

A Z-80 WORKSHOP MANUAL

by
E. A. PARR
B.Sc., C.Eng., M.LE.E.

BERNARD BABANI (publishing) LTD
THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON Wé6 7NF
ENGLAND

CONTENTS

Page
Chapter One: THE MICROCOMPUTER 1
1.1 Introduction 1
1.2 Computer Architecture 1
1.3 TheStoret 2
1.4 The Central Processor Unit (orCPU) 5
1.5 InputandOutput 9
1.6 Instructionsand Programs 11
16.1 Fetch. 12
1.6.2 Store e 12
163 Add. 12
1.64 Subtract 12
1.6.5 Logical 0. 12
1.6.6 Shifts. 12
1.6.7 Jumps e 13
1.6.8 Conditional Jump 13
1.6.9 Subroutine Calland Return 13
1.6.10 Input/Output Instructions 13
1.6.11 Control Instructions 14
1.7 Why MachineCode? 15
1.8 Machine Code and Assemblers 15
1.9 FurtherReading 16
Chapter Two: Z-80 ARCHITECTURE 17
2.1 Introduction, 17
2.2 General Architecture 17
2.2.1 TheZ-80Registers 17
2.2.2 FlagRegisters(F) 20
2.2.3 General Purpose Registers (B, C, D, E, H, L) .
2.2.4 Special Purpose Registers (I, R, PC, IX IY SP) 23
2.3 External Connections 27
2.3.1 AddressBus 27
232 DataBus 27
2.3.3 ControlBusOutputs 27
234 ControlBusInputs 30
235 BusControl 30
2.3.6 OtherSignals 31
24 BusTiming00 iuinunn... 31
Chapter Three: INTRODUCTION TO Z-80 SOFTWARE .34
3.1 Introduction00t 34
3.2 Hex Representation 34

33 AddressModes i 36

4.7 Bit Manipulation
4.8 Input and QutputGroup
49 ReStarts . . v v v vt ittt e e
4.10 Control Instructions
4.11 General Observations

Chapter Five: ASSEMBLY LANGUAGE
PROGRAMMING
S.1 Introduction
5.2 The Source Program
§.2.1 Introduction,
§5.2.2 LineNumbers
§23 Labels
5.2.4 Instruction Mnemonic................
5§25 Comments00iiuuinnoenn
5.3 PseudoOpCodeso.....
5.4 Assembler Directives
5.5 Usingan Assembler
5.6 MonitorsandBugs
.1 Introduction,
2 Modify.
3 Execute e e
4 Breakpoint00
S Tabulate
.6 Single Step oo
6.7 Conclusionc.....
esting a Machine Code Program
onclusiont

[V NV NV N, N, NV, NV, |

5.7
5.8
Chapter Six: INTERFACINGTHEZ-80
6.1 Introduction
6.2 Serial and Parallel Communication
6.3 Port Addressingand Logic
6.4 Interruptst e
6.4.1 Introduction

6.4.2 Servicingan Interrupt

6.43 Z-80Interrupts

6.4.4 InterruptPriority

6.5 TheZ-80PIO.
6.5.1 Introduction

6.52 SetUpData

6.5.3 Handshaking

6.5.4 Interrupts ittt e

6.5.5 SetUpSummary

6.5.6 PowerUpProblems

.6
.6
.6
.6
.6
.6
T
C

Chapter One

THE MICROCOMPUTER

1.1 INTRODUCTION

A computer based on the Z-80 operates in the same manner as
any other machine be it micro, mini or mainframe. Before we
can discuss the Z-80 and its use in any detail, it is first neces-
sary to describe the operation of a typical microcomputer.
This will serve to define the terms used in the rest of the book,
and place the Z-80 in its role as the central processor of a
powerful, but conventional computer.

1.2 COMPUTER ARCHITECTURE

All computers can be represented by the block diagram of
Fig.1.1, and can be considered as manipulators of data. The
actual form of the data will depend on the application. In
commercial computing the data will be VAT returns, sales
figures, bank accounts and similar information. In industrial
control, the data will be plant sensors and actuators. In a
computer game the data will be the players hand controls and
the video display. The data can be split into input data, which
is to be processed, and the output data, which is the result
of the processing. To produce the output data, the computer
follows a set of procedures, called instructions, which define
the operations that are to be performed on the input data.

The computer can be represented in more detail by Fig.1.2,
and can be considered to consist of three basic units; a store,
an input/output unit and a central processor unit, all inter-
connected by a common highway. The input and output unit
obviously receives and transmits data from and to the outside
world. The store is used to hold instructions and data. The
central processor unit controls the operation of the machine,
and performs the logic and arithmetic operations required
by the instructions.

Pl1OM 3pISINO 121ndwos v fo syusuoduos oisvg 71 “Suq
woiy g 01 eleqg

indino/indu| (NdJ)
11un 10ssadold _mtcmw
ﬂ -
.". snq j0nu0) 51815168y
-
mwﬁ 8 snq
al
m,woc._ o - eleq J31UN0J welboud
Aemybiy p=t
-
- snqg un 9160
SSalppy 1wy 1013U0D
r -

81018

o/l
1 3103

ol

‘

ndo v fo smauoduo) ¢ ‘Siq

M — T T T

snq (011U0)

ey

snq ssaippe
19 8

T™

snq ssaJppe
1qgl

-

-

2160) |013u03 sng

(D1 pajied osie) od _
4331Unod weisboiy —
(Nv) un _

a 1eaibo| 1@ anawyIny _

2 |

8 _

v 2160] Butwiy/j0nuoa _

B 3p02ap UoIIINIISU|
s1a1s16ay _

su01329uun09 3ndinosinduy 9°1 “S1q

.1, 340d ,0, 3od
allasse) J33ulig
eieq eieq
‘018 $'g'e
s1104 21bo| | 1404 2160| 0 1104
- L 0
apo2aQ apo2aq
(~ -
snq
|0U0)
>
snq
auyoew *> g
JO 1531 0] A
snq
4+ ssaippy

V

Ndd
wou4

10

®

23

E2

]

X

wm

N

oo

1‘:22

_>-.—.§

Q2

=2

=922

>SQa*

S3¢
c
=
3
=
®
s

N\ \
\\ \
\ \
N \
\‘ \
(N \
\\ \
. \
~ \
\ \

Call
mult

la T e S Y
PPN N
Call
muit

Fig. 1.7 The use of subroutine calls

Main
program

the direction (in or out) and the source (or destination) of
the data (i.e. which register or which store location).

1.6.11 Control Instructions
Most microprocessors have a small number of control instruc-
14

tions such as STOP, Disable Interrupts and similar operations.
These do not involve data.

At first sight, the vast array of instructions available on a
microprocessor can be rather awe inspiring (the Z-80 has 158
different instruction types). Much of the inevitable feeling
of confusion can be assuaged by remembering that most
instructions are simple variations of the ten types outlined
above.

1.7 WHY MACHINE CODE?

Programming in BASIC is simple and straightforward, so it is
not unreasonable to ask why one should bother with the trials,
tribulations and complexity of machine code programming.
There are really three reasons.

The first is that it is possible to perform operations in
machine code that are impossible (or difficult) to achieve in
BASIC. Control of external items like a model railway would
be difficult in simple BASIC for example.

The second reason concerns speed. BASIC is notoriously
slow, and is quite unsuited to, say dynamic video games.
Machine code programs operate many times faster than BASIC
programs.

The final and most compelling, reason is that machine code
programming is an intellectual challenge akin to chess or
bridge. The mental exercise of programming (in any form) is
very addictive and this is particularly true of machine code
programs.

1.8 MACHINE CODE AND ASSEMBLERS

The instructions a computer actually obeys are held in the
form of binary numbers. To assist human beings to read these
numbers, it is usual to express them in Hex, so 1010 0111
becomes A7 (see AppendixA).

A machine code program therefore looks something like:

15

F5 C5 D6 64 3E Z0 D3 00 etc.

which is still fairly incomprehensible.

It is easier to follow a machine code program if simple
mnemonics are used to represent the instructions. The actual
mnemonics used on the Z-80 will be described later, but in
general they are simple to understand. A program written in
mnemonics is said to be written in Assembler Language, and
looks more understandable.

LD A, 33
INCHL
JPNZ, LOOP

Each of these corresponds directly to a single machine code
intruction, LD A,33 for example, means put the number 33
into register A.

The program written in Assembler Mnemonics is converted
to machine code by a program called (surprise, surprise) an
Assembler. The Assembler has editing facilities similar to those
found in BASIC and makes machine code programming much
less infuriating. In later chapters, examples of Assembler pro-
grams will be given. Assemblers are not usually provided with
computers, and have to be purchased separately.

1.9 FURTHER READING

The description of computer architecture in this chapter has,
of necessity, been rather brief. More detailed discussions can
be found in the following books also published by Bernard
Babani (publishing) Ltd:

Book No. BP72 — A Microprocessor Primer

Book No. BP78 — Practical Computer Experiments

Book No. BP66 — Beginners Guide to Microprocessors

Book No. BP77 — Elements of Electronics - Book 4,
Microprocessing Systems and Circuits

16

snq ssaippe 11q gi kbwm%uakﬁekumxs 08-7Z 4L I'C .M.Nr,N

— 1043U0d —

_ snq ssaippy _

_ Z'Z 61y ass _

| |

_ s101s16ay _

| o [

| | v 6o _o_ou_cow B _ o oun 1)
1sul 3po9p jos3u0)

— uondNLIsU| —

| oo |

| : |

YT

snq elep 119 8 ¢ 2010

[euonndalipig

18

known as register indirect (to be described later in section
3.3.6).

2.2.4 Special Purpose Registers (1, R, PC, IX, 1Y, SP)

There are six special purpose registers, denoted I, R, PC, IX,
1Y, SP. Although these are usually dedicated to one task they
can, in general, be accessed like any other register.

PC is the 16 bit program counter, operating exactly as
described in Chapter 1. A 16 bit program counter is necessary
to address 64K of store.

IX and 1Y are two 16 bit registers used in a useful method
of addressing the store known as Indexed Addressing. This is
described further in section 3.3.7.

SP stands for Stack Pointer, and is another 16 bit register.
To understand the use of the stack pointer we must first
describe the concept of the *‘stack’. We described the idea of
subroutines in the previous chapter. When a subroutine is
called, we must somehow save the contents of the PC, and sub-
stitute the address of the subroutine. At the end of the
subroutine we must reinstate the PC to its original value.

To achieve this, an area of store is designated to hold PC
addresses during subroutine calls. Normally the stack starts
at the top of the store and comes down. The SP holds the
current position of the end of the stack. Because addresses are
16 bits, each address takes two store locations on the stack.

The operation of the stack is best demonstrated by an
example. Let us assume we are obeying the instruction at
location 0CSO0, and it is a call to a subroutine at 1D00. The
stack pointer is currently at 2F0S, indicating that the stack
ends at 2F05. The sequence below is then followed:

i. PC contents are put into 2F05 and 2F04. (i.e. the
address of the subroutine call is put onto the stack)
ii. PC contents are replaced by 1D00 (the address of the
subroutine)
ili. The SP is decremented to 2F03 (to allow for nesting of
subroutines. The stack can be of any length)
iv. The subroutine is obeyed.

23

At the end of the subroutine, a return instruction initiates
the following sequence:

i. The SPis incremented and used to bring a 16 bit number
back from the stack to the PC. If addresses have been
placed and read from the stack in sequence, this will
bring 0C50 back to the PC.

ii. The PC is incremented to step onto the instruction fol-
lowing the subroutine call.

ili. The main program continues.

Putting an address onto the stack is known as a PUSH.
Getting an address from the stack is known as a PULL. The
important point to remember about a stack is Last In, First
Out.

The stack can also be used to store data from register pairs.
This must be done with care, as the programmer must ensure
that the data comes off the stack in the expected order. The
sequence in Fig.2.4 will NOT work as expected because the
data brought to BC will be the last data pushed onto the stack;
the address of the instruction calling the subroutine call. The
address replaced in the PC by the return instruction will be the
contents of BC pushed onto the stack earlier. Remember,
Last In, First Out.

The two final registers are denoted I (for interrupt) and R
(for refresh). The I register is known as the Interrupt Page
Address Register, and is used when the Z-80 is controlling
external devices. There is a vast difference in speed between
computers and peripheral devices, which is reconciled by a
technique known as Interrupts. This will be described in detail
in Chapter 6, but for the present an interrupt can best be
considered as a subroutine call initiated by an external device.
The device supplies the low byte of the subroutine address, the
I register supplies the high byte.

