IJ-E_-

Babani Comp-ut Books

- Fun Web pages
- with JavaScript

| g

(

Fun Web pages
with /

JavaScript

)

Other Titles of Interest

BP403 The Internet and the World Wide Web
explained

BP404 How to create pages for the Web using
HTML

BP415 Using Netscape on the Internet

BP419 Using Microsoft Explorer on the Internet

BP420 E-Mail on the Internet

BP424 Microsoft Exchange for business and
home use

BP425 Microsoft Internet Explorer Assistant

BP427 Netscape Internet Navigator Assistant

BP433 Your Own Web Site on the Internet

BP435 Programming in C++

BP436 Programming in Java

BP441 Creating Web Pages Using Microsoft
Office 97

BP453 How to search the World Wide Web

efficiently

i Fun Web pages
with
JavaScript

by

John Shelley

BERNARD BABANI (publishing) LTD
THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON W6 7NF
ENGLAND

PLEASE NOTE

Although every care has been taken with the production of
this book to ensure that any projects, designs,
modifications and/or programs, etc., contained herewith,
operate in a correct and safe manner and also that any
components specified are normally available in Great
Britain, the Publishers and Author(s) do not accept
responsibility in any way for the failure (including fault in
design) of any project, design, modification or program to
work correctly or to cause damage to any equipment that
it may be connected to or used in conjunction with, or in
respect of any other damage or injury that may be so
caused, nor do the Publishers accept responsibility in any
way for the failure to obtain specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

© 2000 BERNARD BABANI (publishing) LTD

First Published - March 2000

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 0 85934 483 5
Cover Design by Gregor Arthur

Printed and Bound in Great Britain by The Guemnsey Press

Preface

It is a truism to say that one learns by one’s own
mistakes. During some thirty years of having to learn,
use and teach programming to thousands of students,
this is something with which | wholeheartedly agree. Of
course, it applies to many walks of life and not just
computing. Just think of how you managed to pass
your driving test, capture that girl or boy of your
dreams, cook a ‘perfect’ Yorkshire pudding?

As an author of a programming text, just what does one
include? Well, | am reminded of what one of my
College lecturers once said. One day he bounced into
the lecture hall claiming to know a secret.

“A lecturer passes through three stages. During the
first he teaches everything he knows about a
subject. During the second he teaches all that he did
not know during his first stage. Finally, and this is
when he is of greatest value to his students, he
teaches what they need to know.”

The lecturer was Charles Davis who made quite a
splash in the newspapers back in December, 1966,
especially in the Sunday Telegraph. He taught
Theology.

| am none too sure that one should say that about
Theology, but it is certainly apposite for Computing.

| have aspired to this approach, as best | can, by
working from practical examples. There are some 39
exercises. Each one is followed by an examination and
discussion about the JavaScript used. As one
progresses through the examples, one should build up
a practical, working knowledge of how to use the
language.

—

Finally, there are two qualities one needs to have in
order to master the skill or art or craft (take your pick)
of programming. One is “attention to detail” - dotting
the i's and crossing the t's. You will very quickly know
what this means once you start to write your own
programs.

The second is logical thinking. Getting things done at
the right time and in the right order. Both are
maddeningly difficult to achieve. But persevere
because on your journey, Lady Programming will
bestow upon you a rare gift, one which is sadly lacking
in our times - humility.

Only those who truly know themselves can be humble -
meek. After all, are they not the ones to inherit the
earth rather than the wind?

Well that is enough of that. Now let’s get dcwn to some
other business.

| would like to thank Mari-Elena Shelley for the helpful
comments she made whilst this text was in progress. |
would also like to thank the originators of JavaScript in
all its versions for their imaginative construction of the
syntax. They certainly know how to present a

challenge. S

There are various Tests set at the end of most
chapters. | would encourage you to try them since they
are designed to emphasise certain material. There are
Answers to the Tests at the back of the book which
occasionally provide some additional points not raised
in the Chapters.

vi

About the Author

John Shelley took his postgraduate Diploma and, later,
his Masters degree in Computing at Imperial College,
London, where he has worked as a lecturer in the Centre
for Computing Services for over thirty years, providing
training in programming, operating systems, Web design,
HTML and a wide range of application packages to both
students and staff.

He has been Chief Examiner in Computer Studies since
1982 for the Oxford Local Delegacy for their GCE O-level
examinations, Senior Examiner for the SEG GCSE
Computer Studies (now both defunct) and a Principal
Examiner for the Cambridge Board (UCLES).

He has written over fourteen other books on computing.
This is his latest text which he hopes will prove useful to
those who wish to learmn JavaScript.

vii

Trademarks

Microsoft, MS-DOS, Internet Assistant, Intemnet Explorer are
registered trademarks of Microsoft Corporation. PhotoShop is the
trademark of Adobe. AskJeeves is the service mark of AskJeeves,
Inc. Java is a trademark of Sun Microsystems.

All other trademarks are the registered and legally protected
trademarks of the companies who make the products. There is no
intent to use the trademarks generically and readers should
investigate ownership of a trademark before using it for any
purpose.

| also acknowledge the following where Netscape pages are
shown:

“Copyright 1998 Netscape Communications Corp. Used with
permission. All Rights Reserved. This electronic file or page may
not be reprinted or copied without the express written permission of
Netscape.”

“Netscape Communications Corporation has not authorized,
sponsored, or endorsed, or approved this publication and is not
responsible for its content. Netscape and the Netscape
Communications Corporate Logos, are trademarks and trade
names of Netscape Communications Corporation. All other product
names and/or logos are trademarks of their respective owners.”

Similar acknowiedgements apply to all other screen shots.

© The antwork of the Great Crested Geek bird is the copyright of
the Author but | am open to offers.

viii

Contents

Introduction...............cu.ee. 1
What is JavaScript?........ccocvoeieniirinveeeciene e 1
Why Learn JavaScriptcccccvivvvivininiininncinenninen. 1
JavaScriptis not Java.........cccoeveviieiiiineeecce e 2
What is covered in this text..........ccocecvrniiiieircinniennee. 3
Client-side v. Server-side............cccocccreiiccncrccnrinniinnnen, 4
Versions of JavaScriptccceivveiivnniiiinnineninnns 5
Object-Orientated Programming (OOP)..........ccccecueuee 6
1: What does JavaScript look like?c.cccvvvicreisnrenns 9
Writing out Messages......c.c.cccvvveivinnnenniiniinnnnennneecnnes 9
Should semi-colons be used or not?.........cccccevueeneene 14
Exercises 1 -3

2: Forms and Pop-Up Boxesccceeecenneneee 25
User Interaction............ccccccccrcvicrcccniannnieniniennnneninne 25
USING ONCHICK.....cocceieeeeerrneiniiiiincnntecneeeceesenenns 26
Concatenate...........ccceeveeeeeeerienneceretreteereeseeessnesseeeas 32
SOME HOMTOTS.....c.occie e creerre e saee e cvesesaee e s e eaenee 33
Other Pop-Up bOXEeSc..ccovvrivimnniiiiiiiiniiiiniennene 35
Exercises 4 - 6

3: Functions 39
Prompt DOX....ccoomrieeriniiiienttecs s, 44
Capturing Data from the Prompt box..............cccc.c..... 45
Confirm DOX.....ccouveeeeeicienierreeeneenecrcerecneesesescsssosseens 47
Built-in Functions or Methods?........cccccccicvcenincennnnnnn. 48
Rules for creating Variable Namesccccooueeueee. 50
Exercises 7 - 9

4: Arguments in Functions 55
The Math object & Math.sqri()ccocccrcvrevivcriranneene 57
Objects - Methods - Properties..........c.cccocveveniirineranne 58
EVAN() eerreieireeree it eeeneeseee e ssst et se s se e a e esevasesan 62

Exercises 10 - 11

5: Arithmetic in JavaScript ..o, 67

Math.round()cooeereieriennirceeceeeneeeeeeee e 67
Dummy Arguments..........cccoceemeeniecennienenneesnreceneene 68
Arithmetic & Computers...........ccceeervererenenieenreennnnne. 71
The eval() method again........c.cccccevveverenieicvreeenecnen, 72
Exercises 12 - 13

6: Using JavaScript with Imagescccccoveiiiveiunene. 79
Swapping IMagesccccevereernirieeitrceneeces e seens 82
onMouseOver & onMouseOut..............cceceeveereeennnen. 82
Exercises 14 - 16

7: Creating dynamic Web pagescccceeeverevecrnenncens 89
WINAOW.OPEN().....evveeerrenierieesereecee e ecreeeene e e eneas 90, 93
Summary so far.......c.ccccovcviereeiiinieeece e, 101
Escape SeqQUENCESccceeevvcererceeveeeereeee et 102

Exercises 17 - 19

8: Programming with JavaScriptccccceevmecrcnnnnenns 103
Programming features...........ccccoevceeveriencniencneenneen. 104
1.Data ... 104
1.1 Data TYPES.....ccoeeeeierereerieeecee et ee e eveernne 104
1.2 Variables - Storing Dataccccoecevvveeciecnnennen. 105
1.3 Operators - Working with Data......................... 107
1.4 EXPressionscccocveeeveeeveerceeeneesneensveeceenanens 108
2. Input & Output of Data..........cccoeeeeveeevercrecrrennnn. 109
3. Making DeCiSions..........cccccereveeerereensvereneeneesnennne 110
if - else statement............ccocooveeeiicciivennninnenceene 110
4. Repetition........cc.coeeeiivenriiercereeceee e e s 115
Increment & Decrement operatorsccccceeeeen. 117
Exercise 20
9: Calculator Examplecccccceeinrensseecscneenesnesssnnecens 123
Math.POW() ..coeeercireeiere ettt 126
NEGATIVE_INFINITY & POSITIVE_INFINITY 127
ISNAN() .ottt 127
The return statementcccceevervencieenienienceene 128

Exercise 21

10: Working with Time 129
The Date 0bject.........ccvveviiivercrneicerreeeererceernenee 129
Methods of the Date object..........c.cccccccreerrcrerrecnnen. 129
SEITIME() ceeeie e e er e e e s eie e 139, 141
Date.parse()c.ceeeverreercnrecrreraeereerrenrerseesserenns 139, 141
Exercises 22 - 25

11: Form Validationccccccccrviiiinnnrionnane 147
onChange event handlercccocoevvveinerncnennee 149
The focus() method........cccvvvrrieiireener e 150
The onLoad event handler..........ccccooccveveiorincnnenenee 151
The submit() method...........cccoveieenrinin e 153
The onSubmit event handlercccceevrnniiccncnanen. 156
The return statement in detail..........c.ccovcccennnvninnans 159
Difference between submit() & onSubmit................. 160
Summary of Events & Methods...........cccocccenvivvnenee 167
Exercises 26 - 30

12: Further Form Validation techniques 169
this OPerator........cccooviiriiiitire et 171
indexOf() methodcccco i 173
The String() ObjJeCtc.oiiiiiiiiiieciiicrce e 173
The length property........c.cccoceivinrncnin e, 176
The onFocus event handler............cccccooiiciicininnnnn. 181
Exercises 31 - 35

13: Animating Imagesc.ccecvverrvvmnricceccsseeresnnnnes 191
The Image object ... 192
Pre-10ading images........cccoeeeiirnnee e 193
ATTAYSieieeiiee i cecriieeiee e s s aaesss e aaennreesseresnesssssnnnnnes 194
setTimeout() & clearTimeout().........c..c.ccevuerecen. 197, 201
Exercise 36

14: Further programming statements.............cccceuee. 205
Loop statementscccceeeeiievieinnvnee e scereeen e 205
while statement...........cccooovrn i 205
AO-WHIlB.....c et e e e e e meeee e 207
break statementc..coooveiiinirnrnen e e 207
continue statementcccccercivvren s ereeee e 208
BISE e e s e e 209

The conditional operator............cccecceeevieenieeneeneennen. 209

The switch statement.............ccccoeeveeviiviivceieeeee. 210
A few really weird things...........ccccccceeveccnnnnnnrennnnnn. 211
The let's do nothing statementc.ooceneeneee. 214
Summary of JavaScript statements............cccceeeeene. 215
The onAbort event handler............ccooeveveieeiennnnneen. 217
The onReset event handlercccooveceecccneicnnn, 217
15: Objects and their properties & methods 219
What are objects?........ccccmvririrrieeecceeceee e 220
Eventhandlers........c.ccccoeevvirivomncn e 223
Objects in Client-side JavaScript.........ccccceecveeennncnn. 224
The window Objectccceeeiveeieeieeicecee e 224
Summary of Objects-Methods-Properties................. 226
The history Objectcccoevevveeiieceecrnreeeieeeee 229
The location Object...........ccccevveeiieneniiriieeiecee 230
The navigator Objectcccceevireieinceeesireieeeeneen. 230
16: GIF - JPEG - TIFF Imagesccceevnrrennnnrssnscsanens 233
Speed v. Size of a Web Image File......................... 233
Scanning iMagesccceceeeiieeieecreeieecieeee e 234
TIFF, JPEG & GIF image formats...........ccccccve e, 234
PNG ettt 236
LZW - GIF’'s compression technique........................ 236
JPEG COMPIession...........ccvvveeevvimeeeeseveesiiseeeeenennns 237
GIF V.JPEG ...ttt 237
Interlacing with GIF filesc.ccccoeveervrevrceeeenen. 238
DIthering........cooveeieeieccececce e 240
TranSParenCyccoeeecereeeeseercnnenienricrierrnersvesenns 241
17: COOKIESoervenriisnniossnnisssnnssssnnissnssssssssssssssssssssanns 243
Creating and retrieving cookies.............ccccceverveennnn. 243
Cookie attributes............ccceeveemiveniieseeicecieeeeeee, 245
substring() method............cccvveveiveeceeeee e 250
lastModified propertyccevvererveerceeecieeecieeee 255
escape() & unesCape() -..cccccvvvvrcerrrririreeee e e e 256
Cookie limitationcccevveeveereeniiensiecernccrenn e 258
JavaScript Securityccvvveeiiveenieneinireeie e 259
Exercises 37- 39

Xii

18: Answers to Tests 261

Toest 1:-Test 14.......criiniitnececneeenenes 261
GIOSSANY......c.ceeiiverenerrrerrnmecrecsssnnrisssssncsessssaseernssssenne 291
Bibliography & Webliographyccecveeeeiirnneen. 297
INA@Xcoovviinrrinnrrrriierstesneisstessreseansssnrsssnsssanssanses 299

Xiii

Xiv

Introduction

What is JavaScript?

JavaScript was developed by Netscape as a simple
programming language to be used for enhancing Web
pages. It was originally called LiveScript, but due to the
growing popularity of the Java language, it was called
JavaScript on its release and was included in Netscape
Navigator 2.0. Subsequent releases of Navigator provided
improved and extended versions of JavaScript. JavaScript
programs can run on all major browsers. In this text, all
programs have been tested on both Netscape and Internet
Explorer versions 4.

Microsoft brought out their own implementatior of
JavaScript, officially known as JScript. Fortunately, both are
more or less compatible. So all programs in this text will run
on either of the two major browsers.

Why Learn JavaScript?

A plain Web page using just HTML tags will be displayed by
a browser in exactly the same way each time that page is
loaded. It cannot change. But by adding JavaScript to that
Web page, it is possible to make changes to the page.
Suppose we have a conventional Web page which contains
an tag. That image will be displayed in exactly the
same way each time the page is loaded. But with
JavaScript, we could change the image when a user
passes a mouse over the image and change it back to the
original when a user moves the mouse to some other part
of the page. That is, in part, what is meant by enhancing
Web pages.

Here are some of the other things JavaScript programs
allow us to do:

= you can create pop-up boxes to provide crucial
information to a user

* via a cookie, inform a user that the page has changed
since it was last viewed

= create simple animation

* invite the user to choose the colour for the Web page
background

* compute the cost of items being ordered by a user and
then display the resuit

= determine the age of a user provided he/she enters a
date of birth

* include the current date and time each time the page is
loaded

= display different content according to which browser is
being used

= change the colour of image buttons

= open new document pages and control their size and
content

* interact with users by getting them to click various
FORM buttons

= validate the entry of data typed into FORMs before
sending the information back to the server

The following is more technical. If you wish, you can
move on to the next Chapter to see what JavaScript
looks like and return to the following at a later stage.

JavaScript is not Java

Many people confuse JavaScript with Java but they are
different. Although they are both related, their connection is
somewhat frail. Java is the product of Sun Microsystems,
whereas JavaScript is the product of Netscape. In fact, as
mentioned above, it was not even called JavaScript to
begin with but LiveScript.

Java is a general purpose programming language in the
sense that programs can be written to perform almost any
task that can be programmed. It was originally used to write
programs to control washing machines and the like. But
Java cannot be used to control Web pages.

Although JavaScript can also be used as a general purpose
language, one of its main attractions is that it can work
directly with Web pages using the HTML <SCRIPT> tags,
something Java cannot do. In this way, JavaScript can be
placed in our Web pages, whereas Java cannot.

Web browsers, such as Netscape and Intemet Explorer
(IE), recognise JavaScript and can interpret what has to be
done, but they cannot recognise Java.

What is Covered in this text
There are three ways of using JavaScript:

= purely as a programming language
= as a client-side programming language
= as a server-side programming language

Not many people would use JavaScript purely as a
programming language. They would use one of the
standard languages such as Java, C or C++. We shall look
at the programming aspects of JavaScript, but it is not the
main purpose of this text.

So that leaves client-side versus server-side JavaScript.
The JavaScript language has been given some additions
which enable it to manipulate the browser, for example, to
swap one image or another or to look at and validate
something a user has typed into a text box. This is called
client-side JavaScript where client refers to the browser.

Netscape has also extended JavaScript for working with
Web servers, those computers which store Web pages at
given sites and which can pass them over the Internet to
other servers requesting copies. These extensions are
referred to as server-side JavaScript and are not the same
as client-side JavaScript.

To work with server-side JavaScript, one needs a
knowledge of not only Java but also of the server being
used. This is beyond the scope of this or, indeed, of many
texts since the servers and the systems they run on are

3

frequently far too server dependent. This aspect of
JavaScript is really for systems programmers. The problem
gets worse because Netscape and Microsoft have different
techniques for writing server-side programs.

So, in this book, we shall be looking at the programming
and the client-side features of JavaScript. We begin by
assuming absolutely no knowledge of JavaScript. But by
the end of the book, you will have leamnt sufficient to enable
you to become competent Web designers. We shall work
from examples of what can be done, look at the program
instructions which generated the example and explain how
the program works. Gradually, we shall build up a working
knowledge of JavaScript.

