. pEasy PC
interfacing

>RA Penfold

Easy PC
interfacing

Other Computer Titles of Similar Interest

BP531
BP534
BP535
BP540
BP541
BP542
BP549
BP552
BP556

Easy PC Upgrading

Build Your Own PC

PC Interfacing Using USB

Easy PC Security and Safety

Boost Your PC’s Performance

Easy PC Case Modding

Easy PC Wi-Fi Networking

Build Your Own Media PC

How to Transfer Computer Data and Settings

Easy PC
interfacing

Robert Penfold

Bernard Babani (publishing) Ltd
The Grampians

Shepherds Bush Road

London W6 7NF

England
www.babanibooks.com

o

Please note

Although every care has been taken with the production of this book to
ensure that any projects, designs, modifications, and/or programs, etc.,
contained herewith, operate in a correct and safe manner and also that
any components specified are normally available in Great Britain, the
Publisher and Author do not accept responsibility in any way for the
failure (including fault in design) of any projects, design, modification, or
program to work correctly or to cause damage to any equipment that it
may be connected to or used in conjunction with, or in respect of any
other damage or injury that may be caused, nor do the Publishers accept
responsibility in any way for the failure to obtain specified components.

Notice is also given that if any equipment that is still under warranty is
modified in any way or used or connected with home-built equipment
then that warranty may be void.

© 2002 BERNARD BABANI (publishing) LTD

First published - June 2002
Reprinted - December 2004

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 085934 523 8

Cover Design by Gregor Arthur
Printed and bound in Great Britain by Cox & Wyman

Preface

The “PC” has for many years been the standard computer for office use,
and it also has a strong following amongst home users and in some
niche markets. Specialist hardware add-ons is certainly one of these
niche markets, and a PC is the standard choice for scientific, educational,
and hobby users who require a computer to form the basis of all sorts of
weird and wonderful gadgets. With the right add-on equipment a PC
can operate as a weather station, a piece of electronic test gear, the
ultimate in model train controllers, or just about anything else. Designing
and building your own PC add-ons is not particularly difficult, but the
stumbling block for many wannabe add-on builders is the interfacing of
the gadget to the PC. How do you actually get the signals into and out of
a PC and control your gadgets properly?

A PC can actually interface to your peripheral devices by way of several
routes. One of these is via the standard ISA expansion slots, but this is
relatively difficult and is not ideal for beginners. This method is well
suited to the more advanced user who can tackle double-sided printed
circuit boards. Easier options are provided in the form of the standard
parallel and serial ports. In this book all three methods are covered in
some detail, including tried and tested circuits for any necessary
hardware. The software side of things is also covered, including both
MS/DOS and Windows programming. With the Windows “visual”
approach to programming it is often possible to produce sophisticated
control programs for your add-ons that contain remarkably little program
code. You certainly do not need to be an expert programmer in order to
produce good quality software for your hardware projects.

This book is based on “How to interface PCs (BP 467), but it has been
greatly expanded from the original. In fact the present book is about
twice the size of its predecessor. Windows programming is an
increasingly important aspect of PC interfacing, and this area has
therefore been given substantially greater coverage. Much of the
additional coverage concerns the use of Visual BASIC with user add-
ons. There is also a new section covering the combined game and MIDI
port. All the other chapters have been updated and expanded.

The risks of damaging a PC by connecting it to your own circuits are
probably quite small, especially if you only use the parallel and serial

oy

ports. However, it is perhaps worth making the point that most do-it-
yourself PC add-ons do not require a powerful PC, and can breathe new
life into an old and otherwise unused PC. You can then experiment with
PC add-ons more or less risk-free while being environmentally sound!

Robert Penfold

Trademarks

Microsoft, Windows, Windows Me, Windows 98 and Windows 95 are
either registered trademarks or trademarks of Microsoft Corporation.

All other brand and product names used in this book are recognised
trademarks, or registered trademarks of their respective companies.
There is no intent to use any trademarks generically and readers should
investigate ownership of a trademark before using ‘t for any purpose.

Contents

PC basicsccccuu. eeereeeeen—————— 1
WD [0t crrroerreerreeorrrrrrrrrrrrererenrerroreerrorereroeeener 1
ISAor PCl.......... S A e aar s 2
Slot MAChINEeS......cciieieveemririiicisenmmreennissssnsmeanersssensassmesnns 4
Pros and CONSccccciinnnnssnsnsssssssensesnssssssssisnsssssssarentansan 4
Proprietary Cards.......... crrrrrrrerrorrererrroIY B
DIY Prototype Cardsccccccvmmnrnmnncnncssnncscnmncnnssssasnsnnes 6
Properly addressedueeiimiicivsninrneccssienssnaesnenens 8
Expansion bus historyccccuiemiccnsinniinennncscssnnoniann 9
{37 (o3 crrrrrrrorrerrer e oo oo 10
Old DUSEScorecemireiiiicinmirenciinccsinsrssssssnssssnssessonsssases 10
The ISA BUScoeeiicininieneecncnresnnsnisssssessssamsnssassasssanses 12
Data/Address BUSccceeivvieerirersiiscsesensssssassnnnseesonses 14
(T G 21 oo oo oo 16
DMA/INEITUPREScuueeeririiiisincrennissssesasensensissssnsnsessnsssssnes 17
Power and CIOCKScceecicimemnsncmrminsemnssnnsansssnsassanes 17
The Restccoieinrciiinseniiinietisstsisressessesssmssssssssnseses 19
Sixteen-Bit Bus..........cccevueeiiinicnimrineniisciiecnssicensonennenn 20
Important Lines - 22
Getting Physicalcccccomriieeincncnniniisiscsnsennicecssenessnne 23
Dimensions T CCCC T OO D 24
Mounting bracket............cccoveriiiciiecsinniiiinenen. . 27
Programming...o...cccoeecmererensscssnnsnranessssnnsssssesssssncnssnesesans 28
LN e oo 29
GW and QBASICccccervecrvicernrenen 30
Delphi 31
Properly Addressed e 31
System 31
Expansion Bus 32
Address checking 33
Finallycccceeeene.n e 35

Points to remember 35

ISA bus interfacingc..ccccvveeenn. 37

Decoding corrorronor 37
Bus times 37
Read cycle e 38
Practical decoding .. @ oo 40
Read/writeccovceeeemriarssnnncnnansessens 42
AllInone.......ccccccemrriernmnieannerecsssassninne 44
Precise decoding45
Gates AND deCOdErScccceevvmmrrrersssannsrenessssacssasssonses 47
Decoder circuits ..53
Parallel I/O ports .. 58
U P e 60
Block control - 60
8255 programming - 62
Mode 0 66
Mode 1 OO O T YOO T TN O 66
Design example 67
input modes ... - corrrrrr e 70
Reference voltage............. 71
Conversion time e 72
Finally c 75
Points to remember © 77
Printer port interfacing 79
Standard ports .79
Printer port .79
Advantages 80
Drawbacks .81
Right lines - - 82
Properly Addressed 84

I/O Line Address Mapping 85

Handshake outputs...........ccccececeiricnerirerecnrenssnnesssnnessnees 89
Quart into a pint pot....... sesseessemrirseassnessanness 90
Optionsccccceerrnnnee . S ST LI———— 92
Input port..... T OO0 OO OO0 YT 94
Dual INPULScceuiiemiiiiicirinnsecssn e st reenaanesmans 98
Grabbing Bytescccccceeeciinncninecrsanennneececcssnssnseccssnns 102
Dual OUtPULSccccoceeeeieiiiineniniecccinneneneeccsssnsanseccarsnns 106
Bidirectional operation OO 109
Direction controlccccvcrvurmeniciisnnnnenenscsssensssnencscsens 114
Laptop POtimiiiicictirininresnantcansensnsssssansesnananesssnns 115
Serial approach..........cccceicemicrmmiisccsencsisnmnisssssaseesssesens 116
REE] Y2 e oo oo e oo 117
Synchronous data..........c.cc..u... . . 119
SOMRWArE ...ttt e e se e sesanae 120
ST U crrrroroerrrereeoorererorr oo oo oo 121
Out of syncccccevenees e —— 124
Listing 2 125
Clocking outccooiiiiiinseniicniccscnerasnees - 127
Software S —— 129
Back to front............cciiiiiiiiinnnnnnnnnnnninnseesieen. 130
[MEGY) &) corrorrroeeroreeroerrocorrreroeee CTITrTTrTrereer ..130
Adding a printer port...........ccoomeiririniciiirieciennensnen 134
Re-mappingcccceseunee R ——— 137
Points to remembercccceeerciiinnnnnnniensinnnnnenieenn 139
Serial port interfacing.................. 141
22 2 <11 G 1 T 141
Bit-by-Dit ..ot e esse e e 142
Word formats SN 145
UART ..ccmcintinienicsiscenissestissssncnsssssnssesssnsssensnnessssanssssnns 146
Pin 35, Parity Inhibitcccccoooiminicniiiiininicceninieneens 147
Pin 36, Stop Bit Selectcucuuciueiiiciiiiniinnneniiecinenn 147
Pins 37 and 38, Character Length Select 1/2 147

Pin 39, Even Parity Enable.......cccccceeeerrrrrrrrireniicciienenns 147

Receiver......ccccceeerannn eeeteennsteeretasusersranisransaaansene 148

TraNSMILErcccoooiciiiiiiicicicccnrinnsnssssiieseasnassasssssnsaraniene 149
Receiver Circuit...........ccceciniemerrnccccinncnnenssssscnsanesossenes 149
Transmitter Circuitc.cceeerrnn.. srseneessensisees 150
ConNECLiONScccvvvcreiininiiiicnsersnssssssncennsssssssasssessenens 154
Software handshaking....... tessessssnsensennens 156
(27 3 0] (P R rrrrreeerr oo e 156
Line Drivers/Receiversccccccrrerivcccsmmreerissecsnsnencnnas 157
Making Contact. S 158
[LT o1 63 ceeeeremrrrrrreeeeeeeeeenrrorerorreecerrrrrrro e 161
Word Controlcccceeeeenmnensinsescssssssssssssnes 162
VC] (ME] HY corrrorrrrrreeeeorooooorroo oo oo oo 163
Modem controloeeeeenesinnnne : ...164
L Y S 0 U 164
Modem status........cceveeiccrsscsssseseccnnnnns S —— 165
Adding a serial portc.civverceecniinninnnnnncinieceeneenn 167
Points to rememberc.ccceeeeiiiiiinni s 169
Game port interfacing 171
Joystick port............ CrrTTrrCrTr . e 171
Connectionsccoeecenicnnens ” . 173
IR 81)) P e e —— 176
Analogue Readingccccoivirrerececsssssensascsssssonsoennnnes 176
PCI compatibility SRR — 178
V10 R CONVEISION.....ccccerummerisrsennmsmsssssmssssessssssssssssassenss 179
MIDI port....... - N — 182
Missing hardware o o .. 182
MIDI input........ccccconee . S —— 184
Testing errrrrrrereeorerrorTen oo 187
MPU-401 . . 189
Right conNeclionsccoccevierenicnnemsensnsnscneanisnssnsens 191
Tapping off power ... © @ 191
USB power.........ccceeveuvnenee COCOOC IO T T 193
Other supplles........cccccvccmrererscccnarcrnnne .- .. 194

Point to remember 197

Bits and PCS......coovvvvevieeiieiinn, 199

Low level ™ ..199
Applied 10gICcccvverremrrissensnrsssonnscssnasnssssnnsssssnnssssarnes 199
Sampling AT TerTTTC 200
Bits and bytes - e 201
Binary . 201
Signed bINarycccevvvvnriiinsinninisisssnsiinsssinienien 203
Binary coded decimail crorroroarTrTOrTe 204
Hexadecimal. CroNTTTTTTRCRoTE T 205
Binary 206
Conversionsccceecesenneinns o 207
Bitwise Operations... FroroooTTeT . 208
Bitwise OR............... o CCIIITTTTITTTTTITITIG 209
AND in action .. T 210
In practice......c.cceevceeenrarerissancaccenens 211
Read and write? ... 213
Changing DItc..cocceeiimiccrsnencereneessnsnsssasnessontaessns 216
Changing addresses.........cccccrricinaresssnsrmsesaassssmserone 217
Address selection . 219
Points to remember . A ORI OCO0GICaaI00000903E 222
Windows programming 225
Windows in and outs? 225
Delphi 226
Advantagescccccecceriicneresnnanae 226
Visual Programming 227
Outputting Data w 229
Reading 230
Time after tImec.ccccveirenricccarnssnnnerssssasnssanansssasnan 231
Eventing 234
Delphl 2, etcC.cooceeecvencrnsnsccrcsniannas . 235
(-0 R ermrrrorormrrr e o e e rrrerrr e 236

Reading .
Visual BASIC

inpout32

inpout32.bas

First steps
Adding code

Scaling

Compiling

Refining
Auto-sizing

Inverting

Port selection

Shortcuts

Now you see it....

Reading

Refinements

Analogue display
Meter scaie

Figure work

Finishing touches

Making it work ..

Development

Cheap VB

vBs CCE ...

VBA

Adding Inpout32.bas
Other BASICs

Windows XP

Disabling ports
Points to remember

index

239
239
242
243
246
247
248
250
252
255
258
258
262
264
266
269
270
273
274
276
278
282
283
287
290
293
295
297
301

303

PC basics

User port?

Some of the popular eight-bit computers of the 1980s came equipped
with a user port and (or) some sort of expansion port that provided an
easy means of connecting do-it-yourself add-ons. Modern 32-bit
computers are generally somewhat less accommodating. User ports
seem to be non-existent on modern computers, and a proper expansion
port is by no means a universal feature. Despite this, 32-bit machinas do
have some potential for the electronic hobbyist, scientist, etc., who needs
to use a computer in measurement and contro! applications. The PCs
are probably more accommodating in this respect than any other current
computer, not that there are that many computers to choose from these
days.

There is no true PC equivalent to the user port of eight-bit computers
such as the BBC Model B and the Commodore 64. These user ports are
basically eight-bit parallel ports with each line individually programmable
as an input or an output. Additionally there are two handshake lines,
plus two sixteen bit timer-counters. This type of port makes it very easy
to interface a wide range of circuits to the computer.

The nearest PC equivalent to a user port is a parallel input/output card
added into one of the expansion slots. Such cards are produced
commercially, but can be very difficult to track down these days. They
can, of course, be home constructed if you are not daunted by the
prospect of tackling do-it-yourself double-sided printed circuit boards.
A standard PC parallel printer port makes quite a good alternative to a
user port, and this aspect of PC interfacing is covered in chapter 3. A
printer port lacks some of the versatility of a proper user port, and has no
counter/timer facility for example. However, it is adequate for interfacing
many user add-ons to a PC.

1

PC basics

Fig.1.1 The AGP slot is on the right and the AMR slot is the small one
towards the top left-hand corner

ISA or PCI

PCs do have something broadly comparable to the expansion ports of
the old eight-bit computers. This is in the form of the vacant expansion
slots within the computer. From the electrical point of view, some of
these are very similar indeed to traditional expansion ports. Matters are
complicated by the fact that modern PCs often have three types of
expansion slot. The AGP variety is only intended for video cards and are
of no use for general interfacing. In Figure 1.1 the AGP slot is the one on
the right-hand side that is offset towards the front of the computer. Many
PCs have small expansion slots such as the AMR type, but these are for
specific types of hardware such as a modem. Again, these are not
suitable for user add-ons. In Figure 1.1 there is an AMR slot near the left-
hand edge of the motherboard.

The two forms of expansion slot for general interfacirg are the ISA and
PCl varieties. ISA expansion slots (more or less) interface direct to the

P PR TS - L1

3) YL N 200

‘ il G oanenenare , ""-'._ ... ‘;ga' : .
Fig.1.2 The ISA slots are the larger and darker ones on the left

buses of the microprocessor and are therefore relatively easy to use.
The drawback of ISA interfacing is that this type of expansion slot is
being phased out. The motherboard shown in Figure 1.1 for instance,
has three types of expansion slot, but none of these are ISA slots. There
are still new PCs that have one or two ISA expansion slots, and there
must be millions of PCs in use around the world that have ISA slots. It
will be some years yet before this type of interface is genuinely obsolete.
On the other hand, over the next few years it will be necessary to move
over to a different method of PC interfacing. If your PC has ISA expansion
slots it is not difficult to spot them. They are larger than the other types
and are usually near the left-hand edge of the board (Figure 1.2).

On the face of it, PCI slots provide the obvious alternative. In practice
this interface is far from straightforward to use. A PCl slot is really a form
of port and it does not give access to the microprocessor’'s buses. It
actually has its own multiplexed data and address bus. This obviously
complicates the hardware side of things, but the controlling software is

1

PC basics

also much more involved. Interfacing your gadgets to a PCI slot might
be a practical proposition, but it is certainly not easy, and as such falls
outside the scope of this book. There are PCI prototyping boards that
have the basic interface circuitry, and using one of these might provide a
relatively easy introduction to this method of PC interfacing for those
who are determined to give it atry. These boards are not widely available
though, and might difficult to track down.

Slot machines

From the physical point of view, ISA slots are clearly a rather different
proposition to the old style expansion ports. A normal expansion port
consists physically of a multi-way connector on the exterior of the
computer. Only one add-on at a time can be fitted to the port unless
some form of expansion system is used. Normally the add-on simply
plugs straight onto the port, or it connects to it via a multi-way cable
terminated in a suitable connector. This second method is the one that
is generally the easier to implement, and it is the one | tend to favour for
do-it-yourself add-ons.

With a PC there is no need for any expansion units to accommodate
several user add-ons. Most PCs have three or more free expansion slots
for this type of thing. In the, past multi-function cards helped to keep a
reasonable number of slots free on computers that had to be well
equipped with ports, etc. These days there is usually a fair range of
ports provided on the motherboard, and in some cases the sound and
video are also provided by the motherboard. This usually leaves several
free expansion slots.

It is only fair to point out that some PCs, particularly some of the very
small types, do not have many free slots once they have been equipped
with the bare necessities for normal PC computing. In most examples
there are actually several free slots, but for one reason or another they
are mostly inaccessible. With PCs that have low-profile cases you may
find that there are no free slots unless you are prepared to go without
one of the normal necessities such as a modem. If you are interested in
do-it-yourself PC interfacing there is a lot to be said for a traditional PC
case and motherboard, with lots of free slots and space inside the case.

Pros and cons

Having the add-on cards inside the computer has its advantages and
drawbacks. On the plus side, there is no need worry about connecting

PC basics 1

cables getting broken. Neither is there a problem with units ftted on the
back of the computer getting in the way, or becoming accidentally
detached. Units that mount direct onto expansion ports at the rear of
computers are notorious for crashing the computer if they should be
accidentally knocked. In the past there were one or two units of this type
that had a reputation for crashing the computer if you should happsn to
breathe too hard near them! With the cards mounted securely inside
the computer there is no real problem with unreliability even if the
computer should take a few knocks.

The main drawback from the do-it-yourself point of view is that any add-
on circuit must be on an accurate double-sided printed circuit board of
irregular shape. This should be fitted with a metal mounting brackst so
that the board can be firmly bolted in place. Unfortunately, the metal
mounting bracket has a fairly elaborate shape that makes it a bit tricky
for home construction. Connections to the outside world are via
connectors mounted at the rear edge of the printed circuit board.

In order to tackle this type of thing you need to have a fair amount of
experience at electronics construction, and a fair degree of expertise.
There are ways of making things a little easier though. If you do not feel
competent to etch and drill your own double-sided printed circuit boards,
or simply do not have the necessary facilities to handle this type of thing,
there are companies that can produce prototype boards if you can provide
them with reasonable artwork for the board design. However, having
one-off boards made can be quite expensive. Whether or not this method
is practical depends on how much you are prepared to pay, and on what
sort of deal you can negotiate with a printed circuit manufacturing
company. For this type of thing a small company is likely to be a better
bet than one which normally produces a few thousand boards at a time.

Proprietary Cards

An alternative approach is to use a proprietary printed circuit board rather
than a custom type. Ordinary stripboards, etc., are not much use in this
context, where a double-sided edge connector is needed to maks the
connections to an expansion slot. It is actually possible to make up an
edge connector to fit an expansion slot, and to fit this onto a piece of
stripboard. The edge connector should be fitted with pins so that you
can easily make connections from the connector/slot to the stripboard.
In theory you can easily make up prototype circuits on the stripboard,
and wire them to the expansion slot. The system is reusable in that fresh
pieces of stripboard can be fitted to the new connector when new circuits

_5

PC basics

must be developed. Connections to the outside world can be made via
a connector fitted on the stripboard, or by way of a flying lead (the latter
probably representing the more practical solution).

While this all sounds fine in theory, and will work to some extent in practice,
itis a method that | have found to be less than perfect. The main problem
is that modern stripboard is not particularly tough, and in fairness it must
be said that it is not intended for this type of use. This method tends to
be frustrating and expensive, as the stripboard tends to break at the join
with the edge connector. If you decide to adopt this method you therefore
need to proceed with caution, and must treat the board/connector
assembly with the proverbial “kid gloves”. This method has to be
regarded as considerably less than ideal for either prototyping purposes
or finished cards.

What is probably a better approach is to use one of the proprietary
prototyping cards which are specifically designed for PC prototyping
(but which are also suitable for final units). A slight problem with these is
that they do not seem to be very widely available in the UK., and they
are becoming scarcer as I1SA slots become less popular. At the time of
writing this, a few PC prototyping boards are available from the larger
electronic component retailers. Unfortunately, those that are available
tend to be quite expensive. They vary in sophistication from simple
double-sided boards with no electronics, through to boards which have
buffers, an address decoder, breadboards, etc. For most do-it-yourself
enthusiasts only the simple boards are a practical proposition, as anything
beyond this tends to be prohibitively expensive. Even simple prototyping
boards tend to cost much more than stripboard, etc., of a similar size,
but they are usually high quality fibreglass boards. In view of this, |
suppose that they actually offer quite good value for money.

DIY Prototype Cards

Of course, itis quite possible to build for yourself something comparable
to these ready made prototyping cards. However, | think that even if you
were fairly expert at making double-sided printed circuit boards it would
be necessary to settle for a simplified version of a proprietary board.
One problem is simply that it could take weeks to manually drill the
thousands of holes in one of these cards! Having the holes through
plated is useful, but is probably not something for the do-it-yourself board
maker to bother with.

An approach to home produced prototype boards that | have found useful
is to have an edge connector which does not have any pads connecting

PC basics 1

Fig.1.3 A home constructed PC prototyping system

to terminals that will, in all probability, never be needed for any of your
prototype circuits. The functions of the terminals on the edge connector,
plus their relative importance, is something that will be discussed more
fully later in this chapter. However, it is fair to say that less than half of
these terminals actually need to be used for most do-it-yourself expansion
cards. Leaving out some of the “fingers” of the edge connector does
not actually simplify things very much, but not having to bother with
tracks and pads to connect to them can helg simplify things a great
deal. It also leaves more room for pads and tracks that will actually be of
use.

On the main part of the beard it is probably best to settle for some DIL
clusters to take integrated circuits, including one or two 40-pin types to
accommodate the larger integrated circuits which are a feature of so
many computer add-ons. Remember that if you use 20 and 40-pin
clusters, between them thase will also accommodate most other sizes
of integrated circuit, albeit with some pads left unused. Most devices
having 0.3-inch row spacing will fit the 20-pin clusters, and most that
have 0.6-inch row spacing are compatible with the 40-pin clusters. Each
pad of each cluster can connect to a row of pads, and scme rcws of
stripboard style pads can be used to provide a general prototyping area
for discrete component amglifiers, oscillators, or whatever.

1 PC basics

Even using this approach there will be a large number of holes to drill,
but nothing like as many as would be needed if the entire board were
covered with holes on a 0.1-inch matrix. You can actually eliminate most
of the hole drilling by leaving the main part of the board blank. You can
then bolt onto this area a piece of stripboard, or any form of general-
purpose prototyping board. This includes solderless breadboards, which
are perfectly suitable for most PC prototype circuits (but which are
obviously not really appropriate to finished units). A card of this type
enables new circuits to be rapidly checked and (hopefully) perfected,
and can be used over and over again. Figure 1.3 shows a simple home
constructed prototyping board. It is shown fitted with a solderless
breadboard, but stripboard, etc., can be bolted to the board instead. It
has provision for a connector at one end, which is useful if a large number
of connections to the outside world are required.

