

Using
Visual Basic

_— —

Using Visual Basic

Books Available

By both authors:

BP327 DOS one step at a time

BP337 A Concise User's Guide to Lotus 1-2-3 for Windows
BP341 MS-DOS explained

BP346 Programming in Visual Basic for Windows
BP352 Excel 5 explained

BP362 Access one step at a time

BP387 Windows one step at a time

BP388 Why not personalise your PC

BP400 Windows 95 explained

BP406 MS Word 95 explained

BP407 Excel 95 explained

BP408 Access 95 one step at a time

BP409 MS Office 95 one step at a time

BP415 Using Netscape on the Intemet®

BP420 E-mail on the Intemet*

BP426 MS-Office 97 explained

BP428 MS-Word 97 explained

BP429 MS-Excel 97 explained

BP430 MS-Access 97 one step at a time

BP433 Your own Web site on the Internet

BP448 Lotus SmartSuite 97 explained

BP456 Windows 98 explained*

BP460 Using Microsoft Explorer 4 on the Intemet®
BP464 E-mail and news with Outlook Express*
BP465 Lotus SmartSuite Millennium explained
BP471 Microsoft Office 2000 explained

BP472 Microsoft Word 2000 explained

BP473 Microsoft Excel 2000 explained

BP474 Microsoft Access 2000 explained

BP478 Microsoft Works 2000 explained

BP486 Using Linux the easy way*

BP487 Quicken 2000 UK explained*

BP488 Intemnet Explorer 5 explained*

BP491 Windows 2000 explained*

BP493 Windows Me explained* .
BP498 Using Visual Basic

By Noel Kantaris:

BP258 Leaming to Programin C

BP259 A Concise Introduction to UNIX*

BP284 Programming in QuickBASIC

BP325 A Concise User's Guide to Windows 3.1

Using Visual Basic

Using
Visual Basic

by

P.R.M. Oliver
and
N. Kantaris

Bernard Babani (publishing) Ltd
The Grampians
Shepherds Bush Road
London W6 7NF
England
www.babanibooks.com

Using Visual Basic

Please Note

Although every care has been taken with the production of
this book to ensure that any projects, designs, modifications
and/or programs, etc., contained herewith, operate in a
correct and safe manner and also that any components
specified are normally available in Great Britain, the
Publishers and Author(s) do not accept responsibility in any
way for the failure (including fault in design) of any project,
design, modification or program to work correctly or to cause
damage to any equipment that it may be connected to or
used in conjunction with, or in respect of any other damage
or injury that may be so caused, nor do the Publishers accept
responsibility in any way for the failure to obtain specified
components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

© 2001 BERNARD BABANI (publishing) LTD

First Published - February 2001
Reprinted - June 2001
Reprinted - November 2001
Reprinted - December 2001
Reprinted - April 2002
Reprinted - August 2002
Reprinted - December 2002

British Library Cataloguing in Publication Data:

A catalogue record for this book is avaitable from the
British Library

ISBN 0 85934 498 3

Cover Design by Gregor Arthur
Printed and Bound in Great Britain by Cox & Wyman

iv

Using Visual Basic

Using Visual Basic

Preface

Visual BASIC has become the most popular ‘dialect’ of
BASIC in use today on IBM and compatible computers. The
original version of BASIC (which stands for Beginner's
All-purpose Symbolic Instruction Code) was first developed
as a teaching language at Dartmouth College in 1964. In
1978 a ‘standard BASIC' was adopted as a result of
recommendations on the minimum requirements of the
language.

BASICA, written by Microsoft for use with the IBM PCs,
and GWBASIC (its equivalent form running on compatibles),
was an enhanced version of standard BASIC, embodying
nearly 200 commands. These were bundled with pre-DOS 5
versions of the operating system, but users of MS-DOS 5
and higher had access to a cut-down version of Microsoft's
QuickBASIC, known as QBASIC.

QuickBASIC was Microsoft's first compiled version of
BASIC, the earlier ones being interpreted languages. With an
interpreted language each and every statement of code has
to be interpreted by a separate program called the interpreter
before the program is actually run. This happens each time a
statement is encountered, even if it appears within a loop.
With a compiled language, on the other hand, a separate
program, called the compiler, is used to check the whole
program for errors and then compiles it into the machine
specific code that will actually be executed by the computer
at run time. Statements within loops are only checked once,
which makes a compiled program far more efficient than an
interpreted one.

Visual BASIC is now very different from these early
versions. It is an event driven, or Object Oriented, compiled
language that uses all of Windows’ visual features. It also
includes most of the features built into QuickBASIC, so
earlier programs can be easily adapted to run on Visual
Basicc. As well as being a stand-alone Windows
‘programming environment’, a slightly modified version of
Visual Basic is also included with Microsoft Office
applications as VBA, or Visual Basic for Applications.

vi

E——

Using Visual Basic

About this Book

Using Visual Basic is loosely based on our earlier book,
Programming in Visual BASIC for Windows, and is a guide to
programming in a Windows environment using Microsoft's
Visual Basic. For this book we used Version 6.0 of Visual
Basic, on a PC running under Windows Me. The reader is
not expected to have any familiarity with the language as
both the environment and statements are introduced and
explained with the help of simple programs. The user is
encouraged to builc these, save them, and keep improving
them as more comglex language statements and commands
are encountered.

The very size of Visual Basic and its programming
environment, can be very daunting to a new user, so this
systematic approach should make leaming very much easier.

The first three Chapters give an overview of Visual Basic
and the graphic based environment it uses. Forms and the
more simple controls that go with them are introduced, but no
attempt is made to explain how to use Microsoft Windows
itself. It is assumed that if you want to create programs that
work with Windows, you will be familiar with the interface
itself. If you do need to know more about the Windows
environment, then we suggest you select an apprcpriate
book from the ‘Books Available’ list - these are all published
by BERNARD BABAN!I (publishing) Ltd.

Chapters 4-7 cover the programming language and how it
is entered into your PC, dealing with the basic Visual Basic

vii

Using Visual Basic

statements which control program flow, input and output, and
leading to the concepts of strings and arrays.

In Chapter 8 we retumn to some of the more powerful
intrinsic Visual Basic controls that allow you to produce the
sort of Windows programs that you can buy. The next
chapter covers functions and procedures which expand the
programming capabilities of the user beyond the beginner's
level. Chapter 10 deals entirely with disc file handling
techniques and should be of special interest to those who
need to process large quantities of data. The two main types
of data files are discussed in some detail, namely, sequential
and random access types. How to easily use the Windows
file handling procedures is also covered.

A chapter then introduces how Visual Basic can interact
with Microsoft's Office applications, Word, Excel, and the
database Access.

The last chapter gives an overview of the powerful
debugging features of the program, and describes how to
create, compile and package your application programs with
the Visual Basic wizards.

A glossary of mainly Visual Basic terms is included, which
should be used with the text where necessary. For reference
purposes, appendices also detail the Visual Basic naming
conventions, user-defined formats, event procedures and
main keyword listings and descriptions.

Like the rest of our computer series, this book was written
with the busy person in mind. It is not necessary to learn all
there is to know about a subject, when reading a few
selected pages can usually do the same thing quite
adequately. Using this book, it is hoped that you will be able
to come to terms with Visual Basic and start producing
programs of your own in the shortest possible time. Good
luck and enjoy yourself, because it can be fun.

If you would like to purchase a Companion Disc for any of our books listed
on page ii, apart from those marked with an asterisk, containing the
file/program listings which appear in them, then fill in the form at the back of
the book and send it to Phil Oliver at the address given.

viii

Using Visual Basic

About the Authors

Phil Oliver graduated in Mining Engineering at Camborne
School of Mines in 1967 and since then has specialised in
most aspects of surface mining technology, with a particular
emphasis on computer related techniques. He has worked in
Guyana, Canada, several Middle Eastern and Central Asian
countries, South Africa and the United Kingdom, on such
diverse projects as: the planning and management of
bauxite, iron, gold and coal mines; rock excavation
contracting in the UK; international mining equipment sales
and international mine consulting. In 1988 he took up a
lecturing position at Cambome School of Mines (part of
Exeter University) in Surface Mining and Management. He
retired from full-time lecturing in 1998, to spend more time
writing, consulting, and developing Web sites.

Noel Kantaris graduated in Electrical Engineering at Bristol
University and after spending three years in the Electronics
Industry in London, took up a Tutorship in Physics at the
University of Queensland. Research interests in lonospheric
Physics, led to the degrees of M.E. in Electronics and Ph.D.
in Physics. On return to the UK, he took up a Post-Doctoral
Research Fellowship in Radio Physics at the University of
Leicester, and then in 1973 a lecturing position in
Engineering at the Cambome School of Mines, Cornwall,
(part of Exeter University), where between 1978 and 1997 he
was also the CSM Computing Manager. At present he is IT
Director of FFC Ltd.

e —

Using Visual Basic

Using Visual Basic

Acknowledgements

We would like to thank both Microsoft UK and AUGUST.ONE
Communications Ltd for kindly providing the software that
was used to produce this book.

Trademarks

Arial and Times New Roman are registered trademarks of
The Monotype Corporation plc.

HP and LaserJet are registered trademarks of Hewlett
Packard Corporation.

IBM is a registered trademark of International Business
Machines, Inc.

intel is a registered trademark of Intel Corporation.

Microsoft, MSDN, MS-DOS, Windows, Windows NT,
Visual Basic and Visual Studio, are either registered
trademarks or trademarks of Microsoft Corporation.

PostScript is a registered trademark of Adobe Systems
Incorporated.

All other brand and product names used in the book are
recognised as trademarks, or registered trademarks, of their
respective companies.

xi

-

Using Visual Basic

Contents
1. Package Overview 1
Editions of VisualBasic 2
VisualBasic6.0ccoinnnn. 2
VBScrpt 3
Visual Basic for Applications 3
Installing Visual Basic 3
System Requirements 3
The Installation Process 4
Installing the MSDN Help System 5
Installing the Service Pack 7
Some Housekeepingt 8
Visual Basic Folder Structure 8
ADesktopShortcut 9
AWorkingFolder L. 9
Sample Projectsl 10
2. The Visual Basic Environment "
Starting VisualBasic 11
General Windows Skills 12
The New ProjectBox 12
The Visual BasicWindow 13
Title Bar, Menuand Toolbar 13
The FormDesigner 15
The Toolbox ...ttt 16
Project Explorer Window 18
Properties Window 20
Form LayoutWindow 21
Code EditorWindow 22
Customising the Environment 23
Dockable Windows 23
The Working Environment 24
Customising the Toolbar 25
The Options DialogueBox 26
The MSDNHelp System 27
Context Sensitive Help 30

xii

Using Visual Basic

3. ProgrammingBasics 31

Programming Steps 31

DesignMode 31

RunMode, 31

AFirstProgram 32

CreatinganObject 32

ChangingaCaption 33

EnteringCode 33

RunningaProgram 34

SavingaProgram 35

ProjectElements 36

Thelnterface oo ... 36

FOrms ... 36

Modules, 37

Applications 38

Visual BasicControls 39

Sefting Properties 40

Some Form Properties 40

Label Properties 42

Text Box Properties 42

Command Button Properties 43

Check Box and Option Button Properties 43

The Tab Orderof Controls 44

ShortcutKeysl 44

WritingCode 45

Code EditorWindows 45

Visual Basic Naming Convention 47

Naming Control Properties 47

NamingControls 48

i 4. StartingtoProgram 49

| Entering ProgramCode 49

i Using the Code Editor 50

Automatic Code Completion 51

| Other Keyboard Shortcuts 52

Program Commentscccouuui.n.. 54

Variablesand Constants 54

Variables i 54

| Constantscciiin.. 55

| Expressionso, 55

|

' xiii

pr—

Using Visual Basic

Naming Convention 55
StringVariables 57
Variable Type Declarations 57
The Dim Statement 58
TheValFunction 60
The InputBox Function 60
The Print Statements 61
Arithmetic Operators & Priority 62
The ArithmeticOperators 62
Additional Operators 62
The Assignment Statement 64
SavingaProject 65
SavingFilesttt 65
Adding and Removing Projects 65
Input and OutputControl 67
TextBoxInputciiiiiiiiiiannt, 67
ChangingaProperty 69
Sefting an ObjectsFocus 70
Moreon PrintQutputc....... 70
Formattingwith Tabs 71
PrintLocationsooinnt, 72
Formatting Functions 75
User Defined Formats 77
Using MessageBoxes 78
MsgBoxSyntax 82
MsgBoxButtons o0l 83
MsgBox Retumed Values 84
Control of Program Flow 85
Controf Structuresc.cciiinivenns, 85
The For..NextLoopcovvviiiiiiinnn, 85
UseofStepiiiiiiiiniiiiinns, 87
Nested For..NextLoops 88
TheDoOLoopc.cvviiiiiiiiiiiiiiii e 90
The Do...Loop Until Configuration 90
The Do Until...Loop Configuration 91
The Do...Loop While Configuration 91
The Do While...Loop Configuration 92
The For Each..NextLoopc..t 93

xiv

Using Visual Basic

The Line-Continuation Character 93
The While.WendLoopcco..... 94
ThelfStatement 95

Relational Operators within If Statements 96

The if..Then_.Else Statement 97

The Elself Statement 98
SimpleDataSorting 100
The Select Case Statement 102
Data Type Conversionccccouuunn. 106
Exiting Block Structures 106
StringsandArrays 107
String Variablesl 107
ANSI CharacterCodes 107

Option Compare (Binary | Text) 110

StrComp(strA, strB[, compare]) 111
String Functions 111

Left and Left$ Functions 111

Right and Right$ Functions 111

Mid and Mid$ Functions 111

Other String Functions 112
String Conversion Functions 116

ANSIConversionccivunnn.. 116

Character Conversion 116

StringConversion 116

Valueof String 117

String Concatenation 117
AITaYS . e 119

Sting Armayscccieeiiiinanain, 119
Subscripted Numeric Variables 121
Static and Dynamic Arrays 123

Control Arrayscciiiiinnn. 127
MoreonControls 129
The CONTROLS.VBP Sample 130

The Example Files 131
ControlButtons 132
CheckBoxescciiiiiniininnnnnnnn. 133
OptionButtonscoiin... 135

Using Visual Basic

10.

ComboandListBoxes 136
A Simple Telephone List 137
The TimerControl 139
Picturesandlmages 140
Supported Graphic Formats 140
The Picture BoxControl 141
The Graphics Methods 143
DrawingLinesccccieuunn. 144
BuildingaMenuBar o 146
A Simple VAT Calculator 146
The Menu Design Window 148
ActiveXControlsc.ooiiiiian. 151
Some Provided Controls 152
Functions and Procedures 153
Standard Mathematical Functions 153
ATN(X) i it e e iire e e en e 154
SIN(X), COS(X)and TAN(X) 154
SQR(X) + ittt e 154
ABS(X) ... i e 155
EXP(X) ciiiiri i e e 156
LOG(X) tiitrtiiiii i e 156
INT(X)and FIX(X)cccvvviiieeennn.. 156
SGN(X) oot i e 157
RND and RANDOMIZEn 157
Derived Mathematical Functions 159
User-Defined Function Procedures 160
The ObjectBrowserc.ccvvvivnnn, 161
SubProcedures 0ol 162
ParameterPassingcovivnn. 163
Subroutines il 164
GOSUB and RETURN Statements 164
Working with Files 165
Sequential DataFiles 165
SavingaFiletoDiscc....... 168
Loading aFilefromDisc 168
The Common Dialogue Control 169
TrappingErrors ool 172
Random Access Files 173

xvi

Using Visual Basic

Defining Recordsby TYPE 173
BinaryFiles, 178
Drive, Dir and File ListBoxes 179
AnlmageViewer 181

11. Working with Other Applications 183
TheDataControl 183
BindingControls 184

Visual Basic for Applications 186
Connecting to Office Applications 187
Working withExcel 188
WorkingwithWord 189

12. Some LooseEnds 191
Debugging Your Programs 191
CompileErrars v, 191
RuntimeErrorscoovunn... 191
LogicalErrorscciiiiiiat, 191
BreakModel 192
TheDebugToolscviinnnn... 192
The Debug Toolbar 193
Breakpointsl 194

Using the Immediate Window 194

The Application Wizard 195
Compiling and Distributing 197
Packagingccciiiiiiiinnn.. 198
Deployment, 200

13. Glossaryof Terms 201

Appendix A - The Code for VatCalc.vbp 223

Appendix B - Naming Conventions 235
Object Naming Conventions 235
PrefixesforControls 236
Prefixes for Data Access Objects 238
PrefixesforMenus 238
Naming Constants and Variables 239

xvil

Using Visual Basic

Appendix C - User-Defined Formatting 241
User-Defined Numeric Formats 242
User-Defined Date/Time Formats 243
User-Defined StringFormats 246

Appendix D - Language Reference 247
EventProceduresoo.L 247
Main Visual BasicKeywords 251

Listed by Programming Task 251
Listed Alphabetically 258
Index ... 279

xvili

1

Package Overview

Visual Basic lets you create your own programs or applications,
for running yourself, or for running on other peoples PCs. The
applications you create can be as simple or as complex as you
like, and can even be used for such things as, manipulating
databases, files, the Internet or almost anything else you want it
to do!

Visual Basic, unlike other structured languages such as its
predecessor QuickBASIC or C, is an event driven programming
language. Instead of the program flow being controlled from the
written code and running mainly from the first to the last lines of
code, it is controlled by interactive events at run-time, such as
the clicking of a mouse on a button or form. When such an
event occurs, the program code attached to that event is
actioned. Buttons, forms, controls, the screen and your printer,
etc., are all considered as objects and Visual Basic is known as
an Object Oriented language. It reacts to the manipulation of
objects. Once this concept is grasped, the change from other
programming languages is much easier.

While you are building your application you can ‘run’ it from
within Visual Basic to make sure it works properly. When you
are completely happy with it you can then compile and package
your program into an executable form that anyone else can
then run on their Windows based PC. In fact, if it is good
enough, you can even distribute your application royalty-free,
as long as you have registered your copy of Visual Basic.

One catch, though, with using Visual Basic to develop
programs is that other users of your applications will require the
MSVBVM60.DLL file, and possibly others (depending on which
controls you have used), to run your program. At some 1.3MB,
this file is quite large and can be a setback when you want to
distribute your program on the Interet, or on a floppy disc.

1

Package Overview

Editions of Visual Basic

Since the original Visual Basic for Windows was released in
May 1991 there have been several updates and improvements
to the package, the major jump being from 16 bit to 32 bit which
took place with Visual Basic 5.0.

Visual Basic 6.0

At the time of writing, Version 6.0 was the current version. This,
like its predecessors, comes in several Editions.

The Working Model is sometimes distributed ‘free of
charge’ with the more expensive Visual Basic books. It is a
‘cut down' version that allows you to experiment with the
program, but does not allow you to create your own
executable ‘.exe’ files.

The Learning Edition is the simplest and cheapest version,
coming with the standard Visual Basic controls and allowing
the creation of executable ‘.exe’ files from the code.

The Professional Edition comes with many more features
and ActiveX controls to supplement the standard ones, and
costs quite a bit more.

The Enterprise Edition is the top one, and is mainly for
programmers who are creating applications for servers and
networks. It costs several hundred pounds more.

To complicate matters further, as well as providing ‘stand
alone’ editions of Visual basic, Microsoft also produce a similar
range of Visual Studio editions. These are like development
compendium packages and all contain Visual Basic as well as
other development tools such as Visual C++, Visual J++ and
Visual FoxPro. For anybody who needs to get serious about
developing very ‘heavy’ Windows applications these may be the
best way to go.

If you are a student, a teacher or an academic there is also a
Students Edition. This is a Professional version of Visual
Studio sold at a very low cost to students (anyone working
towards a recognised qualification) and teachers. If you qualify,
this is definitely the version to get!

Package Overview

1

For most people, the Professional Edition is probably the best
option, as long as you are happy with the initial cost. While
updating this book we started off with the Students Edition and
then replaced it with the Enterprise Edition of Visual Studio.
You will find, however, that most of our examples are pretty
simple, so the book can be used equally with all of the flavours
of Visual Basic.

VB Script

VB Script is a simplified version of Visual Basic which is used in
Web pages. It has the major disadvantage that it is only
supported by Microsoft's Internet Explorer 4 browser or later.

Visual Basic for Applications

VBA is a slightly different edition of Visual Basic, which comes
with most of Microsoft's Office applications, such as Word,
Excel, etc. The basic program functions are the same, but it is
customised for the particular application being used.

Installing Visual Basic

Whatever edition you have, the initial installation procedure is
very well automated, but before you start, make sure your
system is suitable.

System Requirements

Microsoft specify the following minimum set-up. An IBM
compatible PC with a 486DX/66 MHz or higher processor (or
any Alpha processor running Microsoft Windows NT
Workstation, or higher); a hard disc with at least 12CMB of
spare room, 16 MB of RAM for Windows 95, 32 MB of RAM for
Windows NT Workstation, a mouse, a VGA or higher-resolution
screen display and a CD-ROM disc drive. This should be
running Microsoft Windows 95 or later, or Microsoft Windows
NT Workstation 4.0 (Service Pack 3 recommended) or later.

1

Package Overview

To make use of the advantages of the Windows interface,
however, we would recommend the most powerful Pentium PC
you can get your hands on!

The Installation Process

The exact installation process will depend on which edition of
the program you have. With Windows open and no other
programs running, place the first CD into the CD-ROM drive,
with us this was the Visual Studio 6.0 Disc 1. The Setup
program may well start automatically, if not, click the Start
button on the Windows task bar, select Run, type e:\setup.exe
in the Open text box, as shown in Fig. 1.1, and click on OK. If
your CD-ROM drive is not the E: drive, you should obviously
use the correct drive letter instead.

Fig. 1.1 Using the Windows Run Box

It's then just a case of following the instructions given. You will
be stepped through the procedures of accepting Microsoft's
License agreement and of entering the Product ID number.
This number should be shown as the ‘CD Key' on the back of
your original CD box. When asked, opt for a customised
installation so that you can select what is actually placed on
your hard disc.

Fig. 1.2 A Custom Installation

Package Overview

1

Microsolt Visual Basc 6.0
I~ Microsoh Vieusl Co+ 6.0
[~ MicrosoR Vieusl FosPro 6.0
[~ Mictosoh Vieud insDev 6.0

[~ Microsoh Vieusl Source$S ale 6.0

Fig. 1.3 Selecting Which Items to Install

As can be seen in Fig. 1.3, we opted not to install the other
programming languages, just Visual Basic 6.0 and the other
‘common’ components. At any time in the future you can add or
remove components to your PC from this box by re-running the
Setup procedure.

When you click the Continue button the file transfer process
begins, as long as you have enough hard disc space. When
this is complete, click to Restart Windows if you are asked to.

Installing the MSDN Help System

Microsoft, in their wisdom, no longer include any Help
information actually built into the Visual Basic program. What
they do provide is an MSDN library on separate CD-ROMs.
This stands for Microsoft Developers Network and includes all
the Help files and program samples that you will need. Once
installed, this works fairly seamlessly with Visual Basic, but you
have to install it yourself.

1 Package Overview

When your PC starts up again the Installation Wizard should be
reloaded and should offer you the option to install the MSDN
Library. If this does not happen, you should re-start the Setup
program from the original CD and choose MSDN from the
Add/Remove options. When requested, put the "MSDN Library
Disc 1 - Setup’ into your CD-ROM drive. We suggest you then
select the Custom option, as shown in Fig. 1.4.

Fig. 1.4 The MSDN Installation Options

Selecting the options shown in Fig. 1.5 will let you use the
complete Visual Basic documentation from your hard disc.

Fig. 1.5 Selecting the Visual Basic Documentation

| Package Overview 1

When you click the Continue button the selected data files are
copied to your hard disc, and you are given a chance to read
about how to update your copy of MSDN on the Internet.

After a change of CD you should get a message box saying
the MSDN installation is complete. There is probably only one
more thing to do now.

Installing the Service Pack

If your program package contains a Service Pack CD, this will
contain ‘enhancements and fixes' not included on the main
program CDs. It is important that you install such a Service
Pack. The CD in our package was called Visual Studio 6.0
SP3, but yours may be different.

When the CD is placed in the drive, the installation shouid
automatically start, if not, use a My Computer window to look in
its root folder and run the ‘.exe’ file there. In our case this was
autorun.exe. The actual installation was started, though, by the
SetupSp3.exe file, which was located in the enu (English user?)
sub-folder.

The last time we checked Microsoft's Web site, there was a
Service Pack 4 available as a download for Visual Studio. If you
have a fast internet connection you could find this at:

http://www.msdn.microsoft.com/vstudio

but be warned the total file size was 58 MB!

That should complete the procedure and you should now have
a fully functional version of Visual Basic ready to go. We must
admit that this was the most convoluted installation we have
ever had to carry out, which is why we have spent several
pages describing it.

1

Package Overview

Some Housekeeping

Before getting too involved with Visual Basic we suggest you
find where the Visual Basic files have been installed on your PC
and carry out a couple of ‘housekeeping’ tasks.

Visual Basic Folder Structure

When our version of the program was installed, the program
files were placed in the VB98 folder on our hard disc, as shown
in Fig. 1.6 below.

-3 Program Fles
£ £ Microsolt Visual Studio
#-{Z] Common
#-(2) MSDNS8
SR |
Q Template
€2 T
Q) Waards
S VISDATADE

Fig. 1.6 Visual Basic Program Files and Location

This is a Windows Explorer view with the folder ‘tree’ structure
in the left pane edited to simplify the path. Your folder structure
may not be exactly the same, but you should not have too
much trouble identifying it.

The important file here is VB6.EXE. This is the one that
opens the Visual Basic program when it is executed. You could,
if you were a masochist, double-click on this filename in the
VB98 folder every time you wanted to start the program. There
are obviously easier ways though. The Windows Start cascade
menu is one, but using a Desktop icon is much easier.

Package Overview

1

A Desktop Shortcut

Many programs these days automatically put a shortcut icon on
the Windows Desktop as part of the installation procedure.
Visual Basic does not do this, but it is very easy to do it
yourself, once you have found the ‘.exe’ file that opens the

program.

To do this, simply open the VB98 folder in a My Computer
window, select the file VB6.EXE and drag it, with the right
mouse button depressed, onto your Desktop. When you
release the mouse button a menu is opened as shown in
Fig. 1.7, waiting for instructions.

% VBEEXE

Fig. 1.7 Creating a Shortcut

Selecting the option Create Shortcut(s) Here and
&' then editing the highlighted title below will give you the

shortcut shown here to the left. Now all you have to do
Vs | s double-click this icon on your desktop to start Visual
Basic.

A Working Folder

A folder missing from the list shown in Fig. 1.6, is one suitable
for storing the programs (called Projects in Visual Basic speak)
that you will be developing yourself. This is easily rectified, with
the VB98 folder open in a My Computer window, right-click the
mouse in the file area, select New, Folder from the opened
menu, and name it Projects.

The reason for making the new projects folder a sub-folder of
VB98 will become obvious in the next chapter, but if you prefer,
you can place it anywhere on your system!

-

1

Package Overview

Sample Projects

When you installed the MSDN Library on your PC you also
installed a very extensive collection of Visual Basic sample
projects. When you need inspiration it is well worth looking
through these for programming ideas. We shall ailso be
referring to them throughout the rest of the book.

Our installation placed these projects in the

C:\Program Files\Microsoft Visual Studio\
MSDN98\98VSa\1033\SAMPLES\VB98

folder, with each project having its own folder.

If you ever want more samples of Visual Basic projects and
examples of coding, the best place to look first is on Microsoft's
Web site at:

http://www.msdn.microsoft.com/vstudio

Look for the ‘Samples and Downloads’ section and obviously
choose Visual Basic.

There are also literally thousands of other Web sites that
cover the subject, but we will leave that for you to investigate.

Well that's enough to start with, in the next chapter we will
introduce the programming environment that you will soon,
hopefully, grow to know and love.

10

2

The Visual Basic Environment

Starting Visual Basic

. There are three main ways of starting Visual Basic.
& The easiest, as we saw in the last chapter, is to
B double-click a shortcut on the Windows desktop, like
] ours shown here. If you Faven't made one vyet,
perhaps now is a good time!

g

The other way Microsoft provide you with is a little more of a
fiddle and involves clicking the Windows Taskbar Start button,
selecting the Programs option and finding Microsoft Visual
basic 6.0 (or whatever version you have) in the cascade menu
system, as shown in Fig. 2.1.

Fig. 2.1 The Start Cascade Menu System

You can also double-click on a Visual Basic project file (one
with the extension .VBP or .MAK) in a My Computer window, in
which case the project will be loaded into Visual Basic at the
same time as it is started.

2

The Visual Basic Environment

General Windows Skills

We have assumed for the remainder of this book that anybody
setting out to learn to program in the Windows environment will
already be familiar with the workings of the Windows Graphic
User Interface (GUI). We do not cover the basics of moving,
re-sizing, iconising or generally manipulating windows, of
handling the mouse, or menu systems. If you need more
information on these skills, we suggest you first work through
one of the books on Windows listed at the front of this book.

The New Project Box

The first time you open Visual Basic the New Project dialogue
box, shown in Fig. 2.2, appears. This can look daunting to a
new user, but please don't panic. Most of the options are
outside the scope of this book, and depending on your version
of VB, may not be shown anyway.

Fig. 2.2 The Initial New Project Dialogue Box

At this stage, make sure the ‘Standard EXE’ option is selected
and click the Qpen button. If you want to find out more about
this box you could click the Help button.

12

The Visual Basic Environment

2

The Visual Basic Window

The opening window of Visual Basic 6.0 is shown in Fig. 2.3,
with some of the components slightly rearranged for clarity.

Fig. 2.3 The Visual Basic Working Components

When the program first starts, it is in ‘design mode’, as shown
on the title bar above, with six separate elements making up
the window. To understand the workings of the program we
must spend some time looking at the various components that
make up this window.

Title Bar, Menu and Toolbar

This screen element contains the Title bar which shows the
current project title, the operating mode and the normal
windows control buttons, the Visual Basic menu bar, as well as
the standard Toolbar below.

Fig. 2.4 The Visual Basic Title, Menu and Toolbar

2

The Visual Basic Environment

By default, the Standard toolbar is displayed when you start
Visual Basic. Other toolbars for editing, form design, and
debugging can be toggled on or off from the View, Toolbars
sub-menu. Toolbars can be docked beneath the menu bar or
can ‘float’ if you select the vertical bar on the left edge and drag
it away from the menu bar.

The standard Toolbar contains 21 buttons, or icons, to give
shortcut access to some of the most commonly used menu
commands. These are shown below, and will be detailed later
as they become relevant to our text. Probably the icons you will
use most are the Run and Stop controls.

The meanings of the Toolbar options are as follows:
Option Action
Adds a project to the current project

Adds a new form to the current project
Opens the menu editor

Opens an existing project

Saves the current project

Cuts the current selection to the dipboard
Copies the current selection to the clipboard
Pastes from the clipboard

Opens the Find and Replace dialogue box
Undoes last action

Redoes last ‘undone’ action

Starts to RUN the current project

EEEREBEREBNALGA

Stops execution and switches to break mode

14

The Visual Basic Environment

Stops execution and ends run mode
Disglays the Project Explorer window
Displays the Properties window
Displays the Form Layout window
Displays the Object Browser
Disglays the Toolbox

Displays the Data View window

BUEaDaan

Displays the Visual Component window.

The Form Designer

In Visual Basic a form is the interface with the application you
create. You can have multiple forms and place contrcls, text
boxes and pictures on them when in design mode.

Fig. 2.5 The Form Designer Window

What you place on a form is what will be seen in a window
when the application is run. To help when placing features on a
form, by default, a grid is active, as shown in Fig. 2.5.

15

2

The Visual Basic Environment

When new features are added to the form they automatically
align themselves to the nearest grid positions.

The Toolbox

This provides a set of tools that you use at design time to place
different types of control objects onto a form. As well as the
default toolbox layout, shown in Fig. 2.6, you can also create
your own custom control layouts by right-clicking in the toolbox,
selecting Add Tab from the context menu and adding the extra
controls you want to the resulting tabbed section.

Fig. 2.6 The Toolbox

The standard Toolbox contains Visual Basic's intrinsic controls,
which are outlined on the next page. These controls are
contained inside the Visual Basic .EXE file. Intrinsic controls
are always included in the toolbox, unlike ActiveX controls,
which can be removed from or added to the Toolbox.

ActiveX controls, called custom or OLE controls in early
versions of Visual Basic, are extensions to the Toolbox and
exist as separate files with an .OCX file name extension. These
include controls that are available in all editions of Visual Basic
(such as DataCombo and Datal ist) and those that are available
only in the Professional and Enterprise editions (such as
Listview, Toolbar, Animation, and Tabbed Dialog). Hundreds of
third-party ActiveX controls are also available to provide new
‘functionality’ for your applications.

16

Y

The Visual Basic Environment

2

- The following table summarises the intrinsic controls found in
the Visual Basic toolbox.

Control Name Description

[]
L]
o4

EEQ O

Picture box - Displays bitmaps, icons, or
Windows metafiles, JPEG, or GIF files. It
also displays text or acts as a visual
container for other controls.

Label - Displays text a user cannot interact
with, or modify.

Text box - Provides an area to enter or
display text.

Frame - Provides a visual and functional
container for controls.

Command button - Carries out a
command or action when clicked.

Check box - Displays a True/False or
Yes/No option. You can check any number
of check boxes on a form at one time.

Option button - With other option buttons
it displays multiple choices as part of an
option group, from which a user can
choose only one.

Combo box - Combines a text box with a
list box. Allows a user to type in a selection
or select an item from a drop-down list.

List box - Displays a list of items that a
user can choose from.

Horizontal scroll bar - Adds a horizontal
scroll bar.

Vertical scroll bar - Adds a vertical scroll
bar.

17

2

The Visual Basic Environment

Timer - Executes timer events at specified
time intervals.

Drive list box - Displays and allows a user
to select valid disc drives.

Directory list box - Displays and allows a
user to select directories and paths.

File list box - Displays and allows a user
to select from a list of files.

Shape - Adds a rectangle, square, ellipse,
or circle to a form, frame, or picture box.

Line - Adds a straight-line segment to a
form.

Image - Displays bitmaps, icons, or
Windows metafiles, JPEG, or GIF files;
acts like a command button when clicked.

Data - Enables you to connect to an
existing database and display information
from it on your forms.

O
=

OLE container - Embeds data into a
Visual Basic application.

The pointer tool is not a control. You click
on it to return the pointer to its normal
mode, when you want to move and re-size
forms and controls.

Project Explorer Window

In Visual Basic you can only have one project open at a time.
The Project window displays a list of all the forms, modules,
custom controls and all of the items contained in an open
project. From the Project Explorer you can open the Form
window for an existing form by selecting its name and clicking
the View Object button. Similarly, you can open the Code
window for an existing form by selecting its name and clicking
the View Code button.

18

The Visual Basic Environment 2

Fig. 2.7 The Project Explorer Window

The following lists all the project items that will be shown in the
Project Explorer.

Forms All frm files associated with the
project.

Modules All .bas modules for the project.

Class Modules All .cls files for the project.

User Controls All user controls for the project.

User Documents All document objects, .dob files, in the
project.

Property Pages All property pages, .pag files, in the
project.

ActiveX Designers All designers, .dsr files, in the project.

Related Documents Lists all documents to which you want
a pointer. The path to the document
is stored rather than the document
itself,

Resources Lists all of the resources you have in
your project.

if this window isn’t open at any time, you can click its
—~ Toolbar icon, shown here, use the View, Project

Explorer menu command, or use the <Ctri+R>
keyboard shortcut.

The Project Explorer is the quick way to access any of the
components of a project in design mode.

19

2

The Visual Basic Environment

Properties Window

All the objects you create in Visual Basic (forms, boxes,
command buttons, etc.), have a very detailed set of ‘properties’
which are controlled from the Properties Window, as shown in
Fig. 2.8 below.

FontTransparent Troe
ForeColor ! 8800000128

Palette {None)
Ptwe (hone) __
({©Behavior |
AutoRedraw False
CipControls Trae

Fig. 2.8 The Two Tabbed Views of the Properties Window

If it is not open, click the Properties Window icon on the
toolbar, use the View, Properties Window menu
command, or press the F4 key.

The Object Box, at the top of this window, displays the
name of the object whose properties are listed. Clicking its
drop-down arrow (on the right) lets you select other objects
from a list.

The two tabs, immediately below this, let you display the
items in the Properties List, either alphabetically or in category
groups, as shown in our examples in Fig. 2.8. These make it
very much easier to find your way through the list.

20

The Visual Basic Environment

2

The Properties List takes up the bulk of this window. All the
properties available for the selected object are listed, with the
current setting shown alongside. When you select a property
name in the list a short description of it is given in the bottom of
the window.

You change a property by selecting it in the list, and then
either typing a new value in the property value box alongside it,
or making a selection from the drop-down list of those
available, as shown in Fig. 2.9.

Fig. 2.9 Selecting a Property Option

The drop-down button I, that you click to do this, does not
actually show until you click the mouse pointer into the property
value box.

Form Layout Window

The Form Layout window, shown in Fig. 2.10, allows you to
graphically position where your application windows will be
placed on the screen at run time by dragging images around a
simulated screen.

Fig. 2.10 The Form Layout Window

21

2

The Visual Basic Environment

Code Editor Window

This is the editor for entering application code. A separate code
editor window can be created for each form or code module in
your application, which makes it easy to cut and paste between
them.

™ Fiojectl - Forml [Code)

Procedures Box /
Split Bar
Procedure View Icon

i /- Full Moduie View loon

Fig. 2.11 An Empty Code Editor Window

The window components as shown in Fig. 2.11 are:

Object Box - Displays the name of the selected object.
Clicking the arrow to the right of the list box will display a list of
all the objects associated with the form.

Procedures Box - This lists all the procedures, or events,
recognised by Visual Basic for the form or control displayed in
the Object Box. When you select an event, the event procedure
associated with that event name is displayed in the Code
window below. All the procedures in a module are displayed in
a single, scrollable, alphabetically sorted list. When you select a
procedure from the two drop-down list boxes at the top of the
Code Editor window the cursor is placed at the first line of code
in the procedure.

Split Bar - Dragging this bar down, splits the Code window into
two horizontal panes, each of which scrolls separately. You can
then view different parts of your code at the same time.

Procedure View Icon - This displays the selected procedure
only in the Code window.

Full Module View Icon - This displays the entire code in the
module.

22

The Visual Basic Environment

2

Customisiwhe Environment

Dockable Windows

All the windows except the Form Designer have a ‘dockable’
property. A dockable window attaches itself to the nearest edge
of the screen, or to the nearest other dockable window. When
you move a dockable window around the screen, a rectangular
box is displayed while the left mouse button is depressed, as
shown in Fig. 2.12.

» Projectl - Micsosolt Visual Basic [design}

! L = L

Fig. 2.12 Dragging Dockable Windows around the Screen

When you drag this bex into the centre of the working window
its lines become thick as shown in the lower box of Fig. 2.12.
When the button is released the dragged window beccmes an
undocked or, ‘floating’, window. When you drag the box over a
screen edge, as with the upper box above, it changes to fine
lines and when released it ‘snaps’ to that screen location.

A docked window is dominant. If you drag the Toolbox, for
example, to the top of the screen it cocks there anc all the
other windows change size to accommodate it.

23

2

The Visual Basic Environment

[Dockable You can view the Dockable property of a
] "4 | Window by right-clicking your mouse inside the

N window. If the word Dockable is checked, as
shown here, the window is dockable. When a window is not
docked, it is a ‘floating’ window. Windows that have their
Dockable property enabled also have another property. They
are ‘always on top’. When they are open, they are visible and
not hidden behind another window.

The Working Environment

You don't really need all of these windows open all the time,
and the screen is awfully cluttered, unless you are lucky
enough to have a 19 inch monitor. It makes sense, then, to
close at least some of the windows and perhaps to undock
others. You have probably noticed by now that Visual Basic
opens up every time with the screen arrangement and settings
that were active when you last closed it.

The Project Explorer is an essential window. As your project
grows, you will need it to get from one part of the project to
another. But while you are designing your project's forms it will
almost certainly be in the way. Click on the ® Close button in
the upper-right comer of the Project Explorer to close this
window. You can get it back when you need it by clicking the
Project Explorer icon on the toolbar.

You use the Form Layout window only once for each form in
the project, if that. So use the window when you first add a form
to your project, then close it and use the toolbar to open it when
you need it again.

While you are designing the user interface of a form, you will
almost certainly need both the Toolbox and the Properties
window. Once you have placed all your controls, however, you
may want to close them to give you more room on the screen.

At the end of the day of course, it is all a matter of taste; you
will set your development environment up the way you like it.
You can always change it.

