

AN INTRODUCTION TO
PROGRAMMING THE
AMSTRAD CPC464 and 664

AN INTRODUCTION TO
PROGRAMMING THE
AMSTRAD CPC464 and 664

by
R.A. & J.W. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON W6 7NF
ENGLAND

Chapter 8: BINARY&HEX 103
BIN® ... e 105
HEXADECIMAL 107
LOGICOPERATIONS 109

Chapter 9: INTERFACING 112
PRINTER i 112
PRINTING 113
DISCPORT............... .. i, 114
EXTERNALCIRCUITS 115
PEEK&POKE. 119
OUTPUTPORT i, 120

Chapter 10: INTERRUPTS 122
AFTER i 123
EVERY i 124

=factorl¥factor2kfactor3

88 MEXT factor3

298 HMHEXT factor2

iea
110
oeX

120

MEXT factori

INPUT "Which pPagse (@ to 25)",pPa

IF PageX<@ OR pageX»25 THEM STO

CLS

FOR lines=@ TO 5

FOR columns=0 TQ 3

LOCATE S¥columns+2.3Xlines+1

PRINT answers{columns,lines.pras
MEXT columns
MEXT lines

GOTO 110

10

Multi-dimensional arrays and nested loops are very useful
and important parts of programming, and it is worthwhile
to take the time to make sure you understand them
thoroughly.

11

292 diff=R8S{ number-duess)

2608 REM skipP to end if guess correc

279 IF Jdiff=02 THEN 419

28@ CLS

2992 REM determine size of error and
Print clue

382 LOCATE 3.5

318 IF numberd{3susss THEN PRINT "Too
big";

320 IF number>9uess THEN PRINT "Too
small”;

330 IF diff<19 THEN PRINT " but wou
are very close.")

340 IF diff>9 AND diff<{30 THEN FRIN
T " but sou are duite close.”;

350 IF diff>42 AND dJdiff<{200 THEN PR
INT "."

27

360 IF diff>192 THEM PRINT " by a 1
on® chalk!"

370 IF diff>oldiff THEN LOCATE 5.10
‘PRINT "You are further out than la
st time!"”

388 tries=triss+1:01diff=diff

320 LOCATE S5,15:PRINT "Last Quess "
iguess

499 GOTO 219

412 CLS

420 »=3

428 FOR 3=3 TO 20

448 LOCATE x.s:PRINT "CORRECT!!!"
458 «=x+1

460 MEXT v

479 LOCATE 35,22:PRINT "Play Again ¢
$/nI?"

480 3nsS=]MKEYS:IF ans®a"" THEM 432

28

490 IF LOUER®C{ans®da"y" THEM RUN
J8@ EMD

29

602 FEM quantits inPut

£224 FPRINT "Cornwvert ":UPFER®(unit®)

€922 PRIMT "Fleaze enter quantity ¢
o be converted"

£04@ FRIMT "or @ to chande units.”
6252 IHPUT qty

A6 IF 9%y=0 THEM RETURM

£272 GOSUB 7o

721@ PRINT

7A20 FRIMT qty:" "iUFPPER®(united:"
= "iqty¥confactor:” "iconuE

TR32 FRINT

7243 RETIRM

43

2808 REM ok fournd msssade
2919 FPRINMT
2

FRIMT "The units wnouy have =nte
2238 PRIMT "the lizt. Pleaze snter
SA4A PRIMT "full list."

2052 PRINT

SQE@ RETURM

44

uononaasus ANJ uv qum asn 40f advgs adogaaus YSqy wy ‘1 ‘S

oz 0Zz OOC O08L 091 ObL OCZL OOL 08 03 O OC 0
T 1T 1T 1 1 I T rrrrrirrr 11 11 1P Tl

-

%
D O~ © N T M N

1
o
-

I
1

L

| I |
T ™ N
- - -

}_
—
b
—
—
[Te]
-

57

required continuous fall and rise in pitch.

If the duration figure used in the SOUND instruction is
too short to permit the tone envelope to be completed, the
signal is nevertheless terminated after the duration set in the
SOUND instruction.

