (0766 76) 2572.

O

ICOM

THE NEW IC-2SE, SIMPLE OR MULTI-FUNCTION 144 MHz FM TRANSCEIVER

Icom's tradition of building high quality, reliable handhelds continues with the IC-2SE an incredibly compact handheld designed with features that exceed larger, bulky. handhelds. The IC-2SE proves thót superior quality comes in all sizes.

Slim and unbelievably compeat.

The IC-2SE measures only $49(\mathrm{~W}) \times 103.5(\mathrm{H}) \times 33(\mathrm{D})^{*} \mathrm{~mm}$ with the BP. 82 Battery Pack. Hold the IC-2SE in your hand to truly appreciate its miniature size. Weighing just $270 \mathrm{~g} \dagger$ with the BP-82, the IC-2SE will easily fit anywhere - on belts

Simple design for operating convenionce.

Even with its tremendous versatility and a wide bariely of functions, the IC-2SE is easy to use. All functions are performed by a total of just six switches and three controls. The IC2SE includes both simple and multi-function modes. The result is two transceivers in one: both an easy-operation and multi-function Iransceiver. Simple mode ensures totally error-free operations. Multi-function mode allows you a variety of function settings depending on your operaling requirements.

Other advanced fectures:

Reduced size doesn't have to mean reduced quality. The IC-2SE proves this with a wide variely of advanced functions.

- Tuning control on the top panel for quick QSYing.
- Monitor function that allows checking of the input frequency of a repeater.
- Function display that clearly shows all information required for operations.
- Splash resistant design and durable aluminum die-cast rear panel for dependable outdoor operations.

Ophions

- EA-11, Eothom Cap. Pratective cop fat terminals on the base of the IC.2SE
- Cetrory packe emali cuse.

BP-86 Cose for six Rh (AA) size bolleries

- EC-T2E, AC Eettery Cherger.

Desk top chorger for the BP-81-BP. 85

- CP-12, Cismrette limiteor celle whit noise filter. Allows you to use the IC. 2 SE through a 12 V cigoretle lighter sacket Also chorges the 8P-8T - BP-85.

Flexible ontenno for 144 MHz band operalion. Some type supplied with the IC-2SE
-HM-46, Spocher/AMieraplome.
Combinotian speoker and microphone equipped with on eorphane jock. Clips to your shirt ar lapel.
-H8-51, Moedlett. Heodset with VOX function that allows you hands-free operation.
- Conrying Cases.

Carrying Case Battery Packs,
Battery Case
LC. 53 \qquad BP. 81
LC-55 BP-81, BP-83 or BP-86
LC-56 BP-84 or BP-85

- MI-30, Meundim Erackot.

Mounts the IC-2SE in a vehicle or on o wall.

- OPC-238, Mind DC Dower Ciblo.

For use with a $13.8 \vee D C$ power supply

Actual Size
 ∇

Countonus!

THE COMPACT HANDHELD WITH A SPLIT PERSONALITY

5 Weft Oufput Power.

Utilizing a specially designed ultra-small highly efficient pawer madule, the IC-2SE delivers a full $5 \mathrm{~W}^{*}$ of autput power. Bring those distant repeaters into range

- At l3.8V DC

48 Memery Channels.

The IC-2SE has 48 fully-programmable memary channels and ane call channel frach memory and call channel stores an operating frequency and other information required far repeater aperations.

Convenient Ropeafor Punctions.

The IC-2SE is equipped with programmable affset frequencies far accessing repeaters. All memory channels and a call channel store repeater information for your convenience. The IC-2SE includes a newly designed 1750 Hz tone call transmit function. A 1750 Hz tone call transmits when the PTT switch is pushed twice quickly.

Power Sinver for lomyer operating

 fime.The pawer saver ensures lawer current flow during standby canditions. Operating times are much longer than with older. more conventional transceivers.

Euilh-im Clock with Himer functions.

The IC-2SE is equipped with an advanced 24-hour sysiem clock with timer function. The transceiver autamatically turns an when real time matches a pre-programmed time. This is perfect for scheduling QSO's. Auto pawer-aff timers and other settings can be made in clack mode.

Convenient Scan finctions.

The IC-2SE is equipped with VFO and memory scan.

- VFo Scam. VFO Scan repeatedly scans all VFO frequencies. In addition, unnecessary frequencies can be skipped.
- Memery Scem. Memory scan repeatedly scans memory channels.

Auto Power Off timer Punction.

If you ever forget to turn the IC-2SE off, don't worry. It will turn itself off. Power-off time can be selected or deactivated using multifunction mode. Preserve battery pack power for the times when you need it most.

Priority Watch.

Why interrupt calls to check other statians? Priority watch monitors a specified station every five seconds while yau operate on a VFO frequency. Cantinue with yaur communications and let priority watch da the checking for yau.

A SIMPLE NI-CAD CHARGER

by Bernard Nock G4BXD

Nowadays, Ni -Cads can be installed in all types of equipment, and are much cheaper to use than zinc batteries. The purpose of this project is to construct a simple and cheap Ni -Cad charger to charge a 10 V battery pack for an Icom hand-held.

Power supply

Using a battery eliminator and a few readily available components, a constant current power supply can be constructed. The circuit diagram of the original power supply is shown in Fig 1 and consists of a transformer to step the mains voltage down to the required output.
The secondary winding has several 'taps' which allow for the switching between different voltages, usually via a slide-switch. From the taps the low ac voltage goes into a rectifier circuit containing four diodes, called a bridge configuration, where it is converted to low dc. A capacitor smooths the raw dc and the voltage is fed down the lead to the multi-way plug.
All of these components are used in the conversion with the exception of the switch. The additional components are tagged on to the end of this circuit to produce the circuit shown in Fig 2. The diodes D5 and D6, and R2 hold the base voltage steady whilst R1 is adjusted to regulate the required current.
Note that it is the difference between the base and emitter voltage that limits the current through TR1, a BC461 (or similar) PNP transistor, having a gain of 100 or more. The value of $R 1$ is given in the Table, or by dividing 650 by the current in milliamps to give the resistance in ohms.

Opening the case

The first task is to open the case of the battery eliminator using a Stanley knife to cut around the edges of the two halves of the moulded case. Now sketch the layout of the battery eliminator, so that you have a record of where everything is (see Fig 3).

Inside the eliminator

The usual set-up is for the primary of the transformer to be soldered to the live and neutral pins on the moulded box. The earth pin is a dummy and not connected.
There is usually a small PCB which contains the diodes, capacitor and switch; the switch may have a length

Fig 1

Fig 2 (above); Fig 3 (below)

of ribbon cable joining it to the PCB.
Onsolder and remove the switch and place a wire link between the moving contact point and the highest tap point on the board (for charging in the prototype), but if you are charging only low voltage cells, then connect the link to a lower voltage tap. The output lead can be removed for the time being.
Place a $1 / 2 \mathrm{~W}$ resistor in the 2 k 2 position and insert one end into the hole in the PCB for the negative lead. This will provide an anchor point from which to hang the other components (see Fig 4).

Solder one end of the diode pair to the legs of the bridge diodes as they go through the board to save having to make more holes in the PCB. The limiting resistor can also have one lead soldered to the leads of the diodes.
Hang the power transistor from the free ends of the components. The transistor does not need a heatsink, unless you intend to run the current at the highest possible level.
If a heavy current is used, drill extra ventilation holes into the top of the case before reassembly.

The new lead is now ready to be fitted, so connect the negative wire to a suitable point on the PCB, and the positive lead to the free collector lead of

Conversion Table								
Current (Ma)	10	20	30	40	50	60	70	80
R1 (ohms)	69	33	22	18	14	12	10	9

the transistor. The lead can be either terminated in the old multi-way plug set or fitted with the right plug to suit the equipment it was built for. Finally, reassemble the case with Superglue.

As there is no earth connection, do not use the charger on equipment connected to other items. Remove the batteries or disconnect other equipment before charging.

THE EVOLUTION OF THE RADIO RECEIVER by Ian Poole G3YWX

Today's radio sets are the culmination of work carried out for over a century. They are highly sophisticated and very efficient. They are also a far cry from the earliest wireless reception equipment of the late 19th century.
The development of today's radios represents countless years of work by many men. Some like Marconi, Hertz, Lodge and Armstrong are remembered in the history books, but most of them are unknown.
The evolution of the radio receiver is fascinating. It shows how much innovation, thought and sheer hard work have been carried out by its pioneers. It also explains why radios are like they are today.

First recelvers

The first experiments with radio were performed by Hertz. He used a spark gap and an induction coil to produce a signal (see Fig 1). Then to detect the signal, he used a second induction coil with a much smaller spark gap. He also discovered that generating a spark in the first circuit would produce a small spark in the second one. As we would expect today the range of this signal was very limited. In fact, it was only a matter of metres.
The next major development was the coherer (see Fig 2). This instrument was a crude detector but, despite its insensitivity when compared with today's detectors, it was far more sensitive than anything which had previously been available, with the result that it soon gained universal acceptance.
The coherer consisted of a closed glass tube with an electrode at either end. Normally the filings presented a high resistance between the electrodes.

However, when there was a discharge, as in a spark, the filings would 'cohere', causing the resistance between the electrodes to fall. This could then be used to actuate a bell.

Unfortunately the only way to 'decohere' the filings and reset the coherer was to make them vibrate. This problem was easily solved by using the sounder or bell actuator to tap the coherer tube when it sounded. This made it possible to read Morse signals relatively quickly.
Although the coherer was the best detector available at the time, its sensitivity was still the major limiting factor in detecting radio signals. Its operation was not well understood, and this hindered any new developments from taking place.

Guglleimo Marconl

It took Marconi to improve matters. He modified the basic coherer design by changing its shape, size and the constituents of the metal filings. In fact, it was Marconi who discovered that platinum helped improve its performance.
A further but elementary improvement was that of tuning. By tuning the output of a spark gap transmitter, Marconi found that energy could be concentrated into a small band of wavelengths, rather than being spread over the entire spectrum. Similarly, receivers could be made more efficient. Marconi registered the patent for this idea in 1900, which was only just in time because other people were working on the same idea.

