&)

Getting started
in Java

In Preparation
by
Owen Bishop

BPS61 Getting Started with Java Applets

Getting started
in Java

by

Owen Bishop

BERNARD BABANI (publishing) LTD
THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON Wé 7N
ENGLAND

www.babanibooks.com

Please Note

Although every care has been taken with the production of this book to
ensure that any projects, designs, listings, etc., contained herewith,
operate in a correct and safe manner and also that any downloads
specified are freely available on the World Wide Web, the Publisher
and Author do not accept responsibility in any way for the failure
(including fault in design) of any projects, designs, or listings to work
correctly or to cause damage to any equipment that may be used, or in
respect of any other damage or injury that may be so caused, nor do
the Publishers accept responsibility in any way for the failure to obtain
specified downloads.

ISBN 0 85934 554 8

© 2005 BERNARD BABANI (publishing) LTD

First Published September 2005

Cover Design by Gregor Arthur

Printed and Bound in Great Britain by Cox & Wyman Ltd, Reading.

About the author

Owen Bishop is well known as a contributor to popular computing and
electronics magazines and is the author of over 75 books, mostly in
computing, electronics, and robotics. His talent for introducing tech-
nical subjects to beginners is proven by the many successful books he
has written.

Acknowledgement

The Limerick program on pp. 62-4 is the Java version of a BBC
BASIC program by Audrey and Owen Bishop (Take Off with the
Electron and BBC Micro, Granada Publishing 1984).

Trademarks

Java is the registered trademark of Sun Microsystems Inc. Windows
XP is the registered trademark of Microsoft Corporation. The term
Windows, as used in this book, refers to Microsoft Windows.

Contents

1 Introducing Java

2 Setting up Java

3 Word programs

4 Working with numbers
5 Some input, some logic
Summing up Chapters 1 to §

6 Arrays and other topics
7 A new look

8 OOP in action

9 Using constructors

10 Errors

Summing up Chapters 6 to 10
11 Java Packages

12 More about swing

13 Handy swing methods
14 Applets

15 Graphics2D

16 Finding the method
Postscript ...

Index

1
23
33
49
55
71
81
93

105

113

119

127

143

155

183

203

211

213

1 Introducing Java

The Java programming language was originated by Sun Microsystems
in 1995. One of its more important features is that it is portable. For
instance, a Java program written on a PC runring Windows 2000 will
also run on computers running other versions of Windows, and on a
Sun workstation, as well as on Unix, Linux and Apple computers. This
book assumes that the reader is using Windows, the programs and
displays having been created on a PC running Windows XP, but the
programs should run equally well on the other platforms.

Java has achieved great popularity with programmers writing Java
applets (short applications) for web pages, but it is also suitable for
more extensive stand-alone applications. Both of these aspects of Java
are illustrated in this book.

Another important and welcome feature of Java is that it is available
as a free download from the Sun website. This book is based oa the
latest Version 1.5.0 of the Software Development Kit (SDK) popularly
known as J2SE 5 (Java 2 Platform Standard Edition 5) or just Java 2,
or Tiger. Chapter 2 outlines the procedure for downloading Java and
setting it up on your computer.

Java has few keywords and relatively simple syntax. It is easy to learn
and to use, once you have got used to the idea of object-orientated
programs (see later). It is backed up by extensive libraries of program
modules for performing particular tasks. These too can be downlocaded
free from Sun. They are readily incorporated into a user’s programs,
so saving time in project development. However, in spite of the fact
that Java programming is quick and easy, the beginner is up against
the initial hurdle of understanding the concepts of object orientated
programming (or OOP, for short).The aim of this book is to help the
reader get past this stage and confidently enter the world of OOP.

The approach of this book is to dive straight into writing short
programs without bothering too much about their QOP features.
Learning by doing and understanding by example is the way this ook
sets about getting you started in Java.

1

Object orientated programs

Although we propose to pick up the principles of OOP as we go along,
there is something to be said for having just an outline idea of its main
features. Perhaps the first question that might be asked is: ‘What is an
object?’. By ‘object’ we mean a relatively small, discrete, self-
contained, block of program lines, performing a specific, and often
single, function. In most other programming languages, the nearest
equivalent to an object is a sub-routine, a function, or a procedure.
Java differs in the way in which these objects are constructed, and the
ways in which they can be linked together to create an application. -

Fig. 1. A flowchart that
defines the procedure
Jor generating a sine

waveform. The boxes of

the chart show the steps
in the procedure. The
Sflowchart can be used as
the basis for writing a
program in a procedural
language such as
assembler or BASIC.

Most of the well-established programming languages are not object-
orientated; they are procedural. These include the assemblers and the
higher-level languages such as BASIC. A program in a procedural
language is often represented by a flowchart (Fig.1). The flowchart
has a series of process boxes (rectangles), which set out the procedure
to be followed by the computer. There are stages in the flowchart for
input and output and there are decision boxes where the path branches
and the computer is directed along one branch or the other, depending
on the result of a conditional test. There are usually jumps to
subroutines to avoid the unnecessary repeat programming of
frequently used routines.

In a procedural program, any one part of the program can interact with
any other part, sharing data and definitions of variables. Unless great
care is taken, such a program can become complex to analyse, leading
to programming errors and unreliability. The complexity also makes it
difficult, if not impossible, to amend sections of the program without
undermining the programming of other sections.

In contrast, Java is object-orientated. An OOP is based on one or more
relatively simple elements called classes, as illustrated in Fig. 2.

Fig 2. The elements of a Java program. The shaded
rectangles represent the data and methods of each class.

The programmer defines a class by providing it with a set of data and
with one or more methods for handling that data. The data and
methods are objects which are to be handled in the way set out in the
class. Methods are usually short program segments, and usually have
procedural structure. In other words, they are short procedures, using
many of the familiar programming devices such as input and output
routines, ‘for...while...” loops, and ‘if...then...else’ decision-taking.
Readers who are used to writing procedural programs will still need
these skills when writing Java.

The Java classes themselves are not objects, just as an engineer’s
blueprint of a bicycle is not a bicycle. Classes can be thought of as
templates for building a program to perform a specfied task. Having
defined a class we can construct an instance of the class, assigning it
specific variables and parameters. A single class may thus result in
many instances with differing properties, but similar functions.

With Java, each class and object is self-contained. A class accesses
the data and methods of another class under strictly controlled
conditions. This is called encapsulation and is described more fully
on p. 117. It leads to reliability, robustness, economy of program
space, and the ease with which an application can be contructed from
new special-purpose classes and existing classes drawn from the class
libraries. It simplifies maintenance as the program ages.

This leads us to consider the advantages of Java from the viewpoint of
program development and maintainance. A newly written class is
programmed and tested in isolation. After that, it can then be fitted in
to the whole application with the confidence that it will work.
Moreover, if it becomes necessary to amend or replace it, this can be
done without upsetting the operation of other classes.

There is much more to be said about classes and the way they are
linked, but this is deferred until we can look at some practical
examples in Chapter 3 and beyond. In order to look at these, we need
to install the software, as described in Chapter 2.

2 Setting up Java

The most usual way of cobtaining the software is to visit the Sun
website on the Intemnet. Its URL is:

http://java.sun.com

This site carries a wealth of information about Java, and the latest
developments and updates. From here you can download the latest
version of Java, suited to your computer. Follow the instructions on
the screen. The download usually consists of a single executable file,
about 90 MB in length. When unzipped, this produces a number of
folders each containing numerous files.

In PCs, Java is run from a command line, that is, in the same way as
running a DOS program. If your computer is running Windows 935, 98,
NT or 2000, click on the MS-DOS icon to obtain the DOS screen. In
Windows XP, get the command line by first clicking on the ‘Start’
button at the bottom left of the screen. Then click ‘Run’. When the
small ‘Run’ window appears, type ‘cmd’ (without the quotes) and
click on OK.

In the DOS or command line window, the lowest line contains text
beginning with ‘C:\’. This indicates that you are working in the root
directory of the computer, on Drive C. You may find that there is other
text following the ‘C:\’, such as the name of one of the folders saved
on your hard disc. The names are separated by backslashes. In Fig. 4
(overleaf), the line is:

C:\Documents and Settings\Owen
In this case we are working in the ‘Owen’ sub-directory of the
‘Documents and Settings’ sub-directory of the ‘C:” directory. Note
that a ‘directory’ is what Windows calls a ‘folder’.

If so, you are at present working in a sub-directery and you need to get
back to the root directory.

Command

Fig. 3. The command line or DOS window may look like
this when it is first called, or it may have other directories
listed after the ‘C:\". Note: for clarity, the colours of the
command window have been set to black on light grey (see

p-9).

Command

Fig. 4. This shows the stages of getting to the root
direcsory and, from there, to the directory containing the
main Java files.

The first step is to navigate back to the root directory. Do this by
typing ‘CD ..’ and press Enter. The letters ‘CD’ mean ‘change
directory’ and the two full-stops mean ‘to the next higher directory’.
Do not forget to leave a space after ‘CD’. In our example we need to
do this twice to get back to the root directory. Fig. 4 shows the
sequence.

Fig. 4 also shows the stages in getting to the sub-directory in which the
executable Java files are held. Once again we use ‘CD’ but this time
followed by the sub-directory names, separated by backslashes (see p.
9) to get to a sub-directory within a subdirectory. In the example, we
are running version 1.5.0 of Java 2, which is in the ‘bin’ subdirectory
of the *jdk1.5.0_01’ subdirectory. This is in the ‘Java’ subdirectory of
the Program Files directory. You should use the names of whatever
subdirectories Java has installed itself. The screen is shown in Fig. 4
as it should be when the computer is waiting for further instructions, to
compile or run a Java program.

Versions

Like most pieces of software, Java is continually being updated. At
the time of writing, the current Version is 1.5.0. This is one of the
options available from Sun Microsystems as a download. All the
programs in this book will work with this version. If you already have
an carlier version of Java 2, you can use this instead for most of the
programs. You can upgrade to Version 1.5.0 later.

Java is also available from other sources. The more advanced books
on programming in Java often include a CD-ROM that has the
complete software on it. You can download from this instead of from
the website. The only possible disadvantage is that this might be Java
1 which does not include all the graphics facilities that we use in this
book.

Writing, compiling and renning
We shall give fuller details on these topics in the next chapter, but this

outline introduces the main stages in creating and testing progams.
This is a three-stage process.

The first stage is to write the program, using simple text editing
software, such as WordPad or Notepad. If you have a PC running
Windows software, one or both of these programs are provided with it.
Notepad saves text as simple text files, with no embedded formatting.
The file name has the “.txt’ extension. But WordPad can also save text
in other formats, such as Rich Text Format. This includes non-printing
codes for formatting the text. If you save your program text in one of
these other formats, you will receive dozens of error messages as Java
tries to make sense of the codes in the file. When you save the file
always select ‘Text Document’ in the ‘Save as type:’ box at the bottom
of the ‘Save as...” window.

When you have written part or the whole of a program and, after you
have inspected it for obvious errors, you use a program called javac to
compile it (see p. 15) This turns your text into a coded version that
Java can understand. This is known as bytecode. It is a half-way stage
between your text file and the final runnable version of the program.

While it is compiling your text, javac is busily scanning it for errors.
As it finds these, it prints a list of them on the screen. These are known
as compile-time errors. You may feel daunted, especially when you
are first starting, when a long list of errors appears. Quite often things
are not as bad as they seem. What happens is that a very small error,
such as a missing bracket you forgot to type, so confuses the compiler
that it loses track of the program, and it subsequently ‘finds errors’ that
are not really there. If you look through your text and insert the
missing bracket, half-a-dozen or more reported errors will have
miraculously ‘disappeared’ when you re-compile the program.

Compiling produces a file with the same filename as your original text,
but with the extension *.class’. Use the java program to run this (see p.
16). The program may run perfectly at this stage but occasionally there
is something in the structure of the program that produces one or more
run-time errors. You should not expect to have many of these. The
Jjava program reports these on the screen and stops running.

To correct run-time errors, you need to return to the original text to
locate and correct the errors, then re-compile the text using javac.
Finally, run java to interpret the newly-compiled °.class’ file.

Backslash

If your keyboard is set to English (United Kingdom), you may find
that you get a hash (#) when you press the backslash (\) key. To get a
backslash, press and hold the Alternate (ALT) key and the F1 key
while you type 092 on the numeric keypad. Release the ALT and F1
keys and a backslash will appear. Note that this does not work if you
key 092 using the number keys above the QWERTY keys.

Display colours

By defauit, the command line window displays light grey text on a
black background. You may be satisfied with this — in some ways it
makes you feel ‘near to” your computer’s operations. But you can have
other colours if you prefer.

The exact technique for altering the colours depends on the computer.
For Windows XP, display the command line window as previously
instructed. Then move the cursor to the title bar at the top of the
command window and click right. From the drop-down menu, select
‘Defaults’, which displays a window titled ‘Coansole Windows Proper-
ties’. Click on the ‘Screen text’ button, then on one of the colours
displayed below it. Click on the ‘Screen background’, then select a
contrasting colour from the display. A small window shows the
‘Selected screen colors’, so you can see the effect. For writing this
book we chose yellow text on a blue background, which gives a
cheerful and legible display. For the screen shots we chose black text
on a light grey background. You can try out various combinstions
before clicking on the ‘OK’ button to activate your choice. Of course,
you can always come back again later and select new colours.

3 Word programs

In this chapter we look at and run two short programs, using them to
illustrate some of the more important terms and keywords. Read
through the chapter first. Then boot up your computer and follow
through the sequence from writing the text to running the compiled
version, using java.

The first step is to run your text editor program. Type in the text,
exactly as in Fig. 5. We used Notepad and the font is Courier
New. We use the same font in the text of this book when we are
quoting programs or extracts from programs.

42

L FustProgiam - Nelepad
Fle Edt Fomast View Heb
/* This is a multi-line comment.

It is ignored by the Java compiler. */

public static void main(string(] args) {
// This is a one-line comment, also ignored.
System.out.println("Your first Java program”);

Fig. 5. FirstProgram, as it appears in Notepad.

So that you do not have to tumn the page as you read the explanations,
the program is printed again overleaf .

The first thing to notice is that there are two comments in it. These
provide information about the program; for instance, its name, waat it
does, or how it works. Comments are very helpful to a person studying
the program, but are ignored by the javac compiler.

11

Many people do not use the multi-line comment format. They type
long comments on consecutive lines as single-line comments, each
beginning with //.

Here is FirstProgram again:

/* This is a multi-line comment.
It is ignored by the javac compiler */

public class FirstProgram {
public static void main(String(]) args) {
// This is a one-line comment, also ignored
System.out.println("Your first Java program");

We can see the form of the program more easily if we leave out the
two comments:

public class FirstProgram {
public static void main(String[] args) {

System.out.println("Your first Java program");

As you will discover when you run this program, it prints a message on
the screen: “Your first Java program”. The line tha: does this is:

System.out.println("Your first Java program");

This example demonstrates how the actual program (or the method, as
it is called) is encapsulated (p. 4) in a protective and isolating ‘wall’ of
curly brackets and definition statements.

Now to examine the outer layers! The first line states in effect that the
text following it, and enclosed in curly brackets, defines a class, called
FirstProgram. We can call it anything we like, provided that we do
not use words that are reserved as keywords. It is also a good idea not
to use the names of existing classes. For this reason, it is best to use a
name that describes fairly closely what the class is or what it does.

12

The keyword public is easy to understand. It means that this class is
accessible by other objects in the package. In most of our examples a
class definition begins with this word. The statement on the first line
ends with an opening curly bracket. This and its corresponding clesing
curly bracket on the last line enclose the body of the class.

The second line of the program indicates that the text following it
defines a method, something that the class does. We see that this is a
public method (open to all). It is also a static method, which
means that it is always active, it does not ‘come and go’. The word
void means that it does not return any values to any routine that calls
it. Most method definitions in this book have the same features so they
are all defined in the same way, using the keywords public
static void. If you do not fully understand what they mean, or
what difference it makes when alternative words are used, it does not
matter at this stage. Their actions here and when to use other keywords
instead of them will become clearer with experience.

The last word in the method header is main, the category of the
method. Every program must have a main method, for this is the one
with which the program begins when it is run. In this example it is the
only method. Following its category, a method usually has a list of one
or more parameters enclosed in round brackets. These are values
being passed to the method from outside it. Note that, because a
method is always defined with a set of one or more parameters
(objects to work on) it is usual to add these brackets when referring to
the method. Thus, we refer to the main method as main () . This helps
readers to know if a given object is a method or not.

In this example, the parameter in the brackets is a string variable
(p. 17) in the form of an array of strings (called arguments) that are
keyed in on the command line before the program is run. Later, we
will use this technique for supplying data to a program. However,
although this technique is very useful for short programs intended for
demonstrating programming in Java, there are several much more
visually effective and preferred ways of supplying data. So, input from
the command line is not often used, except for the introductory
examples in beginners’ books, but we still need to list the parameters
of the main method as (String[] args).

13

Note that args is short for arguments and java understands both
forms.

The third line defines the method. Someone has already written a
program that takes a string array and prints it out on the computer
screen. There is no need for you to repeat all that complicated
programming — just call the method. The method we are using here is
called println(). To locate it, and to refer the computer to the
operations required to perform it, you simply refer to the class
(System) and object (out) in which its definition is to be found.
This book provides many such references to useful methods, and you
will soon get to know the most commonly used ones. Also, there are
books that provide complete lists (with descriptions) of all existing
methods. When you refer to a method in this way, you do not need to
know how it works. But you can rely on it doing its job properly
because it has been well tested by experts. And it works on any of the
main computer platforms. The method is called by keying in the three
names in order, separated by dots:

System.out.println()

Being a method, println() is followed by round brackets
containing parameters. print1ln() expects a string, either declared
at the time by typing it out in full between double quotes (as here), or
by naming a string variable that has been declared previously. When
the program is run it calls up the method filed elsewhere in the same
directory. This takes the string of text and prints it on the screen.
Calling ready-written methods is an important feature of Java. When
you download Java from the Sun website, you get more than just the
Java programs. You also get extensive libraries of classes and
methods that are there, waiting to be used in your own programs.
Familiarising yourself with the contents of these libraries is an
essential aspect of becoming proficient at Java programming.

Note that the program line ends with a semicolon (;). All lines that tell
the computer to DO something must end with this. There is only one
line in this program that leads to any activity by the computer so this is
the only line ending in a semicolon. The statement ends with a closing
curly bracket on the 4th line.

14

In this program, the text fits on a single line on the screen. Sometimes
you may have longer text that extends over two or more lines on the
screen. Running on from one line to the next is allowed, provided that
there is only one semicolon, placed after the final screen line. The
many lines of text count as only one program line.

Compiling

When you have typed in the program and checked it through, save it
as a text file with extension ‘.java’, in your working directory. Note: do
NOT save it with the “.txt’ extension. The file must be saved under
exactly the same name as the class it defines, but with the extension
‘.java’. The class name of this program is FirstProgram, so save it as
‘FirstProgram.java.’ Java is case-sensitive, so this program must not
be saved as ‘Firstprogram.java’, or ‘firstprogram. java’, or other
versions in which the cases do not match exactly.

Fig. 6. The command window ready to invoke javac to
compile FirstProgram. Note that the confusing screen text
associated with navigating 1o the bin sub-directory has been
removed by typing CLS (= clear screen) and pressing Enter.

Then we keyed in ‘javac FirstProgram.java’. The program
name is one word.

15

Now press ‘Enter’. The flashing underline cursor after the word ‘java’
moves to the start of the next line. There is a pause of several seconds
while the program is compiled. Then the prompt appears on the left.

It is at this stage that compile-time errors, if any, are reported. If there
are errors, you need to deal with them now. Errors that are easy to
make include:

1) Missing semicolon at the end of each programming line.
2) Missing curly bracket, or bracket facing the wrong way.
3) Using single quotes (') instead of double quotes (").
4)Case errors, for example, typing ‘Firstprogram’ instead of
‘FirstProgram’.

5) Not indicating comments by /* and */, or by //.

Assuming that errors have been corrected, run the program by typing
java FirstProgram and pressing ‘Enter’. After a delay of
several seconds, the programmed message appears on the screen:

Your first Java program

Fig. 7. The screen after running FirstProgram. On the lowest
line, the command prompt awaits your next instructions.

More ways with strings

Java has several ways of handling strings. One of these is a class
called StringTokenizer. This is able to chop strings of characters into
shorter strings, called tokens. To find out some of the things it can do,
run your text editor and key in the program shcwn in Fig. 8.

2

' Fhightl egs - Notepad
LN Fle Edt Format WView Help
import java.util.StringTokenizer;

class FlightLegs {
public static void main(String[] args) {
StringTokenizer stl;

String route = "Heathrow-2Zurich-3ingapore-Perth”;
stl = new StringTokenizer (route, "-7);

System.out .println("Departure from: " + stl.nextToken())
System.out.println("Calling at: " + stl.nextToken());
System.out.printin("And: " + stl.nextToken()}:
System.out.println("Destination: " k stl.nextToken()):

}

Fig. 8. The FlightLegs program as it appears in Notepad.

StringTokenizer is not normally used when java is running a program.
It has to be obtained from the library of classes and methods that is
included in the java software. This is why this program begins with an
instruction to import StringTokenizer . The first line shows that it is to
be found in a package of classes called uti/ (short for utilities), which
is to be found in a larger package called java. Having done this, we do
not need to type java.util.StringTokenizer every time we
want to refer to the class.

17

To save page-turning, here is FlightLegs again:

import java.util.StringTokenizer;

class FlightLegs {
public static void main(String{] args) ({
StringTokenizer stl;

String route = "Heathrow-2urich-Singapore-Perth";
stl = new StringTokenizer(route, "-");

System.out.println("Departure from: " +
stl.nextToken());

System.out.println("Calling at: " +
stl.nextToken());

System.out.println("And: " + stl.nextToken());

System.out.println("Destination: " +
stl.nextToken());

}

After importing the class, the program goes on to define a class called
FlightLegs (so we must save this program as
‘FlightLegs.java’). The main method is defined by the usual
formula: public static and so on. The first program statement
(remember, it must end with a semi-colon) is:

StringTokenizer stl;

This is creating a StringTokenizer object and naming it st 1. This kind
of operation is unfamiliar to some people but it becomes plainer if we
compare it with creating a number variable. In Java, if we want to
create a variable to, say, hold the number of members of a club, we
write this:

int members;

The int means an integer variable, that is, a whole number with no
fractions. We need an integer variable (there are other kinds, see
p. 49) because there are no fractions of members in a club. This
particular integer variable is called members for obvious reasons.
Members can later be given a value. Similarly, we create a StringTok-
enizer object, called st 1 and give it a value later.

18

The next statement creates another object, a String variable called
route. Here we go on straight away to give it a value, which is the
string of airport names. This is enclosed in double quotes. Note that
the names are separated by hyphens.

Now we give st 1 a value, that of a new object of the StringTokenizer
class. We use one of the methods of this class. The method has two
parameters passed to it. One is the name of the string that it is to
tokenize. The second parameter is the character that separates the
tokens. Here the parameters are route and a hyphen, the latter
indicated by the hyphen character in double quotes. More than one
token separator can be listed. If no separator is listed the routine splits
the string at a space, a tab, a new line, and a carriage return.

Now we are ready to begin splitting up the string! The tokens are
printed on the screen using that print1n () method that we used for
FirstProgram. The parameter of each println () statement consists
of text, in double quotes, a plus symbol, and the expression
stl.nextToken() . The plus symbol mezns that the text string
and the token are to be concatenated. That is, they are to be joined
together to make a single string and printed out as such. The next -
Token () method is one of the methods of StringTokenizer. Its job is
to select the tokens in order from the split string. The method is told
which string to split by prefixing the expression with its name, st 1.

Command

Fig. 9. The result of running FlightLegs.

19

Program format - a summary

These two example programs illustrate a simple, though typical, way
of creating a class in Java. There are many other additions and
variations that we will describe in later chapters, but these programs
cover some of the essentials.

Summing up, a program consists of:

An import statement, if needed, to call up the less frequently used
classes and their methods.

class name {
public static void main (String[] args) ({

data: declarations of class variables and objects and the
values of some or all of these;

methods: program lines to work on these;

}
}

Things to do

Familiarise yourself with the writing-compiling-running routine by
writing modified versions of FirstProgram and FlightLegs. For
example, write a program called SecondProgram that displays a
different message. Do not repeat the comments from FirstProgram,
but add some of your own. Include comments that help to remind you
about the program structure and what the program does.

You could try using StringTokenizer (remember that it is spelt with a
‘z’, not an ‘s’). For example, take a message such as “This is really
good fun”and display it as separate words. Another task is to take a
date such as 21/9/05 and split it into day, month and year. In the
printout routine, try to put ‘20’ in front of the year so that it reads
2005°,

20

You may like to include some character escape codes in the text of
your program. These control the displaying of the text. Useful codes
include:

\n which causes the computer to start a new line,

\t which causes the computer to ‘tab’, and
\f which causes a formfeed.

Just include the code in the text; it will not print out but will simply
cause the action described. For example:

“Yew Tree House, \nWiseton, \nNotts.”
Prints as:

Yew Tree House,
Wiseton,
Notts.

If the text includes single or double quotes, this can lead to confusion.
Helpfully, there are escape codes for these:

\' which prints a single quote
\" which prints a double quote

Try using these codes in your text.

21

4 Working with numbers

The program below is given two numbers, divides one by the other
and reports on the result of the calculation. It is a simple program but
gives us the chance to look again at some of the concepts of Java and
to study some new ones. Here is the program, called Divide:

class Divide {

int dividend;
int divisor;
int result;
int remainder;

void calculate() ({
result = dividend / divisor;
remainder = dividend % divisor;

}

void Printout () {
System.out .println("Result = " + result);
System.out.println("Remainder = " +
remainder) ;

public static void main(Stringl) args) ({

Divide Dividel = new Divide();

Dividel.dividend = 35;

Dividel.divisor = 4;

Dividel.calculate();

System.out .println("The first division yields:");
Dividel.Printout();

Divide Divide2 = new Divide():;

Divide2.dividend = 99;

Divide2.divisor = 31;

Divide2.calculate();

System.out .println("The second division yields:");
Divide2.Printout () ;

}

It is obvious that this program has more parts to it than the two
programs of Chapter 3. Like FirstProgram, it begins with a statement
that it is defining a class, which on this occasicn is called Divide. From
then on, we come to some new ideas.

23

The first stage is to define some variables for the class method to use.
The keyword int indicates that the four variables are defined as
integer variables. An integer is a ‘natural’ or ‘counting’ number, or we
describe it as a ‘whole number’, without any fractions appended to it.
Integers may be positive or negative and include the number ‘0’. In
Java, integers are limited to the range -2 147 483 648 to +2 147 483
647, which is large enough for almost all purposes. The advantage of
using integers rather than other types of number (see later) is that they
are processed faster.

The variables are given identifiers (names). As usual, we can choose
any name we like, provided that it is not a reserved keyword. It makes
it easier to follow the program if we choose identifiers that indicate the
function of each variable in the maths that is to follow. Note again that
each line ends in a semicolon. It is permissible to define all the
integers on one line. The four definitions could be replaced by a list of
the identifiers:

int dividend, divisor, result, remainder;

These variables are examples of instance variables. They are
variables that can be used, perhaps with different values, to describe
different instances of the Divide class. Different instances of the class
are different examples of division, such as 4/7, 34/2, 144/39, ... and so
on.

Because they are instance variables, these variables do not exist
outside of the curly brackets in which they are defined. We could use
the same names within another set of curly brackets and there would
be no confusion (to the computer, at least, though the programmer
might be bewildered!). This is another illustration of encapsulation in
Java.

Having defined the variables, we now have to define what is to be
done with them. In this example, we define two imstance methods.
One, called calculate (), is to perform the division. The other,
called Printout (), is to display the outcome of the calculation on
the screen in a prescribed format. These instance methods differ from
the main method in that they do not begin with public static.

24

The calculate () method performs two calculations. The first is a
simple division: dividend / divisor. The division operator is
the conventional ‘slash’ symbol, but note that there must be a space on
either side of it. In Java, dividing one integer by another always yields
an integer as the result. For example, dividing 37 by 5 gives 7.
The remainder is ignored.

If we need the remainder, as we do here, we must calculate it
separately. So the calculate method also includes a line that
calculates the remainder. This uses the modulo operator (%). For
example 37 % 5 gives 2.

The second instance method is called Printout (). It displays the
outcome of the calculations. We have decided on a two-line display.
Asonp. 11, we use System.out .println(). In the brackets we
type a short text string (in quotes), followed by a plus symbol to join
the string to a printout of the value of the variable (NOT in quotes).