24

The Visual Basic Environment 2

Customising the Toolbar

There may well be options that are not on the standard toolbar
that you would like to have available at the click of a mouse.
Fortunately, it is easy to customise a toolbar as we shall see
next when we add an icon that opens the Code Editor.

To do this, rightclick in the standard toolbar and select
Customize from the pop-up menu that appears. This opens
the Customize window shown in Fig. 2.13.

Fig. 2.13 The Toolbar Customize Dialogue Box

Select the Commands tab, click on View in the Categories list
box and drag the icon for the Code Editor window to the main

Visual Basic toolbar, as shown in Figure 2.13.

Drop it just to the right of the Toolbox icon. As we
are sure you are aware, this is a ‘drag and drop’

operation and takes only seconds to carry out.

2

The Visual Basic Environment

The Options Dialogue Box

There are two general program settings that we think should be
made before you start developing any projects. One change
forces you to declare all your program variables, and the other
offers to save your project before you attempt to run it. For both
of these, use the Tools, Options menu command to open the
Options dialogue box shown in Fig. 2.14.

RURURURUR

Fig. 2.14 The Options Dialogue Box

In this box you can change many of the Visual Basic program
settings. On the Editor tabbed page, shown above, select the
Require Variable Declaration option. Selecting this adds the
‘Option Explicit' statement to general declarations in any new
module, which means that you will have to explicitly declare, or
define, all the variables you use in your projects. This can save
a lot of problems when your code begins to get complex.

While you are in the Options box, make one more change.
Select the Environment tab, click in the check box next to
Prompt To Save Changes. With this checked, when you run a
project from within Visual Basic, you are asked whether you
want to save any changes you have made. Usually it is much
safer to answer Yes, in case something goes wrong and you
lose all your code. Have a look at the other options and then
click the OK button to close the dialogue box.

26

The Visual Basic Environment

The MSDN Help System

As we saw in the first chapter, Visual Basic uses the powerful
Help facility built into the MSDN library (Microsoft Developers
Network) and provided on separate CD-ROMSs. This includes all
the Help files and program samples that you will need. When
learning the program this is one of the essential tools to use. In
fact, now Microsoft do not supply manuals, it is the only tool to
use, without having to fork out more money to them. Hopefully
you have installed MSDN? If not, read the first chapter and go
back and do it straight away.

If all is well with the library, when you use the Help,
Contents menu command from Visual Basic the MSDN
window shown in Fig. 2.15 should open.

| MSDN Library .
| Visual Studio 6.0 release s OLeiea

|
The MSON Library 15 the essentia reference for what's sew en the Lierary
| devsiopers, with more than a gigabyte of hare for o

U Vieus B aec: :' sample :od- oocumumn technucal amcm
the Microsoft Developer Xnowledee Base, and
|| anythung eise you mught need to Jevelop
| that

Geltrg Susted vath Vieusd s 60

I. The MSDN Library 15 3 member of the Visual
Studho 6.0 famdy of development products,
| which ncludes
sal Basic
® Visiual Coo
* Visual FoxPro
* Visudl InterDev
o VISudl Jee
= Visual SourceSafe

Fig. 2.15 The MSDN Opening Window

The format of this window should be familiar to anyone wanting
to program in the Windows environment, but two points are
worth special mention.

Firstly, depending on the installation options you used, you
may need to have the MSDN CD-ROM in the drive to use Help.

27

2

The Visual Baslic Environment

Secondly, as MSDN includes documentation for all of
Microsoft's vast range of development software, make sure you

select the option Visual Basic
Documentation as the Active
Subset, as shown here.

s

There are two ways to access the general Visual Basic help.
The first is to follow the links in the right-hand pane, until you
get the information level you want. To get to the screen shown
in Fig. 2.16, for example, we clicked the Visual Basic link,
followed by that for Programmer’s Guide.

Programmer's Guide
See Also

Welcome to the Visual Basic® Programmer’s Guide, a comprehensive manual on
programming with Visual Basic. To accommodate the wealth of features and
capabilities in Visual Basic, the Programmer’s Guide is divided into two parts.

The first part covers the basic concepts, providing a foundation for programmers new
to Visual Basic. Part 2 covers more advanced programming concepts and techniques.
Additional information helpful in using the product is presented in the appendices.

@ visual Basic Basics

An introduction to programming in Visual Basic.

@ what Can You Do With Visual Basic?

Advanced topics on Visual Basic programmmg

@ visual Basic Spot:Iﬁcanons, umnanons, and File Formats

Technical details for Visual Basic.

@ visual Basic Coding Conventions

Suggostnd guidelines for consistent and readable code.
Native Code Compiler Switches

Details on command line swnchos for compollng to native codo.
Adding Heip to Your Appbcanon

Fig. 2.16 MSDN Programmer’s Help

You can then treat this like a book and read about any of the
topics that interest you.

28

The Visual Basic Environment

The second method is to use the tree structure in the Contents
tabbed section, as shown in Fig. 2.17.

8 (A Vieusl Basic Documentation
[8) Visual Basic Start Page
B () Visual Basic Documentation Map
V-udBuicEabm
[8) Vieual Basic Enterprise E dition Features
B () Whet's New in Visusl Basic 6.0
[E) What's Now in Data Access
E] What's New in internet Features
&) What's New in Controls
) What's New in Component Creation
[E] What's New n Language Features
|E] What's New in Wizards
5] Upgrading Applications that Use the Windows Common Controls
8 () Geting Started with Visual Basic 6.0
8 B Fand it Fast
Decument Conventions
8 (Q Using Visual Basic
® Programmer's Guide (Al E ditions)
Component Tools Guide (Pro, Enterprise only)
Enterprise Guide
Data Access Guide (Pro, Enterprise ondy)
Relerence
Language Reference
Controle Reference
‘Whzards and AddHns
Trappable Emors
Addibonal Informabon
Samples
Microsoft DAD 351
Using the Repository with Visual Basic

23]
®
53]
2@
]
2]
]
]
=

2]

L 444

#

Fig. 2.17 The Visual Basic Help Contents

The Contents tab lets you scroll through a table of contents for
Visual Basic Help. Clicking a '+’ at the left of an item opens a
sub-list, clicking a '~ will close it again. Clicking a list item, with
the mark M as shown above, opens its help text in the
right-hand window pane.

The Index and Search tabs open up interactive Help index
and search facilities. If the Index tab is clicked and you type the
first few letters of a word in the input text box, you are shown
the available options. Selecting one and clicking the Display
button opens its page, but it may ask for the MSDN disc to be
inserted.

The Search tab gives you access to a very powerful
individual word search facility of the whole Help system.

29

2

The Visual Basic Environment

The Favorites tab lets you keep a list of Help pages that you
want to use again in the future. This is very useful, as the
MSDN library contains an enormous amount of information and
it is not always easy to find a particular page again.

Context Sensitive Help

Once you have the MSDN library installed and working, it also
provides the normal context sensitive help we are all used to
with Windows applications. This is most useful to get help on
the various Visual Basic windows and controls, as well as the
programming language keywords and expressions.

To get help on something you have selected you simply
press the F1 key, to open a screen like that in Fig. 2.18.

Integer Data Type
See Also Exemple opeafics

Integer vanables are stored as 16-bit (2-byte) numbers ranging in valLe from
32,768 to 32,767. The type-declaration character for integer is the percent sign
(%)

| You can also use Integer variables to represent enumerated values. An enumerated
value can contain a finite set of unique whole numbers, each of which Jas special
meaning in the context in which it is used. Enumerated values provide a convenient
way to select among a known number of choices, for example, black = 0, white = 1,
and so on. It is good programming practice to define constants using the Const
statement for each enumerated value.

Fig. 2.18 Getting Context Sensitive Help

In most cases if you click the Example link you will be shown a
code example using the keyword, etc., you want help on. In our
case above, this is greyed out, so there was no example.

If you persevere with the Help system it will become an
indispensable tool while you are using Visual Basic. However
good you get, you will still need assistance on something!

30

3

Programming Basics

Programming Steps

With most programming languages you must write countless
lines of code into an editor before anything happens. Some of
this code might be written to control the operation of the
program, but probably most of it will control the screen display
and the interface with the final user of the program.

Design Mode

With Visual Basic, on the other hand, you do not need to write
code to set the program interface; you design this graphically
on the screen in ‘design mode’. All of the control features you
are used to in Windows, such as menu bars, list boxes, control
buttons, etc., can be almost instantly placed on ‘Forms’ at
design time. When you are happy with the interface, you then
enter code to control how its components interact with each
other, and with the final user. Even this operation is made easy
in Visual Basic, which names and controls your input
procedures almost automatically.

Run Mode

When you finally run the program, or project, that you have
created, the Forms you designed become the program
windows in ‘run mode’. This means that Visual Basic gives you
the power to use most of Windows' built-in facilities, like
window manipulation, file opening and saving, etc., without
having to write much program code at all. You can get really
professional output with the minimum amount of effort, and that
is always a good thing!

31

3

Programming Basics

A First Program

The next step forward has to be a simple programming
example to show how these features fit together.

Start Visual Basic, or if it is already open, use the File, New
Project menu command, and accept Standard.exe as the
project type to create. If Form1 is not open on your screen,
select it in the Project Explorer window and click the View

Object button, also in that window. If the Properties
g window is not open, click the toolbar icon, shown here,
or press the F4 key.

Creating an Object

Now, to start, we will add a button to the form. Click the

I Command Button icon in the Toolbox and move the

pointer back over the form window. It should change to

a cross hair. Position this cross at the place in the form where
. =001 Yyou want the top left comer of the button,
hold down the left mouse button and ‘drag’

the button shape, as shown here. When you

release the mouse button your new button will
be placed on the form, with the name ‘Command1’ placed in it.

Fig. 3.1 Placing a Command Button on a Form

Programming Basics

3

Another way of doing this, is to double-click the Command
Button icon in the Toclbox, which places a new button in the
centre of the form. You can then drag it to where you want it,
then resize it.

During this operation you could have used the number
indicators that appear when you are manipulating an object on
a form. The Position Indicator, when you are dragging, shows
the position of the top left corner of your button, while the Size
Indicator, when you are re-sizing, gives its dimensions. By
default, these dimensions are in ‘twips’, a standard unit of
screen measurement equal to 1/20 of a printers point. In case
you wanted to know, 1,440 twips equal one inch, and 567 twips
equal one centimetre.

Changing a Caption

The new button should be ‘selected’ in the form and have a
series of black ‘handles’ around it, as shown in Fig. 3.1. If not,
click it with the mouse. Now, look at the Properties window. The
highlighted property in the list should be ‘Caption’, showing as
‘Command1’. The caption is what actually appears on the face
of the button.

Double-click the Command1 caption in the Properties
window, to select it, and over-type it with the word Print
instead. The button should now have a new caption on it.
Changing an object’s properties is as easy as that.

Entering Code

Now double-click on the newly created button. This opens the
Code Editor window, titled Project1i - Form1 (Code), with two
lines of code and the cursor already placed for you. Type the
following text:

Print "My first Windows ‘program’?”
Your window should now look like that shown in Fig. 3.2. Don’t

worry too much about the rest of it at this stage, all will be
revealed later.

33

3

Programming Basics

Private Sub Commandl Click()
Print "Hy first VWindows ‘program'?®
End Sub

Fig. 3.2 Our First Code

Running a Program

For neatness, close the Code Editor window by clicking

its @ Close button, and click the Run toolbar button,

shown here, (or use F5, or the Run, Start menu
command). Visual Basic changes to Run mode and displays
the window Form1 containing our Print button. Clicking the
mouse on this button prints the message in the window, as
shown in Fig. 3.3.

Fig. 3.3 Visual Basic in Run Mode

Programming Basics 3

I Run mode all you can do at the moment is print the message
every time the button is clicked. Not a very useful
program, but it is a start. To stop the program running,
and return to Design mode, click the Stop toolbar

button, shown here. The easiest way to move between Run and

Design modes is with the Run and Stop toolbar buttons.

Saving a Program

We may use this example as the basis for other applications,
so save it with the File, Save Project command, or the
Save Project toolbar icon. Use ‘EXAMPLE1’ as the
name for both the form and the project, when asked, as
shown in Fig. 3.4.

Fig. 3.4 Saving a Project and its Form

If you look in the Project Explorer window now, you will see the
name changes have taken effect, as in Fig. 3.5 below.

Fig. 3.5 Project Explorer Window

35

3

Programming Basics

Project Elements

As can be seen from this very simple example, writing a
program in Visual Basic follows a very definite series of steps.

+ The interface is designed and built graphically, by
placing controls and boxes, etc., on a series of forms.

« The properties of the forms, and controls used, are set
to produce the visual resuits required.

» Code is written to link these up and generally make the
program work. Essentially this code,

» controls the general action of the program and,

» determines how it will react when specific actions
are carried out on specific objects by the end user,
such as when a button is clicked, or a form
double-clicked.

The Interface

This consists of one, or more, forms with control features
placed from the Toolbox, to enable the required program
functions to be carried out by the final user.

Forms

A form is a window, that opens at some stage when the
program is run, and is used to either show information to, or get
information from, the program user. When you start to build a
new project Form1 is available to use straight away. If you need
to open more, this is easily done with the Add New Form button
on the toolbar. When saved to disc, every form in a project is
saved in a separate file with a '.FRM’ extension. This makes it
possible to use a particular form in several different projects.

To include an existing form in an opened project, use the
Project, Add File command. It will then be listed, and be
accessible from the Project Explorer window. To remove one
from an opened project, select it in the Project Explorer

36

Programming Basics

window, click the right mouse button, and choose Remcve
from the opened menu, as shown in Fig. 3.6.

Fig. 3.6 Removing a Form from a Project

Here, the form CALC.FRM has been added to our first example
project and is shown being removed as described above.

Modules

Most of the code in a program, or project, will be included in the
various forms of the project. However the code attached to a
form is only usable by that form. For code to be available for
other forms, or the project as a whole, it must be placed in a
separate ‘module’.

Code modules are stored with a ‘.BAS' file extension ard are
very much like more traditional BASIC programs. They do not
have the power to get input from the user, or to create graphic
displays.

To open a module, use the Project, New Module menu
command, which opens the Add Module dialogue box shown in
Fig. 3.7 overleaf.

37

Programming Basics

Fig. 3.7 The New Module Dialogue Box

A module can include:

+ Declarations of constants, types, variables and DLL
(dynamic-link library) procedures.

+ General Procedures which can be called from
anywhere in an application. These can be either Sub
procedures, that do not return a value, or Function
procedures, that do retum one, or Property procedures.

Applications

An application (or program), is a collection of forms and
modules (as well as user controls and documents, property
pages, ActiveX files and resources) that can be saved together
as a project, and can be combined into a single executable file,
with an .EXE’ extension. Forms and modules, and their code,
can also be incorporated in other applications.

As you progress with Visual Basic you should build up a
library of forms and procedures to use time and again. There is
no point re-inventing the wheel every time you build a new
application!

38

Programming Basics

Visual Basic Controls

As mentioned in the last chapter, controls are placed on forms
from the Toolbox. The form below shows a composite of the
more commonly used (infrinsic) controls and which icons are
clicked on the Toolbox to produce them.

DOSCCUS JLL
BIBLIO.MDB
C2EXE
CVPACK EXE

Fig. 3.8 Visual Basic's Intrinsic Controls

These controls should all be very familiar to any Windows
program user. They form the building blocks to make up all
| types of dialogue boxes, etc.

| We included some details of the individual Toolbox controls
| on Page 17, and most will be covered in more details as they
| are used throughout the rest of the book.
|

3

Programming Basics

Setting Properties

Once your forms and controls have been chosen and placed,
their Properties have to be set in the Properties window, so that
they look and behave in the way you want. Most of the default
properties will not need to be altered; but some of the more
important variables are now described.

Some Form Properties

When designing a form you can set its position on the screen,
and its size, graphically with the mouse. You can also set the

Fig. 3.9 Border Properties

Left, Top, Width and Height
properties for more precise
control.

The default form settings
include a control box, minimise
and maximise buttons on the title
bar, and a re-sizeable frame. This
lets the final user change the
resultant window with these
features, when the program is
run. You can control all of these
features though.

Setting the ControlBox, Min-
Button and MaxButton properties
to False will turn these features

off when the program is run. Changing the settings to True will

reactivate them.

The BorderStyle property works in conjunction with these in

the following ways:

0 - None Switches off all border or related border
elements.

1 - Fixed Single Can include Control-menu box, title bar,
Maximise button, and Minimise button.
The window is re-sizable only by using
the Maximise and Minimise buttons.

40

Programming Basics

3

2 - Sizable The default setting. Re-sizable using
any of the optional border elements.

3 - Fixed Double Can include Control-menu box and title
bar, but not Maximise or Minimise
buttons. It is not re-sizable.

4 - Fixed Tool Displays a non-sizable window with a
Close button and title bar text in a
reduced font size.

5 - Sizable Tool Displays a sizable window with a Close
button and title bar text in a reduced
font size.

The best way to get used to all these settings is to change
them, one by one, and then click between design and run
modes from the Toolbar. For a very detailed description of a
property and its available settings, simply highlight it in the
Properties window and press the F1 key.

Caption sets what text will display in the title bar, whereas
Name controls the name of the form itself. Visual Basic needs
every form in an application to have its own distinctive name.
They are initially set at Form1, Formz, etc.

BackColor sets the colour of the
window, and ForeColor the colour of
any text which is printed on it at run
time. To change the colours simply
double-click cn the colour square to
the right of the item in the property
list and select from the palettes
which open. The other attributes of
such text can be controlled with the
Font properties.

pocdCTTTTTTT
ST T

The Icon property lets you attach

a different icon to your form window,

which will replace the default

Command Menu button and show in

the Windows Taskbar when the
Fig. 3.10 Colour Palettes window is minimised at run time.

41

3

Programming Basics

You can select such icons from the extensive list of those
provided with Visual Basic (in our case these were in the
C:\Program Files\Microsoft Visual Studio\Common\Graphics\
Icons folder), or you can design your own.

MousePointer determines the shape of the pointer when it is
moved over the window at run time and Picture allows you to
attach a graphic image ‘permanently’ to a window. Setting
FontTransparent to ‘True’ will then let you print text on the
graphic, without blocking it out.

Label Properties

A label usually holds text on a form that is not changed
interactively by the end user. The Alignment property

determines whether the Caption text (limited to 1024 bytes) is
Left, Right or Centre Justified.

When a label has its AutoSize property set to True, the
WordWrap setting determines whether it expands vertically or
horizontally to fit the text specified in its Caption property. With
WordWrap set to True the text wraps and the label expands, or
contracts, vertically to fit the text and the size of the font. The
horizontal size does not change.

With the default WordWrap setting, False, the text does not
wrap and the label expands, or contracts, horizontally to fit the
length of the text and vertically to fit the size of the font and the
number of lines.

To prevent a label changing size at all, leave AutoSize with
its default setting of False.

Text Box Properties

A Text Box is used to hold text, entered at design time, entered
interactively by the user, or assigned in code at run time.

The Text property contains the text string that is displayed
and MaxLength determines whether there is a limit to the length
of the Text. The default is 0O, or no maximum. Any number
larger than 0 indicates the maximum number of characters that
can be entered into the Text Box, (up to a maximum of 64K).

42

T 0

.IJI__

Programming Basics

3

Scrolbas are sot to When MuitiLine is set to True, the Alignment
s el i property forces left, right or centre alignment
| ®| of Text. ScrollBars sets scroll bars as follows.
Sciolbars we el to The default, 0, sets no bars, 1 sets a
uis sl Horizontal bar, 2 a Vertical bar and 3 sets both

J bars, as shown here.

Command Button Properties

Command buttons are placed on a form so that the end user of
the program can select them to begin, interrupt, or end a
process. When selected they appear to be depressed.

The Caption property determines the text displayed on a
command button. Clicking a button always selects it, but there
are two other ways that should be used. With the Default
property set to True, pressing <Enter> will select it; and with
the Cancel property set to True pressing <Esc> will select it.
The former would be used to determine what command is
actioned in a window when the <Enter> key is pressed, and the
latter to control the <Esc> key, maybe for exiting the box, or the

program.

Check Box and Option Button Properties

Check boxes are used to allow the user to easily choose if
something is true or false, (switched ‘on’ or ‘off), or to choose
more than one option from a selection. Option Buttons are used
in a group to display multiple choices from which the user can
select only one. The properties of both are similar. The Value
property controls what state the object is in. When set at 0, the
default, it is unchecked, at 1 it is checked, and at 2 it is greyed
out, or dimmed.

When the Enabled property is set to True, the control is able
to respond to events, such as a click from the mouse pointer.
When set at False it is inactive.

A frame control would usually be used for grouping option
button, or check box controls.

3

Programming Basics

The Tab Order of Controls

When a Windows dialogue box is active only one control on it
has the ‘focus’ at any one time. This is shown by
either a dotted box, as shown here, or a highlight,
on the control. You move the focus round the box
with the <Tab> key. When the <Tab> key is used in this way
the current control ‘receives the focus’. When you design a
form you should make sure the tab order of the controls on the
form is correct.

Initially the order is set automatically and is the same as the
order in which you placed the controls. This order is actually
controlled by the Tabindex properties of the various controls on
a form. The control which will receive the focus when a window
is opened should have a Tabindex value of 0, followed by
values of 1, 2, etc.

To prevent the focus being given to a control you can set its
TabStop property to False. Although the control still holds its
place in the tab order, determined by the Tabl/ndex property,
the focus will not be given to it.

Shortcut Keys

There is yet another way to select some of the controls in a
running window, that is by pressing an <Alt+letter key>
combination from the keyboard. To do this you place an
ampersand, the ‘& character, in front of the selected letter in
the Caption property. This underlines the next
letter on the control face. In our example on
the left, the Caption entered was "Cli&ck me’.

Most of the properties described so far are set during the initial
design process. Many of them, however, will also be changed
while the program is being run. This is done, either interactively
by the user, or under the control of code written into the
program.

Programming Basics

3

Writing Code

Visual Basic is unlike all the other programming languages we
were brought up with. Most of the hard work building interfaces,
etc., is done almost automatically for you, once you know how
to steer the process. Lines of code are required, however, to
string all the building blocks together and actually produce
useful results.

it is very much an svent-driven procedure based language,
with each independent procedure designed to carry out a
specific task. An event being an action which is recognised by a
form or control.

Code Editor Windows

As was introduced in the last chapter, the operation of writing
your code is carriec out in a special Code Editor Window.
There are two main ways of opening a Code Editor window in
design mode. The easiest is to double-click on the form, or
control, whose code you want to edit. You can also select the
form or control (in other words make it active by clicking it), and
press the View Code button in the Project Explorer windcw.

M Piogect] - Forml [Code)

|| Private Sub Forw_Load()

| £nd sw

Fig. 3.11 Code Editor Window with Procedures Box Open

3

Programming Basics

As described on Page 22, a Code Editor window contains two
drop-down list boxes in its top bar. The Object box lists the
current form and all the controls on it when you click its down
button. The other, the Procedures box, lists all the events
recognised by Visual Basic for the form or control displayed in
the Object box.

Every form and control has a set of pre-defined events that it
can recognise. The example on the previous page shows the
events list opened for the empty form ‘Form1’. The active event
in the list is Load and the code in the form for that event is
shown, ready to edit, in the lower half of the window. When you
select an event, either the event procedure associated with that
event name, or a code template for the event, is displayed in
the bottom part of the Code Editor window.

Any code placed in this Load Procedure would be activated
when the form was first opened. In this case, as the form is
Form1 and would open first, the code would activate when the
program is first run.

You write code to attach event procedures only for events to
which you want a form or control to respond. If you leave an
event procedure empty that event will produce no program
action.

When writing code to attach an event procedure to a form or
control you do the following:

1 Select the event in the Procedures box for which you
want to add code.

2 Enter your code, in the template provided, in the
standard way for entering code and declarations.

3 If necessary, select other forms or controls from the
Object box in the Code Editor window and follow the
same process from step 1 above.

4 When finished, close the Code Editor window by
double-clicking its control box.

Programming Basics

Instead of using the template provided by Visual Basic, you can
also create a new procedure by typing

S8ub ProcedureName
in the Code Editor window. In the future, you can find this

procedure by selecting (general) from the Object box and then
looking in the Procedures box.

Visual Basic Naming Convention

The standard syntax when writing an event procedure is made
easier for you, as Visual Basic provides the names for
procedures automatically. It combines the control name with
the event name and separates them with an underscore
character '_'. Thus the standard name is

Control_Event

In the open Code Editor window shown in Fig. 3.11, the
procedure name shown was

Form_Load
This names the procedure that will activate whenever that form
is loaded, or opened. This convention might seem a little

confusing to start with, but it is so logical it soon bacomes
second nature.

The full syntax for an event procedure is:
Sub ControlName EventName (arguments)

Local variable and constant definitions
Statements

Bnd Sub

Naming Control Properties

The control properties, described earlier in the chapter, are
frequently assigned values or have their values changed, in
program code. The usual format for this would be

ControlName.Property = expression

47

3

Programming Basics

Where ControlName is the name of the control, Property is
the Visual Basic name of the property concemed and
expression is a valid expression (such as a text string, or
arithmetic calculation). Note the ‘.’ separating the property
name. As an example, the code

Textl.Text = “Type a number here”

would place the text string ‘Type a number here’ into the Text
property of the Text Box named ‘Text1’. When this code is
activated, that is the message that will show in that Text box on
the form.

Naming Controls

When you first create an object (a form or control), Visual Basic
sets its Name property to a default value. For example, all
command buttons have their Name property initially set to
Commandn, where n is 1, 2, 3, and so on. Visual Basic names
the first command button drawn on a form Command1, the
second Command2, and the third Command3, etc.

You may choose to keep the default name, as we do in many
of our examples; however, when you have several controls of
the same type, it makes sense to change their Name properties
to something more descriptive. Because it may be difficult to
distinguish the Command1 button on Form1 from the
Command1 button on Form2, a naming convention can
obviously help. This is especially true with complex projects,
where an application may consist of several form, standard,
and class modules.

You can use a prefix to describe the class, followed by a
descriptive name for the control. Using this naming convention
makes the code more self-descriptive and alphabetically
groups similar objects in the Object list box of the Code Editor
window. So they are much easier to find.

For example, you might name a Check Box control like this:
chkReadOnly

We have included recommended naming conventions in
Appendix B. These are shown in more detail in the MSDN
section on ‘Visual Basic Coding Conventions’.

4

Starting to Program

Entering Program Code

With what was discussed previously in mind, activate Visual
Basic and make sure the Auto Syntax Check option is
selected in the Editor section of the Options box opened with
the Tools, Options, command. This ensures that every
entered line of code is checked for errors, with minor errors
being corrected automatically. We will now create a program to
calculate the average of three numbers, in order to
demonstrate a few points.

Unlike QuickBasic, you can't just type code intc the program
and show the printed results straight on the screen when you
run the code. The Print command does not print to the screen,
but will print (after a fashion) to the background of a window.
However, if there are any controls on the window, in the print
area, they will block out the print output. A picture box receives
print output better, but for the moment we will stick to using a
plain window to demonstrate our code results.

Using the File, Open Project command, open the program
EXAMPLE1, which should have been saved from Chapter 3. If
not, take a few minutes and do the very basic examgle now.
We will adapt Form1 as a work area for developing some
programs to help come to terms with the basics of the
programming language.

49

4

Starting to Program

Using the Code Editor

Double-click on the Print command button which should open
the Code Editor window with the Command1_Click procedure
showing. Delete the middle line of code, by selecting it and
pressing the key, and type in the code shown in Fig. 4.1.

Private Sub Commandl_Click()

' beclare variables.
Dim Numberl, Number2, Number3, Sum, Average

Numberl = Val (InputBox("Enter first number™)) Get user input.
Number2 = Val(InputBox ("Enter second number™))

Number3 = Val(InputBox(”Enter third number”))

Print “You entered: " & Numberl & ", " & Number2; " and "~ & Number3

Sum = N 1 + Number2 + Number3

Average = Sum / 3

Print "Average value is ": Averege
Print

End Sub

Fig. 4.1 The Code for Example2

This is presented to give you an idea of some Visual Basic
source code. The statements in it will be discussed in more
detail in the following pages, so there is no need to worry! But
you will get some experience of the editor.

When you have entered a row of code, press the <Enter>
key to start a new one. Note how the editor changes the
entered code. It places spaces in the line, capitalises keywords,
checks the line for syntax errors and changes the colour of
some of the code. By default, Keywords are coloured blue and
Comment text is coloured green in the Code Editor window.
These colours make reading the code much easier.

If you attempt to leave a code line which contains an error, a
message box, maybe similar to the one shown in Fig. 4.2, will
open. Pressing the <Esc> key, or clicking the OK button, will
remove the box. You can then correct the code straight away,
or in the future. These messages can be a nuisance if you use

Starting to Program

4

the Cut and Paste facilities of the Edit menu. If so, ycu could
turn off the Auto Syntax Check option described earlier, but
we wouldn’t recommend this.

Fig. 4.2 Compile Error Message Box

Automatic Code Completion

The Code Editor alsc makes writing code much easier with
some special features that can help by completing your code
statements, properties, and arguments for you. As you enter
code, the editor displays lists of appropriate choices, statement
or function prototypes, or values, depending on what you are
doing.

When you enter the name of a control in your code, the Auto
List Members feature presents a drop-down list of properties
available for that control (see Fig. 4.6). If you type the first few
letters of the property name it will be selected from the list and
then just pressing the <Tab> (or <Enter>) key will complete its
entry for you. This opfion is also helpful when you aren’t sure
which properties are available for a given control.

Auto Quick Info displays the syntax for statemerts and
functions, as shown in Fig. 4.3. When you enter the name of a
valid Visual Basic statement or function the syntax is shown
immediately below the current line, with the first argument in
bold. After you enter the first argument value, the second
argument appears in bold, etc.

| AsgBox | I
_MsgBox(Prompt, [Buttons As VbMsgBaxStyle = vbOKONN, [Titie], [HeipFie, [Contex]) AS VbMsgEoxResult |

Fig. 4.3 An Example of the Auto Quick Info Display

51

4

Starting to Program

If you prefer, you can switch both these features off (and on
again) in the Editor tab page of the Options dialogue box,
opened with the Tools, Options menu command. You can
then access the Auto List Members feature with the <Ctri+J>
key combination, and the Auto Quick Info feature with the
<Ctri+|> key combination.

Other Keyboard Shortcuts

To help you move around and get the best out of the program
you can also use the following shortcut keys to access
commands in the Code Editor window.

Shortcut Keys Description

F7 View Code window

F2 View Object Browser
Ctri+F Find

Ctri+H Replace

Shift+F4 Find Next

Shift+F3 Find Previous
Ctri+Down Arrow Next procedure
Ctri+Up Arrow Previous procedure
Shift+F2 View definition
Ctri+Page Down Shift one screen down
Ctri+Page Up Shift one screen up
Ctri+Shift+F2 Go to last position
Ctri+Home Beginning of module
Ctri+End End of module
Ctri+Right Arrow Move one word to right
Ctri+Left Arrow Move one word to left
End Move to end of line
Home Move to beginning of line
Ctri+Z Undo

Ctri+Y Delete current line
Ctri+Delete Delete to end of word
Tab Indent

Shift+Tab Reduce indent
Ctri+Shift+F9 Clear all breakpoints
Shift+F10 View shortcut menu.

52

Starting to Program

4

Now back to our example. Before running your code, return to
the design form, seiect the Print command button, press the
<Ctri+C> Copy keys, followed by the Paste keys, <Ctri+V>. You
could also use the Edit menu commands, but using the menu
is nowhere near as fast. Answer No to the question about
creating a control array, (we don't want to know about such
things at this stage!) and drag the two buttons until the new one
is placed below the other. Now change its Caption property to
‘Quit’. At this stage, that should be no problem, otherwise read
through the last two chapters again!

™ Project] - £ xample? (Code) It is always a good idea to
I give the user of a program
Private Sub Commandz Click() an easy way to leave it.

1 Open the Code window

fnd ‘Leave the progrem 7 for the Quit button and

End Suwb place the very lengthy

code statement, shown in

Fig. 4.4, in the Click

Fig. 4.4 The Quit Button Code procedure. The End key-

word stops any more

code being looked at by Visual Basic and hence ends the
program,

To test the program out, click the Run toolbar icon and your
new window, with its two buttons, should open. Clicking the
Quit button, should place you straight back to design mode. If
not, check that the one word of code was entered properly!

Fig. 4.5 Example 2 Output to Screen

53

4

Starting to Program

Clicking the Print button, should open an Input Box, as shown
on the left in Fig. 4.5, in which you enter data manually, in our
case a number. Typing in a number and clicking the OK button
will save the number as variable ‘Number1' and open the Box
again for ‘Number2’.

When all three numbers are entered, the first Print command
is actioned, the Sum and Average variables are calculated, and
the final result is printed on the form, followed by a blank line
(as shown on the right in Fig. 4.5).

All of which took many times longer to read, than to actually
do!

Program Comments

Our procedure code consists of statements and comments.
Program Comments follow an apostrophe character (‘), which
can be placed anywhere on a line. Any text that follows this has
no effect on the running of a program. This allows the insertion
of remarks in the code to help the user remember the function
of program sections. They also help the programmer in the
future, we can assure you!

Variables and Constants

Variables

A variable is a quantity, or a string of text, that is referred to by
name, such as Numberi, Number2, Number3, Sum and
Average in the previous program. Variables can take on many
values during program execution, but you must make sure that
they are given an initial value, as Visual Basic automatically
zeros numerical variables, and ‘empties’ text ones, when a
program starts.

Starting to Program

4

Constants

A constant is a quantity that either appears as a number (3 in
the seventh executable statement in the previous program) or
is referred to by name, but has only one value during program
execution, allocated to it by the user.

Expressions

An expression, when referred to in this text, implies a constant,
a variable or a combination of either or both, separated by
arithmetic operators.

Naming Convention

Variable and constant names are formed by combining upper
and lower case leflers with numbers and the underscore
character (_). Other characters and spaces are not valid and
the first character must be a letter. The length of the name
must not exceed 255 characters. When naming your variables,
you should be careful not to use a name which is the same as a
Visual Basic reserved word, otherwise you may get an error
message.

To maintain compatibility with earlier versions of Basic you
can add the following suffix type-declaration characters (%, &, !,
#, @, and $) to variables to identify their type. A%, for example,
would always be treated as an Integer by Visual Basic.

The very powerful Variant data type is the default for Visual
Basic. This is the data type that is allocated to your variables if
they are not explicitly declared as some other type. The Variant
data type is a special data type that can contain numeric, string,
date, or currency data as well as the special values Empty and
Null.

There are a variety of other, more conventional, data types
for both variables and constants; the most commonly used
being the Integer and Single (single-precision floating-point)
types. An integer type can hold only integer (or whole number)
quantities and is distinguished from a floating-point type which
holds numbers containing fractional parts. The computer stores
these two types differently and tends to calculate much faster
when using integer-value variables or constants.

55

4

Starting to Program

Examples of integer and floating-point numbers are as follows:

-255 is an integer number

26.75 is a real, or floating point number

-45E+16 is an exponential number. The E stands for
‘times ten to the power of.

Less commonly used types of numerical variables and
constants are Long (long integers) and Double (double-
precision floating point). In Visual Basic, the values of
single-precision variables are accurate to 6 significant figures,
while those of double-precision variables are accurate to 16.
String variables can be as long as 65,500 characters.

As we saw above, you do not need to set the type of a
variable, as by default, it will be a Variant and adapt to the data
involved. There are many times, however, when you will find it
necessary to force a specific data type in your code.

The following table shows the data types supported by Visual
Basic, with their type-declaration suffix and the possible range
of each data type. .

Type Suffix Range

Byte 0 to 255

Boolean True or False

integer % -32,768 to 32,767

Long & -2,147,483,648 to 2,147,483,647

Single ! -3.402823E38 to -1.401298E-45 for -ve values;
1.401298E-45 to 3.402823E38 for +ve values.

Double # 1.79769313486232E308 to -4.94065645841247E-324

for -ve values; 4.94065645841247E-324 to
1.79769313486232E308 for +ve values.

Currency @ -922,337,203,685,477.5808 to
922,337,203,685,477.5807.

Decimal 28 decimal places with the smallest non-zero number
being +/-0.0000000000000000000000000001.

Date January 1, 100 to December 31, 9999.

Object Any Visual Basic Object reference.

Starting to Program

4

String $ Fixed length - 0 to approximately 65,400 characzers.
Variable length - Up to 2 biliion characters.

Variant None Any numeric value up to the range of a Double or any
character text.

String Variables

A sequence of characters is referred to as a literal, and a literal
in quotation marks is called a string. For example, ABC123 is a
literal, and “ABC123" is a string.

Like numbers, strings can be assigned to variables. They
can be distinguished from numeric variables by a $ after the
name, for example A$. A string can be assigned to a string
variable with a statement such as

strAdd$ = “ABC123~

or with the more usual declaration and assignment

Dim strAdd As String
strAdd = “ABC123”"

Variable Type Declarations

As with QuickBASIC, variable types can be declared (at module
level) with the use of the Deftype statement rather than using
type declaration characters. This method however is really kept
only to maintain compatibility. Using Dim type declaration
statements is far easier.

The various Deftype declaration statements are as follows:
Deftype Type of Variable

DefBool letter1 [-letter2] Boolean
DefByte letter1 [-letter2] Byte

Defint letter1 [-letter2] Integer
DeflLng letter1 [-letter2] Long
DefSng letter1 [-letter2] Single
DefDbl letter1 [-letter2] Double
DefCur letter1 [-letter2] Currency
DefDate letter1 [-letter2] Date
DefStr letter1 [-letter2] String
DefVar letter1 [-letter2] Variant.

57

4

Starting to Program

Named variables cannot be defined with the Def statement;
what can be defined are all variables starting with the letter
specified within the Def statement (as letter1 above). Ranges of
variables can be entered with a hyphen in between their
respective starting letters.

For example, to define all variables starting with letters within
the range from | to N as integers, you could use

DefInt I-N

If a floating-point operand is assigned to an integer operand,
the floating-point number is first rounded and then truncated to
an integer, i.e., assuming that both | and K have been declared
as integers (either by the statement Defint I-K, or with
Dim..As), the statements 1=3.5 and K=0.37 will cause Visual
Basic to assign the integer values of 4 and 0 to the constants |
and K, respectively. For this precise reason, mixing
floating-point constants or variables with integers in arithmetic
operations, can have unexpected resuits! Thus, mixed mode
arithmetic is best avoided.

The Dim Statement

In Visual Basic this is the standard way to declare variables and
allocate storage space to them. it was not strictly necessary in
our program here (EXAMPLE2), but was used because it is
considered good programming practice to declare and
dimension any variables you use.

Dim on its own, as used in EXAMPLEZ2, simply declares what
variables are used. They will be treated by the program as the
Variant type.

To implicitly declare a variable’s type the format is:
Dim Variable Name As Type

where Type is one of those in the earlier list. Thus the
statement

Dim intName As Integer

declares the variable ‘intName’ and ensures that it will always
be considered as an integer.

58

Starting to Program

It is usual to place Dim statements before any other code.
When used in the Declarations section of a form or module, the
variables declared with Dim are available to all procedures
within the form or module. When used at the procedure level,
as in our example in Fig. 4.6, the variatles are available only in
that procedure.

Private Sub Form Click()
Dim a§, by, cg&, d!, e¥, £@
Dim dblfred as do

=
&® DragConstants

!u‘ DragModeConstants
of® DragOverConstants
of® DrawModeConstants
o DrawStyleConstants
@ DriveListBox

Fig. 4.6 The Auto List Members Feature

Here we were in the process of entering a Dim declaration into
the Code Editor; as soon as we finished typing ‘as’, an Auto List
Members menu opened, as shown, for us to select the type of
variable we wanted. We carried on typing ‘do’ until Double was
selected in the menu and pressed <Tab> to complete the
declaration. The Editor then ‘tidied up’ the entry to the following:

Dim dblFred As Double

This example shows the two ways of declaring variable types.
With type-declaration suffixes, as used in older versions of
BASIC, and a full declaration statement using a ‘long’ variable
name that is more descriptive. The first three letters of the
name being standard, depending on the variable type. (See
Appendix B for the conventional names used).

Private Sub Form Click()

Fig. 4.7 Identifying a Variable Type

If you want to know a variable’s type when using the Code
Editor, highlight it, press the right mouse button and select
Quick Info as shown above.

59

4

Starting to Program

The Val Function

This returns the numeric value of a string of characters. In our
case, in EXAMPLE2, we did not prevent non numeric values
being entered at run time. The Val function stops reading the
string at the first character that it cannot recognise as part of a
number. Val also strips blanks, tabs, and line feeds from an
argument string.