The 7 bit R register is used when the store is constructed
with dynamic memory ICs. (Such as the popular 4116). These
store the data as charges on capacitors (see Fig.2.5) which have
to be refreshed every few milliseconds. Normally this refreshing
is performed by external logic which grabs control of the high-
way at regular intervals to perform the refresh operation. The

24

1129 334035 o1uvul(q (q) ‘1122 2304018 21301S (V)

(Q)
ssA Qg
e
2o 10
| 1
#3019
PPA 3 1O uo PRy

e1ep ‘SSA 1e 3J0|)
ysalijal 03 PPA 18 320(D

SSA

PPA

satouaut I1uvulp % 2upiS §°7 "3t

(e)

26

2.3 EXTERNAL CONNECTIONS

A typical small Z-80 system is shown on Fig.2.6. This should
be compared with Fig.1.2. The Z-80 itself is a standard 40 pin
dual in line IC with connections shown on Fig.2.7. It will be
seen that the connections form the address bus, data bus and
control bus described earlier.

2.3.1 Address Bus

The address bus is AO—A15, AO being the least significant bit
and AlS the most significant bit. The address bus can address
up to 64K of store. The least significant 8 bits (AO — A7) are
also used to address I/O ports, allowing up to 256 I/O
addresses. The address highway conveys the address in “true”
form.

2.3.2 DataBus

The data bus is DO — D7, DO being the least significant bit.
This is a bidirectional highway, conveying data between store,
I/0O ports and the Z-80.

2.3.3 Control Bus Outputs

The control bus contains 13 signals; 8 outputs and 5 inputs.
The first of these is RD, memory read. This indicates that the
CPU wants to read data from a memory location or I/O port.
The signal is active low, and is present whilst the address bus
holds a valid address. RD is used by the addressed location or
port to gate data onto the data bus.

WR, write, indicates that the CPU requires to send data to a
store location or I/O port. The signal is active low, and is
present whilst the address bus holds a valid address and the
data bus valid data. WR and ‘RD are effectively strobe signals
similar to those on Fig.1.3.

MREQ, memory request, is an active low signal indicating
that the address bus holds a valid address. MREQ appears in
conjunction with RD or WR.

27

423ndui020491 pasvq 08-7 9°7 S

m_m_mca__wm
Aiddns
—¢ _ _ 13MOd
+11ndino/indu| 5
%20(1D
PLETEN " 0 10:3u00
1404
ﬂ snq eieq -
WV H/WOYH gr
81018 08-z
sSNQ SS3IpPY @

MI stands for machine cycle one. It was explained in
Chapter 1 that obeying an instruction consists of a fetch of the
instruction from the store followed by a data read and/or a
data write. In the Z-80 the instruction fetch is known as M1,
the memory read as M2 and the memory write as M3. M1 is an
active low signal indicating that the CPU is in the M1 state.
The signal is used in timing some 1/O operations.

2.3.4 Control Bus Inputs

The first control input is the WAIT signal. The Z-80 is faster
than some memory and I/O control devices, particularly when
a 4MHz clock is used. The WAIT signal is used by an addressed
memory or I/O port to indicate that the required data transfer
can not yet take place. On receipt of a WAIT signal the CPU
simply pauses. The WAIT signal is active low. During the
WAIT state the memory refresh is not maintained.

RESET is used to force the CPU to a known state, and is
normally used at power up or to regain control if a program
has gone off the rails. The RESET input is active low and has
the following effects.

i. PC, I and R are reset to zero
ii. Interrupts are disabled and interrupt Mode 0 is set.

Interrupts are described later in section 6.4. Resetting the
PC has the effect of an unconditional jump to location zero.

INT is also an interrupt request from an external device.
A “low” on this line initiates the interrupt sequence.

NMTI is also an interrupt request, but is a higher priority
than INT. The CPU can ignore the INT signal, but NMI,
standing for Non Maskable Interrupt, is always recognised.
NMI effects a subroutine call to location Hex 66. The NMI is
negative edge triggered.

2.3.5 Bus Control

In large systems, the address data and control buses can be
shared with another CPU or devices such as disc controllers
which require access to the memory without the CPU. Under

30

Obviously direct addressing cannot be used, at least not in the
simple form of Fig.3.1. All 8 bit microprocessors use a collec-
tion of ingenious methods called address modes to address the
store.

19 1615 0
R/—A _J
T
Function Address
bits 16-19 bits 0-15

Fig. 3.1 Instruction on a minicomputer

The first, slightly confusing, idea is the use of different
lengths of instruction. A Z-80 instruction can be 8, 16, 24 or
32 bits in length (occupying respectively 1, 2, 3 and 4 store
locations). The first location will always be an Op Code. Sub-
sequent locations define where the data is to be found. The
following are typical Hex coded Z-80 instructions:

7A Move the contents of register D to
the accumulator

06 FF Put the Hex value FF into Register B

C3500C Jump to location 0C50

ED 43 FE IF Store the 16 bit number in Register
Pair BC to store locations IF FE and
IF FF

In each case the first 8 bits define the Op Code (7A, 06, C3,
ED). In the latter case the full Op Code actually occupies two
locations (ED 43) but the ED portion specifies the form of the
instruction, and 43 the register pair.

If the 4 instructions above were stored from location Hex
1000 we would have:

37

“Load register BC with 0C50” is actually 01 50 OC with 01
the Op Code and 0CSO the data. As with extended Addressing,
it might be thought more logical to have coded this 01 OC 50,
but in fact the low byte of the data goes to the low byte of the
instruction.

When register pairs are used, high and low bytes are allo-
cated

High Low
B C
D E
H L

3.3.6 Register Indirect Addressing

A register pair, being 16 bits in length, can hold a 16 bit
address and therefore can be used to indicate a store location.
In register indirect addressing a register pair is used to indicate
the store location for the data. An example would be “Store
the contents of register A in store location whose address is to
be found in register pair BC”. Suppose A contains 2D (in Hex)
and BC contains 1C72 (B is high byte, C is low byte). The
number 2D would be stored in location 1C72. This is summar-
ised by Fig.3.2.

Because the address is provided by a register pair, a register
direct instruction consists only of an Op Code one or two
bytes in length. The code for “Store the contents of A in the
store location whose address is to be found in register pair BC”
is actually 02.

3.3.7 Indexed Addressing

Indexed addressing is a special form of register indirect
addressing that is particularly useful where tables of data held
in successive store locations have to be processed. The Z-80
has two index registers, each 16 bits in length, which provide
a base 16 bit address. The instruction contains a twos comple-
ment offset known as the displacement (in the range —127 to
+128) which is added to the base address in an index register

40

Reg A

2D Data 1 2D] Location 1€72
iCc 72 | Address

B Cc

Reg pair

Fig. 3.2 Register indirect addressing

to give the address to be used for the data. For example, we
could have *“‘Store register B, index addressed with IX,
displacement 05”. Let us assume register B contains FE, index
register X contains 2D10. The instruction would store FE in
location 2D15.

An index address instruction always occupies three loca-
tions and consists of a 2 byte Op Code and a 1 Byte displace-
ment:

Op Code (two bytes)
Displacement (one byte)

The coding for ““Store register B, index addresses with IX,
displace 05" is actually DD 70 05. DD 70 is the Op code, 05
the displacement. (See Fig. 3.3)

41

Note that unlike all other arithmetic operations, the result
goes back to the source of the data and NOT to register A.
Increment and decrement instructions are a convenient way of
counting events.

3.44 Jumps and Subroutine Calls

The idea of jump instructions and subroutine calls was intro-
duced in Chapter 1. The Z-80 has a very useful range of
conditional jumps and subroutine calls and returns. The con-
ditions tested are based on the flags in the F register and are:

Carry Set, Carry Not Set, Accumulator Zero, Accumulator
Non Zero, Parity Even, Parity Odd, Sign Negative, Sign
Positive.

The majority of these instructions use extended addressing
(e.g. CC 70 OF, call subroutine starting at location OF 70 if the
accumulator is zero). There are also a few jump instructions
using relative addressing and three unconditional jump instruc-
tions using register indirect addressing.

Subroutine calls use the stack pointer to store the current
value of the program counter, and return instructions reinstate
the value from the stack back to the program counter at the
end of the subroutine. The stack operation was described in
section 2.2.4.

3.4.5 Rotates and Shifts

A shift instruction simply moves the bit pattern in a register
one place to the left or right. Suppose we had

1010 0111 (A7 in Hex)
A simple shift to the left would give
0100 1110 (4E in Hex)
A simple shift to the right would give
0101 0011 (53 in Hex)
In each case the bit pushed off the end is *lost”, and a zero
48

placed at the other end. These are known as a logical shift.

Consider the simple bit pattern 0101, which is five in
decimal. If the pattern is shifted one place to the left (called
shifting up) we get 1010 which is ten in decimal. A shift up is
equivalent to multiplying by two providing the top bit is not
shifted off the end.

Similarly, if we have the bit pattern 1100, which is twelve
in decimal and shift it one place to the right (called shifting
down) we get 0110 which is six in decimal. A shift down is
equivalent to a division by two.

A simple shift will, however, give the wrong result on signed
number. If twos complement representation is used, bit 7
represents the sign, being a ‘1’ for negative numbers and ‘0’ for
positive numbers. We thus have:

1111 1000 (—8 decimal)
1111 1100 (—4 decimal)
1111 1110 (=2 decimal)
1111 1111 (—1 decimal)

Although we are dividing by two by shifting to the right,
it is not a simple shift because the sign bit must be maintained.
This is known as an arithmetic shift, and can be summarised
by Fig. 3.4.

Rotate instructions are very similar to shifts. In a rotate
instruction the ‘lost’ bit is simply fed into the opposite end of
the register as shown on Fig.3.5. The effect of successive
rotate rights would therefore be:

start 0110 0101
rotate right 1011 0010
rotate right 0101 1001
rotate right 1010 1100
etc.

The Z-80 has seven types of rotate and shift instructions.
These all incorporate the carry flag as shown on Fig.3.6. These
operations can be performed on every general purpose register
and (using register indirect or indexed addressing) on store
contents.

Shift instructions are the basis for writing multiplication

49

/' Lost

Top bit maintained
as well as shifted down

Fig. 3.4 Aritbmetic shift right

Rotate right

Rotate left

Fig. 3.5 Rotate instructions

and division routines, and both shifts and rotates are widely
used where individual bits are used to represent data in control
applications or data processing as described in section 3.3.11.

50

‘0’ = zero

CY = carry flag

(HL) = store location whose
address is held in HL

ACC = register A (i.e. Accumulator)

Fig. 3.6 (b)

3.4.6 Block Transfer

The Z-80 has a unique set of block transfer instructions. These
allow “blocks” of data to be moved around the store with just
a few instructions. These instructions all involve the register
pairs HL, DE, BC.

Register pair HL contains the 16 bit address where the first
item of data is to be found.

Register pair DE contains the 16 bit address where the first
item is to be stored.

Register pair BC is a 16 bit counter used to define how
many words are to be moved.

If HL contained, say, 0C50, DE, 2000 and BC 100, a block
transfer instruction would move 100 (Hex) words from 0C50
to 2000 and succeeding locations as summarised on Fig.3.7.

The contents of 0C50 would go to 2000

0Cs1 to 2001

0CSs2 to 2002 and so on for 100
locations.

There are four block transfer instructions. The first two
operate as above, and are known as “load increment repeat,
(LDIR)” and “load decrement repeat, (LDDR)”. These
operate as above, except LDIR works up the store and LDDR
works down the store allowing data to be transferred between
overlapping locations as shown on Fig.3.8.

The two remaining block transfer instructions transfer one
word each time the instruction is obeyed, but set up HL, DE
and BC ready for the next transfer. These allow other instruc-
tions to be incorporated in the block transfer operation. An

52

Destination

Source

Fig. 3.7 Block transfer instruction

example is shown on Fig.3.9 which is a flow chart for an
operation which transfers a block of data, terminating either
when the full block is transferred or a word containing “FF”
(Hex) is found. As before, an incrementing and decrementing
instruction is provided to allow data to be transferred between
overlapping locations. The instructions are known as “Load
decrement (LDD)” and “Load increment (LDI)”.