Properly addressed

For the ultimate in convenience when PC prototyping you can build a
card along the lines just described, but include an address decoder on
the card. This avoids having to make up an address decoder each time
you test a new circuit, and keeps things as quick and simple as possible.
This is certainly the type of prototyping card | favour, and is the one |
normally use when checking PC prototype circuits. Ideally the address
decoder should have several outputs representing different address
ranges, or it should be switchable between several address ranges. This
enables prototype circuits to be set so that they will not conflict with any
user add-ons already in the computer. Address decoding is discussed
later in this book.

A variation on this theme is to add an address decoder onto a proprietary
PC prototyping card. Connect pins to the pads that connect to important
terminals of the edge connector so that connections can be easily made
to these lines. If you do not like the idea of prototyning circuits direct
onto the board, simply fit it with stripboard, a couple of breadboards, or
whatever. This arangement gives you a very versatile prototyping system,
and avoids the need to make up a difficult double-sided printed circuit
board. | suppose that you could even make up finished circuits on
stripboard or some similar proprietary board, mount it on a ready made
PC prototyping card and then wire it to the edge connector. This would
not give the neatest of results, but it should work well enough in practice.

If you require the simplest means of PC interfacing, the obvious approach
is to have an edge connector to fit the expansion bus, with a ribbon

PC basics

cable connected to this. Your add-on circuits can then be connected to
the opposite end of this cable, and situated outside the PC. They can be
breadboarded, constructed on stripboard, or built using any desired
method. This is the PC equivalent to the method used for most do-it-
yourself add-ons for eight-bit computers. Unfortunately, in my experience
at any rate, this system has proved to be a bit unreliable when applied to
PC add-ons. The problem is presumably due to the higher clock
frequencies used for PCs, especially the “turbo® PCs that are now the
norm.

it would be wrong to say that this method is totally impractical, but it can
be difficult to get it to work reliably in practice. The chances of it working
with a long connecting cable are small, and the shorter the cable, the
better the chances of success. The slower the bus speed the greater
the chances of reliable operation. In the past PCs often had a “jumper”
on the motherboard that could be used to select a slow or a fast expansion
bus clock frequency. Some PCs had a setting or settings in the ROM
BIOS Setup program that provided some degree of control over the
expansion bus timing. With some computers the expansion bus speed
is dependent on the main system clock frequency. Switching from the
“turbo™ mode to the normal one would then slow down the expansion
bus. Facilities such as these as these do not seem to be included in
modern PCs, which generally operate the ISA bus at 8MHz.
Consequently, unless you are using a true “golden oldie” PC there will
be no control over the speed of the ISA bus.

Expansion bus history

Many aspects of PC computing have developed substantially over the
years, and the expansion bus is no exception. The original PC/XT bus is
an eight-bit type. This may seem strange, since the PCs are 32-bit
computers. However, bear in mind that the original PCs were 16-bit
computers. Furthermore, the 8088 microprocessor used in the original
PCs (and many early “clones”) is a so-called “cut down” version of the
8086 microprocessor. This basically just means that it has an eight-bit
data bus and must take in data and output it eight bits at a time.
Operations on 16-bit chunks of data in memory must therefore be
accomplished using what are effectively two eight-bit instructions rather
than a single 16-bit type.

Once data is inside the microprocessor’s internal registers it is handled
as 16-bit chunks, and internally the 8088 is a true 16-bit microprocessor.
The eight-bit data bus gives some speed disadvantage compared to the

PC basics

8086, but the speed difference in practical applications is not very large.
Although the 8088 has an eight-bit bus, because it is a proper 16-bit
component in other respects, the PCs that are based on this chip are
usually regarded as 16-bit machines rather than superior eight-bit types,
but | suppose this is a matter of opinion.

Itis perhaps worth mentioning that some XT class PCs did actually have
an 8086 microprocessor. Despite this, they usually retained the standard
eight-bit expansion bus in order to give full compatibility with 8088 based
XT type PCs. Not many PCs based on the 8086 were ever produced,
and certain Olivetti and Amstrad PCs are probably the only examples of
popular PCs of this type. Of course, these PCs are now well and truly
obsolete.

AT PCs

The first development of the PC expansion bus was the 16-bit type. This
became necessary when AT (advanced technology) PCs came along.
These have an 80286 microprocessor, which is a full 16-bit type, complete
with a 16-bit data bus. Presumably it would have been possible to have
an ordinary eight-bit expansion bus on these computers, but it would
have removed some of the potential advantages of using the 80286.
The solution was to retain the standard eight-bit bus, but to augment it
with some further lines carried on a second edge connector mounted in
front of the existing connector. This enables appropriate eight-bit cards
to be used with an AT computer, but still enables 16-bit cards to be used
where these offer advantages. This 16-bit PC expansion bus is often
called the “ISA” bus, and “ISA” simply stands for “Industry Standard
Architecture”. In modern PCs the two connectors are merged into a
single moulding, but you can still clearly see the separate sets of terminals.

Old buses

Note that PC compatibles that are based on the 80386SX 16-bit
microprocessor are basically just AT computers, and are interfaced in
the same way. Similarly, PCs that are based on the 80386, 80486SX,
and 80486 32-bit microprocessors are essentially AT type PCs. They do
sometimes have a 32-bit expansion bus, but in most cases only one slot
is of this type. Itis normally in the form of a standard 16-bit PC expansion
bus with an extra edge connector mounted in front. This added edge
connector carries the extra lines needed for 32-bit interfacing. There is
no true standard for these 32-bit slots though, and they normally only

PC basics

accept memory expansion cards produced specially for each make of
computer. These 32-bit expansion buses are now long obsolete anyway,
and are something that will not be considered further here.

There is actually a standard 32-bit PC expansion bus, which is the result
of agreements between several major manufacturers of PC compatibles.
This is the “EISA” (“Extended Industry Standard Architecture”) bus. From
the physical point of view this is substantially different to the 32-bit
expansion buses of ISA 80386 and 80486 PCs. It has the normal ISA
bus, but an extra connector alongside this provides the additional lines
needed for 32-bit interfacing. It is a high-speed bus that has definite
advantages over the standard ISA bus for advanced applications that
genuinely require very high-speed data transfers. However, for many
purposes, including most user add-on applications, the ordinary ISA bus
will suffice. Anyway, the EISA bus was usurped by the PCl type and it is
not something we will pursue further here.

There is a fourth type of PC expansion bus, and this is IBM's MCA (Micro
Channel Architecture) bus. This is another high-speed 32-bit type, and
it was used on some of IBM's PCs. These computers were not really
traditional PCs, and were intended to be a sort of new generation of
PCs. While they had good software compatibility with ordinary PCs,
they were largely incompatible as far as hardware is conceined.
Consequently, interfacing to this type of PC really falls outside the scope
of this book. Anyway, the MCA bus is another one that has “fallen by the
wayside”.

Finally, modern PCs are equipped with several PCI slots that replace
some or all of the ISA exoansion slots. The PCI slots offer definite
advantages over the ISA type, such as higher operating speed, 32/64-bit
operation, and full “plug and play” support. As pointed out previously,
in the fullness of time PCI slots will totally replace the ISA variety, and a
fair percentage of new PCs do not have any ISA slots. Also as explained
previously, interfacing via the PCI bus seems to be extremely complex,
and it would not appear to support any form of basic interfacing suitable
for DIY add-ons. Using the PCI bus is certainly well beyond the scope of
the present publication.

Although modern PCs are based on Pentium or equivalent processors,
they are still essentially AT “clones”, and provided they have the standard
ports they can be interfaced to the outside world in much the same way
as the original PCs. Most of the information in this book therefore applies
equally to an old PC XT clone, a modern PC using an Intel or AMD
processor, or anything in between.

Id

PC basics

The ISA Bus

The

I1SA bus has a two by 31-way 0.1-inch pitch edge connector to carry

the basic eight-bit section of the bus. The female connectors are on the
computer's motherboard, while the add-on cards must have a male edge
connector. This male edge connector is basically just a protrusion on
the card, which has the 31 “fingers” of copper on both sides of the board.
The extra lines for 16-bit interfacing are carried by a *wo by 18-way edge
connector mounted in front of the two by 31-way connector. Figure 1.4
gives details of this arrangement, including the stardard method of pin
numbering used for both connectors.

This is a list of the lines available on the eight-bit expansion bus:

Terminal No. Function
Al -1/0 CH CK
A2 D7

A3 D6

A4 D5

A5 D4

A6 D3

A7 D2

A8 D1

A9 DO

A10 1/0 CH RDY
A1 AEN

A12 A19

A13 A18

Al4 A17

A15 A16

A16 A15

A17 Al4

A18 A13

A19 A12

12

Y

B1

E2IFRTBR

B10
Bi1
B12
B13
B14
B15
B16
B17

A1
A10
A9
A8
A7
A6

A5
A4
A3
A2
Al
A0

GND
RESET
+5V
IRQ2
-5V
DRQ2
-12v
Reserved
+12V
GND
-MEMW
-MEMR
-IoOW
-IOR
-DACK3
DRQ3
-DACK1

PC basics

1

PC basics

B18 DRQ1
B19 -DACKO
B20 CLK
B21 IRQ7
B22 IRQ6
B23 IRQ5
B24 IRQ4
B25 IRQ3
B26 -DACK2
B27 TC

B28 ALE
B29 +5V
B30 0sC
B31 GND

(A minus sign at the beginning of a function description indicates that
the line is negative active).

Many of these lines will be familiar to anyone who has undertaken
interfacing on eight-bit computers, and should be particularly familiar to
anyone who has dealt with computers based on the 8080 or Z80
microprocessors. However, for the benefit of those who have limited
experience of computer interfacing a description of each line (or set of
lines) is provided in the following sections.

Data/Address Bus

Lines DO to D7 are the standard eight-bit bidirectional data bus. Any
data provided by your add-on circuits is fed into the microprocessor via
these eight lines. Similarly, any data fed from the microprocessor to
your add-on circuits will come by way of these eight lines. A0to A19 are
the address bus, and are outputs provided by the microprocessor. These
provide a one-megabyte address range for memory circuits. 16 and 32-
bit PCs have additional address lines on the second edge connector
which enables a much larger amount of memory to be accommodated.

14

PC basics 1

Rear Of
Computer
B1 : Al
-t b]
s -l
B10 = | A10 B31 | b= A31
-] Hl -1 Three Terminal
- . = | Wide Gap
- - D1 [= C1
L B] -
- L -
" D10 |~ t=| c10
- -
B31 = A31 D18 |= =] C18

Fig.1.4 Edge connector pin numbering for 8 and 16-bit PC buses

However, PCs which have 16 or 32-bit microprocessors normally operate
in an 8088 emulation mode where only the basic 20-bit address bus is
utilised. These days increasing use of the extended memory of 16 and
32-bit machines is made via disc caches, DOS extenders, etc. This is
largely of academic importance to the do-it-yourself add-on enthusiast,
and you will normally only need address lines AQ to A19. In fact you will
not normally deal with interfacing memory circuits, and will not even
require all these address lines.

The address bus is also used for selecting the correct input/output circuit.
In this context only the lower 16 lines (A0 to A15) are utilised. This gives

PC basics

some 64k of input/output address space, or some 55536 input/output
addresses in other words. This is more than would ever be needed in a
real computer system, and a somewhat simplified approach has therefore
been used on the PCs. Only the lower ten address iines (AO to A9) are
utitised, which still gives some 1024 usable input/output addresses. The
lower haif of the address range is reserved for internal use (i.e. circuits
on the motherboard), leaving the upper 512 addresses free for expansion
cards. Many of these addresses are reserved for specific functions, such
as the standard ports and disc controllers. There is still plenty of space
left for your own expansion cards. The input/output map is a topic we
will discuss fully later on.

Control Bus

The 8088 microprocessor has a control bus that consists of seven lines.
Four of these are MEMR, MEMW, IOR, and IOW, which are all forms of
read/write line. Unlike some microprocessors, the 8088 has separate
read and write lines, not one line that indicates one type of operation
when set high, and the opposite type when set low. Also, the 8088 has
separate memory and input/output maps. 8088 based computers do
not have input/output devices placed at empty spaces in the memory
map, as do computers based on chips such as the 6502 and 68000.
Thus, what is a single control line on some microprocessors becomes
some four lines on the 8088 series. These lines are all active low. MEMR
goes low when the microprocessor is reading from memory - MEMW
goes low when it is writing to memory. IOR is activated when data is
read from an input device - IOW is activated when data is written to an
output circuit. These are obviously important lines that will often have to
be decoded by your add-on circuits. Presumably any do-it-yourself add-
on cards will not fit in the memory map, but will go into the input/output
map. Accordingly, you will not normally need to bother with MEMR and
MEMW, but will need to use IOR and IOW extensively.

ALE (address latch enable) is a control line that can be used to
synchronise events to microprocessor bus cycles. This is not a line that
you will normally need to bother with. The same is not true of AEN
(address enable) which goes low during processor bus cycles (i.e. normal
operations). ltis needed to distinguish between normal bus cycles and
DMA (direct memory access) cycles. This must be decoded to the low
state by the address/control bus decoder.

The reset line is an output generated by the computer, which is a standard
active high reset line. This goes high at switch on, or ifthere is a hardware

PC basics

reset (i.e. if you press the computer’s reset button). Software resets,
which includes those produced using the keyboard Controt - Alt - Delete
sequence, do not normally result in a reset signal being produced on
the reset line. Itis not essential to use this line to provide the reset signal
for your add-on circuits. Some may simply not require a reset signal at
all, while with others it might be easier to include a reset pulse generator
circuit on the expansion card. In most cases though, where a reset
signal is needed it is probably easier to use the computer’s reset line. If
a negative active reset signal is needed, simply feeding the reset line of
the expansion port through an inverter should provide a suitable signal.

DMA/Interrupts

There are nine DMA lines. DACKO to DACK3 are outputs, as is the TC
(terminal count) line. DIRQ1 to DIRQ4 are inputs. These are lines that
are only needed for circuits that make use of the advanced DMA facilities.
This is not likely to include home constructed expansion cards, and we
will consequently not consider the DMA lines further here.

The 8088 has eight normal interrupt lines of the active high variety, but
IRQO and IRQ1 are not available on the expansion bus. Neither are the
special (high priority) interrupt lines such as NMI (non-maskable interrupt).
Interrupt lines IRQ2 to IRQ7 are available, but bear in mind that standard
expansion cards such as the serial and parallel ports will use some of
these. For most user adc-ons there is no need to utilise the interrupt
lines, but they can be useful where it is important that the computer
responds to the add-on very rapidly. Applications of this type are usually
where data must be read intermittently, but when the data does come
along, it does so in large quantities and at a high rate. It is important that
each byte of data is read very soon after it has been received, or it may
be over-written by the next byte of data. Using the interrupt lines on any
computer is a fairly complex business though, and it is much easier to
crash the computer than to get it right. Using interrupts on the PCs is
perhaps a little less fraught than using interrupts on some of the popular
eight-bit computers. Even so, this is something that is strictly for the
advanced user.

Power and Clocks

The expansion bus includes two clock lines. OSC is a buffered crystal
controlled oscillator signal at 14.318MHz. It is mainly included to act as
the clock signal for the colour graphics adapter, and it is prcbably not of

PC basics

much use for anything else. The other clock signal is CLK, which is the
system clock, which has a two to one duty cycle. For the original PCs
the system clock was at 4.77MHz, but on most PC XT “clones” it is
normally 8MHz, 10MHz, or even higher. On AT class computers the
clock frequency can be practically anything from 6MHz to 450MHz. AT
type PCs used to have the ability to operate at a “normal” clock frequency
of about 8MHz, and a “turbo” mode of around 20MHz to 50MHz (4.77MHz
and about 8MHz to 15MHz for XT class PCs). With Pentium PCs the
“turbo” switch is normally absent (or present but it does not actually do
anything), and the computer always operates at its maximum clock
frequency.

Clearly the system clock signal can not be relied upon to be at a certain
frequency. On AT computers it may well be missing, with no connection
made to this terminal of the expansion bus. These factors must be borne
in mind when designing an interface that uses this clock signal. Of course,
if you are only producing a card for your own use in a computer where
this clock signal is present, and will always be at a certain frequency,
then you can design the card on the basis of a known and reliable clock
frequency. Remember though, that if you change to a different PC you
may have to modify the card in order to get it to function correctly with
the new computer. In general it is better to simply ignore both the clock
signals on the expansion bus, and where necessary include a suitable
clock generator on the expansion card.

Four power supplies plus the 0 volt earth (ground) rail are available on
the expansion bus. The available voltages are +5V, -5V, +12V, and -
12V. The +5 volt rail should be able to supply several amps without any
problems with overloading. It is difficult to be precise about how much
power is available on this line as it depends on the rating of the power
supply unit, and the current drawn by the motherboard, expansion cards,
etc. Some PCs have massive power supplies and hardware that has
very modest power requirements. With these there is likely to be well
over ten amps of spare current available.

At the other end of the spectrum there are mini-PCs which have relatively
low-power supply units, and which might have as little as an amp or two
to spare for your add-ons. Also, some PCs have hefty 300 watt power
supply units, but have little spare capacity due to the high powers required
by modern processors, hard disc drives, CD-RW drives, etc. Since your
cards are not likely to consume a total of even one amp of current, any
PC should be able to power your add-ons without any difficulty. However,
it is probably best to use the PC's supply unit only for electronics. If you

PC basics 1

are using the PC to control electric motors, filament bulbs, etc., then
these should have a sepaiate power supply unit.

The + 12 volt supply should also be able to provide an amp or two without
any problems. In fact it might be possible to draw as much as 4 amps
from the +12 volt line, but it is probably best to stick to a maximum of
about 2 amps unless you can definitely ascertain that your computer
can reliably supply more than this. On many PCs the +12 volt supply
does not seem to be well stabilised, and often seems to be at around
+13 volts. | think that | am right in stating that this supply is mainly
intended for powering the motors in the disc drives, and that the latter
include their own regulator circuits. It is probably not safe to assume
that this line is well stabilised, or particularly noise-free. In fact you should
assume that it is unstable and polluted with a lot of electrical noise.

The ratings of the negative supplies are relatively small. The -5 volt and
-12 volt lines are usually rated at 0.3 amps and 0.25 amps respectively
(some of which may well be consumed by other cards). It is probably
best to keep the current drains from the negative supplies down to about
100 milliamps (0.1 amps) or less. In most applications the negative
supplies will not be needed at all, and where they are requirea it will
often only be necessary to draw currents of a few milliamps or less. For
example, the “tail” resistor of some analogue to digital converters requires
a negative supply current of well under 1 milliamp, and for a circuit that
has three or four operational amplifiers a negative supply current of less
that 10 milliamps would normally be needed.

The Rest

The 10 CH RDY (Input/Output Channel Ready) line is an important one.
Itis an input that can be used to insert wait states. A wait state is simply
a system clock cycle during a read or write operation where nothing
happens. The purpose of introducing these “dummy” clock cycles is to
slow down the computer to the point where a slow memory or input/
output circuit can keep up. This might be necessary for some user add-
ons. However, if at all possible it is obviously better to keep things simple
by having add-on circuits that can keep up with the computer. In most
cases there is no difficulty in doing this, and IO CH RDY can be ignored.

10 CHCK (Input/Output Channel Check) is an active low input line. Itis
taken low in order to indicate that a memory or input/output parity error
has occurred. A non-maskable interrupt is then generated. This line is
not normally used with user add-ons.

19
R

1 PC basics

Sixteen-Bit Bus

Most do-it-yourself PC interfacing only requires the eight-bit bus, but |
suppose that there are some applications that would benefit from use of
the full 16-bit bus. This is a list of the extra functions available on the 16-

bit ISA bus.

Terminal No.
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18

CH

88

C5

Function
-MEM CS16
-/O CS16
IRQ16
IRQ11
IRQ12
IRQ15
IRQ14
-DACKO
DRQO
-DAQ10
DRQ5
-DACK6
DRQ6
-DACK7
DRQ7
+5V
-MASTER
GND

BHE
A23
A22
A21
A20

PC basics 1

Cé A19
c7 A18
cs8 A17
(0] -MEMR
c10 -MEMW
Cc11 D8
Ci12 DS
C13 D10
Ci14 D11
Ci15 D12
Ci6 D13
C17 D14
c18 D15

(A minus sign at the beginning of a function description indicates that
the line is negative active).

When a PC is equipped with a 16-bit bus there are actually a few changes
to the basic eight-bit bus. -DACKO for instance, becomes -REFRESH on
the 16-bit bus. -REFRESH simple indicates that a memory refresh cycle
is in progress. This is really only of academic importance since it is
highly unlikely that you would ever use one of the lines which is subject
to these variations of usage. Most of the extra lines on the 16-bit bus are
of no interest to the do-it-yourself interfacing enthusiast. The extra address
lines are only needed when accessing extended memory, and are
irrelevant to input/output devices. Most of the other lines are imterrupt
and DMA fines, etc., which you will probably not need to use either.

Of course, the extra data lines (D8 to D15) will be needed for 16-bit
interfacing, and permit data to be exchanged in 16-bit words rather than
being limited to eight-bit bytes. BHE is the Bus High Enable output, and
it is alternatively known as SBHE (System Bus High Enable). It indicates
that data transfer is to be on the high byte (D8 to D15), as well as on the
low byte (DO to D7). Data transfers always involve the lower byte, and so
there is no equivalent to this on the eight-bit bus. -MEM CS16 and -I/O
CS16 are inputs that are used to inform the computer that memory and

1

1

__PC basics

input/output data exchanges are to be 16-bit types. If suitable signals
are not applied to these inputs, 16-bit data transfers will be carried out as
two eight-bit transfers.

Important Lines

Clearly a large number of the lines included on the expansion bus will
not be needed for most interfacing. The terminals of the edge connector
that connect to unused lines can obviously be omitted. This can help to
simplify the printed circuit boards if you are using custom printed circuit
boards. It can massively simplify things if you are making up your own
prototyping boards. This is a list of the terminals of the edge connector
that you will often need to implement, and which should certainly be
include in PC prototyping systems.

Terminal Function
A2 D7
A3 D6
A4 D5
A5 D4
A6 D3
A7 D2
A8 D1
A9 DO
A1l AEN
A22 A9
A23 A8
A24 A7
A25 A6
A26 A5
A27 A4
A28 A3
A29 A2
A30 Al

2

A31
B1

B2
B3
B5
B7
B9

B13
B14

PC basics

A0

0V (GND)
RESET
+5V

-5V
-12v
+12V
-Iow
-IOR

This list is basically just the lower ten lines of the address bus, the data
bus, the supply lines, RESET, -IOW and -IOR. For 16-bit interfacing you
will normally need these lines as well.

Terminal
D2
C1
Cc11
c12
C13
Cc14
C15
C16
Cc17
Cc18

Function
-I/O CS16
BHE

D8

D9

D10

D11

D12

D13

D14

D15

Getting Physical

An important aspect of PC interfacing is to get the physical dimensions
of the cards spot-on. This is every bit as important as getting things right
electronically. Make small errors in certain dimensions and you could
find that the card would simply not fit into the computer. Make the edge

23

PC basics

connector inaccurately and the may well short circuit adjacent pairs of
contacts from one end of the expansion slot to the other! This might not
actually do any damage to the computer, since most logic circuits are
pretty tough, and PC power supplies have comprehensive protection
circuits, which should avoid catastrophe in the event of short circuits.
However, with this type of thing it is best not to find out the hard way. If
your PC should prove to be unable to withstand this type of problem, the
result could be an extremely expensive repair bill. When undertaking
any computer interfacing it is important to proceed very carefully indeed,
taking as few risks as possible. The more expensive the computer, the
more carefully you need to proceed.

| prefer not to try out prototype cards on my main PCs at all, but instead
use a PC that is largely comprised of left-overs from upgrades to my
main PCs, plus parts obtained cheaply at computer fairs or in swaps
with friends. This PC is good enough for most PC interfacing applications,
and if should come to a “sticky” end it would be unfortunate, but not a
substantial loss. A major repair such as fitting a new motherboard would
be an unwelcome expense, but it would not “break the bank”. | could
not say the same of a repair to something like a 2200MHz Pentium 4
based PC with the latest in future-proofed motherboards.

interfacing to PCs is certainly something | would not recommend for
beginners at electronics. For beginners the best advice is to gain some
experience building up a few simple electronic projects before trying
your hand at any form of computer interfacing. Then start with some
projects that interface to a serial or parallel port. Either that or you should
be prepared to write-off your PC against experience!