The valve

It was soon realised that the detector was the weakest link in the receiving system and that if major improvements
were to be made to radio, then detectors would have to be improved first.
Apart from Marconi improving the coherer, many people were working to solve the detector problem in a variety of different ways. One of the first new ideas was the rectifying valve, discovered by Dr JA Fleming, of University College in London.
The original idea could be traced back to Edison in America. Whilst investigating the problems of filament failures in light bulbs, Edison performed a number of experiments.
In one experiment he probed inside a bulb with a wire. He noticed that current would flow between the filament and the probe if the negative end of the battery was connected to the filament and the positive to the probe. He also noticed that if he connected it the other way round, no current would flow. Surprisingly, although Edison found the phenomenon interesting and demonstrated it to other people, including Fleming, he did not use it.
It was not until 1904 when Fleming, acting as a consultant to Marconi, had, as he put it, 'A sudden and very happy thought'. Could the Edison Effect detect radio waves? To this end, he instructed his laboratory assistant to set up an experiment. To his delight the valve worked and he patented the idea. Although Fleming's valve was a major step forwards, its success did not last long.

Other defectors

A couple of years later the crystal detector arrived on the scene. By today's standards, crystal detectors gave inconsistent results and were often

Fig 1: The circuit diagram of a resonant spark transmitter

Fig 2: Circuit diagram of an early untuned coherer receiver

Fig 3: Round's autodyne circuit
inefficient, but they had one major advantage - cost. They consisted of a crystal of galena and a thin, springy piece of wire. The point of contact between the galena and the wire gave only a very elementary point contact diode.

In order to improve these diodes, many people tried different substances. Not surprisingly, silicon proved to be one of the best.

The triode

Another idea which made a major contribution to the early radio scene was the triode valve. This discovery was made in the USA by Lee de Forest. He realised that if he were to gain a foothold in the market he would need to develop an efficient detector, one
which was not covered by existing patents. His work produced the triode, which was essentially a development of Fleming's diode.

Despite this fact the courts ruled that the triode was not an infringement of Fleming's earlier patent, so de Forest was free to use his idea. This ruling infuriated Fleming and he remained bitter about it for years afterwards.

Surprisingly, little was understood about the workings of the triode valve. For the first four years it was used only as a detector in a leaky grid-style configuration. No one thought of using it as an amplifier until 1910.

Once the triode valve was used as an amplifier, it was soon discovered that it would oscillate. This was definitely a
mixed blessing. Previously, high frequency oscillators had been very difficult to make, as they had generally relied on electromechanical ideas. Now it was possible to make a relatively compact, all electronic oscillator.

On the other hand, the problem was stopping the valves oscillating when they were needed as amplifiers. Their very high interelectrode capacitances and the absence of refinements, such as screen grids, made these amplifier valves very difficult to tune. Even so, people managed it and they enabled major leaps to be made in radio performance.

Tuned radio frequency

The triode made a great impact on receiver design. Before triode amplifiers were available, most receivers were 'crystal' sets using either crystal or electrolytic detectors. This meant that the only way to improve reception was to enhance the aerial system. This was very costly and limited the sites where receiving stations could be built.

Quantum leap

The amplifying valve was a quantum leap in receiver technology, and changed the whole field of radio communication.

Initially valves were used only for audio amplification because they were prone to oscillate at frequencies above a few kilohertz, and they also lacked gain.

It was not long before a better understanding of the basic principles of radio communication led to further improvements. In fact, the unwanted positive feedback was used to increase the gain of a circuit.
This idea of a regenerative detector stage was discovered in 1913 by several people, all of whom claimed it as their own. Lee de Forest was one, another was a brilliant young college student named Edwin Armstrong and, in Europe, Langmuir and Meissner also came upon the idea. It is still unclear as to who was first, but Edwin Armstrong is generally credited with the discovery.
These new regenerative receivers proved very successful. By adjusting the amount of feedback the circuit could be set to the point where it was on the verge of oscillating. This greatly increased both the gain and selectivity over anything else which could be achieved.

Need for better receivers

Whilst these developments were taking place the political scene in Europe was rapidly deteriorating. This was to speed up the development of radio technology more quickly than anything else.
With the First World War being fought in Europe, military leaders soon realised the importance of radio communications. Not only could information be

THE EVOLUTION OF THE RADIO RECEIVER

transmitted rapidly and easily, but the enemy's transmissions could be intercepted as well.
Despite the improvements made by regenerative TRF (Tuned Radio Frequency) receivers, the main problems with existing techniques were still associated with a lack of sensitivity and selectivity. So it was that a number of people started working on new ideas to overcome these shortcomings.

One of the first results was a new form of direct conversion receiver. Although the basic principle of this receiver had been established some years previously it had not been widely used, mainly because of its inefficient use of valves. The mixer and oscillator did not contribute to the gain and since valves were expensive, this was not acceptable.
The problem was overcome by a British Army Captain, HJ Round. He produced the autodyne receiver, which used one valve to function both as an oscillator and mixer (see Fig 3). Even so, it was not
ideal because it proved difficult to make the valve operate efficiently at high and low frequencies. In spite of this, it proved to be a useful stepping-stone to further development.

The superhet

The next major stage in receiver development was provided by a French engineer, Lucien Levy. While investigating the problem of selectivity, he hit upon the idea of converting signals to a lower frequency where filter Qs would be higher. As an added bonus, he found that higher levels of gain could also be achieved. However, he retained the idea of a variable filter at the IF stage, so this was not the superhet as we know it today.
The person who is honoured with the development of the superhet is Edwin Armstrong. His original design contained an impressive total of eight valves (see Fig 4). With a fixed IF stage, this gave sensitivity and selectivity which had not been possible before.

Fig 4: Circuit showing Armstrong's superheterodyne patent

Unfortunately, Armstrong's discovery came as the war ended and the superhet, although revolutionary, was not used very much because of its cost.

Commercial use

After the war the commercial uses of radio were slowly exploited. Broadcasting started to increase and people began to build or buy their own radios. Domestic receivers were either crystal sets or valve TRF receivers.
TRF receivers were adequate for broadcasting, as well as for many amateur uses, because valve performance had improved with better production techniques. However, the main reason for their improved performance was the inclusion of screen and suppressor grids, which had a higher gain and were less likely to oscillate.

The rapid rise in popularity of radio and the increasing number of stations brought back all the old problems of selectivity. Now the superhet was able to prove its worth, and by the mid-1930s it was used in most new sets.
Many new refinements were introduced. Originally the sets were very large and cumbersome. Domestic users wanted smaller radios which were easier to use. Ganged tuning capacitors were introduced to enable the local oscillator and RF stages to be tuned by a single control. Many other refinements were added, with the result that radios became cheaper and easier to use.

Another war

The basic principle of the superhet was now well established and almost every receiver used it. However, further refinements and improvements were still to come: improved sensitivity, better image

Flg 5: A typical amateur band double conversion superhet

performance, better selectivity and sensitivity. To enable further development, some influencing factor was required.
When the Second World War broke out the necessity for good communications was more important than ever before.

To meet these needs many famous sets were designed. The 19 set for tanks, the R1155 for aircraft and the AR88 are but three which were used during the war. Of these, the AR88 represented the pinnacle of receiver design for the time. Even today, these receivers give a good account of themselves and are still sought after by enthusiasts.

Quest for stability

After the war modes like single sideband came into greater use. Existing receivers used a variable frequency oscillator for the first or only conversion. This meant that the receiver was not sufficiently stable at higher frequencies. Drift of even a few Hertz necessitated frequency retuning. Consequently, new techniques were adopted.

The first method employed a crystalcontrolled first conversion, as shown in Fig 5. By converting the signals down to a comparatively low tunable second IF, the VFO was not switched and ran at a lower
frequency. Both factors significantly added to the receiver's stability.
This method was popular with radio amateurs because it allowed a number of small bands to be tuned with constant bandspread, high stability and good image performance.

Many similar designs appeared for commercially made equipment, as well as in magazines for the home constructor. Some of the most famous must be the G2DAF receivers, which appeared in the RSGB publications Bulletin and Radio Communication during the ' 50 s and ' 60 s. This approach did not lend itself very well to wideband communications receivers, because a large number of small bands was needed. This problem was overcome by Racal with the launch of their new receiver, the RA17, in 1958. It used a revolutionary method called the Wadley loop, which virtually eliminated drift - but at the expense of a few extra valves.

Frequency synthesisers antve

Although various forms of direct synthesis had been available for some time, they were expensive and had to be very well filtered to remove unwanted spurious signals.
The introduction of the integrated
circuit enabled complicated circuits to be made more easily. This meant that indirect frequency synthesisers using the phase-locked loop could also be considered. Nowadays, all except a few receivers for the professional and amateur markets use synthesisers.

In spite of this, there is still much debate about the phase noise caused by synthesisers, however, these synthesisers have meant that stable receivers covering wide bands of frequencies can be made comparatively easily.

Other changes

The integrated circuit also brought about major reductions in size. Receivers which had required two people to lift them could now be made easily portable. Hand-held receivers and transceivers were also made possible, and equipment incorporating many more facilities became commonplace.

What about the future? Smaller and more compact receivers are certain to appear. Improved sensitivity at higher frequencies is another area for development. There are also other forms of synthesisers, known as direct digital synthesisers, which will improve phase noise performance. As for other changes, we'll just have to wait and see.

Make sure of your copy by placing a regular order at your newsagents or by taking out an inflation proof subscription, with early delivery to your door each month

AMATEUR RADIO SUBSCRIPTION ORDER FORM

Toı Subscription Department •Amateur Radio •
45 Union Road © Croydon •
Surrey CRO $2 X U \quad$ Tel: 081-684 9542
NAME .
ADDRESS \qquad PLEASE SUPPLY: Mch box) for 12 beovos, all ralos includo P A P

[^0]
SHORT WAVE LISTENER

TREVOR MORGAN GW40XB

I often receive letters from newcomers to listening explaining that they have bought a domestic receiver and have difficulty reading the tuning dial.

Although not quite so common nowadays, except with very cheap or foreign receivers, it was standard practice to mark the tuning scale with the wavelength rather than frequency. This causes some confusion, especially as the frequency rises as the wavelength falls (see Fig 1).

Another confusing point is that older receivers that do have the scale in frequency are often marked in 'cycles per second' (Mcs, Kcs etc), whereas current receivers are marked in Hertz (MHz , kHz etc) but, in this case, there is no real problem as Hertz = cycles, ie, only the name has been changed.
So, what does it all mean? Electromagnetic radiation, which is what radio signals are, travels at about 300,000,000 metres a second. The time taken for one complete cycle of energy to pass a given point is called the wavelength, and the number of complete cycles passing a given point in a second is called the frequency. To put it in mathematical terms: $300,000,000=$ frequency (Hz) \times wavelength (metres) or $300=$ frequency $(\mathrm{MHz}) \times$ wavelength (metres)
So, frequency (kHz)
300,000 /wavelength
frequency (MHz)
300/wavelength
or, wavelength (metres) = 300,000/frequency (kHz)
For example, frequency $=$
$300 / 15$ metres $=20 \mathrm{MHz}$
I hear you ask, 'Isn't the 15 m band 21 MHz ?' Well, yes and no. The bands are known by their range, not as specific frequencies, so the 15 m band covers frequencies between 20 MHz and about 21.5 MHz . Easy, isn't it? (!)