It is perfectly possible to use both ENV and ENT instruc-
tions together with a single SOUND instruction. For example,
the music program provided earlier can have line 5 added and
line 40 modified, as shown below.

SENT-1,1,14,2,-14,1,1,5
40 SOUND 1,P,D,0,1,1,0

The ENT instruction simply varies the pitch value by plus
and minus 1, giving quite a good vibrato effect.

60

very small, four for normal writing, and 16 for bold writing.
You can fill the pens with any of the inks you like (and can
fill two or more pens with the same colour if required). The
colour of the paper you use must be chosen from one of the
inks in the pens. Of course, if you were drawing on paper,
you could go back to your bottles of ink and refill a pen with
a different colour. You can do this with the Amstrad com-
puter, but if you do, all the writing already done with that
pen will change to the new colour! This can actually be very
useful in programming.

This is a useful analogy, because the keywords used to con-
trol the colour in Locomotive BASIC are INK, PEN, and
PAPER. INK assigns one of the 27 available colours to one
of the available pens, PEN selects which pen is to be used for
writing (continuing until another PEN command is issued),
and PAPER selects which PEN colour is to be used for the
background.

In fact, all the pens have default values, so you do not
necessarily have to use INK commands. You can use the
colours assigned by the computer. Try turning your com-
puter on, and typing ‘“‘pen 2”. When you press ENTER, the
“Ready” message will appear in light blue. Type “pen 3”
(which will also be in blue) and the *“Ready” message will
be in red. By default, the mode 1 pens are filled with dark
blue (pen 0), yellow (pen 1), light blue (pen 2) and red (pen
3). Pen O is used for the background (PAPER), and pen 1 is
used for foreground, until changed.

If you now type “paper 1, future text will appear in red on
a yellow background. If you set the paper to the current text
pen, any text printed will be invisible (i.e. enter paper 3).

To illustrate changing the ink in a pen, reset the computer
(SHIFT/CTRL/ESCAPE), then type “ink 0,24”. The screen
should turn yellow, and of course the yellow writing will be
invisible! Next type “ink 1,1”. You won’t be able to see what
you are typing but you should manage. When you press
ENTER the writing should all re-appear in dark blue. It
may, however, look black. INK 1,2 will give a brighter blue.
The first number in the INK command is the number of the
pen you wish to refill, the second number is the colour of the

62

149

238

260

REM now draw the e2llirses
d=32

FOR == TQ PI STEP FI-/3
FOR p=8 TO 2¥PI STEP 2.93
f=129%CQS{p >

X1=x+f4SIMNCe)+d¥SIN(P+e)
9 1=y +f¥COSY e 2+dXCOS(P+e)
IF p=0 THEN MOVE x1l.91l
DRAW x1,91.3

MEXT P

MEXT e

EMD

Listing 14 demonstrates PLOT. It simply plots dots on the
screen at random positions in random colours. The results
can be quite pretty.

LISTING 14

2@ MODE @

30 WHILE 1

70

window, with the appropriate channel numbers being used
at lines 110 to 140. The right hand die is yellow with
orange spots, while the right hand one has a bright magenta
background with red spots. However, you should have no
difficulty in changing these to any colours you prefer. Lines
150 and 160 are used to clear the backgrounds of the windows
to the set colours. The next few lines produce two random
integers from 1 to 6 and assign these to variables 1 and r (left
die and right die). Line 200 simply provides a clicking sound
effect each time the dice roll.

The spots are placed on the dice using a series of IF . . .
THEN instructions and a series of subroutines. Four sub-
routines are used for each die, and the first of these draws the
centre spot. For the left hand die this is the subrouti.\}"c
starting at line 400. A new instruction is introduced here, and
this is LOCATE. It is used to place the cursor at the desired
position within a window. In this case it is used to position
the cursor at the point where one of the spots must be placed,
and then a PRINT instruction is used to print a suitable
character on the screen at this position. The character we are
using here is number 143, and if you refer to the character set
in the CPC464 manual (Appendix III) you will find that this
is simply a solid block of the current pen colour. Two of these
blocks are needed to produce each spot, and each one requires
separate LOCATE and PRINT instructions.