Dimensions

Physical details of eight and 16-bit cards are shown in Figures 1.5 and
1.6 respectively. These are largely self explanatory, but there are a few
important points to note. Firstly, the length dimension given for the cards
is for full-length cards. Obviously cards do not have to be full-length
types, and probably most PC expansion cards are only about half-length
or less. There is no minimum acceptable size for PC cards, but there is
a practical limitation in that the card must be long enough to include the
full edge connector, or both connectors in the case of a 16-bit card.

Of course, if a card is less than full length, it is the front part of the card
that is cut down to size. The edge connector and mounting bracket at
the rear of the card make it unacceptable to shorten this end. Itis probably

1

PC basics

WWHS'zZ =

1eoeig
Buixiy

wuw g

psed uoisuedxe uq-wybie yibusj |iny e 104 sirejep edrsAyd §°L 614

PC basics

1

Jojo8uu09 abpa eipe ue buiney adA) uq-g ue jsnf Ajjeaiseq si p/eo uojsuedxe yq-9L v 9°L 614

J - W -
WWEZ — = L _A|EEm.mv - r wwg'2
'

wwySg ~f k= (yibua yInd) pseD uoisuedx3 g 91 "Xe W0l
|
pa—
4 1
1eoeIg B
Buxy ; Ww8ee

PC basics

not a good idea to produce cards that are just fractionally less than full
length. It would seem to be better to make such cards full length, so that
the guide rails in the computer properly support the front end of the
card. Unfortunately, these guide-rails are not included in some modern
PCs, but it makes sense to use them when they are available.

PC expansion cards are generally about 100 mrillimetres (4 inches) high,
excluding the edge connector. With most computers it is safe to have
cards of up to about 4.2 inches in height, but above this you may find the
card will fit all right, but that the lid of the case can not be closed properly.
With some mini PC cases it is necessary to have cards no more than
about 4 inches high. There is no minimum height for PC cards, but there
are again practical limitations. f you make cards much less than 100
millimetres high it may be very difficult to slot them in place and to remove
them again, as there is very little to get hold of. | generally make PC
expansion cards 100 millimetres high and a minimum of about 125
millimetres long, even if this gives an area that is far larger than the
interface circuit really requires.

Mounting bracket

Making your own fixing brackets is a bit tricky as they have a quite intricate
shape. | will not give any details of fixing brackets here, as the best route
to making your own is to copy a blanking plate from one of the expansion
slots in your PC. You might actually have one or two spare blanking
plates, where these plates have been removed to make way for added
expansion cards. Unfortunately, modern cases often have blanking plates
that are simply broken away from the case when they are not required,
rather than the type that is released via a fixing screw. These are likely to
be of little help.

Where it is possible to obtain “proper” blanking plates it will almost
certainly be easier to use these for your home constructed cards than to
try making your own brackets. Of course, a fixing bracket is not absolutely
essential, and PC cards fit quite firmly into the expansion slots. If the
bracket is omitted it is unlikely that the card will be pulled out of place
provided you take reasonable care. It is clearly preferable to include
mounting brackets, but many constructors of PC expansion cards prefer
to simply omit them altogether. | must admit that | avoid using them
whenever possible.

Although in Figures 1.5 and 1.6 the mounting brackets are shown as
being fitted to the boards via simple right-angled brackets, these brackets
are often unnecessary. Often PC cards are fitted with right angled D

TS

1

PC basics

connectors to permit connections to be made to the outside world. In
such cases the D connectors will normally provide a convenient means
of fixing the mounting bracket to the board. A suitable cutout for the
connector must be made in the bracket, and this can be cut using a
miniature file or a coping saw.

If you are lucky, you may already have one or two brackets which have
cutouts for one or two D connectors. Multi-function cards are often
supplied with brackets of this type. These cards often require more
sockets than it is possible to accommodate on the rear section of the
card. The extra sockets must therefore be mounted on blanking plates
for unused expansion slots, and connected to the card via jumper leads.
Many PC cases have mounting holes for D connectors in the rear panel
of the case. You can then use these instead of the drilled blanking plates,
leaving the latter free for use with your own expansion cards.

Various odds and ends of use to the home constructor are available
from most computer fairs. Itis usually possible to obtain brackets fitted
with connectors, and cheap expansion cards that are fitted with mounting
brackets. In either case it is not usually too difficult to remove the bracket
and adapt it for use with your own cards. Clearly it is not worthwhile
spending a lot of money on an expansion card in order to get a metal
bracket, but this is a good way of doing things if you can buy an obsolete
card at a “bargain basement” price.

If you make your own mounting brackets, unless you have access to
some advanced metal working facilities it will be much easier to use thin
(about 18 s.w.g.) aluminium than heavy gauge steel. Whatever means
you adopt for mounting the bracket on the expansion card make sure
that it is the correct distance from the rear of the card. Small errors here
can make it impossible to fit the card into the computer.

Programming

The hardware of a PC is normally handled via DOS routines or Windows
drivers, but your home constructed expansion cards will usually be types
that have no DOS or Windows support. Your only means of reading from
them or writing data to them is to directly access the hardware via a
suitable programming language. Some languages are better for this
type of thing than are others. It is only fair to point out that some PC
languages in their raw state are of no use whatever in this context. They
simply do not provide instructions that give direct access to devices in
the input/output map. There are add-ons that can provide the missing

PC basics 1

instructions for some languages, so this problem is not necessarily
insurmountable.

It also has to be pointed out that some operating systems prevent direct
accessing of ports. In particular, it is not allowed under Windows NT4,
2000, and XP. Again, it might be possible to access your circuits using
an add-on to the programming language, so that it can be controlled via
the operating system. However, this may not be possibie in all cases,
and it will certainly complicate matters where it is an option. Windows
98 or ME are better choices for a computer that will be used with your
own circuits.

Some add-on enthusiasts avoid Windows altogether, and simply boot
the computer into MS-DOS using a floppy disc containing GW BASIC. A
1.44-megabyte floppy disc is sufficient to take the system files, GW BASIC,
and a number of programs. The drawback of this method is that it is
much more difficult to produce programs that have a modem interface.
Even for very simple projects, Windows programming languages have
huge advantages. For example, using a Windows programming
language there is no difficulty in producing readouts having large digits.
You simply set a suitably large font size. This type of thing is much more
difficult using GW BASIC or QBASIC where the machine font is normaily
used to print things on the screen.

Assembler

Obviously there should be no problem when using assembly language
or machine code since you have direct access to the instructions of the
microprocessor, including the ones that give access the input and output
circuits. Some high-level computer languages enable programs to call
and run assembly language routines, and this provides a means of
controlling user add-ons. Note that with both types of assembler the
Windows NT4, 2000, and XP restrictions or directly accessing the
hardware still apply.

A combination of BASIC and assembler is a method that was much used
with eight-bit computers running interpreted BASICs. These languages
almost invariably provided instructions that could be used to control user
add-ons, but for some applications they would simply run too slowly. A
mixture of BASIC and assembly language gives the convenience of the
former, with the speed of the latter when required. This is a system that
I have always found to be very good in practice, but the speed of compiled
languages for 16/32-bit computers tends to make it less attractive in a

_29

PC basics

PC context. However, it is an approach that could be well suited to some
situations, and it is certainly something worth keeping in mind.

GW and QBASIC

The BASIC supplied with most PC compatibles in the past was Microsoft's
GW BASIC, which is an interpreted BASIC. This was later replaced with
a modernised but largely compatible programming language called
QBASIC, which is also an interpreted language. This makes GW BASIC
and QBASIC easy to use, but they are not fast by PC language standards.
These languages have benefited from the speed of modern PCs though.
The speed of current PCs is such that you can often do things with an
interpreted language that would have required a compiled language with
early PCs.

On modern PCs GW BASIC and QBASIC are good enough for many
applications, but it is definitely a case of “doing things the hard way”
unless you require the most simple of user interfaces. On the other
hand, they are languages | would certainly recommend when initially
experimenting with PC add-ons. Using the direct modes you can write
data to and read it from ports without running a program. This is ideal
for experimenting and learning about computer interfacing.

In GW BASIC or QBASIC the OUT instruction is used to write data to
devices in the input/output map (e.g. OUT 768,12 would write a value of
12 to output address 768). Data can be read from devices in the input/
output map using the INP function. For instance, the instruction X =
INP(768) would set variable X at the value read from input address 768.

| sometimes get enquiries from users of Windows 95/98 who wish to
know where they can obtain either QBASIC or GW BASIC. This is not
loaded as part of the “typical” installation option, but it is present on the
Windows 95 and 98 CD-ROMs. In the Windows 98 upgrade CD for
example, it is in the tools\oldmsdos subdirectory. ltisin the same location
on the Windows ME upgrade disc. Note that both QBASIC and GW
BASIC are MS/DOS programs. In order to run them under Windows 95
or 98 the computer must be rebooted in MS/DOS mode, or an MS/DOS
window must be used.

Most other BASICs, whether interpreted or compiled, should work
perfectly well with user add-ons. The only exceptions are some of the
higher level BASICs, which have mouse support, windowing facilities,
etc. These often lack facilities for direct accessing of the hardware.
Microsoft's Visual BASIC is good example of a PC BASIC in this category.

I ST

PC basgics 1

However, it is possible to obtain various add-ons that permit control of
| input/output ports. Visual BASIC is well suited to use with user add-ons,
s0 it is worthwhile augmenting it so that it can access ports.

The abilities of other PC languages to control the computer's hardware
seem to vary considerably. Most languages can actually manage this
type of thing, but not necessarily in a particularty straightforward manner.
If you are not an expert programmer it is probably best to use a good
BASIC language. BASIC is a much-maligned programming language,
but any fairly recent version should offer excellent facilities and reasonably
fast operating speed. While BASIC is not well suited to all applications,
it is very good indeed for measurement and control applications. It is
therefore well suited to most applications that involve user add-ons.

Delphi

Borland's Delphi programming language is also worthy of consideration.
This is based on their popular Turbo PASCAL language, but it is a “visual”
programming language, which makes it very easy to produce
sophisticated user interfaces. Using GWBASIC, QBASIC, Visual BASIC,
and Delphi is covered in the final chapters of this book.

Properly Addressed

As explained previously, the input/output map for PCs consists of only
1024 addresses, because only the bottom ten address lines are used for
input/output mapping. The lower half of the map is reserved for system
hardware (i.e. circuits on the motherboard), while the upper half is
reserved for the expansior bus. Standard circuits such as serial and
parallel ports do not count as system hardware, since they fit onto the
expansion bus (or they did in the original PCs anyway). This means that
the 512-address range for the expansion bus is fairly crowded, with few
gaps. This is the PC input/output map.

System

Hex Address Range Function

000-01F DMA Controller #1
020-03F Interrupt Controller #1
040-05F 8254 Timer

PC basics

060-06F
070-07F
080-09F
0A0-0BF
0CO-0DF
OFO0

OF1

OF8 - OFF

Expansion Bus
Hex Address Range
1FO-1F8

200-207

210-217

220-24F

278-27F

2F0-2F7

2F8-2FF

300-31F

320-32F

360-36F

378-37F

380-38F

3A0-3AF
3B0-3BF
3C0-3CF
3D0-3DF
3F0-3F7

3F8-3FF

Keyboard Interface
Real Time Clock

DMA Page Register
Interrupt Controller #2
DMA Controller #2
Clear Processor Busy
Reset Processor
Arithmetic Processor

Function

Fixed Disc

Games Port

Expansion Unit
Reserved

Parallel Port 2

Reserved

Serial Port 2

Prototype Card

Fixed Disc

Reserved

Parallel Port 1

SDLC Bisynchronous #2
SDLC Bisynchronous #1
Monochrome Display/Printer Adapter
Reserved

Colour Graphics Adapter
Floppy Disc Controlisr
Serial Port 1

PC basics

It might actually be possible to exploit some of the lower 512 addresses
for user add-ons, but this would not be doing things in standard PC
fashion, and is best avoided. It could easily lead to problems. Although
the upper half of the address range is pretty crowded, there are some
areas here, which can be exploited for user add-ons. In particular, there
are 32 addresses from &H300 to &H31F. These are reserved for prototype
cards, and your own expansion cards could reasonably be deemed to
be in this category. It is an area of the memory map that you shouid be
able to use without any real risk of clashes with existing hardware.

However, some soundcards and integrated audio systems use these
addresses for the MID! interface. Where possible, the MIDI interface
should be disabled or moved to another adcress range. With an
integrated audio system it is usually possible to switch off the MIDI
interface via the computer’s BIOS Setup program. One or two alternative
address ranges might also be available. With a modern PC the MIDI
interface might be disabled by default, but it is as well to check this point
before trying to use this address range. With a soundcard you should
consult the instruction manual to see if it is possible to disable the MIDI
port or alter its address range.

Address checking

With a PC running Windows 95, 98, or ME it is easy to determine which
memory addresses are in use. The System Information utility can be
used to show an input/output map for the computer. This program can
be launched by going to the Start menu and then choosing Programs,
Accessories, System Tools, and System Information. This produces an
initial window that gives some basic information about the PC and the
Windows installation. In the left-hand section of the window, double-
click the Hardware Resources entry to expand it, and then double-click
the I/O entry. After a short delay the right-hand section of the window
will show an I/O map for the computer.

With my main PC the MIDI port is reported as being present at
hexadecimal addresses 0300 and 0301. However, the BIOS Setup
program gave the option of disabling the port or moving it to another
address range, so there was an easy way around this problem. f the
port genuinely only uses the two lowest addresses in this block there
should be no problem in leaving the MIDI port active and using the other
30 addresses. Problems would only occur if the MIDI port's address
decoder circuit used less than full decoding, giving “echoes” cf the

PC basics

hardware at other addresses in the &H300 to &H31F range. Any gap in
the upper hatf of the address range should be usable.

If the &H300 to &H31F range is available, 32 addresses is not a great
deal when compared to the number available on some other computers,
such as the old BBC Model B computers with their two pages (512
addresses) of available address space on the expansion bus. However,
this should be perfectly adequate for most users. Itis sufficient for several
parallel port cards, plus some analogue converter boards, or whatever.

If 32 addresses are deemed inadequate there are ways around the
problem. As already pointed out, any addresses in the upper half of the
memory map, which are not actually occupied by hardware in your
computer, can safely be used. This statement has to be qualified
somewhat, as the real situation is that addresses of this type can be
used safely by you with your particular PC system. It can not be assumed
that home constructed cards that use these addresses can also be used
successfully with other PCs.

In practice, provided you use addresses that are reserved for an unusual
piece of hardware, itis unlikely that there will be any problems. Something
like the address space for the second serial or parallel port would not be
a wise choice, but using the address space reserved for the SDLC
Bisynchronous Port #2 would seem to be a very safe bet. There are
actually a few small gaps in the input/output map which do not seem to
be allocated to anything, and it would presumably be perfectly alright to
exploit one or more of these.

Another means of obtaining more addresses for your add-ons is to use
some of the upper address lines that are normally left unused. For
instance, you could have some add-ons that use the address space
from &H300 to &H31F, but which will only be activated if address line
A10 is low. You could have a second piece of hardware using the same
address space, but designed to operate only when A10 is high. The first
set of hardware would be accessed at addresses from &H300 to &H31F,
but the second set of hardware would be at addresses from &H700 to
&H71F. | have never found it necessary to adopt this method, but in
theory it would enable the basic range of 32 addresses to be used many
times over, giving more expansion potential than could ever be used in
practice.

‘2

PC basics

Finally

This covers the basics of PC interfacing in general terms. Probably the
main problem for the do-it-yourself PC add-on enthusiast is that PC
interfacing is a bit awkward from the mechanical point of view. However,
if you use proprietary PC prototyping cards or take care to get things
accurate when making your own cards, the mechanical aspects of
construction should not prove to be insurmountable. In chapter 2 we
will consider electronic circuits for PC address decoding, efc., anc this
aspect of PC interfacing is normally very straightforward. In fact interfacing
to PCs is more straightforward than interfacing to many popular eight-bit
computers as far as the electronics is concerned. Thankfully, the PC is
free from the quirky methods of interfacing used on many eight-bit
computers.

Points to remember

A PC has no user port of the type fitted to the popular eight-bit computers
of yesteryear. It does not have an expansion port as such either. APC
that has ISA slots has something comparable to an expansion port, and
using an ISA slot for your own add-ons is relatively straightforward.
Unfortunately, the PCI bus is not in the “easy” category, and neither is
USB interfacing.

Only the lowest 1024 input/output addresses are used by PCs. The
lower 512 addresses are used for system hardware, and your add-ons
should therefore go into the higher 512 addresses. There is no section
of a PC's input/output map reserved specificaily for user add-ons, but
addresses from &H300 to &H31F are often available.

It is acceptable to use any vacant input/output addresses in the upper
half of the PC's input/output map. However, bear in mind that addresses
that are free on your PC might not be available on other PCs.

Although there is a large number of lines available on an ISA expansion
slot, relatively few of these are needed in order to undertake some simple

_35

PC basics

PC interfacing.

Modern PCs are essentially “turbo” AT class PCs, and interfacing to an
ISA slot is much the same whether you have an old PC or a modern one.
In fact, eight-bit interfacing is much the same whether you are using an
original PC or a modern one with a gigahertz plus processor. An ISA
bus is slowed down to an effective operating frequency of about 8MHz.

The parallel and serial ports of a PC represent the easiest method of
interfacing your own circuits to a PC, and these are the best starting
point. Practically any gadget can be interfaced to a PC via one or other
of these ports.

MS-DOS programming languages are the most accommodating when
you need to directly access the input/output ports. However, these
languages are crude in comparison to most Windows programming
languages. Some Windows based languages have the ability to directty
access ports, and this ability can often be added to those that lack a
built-in facility of this type.

Windows 95, 98 and ME are preferable to Windows NT, 2000, and XP
when using a PC with your own add-on circuits. There is no problem
with direct port access using the Windows 9x operating systems, but it is
not permitted using Windows NT4, etc.

ISA bus
interfacing

Decoding

When designing ISA interface circuits the first task is to produce a suitable
address decoder circuit. Although circuits of this type are generally calied
address decoders, in most cases they also need to decode a few lines
of the control bus as well. When you access one of your add-on circuits
a certain set of logic states appear on the address bus, and on certain
lines of the control bus. This set of logic states should be unique to that
particular add-on, and should not occur when any other circuit is being
accessed. The purpose of the address decoder is to recognise this set
of logic states, and to produce a change in logic level at its output while
that set of logic levels persists. The output of the address decoder
normally holds the data bus of the add-on circuit in an inactive state.
However, when it detects the appropriate combination of input levels its
change in output state activates the add-on circuit.

Bus times

The basic way in which the add-on responds depends on whether #tis a
“read” or a “write” device. If the computer must read data from the
circuit, once activated, the add-on’s data bus will become a normal set
of logic outputs. It is important to get things absolutely right with this
type of circuit. If it should be activated at the wrong time, it will probably
try to place data onto the data bus at the same time as some other piece
of hardware. It might even try to place data onto the data bus at the
same time as the microprocessor is writing data. Modern logic circuits
are generally quite tolerant of this type of thing, and being realistic about
it, the chances of anything being damaged are slight. On the other hand,
it is clearly better not to risk any damage to expensive hardwars, no
matter how small the risk might be. Also, a data bus conflict of this type

2 ISA bus interfacing

CLK

e [o[o [o [Jo| Jos

Address Bus

X Valid Address

IOR
Data Bus
Valid
Data

is almost certain to crash the computer. Continuously rebooting a crashed
computer is a good way to waste a lot of time, as many users of modern
PCs will testify!

Itis also important for things to be just right when writing data to an add-
on circuit. The situation is slightly less critical in that when an add-on of
this type is activated it reads whatever is on the data bus. Ifitis activated
at the wrong time it will increase the loading on the data bus, but this is
not likely to cause any il effects. The data read by the device will be
erroneous though, and the add-on will totally fail to function. A device
that only reads from the data bus can obviously not try to force data onto
the bus, and in theory at any rate, can not cause any damage or even
crash the computer.

Fig.2.1 The ISA bus timing for a read cycle

Read cycle

Figure 2.1 shows bus timing for a read cycle. The correct address is
placed on the address bus some time before valid data from the peripheral
circuit must be ready and waiting on the data bus, so that it can be read
by the microprocessor. Similarly, -IOR goes low weil before data is present
on the data bus. This gives time for the address decoder to operate and

38

ISA bus interfacing

2

CLK
l—’ CLK1 ’—' CLK2 I_’ CLK3 |_I WAIT ﬂ CLK4 [_’ CLK5

Address Lines

X Valid Address X

oW
Data Lines

X Valid Data X

Fig.2.2 The ISA bus timing for a write cycle

provide an active output level. The timing for a write cycle is shown in
Figure 2.2. The main point to note here is that -IOW returns to the high
state while valid data is still being placed onto the data bus. This causes
the active output signal from the address decoder to cease, and it is this
transition which is used to latch the data

In normal logic circuit terms the address decoder does not need to be
particularly fast in operation. The more advanced PCs of today operate
at clock rates that are high by the standards of normal logic devices,
with most now into the gigahertz range. However, the ISA bus is not
especially fast in general electronic terms, even on the fastest PCs. So-
called wait states are added when the ISA bus is accessed, slowing it to
an effective clock rate of only about 8MHz. On the other hand, the address
decoder has nanoseconds rather than microseconds in which to work.

Ordinary CMOS integrated circuits are not suitable as they are too slow.
These components are designed for low current consumption, which is
achieved at the expense of very sluggish performance. In any case,
these components are not logic compatible with the PC buses. The
buses of a PC operate at normal TTL levels. Ordinary 74** series devices
are unsuitable as they load the buses too heavily. 74LS** series
integrated circuits are well suited to this application as they are both fast

ISA bus interfacing

and load the buses by acceptable amounts. 74HCT** components are
also suitable, but the 74HC** components are not. The 74HC** logic
devices operate at CMOS rather than TTL logic levels.

Practical decoding

Here we will only be concerned with decoders for use in the prototype
card address range of &H300 to &H31F. The general principles discussed
here apply to interfacing using other address ranges, but obviously the
address line states that have to be decoded will be different if another
address range is used. As pointed out previously, it is unlikely that it
would ever be necessary to use other address ranges, since the 32
available addresses from &H300 to &H31F will be sufficient for most
needs. It should only be necessary to use a different address range if
&H300 to &H31F is already occupied and there is definitely no way of
freeing it. It is probably best not to attempt to use other address ranges
unless you are absolutely sure you know what you are doing.

If we first consider matters in fairly broad terms, the minimal address
decoding needed is to decode address lines A5 tc A9. Additionally,
AEN must be decoded, together with -|OR and (or) -IOW. These are the
states of these lines when an input address in the range &H300to &H31F
is accessed.

Line Logic State
A5 Low
A6 Low
A7 Low
A8 High
A9 High
AEN Low
-IOR Low
-IOW High

For read operations the state of -IOW is irrelevant, and it does not need
to be decoded. This gives us the basic read address decoder represented
diagrammatically in Figure 2.3. This will respond to any read operation
to an input device in the address range &H300 to &H31F, but it should
ignore any other read operations, as well as all write types and memory
accesses. Most decoders are designed to have an output that is normally
high and which goes low when the circuit is activated. Not all peripheral

18

A9 o—] High

A8 o—] High |
A7 Low
A6 o—f Low Sz:;s:r —o Output 1
A5 o—f Low |
AEN o—F Low
IOR o—{ Low

ISA bus interfacing 2

Fig.2.3 The most basic of “read” address decoders. This will respond
to any address from &H300 to &H31F

circuits require things this way round though, and where appropriate the

decoder must

be designed to have an output that is normally low, and

which pulses high while itis activated. Remember that in order to convert
a decoder from one type to the other you merely need to add an inverter

at the output.
This is the set

of states that must be decoded when an output circuit in

the relevant address range is accessed.