Band reports

Firstly, Peter Cain of Newcastle sent a list of good stuff heard on the 10, 15 and 20 m group which bodes well for our contestants.

On 10m, ZYOFX, 9J2BO, VR6JR, J34YL, ZPOY, FT5XA, A45O, TZ6VV, HSOAIT, 3W3RR, FR4FD, P29NJS, 4K2OT, FK8FI, V56VO, S01EA, TL8WD, 5W1HM, YJ8RN and BYBAC all showed up. 15 m offered YN3EI, 9Y4BU, 5Z4BI, V51NAM, V31BB, 9J2BO, KP2A, BV2FA, PZ5DX, HS0B, TN1AT, WZ6C/ST4, 5Z4BH, S01EA, 3W3RR, CE0ICD, FR4FD, VP2MEZ, 3D2AG, J28SI, V47KTG and XU8DX; while 20 m was well up to par with V63AO, T32AF, FO0XXL, ZK1XL, DX8I, YS8AB, 9M8FH, C53GB, J39CO, FT5XH, SOLYNX, V51NAM, FOOIGB, CEOMTY, T32AW, WD4FOV/ KH8, A35KB, VK9LA, ZK1DD, SA2LB, HC8GR, V85GA, DU1PJS and a whole bunch of T32s!

Peter Bowles of Newhaven also had a good time following his receipt of the ZC4 Award (No 11) for multiband reception, and offered N3CRH/TJ, VP5JM, HI8LUZ, VS6WV, EL7X, OH7XM/CT9 and 3C1EA on 10 m ; A41KR, 4 X 4 HQ, VE1JL and $A 41 \mathrm{KC}$ on 15 m , and JY5DL, VK5BC and HC2G on 20 m .

Peter also passes on the following QSL information: 5H3TW via K3ZO (QTHR); ZC4GA via GM0ALS (QTHR); RD8D via LZ1KVZ (QTHR); 5N9BHA direct (QTHR); A41KC via KA1XN (QTHR); HC2G via HC2CG (QTHR), and 3C1EA via EA4CJA (QTHR). All QTHR as per 1990 callbook.
The UBA SWL Competition sparked off a lot of interest in 1989, and 172 logs were received from twenty-four countries. Participation in all categories was good but digital (cat three) and image (cat four) modes could have been better (get those computers operating)! The entries from the Soviet Union were considerably up on previous years, so it seems Glasnost is opening doors a bit now.
BRS 87156, G1RPA, BRS 22643, G6LAU, G6XOU, BRS 28198 and BRS 91529 all put in good efforts in the phone category, which was won by UB5-073-2589.

In the CW category, won by UT5-186-100, BRS 84869 was the only British entrant.

In the digital modes, won by Y91-01-L, G6LAU flew the flag, coming sixth.
It's nice to see some of our lads in there with the action!

If you would like to participate in the next UBA Contest contact Marc Domen ONL 6945, Postbus 38, B2200 Borgerhout 1, Belgium, enclosing a couple of IRCs.

Anniversary celebration

On 28 June 1920, the Right Honourable Winston Churchill MP conveyed the Sovereign's approval of the
formation of a Corps of Signals and, on 5 August the same year, conferred the title 'Royal'.

To mark the seventieth anniversary of this historical occasion, the Scarborough Special Events Group, together with members of the RSARS, RNARS and RAFARS, propose to run a special event station from the Royal Signals Training Centre, Burniston Barracks, Scarborough from 10 June to 7 July 1990.

Operation will be around 3725 and 7055 on HF and 2 m FM and SSB, plus the usual activity on the RSARS nets.

Special QSL cards will be available for accurate reports to the station GB70SIG.

Awards

Awards claims for this month include a super one from Terry Lincoln of Weymouth, who claims the Lifeboat Award!

This award is for logging 100 amateur stations located in a town supporting a lifeboat. Of course, some lifeboats are actually located in awkward spots, so the nearest town counts for the points.

It sounds easy doesn't it? Well, as only three of these awards have been issued since 1985, the simplicity of the idea belies the actual difficulty.

Terry says, 'This has been the most interesting award I've worked for. It's taken hundreds of hours of listening and given me a good geography lesson!'

Congratulations, Terry! I will be sending your trophy to you soon.

Fig 1: Frequency against wavelength

Incidentally, if anyone wants to try for this award, a map showing the locations of RNLI lifeboats is available from the RNLI Headquarters. Write to me enclosing an sae for details.

The next award claim comes from John Miller G6XII of Gilwern, who approached me at the Swansea Radio Rally with a claim for the Premier Prefix Award for logging 1,000 different prefixes!

Among these loggings were such niceties as 5T5DV (Mauritania), FM5IQ (Martinique), J87CD (Grenadines), VK7GE (Tasmania), VP5SL (Turks \& Caicos), V44KQ (St Kitts), PYOFZ (Fernando de Naronha), J52US (Guinea Bissau), PJ8UQ (St Maartin), FP8AW (Miquelon), HH7PV (Haiti), 6W7OG (Senegal), V47NXX (Isle of Neves), P43RR (Aruba Island), HD8DZ (Galapagos), HKOEFU (San Andre Island), AXONE (Maquarie Island), D44BC (Cape Verde), FH4EE (Mayotte), KH6JEB/P/KH7 (Kure Island), 4K2OT (Franz Josef), XV2A (Vietnam), 4L1NV (Vaalam Island), JX7DFA (Jan Mayen) and many more. Congratulations, John!

Contests

The Guides' Thinking Day on the Air (TDOTA) Contest passed with a whimper this year (24-25 February) as far as readers were concerned, principally because I didn't announce it in this column! Nevertheless, Hedley Falkinder of Malton remembered the event and sent in a good list of Guide stations heard and scored 112 points.
Caroline Ingham (aged ten) of the Seventh Mirfield Guides sent in a diary of the event, complete with photographs and maps of where the stations she heard were located. It was very nicely presented and Caroline is the recipient of this year's trophy.
Rosalind Davies of the Second Norristhorpe Guides, Angela Stocks and Karen Martin of the Third Batley Parish Guides also sent in very good logs. They all passed their Guide Radio Communication badge as a result of their efforts. I also received a sample station

Caroline Ingham, aged ten. tunes in to the TDOTA
log from GBOBWD (Batley West District). Thanks to Lynne Geering G8LMS for her efforts in encouraging the girls to take part.

Encouraging youngsters

You don't have to be a licensed amateur operator to encourage youngsters to take an interest in radio.

With the Jamboree on the Air (JOTA) and TDOTA logging contests, organised by the International Listeners Association, it is easy to create an air of friendly rivalry between individual youngsters or groups and enable them to gain points towards their organisations' communications badges, and the kids really do get stuck into it. Some of their logs are a pleasure to see.

Why not contact your local Scout or Guide unit and ask if you can set up a receiving. station for one or both events? It's a good way to encourage newcomers!

Swansea Rally

The annual Swansea Radio Rally took place as usual in April - not, as it happened, a good time for many of us.

The rally was very well attended by the dealers and,
in fact, there was a list of 'standby' dealers who awaited cancellations, but to no avail.
Public support was also very good with the usual heavy couple of hours from the off and an 'injection' of new faces around midday.
So, what's wrong with that? Well, it so happened that the previous week was the first of the new 'Poll Tax' era and, as many visitors explained, spare cash was short. Many things that might have been purchased were left unsold.

To be fair, the Swansea club did a good job organising the event, and the two halls of the Swansea Leisure Centre were full. The main hall contained the majority of the dealers, with excellent shows being put on by Dee-Com, Merlin, ACS, Allweld, Taurus, Sandpiper and Poole Logic and others. The second hall contained Ward, Nipco, Amdat, TAR, Uppington and Transworld Comms. Various societies and support groups were arranged in the centre island including Raynet, RAFARS, RNARS, WAB, RSARS, ILA and the repeater groups.

There was also a separate room in which amateur radio
videos were shown throughout the day.

It was a busy but very enjoyable day and, for my part, as the ILA representative, I thank Roger GW4HSH for his courtesy in asking me to take part in another fine radio rally.

Thanks to all of you who came over to say hello and to those who helped run the stand, namely, Vernon GWODST and AIf ILA 072.

If you happen to be at Longleat in June, I hope to meet you! Meanwhile, have a good month.

> Please send your reports and award claims to 1 Jersey Street, Hafod, Swansea SA1 2 HF .

The Aztex TVTX 24cm FM ATV Transmitter and the ULNA 23-24cm GaAsFET Preamplifier

The Aztex TVTX 24 cm FM ATV transmitter was first seen at the Leicester Show last year and created a lot of interest. So, I contacted the Severnside TV Group, through which it is marketed, and arranged for a unit to be despatched to me for review. At the same time, I requested to look at their $23-24 \mathrm{~cm}$ GaAsFET preamplifier.

The $\mathbf{2 4 c m}$ FM ATV transmitter

Aztex has taken into account the need to incorporate a stable output in the design of this transmitter by using an SP5060 phase-lock loop chip and sur-face-mounted components.
The video pre-emphasis network, whilst based on the standard CCIR circuit, gives an HF component lift which is better than that given by a standard CCIR network. This overcomes the HF losses within the modulator, as well as providing normal HF lift.
Some kind of dc restoration on the signal was also necessary before injection into the modulator, and the circuit used to achieve this prevents the video content from altering the black level position.
The two sound inputs are actively mixed using a TLO72 op-amp before they are fed to the modulator. There is a separate PCB-mounted preset for adjusting only the line input; the front panel sound control adjusts the composite level of both inputs. A subcarrier injection level preset on the PCB is also provided.

The design

The unit is supplied complete and is housed in a die-cast box, measuring $188 \mathrm{~mm} \times 12 \mathrm{Cmm} \times 57 \mathrm{~mm}$, with a removable lid secured by six cross-head screws. The front panel comprises four LEDs, and these are from left to right: PWR, indicating the connection of the dc supply; transmit, and CH 1 and CH 2 , showing which channel is selected. There are also a main on/off switch, a channel select switch and two potentiometers, one for the sound and the other for the video deviation.

On the rear of the transmitter are: an Ntype socket for the aerial; a BNC socket for the video input; two sockets for the audio inputs; a phono socket for the line input, and a $1 / a i$ in socket for the mic. The dc input is a 3 -pin plug with a matching line socket and lead.