The InputBox Function

This function displays a prompt in a dialogue box, waits for the
user to input text or choose a button, and returns the string
contents of the text box. The syntax for the function is

InputBox (prompt {,title] {,default])
InputBox$ can also be used. In this statement:

prompt is the required string expression displayed as
the message in the box. If prompt consists of
more than one line, you can separate the lines
using a carriage return character (Chr(13)), or
a linefeed character (Chr(10)), or both
between each line. Make sure you put an
ampersand character '& before and after them
though.

title is the optional string expression displayed in
the title bar of the dialogue box. If you omit
the title, nothing is placed in the title bar.

defauit is the optional string expression displayed in
the text box as the default response if no other
input is provided. If you omit default, the text
box is displayed empty.

There are in fact three other optional arguments that can be
used at the end of the above expression, before the final
bracket ‘)’

[,xpos] [,ypos] [,helpfile, context]

With these you can exactly position the Input Box on the screen
and specify a help file that can be opened.

Starting to Program

4

if you click the OK button or press <Enter>, the InputBox
function returns whatever is in the text box. Clicking the Cancel
button returns a null string (*").

The InputBox statements provide one way of giving the
variables in our example a value. The values for the variables
Number1, Number2 and Number3 are entered directly from the
keyboard. Once variables have values, they can be used in
assignment statements and/or expressions in the rest of the
program to perform desired calculations. A variable must have
a value before it is used in an expression or in the right-hand
side of an assignment statement.

The Print Statements

The Print statements allow the printing of the result of our
calculation. This result is held in the variable named Average. A
string within full quotes following the Print command allows us
to explain what is printed out. The statement Print, with no
destination given, causes output to be sent to the current
window. Note the use of the ampersand character ‘& to
concatenate strings and variables in one of the print
statements. The statement Print on its own on a line, causes
the program to print an empty line. This is useful for splitting up
print output.

We will delay discussion on formatting output until the next
chapter. However, the penalty of this in our program, is that we
have to accept the defauit Visual Basic form of printing without
any control on the number of digits printed out. Sometimes this
can look ugly, as we are sure you have found out by now.

61

4

Starting to Program

Arithmetic Operators & Priority

We shall now examine how the various arithmetic operations in
this program are performed. The calculations in the program
are performed by the statements

Sum = Numberl + Number2 + Number3
Average = Sum/3

Combining them into one line, we could also write
Average = (Numberl + Number2 + Number3}/3
but Not

Average = Numberl + Number2 + Number3/3

it is important that the numerator of this expression is in
brackets. If it were not, Visual Basic wouid evaluate first
Number3/3 and then add to it Number1+Number2, which would
give the wrong result. This is due to an inbuilt system of
priorities as shown in the table below:

The Arithmetic Operators
Symbol Example Priority Function

() (A+B))N 1 Parenthesised operation
2 AN 2 Raise A to the Nth power
* A*N 3 Multiplication

/ A/N 3 Division

+ A+N 4 Addition

- A-N 4 Subtraction

Additional Operators

There are two other operators which are useful when
performing integer division. These are \ and Mod. The \
operator gives the whole number part of the resuit of a division,
while the Mod operator gives the remainder. We suggest that
you test these in a window.

62

Starting to Program

4

For example, the program statement
Print 10\3

gives the result 3, while the program statement
Print 10 Mod 3

gives the result 1.

It must be stressed, however, that the numbers on which
integer division (\) and Mod operate (called the operands) are
first rounded up or down and then converted to integers. Thus,
the statements

Print 10.1\3.1
Print 10.1 Mod 3.1

will give the same result as before, namely 3 and 1, while

Print 10.9\3.9
Print 10.9 Mod 3.9

will give the result of 2 and 3, respectively.

Visual Basic evaluates expressions, in the order of priority
indicated in the table on the previous page. Expressions in
parentheses (brackets) are evaluated first; nested groups in
brackets are evaluated beginning with the innermost grouping
and working outwards.

Using brackets, the order of priority of execution, and
therefore the final value of an expression, can be changed. If a
line has an expression which contains several operatcrs of
equal priority, Visual Basic will evaluate them from left to right.

Let's examine how a complicated expression such as
Y= (A+B*X)?/C-D*X?
is evaluated. We assume that A, B, C, D and X have values.

First the bracketed portion of the expression will be
evaluated. Within these brackets the multiplication has a higher
priority and therefore it will be evaluated first. Then, A will be
added to it, resulting in a numerical value to which we will
assign the letter Z. Now the expression is reduced to the
following:

63

4

Starting to Program

Y=22/C-D*X?

The above has two exponential expressions, the leftmost of
which is evaluated first. Writing Z, for the result of Z 2 and X, for
the result of X 3, the expression is now reduced to

Y=Z1/C-D*X1

Again, since division and multiplication have the same priority,
the leftmost expression is evaluated first. Finally, the result of
the muitiplication is taken away from the result of the division
and assigned to Y.

Of course, all this procedure is carried out automatically by
Visual Basic, but if you intend to use complicated mathematical
expressions you need to be familiar with it.

The Assignment Statement

What appear as equations above are, in fact, assignment
statements and not algebraic identities. As long as the values
of variables on the right of an equals sign are known, the
calculated result will be assigned to the variable on the left of
the equals sign.

As an example, consider the following lines:

K= 20
K=K+ 1
Print K

where the second line would be meaningless had it been an
algebraic expression. In computing terms the statement means
‘take the present value in K, add one to it and store the result in
K'. When this line is executed, the value of K (set in the first
line) is zero and adding one to it results in a new value of K
equal to one. On running this program, Visual Basic will print
the result

1

in the current window.

Starting to Program

4

Saving a Project

You can save a program by selecting the Flle, Save Project
option which will save the current project (.PRJ) and all forms
w s and modules in it. If you have any new

forms or modules, you'll be prompted
fo save them, one at a time. Visual
Basic automatically adds the default
file-name extension .PRJ for projects,
.FRM for forms, and .BAS for modules.

In our case, you should use the
Save Project As command, (as you
v, .« probably used a previous file as a

Fig. 4.8 File Menu ‘template’ to build the example). Save

Options the project as EXAMPLE2.PRJ, so that

you can modify it in the future, BUT

make sure you save the form as EXAMPLE2.FRM. If you don't

rename your forms for each example, you will end up
overwriting the previous form every time.

To prevent this happening it is a good idea to use a separate
folder for each project, but with small programs like ours this
can get somewhat cumbersome.

Saving Files

When you want to save the active form, or module, to disc you
use the File, Save Form..., or Save Form... As, commands in
the same way. You might want to do this so that a foorm or
module is available, under a new name, for a different project.
As shown in Fig. 4.8, the menu options actually change
depending on the feature that is active at the time.

Adding and Removing Projects

The Add Project and Remove Project options, shown above,
let you combine several projects and all their component files
into one. This is where the Project Explorer window comes in
very handy, as they are shown separately in it.

4

Starting to Program

66

5

Input and Output Controls

A program can be made to assign values to variables by either
entering information on the keyboard, reading information
included with the code, or reading information from data files.
Output can be directed to a picture box, message box or
window; sent to the printer; or written into a file. Reading input
from a data file and writing output to a data file will be deait with
in a separate section.

Text Box Input

Text boxes can be used on a form to enter data from the
keyboard. We have already used the InputBox statement
earlier on, but we will examine the other method now. This will
be illustrated by writing a program to caiculate and display 15%
of any number input into a text box.

Fig. 5.1 Form Design for Example3

Open the previous program, EXAMPLE2.VBP and add a
Picture Box, Label and Text Box, as shown in Fig. 5.1. We will
use the Picture Box as a print area, the Text Box as an input
area (so that the user can get information to the code), the Print

67

5

Input and Output Controls

button to start the calculation and print process and the Quit
button to close the program.

When you are happy with the layout of the controls on the
form, change the Caption and (Name) properties of the form to
‘Example3d’, change the Caption property of Label1 to ‘Enter a
number:’ and delete the Text property in Text1's property list,
by selecting it and pressing the <Delete> key, to ensure that the
box is empty when the program starts. While still in this list, set
the Tabindex property to ‘0’ (zero), to ensure that the focus is
also in this empty box at start up.

As the Print button will control what action this program
carries out we must write suitable code in its ‘Click’ procedure.
Double-click the Print button, to open its Code window, delete
the previous code between the Sub and End Sub statements
and type in the following.

Private Sub Commandl_Click() * Example3

Dim Percent As Integer ‘' Dimension variables
Dim Number As Single
Dim Value As Single

Percent = 15
Number = Val (Textl.Text) * Get number
Value = Number * Percent / 100

Picturel.Print Percent; “% of”; Number;
Picturel.Print “="; Value

Textl.Text = ** * Empty the TextBox
Textl.SetFocus ' Place focus in TextBox
End Sub

In the above, the keywords that are shown blue on the screen
are highlighted, and comment text (green on screen) is in
italics. You do not need to worry too much about spaces inside
the statements, as the editor will sort these out for you. Leaving
empty lines in the code does not affect the running of a
program, but can make the code easier to read.

Save the program and form as EXAMPLE3, and then try
running it. Every time you enter a number and press the Print
button, a result line is printed in the Picture Box.

Input and Output Controls

Fig. 5.2 The Window at Run Time

The code for Example3 declares three variables to be used in
the routine, one as Integer type and the others as Single. If
necessary, look back at the last chapter to see the difference.
The ‘Percent’ variable is set as a constant with the statement

Percent = 15

This is one way of giving a value to a variable, but the value
cannot be changed, except by changing the statement in the
code.

The next line
Number = Val (Textl.Text)

is much more flexible. The value placed in the variable
‘Number’ depends on the text in Text Box ‘Text1' at the time
the Print button was pressed.

The Val function is there to ensure that only numeric data is
passed to the variable. If you try entering different combinations
of numbers and letters, you will see very quickly how Val works.
It accepts any numeric entry until a non-number character is
entered and ignores anything else. If you enter ‘556PP89007’,
for example, only the number 556 will be passed.

Changing a Property

The last two lines of code in EXAMPLE3.VBP change two of
the properties of the Text Box, named Text1, when that section
of the code is run.

Input and Output Controls

At any one time the Text property of a Text Box determines
what will be displayed in that box. In our program, once a
number is entered, processed and printed, we do not want it to
still display in the input box as it would interfere with future
entries. The statement

Textl.Text = “"

resets the Text property to contain whatever is held between
the inverted commas. In other words, nothing. Note that (“") is,
in Visual Basic, a string not a zero. If, as in our case, you want
to use the box contents for numerical calculations, a ‘Mixed
Variables' error will be developed, unless you convert the string
to a number with the Val function.

Setting an Object’s Focus

The user of our program can only enter numbers into Text1
when the Text Box ‘has the focus'’. The box is then active with
the insertion point placed in it. Earlier on we set the Tab/ndex
property to ‘0’, to ensure that the focus is in the box at start up.
This can also be done in code, as with the line

Textl.SetFocus

which places the focus in the empty Text Box, ready to receive
new input from the keyboard.

More on Print Output

In the last program, the lines of code

Picturel.Print Percent; “% of”; Number;
Picturel.Print “="; Value

control what is printed by our program and where it is placed.
Picture1.Print will send print output to the Picture Box named
Picture1 and start printing at the beginning of its top line.

Print, on its own, will send output to the
current form itself, (the one holding the

w Example3

code), as shown here. This also shows

that the print result flows behind any

70

Input and Output Controls

5

controls on the window; the Picture Box frame, in our example.
Printed output to a form, or Picture Box, does not scrolt when it
reaches the end of the print area. Any further output is simply
lost.

If variables within a Print statement are separated by
semicolons, Visual Basic writes their value close together with
no intervening space. If you leave spaces, when entering code,
they will be replaced with semicolons when you move out of the
line. A semicolon at the end of a line, as above, will force the
next Print statement to continue on that line.

If variables within a Print statement are separated by
commas the values of these variables are displayed on the
same line, left-justified within inbuilt print zones. These print
zones have an ‘average’ width depending on the font and size
that is being used. As most fonts these days are proportional
(the widths of characters displayed vary with their size) such
output can be erratic, especially if you want neatly lined up
columns!

If a string is included within a Print statement, such as “% of”
in our example, on execution Visual Basic displays the actual
characters within the quotation marks exactly as they appear in
the statement. It is a way of providing captions or headings for
the output.

Formatting with Tabs

Presentation of tabular results can often be made easier to
understand by using custom Tabs with the Print statement
which allows output to be displayed in columns of your own
design.

The program below illustrates this feature.

Private Sub Form_Click () ' Example4 - Using Print Tabs

Dim A, B, C
A = 15: B = 25: C = 10

Print Tab(5); *A”"; Tab(10); *“B*; Tab(15); “C*
Print Tab(4); A; Tab(9); B; Tab(14); C

End Sub

7

5

Input and Output Controls

To enter it as EXAMPLE4.VBP, type the code as a Click
procedure in the Form Code Window of a new file. When you
run the program, click the window that opens, to activate the
code. This simple method is useful for testing the code we
present, as well as the numerous examples given in the Help
section of Visual Basic. If you like, you can maximise the
window to ‘simulate’ the older type Basic program environment.

When this program is run, Visual Basic will respond by
writing the following to the window

A B C
15 25 10

Another useful formatting function is the Print Spc statement
which provides a number of spaces between the last printed
position and the next one. For example, the first Print line of the
previous program could be replaced by

Print Spc(4); “A”; Spc(4); “B”; Spc(4); “C”

which would give a similar output if you were using a non
proportional font, such as Courier New. To try this place the
following two lines before the above Print statements. As you
can see, it is quite easy to control the font style of the printed
output.

Forml.FontName = “Courier New”
Forml.FontSize = 10

The Print Tab or Print Spc statements cannot be used to
move to the left of a current printing position in a given line.
Only progressive moves to the right are obeyed.

Note: Although tabulation using the Tab and Spc statements
can work very well with whole numbers, using this method to
format tables with floating-point numbers doesn't always work
because of the number of significant digits.

Print Locations

The Visual Basic co-ordinate properties CurrentX and CurrentY
positions the ‘print head’ at any point on the object (e.g. Form
or Picture Box), and printing starts at that location, irrespective
of the print head’s previous position.

72

Input and Output Controls 5

CurrentX determine the horizontal and CurrentY the vertical
co-ordinates for the next printing operation.

Co-ordinates are measured from the upper-left comer of a
Form or Picture Box object, with CurrentX being 0 at an object's
left edge and CurrentY 0 at its top edge. By aefault,
co-ordinates are expressed in fwips, or the current scale
defined by the ScaleHeight, ScaleWidth, ScaleLeft, ScaleTop,
and ScaleMode properties of the object being printed on.

The Clis (Clear Screen) command clears the current print
object, (Form or Picture Box), and sends the print head to the
upper left-hand comer of the object, position (0,0). You could
place the command code

Picturel.Cls

in the Code Window of a command button. In which case
clicking the button would clear the Picture Box Picture1, ready
for new print output.

The next programs give examples of the co-ordinate system
usage, the first prints an asterisk character (*) towards the
middle of a window opened to full screen. Type the code as a
Click procedure in the Form Code window of a new file

Private Sub Form Click () * Program EXAMPLES
Forml.FontName = *“Courier New” ‘' Set font style
Forml .FontSize = 10

Forml.CurrentX = 39 ' Position at window centre
Forml.CurrentY = 14

Forml.Print "+~ ‘' Print asterisk

End Sub

Then change the following properties for Form1.

Property Setting
ScaleMode 4 - Character
WindowsState 2 - Maximized

ScaleMode determines the dimension units used in window
settings and the above sets the dimensions as characters. With

73

5 Input and Output Controls

a maximised WindowState and the font style used, of 10 Point,
Courier New, a window on one of our screens was 80
characters wide and 29 characters high. With higher resolution
screen settings, these are obviously not the same.

The CurrentX and CurrentY properties in the following
program place an asterisk at each comer of an 80 character
wide x 29 high screen. Note that position (0,0) is the top left
corner position, not (1,1), as we would have expected. So
position 79 in used the X-direction, instead of position 80 when
placing the asterisks at the right edge of the screen.

Private Sub Form Click () ' Program EXAMPLE6
Forml.FontName =
Forml.FontSize = 10

Forml
Forml
Forml

Forml
Forml
Forml

Forml
Forml

Forml.

Forml
Forml
Forml

.CurrentX = 0
.CurrentY = 0
.Print "=~

.CurrentX = 79
:CurrentY = 0
.Print "+~

.CurrentX = 0
.CurrentY = 28

Print “*~

.CurrentX = 79
.CurrentY = 28
.Print "=~

End Sub

“"Courier New” * Set font

‘' Position top left

' Position top right

‘* Position bottom left

‘* Position bottom right

Note: This program has repeated statements and would
obviously benefit from some of the techniques covered in the
next Chapter.

74

input and Output Controis

Formatting Functions

Up to now we have let Visual Basic display numbers with no
regular structure, but just ‘how they come’. This is sometimes
satisfactory, but when not, the program has a very powerful
formatting facility. The Format function converts any number to
a Variant (and Format$ to a string) with a specific number,
date or time format according to the instructions contained in
the ‘format expression’ shown below.

Format (variable, “format expression”)

The easy way to format numbers is to use the following set of
common format names that have been built into Visual Basic.

Format name Description

General Number Displays the number as it is, with no
thousand separators.

Currency Displays the number with thousand
separators and ‘wo digits to the right of
the decimal point. Displays negative
numbers in parentheses.

Fixed Displays at least one digit to the left and
two digits to the right of the decimal
separator.

Standard Displays numbers with thousand

separators and two digits to the right of
the decimal separator.

Percent Displays numbers, multiplied by 100,
with two digits to the right of the decimal
separator and followed by a percent

sign (%).

Scientific Uses standard scientific notation.

Yes/No Displays No if number is 0, otherwise
displays Yes.

True/False Displays False if number is 0, otherwise
displays True.

On/Off Displays Off if number is 0, otherwise
displays On.

75

5

Input and Output Controls

You simply place the Format name in the above syntax
expression, in inverted commas. You can also create your own
formats with standard characters that are explained later.

As usual the best way to demonstrate somethmg is to do it,
so enter the program below into a new form.

Private Sub Form Click () ' Program EXAMPLE7

' Use of number formats

Dim = Number
Number « 586786.980067453 ' Set initial value

Print "General format”, Format (Number, “General Kumber*”)
Print “Currency format”, Format (Number, "“Currency”)
Print “Fixed format”, , Format (Number, “Fixed”)

Print "“Standard format”, Format (Number, “Standard”)
Print "“Percent format”, Format (Number, “Percent”)

Print “Scientific format”, Format (Number, "“Scientific”)
Print “Yes/No format”, Format(Number, *Yes/No”)

Print "“True/False format”, Format (Number, "True/False”)
Print “On/Off format”, , Format(Number, *On/Off")

End Sub

The result of running this code is shown in Fig. 5.3 below,
which demonstrates the available formats quite well.

w Example/

Fig. 5.3 The Visual Basic Common Formats

76

Input and Output Controls

5

User Defined Formats

As well as the common pre-defined format types, you can build
your own using a series of 'special characters’. If you need to
get this detailed, we suggest you spend some time coming to
terms with Appendix C, which lists the available format
characters, and the MSDN Help section on the Format function,
as shown in Fig. 5.4.

Format Function
Bee Alio Example Speaiis

Returmns a Variant (8tring) containing an expression formatted according to
instructions contained in a format expression.

Syntax
Format(expression(, format(, firstdayofweek|, firstweekofyear)]))

The Format function syntax has these parts:

Part Description
Required. Any vakd expression.

format Optional. A vakd named or user-defined format expression.

ﬁrstday:ﬁn;k Optional. A constant th_a-t -sp;:iﬁos the first day of the week.
firstweekofyear Optional. A constant that spcciﬁcs. the first week of the year.

=

Fig. 5.4 Visual Basic Help on the Format Function

Clicking the Example link opens sample code on custom
formats. Try out this example yourself, by highlighting the code,
copying it to the clipboard, and then pasting it into the
Declarations section (Click event) of a new form. You will need
to add Print commands yourself though, otherwise nothing
happens! Then press F5 and click the form to run the code.

This is one of the very user friendly parts of the Visual Basic
package. The Help facility provides example code to
demonstrate most of Visual Basic's functions and features.

77

5

Input and Output Controls

Using Message Boxes

Another way of getting output to the screen is to use the
message box statement, MsgBox. This can be used
simplistically to display a short message on the screen. For
example, the following code

Private Sub Form_Click()

MsgBox "“A short message”

End Sub

produces the message box, shown above, when the object
‘holding’ this code is clicked. Not very exciting yet, but it is easy
to get message boxes to give much more useful output. Below
we have modified EXAMPLE2.VBP so that its output is
displayed in a message box (see Fig. 5.5).

Private Sub Commandl_Click() ' Example7a

' Declare variables.
Dim Numberl, Number2, Number3, Sum, Average, NL
Dim strMsg As String

NL = Chr(10) ‘'Define NL as newline character

' Get user input.

Numberl = Val (InputBox("Enter first number”})
Number2 = Val (InputBox(*Enter second number”))
Number3 = Val (InputBox(*Enter third number”})

' Build the message to be output
strMsg = “You entered: * & Numberl & ", "™ & Number2
strMsg = strMsg & ™ and * & Number3 & NL & NL

Sum = Numberl + Number2 + Number3
Average = Sum / 3

strMsg = strMsg & “Average value is ™
strMsg = strMsg & Format (Average, "“Fixed”)

MsgBox strMsg ‘Send final output to Message Box

End Sub

78

Input and Output Controls

5

Fig. 5.5 More Complex Message Box Output

This works by building up the final message to be output in the
string variable called strMsg. The various parts of the message
are concatenated together using the ampersand ‘&' operator,
as follows

strMsg = strMsg & "next part of message..”

Using the CHR function in the statement
NL = CHR(10)

returns the ANSI control character (10), the linefeed character.
So whenever Chr(10) or, in our case NL, appears in the
message string a newline is forced.

To format the result of the calculated output the expression

Format (Average, “Fixed”)

is used. The Format function was covered several pages back,
and in this case it converts the final number to “Fixed” format,
with two decimal points.

You may have noticed by now that our EXAMPLE7a does
not, in fact, need an open window to run. The input is obtained
trom Input boxes and the output is shown on a Message box.
Thus the form and command buttons have become redundant.

To make this project run without the opening windaw, use
the Project, Add Module command to add a new mocule, as
shown in Fig. 5.6. Type

Sub Main

and press the <Enter> key. Visual Basic opens a Sub
Procedure called Main. Copy the code from the previous
example inside the main template, as shown in Fig. 5.6, and
save the module as EXAMPLE7b.BAS.

79

5

Input and Output Controls

Option Explicit - ———
Sub HNain() ' Example™b

' Declare variables.

Dim Numberl, Number2, Numberd, Sum, Average, NL
Dim strisg As String

NL = Chr(10) 'Define NL as newline character

' Get user input.

Numberl = Val (InputBox("Emter first number”))
Number2 = Val(InputBox ("Enter second number™))
Number3 = Val (InputBox ("Enter third number”))

' Build the message to be output

strisg = "You entered: " & Numberl § ", " & Numbe:x2
strisg = strlsg & " and " & Numberd & NL & NL
Sum = Numberl + Number2 + Number3

Average = Sum / 3

strlisg = striMsg & "Average value is *
strlisg = strlsg & Format (Average, "Fixed”)

AsgBox strisg ‘Send final output to Message Box

End Sub

Fig. 5.6 A 'Self Starting’ Module

When you run this project, the first Input box should open
straight away. With Visual Basic, a project usually starts from
Form1, (unless you specify another form), or from the Sub Main
procedure of a module. If you get this wrong, an error message
will open, with the following Help information.

Must have startup form or Sub Main()

3e¢ Al

No form in the current project is designated as the startup form, and the
current project doesn't have a Sub procedure named Eain in any
module. You must have one or the other to run a Visual Basic
apphication.

Fig. 5.7 Startup Error Help Message

80

Input and Output Controls

5

To set the start-up cbject, open the Project Properties dialogue
box shown in Fig. 5.8, with the Project, Properties menu
command.

Fig. 5.8 The Project Properties Box

As shown above, our example has Sub Main set as its Startup
Object. This dialogue box contains some pretty heavy features,
way beyond the scope of this book. The Help button is well
worth pressing. Note that it is here that you can give your
project a unique Project Name, which is used internally by
Windows. This is not the same as the file name, but appears
on the title bar, as shown in Fig. 5.8.

We suggest you have a good look at the Project Properties
dialogue box, some of its features will come into play when you
come to make an executable .EXE file from your project code.
Maybe not yet though, with the type of projects we are starting
with!

81

5

Input and Output Controls

MsgBox Syntax

Visual Basic gives you easy access to some ten different types
of message boxes, having different combinations of buttons
and icons on them.

The full syntax for the MsgBox statement is
MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The parameters must be used in the correct sequence and
have the following meanings:

Parameter Description

prompt The required string expression to be
displayed as the message. The max-
imum length of prompt is approximately
1024 characters.

buttons An optional numeric expression that
specifies what buttons to display and
the icon style to use. If omitted, the
default value for buttons is 0.

title The optional string expression displayed
in the title bar of the message box.

helpfile The optional string expression that
identifies the context-sensitive Help file
to be used.

context The Help context number assigned to

the appropriate Help topic by the author.

If you want to omit any ‘middle’ parameters you need to show
this by including their comma placeholders. To display a default
message box, for example, with a specified title you should use
the following format

MsgBox “Prompt”, , “Title”

If you type the text strings straight into the statement you need
to enclose them in inverted commas, as above. To include
inverted commas themselves in the string you would have to
enter two together for each one.

82

Input and Output Controls

MsgBox Buttons
The buttons argument settings are:

Constant Value

vbOKOnly
vbOKCancel
vbAbortRetrylgnore
vbYesNoCancel
vbYesNo
vbRetryCancel
vbCritical
vbQuestion
vbExclamation
vbinformation

Buttons and/or icons Displayed

OK button only.

OK and Cancel buttons.

Abort, Retry, and Ignore buttons.
Yes, No, and Cancel buttons.
Yes and No buttons.

Retry and Cancel buttons.
Critical Message icon.

Waming Query icon.

Waming Message icon.
Information Message icon.

When entering a ‘Buttons’ parameter vou can use the actual
number values above, or preferably, the constants shown.
These constants are specified by Visual Basic for Applications
and can be used anywhere in your code in place of the actual

_MsgBox(F @ vbMsgBoxRight

End Sub g vwMsgBoxRIReading
@ vbMsgBoxSetF oreground
® vbOKCancel
@& vbOKOnly

& vbRetryCancel

values. We strongly
recommend you use the
constants as their meaning is
obvious wherever they are
used, which cannot be said
for the numbers themselves!

Fig. 5.9 Auto List Members

They are also easily
accessed from the Code
Editor's Auto List Members

feature, shown here, that presents a drop-down list of available
properties as you type in your MsgBox statement.

To help to visually show the differences between the different
message boxes we show all the possible combinations of
buttons and icons in the next three figures. Each one is named

with its button constant.

Fig. 5.10 Message Box Button Styles (0, 1 and 2)

83

Input and Output Controls

Fig. 5.12 Message Box Button Styles (16, 32, 48 and 64)

MsgBox Returned Values

When a message box is opened in a running program, Visual
Basic waits for the user to click a button, and retums an Integer
indicating which of the seven available buttons the user clicked.

The values retumed are:
Constant Value Button Pressed

vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbignore 5 Ignore
vbYes 6 Yes
vbNo 7 No

These return values, or their constants, can be used in your
code to determine what action to take, depending on which
button was pressed.

6

Control of Program Flow

Control Structures

Visual Basic can force a section of code to be repeated by
using the For...Next loop, in the same way as other standard
Basics, or with the While...Wend loop, in the same way as
other enhanced versions of Basic. In addition to these, Visual
Basic upgrades the While...Wend loop with the Do loop, which
tests for a condition either at the beginning or the end of the
loop.

In standard Basic, decisions are made by using the if..Then
statement, while in more advanced versions of Basic the
if...Then...Eise, On...Goto, and On...Gosub statements are
also used. Visual Basic advances these with the additior of the
block if...Then...Else...Endif and the Select Case statements.

The For...Next Loop

The For and Next statements are used to mark the beginning
and ending points of program loops. Any statements between
the For and its corresponding Next will be executed repeatedly
according to the conditions supplied by the ‘control variable’
within the For statement. An example is given below, and the
code is shown in Fig. 6.1.

Private Sub Form Click () ‘' EXAMPLE9

For K =1 To S Step 1
Print K
Next K

End Sub

85

Control of Program Flow

M xampled Foiml [Code)

Option Explicit
Dim X As Integer

Private Sub Form Click() ' Example9
* FOR....NEXT loog

| For x = 1 To S Step 1
Print k
Next k

Fig. 6.1 A Simple Loop Counter

The above dimension statement was put in the (General)
(Declarations) section, so that it could be available for all the
project controls. The Code Editor window is shown in Full
Module View (see page 22), so all the code is visible. In this
view if you click inside a procedure's code, the Object and
Procedures boxes (at the top) change contents, to indicate the
event involved.

Within the For statement, the control variable k is assigned
the value 1 which is increased repeatedly by the number
following Step until it reaches 5. It thus has the values 1, 2, 3, 4
and 5. Since it cannot have these values simultaneously, a loop
is formed beginning with the For and ending with the Next. The
statements within the loop are executed five times, each time
with a new value for k. The Next statement increases the value
of k and causes repeated jumps to the For statement until k
exceeds its final assigned value of 5. When this happens,
control passes to whatever statement follows the Next
statement.

One of our earlier programs, EXAMPLE2.VBP, has been
modified below to use a For...Next loop.
Private Sub Commandl_Click () ' Examplel0

' Declare variables.
Dim intNumber, intCounter As Integer
Dim dblSum, dblAverage As Double

Control of Program Flow 6

intNumber = Val (InputBox(“How many numbers?”))

For intCounter = 1 To intNumber
dblSum = dblSum + Val (InputBox("Enter a number”))
Next

dblAverage = dblSum / intNumber

Print “You entered * & intNumber & " numbers *
Print “Average is “; Format(dblAverage, *“Standard”)
Print

BEnd Sub

As it stands, the above code will work as long as numerical
input is entered from the keyboard. When the program is run,
the variable intNumber is assigned a value from an InputBox,
which is the total number of entries to be made. A For...Next
loop is set up which loops the number of times specified in the
intNumber variable. Within the loop, each number is read and
accumulated into the variable dblSum. Once the loop is
completed, variable dblSum holds the summation of all the
numbers. The Print statements procuce the output to the
window. Note the Format statement which forces the result
variable dblAverage to output to 2 decimal places.

Use of Step

In the last example, as the Step modifier was equal to +1 it was
omitted. If the step value desired is nct equal to +1, the Step
modifier must be included, as in the next small program.

- Privete Sub Form_llick() ' EXANPLE1l
- CONVERTING INCHES TO CENTINEITRES

Pim ddliInches, db.Cx As Double

| Print “"Inches”, "Cw”™

| For dollnches = S To 20 Step S
do1Cm = 2.5¢ * dllnches
Print : Forme: (®llnches, "Standard™): Pab(14):
7 Print Formet (@1lwm, "Standard”)
| Next

End Su

Fig. 6.2 Code for Exampie11

87

Control of Program Flow

This will convert 5, 10, 15 and 20 inches into centimetres, in
other words, in steps of 5. The output should be as follows:

Inches Cm
5.00 12.70

10.00 25.40

15.00 38.10

20.00 50.80

A negative Step modifier is also legal in Visual Basic. For
example, the code

FOR J = 5 TO 1 STEP-1
PRINT J
NEXT

will print the values 5, 4, 3, 2 and 1.

For positive step values, the loop is executad as long as the
control variable is less than or equal to its final value. For
negative step values the loop continues as lcng as the control
variable is greater than or equal to its final value.

Nested For...Next Loops

For...Next statements can be nested to allow the programming
of loops within loops as shown in the example below:

Private Sub Form DblClick () ' EXMPLE12
' Nested FOR-NEXT loops

Dim K, L As Integer

For K =1 To 9
For L = K To 9
Print ; Pormat(L, “#~);
Next L
Print
Next K

End Sub

When this program is run, two loops are set up as follows:

Control of Program Flow

For K
Frt ——m— |&-eeee Outer loop
Next L L IR ER Nested loop
Next K

The outer loop is initialised with K=1 and, immediately, the
inner, nested loop is executed 9 times. Then the control
variable K is incremented by 1, so that now K=2 and the nested
loop is executed 8 times. This is repeated until K is equal to 9,
when the nested loop is executed only once.

The output of this program is as follows:

123456789
23456789
3456789
456789
56789
6789

789

89

9

The semicolon after the variable L in the Print statement allows
output to be printed close together on the same line. However,
each line of print must be terminated with a line feed (that is, it
must send the computer display to the next fine). This is
provided here by the empty Print statement. Without it, all the
numbers now appearing on different lines would be printed on
the same line.

It is sometimes considered bad programming practice to exit
a For...Next loop which has not been completed. The results
may be unpredictable if you do. However, if such an exit is
needed, then make sure you use the Exit For command (more
about this later).

Control of Program Flow

The Do Loop

The Do loop provides a method of looping through a block of
statements and has several variations; it can either check the
condition after or before executing the block of statements.

The Do...Loop Until Configuration

In this configuration the Do marks the beginning of the loop,
while the Loop Until marks the end. Any statements between
the Do and its corresponding Loop Until will be executed
repeatedly until the trailer of the Loop Until statement is true.

To illustrate using this loop configuration, enter the program
below:

Private Sub Form DblClick () * EXAMPLE13

Dim dblvValue, dblPercent, dblNum As Double

dblNum = Val (InputBox(*Enter number (-1 to END) *))

Do
dblPercent = Val (InputBox(®“Enter % *))
dblValue = dblNum * dblPercent / 100

Print ; Format(dblPercent, “###.0%) & * % of *;
Print ; Format(dblNum, “#,###.00") & * = *;
Print ; Format (dblvValue, “###.00%)

Print

dblNum = Val{InputBox("Enter number (-1 to END) *))
Loop Until dblNum < 0
End Sub
All statements between the Do and Loop Until lines are

repeated until the trailer of Untll is true (that is, until you type a
negative value in response to the prompt “Enter number.."”).

Control of Program Flow 6

Note that

* In this case, the condition is checked after the
statements in the block have been executed at least
once. Therefore typing —1 the first time round will not
end the program.

* These programs make use of the ‘user defined’ formats
mentioned in the previous chapter and Appendix C.

The Do Until...Loop Configuration
In this configuration the loop repeats the block of statements as
long as a certain condition is true. For example, the above
program can be rewritten as:

Private Sub Form_DblClick () * EXAMPLE1l4

Dim dblvalue, dblPercent, dblNum As Double

dblNum = Val (InputBox(“Enter number (-1 to END) ¥))

Do Until dblNum < 0
dblPercent = Val(InputBox(“Enter & *))
dblValue = dblNum * dblPercent / 100

Print ; Format(dblPercent, “##0.0") & * & of *;
Print ; Format {(dblNum, *#,##0.00%) & * = *;
Print ; Format(dblValue, “##0.00")

Print

dblNum = Val (InputBox(“*Enter number (-1 to END) *))
Loop
BEnd Sub

Here, typing —1 the first time round, ends the program.

The Do...Loop While Configuration

In this loop configuration, the While statement can be used in
place of the Until statement, provided the relational test has
been replaced by its opposite. For example the EXAMPLE13
program will have to be changed to that shown next, to produce
the same logical behaviour.

91

6 Control of Program Flow

Note that the relational test has been changed from less than
zero (<0) to greater or equal to zero (>=0). These and other
relational operators will be discussed shortly.

Private Sub Form DblClick () * EXAMPLE15

Dim dblvalue, dblPercent, dblNum As Double

dblNum = Val (InputBox(“"Enter number (-1 to END) *))

Do

dblPercent = Val(InputBox(“Enter % "))
dblvalue = dblNum * dblPercent / 100

Print ; Format (dblPercent, “##0.0”) & ™ % of *;
Print ; Format (dblNum, “#,##0.00") & * = *;
Print ; Format(dblvalue, *##0.00")

Print

dblNum = Val (InputBox(“Enter number (-1 to END) "))

Loop While dblNum >= 0

End Sub

The Do While...Loop Configuration
Similarly, the EXAMPLE 14 program will have to be changed to
Private Sub Form DblClick () * EXAMPLE16

Dim dblvalue, dblPercent, dblNum As Double

dblNum = Val (InputBox("Enter number (-1 to END) "))

Do While dblNum »>= 0

dblPercent = Val(InputBox(“Enter % "))
dblvalue = dblNum * dblPercent / 100

Print ; Format(dblPercent, “##0.0”) & ™ % of *;
Print ; Format (dblNum, “#,##0.00") & “ = *;
Print ; PFormat{dblValue, *##0.00")

Print

dblNum = Val (InputBox("Enter number (-1 to END) "))

Loop

End Sub

92

Control of Program Flow

to produce the same logical behaviour as the program from
which it was derived.

The For Each...Next Loop

A For Each...Next loop is similar to a For...Next loop, but it
repeats a group of statements for each element in a collection
of objects or in an array, instead of repeating the statements a
specified number of times. This is especially helpful if you don't
know how many elements are in a collection.

Here is the syntax fer the For Each...Next loop:

For Bach element In group
statements

Next element

This statement type is actually a little advanced for our present
text. The following example is given on the MSDN Help page,
in which a Sub procedure opens a database file Biblio.mdb and
adds the name of each table to a list box.

Sub ListTableDefs () ‘' EXAMPLE17

Dim objDb As Database
Dim MyTableDef As TableDef

Set objDb = OpenDatabase(*c:\vb\biblio.mdb”, _
True, False)

For Bach MyTableDef In objDb.TableDefs()
Listl.AddItem MyTableDef .Name
Next MyTableDef

Bnd Sub

The Line-Continuation Character

Note the ' _' line-continuation character sequence (2 space
followed by an underscore), used at the end of the Set line in
the above code. In the Visual Basic code editor you can break a
long statement into muitiple lines in the Code window using this
line-continuation character.

93

Control of Program Flow

The While...Wend Loop

The While..Wend loop is another possible configuration,
available in enhanced versions of BASIC, so included in Visual
Basic for compatibility. It is of the general form:

While <«relational test is true>
{ execute this }
{ Dblock of }
{ statements }

Wend

This loop configuration produces the same logical behaviour as
that of the Do While...Loop. In order to illustrzte he point, the
EXAMPLE16 program is rewritten below with appropriate
changes included.

We strongly suggest that you make the suggested changes
to these programs and verify for yourself that they work as they
should.

Private Sub Form_DblClick () * EXAMPLE18
Dim dblvalue, dblPercent, dblNum As Doub_e

dblNum = Val (InputBox("Enter number (-1 to END) *))

While dblNum >= 0
dblPercent = Val (InputBox("Enter % ")
dblvalue = dblNum * dblPercent / 100

Print ; Format(dblPercent, “##0.0") a ™ % of *;
Print ; Format (dblNum, “#,##0.00") & ™ = *;
Print ; Format (dblvValue, “##0.007%)

Print

dblNum = Val (InputBox(“Enter number (-1 to END) ™))
Wend

End Sub

Control of Program Flow

The If Statement

The IF statement allows conditional program branching. To
illustrate the point, edit the EXAMPLE 13 program to:

Private Sub Form DblClick () * EXAMPLE19

Dim dblvValue, dblPercent, dblNum As Double

Do
dblNum = Val{InputBox("Enter number (-1 to END) "))
If dblNum <0 Then End

dblPercent = Val (InputBox({“Enter % "))
dblvValue = dblNum * dblPercent / 100

Print ; Format(dblPercent, “##0.0”) & ™ % of *;
Print ; Format (dblNum, “#,##0.00") & " = *;
Print ; Format (dblvValue, “##0.0C")

Print

dblNum = Val (InputBox(“Enter number (-1 to END) *))
Loop Until dblNum < 0
End Sub

When this program is run, you can stop execution by simply
entering —1 in response to the “Enter number” prompt. When
the If statement is encountered, the value of variable dbINum is
compared with the constant appearing after the relational
operator (<). If the test condition is met, the trailer of the If
statement is executed (in this case End). If, however, the test
condition is not met, the next statement after the If statement is
executed (the dblPercent input statement).

Note: The inclusion of the If...Then statement in the form
adopted above, has made the trailer of the Loop Until
statement (dbiINum < 0) redundant; it merely acts as a device to
force looping. In such cases we could use any variable as
trailer. We could, for example, use

Loop Until False

This will cause repeated looping, provided the variable used as
trailer is set to zero. If it has any other value, looping will hatt

Control of Program Flow

Relational Operators within If Statements

The table below shows the relational operators allowed within
an If statement.