Line
A5
A6
A7
A8
A9
AEN
-IOR
-IowW

Logic State
Low
Low
Low
High
High
Low
High
Low

L

2

ISA bus interfacing

A9 o— High
A7 o— Low
A6 c—1 Low Address ——o Output
Decoder
A5 o—1 Low
AEN o—f Low
IOW o— Low

Fig.2.4 The “write” equivalent of Fig.2.3

This is the same as before, but the states of -IOR and -IOW have been
reversed. In this case it is -IOR that can be ignored and -IOW that must
be decoded. This basic “write” decoder is shown diagrammatically in
Figure 2.4. When designing any address decoder or similar logic circuits
itis a good idea to write down the decoded state of each line, or produce
a diagram of the type shown in Figure 2.4, so that you get a clear picture
of what is required. This can help to avoid time-consuming errors.

Read/write

In practice you will not always need an address decoder specifically for
a read circuit or a write type. Most practical interfacing applications
involve both reading and writing to the peripheral circuit. Even if the
purpose of a port is (say) to output eight-bit bytes of data, it may well
consist of more than just eight output lines. It is often necessary to
carefully control the flow of data from the basic eight-bit port to some
further hardware. This requires one or more handshake lines, one of
which will probably be an input to monitor the status of the secondary
piece of hardware.

ISA bus interfacing 2

A9 o— High
A8 o— High
Read
A7 >— Low
Address Output
A6 >— Low
Decoder Write
A5 o— Low Output
AEN o— Low
IOW o—1 Low
IOR ©—1 Low

Fig.2.5 Many applications reGuire an address decoder that provides
“read” and “write” outputs

A Centronics type parallel printer port is a good example of an eight-bit
output port of this type. Itincludes a strobe output that provides a pulse
each time a fresh byte of data is placed on the data outputs. It has two
handshake inputs (“Acknowledge” and “Busy”), one of which is used to
indicate whether or not the printer is ready to receive further data. The
correct flow of data into or out of the computer is something you need to
consider carefully when undertaking do-it-yourself interfacing. Get this
aspect of things slightly wrong, and you may well find yourself having to
do a complete redesign and rebuilding job on the add-on card.

One way of tackling the problem of combined read and write address
decoding is to produce two separate address decoders, one for each
function. This has to be regarded as doing things the hard way, and is
also not a strictly valid method of PC interfacing. Each line of the PC
expansion bus should be loaded by no more than one 74LS** series
TTL input, or an equivalent amount. Using two address decoders would
load some lines with two inputs. In practice this would probably not
matter too much, and there are ways around the problem. One of these
is to add buffers on the relevant lines so that these limit the loading ot the

_43

2 ISA bus interfacing

A9 o—] High
A8 o— High
A7 o— Low Main Outbut
Address - Vutpu
A6 o—f L
i Decoder
A5 o— Low
AEN o— Low '-
| Read
IOW o— Low Output
Gate
Output

Fig.2.6 A simple but effective method of read/write decoding

bus lines to one 74LS** TTL load. This further adds to the complication
and expense of the address decoder though.

All in one

In general it is better to produce an all-in-one address decoder of the
type depicted in Figure 2.5. With AEN and the five address inputs at the
appropriate states, the “Read"” output is activated if -IOR is low, and the
“Write” output is activated if -IOW is low. While it is quite possible to
produce a decoder of this type, in practice it is often easier to have a
decoder that does not process -I0R or -IOW. The output of this simple
decoder is then fed to a further decoder, which does process -IOW and
-IOR. This scheme of things is shown in Figure 2.6. The gate circuit,
which generates the separate “Read” and “Write” outputs, can be very

M

ISA bus interfacing

simple indeed. This system is very versatile in that it also provides a
combined “read/write” output, which is what is needed for some
peripheral chips. This type of decoder is therefore apposite to just about
any method of interfacing.

The interface chips that require a combined “read/write” decoder output
are the 82** series which are specifically designed for operation with
8080 series microprocessors. There are actually a number of ather
peripheral chips that are designed to be bus compatible with the 6080
series of microprocessors. These are less common than the 82** series
chips, but you may well encounter some devices of this type. These
chips are all used in the manner shown in Figure 2.7. The address
decoder only has to process AEN plus address lines A5 to A9. -IOR and
-IOW are not simply ignored, but are instead decoded by the appropriate
inputs of the 82** series integrated circuit.

Precise decoding

So far we have only considered the situation where a single input register
and one output register are to be used. The address decoder has treated
the &H300 to &H31F address range as if it was a single address. The
peripheral circuit effectively occupies all these addresses, and can be
operated using any address in this range. This means that no other
devices can exist in this address range, which is obviously a bit restrictive.
With many of the 82** series chips there are several registers, and each
chip must therefore occupy several addresses, with a different register
located at each address.

This is easily accomplished, as the 82** series integrated circuits, which
have more than one read/write register, have one or more register select
inputs. These are simply fed from the address bus, and would normally
be fed from the least significant address lines (i.e. AQ, A1, etc.). In the
example set-up of Figure 2.7 there are three register select inputs which
are fed from address lines A0 to A2. The table on the next page shows
the number of registers available for various numbers of chip selectinputs.

No. Of C/S Inputs Maximum No. Of Registers
0 |
1 2
2 4
3 8
4 16

s

2

ISA bus interfacing

A9

A8 ©
A7
A6 C

A5

AEN ©

IOW «
IOR «
AO ©
At ©
o @

High
High
Low
Low
Low

Low

Main
Address
Decoder

[

g2**

Series
Chip

I/O
Lines

Fig.2.7 The basic scheme of things when using 82**, etc. chips

In the example of Figure 2.7 there are three chip select inputs fed from
three address lines. This gives a maximum of eight read registers and
eight write types. These registers are at addresses from &H300 to &H308.
However, as less than full address decoding is being used, with A3 and
A4 being left unprocessed, the full range of 32 addresses remain
occupied. The eight registers appear again as an echo at addresses
&H309 to &H30F. There are further echoes at &H310 to &H318, and
&H319 to &H31F. This blocks any further add-ons being used in the
&H300 to &H31F address range.

ISA bus interfacing

Two 82** series peripheral chips can be used in a set-up of the type
shown in Figure 2.8. The two chips are connected to the expansion bus
in parallel. We are ignoring the data bus in these address-deccding
examples, but these would both be connected to the data bus cf the
expansion bus. The address decoder has two outputs, one for sach
peripheral chip. These outputs cover different address ranges. In practice
this can only be achieved ty processing further address lines.

Conventionally, it would be address line A4 that was decoded. One
peripheral would be activated when A4 was high, the other would be
activated when it was low. This would put the first peripheral device (A4
low) at addresses from &H300 to &H308, and at echoes from &H309 to
&H30F. The second peripheral (A4 high) would be at addresses from
&H310to &H318, and at echoes from &H319to &H31F. By also decoding
A3 it would be possible to have four chips. The two extra chips would
occupy the address ranges that were previously occupied by echoes.
More than four chips having eight registers would not be possible, as
this would require more than the available 32 addresses. As pointed out
previously, there are ways of obtaining greater expansion, but it is unlikely
that more than 32 read registers and 32 write types would be needed.

One slight flaw with this method of using devices in parallel is that some
lines of the expansion bus are loaded by more than one input. in
particular, the data bus will be loaded by several inputs. This does not
necessarily matter in practice, since there should only be one input in
the active state at any one time. The loading is therefore much less than
it might at first appear. However, in this sort of situation you can always
play safe by including buffers on the lines which might otherwise be
excessively loaded.

Gates AND decoders

There is no single solution to address decoding problems, and there are
often dozens of different ways of achieving much the same thing. Some
solutions are more practical than others. In general, it is better to use
simple gates and inverters. These are fastin operation and inexpensive.
They do sometimes have a disadvantage, which is that it can take a lot
ofinter-wiring in order to get a few gates and inverters to give the desired
action. For a home constructed unit it may sometimes be better to opt
for more complex devices, such as three to eight line decoders, in order
to keep the board layout reasonably simple and straightforward. The
more complex decoder integrated circuits can be quite expensive, and
are often relatively slow in operation. These may actually be perfectly
usable for PC address decocing, but it should be possible to find good

2 ISA bus interfacing

A9 o———] High
A8 —{ High —
A7 o— Low Main

Address
A oI Decoder
A5 —4 Low —
AEN —4 Low ‘

IOW o—- =
IOR j 8g2**
A0 O——+ Series L:ﬁs
Al O— 1 Chip
A2 O- 9‘[>— == k—f‘
I —
.
|
| bl =
‘ Series _____ L:ﬁs
— Chip

Fig.2.8 Using more than one peripheral device. In reality at least
one more line is decoded

48

IR RO

ISA bus interfacing

2

ways of handling the decoding without resorting to any of the more exotic
74LS** series of integrated circuits.

The two basic types of logic gate are the AND and OR varieties. Logic
gates all have two or more inputs, and a single output. If we consider a
simple two-input AND gate first, the truth table provided below shows
the function it performs:

INPUT 1 INPUT 2 OUTPUT

Low Low Low
Low High Low
High Low Low
High High High

Its output is low unless input 1 AND input 2 are high, and it is from this
that the AND name is derived. The action is much the same if there are
more inputs. With all the inputs high, the output is high. If one or more
of the inputs are low, the output is low. This is the truth table for a two-
input OR gate:

INPUT 1 INPUT 2 OUTPUT

Low Low Low
Low High High
High Low High
High High High

The output of a two-input OR gate is low unless one OR other of its
inputs is high, and itis from this that the OR name is derived. Again, the
action of the gate remains much the same if there are more than two
inputs. With none of the inputs in the high state the output will be low,
but if one or more of the inputs should go high, the output will also go
high.

There are couple of variations on the AND and OR gates, and these are
called NAND and NOR gates. These are the truth tables for two-input
NAND and NOR gates respectively:

INPUT 1 INPUT 2 OuUTPUT

Low Low High
Low High High
High Low High
High High Low

2 ISA bus interfacing

61

—

Inverter

4

nput NAND

2

Input AND

2 Input NOR

2 Input OR

1>

2 Input XNOR

1>

2 Input XOR

1>

Fig.2.9 Gate and inverter circuit symbols

INPUT 1
Low
Low
High
High

OUTPUT

High
Low
Low
Low

ISA bus interfacing

2

These really only differ from the original truth tables in that the output
states are reversed. In effect, a NAND gate is an AND gate with its cutput
fed through an inverter. Therefore, if input 1 and input 2 are taken high,
the output goes low. Any other set of input states sends the output high.
Similarly, a NOR gate is effectively just an OR gate with its output inverted.

There is actually a fifth type cf gate, but this is little used in practice. Itis
the exclusive OR (XOR) gate, which is similar to an OR gate. However,
with an OR gate, the output is not simply high if input 1 or input 2 is high.
If both inputs are taken to the high state, then the output will still go high.
With an exclusive OR gate taking just one input high will send the output
high. Having no inputs set tigh, or more than one input set to the high
state, results in the output going low. | suppose that this could reasonably
be regarded as the true OR gate action, but in practice it tends to be less
useful that the conventional OR gate action, and exclusive OR gates are
something of a rarity. There are also exclusive NOR gates and these are
effectively just an exclusive OR gate with an inverter at the output.

Figure 2.9 shows the circuit symbols for the various types of two input
gate. It also shows the circuit symbols for an inverter and a multi-input
(NAND) gate. Note that gate circuit symbols seem to be less rigidly
standardised than most other circuit symbols, and that you may well
encounter different gate symbols in other publications. However, it is
usually fairly obvious what type of gate each symbol is meant to depict.

Of the various decoder chios available the 74LS138 is probably the most
useful low cost type for address decoding purposes. Pinout details for
this 16-pin DIL chip are shown in Figure 2.10. Itis a three to eight line
decoder, and it has outputs that are normally high. One of the outputs
goes to the low state, and which output this is depends on the binary
pattern fed to the three inputs. This table shows which set of input states
activates each output.

INPUT O INPUT 1 INPUT 2 OUTPUT

Low Low Low 0
Low Low High 1
Low High Low 2
Low High High 3
High Low Low 4
High Low High 5
High High Low 6
High High High 7

2

ISA bus interfacing

Input 0 +5 Volts
Input 1 Output 0
Input 2 Output 1
Enable 1 Output 2
Enable 2 Output 3
Enable Output 4
Output 7 Output 5
Ground Output 6

Fig.2.10 Pinout details for the 74LS138. This is one of the most
useful chips for address decoding

The 74LS138 is rather more useful than it might at first appear. The first
point to note is that there are three further inputs. In most cases it is not
limited to decoding three lines, and can actually decode up to six lines.
The additional three lines are “enable” types, and unless they are taken
to the appropriate state, the outputs of the device all go to the third logic
state. In other words they simply go to a high impedance state, and will
not drive logic inputs. The inputs at pins 4 and 5 are negative enable
inputs, and they must be taken to logic 0 in order to make the device
function normally. The enable input at pin 6 is a positive type, and this
pin must be taken high in order to produce normal operation of the chip.

The second point to note is that different sets of input states activate
different outputs of the 74LS138. This gives the potential of having the
device decode several blocks of addresses, with each block having its
own output. Even if you do not require several decoded outputs on one
card, itis possible to standardise on the same decoder circuit for several
cards, with a different output being used on each card. You could, for

ISA bus Interfacing 2

(o
2 l IC1 = 74LS14
, IC2 = 74LS30
IC1 Pin 14
IC2 Pin 14
1
A9 O
IC1a To IC1d

2
A8 O
1 2 3
A7 o—>¢
3 4 4 _—
A6 © Write
5 >6 5| 1c2
A5 © | 8
13 12 6

AENOC
11

A4 O—
- 12
IOW o

IC1Pin7

IC2Pin7
ov o 1

Fig.2.11 A simple decoder using inverters and a NAND gate

example, have the &H300 to &H31F address range split into four blocks
of eight addresses, with each block activating a different output of the
74LS138. You could ther: have up to four do-it-yourself expansion cards
using the same basic address decoder circuit, provided each card utilized
a different output of its address decoder.

Decoder circuits

A popular method of PC address decoding is to have a decoder circuit
based on a 74LS30 eight input NAND gate. This has an output that goes
low if all eight inputs are high, or high if any of the inputs are low. Obviously

_53

2

ISA bus interfacing

+5V O IC2 Pin 14
16
]
A9 0—2 ” Decoded Outputs
A3 © —O &H300-&H307
3 IC1 12
A4 O ——0 &H308-&H30F
4 10
A5 O— —O &H318-&H31F
6
A8 ©
8
ov o IC2Pin7

A6 0—_3 ‘ 1
4 6 2
A7 o—f IC2a IC2b
5 13
AEN
Fig.2.12 A simple but versatile PC address decoder. IC2 is a 74LS27
triple 3-input NOR gate

you will not need a PC address decoder that decodes eight lines to the
high state. Typically the requirement is for something more like a decoder
which is activated by four lines high and four lines low. The simple way
around this problem is to feed to the 74LS30 via inver:ers any lines that
must be decoded to the low state.

Figure 2.11 shows a typical address decoder based on a 74LS30 eight-
input NAND gate plus some inverters. In this case there are four inverters,
and these are part of a 74LS14 hex Schmitt trigger/inverter package.
However, this general scheme of things should work properly using any
74LS** series inverters. This decoder is designed to act as a “Write”
decoder. It decodes A4, A8, and A9 to the high state and A5 to A7 to the

54 _

ISA bus Inter’acing

2

+5V O
16
6 e ———
A9 o——
:
A8 C 5 Read/Write
A7 o——— IC1 Output
3
A6 O0——] 7415138
4
A5
5
AEN
8
oV o

Fig.2.13 A simple PC address decoder that lacks versatility

low state. This means that it will be activated when any address from
&H310 to &H31F is accessed for a write operation. If A4 was to be fed to
IC2 via an inverter, it would then be decoded to the low state, and the
circuit would be activated by write operations to addresses from &H300
to &H30F. Connect -IOR instead of -IOW, and the decoder will then act
as aread type.

This type of address decoder is very cheap and simple, but as pointed
out previously, it can be a bit awkward when it comes to actually building
the circuit. It is also slightly lacking in versatility. Figure 2.12 shows the
circuit diagram for a PC address decoder based on a 74LS138. This is
still pretty cheap and simple, but itis much more versatile than the circuit
based on the 74LS30.

A minimalist PC address decoder would have to decode address lines
from A5 to A9, plus AEN and possibly -IOR or -IOW. 1t is just possible to
do this using a 7415138, with the only proviso that any decoding of -IOR
or -IOW must be provided separately. Figure 2.13 shows the circuit for a
minimalist address decoder of this type, and | suppose this could be
used if you only wanted to have (say) one 8255 parallel interface chip in

ISA bus interfacing

the &H300 to &H31F address space. However, by using a very simple
address decoder of this type you would be painting yourself into the
proverbial corner, and it would be difficult to add more user add-ons at a
later date.

The circuit of Figure 2.12 offers much greater versatility, but it requires
the use of an extra chip. This is a 74LS27 triple three-input NOR gate. In
this circuit only two of the gates are required, and no connections are
made to the third gate. IC2b is simply wired as an inverter, and it effectively
converts IC2a into a three-input OR gate. It might seem to be easier to
simply use a three-input OR gate, but a suitable device seems to be
difficult to obtain. The 74LS27 is widely available, and is easily wired to
give the required circuit action.

This arrangement enables three lines to drive one input of the 74LS138,
permitting a maximum of eight rather than six lines to be decoded. A8,
A7, and AEN are decoded to the low state by the gates and one of the
low enable inputs of IC1. The other low enable input decodes A5, while
the high enable input decodes A8. A9is fed toinput 0, and it is effectively
decoded to the high state. This renders four of IC1's eight outputs
effectively inoperative. Inputs 1 and 2 of IC1 decode A3 and A4, and the
states on these lines, when all the other decoded lines are at the
appropriate logic levels, dictates which of the four outputs of IC1 is
activated. In other words, the &H300 to &H31F address range is divided
into four blocks of eight addresses. Figure 2.12 shows the range of
addresses that activates each output.

If you only wanted two blocks of sixteen addresses, then A3 would not
be decoded, and instead, pin 2 of IC1 would be connected to the 0-volt
supply rail. The output at pin 14 would then be activated by addresses
from &H300 to &H30F, and the output at pin 10 would be activated by
addresses from &H310 to &H31F. Obviously more address decoding
can be added if more but smaller blocks of addresses are needed. This
can be accomplished using another gate or gates ahead of one or more
of IC1’s inputs. This would enable A9 to be decoded elsewhere, leaving
input 0 (pin 1) of IC1 free to decode A2. All eight outputs of IC1 would
then be brought into action. However, for most purposes the address
decoder of Figure 2.12 will suffice without resorting to any modifications.
Blocks of eight addresses are sufficient to accommodate most add-ons,
while four blocks should give enough scope for expansion. With one
address block per add-on card, this would be sufficient to use up all the
expansion slots in most computers.

As already pointed out, with some peripheral chips there is no need to
bother about decoding -IOW and -IOR, since some chips provide inputs

2

ISA bus interfacing
IOR 0—
+5vVo
16 |
1 Pin 14
AENO— 1
2 3
A7 0— 2 @—O Read
3 IC1
A8 o—— 11
4 IC2 = 74LS32
A6 O——
5 | 74LS138 .
A5 O— 4 11C2b 5 Write
6
A9 o—— 5
Pin7
8 !
ov o _
O CS
IOW ©

Fig.2.14 Producing separate outputs for read and write circuits

for these lines and do the necessary decoding. This is not always the
case though, and when using circuits that are wholly or largely based on
TTL logic chips, you will normally have to decode -IOR and -IOW. Figure
2.14 shows a simple PC address decoder and the additional circuitry
needed in order to produce separate read and write output signais. This
basically just consists of processing the -IOW line and the output of the
decoder using a two-input OR gate.

During a write operation to the appropriate address range, both of these
lines will go low, and so will the output of the gate. Essentially the same
system is used with a second OR gate to process the -IOR line and
produce a read output. A negative chip select output is still available
from the basic address decoder circuit, and can be used with any chips
that have built-in processing for -IOW and -ICR. Note that this method of
gating should work perfectly well with any address decoder circuit, but
only if it provides negative output pulses.

2 ISA bus interfacing

Parallel 1/O ports

In order to produce an eight-bit output port all that is needed is an address
decoder plus an eight-bit latch. Simply using something like a tristate
eight-bit buffer to provide an output port is not usually acceptable. This
would only provide a valid output for the duration that the data bus was
fed through to the outputs. This is likely to be well under a microsecond
in practice. What is needed is a circuit that will latch this momentary
flash of data, so that the outputs can be used to drive relays, l.e.d.s,
digital to analogue converters, or whatever. The situation is generally
somewhat different when it comes to inputting data. You normally have
a set of what are essentially static input levels, and these must be fed
through to the data bus while the port is read. An eight-bit tristate buffer
is all that is needed to achieve this.

Figure 2.15 shows the circuit diagram for a basic PC eight-bit input/output
port. This is basically the same sort of circuit that has been used with
numerous eight-bit home computers over the years, and it seems to
work reliably with most PCs. Note that this circuit must be used in
conjunction with a suitable address decoder circuit. This must be a
decoder that includes the extra decoding to provide separate read and
write outputs.

Itis also worth noting that although no supply decoupling capacitors are
featured in any of the circuits in this book, these must be included on
any PC expansion cards. These are merely ceramic capacitors of about
100 nanofarads in value connected across the supply lines. Some circuit
designers use one capacitor per TTL integrated circuit, with each
capacitor mounted as close as possible to its respective integrated circuit.
However, this is probably using a certain amount of over-kill, and one
decoupling capacitor per three TTL integrated circuits (or other logic
chips) should suffice.

The eight-bit output port of Figure 2.15 is provided by a 74LS273 octal D
type flip/flop. The data bus connects toits D (data) inputs, and the latching
output lines are provided by the Q outputs. These are non-inverting
outputs which latch at whatever states are present on the D inputs when
there is a positive transition on the CP (clock pulse) input. This transition
is, of course, provided by the trailing edge of the write pulse from the
address decoder.

The input port is provided by a 74LS245 octal transceiver (IC4).
Conventionally an octal tristate buffer such as a 74LS244 is used in
applications of this type. | prefer to use the 74LS245 simply because its

58

ISA bus interfacing 2

+5V © O Write
2| 1111
DO o— 3 2—0 Output 0
D1 o o) 15 5 Output 1
D2o 7 IC3 6—0 Output 2
D3 o 8 g—o Output 3
D4 o 13 Lo Output 4
D5 O 141 7415273 5 5 Output 5
D6 © 17 Lo Output 6
D70 18 Lo Output 7
10
oV o 10
| L8 12 o input0
L 17 ———o Input 1
16 IC4 4—0 Input 2
15 5
——o Input 3
14 6—o Input 4
13 7418245)\ 7 Input 5
12 8—o Input 6
il g—o Input 7
20 1]19
O Read

Fig.2.15 A simple PC 8-bit inputfoutput port. Note that this requires an
address decoder circuit in order to function properly

pinout arrangement is a more convenient one which helps to keep board
layouts more simple and straightforward. in this case {C4 has pin 1
wired to the +5 volt supply so that it is permanently in the “send” mode.
Its tristate outputs are controlled by the negative chip enable input at pin
19. When a negative pulse is received from the read output of the address
decoder, the outputs are activated and the eight-bit input code is fed
through to the PC’s data bus.

