
IN FULL COLOUR

For Beginners of Any Age

Getting
Started
with the
BBC micro:bit ¡

Mike Tooley

Getting Started
with the
BBC micro:bit

Mike Tooley

BERNARD BABANI (publishing) LTD
The Grampians
Shepherds Bush Road
London W6 7NF
England

www.babani books.com

Please Note
Although every care has been taken with the production of
this book to ensure that all information is correct at the time
of writing and that any projects, designs, modifications and/
or programs, etc., contained herewith, operate in a correct
and safe manner and also that any components specified arc
normally available in Great Britain, the Publishers and
Author do not accept responsibility in any way for the
failure (including fault in design) of any project, design,
modification or program to work correctly or to cause
damage to any equipment that it may be connected to or
used in conjunction with, or in respect of any other damage
or injury that may be so caused, nor do the Publishers
accept responsibility in any way for the failure to obtain
specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

Trademarks
All brand and product names used in this book are
recognised as trademarks or registered trademarks of their
respective companies.

■ 5

©2017 BERNARD BABANI (publishing) LTD

First Published - April 2017

British Library Cataloguing in Publication Data:
A catalogue record for this book is available from the British Library
ISBN 978-0-85934-770-9
Cover Design by Gregor Arthur
Printed and bound in Great Britain for Bernard Babani (publishing) Ltd

About this Book
Microcomputers and microcontrollers have found their way
into every aspect of our daily lives. Amongst other things,
they are responsible for heating our homes, cooking our
food, managing the engines in our cars, and controlling our
home media.

At first sight microcontrollers can appear to be extremely
complex, but unlike many other technologies,
experimenting with them is something that you can do at
home with limited resources and with a minimal outlay. In
addition to a PC, laptop or tablet for developing your code,
a soldering iron, a multi-meter, and a handful of
components are all that you need. Except, of course, for
some ideas to get you started—and that’s exactly where
this book comes in!

The book will provide you with the basic underpinning
knowledge necessary to develop your own code and use it
in conjunction with the mictro:bit’s built-in sensors and
transducers as well as a variety of external devices such as
LEDs, buttons, switches, sounders, relays and motors. Each
chapter is devoted to a different aspect of the micro:bit and
each concludes with a practical project designed to take
you further along the road of building and coding your own
micro:bit applications.

The book is designed specifically for newcomers and it
assumes no previous coding experience. It also makes no
assumptions about previous experience of electronic
construction. Many of the practical projects can be
assembled without soldering and some require no external
circuitry whatsoever.

The book is ideal for students and teachers. It is equally
well suited to those who may be returning to study or who
may be studying independently as well as those who may
need a quick refresher.

The book has ten chapters, each dealing with a particular
topic, and two appendices. Coding techniques arc
introduced on a progressive basis and delivered in
manageable chunks. In addition, self-test questions can be
found at the end of each chapter and solutions are provided
at the end of the book.

About the author
Mike Tooley has over 30 years of teaching electronics,
electrical principles, computing and avionics to engineers
and technicians, previously as Head of Department of
Engineering and Vice Principal at Brooklands College in
Surrey, UK. He currently works as a consultant and
freelance technical author and lives in West Sussex.

Mike is the author many popular engineering textbooks
used in Further and Higher Education Colleges and he has
also been a long standing contributor to Everyday with
Practical Electronics and recently as the author of the
popular Teach-In series devoted to the Raspberry Pi,
Arduino and BBC micro:bit.

Mike’s interest in microcomputers started over 40 years
ago, with early 8-bit microprocessors such as the 6800,
6502 and Z80. He is an avid electronic enthusiast and is
currently spending his spare time experimenting with
software defined radio (SDR). He is an active radio
amateur and a holder of British and French amateur call
signs.

Contents

1

Getting started 1
What is the BBC micro:bit? I
Getting connected 2
Getting technical 3
On-board sensors and transducers 4
The edge connector 5
Using buttons to replicate external inputs X
The status LED X
Batteries and holders X
Maximum load 10
Creating micro:bit applications 11
The Microsoft Block Editor I I
Code Kingdom Javascript 12
Microsoft PXT 12
Microsoft Touch Develop 12
MicroPython 13
Which one to use? 13
Going further—a virtual micro:bit 14
Questions 14

2_

Introducing code blocks 15
What are code blocks? 15
Getting started—a simple button counter 17
Going further—micro:bit dice 22
Questions 24

3

Using the LED display 25
How docs the LED display work? 25
Addressing the individual LEDs 26
Displaying icons and images 28
Controlling display brightness 31
Going further—a simple micro:bit frost alarm 32
Questions 34

4_

Using the buttons 35
What do the buttons do? 35
Counting with micro:bit 37
Waiting to start and waiting to stop 38
Going further—a reaction timer 38
Questions 40

5

Loops 41
What does a loop do? 41
The forever loop 41
The while ... do loop 41
The for ... do block 43
The repeat ... do block 44
Going further—a simple theft alarm 44
Questions 48

6

Decisions 49
Why do we need to make decisions? 49
The if ... do logic block 49
Configuring the if ... do logic block 50
The if ...do else logic block 50
The if ... do else if else logic block 52
Testing Boolean conditions 52
Going further—a micro: bit direction Under 55
Questions 58

7_

Digital I/O 59
Which pins to use? 59
Connecting buttons and switches 61
Connecting output devices 62
Output interface circuits 62
Supplying power to interface circuits 64
Reading and writing to digital I/O 67
Going further—a micro:bit intruder alarm 70
Questions 72

8_

Analogue I/O 73
What are analogue signals? 73
Using analog read pin 73
Using analog write pin 75

Reading and writing analogue data 77
Determining the input and output voltage 79
Going further-a micro:bit battery checker 80
Questions 84

9

Sensing temperature 85
Temperature sensors 85
Using the TMP34, 35 and 26 sensors 85
Interfacing TMP35 sensors to the micro:bit 86
Using the LM35 series of sensors 88
Interfacing LM35 sensors to the micro:bit 88
Going further—a micro:bit thermostat 89
Questions 94

10_

Sensing motion 95
Passive infrared sensing 95
Adjustments 96
Trigger options 98
Going further—a PIR motion alarm 99
Questions 102

Answers to questions 103

Useful web addresses 106

Index 107

A note to teachers and lecturers
The book is ideal for students following formal courses in
schools, sixth-form colleges, and further education
colleges. It is equally well suited for use as a text that can
support distance or flexible learning and for those who may
need a ‘hands-on’ guide before studying at a higher level.

While the book assumes little previous knowledge, students
need to be able to manipulate simple formulae and
understand some basic electrical concepts, such as the
relationship between the voltage, current and resistance in a
simple electrical circuit.

Our ‘Going further' projects have been designed to provide
learners with ‘hands-on' experience. These should be
considered open-ended and can be modified or extended to
suit the needs of individual learners. The aim should be
that of giving students ‘food for thought’ and encouraging
learners to develop their own solutions and interpretation of
the topic. Each project introduces various different
concepts in coding and electronics. For example, the use of
MOSFET switching devices as a means of interfacing
external devices is introduced in Chapter 7, while PWM
techniques for generating analogue voltages is introduced
in Chapter 8.

Assuming a notional delivery time of 1.5 hours per week,
the material contained in this book (together with practical
projects) will require approximately 12 weeks (one
academic term) for delivery. When developing a teaching
programme it is, of course, essential to check that you
comply with the requirements of the awarding body
concerning assessment and syllabus coverage.

A word about safety
When working on electronic circuits, personal safety (both
yours and of those around you) should be paramount in
everything that you do and, even though the micro:bit
operates at low voltage, interface circuits can operate at
much higher potential and so it is wise to get into the habit
of treating all electronic circuits with great care.

Hazards can exist within many circuits—even those that,
on the face of it, may appear to be totally safe. Potential
hazards can usually be easily recognized and it is well
worth making yourself familiar with them. You should
always think carefully before working on circuits where
mains or high voltages (i.e. voltages of 50V or more) are
present. Failure to observe this simple precaution can result
in a very real risk of electric shock.

Bodily contact with mains or high-voltage circuits can be
lethal. The most critical path for electric current within the
body (i.e. the one that is most likely to stop the heart) is
that which exists from one hand to the other. The hand-to-
foot path is also dangerous but somewhat less dangerous
than the hand-to-hand path.

So, before you start to work on an item of mains-operated
equipment, it is essential not only to switch off but to
disconnect the equipment at the mains by removing the
mains plug. If you have to make measurements or carry out
adjustments on an item of working (or ‘live’) equipment, a
useful precaution is that of using one hand only to perform
the adjustment or to make the measurement. The other
hand should be placed safely away from contact with
anything metal.

1
Getting started

What is the BBC micro:bit?

Originally intended as a learning resource for students in
all UK secondary schools, the BBC micro:bit is a tiny
programmable circuit board that will let you easily code
and develop your own real-world applications. Despite its
diminutive footprint, the BBC micro:bit has all of the
features of a fully fledged microcontroller together with a
simple 5X5 LED matrix display, two buttons, and various
sensors including an accelerometer, a magnetometer, and a
light sensor. The board can be powered and programmed
by means of a USB cable and it has Bluetooth interface for
simple wireless applications.

The micro:bit can be programmed in several different ways
but, if you arc new to coding, the easiest way is to use the

Figure 1. 1 The BBC micro.bit

1

1 Getting started

micro:bit’s dedicated visual programming environment,
known as Microsoft Block Editor. This is a highly intuitive
cloud-based application and it will enable you to get your
own code up and running in the quickest possible time. All
you need to do is select the pre-built blocks of code that
you wish to use and then drag and connect them into your
own code.

The Microsoft Block Editor will also let you develop and
test your code using a ‘virtual' micro:bit. When you are
happy with the result you can compile your code on-line,
download it and flash it to your micro:bit which will appear
as a USB drive when connected to your PC, laptop or
tablet.

Figure 1.2 Micro.bit coding is easy using the Code Block editor

Getting connected

Before going any further you might like to check out some
of the data on your own micro:bit. Just connect it to any
vacant USB port on your computer. This will supply 5V
DC power to the micro:bit and allow it to communicate
with your PC. Once communication has been established
your micro:bit will appear as a new drive. If you open the
new drive you will see that it contains several files and
folders. Click on the file called DETAILS and you will be

2

Getting started 1

presented with information that is unique to your own
circuit board. At this stage, you don’t need to worry too
much about the information but at least you will know that
your micro:bit is talking to your host computer!

Figure 1.3 BBC micro.bit data can he found in the DETAILS text file

Getting technical

The micro:bit’s processor is a tiny 32-bit nRF51822 (ARM
Cortex MO) from Nordic Semiconductor. This is a powerful
reduced instruction set (RISC) machine designed
specifically for energy and space-efficient applications. The
processor has 256KB flash memory and 16KB of static
RAM. The ARM core has the capability to switch
between 16 MHz or 32.768 kHz.

The processor is supported by an NXP/Freescale KL26Z.
This 48 MHz device relieves the processor from the burden
of communication by providing a full-speed USB 2.0 OTG

3

1 Getting started

(on-the-go) interface for external devices. The KL26Z also
provides the voltage regulation from the USB supply,
converting the nominal 5V USB supply to a nominal 3.3V
for the processor and other support devices. This supply is
also made available at the edge connector. Some of the key
specifications are shown in Table 1.1 below.

