
Babani Computer Books

Fun Web pages
with JavaScript

- I

r. J. Shelley

, ,4 : .

4 .-,
. 1 1. V 4, I , '

sr°../
. * ,P, k ;Id- . t f . . 0 ' ' 4: t. ir

. ittilt ._,_, .ei 1.4 t :4.1'. x 7'1 4',44 ,t,....:- .4' :.'ti'A.1:1,-,,, i. , ,,,!'''t ''' 111., , 0 -co ' . . A...', -, -,_ , , :4-1,,,,,; ., ., 4 i '''., . V. ; . .,.«-

..,, . , .40
- .: .k

46,01. 'II ri 1.

- 4 .., ,

- ,

Fun Web pages

with

JavaScript

Other Titles of Interest
BP403 The Internet and the World Wide Web

explained

BP404 How to create pages for the Web using
HTML

BP415 Using Netscape on the Internet

BP419 Using Microsoft Explorer on the Internet

BP420 E -Mail on the Internet

BP424 Microsoft Exchange for business and
home use

BP425 Microsoft Internet Explore' Assistant

BP427 Netscape Internet Navigator Assistant

BP433 Your Own Web Site on the Internet

BP435 Programming in C++

BP436 Programming in Java

BP441 Creating Web Pages Using Microsoft
Office 97

BP453 How to search the World Wide Web
efficiently

Fun Web pages
with

JavaScript

by

John Shelley

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
_ONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of
this book to ensure that any projects, designs,
modifications and/or programs, etc., contained herewith,
operate in a correct and safe manner and also that any
components specified are normally available in Great
Britain, the Publishers and Author(s) do not accept
responsibility in any way for the failure (including fault in
design) of any project, design, modification or program to
work correctly or to cause damage to any equipment that
it may be connected to or used in conjunction with, or in
respect of any other damage or injury that may be so
caused, nor do the Publishers accept responsibility in any
way for the failure to obtain specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home -built equipment then that warranty may be void.

© 2000 BERNARD BABANI (publishing) LTD

First Published - March 2000

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 85934 483 5

Cover Design by Gregor Arthur

Printed and Bound in Great Britain by The Guernsey Press

iv

Preface
It is a truism to say that one learns by one's own
mistakes. During some thirty years of having to learn,
use and teach programming to thousands of students,
this is something with which I wholeheartedly agree. Of
course, it applies to many walks of life and no: just
computing. Just thick of how you managed to pass
your driving test, capture that cirl or boy of your
dreams, cook a 'perfect' Yorkshire pudding?

As an author of a programming text, just what does one
include? Well, I am reminded of what one of my
College lecturers once said. One day he bounced into
the lecture hall claiming to know a secret.

"A lecturer passes through three stages. During the
first he teaches everything he knows about a
subject. During the second he teaches all hat he did
riot know during his first stage. Finally, and this is
when he is of greatest value to his students. he
teaches what they need to know."

The lecturer was Charles Davis who mace quite a
splash in the newspapers back in December, 1966.
especially in the Sunday Telegraph. He taught
Theology.

I am none too sure that one should say that about
Theology. but it is certainly apposite for Computing.

I have aspired to this approach. as best I can. by
working from practical examples. There are some 39
exercises. Each one is followed by an examination and
discussion abou: the JavaScript used. As one
progresses through the examples, one should build up
a practical, working knowledge of how to use the
language.

Finally, there are two qualities one needs to have in
order to master the skill or art or craft (take your pick)
of programming. One is "attention to detail" - dotting
the i's and crossing the t's. You will very quickly know
what this means once you start to write your own
programs.

The second is logical thinking. Getting things done at
the right time and in the right order. Both are
maddeningly difficult to achieve. But persevere
because on your journey, Lady Programming will
bestow upon you a rare gift, one which is sadly lacking
in our times - humility.

Only those who truly know themselves can be humble -
meek. After all, are they not the ones tc inherit the
earth rather than the wind?

Well that is enough of that. Now let's get dcwn to some
other business.

I would like to thank Mari -Elena Shelley for the helpful
comments she made whilst this text was in progress. I

would also like to thank the originators of JavaScript in
all its versions for their imaginative construction of the
syntax. They certainly know how to present a

challenge. CD

There are various Tests set at the end of most
chapters. I would encourage you to try them since they
are designed to emphasise certain material. There are
Answers to the Tests at the back of the book which
occasionally provide some additional points not raised
in the Chapters.

vi

About the Author
John Shelley took his postgraduate Diploma and, later,
his Masters degree n Computing at Imperial College,
London, where he has worked as a lecturer in the Centre
for Computing Services for over thirty years, providing
training in programming, operating systems, Web design,
HTML and a wide range of application packages to both
students and staff.

He has been Chief Examiner in Computer Studies since
1982 for the Oxford Local Delegacy for their GCE 0-evel
examiiations, Senior Examiner for the SEG GCSE
Computer Studies (now both defunct) and a Principal
Examiner for the Cambridge Board (UCLES).

He has written over fourteen other books on computing.
This is his latest text which he hopes will prove useful to
those who wish to learn JavaScript.

vii

Trademarks
Microsoft, MS-DOS, Internet Assistant, Internet Explorer are
registered trademarks of Microsoft Corporation. PhotoShop is the
trademark of Adobe. AskJeeves is the service mark of AskJeeves.
Inc. Java is a trademark of Sun Microsystems.

All other trademarks are the registered and legally protected
trademarks of the companies who make the products. There is no
intent to use the trademarks generically and readers should
investigate ownership of a trademark before using it for any
purpose.

I also acknowledge the following where Netscape pages are
shown:

"Copyright 1998 Netscape Communications Corp. Used with
permission. All Rights Reserved. This electronic file or page may
not be reprinted or copied without the express written permission of
Netscape."

"Netscape Communications Corporation has not authorized.
sponsored, or endorsed, or approved this publication and is not
responsible for its content. Netscape and the Netscape
Communications Corporate Logos, are trademarks and trade
names of Netscape Communications Corporation. All other product
names and/or logos are trademarks of their respective owners."

Similar acknowledgements apply to all other screen shots.

0 The artwork of the Great Crested Geek bird is the copyright of
the Author but I am open to offers.

viii

Contents

Introduction 1

What is JavaScript? 1

Why Learn JavaScrpt 1

JavaScript is not Java 2
What is covered in this text 3
Client -side v. Server -side 4
Versions of JavaScript 5
Object -Orientated Programming (OOP) 6

1: What does JavaScript look like? 9

Writing out Messages 9
Should semi -colons be used or not? 14

Exercises 1 - 3

2: Forms and Pop -Up Boxes 25
User Interaction 25
Using onClick 26
Concatenate 32
Some Horrors 33
Other Pop -Up boxes 35
Exercises 4 - 6

3: Functions 39
Prompt box 44
Capturing Data from the Prompt box 45
Confirm box 47
Built-in Functions or Methods? 48
Rules for creating Variable Names 50
Exercises 7 - 9

4: Arguments in Functions 55
The Math object & Math.sqrt() 57
Objects - Methods - Properties 58
eval() 62
Exercises 10 - 11

ix

5: Arithmetic in JavaScript 67
Math.round() 67
Dummy Arguments 68
Arithmetic & Computers 71
The eval() method again 72
Exercises 12 - 13

6: Using JavaScript with Images 79
Swapping Images 82
onMouseOver & onMouseOut 82
Exercises 14 - 16

7: Creating dynamic Web pages 89
window.open() 90, 93
Summary so far 101
Escape sequences 102
Exercises 17 - 19

8: Programming with JavaScript 103
Programming features 104
1. Data 104
1.1 Data Types 104
1.2 Variables - Storing Data 105
1.3 Operators - Working with Data 107
1.4 Expressions 108

2. Input & Output of Data 109
3. Making Decisions 110

if - else statement 110
4. Repetition 115
Increment & Decrement operators 117
Exercise 20

9: Calculator Example 123
Math.pow() 126
NEGATIVE_INFINITY & POSITIVE_INFINITY 127
isNaN() 127
The return statement 128
Exercise 21

x

10: Working with Time 129
The Date object 129
Methods of the Date object 129
setTime() 139, 141
Date.parse() 139, 141
Exercises 22 - 25

11: Form Validation 147
onChange event handler 149
The focus() method 150
The onLoad event handler 151

The submit() method 153
The onSubmit event handler 156
The return statement in detail 159
Difference between submit() & onSubmit 460
Summary of Events & Methods , 67
Exercises 26 - 30

12: Further Form Validation techniques 169
this operator 171
index0f0 method 173
The String() object 173
The length property 176
The onFocus event handler 181
Exercises 31 - 35

13: Animating Images 191

The Image object 192
Pre -loading images 193
Arrays 194
setTimeout() & clearTimeout() 197, 201
Exercise 36

14: Further programming statements 205
Loop statements . 205
while statement 205
do -while 207
break statement 207
continue statement 208
else if 209

xi

The conditional operator 209
The switch statement 210
A few really weird things 211
The let's do nothing statement 214
Summary of JavaScript statements 215
The onAbort event handler 217
The onReset event handler 217

15: Objects and their properties & methods 219
What are objects? 220
Event handlers 223
Objects in Client -side JavaScript 224
The window object 224
Summary of Objects -Methods -Properties 226
The history Object 229
The location Object 230
The navigator Object 230

16: GIF - JPEG - TIFF Images 233
Speed v. Size of a Web Image File 233
Scanning images 234
TIFF, JPEG & GIF image formats 234
PNG 236
LZW - GIF's compression technique 236
JPEG compression 237
GIF v. JPEG 237
Interlacing with GIF files 238
Dithering 240
Transparency 241

17: Cookies 243
Creating and retrieving cookies 243
Cookie attributes 245
substring() method 250
lastModified property 255
escape() & unescape() 256
Cookie limitation 258
JavaScript Security 259
Exercises 37- 39

xii

18: Answers to Tests 261

Test 1: - Test 14 261

Glossary 291

Bibliography & Webllography 297

Index 299

xiv

Introduction

What is JavaScript?
JavaScript was developed by Netscape as a simple
programming language to be used for enhancing Web
pages. It was originally called LiveScript, but due tc the
growing popularity of the Java language, it was called
JavaScript on its re ease and was ircluded in Netscape
Navigator 2.0. Subsequent releases of Navigator provided
improved and extended versions of JavaScript. JavaScript
programs can run on all major browsers. In this text, all

programs have been tested on both Netscape and Internet
Explorer versions 4.

Microsoft brought out their own implementatior of
JavaScript, officially known as JScript. Fortunately, both are
more or less compatible. So all programs in this text will run
on either of the two major browsers.

Why Learn JavaScript?
A plain Web page using just HTML tags will be displayed by
a browser in exactly the same way each time that page is
loaded. It cannot change. But by adding JavaScript to that
Web page, it is possible to make changes to the page.
Suppose we have a ccnventional Web page which contains
an tag. That image will be displayed in exactly the
same way each time the page is loaded. But with
JavaScript. we could change the image when a user
passes a mouse over the image and change it back to the
original when a user moves the mouse to some other part
of the page. That is, in part, what is meant by enhancing
Web pages.

Here are some of the other things JavaScript programs
allow us to do:

you can create pop-up boxes to provide crucial
information to a user

via a cookie, inform a user that the page has changed
since it was last viewed
create simple animation
invite the user to choose the colour for the Web page
background
compute the cost of items being ordered by a user and
then display the result
determine the age of a user provided he/she enters a
date of birth
include the current date and time each time the page is
loaded
display different content according to which browser is
being used
change the colour of image buttons
open new document pages and control their size and
content
interact with users by getting them to click various
FORM buttons
validate the entry of data typed into FORMs before
sending the information back to the server

The following is more technical. If you wish, you can
move on to the next Chapter to see what JavaScript
looks like and return to the following at a later stage.

JavaScript is not Java
Many people confuse JavaScript with Java but they are
different. Although they are both related, their connection is
somewhat frail. Java is the product of Sun Microsystems,
whereas JavaScript is the product of Netscape. In fact, as
mentioned above, it was not even called JavaScript to
begin with but LiveScript.

Java is a general purpose programming language in the
sense that programs can be written to perform almost any
task that can be programmed. It was originally used to write
programs to control washing machines and the like. But
Java cannot be used to control Web pages.

2

Although JavaScript can also be used as a general purpose
language, one of its main attractions is that it pan work
directly with Web pages using the HTML <SCRIPT> tags,
something Java cannot do. In this way, JavaScript can be
placed in our Web pages, whereas Java cannot.

Web browsers, such as Netscape and Internet Explorer
(1E), recognise JavaSc-ipt and can interpret what has to be
done, but they cannot recognise Java.

What is Covered in this text
There are three ways of using JavaScript:

purely as a programming language
as a client -side programming language
as a server -side programming language

Not many people would use JavaScript purely as a
programming language. They would use one of the
standard languages such as Java, C or C++. We shall look
at the programming aspects of JavaScript, but it is not the
main purpose of this text.

So that leaves client -side versus server -side JavaScript.
The JavaScript language has been given some additions
which enable it to manipulate the browser, for example, to
swap one image or another or to look at and validate
something a user has typed into a text box. This is called
client -side JavaScript where client refers to the browser.

Netscape has also extended JavaScript for working with
Web servers, those computers which store Web pages at
given sites and which pan pass them over the Internet to
other servers requesting copies. These extensions are
referred to as server -side JavaScript and are not the same
as client -side JavaScript.

To work with server -side JavaScript, one needs a

knowledge of not on y Java but also of the server being
used. This is beyond the scope of this or, indeed, of many
texts since the servers and the systems they run on are

3

frequently far too server dependent. This aspect of
JavaScript is really for systems programmers. The problem
gets worse because Netscape and Microsoft have different
techniques for writing server -side programs.

So, in this book, we shall be looking at the programming
and the client -side features of JavaScript. We begin by
assuming absolutely no knowledge of JavaScript. But by
the end of the book, you will have learnt sufficient to enable
you to become competent Web designers. We shall work
from examples of what can be done, look at the program
instructions which generated the example and explain how
the program works. Gradually, we shall build up a working
knowledge of JavaScript.

Client -side v. Server -side

Client -side
Browser - Netscape or Internet Explorer

1 Request
for Web page

2. Web
page with
Form
returned.

3. Form filled
in with errors.

4. User
informed
of errors.

5. Errors
corrected
and re-
submitted,
etc ...

Server -side: WWW server

The client is the browser program resident on our home
and office PCs. Typically, a user wanting a Web page types
in the address in the browser's location/address box.

4

The browser now requests, over the Internet, a copy of the
desired page from the site holding the page - step 1 above.
This site now acts as a service provider (a server) and will
submit the page to The client end - step 2. Assume this
page has a form which the user has to fill in.

Having filled in the 1om, and let us suppose it contains
errors, the browser has to send it back to the server - step
3. The server now 1 --as to validate the form's data and if
errors are found, inform the client (brcwser) - step 4. The
user reads the error messages, fills in the form again and
re -submits the form - step 5. The server has to validate
again; etc.,etc.

It takes time for the client to send forms to the server, and
for the server to check and return error messages.
However, if the validation of a form can take place at the
client -side, it is clear that the whole process will be faster.
There should be a need for only one submission, namely,
once the form is found to be correct.

Form validation at the client end is one of the main
attractions of JavaScript. JavaScript can be processed by
the browser. There is no need for the constant to-ing and
fro-ing between client and server. It involves only two trips
over the Internet rater than at least five in the above
scenario, reducing the amount of Internet use. With the
increasing use of the WWW, it makes sense to rely on
JavaScript for client -site processing of data.

Versions of JavaScript
JavaScript is evolving all the time. At the time of writing, the
latest version is JavaScript 1.2 and is supported by the two
main browsers. Although version 1.3 is available, it is not
fully supported by ECMA-262. What is ECMA-262?

JavaScript has been standardised by the European
Computer Manufacturers Association (ECMA) and is sat to
be standardised by the International Standards
Organisation (ISO). The relevant standards are ECMA-262

and in due course ISO -10262. These standards define the
language officially known as ECMAScript. It favours neither
Netscape's JavaScript nor Microsoft's JScript.

This is good news, since both Netscape and Microsoft have
sufficient tweaks (extensions) in their separate versions to
cause problems for the likes of us. All we want to do is to
write standard JavaScript which will perform identically on
any browser. At the time of writing, JavaScript 1.3, as
developed by Netscape, is not yet fully ECMA-262
compliant.

So, in this book we look at JavaScript 1.2 which works for
Netscape Communicator version 3+ and Internet Explorer
version 4+. We do not enter into discussions about what is
JavaScript 1.0 or 1.1 since by the time you start writing your
JavaScript, it will be safe to assume that your readers will
have one or the other of the later versions of the main
browsers.

Object -Oriented Programming (OOP)
Amongst the JavaScript community, there is a division of
opinion as to whether JavaScript is an object -oriented or an
object -based language. Many regard it as the latter, others
claim it has object oriented capabilities. But we shall not
become embroiled in the argument, at least not until we
have the chance to see what objects are all about (see
Chapter 15).

OOP languages, such as C++ and Java, are the latest rage,
designed to make the construction of large programs
easier. But even this is not agreed on by all programmers.
So, if the experts cannot agree, why should we try at this
early stage? Let us keep an open mind. The main point is
that JavaScript programs work with objects and by the end
of the book, you will know all there is to know about OOP.

It may be encouraging to point out that people who have
never programmed before often find OOP languages easier

6

to understand than the more traditional ones sucl- as
Fortran, Cobol or C.

How to Use this Text
In general, each section will begin with an example
illustrating something we may want to do using JavaScript.
The JavaScript code, that is the program instructions, is
then listed and the code explained so that you can
understand the varicus features used. You may wisi to
experiment by making slight alterations to the original code
to suit your own requirements. As we progress, we shall
gradually build up a wo-king knowledge of JavaScript.

Unhappily, a complete JavaScript reference is beyond the
scope of this text. As an example, one of the references
given in the Bibliography, devotes some 300 pages alone,
out of 800, to an alphabetical listing of the features of
JavaScript. It contains little explanation and few examples.
What we are attempting in this text, is to provide a fairly
comprehensive coverage which will supply much of what
many Web page des giers use on an everyday basis. It is
after this has been digested that such reference material
will become meaningful.

When you run your owl JavaScript code, you should run it
on both Netscape and Internet Explorer. You may become
frustrated, as I and ma -1y others before you have, in that it
works fine on one browser, but not on the other. I found that
my version of Netscaoe (4.5) gave no .ndication as to why
something did not work. It simply failed to do what I was
hoping it would do. However, Internet Explorer popped up a
little error box, indicating the line number and some vague
error message as to why it failed. At least :hat was
something. You may wish to use IE i rst and once your
JavaScript is correct, run it on Netscape and keep your
fingers crossed.

7

Jargon
client -side: the client is the browser being used by a user on
his/her personal computer - and is referred to as the client -

side

code: a term used for JavaScript program instructions

ECMA: European Computer Manufacturers Association

ISO: International Standards Organisation

Java: an OOP language not to be confused with JavaScript

JScript: Microsoft's implementation o` JavaScript and
compatible with Netscape's version

OOP: object -oriented programming, supposed to make the
writing of large programs easier

server -side: refers to the WWW server, the site holding the
Web pages a user wishes to view. Programs can be written
so that the server can process data which a user has typed
into a form and which has been sent back. For example, to
look in a database held on the server to find details about
the client's credit worthiness, etc.

8

What Does JavaScript Look Like?

In this section, we shall look at a simple example, namely,
how to get JavaScript to write out a few words on a Web
page. This will introduce us to the way JavaScript programs
are written.

Exercise 1: Getting JavaScript to write out a Message.

t5 Witte out a simple message - Netscape pwr-
file Edit View ao Communicator Help

Using JS to write out a message

This is the first piece of JavaScript I have written.

Simple-Write-EXl.htm

<HEAD>
<TITLE>Write out a simple message.</TITLE>
</HEAD>

<BODY>
<H3>Using JS to write out a message </H3>

<SCRIPT LANGUAGE="JavaScript1.2"
document.writeln("This is the first piece of
JavaScript I have written.")
</SCRIPT>

<ADDRESS> Simple-Write-EXl.htm </ADDRESS>
</BODY>

Notes:
1. Everything is standard HTML except for the pair of
<SCRIPT> ... </SCRIPT> tags and what they contain. The
first thing to notice is that JavaScript code is enclosed in a
pair of <SCRIPT> tags:

9

<SCRIPT LANGUAGE="JavaScript1.2"
.. our JavaScript code

(frequently called a 'script')
</SCRIPT>

This tag can take the LANGUAGE attribute to specify which
version of JavaScript is being used. Note that the attribute
value (JavaScript1.2) is enclosed in double quotes and that
there is no space between the version number and
JavaScript.

You can use the default value of just "JavaScript", in which
case Navigator 2.0 will infer version 1.0 of JavaScript. Later
versions will infer version 1.1. If you wish to use features
specific to JavaScript version 1.2, then it must be included
as shown above. In this text, we frequently use
LANGUAGE= "Javasct ipt " or omit it altogether.

2. You can have more than one pair of SCRIPT tags and
they can be placed within the <HEAD> or the <BODY> of
the web document. However, the browser will execute the
scripts in the order in which they are placed in the HTML
source code. We shall see the impact of this in later
examples. In the above code, the content between the
HTML <H3> tags will be displayed first, secondly the script
code and finally the <ADDRESS> to show the following:

Using JavaScript to write out a message

This is the first piece of JavaScript I have written.

Simple-Write-EX1.htm

However, if the SCRIPT tags were placed the HEAD or,
indeed, between the HEAD and the BODY, or even before
the <H3> tag in the BODY, the script message would then
come before the H3 heading!

10

This is the first piece of JavaScript I have written.

Using JavaScript to write out a message

Simple-Write-EX1.htn1

It is important to place script code in the correct position
within an HTML document just as we have to do w'th <IrAG>
tags, <FORM> tags and so on.

3. Let us now look at the actual JavaScript code which
consists of just one instruction:
document.writeln("Tnis is the first piece of

JavaScript I have written.")

JavaScript works with objects. At the heart of object -based
and object -oriented programming languages, such as Java.
Visual Basic, C++ and JavaScript. lie objects. These are
the basic 'things' programmers work with. Objects have
properties and methods and, if you are like me wrien I first
began to learn JavaScript, this is where you begin to
wonder if you ought to quit.

At the beginning, I felt I had to understand these terms
before I could contini..e. But it was only by using them that I
gradually began to appreciate what they meant. So do not
give up yet! As we progress and look at JavaScript in more
detail, these strange terms will become clearer. For the
masochists amongst you, you can have a quick looK at
Chapter 15. where These terms are discussed in some
detail. For the moment we shall have to accept the jargon.
So. here it goes.

The word document is one of many JavaScript objects we
can manipulate. It simply refers to the Web page currently
being displayed. We want to do something to the current
web document (the currently displayed page). Bar. what do
we want to do to this page?

11

That is the purpose of the second word 'writeln'
(pronounced `write line'). It is called a method. Most objects
have one or more methods. They specify what we want to
do to an object.

Right now, we want to write a message in the current Web
page. So, we need to refer to the document object and use
its write method. It is really a built-in procram (called a
function) which does something to its object, in this case 'to
write a line of text to the web document'. Note that the
JavaScript syntax requires a period (full stop) between the
object and its method: object .method

But what do we want to write out? That is what we place
inside the brackets in double quotes. We can now interpret
this line of code as follows:

"In the currently displayed document - Write out the phrase -

'This is the first piece of JavaScript I have written'."

The message in double quotes is more formally called an
argument. In this example, the argument is included in the
brackets and surrounded by double quotes. We shall have
more to say about arguments' very shortly in Exercise 3.

Why bother to use a script, why not simply type the text
using standard HTML? We could, but we need to know that
JavaScript can type text on to a web page. This is what is
called dynamic writing as opposed to static writing. The
latter is what happens when using HTML code. The page
will always appear the same each time it is displayed.

But with dynamic writing, one of several messages can be
displayed depending on what action a user will take. For
example, a user can be offered a choice of buttons to click.
Whichever is clicked will result in a specific message being
printed to the screen. However, that comes later.

1 An early meaning of the word argument was re -fashion. Thus, the
digit 5 in the following i5 is the argument of the square root and will
be re -fashioned to become: 2.24.

12

Make sure that you appreciate that the <SCRIPT> tags form
part of HTML. This notifies the browser that some
JavaScript code is enclosed. The browser has to be
JavaScript enabled, otherwise it will not be able to read the
code inside the <SCRIPT> tags.

When it comes to using JavaScript code (as opposed to
writing HTML) case is significant. The C language :and
Java and C++) upon which JavaScript is based is case
sensitive, that is why we have to be careful when writing
JavaScript code.

C and the other languages use lowercase for the code and
sometimes a mixture of upper and lower. If you do not
abide by the case, then the script will fail (a term for will not
work). If you doubt me, then try it out.
DOCUMENT.writeln("a message")

IE would give an error message saying that DOCUMENT is
not defined, meaning that it would understand document
but notDOCUMENT. So, be warned!

Exercise 2: Writing out two messages
We shall expand the above exercise to print out two
messages as shown here and then explain how to get each
one on a separate line.

r -t; Exercise 2: Two -message output - Netscape

fie Edit View Eoninunicator Help

Using JavaScript to write out two
messages

This is the first line. This is a second line.

Simple-Write-Eg2.htm

lifFsFr

13

<HEAD>
<TITLE>Exercise 2: Two -message output</TITLE>
</HEAD>

<BODY>
<H3>Using JavaScript to write out two messages
</H3>

<SCRIPT Language="JavaScript"
document.writeln("This is the first line.");
document.writeln("This is a second line.");
</SCRIPT>
<ID>

<ADDRESS>Simple-Write-EX2.htm</ADDRESS>
</BODY>

Notes:
1. Notice the semi -colon after the first and second
'document. writeln'. This is how one instruction is separated
from another. The semi -colon is used to mark the end of an
instruction, frequently referred to as a statement. (Yes, I

know that new jargon is popping up all the time, but
programming has been around for a very long time and it is
littered with jargon. It is something we will just have to put
up with.)

We should emphasise a policy on the use of semi -colons
right at the start. The original version of JavaScript required
semi -colons, but the popular browsers do not require them
any more. As a result, it is becoming common practice not
to include them provided that each statement goes on to a
new line. If you type more than one statement on a single
line, then you must include semi -colons otherwise the
script may fail for no obvious reason.

Should semi -colons be used or not?
This will depend upon which school you want to go to.
Some experts say 'do not bother' - the relaxed school; other
experts say that you should include them because it is good
programming practice - the strict school! You must make up
your own mind. I shall borrow from both schools throughout
this text just to remind you that both exist.

14

2. Notice, too, that the two messages displayed on the Web
page are not separated, they flow on 'rpm each other. In
Exercise 3 we shall see how to force them on to separate
lines. (Using JavaScript is not quite the same as using a
word processor.)

3. There is another form of the write method:
document.write("Type out some text");

It is identical in behaviour to writeln, except that the latter
will append a new line after it has output its message
whereas wriLei appends a second message to the
previous one. So why were the two messages output by the
writeln() method not pu: on two lines? I had to ask this at
first until it dawned on me that what .1riteln() does is to
write the message into the Web page source code. It does
not affect how it is displayed in the browser window.

To understand this, let us look at the source code which The
Netscape browser will generate for Exercise 2. You can see
this if you use the View»Page Source comma'id from
within Netscape. Click View, then select Page Source. This
opens a second window with the HTML source code shown
for whatever page is currently being displayed by the
browser. This is what Netscape shows:

<HEAD>
<TITLE>Exeicise 2</TITLE></HEAD>

<BODY>
<H3>Using JavaScript to write out two
messages</H3>

This is the first line.
This is a second line.

<P>
<ADDRESS>Simple-Write-EX2.htm </ADDRESS>
</BODY>

Now, substitute write() for the two writeln()
statements. You will sae that the messages flow on one
line, as follows, when viewing the page source in Netscape:

15

<BODY>
<H3>Using JavaScript to write out two messages
</H3>
This is the first line. This is a second line.
<P> .. etc. ..

Notes:
1. You see neither the SCRIPT tags nor the JavaScript code
when viewing the source code because in Netscape both

: and writeln 0 write to the Web page source
code.

2. Internet Explorer also shows the source code (under
View with the single word Source). But IE displays the
source code in the Notepad editor and, consequently,
displays the original source just as you typed it, complete
with <SCRIPT> tags and the JavaScript code.

3. The above is one of the subtle differences between the
way the two main browsers operate and underlines the
need to have both browsers on your machine so that you
can begin to make comparisons. (Do not worry, it will only
get worse! There are some other annoying discrepancies
between the two browsers which we shall see in due
course.)

So. how do we force a browser to put the second line of text
on a separate line? That is what we look at next and it does
not matter whether we use write () or writeln 0 .

Exercise 3: Forcing Text to appear on Separate Lines

<BODY><CENTER>
Write out two messages on separate
lines
<P>
<SCRIPT>
document.write("This is the first line.
");
document.write("This is a second line.");
</SCRIPT>
<P><ADDRESS>Simple-Write-EX3.htm</ADDRESS>
</CENTER> </BODY>

16

riExeicise 3 - Netscape
File Edit View yo Lommurucator Lieip

Write out two messages on separate lines

This is the first line.
This is a second line.

Simple-ilinte-EX3.htm

1st r CI .t,

How would you get a second line to appear on a separate
line in HTML? You would use either the
 or the <P>
tag, thus: Line one. <P> Line 2.

Well, not only can you get the write() and the write'n()
methods to type out text, but you can also get them to type
out HTML tags. So, if we include a <P> :ag or a
 aster
the first piece of text in the first write() method, it will write
out that tag in the source code and force the argumen: of
the next write() to appear on a new line. Let us look at the
code for this:

<SCRIPT Language="JavaScript">
document.write("This is the first line.
")
document.write("Tnis is a second line.")
</SCRIPT>

Notes:
1. The
 tag has been included as part of the
argument. In other words, it must go within the two double
quotes. It is equivalent to the following HTML code:

This is the first line.
 This is the
second line.

and the above is exactly what you would see if you
examined the source code in Netscape.

17

<HEAD>
<TITLE>Exercise 3</TITLE>
</HEAD>

<BODY>
<H3>Write out two messages on separate
lines </H3>

This is the first line.
 This is a second
line.

<P>
<ADDRESS>Simple-Write-EX3.htm</ADDRESS></BODY>

Note the
 tag has been written out as well as the text
argument in the source code.

If we had used wr iteln () instead, the result would be
exactly the same when displayed by a browser, but the
actual source code in Netscape would look like this:

<BODY>
<H3>Write out two messages on separate
lines </H3>

This is the first line.

This is a second line.

<P>
<ADDRESS>Simple-Write-EX3.htm</ADDRESS></BODY>

The writeln () will create a new line in the source code
after it has written out the first argument, so that the second
writeln () argument will begin on a new line.

So, what have we learnt? We now know that we can
generate pages of HTML code using JavaScript. What is so
marvellous about that, why not merely write the HTML code
in the first place? As we shall see fairly soon, we can give a
user a choice of buttons to click. Depending on which one
is chosen, one of several scripts can be generated, each
with its own unique HTML code.

Warning: Before we finish this chapter, there is one final
point to make.

18

When using either the write() or the write/nO method you
must not press the Enter key in your editor between double
quotes. For example, in this long piece of text:
document.write("Here is a long piece of text to
type out and it will move on to another line.")

it is tempting to press the Enter key in your editor after the
word 'to' on the first line. However, JavaScript would take
Enter to be the end of that statement and in our example,
this would mean that the argument does not end with a
double quote. The syntax would be incorrect. There are two
ways to overcome this. Either, simply keep on typing and let
your editor word wrap, or, and this is the better approach,
use multiple arguments as follows:
document.write("Here is a long piece of :ext to",

" type out and it will move",
on to another line.")

See how the write() method takes more than one
argument, with a comma separating one from another? The
three arguments w II, of course, not be on separate lines
when displayed in the browser window because we have
not included any HTML tags. We do so below:
document.write("Here is a long piece of text to",

 type out and it will move on to",
"
 another line.")

Now, the browser will display the text on three separate
lines.

(Due to the page size of this book, it is not always posible
to use multiple arguments in the examples. You must
assume that word wrap has taken place.)

2. Out of interest, Netscape refused to display anything for
the version which had the Enter key pressed between the
quotes, although it was 'correct' when viewed in the source
code.

On the other hard although Internet Explorer did not
display anything either, it came up with an error message

19

complaining about an "Unterminated string constant" and
gave the line number where it had occurred. (Blank lines
are included in line counts.)

So what is a string constant? The text within double quotes
is called a quoted string, string or string constant. A string
constant is anything enclosed within double quotes.

3. Finally, notice in the following:

document.write("Here is a long piece of text to",
" type out and it will move",
"on to another line.")

that a space occurs between the opening double quote and
the word type in the second line. If a space had not been
included, the last word of the first quoted string would join
with the first word of the second string, without a gap. This
is what has happened in the third string which has no space
before "on" and would result in "moveon to another
ine." being displayed. So. you need to take spacing into

account when using multiple arguments.

Jargon used in this chapter:
argument: in programming, arguments contain data. In the
examples we have used so far, the arguments contain text -
strings and HTML code which have been writter to the Web
page via the write() and writeln() methods. These methods
form part of the client -side JavaScript language and their
arguments are enclosed in round brackets.

code: a term used for JavaScript instructions. In general.
the terms code, scripts and programs can be used
interchangeably to refer to a block or group cY' JavaScript
instructions.

JavaScript enabled: choose this option in your browser so
that it will be able to execute any JavaScript code within
SCRIPT tags.

method: in object based languages, a method is a function,
a short program, which does something to an object. Most

20

objects have one or more methods. document_ is an object
which has the methods i () and writeln () .

objects: we have met one, document, but we shall meet
others later. Objects are the building blocks for the scripts
we wish to create. (It took me some tme to become a lithe
clearer in my own mind about these terms - objects and
methods. Let us not worry too much about them just yet.)

quoted string: a sting of characters enclosed in double
quotes. A character s:ring may consist of simple text and/or
HTML tags.

script: a term used for a block of JavaScript code.

statement: each piece of programming code is known as a
statement or, indeed, an instruction. It is akin to a complete
English sentence or command. In JavaScript, each
statement can end with a semi -colon.

syntax: the rules or syntax for constructing JavaScript code.
Including a full -stop between an object and its method, the
correct use of case artd the correct use of quotes are some
examples of JavaScript syntax.

What you have learned
We have covered a few of the basics in this first chapter.

JavaScript code is placed within a pair of HTML <SCRIPT>
tags. The positioning of the tags will determine where they
will take effect on the displayed page, just like the
placement of :ags.

We can have multiple <SCRIPT> tags and they may De put
in the <HEAD> or <BODY> tags, or even between the two.
But, bearing in minc the previous paragraph, we need to
give careful though: to where we actually place them.

We have seen tha: JavaScript can write out text to a Web
page and more importantly can write out pure HTML code
upon which the browser will act, just as though we had
written pure HTML in the first place.

21

We can use either the or the)

methods. They both have the same effect on the actual
display of the Web page. But in Netscape, their difference
is seen in the source code.

Some methods can take more than one argument. When a
string constant argument is used, however, it must not
contain an Enter code within its double quotes.

Case becomes significant when using JavaScript code,
whereas case is not significant when writing HTML code.
We now have two things to be thinking about as we embed
JavaScript into our Web designs. The HTML itself and the
syntax of JavaScript.

We are becoming aware that browsers display source code
in different ways and sometimes behave differently when
executing the same scripts. This is a constant source of
irritation to all JavaScript programmers. It boils down to the
way in which the browser program has been written. We
meet the same problem with word processors. A Word 97
document cannot be read by a Word 6 version, let alone by
a different word processor such as WordPerfect.

Test 1:
1.1 What are the <SCRIPT> tags used for and where can
they be placed?

1.2 Do the <SCRIPT> tags form part of JavaScript or
HTML?

1.3 Is document an object or method?

1.4 Is writ eln () an object or method?

1.5 What is the main difference between wt it () and
writeln()?

1.6 Can you have more than one pair of <SCRIPT> tags in
the same HTML document?

22

1.7 What would the fo lowing display on a Web page:
document.write("Hallo there.",

"My name is Joe.")

1.8 What is the formal term for what is enclosed within the
round brackets in the above code?

1.9 When would you reed to add:

LANGUAGE="Javascript1.2" to the opening <SCRIPT>
tag?

1.10 How are multiple arguments separated?

23

24

2. Forms & Pop -Up Boxes

In this section we stall see how to use Forms to interact
with our readers. We shall also see how to add more HTML
code via the write() and writeln() methods.

User Interaction
A normal HTML Web page is static. Each time it is called up
and displayed by a browser the page will look exactly the
same as it did on any previous occasion.

One of the reasons people use JavaScript is to create
some form of interaction with a user. For example, allowing
the user to buy some of our goods and to display the total
cost: to replace cne image for another such as a

photograph of different views of a house we are selling.
One of the main mechanisms for creating user interaction is
via Form buttons. We shall begin with a simple interaction
whereby we invite a user to click a button to reveal an alert
box.

Exercise 4: Using a Form to make an alert box pop-up.

Here is some simple HTML which creates a Form button
with some text on it.

<FORM>
<INPUT TYPE="button"

VALUE="Click this button"
</FORM>

But how do we go about getting the button to display an
alert box when it is clicked? We can do this by addinc just
one more attribute to the <INPUT> tag. The onOlick
attribute as shown below.

<HEAD>
<TITLE>Exercise 4</TITLE;
</HEAD>

25

<BODY>
<H3>Using JavaScript to display an alert box</H3>
<FORM>
<INPUT TYPE="button"

VALUE="Click this button"
onClick="alert('Hallo, you did click the

button')",
</FORM>
<P>

<ADDRESS>Simple-Form-EX4.htm</ADDRESS>
</BODY>

The onClick attribute was originally a Netscape extension
added to the <INPUT> HTML tag. Now, it has become
standard in HTML version 4.0. Here is what happens when
a user does click the Form button.

Using JavaScript to display an alert box

Click this button

Simple-Form-EX4.htm

WaVoScmitApptw,thm4

H alio you tid click the button

-TO ,`.Lip
a

Notes:
1. The first point to appreciate is the syntax for the onClick
attribute. This applies to all the other variations we shall
encounter later.

some JavaScript code m"

26

The HTML attribute onClick is not case sensitive - but it is
conventional to write it as shown with a capital C and the
rest in lowercase. By contrast, the value this attribute takes
is JavaScript code and as such is case sensitive.

onClick - "alert('Hallo, you did click the
button')"

Therefore, Alert (. . or ALERT () would be wrorg.

2. The attribute value of onClick is a piece of JavaScript
code enclosed in double quotes with the equals symbol
between the attribute and its value, just like most other
attribute values in HTML. When the button is clicked, it

causes the value of the onClick attribute to be executed. In
our example, this is a call to the alert() method to display
whatever message is inside the brackets.

3. alert () is a method of the window object which
automatically causes an alert dialogue box to pop up with
whatever message t- as been typed inside the brackets. But
note how the message is in single quotes. We cannot use a
double quote within a double quote since the second
double quote would finish off the first one.

Since the entire JavaScript code must be contained witiin a
pair of double quotes, the alert() function's message -nust
be in single quotes so that these do not interfere with the
main outer double quotes. I hope that makes sense. It is

something which will crop up time and again. Beginners
frequently forget this and wonder why their scripts do not
work. Consequently, we have to type tt-e code as follows:
onClick="alerWmessage for display')"

4. alert must be it lowercase, otherwise when a user
clicks on the button. nothing will happen. Netscape simply
sits there totally dump, whereas IE will tell you that an error
has occurred - "Object expected". Not very helpful but at
least you can concentrate on the spelling and/or case of the
alert() method by looking at the line number given.

27

But why would the mis-spelt Alert be called an object rather
than a method?

To begin with, IE does not recognise your mis-typed Alert()
as a call to the alert() method of the window object. It has
not a clue what it is. More often than not, an error checking
program has to guess at what the programmer intended. A
good guess is object, because it assumes that the Alert()
method should belong to an object. It car not find one
associated with Alert() and is trying to tell you that it cannot
find it.

5. We now have another piece of jargon to learn. Clicking
on the button is formally known as an event, something
which the user has to do. Other types of events can be:
moving a mouse over a hyperlink; moving a mouse out of
an image map; clicking a submit button: charging the text
in a text field, etc. We shall be looking at these other events
in more detail later.

The onClick attribute is called an event handler. Its value
defines what has to be done when the event occurs.

<INPUT TYPE=button VALUE="Try me"
onClick = "alert('You did try me.')"

This attribute is an
Event Handler

This value specifies the JavaScript
code to execute when the user clicks
the button - the event.

6. Note that our JavaScript code has been written without
any <SCRIPT> tags. We now know two ways of writing
JavaScript code, using <SCRIPT> tags and using FORM
buttons with an event handler attribute such as onClick.

Here is another example of user interaction:

Exercise 5: Getting the User to choose the BGCOLOR
Interaction with your Web page readers is one of the main
attractions of using JavaScript. In this example, we shall
use a <TABLE> to display colours and buttons. The user is

28

invited to click one of the buttons to set the background
(BGCOLOR) to his/her choice of colour.

r: Change background colon's of screen Nets rn

Click the button for the BGCOLOR
you would like.