The Z-80 also has four powerful block search instructions
which allow an area of store to be compared with the accumu-
lator contents. HL coptains the start address, and BC is a
counter indicating the number of locations to be searched. As
before, the search can be conducted up or down the store, and
can be conducted one word at a time (compare increment
(CPI) and compare decrement (CPD)) or at one go with one

53

JeVv
Qeg
ER o]
ER]

|

sassasppy Jurddopuaco qum safsuvay yo01q ' S

Q=
D=3
g-a
V<)

54

1

LD HL, source

'

LD DE,
destination

'

LD BC,
counter

—]

LD A, (HL)

Y

CP £FF

Jp 2z

LD |

v

Rest of program

Fig. 3.9 Example of use of block transfer

55

manner to the block transfer instructions described previously
in section 3.4.6.

Register pair HL contains the store address
Register B contains the byte counter
Register C contains the port address

The block transfer instructions are particularly useful for
inputting data from (say) a tape recorder or sending data to a
printer.

We will return to 1/O instructions again in Chapter 6 where
I/O support devices are described and section 6.4 where the
operation of interrupts is discussed.

3.49 Control Instructions

There are six Z-80 control instructions. Four of these are con-
cerned with the operations of interrupts (described further in
section 6.4). The remaining two are ““Halt” and the dummy
*No operation™.

3.4.10 General Observations

We have described the Z-80 instructions in very general terms.
In Chapter 4 the full instructions set is given in a formal
manner.

3.5 SYMBOLIC REPRESENTATION

It is very laborious to describe instructions in a descriptive
manner such as “‘Fetch to register A the contents of the store
location whose address is held in register pair HL”. A simple,
logical symbolism is used to represent instructions in the Z-80
(and other) microprocessors. Typical instructions are rep-
resented as.

A<A+]
A< A +(HL)

Let us see what these symbols mean, and how they
' 57

A < A+ (IX +3) Add the contents of register A
to the contents of the store location
whose address is given by adding 3 to
the contents of the index register, the
result to go to register A.

The last example shows the simplicity of the symbolism!
Even jump instructions can be represented. A simple jump
is:
PC < IDAF Jump to location 1DAF (PC stands
for program counter)

A subroutine call to a subroutine at F6000 is represented
by the three symbols:

(SP—1)«PCy , (SP—2)«PC; ; PC<«F6000
H L

SP refers to the stack pointer, PCy is the high byte of the
program counter, PCy_ is the low byte of the program counter.

The symbolism cannot be used to represent shift instruc-
tion and control instructions.

3.6 CONCLUSION

In this chapter we have described the Z-80 instructions and
addressing modes in a descriptive manner. In chapter 4 the
complete instruction set is given formally in a manner suit-
able for reference by a programmer.

59

Chapter Four
THE Z-80 INSTRUCTION SET

4.1 INTRODUCTION

In Chapter 3 the Z-80 instruction set was described in
narrative fashion. In this chapter the full instruction set is
given in a formal fashion. The most convenient way to do this
is in tabular form. Most instructions involve data from some
source (a register, a port or a store location) and the result
goes to a destination. The instructions are represented in the
form of tables with the data source across the top and the
destination down the side. The instruction (in Hex code) can
then be read off like a car mileage chart. On Table 4.1, for
example, the code to move data from register E to register B
is43.

In the tables, “n” refers to a single byte hex number (i.e.
two hex digits) “n” is used for immediate data and port
addressing. “‘nn’’ refers to a double byte hex number (i.e. four
hex digits) “nn” is used for extended addressing and 16 bit
immediate data. “d” is used for the (single byte) offset in
indexed instructions (representing a signed twos complement
number, remember) “e” is used for the displacement in
relative addressing.

Where two byte numbers ‘‘nn’” are used, it should be
remembered that the low byte comes first. C3 50 0C is a jump
instruction to 0C 50, for example.

It should also be remembered that brackets () refer to store
locations, so (BC) indicates register indirect addressing, with
register pair BC holding the store location.

Assembler mnemonics are also given with the tables,
although Z-80 assembly language is not described until chapter
5. The tables are intended for reference purposes, and would
not be complete without the assembler mnemonics.

The Z-80 is a development of the Intel 8080 microproces-
sor, and all 8080 instructions are available on the Z-80. These
instructions have a small identifier in the top left hand corner

60

DESTINATION

Table 4.1 8 Bit Load Group
Instruction Mnemonics are all LD destination, source

IMPLIED REGISTER
1 R A B c D E
P VO V4 4
Ep | ED
A s ED 7* 28 79 A B
V7
B 4 40 4 «Q 4
N Z 4 4
c «F 48 49 A 4
V 4 74
REGISTER D 57 50 51 52 53
4 VoV 4 4
E SF 58 59 SA sB
4 L ” /
H 67 60 61 62 6
Z 4 4 4 4
L 6F 68 69 6A B
4 V 4 74
(HL) ” 0 7 7 7
REG. 4
INDIRECT (BO) 02
(DE) 12
pp [bo | op | Db | DD
(IX+d) 7 70 1 7 73
d a ¢ d d
INDEXED
FD D D D D
AY+d) 7 70 n 7 73
4 4 d d d
12
EXT. ADD. (nn))
n
ED
i a
IMPLIED
ED
R «F

Note: Reg. Indirect, Indexed & Ext. Addressing access the store

62

The decimal adjust instruction corrects the result of a BCD
addition or subtraction instruction to give a BCD result. In
the example above a DAA instruction on 6D would give the
correct BCD result 73. The DAA does NOT convert a Hex or
binary number to its BCD equivalent.

The DAA corrects the result of a subtraction and addition
in a different way, and uses the N flag to determine if the last
instruction was an add or subtract. It is therefore very
important to use the DAA instruction immediately after the
add or subtract instruction which it is to correct.

The DAA instruction itself sets the flags according to the
BCD result obtained after the adjustment. For example, if A
contained BCD 87 and B contained BCD 26, adding A and B
would give Hex AD. A DAA would then give BCD 13 with the
carry flag set (decimal 87 + decimal 26 = decimal 113).

4.3.2.2 Complement Accumulator (CPL)
The complement accumulator instruction simply replaces ‘1’s
by ‘0’s and vice versa in the accumulator. For example:

1011 0111 (B7hex) 0101 0001 (51 hex)
becomes
0100 1000 (48hex) 1010 1110(AE hex)

CPL is a useful single byte instruction.

4.3.2.3 Negate Accumulator (NEG)
The negate instruction replaces the data in the accumulator
by the twos complement number of opposite sign. +23, for
example becomes —23.

For example:

04 Hex becomes FC Hex (—4)
E7 Hex (—19 Hex) becomes 19 Hex

4.3.2.4 Complement Carry Flag (CCF), Set Carry Flag (SCF)
These instructions simply allow the state of the carry flag to
be changed (CCF) or forced to a ‘1’ (SCF). All other flags
remain unchanged.

68

DESTINATION

4.3.3 16 Bit Arithmetic

Table 4.6 shows the range of 16 bit arithmetic instructions
available on the Z-80. These operate solely on the register pairs,
stack pointer and index register contents. It is not possible to
perform (directly) arithmetic operations on 16 bit data in two
successive store locations. All register pairs can be incremented
and decremented.

Table 4.6 16 Bit Arithmetic Group
SOURCE

BC [DE | HL'| SP | IX | IY

HL /09 /19 /29 /39

. pp| DD DD | DD
ADD IX 109 | 19 39 | 29

iy | FD|FD FD FD

09 | 19 39 29

Add with Carry and HL ED | ED | ED | ED
Set Flags ‘ADC’ 4A | 5A | 6A TA

Sub with Carry and HL ED | ED | ED | ED
Set Flags ‘SBC’ 42 | 52 | 62 | 12

VoV
INCREMENT ‘INC' [03 [13 [23 [33 | D2 | 53

//Z/DDFD

7
DECREMENT ‘DEC OB [IB B 3B |58 | 2B

44 JUMP CALL AND RETURN GROUP

The principles of jumps and subroutine calls were outlined in
section 3.4.4. The full range is given in Table 4.7. There are 9
conditions available based on the states of the varous flags, al-
though not all conditions are available with every addressing
mode.

69

Load B with
number of times
loop is to be obeyed
LD B,N

Loop . R
< These instructions

instructions obeyed N times

A |

B non zero Dec B jump
— non zero
‘DINZ’

‘ B zero

Rest of program

Fig. 4.1 DJNZ instruction & loop

routines are again available with 9 conditions (the return
address is, of course, obtained from the stack pointer).

The two remaining return instructions are concerned with
interrupts, a topic discussed further in section 6.4.

4.5 SHIFTS AND ROTATES

There are 7 types of shift and rotate instructions summarised
on Fig. 4.2.

71

by <—_bo

Rotate

left circular
> Rotate
right circular
Rotate
‘ < left
cy - > Rotate
right
< Shift
B 0 lett arithmetic
— Shift
right arithmetic
cY . > Shift
. right logical
0
—
_ Rotate digit
b3 —bo| (HL) |o¢

|(HL)

Rotate digit
right

Fig. 4.2 Z-80 rotate & shift instructions

72

uonerado 10§ 'y 81 998

SIUOWAUR
¢
& .auy.
a .a.
€
P 3 ac o € ve 6¢ 8¢ 4 | qys
O 5 O CR) %) a o ® 4 | TS
aa
Ed
P 3t @ x a v 62 82 L
5} © 5] © L5} 5] &) E5) o | vEs
aa m
% o
) % 5T " 11 141 1z 0z a | s |9
9}) [+ 15} 5} 5} 5] &) o |V |x
aa]
EQ >
° Nl al 31 a1 v1 61 81 a1 w. | @
aO O :] a ;o] a O a O I ¥-]
aa m
91 H
() 91 51 vl €1 3! 1 o1 L . |3
[} © @ 15} a0 (5} 5} ®© @ |
aa
0
» 30 ao 20 a0 vo 60 80 T -
© 8 © O %) @ %) L5 o |
aa
%
] % 50 " €0 20 10 00 JT R -
) [5) s} o | o L5} 5] @ | O
aa
P+x1) [qiTV] 1 H k| a J] v
NOLLVNLLS3d ¥ 3J4N0S
dnon sys ¥ AeI0yY 8P qEL

73

4.6 BLOCK TRANSFERS AND SEARCHES

Table 4.9 shows the powerful block transfer instructions. As
explained in section 3.4.6, HL is used to hold the source
address, DE holds the data address, and BC is a byte counter.

Table 4.10 shows the block search instructions.

Table 4.10 Block Search Group

Search
Location

REG.
INDIR.

(HL)

ED
Al

‘CPI’
Inc HL, Dec BC

ED
B1

‘CPIR’, Inc HL, Dec BC
repeat until BC=0 or find match

ED
A9

‘CPD’ Dec HL & BC

ED
B9

‘CPDR’ Dec HL & BC
Repeat until BC=0 or find match

None available on 8080

HL points to location in memory to be compared
with accumulator contents
BC is byte counter

75

4.7 BIT MANIPULATION

The range of bit manipulation instructions are shown on Table
4.11. These allow any bit to be set, reset or tested in any
register or (using indirect or indexed addressing) any store
location. The test instructions set the Zero Flag if the tested
bit is zero.

4.8 INPUT AND OUTPUT GROUP

An input instruction needs to specify the port address and the
destination for the data. The Z-80 input instructions, shown
on Table 4.12, all have registers as the destination, and the
port address specified either by immediate addressing or
register indirect with register C holding the port address. A
single byte is used as a port address, so 256 ports can be
addressed. The contents of register A appear on the top 8 bits
of the address bus giving 64K of port addressing for more
ambitious users!

There are also a useful range of block input instructions.
These operate in a similar manner to the block transfer instruc-
tions, and are used to input a block of data from a port to
sequential store locations. Register pair HL holds the store
address, register B is used as a counter and register C holds the
port address.

The output instructions, shown on Table 4.13, transfer data
from registers to a specified port address. As above, immediate
and indirect addressing is used.

There is again a range of block output instructions which
output a block of data from sequential store locations to a
specified port. Register pair HL holds the store address,
register B is used as a counter and register C holds the port
address.

Input/Output is a somewhat involved iopic that is dealt
with further in chapter 6 where actual 1/O devices are
described along with the operation of interrupts.