Client-side v. Server-side

Client-side
Browser - Netscape or internet Explorer
1. Request 4 3. Form filled 4 5. Errors
for Web page in with errors. corrected
and re-
submitted,
etc ...
2. Web 4. User
page with informed
Form of errors.
returned.
\ 4 v \ 4

Server-side: WWW server

The client is the browser program resident on our home
and office PCs. Typically, a user wanting a Web page types
in the address in the browser's location/address box.

4

The browser now requests, over the Intemet, a copy of the
desired page from the site holding the page - step 1 above.
This site now acts as a service provider (a server) and will
submit the page to the client end - step 2. Assume this
page has a form which the user has to fill in.

Having filled in the form, and let us suppose it contains
errors, the browser has to send it back to the server - step
3. The server now has to validate the form’s data and if
errors are found, inform the client (browser) - step 4. The
user reads the error messages, fills in the form again and
re-submits the form - step 5. The server has to validate
again; etc.,efc.

It takes time for the client to send forms to the server, and
for the server to check and return error messages.
However, if the validation of a form can take place at the
client-side, it is clear that the whole process will be faster.
There should be a need for only one submission, namely,
once the form is found to be correct.

Form validation at the client end is one of the main
attractions of JavaScript. JavaScript can be processed by
the browser. There is no need for the constant to-ing and
fro-ing between client and server. It involves only two trips
over the Internet rather than at least five in the above
scenario, reducing the amount of Internet use. With the
increasing use of the WWW, it makes sense to rely on
JavaScript for client-side processing of data.

Versions of JavaScript

JavaScript is evolving all the time. At the time of writing, the
latest version is JavaScript 1.2 and is supported by the two
main browsers. Although version 1.3 is available, it is not
fully supported by ECMA-262. What is ECMA-2627

JavaScript has been standardised by the European
Computer Manufacturers Association (ECMA) and is set to
be standardised by the International Standards
Organisation (ISO). The relevant standards are ECMA-262

5

and in due course 1ISO-10262. These standards define the
language officially known as ECMAScript. It favours neither
Netscape’s JavaScript nor Microsoft's JScript.

This is good news, since both Netscape and Microsoft have
sufficient tweaks (extensions) in their separate versions to
cause problems for the likes of us. All we want to do is to
write standard JavaScript which will perform identically on
any browser. At the time of writing, JavaScript 1.3, as
developed by Netscape, is not yet fully ECMA-262
compliant.

So, in this book we look at JavaScript 1.2 which works for
Netscape Communicator version 3+ and Internet Explorer
version 4+. We do not enter into discussions about what is
JavaScript 1.0 or 1.1 since by the time you start writing your
JavaScript, it will be safe to assume that your readers will
have one or the other of the later versions of the main
browsers.

Object-Oriented Programming (OOP)

Amongst the JavaScript community, there is a division of
opinion as to whether JavaScript is an object-oriented or an
object-based language. Many regard it as the latter, others
claim it has object oriented capabilities. But we shall not
become embroiled in the argument, at least not until we
have the chance to see what objects are all about (see
Chapter 15).

OOP languages, such as C++ and Java, are the latest rage,
designed to make the construction of large programs
easier. But even this is not agreed on by all programmers.
So, if the experts cannot agree, why should we try at this
early stage? Let us keep an open mind. The main point is
that JavaScript programs work with objects and by the end
of the book, you will know all there is to know about OOP.

It may be encouraging to point out that people who have
never programmed before often find OOP languages easier

to understand than the more traditional ones such as
Fortran, Cobol or C.

How to Use this Text

In general, each section will begin with an example
illustrating something we may want to do using JavaScript.
The JavaScript code, that is the program instructions, is
then listed and the code explained so that you can
understand the varicus features used. You may wish to
experiment by making slight alterations to the original code
to suit your own requirements. As we progress, we shall
gradually build up a working knowledge of JavaScript.

Unhappily, a complete JavaScript reference is beyond the
scope of this text. As an example, one of the references
given in the Bibliography, devotes some 300 pages alone,
out of 800, to an alphabetical listing of the features of
JavaScript. It contains little explanation and few examples.
What we are attempting in this text, is to provide a fairly
comprehensive coverage which will supply much of what
many Web page designers use on an everyday basis. It is
after this has been digested that such reference material
will become meaningtul.

When you run your own JavaScript code, you should run it
on both Netscape and Interet Explorer. You may become
frustrated, as | and many others before you have, in that it
works fine on one browser, but not on the other. | found that
my version of Netscape (4.5) gave no indication as to why
something did not work. It simply failed to do what | was
hoping it would do. However, Internet Explorer popped up a
little error box, indicating the line number and some vague
error message as to why it failed. At least that was
something. You may wish to use IE first and once your
JavaScript is correct, run it on Netscape and keep your
fingers crossed.

Jargon

client-side: the client is the browser being used by a user on
his/her personal computer - and is referred to as the client-
side

code: a term used for JavaScript program instructions
ECMA: European Computer Manufacturers Associaiion
ISO: International Standards Organisation

Java: an OOP language not to be confused with JavaScript

JScript: Microsoft's implementation of JavaScript and
compatible with Netscape’s version

OORP: object-oriented programming, supposed to make the
writing of large programs easier

server-side: refers to the WWW server, the site holding the
Web pages a user wishes to view. Programs can be written
so that the server can process data which a user has typed
into a form and which has been sent back. For example, to
look in a database held on the server to find details about
the client’s credit worthiness, etc.

1 » What Does JavaScript Look Like?

In this section, we shall look at a simple example, namely,
how to get JavaScript fo write out a few words on a Web
page. This will introduce us to the way JavaScript programs
are written.

Exercise 1: Getting JavaScript to write out a Message.

i Wiite out a simple mes

Using JS to write out a message

This is the first piece of JavaScript I have written.

Simple-Write-EX1.htm

<HEAD>
<TITLE>Write out a simple message.</TITLE>
</HEAD>

<BODY>
<H3>Using JS to write out a message </H3>

<SCRIPT LANGUAGE="JavaScriptl.2">

document .writeln("This is the first piece of
JavaScript I have written.")

</SCRIPT>

<ADDRESS> Simple-Write-EX1.htm </ADDRESS>
</BODY>

Notes:

1. Everything is standard HTML except for the pair of
<SCRIPT> ... </SCRIPT> tags and what they contain. The
first thing to notice is that JavaScript code is enclosed in a
pair of <SCRIPT> tags:

9

<SCRIPT LANGUAGE="JavaScriptl.2">

. our JavaScript code

(frequently called a ‘script’)
</SCRIPT>

This tag can take the LANGUAGE attribute to specify which
version of JavaScript is being used. Note that the attribute
value (JavaScript1.2) is enclosed in double quotes and that
there is no space between the version number and
JavaScript.

You can use the default value of just “JavaScript”, in which
case Navigator 2.0 will infer version 1.0 of JavaScript. Later
versions will infer version 1.1. If you wish to use features
specific to JavaScript version 1.2, then it must be included
as shown above. In this text, we frequently use
LANGUAGE=“Javascript” or omit it altogether.

2. You can have more than one pair of SCRIPT tags and
they can be placed within the <HEAD> or the <BODY> of
the web document. However, the browser will execute the
scripts in the order in which they are placed in the HTML
source code. We shall see the impact of this in later
examples. In the above code, the content between the
HTML <H3> tags will be displayed first, secondly the script
code and finally the <ADDRESS> to show the following:

Using JavaScript to write out a message
This is the first piece of JavaScript | have written.
Simple-Write-EX1.htm

However, if the SCRIPT tags were placed in the HEAD or,
indeed, between the HEAD and the BODY, or even before
the <H3> tag in the BODY, the script message would then
come before the H3 heading!

10

This is the first piece of JavaScript | have written.
Using JavaScript to write out a message
Simple-Write-EX1.htm

It is important to place script code in the correct position
within an HTML document just as we have to do with
tags, <FORM> tags and so on.

3. Let us now look at the actual JavaScript code which
consists of just one instruction:

document .writeln("This is the first piece of
JavaScript I have written.")

JavaScript works with objects. At the heart of object-based
and object-oriented programming languages, such as Java,
Visual Basic, C++ and JavaScript, lie objects. These are
the basic ‘things' programmers work with. Objects have
properties and methods and, if you are like me when | first
began to learn JavaScript, this is where you begin to
wonder if you ought to quit.

At the beginning, | felt | had to understand these terms
before | could continue. But it was only by using them that |
gradually began to appreciate what they meant. So do not
give up yet! As we progress and look at JavaScript in more
detail, these strange terms will become clearer. For the
masochists amongst you, you can have a quick look at
Chapter 15, where these terms are discussed in some
detail. For the moment we shall have to accept the jargon.
So, here it goes.

The word document is one of many JavaScript objects we
can manipulate. It simply refers to the Web page currently
being displayed. We want to do something to the current
web document (the currently displayed page). But what do
we want to do to this page?

11

That is the purpose of the second word ‘writeln’
(pronounced ‘write line’). It is called a method. Most objects
have one or more methods. They specify what we want to
do to an object.

Right now, we want to write a message in the current Web
page. So, we need to refer to the document object and use
its write method. It is really a built-in program (called a
function) which does something to its object, in this case ‘to
write a line of text to the web document’. Note that the
JavaScript syntax requires a period (full stop) between the
objectand its method: object .method

But what do we want to write out? That is what we place
inside the brackets in double quotes. We can now interpret
this line of code as follows:

“In the currently displayed document - Write out the phrase -
‘This is the first piece of JavaScript | have written’.”

The message in double quotes is more formally called an
argument. In this example, the argument is included in the
brackets and surrounded by double quotes. We shall have
more to say about arguments' very shortly in Exercise 3.

Why bother to use a script, why not simply type the text
using standard HTML? We could, but we need to know that
JavaScript can type text on to a web page. This is what is
called dynamic writing as opposed to static writing. The
latter is what happens when using HTML code. The page
will always appear the same each time it is displayed.

But with dynamic writing, one of several messages can be
displayed depending on what action a user will take. For
example, a user can be offered a choice of buttons to click.
Whichever is clicked will result in a specific message being
printed to the screen. However, that comes later.

' An early meaning of the word argument was re-fashion. Thus, the
digit 5 in the following V5 is the argument of the square root and will
be re-fashioned to become: 2.24.

12

.

Make sure that you appreciate that the <SCRIPT> tags form
part of HTML. This notifies the browser that some
JavaScript code is enclosed. The browser has to be
JavaScript enabled, otherwise it will not be able to read the
code inside the <SCRIPT> tags.

When it comes to using JavaScript code (as opposed to
writing HTML) case is significant. The C language (and
| Java and C++) upon which JavaScript is based is case
sensitive, that is why we have to be careful when writing
JavaScript code.

C and the other languages use lowercase for the code and
sometimes a mixture of upper and lower. If you do not
abide by the case, then the script will fail (a term for wilf not
work). If you doubt me, then try it out.

DOCUMENT.writeln(“a message”)

IE would give an error message saying that DOCUMENT is
not defined, meaning that it would understand document
but not DOCUMENT. So, be warned!

Exercise 2: Writing out two messages

We shall expand the above exercise to print out two
messages as shown here and then explain how to get each
one on a separate line.

2 EXEIIIEF 2: Two-message oulpul Netsc =|p|=
T -

Using JavaScript to write out two
messages

This is the first line. This is a second line.

Simple-Write-EX2.htm

<HEAD>
<TITLE>Exercise 2: Two-message output</TITLE>
</HEAD>

<BODY>
<H3>Using JavaScript to write out two messages
</H3>

<SCRIPT Language="JavaScript">

document .writeln("This is the first line.");
document .writeln("This is a second line.");
</SCRIPT>

<P>

<ADDRESS>Simple-Write~EX2.htm</ADDRESS>
</BODY>

Notes:

1. Notice the semi-colon after the first and second
‘document. writeln'. This is how one instruction is separated
from another. The semi-colon is used to mark the end of an
instruction, frequently referred to as a statement. (Yes, |
know that new jargon is popping up all the time, but
programming has been around for a very long time and it is
littered with jargon. It is something we will just have to put
up with.)

We should emphasise a policy on the use of semi-colons
right at the start. The original version of JavaScript required
semi-colons, but the popular browsers do not require them
any more. As a result, it is becoming common practice not
to include them provided that each statement goes on to a
new line. If you type more than one statement on a single
line, then you must include semi-colons otherwise the
script may fail for no obvious reason.

Should semi-colons be used or not?

This will depend upon which school you want to go to.
Some experts say ‘do not bother’ - the relaxed school; other
experts say that you should include them because it is good
programming practice - the strict school! You must make up
your own mind. | shall borrow from both schools throughout
this text just to remind you that both exist.

14

2. Notice, too, that the two messages displayed on the Web
page are not separated, they flow on from each other. In
Exercise 3 we shall see how to force them on to separate
lines. (Using JavaScript is not quite the same as using a
word processor.)

3. There is another form of the write method:
document .write("Type out some text");

It is identical in behaviour to writeln, except that the latter
will append a new line affer it has output its message
whereas write()appends a second message to the
previous one. So why were the two messages output by the
writeln() method not put on two lines? | had to ask this at
first until it dawned on me that what writeln () does is to
write the message into the Web page source code. It does
not affect how it is disglayed in the browser window.

To understand this, let us look at the source code which the
Netscape browser will generate for Exercise 2. You can see
this if you use the View>>Page Source command from
within Netscape. Click View, then select Page Source. This
opens a second window with the HTML source code shown
for whatever page is currently being displayed by the
browser. This is what Netscape shows:

<HEAD>
<TITLE>Exercise 2</TITLE></HEAD>

<BODY>

<H3>Using JavaScript to write out two
messages</H3>

This is the first line.

This is a second line.

<P>
<ADDRESS>Simple-Write-EX2.htm </ADDRESS>
</BODY>

Now, substitute write() for the two writeln()
statements. You will see that the messages flow on one
line, as follows, when viewing the page source in Netscape:

15

<BODY>

<H3>Using JavaScript to write out two messages
</H3>

This is the first line. This is a second line.
<P> .. etc.

Notes:

1. You see neither the SCRIPT tags nor the JavaScript code
when viewing the source code because in Netscape both
write() and writeln() write to the Web page source
code.

2. Intemet Explorer also shows the source code (under
View with the single word Source). But IE displays the
source code in the Notepad editor and, consequently,
displays the original source just as you typed it, complete
with <SCRIPT> tags and the JavaScript code.

3. The above is one of the subtle differences between the
way the two main browsers operate and underlines the
need to have both browsers on your machine so that you
can begin to make comparisons. (Do not worry, it will only
get worse! There are some other annoying discrepancies
between the two browsers which we shall see in due
course.)

So, how do we force a browser to put the second line of text
on a separate line? That is what we look at next and it does
not matter whether we use write () orwriteln().

Exercise 3: Forcing Text to appear on Separate Lines

<BODY><CENTER>

Write out two messages on separate
lines

<P>

<SCRIPT>

document .write("This is the first line.
");
document .write("This is a second line.");
</SCRIPT>
<P><ADDRESS>Simple-Write-EX3.htm</ADDRESS>
</CENTER> </BODY>

16

Exeicise 3 - Netscape

Write out two messages on separate lines

This is the first line.
This i1s a second line.

Simple-Write-EX3.htm
R Do sk N 2

How would you get a second line to appear on a separate
line in HTML? You would use either the
 or the <P>
tag, thus: Line one. <P> Line 2.

Well, not only can you get the write() and the writeln()
methods to type out text, but you can also get them to type
out HTML tags. So, if we include a <P> 1ag or a
 after
the first piece of text in the first write() method, it will write
out that tag in the source code and force the argument of
the next write() to appear on a new line. Let us look at the
code for this:

[<SCRIPT Language="JavaScript "> {
document .write("This is the first line.
"

document .write("This is a second line.")
</SCRIPT>]

Notes:

1. The
 tag has been included as part of the
argument. In other words, it must go within the two double
quotes. It is equivalent to the following HTML code:

This is the first line.
 This is the
second line.

and the above is exactly what you would see if you
examined the source code in Netscape.

17

<HEAD>

<TITLE>Exercise 3</TITLE>

</HEAD>

<BODY>

<H3>Write out two messages on separate
lines </H3>

This is the first line.
 This is a second
line.

<P>
<ADDRESS>Simple-Write-EX3.htm</ADDRESS></BODY>

Note the
 tag has been written out as well as the text
argument in the source code.

If we had used writeln() instead, the result would be
exactly the same when displayed by a browser, but the
actual source code in Netscape would look like this:

<BODY>

<H3>Write out two messages on separate
lines </H3>

This is the first line.

This is a second line.

<P>
<ADDRESS>Simple-Write-EX3.htm</ADDRESS></BODY>

The writeln () will create a new line in the source code
after it has written out the first argument, so that the second
writeln () argument will begin on a new line.

So, what have we leamt? We now know that we can
generate pages of HTML code using JavaScript. What is so
marvellous about that, why not merely write the HTML code
in the first place? As we shall see fairly soon, we can give a
user a choice of buttons to click. Depending on which one
is chosen, one of several scripts can be generated, each
with its own unique HTML code.

Warning: Before we finish this chapter, there is one final
point to make.

18

When using either the write() or the writeln() method you
must not press the Enter key in your editor between double
quotes. For example, in this long piece of text:

document .write(“Here is a long piece of text to
type out and it will move on to another line.")

it is tempting to press the Enter key in your editor after the
word ‘to’ on the first line. However, JavaScript would take
Enter to be the end of that statement and in our example,
this would mean that the argument does not end with a
double quote. The syntax would be incorrect. There are two
ways to overcome this. Either, simply keep on typing and let
your editor word wrap, or, and this is the better approach,
use multiple arguments as follows:

document .write(“Here is a long piece of zext to~,

“ type out and it will move”,
“ on to another line.")

See how the write() method takes more than one
argument, with a comma separating one from another? The
three arguments will, of course, not be on separate lines
when displayed in the browser window because we have
not included any HTML tags. We do so below:

document .write(“Here is a long piece of text to-,

“
 type out and it will move on to”,
“
 another line.")

Now, the browser will display the text on three separate
lines.

(Due to the page size of this book, it is not always posible
to use multiple arguments in the examples. You must
assume that word wrap has taken place.)

2. Out of interest, Netscape refused to display anything for
the version which had the Enter key pressed between the
quotes, although it was ‘correct’ when viewed in the source
code.