Blue Yellow Green

I
BOCOLOR-Ex5.htm

_J__J Lk 4

<HEAD>
<TITLE> Change background colours of the screen
</TITLE> </HEAD>

<BODY><FORM>
<TABLE WIDTH=100%>
<CAPTION>Click the button for the BGCOLOR you

would like.</CAPTION>
<TR>
<TD COLSPAN=3> <HR>
<TR ALIGN=center>
<TD>Blue <TD>Yellow <TD> Green
<TR ALIGN=center>
<TD>
<input type="button"

onClick="document.bgColor='lightblue"
<TD>
<input type="button"

onClick="document.bgColor='lightyellow"
<TD>
<input type="button"

onClick="document.bgColor='lightgreen'">
</TR>
</TABLE></FORM>
<ADDRESS> BGCOLOR-Ex5.htm </ADDRESS></BODY>

29

Notes:
1. When one of the buttons
JavaScript code is executed
background colour of the Web pa
onClick="document.bgColor=

is clicked, the relevant
and will change the

ge.
'lightblue'"

The onClick's value (in double quotes) assigns the bgColor
of the currently displayed document to a 1 ightblue '

colour. Again, because the onClick value must be in double
quotes and the syntax requires a quoted string for the
actual colour value, we have to use single quotes for the
latter.

2. We have already seen that the document object can take
two methods, write() and writeln(). But here we are making
use of bgColor. It is not a method so what is .t? It is called
a property.

(If you wish, you could now look at Chapter 15 for a
discussion about objects and their methods and
properties. It is not yet essential, but some amongst you
may be curious. If not, just leave it until we have come
across a few more examples. For the time being, just try
to appreciate that objects have methods which can do
something to the object, such as generate an alert box or
write out some text, and that objects also have properties
which affect the appearance of the object.)

3. We could have used the RGB (red, green, blue)
hexadecimal numbers instead of the colour words - thus:

bgColor,'DE6633'.

4. Do note the case for bgColor. Any other variation would
not work. (I shall stop repeating the importance of case
soon, so please make sure that you keep to the correct
case when writing your own code.)

5. The term assign, in Note 1 above, is another jargon word
and requires some explanation for those new to
programming.

30

In mathematics: x = 4 means the letter x takes on the
value of 4, that is, x equals 4. In programming, although it
looks the same, it means something different, namely that x
is to be replaced by (assigned) the value 4. To be more
precise, we should read it as:

'Whatever is on the right-hand side of the assignment operator
is to replace whatever is contained on the left-hand side."

What is the difference? Well in programming we could write
this: x = x + 1

Mathematically, this Is not possible, x cannot be 1 greater
than itself. But this is not mathematics, it is a perfectly valid
programming statement and means that whatever value the
right-hand side 'x' cu'rently has, add 1 to it and replace the
left-hand side 'x' with tne new value.

What use is that? It happens to be one of the commonest
statements in programming as we shall discover when we
come to discuss the programming aspects of JavaScript.

For the moment, we just need to remember that an
assignment statement replaces whatever is on the left with
whatever is on the right. It is best, right from the start, tc get
into the habit of saying: x is to be replaced by 4 (or
whatever) rather than saying x equals 4. But I shall return to
this when we next meet an assignment statement.

Exercise 6: More HTML code using document . write ()

.1.- Witting out HTML -Netscdpe

"ICIEZIPIP`
Writing HTML

This is some coloured text.

Wnte-HTML-Ex6. him

31

This exercise is merely to show how we can use the
document's write() method to generate HTML code.

<BODY>
<H3 ALIGN=right>Writing HTML to a Document</H3>

<SCRIPT>
document.write("<HR WIDTH=50%>"

+ ""
+ "<CENTER>"
+ "This is some coloured text."
+ "</CENTER>"
+ ""
+ "<HR WIDTH='9096'>")

</SCRIPT>
<ADDRESS>Write-HTML-Ex6.htm </ADDRESS>
</BODY>

Notes:
1. Notice that the document .write () uses the
concatenate operator (+). These will join each quoted string
into a single argument. Commas could have been used
instead. This new operator is discussed below.

2. Since we are using <SCRIPT> tags, as opposed to event
handlers, we can use double quotes to surround each
string.

3. For the sake of clarity, we have put each string on to a
new line. But there was no need to do so. However, it
makes it easier to find any errors in our scripts, such as
missing operators, missing quotes, etc.

Concatenate
Concatenate means 'to join together'. The concatenate
operator is used to join two or more quoted strings together
to form a single argument. If we had used commas, then
we would have been using multiple arguments. Do not
confuse the concatenate operator with the arithmetical
addition symbol. They both look identical but have to be
interpreted from the context in which they are used.

32

We shall see more of his operator in the next chapter.

Some Horrors
If you have been experimenting with your own scripts, you
may have come across some really weird things. Here are
some of the ones I have met and of which you should also
be aware.

When I began writing JavaScript, I kept having to puzzle
out what was happer ing when using document .wri te, or
rather, why things were not happening. My reference books
were none too helpful.

1. Do not press the En:er key anywhere between a string in
single or double quctes. Allow word wrap to take place if
the string flows onto a new line. Better still, employ commas
or concatenate operators. The reason for this is that
JavaScript assumes he Enter key means the end of a
statement. So, if you co press Enter within a qucted string
argument, that string has no ending quote mark! The
syntax is incorrect.

What happens when the page is displayed will depend on
which browser you are using. Netscape will simply iglore
the script, do nothing more and give you no warning.
Netscape never tries to explain why a script has failed.
Internet Explorer wi I also fail but will display an error
message and give the ine number (blank lines are included
in the line count) of where the error occurred. I have found
IE's error messages useful, though cryptic, when my scripts
fail to do what I expected. But, I can at least begin to
examine the code where the error occurred.

2. Make sure each argument, except the final one, has a
comma separator, otherwise the arguments wh ch follow
will not be recognised. Remember that programming
languages have very strict rules of behaviour (the syntax).
Breaking the rules will always cause errors to occur.

33

3. A real surprise with Netscape, version 4 at least, is that
should you resize a window after loading a web page. it re-
reads the source code from its cache memory. It uses a
cache memory to speed up the display, especially when
images are involved. However, the real surprise occurs if
this cached version contains JavaScript code.

Imagine that you load a page and spot a mistake in your
code once the page is displayed. You go back and correct
the error in the source code, save the page and re -load it in
Netscape. But, if you now resize the window, the source
code which Netscape uses may be an earlier cached
version which still contains the original mistake. It is worth
closing Netscape once in a while and reloading it so that its
cache memory is cleared out, especially when you are
testing your JavaScript code.

4. Do not use document .write () with an event handler,
at least not until we discuss opening new windows in
Chapter 7. For the time being, it is safer to use
document .write only within <SCRIPT> tags. The
browser will then write out the arguments to the current
window.

If you do use it as the value of an event hardier attribute.
such as onClick, browsers will open a new window and
display the arguments of document .write () in that
window. This can be useful in some situations but we need
to know a bit more before we can safely use such
examples.

<H3 ALIGN=right>Writing HTML to a new window</H3>
<FORM>
<INPUT TYPE="button" VALUE="Click here!"

onClick="document.write(''
+ 'Some coloured text in a new window.'
+ ''); + document.close(); "

</FORM>

34

If you must create a new window, make sure you add the
document .close (statement. This ensures that the
operation will work and prevent Netscape's document
loading animation frcrr animating. "What is that?', you ask.
It is on the bottom bar, third from left.

Wading out to a new ..i.dow Netscape

fie Eck Yiew fio Corwunscatot He

Some coloured tt:xt in a new WIlltiOW.

itic,m-A. 304 cIP ,z.1

Currently the animation has covered about half of the box. It
moves backwards and forwards.

Notice that in the above code, the onClick value has more
than one JavaScript statement. It has the document. write()
and the document.close0, both enclosed in a single pair of
double quotes (as are all attribute values) and separated by
a semi -colon. If you nave more than one statement as the
value of an event handler then this is one time when you
must separate each statement by a semi -colon.

Other Pop Up Boxes
There are three types of pop-up boxes, the alert, which we
have seen, a prompt box and a confirm box. The prompt
box invites a user to enter some text. Once the user has
clicked the OK button, we can use JavaScript to find out
what has been typed ir.

The confirm box displays a message of our choosing and
asks the user to accept the message (confirm it) by clicking
OK or reject it by clicking the Cancel button. JavaScript can
determine whether the message was confirmed or rejected.

However, in order to Jse these other two boxes, we need to
know how to 'capture' what a user has typed into a prompt
box or which button was selected in a confirm box. That
involves the use of functions, the subject of the next

35

chapter. We cannot do much more with JavaScript until we
know how to use functions.

Jargon
assignment statement: a piece of code which assigns a
value on the right of the assignment operator () to a
variable on the left of the operator. x - + 1 Here, x is
a variable - we have more to say about variables in the next
chapter.

cache memory: part of the computer's memory where some
browsers store copies of loaded Web pages for quick
access should that page need to be re -displayed.

event handlers: HTML attributes, such as onClick, with
associated JavaScript code as their values. The event
handler's code is executed when a user causes an event to
happen.

events: Things which users may do, such as move a
mouse over a hypertext link, click on a button, change text
in a text box. See Chapter 7 for more details.

operators: a programming term for the various symbols
used within a program. We have seen the following:

= the assignment operator
> the greater than comparison operator
+ the concatenate operator
+ the arithmetic addition operator

Chapter 8 discusses them and others in more detail.

What you have learned
1. How to call up an alert box when a user clicks on a
button using the onClick event handler.

2. We have seen that there are two basic ways to write
JavaScript code:

by using Form buttons and assigning coce to an event
handler

36

to enclose code within <SCRIPT> tags

3. How to give a user a choice of buttons to select a colour
for the background.

4. When to use double quotes and single quotes.

5. Using more than one argument for document write().

6. How to concaterate quoted strings to form one
argument. Yes, you stould make it clear in your own mind
that concatenate is rot the same as multiple arguments. It
joins all the strings in -.o one argument.

Test 2:
2.1 Does the alert() method belong to the document or
window object?

2.2 In the following, should double or single quotes be used
around the message in the alert box?

onClick = "alert(the message)"

2.3 What is the JavaScript term for the onClick attribute?

2.4 What type of value does the onClick attribute take?

2.5 When a user clicks on a button, what is this called in
JavaScript?

2.6 In OOP languages, what is the formal term for bgColor
in the following?
onClick " document.bgColor = 'lightblue' "

2.7 In the above, would it matter if bgColor was typed as
bgcolor or BGCOLOR?

2.8 What value will .7. have after the following code is
executed?

z = 1; z = z

2.9 In the above code, is . a concatenate or an arithmetic
operator?

37

2.10 What could happen in Netscape when a window is re-

sized?

2.11 Is onClick an attribute or an event handler?

38

3. Functions

The main strength of JavaScript, as with many other
programming languages, lies in its ability to allow
programmers to create functions. A function is a block of
instructions which has been given a name. This will make
sense when we come to see how functions are used.

We shall return to a simple exercise from the previous
section and convert it into a function.

Remember this one f'om Exercise 4?

<FORM>
<INPUT TYPE="button"

VALUE="Click this button"
onClick="alert('Hallo, you did

click the button')">
</FORM>

When the Form button was clicked, an alert dialogue box
popped up. Let us get the event handler to execute a
function which will do exactly the same. Although it is a
simple task, it will illustrate how functions are created. We
can do more exciting things later.

Exercise 7: Creating a function.

Here is the code, the explanation will fo low.

<HEAD><TITLE>Exercise 7</TITLE></HEAD>
<SCRIPT>
function showalert()
{

alert("Hallo, the button called a function to
display an alert box!")

}

</SCRIPT>

39

<BODY>
<H3>Using a Function to display an alert box</H3>
<FORM>
<INPUT TYPE="button" VALUE="Click this button"

onClick="showalert()">
</FORM>
<P>
<ADDRESS>Simple-Function-EX7.htm</ADDRESS>
</BODY>

Using a Function to display an alert box

Click this button

Simple- Fund -Ion- EX7. htrn

Miciosoll Internet Explorer

Halo. the button coded a function to display an ale .l box!

Notes:
1. When the button is clicked, the alert box appears.

2. Why bother to create a function, surely it is simpler to do
it the other way? Yes, you are right, but we need to start
somewhere and this simple example shows how functions
are created. The function begins with the word function
(lowercase) followed by a name (which we invent) followed
by open and closed round brackets. There is nothing in the
brackets but they are still required. We shall put something
in later.

40

3. The entire function is put between a pair of <SCRIPT>
tags which, for a change, have been placed between the
HEAD and the BODY. They could go inside the HEAD or
inside the BODY. They could come after the BODY - but this
can be unwise as we shall see. From a practical point of
view, and one recommended by serious programmers, all
functions should go before the BODY and within the
<HEAD> tags.

4. If you had three :unctions, each one could go within
separate <SCRIPT> tags, or all three could be placed within
the one pair. In other words, a single pair of <SCRIPT> tags
can contain multiple functions.

5. What are the curly brackets . . doing? These are
required by JavaScript to mark the beginning and the end
of the JavaScript code within the body of the function. We
have only one statement. but there is nc limit to the number
of statements within a function. If there 's more than one, it
is safer to put semi -colons after each complete statement.
(They are not always used in this text but it is good
programming style to dc so.)

6. It is important to kr ow that the browser will not execute
the statements in a W. -lotion as the Web page is being
loaded. This is not the same as our earlier and more simple
scripts, which did not contain functions and, consequertly,
were executed as the page was being loaded and in the
order in which they appeared in the page. So when are the
instructions in a function executed?

That is the purpose of the attribute value of the onaiick
event handler. It contains the name of the function, out
does not include the ward function.

onClick="showalert()"

The function will not be executed until a user clicks the
Form button. When it is clicked, the browser will look at the
value of the onClick event handler to see what has to be

41

done. Previously, this was to generate an alert box, but this
time it is told to execute the function called showalert () .

It will find this function (all functions are stored in a safe
place whilst the page is originally being loaded) and then
execute the code inside the function's curly brackets. The
code in our function asks for an alert box to be displayed
along with our message. When the closing curly bracket is
encountered, all processing stops.

7. You need to be aware that a function has two parts. The
first is called the declaration and comprises the function
keyword, a name immediately followed by open and closed
round brackets and the actual code enclosed in curly
brackets also known as braces.
function name()

JavaScript code ...)
It will not be executed until the function is invoked. This is
the second part of the function - a call (an invocation) to
execute the function. This call consists of just the name of
the function and the round brackets. Actually, these round
brackets are very important. After a function name they
become an operator which informs JavaScript that a call
has to be made to a function. If you left them out, the
process would not work. onClick="showalert () "

8. Do be sure that you know when to use round brackets
and when to use curly braces.

Exercise 8: Here is Exercise 5 using functions.

<SCRIPT>
function blue() {

document.bgColor='lightblue'
} // EoFn
function yellow()

document.bgColor='lightyellow'
// EoFn

42

function green() {

document.bgColor=.1ightgreen'} // EoFn
</SCRIPT>

<BODY>
<FORM>
<TABLE WIDTH=100%>
<CAPTION>Click the button
would like.</CAPTION>
<TR>
<TD COLSPAN=3> <HR>
<TR ALIGN=CENTER>
<TD>Blue <TD>Yellow
<TR ALIGN=CENTER>
<TD><input type="button"
<TD><input type="button"
<TD><input type="button"
</TR>
</TABLE>
</FORM>
<ADDRESS>BGCOLOR-fns-Ex8.htm </ADDRESS>
</BODY>

for the BGCOLOR you

<TD> Green

onclick="blue()"
onClick="yellow()"
onclick="green()"

Notes:
1. Notice how the one pair of <SCRIPT> tags contains the
three functions.

2. It is common practice to put the oper ing curly bracket on
the same line as the function name and to put the closing
curly bracket on a separate line as shown for function
blue°. But as you cal see, there are other valid variations
depending on the personal style of the programmer. We
have shown three different styles in the above. It is good
programming practice to be consistent where possible.

3. It will save you a great deal of annoyance if you also go
to the trouble of adding a comment (see page 70) after the
closing curly bracket of a function to indicate that it is the
`end of the function' - EoFn blue (;

Once you begin to write larger scripts, it is easy to forget to
type the closing bracket or to mistake it for one that m ght
belong to another programming feature. See Chapter 8.

43

Exercises 9a - 9c: Using a Prompt dialogue box

We mentioned in the previous chapter that there are three
types of pop-up dialogue boxes. We will look at the prompt
box now. It is used to prompt a user to enter some data.
We shall soon see how we can 'capture' that data so that
we can see what has been typed in. This will introduce us
to the need for variables - functions love to use variables.

WavaSciipt Application'

What is your name?

lundiAinedj

or; C,ancel

Here is some code which generates the above prompt
dialogue box from within HTML <SCRIPT> tags.

<HEAD>
<TITLE> Creating a Prompt box</TITLE>
</HEAD>

<BODY>
<H4> Here is a Prompt</H4>
<SCRIPT>

prompt("What is your name?")
</SCRIPT>
<ADDRESS>PROMPT-Ex9a.htm </ADDRESS>
</BODY>

Notes for Exercise 9a:
1. Note that the syntax for prompt ("message") is similar
to the alert°.

2. The word 'undefined' means that the user has not yet
typed anything into the prompt box. When he/she does, it
will replace that word. When the user has typed something
in and clicked the OK button the dialogue box disappears.

44

Note that the message string is displayed so tha' the user
knows what to do.

3. Seeing the word 'urdefined' is not only ugly but it could
terrify those unfamiliar with JavaScript. It is a simple matter
to remove it. Unlike alert() and confirm(), we shall come to
the latter very shortly, prompt() can take a second
argument.
prompt("What is your name?","")

It comes after the comma in the above and contains the
empty string - . You could put something inside the
double quotes, in which case, that something would appear
in the text box. Try it out for yourself!

Exercise 9b: Capturing the data from the Prompt box.

We shall now find out how to capture what the user has
typed in. Here is the code using a variable called x

<BODY>

Capturing the user's data.
<SCRIPT>
x = prompt("What is your name?","");
document.write("<P>Your name is: " + x);

</SCRIPT>
<P>
<ADDRESS>PROMPT-Ex9b.htm </ADDRESS>
</BODY>

Cleating a Plump' box - Net RR 1:1

45

Notes for Exercise 9b:
1. We have assigned to a variable the name which the
user has typed into the prompt's text box, here 'Helena
Boffin'. A variable is a named storage area inside the
computer's memory where its data is kept until it is used.

2. The next line of code does use the variable via the
document .write feature:
document.write("<P>Your name is: " 4

This is one of the reasons why all programming languages
need variables. It is a mechanism for holdiig data which
needs to be used at a later stage in the program. Note how
the document .write includes not just a text string but
also the variable x which does not have quotes around it. If

it did, the character 'x' would be written out. Consequently,
when something does not have quotes, JavaScript
interprets it as a variable.

tends to be a very common name for a variable,
probably a sign that programmers lack imagination.
Certainly, it is one which I use quite frequently! There are
rules for creating variable names and these are set out at
the end of the chapter.

Exercise 9c: Using functions and confirm(,).
We shall rewrite Exercise 9b using a function and introduce
confirm°. It is quite a useful box in that you can ask a user
to confirm that they really do want some action to take
place.

<SCRIPT: -

function yourname(){
x = prompt("What is your name?");
confirm("Did you say your name is

) // EoFn
</SCRIPT>

<BODY>
<H4> Here is a Prompt</H4>

46

+ x + "?");

<FORM>
<INPUT TYPE="button" VALUE="Tell me your name.

onClick="yournameW>
</FORM>
<ADDRESS>PROMPT-Ex9c.ntm </ADDRESS></BODY>

Notes for Exercise 9c:
1. ' ..' is a variable which is assigned the value typed in by a
user in the prompt dia ogue box. It coulc be any other letter
or word and it can be p-eceded by the keyword - (short
for 'variable' and rhymes with 'far'), thus:
var x = prompt("What is your name?")

That variable can be used in conjunction with the confirm
box message. Assuming the name typed in is 'Jasper. we
ask the user to confirrr tne name:

confirm("Did you say your name is " + x + "?")

2. You can see that confirm ("message") behaves Ike
the alert and the prompt boxes. The user can accept (OK)
or reject (Cancel) the confirm pop-up box.

(A confirm() dialogue box is sometimes used to confirm
transactions on the Web before allowing a user to part
with all their credit cart" details.)

3. You need to be aware that the alert and confirm pop-up
boxes can take but one argument. So we need to
concatenate the three parts of the above message into one
by using the concatenate operator (-).

"Did you say your name is "

?

47

If we had put commas in, thereby creating multiple
arguments, only the first argument would be displayed, the
rest would be ignored. Try it out if you do not believe me.

4. Notice that the variable is not enclosed in double quotes.
Whatever data it contains (Jasper in this case) will be
substituted when written out. Indeed, we must not use
quotes otherwise the letter x would be printed out because
it would then become a quoted string.

5. We can now begin to see how JavaScript is able to
distinguish between text -strings and variables. Text must
be written as quoted strings: "I am a piece of text.", whereas
variables are not quoted.

6. Finally, note the presence of a space after the word 'is'.
If there was no space then the 'J' of 'Jasper' would come
immediately after the 's' of 'is', thus: "Dic you say your
name isJasper?" When using concatenation, include
spaces where necessary.

Built-in Functions or Methods?
You may be wondering whether write(), writeln(), alert(),
confirm() and prompt() are functions. They certainly look
like functions. They have a name and a function call
operator - O . You would be correct.

They are all examples of built-in functions which belong to
objects and because of this are formally known as methods
in object oriented languages. These, and many more which
we shall come across, form part of the JavaScript
language. See the summary at the end of this chapter.

In contrast, the ones created by us are known as user -
defined functions. In the above examples, blue°,
yellow(), green() and ye.: I are our own user -
defined functions.

48

Why Bother with Functions?
There are many reasons. One is that if you want to repeat
say 10 lines of code in 5 different places in a Web page,
rather than type 50 lines of code, you need only type the 10
lines once, and use five invocations to the function. See the
rounding () functior, Exercise 21, page 125. We shall
come across other reasons later in the text.

Jargon
declaration: refers to the instructions nside a function's
curly brackets. It declares what must be done when the
function is called (invoked) from some other point in the
Web page. It is sometimes known as the definition since it
defines what the furcion will do. It must inclJde The
keyword function. the 'unction name followed by round
brackets.

function: a function is a way of naming a section of
JavaScript code which you wish to execute at your leisi.re.
It includes the keyword function, a name and, so far. emoty
round brackets, plus the code to be executed:
function somename(){

invoke: a programming term used when we want to execute
a function. The function name and the function call operator
must be used: onClick "myfunction() "

variable: a name given to a piece of data so that it can be
held in the computer's memory ready to be used when
required. It is called a variable because the same name can
contain different data on different occasions. For example,
in Exercise 9c the name 'Jasper' was typed in. However, if
the user clicked the form button again he or she could quite
easily type in a new name - Susan. The variable 'x' would
now store the name Susan. Its content can vary.

What you have learned
1. You have learnt how to create a function, using curly
brackets (braces) to mark the beginning and end of the
function's code.

49

2. A function must always have a pair of round brackets
after its name, even if there is nothing in them. We shall
see in the next section what can be put in these brackets.

3. We have seen how to use prompt and confirmation pop-
up boxes. But do not use them all the time. It can be quite
irritating to your readers.

4. More importantly. we have seen that data entered into a
prompt box can be captured for use at a later stage. This is
done by storing the data in a variable.

5. The distinction was made between built-in and user
defined functions.

Rules for creating Variable Names
When creating a name for a variable, case is significant.
The first character in the name must be one of the
following:

a lower or upper case letter
underscore ()

Subsequent characters may be any letter or digit, or an
underscore or dollar sign. The first character must not be a
digit.

Valid Invalid
123

my_var$name

_myvariable

$strg

X13

!name

a name

this-var

1X4

A Point of Interest

Note what appears at the top of the confirm box. The same
is seen for the other two pop-up boxes. It says:

pavaScfipt Applicationi

50

PavaScript Application]

Did you say your name a Jasper"? i

jii;;. Can: - .

Here is what IE displays: Microsoft Internet Explorer

Hallo. the bunon called a fun,: Non to (Imlay an abrt boil

The reason for this s to inform the user that the pop-up box
was generated by the browser. Why? Take a look at this.

C3rnmunicator sip

ICePd some money?

How tc,make a

NAS7Y.htm

v pi Apoi ahon

r -r -r-

Yuur HARD DISC has just been t ESTROYEDI

You could write some JavaScript code to generate an alert
box with the terrifying message above. Some people have
a 'funny' sense of humour.

51

If pavaScript Application] or the Microsoft ecpivalent was
not included, you might well begin to feel very sick,
imagining that it was an operating system message.

(Hmmm! It is tempting though.)

Test 3:
3.1 In the code for Exercise 9c what forms the declaration
and what forms the invocation of the function
yourname() ?

3.2 How many functions can be placed within a single pair
of <SCRIPT> tags?

3.3 How many syntax errors can you find in the following?

3.4 The prompt dialogue box can take two arguments.
What purpose does the second serve?

3.5 What would the following write out?
sum = 1.5 + 2;
document.write("The sum is:

3.6 When would you want to use an alert, a confirm and a
prompt pop-up box?

3.7 You will not find the answer in this chapter, but to which
object do the methods of the three pop-up boxes belong: to
the document or window object? Think about it!

3.8 In the following code, what would be the oder in which
the browser would display the Web page on the screen?

<HEAD> <TITLE> .. a title .. </TITLE>
<SCRIPT>
function yourname()(

x = prompt("What is your name?");
confirm("Did you say your name is " + x + "?");

} // EoFn
</SCRIPT>
</HEAD>

52

<BODY>
<H4> Here is a Prompt</H4>
<FORM>
<INPUT TYPE="button" VALUE="Tell me your name."

onClick="yourname()">
</FORM>
<ADDRESS>PROMPT-Ex9c.htm </ADDRESS></BODY>

3.9 What type of arguments can the write() method take?

53

Summary of JavaScript so far:

Objects Methods Properties
document write() bgColor

writeln()
close()

window alert()
confirm()
prompt()

Operators Purpose Example
= assignment x = x + 1

+ arithmetic addition 1+2

+ concatenate 'a' + "b"
() function call function abc ()
() embed function

code

Event Handlers
onClick used with form

buttons

--Dialogue boxes
alert inform user
confirm confirm or cancel
prompt enter data

54

4mArguments in Functions

We shall now examine the use of arguments in functions.
In the previous chapter we saw how useful functions are,
but their usefulness can be improved by passing them
arguments. So, what is an argument? It can be almost any
type of data you want. It could be the text typed into a
prompt box or the OK or Cancel button clicked in a confirm
box. It could be two numbers which indicate a range of
numbers the function could work with. We shall look at
these and more in the following.

First, we need to introduce the concept of arguments via a
simple example. Let us suppose that someone wants the
square root of any number he/she types in. We need to ask
the user to type in a number and then get a function to work
out its square root. Not everyone is madly interested in
square roots, but this simple exercise will introduce not only
the concept of arguments but also how JavaScrip: performs
calculations. At some stage, you may need to calculate the
overall cost and tax on some goods (course fees, etc.; you
are offering over the Internet and get the buyer to confirm
the amount.

Exercise 10: A Function using an argument.
The idea is to write a 'unction which will output the square
root of a number entered by a user. We shall see how to
round the result to two decimal places in Exercise 11. Here
is the code.

<HEAD>
<TITLE> Calculate the Square Roo*: </TITLE
<SCRIPT>
function squareroot(sgroot)

x = Math.sqrt(sgroot);
document.write("The square root of "

+ sciroot + ' is: " + x)

}

</SCRIPT> </HEAD>

55

<BODY>
<H4>Using Arguments</H4>
<SCRIPT LANGUAGE="Javascript"
var sgroot = prompt("Enter a number. I will

give you its squareroot.", ");
aquareroot(sgroot);

</SCRIPT>

<ADDRESS>Arguments-Ex10.htm </ADDRESS>
</BODY>

r) N.JAVASCRIPIS \JAVA BOOK\ FE

Using Arguments

The square root of 45 is:

6.708203932499369

Arguments -Ex 10. him

Notes:
1. We have used a prompt box to get the user to type in a
number and included a blank string as a second argument
to remove the word 'Undefined' from the prompt box.

The value typed in has been assigned to the variable
sqroot, a name I made up. Note too that it is preceded

with the keyword var. It was not necessary and we have
not done so before but it is good practice since it reinforces
the fact that we are using a variable and makes the code
clearer. (We discuss another reason on page 107, under

Scope of Variables.)

2. On the line below, we have a second statement which
calls the user defined function: squareroot (sqroot) .
But note that it contains sqroot, the variable assigned to

56

the user's input via tie prompt box. Previously, our function
call operators were empty. When variables are included
they are known as aTuments.

Arguments are the mechanism by which data picked up
elsewhere and held in variables can be passed 70 a

function. We need to give the squareroot () function the
value typed into the prompt box by the user. We do so by
passing it over as an argument. It can then be used by that
function.

3. Our function passes it to a second function - to

Math. sqrt (sqroot) - which computes and returns the
square root which is then assigned to a variable

A document .write statement is used to wite out the
original number (sqroot) and the computed square root
which has been assigned to the variable -.1' .

function squareroot(sciroot)

{

x = Math.sqrt(sgroot);
document.write("The square root of "

+ sqroot + " is: " + x)

Notice the careful use of spacing in the quoted strings of
the write method and that the variables are not, indeed
must not!, be quoted

3. But what is this Math?
sqrt () is a built-in mathematical function, par of

JavaScript. It is a method of the Math object. Without the
reference to the Math object, JavaScript would not
recognise the sqrt() function as one of is own. But because
we have specified the Math object, JavaScript now knows
that we are referring -o the sqrt method of the Math objet.

57

Web browsers. These were defined with lowercase letters
and form part of client -side JavaScript.

Do you remember document .bgColor in Exercise 8?
bgColor is a property of the document object. So, we have
these three terms.

Objects - the basic 'things' we work with
Objects have methods (functions)
Objects also have properties

This analogy may help. A car is an object. 11 has a colour
property - say, maroon. It has methods which allow it to
move forward or backwards, faster or slower. It is important
to try to understand these three terms since they are in use
all the time. It took me some time to begin to understand
them. However, the more you use JavaScript. the more
they begin to make sense. This is what programming in
object orientated languages is all about. Amongst other
things, we play around with objects and with the various
properties and methods associated with those objects.

That is enough for now. See Chapter 15 for more details.

Exercise 11: Using NAMEs in <FORM>.
We shall now ask a user to enter a calculation and make
JavaScript return the answer. (This will help us to
understand a much more sophisticated program in Chapter
9 which works out monthly payments for a loan at whatever
interest the user desires. You can use this to determine
whether the monthly payments on the purchase of your car
are indeed accurate and to ensure that you are not being
fleeced.) Here is the code without the <HEAD>.

<BODY>

If you enter a calculation, you will be given the
answer when you click the
<I> Calculate </I> button.

60

<FORM NAME="formcalw>
<INPUT TYPE="text" SIZE="12" NAME="calculator">
<INPUT TYPE="button" VALUE="Calculate"

onClick="cal()">
<INPUT TYPE="reset" VALUE="Reset">

Answer:
<INPUT TYPE="text" SIZE="12" NAMB="answer"
</FORM>
<SCRIPT>
function cal()(
document.formcal.answer.value =
eval(document.formcal.calculator.value)
) // EoFn
</SCRIPT>

<ADDRESS>NAME-Ex11.htm </ADDRESS>
</BODY>

N elscape

If you enter a calculation, you will be given the
answer when you chck the Calculate button.

742/43

Answer: 17.2558139534

NAME -Ex 11. htm

FE

1.4 7

Notes:
In the next Chapter we shall see how to round down the
result to two decimal places. First, we need to discuss the
basics.

1. The user is invited to enter a calculation and then to click
the Calculate button. Note that this button has a NAME
attribute and we shall soon see the reason for this. The
Cal () function performs the calculation and returns the
answer in the answer text box as you can see from the

61

illustration. But how is it done? Here is the code which does
it all and is a perfect example of how object orientated
languages work.

document.formcal.answer.value
eval(document.formcal.calculator.value)

We need to examine the above very care'ully. It looks
rather like a simple assignment statement:
and, indeed, that is exactly what it is.

eval0
On the right-hand side of the assignment operator there is a
special function eva 1 () which forms part of the core
JavaScript language. Why does it not begin with a capital
letter then, like Math and Date? It does not and must not
begin with a capital letter. Those are the rules! (You are not
going to win.)

Its purpose here is to convert its argument from a text string
into a mathematical format - a calculation. Oar user had to
type the calculation into a text box: " 742 / 4 -3"

Since there is no `TYPE=numbef for the <INPUT> tag, we
had to use:
<INPUT TYPE="text" SIZE="12" NAME="calculator".>

Text cannot be calculated, so we need a function which will
try to make sense of the text which is typed in and convert it
into an arithmetic expression. If words had been typed in,
rather than what looks like an proper arithmetic expression,
then the eval0 function would not be able to convert it. But it
does recognise numbers and arithmetic operators.

Now, this is an important bit. The following JavaScript code
looks like an assignment statement: x = y.

document.formcal.answer.value =
eval(document.formcal.calculator.value)

That is precisely what it is. Whatever is on the right-hand
side is assigned to whatever is on the left-hand side of the

62

assignment operator. So, we now need to examine what is
on the right side.

document.formcal.calculator.value

The argument of the eval function is better read from right
to left. as follows:

Evaluate: (the value of calculator which is a property of
formcal which is a Form property of the current document).

There are four boxes in the Form formcal: two are text -
boxes, one is a button which can be clicked, and one is a
reset button. Each has a value of its own. So we have to tell
the eval function wh ch one of the four we are referring to.
That is the purpose of the NAME attribute. We want to refer
to the value which belongs to the text box NAMEd
'calculator'.
<INPUT TYPE="text" SIZE="12" NAME="calculator'>

By giving names to hie various INPUT elements we are
able to refer to a speoi"ic element.

These elements are contained within FORM tags. But in
which Form is the ramed element calculator? I know we
only have one FORM tag, but we could have several forms
in our document or we may wish to add other Forms ater.
However, even if we have only one FORM, we still need to
NAME the form so that we can refer to it. So, we give our
Form a name, here, it is NAMEd as:

<FORM NAME="formcal">

Finally, because the FORM is a property of an object, we
need to specify its object, namely, the current document.

I hope this all makes sense because this is what
programming in an object orientated language is about We
wanted to evaluate the value of a specific INPUT element,
calculator, contained in the Form formcal which is a

property of the current document object.

63

(I hope the following will not confuse matters, but since
properties belong to objects and only objects can have
properties, in the above code formcal has to become an
object in its own right so that it can have its own property.
namely, calculator.

Likewise, calculator becomes an object with a property value.
This is really just a technical nicety. Properties cannot contain
properties, so the original property has to became an object
so that it can take a property. Thus, some properties can also
become objects in their own right.)

We should now be in a position to read the let -hand side of
the assignment operator with ease.
document.formcal.answer.value =

eval(document.formcal.calculator.value)

Very simply then we are assigning the evaluated result of
the eval() function to the value of:

"the current document's Form property (named formcal)
which has a property named answer (the second text
element) which has a value property of its own.)"

<FORM NAME="formcalm>
<INPUT TYPE="text" SIZE="12" NAME="calculator",
<INPUT TYPE="button" VALUE="Calculate"

onClick="calW>
<INPUT TYPE="reset" VALUE="Reset">

Answer:
<INPUT TYPE="text" SIZE="12" NAME="answer"
</FORM>

I think we need a rest! In the next section, we shall see how
to round the answer to two decimal places.

Jargon
argument: values which are passed to a function so that it
can process (do something with) them.

64

method: a term used in object orientated languages to
mean a function. Most objects have methods associated
with them as well as properties.

object: in object orientated languages, programmers work
with basic objects. Objects are manipulated by using Their
methods and properties. For example, the document object
can have its backgrourd colour property changed by giving
a colour value to the bgColor property:
document.hgColor = 'lightbluP'

property: most objects have properties which can change
their object in some way.

variable: a programming term which refers to where a
computer has stored a piece of data in its memory.
Variables can be passed as arguments to functions.

What you have learned
We have covered a Teat deal in this chapter and seen
what object oriented programming is all about. It is worth
studying carefully and may need several visits. When you
feel comfortable with the material in this Chapter you will
be well on the way to understanding how to program with
objects in JavaScript.

1. How to pass a variable as an argument to a function.

2. How to use the sqrt method of the Math object.

3. That the Math object is part of core JavaScript whereas
objects such as window and document are client -side
JavaScript which allow a programmer to work with a Web
browser.

4. The distinction between objects and their methods and
properties.

5. Why we need NAMEs for forms and INPUT but-ons and
text boxes.

6. How to use the evai0 function.

65

7. How to assign values to text boxes.

Test 4:
4.1 How can you find out what a user has typed into a
prompt box?

4.2 Why are arguments useful?

4.3 To what object does the sqrt () method belong?

4.4 Is the Math object part of core or clien:-side JavaScript?

4.5 Give one main reason for giving an INPUT element a
name attribute.

4.6 If you only have one Form and wish to refer to it, must it
be given a name attribute?

4.7 Why must an invoked function induce the function call
operator - - rather than just the functio I name?

66

5. Arithmetic in JavaScript

In this chapter, we shall look at some of the basic arithmetic
features of programming with special reference to

JavaScript.

Exercise 12: Rounding to two decimal places

Using Mattmound to round to two decimal pia... IPCI

011110111101111111111111111111K-.____
If you enter a calculation, you will be given the
answer when you click the Calculate button.

742/43

Answer: 17.26

ROUND -Ex 12. htm

MINIMMIUMMMIZTri_,
Here is the code without the <HEAD>.

<SCRIPT>
function rounding(x)
{ document.example.answer.value =

Math.round(x*100)/100

} // EoFN
</SCRIPT>
<BODY>
If you enter a calculation, you will
be given the answer when you click the
<I>Calculate</I> button.

<FORM NAME="examplem>
<INPUT TYPE="text" SIZE="12" NAME="calculatorm>
<INPUT TYPE="button" VALUE="Calculate"

onClick="cal()">
<INPUT TYPE="reset" VALUE="Reset"

67

Answer:
<INPUT TYPE="text" SIZE="12" ="answer"
</FORM>
<SCRIPT>
// A BAD PLACE to put this code. See Note 4.
function cal()
{

data.eval(document.example.calculator.value);
rounding(data);
//EoFn

</SCRIPT>

<ADDRESS>ROUND-Ex12.htm </ADDRESS></BODY>

Notes:
1. The function cal() has changed slightly from its use in
Exercise 11 in Chapter 4.
data = eval(document.example.calcula:or.value);
rounding(data);

We are now assigning the user's input (from the text
element calculator) to the variable data rather than
assigning it to a value of a text box. On the following line,
we call another function rounding(data) and pass the
input stored in data as an argument.
function rounding(x){
document.example.answer.value =

Math.round(x*100)/100;} :/ EoFn

But wait a moment, why is the rounding () function's
argument in the declaration now named x rather than
data? In all our previous examples, we 'lave used the
same name as the one in the invocation.

Dummy Arguments
We could use data here, but it is a common practice
amongst seasoned programmers to give the argument in
the declaration a different name. It is sometimes referred to
as a dummy argument. Although this may appear strange,
the reasoning behind it is very practical. During the
execution of the rounding function, the dummy argument

68

will take on the value of the argument passed to it by the
calling statement. In other words, "x" will become 'data".

Why is this so dramatic? Frequently, the same function
may be called from several places, each time with different
data variables to work on.

<SCRIPT>
function workhorse(x){
y x*10;
return y; } //EoFn workhorse

code ...
workhorse(datal)
workhorse(data2)
workhorse(data3)
code ...

</SCRIPT>

Each time workhorse(argument) is invoked, the
dummy argument 'x' in the declaration is replaced by the
argument of the invocation - datal, data2, data3. In

other words, you Jo not need three separate function
declarations each with its argument datal, data2 data3.

(See page 159 for a discussion about the return statement.)

These dummy arguments prove useful in yet other ways:

you may discover and wish to use a function in the source
code of some Web page you are looking at, such as my
rounding() function
or, you may wish to copy and paste one of your own
functions into another Web page you are creating rather
than having to type it out all over again

After you have copied and pasted the function into your
own Web page, all you would need to do would be to
create a function call and pass it whatever argument you
want, with your own names. You would not have to change
the names in the original function declaration.

2. Let us look at the main piece of code in the rounding
function of Exercise 12.

69

document.example.answer.value
Math.round(x*100)/100;

With our growing understanding of object orientated
programming, we can see that we are using the round
method of the Math object. This method rounds its
argument to the nearest integer, thus .? . 54 becomes
and . , becomes . However, that is no good
because we want to round to two decimal places, if and
when they exist. We can do so by multiplying r.: by 100,
rounding and then dividing the result by 100.

This result is then assigned to the value of the INPUT object
named answer which is a property of the Form (now an
object!) named example which is a property of the
document object. Is this beginning to make some sense?
document.example.answer.value

Math.round(x*100)/100;

3. Look at the following line in Exercise 12.
// A BAD PLACE to put this code. See Note 4.

The two forward slashes are a comment symbol. Whatever
follows it, up to the end of the line, is ignored by JavaScript.
In this way programmers can add comments to their code.
But what if you want more than one line for a comment?
You then have to use /* the comment *

/* first line of the comment
and another comment line
and yet a third comment line. */

4. But why is it not a good place to put the code?
Remember that the browser reads a Web page from top to
bottom. If it got as far as displaying the text buttons and
then had to go off to download a large image, an over
enthusiastic reader might start entering values and clicking
on the Calculate button before the remainder of the page
was fully loaded. Because the cal() function has been
placed at the end of the page, the browser may not have
had time to load that function and would be at a loss to

70

know what to do when the Calculate button was clicked.
The whole process wo_ild fail.