76

- quo)

as as
P P s as o5 as vs 6S 8§ ds
4 o) 1 ') 4 '))) o) € £
ai aa
95 95
P) 95 ss bs €5 s Is 0s Ls
) 0} o) a 4) € 4> i)) 4
aid aa g,
v I Is3l
P P ap ar op a» v 6% 8% d
4 4 ') € O ') 40 a0 o) a 1
ai aa
5 9
P P 9% sp by € 43 153 o Ly
0} a i) 4 a0 40 €0 o) € %) 0
ai aa
ng
@®+AD| (P+XD | (TIH) 1 H c| a o} q A4
QIXaANI J._m_vmu_ ONISSTIAAY YALSIOTH

dnoan uonemdiweyy 31g |14 3qeL

77

INPUT DESTINATION

Table 4.12 Input Group
PORT ADDRESS

REG.

IMMED INDIR.

n ©

DB ED
n 78

ED
40

ED
48

D ED

INPUT ‘IN’ 50

ED
S8

Qz-wrumpmoo» QMo

ED
60

ED
68

‘INI' — INPUT & ED
Inc HL. Dec B A2

‘INIR’ — INP, inc HL, ED
Dec B, Repeat if B #0 REG B2

NDIR. | (HD)

‘IND’ — INPUT & ED
Dec. HL, Dec B AA

‘INDR® — INPUT, Dec ED
HL, Dec B, Repeat if BA

B#0

81

SANVHNWOD LNdNI 2018

49 RESTARTS

The restart instructions are a special group of subroutine calls.
The 8 restart instructions, shown on Table 4.14, call sub-
routines at hex addresses 0, 8, 10, 18, 20, 28, 30, and 38.
Commonly used subroutines can be placed at these addresses
and called with single byte instructions.

Table 4.14 Restart Group

op
CODE
/
0000y | C7 ‘RST 0’
L
0008y | CF ‘RST 8’
C /
é 0010y | D7 ‘RST 16°
5 7
A
D 0018y | DF ‘RST 24’
D
R
E /
g 0020y | E7 ‘RST 32
0028y | EF ‘RST 40°
0030y | F7 ‘RST 48'
4
0038y | FF ‘RST 56

83

Chapter Five
ASSEMBLY LANGUAGE PROGRAMMING

5.1 INTRODUCTION

Programming in the actual hex machine code is tedious and
error prone. It is not difficult to see why working in machine
code causes problems. Consider the simple program below:

3AS500C A1 FEO1 C2001D

To find out what this does we must determine where each
instruction starts and finishes. By laborious reference to
chapter 4 we get:

3A500C Load A from location 0C50

Al And with the contents of register C
FE 01 Compare with ‘01’

C2001D Jump if zero flag is not set to

instruction at 1D00

Understanding a bald Hex program is not easy, and is
doubly difficult with a program written by someone else.

Another problem occurs when a program requires to be
modified due either to a fault or to changed requirements.
Unlike BASIC, the simple insertion of one instruction<to a
machine code program will affect the addresses of &il sub-
sequent instructions, with unfortunate repercussions on the
destination of jump instructions. This problem can be
alleviated to some extent by leaving gaps at strategic places in
a program, but the requirement to insert an instruction will
always make a programmer wince.

Machine code programs can be made comprehensible and
easy to modify if the programmer uses a programming aid
called an Assembler, which allows machine code programs
initially to be written in a form closer to a high level language
such as BASIC.

In assembly language, programs are written using
mnemonics for each and every machine code instruction.

86

Examples of these mnemonics are:

LD Load, i.e. data movement
CALL Subroutine Call

JP Jump

ADD Arithmetic Additions

The program written in mnemonics is called the source pro-
gram. The programmer loads a special program called an
Assembler into his computer, followed by his source program.
The assembler converts the source program mnemonics into
their machine code equivalent (not a particularly difficult
operation, actually, as there is a one to one relationship
between the mnemonics and their Hex coding). The resultant
machine code program is called the object program, and can
usually be saved on cassette, disc or paper tape, or transferred
direct to the computer store.

Writing a program in assembly language is therefore very
similar to writing a program in BASIC, except that one BASIC
instruction will be the equivalent of many machine code
instructions, whereas one instruction in the source program
will represent one, and only one, machine code instruction.

Assembly language programming is much easier than
straight machine code. The use of mnemonics makes the pro-
gram easier to understand, and the assembler allows instruc-
tions to be added or deleted during debugging, with the
computer adjusting all the jump instructions. Anyone seriously
contemplating machine code programming should therefore
aim to obtain an assembler.

There are many different assemblers for the Z-80 with
slight differences in syntax, as there are many slightly different
versions of BASIC. This chapter is therefore a non formal
introduction to the principles of assembly language program-
ming. With the background provided in this chapter, the reader
should have little difficulty in following the formal presenta-
tion of any assémbler language instruction manual.

87

where the object code program is to be placed in memory,
load alphanumeric strings (i.e. messages) directly and similar
operations.

The first of these pseudo op codes is ORG for Origin, which
indicates to the assembler where the object program is to start.
For example, with

100 ORG £4000 s PROGRAM STARTS 4000
110 PROG LD A £FFsMAKE A MINUS ONE
etc.

The ORG instruction tells the assembler that the program is
to be loaded from Hex 4000 onwards. The LD A,£FF (3E FF)
will go into locations 4000 and 4001, followed by the rest of
the program.

Several ORG statements can be used in one program.

The second pseudo op code is EQU, for Equate, which is
used to equate a label and a value.

An example of the use of EQU occurs where useful sub-
routines are provided in the ROM of the computer. Let us
assume that there is a keyboard reading subroutine in the
ROM at Hex O1AF. We would put somewhere at the start of
the source program:

(line number) KBD EQU £01AF

Thereafter, when we wish to call the keyboard subroutine
we simply write:

(line number) CALL KBD

which the assembler interprets as CALL £01 AF. Note how the
use of the label KBD assists the comprehensibility.

DEFS (for define space) is the third pseudo op code, and is
used to reserve a number of store locations. For example,
with:

320 JP KBD
330 SPARE DEFS £100; 100 PLACES FOR DATA
340 CALL LOOP

94

the assembler will leave Hex 100 locations between the jump
instruction and the subroutine call.

DEFM (for define message) allows the user to load ASCII
values direct from the keyboard. For example:

100 ORG £3000
110 DATA DEFM “ABCD”

will put Hex 41 into location 3000 (i.e. ASCII A)
Hex 42 into location 3001 (i.e. ASCII B)
Hex 43 into location 3002 (i.e. ASCII C)
Hex 44 into location 3003 (i.e. ASCII D)

DEFM is very useful for loading fixed messages.

DEFB (define byte) and DEFW (define word) allow the
user to define an 8 bit byte or a 16 bit word respectively.

Superficially these are similar to EQU, but the DEF instruc-
tions cause data to be loaded as part of the program, whereas
the EQU has no action outside of the assembler.

5.4 ASSEMBLER DIRECTIVES

Directives are instructions to the assembler (in the same way as
LIST, RUN, EDIT etc. are directives in BASIC). There are, of
course, differences between assemblers on different machines,
but most will have the following:

i. Enter a source program

ii. List a source program to VDU or printer

ili. Edit a source program (add, delete or modify lines)

iv. Search for a specific instruction

v. Renumber a source program (i.e. put all the line numbers
in increments of ten)

vi. Assemble the source program to produce an object pro-
gram which can be sent to tape, disc or printer or placed
directly in the store if space permits.

These directives are selected by keywords from the key-
board in a similar manner to BASIC.

95

5.5 USING AN ASSEMBLER

To demonstrate how an assembler is used, we shall write a
small subroutine using a Z-80 assembler called ZEAP on a
Nascom microcomputer. The subroutine is a simple Bubble
Sort which sorts data in successive store locations into
numerical order. First let us describe the subroutine operation.

The subroutine is entered with register pair HL containing
the first address of the data to be sorted, and register C con-
taining the number of items to be sorted. The data is to be left
in the original area of store after the sort has been completed,
with the smallest number in the lowest store location.

A bubble sort is the simplest and least efficient method of
performing a sort, but is relatively easy to understand. The
algorithm for a bubble sort can be expressed:

i. Set Marker =0
ii. Go through the list comparing adjacent pairs. If a pair is
in the wrong order interchange them and set Marker = 1
iii. Repeat step ii. until the end of the list
iv. If, at the end of the list, Marker = 1 go back to step i. If
Marker = 0 (indicating no changes have been made) the
sort is complete

The algorithm might be a bit indigestible for a first reading,
and is given in flowchart form in Fig.5.1.

We must now convert this simply expressed flow chart to
a machine code program. The routine is entered with the
address of the first item in the list held in register pair HL, and
the number of items held in register C. The list is accessed
using indexed addressing. The items for comparison are held in
registers A and E. Register B is used as a counter to see if all
the list has been tested (this allows the useful DINZ (Dec B
jump not zero) instruction to be used. Bit O in register H is
used as the marker to indicate if an exchange has occurred and
another pass through the list is required.

The general flow chart of Fig.5.1 is redrawn in a form
suitable for machine code programming on Fig.5.2. This can
be converted more or less directly to an assembler source
program as follows. The reader should carefully compare this

96

Enter

>
Clear
marker
Set pointer to
start of list
-3

Compare items
indicated by

pointer

Exchange
needed?

Swap items
& set marker

>

Move pointer to
next pair of items

Marker

set?

No
Fig. 5.1 Flowchart for bubble sort

Return

)

-

Comments

Marker set if
exchange
has been made

Pointer is used
to indicate
where we are
in the list

3\

This loop
repeated
> for each
item in list
(i.e. N-1
times
for N items)

|

Outer loop
repeated
until list is sorted
If we reach
the end of the
list without
making an
exchange,

the list is sorted

97

The counter to see when the end of the list is reached is
held in register B to allow the DINZ instruction to be used.
Lines 130 and 140 initialise B. The number of comparisons
is one less than the number of items, hence the need for line
140.

The index register IX is used to address the list, and this is
initialised at line 150. Lines 160 and 170 bring pairs from the
list which are compared at line 180. Line 190 skips lines 200
to 220 inclusive if no exchange is needed. If an exchange is
needed, lines 200 and 210 put the data back in the list
reversed and line 220 sets the exchange marker.

Line 230 increments the index register ready for the next
pair, and the counter in B is decremented at line 240. If the
end of the list has not been reached, we jump back to line 160
(the label NEXT) for the next pair.

At the end of the list we look at the exchange marker at
line 250. If this is set, line 260 takes us back to line 220 (the
label MAIN) for another pass through the list.

When the list has been sorted, line 270 puts HL back to the
address at the start of the (now sorted) list so the routine exits
with registers C and HL unaltered.

Lines 300 and 310 define labels. Line 300 says that MARK
means 0, so we can say, for example, SET MARK, H rather
than the less obvious SET 0, H. Line 310 reserves two loca-
tions with the labels FIRST (used to hold the start address of
the list).

The first step in using an assembler is to load the assembler
itself from tape or disc (or call it if you are lucky enough to
have an assembler resident in ROM). The source program is
then typed in.

It is a good idea to immediately save the source program on
tape, to prevent teeth gnashing if the computer crashes or the
mains fails during testing.

With the protection of a back up source program, we now
ask the assembler to convert the source program to a machine
code object program. Not surprisingly, this is known as assem-
bling. In our case we get:

100

3088 ERROR 30 8168 NEXT LD A, (1X+0)
380 ERROR 28 6188 (o, [3

This indicates that we have grammatical errors in our
program. Different assemblers indicate errors in different
ways, but ZEAP uses error codes.

On line 160 an error 30 was given. This indicates a label not
found. In fact, IX + O has been incorrectly entered with letter
O instead of a figure 0. The assembler has looked unsuccess-
fully for a label letter O. A typical typing error.

One line 180 we have error 20. This indicates that the
assembler could not recognize the mnemonic. The correct
mnemonic for compare is CP not CMP. A typical pilot error.