Processor 32-bit Nordic Semiconductor nRF51822

Clock speed 16MHz (32.768kHz switchable)

USB controller NXP/Freescale KL26Z

Memory 256K flash plus 16K static RAM

Wireless 2.4GHz Bluetooth low energy (BLE)

Display 25 red LEDs in a 5x5 matrix

I/O connector 23-pin edge connector (1.27mm pitch)

DC supply 5V nominal (via USB) or 3.3V battery

Dimensions 43mm x 52mm

Table 1. / BBC micro:bit specifications

On-board sensors and transducers

\ variety of useful sensors and interfaces are provided on¬
board. These include a 3-axis magnetometer and a 3-axis
accelerometer as well as light and temperature sensors. For
communication and interfacing the board is provided with
Universal Serial Bus (USB), universal asynchronous
receiver/transmitter (UART), Serial Peripheral Interface
(SPI), and Inter-integrated Circuit Interface (I2C) facilities.
The board also has two buttons for user input. These are
labelled A and B.

4

Getting started 1

Figure 1.4 BBC micro:bit board layout

The edge connector

The edge connector consists of five large pads with rings
interspersed with 20 smaller pads. The five large pads
permit connection to the board using crocodile clips and
banana plugs. Due to their small size, the remaining pins
should only be accessed using an appropriate edge
connector. This will also provide access to the large pads
with several of the edge connector pins being effectively
shorted together by the wider pads.

The five large pads and rings are designed for connection
of crocodile clips or 4mm banana plugs. Three of these
five pads (labelled 0, 1 and 2) are available for general
purpose input and output (GPIO) whilst the two remaining

5

1 Getting started

large pads provide access to the 3.3V DC supply and OV
ground (GND). If you intend using the edge connector
pads as a supply for external circuitry we recommend that
you limit the current demand to a maximum of 50mA (and
in no case more than 90mA). Furthermore, take great care
when using crocodile clips as they can easily make contact
with adjacent pads. An inadvertent short between 3.3V and
GND can cause permanent damage!

Pin Function
01 GPIO
I1 GPIO
21 GPIO
3 LED Col. 1
4 LED Col. 2
5 Button A
6 LED Col. 9
7 LED Col. 8
8 GPIO
9 LED Col. 7
10 LED Col. 3
11 Button B
12 GPIO

Use
General purpose digital I/O, analogue and PWM
General purpose digital I/O, analogue and PWM
General purpose digital I/O, analogue and PWM
Can be used for GPIO when LED display not used 2

Can be used for GPIO when LED display not used 2

GPIO etc. shared with on-board Button A
Can be used for GPIO when LED display not used 2

Can be used for GPIO when LED display not used 2

General purpose digital I/O, analogue and PWM
Can be used for GPIO when LED display not used 2

Can be used for GPIO when LED display not used 2

GPIO etc. shared with on-board Button A
GPIO etc.3

13 GPIO
14 GPIO
15 GPIO
16 GPIO
17 3.3V
18 3.3V
19 l2C SCL
20 l2C SDA
21 GND
22 GND

GPIO etc. (also SCLK for SPI bus applications)
GPIO etc. (also MISO for SPI bus applications)
GPIO etc. (also MOSI for SPI bus applications)
General purpose digital I/O, analogue and PWM
3.3V positive supply4

3.3V positive supply4
Serial clock for the l2C bus5
Serial data available for the l2C bus5
Ground (common negative supply)6
Ground (common negative supply)6

Table 1.2 Default functions associated with the edge connector pins

6

Notes:

Getting started 1

1. Pins 0, 1 and 2 are large pads with rings.

2. Pins 3, 4, 6, 7, 9 and 10 are associated with the matrix LED display and

also with the micro:bit's ambient light sensing mode.

Although pin-12 is currently available for general purpose use it

should be considered as "reserved for future use". Future versions of

the micro:bit may use this pin for a dedicated purpose.

4 Pins 17 and 18 are for the positive supply which is also available from

the adjacent large pad labelled '3V'.

Pins 19 and 20 are used by the l2C bus. This bus is used by the on¬

board accelerometer and magnetometer chips and so care must be

taken if you intend to use these pins for any other I/O functions.

Pins 21 and 22 are directly linked to the large pad labelled 'GND'.

Note that this pad is not numbered.

Figure 1.5 Edge connector pin assignment

7

1 Getting started

Using buttons to replicate external inputs

The functions of the two buttons (labelled A and B) are
respectively duplicated on pin-5 and pin-11 of the edge
connector. This simply means that, if pin-5 is taken low
(i.e. connected to GND) it has the same effect as pressing
button A. Similarly, if pin-1 1 is taken low, this will have
the same effect as pressing button B. This feature can be
quite handy as it will allow you to use a button press to
simulate the signal from a switch or external digital sensor
without having the device physically present and
connected to the micro:bit.

The status LED

The status LED (see Fig. 1.4) will become illuminated
whenever the micro:bit is connected to the USB port of a
powered host computer. It also flashes when data is being
downloaded and transferred into the micro:bit’s static
memory. The status LED will also be illuminated when the
board is being powered from a USB power adapter. When
powered from a battery pack there is no power indication
unless the LED matrix display is being used!

Batteries and holders

When using a battery to supply power to the micro:bit you
will need some form of battery holder. Unfortunately, the
battery holder supplied with the standard micro:bit kit is
not fitted with a switch so it becomes necessary to
repeatedly connect and disconnect the power connector. If
left connected, the batteries will drain unnecessarily and
since this type of power connector is not designed for

8

Getting started 1

repeated connection and disconnection it would be wise to
incorporate a switch in the supply connection (see Fig.
1.6). Alternatively, battery connectors fitted with switches
are available from several suppliers and these can usefully
replace those supplied with a basic micro:bit kit.

Figure 1.6 Fitting a switch to the battery connector

One neat solution to the need for a battery pack is available
from Kitronik (https://www.kitronik.co.uk/). This company
has developed their M Epower board (see Fig. 1.7) to fit
snugly behind the micro:bit (see Fig. 1.1). The MEpower
board is fitted with a 3V “coin cell” holder (CR2032), an
on/off switch, and a piezo buzzer, the board is connected
directly to the 3V, GND and PO connections on the
micro:bit. The built in buzzer is connected to the PO pad
(the default output pin when using the audio functions in
the Microsoft Block Editor software).

9

1 Getting started

Figure 1. 7 The MFpower hoard

Maximum load

The current drive that can be obtained from any one of the
micro:bit’s I/O pins should be no more than 5mA.
Furthermore, the board is only rated for a total I/O load of
15mA. In addition to limiting the output current for
resistive loads you should also avoid connecting loads that
are highly reactive (i.e. inductive or capacitive).
Loudspeakers, solenoids and motors in particular may
generate significant back-EMF whenever current is
removed from them and the reverse voltages generated can
often exceed the maximum ratings for the GPIO pins.
Later we will show you how you can easily get over these
restriction with some simple external circuitry. Finally, no
more than 75mA should be taken from the micro:bit’s 3V
pad.

10

10 Sensing motion

Figure 10.5 Circuit of the micro.bit PIR motion alarm

Figure 10.6 The completed PIR motion alarm on test

100

Sensing motion 10

P0

alarm • true *

a true

forever

digital read pm (0,1);

io] if

to

button CD is pressed

do

show stnng 44 u „

e,se I digital write (0,1) (i) topin

show stnng 44 s ”

set EJED to ESD I

digital write (0,1) o to pin

I digital write (0,1) •a to pm

Figure 10.7 Code for the micro:bit PIR motion alarm

Some experimentation with the sensor's pre-set
adjustments will normally be required but the adjustment
procedure should be left until the PIR has been placed in
position. With a little experimentation it should be
possible to achieve the correct triggering, time and
sensitivity. Note that, as with our last project, the code
assumes that the relay module is activated when its input
is taken high. If this is not the case the 0 and 1 states in
the digital write code blocks will need to be interchanged
(see Fig. 10.7).

101

10 Sensing motion

Questions

1. What is the difference between the two trigger
modes in which a PIR sensor module can be
operated?

2. What is the purpose of the lens fitted to a PIR
sensor?

3. What adjustments are normally provided on a PIR
sensor module?

4. In the code shown in Fig. 10.7 what variable is used
to represent the state of the output from the PIR
module?

5. In the code shown in Fig. 10.7 what variable is used
to 'remember' whether the alarm has been
triggered?

6. In the code shown in Fig. 10.7, what three things
happen when Button A is pressed?

102

Answers
Chapter 1, page 14
1. 25 individual LEDs in the matrix display plus one

status LED on the reverse side of the board
2. Nordic nRF51822 32-bit ARM Cortex MO
3. 3.3 V via the battery connector or 5 V via the USB

connector
4. Universal asynchronous receiver/transmitter
5. Via an edge connector (five of the larger pads also

make can use of crocodile clips or 4mm banana
plugs)

6. SP1 (serial peripheral interface) and l2C (inter-
integrated circuit interface).

Chapter 2, page 24
1. A hexadecimal (.hex) file
2. The input library
3. By means of a drop-down list
4. Its value is increased by 1
5. It executes the code continuously until the power is

switched off or is disconnected
6. 0

Chapter 3, page 34
1. Five rows and five columns
2. Bottom left: x = 0 and y = 4, top right: x = 4 and y = 0
3. The point function
4. To introduce a short delay for comfortable viewing
5. 256

103

Answers

6. (1,3), (2,3) and (3,3).

Chapter 4, page 40
1. To reset the processor and restart the program; on the

rear of the printed circuit board
2. Yes. By clicking on a small black circle shown below

the image of the virtual micro:bit
3. By placing a set brightness block inside a loop that

increments the brightness parameter every time a
button is pressed

4. (a) To count up the change ... by parameter needs to
be 1 ; (b) To count down the change ... by parameter
needs to be -1

5. (a) (b)

Chapter 5, page 48
1. True (1) or false (0)
2. Milliseconds (ms)
3. Yes, provided the beginning and end of the inner loop

is contained within the beginning and end of the outer
loop

4. count
5. Displays numbers that count down each time Button

A is pressed. The empty while ... do loop waits
until Button A is pressed before continuing

6. 9 and 0.

Chapter 6, page 58
1. (a) False, (b) False, (c) True, (d) True, (e) False,

(f) True, (g) True, (h) True
2. The else code block(s) are executed if the comparison

evaluates to false

104

Answers

3. Yes, multiple else if blocks are possible
4. The code will display never display ‘N’ because the

first comparison will always evaluate to False
because the value of direction can’t be greater than
315 and at the same time less than 45. This might
apply to a compass bearing (in degrees) but it doesn’t
apply to ordinary numbers!

Chapter 7, page 72
1. OV (or close) corresponds to logic 0 while +3V (or

near) represents logic 1.
2. 5V is often used with small microcontrollers
3. Logic 1 (high)
4. Logic 0 (low)
5. (a) Pull-up resistor (to take the input high when the

button isn’t being pressed), (b) Pull-down resistor (to
take the input low when the button isn’t being
pressed.

Chapter 8, page 84
I. Pin-0, pin-1 and pin-2
2. 10
3. 1024(2' °)
4. Approximately 0.032V (or 32mV)
5. analog read pin pO
6. No, the micro:bit uses pulse width modulation

(PWM) and the analogue voltage produced is the
mean value of this waveform

7. 682.

Chapter 9, page 94
1. 40°C

105

Useful web addresses

2. TMP36
3. The map function is used to map a range of values

from one range to another range. The low and high
values of each of the two ranges needs to be specified
within the code block.