On the other hand, although Internet Explorer did not
display anything either, it came up with an error message

19

complaining about an “Unterminated string constant” and
gave the line number where it had occurred. (Blank lines
are included in line counts.)

So what is a string constant? The text within double quotes
is called a quoted string, string or string constant. A string
constant is anything enclosed within double quotes.

3. Finally, notice in the following:

document .write(“Here is a long piece of text to”,
* type out and it will move”,
“on to another line.”")

that a space occurs between the opening double quote and
the word type in the second line. If a space had not been
included, the last word of the first quoted string would join
with the first word of the second string, without a gap. This
is what has happened in the third string which has no space
before “on” and would result in “moveon to another
line.” being displayed. So, you need to take spacing into
account when using multiple arguments.

Jargon used in this chapter:

argument: in programming, arguments contain data. In the
examples we have used so far, the arguments contain text-
strings and HTML code which have been written to the Web
page via the write() and writeln() methods. These methods
form part of the client-side JavaScript language and their
arguments are enclosed in round brackets.

code: a term used for JavaScript instructions. In general,
the terms code, scripts and programs can be used
interchangeably to refer to a block or group of JavaScript
instructions.

JavaScript enabled: choose this option in your browser so
that it will be able to execute any JavaScript code within
SCRIPT tags.

method: in object based languages, a method is a function,
a short program, which does something to an object. Most

20

objects have one or more methods. document is an object
which has the methods write () andwriteln() .

objects: we have met one, document, but we shall meet
others later. Objects are the building blocks for the scripts
we wish to create. (It took me some time to become a little
clearer in my own mind about these terms - objects and
methods. Let us not worry too much about them just yet.)

quoted string: a string of characters enclosed in double
quotes. A character string may consist of simple text and/or
HTML tags.

script: a term used for a block of JavaScript code.

statement: each piece of programming code is known as a
statement or, indeed, an instruction. I is akin to a complete
English sentence or command. In JavaScript, each
statement can end with a semi-colon.

syntax: the rules or syntax for constructing JavaScript code.
including a full-stop between an object and its method, the
correct use of case and the correct use of quotes are some
examples of JavaScript syntax.

What you have learmed
We have covered a few of the basics in this first chapter.

JavaScript code is placed within a pair of HTML <SCRIPT>
tags. The positioning of the tags will determine where they
will take effect on the displayed page, just like the
placement of tags.

We can have multiple <SCRIPT> tags and they may be put
in the <HEAD> or <BODY> tags, or even between the two.
But, bearing in mind the previous paragraph, we need to
give careful thought to where we actually place them.

We have seen that JavaScript can write out text to a Web
page and more importantly can write out pure HTML code
upon which the browser will act, just as though we had
written pure HTML in the first place.

21

We can use either the write() or the writeln()
methods. They both have the same effect on the actual
display of the Web page. But in Netscape, their difference
is seen in the source code.

Some methods can take more than one argument. When a
string constant argument is used, however, it must not
contain an Enter code within its double quotes.

Case becomes significant when using JavaScript code,
whereas case is not significant when writing HTML code.
We now have two things to be thinking about as we embed
JavaScript into our Web designs. The HTML itself and the
syntax of JavaScript.

We are becoming aware that browsers display source code
in different ways and sometimes behave differently when
executing the same scripts. This is a constant source of
irritation to all JavaScript programmers. It boils down to the
way in which the browser program has been written. We
meet the same problem with word processors. A Word 97
document cannot be read by a Word 6 version, let alone by
a different word processor such as WordPerfect.

Test 1:
1.1 What are the <SCRIPT> tags used for and where can
they be placed?

1.2 Do the <SCRIPT> tags form part of JavaScript or
HTML?

1.3 Is document an object or method?
1.4 Iswriteln() an object or method?

1.5 What is the main difference between write () and
writeln()?

1.6 Can you have more than one pair of <SCRIPT> tags in
the same HTML document?

22

1.7 What would the following display on a Web page:
document .write(“Hallo there.”,
“My name is Joe.”")

1.8 What is the formal term for what is enclosed within the
round brackets in the above code?

1.9 When would you reed to add:
LANGUAGE=“Javascriptl.2” to the opening <SCRIPT>
tag?

1.10 How are multiple arguments separated?

23

24

2 = Forms & Pop-Up Boxes

In this section we shall see how to use Forms to interact
with our readers. We shall also see how to add more HTML
code via the write() and writein() methods.

User Interaction

A normal HTML Web page is static. Each time it is called up
and displayed by a browser the page will look exactly the
same as it did on any previous occasion.

One of the reasons people use JavaScript is to create
some form of interaction with a user. For example, allowing
the user to buy some of our goods and to display the total
cost; to replace one image for another such as a
photograph of different views of a house we are selling.
One of the main mechanisms for creating user interaction is
via Form buttons. We shall begin with a simple interaction
whereby we invite a user to click a button to reveal an alert
box.

Exercise 4: Using a Form to make an alert box pop-up.

Here is some simple HTML which creates a Form button
with some text on it.

<FORM>
<INPUT TYPE="button"

VALUE="Click this button">
</FORM>

But how do we go about getting the button to display an
alert box when it is clicked? We can do this by adding just
one more attribute to the <INPUT> tag. The onClick
attribute as shown below.

<HEAD>
<TITLE>Exercise 4</TITLE>
< /HEAD>

25

<BODY>
<H3>Using JavaScript to display an alert box</H3>
<FORM>
<INPUT TYPE="button"
VALUE="Click this button"
onClick="alert (’Hallo, you did click the
button’) ">
</FORM>
<P>
<ADDRESS>Simple-Form-EX4 .htm</ADDRESS>
</BODY>

The onClick attribute was originally a Netscape extension
added to the <INPUT> HTML tag. Now, it has become
standard in HTML version 4.0. Here is what happens when
a user does click the Form button.

Using JavaScript to display an alert box

| __Cliekiis buion " | |
i
Simple-Form-EX4.htm .
§

[JavaScnpt Apphcation]

—

Notes:

1. The first point to appreciate is the syntax for the onClick
attribute. This applies to all the other variations we shall
encounter later.

onClick = ".. some JavaScript code .."

26

The HTML attribute onClick is not case sensitive - but it is
conventional to write it as shown with a capital C and the
rest in lowercase. By contrast, the value this attribute takes
is JavaScript code and as such is case sensitive.

onClick = "alert(‘'Hallo, you did click the
button’} "

Therefore, Alert (..)or ALERT(..) would be wrorg.

2. The attribute value of onClick is a piece of JavaScript
code enclosed in double quotes with the equals symbol
between the attribute and its value, just like most other
attribute values in HTML. When the button is clicked, it
causes the value of the onClick attribute to be executed. In
our example, this is a call to the alert() method to display
whatever message is inside the brackets.

3. alert() is a method of the window object which
automatically causes an alert dialogue box to pop up with
whatever message has been typed inside the brackets. But
note how the message is in single quotes. We cannot use a
double quote within a double quote since the second
double quote would finish off the first one.

Since the entire JavaScript code must be contained witnin a
pair of double quotes, the alert() function’s message must
be in single quotes so that these do not interfere with the
main outer double quotes. | hope that makes sense. It is
something which will crop up time and again. Beginners
frequently forget this and wonder why their scripts do not
work. Consequently, we have to type the code as follows:

onClick="alert (‘message for display’)”

4. alert must be in lowercase, otherwise when a user
clicks on the button, nothing will happen. Netscape simply
sits there totally dumb, whereas IE will tell you that an error
has occurred - “Object expected”. Not very helpful but at
least you can concentrate on the spelling and/or case of the
alert() method by looking at the line number given.

27

But why would the mis-spelt Alert be called an object rather
than a method?

To begin with, IE does not recognise your mis-typed Alert()
as a call to the alert() method of the window object. It has
not a clue what it is. More often than not, an error checking
program has to guess at what the programmer intended. A
good guess is object, because it assumes that the Alert()
method should belong to an object. It cannot find one
associated with Alert() and is trying to tell you that it cannot
find it.

5. We now have another piece of jargon to leam. Clicking
on the button is formally known as an event, something
which the user has to do. Other types of events can be:
moving a mouse over a hyperlink; moving a mouse out of
an image map; clicking a submit button; changing the text
in a text field, etc. We shall be looking at these other events
in more detail later.

The onClick attribute is called an event handler. lts value
defines what has to be done when the event occurs.

<INPUT TYPE=button VALUE=“Try me”
onClick = *alert(’You did try me.’)”

*

This attribute is an This value specifies the JavaScript
Event Handler code to execute when the user clicks
the button - the event.

6. Note that our JavaScript code has been written without
any <SCRIPT> tags. We now know two ways of writing
JavaScript code, using <SCRIPT> tags and using FORM
buttons with an event handler attribute such as onClick.

Here is another example of user interaction:

Exercise 5: Getting the User to choose the BGCOLOR

Interaction with your Web page readers is one of the main

attractions of using JavaScript. In this example, we shall

use a <TABLE> to display colours and buttons. The user is
28

invited to click one of the buttons to set the background
(BGCOLOR) to his/her choice of colour.

*- Change backgiound colours of screen - Net Ol x]

Click the button for the BGCOLOR
you would like.

Blue Yellow Green

|
1 | |

BGCOLOR-ExS5.htm

<HEAD>
<TITLE> Change background colours of the screen
</TITLE> </HEAD>

<BODY><FORM>
<TABLE WIDTH=100%>
<CAPTION>Click the button for the BGCOLOR you
would like.</CAPTION>
<TR>
<TD COLSPAN=3> <HR>
<TR ALIGN=center>
<TD>Blue <TD>Yellow <TD> Green
<TR ALIGN=center>
<TD>
<input type="button"
onClick="document .bgColor=’'lightblue’">
<TD>
<input type="button"
onClick="document .bgColor=’1lightyellow’ ">
<TD>
<input type="button"
onClick="document .bgColor='1lightgreen’">
</TR>
</TABLE></FORM>
<ADDRESS> BGCOLOR-Ex5.htm </ADDRESS></BODY>

29

Notes:

1. When one of the buttons is clicked, the relevant
JavaScript code is executed and will change the
background colour of the Web page.

onClick="document .bgColor=’1lightblue’"

The onClick’s value (in double quotes) assigns the bgColor
of the currently displayed document to a ’lightblue’
colour. Again, because the onClick value must be in double
quotes and the syntax requires a quoted string for the
actual colour value, we have to use single quotes for the
latter.

2. We have already seen that the document object can take
two methods, write() and writeln(). But here we are making
use of bgColor. It is not a method so what is it? It is called

a property.

(If you wish, you could now look at Chapter 15 for a
discussion about objects and their methods and
properties. It is not yet essential, but some amongst you
may be curious. If not, just leave it until we have come
across a few more examples. For the time being, just try
to appreciate that objects have methods which can do
something to the object, such as generate an alert box or
write out some text, and that objects also have properties
which affect the appearance of the object.)

3. We could have used the RGB (red, green, blue)
hexadecimal numbers instead of the colour words - thus:
bgColor="DE6633".

4. Do note the case for bgColor. Any other variation would
not work. (I shall stop repeating the importance of case
soon, so please make sure that you keep to the correct
case when writing your own code.)

5. The term assign, in Note 1 above, is another jargon word
and requires some explanation for those new to
programming.

30

In mathematics: x = 4 means the letter x takes on the
value of 4, that is, x equals 4. In programming, although it
looks the same, it means something different, namely that x
is to be replaced by (assigned) the value 4. To be more
precise, we should read it as:

“whatever is on the right-hand side of the assignment operator
(=) is to replace whatever is contained on the left-hand side.”

What is the difference? Well in programming we could write
this: x = x + 1

Mathematically, this is not possible, x cannot be 1 greater
than itself. But this is not mathematics, it is a perfectly valid
programming statement and means that whatever value the
right-hand side ‘x’ cu-rently has, add 1 to it and replace the
left-hand side ‘x’ with the new value.

What use is that? It happens to be one of the commonest
statements in programming as we shall discover when we
come to discuss the programming aspects of JavaScript.

For the moment, we just need to remember that an
assignment statement replaces whatever is on the left with
whatever is on the right. It is best, right from the start, tc get
into the habit of saying: x is to be replaced by 4 (or
whatever) rather than saying x equals 4. But | shall return to
this when we next meet an assignment statement.

Exercise 6: More HTML code using document .write()

Writing HTML

This is some coloured text.

Write-HTML-Ex8.htm

This exercise is merely to show how we can use the
document’s write() method to generate HTML code.

<BODY>
<H3 ALIGN=right>Writing HTML to a Document</H3>

<SCRIPT>
document .write("<HR WIDTH=50%>"
+ ""
+ "<CENTER>"
"This is some coloured text."
"</CENTER>"
""
"<HR WIDTH='90%’>")

+ + + +

</SCRIPT>
<ADDRESS>Write-HTML-Ex6.htm </ADDRESS>
</BODY>

Notes:

1. Notice that the document.write() uses the
concatenate operator (+). These will join each quoted string
into a single argument. Commas could have been used
instead. This new operator is discussed below.

2. Since we are using <SCRIPT> tags, as opposed to event
handlers, we can use double quotes to surround each
string.

3. For the sake of clarity, we have put each string on to a
new line. But there was no need to do so. However, it
makes it easier to find any errors in our scripts, such as
missing operators, missing quotes, etc.

Concatenate

Concatenate means ‘to join together. The concatenate
operator is used to join two or more quoted strings together
to form a single argument. If we had used commas, then
we would have been using multiple arguments. Do not
confuse the concatenate operator with the arithmetical
addition symbol. They both look identical but have to be
interpreted from the context in which they are used.

32

We shall see more of this operator in the next chapter.

Some Horrors

If you have been experimenting with your own scripts, you
may have come across some really weird things. Here. are
some of the ones | have met and of which you should also
be aware.

When | began writing JavaScript, | kept having to puzzle
out what was happering when using document .write, Or
rather, why things were not happening. My reference books
were none too helpful.

1. Do not press the Enter key anywhere between a string in
single or double quctes. Allow word wrap to take place if
the string flows onto a new line. Better still, employ commas
or concatenate operators. The reason for this is that
JavaScript assumes the Enter key means the end of a
statement. So, if you do press Enter within a quoted string
argument, that string has no ending quote mark! The
syntax is incorrect.

What happens when the page is displayed will depend on
which browser you are using. Netscape will simply ignore
the script, do nothing more and give you no waming.
Netscape never tries to explain why a script has failed.
Intemet Explorer will also fail but will display an error
message and give the line number (blank lines are included
in the line count) of where the error occurred. | have found
IE’s error messages useful, though cryptic, when my scripts
fail to do what | expected. But, | can at least begin to
examine the code where the error occurred.

2. Make sure each argument, except the final one, has a
comma separator, otherwise the arguments which follow
will not be recognised. Remember that programming
languages have very strict rules of behaviour (the syntax).
Breaking the rules will always cause errors to occur.

33

3. A real surprise with Netscape, version 4 at least, is that
should you resize a window after loading a web page, it re-
reads the source code from its cache memory. It uses a
cache memory to speed up the display, especially when
images are involved. However, the real surprise occurs if
this cached version contains JavaScript code.

Imagine that you load a page and spot a mistake in your
code once the page is displayed. You go back and correct
the error in the source code, save the page and re-load it in
Netscape. But, if you now resize the window, the source
code which Netscape uses may be an earier cached
version which still contains the original mistake. It is worth
closing Netscape once in a while and reloading it so that its
cache memory is cleared out, especially when you are
testing your JavaScript code.

4. Do not use document .write () with an event handler,
at least not until we discuss opening new windows in
Chapter 7. For the time being, it is safer to use
document .write only within <SCRIPT> tags. The
browser will then write out the arguments to the current
window.

If you do use it as the value of an event hardler attribute,
such as onClick, browsers will open a new window and
display the arguments of document.write() in that
window. This can be useful in some situations but we need
to know a bit more before we can safely use such
examples.

<H3 ALIGN=right>Writing HTML to a new window</H3>
<FORM>
<INPUT TYPE="button" VALUE="Click here!"
onClick="document .write(’'"’
+ ‘Some coloured text in a new window.’
+ ‘’); + document.close(); *

</FORM>

34

If you must create a new window, make sure you add the
document .close () statement. This ensures that the
operation will work and prevent Netscape’s document
loading animation from animating. “What is that?", you ask.
It is on the bottom bar, third from left.

Currently the animation has covered about half of the box. It
moves backwards and forwards.

Notice that in the above code, the onClick value has more
than one JavaScript statement. It has the document.write()
and the document.close(), both enclosed in a single pair of
double quotes (as are all attribute values) and separated by
a semi-colon. if you have more than one statement as the
value of an event handler then this is one time when you
must separate each statement by a semi-colon.

Other Pop Up Boxes

There are three types of pop-up boxes, the alert, which we
have seen, a prompt box and a confirm box. The prompt
box invites a user to enter some text. Once the user has
clicked the OK button, we can use JavaScript to find out
what has been typed in.

The confirm box displays a message of our choosing and
asks the user to accept the message (confirm it) by clicking
OK or reject it by clicking the Cancel button. JavaScript can
determine whether the message was confirmed or rejected.

However, in order to use these other two boxes, we need to
know how to ‘capture’ what a user has typed into a prompt
box or which button was selected in a confirm box. That
involves the use of functions, the subject of the next

35

chapter. We cannot do much more with JavaScript until we
know how to use functions.

Jargon
assignment statement: a piece of code which assigns a
value on the right of the assignment operator (=) to a
variable on the left of the operator. x = x + 1 Here, x is
a variable - we have more to say about variables in the next
chapter.

cache memory: part of the computer's memory where some
browsers store copies of loaded Web pages for quick
access should that page need to be re-displayed.

event handlers: HTML attributes, such as onClick, with
associated JavaScript code as their values. The event
handler’s code is executed when a user causes an event to
happen.

events: Things which users may do, such as move a
mouse over a hypertext link, click on a button, change text
in a text box. See Chapter 7 for more details.

operators: a programming term for the various symbols
used within a program. We have seen the following:

= the assignment operator

> the greater than comparison operator
+ the concatenate operator

+ the arithmetic addition operator

Chapter 8 discusses them and others in more detail.

What you have learned
1. How to call up an alert box when a user clicks on a
button using the onClick event handler.