With these errors corrected, we ask for another assembly
which gives

8818 ; ##¢ BUBBLE SORT ROUTINE sss

86208 . ENTER NITH FIRST ITEH RDDRESS IN HL
8828 ; NUMBER OF ITEMS IN C (2 TO 255>
8848 ;EXIT NITH:

80850 ; ITEMS SORTED IN SAME STORE BLOCK
8068 , HL AND C UNCHANGED

8870 ;REGISTERS A B E 1X USED

8080 ; OTHER REGISTERS UNCHANGED

aesa ;

5888 8180 SORT ORG £5608; ADDRESS FOR ROUTINE
5688 222858 60118 LD (FIRST), HL. SAYE RDDRESS TO FREE M
5003 CB84 8128 MAIN RES MARK, H; CLEAR EXCHANGE MARKER
5605 44 8138 LD B.C,SET UP COUNTER FOR TESTS
5606 85 8140 DEC B, COMPRRISONS 1 LESS THAN ITEMS
5687 DD2R2858 0158 LD IX, ¢FIRST). SET IX TO START OF LIST
5668 DDP?EB8 @168 NEXT LD A, (1X+08), GET FIRST OF PAIR
588E DDSE61 e17e Lo E. (]1X+1); GET SECOND OF PRIR
5611 BB a18e CP E:COMPARE THEM
5812 3888 8196 JR NC NOEX-$; EXCHANGE NEEDED?
5614 DD?368 8260 LD (IX+0). E; VES. PUT BACK EXCHANGED
5817 DD?761 8216 LD (IX+1). A;DITTO
561A CBC4 8220 SET MARK., M; MARRKER SHONS EXCHANGE MRDE
581C DD23 8230 NOEX INC IX,SET IX FOR NEXT PRIR
501E 18EB 0240 DJINZ NEXT-£, JUNP BACK IF NOT END LIST
56020 CB44 0256 RIT MARK. N, END RERCHED. EXCHANGE MADE?
5822 28DF 8268 JR NZ,MAIN-£,G0 BACK IF EXCHANGE MADE
5624 2A2856 827@ LD HL, (FIRST).SORT DONE.RESTORE HL
5827 C9 8280 RET EXIT FROH SUBROUTINE

0290 ; DEFIN!TIONS
:CEL 8380 MAPK EQU 0. NAME FOR EXCHANGE MRRKER
8882 6310 FIRST DEFS 2.TEMP STORE FIRST ARDDRESS

8328

8338

This produced no errors, so it is a legitimate source pro-
gram. This does NOT mean it will necessarily do what we
want, it simply means there are no grammatical errors (as men-

101

tioned earlier, there is a logical error in the program which we
will discover later).
The print out gives us for each source line in order from left
to right:
i. The store location an instruction is stored at
ii. The actual Hex object code
ili. The source line number
iv. Label (if present)
v. The instruction mnemonic or pseudo op code.
vi. Comments (if present)

The reader should check the object code against the tables
in the previous chapter to see that the method works! It is also
useful in getting a ‘feel’ for the operation.

We now need to test our routine. Before we can do this we
need to discuss the debugging aid known as a ““Monitor”.

5.6 MONITORS AND BUGS

5.6.1 Introduction

An assembler allows machine code programs to be written, but
does not allow them to be run or tested. To do this we need
another programming aid known as a Monitor or Bug.

A monitor is a small program (typically 1 — 2K) that allows
the programmer to examine the store and register contents and
check a program by stopping it at a strategic point or running
a program with a pause between each intruction (known as
single stepping).

A monitor can exist in ROM (as does the Nascom NASBUG
and NASYS monitors) or be loaded via tape (as the TRS-80
T-BUG). Monitors are often called BUGs because they are used
to de-bug a program.

The facilities offered by different monitors vary consider-
ably, but all will have the following (although the terms used
may differ). The examples below are for a NASBUG monitor.

102

536080
1808 3602 819A 7C80 817E 7R81 88 1C83 OFFE SHN
>

10060 3084 6198 7C88 817E 7R83 8@ 1C83 BFFE SHN
1000 3885 8688 7C88 B817E-7RB3 08 1083 OFFE
iBBB 3686 0C88 7C8@ 817E 7R85 88 1C6S OFFE
iBOO 3088 aC9B 7C88 817E 7R8I 00 1083 BFFE SHMNC
iBBO 3828 8C9B 7C88 817E 7R3 08 1L8S OFFE SHNC
%988 3822 OC9B 7C88 817E 7RB3 88 1C086 BFFE SHNC

The above steps are actually the instructions above. The
reader should check the register contents against the program
at each stage.

5.6.7 Conclusion

The five functions described above are provided on all
monitors. Other functions commonly available are write a
program to tape or disc, read a program from tape or disc,
search for a specified data string, copy data from one part of
the store to another. The instruction manuals should be con-
sulted for specific details.

It is possible to write, check and run machine code
programs with a monitor only. It is not possible to check
machine code programs with just an assembler. Although
ideally an assembler and monitor should be obtained, if funds
are tight, a monitor alone will suffice.

Some machines (such as the NASCOM) come with a
monitor already provided in ROM.

5.7 TESTING A MACHINE CODE PROGRAM

In section 5.5 we wrote a bubble sort subroutine. We will now
write a small program to test it. This program will take a series
of characters from the keyboard and store them. The charac-
ters are then sorted by our subroutine and displayed, sorted,
on the VDU screen. Alphanumeric characters are obtained
from the keyboard in Hex (A is 41H, B is 42H etc.) so they

105

Start

Key
pressed?

Was it
Newline
key?

Yes

No

Display character
& add it to list
Increment counter
showing number

of ng
-

|

Call sort
(i.e. fig. 5.2)

Display
sorted
list

End
Fig. 5.3 Flow chart for bubble sort test program

107

Start

Housekeeping:
Ld 1X with Hex 4000
Set up stack pointer
Clear register C

— | —

Call KBD

Key

pressed?

Call
CRT

Add character
to list

Increment
pointer
& counter

1X pointer to next item in list,
starts at Hex 4000. Reg C
counts number of items

KBD is routine in Nasbug which
scans keyboard & returns with
character in reg A

i.e. jump on requisite flag

i.e. compare ‘’Newline” & jump
on requisite flag

CRT is routine in Nasbug which
displays character in A on VDU

i.e. (IX+0)=A

i.e.inc IX
inc C

®

Fig. 5.4 (a) Detailed flow chart for

bubble sort test program

108

List now entered

Set HL to 4000 is start of list
Hex 4000
Call SORT i.e. Call fig. 5.2

List now sorted

Set HL to 4000
Set B to number
of items

—3 3

Next character

HL used as pointer
B used as pointer

to A i.e. A=+ (HL)
Call CRT Nasbug routine as above
Increment o
pointer i.e.inc HL

i.e. decrement counter B &
jump if non zero DJNZ

End

Fig. 5.4 (b)

109

Chapter Six

INTERFACING THE Z-80

6.1 INTRODUCTION

To be useful, a computer must be able to communicate with
the outside world. At the simplest level we need to be able to
input from a keyboard and cassette recorder, and output to a
TV screen and tape recorder. More ambitious systems will have
printers, discs and possible control external items such as
laboratory experiments or industrial plant.

In this chapter we will describe how the Z-80 communicates
with its external devices.

6.2 SERIAL AND PARALLEL COMMUNICATION

All communication between micros and the outside world
takes place in the form of 8 bit words. If the data is alpha-
numeric, the 8 bits will usually represent a character in the
ASCII code (see Appendix C). If the data is used in
instrumentation the 8 bits will represent the value of a variable
such as temperatures or pressure. If the data is being used for
control, individual bits in the word will be used to represent
the states of limit switches, valves, lamps etc.

If we are to send 8 bit words from place to place, there are
two methods we can use. In Fig. 6.1a we simply send the data
down 8 wires simultaneously. This is known as parallel trans-
mission and is (in essence) the method used inside a micro-
computer. It can, of course, be used to transmit data outside
the computer.

In Fig. 6.1b the data is sent as a serial pulse train down a
single wire. This is known as serial transmission. Obviously,
serial transmission is slower, but cheaper, than parallel
transmission.

Internally, all data movement in a microcomputer is done
in parallel. I/O ports therefore communicate with the

114

UOLISSIUUSUDA] DIDP [DIIS () % [2][p4vd (V) [°9 Bt

_Jone «—LlQo Lt 0 100 40108 @
Uy U
—
— 0
-
uolneuns H‘v 0
u11ss
neunsaq -— ad1nos (®)
-
B
al—

115

computer in parallel. If serial communication is being used,
some form of parallel/serial and serial/parallel logic is required
as shown on Fig.6.2. This is really little more than an 8 bit
shift register with some control logic. Fig. 6.2 is usually imple-
mented with a device called a UART (for Universal Synchro-
nous Receiver Transmitter) or SIO (for Serial Input Output).
These are described further in section 6.6.

6.3 PORT ADDRESSING AND LOGIC

The fundamentals of port addressing was outlined in section
1.5. I/O addressing is done via bits 0 — 7 of the address bus,
allowing 256 port addresses in the range 0 — 255. A control
signal IORQ is used to indicate that an address is a port
address rather than a store address. The data direction signal
RD is used to indicate whether an input or output is required.

A simple parallel output port can therefore be constructed
along the lines of Fig. 6.3. The bottom 8 bits of the address
bus are decoded by some logic decoder (such as a 74138) to
give a port select signal. This is gated with the timing signals to
produce a clock signal for the 8 D types flip flops. The data on
the data bus is stored in the D types for use by the device con-
nected to the port.

A simple parallel input port is shown on Fig.6.4. Data from
the device is gated into the 8 D types by a strobe signal. This
strobe can be generated by the device itself (e.g. an ADC
saying it has completed its digitisation (see Section 6.9)) or by
the computer wanting a ‘snapshot’ of the port state (e.g.
reading limit switch states on an industrial control applica-
tion). This loading of the D types can take place at any time
and need not necessarily involve the computer.

The state of the D types is read into the processor by the
rest of the logic. The port address is decoded and gated with
the timing signals to enable the 8 tristate buffers. The data
from the D types is then available on the data bus for use by
the processor.

It is possible to construct ports with discrete logic similar
to Figs. 6.3 and 6.4, but it is usually simpler to use the ICs

116

A

N0 elep Jajjeled

A

12151631 341y

g

UO1S430U0D [2]]040T/ 101435/ 131040 T°9 St

-

%9019

%2010

aul| uo erep (e14ag

13181684 141ys

b PEO

uy elep |aj|eJe,

i

d

117

wuod 1ndino japand ajduis 9 Sy

MO snqg eiep snq ssalppe
g O Hqg 1q 91
a] - «
P14OM 8pIsIno M
o1suq g] %dkiq g
5 %o o1suqg
a -
— .
(sNQ [043U0d Woyy) '
sjeubts Buwi | 2160| !
— apo2aQg Ly -0y _
SLETEY
L]

301A3Q

118

X0 ‘_mt:n
88?_ 1

8
Pl4OM 3pisIno
! ¥

wouy s1iq 8

140d ndus apoavd a1duss ¢°9 g

snq elep
iq 8

i

L
. m/nm

]

(SNQ 1043U0D WoOJY)
sjeubis buywy

‘s

123)3s
a21haQ

snq ssaippe
Hqgl

'

2160
apodaQq

119

designed specifically for the I/O applications. The Z-80 PIO
chip is described in section 6.5.

6.4 INTERRUPTS

6.4.1 Introduction

There is a vast speed difference between a microcomputer and
even a high speed printer. If, say, the computer is to send a
string of characters to the printer, some method must be used
to inform the computer when the last character has been
printed and the printer is ready to accept the next character.

A similar problem occurs where the computer is used for
control purposes. If an alarm condition is required to be
detected within, say, 0.2 seconds the corresponding input
must be monitored every 0.2 seconds even though the alarm
might only occur once every five years.

A technique where the computer goes round its inputs at
regular intervals seeing if the printer is ready for another
character or an alarm condition has occurred is called
“polling”. Although it is acceptable for small systems, polling
ties up the processor in unnecessary operations. In larger
systems it may be impossible to obtain the required response
time by polling, as the time taken to poll and service inputs
obviously increases with the number of inputs.

The ideal solution would allow a device requiring attention
to signal directly to the processor without the need for polling.
This is known, for obvious reasons, as an “interrupt”.

When a device requires the attention of the processor, it
requests an interrupt. The processor completes its current
instruction and acknowledges the interrupt. The processor
now identifies the interrupting device, and goes to a servicing
routine. This is performed in a similar manner to a normal sub-
routine, with the PC being pushed onto the stack.

At the completion of the servicing routine, the PC is
restored from the stack, and the main program continues from
the point at which the interrupt occurred. -

Normally an interrupt hierarchy is established to allow a

120

more urgent interrupt to interrupt a lower priority servicing
routine. A typical sequence of events is shown on Fig. 6.5.

6.4.2 Servicing an Interrupt

There are basically three different ways of responding to an
interrupt, but all have the same objective of identifying the
device initiating the interrupt, and calling the servicing routine.

The simplest method, used on early microprocessors, has a
common interrupt servicing routine. When an interrupt occurs,
this common routine polls all the devices (“who said that?”)
and then calls the correct servicing routine.