So the moral is, to keep all your functions before the
<BODY>. In that way, you can be sure that all functions
have been loaded ty the browser before the user has a
chance to start clicking on any button displayed via the
BODY tags.

Something you can do
Convert Exercise 10 in Chapter 4, so that it rounds the
square root to two dec mal places.

Arithmetic & Computers
What answer would you give to the following:

Computers can only pick up two values at any one time and
it does not matter hcw much you pay for your computer. All
computers are designed to work in that way. In the above,
the computer has been given three numbers. It can choose
only two to begin w th. The two it selects is based of the
rules of arithmetic which state that & have a lower
ranking than * or . So a computer would look at what is
between the numbers and would select 2 4 because that
has a higher ranking crder than 3+2.

It would work out that . *.; 8. The computer remembers
that there are more numbers in the original statement. so it
would next add 3 to the 8 to give 11.

If you were using a pocket calculator and typed in the
above formula, you would get 20 as the answer. The
reason for this is that the first two numbers input would be
3+2 and when you pressed the multiplication symbol, the
calculator's computer would evaluate those two numbers
(giving 5) before coitinuing to obey your next key strokes.
Thus, *.i would become 20.

In programming, in order to force a computer to evaluate
numbers in some other order. you can surround any part of
a calculation in bracKets (often called parentheses). Any

71

expression in brackets is always evaluated before anything
else. Those are the rules of arithmetic.

Thus: (3+2) *4 = 20 . 4* (3) would also equal 20.

You need to be in control of the order in which you want
your numbers calculated. After all, it is your formula and if
you wanted the answer to become 20, why not?

Priority Levels
1 - Highest
2

3

4 - Lowest

Arithmetic o
)

e

rentheses
nentiation 3

rators

4

The eval() method
1. In the previous chapter, we said that the eval method
tries to make sense of any numbers and arithmetic symbols
it comes across as its argument and 'converts' them into
arithmetic expressions. What the eval() function actually
evaluates are JavaScript statements:
data.eval(document.example.calculator.value);

The above argument is a JavaScript statement, so. too, is
the following: eval (x 4 "+ 100")

2. If eval() is a method, like round(), where is the object to
which it belongs? The eval method belongs to all objects,
that is why it is a special method, unlike most other
methods which belong to one particular object. Thus,
writeln() can only belong to the document object, alert() only
to the window object.

If the object is omitted from eval(), the string of JavaScript
code is evaluated without regard to any object.
Consequently, it can be used by itself, as we have done,
without associating it with a specific object.

round is associated only with the Math object which is why
Math must be included: x = Math. round (data)

72

Hmm! So that is why it takes so long to become really
familiar with JavaScr pt, or any language. Each one has its
own quirks and seems to change the goalposts at almost
every turn. All beginners have to go through this learning
curve. You are not the only one to suffer.

Exercise 13: Distanc? Learning
Here is a simple distance learning example. We shall ask
the user to type in the calculations shown. When the user
clicks the Calculate button. the answer will be given. We
trust that the user will work it out manually first and then
check his/her results with the computer's answer.

A simple Distance Learning Example. - Netscape

File Eat Yew tiet,

Try the following y0%1 will be oven the answer when you click
the Calculate button But work out what the answer should be
hefore chcking the Calculate button

5*4+3

5*(4+3)

5*/-4-3+5*4

(5*2)+(3+5)*4

((5*2)+(3+5))*4

5*(2+3)+(5*4)

5*((2+3)+(5*4))

15*2+31-5*4 Calculate I Reset

Answer: 13 3

RF (Document. - :11, 14i dc) r-4

We could make sure that the user types in an answer
before showing the computer's result. We coulc also print
out a score at the end. However, we would need to
understand some of JavaScript's p-ogramming features
(Chapter 8) before being able to program those facilities.

73

Here is the code without the <HEAD>:

<SCRIPT>
function cal(){
document.example.answer.value=

eval(document.example.calculator.value)
// EoFn

</SCRIPT>
<BODY>
 Try the following: you will be
given the answer when you click the
<I>Calculate</I> button. But work out what
the answer should be <I> before </I>
clicking the Calculate button.

<TABLE>
<TR>
<TD>5*4+3
<TR>
<TD>5*(4+3)
<TR>
<TD COLSPAN=2> 5*2+3+5*4
<TR>
<TD COLSPAN=2> (5*2)+(3+5)*4
<TR>
<TD COLSPAN=2> ((5*2)+(3+5))*4
<TR>
<TD COLSPAN=2> 5*(2+3)+(5*4)
<TR>
<TD COLSPAN=2> 5*((2+3)+(5*4))
</TABLE>

<FORM NAME="examplen>
<INPUT TYPE="text" SIZE="12" NAME="calculator"
<INPUT TYPE="button" VALUE="Calculate"

onClick="cal()">
<INPUT TYPE="reset" VALUE="Reset">

Answer: <INPUT TYPE="text" SIZE="12"

NAME="answer"
</FORM>

<ADDRESS>Arith-Ex13.htm </ADDRESS>
</BODY>

74

Notes:
If you have been following the previous scripts, the code
should be quite easy tc follow.

The user is invited to type in one of the calculations. When
the Calculate button is clicked, the event handler invokes
the cal() function. This function evaluates the user's entry
and assigns it to the value of the text box NAMEd answer.

If the user mis-typed a calculation, say a missing bracket,
Netscape will not respond. Internet Explorer, on the other
hand, will display an error message. A friendly program will
always attempt to trap user's errors itself without leaving it
to the browser. An example is shown in Exercise 21,
Chapter 9.

Jargon
distance learning: VI this context, it means presetting
teaching material to users who are not siting .n a
classroom but who access the WWW in order to learn. A
web page could interact with the user via JavaScript

dummy arguments: an argument which is used within a
function but which has no identity until the function is

invoked by a functicn call. That call will have a real
argument which is passed over to the function and used in
place of the dummy argument.

parentheses: brackets surrounding part of a calculation
which you want to be computed before any other cart.

What you have learned
1. That seasoned programmers tend to use dummy
arguments. They can copy and paste functions from other
programs without having to alter the original function code.

2. It is wise to place all functions before the <BODY> part of
an HTML page. In that way, you are sure that they have all
been loaded before a user can begin clicking buttons which
may have associated event handlers.

75

3. Computers are designed to calculate only two numbers
at a time. When presented with more than two, computers
follow the rules of arithmetic when determining which two
numbers to calculate first.

4. Before entering a calculation, a programmer needs to
work out in advance the order in which tie numbers are to
be calculated.

5. Entering calculations into a program is not the same as
entering numbers into a pocket calculator. One has to
make a mental adjustment when usirg arithmetic with
computer programs.

What is next:
In the next section we shall change an image on an existing
Web page when a user clicks a button. We shall then look
at some JavaScript programming features because until we
know some of the basic features we really cannot do very
much. We shall learn how to use the IF -ELSE statement to
make choices based on what a user has typed.

Test 5:
5.1 What is a dummy argument and why is it useful?

5.2 For the following : 5 + 4 * 2 + 3

a) What result would be given by a computer'?
b) What result would be given by a pocket calculator'?

5.3 Why are comments used by programmers?

5.4 How do you create a single line comment?

5.5 How are multiple line comments created in JavaScript?

5.6 Convert Exercise 10 in Chapter 4, so that it rounds the
square root to two decimal places.

5.7 How many errors can you find in the fcllowing script?
function dothis(sqroot) {

x = Maths,round(squroot);
document.write("The square root of: "

+ squroot + " is: " + x)
}

76

Why do we use
more

The following symbols
usual arithmetic symbols?

instead of the

Arithmetic operators
() parentheses
^ exponentiation 34
* /

+ -

Back in time, during the 1940's, when computers were
first being designed, the character set used was very
restricted.

26 letters of the alphabet uppercase only!
10 digits 0 - 9
13 special symbols - * / ' () , = S

: space

The nearest symbol that 'looked like' multiplication was
the asterisk. The forward slash was used for division as
in 1 / 2.

The circumflex symbol (^), now used by many
programming languages to mean exponentiation, is a
comparative newcomer. The Fortran programming
language still uses two asterisks for exponentiation.

Even today, the £ symbol can confuse some programs,
such as e-mail programs, and will display strange
looking things instead of the sterling symbol.

77

78

6: Using JavaScript with Images

Exercise 14: Change an Image

This is a simple example of how to change one image for
another when a user clicks on a button. It will be extended
in Exercise 15, so that when a user moves the mouse over
an image it changes to another image and when the user
moves the mouse out of the replacement image. the
original is re -displayed. Using a mouse has the advantage
of being able to returr to the original image without the user
having to click another button. Here is the code for the
simple button click change of image.

<HEAD>
<TITLE>1MG example<(TITLE>
<SCRIPT LANGUAGE = Javascript>
function Change Image(){
document.imgl.src = "images/Geek-2.gif"
document.forml.geek.value

= "well, its cold in Iceland."
} // EoFn
</SCRIPT>
</HEAD>

<BODY>
<CENTER>
The <I>Summer Plumage</I> of the

"Great Crested Geek bird".

<FORM NAME="formlr>

<INPUT TYPE=button NAME="geek"

VALUE="See my Winter Plumage"
onClick = "ChangelmageW>

</FORM>
<ADDRESS>Image-Ex14.htm</ADDRESS>
</CENTER>
</BODY>

79

311,41J Inleinrl I xploitlrr

The Summer Plumage of the
"Great Crested Geek bird".

Image -Ex 14. htm

3 IMG example - Microsoft Intern... PI

80

Notes:
1. Both images were created in PhotoShop and saved in a
sub -folder called "images". When the page is loaded (;E-i -

1 . gi f is displayed.
<IMG NAME="img1" ERC="images/Geek-l.gif"

2. Although there is one Form on this page, it has been
given a NAME so that it can be referenced as a property of
the document object in the Changelmage() function.
<FORM NAME="forml">
<INPUT TYPE=button VALUF="See my Winter Plumage"

onClick = "ChangeImage()"-
</FORM>

Likewise, the tag has a name so that it can be
identified as a property of the document object. It has its
own property

function ChangeImage()(
document.img/.src = "images/Geek-2.gif"
document.forml.geek.value

= "Well, its cold in Iceland."
} // EoFn

3. When a use- clicks on the button, the
changeimage(ifuncion is invoked and the image is

replaced by the new oie.
document.imgl.src = "images/Geek-2.git"

"the ..rc of the image tag named Img1 (which is a
property of the current document) is assigned the value
Geek-2.gif which is n a sub -folder called images ."

This is how an image can be changed when a user clicks a
button and provides an example of why people use
JavaScript. It allows a web page to be changed so that it is
no longer a static page, like a page in a book. Geek-l.gif
is replaced by ;eek-2.gif.
Note too that the value of the I. HK button is changed -
from "See my Winter Plumage" to "Well. its cold in Iceland."

81

This is what is meant by dynamic HTML. Via JavaScript
pages can be changed.

4. Both images should be the same size otherwise
distortion will occur in Netscape. The size of the new image
will be forced into the same space as the original. (See
Exercise 15.) However, Internet Explorer allows a new
image to retain its own size. This illustrates. yet again, the
need to test your JavaScript code with both browsers to see
whether there are any idiosyncrasies between the two.

Exercise 15: Swapping between images
In this exercise, we shall see how to change one image for
another and then how to return to the original. This is done
with two other event handlers - onMouseOver and
onMouseOut. These two events, however, cannot be used
with a form button. They have to be used with the <A> tag.

JavaScript refers to this tag as a link rather than an anchor
tag which is what it is known as in HTML. The reason for
this, is that the two event handlers can also be used with
the <AREA> tag when creating hot -spots fo image maps.
The AREA tag is also a link to some other reference.
Consequently, JavaScript uses the word link to include both
the <A> and the <AREA> tags. Here is the code without the
<HEAD>:

- Responding to mouse movements - Netscape

Move the mouse over the phrase to
see a photograph.

SEE MY PHOTOGRAPH

Swap P-kiage-Ex 15. htrn

iit F;i1); 1

82

<SCRIPT LANGUAGE= "JavaScript"
function ImgOver() {

document.imgl.src = 'images/mari.gif'} //EoFn

function ImgOut() {

document.imgl.src = 'images/photol.gif'} //EoFn
</SCRIPT>

<BODY><CENTER>
<FORM NAME = "forml"
Move the mouse over the phrase to

see a photograph.

<A HREF="" onMouseOver = "ImgOver()"

onMouseOut = "ImgOut()" >
<IMG NAME="img1" BORDER=O SRC =

"images/photol.gif"
</CENTER>
<ADDRESS>SwapImage-Ex15.htm</ADDRESS></BODY>

When the mouse is moved over the image, the follow ng is
shown. Note how it is distorted in Netscape (next page) but
not in Internet Explorer (see below).

3 Responding to mouse movements - pima
Ede Edit View Rio Fgvorites help

Move the mouse over the 1.)u-ase
to see a photograph.

'

Swap Image -Ex 15. htm

J11.11111111111111111111111111111114

83

Note: Since we are using an <A> tag, we need an HREF
attribute. However, the value of the attribute is set to blank
since we do not need to load another page. Netscape will
not work without the blank HREF, but Internet Explorer is
happy to play the game.

;1" Responding to mouse movements - Netscape pwrrf

E Yew ao communicator Help

Move the mouse over the phrase to
see a photograph.

SwapImage-Ex15.htm
PIP

When the user moves the mouse out of the picture, it

returns to the original state. You may be thinking of many
situations in which this could be useful.

Exercise 16: Changing colours on Mouse Over & Out

The onMouseOver/Out event handlers are especially useful
for lists (contents, index, etc.). In the following Web page,
each item in the list is an image containing a small blue
cube plus some text and saved as a transparent GIF file. A
second set was created but with a red cube and the same
text. (If you have used any image processing package, you
will know that it takes just a few minutes to create all six -

three blues and three reds.)

As a user moves the mouse over any of the items in the list,
it changes colour by calling up the red image file. When the
mouse moves out of the image, it returns to the blue image.

Here it is. You cannot see the changes in black and white,
but if you test it on your screen you will. The Wnere we are
is in a different 'colour' to the other two.

84

3 Responding to mouse movements - marlin

A Home Page

 Who we are
What we do

 Where we are

OVER -Ex 16. htm

</HEAD>
<SCRIPT LANGUAGE= "JavaScript">

function ImgOverl()
document.imgl.src = "images/who2.gif"

}

}

}

function ImgOutl()
document.imgl.src = "images/whol.gif"

function ImgOver2() {

document.imgl.src = "images/what2.gif"

function ImgOut2()
document.imgl.src = "images/whatl.gif"

function ImgOver3() {

document.img3.src = "images/where2.gif"

function ImgOut3()
document.img3.src = "images/wherel.gif"

</SCRIPT>

85

<BODY>
<CENTER>
<H3>A Home Page</H3>
<FORM NAME="forml">
<A HREF.""

onMouseOver = "ImgOverl()"
onMouseOut = "ImgOutl()">

<BR
<A HREF=""

onMouseOver = "ImgOver2()"
onMouseOut = "ImgOut2()">

<IMG NAME="img2" BORDER=O SRC="images/whatl.gif"

<A HREF=""

onMouseOver = "ImgOver3()"
onMouseOut = "ImgOut3()">

<IMG NAME="img3" BORDER=O
SRC="images/wherel.gif"

</FORM>
</CENTER>
<ADDRESS>OVER-Ex16.htm</ADDRESS>
</BODY:,

Notes:
1. Notice that we have NAMEd the three images so that the
relevant function can refer to each one.

2. Since the onMouseOver and onMouseOut event
handlers are used, we need <A> tags.

3. Although it seems that a great deal of typing was
necessary, most of it can be done with a quick copy and
paste followed by changing just a few words.

Jargon
dynamic HTML: those features of HTML version 4+ which
allow the content of a Web page to be changed. In this text
we use JavaScript to alter a page's content. This is in
contrast to static Web pages containing conventional HTML
where the content cannot be altered.

86

link: JavaScript refers to both the <A> tag and the <AREA>
tag as links, since both can be used to load other web
documents. Both tags can use the onMouseOver/Out
handlers.

transparent GIF: a GI= image (Graphical Image Format) is
one of two main in -age formats which web browsers can
recognise and display. (Browsers cannot display tiff, psd,
pcx images, for example.) Many image processing
packages allow an image in one format to be saved as
either GIF or JPEG files. JPEG is the other main browser
image format (Joint Dhotographic Experts Group).

A GIF image can De made transparent so that the
background shows hrough any irregular border rather than
being boxed into a rectangular frame.

Usisg some 'mopeds pi FT TT

;;

Month of December

Dec ember

11111P1101111M11

What you have learnt

1. How to use the onMouseOver and onMouseOut event
handlers. These are used with the <A> tag, not with the
usual INPUT elements such as buttons.

2. These two event handlers are trapped whenever a
mouse moves over or out of the hype -text or image within
the <A> tags.

87

3. When swapping one image for another, the Netscape
browser forces the second image into the same size border
frame as the first one. So, both images must be the same
size to avoid distortion. IE is more tolerant and will resize
the remainder of the page to accommodate the size of the
new image.

4. Using the onMouseOver and onMouseOut event
handlers avoids asking users to click buttons in order to
achieve some desired effect. When using event handlers,
we now need to think about whether we want a user to click
a button or to move over an image.

5. If an onMouseOver event is used, an appropriate
onMouseOut event is frequently required to take into
account what should happen when the user moves the
mouse out of the image.

Test 6:
6.1 Can the HTML tag be a property of the
document object?

6.2 How can one image be replaced by ancther image in
JavaScript?

6.3 What happens in Netscape if the image which replaces
another is of a different size to the one it replaces? Will the
same thing happen in Internet Explorer?

6.4 Can the onMouseOver event handler be used with a
text box INPUT element?

6.5 With which HTML tag are the onMouseOver and
onMouseOver event handlers associated with?

6.6 What user event will the onMouseOut event handler
trap?

88

7. Creating dynamic Web pages/

If event handlers car be used to display one image for
another, why not get them to display a separa-.e window
when, for example. a button is clicked or the mouse is
moved over a phrase? One such Jse could be for a
contents list or index of short phrases. When a user moves
the mouse over one, another window pops up with more
explanation. We could use an alert box, but they tend to
become irritating and we have no control over the
formatting of the text.

Exercise 17: Changing to a new Window

In this exercise, we shall open a new window when a button
is clicked and load an existing web page into it. To open a
new window simply use the following:

window.open("new_webpage.htm")

<HEAD.
<TITLE> Opening a second window. </TITLE>
<SCRIPT LANGUAGE = JavaScript>

function openWindow()
{

window.open("BGCOLOR-Ex5.htm")
} // EoFn

</SCRIPT>
</HEAD>

<BODY><CENTER>
<H3>Opening a new window.</H3>
<FORM>

<INPUT TYPE="button"

VALUE "Click to Open a new window"
onClick="openWindow()"

</FORM>
<ADDRESS>OpenWin-Ex17.htm</ADDRESS>
</CENTER>
</BODY>

89

x'4', New window example - Nelscape

Opening a new window.

11111111111111101111111111111

OpenWtn-Ex17.htm

Notes:

1. When the button is clicked, the event handler will open a
new window and load the associated web page into it. In
our case, the open Window function will load one of our
earlier web pages, the one that offers a choice of
background colours.

2. The new window, containing BGCOLOR -Ex5 . htm, is the
one which can have its background colours changed, but
will not change the window which opened it.

3. Why not simply use an <A> tag?:

<A HREF="BGCOLOR-Ex5.htm" click me

Well, what we shall see in the next exercise is that rather
than having to make an extra trip to retrieve the web page
over the Internet, we can use a function to write HTML code
into the new window. This will speed up the whole process
since the web page will be 'created' by the client's own
computer. Otherwise, we would prefer to use a simple <A>
tag.

Exercise 18: Creating a new window on the fly

When a button is clicked, we shall create a new window
and write an HTML document into it, complete with its own
background colour. Here is the code without <HEAD> tags.

90

<SCRIPT>
function multselections(){
var win = window.open("",null,"height=400
width=500 statue=yes resizable=yes");
win.document.write('<BODY BGCOLOR='D5EAFF'>"
+ u<H4>How to Select Messages.</H4>"
+ '<P>To select <I>one </I> message, click it.'
+ '<P>To select a group of <I>consecutive </I>"
+ 'messages, click the first and whilst holding"
+ 'down the Shift key, click the last one."
+ "<P>To select messages <I>out of sequence</I>,"
+ ' click the first and for subsequent messages"
+ " hold down the Control key and click.'
+ "<P>"
+ ' For the really smart ones, you can combine'
+ ' Shift & Control to select groups of
+ " consecutive messages which are out of"
+ ' sequence.<P> <CENTER>'
+ "<I>Close this window once you have read the'
+ " content.</I> +</CENTER>"
+ "<FORM> <INPUT TYPE=button VALUE='Close Me!' "

+ "onClick='self.close()'> </FORM>");
} // Boni
</SCRIPT>

<BODY BGCOLOR="cccc99" <CENTER>
<H3>Selecting Messages</H3>
You can select multiple messages (using
<I>Shift</I> and/or <I>Control</I>, click button
below for details) <I>continue with
paragraph</I>
<FORM>

<INPUT TYPE=button
VALUE = "Making multiple selections."
onClick="multealections()".>

</FORM><ADDRESS>NEW-WIN-EX18 </ADDRESS>
</CENTER>
</BODY>

Once the button 'Making multiple selections' is clicked, a
new window appears. We shall now examine the code
which produces the new window.

91

4",- New Window - Netscape

Eie Edit View go Communicator tielp

Selecting Messages
You can select multiple messages (using Shift ancl.`or

Control, chck button below for details) ... contKue

with paragraph ...

Making multiple selections

NEW- WIN-EX1 8

Netscape 1111:113

How to Select Messages.

To select one message, click it
To select a group of consecutive messages, click the
first and whilst holdingdown the Shift key, click the last
one

To select messages out of sequence, click the first and
for subsequent messages hold down the Control key
and click.

TFor the really smart ones, you can combine Shift
& Control to select groups of consecutive

messages which are out of sequence

Close this window once you have read the content.

Let us look at the arguments of window.open before we
examine our code.

92

window. open()
It contains four arguments, although we have used but
three.
window.open (url, name, [features, [replace]])

url: is a string value containing the web address o' the
document to be fetched and opened by the window object.
that was the only argument we used in the earlier example.

window.open ("BGCOLOR-Ex5.htm")

It fetches the web page referenced or opens a new blank
window if the argument is empty (" "). It can be a complete
or partial web address.

name: this argument can be used as The window name to
use in the TARGET airibute of a <FORM> or <A> tag. If

none exists put in 7 . . (If you are inTo frames, this could
be useful.)
features: specifies what features of the browser you want in
the new window.

(Notice that both the features and the replace
arguments are in square brackets.
[features, [replace] 1 . In many reference texts,
the square brackets signifiy that those arguments are
optional.)

toolbar: Back and Forward buttons, etc.
location: the URL location field
directories: What's New, What's Cool, etc.
status: the browser's status line
menubar: the menu at the top of the window
scrollbars: enables scrollbars when necessary
resizable: allows the window to be resized
width - height: the windows dimension in pixels

(My version of Netscape does not seem to acccmmodate
width/height nor resizable. It seems to restrict the size of the
new window to the size of the window which opened it!
Rather like a second image, it cannot be larger than the first
image it replaces. 1E, on the other hanc, behaves better.)

93

When the features string argument is absent, the new
browser window has all the standard features. When
specified, the window browser includes only those features
specified. Features may be specified by yes or no or with
digit 1 (yes) or zero (no).
window.opon("", null,"height.400 width=500

;tatus=yes resizable=1");

replace: an optional Boolean value (true or false) which
allows new entries to be made to the Browser's history. It

does not make much sense to use this argument for newly
created windows. It is intended for use when changing the
contents of an existing window. We shall ignore this
feature.

Now let us examine our own code.

Notes for Exercise 18:

1. First of all, there is:

var win = window.open("",null,
"height=400 width=500 status=yes
resizable=1");

win.document.write("<BODY BGCOLOR='D5EAFF'>"
+ "<H4>How to Select Messages.</H4>" .. etc ..

This code creates an instance of the open method of the
window object and assigns it to a variable In other
words, it creates a new window called r.. We have to
assign the new window to a variable because we need to
use the document.write() method to write our HTML code.
But because there are now two windows, the original
window and this new window, we must specify which
window to write into. We can refer to the new window via
the variable

A new window object is assigned to t.. It has an empty
url, in which case, a new blank window will be opened. It is
not destined to become the value of a frame or form target
attribute. so the second argument is set to f..i .. Its
features are:

94

width and height of 400 x 500 pixels (Netscape none too
happy with this)
we allow the user to resize the window if he/she desires
finally, we have included the status bar

All other features wh ch are not specifically mentioned will
not be included.

3. What is in the next piece of code?:

win.document.write('<BODY BGCOLOR='D5EAFF'>"
+ "<H4>How to Select Messages.</H4>"
+ "<P>To select <I>one </I> message, click it."
+ "<P>To select a group of <I>consecutive </I>"
+ "messages, click the first and whilst holding"
+ "down the Shift key, click the last one."
+ "<P>To select messages <I>out of sequence</I>,"
+ " click the first and for subsequent messages"
+ " hold down the Control key and click."
+ "<P>"
+ " For the really smart ones, you can combine"
+ " Shift & Control to select groups of"
+ " consecutive messages which are out of"
+ " sequence.<P> <CENTER>"
+ "<I>Close this window once you have read the'
+ " content.</I> +</CENTER>"
+ "<FORM> <INPUT TYPE=button VALUE='Close Me!'
+ "onClick='self.close().> </FORM> </CENTER>"
); // Closing write bracket

1 // EoFn

It is the write() method of the , :. document object and it
contains all the HTML code we wish to cisplay. (Remember

:. is the name of tie variable we assigned to the rew
window).

What is so wonderful about this? Well, instead of getting a
user to click on a ,A IiREF="u/ I", hypertext, thereby
forcing the browser tc use the Internet to retrieve a copy,
our page will be crea-.ed on the fly by the browser at the
client -side. I used th s page three times in one of my
documents. This meant that the browser could generate the
page each time without having to use the Internet.

95

4. It is important to remind your readers to close this new
window before moving back to the original. If it is not
closed, it remains open and can cause problems. For this
reason, we have added a button which the user can click in
order to close the new window. Here is the code:
+ "<FORM> <INPUT TYPE=button VALUE='Close Me!' "

+ "onClick.'self.close(P> </FORM> </CENTER>"

Do note the correct use of double and single quotes!

close () is a method of the window object. It takes no
arguments. Its purpose is to close a window. self and
window are synonyms for 'the current window'. So, either
self .close () or w Lndow . c- 1 oL;e () could be used.

Since close() is also a method of the document object, we
had to specify that it was a window that hac to be closed.
Either of the above will close the current window.

Exercise 19: Using onMouseOver & onMouseOut

New Window - Netscape

Selecting Messages
You can select multiple messages using Shift andlor
Control (Move your mouse over the phrase below

for details.) ... continue with paragraph ...
How to select Multiple Messages

Win -Mouse -Ex 1 9.htm

We shall repeat the previous exercise but use mouse event
handlers. They are sometimes more effective.

96

<SCRIPT>
function removewindow()(
win.close()

} //EoFn

function multselections()(
win = window.openl"",""," height=400, width=500,

status=yes, resizable=l");
win.document.write("<BODY BGCOLOR='DSEAFF'>"
+ "<CENTER><H4>How to Select Messages.</H4>"
+ '</CENTER>"
+ "<P>To select <I>one </I>"
+ "message, click it."
+ "
To select a group of <I>consecutive </I>"

as before
as before

} //EoFn
</SCRIPT>

<BODY BGCOLOR="D5EAFF"
<CENTER>
Selecting Messages

You can select multiple messages using
<I>Shift</I> and/or <I>Control</I>.
(Move your mouse over the phrase below for
details.)
<I>continue with paragraph</I>

<A HREF="" onMouseOver="multselections()"

onMouseOut = "removewindow()">
How to select Multiple Messages

<P>
<ADDRESS>Win-Mouse-Ex19.htm </ADDRESS>
</CENTER>
</BODY>

Notes:

1. Since onMouseOver and onMouseOut are event
handlers of the <A> tag, the user will have to move the
mouse over and out of some hypertext words in order to
generate these events.

97

2. When the user moves over the hypertext words, the
onMouseOver event handler will create the new window.
When the user moves out of the phrase, the onMouseOut
event handler will close the window. So we can dispense
with the Close Me button in the new window and replace it
with the removewindow () function which is invoked by
the onMouseOut handler when the user moves the mouse
away from the hypertext.

3. Finally. there was no requirement to encase the <A> tags
in a FORM since we did not need to refer specifically to the
form.

What you have learnt

1. You can create new windows (as opposed to pop-up
boxes - confirm, alert and prompt) with whatever text and
HTML tags you wish. Pop-up boxes allow just text entry.
You cannot format that text by including HTML tags.

2. By creating your own windows, the browser does not
have to connect to the Internet in order to display a copy of
the page. It saves time!

If you think about it, you may find this sort of feature useful
in many distance learning environments. If someone is not
sure about a term being used, rather than spell it out to all
those who already know it thus wasting their time in having
to scroll past it, invite your readers to click on a button or
move their mouse over the term to reveal further details.

3. When using onMouseOver, it is often necessary to
include a complementary onMouseOut handler to describe
what to do when the mouse is moved out of the phrase or
image contained within the <A> tags.

4. We have seen the relative merits of using onClick and
onMouse handlers to create new windows.

5. The onMouse handlers may be used with either text or
images encased within their <A> tags.

98

6. By using window.f:lose() or se/fdose0 we are able to
close a window which has been opened.

Jargon
None. thank goodness!

What is next:

In previous chapters. we have examined some of the things
we can do with JavaScript, such as:

write out messages
use pop up boxes
create event handlers to execute functions
pass relevant data as arguments to functions
perform calculat oqs
replace images
create our own windows

Now we need to extend our knowledge of the JavaScript
programming language so that we car do more. In Chapter
8. then, we shall examine the programming features of
JavaScript so that we can begin to do such things as:

validate Form inpLt
create order forms and calculate customer invoices
animate images
work with dates and time
create cookies

Test 7:

7.1 How many arguments does the window.open() method
take?

7.2 If you do not want to open an existing HTML document
in a new window, is it still necessary to include the first
argument?

7.3 In the following code, why is : . not in quotes?

var win = window.open(*",null,
"height=400 width=500 status=1
resizable=yes status=0");

99

7.4 Why was it necessary to assign the new window object
to the variable : in Exercise 18 &19, but not n Exercise
17?

7.5 What do you think would happen if you were to use
window rather than win in the removewindovv function for
Exercise 19?
function removewindow()
{

window. close()
} // EoFn

It has not been discussed in the Chapter, but see if you can
work it out before looking at the answer. You will need to do
this kind of investigative work when writing your own
programs.

100

Summary of JavaScript so far:

Object: Its Methods its Properties -1
window
disnessIds

alert()
confirm()
prompt()
open()
close()

document
aint4d0

write()
writeln()
close()

bgColor
many HTML tags,
e.g. forms,
images, anchor

Maths
COI,

sqrt()
round()

All objects eval()

Operators Purpose Example
= assignment x = x + 1

+ arithmetic addition 1+2

+ concatenate 'a' + 'b"

() function call function abc ()

{) embed function
code

Event Handlers
onClick used with FORM'S

text box, button
onMouseOver
onMouseOut

used with <A> and
<AREA> tags

Keywords Meaning
null special value indicating 'no value'
undefined special value indicating 'does not exist'
var defines a variable name

101

Escape Sequences

The backslash character () provides a special purpose in
JavaScript strings. It is followed by a character or a number
and is called an escape sequence. For example, suppose I

wish to write out via a document. write or alert box:

Read this play: "Macbeth".

alert("Read this play: "Macbeth".")

The second double quotes would be taken as the closing set of
the first and would confuse the browser. However, by using an
escape sequence, we bring to the attention of the browser that
the second (and third) double quotes are used in a special way.
alert("Read this play: \"Macbeth\".")

The backslash 'escapes' from the usual interpretation of the
character. In the above case, it will write out double quotes
before and after Macbeth rather than interpret them as
containing a string.

Sequence
\b

\n

\r

\t

\'

\"

\\

Character
backspace
newline
carriage return
tab
apostrophe
double quote
backslash

\ \ xnn where nn is a hexadecimal number representing a
character from the Latin 1 encoding. x indicates a
hexadecimal value.

alert("Hallo. \r I\'m Fred \xAE \t \\ \\my
name has been registered.")

AE is ®.
A9 is ©
A5 is V.
BD is 1/2.
E8 is 6, etc.

Microsoft Internet Explorer

Halt.
I'm Fred 0

102

\ \ my name has been registered

8:
Programming with JavaScript

In this chapter we shall begin to examine some of the
programming features of JavaScript ard to understanc the
jargon. Some more features are discussed in Chapter 14.

Our natural languages have different character sets:
English has 26 letters; Italian has 20 characters similar to
our own; Greek and Cyrillic languages have characters
which look different to our own.

Likewise, each programming language has its own 'feel'
and rules, although all have features which are similar.
JavaScript is similar to C and Java, but is different to some
other languages such as Fortran, Pascal or COBOL.
However, all programming languages comprise the
following basic features:

creating, storing ard moving data
input and output of data
making decisions
repeating instructions

In practice, there is rot a great deal to the basics of
programming. The four features above summarise the
whole of programming. They can all be learnt in a few
hours. But what does take time and effort is practice and by
practising gaining experience.

So what follows is not difficult - perhaps a new way of
thinking for those who have not programmed before - but
you will need time to put it into practice.

(This is why many firms advertising for programmers want
someone with a minimum of six to twelve months experience.
First. because if you have not been 'let go' by your company
before six months, you have programming potential. Secondly,
after about a year's practice. you will have gained sufficient
experience to be useful tc your new employer.)

103

Each programming language has a set of rules (the syntax)
whereby it can recognise and differentiate oetween such
things as numbers and text. There are specific rules for:

how decisions are made
how to repeat a series of instructions
how to create variable names
indeed, how to write numbers

For example, we have already seen that case is significant
when using variable names, thus a variable ABC is not the
same as a variable abc or aBc. Likewise, document is
correct but not DOCUMENT.

When using numbers, 123 signifies a decimal number,
whereas 0123 would indicate an octal number and 0x123
would signify a hexadecimal number. We shall not discuss
octal and hexadecimal numbers in this text since their
usage is left to more advanced programming.

Programming features of JavaScript

1. Data

1.1 Data types
Data may be numbers, text, or Boolean values (true and
false - 'yes' or 'no'). The latter are mainly used to make
decisions and whether to repeat instructions.

Numbers
is called an integer (a whole number) because it has

no decimal places whereas ; is a real number
(sometimes called a floating point) because it does have a
decimal point and digits after it.

There are also octal and hexadecimal numbers which are
used in certain circumstances. Octal .;base 8) and
hexadecimal (base 16) need to be specified in a different
way so that they can be distinguished from decimal
(normal) numbers.

104

octal: 0123 would be recognised as an octal number
because of the leading zero. This implies that normal
decimal numbers must not be preceded by zeros.

hexadecimal: These numbers need tc be preceded by Ox

(a leading zero) and the digits used are 0-9ABCDE
F. Thus: OxE = decimal 14. Case is not significant,
therefore, OXE is the same as oxe.

Text
In programming, any piece of text is usually called a string
(a string of characters). They are enclosed in double quotes
or single quotes and are sometimes referred to as 'quoted
strings'. Thus:

"The cat sat on the mat" is a string. Likewise,
" 123 " is a text string, not a number, because it is enclosed
in quotes.

Boolean Values
With some features, such as 'if.. else', it may be necessary
to test whether something is true or false. These are known
as Boolean elements (after George Boole who first used
them in conjunction with Boolean algebra). They take one
of two values, true or false:
x = true; result = false;

We can see an example on page 111, Exercise 20.

1.2 Variables - Storing Data
We have already seen examples of how variables are
used. They contain values: numbers, text or Boolean.
However, in JavaScript case is significant. This means that:

var ABC = 12 is not the same as var abc = 12.

Rules for Naming Vanables
Variables are also known as identifiers. When creating a
name for them you must abide by these rules:

A variable name must begin with a letter, a $ or an
underscore (). The latter two are sometimes used by

105

programmers when they wish to draw attention to a
particular use of a variable, otherwise, most variables begin
with a letter. The subsequent characters in the variable
name may consist of digits and other letters but spaces are
not permitted.

Variable names must not be the same as reserved words.
These are words which have a particular significance to
JavaScript and form part of the language syntax. We have
met many, such as return. function, close open, Math.
document, window. etc. These cannot be used as
identifiers.

Case
Because JavaScript is case sensitive, AbC. abc. ABC
would be seen as three totally different identifiers. Here are
some valid examples: Numberl , number2 , number_3,
_number4 , $number. It is customary to keep all variable
names in lowercase, unless you wish to draw attention to a
particular variable.

Certain reserved words have their own special case identity
which, if not strictly adhered to, JavaScript will not
recognise. We have already seen that eval() and alert()
have a different case to Math. Date is another one we shall
meet in Chapter 10.

Intercapping
JavaScript allows for intercapping. This is when some
characters in the middle of a word are in uppercase. We
have already met several: onClick, onMouseOut, and so
on. Since these are attributes of HTML tags, their case is
not significant. However, it is customary to type them as
shown.

Variables are automatically created when assigning a value
to them: abc = 12 ;

Here the variable is declared and also initialised by
having the decimal value 12 assigned to it. Whereas, var

106

abc; is declared but not yet initialised - it would be
undefined.

ABC = "Hallo there! " The variable ABC is created
and assigned the string value "Hallo there!"

Scope of variables
If you precede a variable name with the keyword var and it
is used within a given function, then it becomes local to that
function. In other words, if the same variable name is used
in another function, it will not be the same one. If the
keyword var is left off, then the variable will be recognised
in other functions within the same Web page. It would then
be known as a global variable.

Generally speaking, if you use a variable within a function
which you do not intend to use anywhere else in your Web
page, you should make it local to that function. That allows
you to use the same name, either by design or
inadvertently, in other functions within the same Web page
and there will be no clash of identity.

Scope, then, refers to whether a variable is local or global.
When a variable is created in a function using the keyword
var, it becomes local to that function. If the var keyword is
omitted, it becomes global and will be recognised by every
other function within the same page. Note that variabes
created within <SCRIPT> tags are global.

1.3 Operators: - Working with Data
These are symbols which have a meaning. For example
1+2, means 'add 1 to 2'. The + sign is called an arithmetic
operator. Incidentally, if you wrote the following expression:
1+2 ; JavaScript would calculate the result (3) but since it
has not been assigned to a variable nothing more would
occur.

In the following table we show many of the common
operators used when working with data, such as assigniig
data to a variable, comparing one value with another,
checking the contents of a variable.

107

Operator Type of operator Operation performed
+ - * / arithmetical basic arithmetical functions
+ string concatenate (not addition,

used in write())
&& I I !

_
logical AND, OR, NOT

= assignment assignment (not equals)
The next six are the comparison operators

== equality equality, tests for equality
! = inequality test for inequality

< less than
<= less than or

equal to
num <= 99

> greater than,
>= greater than or

equal to
++ increment add 1
-- decrement subtract 1

There are others which we shall come across later.

1.4 Expressions
An expression contains any mixture of numbers, variables,
text strings, operators and logical values which JavaScript
supports. It is often assigned to a variable. Here are some
examples:

Assign Expression
x = 3+4
x = "one string" + "a second string"

number = 73.9
x = number + 23 / 56

test = false

108

1.5 Literals
Since literal looks a -ather odd term, it is mentioned here
more out of completeness than need. it refers to any data
value that appears within a program. Here are some
examples:

12
12.34
'a piece of text'
"another piece of text"
false
true
null

Frequently, they are operated on by operators. Thus. in the
following, two numerical literals are added together and the
result assigned to a variable:

2. Input & Output of Data
As with all programming languages, JavaScript code
typically works on data idata literals to Le pedantic). Before
it can do so it needs to obtain some data. This can be done
in several ways. Either by assigning data to a variable:

or, by getting a user to enter some data via a prompt
dialogue box or a FORM text box. This is what is meant by
inputting data. Once we have the data, it can be processed
and results output via the Liocument .write (1 method or
via a FORM's value property. All of these have been
discussed in detail in the preceding chapters.
document.forml.addressl.value = "Enter address
var x = 123;
document.writeln("Print out value: " + x);

JavaScript also has the means to evaluate user's actions
(events) such as: clicking a button or moving the mouse
over an image or hypertext in <A> tats or <AREA> I-ot-
spots. In a sense, this can be classed as 'data' since The
events can be trapped aid some action taken.

109

3. Making Decisions
This is something we do many times each day. In
programming, it is sometimes necessary to make a
decision based on some input.

Here is a very simple example, yet it illustrates all the
syntax for this feature.

Let us suppose, we need to find out whether someone is
over 18 years old. If so we can let then shop in our
Shopping Mall, otherwise we have to refuse them. This
feature is one of the basic statements used for validating
user input in FORMs.