The two methods complete the definition of the Divide class. It is a
template for performing a division and displaying the results. Try to
think of a class as a template for ‘doing something’. It tells the
computer what variables to use and what to do with them. It may tell
the computer the values of the variables but, being a template, it does
not necessarily have to do this. Note that the blocks of code for the two
methods are each enclosed in curly brackets.

Instances of the Divide class

Having set up variables and methods for use by the class, we are now
ready to create some special instances of the class. The main method
takes care of this. It is introduced by the same line with the same
structure as was used on p. 11:

public static void main(String[] args)

The keyword main shows that this is where the action begins! There
are to be two instances of division, 35/4 and 99/31. Before we look at
these in detail, consider the simpler case in which we want to perform
only the first division, 35/4. We could do it like this:

25

dividend = 35;
divisor = 4;

calculate() //Calls the first method, to
//calculate result and remainder.
Printout () //Calls the second method to

//display result and remainder.

This program segment shows the basic structure of the main method.
It calls on the two previously defined class methods. We have only to
type calculate () and the computer is sent back to look up the
definition of calculate (), and then uses the declared values of
dividend and divisor. From these, it calculates result and
remainder and goes back to Printout () to discover how to
display them.

However, Divide is more complicated than the short program above. It
performs two different divisions using two different sets of values of
the variables. This is why the main method of Divide contains two
instances of the class, one for dividing 35 by 4 and the other for
dividing 99 by 31. The instances are identical except for the values
assigned to the variables. Each calculates values for result and
remainder, and then displays them.

The variables may have different values in the two instances but they
are both part of the main method, inside the same pair of curly
brackets. We can not allow them to have the same names. To prevent
the computer becoming confused, we preface the variable name with
an instance name. We begin by creating a new instance of the Divide
class, called Dividel:

Divide Dividel = new Divide();

We have chosen Dividel as the instance name but, as long as we
conform to the usual restrictions on naming (p. 11), we can call it
anything we like. This instance is a replica of the original class, in
which the components of the class are identified by prefacing the
names with ‘Dividel’. For example, the instance has its own set of
variables, such as Dividel.dividend, and its own set of methods,
Dividel.calculate () and Dividel.Printout ().

26

Fig. 10. The result of running the Divide program.

Programming equations

Many people who study physics at school will be familiar with the
so-called equations of motion. This program uses two of them to
calculate the final speed and distance travelled by two cars, given their
initial speed, their acceleration (assumed to be constant) and the
elapsed time.

Here is the program:

class motion {

//This class is based on the equations of
//uniformly accelerated linear motion.

double initialSpeed; //metres per second.
double finalSpeed; //metres per second.
double accel; //metres per second per second.
double time; //seconds.

double distance; //metres.

String model;

27

void workItOut () {
finalSpeed = initialSpeed + accel * time;
distance = (initialSpeed + finalSpeed) / 2
* time;

void Printout () {
System.out.println("The " + model + "
reaches " + finalSpeed + " m/s\nat " + distance + " m from
the start.");

public static void main(String([] args) {

motion OldBanger = new motion();
OldBanger.initialSpeed = 9;
OldBanger.accel = 0.5;
OldBanger.time = 10;

OldBanger .model = "old banger";
OldBanger .workItOut () ;
OldBanger.Printout();

motion SoupedUp = new motion();
SoupedUp.initialSpeed = 0;
SoupedUp.accel = 45;
SoupedUp.time = 10;
SoupedUp.model = "souped up car";
SoupedUp.workItOut () ;

SoupedUp. Printout () ;

The program has the same general structure as Divide, but there are
some interesting points to consider. In begins with declarations of the
variables to be used; the comments indicate the units in which the
variables are to be expressed. In this program we have used double-
precision floating point variables. This allows us to work with deci-
mals for any of the quantities. The £loat type of floating point
variables has lower precision that is still more that adequate for the
calculations in this progam. However, Java sometimes automatically
converts £1loat to double, which may lead to complications. It is
safer to use double from the start.

This program also defines a name for the vehicle described by each

instance, so we declare a string variable to hold this. Note that this
variable type has an initial capital letter, St ring.

28

The program has two method definitions. The first is called work-
Itout (). It might have been called calculate(), as in the
previous program, for it does a similar job. Given the initial speed, the
acceleration and the elapsed time, it calculates the final velocity. Then,
using the calculated value of the final velocity, the initial speed and the
elapsed time, it calculates the distance travelled.

The two equations in workltOut illustrate some points about setting
out equations. The first equation contains two arithmetical opera-
tors, + (add) and * (multiply). It is important that the computer
performs these operations in the correct order. In some systems, the
computer operates from left to right. If the initial speed is 9 m/s, the
acceleration is 0.5 m/s/s and the time is 10 s, the result would be:

final speed=9+0.5*10=9.5*10=95m/s.

This is clearly wrong. In Java, as in many other languages, there is a
definite order of precedence for evaluating complex expressions. In
most languages, including Java, multiplication and division take
precedence over addition and subtraction. In our sample expression,
the multiplication is effected before the addition, so the result is:

final speed=9+0.5*10=9+5=14m/s

This is the correct answer. In the second equation the operators are +,
/ and *. But we do not want the computer to divide final speed by 2,
which would happen if division takes precedence over addition. To
avoid this, we place the addition inside brackets. Brackets take prece-
dence over all other operators, and the contents of brackets are
evaluated first, zhen division or multiplication:

distance = (9 + 15)/2 * 10=24/2*10=120

The second method in this class is Printout () , which is the same
as we used in Divide, but with different parameters. Note the use of the
character escape code, \n. This tells the computer where fo break the
line and start a new one. It does not have spaces on either side of it.

29

In the main method we create two instances of motion, called
OldBanger and SoupedUp, to represent two types of automobile.
These initialise initialSpeed, accel, and time with particular
values for each instance of the cars and then calculate the resulting
finalSpeed and distance. We also initialise the model string
variable with a text phrase that describes the type of car. When the
results are printed out , we shall know to which cars the figures refer.

As in Divide, the two instances have exactly the same format. Each
type of car has its own set of variables, with their own set of values, all
identified by the prefix 0O1dBanger or SoupedUp. After evalua-
tion, the corresponding sets of results are called up and displayed
using the same instance names.

In both of the programs in this chapter we have treated the two
instances as separate entities. However, we can mix their values in the
same program line. The computer will go to each instance to obtain
the required data. For example, assume the two vehicles start from the
same point. The souped-up car is standing still, waiting to go. The old
banger comes up from behind and is running at 9 nvs as it reaches the
souped up car. The latter accelerates away at that instant. What is the
distance between them after 10 s? The calculation is simple:

lagBehind = SoupedUp.distance - OldBanger.distance;
System.out.println("The " + OldBanger.model + " is
" + lagBehind + " m behind the " + SoupedUp.model) ;

You could insert these two lines just before the pair of closing backets
in the listing. See how we are mixing data from the SoupedUp and
OldBanger instances, both in the calculations and in the printing
statement.

Before this line can be used we need to declare the double variable
lagBehind. There is a slight complication here. The variables
declared at the beginning of the class definition are class variables.
When a class instance is created, it is given its own copies of the class
variables. For example, 0O1dBanger.time is the copy of the t ime
variable given to the OldBanger instance.

30

The class SoupedUp has another copy of this variable, called
SoupedUp. t ime. These copies can be given values and have them
changed independently. But lagBehind is different. It has not been
copied to the instances. Its name does not include an instance name. It
is a class variable, which holds the same value whether it is used by
OldBanger or by SoupedUp. To prevent it being changed by either of
the instances, it must be made static. This can be done when the
variable is declared, like this:

static double lagBehind; //metres.

Type this at the end of the variable list at the beginring of the
program. Then compile the program, using javac and run it, using
Jjava.

Things to do

1 You now have the framework of a calculator class that can be
adapted to perform other calculations (perhaps with more than two
variables), and other display formats. Try adapting the program for
other calculating routines, using these mathematical operators:

Mathematical Operators

+ addition

= subtraction
b multiplication
/ division

% modulus

31

2 Investigate the precedence of the operators. For example, note the
difference between 4 * 5+ 6 and 4 + 5 * 6. Note the action of the
brackets. For example, note the difference between4 * 5+ 6 and 4 *
(5+6).

3 Use number types other than integers. Define floating-point numbers
as float (range 1.4e-045 to 3.4¢038). Sometimes the compiler will
suggest that the number be defined as double (range 4.9¢-324 to
1.7e308). You type in floating-point numbers using a full-stop as the
decimal point, or you can use the exponential notation.

32

S Some input, some logic

The programs we have studied in earlier chapters have all taken the
values of the variables from statements within the program. Now we
look at a simple technique which supplies a program with data that has
been typed on the command line. The program below calculates the
surface area and the volume of a rectangular prism, given its length,
width and height (or depth).

class RectangularPrism {
public static void main(String{] args) {

int length = 0;
int width = 0;
int height = 0;
int area = 0;
int volume = 0;

if (args.length > 0)

length = Integer.parselnt (args[0]);
if (args.length > 1)

width = Integer.parselnt {args[l]);
if (args.length > 2)

height = Integer.parselnt(args(2]);

area = 2 * (length * width + length * height +
width * height);
volume = length * width * height;

System.out.println("\nArea = " + area + "\nVolume
= " + volume);

}

The program is run by the command java RectangularPrism,
followed by three integers, separated by spaces, that are the
dimensions of the prism. For example, the command might be:

java RectangularPrism 5 42 18

As usual, the first step in the program is to declare the variables. Here
we have three, for the three dimensions of the prism. The other two are
for the results of the calculations. All the variables are initialised with
the value ‘0’ at the same time as they are declared.

33

Variables may be initialised when declared, as in this program, or
simply declared with no given value, as on p. 27. Here they are given
a value just in case the reader fails to key in three values and this leads
to complications later.

The next stage is to read in the values that have been typed in as
arguments on the command line (abbreviated as args in the listing).
Although they appear to be integers, they are automatically read into a
special array in the form of strings. As we shall see later, it is also
possible to input string variables on the command line. The program
proceeds to check through the arguments to allocate them to the
integer variables dim1, dim2 and dim3.

This part of the program illustrates the use of the familiar logical
structure, if ... then (except that the keyword ‘then’ is omitted):

if (args.length > 0)

The expression in brackets states a condition, that is either true or
false. In other words, the expression has a Boolean value. It calls on a
method (called 1length) of the arguments class. This method
looks at the arguments (if any) on the command line and counts them.
In this case the value returned by args . length is 3. Because 3 is
greater than 0, the expression in brackets is evaluated as true. So the
program goes on to the next line, which calls up a method (called
parselnt) of the Integer class.

These two examples of calling methods, args.length and
Integer.parselnt, illustrate how Java works as a set of classes,
each calling on elements belonging to the others. They also show how
programming in Java is made easy by the class libraries. There is no
need for us to ‘re-invent the wheel’ in order to read from the command
line. All we need to know is the name of a method within a class that
will do the job for us. We do not need to know the details of the
program of the class and method, but we need to know what
parameters (if any) must be passed to the method when we call it. No
parameter is needed for args.length. Integer.parselnt
needs to be told the position in the argumentsg array of the string
that it is to work on. Here, the positions run from 0 to 2.

34

The routine for reading the command line and converting the strings
into integer variables is designed not to crash should the user not type
in enough dimensions. Having found that there is at least one
dimension on the line, this (args [0]) is assigned to dim1. Then,
having found that there are at least two dimensions, the next
(args[1]) is assigned to dim2. Finally, having found that there are
at least three dimensions, the third one (args [2]) is assigned to
dim3. Any further dimensions, entered by mistake, are ignored.

The next stage in the program calculates area and volume. Note the
bracketing in the expression for area. It ensures that the areas are
summed before their sum is multiplied by 2. The printout makes use of
\n twice: (1) to provide a blank line between the command line and
the display, and (2) to put the area and volume on separate lines.
Fig. 11 shows the result of a typical run of this program.

Fig. 11. The RectangularPrism program calculates surface area
and volume, given three dimensions in the command line.

Temperature converter
Here is a program that you could usefully retain on your computer.

Given a temperature in degrees Celsius, it converts it to Fahrenheit.
Given a temperature in degrees Fahrenheit, it converts it to Celsius.

35

The program has many features in common with the previous one. It
begins by declaring two input and two output variables. In this case the
variables are integers and strings. The listing is:

class ConvertTemp {
public static void main(String[) args) {

int temp = 0;
String scale = "You need temperature and
scale.";

String cel = "Celsius";
String fah = "Fahrenheit";

if (args.length > 0)

temp = Integer.parselnt(args(0]);
if (args.length > 1)

scale = args(1];

if (scale.equals(cel)) {
temp = temp * 9 / 5 + 32;
scale = fah;

}

else if (scale.equals(fah)){
temp = (temp - 32) * 5 / 9;
scale = cel;

System.out .println("\nTemperature is " +
temp + " " + scale);

}
}

In the original listing for this program the array name arguments
was spelt out in full, five times. To save a lot of typing (and possible
errors), Java allows us to shorten arguments to args. Shortening
this frequently-used name makes program lines shorter and therefore
easier to set out clearly. But you must be consistent and use the short
form throughout the program.

The string scale eventually holds the name of the temperature
scale, but is initialised with an error message, in case the user does not
key in sufficient arguments. The correct input (on the command line)
is a number and a word (Celsius or Fahrenheit).

36

Reading the temperature and scale into the variables temp and
scale follows a routine similar to that of the previous program.
Because scale is a string variable, it can be read straight from the
argument array, without using Integer .parselInt ().

Then follow two logic blocks. The first tests scale, to find out if it
has the value Celsius. If so, temp is converted to its Fahrenheit
equivalent and scale is given the value Fahrenheit. If this test
fails, the program uses the else if... construction to employ an
alternative test. If successful, this converts Fahrenheit to Celsius. If
both tests fail, t emp and scale retain their original default values, 0
and “You need temperature and scale.”.

Finally, the results of the calculation are displayed on the screen.
Fig. 12 shows two typical runs of this program.

Fig. 12. The ConvertTemp program automatically
performs conversions in the required direction.

This program uses integer variables and involves division. Any
fraction in the result is simply chopped off, not rounded off. This may
sometimes lead to an error of 1 degree. For example converting 7
Celsius leads to the evaluation of 7 x 9 /5 + 32. Now 7 x 9 = 63, and
63/5 = 12.6. In integer arithmetic, this is taken to be 12 and, with 32
added to it, gives the final result 44. To the nearest degree the result
should be 45.

37

There is a simple solution to this problem, using the Java mathematics
class (Marh) which contains a rounding method. This is called
Math.round (). We need to amend the ConvertTemp class in four
places.

First of all, it is no good trying to round temp after it has been
calculated, because it already has had the decimal fraction part
chopped off. We must calculate temp with full precision, so amend its
declaration to:

double temp = 0;

Then we need a variable to hold the value of temp as an integer after
it has been rounded. Add this line to the variable declarations:

int templ = 0;

Rounding occurs after the high-precision value of temp has been
calculated. Insert this line immediately before the printout line:

templ = Math.round(temp);

The Math.round() method rounds the value to the nearest whole
number and this is assigned to the integer variable, temp1. Finally,
we alter temp in the printout line to templ.

When this method is asked to convert 7 Celsius, it gives the
correct result, 45 Fahrenheit.

What do we mean by ‘Equals’?

Testing for equality often uses the symbol ==. We can write if
(age == 8), which returns true if age equals 8 and returns
false if age has a different value. This symbol is used for compar-
isons. There are other comparison operators such as > (is greater than)
and => (is equal to or greater than) as listed on p. 53.

38

But == is entirely different from the single ‘equals’ symbol, =. This
is used for assigning values to variables, as in int age = 8 . The
variable age is assigned the value 8.

Comparing the string variables using == is not quite as straightforward
as comparing numerical values. For the third ‘if° statement in the
ConvertTemp program we might have written:

If (scale == cel)

This returns a true value only when scale and cel are the same
object, that is, stored in the same bytes of memory. But scale and
cel were each declared separately as string variables at the beginring
of the program. They are different objects. The program line above
returns false, even when both variables hold identical values.

To compare strings we use the class method called equals (). This
takes the two strings and compares them character by character,
returning true only if all comparisons yield true. The syntax for
using equals is shown in the listing,

Theif ... structure
There are three ways of using if. . .:

1)if (condition) followed by a one-line statement of what is to
happen if the condition is true, or by a block of more than one state-
ments enclosed in curly brackets. The condition must be a variable or
statement returning a Boolean value (true or false). Nothing happens
if the condition is false.

Example:

if (age == 8)
name = "Laura";

If age is 8, the value Laura is assigned to name. If age is not §,
name retains the value it already has.

39

These two lines make clear the difference between = and =. The
conditional operator, =, makes comparisons, the assignment operator
assigns a value.

2) if (condition) followed by a statement or block, followed
by else with a statement or block defining what is to happen if the
condition is false.

Example:

if (age == 8)
name = "Laura";

else if (age == 9)
name = "Emma";

Name is assigned the values Laura or Emma, depending on whether
age is 8 or 9, otherwise, it retains its existing value. Note that the
‘what to do’ lines end in semicolons but the conditional lines do not.

3) if (condition) followed by a statement or block, followed
by two or more else if (condition) structures, each with its
statement or block of ‘what to do’ lines.

Example:

if (age == 8)
name = "Laura";

else if (age == 9)

name = “Emma";
else if (age == 10)
name = "Caroline";

The conditions are tested one at a time in order and the appropriate
action taken if any one or more is true. If none is true, variables retain
their existing values.

40

4) any of the above, but finishing with else followed by a statement
or block (but no condition). If none of the previous conditions is true,
the statement or block is executed and the variables may be given
values different from those they initially had.

Example:

if (age == 8)
name = "Laura";

else if (age == 9)

name = "Emma";
else
name = "Name unknown";
Try using the If ... routine by keying in, running and modifying

the following program.

class GirlsNames f{

}

public static void main(String[] args) {

int age = 0;
String name = "nobody";

if (args.length > 0)
age = Integer.parselnt(args(0]);

if (age == 8)
name = "Laura”;

else if (age == 9)
name = "Emma";

else
name = "unknown";

System.out.println("The name is " + name);

You could modify this program to operate on the ages and names of
people you know.

41

For... loops

The ability to repeat an action several times is an important function in
many programs. The action may be repeated a given number of times
or until a certain condition becomes true (using a for. . . loop) or as
long as a certain condition remains true (using a while... or
do... while... loop).

The structure of a for. .. loop is:

for (starting-value; test; increment) {
what-to-do statement; }

Declaring j as the loop variable, a typical loop is:

for (int j = 1; j <11 ; j =3 + 1) {
System.out.println(j);

The values 1 to 10 are printed out on the next ten screen lines. In this
example, the loop variable is initialised with the starting-value, 1.
Before each loop begins, the test is applied to check that j is less
than 11. If the test returns t rue, the statement is executed; the current
value of j is printed on the screen. Then the value of § is incremented
by 1. Note that the value of j is local. Once the loop has been
exccuted, j ceases to exist. This fact has two consequences: (1) j
must be declared every time the loop is initialised; (2) you can use j
as the loop variable in several separate loops in a program without the
risk of confusing them.

Experiment with using this structure by keying in, running and modi-
fying the program. Make it print numbers from 3 to 12, instead of
printing 1 to 10. Modify it to print out the even numbers from 0 to 16.
Then try for the multiples of 3 between —14 and + 14.

The for ... loop or its equivalent is used in many languages to
provide a delay during the running of a program. We just send the
processor running around the loop, doing nothing but taking a certain
amount of time to do it. Here is a Java version:

42

class waitForMe {
public static void main(String(] args) {

int limit = 0;
if (args.length > 0)
limit = Integer.parselnt(args[0]);

for (int j = 1; j < limit; § = j + 1) {
// Do nothing
}

System.out.println("Time up!!");

b

Type this in, compile it and run it. It needs a value on the command
line to set the number of times the loop is run. Try running it with
relatively small values, such as 100 or 200. You will find that it
finishes and displays “Time up!!” almost instantaneously. You
need to enter large numbers to get an appreciable delay.

Incidentally, you will find that entering a very large number results in
an error message and the program stops running. The message tells
you that an exception has occurred. This is because you have entered
a value too big for an integer variable to hold. We have more to say
about exceptions later in this chapter and more again in Chapter 10.

Unless you are running a very slow computer, the delays produced by
this routine are mostly too short to be of much use. We can increase
the delay by nesting a second for . .. loop inside the first:

class waitLonger {

public static void main(String[] args) {
int limit = 0;
if (args.length > 0)
limit = Integer.parselnt(args[0]);
for (int j = 1; j < limit; j = j + 1)
for (int k = 1; k < limit; k = k + 1)

0 // Do nothing

H

System.out .println("Time up!i!");

1}

43

We set the same value for the limit in both loops. This makes the delay
roughly proportional to the square of the limit. Now we can obtain
delays several minutes long.

While... loops

The structure of a while. .. loopis:

while (test) ({
what-to-do statement; }

There is no loop variable to be incremented. A while ... loopis
useful when the required number of repetitions of the loop is not
known in advance.

class DataReadl{
public static void main(String[] args) {
int index = 0;
if (args.length > 0) {
while (Integer.parselnt(args[index]) t= 99){

System.out .println(args[index]);
if (index < (args.length) + 1){
index = index + 1 ;

Fyy oo

The program operates on a sequence of values typed on the command
line. Note that, in another program, these values could easily come
from another source. For example, they might come from the com-
puter’s real-time clock or directly from the keyboard. However, at
present we are limited to input from the command line. The
while. .. loop runs through the array of values that have been read
into and are now stored in args []. It prints them out in order. The
value of index is incremented at each repetition, so as to fetch the
next value from args []. This continues as long as the value is not
equal (symbol, !=) to 99. The first time that the value is 99, the
computer jumps out of the loop without printing the number.

44

Run this program with various sets of values, to see how it works.
There are two cases:

1) A set with 99 occurring in it, but not in first place. Printing stops
when the value is 99. Example: 1 4 2 8 99 15 32 prints outas 1 4
2 8.

2) A set beginning with 99. There is no printout because the loop
condition equals false on the first run through. This includes the
case where there is only one value (99) in the set. Example: 99 6 3 7
12 gives no printout.

The routine does not work if the user forgets to include a 99 in the
data. See ‘Exceptions’ later and in Chapter 10.

The logical structure of this short program is quite complex. The
while... loopincludesanif. .. statement and is itself called by
anif... statement. Check the brackets with care!

Fig. 13 shows two trial runs of the program.

Fig. 13. Trial runs of DataRead\. The list of numbers is
printed until the computer reaches 99. It can handle zero and
negative numbers, but they must be integers.

45

Do... while... loops

We saw in the previous section that in a while... loop the
condition is tested at the beginning of each loop. If the condition
returns false on the first time round the loop (because it encounters
99), the computer jumps out of the loop without ever executing the
‘what-do-do’ statement. Otherwise, it prints the numbers in order until
it comes to 99. It does not print the 99.

Inado... while... loop, the condition is tested at the end of
the loop instead of at the beginning. The format is:

do
{ things to do
} while (condition);

Here is an example, similar to the previous example, to illustrate the
difference in their actions:

class DataRead2{

public static void main(String{] args) {
int index = 0;

if (arguments.length > 0) {

do

{System.out .println(args{index]);
if (index < args.length) {

index++ ;

b}

while
(Integer.parselnt (args[index]) t= 99);

brl

The do keyword is followed by the ‘things-to-do’ (print the value and
increment index if it has not reached the end of the set). These
actions are the same as before, but are now placed before the while
condition. The while condition is the same as before. There are
three cases:

1) A set with 99 occurring in it, but not in first place. Printing stops
when the value is 99. Example: 142 8 99 1532 printsoutas 1 4 2 8.

2) The set consists of 99 followed by one or more values, including a
second 99. The first 99 is printed but the second is not. This is because
the first 99 is printed before the test is applied. The next time 99
occurs, the test detects it and the loop is stopped. Example: 99 3 24 7
994 5gives 993 247.

3) Listing 99 on its own causes 99 to be printed but, then the computer
runs on, looking for more values. This happens too when the user
forgets to include a 99 in the set. Look at Fig. 14 to see what happens.

Before leaving the subject of while... loops and do...
while... loops, note that they can be used instead of for. ..
loops to run for a fixed number of repetitions.

- — | —————————————————————————————

===

Fig. 14. In trouble! The user has failed to include a 99
on the command line. Consequently, the computer
printed the five values and, because there was no 99'to
end the sequence, went on to look for a sixth value. There
is no such value, so an exception has been thrown.

47

Exceptions and errors

During compiling or on running some of the earlier programs, you
may have received messages about exception errors. These may have
occurred as a result of inaccurate keying in. In the while... and
do... while... loop programs, an ArraylndexOutOfBounds
exception message occurs when there is no ‘99’ or with only a single
‘99’ in the case of the do... while... loop. Obviously, steps
must be taken to avoid these errors, as explained in Chapter 10.
However, for the present, we will allow them in these two
demonstrations of the action of loops, so as to keep the programming
simple.

Things to do

1 Write a program to read a set of values from the command line and
then calculate and print out their mean.

2 Write a program to read a series of at least three integer values from
the command line, then print out the maximum and minimum values in
the set.

3 The while... and do... while... programs throw an
exception when 99 is not included in the set. Add a routine to these
programs to check through the data before it is passed to the loop
routines. If 99 is not found, convert the last value in the array to 99,
and display a message to warn the user that this has been done.

48

Summing UP Chapters1to 5

Java is an object-oriented language. The programming unit, or
object, is a class. A class may contain data and a method (or
methods). Methods are short self-contained program segments (also
objects) that tell the computer ‘what to do’. A class may call on
methods defined in other classes.

Classes are defined by typing text into a simple text editor and saving
it under the .java extension. The file is then compiled by the javac
program, which saves the compiled version under the same filename
but with the .class extension. This is run using the java program.

A class may include one-line (//) or multi-line (/* ... */) comments,
that are ignored by the computer. The class definition is encapsulated
by a statement such as:

public class <class name> {<class definition>}

The file must be saved under exactly the same class name as given in
the definition. The definition usually contains a statement such as:

public static void main (string(larguments){<data and
methods>}

The keyword main indicates to the computer that this definition must
be run before any others. A definition may begin by declaring
variables and perhaps assign values to them. Then it defines methods
to be used by the class. These may include methods that have already
been defined in another class. For example:

System.out.println {"text");

Note the semicolon which indicates that this line is telling the
computer to ‘do something’. Text may include escape codes (p. 21).

There are eight types of variable, including four types of integer

variable, all signed: byte, short, int, long. Floating-point
numbers are stored as £1oat or double.

49

Single characters may be stored as char. Finally, Boolean variables
(the results of logical operations) stored as boolean. They can take
only two values, true and false (not 0 and 1, as in some other

languages).

The eight types listed above are often called primitives because they
are an essential built-in feature of Java. They are not objects. Strings
are declared and used in much the same way as the primitives.
Normally a string variable is defined and given a value like this:

String warning = "Do not open the valve";

However, String is not a primitive. It is a class, an object with its own
set of methods. Each time we declare a string we create a new instance
of the String class. Each new string is a new object, but because we
need to create strings so often, Java does not require us to use new to

create it. Note that the class identifier, String, begins with a capital
letter.

Variables are named when defined by using an identifier:

int height; (note the semicolon)

In this example, the name ‘height’ is the identifier. Variable names
must start with a letter, an underscore or a dollar symbol. By
convention, variable names start with a lower-case letter. If the name
is made up of several words, subsequent words begin with a capital
letter:

double timeOfDay;

Variables may be assigned a value at the same time as they are
defined:

int height = 12;
Several variables may be declared on a single line:

int dividend, divisor, result, remainder;

50

Constants are defined using the keyword £inal before the variable
definition:

final int speedLimit = 30;

We can also use final when defining methods and classes. Its
effect is that they can not ever be changed (more on p. 118).

Values of variables can be read from the command line using the
keyword arguments (or its short form, args) and allocated to
named variables (pp. 33 - 38).

The idea of instances is very important in Java. Data and methods
may be defined for a class as a whole and then the keyword new may
be used to produce different instances of the class, using different
instance values. For example, on p. 23 we created a new instance of
the Divide class, called Dividel. This has its own instance variables
and instance methods, identified by prefixing the names defined for
the class as a whole with ‘Cividel’.

Dividel.divisor and Dividel.calculate are examples.