2. We have seen that there are two basic ways to write

JavaScript code:

* by using Form buttons and assigning code to an event
handler

36

= to enclose code within <SCRIPT> tags

3. How to give a user a choice of buttons to select a colour
for the background.

4. When to use double quotes and single quotes.
5. Using more than one argument for document. write().

6. How to concatenate quoted strings to form one
argument. Yes, you should make it clear in your own mind
that concatenate is not the same as multiple arguments. It
joins all the strings into one argument.

Test 2:
2.1 Does the alert() method belong to the document or
window object?

2.2 In the following, should double or single quotes be used
around the message in the alert box?

onClick = “alert(the message)~
2.3 What is the JavaScript term for the onClick attribute?
2.4 What type of value does the onClick attribute take?

2.5 When a user clicks on a button, what is this called in
JavaScript?

2.6 In OOP languages, what is the formal term for bgColor
in the following?

onClick = “ document.bgColor = ‘lightblue’ *

2.7 In the above, would it matter if bgColor was typed as
bgcolor or BGCOLOR?

2.8 What value will z have after the following code is
executed?

2.9 In the above code, is + a concatenate or an arithmetic
operator?

37

2.10 What could happen in Netscape when a window is re-
sized?

2.11 Is onClick an attribute or an event handler?

38

3 = Functions

The main strength of JavaScript, as with many other
programming languages, lies in its ability to allow
programmers to create functions. A function is a block of
instructions which has been given a name. This will make
sense when we come to see how functions are used.

We shall return to a simple exercise from the previous
section and convert it into a function.

Remember this one from Exercise 47

<FORM>
<INPUT TYPE="button"
VALUE="Click this button”
onClick="alert(’'Hallo, you did
click the button’)">
< /FORM>

When the Form button was clicked, an alert dialogue box
popped up. Let us get the event handler to execuie a
function which will do exactly the same. Although it is a
simple task, it will illustrate how functions are created. We
can do more exciting things later.

Exercise 7: Creating a function.

Here is the code, the explanation will follow.

<HEAD><TITLE>Exercise 7</TITLE></HEAD>
<SCRIPT>
function showalert ()
{
alert ("Hallo, the button called a function to
display an alert box!")
}
</SCRIPT>

39

<BODY>

<H3>Using a Function to display an alert box</H3>

<FORM>

<INPUT TYPE="button" VALUE="Click this button"
onClick="showalert()">

</FORM>

<P>

<ADDRESS>Simple-Function-EX7.htm</ADDRESS>

</BODY>

Using a Function to display an alert box

Simple-Function-EX7.htm

crosoft Inteinet E xplorer

Notes:
1. When the button is clicked, the alert box appears.

2. Why bother to create a function, surely it is simpler to do
it the other way? Yes, you are right, but we need to start
somewhere and this simple example shows how functions
are created. The function begins with the word function
(lowercase) followed by a name (which we invent) followed
by open and closed round brackets. There is nothing in the
brackets but they are still required. We shall put something
in later.

40

3. The entire function is put between a pair of <SCRIPT>
tags which, for a change, have been placed between the
HEAD and the BODY. They could go inside the HEAD or
inside the BODY. They could come after the BODY - but this
can be unwise as we shall see. From a practical point of
view, and one recommended by serious programmers, all
functions should go before the BODY and within the
<HEAD> tags.

4. If you had three functions, each one could go within
separate <SCRIPT> tags, or all three could be placed within
the one pair. In other words, a single pair of <SCRIPT> tags
can contain multiple functions.

5. What are the curly brackets {..} doing? These are
required by JavaScript to mark the beginning and the end
of the JavaScript code within the body of the function. We
have only one statement, but there is nec limit to the number
of statements within a function. If there is more than one, it
is safer to put semi-colons after each complete statement.
(They are not always used in this text but it is good
programming style to dc so.)

6. It is important to know that the browser will not execute
the statements in a function as the Web page is being
loaded. This is not the same as our earlier and more simple
scripts, which did not contain functions and, consequently,
were executed as the page was being loaded and in the
order in which they appeared in the page. So when are the
instructions in a function executed?

That is the purpose of the attribute value of the onClick
event handler. It contains the name of the function, but
does not include the word function.

onClick="showalert ()"
The function will not be executed until a user clicks the

Form button. When it is clicked, the browser will look at the
value of the onClick event handler to see what has to be

41

done. Previously, this was to generate an alert box, but this
time it is told to execute the function called showalert () .

It will find this function (all functions are stored in a safe
place whilst the page is originally being loaded) and then
execute the code inside the function’s curly brackets. The
code in our function asks for an alert box to be displayed
along with our message. When the closing curly bracket is
encountered, all processing stops.

7. You need to be aware that a function has two parts. The
first is called the declaration and comprises the function
keyword, a name immediately followed by open and closed
round brackets and the actual code enclosed in curly
brackets also known as braces.

function name()
{ ... JavaScript code ...}

It will not be executed until the function is invoked. This is
the second part of the function - a call (an invocation) to
execute the function. This call consists of just the name of
the function and the round brackets. Actually, these round
brackets are very important. After a function name they
become an operator which informs JavaScript that a call
has to be made to a function. If you left them out, the
process would not work. onClick="showalert ()"

8. Do be sure that you know when to use round brackets
and when to use curly braces.

Exercise 8: Here is Exercise 5 using functions.

<SCRIPT>

function blue() {(

document .bgColor='1lightblue’
} // EoFn

function yellow()

{

document .bgColor=’lightyellow’
} // EBoFn

42

function green() {
document .bgColor=*lightgreen’} // EoFn
</SCRIPT>

<BODY>

<FORM>

<TABLE WIDTH=100%>

<CAPTION>Click the button for the BGCOLOR you
would like.</CAPTION>

<TR>

<TD COLSPAN=3> <HR>

<TR ALIGN=CENTER>

<TD>Blue <TD>Yellow <TD> Green

<TR ALIGN=CENTER>

<TD><input type="button" onclick="blue()">
<TD><input type="button®" onClick="yellow()">
<TD><input type="button" onclick="green()">
</TR>

</TABLE>

</FORM>

<ADDRESS>BGCOLOR-fns-Ex8.htm </ADDRESS>
</BODY>

Notes:
1. Notice how the one pair of <SCRIPT> tags contains the
three functions.

2. It is common practice to put the opening curly bracket on
the same line as the function name and to put the closing
curly bracket on a separate line as shown for function
blue(). But as you can see, there are other valid variations
depending on the personal style of the programmer. We
have shown three different styles in the above. It is good
programming practice to be consistent where possible.

3. It will save you a great deal of annoyance if you alsc go
to the trouble of adding a comment (see page 70) after the
closing curly bracket of a function to indicate that it is the
‘end of the function’ - // EoFn blue ()

Once you begin to write larger scripts, it is easy to forget to
type the closing bracket or to mistake it for one that might
belong to another programming feature. See Chapter 8.

43

Exercises 9a - 9¢c: Using a Prompt dialogue box

We mentioned in the previous chapter that there are three
types of pop-up dialogue boxes. We will look at the prompt
box now. It is used to prompt a user to enter some data.
We shall soon see how we can ‘capture’ that data so that
we can see what has been typed in. This will introduce us
to the need for variables - functions love to use variables.

[JavaScnpt Apphication]

| I

Here is some code which generates the above prompt
dialogue box from within HTML <SCRIPT> tags.

<HEAD>
<TITLE> Creating a Prompt box</TITLE>
</HEAD>

<BODY>
<H4> Here is a Prompt</H4>
<SCRIPT>

prompt ("What is your name?")
</SCRIPT>
<ADDRESS>PROMPT-Ex9a.htm </ADDRESS>
</BODY>

Notes for Exercise 9a:
1. Note that the syntax for prompt (“message”) is similar
to the alert().

2. The word ‘undefined’ means that the user has not yet
typed anything into the prompt box. When he/she does, it
will replace that word. When the user has typed something
in and clicked the OK button the dialogue box disappears.

44

Note that the message string is displayed so that the user
knows what to do.

3. Seeing the word ‘undefined’ is not only ugly but it could
terrify those unfamiliar with JavaScript. It is a simple matter
to remove it. Unlike alert() and confirm(), we shall come to
the latter very shortly, prompt() can take a second
argument.

prompt ("What is your name?","")

It comes after the comma in the above and contains the
empty string - “~. You could put something inside the
double quotes, in which case, that something would appear
in the text box. Try it out for yourself!

Exercise 9b: Capturing the data from the Prompt box.

We shall now find out how to capture what the user has
typed in. Here is the code using a variable called x.

<BODY>

Capturing the user’'s data.
<SCRIPT>

x = prompt ("What is your name?","%);
document .write("<P>Your name is: " + x):
</SCRIPT>

<P>

<ADDRESS>PROMPT-Ex9b.htm </ADDRESS>
</BODY>

T Creating a Prompt box - Net. . [[=] F1

Capturing the user’s data.
Your name is: Helena Boffin

PROMPT-Ex9b.htm

45

Notes for Exercise 9b:

1. We have assigned to a variable ‘x’ the name which the
user has typed into the prompt's text box, here ‘Helena
Boffin’. A variable is a named storage area inside the
computer's memory where its data is kept until it is used.

2. The next line of code does use the variable via the
document .write feature:

document .write("<P>Your name is: " + X)

This is one of the reasons why all programming languages
need variables. It is a mechanism for holding data which
needs to be used at a later stage in the program. Note how
the document .write includes not just a text string but
also the variable x which does not have quotes around it. If
it did, the character ‘x’ would be written out. Consequently,
when something does not have quotes, JavaScript
interprets it as a variable.

‘x’ tends to be a very common name for a variable,
probably a sign that programmers lack imagination.
Certainly, it is one which | use quite frequently! There are
rules for creating variable names and these are set out at
the end of the chapter.

Exercise 9c: Using functions and confirm().

We shall rewrite Exercise 9b using a function and introduce
confirm(). It is quite a useful box in that you can ask a user
to confirm that they really do want some action to take
place.

<SCRIPT>
function yourname () {
x = prompt ("What is your name?");
confirm(”Did you say your name is ” + x + ”?7);
} // EoFn
</SCRIPT>

<BODY>
<H4> Here is a Prompt</H4>

46

<FORM>

<INPUT TYPE="button" VALUE="Tell me your name."
onClick="yourname() ">

</FORM>

<ADDRESS>PROMPT-Ex9¢.htm </ADDRESS></BODY>

Notes for Exercise 9c¢:

1. ‘%’ is a variable which is assigned the value typed in by a
user in the prompt dialogue box. It could be any other letter
or word and it can be preceded by the keyword var (short
for ‘variable’ and rhymes with ‘far’), thus:

var x = prompt("What is your name?")

That variable can be used in conjunction with the confirm
box message. Assuming the name typed in is ‘Jasper, we
ask the user to confinr the name:

JavaScnpt Applhication
I

5 cwesl

confirm("Did you say your name is " + x + "?")

2. You can see that confirm(“message”)behaves like
the alert and the prompt boxes. The user can accept (OK)
or reject (Cancel) the confirm pop-up box.

(A confirm() dialogue box is sometimes used to confirm
transactions on the Web before allowing a user to pari
with all their credit card details.)

3. You need to be aware that the alert and confirm pop-up
boxes can take but one argument. So we need to
concatenate the three parts of the above message into one
by using the concatenate operator (+).

= “Did you say yocur name is *
= x
- uDpn

If we had put commas in, thereby creating multiple
arguments, only the first argument would be displayed, the
rest would be ignored. Try it out if you do not believe me.

4. Notice that the variable is not enclosed in double quotes.
Whatever data it contains (Jasper in this case) will be
substituted when written out. Indeed, we must not use
quotes otherwise the letter x would be printed out because
it would then become a quoted string.

5. We can now begin to see how JavaScript is able to
distinguish between text-strings and variables. Text must
be written as quoted strings: "l am a piece of text.”, whereas
variables are not quoted.

6. Finally, note the presence of a space after the word ‘is’.
If there was no space then the ‘J’ of ‘Jasper’ would come
immediately after the ‘s’ of ‘is’, thus: “Did you say your
name isJasper?” When using concatenation, include
spaces where necessary.

Built-in Functions or Methods?

You may be wondering whether write(), writelr(), alert(),
confirm() and prompt() are functions. They certainly look
like functions. They have a name and a function call
operator - (). You would be correct.

They are all examples of built-in functions which belong to
objects and because of this are formally known as methods
in object oriented languages. These, and many more which
we shall come across, form part of the JavaScript
language. See the summary at the end of this chapter.

In contrast, the ones created by us are known as user-
defined functions. In the above examples, blue(),
yvellow(), green() and yourname () are our own user-
defined functions.

48

Why Bother with Functions?

There are many reasons. One is that if you want to repeat
say 10 lines of code in 5 different places in a Web page,
rather than type 50 lines of code, you need only type the 10
lines once, and use five invocations to the function. See the
rounding () function, Exercise 21, page 125. We shall
come across other reasons later in the text.

Jargon

declaration: refers to the instructions inside a function’s
curly brackets. It declares what must be done when the
function is called (invoked) from some other point in the
Web page. It is sometimes known as the definition since it
defines what the function will do. It must include the
keyword function, the function name followed by round
brackets.

function: a function is a way of naming a section of
JavaScript code which you wish to execute at your leisure.
It includes the keyword function, a name and, so far, empty
round brackets, plus the code to be executed:

function somename(){ .. code .. }

invoke: a programming term used when we want to execute
a function. The function name and the function call operator
must be used: onClick = “myfunction()”

variable: a name given to a piece of data so that it can be
held in the computer’s memory ready to be used when
required. It is called a variable because the same name can
contain different data on different occasions. For example,
in Exercise 9c¢ the name ‘Jasper’ was typed in. However, if
the user clicked the form button again he or she could quite
easily type in a new name - Susan. The variable ‘x’ would
now store the name Susan. Its content can vary.

What you have learned

1. You have learnt how to create a function, using curly
brackets (braces) to mark the beginning and end of the
function’s code.

49

2. A function must always have a pair of round brackets
after its name, even if there is nothing in them. We shall
see in the next section what can be put in these brackets.

3. We have seen how to use prompt and confirmation pop-
up boxes. But do not use them all the time. It can be quite
irritating to your readers.

4. More importantly, we have seen that data entered into a
prompt box can be captured for use at a later stage. This is
done by storing the data in a variable.

5. The distinction was made between built-in and user
defined functions.

Rules for creating Variable Names

When creating a name for a variable, case is significant.
The first character in the name must be one of the
following:

= alower or upper case letter
= underscore (_)

- $

Subsequent characters may be any letter or digit, or an
underscore or dollar sign. The first character must not be a
digit.

Valid Invalid
i 123
my_varS$name 'name
_myvariable a name
$strg this-var
X13 1X4

A Point of Interest

Note what appears at the top of the confirm box. The same
is seen for the other two pop-up boxes. It says:

[JavaScript Application|

50

) [JavaScnpt Apphcation

©

Here is what |E displays: Microsoft internet Explorer

Microsoft Internet E ¢plorer

/1

—

The reason for this 1s to inform the user that the pop-up box
was generated by the browser. Why? Take a look at this.

=10 x|

Need some money?

NASTY.htm

[MavaScnpt Applcation)

You could write some JavaScript code to generate an alert
box with the terrifying message above. Some people have
a ‘funny’ sense of humour.

51

If [JavaScript Application] or the Microsoft equivalent was
not included, you might well begin to feel very sick,
imagining that it was an operating system message.

(Hmmm! It is tempting though.) ©

Test 3:

3.1 In the code for Exercise 9¢ what forms the declaration
and what forms the invocation of the function
yourname () ?

3.2 How many functions can be placed within a single pair
of <SCRIPT> tags?

3.3 How many syntax errors can you find in the following?
onclick = “function abc{}’

3.4 The prompt dialogue box can take two arguments.
What purpose does the second serve?

3.5 What would the following write out?

sum = 1.5 + 2;
document .write(“The sum is: ” + “sum”);

3.6 When would you want to use an alert, a confirm and a
prompt pop-up box?

3.7 You will not find the answer in this chapter, but to which
object do the methods of the three pop-up boxes belong: to
the document or window object? Think about it!

3.8 In the following code, what would be the order in which
the browser would display the Web page on the screen?

<HEAD> <TITLE> .. a title .. </TITLE>
<SCRIPT>
function yourname() {
x = prompt ("What is your name?");
confirm(#Did you say your name is # + x + ”?7);
} // EoFn
</SCRIPT>
</HEAD>

52

<BODY>

<H4> Here is a Prompt</H4>

<FORM>

<INPUT TYPE="button®" VALUE="Tell me your name."*
onClick="yourname() ">

</FORM>

<ADDRESS>PROMPT-Ex9c.htm </ADDRESS></BODY>

3.9 What type of arguments can the write() method take?

53

Summary of JavaScript so far:

Objects Methods Properties
document write() bgColor
writeln()
close()
window alert ()
confirm()
prompt ()
Operators Purpose Example
= assignment X=X +1
+ arithmetic addition 1+2
+ concatenate “a” + *b”
0 function call function abc ()
{1} embed function
code

Event Handlers

onClick used with form
buttons
Dialogue boxes
alert inform user
confirm confirm or cancel
prompt enter data

54

4- Arguments in Functions

We shall now examine the use of arguments in functions.
In the previous chapter we saw how useful functions are,
but their usefulness can be improved by passing them
arguments. So, what is an argument? It can be almost any
type of data you want. It could be the text typed into a
prompt box or the OK or Cancel button clicked in a confirm
box. It could be two numbers which indicate a range of
numbers the function could work with. We shall look at
these and more in the following.

First, we need to introduce the concept of arguments via a
simple example. Let us suppose that someone wants the
square root of any number he/she types in. We need to ask
the user to type in a number and then get a function to work
out its square root. Not everyone is madly interested in
square roots, but this simple exercise will introduce not only
the concept of arguments but also how JavaScript performs
calculations. At some stage, you may need to calculate the
overall cost and tax on some goods (course fees, etc.) you
are offering over the Internet and get the buyer to confirm
the amount.

Exercise 10: A Function using an argument.

The idea is to write a function which will output the square
root of a number entered by a user. We shall see how to
round the result to two decimal places in Exercise 11. Here
is the code.