WARNING: to make the following pages more readable, i f
and else have sometimes been put in uppercase. They
must always be written in lowercase in your JavaScript
code!

Exercise 20: if .. else statement

IF..ELSE - Microsoft Internet Ex... P F r -

if -else Exercise

Sorry, you are too young.
If-else-Ex20.htm

Microsoft Internet Explorer O

Ate you es,,er 18 years cad?

110

<HEAD><TITLE> IF..ELSE</TITLE></HEAD>

<BODY>
if-else Exercise
<SCRIPT LANGUAGE="Javascript"
var x = window.confirm("Are you over 18 years

old?")
if (x == true)

{

document.write("Welcome to My Shopping Mall.")
}

else
{

document.write("Sorry, you are too young.")
}

</SCRIPT>

<ADDRESS> if-else-Ex20.htm </ADDRESS></BODY>

Notes:
1. We first set up a Confirmation box inviting the user to be
honest and tell us whether he/she is over 18. If OK is
clicked, JavaScript assigns true to the variable x. If Cancel
is chosen, variable x is assigned This
provides an example of the use of a Boolean value.

Miciosoft !Memel Explmei el,

2. The next step is to test which of the two values has been
stored in the variable x. It is the IF.. ELSE statement which
makes this easy. (Statement is a term used to refer to such
programming features; command may also be used in
place of statement.) Notice how the variable is put into
round brackets (x = - rue) and that the equakty
operator is being used. If it is true, we want to welcome the
person into our Shopping Mall, otherwise we have tc refuse
them entry. Here is the general syntax for this statement:

111

if (condition to be evaluated)

{ do whatever is necessary if TRUE)
else

(do whatever is necessary if FALSE)

. carry on here when either the IF or the ELSE
block has been executed.

The condition (in our case, 'does x equal true') is tested
automatically by JavaScript each time it comes across an IF
statement. If the result is true then whatever follows the IF's
opening curly bracket will be executed until it meets the
corresponding closing curly bracket. It will then continue
with whatever statements follow the ELSE s closing curly
bracket.

If the result is false, the IF block is ignored and whatever
follows the ELSE's opening curly bracket will be executed
until it meets the closing curly bracket. Then it will continue
with whatever statement follows.

All this is done automatically by JavaScript since this
behaviour has been built into the IF.. ELSE statement.

3. Notice that there is a set of curly brackets for the IF and
another for the ELSE. They help to mark the beginning and
end of each block. We call the statement(s) after the IF and
after the ELSE a block. In our example we have only one
instruction, but there can be as many instructions as
needed. Each one should end with a semi -colon and,
although optional, is highly recommended.

4. The instruction following the IF .. ELSE statement will
always be executed regardless of whatever action was
taken inside the feature. As programmers, you must be
aware of this and ensure that it is the correct thing to do in
either situation.

5. The positioning of the curly brackets is the same as for
functions.

112

Further points about the IF .. ELSE

1. You do not need to rave the ELSE. Thus the following is
correct and valid provided nothing needs to be done when
x is false.

if (x)

window.alert("Welcome to My Shopping Mall")
} // end of IF block
. next instruction whether x is true or false

In the above, next instruction will be executed when
either the alert box has been cancelled by the user or when
>: is false. In the latter case, the alert box will not appear.

2. Why do we simply have (rather than (x == true) ?

This looks strange, but if you think about it, x is a Boolean
variable which has the value of either true or false. When
JavaScript tests this variable, the result is one of the two
possibilities. Therefore, we only need to type in the variable
name. The longer version makes the code easier to read,
but is not necessary.

3. Strictly speaking the IF and the ELSE and many other
commands process single statements. Hence there is no
real need for the curly brackets. Therefore. this is valid:

if (x)

alert("x is true")
else
alert("x is false')
... carry on here whether x is true or false...

There are no curly brackets, but it is more difficult to follow
and prone to errors. To see an example of how easy it is to
make programming errors, look at the Test question 8.10. A
must!

More often than not, you do want to execute more than one
instruction in which case you have to enter a compound
statement. A compound statement is a group of instructions

113

enclosed within curly brackets. The instructions within the
curly brackets effectively become a 'single' statement.

if (condition)
(instruction 1;
instruction 2; instruction 3;

}

else
(instruction l;instruction 2;
instruction 3;
instruction 4;

}

... carry on here

Note how useful the curly brackets are when trying to read
this program. They clearly mark the start and end of a block
of code. As a matter of style. I would include them even if
there is only a single instruction. You never know when you
might wish to add an extra instruction or two and then forget
to use curly brackets to indicate a compound statement.

Notice that each instruction ends with a semi -colon. When
more than one instruction is put on the same line, you must
include semi -colons. But it is recommerded practice to
always include them, even when there is only one
instruction per line.

4. In the above example, we used the worc condition inside
the round brackets after the IF word. The condition can be
any JavaScript expression that evaluates to true or false,
even functions. Thus:

if (xyz == 10)
{ document.write("The number is 10");

else
{ document.write("The number is not 10");}

//

if (username == "Fred")
{ document.write("Your name is Fred"); }

else
{ document.write("Your name is not Fred");}

//

114

if (userentry <= 69)
{ document.write("Your entry is less than 70"); }

else
{ document.write("Your entry is more than 69");}

Note the presence of the double equal sign (-) operator,
meaning is equal to and (. _) meaning less than or equal to.
There must be no soace between the two symbols. These
are called comparison operators. See Chapter 14 page 215

(Beginners frequently confuse the assignment operator () with
the equality operator (-). But they are different. In an IF
statement, the conditon in round brackets must be evaluated
via an equality operator to see whether it is equal to true or
false. Depending on The outcome, either the IF block cr the
ELSE block of instructions will be executed. In an assignment
statement the single equal symbol is an assignment opera:or.)

5. The condition tested by the IF statement can be a
function. This makes it quite a powerful feature. See page
159 for a discussion about the return statement.

if (my_function()) {

.. do this when function returns true ..
}

4. Repetition

WARNING: to a:axe these pages readable, t.,i has
sometimes been pLt in uppercase. It must be written in
lowercase in your JavaScript code!

We now turn our atention to a feature which allows for
repetition. A for loop repeats a set of instructions enclosed
in curly brackets until a specified condition is met. For
example, repeat 'this code' ten times and after ten times
proceed with the rest of the script.

The for loop consist of three parts within round brackets:
for (initialise; condition; increment)

{ instructions to repeat ... }

... next instruction once the above
has been repeated ...

115

In order to repeat a series of instructions, you have to start
at some value (initialise); test it to see whether the loop
needs to be repeated again (condition); and increment the
value (increment) if the condition has not been met.

Here is a simple example. Suppose we wish to sum the first
ten numbers and print out the result. Not the most exciting
of things to do, but it does illustrate how this feature works.
This will involve repeating some instructions and stopping
once a condition has been met. Here is the code:

<SCRIPT
sum = 0;
for (i 1; i <= 10; i=i+1)

{ sum sum + i;) // EofIF
document.write("numbers 1-10 = " + sum)
</SCRIPT>

When JavaScript first meets this FOR loop, i will be set to
1 - the initialisation step. (It will not repeat this part again.) It
is usually a simple assignment statement, but note the
semi -colons after the initialise and condition statements.

It will then test whether the condition (1 <= 10;) has been
met. Note how comparison operators are used for this part.
First time around, i is not less than or equal to 10, so
JavaScript will execute the code between the curly
brackets. (If the condition were not true, the for loop's
instructions would not be executed.)

When the FOR block has been executed, the variable i will
be incremented according to the increment statement -

here i is incremented by one: (1=1+1) i is now = 2; (but it
could be incremented by more than 1 or by a negative
value if a descending order were required! or, even, by a
real number).

It then returns to the condition, to determine whether to
repeat the code again. The value 2 does not meet the
condition, so it then repeats the instructions in the loop

116

again. After which, i is incremented again - now = 3, the
condition tested to see whether i exceeds 10 ... and so on.

Eventually. i will exceed or become equal to 10, in which
case the code will ro longer be executed. JavaScript will
then move to whatever instruction fo lows the FOR loop.
See Chapter 13, page 198, for an example of the FOR loop.

The Increment Operator
One of the unusual features of the C programming
language, and also part of JavaScript, is the use of the
increment operators: X & x++. C was devised by
programmers for programmers. The most common
arithmetic statement n any program is: x= x

Those who devised the C language created a shortcut to
this statement: x It is equivalent to x=x+1 .

The increment operator increments its variable by 1 and
only by 1. This operator will not increment by any other
value. It is ideal for the increment within a FOR loop. Thus,
we frequently see the following in a FOR loop:

tor (i = 1; .1 > 10; i++) which is the same as:

for (i = 1; i > 10; i= i+1)
Another odd thing abort this feature is hat you can add 1 to
the variable, in our example. before (. the loop is
executed or add 1 aft -9r the loop is executed ().

is called the postfix operator; 1 (and only one) is added
to the variable i after doing something;

i is called the prefix operator; 1 is added to i before
doing anything else. Sometimes one is better thar another.
You will know instinctively which to use when the occasion
arises.

Decrement Operator
This works in exact y the same way as the increment
operator except that it subtracts 1 from its variable. We do
not have an example in this book, but bear this feature in

117

mind should it ever prove useful. (Some programmers use
it for traversing arrays from the bottom up. See page 194
for use of arrays.)

Jargon
block: refers to a group of instructions, for example those
repeated by a for loop or when an if condition proves true.
They are also sometimes referred to as a clause. (Sorry
about this. but you may come across these terms in other
texts and wonder what on earth they are talking about.)

compound statement: Many features execute single
statements. But when more than one statement needs to
be executed, the 'single' statement has to be converted into
a compound statement by enclosing all the statements in
curly brackets. The many effectively become one.

identifier: another term meaning a variable.

interCapping: the use of Capital letters within a word.

reserved words: those words which have special meaning
in JavaScript. Many have a fixed case and if the case is not
preserved, they will not be recognised by JavaScript.
Examples are: i f , else, for, alert () (all lowercase)
and Math with M in uppercase. Such words should never
be used as variable names (identifiers).

scope: refers to where a variable is recognised. Local
variables are recognised only within the function in which
they were created. Global variables can be recognised by
any other function within the same Web page.

What you have learnt
1. We saw that all programming languages have four basic
features:

creating, storing and moving data
input and output of data
making decisions
repeating instructions

118

We have seen how the JavaScript syntax allows for these
features.

2. There are several types of data: numbers, text and
Boolean. Typically, data is assigned to variables.

3. The rules for creating variable names and the scope of
variables.

4. How to use the various types of operators with data.

5. How to get users to input data.

6. How to make decisions and how to repeat instructions.

7. The special increment and decrement operators so
beloved by C programmers. Once you begin to use tem,
you too will get to love them! (I did not believe I would when
I first came across them.)

8. That what has beer covered in this chapter belongs to
the core features of the JavaScript language. Previously,
most of what we have discussed has belonged to the client -
side JavaScript.

Test 8:

8.1 What are the four basic features of any programming
language?

8.2 What is an integer rumber and what is a real number?

8.3 How can you capture, for subsequent processing, what
a user has typed into a :ext box or a prompt box?

8.4 Give one example of where case is not significant and
one where it is?

8.5 What is happening in the following code?

8.6 What is happening in the following code?
if (x == 1)

119

8.7 According to its syntax, an statement can execute
only a single instruction. How do you make it execute more
than one instruction?

8.8 What do the following do?

a) i b) I1 -

8.9 What will be written out by the document .write
method for the following?
<SCRIPT>
var aBc 12

var abc
document.write("Variable abc is: " + abc

+ "
Variable aBc is: " + aBc)
</SCRIPT>

8.10 Look very carefully at the following code and work out
what will be written out after the code has been executed.

(Note:
a) another shortcut, beloved by C programmers and
now part of JavaScript, which can assign a value to
more than one variable in one statement.
b) IF statements can be nested as we see in the
following.
c) means 'therefore')

i = j = 1; // both i and j assigned value of 1
k = 2;

if (i == j) // i does equal 1 :. true
if (j==k)
document.write("i equals j");

else
document.write("i does not equal j");

// Oops!

8.11 Why cannot a variable name begin with a digit?

120

8.12 What will happen in each of the following?
a) This one is correct.

<SCRIPT>
sum = 0;
for (i = 1; i <= 10; i++)

(sum = sum + i;
document.write("numbers 1-10 = " + sum)

</SCRIPT>

b)

<SCRIPT>
sum = 0;
for (i = 2; i <= 10; i++)

(sum = sum + i; }

document.write("numbers 1-10 = " + sum)
</SCRIPT>

C)

<SCRIPT>
for (i = 1; i <= 10; i++)

(sum = sum + i;)

document.write("numbers 1-10 = " + sum)
</SCRIPT>

d)

<SCRIPT>
var sum;
for (i = 1; i <= 10; i++)

(sum = sum + i;)

document.write("numbers 1-10 = + sum)
</SCRIPT>

e)

<SCRIPT>
var sum = 0;
for (i = 1; i = 10; i++)

sum = sum + i; }

document.write("numbers 1-10 = + sum)
</SCRIPT>

121

Why were computers used?

The main reason for using computers is their ability to make
decisions and to repeat instructions at high speed without
getting tired.

Decisions are necessary when any data, read in by a program,
is unknown and one of several actions must be taken
depending on the value of the data. The decision -making ability
of the i f ... else feature is fundamental to programming.

Repetition is also crucial. Give a human being a task which
involves repeating some actions many times, and boredom and
loss of concentration will overpower the human. Mistakes will
then be made. However, the humble computer will quite happily
repeat the same old task, hundreds, thousands, even millions
of times and never fall foul of our human condition.

Incidentally, it was precisely this feature which led the
mathematician Charles Babbage to invent 'computers' back in
1819. His were mechanical unlike our own electronic versions.
The computation of logarithms had made him aware of the
inaccuracy of human calculation around 1812. He
Babbage, Passages from the life of a philosopher (London,
1864)":

"I was sitting in the rooms of the Analytical Society, at
Cambridge, my head leaning forward on the table in a kind
of dreamy mood, with a table of logarithms lying open
before me. Another member, coming into the room, and
seeing me half asleep, called out, 'Well, Babbage, what are
you dreaming about?' to which I replied 'I am thinking that all
these tables (pointing to the logarithms) might be calculated
by machinery. -

For an excellent article about Babbage, try the search engine
AskJeeves (http: /www. askj eeves corn) and enter "Who
was Charles Babbage?". From the many choices offered, I

chose: "Where can I learn about the mathematician -

Babbage."

122

101 Calculator Example

So far, all our exercises have been relatively short, although
practical. In this Chapter, we shall see what a large
JavaScript program looks like. It is not a difficult exercise
but it is worth studying carefully. It uses many of the
features we have already covered and a few of the Math
object which we have not. These are explained in the notes
which follow. It will also explain how to use JavaScript code
to compute loan payments. You will be able to think of
many more uses for your own Web pages.

Exercise 21: Computing a loan payment

7 Want a Loan? - Netscapet

iLL

Loan Information:

Annual % rate of interest 8.25

Repayment period (m years) 10

Amount of loan (any 50000
currency)

Payment Information:

Your Monthly payment- 613.26

Your total payment- 73591.56

Your total interest payments: 23591.58

Loan-Ex21.htm

123

We invite someone to enter the following information and
get JavaScript to calculate the payments.

how much to borrow
over how many years
at what interest

(My God! We could use the following to see whether our
car repayments computed by our 'friendly, local' second-
hand car dealer are indeed accurate.)

<HEAD>
<TITLE> Want a Loan?</TITLE>
<SCRIPT LANGUAGE="JavaScriptn>
function calculate()(
/*get user's input from FORM and assume it is

valid.

- convert the annual rate to a monthly rate
- convert interest from a % to a decimal
- convert payment period from years to months
- compute the monthly payments */

var principal =
document.loan.principal.value;

var interest =

document.loan.interest.value / 100 /12;
var payment =

document.loan.years.value * 12;
var x = Math.pow(1 + interest,payment);
var months = (principal*x*interest)/(x-1);

/* Check that the result is a finite number.
If so display the results */

if (!isNaN(months)
&& (months != Number.POSITIVE_INFINITY)
&& (months != Number.NEGATIVE_INFINITY))

(document.loan.payment.value =
rounding(months);

document.loan.total.value =
rounding(months*payment);

document.loan.totalinterest.value
rounding((months*payment) - principal);

} // EofIF

124

// user's input invalid so display nothing.
else
(document.loan.payment.value=;
document.loan.total.value="";
document.loan.totalinterest.value="";

} // EofElse
} // EoFn Calculate
// round to 2 decimal places function
function roundingfx)
return Math.round(x*100)/100;

} // EoFn rounding
</SCRIPT></HEAD>

<BODY>
<FORM NAME="loan"
<TABLE>
<TR><TD COLSPAN=2>Loan Information:
<TR><TD> Annual % rate of interest:
<TD> <INPUT TYPE=text NAME=interest SIZE=12

onChange="calculate()">
<TR><TD> Repayment period (in years)
<TD> <INPUT TYPE=text NAME=years SIZE=12

onChange="calculate()">
<TR><TD>Amount of loan (any currency)
<TD> <INPUT TYPE=text NAME=principal SIZE=12

onChange="calculate()">
<TR><TD COLSPAN=2 ALIGN=right>

<INPUT TYPE=button VALUE="Calculate Loan"
onClick="calculate()">

<TR>
<TD COLSPAN=2>
 Payment Information:
<TR>
<TD> Your Monthly payment:
<TD> <INPUT TYPE=text NAME=payment SIZE=12>
<TR>
<TD>Your total payment:
<TD> <INPUT TYPE=text NAME=total SIZE=12>
<TR>
<TD> Your total interest payments:
<TD> <INPUT TYPE=text NAME=totalinterest

SIZE=12>
</TABLE></FORM>
<ADDRESS>Loan-Ex21.htm</ADDRESS></BODY>

125

Notes:
1. Most of the code should be familiar by now, apart from
some of the Math methods which are examired below. It is
worth spending some time studying this Exercise since it
will bring together many of the features of JavaScript which
have been discussed in the preceding chapters.

2. Before we tackle the mathematical bit, no..e how
in Calculate() is local to that function. Function rounding()
also uses a variable x, but there will be no confusion with
the value of the variable x in Calculate().

3. We have one rounding() function which is invoked from
three places, yet each time with a different argument. The
point was made in Chapter 3, page 49, how the same
function can be used to work on different data via
arguments. Now we can see a working example.

The purpose the return statement used in the rounding()
function is discussed below.

4. I hope you agree that the use of indentation, especially
for the if .. else statements, makes the code easier to read.
Note also, the use of comments at the end of functions and
if .. else blocks. Although more typing is involved, it can
save hours of debugging time.

5. When any change is made to one of the three input text
boxes (and the user has clicked outside or irto another text
box) the Calculate() function is invoked again via the
onChange event handler. The user does not have to click
the Calculate Loan button each time a change is made.
See page 149 for how the onChange handler works.

Math.pow(x,y)
is a method of the Math object. It raises x to the

power of y - xY . Thus:

j = Math . pow (7 , 2) results in i being assigned 49.

126

You will have to consult a mathematician as to why this
helps to compute the monthly repayments. But the main
point is its use in (a) below.

We need to ensure that the user does not enter values
such as 0% interest, a 0 repayment period, text or some
ridiculously huge or small value. JavaScript has various
means by which it car trap such errors. -sere are some.

(a)) returns NaN (not a number) should a user
inadvertently enter text.

(b) POSITIVE_ INFINIFY and NEGATIVE_ INFINITY are
special numeric values which are returned when an
arithmetic operation generates a value which is greater
than the largest numoer which JavaScript can represent.
They are both properies of the object. (Note the
case used.) This traps any ridiculously large or small
number entered by a user.

(c) isNaN() is a function which determines whether its
argument is 'NaN' (not a number). It is a built-in JavaScript
function. It is not a method and is not associated with any
object. It is part of the a-iguage.

So, to check that the numbers generated by the following
two statements are 'sensible':
var x = Math.pow(1 + interest,payment);
var months = (principal*x*interest)/(x-1);

the code includes the following i f statement:
if (!isNaN(months)

&& (months != Number.POSITIVE_INFINITYI
&& (months != Number.NEGATIVE_INFINITY))

"if months is not (!) a cumber AND months is not equal to
(!=) positive infinity AND months is not equal to negative
infinity' then display the results of the calculations.
Otherwise, the else clause is invoked to blank out the
text boxes which would have shown the results.

127

The return statement
We came across the return statement in Chapter 5, but did
not discuss it. We were not ready for it then. The one thing
we need to know about functions is that they always return
a single value when they have finished. So far, we have not
needed to be aware of this, but now we do.

Our rounding (x)function rounds its argument to two
decimal places. That is what it returns: x rounded to two
places via the Math. round () method. It is called as
follows:

document.loan.payment.volue =
rounding(months*payment);

The contents of the three text boxes, payment, total
and total interest have their values rounded down.
The single value returned by the rounding() function is
assigned as their values. In the above, this is assigned to
the value of the payment text box. See page 159 for a full
discussion about the return statement.

Summary of Exercise 21:

(1) months is calculated and passed as the real argument
to the dummy argument x in the rounding function's
declaration - rounding (x) .

(2) The rounding function invokes the Math.round method
and passes it the value of the dummy argument (now, of
course, irior,t_ I i:;)

(3) This result, (rounded to an integer) is returned to the
point of the original invocation in (1) above.

(4) It is multiplied by 100 and that result divided by 100.

(5) Note that the rounding function is used three times,
each time with a different argument. The dummy argument
will take on these different values at each invocation.

rounding(months)
rounding(months*payment
rounding(months*payment)-principal

128

10 Working with Time

JavaScript has a built-in object that allows us to manipulate
the date and time. Hcwever, before we can use the date
object, it is necessary to get JavaScript to activate it. Why?

The date object is part of the programming language (the
core) rather than part of client -side JavaScript. In order to
allow a browser to rraiipulate dates, it is necessary to
create what is called a new instance of the date object.
Although a little simplistic, it is rather like making a 'copy' of
the real thing specifically for the browser. The browser,
using client -side JavaScript, can then manipulate dates and
times using the copy or the instance as it is formally called.
Fortunately, this can be done very easily by assigning the
date to a new date objec-., using the new operator:

var mydate = new Date Hl

Date () is the date ob act; new creates a 'copy' of it which
has been assigned to a user defined object mydate. This
new object can now be used in various ways by tie
browser via the variable name mydate. Here is a table of
some of the methods of the Date object which we can use:

Method Returns Comment
get Day () the day of the

week
its values are numbers:
0 (Sun) - 6 (Sat)

getDate () the day of the
month

values are between 1 - 31

getMonth() the month 0 (Jan -11 (Dec)
getYear () the year last two digits (see Notes
getHours () the hour 0 (mid-iight) - 23 (11p.m.)
getMinutes() the minutes 0 - 59
getSeconds() the seconds 0 - 59
getTime () the date (in a really

peculiar format)
the date as a number of
milliseconds since 1/1/1970

Table 10.1: Some methods for the Date object

129

How to use the Date object
Suppose we want to write out today's date in our Web
page. We first create a new instance of the Date object and
assign it to a new Date object via the new operator.
var today_date = new Date()

You could name it anything you want. After creating an
instance of the Date object, that instance can use all the
methods shown in the Table 10.1.

Here are some of the more important methods:
var mytoday.today_date.getDate()

means: "get the numerical day of the month". These
are returned in the range 1-31.

var mymonth.today_date.getMonth(1+1

means: "get the month". Since JavaScnpt counts
months starting from '0', not '1', (is there no
consistency?), we have to add '1' to the month.

var myyear.today_date.getYear()

means: "get the year and put it in a variable myyear."

Having stored Date values in variables, these can be
written out using the document.write() or documentwriteln0
methods:

document.write("Today's date is: ")

document.write(mytoday + "/"

+ mymonth + "/"
+ myyear)

Assuming the computer's date is 29th Sept, 2000, the
output from the above would be:

Today's date is: 29/9/2000

View the same Web page tomorrow, and the date shown
wouldbe: Today's date is: 30/9/2000.

Years in the 20th century are truncated to the last two
digits: Thus: 29/9/99 .

130

Exercise 22: Displaying all the methods of Date()
Here is some code using many of the methods of the Date
object

3 Using the date Object Microsoft Internet pllirgr

day of the month = 18
month = 11

day = 4
year = 99

hours = 12
minutes = 45
seconds = 1

time = 942929101089

The date is: 18-11-99
The time is: 12:45:1

date-Ek22AUK

junimmum
<HEAD>
<TITLE> Using the date Object </TITLE>

<SCRIPT>
// create an instance of Date()
var mydate = new Date()
// now use this instance below
var monthday = mydate.getDate()
var month = mydate.getMonth() + 1

var day = mydate.getDay()
var year = mydate.getYear()
var hours = mydate.getHours()
var minutes = mydate.getMinutes()
var seconds = mydate.getSeconds()
var time = mydate.getTime()

131

document.write("<DIV ALIGN= right>"
+ "day of the month =
+ monthday + "
")

document.write("month = + month + "
")
document.write("day = " + day + "
")
document.write("year = " + year + "
")
document.write("hours = " + hours + "
")
document.write("minutes = " + minutes

+ "
")
document.write("seconds = " + seconds

+ "
")
document.write("time = " + time

+ "</DIV> <P>")
document.write("The date is: " + monthday

+ month + "-" + year)

document.write("
" + "The time is: "

+ hours + ":" + minutes + ":" + seconds)
</SCRIPT>
</HEAD>

<BODY>
<P>
<ADDRESS><R>date-Ex22.htm </ADDRESq>
</BODY>

Notes:
1. Since we cannot use the Date object directly. JavaScript

requires that we create a client -side instance of the object.

This is done with the operator. Usually, operators are

symbols such as increment (+ +) or logical AND (.4
However a few are in fact words. (this is another which

we shall meet later on pages 172 and 182.)

We have called our instance mydate via the following
code: var mydate = new Date()

2. Assuming the computer's date is Saturday, 7th October,
2000:

the day of the month = 7 - getDate () "the days are

numbered 1 - 31)

the month = 9 (0 -1 1) - getMonth() = October, we
had to add 1 to this to make it 10 when displayed)

132

var month = mydate.getMonth()

the day of the week = 6 - getDay() (6 is a Saturday, (0
being Sunday, 6 being Saturday). We do not display it.

hours, minutes and seconds: The last two are numbered
from 0 - 59 and the hours numbered 0 - 23, a 24 -hour
clock. (In Exercise 23. we shall convert to a 12 -Hour
clock.)
getHours(), getMinutes(), getSeconds()

time is the number of milliseconds since the 1st Jan,
1970. Seems somewhat weird but it works! (We shall
use this in some later examples.) -getTime()

3. The date and time have been printed out via the last two
document .write () lines of code.

4. We shall see how to print out the actual day of the week,
for example, 'Monday., in Exercise 25.

5. Notice the <DIV ALIGN=t ight> ... </DIV> in the
document.write code to make the dales and times right
justified, with whatever follows being left justified.

With the above knowledge and previously having learnt
how to write out HTML code via JavaScript, you can now
display the current date and time on any of your Web
pages.

You could even display a

different image depending upon
whether it is before or after
noon.

Exercise 23: Choosing an Image
depending on whether a.m. or
p.m.

133

<HEAD>
<TITLE>Choose an Image depending on whether it is
a.m. or p.m.</TITLE>
<SCRIPT LANGUAGE="Javascript">
var current_date = new Date()
var hours = current_date.getHours()
var minutes = current_date.getMinutes()
var seconds = current_date.getSeconds()
var ampm = "a.m."
if (hours>=12)

(1/ (Is required for the compound statement
ampm="p.m."
hours=hours-12

if (hours==0)
hours=12

if (minutes<=9)
minutes="0"+ minutes /* we want to see 07

rather than just 7 */
if (seconds<=9)

seconds="0"+ seconds

document.write("<CENTER>" + hours + ":"
+ minutes + ":" + seconds
+ " " + ampm + "
")

// choose image depending on whether AM or PM
var today= new Date()
var day_night=today.getHours()
if (day_night<=12)
document.write("")

else
document.write("")

// notice correct use of double & single quotes
</SCRIPT>
</HEAD>

<BODY>
<ADDRESS>am-pm-Ex23.htm </ADDRESS>
</CENTER>
</BODY,

Notes: Handling the Hours
1. We want a 12 -hour clock. The current lour has been
stored in a variable h . and will be a numeric value in
the range of 0 - 23. If the hours exceed 12, we can simply

134

subtract 12 from the value to convert it into a 12 -hour clock.
This is done by the following code:
var ampm = "a.m."
if (hours>=12) {

hours=hours-12;
ampm="p.m."; }

Because the IF statement is supposed to take only a single
statement and we have more than one, we need to enclose
the statements within curly brackets so that they become a
compound statement. We have also taken the opportunity
to set the variable to the text string 'p.m.' since we
would like to add this to our time when it is the afternoon.

2. If the value of is within 0 - 12, then it s before
noon and the above code will not be executed when the
condition is tested in the IF statement. In fact we do nothing
at all. However. we would like to add the text string 'a.m ' to
the time. Note the neat trick of setting the variable ampm to
'a.m.' before testing the hours. This ensures that ampm will
contain 'a.m.'. It is set to 'p.m.' only when we have
discovered that the hours equal or exceed 12.

3. But what if the time is 12? As this code is written, the
hour would become zero. So we test ha_irs separately and
after the code in Note 1. If it equals 0, then we set it to 12.
if (hours==0)

hours=12;

(Because this is a single statement, we did not use curly
brackets, although it would be good programming practice
to do so. In my owr scripts, I would usually put in the
brackets. but have om:tted them here to illustrate the point.)

Note too that because the previous code has already
detected that hours was equal to 12, the has been
set to 'p.m.'.

135

Handling the Minutes & Seconds
4. We wish to include a leading zero when the minutes and
seconds are in the range: 0-9, (00, 01 .. 09). This is
achieved through a simple test using the IF statement.
When the minute is less than or equal to 9, the variable
minutes is assigned a leading zero and the actual minute
is concatenated using the concatenate operator (+), as
follows:
if (minutes<=9)

minutes="0" + minutes
if (seconds<=9)

seconds="0" + seconds

5. A document .write () follows which prints out the time,
separated by colons (:), together with 'a.m.' or 'p.m.' as
appropriate in hh:mm: ss a .m format..

document.write("<CENTER>" + hours
+ minutes + ":"
+ seconds + " "

+ ampm + "
")

I:1

6. Finally, notice how everything is centred. There is an
opening <CENTER>tag in the first document .write but
the closing </CENTER> tag is in the BODY. It seems to
work, but I could not claim it would work on all browsers.

Exercise 24:
How long have you
been connected to
your ISP?

Let us allow
people to see how
long they have
been connected
to their ISP.

The start time in milliseconds:
945690231546

Compare this with the Now Time

Connect Time Now Time
(Secs)

132.326 1945690263872

connected-Ex24. htm

136

<HEAD>
<TITLE>How long have I been connected?</TITLE>

<SCRIPT LANGUAGE="Javascript"
mydate = new Date()
start_time = mydate.getTime()

document.write("The start time in milliseconds: "

+ start_time + "
"
+ "Compare this with the <I>Now Time </I>")

function connect()(
mydate2 = new Date()
end_time = mydate2.getTime()

document.howlong.nowtime.value = end_time 41---

connect_time = end_time - start_time
document.howlong.answer.value 41

= (connect_time/1000)
) //EoFn connect()
</SCRIPT>
</HEAD>

<BODY>
<HR WIDTH=60%> <CENTER>
<TABLE>
<TR>
<FORM NAME="howlong'>
<TD COLSPAN=2 ALIGN=center>
<INPUT TYPE="button' VALUE="Connect time"

NAME="timeconnected"
onClick="connect()">

<TR>
<TD ALIGN=center>Connect Time
(Secs)
<TD ALIGN=center VALIGN=top>Now Time
<TR>
<TD ALIGN=center>
<INPUT TYPE=text SIZE=10 NAME="answer" 4 -
<TD ALIGN=center>
<INPUT TYPE=text SIZE=15 NAME="nowtime"> 4,

</TABLE>
</FORM>
<P>
<ADDRESS>connected-Ex24.htm </ADDRESS>
</CENTER>
</BODY>

137

Notes:
1. Study the code above. Essentially, as the page is loaded,
the current date and time (in milliseconds) is placed in a
variable t_art_t ime. When a user clicks on the Connect
time button, the function connect () is invoked. This
function creates a new and second instance of the current
date (mydate2) and assigns this new time to a variable
called end_t ime. In turn, this is assigned as the value of
the Form's text box NAMEd nowtime .

2. The two variables are subtracted, (remember that
getTime () returns the date and time in milliseconds), and
the result is stored in variable connect _t ime.

3. Divide this by 1000 (to convert milliseconds to seconds)
and assign it as the value of the text box answer.

Exercise 25: What day of the week were y3u born on?

We shall print
out the day of
the week as a
word.

Do you know
what day of
the week you
were born on,
or the day of
the week of
the last
millennium (or
this one)?

What day of the week were you born on?
To Find out, enter the date as dd mmrn yyyy,

e.g. 18 Dec 1876

Enter a Date Weekday

123 April 1616 [Saturday

find out

Click here to clear boxes.

Find out the day of week for:
1 Jan 1000 1 Jan 1800
1 Jan 1900 1 Jan 2000

your-bIrthdate-Ex25.htin

Using this program, we can see that Will am Shakespeare
died on a Saturday, 23rd April, 1616.

138

Here is how we can do it.

Warning: This works for versions 4 o' both Netscape and
Internet Explorer. Earlier versions may not work with some
early dates. However. let us hope that by the time you are
writing your JavaScript code. most people will have these
later versions.

To achieve our objective, we need to know about two more
Date nnethods:Dat.e.parse() and setTime ()which are
explained in the Notes below. First, however, here is the
code:

<HEAD><TITLE> Work out day of the Week </TITLE>
<SCRIPT>
function getdayofweek()(

// create an instance of the date
var mydate = new Date()

// store the user's entry in userdate
userdate=document.weekday.thedate.value

// convert to milliseconds via Date.parse
parseit = Date.parse(userdate)

// set this new date to mydate
mydate.setTime(parseit)

// use mydate methods as normal
var day = mydate.getDay()

// work out which day of the week it is
if (day==0)

if
dayofweek

(day==1)
= "Sunday";

if

dayofweek
(day==2)

= "Monday";

if
dayofweek

(day==3)
= "Tuesday";

if
dayofweek

(day==4)
= "Wednesday";

if
dayofweek

(day==5)
= "Thursday";

if
dayofweek

(day==6)
= "Friday";

dayofweek = "Saturday";
document.weekday.answer.value = dayofweek
} //EoFn getdaycfweek()

139

function clearit() {

// blank out the text boxes
document.weekday.thedate.value=
document.weekday.answer.value =

} // EoFn clearit()
</SCRIPT></HEAD>

<BODY>
What day of the week were you

born on?
<P>To Find out, enter the date as dd mmm

yyyy,
 e.g. 18 Dec 1876.
<CENTER>
<HR WIDTH=50%>
<TABLE>
<TR>
<FORM NAME="weekday"
<TD ALIGN=center>
Enter a Date
<TD ALIGN=center>
Weekday
<TR>
<TD ALIGN=center>
<INPUT TYPE=text SIZE=12 NAME="thedate">
<TD ALIGN=center>
<INPUT TYPE=text SIZE=10 NAME="answer"
<TR>
<TD COLSPAN=2 ALIGN=center>
<INPUT TYPE=button

VALUE="Click here to find out."
onClick="getdayofweek()">

<TR>
<TD COLSPAN=2>
<INPUT TYPE=button

VALUE="Click here to clear boxes."
onClick="clearit()">

</FORM>
</TABLE>
Find out the day of week for:

1 Jan 1000
1 Jan 1800

1 Jan 1900
1 Jan 2000<P>
<ADDRESS>your-birthdate-Ex25.htm
</ADDRESS></CENTER></BODY>

140

Notes: setTime()

1. So far we have been able to pick up the computer's
current date and time by using the new operator and
creating a new instarce of the date. That is fine, but
suppose we need to use some other date, such as a
birthday. There is a Date method (set Time ()) which will
allow us to set the dale and time to some other date:

mydate.setTime(date-in-milliseconds).

That is the good news! The bad news is that this method
will accept a date only in milliseconds.

Date.parse()

Well, I for one could not work out my date of birth in
milliseconds, could you? However, to the rescue comes yet
another method. parse () is a method of the Date object.
This allows you to enter a date as a string (in normal text)
and it will convert the string into milliseconds. It works like
this: Date.parse ("string")

We can now use the Date.parse() method to convert a
string date into milliseconds so that it can be used with the
setTime() method. Here is how they can be used together:

parseit = Date.parse("15 Feb 1999")
var mydate = new Date()
mydate.setTime(parseit)

The first line of coce uses the Date.parse method.
However, it is a little d fferent to the other methods we have
seen. (It would be, would it not?) It is called a static method,
but let us not get to3 depressed by that. What it means is
that we cannot use it with a user -made instance of the
Date() object, such as: mydate.parse("string), we have to
use the Date.parse method and assign it to a variable and
then use the variable:

parseit = Date.parse(mstring").

In our code, we hae assigned it to parseit whicl' now
contains our date in milliseconds. This variable can be used

141

with the setTime method which requires its argument to be
in milliseconds. However, before we can use the setTime
method, we must create a new instance of the Date object
(mydate). This is our second line of code:
var mydate = new Date()

This new instance, mydate, will contain the current date in
milliseconds. So our third line of code changes the current
date to the date we entered in the first line.
mydate.setTime(parseit)

At long last, mydate contains our new date in milliseconds.
From here on, we can use mydat e as we have done in the
preceding examples, except that we have changed its date
to a date of our own choosing. We chose the date when
Shakespeare died: 23rd April, 1616.

2. Note that we did not need to assign the third line to a
variable. We simply used the setTime method to give the
mydate object our chosen date.

3. Now we can set about finding the day of the week for this
given date which was the original purpose of this exercise.
Using mydate as the object, we make use of its get Day ()

method: var day = mydate.getDay () and store the
result in the variable day.

This, of course, is a number from 0 - 6. So the next block of
code, via IF statements, tests to see which number day
contains and assigns the appropriate weekday as text to
the variable dayofweek. One of the IF statements will
prove true, all the others will be ignored.

4. In turn, dayofweek is assigned as the value of the text
box NAMEd answer, which is an element of the FORM
NAMEd weekday which is in the current document. Or
more simply:
document.weekday.answer.value = dayofweek

142

5. Finally, we have inc uded another button which will clear
out the contents of the two text boxes. When clicked, it will
invoke function ciearit (). This simply assigns noth ng

) as the value of the text boxes - thedate and

A Much Simpler Way to Set a New Date
There is a much simper way to create a new date without
using the above two methods. Sorry about that, bit I

wanted to introduce :he setTime and DatP.parse
methods since they may prove useful for you at some time.

The Date () object car take any one of the following four
forms:

1. mydate
when blank, it becomes the current cate and time

2. new Date("18 Dec 1978")
type in your own string

3. mydate = new Date(year, month, day -of -
month, [hours, minutes, seconds])

for example: 14th Sept 1987 13:45: would be typed in
without quotes as:

mydate = new Date(1987,8,14,13,45)

If the hours, minutes and seconds are not included,
since they are optional, (remember the purpose of ?)
they become zerc.

4. mydate = new Date(milliseconds),
e.g. new Date(946684799000)

(The milliseconds given above represent 31st Dec 1999,
23:59:59. Do you remember that time?)

A Final Word
One reference book lists some 42 methods for the Date
object. The ones we have covered should be enough for
most practical uses. However, should you need to delve
deeply into date and :ime manipulation, you will need to
refer to one of the references listed in the Bibliography.

143

Using the Date object in earlier browsers (prior to versions
4) caused problems. Dates prior to 1970 were not allowed
and it is still a problem. For example, in Netscape 4,
retrieving the year from a date prior to 1900 or after 2000
gives negative numbers for years before 1900, and positive
numbers for years after 2000. Internet Explorer will provide
the actual year itself as shown in the following table:

Year: 12 Oct yyyy Netsca 4.5 I.E 4
1345 -555 1345
1666 -234 1666
1890 -10 1890
1900 0 0
1967 67 67
1999 99 99
2000 100 2000
2010 110 2010
2345 445 2345

In other words, Netscape subtracts 1900 from whatever
date you supply, providing positive or negative results.
Internet Explorer does the same but only for dates 1900
1999. All other dates are shown as a full year. So you will
have to take this into account when manipulating years. Or,
make use of yet another method which will provide the full
year in both main browsers: getFullYear)

var year = mydate.geLFullYear()
document.form_weekday.year_answer.value = year

Another odd thing is that the display of the date is
implementation dependent. Thus the following code in
version 4 browsers:

mydate = new Date()
document .write(mydate)

produces:
Thu Oct 14 15:00:36 UTC+0100 1999 (in 1E)
but: Thu Oct 14 15:07:39 GMT+0100 (British

Summer Time) 1999 (in Netscape)

144

It is best for you to check what occurs with other versions.

Using the year without care is a potential source of the
Millennium bug.

What you have learnt
In this long chapter, you have learnt how to manipulate the
date and time using the Date object and some of its various
methods.

We have learnt how tc use the standard methods for
getting the day, month and year as well as hours, minutes
and seconds. We have also seen how to use
DaLe.parse() and , two other potentially
useful methods.