Relational Operators

Symbol Example Meaning

= A=B AequaltoB

< A<B Aless than B

<= A<=B A less than or equal to B

> A>B A greater than B

>= A>=B A greater than or equal to B
<> A<>B; A not equzl to B

The power of the If statement is increased considerably by the
combination of several relational expressions with the logical
operators

AND OR XOR NOT EQV and IMP

We can write the statement
If X >3 And M = 5 Then

which states that only if both relational tests are met will the
trailer of the If statement be executed.

Ancther example is
If X >3 0r M =5 Then
which states that when either or both relational test(s) are true,

then the trailer of the If statement will be executed, while the
statement

If X > 3 Xor M = 5 Then

states that when either relational test is true, but not both, then
the trailer of the If statement will be executed. Finally, the
statement

If Not (X < 12) Then

has the same effect as ‘if X>=12 Then’ in which the relational
test is the negation of that in the above.

Control of Program Flow

The if...Then...Else Statement

In many cases we have to perform an IF statement twice over
to detect which of two similar conditions is true. This is
illustrated below.

Private Sub Form_DblClick () * EXAMPLE20
‘' The two IF statements
Dim dblNum As Double

dblNum = Val (InputBox(“Enter number between 1 - 99 *))
If dblNum < 10 Then

Print “One digit number”
End If

If dblNum > 9 Then
Print “Two digit number”
gnd If

End Sub

A more advanced version of the if statement allows both
actions to be inserted in its trailer. An example of this is
incorporated in the modified program below:

Private Sub Form DblClick () ' EXAMPLE21
* IF..THEN..ELSE statements
Dim dblNum As Double

dblNum = Val (InputBox(“*Enter number between 1 - 99 *))

If dblNum < 10 Then

Print “One digit number”
Else

Print “Two digit number”
End If

End Sub

Save this program under the filename EXAMPLE21.VBP and
run it, supplying numbers between 1 and 99. Obviously, if you
type in numbers greater than 99 the program will not function
correctly in its present form. But assuming that you have
obeyed the message and typed, say 50, the second Print

97

6 Control of Program Flow

statement in the trailer of the If statement (after the Else) will
be executed. If the number entered was less than 10, the first
Print statement after Then would be executed. The general
structure of this block If is:

If <relational test> Then
{ execute this }
{ Dblock of }
{ statements }
{ if true }

Else
{ execute this }
{ ©block of }
{ statements }
{ if false }

End If

Note: In the above structure, no statements can follow the
words Then and Else.

The Elself Statement

if your programming logic requires the use of the block If
statement to choose amongst several options by, say, using:

If «<relational test_1l1> Then
{ execute this }
{ block }
{ if true }
Else
If <relational test_2> Then
{ execute this }

{ block }
{ if true }
Else
{ execute this }
{ block }
{ if false }
End If
End If

then you can use the Elself statement to simplify the structure
of your program to the following:

Control of Program Flow 6

If <relational test_1> Then
{ execute this }
{ block }
{ if true |}
BElseIf <relational test_2> Then
{ execute this }

{ block }
{ if true |}
Else
{ execute this }
{ block }
{ if false }
BEnd If

The Elself statement makes the whole structure much easier
to understand.

Control of Program Flow

Simple Data Sorting

The program below allows us to enter two numbers, then it
tests to find out which is the larger of the two and prints them in
descending order. It also illustrates some of the points
mentioned in this chapter.

Private S8ub Form_DblClick () ' EXAMPLE22
' 2 number sort
Dim dblNuml, dblNum2 As Double

Do
dblNuml = Val (InputBox({“*Enter number [-1 to end]”))
dblNum2 = Val (InputBox (“*Enter second number”))

If dblNuml = -1 Then
MsgBox “Operation finished”
End

BlseIf dblNuml >a dblNum2 Then
Print dblNuml, dblNum2

Else
Print dblNum2, dblNuml

End If

Loop Until False

End Sub

The program can be stopped by entering —1 for dbiNum1.
Otherwise, dbINum1 is compared with dbINum2 and the
appropriate Print statement is executed.

The sorting problem becomes more complicated, however, if
instead of two numbers we introduce a third one. For two
number sorting we had two possible Print statements (the
number of possible permutations being 1*2=2. For three
number sorting however, the total number of Print statements
becomes six (the total possible permutations being equal to
1*2*3=6. With numbers A, B and C, the combinations are
(A,B,C), (A,.C,B), (C,A,B), (C,B,A), (B,C,A) and (B,A,C). Thus, if
we were to pursue the suggested logic in dealing with the
problem it would result in a very inefficient program.

100

Control of Program Flow 6

Here is a way in which, with only two If statements and one
Print statement, the same solution to the three-number sorting
problem can be achieved. It uses a different logic and it is
explained here with the help of three imaginary playing cards,
shown in Fig. 6.3 below.

o
o
—af
o

(a) (b) () (d)

Sorting three playing cards into descending order

Fig. 6.3 Sorting Three Cards

Assume that you are holding these cards in your hand and you
wish to arrange them in descending order. Look at the frort two
(a) and arrange them so that the highest value appears in front.
Now look at the back two (b) and arrange them so that the
highest of these two is now in front. Obviously, if the highest
card had been at the back, in the first instance, it would by now
have moved to the middle position, as shown in (c), so a repeat
of the whole procedure is necessary to ensure that the highest
card is at the front (d).

The program below achieves this.

Private Sub Form DblClick () ' EXAMPLE23
' 3 number descending sort
Dim A, B, C, dblTemp As Double

A = Val(InputBox(*Enter first number”))
B = Val (InputBox(“Enter second number”))
C = Val (InputBox(“Enter third number”))

101

Control of Program Flow

Do While A < B Or B < C
If A < B Then
dblTemp = A
A =B
B = dblTemp
End If
If B < C Then
dblTemp = B
B=C
C = dblTemp
End If
Loop
Print A, B, C

End Sub

The following actions are indicated: If the value in A is less than
that in B, exchange them so that the value of A is now stored in
B and the value of B is now stored in A.

Note, however, that were we to put the value of B into A, we
should lose the number stored in A (by overwriting). We
therefore transfer the contents of A to the temporary variable
dbiTemp, then transfer the contents of B to A and finally
transfer the contents of dblTemp to B.

The second rotation, necessary when B is less than C, is
achieved in a similar manner. The whole process is repeated
(with the help of the Do While...Loop statement), for as long as
both A is less than B, or B is less than C. Type this program
into the computer under the filename EXAMPLE23.VBP.

The Select Case Statement

This is a statement which allows program action to be made
dependent on the value of a variable, or an expression. It is
Visual Basic’s aid to writing readable programs and provides an
efficient alternative to multiple If statements. The general form
of the statement is written as follows:

102

Control of Program Flow 6

Select Case Expression
Case A |
{ execute these }
{ statement(s) }
Case B To D
{ execute these }
{ statement(s) }
Case E, X
{ execute these }
{ statement(s) }
Case Else
{ execute these }
{ statement(s) }
End Select

where Expression can evaluate to either a number or a string.
A particular Case statement within the block (for example,
CASE A), will be executed only if Expression evaluates to a
constant or a string represented by A.

The following examples will help to illustrate using the Select
Case structure. The first and simpler one, looks for input in the
form of a number representing the day of the week (Monday 1,
Tuesday 2, etc.). It then evaluates this intDayNum variable
(which is the Expression in the general format) to a constant,
as follows:

Private Sub Form DblClick () ‘ EXAMPLE24
Dim intDayNum As Integer

intDayNum = Val (InputBox({“Enter day number (1-7) *))

Select Case intDayNum
Case 1 To 5
Print “Working day”
Case 6, 7
Print “Weekend”
Case Else
Print °*Not a day”
End Select

End Sub

103

6 Control of Program Flow

The second example (based on one in the Help system), is a
bit more complicated. You should make sure you understand
how it works, as several keyboard entry error trapping methods
are also introduced.

Sub Form_Click () * EXAMPLE25

Dim Msg, UserlInput * Declare variables

Msg = "Enter a letter, or a number between 0 and 9.”"
UserInput = InputBox(Msg) * Get user input

If Not IsNumeric(UserInput) Then * Check input type
If Len(UserInput) <> 0 Then
Select Case Asc(UserInput) ‘' If a letter
Case 65 To 90 * Must be uppercase.
Msg = “You entered the uppercase letter '*”
Msg = Msg & Chr{(Asc(UserInput)) & *'.”

Case 97 To 122 ‘' Must be lowercase.
Msg = “You entered the lower-case letter '~
Msg = Msg & Chr (Asc(UserInput)) & “’'.”

Case Else ' Must be something else.
Msg = “Not a letter or number.”
End Select
End If
Else
Select Case CDbl (UserInput) ' If a number.
Case 1, 3, 5, 7, 9 ‘' It's odd.
Msg = UserInput & * is an odd number.”
Case 0, 2, 4, 6, 8 ' It's even.
Msg = UserInput & ™ is an even number.”
Case Else ‘' Out of range.
Msg = “You entered a number outside *
Msg = Msg & “the requested range.”
End Select
End If

MsgBox Msg ‘' Display message
End Sub

104

Control of Program Flow

in the first If statement, the expression Not IsNumeric only
accepts letters as input, not numbers. If the input is a number,
control passes to the Else statement.

In line 7, Asc retums a numeric value that is the ANSI code
for the letter entered (see table in next chapter). The Case
statements then act depending on these numeric codes. The
first one accepts uppercase letters (which have ANSI codes in
the range 65 to 90). The second one accepts lowercase letters
(which have ANSI codes in the range 97 to 122).

In line 10, the part of the expression Chr{(Asc... changes the
ANSI code back to the original character, so that it can be
displayed in a message box.

The function CDbl in the second Select Case expression,
explicitly converts the data type to Double precision. The
following two Case statements select between odd and even
numbers. Anything that reaches the final Case Else statement
is neither a letter, or a number between 1 and 9, so is flagged
as such.

105

Control of Program Flow

Data Type Conversion

The CDbl function in the last example explicitly converted an
expression from one data type to another. Visual Basic has 7
such functions to enable conversion to all the types of data.
The syntax is

CType (expression)

Where CType is one of the functions from the list below and
expression can be any valid string, or numeric expression.

Function Converts to:

Cvar Variant
CCur Currency
CDbl Double
Cint Integer
ClLng Long
CSng Single
Cstr String

You can use these data type conversion functions to ensure
that the result of a calculation is expressed as a particular data
type rather than the normal data type of the result.

Exiting Block Structures

If, for any reason, you require to exit a loop, a function or a
procedure prematurely (for example when a data search for a
match is successful), then use one of the follcwing:

Bxit Do
Exit Por
Exit Function
Bxit Sub

the first two being used to exit loops, and the last two to exit
functions and procedures.

106

7

Strings and Arrays

String Variables

In Visual Basic, string variables can be distinguished from
numeric variables by including the $ tag after their name, or
more usually, by declaring them as such in a Dimension
statement, such as:

Dim strA As String

By default, a string variable has a flexible length. It gets ionger,
or shorter, as you assign different data to it. To fix its length you
can add the required size to the statement:

Dim strA As String * 25

In this case strA will always be allocated 25 characters of
storage space. If it does not need this length it will be ‘padded’
with trailing spaces. If the data it holds is longer than 25
characters it will be truncated (and some will be lost).

if a variable is not declared in a program it takes the defauit
Variant type, which is a special data type that can contain
numeric, string, date, or currency data.

ANSI Character Codes

Visual Basic assigns a numeric code to each character on the
keyboard, according to the ANSI (American National Standards
Institute) code, as shown in the tables overleaf. Thus, each
letter of the alphabet is assigned a numeric value. The first 128
characters (0 - 127) are common with the ASCIl set used in
most DOS applications.

107

7 Strings and Arrays

Table 1 of ANSI Conversion Codes

0 ° 32 [space] 64 @ 96

1 . 33 ! 65 A 97 a
2 . 34 " 66 B 98 b
3 . 35 # 67 Cc 99 c
4 ° 36 $ 68 D 100 d
5 ° 37 % 69 E 101 e
6 . 38 & 70 F 102 f
7 ° 39 ! 71 G 103 g
8 i 40 (72 H 104 h
9 . 41) 73 | 105 i
10 i 42 * 74 J 106 |
1 . 43 + 75 K 107 &k
12 . 44 76 L 108 |
13 i 45 - 77 M 109 m
14 ° 46 . 78 N 110 n
15 . 47 / 79 (o] 111 o
16 ° 48 0 80 P 112 p
17 . 49 1 81 Q 113 gq
18 . 50 2 82 R 114 r
19 . 51 3 83 S 115 s
20 . 52 4 84 T 116 ¢t
21 . 53 5 85 U 117 wu
22 . 54 6 86 \ 118 v
23 . 55 7 87 w 119 w
24 ° 56 8 88 X 120 x
25 . 57 9 89 Y 121 vy
26 . 58 : 90 Y4 122 z
27 ° 59 ; 91 [123 {
28 . 60 < 92 \ 124 |
29 . 61 = 93] 125)
30 ° 62 > 94 & 126 ~
31 . 63 ? 95 127 o

) Characters not supported by Microsoft Windows.

. Values 8, 9, 10, and 13, above, convert to
backspace, tab, linefeed, and carriage retumn
respectively and can be used in programs to create
these actions.

108

Strings and Arrays 7

Table 2 of ANSI Conversion Codes

128 o 160 [space] 192 A 224 2
129 o 161 | 193 A 225 &
130 162 ¢ 194 A 226 A&
131 o 163 £ 195 A 227 a
132 o 164 =© 196 A 228 &
133 o 165 ¥ 197 A 229 A
134 o 166 ! 198 & 230 =
135 o 167 § 199 ¢ 231 ¢
136 o 168 -~ 200 E 232 o
137 o 169 © 201 E 233 ¢
138 o 170 @ 202 E 234 &
139 o 171 « 203 E 235 &
140 o 172 - 204 | 236 i
141 o 173 - 205 | 237 |
142 o 174 ® 206 1 238 1
143 o 175 ~ 207 1T 239 1
144 o 176 ° 208 P 240 &
145 o 177 ¢ 209 N 241 A
146 o 178 2 210 O 242 o
147 o 179 211 O 243 6
148 o 180 - 212 O 244 §
149 o 181 213 O 245 &
150 o 182 214 O 246 &
151 o 183 - 215 «x 247 +
152 o 184 216 © 248 o
153 o 185 ¢ 217 U 249 U
154 o 186 ° 218 U 250 G
155 o 187 » 219 O 251 0
156 o 188 Y% 220 U 252 O
157 o 189 % 221 Y 253 y
158 o 190 % 222 b 254 b
159 o 191 ¢ 23 B 255 ¢

Note: The codes within the range 128 to 255 above contain a
series of special characters that are not on the standard
keyboard. These inciude international and accented letters,
1 fractions and currency symbols.

109

7 Strings and Arrays

As with numbers, strings can be assigned to variables in
several ways. For example, the code below assigns a string to
the variable named strA and then prints strA to the current

window.
strA = “ABCl123”
Print strA

When the code is run, Visual Basic outputs
ABC123

By default, when strings appear in an If statement, they are
compared character by character from left to right on the basis
of the ANSI values until a difference is found. For example, if a
character in a position in StrA has a higher ANSI code than the
character in the same position in StrB, then StrA is greater than
StrB. If all the characters in the same positions are identical but
one string has more characters than the other, the longer string
is the greater of the two. Thus, strings of letters can be placed
easily in alphabetical order and sorted lists of names, etc., are
possible.

In Visual Basic, however, the Option Compare statement
effects the evaluation of string comparisons.

Option Compare (Binary | Text)

This statement controls the way string comparisons are
performed. When the Binary option is specified comparisons
are performed in the default manner as described above. The
Text option causes the comparisons to be case insensitive,
and no distinction is made between upper and lower case
letters during comparisons (in other words, “A” = “a").

The Option Compare statement must appear before any
procedures in a code module and will only effect the
comparisons in the module in which it appears. If no Option
Compare statement is present in a module, the default
comparison option of Binary is used.

110

Strings and Arrays

7

StrComp(strA, strB[, compare])

This function compares strA with strB, using the comparison
mode specified in (compare) and retums an integer value. If
compare is not provided, the current Option Compare mode is
used. This function allows you to override the current Option
Compare mode for an individual string comparison.

String Functions

In the statements given so far, the string variables have been
considered in their entirety. We shall now introduce some
functions which give access to any character within a given
string and hence allow manipulation of that string.

Left and Left$ Functions

These both retum a number of characters from the left of a
string argument. The function is used as follows:

Left([$] (StrA, n)
and will retum the leftmost n characters of StrA. When used
without the $ suffix, Left retums a Variant; whereas Left$

retums a String. In most cases you are probably better off
adding the $ and declaring all your string variables as such.

Right and Right$ Functions

These work in exactly the same way as the Left[$] furctions,
but they return the rightmost characters of the specified string.

Mid and Mid$ Functions

In the same way, these retum a Variant or String from part of a
source string, as follows:

Mid[$] (StrA, Start[, Length])
Where Start and Length are numbers. In this case the string

with Length number of characters and beginning at position
Start of StrA will be returned.

M1

7

Strings and Arrays

If Length is omitted, the Mid[$] function returns all the
characters from the start position to the end of the string.

Other String Functions

There are a few more functions that help with string
manipulation, many of which will be demonstrated in later
examples.

The Len(StrA) function is used to find the number of
characters in StringA.

The InStr([Start,] StrA, StrB) function retumns the location of
StrB in StrA, optionally beginning the search Start characters
into the string. If Start is omitted the search will begin at the first
character. This function is very useful for locating spaces
between words in a string.

Space$(Num) will create a string with Num spaces in it, and
String$(Num, “X") will create a string consisting of Num
characters of type X. If a number is used for X the ANSI code
character will be used. The first is useful, with no number to
place spaces between words being built in a string expression,
the second for building lines with graphic type characters.

Ucase$(StrA) and Lcase$(StrA) convert all the characters in
StrA to upper, or lower, case respectively. An example of their
use is to convert keyboard entry characters before testing for
the entry. Otherwise you would have to test for both upper and
lower case letters.

The best way to understand these functions is by entering
and playing with an example; so build the Form shown in Fig.
7.1.

This small program doesn't really serve any great purpose. it
expects you to enter your first and last names into the top text
box separated by a space. Clicking the Go button then places
the two parts of the name into their respective text boxes. The
Clear button resets the boxes and Quit exits the program.

112

Strings and Arrays 7

Fig. 7.1 Example26 Form in Run Mode

The form has 3 Text boxes, with a Label placed above each,
and 3 Command buttons, as shown. You may have to go back
to the earlier chapters if you need help setting these up. Set the
following object Properties as shown below, but leave the

others with the default settings.
Object Property
Command1 Caption
Default*
Name
Command2 Caption
Name
Command3 Caption
Cancel”
Name
Label1 Caption
Label2 Caption
Label3 Caption
Text1 Tablindex
Text
Text2 Text
Text3 Text

Setting

Go
True
CmdGo

Clear
CmdClear

Quit
True
CmdQuit

Enter first and last names
First Name
Last Name

0
Cleared

Cleared
Cleared

* See end of example for more explanation.

113

7 Strings and Arrays

When you have finished the above Property changes, double
click the background of the form and enter the declaration
statement below into the (General) (Declarations) section.

"8 Example?t - limk xample 26 [Code

Option Explicit
Dim strinput As String

Fig. 7.2 The General Declarations for Example26

The Option Explicit statement should be placed there
automatically, as long as you have followed our
recommendations on page 26. if not, why not go back and do it
now. The Dim statement allows the variable strinput to be used
from any of the form's commands.

Then double-click the Text1 box on the form and enter the
following code, making sure it is entered into the Change
procedure code window. This will then be actioned whenever
the text entered into the box is changed at run time.

Private Sub Textl_Change ()
strinput = Textl.Text
End Sub

The main code to work the program is next entered in the code
window of the Go Command button.

Private Sub CmdGo_Click ()
Dim LWord, Msg, Rword, SpacePos ‘' Declare variables.

SpacePos = InStr(l, strInput, " *) * Find the space.
If SpacePos Then
LWord = Left(strInput, SpacePos - 1)
Rword = Right(strInput, Len(strInput) - SpacePos)
Text2.Text = UCase$ (LWord) ' First name
Text3.Text = UCase$ (Rword) ‘' Last name

Else
Msg = “You didn’t enter two words.”
MsgBox Msg ‘' Display error message.

Textl.Text = “” ' Clear text box

114

Strings and Arrays 7
Textl.S8etFocus ' Place insertion point in box
Bnd If
End Sub

In the Click procedure code window of the Clear Command
button, enter the following code which clears the text boxes and
places the insertion point in the first, ready for input.

Private Sub CmdClear_Click ()

Textl.Text = ""
Textl.8etPFocus
Text2.Text = ""
Text3.Text = ""

End S8ub

Last of all, place the one word of code in the Quit Command
button code window as follows:

Private Sub CmdQuit_Click ()
End ‘Close program
End Sub

The logic of the code ‘behind’ the Go button should be fairly
easy to follow. Four local variables are first declared, which are
only used in this subroutine. The Instr function then looks for a
space (" “) in the entered text held in the variable strinput (short
for User Input string).

If a space is found, the lines under the If statement are
actioned. The first and last names are cut out of the strinput
string and then converted to upper case.

If no space character is found, the Else statements are
actioned. An error message is placed on the screen, the input
text box is cleared and the focus is placed back into it to
receive correct input.

Two of the Properties set in this example need more
comment. The Quit Command button property Cancel was set
to True. This contrcls the action of the <Esc> key in the
program. With this setting, pressing the <Esc> key is the same

115

7

Strings and Arrays

as clicking this button. The Go Command button property
Default was also set to True. This controls the action of the
<Enter> key. Pressing this key then has the same effect as
clicking the Go button.

String Conversion Functions

There are four additional string functions in Visual Basic:
ASC(), CHR$(), STR$() and VAL()

Examples of these functions are given next.

ANSI Conversion
Using the ASC function in the statement
N = ASC(“ABCD”)

will return the ANSI code for the first character of the string
enclosed in the brackets of the function. In this case, 65 will be
returned (see Table on ANSI Conversion Codes). The function
name ASC actually refers to ASCIl code conversion as used in
previous DOS versions of Basic. But all the usual keyboard
codes are the same in both codes, so the name has been kept

in Visual Basic to maintain compatibility with code written for
earlier versions.

Character Conversion
Using the CHR$ function in the statement
C$ = CHR$(66)
will return the ANSI character that corresponds to the value of

the argument, in this case the letter B. The value of the
argument must lie between 0 and 255.

String Conversion
Using the STRS$ function in the statement
S$ = 8TRS$ (X)

116

Strings and Arrays

will convert the value of the argument into a string. X is a
numeric variable which might be the result of a calculation. In
this case, if X had the numerical value of 98.56, say, then S$
would be converted to the string “98.56".

Value of String
If R$ represents a string given by
R$ = "“3.123E12 metres”

then the statement
X = VAL(RS)

will return the value of the string up to the first non-numeric
character, in this case 3.123E+12. If the string begins with a
non-numeric character then the value 0 is returned.

String Concatenation

Visual Basic allows the concatenation, or joining together, of
strings. We shall illustrate this facility by considering the
following program in which the computer asks you to enter your
surname first, followed by your first name. It then concatenates
the two (first name first followed by surname with a space in
between) and prints the resuit which is held in string variable
strOutput.

Private Sub Form Click () ‘' EXAMPLE27

Dim strSName, strFName, strName, strOutput As String

strSName = InputBox$(“*Enter SURNAME please”)
strFName = InputBox$(“Enter FIRST NAME please”)
strName = UCase$ (strFName) + Space$(l) + UCase$ (strSName)

strOutput = “*HELLO * & strName
Print strOutput

End Sub

As it stands, the program is rather trivial. However, using
concatenation together with some of the string functions
mentioned earlier, can result in a somewhat more spectacular
result.

17

7 Strings and Arrays

To llustrate this, delete the Print statement of the above
program and replace it with the following lines to the program:

FontName = “Courier New” ‘' EXAMPLE28
FontSize = 10

Intlength = Len(strName)

If Intlength > 22 Then

strName = UCase$ (Left$(strFName, 1) + ". " 4+ strSName)
Intlength = Len(strName)

End If

For I = 1 To Intlength

Print Mid$(strName, I, 1);

If I = 1 Then Print " "; strName;

If I = Intlength Then Print " "; strName;

Print Tab(Intlength + 4); Mid$(strName, I, 1)
Next I

Also add the following statement with the other declarations.
Dim intLength, I As Integer

Run the program and supply it with your full name (surname
first). What you would see in the form window, if your name
was JOHN BROWN, is shown below. This would not work
properly without the line of code setting the printing font to
Courier New which is not proportional.

w Example28

Fig. 7.3 Printout for Example28

118

Strings and Arrays

7

Note that the program has worked out the length of your full
name and allowed enough space between the two vertical
columns to write it horizontally on the first and last rows.

Now Run the program again, but this time type in a really
long name, say CHRISTOPHER VERYLONGFELLOW. Can
you work out from the program lines and the output on your
screen what has happened? Try it.

Arrays

Some people find difficulty understanding the concept of arrays
in programming. An array is a set of sequentially indexed
elements of the same type and name, with each element

having a unique index number to identify it. Changes made to
one element of an array do not affect the other elements.

An array can only store data of the same type. Of course, if
the array data type is Variant, then numerical, string and
date/time data can all be stored in the same array.

String Arrays

A number of strings can be stored under a common name in a
string array. Let us assume that we have four names, e.g.,
SMITH, JONES, BROWN and WILSON that we want to store
in a string array. In Visual Basic, whenever an array is to be
used in a program, you must declare your intention to do so.
There are several ways of doing this. One is to place a Dim
statement, like the ore on the next page, into the (General)
{Declarations) section of a form. This dimensions the array
Names() with the elements 1 to 4, and allows the array to be
used from any of the form’s commands.

Dim Names (1l To 4) As String

Enter this line into the declarations section of a new project
form and then type the following code into the Click procedure:

119

7

Strings and Arrays

Private Sub Form_Click () ‘' EXAMPLE29
' Use of a string array
Dim I As Integer
Names (1) = *“SMITH” ' Load array
Names (2) = “JONES”
Names (3) = “BROWN"
Names (4) = "“WILSON"

For I = 1 To 4
Print “Names (*; I; *)~,
Next I
Print
For I = 1 To 4
Print Names(I),
Next I
Print

End Sub

When run, this program demonstrates how the 4 elements of
the array Names() can be manipulated by using the index
number of each element in your code. Any reference to an
array name within a program must be of the form

Names (I)
Another way of dimensioning this array with 4 elements is:
Dim Names(4) As String

However, the element numbers in this case would be 0 to 3, as
unless the range is implicitly declared it starts, by default, from
0. You can, if you want, force the lower ‘bound’ to 1 by placing
the line

Option Base 1

in the declarations section of your form.

A simple way to visualise a string array is as follows:

SMITH JONES BROWN WILSON

120

Strings and Arrays

7

The four names are stored in a common box which has four
compartments (or elements), each compartment containing
one name. Thus, Names(2) refers to the 2nd element of string
array Names(), and Names(4) to the 4th element.

Subscripted Numeric Variables

Array variables are often called subscripted variables and they
permit the representation of many quantities with one variable
name. A particular guantity is indicated, as we saw above, by
writing a subscript in parentheses after the variable name. So
an array allows you to use a single variable name for a
complete list of related data. ltems from the list are located by
their index (or subscript) number, which can be referred to as a
number, or an expression that results in a number. In Visual
Basic an array may have up to 60 dimensions, each one
represented by a different subscript.

The elements of a one-dimensional array can be represented
as follows:

A(0) A(1) A(2) A(3) A(4)

while those of a two-dimensional array as:

A(0,0) 7 A(0,1) A(0,2) A(0,3)
A(1,0) A(1,1) A(1,2) A(1,3)
A(2,0) A(2,1) A(2,2) A(2,3)

The first of the two subscripts refers to the row number, running
from 0 to the maximum number of declared rows, and the
second subscript to the column number, running from O to the
maximum number of declared columns.

A three-dimensional array can be thought of as stacked
two-dimensional arrays with the third subscript, running from 0
to the maximum height of the stack. More complex structures
follow the same procedures.

121

7

Strings and Arrays

As with string arrays, numerical arrays must be declared prior
to their use, either with a Dim statement placed in the
declarations section of a form or module, with a Global
statement placed in the declarations section of a module, or
with a Static statement placed in the procedure.

When declared with:

Global an array is available to any form or module
contained in a project.

Dim an array is available to any procedure on the
form or module on which it is placed.

Static an array is available only within the procedure
in which it is declared.

The form of the statement is shown below:

pim X(15), Y(3,5), Z(3,5,4)
Global X(15), Y(3,5), Z(3,5,4)
statie X(15), Y(3,5), Z(3,5,4)

where array X() has been declared to be a one-dimensional
array with a maximum of 16 elements (don’t forget the zero’th
element), array Y(,) has been declared as a two-dimensional
array of 4 rows and 6 columns, and array Z(,) as a
three-dimensional array of 4 rows and 6 columns stacked 5
deep. The number of arrays that can be declared
simultaneously is dependent only on the available memory in
your computer. Don't forget that multi-dimensional arrays can
very quickly eat into your available memory.

122

Strings and Arrays

7

Static and Dynamic Arrays

Visual Basic allows you to assign a portion of memory for array
use in two different ways. These are:

Static arrays When the declaration is made with
subscripted variables, for exampie
DIM Year(198C TO 2000) or
DIM Aname(15)

Dynamic arrays When the declaration is made with
empty subscript brackets, for example
Dim Year() or Dim Aname()

Static array memory is always the same size for each run of the
program and cannot be used for any other purpose.

Dynamic memory is allocated during run time and the space
may vary for each run of the program. Dynamic memory can be
freed up at any time for other use, with the statement

Erase Array name

This command alsc reinitialises the elements of fixed arrays as
well as freeing dynamic array storage space.

Before your program can refer to the dynamic array again, it
must re-declare the array variable’s dimensions using a ReDim
statement. However, although dynamic arrays are memory
efficient, accessing values held in them may be slightly slower
that accessing values held in static arrays.

There are two main error messages which reiate to the use
of arrays. These are:

Subscript out cof range
Overflow

The first error occurs if an attempt is made to use an array
element that is outside the declared dimension, or if an attempt
has been made to dimension the array with a negative number
of elements. The second error occurs if an attempt is made to
use an array for which there is no room in the cocmputer's
memory.

123

7

Strings and Arrays

As an example of array usage we will build a small stocktaking
program. After you have studied it, enter the code as
EXMPLE30.VBP.

First declare two arrays in the declarations section of a new
project form as follows:

Dim Item(4) As String
Dim Stock (4, 2) As Double

Then enter the following code into the Click procedure of the
form. Note the use of the colon (;) to separate multiple
statements on a line. You could enter all the Prirt statements
together on one line if you prefer.

Private Sub Form_click () * EXAMPLE30 - Stocktaking

Dim I As Integer, Xname As String

Item(l) = *INK ERASER” ‘Load data into arrays
Stock(l, 1) = 200: Stock(l, 2) = .1

Item(2) = “PENCIL ERASER”

Stock(2, 1) = 320: Stock(2, 2) = .15

Item(3) = “TYPING ERASER”

Stock (3, 1) = 25: Stock(3, 2) = .25

Item(4) = “CORRECTION FLUID”

Stock (4, 1) = 150: Stock(4, 2) = .5

Do
Xname = InputBox$("Which item? ‘END’ to finish”)
If UCase$ (Xname) = “END” Then End
For I = 1 To 4
If UCase$ (Xname) = Left$(Item(I), 3) Then
Print Item(I); * *;
Print Stock(I, 1) & * in stock @ ";
Print Pormat(Stock(I, 2), *“Currency®);
Print * each.”
End If
Next I
Loop Until False

End Sub

When run, the Input Box will only accept an entry whose first
three letters are the same as one of the items entered into the
item() array.

124

Strings and Arrays

7
I

Fig. 7.4 Entry Form for Example31 with Text Boxes Named

The last example included all the data for the arrays in the
code. This is not always convenient, so the next one has a
front-end data entry form and the user can enter any suitable

data at run time.

Form1, shown here in Fig. 7.4, has been given the Caption
property ‘Data Entry'. It has 3 Text Boxes, 4 Command Buttons
and several Labels. Open a new prcject (EXAMPLE31.VBP)

Fig. 7.5 Add Options

Option Base 1

with 2 forms anc¢ a Code Module. This is
the first time we have used more than
one form. Don't panic, simply click the
Add Form icon on the Toolbar, shown
open in Fig. 7.5, and select Form and
Module. The second form will be used
purely as a window to hold our print
output, and the module will be used for
global declarations of our arrays.

We will leave it to you to build the
Form1 entry form on your own. The code
for the various objects is shown below.

The declarations placed in the new
code module are:

Global Item{10) As String
Global Stock(10, 2) As Double

7

Strings and Arrays

Set the Tabindex properties to 0, 1 and 2 for the text boxes
Text1, Text2 and Text3 respectively. Then add the code for the
4 command buttons, which have been renamed, as shown
below, to cmdEnter, cmdPrint, cmdQuery and cmdQuit.

Private Sub cmdEnter_ Click() * EXAMPLE31
' Improved stocktaking program
Static Counter As Integer
If Counter < 1 Then Counter = 1
Item(Counter) = Textl.Text
Stock (Counter, 1) = Val(Text2.Text)
Stock (Counter, 2) = Val(Text3.Text)
Counter = Counter + 1
Textl.Text = "
Text2.Text n
Text3.Text b
Textl.SetFocus
End Sub
Private Sub cmdPrint_Click ()
Dim I As Integer
Form2 .Show
For I =1 To 10
If Item(I) <> *” Then
Form2.Print Item(I), Stock(I, 1),
Form2.Print Format (Stock(I, 2), "Currency”)
Bnd If
Next I
End Sub
Private Sub cmdQuery Click()
Dim I As Integer, Xname, Msg As String
Do
Form2.Show
Msg = "Which item? ‘END’ to finish”
InputBox$ (Msg, ®“Data Query”, , 7000, 5000)
Left$ (Xname, 3)

Xname

Xname

For I =1 To 10
If UCase$ (Xname)
If UCase$ (Xname)

"END* Then Exit Do
UCase$ (Left$(Item(I), 3)) Then

126

Strings and Arrays

7

Form2.Print Item(I); ~ *;
Form2.Print Stock(I, 1) & ™ in stock @ *;
Form2.Print Format(Stock(I, 2), “Currency”);
Form2.Print * each.”
BEnd If
Next I
Loop Until False
Form2.Hide
Forml . Show
Textl.SetFocus
End Sub
Private Sub cmdQuit_Click()
End

End Sub

You should, by now, be able to follow this code quite easily.
Remember that if you forget the correct syntax for a command,
simply select it in the editing window and press F1. As it stands
the program will accept 10 sets of data, but would be easy to
modify.

The Static declaration allows the variable ‘Counter’ to
maintain its value; without this it would be re-set each time the
Sub was run.

The statement Form2.Show opens the window Form2 and
Form2Hide makes it invisible to the user. The Print statements
have to be prefixed with ‘Form2.’ to force printing onto this
window (otherwise it will run behind the features on Form1.

The InputBox$() statement has a title as well as X and Y
co-ordinates to force the box to the lower right portion of the
screen. Otherwise it opens over the Form2 printing window.
You must use all the positioning commas, as shown, to get
these to work. Good luck!

Control Arrays

An array can be very useful in Visual Basic with controls. If, for
example, you need four command buttons which are related
and must be the same size, such as the buttons on a toolbar.

7

Strings and Arrays

You can create one button then copy it and paste it onto a
frame. A message box will inform you that you already have
such a control and asks if you would you like fo make an array.

if you click the Yes button, you can then paste as many
buttons as you like, and each will be designated by the name of
the first button followed by an index number in brackets, such
as cmdToolbar(1), cmdToolbar(2), etc. All arrays start at zero
so your original button will now be cmdToolbar(0). This method
uses less memory and keeps groups of controls (with a related
purpose) into one area.

As an array of command buttons will alsc have a common
click, or mouse move event, you must be careful how you write
the code behind them. The most common method is to use a
Select Case statement (see page 102). The following is an
example of data control related command buttons in an array
named cmdData(index), where Index is the number
designating which button we are addressing (beginning with
zero for the first button in the array).

cmdData_ click()
Select Case Index

Case 0 ‘first button in the array
Datal.recordset.addnew
Casgse 1 ‘second button in the array

Datal.recordset .delete

Datal.recordset .movenext

Case 2

Datal.recordset .update
End Select

The actual commands are not important here, but note how all
the database code can now be found in one place. You could
also have one error handler for all of the database related
buttons.

128

8

More on Controls

In Chapters 2 and 3, we briefly described the main controls
available in Visual Basic, but so far we have not actually used
some of them. We have concentrated more on the
fundamentals of the programming language behind the controls
themselves. Perhaps the easiest way to come to terms with the
other controls is to study how the sample program
CONTROLS.VBP works. This should have been installed with
Visual Basic.

It was located in our set-up in the folder “C:\Program
Files\Microsoft Visual Studio\MSDN98\98VSa\1033\SAMPLES\
VB98\Controls® With your version the path may not be the
same, but by now you should be able to find it OK. You might
also want to look at an overview of the sample program in
MSDN Help, as shown in Fig. 8.1 below.

and others. mmmhwdmw
propertes.

Background
The sample 5 compnsad of several forms, uch-muxmml
demonstr

CommandButton cortrols.

Binary datas fie for the Mutton.wm file.

Fig. 8.1 MSDN Help on Visual Basic's Examples

129

More on Controls

The CONTROLS.VBP Sample

Load this project and set up your screen as shown in Fig. 8.2.
Here, we have opened the frmMain by selecting it in the Project
Explorer window and then clicking the View Object button.

-5 dmtext (et frm)
[smwordWrap (wordwrap.frm)

Fig. 8.2 Visual Basic's Controls Example Program

This form has six command buttons and an Exit button, which
you should be very familiar with; and a menu, shown opened
above. The six buttons and the menu give access to the other
six forms which make up this project.

If you double-click the frmMain window in design mode and
open the Object drop-down list you will see reference to all the
button and menu code procedures. The screen dump of Fig.
8.3, on the next page, shows this list and a typical Procedure
code.

130

More on Controls

In fact for each menu item,
the code simply opens the
- E— relevant form window using
ex evem 1n the wenu the Show statement.

if you look at the code
behind the six command
g buttons, you will see just one
e S line in each, such as:

frmllain.Vidth = 4965
End Sub mnuButtons_Click

| Privete Sub mnuButtons_Click({)

[l ipley e form This is the code in the

- ELRL) : cmdButtons_Click procedure,
Ay !] which simply activates the
Fig. 8.3 Object Drop Down List relevant menu option.

This is a very easy way to
transfer control around the program, and we will look at how to
set up menus a little later on. In the meantime, run the program
and move between the various options. You will be amazed at
what can be produced in Visual Basic with very little in the way
of code.

The Example Files

This Controls example program has been included, in one
form or another, with all the versions of Visual Basic we have
used. By looking at the coding behind the sections of this
program, you can learn an awful lot. We strongly recommend
you spend several hours doing this.

Hopefully it will be provided with future versions of Visual
Basic as well. Just to be on the safe side, though, we have
included the source files on the Companion Disc to this book
(see inside back cover) and on one of our Web sites. To
download the latter, enter the following URL address into your
browser.

www.philoliver.com/visbasic/ControlsVBP. exe

This will download a self-extracting file to your hard disc, after
asking you where you want to place it. Save it in a folder of its
own and run the file tc obtain the files.

131

8 More on Controls

Control Buttons

The Test Buttons routine shows a traffic light which
changes from green to amber and then red when a
command button is clicked.

—

Fig. 8.4 Dissecting the Test Buttons Form

On close inspection, the form actually has three oicture icons,
with different colours active, superimposed on top of each
other, with only one having its Visible property set as True.
Clicking the Change Signal button calls the ChangeSignal
procedure shown here.

Private Sub ChangeSignal ()

If imgGreen.Visible = True Then
imgGreen.Visible = False
imgYellow.Visible = True

BlseIf imgYellow.Visible = True Then
imgYellow.Visible = False
imgRed.Visible = True

Else
imgRed.Visible = False
imgGreen.Visible = True

End If

End Sub

132

More on Controls

This steps through the colour sequence in the right order
setting only one as Visible at a time.

Note that ChangeSignal is a Sub procedure not related to
any particular object action (such as clicking the mouse). It can
be called from anywhere on the current form and so is placed in
the (General) procedure section.

Before we leave the Buttons part of the program, look at the
code that is activated by clicking the Close button.