4. Better than ±1 °C

Chapter 10, page 102
1. Single or continuous triggering.
2. The lens increases the angular response and also

divides the coverage into sectors through which the
target moves.

3. Output hold time adjustment; sensitivity adjustment
4. sensor
5. alarm
6. The value of sensor is set to 0; alarm is set to false;

the output from pin-1 is taken low.

Useful web addresses
Barclays
BBC micro:bit Home
Kitronik
Mu
Samsung
Utronix
Element 14
Jaycar Electronics
Pimoroni
Rapid Electronics

www.barclays.co.uk/bbc-micro-bit
www.microbit.co.uk/
www.kitronik.co.uk
codcwith.mu/
www.samsung.com/uk/microbit/
www.utronix.co.uk/
www.element14.com/
www.jaycarelectronics.co.uk/
shop.pimoroni.com/
www.rapidonline.co.uk/

106

Index

Accelerometer
ADC
Analog read
Analog write
Analogue I/O
Back-EMF
Banana plugs
Batteries
Battery checker
Binary
Bluetooth
Boolean logic
Boolean value
Brightness
Button
Button counter
Button interface
Button pressed
C-R filter
Code
Code Kingdom
Comparison
Compass
Condition
Counting
Crocodile clips
Decisions
DETAILS file
Dice
Digital I/O
Digital read pin
Digital write pin
Direction finder

4, 7, 22
73
73,74
75,76
73, 74
10
5
8,9
80, 82, 83
73
1,4
42
50, 52, 53
31,36
8, 35, 36
17
68
35
76, 78
2, 11
12
54, 56
57
52
37
5
49
2,3
22,23
59, 67
67
67
55,57

Display
Drag-and-drop
Duty cycle
Edge connector

Egg timer
False
Flash memory
For ... do
Forever
Fridge alarm
Frost alarm
GND
GPIO
Ground
Hexadecimal file
High state
I/O
I2C
Icons
If... do
Images
Intruder alarm
Javascript
Kitronik

LED
LED driver
LED interface
LED matrix display

LM35 series
Logic library

31

61
10, 59, 73
4
28
49, 50, 52
28
70,71
12
9, 59, 60,
67, 69
69
62, 63
68
1, 16, 17,
25,26
88
42

76, 77
5, 7, 47,
67, 69
42
49, 50
3
43
17, 18,21
52, 53
32,33
6
5,6
6

107

Index

Logic levels 65 Sensors 4
Loops 41 Show LED
Low state 61 Show image 29,30
Low-pass filter 76 Show number 18,19,25
Magnetic switch 70 Show string
Magnetometer 4, 7, 56 Solid-state relay 64
Maths library 42 Sounder 46
Matrix display 26 Specifications 4
Maximum load 10 SPI 4,59
MLpower board 9,10,23 Start button 38
MicroPython 13 Static RAM
MOSFET 62, 63, 69 Status LED 8
Motion alarm 99 Stop button 38
On button pressed 35 Switch 8,9,61
Operators 54 Target 96
Output 61,62 Temperature 85
pac)s 5 Temperature sensor 85, 86,87
Pick random 22 Theft alarm 44, 47
Pin functions 6 Thermometer 89,91,92
PI R detection range 95,96,97 Thermostat 89,91,92
PIR motion alarm 99,100 Timer 42
PIR sensor 95,96,97, TMP35 series 85,86,87
Plot 27 Transducers 4
Point 28 Trigger options 98
Potentiometer 75 True 49, 50
Power supplies 65 UART
Processor 3, 4 Unplot
Prototype board 68 USB 4
Pull-down 61 USB battery 65
Pull-up 61 USB cable 1,16
PWM 76,78,79 USB connector 16
PXT 12 USB drive 21
Python 12 USB port
Reaction timer 38,39 USB supply 4
Read pin 67 Utronix 59, 60
Relay 62,63,64 Virtual microibit 2,14,16
Repeat... do 44 Voltage regulation 4
RISC 3 While ... do loop 41
Scrolling 30

108

BP

For Beginners of Any Age

Getting Started with the BBC micro:bit
Not just an educational resource for teaching youngsters coding, the
BBC microrbit is a tiny low cost, low-profile ARM-based single-board
computer. The board measures 45mm x 52mm but despite its diminutive
footprint it has all the features of a fully fledged microcontroller
together with a simple LED matrix display, two buttons, an accelerometer
and a magnetometer.
Mike Tooley's book will show you how the micro:bit can be used in
a wide range of applications from simple domestic gadgets to more
complex control systems such as those used for lighting, central
heating and security applications. Using Microsoft Code Blocks, the book
provides a progressive introduction to coding as well as interfacing with
sensors and transducers.
Each chapter concludes with a simple practical project that puts into
practice what the reader has learned. The featured projects include an
electronic direction finder, frost alarm, reaction tester, battery checker,
thermostatic controller and a passive infrared (PIR) security alarm.
No previous coding experience is assumed, making this book ideal for
complete beginners as well as those with some previous knowledge.
Self-test questions are provided at the end of each chapter together
with answers at the end of the book. So whatever your starting point,
this book will take you further along the road to developing and coding
your own real-world applications.

COLOUR

Getting started 1

(reciting micro:bit applications

I he BBC micro:bit was developed as a platform for
(caching coding and it supports several quite different
programming environments. The most basic of these is the
Microsoft Block Editor visual environment. This dispenses
completely with text-based coding and uses a simple drag
and drop programming environment which is very easy to
learn and makes an ideal starting point for anyone with no
programming experience.

With the aid of code blocks it is possible to produce a
simple application in a matter of minutes and then have the
graphical source (basically a picture of what the code will
be doing) converted on-line into a hexadecimal file which
can be downloaded to your computer and then copied to
the micro:bit via the USB connection. This is quite
straightforward but it does require a working internet
connection to the web-based application via the user's
browser.

Hiere are currently four freely accessible development
environments available from the micro:bit website (http://
www.microbit.org). To get started you just need to click on
‘Create code’ and choose your preferred programming
environment. Next we will summarise their main features.

ihe Microsoft Block Editor

Microsoft Block Editor is a very simple visual editor with
a user-friendly drag and drop interface. The editor is
designed to introduce structured programming. If you want
lo avoid the complexities of a text-based interface this is
Ihe one to start with. Later you can convert scripts

11

1 Getting started

produced by Microsoft Block Editor into scripts that will
work with Microsoft Touch Develop, once again providing
a straightforward upgrade path to text-based coding.

Code Kingdom Javascript

Like the Microsoft Block Editor, the Code Kingdom’s
Javascript editor also provides you with a drag and drop
environment in which each of blocks represents a chunk of
code. The interface makes it possible to switch easily
between the visual environment and a text-based editor.
Code Kingdom’s Javascript makes the transition to text¬
based programming relatively straightforward.

Microsoft PXT

Microsoft’s Programming Experience Toolkit (PXT)
provides a coding environment that supports both a block¬
based editor and JavaScript. It also provides support for
low-power wireless peer-to-peer communication.

Microsoft Touch Develop

Another package from Microsoft, Touch Develop, is
intended for use with mobile touchscreen devices (such as
tablets and smartphones). The software can also be used
with a conventional PC, keyboard and mouse.

Touch Develop can be used to produce platform¬
independent web-based applications. Unfortunately Touch
Develop is not currently compatible with the standard
Android browser. If you need to develop your code on an
Android platform you will need to change your browser to
Google Chrome.

12

Getting started 1

MicroPython

MicroPython uses a text-based editor (there is no graphical
programming environment) but this will probably not be a
great concern for those with previous coding experience.

There is currently plenty of support for MicroPython from
an active community of developers and enthusiasts. The
Mu editor (available from www.https://codewith.mu/) can
be downloaded and used off-line. This simple and
straightforward text editor is available for Windows,
OSX and Linux.

Which one to use?

If you have no previous experience of coding, we
recommend that you start with the Microsoft Block Editor.
This uses a highly intuitive visual environment and it will
give you a taste of coding without having to resort to
editing text.

At some later stage, you will probably find the need to
move to text-based editing and at that point we would
suggest the MicroPython environment as this language is
both well supported and available for multiple platforms.

Next, in Chapter 2 we will introduce Microsoft Code
Blocks in more detail and help you to create your first
BBC micro:bit program. If you already have some
experience of using Code Blocks you could move straight
on to Chapter 3.

13

1 Getting started

Going further—a virtual micro:bit

You will need a computer with a working internet
connection. Open your web browser and use it to visit the
BBC micro:bit website (http://www.microbit.org/). Next
click on Let's Code and then scroll down to view the
different editors that are available from the micro:bit's
website.

Locate Microsoft Block Editor and then click on Get
started with this editor. This will take you to the Code
Block editor—you now have a virtual micro:bit to play
with!

Questions

1. How many LEDs are used in the micro:bit's on board

display?

2. What type of processor is used in the micro:bit?

3. What DC supply voltage does the micro:bit require?

4. What do the initials 'UART' stand for?

5. How are connections made to the microrbit?

6. What two interface bus standards are supported by

the micro:bit?

14

2
Introducing code blocks

What are code blocks?

Code blocks are simply chunks of ready-made code that
can be inserted into your own code. Code blocks allow you
to quickly and easily produce an application without having
to resort to the use of a text-based editor. Each block of
reusable code is represented graphically by symbols that
behave in a similar way to that of a jigsaw piece, slotting
together to form a complete program.

The Microsoft Block Editor environment (see Fig. 2.1)
provides a means of assembling code blocks into a
complete application. On the left of the editor screen you
will find a library of available code blocks sorted into the

Figure 2. 1 The Microsoft Block editor

15

2 Introducing code blocks

following categories: Basic, Input, Loops, Logic,
Variables, Maths, LED, Music, Games, Images, Pins and
Devices.

The centre of the display provides a coding area for you to
assemble blocks of code. You simply select the blocks that
you need from the library on the left and then drag and
drop them into your code. Once there, blocks can be
dragged around and linked together in order to produce a
complete program. Happily, this couldn't be easier!

On the right of the Microsoft Block Editor screen is a
“virtual” micro:bit complete with buttons and LED matrix
display. The board can also be tilted and rotated. This
excellent feature allows you to test your newly developed
program without having to connect and download your
code to a real micro:bit. To test your code on a real
micro:bit you will first need to connect it to your host
computer via the USB cable and micro USB connector. If
you have not done this before you may find that your host
computer needs to locate a USB driver for your micro:bit.

The process of locating and installing the driver will
usually be automatic but you might see a notification that
the driver has been located and is being installed. Finally,
when you are ready to send your code to the micro:bit you
just need to click on the buttons at the top of the screen to
generate and download a hexadecimal (.hex) file. When
successfully downloaded this file will appear in your
downloads folder. When you've located the downloaded
.hex file all you need to do is to send or copy it to the USB
drive that your operating system has allocated to your
micro:bit.

16

Introducing code blocks 2

Getting started—a simple button counter

Let’s start with something really simple: counting button
presses. For this very simple application we will use Button
A as an input and display the number of presses that it
receives by scrolling the count on the matrix LED display.
We will use a variable called count to hold the number of
presses and increment it (i.e. add 1 to the value of count)
each time Button A is pressed. Note that it is good practice
to initialise the value of count by setting it to zero when the
program first starts but this will be done automatically
when we define the new variable. Finally, in order to restart
counting (from 0) we will detect and use Button B to reset
the current value of count to zero. Now let’s walk through
the process of developing and testing the code.