Java includes several useful logical structures, including:

if
for .
while ..
do ... while
The if ... structure relies on a condition which has the form of a

Boolean statement. There are three variations on this structure:

if (condition)
<what to do if condition is true; do nothing if condition is false>;

if (condition)

<what to do if condition is true>;
else

<what to do if condition is false>;

51

if (condition 1)

<what to do if condition 1 is true>;
elge if (condition 2)

<what to do if condition 2 is true>;
else if (condition 3)

<what to do if condition 3 is true>;
else if (condition4)

<what to do if conditon 4 is true>;
else

<what to do if all conditions are false>

The ‘what to do’ lines end with a semicolon, The if, else if, and
el se lines have no semicolon.

The for ... loop depends on a group of three criteria:

for (starting value; test; increment)
{<what to do>; }

The items in the condition brackets refer to the loop variable. The
starting value must declare it and assign it its starting value.The loop
variable is local and ceases to exist after the loop has been run.

The while ... loop has the form:

while (test)
{<what to do>;}

This repeats for as long as the test statement is true; it is not
executed if the test is false at the first run.

Thedo ... while loop has this structure:
do {<thingto do>} while (condition);

This is always executed on the first time round and subsequently, as
long as the condition remains t rue.

52

Summary tables

1) Operators

Java has more operators than shown in this table, which is limited to

the more essential ones.

Type Operator symbol Meaning/Example
Assignment = age = 25;
Arithmetic + add
(returns a numeric B subtract
value) - multiply

/ divide
% modulus
Comparison == equals
(returns a Boolean l= does not equal
value) < less than
> greater than
<= less than or equals
>= greater than or equals
Logical & AND
(returns a Boolean | OR
value) : ! NOT
g XOR

53

2) Precedence

In an expression which contains two or more different arithmetic or
logical operators, the operators are applied in an order of precedence,
as set out in the table below.

Precedence Operators Meaning
— -+ - — -4 - — - 1
1 /804 Multiply, divide,
modulus

2 + - Add, subtract
3 == Equals, does not equal
4 & AND
- 2 XOR
6 OR

Expressions in brackets are evaluated before expressions outside
brackets. If there are nested brackets, the innermost expression is
evaluated first.

54

6 Arrays and other topics

Arrays are a convenient way of handling certain types of data. We can
think of an array as a table, such as this one:

Index Name of day

[0 |[sunday |

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

The table has room for seven entries, one for each day of the week.
The rows of the table are indexed, but note that (in Java) the index
runs from 0 to 6, not from 1 to 7.

One advantage of placing data (names of weekdays) in a table (or
array) is that we need only one name (nameO£fDay) for the array, and
can refer to any one of the entries by quoting its index. Thus,
nameOfDay [4] is Thursday. This may not seem much of an
advantage for handling single weekdays but it does lend itself to
processing data. We could process thc names is some way, using a
For ... loop to perform that same operation on each of the names
in turn. This is much simpler to program that processing each of the
seven days individually. Later, we will look at a program that uses this
technique.

55

Before looking at the program, there are a few general points to
consider. The first is that an array can hold only one type of data. The
array above holds string variables. Another array might hold integers.
But no array can hold both strings and integers.

Arrays are declared in either of two ways. The array above could be
declared by:

String[] nameOfDay;
or by:
String nameOfDay] ;

At this stage the identifier of the array has been declared but the length
of the array (the number of items of data that it can hold) and its
content have not.

The length can be defined by using the keyword new:

String [] nameOfDay = new String(7]

The content of the array is not yet defined, so each item is automati-
cally given an initial value. This is “”* in the case of String arrays, 0 in

numeric arrays and False in Boolean arrays.

To create an array directly and load data into it, we simply list the
content:

String[] nameOfDay = ({"Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"}

This technique applies only to String arrays, because only String
objects can be initialised without using new. We can now understand
what is happening behind the scenes in the program on p. 33. When
the program is run, Java automatically creates a String[] array called
args and reads the data on the command line into it, as strings. In that
program we convert the strings into integers before processing them
numerically.

56

Note the use of the variable args.length. When an array is
created, a corresponding integer variable is set up automatically to
hold the number of items in the array. In the program, args . length
is equal to 3. In the previous example nameOfDay.length is
equal to 7. Later, we shal! see other examples of using the length
variable.

Using arrays

Here is a simple array-based program, called dayNumber .

class dayNumber {
public static void main(String[] args) {

String[] ordinalNumber =
{"first", "second", "third", "fourth", "fifth",
"sixth", "seventh"}; .

String[] dayOfwWeek =
{"sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday"};

int select = 0;

if (args.length > 0)
select =
Integer.parselnt (args[0]) - 1;

System.out .println("The " + ordinalNumber [select])
+ " day of the week is " + dayOfWeek [select] +

")

H

There are several long lines in this listing. The semicolons show
exactly where the program lines end.

The program accepts input of a single integer, which must lie between
1 and 7. This is taken to be the day of the week, with Sunday being
Day 1.

The computer responds by displaying a statement. For example, if the

input digit is ‘4’, the display reads “The fourth day of the week is
Wednesday.”

57

The way the program works is this. It begins by creating and
initializing two string arrays, each with seven entries. There is
ordinalNumber [], which holds ordinal numbers from “first” to
“seventh”, and there is dayOfWeek [], which holds the names of the
days from “Sunday” to “Saturday”. The program also creates an
integer variable called select, the number of the selected day.

The method of this class checks that there is in fact an integer on the
command line. If so, it looks at the first string in the arguments
array and converts it into an integer, stored in select. This value is
then used to pick out the corresponding pair of entries from the
ordinalNumber [] and the dayOfWeek [] arrays and insert them
in the display message.

The appropriate item is selected from each array by using select as
the index number. However this is not quite as simple as it seems
because the locations in the Java arrays are indexed from 0 upward.
By contrast, the days of the week are numbered from 1 to 7 and the
ordinal numbers run from “first” to “seventh”. This is why we subtract
1 from select before using it to index the arrays.

This program illustrates how organizing data into arrays is so helpful
when handling systematically arranged data.

More arrays

This program uses arrays of integers:
class nutsAndBolts f{

public static void main(String(] args) {

int{] unitPrice = { 2, 5, 4 };
int (] partCost = new int(3];
int quantity = 0;

int totalCost = 0;

if (args.length > 2)

for (int j = 0; §J < 3; § = 3F + 1) {
quantity = Integer.parselnt(args{jl);
partCost {j] = quantity * unitPricelj];
totalCost = totalCost + partCost(j];

58

System.out.println("The total cost is " + totalCost);

}}

This program calculates the total cost of quantities of nuts, bolts and
washers, each commodity having a different unit price. The quantities
are specified by typing three integers on the command line.

The unit prices (in pence) are initialised when the array unitPrice
is declared. Another array is declared, without values initialised, to
hold the costs for nuts, bolts and washers respectively. Each entry in
this array will eventually hold the cost of the given quantity of each
commodity.

The program checks that there are at least 3 quantities specified and, if
50, enters a typical for ... loop to process the three commodities in
order. The program is simplified by using arrays, for we can identify
the commodities by the loop index j, which is also used to index the
entries in the arrays.

Each time round the loop the computer:

1 Reads the quantity from args [],

2 Calculates the part-cost by multiplying the quantity by the unit price,
and

3 Cumulatively sums the part-costs to find the total cost for nuts, bolts
and washers.

It is interesting to contrast the syntax of the lines that create the integer
arrays. Array unitPrice [] is created directly with values that are
already known. The values are not known for partCost [], so an
empty array with three locations is created:

int[] partCost = new int[3];

This line is creating the array as a new instance of the integer array
int []. Note again that the double square brackets can be after the
int on the left or after the partCost.

59

Converting data types

This operation is referred to as casting. Just as we can melt down a
glass bottle in a foundry and cast it into a different shape, so we can
cast an integer variable, stored as a byte, into a 1ong. It retains its
numeric value, just as the new object is still glass after it has been cast.

Before discussing casting in more detail, we will summarise the types
of data that exist in Java. The table below lists the eight primitives and
the range of values that they can have:

Type of variable Defining keyword Range
Integer byte -128to 127
short -32 768 to 32 767
int -2E31t0 2E31 -1
long —2E63 to 2E63 - 1
Floating point float 1.4E—45 to 3.4E+38
double 4.9E-324 to
1.7E+308
Single character char alphanumeric
symbols and
punctuation, etc.
Boolean boolean true or false

Because Boolean variables have only two opposite values, which are
not numerical, it is not possible to cast any of the other types into
Boolean form.

Integer types can be cast from one to the other, provided that the type
we cast into has a range that includes the value we wish to store. To be
certain, it is best if we always cast from a type of smaller range into
one of greater range. For example, there are no problems in casting a
byte into an int, ora short intoa long. Casting of these types
is automatic. For example, you can use an int as a long without
needing to specify the change.

If a casting does not occur automatically, we can cast by using a
statement such as this:

(type) value
For example:
(double) accountTotal

This casts accountTotal asa double. The same format can be
used with an expression, for example:

(int) (unitCost * quantity - discount)

This evaluates the expression and then stores the result as an integer.
Note the brackets around the expression. This is because casting takes
precedence higher than that of mathematical operations. If the
expression were unbracketed the casting would apply only to its first
term (unitCost). The result might have a different numerical value
and might also be a different type, such as float.

Casting may also done with objects, such as instances of a class, but
this is beyond the scope of this book. However, there is one common
object type, String, that we have already cast in several of our
examples. All input, inchuding numeric values, is read from the
command line into the string array, args [].

Often we need to cast the numeric values on the command line as
integers. This is the function of a method of the Integer class,
called Integer.parselnt ().

There are several examples of this on previous pages.

The Limerick program (below) has examples of casting a double as
an int. It is used there as a simple way of chopping off the fractional
part of the value of the double. This is not the same as rounding it
off. For example, rounding the value 3.5 gives 4, but casting a
double of value 3.5 gives an int with value 3.

61

Java verse

Now we look at an example of casting and take the subject of arrays a
stage further. The next class, Limerick, is a light-hearted foray into
handling arrays. Before we study the program, there is another aspect
of arrays to cover. This is the subject of multidimensional arrays.
Readers who have used BASIC will be familiar with a command such
as DIM A$(4, 5). This creates a 2-dimensional string array called A$,
with 4 rows and 5 columns. Each of the 20 strings in the array can be
identified by using its two indices.

Java does not have multidimensional arrays, but it is easy to program
the equivalent by defining an array of arrays. For example, to set up
the equivalent of DIM A$(4,5), we type:

string [] [] A$ = new String(4] [5]

This creates a new array with four locations, each of which holds a
string array with five locations. We use this procedure in the Limerick
program opposite.

Limerick composes verse by randomly selecting words and phrases
that are stored in arrays. The arrays have the identifiers worda,
wordB, wordC .. wordI. First, it directly defines six of these
arrays, each having two, three or four locations.

WordD requires three arrays, each with two locations. This is defined
according to the technique described above. Then the six locations are
filled with strings.

WordF is similar, but requires two arrays, each with three locations.
Remember that the locations are numbered from O upward, but the
numbers in square brackets specify the actual numbers of locations

that the array has. So WordF is initialised as new String(2] [3]
and has six locations, wordF [0] [0] to wordF [1] [2].

62

class Limerick {
public static void main (String[] args) {

string[] wordA = {"poor", "fat", "rich"};

String[] wordB = {"singer", "writer", "toddler", "pop
star"};
String[] wordC
String(] wordE
String[] wordG
String(] wordH
String[] wordl

"Andrew", "Sarah", "Winnie"};
"one day", "one night"};
"silly", "hopeless"};
"always", "seldom"};

"went out", "started"};

String[] [] wordD = new String(3] [2];
wordD [0] [0] = "liked eating cheese fondue";
wordD[0] [1] = "said 'Yes' and then 'Can do'";
wordD[1] [0] = "ate steak so much rarer";
wordD[1] [1] = "thought no one would dare ‘'‘er";
wordD[2] [0] = "liked wearing a pinny";
wordD[2] [1] = "looked horribly skinny";

String [} [l wordF = new String(2]} [3]};
wordF [0] [0] = "romp in the hay";
wordF [0] [1] = "join in the fray";
wordF [0] [2] = "go out to play";
wordF (1] [0] = "have a good fight";
wordF[1] [1] = "put out the light";
wordF[1] [2] = "just be polite";

int randA = (int) (Math.random() * 3);
int randB = (int) (Math.random() * 4);
int randC = (int) (Math.random() * 3);
int randD = (int) (Math.random() * 2);
int randE = (int) (Math.random() * 2);
int randF = (int) (Math.random() * 3);
int randG = (int) (Math.random() * 2);
int randH = (int) (Math.random() * 2);
int randl = (int) (Math.random() * 2);

System.out .println("\nThere was a " + wordA[randA] + " "
+ wordB[randB] + " called " + wordC[randC] + ",");
System.out .println("Who * + wordH[randH] + " " +

wordD [randC] [randD}) ;
System.out.println("And * + wordlI [randI]

+ " " 4+ wordE([randE] + ',');
System.out.println("To " + wordF[randE} [randF] + ",");
System.out.println("That " + wordG[randG} + " "

+ wordA[randA] + " " + wordB[randB] + " called "

+ wordC([randC} + ".");

H

63

The fourth block of statements in the program produces nine random
numbers to be used to select words from the arrays.

Note the technique for generating randA. This is to be a random
integer ranging from 0 to 2, used to select one of the locations in
wordA. The call to Math.Random produces a value between 0 and
0.999.... When this is muitiplied by 3, it ranges from 0 to 2.999...,,
but not 3. The (Math.random() * 3) expression is enclosed in
brackets to cast into an integer variable randA, using:

(int) (Math.random() * 3)

When cast as an int, it loses the digits to the right of the decimal
point, so its range comprises only the three integers 0, 1, and 2. This
is an example of non-automatic casting, as described on p. 61.

The final stage of the program consists of five statements to print the
five lines of Limerick. Note the use of the escape code \n, to
introduce a blank line before the printout of the verse.

Fig. 15. Limerick combines the words entirely at random in 3456 dif-
Jerent ways, so you are unlikely to get exactly the same verse twice.

64

Sorting numbers

When sorting numbers it is essential to have a systematic way of
handling them. This is another useful application of arrays. The sorter
program listed below demonstrates a useful way of doing this. The
method used Arrays.sort(): !

import java.util.*;

class sorter {

public static void main(String[] args) {
int[] values = new in:[args.length];

for (int j = 0; j < args.length; j = j + 1) {
values [j] = Integer.parselnt (args([jl);

for (int j = 0; j < args.length; j = j + 1) {
System.out.println(values[j]);

System.out.println(Arrays.toString(values));
Arrays.sort (values) ;

System.out .println(Arrays.toString(values));

H

We begin by importing the utility package (p. 124) because the
specialised methods for orocessing arrays are part of this. Then the
main method creates an array called values (] to hold the values
that the user has typed or. the command line. A for ... loop reads
in these values, they are converted to integers and stored in the
values [] array.

Next comes the second for ... loop which prints out the stored
values individually. This is included only to show the contents of
values (], and could be omitted from the program.

Now we make use of a method which was introduced in the new
version 1.5.0 of Java 2, commonly referred to as J2SE 5 or Tiger. This
new Arrays.toString () method prints out the contents of the
array as a single string, instead of individually. This avoids the
complications ofa for ... loop.)

65

Fig. 16. Demonstrating the use of the Arrays. toString () and
the Arrays. sort () methods.

Sorting into ascending numerical order is easily achieved by calling:
Arrays.sort (values)

Finally, we use Arrays.toString() again to print out the sorted
values. The result of a typical run of the program appears in Fig. 16.
First we have the individual values listed one below the other. Then

they are displayed as a single string in square brackets. After sorting,
they are displayed in their sorted order.

The sorting method can also be used with the binarySearch ()
method, as illustrated by this program:

import java.util.*;

class pickOut {

public static void main(String([] args) {
int[] values = new int [args.length];

for (int j = 0; j < args.length; j = 3 + 1) {

) values[j] = Integer.parselnt{args(j]);

Arrays.sort (values) ;
int place = Arrays.binarySearch(values, 10);

66

System.out.println(place);

1}

This accepts several integers typed on the command line before
running. It sorts them into ascending numerical order. Then the
method binarySearch is applied to the sorted array. The second
parameter specifies the number to search for. In this program it is 10.
The method returns the position of the value 10 in the sorted array.
Here the position is assigned to the variable place.

Another array printing method

If printing out the contents of an array is complicated, it becomes even
more complicated when the array has two or more dimensions, as in
the Limerick program (p. 62-4). Tiger has come to the rescue with a
new method for printing multidimensional arrays, deep-
ToString().

import java.util.*;
class timesTable {
public static void main(String(] args) {
int [] (] series = new int[3] [5];
for (int j = 0; j <3; =3 + 1) {
for (int k = 0; k < 5; k = k + 1) {

series(j)l [k] = (j + 1) * k;

1}

System.out .println(Arrays.deepToString(series)) ;

1}

Before using deepToString (), this program has two nested for
... loopstofillthe series[] [] two-dimensional array. The array
holds three series of five integers each. They are then printed out by
the new method.

67

Comparing arrays

It is sometimes useful to be able to compare two arrays to determine
whether or not their contents are identical. For one-dimensional
arrays, this is done by using Arrays.equals (). This is different
from the equals described on p. 38. The brackets hold two parame-
ters, the names of the two arrays. For example:

if (Arrays.equals(arrayA, arrayB)) ({
appropriate action

testEm demonstrates its action on three one-dimensional arrays:

import java.util.«;

class testEm {
public static void main(String(] args) {

String(] oneWayA = {"a", "b", "cv, "dn};
string(] oneWayB = {"a", "p", "c", "d"};
String(] oneWayC = {"a", "b", ®c", ®d"};

if (Arrays.equals(oneWayA, oneWayB)) {
System.out.println("A & B are equal");

else {
System.out.println("A & B are NOT equal”);

if (Arrays.equals(oneWayA, oneWayC)) {
System.out.println("A & C are equal");

else {
System.out.println("A & C are NOT equal”);
g

Three sample string arrays are declared, using the technique described
on p. 56. We then compare oneWayA with oneWayB, using:

if (Arrays.equals(oneWayA, oneWayB))
The expression in brackets yields a Boolean result, which is either true

or false. If the expression is true then “A & B are equal” is displayed
on the screen. Otherwise, the display reads “A & B are NOT equal”.

68

Another array method, new with Tiger, extends the capability of
Arrays.equals() from single-dimension to multidimension ar-
rays. The method is called Arrays.deepEquals (). See ‘Things
To Do’ item 5, below for further details.

Things to do

1 Using the dayNumber class as an example, design a program that
displays selected lines from the poem “Monday’s child is fair of
face”.

2 Expand the nutsAndBolts program so that it displays a complete
invoice for the sale of nuts, bolts and washers. The invoice is to show
for each commodity, the quantity ordered, the unit cost and the cost of
that quantity of the commodity. It also shows the total cost.

3 Write your own version of Limerick. It is mcre fun if you base it on
the names of relatives and friends. Remember to make the appropriate
lines rhyme and scan correctly.

4 Try the pickOut program, giving it integer values that do not include
10. Also try it with arrays that include 10 more than once. Can you
find any rules that determine the value given to place?

S Write a program to compare three 2-dimensional arrays, two at a
time. Model the program on festEm, opposite. You can declare the
sample arrays either as in Limerick (p. 63) or directly, as on p. 56. For
example, a 2 by 4 array can be declared like this:

String(] (] twoWwayA = {{ra", b, "c",
ndn},{ueu, nfn ngn, nhn}};

69

7 A new look

In this chapter, we introduce two new ways of getting into contact with
the program. Until now we have used the command window. To input
data, we have typed one or more arguments after the filename (see
Fig.11, p. 35). To output data, we have included program lines cf the
System.out.println() type.

Now we move a little closer to the methods of input and output used
by the computer’s operating system. The examples are based on a PC
running Windows XP, but similar results are obtainable with other
systems.

Run-time input

The routine below uses a method belonging to the swing package. This
contains a large number of classes dealing with display routines. To
make these classes available to our program we begin with the
command import javax.swing.*. The asterisk indicates that
we are importing all the swing classes. This is not strictly necessary in
this case, since we are using only one class from the package.

import javax.swing.*;
public class newInput
public static void main(String(] args)

String value = JOptionPane.showInputDialog
("Key in a number");

int numberValue = Integer.parselnt(value);

System.out .println("The number is " +
numbervalue) ;

System.exit (0);

71

Key in this class and compile it in the usual way. Then type java

newInput and press Enter. A window appears on the screen, as
illustrated in Fig. 17.

Input

Fig. 17. The window created by using newlnput has the typical
Windows format. You can drag it around the screen, as we have
done here to centre it just below the command line.

The imported class is JOptionPane, and the method is showIn-
putDialog (). This defines a small window containing text
(defined by the argument) and a space into which data (an integer
value) can be typed. There are ‘OK’ and ‘Cancel’ buttons.

The user types in a number, which appears in the window. The typed
data is returned as a string, the value of which is assigned to the integer
variable, numbervalue. The next line displays the value on the
command screen, and clears the small window from the display as
soon as the user presses Enter.

This program needs a final line, System.exit (0), to return it to
the operating system.

72

Output

Programming for output is more complicated than for input, but here
is a fairly simple routine that displays a window containing a text
message.

import javax.swing.*;

public class outFrame }
public static void main(String[] args)

JFrame message = new JFrame();

message .setDefaultCloseOperation (JFrame.
EXIT_ON_CLOSE) ;

JLabel messageLabel = new JLabel ("This is
the message”) ;

JPanel panel = new JPanel({);
panel.add (messageLabel) ;
message.setContentPane (panel) ;
message.pack() ;
message.show() ;

1)

The aim of the program is tc create and display a frame containing a
message. As in the previous program, we need to use several classes
from the swing package, so we begin by importing it.

The class listing begins by creating a new instance of JFrame, called
message. The next line ensures that the program remains running until
the frame is closed. Then we set out the message that is to be
displayed, and call it nessageLabel.

The remaining lines are concerned with putting the display elements
together. First we create a new instance of JPanel called panel. Then
we add messageLabel to panel and set it as the content of the
frame. To finalise the operation we pack the frame and show it. The
pack method automatically adjusts the size of the frame to fit the
items that are in it. Until the final command, show (), is given the
frame is invisible. We do not show it until all the components of it
have been put together. The result is shown in Fig. 18. Usually the
frame appears at the top left corner of the screen, but we dragged it
away for the illustration.

73

Fig. 18. The display frame obtained by running
outFrame.

Like us, you may think that pack () is cramming the text into too
small a frame. If so, delete the pack () expression from the program
and substitute:

message.setSize(200,200);

The numbers represent the width and depth of the frame in pixels.
Recompile the program as outFramel and run it. Fig. 19 is the result.

Fig. 19. By using setSize () instead of pack (), you can
make the frame any size you like. It can even fill the whole
screen.

74

Depending on what version of Java you are running, you may have
noted an on-screen warning when compiling out Frame with javac.
This did not prevent javac from compiling the program properly.
Also, it did not prevent java from running the program and showing
the desired result. The purpose of the warning is to tell you that one of
the APIs you have used is deprecated. The API (Application Pro-
gramming Interface — a method or class) is OK, but there is now a
newer (and presumably better) way of doing things. You can ignore
the waming and then search the latest books (and the website) to
discover the better way.

The waming informed us that the show () method used in out-
Frame is now deprecated. There is something better that we can use.
As explained in detail in Chapter 10, we found that the better method
is setVisible (). This takes a Boolean argument. If the argument
is true, the window is displayed. If the argument is false, the
window is hidden. The next program shows this happening:

import javax.swing.*;
public class bugAlert {

public static void main(String(} args){
boolean delay = true;

JFrame message = new JFrame();

message.setDefaultCloseOperation (JFrame.EXIT_
ON_CLOSE) ;
JLabel messageLabel = new JLabel ("DANGER!
BUGS ATTACKING!!");

JPanel panel = new JPanel();
panel.add (messageLabel) ;
message .setContentPane (panel) ;
message.setSize (200, 200);

while (delay = true) {

for (int j = 1; j < 10000; j = 5 + 1)
for (int k = 1; k < 10000; k = k + 1)
message.setVisible (true) ;

for (int j = 1; § < 20000; j = j + 1)
for (int k = 1; k < 20000; k = k + 1)

1)

message.setVisible (false) ;

1)

75

Minor differences between this program and outFrame are:

° This program is called bugAlert and, for this reason, the
message has been changed to something appropriate.

° A Boolean variable delay is initialised and given the value
true.
° It uses the larger panel as seen in Fig. 19.

The main difference between the programs is seen in the last block of
coding, starting with the while. .. loop. The loop repeats for as
long as (delay = true). Because delay has already been set to
true and the program never changes it, the loop repeats for ever.

Inside the loop is the routine for making the message visible and
invisible alternately. To do this we wuse the mes-
sage.setVisible () method. It is first of all made true, so the
message appears. Then there is a delay caused by the for
loop as described on p. 43. After this, the message is made invisible
and there is another delay. This visible-delay-invisible-delay sequence
is repeated indefinitely because it is inside the while ... loop.

When bugAlert is run, the warning message flashes on and off at the
top left comer of the screen. To stop it, either click on the ‘close’
button at the top right comer of the message window, or close the
command screen.

Unicode characters

You are already looking at Unicode characters because they include
all the alphabetical and numerical characters, punctuation and many
other symbols (such as €) that we frequently see in everyday text.

The Unicode characters include all these and very many more. To look
at some of the less common ones, reload the outFrame program
(p. 73) and edit it to display a different ‘message’. First, type in an
extra line at the beginning of the main method (just before ‘TFrame
message ...’):

char code = (char)0x0E2D;

76

This is a way of representing a character as a number. The format of
the number, which is preceded by ‘Ox’ indicates to Java that this is a
hexadecimal number. Every unicode character has a hexadecimal
number to identify it. What this line is doing is to declare a char
variable named code and give it the value obtained by casting (see
pp. 60-1) the hexadecimal number as a char. We will see the purpose
of this in a moment.

The second amendment to the program is to delete the message, “This
is the message” and replace it with:

"\uOOA5 " + code + " \u27A1"

This message consists of three Unicode characters, which we can see
when the JFrame is displayed.

To complete the editing, change the class name from outFrame to
unic, and save the file under a new filename, unic.java. Compile
the program, then run it. Fig. 20 shows the result.

Fig. 20. Examples of Unicode characters.

The symbol for the Japanese currency unit,

the yen, a letter from the Thai alphabet; a
right-pointing arrow symbol.

77

Until the recent introduction of Unicode version 4.0, the previous
collection of characters was defined by a 4-digit hexadecimal. This
gave it the possibility of defining 65536 different characters repre-
sented by numbers from 0000 to FFFF. The first 127 were the standard
ASCII characters, mainly upper-case and lower-case letters, numerals
and punctuation. Now the code covers the alphabets and symbols of
dozens of languages from Greek and Thai to Devanagari and Bengali.
Among the symbols covered, probably the most generally useful are
the mathematical symbols. However there are numerous other symbols
such as ‘smileys’, musical notes, Braille patterns and Dingbats (see
item 6 under ‘Things To Do’, p. 80).

More recently, Unicode version 4.0 was released and the latest version
of Java (1.5.0, or Tiger) has been updated to support all the new
symbols now included. These have 5-digit hexadecimal numbers in
the range from 10000 to 1FFFF. The char type can cope only with
4-digit numbers so methods have been introduced that use integer
variables. The characters in the extended range are mainly of very
specialised use. For example, they include the characters of Linear B
script, which would be of interest only to professional archaeologists.

Input and Output

Now we combine both techniques in the same program. Compare
Birthday (see listing opposite) with the previous examples, newinput
(p- 71) and outFrame (p. 73).

The class needs to import swing classes and methods, so the first line
does this. As usual, we do not bother to indicate which of the classes
and methods of swing that we need. The asterisk is a ‘wild card’ that
means ‘any class or method’, so the whole of the swing package is
imported. There is more about Java packages and their importance in
Chapter 11.

The program then asks for two data inputs, the current year and the
birth year. These are received as strings, but converted to integers in
the usual way. Then comes a line in which these two values are used to
calculate the output value, age.

78

import javax.swing.*;

public class Birthday {

int current = 0;
int birth = 0;

public static void main(String[] args)

String thisYear =
JOptionPane.showInputDialog("Key in the current year");
int current = Integer.parselnt{(thisYear);
String birthYear =
JOptionPane.showInputDialog("Key in your birth year");
int birth = Integer.parselnt(birthYear);

int age = current - birth;

JFrame message = new JFrame();

message.setDefaultCloseOperation (JFrame.
EXIT_ON_CLOSE) ;

JLabel messagelLabel = new JLabel ("This year
you are " + age + " years old.");

JPanel panel = new JPanel({);

panel .add (messageLabel) ;

message.setContentPane (panel) ;

message.pack() ;

message.setVisible(true);

1

The third stage of the program is the same as the outFrame class,
except for the message. The argument of messageLabel comprises
text strings and an integer value. When strings and integers are
concatenated like this, Java automatically casts the integers as strings.

