
F*WF:bl

A Z-80 WORKSHOP MANUAL

by
E. A. PARR

B.Sc., C.Eng., M.I.E.E.

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this book
to ensure that any projects, designs, modifications and/or programs etc.
contained herein, operate in a correct and safe manner and also that
any components specified are normally available in Great Britain, the
Publishers do not accept responsibility in any way for the failure,
including fault in design, of any project, design, modification or
program to work correctly or to cause damage to any other equipment
that it may be connected to or used in conjunction with, or in respect
of any other damage or injury that may be so caused, nor do the
Publishers accept responsibility in any way for the failure to obtain
specified components.

Notice is also given that if equipment that is still under warranty is
modified in any way or used or connected with home-built equipment
then that warranty may be void.

© 1983 BERNARD BABANI (publishing) LTD

First Published - July 1983
Reprinted - July 1986

Reprinted - October 1989

British Library Cataloguing in Publication Data
Parr, E. A.

A Z-80 workshop manual. - (BPI 12)
1. INTEL Z-80 (Computer)
I. Title
001.64’04 QA76.8.I/

ISBN 0 85934 087 2

Printed and bound in Great Britain by Cox & Wyman Ltd, Reading

INTRODUCTION

Although there are many contenders for the title of “most
successful micro”, the Z-80 has been universally acclaimed as
the most powerful and versatile 8 bit microprocessor. It is
found in many popular microcomputers, including the
Nascom, TRS-80, ZX-80/81, Spectrum, Video Genie, Sharp
MZ-80K and Cromenco machines.

This book has been written for owners of Z-80 based
machines who have become reasonably proficient in BASIC,
and wish to progress to machine code and assembler language
programming. This can be a rather daunting task, as most Z-80
literature has been designed for computer professionals and is
not readily understandable.

The book has also been designed to be a general introduc­
tion to machine code programming. All the popular micro­
processors such as the 6502, 6800 etc. use similar techniques
to the Z-80. Once the Z-80 has been mastered, the reader will
have little problem with its simpler cousins. It is therefore
hoped that the book will also prove useful to anyone who is
simply interested in computing.

ACKNOWLEDGEMENTS

This book is about the Zilog Z-80 microprocessor, and
contains all the detail necessary for the average enthusiast
to gain insight into any Z-80 based microcomputer. It follows
that much of the information given has been obtained from
Zilog, and their assistance is greatly appreciated.

It should be noted that Zilog, Z-80 and the various micro­
computers and assembler/monitor names referred to in the
text are registered trade marks.

My wife Alison, has, as usual, been long suffering; not only
putting up with the computers in the house, but also doing my
typing despite a house move over the length of the United
Kingdom.

Andrew Parr.
Minster,
Isle of Sheppey.

CONTENTS

Page
Chapter One: THE MICROCOMPUTER.................................. 1

1.1 Introduction..1
1.2 Computer Architecture..1
1.3 The Store.. 2
1.4 The Central Processor Unit (or CPU).......................... 5
1.5 Input and Output... 9
1.6 Instructions and Programs.. 11

1.6.1 Fetch.. 12
1.6.2 Store.. 12
1.6.3 Add...12
1.6.4 Subtract... 12
1.6.5 Logical..12
1.6.6 Shifts.. 12
1.6.7 Jumps..13
1.6.8 Conditional Jump ..13
1.6.9 Subroutine Call and Return................................ 13
1.6.10 Input/Output Instructions................................ 13
1.6.11 Control Instructions.. 14

1.7 Why Machine Code?...15
1.8 Machine Code and Assemblers15
1.9 Further Reading.. 16

Chapter Two: Z-80 ARCHITECTURE...................................17
2.1 Introduction... 17
2.2 General Architecture...17

2.2.1 The Z-80 Registers... 17
2.2.2 Flag Registers (F)..20
2.2.3 General Purpose Registers (B, C, D, E, H, L) . . 22
2.2.4 Special Purpose Registers (I, R, PC, IX, IY, SP) 23

2.3 External Connections ..27
2.3.1 Address Bus... 27
2.3.2 Data Bus .. 27
2.3.3 Control Bus Outputs...27
2.3.4 Control Bus Inputs... 30
2.3.5 Bus Control ... 30
2.3.6 Other Signals... 31

2.4 Bus Timing.. 31
Chapter Three: INTRODUCTION TO Z-80 SOFTWARE .34

3.1 Introduction..34
3.2 Hex Representation ... 34
3.3 Address Modes... 36

Page
3.3.1 Introduction..36
3.3.2 Register Addressing... 38
3.3.3 Immediate Addressing...38
3.3.4 Extended Addressing...39
3.3.5 Immediate Extended Addressing.......................39
3.3.6 Register Indirect Addressing.............................. 40
3.3.7 Indexed Addressing .. 40
3.3.8 Relative Addressing.. 42
3.3.9 Modified Page Zero Addressing...........................43
3.3.10 Implied Addressing.. 43
3.3.11 Bit Addressing..43
3.3.12 General Observations 44

3.4 Instruction Types...44
3.4.1 Introduction...44
3.4.2 Load Instructions... 45
3.4.3 Arithmetic and Logic Instructions......................45
3.4.4 Jumps and Subroutine Calls................................48
3.4.5 Rotates and Shifts......................... 48
3.4.6 Block Transfer...52
3.4.7 Bit Manipulation..56
3.4.8 Input/Output ...56
3.4.9 Control Instructions...57
3.4.10 General Observations ..57

3.5 Symbolic Representation...57
3.6 Conclusion ..59

Chapter Four: THE Z-80 INSTRUCTION SET................... 60
4.1 Introduction...60
4.2 Load Instructions... 61

4.2.1 8 Bit Loads..61
4.2.2 16 Bit Loads... 61
4.2.3 Exchanges ..65

4.3 Arithmetic and Logic Instructions............................. 66
4.3.1 8 Bit Instructions..66
4.3.2 General Purpose Operations on AF...................67

4.3.2.1 Decimal Adjust Accumulator (DAA) 67
4.3.2.2 Complement Accumulator (CPL)..............68
4.3.2.3 Negate Accumulator (NEG)........................ 68
4.3.2.4 Complement Carry Flag (CCF),

Set Carry Flag (SCF)....................68
4.3.3 16 Bit Arithmetic..69

4.4 Jump Call and Return Group69
4.5 Shifts and Rotates .. 71
4.6 Block Transfers and Searches.....................................75

Page
4.7 Bit Manipulation ... 76
4.8 Input and Output Group.. 76
4.9 Restarts...83
4.10 Control Instructions..84
4.11 General Observations..85

Chapter Five: ASSEMBLY LANGUAGE
PROGRAMMING................... 86

5.1 Introduction..86
5.2 The Source Program.. 88

5.2.1 Introduction..88
5.2.2 Line Numbers..88
5.2.3 Labels.. 89
5.2.4 Instruction Mnemonic...90
5.2.5 Comments .. 93

5.3 Pseudo Op Codes.. 93
5.4 Assembler Directives... 95
5.5 Using an Assembler..96
5.6 Monitors and Bugs ..102

5.6.1 Introduction.. 102
5.6.2 Modify...103
5.6.3 Execute..103
5.6.4 Breakpoint...103
5.6.5 Tabulate..104
5.6.6 Single Step...104
5.6.7 Conclusion...105

5.7 Testing a Machine Code Program.............................105
5.8 Conclusion ... 113

Chapter Six: INTERFACING THE Z-80 114
6.1 Introduction...114
6.2 Serial and Parallel Communication.......................... 114
6.3 Port Addressing and Logic.. 116
6.4 Interrupts..120

6.4.1 Introduction... 120
6.4.2 Servicing an Interrupt..121
6.4.3 Z-80 Interrupts.. 121
6.4.4 Interrupt Priority... 126

6.5 The Z-80 PIO...126
6.5.1 Introduction...126
6.5.2 Set Up Data ...130
6.5.3 Handshaking...132
6.5.4 Interrupts..135
6.5.5 Set Up Summary... 138
6.5.6 Power Up Problems.. 138

Page
6.5.7 Pinning ...138

6.6 Serial Communication &UARTS.............................. 141
6.6.1 Introduction.. 141
6.6.2 Signals and Standards....................................... 141
6.6.3 UARTs .. 142
6.6.4 The Z-80 SIO ..147

6.7 Counter Timer Chip (CTC).. 148
6.7.1 Introduction...148
6.7.2 Channel Operation.. 148
6.7.3 Programming the CTC....................................... 151
6.7.4 Interrupts..154
6.7.5 Pin Connections... 155

6.8 Analog Interfacing ...156
6.8.1 Introduction...156
6.8.2 Digital to Analog Converter (DAC)................ 156
6.8.3 Analog to Digital Converter (ADC)................ 156
6.8.4 General Observations....................................... 159

6.9 Keyboards..159
6.10 VDUs... 161

Chapter Seven: A MISCELLANY OF DATA...................... 164
7.1 Introduction...164
7.2 Support Chips.. 164

7.2.1 Z-80 CPU..164
7.2.2 PIO..164
7.2.3 CTC ... 164
7.2.4 SIO..164
7.2.5 SIO/9 ...165
7.2.6 DART...165
7.2.7 DMA Controller..165
7.2.8 FIFO Buffer.. 165
7.2.9 CIO/U...165
7.2.10 Future Developments......................................165
7.2.11 Speed... 166

7.3 Manufacturers... 166
7.4 Technical Publications.. 166
7.5 Z-80 Based Microcomputers.................................... 166
7.6 Writing a Program..167
7.7 BASIC and PEEK and POKE168
7.8 The INTEL 8080 .. 169

Appendix A: Binary and Hexadecimal Numbers171
Appendix B: Z-80 Instruction Set.. 177
Appendix C: ASCII Character Codes...................................183

Chapter One

THE MICROCOMPUTER

1.1 INTRODUCTION

A computer based on the Z-80 operates in the same manner as
any other machine be it micro, mini or mainframe. Before we
can discuss the Z-80 and its use in any detail, it is first neces­
sary to describe the operation of a typical microcomputer.
This will serve to define the terms used in the rest of the book,
and place the Z-80 in its role as the central processor of a
powerful, but conventional computer.

1.2 COMPUTER ARCHITECTURE

All computers can be represented by the block diagram of
Fig. 1.1, and can be considered as manipulators of data. The
actual form of the data will depend on the application. In
commercial computing the data will be VAT returns, sales
figures, bank accounts and similar information. In industrial
control, the data will be plant sensors and actuators. In a
computer game the data will be the players hand controls and
the video display. The data can be split into input data, which
is to be processed, and the output data, which is the result
of the processing. To produce the output data, the computer
follows a set of procedures, called instructions, which define
the operations that are to be performed on the input data.

The computer can be represented in more detail by Fig. 1.2,
and can be considered to consist of three basic units, a store,
an input/output unit and a central processor unit, all inter­
connected by a common highway. The input and output unit
obviously receives and transmits data from and to the outside
world. The store is used to hold instructions and data. The
central processor unit controls the operation of the machine,
and performs the logic and arithmetic operations required
by the instructions.

1

1.3 THE STORE

The store is used to hold the instructions and temporary data
in the form of numbers. It can best be considered as an array
of pigeon holes, each of which can hold one number called
(rather confusingly) a Word. Each pigeon hole is known as a
store location, and has a unique address (similar to a house
address) by which it can be identified. We can thus say, for
example, “store location 3220 contains 127”. This means that
the pigeon hole whose address is 3220 has the number 127
stored in it.

A typical microcomputer will have over 16000 store loca­
tions (although small machines may have less than 1000). All
common microprocessors deal basically with 8 bit numbers,
often called Bytes. The numbers stored will therefore be in
the range 0 to 255. As will be seen later, this is not the restric­
tion that it might at first appear.

2

3

The store does not differentiate between instructions and
data; both are held in exactly the same form. The central
processor unit determines whether the number in a particular
store location is considered to be an instruction or data.

The store connects to the rest of the computer in a manner
similar to Fig. 1.3. The three groups of signals are known as
the address bus, the data bus and the control bus. (The term
bus is short for busbar, sometimes the term highway is used.)

The address bus is used by the central processor to identify
which store address is to be accessed. Usually, up to 65,536
(called 64K) locations can be used with a microprocessor,
necessitating a 16 bit address bus.

The data bus is used to transfer data and instruction
between the store and the central processor unit. Movement

Read/write

Strobe

From control
bus

From
CPU

Address
bus

. To rest
/ of computer

Data
bus

Fig. 1.3 Store connections

4

can take place from store to CPU, or CPU to store, so the
data bus is bidirectional. All common microprocessors use
an 8 bit data bus.

The control bus contains the timing signals to sequence
the movement of data or instructions. In the majority of
systems there are basically two signals. A read/write line is
used to indicate if a number is to be loaded into or read from,
the addressed location, and a strobe signal indicates when the
number on the data bus is valid (i.e. the transients due to
different propagation delays, reflections etc. have died away).
Different microprocessors use slightly different signals.

Fig. 1.4a summarises the signals used to write a store loca­
tion, and Fig. 1.4b the signals used to read from a store
location.

When a number is written to a store location, the previous
contents are obviously overwritten. When a number is read
from a store location, the store location contents are unaltered;
the number put onto the data bus is merely a COPY of the
store contents.

The store in Fig. 1.3 is known as a RAM or Random Access
Memory. This is a term that causes some confusion, but simply
means that each store location can be accessed in exactly the
same time. Bulk storage devices, such as tapes and discs, have
a variable access time which depends on where the information
is stored and where the tape or disc currently is when the
information is needed.

Another form of storage commonly encountered is a ROM,
for Read Only Memory. This is a conventional store whose
contents are fixed and cannot be altered by the computer.
Usually a ROM is used to hold a fixed program (such as the
BASIC interpreter or an Assembler as described later). To the
central processor, a ROM behaves in exactly the same manner
as the rest of the store.

1.4 THE CENTRAL PROCESSOR UNIT (or CPU)

The computer follows instructions held in the store (in the
form of numbers). Normally, instructions are held in

5

6

sequential store locations. To obey an instruction we must go
through the following steps:

i. Address the store to get the next instruction.
ii. Decode the instruction to decide what needs to be done

hi. Obey the instruction. This will usually involve the store
again to read, or write, data and will often require simple
arithmetic operations

iv. Decide where the next instruction is held in the store,
and go back to step i.

Most instructions therefore require two operations on the
store; the first to read the instruction, the second to read the
data to be used or write a result back to the store. Sometimes
the operations above are referred to as three steps:-

Fetch cycle (instruction is fetched, steps i and ii)
Execute cycle (instruction is obeyed, step iii)
Reset cycle (the internal logic is reset for the next instruc­
tion, step iv)
The FER sequence has been called the heartbeat of a

computer.
The component parts of a central processor unit are shown

on Fig.1.5. For simplification, internal connections are
omitted.

The program counter (PC, also known as an instruction
counter, IC) holds the address of the current instruction.
Because most microcomputers can address up to 64K, the PC
will usually be a 16 bit register. With the exception of JUMP
instructions (the machine code equivalent of a BASIC GOTO
instruction), the program will be held in sequential store
locations. This means that the PC can literally be a counter
which is pulsed by the control logic at step iv above.

In addition to the storage provided by the RAM, fast
storage (for temporary scribbling pad purposes) is provided
by registers in the CPU. These can hold one number to the
same word length as the store (8 bits for all common micros).
Some microprocessors (such as the 6502) have only one
register, whereas some (such as the Z-80) have as many as
sixteen. Fig. 1.5 shows four registers for illustrative purposes.

7

8

The use of registers will be described later.
Associated with the registers is the Arithmetic and Logic

Unit (or ALU). There are actually very few machine code
instructions; as we shall see later, most are variations on:

Fetch a number from a store location (or input port) to a
register
Write a number to a store location (or output port) from a
register
Add (or subtract) a number from a store location to a
register, result to a register.
The ALU performs the arithmetical operations (and some

logical operations such as AND, OR) required by the instruc­
tions.

Finally, we have the block labelled control/timing logic.
This contains the logic to decode the instructions and
sequence the steps i to iv above. This involves selecting routes
between the store, the ALU, the registers and the highways.
The control/timing logic is usually the most complex part of a
computer.

Associated with the control logic is a simple clock oscillator
which provides the basic timing pulses. Usually this is a crystal
oscillator in the range 1 to 4MHz.

A microprocessor is often thought of as a computer, but is,
in fact, simply the CPU of a computer. A microprocessor con­
tains the elements of Fig. 1.5, but needs external RAM/ROM
and Input/Output equipment to be useful.

1.5 INPUT AND OUTPUT

A computer connects to a variety of I/O equipment, printers,
keyboards, VDUs, cassette recorders etc. These connect to the
computer highway as shown on Fig.1.6. Each I/O device is
identified by an address. I/O addresses are commonly known
as ‘Ports’, so we could have, say, a printer connected to Port 3
and a keyboard to Port 5.

Data is transferred to and from an I/O port via the highway.
The port address is placed on the address highway, the read/

9

10

write control line used to identify the direction of the transfer,
and the I/O control line used to signify that the address is a
port address, not a store address. Data transfer then takes
place via the data highway. Some microprocessors (such as the
6800) do not have an I/O control line and literally deal with
I/O addresses in the same ways and with the same instructions,
as store addresses. With these microprocessors a store and a
port cannot have the same address.

Most microprocessors allow data to be transferred between
I/O ports and registers or between I/O ports and store
locations. We shall discuss later the techniques used to resolve
the vast difference in speed between slow speed devices (such
as printers) and the computer itself.

1.6 INSTRUCTIONS AND PROGRAMS

As anyone who has written a program in BASIC will know, a
computer simply obeys a sequence of instructions called a
program. In a high level language such as BASIC or PASCAL,
these instructions are written in ‘English’. A computer actually
obeys instructions represented by numbers called a machine
code program. When a high level program is obeyed, a special
program built into the computer (called a compiler or an inter­
preter) converts the high level language program to an equiva­
lent machine code program. This action is invisible to the high
level language user.

A machine code instruction must specify:

i. What is to be done (e.g. Add, fetch data, store data, etc.)
ii. Where the data is to be found, and where the result is to be

placed (e.g. “Fetch the data from store location 2000 to
Register B’’, or “Add the data in store location 1575 to
the data in Register A putting the result in Register A”).

In following chapters we will see how these ideas are
actually specified given the limitations of an 8 bit word.

There are actually a very limited set of instructions in a
computer, and most are variations on:

11

1.6.1 Fetch

“Fetch data from a specified store location (or register) to a
specified register”.

1.6.2 Store
“Store data from a specified register to a specified store
location”. Sometimes Fetch and Store are collectively called
“Moves” or “Loads”.

1.6.3 Add

“Add data from a specified store location (or register) to the
data in another specified store location (or register) the result
to go to a specified store location (or register)”.

Usually Adds take the simpler form, “Add data from a
specified store location to the data in register A, the result to
go to Register A”.

1.6.4 Subtract

As 1.6.3 but subtraction is performed. Note that multiplica­
tion and division are not available on any common micro­
processor.

1.6.5 Logical

As 1.6.3, but logical operations such as AND, OR, NEV are
performed between the data.

1.6.6 Shifts

Data in a microprocessor is held as 8 bit binary numbers. A
shift instruction moves the data in a register up, or down by
one place. If we have the bit pattern 10110101, a simple shift
up would produce 01101010, and simple shift down would
produce 01011010. A shift up multiplies a number by two,
a shift down divides by two. As will be seen later, there are

12

many variations on the shift instruction.

1.6.7 Jumps

Normally, instructions are held in sequential store locations.
A Jump instruction is the machine code equivalent of the
BASIC GOTO, and specifies where the next instruction is to
be found (e.g. Jump to location 3220).

1.6.8 Conditional Jump
A conditional jump tests the condition of a register, the
results of which determine if a jump instruction is to be
obeyed (e.g. Jump to 4057 if register A is zero). This is the
machine code equivalent to the BASIC IF condition THEN
GOTO (line number).

1.6.9 Subroutine Call and Return
Programmers in BASIC will be familiar with the concept of a
subroutine with the GOSUB and RETURN instructions. A
subroutine allows a piece of program that is used frequently
to be written once and called when needed by the rest of the
program. This is best shown by Fig.1.7. Machine code sub­
routine calls work in exactly the same way. A subroutine call
acts like a jump to the start of the subroutine (e.g. Call 7087
would take us to the subroutine starting at location 7087). A
Return instruction is placed at the end of the subroutine, to
take us back to the location in the main program immediately
after the subroutine call. Subroutines can call subroutines
(called Nesting). A Binary to BCD subroutine, for example,
would need to use multiplication and division subroutines. In
most microprocessors, conditional subroutine calls, and
conditional returns are provided as well as the simple call and
return described above.

1.6.10 Input/Output Instructions

Input/output instructions must specify the I/O port address,

13

the direction (in or out) and the source (or destination) of
the data (i.e. which register or which store location).

1.6.11 Control Instructions
Most microprocessors have a small number of control instruc­

14

tions such as STOP, Disable Interrupts and similar operations.
These do not involve data.

At first sight, the vast array of instructions available on a
microprocessor can be rather awe inspiring (the Z-80 has 158
different instruction types). Much of the inevitable feeling
of confusion can be assuaged by remembering that most
instructions are simple variations of the ten types outlined
above.

1.7 WHY MACHINE CODE?

Programming in BASIC is simple and straightforward, so it is
not unreasonable to ask why one should bother with the trials,
tribulations and complexity of machine code programming.
There are really three reasons.

The first is that it is possible to perform operations in
machine code that are impossible (or difficult) to achieve in
BASIC. Control of external items like a model railway would
be difficult in simple BASIC for example.

The second reason concerns speed. BASIC is notoriously
slow, and is quite unsuited to, say dynamic video games.
Machine code programs operate many times faster than BASIC
programs.

The final and most compelling, reason is that machine code
programming is an intellectual challenge akin to chess or
bridge. The mental exercise of programming (in any form) is
very addictive and this is particularly true of machine code
programs.

1.8 MACHINE CODE AND ASSEMBLERS

The instructions a computer actually obeys are held in the
form of binary numbers. To assist human beings to read these
numbers, it is usual to express them in Hex, so 1010 0111
becomes A7 (see AppendixA).

A machine code program therefore looks something like:

15

F5 C5 D6 64 3E ZO D3 00 etc.

which is still fairly incomprehensible.
It is easier to follow a machine code program if simple

mnemonics are used to represent the instructions. The actual
mnemonics used on the Z-80 will be described later, but in
general they are simple to understand. A program written in
mnemonics is said to be written in Assembler Language, and
looks more understandable.

LD A, 33
INC HL
JP NZ, LOOP

Each of these corresponds directly to a single machine code
intruction, LD A,33 for example, means put the number 33
into register A.

The program written in Assembler Mnemonics is converted
to machine code by a program called (surprise, surprise) an
Assembler. The Assembler has editing facilities similar to those
found in BASIC and makes machine code programming much
less infuriating. In later chapters, examples of Assembler pro­
grams will be given. Assemblers are not usually provided with
computers, and have to be purchased separately.

1.9 FURTHER READING

The description of computer architecture in this chapter has,
of necessity, been rather brief. More detailed discussions can
be found in the following books also published by Bernard
Babani (publishing) Ltd:

Book No. BP72 - A Microprocessor Primer
Book No. BP78 - Practical Computer Experiments
Book No. BP66 - Beginners Guide to Microprocessors
Book No. BP77 — Elements of Electronics - Book 4,

Microprocessing Systems and Circuits

16

Chapter Two

Z-80 ARCHITECTURE

2.1 INTRODUCTION

This chapter introduces the Z-80 microprocessor, describing
its architecture and role in the construction of a microcom­
puter. The Z-80, like all microprocessors, is the CPU of a
perfectly conventional computer, and needs store and I/O
before it can be useful. The connection of these items is dis­
cussed. This chapter is therefore concerned with equipment.
Chapter 3 will describe the Z-80 instruction set and will be
concerned with software.

2.2 GENERAL ARCHITECTURE

2.2.1 The Z-80 registers
The Z-80 can be represented by the block diagram of Fig.2.1
which is very similar to the generalised CPU diagram of Fig. 1.5
in Chapter 1. The Z-80 is an 8 bit microprocessor, and can
address 64K of store. It therefore utilises an 8 bit data bus and
a 16 bit address bus. There are also 13 control signals in the
control bus.

The registers, PC, instruction decode, ALU and control
fulfill the same functions as described for Fig. 1.5. The instruc­
tion register simply holds the instruction currently being
obeyed.