You have been warned about the different results when
using getYea/ () wit -1 Netscape and Internet Explorer.
Consequently, you may wish to use getFul lYear () . In

this chapter, the results have come from versions 4 of both
browsers. You should cneck what happens on your own
browsers.

We came across the new operator which allowed us to
create a new instance of the Date objec-. and by using this
instance we could use the Date object's methods, with the
exception of Date.parse() which is different.

We are now able to:

write out the current date and time
write out any other cafe we choose
display one of several images depending on the time of
day
work out how long we have been connected to our ISP
extract any part of the date and time, for example to find
out which weekday t is

Jargon
ISP = Internet Service Provider
UTC = Universal Coordinated Time

145

Test 10:
10.1 Try writing some JavaScript which will tell a user how
long it has taken to load a page.

Hint: you will need two <SCRIPTS> one positioned in the
HEAD of the document and one after :he </BODY> tag.

10.2 Write another piece of code to work out how many
days are left to Christmas Day.

For this you will need to use the setMonth() and setDate()
methods of a new instance of the Date() object.

var xmas = new Date()
xmas.setMonth(11)
xmas.setDate(25)

will effectively change the current date's month and day to
December 25th. The year will still be the current year.

Because we do not want parts of days., we could use the
Math.floor() method. This simply re -urns the greatest
integer less than or equal to its argument Thus:
Math. floor (45.95) returns 45
and Math. floor (-45.95) returns -4E.

10.3 Convert Exercise 24 to show bow many minutes
someone has been connected to their ISP.

What is next
In the next chapter, we shall examine ho,,/ to validate forms.
We have enough experience of being able to write fairly
long scripts using many of the JavaScrip: features.

146

11 Form Validation

One of the major uses of JavaScript is to validate the
entries made by users when they fill in forms. Usually, his
is not done until the form has been returned to the server. A
program at the server end will check the form's entries and,
if there are any errors, the program has to send back an
error message to the user. This process takes time.
Information has to be passed from the user (called he
client -side) back to the server (the server -side), processed
and returned to the user.

With JavaScript, the data can be validated straight away at
the client end and any errors reported immediately, usually
asking the user to re-enter the data again. No server is
involved until the data is valid. (This was discussed on page
4 in some detail.)

When all the error checks are done at the client -side, there
is no need for the server to be invo'ved until The data
entered into the forms is correct. (As a security measure,
any self-respecting server site would re -check the data, to
make sure it is valid. See page 259 on JavaScript security.)

In this book, all our examples are about client -side
JavaScript. Creating JavaScript programs for the server
relies on a knowledge of how the server is set up and what
sort of operating system is being used as well as some
experience with the Java language. That is why few
JavaScript books exist which go into detail about server -
side JavaScript. It is frequently too site -dependent.

Form Validation
Let us take a simple example of a form which requires the
user to enter his/her name. If the text box has not been
filled in, the form will not be submitted to the server.
Therefore, we need to check that the box has been filled in.
What we really test is whether the box is empty or not.

147

This exercise will demonstrate many of the basic features
of form validation. Once we have looked at these basic
features, we can discuss a few more useful techniques.

Exercise 26: A simple Validation of a single text box.

Simple Validating Form - Netscape

mor
r-nr-

You must fill in the First Name box.

First Name: Henrietta

Form-valid-Ex26.htm

(Mandatory)

1_1

<HEAD>
<TITLE> Simple Validating Form 3 </TITLE>
<!-- If user does not enter data in text box, use
an Alert box and reset focus to the text box. -->
<SCRIPT>
function checkdata(){
firstname = document.userforml.first.value

if (firstname==""){
alert("Please fill in the name box.");
document.userforml.first.focus(;;
//EoIF

) // EoFn
</SCRIPT>
</HEAD>

<BODY>
You must fill in the First Name
box.
<P><FORM NAME="userforml"
First Name:
<INPUT TYPE=text SIZE=12 NAME="first"

onChange="checkdata()"> (Mandatory)
</FORM>
<P><ADDRESS>Form-valid-Ex26.htm</ADDRESS>
</BODY>

148

Notes:
1. We have no submit button as yet, we shall add cne later.
In the BODY we set up a text box named ' f irst'.
<INPUT TYPE=text S_ZE=20 NAME="first"

onChange="checkdata()"> (Mandatory)

2. The text element has an onChange event handler
associated with it. (Nct all elements support this event
handler, and at the end of this chapter, we shall have to list
which FORM elements take which event handlers. -he
button element, for example, does not support the
onChange event.)

3. The onChange event handler is invoked once a user has
edited the data in a text box and then clicks outside the box,
for example, into a second box or some other part of the
window. onChange does not take effect the first time
around, or to put it arotier way, the initial interaction does
not generate this evert. You will have to remember this, it is
important.

Suppose a user has just called up this page. If they click
into the box and type in their name and then click outside
the box, nothing will happen, because, :he event f-andler is
not triggered the firs: time around. However, if they
subsequently edit their name and then click outside, the
event handler will be invoked.

In case you are wordering whether this is useful or not,
remember that usually Mere are several boxes to fill in. It is
possible that a user may inadvertently miss one of the
boxes, or users may select and delete text and then click
outside, leaving the Dox empty. Such 'errors' have tc be
trapped. This will beccme obvious once we look at more
examples.

4. The ,71-ieckdat a () function, assigns the value typed in
by the user to a variable 't irstname' :
firstname = document.userforml.first.value

149

This is tested by an : statement to see whether it is empty
"):

if (firstname

Make sure you do not put in a space between the two
double quotes, otherwise you will be testing tor a space
rather than an empty box!

5. If the box is empty, then an alert box appears. But what is
the f all about? After the user has cancelled the
alert box, the next line of code sets the focus, the cursor in
this case, back to the text box NAMEd first.

alert("Please fill in the name box.");
document.userforml.first.focus();

focus means putting the cursor into the text box, effectively
inviting the user to enter something. Without this line of
code, the user would have to click into the box before being
able to type in anything. Why did we not put the focus onto
this text box when the page was first loaded? That is what
we shall do in this next piece of code.

<SCRIPT>
function focusonfirst()(

// set box to blank, i.e. empty.
document.userforml.first.value = ""

document.userforml.first.focus()
} // EoFn
</SCRIPT>
<BODY onLoad="focusonfirstW>
You must fill in the mandatory
boxes.
... etc ...
</BODY>

Notes:
1. The focusonfirst () function performs two actions.
The first action sets the value of the first element to
blank. This element is in the FORM userformi which is a
property of the current document.

150

Secondly, it puts the focus onto the text box NAMEd . ,

in other words the cursor will be sitting in the text box, ready
for the user to begin typing. But how is it invoked?

2. Note that the BODY tag has the following code it it:
onLoad=" focusonf irst () "

The BODY tag can take an attribute which
effectively is an event and as such can take a handler, such
as a function. Once The web page has fully loaded the
event), the event handler is automatically invoked,
tocusonf irst () . This can be quite useful for doing any
initialisation before allowing the user to do anything.

Exercise 27: Further Form Validation
In this exercise, we shall use the above knowledge to
validate a form which requires a user to enter his/her first
and last names as well as an e-mail address.

- HAM Validating Fotm - Netscape r-FE3
Fie Eat yew ao Communicator Here

You must fill in the Required boxes.

First
Name

Last
Name

E-mail

p

LuComments

Form-valid-Ex2 7. htm

(Required)

(Required)

(equired)

(Optional)

151

All three boxes must be filled in. There is a comment text
box, which is optional.

However, before we dash off our code we need to think a
little. "What is the neatest way of constructing the code?"
This is all part of learning how to write JavaScript code or
code in any other programming language. Consequently,
this chapter and the next will look at some aspects of
programming style. Give the same task to three
programmers and they will produce three different
programs. Each one will successfully complete the task, but
one might be 'better' than another. We shall understand
what is meant by better after we have examined the various
approaches.

Exercise 26 employed the onChange event. However, this
may not be the best one to use. When a user fills in the first
box and then clicks into a second box, an alert box would
pop up telling the user to fill in the second box. When this
alert box was closed, another alert would ask the user to fill
in the third box. This would infuriate any user. Here is the
code which would `work' but would not be user-friendly.

<SCRIPT> // A Ham Fisted approach, with no thought given to it.
function checkdata(){
firstname = document.userforml.first.value
lastname = document.userforml.last.value
emailadd = document.userforml.email.value
if (firstname==""){

alert("Please fill in first name box.");
document.userforml.first.focus()

}

if (lastname==""){
alert("Please fill in last name box.");
document.userforml.last.focus()

}

if (emailadd=="")(
alert("Please fill in e-mail box.");
document.userforml.email.focus()

}

// EoFn checkdata
</SCRIPT>

152

<BODY>
<TABLE>
<TR>
<TD WIDTH=30%><FORM NAME="userforml">
First Name:
<TD><INPUT TYPE=text SIZE=20 NAME="first"

onChange="checkdata()">
<TD>(Required)
<TR>
<TD WIDTH=30%>Last Name:
<TD><INPUT TYPE=text SIZE=20 NAME="last"

onChange="checkdata()">
<TD>(Required)

<TR>
<TD WIDTH=30%>E-mail:
<TD><INPUT TYPE="text" NAME="email"

onChange="checkdata()">
<TD>(Required)
<TR>
<TD WIDTH=30%>Comments:
<TD><TEXTAREA ROWS=2 COLS=20> </TEXTAREA>
<TD>(Optional)
<TR>
<TD COLSPAN=3 ALIGN=center><INPUT TYPE=submit>
</FORM>
</TABLE>
<ADDRESS>Form-valid-Ex27.htm</ADDRESS></BODY>

Note too that if the submit button were clicked before the
user began filling in the boxes, the form would be sent off
with all the boxes empty. So how can we improve it? We
shall examine two classic approaches below.

Both methods let the user fill in the boxes (or maype only
some of them) but whet the submit button is clicked, all the
entries are checked at ore go. If the entries are correct, the
FORM is submitted. If they are not correct, an alert box
pops up requesting the user to try again.

Example 28 - Approach 1: Using the submit() method
Since we just want to see how the basic mechanics work,
we shall restrict our test to just one text box.

153

Here is the code for the following web page:

sAr:i a better Validating Form 7 using the submit° method - N... pin El

<HEAD>
<TITLE>a better Validating Form </TITLE>
<!--If user does not enter data in the text box,
pop up an alert box. Otherwise submit the FORM.
-->
<SCRIPT>
function checkdata(){
firstname = document.userforml.first.value
if (firstname==""){
alert("Please fill in all the Required

boxes.");
}

else {
document.userforml submit();

) // EoFn checkdata
</SCRIPT>
</HEAD>

154

<BODY>
<H3>You must fill in the <I>Required</I>

boxes </H3>
<P>
<TABLE>
<TR>
<TD WIDTH=30%><FORM NAME="userforml" >
First Name:

<TD><INPUT TYPE=text SIZE=20 NAME="first">
<TD>(Required)
<TR>
<TD WIDTH=30%>Comments:
<TD><TEXTAREA ROWS=2 COLS=20 NAME=comments>

</TEXTAREA>
<TD>(Optional)
<TR>
<TD COLSPAN=3 ALIGN=center>
<INPUT TYPE=button VALUE="Send off Details"

onClick="checkdata()">
</FORM>
</TABLE>
<ADDRESS>Form-valid-Ex28.htm</ADDRESS>
</BODY>

Notes:
1. We have substituted the onchange event handler for an
onClick handler and attached it to a button element, rot
to a submit button.

<INPUT TYPE=button VALUE="Send off Details"
onClick="checkdata()">

When this button is clicked, the checkdata () function
tests the user's entry 70 see whether anything has been
typed in. If nothing has, an alert box is produced requesting
that all those boxes ma'ked Required be filled in. When the
user closes the alert box, the function stops and the user is
returned to the web page.

However, when the firshiarne box has been filled lel, then
the program submits the form via the following:
document.userforml.submit();

155

2. Remember that many HTML tags we properties of the
document object. But they can also be objects in their own
right and, as such, can have their own properties. The form
object is a property of the document object but it can also
be an object. As an object, one of its methods is submit().
This method submits the specified form and performs the
same function as when a submit button is clicked.

3. Essentially, when the "Send off Detai s" button is clicked,
the checkdata() function is invoked. This function performs
a test. If the test detects an empty text box, the function
calls an alert box, which, when closed bpi the user, ends the
function. If the test does not detect an empty text box, it

calls the submit() method to submit the form before ending.

function checkdata()(
firstname = document.userforml.first.value

if (firstname==""){
alert("Please fill in all the Required

boxes.");

else {

document.userforml.submit();

// end of function

Example 29: Approach 2: Using the onSubmit event handler

This second approach makes use of the onSubmit event
handler to perform the same task as the above. It is

associated with a FORM tag which will be invoked when the
FORM's submit button is clicked.

<HEAD>
<TITLE>Validating Form using the onSubmit event
handler </TITLE>
</HEAD>
<!--If user does not enter data in the text box,
pop up an alert box. Otherwise submit the FORM.
-->

156

Vandating Form using She onSubnut event handler - Net RIFT

<SCRIPT>
function checkdata()(
firstname = document.userforml.first.value
if (firstname=="")(
alert("Please fill in all the Required

boxes.");
return false)

else {
return true }

) // EoFn checkdata()
</SCRIPT>

<BODY> <CENTER>
You must fill in the <I>Required</I>
boxes.
<P><TABLE>
<TR>
<TD WIDTH=30%>
<FORM NAME="userforml"

onSubmit="return checkdata()'
ACTION="mailto:j.shelley@ic.ac.uk"
METHOD=post>

First Name:

157

<TD><INPUT TYPE=text SIZE=20 NAME="first">
<TD> (Required)
<TR>
<TD WIDTH=30%>Comments:
<TD><TEXTAREA ROWS=2 COLS=20 NAME=comments>
</TEXTAREA>
<TD>(Optional)
<TR>
<TD COLSPAN=3 ALIGN=center>
<INPUT TYPE=submit NAME=submitl

VALUE="Send off Details"
onClick="document.userforml.submitl.value=

'SENT OFF'">
</FORM>
</TABLE>
<ADDRESS>form-valid-Ex29.htm</ADDRESS> </CENTER>
</BODY>

Notes:

1. We use a submit button (sometimes called the submit
objector submit element) within the form and include an
onClick event handler, thus:
.11\IPUT TYPE=submit NAME=suomiul

VALUE="Send off Details"
onClick="document.userforml.submitl.value

='SENT OFF'">

When the submit button is clicked, its onClickevent handler
is invoked and processed. In my code, this simply changes
the value of the submit button from "Send off Details" to
"SENT OFF". (It could equally be a call to a function
whereby many statements could be processed.)

2. This is the important bit. Once the submit button's
onClick event handler has performed its task, the onSubmit
event handler in the FORM tag is automatically invoked -
checkdata ().
<FORM NAME="useLtoiml"

onSubmit="return checkdata()

Thus, we see that the process involves two steps. The first
step is when the submit button is clicked and its event

158

handler's code is processed. When this has completed its
task, the second step follows, namely, the form's cnSubmit
code is executed.

3. What is this return? It is time we had a look at this in
detail because it is an important part of functions.

The return statement
Functions always return a value. If a return statement is not
included, the function executes all the statements in the
function body and returns the undefined value to the calling
invocation. So what is This undefined value? It is one of
several special JavaScript values. When a variable is used
which has not yet been defined (declared), or a variable has
been declared but has not yet been ass gned a vaue, it is
assigned the undefined value.

Now, in the case of a function which has nc return
statement, it is the callhg statement which takes on t-te
undefined value once the function has completed its wo-k.
In all our examples so far, this has not been a problem. Vie
simply wanted a functior to do its work and stop. The fact
that its calling statement, the invocation, may have become
undefined, was of no concern to us.

In the above situation, hcwever, it has become a matter for
our concern. We want the form to be submitted but only
when the user entries are valid. The way the onSubr'7it
event handler works is that if a return statement is false, the
form is prevented from Deing submitted. Any other returned
value (such as true or even undefined) will cause the form
to be submitted. If the return true statement we -e
omitted, the form wou d still be submitted, because the
value returned would not be false but undefined. Those are
the rules of this game.

Therefore, there is no real need for us to include te
return t rue statement. However, it is highly
recommended to do so since it makes the logic of the
program clearer to the human reader.

159

If there are several return statements in a function, the first
one encountered will stop the function and return to the
invocation statement.

What is the difference between submit() and onSubmit?
The submit() method can be called from any function,
without the need for a submit button to be included in the
code. When encountered. it is identical to what happens
when a user clicks a submit button.

The onSubmit event handler, on the other hand, does
require a submit button so that when any value other than
false is returned to it, it will submit the form. Also, without a
submit button to click, the onSubmit event handler could not
be called and the form would never be submitted.

Warning: Do not use the submit() method to send FORMs via
mailto:, news: or snews:. 11 is set up to ignore such protocols for
security reasons. You will have to use the onSubmit event
handler or just a simple submit button if you wish to use those
protocols.

We have covered a great deal of ground in this chapter. We
need a rest and a chance to assimilate and to practise what
we have learnt. We have a little more to say about Form
Validation in the next chapter because there are a few neat
features which we can employ.

What follows below summarises the material covered in
this chapter. It is worth studying in detail at your leisure.

Example 30 - The full code for validating our corm.

<HEAD><TITLE>Final Validating Form using the
onSubmit event handler </TITLE>
-SCRIPT>
function focusonfirstOf

// set box to blank, i.e. empty.
document.userforml.first.value.""
document.userforml.first.focus()

} // EoFn

160

function checkdata()(
firstname = document.userforml.first.value
lastname = document.userforml.last.value
emailadd = document.userforml.email.value
flag = 0
if (firstname==""){
alert("Please fill in all the Required

boxes.");

document.userforml.first.focus();
flag = 1;
return false;)

if (lastname==""){
alert("Please Eill in all the Required

boxes.");
document.userforml.last.focus();
flag = 1;
return false;

}

if (emailadd=="")(
alert("Please fill in all the Required

boxes.");
document.userforml.email.focus()
flag = 1

return false
}

if (flag == 0){

document.userforml.send.value="Details Sent."
return true

} // EoFn checkdata

function when()(
alert("Your data is about to be checked.");

} // EoFn when
</SCRIPT> </HEAD>

<BODY onLoad="focusonfiret()">
You must fill in the <I>Required</I>

boxes.
<P><TABLE>
<TR><TD WIDTH=30%>
<FORM NAME="userforml"

onSubmit="return checkdata()"
ACTION="mailto:j.shelley@ic.ac.uk"
METHOD=post>

First Name:
<TD><INPUT TYPE=text SIZE=20 NAME="first"

161

<TD>(Required)
<TR><TD WIDTH=30%>Last Name:
<TD><INPUT TYPE=text SIZE=20 NAME="lastn>
<TD>(Required)
<TR><TD WIDTH=30%>E-mail:
<TD><INPUT TYPE=text SIZE=20 NAME="email"
<TD>(Required)
<TR><TD WIDTH=30%>Comments:
<TD><TEXTAREA ROWS=4 COLS=20 NAME=comments>

</TEXTAREA>
<TD>(Optional)
<TR><TD COLSPAN=3 ALIGN=center>
<INPUT TYPE=submit NAME=send

onClick="whenW>
</FORM>
</TABLE>
<ADDRESS>Form-valid-Ex30.htm</ADDRESS></BODY-

MA VdWaling I oim using the OnSubmit v rt1 h ERNE!
View io 1;wrnunicalor Heip

You must fill in the Required boxes.

First
Name:

Last
Name

Comments

Form-valid-Ex30. htm

162

(Required)

(Re quire d)

(Required)

(Optional)

Notes:
1. In the above, we have chosen to use the onSubmit event
handler in the FORM tag rather than the submit() method.
<FORM NAME="userforml"

onSubmit="return checkdata()"

2. When the user clicks on the submit object (the submit
button), two things happen. First, it calls the when() function
which alerts the user to the fact that the details are going to
be checked. (Good style.)
<INPUT TYPE=submit NAME=submitl

onClick="when()"

The second thing to happen is that when the user closes
the alert box, generated by the when() function, tie
onSubmit handler is automatically invoked. This is a call to
the function which checks the user's data.
Without a submit type element, the onSubmit would not be
executed.

3. The checkdata () function has a series of IF

statements, each one checking one of the text boxes. If one
is empty, it alerts the use- and requests that all boxes mi,st
be filled in. It then sets the focus on to the offending box
and assigns the numeri:. value '1' to variaole f lag.
if (lastname=="")(

alert("Please f:11 in all the Required
boxes.");

document.userforml last.focus(';
flag = 1;
return false;)

Finally, the return value is set to false to prevent the form
from being submitted.

4. The user complies with the request and clicks the submit
button once more. Once, all boxes have been found to be
non -empty, that is, all the IF statements fail, there is ore
final IF statement. This tests to see whe-.her flag equals
zero. (Note that this flag has been assigned zero at the start
of the function.)

163

flag = 0;

if (flag ==
document.userforml.send.value="Details Sent.";
return true;

If flag does equal zero then it cannot have peen set to 1 by
any of the IF statements and, therefore, we know that the
form can be safely sent off to the server. The value of
submit button, send, is changed to "Details Sent" and
return is set to true. Since this return value is 'not false',
JavaScript will now automatically subm t the form.

5. For once we have included the ACTION and the
METHOD attributes in the FORM tag. We have sent the
form via e-mail using mailto:

<FORM NAME="userforml"
onSubmit="return checkdata()"
ACTION="mailto:j.shelley@ic.ac.uk"
METHOD=post>

In practice, you will have an existing program on your
server to handle the data. This would typically be accessed
via an http: // ..url.. Since we corsider client -side
JavaScript in this text, it is assumed that cur task is simply
to submit the form's data to whatever program we have
been told to use. In other words, someone else will have
written the server -side program and supplied us with the
correct 'Lift.

If you want to use mailto:, you cannot use the submit()
method. The submit() method fails wthout warning, if the
FORM's ACTION is mailto:, news: cr snew:. This is for
security reasons. You will have to use the standard submit
button or the onSubmit event handler which triggers the
submit button to work.

6. As a matter of style, it is always Jseful to add a
JavaScript comment marking the end of a function:
function xyz() {

function code _) // end of function

164

Not only will it help you but also anyone else who reads the
code. It is a common error to forget to put in the closing
curly bracket for a function or to mistake it for an 'F's
closing bracket.

What we have learnt
We have seen how to validate user data entered irto forms
at the Client -side before a form is submitted to a server.
This speeds up validation since there is no need to contact
the server until we are sure that all text boxes have been
filled in correctly.

The Client -side versus Server -side was discussed.

To validate user data, we made use of the onChange event
handler which called a function to perform the necessary
validation. Later we used the onClick event handler in
conjunction with the submit() method.

We looked at another approach using the onSubmit event
handler which is triggered by the submit button. This
method allows use of the mailto:, news: and snews:
protocols.

The onLoad event handler can be used to initialise the
page immediately after the page has loaded. We shall see
this again when we loo{ at animating images in Chapter 3.

The focus() method was used to place the cursor inside a
text box so that the user could begin typing without having
to physically click inside the text box.

We also discussed the undefined value and its use with tne
return statement. The latter has to be used with tie
onSubmit event handler when we need to prevent the
submission of a form.

We considered some aspects of programming style and
made use of a variable to flag whether we should submit a
form or not.

165

Jargon
client -side: the user's browser. When a user wishes to
obtain a web page, he/she sends off the request via the
browser. The browser becomes the client of the request.

flag: in programming, a common technique to discover
whether something has happened or not ',such as some
data being invalid) is to give a value to a variable. This use
of a variable, often called a flag variable, can be tested to
see which state it is in and react accordingly. Many
programmers use the numeric values 1 and zero, but you
could also use the Boolean values true or false.

focus(): a method which causes a text box or textarea box
to be given focus. It is the same as if the user had clicked
into the text or textarea box.

onLoad: an event handler contained within the BODY tag.
When the page has completed loading, the event handler is
automatically invoked and its JavaScript code executed.
The following is not to be recommended. It can become
very irritating to your users.
<BODY onLoad="alert('Weicome to my Web page.')"

onSubmit: an event handler within a FORM tag. Once the
submit button is clicked, the JavaScript code associated
with the handler is executed. Typically, it is used to validate
form data. But it must have a return statement which
evaluates to false to prevent the form from being submitted.
Any other value will cause the form to be submitted, even
an undefined value.

return: all functions return a value when they have
completed their work. It takes the Boolean value true or
false or the undefined value. It is also possible for other
values to be returned, in fact, any value. For example, the
following function returns the square of its argument:

function square(x) {

y = x*x
return y) // end of function

166

or more succinctly
function square(x) {

return x*x
} // end of function

server -side: the serve' which holds the web pages and any
validating programs req jested by a user's browser.

submit(): a method which submits a form. It requires the
name of the form as its object. It fails without warning if
mailto: news: or snews: is in FORM ACTION. This is for
security reasons.

undefined: a special value which is given to any variable or
object or function call w`lich has not been explicitly defined
and assigned some otter value.

Events & Methods - summary of what we have used so far

Event Associated
with

onLoad BODY aid
IMG

onSubmit

onChange

onClick

FORM

Comment

page (imace) must be
completely loaded before the
handler is invoked

rtext or
textarea
element
button,
checkbox,
radio, reset &
submit buttons
and also used
with links

automatically invoked when tie
submit button is clicked
first time around the handler is
not activated

links refer to the <AREA> & <A>
tags

onMouseOver used within
links

reacts when user moves mouse
over a link

onMouseOut used within
links

reacts when user moves mouse
out of a link

167

Methods
submit()

Where used
used within a
function

performs the same action as the
submit button

focus() used within a
function

performs the same action as
though a user had clicked into a
text box or a textarea box

Test 11:
11.1 Which INPUT elements are allowed to take the
onChange event handler?

11.2 When a user first types something into a text box will
the onChange event handler take effect?

11.3 focus() is a method of which object?

11.4 A form may be submitted in any of three ways. What
are they?

11.5 To which object does the submit() method belong?

11.6 What function does the submit() method perform?

11.7 onSubmit is an event handler of which HTML tag?

11.8 What purpose does the onSubmit handler perform?

11.9 When does the onSubmit event handler send the form
to a server?

What is next
We shall look at some more features and tricks associated
with form validation. Some of these will reduce the amount
of typing and others will extend our knowledge of what
other tests can be carried out when validating forms.

168

1 r-
Further Form Validation
techniques

In this chapter, we shall look at some other validation
techniques using:

the indexOf() method
the length property
and the this operator

We begin with the this operator, but we shall have to set
the background for its use by first looking at Exercise 31.

Exercise 31: The old approach:
Suppose we need to validate a job application form for a
mountaineering post where applicants must be healthy
young things between 18 and 35. In previous exercises,
when we referred to, say, the value of an INPUT element
we had to type the followmg:
firstname = document.userforml.first.value

There is a shorter and more elegant way, using the
JavaScript operator this which we shall use in Exercise
32. For the moment, here is the code using the old
approach: document. formname.elementname.. etc

<SCRIPT>
function focusonage0{
// set box age to blank, i.e. empty & focus.
document.ageform.age.value="" ;

document.ageform.age.focus();
} // EoFn
function checkage0(
userage = document.ageform.age.value;
if ((userage < 18) II (userage > 35))

(alert("Sorry you are either past it or too
young!");

document.ageform.submitage.value
= "Send Details.";

document.ageform.age.value."";
return false;)

169

else
(alert("You will be notified")
document.ageform.submitage.value

= "Details Sent.")

} // end of function
</SCRIPT>
<BODY onLoad="focusonage()">
You must fill in the <I>Age</I> box.
<P>
<FORM NAME=ageform onSubmit="return checkage()"

ACTION="mailto:j.shelley@ic.ac.uk"
METHOD=post>

<TABLE>
<TR>
<TD WIDTH=30%>Type in your age:
<TD> <INPUT TYPE=text NAME=age >
<TR>
<TD COLSPAN=2>
<INPUT TYPE=submit NAME=submitage>
</FORM>
</TABLE>
<ADDRESS>Valid-Age-Ex31.htm</ADDRESS></BODY>

Applicants' Age Without Ell r71- r

Notes:
1. After the document has been loaded, the onLoad event
handler of the BODY tag calls function focusonage() which
blanks out the text box age and sets the focus on to the text
box.

170

2. When the submit button is clicked, the Form's on&Jberdt

handler is invoked which calls the checkage() function

wherethereamfournakffencestO:document.ageform.
We can reduce the amount of typing by using the this

operator as shown in the following exercise.

Exercise 32: Using the this operator.

<HEAD>
<TITLE>Validating Applicants' Age using 'THIS'
</TITLE>
<SCRIPT>
function focumonage()(
document.ageform.age.value = "";

document.ageform.age.focus();
document.ageform.submitage.value =

"Send Details.";
) //EoFN

function checkage(obj,lowage,highage)(
userage = obj.age.value
if ((userage < lowage) II (userage > highage))

(alert("Sorry you are either past it or too
young!');

obj.submitage.value="Send
obj.age.value="";
return false;)

else
{ alert("You will be
obj.submitage.value="Details

// EoFn
</SCRIPT>

Details.";

notified")
Sent."

<BODY onLoad="focusonage()">
You must fill in the <I>Age</I> box.<P>
<FORM NAME=ageform 1,

onSubmit="return checkage(this,18,35)"
ACTION="mailto:j.shelley@ic.ac.uk"
METHOD=post>

<TABLE>
<TR><TD WIDTH=30%>Type in your age:
<TD> <INPUT TYPE=text NAME=age >
<TR><TD COLSPAN=2>

}

171

<INPUT TYPE=submit NAME=submitage
VALUE="Send Details.">

</FORM>
</TABLE>
<ADDRESS>Valid-Age-Ex32.htm</ADDRESS></BODY>

Notes:
1. In the FORM tag, the onSubmit event handler has added
the keyword r hi s as an argument. It is a shorthand way of
referring to the current object which, in this instance, is the
form named ageform which is a property of the current
document: document .ageform.

<FORM NAME=ageform
onSubmit="return checkagethis,18,35)"

It is passed as an argument to the function checkage ()

where oh j will take on the value of this and effectively
saves typing: document . ageform.

function checkage(obj,lowage,highage){
userage = obj.age.value .. etc. ...,

2. We could not use this as an argument in the
focusonage () function which is loaded by the BODY tag
because it would make a reference to the BODY and not to
the form NAMEd ageform.

3. Numeric values typed in by users can be checked using
the comparison operators. This is quite simple.

Auserage < lowage) (userage > highage),

But note that each tested expression must be surrounded
by brackets when logical operators `, are used:

((expression) (expression)

In our example, the value entered by the user is checked
against low and high boundary values - 18 and 35 - which
are passed as arguments via the onSubmit handler's
invocation to the checkage() function.

172

Some more Tests which can be applied
Sometimes it is not convenient to allow leading spaces to
be entered by users. Fcr instance, we nay intend to store
the applicants' names in a data base and perform an
alphabetical sort at a later time. Sorting is based on the first
character. If some names have a leading space and some
do not, the sort will not be correct. To trap leading spaces,
we can use the indexCf() method.

indexOf () method
This is a method of the String object. It returns the index,
that is the position, of tie first occurrence of its argt_snent in
a specified string.

new String("The Owl and the Pussycat went
to sea.")

Note how its construction is similar to that of the Date, object
(see page 129 and page 130).

However, in Navigator 3.0, a new instance of the String
object can be created by a simple assignment statement.
The following behaves dantically to the above:
_string

"The Owl and the Pussycat went to sea.")

The following finds the first occurrence of the character 'w'
in the above string: a_string. indexOf ("w"

and would return 5, as its position (index) in the associated
string, i_string.

Why 5? Because it begins at zero. Hence, the sixth
character is index 5. The first character would be index 0.
Note that spaces are always included in the count since a
space represents a physical character.

"What's the big deal?", you cry. Well, it can help to find out
if someone has put in a leading space or whether a
particular character, a word or a phrase has been included.
The main point about the indexOf () method is that if the

173

character is not found, it returns -1 as its value. This can be
tested and if the returned value is -1, you know that the
character, word or phrase has not been entered by the
user.

<BODY>
<CENTER>
The Owl and the Pussycat went to sea.
<SCRIPT>
a_string="The Owl and the Pussycat went to sea."
charpos = a_string.indexOf("w") + 1

document.write("<P>Lowercase <I>w</I>"
+ " occurs at index "

+ a_string.indexOf("w") // intereatingl
+ " as the "

+ charpos
+ "th character in the given string.")

</SCRIPT>
<P>
<ADDRESS>indexof-l.htm</ADDRESS>
</CENTER></BODY>

T1 r -
jiff jot . View io Communicator Help

The Owl and the Pussycat went to sea.

amvercasewoccursatindc0 as the 6th
character in the given string.

indexof-1.htm

In the following, we can test for a leading space. Here is the
code where obj has the value given in Exercise 32,
namely: document . age f orm. We assume there is a
textbox NAMEd surname.

if (obj.surname.va/ue.index0f(") == 0) {

alert("Please remove leading spaces!");
obj.surname.focus(); }

174

The search always begins at the start of the string unless
you add a second argument. Therefore, if the index equals
zero, there is a leading space as the first character. Note,
too, that we have put a space between the double quotes
because that is the character we are searching for. Thirdly,
we have set the focus back on to the text box.

Here is the full syntax for indexOf() where the second
argument is a numeric value from which to begin the
search. It rarely has any viable purpose, unless you want to
find the second or third, etc., index of a given character.
(See page 178 for an example.) The second argument can
be any expression or statement which returns a numeric
value. If omitted, the search begins at the first position.
a_string="The Owl and the Pussycat went to sea"
a_string.indexOf("Pussycat", 7)

The search for Pussycat in the above would start at the 8th
character and 16 would be returned as the index (the 17th
character).

Case is significant in this method. Thus if 'pussycat' were
searched for, the retuned index would be -1. If I searched
for 'went to sea', index 25 would be returned, but if I typed
in 'went sea', -1 would De returned.

Finding characters in a string. - NetscaPe 141711:1

The Owl and the Pussycat went to sea.

pussycat occurs at index -1 as the 0th
character in the given string

index of- 1 . htm

1 or.4 4

175

Test for two words entered using indexOf()
If you have just one text box in which you invite users to
enter their full name, it may be necessary to check that two
words have been entered. One way would be to search for
a space, since words have a space betweer them, and test
for -1 to be returned. If it is, then there are no spaces and
you can assume a one word entry.
if (obj.vaiue.indexOf(" ") == -1) (

alert("Please re-enter your firs: name and
surname");

obj.focus(); }

Exercise 33: Using the length property
In this exercise, we are going to check that a user has
entered a fixed number of characters.

In some instances, users may be required to enter data as
a fixed number of characters, perhaps it is a postcode
which can be between 6 and 9 characters or a date in a
fixed format of dd/mm/yy with leading zeros for digits 1-9.
You can force your users to enter an exact number of
characters by making use of the length property.

3 Checking the number of characters entered... PR

[1_ Ege Ed;) Y1LW4 Friotkes HAD 11011

Enter a date in dd/mrn/yy format with
leading zeros where necessary 01/11/Q -

Enter date (03/09/99
dd/mm/yy

SUBMIT QUERY

length-Ex33. htm

176

In the following code, notice how the use of semi -colons
helps to show the erd of statements within the if and else
blocks.

<SCRIPT>
function checkdatE(obj2){

if (obj2.date.value.length == 8)
obj2.submitl.value

= obj2.submitl.value.toUpperCase();
return true;}

else (alert(obj2.date.value
+ " is not valid.");

return false; }

) // EoFn
</SCRIPT>
<BODY>
Enter a date in dd/mm/yy format with
leading zeros where necessary: 01/11/99
<P>
<TABLE>
<TR><TD WIDTH=30%>
<FORM NAME="dateform"

onSubmit="return checkdate(thig)"
ACTION="mailto:j.shelley@ic.ac.uk"
METHOD=post>

Enter date: dd/mm/yy
<TD><INPUT TYPE=text SIZE=10 NAME="date"
<TR>
<TD COLSPAN=2>
<INPUT TYPE=submit NAME="submitl">
</FORM>
</TABLE>
<ADDRESS>length-Ex33.htm</ADDRESS>
</BODY>

Notes:

1. 1 engt h can be a property of a "string value" entered by
a user into an INPUT text box. Let us suppose that we
need to be strict about how dates are entered. say, with
leading zeros and a two digit year, 01 /08/99. This format
requires 8 characters. We can check the length of an entry
thereby forcing a user :o meet our demands.
it (obj2.date.value.length

177

2. As the program stands, there is nothing to stop a user
typing in: '12345678' or even 'abcdefgh'. It meets the
requirements. Thus, the canny programmer would also
need to check that forward slashes have been included at
specific places by using the index0f() method below.

if ((obj2.date.value.length == 8) &&

(obj2.date.value.indexOf("/") == 2) &&

(obj2.date.value.index0f("/", 4) == 5))

obj2.submitl.value =
obj2.submitl.value.toUpperCase();

return true;
} // EofIF

The above is an example of why it may be necessary to
force users to enter data in a strict format in order to ensure
that a valid date format has been entered and not just a
jumble of characters.

So, the indexOf() method and the length property can prove
useful for form validation.

3. In the above, we have also used the toUpperCase()
method. This converts the value of the submitl element to
upper case. We could simply have set the value to an
upper case string:
obj2.submitl.value = "SUBMIT QUERY"

However, you need to be aware of this method as well as
ftSopposite,toLowerCase().

4. Why do we have to add the second argument here?
if (obj2.date.value.index0f("/", 4) == 5)

In order to start searching for the second forward slash,
otherwise, it would start at the beginning and meet the first
again.

5. An alert box is shown when the user enters an invalid
date:

178

Microsoft Internet Explorer F3

02/3/53aootvalid

Exercise 34: A Little Help

The last thing we shall do is to put in a little help box. If it is
checked, a window pops up explaining how to enter data. If
unchecked, it does not pop up, perhaps because the user is
familiar with how we wart data to be entered.

(It is always polite to include such help windows to allow
the user to prevent them from appearing.)

3 I win() Hell. Mu, 1. oil Int,triet f x r --

Enter your date of birth.

Auto Help?
Enter date. /----
dd/trun/yy

Submit Query

length-Ex34.h.tm

<HEAD><TITLE> Giving some Help </TITLE>
<SCRIPT>
// BODY onLoad - set the helpdate field to null
function init() (

helpdate = null;) //EoFn

179

// auto help on date field
function autohelp(obj2, file) {

if ((obj2.help.checked == true)
&& (helpdate == null))
helpdate = window.open(file, null,

"width=370 height=270");
} // EoFn

function checkdate(obj2)(
if ((obj2.date.value.length == 8)

&&(obj2.date.value.indexOf("/") == 2)

Wobj2.date.value.index0f("/", 4) == 5))
{ obj2.submitl.value =

obj2.submit1.value.toUpperCase();
return true;

else (alert(obj2.date.value
+ " is not valid.");

obj2.date.value="";
obj2.date.focus();
return false; }

// EoFn
</SCRIPT>
</HEAD>
<BODY onLoad="init()">
Enter your date of birth.
<FORM NAME="dateform"

onSubmit="return checkdate(this)"
ACTION="mailto:j.shelley@ic.ac.uk"
METHOD=post>

<TABLE WIDTH=80%>
<TR><TD WIDTH=35%>Auto Help?</TD>
<TD><INPUT TYPE="checkbox" NAME="help"

CHECKED></TD>
<TR><TD WIDTH=35%>Enter date: dd/mm/yy
<TD><INPUT TYPE=text SIZE=10

NAME="date"
onFocus="autohelp(this.form,'datehelp.htms)">
<!-- datehelp.htm is passed as an argument to

the dummy argument file in the autohelp()
function. -->

<TR><TD COLSPAN=2 ALIGN=center>
<INPUT TYPE=submit NAME="submitl"
</TABLE>
</FORM>
<ADDRESS>length-Ex34.htm</ADDRESS></BODY>

180

Notes:
1. When the document is loaded, the function is
invoked which simply sets a variable helpdate to :

helpdate = null;

We met the null keyword in Chapter 7 in conjunction with
the window.open method. The JavaScrip7. keyword 1.J is

a special value that incicates "no value". So what purpose
does it serve in our code?

Notice that the autohelp() function tests to see whether
variable helpdate equals null. If it 's true (a'id the
checkbox is checked) then a window is opened displaying
the help file datehelp. htm.

function autohelp(obj2, file)
if ((obj2.help.checked == true;

&& (helpdate == null))
helpdate = window.open(file, null,

"width=370 height=270");
} // EoFn

datehel p htm has been passed to the dummy argument
file. (It would be more sensible, of course, to create the
HTML document at the client side rather than force the
browser to retrieve it over the Internet, as shown in Exercise
18, page 95.) Note, also. that it is the onFocus event
handler which causes the function to be executed.
<TD><INPUT TYPE=text SIZE=10

NAME="date"
onFocus="autohelp(this.form,'datehelp.htm')"

When this window is closed, a value is returned to helpdate
which is not null. Therefore, when a user focuses on the
date box again, the autohelp () function will fail because
helpdate is no longer equal to null. This approach assumes
that having read the help once, the user does not want it
popping up each time the date box is focused on.

But more important, it also prevents some browsers from
being caught in a loop which will cause the help window to

181

keep coming up so that the user cannot do anything else.
Netscape fails completely when this occurs and simply
keeps on showing the help window again each time the
window is closed. Internet Explorer does something similar.