First open Microsoft Block Editor (as described earlier) and
enter a name for your program in the text field at the top of
the screen. Your source file will be stored under this name
and it will also appear in the name of the hexadecimal
(.hex) file downloaded to your host computer following on¬
line compilation of your code.

Next select Basic from the blocks menu on the left and then
select the forever block and drag it into the code window.
Position it towards the left of the code window. Next return
to the block menu and select Basic from the blocks menu
for a second time. This time locate show number, select it
then drag it into the code window (as shown in Fig. 2.3).
Now select Variables from the blocks menu. Locate the
item block and then drop it into the editing area (as shown
in Fig, 2.3). You will now have three blocks of code ready
to be connected together!

17

2 Introducing code blocks

Figure 2.2 Selecting the forever code block from the Basic library

The three blocks of code are linked together by simply
dragging and dropping (the blocks will join together rather
like the pieces of a a jigsaw puzzle). Fig. 2.4 shows how
this is done. First drag the item variable and drop it into the
grey area inside the show number block. You should find
that it easily drops into place, replacing the number. Next
you need to drag the entire show number block into the slot

Figure 2.3 The first three block of code dropped in the editing area

18

Introducing code blocks 2

Figure 2.4 The first three block of code dropped in the editing area

in the forever block. Once again, this should easily move
and drop into place with the forever block readjusting
itself to accommodate the show number block.

Next we need to change the default variable name, item, to
something a little more meaningful. We need to tell the
code that the number that we want to display is the current
value of our variable, count. Click inside the item box and
open the pop-up dialogue box Then select New variable
and enter count as the new variable name, see Fig. 2.5).

We need two more sections of code. One will check to see
if button A is pressed and the other will check to see if
button B has been pressed. In the first case we need to
increase the value of count (effectively adding one to
whatever the value is) and in the second we need to reset
the count by changing its value to 0. The required code is
shown in Fig. 2.6. You will need to use the Input library for
the blocks of code that read the state of the buttons and the
Maths library to insert the value 0. You will also need to
change item to count by clicking on the down arrow.

19

2 Introducing code blocks

Figure 2.5 The first three block of code dropped in the editing area

Figure 2.6 Adding code that reacts to the state of button A

Figure 2. 7 The final code ready to test

20

Introducing code blocks 2

What does this all do? Let’s just look back at what we’ve
just done. The forever block ensures that the program
continues in an infinite loop for as long as power is applied
to the micro:bit. On button A pressed reacts to a press on
button A and increments (i.e. adds 1) to the value of the
variable, count. On button B pressed reacts to a press on
button B, setting the count back to zero so we can start
again. To test the code you just need to click on the run
arrow (second from the left). When you do this the display
will become illuminated and the number of times button A
is pressed will appear on the LED display. Pressing button
B will set the count back to 0 (see Fig. 2.8).

When you are ready to test the code for real, connect your
micro:bit via USB, press the compile button in the Block
Editor, wait for your code to be compiled and downloaded
and then copy the hex. file to the USB drive that
corresponds to your micro:bit. When the microrbit resets
itself you should now have your very first micro:bit
application up and running!

Figure 2.8 The final code ready to test

21

2 Introducing code blocks

Going further—micro:hit dice

This first micro:bit project involves the development of a
simple dice application. Using the micro:bit's on-board
accelerometer it is possible to detect when the board is
shaken. To do this you can use the on shake code block.
The micro:bit's pick random code block will return a
random number within the range specified.

The number returned will range from 0 to whatever upper
integer is specified. If we set this upper limit to 5 the
routine will generate random numbers from 0 to 5. By
adding 1 to whatever number is generated we will have
random numbers ranging from 1 to 6, corresponding to
the number of faces on a dice. We have used throw as our
variable and displayed an initial '*' each time the dice is
thrown (or shaken in our easel).

Don't forget to name and save your code before testing it.
Finally, we used an Mkpower board (see pages 9 and 10)
to provide power for the finished unit.

do straw string « Q HH

set to pick random 0 to

show number

Figure 2.9 The micro:bit dice application

22

Introducing code blocks 2

Figure 2. 10 The virtual micro:bit dice

Figure 2.1 1 Complete micro:bit dice (with power board attached)

23

2 Introducing code blocks

Questions

1. What type of file is downloaded following successful

compilation of a micro:bit application?

2. In which of the Microsoft Block Editor libraries will

you find the code that reads the state of buttons A

and B?

3. How can the name of a variable be changed from

the default value allocated by the Code Editor?

4. When a variable is incremented what happens to its

value?

5. What is the purpose of the forever code block?

6. What is the lowest value of random integer number

that the micro:bit's pick random code block can

generate?

24

3 Using the LED display

(i.e. 10 or more) are scrolled from right to left across the
display. The pause function introduces a short delay for
comfortable viewing.

Addressing the individual LEDs

The micro:bit’s display comprises 25 individual LEDs
arranged in a 5x5 matrix, as shown in Fig. 3.2. The array
of LEDs is organized in five columns and five rows and
individual LEDs within the array can be addressed by
means of their x (column) and y (row) coordinates. Thus
the LED at the top left of the matrix corresponds to x = 0
and y = 0 whilst the LED at the bottom right of the display
corresponds to x = 5, and y = 5. Note that the row and
column numbering starts from zero (not 1). so the rows
and columns are both numbered from 0 to 4. To turn an
individual LED on or off we can use the plot and unplot
code blocks.

Figure 3.2 The micro:bit ’s LED matrix display

26

Using the LED display 3

As an examples of using plot and unplot, the code shown
in Fig. 3.3 will continuously flash the centre LED
(coordinates x = 2, y = 2) whilst that shown in Fig. 3.4
continuously flashes the top left and bottom right LEDs.

Figure 3.3 Example of using the plot and unplot functions

500

0

500

4

forever

plot x Q y

pause (ms)

unplot x

plot x Q

pause (ms)

unplot x y

Figure 3.4 Example of using the plot and unplot functions

27

3 Using the LED display

The micro:bit’s point function will tell you whether a
specified LED is currently in the on or off state. The code
shown in Fig. 3.5 has exactly the same effect as that shown
in Fig. 3.3.

Figure 3.5 Using the point function

Displaying icons and images

In addition to the micro:bit’s ability to address the display
on an individual LED basis, Microsoft Block Editor has a
neat feature that allows you to create icons and small
images that can be incorporated into your applications.

The show leds function will display a pre-determined
pattern on the screen for just under half a second (400ms).
The pattern is created by simply placing check marks
(ticks) in the required boxes within the code block. The
example shown in Fig. 3.6 shows how two 45° lines can be
alternately displayed. Program execution continues for as
long as power is applied with the lines alternately
appearing on the display.

28

Using the LED display 3

forever MB»»

show leds

0 12 3 4

OS ■ ■ ■ ■

ia 8 i i i
21 a s a a
3i a a s a
4 ■ ■ ■ 1 8
show feds

0 12 3 4

oa a a a s
18 8 8 8 8

Figure 3.6 Using the show image function

The show image function makes it very easy to define your
own icons by simply checking the required LEDs.
However, you might want to have further control of your
image and not just have it appear briefly. If that’s the case
you can make use of the show image function and use it to
display an image that you’ve defined using the create
image code block. Let’s assume that you need an icon
representing a power button. This can easily be created as
shown in Fig. 3.7. Notice also that the position of the
image (as an offset from the left of the matrix display) can
be entered as a parameter (if you need to display the whole
image in one go you should choose an offset of 0).

29

3 Usina the LED display

forever

show image create image at offset y Q

0 12 3 4

o» 0 8 8 •
18 ■ ■ ■ 8
28 ■ 8 ■ 8
38 ■ 8 ■ 8
4« 8 8 8 •

Figure 3. 7 Using the show image function

Figure 3.8 The power icon resulting from the code in Fig. 3. 7

forever
and interval (ms) E3 scroll image

28
30

create big image
0

oa

Figure 3. 9 Scrolling a wavy line image across the screen

30

Using the LED display 3

It is also possible to create a bigger image and have this
scroll across the screen by at a specified rate. The example
shown in Fig. 3.9 shows how a wavy line can be made to
scroll continuously across the micro:bit’s LED matrix
display.

The micro:bit retains the state of the LED matrix display in
a region of its memory known as its display buffer. The
plot and unplot functions access this buffer directly whilst
the functions that display images, text and numbers
overwrite the buffer, replacing previous contents with new
data.

Controlling display brightness

As its name suggests, the set brightness code block allows
you to control the brightness of the LED matrix display.
Brightness is determined by a parameter entered into the
set brightness code block. The value entered can be
anything between 0 and 255.

Fig. 3.10 shows you how this works. As the loop is
executed the brightness will change in eight steps with the
brightness parameter taking values ranging from 0 to 256.

Maximum brightness will result from a brightness
parameter of 255, any larger value (for example, 512) will
just result in maximum brightness.

Being able to control display brightness can add an extra
dimension to your applications, making icons, images and
messages more interesting.

31

3 Using the LED display

Figure 3.10 Controlling the brightness of an image

Going further—a simple micro:bit frost alarm

Our second micro:bit project is a simple device that could
be extremely useful to gardeners and motorists because It
provides advanced warning of frost and ice. The
application makes use of the micro:bit's on-board
temperature sensor.

As with our earlier dice generator project, we've used an
Mkpower board (see page 9) to provide power for the
finished unit. However, if the alarm is to be left on for long
periods it would make sense to power it from two alkaline
batteries (either AAA or AA) rather than a tiny button cell.

Note how we have used an if ... do else loop in the code.
We will explain how this works in Chapter 6 (see page 50).

32

Using the LED display 3

The LED display will flash a frost warning whenever the
processor's temperature falls below 2°C. Note that this
will be a few degrees above the ambient temperature.
Later in Chapter 9 we will show how we can sense and
measure temperature with much greater accuracy using a
low-cost external analogue temperature sensor.

temperature (°C)

plot X 0 y

else show leds

1 3

8

s

1 2

a

s
s
s

8
s
e

o

08
1«

28

4

0
2

0
8
8
8
S

o

0«

1B
2

3

do clear screen

48 ■ L—--
show leds

forever

Í d if

Figure 3.1 1 Code for the simple micro: bit frost alarm

33

3 Using the LED display

Questions

1. How many rows and columns form the basis of the
micro:bit's matrix LED display?

2. What are the x and y coordinates of the bottom left
and top right LEDs of the matrix display?

3. Which micro:bit function tells you whether an LED is
illuminated or not?

4. What is the purpose of the pause function when
displaying a succession of images?

5. How many individual brightness levels are
supported by the LED matrix display?

6. Which additional three points would need to be
plotted in order to turn the icon shown in Fig. 3.12
into a closed triangle?

Figure 3. 12 See Question 6

34

4
Using the buttons

What do the buttons do?

The micro:bit has two buttons that can be put to general use
and a third button (at the back of the board) that’s used to
reset the processor. When the reset button is pressed, the
micro:bit starts executing the code that’s been downloaded
to it from the beginning (the code will remain intact but
any existing data will be lost). The two general purpose
buttons are labelled A and B (see page 15) and these arc
available for you to use as you see fit.

The on button pressed function will react to the state of
Button A, Button B or both A and B pressed at the same
time, as illustrated in the code shown in Fig. 4. 1.

on billion pressed ■■

do ¡ show string « 0 »

on bullón piessed HE

do ! show string (C Cl V

on button QQ-D pressed |

do I show stnng « Q „

Figure 4.1 Using the micro:bit 's button inputs

35

4 Using the buttons

When a button is pressed, the action (or actions) to be
performed are inserted in the slot marked do. Just click and
drag the required block into position.