The user of the Z-80 is interested in the block labelled
“registers”. This is shown expanded on Fig.2.2. The Z-80 has
an impressive array of registers, 17 8 bit registers, one 7 bit
register and 4 16 bit registers. The first point of note is that
these registers are in three groups, main register set, alternate
register set, and special purpose.

The main register set and alternate register set are identical.
The programmer chooses which set he wishes to work with at

17

18

19

any time by the use of “Exchange” instructions which switch
sets. This is, admittedly, a bit of a nuisance but it is necessary
to allow access to the 16 registers whilst minimising the
number of instructions in the Z-80. Full access would have
nearly doubled the size of the Z-80 instruction set.

Each register set has an 8 bit accumulator (A), an 8 bit flag
register (F) and six 8 bit general purpose registers (B,C,D,E,H,
L). The accumulators are used for arithmetic and logic pur­
poses; the other 6 G.P. registers cannot (with a few exceptions)
be used with the ALU and simply provide fast temporary
storage. The results of almost all arithmetic operations go to
the accumulators.

2.2.2 Flag Registers (F)

The flag registers are 8 bit registers used to indicate certain
conditions that arise in arithmetic and logical operations.
These are used as tests for conditional jumps. Each condition
is represented by a bit, as shown on Fig.2.3. The flags operate
as below.

The carry flag (C) is simply the carry from the highest bit
of the accumulator, and is set if a “carry” is generated during
an add, or a “borrow” during a subtraction. The carry bit is
also altered by some shift operations. If twos complement

7 6 5 4 3 2 1 0 Bit

Fig. 2.3 The flag (F) register

20

arithmetic (see Appendix A) is being used, the carry does not
necessarily indicate if an overflow has occurred. The P/V flag
should be used for this purpose.

The zero flag (Z) is set when the last instruction affecting
the flags resulted in zero contents of the accumulator. Any
non zero contents resets the flag.

The sign flag (S) is used with twos complement arithmetic,
and simply indicates if the accumulator is positive (S=0) or
negative (S=l), because bit 7 of an 8 bit twos complement
number indicates the sign. The S flag is simply a copy of bit 7.
Note that zero is a positive number.

The parity/overflow flag (P/V) serves two purposes. After a
logical operation (AND, OR, Exclusive OR) the flag indicates
the parity of the result, being set for an even parity and reset
for an odd parity. The second use requires a little more
explanation. If twos complement arithmetic is being used, an 8
bit word represents a SIGNED number in the range —128 to
+127. Bit 7 indicates the sign, being 0 for positive numbers
and 1 for negative numbers. With twos complement arithmetic,
the carry bit does not reliably indicate if an overflow has
occurred. Consider the two examples below:

123 = 0 111 10 11
+ 106 = 0 110 10 10
C=0 1110 0 10 1 = -91

The result is an incorrect negative number, but the carry bit
has not been set.

-5 1111 1011
- 16 1 111 0000

C=1 1 1 1 0 1 0 1 1 = -21

In this case, the result is correct, but the carry bit has been
set.

The P/V flag indicates correctly if an overflow has occurred
during a twos complement arithmetical operation. In the two
above examples, the P/V flag would be set for the first (over­
flow has occurred) and reset for the second (overflow has not
occurred). It follows that the carry flag is used for unsigned 8

21

bit arithmetic, and the P/V flag for signed twos complement
arithmetic.

The C, Z, S, P/V flags are used with conditional jumps and
conditional subroutine calls. The Z-80 uses the following con­
ditions.

Carry C = 1
Non Carry C = 0
Zero Z= 1
Non Zero z = o
Parity Even P/V = 1
Parity Odd P/V = 0
Sign Negative S = 1
Sign Positive s = o

The four flags above can be used directly for conditional
jumps. There are also two flags which are used by the internal
logic of the Z-80 when BCD operations are being performed.
These cannot be used directly in conditional jumps, but can be
accessed as any other bit in any other register.

The first of these flags is the half carry (H) used to indicate
the BCD carry or borrow result from the least significant four
bits of the accumulator. This flag is used by the Decimal
Adjust instruction, described later.

The Add/Subtract flag (N) indicates if the last instruction
was an addition or subtraction. The algorithm used by the
Decimal Adjust instruction is different for addition or subtrac­
tion, the correct algorithm being selected by the N flag.

The flags are not altered by all instructions. In general, the
flags are altered by all arithmetical and logical operations.
Load instructions (store reads and writes and inter register
transfers) leave the flags unaffected.

2.2.3 General Purpose Registers (B, C, D, E, H, L)

Each register set has six general purpose registers (B, C, D, E,
H, L). These provide fast temporary storage. They can also be
grouped as 16 bit register pairs (BC, DE, HL) providing 16 bit
arithmetic facilities and a powerful method of addressing

22

known as register indirect (to be described later in section
3.3.6). '

2.2.4 Special Purpose Registers (1, R, PC, IX, IY, SP)

There are six special purpose registers, denoted I, R, PC, IX,
IY, SP. Although these are usually dedicated to one task they
can. in general, be accessed like any other register.

PC is the 16 bit program counter, operating exactly as
described in Chapter 1. A 16 bit program counter is necessary
to address 64K of store.

IX and IY are two 16 bit registers used in a useful method
of addressing the store known as Indexed Addressing. This is
described further in section 3.3.7.

SP stands for Stack Pointer, and is another 16 bit register.
To understand the use of the stack pointer we must first
describe the concept of the “stack”. We described the idea of
subroutines in the previous chapter. When a subroutine is
called, we must somehow save the contents of the PC, and sub­
stitute the address of the subroutine. At the end of the
subroutine we must reinstate the PC to its original value.

To achieve this, an area of store is designated to hold PC
addresses during subroutine calls. Normally the stack starts
at the top of the store and comes down. The SP holds the
current position of the end of the stack. Because addresses are
16 bits, each address takes two store locations on the stack.

The operation of the stack is best demonstrated by an
example. Let us assume we are obeying the instruction at
location 0C50, and it is a call to a subroutine at 1D00. The
stack pointer is currently at 2FO5, indicating that the stack
ends at 2F05. The sequence below is then followed:

i. PC contents are put into 2F05 and 2F04. (i.e. the
address of the subroutine call is put onto the stack)

ii. PC contents are replaced by 1D00 (the address of the
subroutine)

iii. The SP is decremented to 2F03 (to allow for nesting of
subroutines. The stack can be of any length)

iv. The subroutine is obeyed.

23

At the end of the subroutine, a return instruction initiates
the following sequence:

i. The SP is incremented and used to bring a 16 bit number
back from the stack to the PC. If addresses have been
placed and read from the stack in sequence, this will
bring 0C50 back to the PC.

ii. The PC is incremented to step onto the instruction fol­
lowing the subroutine call.

iii. The main program continues.
Putting an address onto the stack is known as a PUSH.

Getting an address from the stack is known as a PULL. The
important point to remember about a stack is Last In, First
Out.

The stack can also be used to store data from register pairs.
This must be done with care, as the programmer must ensure
that the data comes off the stack in the expected order. The
sequence in Fig.2.4 will NOT work as expected because the
data brought to BC will be the last data pushed onto the stack;
the address of the instruction calling the subroutine call. The
address replaced in the PC by the return instruction will be the
contents of BC pushed onto the stack earlier. Remember,
Last In, First Out.

The two final registers are denoted I (for interrupt) and R
(for refresh). The I register is known as the Interrupt Page
Address Register, and is used when the Z-80 is controlling
external devices. There is a vast difference in speed between
computers and peripheral devices, which is reconciled by a
technique known as Interrupts. This will be described in detail
in Chapter 6, but for the present an interrupt can best be
considered as a subroutine call initiated by an external device.
The device supplies the low byte of the subroutine address, the
I register supplies the high byte.

The 7 bit R register is used when the store is constructed
with dynamic memory ICs. (Such as the popular 4116). These
store the data as charges on capacitors (see Fig.2.5) which have
to be refreshed every few milliseconds. Normally this refreshing
is performed by external logic which grabs control of the high­
way at regular intervals to perform the refresh operation. The

24

Fig. 2.4 Incorrect use of stack

Z-80 is unique amongst micros in containing its own refresh
logic. The R register contains the current refresh address. The
contents of the R register are placed on the lower 7 bits of the
address bus along with a refresh signal on the control bus when
the bus is free. After each refresh the R register is automati­
cally incremented. The whole refresh operation is totally
invisible to the user.

Chapter 3 will describe how data is moved and manipulated
in the registers and store.

25

26

2.3 EXTERNAL CONNECTIONS

A typical small Z-80 system is shown on Fig.2.6. This should
be compared with Fig.l .2. The Z-80 itself is a standard 40 pin
dual in line IC with connections shown on Fig.2.7. It will be
seen that the connections form the address bus, data bus and
control bus described earlier.

2.3.1 Address Bus

The address bus is A0-A15, AO being the least significant bit
and Al5 the most significant bit. The address bus can address
up to 64K of store. The least significant 8 bits (AO - A7) are
also used to address I/O ports, allowing up to 256 I/O
addresses. The address highway conveys the address in “true”
form.

2.3.2 Data Bus

The data bus is DO — D7, DO being the least significant bit.
This is a bidirectional highway, conveying data between store,
I/O ports and the Z-80.

2.3.3 Control Bus Outputs

The control bus contains 13 signals; 8 outputs and 5 inputs.
The first of these is RD, memory read. This indicates that the
CPU wants to read data from a memory location or I/O port.
The signal is active low, and is present whilst the address bus
holds a valid address. RD is used by the addressed location or
port to gate data onto the data bus.

WR, write, indicates that the CPU requires to send data to a
store location or I/O port. The signal is active low, and is
present whilst the address bus holds a valid address and the
data bus valid data. WR and RD are effectively strobe signals
similar to those on Fig.l .3.

MREQ, memory request, is an active low signal indicating
that the address bus holds a valid address. MREQ appears in
conjunction with RD or WR.

27

28

A11
A12-<-
A13*-
A14-*-
A15*-

0 -►
D4-**-
D3-*-«
D5-*->-
D6
5V
D2-«-«
D7 «-►
DO«-«-
DI -<-»•
INT
NMI -«

HALT
MREQ-*-
IORQ ♦"

»-*- A10
• A9
»-*■ A8
• A7
»-*■ A6
»-► A5
»-« A4

A3
»-► A2
»-► A1
• AO
• -*- OV
•“*" RFSH
»-►m
•’*“ RESET
• * BUSRQ
•"*” WAIT

BUSAK
WR

• RD

Fig. 2. 7 Z-80 pin configuration

IORQ denotes input/output. This active low signal indicates
that the address on AO — A7 is the address of an I/O port, and
an input/output transfer is to be performed. IORQ allows
memory locations and I/O ports to share the same address.
IORQ appears with RD or WR to indicate if data is to be
input or output. IORQ is also used in the timing of interrupts,
to be described later in section 6.4.

RFSH stands for refresh and is an active low signal
indicating that AO A6 contain an address that can be used to
refresh dynamic memories. MREQ appears with RFSH.

HALT indicates simply that the CPU has halted following a
HALT instruction. The signal is active low. The memory
refresh for dynamic memories continues even though the
processor is halted.

29

Ml stands for machine cycle one. It was explained in
Chapter 1 that obeying an instruction consists of a fetch of the
instruction from the store followed by a data read and/or a
data write. In the Z-80 the instruction fetch is known as Ml,
the memory read as M2 and the memory write as M3. Ml is an
active low signal indicating that the CPU is in the Ml state.
The signal is used in timing some I/O operations.

2.3.4 Control Bus Inputs

The first control input is the WAIT signal. The Z-80 is faster
than some memory and I/O control devices, particularly when
a 4MHz clock is used. The WAIT signal is used by an addressed
memory or I/O port to indicate that the required data transfer
can not yet take place. On receipt of a WAIT signal the CPU
simply pauses. The WAIT signal is active low. During the
WAIT state the memory refresh is not maintained.

RESET is used to force the CPU to a known state, and is
normally used at power up or to regain control if a program
has gone off the rails. The RESET input is active low and has
the following effects.

i. PC, I and R are reset to zero
ii. Interrupts are disabled and interrupt Mode 0 is set.

Interrupts are described later in section 6.4. Resetting the
PC has the effect of an unconditional jump to location zero.

INT is also an interrupt request from an external device.
A “low” on this line initiates the interrupt sequence.

NMI is also an interrupt request, but is a higher priority
than INT. The CPU can ignore the INT signal, but NMI,
standing for Non Maskable Interrupt, is always recognised.
NMI effects a subroutine call to location Hex 66. The NMI is
negative edge triggered.

2.3.5 Bus Control
In large systems, the address data and control buses can be
shared with another CPU or devices such as disc controllers
which require access to the memory without the CPU. Under

30

these circumstances, the CPU is occasionally required to
release the buses for use by the other devices requesting access.
This is achieved by two signals on the control bus.

BUSRQ (Bus request) is an input from an external device
requesting control of the buses. The signal is active low. On
receipt of BUSRQ the Z-80 sets all its bus signals to a high
impedance state, allowing the requesting device to use the
buses. The Z-80 then takes BUSAK to a ‘low’ to indicate that
the requesting device can use the buses. Whilst the Z-80 has
released the buses, memory refreshing obviously ceases.

2.3.6 Other Signals

The Z-80 needs a 5 volt supply (Vcc and OV) and a clock (0).
The clock is usually provided by a simple crystal oscillator
and can be 1, 2, or 4MHz dependent on the version of Z-80
and the application.

2.4 BUS TIMING

The actual timing of the bus signals is usually of little concern
to the amateur. Fig. 2.8 and 2.9 show, somewhat simplified,
the timing of a memory read and a memory write operation.

31

32

33

Chapter Three

INTRODUCTION TO Z-80 SOFTWARE

3.1 INTRODUCTION

The previous chapters have been largely concerned with the
mechanics of a Z-80 based microcomputer. We can now start
to discuss how programs are written for the Z-80. This chapter
will describe the Z-80 instruction set in general terms and
explain the various terms used in later sections. Chapter 4 will
describe the Z-80 instruction set in detail.

3.2 HEX REPRESENTATION

The Z-80 deals with 8 bit numbers; each store location and GP
register can hold a number in the range 0 to 255. The numbers
are in binary, so a typical register could hold the number

1010 0111

which at first sight, means little to anyone. We could, with a
little trouble, convert it to decimal (167 actually) but it is
usually preferable to represent a store location and register
contents in a form that can easily be converted back to binary.
Most microprocessors, including the Z-80, use a system called
Hex (for hexadecimal).

Hex is based on four bits, which can represent a number in
the rage 0 to 15. These are represented by the symbols 0 to 9
followed by A to F

Binary Hex Decimal
0 00 0 0 0
000 1 1 1
00 10 2 2
00 11 3 3
0 100 4 4
0 10 1 5 5

34

Binary Hex Decimal
0 110 6 6
0 111 7 7
1000 8 8
100 1 9 9
10 10 A 10
10 11 B 11
1100 C 12
110 1 D 13
1110 E 14
1111 F 15

To represent a binary number in Hex, you simply split it
into 4 bit chunks, and put the Hex equivalent underneath. For
example:

10100111
becomes 10 10 0 111
giving A 7

So the binary word 10 10 0 1 1 1 is A7 in Hex.

Another example 0 10 0 1 10 0
becomes 0 10 0 110 0
giving 4 C

It is equally easy to go from Hex to binary. The four bit
pattern for the Hex number is simply written underneath. For
example D2 becomes

D 2
1101 0010

giving 1 1 0 1 0 0 1 0 as the binary equivalent of Hex D2.

Another example F A
gives 1111 10 10

The Z-80 instruction set is given in Chapter 4 in Hex form. 8A,
for example, is the instruction that will make the Z-80 add the
contents of register D to the Accumulator.

Hex representation can also be used on 16 bit numbers
such as store addresses), for example:

35

1110 0 10 1 10 10 100 1
becomes E 5 A 9

and in reverse

0 C 5 7
becomes 0 0 0 0 1100 0 10 1 0 111

Store addresses in Z-80 microcomputers are usually given in
Hex.

Hex can be a bit daunting at first, but it should be remem­
bered that it is just a convenient shorthand method of re­
presenting binary numbers. With a little practice, binary to
Hex and Hex to binary becomes second nature.

3.3 ADDRESS MODES

3.3.1 Introduction

An instruction will normally involve data in one or two loca­
tions or registers. This data will be moved or manipulated in
some form (e.g. Add Subtract, etc.). An instruction therefore
must usually specify two things:

i. What is to be done (e.g. move, add, subtract)
ii. Where the data is to be found (e.g. Register A, location
3220)

In older computers, which used a 16 bit word length, it was
common to allocate the op code (specifying what is to be
done) to the top few bits, and the address of the data to the
remainder of the word as shown on Fig.3.1. This is known as
direct addressing, because the number representing the instruc­
tion directly indicates the store location where the data is to
be found or stored.

There is a problem, however, with all 8 bit microprocessors.
An 8 bit word can represent a number in the range of 0 — 255.
The Z-80 has 158 different instructions, so it will take all 8
bits of a microprocessor word simply to specify the Op Code.
To specify a 64K. address requires an additional 16 bits.

36

Obviously direct addressing cannot be used, at least not in the
simple form of Fig.3.1. All 8 bit microprocessors use a collec­
tion of ingenious methods called address modes to address the
store.

The first, slightly confusing, idea is the use of different
lengths of instruction. A Z-80 instruction can be 8, 16, 24 or
32 bits in length (occupying respectively 1, 2, 3 and 4 store
locations). The first location will always be an Op Code. Sub­
sequent locations define where the data is to be found. The
following are typical Hex coded Z-80 instructions:

7A

06 FF
C3 50 0C
ED 43 FE IF

Move the contents of register D to
the accumulator
Put the Hex value FF into Register B
Jump to location 0C50
Store the 16 bit number in Register
Pair BC to store locations IF FE and
IF FF

In each case the first 8 bits define the Op Code (7A, 06, C3,
ED). In the latter case the full Op Code actually occupies two
locations (ED 43) but the ED portion specifies the form of the
instruction, and 43 the register pair.

If the 4 instructions above were stored from location Hex
1000 we would have:

37

Location Contents
1000 7A
100 1 06
1002 FF
1003 C3
1004 50
1005 OC
1006 ED
100 7 43
1008 FE
1009 IF

There are many different address modes used in com­
puters in general, and microprocessors in particular. The Z-80
uses ten different address modes.

3.3.2 Register Addressing

Many instructions in the Z-80 set only involve data held in the
registers. Examples are “move the contents of Register B to
Register A” or “Move the contents of Register D to Register
C”. These, and similar instructions are said to use Register
Addressing. Most of these instructions are a single byte (8 bits)
in length and occupy one location. The Op Code for “Move
the contents of Register B to Register A” is the single byte
instruction 78.

3.3.3 Immediate Addressing

Immediate addressing is used where the data to be manipulated
is fixed. For example “Load Register B with 42” or “Add 7 to
Register A”. These instructions take the form:

Op Code One or two bytes
Data

“Add 7 to Register A” is actually C6 07, C6 being the Op
Code and 07 the data.

38

3.3.4 Extended Addressing

Extended addressing is almost identical to direct addressing
described earlier. The store address for the data is given in full
16 bits in the instruction. Examples are “Move the contents
of store location 0C50 to Register A” or “Call the subroutine
at location 1DF5”. The address occupies two locations in the
instruction, and the Op Code one or two locations. Extended
Address instructions therefore occupy three or four locations:

Op Code
Address Bottom
Address Top

One or two bytes
8 bits
8 bits

The Z-80 code for “Call the subroutine at location 1DF5”
is CD F5 ID. CD is the Op Code and F5 ID indicates the
address 1DF5. It might seem more logical to have the instruc­
tion written CD ID F5, but consider how the instruction is
stored:

Location Contents
N CD
* + 1 address low byte) Address 1DF5
N + 2 ID address high byte)
The address is stored in two locations, N + 1, N + 2. The low

byte of the address is simply stored in the low byte of the
instruction (N + 1) and the high byte of the address in the high
byte of the instruction (N + 2).

3.3.5 Immediate Extended Addressing

This addressing mode is used with 16 bit data in two successive
store locations, register pairs (BC, DE, HL) and the index
registers. For example, we could have “Load register pair
BC with 0C50”. An immediate extended instruction takes
the form of a three of four location instructions:

Op Code (one or two bytes)
Data Low Byte
Data High Byte

39

“Load register BC with 0C50” is actually 01 50 0C with 01
the Op Code and 0C50 the data. As with extended Addressing,
it might be thought more logical to have coded this 01 0C 50,
but in fact the low byte of the data goes to the low byte of the
instruction.

When register pairs are used, high and low bytes are allo­
cated

High
B
D
H

Low
C
E
L

3.3.6 Register Indirect Addressing
A register pair, being 16 bits in length, can hold a 16 bit
address and therefore can be used to indicate a store location.
In register indirect addressing a register pair is used to indicate
the store location for the data. An example would be “Store
the contents of register A in store location whose address is to
be found in register pair BC”. Suppose A contains 2D (in Hex)
and BC contains 1C72 (B is high byte, C is low byte). The
number 2D would be stored in location 1C72. This is summar­
ised by Fig.3.2.

Because the address is provided by a register pair, a register
direct instruction consists only of an Op Code one or two
bytes in length. The code for “Store the contents of A in the
store location whose address is to be found in register pair BC”
is actually 02.

3.3.7 Indexed Addressing

Indexed addressing is a special form of register indirect
addressing that is particularly useful where tables of data held
in successive store locations have to be processed. The Z-80
has two index registers, each 16 bits in length, which provide
a base 16 bit address. The instruction contains a twos comple­
ment offset known as the displacement (in the range —127 to
+128) which is added to the base address in an index register

40

Fig. 3.2 Register indirect addressing

to give the address to be used for the data. For example, we
could have “Store register B, index addressed with IX,
displacement 05”. Let us assume register B contains FE, index
register X contains 2D10. The instruction would store FE in
location 2D15.

An index address instruction always occupies three loca­
tions and consists of a 2 byte Op Code and a 1 Byte displace­
ment:

Op Code
Displacement

(two bytes)
(one byte)

The coding for “Store register B, index addresses with IX,
displace 05” is actually DD 70 05. DD 70 is the Op code, 05
the displacement. (See Fig. 3.3)

41

3.3.8 Relative Addressing

Relative addressing is used only for jumps in the Z-80. The
current instruction address is used as a base address, and the
instruction contains a twos complement displacement (in the
range —128 to +127) to give the jump destination. In the Z-80,
slightly confusingly the base address is actually the current
location +2. A typical relative addressed instruction is “Jump
relative +16” (remember, the displacement 16 is Hex). If we
were at location 0C50, the base address is 0C52 and we would
jump to the instruction at 0C68. Note that because a twos
complement displacement is used we can jump both forward
and backward from the current location. All relative addressed
instructions use two locations, one for the Op Code and one
for the displacement:

Op Code One byte
Displacement One byte

42

The code for “Jump Relative +16” is 18 16, with 18 the Op
Code and 16 the displacement.

Relative addressing is very useful. Apart from being a neat
and compact way of writing jumps, it allows programs to be
written that can be placed anywhere in the store. These are
known as relocatable programs. Usually a programmer builds
up a library of relocatable subroutines for common items such
as multiplication, division, outputs to printers etc. which
can be plugged into each new program as needed. The dis­
advantage of relative addressing is the tedious recalculation of
the displacements if debugging requires the insertion or
removal of instructions.

3.3.9 Modified Page Zero Addressing

There are 8 page zero addressed instructions. All are sub­
routine calls known as restarts to addresses below Hex 100. All
consist of a single byte Op Code. DF, for example, is “Call
subroutine at location Hex 18”. The 8 Restart subroutine calls
are a very compact way of calling frequently used subroutines.

3.3.10 Implied Addressing

Some instructions inherently imply where the data is to be
found. Exchange instructions (which switch register sets) are
typical implied instructions.

3.3.11 Bit Addressing

In data processing and control engineering, single bits in an 8
bit word are used to indicate an event being present or not. A
bit could be used, for example, to represent a limit switch
being open or closed. In file applications a bit could represent
the sex of a person; ‘1’ for male, ‘0’ for female.

The Z-80 has a comprehensive range of bit addressed
instructions that allow a single bit in a register or store
location to be set, reset or tested (via the flag register, F).