Specifications of the Transmitter

Frequency

Channel One
Channel Two
RF output power Harmonics
Modulation system
Audio subcarrier

Video input Audio inputs

Power Consumption

1249 MHz 1255 MHz
2½W(typical) $<50 \mathrm{dBC}$
FM with built-in pre-emphasis
Preset to 6 MHz
$>=17 \mathrm{~dB}$ below carrier (variable with peak setting)
1V peak-to-peak into 75 ohms
Dynamic mic
Adjustable line input (VOR etc)
1.6A @ 13.8V

Internally the transmitter is neatly laid out with the main PCB incorporating the audio amplifier, modulator/subcarrier generator circuitry and the video circuits. The main PCB is held in place with four nuts, bolts and spacers, thus removal for servicing is simple.
A small die-cast inner box containing the RF circuitry occupies approximately one third of the main case. This box provides a further level of screening between the baseband and RF sections of the transmitter. The RF output N-type socket is mounted through the case into the inner box and is soldered directly to the PCB, thus there are no RF cables floating around inside. Interconnections between the RF box and the main printed circuit board are via several feedthrough terminals carrying the baseband signal, power supply and frequency switching control signals.

The RF assembly is bolted to the main case with the same bolts securing the internal PCB via spacers. The N-type aerial socket is bolted to the RF box and a
clearance hole has been drilled through the main case. Thus, removal of the RF assembly and RF circuit board for servicing can be achieved with care. The circuitry features state-of-the-art surface mount technology.

Three adjustable knobs are provided inside the transmitter, and these are: a preset potentiometer for audio subcarrier injection level; a trimmer capacitor for the audio subcarrier frequency, and a preset potentiometer for the line audio level. Supply protection is via a miniature wire-ended fuse, soldered between two posts on the PCB.

Frequency stability

Two transmit frequencies are available on the transmitter, and these are selected via a front panel-mounted toggle-switch. As the unit has a crystalcontrolled PLL exciter, I expected the frequency stability to be good and, as Table 1 shows, it is. The review unit exhibited a drift down of 2200 Hz over a thirty-minute period.

Time	Frequency
Switch on	1249.02623
10 sec	1249.02611
20 sec	1249.02581
30 sec	1249.02569
40 sec	1249.0259
50 sec	12499.02558
60 sec	1249.0249
70 sec	1249.02543
80 sec	1249.02541
90 sec	1249.02538
100 sec	1249.02537
110 sec	1249.02535
120 sec	12499.02534
3 min	1249.02503
10 min	1249.02403
15 min	1249.02411
20 min	1249.02401
30 min	1249.02389

Table 1

Power output and harmonics

The RF power output was monitored over a period of half an hour at 1249 MHz (see Table 2). After twenty minutes, during which the power output dropped 0.37 W (0.65 dB), the output remained constant at 2.34 W . A similar check was carried out at 1255 MHz ; the switch-on power was slightly higher at 2.84 W , with the final output power settling at 2.54 W .
The harmonic content of the unmodulated output was very low, probably owing to the out-of-band rejection of the SC1043 PA output. The second harmonic was measured at slightly less than 50 dB down on the carrier. Third and subsequent harmonics were not detectable above the -75 dB noise floor of the analyser.

Video and audio characteristics

The CQ-TV-developed system for ascertaining a modulation index of 0.5 was used; ie, I applied a 5 MHz sine-wave to the video input and, viewing the output on a spectrum analyser, adjusted the video amplitude (deviation) from the signal generator so that the sidebands coincided with the recommended moduation index of 0.5 . The output from the signal generator into the transmitter was then measured and this level used as the reference output level from the Philips TV pattern generator for the plots shown in Figs 1 to 3.
Fig 1 shows the spectrum obtained
Table 2

Time	Power
Switch on	2.72 W
5 min	2.54 W
10 min	2.46 W
15 min	2.37 W
20 min	2.35 W
25 min	2.34 W
30 min	2.34 W

Fig 1

Fig 2

using a plain red pattern, Fig 2 shows the spectrum using 100% saturated colour bars and Fig 3, the spectrum with a Philips PM5534 test card.
The audio subcarrier generator, unless otherwise specified, is set to 5.9996 MHz
for UK use. However, the subcarrier oscillator trimmer capacitor is accessible with the unit's cover removed, and the subcarrier can be easily reset to 5.5 MHz , or whatever, for Continental use. At maximum video deviation the sub-
carrier level was measured at 17 dB below carrier, however, as the video deviation is reduced (using the front panel video control) the relative difference becomes greater. At minimum video deviation the subcarrier was measured at 32 dB below carrier (dBc).
With a standard video input level of 1 V $p-p$ the front panel video control was set at 50% to achieve a normally deviated picture. At this setting the audio subcarrier was measured at around 24 dBc , which proved to be adequate for good audio with P5 contacts. Nevertheless, I adjusted the subcarrier injection control on the main PCB and brought the relative level back to 17 dBc at this video control setting. This provided very good audio fidelity commensurate with picture reception.
Note: If the input video level to the transmitter is adjusted so that the video control on the transmitter is fully clockwise in operation, then the audio subcarrier level will be satisfactory without internal adjustment.

On-air fests and conclusions

Overall, I am very impressed with the workmanship and presentation of the transmitter. Upon receipt it was simply a matter of connecting 13.8 V , plugging in the camera and mic, connecting the aerial, switching on and adjusting the video and audio controls.
Furthermore, the output level of around 2.5 W is enough to drive a 2C39A valve linear (in my case, to an output of approximately 60 W). The colour-handling characteristics of the unit gave excellent results, as did the audio response, when tested over a P5 path.
My only criticisms are the lack of rear panel socket identification and the use of the soldered-in PCB mounted fuse.
With regard to the rear panel, while noone is likely to confuse the aerial socket with the power socket, confusion could occur over the two audio inputs and the video input. However, the manufacturers tell me that this is being attended to.
Turning to my other criticism, I think that changing the soldered-in PCB mounted fuse, should failure occur, could be a problem for some users.
However, on the whole I was so impressed with the transmitter that I am now running one myself.

The ULNA $23-24 \mathrm{~cm}$ GaAsFET preamp

The ultra low noise preamplifier is housed in a blue hammer-finished diecast box, measuring $110 \mathrm{~mm} \times 60 \mathrm{~mm} \times$ 30 mm , with N-type input and output sockets mounted one each side. The top cover of the box is secured by four crosshead screws.
Note: The housing is not waterproof and needs to be mounted inside a weather-sealed enclosure for external/ mast mounting.
The small PCB is secured by solder

Flg 3

Fig 4

tags, fixed to the PCB and secured on two of the N -type socket fixing bolts on each side. The dc supply is fed into the box via two insulated solder terminals, and features a reverse polarity protection diode.

The GaAsFET device is one of the latest devices from Avantek, the ATF10135. It is mounted on a vertical PCB screen and soldered to the main circuit board. A brass horizontal top-screen is soldered to the vertical PCB screen and

Fig 5
clamped to the side of the box under two of the output N -type socket retaining screws.
Input and output tuning trimmer capacitors are mounted at each socket respectively, and a bias preset potentiometer is located on the main PCB.

Bench tests

The plot shown in Fig 4 shows the gain over the frequency band from 249 MHz to 2240 MHz . The reference input level is -20 dB and the centre frequency of the plot is 1249 MHz . The 0 dB gain points are approximately 600 MHz and 1700 MHz . The 3 dB band is approximately 1150 MHz to 1500 MHz .
The plot shown in Fig 5 covers a frequency band from 1250 MHz to 1350 MHz , with a centre frequency of

1300 MHz . Over this frequency range, essentially the $23 / 24 \mathrm{~cm}$ band, the response is very flat, with a positive gain slope. The reference input level is -20 dB and the gain at 1300 MHz is 16.1 dB . The gain at 1249 MHz is 15.5 dB and at 1318 MHz is 16.4 dB .

On-air tests and conclusions

The flat, even response of the preamp over the $23 / 24 \mathrm{~cm}$ band enabled me to tune to signals at both the RMT2 repeater input and output frequencies (1249 MHz and 1318.5 MHz) without any loss of preamplification. This was a new experience for me, as my own home-brew GaAsFET preamp is a half-band unit, which requires retuning when tuning from one end of the band to the other.
Also, the very low noise figure exhi-

Specifications of the GaAsFet Preamp

Typical gain 17dB
Noise Figure 1dB
Bandwidth $\quad 1250$ to $1350 \mathrm{MHz} \pm 1 \mathrm{~dB}$
Rejection $\quad 8 \mathrm{~dB} @ 700 \mathrm{MHz}$ Dc Supply 7 V to 18 V
bited by the preamp means that the 15.5 dB of gain appears to be more when compared with results obtained from other preamps with higher gain figures. Noise figures are a complex subject which I will not go into here, but suffice it to say that this unit with its noise figure of 1dB will take some beating.
The preamplifier is a well-made unit which performs well, and I recommend it to anyone who requires a preamp for the $23 / 24 \mathrm{~cm}$ band.

Both units are available only through the Severnside Television Group. The Aztex TVTX 24cm FM ATV transmitter is priced at $£ 220.00$ plus £2.50 p\&p, and the Aztex ULNA 23-24cm GaAsFET preamp is priced at $£ 52.00$ plus £1.50 p\&p. For further details contact the Severnside TV Group, 15 Witney Close, Saltford, Bristol BS18 3DX, tel: (0255) 873098.

- Ken Williams with an alternative approach to selecting valves for linear amplification

One of the great disadvantages of battery operated equipment is that it suddenly stops working without warning as the battery dies. An indicator lamp can be fitted but this decays at the same rate as the battery, so it is not a lot of help. What is required is a system which could be set to switch on an indicator at some preset level.

Comparator

Fortunately such a device can be built easily and cheaply. The main part of the circuit is a 741 integrated circuit which is generally used as a high gain amplifier, but the 741 has other uses as well. This is because the op-amp has two.inputs, a non-inverting and an inverting one. The difference between them is that as a voltage on the non-inverting input rises so does the output voltage, but on the inverting input the opposite occurs.

Creulit
 In Fig 1 the circuit will check the vol-

tage on its own supply line. The LED will not come on until the supply voltage falls to some predetermined value.
One of the inputs is supplied with a reference voltage which is set by R1 and ZD1, the other is supplied through the preset VR1. These two lines may be taken to the 741 as shown, or the connections may be reversed, depending on whether you want the light to come on when the volts are over or under the preset value.