This is a very basic program. The input and output windows are not
well laid out and their screen positions are not ideal. Also, we have not
made any provision for the user who clicks on the ‘Cancel’ button. But
this is a useful routine if you are wanting to write and test mathemati-
cal operations.

In Chapters 14 and 15, we will show how to improve its visual aspects,
and how to set the fonts and the colours.

79

Things to do

1 Define a class called myName which asks the user to type in their
full name (given names followed by family name}) and then prints it on
the command screen.

2 Extend the class above to ask for the full name, then print out the
given names and family name on separate lines on the command
screen.

3 Invent a class that displays a succession of frames at 5-second
intervals, quoting successive lines in a well-known song or poem.

4 Write programs with screen input and output, based on the structure

of the Birthday class. Possible topics are:

a) converting pounds sterling to US dollars, given the current ex-
change rate.

b) calculating the current in amps through a resistor, given its
resistance in ohms and the voltage across it (Note: current =
voltage/resistance). A simple program could use integers, but
using double variables and rounding off to three decimal places
(nearest milliamp) would improve it.

5 Invent a class that plays a simple game called Guess The Number. It
displays a panel on the screen asking the player to key in any number
between 0 and 9. The class then generates a random integer in the
range O to 9. If this is the same as the number typed in by the player a
frame is displayed saying “You win!”. Otherwise a frame appears
saying “Sorry, you lost.”

6 Amend the unic program to display other characters. You can
identify them either by declaring a char variable such as code or by
using the escape character “\u”. Try putting in any values you like
and seeing what you get. If you want to find the codes for particular
characters, go to the Unicode website, where they are all listed:

www.unicode.org

80

8 OOP in action

In the previous seven chapters we have looked at many (though by no
means all) of the things that Java can do. We have seen how to use the
keywords and program structures to perform quite complicated tasks.
We have written programs, some short, some long. Yet, are these
programs object orientated? Almost all of them are essentially proce-
dural (see Fig. 1, p. 2), just like like programs written in BASIC or
some other procedural language. They use Java keywords and struc-
tures and are wrapped up in a class definition, but they are still
procedural. Where are the objects?

This query overlooks that fact that we have certainly employed quite a
number of objects in our programs. In our first program we called the
method System.out.println(). This may look like a rather
fancy keyword but in fact it is a call to an object written by someone
else and stored in the the library of objects (APIs) provided with the
Java Development Kit. Looking through the other programs, you will
note many other objects that we have used. Examples of these cbjects
include: String, StringTokenizer, args.length, and
JOptionPane. So we have been using OOP after all!

Now we take it further. The reason for this is to simplify our programs,
to make them more reliable and testable, and to make them really
flexible and useful. Then we shall be reaping the benefit of using Java.

A procedural program

All programs are procedural to a certain extent, except those with only
one program line. If there are two or more lines, it is procedural.
However there is no great objection to short procedures. It is when it
gets to 20 or more lines that we begin to worry that it would be better
to reduce the length.

Such a program is motion, listed on pp. 27-8. Its procedure can be
summarised as follows:

81

Declare the six variables.
Method workItOut () shows how to calculate final-
Speed and distance, given initialSpeed, accel
and t ime.

o Method Printout () displays a statement of the car’s final
speed and distance travelled.

° Then comes the main method which begins by creating an
instance of motion, called OldBanger.
The variables of OldBanger are given values.

° workItOut () is called to calculate finalSpeed and
distance.

Printout () is called to display the result.
The previous 4 stages are repeated to create a new instance of
motion, called SoupedUp.

This program did not take its input from the keyboard, so keyboard
input would be a useful addition to the program. It requires an extra
stage at the beginning of the program, which would make it longer
than it is already, so we will write this as a separate program. To do
this we create a new class, but call it motionInput. This is the listing:

import javax.swing.»*;
public class motionInput

float initialSpeed;
float accel;
float time;

public void keyInbData()

String value0 = JOptionPane.showInputDialog
(*Initial speed? (m/s)");
initialSpeed = Float.parseFloat (value0) ;

String valuel = JOptionPane.showInputDialog
("Acceleration? (m/s/s)");
accel = Float.parseFloat (valuel);

String value2 = JOptionPane.showInputDialog

("Time? (8)");
time = Float.parseFloat (value2);

82

This class is like the class newlnput, which is listed on p. 71. It begins
by importing all the swing classes, so that we can set up small panels
to receive the input. In motionInput there are three panels, one for
initial speed, one for acceleration and one for time. They are displayed
one at a time and each stays on the screen until a value is keyed in.

The values are assigned to the variables initialSpeed, accel,
and t ime. Note that the values are asigned to floating-point variables,
using a method called Float .parseFloat (). This is similar to
the method Integer.parselInt (), which we have often used for
reading data from the command line.

If you key in this class, save it, and then compile it with javac,
everything goes as usual. However, if you try to run the .class file,
using java, an exception message is displayed and the class does not
run. This is because the class has no main method. It has a class
method, keyInData (), but no main method. The computer can not
find anywhere to start running.

What we have here is a general-purpose routine for entering data about
the motion of an old banger, a souped-up car, or any other vehicle that
we can think of. But to use this routine we have to develop arother
class.

Extending the class

The class motionInput is not much use on its own. We need to tell the
computer what to do with the data that has recently been typed in. This
is the function of another class, called workltOut:

class workItOut extends motionInput {

float finalSpeed = 0;
float distance = 0;

public void workOutSpeed() {

finalSpeed = initialsSpeed + accel * time;

distance = (initialSpeed + finalSpeed) / 2 *
time;

H

83

The first line states that this class extends the motionInput class. It is a
continuation of that class. Objects belonging to motionInput are
accessible to workltQut. We say that workItOut inberits the variables
and methods of motioninput. Inheritance is an important feature of
Java. The features of a given class are available to all its sub-classes.
In this example, the variables that are typed in when motionInput is
running are available to be used by workltOut, when it is calculating
finalSpeed and distance.

Putting it together

Although we have extended motionInput by adding some calculation
methods, we still have not provided a main method. The computer
still can find nowhere to begin. This comes in a third class called
vehicleMotion:

class vehicleMotion{
public static void main(String[] args) {

workItOut car = new workItOut();
car.keyInData();
car .workOutSpeed () ;

System.out .println("\nFinal speed = " +
car.finalSpeed + " m/s.");

System.out.println("Distance = " + car.distance +
"m.");

H

This is quite a short class but at least it has a main method. The
computer can run it!

The first thing in vehicleMotion is to create a new instance of the
workltOut class, called car. We could, of course, create other in-
stances too, as when we created o/dBanger and soupedUp, but there is
no need for this in this version of the motion program. Now that we
can type in data for each kind of vehicle, instead of the values being
already specified in the program, we do not need to create an instance
for each type of vehicle.

In the orginal motion class, on pp. 27-8, we created two new instances
of the motion class itself. In this version, the vehicleMotion class, we
create not a new instance of vehicleMotion, but a new instance of
workltOut. This links the two classes. It tells the computer where to
go to find the method for working out the calculations. Also, because
workltOut extends motionInput, it tells the computer where to find the
method for keying in the data.

Now to return to the description of running vehicleMotion. The next
stage in vehicleMotion is to call keyInData, using the statement:

car.keyInData;

This takes the computer back through workltOut to the keyInData
method of motionInput. A sequence of three input panels is displayed
on the screen and the user is invited to enter the data.

That done, the next line of vehicleMotion is:

car.workOutSpeed

This is the method that is part of workltOut. Two new variables are
declared and then the method workOutSpeed calculates final-
Speed and distance. The computer then returns to its main
method in vehicleMotion and displays the two calculated values on the
command screen.

Advantages

The way that the three classes work together (Fig. 21) may be difficult
to understand, and you might wonder why we prefer this to the single
procedural class listed on pp. 27-8. One advantage is that motionInput
is a short class, easy to write, easy to understand, easy to debug, and
easy to modify if we want to improve it later. The same applies even
more to its extension, workltOut.

85

In addition, vehicleMotion consists mainly of calls to variable
declarations and methods that are in the other two classes. These calls
need only a line each, yet each result in a relatively complicated
sequence of actions. Because they each occupy a single line (rarely
more) it is easy for the reader to see exactly what the computer is
doing and in what order. The structure of the program is clear. These
considerations explain why Java is such a popular language, even if its
object orientated approach is unfamiliar and difficult to understand at
first encounter.

+° dassworkitout
class: motioninput P \\
I’ |1TEEmTEm [
- extends / ! declare: variables | \‘
declare variables ---: '—--_‘____I :
[

1

method: keyinData

class: car
(Insvance of class
wdrkitOut)

declare: vaiat;le;)

1

class:vehicleMotion

method: main

create car, a new jfistance / {
of workitOut U
Overlapping circles
indicate a s and
one of its instances.

key in data

work out speed and distance 7

display them

~

Fig. 21. The relationships between the objects that make up the
classes that describe the motion of a car.

86

Another kind of motion

Suppose that, as well as being interested in the performance of cars,
you have problems to salve in the field of ballistics. You might be a
rocket engineer, for example, or a champion rifle shot. You need to be
able to calculate the force required to accelerate a spacecraft of given
mass. Fortunately, it is an easy calculation:

force = mass x acceleration

where force is in newton, mass is in kilogram and acceleration is in
metre per second per second. You might also need to calculate the
amount of energy needed to accelerate the spacecraft to-a given
velocity. This is its kinetic energy, given by:

K.E. =% x mass x velocity?

We could write a program similar to motion (pp. 27-8), or perhaps
split it into more manageable pieces as we did with the vehicleMotion
class and its associated classes. At this point we begin to realise
another advantage of OOP. There is no need to write a completely new
program for spacecraft, because a large part of it has already been
written for cars. We already have routines for typing in much of the
data required, such as initial velocity, acceleration and time. We
already have methods for calculating final speed from these. All we
need is a routine for typing in the mass of the spacecraft and methods
for calculating the force and K.E. We simply need to re-use the
existing objects and create a few new ones to use with them.

This is how we set about it:

1) We can re-use the whole of the motionInput class as it stands. It
declares three essential variables and the methods for keying them in.

2) The workitOut class declares two variables and the methods for

calculating them. We need to calculate both these variables, so we will
retain this class.

87

3) However, workltOut does not go far enough with the calculations.
We need to process the equations for force and K.E, shown on p. 87.
So we need to declare two more variables and two methods. Also the
mass of the rocket enters into the calculations, so the variable mass
must be declared and keyed in.

All of these operations are catered for by extending workltOut. Here is
the listing:

import javax.swing.®*;
class ballistics extends workItOut {
float mass = 0;
float force = 0;
float kineticEnergy = 0;
public void keyInMass ()
String value = JOoption-
Pane.showInputDialog(*Mass? (kg)");
mass = Float.parseFloat (value);
}
public void workOutForce ()
force = mass * accel;

kineticEnergy = mass * finalSpeed * final-
Speed * 0.5F;

The listing begins by importing swing, ready for keying in mass. The
class begins by declaring the variables used in the methods which
follow. Next is the keying-in method which has the same structure as
in workltOut, but a different variable and text message.

Finally, the workOutForce () method calculates force and K.E.
Note the last term in the expression for K.E. It is a literal (that is, the
number ‘0.5’ its actual numeric value, not a variable name). On
reading this, and noticing the decimal point, the computer might take
itto be a double. This would result in a type mismatch with the other
variables which are f1oats. To make it clear that ‘0.5’ is intended to
bea float, we append ‘F’ to the value.

88

4) The rocket input and calculations are spread across three objects,
motionInput, workltOut, and ballistics. So far there have been four
methods but no main method. We write a special class to provide the
main method that ties together everything in the three other methods.
Here it is, the class rocketMotion. It corresponds with vehicleMotion
in the previous set of objects:

class rocketMotion {
public static void main(String[) args) {
ballistics aquila = new ballistics();

aquila.keyInData();
aquila.keyInMass () ;

aquila.workOutSpeed() ;
aquila.workOutForce () ;

System.out.println("\nForce = " + aquila.force + *
N\nK.E. = " + aquila.kineticBEnergy + " J");

N

It begins by creating a new instance of ballistics, called aquila. This is
named after the constellation of the Eagle. It calls the method
keyInData (), located in motionlnput. Then it calls keyIn-
Mass (), located in ballistics.

Having obtained the values of all the keyed-in variables, it proceeds to
evaluate the values that it has to display. This is done by calling
workOutSpeed (), located in workltOut and workOutForce (),
located in ballistics.

It ends by displaying the values of force and kineticEnergy on
the command screen.

Four classes are active when processing rocket flight data. These and
their relationships are illustrated in Fig. 22 overleaf. The classes for
car motion are included in the diagram although vehicleMotion and
car are not being used for rockets. As in Fig. 21, overlapping circles
indicate a class and one of its instances.

89

INOANOIOM
POIIW

SSRIUIAY
poyIaw

SI|quIEA (IR

SHIsH|(eq $S®)D JO dUTISU

_wiinbe ssepd
-~ -

.
SSRNUIAI)Y 1

! poyraw
Lo

-—-

\ _||||P|||_
z/] sqeseA epdIPp |

N m === = .,
S snsHrqissep 2
-

-

I"Il\

-

-~
f_——_———— -~
| R
way Avydsip / | ways Aeidsip |
— *3') PU® 3240 INO NIOM / | dumsIp pue paads 1o syom |
\ . o |
DURISIP pur PIAS 1IN0 YJOM _ - nep u) Aey _
\ eep Uy Ady \ | . s
SIMISI([Rq JO DdUAISU| / - PVuUTISU| MU B ma RNedD —
Mau e ‘ejinbe ateaud \ _
‘poidw uRW :poaw
" uiRw po / - lllllll h\ \
N .
UOHIOWIINI0LSSBYD - ~ :o:o!o_u._.o?au-_u\ P
N S - -
\
(noIwRIOm \
| $SEP JO DuRISUY)
13 :ssep 1
' N /
) - s
nRQUIAY (poIPW
pIAQINOOM
‘poyIaw —
_l - om 8. 2 sa|qenes uepIp
Spuax? SIQRLIBA (3seIP SpuNx?

1
/
/
4

INOINIOMiSSRD

Indujuonow :ssep

Fig. 22. The objects in use when operating on the motion of a rocket.

Figs. 21 and 22 are attempts to show the working relationships that
exist between the members of a set of OOP objects. Some members of
the set, such as motioninput, perform basic tasks. They can be used in
a wide variety of programs dealing with motion — referring to cars,
rockets, flying foxes, snooker balls, and much more. The work-
Itout and ballistics classes come in the same category, though
ballistics is a little more specialised because it deals with energy-
related aspects of motion. At the other extreme are the most spe-
cialised of the classes, such as vehicleMotion and rocketMotion, which
perform special tasks in their main method and call on the more
general classes to help it to perform them.

Breaking a program into small simple classes gives great flexibility to
the programmer, and to others who may want to use some of the more
basic classes and methods.

These ‘motion’ classes are just an illustration of what is an essential
aspect of OOP. From the very first program in this book we have
called on classes and methods performing limited and usually basic
tasks, and written by other people. Frequently-used examples are
System.out .println(), Integer.parseInt () and
String. This is what OOP is all about.

Things to do

1 Add another category of OOP to the ‘motion’ programs. For exam-
ple, to find the distance travelled by a railway train which accelerates
from rest for a given number of minutes, then coasts along at constant
speed for an equal number of minutes.

2 Write an OOP based on Divide (p. 23) or nutsAndBolts (p.58). Input
should use JOpt ionPane (p. 71). Each program should be broken
down into at least three classes.

91

9 Using constructors

To explain constructors, we need to re-examine what is meant by a
class. When we write a class we are creating a model (or plan, or
template) for an object that will perform prescribed tasks. Writing a
class has similarities to drawing a plan for building a house. The plan
specifies what rooms the house is to have, their dimensions and the
materials and techniques to be used for building.

The architect’s plan is a bundle of papers covered with drawings — it
is not the house. Similarly, a class is not an object, but tells the
computer about the object or objects that belong to that class.

As we have already seen on p. 3, a class must have data, and methods
for working on the data. Otherwise, the class can do nothing. A third
item of a class is a constructor. A constructor is a special kind of
method that tells the computer how to build the class. It is not essential
to have one, but using a constuctor makes sure that the class is built up
exactly as required. This is particularly important if new instances of
the class are to be created.

Here is an example that uses a constructor to produce a catalogue of
flowers:

class flowerCat {

String flowerColour = "";
int plantHeight = 0;

// This is the constructor.
public flowerCat (String colour, int height) {
flowerColour = colour;

plantHeight = height;
1

public class flowerData {
public static void main(String(] args)

flowerCat crocus = new flowerCat ("yellow", 12);
flowerCat geranium = new flowerCat ("red", 30);

93

System.out.println("The crocus has " + crocus
.flowerColour + " flowers and is " + crocus.plantHeight +
®" cm high.");

System.out.println("The geranium has " + geranium
.flowerColour + " flowers and is " + geranium.plantHeight
+ " cm high.");

H

The listing on pp. 93-4 comprises two class definitions. We could
have saved them separately, but it is simpler to save them as a single
file under the filename flowerData.java. This is the name of the
second class, the one that contains the main method.

The two classes are compiled in a single operation by typing javac
SflowerData java. We do not use the name flowerCat when compiling,
but javac takes note that there are two files and compiles flowerCat as
a separate .class file.

The program is run by typing java flowerData. Although we are
not asking the computer directly to run flowerCat, the main class of
flowerData instructs it to create two instances of flowerCat. So it
looks in the flowerCat class file to find out what o do. In this way,
the computer is told where to find all the required information.

The flowerCat class establishes the form of the instance classes
that are to be created by flowerData. It uses a constructor to do
this. Before defining the constructor it declares the two variables to be
used to describe each kind of plant. There would probably be more
than two variables in practice, but two is enough to demonstrate how a
constructor works.

The definition of the constructor begins with this line:

public flowerCat (String colour, int height)
The constructor has the same name (f1lowerCat ()) as the class that
includes it. This is an essential feature of a constructor. It is also an

easy way to pick out a constructor when reading a listing. If the name
is different, it is probably a class method, not a constructor.

94

Another feature of a constructor is that it does not return any values. In
contrast, methods can and often do return values and the keyword
return is used when doing so. The action of return is discussed
on pp. 99 and 116.

If a constructor takes variable values as parameters, these are listed in
brackets following the constructor name. Each is listed as a variable
type followed by an identifier. In this example, the identifiers indicate
to which feature of the plant the variable refers (colour and height).
This makes it easier to read and understand the listing. However there
is no need to to this. Instead, the identifiers could be datao,
datal, data2 andso on.

Following the constructor name with its list of variable types and
names by which to identify them, we type a list of the actual names to
be used when processing the class instances. For example, each value
for flowerColour will be a string and will be listed as the first
parameter.

If the constructor has no arguments, its name is followed by empty
brackets ().

Constructors can do more than just set up lists of variables. We have
already used several constructors in our programs without describing
them as such. An example is the JFrame () constructor used on
p. 73. This takes a single parameter, the text message, and displays it
on the screen as a fully constructed message panel in the Windows XP
format as seen on p. 74. An example of additional features of construc-
tors appears in the next listing, on p. 96.

Another example of a constructor

This next example takes the explanation of constructors a stage
further. In this program, we are creating hotel/Data objects that list the
important features of different hotels. With six items of information
for each hotel, the constructor helps to keep the data-processing
systematic.

95

class hotelData {
// Declare variables first.

String hotelName;

int starRating;

int numberOfRooms;
boolean swimmingPool;
double rackRate;
double specialRate;

//Then the constructor.

hotelData(String datal, int data2, int data3,
boolean data4, double data5) {

// Then allocate variable names to the constructor.

hotelName = datal;
starRating = data2;
numberOfRooms = data3;
swimmingPool = data4;
rackRate = datas;
specialRate = data5 * 0.8;

}

public static void main(String{] args)

hotelData hotel0 = new hotelData("Sea View", 3, 20,
false, 150.50);

hotelData hotell = new hotelData("Plaza", 5, 125,
true, 220.00);

hotelData hotel2 = new hotelData("Grand", 4, 241,
true, 175.25);

System.out.println("\nThe " + hotel0.hotelName + "
Hotel has " + hotelO.numberOfRooms + " rooms.");

System.out.println("It has " + hotel0O.starRating +
®"_-gtar rating.");

if (hotelo.swimmingPool == true)
System.out .println("It has a swimming pool for
guests.");

System.out.println("The daily rate for a double
room is $" + hotelO.rackRate + ".");

System.out.println("There is a special rate of $"
+ hotelO.specialRate + " for seniors.");

1

Save this as hotelData. java.

96

Class hotelData begins by declaring the various types of hotel data:
the name of the hotel, its star rating, the number of rooms, whether it
has a swimming pool or not, the daily rack rate for a double room (in
dollars), and the discounted special rate (also in dollars).

Then comes the constructor method. The first thing to notice about
this is that it has the same name as the class, which is hotelData ().

The opening line of the constructor definition is followed by a list of
the various kinds of data item, allocating them to their places in the list
of parameters.

Note that there are six data items in the variable list but only five
parameters in the constructor. This is because the value of one of the
data items, special rate, is obtained by multiplying the rack rate
by 0.8. In this way, the constructor describes a merhod for calculating
the discount and assigning it to a variable. This will be a feature of all
the class instances created by using this constructor.

The main method of the class begins by creating three class instances,
hotelo, hotell and hotel2. With the format of the data having
been set out already by the constructor, creating the instances is very
simple. We just call the constructor and use new to put the data for
each hotel into the new instance. In the instance of hotel0, we can
see from the parameters that it is the Sea View Hotel, a 3-star hotel
with 20 rooms. It does not have a swimming pool. Its rack rate is
$150.50, discounted to 80%.

Finally, the class prints out the complete data for the Sea View Hotel.
Note the if ... statement. If it has a pool, this fact is printed out.
On the other hand, if it does not have a pool, nothing is said. Hotels do
not like to advertise their deficiencies.

In this example, we print out the data from just one of the instances of
the class (Fig. 23 overleaf). In a more practical program, such as might
be used by a hotel booking agency, the program would be designed so
as to print out a selection of one of more of the instances, according to
the requirements of the customer.

97

If constructors are so important, why have we not rentioned them in
Chapters 1 to 8, even though we have created maay class instances
using new. The reason is that Java automatically provides a basic
constructor whenever a new class is instantiated.

Fig. 23. Details of the Sea View hotel as displayed 5y hotelData..

Constructors and methods

Constructors have several features in common with methods, so it is
easy to confuse them. This is not surprising because constructors are
methods, though methods of a very special kind. As explained earlier,
they are the method for building (or constructing) new class instances.
But this is all they do. Any other kind of action, apart from declaring
variables, requires a method.

The next listing (pp. 100-101) shows a version of flowerData that has
had methods added to it and has been generally upgraded. It is called
SflowerSpace .and, like flowerData, is saved along with the class
SlowerCat which defines the constructor. Class flowerCat too has been
upgraded and now features three class methods. When new instances
of flowerCat are created by flowerSpace they will all be based on the
flowerCat () constructor and include the three methods. So that
this version can receive on-screen input, it begins by importing all the
swing package.

98

The constructor, flowerCat (), comes next after declarations of
variables. It is exactly the same as before. It will require two parame-
ters to set up each new class instance, One is the flower colour and the
other is the mature plant height. Note that the name of the constructor
is the same as the name of the class.

Three class methods follow:

° flowerIn() displays a small window on the screem and
invites the user to key in the name of a flower. It follows much
the same routine as that used in newlnput on pp. 71-2. The
string that is typed in is assigned to the string variable flow-
erName. The method returns this value to the main methed by
using the line:

return flowerName;

This command stops the execution of the method at that point.
The computer then returns to processing the main method in
SflowerSpace.

° showSpace () is used at the end of the main program to
display the output. One of the control words in its definition is
void, which indicates that the method does not return any
values — it simply does a job when called. This is in cortrast
to flowerIn (), which returns a string and has String as
one of its control words. The form of the print 1n statements
is very familiar to us by now.

° apart (int plantHeight) is a method that calcalates
the ideal distance apart for the difference species of plant,
depending on the value of the argument plantHeight. This
result of the calculation is assigned to the instance variable
spacing. The method also tests the size of the spacing. If it is
less than 20 cm, a message is displayed suggesting that this
species is suitable for use as ground cover. Having been
declared at the beginning of flowerCat, spacing is available
to the method and to flowerSpace. No return is required, so the
method definition includes the word void.

99

The listing of flowerSpace is continued on the opposite page.

import javax.swing.*;
class flowerCat {

String flowerColour = "";
int plantHeight = 0;

int spacing = 0;

int height = 0;

// This is the constructor.

public flowerCat(String colour, int height) {
flowerColour = colour;
plantHeight = height;
}

// And here are three methods.

static String flowerIn() ({

String value = JOptionPane.showInputDialog("Flower
name") ;

String flowerName = value;

return flowerName;

}

void showSpace () {

System.out.println("\nThe flowers are " + flower-
Colour) ;

System.out.println("They grow to * + plantHeight +
"em.");

System.out.println("Spacing is " + spacing + "

cm. ") ;

)

void apart (int plantHeight) {

spacing = 2 * plantHeight;

if (spacing < 20)

System.out.println("\nGood for ground cover.");
1

public class flowerSpace {

static String flowerName = "";

100

public static void main(String[] args) {

flowerCat crocus = new flowerCat("yellow", 12);
flowerCat geranium = new flowerCat("red", 30);
flowerCat periwinkle = new flowerCat ("purple®, 9);

flowerName = flowerCat.flowerIn();

if (flowerName.equals("crocus®)}
crocus.apart (crocus.plantHeight};

else if (flowerName.equals("geranium®))
geranium.apart (geranium.plantHeight) ;

else if (flowerName.equals("periwinkle®))
periwinkle.apart (periwinkle.plantHeight) ;

if (flowerName.equals("crocus")}
crocus.showSpace () ;

else if (flowerName.equals("geranium"))
geranium.showSpace () ;

else if (flowerName.equals ("periwinkle"))
periwinkle.showSpace () ;

else
System.out.println("\nNot listed");

}}

The flowerSpace class (above) begins by declaring a variable, then
goes straight into the main method. This creates three new instances
of flowerCat, one for each of three species: crocus, geranium and
periwinkle. There could, of course, be many more such instances,
amounting to a comprehensive catalogue of plants. Three instances
suffice to demonstrate the program.

The instances each receive two parameters: the flower colour and the
mature height.

Then follows a sequence of operations in which many calls are made
to flowerCat. The first, to find flowerName, goes directly to the
flowerIn () method in flowerCat. The string read from the screen
is assigned to f lowerName. This was defined as a class variable at
the beginning of the class by using the control word static. It
applies to the whole class, not to any particular instance of the class.

101

The rest of the program consists of a two sequences of if
else ... routines. In the ‘condition’ expression, we are matching
the typed-in string against a series of plant names that correspond to
the instances. Since this is a comparison of strings, we use the
equals () method (see pp. 38-9).

The first sequence runs through the instances, calling on the
apart () method, and prints out the spacing required for the plant
that matches £1owerName. If the spacing is small, it also displays
the ‘ground cover’ message. The second sequence runs through the
instances, calling on the showSpace () method, and prints out the
corresponding flower colours and height.

Finally, ifnone ofthe if ... else. .. statements produce a match,
the message ‘“Not listed” is displayed. This appears if the user types a

name that is not on the list, or makes a spelling mistake.

Fig. 24 shows the program being run.

Input

Flower name
|perwinkiel

bt) Lomen)

Fig. 24. The flowerSpace program has been run once already,
with ‘geranium’as the entry. Now the user is finding information
about ‘periwinkle’.

102

Things to do

1 Write a class and its constructor that handles data about cinema films
or TV programmes. Create instances of the class, each holding the
data about one film. Data could include the name of the film or
programme, names of its main star or TV performer, its category
(news, documentary, thriller, sitcom), length in minutes, and (in the
case of a film) its audience rating (U, PG, X, etc.).

2 Upgrade the program to allow on-screen input.

3 Add methods that provide such features as the listing of all titles in a
given category, or all titles with a given star or performer.

4 Write a class and its constructor, including a few class methods to

handle data on any other subject that is your hobby or is of particular
interest to you.