43

3.3.12 General Observations
We have described ten different address modes, and it is quite
possible that the reader is feeling a bit punchdrunk. For
completeness, we will list them:

i. Register Addressing
ii. Immediate Addressing

iii. Extended Addressing
iv. Immediate Extended Addressing
v. Register Indirect Addressing

vi. Indexed Addressing
vii. Relative Addressing

viii. Modified Page Zero Addressing
ix. Implied Addressing
x. Bit Addressing

It is worth noting that almost any program can be written
using only the first four modes, and most programs using the
first three. The resulting program will certainly not be elegant,
fast, or short, but it will work. It is suggested that the would-
be programmer simply masters the first three modes, and
writes simple programs using them until he (or she) is reason­
ably competent. At that point mastery of the remainder of the
addressing modes should be quite easy, and the programmer
can produce more elegant programs.

Not every addressing mode is available on every instruction,
so the tables in Chapter 4 should be consulted until the reader
is familiar with the Z-80 instruction set.

3.4 INSTRUCTION TYPES

3.4.1 Introduction
Chapter 4 gives the complete Z-80 instruction set in tabular
form. This section describes the types of instruction available
in a less formal manner. There are just 8 groups of instruction
in the Z-80:

44

i. Loads
ii. Arithmetic and Logic

iii. Jumps and Subroutine calls
iv. Shifts
v. Block Transfers

vi. Bit Manipulation
vii. Input/Output

viii. Control
These 8 groups of instructions are combined with the

addressing modes described in section 3.3 to give the 158
different instruction types available on the Z-80.

3.4.2 Load Instructions
In Chapter 1 we described the read and write instructions
which moved data between registers and the store. In the Z-80,
read and write operations and data movements between indi­
vidual registers are collectively known as “Loads”. The
following are therefore examples of “Load instructions”.

Store the data from register A into store location 0C50.
Read the data from store location 12FA to register A.
Store the data from register B into the store location
whose address is held in register pair HL.
Move the data in register D to register C.

3.4.3 Arithmetic and Logic Instructions
Almost all Z-80 arithmetic instructions are performed on data
in Register A (the accumulator) and data in a store or another
register. The result invariably goes to register A. The Z-80 can
perform the following 8 bit operations:

i. Add
ii. Add with Carry (ADC)

iii. Subtract
iv. Sub with Carry (SBC)
v. AND

45

vi. Exclusive OR (XOR)
vii. Compare (CP)

viii. Increment
ix. Decrement

Add and Subtract with carry include the carry flag in the
operation. Suppose we obey “Add register B to Register A
with carry”, and register A contains 0101 1010 (5A in Hex),
register B contains 0010 0011 (23 in Hex) with the carry flag
set we would get:

0101 1010 A
00100011 B

1 Carry flag
0 111 1110 Result to A

If the carry flag is not set we would get:
0101 1010 A
00100011 B

0 Carry flag
0 111 110 1 Result to A

Incorporating the carry flag into the operation simplifies
the writing of the programs with 16 bit numbers.

The simple Add and Subtract instructions ignore the state
of the carry flag, and just operate on the two 8 bit words.

All arithmetic operations set (or reset) the S, Z, H, V, N, C
flags according to the result of the operations. The P/V flag
works on the overflow.

The logical operations AND, OR and XOR are performed
bit by bit between data in register A and data in another
register, Suppose we have:

1010 0101
1001 1101

the result of AND is 10 0
the result of OR is 10 1
the result of XOR is 0 0 1

Register A (A5 in Hex)
Register B (9D in Hex)

0 0 1 0 1 (85 in Hex)
1 110 1 (BD in Hex)
1 1 0 0 0 (38 in Hex)

In all three operations the result goes to register A, and the

46

S, Z and P/V flags are set or reset according to the result. The
P/V flag works on the parity of the result.

The compare operations is used to compare the data in
register A with some other specified data. The operations does
not affect the data itself, but sets (or resets) the S, Z, H, V and
C flags according to the result (Contents A — Specified Data).
If we ask for the instruction Compare Register A, Register B
for the data below the flags set would be:

A B Flags Comments
06 07 SHNC A<B
07 06 N A>B
06 06 ZN A = B

Care should be taken if one of the numbers is using bit 8
as a sign bit e.g.

A B Flags
FF 01 SN
01 FF HNC

Usually the compare instruction is used to test for equality
(e.g. the Z flag set) and is invariably followed by a conditional
jump or subroutine call on the state of the Z flag.

Increment and Decrement are useful instructions. Increment
takes some specified data, adds ‘1’ to it and places the result
back again. Decrement operates in a similar manner except
that ‘1’ is subtracted. The data can be obtained from any
register or (using register indirect or indexed addressing) any
store location. The following are typical increment instruc­
tions:

Add 1 to Register C
Add 1 to the contents of the store location whose
address is in HL

The following are typical decrement instructions:
Subtract 1 from Register E
Subtract 1 from the contents of the store location
(index register X + 5)

47

Note that unlike all other arithmetic operations, the result
goes back to the source of the data and NOT to register A.
Increment and decrement instructions are a convenient way of
counting events.

3.4.4 Jumps and Subroutine Calls
The idea of jump instructions and subroutine calls was intro­
duced in Chapter 1. The Z-80 has a very useful range of
conditional jumps and subroutine calls and returns. The con­
ditions tested are based on the flags in the F register and are:

Carry Set, Carry Not Set, Accumulator Zero, Accumulator
Non Zero, Parity Even, Parity Odd, Sign Negative, Sign
Positive.

The majority of these instructions use extended addressing
(e.g. CC 70 OF, call subroutine starting at location OF 70 if the
accumulator is zero). There are also a few jump instructions
using relative addressing and three unconditional jump instruc­
tions using register indirect addressing.

Subroutine calls use the stack pointer to store the current
value of the program counter, and return instructions reinstate
the value from the stack back to the program counter at the
end of the subroutine. The stack operation was described in
section 2.2.4.

3.4.5 Rotates and Shifts

A shift instruction simply moves the bit pattern in a register
one place to the left or right. Suppose we had

10 10 0 111 (A7 in Hex)

A simple shift to the left would give
0 10 0 1110 (4E in Hex)

A simple shift to the right would give

0 1 0 1 0 0 1 1 (53 in Hex)

In each case the bit pushed off the end is “lost”, and a zero
48

placed at the other end. These are known as a logical shift.
Consider the simple bit pattern 0101, which is five in

decimal. If the pattern is shifted one place to the left (called
shifting up) we get 1010 which is ten in decimal. A shift up is
equivalent to multiplying by two providing the top bit is not
shifted off the end.

Similarly, if we have the bit pattern 1100, which is twelve
in decimal and shift it one place to the right (called shifting
down) we get 0110 which is six in decimal. A shift down is
equivalent to a division by two.

A simple shift will, however, give the wrong result on signed
number. If twos complement representation is used, bit 7
represents the sign, being a ‘1’ for negative numbers and ‘0’ for
positive numbers. We thus have:

11 11 1 0 0 0 (-8 decimal)
1111 110 0 (-4 decimal)
1111 1110 (—2 decimal)
1111 1111 (—1 decimal)

Although we are dividing by two by shifting to the right,
it is not a simple shift because the sign bit must be maintained.
This is known as an arithmetic shift, and can be summarised
by Fig. 3.4.

Rotate instructions are very similar to shifts. In a rotate
instruction the ‘lost’ bit is simply fed into the opposite end of
the register as shown on Fig.3.5. The effect of successive
rotate rights would therefore be:

start
rotate right
rotate right
rotate right
etc.

0110 0101
1011 0010
0101 1001
1010 1100

The Z-80 has seven types of rotate and shift instructions.
These all incorporate the carry flag as shown on Fig.3.6. These
operations can be performed on every general purpose register
and (using register indirect or indexed addressing) on store
contents.

Shift instructions are the basis for writing multiplication
49

and division routines, and both shifts and rotates are widely
used where individual bits are used to represent data in control
applications or data processing as described in section 3.3.11.

50

51

'0' = zero
CY = carry flag
(HL) = store location whose

address is held in HL
ACC = register A (i.e. Accumulator)

Fig. 3.6 (b)

3.4.6 Block Transfer
The Z-80 has a unique set of block transfer instructions. These
allow “blocks” of data to be moved around the store with just
a few instructions. These instructions all involve the register
pairs HL, DE, BC.

Register pair HL contains the 16 bit address where the first
item of data is to be found.

Register pair DE contains the 16 bit address where the first
item is to be stored.

Register pair BC is a 16 bit counter used to define how
many words are to be moved.

If HL contained, say, 0C50, DE, 2000 and BC 100, a block
transfer instruction would move 100 (Hex) words from 0C50
to 2000 and succeeding locations as summarised on Fig.3.7.

The contents of 0C50 would go to 2000
0C51 to 2001
OC52 to 2002 and so on for 100

locations.

There are four block transfer instructions. The first two
operate as above, and are known as “load increment repeat,
(LDIR)” and “load decrement repeat, (LDDR)”. These
operate as above, except LDIR works up the store and LDDR
works down the store allowing data to be transferred between
overlapping locations as shown on Fig.3.8.

The two remaining block transfer instructions transfer one
word each time the instruction is obeyed, but set up HL, DE
and BC ready for the next transfer. These allow other instruc­
tions to be incorporated in the block transfer operation. An

52

Fig. 3.7 Block transfer instruction

example is shown on Fig.3.9 which is a flow chart for an
operation which transfers a block of data, terminating either
when the full block is transferred or a word containing “FF”
(Hex) is found. As before, an incrementing and decrementing
instruction is provided to allow data to be transferred between
overlapping locations. The instructions are known as “Load
decrement (LDD)” and “Load increment (LDI)”.

The Z-80 also has four powerful block search instructions
which allow an area of store to be compared with the accumu­
lator contents. HL contains the start address, and BC is a
counter indicating the number of locations to be searched. As
before, the search can be conducted up or down the store, and
can be conducted one word at a time (compare increment
(CPI) and compare decrement (CPD)) or at one go with one

53

54

Rest of program

Fig. 3.9 Example of use of block transfer

55

instruction (compare increment repeat (CPIR) and compare
decrement repeat (CPDR)). If a match is found, HL indicates
the address.

The block transfer and search instructions are a somewhat
advanced technique, but are very useful for handling files and
text.

3.4.7 Bit Manipulation

The Z-80 has a comprehensive range of instructions to allow
individual bits in registers and store locations to be set, reset
and tested. These instructions are particularly useful in control
and data handling applications. Register indirect (using HL)
and indexed addressing is used for accessing store locations.
Bit tests set or reset the zero flag in the F register (Z flag set
if tested bit is zero). An example of a bit manipulation instruc­
tion is CB 5E which tests bit 3 in the store location whose
address is held in register pair HL.

3.4.8 Input/Output

The basis of input/output instructions were described in
section 1.5. In a Z-80 based microcomputer, up to 256 I/O
ports can be addressed. An I/O instruction has to define:

i. The port address (8 bits)
ii. The direction (input or output)

iii. The store location or register which is the source (or
destination) of the data.

The Z-80 uses direct addressing and register indirect
addressing to specify the port number. D3 05, for example is
“output one word to port 5 from register A” (using direct
addressing). All indirect addressing is done with register C
holding the address. An example of an indirect addressed I/O
instruction is ED 60 which is “Input one word from the port
whose address is held in register C to register H”.

There are also a useful range of block transfer I/O instruc­
tions which transfer large chunks of data between sequential
store locations and an I/O port. These operate in a similar

56

manner to the block transfer instructions described previously
in section 3.4.6.

Register pair HL contains the store address
Register B contains the byte counter
Register C contains the port address

The block transfer instructions are particularly useful for
inputting data from (say) a tape recorder or sending data to a
printer.

We will return to I/O instructions again in Chapter 6 where
I/O support devices are described and section 6.4 where the
operation of interrupts is discussed.

3.4.9 Control Instructions

There are six Z-80 control instructions. Four of these are con­
cerned with the operations of interrupts (described further in
section 6.4). The remaining two are “Halt” and the dummy
“No operation”.

3.4.10 General Observations

We have described the Z-80 instructions in very general terms.
In Chapter 4 the full instructions set is given in a formal
manner.

3.5 SYMBOLIC REPRESENTATION

It is very laborious to describe instructions in a descriptive
manner such as “Fetch to register A the contents of the store
location whose address is held in register pair HL”. A simple,
logical symbolism is used to represent instructions in the Z-80
(and other) microprocessors. Typical instructions are rep­
resented as.

A«-A+ 1
A A + (HL)

Let us see what these symbols mean, and how they

57

represent an instruction.
Registers are represented by their letters (A, B, C, etc.).

Numbers are simply represented by their hex equivalent; 19,
C5 for example. The arrow *- shows the data movement, so:

A *- B means move the contents of register B to
register A

C 37 means load register C with the hex number
37 (immediate addressing)

Arithmetic operations are represented by these symbols:
+ addition

- subtraction
A and
V or
® exclusive or

We can thus write:
A *- A + 1 Add 1 to the contents of register A
A *- A + B Add the contents of register A and B,

result to register A

The contents of store locations are represented by brackets
(). We therefore interpret (0C50) to mean the contents of
store location 0C50. Care should be taken, since FFE1 means
a 16 bit humber as in:

HL *- FFE1 means load register pair HL with hex
number FFE1 (immediate addressing)

(FFEl)means the contents of store location FFE1 as in:
(FFE1) *- B which is store the contents of

register B in store location FFE1.

Register indirect and indexed addressing are also represen­
ted by () since they refer to store locations. For example:

B *- (HL) is bring contents of the store location
whose address is held in register pair
HL to register B (register indirect
addressing)

58

A *- A + (IX + 3) Add the contents of register A
to the contents of the store location
whose address is given by adding 3 to
the contents of the index register, the
result to go to register A.

The last example shows the simplicity of the symbolism!
Even jump instructions can be represented. A simple jump

is:
PC *- 1DAF Jump to location 1DAF (PC stands

for program counter)

A subroutine call to a subroutine at F6000 is represented
by the three symbols:

(SP-1)«-PCH , (SP-2)«-PCL ; PC*-F6000

SP refers to the stack pointer, PCH is the high byte of the
program counter, PCl is the low byte of the program counter.

The symbolism cannot be used to represent shift instruc­
tion and control instructions.

3.6 CONCLUSION

In this chapter we have described the Z-80 instructions and
addressing modes in a descriptive manner. In chapter 4 the
complete instruction set is given formally in a manner suit­
able for reference by a programmer.

59

Chapter Four

THE Z-80 INSTRUCTION SET

4.1 INTRODUCTION

In Chapter 3 the Z-80 instruction set was described in
narrative fashion. In this chapter the full instruction set is
given in a formal fashion. The most convenient way to do this
is in tabular form. Most instructions involve data from some
source (a register, a port or a store location) and the result
goes to a destination. The instructions are represented in the
form of tables with the data source across the top and the
destination down the side. The instruction (in Hex code) can
then be read off like a car mileage chart. On Table 4.1, for
example, the code to move data from register E to register B
is 43.

In the tables, “n” refers to a single byte hex number (i.e.
two hex digits) “n” is used for immediate data and port
addressing, “nn” refers to a double byte hex number (i.e. four
hex digits) “nn” is used for extended addressing and 16 bit
immediate data, “d” is used for the (single byte) offset in
indexed instructions (representing a signed twos complement
number, remember) “e” is used for the displacement in
relative addressing.

Where two byte numbers “nn” are used, it should be
remembered that the low byte comes first. C3 50 0C is a jump
instruction to 0C 50, for example.

It should also be remembered that brackets () refer to store
locations, so (BC) indicates register indirect addressing, with
register pair BC holding the store location.

Assembler mnemonics are also given with the tables,
although Z-80 assembly language is not described until chapter
5. The tables are intended for reference purposes, and would
not be complete without the assembler mnemonics.

The Z-80 is a development of the Intel 8080 microproces­
sor, and all 8080 instructions are available on the Z-80. These
instructions have a small identifier in the top left hand corner

60

of the instruction box in the table.

4.2 LOAD INSTRUCTIONS

4.2.1 8 bit Loads

The full set of 8 bit load instructions is shown on Table 4.1.
As explained previously, the source of the data is given across
the top, and the destination down the side. The code for
D*- H, for example, is 54, and the code for A «- 15 is 3E 15.

All load mnemonics have the form:
LD Destination, Source

for example, LD A,(HL) which has the code 7E.
Note that the instructions to load immediate data into an

■ indexed address occupies four locations (DD 36 d n and FD 36
d n).

4.2.2 16 bit Loads

The Z-80 can also move 16 bit (2 byte) data between register
pairs and two successive store locations. These 16 bit load
instructions are given on Table 4.2. This is driven in a similar
manner to Table 4.1.

SP refers to the stack pointer. The use of the stack was
explained earlier in section 2.2.4. The PUSH instructions put
data onto the stack, and the POP instruction retrieves data
from the stack. When register pairs are pushed onto the stack,
the order is as below:

First (High) Second (Low)
A F
B C
D E
H L

When a push instruction is obeyed, the sequence of events
is.

61

Table 4.1 8 Bit Load Group
Instruction Mnemonics are all LD destination, source

D
ES

TI
N

A
TI

O
N

IMPLIED REGISTER

I R A B C D E

REGISTER

A ED
57

ED
5F

/

7F 78

/

79 7A 7B

B 47

/

40 41 42
/

43

C
/

4F

/

48 49

/

4A
/

4B

D

/

57 50

/

51
/

52 53

E
/

5F 58 59

/

5A
/

5B

H

/

67

/

60
/

61

/
62 63

L

/

6F 68
/

69 6A 6B

REG.
INDIRECT

(HL)

/

77 70

/

71 72

/

73

(BC)

/

02

(DE)
/

12

INDEXED

(IX+d)
DD
77
d

DD
70
d

DD
71
d

DD
72
d

DD
73
d

(IY+d)
FD
77
d

FD
70
d

FD
71
d

FD
72
d

FD
73
d

EXT. ADD. (nn)

^3 2

n
n

IMPLIED

I ED
47

R ED
4F

Note: Reg. Indirect, Indexed & Ext. Addressing access the store

62

SOURCE

REG. INDIRECT INDEXED EXT.
ADDR. IMMED.

H L (HL) (BC) (DE) (IX+d) (IY+d) (nn) n

7C 7D

/

7E
/

OA

/

1A
DD
7E
d

FD
7E
d

n
n

Z 3E

n

44 45 46
DD
46
d

FD
46
d

' 06

n

4C 4D 4E
DD
4E
d

FD
4E
d

' OE

n

54 55

/

56
DD
56
d

FD
56
d

<6

n

5C 5D

/

5E
DD
5E
d

FD
5E
d

■ IE

n

/

64 65 66
DD
66
d

FD
66
d

' 26

n
/

6C 6D

/

6E
DD
6E
d

FD
6E
d

'2E

n

74 75 36
n

DD
74
d

DD
75
d

DD
36
d
n

FD
74
d

FD
75
d

FD
36
d
n

63

Table 4.2 16 Bit Load Group (includes PUSH & POP)
Instruction Mnemonics are: LD destination, source;
POP register pair; PUSH register pair

Note: Push subtracts 2 from SP; Pop adds 2 to SP; LDs to & from
store use 2 locations for data; Ext. and Reg. Indir, access the store

Decrement SP
Store High byte in (SP)
Decrement SP
Store Low byte in (SP)

When a pop instruction is obeyed, the sequence is:

Retrieve Low Byte from (SP)
Increment SP
Retrieve High Byte from (SP)
Increment SP

16 bit loads have the same assembler mnemonic as the 8 bit
loads. LD Destination, Source. The push, instruction
mnemonics have the form Push Register Pair (e.g. PUSH AF).

64

The Pop instructions mnemonics have the form POP Register
Pair (e.g. POP HL).

4.2.3 Exchanges

The Z-80 has two register sets as explained in section 2.2. The
exchange instructions switch between these with two instruc­
tions. The first interchanges AF and AF'. The second inter­
changes BC, BC'; DE, DE'; HL, HL'. Both are one byte
instructions.

There are four other exchange instructions which inter­
change data between register pairs, or a register pair and the
stack. The contents of HL and DE can be interchanged, and
contents of HL, IX, IY interchanged with the bottom two
bytes of the stack (leaving the stack pointer unchanged).

Table 4.3 shows the six exchange instructions.

Table 4.3 Exchanges
Instruction Mnemonics EX, EXX

IMPLIED ADDRESSING

af' BC', DE' & HL' HL IX IY

IM
PL

IE
D

AF 08

BC,
DE
&
HL

D9
EXX

Mnemonic

DE
/

EB

Reg.
Indir. (SP)

/
E3 DD

E3
FD
E3

t
Exchanges data with stack

65

43 ARITHMETIC AND LOGIC INSTRUCTIONS

43.1 8 Bit Instructions
The Z-80 arithmetic and logic instructions were described
informally in section 3.4.3. The full range is shown on Table
4.4. Note that with the exception of CP, INC and DEC instruc­
tions the result always goes to Register A. Data can only be
obtained from store locations with register indirect (HL as
pointer) or indexed addressing.

th
m

et
ic

 &
 L

og
ic

 G
ro

up
SO

U
R

C
E

3
£
E

c W e
N ° N \° \SB ^E

E n u. c
\

t
'M

ne
m

on
ic

’
N

ot
e:

 C
om

pa
re

 o
nl

y
ef

fe
ct

s f
la

gs

IN
D

EX
ED

 | | (IM
-A

I)

O so — a. c* QM_
u. £<’ gw,, FD

B6

d Qw-

Ü. CÛ^3 £s- Q

£ Qs?_
q oo QU-h

Q°° D
D

96

d Q OS 73 Q < Û“« Q< Q ®

QW-a
Qco gS-o Q«n_ Q m “

R
EG

. I
IN

D
IR

j J
(TH

) Os
X

w o
N*

w
V

so
CQ
\

wKa va

N

I__
__

__
__

__
__

__
R

EG
IS

TE
R

 A
D

D
R

ES
SI

N
G

[

Q
X”

Q
\O' S*

Q
\

Q cn <s Q

= \s \S k
\

«
<

N
U s u

u \3 « s
X_____ N3 N9

\
CQ

^a» Q

Q Xs \\^ « < 2

N

<
\ "

u \= O'
^Os « N" 2

N
CQ

N
a

N °

cc Q k
oo

\°°
=

'\T'
□0

^os
o o oo

CQ
s

3 \ °

« \°° s . O'
\

< \£ u.
N"

u Q

•c

2

00

A
D

D
'

A
D

D
 w

 C
A

R
R

Y

‘A
D

C
*

SU
BT

R
A

C
T

•S
U

B'

SU
B

w
 C

A
R

R
Y

SB
C

’ Q z

X
O

R
’

ai
p C

O
M

PA
R

E
C

P'

IN
C

R
EM

EN
T

IN
C

’

D
EC

R
EM

EN
T

•D
EC

’

<d

C3

1--- a i_i
V ’»M —

o> “• aaanos
_______________ “ 1

NOU.VNLLS3Q

66

4.3.2 General Purpose Operations on AF

There are five instructions shown on Table 4.5 which operate
on the accumulator (register A) and the flag register. Each of
these require a little explanation.

Table 4.5 General Purpose AF Group

Decimal Adjust Acc, ‘DAA’
^27

Complement Acc, ‘CPL’
/

2F

Negate Acc, ‘NEG’
(2’s complement)

ED
44

Complement Carry Flag, ‘CCF’
/

3F

Set Carry Flag, ‘SCF’
^37

4.3.2.1 Decimal Adjust Accumulator (DAA)
It is often convenient to represent numbers in Binary Coded
Decimal (BCD). This represents each decade by four bits, e.g.
decimal 79 would be represented by 0111 1001. Four bits can
represent 0 — 15, so binary codes 1010 to 1111 are not used
in BCD, and one byte can only represent 0 to 99 decimal.

If the arithmetic operations in Table 4.4 are used with BCD
coded data the wrong answer will result. If, for example,
register A contains decimal 47 in BCD (0100 0111), register B
contains decimal 26 in BCD (0010 0110) addition will give:

A 01000111
B 0010 0110
Result 0 110 110 1

which is Hex 6D and is not decimal 73 in either BCD or
binary! 67

The decimal adjust instruction corrects the result of a BCD
addition or subtraction instruction to give a BCD result. In
the example above a DAA instruction on 6D would give the
correct BCD result 73. The DAA does NOT convert a Hex or
binary number to its BCD equivalent.

The DAA corrects the result of a subtraction and addition
in a different way, and uses the N flag to determine if the last
instruction was an add or subtract. It is therefore very
important to use the DAA instruction immediately after the
add or subtract instruction which it is to correct.

The DAA instruction itself sets the flags according to the
BCD result obtained after the adjustment. For example, if A
contained BCD 87 and B contained BCD 26, adding A and B
would give Hex AD. A DAA would then give BCD 13 with the
carry flag set (decimal 87 + decimal 26 = decimal 113).