ISA bus interfacing

The 8255

The standard parallel interface chip for the PCs (and many other
computers come to that) is the 8255. This is bus compatible with the
8080 and 8086 series of microprocessors, and with the Z80 series. The
Z80A microprocessor has been used in several popular eight-bit home
computers, and the 8255 was popular in user add-ons for these machines.
This chip may well be familiar to many readers, but it will be described in
reasonable detail for the benefit of those who have not encountered it
previously.

It is a 40-pin DIL chip, which provides three eight-bit input/output ports.
This is one eight-bit port more than many parallel interface adapter chips,
such as the 6522 and 6821. However, it is not quite as good as it may at
first appear. Whereas chips such as the 6522 only provide two eight-bit
ports, they also provide two handshake lines per port. These handshake
lines are sufficiently versatile to accommodate any normal handshaking
arrangements. This enables the two eight-bit ports to operate properly
in any normal situations, including those where controlling the flow of
data into or out of the port is critical and difficult.

By contrast, the ports of the 8255 have no handshake lines at all. Instead,
where handshaking is needed, port C is split into two four-bit ports. One
nibble is set as outputs while the other nibble is set as inputs, and these
act as the handshake lines for Ports A and B. Thus, if you need eight-bit
ports plus handshake lines, you only have two ports, plus (probably) a
few leftover input and output lines from port C. If you require just basic
input or output ports with no handshaking, then the 8255 has more to
offer than most other parallel interface adapters. On the other hand, if
you do require handshaking it is of little advantage. Although it might
provide a few spare lines on port C, it is probably slightly less convenient
to use than most other parallel port chips.

Block control

it is only fair to point out another relative shortcoming of the 8255, which
is a lack of individual control over the functions of its input/output lines.
With devices such as the 6522 and 6821 there is a data direction register
for each port. By way of this register it is possible to set each line as an
input or an output, as desired. If you require a port to have five lines as
outputs to control relay drivers, and three as inputs to read sensor
switches, then this is perfectly possible. You have full control over which
lines are used as the inputs and which are set as the outputs. With the

DO
D1
D2
D3
D4
DS
D6
D7

A0
Al

EXPANSION BUS

iow
IOR
RST

+5V

ISA bus interfacing

2

34
33
32
31
30

28 |

27

Oo—

35

26

GND o————

Address
Decoder

6

[S

D1
D2
D3
D4
D5

D7

A0
Al

RD
RST

VCC
GND

CS

8255A

PAO
PA1
PA2
PA3
PA4
PAS
PAB
PA7

PBO
PB1
PB2

PC4

PC7

| 4 pao
[3 pat
-2 5 pa2

|————0 PA3

o Pas

|——o0 PAS
——0 PA6

———>o0 PA7

1+ o rmo

——> PB1

———0 PB2

—="——ovrs83

——— o PCO

Fig.2.16 Pinout and connection details for the 8255

8255 all eight lines of a port must be set as outputs, or all eight must be
set asinputs. The only exception to this is port C. As explained previously,
this can be set for simple split operation (four lines as inputs and four

lines as outputs).

V 150d

8 140d

0 1d0Od

ISA bus interfacing

Figure 2.16 gives pinout details for the 8255, and it also shows the correct
method of connecting it to the PC expansion bus. The negative chip
select input (pin 6) is fed from the address decoder, which must obviously
be a type that provides negative output pulses (as do the address decoder
circuits featured earlier in this chapter). The RST, -IOW, and -IOR lines of
the control bus all connect to corresponding terminals of the 8255, as
does the eight-bit data bus. There are two register select inputs on the
8255, which would normally connect to A0 and A1. Accordingly, they
are called A0 and A1 rather than RSO and RS1 (or something similar). If
the address decoder responds (say) to eight addresses from &H308 to
&H30F, then the 8255 will occupy four addresses from &H308 to &H30B.
It will also occupy addresses from &H30C to &H30F in the form of one
set of echoes. Therefore, these addresses would be unusable for other
purposes. Of course, the 8255 could be placed in just four addresses
with no echoes, but in most cases there will not be a great enough
shortage of address space to make this worthwhile.

The outputs of the 8255 are latching types, and are compatible with
74LS** and 74HCT** TTL devices. The inputs are also compatible with
these devices. In fact the device will work reliably with most logic devices,
including most CMOS types.

Although it might seem better to use simple TTL input and output ports
for most applications, the 8255 tends to be a more popular choice. One
reason for this is undoubtedly that it provides a reasonably simple and
inexpensive means of providing a lot of input/output lines. Also, it is
designed specifically for operation with microprocessors such as the
8088 and 80286, etc., and should operate very reliably with these. |
have encountered one or two PCs that seem to be something less than
100% reliable when used with some simple TTL output ports, especially
when operating at higher bus speeds. | have never experienced any
problems when using the 8255 though, regardless of the bus speed. |
therefore tend to use it as my standard method of interfacing the PC
expansion bus to digital to analogue converters, speech chips, or
whatever.

8255 programming

There is insufficient space available here to go into great detail about all
the 8255 operating modes, and methods of using this device. Anyone
using practically any computer peripheral chip would be well advised to
obtain the relevant data sheet, and | would certainly recommend this for
anyone who is going to use a chip as complex as the 8255. However,

ISA bus Interfacing

here we will consider the basic ways of using this interface chip, which
should at least get you started, and may be all that you need in order to
use the chip effectively in your particular applications.

The 8255 has four read/write registers. Three of these are ports A, B,
and C. Obviously each one of these would normally be used only as a
read register or a write type, depending on whether its port has been set
as an input or an output type. The exception to this is when port C is
used in the split mode of operation, and it is then a form of read/write
register. The fourth register is a control type, and data would nosmally
only be written to this. You can read data from this register, but it will not
furnish anything meaningful. If you need a record of what has been
written to the control register, a byte of RAM must be used to store a
copy of each control number that is written to this register. If we assume
that the 8255 is at the example address range mentioned earlier (&H308
to &H30B), then the base addresses of the four registers would be as
follows:-

HEX ADDRESS DEC. ADDRESS REGISTER

&H308 776 Port A
&H309 777 Port B
&H30A 778 Port C
&H308 779 Control

Using the ports is straightforward enough, but the control register is a bit
tricky to fully master. There are three modes of operation for the 8255,
which have been designated modes 0, 1, and 2. Mode 0 is the most
simple, and is the one ycu should use when initially experimenting with
the 8255. In this mode the ports operate as simple input/output types,
with the only complication that port C can operate in the split mode (one
nibble as inputs and the other nibble as outputs).

Bits five to seven of the control register set the required operating mode.
Bit seven is set high in order to enable the operating mode to be changed.
Be careful to set this bit high, as the control register operates in a totally
different manner if this bit is set to zero. Bits five and six control the
operating mode. This table shows how this scheme of things operates.

MODE BIT7 BIT6 BITS
0 1 0 0
1 1 0 1
2 1 1 0
2 1 1 1

2

2 ISA bus intertacing

Port C Lower Direction

0 = Output, 1 = Input

Port B Direction

0 = Output, 1 = Input

MODE (Port B & C Lower)

00 = Mode O
Do - ‘ 01 = Mode 1
D1 |—
J Port C Upper Direction
Ra— -
L J 0 = Output, 1 = Input
D3 +—
D4 }— =i Port A Direction
D5] 0 = Output, 1 = Input
D6
= MODE (Port A & C Upper)
00 = Mode 0
R 01 = Mode 1
1X = Mode 2

Always 1 To Change Mode

Fig.2.17 The functions of the bits in the 8255 control register

As will be apparent from this table, there are two control codes which
select mode 2. It does not matter which one you use, the effect on the
8255 is exactly the same. These bits only control the mode of port A and

ISA bus interfacing

the upper nibble of port C. Port B and the lower nibble of port C are
controlled by bit 2 of the control register. This is either high for mode 1
operation, or low if you require mode 0 operation. Mode 2 is not
applicable to these ports, and so one bit is all that is needed for their
mode control.

Bits zero, one, three, and four are used to control the functions of the
ports (i.e. whether they operate as inputs or outputs). This operates in
the following manner.

DEC. VALUE
PORT CONTROL BIT WHEN HIGH
0 C Lower 1
1 B 2
3 C Upper 8
4 A 16

In order to set a port as an output type the control bit is set to zero.
Setting a control bit to 1 obviously sets its respective port as an input
type. Those who are used to the 6522, 6821, etc., should note that this
works the opposite way round to the data direction registers of these
chips.

When writing to the control register you must set the mode of operation
and the port directions in a single write operation. You can not write to
bits five to seven first and then bits zero, one, three, and four. However,
working out the right control register values is not difficult. For mode 0
operation bits five and six are low, and bit seven is high. To set bit seven
high a decimal value of 128 is required. The table provided previously
shows the decimal value needed for each control bit when it is set high
(i.e. when its port is to be set as an input). A value of zero is, of course,
needed for any bits that will be set low.

Simply take the values given in the table for the ports that are to be set
as inputs, and add 128 to the total of these values. You then have the
value to write to the control register. For Example, assume that port A
and both nibbles of port C are to be set as inputs. The values for these
ports as inputs are sixteen, eight, and one. This gives a total of 25.
Adding 128 to this gives a grand total of 153, which is the value that must
be written to the control register. In GW BASIC, and using the example
port addresses mentioned previously, this value would be written to the
control register using the instruction:

OUT 779,153

ISA bus interfacing

You can use hexadecimal addresses with GW BASIC if you prefer, but
remember that hexadecimal numbers are indicated using both the “&H"
prefix, not just the “&” prefix used in some languages. Numbers having
just the “&” prefix may well be accepted, as | think that these are
interpreted by GW BASIC as octal (base eight) numbers. This has led
me into some time-consuming errors in the past as | tend to use just the
“&" prefix from force of habit (having mainly used a 8BC computer for
interfacing in the past). Consequently, { now always use decimal input/
output addresses when using GW BASIC.

Mode 0

For many purposes mode 0 operation will suffice. For example, there
are many applications that do not require any form of handshaking. These
include such things as driving digital to analogue converters, relay drivers,
etc., and reading simple sensors. For applications of this type you only
need simple input and output lines, and there is no pointin using anything
beyond mode 0. Where handshaking is needed, setting port C for split
operation to provide the handshake input/output lines will often suffice.
This does not provide edge-triggered inputs or anything of this type, but
simple input and output lines will usually be sufficient. Remember that
where necessary you can always use some external signal processing,
such as a pulse stretcher or shortener, in order to make things more
reliable. Forinstance, if an output is providing very brief pulses, a pulse
stretcher might provide a signal which can be read more reliably, with no
pulses passing undetected by the handshake input.

Mode 1

Where complex handshaking is needed it might be better to resort to
mode 1 operation. This uses port A and port B as eight-bit input output
ports, and six lines of port C to act as strobed handshake lines and
interrupt control signals (three lines per port). Mode 2 provides strobed
bidirectional operation through port A, with five lines of port C acting as
what | suppose is a sort of control bus. This is not a mode that | have
ever used, and it is presumably only needed for a few specialised
applications. Anyway, to fully get to grips with the 8255 you really need
to study the data sheet and then experiment a little.

Other 82** series devices interface to the PC buses in much the same
way as the 8255. Devices that are bus compatible with the 82** series of
peripheral chips should also interface to the PC expansion bus without
difficulty. It is often possible to interface peripheral chips for one series
of microprocessors to a microprocessor from a different range. For
example, chips intended for the 6502 and similar microprocessors have

ISA bus interfacing

been used successfully with the Z80 microprocessor. Itis usuaily possible
to overcome the differences between the control buses, but it can take a
certain amount of experimentation to get things right. For example, where
a peripheral chip has a combined read/write line, either -IOW or -IOR
might provide a suitable signal. If not, then inverting one of these lines
or feeding it through a monostable might produce the desired result. If
a negative reset signal is needed, then feeding the PC’s reset line via an
inverter should give the desired result, or you can put a suitable reset
generator circuit on the expansion card. Studying the timing diagrams
in data sheets can steer you in the right direction, but in the end it comes
down to the “suck it and see” approach.

Design example

Bear in mind that devices wtich are described as “microprocesscr bus
compatible”, or something similar, might not be compatible with the PC's
version of a microprocessor bus. While most microprocessor compatible
devices can probably be interfaced direct to the PC buses successfully,
this may not always be feasible. With some peripheral chips it is probably
best not to attempt to interface them direct onto the PC expansion bus.
You have to carefully assess each interfacing problem, and work out the
most appropriate solution. When in doubt it is probably best to taxe the
safer but more complex approach, and interface to the PC expansion
bus indirectly via an 8255 (or whatever).

We will now consider a example of interfacing devices to the PC bus, in
order to illustrate the problems that can arise and some possible solutions
to them. We will use an analogue to digital converter as our design
example as this is fairly typical in the interfacing problems it provides.
The circuits described here can actually be used as the basis of your
own projects, as we will be dealing with practical integrated circuits, not
notional devices. The circuits have all been tried and tested.

Some devices are much easier to interface to the PC expansion bus
than others, and the ADC0844 analogue to digital converter represents
a relatively easy option. Pinout details for this device is shown in Figure
2.18. The ADC0844 is relatively easy to interface to a PC because it is
specifically designed to interface to 8080 and 8088 type buses. This
analogue to digital converter chip has an eight-bit data bus (DBO to DB7)
with tristate outputs. It can therefore output to the data bus by driving
the chip select (-CS) input from a suitable address decoder circuit. There
is no need for the address decoder to process -IOR or -IOW as there are
inputs for these on the ADC0844 (-RD and -WR).

2 ISA bus interfacing

ADCO0844

RD +5V
CS WR
CH1 INTR
CH2 DBO/MAO
CH3 DB1/MA1
CH4 DB2/MA2

A.GND DB3/MA3

V.REF DB4/MA4
DB7 DB5/MAS
GND DB6/MA6

10 11
Fig.2.18 Pinout details for the ADC0844

You will notice from Figure 2.18 that the lower four bits of the address
bus are labelled DBO/MAO to DB3/MA3. This is due to the fact that these
pins are dual purpose, and also operate as what the ADC0844 data sheet
refers to as address inputs. This is perhaps not a strictly accurate way of
looking at things since the chip only occupies a single address, and
these pins do little more than switch between several internal registers.
The basic method of using the ADC0844 is to first write to the device in
order to start a conversion, and to then read it in order to extract the
converted value. Sometimes with this type of thing the value written to
the chip is simply a dummy value, and can be any legal value (i.e. any
integer from 0 to 255). The ADCO0844 is a fairly complex device though,
and it has four analogue inputs. There is actually only one converter, but
this is preceded by a four way multiplexer (an electronic switch) that can
connect any one of these inputs through to the converter. The value
written to the device determines which input is connected through to the
converter.

ISA bus interfacing 2

SINGLE-ENDED

CH1 (+)
CH2 o—— (+)
CH3 ¢ (+)
CH4 o—— (+)
A.GND (9
DIFFERENTIAL
CH1 © +6)
IN 1
CH2 ¢ -(+)
CH3 ¢ + ()
IN 2
CH4 o = {4}
PSEUDO-DIFF.

IN 1 CH1 o—— (+)
IN 2 CH2 o— (+)
IN3 CH3 o——— (4)

COM. CH4 o———4 ()

Fig.2.19 The input arrangements for the ADC0844's three modes

2

ISA bus__lntertaclﬂ

+5V
VR1
CH1 =— 10k
ac
=
[ou J 1 VR2
W CH2 m 10k
pd
3
VR3
<C
S G '[] 10k
o
0
oV

Fig.2.20 Using the ADC0844 in its ratiometric mcde. The +5V supply
is used as the reference voltage

Input modes

Matters are actually a bit more complicated than this, because there are
three modes of operation available. The most simple of these is the
single-ended mode, and with this there are four inputs. The voltage
converted is the potential from the analogue ground pin to whichever
input has been selected. In other words, this is the normal four-channel
mode of the device. You will notice from Figure 2.18 that there are
separate analogue and digital ground terminals. These do not necessarily
have to be held at the same potential, but in most cases they would
simply be wired together and connected to a common analogue/digital
ground.

There are two differential modes available, and in the standard differential
mode there are two inputs available. The first uses what would normally
be the channel 1 and channel 2 inputs, while the second uses the channel
3 and channel 4 inputs. The other differential moce is a pseudo type, in
which the channel 4 input acts as a common negative input, and the
other three inputs respond to their voltage relative to the channel 4 input.

ISA bus interfacing

2

In other words, if you wish to measure voltages with respect to a potential
other than the earth one, connect the channel 4 input to a suitable offset
voltage, and then use inputs 1 to 3 to measure the voltages. Note thatin
the differential and pseudo differential modes the analogue ground
terminal is not used as an input, but it would normally be connected to
ground anyway. Figure 2.19 shows the available modes in diagrammatic
form, and might help to clarify matters.

This table shows the values that must be written to the ADC0844 in order
to select each of the available operating modes, and the options available
within each mode (e.g. which channel is to be read). The table shows
the polarity with which the input signals must be applied to the device.

CONT. VAL. CH1 CH2 CH3 CH4 A.GND MODE
+ X X X Differential
X X Difterential

Differential
Differential

+
X X X

+
X - Single-ended
X - Single-ended
X - Single-ended
+ Single-ended
Pseudo Diff.
Pseudo Diff.
Pseudo Diff.

K;\IG)(DA(DN—“O
L]

-t
w
X 4+ X X X 4+ X X X 4+

IS
X X 4+ X X X 4+ X X
+ X X X 4+ X x
'
X X X

Reference voltage

The reference voitage fed to the V.REF pin controls the full-range sensitivity
of the device. The full-range value is achieved at whatever voltage is
used as the reference potential. This voltage must be in the range O to 5
volts, but for good results it should not be much less than about 1 volt.
For some purposes the reference voltage can simply be provided by the
+5 volt supply, or can be a fraction of this supply obtained via a simple
potential divider.

Neither method is particularly satisfactory in precision measurement
applications because the +5 volt rail is not likely to be highly stable or
noise-free. The stability of most PC +5 volt rails is not actually all that

ISA bus interfacing

bad, but for a critical application such as using an analogue to digital
converter for accurate measurements, very well stabilised reference
voltages are often needed. One method of using the device, which avoids
the need for a highly stable reference voltage, is the ratiometric method.
This is where the input voltages are derived from potential dividers across
the +5 volt supply, as in Figure 2.20. Although the potentiometers are
shown as being presets in Figure 2.20, in reality they could be ordinary
potentiometers, or even potential dividers having a fixed resistor for one
element, and a thermistor or some other type of sensor as the other
element. The +5 volt rail is used as the reference voltage.

The point about this method is that any change in the supply voltage will
affect both the reference potential and the input potential. The two
changes cancel out one another, giving no change in readings. Where a
highly stable reference voltage is needed, any of the many low-voltage
reference generator chips should be suitable. These give highly stable
reference voltages, which have excellent temperature stability.

Conversion time

The -INTR pin is a status output. The conversion process is not an instant
process, or even a particularly fast one. The ADC0844 is fairly average
in terms of its conversion time, which is typically about 30us at 25 degrees
Celsius. Obviously data must not be read from the cevice prematurely,
as invalid data would then be obtained. One method of avoiding this
problem, and one which usually works well in practice, is to simply have
a timing loop to provide a delay between issuing each start conversion
signal and reading the converter. If necessary, some experimentation
can be used in order to find the optimum delay time (i.e. the shortest
delay which gives reliable operation). Bear in mind that if you are using
afairly slow computer language, such as an interpreted BASIC, you may
well find that you can not read the device prematurely. With the speed of
modern PCs this is by no means certain though, and delay loops are
now often required in situations where they would have been unnecessary
in the past.

An alternative to using a time delay is to have an input line to read the
-INTR output. This is normally high, and goes low when a conversion
has been completed. The hold-off would then be obtained by monitoring
-INTR using a simple loop routine, and only permitting the converter to
be read once -INTR had gone low. Incidentally, -INTR is reset
automatically when the converter is read. There is a slight problem with
this method in that an input line is required. If the analogue to digital

I{SA bus Interfacing 2

Read o——— IC1 = 74LS125
3 1-
DO o <| — 6 INO
IC1a
4
6 5
" D1 o O [N 1
- IC1b
m
Z p
o 13
‘£ 11 12
< D2 o O IN2
S IC1c
n
10
8 9
D3 o —0 IN 3
IC1d
GND ©- IC1Pin7
+5V O IC1 Pin 14

Fig.2.21 Using a 74LS125 to provide four inputs

converter is part of a large interface card, then there may well be a spare
input somewhere that can be used. However, if it is on a simple ADC
card, there will probably be ro spare lines that can be used. Clearly,
adding an 8255 in order to read one line would be using the proverbial
“sledgehammer to crack a nut”, and using a 74L.S245 to provide one

2 ISA bus interfacing

+5V ©
20
17 8
DO o———
16
D1 o——
15
D2 O—T 18 Status
B D3 © Output
os 13
Z D4 o—— IC1
9 12 3
> D5 o—— —0 CH1IN
< 11 4
% D6 o——] ADC0844 |——o CH2IN
9 5
© D7 o— ——o CH3IN
19 6
IOW o——— ——0 CH4 IN
1
IOR o———
10
GND o
Address 2
Decoder
7
O A.GND

Fig.2.22 An analogue to digital converter based on the ADC0844

line would not be much better. A more practical approach is to use a
device such as the 74LS125, which can provide up to four input lines.
Figure 2.21 shows how this device can be used as a quad input port. Of
course, if you only need one input line, you can use one of the buffers
and ignore the other three. However, it is not a bad idea to implement all
four lines, since the spare inputs might tumn out to be useful for something.

There is a third option, which is to use the -INTR output to generate an
interrupt. This is not difficult from the hardware point of view, but you
need to be fairly expert at PC programming in order to handle this type

ISA bus interfacing

of thing. In an application of this type it is not normally necessary to
resort to using interrupts. It is only likely to be worthwhile doing so in
applications that are processor intensive, and where it would therefore
be unacceptable to have the processor idling away waiting for
conversions to be completad. Few applications for analogue to digital
converters fall into this category. Mostly a set of readings are read and
stored in memory, and they are only processed once a full set has be
gathered, and no more readings will be taken. In some cases readings
are taken and immediately displayed on the screen, which is not usually
very demanding on the microprocessor.

Figure 2.22 shows the circuit diagram for an analogue to digital converter
based on the ADC0844, complete with details of the connections to the
PC expansion bus. This circuit uses the +5 volt supply as the reference
voltage. Remember that the address decoder should be a type that
does not decode -IOR and -CW, as these are dealt with by the ADC0844.
This circuit does not utilize the -INTR status output, and my preference is
to simply use a delay loog if there is a danger of taking readings too
frequently.

One final point is that the ADC0844 usually has a suffix to the basic type
number. The suffix indicates the case style and operating temperature
range of the component. You are most likely to see the ADC0844CCN
advertised in component catalogues, and this is the version | used. Any
version of the device should be satisfactory for normal purposes though.

Finally

With the information provided here, anyone with a reasonable amount of
experience at electronics construction should be able to interface a wide
range of devices to the PC's ISA expansion bus without too much difficulty.
PC interfacing is really very straightforward, and is actually much easier
than interfacing to most of the eight-bit computers | have dealt with (which
includes practically all the pcpular eight-bit machines). Complications
can arise if wait states have to be added, but in my experience this has
never been necessary. The PC expansion bus is not particularly fast,
and most peripheral chips seem to be able to keep up with it. If you end
up trying to add wait states, you are probably doing things the hard way,
and might be better advised to have a complete rethink.

Some applications might require the added complication of using
interrupts, but there are probably few PC add-ons where the use of
interrupts is essential. This is a subject that is more a matter of software
than hardware, and so it will not be pursued further here. interrupts on

2 ISA bus interfacing

Fig.2.23 The 8255 and ADC0844 chips are available in plastic
DIL encapsulations

the PC are less fraught than on most eight-bit computers, but you still

need to be fairly expert at the software side of things. You have to get |
things just right or each time the add-on is activated it will crash the |
computer. Probably the best advice when designing PC add-ons is to |
use sensible choices for the chips that actually interface to the expansion

bus. There are plenty of integrated circuits that will easily interface with

the PCs which, which means that there is probably no point in using any
devices that prove to be awkward.