In Fig. 4.1 we simply wanted to indicate which of the
buttons has been pressed. A will appear when Button A has
been pressed, B will appear when Button B has been
pressed and C will appear when both buttons (A and B)
have been pressed at the same time (on the virtual
micro:bit a separate A+B button has been provided (see
Fig. 2.10) so that you can simulate this). You thus have
three possibilities for button inputs.

The code shown in Fig. 4.2 provides you with an example
of doing something a little more useful with button inputs.
Button A will set the display to full brightness (the default
state) while Button B will dim the display. Note that the
display will remain in whatever state has been selected
until one of the buttons is pressed again.

forever bBmBH
show leds

0 12 3 4

08 I I I 8
asana
2a a s a a
o a s a s a
/s a a a s

on button QB pressed

do set brightness i £

do set brightness

Figure 4.2 Using buttons to set the display brightness

36

Using the buttons 4

Counting with micro:bit

Earlier on page 17 we showed how the micro:bit could be
used to count a number of button presses. Now let’s look at
a more complex example of a counting application in
which all three buttons are used. The code shown in Fig.
4.3 counts up when Button A is pressed and counts down
when Button B is pressed. When both buttons arc pressed
the count is reset to zero. Counting up is achieved by
adding 1 to the value of count whilst counting down is
achieved by subtracting I from the value of count.

Notice how, within the forever loop we first initialise the
value of count (by setting it to zero). This is good practice
but not essential. Notice also how, because the test
condition has been set to true, the while ... do loop
continues forever. We will return to this important point in
a later chapter.

pressed

to E

Figure 4.3 The improved counting application

37

4 Using the buttons

Waiting to start and waiting to stop

N particularly useful application for a button is that of
starting or stopping the execution of a block of code. For
example, waiting for a user to press a button before
something happens or waiting for a user to release a button
before moving on to some other action.

The code shown in Fig. 4.4 will continuously display a *?’
character but, if Button A is pressed and kept held down the
LED will display a **’ symbol. When Button A is released
the display will revert to a character. If you need to use
something like this in your own code just replace the code
block in the do notch.

forever

while button QD >s pressed

d0 show string << |

show string « 8 ” «

Figure 4.4 Code that waits for a button to be pressed

Going further—a reaction timer

Our third micro:bit project is a fun gadget that takes the
form of a personal reaction timer. The program starts by
displaying a single dot in the centre of the LED matrix. It
then waits until the user operates Button A (notice the
test condition, not button A is pressed. As long as Button
A is not pressed the micro:bit executes an empty loop.

38

Usina the buttons 4

When, eventually Button A is pressed execution then
continues with the code that immediately follows the
while ... loop. The screen is cleared and the program
executes a random delay of between 0 and 4.5s (9 x 500 =
4,500ms). Thereafter, a random dot appears on the
display and the time is noted. This is the prompt for the
user to press Button B. After a few 100ms delay (caused
by the user's reactions not being immediate) the user
presses Button B and the delay, user time, is then
calculated and displayed, scrolling the value (in
milliseconds) across the display. The process then repeats
indefinitely.

Figure 4.5 Reaction timer code

39

4 Using the buttons

Questions

1. What is the purpose of the micro:bit's reset button
and where is it located?

2. Is it possible to detect both buttons being
simultaneously pressed and how is this achieved
with the virtual micro:bit?

3. How is it possible to use a button to control the
micro:bit's display brightness?

4. How can the change ... by code block be used as the
basis of (a) an up-counter and (b) a down-counter?

5. In the block of code shown in Fig. 4.6, what will
appear on the LED matrix display when (a) Button A
is held down and (b) when Button A is released?

A ’

forever

is pressed

do

show string <4 a »

show string i 44

while not button

Figure 4. 6 See Question 5

40

5
Loops

What does a loop do?
A loop is simply a repeated section of code. Because the
execution of a loop depends on the outcome of a particular
condition, a loop may execute once, several times,
indefinitely or not at all! There a several different types of
loop so let’s take another look at those that you’ve already
met before we introduce some new ones.

The forever loop

Everything placed inside a forever loop executes
indefinitely (or at least until the micro:bit’s power is
switched off). Since we often need our code to run
continuously (i.e. not just once or a limited number of
times) we usually place our code inside an outer forever
loop. Fig. 5.1 shows a program that uses a forever loop to
continuously display the program’s running time in
seconds.

The while ... do loop

The while ... do loop will continuously execute the
commands contained in it as long as the specified test
condition remains true. If the test condition evaluates to
false the loop is exited and program execution continues
with the statement that immediately follows the while ...
do block. Fig. 5.2 shows an example in the form of a
simple egg timer.

41

5 Loops

forever

show number

Figure 5. 1 Code that display the time for which a program is running

do show string

show string It ”

forever

[running time (ms) :

Figure 5.2 A simple egg timer using a while ... do loop

In the code shown in Fig. 5.2, the first while ... do loop
tests the current value of running time. If this is less than
240000 (corresponding to an elapsed time of four minutes)
the expression evaluates to true. In that case, a ‘Wait’
message is continuously scrolled across the matrix display.

If the elapsed time exceeds 240000 the expression
evaluates to false and execution continues with the next
command which displays the ‘Eggs ready!’ message. Note
that the expression used in each of the test conditions must
be taken from the Logic code block library and not from
the Maths code block library. The reason for this is that the
test condition must evaluate to a Boolean logical
expression (i.e. either true or false) , not a numerical value.

42

Loops 5

The for ... do block

The for ... do block allows you to repeat a block of code a
predetermined number of times. The loop index is a
variable that keeps track of the number of times that the
loop has been executed. By default, the i is used for this
variable but you can change this to a variable of your
choice. You can set the number of times that the loop
executes by changing the value given (currently this
defaults to 4). Here’s an example that moves a point across
the matrix display, starting in the top-left and ending in the
bottom-right. Notice how one for ... do loop is nested
inside another. Each time the outer loop is executed the
inner loop is executed five times. The column number is
used as the index for the inner loop. Because it will help
you understand how loop nesting works it is well worth
testing this example for yourself.

forever

for ßEED from °to

do

Figure 5.3 Example of nested for ... do loops

43

5 Loops

The repeat ... do block

The repeat ... do block provides you with a very easy way
of repeating one or more code block commands. It simply
executes the snapped code the number of times specified.
The default number of times is currently four but you can
change this to any number that you require. The example
shown in Fig. 5.4 Hashes two characters on the LED matrix
display before scrolling a ‘Ready!’ message.

Figure 5.4 Using the repeat ... do block

Going further—a simple theft alarm

Our fourth mlcro:bit project provides you with a simple

method of protecting your property by generating an

alarm signal whenever it is moved. You could place this

gadget in a bag or suitcase or attach it to something more

valuable such as a computer or jewellery box. When the

44

Loops 5

protected device is moved the alarm will sound. The

application makes use of the micro:bit's built-in

accelerometer which is able to detect motion in all three

axes; x, y and z. In this case we are just going to use the y-

axis but since the movement can be positive or negative

with respect to the reference plane we must base our test

condition on the absolute value of acceleration rather

than its actual numerical value (which can be either

positive or negative). When acceleration exceeds the set

Figure 5.5 Code for the simple theft alarm

45

5 Loops

value (we chose 100 so as to make the device reasonably

sensitive) execution passes from the first while ... do loop

and a logic 1 (high) will be sent to a piezoelectric sounder

using the digital write code block. The code then waits in

the second while ... do loop until the user presses Button

A. When this happens the second loop exits and a logic 0

(low) is sent to the piezoelectric sounder. There is then a

short five second delay which allows the gadget to be

repositioned before execution resumes with the first

while ... do loop and thus re-arming the alarm.

The piezoelectric sounder is available from a number of

suppliers but must be a low-current type that emits

continuous sound and should be rated for operation from

a 3V input at a current of less than 5 mA. The sounder is

connected to the micro:bit with the positive lead taken to

Pin-0 and the negative connection taken to GND (see page

47).

For test purposes, connection can be made using

crocodile clips (as shown in Fig. 5.6) or by means of an

edge connector (as shown in Fig. 5.7). Edge connectors

are available from various sources (the one shown in Fig.

5.7 is from Kitronik). Note that the piezo sounder is

polarised and must be connected with the correct

polarity. Take care not to short circuit Pin-0 to GND or to

any of the micro:bit's other pins.

46

Loops 5

Figuré 5. 7 Using an edge connector with the micro:bit

47

5 Loops

Questions

1. What are the two states that a Boolean expression
can evaluate to?

2. In what units is micro:bit running time expressed?

3. Is it possible to nest one loop within the body of
another? Explain your answer.

4. In Fig. 5.8 what is the name of the variable used for
the loop index?

5. What does the code shown in Fig. 5.8 do and what is
the purpose of the empty while ... do block?

6. In Fig. 5.8 what are the first and last numerical
values displayed on the LED matrix?

Figure 5.8 See Questions 4, 5 and 6

48

6
Decisions

Why do we need to make decisions?

Humans make decisions every day. If the sun is shining we
might take a walk. If it looks like it might rain we might
pick up an umbrella. We mentally process many thousands
of such questions every day without even realising it.

Sometimes its easy to make a choice. Sometimes it can be
more difficult. For example, if we finish work early, and if
we have some spare cash, and if the pub’s open, and if it’s
not raining, we might decide to out for a drink. The
eventual outcome, whether to go out for a drink, depends
on a number of criteria being met. If any of them isn’t met
we just stay home and put our feet up!

Our micro:bit applications also need to make decisions
based on what’s going on at the time. We’ve already shown
how while ... do can execute code when a condition is met
(i.e. when a logical expression evaluates to true or false, as
required), now it’s time to look at a more complex
construct that will provide you with means of executing a
number of possible outcomes contained within a single
block.

The if ... do logic block

The if ... do logic block exists in a number of different
variants so we will start with the most simple of them in
which a condition is tested and, if it is found to be true, the

49

6 Decisions

enclosed code block (or blocks) will be executed. However,
if the condition evaluates to false none of the blocks will be
executed and execution simply moves on to the block of
code that follows the if ... do block.

A simple example of if ... do logic is shown in Fig. 6.1.
The code fragment tests the state of the Boolean value
triggered, and if this evaluates to true an appropriate
message is scrolled on the LED matrix display.

Configuring the if ... do logic block

To configure the if ... do logic block so that it can perform
more complex decisions you can click on the cog-shaped
icon shown at the top left of the code block. This will
provide you with two further options in the form of else if
and else that can be dragged and slotted into the if ... do
block, as shown in Fig. 6.2. When this is done the code
shown in the main editor window will be updated in order
to reflect and changes that you’ve made.

You now have some several new if ... do constructs to
play with, such as if ... do ... else and if ... do else if. The
examples that follow should help if this is sounding a little
complex.

The if ... do else logic block

The if ... do else loop will test a condition and, if it found
to be true, the enclosed statement (or statements) will be
executed (as before). However, if the condition is found to
be false the code positioned against else will be executed.
This will allow you test a condition and then execute one
section of code or another depending on the outcome.

50

Decisions 6

Figure 6. 1 Simple example ofif ... do logic

Figure 6.2 Configuring the if ... do logic block

Earlier in Chapter 3 we used an if ... do else code block in
a simple frost alarm that displays a Hashing warning on the
matrix LED display whenever the micro:bit’s temperature
falls below 2°C.