Indicator

The output of the 741 drives a BC107 which is used to switch on the light. However, this is not really required as the 741 is able to carry the LED current without assistance.
The point about the BC 107 is that it can be used to fire a relay or sound an alarm, the current requirements of which would be beyond the capabilities of the 741 .

Sot up

This is simply done. Firstly, connect the
completed assembly to a power supply, then set the supply volts to the level at which you want the indicator to come on. Secondly, adjust VR1 until the lamp either comes on or goes off, depending on which way you have wired the inputs to the op-amp.
If you want to monitor a line other than the supply line to the op-amp, simply connect the negative lines of the two supplies together and then disconnect the top of VR1 from the op-amp rail and connect it to the line you wish to monitor.

Parts List		
R1	$1 \mathrm{k} \Omega$.25 W
R2	$1.2 \mathrm{k} \Omega$.25 W
VR1	$10 \mathrm{k} \Omega$	preset
IC1	741	op-amp
TR1	BC107	
IND1	LED	
ZD1	5.6 V zener	

Fi. 1: Comparator circuir

Callsigns

As you are well aware the number of callsigns that can be issued in the existing G sequence is rapidly coming to an end. The only series left available are in the G5 and G9 sequences. Of these, it is, intended to use the G5 as the next allocation for class B licensees. The G9 series has always been issued as an experimental and development licence, so it's not available to the amateur fraternity. Where do we go from here?

Alternatives

It had been assumed for many years that when the existing G series was no longer available that we would move to a similar system based on the letter M, which is also an international British allocation. There is also the possibility of using the figure two, which would result in such horrors as $2 A 1 A B C$. At the moment, we still have what remains of the G4 series for class A stations plus what is left of the G7 series and the whole of the G5 series for class B.

Fresh start

It is obvious that more class B than class A licences are issued, so it is uncertain as to which will run out first.
The DTI have decided that the new system will be implemented from the time that either series expires. All new licences will then be issued on the new system and any unused callsigns in the old system will not be issued.

New system

As expected, the proposal makes use of the M series but in a completely new form. All callsigns will consist of six digits instead of the current five and will be in the form MA2XYZ. The first letter will indicate the UK rather than a specitic country. The second letter will indicate the class of licence.
The RSGB suggest that MA to MJ could be used for class A and MK to MZ for class B, with MB being used for special event stations and MC for club stations.

Countries

The figure in the callsign would indicate the country by using the following codes: $1=$ spare; 2=England; 3=Scotland; 4=Wales; 5=Northern Ireland; $6=$ Isle of Man; $7=$ Jersey; $8=$ Guernsey, and 9 and 0 are held as spares.
For example, if the class A station MA2ABC moved from England to Wales the callsign would change to MA4ABC.
One drawback of this new system is that DX stations would find it far more difficult to know which country a station was in than under the existing one. At the moment, the distinction between G3ABC and GW3ABC is very obvious.

Novice

Now we come to the shock horror bit. It is proposed that the novice licences be issued in the 2A1AAA to $2 Z 9 Z Z Z$ series. At least they will be instantly recognisable! The second letter in the callsign would indicate the status as Novice A or Novice B class. The figure would indicate the country, based on the codes set out earlier, and the aforementioned rules would apply when moving from one country to another.

Even more

The most exciting proposal is that club stations would be allowed to use two different prefixes. They would use the normal call for all usual operating and a special one for when greetings messages were being sent.
The codes would then become GX for England; GS for Scotland; GC for Wales; GN for Northern Ireland; GT for the Isle of Man; GH for Jersey and GP for Guernsey.

Crazy

This really does seem ridiculous. Most greetings messages go overseas so rather than using GC for Wales, why not stick to the established GW which is internationally known already? Equally, why use GS for Scotland when GM has been well established for the last
seventy years? Not only would this avoid any confusion but it would retain a nostalgic link with past practices.

Comments

Although these are simply proposals for discussion, I suspect that there will not be any major alterations when the final details are announced.

The RSGB have asked for comments on these proposals, and these should be sent to the RSGB, Cranbourne Road, Potters Bar EN6 3JE.

Now is your chance to make your views known; don't moan about it when it is too late.

Morseless?

There have always been those among us who have wanted to see the Morse test dropped as a requirement for an amateur licence. The official reply has always been that it is not a local but an international regulation and, as such, it must be suffered. In fact, the walls of this regulation were breached some years ago by the Spanish authorities; who will issue a codeless licence. Now an international abandonment of the Morse requirement seems possible owing to events taking place in the USA.

ARRL

For those of you who are not aware of the US system, it consists, as it does here, of two parts.
The first is the national society, the American Radio Relay League or ARRL, which is the US equivalent to the RSGB. The second is their version of the DTI, which is known as the Federal Communication Commission or FCC. They also have more classes of licence than we do, with each class having greater privileges but requiring a higher test standard.

Classes

The present class structure is Novice, Technician, General, Advanced and Extra. The Technician and General grades are roughly equivalent to our B and A licences but with higher power levels.
To simplify things the ARRL want to replace the Novice and Technician grades with a single group, to be known as the Communicator class. The ARRL submitted a formal application for the change to the FCC on 8 February and the matter is now under discussion.

Good news

How does this affect the Morse requirement? The major news is that the ARRL have requested that the new class should not need a Morse pass. The idea is that it will be a multiple choice exam of sixty questions drawn from a question bank. Passing this would allow the user up to 200W PEP on bands ranging from HF to microwave.
The main point is that if a large number of American amateurs are allowed on the HF bands without passing a Morse test, then they have effectively driven a horse and cart through the international reg-
ulations. Once this happens, surely the rest of the world must follow?

Awards

Only two awards have been issued this month and both go to G1IWQ, who is located near Spalding. His first claim is for a 144 MHz Bronze certificate with a best DX to FD1YGA at just over 800 km . He also claims a 144 MHz Silver award, this time with a best DX of 1104 km to OKIVEI.

All the contacts were made on SSB with a maximum power of 10 W .

Activity

The RSG8 have announced the dates for this year's series of microwave cumulative awards.
There have been two slight changes to the rules. The first is that the series has been extended from the usual six days to seven.

The second is that they have gone back to the old idea of having activity on all the upper microwave bands $(3.4 \mathrm{GHz}$ and above) on each day, instead of mixing bands and dates.

scoring

The usual format of adding the score for the best three days to make your final entry still applies. This is an excellent idea because not everyone can take part in all seven events.
The dates still to come are 10 June, 22 July, 19 August, 9 September and 6 October. The last of these also hosts the

IARU VHF/UHF competition which is held over the same weekend.

Packef

Packet is probably the fastest growing area in the amateur radio field, but it does have its problems. The worst of these is that the local box spends all its time talking to other boxes so as to exchange files. The original idea was that this should be done in the small hours of the morning, so leaving the box free for users during the day.

This worked well when there were not too many people on the system but, now that so many operators are using it, the volume of traffic to be passed means that the box has to spend all day talking to other boxes just to keep up.

Priortly

As an example of what can happen, I made twenty attempts, spread over three days, to get into a local BBS with no result. Surely the purpose of a $B B S$ is to serve its users, not to spend all day talking to other boxes?

What is needed is a priority interrupt built into the software to enable an end user to get in, no matter what the BBS is doing at the time.

Connecting

It would work like this. Imagine that GB9ABC is exchanging files with GB9XYZ when G9BF wants to use the system.

G98F sends a connect request to GB9ABC and the box responds with an acknowledgement and asks him to wait until the current task is completed. It then accepts the rest of the file it is currently handling from GB9XYZ, closes the link to GB9XYZ and connects to G9BF, asking him to go ahead.

At most G98F would have had to wait a couple of minutes to get in. He then makes use of the box and when he clears, GB9ABC reconnects to GB9XYZ and the file transfer continues.

Software

This method would give more or less immediate access to the BBS and so end the frustration that is currently building up. Commonsense tellis us that no system should be involved in house-keeping tasks when there are end users waiting to use the facilities, particularly when the present way of operating means that users can be effectively 'locked out' for hours at a time. The best part of the suggestion is that it can be accommodated by a simple rewrite of the software to include the new facility.

Close-down

That's all for this month. The SporadicE season should be in full flow by the time you read this and that means you will want to know about our awards, so drop me an sae. The address is 81 Ringwood Highway, Coventry CV2 2GT, or contact me on packet at GB7NUN.

ARE YOU A BUDDING WRITER?

We are particularly keen to receive construction articles, so if you have designed and built a project which you think could be of interest to fellow radio amateurs we would be pleased to receive your contribution.

You do not need to be an expert writer to see your name in print. Accuracy in the design of your project is far more important. If you can put your ideas down on paper, typewritten if possible, and illustrate them with clear drawings and photographs where appropriate, the Amateur Radio editorial team will sort out the style, grammar, spelling, etc.
If you have an idea which you wish to discuss with the Editor before submitting in article form, he will be pleased to receive your call.
We will, of course, pay for all articles which are accepted for publication.

FRE
 C

FREE CLASSIFIED ADS CAN WORK FOR YOU

We are pleased to be able to offer you the opportunity to sell your unwanted equipment or advertise your 'wants'.

Simply complete the order form at the end of these ads. Feel free to use an extra sheet of paper if there is not enough space. We will accept ads not on our order form.

Send to: Amatour Radlo ClessiliedAdes, Sovereign House, Brentwood, Essex CM14 4SE.

DEADUNE AND CONDITONS

Advertisements will be pubilshed in the first available issue on a first come first served basis. We reserve the right to edit or exclude any ad. Trade advertisements are not accepted.