<HEAD>
<TITLE> Calculate the Square Root </TITLE>
<SCRIPT>
function squareroot (s8qroot)
{ x = Math.sqgrt (sgroot) ;

document .write{"The square root of *

+ 8gqroot + * is: " + X)

}
</SCRIPT> </HEAD>

55

<BODY>
<H4>Using Arguments</H4>
<SCRIPT LANGUAGE="Javascript">
var sqQqroot = prompt ("Enter a number. I will
give you its squareroot.", *");
squareroot (sqroot) ;
</SCRIPT>

<ADDRESS>Arguments-Ex10.htm </ADDRESS>
</BODY>

3 D \JAVASCRIPTS\AVA-BOOKA _ FI[=T F3

| B B8 VYow Go faveies [

Using Arguments

The square root of 45 is:

6.708203932499369

Notes:

1. We have used a prompt box to get the user to type in a
number and included a blank string as a second argument
to remove the word ‘Undefined’ from the prompt box.

The value typed in has been assigned to the variable
sqgroot, a name | made up. Note too that it is preceded
with the keyword var. It was not necessary and we have
not done so before but it is good practice since it reinforces
the fact that we are using a variable and makes the code
clearer. (We discuss another reason on page 107, under
Scope of Variables.)

2. On the line below, we have a second statement which

calls the user defined function: squareroot (sqroot) .

But note that it contains sqroot, the variable assigned to
56

the user’s input via the prompt box. Previously, our function
call operators were empty. When variables are included
they are known as arguments.

Arguments are the mechanism by which data picked up
elsewhere and held in variables can be passed !0 a
function. We need to give the squareroot () function the
value typed into the prompt box by the user. We do so by
passing it over as an argument. It can then be used by that
function.

3. Our function passes it to a second function - to
Math.sqrt (sqroot) - which computes and returns the
square root which is then assigned to a variable ‘x’.

A document .write statement is used to write out the
original number (sqroot) and the computed square root
which has been assigned to the variable ‘'x’.

function squareroot (sgroot)
{
X = Math.sqrt (sgroot) ;
document .write(“The square root of *
+ sgroot + * is: " + X)
}

Notice the careful use of spacing in the quoted strings of
the write method and that the variables are not, indeed
must not!, be quoted.

3. But what is this Math?

sqrt ()is a built-in mathematical function, part of
JavaScript. It is a method of the Math object. Without the
reference to the Math object, JavaScript would not
recognise the sqrt() function as one of its own. But because
we have specified the Math object, JavaScript now knows
that we are referring to the sqrt method of the Math object.

57

Web browsers. These were defined with lowercase letters
and form part of client-side JavaScript.

Do you remember document .bgColor in Exercise 87
bgColor is a property of the document object. So, we have
these three terms.

Objects - the basic ‘things’ we work with
Objects have methods (functions)
Obijects also have properties

This analogy may help. A car is an object. It has a colour
property - say, maroon. It has methods which allow it to
move forward or backwards, faster or slower. It is important
to try to understand these three terms since they are in use
all the time. It took me some time to begin to understand
them. However, the more you use JavaScript, the more
they begin to make sense. This is what programming in
object orientated languages is all about. Amongst other
things, we play around with objects and with the various
properties and methods associated with those objects.

That is enough for now. See Chapter 15 for more details.

Exercise 11: Using NAMEs in <FORM>.

We shall now ask a user to enter a calculation and make
JavaScript return the answer. (This will help us to
understand a much more sophisticated program in Chapter
9 which works out monthly payments for a loan at whatever
interest the user desires. You can use this to determine
whether the monthly payments on the purchase of your car
are indeed accurate and to ensure that you are not being
fleeced.) Here is the code without the <HEAD>.

<BODY>

If you enter a calculation, you will be given the
answer when you click the

<I> Calculate </I> button.

60

<FORM NAME="formcal”>

<INPUT TYPE="text" SIZE="12" NAME="calculator">

<INPUT TYPE="button" VALUE="Calculate"
onClick="cal()">

<INPUT TYPE="reset" VALUE="Reset">

Answer:

<INPUT TYPE="text" SIZE="12" NAME="answer">

</FORM>

<SCRIPT>

function cal(){

document . formcal .answer.value =

eval (document . formcal .calculator.value)

} // EoOFn

</SCRIPT>

<ADDRESS>NAME-Ex11l.htm </ADDRESS>
</BODY>

+- Netscape

If you enter a calculation, you will be given the
answer when you click the Calculate button.

e e

Answer: [17.2558139534

NAME-Exi1.htm
II-]«... § 4478
Notes:

In the next Chapter, we shall see how to round down the

result to two decimal places. First, we need to discuss the
basics.

1. The user is invited to enter a calculation and then to click
the Calculate button. Note that this button has a NAME
attribute and we shall soon see the reason for this. The
cal () function performs the calculation and returns the
answer in the answer text box as you can see from the

61

illustration. But how is it done? Here is the code which does
it all and is a perfect example of how object orientated
languages work.

document. formcal.answer.value =
eval (document . formcal.calculator.value)

We need to examine the above very carefully. It looks
rather like a simple assignment statement: x = y
and, indeed, that is exactly what it is.

eval()

On the right-hand side of the assignment operator there is a
special function eval() which forms part of the core
JavaScript language. Why does it not begin with a capital
letter then, like Math and Date? It does not and must not
begin with a capital letter. Those are the rules! (You are not
going to win.)

Its purpose here is to convert its argument from a text string
into a mathematical format - a calculation. Our user had to
type the calculation into a textbox: “742/43"

Since there is no ‘TYPE=number’ for the <INPUT> tag, we
had to use:
<INPUT TYPE="text" SIZE="12" NAME="calculator">

Text cannot be calculated, so we need a function which will
try to make sense of the text which is typed in and convert it
into an arithmetic expression. If words had been typed in,
rather than what looks like an proper arithmetic expression,
then the eval() function would not be able to convert it. But it
does recognise numbers and arithmetic operators.

Now, this is an important bit. The following JavaScript code
looks like an assignment statement: x = y.

document . formcal .answer .value =
eval (document. formcal.calculator.value)

That is precisely what it is. Whatever is on the right-hand
side is assigned to whatever is on the left-hand side of the

62

assignment operator. So, we now need to examine what is
on the right side.

= eval (document.formcal.calculator.value)

The argument of the eval function is better read from right
to left, as follows:

Evaluate: (the value of calculator which is a property of
formcal which is a Form property of the current document).

There are four boxes in the Form formcal. two are text-
boxes, one is a button which can be clicked, and one is a
reset button. Each has a value of its own. So we have to tell
the eval function which one of the four we are referring to.
That is the purpose of the NAME attribute. We want to refer
to the value which belongs to the text box NAMEd
‘calculator’.

<INPUT TYPE="text® SIZE="12" NAME="calculator"s>

By giving names to the various INPUT elements we are
able to refer to a specific element.

These elements are contained within FORM tags. But in
which Form is the named element calculator? | know we
only have one FORM tag, but we could have several forms
in our document or we may wish to add other Forms later.
However, even if we have only one FORM, we still need to
NAME the form so that we can refer to it. So, we give our
Form a name, here, it is NAMEd as:

<FORM NAME="formcal">

Finally, because the FORM is a property of an object, we
need to specify its object, namely, the current document.

| hope this all makes sense because this is what
programming in an object orientated language is about. We
wanted to evaluate the value of a specific INPUT element,
calculator, contained in the Form formcal which is a
property of the current document object.

63

(! hope the following will not confuse matters, but since
properties belong to objects and only objects can have
properties, in the above code formcal has to become an
object in its own right so that it can have its own property,
namely, calculator.

Likewise, calculator becomes an object with a property value.
This is really just a technical nicety. Properties cannot contain
properties, so the original property has to become an object
so that it can take a property. Thus, some properties can also
become objects in their own right.)

We should now be in a position to read the left-hand side of
the assignment operator with ease.

document . formcal .answer.value =
eval (document . formcal.calculator.value)

Very simply then we are assigning the evaluated result of
the eval() function to the value of:
“the current document’s Form property (named formcal)

which has a property named answer (the second text
element) which has a value property of its own.)”

<FORM NAME="formcal">

<INPUT TYPE="text" SIZE="12" NAMBE="calculator">

<INPUT TYPE="button" VALUE="Calculate"
onClick="cal()">

<INPUT TYPE="reset" VALUE="Reset">

Answer :

<INPUT TYPE="text" SIZE="12" NAME="answer">

</FORM>

| think we need a rest! In the next section, we shall see how
to round the answer to two decimal places.

Jargon
argument: values which are passed to a function so that it
can process (do something with) them.

method: a term used in object orientated languages to
mean a function. Most objects have methods associated
with them as well as properties.

object: in object orientated languages, programmers work
with basic objects. Objects are manipulated by using their
methods and properties. For example, the document object
can have its background colour property changed by giving
a colour value to the bgColor property:

document .bgColor = ‘lightblue’

property: most objects have properties which can change
their object in some way.

variable: a programming term which refers to where a
computer has stored a piece of data in its memory.
Variables can be passed as arguments to functions.

What you have learned

We have covered a great deal in this chapter and seen
what object oriented programming is all about. It is worth
studying carefully and may need several visits. When you
feel comfortable with the material in this Chapter, you will
be well on the way to understanding how to program with
objects in JavaScript.

1. How to pass a variable as an argument to a function.
2. How to use the sqrt method of the Math object.

3. That the Math object is part of core JavaScript whereas
objects such as window and document are client-side
JavaScript which allow a programmer to work with a Web
browser.

4. The distinction between objects and their methods and
properties.

5. Why we need NAMEs for forms and INPUT buttons and
text boxes.

6. How to use the eval() function.
65

7. How to assign values to text boxes.

Test 4:
4.1 How can you find out what a user has typed into a
prompt box?

4.2 Why are arguments useful?
4.3 To what object does the sqrt () method belong?
4.4 Is the Math object part of core or client-side JavaScript?

4.5 Give one main reason for giving an INPUT element a
name attribute.

4.6 If you only have one Form and wish to refer to it, must it
be given a name attribute?

4.7 Why must an invoked function incluce the function call
operator - () - rather than just the function name?

66

5 = Arithmetic in JavaScript

In this chapter, we shall look at some of the basic arithmetic
features of programming with special reference to
JavaScript.

Exercise 12: Rounding to two decimal places

L. Using Math.round to round to two decimal pla M= E

If you enter a calculation, you will be given the
answer when you click the Calculate button

Tz]

Answer: [17.26

ROUND-Ex 12.htm

Here is the code without the <HEAD>.

<SCRIPT>

function rounding(x)

{ document .example.answer.value =
Math.round(x*100) /100

} // EoFN

</SCRIPT>

<BODY>

If you enter a calculation, you will

be given the answer when you click the

<I>Calculate</I> button.

<FORM NAME="example">

<INPUT TYPE="text® SIZE="12" ="calculator">

<INPUT TYPE="button" VALUE="Calculate"

onClick="cal()">
<INPUT TYPE="reset" VALUE="Reset">

67

Answer:
<INPUT TYPE="text" SIZE="12" NAME="answer">
</FORM>
<SCRIPT>
// A BAD PLACE to put this code. See Note 4.
function cal()
{
data=eval (document .example.calculator.value);
rounding (data);
} //EoFn
</SCRIPT>

<ADDRESS>ROUND-Ex12.htm </ADDRESS></30DY>

Notes:
1. The function cal() has changed slightly from its use in
Exercise 11 in Chapter 4.

data = eval (document.example.calculatzor.value) ;
rounding{data) ;

We are now assigning the user's input (from the text
element calculator) to the variable data rather than
assigning it to a value of a text box. On the following line,
we call another function rounding (data) and pass the
input stored in data as an argument.

function rounding(x) {

document .example.answer.value =
Math.round(x*100)/100;} // EoFn

But wait a moment, why is the rounding() function’s
argument in the declaration now named x rather than
data? In all our previous examples, we have used the
same name as the one in the invocation.

Dummy Arguments

We could use data here, but it is a common practice
amongst seasoned programmers to give the argument in
the declaration a different name. It is sometimes referred to
as a dummy argument. Although this may appear strange,
the reasoning behind it is very practical. During the
execution of the rounding function, the dummy argument

68

will take on the value of the argument passed to it by the
calling statement. In other words, “x” will become “data”.

Why is this so dramatic? Frequently, the same function
may be called from several places, each time with different
data variables to work on.

<SCRIPT>
function workhorse{x) {
y = x*10;
return y; } //EoFn workhorse
. code .
. workhorse(datal)
. workhorse (data2)
. workhorse (data3)
... code ..
</SCRIPT>

Each time workhorse(argument) is invoked, the
dummy argument ‘x’ in the declaration is replaced by the
argument of the invocation - datal, data2, data3. In
other words, you do not need three separate function
declarations each with its argument data?, data2, data3.

(See page 159 for a discussion about the return statement.)

These dummy arguments prove useful in yet other ways:

= you may discover and wish to use a function in the source
code of some Web page you are looking at, such as my
rounding() function

= or, you may wish to copy and paste one of your own
functions into another Web page you are creating rather
than having to type it out all over again

After you have copied and pasted the function into your
own Web page, all you would need to do would be to
create a function call and pass it whatever argument you
want, with your own names. You would not have to change
the names in the original function declaration.

2. Let us look at the main piece of code in the rounding
function of Exercise 12.

69

document .example.answer.value =
Math.round(x*100)/100;

With our growing understanding of object orientated
programming, we can see that we are using the round
method of the Math object. This method rounds its
argument to the nearest integer, thus 2.54 becomes 3
and -2.54 becomes -2. However, that is no good
because we want to round to two decimal places, if and
when they exist. We can do so by multiplying x by 100,
rounding and then dividing the result by 100.

This result is then assigned to the value of the INPUT object
named answer which is a property of the Form (now an
object!) named example which is a property of the
document object. Is this beginning to make some sense?

document . example.answer .value =
Math.round(x*100) /100;

3. Look at the following line in Exercise 12.
// A BAD PLACE to put this code. See Note 4.

The two forward slashes are a comment symbol. Whatever
follows it, up to the end of the line, is ignored by JavaScript.
In this way programmers can add comments to their code.
But what if you want more than one line for a comment?
You then have to use /* the comment */

/* first line of the comment
and another comment line
and yet a third comment line. */

4. But why is it not a good place to put the code?
Remember that the browser reads a Web page from top to
bottom. If it got as far as displaying the text buttons and
then had to go off to download a large image, an over
enthusiastic reader might start entering values and clicking
on the Calculate button before the remainder of the page
was fully loaded. Because the cal() function has been
placed at the end of the page, the browser may not have
had time to load that function and would be at a loss to

70

know what to do when the Calculate button was clicked.
The whole process would fail.

So the moral is, to keep all your functions before the
<BODY>. In that way, you can be sure that all functions
have been loaded by the browser before the user has a
chance to start clicking on any button displayed via the
BODY tags.

Something you can do
Convert Exercise 10 in Chapter 4, so that it rounds the
square root to two decimal places.

Arithmetic & Computers
What answer would you give to the following: 3+2*4 =?

Computers can only pick up two values at any one time and
it does not matter hcw much you pay for your computer. All
computers are designed to work in that way. In the above,
the computer has been given three numbers. It can choose
only two to begin with. The two it selects is based on the
rules of arithmetic which state that + & - have a lower
ranking than * or /. So a computer would look at what is
between the numbers and would select 2 * 4 because that
has a higher ranking order than 3+2.

It would work out that 2*4 = 8. The computer remembers
that there are more numbers in the original statement, so it
would next add 3 to the 8 to give 11.

If you were using a pocket calculator and typed in the
above formula, you would get 20 as the answer. The
reason for this is that the first two numbers input would be
3+2 and when you pressed the multiplication symbol, the
calculator's computer would evaluate those two numbers
(giving 5) before continuing to obey your next key strokes.
Thus, 5*4 would become 20.

In programming, in order to force a computer to evaluate
numbers in some other order, you can surround any part of
a calculation in brackets (often called parentheses). Any

VA

expression in brackets is always evaluated before anything
else. Those are the rules of arithmetic.

Thus: (3+2)*4 = 20. 4*(3+2)would also equal 20.

You need to be in control of the order in which you want
your numbers calculated. After all, it is your formula and if
you wanted the answer to become 20, why not?

Priority Levels Arithmetic operators
1 - Highest {) parentheses
2 | ~ exponentiation 3"
B et ——
4 - Lowest -
The eval() method

1. In the previous chapter, we said that the eval method
tries to make sense of any numbers and arithmetic symbols
it comes across as its argument and ‘converts’ them into
arithmetic expressions. What the eval() function actually
evaluates are JavaScript statements:

data=eval (document . example.calculator.value) ;

The above argument is a JavaScript statement, so, too, is
the following: eval(x + "+ 100")

2. If eval() is a method, like round(), where is the object to
which it belongs? The eval method belongs to all objects,
that is why it is a special method, unlike most other
methods which belong to one particular object. Thus,
writeln() can only belong to the document object, alert() only
to the window object.

If the object is omitted from eval(), the string of JavaScript
code is evaluated without regard to any object.
Consequently, it can be used by itself, as we have done,
without associating it with a specific object.

round is associated only with the Math object which is why
Math must be included: x = Math.round(data)

72

Hmm! So that is why it takes so long to become really
familiar with JavaScript, or any language. Each one has its
own quirks and seems to change the goalposts at almost
every tum. All beginners have to go through this leaming
curve. You are not the only one to suffer.

Exercise 13: Distance Learning

Here is a simple distance learning example. We shall ask
the user to type in the calculations shown. When the user
clicks the Calculate button, the answer will be given. We
trust that the user will work it out manually first and then
check his/her results with the computer's answer.

.- A simple Distance Leaining Example. - Netscape
A A T e T A R AP S ‘
(ke Eot Vew Do RUDPRN- SRS (s B TS0 i gl A e st

Try the following: you will be given the answer when you chck 7=
the Calculate button. But work out what the answer should be |
before clicking the Calculate button.

5*4+3

5%(4+3)
5%2+3+5%4
(5%2)+(3+5)*4
((5%2)H3+5))*4
5%(2+3)+(5*4)
5*((2+3)H(5%4))

[5*2+43+5%4
Answer: |33

We could make sure that the user types in an answer
before showing the computer’s result. We could also print
out a score at the end. However, we would need to
understand some of JavaScript's programming features
(Chapter 8) before being able to program those facilities.

73

Here is the code without the <HEAD>:

<SCRIPT>
function cal(){
document .example.answer .value=
eval (document .example.calculator.value)
} // EoFn
</SCRIPT>
<BODY>
 Try the following: you will be
given the answer when you click the
<I>Calculate</I> button. But work out what
the answer should be <I> before </I>
clicking the Calculate button.