It is important to be aware that you can edit an if ... do else
block, adding any further conditions that you need to test
for or removing any conditions if you don’t need them.
Fig. 6.3 shows how multiple else if blocks can be added
before reaching the block’s final else statement. In practice
you can add as many else if blocks as you need.

51

6 Decisions

Figure 6.3 Building a more complex if ... do logic block

The if ... do else if else logic block

The final variant of the if ... do logic might sound
something of a mouthful but it allows you to test for
multiple conditions and execute different sections of code
according to the outcomes. The code shown in Fig. 6.4 is a
simple fridge alarm application that can be used to check
the temperature inside a fridge, displaying messages to
warn the owner if there’s a problem.

Testing Boolean conditions

You might have noticed that we’ve used the < (less than)
comparison in the code shown in Fig. 6.4. Usefully, the
Microsoft Block Editor provides you with several other
comparisons that can be selected from a drop-down list
that appears when you click on the small down arrow
inside the comparison operator box.

52

Decisions 6

The result of the Boolean comparison operation will be
either true or false and this, in turn, will determine the
action of the if ... do logic block (i.e. whether the do code
will be executed, or not). Table 6.1 summarises the six
available comparison operations.

Finally, the code in Fig. 6.5 provides you with an example
of using Boolean comparisons of two randomly generated
numbers, a and b. The program runs continuously with a
pause after each result is checked. The outcome of the
comparison appears as a text message that scrolls across
the LED matrix display. This message indicates whether
the first randomly generated number is greater than, less
than, or equal to the second randomly generated number.

elseif temperature (°C) 0

do show string : a ß3 »

else if

do

i else

Q

Figure 6.4 The micro: hit fridge alarm

53

6 Decisions

Symbol Meaning

= Is equal to

!= Is not equal to

< Is less than

> Is greater than

<= Is less than or equal to

>= Is greater than or equal to

Table 6. / Boolean comparison operators

re '• . - ||||gg|M
set ED to I P'ck random 0 to Q

set QQ to Pick random 0 to Q

o if rm QD m

show string do

else if

do

else

pause (ms) (¿£3

^show string <

^show string (

Figure 6.5 Example of making Boolean comparison operations

54

Decisions 6

Going further—a micro:bit direction finder

Our fifth micro:bit project is a simple direction finder that
will indicate the micro:bit's orientation using the cardinal
points of the compass; north (N), east (E), south (S) and
west (W). The project makes use of the micro:bit's built in
magnetometer and its LED matrix display.

The code for the micro:bit direction finder is shown in Fig.
6.6. The first logic block sets a variable, direction, to the
micro:bit's current compass heading. This will be a value
in the range 0 to 359°. The value obtained is then used in
the test conditions contained in a compound if ... do else if
else logic block.

The first Boolean comparison tests whether the value of
direction is either greater than or equal to 315° or less

Figure 6.6 The micro:bit direction finder

55

6 Decisions

than 45°. If the condition is found to be true the micro:bit
will display 'N' and then exit the logic block. The second
Boolean comparison tests whether the value of direction
is greater than or equal to 45° and less than 135°. If the
condition is found to be true the micro:bit will display 'E'
and then exit the logic block. The third Boolean
comparison tests whether the value of direction is greater
than or equal to 135° and less than 225°. If the condition
is found to be true the micro:bit will display 'S' and then
exit the logic block. There is no need for a fourth
comparison test because if the first three tests fail the
only remaining possibility is that direction has a value
between 225° and 315° in which case the display will
show 'W' and exit the logic block.

When first run, the magnetometer needs to be calibrated
and you will be prompted to calibrate the sensor by
moving the board around in a circle in order to illuminate
all of the LEDs around the periphery of the display, draw
a complete circle (see Fig. 6.7). When this process has
been completed the sensor will be ready for use. Note
that to obtain an accurate bearing you will need to hold
the board horizontally and keep it still for a few seconds.
Indications may be inaccurate when used in proximity to
magnets and ferromagnetic materials generally. Finally, it
is important to perform the initial calibration with the
intended power source connected (particularly if the
power source is the Mkpower board). This board is in very
close proximity to the sensor and can result in a constant
error if calibration is performed before the power board is
attached to the micro:bit.

56

Decisions 6

Figure 6. 7 Calibrating the micro:bit direction finder

Figure 6.8 Checking the direction finder against a compass

57

6 Decisions

Questions

1. What is the result of each of the following Boolean
comparisons when the values of variable a and b are
respectively 3 and 5?
(a) a = b (b) a > b (c) a < b (d)b>a
(e) b < a (f) a != b (g) b > a (h) a = a

2. What is the purpose of else within an if ... do else
logical block?

3. Is it possible to have more than one else if
statement within an if ... do else if logical block?

4. What is wrong with the code shown in Fig. 6.9 and
why does this code not execute correctly? Explain
your answer.

Figure 6. 9 See Question 4

58

7
Digital I/O

Which pins to use?
Digital I/O is extremely straightforward on the micro:bit
but the question of which of the digital I/O pins to use is a
tricky one. It might at first appear that there’s plenty of
pins to choose from but it’s important to remember that
many (indeed, most) of these are taken up with existing
functions, such as the LED matrix display or accelerometer
chips. In fact, there are only five inputs that can be used for
digital I/O without having to worry about the impact on
other micro:bit functions!

If you arc prepared to sacrifice the LED display then you
have six more possibilities; pins 3, 4, 6, 7, 9, and 10. In
addition, if you don’t need to make use of the two buttons
(Button A and Button B) two more pins become available,
pins 5 and I 1.

Since the SPI bus uses pins 13, 14, and 15 whilst l2C makes
use of pins 19 and 20. It is unwise to use any of these pins
if you plan to make use of these two bus standards. As a
result, the preferred digital I/O pins arc pins 8 and 16
closely followed by pins 0, 1 and 2.

The first three of these are brought out to large pads whilst
the remaining pair are available on the smaller pins and
must be accessed by means of a ready-made edge
connector such as those supplied by Kitronik and Utronix
(see Figs. 7. 1 and 7.2).

59

7 Digital 1/0

Figure 7.2 The Utronix micro:bit edge connector

60

Digital I/O 7

Connecting buttons and switches
It’s easy to connect an external button or a switch to the
micro:bit but it’s important to remember that, when the
switch is operated, the voltage change must be sufficient
for it to cause a change in logic level, from a 0 (low) to a 1
(high) and vice versa. A high state is normally taken to be
equivalent to a voltage of +3V (or near) whilst a low state
is a voltage of OV (or near).

In order to ensure that sufficient change takes place we use
pull-up or pull-down resistors, like those shown in Fig. 7.3.
Note that the micro:bit has internal pull-up and pull-down
resistors but, because we don’t want to forget that they are
there, we will duplicate them externally. Thus, in the
active-low input arrangement shown in (a), when the
normally open contacts of SI are closed the input state will
change from a logical 1 to logical 0. Conversely, in the

+3V

RI
10K

Digital input
(e.g. pin-8)

♦- GND

RI
10K

0V —

Digital input
(e.g. pin-8)

GND

(a) Active low input (b) Active high input

Figure 7.3 Connecting switches to the micro:hit 's digital inputs

61

7 Digital 1/0

active-high input arrangement shown in (b), when the
normally open contacts of SI are closed the input state will
change from a logical 0 to logical 1. Finally, it is important
to note that you should never exceed the nominal 3V
supply to these two circuits. Anything much more than 3V
will damage the micro:bit!

Connecting output devices
Output devices consist of LEDs, relays, motors, sounders,
etc. Unfortunately most of these require voltages and
currents that are well beyond the capability of the
micro:bit. Because of this some form of interface will be
required along with a power source that’s capable of
delivering the voltage and current required.

Output driver circuits
A typical LED driver circuit is shown in Fig. 7.4. This
circuit uses a MOSFET transistor operating as a switch,
conducting heavily when the gate voltage goes high. The
value of R2 sets the current flowing through the LED
(approximately 10mA with the value shown when
operating from 5V). Fig. 7.5 shows a typical relay driver.
The relay can be any miniature type suitable for operation
from a voltage of between 5 V and 12V. A typical 5 V relay
has a coil resistance of around 7OÍ2 and operates with a
current of about 70mA (well in excess of the micro:bit’s
capabilities!).

Note that, since both of these driver circuits require active
high inputs for the transistors to conduct (i.e. to switch
‘on’), a logic 1 (high) from the micro:bit is required to turn
the LED on or operate the relay.

62

Digital I/O 7

+5V to +12V

Figure 7.4 A typical MOSFET LED driver

+5V to +12V

Figure 7.5 A typical MOSFET relay driver

An alternative to constructing your own relay interface is
that of using a ready-made relay module. These are widely
available at low cost and are often designed for use with
Arduino or Raspberry Pi boards but can be used with the

To
controlled
circuit

63

7 Digital 1/0

micro:bit. Such boards are often compatible with both 3V
and 5V logic systems. Fig. 7.6 shows a two-channel relay
module that uses miniature changeover relays whilst Fig.
7.7 shows a two-channel solid-state relay module capable
of handling mains voltage loads of up to 500W.

Figure 7.6 A two-channel relay module

Figure 7.7 A two-channel solid-state relay module

64

Digital 1/0 7

Supplying power to interface circuits
One problematic feature of the micro:bit (at least as far as
the electronic enthusiast is concerned) is the absence of a
+5V pin on the board’s edge connector. This is a particular
concern when an interface circuit requires a 5V supply.
There are, however, a number of ways of overcoming this
problem, as shown in Fig. 7.8.

The arrangement shown in Fig. 7.8(d) derives its power
from a small low-cost USB battery and it is ideal for
projects that need additional interface circuitry. The 5V
output is invariably protected and regulated and the
capacity of the battery (typically 4500 mA/h, or more) is
sufficient to provide power for many hours of continuous
operation.

The dual outputs available from the USB battery make it
possible to deliver 5V to the micro:bit as well as a separate
5V supply to the interface. When using this arrangement it
is important to ensure that the edge connector GPIO
signals remain at 3V logic levels. Note also that some
‘automatic’ chargers will turn off when the current demand
placed on them is small. If that’s the case, it might be
necessary to place an additional resistive load across the
output. A 0.5W resistor of 68Q to 100Q will usually be
adequate for this purpose.

Extra pins can easily be added to the Kitronik micro:bit
edge connector in order to provide 5V and GND for an
interface module, as shown in Fig. 7.12 on page 69. These
pins can provide power for relay modules and other boards
that use 5V logic or need 5V to operate relays and other
devices. The example on page 69 shows how this is done.

65

7 Digital I/O

Mlipower board
/\ 3V with limited power for

external devices

cell
Bolted

together

External
devices

Ml:power
board

micro:bit

External 3V battery pack
B 3V with limited power for

external devices

2 X AA or Via DC input
2 X AAA cells connector

Host computer via USB
3V with limited power for
external devices

Host
computer

5V

microrbit
◄

External
devices

5V via USB Via micro USB
connector

USB battery pack (5V)
3V with limited power for
external devices

USB
battery
pack

5V
micro.bit

— ► External
devices

5V charger Via micro USB
output connector

Figure 7.8 Power options for external devices

66

Digital 1/0 7

Reading from and writing to digital I/O
Reading from a digital input is achieved using the digital
read pin logic block. The pin to be read is selected from the
drop-down list which provides you with the choice of
available uncommitted digital I/O pins.