The 8080 uses a more elegant method. When the processor
has pushed the PC onto the stack it acknowledges the
interrupt request and releases control of the data bus. The
interrupting device now forces an instruction onto the bus
which is almost always a subroutine call to its servicing
routine. The RST instructions (see section 4.9) are part-
icularly useful for this purpose.

The Z-80 can use the simple “who said that” method, the
8080 method (for compatability) and a powerful method of
its own. The flexibility and sophistication of its interrupt
handling is one of the Z-80’s best features.

The Z-80’s own method uses the 8 bit ‘I’ register. This con-
tains the top 8 bits of a store address. When an interrupt is
acknowledged, the device supplies the bottom 8 bits. The 16
bits together indicate two store locations which contain the
address of the servicing subroutine. This operation sounds
more complex than it actually is, and possibly is best
summarised by Fig.6.6. The I register actually designates an
area of store to be used as a table to hold the addresses of the
interrupt service routine.

6.4.3 Z-80 Interrupts

The Z-80 can handle interrupts in three different ways, called,
not surprisingly, Mode 0, Mode 1, Mode 2. The mode is
selected by control instructions (see table 4.15). The
mnemonics for these are ‘IMO’, ‘IM1’, ‘IM2’. Only one

121

weiboid urepy

sownsa M
wesboud ureyy

auinoJ adAIas

v 1dnuiau
SaWNsas paidnuiaiul
aunNols v aufinos y
aunnou

(Av1011d ybiry)
g 1dnuau)

Bur010.43s 3dniiazuy ¢'9 Sy

paidnuiaul
wesboud uteyy

Y

(Ad1u011d Mo))
v 1dnualug

weiboid urepy

auNNOoJ 301AIBS
v dnuaju)

adIAJes g 1dnuuaiu)

122

interrupt mode can be used at once.

Mode O is the 8080 mode. On receipt of an interrupt the
Z-80 releases the data bus, then obeys an instruction provided
by the device.

Mode 1 is the simple polled response. On receipt of an
interrupt the processor calls a subroutine located at Hex 38.
This address is “built into” the instruction.

Mode 2 is the Z-80’s own powerful mode, and operates as
outlined above. It should be apparent that the programmer
must ensure the [register and address table are loaded
correctly. We shall see in later sections how the interrupting
device obtains its half of the data table address.

The interrupts described above are detected via pin 16 of
the Z-80 CPU chip (see Fig.2.7 and section 2.3). These are
known as Maskable Interrupts because the programmer can
enable or disable the processors response. This is achieved
by two control instructions; Enable Interrupt ‘(EI)’, and Dis-
able Interrupts ‘(DI)’. (See table 4.15).

There is also another interrupt facility on the Z-80. Pin 17
provides a non maskable interrupt. As its name implies, a non
maskable interrupt cannot be ignored by the CPU. Usually
NMI is used for interrupt functions such as powerfail
detection.

An NMI has only one response mode, a call to Hex 66. An
NMI automatically disables the maskable interrupts to prevent
its (presumably top priority) routine from being interrupted.
A special “return from non maskable interrupt’ instruction
(‘REIN’) reinstates the status of the maskable interrupts after
the NMI routine whilst returning the PC to its previous value.

Return from maskable interrupts should use the ‘“‘return
from maskable interrupt’” instruction (RETI). This reinstates
PC from the stack and allows further interrupts from lower
priority devices. The normal subroutine return instruction
(RET) should not be used to return from an interrupt service
routine.

The timing and operation of an interrupt is shown, some-
what simplified form, on Fig. 6.7. The sequence starts by a
device requesting an interrupt by pulling the wired OR INT
line low. The CPU completes its current instruction then pulls

124

6.4.4 INTERRUPT PRIORITY

The priority of interrupting devices is determined by a simple
daisy chain. Each port has an input called “Interrupt Enable
In” and an output called “‘Interrupt Enable Out™. The input
allows the port to signal an interrupt. The output indicates if
the port is currently engaged in an interrupt OR the port is
disabled from interrupting by the enable input.

“Enable interrupt” -is high to enable, and the “Interrupt
Enable Out” signal is low when the port is disabled or engaged
in an interrupt. By daisy chaining these signals, as shown on
Fig. 6.8, the priority increases to the left of the chain, port 6
having the highest priority, and port 1 the lowest. As drawn,
port 4 is currently engaged in an interrupt, and ports 1,2,3
are disabled. An interrupt from port 5 or 6 would be allowed,
and would interrupt the service routine for port 4.

6.5 THE Z-80 PIO

6.5.1 Introduction

Most microprocessor manufacturers provide special IC’s to
simplify the design of parallel ports. The Z-80 chip is known as
a PIO (for parallel input output, what else?) and gives the user
two 8 bit ports which can be-configured to be input ports, out-
put ports or bidirectional. Interrupt logic is also included.

A block diagram of the Z-80 PIO is shown on Fig. 6.9. The
PIO connects to the CPU via the usual address, data and
control highways. External logic is required to decode the PIO
address and select the chip via the chip enable input. We will
describe the other control signals later.

The two ports are known as A and B. The ports can be used
in four modes.

i. Input, 8 bit input port with full handshake
ii. Output, 8 bit output with full handshake
ili. Bidirectional (port A only). The port responds to both
input and output commands. This mode is used where

126

A1oud sutuaarap o1 Sutuivgs Asioq g9 Sty

08-Z2 01
1sanbau 1dnusaiu|
- -
03d 034 EI" EIY 03y EDY
no uj N0 u| nQ uj nQ uy nQo u| ing Ul
o7 o1 o7 ‘H 'H 'H
3 4 € v S 9

127

|043u0D

21601
dnuay)

wwi3otp 32019 O1d 6°9 “Sud

|1043u0d/erep |eulalu)

1011u0) w v
2160|

snq
Ndd snq eiep

8

axeyspuey =38
e
9
saul 1404
elep
8
ajeyspuey —
v
saul| 1104
elep

2160
jo43u0)

Nndo

128

the PIO feeds onto an external I/O bus in, for example,
data logging applications. Full handshake is provided.

iv. Bit mode. The user specifies which bits in a port are to
be inputs and which are to be outputs. These bits then
respond respectively to input and output commands.
No handshaking is provided.

Interrupts can be generated on inputs or on the successful
completion of an output. The “interrupt request™ signal is
given by an open collector output to give the single “interrupt
request” to the processor. “‘Interrupt Enable” and “Interrupt
in progress’’ operate as above.

Before the PIO can be used, therefore, the user has to per-
form a considerable setting up operation. Briefly, the user
must specify for both A and B ports:

i. The operating mode (as above)
ii. If Bit Mode is selected, which bits are inputs and which
are outputs.
iii. If interrupts are to be used
iv. The interrupt conditions
v. The interrupt table address low byte, known as the
interrupt vector (see sections 6.4.2 and 6.4.3)

This information is loaded into the PIO at the start of the
users program.

The PIO must obviously need to distinguish between set up
data and data to be sent to the outside world. This is achieved
by a control signal called ““C/D select™. If this is high during
an output command, the data on the data bus is interpreted as
set up data in a manner described later. If the C/D select is
low during an output command, the data on the data bus is
passed onto the outside world.

The PIO also needs to be told if an input or output
command is for the A port or the B port. A control signal
called ““A/B select” is provided for this purpose. If this input is
high, port A is being used. If the input is low, port B is select.

It is usual to connect A/B select to bit AO on the address
bus and C/D select to bit Al on the address bus, and decode
bits A2 to A7 to select the PIO via the chip enable. On

129

/

Busun 2 ayvqspuvq anding z1°9 S1g

/

1dnuaug
aqons
axeyspuey
104
Apeay

1ndino 1iod

abbg 4,

4q

133

Buruny % Suryvgspurq induy £1°9 314

uonsnIIsul ,N|, seindaxs NdD
11un Aejaq
5 N ool P\n-v ' mw. m-m)
«QyH

uolve NdD uo spuadap | NI J0 a1e1s

dnuiaiug

X
indu|

Old o
papeo) eleq

aqous

/ M / Apeay

b4

134

by the peripheral device which presents data to the input port
and takes the strobe line low. This latches the data into the
PIO. The rising edge of the strobe (point B) causes the Ready
line to go low and an interrupt to be generated. When the CPU
reads from the port, the composite signal RD=* is generated
inside the PIO, and the rising edge of this takes Ready high to
signal to the peripheral device that another input can be made.

Bidirectional operation is simply a combination of input
and output operation, but suffers from the restriction of a 40
pin chip. Bidirectional operation requires four handshake lines;,
two for input and two for output. Pin limitation means that
only two handshake lines are provided per port. Bidirectional
operation is therefore only available on port A, with port A
handshakes used for the outputs, and port B handshakes for
the inputs. Port B itself must be used in the bit mode which
does not use handshaking. Care must obviously be taken with
the peripheral device logic to ensure that it is not writing to a
bidirectional port whilst the CPU is performing an output.

In bit mode, no handshaking is used. Data output from the
CPU appears at the port output. An input from the port takes
a “snapshot” of the inputs. The current state of output lines
are read along with the input. Interrupts are generated on the
presence of a predetermined bit pattern as described in the
section following.

It should be noted that Figs.6.12 and 6.13, whilst adequate
for most purposes, are slightly simplified in that the relation-
ship to the clock signal are ignored. For full timing details the
Z-80 PIO Technical Manual should be consulted.

6.5.4 Interrupts

To use interrupts in the PIO we must set up the interrupt
vector (see section 6.4.3). This is done by writing a set up
word with the format of Fig.6.14. Bit 0 being a zero indicates
that this set up data is an interrupt vector. The low byte of the
table address is always zero.

If, for example, the I register in the Z-80 contained Hex
1D, and the user wrote to the PIO the set up word C4, the
service address for the PIO would be found in location 1DC4

135

piom 101U0D 3dnuidIUL salyIubis ‘4 xaH

piom 043109 1dnudiuy G1°9 S

(apows 1q)
€ apow
Ul JuaAaj|al AjuQ

\ll}ll\lill

L .0, MO .0, HO L
L l L SMO||0} sidnuialut
Nsepy AouBiH L aNY s1qeu3
0da ITe

137

in this word means that the corresponding bit will be checked
for generating an input in accordance with the conditions set
up via Fig.6.15. If, for example, we sent the mask:

01100011

we would check for interrupts on bits 2, 3,4 and 7.

6.5.5 Set Up Summary

The procedure for setting up a PIO at first sight seems rather
involved. Fig.6.16 shows the procedure in flow chart form,
and hopefully will make the matter clearer. It should be
remembered that usually only one set up is needed, and this
should be placed at the start of the program.

6.5.6 Power Up Problems

At power up, the PIO sets itself into a reset state. Usually,
though, the PIO seems to end up in some indeterminate state
due to glitches as the supplies come up. Often the PIO seems
to set itself into the condition where it is expecting interrupt
mask or a data direction word for mode 3. To be certain that
a PIO is correctly initialised, a dummy set up data word should
be sent to each port before following the procedure in
Fig.6.16.