103

10 Errors

We all make mistakes, especially when programming. When some-
thing is wrong or goes wrong, Java lets us know about it. The program
stops running and one or more errors or exceptions are listed on the
screen. Less often we might be given a warning that the program is
workable but could be improved in some way.

Errors may occur when javac is compiling the program or when java
is running it. In either case the program stops running, the error
message appears on the screen, and there is nothing to do but puzzle
out where you have gone wrong and correct it.

We will look at several types of error and, in the case of run-time
exceptions, consider ways of dealing with them

Errors when compiling (znd after)

This is the type with which you are already well familiar. If you so
much as leave out a semicolon at the end of a line, javac will complain
by sending an error message. Try it by typing in this program exactly
as printed, and compiling it.

class watchlIt {

public static void maim(Stringl[) args) {
int dividend = 5

int divisor = 2;

int quotient = dividend / (divisor - 2);

System.out.println(quotient) ;

Assuming that you did omit the semicolon, and did not make any other
mistakes in the typing, the result should be as shown in Fig. 25
overleaf.

105

Fig. 25. A very frequent typing error is detected by javac.

The error message says precisely what is wrong. It expected to find a
semicolon by the time it reached line 6, but did not find one. Note that
Javac includes blank lines when it is counting program lines. It
displays the point in the program at which it detected the omission by
printing a ~ under the first character in line 6. This character is not

always accurately placed but gives you a clue as to where to start
looking for errors.

Reload watchlit java into your text editor and add the missing semi-
colon at the end of line 5. Save it and use javac to compile it. All goes
well and compilation is successful.

Now run the .class file, using java. Fig. 26 shows what happens.

-

Fig. 26. watchlt compiles correctly with javac, but java throws an
exception at runtime.

106

Because of deliberately careless programming, we have tried to divide
5 by zero. Mathematically, the result is infinity, but java can not cope
with such inexpressible large numbers and throws an exception error.

More compile-time errors

We demonstrated the divide-by-zero errors just to emphasis that a
program may compile correctly yet fail to run. Now to look at some
more of the errors that frequently occur at compile-time. Fig. 27 is an
example. '

e Do S w8 4 ———

Fig. 27. What is the cause of this error?

This occurred when compiling a slightly incorrect version of watchlt.
Fortunately, it is easy to spot. The listing reads ‘quotent’ instead of
‘quotient’ in line 9. The computer looked back in the program and
could not find a reference to anything called ‘quotent’.

Java does not allow spelling mistakes or typing errors. It is strictly
case-sensitive too. For example, it would throw the same error if the
word ‘quotient’ on line 9 had been typed ‘Quotient’.

The place in a program in which a variable is declared makes a
difference to the way it runs (or does not run!). Try shifting the
position of the declaration of dividend. Incidentally, the division-
by-zero error has been eliminated in this version.

107

class watchit {
int dividend = S;

public static void main(String[) args) {

int divisor = 2;
int quotient = dividend / divisor;

S¥atem.out.println(quotent);

The declaration of dividend has been moved out of the main
method. The result of this small change is shown in Fig. 28.

Fig. 28. Another way in which a variable can not be found (or,
at least, not be used).

The problem is the stat ic statement, which appears in the definition
of the method. A method that is declared to be static can call only
variables that have been declared as static. Because dividend
has been declared as an instance variable (that is, non-static) it can not
be used directly in the main method. There are two ways of
overcoming this problem: move the declaration back into the main
method, so that it becomes static, or declare it as a static variable:

static int dividend = §5;

If this change is made, the program compiles and runs without
producing error messages.

108

Warnings

Occasionally, javac will issue not an error message, but a warning.
Fig. 29 shews an example.

Fig. 29. A warning that the program could be
improved.

The figure shows the sequence on the command screen. An attempt
was made to compile the class outFramel. This is identical with the
listing on p.73, but with the pack () method replaced by the set -
Size () method discussed on p. 74. The point at issue is that the final
line of this listing is:

message.show () ;
When compiling for the first time, javac displayed the message:

outFramel.java uses or overrides a deprecated
API.

A deprecated API is an older API that has subsequently been replaced
with a newer, better one. The message did not state which APl was

deprecated but invited us to repeat the compilation with a switch that
brings up the details. So, as instructed, we typed:

javac outFramel.java -Xlint

109

As shown in Fig. 29, javac replied by referring to the last line of the
program, saying that the method show () has been deprecated.

So far, so good, but we still are not told what method to use instead of
show () . There was no further help from javac, so we turned to the
Sun website. The URL is:

http://java.sun.com

A panel on the left of the home screen is headed ‘Reference’. Under
this heading, click on ‘API Specifications’. In the next main screen
there is a ‘List of technologies ...". Click on the first item in this list,
J2SE 1.5.0 (assuming that this is the version you are using).

The top of the next screen has a list of options spread across it. Click
on ‘INDEX’. The top of the next screen has the alphabet spread across
it. Click on ‘S’. A list of hundreds of APIs appears, with details. Scroll
though the list, which is in alphabetical order, until you come to
show (). This is described as a method in class java.awr. It is
deprecated as of JDK version 1.1 and replaced by:

setVisiBle (boolean b)

Scrolling a few items back in the list brings you to a description of
setVisible (). It takes a Boolean argument. If b is true, the
panel is displayed. If b is false, the panel is not displayed. The
advantage of setVigible () over show (), is that it can be turned
on and off by using true or false. By contrast, show () can only
be turned on.

A little experimenting with versions of bugAlert (p. 75) showed that
the argument of setVisible () can be either true or false as
on p. 73, or can be a pair of previously declared Boolean variables
with true or false values, or a pair of logic expressions that are true or
false. Examples of the latter are (2 = 2) and 2=1)

Although outFramel works perfectly well if we ignore the warning

and still use show (), the on/off feature of setVisible () is
valuable in programs such as bugAlert .

110

Catching run-time errors

All the errors that have been described above are avoidable by suitable
programming, and this is the best way to deal with them. Getting rid of
errors means checking the typing and, sometimes, re-writing parts of
the program so that errors can not occur. While doing this, your
programming skills will inevitably improve, even though your mood
may not!

A lot of run-time errors, such as keying in data of the wrong type or in
the wrong range, can be predicted. The program can include input
routines that reject illegal entries repeatedly until the user supplies a
legal one. Careful study of the program can discover if and where a
*division by zero’ error might occur and the program can be adapted to
_ take care of this. The same applies to array indexes that are out of
range.

Unfortunately, there are some errors that are virtually unpredictable. A
file being loaded into the computer is of the wrong length. A program
is so complicated with so many alternative routes through it that it is
almost impossible to be certain that an arithmetic error will not occur.
In cases such as these, java will throw an exception. Fortunately, this
need not necessarily cause the program to crash.

There are methods in Java by which we can catch the error. Then we
can divert the computer into a routine that deals with the error without
making the program crash. These techniques are not described in this
book because they are not essential when starting to learn the lan-

guage.

111

Summing up Chapters 6 to 10

As well as summing up the five most recent chapters, this section ties
up a few loose ends of terminology.

Arrays

Data can be held in the form of an array, which is the equivalent of a
list with the entries indexed from 0 upward. The entries must all be of
the same variable type and the array is declared using the name of the

type:

String[] nameOfDay; or String nameOfDayl(];
double[] pettyCash or double pettyCashl(];

Array length is defined using new. String arrays can be defined
directly (p. 56).
Casting

Except for Boolean variables, a variable of a given type can be cast
into a different type. Use the format:

(type)value

A type with a smaller range (see p. 60) may be automatically cast into
a type with a greater range.

Input and output

Routines from the swing package use the system’s operating system
for the input and output of data. They generate small windows and
panes into which data can be typed and from which data can be read.
For data input we used the JOptionPane class and the showInput -
Dialog () method (p. 71).

113

The window has the typical appearance expected in a Windows™
program. It has a header bar, OK and Cancel buttons and, at top right,
a Close button.

For output we created an instance of the JFrame class, which produces
a (usually) small window, containing a message. The frame has a
header bar and the usual three ‘Minimize’, ‘Maximise’, and ‘Close’
buttons at the top right corner. To put the window on the screen we use
an instance of the JPanel class and the methods add (), setCon-
tentPane (), pack() and setVisible () (or show()).

The dimensions of the window are controlled by using the pack ()
method, which makes it just big enough to contain the message, or the
setSize () method. The setSize () methods lets us set the
dimensions in pixels, including filling the entire screen.

ooP

Chapter 8 discussed the principles of object orientated programming.
These are best summarised by Figs. 21 and 22 on pp. 86 and 90.

Constructors

These are special methods for building instances of classes. It is not
essential to use them but they help to make the creation of class
instances more systematic. A constructor method has the same name
as the class that it is to construct.

Errors

Errors due to typing mistakes, spelling mistakes, or forgetfulness are
reported when javac compiles the program. Compiling stops and can
not be re-started until the errors have been discovered and corrected.
Other kinds of error include attempts to divide by zero, using array
indexes that are out of range, and structuring the program so that the
computer can not find the variable. Some of these may not be reported
until run-time.

114

Errors and exceptions such as these are best eliminated by carefully
checking the programming. In cases where this is difficult or impossi-
ble, Java provides a way to catch the errors and deal with them.

Variables

Types include primitives and Strings (p. 49-50). Arrays hold several
variables of the same type, identified by the index, which runs from 0
upward (p. 55).

Instance variables are declared outside a method, preferably listed
first within the class definition. Examples (from p. 93):

String flowerColour = "";
int plantHeight = 0;

Note the use of *” to initialise an empty sftring variable. Instance
variables define the attributes of an object. Instance variables are also
called object variables because copies of them are created when 2 new
class instance is created. The copies belonging to different objects can
take different values.

Local variables are declared inside a method, and do not exist
outside it. Example: loop counting variable j, on p. 42.

Class variables are available to the class as a whole, and have the
same value for all objects in the class. They are distinguished by the
used of the word static when they are declared. Example (from
p- 100):

static String flowerName = "";
This is used in all the calls to the different class instances on p. 97.

Constants are prefixed by the word final when they are declared.
Their value is declared at that time and can not be changed. Examples:

final int discount = 20;
static final double ounceToGramme = 28.34952;

115

Use of variables by methods

If a method operates on instance variables (declared outside it) it does
not return a value. The word void is included in its definition.
Example (from p. 100): method showSpace () uses instance vari-
ables flowerColour and plantHeight, declared at the begin-
ning of class flowerCat.

If a method creates a variable inside itself it returns that variable to
the main method on exit from the method. Example: the method
flowerIn() onp. 100 creates string variable £1owerName. The
last line of the method is:

return flowerName;

The return type (in this example, St ring) is specified in the method
definition, instead of using the word void:

static String flowerlIn()

Note that this method is a class method, as indicated by static. Itis
available to any instance of the class (the same as for class variables,
opposite). A static method can only call other methods that have
been declared static and can use only static variables.

Arguments and parameters

These are found listed in curved brackets () after a method name.

They have similar functions and it is not toc serious a matter to
confuse one with the other.

However, a parameter is defined mathematically as a value that is
constant in any given case but may vary from case to case. This
description fits the values that we use when creating class instances,
and in many other operations. For example, the quantities "yellow"
and 12 are constant for the crocus object (p. 101). They are
different, but constant for the geranium and periwinkle objects.
So they are parameters.

116

An argument is a variable that determines the value of a function. An
example is plantHeight, which determines the value of spacing
(p. 100). So height is a parameter when it is being used to create the
plant instances but is an argument when used in the apart ()
method.

Access specifiers

These encapsulate objects so that access to them (the ability to use
them, to read variables, to change values and similar abilities) is
available to restricted categories of object. There are four levels of
access, usually set by a keyword that must always come first in the
definition:

1) No specifier (the default level): available to any other objects in the
same package. Examples (p. 100):

class flowerCat
int plantHeight = 0;

2) public: available to all classes in a package. The main method is
always public. Example (p.101):

public static void main(String[) args)

3) protected: access limited to subclasses and other classes in the
same package.

4) private: access limited to the same class, and not to subclasses
of that class.

Classes can be declared only as public or with no specifier. This is
because it would not be possible to run the class without gaining
access to it from some other class. Methods and variables can be
granted any of the four levels of access.

The last two specifiers described above are of more use when building
up complex programs.

117

Pinal meodifier

As well as being used to declare a variable that takes a constant value
(see p. 115), f£inal can also be used to modify classes or methods.

A final class can not be used to make a subclass. A final
method can not be overridden by a method of the same name in a
subclass.

In the prevous paragraph, the term ‘overridden’ refers to the situation
in which a method defined in a subclass has the same name as one in
the class above it (the superclass). If the method in the subclass is
called in the subclass, java executes the subclass method and ignores
the class method. Making the class method £inal prevents this.

118

11 Java packages

A package is a group of related classes. The packages are grouped
together into a larger group called java.

Examples of packages include:

° java.lang, which contains all the fundamental classes
needed to implement the Java language. It is essential for
running any Java program. It is loaded automatically when a
program is run. Examples of java.lang classes include:
Float,Math, and Void.

° Java.util, provides many utility classes, such as Ar-
rayList, Calendar and Random.

° java.awt, contains the classes of the abstract windowing
toolkit. The classes deal with many kinds of user interface, such
as buttons, sliders, and pull-down menus.

° Java. 1o contains classes concerned with input and output of
streams of data tbrough hardware such as keyboards, printers
and modems.

A more recent package, javax.swing, covers much the same ground as
Jjava.awt but with a wider range of functions and with more powerful
classes. We used classes from this package in Chapter 7 to produce
input and output windows on the screen.

Grouping the classes and methods into packages has advantages. The
number of resources in Java increases year by year. It becomes
difficult to find new names for new classes, without resorting to long
and sometimes obscure titles. If they are grouped into packages, each
item in 2 package can only call or be called by a member of the same
package. There is no package-to-package accessibility. This means
that different classes or methods in different packages operate without
the risk of confusion or the risk of one interfering with the other.

119

When you write a new class, this does not automatically become a
member of a named package. New classes belong to a default package
that has no name. However, it is possible to create a new package and
place any of your newly-developed classes in it.

Classes from java.lang

Success in Java programming relies heavily on being familiar with
what classes and methods are available in these and other packages.
The full list is available on the Sun website (p. 110) and lists of the
generally useful classes and methods are given in the more advanced
Java manuals. To get you started, this book describes in detail a few
interesting objects from each package. Items from the swing package
are explained in Chapters 13 and 15.

currentTimeMillis ()

This first example of a java.lang method returns the time in millisec-
onds that has elapsed since 1st January 1970. As you might expect,
such a long number requires a long integer to hold it. Also, as you
might expect, the function is only as accurate as the setting of the
real-time clock in your computer.

The milliseconds elapsed since 1970 is rarely of interest. More often,
we want to know the time elapsed since some more recent instant in
the past. In this simple use of the method to create a stop-watch we
record the initial time when the program is run, with the final time
when you click on a button. The difference is your reaction time. Here
is the listing:

import javax.swing.*;

class reactionTime {

public static void main(String() args) {

long initial;

long current;
long reaction;

120

initial = System.currentTimeMillis{() ;
JOptionPane.showInputDialog("Press OK") ;
current = System.currentTimeMillis();
reaction = current - initial;

System.out.println("\nYour reaction time is " + reactiom +
" ms.");

H
The timed period (initial) begins as soon as showInputDia-

log is called. This is only called, it is not used to return a keyed-in
string.

There are many possible uses for this method. Several are discussed in
the ‘Things to do’ section at the end of this chapter.

Mathematical methods

The Math class is a large and important one in the java.lang package.
We have already used two of its methods: round () in convertTemp
(pp- 36-8) and random () in Limerick (pp. 62-4).

There are methods for calculating sine, cosine, tangent, arcsine, arcco-
sine and arctangent. These have the general form:

double name-of-function(double arg)
The name of the function is the same as the conventional mathematical
name, for example:

double tangentOfAngle = tan(1.6);

The argument is in radians. For those who prefer to work in degrees,
there is a method toDegrees () and the reverse method toRadi -
ans () . Both operate on double values.

Another useful method for arctangents is double atan2 (double
x, double y), which returns the angle which has a tangent x/y.

121

The Math class also has some comparator functions, such as max ()
which, given two different values, returns the larger one. Here it is
used in a very simple program:

class findBiggest {
public static void main(String(] args){(;
int values[] = {3, 9, -2, 12, S};
for (int j = 0; § < 4; § = 3 + 1) {
values[j + 1] = Math.max(values([j], values[j + 1]);

}

System.out .println("Maximum is " + values[4]);

The program runs through the values in the array from left to right,
taking them a pair at a time. In each pair it picks out the bigger and
stores this in the right-hand location of the pair. When it reaches the
right-hand end, the maximum value is in the rightmost location of the
array. To see how this works, try a ‘dry run’ on a piece of paper.

The max () method also works with 1ongs, floats, and doubles
returning the maximum in the corresponding type.

The final example of a Marh method calculates square roots. Here is a
quick demonstration of its action:

class sqRoot {

public static void main(String([] args) {
double number = 0;
double root = 0;
double fiveRoot = 0;

if (args.length > 0) {
number = Double.parseDouble (args[0]);

root = Math.sqrt (number) ;

122

System.out.println("\rnThe square root of " + number + " is
" 4+ root);

fiveRoot = 5 * root;

System.out.println("Five times that is " + five-
Root) ;

1

The program calculates and displays the square root of a value typed
on the command line. We have added two more lines at the end of the
program to multiply the result by five and display it. Why we did this
will be apparent in a moment.

When we ran this class we aimed to trick it by putting in a negative
number. Square roots of negative quantities are impossible, though
mathematicians and electronics engineers have developed ways of
working with so-called ‘imaginary numbers’. Does Java have an
imagination? It did not throw an exception, but see what happens in
Fig. 30. Moreover, having found that the result is ‘not a number’, then
five times that result is ‘not a number’ either.

Fig. 30. Two runs of the square root method. The first shows it
Jinding the square root of 67 with double precision. In the sec-
ond run, it is asked to find the square root of -39. It tries, but
decides that the result is ‘not a number’.

123

The java.util package

Many of the classes in this package are concerned with processing lists
of data, for that is an operation that is often required in database
applications. A specialised example of a class from this package is
StringTokenizer, which we used in FlightLegs (pp. 17-19).

A utility method that is simple to use is found in the date class. Here is
how to use it:

import java.util.+;

class showTodaysDate {

public static void main(Stringl] args) {
Date today = new Date{();
System.out.println(today) ;

H

This displays the day of the week, the month, the day of the month, the
time (hours, minutes, seconds), the time zone, and the year. This is
comprehensive, and there are a number of methods for setting the time
and comparing times, but it is not possible to separate out the various
items relating to data and time. There is a more powerful class called
Calendar, which allows greater flexibility. This program shows it
producing just an abbreviated date:

import java.util.¥*;

class shortDate {

public static void main(String(] args) {

Calendar date = Calendar.getInstance();
Syﬂtim;out.print("The date is " + date.get (Calendar.DATE)
+

+ (date.get (Calendar .MONTH) + 1) + ".");

H

124

The program creates a new instance of Calendar. This new object has
many methods built in to it, including the current month, day of month,
and the time. All that remains to be done is to print out text,calling:

date.get (Calendar.DATE)
date.get (Calendar.MONTH)

Note that the months are indexed from 0 to 11, so it is necessary to add
1 before displaying it.

Things to do

1 The reactionTime program can also be used for timing longer
intervals, such as lap times in a race. Modify the program to make it
display the elapsed time in seconds to the nearest hundredth of a
second, or to the nearest second, or to the nearest minute.

2 Adapt the reactionTime program as a short-interval timer. For
example, it could be turned into an egg-timer, running for 5 minutes
and then displaying an “Egg cooked” message on the screen. There are
many possible variations on this theme.

3 Adapt the findBiggest program to accept values typed on the
command line. Try to program it to accept any number of values.

4 Adapt the findBiggest program to accept values typed in at the
keyboard and then find their maximum.

5 There is also a Math method called min (), which returns the
minimum of two values. Use this method to find the minimum of a set
of numbers.

6 Extend the program of problem 5 to find both the maximum and
minimum of a set of numbers, then calculate and display the range .
Remember that, as the program scans through the array, it alters many
of the original values.

7 Write a program that makes use of the Date class.

125

8 Write a program using the Calendar class to display the present
time. Methods that you might use are Calendar .HOUR, Calen-
dar .MINUTE and Calendar.SECOND. There is also Calen-
dar.YEAR. The date can be reset to another date by using methods
such as date. set (Calendar .MONTH).

126

12 More about swing

Our previous encounter with swing was in Chapter 7 where we used it
to provide a more familiar look to input and output routines. Our
programs looked more like typical Windows programs. From now on
we shall use swing classes and methods to give our programs a more
polished user interface. We will add variety by displaying a range of
colours, fonts and graphics.

The visual appeal of swing is based on the use of standard pre-
programmed components. These include the devices so often seen on
a Windows screen — buttons, sliders, labels, areas for entering text,
and drop-down lists. Having got together the components, we need
something to put them in, a container. Containers include frames,
which are windows with a title bar and with buttons to maximise,
minimise and close the window. They may have a menu bar and a
scroll bar as well. Figs. 18 and 19 on p. 74 show a typical window
generated by using the JFrame class. Containers may be simpler than
this, such as the message pane in Fig. 17, p. 72.

import javax.swing.*;
public class selectIt extends JFrame {

JButton coffee = new JButton("Coffee");
JButton tea = new JButton("Tea");

JButton chocolate = new JButton("Chocolate");
JButton soup = new JButton("Soup");

public selectIt() {
super ("Hot drinkst");
setSize (300, 100);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;
JPanel drinks = new JPanel () ;
drinks.add (coffee) ;
drinks.add(tea);
drinks.add (chocolate) ;
drinks.add (soup);
setContentPane (drinks) ;

public static void main(String[] args)

selectIt drinksVendor = new selectIt();
drinksVendor.setVisible (true) ;

127

Hot drinks!

(Lconen,] [ien.] [ccoe.]

il -

Fig. 31. An inviting user interface, produced
by using JFrame methods.

This program has some methods in common with the outFrame
program on p. 73 but this one invites the user to make some input by
pressing one of the buttons.

Since Chapter 7 we have covered more aspects of the Java language
so we can look at this program with better understanding. It begins by
importing the swing package. This will be necessary for almost all the
programs in Chapters 13 and 15. Next, we declare that the new class
selectlt extends the JFrame class. This means that this new class has
access to all the many methods included in the JFrame class.

To begin the class definition, we declare the components that are to
go into the new window. These are four JButton () objects. Each
has an identifier (cof fee, tea, chocolate and soup) and each is
created as an instance of the JButton () object of the selectit class.
The text to appear on each button is given as a String argument.

Now we start to put the selectlt class together into a container. We
construct it, using a constructor to do so. The constructor has the same
name, selectIt, as the class. It does the following things:

° Calls the super () method to place text on the title bar of the
frame.

° Calls the setSize () method to set the width and depth of the
frame in pixels.

° Calls the setDefaultCloseOperation () method to set
what happens when the user clicks on the ‘Close’ button (X).

128

° Creates drinks, a new instance of JPanel. This is the
simplest of the countainers, but has a very useful range of
features.

° The next four lines place the components (the buttons) in the
container. This is done one at a time by calling the add ()
method.

° Calls the setContentPane () method, to set the content of
the drinks panel.

This completes the constructor of the selectit class. Next comes the
definition of the main method, which creates drinksVendor, a new
instance of the class and calls setVisible () to display it on the
screen.

The panel can be dragged to any part of the screen in the usual way. It
can be minimised and maximised by clicking on the appropriate
buttons in the title bar. Its shape can be changed by dragging its edges.
Note that the buttons are not fixed in position. If there is enough width
they arrange themselves in a single row across the top of the panel. If
the panel is narrow, they appear in a single vertical column, nicely
centred.

The typical changes of appearance of a button are already pro-
grammed in. A button changes its appearance as the mouse moves
over it, and the image changes to a ‘pressed button’ image when you
click on it. Nothing happens because the program has no output
routine at present.

Adding icons

The purpose of a button is often clearer if it carries an icon instead of
a text label. On p. 130 is an example in which one of three functiors in
a program is selected by clicking on a button. The images were taken
from the author’s CD-ROM, Newnes Interactive Electronic Circuits.
They are 50 pixels square and saved as .gif files. To run this program
you will need three icon files saved in the same directory as Java. This
is usually the *bin’ subdirectory of the ‘jdk/.5.0_01" directory. There
are collections of icons available on CD-ROM or on the web.

129

The listing is as follows:
import javax.swing.*;
public class selFunction extends JFrame (

Imagelcon scope = new Imagelcon("buttl.gif");
JButton osc = new JButton(scope);

Imagelcon animate = new ImageIcon("anibutt.gif");
JButton anm = new JButton(animate);

Imagelcon problem = new Imagelcon("butt2.gif");
JButton prob = new JButton(problem);

public selFunction() {
super ("Select a function");
setSize (350, 100);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;
JPanel funcs = new JPanel();
funcs.add (osc) ;
funcs.add (anm) ;
funcs.add (prob) ;

setContentPane (funcs) ;

public static void main(String([] args) {
selFunction NIECfuncs = new selFunction();
NIECfuncs.setVisible(true);

H

This program has the same sequence of actions as selectlt, but has
only three buttons. These select three possible ways of studying a
given circuit: analyse it electronically, show an animated diagram of
its action, solve problems concerning it. The only additions in this
program are the three lines in which the three .gif images are made
into ImageIcon objects. The button objects are then given the value

of an ImageIcon.

Fig. 32. Icons provide a user-friendly way of labelling
buttons.

130

Events

Before going on to explore the full range of components and contain-
ers, we will investigate ways of making something happen when the
user clicks on a button. In the terminology of event handling, the
button is known as a source. Clicking on a button or changing the
state of other sources such as check boxes and sliders, generates an
event. An action event occurs when a button is pressed, or a menu
item is clicked on or an item on a list is selected. There are special
methods, known as listeners, which are there to detect such events and
act accordingly.

The selFunc program is based on these principles. The input side of it
is similar to selFunction.

import javax.swing.*;
import java.awt.event.r;
import java.awt.*;

public class selFunc extends JFrame implements ActionLis-
tener {

ImagelIcon scope = new ImageIcon("buttli.gif");
JButton osc = new JButton({scope) ;

ImageIcon animate = new ImagelIcon("anibutt.gif");
JButton anm = new JButton({animate) ;

ImagelIcon problem = new ImagelIcon("butt2.gif");
JButton prob = new JButton(problem);

String message;

public selFunc() {
super ("Select a function");
setSize (350, 100);

setDefaultCloseOperation(JFrame.EXIT ON_CLOSE) ;

osc.addActionListener (this) ;
anm.addActionListener (this);
prob.addActionListener (this) ;

JPanel funcs = new JPanel();
funcs.add{osc) ;

funcs.add (anm) ;

funcs.add (prob) ;

setContentPane (funcs) ;

131

public static void main(String{] args) {
selFunc NIECfuncs = new selPunc();
NIECfuncs.setVisible(true);

}

public void actionPerformed (ActionEvent button) (
Object source = button.getSource();
if (source == osc)
message = "Analyse circuit";
if (source == anm)
message = "Animated diagram";
if (source == prob)
message = "Solve problems";

System.out.println(message);

H

This program has very basic output, which we shall improve upon
shortly. For the moment, we are content to detect (or listen for) an
action and make some kind of response. The response of sel/Func is
simply to display text in the command window.

Running through the program from the start, we find the following
points:

° It begins by importing the java.awt.event and java.awt pack-
ages. The letters ‘awr’ are short for Abstract Windowing
Toolkit (p. 119). These packages were the forerunners of
swing. Although swing classes have largely superseded the
equivalent AWT classes, we still need to use AWT for event
handling.

e Note the additional words in the line in which the class is
defined. The clause implements ActionListener, which is an
interface. Its purpose is to link an event to an action. When an
action event occurs, the interface calls or its method, ac-
tionPerformed () to carry out the action. More detail on
interfaces is outside the scope of this book.

The declarations have an extra line, declaring message.

The definition of the constructor contains three lines adding the
three sources (the three buttons) to the ActionListener. This
ensures that clicking on these buttons will be detected. The
argument is this, referring to the current object, the button.

132

. actionPerformed() is the method of the ActionLisiener
interface. Its argument is an Act ionEvent object, whick we
have named button in this program.

. The problem with ActionListener is that it detects when an
event has occurred but does not directly indicate which compo-
nent was the source of the action. This can be determined by
using getSource () to return the name of the source which
caused the event. An object is declared, named source,
which holds a String that is the name of the source.