This is one of the dangers of using the onFocusO event
handler. It is easy to get caught up in an infinite (ever
repeating) loop. We then have to use Windows Task
Manager to end the application. The above code is one way
of preventing the onFocus event handler from repeating for
ever. There are other ways, for example, by putting in a
button which when clicked will close the window as
illustrated in Exercise 18.

31-iow to enter dates Microsoft Internet Ex rr rz-

Enter dates as follows:

 leading zeros must be included
 forward slashes must be used - /
 last two digits for years

For example: 01/04/99

1111111111111111

datehelp.htm

3. In the INPUT text element called date, we have used
this . form as an argument which is passed to the
autohelp function via the onFocus event handler. It is now a
reference to the form in which the date element is
contained, namely, the form NAMEd dateform.
Therefore:

this . form is equivalent to document .dateform

182

<INPUT TYPE=text SIZE=10 NAME="date"
onFocus="autohelp(this.form,'datehelp.htm')"..

If we had used this by itself, it woulc refer only to tne
element text box - ddt e. If you look back to the autohelp
function, it is testing to see whether the checkbox called
help is checked or not. This is another one of the form's
elements but not the text element called date. By itself
this would refer only to the text box date. But by passing
this. form as an argument to the autohelp function, we
can specify any of the elements in the form date form.

In the following, obj 2 will be replaced by this . form

function autohelp(obj2, file)
if ((obj2.help.checked == true)

and is equivalent to:

it ((this.form.help.checked == true)

Alternatively, we could simply have used:
if ((document. formdate.help.checked == true)

But the idea is get you familiar with using the this keywo-d
and to know how to use it correctly.

4. As the program stands, there is nothing to stop a user
entering either of the following into the date box and the
form would be submitted quite happily: as/bb/cc or even
dd/mm/yy - the latter not being beyond the ability of some
users. Likewise, 55/ 34 / 99 would also be accepted.

You can now begin to see that checking even a simple form
is not trivial and involves much painstaking effort on the part
of a thorough programmer. When I began teaching
programming several decades ago, it was always important
to point out to students that a working program is about
10% of the final code, error checking comprises some 50%
and the other 40% is in -line documentation, that is
explanatory comments within the code.

183

Exercise 35: Combining it all together
We shall create an application form for a mountaineering
post. Applicants have to be in the age range of 18 - 35. We
could also allow a user to make three mistakes when
entering data into the date of birth box. If they exceed this,
we would not permit them to submit the form - assuming
that they would inevitably pose a threat to anyone on a
climbing trip. (Try it yourself in Test 12.8). Here is what the
form looks like. The code and comments follow.

r. Mountaineering Application Form Exercise 34 Combining it... MEI D"

Eie Edit Yiew go Help

3 Mountaineering Posts Available

Full Name:
!John Smith

E-mail address:
13 smith@abc. co . uk

Post code
IWD4 RT7

Age:
34

Mountain-Form-Ex35.hbn

Tip: These scripts are now beginning to get quite large. A
common approach for many programmers is to begin by creating
the basic HTML bit by bit and to keep viewing it in a browser to
make sure that it is working correctly. Once the HTML is correct,
then the scripts can be added one by one, viewing and testing
each one in the browser and gradually building up to the grand
finale.

184

<HEAD>
<TITLE>Mountaineering Application Form Ex35.
</TITLE>
<SCRIPT LANGUAGE="Javascript"

//sets the focus on to the fullname box.
function setfocua() (

document.mountain.fullname.focus()) //EoFn

// check for empty strings
function isempty(obj) {

if (obj.value == "")
alert("The " + obj.name

+ " field must be completed!");
obj.focus();
return false;

}

return true;
) // EoFn isempty

// check age in 18-35 range
function checkage(objage,lowage,highage)(
userage = objage.value
if ((userage < lowage)

II (userage > highage))
(alert("Sorry you are either past it or too

young! ");
objage.value="";
return false;)

else (return true;)

) //EoFn checkage

function checkdata(f) (// check all details
alert("Details are being checked before being

sent off.")
if ((isempty(f.fullname))

&& (isempty(f.email))
&& (isempty(f.postcode))
&& (isempty(f.age))
&& (checkage(f.age,18,35))

) // conditions to test are finished
f.send.value = "Details Sent.";
alert("You will be notified via your"

+ " e-mail address within"
+ the next 20 days.");

f.submit();)

185

else (
alert("Sorry Details cannot be sent."))

} //EoFn
</SCRIPT>

<BODY onLoad="setfocus()" >
<CENTER>

3 Mountaineering Posts Available
</CENTER>

<TABLE>
<FORM NAME="mountain" ACTION="xzi.cgi"

METHOD=post>
<TR><TD>Full Name:

<INPUT TYPE=text SIZE=25 NAME=fullname>
<TR><TD>E-mail address:

<INPUT TYPE=text SIZE=25 NAME-email-
<TR><TD>Post code

<INPUT TYPE=text SIZE=25 NAME=postcode>
<TR>
<TD>Age:
<INPUT TYPE=text SIZE=10 NAME=age>
<TR>
<TD><INPUT TYPE="button" VALUE -"Send Details"

NAME="send"
onClick="checkdata(this.form)">

</TABLE>
</FORM>
<ADDRESS>Mountain-Form-Ex35.htm</ADDRESS>
</BODY>

Notes:
1. This code deserves careful study. The focus is set on the
Fullname box via the onLoad event handler in BODY.

<-BODY onLoad- " set f ocus () ">

2. Note that there is one function which tests to see whether
the fullname, e-mail. postcode and age text boxes are
empty. In Exercise 30, we had to do a separate if test for
each one. By using the . keyword we are now able to
reduce the amount of typing and the size of the script.

186

In the following:
onClick="checkdata(this.form)--.
this . form is passed as an argument to the dummy
argument of function checkdata (f) . In turn this function
calls the isempty() function four times. Each call passes
one of the INPUT object names: full name, email,

postcode and age which are associated with
this . form (now the dummy argument f).

if ((isempty(f.fullname))
&& (isempty(f.email))
&& (isempty(f.postcode))
&& (isempty(f.age))
&& (checkage(f.age,18,35))
&& (checkmail(f.email.value,f.email))

The above is worth looking at closely. Remember that
this.form = document.mountain.

3. The user's age is checked twice. Once to see whether it
is empty, and, if it is, the focus is put on the offending text
box so that the user can begin to type in straight away. A
second and separate test is used to see whether it lies
within the given range. So, age is checked by two different
functions: isempty() and checkageO.

4. The isempty() function checks whatever text box is
passed to it as its argument. If it finds no data, that box will
have its focus set and the function will return false. If the
box is not empty, it merely returns true. By returning false,
the i f statement's condition in the checkdataa function will
fail because one of the boxes causes a false to be returned.
Remember that for our i f condition to evaluate to true, all
the tests using the && (AND) operator must be true.

5. Although we have not done so in our code, we could
check that at least an @ symbol appears in the e-mail
address. We have to hope that the rest is correct since
there is a limit to what can be tested.

187

if ((isempty(f.fullname))
&& (isempty(f.email))
&& (checkmail(f.email.value,f.email))

// end of i!

// check that at least @ appears
function checkmail(emailvalue,emailobj) {

if (emailvalue.indexOf("@") == -1)
alert("Are you sure this is a proper

e-mail address?");
emailobj.focus();
return false;

}

else { return true;} // EofIF
} // EoFn

In the above code, we pass two arguments to checkmailO.
The first (f . ema i 1 . va 1'1e) passes the value of the email

object, in other words, whatever the user has typed in as
the e-mail address. f will be replaced by this. form.

The second passes just f . email so that we can put the
focus back on to it.

All these arguments get a bit confusing. But if you trace it
through, it makes sense. It begins with:

checkdata(this.form) which is invoked by the
onClick handler when the send button is clicked
in the declaration of function checkdata(f)

this. form will be substituted wherever the dummy
argument f appears
the above checkdata() function calls other functions and
the t (which is really this . form) will be substituted for
those functions' dummy arguments.

In other words, . :, is passed 70 one function
which passes it to another, and so on.

What we have learnt
In this chapter we have looked at various tests which can
be carried out on data entered into forms. You should be

188

able to appreciate how painstaking this can become. Much
of a programmer's work is not so much creating a script
which works but in testing for all possible errors which users
can generate. We have not exhausted the possibilities by
any means.

The index0f0 method was introduced to show how
characters or phrases can be found in text strings. If not
found, then -1 is returned which can be trapped via an i f

statement and appropriate steps taken.

We have seen how to use this. Not only does it cut
down the amount of typing (and typing errors), but it can
reduce the amount of code by using one function to wcrk
on different elements of a form.

When using logical operators, brackets are required around
each expression in the if statement.

The length property can be used when we need to force
users to enter a fixed number of characters.

Test 12:
12.1 What are the following: - event handlers, methods,
user defined functions, objects or properties?

index0f()
length
myfunction()
onChange
onFocus
onSubmit
submit()
this
this. form

12.2 In the following which are comparison operators and
which are logical operators? && < = = =

12.3 In the following string:
astring="The Owl and the Pussycat went to sea"

189

how would you find the second occurrence of the
lowercase:

a) .

b) ' ?

12.4 What value is returned by indexOf() if its argument is
not found in the given string?

12.5 Can you send form -data via e-mail (rrailto:) using the
submit() method?

12.6 What does focus mean?

12.7 When we were testing for two words, we decided to
search the string for a space. If it were found, we assumed
that there were two words. However, what is to stop a user
from entering one word followed by a space? This would
meet the requirement of our test but would still be incorrect.
How could you test for this type of error? [Hint: one way
could involve the use of the length property.]

12.8 Add some extra code to Exercise 35 which will prevent
the form from being submitted if a user makes more than
three attempts to submit his/her application. [Hint: It is quite
simple and involves adding one to a count each time the
checkdata function is called.]

190

13 Animating Images

In this section we shah see how to animate gif images.
There are some exce lent packages around which will do
much more but there is something we can all try and have a
little amusement at the same time. It also saves having to
install and learn new programs when we can do simple
things more quickly in JavaScript.

Images can be animated by repeatedly displaying a series
of individual images in cuick succession, just like cartoons
and films. To achieve the effect, we make use of the
following JavaScript features:

the image object
pre -loading images
arrays and for loops
setTimeout() and its companion clearTimeout()

We shall examine each of these in relation to Exercise 36.

Exercise 36: Animating Images
Basically, we have five separate images, each of which is
displayed in quick succession for a period of 500
milliseconds (1/2 second). They can be gifor jpg files.

IP 6

191

The secret is to store the images in an array and then to
extract each one in quick succession and display it for a
certain number of milliseconds. But before we talk about
arrays, we can look at a simple approach.

Do you believe in Love
at First sight?

Animate- 1 -Ex 36. htm

The Image object
We start off by displaying the first image when the page is
being loaded:
<IMG SRC= "Love-0.gif"

By repeatedly assigning different images to the SRC
attribute of the above image tag, via JavaScript code, we
can animate the images. The src is a property of the image
object. So we need to create a new image object so that we
can change its src property.

192

(We had to do the same with the Date object, in Chapter 10,
when we needed to manipulate the various Date methods.
Objects have methods and properties. But some objects. such
as the image object. have no methods, only properties. Some
objects have event handers, some do not We shall look at one
of the image objects event handlers later.)

A new image object .s created by the new operator which
we have already used when creating new Date aid String
objects.
imagel = new Image()

Now that we have a new image object we can get to its src
property:
imagel.sr- "Love-l.gif"

The following would create five image objects and assign
an image to each one via its src property:
// create the image objet*
image0 = new Image()
// assign an image to its src property
imagel.src = "images/Love-0.gif"

imagel = new Image()
imagel.src = "images/Love-l.gif"
imagel = new Image()
image2.src = "images/Love-2.gif"
image3 = new Image()
image3.src = "images/Love-3.gif"
image4 = new Imager)
image4.src = "images/Love-4.gif"

Pre -Loading images
We obviously do not want all five images to be displayed on
the Web page when tie page is being loaded. Neither do
we want to force the browser to have to travel over the
Internet to fetch each mage each time we wart to re-
display a new image. 11 would take forever!

The trick is to load and store all the images before the page
is displayed so that whenever we want to use them, they
can appear instantaneously. This is called pre -loading. Pee -

193

loaded images are stored safely by the browser inside the
computer's memory until they are needed.

How is it done? Simply by putting the above code within
<SCRIPT> tags within the <HEAD> tags of the document. It
is that simple.

As the browser reads the code in the <HEAD> of the Web
page, it will fetch each image and store them safely away in
a cache memory, ready to be accessed when required.

However, the above code is clumsy. What we need is some
simple mechanism whereby we can more easily refer to
each image. This is done by the use of an array. We have
not covered arrays so far, but they form an important part of
any programming language. We shall have to digress for
the moment to discuss arrays and then return to our
exercise to see how they can help us to extract each image
from the cache memory.

Lists or Arrays:
All of us make lists from time to time:

shopping lists
a list of people to send wedding invitations to
tasks to perform, etc.

In a shopping list, each item is different but they are all
related to what we need to buy. Each person in our
wedding list is different but they are all related in that we
have to invite each one to a wedding.

A shopping list would look something like the following:

JavaScript has arrays which are, in
effect, lists of individual items all
related in some way. When loading
Web pages, a browser creates many
arrays. For example, all our images
are stored in an image array.

194

1 Butter

2. Milk
3. Cat food
4. Kettle descaler

etc...

All the forms we use are likewise stored in a form array.
There is an array for storing all our hyperlinks when using
the anchor tag. Indeec, the string text, The Owl and tne
Pussycat went to sea, used in indexof -1. htm on page
173, would be stored in a string array. Each character,
including spaces, is numbered according to its position in
the array. That is how JavaScript is able to find out where a
character is and what its index is so that it can return its
position.

In the above shopping list, we could refer to Cat food as
being the third item in the list. The 'w' of 'The Owl' would be
in the sixth position in the string array, index number 5!

Arrays play a fundamental role in programming. From the
earliest days of computing, it has been the means whereby
programmers can store related information inside a
computer's memory and whereby they can refer to or find
one item in the list as cpposed to any other. It is a simple
yet effective way for programmers to keep track of where
they have stored their data. Variables also store data but
they contain only single items. An array is used when many
items need to be kept together.

This is precisely what we need to do with our images. Store
them in an array and then get to each one so that they can
be displayed one by one.

Unlike us, browsers and JavaScript begin storing items at
zero rather than one. These numbers are called indices and
each index number refers to one of the elements in the
array. Each index is enclosed in square brackets after the
array name. Thus, the first of our five images could be
referenced by the following:

theImages [0] to refer to Love -0 . gi f .

As a page is being loaded, the browser keeps track of all
the images it loads in an internal array. As it loads each
one, it is stored in the position it occupies on the Web page.
Thus, the first image is loaded into an image array at index

195

0, the second into index 1, etc. So what has this to do with
animating our Web images?

Since it is not sensible for us to interfere with the browser's
internal image array, we first have to create our own array.
We can then store the images in this array and manipulate
them using the index number. Here is how an array is
created.
theImages = new Array (5) ;

We use the new operator and the Array object to create an
array which we have called thelmages. The array object
specifies how many locations of memory to set aside for the
array. We have five images, so we want an array with five
locations. I have called the original images: Love -0 .gi f
to Love -4 . gi f. thelmages array would look like:

Contents of Array theImages i Index
Love-0.gif 1 [0]
Love-l.gif

1 MI
Love-2.gif

I [2]

Love-3.gif [3]

Love-4.gif I [4]

But how do we store each of the images into thelmages
array? By a simple assignment statement.
theImages[0].src = "Love-0.gif"

theImages[4].src = "Love-4.gif"

However, and this is the important bit, each element in the
array must be made into an image object, so that we can
refer to its src property. This is how it is achieved:

<HEAD>
<SCRIPT>
//Preload animated images
// first create an array
theImages = new Array(5);

// now make it an image object
theImages[0] = new Image()

196

// now assign an image to the src property
theImages[0].src = "Love-0.gif"

theImages[1] = new Image()
theImages[1].src = "Love-l.gif"

theImages[2] = new Image()
theImages[2].src = "Love-2.gif"
theImages[3] = new Image()
theImages[3].src = "Love-3.gif"
theImages[4] = new Image()
theImages[4].src = "Love-4.gif"

</SCRIPT>

What we are doing is to make each array element an
image object so that we can specify what its src property
should be. But rather than repeat all of the above (ten lines
of code in total), we make use of a for loop.

(Note the use of the concatenate operator to join the digit to
the name of each image using the for index variable ')

for (i=0; i<5; i++) {

theImages[i] = new Image();
theImages[i].src = "Love-" + i + *.gif";)

We can refer to this array by using the array name and an
index value within a for loop. This is an extremely simple
yet efficient piece of code. Note how the for loop's index
variable. I. is used nol only to refer to the array index but
also to the digit in each image name.

setTimeout()
The last thing we neec to look at is a mechanism for
repeatedly displaying the images. This can be done with
setTimeout(), a method of the window object:

setTimeout('expression', delaytime)

The expression is a string containing JavaScript code which
will be executed after the delaytime has elapsed. The latter
must be in milliseconds. (This method can be assigred to a
variable which can ther be used by the clearTimeout()
method. See Notes below.)

197

In the following, as the BODY of the VVeb page is being
loaded, we use the onLoad event handier of the tag
to invoke the animate () function after a set time has
elapsed. Essentially, this function assigns a new image to
the srcproperty of the image object named animation.

<IMG NAME="animation" SRC="Love-0.gif"
onLoad=lisetTimeouWanimate;P, delay)"

We now have all the elements required to write our code
which will animate our images.

Exercise 36: revisited
We shall now examine the following code in detail and,
draw together all the points we have discussed.

<HEAD><TITLE>Amimating Gifs </TIT -_,E>
<SCRIPT LANGUAGE."Javascriptn>
delay = 500; imageNum=0;

//Preload animated images
theImages = new Array(5);

for (i=0; i<5; i++)
theImages[i] = new Image();
theImages[i].src = "Love-" + i + ".gif";}

function animate() {

//assign another image from the image array
document.animation.src =

theImages[imageNum].src;
imageNum++;

if (imageNum > 4) {

imageNum = 0; } // EofIF

) // EoFn animate()

function slower() {

delay = delay + 100
if (delay > 4000) delay=4000

} //EoFn slower()

function faster() {

delay = delay - 100
if (delay < 0) delay=0
} //EoFn faster()
</SCRIPT></HEAD>

198

<BODY>
<TT>Do you believe in Love at First sight?
</TT><P>
<IMG NAME="animation" SRC="Love-0.gif"

onLoad="setTimeout('animate()', delay)°>
<FORM NAME=forml>
<INPUT TYPE=button Value=Slower

onClick="slower()">
<INPUT TYPE=button Value=Faster

onClick="faster()">
</FORM>
<ADDRESS>Animate-1-Ex36.htm</ADDRESS>
</BODY>

Notes:
1. As the page is being loaded, the browser will execute the
<SCRIPT> code in the HEAD. This begins by assigning
values to the delay and imageNum variables and then
creates an array with five elements.

delay = 500;
imageNum = 0;

//Preload animated images
theImages = new Array(5);

The for loop which follows causes our mages to be pre -

loaded into this array by creating an image object for each
element and assigning one of the five images to tne
object's src property. Note how succinct this piece of code
is.

It is also worth noting how the concatenate operator is used
to add the image digit (0, 1, 4) to each image name:
Love-O.gif, Love -/ .gi f, etc., by using the for loop's
index variable i. A neat use of the for loop.

//Preload animated images
theImages = new Array(5);

for (i=0; i<5; i++)
theImages[i] = new Image();
theImages[i].src = "Love-" + i + ".gif";

}

199

The three functions, animate(), slower() & faster(), are
stored away for later use.

2. In the <BODY> we display the first image. Since most
HTML elements (tags) are objects, the tag is,
therefore, an object which has a src property. But this tag
also has an onLoad event handler.

This handler calls the setTimeout method which, in turn,
calls the animate() function after a delay time of 500
milliseconds -'/2 a minute.
<IMG NAME="animation" SEC="Love-0.git"

onLoad="setTimeouWanimate()', delay)",

The delay time has been set in the opening <SCRIPT>:
delay = 500;

3. The animate() function assigns one of the images held in
the image array to the src property of the document's
animation image object. Initially, this will be the one
associated with index 0 since imageNum was set to zero at
the start of the script.
document.animation.src =

theImages[imageNum].src;
imageNum++;

Variable imageNum has 1 added to it, using the increment
operator. The next piece of code tests to see whether
imageNum is greater than 4, since the five images in the
image array are numbered 0 - 4. If true, its value is reset to
zero so that the five images can be re -displayed in

sequence. If imageNum is not greater than 4, nothing
happens. In either case, the function will then stop.

So how does the animate() function become invoked for a
second and third time, etc? We can appreciate that it is
automatically invoked when the Lave - 0 . g i f image is first
loaded as the browser displays the Web page.

200

Well, every time a new image is being loaded via tle
animate() function, the tag's onLoad event hander
will be triggered again. =allow through The code to prove
this.

4. We have added a slower button and a faster buttcn.
These have event handlers which call the slower() function
and the faster() function respectively.

function slower() (

delay = delay + 100
if (delay > 4000) delay=4000

1 //EoFn slower()

This function simply increases the delay time by 100
milliseconds each time the slower button is clicked.

function faster() {

delay = delay - 100
if (delay < 0) delay=0

} //EoFn faster()

This function subtracts 100 milliseconds from the delay
time at each click of the faster button. But, we need :o
make sure that it does not fall below 0. (Note how tt-e
omission of brackets around the t code, makes for
difficult reading. Not good practice!)

5. Finally, we have no: peen courteous and allowed the
user to stop the animation and since we do not wish to drive
our readers mad, we should include one. This is a Test
exercise for you to complete. You will need to use the
clearTimeout() method which works as follows:
clearTimeout(settimeID)

It takes one argument and will cancel the execution of the
code which has been deferred by using the setTimeout()
method. Recall what we said earlier: that the setTimeout
could be assigned to a variable. That variable is what
becomes the argument for the clearTimeout() method.

201

onLoad = "stopit = setTimeout('cede',
delaytime)"

clearTimeout(stopit)

What we have learnt
We have seen how to animate images by repeatedly
displaying a series of images in quick succession. We have
seen how useful an array can be to store images so that we
can refer to any one of them using the array's index number
and that the numbering begins at zero.

We discovered that browsers store many HTML elements in
internal arrays (forms, anchors, images, strings. and so on).
The idea behind these arrays, is that when the browser
needs to refresh the screen, it has all the information it

requires.

Images to be animated should be pre -loaded so that when
they are required for animation they can be accessed
instantaneously without the need to travel over the Internet
to retrieve them.

The for loop proved to be an efficient programming tool for
assigning images to an array. We saw that its index
variable can be used to refer to any on= of the array's index
numbers.

Using the window's setTimeout() method allowed us to
control the time for each displayed image. It has a
companion method, clearTimeoutO, which can stop the
execution of the setTimeout() code.

Jargon
array: this is an internal storage area ir. the computer's
memory where data can be stored and retrieved when
necessary. It is part of the core language of JavaScript 1.1.

User defined arrays are created by using she new operator
and the Array object.

202

arrayName = new Array(length)
arrayName = new Array("fire", "water",

"earth", "wind")

When an array is created, all the elements are initially set to
null, unless you assign values as in the second example
above. Any element of an array can be referenced in either
of the following ways - the 4th element in both cases:
arrayName[3]
arrayName["winds]

cache: a special area of memory where application
programs store data for their own use.

pre -load: loading, for example, images before the Web
page is fully displayed. It is sometimes convenient to load
images prior to animating them.

Test 13:

13.1. Add an extra button which will allow the user to stop
the animation in Exercise 36. [Hint Where will the
clearTimeoutO methoa rave to be placed?]

13.2 What steps are involved in order to assign a new
image to the src property of an image array object? [Hint.
you should have three steps.]

13.3 There are three types of brackets used in JavaSc-ipt
code: and . Give an example of when each one is
used.

13.4 How many ways can you get a window, which you
have created and opened, to close itself%

203

204

14: Further programming
statements

In this section, we shall examine some other statements of
the JavaScript programming language. It will not be
possible to give practical examples of their use, so it is left
to the reader to note the syntax and to use them when the
occasion arises.

Loop statements
We have seen the for loop, but there is also a while loop.
Loops are used to repeatedly execute a block of code until
a certain condition is met. In addition, -he break and the
continue statements can be used within loops.

while statement
This repeats a loop as long as a specified condition
evaluates to true. It looks like the following:

while (condition) {

.. statements to perform

.. while condition is true
}

.. carry on statement ..

If the condition becomes false, the statements within the
loop stop executing anc control passes to the statement
following the loop, the 'carry on statement' above.

The condition is tested the first time the while loop is
encountered. If it is true. the loop statements are executed.
The condition is tested again to dete-mine whether to
repeat the instructions.

The main difference between the for loop and the while
loop lies in what is placed inside the round brackets. The
for loop has three parts to its condition:
for (initialise; test; increment)
(statements }

205

In the while loop, these are placed as follows:

initialise;
while (condition)
{ statements to be executed;
increment; }

Warning: Without an increment statement within the body
of the while loop, it could be possible to loop for ever, an
infinite loop.

Example 1: The following while loop iterates as long as n is

less than three:

n = 0 // initialise
x = 0
while(n < 3) // condition
{ n++; // increment

x += n; // shorthand for: x=x+n
}

With each iteration, the loop increments n and adds that
value to x. Therefore, x and n take on the following values:

After the first pass: n = 1 and x = 1
After the second pass: n = 2 and x = 3
After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no
longer true, so the loop terminates.

Example 2: An infinite loop. Make sure. the condition in a
loop eventually becomes false; otherwise, the loop will
never terminate. The statements in the following while loop
execute forever because the condition never becomes
false. The Boolean operator, true, has been used.

while (true) {

alert("Hello, world"); 1

The condition statement of the while loop can be any
JavaScript code which can be evaluated to true or false.

206

do -while loop
This has been included in JavaScript 1.2. In which case you
may need to specify: LANGUAGE= "Javascr ipt 1 . 2" in
the opening <SCRIPT> tag.

The main difference between the while and the do -while is
that the latter will always execute the instructions in the loop
at least once. That is simply because the test for the
condition is made at the end of the loop rather than at the
start.

do
(statements to be executed)
while (condition); // semi -colon is required!
.. carry on statement ..

Example:
var i = 1; // initialise
do (
document.write(i + .
") }

while (++i <= 10); // increment and condition

There are a few oddities here. The do -while loop must end
with a semi -colon because unlike the for and while loops
which begin and end with curly braces, the do -while
construction is not set up in the same way. The do
statement marks the start, the while marks the end.

Also, note the succinct way in which the increment and the
condition are both contained within the whi le (; making
use of the increment operator.

In some versions of Navigator 4, there is a bug with the
continue statement within the do -while feature. There are
not many situations where you always want the instructions
in a loop to be executec at least once. So, all in all, it is a
feature which is seldom used.

break statement
If a break statement is encountered within a for and while
loop, it will always transfer control (what instruction to
execute next) to the statement after the loop. Again, the

207

situations when it might arise are few, but they do occur
from time to time so it is worth knowing about.

It is usually found embedded within an if statement, thus:
function test()

{ var i = 0; // initialise while
while (i < 10) // while condition

(if (dothis() == false)

document.write(i + " IF - Hallo!")
break; // exit while loop

}

else
(document.write("ELSE - Hallo!")

// end of if & else
i++; // the increment for while

} // end of while
document.write("Now for your big break!")

} // EoFn test
4-

Should the dothis() function return false, the break
statement will terminate the while loop which, as the code
stands, will write out the message: "Now for your big
break!"

continue statement
The continue statement behaves differently to the break
statement. It does not exit the for or the while loop, but
repeats the loop with a new iteration. Like the break
statement, it has a simple syntax: cont inue;

When the continue statement is met, it stops the current
iteration and the next iteration begins. However, note the
following:

In a while loop, the condition at the beginning of the loop
is tested again. If true, the while loop block is executed
again starting at the top.

In a for loop, the increment is evaluated and the condition
is tested again to see whether another iteration should be
done. In other words, in a while loop the program jumps

208

back to the condition and the increment may cr may not
have been made. Whereas in a for loop, the program
performs the increment and then tests the condition.

Making more Decisions
else .. if
We have used the . statement and used it in conjunction
with the (Ts1 se statement. The latter will execute when the

block proves to De false. These allow for one of two
actions to be performed. But suppose you have more than
two possibilities? Then you make use of the cAse-if. For
example:

it (n == 1)
{ do this when n is 1 #1)

else if (n == 2)
{ do this when n is 2 #2)

else if (n == 3)
{ do this when n is 3 #3)

else if (n == 4)
{ do this when n is 4 #4)
.... etc ...
else
{ do this when all else fails! x)

Note that the last statement is an else by itself. This is used
to state what to do when none of the previous conditions
has been met.

The Conditional Operator
Here is a strange bees: which you may not wish to use but
you may come across it in someone else's code. It has
three parts and is the only ternary operator in JavaScript. It
is a shorthand way of writing simple . statements.

x > 0 ? x*y : x*z

The first part must result in a Boolean value. usually the
result of a comparisor expression:

If the result is true the second part after the ? is executed:
x*y, otherwise. the third part after the colon is executed:
x*z

209

Here is the corresponding statement :

if (x>0)
x*y

else
xst:

The switch statement
This is another decision making feature much loved by
earnest programmers. However, it may prove useful to the
rest of us and, you never know, you may see it in some
other script. Here is the general syntax:

switch (expression)
case xl:

code
break;
case x2:

.. code ..
break; and so on until...

case default:
.. code

break;
}

When a switch is executed, the expression is computed
and then a case label is searched for which matches the
expression's value. We have used xl - x2 as the case
values . The case label consists of the keyword case
followed by a value and ending with a colon: case x2

The values may be integer or real numbers, strings and
Boolean values. They cannot be objects, arrays or
functions.

When a match is found, the code within that case is
executed. When the break statement is ercountered, the
whole process stops. (Note the semi -colon after break.) If a
match is not found, the special default is used. Its code will
be executed until the break is encountered. If the default
case is not present, the entire block of the switch code is
skipped. Note that curly brackets enclose the entire switch
code.

210

Assume you need to check whether a user has emered a
number, via a prompt box, within a given range; let us
supposetherangeis1-5.
userdata = prompt("Enter a number in the range

1-5, please.", ")

switch (userdata)
case 1: // if 1 do this

document.write("You entered 1.")
break;

case 2: // if 2 do this
document.write("You entered 2.")

break;

case 3: // if 3 do this
document.write("You entered 3.")

break;

case 4: // if 4 do this
document.write("You entered 4.")

break;

case 5: // if 5 do this
document.write("You entered 5.")

break;

case default: // if not in range, do this
alert("Naughty!")

break;
}

AfewrimMlyweirdtMngs!
The C programming language was developed by
programmers for programmers. We all like to take shortcuts
and programmers are no exception. What follows are some
of the weird shortcuts developed for C and transcribed to
JavaScript.

The increment & decrement operators
postfix .

equivalent to . but takes place after some other
action.

211

prefix ++i
equivalent to i = 1+1 but takes place before some other
action.

Try out the following:

<HEAD> <TITLE> Tests </TITLE>
</HEAD>

<BODY>
<SCRIPT LANGUAGE="Javascript"
i=0 // set i to zero
i = ++i
document.write("Prefix
 a)1 = " + i)

i=0 // re -set i to zero
i = i++
document.write("<P>Postfix
 b)i " + i)

</SCRIPT>

<ADDRESS>
January, 2000 </ADDRESS>
</BODY>

Notice how the variable i is set to zero in both a) & b).
However, the prefix version in a) adds 1 to i and then
proceeds with the rest of the script, whereas the posffix
version in b) does not increment i urril the same statement
is met again.

212

Any variable name can be used, but due to the strong
influence of Fortran i is the most commonly used variable
in arithmetic programs, not x, surprisingly! (In Fortran i is
an integer variable name, x is a rea/ variable name.)

prefix decrement - & postfix decrement j - -
Behaves like the increment but subtracts one from j. It is
not used much, but here is one example. See whether you
can work out what is happening.
tot.0;
for (j=46; j >= 0; j --){tot = j + tot;}
document.write('First 46 numbers = " + tot);

Multiple assignments: i = j= k =89;
Here, 89 is assigned to k, which is assigned (now having
the value of 89) to j which is assigned to i. It might be
worth remembering.

Save time with these assignment statements:
You may come across this use in someone else's script, so
it is necessary to be aware of them.

a += b is equivalent to a = a+b
a *= b is equivalent to a = a*b
a %= b is equivalent to a = a%b

If you have not met the modulo operator before, it returns
the remainder when the first value is divided by the second
an integral number of times. a %= b (or a = a % b):

Thus, 5 % 2 results in remainder 1.

Condition
When using a conditional test in an i f or for loop, the
following is permissible:
if ((a+h) == x) (.. do when true ..)

So too is this, where a function is used:
<SCRIPT>
function test(}{ return 5;) // EoFn

213

if (test() == 5)
{ document.write("5 is 5") }

</SCRIPT>

This can turn your condition tests into a powerful feature.

Do Nothing
Do you remember that statements usually end with a semi-
colon? In many languages, there is a 'do nothing' statement
which is just the semi -colon by itself - ; - usually called the
empty statement. It seldom has any practical value, but it
can be the source of errors. What will the following if
statement do?
x = 0;

if ((x+1) == 1); // Oh my!
document.write(" x = 2");
document.write("
 x <> 2");

Absolutely nothing! It is perfectly valid and it illustrates how
careful the programmer must be. If you are not fully awake,
you may inadvertently slip in the odd semi -colon. Both the
document.write methods will be executed. But the if does
nowt!

a Write to same d... Pirwri

Doing Nowt!

Nowt. htm

Note that in the above, the variable x will not be assigned 1
since there is no left-hand side and no assignment
operator.

214

Summary of JavaScrip-. statements

Statement Comment
break exit a loop
comment II for sins le; r */ for multiple lines
continue return and test condition in a loop
do -while execute loop at least once
else if used in an if statement for multiple choices; it must

end with an else statement.
for repeat loop as long as condition is true
function declares a block of code and is executed when

invoked
if -else decision making - conditionally execute code
return return value of a function
var declares a variable and makes a variable local to

the function it is declared in
while repeat loop as Ion as condition is true

Operators Example Equivalent
arithmetic
+= a += b a = a+b
-= a -=b a = a -b
*. a *.b a = a*b
/= a/=b a = a/b
%= a%=b a = a%b
- a^=b a = a ^ b

comparison
< less than a < b
> greater than
.= equal to
! = not equal to
<= less than or equal to
>= greater than or equal to
logical
&& logical AND

I I logical OR
' logical NOT if a is true, then !a

becomes false

215

Miscellaneous Comment
new operator to create new objects
null special value meaning 'no value'
this keyword used to refer to the object it is used

with
undefined special value meaning a variable has not been

defined

Event Associated
with

Comment

onAbort see example on page 217
onChange text or

textarea
element

first time around the handler is
not activated

onClick button,
checkbox,
radio, submit
buttons and
also used with
links

links refer to the <AREA> & <A>
tags. The first is used for image
hot -spots.
Links are text, an Image or an
area of an image identified as
a hypertext link.

onFocus button,
checkbox,
radio, submit
and reset
buttons, text
and textarea

triggered whei focus is put on
to its associates.

Notice that the event can result
from the focus() method.

onLoad BODY

page/image must be completely
loaded before the handler is
invoked

onMouseOut used within
links

reacts when user moves mouse
out of a link

onMouseOver used within
links

reacts when user moves mouse
over a link

onReset FORM automatically invoked when the
reset button is clicked

onSubmit FORM automatically invoked when the
submit button is clicked

216

Methods Where used
submit() used within a

function
performs the same action as the
submit button

focus() used within a
function

performs the same action as
though a user had clicked into a

text box or a textarea box which

has an onFocus event handler

onAbort event handler
In the following, an alert message appears when a user
aborts the loading of an image (for example by clicking a
hyperlink or clicking the browser's Stop button.)
< IMG NAME= "verybig" SRC = "hugeimage jpg"
onAbort= "alert (' You did not finish loading

the image. Pity, it was very good. ')

onReset event handler
A reset event occurs when a user clicks the reset button. If
the associated form has an onReset event handler, the
JavaScript code will be executed.
<FORM NAME= "tosubmit_or_not_tosubmit"
onReset="alert('Defaults will be restored!')"
onSubmit="alert('Too late now!')">

<INPUT TYPE=submit VALUE="Send off form.">
<INPUT TYPE=reset VALUE="Clear form.">
</FORM>

Test 14:

14.1 Name some types of repetition loops.

14.2 In an i statement which employs -Ise.. i f 's, what
is the purpose of the lone . statement?

14.3 What is the main syntactical difference between tl-e
loop and the .. loop?

14.4 What is this feature known as:

14.5 What is the difference between a variable which s
undefined and one which has the null value?

217

218

15:

Objects and their properties
and methods

We have mentioned several times that JavaScript has three
parts to its language:

the core language
client side additions
server side additions

Chapters 8 & 14 considered those JavaScript statements
which form part of its core language. These allow us to
create programs which can:

perform calculations using arithmetic operators
decide which instruction to execute next (if -else)
repeat a block of instructions (while, for loops)

Like all programming languages, JavaScript includes
variables, arrays and operators. But JavaScript has
something more!

Client and server additions to the basic core language allow
the programmer to manipulate browser (client) features and
server features. The bulk of this book r as looked at tre
client side features of JavaScript. It is here that the objects
exist.

Client (and server, of course) JavaScript is an object
oriented, some would say object based, programming
language. That means that the programmer works with
objects.

In this chapter, we sha'l concentrate on objects and their
properties, methods and event handlers. Not all objects
have all three, some have no properties only methods,
others have properties but no methods. Some have

219

properties and event handlers. It is time to sort out which
object has what. But first, what are objects?

What are Objects?
In everyday life, objects abound - kettles, doors, chairs,
cars, yea, even computers. Let us take the :,ar.

We have to become a little philosophical here. There is no
such 'thing' as a car. When I was studying Philosophy, I

was surprised to be told this. But the blow was softened this
way.

We all have a concept of a car but a car, as such, does not
exist as a physical entity. What does physically exist is a
particular instance of a car. This means that a given
instance of a car must have certain properties, such as a
colour, a make, a model, and so on, as well as behave in a
car -like manner. It must do 'car -things', such as move
forward, reverse, move faster or slower, turn corners, stop.
These comprise its functionality - the things motor cars do.
You can think of many more.

When a new model is exhibited for the first time, we know it
is a car although we have never seen i-. before. This is
because it has the properties and behavior common to our
concept of a car. But we would not expect it to do 'non -car
like actions' such as the washing-up or decorating the
house.

That is enough philosophical discussion. How does this
apply to JavaScript? We start with objects.

The client side aspects of JavaScript allow us to manipulate
the objects associated with a browser. We cannot use
objects just by themselves because they do not exist. But
we can refer to and, therefore, manipulate given instances
of an object, which do exist.

Let us suppose that I want to change the colour of the
document background. The object is doc-ument, by itself

220

we can do little with it, but by specifying its bgColor
property, I can refer to scmething which can exist, thus:

document.bgColor = 'lightblue'

The above assigns a lightblue colour to the document's
property bgColor. One o' the basic chores for a JavaScript
programmer is to learn what properties, f any. each object
can have.

What about an object's functionality? What can it do?

The document object can be asked to output a message by
giving its write() method something to write out. Thus:
document.write("Heie is a message.")

So the document object not only has properties but also
methods. A method is the formal term for function, what an
object can do. what actions it can perform. One of the
things the document object can do is to write something out
to the current page via is write() method. as shown above.

JavaScript programmes, therefore, have to know what. if
any. methods (actions, functions) each object can take. In
the table on page 226, we see that the document object
has 4 methods and 8 properties. (There are in fact some 19
properties.)

Here is a more complicated example. whereby a property
may itself become an object in its own right and as such
may have its own properties and/or methods. In the
following. the document object's form property (forml) is
specified. HTML forms are properties of the document
object. Forms. as we know from our knowledge of HTML,
have INPUT elements of various kinds, textboxes, radio
buttons. etc. These are The properties o4 the Form object.
Thus. in the following:

document.forml.texti.focus();

the document object's fcrm property (forma.) has become
an object and a reference is made to one of its properties,
the INPUT element NAMEd .. This has now become

221

an object and a reference is made to one of its methods,
the focus() method.

This serves as a typical example of how a programmer sets
the focus on to a particular instance of an object's property.
What I want to do is to set the focus onto an INPUT element
named t ex: .. To do so, I have to specify the object of
which extl is a property. Well, text 1 is a property of the
form object, named form] which happens to be a property
of the document object.

Once you can appreciate what is going on in the above,
you are well on your way to understanding what object
oriented programming is all about and how it works. Note
how each object/property is separated from its higher level
by periods (full stops). This is the required syntax for writing
object oriented statements.

Here is another example:
firstname = document.forml.textl.value

The document object is being made to reference its forml

property which in turn references its own texti property.
Because t is being made to reference its property
(t), : has to become an object, although it is
also a property of the document object. So some properties
can also be objects.

Likewise, in order to reference the , property of
rxr 1, the latter becomes an object although it is also a

property of the forml object. The value is then assigned to
a variable firstname. And that is what objects and their
properties and methods are all about.