<TABLE>
<TR>
<TD>5%*4+3
<TR>
<TD>5* (4+3)
<TR>
<TD COLSPAN=2> 5*2+34+5*4
<TR>
<TD COLSPAN=2> (5*2)+(3+5)*4
<TR>
<TD COLSPAN=2> ((5*2)+(3+5))*4
<TR>
<TD COLSPAN=2> 5*(2+3)+(5*4)
<TR>
<TD COLSPAN=2> 5*((2+3)+(5*4))
</TABLE>

<FORM NAME="example">

<INPUT TYPE="text" SIZE="12" NAME="calculator">

<INPUT TYPE="button" VALUE="Calculate"
onClick="cal()">

<INPUT TYPE="reset" VALUE="Reset">

Answer : <INPUT TYPE="text" SIZE="12"
NAME="answer">

</FORM>

<ADDRESS>Arith-Ex13.htm </ADDRESS>

</BODY>

74

Notes:
if you have been foliowing the previous scripts, the code
should be quite easy to follow.

The user is invited to type in one of the caiculations. When
the Calculate button is clicked, the event handler invokes
the cal() function. This function evaluates the user's entry
and assigns it to the value of the text box NAMEd answer.

If the user mis-typed a calculation, say a missing bracket,
Netscape will not respond. Intemet Explorer, on the other
hand, will display an error message. A friendly program will
always attempt to trap user’s errors itself without leaving it
to the browser. An example is shown in Exercise 21,
Chapter 9.

Jargon

distance leamning: in this context, it means presenting
teaching material to users who are not sitting in a
classroom but who access the WWW in order to leamn. A
web page could interact with the user via JavaScript

dummy arguments: an argument which is used within a
function but which has no identity until the function is
invoked by a function call. That call will have a real
argument which is passed over to the function and used in
place of the dummy argument.

parentheses: brackets surrounding part of a calculation
which you want to be computed before any other part.

What you have learned

1. That seasoned programmers tend to use dummy
arguments. They can copy and paste functions from other
programs without having to alter the original function code.

2. ltis wise to place all functions before the <BODY> part of
an HTML page. In that way, you are sure that they have all
been loaded before a user can begin clicking buttons which
may have associated event handlers.

75

3. Computers are designed to calculate only two numbers
at a time. When presented with more than two, computers
follow the rules of arithmetic when determining which two
numbers to calculate first.

4. Before entering a calculation, a programmer needs to
work out in advance the order in which the numbers are to
be calculated.

5. Entering calculations into a program is not the same as
entering numbers into a pocket calculator. One has to
make a mental adjustment when using arithmetic with
computer programs.

What is next:

In the next section we shall change an image on an existing
Web page when a user clicks a button. We shall then look
at some JavaScript programming features because until we
know some of the basic features we really cannot do very
much. We shall leam how to use the IF-ELSE statement to
make choices based on what a user has typed.

Test 5:
5.1 What is a dummy argument and why is it useful?
5.2 Forthe following: 5+4*2+3

a) What result would be given by a computer?
b) What result would be given by a pocket calculator?

5.3 Why are comments used by programmers?
5.4 How do you create a single line comment?
5.5 How are multiple line comments created in JavaScript?

5.6 Convert Exercise 10 in Chapter 4, so that it rounds the
square root to two decimal places.

5.7 How many errors can you find in the following script?

function dothis(sqroot) {(

x = Maths, round(squroot) ;

document .write(“The square root of: ”
+ squroot + “ is: * + X)

}

76

Why do we use the following symbols instead of the
more usual arithmetic symbols?

Arithmetic operators
() parentheses
| ~ exponentiation 3*
E

+ =

Back in time, during the 1940’s, when computers were
first being designed, the character set used was very
restricted.

26 letters of the alphabet | uppercase only!

10 digits 0-9

13 special symbols + - * /7 (), =5
: space

The nearest symbol that ‘looked like’ multiplication was
the asterisk. The forward slash was used for division as
inl/2.

The circumflex symbol (~), now used by many
programming languages to mean exponentiation, is a
comparative newcomer. The Fortran programming
language still uses two asterisks for exponentiation.

Even today, the £ symbol can confuse some programs,
such as e-mail programs, and will display strange
looking things instead of the sterling symbol.

77

78

6 « Using JavaScript with Images

Exercise 14: Change an Image

This is a simple example of how to change one image for
another when a user clicks on a button. it will be extended
in Exercise 15, so that when a user moves the mouse over
an image it changes to another image and when the user
moves the mouse out of the replacement image, the
original is re-displayed. Using a mouse has the advantage
of being able to return to the original image without the user
having to click another button. Here is the code for the
simple button click change of image.

<HEAD>
<TITLE>IMG example</TITLE>
<SCRIPT LANGUAGE = Javascript>
function ChangeImage () {
document .imgl.src = "images/Geek-2.gif"
document . forml.geek.value
= "Well, its cold in Iceland."
} // EoFn
</SCRIPT>
</HEAD>

<BODY>
<CENTER>
The <I>Summer Plumage</I> of the

"Great Crested Geek bird".

<FORM NAME="forml*>

<INPUT TYPE=button NAME="geek"
VALUE="See my Winter Plumage"
onClick = "ChangeImage()">

</FORM>
<ADDRESS>Image-Ex14.htm</ADDRESS:>
</CENTER>
</BODY>

79

The Summer Plumage of the
"Great Crested Geek bird".

3 IMG example - Microsoft Intern EEE

“Great Crested Geek bird™.

80

Notes:

1. Both images were created in PhotoShop and saved in a
sub-folder called “images”. When the page is loaded Geek -
1.gif is displayed.

2. Although there is one Form on this page, it has been

given a NAME so that it can be referenced as a property of

the document object in the Changelmage() function.

<FORM NAME="forml”>

<INPUT TYPE=button VALUE="See my Winter Plumage"
onClick = “ChangeImage()”>

</FORM>

Likewise, the tag has a name so that it can be
identified as a property of the document object. It has its
own property src.
function ChangeImage() {

document . imgl.src = "images/Geek-2.gif"

document . forml .geek.value

= "Well, its cold in Iceland."

} // EoFn

3. When a user clicks on the button, the
ChangeImage ()function is invoked and the image is
replaced by the new one.
document.imgl.src = "images/Geek-2.gif"

“the src of the image tag named img?1 (which is a

property of the current document) is assigned the value
Geek-2.gif which is in a sub-folder called images .”

This is how an image can be changed when a user clicks a
button and provides an example of why people use
JavaScript. It allows a web page to be changed so that it is
no longer a static page, like a page in a book. Geek-1.gif
is replaced by Geek-2.gif.

Note too that the value of the geek button is changed -
from "See my Winter Plumage" to "Well, its cold in Iceland.”

81

This is what is meant by dynamic HTML. Via JavaScript
pages can be changed.

4. Both images should be the same size otherwise
distortion will occur in Netscape. The size of the new image
will be forced into the same space as the original. (See
Exercise 15.) However, Internet Explorer allows a new
image to retain its own size. This illustrates, yet again, the
need to test your JavaScript code with both browsers to see
whether there are any idiosyncrasies between the two.

Exercise 15: Swapping between images

In this exercise, we shall see how to change one image for
another and then how to return to the original. This is done
with two other event handlers - onMouseOver and
onMouseOut. These two events, however, cannot be used
with a form button. They have to be used with the <A> tag.

JavaScript refers to this tag as a link rather than an anchor
tag which is what it is known as in HTML. The reason for
this, is that the two event handlers can also be used with
the <AREA> tag when creating hot-spots for image maps.
The AREA tag is also a link to some other reference.
Consequently, JavaScript uses the word link to include both
the <A> and the <AREA> tags. Here is the code without the
<HEAD>:

Responding lo mouse movements - Nelscape i of x|

Move the mouse over the phrase to

see a photograph.

SEE MY PHOTOGRAPH
| Swap[mage—Ex] Sk htm)

82

D

<SCRIPT LANGUAGE= "JavaScript">
function ImgOver() (
document .imgl.src = ’‘images/mari.gif’} //EoPFn

function ImgOut() {
document .imgl.src = ’‘images/photol.gif’} //EBoFn
</SCRIPT>

<BODY><CENTER>
<FORM NAME = "forml">
Move the mouse over the phrase to
‘ see a photograph.

<A HREF="" onMouseOver = °*ImgOver()"
onMouseOut = *ImgOut()" >
<IMG NAME="imgl® BORDER=0 SRC =
*images/photol.gif">
</CENTER>
<ADDRESS>SwapImage-Ex15.htm</ADDRESS></BODY>
|
|

When the mouse is moved over the image, the following is
shown. Note how it is distorted in Netscape (next page) but
not in Interet Explorer (see below).

Responding to mouse movements - Mu M=

i+

2

Move the mouse over the phrase
to see a photograph.

Swaplmage-Ex15.htm

83

Note: Since we are using an <A> tag, we need an HREF
attribute. However, the value of the attribute is set to blank
since we do not need to load another page. Netscape will
not work without the blank HREF, but Intemet Explorer is
happy to play the game.

< Responding to mouse movements - Netscape I_-I_ r

Move the mouse over the phrase to
see a photograph.

When the user moves the mouse out of the picture, it
retums to the original state. You may be thinking of many
situations in which this could be useful.

Exercise 16: Changing colours on Mouse Over & Out

The onMouseOver/Out event handlers are especially useful
for lists (contents, index, etc.). In the following Web page,
each item in the list is an image containing a small blue
cube plus some text and saved as a transparent GIF file. A
second set was created but with a red cube and the same
text. (If you have used any image processing package, you
will know that it takes just a few minutes to create all six -
three blues and three reds.)

As a user moves the mouse over any of the items in the list,
it changes colour by calling up the red image file. When the
mouse moves out of the image, it returns to the blue image.

Here it is. You cannot see the changes in black and white,
but if you test it on your screen you will. The Where we are
is in a different ‘colour’ to the other two.

84

lesponding to mouse movement

A Home Page

B WwWhroweae
B whatwedo
B Whereweae

OVER-Ex16.htm

</HEAD>

<SCRIPT LANGUAGE= "JavaScript">
function ImgOverl() {
document .imgl.src = "images/who2.gif"”

)

function ImgOutl{() {

document .imgl.src = "images/whol.gif"
}

function ImgOver2() {

document .img2.src = "images/what2.gif*

)

function ImgOut2() {

document .img2.src = "images/whatl.gif”
}

function ImgOver3 () {

document .img3.src = "images/where2.gif"
}

function ImgOut3() {

document .img3.src = "images/wherel.gif"

}
</SCRIPT>

85

<BODY>
<CENTER>
<H3>A Home Page</H3>
<FORM NAME="forml">
<A HREF=""
onMouseOver "ImgOverl ()"
onMouseOut "ImgOutl() ">

<A HREF=""
onMouseOver = "ImgOver2()"
onMouseOut = "ImgOut2() ">

<A HREF=""
onMouseOver
onMouseOut
<IMG NAME="img3" BORDER=0
SRC="images/wherel.gif">

</FORM>
</CENTER>
<ADDRESS>OVER-Ex16 .htm</ADDRESS>
</BODY>

"ImgOver3 ()"
"ImgOut3 () ">

Notes:
1. Notice that we have NAMEd the three images so that the
relevant function can refer to each one.

2. Since the onMouseOver and onMouseOut event
handlers are used, we need <A> tags.

3. Although it seems that a great deal of typing was
necessary, most of it can be done with a quick copy and
paste followed by changing just a few words.

Jargon

dynamic HTML: those features of HTML version 4+ which
allow the content of a Web page to be changed. In this text
we use JavaScript to alter a page’s content. This is in
contrast to static Web pages containing conventional HTML
where the content cannot be altered.

86

link: JavaScript refers to both the <A> tag and the <AREA>
tag as links, since both can be used to load other web
documents. Both tags can use the onMouseOver/Out
handlers.

transparent GIF: a GIF image (Graphical Image Forma) is
one of two main image formats which web browsers can
recognise and display. (Browsers cannot display tiff, psd,
pcx images, for example.) Many image processing
packages allow an image in one format to be saved as
either GIF or JPEG files. JPEG is the other main browser
image format (Joint Photographic Experts Group).

A GIF image can be made transparent so that the
background shows through any irregular border rather than
being boxed into a rectangular frame.

. Using some propeih 2D %

Month of December

December

3IFs. htm

What you have learnt

1. How to use the onMouseOver and onMouseQut event
handlers. These are used with the <A> tag, not with the
usual INPUT elements such as buttons.

2. These two event handlers are trapped whenever a
mouse moves over or out of the hypertext or image within
the <A> tags.

87

3. When swapping one image for another, the Netscape
browser forces the second image into the same size border
frame as the first one. So, both images must be the same
size to avoid distortion. IE is more tolerant and will resize
the remainder of the page to accommodate the size of the
new image.

4. Using the onMouseOver and onMouseOut event
handlers avoids asking users to click buttons in order to
achieve some desired effect. When using event handlers,
we now need to think about whether we want a user to click
a button or to move over an image.

5. If an onMouseOver event is used, an appropriate
onMouseOut event is frequently required to take into
account what should happen when the user moves the
mouse out of the image.

Test 6:
6.1 Can the HTML tag be a property of the
document object?

6.2 How can one image be replaced by another image in
JavaScript?

6.3 What happens in Netscape if the image which replaces
another is of a different size to the one it replaces? Will the
same thing happen in Intermet Explorer?

6.4 Can the onMouseOver event handler be used with a
text box INPUT element?

6.5 With which HTML tag are the onMouseOver and
onMouseOQOver event handlers associated with?

6.6 What user event will the onMouseOut event handler
trap?

88

7 » Creating dynamic Web pages

If event handlers can be used to display one image for
another, why not get them to display a separate window
when, for example, a button is clicked or the mouse is
moved over a phrase? One such use could be for a
contents list or index of short phrases. When a user moves
the mouse over one, another window pops up with more
explanation. We could use an alert box, but they tend to
become irritating and we have no control over the
formatting of the text.

Exercise 17: Changing to a new Window

In this exercise, we shall open a new window when a button
is clicked and load an existing web page into it. To open a
new window simply use the following:

window.open ("new_webpage.htm")

<HEAD>
<TITLE> Opening a second window. </TITLE>
<SCRIPT LANGUAGE = JavaScript>

function openWindow()

{

window.open ("BGCOLOR-Ex5.htm")

} // EoFn
</SCRIPT>
</HEAD>

<BODY><CENTER>
<H3>Opening a new window.</H3>
<FORM>

<INPUT TYPE="button"
VALUE = "Click to Open a new window"
onClick="openWindow() ">
</FORM>
<ADDRESS>OpenWin-Ex17 . htm</ADDRESS>
</CENTER>
</BODY>

89

- Mew window example - Nelscape

Opening a new window.

Notes:

1. When the button is clicked, the event handler will open a
new window and load the associated web page into it. In
our case, the openWindow function will load one of our
earlier web pages, the one that offers a choice of
background colours.

2. The new window, containing BGCOLOR-ExS . htm, is the
one which can have its background colours changed, but
will not change the window which opened it.

3. Why not simply use an <A> tag?:
 click me

Well, what we shall see in the next exercise is that rather
than having to make an extra trip to retrieve the web page
over the Internet, we can use a function to write HTML code
into the new window. This will speed up the whole process
since the web page will be ‘created’ by the client's own
computer. Otherwise, we would prefer to use a simple <A>
tag.

Exercise 18: Creating a new window on the fly

When a button is clicked, we shall create a new window
and write an HTML document into it, complete with its own
background colour. Here is the code without <HEAD> tags.

90

<SCRIPT>

function multselections () {

var win = window.open("",null, "height=400
width=500 status=yes resizable=yes");
win.document .write(®<BODY BGCOLOR=’DSEAFF’>"

+ “<H4>How to Select Messages.</H4>"

+ “<P>To select <I>one </I> message, click it.”
+ “<P>To select a group of <I>consecutive </I>"
+ "messages, click the first and whilst holding”
+ *down the shift key, click the last one.”

+ "<P>To select messages <I>out of sequence</I>,”
+ " click the first and for subsequent messages”
+ * hold down the Control key and click.”

+ “<P>*

+ * For the really smart ones, you can combine’
+ *“ shift & Control to select groups of”

+ * consecutive messages which are out of”

+ * sequence.<P> <CENTER>~
+ “"<I>Close this window once you have read the~
+ * content.</I> +</CENTER>"

+ "<FORM> <INPUT TYPE=button VALUE='Close Me!' *
+ "onClick='self.close()'> </FORM>");

} // EoFn

</SCRIPT>

<BODY BGCOLOR=“cccc99”> <CENTER>

<H3>Selecting Messages</H3>

You can select multiple messages (using
<I>Shift</I> and/or <I>Control</I>, click button
below for details) ... <I>continue with
paragraph</I>

<FORM>

<INPUT TYPE=button
VALUE = "Making multiple selections."”
onClick="multselections()">
</FORM><ADDRESS>NEW-WIN-EX18 </ADDRESS>
</CENTER>
</BODY>

Once the button ‘Making multiple selections’ is clicked, a
new window appears. We shall now examine the code
which produces the new window.

9N

}?— New Wmdow Ne(scape

©

Selectmg Messages
You can select multiple messages (using Shift andfor
Control, click button below for details) ... continue

with paragraph ...

__‘Making muttiple sefections |

NEW-WIN-EX18

T. Netscape - I'ETB !
How to Select Messages. J

To select one message, chick .

| To select a group of comsecutive messages, click the

| first and whilst holdingdown the Shift key, clck the last
one.

To select messages out of sequence, click the first and
for subsequent messages hold down the Control key
and chck. 4

For the really smart ones, you can combine Shift
& Control to select groups of consecutive

messages which are out of sequence.

Close this window once you have read the content.

Let us look at the arguments of window.open before we
examine our code.

92

window.open()
It contains four arguments, although we have used but
three.

window.open (url, name, [features, [replace]l)

url: is a string value containing the web address of the
document to be fetched and opened by the window object.
that was the only argument we used in the earlier example.

window.open ("BGCOLOR-Ex5.htm")

It fetches the web page referenced or opens a new blank
window if the argument is empty (“~). It can be a complete
or partial web address.

name: this argument can be used as the window name to
use in the TARGET attribute of a <FORM> or <A> tag. If
none exists put in null. (If you are into frames, this could
be useful.)

features: specifies what features of the browser you want in
the new window.

(Notice that both the teatures and the replace
arguments are in square brackets.