Writing to a digital output is just as simple. The digital
write logic block allows you to output a logic 0 (low) or
logic 1 (high) to the pin of your choice. A simple example
of reading the state of an external button and writing to an
external LED is shown in Fig. 7.9. The corresponding
interface circuit is shown in Fig. 7.10 together with the
prototype breadboard layout in Fig. 7.1 1. The 5 V supply is
derived from additional pins fitted to the Kitronik edge
connector board (see page 69).

P16

forever

digital read pin (0,1)

o if

digital write (0,1) to pin I do

show string « o »

else digital write (0,1) Q to pin |

show string « o »

Figure 7.9 Example of nested digital read and digital write logic

67

7 Digital 1/0

Figure 7. 10 The button and LED interface circuit

Figure 7.1 1 The prototype board layout for the circuit in Fig. 7.10

68

Digital 1/0 7

Figure 7.12 Connections to the Kit ron ik edge connector (see page 60)

anode

Figure 7.13 Pin connections for TRI and DI

The pin connections for TRI and DI are shown in Fig.
7.13. If you build and test this simple interface you will
find that DI will become illuminated whenever SI pressed.

69

7 Digital I/O

Going further—a micro:bit intruder alarm

Our sixth micro:bit project takes the form of an intruder
alarm based on a closed loop which will normally
comprise a number of magnetic switches secured to doors
and windows. Once set, if the loop is broken, or if the
wiring is cut, the alarm will be triggered.

The circuit of the intruder alarm is shown in Fig. 7.14. The
inputs to the micro:bit are:

• pin-2 (a high state to set the alarm)

• pin-12 (a low state to indicate that the loop has
been cut or that the contacts have opened on one of
the magnetic switches).

Both of these inputs are at 3V logic levels.

The outputs from the micro:bit are:

• pin-16 (a high to show that the alarm has been set)

• pin-8 (a high to sound the alarm).

The set state is indicated using a green LED while the
triggered state is indicated using a red LED.

Current for the LEDs and the alarm sounder is derived
from a 5V supply using an arrangement similar to that
used in the previous example. If further outputs are
required in addition to the sounder a relay module (see
Fig. 7.7) can be incorporated into the alarm and its input
taken from the drain of TR2. This will permit a mains load,
such as security lighting or a siren, to be used.

70

Digital I/O 7

(a) Inputs

(b) Outputs

Figure 7.14 The intruder alarm circuit

Figure 7. /5 The intruder alarm code

71

7 Digital I/O

Questions

1. What voltage levels are used to represent the
micro:bit's logical states 0 and 1, respectively?

2. What voltage level is often used by many relay and
other small modules designed for use with
microcontrollers?

3. In Fig. 7.16, what logic state needs to be present at
pin-16 in order to operate the motor, Ml?

4. In Fig. 7.16, what logic state appears at pin-0 when
SI is pressed?

5. In Fig. 7.16, what is the purpose of:
(a) RI and (b) R2?

Figure 7.16 See questions 3, 4 and 5

72

8
Analogue I/O

What are analogue signals?
As you saw in the previous chapter, digital signals can only
exist in one of two discrete states (i.e. high and low or on
and off). Analogue signals, on the other hand, arc
continuously variable. In order to work with analogue
signals the micro:bit has a built-in analogue to digital
converter (ADC).

The micro:bit’s ADC accepts analogue inputs over the
range 0 to +3.3V and converts them to corresponding 10-
bit digital codes. This means that an analogue input of 0V
will be represented by a binary value of 0000000000 while
a value of approximately 3.3V will be represented by a
binary value of 1111111111 (corresponding to a range
from 0 to 1023 when expressed in decimal). Each
increment in output from the ADC corresponds to a change
of (3.3/1024) or approximately 32mV. This is the smallest
change in level that the micro:bit can recognise.

Using analog read
In order to read the analogue voltage present at one of the
microibit’s available analogue I/O pins (pin-0, pin-1 and
pin-2) Microsoft Block Editor provides you with the analog
read function. The value returned from the function can be
assigned to a variable of our choice. For example, input, as
shown in Fig. 8.1. Note that we also need to specify the
analogue pin that we are reading.

73

8 Analogue I/O

In order to test the code shown in Fig. 8.1 you can connect
a variable potentiometer (of lOkQ, or more) as shown in
Fig. 8.2(a) and Fig. 8.3. You will find that the microibit
will display a reading close to zero (it might actually read 1
or 2) at one extreme setting of the control and 1023 at the
other.

Figure 8. 1 Using the analog read pin code block

Rl
10k

(d)

Figure 8.2 Testing the micro:bit ’s analogue I/O

74

Analogue I/O 8

Figure 8.3 Connecting the potentiometer the micro:hit
The slider (yellow wire) is taken to the analogue input pin

Using analog write
In order to output an analogue voltage from one of the
micro:bit’s available I/O pins (pin-0, pin- 1 and pin-2)
Microsoft Code Blocks provides you with the analog write
function. The code shown in Fig.8.4 can be used together
with the circuit shown in Fig. 8.2(b) in order to output an
analogue voltage in the range OV to +3.3V. The mean
voltage at the output is determined by the value written to
the pin (5 11 in this case).

Notice that we just used the phrase ‘mean voltage’. This is
rather important because the micro:bit is not actually
capable to producing a true analogue output. Instead it

75

8 Analogue I/O

PO -

forever

analog write Hit to pin (Ull

Figure 8.4 Using analog write to output an analogue voltage

produces a digital waveform that is pulse width modulated
(PWM). The waveform has a constant amplitude
(approximately 3.3V) and a duty cycle that depends on the
data value that’s being written to the pin. A duty cycle of
100% (i.c. a continuous high state output) will result from
a data value of 1023 whilst a duty cycle of 0% (a
continuous low output) will result from a data value of 0. A
50% duty cycle (where the high and low times are
identical) will correspond to a data value of 512.

Fig. 8.5 shows the output waveform at pin-0 for a 30%
duty cycle (corresponding to a mean output of just over
IV) while the Fig. 8.6 shows the output waveform at pin-0
with a 70% duty cycle (corresponding to an output of
approximately 2.2V). In order to produce a more constant
voltage level (rather than a series of pulses) we can smooth
the output using a simple C-R low-pass filter, like that
shown in Fig. 8.2(c). Fig, 8.7 shows how this affects the
output waveform. Note that, in all cases, the output is at a
high-impedance level and, although the voltage will appear
reasonably accurate when measured using a digital
voltmeter or an oscilloscope, it will not be correct when a
low resistance load is present at the output.

76

Analogue I/O 8

Figure 8.5 Analogue output with 30% duty cycle

Figure 8.6 Analogue output with 70%> duty cycle

77

Figure 8. 7 Effect of the C-R low-pass filter in Fig. 8.2(c)

Reading and writing analogue data
You may sometimes find that you need to read and write
analogue data in the same application. For example, when
using a variable potentiometer to control the speed of a
small d.c. motor.

This can be easily done using code based on the example
shown in the Fig. 8.8. In this case we are using pin-0 for
analogue (PWM) output and pin- 1 for analogue input.

The code example shown in Fig. 8.8 can be quite
instructive. Using the arrangement shown in Fig. 8.2(d)
(and with a voltmeter connected to the output) you will find
that the output voltage level can be easily adjusted to any
desired voltage in the range OV to +3.3V.

78

Analogue I/O 8

do set QQ3QD *° analog read pin

forever

! analog set period fc KijMl | (micros) to pin |

Figure 8.8 Reading and writing analogue data

The analog set period block is used to configure the period
of the Pulse Width Modulation (PWM) on the specified
analogue pin (e.g. pin-0, pin-1 or pin-2).

Determining the input and output voltage
The micro:bit ADC input voltage can be calculated from:

J<n = input X
3.3

1023

Example

If a value of 795 is returned by the analog read pin
function, the corresponding voltage will be given by:

= 795 x — = 2.56V
1023

79

8 Analogue I/O

Where input is the variable returned from the analog read
pin code block. Note that input can take a value between 0
and 1023. In the analog write pin code block the data
value, output, to write to the ADC is given by:

Example

If an output of 0.5V is required, the data value to use will

be given by:

Where K„ut is the required mean output voltage. Note that
Kout can take a value between 0V and +3.3V.

1023
output - 0.5 X -- = 155

3.3

.z 1023
output

Going further—a micro:bit battery checker

Our seventh micro:bit project involves the construction of

a micro:bit battery checker. This handy gadget is designed

to test conventional 1.5V alkaline cells. In order to provide

you with a meaningful indication of the state of a cell it is

placed 'on-load'. In this condition, the measured voltage

will be in excess of 1.5V for a new battery falling to less

than 1.2V for a battery that is in imminent need of

replacement.

80

Analogue I/O 8

The circuit of the micro:bit battery checker is shown in Fig.
8.9. A 1N4148 diode, DI, is used to protect the micro:bit
against inadvertent reverse polarity while the resistor, RI,
provides the test load.

The value of RI (150, 0.5W) is chosen so as to demand a
current of typically between 30mA and 50mA from the
cell on test. After inserting the battery an appropriate text
message will be scrolled against the micro:bit's LED matrix
display.

The threshold ranges used in the if ... do ... else logic block
(see Fig. 8.10) were chosen so that they provide four
ranges of voltage:

• Greater than 1.5V: 'Good'
• Between 1.35V and 1.5V: 'Fair'
• Between 1.2V and 1.35V: 'Poor'
• Less than 1.2V: 'Bad'.

If you need to test other types of cell, for example NiCd or
NiMh batteries, the threshold values can be easily
changed.

The micro:bit battery checker interface can be a
assembled on a small piece of strip board, as shown in Fig.
8.11. The complete prototype on test is shown in Fig.
8.12. An AA cell-holder (which will accommodate both AA
and AAA batteries) can be connected to the strip board
using a small terminal block. In order to make cell
insertion and removal easier, the cell holder can be easily
modified by cutting away some of the plastic moulding.

81

8 Analogue I/O

Dl
1N4148

Figure 8.9 Circuit for the micro: bit battery checker interface

Figure 8.10 Code for the micro . bit battery checker

82

Analogue I/O 8

Figure 8.1 1 The strip board layout for the battery checker Interface

Figure 8.12 The completed prototype micro: bit battery checker

83

8 Analogue I/O

Questions

1. Which three micro:bit I/O pins can be used for
analogue input and output?

2. Expressed in bits, what is the resolution of the
micro:bit's ADC?

3. How many different analogue voltage levels can be
recognised by the micro:bit?

4. What is the smallest change in analogue voltage
that the micro:bit can detect?

5. Which code block allows you to read an analogue
voltage present at pin-1?

6. Can the micro:bit produce a true analogue output?
Explain your answer.

7. If a mean output voltage of 2.2V is required what
value needs to be written to one of the micro:bit's
analogue output pins?

84

9
Sensing temperature

Temperature sensors
Being able to sense and respond to changes in temperature
is an important requirement in many microcontroller
applications. Fortunately, temperature sensing is easy with
a range of popular low-cost three-pin TO92 packaged
temperature sensors like the TMP36 and LM35. These
devices are very easily interfaced to the micro:bit’s
analogue inputs, as we will sec later.

Both devices provide an analogue output that varies on a
linear basis at lOmV per degree Centigrade. However,
there’s a notable difference in the temperature range
covered and the scaling that needs to be applied when
converting raw data from these two sensors to temperature
output that can be displayed in °C on the micro:bit.