FOR SALE

Ex-service equipment: RX107T, ZA25266, NO1765, RX208, ZA10083, RGD 3057 (plus circuits and diagrams), RX2109, two 'scopes/radar, W6172, FR960AP, PSU test set, signal lamp, offers? Tel: (0473) 830147

- FT-73R with case Ni-Cads, S/man, £200.000. Minolta 5600 A/F SLR camera, with $70-210 \mathrm{~m}$ telephoto lens, also includes data power pack flash, and cases, new, £260.00. Tel: (0473) 85203 - Yaesu FT 757, $£ 550.00$ AH7000 super wideband omnidirectional discone antenna, $25-1300 \mathrm{MHz}$, £35.00. Super Star 360, some mods, will convert to $10 \mathrm{MHz}, £ 125.00$. Frequency counter, $£ 35.00$. Monochrome TV, UHF/VHF, battery or mains, slight fault, £12.00. AR900 hand-held scanner, £165.00. Super Star 2000, £125.00. Major 588 AM/FM/SSB, $£ 100.00$. Belcom LS 102L, $£ 250.00$. Tel: (0283) 221870
- Hitachi V-222 oscilloscope, 20 MHz , dual-trace facility: external drive for DUM etc; Black Star M100 frequency counter, $5 \mathrm{~Hz}-100 \mathrm{MHz}, £ 300.000$. All leads and probes inclusive. Tel: (0323) 640749 - Salora 1150 satellite receiver, 90 cm patio mount dish, LNR full 950 to 1750 band, $£ 450.00$. Tel: (0539) 727659 after 6.00 pm
- Fluke 77 multimeter, $£ 50.00$. Clamp meter, £15.00. HV probe, $£ 15.00$. AVO multimeter, $£ 20.00$. Megger, $£ 100.00$. Tel: 081-554 2913 between 6.00pm and 8.00 pm
- TS830M HF transceiver, complete with AT 230 ATU and SP230 speaker unit with filters, all boxed with manuals, $£ 820.00$. Ham International multi-
mode, eleven CBs, converted to 10 m , includes LSB, USB, AM and FM with 10 m preamp, £90.00. Tel: (0462) 435248 after 6.00 pm
- Apple II 64 k computer with games, mono monitor, two disc drives and printer need repair. Also Serus computer with monitor, keyboards, two $51 / 4$ disc drives, $10 B$ hard drives and printer. All works but have no software. Tel: (0248) 600486 ask for Aubrey
Icom IC-275E, 15W 2 m base station, 8700.00 . Icom IC-575A, $10 \mathrm{~W}, 2850 \mathrm{MHz}$, dual-band base station, $£ 700.00$. Yaesu FRG7700, $£ 300.00$. Nikko amp, $£ 15.00$. Luxor speakers, $£ 10.00$. Two small LW, MW radios, $£ 1.50$ each. $28-50 \mathrm{MHz}$ antenna switchover unit (ex-Icom 20), $£ 10.00$. Write to: Mike DeWinter, Marton Road, Toll Bar, Doncaster; South Yorkshire DN5 ORF
- Century 22 with built-in keyer, including crystal calibrator, circuit breaker, PSU, MFT 941D ATU and FRG7 comm receiver, all mint condition, complete with manuals, Tel: (0484) 645923 ask for Jeff
- Wind up tilt down tower, 80ft £500.00. 204BA 20 m Yagi, $£ 165.00 .40 \mathrm{~m}$ Yagi 204BA, $£ 175.00$. K2RIW 70 cm amp heavy-duty power supply, 500W output, $£ 650.00 .40 \mathrm{~cm} \times 250 \mathrm{~cm}$ base, $£ 10.00$. Tel: (084 421) 3381
- Sony CRF-220 world-zone transceiver, offers? Tel: 061-743 1570
- AR40 rotator, $£ 60.00$ ono. Icom 1050, 10FM, with Nevada power amp $29 \mathrm{MHz}, 25-30 \mathrm{~W}$, FM, RF. Tel: (0532) 524222 ask for John
- Trio TS 130 HF Tx/Rx, 80 m to 10 m plus WARC
bands, 100 W plus ext VFO 120, manuals, $£ 425.00$ ovno. Icom LC290D multimode, 5-25W plus 8A PSU, £325.00 ovno. Tel: (0278) 74369
- FT-290R with mobile-mount, Ni-Cads charger, soft case, Slim Jim, multi P6 and other antennas, SWB, £325.00. Tel: 021-353 2371 evenings only

WANTED

- Uniden T2830. Will pay £230.00. Tel: (0283) 221870 - 934 preamp and 934 mobile aerials. Tel: Langton (0892) 863651
- Diagram copy for Eddystone 830/8. Tel: Tony (0203) 598587 after 6.00 pm
- The Royal Signals Museum wishes to obtain items for display. Donations of documents, photographs and equipment relating to the history of army communications will be greatly appreciated. Funds are available for items of particular interest. Please contact H Colborne, 31 Long Walk, Ashford, Kent TN23 3HJ. Tel: (0233) 640616 - Scanner, ie, AOR2002, Bearcat, PRO2004, anything considered. Also $2 m$ hand-held $T x / R x$ and cheap HF rig, working or faulty. Signal generator and 'scope also wanted. Tel: (0843) 294446
- Cheap, working/not working transmitters, any frequency, to be used as spare parts, or even circuit diagrams. Also, low cost video camera for SSTV and home videos. Write to: Anthony Gallagher, Hillcrest, Harmony Heights, Castlebar, Co Mayo, Ireland
WWII military wireless W512, W522, and W533. Tel: (0908) 373114. Will collect within radius of 150 miles

FREE CLASSIFIED AD FORM

Send to: Amateur Radio Classified Ads • Sovereign House Brentwood •ssex CM14 4SE
Classification: (tick appropriate box) If you want to insert ads under more than one classification use separate sheets for second and subsequent ads
For Sale \square Wanted.
USE BLOCK CAPITALS (One word per box)
To avoid mistakes please write clearly and punctuate your ad

Name/Address PostooderTelephone							

USE SEPARATE SHEET FOR MORE WORDS
Ensure that you have included your name and address, and/or telephone number
CONDITIONS: Ads will be published in the first available issue on a first come first served basis. We reserve the right to edit or exclude any ad. Trade advertisements are not accepted

COMMUNICATIONS Aerials \& Lashing Equipment

Name

Address

Post Code

for a free catalogue $+20 p$ to cover postage

The Commurications Centre King Williem Street, Ambiecole tountridge, Weat Mediente. DY8 4EY Tchaploner (0384) 350944

JAYCEE ELECTRONICS LTD

(1.7) 20 Woodeide Way, Clerrothes Fif KY7 5DF
Tek 0592 750062 (Day or Night)
Open: Tues-Fri 9-5; Sat 9-4; Sunday by appointment Good range Kemwood \& Yeceu etc, plus Quality Secondhand Equipment

mall of	
PROCOM Electronics.	
ELECTRONIC DISTRIBUTOR	
Specialising in Electronic Components and Surplus. Open Mon to Sat Closed Tuesday	
13 Clarence Arcade O70WQ G7ARR Stamford Strect, Ashton-U-Lyne, Lenceshire	
Stamford Strect, Ashton-U-Lyne, LanceshireOL6 7PT Tel: 0613432782	

Selectronic

Radio communications and scanning receiver specialist 203 High Street Canvey Island, Essex, Tel: 0268691481 (Open Mon-Sat 9-5.30) Amateur radio equipment also in stock

IAN FISHER COMMUNICATIONS OF STANHOPE
CB Works, The Market Shop, Market Place, Stanhope, County Durham z (0388) 528464
Main Distributors of 27MHz CB radios and the NEW CEPT models including UNIDEN and ONT
Including U.K. and CEPT walkie talkies from $\mathbf{~} 45.00$ each,
Rather good $1 / 2$ mile radius 2 channel walkie talkies 5750 each Large stocks of coaxial cable, plugs, sockets and adaplors. Jupiter MVT/5000 Scanner receiver covering 25 MHZ to 1300 MHZ . Price on request

ARBAMD RADO

The very latest academy multiband radio AN/100 54MHZ to 176 MHZ . With single aerial $£ 20$ + postage. With twin aerials $£ 20.50+$ postage.
All available via mail order. Retail/Wholesale
OPEN: MON-SAT 10.30am-6.00pm SUN 2.30-4.30 RING FOR DETAILS (0388) 528464
MRZ COMMUNICATIONS LTD NEWCASTLE UNDER LYME

RADIO EQUIPMENT

business	alr
marine	amateur

TEL: (0782) 619658 7 DAY SERVICE

This method of advertising is available in multiples of a single column centimetres (minimum 2 cms). Copy can be changed every month.

RATES

per single column centimetre:
1 insertion $£ 7.00,3-£ 6.60,6-£ 6.30,12-£ 5.60$.

TO: Amatour Radio - Sovereign House Brentwood • Eseex CN14 4SE . England • (0277) 219876
PLEASE RESERVEcentimetres by...............columns
FOR A PERIOD OF 1 issue........ $\square 3$ issues....... $\square 6$ issues....... $\square 12$ issues........ \square COPY enclosed.a..... \square to follow........ \square

Cheques should be made payable to Amateur Radio. Overseas payments by International Money Order and PAYMENT ENCLOSED: (Add 15\%VAT).... $E \quad-\quad \begin{aligned} & \text { Amaternatio } \\ & \text { by internatio } \\ & \text { Credit Card }\end{aligned}$
\square
\square
\square
\square

CHARGE TO MY ACCOUNT....... \square CREDIT CARD EXPIRY DATE $\square \square / \square \square$
COMPANY
ADDRESS
SIGNATURE ... \square

SOUTH YORKSHIRE

NEW COMPONENTS KITS TRANSISTORS UC AND SURPLUS EQUIPMENT MAIL ORDER CATALOGUE SEND CO/PO FOR \&1.50

ss Rawmarsh Hill,

 Porkgate, Rotherham,South Yorks S82 GEX
Open Six Days
Mon to Sat
Phone (0709) 527109

MAITUALS/USERS GUIDES

Low cost with the professional touch

A4 or A5 sizes

Line drawings, table of contents and index
Draft copy for your approval Supplied printed or ready to photocopy
C.C.P. 8BHEMING ROAD,

WASHFORD, REDDITCH B98 OEA or call 0527545322

2 Nominampion
 Communication House, Staveley Way

 Brixworth Northampton NN6 9EU

For all those bits and pieces

Tel: (0604) 882133/882067
Fax: (0604) 880805

ST COMUMMUNICATION SYSTEMS LTD

25 CLARIMOWT ROAD,SALFORD,MAMCHESTER MS 7RS aT Lism Professional repairs service to your amateur radio equipment. Any make of radio or scanner.

Please telephone Steve. Andy or Neil to book in your radio.
061-7361705
061-7457389
After Hours 083-6275005

TURN YOUR SURPLUS

IC's TRANSISTORS etc, into cash, immediate settlement. We also weicome the opportunity to quote for complete factory clearance. CONTACT:

COLESHARDING : CO
103 South Brink, Wisbech, Cambe
TEL: 0948 584188Fテx. No. 0945-588844 Est Over 15 years

9 BAND RECEIVER

6 Shortwaves plus Air-Band/ FM,MW and LW. Excellent Shortwave Band-Spread and
Sensitivity. Led Tuning indicator, uses Sony IC CXA-1191. Compact design £26.95 inc, carriage and insurance.