ISA bus interfacing 2

Points to remember

The first stage in designing an ISA expansion card is to come up with a
suitable address decoder circuit. The address decoder actually decodes
a few control lines in addition to the lower 10 address lines.

The IOR line goes low during read cycles and the IOW line goes low
during write cycles. This permits input and outout ports to share the
same address.

An ultra simple address decoder can decode as few as five address
lines and two control lines. However, this places the device at every
address in a block of 32 addresses. Decoding more address lines
enables the 32 addresses to be used more efficiently, with a different
device at each address if all 10 of the lower address lines are decoded.

An address decoder can be produced entirely from gates and inverters,

but in many cases it is better to base the circuit on a more complex chip
| such as the 74LS138. This usually produces a more straightforward but
versatile design.

control bus. When using devices of this type it is not necessary to decode
some of the control lines, since the chips have inputs for these lines. If a
chip has more than one register, it will also decode one or more of the
address lines.

}
Some interface chips are designed specifically for use with an 8080 style
|

It is generally better to resort to a special parallel input/output chip like
the 8255 if a several parallel ports are required. Each 8255 chip can
provide three eight-bit input/output ports that can be used in several
modes.

The fact that a chip is described as something like “microprocessor
compatible” does not necessarily mean that it is compatible with a
microprocessor in the 8080 series. Using an interface chip designed for

I - |

2 ISA bus interfacing

another type of processor might not be possible and is unlikely to be
worth the effort.

With slow devices such as analogue to digital converters it is necessary
to ensure that the device is not operated at an excessive rate, which
would produce spurious data. Hardware handshaking is one solution,
but in most cases a delay routine in the software is a simpler way of
handling things.

Interfacing to the ISA bus is not a good starting point. Those with limited
experience of electronics and interfacing should start with projects that
interface to one of the external points such as the parallel port.

3

Printer port
interfacing

Standard ports

While it has to be admitted that interfacing direct onto the PC expansion
bus is in many ways the best approach, as we have seen in chapters
one and two, it is also slightly awkward. It requires the use of custom
printed circuit boards which must be accurately made (and of the double-
sided variety), or projects based on proprietary prototyping cards. This
second method is relatively straightforward, but it does not necessarily
produce a very neat finished product, and the prototyping cards are not
particularly cheap.

So is there a simpler way of connecting user add-ons to a PC? | suppose
that this is a “how long is a piece of string?” style question. With some
types of add-on circuit there is probably no realistic alternative to using
the expansion slots. For example, if vast numbers of input/output lines
are required, either a custom interface card must be produced, or your
add-on must interface via a ready-made multi-line interface card. It is
actually possible to have numerous input/output lines provided by other
means, but this method of expansion is relatively cumbersome. With
many of the more simple and straightforward projects though, the
standard PC ports often offer a practical (and easier) alternative to the
expansion bus.

Printer port

There are three types of standard PC port that are potentially usabie for
your own add-ons. These are the serial, parallel, and analogue ports.
Interfacing via a serial port is not particularty difficult, and the serial-to-
parallel and parallel-to-serial conversion is easily achieved using a UART
(universal asynchronous receiver/transmitter). In most cases it is easier
to use a parallel port, but for those who prefer the serial approach this

80

) Pﬂntel_' port Inte_rfaclng

topic is covered in the next chapter. Obviously most PCs have a printer
port connected to a printer, and this port is therefore unavailable for
general use unless you resort to some form “printer sharer” switching
device. On the other hand, many PCs have a second printer port, and in
most cases this is left totally unused. Even if a second port is not fitted,
a very inexpensive expansion card is all that is needed in order to equip
your computer with a second port. These days it is increasingly common
for printers to have a USB port, and using this rather than the parallel
interface frees the PC’s printer port for other purposes.

Although a printer port may seem to be of limited use for general
interfacing purposes, the PC printer ports are actually quite versatile.
On the face of it a parallel printer port is an output type, and it has little or
no potential for use as an input port. Fortunately, in addition to the eight
data outputs a PC printer port has several handshake lines. In fact there
are no less than nine of these - five inputs and four outputs. As we shall
see later in this chapter, the handshake lines enable the portto act as an
input or output type, or both at once. Some external circuitry is required
in order to make the port function as an eight-bit input type, but it only
requires a very simple and inexpensive add-on.

Obtaining eight inputs and eight output lines using one of the printer
ports is certainly much easier than using a serial port or the expansion
bus to provide the same function. Also, the parallel port can read and
write at a much higher rate, and it still has some spare lines for general
handshaking purposes or other uses. One possible use for these extra
lines is to provide further eight-bit input or output ports. It is actually
possible to obtain a large number of input and output lines using a printer
port and basic multiplexing techniques. For complex interfacing of this
type | would opt for a proper multi-port expansion card, but the printer
port method is perfectly feasible if that is the approach you prefer.

Apart from PCs that date back many years, PCs have bidirectional printer
ports. In other words, the eight data outputs can be switched to operate
as inputs. Individual control over each line is not provided, so all eight
lines have to be inputs or outputs. Even so, this greatly simplifies matters
when an eight-bit input port and only a few outputs are required. it permits
an eight-bit input to be provided without the need for additional hardware
and software to “squeeze a quart into a pint pot”.

Advantages

So why should you bother to use the PC'’s printer ports for general
interfacing when there is a perfectly good expansicn bus? As already

Printer port interfacing

3

pointed out, there are practical difficulties in using the expansion slots,
making it a rather awkward prospect for the average electronics hobbyist.
The printer and joystick ports are much more straightforward, and provide
no real difficulties. You simply connect your add-on to the PC via a
muiti-way lead terminated in the appropriate type of D connector. Even
if you are equipped to make accurate double-sided printed circuit boards,
the relative simplicity of interfacing to the PC's built-in interfaces could
reasonably be regarded as a more attractive proposition. Itis noticeable
that an increasing range of ready-made PC add-ons is designed to
connect to the built-in interfaces rather than the expansion bus.

Another advantage of the ouilt-in ports is that they effectively provide
you with some of the hardware for your add-ons, but at little or no cost.
At little cost if you need to buy an expansion card to provide the printer
of “games” port, or no cost if your computer is supplied complete with
suitable ports (as most are). If you interface via the expansion slots it is
necessary to include address decoding and input/output ports on the
card. This means that you end up with a fair amount of circuitry before
you start on the project itself! Using the built-in ports means that all or
most of the basic interfacing is taken care of for you.

On the face of it there is an advantage in using the expansion slots for
your add-ons, as it keeps everything neat and tidy with your ciicuits
tucked away inside the PC. In reality things are usually slightly less
straightforward than this. You often seem to end up with projects that
are half on the expansion card and half outside the computer, with a big
lead between the two. This is because you often need to have access to
the add-on. For example, EPROM programming and chip testing recuires
you to be able to plug chips into the add-on unit. If a project has any
controls, these must be on an external unit so that you can get at them.
With projects of these types, using the built-in ports would seem to be
no more or less neat than using the expansion slots. It is likely to be
significantly less expensive though.

Drawbacks

Using the integral ports does have one or two drawbacks. | suppose
one of these drawbacks is that it is ultimately more limiting than using
the expansion slots, but this 1s obviously irrelevant unless you intend to
do some fairly complex interfacing. For many purposes the built-in ports
are perfectly adequate. Another slight drawback is that there a-e no
power rails available on the printer ports. Only a +5 volt rail is available
when using the “games” port. When using the printer ports it is possible

Printer port interfacing

to use the “games” or keyboard port to provide a +5 volt supply, which
is all that many add-ons require.

Inthe past, USB (universal serial bus) ports were relatively rare. They are
actually present on the motherboards of many older PCs, but relatively
few are equipped with connectors at the rear of the case to enable these
ports to be connected to the outside world. These days they are present
on the vast majority of PCs. Anyway, if your PC does have an unused
USB port, this is another potential source of a +5 volt supply. When
using the printer ports or game port it is possible to use the expansion
bus as a source for all the PCs supply rails. However, this is not a
particularly neat solution, and if anything beyond a simple +5 volt supply
is needed, it is normal practice to provide the add-on with its own power
supply unit.

Right lines

The PC printer connector is a female 25-way D type connector. You
therefore need a male 25-way D connector to make the connections to
each port. When used for their intended purpose the pins of each printer
port have the functions detailed in Figure 3.1. This shows the port as
viewed from the outside of the computer. Looking at it another way, it
shows the pin functions of the male connector as viewed from rear. In
other words, as viewed when you are actually making the connections
to the plug.

If you are unsure about the pin numbering of practically any computer
connector, it is worth bearing in mind that virtually all of these connectors
have the pin numbers marked on the connectors themselves.
Unfortunately, the small size of most connectors inevitably means that
the lettering is very small. In the case of D type connectors, matters are
not helped by the fact that the numbers are moulded into the plastic
body of the connectors. You may well need the aid of a magnifier to
read the numbers, but this is a certain method of avoiding a set of
“mirrored” connections to the D plugs.

One way of using a printer port for general interfacing is to make your
add-on circuit mimic a parallel printer, so that data can be written to it in
the normal way. This method does have possible advantages, since
there are operating system routines and general high level support to
control the flow of data to the port. If you interface to the port in the
normal way, there should be no difficulty in using these routines and
support. The drawback of this method is that it is very restrictive, and

S T T RN,

Printer port interfecing 3

Selectin Busy D7 D5 D3 D1 Strobe
) A))) A)

Paper Ack D6 D4 D2 DO

Gnd Gnd Gnd Gnd | Sel outr Error ’
Gnd Gnd Gnd Gnd Init ALF

Fig.3.1 Connection details for a PC printer port

only permits the port to operate as a fairly bas:c eight-bit output type.
This aspect of things is covered in more detail ir: the final chapter cf this
book.

Direct control of the printer ports permits much greater versatility, and in
conjunction with some ex:ernal hardware makes it possible to have
numerous input and output lines. Even if you do wish to use the printer
as nothing more than an eight-bit output with handshaking, it might still
be easier to write direct to the port, and control the flow of data using
your own software routines. This type of thing is not particularly complex,
and is easily integrated with the main program. | would certainly
recommend direct control of the ports wherever possible.

When taking direct control of the printer ports is best to largely forget the
intended purposes of the input lines. The exception here are the eight
data outputs (“D0” to “D7” in Figure 3.1). These are eight latching outputs,
and it is to these that bytes of data a written when the ports are used to
drive printers. Their function is normally the same when they are used
for general interfacing purposes. The only difference when they are used
for general interfacing is tha: you write data to the appropriate input/
output address, and not to a DOS device via the operating system.

3 _ Printer port interfacing

In 4 In7 D7 D5 D3 D1 Out0
|

InS Iné Dé D4 D2 DO

' l ' 1 1

Gnd Gnd Gnd 1 Gnd ¥6u13 1 In3 F

Gnd Gnd Gnd Gnd Out2 Outl

Fig.3.2 Connection details for a PC printer port when used as a
general-purpose interface

With the other lines their original functions should be forgotten, and they
should be thought of as input and output lines at certain addresses in
the PC's input/output map. Figure 3.2 shows the pin functions with this
alternative way of viewing things. As will be apparent from this diagram,
in addition to the eight-bit output there are four other outputs, and five
input lines. Unfortunately, some of these additional inputs and outputs
have built-in inverters. These are the ones which have the line marked
over the pin function. This is generally a bit inconvenient, but the inverters
do not place any major limitations on the ways in which the relevant lines
can be used. Where the inversions are not needed they can be
counteracted by using external inverters in your interface circuit.
Alternatively, the software routines can be written to take into account
any unwanted inversions.

Properly addressed

In DOS terminology the printer ports are LPT1 and LPT2. They each
occupy three addresses in the PC's input/output map. Note that the
8088 series of microprocessors used in the PCs have separate memory
and input/output maps, and the printer ports are obviously in the input/

84

Printer port interfacing 3

output map. When writing data to one of these ports, or reading from
them, you must therefore use instructions that are appropriate to input/
output devices. Thus, in GW BASIC you would use INP and OUT, not
PEEK and POKE. The normal scheme of things is for LPT1 to be at
addresses from &H378 to &H37A, and LPT2 to be at addresses from
&H278 to &H27A. The decimal equivalents for these hexadecimal address
ranges are 888 to 890, and 632 to 634. In this book we will deal in
hexadecimal addresses, but when writing software for use with your own
printer port add-ons it is obviously in order to use decimal addresses if
this is your preferred way of doing things.

This table shows the location of each printer port input/output line in the
PC’s input/output map.

I/O Line Address Mapping
LPT2

&H278

Bit Line

0 DO

1 D1

2 D2

3 D3

4 D4

5 D5

6 D6

7 D7
&H279

Bit Line

0 unused
1 unused
2 unused
3 In3

3 Printer port interfacing

4 In4

5 In5

6 In6

7 In 7 (inverted)
&H27A

Bit Line

0 Out 0 (inverted)
1 Out 1 (inverted)
2 Out 2

3 Out 3 (inverted)
4 unused

5 unused

6 unused

7 unused

LPT1

&H378

Bit Line

0 Do

1 D1

2 D2

3 D3

4 D4

5 D5

6 D6

7 D7

Printer port interlacing

3

&H379

Bit Line

0 unused

1 unused

2 unused

3 In3

4 In4

5 In5

6 In6

7 In 7 (inverted)
&H37A

Bit Line

0 Out 0 (inverted)
1 Out 1 (inverted)
2 Out 2

3 Out 3 (inverted)
4 unused

5 unused

6 unused

7 unused

There is a slight complication in that a third address block is sometimes
used for PC printer ports. These addresses are &H3BC, &H3BD, and
&H3BE. This address range seems to have its origins in the original
Hercules graphics adapter, which included a parallel port. It is still used
to some extent today, and many modern PCs can be set to use this
address range via the BIOS Setup program. Apparently some FCs are
supplied with this set as the address range for-the built-in printer port.
Where this address range is in use the operating system will use it for
LPT1, with any ports at &H378 or &H278 being moved one port number
higher as a result. Apparently, the operating system uses the port at the
highest address as port 1, the one at the next highest address as port 2,

3 Printer port interfacing

and so on. Hence, where base address &H3BC is in use, it will always
be used for printer port one. These are the locations of the input/output
lines in the input/output map for a printer port having &H3BC as its base
address:

LPT1 (base address &H3BC)

&H3BC

Bit Line

0 DO

1 Dt

2 D2

3 D3

4 D4

5 D5

6 D6

7 D7

&H3BD

Bit Line

0 unused

1 unused

2 unused

3 in3

4 In4

5 Ins

6 In6

7 In 7 (inverted)
&H3BE

Bit Line

0 Out 0 (inverted)
1 Out 1 (inverted)

3

Printer port interfacing
2 Out?2
3 Out 3 (inverted)
4 unused
5 unused
6 unused
7 unused

It you are controlling the ports directly, all this is not of any great
significance, but you must cbviously use the correct address range for
the port in question. The BIOS will normally show a list of the base
addresses for all the ports during the start-up routine, and this may tell
you what you need to know. If not, you can always resort to trial and
error to find the address range to which a port responds. Remember
that in Windows you can use the System Information utility to provide a
memory map for the input/output devices. This will show the acdress
ranges for all the hardware, including all the standard ports.

Writing to the eight data lines of either port is very straightforward, and it
is just a matter writing the correct value to the appropriate address. For
example, to set all eight data lines of LPT2 high a value of 255 would be
written to address &H278. in GW BASIC or Q BASIC this would achieved
using the OUT instruction (i.e. OUT &H278,255). There is no need to
include data latches in your add-on circuits, because the data outputs
are latching types. The vast majority of modern PCs have bidirectional
printer ports, but this complication can be ignored if you are using the
data lines as outputs. They default to operation as normal outputs.

Handshake outputs

Like the data outputs, the four handshake outputs at addresses 8H27A
and &H37A are latching types, and they can only act as outputs. Again,
it is just a matter of writing the appropriate value to the port address.
With handshake lines it would usually be easier if they could be operated
entirely independently. This is clearly not possible here, because all four
handshake outputs of each printer port are at the same address.
Therefore, when altering the state of one output, great care must be
taken not to alter the states of the other three outputs.

A standard way of achieving this is to read from the port to determine the
states of the outputs, and then work out a modified value to write back to
the port, so that only the desired change is made. This is not a reliable

3 Printer port interfacing

method in this case, since this is a write-only address. You can not be
sure that the values read back will accurately reflect the states of the
outputs. Infactitis highly unlikely that they would, and with most printer
port cards a value of 255 will always be returned from the handshake
output address. This is simply because no hardware is actually activated
by a read operation to the handshake output addresses, and the data
lines of the microprocessor are left free to drift. They all drift to the high
state, giving a returned value of 255. Where necessary, your software
routines must therefore be carefully written so that the program
“remembers” the last value written to the handshake outputs.

Of course, with only four of the bits at each of these addresses actually
used, only data values from 0 to 15 are valid. Values from 16 to 255 will
not cause a software error, but only the least significant four bits of these
values will affect the states of the handshake outputs. For instance, a
value of 16 would set all four outputs low, and a value of 255 would set
them all high. On the other hand, it would not be good programming
practice to write out-of-range values to a port.

Quart into a pint pot

One the face of it, the handshake inputs are only suitable for their intended
purpose, since five inputs is not enough to read in bytes of data. In
reality they can be used to read in bytes of data, but this requires a small
amount of additional hardware, plus one of the handshake outputs. Itis
just a matter of using some basic multiplexing, and Figure 3.3 shows the
basic set-up used. Four of the handshake inputs are fed from two sets
of four-bit tristate buffers. The handshake output directly drives the enable
input of one quad tristate buffer, but drives the enable input of the other
via an inverter. Only one or other of the quad buffers will be active at any
one time, and the required buffer can be selected by setting the
handshake output to the appropriate state.

The lower nibble of the eight-bit input is applied to one buffer, and the
upper nibble is applied to the other buffer. In order to read in a complete
byte it is necessary to read the two nibbles separately and then use a
simple software routine to combine the two readings in such a way that
the correct value for the full byte is obtained. This method is obviously
not as quick and direct as reading data in complete bytes, but even with
a fairly slow PC it would probably be possible to read in a few hundred
thousand bytes per second. It is certainly faster than using the serial
ports, which enable data to be read at no more than a few kilobytes per
second.

0

3

Printer port interfacing

uod
indu
aug

AQ
od
Sa
va

£a
cd
ta
0d

vod ndus yq-wbre ue se pod seuud ey buisn €614

eyng
aleisu|

g v

ug |

layng
aleisu|

gy

Hod
indu
([efe[[\V

IndinQ
ayeyspueH

u3

JaUBAU|

Uod Jauld

Printer port interfacing

There is a potential problem though, and this is that the byte of data
being read might change in the period between the first and second
nibbles being read. This is problem that exists with any input method
that provides something less than instant reading of a port. Where
necessary, the problem must be dealt with using conventional handshake
methods. For example, a handshake output could be used to latch input
bytes into a data latch. The input port would then be used to read the
bytes of data “frozen” in the data latch, rather than reading the bytes of
data directly. Of course, in many cases the input data will change too
slowly to create a major problem. However, even where the data changes
relatively slowly it might be as well to use a software routine to check for
inaccurate readings. For example, readings can be taken until three
consecutive values are the same. This does not absolutely guarantee
glitch-free resuits, but in practice would probably be sufficient to prevent
any spurious readings.

Options

There is more than one way of interfacing this type of input port to the
PC. Perhaps the obvious way is to drive the four most significant
handshake lines from the quad buffers. The basic port reading process
would then follow along these general lines. First the handshake output
would be used to select the least significant nibble, and the port would
be read. The returned value would then be placed into a variable. Next
the handshake output would be used to select the most significant nibble,
and a reading would be taken. This reading would then be stored in a
second variable.

The value returned from the most significant nibble is correct, and needs
no mathematical manipulation. The same is not true of the least significant
nibble, which has been read in on the four most significant input lines.
In order to make a correction for this it is merely necessary to divide the
stored value by sixteen. Adding this value to the one read from the most
significant nibble then gives the full value for the byte. In practice there
is a slight problem with this method in that bit 7 is inverted. Thisis nota
major problem as it can be corrected by using an inverter ahead of this
input. Alternatively, further software could be used to invert this bit.

Itis possible to avoid the problem of the inversion on bit seven by using
bits three to six instead of bits four to seven. There are no internal inverters
on bits three to six. The port reading process is much the same as
before, with the most and least significant nibbles being read, and the
returned values being placed into variables. The mathematical

Printer port interfacing

3

manipulation is obviously a it different. This time the most significant
nibble does require some correction, and this is achieved by simply
multiplying it by two. A division by eight corrects the least significant
nibble. Then, as before, the two values are added together to give the
value for the complete byte.

It does not matter which of the four handshake outputs is used to control
the quad tristate buffers. Ifthere are two unused handshake outputs it is
possible to dispense with the inverter. Instead, each buffer is controlled
from a separate handshake output, and the software controls these in
such a way that only one or other of the buffers is ever active at any one
time. Of course, with this method a programming error could result in
both buffers being active simuitaneously, and some careful programming
would be needed in order to avoid this. There is also a potential problem
with both buffers being activated at switch-on, prior to your controlling
software being run. This might not have disastrous results, but my
preferred method is to include the inverter and use a single handshake
output.

Using the method of interfacing outlined here itis possible for each printer
port to provide an eight-bit latching output port, an eight-bit input port,
plus two or three handshake outputs, and one handshake input. This is
sufficient for many purposes, but it is actually possible to have further
expansion per port if desired. In the same way that eight input lines can
be multiplexed into four input lines, 16 input lines can be multiplexed
into those eight lines. This is just a matter of using two eight-bit tristate
buffers to provide the additional multiplexing, plus one of the spare
handshake outputs to control the buffers.

Things could be taken a stage further, but multiplexing beyond 16 input
lines produces a relatively complex circuit, and requires some convoluted
programming in order to read the ports. My advice would be to use a
proper parallel expansion card if large numbers of inputs are required.
This is likely to be a more expensive way of tackling things, but it would
also be a very much more straightforward and convenient solution to the
problem.

Multiplexing techniques can also be applied to the eight data outputs,
enabling two or more eight-bit output ports to be provided. Again, trying
to provide numerous ports in this way is probably not very practical, and
a proper parallel expansion card would then be a better option. Providing
two or three ports in this way is reasonably straightforward though.

Printer port interfacing

Input port

Having looked at the basic principles behind interfacing to the printer
ports, we will now consider some practical circuits for input ports, and
multiple input and output ports. We will start with basic eight-bit input
ports. There are numerous ways of providing the required multiplexing,
and the best method is largely dependent on the way in which the port
will be used. In most cases it will not matter which method is used, and
it is then just a matter of selecting the one that you find the most
convenient. Here we will look at one solution that is suitable for most
practical applications.

The circuit of Figure 3.4 is for an input port, which drives handshake,
inputs from D3 to D6. This is the method | generally prefer, since it
avoids to complication of the inversion on bit 7. There are various tristate
buffers that can be used in this application, and in this circuit a 74LS244
octal tristate buffer is used. Although this chip is normally described as
an octal buffer, it is in fact two four-bit types having separate enable
inputs. This makes it ideal for use in the present application. IC2 provides
an inversion so that the two halves of IC1 are driven in anti-phase.

Any of the four handshake outputs could be used to control the buffers,
but to keep things as straightforward as possible the strobe output (bit 0
at pin 1 of the ponrt) is used. The least significant nibble is read when pin
1 is low - the most significant nibble is read when pin 1 is high. However,
bear in mind that there is a built-in inversion on the strobe output, so this
output is set high and low using values of 0 and 1 respectively. This
simple GW BASIC routine will read the port and print the returned value
on the screen. This is for an interface on LPT1, but with the appropriate
addresses it will also work with an interface on LPT2. The program should
work using any BASIC that is compatible with GW BASIC, including Q
BASIC.