Using the TMP34, 35 and 36 sensors
The TMP34, 35 and 36 sensors are members of a family of
devices that together arc capable of operating over a
temperature range from ~40°C to +125°C with an accuracy
better than ±2°C and typically ±I°C at +25°C. Usefully,
each of the sensors in the TMP35 series produces an output
voltage that is linearly proportional to the Celsius
(centigrade) temperature, as illustrated by Fig. 9.1. All
three devices are available in low cost three-pin TO92
plastic packages.

85

9 Sensing temperature

The TMP35 series of sensors are intended for single-supply
operation from 2.7 V to 5.5 V and this makes them
eminently suitable for operation from the micro:bit’s on¬
board +3.3V supply. To avoid the risks associated with self
-heating the chip requires only a very small supply current
(well below 50pA). In conjunction with the low supply
voltage this ensures that the total internal power dissipation
is less than 200pW.

The TMP35 temperature sensor provides an output of 250
mV at 25°C and is suitable for sensing temperatures in the
range + 10°C to +I25°C. Other devices in the series arc
specified from —40°C to +125°C (TMP36) and +5°C to
+ 100°C (TMP37).

The TMP36 temperature sensor produces an output voltage
of 750 mV at +25°C whilst the TMP37 produces 500 mV
at the same temperature (see Fig. 9. 1).

To help you select the right sensor we’ve listed their
characteristics in Table 9.1. For most applications and to
indicate the widest range of temperatures, we would
recommend the TMP36 sensor.

Interfacing TMP35 sensors to the micro:bit
The interface to one of the mictro:bif s analogue inputs is
extremely simple and no other components arc required
apart from the temperature sensor itself.

Only three connections are needed; the +3.3V supply, the
analogue output from the interface, and a ground (GND)
connection. The pin connections for TMP35, TMP36 and
TMP37 temperature sensors are shown in Fig. 9.3.

86

Ou
tp
ut
 v
ol

ta
ge
 (
V)

Sensing temperature 9

Characteristic TMP35 TMP36 TMP37

Useful temperature range +10°Cto -40°Cto +5°Cto

+125°C +125°C +100°C

Output voltage at 25°C 250mV 750mV 500mV

Temperature characteristic 10mV/°C 10mV/°C 20mV/°C

Table 9. 1 TMP35 series specifications

Figure 9. 1 TMP35 series characteristics

87

9 Sensing temperature

Using the LM35 series of temperature sensors

The LM35 series of precision integrated-circuit
temperature sensors provides another simple solution to
temperature sensing with a micro:bit. Like the TMP35
scries that we’ve just mentioned, the output voltage from
the LM35 is linearly proportional to the centigrade
temperature.

At normal room temperature, accuracies of around ±0.25°C
can be achieved. Over the full -55°C to +I5O°C range the
accuracy is around ±1°C (comparable with the TMP35
series). The LM35 thus offer somewhat higher accuracy
than the TMP35 scries at normal room temperature but, for
many applications an accuracy of better than ±1°C is
perfectly adequate.

The LM35 scries of temperature sensors consume around
50 pA from a 3.3V supply and also exhibit very low self-
heating (less than 0. 1“C in still air). The LM35 is supplied
in various packages including a plastic TO-92 package.

Interfacing LM35 sensors to the micro:bit
As with the TMP35 series, interfacing an LM35
temperature sensor to the micro:bit is extremely simple
and, once again, only three connections are required;
+3.3V, GND and analogue output.

The pin connections for the TO92 packaged version of the
device arc the same as those for the TMP35 (see Fig. 9.3).

88

Sensing temperature 9
+5V +3.3V

TMP36

GND GND

Out
» Pin-0 Pin-8

To
controlled
circuit

(c) TMP36 greenhouse controller

Figure 9.2 Circuit of the micro:bit thermometer/thermostat

Going further—a micro:bit thermometer and
thermostat
To put all of this into context our eighth project involves
the construction of a micro:bit digital thermometer and
thermostat. Fig. 9. 2 shows how a TMP36 sensor can be
very easily interfaced to the micro:bit. The two lOOnF
capacitors shown in Fig. 9.3 help to reduce noise which
may be a problem in some environments, particularly
where stray RF signals are present and when long
connecting leads are used. The arrangement shown in Fig.
9.2 will provide indications over a temperature range

89

9 Sensing temperature

Vs GND
VoUT

Figure 9.3 The temperature sensor is mounted on strip hoard

extending from -20°C to +100°C with an accuracy of
around ±1°C. The analogue output voltage from the
TMP36 is connected to pin-0 on the micro.bit.

The temperature sensor is mounted on a small piece of
perforated strip board, as shown in Fig. 9.3. This board is
linked to the micro:bit by means of flying leads or a short
length of three-core cable.

The code for the micro:bit thermometer is shown in Fig.
9.6. Note that we've have used the powerful map code
block (available from the Pins library) to convert the
analogue voltage from the TMP36 sensor to provide an
indication in centigrade. The map function saves a great
deal of awkward calculation!

The basic thermometer project can be easily extended to
increase its functionality. For example, a relay module can

90

Sensing temperature 9

Figure 9.4 The completed micro:bit thermometer

Figure 9.5 The micro:bit frost thermostat

91

9 Sensing temperature

Figure 9.6 Code for the micro: bit thermometer

PO ’

-20

100

Figure 9. 7 Code for the micro:bit frost thermostat

forever

analog read pin|

set (EuHZEIED t0

show number C2¡TEE2IZ3D

digital write (0,1) •n to pin I ; do

else digital write (0,1) (ij to pin (

map

from low

from high

to low

to high

sensor -

124

4M

92

Sensing temperature 9

be added (see pages 62 to 64) so that the circuit will
provide thermostatic control for a frost heater. The code
shown in Fig. 9.7 takes pin-8 high in order to switch a relay
module supplying power to a water pipe heater.

A further refinement is shown in Fig. 9.2(c) and it uses a
two-channel relay module. The corresponding code

Figure 9.8 Code for the micro:bit greenhouse controller

93

9 Sensing temperature

appears in Fig. 9.8. The code is designed to maintain the
temperature in a greenhouse within a fixed range (15°C to
30°C) and it provides two digital outputs (pin-8 and pin-
16) and two pre-set temperature thresholds. Pin-8 will go
high for temperatures below 15°C and pin-16 will go high
for temperatures above 30°C. In the first case the relay
will operate and supply power to a heater while in the
second case relay will operate and supply power to open a
vent or operate a fan.

Note that the code assumes that the relay module is
activated when its input goes high. This was the case with
the circuit described in Fig. 7.5 on page 63 but if the
module is active low the code will need to have the 0 and
1 states interchanged in the digital write code blocks.

Questions

1. An analogue temperature sensor has a linear
characteristic with an output that increases at the
rate of 10mV/°C. If the output is 250mV at 0°C what
will the temperature be when the output is 650mV?

2. Which of the three sensors shown in Fig. 9.1 is best
for use at low temperatures?

3. The map function maps a variable from one range of
values to another range of values. How are these
range specified in a code block?

4. What typical accuracy can you expect from (a) a
TMP35 sensor and (b) an LM35 sensor?

94

_ 10
Sensing motion

Passive infra-red motion sensing
In conjunction with some form of alarm or lighting system,
PIR motion sensing is an excellent application for a
micro:bit. To further simplify matters, low-cost PIR
sensors arc widely available and they require minimal
interfacing (just a +5V supply and a digital input on the
microcontroller). Depending on positioning (see Fig. 10.1)
a typical PIR motion sensor will be sufficient for a room
size of about 16 m2. This is ample for most domestic
situations as well as smaller commercial properties.

PIR sensor

Figure 10.1 Typical mounting position for a PIR sensor

95

10 Sensing motion

The PIR detection range depends on a number of factors,
including the size and speed of the target object and its
angular position relative to the sensor. It is therefore a little
difficult to predict the exact range of any particular
installation.

A typical low-cost PIR module is shown (with the PIR
sensor chip exposed) in Fig. 10.2. In use, the sensor is
covered with a lens (see Fig. 10.3). This not only helps to
increase the angular response but also divides the coverage
into sectors through which a target moves. The PIR sensor
module can be connected to a micro:bit via an edge
connector and one of the analogue input pins together with
+5V and GND (sec Fig. 10.5).

Before connecting a PIR sensor to your micro:bit it is
worth testing the PIR sensor using a single LED, as shown
in Fig. 10.5. The LED will become illuminated when the
sensor has been triggered. You will then be able to make
adjustments to assess working range and obtain optimum
performance from the sensor.

Adjustments
After a moving target has been detected, the output from
the PIR sensor module will go high for a period determined
by the time adjustment pre-set control (see Fig. 10.4). This
will hold the output high over a range extending from about
I second (min.) to about 20 seconds (max.). Note that,
when single trigger operation has been selected, there is a
delay of about one second before the output changes from a
low to a high. The remaining pre-set potentiometer
provides sensitivity adjustment over a typical target range
extending from about Im to a maximum of about 5m.

96

Sensing motion 10

Figure 10.2 The low-cost PIR sensor with lens cover removed

Figure 10.3 The low-cost PIR sensor with lens cover fitted

97

10 Sensing motion

Trigger options
The low-cost PIR sensor may be configured for two
different trigger modes. The desired mode can be selected
by means of the link at the extreme left corner of the board
shown in Fig. 10.4. The trigger mode can be set for either
single triggering or for continuous retriggering. In the
former (single trigger) mode the output from the PIR
sensor will turn on and off as a target moves through its
field of view. In the continuous retriggering mode, the
output from the PIR sensor will continue to remain in the

Figure 10.4 Rear of the PIR sensor showing the trigger link (left)
together with the sensitivity (centre-left) and time (centre-right) pre-set

adjustments. The three pins at the rear are (left to right) ground,
output and positive supply

98

Sensing motion 10

high state for as long as motion is detected. In this mode
the output from the sensor will remain high for as long as
the target is within range and is moving.

Going further—a PIR motion alarm
Our final micro:bit project is a simple PIR motion alarm.
The unit uses a low-cost PIR sensor together with a relay
module in order to operate a sounder or security light.

The complete circuit of the micro:bit PIR motion alarm is
shown in Fig. 10.5. We've included RI and DI so that the
PIR can be tested (as mentioned earlier). The output from
the PIR sensor is connected to pin-0 on the micro:bit. The
output to the relay module is taken from pin-1.

You should find that the LED, DI, becomes illuminated
and the relay operated when you pass your hand over the
PIR module. Having confirmed that the PIR motion alarm
is working, the next step is to install the PIR sensor in its
final location. This will require an appropriate length of
miniature three-core cable.

Connections from the micro:bit to the relay module can
make use of the header pins (for input) and the miniature
terminal blocks (for output).

When the alarm has been set, and the unit is ready to
detect motion, an 'S' will appear on the micro:bit display.
When motion is detected, and the alarm has been
triggered, a T will appear on the display. To reset the
alarm you will need to press Button A on the micro:bit.

99

3
Using the LED display

How does the LED display work?

In Chapter 2 we made use of the micro:bit’s in-built LED
matrix to display the output from our dice application.
Despite its obvious simplicity, the LED matrix is quite
versatile and will do a lot more than just display numbers.
One of the most useful features is the ability to scroll
simple text messages. For example, ‘Press any button to
start’, ‘Alarm set’ or ‘Frost warning!’.

The example shown in Fig. 3.1 shows how the show string
and show number functions can be used to display text
strings and numbers respectively. The application displays
a short text message and then counts from I to 10. Notice
how single digit numbers don’t scroll while larger numbers

Figure 3.1 Using the show string ««¿/show number functions

25