° Three if... statements then deal with the identity of the
source and what to do about it. Each compares the value of
source with the value of the name of one of the buttons.

° The String message (declared at the beginning of the pro-
gram) is then assigned an appropriate message. This is dis-
played on the command screen.

Note that this program does not simply run from beginning to end and
then stop. ActionListener remains continuously alert and a message is
displayed whenever an event occurs. The program ends only when the
user clicks on the ‘Close’ button at top right.

Modifications

The selFunc program wou.d look better if it displayed the frame in the
centre of the screen and lower down. This is easy to arrange. Delete
this line:

setSize (350, 100);
Replace it with this line:
setBounds (250, 100, 350, 100);

Re-compile and re-run the program to see the effect. The arguments
used are numbers of pixels and (in order) mean: x-position of left edge
of frame from left edge of screen, y-position of top edge of frame from
top of screen, width of frame, height of frame.

133

So far, we have let Java take care of how the buttons are arranged in
the frame. If you play around with the size and shape of the frame,
using the mouse to drag its borders you will soon see what is
happening. The program locates the buttons in order from left to right
beginning at the top of the frame. If the line is full, it puts the next
buttons on the second row, and so on. Finally, the rows of buttons are
centred.

This arrangement of buttons is called the flow layout. It is the default
layout if you do not specify anything different. We can exercise a little
more control by using the FlowLayout () method. This requires
two extra program lines, which go just after we have created funcs,
the new instance of JPanel:

FlowLayout rgt = new FlowLayout (FlowLayout.RIGHT);
funcs.setlayout (rgt);

Fig. 33 shows the effect of adding these two lines to the program.

Fig. 33. Flow layout of the buttons aligned at the
right end of each line. If the frame is wider, there will
be a group of two or three buttons, but the group will

be at the right end of the line.

134

Other arguments that can be used with FlowLayout () are LEFT
and CENTER (note the spelling).

Grid layout places the buttons (or other components) into a grid
consisting of a specified number of rows and columns. The command
is:

GridLayout fourByTwo = new GridLayout (4, 2);
funcs setLayout (fourByTwo) ;

You can use any identifier instead of £ ourByTwo. The arguments are
the number of rows, and the number of columns. With only three
buttons, you might expect this to fill the top row, place the third
button in the first column of the seconds row and leave five empty
cells. Fig. 34 shows what happens.

Select a function

Fig. 34. GridLayout () may produce some strange
effects (see text).

It has produced four rows and filled them from top to bottom. The
second column does not appear. Perhaps this is because the buttons
expand to completely fill all the available space. This differs from
flow layout where there is a small gap between columns and rows.

In grid layout, we can specify the size of horizontal and vertical gaps
like this:

GridLayout twoByFour = new GridLayout (2, 4, 20,
30);

To accommodate this neatly, we need to change the dimensions of the
frame to 150 pixels square. The result is shown overleaf.

135

Fig. 35. A frame with gaps between the rows
and columns.

Now the rows appear to have been filled as requested — but what has
happened to the two unfilled columns? It seems that this method works
best when we fill the whole grid. Note that there is no gap between the
buttons and the edge of the frame.

Another version

Now we set out to build a program that uses swing for both its input
and output. The program is called quiz. It asks a question and presents
buttons labelled with four possible answers. The user clicks on one of
the buttons and a comment appears in a frame. First we will get the
input side of the program working. It is listed opposite.

The listing has the same structure as se/Func (pp. 131-2) but uses
different names. First it creates four buttons, named after four cities.
One of these is the capital of New Zealand.

Next comes the definition of the constructor, also named quiz. The
question is in its header bar.

136

import javax.swing.*;
import java.awt.event.¥*;
import java.awt.¥;

public class quiz extends JFrame implements ActionListener

JButton sydney = new JButton("Sydney");

JButton wellington = new JButton("Wellington");

JButton auckland = new JButton("Auckland");

JButton christchurch = new JBut-
ton("Christchurch");

String message;

public quiz() {
super ("Which is the capital of New
Zealand?") ;
setSize (450, 100);

setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
sydney.addActionListener (this) ;
wellington.addActionListener (this) ;
auckland.addActionListener (this) ;
christchurch.addActionListener (this);
JPanel capitals = new JPanel();
capitals.add(sydney) ;
capitals.add(wellington);
capitals.add(auckland) ;
capitals.add(christchurch);
setContentPane (capitals) ;

public static void main(String(] args) {
quiz quizl = new quiz();
quizl.setVisible (true);

public void actionPerformed(ActionEvent button) {
Object source = button.getSource();
if (source == sydney)
message = "Sydney is in
Australia!";
if (source == wellington)
message = "Correct";
if (source == auckland)
message = "It is the biggest city
in NZ,\nbut not the capital.";
if (source == christchurch)
message = "A beautiful city, but
not the capital.”;

System.out.println(message) ;

N

137

We have made the frame a little wider because there are four buttons
this time, instead of three. After setting the closing operation, we put
the four buttons into contact with the ActionListener interface.

To complete construction, we add the buttons to the frame (we are
building a panel called cities) and set its content.

The main method creates an instance of quiz, called quiz1. It then
calls actionPerformed () to detect when a button is clicked on
and to place the name of the button in the object called source.

A sequence of four if. .. statements then identifies the button and
sets the string, message, to an appropriate response. This is dis-
played in the command screen in the usual way.

Try typing this in, compile it and run it. The result should look like
Fig. 36. One thing to note about this, which you may have already
noticed in se/Func (p. 131-2) is that the program continues running,
after you have clicked on a button. You can click other buttons or all
four buttons as many times as you like, and the corresponding message
is added to the screen. The only way to close the program is to click on
the ‘Close’ button at the top right corner of the frame.

Which is the capital of New ealand?

Fig. 36. The result of running the quiz program, then clicking
on the “Christchurch” button.

138

This point illustrates the difference between a procedural program and
an object-orientated program such as this. In a procedural program we
would need a loop structure or a GOTO command to return the
computer to the beginning of the program to wait for the next click on
a button. In this OOP it is like having an intruder detector in a rocm,
waiting for the sound of the ‘click’. It is ‘switched on’ all the time,
waiting for an event to occur.

We have let the program run continuously so that the user can explore
the answers to the quiz. However, if you want to allow only one
attempt at the correct answer, add this line at the end of the program,
just before the two closing brackets, }}:

System.exit (0) ;

This switches off the listener as soon as one click has been detected,
and the program ends.

Swing output too

Load quiz into your text editor. An easy improvement is to centre the
panel of buttons on the screen. To do this, delete the setSize ()
method in the constructor and replace it with:

setBounds (150, 100, 450, 100);

The places it 150 pixels from the left of screen, 100 pixels from the
top, and makes it 450 pixels wide and 100 pixels high. Then delete the
last line of the program, which puts message on the Command screen
and replace it with these lines:

JPrame answer = new JFrame();

answer .setDefaultCloseOperation (JFrame.EXIT_ON_CLO
SE) ;

JLabel answerLabel = new JLabel (message);

JPanel panel = new JPanel();

answer.setBounds (250, 250, 100, 50);

panel .add (answerLabel) ;

answer.setContentPane (panel) ;

answer.pack () ;

answer.setVisible(true);

139

This segment of program sets up a frame called answer, and sets its
‘Close’ operation. We also set up a JLabel called answerLabel
to carry the message string, and a JPanel called panel to
contain the label.

Next we set the bounds of answer so that it comes just below the
frame with the buttons. We add the answer label to the panel, and set
the content of the panel within the answer frame. Then we pack the
frame to hold the message neatly and make it visible. Fig. 37 shows
the result.

= ||O]'X

Itis the biggest city in NZ,but not the capital.

Fig. 37. The result of running the full version of the quiz
program and then clicking on the “Auckland” button.

Things to do

1 Write a class to display four buttons for controlling a washing
machine. The buttons are labelled “Hot wash”, “Normal wash”,
“Delicates” and “Start”. The buttons are to be arranged in a vertical
row.

2 Find suitable icons and substitute these for the washing program
names in the class that you wrote for the previous item.

140

3 You can put both text and an icon on a button, using this format:
JButton (text, icon)

The fext is a string in double quotes (as on p. 127) and the icon is the
filename of the icon image (as on p. 130). Try this with the classes you
have written for items 1 or 2 above. Alternatively, try it with any other
programs in this chapter that use JButton.

4 Program the washing machine class to display suitable responses on
the command screen when one of the buttons is clicked on (see
selFunc, p. 131).

§ Write a class with buttons labelled with an unfamiliar word on each
button. Clicking on the button displays the meaning of the word on the
command screen.

6 Write a program called ‘Who is it?’. Set up about 10 buttons each
with a photo of a well-known person on it. Before clicking on a button,
the user has to guess who it is. When the button is clicked, the name of
the person is displayed on the command screen. Or you could write
‘What is it?” with problem photos (odd angles, small clips from larger
photos) on the buttons.

7 Adapt the complete quiz program (pp. 137-9) for other topics and
questions.

141

-
13 Handy swing methods

This chapter consists of a range of methods, briefly described, that you
can use to expand and enhance your programs.

Message window

You may wish to flash up a warning message, a helpful hint, or words
of explanation on top of the main display of your screen. Or you may
want to begin a program with a title or some text that introduces it. For
these purposes you can use a JWindow. This is similar to a JFrame
but does not have a title bar or the maximise, minimise or close
buttons. In other words, the reader can not get rid of the message, but
must wait until the window is closed by the program. The title class
listed below shows how to produce such a window.

import javax.swing.*;
import java.awt.¥;

public class title extends JWindow {
JLabel heading = new JLabel("This is the heading");

public title ()} {

super () ;

set$Size (800, 600);

JPanel words = new JPanel();
words .add (heading) ;

setContentPane (words) ;

public static void main(String(] args) {
title intro = new title();
intro.setVisible (true);
for (int j = 0;j < 80000; j = j + 1) [
for (int k = 0;k < 80000; k = k + 1) }}
intro.setVisible(false) ;

System.exit (0) ;

143

As listed, this program displays a window taking up the whole screen,
and staying there for about 10 seconds. The size of the window and the
time for which it is displayed depend on the computer, so some
adjustments of values may be necessary. The text is displayed in the
centre of the top line.

The program first declares a label called heading, and gives it the
value "This is the heading". This is the single component
that is to be displayed, though there could be more.

The constructor creates a container called title and sets its size.
Then it creates a panel (a sub-container) called words and adds
heading to it. Finally, the constructor calls setContentPane to
place words inside the outer container, title.

Check Boxes

These are small square components that become checked when they
are clicked on. Conversely, when a box is already checked it loses its
tick when clicked on. Occasionally boxes are used singly, but more
often we set up a panel of checkboxes. The user checks one or more of
the boxes to provide information to the program.

In the next program, checkboxes are used by a customer to select from
a range of travel brochures.

import javax.swing.*;
public class travel extends JFrame {

JCheckBox boxl
JCheckBox box2
JCheckBox box3
JCheckBox box4
JCheckBox boxS
JCheckBox boxé
JCheckBox box7
JCheckBox box8

new JCheckBox("Britain");

new JCheckBox ("Europe") ;

new JCheckBox("Scandinavia");

new JCheckBox ("Russia") ;

new JCheckBox("USA & Canada");

new JCheckBox ("India");

new JCheckBox ("Pakistan & Sri Lanka");
new JCheckBox ("Thailand®);

144

public travel() {
super ("Please tick areas of interest.");
setBounds (300, 50, 350, 150);
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
JPanel areas = new JPanel();
areas.add(box1) ;
areas.add (box2) ;
areas.add (box3) ;
areas.add (box4) ;
areas.add (box5} ;
areas.add (box6} ;
areas.add (box7) ;
areas.add (box8} ;
setContentPane (areas) ;

public static void main(String[] args) {
travel trvl = new travel();
trvl.setVisible(true);

N

The program sets up eight checkbox objects, giving each a text label.
The constructor adds these to the areas panel, one at a time, and the
content pane is set. The main method creates a new frame called v/
and makes it visible. Fig. 38 shows the result.

Please tick areas of interest. [;‘_E_IX‘

[Britain [_|Europe [v]Scandinavia [| Russia
[¥]USA & Canada []india []Pakistan & SriLanka
] Thailand

Fig. 38. Customers can select one or more brochures by tick-
ing the labelled checkboxes.

The menu could be laid out more clearly by using grid layout (p. 135)
but this does not affect the operation of the checkboxes, so we will not
add this complication to the demonstration.

145

Radio Buttons

Radio buttons are small circular components reminding one of the
buttons on a radio set with press-button tuning. They have an action
similar to checkboxes. In the next program a hotel guest selects
breakfast from a menu displayed on a console in the hotel room.

import javax.swing.*;
import java.awt.*;

public class breakfast extends JFrame {

JRadioButton butl = new JRadioButton("Fruit juice");
JRadioButton but2 new JRadioButton({"Cornflakes");
JRadioButton but3 new JRadioButton({"Muesli");
JRadioButton but4 new JRadioButton("Boiled egg");
JRadioButton buts new JRadioButton("Scrambled egg");
JRadioButton buté = new JRadioButton("Fried egg and
bacon") ;

JRadioButton but7 = new JRadioButton("Tea");

JRadioButton but8 = new JRadioButton ("Coffee");

public breakfast () {

super ("Please tick your breakfast choices.");
setBounds (300, 50, 350, 150);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;

JPanel menu = new JPanel();
menu.add (butl) ;

menu.add (but2) ;

menu.add (but3) ;

menu.add (but4) ;

menu.add (buts) ;

menu.add (buté) ;

menu.add (but?7) ;

menu.add (buts) ;
setContentPane (menu) ;

public static void main(String(] args) {
breakfast bkfst = new breakfast () ;
bkfst.setVisible (true) ;

H

The display is shown in Fig. 39, opposite. Using the mouse, the user
can select or de-select any item on the menu. Most hotels would not
allow this, as a guest could elect to have ‘the lot’!

146

Please tick your breakfast choices. \:HE||X|

® Fruit juice O Cornflakes @ Muesli) Boiled egg
@® Scrambledegy O Fried egg and bacon ® Tea

@ Coffee

Fig. 39. Radio Buttons are a convenient way of selecting
Jfrom a menu.

Fortunately, such gourmandising can be prevented by grouping the
buttons. This is done by creating button groups. For the breakfast we
need three groups, for cereal, egg, and beverage. Fruit juice is an
option that stands on its own.

This is how to do it. Add these lines to the program immediately after
the setDefaultCloseOperation() line:

ButtonGroup cereal = new ButtonGroup();
ButtonGroup egg = new ButtonGroup();
ButtonGroup beverage = new ButtonGroup();

cereal.add (but2);
cereal.add(but3);
egg.add (but4) ;
egg.add (but§) ;
egg.add(buté6) ;
beverage.add(but?);
beverage.add (but8) ;

First we create three button groups. Then we add the required buttons
to each group. Edit the program to include these extra lines. Campile
and run the program, then try selecting your favourite breakfast. The
display looks exactly the same as before, but now you can select only
one item from each group.

147

There is still the problem that, after you have selected one item of a
group, you can cancel it only by selecting another item from the same
group. For example, once you have selected one of the egg dishes, you
can change it for another egg dish, but you are forced to have an egg
dish of some kind. You can not opt out of egg altogether! The solution
is to include a ‘Cancel’ button in each But tonGroup.

Text Field

This is another kind of component that can be added to a frame. It
consists of a box holding a single line of blank screen. There are three
ways of calling this:

JTextField () gives a blank field.
JTextField (int) in which the integer determines the length
of the field.

° JTextField (string, int) in which the field contains a text
message and inf determines the length.

Fig. 40 shows a text field added to the breakfast menu program.

Please tick your breakfast choices. \ZHEHX\

® Fruitjuice O Cornflakes @ Muesli ' Boiled egy
) Scrambled egy ® Fried egg and bacon) Tea

@ Coffee

|0ther requests? Sunny side up |

Fig. 40. An editable text field allows the guest to make
special requests.

148

The text field was first displayed with a message in it, asking “Other
requests?”. In this example the user has typed a reply, referring to her
fried eggs: “Sunny side up”.

The text field is added to the program by three extra program lines.
The first is after the declarations of radio buttons:

JTextField request = new JTextField("Other re-
quests?",30);

Next, after the list of button groups:

request .setEditable (true);

This allows the user to type in and edit text. The argument false
would prevent it. Finally, at the end list of additions to menu:

menu. add (request) ;

The text field could be placed among the radio buttons by putting this
line earlier in the list.

A related component is a text area, which is several lines deep. The
method for this is JTextArea (). The parameters are (int, int) or
(String, int, int), where the integers are the numbers of rows and
columns.

If you want the text to wrap round normally at the ends of lines, that is,
to carry to the next line between words, include these two lines:

setLineWrap (true) ;
setWrapStyleWord (true) ;
Dislog boxes

We have already used one type of dialog box. On p. 71 we described
an Input dialog box. This asks a question and has a text field in which
the user types an answer. We used one again on p. 102.

149

A message dialog box is simpler. It just displays a message and has an
‘OK’ button that the user clicks on after reading the message. Fig. 41
shows a typical message dialog box.

You have been on line for 8 hours!

Fig. 41. A message dialog box provides a timely reminder.

This is the program than produced the box:

import javax.swing.*;
import java.awt.*;

public class infobox extends JFrame {
public infobox () {

setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
JOptionPane . showMessageDialog(null,
"You have been on line for 8 hours!");

public static void main(String[] args) {
infobox overtime = new infobox();
overtime.setVisible (true);

System.exit (0);

1

150

Responding to input

Most of the programs in this book show a response to input, often by
printing a message on the command screen. In this section we are
referring to responses which take the form of windows or frames that
have a typical Windows look. These nearly always involve methods
from the swing package and often from the awt and awt.event pack-
ages as well.

The outFrame (p. 73), bugAlert (p. 15), Birthday (p. 79) and motion-
Input (p. 82) programs show how to use the JPanel () method to
display a message.

There may also be a display when a given event has occurred, such as
clicking on a button. For example, the quiz program on p. 137 shows
that the essential steps in responding to an event are:

o In the constructor, connect each source to the addAction-
Listener () method, so that it is aware of actions.
4 In the main() method, set up the actionPer-

formed () method to respond to action events.
. Use the getSource () method to find out which source
generated the action.

Once the name of the source becomes available, the program can take
whatever logical or other action that is required.

The ActionListener interface is used in quiz to respond to
clicking on a button in a panel. It can also be used to respond to
clicking on a radio button, a checkbox or a text field. It can therefore
be used to respond to input from these components, which have been
described earlier in this chapter. On the next page is a listing which
demonstrates all four types of response.

To begin with we declare one of each of the four types of component.
The frame is set up in the usual way and the four components are
added to ActionListener. Then they are added to the panel,
comps.

151

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class eventDemo extends JFrame implements
ActionListener {

JButton compl = new JButton("Press me");

JCheckBox comp2 = new JCheckBox("Tick me");
JRadioButton comp3 = new JRadioButton("Select me");
JTextField comp4 = new JTextField("Keep it brief!", 20);
String message;

public eventDemo () {

super ("Components and events") ;
setBounds (250, 50, 300, 150);
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

compl .addActionListener (this) ;
comp2 .addActionListener (this) ;
comp3.addActionListener (this) ;
comp4 .addActionListener (this) ;

JPanel comps = new JPanel () ;
comps .add (compl) ;
comps .add (comp2) ;
comps .add (comp3) ;
comps .add (comp4) ;

comp4 .setEditable (true) ;
setContentPane (comps) ;

public static void main(String[] args) {

eventDemo showEm = new eventDemo(};
showEm.setVisible (true) ;

public void actionPerformed (ActionEvent button) {
Object source = button.getSource() ;
if (source == compl)
message = "Button";
if (source == comp2)
message = "Check Box";
if (source == comp3)
message = "Radio button";
if (source == comp4)
message = comp4.getText ();

System.out.println(message) ;

1}

152

The text area is given the text message “Keep it brief!” when it is
declared and later we make it editable, so that the message can be
extended, changed or deleted.

Following the constructor, there is the main method which creates a
new frame and then makes it visible. Its appearance is shown in Fig.
42.

= Components and events l_:“ﬁ”:g|

Pressmo_ [JTickme O Slectmo

Keep it brief |

Fig. 42. An assortment of components that demonstrate
action events.

To keep the listing as short as possible, the output from the program is
sent to the command screen. The last method in the listing shows one
way of handling the responses.

The actionPerformed () method detects the source of the action
and, using the method getSource (), creates an object holding the

name of the source. This is assigned to an object named source.

Depending on the values of source, a sequence of if... state-
ments assign a text string to message.

Finally, the message is printed on the command screen.

153

There are several other listener methods, responsive to actions on
these components and to other happenings. One is the mouse listener,
which keeps a watch on what is happening to the mouse. For example,
it can register mouse events such as being clicked on an object, or the
keys being pressed or released. Mouse events are particularly useful in
Applets.

Key events including pressing or releasing a key on the computer
keyboard, are detected by a key listener.

Things to do

1 Set up a small ‘Welcome’ window to show for about 10 seconds and
briefly introduce the user to a piece of software.

2 A car insurance compay has a questionnaire for new customers. It
lists events that the company needs to know about. “Have you ever
been declined insurance?”, and “Have you ever been prosecuted for
dangerous driving?” are two examples. Build the form using check-
boxes. Ask the user to check the box if the answer to a question is
“Yes”.

3 A hotel asks departing guests to give their opinion on the services
provided during their stay. Set up a form with a text area in which the
user enters their name, room number, and dates of their visit. Add
some radio buttons to rate the various services (Restaurants, Travel
bureau, Swimming Pool and so on). For each service there could be a
button group including “Good”, “Average” and “Poor”.

4 Extend the programs you have written for items 3 and 4 to include
routines to display on the command screen a summary of the user’s

responses, using action events.

5 Adapt the program of item 4 to display the output in a Jpanel or
a dialog box.

154

14 Applets

The classes that we have built and run in earlier chapters have all been
Java applications. These are free-standing programs that run under
the operating system of your computer. In that respect they are no
different from applications written in C, Forth or BASIC.

In this chapter we look at Java applets. The distinctive feature of
these is that they can be transmitted across the Internet to another
computer and run on that computer. It is this feature and the enormous
popularity of the WWW that has made Java such an important and

widely-used programming language.

It might be thought to be a dangerous thing to receive a program that
has been sent from another computer. Web users are plagued with
viruses sent by malicious persons, devastating their programs and
data. But Java is not virus-like. There is complete security when
downloading an applet from the Internet. The structure of Java is such
that an applet can not access other parts of the computer and operate
on the programs and data stored there.

There are two ways in which you can view applets without putting
them on a web site. One is to use your computer’s browser, for
example, Internet Explorer or Netscape. It can be used off-line. The
other way of viewing employs Applet Viewer, a program that is
downloaded from Sun as part of the Java Development Kit.

Using Internet Explorer

Before calling up /E, we need a file that /E can read. This is written in
a language called Hyper-Text Mark-up Language, or HTML for
short. The language is fairly simple, being designed mainly for getting
your browser to display text and graphics attractively on the screen.
We need only a short program to display an applet.

155

This is the listing of a basic HTML program for displaying an applet:

<HTML>

<HEAD>

<TITLE> Demonstrating applets </TITLE>
</HEAD>

<BODY BGCOLOR = LIME>
<Hl>Demonstrating Applets<Hl>

<P>

<APPLET CODE=message WIDTH=250 HEIGHT=150>
</APPLET>

</BODY>

</HTML>

The program has its instructions contained within pairs of tags. A tag
consists of a keyword enclosed in angle brackets. Examples are
<HTML> and <HI1>. Opening tags like these tell IE to start doing
something. There are also closing tags, which contain a slash, to tell IE
to stop doing that thing, Examples are </HTML and </H1>.

An HTML program begins with <HTML> and ends with </HTML>.
These tags tell IE that everything between these tags is an HTML
program. Within this, the program is in two main sections, the HEAD
and the BODY. The HEAD section (typed between <HEAD> and
</HEAD> tags) contains general information about the file, but this
does not appear on the computer screen. In the listing above, the
HEAD contains only the title, between <TITLE> and </TITLE> tags.
Unlike a class name in a Java program, the title does not have to be the
same as the filename.

The BODY section of this program begins with the tag <BODY>, and
there is a command in the same tag to make the background colour
lime green. We do this so that you can see the extent of the applet,
which will have a white background in this example. The first item in
the body is the heading that will be displayed on the screen. This is
enclosed between <H1> and </H1> which indicates that it is to be
displayed in the largest of the standard sizes for headings.

Then comes <P> which begins a new paragraph. This does not have a
closing tag.

156

Next within the body is the command to activate an applet. The tag for
this includes several directions. ‘CODE = message’ gives the name of
the compiled Java class file, ‘message.class’. Note that we give only
the file name, not the .class extension. The width and height of the
applet display area are given in pixels.

Finally, the program is ended with the closing tags </APPLET>,
</BODY>, and </HTML>, in that order.

The first stage in viewing the applet is to type in and save the HTML
program. Save it with the filename Applets in the same folder as your
.java and .class files, but with the .html extension. -

First applet

Our first applet is a very short one that simply displays a message on
the screen. Here is the listing:

import java.applet.*;
import java.awt.*;

public class message extends Applet {
public void init () {

this.add (new Label ("Java is great!"));

H

The applet and awt packages are needed to run this program. It is
based on the Applet class, extended to display a particular message.
The class contains a single method of the Applet class, called
init (). To this we add a new label, “Java is great!”.

Type in this program and save it under the filename message java.
Then compile it.

To view the applet, first run Internet Explorer. If you have a different

browser, the details of the next stage may be different but the general
procedure in the same.

157

Click on the text in the address window and type in the following
address:

file:///C:\Program Files\Java\jdk1.5.0_01\bin\Applets.html

Note that there are three slashes after ‘file:’ and that the remainder of
the slashes are backslashes. You may need a slightly different address
if you are running an earlier version of Java or if your Java programs
are stored at a different address.

Click on GO, which will cause /E to run the applet message program.
The screen should look like Fig. 43.

Fla ER Vew Fovortes lih [3
O O WEG Lo oo @ @ 3- 5=
Addnse |] C:\Program FlesUavalykt 5.0_01 ridppiets IE)ee i ™

Fig. 43. The computer screen when viewing the message applet,
using Internet Explorer off-line. The IE area is lime green and the
applet is white.

158

Using the applet viewer

You can use the Applerss HTML file and the compiled message
program as before. Call up the command line screen in the usual way.

At the prcmpt, type:

AppletViewer applets.html

Press Enter and the applet viewer appears at the top left of the screen,
as in Fig. 44.

Applet Viewer: messag

Java is greati

Applet started.

Fig. 44. The applet viewer in action.

159

The viewer has a drop-down menu (Fig. 45), which is useful for
testing the applet.

Reload
Stop
Save..
Start
Clone...

Tag..

Info..

Edit

Character Encoding

Print..
Properties...

Close
Quit

Fig. 45. Clicking on the ‘Applet’ button at top left produces
a drop-down menu.

The functions of the more often-used options are:

Restart: starts the applet again. Fig. 46 shows what happens.
Reload: clears the current display and starts the applet again.
Clone: creates a separate copy of the applet. This can be kept
on screen for comparison with later stages of the program.

. Tag: displays the line or lines in the HTML that generates the
applet. This is cleared by clicking on the ‘Dismiss’ button.
Print: Prints out the applet.
Close: Closes the copy of the applet in which this option is
selected, but not other copies.

. Quit: Closes all copies and the viewer, returning you to the
command line.

160

Applet Viewer: message
Applet

Javais greatl Javais greatl

Java is great!

Applet started.

Fig. 46. This is the result of restarting the applet twice.

A simpler way to use the viewer is to place the HTML commands for
the Applet in a comment in the Java program of the applet. For
example, the message program (p. 157) has a comment added to it
just before the class definition::

import java.applet.*;

import java.awt.*;

/*

<APPLET CODE=message WIDTH=250 HEIGHT=150>

</APPLET>

*/ |

public class message extends Applet {
public void init() {

this.add (new Label ("Java is great!"));

H

161

Save this as message java and use javac to compile it. You do not
need the corresponding HTML file. To run the applet, type:

AppletViewer message.java

The result is the same as in Fig.44.