4.3.2.2 Complement Accumulator (CPL)
The complement accumulator instruction simply replaces ‘l’s
by ‘O’s and vice versa in the accumulator. For example:

10 11 0 1 1 1 (B7 hex) 0 1 0 1 0 0 0 1 (51 hex)

becomes
0 1 0 0 1 0 0 0 (48 hex) 10 10 1 1 1 0 (AE hex)

CPL is a useful single byte instruction.

4.3.2.3 Negate Accumulator (NEG)
The negate instruction replaces the data in the accumulator
by the twos complement number of opposite sign. +23, for
example becomes -23.

For example:
04 Hex becomes FC Hex (—4)
E7 Hex (— 19 Hex) becomes 19 Hex

4.3.2.4 Complement Carry Flag (CCF), Set Carry Flag (SCF)
These instructions simply allow the state of the carry flag to
be changed (CCF) or forced to a ‘1’ (SCF). All other flags
remain unchanged.

68

4.3.3 16 Bit Arithmetic
Table 4.6 shows the range of 16 bit arithmetic instructions
available on the Z-80. These operate solely on the register pairs,
stack pointer and index register contents. It is not possible to
perform (directly) arithmetic operations on 16 bit data in two
successive store locations. All register pairs can be incremented
and decremented.

Table 4.6 16 Bit Arithmetic Group
SOURCE

D
ES

TI
N

A
TI

O
N

BC DE HL SP IX IY

‘ADD’

HL 09
/

19 29 39

IX DD
09

DD
19

DD
39

DD
29

1Y FD
09

FD
19

FD
39

FD
29

Add with Carry and
Set Flags ‘ADC’ HL ED

4A
ED
5A

ED
6A

ED
7A

Sub with Carry and
Set Flags ‘SBC’ HL ED

42
ED
52

ED
62

ED
72

INCREMENT ‘INC’
/
03 13 23 33 DD

23
FD
23

DECREMENT ‘DEC’
^OB /

IB ^b Z3B DD
2B

FD
2B

4.4 JUMP CALL AND RETURN GROUP

The principles of jumps and subroutine calls were outlined in
section 3.4.4. The full range is given in Table 4.7. There are 9
conditions available based on the states of the varous flags, al­
though not all conditions are available with every addressing
mode.

69

Ta
bl

e 4
.7

 Jum
ps

 &
 S

ub
ro

ut
in

e C
al

l &
 R

et
ur

n

Relative addressing can cause some confusion. The offset is
calculated from two locations further on from the current
location. Twos complement notation is used allowing jumps
both forward and backward.

A particularly useful conditional relative jump is the “dec
B, jump non zero” (DJNZ) which allows B to be used as a
counter when a block of instructions is to be performed a
specific number of times. This is called a loop, and is sum­
marised on Fig. 4.1.

Subroutine calls are available with 9 conditions, but are
only available with extended addressing. Returns from sub-

70

routines are again available with 9 conditions (the return
address is, of course, obtained from the stack pointer).

The two remaining return instructions are concerned with
interrupts, a topic discussed further in section 6.4.

4.5 SHIFTS AND ROTATES

There are 7 types of shift and rotate instructions summarised
on Fig. 4.2.

71

72

Ta
bl

e 4
.8

 Rot
at

e &
 S

hi
fts

 G
ro

up

M
ne

m
on

ic
Se

e F
ig

. 4
.2

 fo
r o

pe
ra

tio
n

73

'0' = zero
CY = carry flag
(HL) - store location whose

address is held in HL
ACC = register A (i.e. Accumulator)

Fig. 4.2 (b)

These operate as described in section 3.4.5 and are relatively
straightforward.

The rotate digit left (RLD) and rotate digit right (RRD)
are intended for use with BCD arithmetic and shift four bits
between the bottom half of the accumulator and a store
location obtained by register indirect addressing with HL
containing the address.

Four instructions are duplicated (RLCA, RRCA, RLA,
RRA) to include original Intel 8080 instructions.

w

O
GO

3

o
Z

oo oo oo
v v u
ai ai ai

0 Ei
MQ
OiZ

II. d
00

-)
X
ru
* co

OQ

ux
Q o

Qo

W 00
Q Q

•O Q

OW

1 °»
QX

id co

Xru
+ as

Qoo

= O'X u

4- - ’ r i

Q oo

09

e
3

r*

re X

—। «u

Q =o g

Q °
O <u

O W

I

Q =
Q 2

Q

UD
OiZ

NOiivNiisaa
74

4.6 BLOCK TRANSFERS AND SEARCHES

Table 4.9 shows the powerful block transfer instructions. As
explained in section 3.4.6, HL is used to hold the source
address, DE holds the data address, and BC is a byte counter.

Table 4.10 shows the block search instructions.

Table 4.10 Block Search Group
Search
Location

REG.
INDIR.

(HL)

ED
Al

‘CPI’
Inc HL, Dec ÖC

ED
Bl

‘CPIR’, Inc HL, Dec BC
repeat until BC=0 or find match

ED
A9 *CPD’ Dec HL & BC

ED
B9

‘CPDR’ Dec HL & BC
Repeat until BC=0 or find match

None available on 8080
HL points to location in memory to be compared

with accumulator contents
BC is byte counter

75

4.7 BIT MANIPULATION

The range of bit manipulation instructions are shown on Table
4.11. These allow any bit to be set, reset or tested in any
register or (using indirect or indexed addressing) any store
location. The test instructions set the Zero Flag if the tested
bit is zero.

4.8 INPUT AND OUTPUT GROUP

An input instruction needs to specify the port address and the
destination for the data. The Z-80 input instructions, shown
on Table 4.12, all have registers as the destination, and the
port address specified either by immediate addressing or
register indirect with register C holding the port address. A
single byte is used as a port address, so 256 ports can be
addressed. The contents of register A appear on the top 8 bits
of the address bus giving 64K of port addressing for more
ambitious users!

There are also a useful range of block input instructions.
These operate in a similar manner to the block transfer instruc­
tions, and are used to input a block of data from a port to
sequential store locations. Register pair HL holds the store
address, register B is used as a counter and register C holds the
port address.

The output instructions, shown on Table 4.13, transfer data
from registers to a specified port address. As above, immediate
and indirect addressing is used.

There is again a range of block output instructions which
output a block of data from sequential store locations to a
specified port. Register pair HL holds the store address,
register B is used as a counter and register C holds the port
address.

Input/Output is a somewhat involved topic that is dealt
with further in chapter 6 where actual I/O devices are
described along with the operation of interrupts.

76

Ta
bl

e 4
.1

1 Bit
 M

an
ip

ul
at

io
n

G
ro

up

IN
D

EX
ED

(P+A
I) FD

CB

d 46 Q A_.W £8-«« QA-tì

(IX
+d

)

Qoa —soQU’* Q00-.WQU’« D
D

CB

d 56 Qffl—M

RE
G

.
IN

D
IR

.

(H
L)

CB

46 CB

4E CB

56 CB

5E

R
EG

IS
TE

R
A

D
D

RE
SS

IN
G

u CB 45 CB 4D CB

55 CB

5D

X CB

44 CB

4C A rr
U un CB

5C

u CB

43 CB

4B A cn
U un A A

O un

Q CB

42 CB

4A CB

52 CB

5A

u CB

41 A

CB

51 CB

59

A CB

40 CB 48 CB

50 CB 58

< CB

47 CB

4F A r*
U <n CB

5F

Bi
t o s—< CM

TE
ST

‘B

IT
’

T1

FD

CB

d 66 £B*S FD

CB

d 76 Q aa — w U. FD

CB

d 86

Q CQ — UJ
U- U^OO £8^

Q CQ — so

D
D

CB

d

1 76 an_w

D
D

CB

d 86 D
D

CB

d 96

CQ soU so CB

6E CB

76

__
__

__
_

.

CB

7E CB 86 CB

8E CB

96

CB

65 CB 6D CB

75 CB

7D CB

85 CB

8D CB

95

CB

64 CB

6C CB 74 CB

7C CB

84 CB

8C CB

94

CB
 « CQ CQU so CB 73 CB 7B CB

83 CB

8B CB

93

CB

62 CB 6A CB 72 CB

7A CB

82 CB

8A CQ fS(J

CB

61 CB

69 CB

71 CB 79 CB 81 CB 89 CB

91

CB

60 CB

68 CB

70 CB 78 CB 80 CB

88 CQ O(J ON

CB

67 CB

6F CB

77 CB 7F CB

87 PQU- (JOO CB 97

SO C" o

TE
ST

‘B

IT
’

RE
SE

T
BI

T
‘R

ES
’

78

£8^ Q CQ-^O Q CQ W u- B33 < Q CQ kO Qcq^w
a- u 73 cq

QnO-^o Qcq^w
u- u^o

qB33^ a co —>2 Q oo —w
QO^C Qca —

QO33 »
Qca —ujQU33 00 Qoo —>oQO33O a oo-wQU33 (J

CQ W
U 05 CB A

6

CB

A
E

CB B6 CB

BE CB

C6 CB CE

CQ Q

CB A
5

CB

A
D

CB B5

।

CB

BD CB

C5 CB

CD

CB

9C CB A
4

CB A
C

CB B4 CQ U
UCQ CB

C4 CB

CC

CB

9B CB

A
3

CB

A
B

CB

B3 CB BB CB

C3 CB CB

CB

9A

CQ
u< CB

A

A

CB 18
2

CB

BA CB

C2 CB

CA

CB

99 CQ —<
o<

CQ 05

CB Bl CB B9 CB Cl CB

C9

CQ oo
(J 05 CB

A

O

CB A
8

CB

BO

CQ CO
(J CQ CB

CO CB

C8

CB

9F CB A
7

CB A
F

CB B7 CB

BF CB

C7 CQ
uu

cn tF “0 50 è* o

RE
SE

T
BI

T
‘R

ES
’

SE
T

BI
T

‘S
ET

’

79

In
str

uc
tio

n M
ne

m
on

ic
 h

av
e f

or
m

 BIT
 n,

 so
ur

ce
RE

S n
, s

ou
rc

e
SE

T
n,

 so
ur

ce

Q co — no u.o^Q
Q CQ - W
u- o 0 £8-S Q CQ — UJ

U-O^W Qcq — tuO^tu Qcq - w U-O^Qu

§8-8 Q CQ W QU-Q g8-s □ 09-W Qm — 'o QO^U. Qca_ w

88 CB

D
E

CB E6 CB EE

CQ JOO U. CB

FE

CB D
5 oa q

un
CQ *n

CB

ED CB

F5 CB

FD

CB D
4

CB

D
C

CB E4 CQ U
ow

co^- cj a. CB FC

CB

D
3 co as ua CQ cn

uw
09 CQ
ow CB F3 CB

FB

CB D
2 co < UQ CB E2 CQ <

uw
co o<O U- CB

FA

CB

D
I CQ crx

OQ CB EI CB E9 CB

Fl CQOx (JU-

CB

D
O CQ oo

UQ CB

E0 CB

E8 CB F0 CB

F8

CB D
7 co u- UQ CB

E7 CQ U-
uu CB

F7 CQ U-OU-

C4 cn -r NO r-

SE
T

BI
T

‘S
ET

’

80

Table 4.12 Input Group
PORT ADDRESS

IN
PU

T
D

ES
TI

N
A

TI
O

N

IMMED REG.
INDIR.

n (C)

INPUT ‘IN’

R
E
G

A
D
D
R
E
S
S
I
N
G

A
/

DB
n

ED
78

B ED
40

C ED
48

D ED
50

E ED
58

H ED
60

L ED
68

‘INI’ - INPUT &
Inc HL. Dec B

REG.
INDIR. (HL)

ED
A2

INIR’ - INP, inc HL,
Dec B, Repeat if B #= 0

ED
B2

‘IND’ - INPUT &
Dec. HL, Dec B

ED
AA

INDR’ - INPUT, Dec
HL Dec B, Repeat if
B fo

ED
BA

BLO
C

K IN
PU

T C
O

M
M

A
N

D
S

81

Ta
bl

e 4
.1

3 Ou
tp

ut
 G

ro
up

Im
m

ed
. PO

R
T

D
ES

TI
N

A
TI

O
N

A

D
D

R
ES

S

O
U

TI
’ -

O
U

TP
U

T
In

c. H
L,

 D
ec

 B

82

4.9 RESTARTS

The restart instructions are a special group of subroutine calls.
The 8 restart instructions, shown on Table 4.14, call sub­
routines at hex addresses 0, 8, 10, 18, 20, 28, 30, and 38.
Commonly used subroutines can be placed at these addresses
and called with single byte instructions.

Table 4.14 Restart Group

OP
CODE

ooooH C7 ‘RST 0’

0008h CF ‘RST 8’

c
A
L
L

ooioh D7 ‘RST 16’

A
D
D

0018h DF ‘RST 24’

R
E
S
S

0020h E7 ‘RST 32’

0028h EF ‘RST 40’

0030h F7 ‘RST 48’

0038h FF ‘RST 56’

83

4.10 CONTROL INSTRUCTIONS

The 6 Z-80 control instructions are shown on Table 4.15. The
no-operation instruction is simply skipped. This is actually
more useful than might be first thought, as it allows gaps
(for corrections) to be left in programs. HALT, stops the
operation of the processor until an interrupt is received or the
reset signal (pin 26) is given. The remaining control instruc­
tions are concerned with interrupts and are described in
section 6.4.

Table 4.15 CPU Control Group

‘NOP’ 00

‘HALT’
/

76

DISABLE INT ‘(DI)’

/

F3

ENABLE INT ‘(EI)’
/

FB

SET INT MODE 0
‘IMO’

ED
46 8O8OA Mode

SET INT MODE 1
‘IMI’

ED
56 Call to Location 0038pj

SET INT MODE 2
TM2’

ED
5E

Indirect Call using Register
I and 8 bits from Interrupting
Device as a Pointer.

84

4.11 GENERAL OBSERVATIONS

We have now covered all the Z-80 instructions. It cannot be
over-emphasised that it is not practical (or even desirable) to
learn them by heart. It is best for the beginner to start by
writing very simple programs using just a small selection from
the Z-80 repertoire to gain experience. Do not start by writing
a 32K adventure program!

In the following chapter we will describe the Z-80 Assembler
Language which simplifies machine code programming.

85

Chapter Five

ASSEMBLY LANGUAGE PROGRAMMING

5.1 INTRODUCTION

Programming in the actual hex machine code is tedious and
error prone. It is not difficult to see why working in machine
code causes problems. Consider the simple program below:

3A 50 0C Al FE01 C2 00 ID

To find out what this does we must determine where each
instruction starts and finishes. By laborious reference to
chapter 4 we get:

3A 50 0C Load A from location 0C50
Al And with the contents of register C
FE 01 Compare with ‘01 ’
C2 00 ID Jump if zero flag is not set to

instruction at 1 DOO

Understanding a bald Hex program is not easy, and is
doubly difficult with a program written by someone else.

Another problem occurs when a program requires to be
modified due either to a fault or to changed requirements.
Unlike BASIC, the simple insertion of one instructions a
machine code program will affect the addresses of all sub­
sequent instructions, with unfortunate repercussions on the
destination of jump instructions. This problem can be
alleviated to some extent by leaving gaps at strategic places in
a program, but the requirement to insert an instruction will
always make a programmer wince.

Machine code programs can be made comprehensible and
easy to modify if the programmer uses a programming aid
called an Assembler, which allows machine code programs
initially to be written in a form closer to a high level language
such as BASIC.

In assembly language, programs are written using
mnemonics for each and every machine code instruction.

86

Examples of these mnemonics are:
LD Load, i.e. data movement
CALL Subroutine Call
JP Jump
ADD Arithmetic Additions

The program written in mnemonics is called the source pro­
gram. The programmer loads a special program called an
Assembler into his computer, followed by his source program.
The assembler converts the source program mnemonics into
their machine code equivalent (not a particularly difficult
operation, actually, as there is a one to one relationship
between the mnemonics and their Hex coding). The resultant
machine code program is called the object program, and can
usually be saved on cassette, disc or paper tape, or transferred
direct to the computer store.

Writing a program in assembly language is therefore very
similar to writing a program in BASIC, except that one BASIC
instruction will be the equivalent of many machine code
instructions, whereas one instruction in the source program
will represent one, and only one, machine code instruction.

Assembly language programming is much easier than
straight machine code. The use of mnemonics makes the pro­
gram easier to understand, and the assembler allows instruc­
tions to be added or deleted during debugging, with the
computer adjusting all the jump instructions. Anyone seriously
contemplating machine code programming should therefore
aim to obtain an assembler.

There are many different assemblers for the Z-80 with
slight differences in syntax, as there are many slightly different
versions of BASIC. This chapter is therefore a non formal
introduction to the principles of assembly language program­
ming. With the background provided in this chapter, the reader
should have little difficulty in following the formal presenta­
tion of any assembler language instruction manual.

87

5.2 THE SOURCE PROGRAM

5.2.1 Introduction
There are slight differences between manufacturers assemblers
as there are between different BASICs, but in general, one
source program instruction has the form:

Line Number Label Instruction Mnemonic, Comments

For example, we could have:

70 LOOP ADD HL,DE;ADD MULTICAND TO RESULT

The line number is 70
The label identifying the location holding the instruction is
LOOP.
Labels are optional.
The instruction menmonic is ADD HL,DE (add the contents
of register pairs HL and DE, result to HL)

The comments always follow after a semicolon and are
optional. Although they are not used by the assembler as such,
good comments are essential to the understanding of the
program at a later date.

It is most important to remember that one source code
instruction represents one machine code instruction. The
above example would be converted to the machine code
instruction 19 (see Table 4.6).

We will now consider each item in a source program instruc­
tion in more detail.

5.2.2 Line Numbers

Each source program instruction starts with a line number.
Users of BASIC will be familiar with the idea of line numbers,
and will be pleased to know that line numbers in assembly
language programming are used to identify the order of the
instructions in the same way as BASIC.

If we were to type:

88

10 START LD B, 16; INITIALISE REGISTER B
20 LD HL, 0; CLEAR REGISTER PAIR HL
etc.

During debugging, suppose we found that we should also
have cleared register A. We would then reload the source pro­
gram from tape (or disc) and add:

15 LD A, 0; CLEAR REGISTER A

The source program would now be:
10 START LD B, 16; INITIALISE REGISTER B
15 LD A, 0 ; C LEAR REGISTER A
20 LD HL, 0; CLEAR REGISTER PAIR HL

with line number 15 having been inserted between line
numbers 10 and 20. (As an aside LD A,0 gives the machine
code instruction 3E 00; two bytes. A shorter instruction with
the same result is XOR A, exclusive OR of A with itself, which
gives the machine code instruction AF, just one byte). A new
object program could now be produced.

The use of line numbers allows instructions to be added,
deleted and edited in a similar manner to BASIC. Line
numbers are not, however, used in jump instructions (e.g. the
BASIC instruction GOTO 120). Labels described in the next
section, are used for this purpose.

5.2.3 Labels
Labels are used to identify a store location for use by other
instructions (usually jumps and subroutine calls, although any
instruction can use a label). We could for example have:

JP RESET
CALL KBD
LD A, DATA

where RESET, KBD, DATA are labels defined elsewhere in the
program.

89

The label can usually be up to 6 letters long, and are chosen
to be meaningful to the programmer. There are a few restric­
tions on labels; usually they must start with a letter and must
not contain an instruction mnemonic. Individual assemblers
will define allowed formats for labels.

Labels can also be used in an expression to define a store
location. For example JP TABLE+7 is a jump instruction to
the location seven locations further on from the instruction
whose label is TABLE. A special label often used with relative
jumps is $ for “this location”. For example JRNC Start - $ is
a conditional relative jump to Start.

It is not essential (or even desirable) for each and every
instruction to be given labels.

5.2.4 Instruction Mnemonic

The instruction mnemonic defines the actual instruction. In
chapter 3 we saw that most Z-80 instructions define three
things:

i. The operation to be performed
ii. The source (s) for the data to be manipulated

iii. The destination for the result.

The operation to be performed is defined by a simple easy
to remember mnemonic. Examples are:

LD for load instructions; CALL for subroutine calls;
ADC for Add with carry; JP for jump; INC for increment.

There are actually only a small number of these mnemonics,
as shown on Table 5.1.

Table 5.1

ADC
ADD
AND
BIT
CALL

Z-80 MNEMONICS IN ALPHABETICAL ORDER

Add with Carry
Add "
Logical AND
Test Bit
Call Subroutine

90

CCF
CP
CPD \
CPDR I
CPI (
CPIR '
CPL
DAA
DEC
DI
DJNZ
EI
EX
HALT
IM
IN
INC
IND \
INDR /
INI (
INIR)
JP
JR
LD
LDD)
LDDRf
LDI (
LDIR /
NEG
NOP
OR
OTDR)
OTIR I
OUT
OUTD?
OUTI ’
POP
PUSH
RES

Complement Carry Flag
Compare

Block Search

Complement Acc
Decimal Adjust
Decrement
Disable Interrupts
Dec B Jump Non Zero
Enable Interrupts
Exchange
HALT
Set Interrupt Mode
Input from port
Increment

Block Input

Jump
Jump Relative
Load (Data Movement)

Block Load

Negate Acc
No operation
Logical OR
Block Output

Output to port

Block Output

Data from stack
Data to stack
Reset Bit

91

The full list of mnemonics is given in Appendix B.

RET Return from subroutine
RETI Return from interrupt
RETN Return from NMI
RL Rotate Left
RR Rotate Right
RST Restart
SBC Subtract with carry
SCF Set Carry Flag
SET Set Bit
SLA Shift left arithmetic
SRA Shift right arithmetic
SRL Shift right logical
SUB Subtract
XOR Exclusive OR

The source and destination are represented in a similar
manner to the symbolism outlined in section 3.5. Registers
and register pairs are represented by their letters; A, B, HL etc.
Store locations are represented by brackets (). We thus get:

LD A, D Load register A with the contents of
register D

LD (HL), A Load the store location whose address is
held in register pair HL with the contents of
register A (register indirect addressing)

ADD B Add the contents of register B to the
contents of register A (all arithmetic opera­
tion results go to register A, so the
destination is not specified)

SUB 15 Subtract decimal 15 from register A
(Immediate addressing)

All numbers in an assembler source program are assumed
to be in decimal. Hex numbers are usually preceeded by a
Pound (£) sign.

1972 is thus a decimal number
£1972 is thus a hexadecimal number

92

Some advanced assemblers also allow representation of
numbers in octal (base 8) or binary, but these are rather un­
common.

Labels can also be used with the menmonics to specify
store locations as explained in the previous section.

Appendix B gives all the instruction mnemonics used by
Z-80 assemblers.

5.2.5 Comments

Comments are usually preceeded by a ; to tell the assembler
where the instruction menmonic finishes and the comment
starts (cf. the REM in BASIC). Comments, although optional
should be used liberally and intelligently. In particular, the
comments should say what the instruction is doing, and not be
just an expanded version of the mnemonic. For example:

120 SETUP LD HL, £0C50, START OF STRING 0C50
130 LDB, 36; 36 CHARACTERS TO BE SENT

means a lot more than a simple

120 SETUP LD HL,£0C50 ; LOAD HL WITH £0C50
130 LD B, 36 ; LOAD B WITH 36

The only problem with comments is that (like all the source
program) they have to be stored in the computer prior to
assembly. Extensive comments will cause the source program
to occupy considerably more store than the resulting object
program. This could be a problem in computers with a small
store.

5.3 PSEUDO OP CODES

Appendix B defines all the mnemonics corresponding to the
Z-80 machine code instructions. In addition to these,
assemblers have several pseudo mnemonics which are direc­
tions to the assembler itself rather than Z-80 instructions.
These are known as pseudo op codes, and are used to indicate

93

where the object code program is to be placed in memory,
load alphanumeric strings (i.e. messages) directly and similar
operations.

The first of these pseudo op codes is ORG for Origin, which
indicates to the assembler where the object program is to start.
For example, with

100 ORG £4000 *, PROGRAM STARTS 4000
110 PROG LD A,£FF;M AKE A MINUS ONE
etc.

The ORG instruction tells the assembler that the program is
to be loaded from Hex 4000 onwards. The LD A,£FF (3E FF)
will go into locations 4000 and 4001, followed by the rest of
the program.

Several ORG statements can be used in one program.
The second pseudo op code is EQU, for Equate, which is

used to equate a label and a value.
An example of the use of EQU occurs where useful sub­

routines are provided in the ROM of the computer. Let us
assume that there is a keyboard reading subroutine in the
ROM at Hex 01AF. We would put somewhere at the start of
the source program:

(line number) KBD EQU £01AF

Thereafter, when we wish to call the keyboard subroutine
we simply write:

(line number) CALL KBD

which the assembler interprets as CALL £01 AF. Note how the
use of the label KBD assists the comprehensibility.