As already pointed out, the first subroutine draws the
centre spot. The next draws the top-right and bottom-left
spots, while the third produces the other two corner spots.
The fourth routine draws the spots to the left and right of
the centre one. By calling up the appropriate subroutines at
the IF . . . THEN instructions the correct pattern of spots can
be produced. For example, the second and third subroutines
give the pattern for a four, and the final three subroutines give
the correct pattern for a six. Separate sets of subroutines are
used for the two dice.

An important point to note about the LOCATE instruction
is that it does not use the normal screen co-ordinates. Instead,
each window has its own co-ordinates starting at 1—1 in the
top left hand corner. Thus the centre spot for the left hand

75

—

h
)
0

)

D]
O

0)

FAPER#1.2
FAPER#2, 4
FEMH#1.3
FEN#2,3
LS#H1

LS#

(]

RPAMCOMIZE TIME
1 = INT {RMND¥S+1)

INT CRMD¥E+1)

r

SOUMD 1.,1.2.7.2.

o

, 2
-

IF 1 = 1 THEN GOSUB 422

IF 1 = 2 THEN GOSUB 439
IF 1 = 3 THEM SOSUEB 409:G
IF 1 = 4 THEN GDOSUB 439:
IF 1 = § THEN GQO3IB 4@9:

77

g 48

740 LOCATE#Z2.6,2:PRIMTH#2, CHRS(1430

TIa RETURHM

WINDOW SWAP

WINDOW SWAP is an instruction that can be used to swap
over the channel numbers of two windows. For example, to
direct data for channel 3 to channel 4 (and vice versa) the
instruction:—

WINDOW SWAP 3 4

would be used. This command can be used to direct data
that would normally go to the main screen (which is channel
0) to a window. For example, WINDOW SWAP 0,4 would
result in data being seni to the channel 4 window instead of
the main screen. It should be possible to modify the dice
program to use this instruction and one set of subroutines to
accommodate both dice. You might find it instructive to
try out this idea.

81

() ;3
[kv] [\
- -
L3 B\

)
1S

)
V]

FEH 23
WHILE IMKEYE{>"":WEHMD
FRIHT "Anothesr Go? (970"

ansE=IMNKEY®: IF ans$="" THEM 20

LOCATE 15.19
FRIMT ZFACE®{ 13>

IF LOWER®. 3 ns#>)="2" OR ans$= "

=" THEM 3809

Ja
(& Y
[y
(V]

p
n
D)

g
[y
)
()

4249
49359

Sare

RETURM
IF phsXhizcore THEM hiscore=pt

LOCATE 24,2

PEM @

PRIMT hiszore
Pt==8

RETURM

REM start routine

89

— that is, ignores what is already there. In mode 1, the
colour which appears is the colour plotted XOR the colour
already there. Mode 2 uses AND and mode 3 uses OR.

For animation, XOR is the most useful, as plotting the
same thing twice in the same place under XOR restores what
was originally there, so a character can be moved across a
multi-coloured background without changing the background.
Also, provided the graphics background colour is left as pen
0 colour, the character’s paper colour is effectively trans-
parent, as (number XOR 0)=number.

By using XOR, it is also possible in a very simple way to
make the moving character pass in front of some objects on
the screen, and behind others. Listing 20 illustrates this. This
draws a desert scene with yellow sand, blue sky, and a couple
of red pyramids. A small black tank moves across the desert,
behind the first pyramid, and in front of the second.

To do this, we must reset a number of pen colours. When
doing this type of effect, it is much easier if a pen number of 8
or higher is used for the character, and pen numbers less than
8 for the background. In this case pen 8 is used for the tank.

Pen 3 is used for the desert. This pen is set to yellow by
the INK command in line 30. 3 XOR 8 is 11, and as we want
the tank to be black, pen 11 is set to black in line S0.

We have to use different pens for the two pyramids. Pen 5
is used for the first, pen 1 for the second. Both these pens are
set to red in lines 60 and 70. 1 XOR 8 is 9. As we want the
tank to pass in front of the second pyramid, pen 9 is set to
black (line 40). 5 XOR 8 is 13. As the tank is to pass behind
the first pyramid, pen 13 is set to red (line 80).