[features, [replacell. Inmany reference iexts,
the square brackets signifiy that those arguments are

optional.)

toolbar: Back and Forward buttons, etc.
location: the URL location field

directories: What's New, What's Cool, etc.
status: the browser’s status line

menubar: the menu at the top of the window
scrollbars: enables scrollbars when necessary
resizable: allows the window to be resized

width - height: the windows dimension in pixels

My version of Netscape does not seem to accommodate
width/height nor resizable. It seems to restrict the size of the
new window to the size of the window which opened it!
Rather like a second image, it cannot be larger than the first
image it replaces. IE, on the other hanc, behaves better.)

93

.

When the features string argument is absent, the new

browser window has all the standard features. When

specified, the window browser includes only those features

specified. Features may be specified by yes or no or with

digit 7 (yes) or zero (no).

window.open("", null, "height=400 width=500
status=yes resizable=1");

replace: an optional Boolean value (true or false) which
allows new entries to be made to the Browser's history. It
does not make much sense to use this argument for newly
created windows. It is intended for use when changing the
contents of an existing window. We shall ignore this
feature.

Now let us examine our own code.

Notes for Exercise 18:
1. First of all, there is:

var win = window.open("",null,
"height=400 width=500 status=yes
resizable=1");
win.document .write("<BODY BGCOLOR=’DSEAFF’>"
+ ”<H4>How to Select Messages.</H4>" .. etc ..

This code creates an instance of the open method of the
window object and assigns it to a variable win. In other
words, it creates a new window called win. We have to
assign the new window to a variable because we need to
use the document.write() method to write our HTML code.
But because there are now two windows, the original
window and this new window, we must specify which
window to write into. We can refer to the new window via
the variable win.

A new window object is assigned to win. It has an empty
url, in which case, a new blank window will be opened. It is
not destined to become the value of a frame or form target
attribute, so the second argument is set to null. lts
features are:

94

s width and height of 400 x 500 pixels (Netscape none too
happy with this)

* we allow the user to resize the window if he/she desires

* finally, we have included the status bar

All other features which are not specifically mentioned will
not be included.

3. What is in the next piece of code?:

win.document .write("<BODY BGCOLOR='DSEAFF’>"
“<H4>How to Select Messages.</H4>*

“<P>To select <I>one </I> message, click it.”
“<P>To select a group of <I>consecutive </I>"
messages, click the first and whilst holding
down the Shift key, click the last one.
“<P>To select messages <I>out of sequence</I>,”
click the first and for subsequent messages”
* hold down the Control key and click.”
»<P>*

#» For the really smart ones, you can combine*
» shift & Control to select groups of*

* consecutive messages which are out of*

* sequence.<P> <CENTER>~
“<I>Close this window once you have read the”

* content.</I> +</CENTER>"

“<FORM> <INPUT TYPE=button VALUE='Close Me!' "
“onClick="'self.ciose()'> </FORM> </CENTER>"
y; // Closing write bracket
} // EoFn

PR T T T T e S e S

It is the write() method of the win document object and it
contains all the HTML code we wish to display. (Remember
win is the name of the variable we assigned to the new
window).

What is so wonderful about this? Well, instead of getting a
user to click on a hypertext, thereby
forcing the browser tc use the Internet to retrieve a copy,
our page will be created on the fly by the browser at the
client-side. | used this page three times in one of my
documents. This meant that the browser could generate the
page each time without having to use the Internet.

95

4. It is important to remind your readers to close this new
window before moving back to the original. If it is not
closed, it remains open and can cause problems. For this
reason, we have added a button which the user can click in
order to close the new window. Here is the code:

+ “<FORM> <INPUT TYPE=button VALUE='Close Me!' *
+ “onClick='self.close()'> </FORM> </CENTER>"

Do note the correct use of double and single quotes!

close() is a method of the window object. It takes no
arguments. lts purpose is to close a window. self and
window are synonyms for ‘the current window'. So, either
self.close() orwindow.close () could be used.

Since close() is also a method of the document object, we
had to specify that it was a window that had to be closed.
Either of the above will close the current window.

Exercise 19: Using onMouseOver & onMouseOut

- New Window - Netscape

Selecting Messages

You can select multiple messages using Skift and/or
Control. (Move your mouse over the phrase below

for details.) ... continue with paragraph ...
How to select Multiple Messages

Win-Mouse-Ex 19.htm

We shall repeat the previous exercise but use mouse event
handiers. They are sometimes more effective.

96

<SCRIPT>

function removewindow() {
win.close()

} //EoFn

function multselections () {

win = window.open("*,""," height=400, width=500,
status=yes, resizable=1");

win.document .write ("<BODY BGCOLOR=‘DS5EAFF’>"

+ “<CENTER><H4>How to Select Messages.</H4>"

+ *“</CENTER>"

+ “<P>To select <I>one </I>"

+ “message, click it."

+ “
To select a group of <I>consecutive </I>"

...... as before
weee... as before

} //EoFn

</SCRIPT>

<BODY BGCOLOR="DSEAFF">
<CENTER>

Selecting Messages

You can select multiple messages using

<I>Shift</I> and/or <I>Control</I>.

(Move your mouse over the phrase below for

details.)

<I>continue with paragraph</I>

<A HREF="" onMouseOver="multselections()"
onMouseOut = "removewindow()">

How to select Multiple Messages

<P>

<ADDRESS>Win-Mouse-Ex19.htm </ADDRESS>

</CENTER>

</BODY>

Notes:

1. Since onMouseOver and onMouseOut are event
handlers of the <A> tag, the user will have to move the
mouse over and out of some hypertext words in order to
generate these events.

2. When the user moves over the hypertext words, the
onMouseOver event handler will create the new window.
When the user moves out of the phrase, the onMouseOut
event handler will close the window. So we can dispense
with the Close Me button in the new window and replace it
with the removewindow() function which is invoked by
the onMouseOut handler when the user moves the mouse
away from the hypertext.

3. Finally, there was no requirement to encase the <A> tags
in a FORM since we did not need to refer specifically to the
form.

What you have learnt

1. You can create new windows (as opposed to pop-up
boxes - confirm, alert and prompt) with whatever text and
HTML tags you wish. Pop-up boxes allow just text entry.
You cannot format that text by including HTML tags.

2. By creating your own windows, the browser does not
have to connect to the Internet in order to display a copy of
the page. It saves time!

If you think about it, you may find this sort of feature useful
in many distance learning environments. If someone is not
sure about a term being used, rather than spell it out to all
those who already know it thus wasting their time in having
to scroll past it, invite your readers to click on a button or
move their mouse over the term to reveal further details.

3. When using onMouseOver, it is often necessary to
include a complementary onMouseOut handler to describe
what to do when the mouse is moved out of the phrase or
image contained within the <A> tags.

4. We have seen the relative merits of using onClick and
onMouse handlers to create new windows.

5. The onMouse handlers may be used with either text or
images encased within their <A> tags.

98

6. By using window.close() or self.close() we are able to
close a window which has been opened.

Jargon
None, thank goodness!

What is next:

In previous chapters, we have examined some of the things
we can do with JavaScript, such as:

write out messages

use pop up boxes

create event handlers to execute functions
pass relevant data as arguments to functions
perform calculat'ons

replace images

create our own windows

Now we need to extend our knowledge of the JavaScript
programming language so that we can do more. in Chapter
8, then, we shall examine the programming features of
JavaScript so that we can begin to do such things as:

validate Form input

create order forms and calculate customer invoices
animate images

work with dates ard time

create cookies

Test 7:

7.1 How many arguments does the window.open() method
take?

7.2 If you do not want to open an existing HTML document
in a new window, is it still necessary to include the first
argument?

7.3 In the following code, why is null not in quotes?

var win = window.open(“”,null,
“height=400 width=500 status=1l
resizable=yes status=07");

99

7.4 Why was it necessary to assign the new window object
to the variable win in Exercise 18 &19, but not in Exercise
17?

7.5 What do you think would happen if you were to use
window rather than win in the removewindow function for
Exercise 197

function removewindow ()

{

window.close ()
} // EoFn

It has not been discussed in the Chapter, but see if you can
work it out before looking at the answer. You will need to do
this kind of investigative work when writing your own
programs.

100

Summary of JavaScript so far:

Object: its Methods its Properties
window alert ()
client-side confirm()
prompt ()
open ()
close()
document write() bgColor
client-side writeln() many HTML tags,
close() e.g. forms,
images, anchor
Maths sgre ()
core round()
All objects eval ()
Operators Purpose Example |
= assignment x =x +1
+ arithmetic addition 142
+ concatenate *a" + “b”
() function call function abc ()
{} embed function
code
" Event Handlers
onClick used with FORM's
text box, button
onMouseOver used with <A> and
onMouseOut <AREA> tags
Keywords Meaning
null speciai value indicating ‘no value’
undefined special value indicating ‘does not exist’
var defines a variable name

101

Escape Sequences

The backslash character (\) provides a special purpose in
JavaScript strings. It is followed by a character or a number
and is called an escape sequence. For example, suppose |
wish to write out via a document.write or alert box:

Read this play: “Macbeth”.

alert (*Read this play: “Macbeth”.”)

The second double quotes would be taken as the closing set of
the first and would confuse the browser. However, by using an
escape sequence, we bring to the attention of the browser that
the second (and third) double quotes are used in a special way.

alert (“Read this play: \“Macbeth*.~)

The backslash ‘escapes’ from the usual interpretation of the
character. In the above case, it will write out double quotes
before and after Macbeth rather than interpret them as
containing a string.

Sequence Character

\b backspace

\n newline

\r carriage return

\t tab

\! apostrophe

\” double quote

A\ backslash

\\xnn where nn is a hexadecimal number representing a
character from the Latin 1 encoding. x indicates a
hexadecimal value.

alert("Hallo. \r I\'m Fred \xAE \t \\ \\my
name has been registered.")

Miciosoft Internet Explorer

AE is ®.
A9is©
A5 is ¥. A

BD is V.. oo
E8is &, etc.

102

8: Programming with JavaScript

In this chapter we shall begin to examine some of the
programming features of JavaScript and to understand the
jargon. Some more features are discussed in Chapter 14.

Our natural languages have different character sets:
English has 26 letters; Italian has 20 characters similar to
our own; Greek and Cyrillic languages have characters
which look different to our own.

Likewise, each programming language has its own ‘feel’
and rules, although all have features which are similar.
JavaScript is similar to C and Java, but is different to some
other languages such as Fortran, Pascal or COBOL.
However, all programming languages comprise the
following basic features:

creating, storing and moving data
input and output of data

making decisions

repeating instructions

In practice, there is not a great deal to the basics of
programming. The four features above summarise the
whole of programming. They can all be leamt in a few
hours. But what does take time and effort is practice and by
practising gaining experience.

So what follows is not difficult - perhaps a new way of
thinking for those who have not programmed before - but
you will need time to put it into practice.

(This is why many firms aadvertising for programmers want
someone with a minimum of six to twelve months experience.
First, because if you have not been ‘let go’ by your company
before six months, you have programming potential. Secondly,
after about a year's practice, you will have gained sufficient
experience to be useful to your new employer.)

103

Each programming language has a set of rules (the syntax)
whereby it can recognise and differentiate between such
things as numbers and text. There are specific rules for:

= how decisions are made

* how to repeat a series of instructions

= how to create variable names

= indeed, how to write numbers

For example, we have already seen that case is significant
when using variable names, thus a variable ABC is not the
same as a variable abc or aBc. Likewise, document is
correct but not DOCUMENT.

When using numbers, 123 signifies a decimal number,
whereas 0123 would indicate an octa/ number and 0x123
would signify a hexadecimal number. We shall not discuss
octal and hexadecimal numbers in this text since their
usage is left to more advanced programming.

Programming features of JavaScript

1. Data

1.1 Data types

Data may be numbers, text, or Boolean values (true and
false - 'yes’ or ‘'no’). The latter are mainly used to make
decisions and whether to repeat instructions.

Numbers

123 is called an integer (a whole number) because it has
no decimal places whereas 123.45 is a real number
(sometimes called a floating poinf) because it does have a
decimal point and digits after it.

There are also octal and hexadecimal numbers which are
used in certain circumstances. Octal (base 8) and
hexadecimal (base 16) need to be specified in a different
way so that they can be distinguished from decimal
(normal) numbers.

104

e v

octal: 0123 would be recognised as an octal number
because of the leading zero. This implies that normal
decimal numbers must not be preceded by zeros.

hexadecimal: These numbers need tc be preceded by 0x ‘
(a leading zero) and the digits used are 0-9 A B C D E

F. Thus: O0xE = decimal 14. Case is not significant,
therefore, 0XE is the same as Oxe.

Text
, In programming, any piece of text is usually called a string
(a string of characters). They are enclosed in double quotes
or single quotes and are sometimes referred to as ‘quoted
strings’. Thus:

"The cat sat on the mat" is a string. Likewise,
"123" is a text string, not a number, because it is enclosed
in quotes.

Booiean Values

With some features, such as ‘if.. else’, it may be necessary
to test whether something is true or false. These are known
as Boolean elements (after George Boole who first used
them in conjunction with Boolean algebra). They take one
of two values, true or false:

X = true; result = false;

We can see an example on page 111, Exercise 20.

1.2 Variables - Storing Data

We have already seen examples of how variables are
used. They contain values: numbers, text or Boolean.
However, in JavaScript case is significant. This means that:

var ABC = 12 isnotthe same as var abc = 12.

Rules for Naming Variables
Variables are also known as identifiers. When creating a
name for them you must abide by these rules:

A variable name must begin with a letter, a $ or an
underscore (_). The latter two are sometimes used by

105

programmers when they wish to draw attention to a
particular use of a variable, otherwise, most variables begin
with a letter. The subsequent characters in the variable
name may consist of digits and other letters but spaces are
not permitted.

Variable names must not be the same as reserved words.
These are words which have a particular significance to
JavaScript and form part of the language syntax. We have
met many, such as return, function, close, open, Math,
document, window, etc. These cannot be used as
identifiers.

Case

Because JavaScript is case sensitive, AbC, abc, ABC
would be seen as three totally different identifiers. Here are
some valid examples: Numberl, number2, number_3,
_number4, S$number. Itis customary to keep all variable
names in lowercase, unless you wish to draw attention to a
particular variable.

Certain reserved words have their own special case identity
which, if not strictly adhered to, JavaScript will not
recognise. We have already seen that eval() and alert()
have a different case to Math. Date is another one we shall
meet in Chapter 10.

Intercapping

JavaScript allows for intercapping. This is when some
characters in the middle of a word are in uppercase. We
have already met several: onClick, onMouseOut, and so
on. Since these are attributes of HTML tags, their case is
not significant. However, it is customary to type them as
shown.

Variables are automatically created when assigning a value
tothem:abc = 12;

Here the variable abc is declared and also initialised by
having the decimal value 12 assigned to it. Whereas, var

106

abc; is declared but not yet initialised - it would be
undefined.

ABC = "Hallo there!" The variable ABC is created
and assigned the string value "Hallo there!”

Scope of variables

If you precede a variable name with the keyword var and it
is used within a given function, then it becomes /ocal to that
function. In other words, if the same variable name is used
in another function, it will not be the same one. If the
keyword var is left off, then the variable will be recognised
in other functions within the same Web page. It would then
be known as a global variable.

Generally speaking, if you use a variable within a function
which you do not intend to use anywhere else in your Web
page, you should make it local to that function. That allows
you to use the same name, either by design or
inadvertently, in other functions within the same Web page
and there will be no clash of identity.

Scope, then, refers to whether a variable is local or global.
When a variable is created in a function using the keyword
var, it becomes local 1o that function. If the var keyword is
omitted, it becomes global and will be recognised by every
other function within the same page. Note that variabies
created within <SCRIPT> tags are global.

1.3 Operators: - Working with Data

These are symbols which have a meaning. For example
1+2, means ‘add 1 to 2". The + sign is called an arithmetic
operator. Incidentally, if you wrote the following expression:
1+2; JavaScript would calculate the result (3) but since it
has not been assigned to a variable nothing more would
occur.

In the following table we show many of the common
operators used when working with data, such as assigning
data to a variable, comparing one value with another,
checking the contents of a variable.

107

Operator | Type of operator Operation performed
+ - */ arithmetical basic arithmetical functions
+ string concatenate (not addition,

used in write())
&& 1] ! logical AND, OR, NOT
= assignment assignment (not equals)

The next six are the comparison operators

== equality equality, tests for equality
!= inequality test for inequality
< less than
<= less than or num <= 99
equal to
> greater than,
>= greater than or
equal to
++ increment add 1
-- decrement subtract 1

There are others which we shall come across later.

1.4 Expressions

An expression contains any mixture of numbers, variables,
text strings, operators and logical values which JavaScript
supports. It is often assigned to a variable. Here are some

examples:
Assign_ Expression
X = | 3+4
X = | "one string® + "a second string"”
number = | 73.9
X = | number + 23 / 56
test = | false

108

1.5 Literals
Since literal looks a rather odd term, it is mentioned here
more out of completeness than need. It refers to any data
value that appears within a program. Here are some
examples:

12

12.34

‘a piece of text’
“another piece of text”
false

true

null

Frequently, they are operated on by operators. Thus, in the
following, two numerical literals are added together and the
result assigned fo a variable:

X = 23 + 45.7;

2. Input & Output of Data

As with all programming languages, JavaScript code

typically works on data (data literals to be pedantic). Before

it can do so it needs to obtain some data. This can be done

in several ways. Either by assigning data to a variable:
datal = 23;

or, by getting a user to enter some data via a prompt
dialogue box or a FORM text box. This is what is meant by
inputting data. Once we have the data, it can be processed
and results output via the document .write () method or
via a FORM's value property. All of these have been
discussed in detail in the preceding chapters.

document . forml .addressl.value = “Enter address.”;

var x = 123;
document .writeln(“Print out value: ” + x);

JavaScript also has the means to evaluate user's actions
(events) such as: clicking a button or moving the mouse
over an image or hypertext in <A> tags or <AREA> hot-
spots. In a sense, this can be classed as ‘data’ since the
events can be trapped and some action taken.

109

3. Making Decisions

This is something we do many times each day. In
programming, it is sometimes necessary to make a
decision based on some input.

Here is a very simple example, yet it illustrates all the
syntax for this feature.

Let us suppose, we need to find out whether someone is
over 18 years old. If so we can let them shop in our
Shopping Mall, otherwise we have to refuse them. This
feature is one of the basic statements used for validating
user input in FORMs.

WARNING: to make the following pages more readable, i f
and else have sometimes been put in uppercase. They
must always be written in lowercase in your JavaScript
code!