I admit I was confused at the start of my JavaScript
experience. I could accept that an HTML form could be a
property of the document object. "Ok! then it is a property."
The confusion came when some book I would be reading
would suddenly call it an object. "But I thcught this was a
property not an object." I would wail !

222

It comes down to the context in which something is used.

firstname = document.forml.textl.valu(_,

In the above, text: is used in two ways. First, as the
property of the form i object. Secondly as an object with
its own value property.

In the tables which follow, we shall be specifying something
along these lines:

window is an object which has a document property. So we
latch onto the idea that document is a property, but in the
next breath we shall state that document is an object with
its own properties such as forms, bgColor, the <A> tag, etc.

window, in fact, is the only object we have seen so far
which is not a property of anything else. It is a top-level
object.

Event Handlers
So what are event handlers? They are neither properties
nor methods. They are attributes of certain HTML tags to
which a programmer can 'attach' some JavaScript code.
Pure object oriented languages such as Java or C++
cannot manipulate HTML tags. This is something unique to
JavaScript and was the reason why it was invented.

These attributes. such as onClick, onMouseOut, onLoad,
are recognised only by the later versions of browsers -
Internet Explorer 4 and Netscape 3 or nigher. The event
handlers were added to version 4 of HTML.
<BODY onLoad= "myload_tunction()"

This is why we had a separate table for event handlers
shown on page 167. onSubmit, for example, is an event
handler associated with the FORM tag. The fact that a form
is a property of the document object and that it is also an
object with its own properties is another matter.

223

What objects does client side JavaScript possess?
Our next step is to see what browser objects are available
to JavaScript. There is one main object, namely window.
This is not surprising since the browser is displayed within a
window. What is displayed in the window, apart from the
various toolbars, scroll bars, etc., will be an HTML
document. That document will become a property of the
window object.

The window object
The window object has four properties - document, frames,
history and location. See page 229 and 230 for the last two.

a about -blank - Microsoft Internet Explorer Pi Er

rte Edit y iew fio Favorites

Stop

Help

Refresh
- -

Rome
-

r

Search Gave

about blank :LI , Links

A browser window, with toolbars,
status bar, vertical scroll bar, but no
HTML document.

This window object has no document
property until a Web page is loaded

I Internet zone

There is a hierarchy of objects, with the window object as
the master object at the topmost level. From Figure 15.1,
we can see that window has four properties: document,
history, location and frames. In turn, the document has
several properties of its own: form, anchor, images, etc.
form has its own properties: textarea, text boxes, radio
buttons.

224

navigator is another object which, like window, does not
belong to any other object. It provides information about the
browser being used. We show two examples on page 231.

window navigator

document history

Forms

location

Anchor

Images

Link

Area

textarea

text

radio

checkbox

button

submit

reset

select

frames

options

Figure: 15.1 Objects and their properties

In the next table, we shall summarise the various objects
we have used in this text and list their properties and;or
methods. It is not exhaustive but shows those features
which are most commonly used.

225

Object Properties Methods Event
handlers

area href
pathname
protocol
target

onMouseOver
onMouseOut

button name
type
value

blur()
focus()

onBlur
onClick
onFocus

checkbox checked
name
type
value

blur()
focus()

onBlur
onClick
onFocus

Date prototype
(not covered)

getDate()
getFullYeare
getHours()
getMinutes()
getMonth()
getSeconds()
getTime()
getDay()
getYear
parse()
setDate()
setHours()
setMinutes()
setMonth()
setSecondsO
setTime()
setDay()
setYear
toGMTStringO

document area
bgColor, fgColor
cookie
form
image
links
title

open()
close()
write()
writeln()

form action
button
checkbox
length
name
radio

reset()
submit()

. onReset
onSubmit

226

Object Properties Methods Event
handlers

reset
select
submit
target
test
textarea

history current
length
next
previous

back
forward

go

image border
height
name
src
width

onAbort
onLoad

link href
pathname
protocol
target

onClick
onMouseOver
onMouseOut

Math E

LN2
LOG2E
PI
SORT2
(not covered)

abs()
acos()
asin()
exp()
floor()
log()
max()
min()
pow()
random()
round()
sin()

sOrt()
tan()

navigator appName
appVersion
mimeTypes
plugins

javaEnabled
taintEnabied

radio checked
length
name
type
value

blur()
focus()

onBlur
onClick
onFocus

227

Object Properties Methods Event
handlers

reset name
type
value

blur() onBlur
focus() onClick

onFocus
select length

name
options
text, type

blur()
focus()

onBlur
onChange
onFocus

String length big()
blink()
bold()
charAt()
fontcolor()
fontsize()
indexOf()
italics()
lastIndexOft)
small()
substring()
toLowerCase()
toUpperCase()

submit name
type
value

blur()
focus()

onBlur
onClick
onFocus

text name
type
value

blur()
focus()

onBlur
onClick
onFocus
onSelect

textarea name
type
value

blur()
focus()

onBlur
onClick
onFocus
onSelect

window document
history
location

alert()
confirm()
prompt()
close() open()
focus()
setTimeout()
clearTimeouto

onLoad
onFocus

In the following, we shall simply introduce the history,
location and navigator objects. A detailed use of these
objects is beyond the scope of this text since they are used

228

to navigate through various sites users have visited or
would wish to visit. To control such an exercise is non-
trivial. However, we can illustrate their use and provide
some simple examples of when they may prove useful to
US

history Object
The history object is a list of URLs which a user has visited.
It is equivalent to clicking the GO menu in Netscape. This is
the list which is used by the browsers when we click their
Forward and Back buttons. Its use is limited but it can
enable you to replace the current page with a new page.
Using the history back!) and forward() methods mimics the
browser's Forward and Back buttons.

history Properties
current ifies URL of the current history entry
length reflects the number of entries in the

history list
next lies URL of the next history entry
previous specifies URL of the previous history

entry

You can reference the history entries by using the history
array. These entries are read-only and cannot be changed
by JavaScript code. Thus, this is not permitted:
history[0] "http://isp.mine.comi"

history Methods

back() go back to a previously visited URL
forward() go forward to a previously visited URL
go() go to a particular reviousl visited URL
toString() method of all objects. It returns a string

representing the specified object

Examples:
history . back (; performs the same action as clicking
the Back button

history . back (-2) ; performs the same action as
clicking the Back button twice

229

The following code determines whether the string 'micro'
occurs in the first entry in the history array (index 0). If it

does, myfunction0 is called.

if (history[0].index0f("micro") :

{ myfunction(history1010

location Object
This object contains information about the current URL. It
has several useful methods and properties but these are
best left until you gain much more experience with
JavaScript. You will need to be aware of the full details
before using this object. However, here is one simple thing
we can do. We shall invite a user to enter a URL and get
our code to go to that Web site.

<HEAD>
<TITLE> Using the Location Object </TITLE>
<SCRIPT>
function jumpto()
window.location.href

document.forml.userurl.value
} //EoFn
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME="forml"
<INPUT TYPE=text NAME="userurl" SIZE=60>
<INPUT TYPE=button VALUE="Go for it!"

onClick="jumptoW>
</BODY>

The location object is a property of the window object. It

has several other properties which you will need to look up
in a full reference guide. In the above, we have used the

property of the location object.

navigator object
This object contains information about the version of the
browser being used. Here are some of its properties.

230

navigator
Properties
appName specifies the name of the browser
appVersion specifies version information of the

browser

Examples:

The following displays the name of the browser:
document.write("The name of the browser

is " + navigator.appName)

Netscape displays:
The name of the browser is Netscape

Internet Explorer displays:
The name of the browser is Microsoft Internet
Explorer

By assigning the value of navigator.appName to a
variable, you could f ni out which browser your use- is
using and perform an appropriate action for either case.

x = navigator.appName
if(x.index0f("N") == 0)
do the Netscape thing ... }

else if (x.index0f("M")== 0){
do the Microsoft thing ...

else {

dorument.write("Get yourself a life!")

A switch could be useful here!

In the following code, we shall also print out the appVersion
of the browser running on a Windows system:

<BODY>
<SCRIPT>
document write("The name of the browser is

+ navigator.appName
+ " and the version is:
+ navigator.appVersion)

</SCRIPT>
<ADDRESS>appname.htm </ADDRESS></BODY>

231

Here is what Microsoft will display:

The name of the browser is Microsoft Internet
Explorer and the version is: 4.0 (compatible;
MSIE 4.01; Windows NT)

Here is what Netscape will display:

The name of the browser is Netscape and the
version is: 4.5 [en] (WinNT; I)

232

1a GIF - JPEG - TIFF Images
%.0

Browsers can display images provided they are in one of
two formats, .eif or .jpeg. If you are interested in:

which format to choose
why they were invented for Web use
what is the ideal image size
why some pictures lose quality
what are interlaced gif images

then read on.

We begin with Internet speeds in order to explain why these
formats were invented.

Speed v. Size of a Web Image File
The overall size of a Web document is an important factor
to keep in mind when creating it since this will affect how
long it takes to load. An HTML page usually consists of two
elements. The basic HTML code plus any JavaScript and,
secondly, images files. The HTML source code is usually
minute compared to any graphic file which that page has to
load. The source code be 1K but an image could be 25K.

At present most of the Internet community' still connects via
a 28.8K bytes per second modem from their homes. You
would be forgiven if you thought that, at that speed, a 50K
byte Web page complete with image files would take about
2 seconds to load. Unfortunately, a 50K byte Web page is
not sent in a continuous stream of bytes as one single unit.
A small fraction is sent (typically 256 bytes) but the next
fraction may not arrive for several seconds later depending
on the amount of traffic the host server has to cope with.

If you are working within a company Intranet using high-speed
direct lines, it may be a different matter.

233

(See the Bibliography for a reference text on the Internet
and the WWW.)

It is recognised that a Web page of more than 50K bytes
takes an unacceptable time to arrive and display on the
average client screen. The ideal size for a Web page is
about 25K byes (it is really the arrival time that is the
important consideration).

What we discuss next is the size and format of the image
files which a page has to load.

Scanning Images
Let us suppose that we scan a photograph which we want
to display on our Web page. After scanning the original, the
computerised picture must be saved as a separate file. But
in which format do we save it?

If you thought gif or jpeg you would be wrong. Many
scanners cannot save in these formats. The best format to
save it in, and one which is supported by mcst scanners, is
TIFF (Tag Image File Format). Why? Because it is an
Industry standard. Almost all programs. except browsers,
can read an image saved as a TIFF file: Word, PowerPoint,
Excel and all image programs, especially. PhotoShop. The
latter is another Industry standard used by over 90% of
professionals to touch up images.

Having improved our original photograph via one of the
image processing programs, that program will then offer us
the choice of saving the image in either jpeg or gif format.

TIFF, JPEG & GIF image formats
Most scanners can save an image in TIFF format - Tag
Image File Format - to a very high quality. However, the
resulting files (with . c extensions) can run into megabyte
sizes, far too large to transmit over the Internet. So, to
transfer these files over the Internet, they have to be
compressed (reduced in size) by using various Web

234

encoding techniques. The image program will do t- is
compression for us.

When HTML was developed, users would not tolerate the
time taken for TIFF file; to load. Therefore, two other image
formats were especially devised for use on the Web: GIF
(Graphics Interchange Format) and JPEG (Joint
Photographic Experts croup), the latter having a JPG
extension for Windows PCs.

GIF
Originally devised it 1987. it is currently the most
universally used image format on the Web. The GIF
technology was origira:ed by Unisys. the holders of the
patent. CompuServe latched on to it and pioneered
extensive use of the format. That is why you may
sometimes see "Save as CompuServe Gif". It is a format
supported by all browsers. Unisys challenged the rights of
CompuServe to use and distribute their technology and
there was a scare for a while that GIF might be removed
from the Web.

JPEG
The other common image format is JPEG. It has its oricins
in the International Stardards Organisation (ISO) formed in
1982 and merged in 1987 with a sub -group of the
Commitee Consultatit pour la Telephonie et Telegraphic,
(CCITT).

These are the two ccmmon image formats recognised by
all browsers. Other formats, such as PNG, are available
with some browsers. But keep an eye out for future
developments. Essentially, the above image formats are
really compression ted-niques to reduce the size of image
files so that they take less time to travel over the Internet.
Once you have captured an image via a scanner and edited
it with an image processing program, it can then be saved
in one of the Web formats.

235

PNG
A third format was devised during the impending crisis over
the copyright infringement by CompuServe. Portable
Network Graphics was destined to outperform and replace
the GIF format. However, it has not been adopted by any of
the main Web browser vendors, at the time of writing, and
is not recommended as a serious image format since your
viewers would be forced to obtain helper applications in
order to view such graphics.

LZW - GiF's compression technique
A GIF file contains the image data in a compressed format.
The browser 'unpacks' the file before displaying it. The
compression technique used to create a GIF file is called
LZW (from Lempel and Ziv who did the early research work
at the Sperry Corporation and their colleague Welch who
perfected it - initially to make more efficient use of hard
discs).

LZW is a dictionary based data compression technique.
The image is examined for patterns which occur repeatedly
within it. A dictionary of these patterns is built up and a
short code used for each pattern. Whenever the same
pattern occurs again the code is substituted. This effectively
compresses the file. When the file is decompressed by the
browser, the real data is re -substituted for the code.

The decompressed file is an exact copy of the data before it
was compressed. This is called a lossless compression
because the original file does not lose any of its original
data. Although the following is a simplification, let us
suppose that there is an area of 20 red pixels, this could be
coded as 20R. Another area of 20 red pixels could be
coded as 20R so that three bytes (one for each character 2-
0-R) rather than twenty bytes could be used.

LZW compression works best for images with regular large
patterns or long runs of identical colour, for example,
company logos, icons and buttons. However, for colour
photographs where pixel colours change frequently and

236

unpredictably GIF files will not compress well and would
result in large files, hence the JPEG format.

JPEG compression
Colour photographs can be reduced to a tenth or fifteenth
of their original file size when saved in JPEG format. The
technique involves dividing each channel of the image into
8x8 blocks of pixels. The average brightness value for each
64 pixels is determined and deviation from the average is
recorded along a zig-zag path. The process is known as a
discrete cosine transform and the result is a frequency map
represented as a cosine wave. It gets worse! :

Thus far in the compression process, almost no information
has been sacrificed. But in the next step, the results from
the previous stage are divided by numbers in a table of
quantization coefficients and then rounded to the nearest
whole number. This stage does throw away data. - and no!
I do not understand the maths either! But the end result is a
loss of some of the original data - called lossy, unlike GIF
files which are non-lossy or lossless.

GIF v JPEG
When you have a choice, which format should an ,mage be
saved in? It is a question of compromise in certain cases.

GIF files are lossless n that they do not lose aiy of the
original image data. JPEG files are lossy since during the
quantization stage of compression some data is thrown
away and cannot be re -constituted.

GIF is restricted to 256 colours whereas JPEG can support
16 million. However, the latter will not reproduce well on a
monitor which can only display 256 colours.

GIF files can be interlaced, JPEG files cannot. (However,
there is a variant of JPEG - JPEG Tile Image Pyramid, JTIP,
which can appear on a screen as a wave of successively
detailed renderings. This is known as progressive JPEG.)

237

GIF files should be used for images which contain largish
areas of the same colour, for example:

GIF files can be transparent, JPEG files cannot (for the time
being). The 1989 revision of the GIF format - GIF 89a,
allows pixels to be defined as transparent.

Colour photographs which typically do not have large areas
of the same colour but are continuous in colour should be
saved in JPEG format. As an example, I saved one
photograph in both GIF (245Kbytes) and JPEG (44K). The
JPEG reproduced slightly better on both the monitor screen
and printer and was a much smaller file. The GIF proved
larger since it had no large re -occurring patterns which
could be compressed into a dictionary.

Interlacing with GIF files
Interlacing (a.k.a interleaving or, even, the Venetian blind
effect) is a method of saving an image so that non -
sequential lines of the graphic are linked together. When
the image is displayed, an overall picture is presented
quickly and gradually builds up in detail until the entire
image is displayed. In other words, the viewer can quickly
get an 'overall view' of the image. With some image
programs, interlacing is an option available when the image
is saved as a gif file.

A disadvantage with interlaced images is that they take up
about 10% more file space. GIF image data is stored as
scanned lines, from left to right. Normally these are stored
in a sequential order from top to bottom and will appear in
this order when displayed, so that the image is gradually

238

built up. Interlaced images have scanned lines stored n a
non -sequential order, so that parts of the entire image are
displayed providing a more and more detailed overview of
the entire image.

It works as follows. When the entire image is
decompressed by the image program, it is scanned in four
passes resulting in four groups of scanned lines. In the
table below, we have 20 rows. It would be a small image
but it will illustrate the procedure.

1st pass:
2nd pass:
3rd pass:
4th pass:

every 8th line starting with row 0
every 8th line starting with row 4
every 4th line starting with row 2
every 2nd line starting with row 1

Row # Interlace Pass
0 1

1 4
2 3
3 4
4 2
5 4
6 3
7 4
8 1

9 4
10 3
11 4
12 2
13 4
14 3
15 4
16 1

17 4
18 3
19 4

239

Dithering
The most noticeable difference among computer systems
(platforms) is colour. However, we can easily adjust for this.
Most colour computers today can display at least 256
different colours, often thousands and even millions of
colours. This number is determined by the type of
computer, the size and resolution of the monitor, and the
amount of video RAM (VRAM) built into the computer. Most
current computers can display millions of colours.

A computer's colour palette is simply all the colours it can
display on the screen at one time. Imagine an artist painting
a landscape. Let's say he/she has 256 tubes of paint, each
a unique colour. If a colour is needed that is a little different
from any tube colour, two or more of those tubes can be
used to mix and create the needed colour.

When a computer mixes two or more of its colours to create
a new colour, it's called dithering. The computer screen
puts dots, called pixels, of the colours from its palette on the
screen, very close together, hoping to fool your eye into
seeing one uniform colour.

Unfortunately, this doesn't always work as planned. Often
these dithered graphics will look so grainy the pixels
become too obvious. Computers with more colours are
more likely to have the exact colours needed and can
simulate additional colours more closely, so the dithering
becomes less noticeable. But it is not even that simple! 0

Each of the main three platforms (Mac, PC, and UNIX) has
its own unique palette of 256 colours. The Mac and PC
platforms share 216 colours of the 256 -color palette, but the
UNIX palette shares a mere 8 of these. So your graphic
might look great on your PC, but it will look all dithered on a
Mac if you use colours other than the ones shared by the
Mac palette.

240

It's a good idea to consistently make use of the 216 shared
Mac -and -PC colours, to avoid dithering on at least those
platforms.

Transparency
Transparency allows one of the colours in an irr age
(including black and white for B&W mages) to become
transparent. This allows the background colour to shine
through. This can be seen below.

Transparent Ant - Microsoft Internet Explorer

fie Edi View Go Fvorite4 Help

Transparency Example

Transparent Ant

241

Every image is contained within a rectangular border. In
order to hide this box and allow the background to show
through, we need to make the background border
transparent.

Without a transparent background, the image's border box
will be seen unless it happens to be the exact colour of the
background, which is unlikely to be the case.

242

17: Cookies

New Material

ASCII
CGI
document.cookie
escape() and unescape()
expires=
lastModified
substring()
toGMTString()

In this final Chapter, we shall look at cookies. A cookie is a
small piece of data - text information - which a Web server
can store on your hard disc with the aid of your browser. It
gives the browser a 'memory'.

Suppose you request a particular Web page from some
site. That site can incljde a cookie aloig with the Web
page. The cookie will be stored temporarily with your
browser so that if you re -visit the site, the cookie's
information can be retr eyed from your hard disc with the
assistance of your browser. Typically, the cookie's data is
sent back by your browser to the server site which can then
process the data. But that entails server -side JavaScript
which is not within the scope of this text. However, we can
do some things at the cl ent end with a stored coo<ie, for
example:

to find out whether someone has visited the page before
to remember a user's name
to inform a user that the page has been modified since it
was last viewed
to note any preferences a user may have
to add items to your shopping cart as you shop on -lice

If you think about it, it is clearly more efficient fcr each
browser to store such information than to expect the Web

243

server to maintain the same information when there could
be thousands of visitors each day.

We must not get carried away with cookies, despite all the
hype. They have their limitations, as we shall see later, and
are somewhat crude. The examples below will work with
Netscape and behave similarly with Internet Explorer.

However, there are some differences between the two main
browsers. Netscape stores all its cookies in a single file
called cookie txt (for PCs. see page 260 for Unix and
Mac platforms). Internet Explorer stores each cookie in a
separate file. The latter browser can only write cookies
using scripts loaded from a server. Whereas. using
Netscape, you can create the examples below at your own
home or office computer.

Popular concepts and rumours about what cookies can do
have reached mythical proportions, frightening the wits out
of all and sundry. But since cookies store only text, they
cannot contain programs sent by the server. Therefore, our
files can neither be destroyed nor compromised. Cookies
cannot damage your computer nor snoop around your hard
disc. They can only identify a web user and send back short
pieces of information. Information about where you come
from and what pages you have visited already exists on the
server's log files. Cookies simply make it easier to find this
data. So let us be more relaxed about them.

To use cookies to their full potential is more of a server
task, beyond the scope of this text. They were originally
designed for CGI programming at the server side. The
Common Gateway Interface, CGI, is the traditional protocol
for transferring data stored between a browser and web
servers. This data can be either cookies or information
submitted by our readers via FORM elements.

However, we shall look at a few things we can do at the
client side, using JavaScript. We shall create cookies and

244

store them on our readers' hard discs and if our page is
revisited, our JavaScrip: code will redeem our cookies.

Cookie attributes
cookie is a property of the document object:
document . cookie anc can take various attributes:

expires= which specifies the cookie's lifetime
path= specifies sub -folders where cookies are

stored
domain= the Web server's domain (e.g.: www.abc.com)
secure unlike the others, this attribute takes a

Boolean value of true or false.

By default, cookies are insecure and travel over insecure
Internet connections, using the standard HTTP protocol. If

the secure value is true, the cookie is sent via HTTPS
connections or some other secure protocol.

With the exception of the expires attribute, the others
require a knowledge of how a web server is set up and
relates more to server side JavaScript. So we shall not
discuss them further. The one we shall consider is:
expires=date of expiry.

A cookie must also be given a name and a value. The
value of the name is the text to be stored, but comprises
only a small amount of information.

Exercise 37: Setting and retrieving a cookie

In this exercise. we shall store a cook e on the user's
browser and then read it back and display tin a text box.

<HEAD><TITLE>Cookie Set. & Get</TITLE><SCR=PT>
function setcookie(){
var cookdate = new Date()
cookdate.setTime(cookdate getTime()

+1000*60*30)
document.cookie = "Cookiea=My A
Cookie.;expires="+cookdate.toGMTString()
) //EoFn setcookie

245

function getcookie() {

var cookstring = new String(document.cookie)
var cookname = "Cookiea="
var startpos = cookstring.indexOf(cookname)

if (startpos != -1) {

document.forml.cookvalue.value =
cookstring.substring(stattpos

+ cookname.length)

} //Eoflf
else
{ document.forml.cookvalue.value =

"Cookie not found!"

} // EoFn getcookie
</SCRIPT>
</HEAD>

<BODY><CENTER>

Creating and Retrieving a Cookie

<FORM NAME=forml>
<INPUT TYPE=button NAME=setcook

VALUE="Create the Cookie"
onClick="setcookie()">

<INPUT TYPE=button NAME=getcook
VALUE="Retrieve the Cookie"
onClick="getcookie()">

<INPUT TYPE=text NAME=cookvalue SIZE=15>
</CENTER>
</FORM>
<ADDRESS>cookiel.htm </ADDRESS>
</BODY>

Notes: This exercise introduces the basic use of cookies.
All the exercises work for Netscape. Not all behave similarly
in Internet Explorer.

1. First we set up three FORM elements. A button to create
the cookie, a second button to retrieve it and a textbox to
contain the cookie's information. All this is contained within
the <BODY> tags. We have seen how to do this many
times now.

246

Cookie Set & Get - Netscape

Ede Edit yew Go Cammmicata Help

(1 eating and Retrieving
(ookie

Create the Cookie

Retrieve the Cookie I

Illy A C,DDkie.

cookzel.htm

r--- ,1

2. When the user clicks the Create cookie button, it calls
our setcookie() function.

function setcookie(){
var cookdate = new Date()
cookdate.setTime(cookdate.getTime()

+ 1000*60*30)
document.cookie

"Cookiea=My A Cookie.;expires="
+ cookdate.toGMTString()

} //EoFn setcookie

We create a new instance of the Date() object since we are
going to set an expiry date using the expi res-r- attribute. If
this attribute is left off, The cookie is autcmatically deleted
when the user closes tl-e current Netscape session. If it is
included, the cookie wil persist until the date specified by
the expiry attribute. Such cookies are known as persistent
cookies.

We shall set the expiry date at 1/2 an hour after the page is
first loaded. Typically, this would be a week, a month or a
year. But we need a short time in our example since we
would like to check that t has 'disappeared'. We set the Y2-

247

hour expiry time using the setTime() and getTime() Date
methods. The idea behind this is that when the page is next
loaded the cookie will be available provided the expiry date
has not passed.
var cookdate = new Date()
cookdate.setTime(cookdate.getTime()

1000*60*30)

The next step is to assign information to the cookie as a
text string. Cookies can store only text.

document. cookie
= "Cookiea=My A Cookie.;

expires=" + cookdate.toGMTString()

After the assignment symbol, we have given a name to our
cookie, Cookiea, and supplied the information it will contain:
My A Cookie. This is followed by the expiry time using the
expires attribute.

The expires attribute requires that its value is in GMT
format. So we have set cookdate to this format using the
toGMTString0 method of the Date object. It is necessary to
convert a date to a string since cookies are text based files.

That is it! We have created a cookie with a string text "My A
Cookie" which will expire after'/2-hour.

3. The next step is to retrieve the cookie and simply display
its contents in the textbox named cookvalue. The important
thing we need to know is that the cookie property does not
allow you to read the attributes. You can set the attributes
but you cannot read them. So when we eventually read the
cookie, the only part which can be read is the cookie name
and the value after the name.

"Cookiea=My A Cookie."

We can read the name and what follows but nothing else.

function getcookie() {

var cookstring = new String(document.cookie)
var cookname = "Cookiea="

248

var startpos = cookstring.indexOf(cookname)

if (startpos != -1) {

document.forml.cookvalue.value =
cookstring.substring(startpos

+ cookname.length)
//addition not concatenation

}

else
{ document.forml.cookvalue.value =

"Cookie not found!"
} // Eof if..else

} // EoFn getcookie

We shall need to retrieve the cookie text into a string so that
we can manipulate it. Consequently, we first create a new
instance of a String object which we have called
cookstring and then assigned to it the value of the
document.cookie.
var cookstring = new String(document.cookie)

Another important point is that cookstring will contain
all the cookies that apply to the current document. In
Netscape, each new cookie is appended to the one cookie
property which stores all the document's cookies.

We shall have to search this list for our cookie, hence the
need to give it a unique name. To do so, we assign the
cookie name to the variable cookname. Note the
inclusion of the equals symbol after the name.
var cookname = "Cookiea="

Next, we find the index position of our cookie using the
indexOf() method.
var startpos = cookstring.indexOf(cookname)

In the following, we test for whether indexOf() returned -1
using the 'not -equal to' comparison operator (! .). If this is
true, then the method has returned the starting position of
our cookie. In other words, it has found our cookie.

249

if (startpos != -1) {

document.forml.cookvalue.value
cookstring.substring(startpos

+ cookname.length)
) //Eoflf

It is now a simple matter to assign the value of Cookiea to
the value of the text box cookvalue using the substring()
method of our string instance cookstring.

substring() method
We have not met the substring() method before, but here is
our chance. It is a property of the String object.

mystring.substring(from, to)

It returns the specified substring of the string using the
index positions of the arguments from and to. If the to is not
present, it is optional, the rest of the string is returned. In
our example, we have found the staring position of
Cookiea and we add the length of the cookie name to it to

argument using an addition operator not a
concatenate operator. Since we have no second argument,
the rest is returned.

4. Finally, we add an else clause to determine what to do if
the cookie is not found:

else
{ document.forml.cookvalue.value

"Cookie not found!"

We simply write out a message into the text box saying that
the cookie is not found.

We have used some new features here.

toGMTString()
substring()
document.cookie
expires=

250

Exercise 38: You have been here before!
In this exercise, we sha'l create a cookie which will store a
visitor's name via a text box. If the person returns within a
specified time. we shall be able to welcome them by name.

Notes

We have supplied a text box for the user to enter his/her
name. When OK is clic-ced, a cookie is created which will
store the name. Finally. we allow the user to delete the
cookie. When the page is loaded, we search for the cookie.
If it is not found, the illustration below will be displayed.

;1:" Cookie 2 Welcome Nelscape

Please enter your name
and click OK ...

Susan Harwood

Welcome Cookie

cookze2.htm

4 p

If it is found, because they return within a given time, the
cookie is found and will display the illustration on the next
page.

251

Or"; Cookie 2 Welcome - Netscape pi ri; 13

fie Eat View Q.cinmunicator Help

<HEAD><TITLE>Cookie 2 Welcome<,Tii'LL><SCR1?T>
var cString = new String(document.cookie)
var cHead = "Namel="
var cstartpos = cString.indexOf(cHead)

if (cstartpos!= -1) {

var cName = cString.substring(cstartpos
+ cHead.length)

document.write("Hello, " + cName + "!")

} //Eoflf
else
(document.write("Please enter your name and

click OK ...")
document.write("<FORM NAME=forml>")
document.write("<INPUT TYPE=text NAME=cName

SIZE=40">)
document.write("<INPUT TYPE=button VALUE='OK'

onClickm'storename()'>")
document.write("</FORM>")
} //EoElse

function storename()
var cDate = new Date()
cDate.setTime(cDate.getTime() + 60*30*1000)
document.cookie = "Namel="

+ document.forml.cName.value
+ ";expires=" + cDate.toGMTString()

// EoFn storename()

252

function delcookie(name)
{ document.cookie = name

+"=;expires=Thu,01-Jan-70 00:00:01GMT"
" "; ;

alert("Cookie gone!");
} //EoFn
</SCRIPT></HEAD>

<BODY><H3>Welcome Cookie</H3>
<FORM NAME=delcook>
<INPUT TYPE=button NAME=delbutton

VALUE="Delete Cookie"
onClick="delcookie(cHead)">

</FORM><ADDRESS>cookie2.htm </ADDRESS></BODY>

We start off as before, being careful to place the 'search for
cookie' code in the <HEAD> so that it is the first thing to be
done as the page loads.
var cString = new String(document.cookie)
var cHead = "Namel="
var cstartpos = cString.indexOf(cHead)

If the cookie is found, we do this:

if (cstartpos!= -1)
var cName = cString.substring(cstartpos

+ cHead.length) // + = addition
document.write("Hello, " + cName + "!")

//Eoflf

Otherwise, if it is not found, it is a first time visitor and we
display an invitation to enter a name and click OK.

else
{ document.write("Pease enter your name

and click OK ...")
document.write("<FORM NAME=forml>")
document.write("<INPUT TYPE=text NAME=cName

SIZE=40>")
document write("<INPUT TYPE=button VALUE='W

onClick='storename()'>")
document.write("</FORM>")
} //EoElse

253

The OK button, when clicked, will invoke the storename()
function. Remember that this button will appear only when
the cookie is not found.

function storename() {

var cDate = new Date()
cDate.setTime(cDate.getTime() + 60*30*1000)
document.cookie = "Namel="

+ document.forml.cName.value
+ ";expires=" + cDate.toGMTString()

} // EoFn storename()

Notice how the value stored in the cookie called Namel iS

that of the value of the text box NAMEd cName. We have
also set the expiry time to 1/2 an hour. This expires=

attribute will not be 'readable' except by the browser's
internal program. Again, we use the toGMTString() method.

In the <BODY> tags, we have set up a button which when
clicked will delete the cookie. The standard way to delete a
cookie is simply by re -setting its expiry date to a date prior
to the current date.

function delcookie(name)

document.cookie = name
+"=; expires=Thu,01-Jan-70 00:00:01GMT"

alert("Cookie gone!");
} //EoFn

To avoid too much effort, we have set the expiry date by

hand in the required GMT format:

Weekday, dd-mm-yy[yy] hh:mm:ss GMT
for example: Mon. 18 -Dec -1996 17:45:56 GMT

Notice that a semi -colon is used after the name value and
after the expires value.

Finally, we display an alert box informing the user of the
deletion.

254

Exercise 39: This page has changed since your last visit

In this last exercise, we shall set a cookie to the last
modification date of our page. When a user revisits the
page, we shall compare the cookie date with the current
visit's modification date. If the page has been modified in
the meanwhile, we shall inform the user. This makes use of
the lastModified property of the document object.

lastModified
It is a read-only string which contains the date and time a
document was most recently modified. It is derived from the
HTTP header data sent by the web server. Hence, it is
difficult to test this code out on your office computer.

Web servers are not required to provide last -modification
dates for the documents they hold. When they do not,
JavaScript assumes 0 which translates to the date of
midnight, January 1st, 1970 GMT. Consequently, we need
to test for this situation. For the moment, we shall assume
that the last modification cate has been sent.

<HEAD><TITLE>Cookie 3 Modification</TITLE>
<SCRIPT>
document.cookie = "ModVern=" +

escape(document.lastModified);

var allcookies = docament.cookie;
var pos = allcookies.index0f("ModVern=");

if (pos != -1) {

// 8 is length of cookie name plus equals symbol
var start = pos + E;
var end = allcookies.index0f(";', start);
if (end == -1) end = allcookies.length;
var value = allcookies.substring(start,

end);
value = unescape(value);

if (value != docunent.lastModified)
document.write("This document has changed

since you were last here.");
) // EofIf

255

</SCRIPT></HEAD>
<BODY>
 Modified Page Cookie
<SCRIPT>
document.write("This page was last modified

on: " + document.lastModified)
</SCRIPT>
Here is the rest of the Web page!
<ADDRESS>cookie3.htm </ADDRESS></BODY>

Notes:
Our cookie is called ModVern and is assigned the last
modification date.
document.cookie = "ModVern="

+ escape(document.lastModified);

Since cookie values may not include semi -colons, commas
or whitespace, we are using the escape() function.

escape()
It is a global function in client -side JavaScript and is not
associated with any object. It creates and returns a new
string which contains an encoded versior of its argument.
The original string is not changed. All spaces, punctuation,
accented characters and anything else w-fich is not ASCII
letters or numbers are converted (encoded) into the form:

where is the hexadecimal digits which represent the
ISO -8859-1 (Latin 1) code for the character.

For example: has the Latin 1 code of 33 in decimal and
. in hexadecimal. A space is hexadecimal and a
comma is hex .c. Thus:

escape("Hello, World!")

would yield the new string:

'Hello%2C%20World%21'

The purpose of escape() is to ensure that the string is

portable to all computers and across all networks,
regardless of the character encoding they support. But they
must support the American Standard Code for Information

256

Interchange (ASCII). This is important in the case of
cookies being transmitted over the Internet.

Use unescape() function to decode an escaped string.

<SCRIPT>
mystring = "Hello, World!"
Estring = escape(mystring)
document.write("The escaped version:")
document.write("
" + Estring)
//... and sometime later ...

document.write("The unescaped version:")
document.write("
" + unescape(Estring))
</SCRIPT>

Edit yiene. Lornrnuricatca1p

The escaped version:

Hello%2C%20World%21

The unescaped version:

Hello, World!

11111111111
The rest of the code shou.d be easy to follow since we have
used similar coding in the previous two examples.

In the following examp'e, we have used the lastModified
property at the end of a web page to display the date of the
last modification. This saves having to remember to update
your Web pages after each modification.

<SCRIPT>
document.write("This page was last modified

on: " + document.lastModified)
</SCRIPT>

Finally, here is some code which can test whether the web
server has included the last modification date.

257

// get date
lastmod = document.lastModified
// convert to milliseconds to compare with 0
lastmoddate = Date.parse(lastmod)

if (lastmoddate == 0){
document.writeln("Last Modified: Unknown")

else
document.writeln("Last Modified on: "

+ lastmod)
}

Notes:
lastModified returns a date in this format:

mm/dd/yy hh:mm:ss - 02/08/00 10:35:02

It needs to be converted to milliseconds via the
Date.parse() method to compare it with zero. Remember.
that 0 is assumed when a lastModification date has not
been sent by the server. You would also need to add some
extra code if you wanted to display the date in dd/mm/yy
format, as discussed in Chapter 10.

Cookie Limitations
We have already seen that the lastModified property
depends upon the web server and is beyond our control.
But there are other limitations. Cookies are intended for
storage of small amounts of text for a limited period of time.
Web browsers are not required to store more than 300
cookies in total. That covers all the web pages which are
downloaded. They are also not required to store more than
20 cookies from any one web server (for the entire server,
not just for your page). They are limited 70 a maximum of
4Kbytes of data per cookie.

Browsers can be instructed to refuse cookies by their users.
It is not an automatic affair.

Bearing in mind the small amount of text -data a cookie can
store, the number of cookies browsers can store and that
users can refuse to accept cookies, we should be moderate
in their use.

258

JavaScript Security
Loading a Web page with JavaScript code could cause
security problems and seriously damage your computer
unless precautions are taken. Early versions of cl ent-side
JavaScript were plagued with security problems mainly
related to e-mail. Scurriious code could be written to send
messages on behalf of a user.

The simple way to make users' computers safe from
JavaScript programs is to prevent client -side JavaScript
from having any means of writing to or deleting files or
directories on the client's computer. Therefore, JavaScript
has no File object and no file access object. Our computers
are safe.

Client -side JavaScript can load URLs aid send form data
back to a web server as well as CGI scripts and e-mail
addresses. But it cannot establish direct contact with other
hosts on the Internet. This means that a JavaScript
program cannot use a client's machine as a platform to
crack passwords on other machines. This is especially
important if the JavaScr pt program has been loaded over
the Internet and through a firewall - a means of preventing
unauthorised access tc a network.

Imagine a network heavily protected with a firewall and then
a Web page is loaded with a JavaScr pt program which
then has the means of reading the other servers inside the
company's Intranet. Therefore, JavaSc-ipt has not been
given any mechanism for making contact with other servers
from a client base.

The browser's history file (a record of your previously visited
sites) and bookmarks remain private ana outside the realm
of JavaScript. Otherwise, a program would be able to view
your sites of interest and report back to the host server. You
could then be bombarded with unsolicited e-mail or worse.
Some companies pay good money to get hold of such
information to plague you with sales pitches. Likewise, ycur
e-mail address remains private unless you wish to send it.

259

JavaScript cannot examine other open windows such as a
Word document or an Excel spreadsheet. Just think about
the implications of this if JavaScript loaded over the Internet
could begin to examine and return back all the contents of
any of your open files.

Client side JavaScript just has not the capability of loading
other files from your hard disc, closing open windows which
are not browser windows, deleting files and being a general
nuisance. It is also unable to open new wirdows within the
browser's scope which are less than 100 pixels in size. This
prevents scripts from opening windows that a user cannot
easily see and which might contain scripts which are still
running after the user thinks they have stopped.

Cookies are safe because they cannot contain code. So
our computers are safe from hacker -crazed cookies, for the
time being! In any case, a browser can be set up to prevent
cookies from being accepted. The cookies file can be
deleted by users and to do so should be a harmless
exercise.

The Windows system stores cookies in a cookies . txt

file; Mac systems store cookies in a file named
MagicCookie, and for Unix systems the file is called
cookies. These files can be read by any editor.

Web servers sending cookies cannot find out anything
about your computer, let alone do any damage.

Finally. information sent via FORMs should always be
checked again at the server end. We already know enough
JavaScript to be able to ask users to enter their credit/debit
card details and to substitute our own address in place of
the user's address for the delivery of the goods they have
just paid for.

260

18 Answers to Tests

Test 1:
1.1 What are <SCRIPT> tags used for and where can they be
placed?

Browsers expect to find JavaScript code enclosed within a
pair of opening and closing <SCRIPT> tags.

They can be placed anywhere, although it would not be
sensible to place them before the opening <HEAD> tag.
Otherwise, they can be placed:

between the <HEAD> tags

between the <HEAD> and <BODY> tags
between the <BODY> tags

after the <IBODY> tag - not recommended'

The actual position o: the <SCRIPT> tags within the
<BODY> tags will determine where they will take effect.

1.2 Do the <SCRIPT> tags form part of HTML or JavaScript?

Part of HTML version 4.

1.3 Is locLunen t an ob,ect or method?

document is an object

1.4 Is writeln() an object cr method?

write() & writeln() are methods of the document object.

1.5 What is the main difference between write() and writeln()?

In Netscape, both methods write to the source code.
writeln() will append a new line after the message has been
output, wife° does not. 'n both cases, the message is seen
in the source code but the JavaScript code is not. Internet

261

Explorer uses Notepad to view the source code so it will be
displayed exactly as it had been typed in the original.

1.6 Can you have more than one pair of <SCRIPT> tags in the
same HTML document?

There is no limit to the number of pairs of <SCRIPT> tags
used.

1.7 What would the following display on a Web page:
document.write("Hallo there.",

"My name is Joe.")

Hallo there.My name is Joe.

There would be no space before the 'M' of 'My'.

1.8 What is the formal term for what is enclosed within the
round brackets in the above code?

An argument.

1.9 When would you need to add:

LANGUAGE="Javascriptl.2" to the opening <SCRIPT> tag?

The one time it would be required is when you wish to use
features found only in JavaScript version 1.2.