DEFS (for define space) is the third pseudo op code, and is
used to reserve a number of store locations. For example,
with:

320 JP KBD
330 SPARE DEFS £100; 100 PLACES FOR DATA
340 CALL LOOP

94

the assembler will leave Hex 100 locations between the jump
instruction and the subroutine call.

DEFM (for define message) allows the user to load ASCII
values direct from the keyboard. For example:

100 ORG £3000
110 DATA DEFM “ABCD”

will put Hex 41 into location 3000 (i.e. ASCII A)
Hex 42 into location 3001 (i.e. ASCII B)
Hex 43 into location 3002 (i.e. ASCII C)
Hex 44 into location 3003 (i.e. ASCII D)

DEFM is very useful for loading fixed messages.
DEFB (define byte) and DEFW (define word) allow the

user to define an 8 bit byte or a 16 bit word respectively.
Superficially these are similar to EQU, but the DEF instruc­

tions cause data to be loaded as part of the program, whereas
the EQU has no action outside of the assembler.

5.4 ASSEMBLER DIRECTIVES

Directives are instructions to the assembler (in the same way as
LIST, RUN, EDIT etc. are directives in BASIC). There are, of
course, differences between assemblers on different machines,
but most will have the following:

i. Enter a source program
ii. List a source program to VDU or printer

iii. Edit a source program (add, delete or modify lines)
iv. Search for a specific instruction
v. Renumber a source program (i.e. put all the line numbers

in increments of ten)
vi. Assemble the source program to produce an object pro­

gram which can be sent to tape, disc or printer or placed
directly in the store if space permits.

These directives are selected by keywords from the key­
board in a similar manner to BASIC.

95

5.5 USING AN ASSEMBLER

To demonstrate how an assembler is used, we shall write a
small subroutine using a Z-80 assembler called ZEAP on a
Nascom microcomputer. The subroutine is a simple Bubble
Sort which sorts data in successive store locations into
numerical order. First let us describe the subroutine operation.

The subroutine is entered with register pair HL containing
the first address of the data to be sorted, and register C con­
taining the number of items to be sorted. The data is to be left
in the original area of store after the sort has been completed,
with the smallest number in the lowest store location.

A bubble sort is the simplest and least efficient method of
performing a sort, but is relatively easy to understand. The
algorithm for a bubble sort can be expressed:

i. Set Marker = 0
ii. Go through the list comparing adjacent pairs. If a pair is

in the wrong order interchange them and set Marker = 1
iii. Repeat step ii. until the end of the list
iv. If, at the end of the list, Marker = 1 go back to step i. If

Marker = 0 (indicating no changes have been made) the
sort is complete

The algorithm might be a bit indigestible for a first reading,
and is given in flowchart form in Fig.5.1.

We must now convert this simply expressed flow chart to
a machine code program. The routine is entered with the
address of the first item in the list held in register pair HL, and
the number of items held in register C. The list is accessed
using indexed addressing. The items for comparison are held in
registers A and E. Register B is used as a counter to see if all
the list has been tested (this allows the useful DJNZ (Dec B
jump not zero) instruction to be used. Bit 0 in register H is
used as the marker to indicate if an exchange has occurred and
another pass through the list is required.

The general flow chart of Fig.5.1 is redrawn in a form
suitable for machine code programming on Fig.5.2. This can
be converted more or less directly to an assembler source
program as follows. The reader should carefully compare this

96

97

with Fig.5.2 before reading further.

0010 ,♦** BUBBLE SORT ROUTINE ***
0020 ¡ENTER HI TH FIRST ITEM ADDRESS IN HL
0030 ¡number of items in c <2 to 2ss>
0040 ¡EXIT HI TH:
0050 ¡ITEMS SORTED IN SOME STORE BLOCK
0860 ¡HL AND C UNCHANGED
0070 ¡REGISTERS A B E IX USED
0080 ¡OTHER REGISTERS UNCHANGED
0890 ¡
0100 SORT ORG £5000) ADDRESS FOR ROUTINE
0110 LD (FIRST), HL, SAVE ADDRESS TO FREE H
0120 MAIN RES MARK, H¡CLEAR EXCHANGE MARKER
8130 LD B, C¡ SET UP COUNTER FOR TESTS
0140 DEC B: COMPARISONS 1 LESS THAN ITEMS
0150 LD IX, (FIRST)) SET IX TO START OF LIST
0160 NEXT LD A, <IX+O),GET FIRST OF PAIR
0170 LD E, (IX+1))GET SECOND OF PAIR
0180 CMP E)COMPARE THEM
0190 JR NC NOEX-fiEXCHANGE NEEDED?
0200 LD (IX^0>,E)VES, PUT BACK EXCHANGED
0218 LD (IX+1), A) DITTO
0228 SET MARK, H) MARKER SHOHS EXCHANGE MADE
0230 NOEX INC IX) SET IX FOR NEXT PAIR
0240 DJNZ NEXT-8) JUMP BACK IF NOT END LIST
0250 BIT MARK, H¡END REACHED, EXCHANGE MADE?
0260 JR NZ,MAIN-t)GO BACK IF EXCHANGE MADE
0270 LD HL, (FIRST))SORT DONE, RESTORE HL
8280 RET)EXIT FROM SUBROUTINE
0290 ¡DEFINITIONS
0300 MARK EQU 8) NAME FOR EXCHANGE MARKER
0310 FIRST DBFS 2) TEMP STORE FIRST ADDRESS
0320)
0330)
0340)
0350 ¡
0360 ,
0370 ,
0300 ,
0390)

The above listing has three errors in it; two grammatical
that the assembler will reject as not being a valid instruction.
The third is a logical error. As written the routine will not
perform a bubble sort correctly under all conditions. “Un­
aware” of these errors let us see how the program operates.

Lines 10 to 90 are simply comments to explain the routine
and the registers is uses. This is essential if the routine is to be
held as part of a subroutine library. Line 100 says where the
routine is to go in the store, and is given a label SORT so that
a main program could simply CALL SORT.

Line 110 saves the list start address in a store location
called FIRST, defined in line 310. The exchange occurred
marker is actually bit 0 in register H and this is cleared at line
120.

98

Fig. 5.2 Detailed bubble sort flow chart

99

The counter to see when the end of the list is reached is
held in register B to allow the DJNZ instruction to be used.
Lines 130 and 140 initialise B. The number of comparisons
is one less than the number of items, hence the need for line
140.

The index register IX is used to address the list, and this is
initialised at line 150. Lines 160 and 170 bring pairs from the
list which are compared at line 180. Line 190 skips lines 200
to 220 inclusive if no exchange is needed. If an exchange is
needed, lines 200 and 210 put the data back in the list
reversed and line 220 sets the exchange marker.

Line 230 increments the index register ready for the next
pair, and the counter in B is decremented at line 240. If the
end of the list has not been reached, we jump back to line 160
(the label NEXT) for the next pair.

At the end of the list we look at the exchange marker at
line 250. If this is set, line 260 takes us back to line 220 (the
label MAIN) for another pass through the list.

When the list has been sorted, line 270 puts HL back to the
address at the start of the (now sorted) list so the routine exits
with registers C and HL unaltered.

Lines 300 and 310 define labels. Line 300 says that MARK
means 0, so we can say, for example, SET MARK, H rather
than the less obvious SET 0, H. Line 310 reserves two loca­
tions with the labels FIRST (used to hold the start address of
the list).

The first step in using an assembler is to load the assembler
itself from tape or disc (or call it if you are lucky enough to
have an assembler resident in ROM). The source program is
then typed in.

It is a good idea to immediately save the source program on
tape, to prevent teeth gnashing if the computer crashes or the
mains fails during testing.

With the protection of a back up source program, we now
ask the assembler to convert the source program to a machine
code object program. Not surprisingly, this is known as assem­
bling. In our case we get.

100

LP fi, <IX+O>seeB error 2e eise next

sees error 20 01 se cup e

This indicates that we have grammatical errors in our
program. Different assemblers indicate errors in different
ways, but ZEAP uses error codes.

On line 160 an error 30 was given. This indicates a label not
found. In fact, IX + 0 has been incorrectly entered with letter
O instead of a figure 0. The assembler has looked unsuccess­
fully for a label letter O. A typical typing error.

One line 180 we have error 20. This indicates that the
assembler could not recognize the mnemonic. The correct
mnemonic for compare is CP not CMP. A typical pilot error.

With these errors corrected, we ask for another assembly
which gives

0010 , *** BUBBLE SORT ROUTINE ***
0020
0030
0040
0050
0060
00? 0
0080
0090

..ENTER HI TH FIRST I TEH ftDDRESS IN HL

. NUHBER OF I TENS IN C (2 TO 255)

.¡EXIT HI TH:
i I TENS SORTED IN SftHE STORE BLOCK
; HL 8ND C UNCHANGED
¿REGISTERS 8 B E IX USED
.¡OTHER REGISTERS UNCH8NGED

5000 0100 SORT ORG £5000;8DDRESS FOR ROUTINE
5000 222850 0110 LD (FIRST), HL, SftVE 8DDRESS TO FREE H
5003 CB84 0120 HftIN RES HftRK,H,CLEftR EXCH8NGE HftRKER
5005 41 0130 LD B, C¿ SET UP COUNTER FOR TESTS
5006 05 8140 DEC B¿ C0HP8RISONS 1 LESS TH8N I TENS
588? DD2ft2850 0150 LD IX, (FIRST), SET IX TO ST8RT OF LIST
500B DD?E88 0160 NEXT LD ft, (IX+0); GET FIRST OF PftIR
508E DD5E01 01?0 LD E, (IX+1);GET SECOND OF PftIR
5011 BB 0180 CP E, COHPftRE THEN
5812 3008 0190 JR NC NOEX-f, EXCHftNGE NEEDED?
5014 DD?300 0200 LD (IX+0), E¿ YES, PUT BftCK EXCH8NGED
581? DD??01 0210 LD (IX+1), ft; DITTO
581ft CBC4 0220 SET HftRK, H¿ HftRKER SHOHS EXCHftNGE HRDE
501C 0023 0230 NOEX INC IX, SET IX FOR NEXT PftIR
50 IE 10EB 0240 DJNZ NEXT-f¿JUHP BftCK IF NOT END LIST
5020 CB44 0250 BIT HftRK,H¿END RE ft C HED, EXCHftNGE HftDE?
5822 20DF 0260 JR NZ, HRIN-f, GO BftCK IF EXCHftNGE HftDE
5824 282850 02?0 LD HL, (FIRST), SORT DONE, RESTORE HL
582? C9 0280

0290
RET .¡EXIT FROH SUBROUTINE

, DEFINITIONS
0000 0300 HftRK EQU 0, NRHE FOR EXCHftNGE HRRKER
0002 0310

0320
0330

FIRST DEFS 2, TEHP STORE FIRST ftDDRESS

This produced no errors, so it is a legitimate source pro­
gram. This does NOT mean it will necessarily do what we
want, it simply means there are no grammatical errors (as men­

101

tioned earlier, there is a logical error in the program which we
will discover later).

The print out gives us for each source line in order from left
to right;

i. The store location an instruction is stored at
ii. The actual Hex object code

iii. The source line number
iv. Label (if present)
v. The instruction mnemonic or pseudo op code.

vi. Comments (if present)

The reader should check the object code against the tables
in the previous chapter to see that the method works! It is also
useful in getting a ‘feel’ for the operation.

We now need to test our routine. Before we can do this we
need to discuss the debugging aid known as a “Monitor”.

5.6 MONITORS AND BUGS

5.6.1 Introduction

An assembler allows machine code programs to be written, but
does not allow them to be run or tested. To do this we need
another programming aid known as a Monitor or Bug.

A monitor is a small program (typically 1 — 2K) that allows
the programmer to examine the store and register contents and
check a program by stopping it at a strategic point or running
a program with a pause between each intruction (known as
single stepping).

A monitor can exist in ROM (as does the Nascom NASBUG
and NASYS monitors) or be loaded via tape (as the TRS-80
T-BUG). Monitors are often called BUGs because they are used
to de-bug a program.

The facilities offered by different monitors vary consider­
ably, but all will have the following (although the terms used
may differ). The examples below are for a NASBUG monitor.

102

5.6.2 Modify

This allows the programmer to examine (and if necessary
modify) a store location. If, for example, the programmer
wanted to examine location 0C50, he would type:

M 0C50 Newline;
and the computer would reply:

0C50 A5

meaning location 0C50 contains Hex A5. The programmer can
now type in a new value to go into the location. It is thus
possible to load a whole machine code program in Hex by the
modify command, although it is more usually applied for small
corrections.

5.6.3 Execute
This option is used to start a machine code program. The user
types E followed by the start location.

E F600 Newline

will execute a machine code program starting at location
F600. Note that this is a “Kamikaze” dive into a program, and
unlike BASIC could easily corrupt the store if the program
contains an error.

5.6.4 Breakpoint

This option stops the program at a pre-determined point and
displays the register contents. It is an invaluable aid for fault
finding. The breakpoint is set by typing B followed by the
locations.

B 1A 92 Newline

will set the breakpoint at location 1A92. The register display
on a NASBUG is:

SP PC AF HL DE BC I IX IY Flags

103

so a typical display for Bl 002 could be

1000 1002 C59A 7C80 817E 7A81 00 234D OFFE SHN

showing that register A, for example, contains Hex C5.
The usefulness of the breakpoint cannot be overemphasised.

5.6.5 Tabulate

The tabulate function displays the store contents between two
specified points, with a NASBUG:

T 3000 3040 Newline

Could produce

>t 3000 3040
3000 3E 01 0E 05 81 07 FE IF
3008 C2 20 30 CD €9 00 DD El
3010 30 F? FE IF 28 OF DD E5
3018 CD 30 01 DD El DD 77 00
3020 DD 23 0C 18 E4 21 00 40
3028 CD 00 50 21 00 40 41 7E
3030 CD 30 01 23 10 F9 18 CB
3038 FF 00 FF 00 FF 00 FF 00

>

The first few instructions are actually:

3000 8810 ORG
3000 3E01 0020 LD
3002 0E05 0030 LD
3004 81 0040 RDD
3805 07 0850 RLC8
3006 FE1F 0060 CP
3008 C22030 0070 JP

£3000
R,l.ONE IN REGISTER R
C, 5; FIVE IN REGISTER C
R, Cj ROD REGISTERS R RND C
■ R0TRTE REGISTER R
EiFiCOMPRRE REGISTER R HI TH HEX IF
NZ, £3020, JUMP TO HEX 3020 IF NON Z

which should correspond with the listing.

5.6.6 Single Step

Single step is similar to Execute, except that the computer
pauses between each instruction and displays the register con­
tents with the same layout as the breakpoint display. A typical
display might be:

104

sseee
ibbb 3662 eise ?cee size 7hbi ee ices bffe shn
>
leee see* bish ?cbb bi?e 7hbs ee ices bffe shn
>
1BBB 3BBS B6BB 7C86 817E 7RB5 BB ICBS BFFE
>
1668 3686 BCBB 7C8B 817E 7685 BB ICBS BFFE
>
1888 3868 6C9B 7CBB 817E 7665 BB ICBS BFFE SHNC
>
1688 3628 8C9B 7C8B 817E 7685 BB ICBS BFFE SHNC >
1888 3822 8C9B 7C86 817E 7685 88 1C86 BFFE SHNC
>

The above steps are actually the instructions above. The
reader should check the register contents against the program
at each stage.

5.6.7 Conclusion
The five functions described above are provided on all
monitors. Other functions commonly available are write a
program to tape or disc, read a program from tape or disc,
search for a specified data string, copy data from one part of
the store to another. The instruction manuals should be con­
sulted for specific details.

It is possible to write, check and run machine code
programs with a monitor only. It is not possible to check
machine code programs with just an assembler. Although
ideally an assembler and monitor should be obtained, if funds
are tight, a monitor alone will suffice.

Some machines (such as the NASCOM) come with a
monitor already provided in ROM.

5.7 TESTING A MACHINE CODE PROGRAM

In section 5.5 we wrote a bubble sort subroutine. We will now
write a small program to test it. This program will take a series
of characters from the keyboard and store them. The charac­
ters are then sorted by our subroutine and displayed, sorted,
on the VDU screen. Alphanumeric characters are obtained
from the keyboard in Hex (A is 41H, B is 42H etc.) so they

105

will be sorted into alphabetical order. The test program can be
represented in simple form by the flow chart of Fig.5.3.

Most monitors contain useful subroutines that can be called
by the users program. In a NASBUG we have:

i. Keyboard at Hex 0069. This returns with the carry flag
set and the Hex code for the character in register A if a
key has been pressed. If no key is pressed, the sub­
routine returns with the carry flag reset.

ii. CRT at Hex 013B. This takes the contents of register A
and displays the equivalent character on the VDU.

These two NASBUG routines allow us to produce the
detailed flow chart of Fig.5.4 which becomes the source pro­
gram below:

0408 ; TEST PROGRAM FOR BUBBLE SORT
8418 KBD EQU £69; NASBUG KEYBOARD ROUTINE
8428 CRT EQU £13B; NASBUG CRT ROUTINE
8438 SORT EQU £5888; BUBBLE SORT ROUTINE
8448 ;
8458 ORG £3888
8468 LD SP £5FFF; SETUP STACK POINTER
8478 BEG LD C, 8; CLEAR C FOR COUNTER
8488 LD IX, £4888; STRING TO GO FROM 4888
8482 INP PUSH IX; IX USED IN KBD ROUTINE
8498 CALL KBD; GET CHARACTER
8494 POP IX; GET IX BACK AFTER KBD ROUTINE
0500 JR NC INP-t; JUMP BACK NO KEV PRESSED
8518 CP £1F;HAS CHARCTER NEN LINE?
8528 JR 2 BUBB-t; IF SO GOTO BUBBLE SORT
8522 PUSH IX; IX USED IN CRT ROUTINE
8538 CALL CRT; DISPLAY CHARACTER
8534 POP IX; GET IX BACK AFTER CRT ROUTINE
8548 LD (IX), A; STORE IT
0550 INC IX; READY FOR NEXT CHARACTER
8568 INC C, INC CHARACTER COUNTER
0570 JR INP-t; GET NEXT CHARACTER
0580 ;
8598 ;
8688 BUBB LD HL, £4888; START ADDRESS OF LIST
8618 CALL SORT
8628 ;
8638 ;
8648 ¡DISPLAY SORTED LIST
8658 LD HL, £4888; START OF SORTED LIST
8668 LD B, C; NUMBER IN LIST FOR COUNT
8678 LP LD A, (HL); GET CHARACTER FOR DISPLAY
8688 CALL CRT; AND DISPLAY IT
8698 INC HL; NEXT ADDRESS
8788 DJNZ LP-t; END OF LI ST?JUHP BACK IF NO
8718 JR BEG-t; GO BACK FOR ANOTHER LIST

Note that the line numbers follow on from the bubble sort
routine in section 5.5 so that the subroutine and the test

106

107

Start
_____ I_____

Housekeeping:
Ld IX with Hex 4000
Set up stack pointer

Clear register C

IX pointer to next item in list,
starts at Hex 4000. Reg C
counts number of items

KBD is routine in Nasbug which
scans keyboard & returns with
character in reg A

i.e. jump on requisite flag

i.e. compare "Newline" & jump
on requisite flag

CRT is routine in Nasbug which
displays character in A on VDU

i.e. (IX + 0)*A

Increment
pointer

& counter
i.e. inc IX

inc C

Fig. 5.4 (a) Detailed flow chart for
bubble sort test program

108

Set HL to
Hex 4000

~T~
Call SORT

Set HL to 4000
Set B to number

of items

List now entered

4000 is start of list

i.e. Call fig. 5.2

List now sorted

HL used as pointer
B used as pointer

Next character
to A i.e. A* (HL)

Fig. 5.4 (b)

Nasbug routine as above

i.e. ine HL

i.e. decrement counter B &
jump if non zero DJNZ

109

program can be assembled together.
The program is relatively straightforward. The input

portion occupies lines 400 — 570 and the output portion lines
640 710. Between these we call the bubble sort routine.
The first lines define the labels KBD and CRT to call the
NASBUG routines and say where the test program is to go
(Hex 3000). ' ...

A character is obtained from the keyboard at lines 482 -
500, and stored using indexed addressing in locations from
540. Register C is used to count how many characters have
been input. When a newline character is detected, the bubble
sort routine is called. A typed character is displayed at line
530.

The output routine works up the sorted list using register
indirect addressing, sending characters to the Nasbug CRT
routine to display them. Register B is used as a counter.

The test program and routine are assembled together, and
the assembler directed to load the resulting object program to
store and to tape (the latter as a precaution in the not un­
likely event that a programming error causes the computer to
crash. Remember, unlike BASIC, a machine code program can
self destruct). We now have:

eeie i*** BUBBLE SORT ROUTINE ***
8828 iENTER NI TH FIRST I TEH RDDRESS IN HL
0038 ; NUMBER OF I TENS IN C (2 TO 255)
8848 ; EXIT NITH:
8858 i I TENS SORTED IN SRHE STORE BLOCK
8868 i HL RND C UNCHRNGED
0670 jREGISTERS iR B E IX USED
8888 ; OTHER REGISTERS UNCHRNGED
0090 i

5000 0100 SORT ORG £5880, RDDRESS FOR ROUTINE
5000 222856 0110 LD (FIRST), HL, SRVE RDDRESS TO FREE H
5883 CB84 0120 HRIN RES HRRK, Hi CLERR EXCHRNGE HRRKER
5665 41 0130 LD B, Ci SET UP COUNTER FOR TESTS
5686 65 0140 DEC Bi COHPRRISONS 1 LESS THRN I TENS
566? DD2R2858 0150 LD IX, (FIRST), SET IX TO STRRT OF LIST
5666 DD7E88 0160 NEXT LD R.XLX.+3^GET FIRST OF PAIR
5666 DD5E81 0170 LD E, CIX+l)i GET SECOND OF PRIR
5611 BB 0188 CP Ei COHPRRE THEN
5612 3668 0190 JR NC NOEX-fi EXCHRNGE NEEDED?
5814 DD7386 0200 LD (IX+0), Ei YES, PUT BRCK EXCHRNGED
581? DD7701 8218 LD (IX+1), Ri DITTO
581R CBC4 8220 SET HRRK, Hi HRRKER SHONS EXCHRNGE HRDE
561C DD23 0238 NOEX INC IXiSET IX FOR NEXT PRIR
56 IE 16EB 8248 DJNZ NEXT-fiJUHP BRCK IF NOT END LIST
5826 CB44 8258 BIT HRRK, Hi END RERCHED, EXCHRNGE HRDE?
5622 26DF 0268 JR NZ, HRIN-fi GO BRCK IF EXCHRNGE HRDE
5624 282858 8278 LD HL, (FIRST)iSORT DONE, RESTORE HL

110

5027 C9 0280
0290

RET
i DEFINITION!

jEXIT FROH SUBROUTINE

0000 0308 HARK EQU 0; NAHE FOR EXCHANGE HARKER
0002 8310 FIRST DEFS 2; TEHP STORE FIRST HDDRESS

0320 ;
0330 ;
0340 ;
0350 ;
0360 ;
0370 i
0380 i
0390 Ì
0400 ; TEST PROGRAH FOR BUBBLE SORT

0069 0410 KBD EQU £69; NHSBUG KEYBOHRD ROUTINE
013B 0420 CRT EQU £13B;NHSBUG CRT ROUTINE

0430 ;
0440 ;

3000 0450 ORG £3000
3000 31FF5F 0460 LD SP £5FFF; SETUP STHCK POINTER
3003 0E00 0470 BEG LD Cj0;CLEAR C FOR COUNTER
3005 DD210040 0480 LD IX, £4000; STRING TO GO FROH 4008
3889 DDES 0482 INP PUSH IX; IX USED IN KBD ROUTINE
3888 CD6988 0498 CALL KBD; GET CHARACTER
388E DDE1 0494 POP IX; GET IX BACK AFTER KBD ROUTINE
3818 38F7 8500 JR NC INP-f; JUHP BACK NO KEY PRESSED
3812 FE1F 0510 CP £1F; NAS CHARCTER NEN LINE?
3814 288F 0520 JR 2 BUBB-f; IF SO GOTO BUBBLE SORT
3816 DDES 0522 PUSH IX;IX USED IN CRT ROUTINE
3818 CD3B81 0530 CALL CRT; DISPLAY CHARACTER
3818 DDE1 0534 POP IX; GET IX BACK AFTER CRT ROUTINE
381D DD7788 0540 LD (IX), A; STORE IT
3828 DD23 0550 INC IX; READY FOR NEXT CHARACTER
3822 8C 0560 INC C; INC CHARACTER COUNTER
3823 18E4 0570 JR INP-*; GET NEXT CHARACTER

0580 i
0590 i •

3823 218848 0600 BUBB LD HL, £4000; START ADDRESS OF LIST
3828 CD8858 0610 CHLL SORT

0620 ;
0630 i
0640 ;DISPLAY SORTED LIST

3828 218848 0650 LD HL, £4888; STBRT OF SORTED LIST
382E 41 0660 LD B, C; NUMBER IN LIST FOR COUNT
382F 7E 0670 LP LD ñ,<HL),GET CHBRRCTER FOR DISPLRV
3838 CD3B81 0680 CriLL CRT; RND DISPLRV IT
3833 23 0690 INC HL; NEXT RDDRESS
3834 18F9 0700 DJNZ LP-t; END OF LI ST?JUMP BRCK IF NO
3836 18CB 0710 JR BEG-f; GO BRCK FOR RNOTHER LIST

To run this, we call up the monitor and type E3000 to
enter our test program. As expected we get the VDU prompt
from the KBD routine. Full of optimism we type:

QWERTYUIOP Newline

and on the screen comes:
EIOPRTUQWY

WHICH IS WHAT WE WOULD EXPECT. We now try:

111

THE QUICK BROWN FOX Newline

Nothing happens. The computer does not reply with a sorted
string (or for that matter anything). Our logical bug has
surfaced.