6.5.7 Pinning

The PIO pin connections are shown on Fig.6.17. These operate
as below:

i. DO — D7 Tristate Data Bus

ii. A/B Select. A low selects port A, a high selects port B.
Usually connected to Address Bus AO.

iii. C/D Select. Determines whether data on the data bus is
to be used as set up data, or port data. A high indicates
that set up data is present. Usually connected to Al.

iv. CE Chip enable. Low to select the chip. Usually derived
from external decoding logic connected to the address

bus.
138

uondaas
apopy

eleq

i

1301 21229y (q) ‘61°9 Bud

40448 10118
a|qeug Allded Buiwesy

)

ndino aleis i)

TTTTT1T1

1344NQq 31328y

oo |
PELTE)

ui exep

INEEEE

2160
Alliey
jo3u0d

19151684 anladay

03 do1g

A 1asal
pea. Apeas
uniang B0 pieq
—mn_ _mn_o
j041u0d R
Burwiy
10411u0)
|051u0)
1043u0d
01 1ie1g
2160
uelg

-

2160
doig

<>

|elaag

[3-1-1

Jaxadnnpy

[

<]0J1U0D WOJy

%90(2 aA1993Yy

144

C

Vec @ 1 TRC
NC 2 39 EPE
Gnd @43 38 @ CLS1
RRD @ 4 37 cLs2

RBR8 @ 5 36 @ sBs
RBR7 @4 6 35® PI
RBR6 @ 7 34 @ CRL
RBRS @4 8 33 @ TBRS
RBR4 @} 9 32 ® TBR?
RBR3 @4 10 31 ® TBR6
RBR2@§ 11 30® TBRS
RBR1@§ 12 29® TBR4
PE@Y 13 28 |® TBR3
FE@®Y 14 27 ® TBR2
OE®{ 15 26 @ TBR1
SFD® 16 25 @ TRO
RRC@® 17 24® TRE
DRR@® 18 23® TBRL
DR®Y 19 22 @ TBRE
RRI@Y 20 21 MR

Fig. 6.20 Pin connections for 6402 UART

Table 6.1 Mode Selection for 6402 UART

CONTROL WORD CHARACTER FORMAT

¢ C

L L P FEF S

S S I P B START DATA PARITY STOP
2 1 E S BIT BITS BIT BITS
0 0 0 0 O 1 5 ODD 1

0 0 0 0 1 1 S ODbD 1.5
0 0 0 1 O 1 S EVEN 1

0 0 0 1 1 1 S EVEN 1.5
0 01 X O 1 S NONE 1

0 0 1 X 1 1 S NONE 1.5

145

CONTROL WORD CHARACTER FORMAT

¢ C

L L P E S

S § I P B START DATA PARITY STOP
2 1 E S BIT BITS BIT BITS
0 1 0 0 O 1 6 ODD 1
01 0 0 1 1 6 ODD 2
01 0 1 O 1 6 EVEN 1
0 1 0 1 1 1 6 EVEN 2
01 1 X 0 1 6 NONE 1
0 1 1 X 1 1 6 NONE 2
! o0 0 0 O 1 7 ODD 1
1 0 0 0 1 1 7 ODD 2
1 0 0 1 O 1 7 EVEN 1
1 0 0 1 1 1 7 EVEN 2
1 01 X O 1 7 NONE 1
I 01 X 1 1 7 NONE 2
1 1 0 0 O 1 8 OoDD 1
1 1 0 0 1 1 8 ODD 2
1 1 0 1 O 1 8 EVEN 1
1 1 0 1 1 1 8 EVEN 2
1 1 1 X O 1 8 NONE 1
I 1 1 X 1 1 8 NONE 2

TBRE (transmitter buffer empty) goes low.

When the transmitter register is empty, the data automa-
tically transfers from the buffer to the register. An output
TRE (transmitter register empty) shows the state of the
register, being low when the register is in use. The data from
the register is now shifted out onto the line with the start,
parity and stop bits provided by the UART. The transmission
rate is determined by the transmit clock, which should be 16
times the transmit bit rate (e.g. 1760Hz for 110 baud).

The use of a transmit register and buffer and the TBRL,
TBRE, TRE signals allows the computer to transmit a con-
tinuous data stream with minimum software.

Receive data arrives on RRI1 in serial form. The trans-

146

€ [duueya uo
d/o 1unod 013z ou "g'N

sauy| |0J1U0D

wv.3owp 32019 DLD 1Z°9 B

18661} | ————pd ¢ [auuey)d
136614 | e—Tp
C |auuey)
1UN0D 0437 i
1366114
L (3uueyd
1unod 0137
196611 | et
0 |auuey)

1UNOD 0437 g

1dnuialu)
2160|
1dnuialu)
ee— $NQ [0J1U02
D150| [prmm—— ndd
SNY Preme—
snq eijep
. Ndd
2160|
jonuo)

150

be loaded for each channel. The channel control register is
loaded by writing a word to the channel address (see above)
with the format of Fig.6.23.

Bit 0 = ‘1’ shows that this word contains set up data for the
CCR. Bit 1 = ‘I’ resets the channel. The channel stops
counting or timing until a new time constraint is loaded. The
status of the other bits in the CCR is unchanged. This is not
the same as a hardware (pin 17) reset. Bit 2 = ‘1’ denotes
that the next word written to this channel will be the time
constant word.

Bit 6 selects whether the channel is to be used as a counter
or a timer. If bit 6 is a ‘1’, the channel is a counter, and
decrements on the external input. The prescaler is not used. If
Bit 6 is a ‘O’ timer mode is selected based on the system clock.
The channels zero count output is a pulse train of period

t.xP*TC

where t. is the period of the system clock, P is the prescaler
factor (16 or 256) and TC the time constant (in the range 1
to 256).

Bit 5 selects the prescaler factor. With Bit 5 a ‘1’ the pre-
scaler factor is 256. With Bit S a ‘0’ the prescaler factor is 16.
Obviously Bit S is only relevant if timer mode is selected (Bit 6
='0).

Bit 3 is called “trigger” and is only used in timer mode. If
Bit 3 is a ‘0’, timing starts as soon as the time constant register
is loaded. If Bit 3 is a ‘1’ timing starts with a trigger edge on
the channels clock/trigger input.

Bit 4 is called slope and determines which edge of the
clock/trigger input decrements the counter (in count mode) or
starts the timer (in timer mode with Bit 3 at a ‘1’). With Bit 4
a ‘I’, the positive edge of the input is used. With Bit 4 at a ‘0’,
the negative edge is used. ‘

Bit 7 is used to enable or disable the interrupt request. With
Bit 7 at a ‘O’ the interrupt is disabled. With Bit 7 at a ‘1’, the
interrupt is enabled.

After loading the CCR with Bit 2 = ‘1’, the next word
written to a channel must be the time constant. This is an 8 bit
number in the range 0 — 256. Numbers 1 — 255 give time

152

channel 0 is Hex 38 (binary 00111000). The corresponding
vectors and table addresses are:

Vector Table Address

Channel 1 38 IE38 and IE39
Channel 2 3A IE3A and IE3B
Channel 3 3C IE3C and IE3D
Channel 4 3E IE3E and IE3F

Interrupts are generated when a channel counter reaches zero.

6.7.5 Pin Connections

The CTC pin connections are shown on Fig.6.25. The function
of the data bus, M1, RD, IORQ, ¢, CE, INT, IEI, IEO are iden-
tical to the PIO pins in section 6.5.8. CSO and CSI select the
channel as outlined above.

D4 D3
D5 D2
D6 D1
D7 DO
oV
RD KO
2Co LK1\ External
Zero count | ZCq LK2 clock/
ZCz LK3 trigger
IORQ cs

1EQ Cso
INT Reset
IE} CE
MI ¢

Fig. 6.25 CTC pin connections

155

(DVQ) 42343au09 Fojpu 03 (p11d1p 119 8 97°9 “31d

157

(493ndwod wouy 1g 01 sjeubis §)

IVA 1q 8 fo wwidvip 32019 LT°9 Bid

%2010

41dsianQ
jindino
iq g
> 1358y
s 0
181UN0D
198
y
dvaiasg
N0 Jva

1Apesy < o ,J

JAsng

urA

N

- |1.e15

td44d

olesedwo)

v 1ui0d

Asng

B \l/.Hl\lJ:o ova

158

voltages are equal, the comparator resets FF1, thereby freezing
the counter. The counter state is now a digital representation
of the input voltage. Ready and Overspill signals are provided
which indicate the ADC state to the computer. Usually the
port will generate an interrupt on the Ready signal. The
Ferranti ZN427 DAC is particularly useful as it contains an 8
bit counter and DAC.

6.8.4 General Observations

The topic of analog interfacing is a very wide one, and cannot
be fully covered in a book of this size which is (after all) con-
cerned with the Z-80. Practical DAC and ADC circuits are
given in the author’s book **Practical Computer Experiments”,
BP78.

6.9 KEYBOARDS

Every popular microcomputer has a keyboard. These are
generally arranged on the matrix principle similar to Fig.6.28.
The computer has two 1/O ports, an output port driving strobe
lines and an input port reading the sense lines.

To read the keyboard, the computer outputs to each strobe
line in turn reading back the sense lines for each strobe. On
Fig.6.28, for example, if the D key was pressed, we would get
the signal on sense line 2 when strobe line 6 was strobed.

Obviously considerable programming effort is needed to
scan, read and decode the keyboard. Usually the computer
monitor program will have a keyboard read subroutine which
can be called by the user. In section 5.8 we used the NASBUG
KBD routine as part of our test program.

Keyboards can be scanned by an [/O port address (e.g.
Nascom), or by appearing as memory locations (e.g. TRS 80,
where store addresses Hex 3801, 3802, 3804, 3808, 3810,
3820, 3840, 3880 provide the strobes and give the keys
pressed. There are no actual RAM locations with these
addresses).

An alternative approach is to use discrete logic to strobe the

159

keys and scan the sense lines. If a key is pressed, the logic
handles the key decoding, and simply presents a 8 bit ASCII
code for the computer to read via a parallel port. This method
simplifies the programming, but uses quite complex (and
hence expensive) logic.

6.10 VDUs

Most microcomputers incorporate a VDU, either built in, using
an external monitor or driving a domestic TV. To describe the
operation of a VDU in detail would require many pages,
involving, as it does, detailed knowledge of how a TV picture
is built up. The description below is therefore somewhat
simplified, but adequate for a user who wishes to drive a VDU
rather than construct one.

A typical VDU will display 16 rows of characters with 48
characters per row. These characters must be stored in the
VDU, so the first requirement is some form of store to hold
these 744 characters. This will be scanned by some logic to
produce the TV picture as Fig.6.29.

To be any use, these store locations must have data written
into them. If the VDU is a true peripheral, data will be sent
down a serial link (see sections 6.2 and 6.6) and loaded into
the store. Control words such as New Line, Carriage Return,
Backspace, Cursor Down etc. are sent to determine where
characters are placed on the screen.

Most microcomputers, however, use a technique called a
Memory Mapped VDU. The character store, shown on
Fig.6.30, is a part of the computer store AND can be accessed
by the VDU logic. The address and data bus can be switched
to the computer or VDU display logic, with the computer
having priority.

This approach has many advantages. Because the character
store is accessed directly by the computer, the VDU is very
fast. Each character position on the screen corresponds to one
store location, so dynamic display are easily drawn. Less
obviously, data can be read back from the screen for use by
the program.

161

Data store,
one location

for each VDU
character
VDU
Data Data vid
load read Displ ideo
- Ilspic‘:’y

From °9
computer

Fig. 6.29 Block diagram of VDU

The Nascom uses a memory mapped VDU, with store loca-
tions from Hex O80A (top left) to OBF9 (bottom right). To
display a letter E at the centre of the screen we would write
in assembler:

LD A, £45;45is ASCII E
LD (£0980), A ; Write to centre of screen

Where a message is to be written, it is usually easier to use
the computer monitors VDU subroutine. In the example in
section 5.7 the Nascom VDU routine was used.

162

cation, division, sorts, searches, etc.),and build up a sub-
routine library. Do not re-invent the wheel with every
program!

c. With detailed flow charts, draw up a source program in
Assembler Code EVEN if you are using a monitor to
load the machine code program. It is worth it for the
clear documentation it provides when the inevitable
de-bugging occurs.

d. Translate the source program to an object program,
either with an assembler or by hand.

e. MAKE A COPY OF THE OBJECT PROGRAM on tape
or disc before attempting to run it. Very few machine
code programs run first time, and a single error can cause
a program to self destruct.

f. Cross your fingers and run your program. Do not be dis-
heartened if it does not run first time. Use the monitor
program’s breakpoint and single step routines to check
the program operation.

7.7 BASIC and PEEK and POKE

It is possible to intermingle BASIC and machine code
programs, and the technique is particularly useful where a pro-
gram requires complex calculations (which are done in BASIC)
and fast I/O or VDU graphics (which are done in machine
code).

Most BASICs allow the program to call a machine code sub-
routine. The commonest BASIC instructions are CALL and
USR. There are differences between dialects of BASIC, but,
for example, the BASIC instruction:

CALL 1519

will call the machine code program at decimal address 1519.
The machine code program is required to be terminated with a
RET instruction which resumes BASIC at the instruction after
the CALL.

It is possible, but laborious, to load a machine code

168

program via BASIC using the POKE instruction. An object
program is converted, by hand, a location at a time from Hex
to decimal, then included as DATA statements in the BASIC
program. These are READ and POKE’d by a FOR-NEXT loop.

Data in store locations that have been used by the machine
code program can be examined by the BASIC program via the
PEEK function.

Setting up a machine code program via BASIC is obviously
tedious, but is useful for small subroutines and obviates the
need to load a BASIC and machine code program separately.

When deciding where a machine code program is to reside
along with BASIC, due care should be taken to avoid a clash.
Most computers have a “Memory Map” which shows what
store addresses are used for what. Usually the store used by
BASIC can be restricted with a SIZE or similar statement.