5 REM PROG TO READ IN BYTE ON BITS 3 TO 6
10 OUT &H37A,1

20 LSN = INP(&H379) AND 120

30 LSN = LSN/8

40 OUT &H37A,0

50 MSN = INP(&H379) AND 120

60 MSN = MSN * 2

70 BYTE = LSN + MSN

80 PRINT BYTE

‘2

yod nduy yq-yb1e ejduis B J04 yndi1o 8y g B4

Printer port interfacing 3

mm UOOL

Hod
Jejuld

oL

. o AO
Le uid L (0]8
0L uid = :|o .d
¢l ud = §|O 9a
gl uld o m_,|o Sa
GLud e sinduy
8l Ll s|qnedwo)
LRl == E weswe fg ©*®d m!
—— o 24
YA 9
1Ol o 14
S 14
l ————0 04
b vosw: e
14 ¢ol
L
i o AS+

3 Printer port interfacing

Line 10 sets the control output low so that the least significant nibble is
selected. This nibble is then read at line 20 and placed in the variable
called “LSN". The value read from the port is bitwise ANDed with a value
of 120 so that only bits three to six are read, and the other four bits are
masked. The bitwise ANDing process is described in detail in the chapter
that deals with software matters. Those who are unfamiliar with this
procedure would be well advised to study the relevant section of this
book, since it is difficult to undertake anything more than some very
basic computer interfacing without a proper understanding of bitwise
ANDing.

The value held in LSN is incorrect, as the wrong lines (i.e. bits three to six
instead of zero to three) have read it. When working in assembly language
this type of thing can be handled using rotate or shift instructions to
move the bits into the correct positions. When using a high level language
it is easier to use multiplication or division to correct the positioning of
bits. In this case a division by eight at line 30 produces the correct value
for the least significant nibble. At line 40 the control output is set high so
that the most significant nibble is selected. This nibble is then read at
line 50, and the returned value is placed in a variable called “MSN". The
value of this nibble is corrected at line 60 where it is multiplied by two.
Finally, the values of the two nibbles are added together to produce the
full eight-bit value, which is placed in the variable called “BYTE", and
printed on the screen.

Although this single-chip solution to the tristate buffering looks very neat
on paper, in reality it is something less than simplicity itself. The problem
is simply that the pinout configuration of the 74LS244 is not as convenient
as it might be. This is not a major problem if you have the necessary
facilities to produce intricate printed circuit boards, but it makes life difficult
if you are only able to produce relatively simple boards, or you wish to
use a proprietary printed circuit board such as stripboard. For
construction using stripboard, etc., the alternative circuit of Figure 3.5
should prove to be a better choice. This is based on two 74LS243 quad
transceivers, but in this circuit both devices are connected to act as quad
tristate buffers. The 74LS243 conveniently has all the inputs in one row
of pins, and all the outputs in the other row. This makes it much easier to
design a suitable component layout, particularly when using stripboard
and other proprietary printed circuit boards.

The control input at pin 1 of each device is connected to the +5 volt rail,
and the other control input at pin 13 of each chip then gives standard
tristate control (high to enable the outputs, or low to disable them). As
before, an inverter (IC2) is used to provide the required anti-phase control

€614 Jo unoiro ey 0} engeseye Uy g Bly

Printer port interfacing 3

uod
J8luld

ol

m U001
10

— —Oo A0
le ud €l L
Siud 0 0Q
8 9
€l ud 5 EbeSIvL 5 0 1
ciud cal 0 ¢d
] 14
01 ud 0 €0
™ L b €
L ud VOl 14 S
b
) €1 L
v0Sw.L
€0l 8 9 va
5 evesvs Mlo sa
L0l ——0 9Q
ol L4
—— o0 /a
L €
14! I

o NS+

sinduy
a|qnedwo)
a

3 Printer port interfacing

of the tristate buffers. Like the circuit of Figure 3.4, the control input
must be low to read the least significant nibble, and high to read the
most significant nibble. Therefore, the GW BASIC routine provided
previously will also work with this version of the input port.

Dual inputs

it is not difficult to use the printer port’s handshake lines to provide two
eight-bitinput ports, and it is just a matter of using additional multiplexing
controlled by one of the spare handshake outputs. Figure 3.6 shows
one way of providing the additional multiplexing. Note that this circuit
requires an eight-bit input port, and that it must therefore be added onto
one of the input ports described previously. It can not be used straight
onto the printer port because the unaided printer port has an insufficient
number of inputs. Of course, the situation is different if your PC has a
bidirectional printer port, and doubling the number of inputs available
from a bidirectional portis covered in the relevant section of this chapter.

The circuit is based on two 74LS541 eight-bit tristate buffers. Their inputs
act as the two eight-bit input ports, and their outputs drive the basic
eight-bit input port. IC3 is controlled direct from “Out 2" of the printer
port (the “Initialise” handshake output), but IC2 is controlled via an inverter.
If the basic input port uses one or two inverters, IC1 can be an unused
section of the 74LS04 used in the basic input port circuit. The inversion
‘provided by IC1 provides the required anti-phase operation of the buffers,
with IC2 enabled when “Out 2" is high, and IC3 enabled when “Out 2" is
low.

The 74LS541 actually has a two-input AND gate ahead of its active low
enable input. The inputs of the gate are accessible at pins 1 and 19.
The gating is not required in this case, so pin 19 is connected to the 0-
volt rail, and pin 1 is used as a straightforward negative enable input. If
it suits the component layout better, connect pin 1 to ground and use pin
19 as the control input. The circuit provides exactly the same action
either way.

Obviously the way in which the dual port is read depends on the input
port circuit utilised. For the sake of this example we will assume that it is
connected to an input port of the type featured in Figure 3.4, 3.5, or an
exact equivalent of these. If you use a different method of interfacing to
the handshake inputs this routine will have to be amended accordingly.
The routine on page 100 will read port 1 and print the returned value on
the screen.

Printer port interfacing 3

-0 +5V
IC1
20
74
w0 LS04
1 > 1
E 7 2 18
< InDO
3 17
< In D1
—— 4 16
IC2 oInD2
5 15
O In D3
6 14 o
n
7 7415541 13
-0 In D5
8 12
0 In D6
9 11
0 InD7
19] |10
|20
1
Out2 o
2 18
DO o ————o0In D0
(3 17
D1o —o InD1
4 16
c D2o IC3 L oInD2
& 5 15
=5 D3 o ————-oIn D3
Q 6 14
£ D4o 74LS541 ——o0 InD4
& 7 13
o Dso L oInDs
o 8 12
= Do ———-o0 In D6
9 1
L D7 o ——o0 InD7
Gnd ©
19 10
o oV

Fig.3.6 A simple method of providing two eight-bit input ports

| uog

c ¥od

3

Printer port Interfacing

5 REM PROG TO READ PORT 1
10 OUT &H37A,5

20 LSN = INP(&H379) AND 120
30 LSN = LSN/8

40 OUT &H37A,4

50 MSN INP(&H379) AND 120
60 MSN MSN * 2

70 BYTE = LSN + MSN

80 PRINT BYTE

This operates in exactly the same way as the program to read the basic
input port, but lines 10 and 40 have been modifiad to take “Out 2” high,
so that IC2 is activated and port 1 is selected. Remember that “Out 2",
unlike the other three handshake outputs, does not have a built-in
inversion. It is therefore set high using a value of 4, and low using a
value of 0. This version of the program sets “Out 2" low so that port 2 is
read.

5 REM PROG TO READ PORT 2
10 OUT &H37A,1

20 LSN = INP(&H379) AND 120
30 LSN = LSN/8

40 OUT &H37A,0

50 MSN = INP(&H379) AND 120
60 MSN = MSN * 2

70 BYTE = LSN + MSN

80 PRINT BYTE

Figure 3.7 shows the circuit for an alternative dual input circuit. This is
based on two 74LS245 octal transceivers, which seem to be a bit easier
to obtain than the 74LS541 tristate buffers. IC1 and IC2 are both hard
wired into the “receive” mode by having pin 1 connected to ground.
This effectively downgrades them to simple tristate buffers, controlled
via the negative chip enable input at pin 19 of each device. Consequently,
this circuit is functionally the same as that of Figure 3.6, and can be
controlled using the same software routines.

Printer port interfacing 3

O +5V
20
2 18
In AO
3 17
O |In A1l
4 1
Ic2 Sl Py
3 15
—O In A3
6 14 o InAd
n
7 74L.S245 13
O In A5
8 12
O In A6
9 1
O In A7
1 10
20
19
Out2 o
2 18
DO o ———o0 InB0
(5 T
D1 o ——O In B1
4 Ic3 16
e D2o ———-0 InB2
[o]
a) 15
= D3¢ ————> In B3
32
= D4 ;| 7esess o W
O Dso o InBs
(=) 8 12
F Dso ——0 InB6
9 11
k D7 o— ———0 InB7
Gnd ©
1 10
o OV

Fig.3.7 An alternative method of providing dual eight-bit input ports

| Hod

R

N

Printer port interfacing

Grabbing bytes

As pointed out previously, reading in bytes of data as two separate nibbles
can cause problems when the data is changing fairly rapidly. A change
between the first and second nibbles being read could produce
completely erroneous results. This problem can be overcome by using
an eight-bit data latch to “freeze™ complete bytes which can then be
read by one of the eight-bit input ports. This is the digital equivalent of
an analogue sample-and-hold circuit. Data latching does not require
much additional circuitry, but it does require an extra handshake output
to control the data latch. Figure 3.8 shows one way of providing data
latching.

IC1 is a 74LS373 octal “transparent” latch. When its control input at pin
11 is taken high, the binary pattern on the inputs is simply transferred
straight through to the outputs. Taking pin 11 low “freezes” the outputs,
and latches them with the data present on the inputs as pin 11 made the
high-to-low transition. In this example pin 11 of IC1 is controlled by “Out
2", but it could be controlled by any spare handshaxe output. This GW
BASIC program will latch data into IC1 and then read it. Again, for the
sake of this example we will assume that the input port circuit of Figure
3.4 or 3.5 is being used.

10 REM PROG TO READ BYTE VIA DATA LATCH
(74LS373)

20 OUT &H37A,0

30 OUT &H37A,4

40 OUT &H37A,0

45 FOR DELAY = 1 TO 30000: NEXT DELAY
50 OUT &H37A,1

60 LSN = INP(&H379) AND 120

70 LSN = LSN/8

80 OUT &H37A,0

90 MSN = INP(&H379) AND 120

100 MSN = MSN * 2

110 BYTE = LSN + MSN

121'0 PRINT BYTE

Printer port interfacing

3

+8V ©
20
2
3 ——o DO
DO o—— 5
4 —O D1
o Dlo—— 6 .
3 7 ——o D2 &
c D2 o——— B,
© 8 ol ——o D3 ©
8 D3o—] 12 =
= 13 . D4 S
g D4o—— 15 0s &
Q 14 —o D5
O pso—— 74LS373 - =1
= 17 —o D6
D6 O——— 19
o7 18 |———o D7
11
———o0 Out2
1 10
(0\V e,

Fig.3.8 Using a 74L.S373 as a data latch

This is just the normal port reading routine, but with lines 20 to 40 added
to provide a positive latching pulse prior to the port being read. it is at
line 40, where “Out 2" goes through a high-to-low transition, that the
data is latched into the 74LS373. Line 45 is not part of the reading routine,
and it simply provides a deiay between the latching pulse and the latched
data being read. This gives you an opportunity to alter the input data
during this in-between period, so that the effectiveness of the latching
can be checked. Obviously in normal use this line should be omitted.

3 Printer port interfacing
+5V ©
20
2
3 —o DO
D0 O—— 5
4 —o D1
j2) D1 o— 6
a 7 ——0 D2
g D2o—m IC1 9
@ 8 —o D3
8 D3 o———j 12 4
S 13 —©0 D4 o
£ D4 o—— 15 c"%
S psot4| 74s273 . D5 =
= 17 ——o D6 e
D6 o——— 19 o
18 ——o D7 S
D7 o——
11
———o0 Out2
10
ov o 0 Gnd
Fig.3.9 Using a 74LS273 as a data latch
Figure 3.9 shows an alternative data latch circuit. This is based on a
74LS273, which is an octal D type flip/flop. It works as a data latch if pin
11 is normally held high and is briefly pulsed low in order to latch a fresh
byte of data. Itis on the low-to-high transition that the data on the outputs
is “frozen”. Unlike the 74LS373, the 74LS273 is never “transparent”.
Data can only be transferred from the inputs to the outputs by using the
latching process. Note also, that control of the 74LS273 is the opposite
way round to the 74LS373, with a low pulse being used to latch the data.
This circuit therefore needs slightly modified control software. The GW
BASIC program on page 106 will latch data into the 74LS273 and then
read it.
104

TS

Printer port interfacing 3

© +5V
| 1 20
3 2
l—————o0 m
4 5
——> D1
7 6
———o D2
8 IC1 I
————oD03 2
13 12 a
l———0 D4 -

7as273 [°DS

17 16
————0 m
18 19
————o D7
1
|1o
Out 2 I1 I20
f 00 6 3 2 .
4 5
Di1o 0 D1
- 7 6
g D2 o 0 D2
3 D3 o 8 IC2 ° oD3
13 12 g
5 D4 o oD4
% 14 15
2 Dso 7415273 © D5
~§ 17 16
D6 o o D6
18 19
D7 o o D7
o "
L Out3 o
Gnd ©
10
o oV

Fig.3.10 A circuit using two 74LS273 data latches that provides two
eight-bit output ports

Printer port interfacing

10 REM PROG TO READ BYTE VIA DATA LATCH
(74LS273)

20 OUT &H37A,4

30 OUT &H37A,0

40 OUT &H37A,4

45 FOR DELAY = 1 TO 30000: NEXT DELAY
50 OUT &H37A,1

60 LSN = INP(&H379) AND 120

70 LSN = LSN/8

80 OUT &H37A,0

90 MSN = INP(&H379) AND 120

100 MSN = MSN * 2

110 BYTE = LSN + MSN

121'0 PRINT BYTE

Dual Outputs

The eight data outputs of the printer port (DO to DS in Figures 3.1 and
3.2) provide a ready-made eight-bit output port. This makes writing bytes
of data much easier than reading them, since it is possible to write
complete bytes. Simply write the appropriate value to input/output
address &H378 (LPT1) or &H278 (LPT2) and the data lines will take up
the correct binary pattern. There are no inversions cn any of these lines,
and they are all TTL compatible.

Using the single eight-bit output to provide two eight-bit outputs is very
simple, and it requires nothing more than a couple of data latches, with
each one controlled from a separate handshake output. Figure 3.10
shows one way of providing an extra output port. This uses two 74LS273
octal D type flip/flops as the data latches. The handshake control lines
are normally held in the high state. In order to write a byte of data to port
1 the data s first written to the data lines of the printer port. The handshake
line used to control IC1 (“Out 2" in this example) is then taken low and
high again. On the low-to-high transition the new byte of data is latched
onto IC1's outputs. Data is written to port 2 in much the same way, but it
is handshake line “Out 3" that is pulsed low in order to latch the new
byte of data onto the outputs of port 2.

The negative reset inputs of IC1 and IC2 are simply connected to the
positive supply rail so that they have no effect. If preferred, a C - R
network can be used to provide a negative pulse at switch-on to ensure
that all the outputs of both ports start out in the low state. This is only

Printer port interfacing

3

necessary where random values on the port outputs could have dire
consequences. It might require a very long reset pulse to ensure that
the computer’s start-up and initial testing routines do not override the
reset pulse.

The software to write data to the ports is very simple. This example in
GW BASIC will write a value of 123 to port 1.

10 REM PROG TO WRITE A BYTE OF DATA TO PORT 1
(74LS273 LATCHES)

20 OUT &H37A,4

30 OUT &H378,123

40 OUT &H37A,0

50 OUT &H378,4

Line 20 sets the handshake outputs at their correct initial states, which is
with both of them in the high state. Remember that “Out 3" has a built-in
inversion, and a value of zero rather than eight is therefore needad in
order to set this line high. The data is written to the printer port's data
lines at line 30, and then the next two lines produce a low pulse on “Out
2", while leaving “Out 3" high. Itis on the low-to-high transition produced
by line 50 that the fresh byte of data appears on the outputs of port 1.

Writing data to port 2 uses a similar process. This example GW BASIC
routine writes a value of 231 0 port 2.

10 REM PROG TO WRITE A BYTE OF DATA TO PORT 2
(74LS273 LATCHES)

20 OUT &H37A,4

30 OUT &H378,231

40 OUT &H37A,12

50 OUT &H37A,4

Again, line 20 sets the comect initial states on the handshake outputs,
and the value for port 2 is written to the printer port data lines at line 30.
Lines 40 and 50 then provide a negative pulse on “Out 3", but leave “Out
2” high so that the data on the port 1 outputs is left unchanged. Of
course, if it was necessary to write the same byte of data to both ports,
this could be achieved by writing the data to the printer port data lines,
and then pulsing both “Out 2” and “Out 3.

3

Printer port interfacing

o +5V
1 20
3 2
l—————————0O DO
4 5
——o Di
7 6
———o D2
8 9
IC1 o D3
13 12
———0 04
14 15
] 7405373 © D5
7 16
———O D6
18 19
———o D7
1
|10
Out 3 [1 |20
(3 2
DO o— o DO
D1 o 4 > o DI
2 D2 o ! 6 o D2
g 8 Ic2 9
a D3 0— —o D3
< 04 0 13 12 o4
'}3 14 15
e D5 o e 7415373 w6 | o0
a« D6 © © D6
07 o 18 19 .
L Out2 o n
Gnd ©
10
o oV

Fig.3.11 An alternative method of providing two eight-bit output ports.
This circuit uses two 74LS373 data latches

1 vod

¢ uod

Printer port interfacing

3

Figure 3.11 shows an alternative method of providing twin eight-bit output
ports. This operates in much the same way as the circuit of Figure 3.10,
but in this case the data latches are 74LS373 octal transparent latches.
The only significant difference when using this method is that the
handshake outputs should normally be low, and pulsed high in order
latch data into their respective latches. This GW BASIC routine will write
a value of 156 to port 1.

10 REM PROG TO WRITE A BYTE OF DATA TO PORT 1
(74LS373 LATCHES)

20 OUT &H37A,8

30 OUT &H378,156

40 OUT &H37A,0

50 OUT &H37A,8

This GW BASIC program witl write a value of 54 to port 2.

10 REM PROG TO WRITE A BYTE OF DATA TO PORT 2
(74LS373 LATCHES)

20 OUT &H37A,8

30 OUT &H378, 156

40 OUT &H37A,4

50 OUT &H37A,8

Of course, with four handshake outputs available on the printer port it is
possible to extend this basic scheme of things to provide three or four
eight-bit output ports. The only problem is that this tends to tie up the
handshake outputs so that there is little scope for providing extra input
lines, or for using the handshake outputs for their intended purpose. In
practice it might therefore be better to opt for a proper paraltel inteface
card if a large number of outputs are required. It is perfectly possible to
provide up to 32 output lines though.

Bidirectional operation

Most modern PC printer ports, whether built-in or provided via expansion
cards, are bidirectional. In other words, the eight data lines can set to
operate as inputs. It is not possible to have split operation with some

3

Printer port interfacing

CMOS Setup Utilit i i tware

» Standard CMDS Features » Frequencu/Volta

» Advanced BIOS Features Load Optimized Defaults
» fdvanced Chipset Features Load Standard Defaults

» Integrated Peripherals Set Supervisor Password
» Power Management Setup Set User Password

» PnP/PC] Configurations Save & Exit Setup

» PC Health Status Exit Without Saving

E Quit + Select Ilem
FiB : Save & Exit Setup

Dnboard 10, IRQ, DMA fissignment. ..

Fig.3.12 The initial screen of an Award BIOS Setup program

lines as inputs and others as outputs. The port can only operate in the
normal output mode, or with all the lines as inputs. Even so, this provides
much greater versatility, and makes life much easier if you only require
an eight-bit input port plus some handshake lines. There is no need to
use any external hardware to achieve this; you simply set the data lines
to act as inputs and make use of whichever of the nine handshake lines
you require.

It also makes the software side of things much easier, since bytes of
data can be read in a single instruction. It is only fair to point out that in
some circumstances it might be better to use the handshake inputs to
read in bytes of data, rather than using the data lines. If you require
eight-bit input and output ports, using the handshake inputs and some
hardware to provide the inputs, and the data lines to act as the outputs
almost certainly represents the easiest way of doing things.

How do you determine whether or not your parallel printer ports are
capable of bidirectional operation? You can simply adopt the “suck it
and see” approach, but this is not as reliable as you might expect,
because not all printer ports default to bidirectional operation. Also,

Printer port interfacing 3

RO FCI/ISR BIOS (2A581C3ED
INTEGRATED PERIPHERALS
AWBRD SOFTWARE, INC.

IDE HDD Biock Mode : Emabled Parallel Port Mode
IDE Primary Master PI0 : fute

IDE Primary Stave PID : futo USE Keyboard Support : Disabled
IDE Secondary Master P10 : futs

{DE Secondary Slave PID : futs

IDE Primery Master UDMR : futs

IDE Primary Slave UbMA : futa

IDE Secomdary Master UDMA: futo

IBE Secondary Slave UDMA: futo

On~Chip Primary PCI IDE: Enabled

On-Chip Secondary PCI IDE: Enabted

Bnboard FDC Cortroller : Enabled

FDC Write Protect : Disabled

PS/2 mouse function Enab led s — -

Duboard Serial Port 1 + JFA/IR04 ESC : Quit tis+ : Select [tem

Onboard Serial Port 2 : JF8/1RG3 F1 : Help PU/PD/e/- : Modify

COM2 Mode : Standard FS : 0ld Vatues (Shift)F2 : Colos
F7 : Load Satup Defaults

Onboard Parallel Port : 3PE/IRG?

Fig.3.13 The Integrated Peripherals section

there is more than one bidirectional mode, and the port could simply be
set to the wrong one. if you are using a port provided by an expansion
card you should look carefully at the instruction manual or leaflet supplied
with the card. If more than one mode of operation is supported this
should make it clear how each one is obtained. This will normally mean
setting jumpers or DIP switches to select the recuired mode. There may
be something like a “normal” mode, which only provides data outputs,
and an SPP or EPP mode. These are the “standard parallel port” and
“enhanced parallel port” modes, either of which will provide the basic
two-way operation that we require.

Motherboards usually have the parallel port controlled via the BIOS Setup
program. With most PCs the BIOS Setup program is entered by pressing
the “Del” key at the approoriate point is the initial boot-up routine.
However, there are plenty of alternative methods such as pressing the
Esc or Ins key. Usually there is an onscreen message during the initial
testing routine that indicates which key or keys to operate. If in doubt
you should consult the instruction manual for your computer or the
manual for its motherboard.

111

3_

112

Printer port interfacing

CMOS Setup Utility ~ Copyright (C) 1984-2008 Rward Sof tware
Integrated Peripherails

» OnChip IDE Fusction Press Enter { Item Help
» OnChip DEVICE Function Press Enter
» GaChip SUPERTD Function Press Enter

Init Dlsplay First AGP

Tiee:Move Enter:Sefect +/-/PU/PD:Ualue F10:Save ESC:Exit Fl:Ceneral Help
FS:Previous Values F6:Optinized Defauits F?:Standard Defaults

Fig.3.14 With a modern BIOS you may need to negctiate submenus

Modern Setup programs are quite large, and have the available options
in half a dozen or so groups. Figure 3.12 shows the initial screen
produced by an Award BIOS, and it is really an outsize menu. Use the
cursor key to highlight the required option and then operate the Return
key to enter that menu. The serial and parallel port settings are usually
in a section called something like “Integrated Peripherals”. Figure 3.13
shows this section of an Award BIOS. The address and IRQ (interrupt
request) number for the port are set via the entry at the bottom of the left-
hand section.

The parallel port’s mode is set via the entry at the top of the right-hand
section of the screen. In this case the cursor keys are used to select the
required parameter, and the Pg Up and Pg Dn keys on the numeric
keypad are then used to alter the setting. However, the exact method of
control varies from one BIOS manufacturer to another. There are usually
onscreen prompts that indicate the functions of the important keys.