Examining the store with the monitor tabulate function
shows the store to be uncorrupted. The program is run again
with the breakpoint set for the first location in the output
portion of the test program (i.e. B 302B). Running the pro­
gram again, we find that the breakpoint is not reached; the
bubble sort routine is tied up in a permanently running loop.

Further checks with the breakpoint shows that the bubble
sort routine does not work correctly where there are duplicate
characters. As written it will sort D F A X Y but not
D F F A X Y. In the original source program, the test at
line 190 not only exchanges numbers that are out of order,
but also exchanges numbers that are the same. A list with
duplicates will therefore never finish; the routine will continue
for ever interchanging the duplicates!

This can easily be cured. If we add a line 195, to the source
program to jump to NOEX if the characters are the same, the
routine will not run for ever with duplicate numbers. The
assembler is instructed to re-assemble the source program,
(and takes care of all the new locations and relative jumps).

0010 ;*** BUBBLE SORT ROUTINE ***
8020
0830
0040
0050
0060
0070
0080
0090

; ENTER NITH FIRST ITEM RDDRESS IN HL
; NUMBER OF ITEMS IN C (2 TO 255)
;EXIT NITH:
; ITEMS SORTED IN SRME STORE BLOCK
; HL RND C UNCHRNGED
;REGISTERS R B E IX USED
; OTHER REGISTERS UNCHRNGED

5000 0100 SORT ORG £5000; RDDRESS FOR ROUTINE
5000 222R50 0110 LD (FIRST), HL; SRVE RDDRESS TO FREE H
5883 CB84 0120 MRIN RES MRRK, H; CLERR EXCHRNGE MRRKER
5005 41 0130 LD B,C;SET UP COUNTER FOR TESTS
5806 05 8140 DEC B;COMPRRISONS 1 LESS THRN ITEMS
500? DD2R2R50 0150 LD IX, (FIRST); SET IX TO STRRT OF LIST
500B DD7E00 0160 NEXT LD R, (1X40); GET FIRST OF PRIR
500E DD5E01 0178 LD E, (1X41); GET SECOND OF PRIR
5011 BB 0180 CP E; COMPRRE THEM
5012 3008 0190 JR NC NOEX-t; NO EXCHRNGE IF CORRECT
5014 2808 0195 JR Z N0EX-$;N0 EXCHRNGE IF SRME
5016 DD7300 0200 LD (1X40), E;EXCHRNGE NEEDED SO SHRP
5019 DD7701 0210 LD (1X41), R; THE TNO CHRRRCTERS
501C CBC4 0220 SET MRRK, H; MRRKER SHOHS EXCHRNGE MRDE
50 IE DD23 0230 NOEX INC IX;SET IX FOR NEXT PRIR

112

5020 10E9
5022 CB44
5024 20DD
5026 2A2A50
5029 C9

0000
0002

0240 DJNZ NEXT-t; JUHP BACK IF NOT END LIST
0250 BIT HARK, H; END REACHED, EXCHANGE HADE?
0260 JR NZ,HAIN-t,GO BACK IF EXCHANGE HADE
0270 LD HL, (FIRST); SORT DONE, RESTORE HL
0280 RET ¡EXIT FROH SUBROUTINE
0298 ¡DEFINITIONS
0300 HARK EOU 0; NAHE FOR EXCHANGE HARKER
0310 FIRST DEFS 2; TEHP STORE FIRST ADDRESS
8328 ;
0330 ;

The resulting program is tested as before. This time:

THE QUICK BROWN FOX Newline

gives:

BCEFHIKNOOQRTUWX

Note the four spaces come at the start of the sorted list.

5.8 CONCLUSION

The writing and testing of our bubble test program should
serve to show the basics of assembly language programming.
There are dialect variations between different assemblers,
so it is advisable to check carefully how individual assemblers
and monitors differ from those described above.

A bubble sort is rather an inefficient way of sorting, and
the routine above has been written for ease of comprehension
rather than speed or elegance. It would be a useful exercise for
the reader to consider how faster sort routines could be
implemented.

113

Chapter Six

INTERFACING THE Z-80

6.1 INTRODUCTION

To be useful, a computer must be able to communicate with
the outside world. At the simplest level we need to be able to
input from a keyboard and cassette recorder, and output to a
TV screen and tape recorder. More ambitious systems will have
printers, discs and possible control external items such as
laboratory experiments or industrial plant.

In this chapter we will describe how the Z-80 communicates
with its external devices.

6.2 SERIAL AND PARALLEL COMMUNICATION

All communication between micros and the outside world
takes place in the form of 8 bit words. If the data is alpha­
numeric, the 8 bits will usually represent a character in the
ASCII code (see Appendix C). If the data is used in
instrumentation the 8 bits will represent the value of a variable
such as temperatures or pressure. If the data is being used for
control, individual bits in the word will be used to represent
the states of limit switches, valves, lamps etc.

If we are to send 8 bit words from place to place, there are
two methods we can use. In Fig. 6.1a we simply send the data
down 8 wires simultaneously. This is known as parallel trans­
mission and is (in essence) the method used inside a micro­
computer. It can, of course, be used to transmit data outside
the computer.

In Fig. 6.1b the data is sent as a serial pulse train down a
single wire. This is known as serial transmission. Obviously,
serial transmission is slower, but cheaper, than parallel
transmission.

Internally, all data movement in a microcomputer is done
in parallel. I/O ports therefore communicate with the

114

115

computer in parallel. If serial communication is being used,
some form of parallel/serial and serial/parallel logic is required
as shown on Fig.6.2. This is really little more than an 8 bit
shift register with some control logic. Fig. 6.2 is usually imple­
mented with a device called a UART (for Universal Synchro­
nous Receiver Transmitter) or SIO (for Serial Input Output).
These are described further in section 6.6.

6.3 PORT ADDRESSING AND LOGIC

The fundamentals of port addressing was outlined in section
1.5. I/O addressing is done via bits 0 - 7 of the address bus,
allowing 256 port addresses in the range 0 255. A control
signal IORQ is used to indicate that an address is a port
address rather than a store address. The data direction signal
RD is used to indicate whether an input or output is required.

A simple parallel output port can therefore be constructed
along the lines of Fig. 6.3. The bottom 8 bits of the address
bus are decoded by some logic decoder (such as a 74138) to
give a port select signal. This is gated with the timing signals to
produce a clock signal for the 8 D types flip flops. The data on
the data bus is stored in the D types for use by the device con­
nected to the port.

A simple parallel input port is shown on Fig.6.4. Data from
the device is gated into the 8 D types by a strobe signal. This
strobe can be generated by the device itself (e.g. an ADC
saying it has completed its digitisation (see Section 6.9)) or by
the computer wanting a ‘snapshot’ of the port state (e.g.
reading limit switch states on an industrial control applica­
tion). This loading of the D types can take place at any time
and need not necessarily involve the computer.

The state of the D types is read into the processor by the
rest of the logic. The port address is decoded and gated with
the timing signals to enable the 8 tristate buffers. The data
from the D types is then available on the data bus for use by
the processor.

It is possible to construct ports with discrete logic similar
to Figs. 6.3 and 6.4, but it is usually simpler to use the ICs

116

117

118

119

designed specifically for the I/O applications. The Z-80 PIO
chip is described in section 6.5.

6.4 INTERRUPTS

6.4.1 Introduction
There is a vast speed difference between a microcomputer and
even a high speed printer. If, say, the computer is to send a
string of characters to the printer, some method must be used
to inform the computer when the last character has been
printed and the printer is ready to accept the next character.

A similar problem occurs where the computer is used for
control purposes. If an alarm condition is required to be
detected within, say, 0.2 seconds the corresponding input
must be monitored every 0.2 seconds even though the alarm
might only occur once every five years.

A technique where the computer goes round its inputs at
regular intervals seeing if the printer is ready for another
character or an alarm condition has occurred is called
“polling”. Although it is acceptable for small systems, polling
ties up the processor in unnecessary operations. In larger
systems it may be impossible to obtain the required response
time by polling, as the time taken to poll and service inputs
obviously increases with the number of inputs.

The ideal solution would allow a device requiring attention
to signal directly to the processor without the need for polling.
This is known, for obvious reasons, as an “interrupt”.

When a device requires the attention of the processor, it
requests an interrupt. The processor completes its current
instruction and acknowledges the interrupt. The processor
now identifies the interrupting device, and goes to a servicing
routine. This is performed in a similar manner to a normal sub­
routine, with the PC being pushed onto the stack.

At the completion of the servicing routine, the PC is
restored from the stack, and the main program continues from
the point at which the interrupt occurred.

Normally an interrupt hierarchy is established to allow a
120

more urgent interrupt to interrupt a lower priority servicing
routine. A typical sequence of events is shown on Fig. 6.5.

6.4.2 Servicing an Interrupt

There are basically three different ways of responding to an
interrupt, but all have the same objective of identifying the
device initiating the interrupt, and calling the servicing routine.

The simplest method, used on early microprocessors, has a
common interrupt servicing routine. When an interrupt occurs,
this common routine polls all the devices (“who said that?”)
and then calls the correct servicing routine.

The 8080 uses a more elegant method. When the processor
has pushed the PC onto the stack it acknowledges the
interrupt request and releases control of the data bus. The
interrupting device now forces an instruction onto the bus
which is almost always a subroutine call to its servicing
routine. The RST instructions (see section 4.9) are part­
icularly useful for this purpose.

The Z-80 can use the simple “who said that” method, the
8080 method (for compatability) and a powerful method of
its own. The flexibility and sophistication of its interrupt
handling is one of the Z-80’s best features.

The Z-80’s own method uses the 8 bit ‘I’ register. This con­
tains the top 8 bits of a store address. When an interrupt is
acknowledged, the device supplies the bottom 8 bits. The 16
bits together indicate two store locations which contain the
address of the servicing subroutine. This operation sounds
more complex than it actually is, and possibly is best
summarised by Fig.6.6. The I register actually designates an
area of store to be used as a table to hold the addresses of the
interrupt service routine.

6.4.3 Z-80 Interrupts

The Z-80 can handle interrupts in three different ways, called,
not surprisingly, Mode 0, Mode 1, Mode 2. The mode is
selected by control instructions (see table 4.15). The
mnemonics for these are ‘IMO’, ‘IM1’, ‘IM2’. Only one

121

122

123

interrupt mode can be used at once.
Mode 0 is the 8080 mode. On receipt of an interrupt the

Z-80 releases the data bus, then obeys an instruction provided
by the device.

Mode 1 is the simple polled response. On receipt of an
interrupt the processor calls a subroutine located at Hex 38.
This address is “built into” the instruction.

Mode 2 is the Z-80’s own powerful mode, and operates as
outlined above. It should be apparent that the programmer
must ensure the I register and address table are loaded
correctly. We shall see in later sections how the interrupting
device obtains its half of the data table address.

The interrupts described above are detected via pin 16 of
the Z-80 CPU chip (see Fig.2.7 and section 2.3). These are
known as Maskable Interrupts because the programmer can
enable or disable the processors response. This is achieved
by two control instructions; Enable Interrupt ‘(EI)’, and Dis­
able Interrupts ‘(DI)’. (See table 4.15).

There is also another interrupt facility on the Z-80. Pin 17
provides a non maskable interrupt. As its name implies, a non
maskable interrupt cannot be ignored by the CPU. Usually
NMI is used for interrupt functions such as powerfail
detection.

An NMI has only one response mode, a call to Hex 66. An
NMI automatically disables the maskable interrupts to prevent
its (presumably top priority) routine from being interrupted.
A special “return from non maskable interrupt” instruction
(‘REIN’) reinstates the status of the maskable interrupts after
the NMI routine whilst returning the PC to its previous value.

Return from maskable interrupts should use the “return
from maskable interrupt” instruction (RETI). This reinstates
PC from the stack and allows further interrupts from lower
priority devices. The normal subroutine return instruction
(RET) should not be used to return from an interrupt service
routine.

The timing and operation of an interrupt is shown, some­
what simplified form, on Fig. 6.7. The sequence starts by a
device requesting an interrupt by pulling the wired OR 1NT
line low. The CPU completes its current instruction then pulls

124

MI low. This freezes the priority status, preventing further
interrupts tripping over each other during the short time whilst
the PC is put on the stack. After PC is put onto the stack,
IORQ is taken low which signals to the device that the low
byte for the address table is required. When this is provided
the CPU jumps to the address provided by the table. IORQ and
MI go back high and the service routine is being obeyed. The
priority is unfrozen and further interrupts can take place. The
interrupting device watches the data bus for a RETI instruc­
tion signifying the end of the service routine. When this occurs
the device then allows interrupts from lower priority devices
on the daisy chain.

125

6.4.4 INTERRUPT PRIORITY

The priority of interrupting devices is determined by a simple
daisy chain. Each port has an input called “Interrupt Enable
In” and an output called “Interrupt Enable Out”. The input
allows the port to signal an interrupt. The output indicates if
the port is currently engaged in an interrupt OR the port is
disabled from interrupting by the enable input.

“Enable interrupt” is high to enable, and the “Interrupt
Enable Out” signal is low when the port is disabled or engaged
in an interrupt. By daisy chaining these signals, as shown on
Fig. 6.8, the priority increases to the left of the chain, port 6
having the highest priority, and port 1 the lowest. As drawn,
port 4 is currently engaged in an interrupt, and ports 1,2,3
are disabled. An interrupt from port 5 or 6 would be allowed,
and would interrupt the service routine for port 4.

6.5 THE Z-80 PIO

6.5.1 Introduction

Most microprocessor manufacturers provide special IC’s to
simplify the design of parallel ports. The Z-80 chip is known as
a PIO (for parallel input output, what else?) and gives the user
two 8 bit ports which can be-configured to be input ports, out­
put ports or bidirectional. Interrupt logic is also included.

A block diagram of the Z-80 PIO is shown on Fig. 6.9. The
PIO connects to the CPU via the usual address, data and
control highways. External logic is required to decode the PIO
address and select the chip via the chip enable input. We will
describe the other control signals later.

The two ports are known as A and B. The ports can be used
in four modes.

i. Input, 8 bit input port with full handshake
ii. Output, 8 bit output with full handshake

iii. Bidirectional (port A only). The port responds to both
input and output commands. This mode is used where

126

ni

128

the PIO feeds onto an external I/O bus in, for example,
data logging applications. Full handshake is provided.

iv. Bit mode. The user specifies which bits in a port are to
be inputs and which are to be outputs. These bits then
respond respectively to input and output commands.
No handshaking is provided.

Interrupts can be generated on inputs or on the successful
completion of an output. The “interrupt request” signal is
given by an open collector output to give the single “interrupt
request” to the processor. “Interrupt Enable” and “Interrupt
in progress” operate as above.

Before the PIO can be used, therefore, the user has to per­
form a considerable setting up operation. Briefly, the user
must specify for both A and B ports:

i. The operating mode (as above)
ii. If Bit Mode is selected, which bits are inputs and which

are outputs.
iii. If interrupts are to be used
iv. The interrupt conditions
v. The interrupt table address low byte, known as the

interrupt vector (see sections 6.4.2 and 6.4.3)
This information is loaded into the PIO at the start of the

users program.
The PIO must obviously need to distinguish between set up

data and data to be sent to the outside world. This is achieved
by a control signal called “C/D select”. If this is high during
an output command, the data on the data bus is interpreted as
set up data in a manner described later. If the C/D select is
low during an output command, the data on the data bus is
passed onto the outside world.

The PIO also needs to be told if an input or output
command is for the A port or the B port. A control signal
called “A/B select” is provided for this purpose. If this input is
high, port A is being used. If the input is low, port B is select.

It is usual to connect A/B select to bit AO on the address
bus and C/D select to bit Al on the address bus, and decode
bits A2 to A7 to select the PIO via the chip enable. On

129

Fig.6.10 the chip is selected when A2 is high and A3 — A7 are
low. The PIO then uses four addresses as below:

4 Port B data transfer
5 Port A data transfer
6 Port B set up data
7 Port A set up data

6.5.2 Set Up Data

The PIO must be initialised before any data can be transferred.
This involves several stages. First, an operating mode must be
defined for port A and B. This is done by sending a control
word for each port with the format in Fig.6.11.

Bits DO to D3 define that a mode is being selected, and bits
D6, D7 define the mode. Bits D4, D5 are unused and are con­
ventionally reset. We therefore have:

Ml M0 Hex Mode
0 0 OF output
0 1 4F input
1 0 8F bidirectional
1 1 FF bit

The instructions to set port A to be an input port would
therefore be (for the PIO in Fig.6.10)

LD A £4F ; 4F is the code for input mode
OUT 7 ; Port 7 set up for port A

When the bit mode is selected, a second set up word must be
sent to define which bits are to be inputs and which are out­
puts. A ‘1’ means that the corresponding data bit will be used
as an input. If, for example, we sent:

10 110 0 11 (Hex B3)
Bits 0, 1,4, 5 and 7 are inputs
Bits 2, 3 and 6 are outputs

To set up a bit mode operation with the above pattern we
would write

130

131

D7 D6 D5 D4 D3 D2 D1 DO

M1 M0 X X 1 1 1 1

X = dont care

Hex F, least significant nibble
signifies set mode

Fig. 6.11 Mode select word

LD A, £FF ; Code for Bit Mode
OUT 7 ; Port 7 set up for port A
LD A, £B3 ; Directional data
OUT 7 ; Set up direction of data lines

6.5.3 Handshaking
There are two handshake lines with each port. Those are used
to generate an interrupt when an output has been completed
(output mode) an input is requested (input mode) or a specific
bit pattern appears at the port as data.

Fig. 6.12 shows the timing for an output. At point A the
composite WR* signal goes low to signal that new data is
present and can be latched into the PIO. Shortly after the PIO
changes the port output, WR* goes high again, and Ready goes
high to signal to the peripheral device that new data is present,
(point B). When the device has accepted the data it takes the
strobe line low (point D) and high (point E). This rising edge is
used by the PIO to clear the Ready line and generate an
interrupt.

Input timing is shown on Fig.6.13. This operation is initiated
132

133

134

by the peripheral device which presents data to the input port
and takes the strobe line low. This latches the data into the
PIO. The rising edge of the strobe (point B) causes the Ready
line to go low and an interrupt to be generated. When the CPU
reads from the port, the composite signal RD* is generated
inside the PIO, and the rising edge of this takes Ready high to
signal to the peripheral device that another input can be made.

Bidirectional operation is simply a combination of input
and output operation, but suffers from the restriction of a 40
pin chip. Bidirectional operation requires four handshake lines,
two for input and two for output. Pin limitation means that
only two handshake lines are provided per port. Bidirectional
operation is therefore only available on port A, with port A
handshakes used for the outputs, and port B handshakes for
the inputs. Port B itself must be used in the bit mode which
does not use handshaking. Care must obviously be taken with
the peripheral device logic to ensure that it is not writing to a
bidirectional port whilst the CPU is performing an output.

In bit mode, no handshaking is used. Data output from the
CPU appears at the port output. An input from the port takes
a “snapshot” of the inputs. The current state of output lines
are read along with the input. Interrupts are generated on the
presence of a predetermined bit pattern as described in the
section following.

It should be noted that Figs.6.12 and 6.13, whilst adequate
for most purposes, are slightly simplified in that the relation­
ship to the clock signal are ignored. For full timing details the
Z-80 PIO Technical Manual should be consulted.

6.5.4 Interrupts

To use interrupts in the PIO we must set up the interrupt
vector (see section 6.4.3). This is done by writing a set up
word with the format of Fig.6.14. Bit 0 being a zero indicates
that this set up data is an interrupt vector. The low byte of the
table address is always zero.

If, for example, the I register in the Z-80 contained Hex
ID, and the user wrote to the PIO the set up word C4, the
service address for the PIO would be found in location 1DC4

135

and 1DC5.
If input, output or bidirectional modes are being used,

interrupts are generated automatically by the handshaking (see
above). In the bit mode, an interrupt will be generated if a pre-
viusly specified bit pattern occurs.

To do this, we first send an interrupt control word as
Fig.6.15. Bits 0 3 indicate that this is an interrupt control
word. Bit 7 is used to enable and disable interrupts (1 to
enable, 0 to disable). This control interrupts in all modes
(input, output, bidirectional and bit). Bits 4—6 are only rele­
vant in the bit mode. We will shortly be sending a bit pattern
to indicate which bits we want to monitor for an interrupt. Bit
6 indicates if an interrupt is to be generated if ANY of the
specified bits is present (called OR) or when ALL are present
called (AND). If Bit 6 is a ‘1’ the AND operation is specified.

Bit 5 is used to indicate if the data lines are to be used to
generate an interrupt when they are a ‘0’ or a ‘1’. If bit 5 is a
‘1’, interrupts will be generated when the specified bits go to a
‘1’, if bit 5 is an ‘O’, interrupts will be generated when the
specified bits go to a ‘O’.

If bit 4 is a ‘1’, the next set up word MUSTbe a mask. A ‘0’

136

137

in this word means that the corresponding bit will be checked
for generating an input in accordance with the conditions set
up via Fig.6.15. If, for example, we sent the mask:

01100011

we would check for interrupts on bits 2,3,4 and 7.

6.5.5 Set Up Summary
The procedure for setting up a PIO at first sight seems rather
involved. Fig.6.16 shows the procedure in flow chart form,
and hopefully will make the matter clearer. It should be
remembered that usually only one set up is needed, and this
should be placed at the start of the program.

6.5.6 Power Up Problems

At power up, the PIO sets itself into a reset state. Usually,
though, the PIO seems to end up in some indeterminate state
due to glitches as the supplies come up. Often the PIO seems
to set itself into the condition where it is expecting interrupt
mask or a data direction word for mode 3. To be certain that
a PIO is correctly initialised, a dummy set up data word should
be sent to each port before following the procedure in
Fig.6.16.

6.5.7 Pinning

The PIO pin connections are shown on Fig.6.17. These operate
as below:

i. DO — D7 Tristate Data Bus
ii. A/B Select. A low selects port A, a high selects port B.

Usually connected to Address Bus AO.
iii. C/D Select. Determines whether data on the data bus is

to be used as set up data, or port data. A high indicates
that set up data is present. Usually connected to Al.

iv. CE Chip enable. Low to select the chip. Usually derived
from external decoding logic connected to the address
bus.

138

Fig. 6.16 Set-up summary for PIO

139

A/B Sel -►•t

âsTb
Bstb

A Rdv ’*“•

• +5V

•-<- IE1
• IE0

INT
21 B Rdy

lORQ

20

Note: A,B are port outputs ; A is NOT CPU data bus

Fig. 6.17 PIO pin connections

v. </> System clock.
vi. Ml Timing signal from the CPU used to synchronise the

PIO.
vii. IORQ Input/output request. When low indicates that the

address bus refers to an I/O port.
viii. RD Read. Used to indicate if an input or output is

requested. When RD is low an input is required from the
port.

ix. IE1 Interrupt Enable In. Part of the daisy chain. When
high, interrupts are allowed.

x. IEO Interrupt Enable Out. When low, blocks lower
priority devices from generating an interrupt.

xi. INT Interrupt Request. An open collector signal, low to
request an interrupt.