7.8 THE INTEL 8080

As explained earlier, the Z-80 is a development of the 8080,
and as a result 8080 programs will run on a Z-80. The reverse
is not, however, necessarily true. The tables in Chapter 4
identify the 8080 compatible instructions.

The programmers model of the 8080 is shown on Fig.7.1.
As can be seen it is almost a half Z-80, having no alternate
register set, no I or R registers, and no index registers. Need-
less to say, the 8080 has fewer instructions.

Although 8080 programs will run on the Z-80, there are
usually a few practical problems. The first concerns the
running of even Z-80 programs on different machines. All
computers use different ways of driving keyboards, VDUs
etc., so there are problems moving a Z-80 machine code pro-
gram, from, say, a TRS-80 to a Nascom. This problem is
compounded with the 8080, as the whole configuration of the
original computer may be different.

The second problem concerns 8080 source programs. Un-
fortunately 8080 Assembler Mnemonics bear little, if any,
resemblance to Z-80 Mnemonics. For example:

169

11111010 thus represents minus 6 in 8 bits.

In general, the top bit is a ‘1’ if the number is negative, and
‘0’ if it is positive.

The above representation is known as twos complement
arithmetic.

It should be emphasied that the programmer can use an 8
bit number as an 8 bit unsigned number or an 8 bit twos com-
plement number to suit his needs.

176

INC
INC
INC
INC
INC
IND

INDR

INI

INIR

JP

JP

JP

JP

JP

JP

JR
JR
JR
JR
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

(IX+D)
1Y
(1Y+D)
R

sS

(HL)
(IX)
(1Y)
CCNN
NN
C,E

E
NC,E
NZ.E
ZE
A,(BC)
A,(DE)
Al
A,(NN)
AR
(BC),A
(DE),A
(HL)N
DD,NN

Increment Location (IX+D)

Increment 1Y

Increment Location (1Y+D)

Increment Reg. R.

Increment Reg. Pair SS

Load Location (HL) with input from Port
(C), Decrement HL and B

Load Location (HL) with input from Port
(C), Decrement HL and Decrement B, repeat
until B=0

Load Location (HL) with input from Port
(C), and Increment HL and Decrement B
Load Location (HL) with input from Port
(C), and Increment HL and Decrement B,
repeat until B=0

Unconditional Jump to (HL)
Unconditional Jump to (I1X)
Unconditional Jump to (1Y)

Jump to Location NN if condition CC is true
Unconditional Jump to Location NN
Jump relative to PC+E if Carry =]
Unconditional Jump relative to PC+E
Jump relative to PC+E if Carry =0

Jump relative to PC+E if Non Zero (Z2=0)
Jump relative to PC+E if Zero (Z=1)

Load Acc, with Location (BC)

Load Acc. with Location (DE)

Load Acc. with |

Load Acc. with Location NN

Load Acc. with Reg. R

Load Location (BC) with Acc.

Load Location (DE) with Acc.

Load Location (HL) with value N

Load Reg. Pair DD with value NN

HL,(NN) Load HL with Location (NN)

(HL),R
LA
IX,;NN

Load location (HL) with Reg. R
Load I with Acc.
Load IX with value NN

IX,(NN) Load IX with Location (NN)

179

OUT (N),A
OUTD

OUTI

POP IX
POP 1Y
POP SS
PUSH IX
PUSH 1Y
PUSH SS
RES BM
RET

RET CC

RETI
RETN

RL M

RL

RLC (HL)
RLC (IX+D)
RLC (IY+D)
RLC R
RLCA

RLD

RR M
RRA
RRC M
RRCA
RRD

RST P
SBC AS
SBC HLSS
SCF

SET B(HL)

Load Output Port (N) with Acc.

Load Output Port (C) with Location (HL),
Decrement HL and B

Load Output Port (C) with Location (HL),
Increment HL and Decrement B

Load IX with top of stack

Load IY with top of stack

Load Reg. Pair SS with top of stack

Load IX onto stack

Load IY onto stack

Load Reg. Pair SS onto stack

Reset Bit B of Operand M

Return from subroutine

Return from subroutine if condition CC is
true

Return from Interrupt

Return from Non Maskable Interrupt
Rotate Left through Carry Operand M
Rotate Left Acc. through Carry

Rotate Location (HL) left circular

Rotate Location (IX+D) left circular
Rotate Location (I1Y+D) left circular
Rotate Reg. R left circular

Rotate left circular Acc.

Rotate Digit left and right between Acc,
and Location (HL)

Rotate right through Carry Operand M
Rotate right Acc. through Carry

Rotate Operand M right circular

Rotate right circular Acc.

Rotate digit right and left between Acc. and
Location (HL)

Restart to Location P

Subtract operand S from Acc. with Carry
Subtract Reg. pair SS from HL with Carry
Set Carry Flag (C=1)

Set Bit B of Location (HL)

SET B,(IX+D) Set Bit B of Location (IX+D)
SET B,(IY+D) Set Bit B of Location (1Y+D)

181

WWwwwm
AL O D

W ww
O N O

)

W
Vel

Appendix C
ASCII CHARACTER CODES

LR I
N -

Ty T OV Oh LN nnocn
DU O (Y I 41

W N =

HEX CHAR DEC HEX CHAR
20 64 49 @
21 65 41 A
22 66 42 B
23 # 67 43 ¢
24 % €8 44 D
25 = 69 45 E
26 & 70 46 F
27 7 71 47 G
28 < 72 48 H
29 7 49 1
2R * 74 4R J
2B+ 4B K
2c ac L
2D - 4D M
2E . 4E N
2F 4F 0
36 o 38 s& P
31 1 &1 51 @
32 2 g2 S2 K
33 3 &3 53 %
34 4 249 5S4 T
35 53 55 55 U
36 6 1S Se
377 ar S7 W
I3 8 88 58 #
29 9 g9 59 ¥
3R @ 9@ SA 2
2B ; 91 SB[
3C « 92 SC =
3D = 93 SO 1
3E > 94 SE

3F 7 95 SF

183

DEC HEX CHAR

96 60

97 61 a
98 62 b
99 €3 ¢
160 64 d
1801 65 e
102 66
183 67 g
184 €8 h
185 69 i
106 6A j
{67 6B k
182 €C 1
109 6D m
118 6E n
111 6éF o

DEC
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Codes less than Decimal 32 are control codes

Common are (in Decimal):

07 Bell

10 Line Feed

12 Form Feed

13 Carraige Return

184

HE X

bl

ve
71
72
73
74
7’5
76
7
7’8
79
’A
’B
’C
7D
7E
7F

',

sV ITO0TO

P

e v— ~NX X € <

	INTRODUCTION

	ACKNOWLEDGEMENTS

	Page

	1.1	INTRODUCTION

	1.2	COMPUTER ARCHITECTURE

	1.3	THE STORE

	Fig. 1.3 Store connections
	1.4	THE CENTRAL PROCESSOR UNIT (or CPU)

	1.5	INPUT AND OUTPUT

	1.6	INSTRUCTIONS AND PROGRAMS

	1.6.1	Fetch

	1.6.2	Store

	1.6.3	Add

	1.6.4	Subtract

	1.6.5	Logical

	1.6.6	Shifts

	1.6.7	Jumps

	1.6.8	Conditional Jump

	1.6.9	Subroutine Call and Return

	1.6.10	Input/Output Instructions

	1.6.11	Control Instructions

	1.7	WHY MACHINE CODE?

	1.8	MACHINE CODE AND ASSEMBLERS

	1.9	FURTHER READING

	2.1	INTRODUCTION

	2.2.1	The Z-80 registers

	2.2.2	Flag Registers (F)

	Fig. 2.3 The flag (F) register
	2.2.3	General Purpose Registers (B, C, D, E, H, L)

	2.2.4	Special Purpose Registers (1, R, PC, IX, IY, SP)

	2.3 EXTERNAL CONNECTIONS

	2.3.1	Address Bus

	2.3.2	Data Bus

	2.3.3	Control Bus Outputs

	Fig. 2. 7 Z-80 pin configuration

	2.3.4	Control Bus Inputs

	2.3.5	Bus Control

	2.3.6	Other Signals

	2.4 BUS TIMING

	3.1	INTRODUCTION

	3.2	HEX REPRESENTATION

	3.3.1	Introduction

	3.3.2	Register Addressing

	3.3.3	Immediate Addressing

	3.3.4	Extended Addressing

	3.3.5	Immediate Extended Addressing

	3.3.6	Register Indirect Addressing

	3.3.7	Indexed Addressing

	3.3.8	Relative Addressing

	3.3.9	Modified Page Zero Addressing

	3.3.10	Implied Addressing

	3.3.11	Bit Addressing

	3.3.12	General Observations

	3.4.1	Introduction

	3.4.2	Load Instructions

	3.4.3	Arithmetic and Logic Instructions

	3.4.4	Jumps and Subroutine Calls

	3.4.5	Rotates and Shifts

	Fig. 3.6 (b)

	3.4.6	Block Transfer

	3.4.7	Bit Manipulation

	3.4.8	Input/Output

	3.4.9	Control Instructions

	3.4.10	General Observations

	3.5	SYMBOLIC REPRESENTATION

	3.6	CONCLUSION

	4.1	INTRODUCTION

	4.2.1	8 bit Loads

	4.2.2	16 bit Loads

	Table 4.1 8 Bit Load Group

	4.2.3	Exchanges

	43.1	8 Bit Instructions

	4.3.2	General Purpose Operations on AF

	4.3.3	16 Bit Arithmetic

	4.4	JUMP CALL AND RETURN GROUP

	Fig. 4.2 (b)

	4.6	BLOCK TRANSFERS AND SEARCHES

	4.7	BIT MANIPULATION

	4.8	INPUT AND OUTPUT GROUP

	4.10	CONTROL INSTRUCTIONS

	4.11	GENERAL OBSERVATIONS

	5.1	INTRODUCTION

	5.2.1	Introduction

	5.2.2	Line Numbers

	5.2.3	Labels

	5.2.4	Instruction Mnemonic

	Z-80 MNEMONICS IN ALPHABETICAL ORDER

	5.2.5	Comments

	5.3	PSEUDO OP CODES

	5.4	ASSEMBLER DIRECTIVES

	5.5	USING AN ASSEMBLER

	5.6.1	Introduction

	5.6.2	Modify

	5.6.3	Execute

	5.6.4	Breakpoint

	5.6.5	Tabulate

	5.6.6	Single Step

	5.6.7	Conclusion

	5.7	TESTING A MACHINE CODE PROGRAM

	Fig. 5.4 (a) Detailed flow chart for

	bubble sort test program

	5.8	CONCLUSION

	6.1	INTRODUCTION

	6.2	SERIAL AND PARALLEL COMMUNICATION

	6.3	PORT ADDRESSING AND LOGIC

	6.4.1	Introduction

	6.4.2	Servicing an Interrupt

	6.4.3	Z-80 Interrupts

	6.4.4	INTERRUPT PRIORITY

	6.5	THE Z-80 PIO

	6.5.1	Introduction

	6.5.2	Set Up Data

	Fig. 6.11 Mode select word

	6.5.3	Handshaking

	6.5.4	Interrupts

	6.5.5	Set Up Summary

	6.5.6	Power Up Problems

	6.5.7	Pinning

	Fig. 6.17 PIO pin connections

	6.6.1	Introduction

	6.6.2	Signals and Standards

	6.6.3	UARTs

	6.6.4	The Z-80 SIO

	6.7.1	Introduction

	6.7.2	Channel Operation

	6.7.3	Programming the CTC

	6.7.4	Interrupts

	6.7.5	Pin Connections

	6.8.1	Introduction

	6.8.2	Digital to Analog Converter (DAC)

	6.8.3	Analog to Digital Converter (ADC)

	6.8.4	General Observations

	6.9	KEYBOARDS

	6.10	VDUs

	7.1	INTRODUCTION

	7.2	SUPPORT CHIPS

	7.2.1	Z-80 CPU

	7.2.2	PIO

	7.2.3	CTC

	7.2.4	SIO

	7.2.5	SIO/9

	7.2.6	DART

	7.2.7	DMA Controller

	7.2.8	FIFO Buffer

	7.2.9	CIO/U

	7.2.10	Future Developments

	7.2.11	Speed

	7.3	MANUFACTURERS

	7.5	Z-80 BASED MICROCOMPUTERS

	7.6	WRITING A PROGRAM

	7.7	BASIC and PEEK and POKE

	7.8	THE INTEL 8080

	Fig. 7.1 Programmers model of the Intel 8080