Exercise 20: if.. else statement

if-else Exercise

Sorry, you are too young.
if-else-Ex20.htm

Microsoft Internet Explorer

110

<HEAD><TITLE> IF..ELSE</TITLE></HEAD>

<BODY>
if-else Exercise
<SCRIPT LANGUAGE="Javascript">
var x = window.confirm("Are you over 18 years
old?*")
if (x == true)
{
document .write("Welcome to My Shopping Mall.")

else
{
document .write("Sorry, you are too young.")
}

</SCRIPT>

<ADDRESS> if-else-Ex20.htm </ADDRESS></BODY>

Notes:

1. We first set up a Confirmation box inviting the user to be
honest and tell us whether he/she is over 18. If OK is
clicked, JavaScript assigns true to the variable x. If Cancel
is chosen, variable x is assigned the value false. This
provides an example of the use of a Boolean value.

soft Imteinet Explorer [x}

2. The next step is to test which of the two values has been
stored in the variable x. It is the IF.. ELSE statement which
makes this easy. (Statement is a term used to refer to such
programming features; command may also be used in
place of statement) Notice how the variable is put into
round brackets (x == true) and that the equality
operator is being used. If it is true, we want to welcome the
person into our Shopping Mall, otherwise we have to refuse
them entry. Here is the general syntax for this statement:

m

if (condition to be evaluated)

{ do whatever is necessary if TRUE }
else

{ do whatever is necessary if FALSE}

. carry on here when either the IF or the ELSE
block has been executed.

The condition (in our case, ‘does x equal true’) is tested
automatically by JavaScript each time it comes across an IF
statement. If the result is true then whatever follows the IF’s
opening curly bracket will be executed until it meets the
corresponding closing curly bracket. It will then continue
with whatever statements follow the ELSE's closing curly
bracket.

if the result is false, the IF block is ignored and whatever
follows the ELSE’s opening curly bracket will be executed
until it meets the closing curly bracket. Then it will continue
with whatever statement follows.

All this is done automatically by JavaScript since this
behaviour has been built into the IF.. ELSE statement.

3. Notice that there is a set of curly brackets for the IF and
another for the ELSE. They help to mark the beginning and
end of each block. We call the statement(s) after the IF and
after the ELSE a block. In our example we have only one
instruction, but there can be as many instructions as
needed. Each one should end with a semi-colon and,
although optional, is highly recommended.

4. The instruction following the IF .. ELSE statement will
always be executed regardless of whatever action was
taken inside the feature. As programmers, you must be
aware of this and ensure that it is the correct thing to do in
either situation.

5. The positioning of the curly brackets is the same as for
functions.

112

Further points about the IF .. ELSE

1. You do not need to have the ELSE. Thus the following is
correct and valid provided nothing needs to be done when
x is false.

if ((x)
{ window.alert ("Welcome to My Shopping Mall")
} // end of IF block
. next instruction whether x is true or false

In the above, next instruction will be executed when
either the alert box has been cancelled by the user or when
x is false. In the latter case, the alert box will not appear.

2. Why do we simply have (x) rather than (x == true)?
This looks strange, but if you think about it, x is a Boolean
variable which has the value of either true or false. When
JavaScript tests this variable, the result is one of the two
possibilities. Therefore, we only need to type in the variable
name. The longer version makes the code easier to read,
but is not necessary.

3. Strictly speaking the IF and the ELSE and many other
commands process single statements. Hence there is no
real need for the curly brackets. Therefore, this is valid:

if (x)
alert ("x is true")
else
alert (*x is false”)
. carry on here whether x is true or false...

There are no curly brackets, but it is more difficult to follow
and prone to errors. To see an example of how easy it is to
make programming errors, look at the Test question 8.10. A
must!

More often than not, you do want to execute more than one
instruction in which case you have to enter a compound
statement. A compound statement is a group of instructions

113

enclosed within curly brackets. The instructions within the
curly brackets effectively become a ‘single’ statement.

if (condition)
{ instruction 1;
instruction 2; instruction 3;
}
else
{instruction 1;instruction 2;
instruction 3;
instruction 4;
}
. carry on here ...

Note how useful the curly brackets are when trying to read
this program. They clearly mark the start and end of a block
of code. As a matter of style, | would include them even if
there is only a single instruction. You never know when you
might wish to add an extra instruction or two and then forget
to use curly brackets to indicate a compound statement.

Notice that each instruction ends with a semi-colon. When
more than one instruction is put on the same line, you must
include semi-colons. But it is recommended practice to
always include them, even when there is only one
instruction per line.

4. In the above example, we used the word condition inside
the round brackets after the IF word. The condition can be
any JavaScript expression that evaluates to true or false,
even functions. Thus:

if (xyz == 10)

{ document .write("The number is 10"); }
else

{ document .write("The number is not 10");}
//
if (username == “Fred”)

{ document .write("Your name is Fred"); }
else

{ document .write("Your name is not Fred");}
//

114

if (userentry <= 69)

{ document .write(*Your entry is less than 70"); }
else

{ document .write("Your entry is more than 69");}

Note the presence of the double equal sign (==) operator,
meaning is equal to and (<=) meaning less than or equal to.
There must be no space between the two symbols. These
are called comparison operators. See Chapter 14 page 215

(Beginners frequently confuse the assignment operator (=) with
the equality operator (==). But they are different. In an IF
statement, the condition in round brackets must be evaluated
via an equality operator to see whether it is equal to true or
false. Depending on the outcome, either the IF block or the
ELSE block of instructions will be executed. In an assignment
statement the single equal symbol is an assignment operator.)

5. The condition tested by the IF statement can be a
function. This makes it quite a powerful feature. See page
159 for a discussion about the return statement.

if (my_function()) (

.. do this when function returns true ..
}

4. Repetition

WARNING: to make these pages readable, for has
sometimes been put in uppercase. It must be written in
lowercase in your JavaScript code!

We now tumn our attention to a feature which allows for
repetition. A for loop repeats a set of instructions enclosed
in curly brackets until a specified condition is met. For
example, repeat ‘this code’ ten times and after ten times
proceed with the rest of the script.

The for loop consists of three parts within round brackets:

for (initialise; condition; increment)
{ instructions to repeat ... }
. next instruction once the above
has been repeated ...

115

In order to repeat a series of instructions, you have to start
at some value (initialise); test it to see whether the loop
needs to be repeated again (condition); and increment the
value (increment) if the condition has not been met.

Here is a simple example. Suppose we wish to sum the first
ten numbers and print out the resuit. Not the most exciting
of things to do, but it does illustrate how this feature works.
This will involve repeating some instructions and stopping
once a condition has been met. Here is the code:

<SCRIPT>
sum = 0;
for (i 1; 1 <= 10; i=i+1)

{ sum sum + i; } // EofIF
document .write("numbers 1-10 = " + sum)
</SCRIPT>

When JavaScript first meets this FOR loop, 1 will be set to
1 - the initialisation step. (It will not repeat this part again.) It
is usually a simple assignment statement, but note the
semi-colons after the initialise and condition statements.

It will then test whether the condition (i <= 10;) has been
met. Note how comparison operators are used for this part.
First time around, i is not less than or equal to 10, so
JavaScript will execute the code between the curly
brackets. (If the condition were not true, the for loop’s
instructions would not be executed.)

When the FOR block has been executed, the variable 1 will
be incremented according to the increment statement -
here 1 is incremented by one: (i=i+1) i is now = 2; (but it
could be incremented by more than 1 or by a negative
value if a descending order were required! or, even, by a
real number).

it then returns to the condition, to determine whether to
repeat the code again. The value 2 does not meet the
condition, so it then repeats the instructions in the loop

116

again. After which, 1 is incremented again - now = 3, the
condition tested to see whether 1 exceeds 10 ... and so on.

Eventually, i will exceed or become equal to 10, in which
case the code will no longer be executed. JavaScript will
then move to whatever instruction follows the FOR loop.
See Chapter 13, page 198, for an example of the FOR loop.

The Increment Operator

One of the unusual features of the C programming
language, and also part of JavaScript, is the use of the
increment operators: ++x & x++. C was devised by
programmers for programmers. The most common
arithmetic statement in any program is: x=x+1.

Those who devised the C language created a shortcut to
this statement: x++ It is equivalent to x=x+1.

The increment operator increments its variable by 1 and
only by 1. This operator will not increment by any other
value. It is ideal for the increment within a FOR loop. Thus,
we frequently see the following in a FOR loop:

for (i = 1; i > 10; i++) whichis the same as:
for (i = 1; i > 10; i= i+1)

Another odd thing about this feature is that you can add 1 to
the variable, i in our example, before (++1i) the loop is
executed or add 1 after the loop is executed (i ++).

i++ is called the postfix operator; 1 (and only one) is added
to the variable i after doing something;

++1 is called the prefix operator; 1 is added to i before
doing anything else. Sometimes one is better than another.
You will know instinctively which to use when the occasion
arises.

Decrement Operator

This works in exactly the same way as the increment
operator except that it subtracts 1 from its variable. We do
not have an example in this book, but bear this feature in

17

mind should it ever prove useful. (Some programmers use
it for traversing arrays from the bottom up. See page 194
for use of arrays.)

Jargon

block: refers to a group of instructions, for example those
repeated by a for loop or when an if condition proves true.
They are also sometimes referred to as a clause. (Sorry
about this, but you may come across these terms in other
texts and wonder what on earth they are talking about.)

compound statement: Many features execute single
statements. But when more than one statement needs to
be executed, the ‘single’ statement has to be converted into
a compound statement by enclosing all the statements in
curly brackets. The many effectively become one.

identifier: another term meaning a variable.
interCapping: the use of Capital letters within a word.

reserved words: those words which have special meaning
in JavaScript. Many have a fixed case and if the case is not
preserved, they will not be recognised by JavaScript.
Examples are: if, else, for, alert () (all lowercase)
and Math with M in uppercase. Such words should never
be used as variable names (identifiers).

scope: refers to where a variable is recognised. Local
variables are recognised only within the function in which
they were created. Global variables can be recognised by
any other function within the same Web page.

What you have learnt
1. We saw that all programming languages have four basic
features:

creating, storing and moving data
input and output of data

making decisions

repeating instructions

118

We have seen how the JavaScript syntax allows for these
features.

2. There are several types of data: numbers, text and
Boolean. Typically, data is assigned to variables.

3. The rules for creating variable names and the scope of
variables.

4. How to use the various types of operators with data.
5. How to get users to input data.
6. How to make decisions and how to repeat instructions.

7. The special increment and decrement operators so
beloved by C programmers. Once you begin to use them,
you too will get to love them! (I did not believe | would when
| first came across them.)

8. That what has been covered in this chapter belongs to
the core features of the JavaScript language. Previously,
most of what we have discussed has belonged to the client-
side JavaScript.

Test 8:

8.1 What are the four basic features of any programming
language?

8.2 What is an integer number and what is a rea/ number?

8.3 How can you capture, for subsequent processing, what
a user has typed into a text box or a prompt box?

8.4 Give one example of where case is not significant and
one where it is?

8.5 What is happening in the following code?

var x = 1

8.6 What is happening in the following code?
if (x == 1) { ...}

119

8.7 According to its syntax, an if statement can execute
only a single instruction. How do you make it execute more
than one instruction?

8.8 What do the following do?
a) ++i b) k--

8.9 What will be written out by the document .write()
method for the following?
<SCRIPT>
var aBc = 12
var abc
document .write("Variable abc is: ” + abc
+ "
Variable aBc is: " + aBc)
</SCRIPT>

8.10 Look very carefully at the following code and work out
what will be written out after the code has been executed.

(Note:
a) another shortcut, beloved by C programmers and
now part of JavaScript, which can assign a value to
more than one variable in one statement.
b) IF statements can be nested as we see in the
following.
c) . means ‘therefore’)

i =3 =1; // both i and j assigned value of 1
k = 2;

if (i == j) // i does equal 1 .. true
if (j==k)
document .write(“i equals j”);
else
document .write(“i does not equal j”);
// Oops!

8.11 Why cannot a variable name begin with a digit?

120

8.12 What will happen in each of the following?
a) This one is correct.

<SCRIPT>

sum = 0;

for (i =1; i <= 10; i++)
{ sum = sum + i; }

document .write("numbers 1-10 " 4+ sum)
</SCRIPT>

b)

<SCRIPT>

sum = 0;

for (i = 2; i <= 10; i++)
{ sum = sum + i; }

document .write("numbers 1-10 " 4+ sum)
</SCRIPT>

c)

<SCRIPT>
for (i 1; 1 <= 10; i++)
{ sum sum + i;)}
document .write("numbers 1-10 " 4+ sum)
</SCRIPT>

d)

<SCRIPT>
var sum;
for (i =1; i <= 10; i++)
{ sum = sum + i; }
document .write("numbers 1-10 * 4+ sum)
</SCRIPT>

e)

<SCRIPT>

var sum = 0;

for (i =) 1; i =] 10; i++)
{ sum = sum + i; }

document .write(*numbers 1-10 * 4+ sum)
</SCRIPT>

121

Why were computers used?

The main reason for using computers is their ability to make
decisions and to repeat instructions at high speed without
getting tired.

Decisions are necessary when any data, read in by a program,
is unknown and one of several actions must be taken
depending on the value of the data. The decision-making ability
ofthe if ... else feature is fundamental to programming.

Repetition is also crucial. Give a human being a task which
involves repeating some actions many times, and boredom and
loss of concentration will overpower the human. Mistakes will
then be made. However, the humble computer will quite happily
repeat the same old task, hundreds, thousands, even millions
of times and never fall foul of our human condition.

Incidentally, it was precisely this feature which led the
mathematician Charles Babbage to invent ‘computers’ back in
1819. His were mechanical unlike our own electronic versions.
The computation of logarithms had made him aware of the
inaccuracy of human calculation around 1812. He wrote in “C
Babbage, Passages from the life of a philosopher (London,
1864)":

“l was sitting in the rooms of the Analytical Society, at
Cambridge, my head leaning forward on the table in a kind
of dreamy mood, with a table of logarithms lying open
before me. Another member, coming into the room, and
seeing me half asleep, called out, ‘Well, Babbage, what are
you dreaming about?’ to which | replied ‘| am thinking that all
these tables (pointing to the logarithms) might be calculated
by machinery.'”

For an excellent article about Babbage, try the search engine
AskJeeves (http://www.askjeeves.com) and enter “Who
was Charles Babbage?”. From the many choices offered, |
chose: “Where can | learn about the mathematician -
Babbage.”

122

9 = Calculator Example

So far, all our exercises have been relatively short, although
practical. In this Chapter, we shall see what a large
JavaScript program looks like. It is not a difficult exercise
but it is worth studying carefully. It uses many of the
features we have already covered and a few of the Math
object which we have not. These are explained in the notes
which follow. It will also explain how to use JavaScript code
to compute loan payments. You will be able to think of
many more uses for your own Web pages.

Exercise 21: Computing a loan payment

|

EETE—

Loan Information:
Annual % rate of interest: [8.25

Repayment period (in years) ‘10 -

Amount of loan (any Is 0000
1 cumrency)
Payment Information:
Your Monthly payment: |6 13.26 -
Your total payment: |73591. 58

Your total interest payments: [23591. 58

Loan-Ex21.htm

123

We invite someone to enter the following information and
get JavaScript to calculate the payments.

= how much to borrow
= over how many years
= at what interest

(My God! We could use the following to see whether our
car repayments computed by our ‘friendly, local’ second-
hand car dealer are indeed accurate.)

<HEAD>

<TITLE> Want a Loan?</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function calculate(){

/*get user’s input from FORM and assume it is
valid.
- convert the annual rate to a monthly rate
- convert interest from a & to a decimal
- convert payment period from years to months
- compute the monthly payments */

var principal =
document .loan.principal.value;
var interest =
document . loan. interest.value / 100 /12;
var payment =
document . loan.years.value * 12;
var x = Math.pow(l + interest,payment);
var months = (principal*x*interest)/(x-1);

/* Check that the result is a finite number.
If so display the results */

if (!isNaN{(months)
&& (months != Number.POSITIVE_INFINITY)
&& (months != Number .NEGATIVE_INFINITY))
{document. loan.payment .value =
rounding (months) ;
document . loan.total.value =
rounding (months*payment) ;

document . loan.totalinterest.value =
rounding ((months*payment) - principal);
} // EofIF

124

// user’s input invalid so display nothing.

else

{document . loan.payment .value="";
document . loan.total.value="";
document . loan.totalinterest.value="";
} // EofElse

} // EoFn Calculate

// round to 2 decimal places function

function rounding(x) (

return Math.round(x*100)/100;

} // EoFn rounding

</SCRIPT></HEAD>

<BODY>

<FORM NAME="loan">

<TABLE>

<TR><TD COLSPAN=2>Loan Information:

<TR><TD> Annual % rate of interest:

<TD> <INPUT TYPE=text NAME=interest SIZE=12
onChange="calculate()">

<TR><TD> Repayment period (in years)

<TD> <INPUT TYPE=text NAME=years SIZE=12
onChange="calculate()">

<TR><TD>Amount of loan (any currency)

<TD> <INPUT TYPE=text NAME=principal SIZE=12
onChange="calculate() ">

<TR><TD COLSPAN=2 ALIGN=right>

<INPUT TYPE=button VALUE="Calculate Loan"

onClick="calculate()">

<TR>

<TD COLSPAN=2>

 Payment Information:

<TR>

<TD> Your Monthly payment:

<TD> <INPUT TYPE=text NAME=payment SIZE=12>

<TR>

<TD>Your total payment:

<TD> <INPUT TYPE=text NAME=total SIZE=12>

<TR>

<TD> Your total interest payments:

<TD> <INPUT TYPE=text NAME=totalinterest
SIZE=12>

</TABLE></FORM>

<ADDRESS>Loan-Ex21.htm</ADDRESS></BODY>

125

Notes:

1. Most of the code should be familiar by now, apart from
some of the Math methods which are examined below. It is
worth spending some time studying this Exercise since it
will bring together many of the features of JavaScript which
have been discussed in the preceding chapters.

2. Before we tackle the mathematical bit, note how var x
in Calculate() is local to that function. Function rounding()
also uses a variable x, but there will be no confusion with
the value of the variable x in Calculate().

3. We have one rounding() function which is invoked from
three places, yet each time with a different argument. The
point was made in Chapter 3, page 49, how the same
function can be used to work on different data via
arguments. Now we can see a working example.

The purpose the return statement used in the rounding()
function is discussed below.

4. | hope you agree that t