1.10 How are multiple arguments separated?

By commas, except for the last one.

Test 2:
2.1 Does the alert() method belong to the document or window
object?

To the window object.

2.2 In the following, should the message displayed by the alert
box be in double or single quotes?
onClick = "alert(the message)"

262

Because the value of the onClick attribute must be
surrounded by double quotes, only single quotes can be
used to surround the message. Using 7wo different sets of
quotes allows the browser to recognise the opening par of
one set and the opening pair of an inner set of quotes.
Otherwise, it would assume the opening of the second set
as the closing of the first set.

2.3 What is the JavaScript term for the onClick attribute?

An event handler.

2.4 What type of value does the onClick attribute take?

JavaScript code.

2.5 When a user clicks on a button, what is this called in
JavaScript?

An event.

2.6 In OOP languages. what is the formal term for bgColcr in
the following?

onClick = " document.bgColor = 'lightblue'
It is a property of the document object.

2.7 In the above, would it matter if bgColor was typed as
bgcolor or BGCOLO ?

Absolutely! JavaScript is highly case sensitive. It can
recognise only bgColcr and no other var ation.

2.8 What value will z have after the following code is executed?
z = i,

The variable z will contain 4 (1+3).

2.9 In the above code, is a concatenate or an arithmetic
operator?

An arithmetic operator.

263

2.10 What could happen in Netscape when a window is re -
sized?

When the page is re -loaded to fit the newly sized window,
the source code may well be an earlier version which
Netscape has fetched from its cache memory. If this re-
displayed page contained JavaScript errors which you have
subsequently corrected, Netscape will re -display the earlier
version with the uncorrected errors. This does not happen
with Internet Explorer.

2.11 Is onClick an attribute or an event handler?
It is an attribute of the HTML <INPUT> tag and an event
handler in JavaScript.

Test 3:
3.1 In the code for Exercise 9c what forms the declaration and
what forms the invocation of the function?

Invocation: the value of the onClick event handler:
onClick = "yourname()"

Declaration: function yourname() (.. code ..)

3.2 How many functions can be placed within a single pair of
<SCRIPT> tags?

Any number, there is no limit.

3.3 How many syntax errors can you find in the following?
onclick "function abc{}'

Three:

onclick should have an equals symbol after it. The
case of onclick is immaterial since it is part of HTML,
not JavaScript
wrong mix of double & single quotes
wrong type of brackets used - should be round brackets
not curly

264

3.4 The prompt dialogJe box can take two arguments. What
purpose does the secona serve?

The second argument is a string quote which is usec to
replace the word 'undefined' when the prompt bcx is first
displayed.

3.5 What would the following write out?
sum 1.5 + 2;
document.write("ThE sum is: " + "sum");

The sum is: sum

Enclosing the variable purr. in quotes turns it into a quoted
string which be displayed literally. To print out the contents
of the variable . , it must not be enclosed in quotes.

3.6 When would you want to use an alert, a confirm and a
prompt pop up box?

alert when you wish to cisplay a message to a user

confirm: when you want a user to confirm (OK) o' cancel
(Cancel) something

prompt when you wan: tie user to type something in

3.7 You will not find the answer in this chapter, but to which
object do the methods of the three pop-up boxes belong: to 'he
document or window object? Think about it!

The window object. Pop-up boxes are new windows and as
such need to be controlled by the window object.

3.8 In the following code, what would be the, order in which the
browser would display the information on the screen?

<HEAD> <TITLE> .. a title .. </TITLE>
<SCRIPT->

function yourname(){
x = prompt("What is your name?");
confirm("Did you say your name is "

+ x + "?");
} // EoFn
</SCRIPT>
</HEAD>

265

<BODY>
<H4> Here is a Prompt</H4>
<FORM>
<INPUT TYPE="button" VALUE="Tell me your name."

onClick="yourname()">
</FORM>
<ADDRESS>PPPMPT-Fx9c'.htm </ADflRFS>
</BODY>

Netsewe RPM'
lk gat view ao Communicato hetp

Here is a Prompt

Tell me your name. I

PROMPT -Ex 9c. htrn

The way the code is written would mean that the heading in
the <H4> would come first, then the FORM button, and
finally the <ADDRESS> code.

The prompt box would appear only if the user clicked the
Form button. Once the prompt box was OK-ed, the confirm
box would appear.

It is important to realise that the placement, in an HTML
document, of <SCRIPT> tags not containing functions
determine the order in which the browser will display the
page. It works in a strict Top to Bottom order.

3.9 What can be included as the argument of the write()
method?

String quotes, HTML tags and variables.

266

Test 4:
4.1 How can you find cut what a user has typed into a prompt
box?

By assigning what has been typed in to a variable and then
passing that variable as an argument :o a function. The
function can then perform tests on the argument's data to
determine what it contairs.

4.2 Why are arguments useful?

Via arguments, data can be passed to a function or
processing. The data can be 'captured' f-om text or prompt
boxes or entered as fixed data by the programmer. The
same function can process different data each time it is
invoked.

4.3 To what object does the . : method belong?

To the Math object.

4.d Is the Math object part of core or client -side JavaScript?

It is part of core JavaScript.

4.5 Give one main reascn for giving an INPUT element a name
attribute.

By being able to give a name to an INPUT element, such as
a text box or radio button, it can be referred to individually
and manipulated in some desired way.

For example, what a user types into a text box can be
assigned to a variable:
x = document.formi.calrulator.value

In order to 'capture' the value of the text box NAMEd
calculator above, it was given a unique name, thus:

<INPUT TYPE="text" SIZE="12-
NAME="calculator"

4.6 If you only have one Form and wish to refer to it, must it still
be given a name attribute?

Yes. The form can then be referred to via its name.
267

4.7 Why must an invoked function include the function call
operator - 0 - rather than just the function name?

How else could JavaScript differentiate between a variable
name and a function name? It is precisely by using the
function call operator that JavaScript can recognise a call to
a function. Characters not enclosed in quotes and which do
not include the function call operator are taken to be
variable names.

If you think about this, you can see that computers use very
simple cues to make distinctions between one thing and
another. This is why computers will never be able to make up
jokes which rely on very subtle use of words or their sounds.

Teacher to a class on their last day at School:

"Remember this! The world is your lobster."

The Prime Minister of Australia is on an official visit to New
Zealand. On the way from the airport, he is amazed at the lush
vegetation of the countryside after his own dried and scorched
land. He turns to his host, the PM of New Zealand and asks:

"How do you keep your country so green?"

To which the New Zealand PM replies, "I don't tell them
L anything.!"

Test 5:
5.1 What is a dummy argument and why is it useful?

A dummy argument is a 'dummy name' given to an
argument and which is used throughout the function's
declaration. When the function is invoked, it is passed a
real argument, typically a variable containing data. This real
argument is substituted for the dummy argument during the
execution of the function.

5.2 For the following : 5 + 4 * 2 +

a) What result would be given by a computer?
4*2 = 8; 8+5 = 13; 13+3 =16

268

b) What result would be given by a pocket calculator?
5+4 = 9; 9*2 = 18; 18+3=21

5.3 Why are comments used by programmers?

To annotate JavaScript code. Typica.ly, comments are
used to explain what is being. or hoped to be, achieved by

the code. It is useful tc others who have to understand your
code and even to the author of the code when it is re -visited
at a later date.

It is not unusual for even experienced programmers to
spend quite some time trying to work out what a particular
piece of their own code is trying to do when they have clot
looked at it for several months.

5.4 How do you create a single line comment in JavaScript?

Use a double forward slash:
// here is a single line comment

5.5 How are multiple line comments created in JavaScript?

Use: / * . . comment .. */

,* here is one line of a comment
and here is a second line. */

5.6 Convert Exercise 10 in Chapter 4, so that it rounds the
square root to two decima' places.

function squareroot(sgroot)(
x = Math.sqrt(sgroot);
document.write("The square root of " + sqroot

" " + "<P>" + x)
y = Math.round(x*100)/100
document.write("The rounded square root of "

+ sqroot + " is: "

+ "<P>" + y)

// EoFn

269

3 Calculating the Square Root - Microsoft Int.. Mop

fie Edo View Qio Fgvorites Help

Using Arguments

The square root of 5 is:

2.23606797749979

The rounded square root of 5 is:

2.24

Arguments -Ex 10. htm

The Math.roundO function rounds to the nearest integer.
But by multiplying x by 100, rounding the result and then
dividing by 100, two decimal places result.

5.7 How many errors can you find in the following script?
function dothis(sqroot)
x = Maths,round(squroot);
document.write("The square root of: "

+ squroot + " is: " + x)

1. there is no opening curly bracket to mark the start of the
function's code

2. Maths should be Math
3. replace comma with a period: Math. round
4. mis-typed argument name: sqroot not squroot

270

Test 6:
6.1 Can the HTML 4A1G> tag be a property of the document
object?

Yes. In fact the document object cal take any of the
following tags as properties: , <A>, <AREA>,
<FORM>, etc.

6.2 How can one image be replaced by another image in
JavaScript?

By setting its src property to another image file:
document.imql.src = "image2.jpg"

This involved having previously named the tag so
that it could be referenced as a property of the document
object.

6.3 What happens in Netscape if the image which replaces
another is of a different size to the one it replaces? Will the
same thing happen in Internet Explorer?

Netscape assumes that any image which replaces another
has the same dimensions as the first. If not, the second is
forced into the same space as the one it replaces. This will
cause distortion.

This does not happen in Internet Explorer.

6.4 Can the onMouseOver event handler be used with a text
box INPUT element?

No, more is the pity. It is only used with the <A> tag.

6.5 With which HTML tag are the onMouseOver and
onMouseOver event handlers associated?

The <A> tag.

6.6 What user event will the onMouseOut event handler trap?

When the user moves the mouse out of an image (or text)
enclosed in <A> tags with an onMouseOut event handler
attached.

271

Test 7:
7.1 How many arguments does the window open() method
take?

Maximum 4, minimum 1.
argument 1: which file to open into the new window
argument 2: used with the target attribute of FORM
argument 3: specifies the new window's features
argument 4: used with the browser's History - seldom used

It must contain at least the first argument, even if this is
empty, in which case a blank window would open:
window. open("")

7.2 If you do not want to open an existing HTML document in a
new window, is it still necessary to include the first argument?

Yes. Even when an argument is not used or required, its
position in the order of the arguments must still be 'filled in'
even if this is with a space, such as shown in the next
question where no file has to be opened.

7.3 In the following code, why is null not in quotes?

var win = window.open("",null,
'height=400 width=500 status=1
resizable=yes status=0");

It is a special value indicating 'no value'. If it were in quotes,
it would be taken to be the name of a target attribute, the
purpose of the second argument.

7.4 Why was it necessary to assign the new window object to
the variable win in Exercise 18 &19, but not in Exercise 17?

In both Exercise 18 & 19, we wanted to write HTML tags
along with text to the new window via the document write()
method. We could not simply use:
document.write("HTML etc..")

since this would write to the existing window, not to the new
window. This is because document is the property of the
currently open window and this is the window we are using
to create a new window.

272

In order to write to cur new window, we need to create a
new window object (win) and use the documentwrite0
property of this new window. To do this we assign the new
window to a variable -
var win = window.open('features

We can now use this variable to specify what to write tc the
new window via its own document property.
win.document.write(" the HTML code")

7.5 What do you think would happen if w ndow rather than win
were used in the removewindow function for Exercise 19?
function removewindow()

window. close ()

) // EoFn

The main window would be closed instead of the newly
created window. By using ., we are asking for the
window called win to be closed.

Test 8:
8.1 What are the four basic features of any programming
language?

creating. storing and moving data
input and output of data
making decisions
repeating instructiois

8.2 What is an integer number and what is a real number?

Integer: a whole number with no decima places; e.g. 124.
Real: a number with decimal places; e.g. 1.23, 1.0, 0.54.

8.3 How can you capture, for subsequent processing, what a
user has typed into a text box or a prompt box?

Assign it to a variable aid perhaps pass the variable as an
argument to a function.

function abc()f
x = document.forml.textl.value)

273

or:

x = prompt("Type something.")

onClick="user_entry(x)"

8.4 Give one example of where case is not significant and one
where it is?

Event handlers are part of HTML and their case is not
significant, therefore, onclick and onClick are both valid.

Whereas, Math is part of JavaScript anc, therefore, case is
significant. Likewise for round°, for, if, baColor, etc.

8.5 What is happening in the following coae? var x r

The variable x is being created (declared) and assigned the
value 1.

8.6 What is happening in the following code?
if (x ==

The value of x is being compared to integer 1. If true, the
code in curly brackets will be executec. If false, the code
will be ignored.

8.7 According to its syntax, an if statement can execute only a
single instruction. How do you make it execute more than one
instruction?

Multiple statements can be 'converted' into a 'single'
statement by enclosing them in curly brackets so that they
become a compound statement.

8.8 What do the following do?

i) i this is called the prefix increment operator. The
increment variable i will immediately be incremented by 1
before any other instruction is executed.
ii) k- - this is called the postfix decrement operator. The
decrement variable will have its value decremented by 1
but will not take effect until some Dther instruction is

executed.

274

They are frequently used as increment or decrement
statements within f o (cops.

8.9 What will be written out by the document . write (1
method for the following?

<SCRIPT>
var aBc 12

var abc
document.write('Variable abc is: ' + abc

+ "
Variable aBc is: ' + aBc)
</SCRIPT>

The following will be written out:
Variable abc is: undefined
Variable aBc is: 12

(The point of this test is to show that is created and
assigned a value, whereas 11- - is created and has not
been assigned a value. It is therefore given the special
value of undefined.)

8.10 Look very carefully at the following code and work out
what will be written out after the code has been executed.

(Note:
a) another shortcut, beloved by C programmers and now pad
of JavaScript which can assign a value to more than one
variable in one statement.
b) IF statements can be nested as we see in the following.
c) means Therefore'

j = 1; // both i and j assigned value of 1
k = 2;

if (i == j) // i does equal 1 :.true
if (j==k)
document.write('i equals j');

else
document.write('i does not equal j');

// Oops!

275

i does not equal j will be written out. We have not
used curly brackets and that is our undoing. JavaScript, and
most other languages, stipulate that an else clause (block)
is part of the nearest statement. Despite the indenting of
the original, the else belongs to: i f (j = =k) . Since, this
results in false, it is the accompanying else clause which
will be executed and the message 'I does not equal j" is
written out.

In order to make this example less ambiguous and easier
to understand, maintain and debug, use curly brackets,
thus:

i = j = 1; // both i and j assigned value of 1
k = 2;
if (i==j)

(if (j==k)
{document.write("i equals j");
}

}

else (
document.write(*i does not equal j");

This now makes it clear that the else is part of the outer
statement and will be executed when i does not equal .

Have you also noticed that since the logic is clearer,
nothing at all will be written out. The else clause will no
longer be executed because it has now been associated
with the first i f statement which results in true. This now
tests to see whether jr -k, which it does not.
Consequently, the second I clause will not be executed,
and, so, nothing more will happen.

This is an excellent example of how horrendous and
tortuous nesting d t clauses can become.

276

8.11 Why cannot a variable name begin with a digit?

So that JavaScript can distinguish betweei a variable and a
number. To make life easy for the people who programmed
the JavaScript language. they decided -hat anything not
enclosed in quotes or which did not have a function call
operator appended to t would be either a variable or a
number. To make it easy to distinguish between these last
two, they decided that anything starting with a digit must be
a number (or should be). Anything starting with a letter, $ or

(underscore) would be interpreted as a variable. They
were no fools!

8.12 What will happen in each of the following?

a) This one is correct.

<SCRIPT>
sum = 0;
for (i = 1; i <= 10; i4,)

{ sum = sum + i; }

document.write("numbers 1-10 = " + sum)
</SCRIPT>

It sums the first ten numbers and prints out:
numbers 1 -10

b) Incorrect initialisation of the loop variable

<SCRIPT>
sum = 0;
for (i = 2; i <= 10; i++) // sloppy

{ sum = sum + i;
document.write("numbers 1-10 = + sum)
</SCRIPT>

numbers 1 -10 = 54

This demonstrates how careful we have to be with the
initialisation of the loop variable, i . Since it began at 2, .

does not include the first number 1. Hence, the result of 54
We cannot afford to be sloppy.

277

c) sum is undefined

<SCRIPT>
for (i = 1; i <= 10; i=i+1)

{ sum = sum + i; }

document.write("numbers 1-10 = " + sum)
</SCRIPT>

Internet Explorer will pop up an error message saying Sum
is undefined' and the loop will not proceed any further.
Netscape will not say anything, leaving the user somewhat
bemused. The point here is that variables used in functions
must not only be defined but also assigned some value as
shown next.

d) A common error - declared but no assignment

<SCRIPT>
var sum;
for (i = 1; i <= 10; i=i+1)

{ sum = sum + i; }

document.write("numbers 1-10 = " + sum)
</SCRIPT>

This produces: numbers 1-10 = NaN ?? why?

Although the variable has been declared, it has not been
assigned a value (in fact it has the null value). Since it
appears on the left-hand side and is therefore being used
as though it had a value, the loop will not work as expected.
Remember that NaN is something returned by JavaScript to
inform the user that arithmetic is being performed on a
variable which does not contain a numeric value.

e) Another common error - no comparison
<SCRIPT>
sum = 0;
for (i = 1; i = 10; i=i+1)

{ sum = sum + i;

document.write("numbers 1-10 = + sum)
</SCRIPT>

278

This program could cause your PC to hang. (Save all your
work before you try this. You may need to re -boot your
computer!)

The above program w II loop indefini-.ely and not get
beyond:

assigning 10 to i
adding it to sum
incrementing i to 11
and then re -assigning 10 to
for ever and ever, Amen!

Test 10:
10.1 Try writing some JaaScript which will tell a user how long
it has taken to load a page.

(The combined code for test 10.1 and 10.2 is shown below.)

We need two times: a -.ime when the page begins to load
and a time when the page has finished loading. Subtractirg
the two times will yield the time taken to load.
The start time is obtained by:
var today - new Date,
but note that the code is placed before tha <BODY> tag so
that we can take the time ,ust before loading begins.
The ending time is obtained by doing the same after the
</BODY> tag when the page has just finished loading.
now = new Date()

The next step is to convert the two new date objects into
milliseconds using the getTime() method and subtract
them:
(now.getTime() - today.getTime())/1000

and then divide by 1000 tc convert into seconds.

10.2 Write another piece of code to work out how many days
are left to Christmas Day.

279

Answers to exercises 10.1 & 10.2:

<HEAD><TITLE> Days to Christmas? </TITLE>

<SCRIPT>
// create new instances of the dates
var today = new Date()
var sans = new Date()

xmas.setMonth(11)
xmas.setDate(25)

if (today.getTime()< xmas.getTime()){
difference =

xmas.getTime() - today.getTime();
difference =

Math.floor(difference / (1000*60*60*24));
document.write("Only " + difference

+ "days until Christmas 1999! <P>");
} // EoIF
</SCRIPT>
</HEAD>
<BODY>
<P>
<H3>Christmas and Loading Time</H3>

<ADDRESS>Test-10.htm </ADDRESS>
</BODY>
<SCRIPT>
now = new Date();
document.write("It took "

+(now.getTime() - today getTime()) / 1000
+ "seconds to load this page.");

</SCRIPT>

We need today's date and the date for Christmas day. We

create two new date instances, and set the Christmas day

instance using the setMonth and setDate methods:

var today new Date() // for current date
var xmas = new Date() // for Christmas Day

xmas.setMonth(11)
xmas.setDate(25)

280

a How many days to Christmas'? - Mictoaott I a

ie Edit view go Favorites Heap

Only 355days until ncxt Christmas
Day!

Christmas and Loading Time

Xmas-Loadkbn

It took 0.06seconds to load this page.

It is now a simple matter to subtract the two and to convert
the result into days:
difference = xmas.getTime() - today.getTime();
difference = Math.floor(difference /

(1000*60*60*24));

We have used the Math. floor method to return the
greatest integer less than or equal to a number. Thus, if you
passed 45.95 to floor, would return 45; pass it -45.95 it
would return -46. We do not want parts of days.

We have also used an i f statement to check that today's
date does not start after Christmas Day.

10.3 Convert Exercise 24 to show how many minutes
someone has been connected to their ISP.

document.howlong.answer.value
((connect_time/1000)/60)

281

This is a very simple matter of dividing the number of
seconds by 60. Of course, we would also need to change
the words Secs to Minutes. With more aritl-metic you could
even display minutes and seconds.

Test 1 1 :
1 1 . 1 Which HTML elements are allowed to take the onChange
event handler?

The text element and the textarea tags

11.2 When a user first types something into a text box will the
onChange event handler take effect?

No. It is geared to take effect only when a user makes a
change to text already typed in.

11.3 focus() is a method of which object?

The text element and the textarea tags

11.4 A form may be submitted in any of three ways. What are
they?

clicking on a submit button
using the submit() method
returning a non -false value to the onSubmit event handler

The last example will take effect once the submit button has
been clicked and the code in the onSubmit event handler
has completed its work. This code will return either a false
or non -false value.

11.5 To which object does the submit() method belong?

The FORM tag.

11.6 What function does the submit() method perform?

It mimics what occurs when a user clicks the submit button.
However, since it can be placed in a function, various tests
can be performed before it is actually invoked.

11.7 onSubmit is an event handler of which HTML tag?

The FORM tag

282

11.8 What purpose does the onSubmit handler perform?

It extends the behaviour of the more simple submit button.
When the submit button is clicked the JavaScript code
associated with the cnSubmit event handler will be
executed. Typically this is a function. If the function returns
anything but false, the form will be submitted.

11.9 When does the onSubmit event handler send the form to
a server?

When anything other than false is returned such as either
true or undefined. It will not send off the form when false is
returned.

Test 12:
12.1 What are the following: - event handlers, methods, user
defined functions, objects or properties?

index0f() a method of the String object
length a property of a string value typed

into a text box
myfunction (i a user defined function
onChange= event handler of text & textarea

tags
onFocus= event handler of the text and

textarea tags
onSubmit= event handler of the FORM tag
submit () a method of whateve' form object is

referenced
this none of the above. It is an operator

which refers to the current object
this.form a property of whatever this refers to

12.2 In the following which are comparison operators and
which are logical operators? && <= ==

logical: &&
comparison: < = = =

12.3 In the following string:

astring="The Owl and the Pussycat went to sea"

283

how would you find the second occurrence of the lowercase:

a)

b) ?

a) By setting the second argument of the indexOf() method
beyond the first possible occurrence:
index0f("w",

b) As above. except that it will not be found since there is
no second occurrence of lowercase 'o'.

12.4 What value is returned by indexOf() if its argument is not
found in the given string?

-1 which can he tested via an , : statement.

12.5 Can you send form -data via e-mail (mailto:) using the
submit() method?

No. For security reasons, rn,i i 1 t o : nows : and SI-It'W:;:

protocols are ignored by the submit() method. You will have
to use the onSubmit event handler or a simple submit
button to do so.

12.6 What does focus mean?

The focus() method puts the focus on to the text box which
has become its object. This is equivalent to a user clicking
into the text box so that he/she can type in text.

12.7 When we were testing for two words, we decided to
search the string for a space. If it were found, we assumed that
there were two words. But, what is to stop a user from entering
one word followed by a space? This would meet the
requirement of our test but would still be incorrect. How could
you test for this type of error? [Hint: one way could involve the
use of the length property.]

<SCRIPT>
function checkspace()(
userentry =

new String(document.forml.namebox.value);
spacel = userentry.indexOf(" ");
totlength = userentry.length;

284

if (spacel == -1){
alert("No spaces" + " " + spacel)

}

if (spacel == totlength-1)
alert("Space at end but one word")

}

space2 = userentry.indexOf(" ",spacel)
if ((space2 < totlength-1)

&& (space2 != -1)) {

alert("Something must follow 2nd space.'

// EoFn
</SCRIPT>

12.8 Add some extra code to Exercise 35 which will prevent
the form from being submitted if a user makes more than three
attempts to submit his.ter application. [Hirt: It is quite simple
and involves adding one tc' a count each time the checkdata()
function is called.]

The trick is to set a va~fable to zero in the <SCRIPT> tags
within the HEAD of the document. Not within the function
itself! Use this variable it the checkdata() function and add
1 to it each time the funct on is called:

function checkdata(){
x = x + 1

if (x > 2) {

alert("Third time? No way!")

else {.. go ahead with the checks
} // EoFn

This can be tested with an : statement and if it exceeds 2,
then create an alert box informing the user that you cannot
proceed with the registration.

285

Test 13 :
13.1. Add an extra button which will allow the user to stop the
animation in Exercise 36.

Simply add another button to the FORM with an onClick
event handler which uses the clearTimeoutO method. This
will stop the animation by cancelling a timeout which was
set with the setTimeout() method. However, the argument
for the clearTimeoutO method must specify which
setTimeout() has to be cancelled.
<FORM NAME=forml>
.. etc..
<INPUT TYPE=button Value="Stop it!"

onClick="clearTimeout(stopit)'

Consequently, we need to assign the original setTimeout
method set in the tag to a variable, stopit, as in
our example above.
<IMG NAME="animation" SRC="Love-0.gif"
onLoad="stopit=setTimeouWanimateW,

delay)">

13.2 What steps are involved in order to assign a new image to
the src property of an image array object? [Hint: you should
have three steps.]

i) First we must create a new array o', say, five elements
with the Array() object:
arrayabc = new Array(5) // using Array object

ii) Each element of the array has to become an image
object so that we can manipulate its src property:
arrayabc[0] = new Image() // using Image object

.. etc ..

arrayabc[4] = new Image()

iii) Finally, we can now assign a new image file to each
image object in the array:
arrayabc[0].src = "image0.gif

.. etc ..

arrayabc[4].src = "image4.gif"

286

13.3 There are three types of brackets used in JavaScript
code: H and H. Give an example of when each one is
used.

{ } used to enclose the JavaScript code within a function (or
if or for loop):

if (test) { .. code ..)

[] used to enclose the index number of an array element

arrayabc [3] This would reference the fourth element!

() used to enclose the test for an if statement or
arguments of a function:
function abc(argl, arg2)

13.4 How many ways can you get a window, which you have
created and opened, to close itself?

Either by adding a button which executes some code to
close it via an event handler. See Test 7.5 & Exercise 19 for
a fuller discussion.

Or, by using onMouseOver and onMouseOut handlers:

<SCRIPT>
function removewindow(){
win.close()
} /1 EoFn

function multselectionsM
win = window.open("wnd-2.htm")
} // EoFn

</SCRIPT></HEAD>
<BODY BGCOLOR="D5EAff"
Selecting Messages

 Move your mouse over the phrase
to open a new window.
... continue with paragraph ...

<A HREF="" onMouseOver="multselections()"

onMouseOut = "removewindowW>
Open new window

287

Or. by closing it automatically after a gven period of time
via the delay time argument of the window's setTimeout()
method. This could be placed in the <BODY> tag as an
onLoad event handler so that after a gilen time period the
window would automatically close.

<SCRIPT LANGUAGE = JavaScript>
function Closer() {

self.close()
} //EoFn

</SCRIPT> </HEAD>

<BODY onLoad="setTimeout('Clogar()', 5000)" >
<CENTER>
<H1>This is a newly opened window</H1>
</CENTER>
</BODY>

Test 14:
14.1 Name some types of repetition loops.

for, while and do -while.

14.2 In an if statement which employs else..ft's, what is the
purpose of the lone else statement?

It supplies the code to be executed when all previous tests
fail.

14.3 What is the main syntactical difference between the for
loop and the while loop?

The for loop contains all three control statements within its
round brackets:
for (initialise; test; increment

.. code ..1

Whereas the while loop contains just the -.est, leaving it to
the programmer to insert the other two where appropriate.
while (test) { .. code .. }

288

14.4 What is this feature known as:

It is called the prefix decrement operator. It will subtract 1
from and continue with the rest of the code.

14.5 What is the difference between a variable which is
undefined and one which has the null value?

An undefined variable is one which is being used but whch
does not exist or one which has been declared but not yet
assigned a value. Thus.
var sum;
sum = sum+1;

sum is declared but unassigned and if it were to be used. IE
would present an error message saying so. Netscape will
sit there saying nothing. Since JavaScript first looks at the
right-hand side of an assignment statement is
undefined but is being used. JavaScript will not add 1 to a
variable in an undefined state.

On the other hand. assigning null to a variable means that it
exists but has the special "no value - nu I" value. But it can
still be used, thus:
var sum = null;
sum = sum+l;
document.write("The value of sum is: " + sum)

would result in: The value of sum is: 1

When a variable holds the value null, you know it does not
contain a number, a strilg. an object or a Boolean value.
Remember this, it may prove useful one day.

289

Glossary
arguments: values which are passed to a function so that it
can process (do something with) them.

array: an internal storage area in the computer's memory
where data can be stored and retrieved as and when
necessary. It is part of the core language of JavaScript 1.1.

assignment statement: a piece of code which assigns a
value on the right of the assignment operator () tc a
variable on the left of the operator. x = x I Here, >: is
a variable.

block: refers to a group of instructions, ''or example, those
repeated by a for loop or when an if condition tes*. proves
true. They are also sometimes referred to as a clause.

cache memory: part of the computer's memory where
some browsers store copies of loaded Web pages for qu ck
access should that page need to be re -displayed.

client -side: the user's browser. When a user wishes to
obtain a web page, he/she sends off the request via the
browser. The browser becomes the client of the request.

client side JavaScript: those additions made to version 4 of
HTML which allow us to manipulate the browser.

code: a term used for JavaScript instructions. In general,
the terms code, scnpts and programs can be used
interchangeably to refer to a block or group of JavaScr'pt
instructions.

compound statement: many features execute single
statements. But when more than one statement needs to
be executed, the 'single' statement has tc be converted into
a compound statement by enclosing all the statements in
curly brackets. The many effectively become one.

declaration: refers to the instructions inside a functior's
curly brackets. It declares what must be done when the

291

function is called (invoked) from some other point in the
Web page. It is sometimes known as the definition since it
defines what the function will do. It must include the
keyword function, the function name followed by round
brackets.

distance learning: in this context, it means presenting
teaching material to users who are not sitting in a
classroom but who have access to the WWW in order to
learn. A web page could interact with the user via
JavaScript.

dummy arguments: an argument which is used within a
function but which has no identity until the function is

invoked by a function call. That call will have a real
argument which is passed over to the function and used in
place of the dummy argument.

dynamic HTML: those features of HTML version 4+ which
allow the content of a Web page to be changed. In this text
we use JavaScript to alter a page's cortent. This is in

contrast to static Web pages which contain conventional
HTML where the content cannot be altered once they have
been loaded.

event handlers: HTML attributes, such as onClick or
onChange, with associated JavaScript code as their values.
The code is executed when a user causes an event to
happen.

events: things which users may do, such as move a mouse
over a hypertext link, click on a button, change text in a text
box. See Chapter 7 for more details.

flag: a common technique in programming to discover
whether something has happened or not (such as some
data being invalid) is to give a value to a variable. This use
of a variable, often called a flag variable, can be tested to
see which state it is in and react accordingly. Many
programmers use the numeric values 1 and zero, but the
Boolean values true or false may also be used.

292

focus(): a method which causes a text box or textarea box
to be given focus. It is the same as if the user had clicked
into the text or textarea box.

function: a function is a way of naming a section of
JavaScript code which you wish to execute at your leisure.
It includes the keyword function, a name and round
brackets, plus the code to be executed in curly brackets.

identifier: another term meaning a variable.

interCapping: the use of Capital letters within a word.

invoke: a programming term used when we want to execute
a function. The function name and the function call operator
must be used: oncl ick = mmyfunct ion() "

ISP: Internet Service Provider

JavaScript enabled: choose this option in your browser so
that it will be able to execute any JavaScript code within
SCRIPT tags.

link: JavaScript refers to both the <A> tag and the <AREA>
tag as links, since both can be used to load other web
documents. Both tags can use the onMouseOver/Out event
handlers.

method: in object based languages, a method is a function,
a short program, which does something to an object. Many
objects have one or more methods. document is an object
which has the methods wr i t e () and writeln () .

object: In object orientated languages, programmers work
with basic objects. Objects are manipulated by using their
methods and properties. For example, the document object
can have its background colour property changed by giving
a colour value to the bgColor property.

onLoad: an event handler contained within the BODY or the
IMG tags. When the page (or image) has been completely

293

loaded, the event handler is automatically invoked and its
JavaScript code executed.

onSubmit: an event handler within a FORM tag. Once the
submit button is clicked, the JavaScript code associated
with the handler is executed. Typically, it is used to validate
form data. But it must have a return statement which
evaluates to false to prevent the form from being submitted.
Any other value will cause the form to be submitted, even
an undefined value.

operators: a programming term for the various symbols
used within a program.

parentheses: brackets surrounding part of a calculation
which you want to be computed before any other part.

pre -load: loading, for example, images before the Web
page is fully displayed. It is sometimes convenient to load
images prior to animating them.

property: most objects have properties which can change
the object in some way.

quoted string: a string of characters enclosed in double or
single quotes. The character string may consist of simple
text and/or HTML tags.

reserved words: those words which have special meaning
in JavaScript. Many have a fixed case and if the case is not
preserved, they will not be recognised by JavaScript.
Examples are: i t , else, for , alert () (all lowercase)
and Math with M in uppercase. Such words should never
be used as variable names (identifiers).

return: all functions return a value when they have
completed their work. It takes the Boolean value true or
false or the undefined value. It is also possible for other
values to be returned, in fact, any value.

scope: refers to where a variable is recognised. Local
variables are recognised only within the function in which

294

they were created. Global variables can be recognised by
any other function witl-ir the same Web page.

script: a term used for a block of JavaScript code.

server -side: the serve- which holds the web pages and any
validating programs req jested by a user's browser.

statement: each piece of programming code is known as a
statement or, indeed, an instruction. It is akin to a complete
English sentence cr command. In JavaScript, each
statement can end with a semi -colon.

submit): a method which submits a form. It requires the
name of the form as its object. It fails without warnirg if
mailto: news: or snews. is in FORM's ACTION attribute. This
is for security reasons.

syntax: the rules or syntax for constructing JavaScript code.
Some examples are: including a full -stop between an object
and its method; the correct use of case: and the correct use
of quotes.

transparent GIF: A GIF image can be made transparent so
that the background shows through any irregular bcrder
rather than being boxed into a border.

undefined: a special value which is given to any variab.e or
object or function call which has not been explicitly defined
and assigned some other value.

UTC: Universal Coordinated Time

variable: a programming term which refers to where a
programmer has stored a piece of data in the computer's
memory for later use. Variables can be passed as
arguments to functions.

295

Bibliography & Webliography
A full reference text of .he JavaScript language would run
into more pages than this text comprises. Here are some
references which do provide such detail. They are not
meant to explain their use in depth but are meant more for
the experienced JavaScript programmers, which you
should be by now, who wish to obtain complete information
about the various features of the language.

JavaScript the Definitive Guide. 3rd edition.
Author: David Flanagan Published by: O'Reilly.
Approximate price: £30.00

There are other texts around which you can explore at
various bookshops.

Here are a few Web references which a -e active at the time
of writing.

JavaScript References:
hLLp://www.ozemail.com.au/-phoenixl/html/

http://directory.netscape.com/Computers/
Programming/Languages/JavaScript/References

Free 'cut & paste' scripts & e-mail group
http://javascript.Internet.com/

Hot tips from the Doc
htrp://www.webroference.com/js/

For details about the Internet & the WWW and how pages
are sent in packets, try:
The Internet and the World Wide Web explained.
Author: John Shelley.
Published by: Bernard Babani Books.
Cost: £5.95

For details about Charles Babbage, try:
http://www-groups.dcs.st-and.ac.uk/
-history/Mathematicians/Babbage.html

297

Index
Note: f stands for and pages following

&& operator 187
<AREA> tag 82
12 -hour clock 134
alert() 25f, 39, 58
anchor tag 82
animating images 191f
argument 12, 17, 45, 55f, 173
arithmetic 67f, 71f
arithmetic operators 77, 107, 215
array object 196f
arrays 192, 194f
ASCII 256
assignment 30f, 115, 213
bgColor 28f, 60, 221
block 112, 118
Boolean value 94, 105, 159
braces 42
break 207
built-in functions 48
cache memory 34, 194
case 22, 106, 175
CG I 244
clause 118
clearTimeout() 191. 197, 201
client -side 3, 4, 59, 147. 219, 224
close() 96
code 20
comments 43, 70
comparison operators 115, 172, 215
compound statement 113, 135
concatenate operator 32, 47, 136, 197
condition 112, 115, 205, 213

299

conditional operator 209
confirm() 35, 46f, 58
continue 208
cookie attributes 245
cookie limitations 258
cookies 243f
core JavaScript 3
creating windows 89f
curly brackets 42
data 104f
Date object 130, 143
Date() 59, 129
Date.parse() 141f
decision makin 110f
declaration 42
decrement operator 117, 211
distance learning 73, 98
dithering 240f
do .. while loop 207
document.cookie 245f
document.object 11, 30
domain 245
dummy arguments 68f
ECMA 5f
else if 209
empty statement 45, 214
empty string 150
escape() 256
escape sequences 102
eval() 62f, 72f
event 28, 216
event handler 28, 167, 216
expires 245f, 248
expressions 108, 172, 197
false 159
flag 163
focus() 150, 222
for 115, 197, 199, 205

300

form validation 147f
forms 60f
function call operator 42
functions 12, 39f
Geek bird 80f
getDateO 129
getDay() 129
getFullYear() 144f
getHours() 129
getMinutes() 129
getMonth() 129
getSeconds() 129
getTime() 129, 247
getYear() 129
gif 87, 233, 235f
global 107
GMT 144
history object 229
hot -spots 82
identifiers 105, 118
if..else 112f
image array 194f
image object 193f
images 79f
increment operator 117, 197, 211
index numbers 196f
index010 173f, 178, 249
infinite loop 182, 206
instance 129
integer number 104, 212
interCapping 106
interlacing 238
invocation 42
isNANO 127
ISO 5
ISP 145
Java 2
JavaScript enabled 13

301

JavaScript operators 215
JavaScript security 259f
JavaScript statements 215
jpeg 87, 233f
JScript 1

language attribute 10

lastModified 255
length property 176f
link 82, 216
literals 109
LiveScript 2

local 107
location object 230
logical operators 172, 215
lossless - lossy 236f
loop statement 205
LZW technique 236
mailto: 164
Math object 57f
Math.floor() 146, 227, 281
Math.pow() 124f, 126
Math.round 68f, 72, 125
method 20, 48, 58, 219f
modulo operator 213
multiple assignments 213
NAME 60
NaN 127, 278
navigator object 225, 230
NEGATIVE INFINITY 127
new Image() 193
new operator 129f, 143, 197
new String() 173
null 93, 181
numbers 1041

object -oriented languages 6, 62, 219
objects 11, 21, 58, 219f
onAbort 217
onChange 149f

302

onClick 25f, 79, 89
onFocus 180f, 216
onLoad 151f, 167, 186
onMouseOut 82f, 96f
onMouseOver 82f, 96f
onReset 217
onSubmit 156f, 160, 171
OOP 6, 62
operators 107f
output HTML tags 17
path 245
PNG 235
pocket calculator 71

POSITIVE INFINITY 127
postfix 117, 211
prefix 117, 211
pre -loading 1931, 195
programming 103f
progressive JPEG 237
prompt box 35, 44, 56f
properties 30, 58, 219f
quoted string 105
real number 104. 212
repetition 115f
reserved words 106
return 128, 159f
rules of arithmetic 70f
scope of variables 107
SCRIPT tags 9
self .close() 96
server -side 3, 4, 147, 219
setTime() 141f. 248
setTimeout() 191, 197
source code 18
sqrt() 57
src property 81, 192
string 107, 177f
string constant 20

303

String() 59, 173f
submit button 153
submit() 153f, 160
substring() 250
swapping images 82
switch 210f
syntax 19, 21, 33, 104
this operator 171, 182
TIFF 234
toGMTString() 248, 254
toLowerCase() 178
toUpperCase() 178
transparent gif 87, 241
true 159, 206
undefined 44, 56, 107, 159
unescape() 257
user defined functions 48
UTC 145
var 56, 107
variable 36, 45f, 50, 105f
versions of JavaScript 5
while loop 205f
window features 93
window object 27, 59, 224
window.close() 96
window.open() 89f, 93
write() 15, 17f, 95
writeln() 12f, 17f

304

Notes

305

Babani Computer Books

Fun Web pages with JavaScript
The appeal and effectiveness of a Web site can be dramatically
improved by the use of JavaScript, as can its ability to interact
with visitors to the site.

JavaScript, for example, could allow a Web site to iiclude such
devices as follows:

 Pop-up boxes to provide crucial information wt -en a visitor
clicks on a button.

 Cookies, which can help you to remember when someone has
visited your site before, and also to know their personal details.

 Animation of images.
 The power to calculate the cost of items ordered, and then to

display the result, the VAT and the discount, etc.

 The ability to change one image for another wher a mouse is
moved over it.

 Validation of an order before the information is sent down the
line to a Web -order company.

In fact the possible uses and applications of JavaScript to Web
site design are only limited by the imagination and ability of
the designer.

Through a series of practical examples, JavaScript is intro-
duced and explained to the reader. By progressing through the
exercises a knowledge and understanding of JavaScript is built
up so that by the end, the reader will have become competent
in its use.

"4 Beginners Intermediate KA Advanced

BP 483 ISBN 0-85934-483-5