140

xii. AO - A7, BO - B7. Data connections to outside world,
xiii. A STB, B STB. Strobe signals for handshake FROM

peripheral device.
xiv. A READY, B READY. Handshake signals TO peripheral

device.
The PIO requires a single 5 V supply at 100mA.

6.6 SERIAL COMMUNICATION & UARTS

6.6.1 Introduction
Serial outputs are commonly used to communicate with
printers and other peripherals. Because a computer internally
works in parallel, a serial port must incorporate parallel/serial
and serial/parallel conversion logic as outlined in section 6.2.
This is usually achieved with a special chip called a UART
(Universal Asynchronous Receiver Transmitter). The Z-80
UART is also known as an SIO (for Serial Input Output).
Although described for outputs from a computer, the circuits
described are, of course, also used to input data serially from a
peripheral.

6.6.2 Signals and Standards

Before we can describe how a UART works, we must first
establish how a serial signal is transmitted. Although there are
several different transmissions standards (V24, RS232, 20mA)
the actual data format used is the same as Fig.6.18 regardless
of the standard used.

When no signal is being sent, the line is a ‘1’. The first bit
is a ‘0’ to indicate the start of a character. The data now
follows, seven or eight bits according to the peripheral used.
The data is followed by a parity bit. The end of the character
is indicated by one (or two) ‘ 1 ’ bits (known as the stop bit(s)).
Depending on the system, the word length and the number of
stop bits, nine to twelve bits can be used to transmit a single
character.

A UART is therefore required to convert 8 bit data from
141

the computer to the serial format of Fig.6.18.

8 data bits

Start bit 2 stop bits
0' 1 1

Drawing shown for 8 bits + parity. Similar for 5, 6, 7 data bits

Fig. 6.18 Serial data format

6.6.3 UARTs

In describing a UART, a small problem becomes apparent.
The Z-80 family contains a UART (called a SIO) but this is
a relatively new device, rather sophisticated (being designed
for modems) and a wee bit expensive. Most Z-80 based micro­
computers therefore use the cheaper and less sophisticated
6402 UART which has become an industry standard. It was
therefore decided to describe the 6402 in detail rather than
the Z-80 SIO.

The UART block diagram is shown on Fig.6.19. Because a
UART handles both transmitted and received data it has
independent transmit and receive sections. These are linked by
common control logic which selects the operating mode (i.e.
the number of data bits, the parity sign, the number of stop
bits). The mode is selected by the five inputs CLS2, CLS1,
PI, EPE, SBS in accordance with Table 6.1. These will be hard­
wired, and are not normally selected by the processor.

The transmitter section is simplest and will be described
first. Data is loaded into a data buffer when TBRL(transmitter
buffer load) goes low. When TBRL goes high, the output

142

143

144

Table 6.1 Mode Selection for 6402 UART

Vcc « 1 • 40 «TRC
NC « 2 39 • EPE

G nd • 3 38 • CLS1
RRD« 4 37 • CLS2

RBR8« 5 36 • SBS
RBR7« 6 35 • PI
RBR6« 7 34 • CRL
RBR5« 8 33 • TBR8
RBR4« 9 32 « TBR7
RBR3« 10 31 • TBR6
RBR2« 11 30 • TBR5
RBR1« 12 29 • T8R4

PE« 13 28 • TBR3
FE« 14 27 • TBR2
OE« 15 26 • TBR1

SFD« 16 25 • TRO
RRC« 17 24 • TRE
DRR« 18 23 • TBRL

DR« 19 22 • TBRE
। RRI« 20 21 • MR

Fig. 6.20 Pin connections for 6402 UART

CONTROL WORD CHARACTER FORMAT

C C
L L p E 5
S S I P B START DATA PARITY STOP
2 1 E S BIT BITS BIT BITS

0 0 0 0 0 1 5 ODD 1
0 0 0 0 1 1 5 ODD 1.5
0 0 0 1 0 1 5 EVEN 1
0 0 0 1 1 1 5 EVEN 1.5
0 0 1 X 0 1 5 NONE 1
0 0 1 X 1 1 5 NONE 1.5

145

CHARACTER FORMATCONTROL WORD

c c
L L p E 5
S S I p B START Û47>1 PARITY STOP
2 1 E S BIT BITS BIT BITS
0 1 0 0 0 1 6 ODD 1
0 1 0 0 1 1 6 ODD 2
0 1 0 1 0 1 6 EVEN 1
0 1 0 1 1 1 6 EVEN 2
0 1 1 X 0 1 6 NONE 1
0 1 1 X 1 1 6 NONE 2
1 0 0 0 0 1 7 ODD 1
1 0 0 0 1 1 7 ODD 2
1 0 0 1 0 1 7 EVEN 1
1 0 0 1 1 1 7 EVEN 2
1 0 1 X 0 1 7 NONE 1
1 0 1 X 1 1 7 NONE 2
1 1 0 0 0 1 8 ODD 1
1 1 0 0 1 1 8 ODD 2
1 1 0 1 0 1 8 EVEN 1
1 1 0 1 1 1 8 EVEN 2
1 1 1 X 0 1 8 NONE 1
1 1 1 X 1 1 8 NONE 2

TBRE (transmitter buffer empty) goes low.
When the transmitter register is empty, the data automa­

tically transfers from the buffer to the register. An output
TRE (transmitter register empty) shows the state of the
register, being low when the register is in use. The data from
the register is now shifted out onto the line with the start,
parity and stop bits provided by the UART. The transmission
rate is determined by the transmit clock, which should be 16
times the transmit bit rate (e.g. 1760Hz for 110 baud).

The use of a transmit register and buffer and the TBRL,
TBRE, TRE signals allows the computer to transmit a con­
tinuous data stream with minimum software.

Receive data arrives on RR1 in serial form. The trans­

146

mission rate is determined by the receive clock which, again,
is 16 times the bit rate. The data format is again determined
by the mode selection lines. When the character is received,
it is loaded into the receive register. Data Ready goes high, and
the parity and format are checked. The data can now be read
by enabling the tristate output which places the data onto the
computer bus. When the data has been read, the processor
causes Data Ready Reset to go low which clears Data Ready.
The UART is now ready for another character.

There are three error indications. Parity error, obviously
indicates that the parity was incorrect (e.g. no stop bit). Over­
run indicates that DDR was not set before the next character
was received, i.e. the processor was not keeping up with the
character stream. Framing Error indicates that the format was
wrong (e.g. no stop bit).

The UART needs a certain amount of external logic to
decode the port addresses, generate the interrupts on DBE and
DR, and handle the various error signals.

6.6.4 The Z-80 SIO

The Z-80 SIO chip is similar in principle to the UART des­
cribed in the previous section, but has additional facilities.
It is designed for interfacing directly to the Z-80 bus, and all
the control signals brought out to pins in Fig.6.19 are loaded
or read by the CPU via the data bus. Two independent
channels are provided, with extra control signals for modems.

The SIO suffers from the pin constraints of the 40 pin
package, and no less than three versions are provided with
different control signals brought out. All can be used directly
with the Z-80 interrupt daisy chain.

At the time of writing (early 1983) the SIO is a rare device
in popular microcomputers, the 6402 UART in section 6.6.3
being used instead. In the interests of brevity, no further
details of the SIO are given.

147

6.7 COUNTER TIMER CHIP (CTC)

6.7.1 Introduction

The CTC is a particularly useful member of the Z-80 family. It
is used to free the processor of the chore of counting or timing
external events. It can be told, for example, “Interrupt the
processor in 250mS”, or “Interrupt the processor every
second’’, or “Interrupt the processor when 144 items have
passed the photocell connected to the CTC counter input”.
The CTC is therefore ideal for control applications and
schemes where timing is important.

The CTC contains four independent circuits, each of which
can be used as a counter or a timer.

6.7.2 Channel Operation

The block diagram of one channel is shown on Fig.6.20. The
heart of the channel is an 8 bit down counter. An 8 bit
number is loaded by the CPU to the time constant register
from where it is transferred to the counter.

The counter is decremented either by the system clock or
by an external event or clock. When the counter reaches zero,
an interrupt is generated, a signal is given to the outside world
(to drive a batch counter for example) and the counter
reloaded from the time constant register.

If the counter is being used as a timer from the system
clock, a pre-scaler is provided to divide the system clock by
256 or 16, selectable by the CPU. With a prescale factor of
256 and the time constant register set for 256, the CTC chip
would provide an interrupt every 65.536mS with a 1MHz
clock.

The channel control register is loaded by the CPU, and
determines the operating mode (external count/clock or
system clock, pre-scaler value, positive or negative edge count,
interrupt enable/disable etc.).

The full device block diagram is shown on Fig.6.21. The
four channels are identical to Fig.6.20, except that channel 3
does not have a zero count output for pin limitations reasons.

148

Each channel is totally independent and has its own interrupt
vector.

A channel is configured by writing data to the corresponding
channel control register. The channel is selected by two
control signals CSO and CSL These select the channel as
follows:

149

Ze
ro

 co
un

t

150

connected to AO and CSI connected to Al. Address lines A2 —
A7 are decoded to select the CTC chip, so channels 0 — 3
occupy four successive port addresses.

CSI CSO
Channel 0 0 0
Channel 1 0 1
Channel 2 1 0
Channel 3 1 1

Normally the CTC is wired as Fig.6.22, with CSO

data bus

Fig. 6.22 Interfacing the CTC

6.7.3 Programming the CTC
Before the CTC can operate, the channel control register
(CCR), time constant register and the interrupt vector have to

151

be loaded for each channel. The channel control register is
loaded by writing a word to the channel address (see above)
with the format of Fig.6.23.

Bit 0 = ‘1’ shows that this word contains set up data for the
CCR. Bit 1 = ‘1’ resets the channel. The channel stops
counting or timing until a new time constraint is loaded. The
status of the other bits in the CCR is unchanged. This is not
the same as a hardware (pin 17) reset. Bit 2 = ‘1’ denotes
that the next word written to this channel will be the time
constant word.

Bit 6 selects whether the channel is to be used as a counter
or a timer. If bit 6 is a ‘1’, the channel is a counter, and
decrements on the external input. The prescaler is not used. If
Bit 6 is a ‘0’ timer mode is selected based on the system clock.
The channels zero count output is a pulse train of period

tc * P * TC

where tc is the period of the system clock, P is the prescaler
factor (16 or 256) and TC the time constant (in the range 1
to 256).

Bit 5 selects the prescaler factor. With Bit 5 a ‘1’ the pre­
scaler factor is 256. With Bit 5 a ‘0’ the prescaler factor is 16.
Obviously Bit 5 is only relevant if timer mode is selected (Bit 6
= ‘0’). ”

Bit 3 is called “trigger” and is only used in timer mode. If
Bit 3 is a 'O’, timing starts as soon as the time constant register
is loaded. If Bit 3 is a ‘1’ timing starts with a trigger edge on
the channels clock/trigger input.

Bit 4 is called slope and determines which edge of the
clock/trigger input decrements the counter (in count mode) or
starts the timer (in timer mode with Bit 3 at a ‘1’). With Bit 4
a ‘1’, the positive edge of the input is used. With Bit 4 at a ‘O’,
the negative edge is used.

Bit 7 is used to enable or disable the interrupt request. With
Bit 7 at a ‘0’ the interrupt is disabled. With Bit 7 at a ‘1’, the
interrupt is enabled.

After loading the CCR with Bit 2 = ‘1’, the next word
written to a channel must be the time constant. This is an 8 bit
number in the range 0 - 256. Numbers 1 - 255 give time

152

153

constants 1 - 255. If zero is written, a time constant of 256 is
assumed. The time constant can therefore be in the range 1 —
256.

6.7.4 Interrupts

The CTC can be used on the daisy chain with IEI, IEO and
INT in the same manner as described in section 6.4.4. Within
the CTC, channel 0 has the highest priority.

The CTC is designed to be used with the CPU in mode 2
(see section 6.4). This requires the I register to be loaded with
the high byte of a table address, and the device to supply the
low byte (called the interrupt vector).

One interrupt vector is written to the CTC by writing a
word to channel 0 with Bit 0 = ‘0’ as shown on Fig.6.24 (Bit 1
= T denotes a CCR word). This interrupt vector is modified
in Bits 1 and 2 as shown for each channel.

Suppose I is loaded with IE, and the vector written to

154

channel 0 is Hex 38 (binary 00111000). The corresponding
vectors and table addresses are:

Vector Table Address
Channel 1 38 IE38 and IE39
Channel 2 3A IE3A and IE3B
Channel 3 3C IE3C and IE3D
Channel 4 3E IE3E andIE3F

Interrupts are generated when a channel counter reaches zero.

6.7.5 Pin Connections
The CTC pin connections are shown on Fig.6.25. The function
of the data bus. Ml, RD, IORQ, 0, CE, INT, IEI, IEO are iden­
tical to the PIO pins in section 6.5.8. CSO and CSI select the
channel as outlined above.

Zero count
«*CLK1
«CLK2
►«CLK3

External
clock/

trigger

Fig. 6.25 CTC pin connections

155

Each channel (except 3) has a zero count output (ZC)
which strobes high when zero count is reached. Each channel
has an input which triggers the counter or initiates the timer.

A low signal to the Reset pin stops all counting and timing,
and clears the internal logic. A reset strobe is required on
power up to ensure correct operation.

The CTC operates on a single 5 volt rail and draws about
100mA.

6.8 ANALOG INTERFACING

6.8.1 Introduction
Analog signals (i.e. variable voltages) are required for measure­
ment and control applications. There are no specific Z-80
chips, but typical analog input and output circuits are
described briefly below.

6.8.2 Digital to Analog Converter (DAC)

As its name implies, the circuit converts a digital output signal
from a parallel port to a voltage. Most DACs are based on the
R—2R network of Fig.6.26. The output voltage is a representa­
tion of the binary state of the switches. In a practical DAC,
transistors or FETs are used as switches.

A practical IC is the Ferranti ZN427 DAC. This gives an
output in the range 0 to 2.55 volts for a corresponding binary
input. The output can, of course, be amplified to any desired
level.

6.8.3 Analog to Digital Converter (ADC)
An ADC converts an analog signal to a digital form that can be
read by a computer parallel port. A block diagram of a simple
ADC is shown on Fig.6.27. A DAC is connected to a counter.
The counter is reset by the start pulse which sets FF1, gating
pulses to the counter. The DAC output will then be a ramp,
which is compared with the input voltage. When the two

156

157

158

voltages are equal, the comparator resets FF1 .thereby freezing
the counter. The counter state is now a digital representation
of the input voltage. Ready and Overspill signals are provided
which indicate the ADC state to the computer. Usually the
port will generate an interrupt on the Ready signal. The
Ferranti ZN427 DAC is particularly useful as it contains an 8
bit counter and DAC.

6.8.4 General Observations
The topic of analog interfacing is a very wide one, and cannot
be fully covered in a book of this size which is (after all) con­
cerned with the Z-80. Practical DAC and ADC circuits are
given in the author’s book "Practical Computer Experiments”,
BP78.

6.9 KEYBOARDS

Every popular microcomputer has a keyboard. These are
generally arranged on the matrix principle similar to Fig.6.28.
The computer has two I/O ports, an output port driving strobe
lines and an input port reading the sense lines.

To read the keyboard, the computer outputs to each strobe
line in turn reading back the sense lines for each strobe. On
Fig.6.28, for example, if the D key was pressed, we would get
the signal on sense line 2 when strobe line 6 was strobed.

Obviously considerable programming effort is needed to
scan, read and decode the keyboard. Usually the computer
monitor program will have a keyboard read subroutine which
can be called by the user. In section 5.8 we used the NASBUG
KBD routine as part of our test program.

Keyboards can be scanned by an I/O port address (e.g.
Nascom), or by appearing as memory locations (e.g. TRS 80,
where store addresses Hex 3801, 3802, 3804, 3808, 3810,
3820, 3840, 3880 provide the strobes and give the keys
pressed. There are no actual RAM locations with these
addresses).

An alternative approach is to use discrete logic to strobe the

159

Fi
g

6.
28

 K
ey

bo
ar

d
m

at
rix

160

keys and scan the sense lines. If a key is pressed, the logic
handles the key decoding, and simply presents a 8 bit ASCII
code for the computer to read via a parallel port. This method
simplifies the programming, but uses quite complex (and
hence expensive) logic.

6.10 VDUs

Most microcomputers incorporate a VDU, either built in, using
an external monitor or driving a domestic TV. To describe the
operation of a VDU in detail would require many pages,
involving, as it does, detailed knowledge of how a TV picture
is built up. The description below is therefore somewhat
simplified, but adequate for a user who wishes to drive a VDU
rather than construct one.

A typical VDU will display 16 rows of characters with 48
characters per row. These characters must be stored in the
VDU, so the first requirement is some form of store to hold
these 744 characters. This will be scanned by some logic to
produce the TV picture as Fig.6.29.

To be any use, these store locations must have data written
into them. If the VDU is a true peripheral, data will be sent
down a serial link (see sections 6.2 and 6.6) and loaded into
the store. Control words such as New Line, Carriage Return,
Backspace, Cursor Down etc. are sent to determine where
characters are placed on the screen.

Most microcomputers, however, use a technique called a
Memory Mapped VDU. The character store, shown on
Fig.6.30, is a part of the computer store AND can be accessed
by the VDU logic. The address and data bus can be switched
to the computer or VDU display logic, with the computer
having priority.

This approach has many advantages. Because the character
store is accessed directly by the computer, the VDU is very
fast. Each character position on the screen corresponds to one
store location, so dynamic display are easily drawn. Less
obviously, data can be read back from the screen for use by
the program.

161

The Nascom uses a memory mapped VDU, with store loca­
tions from Hex 080A (top left) to 0BF9 (bottom right). To
display a letter E at the centre of the screen we would write
in assembler:

LD A, £ 45 ; 45 is ASCII E
LD (£0980), A ; Write to centre of screen

Where a message is to be written, it is usually easier to use
the computer monitors VDU subroutine. In the example in
section 5.7 the Nascom VDU routine was used.

162

163

Chapter Seven

A MISCELLANY OF DATA

7.1 INTRODUCTION

This chapter collects together a rag tag bundle of information
about the Z-80, its manufacturers, its support chips and other
useful facts.

7.2 SUPPORT CHIPS

The Z-80 has a family of support chips. The commoner ones
have been described in earlier chapters. The full (early 1983)
family is:

7.2.1 Z-80 CPU
The microprocessor chip itself.

7.2.2 PIO
The parallel input output device described in section 6.5.

7.2.3 CTC

The counter timer chip described in section 6.7.

7.2.4 SIO

A serial input/output controller for use in asynchronous and
synchronous applications. Two channels are provided with
special control for use with modems. Unlike the commoner
UARTs, the SIO can work directly with the Z-80 interrupt
daisy chain.

164

7.2.5 SIO/9

A single channel version of the SIO.

7.2.6 DART
A dual UART for asynchronous serial links.

7.2.7 DMA Controller

DMA stands for direct memory access, and is used where an
external device (such as a disc controller or another processor)
requires direct access to a computers memory without the
intervention of the main processor. A DMA controller handles
this transfer. This is not a technique to try without some pro­
gramming and hardware experience.

7.2.8 FIFO Buffer
The FIFO (for first in/first out) can be considered as a parallel
shift register. It is used to provide a 128 word buffer for
incoming and outgoing data in I/O and multiprocessor
systems. It’s use allows the processor to quickly read a “burst”
of data that arrived at random intervals of time.

7.2.9 CIO/U

This chip combines the functions of a PIO and CTC chip. It
provides two 8 bit parallel ports and a four bit port, plus three
counter timer circuits.

7.2.10 Future Developments

As the Z-80 is a development of the 8080, so the Z8000 16 bit
micro is a development of the Z-80. Many devices planned for
the Z8000 can be used with the Z-80.

165

7.2.11 Speed

Most Z-80 chips are available in 2MHz or 4MHz versions. The
latter are denoted by the suffix A. A lower power version
(suffix L) is also available.

7.3 MANUFACTURERS

The original manufacturer is Zilog. The following companies
are second source manufacturers:

MOSTEK (typical device code MK3880)
NEC (typical device code PD780C)
SGS’ATES (typical device code Z-80 CPU)
Fairchild (typical device code F3880)

7.4 TECHNICAL PUBLICATIONS

This book has described the Z-80 in a descriptive, rather than
a formal manner. The Zilog publications below give the Z-80
technical and software data in a complete and formal manner,
and include details such as bus timing which were considered
outside the remit of an introductory book:

a. Z-80 Technical Manual
b. Z-80 Programming Manual
c. PIO Technical Manual
d. CTC Technical Manual
e. Zilog Microcomputer Components Data Book

These are all published by Zilog and the second source
suppliers.

7.5 Z-80 BASED MICROCOMPUTERS

The following machines use a Z-80 microprocessor:

166

Altos
Compelec
Cromenco
Exidy Sorceror
Nascom 1 and 2
North Star Horizon
NEC PC-8000
OKI-800
Research Machines 380-Z
Sharp MZ-80
Shelton Signet
Sinclair ZX-80/ZX81 /Spectrum
Superbrain
Transam Tuscam
TRS-80
Video Genie

No claim is made for completeness, as new machines are
appearing all the time.

7.6 WRITING A PROGRAM

The beginner should not start by writing a 16K machine code
program; that way lies madness and divorce! It is better to first
start by writing simple programs to, say, add two numbers and
display the result on the screen. When confidence is gained,
progress to more ambitious programs can be made.

The stages in writing a program are usually as follows:

a. Define what needs to be done, and if possible break the
program down into digestible blocks (e.g. Keyboard
Input, Update Members Addresses, Identify Overdue
Accounts). This stops the task overwhelming the
programmer!

b. Draw up flowcharts as we did in section 5.5. These
should start off relatively simple, then be made more
detailed until they can be translated to program instruc­
tions. Try to identify useful subroutines (e.g. multipli­

167

cation, division, sorts, searches, etc.),and build up a sub­
routine library. Do not re-invent the wheel with every
program!

c. With detailed flow charts, draw up a source program in
Assembler Code EVEN if you are using a monitor to
load the machine code program. It is worth it for the
clear documentation it provides when the inevitable
de-bugging occurs.

d. Translate the source program to an object program,
either with an assembler or by hand.

e. MAKE A COPY OF THE OBJECT PROGRAM on tape
or disc before attempting to run it. Very few machine
code programs run first time, and a single error can cause
a program to self destruct.

f. Cross your fingers and run your program. Do not be dis­
heartened if it does not run first time. Use the monitor
program’s breakpoint and single step routines to check
the program operation.

7.7 BASIC and PEEK and POKE

It is possible to intermingle BASIC and machine code
programs, and the technique is particularly useful where a pro­
gram requires complex calculations (which are done in BASIC)
and fast I/O or VDU graphics (which are done in machine
code).

Most BASICs allow the program to call a machine code sub­
routine. The commonest BASIC instructions are CALL and
USR. There are differences between dialects of BASIC, but,
for example, the BASIC instruction:

CALL 1519

will call the machine code program at decimal address 1519.
The machine code program is required to be terminated with a
RET instruction which resumes BASIC at the instruction after
the CALL.

It is possible, but laborious, to load a machine code
168

program via BASIC using the POKE instruction. An object
program is converted, by hand, a location at a time from Hex
to decimal, then included as DATA statements in the BASIC
program. These are READ and POKE’d by a FOR-NEXT loop.

Data in store locations that have been used by the machine
code program can be examined by the BASIC program via the
PEEK function.

Setting up a machine code program via BASIC is obviously
tedious, but is useful for small subroutines and obviates the
need to load a BASIC and machine code program separately.

When deciding where a machine code program is to reside
along with BASIC, due care should be taken to avoid a clash.
Most computers have a “Memory Map” which shows what
store addresses are used for what. Usually the store used by
BASIC can be restricted with a SIZE or similar statement.

7.8 THE INTEL 8080

As explained earlier, the Z-80 is a development of the 8080,
and as a result 8080 programs will run on a Z-80. The reverse
is not, however, necessarily true. The tables in Chapter 4
identify the 8080 compatible instructions.

The programmers model of the 8080 is shown on Fig.7.1.
As can be seen it is almost a half Z-80, having no alternate
register set, no 1 or R registers, and no index registers. Need­
less to say, the 8080 has fewer instructions.

Although 8080 programs will run on the Z-80, there are
usually a few practical problems. The first concerns the
running of even Z-80 programs on different machines. All
computers use different ways of driving keyboards, VDUs
etc., so there are problems moving a Z-80 machine code pro­
gram, from, say, a TRS-80 to a Nascom. This problem is
compounded with the 8080, as the whole configuration of the
original computer may be different.