Applet methods

The very simple applet listed on p. 157 does not illustrate the basic
structure of a typical applet program. Applets call on five special
methods, which must be called in the correct order. The methods are:

init () Initialises the applet. This is the place for declaring vari-
ables. The init () method is called when the applet is first run, but
not later in the same session.

start () Always follows after init () and starts the applet run-
ning, It is called every time the applet is run, that is every time we run
the HTML screen that displays the applet.

paint () This is called to re-draw the applet after it has been partly
or wholly overwritten by other display items.

stop () Temporarily stops the applet from running when the browser
displays another HTML page. The applet begins running again, from
start (), if the user returns to the page.

destroy () The applet is cleared from memory if this method is
called after calling stop ().

These methods are called automatically when an applet is running. It
is not necessary for them to appear in the listing unless there is a
particular need to override them. This is why only the init ()
method is called in message (p. 157). The message is added to the
initially blank applet. After this, the other methods are called by
default. The next applet calis all three of the methods that are used in
all but the simplest applets

162

Coloured text

The Colours applet below demonstrates how to produce coloured text
on a coloured background. We also use it to illustrate the actions of
some of the applets methods listed on p. 162.

Here is the listing:

import java.awt.*;
import java.applet.¥;

/t

<APPLET CODE="Colours" WIDTH=300 HEIGHT=100>
</APPLET>

*/

public class Colours extends Applet {
String message;

public void init () {
setBackground (Color.pink) ;
setForeground (Color.blue) ;
message = "Blue on pink.";

}
public void start() {
message += " Started.";

public void paint (Graphics g) {
megsage += " *%;
g.drawString (message, 10, 50);

1}

The listing begins, as always with applets, by importing the awt and
applet packages. A multi-line comment sets up the HTML page.

Before initialising the applet we declare a class variable, which is a
string named message.

The init () method is used to set the colours of the background (the
screen) and the foreground (the text) to blue and pink, respectively. It
also assigns a value, "Blue on pink.", to the variable, mes-
sage. As we shall see later, this command has no immediate effect
on the display. It simply gives message an initial value, stored in
mermory.

163

The init () method of an applet must be followed by the start ()
method. In order to register the fact that the applet is being started, we
add the string * Started." to message, so that the value of
message becomes "Blue on pink. Started." The program
uses the += operator to extend the string.

Now to display the string, using the paint () method. But before we
display it, we add a single asterisk to it. The method creates a Graphics
object, which we have called g. It could have a different name but g
is the one used conventionally.

Key in and save this listing under the filename Colours.java. Use
Javac to compile it. Then, at the command prompt, type:

AppletViewer Colours.java

Press Enter to run the applet. Fig. 47 shows the applet as it first
appears. The message appears as blue on a pink background. It has
grown to:

Blue on pink. Started. *

Applet Viewer: Colours

iF s

Applet started.

Fig. 47. The Colours applet when it is first run.

164

Without closing the applet down, try playing about with it. For
example, drag its right edge to make it wider. Note what happens
when you release the left key of the mouse and the background fills in
with pink. Alter its shape in other directions.

Now try partly covering it with one of the other windows that are on
the screen and then click on the applet to bring it to the front again.

Investigate the effect of minimising the applet by clicking on the
left-hand button at its top right. The applet disappears and a button
labelled ‘Applet Viewer: Colours’ appears on the Taskbar. Minimis-
ing it leaves it in memory but it is no longer rurning. Now restore it to
its original shape and size by clicking on the button on the Taskbar.
What do you notice about the message?

Applet Viewer: Colours

Applet started.

Fig. 48. The Colours applet after it has had to re-paint its display a
few times, and has been minimised, then maximised.

Remember that this is a special demonstration of the sequence of
applet methods. We would not normally let the appearance of an
applet be changed every time it has to re-paint its image.

165

Try cloning the applet, by clicking on the word ‘Applet’ on its
Toolbar, then selecting ‘Clone..." from the drop-down menu. Is the
clone identical to the current version of the original?

To show that it is the paint () method that produces the display,
reload the original Colours.java textfile and type // at the left end of
the line that calls the drawString () method. This converts the
line to a comment, which will be ignored by the compiler. Save the
new version, compile it and run it. No message appears. Presumably
the message is being built up in three stages as before, but it needs the
drawString () method to put it on the screen.

Now we will look more closely at drawString (), but before we do
this we will get rid of the operations on message. Reload the
original textfile and delete (or ‘Comment out’ with //) the last line of
the init () method. Delete the whole of the start () method,
which now has no special action to take. In the paint () method,
change the += operator to a simple =, as there is now no message to
add the asterisk to.

Here is the new version:
import java.awt.*;
import java.applet.*;

/.
<APPLET CODE="Colours" WIDTH=300 HEIGHT=100>
</APPLET>

*/

public class Colours extends Applet {
String message;

public void init () {
setBackground (Color.pink) ;
setForeground (Color.blue) ;

public void paint (Graphics g) {
megssage = "*";

g.drawString (message, 10, 50);

i}

166

When run, this version displays a single blue asterisk on a pink
background. It is located half-way down on the left edge of the applet.
This demonstrates that there is no need to call the start () method
if all it has to do is to start the applet in the normal default way.

Incidentally, before or after Applet Viewer generates the applet you
may see numerous reports of exceptions displayed on the Command
screen. These do not seem to affect the running of the applet and may
be ignored.

Because of its history, this listing first of all declares message as a
variable, then gives it a value (*), and finally displays it using the
drawString () method. However, the displayed string can be
defined directly as a literal expression:

g.drawString("*", 10, 50);

Now is the time to modify the listing in several ways and note the
effects. You can change the colours of the foreground and background
by altering the colours in the setBackground () and setFore-
ground () methods. The complete range of colours available is:

black darkGray gray lightGray
pink red orange yellow
green cyan blue magenta
white

Note the spellings of the greys. The two integer parameters are the
coordinates of the beginning of the string.They give the x-position and
y-position, in pixels, with the origin at the rop left comner of the applet.

Fonts

By default, the text is a 10-point sans-serif style. Other fonts may be
employed by using the Font () method. There are three parameters:
the name of the font, the style (0 = regular, 1 = bold, 2 = italic, 3 =
bold italic. The listing overleaf gives examples of font declarations
and Fig. 49 shows the results.

167

Try using other fonts in various sizes and styles. Adjust the size of the
applet and the locations of the strings to produce a neat display

Applet Viewer: fontDemo

Applet

GETTING STARTED IN JAVA
Owen Bishop

A book for beginners.

Applet started.

Fig. 49. A selection of fonts in various styles produced by the listing
shown below. I

import java.awt.*;
import java.applet.*;

/a

<APPLET CODE="fontDemo" WIDTH=400 HEIGHT=200>
</APPLET>

*/

public class fontDemo extends Applet {
Font title = new Font ("Desdemona®", 3, 30);
Font author = new Font ("Rockwell"®,0,24);
Font blurb = new Font ("CourierNew",d,12);

public void init () {
setBackground (Color.yellow) ;
setForeground (Color.red) ;

public void paint (Graphics g) {

.setFont (title);

.drawString ("GETTING STARTED IN JAVA", 0, 50);
.setFont (author) ;

.drawString("Owen Bishop", 30, 80);

.setFont (blurb) ;

.drawString ("A book for beginners.”, 60, 110);

tuuuuaua

168

Drawing lines

The most essential requirement for drawing on the screen is to draw a
line. The drawLine () method takes four parameters. The first two
of these are the x-distance and y-distance of the beginning of the line.
The last two are the x-distance and y-distance of the end of the line.

By default, the line is drawn in black, but it is easy to draw it in any
other colour by calling setColor (). This method takes the ‘Color’
parameters as listed on p. 167 or we can define a new colour, assign it
a name and use that, as explained opposite.

import java.awt.*;
import java.applet.*;

/*

<APPLET CODE="Lines" WIDTH=400 HEIGHT=250>
</APPLET>

*/

public class Lines extends Applet {
Color purple = new Color(200,100,200);
public void init({) {
setBackground (Color.yellow) ;
}
public void paint (Graphics g) {

g.setColor (Color.red) ;
g.drawLine (50, S50, 200, 200);

g.setColor (Color.blue) ;
g.drawLine (50,200,200,50);

g.setColor (purple) ;
for (int x = 100; x < 106; x = x + 1)
g.drawLine (x, 50, x + 250, 200);

H

The new colour is not one of those listed on p. 167. Therefore we
define it as an instance of the Color ()obkject. This takes three
parameters that are integers in the range 0 - 255. Respectively, they
control the amount of red, green and blue in the colour.

169

To produce purple, the red, green and blue components are mixed in
the ratio 200:100:200. An equal mixture of red and blue produces
purple, which is made more interesting by adding a hint of green. Once
defined in this way the word purple may be used to produce a colour
in such methods as setColor () .But note that the word is used on
its own, as in g.setColor (purple). When one of the 13 stan-
dard colours of p. 167 is used, the name is prefaced by color., as
ing.setColor (Color.red).

The structure of the program is simple. After declaring the new colour,
it sets the background colour to yellow. The paint () method
declares three lines, using drawLine (). Each line requires two
program lines to produce it. In each case we first use setColor () to
set the current drawing colour. Then we use drawLine () to draw
the line. This program produces a red line sloping downward from left
to right, and an upward-sloping blue line.

The red and blue lines are just one pixel wide, which is rather too
narrow for many purposes. There are two main ways of drawing a
thicker line. One way is to draw several lines side by side. This is how
the purple line is drawn. After setting the drawing colour to purple, we
usea for ... loop todraw six lines, each displaced one pixel to the
right of the previous line. The result is shown in Fig. 50, opposite.

Applets and Java versions

In this book, the methods used in writing the applets are
restricted to Java 1.0 and 1.1. This means that they should run
on Internet Explorer, Netscape and Applet Viewer. Most ap-
plets were written in these versions until recently because /E
and other browsers did not support later versions of Java. If
you have written an applet that does not work properly, it may
be that you have used a Java 2 method. Conversely, when
compiling an applet using javac you may get warnings about
deprecated APIs. Ignore these warnings. The latest Applet
Viewer should run all versions correctly.

170

¢ Applet Viewer: Lines
Applet

Applet started.

Fig. 50. The result of running the Lines applet. The purple line on the
right is 6 pixels wide.

The disadvantage of this technique is that the lines have oblique ends.
A better approach is to draw a thin rectangle or a thin polygon, as
explained later.

Drawing rectangles

Rectangles are drawn by using drawRect () . This takes four param-
eters: the x-position of the top left corner, the y-position of the top left
corner, the width and the height. The listing overleaf shows a typical
example and Fig. 51 (on p. 173) shows the results. As well as drawing
a rectangle of lines, we can fill this in with solid colour by using
fillRect (). This takes the same parameters.

171

import java.awt.*;
import java.applet.*;

/-

<APPLET CODE="Rectangles" WIDTH=400 HEIGHT=250>
</APPLET>

7/

public class Rectangles extends Applet {
Color olive = new Color (100, 100, 50);
Color milkChoc = new Color (200, 150, 50);
public void init ()
setBackground (olive) ;
}

public void paint (Graphics g) {

.setColor (Color.pink) ;
.drawRect (30, 30, 100, 150);

.setColor (Color.green) ;
.drawRoundRect (70, 150, 150, 70, 15, 30);

.8etColor (milkChoc) ;
.fillRect (100, 50, 240, 40);

.8etColor (Color.blue);
.fillRoundRect (250, 70, 70, 70, 15, 15);

.8etColor (Color.cyan) ;
.fillRect (150, 190, 220, 5);

UL uu uu uu uua

1

The program begins by defining two new colours, a medium olive
green and a light-brown tone that we have called milkChoc for
obvious reasons. It draws an open rectangle in pink. Then it draws one
with rounded comers in green. The method, drawRoundRect ()
takes six parameters. The first four are the same as for drawRect (),
and the last two set the diameter of the comers in the x and y
directions.

The third rectangle is in milkChoc and drawn using fillRect (). 3
The next is a filled rectangle with equal width and height — in other
words, a square. Finally we draw a long narrow (5 pixels) filled
rectangle in cyan as an example of how to use rectangles to produce
thick lines. The main snag of this technique is that the lines must be
either horizontal or vertical.

172

Applet Viewer: Rectengles

L=t .
Applet

Applet started.

Fig. 51. Examples of rectangles and a line drawn by using
drawRect ().

Drawing circles and ellipses

The drawOval () method takes four integer parameters that are set
by imagining the figure to be enclosed within a rectangular box. The
parameters are those that would apply to the box if this were to be
drawn.

To illustrate this point, the commands for the first three ovals are
simply the commands for the pink, milkChoc and blue rectangles of
the previous program but with drawOval() and £illOval ()

substituted for drawRect () and £illRect (). In the case of the
rounded rectangles we have omitted the last two parameters as these
do not apply to ovals. Fig. 52 shows the ovals. The blue one has equal
width and height, so it is a circle. Compare Figs. 51 and 52, to see how
the ovals fit within the cotresponding rectangles.

173

import java.awt.*;
import java.applet.*;

/t
<APPLET CODE="Ovals" WIDTH=400 HEIGHT=250>
</APPLET>
*/
public class Ovals extends Applet {
Color olive = new Color(100, 100, 50);
Color milkChoc = new Color (200, 150, 50);

public void init() {
setBackground(olive) ;

public void paint (Graphics g) {

g.setColor (Color.pink) ;
g.drawOval (30, 30, 100, 150);
g.setColor (Color.green) ;
g.drawOval (70, 150, 150, 70);
g.setColor (milkChoc) ;
g.filloval(100, 50, 240, 40);
g.setColor (Color.blue) ;
g.filloval (250, 70, 70, 70);

H

Applet Viewer: Ovals

2 S e e]

Fig. 52. A selection of ovals.

174

Drawing polygons

The ability to draw polygons is an extremely useful one for creating
attractive graphical displays. The polygons have 3 or more sides and
the x-distances and y-distances of their vertices are put into two arrays.
Then we use drawPolygon () or £illPolygon (), with three
parameters: the name of the x-distance array, the name of the y-
distance array, and the number of sides. This listing shows two
examples.

import java.awt.*;
import java.applet.¥*;

/*

<APPLET CODE="Polygons" WIDTH=420 HEIGHT=480>
</APPLET>

Y/

public class Polygons extends Applet (
Color sky = new Color(150, 200, 255);
public void init() {
setBackground (sky) ;
)
public void paint (Graphics g) {

g.setColor (Color.blue) ;
g.fillRect (0, 410, 420, 70);

g.setColor (Color.white) ;

int xDist[] = $1eo, 180, 340});

int ybist[] = {60, 380, 380};

int sides = 3;

g.fillPolygon (xDist, yDist, sides);

.

int xDist1([] = {180, 145, 120, 105, 110, 120, 145,
175, 160, 145, 140, 150, 160};

int yDist1[] = {60, 120, 180, 240, 300, 340, 375,
380, 340, 300, 240, 180, 120};

int sidesl = 13;

g.fillPolygon(xDistl, yDistl, sidesl);

g.setColor (Color.red) ;

int xpist2[] = {ao, 130, 360, 380};
int yDist2[] = {395, 420, 420, 400};
int sides2 = 4;

g.fillPolygon(xDist2, yDist2, sides2);

175

int xDist3(] = {180, 180, 220};
int yDist3[) = {40, 60, 50};

int sides3 = 3;

g.fillPolygon (xDist3, yDist3, sides3);
g.fillRect (180, 60, 5, 360);

H

Here is the picture, drawn from five filled polygons:

Fig. 53. Drawing by means of polygons, with
occasional use of other shapes, is an easy way to
produce decorative applets. This one looks really good
in colour.

The background of the applet is set to a newly-defined light blue
colour, called sky. Then a rectangle of darker blue is drawn across the
lower end of the frame to represent the sea.

Next the drawing colour is set to white for the sails, The main sail is a
3-sided polygon, in other words a triangle.

176

Continuing with white as the drawing colour, the curving jib sail is
drawn not with curves but with a series of short straight segments. It is
a 13-sided filled polygon.

Finally, the drawing colour is changed to red. The hull of the boat is
drawn as a 4-sided polygon. Its opposite sides are not parallel so it is
not a rectangle with parallel sides. The burgee is a small red 3-sided
polygon, or triangle. The mast is a long narrow rectangle.

This program is an example of vector graphics. The image is built up
of lines, rectangles, circles and other units. This is the technique
employed in the well-known graphics drawing software Corel/Draw!.
The altemnative technique is bit-mapping, in which the individual
pixels of the image are set to the required colours. The highly
successful shareware Paint Shop Pro is an example of this approach.
With vector graphics, the different items are placed on the drawing
area in the order in which they are programmed. Items cover or partly
cover other items that are already there. In the Polygons applet, for
example, the mast covers the left vertical edge of the main sail. It also
covers the hull but they are the same colour, so this does not show.

Animations

Animations are widely used in the applets we see on the Intemet and
many of them are highly sophisticated. Here we demonstrate the
simplest possible animation technique which is, nevertheless, very
effective. The Clock applet displays the image of a clock, with the
pendulum swinging vigorously from side to side.

The case of the clock, its dial, and its hands are displayed perma-
nently. Two images of the pendulum, swung to the left and to the right,
are displayed alternately. The effect is that the pendulum appears to
swing to the left and to the right without it being necessary to display
the intermediate stages. This is just one example of the techrique,
which can be used to enhance applets of many kinds. The listing
appears overleaf and is continued on p.179, where there is a screen
shot of the display.

177

import java.awt.*;
import java.applet.*;

/*

<APPLET CODE="Clock" WIDTH=210 HEIGHT=310>
</APPLET>

Y

public class Clock extends Applet {
public void init() ({

setBackground (Color.green) ;
}
public void paint (Graphics g) {

.setColor (Color.darkGray) ;
.fillRoundRect (30, 40, 150, 170, 20, 20);

.setColor (Color.white) ;
.£filloval (50, 60, 110, 110);

uu wuu

g.setColor (Color.blue) ;
int xDist2 (] = {103 145, 107};
int yDist2() = {110, 145, 110};
int sides2 = 3;
g.fillPolygon(xDist2, yDist2, sides2);

int xDist3([] = {101, 80, 109};

int yDist3([] = {110, 130, 110};

int sides3 = 3;

g.fillPolygon(xDist3, yDist3, sides3);

while (true) {

g.setColor (Color.orange) ;

int xDist([] = {ao, 60, 70, 90};

int yDist() = {210, 265, 265, 210};
int sides = 4;

g.fillPolygon(xDist, yDist, sides);

g.setColor (Color.red) ;

g.filloval (50, 250, 30, 30);

for (int j = 0; j < 20000; j = j +
for (int k = 0; k < 20000; k = k + 1)

H

g.setColor (Color.green) ;
g.fillRect (50, 210, 100, 70);

178

g.setColor (Color.orange) ;
int xDist1[) = {110, 130, 140, 1201;
int ybDistl[) = {210, 265, 265, 210
int sidesl = 4;
g.fillPolygon(xDistl, yDistl, sidesl);

g.setColor (Color.red) ;

g.filloval (120, 250, 30, 30);

for (int j = Q; j < 20000; j = j + 1)
for (int k = Q; k < 20000; k = k + 1)

H

g.setColor (Color.green) ;
g.fillRect (50, 210, 100, 70);

1}

Applet Viewer

Fig. 54. The Clock applet, with the pendulum swinging
to the left.

The applet is initialised with a green background. Then the fixed parts
of the image are set down. These comprise four filled figures:

° Case: a dark grey rounded rectangle.

. Dial: a white circle, placed on top of the case.
. Hour and minute hands: two blue 3-sided polygons.

179

The animation takes place within a while... loop. This runs for
ever, because its argument is true whatever happens.

The animation consists of four repeated stages:

* Display the stem of the pendulum (an orange, 4-sided polygon)
and the bob (a red circle) both in the left position.

* Clear the pendulum display by painting a green rectangle over
it.

J Display the stem of the pendulum and the bob both in the right
position.

J Clear the pendulum display as before.

This technique works well provided that the vectors are small enough
to be displayed rapidly.

You may like to see this displayed in Internet Explorer, in which case
a suitable HTML file is Clockhtml .html:

<HTML>
<HEAD>
<TITLE> Demonstrating Clock applet</TITLE>
</HEAD>

<BODY BGCOLOR = LIME>

<H1>The Clock Applet<Hl>

<P>

<APPLET CODE=Clock WIDTH=210 HEIGHT=310>
</APPLET>

</BODY>

</HTML>

The HTML ‘lime’ colour is the same as the Applet ‘green’ colour, so
the clock appears on a plain green screen.

Things to do
1 In the HTML program Applets, try altering the text. Add some more

text in a smaller font, for example <H3>. Try altering the background
colour to maroon, fuchsia, navy, teal or aqua, for example.

180

2 In the message applet, insert different text. Try adding some more
labels.

3 Use the fontDemo applet as a model for other text displays of your
own. Try fonts of different kinds, styles and in different colours. You
should be able to call up almost any of the TrueType fonts that are
present in your system. To find out what fonts you have, run Word and
scroll through the list of fonts in the Font Box on the Formatting
Toolbar.

4 Drawing rectangles is almost an art-form, as can be seen in Fig. 51.
Try some artistic applets yourself.

+§ Add white clouds, sea-birds and a dolphin to the sailing picture on
p-176.

6 Have fun with lines, rectangles, ovals and polygons. Design an
image made up from just one of each of the following: a line, a
rectangle, an oval, and a polygon. The figures can be filled or not.

7 Invent some more colours. The three parameters define the amounts
of red, green and blue respectively. They must be integers in the range
0to 255.

8 Try your hand at a two-stage animation, using Clock as a model.
Possible topics are: children on a see-saw, a Wimbledon spectator
whose eyes swing regularly to left and right (make the head turn too?),
a clown juggling three clubs, and there are hundreds of other possibili-
ties. You will need a good supply of squared (arithmetic) paper to get
the coordinates right.

9 This is strictly for the enthusiast. Extend the technique of Clock to
build an animation of three, four or more stages.

181

15 Graphics2D

Many methods for drawing graphics have been described in earlier
chapters. The methods in Chapter 14, described in the context of
applets, can also be used in Java applications. However the Graph-
ics2D class contains a number of much more advanced methods. In
this chapter we present some applications that use a selection of these
methods. The methods may be used in applets too but as mentioned on
p- 170, some browsers may fail to process them correctly.

An invitation...

Having covered the basics of vector graphics in Chapter 14, the best
way to understand Graphics 2D is to follow an example. This applica-
tion, called invite, is a party invitation in several colours, using a
rectangle, text in two fonts, two ellipses and two lines.

The listing comprises two classes. First we look at the class invitation,
which defines the graphics elements. It contains several examples of
using Graphics2D and you will recognise some of the original Graph-
ics methods we used for making applets. After this, on p. 186, we will
look at the class invite, which provides an area to contain the graphics
elements and calls invitation to put them there.

import java.awt.*;
import java.awt.geom.*;
import javax.swing.¥;
class invitation extends JPanel {
public void paintComponent (Graphics g) {

Graphics2D g2D = (Graphics2D)g;

g2D.setColor (Color.green) ;

Rectangle2D.Float background = new
Rectangle2D.Float (OF, OF, 300F, 200F);

g2D.fill (background) ;

183

g2D.setColor (Color.red) ;
Font f1 = new Font ("Mistral",
Font .PLAIN, 28) ;
g2D.setFont (f1) ;
String greeting = "We're having a party!";
g2D.drawString(greeting, 50, 40);

g2D.setColor (Color.yellow) ;

Font f£2 = new Font ("Playbill",
Font .PLAIN, 36) ;

g2D.setFont (£2) ;

String seeYou = "See you there!!";

g2D.drawString (seeYou, 35, 110);

g2D.setColor (Color.blue) ;
Ellipse2D.Float balloonl = new

Ellipse2D.Float (200F, 60F, S0F, 60F);
g2D.fill (balloonl) ;

g2D.setColor (Color.pink) ;

Ellipse2D.Float balloon2 = new
Ellipse2D.Float (230F, 70F, SO0F, 60F);

g2D.fill(balloon2) ;

g2D.setColor (Color.white) ;
g2D.drawLine (225, 120, 250, 160);
g2D.drawLine (255, 130, 250, 160);

H

The listing begins by importing the java.awt classes and javax.swing.
It also imports the geometric package from java.awt which is needed
for plotting rectangles, ellipses and other figures.

The whole of the drawing instructions are within the paintCompo-
nent () method. This has a Graphics object, g, as its argument
but this is cast into a Graphics2D object, g2D, by the line:

Graphics2D g2D = (Graphics2D)g

The g2D object is referenced for the whole of the class definition. The
class defines six graphics elements, in the order in which they are to be
painted. For some of these, the order does not matter. Where there are
overlaps, the element that is to be covered or partly covered is defined
before the element that it is to cover.

184

An invitation. ..

200 you there!!

Fig 55. The invitation.

The six elements are:

Rectangle2D This is laid down first to cover the whole area
of the frame, to act as a background. The current paint colour
for g2D objects is set by calling setColor (). it is set to
green. Then comes the definition of the rectangle. The parame-
ter are the same four as described on p. 171 for the
drawRect () and fillRect () methods. The difference is
that they are £1oat values, not int. If the values happen to
be integers, as in this example, follow each with F to ensure
that Java recognises them to be £1oat. Whereas in Graph-
ics methods we have £illRect () to produce a filled
figure, with Graphics2D we use Rectangle2D to obtain
the outline, which optionally may be filled by using the
£ill () method, as here.

185

Incidentally, there is also a Rectangle2D.double()

method, in which the parameters are expressed as double
values.

drawString This has the same parameters as on p. 167. In
this example, we set the current paint colour to red. We define
a font called £1 to Mistral type-face, regular style and
28-point size. Then we set the current display font to £1. We
declare a string named greeting. Finally we use draw-
String() to place it in the frame. A second set of instruc-
tions creates a string named seeYou and puts it lower down in
the frame.

Ellipse2D This has the same action as drawOval (),
p- 174, but the 2D method is correctly named, as both methods
draw ellipses, not ovals. The parameters are the same except
that they are expressed in float, not int. E11ipse2D()
uses £i11 () to produce a filled ellipse. In this example, we
draw two ellipses, the first is blue. The second is pink and
overlaps the blue one.

drawLine () The strings of the balloons are two white lines
drawn as Graphics objects.

The invite class provides the pane in which the graphics are displayed.

import java.awt.¥*;
import javax.swing.*;

public class invite extends JFrame (

H

public invite() {
super ("An invitation...");
setSize (300, 200);

setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;
invitation demo = new invitation();
Container items = getContentPane();
items.add (demo) ;
setVisible (true);

}
public static void main(String(] args) (
invite frame = new invite();

186

The invite class creates a frame of specified size, with text in the title
bar and the graphics items of the invitation class contained within it.
The class has a main () method which calls the frame into existence
on the screen.

You can use this class as a model for displaying other frames of
graphics items. Simply amend the title message (super) and the
dimensions, and replace invitation twice with the class name of
your graphics file.

Filling an outline

We have already used the £i11 () method to fill a rectangle and
ellipses with blocks of solid colour. This facility is available in both
Graphics and Graphics2D. But Graphics2D has more exciting filling
techniques to offer. One of these is the gradieat fill. This is a shading
effect that lets the colour shift gradually between one part of an image
and another part. As usual, this is best explained by a demonstration.
Fig. 56 shows three examples of gradient filling, though the effect is
much less apparent in a black-and-white reproduction. You need to
see it in full colour on the screen to appreciate the possibilities of the
effect.

Shadme

Fig. 56. Three examples of gradient fill, or shading.

187

The background is light grey. The top ellipse (a circle) is shaded from
red on the left to white on the right. It has an almost 3D effect, looking
like a red sphere illuminated very strongly from the right. In fact, the
shading is not quite accurate, but the effect is realistic. In this example
the gradient starts (as pure red) on the circumference of the circle at
the extreme left. It finishes (as pure white) on the extreme right.

The second example is an elongated ellipse with the start and stop
points on the long axis and close together. This makes the ends pure
red and pure white with a narrow transition region about half-way.

The third example is another filled circle, with shading ranging from
cyan at top left to dark grey at bottom right. The effect is that of a cyan
sphere illuminated from the top left, but not so stongly illuminated as
in the first example.