Note that the colour for pen 8 does not have to be reset,
as'it never actually appears!

Lines 80 and 90 clear the screen to yellow. Lines 100 to
120 produce the sky by setting a window and clearing it to
blue. Lines 140 and 150 draw the pyramids by calling the
subroutine from line 1000. This uses a FOR . . . NEXT loop
to fill the triangular shapes by drawing lines close together.

There is no BASIC statement to set the graphics colour
mode. Instead it is done by sending control codes to the vdu
driver. This is done in line 180. CHR$(23) is the code to set

91

88 IMK 13,3

28 FAPER 3:CLS

129 WINDOW #1,1,20,1.19
118 PRPER #1.6

122 CLS#!

139 SYMBOL 254.08.0.,31,24,1246,235.25

)

S5.12

r9y=1380:GOSUE 1229

179 50SuUB 2900

130 PRINT CHR${23);CHRS(D);
129 WHILE INKEY$="":MWEND

288 MODE 1:CALL &BBFF: PRPER B
219 EMD

1899 REM draw Pyramids

1018 w=z00

1828 FOR v=1 TO 120

94

MOVE =W 2,9+
CRAMR w.9Q.c
Ww=-2

MEXT v

RETLRN

TAG

FLCTR 3.92.8

9=212:ox=-64: REM ftank start P

FOR «=8 TO &40 STEP 4
MOVE oOw.y

CALL %8019

PRIMT CHR${234>;

MOVE .9

CALL %BOD19

FRINT CHR$(234);

L OX=X

FOR d=1 TO 182:MNEXT

95

LISTING 21

160

REM x BUZZLIMES %
MQCE 9

GosuB 2092

:REM draw zcreen
+=TIME
WHILE Px%<{&39

GOSUB 20929:REM move

GOSUB 423Q:REM display time
WEMD
GOSUB SB820:REM ‘try alain?’

IF LOUERS? ans$="y" THEM GOTOQ

COSLUE S9809:REM ‘rsw scresn?’
0

IF LOLER®C ans$o="3" THEN GOTO

MODE 1:CALL %EBFF:PRFER 2:FEH

98

D4

a

173 END

1290
1212

1229

1229

>~

19483
2999

z9as

FEM zcree:

MEXT Poi
RETURH
REM draw

MOYE 2.9

nte

SZresn

FAFER 2:BORDER Z:CLS

DRRLR

[:Y)

DRAWR &3

[1g

CRAMR

k)

DRAWR -6
MIVE B.9

Pointz=R

23.2

D
Y

3

;=333

-?’9.-

[AV]

% n+29

EOR w«%=79 TN £39 STEP

CREW .

3" AMD ansd(>"n" THEN £030

(03

Q42 LOCATE 2.4

1)

ER58 FRIMT SPACE®L 16>

SRE3 RETURM

102

idea of this is that the program can be made to loop until a
certain bit or certain bits go low rather than high since the
exclusive ORing simply inverts the specified bit or bits.
For example:-

WAIT &F800,3,3
would loop the program until either bit 0 or bit 1 of the

input port at &F800 went low, rather than until one of
these bits went high.

121

Notes

Notes

Notes

Notes

Please note following is a list of other titles that are available in our
range of Radio, Electronics and Computer Books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any
title in your area, then please write directly to the publisher
enclosing payment to cover the cost of the book plus adequate
postage.

If you would like a complete catalogue of our entire range of
Radio, Electronics and Computer Books then please send a Stamped
Addressed Envelope to:

BERNARD BABANI (publishing) LTD
THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON W6 7NF
ENGLAND

https://acpc.me/

	PREFACE

	CONTENTS

	VARIABLES & ARRAYS

	STRING VARIABLES

	INPUT, PRINT & DATA

	THE SOUND GENERATOR

	GRAPHICS 1 - MODES & COLOURS

	GRAPHICS 2 - ANIMATION

	BINARY & HEX

	INTERFACING

	THE AMSTRAD CPC664