The second problem concerns 8080 source programs. Un­
fortunately 8080 Assembler Mnemonics bear little, if any,
resemblance to Z-80 Mnemonics. For example:

169

Fig. 7.1 Programmers model of the Intel 8080

8080
MOV
INR
XCHG

Z-80
LD
INC
EX

Although the resulting object program will be the same,
translating an 8080 source program to a Z-80 source program
can be an infuriating experience. Out of fairness, it should be
said that the Zilog designers did not instigate change for
changes sake. The Z-80 mnemonics are far more logical and
easier to remember than the 8080 mnemonics.

Intel have produced their own enhanced version of the
8080, called the 8085. There is very little compatibility
between the 8085 and the Z-80.

170

Appendix A

BINARY AND HEXADECIMAL NUMBERS

We are so used to working in decimal numbers that we tend to
take it for granted, and consider our way of counting to be the
only way possible. Basically we count in “tens”, and our
number system is said to operate to a “base” of ten. The
number, 4059, for example means:

4 thousands
+ 0 hundreds,
+ 5 tens,
+ 9 units,

i.e. 4 x 10 x 10 x 10
i.e. 0x10x10
i.e. 5x10
i.e. 9 x 1

There is no reason why we should count to a base of ten
except, of course, that we have ten fingers. A counting system
can be devised to any base. Ten is, actually, a rather bad
choice as ten can only be divided by five and two. Trade
would have been simpler if we had twelve fingers, as twelve
can be divided by four, three, two and six, and is a “packable”
number in that twelve items can be neatly packed four by
three or two by two by three.

Two number systems are of particular interest in
computing; Base two, known as Binary, and Base sixteen,
known as Hexadecimal, or Hex for short. We will deal with
Hex first as it is conceptually the simplest.

To count in Hex we need sixteen symbols (including zero).
These are the numerals 0-9 and the letters A - F.

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hex 0123456789ABCDEF

What happens now? We simply start a new Hex column:

Decimal 16 17 18 19 20 21............. 29 30 31 32 33 etc.
Hex 101112131415.............1D IE 1F 20 21 etc.

We can also, of course, construct large numbers.

171

1DF6, for example, means
1 x sixteen x sixteen x sixteen = 4096

+ D (thirteen) x sixteen x sixteen = 3328
+ F (fifteen) x sixteen = 240
+ 6 = 6

7670 in decimal
There are many ways of converting from decimal to Hex,

but one of the simplest is to note the powers of 16 up to
65536: '

16, 256, 4096

Conversions of numbers above 65536 are rarely required in
computing. The method is best described by example:

e.g. 53156
First divide by 4096 gives 12 (C) remainder 4004
Now divide 4004 by 256, which gives 15 (F)
remainder 164
Now divide 164 by 16, which gives 10 (A)
remainder 4

The Hex equivalent of 53156 is therefore CFA4.
Hex is, itself, little more than a mathematical curiosity,

but as we shall see later, it can be used as a convenient way to
represent binary numbers.

Binary is a number system to a base of two. It has only two
symbols: 0 and 1. As each column in a decimal number repre­
sents a power of ten, so each column in a binary number
represents a power of two (1, 2,4, 8,16 etc.)

We thus count:

Decimal

0
1
2
3
4
5

Binary
84 2 1
0000
000 1
00 10
00 11
0 100
0 10 1

172

6
7
8

0 110
Olii
1 OOO

and so on.
A typical binary number is therefore 10 1 10 110 (con­

ventionally, the least significant end is to the right, the same as
decimal numbers). To convert this to decimal we simply write
the corresponding powers of two:

182

1 1 x2x2x2x2x2x2x2 128
0 0x2x2x2x2x2x2 0
1 1 x2x2x2x2x2 32
1 1 x2x2x2x2 16
0 0 x 2 x 2 x 2 0
1 1x2x2 4
1 1x2 2
0 Ox 1 0

The decimal equivalent of 1 0 1 1 0 1 1 10 is therefore 182
The simplest way to convert from decimal to binary is to

use repeated division by two, noting the remainder each time.
For example, to convert decimal 57 to binary:

Dividing by two each time we get:

57 28 remainder 1
28 14 remainder 0
14 7 remainder 0

7 3 remainder 1
3 1 remainder 1
1 0 remainder 1

The remainders are read with least significant at the top to
give the binary number 1110 0 1 which is equivalent to
decimal 57.

The 1 s and 0s of binary are particularly easy to represent
with electronic circuits, so all computers work internally in
binary. Unfortunately, large binary numbers such as:

1011001101111001

173

are difficult to comprehend, and even more difficult to
remember. This is where Hex is useful.

Conversion between binary and Hex is very easy. The
binary number is split into groups of four bits. Each group of
four bits can represent a number from 0 to fifteen, or Hex 0 to
F. The Hex representation of each group is then written down
to give the corresponding Hex number. Taking our example
above

1011001101111001
Split into groups of four 1011 001 1 0111 1001
Hex equivalents B 3 7 9
The Hex number is therefore B379

The reverse conversion is equally easy. The Hex number is
written down and the four binary bits corresponding to each
digit put below, e.g. 85F6

8 5 F 6
1000 0101 1111 0110

The binary number is therefore 1000010111110110
Most microprocessor instructions are usually given in Hex.

This is purely for the convenience of the programmer, the
computer itself works in binary.

The microprocessor user usually need not concern himself
with the mechanics of binary arithmetic. Full details (and
circuit) are given in “Practical Computer Experiments” BP 78.
A few practical points, however, are worth noting.

The rules of binary addition are very simple:
0 . + 1 = 1
1 + 0 = 1
0 + 0 = 0
1 + 1 = 0 plus carry to next bit

For example
10110011

+00100101
11011000

The carry flag in the flag register is set if an arithmetic
174

operation overspills 8 bits. For example:
10110011

+10100101
Carryl 0 10 11000

This allows 16 bit arithmetic to be performed.
An 8 bit number can be used to represent a decimal number

in the range 0 to 255, or, by designating the top bit to indicate
sign, a number in the range —128 to + 127.

Before we see how this is done, let us consider a decimal
analogy. Consider the sum:

0 2 3
+ 9 94
10 17

If we ignore the thousand column, the answer is 17. The
number 994 thus looks like minus 6. Another example:

2 5 1
+ 8.2 7
1078

Again, ignoring the thousand column, the answer is 78. The
number 827 looks like minus 173.

A three digit decimal negative number is formed by sub­
traction from one thousand. Minus 6 is then 1000 — 6 = 994.

Negative binary numbers can be formed in a similar
manner. Consider the sum:

0 110 6
1100

10010 2
The number 1100 thus represents minus 4

It is very easy to produce a negative number in binary. Take
the number, complement it (i.e. replace ‘l’s by ‘0’s and vice
versa) then add 1.

e.g. 00000110 6 (to 8 bits)
111110 0 1 Complemented
111110 10 Add 1

175

111110 10 thus represents minus 6 in 8 bits.
In general, the top bit is a ‘1’ if the number is negative, and

‘0’ if it is positive.
The above representation is known as twos complement

arithmetic.
It should be emphasied that the programmer can use an 8

bit number as an 8 bit unsigned number or an 8 bit twos com­
plement number to suit his needs.

176

Appendix B

Z-80 INSTRUCTION SET

This appendix gives the complete Z-80 instructions set in
Assembler Mnemonic Form. Reference should also be made to
the tables in Chapter 4.

The following notation is used:
N Single Byte Data
NN Double Byte Data
0 Store Address or I/O Address
R Register
A Accumulator
D Offset (not available on some instructions)
SS Register Pair
CC Conditions
Conditions
C Carry
NC No Carry
Z Zero
NZ Non Zero
PE Parity Even
PO Parity Odd
M Sign Neg
P Sign Pos
ADC HL,SS Add with Carry Reg. Pair SS to HL
ADC A,S Add with Carry Operand S to Acc
ADD A,N Add Value N to Acc
ADD A,R Add Reg. R to Acc
ADD A,(HL) Add Location (HL) to Acc
ADD A,(IX+D) Add Location (IX+D) to Acc
ADD A,(IY+D) Add Location (IY+D) to Acc
ADD IX,SS Add Reg. Pair SS to IX
ADD IY,SS Add Reg. Pair SS to IY
ADD IY,RR Add Reg. Pair RR to IY
AND S Logical ‘AND’ of Operand S and Acc
BIT B,(HL) Test Bit B of Location (HL)
BIT B,(IX+D) Test Bit B of Location (IX+D)
BIT B,(IY+D) Test Bit B of Location (IY+D)

177

BIT B,R Test Bit B of Reg. R
CALL CC,NN Call subroutine at Location NN if Condition

CC is true
CALL NN Unconditional Call subroutine at

Location NN
CCF Complement Carry Flag
CP S Compare Operand S with Acc
CPD Compare Location (HL) and Acc Decrement

HL and BC until CB=0
CPDR Compare Location (HL) and Acc Decrement

HL and BC, repeat
CPI Compare Location (HL) and Acc. Increment

HL and Decrement BC
CPIR Compare Location (HL) and Acc. Increment

HL, Decrement BC Repeat until BC=0
CPL Complement Acc. (1’s comp)
DAA Decimal Adjust Acc
DEC M Decrement Operand M
DEC IX Decrement IX
DEC 1Y Decrement IY
DEC ss Decrement Reg. Pair SS
DI Disable Interrupts
DJNZ B Decrement B and Jump Relative if B=0
EI Enable Interrupts
EX (SP),HL Exchange the Location (SP) and HL
EX (SP),IX Exchange the Location (SP) and IX
EX (SP),IY Exchange the Location (SP) and IY
EX AF,AF' Exchange the contents of AF and AF'
EX DE,HL Exchange the contents of DE and HL
EXX Exchange the contents of BC, DE, HL with

contents of BC', DE', HL' respectively
HALT Halt (wait for Interrupt or Reset)
IM 0 Set Interrupt Mode 0
IM 1 Set Interrupt Mode 1
IM 2 Set Interrupt Mode 2
IN A,(N) Load the Acc. with input from device N
IN R,(C) Load the Reg. R with input from device (C)
INC (HL) Increment Location (HL)
INC IX Increment IX

178

INC (IX+D) Increment Location (IX+D)
INC IY Increment IY
INC (IY+D) Increment Location (IY+D)
INC R Increment Reg. R.
INC SS Increment Reg. Pair SS
IND Load Location (HL) with input from Port

(C), Decrement HL and B
INDR Load Location (HL) with input from Port

(C), Decrement HL and Decrement B, repeat
until B=0

INI Load Location (HL) with input from Port
(C), and Increment HL and Decrement B

INIR Load Location (HL) with input from Port
(C), and Increment HL and Decrement B,
repeat until B=0

JP (HL) Unconditional Jump to (HL)
JP (IX) Unconditional Jump to (IX)
JP (1Y) Unconditional Jump to (IY)
JP CC,NN Jump to Location NN if condition CC is true
JP NN Unconditional Jump to Location NN
JP C,E Jump relative to PC+E if Carry =1
JR E Unconditional Jump relative to PC+E
JR NC,E Jump relative to PC+E if Carry =0
JR NZ,E Jump relative to PC+E if Non Zero (Z=0)
JR Z,E Jump relative to PC+E if Zero (Z=l)
LD A,(BC) Load Acc, with Location (BC)
LD A,(DE) Load Acc. with Location (DE)
LD A,I Load Acc. with 1
LD A,(NN) Load Acc. with Location NN
LD A,R Load Acc. with Reg. R
LD (BC),A Load Location (BC) with Acc.
LD (DE),A Load Location (DE) with Acc.
LD (HL),N Load Location (HL) with value N
LD DD,NN Load Reg. Pair DD with value NN
LD HL,(NN) Load HL with Location (NN)
LD (HL),R Load location (HL) with Reg. R
LD I,A Load I with Acc.
LD IX,NN Load IX with value NN
LD IX,(NN) Load IX with Location (NN)

179

LD (IX+D),N Load Location (IX+D) with value N
LD (IX+D),R Load Location (IX+D) with Reg. R
LD IY,NN Load IY with value NN
LD IY,(NN) Load IY with Location (NN)
LD (IY+D),N Load Location (IY+D) with value N
LD (IY+D),R Load Location (IY+D) with Reg. R
LD (NN),A Load Location (NN) with Acc.
LD (NN),DD Load Location (NN) with Reg. Pair DD
LD (NN),HL Load Location (NN) with HL
LD (NN),IX Load Location (NN) with IX
LD (NN),IY Load Location (NN) with IY
LD R,A Load R with Acc.
LD R,(HL) Load Reg. R with Location (HL)
LD R,(IX+D) Load Reg. R with Location (IX+D)
LD R,(IY+D) Load Reg. R with Location (IY+D)
LD R,N Load Reg. R with value N
LD R,R' Load Reg. R with Reg. R'
LD SP,HL Load SP with HL
LD SP,IX Load SP with IX
LD SP,IY Load SP with IY
LDD Load Location (DE) with Location (HL),

Decrement DE, HL and BC
LDDR Load Location (DE) with Location (HL),

Decrement DE, HL and BC, repeat until
BC=0

LD1 Load Location (DE) with Location (HL),
Increment DE, HL, Decrement BC

LDIR Load Location (DE) with Location (HL),
Increment DE, HL, Decrement BC and
repeat until BC=0

NEG Negate Acc. (2’s complement)
NOP No Operation
OR S Logical ‘OR’ of operand S and Acc.
OTDR Load Output Port (C) with Location (HL),

Decrement HL and B, repeat until B=0
OTIR Load Output Port (C) with Location (HL),

Increment HL, Decrement B, repeat until
B=0

OUT (C),R Load Output Port (C) with Reg. R
180

SET B,(lX+D) Set Bit B of Location (IX+D)
SET B,(IY+D) Set Bit B of Location (IY+D)

OUT (N),A
OUTD

Load Output Port (N) with Acc.
Load Output Port (C) with Location (HL),
Decrement HL and B

OUTI Load Output Port (C) with Location (HL),
Increment HL and Decrement B

POP IX
POP IY
POP SS
PUSH IX
PUSH IY
PUSH SS
RES B,M
RET
RET CC

Load IX with top of stack
Load IY with top of stack
Load Reg. Pair SS with top of stack
Load IX onto stack
Load IY onto stack
Load Reg. Pair SS onto stack
Reset Bit B of Operand M
Return from subroutine
Return from subroutine if condition CC is
true

RETI
RETN
RL M
RL
RLC (HL)
RLC (IX+D)
RLC (IY+D)
RLC R
RLCA
RLD

Return from Interrupt
Return from Non Maskable Interrupt
Rotate Left through Carry Operand M
Rotate Left Acc. through Carry
Rotate Location (HL) left circular
Rotate Location (IX+D) left circular
Rotate Location (IY+D) left circular
Rotate Reg. R left circular
Rotate left circular Acc.
Rotate Digit left and right between Acc,
and Location (HL)

RR M
RRA
RRC M
RRCA
RRD

Rotate right through Carry Operand M
Rotate right Acc. through Carry
Rotate Operand M right circular
Rotate right circular Acc.
Rotate digit right and left between Acc. and
Location (HL)

RST P
SBC A,S
SBC HL,SS
SCF
SET B,(HL)

Restart to Location P
Subtract operand S from Acc. with Carry
Subtract Reg. pair SS from HL with Carry
Set Carry Flag (C=l)
Set Bit B of Location (HL)

181

SET B,R Set Bit B of Reg. R
SLA M Shift operand M left arithmetic
SRA M Shift operand M right arithmetic
SRL M Shift operand M right logical
SUB S Subtract operand S from Acc.
XOR S Exclusive ‘OR’ operand S and Acc.

Pseudo Instructions
ORG NN
EQU NN
DEFS E
DEFB E(,E)...
DEFW E(,E)...
DEFM /S/

Sets Location counter (LC) to NN
Assigns value NN to Label
Increments LC by value of expression E
Defines Byte (s) as E
Defines Word (s) as E
Assigns String S to label

182

Appendix C

ASCII CHARACTER CODES

DEC HEX CHAR DEC HEX CHAR
32 20 64 40 0
33 21 i 65 41 A
34 22 II 66 42 B
35 23 # 67 43 C
36 24 $ 68 44 D
37 25 y 69 45 E
38 26 & 70 46 F
39 27 Z 71 47 G
40 28 (72 48 H
41 29 > 73 49 I
42 2A * 74 4A J
43 2B + 75 4B K
44 2C 76 4C L
45 2D 77 4D M
46 2E ■ 78 4E N
47 2F Z 79 4F 0
48 30 0 80 50 P
49 31 1 SI 51 Q
50 32 2 0 9 52 R
51 33 3 83 53 S
52 34 4 84 54 T
53 35 5 85 55 U
54 36 6 86 56 V
55 37 7 87 57 H
56 38 8 88 58 x
cr
■ J í 39 9 89 59 Y
58 3 A • 90 5A 7
59 3B !> 91 5B [
60 3C 92 5C x
61 3D = 93 5D J
62 3 E 94 5E
63 3 F 7 95 5 F

183

Codes less than Decimal 32 are control codes
Common are (in Decimal):

DEC HEX CHAR DEC HEX CHAR
96 60 X 112 70 P
97 61 a 113 71 q
98 62 b 114 72 r
99 63 c 115 73 s
100 64 d 116 74 t
101 65 e 117 75 u
102 66 f 118 76 V

103 67 g 119 77 u
104 68 h 120 78 X

105 69 i 121 79 X
106 6A J 122 7A z
Í07 6B k 123 7B <
108 6C 1 124 7C 1
109 6D m 125 7D }
110 6E n 126 7E
1 1 1 6F o 127 7F «

07 Be11
10 Line Feed
12 Form Feed
13 Carraige Return

184

R BERNARD RARANI RP112
A Z-80

Workshop Manual
■ The Z-80 is generally acknowledged to be one of the most
powerful 8-bit microprocessors available, and is used in many
popular microcomputers including the TRS-80, Spectrum,
ZX81 and Nascom machines, etc.

■ This book is intended for people who wish to progress
beyond the stage of Basic programming to topics such as
machine-code and assembly-language programming or need
hardware details of the Z-80 based computer.

■ Starting with a review of computer principles, the book
describes typical machine-code instructions followed by a
detailed description of the Z-80 instruction set. Assembly lang­
uage programming is discussed with examples.

■ Also given are hardware details of the Z-80 and the use of
associated I/O devices such as UARTs, PIOs and CTCs.

■ This book is not purely a descriptive text, however, Z-80 hex
machine-code and assembler instructions are given in tabular
form, along with in-out connections for the Z-80 and the associ­
ated devices. It will therefore also be a useful reference book for
the more experienced user.

ISBN 0-85934-087-2

£3.95

7808599 340878

00395

	INTRODUCTION

	ACKNOWLEDGEMENTS

	Page

	1.1	INTRODUCTION

	1.2	COMPUTER ARCHITECTURE

	1.3	THE STORE

	Fig. 1.3 Store connections
	1.4	THE CENTRAL PROCESSOR UNIT (or CPU)

	1.5	INPUT AND OUTPUT

	1.6	INSTRUCTIONS AND PROGRAMS

	1.6.1	Fetch

	1.6.2	Store

	1.6.3	Add

	1.6.4	Subtract

	1.6.5	Logical

	1.6.6	Shifts

	1.6.7	Jumps

	1.6.8	Conditional Jump

	1.6.9	Subroutine Call and Return

	1.6.10	Input/Output Instructions

	1.6.11	Control Instructions

	1.7	WHY MACHINE CODE?

	1.8	MACHINE CODE AND ASSEMBLERS

	1.9	FURTHER READING

	2.1	INTRODUCTION

	2.2.1	The Z-80 registers

	2.2.2	Flag Registers (F)

	Fig. 2.3 The flag (F) register
	2.2.3	General Purpose Registers (B, C, D, E, H, L)

	2.2.4	Special Purpose Registers (1, R, PC, IX, IY, SP)

	2.3 EXTERNAL CONNECTIONS

	2.3.1	Address Bus

	2.3.2	Data Bus

	2.3.3	Control Bus Outputs

	Fig. 2. 7 Z-80 pin configuration

	2.3.4	Control Bus Inputs

	2.3.5	Bus Control

	2.3.6	Other Signals

	2.4 BUS TIMING

	3.1	INTRODUCTION

	3.2	HEX REPRESENTATION

	3.3.1	Introduction

	3.3.2	Register Addressing

	3.3.3	Immediate Addressing

	3.3.4	Extended Addressing

	3.3.5	Immediate Extended Addressing

	3.3.6	Register Indirect Addressing

	3.3.7	Indexed Addressing

	3.3.8	Relative Addressing

	3.3.9	Modified Page Zero Addressing

	3.3.10	Implied Addressing

	3.3.11	Bit Addressing

	3.3.12	General Observations

	3.4.1	Introduction

	3.4.2	Load Instructions

	3.4.3	Arithmetic and Logic Instructions

	3.4.4	Jumps and Subroutine Calls

	3.4.5	Rotates and Shifts

	Fig. 3.6 (b)

	3.4.6	Block Transfer

	3.4.7	Bit Manipulation

	3.4.8	Input/Output

	3.4.9	Control Instructions

	3.4.10	General Observations

	3.5	SYMBOLIC REPRESENTATION

	3.6	CONCLUSION

	4.1	INTRODUCTION

	4.2.1	8 bit Loads

	4.2.2	16 bit Loads

	Table 4.1 8 Bit Load Group

	4.2.3	Exchanges

	43.1	8 Bit Instructions

	4.3.2	General Purpose Operations on AF

	4.3.3	16 Bit Arithmetic

	4.4	JUMP CALL AND RETURN GROUP

	Fig. 4.2 (b)

	4.6	BLOCK TRANSFERS AND SEARCHES

	4.7	BIT MANIPULATION

	4.8	INPUT AND OUTPUT GROUP

	4.10	CONTROL INSTRUCTIONS

	4.11	GENERAL OBSERVATIONS

	5.1	INTRODUCTION

	5.2.1	Introduction

	5.2.2	Line Numbers

	5.2.3	Labels

	5.2.4	Instruction Mnemonic

	Z-80 MNEMONICS IN ALPHABETICAL ORDER

	5.2.5	Comments

	5.3	PSEUDO OP CODES

	5.4	ASSEMBLER DIRECTIVES

	5.5	USING AN ASSEMBLER

	5.6.1	Introduction

	5.6.2	Modify

	5.6.3	Execute

	5.6.4	Breakpoint

	5.6.5	Tabulate

	5.6.6	Single Step

	5.6.7	Conclusion

	5.7	TESTING A MACHINE CODE PROGRAM

	Fig. 5.4 (a) Detailed flow chart for

	bubble sort test program

	5.8	CONCLUSION

	6.1	INTRODUCTION

	6.2	SERIAL AND PARALLEL COMMUNICATION

	6.3	PORT ADDRESSING AND LOGIC

	6.4.1	Introduction

	6.4.2	Servicing an Interrupt

	6.4.3	Z-80 Interrupts

	6.4.4	INTERRUPT PRIORITY

	6.5	THE Z-80 PIO

	6.5.1	Introduction

	6.5.2	Set Up Data

	Fig. 6.11 Mode select word

	6.5.3	Handshaking

	6.5.4	Interrupts

	6.5.5	Set Up Summary

	6.5.6	Power Up Problems

	6.5.7	Pinning

	Fig. 6.17 PIO pin connections

	6.6.1	Introduction

	6.6.2	Signals and Standards

	6.6.3	UARTs

	6.6.4	The Z-80 SIO

	6.7.1	Introduction

	6.7.2	Channel Operation

	6.7.3	Programming the CTC

	6.7.4	Interrupts

	6.7.5	Pin Connections

	6.8.1	Introduction

	6.8.2	Digital to Analog Converter (DAC)

	6.8.3	Analog to Digital Converter (ADC)

	6.8.4	General Observations

	6.9	KEYBOARDS

	6.10	VDUs

	7.1	INTRODUCTION

	7.2	SUPPORT CHIPS

	7.2.1	Z-80 CPU

	7.2.2	PIO

	7.2.3	CTC

	7.2.4	SIO

	7.2.5	SIO/9

	7.2.6	DART

	7.2.7	DMA Controller

	7.2.8	FIFO Buffer

	7.2.9	CIO/U

	7.2.10	Future Developments

	7.2.11	Speed

	7.3	MANUFACTURERS

	7.5	Z-80 BASED MICROCOMPUTERS

	7.6	WRITING A PROGRAM

	7.7	BASIC and PEEK and POKE

	7.8	THE INTEL 8080

	Fig. 7.1 Programmers model of the Intel 8080