DAC Electrical Dept. AR 20 The Wharf, Shardlow, Derbyshire, DE7 2GH

THE ELECTRONICS SHOP

We stock a large range of electronic components, teet equipment, telephone accessories, computer accessories, microphonee, speakers, disco lighting, mixers, moters, stylus. So call in and have a look eround. 29 Hanging Ditch, Mancheoter M4 35S Tolephone: 061-834 1185 ㄷ.1

```
Resistors 1/4w 5% carbon E12 1p 1% metal film 3p
Resistor pack 85 different E12 values + zero ohm link total conten
l
Stapping motor 4 phase 12v 7.5' step 50 ohms..
SAAce% stepping motor driver chip..
```

FM Transmitter kir good quality sound.
High quality photo resist copper clad epox gaards

Dlanonelorm	Stagte shded	Douthe ald
3×4 inches	\$0.96	\$1.07
4×8 inches	\$2.40	32.08
6×12 inches	88.37	
12x12 inches	\$10.es	

spectel oftiert

Computer grade capachors with screw termunals 38000uf 20v ...s2.00
Brocout tov $\$ 1.98 .68000 \mathrm{ff} 15 \mathrm{v} \$ 2.85 .1000 \mathrm{uf} 18 \mathrm{v} \$ 1.50$ 7 segment common anode led display 12 mm $\begin{array}{r}. . . .46 \\0 .85 \\ \hline 0.80\end{array}$
 74 LS05 hex invertor $\$ 10.00$ per 100 . used 8748 Microcontroler $\$ 3.80$ Stereo LW/MW/FM Tuner/preamp assy with volume/tone controls a tct for above 80.50 . 5 -digit $\theta \mathrm{v}$ electromagnetic counter $\$ 1 . \mathrm{E}$ Hour counter used 7 digit 240 v ac 50 Hz 50.88 LCD Ditplay 18 digit 7×5 dots dot matrix
 Wide range of cmos chitrs tools. etc always in stock
clease add $95 p$ P $P+P$
vAT included JPG Electronics,
276 Chetsworth Roed, Chesterifidd 840224 Accese sid Vise Orders (O246) 211202 cellers welcome

OUARTZ CRYSTALS and FILTERS
Large numbers of standard frequencies in stock for amateur, CB, professional and industrial applications. Stock crystals 玉8.00 each (inc VAT and UK post). Any frequency or type made-to-order from \&o.50. Phone or SAE for lists
colledge electronics
Merriot, Somerset TA16 5NS Teli (0480) 73718

R F\& MICROWAVE!

Design \& Test Engineers seeking top positions, from satcomms to CT2 should contact the specialists!

GARIBALDI RECRUITMENT

 160 Bellingdon Road Chesham HP5 2HF 0494773918GUILDFORD COMMUNICATIONS 34 Aldershot Rd, Guildford

Special discounts on Bearcat receivers and Jaybeam aerials

Open Mon-Fri 8am-6.30pm
Sat 8am-5.30pm
Secondhand wanted

AGRIMOTORS

MrTON CB AND RADIO CENTRE MERTON CARMGE AND POST OFFICE, MERTON. If OAKHAMPTON, DEVON EX20 3DZ
OPEN 6 DAYS $9.30-5.30$ LUNCH 1-2pm
EARLY CLOSING THURSDAY 1.00 pm
(SUNDAYS BY APPOINTMENT)
SPECIALIST IN 934 MHZ
SUPPLIERS OF ALL. 27 MHZ AND 934 MHz EQUIPMENT AMATEUR ACCESSORIES CATERED FOR 08053200

USED AMMATMR E@UTPMENTR

I buy, sell and exchange
For the deal you've been looking for, phone Dove. GatNy. anytime on (0708) 862841 or (0836) $20153090 \mathrm{~cm}-7 \mathrm{pm}$ Tues-Sot or send SAE
personal callers by appoiniment plecse OGTNY Anctour Radio
UNT 14, nMRROCK COMMERCUL CENTRE, JULET WAY, SOUTH OCKENDON, ESSEX, RMIS AYO.

icom KENWOOD YAESU Alan Hooker Electonics

42 Netherhall Road, Doncaster Tel: 0302325690 Open Mon-Sat 10-5pm Closed Thursdays

Abstract

COURSE FOR CTTY \& GUllos, Radio Amateurs Examination. Pass this important examination and obtain your licence, with an RRC Home Study Course. For details of this and other courses (GCSE, Career and professional examinations, etc) write or phone - THE RAPID RESULTS COLLEGE, Dept JS100, Tuition House, London SW19 4DS. Tel: 081-947 7272 (9am-5pm) or use our 24hr Recordacall service 081-946 1102 quoting JS100.

NEXT ISSUE OF

ADVERTISERS INDEX
Advanced Electronic Products Ltd 43
Air Supply 14
All Formats Computer Fair 14
Brian J Reed 17
Bull Electrical 44
Candy Club 38
PM Components 4,5
Display Electronics. 2
GCHQ 14
GWM Radio Ltd 17
L F Hanney 17
ICOM 22,23
Radio \& Telecommunication Correspondence School 17

COFH

Except for County Guidea copy may be changed No adrm for illustrept for colour separations). ar artwork Colour Ad rates do not include the cost of emparatione Primted - web offeot.
panment
All sing payment basis only, unicess an accepted on a preAccounte will be openedior series rate advertisors Acjoct to setiefactory credit refarances publication date. Overseas payments by imfernational Money Order or credit card mommarron contact Amaticur Radio, Sovareign House, Brentwood. Estex CM14 4SE (0277) 218876

conomons

 14 4SE.0\% discound if advartising in both Amataur Radio A voucher copy will be sent to Display and Colour Ads accersted subl to our atandard conditions\square

Amateur
 - the monthly magazine for all two-way radio enthusiasts

AVOID DISAPPOINTMENT

Place a regular order with your newsagent

NEWSAGENT ORDER FORM
To (name of newsagent)
Please order a copy of Amateur Radio for me every month
NAME.
ADDRESS.
\qquad

RESSTORS

Carbon Film 0.25W E12 or E24 series $1 p$ each (min quantity 10 per value), 80 p per 100, £6.00 per 1000 .

** Special Offer **

 Mixed Pack, of 1000 Carbon Film resistors, 1R to $10 \mathrm{M}, 100$ different values all separately packed and labelled, only c5.90Metal Film 0.25/0.5 W E96 series 10 R to 1 MO 4 p each (min quantity 10 per value). £3.00 per 100 .

Ceramic/wirewound

 4W 0R1-10K 35p each 7W OR33-12K 37p each 11W 0R68-10K 40p each 17W 1R-10K 44p each 5% discount on $10+, 10 \%$ on $25+, 20 \%$ on $100+$Skeleton Pre-Sets
E3 series 100R-1M 20\% Horizontal or vertical 18 p each. 5\% discount on $10+$ 10% on $25+, 20 \%$ on $100+$

Enclosed Pre-Sets
100R-10M 20\% Horizontal or Vertical 24 p each. 5% discount on $10+, 10 \%$ on $25+$. 20% on $100+$

20 Turn $3 / 4$ " Cermet Pots 10% tolerance $10 \mathrm{R}-2 \mathrm{M} 90$ p each. 5% discount on $10+$, 10% on $25+, 20 \%$ on $100+$

IfANSSTORS

BC107B. 20p
BC108B...............................20p
BC109C
20p
22 p
BC184C
. $.6 p$
BC212B.
BC239C
...6p
BC307C
BC548C
BC558C
2TX300.
The above are a few examples from the 1000s of transistor types we have. We cover all ranges and types including JFET, SIPMOS, TMOS, TIP plastic \& metal, FET \&
Darlingtons.

RECULATORS

7805 5V @ 1.5A. 30 p
7812 12V @ 1.5A 30p
7815 15V @1.5A
7905-5V@1.5A
7912 -12V@1.5A
7915 -15V @1.5A

CAPACITORS
Radial Aluminium Electrolytic 20\% tolerance

CAPACITORS

Disc Ceramic 5\% tolerance 150 Volt values in pF 15, 22, 33, 47, 68, 100, 150........ 4p 220.330, 470...........................6p
10% tolerance value in pF $220,330,470,680,1000,1500$,

$+80 \%-20 \%$ tol value pF

 4700, 10000
GuO

22000,470006p
Tant Bead resin dipped 20\% tolerance value in $\mathbf{U F}$ 6.3 Volt

16 Volt

10, $15 . \ldots$.	
10, 15	

22, 33...

25 Volt
1, 2.2,3.3 15p

10,15.............................. 35p

35 Volt

\star KIIS \star KIIS \star KIIS

ALL KITS ARE SUPPLIED WITH MAINS TRANSFORMER, HIGH QUALITY GLASS FIBRE SILK SCREENED PCB, FULL INSTRUCTIONS, HEATSINK, SOLDER ETC. CASE NOT SUPPLIED BUT AVAILABLE

CONSTANT CURRENT NI-CAD CHARGER Charge your Ni-Cads safely, can
$£ 7.50$
be left on indefinitely without damage, batteries fully charged from flat in approx 18 hours. Charge up to 12 batteries in series (except PP3)

5AST NI-CAD CHARGER Rapidly charge your Ni-Cad racing pack from mains £10.50 or 12 Volts. Charger guarantees a full charge every time, making maximum use of your pack

BENCH POWER SUPPLY 2.5-35 Volt @ 2 Amps The following spec
$£ 8.00$
ensures excellent value for money for this most essential of workshop equipment. Line Reg 0.03%, Load Reg 0.1%, Ripple Rejection 70dB, Output Res 1.5 milliOhm, Output Noise 80uV

10 Amp BENCH POWER SUPPLY 5-33 Volt Use for powering CB/Ham
£32.00
Radios, or a very high powered bench power supply. Spec as $2 A$ version above

HUNDREDS OFKITS AVAILABLE - SEND FOR LIST

1990 CATALLCNJ

OUR NEW CATALOGUE LISTS THOUSANDS OF COMPONENTS, SWITCHES, RELAYS, BUZZERS, SOUNDERS, FIXINGS, CHEMICALS, PCB MATERIAL, CABLE, MODULES, METERS, SOLDER, CONNECTORS, PLUGS, SOCKETS,
TRANSFORMERS, INDUCTORS, PLASTIC \& METAL BOXES, AND LOTS, LOTS MORE - IN FACT, EVERYTHING YOU NEED
£2.50 (INCLUDING 5 £1 DISCOUNT VOUCHERS)

ADVANCED ELECTRONIC PRODUCTS LTD PO B0X 10, Newton Abbot, Devon TQ12 1JP Tel: (0626) 332091 Fax: (0626) 332381