Unload Me
As its name suggests, this closes the active window and wipes

its display from the screen. In this program, control then returns
to the frmMain opening window.

Check Boxes

Check boxes are used on the WordWrap form which
VIl aiso gives a clear demonstration of how the AutoSize
and WordWrap properties of a Label work.

A long caption has been
entered into a Label of
specific size. Clicking the
two check boxes selects
whether the AutoSize and
WordWrap properties of
a Label are to be set or
not.

When the program is
run, you can change the
check box settings and

Fig. 8.5 The WordWrap Form see the result

immediately in the label.

Clicking the Cycle button

steps you through the different combinations of label properties,

and the result can be seen in the display. The code behind the
Cycle button is:

133

More on Controls

Private Sub cmdCycle_Click()
' cycle through the four possible combinations

' 1 Neither check box is selected
If chkAutoSize.Value = 0 And _
chkWordWrap.Value = 0 Then
' select the AutoSize check box
chkAutoSize.Value = 1
' 2 Both check boxes are selected
BlseIf chkAutoSize.Value = 1 And _
chkWordWrap.Value = 1 Then
' deselect the AutoSize check box and
' gselect the WordWrap check box
chkAutoSize.Value = 0
chkWordWrap.vValue = 1
' 3 Only the WordWrap check box is selected
BlseIf chkAutoSize.Value = 0 And _
chkWordWrap.Value = 1 Then
' deselect both check boxes
chkAutoSize.Value = 0
chkWordWrap.Value = 0
' 4 Only the AutoSize check box is selected
Else
' select the WordWrap check box - the
' AutoSize check box is already selected
chkWordWwrap.vValue = 1
Bnd If
End Sub

This routine checks and changes the AutoSize and WordWrap
check box settings which themselves change the AutoSize and
WordWerap settings of the label in the Display procedure on the
(General) section of the form, as shown below. If either is
selected, its Value property will be ‘1’ and will set the Label
property to ‘True’, as shown here.
If chkWordWrap.Value = 1 Then
lblDisplay.WordWrap = True
End If
If chkAutoSize.Value = 1 Then
lblDisplay.AutoSize = True
End If

134

e

More on Controls 8

A Check box displays an X when selected and, as we have
seen, is used to give the user True/False or Yes/No options.
They are usually used in groups to display muitiple choices, any
of which can be selected.

Check boxes and Option buttons function similarly but only
one Option button in a group can be selected.

To display text next to the Check box, enter it into the
Caption property of the box.

The Value property determines the state of a Check box, as
used in the above program - the available settings being:

0 is Unchecked, the default setting.
1 is Checked, or selected.
2 is Greyed (dimmed), or unavailable.

Option Buttons

An Option button displays an option that can be turned
on or off. They are used to display multiple choices from
which the user can select only one. You can group
option buttons by drawing
them inside a frame or a
picture box, or directly onto a
form. All those placed directly
onto a form are treated as a
separate group.

o

The Options example,
shown here, uses two groups
of Option buttons, one in a
frame and the other straight
onto the form itself. The

Fig. 8.6 The Options Form choice made in the left group

of buttons sets a value to the

string variable strComputer. That made in the right grouping
sets a value to the variable strSystem.

135

More on Controls

The two default Options (in this case 486 and Windows 95),
have their Value properties set to True, so they are ‘selected’
when the program is first run. At start-up the other Options will
then have their Value properties as False.

In this example, when an Option is clicked, one of the two
variables strComputer or strSystem is set, as shown in the
procedure below.

Private Sub opt486_Click()
' assign a value to the first string variable
strComputer = “486”
' call the subroutine
Call DisplayCaption
End Sub

The DisplayCaption sub routine is then called, which builds up
the message displayed in the Label field.
Sub DisplayCaption()
' concatenate the caption with the two string
' variables.
lblDisplay.Caption = *You selected a * & _
strComputer & ™ running “ & strSystem
End Sub

Combo and List Boxes

3 These are both used to display a list of items from
which the user can choose one. The list can be scrolled
if it has more items than can be displayed at one time. A
= list box only allows a choice from an existing list,
whereas a Combo box has a Text box feature at the top

of the list, into which the user can type a new choice.

Dependant on the Style property, Text determines the text
that is contained in the text edit area of a Combo box, or the
selected item in the list box. This property is read-only at both
design and run time.

The Style property sets the type of combo box drawn:

136

More on Controls 8

0 - Dropdown Combo Includes a drop-down list and an
edit area. The user can select
from the list, or type into the edit
area.

1 - Simple Combo Includes an edit area and a list
that is always displayed. The user
can select from the list, or type
into the edit area. By default, this
type is sized so that none of the
list shows. Increasing the Height
property will show more of the
list.

2 - Dropdown List This style only allows selection
from the drop-down list.

if the Sorted property is set to ‘True’, all items in a list are

automatically alphabetically sorted at run time. The defaulit

setting, ‘False’, does not sort a list.

A Simple Telephone List

The following small program shows how Combo, or List, boxes

can be loaded at run time, and usefully used. It represents a

very smali telephone ‘directory’ with, as it stands, only room for

5 entries, but it could very easily be extended.
The form, shown here in Design
mode, has a Combo box and
three labels. The only reason a
List box is not used is that it
takes up much more room on
the form!

) Set the Style property of the

Fig. 8.7 Example32 Form Combo to the defaut 0 -

Dropdown Combo and the /abel Caption properties as shown
in Fig. 8.7.

We will use two arrays, one to hold the names and the other,
the telephone numbers, so place the following code in the
Generat Declarations section of the form.

137

More on Controls

Dim SName (0 To 4) ' Dimension arrays.
Dim TelNum(0 To 4)

The main body of the code loads the arrays with data and then
places the names in the Combo list. This should be carried out
when the program first starts up, so the code is placed as a
Form_Load procedure.

Private Sub Form Load () ' EXAMPLE32.MAK
Dim I As Integer * Declare variable.

* Enter data into arrays.
SName (0) = “Jane Dean”
SName (1) = “Leona Woolgatherer”
SName (2) = “Angie Smith”
SName (3) = “Sheila Splurg”
SName (4) = “Joan Bloggs”
TelNum(0) = “0173 789987~
TelNum(l) = "“54645"
TelNum(2) = *“010 45 678123"
TelNum(3) = "“01209 311887"
TelNum(4) = "“789456"

For I = 0 To 4 ‘' Add names to list.
Combol .AddItem SName (I)
Next I
Combol.ListIndex = 0 ‘Display first list item
End Sub

You could obviously substitute more meaningful data in the
above if you wanted. All that remains now is to place a line of
code behind the Combo so that the telephone number of the
person selected in the List shows in the main Label box.

Private Sub Combol_Click ()
‘ Display corresponding Number for name.
Label3.Caption = TelNum(Combol.ListIndex)
End Sub

When you have entered the code and are happy with the way it
works, try changing the Style property of the Combo box to see
the different types available. With the above code, whatever
you do, don't try sorting the list with the Sorted property.

138

More on Controls

The array indices would not then be the same and incorrect
phone numbers would be displayed!

As we saw in this previous example, to display items in a
combo or list box, you use the Additem statement. To remove
items, you would use Removeltem in the same way.

The Listindex property determines tne index of the currently
selected item in a list; this cannot be used at design time. The
ListCount property (also not available at design time) specifies
the number of items in the list. The statement

Combol.ListCount

would return the number of items in the list of Combo1.

The Timer Control

Visual Basic's timer, which is invisible to the user at run
time, is used for background processing. A Timer
Control runs code at regular intervals by causing a
Timer event, which occurs when a pre-set interval of time has
elapsed. The timing frequency is set in the control's Interval
property, which specifies the length of time in milliseconds. The
other main Timer property is the Enabled property. When this is
set to True with the Interval property greater than zero, the
Timer event waits for the period specified in the Interval

property.
A very simple digital clock can be programmed by placing a

Timer and a Label on a form as shown on the left of Fig. 8.8.
The clock running is shown on the right.

= Project] - ik xample33 .. (] 7 |
 oroacePm

Fig. 8.8 A Simple Digital Clock

w Clock

139

More on Controls

The code required is minimal, consisting of just two lines.

Private Sub Form_Load ()
Timerl.Interval = 1000 ‘' Set timer interval.
Bnd Sub

Private Sub Timerl Timer ()
Labell.Caption = Time ' Update time display.
End Sub

In the first procedure, the Timer Interval property is set to 1000
milliseconds, or 1 second. In the second, the Timer is set to call
the Visual Basic Time function after every 1 second interval, the
Label Caption being updated every second with the computer
system time.

As we saw, when run, a digital clock is operational in the
window. By changing the form and label properties, and
formatting the Time output (see Appendix C), you could
customise this ‘clock’ with alarms, colours and fonts, etc.

Pictures and Imagg

Visual Basic makes it easy to display and manipulate graphic
images and pictures. They can be placed straight onto a form
itself, or into Picture box and Image controls.

Supported Graphic Formats

Visual Basic can display picture files in any of the following
standard formats.

Format Description

Bitmap A bitmap (with file name extensions .bmp or
.dib) defines an image as a pattern of dots or
pixels. You can use bitmaps of various colour
depths, including 2, 4, 8, 16, 24, and 32 bits,
but a bitmap only displays correctly if the
display device supports the colour depth used
by the bitmap.

140

More on Controls

Icon An icon (with file name extension .ico) is a
special kind of bitmap, with a maximum size of
32 pixels by 32 pixels.

Cursor Cursors (with file name extension .cur), like

icons, are essentially bitmaps, but they contain
a 'hot spot’, a pixel that tracks the location of
the cursor by its x and y co-ordinates.

Metafile A metafile is different as it defines an image
as coded lines and shapes. Conventional
metafiles have the file name extension .wmf,
and enhanced metafiles .emf.

JPEG JPEG (with file name extensions .jpg or .Jpeg)
is a compressed bitmap format which supports
8- and 24-bit colour. At 24-bit resolution it is an
ideal format for photographs and is commonly
used on the Intemet.

GIF GIF (with file name extension .gif) is a
compressed bitmap format which was
originally developed by CompuServe. It
supports up to 256 colours and is also a
popular file format on the Internet.

The Picture Box Control

The picture box control is similar to the Image control in
that each can be used to display graphics in your
application, but a picture box can act as a container for
other controls and also supports graphics methods (such as
Circle, Line, and Point}, and text printing.

Pictures can be loaded into a Picture box control at design
time by selecting them in the Picture property (in the Properties
window), or at run time by using the Picture property and the
LoadPicture function, as follows.

picMain.Picture = LoadPicture (“fred.jpg”)
The LoadPicture function can actually have more settings for

picture control and selection, but we will not get too involved
here. Try the Help system if you ever need them.

141

More on Controls

To clear the graphic from the picture box control, use the
LoadPicture function without specifying a file name.

By default, graphics are loaded into a Picture box at their
original size, so if the graphic is larger than the control, the
image will be clipped. You can make a picture box
automatically resize to display an entire graphic by setting its
AutoSize property to True. The control will then grow or shrink
in size to that of the graphic, but be careful as this can lead to
some interesting problems with large pictures. Unlike the Image
control, however, the Picture box control cannot stretch the
image to fit the size of the control.

To show how easy it is to add pictures, we will modify the
phone book created in EXAMPLE32 to show the photo of the
selected person, as well as their phone number. A modem ‘little
black book’ maybe!

Fig. 8.9 A More Visual Phone Book

To do this, you add a Picture box to the form, as shown in Fig.
8.9 above, and set its AutoSize property to True. You must
have photograph files of all your ‘contacts’ reduced to a suitable
size for the form. In our example, these were scanned in as .jpg
files which were saved in the same folder as the project itself.

We will use another array to hold the names of these graphic
files, so add the following code in the General Declarations
section of the form to dimension the array.

Dim Photo(0 To 4)

142

More on Controls

To load the pictures into the new array when the program
starts, add the following code to the Form_Load procedure.

Photo(0) = *jane.jpg”
Photo(1l) = *leona.jpg”
Photo(2) = “angie.jpg”
Photo(3) = “sheila.jpg”
Photo(4) = *joan.jpg”

If you prefer, you can keep the graphic files in another folder,
but you then have to include the path to them in each of the
above statements. All that remains to be done now is to add the
following LoadPicture statement to the Combo1_Click() sub
procedure:

* Display corresponding Picture for name.
picPhoto.Picture = LoadPicture (Photo(Combol.ListIndex))

That'’s all there is to it. It is well worth doing this example. If you
don't have any suitable graphic files to play with, ours are
included in the Companion Disc.

The Graphics Methods

Picture boxes and forms can be used to receive the output of
the Visual Basic graphics methods such as Circle, Line, and
Point. For example, you can use the Circle method to draw a
circle in a picture box by setting the control's AutoRedraw
property to True.

Picturel.AutoRedraw = True
Picturel.Circle (1200, 1000), 750

Fig. 8.10 shows the result
of running this code.

Setting AutoRedraw to
True allows the output
from these methods to be
drawn to the control and
automatically redrawn
when the picture box
control is re-sized or
re-displayed after being
hidden by another object.

Fig. 8.10 A Circle in a Picture Box

More on Controls

Drawing Lines

Perhaps the best way of demonstrating how easy it is to use
the Line method in Visual Basic to draw freehand on a Form or
Picture box is to create a small project.

Fig. 8.11 A Simple Drawing Program

Fig. 8.11 shows our project at run time. Just one form (Form1)
with the following controls on it with their respective properties:

Option1 Option2
Name: optRed Name: optBlue
Value: TRUE Value: FALSE
Caption: Red Caption: Blue
Command1 Command2
Name: cmdClear Name: cmdEnxit
Caption:Clear Caption: Exit

When all four objects have been placed on the form, it's time to
enter the source code. The two Command buttons are very
simple. In cmdExit_Click, as usual, we just put Bnd to exit the
program. In cmdClear_Click, we put the following:

Forml.Cls

Cls (clear screen) simply clears the form when we are fed up
with what is drawn.

Next double-click on the form to open the Code Editor, find
the MouseDown Event of Form1 and type the following:

Forml.CurrentX X
Forml.CurrentY Y

144

More on Controls

This defines the X and Y co-ordinates when the mouse is
clicked somewhere on the form at run time.

Lastly, put the following in the form’s MouseMove Event:
Dim strColour As String

If optRed = True Then
strColour = 4
End If

If optBlue = True Then
strColour = 1
End If

If Button = 1 Then

Line (Forml.CurrentX, Forml.CurrentY)-(X, Y),_
QBColor (strColour)

BEnd If

Now save the project as DRAWING.VBP and try it out. In this
code we first declared the string strColour to represent the
colour's numerical value to be used later in the QBColor
function. Then two If...Then statements return the colour value
of 4 (Red) if optRed is selected, or 1 (Blue) if optBlue is
selected.

The last If..Then statement determines if the left mouse
button is being pressed down on the form. If so, the program
uses the Line method to draw a line as the user drags it across
the form. QBColor is the colour which you program the line to
be. Black would be 0 so you would write: QBColor = 0.

Overall, a line statement has the following form:
Line (X1, Y1) - (X2, Y2), QBColor{colour)

As usual with Visual Basic, it doesn't take much code to get
some quite interesting results. Do try this example, you will find
it well worth while. it could obviously be extended to include
maybe, other colours, and line formatting features.

145

More on Controls

Building a Menu Bar

To make creating menus for your windows reasonably easy,
Visual Basic has a Menu Design window in which you can
create custom menus and define their properties. Before we
can demonstrate this procedure, though, you need a program
with a form that needs a menu bar. We suggest you create the
following small program.

A Simple VAT Calculator

Appendix A contains all the code, complete with object
properties, for you to build the small program named
VATCALC.VBP, that asks for number input and then calculates
and displays VAT information, as shown below.

Fig. 8.12 The VatCalc Example in Design and Run Modes

The main form, frmVatCalc is shown on the left above in
Design mode, and on the right in Run mode. The Label Caption
and Text box Text properties are shown named above so that
you can see where they are. These must all be deleted (in the
Properties window) before the program will work properly!

You should have no problem building this form from what we
have covered so far, except for the Menu bar. This has only
one item (Options) on the main bar, and three sub-menu items
when it is opened, as shown in Fig. 8.13.

More on Controls 8

Governments have a habit of
increasing tax levels at regular
intervals, so the first menu
item allows the user to change
the VAT rate (from the present
17.5%).

The Exit item is not really
necessary, as this is already
taken care of with a Command
button, but it is always better to
have too many ways out, than
not enough.

Fig. 8.13 The Opened Menu]
The About menu item

opens another form and displays some information about the
program, as shown in Fig 8.14.

Fig. 8.14 A Standard Visual Basic About Dialogue Box

This is included to demonstrate some other techniques and
was, in fact, almost ‘automatically’ created for us, because it is
one of Visual Basic’s standard forms that are available for you
to use.

To create this form, click the Add Form toolbar button (see
Fig. 7.5) and select the Form option. This opens the Add Form
dialogue box shown in Fig. 8.15. Select About Dialog and click
the Open button to add the standard form to your project.
There are several other standard forms here, that are worth
exploring.

147

More on Controls

Fig. 8.15 The Add Form Dialogue Box

We will leave it to you to complete the About form. Have a look
at the code already placed behind it. You will find that the
Version and Application Title details are generated at run time
from information placed in the Project, Properties dialogue
box. The other text is placed at design time in the Caption
properties of the Labels concerned.

The Menu Design Window

With the main frmVatCalc form selected, choose Menu
Editor from the Tools menu, or use <Ctrd+E>, or click
the toolbar icon shown here. All of these will open the
Menu Editor window,
shown in Fig. 8.16.

In the Caption text
box, you type the
menu item caption
that you want
displayed on the
menu bar. In our
case you type
&Options.

The ampersand
(&) character will give

Fig. 8.16 The Menu Editor

148

More on Controls

the user keyboard access to this menu item. At run time, the
next letter is underlined, and the menu can be accessed by
oressing Alt plus the access key, <Alt+0>,

If you had wanted to create a separator bar in your menu,
you could type a single hyphen (-) in this box.

In the Name box, type the control name that will be used to
refer to this menu item in code, in our case mnuOption.

Leave the other options in the Design Window at their default
settings and click the Next button. Type &VAT Rate in the
Caption text box and mnuVATRate in the
Name box. Now click the Right Arrow on the
Wincow button bar to make this menu item

E secondary to the first, as shown here, and
press Next. Add the other two menu items as

follows:
Caption Name
&About mnuAbout
E&xit mnuExit

The Menu Design Window should now look like ours, shown
below in Fig. 8.17. Pressing OK will close the window and place
:he menu bar on your form.

Fig. 8.17 The Completed Menu for VatCalc

More on Controls

Using the left and right arrows you can have up to four levels of
sub-menus. The up and down arrows change the position of a
menu item in the list box. We did not use the other features in
the Design Window, but their functions are:

Index

Shortcut

WindowlList

HelpContextiD

Checked

Enabled

Visible

NegotiatePosition

Type an index number to control the
position of a menu item within a control
array.

Use to assign a shortcut key to a menu
item by selecting a key from the
drop-down list.

Select if you want the current menu
control to include the name of open MDI
child forms (outside the scope of this
book).

Enter a unique number if you plan to
provide a context-sensitive Help topic.

Select if you want a check mark to
appear at the left of a menu item to
indicate that the control is tumed on.

Select if you want the menu item to
initially respond to events. Clear the box
if you want the menu item to be
unavailable (greyed on the menu) to be
enabled later in your code.

Select if you want the menu item to
appear on the menu.

Allows you to select the menu's
NegotiatePosition property, which
determines whether and how the menu
appears in a container form.

The menu items you created, although visible, will not do
anything until you write code for them (as with other controls).
In Design mode, if you click on a Menu Bar item the sub-menu
will open, but if you click on a sub-menu item its code window
will open. As an example, the code below is placed behind the
VAT Rate sub-menu item.

150

More on Controls

Private Sub mnuVATRate_Click ()

* Get new VAT rate from user.

NVATRate = Val (InputBox$(“Enter new VAT rate”))
VATRate = NVATRate

End Sub

This opens an Input Box that requires a new VAT rate to be
entered. The other code for the two forms and all their controls
is given in Appendix A.

The Sub mnuAbout_Click procedure loads the contents into
the form named frmAbout with the statement

frmAbout .Show 1

The Show command displays a form. The following integer (1
or 0) sets the style as modal or modeless. When a form is
modal, it must be removed with the UnLoad command before
the program can continue. (Done in the Sub cmdAbout_Click
procedure). The default is modeless, which lets the form stay
active, and a 0 is not actually necessary.

ActiveX Controls

An ActiveX control is an extension to the Visual Basic toolbox.
They were formerly called OLE controls and are included with
the Professional and Enterprise Editions of Visual Basic.
ActiveX controls have the file name extension .ocx.

You use ActiveX ccntrols just as you would any of the buitt-in
intrinsic controls discussed so far. When you add one to a
program, it becomes part of the development and run-time
environment and adds new features to your application. For
example, the Windows Common controls allow you to create
applications containing ‘Windows 95 type’ toolbars, status bars,
and directory structure tree views. Other controls allow you to
create applications using the Internet.

With the above editions of Visual Basic, the setup procedure
irstalls ActiveX controls automatically. You just add a control to
your project Toolbox to use it in that project.

151

More on Controls

To do this, open the Components dialogue box with the
Project, Components menu command and you will find a list
of all the objects and ActiveX controls you can use. You just
select the check box to the left of a control name in the list, and
click on OK, to add it to the Toolbox.

Some Provided Controls

The list below shows the main ActiveX controls provided by
Microsoft (MS). The ones you have on your system will depend

on the version of Visual Basic you are using.

Component Name

MS ADO Data Control 6.0

MS Chart Control 5.5

MS Comm Control 6.0

MS Common Dialog Control 6.0
MS Data Bound Grid Control 5.0
MS Data Bound List Controls 6.0
MS Data Repeater Control 6.0
MS Data Grid Control 6.0

MS Data List Controls 6.0

MS FlexGrid Control 6.0

MS Grid Control

MS Hierarchical Flex Grid Control 6.0
MS Intemet Transfer Control 6.0
MS MAPI Controls6.0

MS MaskedEdit Control 6.0

MS Multimedia Control 6.0

MS PictureClip Control 6.0

MS RemoteData Control 6.0

MS RichTextBox Control 6.0

MS Syslinfo Control 6.0

MS TabbedDialog Control 6.0

MS Windows Common Controls 6.0

MS Windows Common Controls-2 6.0

MS Windows Common Controls-3 6.0
Ms Winsock Control 6.0

Control

ADO Data Control
Microsoft Chart
MSComm
CommonDialog

DBGrid

DBList, DBCombo
DataRepeater

DataGrid

Datal.ist, DataCombo
MSFlexGrid

Grid

MSHFlexGrid

Internet Transfer control
MAPIMessages, MAPISes-
sion

MaskedEdit

Multimedia MCI
PictureClip
RemoteData
RichTextBox

Sysinfo

Microsoft Tab Control
TabStrip, Toolbar, Status-
Bar, ProgressBar,
TreeView, ListView,
Imagelist, Slider, Image-
Combo

Animation, UpDown,
MonthView, DTPicker,
FlatScrollbar

CoolBar

WinSock

152

e

9

Functions and Procedures

Standard Mathematical Functions

Visual Basic contains built-in functicns to perform many
mathematical operations. They allow calculations using such
common functions as logarithms, square roots, sines of angles,
and so on. As with earlier versions of BASIC, mathematical
functions have a three-letter call name followed by a
parenthesised argument. They are pre-defined and may be
used anywhere in a program. Some of the most ccmmon
standard functions are listed below.

Standard Visual Basic Functions

Name Function

ABS(X) Retums the absolute value of X

ATN(X) Arc-tangent of X (1.570796 to —1.570796)
COS(X) Cosine of angle X, where X is in radians
EXP(X) Raises e to the power of X

INT(X) Retums the truncated integer part of X

FIX() Retums the integer part of X |
LOG(X) Retums the natural logarithm of X

SGN(X) Retums 1, 0 or -1 to reflect the sign of X
SQR(X) Retums the square root of X

SIN(X) Sine of angle X, where X is in radians
TAN(X) Tangent of angle X, where X is in radians
RND Generates a pseudo-random number from 0

to 1, but which does not include 1.

Function calls can be used as expressions or elements of
expressions wherever expressions are legal. The argument X
of the function can be a constant, a variable, an expression or
another function.

153

Functions and Procedures

A more detailed explanation of using these functions is given
below.

ATN(X)

The arc-tangent function returns a value in radians, in the range
+1.570796 to -1.570796 corresponding to the value of a
tangent supplied as the argument X. Conversion from radians

to degrees is achieved with the relationship Degrees =
Radians*180/Pi, where Pi=3.141592654.

SIN(X), COS(X) and TAN(X)

The sine, cosine and tangent functions require an argument
angle expressed in radians. If the angle is stated in degrees,
then use the relationship Radians = Degrees*Pi/180.

SQR(X)

The SQR function returns the square root of the number X
supplied to it.

To illustrate using some of the above functions, consider a
simple problem involving a 2m-long ladder resting against a
wall with the angle between ladder and ground being 60
degrees. With the help of simple trigonometry we can work out
the vertical distance between the top of the ladder and the
ground, the horizontal distance between the foot of the ladder
and the wall and also the ratio of the verlical to horizontal
distance.

The program uses the trigonometric functions SIN, COS, and
TAN, to solve the problem.

Sub Form_Click () ' EXAMPLE36
' Ladder against a wall
Dim AngleDeg, AngleRad, Vert, Horiz, RatioPi As Double
Dim Pi As Double
Pi = 3.141592654

AngleDeg = 60 ‘in degrees
AngleRad = AngleDeg * Pi / 180 ‘' In radians
Vvert = 2 * Sin(AngleRad)

154

Functions and Procedures

Horiz = 2 * Cos(AngleRad)
Ratio = Tan({AngleRad)

Print “Original angle = *; AngleDeg; Chr(176)

Print “Vert. distance = “; Pormat(Vert, “Fixed”); “m”
Print “Hor. distance = “; Pormat(Horiz, “Fixed*); “m”
Print “Ratio of Vert:Hor. = *;

Print Format (Ratio, “Fixed”); “:1"

End Sub

When the program is run and the opened window is clicked,
Visual Basic will respond with

Original angle 60°

Vert. distance 1.73m
Hor. distance = 1.00m

Ratio of Vert:Hor. = 1.73:1

ABS(X)

The ABS function returns the absolute (that is, positive) value
of a given number. For example ABS(1.234) is 1.234, while
ABS(-2.345) is returned as 2.345.

The ABS function can be used to detect whether the values
of two variables say, X and Y, are within an acceptable limit by
using the statement in the form

If Abs(X-Y) < 0.0001 Then

in which case the block of statements following the THEN will
be executed only if the absolute difference of the two variables
is less than the specified limit, indicating that they are
approximately equal. We need to use the ABS function in the
above statement otherwise a negative difference, no matter
how small, would be less than the specified small positive
number.

155

Functions and Procedures

EXP(X)
The exponential function raises the number e to the power of X.

The EXP function is the inverse of the LOG function. The
relationship is

Log(Bxp (X)) = X

LOG(X):
The logarithm to base e is given by the above function.

Logarithms to the base e may easily be converted to any other
base using the identity

log,(N) = LOG(N)/LOG(a)

where log.(N) stands for the desired logarithm to base a, while
LOG(N) and LOG(a) stand for the logarithm to the base e of N
and a, respectively.

Antilogarithm functions are not provided but they can easily
be derived using the following identities:

Antilog(X) = e”X ‘(base e; this is Exp(X))
Antilog(X) = 10"X ‘(base 10)

INT(X) and FIX(X)

The integer functions returns the value of X rounded down to
the nearest integer. Thus, INT(6.97) returns the value 6. The
difference between Int and Fix is that if X is negative, Int
returns the first negative integer less than or equal to X, but Fix
returns the first negative integer greater than or equal to X. For
example:

Int(-5.3)
Fix(-5.3)

-6
-5

Fix(X) is equivalent to:
Sgn(X) * Int(Abs (X))
Numbers can be rounded to the nearest whole number, rather

than rounding down, by using the function Int(X+0.5). For
example, Int(5.67+0.5) returns the value 6. It can also be used

156

Functions and Procedures

to round to any given number of decimal places, or to the
nearest integer power of 10, by using the expression:

Int (X*10°D+0.5)/10"D

where D is (a) a positive integer or (b) a negative integer
supplied by the user. For rounding to the first decimal, D=1; to
the nearest 100, D=-2. The program below should help to
illustrate these points.

Private Sub Form_Click () ' EXAMPLE37

' Rounding numbers
Dim X, N As Double
Dim D As Integer

Do
X = Val (InputBox(“Enter any number "))
If X = 0 Then End
D = Val (InputBox(“Round to how many places?”))
N = Int(X * 10 “ D + .5) /10 “ D
Print N
Loop Until False
End Sub

Try it yourself. To stop the program enter 0 (zero) in the first
Input box, press its X close button, or the Cancel button.

SGN(X)
The sign function returns 1 if X is positive, 0 if X=0, and -1 if X
is negative.

RND and RANDOMIZE n

The Rnd function is used to produce a pseudo randomly
selected number from 0 to 1, but not including 1. The
Randomize function allows the random-number generator Rnd
to start from a ‘seed number’ and produce a series of numbers
based on the seed. By using the same seed again, the same
series of numbers can be obtained. The statement
Randomize, by itself, uses the computer's internal clock to
seed the random-number generator, while Randomize n seeds
the random number generator Rnd with the number n.

187

Functions and Procedures

Random numbers are used in statistical programs and in all
kinds of simulations from simple games to complex computer
models. In some programs, especially business simulations, it
is necessary to reproduce the same ‘random’ conditions from
run to run. This is done with the ‘dice throwing' program given
below. To see this, enter the following program.

Private Sub Form Click () ‘' EXAMPLE38 - Throwing dice
Dim I As Integer
Randomize 2
Print “THROW”, *“NUMBER”
For I = 1 To 6
Print I, Rnd
Next I

End Sub

Every time it is run, the program produces the same random
throws as shown below.
THROW NUMBER
1.414126E~02
.6076428
.3568624
.9575312
.2980418
.7864588

O bW N

In some contexts it is a severe disadvantage to have the same
series of random numbers produced. You would then use the
statement

Randomize
at the beginning of a program. When no seed number is given,

this function uses the system clock to get its seed, and could
be said to be ‘truly random’.

In the previous dice throwing simulation the numbers were
obviously not integers (as with dice). To produce random
integers in a given range, use the formula:

Int ((Upper - Lower + 1) * Rnd + Lower)

where, Upper is the highest number in the range, and Lower is
the lowest - for a dice these would be 6 and 1.

158

Functions and Procedures 9

Derived Mathematical Functions

For reference purposes, some useful mathematical functions
which can be derived from standard Basic functions are listed
below:

Derived Mathematical Functions

Function Formula
TRIGONOMETRIC

Cosecant CSC(X)=1/SIN(X)
Cotangent COT(X)=1/TAN(X)
Secant SEC(X)=1/COS(X)
INVERSE TRIGONCMETRIC

Arc Cosecant ACSC(X)=ATN(1/SQR(X*X-1))+(SGN(X)-1)*Pi/2
Arc Cotangent ACOT(X)=-ATN(X)+Pi/2

Arc Secant ASEC(X)=ATN(SQR(X*X-1))+(SGN(X)-1)*Pi/2
HYPERBOLIC

Hyp Cosine COSH(X)=(EXP(X)+EXP(-X))/2

Hyp Sine SINH(X)=(EXP(X)-EXP(-X))¥2

Hyp Tangent TANH(X)=-EXP(-XM(EXP(X)}+EXP(-X))*2+1
Hyp Cosecant CSCH(X)=2/(EXP(X)}-EXP(-X))

Hyp Cotangent COTH(X)=EXP(-X}(EXP(X)-EXP(-X))*2+1
Hyp Secant SECH(X)=2/(EXP(X)+EXP(-X))

INVERSE HYPERBOLIC

Arc Cosh ACOSH(X)=LOG(X+SQR(X*X-1))
Arc Sinh ASINH(X)=LOG(X+SQR(X*X+1))

Arc Tanh ATANH(X)=LOG((1+X)/(1-X)¥2

Arc Cosech ACSCH(X)=LOG((SGN(X)*SQR(X*X+1)}+1¥X)
Arc Cotanh ACOTH(X)=LOG((X+1)/(X-1)}2

Arc Sech ASECH(X)=LOG((SQR(-X*X+1)+1)/X)

Note: The constant Pi in the above formulae has the value of
3.141592654.

159

Functions and Procedures

User-Defined Function Procedures

In some programs it may be necessary to use the same
mathematical expression in several places, and often using
different data. User-defined functions enable definition of
unique operations or expressions. These can then be called in
the same manner as standard functions.

A user-defined function is defined as shown in the following
example.

Function Area (Radius) As Double
' Calculates area of circle of Radius urnits
Pi = 3.141592654
Area = Pi * Radius
Bnd Function

2

Entering it into your program is made very easy; simply typing
in an empty section of the Code Editor, the word Function,
followed by its Name, will create a new code entry template for
the function in the (General) section of the form, as shown
here, in Fig. 9.1.

Function Area()

Ind Function

Fig. 9.1 A New Function Template, Ready to Enter Code

Enter the above function and the rest of this small program as
shown below.

Private Sub Form Click() * EXAMPLE39
' Using a user defined function
Print "Radius", "Area of circle"
Por Radius = 1 To 10

Print Radius, Area(Radius)
Next
BEnd Sub

160

Functions and Procedures

You will also need to declare the variables used in the
(General) (Declarations) section, like this:

Dim Radius, Pi As Double

The program calculates the areas of circles with radii of integer
values between 1 and 10. The formula is given in the Function
Area() statement and the Function is called the same way as
Visual Basic's built-in functions. The value for the radius is
passed to the function via a parenthesised variable which in
fact could be any legal expressicn; its value is simply
substituted for the function variable.

The Object Browser

! An easy way to track down the procedures and functions
in your program is to use the Object Browser, which is
opened with the toolbar icon shown here, or the F2 key.

= Uyect Brows =

® <gobais>

8 frmExamge ™

Fig. 9.2 The Object Browser

The Object Browser, as shown in Fig. 9.2, gives you details of
all the procedures in your project, as well as the classes,
properties, methods, events, and conrstants available from all
the object libraries you have access to on your system.

161

Functions and Procedures

You can use it to find and use objects you create, like the
function in our example, as well as objects from other
applications. You can get more information by searching for
‘Object Browser' in the Help system.

Sub Procedures

Visual Basic supports several kinds of procedures;
user-defined Functions, Sub-procedures (or Subs), and
Property procedures. The differences between them are that a
Function returns a value, a Sub is complete in itself, and a
Property procedure can return and assign values, and set
references to objects.

Most of the Visual Basic code we have seen in this book so
far has been made up of Event Procedures, or blocks of
program code which are carried out when a certain action is
implemented. You can also write your own Subs, which can
then be called from anywhere in your program.

You enter a Sub into your program in the same way as
described on the previous page for entering Functions (but you
type Sub instead of Function). To illustrate how we can use a
‘user defined’ Sub-procedure, we will develop a small program
which asks for the dimensions of three cylinders and calculates
their volumes.

Private Sub Form_Click () * EXAMPLE40
* Volume of 3 cylinders
Dim Radius As Double, Height As Double
Dim I As Integer
For I = 1 To 3
Radius = Val (InputBox(“Enter cylinder radius”))
Height = Val(InputBox(“Enter cylinder height”))
Volume Radius, Height
Next I
End Sub

Here, the Volume statement is calling the following Sub, called
Volume, and passing to it the values of Radius and Height.

162

Functions and Procedures

Sub Volume {(Rad As Double, Ht As Double)
Dim BaseArea, Vol, Pi As Double
Pi = 3.141592654
BaseArea = Fi * Rad * 2
Vol = BaseArea * Ht

Print “Cylinder radius = * & Rad & * units”

Print “Cylinder height = * & Ht & * units”

Print *Cylinder volume * & Vol & * cubic units*
Print

End Sub

Note that the Sub above accepted the two arguments, even
though they had different names. In older versions of Basic the
Sub would have been called with the statement

Call Volume (Radius, Height)

This is acceptable to Visual Basic, but if used, the arguments
must be enclosed in brackets, as shown. Just remember, no
Call, no brackets!

After a Sub has been executed, program control is returned
to the statement following the calling statement. It is, therefore,
possible to build up a library of standard procedures, which can
then be invoked from a main program to solve large and
complex problems.

Parameter Passing_

There are two fundamental rules relating to parameter passing.
These are: (a) the number of arguments in an argument list of
the calling statement must be the same as that of the formal
parameters, and (b) the data type of each argument must
match the data type of the corresponding formal parameter.

The formal parameters in a procedure, whether a
subprogram or function, are variable names local to that
particular procedure. The actual parameter passed to the
procedure can either be (i) a variable name local to the calling
program or (ii) a literal, constant, or expression.

163

Functions and Procedures

in the first case, when a parameter is a variable, parameter
passing is by ‘reference’, which means that the address of the
variable is passed to the procedure. As the formal parameter
within the procedure is also assigned to the same address, this
means that any changes to the formal parameter within the
procedure can be passed back to the main program.

In the second case, when a parameter is a literal, constant,
or an expression, parameter passing is by ‘value’, which means
that the actual value is passed rather than the address in which
the value is held. In this case, the value of an expression is
calculated, the result is stored in a temporary location and the
address of the temporary location is passed to the procedure.
As a result, any change to this parameter by the procedure is
only reflected in the temporary address and the original value
accessed by the main program remains unmodified.

Subroutines

Subroutines are similar to Sub procedures in many ways but
they are not as powerful. They are supported by Visual Basic
primarily for backward compatibility, so that programs written
for standard BASIC can be easily adapted to run under Visual
Basic.

GOSUB and RETURN Statements

When Visual Basic encounters the GOSUB statement in the
main body of the program, it branches to the first statement of
the subroutine, and continues to execute the statements within
the subroutine until the RETURN statement is encountered.
This diverts program flow to the statement immediately
following the GOSUB statement which called the subroutine.
Thus, the GOSUB statement broadly corresponds to the Sub
calling statement, while the RETURN corresponds to the END
SUB.

When successive GOSUB statements branch to the same
subroutine, each time the RETURN statement is reached, the
main program is resumed at the last GOSUB statement from
which it branched.

164

10

Working with Files

Programs and ‘data files’ can be stored on disc quite easily and
Visual Basic allows you to access them from your program
front end with the standard Windows file handling dialogue
boxes. Before describing this, though, we will spend some time
getting to grips wit some of the code needed to create and
read from your own application data files.

Three types of data files can be used to store information,
namely sequential, random access or binary files. Each type
has advantages and disadvantages. Sequential files use disc
space efficiently, but are difficult to update and best used for
files which store only text. Random files are less efficient as far
as usage of disc space is concerned, but provide quick access
to information. Binary files offer great flexibility, but have no
structure and, therefore, are difficult to program. We shall
investigate the first two of these, by first looking at their
individual structure and then by showing how data can be
written to, and read from, each type of file.

Sequential Data Files

A sequential data file can be thought of as a one dimensional
array with each array location being one byte, capable of
holding one character of a string. For example, the name of a
friend together with his telephone number

ADAMS M. 02-1893
could be stored as shown below:

Byte 1 2
0123456789012345678901

Char “"ADAMS M.*, " ~02-1893"9%1

165

10

Working with Files

Of special importance to sequential data files are the three
ASCII control characters, 10 (linefeed — LF), 13 (carriage return
— CR), together shown by the symbol §], and 26 (End-of-File
marker — EOF), shown above as I. The combination CR/LF ()
is issued every time you press the <Enter> key.

Two names would be stored with details of the second
following the first, separated by LF/CR, with the EOF character
marking the end of the file. For example,

"ADAMS M.","02-1893"q"SIMS I.","01-1351"4l

Carriage retum/linefeeds (ff) mark the end of blocks of
information called ‘records’ with each record containing related
information such as names and telephone numbers separated
by commas, called ‘fields’. Fields can hold any of the different
types of variables, such as strings (which appear in quotation
marks), integers, long integers, single- and/or double-precision
variables.

To write data into a sequential data file you must write a
small Visual Basic program which will ‘create’ such a file and
then ‘print’ into it the characters representing the information
you want to store on disc. To demonstrate this, we will develop
the most simple ASCII text editor imaginable, which treats all
the text in the file as one variable.

w Simple Text Editor

 Teat]

Fig. 10.1 Our ‘Text Editor in Design Mode

166

Working with Files

.

10

Cpen a new project and build the simple form shcwn in
Fig. 10.1, which has one large Text box (Text1) and four
command buttons, (cmdSave, cmdClear, cmdlLoad, and
cmdExit).