The listing of the file ShadingDD java, which produced these exam-
ples is as follows:

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

class ShadingDD extends JPanel {
public void paintComponent (Graphics g) {
Graphics2D g2D = (Graphics2D}g;
// The background

g2D.setColor (Color.lightGray) ;

Rectangle2D.Float background = new
Rectangle2D.Float (0, 0, 250, 280);

g2D.£ill (background) ;

// Top ellipse

GradientPaint shadel = new
GradientPaint (80F, S5OF,

Color.red, 160F, SOF, Color.white);
g2D.setPaint (shadel) ;
Ellipse2D.Float topEllipse = new

Ellipse2D.Float (80, 10, 80, 80);
g2D.£fill (topEllipse) ;

188

// Middle ellipse

GradientPaint shade2 = new
GradientPaint (95F, 160P,

Color.red, 125F, 160F, Color.white);
g2D.setPaint (shade2) ;
Ellipse2D.Float midEllipse = new

Ellipse2D.Float (30, 100, 180, 60);
g2D.fill (midEllipse) ;

// Bottom ellipse

GradientPaint shade3 = new GradientPaint (100F, 190F,
Color.cyan, 150F, 240F, Color.darkGray);
g2D.setPaint (shade3) ;
Ellipse2D.Float bottomEllipse = new
Ellipse2D.Float (80, 170, 80, 80);
H g2D.fill (bottomEllipse) ;

The listing has the same general structure as the invitation class on pp.
183-4. It begins by creating the background as a light grey rectangle
that fills the frame.

Then it defines the top ellipse. All three ellipses are defined in four
stages:

. GradientPaint () The six parameters are:
(x1, y1, start colour, x2, y2, finish colour)
The coordinates x/ and y! refer to the point at which the colour
is pure red. Coordinates x2 and y2 refer to the pure white point.
Coordinates are f1oat and must be declared as such, using F;
otherwise javac will take them to be int and throw a compil-
ing error.

o setPaint () This sets the current gradient to the values
declared above.

° Ellipse2D () Creates an instance of an ellipse as described
on p. 186. Note that this method uses f1loat parameters but
you do not need to declare them as such. :

° £411 () To fill the ellipse with the current gradient colours.

189

The class showShading provides the frame for displaying ShadingDD.
It has much in common with invite (p. 186):

import java.awt.*;
import javax.swing.*;

public class showShading extends JFrame {

public showShading() {
super ("Shading...");
setSize (250, 300);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;
ShadingDD demo = new ShadingDD();
Container items = getContentPane();
items.add (demo) ;
setVisible(true);

public static void main(String([]) args) {
showShading frame = new showShading();

}}

New lines in lines

This rather long listing is a sampler of many of the styles of line made
possible by Graphics2D. It is called LinesDD, and the class that
displays it is showLines. Here is LinesDD:

import java.awt.*;

import java.awt.geom.¥;

import javax.swing.*;

class LinesDD extends JPanel {

public void paintComponent (Graphics g)

Graphics2D g2D = (Graphics2D)g;

// The background
g2D.setColor (Color.yellow) ;
Rectangle2D.Float background = new

Rectangle2D.Float (0, 0, 300, 350);
g2D.fill (background) ;

190

// Setting the width of a line

g2D.setColor (Color.red) ;
g2D.draw(new Line2D.Float(20, 20, 110,

80));

Stroke widerLine = new BasicStroke (S);

g2D.setStroke (widerLine) ;

g2D.draw(new Line2D.Float (20, SO, 110,
50));

Stroke widestLine = new BasicStroke(10);

g2D.setStroke (widestLine) ;

g2D.draw(new Line2D.Float(20, 80, 110,
20));

// Setting the shape of the end of a line

g2D.setColor(Color.green) ;

Stroke buttCapLine = new BasicStroke(8,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_BEVEL);

g2D.setStroke (buttCapLine) ;

g2D.draw(new Line2D.Float(160, 20, 270,
20));

Stroke roundCapLine = new BasicStroke(8,
BasicStroke.CAP_ROUND,
BasicStroke.JOIN_MITER) ;

g2D.setStroke (roundCapLine) ;

g2D.draw(new Line2D.Float (160, S0, 270,
S0));

Stroke squareCapLine = new BasicStroke (8,
BasicStroke .CAP_SQUARE,
BasicStroke.JOIN_ROUND) ;

g2D.setStroke (squareCapLine) ;

g2D.draw(new Line2D.Float (160, 80, 270,
80));

// Setting the shape of a join between lines
g2D.setColor (Color.cyan) ;
GeneralPath shape;
g2D.setStroke (buttCapLine) ;
shape = new GeneralPath();
shape.moveTo (10, 120);
shape.lineTo (80, 180);
shape.lineTo (10, 180);

g2D.draw (shape) ;

191

g2D.setStroke (roundCapLine) ;
shape = new GeneralPath();
shape.moveTo (100, 120);
shape.lineTo (180, 180);
shape.lineTo (100, 180);

g2D.draw (shape) ;

g2D.setStroke (squareCapLine) ;
shape = new GeneralPath();
shape .moveTo (200, 120);
shape.lineTo (270, 180);
shape.lineTo (200, 180);

g2D.draw (shape) ;

// Drawing dashed lines

g2D.setColor (Color.magenta) ;

Stroke evenDash = new BasicStroke (5, Basic-
Stroke.CAP_BUTT,
BasicStroke.JOIN_BEVEL, 0, new
float[] {10},
0);
g2D.setStroke (evenDash) ;
g2D.draw (new Line2D.Float (20, 210, 100,
270));

Stroke longDash = new BasicStroke(5, Basic-
Stroke.CAP_BUTT,
BasicStroke.JOIN _BEVEL, 0, new
float [] {12,4},
0);
g2D.setStroke (longDash) ;
g2D.draw(new Line2D.Float (20, 270, 230,
210));

Stroke dashDot = new BasicStroke(10, Basic-
Stroke.CAP_BUTT,
BasicStroke.JOIN_BEVEL, 0, new
float [} {20, 10, 10, 10},
0);
g2D.setStroke (dashDot) ;
g2D.draw(new Line2D.Float (130, 270, 270,
210));

192

Stroke receding = new BasicStroke (3, BasicStroke.CAP_BUTT,
BasicStroke.JOIN_BEVEL, 0, new

float ()
{32, 29, 26, 23, 20, 17, 14, 11, 8, S5},0);
g2D.setStroke (receding) ;
g2D.draw(new Line2D.Float (100, 210, 270,
270));

H

This is the listing of showLines:

import java.awt.*;
import javax.swing.*;

public class showLines extends JFrame {

public showLinest) {
super ("Lines...");
setSize (300, 350);

setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;
LinesDD demo = new LinesDD();
Container items = getContentPane();
items.add (demo) ;
setVisible(true) ;

public static void main(String[] args) {
showlLines frame = new showLines();

1}

Type in both LinesDD.java and showLines.java, compile them, then
run showLines.

LinesDD produces a panel with five groups of lines, differently
coloured. The first group (red) shows lines of different widths. The
first is one pixel wide and could have been drawn using draw-
Line (), as on p. 169. Here we use a 2D method called draw ()
which enables a variety of lines to be drawn.

The coordinates of the ends of the line (x1, yl, x2, y2)are
expressed in f1oat, but there is no need in this method to append the
F to integer values. If we want to define features in addition to width,
we do this in three stages:

193

Fig. 57. A sampler of line styles, produced by
LinesDD.

] setColor () sets the current drawing colour, in this case,
red.

. BasicStroke () with a single parameter to indicate the
required width, in pixels. We create a new instance of Basic-
Stroke (), called widerLine ().

] setStroke () sets the drawing stroke as defined by Basic-
Stroke() .

] draw () draws a straight line that joins the points indicated by
the two pairs of coordinates, and according to the current
colour and stroke.

In the sampler we draw widerLine and widestLine, which are 5

and 10 pixels wide, respectively.

194

Now we move on to consider varying the ends or caps of a line (green
lines). There are three possible line endings:

* CAP_BUTT, which is the default ending. The line runs from
point to point and is cut off squarely at the ends.

* CAP_ROUND, a semicircular cap is added to both ends. Its
radius equals half the width of the line.

° CAP_SQUARE, a rectangular cap is added. It is as long as the
line width and its width is half the line width. The result of this
is to produce a line looking like a CAP_BUTT line but longer
by a line’s width.

There are three lines in the sampler illustrating these cappings. They
are drawn parallel with each other so that we can compare their
effective lengths. All three have the same basic length (110 pixels),
but those with round and square caps are 118 pixels long (8/2 + 110 +
8/2) when drawn. With a dashed line (see later) the capping is applied
to each of its segments.

Programming capped lines follows the same four-stage sequence as
above, except that two more parameters are required. The first has this
format:

BasicStroke.CAP_BUTT

or one of the other two “CAP’ variables. The second parameter is one
of the three ‘JOIN’ variables. We look at these next. It does not matter
which one you choose because it has no effect when we are drawing
individual unjoined lines, even though two lines may have their ends
at the same point. But you get a compile-time error message if you use
just the ‘CAP’ variable.

The third group in the sample (cyan lines) illustrates three ways of
joining lines. However, it is not enough to plot two individual lines
originating at the same point and expecting to join them. The lines
must be drawn by using the GeneralPath() method. This is
explained in the next section but here we just look at the joins.

195

When we defined the strokes for capping above, we also gave each of
these three strokes a different type of join. This has saved a little
typing and we can use the same strokes (buttCapLine, round-
CapLine and squareCapLine) to illustrate the three joining
effects (JOIN_BEVEL, JOIN_MITER and JOIN_ROUND, respec-
tively).

The different types of join are shown in the sampler, from left to right:

JOIN_BEVEL: the bevelled edge cuts straight across from the
outer corner of one line to the outer corner of the other.

JOIN_MITER: the outer edges of the lines are continued
until they meet.

JOIN_ROUND: the outer edges are smoothly connected by a
curved edge.

The sequence for drawing a line with GeneralPath is as follows:

setColor () : sets the drawing color, as usual.

declare a GeneralPath object, called shape in this
example.

setStroke () : the stroke has already been defined earlier.
Or a new type of stroke can be defined at this stage, and then
set.

create an instance of a new GeneralPath and call it
shape.

moveTo () specifies the starting point of the path.

lineTo () takes us to the other end of the first segment of the
path. Repeat 1ineTo () for each successive segment.

draw () the path joined as specified by setStroke ().

196

A problem with the mitre join is that with a very acute angle between
segments the mitre extends as a long spike. This can be reduced by
appending an extra optional parameter when using Basic-
Stroke (). This substitutes a bevel join if the mitre exceeds a given
number of pixels. A suitable value is 10F. We did not limit the mitre in
this sampler, mainly to demonstrate the mitre join clearly.

The final group of lines (magenta) in the sampler comprises various
dashed lines. These are obtained simply by adding two more parame-
ters to the BasicStroke () definition. This brings the total number
of parameters to six:

width

cap type

join type (use JOIN_BEVEL by default)

mitre limit (use 0 if there are no mitre joins)

new float[] (an array to hold the pattern of dashes)

dash phase (set the starting point in the pattern)

new float[] directly defines a floating point array as on p. 56.
Examples are:

o new float[] {10} produces a line in which the dashes are
10 pixels long, with 10-pixel gaps between them. See the first
line (evenDash) in the sampler. Similarly for other single-
value arrays.

o new float({] {12, 4} produces a line with 12-pixel
dashes and 4-pixel gaps. See the second line (1ongDash) in
the sampler. Similarly for other two-value arrays.

. a sequence of values is used to produce a more complex
pattern, alternate values referring to dashes and gaps. The
pattern is repeated to the end of the line. See the third line
(dashDot) and fourth line (receding) in the sampler.

Dash-phase, if 0, starts the line at the beginning of the pattern. If it has

a larger value, the line is started that number of pixels into the pattern.
We did not use this facility in the sampler.

197

Drawing 2D polygons and paths

We have already touched on the subject of paths when drawing the
angles to demonstrate joining. Drawing a polygon is just a matter of
drawing more line segments and connecting the start of the line with
the end. We use moveTo () to start the path, and 1ineTo () to take
it to the next point. This is repeated several times, depending on the
number of sides in the polygon. Finally, we use closePath() to
draw a segment that connects the current position to the beginning of
the path.

Polygons are not restricted to regular or slightly irregular figures. The
path can cross itself one or more times, giving a variety of complex
shapes. It is rather like the traditional game in which one has to draw
an object such as a horse or a bicycle with a single line, without lifting
the pencil from the paper. Further, the path does not have to be closed
(see the sampler). It can have two loose ends to contribute to the
artistic effect.

Drawing curved lines

Graphic2D has a range of methods for drawing curved lines. One of
the more interesting and useful of these is curveTo (), used in the
same way as 1ineTo ()}, which draws straight lines (see above). You
may need to play with it for a while to get the line you need.
Figs. 58-60 show some examples.

curveTo () draws a type of curve known as a Bézier curve. Fig. 58
shows an example. The aim is to draw a curved line from A to B. The
line starts off from A in the direction of a control point, control point
A. Similarly, the line approaches B from the direction of control point
B. When the line is drawn, it runs smoothly from A to B.

To program such a line we use moveTo () to get to the beginning of
the curve (A). Then we use curveTo () with six parameters to define
control point A, control point B, and the other end of the line (B), in
that order.

198

LCurves - B8ix

Control point A

/OCKNKMB

>

Fig. 58. A simple Bézier curve drawn by the program
listed below. The text and construction lines are super-

imposed on the original display.

Here is the listing for the curve plotted in Fig. 58:
import java.awt.*;
import java.awt.geom.*;
import javax.swing.¥;
class CurvesDD extends JPanel {
public void paintComponent (Graphics g) (
Graphics2D g2D = (Graphics2D)g;
// The background
g2D.setColor (Color.white) ;
Rectangle2D.Float background = new
Rectangle2D.Float (0, 0, 300, 300);
g2D.£fill (background) ;
// The curved line
g2D.setColor (Color.blue) ;

Stroke brush = new BasicStroke(6);
g2D.setStroke (brush) ;

199

GeneralPath squiggle;
squiggle = new GeneralPath();

squiggle.moveTo (50, 150);

squiggle.curveTo (100, 60, 180, 120, 250,
150) ;

g2D.draw(squiggle) ;

H

The line is called squiggle and is defined as a GeneralPath.
The first move is to (50, 100) whicch is the beginning of the line (A, in
Fig. 58). From the parameters listed for curveTo, we can see that
control point A is at (100,60), control point B is at (180, 120), and the
line ends at (250, 150).

This program need a class to call it. The listing for showCurves.java is
similar to that of showLines.java (p. 193).

By editing and recompiling CurvesDD java it is easy to investigate

where to place the control points to obtain the required shapes. Figs.
59 and 60 show further examples.

Fig. 59. The effect of moving Fig, 60. Control point A is at
control point B to (300, 110). (100, 0) and control point B is
at (290, 290).

200

In Fig. 59, control point B has been moved to a position above and to
the right of B. The result of this is that the line sweeps round to
approach B from the ‘north-east’. The statement to produce this line
is:

squiggle.curveTo (100, 60, 300, 110, 250, 150);

The control points in Fig. 60 are above and below the direct line from
A to B. The statement is:

squiggle.curveTo (100, 0, 290, 290, 250, 150);

By combining 1ineTo () and curveTo () several times in the same
GeneralPath, there is almost no limit to the variety of outlines that
can be produced.

Things to do

1 This chapter has got you started with Graphics2D. Now set yourself
a few graphics design tasks incorporating text, lines, figures, polygons,
and curves. Design windows for inclusion in applets or as stand-alone
applications. Possible topics include: a shop sale announcement, a
‘We’re moving house’ notice, a title page for a travel brochure, a
‘Thankyou for your gift on my birthday’ message, or a snack bar
menu.

2 Work out how to draw a dashed, curved line, shaped like an ‘S’,
made up of short dashes with rounded ends.

201

16 Finding the method

When you are writing a program, you may often want to refer back to
the classes and methods described in this book. In this chapter we list
those classes and methods, and the number of the page on which they
are first listed. Usually there is a discussion of the class or method on
a nearby page.

Classes

These are the classes that have been specially written for this book.
They are listed below in alphabetical order. A very brief description is
given when the name of the class does not clearly indicate what it
does, or what aspect of Java it is intended to illustrate.

In the list, ‘A’ indicates a class used in an applet. Most of these can be
adapted for use in applications. ‘C’ indicates that it has a constructor
(with the same name).

answer 139 As quiz, but with output to JPznel.

ballistics 88 Extends workltOut for use with
rocketMotion.

Birthday 79 Input dialogue and message panel
on screen.

breakfast 146 C Use of radio buttons and button
groups.

bugAlert 75 Flashing on-screen message.

Colours 163, 166 A Coloured text.

convertTemp 36 C to F and F to C. Conditional
logic.

CurvesDD 199 Graphics2D, Bézier curves.

DataRead1l 44 while. .. loop.

DataRead2 46 do...while. .. loop.

203

dayNumber
Divide
eventDemo

findBiggest
FirstProgram

FlightLegs

flowerCat (1st version)

flowerCat (2nd version)

flowerData
flowerSpace

fontDemo
GirlsNames

hotelData
infoBox
invitation
invite
Limerick
Lines
LinesDD
message

motion

motionInput

newlnput

55
23
152C

122
12
17
93C

100 C

93
100C

168 A
41

96 C
150 C
183
186
63
169 A
190
157
27

82

n

Names the nth day of the week.
Instantiation.

Demonstrates types of user dia-
logue.

Output to command screen.
Use of StringTokenizer .

Declares variables for use in
SlowerData.

Upgraded version for use with
SflowerSpace.

Displays data.

Displays data, including distance
apart.

if..., elge if...,
else...

Displays data.

Message dialogue box.
Graphics2D text.
Container for invitation.
Composes verse at random.
Graphics.

Graphics2D.

Applet program sequence.
Mathematical operators.
Equations of motion.

Screen input of values for class
workltOut (see below).

showInputDialog().

204

nutsAndBolts
- outFrame
Ovals
pickOut
Polygons
quiz

reactionTime

Rectangles
RectangularPrism

rocketMotion

selectlt
selFunction
selFunc

ShadingDD
shortDate
showCurves
showLines
showShading
showTodaysDate
sorter

58 Calculates costs, using arrays.

73 Using JFrame.

174 A Graphics.

66 Arrays.binarySearch() .

175 A Graphics (the sailing boat).

137C JButton () with text and
using ActionListener and
actionPerformed().

120 Uses currentTime-

- Millis(}.

172 A Graphics.

33 Input from the command line.
Surface area and volume. Con-
ditional.

89 Calculates force and K.E. Needs
motionInput, workitOut, and
ballistics.

127 Demonstrates JButton () .

130 C JButton() with images.

131C JButton() with images and
using ActionListener and
actionPerformed().

188 Graphics2D, gradient fill.

124

200 Container for CurvesDD.

193 Container for LinesDD.

190 Container for ShadingDD.

124

65 Sorts integers in ascending
numerical order. Uses
Arrays.toString() .

205

sqRoot
testEm
timesTable

title

travel
vehicleMotion

waitForMe
waitLonger
watchlt
workItOut

122

67

143C

14 C

105, 108

Testing arrays for equality.
Printing out multidimensional
arrays, using deep-
ToString() .

Displays a message for a short
time.

Uses checkboxes for selections.

Calculates final speed and
distance, given initial speed,
acceleration and time. Needs
motionInput and workitOut.
for. .. delay loop.

for. .. nested delay loops.
Demonstrating errors.

Operates on values collected by
motioninput (see this and
vehicleMotion, above),

Methods (and sources of methods)

Most of the items listed below are methods, a few being constructor
methods. Those methods which were specially written for the book are
indicated by a ‘B’. Those methods that apply only to applets are
indicated by ‘A’. Also we list a few objects that supply often-used

methods.

actionPerformed
add
addActionListener
apart

132
73
131
9B

Detects action event.
Adds object to container.
Adds another listener.
Planting distance.

206

args.length

Arrays.binarySearch
Arrays.deepToString
Arrays.equals

Arrays.sort
Arrays.toString
BasicStroke
ButtonGroup
calculate
Calendar.DATE
Calendar.getinstance
Calendar. HOUR
Calendar.MINUTE
Calendar.SECOND
Calendar.YEAR
closePath

Color
Container

currentTimeMillis
curveTo

Date

date.set

destroy

draw

drawLine
drawOval

34

67
68

65
65
191
147
23B
124
124
126
126
126
126
198

172
186

120
198
124
126
162 A
191
169
174

Number of arguments on
Command line.

Retumns position of a given no.
Printing multi-dimensional array.
Compares two arrays for identical
content.

In ascending numerical order.
Converts array content to a string.
Parameters for Graphic2D line.

Returns dividend and remainder.

Reads computer’s real-time clock.

Join current end of Graphics2D
GeneralPath line to start of line.

Constructor, creates a colour.

An object that can contain com-
ponents.

Time elapsed since 1:1:1970.

Plot Bézier curve.

Delete from memory.
Graphics2D.

Graphics.

Graphics, unfilled ellipse.

207

drawPolygon
drawRect
drawRoundRect
drawString
Ellipse2D
equals

fill

fillOval
fillPolygon
fillRect
fillRoundRect

Float.parseFloat
flowerln
FlowLayout

Font
GeneralPath
getSource
GradientPaint
GridLayout

Imagelcon
init
Integer.parselnt

175
172
172
163
184
36

183
174
175
172
172

82
9B
134

168

196

132

188

135

130
157 A
33

Graphics, unfilled.
Graphics, unfilled.
Graphics, rounded corners.
Graphics text.

Draw unfilled elllipse.

Compares two strings, character
by character.

Fill Graphics2D figure.
Draw filled ellipse.
Draw filled polygon.
Draw filled rectangle.

Draw filled rectangle, rounded
corners.

Convert numeric string to f1oat.
Inputs name of flower.

Components arranged in rows
filled from left to right, top to
bottom.

Define named font.

A line consisting of two or more
straight or curved segments.

Find name of component causing
an action event.

Colour of fill grades from one
colour to another.

Components arranged in specified
number of rows and columns,

Image to be placed on a button.
Initialize an applet.

Convert a numeric string to an
int.

208

JButton
JCheckBox
JFrame
JLabel
JOptionPane.

showInputDialog

JOptionPane.

showMessageDialog

JPanel
JRadioButton
JTextField
keyIlnData
keyInMass
lineTo

main
Math.max
Math.random
Math.round
Math.sqrt
moveTo
nextToken

pack

paint
paintComponent
Printout
Rectangle2D
selectlt

127
144
73

143

146
148
82B
88 B
191

12
122

38
122
191
17

73
163 A
183
23B
183
127B

For motionInput .
For ballistics.

Draws next straight line of a
GeneralPath.

Java begins with this method.
Returns maximum value.

Returns square root.
The start of a GeneralPath.

The next token to be produced by
StringTokenizer.

Fit a frame around components.
Display graphics.

Display Graphics2D.

Display text output from Divide.
Draw unfilled rectangle.

Constructor for setting up ‘drinks
machine’.

209

- e e mmme om0 mamms |

setBackground
setBounds
setColor
setContentPane

163 A Colour of screen in applet.
139 Size and position of frame.
169 Current drawing colour.
73

setDefaultCloseOperation 73

setEditable

setFont
setForeground
setLayout
setLineWrap
setPaint

setSize

setStroke
setVisible
setWrapStyleWord

show
showSpace
start

stop
Stroke
super

System.exit
System.out.printin

Trigonometric functions

workItOut
workOutForce

149 Allow user to edit displayed text,
168

163 A Drawing colour in applet.

134 Layout of components.

149 Tum line-wrap on or off.

188

74 Dimensions of JFrame.

191

75 Make frame visible or invisible.

149 Wraps currrent word or current
character.

73 Make frame visible.

99B Display flower data.

162 A Runs an applet.

162 A Stops an applet from running.
191 For Graphics2D.

127 The super method is not described
in this book, but we use it to put
text into the header bar. Must
come first in a constructor.

)| Return to operating system.
12 Display text on command screen.
121 Various.

28B Method in the motion class.
88B Method in the ballistics class.

210

workOutSpeed 83B Method in the workltOut class.

Postscript ...

Java comprises very many more classes and methods than those listed
above. When you have finished this book, you will be ready for more.
Consult other books or the Sun website (p. 110) to find more classes
and methods, how they work, and how to use them.

211

INDEX

Classes and methods described in this book are listed and described in
Chapter 16. They are not indexed here.

A

Abstract Windowing Toolkit
(awt) package, 132
access specifier, 117
action listener, 131
animation, 177-80
APIL, 75
applet, 1
methods, 162
viewer, 159-60
argument, 134, 36, 117
array, 55, 58,113
multidimensional, 62, 57

B

backslash, 9

Bézier curve, 198-9
bit-mapping, 177
Boolean logic, 50
boolean variable, 60
button, 127

button group, 147
bytecode, 8

byte variable, 60

C

case sensitivity, 15
casting, 60-1, 113
catching errors,111
char variable, 50, 60

check box, 144-5
class, 3, 12, 25, 49

method, 116

variable, 30-1, 101, 115
colours of text and screen, 9,

163-7

command line, 5, 33-5
comments, 11, 49
compile time, 8§
compiling, 15
component, 127-8, 153
concatenation, 19, 79
constant, 51, 115
constructor, 93-5, 98, 114, 128
container, 127
curved lines, drawing, 198

D

data, 4, 20, 49

deprecated API, 75, 109
dialog box, 149-50

double variable, 28, 49, 60
do ... while... loop, 46-7, 52

E

ellipse, drawing, 173-4, 186

else... , 40-1, 51

encapsulation, 4, 12, 24, 49,
119

equality, 38-9, 69

errors, 8, 16, 43, 48, 105, 114
escape codes, 21, 29, 49
event, 131, 153

exception, 43, 48, 105
extends, 83

F

fill with colour, 171-6, 187
final, 51, 118

float variable, 28, 49, 60, 88
floating point variable, 60
flowchart, 2-3

flow layout, 134

font, 167

for... loop, 42

G

GeneralPath object, 196
gradient fill, 187
graphics objects, 184
grid layout, 135

H
HTML, 155-6

I
icon, 129
identifier, 24, 50
if ..., 3941, Sl
import, 20
inheritance, 84
instance, 4 , 24, 51
method, 24
variable, 115
integer (int) variable, 18, 24, 26,
49, 60
input-output (io) package, 119

interface, 132
Internet Explorer, 155-8

J

Java language, 1, 21
java, packages, 119
program, 8, 16
javac program, 8, 15-6
javax package, 119

K
key listener, 154
keywords, 12

L

language (lang) package, 119
layout, 134-5

lines, drawing, 169-71, 190-6
listener, 131

literal value, 88

local variable, 42, 115

long variable, 60

M

main method, 13, 49, 83
Math class, 38

method, 4, 12, 22, 49, 98-9
modulo operator, 25
mouse listener, 154

o

object, 2

OO0P, 1, 2, 49, 81, 86, 90-1, 139
operators, 29, 53

ovals, drawing, 1734

214

P

package, 17,119

parameter, 13, 117

polygons, drawing, 175-7, 198
precedence, 29, 54

primitives, 50, 60, 115

private specifier, 117
procedural programs, 3, 81
protected specifier, 117
public specifier, 13, 117

R
radio button, 146-8
rectangles, drawing, 171, 185
return, 116
rounding, 38
run-time, 8

errors, 111

S
SDK (Software Development
Kit), 1

short variable, 60

source (of event), 131

static, 13, 24, 108, 116

string, 14, 17

String class, 50

strings, drawing, 186

StringTokeniser class, 17

swing package, 71

Sun Microsystems, 1
website 5, 110

T

tag, 156

text field, 148-9
Tiger, 1, 65, 67, 69

token, 17
typing errors, 106-7

U
unicode, 76-8
utilities (util.) package, 17

A\

variables, 115
vector graphics, 177
void, 13, 116

w

warning, 75, 105, 109
while ... loop, 44-5, 52
writing a program, 8, 11

Notes

216

Babani Computer Books

Getting Started in Java

This book assumes that the reader has no previous knowiledge
of Java or any other computing languages. However, it does
assume that the reader will have access to a PC, preferably but
not necessarily, running Windows XP and also with Microsoft
Internet Explorer installed.

The latest version of Java is formally known as J2SE 5 (standing
for Java 2 Platform Standard Edition 5). However, it is often
referred to just as Java 2, or Tiger, or version 1.5.0 (SDK). This
latest version of Java is available as a free download from the
Sun web site.

Java is best known as the language for writing Java Applets,
which are often used to enliven web pages, and it has also
proven to be a suitable language for stand-alone applications,
both large and small. This book includes many of the new
classes and methods introduced in this latest version of Java.

Java is an object-orientated language and it is this feature which
gives it its strength but, unfortunately, it can also make it some-
what problematic for beginners. This book is aimed at beginners
and those who have recently begun to program in Java as part
of their job. It is also aimed at the non-professional computer
hobbyist who wants to do more with their computer than just
run ready-written utilities and games. Java programming can be
a fascinating way to have fun with computing and to broaden
your horizons.

u Beginners u Intermediate [} Advanced
e

BP 554 ISBN 0-85934-554-8

H" ‘u 00799>

780859"345545