MAIL ORDER TERMS: POSTAL ORDER OR CHEQUE WITH

 ORDER. PLEASE ADD 75p POST \& PACKING FOR COMPONENTS AND E2. 75 FOR KITS TO ORDER VALUE AND THEN 15\% VAT. ACCESS \& VISA HOLDERS PLEASE PHONE ORDER BEFORE 4.45PM FOR SAME DAY DESPATCH. ALL ORDERS UNDER 750 Grms SENT BY FIRST CLASS POST. OVERNIGHT CARRIER E9BAKERS DOZEN PACKS

T

want．Note the figure on the extreme left of the quantity of items in the pack．finally a short description
13A spurs provide a fused outlet to a ring main
where devices such as a clock must not be witched off． fixing clamps．
／rin speaker cabinet ideal for extensions，takes ur speaker．Ref BD13
surprising what you can
5 watt loudspeaker two unit crossovers．
BOAC stereo unit is wonderful breakdown value． Nicad constant current chargers adapt to charge most any nicad battery． embrane stretches and air becomes damper the 13A rocker switch three tags so on／off，or change ver with centre off
ically adjust for lengthening and shord，autom riginal cost $£ 40$ each． Neon valves，with serie

hight lights．

Mini uniselector，one use is for an electric jigsaw puzzle，we give circuit dlagram for this．One pulse into motor．moves switch through one pole． Suck or blow operated pressure switch．or it can water level in water tanks． 6 V 750 mA power supply，ni input and 5 V output leads．
ectifier boards，each contains a 400 V 2 A bridge ectifier and 14 other diodes and rectifiers as well Plastic boxes approx 3 in，etc．
hrough top，so ideal for interrupted square hole Motors for model aeroplanes．spin to start so Microphone inserts
speakers．
sets with notes on met 16 reed s witches and 4 coil adgets． Safety cover for 13A sockets－prevent thos
inquisitive little fingers getting nasty shocks． Neon indicators in panel mounting holders wit lens．
amp 3 pin flush mounting sockets make a low cost disco panel．
lains solenoid．very powerful，has 1 in pull or Keyboard switches－ma
many other applications．
Electric clock．mains opera
horn．Slightly soiled but ok．
hate a noise able
Panostat．controls output
eads with to boil．
mains connectlons etc
blong puth switches for bell or chimes， an mains up to 5 amps so could be footswitch itted into pattress．
Mini 1 watt amp for record player．Will atso change Tubular dynamic mic with optional table rest． Miniature driver transformers．Ref LT44．20k to entre tapped．
$\begin{array}{lll}\text { BD548 } & 2 & 3.5 \mathrm{~V} \text { relays each with } 2 \text { pairs changeover contact }\end{array}$ BD667
There are over 1,000 items in our Bakers Dozen List．If you wart a complete copy，please request this when ordering．
GEIGER COUNTERKIT includes PCB to build a gv Geiger counter only £39．00 Ref 39P1
ALKALINE PP3 BATTERIES These are past the sell－by date but test OK，only 2 for $£ 1.00$ Ref 80758
11／4 FUSE HOLDERS 5 for $£ 1.00$ Ref 8D752 UNCASED KEYBOARDS 8rand new 100
mounted on PCB with components only $£ 3.00$ Ref 3 P89
TOASTERS 2 slice with browning control．may need slight
attention onlyu £3．00 Ref 3 PB4
WICROWAVE CONTROL PANEL
年

EQUIPMENT WALL MOUNT

SUB－MIN TOGGLE SWITCH Body size $8 \mathrm{~mm} \times 4 \mathrm{~mm} \times$ 7 mm S8
80649.
COPPER CLAD PANEL
AD components and could $1 / 16 \mathrm{in}$ ）so this would support quite heavy Dice 1 Our ref BD683
TV SOUND TUNER

POWERFUL IONISER

similar circuits．Will refresh your home office workroon

 etc．Makes you feel better and work harder－a completeMAIL ORDER TERMS：Cash，PO or cheque with order．Please add $£ 2.50$ service charge．Monthly accoun Access and B／Card orders accepted－minimum $£ 5$ ．Fhone

REAL POWER AMPLIFIER
or your car，it has 150 watts
20 Hz and signal to noise ratio better than 60 dB ．Has built－in short circuit proteotion and

REAL POWER CAR SPEAKERS

 mid－range and timeeter andealo wor
STEREO CAR SPEAKERS． per channel．3in woofer， $2 i n$ mid－range and tin tweeter．Again，in a
super purpose－built shelf mounting unit．Price per pair $£ 28.00$ VIDEO TAPES

ELECTRONIC SPACESHIP Sound and impact controlled
responds to claps and shouts and
reverses when tits anything．Kit
with really detailed instructions．
ideal present for budding young
electrician．A youngster should be
abte to assemble but you may have to
help with the soldering of the
components on the PC8．Complete
kit 10 ．Our ref 10 P81．
12 in HIGH RESOLUTION MONITOR Ambe

COMPOSITE VIDEO KIT

ALSO AVAILABLE WIH ALSO AVAILABLE WITH GEARBOX BUSH RADIO MIDI SPEAKERS reflex system．using a full range din driver of 4 ohms impodance Mounted in very nicely made black fronted waln ut fin ish cabinets．
Cabinet size approx 8 8inin wide． 14 in high and $3^{1 / 2 i n}$ deep．Fitted with a good length of speaker filex and terminating with a normal 31／2in FLOPPY DRIVES
stock：Single－sided，B0 track，by Chinon．This is in the
manufacturer＇s metal case with ieads and

REMOTE CONTROL FOR YOUR COMPUTER a joystick that can transmit and a receiver to plug into and operate your computer and TV．This is also just right if you want to use it
with abig screen TV．The joystick has two fire butions and is of a really superior quality．with four suction cups for additional
control and one－handed play．Price $£ 15$ for the radio controlled ASTEC PSU．
Outputs $+12 \mathrm{~V} 2.5 \mathrm{~A}+5 \mathrm{~V} 6 \mathrm{~A}+5 \mathrm{~V} .5 \mathrm{~A}$ ． 12 V 5 A ．so very compact VERY POWERFUL 12 VOLT MOTORS
 PHILIPS LASER
This is a helium－neon and has a power rating of 2 mw ．
Completely safe as long as you do not look directly into the beam when eye damage could result．Brand new，fult spec

ORGAN MASTER

 contacts and is mes complet

FULL RANGE OF COMPONENTS pricis are available from our asseclate company
COMPONENTS．Y muay already have their catalogue，If
request one and we will send it F ． HIGH RESOLUTION MONITOR．gin black and white used Philips sube M24／305W．Made up in a lacquered frame and
has open sides．Made for use with OpD computer but suitable for 12 VOLT BRUSHLESS FAN ans not only consume very dithle current he electronicallyrun

SINGLAIR CS WHEELS ING INNER TUBE \＆TYRES 13＂\＆ $16^{\prime \prime}$ DLAMETER SPOKED．POLYCARBON ATE WHEELS FINISHED IN BLACK ONLY $£ 6.00$ EACH． $13^{\prime \prime}$ REF 6P10， $16^{\prime \prime}$ REF 6P11
NEW MAINS MOTORS 25 watt 3000 rpm made by Framco SHADED POLE MOTORS

5 Appr
 $\times 3$＂square available in

MICROWAVE TURNTABLE MOTORS
Complete
ref 5P165． SURFACE MOUNT KIT MakAs a super high gain COMPUTER KEYBOARDS Brand new OPD，uncased PERSONAL STEREO INNARDS

BULL ELECTRICAL
Dept AR250 PORTLAND ROAD，HOVE BRIGHTON，SUSSEX BN3 5QT．

POPULAR ITEMS－ MANY NEW THIS MONTH

JOYSTICKS

TELEPHONE TYPE KEYPAD

\qquad
 \qquad
AA CELLS
20 WATT 4 OHIM SPEAKER
竍 MINI RADIO MODULE rom a PP3 battery and woud ris is BULGIN MAINS PLUG AND SOCKET The old and sockets for $£ 1.00$ ．
MICROP

MOSFETS FOR POWER AMPLIFIERS AND HIGH CURRENT DEVICES 140 V 100 watt pair made by

TIME AND TEMPERATURE LCD MODULE and diagram．Price ${ }^{\text {£9．00．Our ref } 9 P 5 \text { ．}}$ ROBE FOR ABOVE
PAPST FAN
PAPST FAN
600 WATT AIR OR LIQUID MAINS HEATER
sman EX－EQUIPMENT SWITCHED MODE POWER SUPPLIES
ACORN DATA RECORDER Made
In
STABILIZED POWER SUPPLY KIT位 PTFE COATED SILVER PLATED CABLE strands of 45 mm copper．will carry up to 30 A and is virtually
indestructible．Available in red or black．Requar price is over $£ 120$
 NEW PIR SENSORS
warranty． 15 －20m range，with a 0 －10．min timer，dayight sensor， adjustable wall bracket．Only $\sum 20.00$ ．Ref 20P24．Also available to
VOLTAGE INVERTER KIT
10 MEMORY PUSHBUTTON TELEP＇PHONES these are customer returns and sold such so may need silght
atrention．Price $£ 6.00$ ．Ret 6 P16 or 2 for $\varepsilon 10$ Ref 10 P77．BT NON－MEMORY PUSHBUTTON TELEPHONES， SPECTRUM SOUND BOX

．Add sound to your spectrum

 BBC JOYSTICK INTERFACE Converts a88C joystick TELIPHONE EXTENSION LEAD
 LCD DISPLAY
£3．00．Ref 3P77，or 5 for $£ 10$ ref 10 P78
CROSSOVER NETWORK 8 on
BASE STATION MICROPHONE i8k Hz － 6888 built－in chime complete with mic stand bracket． MICROPHONE STAND

SOLAR POWERED NICAD CHARGER SOLDERING IRON STAND．price $£ 3.00$ ．Our ref 3 P66．
SHARP PLOTTER PRINTER New \＆colour printer
CENTRONICS CONVERSION KIT FOR ABOVE PLOTTER only 44.00 ．Ref 4 P57．KIT FOR ABOVE CAR IONIZER KIT．Inprove the air in your car．clears
smoke and helps prevent fatigue．Case req．Price $£ 12.00$ ．Our ret NEW FM BUG KTT．New design with PC8 embedded coil 9 v Operation．PANEL MELETERS SOUA STROBE LIGHTS．Fit a standard Edison 240040 min flash rate．available in yellow and green．Complete With socket．Price E10 each．Ref 10P80（state colour EXTENSION CABLE WITH A DIFFERENCE METAL PROJECTBOX Supply etc．Sprayed grey，siz．Ideal for battery charger，power
ventilation．Price $\times 43.0$ R．Ref 3 P75

[^0]: Signature