Make sure the Muitiline property of the Text box is set to
True, so that any long lines of text you enter will wrap onto
subsequent lines, and that you clear the Caption property. Then
enter the following code.

Dim Filename As String ' General declaration

Private Sub cmdSave_Click () ' EXAMPLE41
' Save entered file to disc

Filename = InputBox$("Enter file name*)
Open Filename For Output As #1

Print #1, Textl.Text

Close #1
End Sub

Private Sub cmdLoad_Click ()

‘' Load a text file from disc

Filename = InputBox$ (*Enter file name”)
Open Filename For Input As #1
Textl.Text = Input$(LOF(1), 1)

Close #1

End Sub

Private Sub cmdClear_Click () ' Clear the text box
Textl.Text = “~

Textl.SetFocus

End Sub

Private Sub cmdExit_Click () ‘' Exit the program
End
End Sub

To test out the program, run it, type a few lines of text into the
editing section of the opened window and then save the fext by
clicking the Save button. To check that this worked, you could
Clear the window and Load your file back again, or open your
file into the Notebook. Even the Cut and Paste functions work
(with their keyboard short-cuts), you can get a lot for a small
amount of code with Visual Basic.

167

10

Working with Files

Saving a File to Disc

In the cmdSave_Click Sub, following the InputBox line, the
commands Open Filename For Qutput As #1, Print #1 and
Close #1 are all directed to the filing system. The first opens
the named file for output, through the communications channel
#1. By opening a file, the name of that file is automatically
written to the directory of the logged drive. If the filename
already exists, the Open command will delete its contents,
which means that you lose all the information already stored in
that file. Once the data has been written to the file, with the
Print # command, the file is closed.

Note the special way of writing Visual Basic commands
which are directed to the filing system. They all end with the
hash character (#), followed by the channel number n (with
values between 1 and 255) through which you communicate
with the file. Finally, when you finish with a file you close the
communications channel with the Close #n command.

Loading a File from Disc

Once your text file has been created, you must be in a position
to read it back into the computer so that your information can
be retrieved. This is done, in our example, with the short
cmdLoad_Click procedure.

The third line Opens the file whose name is held in string
variable Filename, for Input through channel #1. The next line
reads the contents of the whole file using the Input$ statement.
The LOF(1) part of the statement gives the length of file to be
input. Finally, the file is Closed as before.

As it stands, our text editor is usable but the file handling
procedures, by Windows standards, leave a lot to be desired.
You even have to remember the name of the file you want to
retrieve! With one addition, however, and a few extra lines we
can improve it enormously.

168

Working with Files

10

The Common Dialogue Control

The Common Dialogue control, shown here, allows you
. to automatically use five of Windows' main dialogue

boxes, and irvoke the Windows Help System, from
your programs. These are the Open, Save As, Print, Color and
Font boxes. We will make use of the first two to improve our
simple editor.

With Visual Basic 6.0 you must first add the Common
Dialogue control to the Toolbox by selecting Components from
the Project menu, lccating and selecting the control in the
Controls tabbed section, as shown in Fig. 10.2 below, and
finally clicking the OK button.

[_]Microsoft Dats Bound Grd Control 5.0(SP3)

[Microsoft Data Bound List Controls 6.0

[Mcrosoft DataGrid Contzal 6.0 (SP3) (OLEDS)
[C]Mcrosoft Datalist Cantrals 6.0 (SP3) (OLEDS)
] Microsoft Datafepester Control 6.0 (OLEDE)

Fig. 10.2 Adding a Component to the Toolbox

A new icon, like that shown here, will be added to the
Toolbox. In Design mode, drag a Common Dialogue
control onto the form of the last example. It doesn't
matter where you place it, as, like the Timer, it is invisible at run
time. Then edit the code of the Save and Load procedures to
that shown on the next page.

169

10

Working with Files

Dim Filename As String ' General declaration
Dim F As Integer

Private Sub cmdLoad_Click ()

' Using OPEN dialogue box

CommonDialogl.Filter = "All Files (*.*)|*.*|Text _
Files (*.txt)|*.txt|Batch files (*.bat)|*.bat"
CommonDialogl.FilterIndex = 2
CommonDialogl . ShowOpen

Filename = CommonDialogl.Filename

F = FreeFile

Open Filename For Input As #F

Textl.Text = Input$ (LOF(F), F)

Close #F

End Sub

Private Sub cmdSave_Click ()

' Using SAVE AS dialogue box
CommonDialogl.Filter = "All Files (*.#%)|*.*|Text _
Files(*.txt) |*.txt|Batch files (*.bat)|*.bat"®
CommonDialogl.FilterIndex = 2
CommonDialogl.ShowSave

Filename = CommonDialogl.Filename

F = FreeFile

Open Filename For Output As #F

Print #F, Textl.Text

Close #F

End Sub

The first extra line, in both cases, sets the Filter property to
control what type of files will be displayed in the dialogue boxes.
Each filter to be displayed needs a description and the actual
filter, separated by the pipe character (|).

The line
CommonDialogl.ShowOpen

determines which Windows dialogue box is used. You use the
appropriate method from the following table, to display one of
the available dialogue boxes.

170

Working with Files

10

Method Dialogue box displayed
ShowOpen Cpen

ShowSave Save As

ShowColor Color

ShowFont Font

ShowPrinter Print

ShowHelp Invokes Windows Help

In our example, the dialogue box retums the name of the file
selected and stores it in the variable ‘Filename’ in the line

Filename = CommonDialogl.Filename

The screen dump in Fig. 10.3 shows our program, named
EXAMPLE42.VBP, using the Save As dialogue box.

Fig. 10.3 The Save As Dialogue Box

You have probably noticed the line
F = FreePile

in our modified code. As Visual Basic can access up to 255 file
channels, it is safer and better practice, to use the FreeFile
function to return the next file number available for use. If this is
passed to a variable (F in our case), the variable can be used
whenever a channel # is required.

171

10

Working with Files

Trapping Errors

If you have not done it already, try pressing the Cancel button
from one of the Common Dialogue boxes when your program is
running. With the code given so far, Visual Basic stops the
program running with the following message.

Fig. 10.4 A Run-time Error Message

The Open and Save As dialogue boxes handle most of the
possible disc handling errors automatically (like having no disc
in a drive), but it is left to you to handle what heppens when the
Cancel button is pressed. No real problem, just add the line

On Error GoTo ErrHandler

to the beginning of both the cmdLoad and cmdSave
procedures, and add the following to their ends.

ErrHandler:

' User pressed Cancel button.

Exit Sub

172

Working with Files

10

Random Access Files

Random-access data files are like a collection of equal-length
sequential files, which means that each file can have a number
of records (each with a record length specified by parameter
Len). A visual representation of random access data files is
shown below:

1 2 3 4
12345678901234567890123456789012345678901234
ADAMS M. 02-1893 iissssdddddddd

) SMITH A. D. 03-864243 iissssdddddddd
LONGFELLOW A. B. C. 01-5513567iissssdddddddd

in this example, each row represents a record and each record
is divided into 5 ‘fields’. The first field, which is 20 characters
long, contains names, the second, which is 10 characters long,
contains phone numbers, the third to the fifth field contains
numerical data which is encoded to strings of lengths 2, 4 and 8
characters, representing integer, single- and double-precision
floating-point numbers, respectively. Thus the record length of
each row in the above representation is 44 characters
(20+10+2+4+8 = 44),

Defining Records by TYPE

When using random access, Visual Basic requires you to
define your records with the Type..End Type declaration. This
allows the creation and storage of data in a composite format;
mixing string and numeric types. A suitable Type definition for
the above data would be:

Type Record
Aname As String * 20
Phone As 8String * 10
Units As Integer
Price As Single
Amount As Double

End Type

173

e/

10

Working with Files

To open a file and specify its length, with this data would
require the following statement:

Open Filename For Random As #1 Len = 44

As random access is the default for the Open statement, the
words For Random are not strictly required, but we
recommend that you get used to including them.

The next program, EXAMPLE43.VBP, shows how data sets
can be entered into a form and added to a random access file
from the form. It is intended more as a demonstration than to
perform a useful task, but the principles can be adapted to
almost any kind of consistent format data entry.

Fig. 10.5 A Random Access File Example

The main form layout is shown above on the left. It consists of
four Text boxes to receive the data, each with a Label to
identify it, and three Command buttons to control the entry or
retrieval of data to and from a file.

Build this form, as shown, but don't forget to clear the Text
properties of the Text boxes, as the names above are only to
help identify them. Then open one more form and a module
(see Fig. 7.5). The second form is used purely to receive
printed output from the data file, as shown on the right above.

The module file, with the extension .BAS, is needed to hold
the Type definition. Save all the files into a folder of their own,
and enter the code shown on the next few pages.

174

Working with Files 10

This first code is placed in the separate module. It defines a
custom data type ‘Record’. The Option Explicit statement
forces Visual Basic to accept only declared variables.

Option EBxplicit
Type Record

FirstName As String * 20
SurName As Strimg * 15
Phone As String * 12

Age As Integer

End Type

The next code is for Form1, the 6 Dim statements being placed
in the general declarations section of the form.

Dim Person As Record

Dim RecordLen As Long

Dim F As Integer ‘' Filenumber

Dim Msg As 8trimg

Dim FileName As String

Dim Position As Integer ‘' To track record number

Private Sub Form Load ()

Chbrive App.Path

ChDir App.Path

RecordLen = Len (Person)

Msg = *Give file name for data”

FileName = InputBox$ (Msg)

F = FreeFile

Open FileName For Random As F Len = RecordLen
Position = 1

End Sub

Private Sub cmdAddRecord_Click ()

GetRecord ‘* Load data from text boxes
Put #F, Position, Person ‘Save to file
Position = Position + 1 ‘Increase .pointer
txtCName,Text = “* * Empty text boxes
txtSName.Text = "%

txtPhone.Text = **

txtAge.Text = "~

txtCName.SetFocus

End Sub

175

10

Working with Files

Private S8ub cmdDisplayFile_Click ()

Dim I As Integer, Caption As String

Caption = “File - ™ + UCase$(FileName)

Form2.Caption = Caption * Name window

Form2 .8how ‘' Open a print window

Form2.Print “Name”; Tab(30); “Phone Number”;

Form2.Print Tab(50); “Age”

Form2 .Print

For I = 1 To Position - 1
Get #F, I, Person ‘' Read a record from file
' Trim blanks from and print the record
Form2.Print Trim$ (Person.FirstName);
Form2.Print * ™ + Trim$ (Person.SurName);
Form2.Print Tab(30); Trim$ (Person.Phone);
Form2.Print Tab(50); Trim(Person.Age)

Next I

Form2 .Print

Form2.Print “Click window to continue”

End Sub

Sub cmdQuit_Click ()

Close #F ‘' Close the file

Kill FileName ' Delete file from disc
End
End Sub

8ub GetRecord ()

' Load PERSON variable from text boxes
Person.FirstName = txtCName.Text
Person.SurName = txtSName.Text
Person.Phone = txtPhone.Text
Person.Age = Val (txtAge.Text)

End Sub

The last code, below, is placed in the Click procedure of
Form2. This lets you remove the print window when you are
happy that your data file is working.

8ub Form Click ()
Forml.txtCName.SetPFocus
Unload Me

End Sub

176

Working with Files

10

The random access method only works if, after declaring a data
Type, you then declare a variable of that type, as done in the
line

Dim Person As Record

The Form_Load Sub is actioned when Form1 is opened at run
time. The ChDrive and ChDir statements set the current drive
and directory to that of the running application. This is so that
the location of the file created is controlled. The line

RecordLen = Len(Person)

passes the length of our defined data Type to a variable, which
is then used in the Open statement.

You are then expected to enter data manually into the text
boxes. When happy with your data, click the Add Record
button which actions the cmdAddRecord Sub.

This, first calls the Sub ‘GetRecord’ which loads the data
elements from the text boxes to the respective components of
the ‘Person’ variable. It then Puts this data, as one record, into
the previously opened file

Put #F, Position, Person

F represents the channel number used to communicate with
the opened file. The ‘Position’ variable keeps track of the
record number being processed, and is incremented after the
Put operation. The text boxes are then emptied and the focus
returned to the first one, so that you can continue to add as
many records as you want.

When you want to view all the records entered, click the
Display File button which activates the cmdDisplayFile Sub.
This sets the caption of Form2 and opens it with the Show
command. The Get statement is used to retrieve the data from
the file, one record at a time.

Get #F, I, Person
It is the complement of the Put statement. Each record is then

Trimmed, to remove any padding spaces, and printed to the
opened Form2 window.

177

10

Working with Files

When you have worked out how it all functions, you can press
the Quit button, which Closes the open file and deletes it from
your disc with the Kill statement. In a working application you
would not need this line, but we have added it to save your hard
disc getting cluttered.

We have tried to make the code of these examples as simple
as possible, to make them easier to understand, so there is
little attempt at error trapping or other sophistications.

If you want to develop the programs further, we suggest you
first study the sample programs provided with Visual Basic.

Binary Files

A binary file is the most rudimentary type of file which offers the
greatest flexibility, but its use imposes considerable
responsibility on the programmer as binary files do not have
any structure. They are a sequence of characters without any
delimiters, or records. The characters simply occupy positions
0, 1, 2, and so on, within the file. They are used when you need
to keep the size of your data files to the absolute minimum.

Due to their complexity we will not give any more detail on
binary files here, as they are a little outside the scope of this
book.

178

Working with Files

10

Drive, Dir and File List Boxes

There are also three controls included on the standard

Jl Visual Basic Toolbox that allow you to easily list drives,

folders and files. We must say a few words on these

before leaving the subject of files, but you may find that

the Common Dialogue features are really all you need.

Try putting one of each of these onto an empty form, as
shown in Fig. 10.6.

ADD! D
{BIBLIC MDB
Qec

- |MSDIc1100LL
* « IMSPDB60.OLL

Fig. 10.6 The DrivelList, Dirlist and FiieList Box Controls

When placed they access your system as shown, and if you run
the form as it is, each box will access your drives, folders and
files. You must place code, though, to link the boxes together
so that the files shown represent those of the folder selected,
for example.

The DrivelList control has a Drive property which uses the
following syntax:

Drivel.Drive = Drive
The Dirlist and FileList controls have a Path property which
uses the following syntax:

Filel.Path = Path

Dirl.Path = Path

It is very easy to write code to link the three controls. With the
following code, when you change the drive, or folder, the other
lists are updated.

179

10 Working with Files

Private Sub Drivel_Change() ' EXAMPLE44
On EBrror GoTo DriveHandler
' Update directory list box to synchronise with the
' drive list box.
Dirl.Path = Drivel.Drive
Exit Sub
* If there is an error, reset Drivel.Drive with the
* drive from Dirl.Path.

DriveHandler:
Drivel.Drive = Dirl.Path
Exit Sub

End Sub

' This event occurs when a new directory is selected
Private Sub Dirl_Change()

' Update file list box to synchronise with the

' directory list box.

Filel.Path = Dirl.Path

End Sub

As you can see, this requires very litle code. There is even an
error trapping routine to cope with the time that the user selects
a removable drive with no disc in it. Without this the program
would just stop.

In our routine above, to actually use the results of the file
selection procedure in more code, you would use
File1.FileName to represent the name, and Diri.Path to
represent the path of the selected file.

You can use the Drive property to change drives at the
operating system level by specifying it as an argument to the
ChDrive statement, such as:

ChDrive Drivel.Drive
To set the current working directory, use the ChDir statement.

For example, the following statement changes the current
directory to the one displayed in the directory list box:

ChDir Dirl.Path

180

Working with Files 10

An Image Viewer

Before we leave this section, we will give an example of how
these features could be used to create a simple, but useful,
image viewer. For this, you can use the previous
EXAMPLE44.VBP form and code, but with the Drive, Directory
and File List Boxes re-arranged as shown in Fig. 10.7.

Fig. 10.7 The Design Form for an image Viewer

One more thing, before the form is complete, is to drag
an image Control from the Toolbox, as shown above.
Give this control the Name property imgGraphic, but
leave the other properties with their default settings.

Now for the code. Double-click on the form in Design mode
to open the Code Editor and add the following procedure.

Private Sub Form_Load()
Filel.Pattern = "*.jpg; *.gif"
End Sub

This is actioned when the form is loaded and filters the
contents of the File List Box to display only .jpg and .gif graphic
files.

181

10 Working with Fiies

in the Sub Dir1_Change add the lines

ChDrive Drivel.Drive
ChDir Dirl.Path

These set the selected drive and folder, or directory, as the
current system ones. Any files then selected will not need to be
given a path. Then add one more procedure, as fcllows:

Private Sub Filel Click()

imgGraphic.Picture = LoadPicture(Filel.FileName)

End Sub

This simply uses the LoadPicture function (see page 143) to
load the selected graphic file into the Image control when the
File List is clicked. You could also use Set to do this:

Set imgGraphic.Picture = LoadPicture(Filel.FileName)

Fig. 10.8 The image Viewer in Operation

Give it a try. When you run this example you can have a quick
look at all the graphic files you have filled your hard disc with.
We have actually produced something useful, at last!

182

11

Working with Other Applications

The fact that Microsoft’s Office applications, Word, Access and
Excel, use Visual Basic themselves makes it easy to interact
with them. As the majority of developed programs have to
process data of some kind, perhaps the most important link is
that between databases and Visual Basic itself.

The Data Control

The Data control, shown here, is an intrinsic control

located on the Toolbox that makes it very easy to

create a database, as well as view and modify the data
stored in many types of existing databases, including Microsoft
Access, Btrieve, dBASE, Microsoft FoxPro, and Paradox. You
can also use it to access Microsoft Excel, Lotus 1-2-3, and
standard ASCII text files as if they were true databases. Visual
Basic also includes the even more powerful ADO Data control
(ActiveX Data Objects), but we will leave that one for you to
explore.

Fig. 11.1 A Data Control at Design Time

As shown in Fig. 11.1 above, the control has four buttons that
allow the user to scroll backwards and forwards through the
record set that is linked to it.

183

1"

Working with Other Applications

You don't need to have the Access program itself on your PC to
work with its database files. In our next example, we will work
with NWIND.MDB, one of the database files which should have
been placed in the same folder as the Visual Basic program
when it was installed, (see Fig. 1.6 for our details). If it is not
there and you want to work through this, you will have to add it
by re-running the Visual Basic Setup, as described on page 5.

Open a new project and add a Data control to it, as well as
three labelled text Boxes as shown in Fig. 11.2.

Fig. 11.2 Using a Data Control

The first thing to do is to connect the Data control to the
database. With the Data control selected, find the
DatabaseName property in the

Properties Window, click the il button
in the right-hand side, and select the file
NWIND.MDB.

Next, select the RecordSource

property and choose the Shippers table,

Fio. 11.3 Properties as shown in Fig. 11.3, from the list of
£ s o available tables in the database.

Binding Controls

We have now ‘locked’ the Data control onto the table in the
database we want, but we must set the Text boxes up so that
they display the data in the table. This is called ‘binding’ the
controls to the data source.

Make sure you delete the Captions of the Text boxes, and
then set the DataSource property of each to the Data1 control.
Next, set the DataField properties of each Text box to

184

Working with Other Applications 1"

ShipperiD, CompanyName and Phone, for Textt, Text2 and
Text3, respectively.

When you run the project, it should show the contents of one
field of the database table and let you move easily between the
cther fields with the Data control buttons, as in Fig. 11.4.

Fig. 11.4 Using a Data Control

So, with no code at all, you can include a database viewer in
your project; but by adding a few command buttons and using
the code in the table below in their Click procedures you could
do all your database editing, etc., from your project. Have
another look at the code example on page 128, it should make
more sense now! Good luck.

Action Code Needed
Add a Record Datal.recordset .addnew
Delete a record Datal.recordset .delete

Datal.recordset .movenext
Save changes Datal.recordset .update
Move to next record Datal.recordset.movenext
Edit a record Datal.recordset.edit
Address a field Datal.recordset.fields("fieldname")
Bookmark a record Let varX = Datal.recordset.bookmark

Table record count Datal.recordset.count

185

11

Working with Other Applications

Visual Basic for Applications

As mentioned in the first chapter, VBA (Visual Basic for
Applications) is included with the later versions of Microsoft
Office. With this you can automate application procedures, or
even develop customised applications of your own.

To access the feature from Word, Access or Excel, you use
the Tools, Macro, Visual Basic Editor menu commands, or
the <Alt+F11> keyboard shortcut. Fig. 11.5 below, shows the
editor and some of its features opened from Word 2000.

E 8§ Project (Document1)

, Reference to Mr'l;‘ﬂ

]Mr-m -I IC& vI
Private Sub UserForm Click(} -
A
End Sub
=
s o

Fig. 11.5 The Visual Basic Editor Opened from Word 2000

Some of the features are very slightly different as they are
designed to complement the Office applications, but on the
whole VBA is the same as the standard Visual Basic 6.0 we
cover in the rest of the book. If you are going down this route, it
may be worth your while working through VBA's Help pages.

186

Working with Other Applications

1"

| Welome to the Visual Basic documentaton.

Viseal Basic nchudes many documentsten tools, each designed © heip you eam
mmummdvum The documentation provided with visuel

. 'kodsmusnlmﬂmm

book hers for Help on wterface slements of the Visual Basic Bdwtor, such as
wommands, dalog boxes, windows, and toolbars.

|
= ®sual Basic Conceptusl Topics
“he Cancaptuel Help topscs include weormebon to help you understand Visusl
Basic progremming

*sual Basic Mow-To Topecs

book in the How To section of Help to find useful common prosedures, for
« xample, how to use the Dbject Browser or how o set Visuel Basic
Snvironment options.

= ¥isual Basic Language Refersnce

mmm-;mmnmmummum
ol ks methods, properties, statements, funchons, operstors, and objects.

= ¥isyal Basic Add-in Model

¥ you went to customize the Visual Besic edior, see thrs langeage refersrce for ||
Belp on the object model that sliows ~ou to extend the snvirowment 5

* Microsolt Forms Reference

book here for Help on Userferms snd controls, snd how 0 peogram with them
wsng Visual Basic.

Fig. 11.6 Visual Basic for Applications Help Opening Page

As you would expect, these are accessed from the Help menu
of whatever Office application Visual Basic Editor you are
using.

Connecting to Office Applications

It is possible to get Visual Basic to talk to and control both
Microsoft Word and Excel with code, but the office applications
need to be installed on the target machine before their objects
can be accessed. They cannot be distributed with the
application you create.

To assign the Application to an object variable, as we do
here, the relevant object libraries have to be selected. To do
this, use the Project, References menu command from Visual
Basic 6.0 and select 'Microsoft Excel 9.0 Object Library’ for
Excel, and ‘Microsoft Word 9.0 Object Library’ for Word, as
shown in Fig. 11.7. These are the library names for Office 2000
versions of Excel and Word. You may have different versions,
in which case the names will not be the same, but you should
be able to recognise what libraries to include.

187

11

Working with Other Applications

~| ActiveX DLL to perform Migration of MS Reposttory V1
[_| Actor Interface

Fig. 11.7 Including the Word and Excel Object Libraries

Working with Excel

Here is a small example showing how to connect to and talk
with the Excel spreadsheet application.

Option Explicit
Dim xlsApp As Excel.Application

Private Sub Commandl_Click() 'EXAMPLE47
S8et xlsApp = Excel.Application
Wwith x1sApp
‘Show Excel
.Visible = True
‘Create a new workbook
.Workbooks .Add
‘Put text in to the cell that is selected
.ActiveCell.Value = “Hello there” .
' Put text into cell A3 regardless of the
' gelected cell
.Range (“A3%) .Value = “This is an example of _
connecting to Excel”
BEnd With
End Sub

188

Working with Other Applications 1

In this routine we put the object in the variable xisAgp and
make Excel visible to the user. When Excel is started like this it
does not contain a workbook, so one has to be created or
opened. In this example we created a new workbook. Once
there is a workbook open you can use it however you want in
real time.

When you have finished with Excel, you can close if from
Visual Basic as follows:

Private Sub Command2_Click()
' Close the workbook
x1sApp . Workbooks.Close
' Close Excel
x1sApp.Quit

End Sub

This routine first closes the workbook (if necessary bringing up
a prompt from Excel asking if you want to save it), then closes
Excel itself.

Working with Word

The following routines work in a similar way with the Word word
processor

Option Explicit
Dim wrdApp As Word.Application

Private 8Sub Commandl_Click () ‘EXAMPLE48
8et wrdApp = New Word.Application
With wrdApp
‘Show Word
.Vigible = True
‘Create New Document
.Documents.Add
'‘Add text to the document
.ActiveDocument.Content.Text = “Hello there”
BEnd With
Bnd Sub

189

11 Working with Other Applications

The routine to close the document and application is:

Private Sub Command2_Click ()
‘Close the current document
wrdApp.ActiveDocument.Close
‘Close Word
wrdApp.Quit

End Sub

As before, Word prompts you to save the document if it is
necessary, before it will close down.

190

12

Some Loose Ends

Debugging Your Programs
zeougging g

As you develop more and more complicated code in your
programs you will inevitably make mistakes and produce error
messages. There are three types of errors you may encounter
as you develop your applications.

Compile Errors

These occur when your code is incorrectly constructed, such as
a Next statement without a corresponding For statement, or a
misspelled word, or a data type mismatch with your variables.
Compile errors include syntax errors, which are errors in
grammar or punctuation recognised by Visual Basic and are
flagged by the compiler as you attempt to enter the code.

Run-time Errors

These occur when you attempt to run your program. Common
examples include attempting to write to a file that doesn't exist,
or dividing by zero.

Logical Errors

Often the most difficult type of error to correct is when the
program doesn’t perform as you expect, and produces incorrect
results, because your programming logic is at fault.

The first of these error types are sorted out with the help of the
compiler when you enter your code into the editor. Run-time
and logic errors though, may need the help of Visual Basic's
debugging tools, which let you look at the state of the program
and all the variables, etc., in the middle of a run.

191

12

Some Loose Ends

Break Mode

So far we have encountered two of Visual Basic's operating
modes. Design, when you enter controls and code, and Run
when you start it running. There is a third one, Break mode,
which is used for most of the debugging processes. You can
easily see what mode you are currently in, as it is displayed on
the title bar in brackets, as shown in Fig. 12.1.

» Exampled - Miciosoft Visual Banic [bieak)

| Oprion Explicit

| Private Sub Form_Click() EXAMPLEAD
| ' Volume of 3 cylimders
Dim Radius As Double, Height As Double, I As Imeger

Fonr T = 1 Tn 3

Fig. 12.1 A Program in Break Mode, with a Debug Toolbar

. Any time a program is running you can change to Break

mode by clicking the Break icon on the Toolbar, shown
here. While in Break mode, the Immediate pane is opened and
you can edit and debug your code and usually continue
execution of the program.

The Debug Tools

The best way to get a rapid overview of the debugging
possibilities of Visual Basic is to spend ten minutes with the
Help system. To do this, use the Help, Index menu command
and search for ‘debugging, basic concepts’.

192

Some Loose Ends

12

Work your way through the presented screens which have
been very professionally put together and show several working
examples of debugging in practice.

The Debug Toolbar

Most of the debugging tools are best accessed from the Debug
toolbar. This is not open by default, but with the View,
Toolbars, Debug toggle command.

Toggle Breakpoint

Watch window
Immediate window
Locals window

Fig. 12.2 The Debug Toolbar Icons

The icons on the Debug Toolbar have the following purposes:

Debugging tool
Breakpoint

Step Into

Step Over

Step Out

Purpose

Defines a line in the Code window
where Visual Basic suspends
execution of the application.

Executes the next executable line of
code in the application and steps into
procedures.

Executes the next executable line of
code in the application without
stepping into procedures.

Executes the remainder of the current
procedure and breaks at the next line
in the calling procedure.

193

12

Some Loose Ends

Locals Window Displays the current value of local
variables.

Immediate Window Allows you to execute code or query
values while the application is in Break

mode.

Watch window Displays the values of selected
expressions.

Quick Watch Lists the current value of an
expression while the application is in
Break mode.

Call Stack While in Break mode, presents a

dialogue box that shows all
procedures that have been called but
not yet run to completion.

Breakpoints

You can set breakpoints in your code in Design mode to halt
your program execution at those points and check the values of
variables or see what actions will be taken next.

To set a breakpoint, place the insertion point anywhere in a
line of code where you want the program to stop and use the
Debug, Toggle Breakpoint command, the F9 function key, or
click the Toggle Breakpoint icon on the Debug toolbar. Visual
Basic adds the breakpoint and highlights the line.

Using the Immediate Window

To execute code in the Immediate, or Debug window as it used
to be called, while in Break mode you simply type a line of
code in the window and press <Enter> to execute the
statement.

In the Immediate window, you can do most of the things you
do in the Code window, but statements in the Immediate
window are not saved with the project.

194

Some Loose Ends

12

The Application Wizard

So far, all the examples in this book have been started either by
changing an existing project, or ‘starting from scratch’. There is
an alternative in Visual Basic 6.0, and that is to build the
framework of a new project semi-automatically using a wizard.
As you probably know, a wizard in Microsoft terminology, is just
an automated procedure.

To have a look at this feature, start Visual Basic but in the
New Project dialogue box (see Fig. 2.2 on page 12) select the
VB Application Wizard option, and click the Qpen button.

Fig. 12.3 The Application Wizard Opening Page

You move from page to page with the Next and Back buttons.
Press the Help buttcn if you don't understand anything on a
page. The help information provided is very good.

This wizard really makes it easy to generate different types of
very high quality programs which can contain a menu system,
toolbar and a status bar. The default forms toolbar is similar to
a Microsoft Office toolbar, and includes the New, Open, Save,
Print, Cut, Copy, Paste, Bold, ltallc, Underline, Align Left,
Align Right, and Centre buttons. Explorer-style applications
have a default toolbar with the Navigation Buttons, Cut, Copy,

195

12

Some Loose Ends

Paste, Delete, Properties, View Large lcon, View Small
lcon, View List, and View Details buttons. The status bar
includes information about the status of the application and the
date and time, as shown on our example form in Fig. 12.4.

Fig. 12.4 A Form Generated with the Default Settings

Your application can contain a variety of different form types,
many of which are way beyond our present scope. Once the
application has been created, you have to modify the forms and
controls to your exact needs. Many features will need code
adding to them to make them actually do anything useful. To
help here, the wizard adds “ToDo" notes in the comments
where you need to customise the code, as shown below.

Private Sub mnuViewOptions Click()
‘ToDo: Add ‘mnuViewOptions_Click' code.
EsgBox "Add ‘mnuViewOptions_Click' code.”
End Sub

Private Sub mnuViewRefresh Click()
‘ToDo: Add 'smuViewRefresh Click' code.
EsgBox "idd '‘msmuViewRefresh Click' code.”
End Sub

Fig. 12.5 Wizard Generated Code with “ToDo" Comments

196

Some Loose Ends

12

Compiling and Distributing

So far all the projects we have created have been run in the
Visual Basic environment to test how they perform. That's fine
during the development stage, but once your program is
complete, you don’t want to have to open Visual Basic every
time you want to run the program.

At this stage you can compile the program code and create a
.exe file from it. It then becomes an executable file which you
can double click to nrake it run. This is easily done, as long as
your project runs successfully. With the project open in Visual
Basic, action the Flie, Makeexe command. This will open
the Make Project box for you to select a file name and
destination. You can also click the Qptions button and add
information about the program that will be included with its
properties, as shown in Fig. 12.6.

VallCalc - Progect Piperhe

5 4 very simgle program that calodates 5] |
VAT rates for entered amounts. =

[o | cma | e |

Fig. 12.6 Setting a Project’s Properties

Your project will then be compiled and the executable file will
be placed with the other project files, unless you specified an
altemnative location.

197

12

Some Loose Ends

Packaging

Compiling a project is fine as far as it goes, but the .exe file
produced will only work on your PC, or on one that has all the
library files on it that were used to create the program in Visual
Basic.

To prepare a project so that it can be distributed on discs (or
on the Internet) and installed and run on other PCs, there are
two more stages to go through. In Microsoft speak, these are
packaging and deployment and are carried out by the Visual
Basic Package and Deployment Wizard.

You must first compile your project and create its .exe file.
Then close Visual Basic and select Package and Deployment
Wizard from the Visual Basic section of the Windows Start
menu system to start the wizard, as shown in Fig. 12.7.

Fig. 12.7 The Main Screen of the Package and Deployment Wizard

Click the Package button and work your way through the series
of screens that prompt you for information about your project
and let you choose options for the package. Each screen
explains what information is necessary before you can move
on. For more information on any screen, press F1 or click the
Help button.

198

Some Loose Ends

12

The wizard brings together all the files necessary for your
project to run, and then packages them into .cab compressed
files ready to place on the final distribution discs. Even for our
tiny VATCALC example there were six files needed, five of
which are shown below. The other was SETUP.EXE.

nd Deplopmert Wizard - Included File

Fig. 12.8 The Files Included in the VATCALC Example

When the packaging operation is complete you will be
presented with a report, maybe like ours shown next.

wh'dh-b\lzd:(s)fammkm The cabs are in
'C:\Program Files\Micrasoft Visual Studio|VBS8\Projects|vatCalc\Package’.
sre Is also & batch flle in the support directory (C:\Program
Flles\Microsoft Visua
Studiol VBS8|Project s|VatCalc\Package\Support \VATCALC .BAT) that wil

allow you to recreste the cab fles in case you make changes to some of
the fles.

Fig. 12.9 A Packaging Report

199

12

Some Loose Ends

Deployment

The next stage is to click the Deploy button on the main wizard
screen (see Fig. 12.7). This steps you through the procedure of
loading the project’s packaged files onto the disc or Internet
media you specify. It took two 1.44MB floppy discs to hold the
VATCALC package! | guess these days everything is geared to
CD-ROMs.

The results from this whole procedure are excellent though.
When the SETUP.EXE file produced is run, the package is very
professionally installed onto your PC. Now we know where the
dark blue installation screen came from.

The program is added to the Start menu system, as shown in
Fig. 12.10 below, and is also added to the menu in the
Add/Remove Programs ‘applet’ contained in the Control Panel.
We hope all these features work with your version of Visual
Basic, as they did with ours.

Fig. 12.10 Our Program Added to the Start Menu

hhkhkhhhhhhdrhhhdhddd

Well that's it folks. All that remains is a glossary and a range of
Appendices with (hopefully) useful reference information to help
with your Visual Basic programming. We have barely scratched
the surface, but you should now be able to develop into those
areas we could not mention.

200

13

Glossary of Terms

Access key

Action query
Active document

Active window

ActiveX

ActiveX control

Add-in

Address

A key pressed while holding down the
Alt key that allows the user to open a
menu, carry out a command, select an
object, or move to an object For
example, <Alt+F> opens the File menu.

A query that copies or changes data.

An ActiveX document or a document
that contains ActiveX controls, Java
Applets, or VBScript.

In an application, the window that
appears in the foreground with a
highlighted tite bar or border to
distinguish it from other visible windows.

Microsofts brand name for the
technologies that enable interoperability
using the Component Object Model
(COM).

An object that you place on a form to
enable or enhance a user's interaction
with an application. ActiveX controls
have events and can be incorporated
into other controls. These controls have
an .ocx file name extension.

A customised tool that adds capabilities
to the Visual Basic development
environment.

A unique number or name that identifies
a specific computer or user on a
network.

201

13

Glossary of Terms

Alias

ANSI Character Set

API

Application

Applet

Archie

Argument

Array

ASCI| character set

In Visual Basic, an alternate name you
give to an external procedure to avoid
conflict with a Visual Basic keyword,
global variable, constant, or a name not
allowed by the standard naming
conventions.

American National Standards Institute
(ANSI) 8-bit character set used to
represent up to 2£6 characters
(0 — 255) using your keytoard.

Application programming interface. The
set of commands that an application
uses to request and carry out
lower-level services performed by a
computer’s operating system.

Software (program) designed to carry
out certain activity, such as word
processing, or data manzgement.

A program that can be downloaded over
a network and launched on the user's
computer.

Archie is an Internet service that allows
you to locate files that can be
downloaded via FTP.

A constant, variable, or expression that
supplies additional information to an
action, procedure, or metiod.

A set of sequentially ind2xed elements
having the same intrinsic data type.
Each element of an array has a unique
identifying index number.

American Standard Code for
Information Interchange (ASCIl) 7-bit
character set widely used to represent
letters and symbols found on a standard
U.S. keyboard.

202

Glossary of Terms

13

ASP

Active Server Page. File format used for
dynamic Web pages that get their data
from a server based database.

Assignment statement A statement that assigns a value to a

Automation

AVI

Backbone
Backup

Bandwidth

Benchmark

Binary format

Bit

Bitmap

variable or property. A Set statement
assigns an object reference.

A technology that enables applications
to provide objects in a consistent way to
other applications, development tools,
and macro languages.

Audio Video Interleaved. A Windows
multimedia file format for sound and
moving pictures.

The main transmission lines of the
Internet, running at over 45Mbps.

To make a back-up copy of a file or a
disc for safekeeping.

The range of transmission frequencies
a network can use. The greater the
bandwidth the more information that
can be transferred over a network.

A type of test used to measure
hardware and software performance.

Machine-readable form. This format is
different from ASCIl or ANSI formats,
which encode data as text.

A binary digit; the smallest unit of data a
computer can store. Bits are expressed
as1or0.

An image represented by pixels and
stored as a collection of bits in which
each bit corresponds to one pixel. On
colour systems, more than one bit
corresponds to each pixel. A bitmap
usually has a .bmp file name extension.

203

13

Glossary of Terms

Bookmark

Boolean data type

Boolean expression

Bound control

Break mode

Breakpoint

Browser

Buffer
Bug

Cache

Cascade

For the Internet, a saved reference (in
the form of a URL or hyperlink) to a
particular location, page, or site, making
it easy to return there.

A data type with only two possible
values, True (—1) or False (0). Boolean
variables are stored as 16-bit (2-byte)
numbers.

An expression that evaluates to either
True or False.

A data-aware control that can provide
access to a specific column or columns
in a data source through a Data control.

Temporary suspension of program
execution in the development environ-
ment. In break mode, you can examine,
debug, reset, step through, or continue
program execution.

A selected program line at which
execution automatically stops.

Software that interprets HTML, formats
it into Web pages, and displays it to the
user. Modern browsers can also contain
ActiveX components and can play
sound or video files.

A temporary holding area in memory
where information can be stored.

An error in coding or logic that causes a
program to malfunction.

A special memory subsystem in which
frequently used data values are
duplicated for quick access.

The process of one action triggering
another action.

204

Glossary of Terms

13

Case-sensitive

CD-ROM

Char data type

CcaGl

Class

Class module

Click

Client computer

Code component

Code module

Code pane

Capable of distinguishing between
uppercase and lowercase letters.

Compact Disc - Read Only Memory; an
optical disc which information may be
read from but not written to.

A data type that stores a fixed-length
character string of length set by the Size

property.

Common Gateway Interface - a
convention for servers to communicate
with local applications and allow users
to provide information to scripts
attached to web pages, usualty through
forms.

The formal definition of an object. The
class acts as the template from which
an instance of an object is created at
run time.

A module containing the definition of a
class (its propety and method
definitions).

To press and release a mouse button
once without moving the mouse.

A computer that accesses shared
network resources provided by another
server computer.

An .exe or .dll file that provides objects
created from one of the classes the
component provides.

A module containing public code that
can be shared among all modules in a
project. (Called a standard module in
Visual Basic 6.0).

A pane contained in a code window that
is used for entering and editing code. A

|
|

13

Glossary of Terms

COM

Command line

Comment

Compaction

Comparison operator

Compile error

Compile time
Configuration

Constant

Context menu

code window can contain one or more
code panes.

Component Object Model. An industry-
standard architecture for object-oriented
development. It defines interfaces on
which ActiveX components are built.

The path, file name, and argument
information provided by the user to run
a program.

Text added to code that explains how
the code works. In Visual Basic, a
comment line can start with either an
apostrophe (') or with the Rem keyword
followed by a space.

A process that gathers or packs
memory or storage into as small a
space as possible.

A character, or symbol, indicating a
relationship between two or more
values or expressions.

An error that occurs during compile time
as the result of incorrectly constructed
code.

The period during which source code is
translated to executable code.

A general purpose term referring to the
way you have your computer set up.

A named item that retains a constant
value throughout the execution of a

program.
A floating menu that is displayed over a

-form by right-clicking the mouse. Also
called a pop-up menu.

206

Glossary of Terms

13

Control

Control array

Currency data type

Custom control
Data access page

Data source

Data type

Database

DBMS

Date data type

DDE

An object you can place on a form that
has its own set of recognised
properties, methods, and events.

A group of controls that share a
common name, type, and event
procedures.

A data type that is used for calculations
involving money or for fixed-point
calculations of high accuracy.

Now called an ActiveX control.

A Web page, created by Access, that
has a connection to a database; you
can view, add, edit, and manipulate the
data in this page.

The data the user wants to access and
its associated operating system, DBMS,
and network platform (if any).

The characteristics of a variable that
determine what kind of data the variable
can hold.

A set of data related to a particular topic
or purpose. A database contains tables
and can also contain queries and table
relationships, as well as validation
criteria.

(DataBase Management System). The
software used to organise, analyse, and
modify information stored in a database
such as Microsoft Access.

A data type used to store dates and
times as a real number.

(Dynamic Data Exchange). A form of
communications that uses shared
memory to exchange data between
applications.

207

13

Glossary of Terms

DDL

Decimal data type

Declaration

Default

Desktop

Design time

Dialogue box

DLL

Docked window

Document

Domain

(Data Definition Language). The
language used to describe, change, or
define the attributes of a database,
especially the layout of tables, columns,
and their storage strategy.

A data type that contains decimal
numbers scaled by a power of 10.

Non executable code that names a
constant, variable, or procedure, and
specifies its characteristics, such as its

data type.

The command, device or option
automatically chosen.

The Windows screen working
background, on which you place icons,
folders, etc.

The time during which you build or
develop an application.

A special window displayed by the
system, or application, to obtain a
response from or provide information to
the user.

(Dynamic-Link Library). A set of routines
that can be called from procedures and
are loaded and linked into your
application at run time.

A window that is attached to the frame
of the main window.

Any self-contained work created with an
application and given a unique file
name.

A group of devices, servers and
computers on a network.

208

Glossary of Terms

13

Double-click
Double data type

Drag-and-drop

Dynamic array

Dynaset

EISA

Embedded object

Error number

Error trapping

Event

Event procedure

To quickly press and release a mouse
button twice.

A data type that holds double-precision
floating-point numbers.

A combination of features that allow the
user to drag an object and drop it onto a
form or other object using the mouse.

An array whose size can change at run
time.

A type of Recordset object that retumns
a dynamic set of pointers to live
database data.

Extended Industry Standard
Architecture, for construction of PCs
with the Intel 32-bit micro-processor.

An object whose data is stored along
with that of its container but that runs in
the process space of its server.

A whole number in the range
0-65,535, that corresponds to the
Number property setting of the Err
object.

The process of intercepting an error
using error-handling features in Visual
Basic.

An action recognised by an object, such
as clicking the mouse or pressing a key,
and for which you can write code to
respond.

A procedure automatically invoked in
response to an event initiated by the
user, program code, or the system.

209

13

Glossary of Terms

Executable file

Expression

FAT

Field

File extension

Filename

Filter

Firewall

Flag

Focus

Form

A Windows-based application that can
run outside the development environ-
ment. An executable file has an .exe file
name extension.

Any combination of operators,
constants, literal values, functions, and
names of fields, controls, and properties
that evaluates to a single value.

The File Allocation Table. An area on
disc where information is kept on which
part of the disc a file is located.

A category of information stored in a
table in a database.

The suffix following the period in a
filename. Windows uses this to identify
the source application program. For
example .mdb indicates an Access file.

The name given to a file. In Windows 95
and above this can be up to 256
characters long.

A set of criteria applied to rows in order
to create a subset of the rows.

Security measures designed to protect
a networked system from unauthorised
access.

A variable used to keep track of a
condition in an application. You can set
a flag using a constant or combination
of constants.

The ability to receive mcuse clicks or
keyboard input at any one time.

A window or dialogue box and a
container for controls.

210

Glossary of Terms

13

FTP

Function key

Function procedure

GIF

Graphics method

HTML

HTTP

Hyperlink

Hypermedia

Hypertext

(File Transfer Protocol). A protccol for
the transfer of files from one location to
another over the intemet.

Any of the keys labelled F1 to F12. They
often provide shortcuts for frequently
carried out commands and actions.

A procedure that performs a specific
task within a Visual Basic program and
returns a value.

Graphics Interchange Format file. A
graphics compressed bitmap format file
developed for transmitting images over
the Internet.

A method that operates on an object
such as a Form, PictureBox, or Printer,
and performs run-time drawing
operations.

Hypertext Markup Language. The main
language in which Web documents are
written.

Hypertext Transfer Protocol. The
internet protocol that delivers inform-
ation over the Web.

A location on a page from which a user
can go to another page or location.
Includes visible text or a graphic and the
URL of the destination.

Hypertext extended to include linked
multimedia.

A system that allows documents to be
cross-linked so that the reader can
explore related links, or documents, by
clicking on a highlighted symbol.

211

13

Glossary of Terms

lcon

Index

Integer data type

Intemet

Intranet

Intrinsic constant

Intrinsic control
P

IP address

ISDN

ISP

Java

A graphical representation of an object
or concept, as a bitmap with a
maximum size of 32 x 32 pixels.

A number that identifies an element in
an array, control array, or collection.

A data type that holds integer variables
stored as 2-byte whole numbers in the
range — 32,768 to 32,767.

A worldwide network of thousands of
smaller computer networks and millions
of personal, commercial, educational,
and government, computers.

A network within an organisation that
uses Internet technologies.

A constant provided by an application.
Visual Basic constants are listed in the
Visual Basic object library and can be
viewed using the Object Browser.

A standard control located on the Visual
Basic Toolbox.

Intermet Protocol. The network layer for
the TCP/IP protocol suite.

A 32-bit network address that uniquely
identifies a system or device on an
intranet or the Internet.

(Integrated Services Digital Network). A
telecom standard using digital
transmission technology to support
voice, video and data communications
applications over regular telephone
lines.

Internet Service Provider - A company
that offers access to the Internet.

An object-oriented programming
language created by Sun Microsystems

212

Glossary of Terms

13

JPG

Keyword

Line-continuation

Linked object

Locked

Logic error

MDI

Megabyte
Megahertz

Message

for developing applications and applets
that are capable of running on any
computer, regardless of the operating
system.

Joint Photographic Experts Group
(JPEG) file. A graphics file format
supported by most browsers that was
developed for compressing and storing
photographic images.

A word, or symbol, recognised as part
of the Visual Basic programming
language.

The combination of a space followed by
an underscore (_) used in the code
editor to extend a single logical line of
code to two or more physical lines.

An object that is created in another
application and linked to a Visual Basic
application.

The condition of a data page, row,
Recordset object, or Database object,
that makes it read-only fo all users
except the one currently entering data.

A programming error that can cause
code to produce incorrect results or
stop execution.

Multiple-Document Interface application,
with an MDI form as the container for
any MDI child forms in the application.

(MB); 1024 kilobytes of information or
storage space.

(MHz); Speed of processor in millions of
cycles per second.

A packet of information passed from
one application to another.

213

13

Glossary of Terms

Method
MIDI

MIME

MIPS

Modem

Monitor
Module

MPEG

Multi-tasking
Network
Network server
Node

Numeric expression

A procedure that acts on an object.

(Musical Instrument Digital Interface) -
enables devices to transmit and receive
sound and music messages.

(Multipurpose Internet Mail Extensions).
A messaging standard that allows
Intemet users to exchange e-mail
messages enhanced with graphics,
video and voice.

(Million Instructions Per Second).
Measures the speed of a system.

Short for Modulator-demodulator
devices. An electronic device that lets
computers communicate electronically.

The display device connected to your
PC, also called a screen.

A set of declarations followed by
procedures.

(Motion Picture Experts Group). A video
file format offering excellent quality in a
relatively small file.

Performing more than one operation at
the same time.

Two or more computers connected
together to share resources.

Central computer which stores files for
several linked computers.

Any single computer connected to a
network.

Any expression that can be evaluated
as a number. Elements of the
expression can include any combination
of keywords, variables, constants, and
operators that result in a number.

214

Glossary of Terms

13

Object

Object Browser

Object library

Object module

OoDBC

OLE

Parse

Path

Pixel

Plug-and-play

A combination of code and data that
can be treated as a unit, for example, a
control, form, or application component.
Each object is defined by a class.

A dialogue box in which you can
examine the contents of an object
library to get information abcut the
objects provided in it.

A dynamic-link library (DLL) with one or
more type library resources that typically
has the extensicn .olb. You can use the
Object Browser to view its contents.

A module that contains code specific to
an object.

(Open Database Connectivity). A
standard protocol that permits
applications to connect to a variety of
external database servers or files.

(Object Linking and Embedding). A
special case of ActiveX that enables
applications to be created that contain
components from various other
applications.

To identify the parts of a statement or
expression and then validate those
parts against the appropriate language
rules.

The location of a file in the foider, or
directory, tree.

Short for ‘picture element’; a dot that
represents the smallest graphic unit of
measurement on a screen.

Hardware whict can be plugged into a
PC and that can be used immediately
without configuration.

215

13

Glossary of Terms

Point

POP

Pop-up menu

Print zone

Private

Procedure

Procedure template

Project

Project Explorer

Project file

Properties window

Property
Public

In typography, a point is 1/72 of an inch.
The size of a font is usually expressed
in points.

(Post Office Protocol). A method of
storing and returning e-mail.

See context menu.

Print zones begin every 14 columns.
The width of each column is an average
of the width of all characters in the point
size for the selected font.

Variables that are visible only to the
module in which they are declared.

A named sequence of statements
executed as a unit. For example,
Function, Property, and Sub are types
of procedures.

The beginning and ending statements
that are automatically inserted in the
Code window when you specify a Sub,
Function, or Property procedure.

A Visual Basic program, or set of
modules.

A window that displays a list of files
associated with a Visual Basic project or
project group.

A file with a .vbp extension that keeps
track of the files, objects, options, and
references associated with a project.

A window used to display or change
properties of a selected form or control
at design time.

A named attribute of an object.

Variables declared using the Public
statement are visible to all procedures

216

Glossary of Terms

13

Query

Read-only

Record

Recursion

Registry

Relational

Resource file

Restricted keyword
Run time

Run-time error

Scope

in all modules in all applications unless
Option Private Module is in effect.

An instruction to a database to either
retum a set of records or perform a
specified action on a set of records.

A type of access to data where
information can be retrieved but not
modified.

A set of related data about a person,
place, event, or some other item. Table
data is stored in records (rows) in a
database.

When a procedure calls itseff.

Uncontrolled recursion usually results in
an ‘Out of stack space’ error message.

In Windows 95 and higher, the
Windows registry serves as a central
configuration database for user,
application, and computer-specific
information.

A type of database that stores
information in tables.

A file in a Visual Basic project with an
res file name extension that can
contain bitmaps, text strings, or other
data.

A word that Visual Basic uses as part of
its language.

The time when an application is
running.

An error that occurs when code is
running. A run-time error results when a
statement attempts an invalid operation.

The attribute of a variable or procedure
that determines which sections of which

217

13

Glossary of Terms

Server

Shortcut key

Single data type

SDI

SLIP

Socket

Stack

Standard control

Startup object

Statement

modules recognise it. Scope can be
public, module, or procedure.

The system designed to share data with
client applications; servers and clients
are often connected over a network.

A function key or key comrbination, such
as F5 or <Ctr+A>, that executes a
command.

A data type that stores single-precision
floating-point variables as 32-bit (2-byte)
floating-point numbers.

(Single Document Interface). An
application that can support only one
document at a time.

(Serial Line Internet Protocol). A method
of Intemet connection that enables
computers to use phone lines and a
modem to connect to the Intermet
without having to connect to a host.

An endpoint for sending and receiving
data between computers.

A fixed amount of memory used by
Visual Basic to preserve local variables
and arguments during procedure calls.

An intrinsic control included in the Visual
Basic Toolbox.

The first form displayed in an
application, which is usually the first
form created in the development
environment.

A syntactically complete unit that
expresses one kind of action,
declaration, or definition, usually in a
single line of code.

218

Glossary of Terms

13

Static

String constant

String data type

String expression

String literal

SQL

Sub procedure

Syntax

Syntax error

System modal

A Visual Basic keyword you can use to
preserve the value of a local variable.

Any constant consisting of a sequence
of contiguous characters interpreted as
the characters themselves rather than
as a numeric value.

A data type consisting of a sequence of
contiguous characters that can include
letters, numbers, spaces, and punc-
tuation. The dollar sign ($) type-
declaration character represents a
String in Visual Basic.

Any expression that evaluates to a
sequence of contiguous characters.

Any expression consisting of a
sequence of contiguous characters
surrounded by quotation marks that is
literally interpreted as the characters
within the quotation marks.

(Structured Query Language). A
language used in querying, updating,
and managing relational databases.

A procedure that performs a specific
task within a program, but returns no
explicit value.

The prescribed order and punctuation
for putting programming language
elements into statements that are
meaningful to Visual Basic.

An error that occurs when you enter a
line of code that Visual Basic doesn't

recognise.
Describes a window, or dialogue box,

that requires the user to take some
action.

219

13

Glossary of Terms

Tab order

Table

TCP/IP

Text data type
Time data type

Time expression

Toggle

Twip

Type-declaration

URL

User-defined type

The order in which the focus moves
from one field to the next as the Tab or
<Shift+Tab> keys are pressed.

The basic unit of data storage in a
relational database. A table stores data
in records (rows) and fields (columns).

(Transmission Control Protocol/Internet
Protocol). The Intemet standard for
transferring data among networked
computers.

A field data type.

A data type that stores a time value.
The value is dependent on the clock
setting of the data source.

Any expression that can be interpreted
as atime.

To tum an action on and off with the
same switch.

A screen-independent unit used to
ensure that placement and proportion of
screen elements in your screen
application are the same on all display
systems. A twip is a unit of screen
measurement equal to 1/20 of a
printer’s point.

A character appended to a variable
name indicating the variable’s data type.

(Unifform Resource Locator). An
address to an object, document, or
page or other destination on the Internet
or an intranet.

Any data type defined using the Type
statement.

220

Glossary of Terms

13

VarBinary data type

Variable

Variant data type

Variant expression

VBScript

Virus

WAIS

Watch expression

WAV

Wildcard characters

A data type that stores variable-length
binary data. The maximum length is 255
bytes.

A named storage location that can
contain data that can be modified during
program execution. Each variable has a
name that uniquely identifies it within its
scope.

A special data type that can contain
numeric, string, or date data as well as
the special values Empty and Nuill.

Any expression that can evaluate to
numeric, string, or date data as well as
the special values Empty and Nuill.

(Visual Basic Script). Microsoft's
Internet scripting technology, based on
Visual Basic

A malicious program, downloaded from
a web site or disc, designed to wipe out
information on your computer.

(Wide Area Information Server). A
Net-wide system for looking up specific
information in Internet databases.

A user-defined expression that enables
you to observe the behaviour of a
variable or expression in the Watch
window of the Visual Basic Editor.

Waveform Audio (.wav) - a common
audio file format for DOS/Windows
computers.

The asterisk (*), question mark (?),
hash sign (#), exclamation mark (!),
hyphen (-), and brackets ([]) can all be
wildcard characters. They can be used
in queries and expressions to include all
records, file names, or other items that

221

13 Glossary of Terms

Windows API

WinSock

Wizard

Working directory

World Wide Web

Yes/No data type

begin with specific characters or match
a certain pattern.

The Windows Application Programming
Interface consists of the functions,
messages, data structures, data types,
and statements you can use in creating
applications that run under Microsoft
Windows.

Windows Sockets is a standard way for
Windows-based programs to work with
TCP/IP.

A tool that helps create an executable
file by asking questions and then
creating a file based on the answers.

A specified directory on a local
computer used to store files when they
are checked out of the version control
program’s database.

A system for navigating the Internet by
using hyperlinks. With a browser, such
as Internet Explorer, the Web appears
as a collection of documents, controls,
pictures, sounds, and digital movies.

A column data type that contains a
Boolean (True/False or yes/no) value.

222

Appendix A

The Code for VatCalc.vbp

All the code and property details for the two forms of the
example program VatCalc.vbp are included here. As you may |
have noticed, Visual Basic 6.0 .frm files are saved in text
format. All you need to do to look inside them is to open them in
Notepad, or another text editor. You could also create them in

this way as well. In the code below, some extra formatting has

been added to make it easier to follow.

NOTE - Where one line of code will not fit on the book page,
the Visual Basic continuation character * _' has been placed at
the end of the book line.

Begin VB.Form frmVatCalc

Appearance = 0 ‘Flat
BorderStyle = 1 ‘Fixed Single
Caption = “VAT Calculator”
ClientHeight = 3465
ClientLeft = 1860
ClientTop = 2085
ClientWidth = 4005
BeginProperty Font
Name = “MS Sans Serif*
Size = 8.25
Charset = (4]
Weight = 700
Underline = 0 ‘Falge
Italic = 0 ‘Falsge
Strikethrough = (4] ‘False
EndProperty
ForeColor = &H80000008&
LinkTopic = *Forml~
MaxButton = 0 ‘False
PaletteMode = 1 ‘UseZOrder

223

Appendix A - The Code for VatCalc.vbp

ScaleHeight = 3465
ScaleWidth = 4005

Begin VB.TextBox Text3

Appearance =
BackColor =
BorderStyle =
Height =
Left =
TabIndex =
TabStop =
Top =
wWidth =
End

Begin VB.TextBox Text2

Appearance =
BackColor =
BorderStyle =
Height =
Left =
TabIndex =
TabStop =
Top =
wWidth =
End

0 ‘'Flat
&HB000000F&
0 ‘None
285

2760

7

0 ‘False
1080

1215

0 ‘Flat
&HB000000F&
0 ‘None
285

2760

8

0 ‘False
720

1215

Begin VB.CommandButton Commandl

Appearance =
Caption =
Default =
Height =
Left =
TabIndex =
Top =
Width =
End

Begin VB.CommandButton

Appearance =
Caption =
Height =
Left =

0 ‘Flat
*&Calculate”
-1 ‘'True
375

1200

2

1560

1215

Command3
0 ‘Flat
*C&lear”
375
1200

224

The Code for VatCalc.vbp - Appendix A

TabIndex =

Top =

wWidth =
End

2760
1215

Begin VB.CommandButton Command2

Appearance =
Caption =
Height =
Left =
TabIndex =
Top =
Width =
End

Begin VB.TextBox Textl

Appearance =
BackColor =
ForeColor =
Height =
Left =
TabIndex =
Top =
wWidth =
End

Begin VB.Label Labell

Appearance =
Caption =
ForeColor =
Height =
Left =
TabIndex =
Top =
Width =
End

Begin VB.Label Labell

Appearance =
ForeColor =
Height =
Left =
TabIndex =

0 ‘Flat
“&Exit”
375

1200

4

2160
1215

0 ‘Flat
&HB8000000F&
&H00000000&
285

2160

0

240

1335

0 ‘Flat
*Enter amount”
&H80000008&
255

840

1

240

1215

0 ‘'Flat
&H80000008&
255

240

6

225

Appendix A - The Code for VatCalc.vbp

Top
widt
End

= 1080
h = 2415

Begin VB.Label Label2

Appearance = 0 ‘Flat
ForeColor = &H80000008&
Height = 255
Left = 240
TabIndex = 5
Top = 720
width = 2295

End

Begin VB.Menu mnuOptions

Capt
Begi

ion = “&Options”
n VB.Menu mnuVATRate

Caption = “&VAT Rate”

End
Begi

n VB.Menu mnuAbout

Caption = “&About”

End
Begi

n VB.Menu mnuExit

Caption = “B&xit”

End
End
End

Attribute
Attribute
Attribute
Attribute
Attribute

VB_Name = “frmvVatCalc”
VB_GlobalNameSpace = False
VB_Creatable = PFalse
VB_PredeclaredId = True
VB_Exposed = PFalse

Option Explicit
Dim Cost As Currency

Dim CostPl

us As Currency

Dim Costless As Currency
Dim VATRate As Double
Dim NVATRate As Double

Private Sub Commandl_Click ()
If NVATRate > 0 Then
VATRate = NVATRate

226

The Code for VatCalc.vbp - Appendix A

BElse: VATRate = 17.5

End If

Cost = Val(Textl.Text)

CostPlus = Cost * (1 + VATRate / 100)
Costless = Cost / (1 + VATRate / 100)

MsgPlus = “Amount plus * & VATRate & “% VAT = *
MsgLess = “Amount less " & VATRate & “% VAT = *
Label2.Caption = MsgPlus

Text2.Text = CostPlus

Label3.Caption = MsgLess

Text3.Text = Costless

Textl.Text = Format$(Cost, “currency”)
Text2.Text = Format$ (CostPlus, “currency”)
Text3.Text = Format$(Costless, “currency”)

End Sub

Private Sub Command2_Click()
End * Leave the VAT calculater
End Sub

Private Sub Command3_Click() ‘'Clear text areas
Textl.Text = *°
Text2.Text = *°
Text3.Text = **
Label2.Caption = **
Label3.Caption = *~
Textl.SetFocus
End Sub

Private Sub mnuAbout_Click()
frmAbout .Show 1
End Sub

Private Sub mnuExit_Click()
End ‘* Leave the VAT calculater
End Sub

Private Sub mnuVATRate_Click()

NVATRate = Val (InputBox$ ("Enter new VAT rate”))
VATRate = NVATRate

End Sub

Appendix A - The Code for VatCalc.vbp

BorderStyle
Caption
ClientHeight
ClientLeft
ClientTop
ClientWidth
ClipControls
LinkTopic
MaxButton
MinButton
ScaleHeight
ScaleMode
ScaleWidth

ShowInTaskbar

Begin VB.Form frmAbout

3 ‘Fixed Dialog
*About VatCalc”
3555

2340

1935

5730

0 ‘False
*Form2”

0 ‘*False

[o] ‘False
2453.724

0 ‘User
5380.766

0 ‘False

Begin VB.PictureBox picIcon

AutoSize

ClipControls

Height
Left
Picture

ScaleHeight
ScaleMode
ScaleWidth

TabIndex

Top

Width
End

-1 'True
0 ‘False
540
240

“ABOUT. frx” :0000
337.12

0 ‘User

337.12

1

240

540

Begin VB.CommandButton cmdOX

Cancel
Caption
Default
Height
Left
TabIndex
Top
Width
End

-1 ‘'True
“OK*

-1 ‘True
345

4245

0

2625

1260

228

The Code for VatCalc.vbp - Appendix A

Begin VB.CommandButton cmdSysInfo

Caption = “&System Info...”
Height = 345
Left = 4260
TabIndex = 2
Top = 3075
wWidth = 1245
End

Begin VB.Line Linel

BorderColor = &H00808080&
BorderStyle = 6 ‘'Inside Solid
Index = 1
X1 = 84.515
X2 = 5309.398
Y1 = 1687.583
Y2 = 1687.583
End

Begin VB.Label 1lblDescription

Caption = $"ABOUT. frx” :030A
ForeColor = &H00000000&
Height = 1170
Left = 1050
TabIndex = 3
Top = 1125
width = 3885
End

Begin VB.Label 1blTitle

ForeColor = &H00000000&
Height = 480
Left = 1050
TabIndex = [
Top = 240
wWidth = 3885

End

Begin VB.Line Linel

BorderColor = &HOOFFFFFF&
BorderWidth = 2

Index = 0

X1 = 98.6

Appendix A - The Code for VatCalc.vbp

X2 = 5309.398

Y1l = 1697.936

Y2 = 1697.936
End

Begin VB.Label 1blVersion

Height = 225

Left = 1050

TabIndex = 6

Top = 780

width = 3885
End

Begin VB.Label 1blDisclaimer

Caption = "No Copyright restrictions _
apply"
ForeColor = &H00000000&
Height = 825
Left = 255
TabIndex = 4
Top = 2625
Width = 3870
End

End

Attribute VB_Name = "frmAbout"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Option Explicit

‘' Reg Key Security Options...

Const READ_CONTROL = &H20000

Const KEY_QUERY_VALUE = &H1

Const KEY_SET VALUE = &H2

Const KEY CREATE_SUB_KEY = &H4

Const KEY_ENUMERATE_SUB_KEYS = &HS8

Const KEY_NOTIFY = &H10

Const KEY CREATE_LINK = &H20

Const KEY ALL_ACCESS = KEY_QUERY_VALUE + _
KEY_SET_VALUE + KEY CREATE_SUB_KEY + -
KEY_ENUMERATE_SUB_KEYS + _

KEY_NOTIFY + KEY_CREATE_LINK + READ_CONTROL

230

The Code for VatCalc.vbp - Appendix A

' Reg Key ROOT Types...

Const HKEY_LOCAL_MACHINE = &H80000002

Const ERROR_SUCCESS = 0

Const REG_SZ = 1 ‘Unicode nul terminated string
Const REG_DWORD = 4 '32-bit number

Const gREGKEYSYSINFOLOC = “SOFTWARE\Microsoft\Shared _
Tools Location”

Const gREGVALSYSINFOLOC = “MSINFO”

Const gREGKEYSYSINFO = “SOFTWARE\Microsoft\Shared _
Tools\MSINFO”

Const gREGVALSYSINFO = “PATH”

Private Declare Punction RegOpenKeyEx Lib “advapi32”
Alias "RegOpenKeyExA" (ByVal hKey As Long, _

ByVal 1lpSubKey As String, ByVal ulOptions As Long,
ByVal samDesired As Long, _

ByRef phkResult As Long) As Long

Private Declare Function RegQueryValueEx Lib _
"advapi32" Alias "RegQueryValueExA" (ByVal hKey As _
Long, ByVal lpValueName As String, ByVal lpReserved _
As Long, ByRef lpType As Long, _

ByVal lpData As String, ByRef lpcbData As Long) As Long
Private Declare Function RegCloseKey Lib "advapi32® _
(ByVal hKey As Long) As Long

Private 8ub cmdSysInfo_Click()
Call StartSyslInfo
End Sub

Private S8ub cmdOK_Click()
Unload Me
End 8Sub

Private 8ub Form_Load()
Me.Caption = "About " & App.Title
lblVersion.Caption = "Version " & App.Major & "." _
& App.Minor & "." & App.Revisiocn & " Nov. 2000"
1blTitle.Caption = App.Title

End Sub

Public Sub StartSysInfo()
On Error GoTo SysInfoErr

231

Appendix A - The Code for VatCalc.vbp

Dim rc As Long
Dim SysInfoPath As 8tring

' Try To Get System Info Program Path\Name From
' Registry...
If GetKeyValue (HKEY LOCAL_MACHINE, _
gREGKEYSYSINFO, gREGVALSYSINFO, SysInfoPath) Then
' Try To Get System Info Program Path Only From
' Registry...
ElseIf GetKeyValue (HKEY_LOCAL_MACHINE, _
gREGKEYSYSINFOLOC, gREGVALSYSINFOLOC,
SysInfoPath) Then
' Validate Existance Of Known 32 Bit File Version
If (Dir(SysInfoPath & “\MSINFO32.EXE") <> “7) _
Then
SysInfoPath = SysInfoPath & “\MSINF032.EXE"

' Error - File Can Not Be Found...
Blse
GoTo SysInfoErr

End If
' Error - Registry Entry Can Not Be Found...
Else

GoTo SysInfoErr
End If

Call shell(SysInfoPath, vbNormalFocus)

Exit Sub

SysInfoBrr:

MsgBox “System Information Is Unavailable At This _
Time”, vbOKOnly

End Sub

Public Function GetKeyValue(KeyRoot As Long, KeyName _
As String, SubKeyRef As String, ByRef KeyVal _
As String) As Boolean

Dim i As Long * Loop Counter
Dim rc As Long ' Return Code
Dim hKey As Long ' Handle To An Open Registry Key

Dim hDepth As Long
Dim KeyValType As Long' Data Type Of A Registry Key
Dim tmpVal As String

232

The Code for VatCalc.vbp - Appendix A

' Tempory Storage For A Registry Key Value
Dim KeyValSize As Long
' Size Of Registry Key Variable

rc = RegOpenKeyEx (KeyRoot, KeyName, 0, _
KEY_ALL_ACCESS, hKey) ' Open Registry Key

If (rc <> ERROR_SUCCESS) Then GoTo GetKeyError
' Handle Error...

tmpVal = String$(1024, 0)
' Allocate Variable Space
KeyValSize = 1024

' Mark Variable Size

rc = RegQueryValueEx (hKey, SubKeyRef, 0, _
KeyValType, tmpVal, KeyValSize)
' Get/Create Key Value

If (rc <> ERROR_SUCCESS) Then GoTo GetKeyError
' Handle Errors

If (Asc(Mid(tmpVal, KeyValSize, 1)) = 0) Then

' Win95 Adds Null Terminated String...
tmpVal = Left(tmpVal, KeyValSize - 1)

' Null Found, Extract From String

Else

' WinNT Does NOT Null Terminate String...
tmpVal = Left(tmpVal, KeyValSize)

* Null Not Found, Extract String Only

End If

233

Appendix A - The Code for VatCalc.vbp

Select Case KeyValType
' Search Data Types...
Case REG_SZ
' String Registry Key Data Type
KeyVal = tmpVal
* Copy String Value
Case REG_DWORD
* Double Word Registry Key Data Type
Por i = Len(tmpval) To 1 Step -1
' Convert Each Bit
KeyvVal = KeyVal + Hex(Asc(Mid(tmpVal, _
i, 1))) * Build Value Char. By Char.
Next
KeyVal = Format$ (*&h” + KeyVal)
' Convert Double Word To String
End Select

GetKeyValue = True

' Return Success

rc = RegCloseKey (hKey)
' Close Registry Key
Exit Punction

GetKeyBrror: ' Cleanup After An Error Has Occured...
Keyval = »~
' Set Return Val To Empty String
GetKeyValue = False
' Return Failure
rc = RegCloseKey (hKey)
' Close Registry Key
End Punction

234

Appendix B

Naming Conventions

This appendix presents a set of suggested coding conventions
for Visual Basic programs, representing programming guide-
lines that focus not on the logic of the program but on its
physical structure and appearance. They make the code easier
to read, understand, and to maintain.

The main reason for using a consistent set of coding
conventions is to standardise the structure and coding style of
an application so that both you and other users can easily read
and understand the code.

Good coding conventions result in precise, readable, and
unambiguous source code that is consistent with other
language conventions and is as intuitive as possible.

The names you give to forms and controls:

* Should begin with a letter.

* Should contain only letters, numbers, and the under-
score character ‘_'. Punctuation characters and spaces
are not allowed.

* Should be no longer than 40 characters.

Object Naming Conventions

Objects should be named with a consistent prefix that makes it
easy to identify the object's type. Recommended conventions,
(as included in Microsoft's MSDN Library), for the main objects
supported by Visual Basic are listed below. In this book we
have only used a small proportion of these object types.

235

Appendix B - Naming Conventions

Prefixes for Controls

Control Type

3D Panel

ADO Data

Animated button
Check box

Combo box

Command button
Common dialogue
Communications
Control (unknown type)
Data

Data-bound combo box
Data-bound grid
Data-bound list box
Data combo

Data grid

Data list

Data repeater

Date picker

Directory list box

Drive list box

File list box

Flat scroll bar

Form

Frame

Gauge

Graph

Grid

Hierarchical flexgrid
Horizontal scroll bar
Image

image combo
imageList

Label

Lightweight check box
Lightweight combo box
Lightweight cmd button

Prefix

pnl
ado
ani
chk
cbo
cmd
dig
com
ctr
dat
dbcbo
dbgrd
dblst
dbc
dgd
dbl

dtp
dir

fil
fsb
frm

gau
gra

grd
flex
hsb
img
imgcbo
ils

ibl
iwchk

iwemd

Example

pniGroup
adoBiblio
aniMailBox
chkReadOnly
cboEnglish
cmdExit
digFileOpen
comFax
ctrCurrent
datBiblio
dbcbol.anguage
dbgrdQueryResult
dbistJobType
dbcAuthor
dgdTitles
dbiPublisher
drplLocation
dtpPublished
dirSource
drvTarget
filSource
fsbMove
frmEntry
fraLanguage
gauStatus
graRevenue
grdPrices
flexOrders
hsbVolume
imglcon
imgcboProduct
ilsAllilcons
ibiHelpMessage
iwchkArchive
IwcboGerman
iwcmdRemove

236

Naming Conventions - Appendix B

Lightweight frame
Lightweight hor. scroll bar
Lightweight list box
Lightweight option button
Lightweight text box
Lightweight vert. scroll bar
Line

List box

ListView

MAPI message
MAPI session

MCI

Menu

Month view

MS Chart

MS Flex grid

MS Tab

OLE container
Option button
Picture box

Picture clip
ProgressBar
Remote Data
RichTextBox
Shape

Slider

Spin

StatusBar

Sysinfo

TabStrip

Text box

Timer

Toolbar

TreeView

UpDown

Vertical scroll bar

iwfra
iwhsb
iwist
wopt
wixt
iwvsb
lin

Ist
vw
mpm
mps

mnu

sid

IwfraSaveOptions
iwhsbVolume
IwistCostCenters
IwoptincomelLevel
IwoptStreet
iwvsbYear
linVertical
IstPolicyCodes
IvwHeadings
mpmSentMessage
mpsSession
mciVideo
mnuFileOpen
mvwPeriod
chSalesbyRegion
msgClients
mstFirst
oleWorksheet
optGender
picVGA
cipToolbar
prgLoadFile
rdTitles

rtfReport
shpCircle
sidScale
spnPages
staDateTime
sysMonitor
tabOptions
txtLastName
tmrAlarm
tibActions
treOrganization
updDirection
vsbRate

237

Appendix B - Naming Conventions

Prefixes for Data Access Objects

Database Object

Container
Database
DBEngine
Document
Field
Group
Index
Parameter
QueryDef
Recordset
Relation
TableDef
User
Workspace

Prefix

con
db
dbe
doc
fid
grp
ix
prm
qry
rec
rel
tbd
usr
wsp

Prefixes for Menus

Example

conReports
dbAccounts
dbeJet
docSalesReport
fldAddress
grpFinance
idxAge
prmJobCode
qrySalesByRegion
recForecast
relEmployeeDept
tbdCustomers
usrNew

wspMine

Applications frequently use many menu controls, making it
useful to have a unique set of naming conventions for these
controls. Menu control prefixes should be extended beyond the
initial ‘mnu’ label by adding an additional prefix for each level of
nesting, with the final menu caption at the end of the name
string. The following table lists some examples.

Menu Caption Sequence

File Open
File Send Email
File Send Fax

Format Character

Help Contents

Menu Handler Name

mnuFileOpen
mnuFileSendEmail
mnuFileSendFax
mnuFormatCharacter
mnuHelpContents

When this naming convention is used, all members of a
particular menu group are listed next to each other in Visual
Basic's Properties window, and the menu control names clearly
document the menu items to which they are attached.

238

Naming Conventions - Appendix B

Naming Constants and Variables

As well as objects, constants and variables also require well-
formed naming conventions. This section lists recommended
conventions for constants and variables supported by Visual
Basic.

Variables should always be defined with the smallest scope
possible. Global (Public) variables can create enormously
complex situations and make the logic of an application
extremely difficult to understand. Global variables also make
the re-use and maintenance of code much more difficuit.

Variables in Visual Basic can have the following scope:

Scope Declaration Visible in
Procedure-level ‘Private’ in procedure, The procedure in which
sub, or function it is declared
Module-level ‘Private’ in the declara- Every procedure in the
tions section of a form form or code module
or code module (.frm,
.bas)
Global ‘Public’ in the declara- Everywhere in the appli-

tions section of a code

cation

module (.bas)

in a Visual Basic application, global variables should be used
only when there is no other convenient way to share data
between forms. When global variables must be used, it is good
practice to declare them all in a single module, grouped by
function. The module should be given a meaningful name that
indicates its purpose, such as Public.bas.

It is good coding practice to write modular code whenever
possible. For example, if your application displays a dialogue
box, put all the controls and code required to perform the
dialogue's task in a single form. This helps to keep the
application’'s code organised into useful components and
minimises its run-time overhead.

239

Appendix B - Naming Conventions

As project size grows, so does the value of recognising variable
scope quickly. A one-letter scope prefix preceding the type
prefix provides this, without greatly increasing the size of
variable names.

Scope Prefix Example

Gilobal g gstrUserName
Module-level m mbinCalcinProgress
Local to procedure None dblVelocity

A variable has global scope if it is declared Public in a standard
module or a form module; and module-level scope if declared
Private in a standard module or form module.

The body of constant names should be mixed case with
capitals initiating each word. Although standard Visual Basic
constants do not include data type and scope information,
especially for large programs, the prefix can be extended to
indicate the scope of the variable, as follows.

Data type Prefix Example
Boolean bin binFound
Byte byt bytRasterData
Collection object col colWidgets
Currency cur curRevenue
Date (Time) dtm dtmStart
Double dbl dbiTolerance
Error err errOrderNum
Integer int intQuantity
Long Ing IngDistance
Object obj objCurrent
Single sng sngAverage
String str strFName
User-defined type udt udtEmployee
Variant vnt vntCheckSum

240

Appendix C

User-Defined Formatting

With the system time at just after 5.08pm on 7th November
2000, the following Visual Basic and user-defined formats
produced the output shown from our UK based PC:

Format Displays
Format(Now, “General Date”) 07/11/2000 05:08:20
Format(Date, “General Date") 07/11/2000
Format(Date, “Long Date") 07 November 2000
Format(Date, “Medium Date”) 07-Nov-00
Format(Date, “Short Date") 07/11/2000
Format(Time, “Long Time") 05:08:20
Format(Time, “Medium Time") 05:08 PM
Format(Time, “Short Time") 17.08

Format(Now, “dddddd”) 07 November 2000
Format(Now, “ttttt") 05:08:20
Format(Now, “d/m/yyyy”) 7/11/2000
Format(Now, “d-mmmm-yy") 7-November-00
Format(Now, “d-mmmm”) 7 November
Format(Now, “mmmm-yy”) November 00
Format(Now, “hh:mm AM/PM") 05:08 PM
Format(Now, “h:mm:ss a/p”) 5:08:20 p
Format(Now, “h:mm") 17.08

Format(Now, “h:mm:ss”) 17.08:20

Format(Now, “d/m /yy h:mm”)
Format(Date, “dddd, d mmm yyyy")

Tuesday, 7 Nov 2000

Format(Time, “h:m:s”) 17:8:20

Format(Time, “hh:mm:ss AMPM") 05:08:20 PM

Format(14) 14 (but as the string “14*)
Format(1233.4, “##,##0.007) 1,233.40

Format(368.9, “###0.00") 368.90

Format(0.5, “0.00%") 50.00%

Format(“Hl THERE", “<”) hi there

Format(“Thank you Fred®, “>)

THANK YOU FRED

Some date and time output formats depend on the country and
personal settings of your system.

241

Appendix C - User-Defined Formatting

The following tables identify the characters you can use to
create user-defined formats in your Visual Basic programs.
They are all used with the Format function, as in our previous

examples.

User-Defined Numeric Formats

Character

0
#

%

E- E+ e-e+

-+%()

Description

Digit placeholder. Display a digit or a zero
Digit placeholder. Display a digit or nothing.
Decimal placeholder

Percentage placeholder. The expression is
multiplied by 100. The percent character (%) is
inserted in the position where it appears in the
format string.

Thousand separator

Time separator. Separates hours, minutes, and
seconds when time values are formatted. This
is determined by your system settings.

Date separator. Separates the day, month, and
year when date values are formatted. This is
determined by your system settings.

Scientific format. If the format expression
contains at least one digit placeholder (0 or #) to
the right of E-, E+, e-, or e+, the number is
displayed in scientific format and E or e is
inserted between the number and its exponent.

Display a literal character. To display a
character other than one of those listed,
precede it with a backslash (\) or enclose it in
double quotation marks (").

Display the next character in the format string
To display a backslash, use two backslashes

).

242

User-Defined Formatting - Appendix C

"ABC"

Display the string inside the double quotation
marks (* "). To include a string in format from
within code, you must use Chr(34) to enclose
the text (34 is the character code for a
quotation mark (")).

User-Defined Date/Time Formats

Character Description

dd

ddd
dddd

ddddd

dddddd

Time separator.
Date separator.

Display the date as ddddd and display the time
as ftitt, in that order. Display only date
information if there is no fractional part to the
date serial number; display only time
information if there is no integer portion.

Display the day as a number without a leading
zero (1 - 31).

Display the day as a number with a leading
zero (G1 - 31).

Display the day as an abbreviation (Sun — Sat).

Display the day as a full name,
(Sunday - Saturday).

Display the date as a complete date (including
day, month, and year), formatted according to
your system’s short date format setting. The
default short date format is m/d/yy.

Display a date serial number as a complete
date (including day, month, and year) formatted
according to the long date setting recognized
by your system. The default long date format is
mmmm dd, yyyy.

243

Appendix C - User-Defined Formatting

w

mm

mmm

mmmm

Display the day of the week as a number (1 for
Sunday through 7 for Saturday).

Display the week of the year as a number
(1-54).

Display the month as a number without a
leading zero (1 — 12). If m immediately follows
h or hh, the minute rather than the month is
displayed.

Display the month as a number with a leading
zero (01 — 12). If m immediately follows h or hh,
the minute rather than the month is displayed.

Display the month as an abbreviation
(Jan - Dec).

Display the month as a full month name
(January — December).

Display the quarter of the year as a number
(1-4).

Display the day of the year as a number
(1-366).

Display the year as a 2-digit number (00 — 99).

Display the year as a 4-digit number
(100 - 9999).

Display the hour as a number without leading
zeros (0 —23).

Display the hour as a number with leading
zeros (00 — 23).

Display the minute as a number without leading
zeros (0 — 59).

Display the minute as a number with leading
zeros (00 — 59).

Display the second as a number without
leading zeros (0 — 59).

244

User-Defined Formatting - Appendix C

Ss

tettt

AM/PM

am/pm

AP

alp

AMPM

Display the second as a number with leading
zeros (00 — 59).

Display a time as a complete time (including
hour, minute, and second), formatted using the
time separator defined by the time format
recognized by your system. The default time
format is h:mm:ss.

Use the 12-hour clock and display an
uppercase AM with any hour before noon; and
an uppercase PM with any hour between noon
and 11:59 P.M.

Use the 12-hour clock and display a lowercase
AM with any hour before noon; and a
lowercase PM with any hour between noon and
11:59 P.M.

Use the 12-hour clock and display an
uppercase A with any hour before noon; display
an uppercase P with any hour between noon
and 11:59 P.M.

Use the 12-hour clock and display a lowercase
A with any hour before noon; display a
lowercase P with any hour between noon and
11:59 P.M.

Use the 12-hour clock and display the AM
string literal as defined by your system with any
hour before noon; and display the PM string
literal as defined by your system with any hour
between noon and 11:59 P.M.

245

Appendix C - User-Defined Formatting

User-Defined String Formats

Character Description

@

Character placeholder. Display a character or a
space. If the string has a character in the
position where the @ appears in the format
string, it is displayed.

Character placeholder. Display a character or
nothing.

Force lowercase. Display all characters in
lowercase format.

Force uppercase. Display all characters in
uppercase format.

Force left to right fill of placeholders. The
default is to fill placeholders from right to left.

246

Appendix D

Language Reference

Event Procedures

The following is an alphabetic list of the event triggered procedures
of Visual Basic you are most likely to use. An event is an action
which is recognised by a form or control. The event name is
substituted in the procedure declaration as follows:

Sub ControlName_EventName (arguments)

Event Description
Activate Occurs when an object becomes the active
window.

ButtonClick Cccurs when the user clicks on a Button object
in a Toolbar control.

Change Indicates that the contents of a control have
changed.

Click Occurs when the user clicks (presses and then
releases) a mouse button over an object.

DateClick Occurs when a date on the control is clicked.

DblClick Occurs when the user quickly double clicks a
mouse button over an object.

Deactivate Occurs when an object is no longer the active
window.

DonePainting Occurs immediately after the chart repaints or
redraws.

DownClick Occurs when the down or left arrow button are
clicked.

247

Appendix D - Language Reference

DragDrop

DragOver

DropDown

EnterCell

EnterFocus

Error

ExitFocus
GotFocus

KeyDown

KeyPress

KeyUp

LinkClose

LinkError

Occurs when a drag-and-drop operation is
completed by dragging a control over a
form or other control.

Occurs when a drag-and-drop operation is
in progress. Can be used to monitor when
the mouse pointer enters, leaves, or is
directly over a valid target.

Occurs when the list portion of a combo
box is about to drop down; this event does
not occur if a combo box’s Style property is
set to 1 (Simple Combo).

Occurs when the currently active cell
changes to a different cell.

Occurs when focus enters the object.

Occurs as the result of a data access error
that occurs when no Visual Basic code is
being executed.

Occurs when focus leaves the object.

Occurs when an object receives the focus,
either by tabbing to or clicking on the
object, or with the SetFocus method in
code.

Occurs when the user presses a key while
an object has the focus. Used with the
KeyPress event.

Occurs when the user presses and
releases an ANSI code key.

Occurs when the user releases a key while
an object has the focus. Used with the
KeyPress event.

Occurs when a DDE conversation
terminates.

Occurs when there is an error during a
DDE conversation.

248

Language Reference - Appendix D

LinkExecute Occurs when a command string is sent by a
destination application in a DDE conversation.

LinkNotify Occurs when the source has changed the data
defined by the DDE link, (destination LinkMode
property set to 3 - Notify).

LinkOpen Occurs when a DDE conversation is being
initiated.

Load Occurs when a form is loaded.

LostFocus Occurs when an object loses the focus, either
by tabbing to or clicking on the object, or in
code with the SetFocus method.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.

MouseUp Occurs when the user releases a mouse
button.
Paint Occurs when parl, or all, of a form or

picturebox is exposed after it has been moved
or enlarged, or after a window that was
covering the object has been moved.

PathChange Occurs when the path changes by setting the
FileName or Path properties from code.

PattemChange Occurs when the file filter (e.g. *.*) has
changed by setting the FileName or Pattem
properties from code.

QueryUnload Occurs before a form or application closes.

Reposition Occurs after a record becomes the current
record.

Resize Occurs when a form first appears or the size of
an object changes.

RowColChange Occurs when the currently active cell changes
to a different cell.

Scroll Occurs while a user drags the box on a scroll
bar.

249

Appendix D - Language Reference

SelChange
Timer
Unload
UpClick
Updated
User

Validate

Occurs when the selected range changes
to a different cell or range of cells.

Occurs when a preset interval for a timer
control has elapsed.

Occurs when a form is about to be
removed from the screen.

Occurs when the up or right arrow button is
clicked.

Occurs when an object's data has been
modified.

Occurs in response to the firing of a
run-time defined event.

Occurs before the focus shifts to a
(second) control that has its
CausesValidation property set to True.

250

Language Reference - Appendix D

Main Visual Basic Keywords

The following are listings of Visual Basic's main function, statement
and method key-words. Where a function is a standard procedure
that performs a specific task and returns a value; a statement is a
reserved word which forms part of a complete expression indicating
one kind of action, declaration, or definition; and a method is a
Visual Basic reserved word that acts on a particular object.

In the first section the keywords are grouped in an alphabetical
listing of the main tasks you are likely tc perform in Visual Basic. In
the second, they are just listed alphabetically with a short
description.

First find the available commands for the operation you are
carrying out, then for more detailed information, lcok in the
alphabetical details list at the end of this Appendix. Then we
suggest you search the reference section of the Visual Basic Help
facility. This includes working examples of them all.

Listed by Programming Task

Action Keyword's
Arrays
Change default lower limit Option Base
Declare and initiafise Dim, Private
Public, ReDim
Static
Find the limits Lbound, Ubound
Reinitialise Erase, ReDim
Verify and create IsArray, Array
Controlling Program Flow
Branch GoSub...Return
GoTo
On Error
On...GoSub
On...GoTo
Exit or pause the program DoEvents, End
Exit, Stop

251

Appendix D - Language Reference

Loop

Make decisions

Use procedures

Conversion

ANSI value to string
String to lower or upper case

Date to serial number
Decimal numbers to other bases
Number to string

One data type to another

Serial number to date
Serial number to time
String to ASCII value

String to number
Time to serial number

Cutting, Copying, and Pasting

Use the Clipboard object

Do...Loop
For...Next

For Each...Next
While..Wend, With
Choose, Switch
if...Then...Else
Select Case

Call, Function
Property Get
Property Let
Property Set, Sub

Chr, Chr$
Format, Lcase
Ucase

DateSerial
DateValue

Hex, Hex$

Oct, Oct$
Format, Format$
Str, Str$

CBool, CByte, CCur
CDate, CDbI, CDec
Cint, CLng, CSng
Cstr, CVar, CVerr
Fix, Int

Day, Month
Weekday, Year
Hour, Minute
Second

Asc

Val

TimeSerial,
TimeValue

Clear, GetData
GetFormat, GetText
SetData, SetText

Language Reference - Appendix D

Data Types

Convert between data types CBool, CByte, Ccur
CDate, CDbI, Cdec
Cint, CLng, Csng
CStr, Cvar, CVEmr
Fix, Int

Set intrinsic data types Boolean, Byte
Currency, Date
Double Integer
Long, Object
Single, String
Variant

Verify data types IsArray, IsDate
ISsEmpty, IsError
isMissing, IsNull
IsNumeric, IsObject

Dates and Times

Get current date or time Date, Date$, Now
Time, Time$

Perform date calculations DateAdd, DateDiff
DatePart

Return a date DateSerial
DateValue

Return a time TimeSerial
TimeValue

Set the date or time Date, Date$
Time, Time$

Time a process Timer

Error Trapping

Generate runtime errors Clear, Error, Raise

Get error messages Error

Get error-status data Err

Return error variant CVEmr

Trap errors while running On Error, Resume

Type verification IsError

253

Appendix D - Language Reference

File Input/Output
Access or create a file
Close files
Control output appearance

Copy one file to another
Get information about a file

Manage disc drives or directories

Manage files
Read from a file

Return file length
Set or get file attributes

Set read-write position in a file

Write to a file

Financial
Calculate depreciation
Calculate future value
Calculate interest rate

Calculate internal rate of return

Calculate number of periods
Calculate payments
Calculate present value

Graphics
Change coordinate system
Clear run-time graphics
Draw shapes
Draw text

Open

Close, Reset
Format, Print
Print #, Spc

Tab, Width #
FlleCopy

EOF, FileAttr
FlleDateTime
FileLen, FreeFile
GetAttr, Loc

LOF, Seek

ChDir, ChDrive
CurDir, CurDir$
MkDir, RmDir

Dir, Kill

Lock, Unlock, Name
Get, Input, Input #
Line Input #
FileLen

FilAttr, GetAttr
SetAttr

Seek

Print #, Put, Write #

DDB, SLN, SYD
FVv

Rate

IRR, MIRR

NPer

IPmt, Pmt, PPmt
NPV, PV

Scale

Cls

Circle, Line, PSet
Print

Language Reference - Appendix D

Find size of text
Load or save a picture file

Work with colours

Manipulating Objects

Arrange forms or controls
on the screen

Direct user input to a control
Display dialogue boxes
Drag and drop

Hide or show forms

Load or unload objects
Move or re-size controls
Print forms

Update the display

Work with list and combo boxes

Mathematical

General calculations
Generate random numbers
Get absolute value

Get the sign of an expression
Numeric conversions
Trigonometry

Operators

Arithmetic
Comparison

Logical operations

TextHeight
TextWidth
LoadPicture
SavePicture
Point, QBColor
RGB

Arrange, ZOrder
SetFocus
InputBox, MsgBox
Drag

Hide, Show
Load, Unload
Move

PrintForm
Refresh
Additem
Removeltem

Exp, Log, Sqr
Randomize, Rnd
Abs

Sgn

Fix, Int

Atn, Cos, Sin, Tan

.’ Il
Mod + &, =
=, <>, €, >, <=
>=, Like, Is
Not, And, Or

Xor, Eqv, Imp

-

255

Appendix D - Language Reference

Printing

Control output appearance

Control printer
Print

Procedures

Call a Sub procedure
Reference an external procedure
Define a procedure

Exit from a procedure

Strings

Compare two strings
Convert case

Scale, Spc, Tab
TextHelght

Text Width
EndDoc, NewPage
Print, PrintForm

Call

Declare
Function...End
Function, Sub...End
Sub

Exit Function

Exit Sub

StrComp
Format, Lcase
Ucase

Create strings of repeating characters Space String

Find the length of a string
Format strings

Justify a string
Manipulate strings

Set string comparison rules
Work with ASCIl and ANSI values

Miscellaneous

Automation

Colour

Process pending events

Provide a command line string
Run other programs

Send keystrokes to an application
Sound a beep

System

Len

Format

LSet, RSet

InStr, Left, Ltrim
Mid, Right, Rtrim
Trim

Option Compare
Asc, Chr

CreateObject
GetObject
QBColor, RGB
DoEvents
Command
AppActivate, Shell
SendKeys

Beep

Environ

256

Language Reference - Appendix D

Registry
Delete program settings
Read program settings
Save program settings

Variables and Constants
Declare variables or constants

Declare module as private

Get information about a variant

Refer to current object

Require explicit variable declarations
Set default data type

DeleteSetting
Get Setting
GetAllSettings
SaveSetting

Const, Dim, Private
Public, New, Static
Option Private
Module

IsArray, IsDate
IsEmpty, (sError
IsMissing, IsNull
IsNumeric, IsObject
TypeName, VarType
Me

Option Explicit

Deftype

257

Appendix D - Language Reference

Listed Alphabetically

Below is an alphabetic listing of Visual Basic’'s main function,
statement and method key-words, with a short description of
each. For more details of their use, look in the program Help.

Abs Function
Returns the absolute value of a number.

Additem Method
Adds a new item to a list or combo box, or adds a new row
to a grid control at run time.

AddNew Method
Clears the copy buffer in preparation for creating a new
record in a Table or Dynaset.

AppActivate Statement
Activates an application window.

Append Method
Adds a new object to a collection.

AppendChunk Method
Appends data from a String to a Memo or Long Binary field
in the copy buffer of a specified Table or Dynaset.

Arrange Method
Arranges the windows or icons within an MDI Form.

Array Function
Returns a Variant containing an array.

Asc Function
Returns a numeric value that is the ANSI code for the first
character in a string expression.

Atn Function
Returns the arctangent of a number.

Beep Statement
Sounds a tone through the computer’s speaker.

BeginTrans Statement
Begins a new transaction.

258

Language Reference - Appendix D

Call Statement
Transfers program control to a Visual Basic Sub procedure or a
dynamic-link library (DLL) procedure.

CCur Function
Explicitly converts expressions to the Currency data type.

CDbl Function
Explicitly converts expressions to the Double data type.

ChDir Statement
Changes the current default directory on a specified drive.

ChDrive Statement
Changes the current drive.

Choose Function
Selects and returns a value from a list of arguments.

Cint Function
Explicitly converts expressions to the Integer data type.

Chr, Chr$ Function
Returmns a one-character string whose ANSI code is the
argument.

Circle Method
Draws a circle, ellipse, or arc on an object.

Clear Method
Clears the contents of a list or combo box, or clears the
contents of the operating environment Clipboard.

Clone Method
Returns a duplicate record set object that refers to the same
record set from which it was created.

CLng Function
Explicitly converts expressions to the Long data type.

Close Method
Closes a specifiec Database, QueryDef, or record set.

Cls Method
Clears graphics and text generated at run time from a form or
picture.

259

Appendix D - Language Reference

Command, Command$ Function
Returns the argument portion of the command line used to
launch Microsoft Visual Basic.

CommitTrans Statement
Transcends the current transaction.

CompactDatabase Statement
Compacts and encrypts or decrypts a Microsoft Access
database.

Const Statement
Declares symbolic constants for use in place of values.

Cos Function
Returns the cosine of an angle (angle in radians).

CreateDatabase Function
Creates a Microsoft Access database, and retums a
Database object that is open for exclusive read/write
access.

CreateDynaset Method
Creates a Dynaset object from a specified Table object,
QueryDef object, or SQL statement.

CreateQueryDef Method
Creates a new QueryDef in a specified database.

CreateSnapshot Method
Creates a Snapshot object from a specified table, QueryDef,
or SQL statement.

CSng Function
Explicitly converts expressions to the Single data type.

CStr Function

Explicitly converts expressions to the String data type.
CurDir, CurDir$ Function

Returns the current path for the specified drive.

CVar Function
Explicitly converts expressions to the Variant data type.

CVDate Function
Converts an expression to a Variant of VarType 7 (Date).

260

Language Reference - Appendix D

Date, Date$ Functions
Returns the current system date.

Date, Date$ Statement
Sets the current system date.

DateAdd Function
Returns a Variant containing a date to which a specified time
interval has been added. -

DateDiff Function
Returns a Variant containing the number of time intervals
between two specified dates.

DatePart Function
Returns a specified part of a given date.

DateSerial Function
Returns the date serial for a specific year, month, and day.

DateValue Function
Returns the date represented by a String argument.

Day Method
Returns an integer between 1 and 31, inclusive, that represents
the day of the month for a date argument.

DDB Function
Returns the depreciation of an asset for a specific period using
the double-declining balance method.

Declare Statement
Declares references to external procedures in a dynamic-link
library (DLL).

Defint Statement

Sets the default data type as Integer.
DeflL.ng Statement

Sets the default data type as Long.

DefSng Statement
Sets the default data type as Single.

DefDbl Statement
Sets the default data type as Double.

261

Appendix D - Language Reference

DefStr Statement
Sets the default data type as String.

DefVar Statement
Sets the default data type as Variant.

Deilete Method
Deletes the current record in a specified Table or Dynaset.

DeleteQueryDef Method
Deletes a specified QueryDef from a database.

Dim Statement
Declares variables and allocates storage space.

Dir, Dir$ Function
Returns the name of a file or directory that matches a
specified pattern and file attribute.

Do...Loop Statement
Repeats a block of statements while a condition is true or
until a condition becomes true.

DoEvents Function, DoEvents Statement
Causes Visual Basic to yield execution so that Windows can
process events.

Drag Method
Begins, ends, or cancels dragging controls.

Edit Method
Opens the current record in a specified record set for editing
by copying it to the copy buffer.

End Statement
Ends a Visual Basic procedure or block.

EndDoc Method
Terminates a document sent to the Printer, releasing it to
the print device or spooler.

Environ, Environ$ Function
Retums the string associated with an operating system
environment variable.

262

Language Reference - Appendix D

EOF Function
Returns a value during file input that indicates whether the end
of a file has been reached.

Erase Statement
Reinitialises the elements of fixed arrays and deallocates
dynamic-array storage space.

Err, Erl Function
Returns error status.

Err Statement
Sets Err to a specific value.

Execute Method
Invokes an action query in a specified database.

ExecuteSQL Method
Executes an action query SQL statement in a specified
database.

Exit Statement
Exits a Do...Loop, a For...Next loop, a Function procecure, or a
Sub procedure.

Exp Function
Returns e (the base of natural logarithms) raised to a power.

FieldSize Method
Returns the number of bytes in a text or binary field.

FileAttr Function
Returns file mode or operating system file information about an
open file.

FileCopy Statement
Copies a file.

FileDateTime Function
Returns a String that indicates the date and time a specified file
was created or last modified.

FileLen Function
Retumns a Long integer that indicates the length of a file in bytes.

263

Appendix D - Language Reference

FindFirst Method
Locates the first record that satisfies specified criteria and
makes that record the current one.

FindLast Method
Locates the fast record that satisfies specified criteria and
makes that record the current one.

FindNext Method
Locates the next record that satisfies specified criteria and
makes that record the current one.

FindPrevious Method
Locates the previous record that satisfies specified criteria
and makes that record the current one.

Fix Function
Returns the integer portion of a number.

For...Next Statement
Repeats a group of instructions a specified number of times.

Format, Format$ Function
Formats a number, date, time, or string according to
instructions contained in a format expression.

FreeFile Function
Returns the next valid unused file number.

FreeLocks Statement
Suspends data processing, allowing a database to release
focks on record pages and make all data in the local
Dynaset objects current in a multi-user environment.

Function Statement
Declares the name, arguments, and code that form the body
of a Function procedure.

FV Function
Returns the future value of an annuity based on periodic,
constant payments and a constant interest rate.

Get Statement
Reads from a disc file into a variable.

264

Language Reference - Appendix D

GetAttr Function
Returns an integer that indicates a file, directory, or volume
label’s attributes.

GetChunk Method
Returns all or a portion of a Memo or Long Binary field in a
specified record set.

GetData Method
Retumns a picture from the Clipboard object.

GetFormat Method
Returns an integer indicating whether there is an item in the
Clipboard matching a specified format.

GetText Method
Retumns a text string from the Clipboard.

Global Statement
Used in the Declarations section of a module to declare global
variables and allocate storage space.

GoSub...Return Statement
Branch to, and return from, a subroutine within a procedure.

GoTo Statement
Branches to a specified line within a procedure.

Hex, Hex$ Function
Retumns a string that represents the hexadecimal value of a
decimal argument.

Hide Method
Hides a form, but does not unload it.

Hour Function
Retumns an integer between 0 and 23, inclusive, that represents
the hour of the day corresponding to the time provided as an
argument.

if...Then...Else Statement
Allows conditional execution, based on the evaluation of an
expression.

Itf Function
Returns one of two parts depending on the evaluation of an
expression.

265

Appendix D - Language Reference

Input, Input$ Function
Reads characters from a sequential file.

Input # Statement
Reads data from a sequential file and assigns it to variables.

inputBox, InputBox$ Function
Displays a prompt in a dialogue box and returns input from
the user.

InStr Function
Retumns the position of the first occurrence of one string
within another string.

Int Function
Returns the integer portion of a number.

IPmt Function
Returns the interest payment for a given period of an
annuity based on periodic, constant payments and a
constant interest rate.

IRR Function
Returns the internal rate of return for a series of periodic
cash flows.

IsDate Function
Retumns a value indicating whether or not a Variant
argument can be converted to a date.

IsEmpty Function
Retumns a value indicating whether or nct a Variant variable
has been initialised.

IsNull Function
Returmns a value that indicates whether or not a Variant
contains the special Null value.

IsNumeric Function
Returns a value indicating whether or not a Variant variable
can be converted to a numeric data type.

Kill Statement
Deletes file(s) from a disc.

266

Language Reference - Appendix D

LBound Function
Returns the smallest available subscript for the indicated
dimension of an array.

LCase, LCase$ Function
Returns a string in which all letters of an argument have been
converted to lowercase.

Left, Left$ Function
Returns the leftmost n characters of a string argument.

Len Function
Returns the number of characters in a string expression or the
number of bytes required to store a varable.

Let Statement
Assigns the value of an expression to a variable.

Line Input # Statement
Reads a line from a sequential file into a String or Variant
variable.

Line Method
Draws lines and rectangles on an object.

LinkExecute Method
Sends a command string to the other application in a dynamic
data exchange (DDE) conversation.

LinkPoke Method
Transfers the contents of a control to the source application in a
dynamic data exchange (DDE) conversation.

LinkRequest Method
Asks the source in a dynamic data exchange (DDE)
conversation to update the contents of a control.

LinkSend Method
Transfers the contents of a picture control to the destination
application in a dynamic data exchange (DDE) conversation.

ListFields Method
Creates a Snapshot with one record for each field in a specified
record set.

267

Appendix D - Language Reference

Listindexes Method
Creates a Snapshot with one record for each field in each
index in a specified table.

ListParameters Method
Creates a Snapshot with one record for each parameter in a
specified QueryDef object.

ListTables Method
Creates a Snapshot with one record for each Table or
QueryDef in a specified database.

Load Statement
Loads a form or control into memory.

LoadPicture Function
Loads a picture into a form, picture box, or image control.

Loc Function
Returns the current position within an open file.

Lock, Unlock Statement
Controls access by other processes to an opened file.

LOF Function
Returns the size of an open file in bytes.

Log Function
Retumns the natural logarithm of a number.

LSet Statement
Left aligns a string within the space of a string variable, or
copies a variable of one user-defined type to another
variable of a different user-defined type.

LTrim, LTrim$ Function
Retumns a copy of a string with leading spaces removed.

Mid, Mid$ Function
Retumns a string that is part of some other string.

Mid, Mid$ Statement
Replaces part of a string with another string.

268

Language Reference - Appendix D

Minute Function
Returns an integer between 0 and 59, inclusive, that represents
the minute of the hour corresponding to the time provided as an
argument.

MIRR Function
Retumns the modified intemal rate of return for a series of
periodic cash flows.

MkDir Statement
Creates a new directory.

Month Function
Returns an integer between 1 and 12, inclusive, that represents
the month of the year for a date argument.

Move Method
Moves a form or control.

MoveFirst, MovelLast, MoveNext, MovePrevious Method
Moves to the first, last, next, or previous record in a specified
record set and makes that record current.

MsgBox Function
Displays a message in a dialogue box, waits for the user to
choose a button and retums a value indicating which button was
pressed.

MsgBox Statement
Displays a message in a dialogue box and waits for the user to
choose a button.

Name Statement
Changes the name of a disc file or directory.

NewPage Method
Ends the current page and advances to the next.

Now Function
Retums a date that represents the current date and time
according to the computer’s system clock.

NPer Function
Returns the number of periods for an annuity based on periodic,
constant payments and a constant interest rate.

269

Appendix D - Language Reference

NPV Function
Retumns the net present value of an investment based on a
series of periodic cash flows and a discount rate.

Oct, Oct$ Function
Returns text that represents the octal value of the decimal
argument.

On Error Statement
Enables an error-handling routine and specifies the location
of the routine within a procedure.

On...GoSub, On...GoTo Statement
Branches to one of several specified lines, depending on the
value of an expression.

Open Statement
Enables input/output (I/0) to a file.

OpenDatabase Function
Opens an existing database and returns a Database object.

OpenQueryDef Method
Opens a specified QueryDef for editing.

OpenTable Method
Opens an existing table and retumns a Table object.

Option Base Statement
Declares the default lower bound for array subscripts.

Option Compare Statement
Declares the default comparison mode to use when string
data is compared.

Option Explicit Statement
Forces explicit declaration of all variables.

Partition Function
Returns a string indicating where a number occurs within a
calculated series of ranges.

Pmt Function
Returns the payment for an annuity based on periodic,
constant payments and a constant interest rate.

270

-

Language Reference - Appendix D

Point Method
Retumns the RGB colour of the specified point on a form or
picture box.

PopupMenu Method
Displays a pop-up menu on a form at the current mouse
location, or at specified coordinates.

PPmt Function
Returns the principal payment for a given period of an annuity
based on periodic, constant payments and a constant interest
rate.

Print # Statement
Writes data to a sequential file.

Print Method
Prints a text string on an object using the current colour and
font.

PrintForm Method
Sends a bit-for-bit image of a non-MDI form to the printer.

PSet Method
Sets a point on an object to a specified colour.

Put Statement
Writes from a variable to a disc file.

PV Function
Returns the present value of an annuity based on periodic,
constant payments to be paid in the future and a constant
interest rate.

QBColor Function
Retumns the RGB colour code corresponding to a colour
number.

Randomize Statement
Initialises the random-number generator.

Rate Function
Returns the interest rate per period for an annuity.

271

Appendix D - Language Reference

ReDim Statement
Used at the procedure level to declare dynamic-array
variables and allocate or reallocate storage space.

Refresh Method
Forces an immediate update of a form, control, or object.

RegisterDatabase Statement
Makes connect information for an ODBC data source name
available for use by the OpenDatabase function.

Rem Statement
Used to include explanatory remarks in a program.

Removeltem Method
Removes an item from a list or combo box, or removes a
row from a grid control, at run time.

RepairDatabase Statement
Attempts to repair a corrupted Microsoft Access database.

Reset Statement
Closes all disc files.

Resume Statement
Resumes program execution after an error-handling routine
is finished.

RGB Function
Returns a long integer representing an RGB colour value.

Right, Right$ Function
Returns the rightmost n characters of a string argument.

RmDir Statement
Removes an existing directory.

Rnd Function
Returns a random number, between 0 and 1.

Rollback Method
Ends the current transaction and restores the database to
the state it was in when the transaction began.

RSet Statement
Right aligns a string within the space of a string variable.

272

Language Reference - Appendix D

RTrim, RTrim$ Function
Retumns a copy of a string with trailing (rightmost) spaces
removed.

SavePicture Statement
Saves a picture from a form, picture box, or image control into a
file.

Scale Method
Defines the co-ordinate system for an object.

Second Function
Returns an integer between 0 and 59, inclusive, that represents
the second of the minute for a time argument.

Seek Function
Returns the current file position.

Seek Statement
Sets the position in a file for the next read or write operation.

Select Case Statement
Executes one of several statement blocks depending on the
value of an expression.

SendKeys Statement
Sends one or more keystrokes to the active window as if they
had been entered at the keyboard.

Set Statement
Assigns an object reference to a variable.

SetAttr Statement
Sets attribute information for a file.

SetData Method
Puts a picture in the Clipboard using the specified format.

SetDataAccessOption Statement
Sets a global option for data access usage.

SetDefauiltWorkspace Statement
Establishes the wuser ID and password for protected
(security-enabled) Microsoft Access databases.

SetFocus Method
Sets the focus to a form or control.

273

Appendix D - Language Reference

SetText Method
Puts a text string in the Clipboard using the specified
Clipboard format.

Sgn Function
Retuns an integer indicating the sign of a number.

Shell Function
Runs an executable program.

Show Method
Displays a form.

Sin Function
Returns the sine of an angle (angle in radians).

SLN Function
Retumns the straight-line depreciation of an asset for a single
period.

Space, Space$ Function
Returns a string consisting of a specified number of spaces.

Spc Function
Skips a specified number of spaces in a Print # statement or
Print method.

Sqr Function
Retuns the square root of a number.

Static Statement
Used at the procedure level to declare variables and
allocate storage space. Variables declared with the Static
statement retain their value as long as the program is
running.

Stop Statement
Suspends execution of the running Visual Basic code.

Str, Str$ Function
Retums a string representation of the value of a numeric
expression.

StrComp Function
Retuns a Variant indicating the result of the comparison of
two string arguments.

274

Language Reference - Appendix D

String, String$ Function
Returns a string whose characters all have a given ANSI code
or are all the first character of a string expression.

Sub Statement
Declares the name, arguments, and code that form the body of
a Sub procedure.

Switch Function
Evaluates a list of expressions and returns a vatue or an
expression associated with the first expression in the list that is
True.

SYD Function
Returns the sum-of-years' digits depreciation of an asset for a
specified period.

Tab Function
Used with the Print # statement and the Print method to
advance the print position.

Tan Function
Returns the tangent of an angle (angle in radians).

TextHeight Method
Returns the height of a text string as it would be printed in the
current font of an object.

TextWidth Method
Returns the width of a text string as it would be printed in the
current font of an object.

Time, Time$ Function
Returns the current system time.

Time, Time$ Statement
Sets the system time.

Timer Function
Returns the number of seconds that have elapsed since 12:00
a.m. (midnight).

TimeSerial Function
Returns the time serial for a specific hour, minute, and second.

275

Appendix D - Language Reference

TimeValue Function
Returns the time represented by a String argument.

Trim, Trim$ Function
Returns a copy of a string with both leading and trailing
spaces removed.

Type Statement
Defines a user-defined data type containing one or more
elements.

UBound Function
Returns the largest available subscript for the indicated
dimension of an array.

UCase, UCase$ Function
Returns a string with all letters of an argument converted to
uppercase.

Unload Statement
Unloads a form or control from memory.

Update Method
Saves the contents of the copy buffer to a specified Table or
Dynaset.

UpdateControls Method
Gets the current record from a data control's record set and
displays the appropriate data in controls bound to a data
control.

UpdateRecord Method
Saves the current values of bound controls.

Val Function
Retums the numeric value of a string of characters.

VarType Function
Retums a value that indicates how a Variant is stored
internally by Visual Basic.

Weekday Function
Retumns an integer between 1 (Sunday) and 7 (Saturday)
that represents the day of the week for a date argument.

276

Language Reference - Appendix D

While...Wend Statement
Executes a series of statements in a loop as long as a given
condition is true.

Width # Statement
Assigns an output-line width to a file.

Write# Statement
Writes data to a seguential file.

Year Function |
Retumns an integer between 100 and 9999, inclusive, that
represents the year of a date argument.

ZOrder Method
Places a specified form or control at the front or back of the
z-order within its graphical level.

277

Appendix D - Language Reference

278

Index

Abs function 153, 155
ActiveX controls ... 16, 151
Additem statement ... 139
Adding
module 79
projects 65
And statement 96
ANSI
codes 107
conversion 116
Apostrophe () 54
Application 38
Wizard 195
Arithmetic
functions 153
operators 62
priofity 62
Amrays 119
Control 127
dimensioning 122
dynamic 123
Erase statement 123
static 123
sting 119
Asc function 116
ASCII
conversion 116

Assignment Statement .. 64

Atn function 153, 154
Auto
List Members 51,83
QuickInfo 51
syntax checking 49
AutoSize property 42
BASfiles 37

Binary

files 178

Option 110
Binding controls 184
Bitmap file format 140
Boolean variable 56
Border styles 40
Boxes

Check 17

Combo 17

Listccovvn.t. 17
Break

mode 192

points 193
Byte variable 56
Caption property 33
Character conversion .. 116
ChDir statement 177
ChDrive statement 177
Check boxes 17,133
Chr function 60, 116
Circlemethod 143
Clear Screen 73
Close # method 168
Clsmethod 73
Code

Editor 22, 45, 50

enter 33
Colour property 41
Combobox 17,136
Command button ..17, 132
Comments 54
Common Dialogue 169
Compiling 197
Components box 169

279

Index

Concatenation 117
Constants 55
Control Arrays 127
Control of Program Flow 85
Controls 16, 39, 129
naming 48
.vbp sample project . 130
Converting data types . 106
Co-ordinates 33,73
Cos function . 153,154
CR control character .. 166
Currency
datatype 56
format 75
Current X/Y properties .. 72
Cursor file format 141
Customising
Toolbar 25
Visual Basic 23
Data
control 18, 183
files 165
sorting 100
type conversion 106
types 55
Date variable type 56
Debug
program 191
Decimal variable 56
Declare variables 58
Defined functions 160
Define records by Type 173
Deployment 200
Derived Functions 159
Designmode 13, 31
Desktop shortcut 9
Digital clock 139
Dim Statement 58
Dimensioning arrays ... 122
Dirlistbox 18, 179

DLLfiles 1
Dockable windows 23
Doloops 90
Double precision 56
Drawinglines 144
Drive listbox 18, 179
Drop-down

button 21

Combo 137
Dynamic arrays 123
Editcode 22
Editions 2
Editor (code) 50
Elself statement 98
Enterkey 51
Enteringcode 33,49
Error trapping 172
Event driven procedure . 45
Example

files 131

programs 10
Excel 187
Executable Fite 197
Exit

block structures 106

loops 89
Exit For command 89
Exp function 153,156
Expressions 55
Fikey 30
F2key 161
FS5key 34
Favorites (Help) 30
File

fiters 181

Listbox 18, 179

types 165
Fix function 153, 156
Fixed format 75

280

Floating point numbers . 56

Focus, setting 70
Folder structure 8
For...Nextloop 85
Formatting functions 75
Form
Designer 15
Layout Window 21
Forms 36
Frame 17
FreeFile function 171
Freehand drawing 144
Functions 153
derived 159
formatting 75
mathematical 1563
standard 75
sting 11
user-defined 160
GIF file format 141
Gosub...Return 164
Graphic Formats 140
Graphics Methods 143
Grd 15
Help system 5,27
Housekeeping 8
lcon
fileformat 141
property 41
If statement 95
if Then Else Statement . 97
Image control 18
Immediate window 194
InputBox function 60
Input function 168
Install Visual Basic 3
Instr function 112
Interface 36

Int function 153, 156
Integer variables 56
Intrinsic controls 16
IsNumeric function 105
JPEG file format 141
Keyboard shortcuts 52
Kill statement 178
Label 17

properties 42
Language reference ... 247
Lcase$ function 112
Leftfunction 111
Len function 112
Line

continuation character 93

control 18

method 143
Listbox 17,136
LoadPicture function .. 142
LOF function 168
Log function 153, 156
Longintegers 56
Loop configurations 85
MainMenu 13
MSDNHelp 5, 27
Menu

bar 13

design window 148
Message boxes 78
Metafile file format 141
Mid function 111
Mod operator 62
Modes

Break 192

Design 31

Run 31
Modules 37

281

Index

MsgBox
buttons 83
returned values 84
syntax 82

Naming convention .. 47, 55

Nestedloops 88
New Projectbox 12
Object

box 22

Browser 161

orientated 1
OCXfiles 16, 151
OLEcontrol 18
On/Off format 75
Open

ForinputAs 168

For OututAs 168

For Random As 174
Opening project 49
Operators

arithmetic 62

logical 96

relational 96
Option

Base statement . 120

Compare statement . 110

Explicit statement ... 26
Option buttons 17,135

Options dialogue box 26, 49

Output controls 67
Overview, program 1
Packaging 198
Parameters 163
Percentformat 75
Picture box control . 17, 141
Point method 143
Pointer 18
Print 61

statement 168
method 61,70
Spc function 72
Tab function 72
Priority, arithmetic 62
Procedurebox 22
Programmer's Guide 28
Project
elements 36
Explorer 18
Properties 20, 40
change 21
Checkbox 43
Command button . 43
Form 40
Label 42
list 20
Option button 43
setting 40
Textbox 42
window 20
QuickBasic 1
Quickinfo 59
Random access files 173
numbers 157
Randomize statement . 157
Record defn by Type .. 173
ReDim statement 123
Relational operators 96
Remarks 54

Removeltem statement 139

Removing projects 65
Return statement 164
Right function 111
Rnd function . 153, 157
Rounding numbers 157

282

Run

mode 31

program 34

timeerrors 191
Sample projects 10
Save

commands 168

form 35

project 35, 65
Scientific format 75
Scrolibars 17
Searching forhelp 29
Select Case statement 102
Sequential data files ... 165
Service Pack 7
Setting

focus 70

properties 21
Sgn function 153,157
Shape control 18
Shortcutkeys 44,52
Sin function 1563
Single precision numbers 56
Sortingdata 100
Space$ function 112
Spcfunction 72
Splitbar 22
Sqr function 153, 154
Standard

EXEc.... 12

format 75

Toolbox 16
Start Visual Basic 9, 11
Startup object 81
Staticarrays 122
Step modifier 87
Stop program 35
Str$ function 116

String
concatenation 117
functions 111
variables 57, 107
Sub procedures 162
Subroutines 164
Subscripted variables .. 121

System requirements 3

Tab
function 72
index property 44
keycoiiiinnn. 51
order 44
Tan function 153, 154
Text
Box 17, 67
Option 110
Timer control 18,139
Titlebar 13
Toolbar 13,25
Toolbox 16
Trapping errors 172
True/False format 75
Twipshen 33
Type statement 57
Ucase$ function 112
Unload statement 133
User-defined
formats 77, 241
functions 160
Val function ... 60, 69, 117
Variables 54
boolean 56
byte 56
currency 56
date 56
double 56
floating-point 56

283

Index
integer 55
long 56
object 56
single 55
string 56
subscripted 121
type declaration 57
varant 55
Variant variable 55
VBA 186
Visual Basic
controls 17,39
editions 2
fletypes 19
folder structure 8
install 3
Service Pack 7
shortcut 9
starting 11
window layout 13
Visual Studio 2
While..Wend loop 94
Windows Taskbar 1
Word 187
Working environment ... 24
Writingcode 45
Yes/Noformat 75

284

Companion Discs

COMPANION DISCS are available for many of the computer books
written by the same author(s) and published by BERNARD BABANI
(publishing) LTD, as listed at the front of this book (except for those
marked with an asterisk). These books contain many pages of
file/program listings. There is no reason why you should spend
hours typing them into your computer, unless you wish to dc so, or
need the practice.

ORDERING INSTRUCTIONS

To obtain companion discs, fill in the order form below, or a copy of
it, enclose a cheque (payable to P.R.M. Oliver) or a postal order,
and send it to the adcress given below. Make sure you fill in your
name and address and specify the book number and title in your
order.

Book Book Unit Total
No. Name Price Price
BP 498 | Using Visual Basic £3.50
BP.... £3.50
BP........ £3.50
Name .occoveoevrereseeiine. Sub-total
Address ..o, P&pP

(@ 45p/disc) | £............

Total Due

Send to: P.R.M. Qliver, CSM, Pool, Redruth, Cornwalil, TR SE

PLEASE NOTE
The i(s) are fully resp for providing this Companian Disc service. The publishers of this
book accept no responsibility for the supply, quality, or magnetic contents of the disc, or in respect of
any damage. of injury that might be suffered or caused by its use.

285

Notes

286

&

Babani Computer Books

Using Visual Basic

Learn to use Visual Basic to projuce professionzl looking programs
in the shortest possible time.

Written using Visual Basic 6.0, but can also be used with any other
Windows version, including Vis.al Basic for Applicafions. No prior
pregramming knowledge is assumed, only a wo-king knowledge of
the Windows environment itself.

The book contains details of: -

e -How to install and set-up Visual Basic.

e The graphic environment it uses.

s A primer on the Basic language used by the package, with many
axamples for you to try.

e -ow to handle files and graphic images.

s How to create, compile and package you- own application
Jrograms.

A jlossary and detailed appendices are included, giving a useful
reference to the naming conventions, user-defined tormats, event
procedures, and the main keywords used in the language. These
alone will be essential reference whenever you use Visual Basic.

4 Beginners 4 Intermediate [} Advanced

ISBN 0-85934-498-3

T