The size of a modern BIOS Setup program is such that it might be
necessary to go into a submenu in order to find the section that deals
with the parallel port. In the example of Figure 3.14 there are three

CMOS Setup Utility - Copyright (C) 1984-2888 Award Software
OrChip SUPERIO Function

Baboard FBD Control ler Enabled Iten Help
Onboard Serlal Port 1 fato

Oaboard Serial Port 2 futo

URRT 2 Wode Standard

Onboard Parallel Port 378/1RQ7
Onboard Parallel Mode Narmal

Tiee:Move Emter:Select +/-<P/PD:Value F18:Save ESC:Exit Fl:Cenera: Help
F5:Previous Values F6 :Optinized Defaults F7:Standard Defaults

Fig.3.15 The settings for the parallel port are in the SUPERIO section
of this BIOS

submenus to choose from, and it is not immediately obvious which one
gives access to the parallel port's parameters. The manual for the
computer or its motherboard might provide some help, but if necessary
you will have to do some exploring. With this version of the Award BIOS
| found the parallel port’s settings in the SUPERIO section (Figure 3.15).

Any EPP or SPP mode should be suitable for basic bidirectional use.
With an old BIOS the Standard mode is an output only mode, where the
port functions as a basic printer port with no input facility on the data
lines. With a modern BIOS the Standard setting is the SPP mode, and
there is no output only mode. This is acceptable, because the SPP
mode is fully compatible with software written for a straightforward printer
port. As pointed out previously, an SPP port detaults to the output mode.
With the more recent motherboards there is also likely to be an ECP
(extended capabilities parallel port) mode, and although this provides a
form or bidirectional operation, it does not seem to provide the basic
method of control we require.

113

Printer port interfacing

Direction control

As we have already seen, when set for bidirectional operation a printer
port defaults to the output mode, and operates in exactly the same manner
as an ordinary printer port. This gives compatibility with software written
for ports that do not support bipolar operation, but it does produce a
slight problem. It is something that must be borne in mind when using
the port as an input type, because it means that initially the outputs of
your project will be driving the outputs of the printer port. This could
lead to large currents fiowing, and posslble damage to the printer port
or your project.

Most bidirectional printer ports have current limiting on the data outputs
to ensure that no damage occurs, but it is advisable to take no chances
and include current limiting resistors between the outputs of your project
and the printer port data lines. The values of these resistors must be
high enough to ensure that only safe currents can fiow, but low enough
to permit the circuits to function correctly. A value of around 220R to
270R is satisfactory.

Setting the port to the input mode is easy enough, and is achieved via bit
five at the handshake output address (normally &H37A for LPT1, and
&H27A for LPT2). The four least significant bits of this address are used
to control the handshake outputs of the port, and due care must be
taken not to alter the settings of the handshake lines when setting the
port to the input mode. Similarly, you must make sure that the port is not
inadvertently set back to the output mode when writing data to the
handshake lines.

This basically just boils down to always writing 32 (decimal) more than
normal to the handshake output register so that bit five is always at logic
one. Also, make sure that the handshake lines are set to the appropriate
starting levels and bit five is set high before the first read operation on
the data lines. If the handshake outputs are not in use, simply write a
value of 32 to the handshake output register at the start of the program
and ignore this register thereafter. ’

A simple GW BASIC or QBASIC program is all.that is needed in order to
check whether or not a printer port is operating properly in the input
mode. This program tests a port that has its base address at &H378, but
it will obviously work with other ports if the two appropriate addresses
are used.

Printer port interfacing 3

10 REM BIDIRECTIONAL PORT TEST PROGRAM
20 CLS

30 OUT &H37A, 32

40 LOCATE 10,30

50 PRINT INP(&H378)

60 GOTO 20

Line 20 clears the screen and line 30 sets the port to the input mode.
Lines 40 and 50 then position the cursor towards the middle cf the screen
and print the value returned from the port. This routine is then repeated
indefinitely, with a rapidly updated value being displayed on the screen.
With most printer ports this will result in “255” being displayed on the
screen, due to the use of pull-up resistors on the inputs. With other
ports the inputs seem to have a high input impedance, and will be left
“floating”. If “255" is displayed, connecting one or two inputs to the 0-
volt rail via current limiting resistors of about 330R in value should produce
a reduced reading (e.g. 254 if DO is pulled low). If the inputs are high
impedance types, simply placing a finger close to the data termirals of
the port will probably be sufficient to produce changes in the reading.

If no change in the reading can be produced, either the port is not a
bidirectional type or it has not been set to a suitable mode. There are
actually a few PCs that have built-in printer ports that support bidirectional
operation, but which do not handie things in the standard manner. With
a port of this type it should be possible to use it in the input mode if you
can obtain the manufacturer's technical information on the PC's hardware,
but using an add-on printer port card might be a better solation.
Fortunately, these days the vast majority of PCs use the method of
direction control described here.

The multiplexing technique described previously can be used to increase
the number of input lines available, and the circuits of Figure 3.6 and 3.7
will work well with a bidirectional printer port. However, remember to
include the current limiting resistors between all the tristate buffers and
the input port.

Laptop port

It is perhaps worth mentioning that the printer ports of laptop computers
can be problematic with home constructed add-ons. Support for
bidirectional operation seems to be less than universal, although most
modern laptop computers support it. The main problem seems to be

3 Printer port interfacing

due to laptop computers generally operating at something less than
normal 5-volt logic levels. Their main circuits usually operate at about 3
volts or so, and in many cases a higher voltage is not used for the printer
port. These ports exploit the fact that something less than 5-volts
constitutes a valid logic 1 level. Trouble-free results are normally obtained
using interface chips that operate at TTL logic levels, where a minimum
of about 2.7 volts is sufficient to represent a logic 1 level. Devices that
operate at other than TTL logic levels can give problems.

This difficulty can usually be overcome by using 74HCT series buffers
on the port’s outputs. These buffers should operate reliably from a port
operating at a lower than normal supply voltage, and will drive most
interface chips reliably. Of course, the buffers must ba run from a normal
5-volt supply and must not be run from the lower supply potential of the
laptop computer. Driving the port's inputs is usually less troublesome,
but | suppose there could be problems with the logic 0 voltage being too
high, causing it to be interpreted as logic 1 by the port. Driving the
inputs via 74HC series buffers should cure this problem. The outputs of
this logic family operate at normat CMOS voltages, which means that
the logic 0 output level will be little more than O-volts.

Serial approach

A serial approach to interfacing projects to a parallel port might sound
like a contradiction in terms, but it does have advantages. It would
probably be more accurate to say that it does have its advantage. The
obvious point in favour of serial interfacing is that two or three lines can
be used to handle eight bits of data. In fact, there is theoretically no limit
to the number of bits that can be handled by a serial link, so it is perfectly
possible to have something like two lines providing three or four eight-
bit output ports. A serial link can operate in either direction, so something
like two or three lines providing three eight-bit input ports is also possible.
There is another potential advantage, which is the ability of serial interfaces
to operate over longer distances than parallel alternatives. However, the
greater operating range is not needed in most practical applications,
and the longer operating range can be difficult to achieve in practice.

Of course, the serial approach has its drawbacks as well. The obvious
one is that the maximum rate at which data can be transferred is much
lower. The larger the number of bits the link has to handle, the lower the
rate at which complete bytes, words, etc., can be transferred. There are
many applications where speed is not of any importance, and serial
interfacing is well suited to these. For example, an interface that is

116

Printer port interiacing 3

O +5V
am Cl
== 100n
1 8
Anal 6
alogue ——O Pin 13
nput 2 IC2 —
O— (@)
TLC5491P 7 -
——O Pin 1 =,
-
@
3 14 5 =
s
O
-
O Pin 25

Fig.3.16 The circuit diagram for the serial ADC

monitoring two température sensors will probably need to update its
readings only once every few seconds, or even once every few minutes,
because changes in temperature will only occur very slowly. Something
like audio digitising is less well suited to serial interfacing, although even
in this application it would probably be possible using suitable fast
software and hardware.

Serial ADC

No doubt it would be easy enough to use shift registers such as the
74HC164 and 74HC166 to provide the basis of a synchronous serial
link, but there are plenty of chips that are specifically designed for this
method of interfacing. These devices can interface directto a PC’s paralle!
port via typically three or four lines. The TLC549IP analogue-to-digital
converter is used here as an example of reading data via a synchronous
serial interface. However, other serial interface chips operate using the

3 Printer port interfacing

Ref. + (Ul - D v+

Analogue Input (2]
Ref.—
Ground (4}

) Clock Input
6]} Data Out
5]) Chip Select

Fig.3.17 Pin functions for the TLC549IF, etc.

same basic principles. Analogue converters are well suited to serial
interfacing as they mostly operate at relatively slow speeds, and the
slowness of the link to the PC is unlikely to be of any consequence.

The circuit diagram for the converter is shown in Figure 3.16, and Figure
3.17 shows the pin functions for the TLC549IP converter chip. Although
a TLC549IP is specified for IC1, the circuit will work just as well using
other chips from this series, such as the TLC548IP and TLC548CP. The
circuit is not exactly over-engineered, with just two components. The
only discrete component needed is supply decoupling capacitor C1.
There are separate inputs for the positive and negative reference voltages,
but in most applications the Ref.- input is simply connected to ground.
The full-scale value is then equal to the voltage applied to the Ref.+
input. In this example the 5-volt supply is used as the reference voltage,
but a highly stable voltage reference can be used instead. Note that the
reference potential should not be less than 2.5 volts.

The TLC549!P contains an eight-bit successive approximation converter
that has its own clock generator. In order to simplify interfacing there is
no start conversion input. Instead, a new conversion is automatically
commenced at the end of the eighth clock cycle when the previous
sample has been fully clocked out. One slight drawback of this system
is that the first byte of data obtain from the device is not the result of a
reading, and is simply “noise”. The first byte must therefore be discarded.

The chip includes a sample and hold circuit, which avoids erroneous
results with rapidly changing input voltages. This is operated
automatically when the conversion is started. It takes a maximum of 36
system clock cycles for the conversion to be completed. The typical
conversion time is eight microseconds for the TLC548IP and TLC548CP,

118

Printer port interfacing 3

cs

« JUTiriny

Start Conversion

DATA

O L

0 1 1 0 1 0 1 0

Fig.3.18 Timing diagram for the TLC548/9 series of chips

and 12 microseconds for the TLC549IP. However, the maximum
conversion time for all three chips is 17 microseconds.

There is no status output to indicate that the conversion has been
completed, so where necessary a timing lcop must be used in the
software to prevent the converter from being read prematurely. Even
with a fast PC, a timing foop might not be necessary with some
programming languages. Where a high conversion rate is needed you
can adopt a “suck it and see” approach, with a delay only being added
if the readings from the converter seem to be erratic. If a high conversion
rate is not required, it makes sense to add a delay to ensure that a
generous amount of time is allowed for each conversion.

Synchronous data

Once a conversion has been completed, data is clocked out of the chip
using standard synchronous methods. The first bit of data is placed on
the data output at pin 6, and this is read by the computer. A pulseis then
applied to the clock input at pin 7 in order to move the next bit of data out
onto pin 6. This is read by the computer, another clock pulse is supplied
to pin 7, and so on until all eight bits of data have been read. Another
clock pulse is then used to start the next conversion. A software routine
in the PC is used to reassemble the individual bits of data back into a

119

Printer port interfacing

complete byte. Once the data has been read, the chip select input is
then returned to the high state. The circuit is then ready to commence
another conversion.

The timing diagram of Figure 3.18 shows a typical read cycle. In this
application the tristate capability of the Data Qutput is not required, since
it is not being interfaced to the microprocessor’s data bus. The Chip
Select (CS) input s therefore connected to ground so that the Data Output
is permanently enabled. The first bit of data can be read from the chip
once the conversion has been completed. A clock pulse is then
generated, the next bit is read, another clock pulse is generated, the
next bitis read, and so on until all eight bits have been read. The arrows
show the approximate places that the data is read from the data line.
Finally, another clock pulse is generated and a new conversion is
commenced.

The clock signal is shown as a regular train of pulses in Figure 3.18, but
the synchronous approach does not require this sort of strict timing.
Provided the data output is read at the appropriate times between the
clock pulses and the clock rate is not too high, the exact timing of the
clock signal is unimportant. The software has to ensure that things
happen in the right order, rather than at precise moments in time.

The method of interfacing used in Figure 3.16 is to have the Clock Input
driven from the Strobe output (Out 0), and the data read via the Select
input (In 4). However, it should be possible to interface this circuit to any
two output lines and any input line. It is best to use the printer port's
handshake lines to interface to serial devices, leaving the eight data lines
free to act as a parallel input or output port. Since the analogue to digital
converter uses only three of the port's nine handshake lines there are
still six left for use as handshake lines (two outputs and four inputs).
Alternatively, they can be used to interface another serial chip.

Software

The synchronous serial approach to interfacing simplifies the hardware,
but it certainly makes the software much more complex. It usually takes
no more than half a dozen lines of code to read a parallel analogue to
digital converter, but much longer routines are needed to accommodate
serial chips. This GW BASIC/QBASIC program reads the converter and
prints the returned values at a fixed point on the screen:

List

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

Printer port interfacing 3

ing 1

REM A/D converter program (TLC548/9)
CLS

FOR L =1 TO 7

OUT &H37A,1
OUT &H37A,0
NEXT L
OUT &H37A,1
OUT &H37A,0
X = INP(&H379) AND 16
X = X*8
OUT &H37A,1

OUT &H37A,0

Y = INP(&H379) AND 16
Y = Y*4

X=X+Y

OUT &H37A,1

OUT &H37A,0

Y = INP(&H379) AND 16
Y=Y*2

X=X4+Y

OUT &H37A,1

OUT &H37A,0

Y = INP(&H379) AND 16
X=X+Y

OUT &H37A,1

OUT &H37A,0

Y = INP(&H379) AND 16
Y = Y/2

X=X+Y

OUT &H37A,1

OUT &H37A,0

Y = INP(&H379) AND 16
Y = Y/4

X=X+Y

OUT &H37A,1

OUT &H37A,0

Printer port interfacing

370 Y = INP(&H379) AND 16
380 Y = Y/8

390 X = X + Y

400 OUT &H37A,1

410 OUT &H37A,0

420 Y = INP(&H379) AND 16
430 Y = Y/16

440 2 X+ Y

450 LOCATE 10,10

460 PRINT * "

470 LOCATE 10,10

480 PRINT 2

490 OUT &H37A,1

500 GOTO 70

Line 20 clears the screen and then the next four lines generate a series
of seven clock pulses, with an eighth pulse being produced by lines 70
and 80. The series of seven pulses is generated using a pair of OUT
instructions within a FOR...NEXT loop. The purpose of the eight pulses
is to start the first conversion, which is triggerea by the eighth pulse.
The data clocked out from the converter chip is garbage and is discarded.
Bear in mind that the Strobe output line is inverted, so writing 1 to &H37A
sets this output low, and writing 0 to this address sets the Strobe output
high. The OUT instructions therefore repeatedly set the Strobe line low
and then high. Note that the addresses used in this program are for
what will usually be printer port 1 (LPT1). Where appropriate, the
addresses must be changed to suit the particular port you are using.

On the face of it, a delay is needed after line 80 to prevent premature
reading of the converter. In practice it is by no means certain that the
program will run fast enough to require a delay. It only takes a matter of
microseconds to complete each conversion, and interpreted languages
such as GW BASIC and QBASIC are not particularly fast. | did notfind a
delay necessary when running the program in GW BASIC using a 1.333-
gigahertz Athlon computer. Using assembly language or a compiled
language, the added speed would probably necessitate the inclusion of
a delaying routine.

The first bit of data is read at line 90, using a bitwise AND operation to
mask all but the correct bit. The returned value is 16 if the Data Output of
the converter chip is high, or zero if it is low. The first bit of data is the
most significant bit, which should give a value of 128 or zero rather than

3

Printer port interfacing
O +5V
ma Cl
=™ 100n
1 8
5
Analogue L O Pin 14
Input 2 IC2 6 —
O— —O Pin13 ©O
TLC549P | 7 =
——O Pinl1 =,
3
o]
3 4 -
-
O
3
O Pin 25

Fig.3.19 The improved serial ADC circuit

16 or zero. Therefore, the returned value is multiplied by 8. Another
clock pulse is then generated, and the Data Output is read again. This
time bit 6 is being read, and the returned value should be 0 or 64. The
returned value is therefore multiplied by four in order to give the correct
figure. This value is ther added to the previous reading and stored in
variable X. This process continues until all eight bits have been read.
Where necessary, the returned value is corrected before being added to
variable X. The final value stored in Z is the full eight-bit reading from the
converter.

The last few lines of the program position the cursor on the screen, print
spaces on the screen to blank any previous reading, reposition the cursor,
and then print the new reading on the screen. At line 500 the program is
looped back to line 70 where a clock pulse is produced. This starts
another conversion, which is then read and printed on the screen. The
program takes and prints readings on the screen indefinitely. The usual
Control-Break key combination can be used to exit the program.

123 ‘

3 Printer port interfacing

: |
- TTTTTTT]

Start Conversion
DATA

BEEERERE

0 1 1 1 1

O =]

Fig.3.20 Timing diagram for the inproved serial ADC

Out of sync

Simple two-wire synchronous links of the type used with this analogue-
to-digital converter are little used in practice. It works well enough
provided there are no glitches somewhere along the line. In the real
world it is quite likely that glitches or a lack of continuity will cause the
system to go wrong. If you try this analogue-to-digital converter it will
almost certainly work properly and continue to do so for thousands of
readings. However, problems are likely to occur if you try stopping the
program and then restarting it.

The root of the problem is that the program will stop at a random line
number, not at the end of one complete read cycle. The clock signal is
therefore likely to stop with some of the last conversion clocked out, and
some still in the chip. The program “thinks” it is starting from scratch
when it is restarted, but there is actually some data left in the chip. It
clocks out a few bits of data from the previous reading, starts a new
conversion, and then clocks out a few more bits. Each reading contains
part of the previous conversion and part of the new one, with the bits all
shifted out of position. The returned values are therefore erroneous.

The normal way around this problem is to have a third connecting wire
that permits the computer to set the serial chip to a definite starting state.

124

Printer port interfacing 3

This additional line is often used to operate a reset input on the serial
chip. In the case of an analogue to digital converter there is often a Start
Conversion input. In either case the controlling software can initialise
the serial chip before reading or sending a data stream. This should
avoid things getting out of synchronisation in the first place, and will
almost immediately recover the situation if an error should occur.

The TLC548/9 chips do not have a reset input as such, but the Chip
Select input can be used to prevent the chip and the controlling software
from getting out of synchronisation. The converter circuit can therefore
be made more reliable by driving the Chip Select input of the TLC548/9
from an output of the printer port. Figure 3.19 shows the revised circuit
for the analogue-to-digital converter. Instead of the Chip Select input
being tied to ground it is driven from the Error output (Out 1) at pin 15. In
order to keep readings property synchronised it is merely necessary to
pulse the Chip Select input high before the eighth clock pulse is produced
(Figure 3.20). This ensures that a new conversion is started on the next
clock puilse, effectively forcing it to become the eighth clock pulse. If the
pulse is actually (say) the fourth pulse, the current byte of data will be
garbage, but things will be back in synchronisation for the next byte.

This is the modified version of the program. It is just a matter of adding

an extra OUT instruction after the FOR...NEXT loop, so that the required
pulse is produced on the Chip Select input.

Listing 2

10 REM Synched A/D converter program (TLC548/9)
20 CLS

22 FORL =1 TO 7

24 OUT &H37A,3

26 OUT &H37A,2

28 NEXT L

30 OUT &H37A,1

40 OUT &H37A,3

S0 OUT &H37A,2

60 X = INP(&H379) AND 16
70 X = X*8

80 OUT &H37A,3

90 OUT &H37A,2

100 Y = INP(&H379) AND 16
110 Y = Y*4

| w

_Printer port interfacing

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

X =
ouT

ouT

X + Y
&H37A,3
&H37A,2

= INP(&H379)
=Y * 2
=X + Y

&H37A,3
&H37A, 2

= INP(&H379)

X + Y
&H37A,3
&H37A,2

= INP (&H379)

Y/2

X+ Y
&H37A,3
&H37A,2
INP (&H379)
Y/4

X+ Y
&H37A,3
&H37A,2
INP (&H379)
Y/8

X+ Y
&H37A,3
&H37A,2.
INP (&H379)
Y/16

X+ Y
&H37A,3

LOCATE 10,10
PRINT *
LOCATE 10,10
PRINT 2

ouT

&H37A,1

GOTO 40

16

16

16

16

16

16

Printer port interfacing 3

0 +5V
! 40
070—3 32#0 07
DéO-—;| -:T-O D6
pso—" 34 0D
D40— —0 D4
Port A D307 35 o p3 Port D
D20—8 36, by
Dio—2- 37 5o
T, B 0o
mm Cl
= 100n D7OA- IC1 LO D7
D4c :2 | uonssiear 24 O
oso—]i —o;s, 05
D4o—-H 1266 D4
Port B D308 27,03 Port C
D20—% 1285 b2
Dlo—L] 129 5 b
0018 9 0o
139 o Pinl6
122 5 pind
! (21 5 pin14 To Printer
19 20 Port
’ O Pin 25

Fig.3.21 The circuit diagram for the 32-bit output port

Clocking out

In the analogue-to-digital converter example, serial data is read from the
interface chip. Synchronous serial links operate just as well in the
opposite direction though, with about three lines being used to supply
bytes or words to the interface chip. Figure 3.21 shows the circuit diagram
for a simple serial interface that provides not less than four eight-bit output
ports. Like the analogue-to-digital converter, it requires just one chip
and a supply decoupling capacitor. The outputs are shown in Figure
3.21 as four eight-bit output ports, but the 32 output lines can be organised
in any desired fashion, such as twin 18-bit ports.

The UCN5818AF used for IC1 is primarily designed for use with relatively
high voltage loads, but this ability is not needed in most interfacing

~_ Uyl

Strobe H—

Fig.3.22 The timing diagram for the 32-bit output port. In this example
only eight bits are output

applications. Consequently, both of its supply pins are connected to a
normal +5-volt logic supply. The Blanking input at pin 19 can switch off
all 32 outputs, effectively setting them at logic 0, but this facility is not
needed in most applications. Pin 19 is therefore cornected to ground
so that the outputs are permanently enabled.

In the unlikely even that 32 outputs is insufficient, pin 2 provides a clock
output that permits two devices to be connected in series, giving 64
outputs. Connect pin 2 of the first chip to the Data Input (pin 39) of the
second chip, and drive the two clock inputs (pin 21 of each chip) in
parallel. in theory, a large number of chips could be connected in series,
giving hundreds of outputs. In practice such an interface would probably
be so slow and cumbersome as to be of little value, so it is probably best
to use no more than two or three of these chips in series.

Clocking data into the chip is very straightforward, and the timing diagram
of Figure 3.22 shows the method used. This diagram has been simplified
to show a single byte of data being sent to the chip, and in practice
groups of 32 clock cycles and bits of data would be used. The basic
principle is the same though. The appropriate logic level for the first bit
is set on the Data Input, and a clock pulse then moves this level into the
first cell of the shift register. The correct state for the second bit is placed
on the Data Input and another clock pulse is generated. This moves the
new data into the first cell of the shift register, and the original contents of
this cell are moved to the second cell.

This process continues, with new bits being clocked into the chip and
the existing ones being moved along the shift register. The outputs of
the chip do not respond to the new data at this stage. They remain at
their original states until all 32 bits of data have been clocked into the

Printer port interfacing

chip. A short pulse is then supplied to the Strobe Input, causing the bit
pattern in the shift register to be transferred to and latched on the output
pins. Another 32 bits of data are then clocked into the chip, another
strobe pulse is used to latch the new data onto the outputs, and so on.
In addition to giving a “clean” transition from one word of data to the
next, the strobe pulse also ensures that the serial link does not stay out
of synchronisation if a glitch occurs in the system.

Software

Listing 3 is a GW BASIC or QBASIC program that will output eight bits of
data to port D. | have settled for eight bits of data in order to keep the
listing reasonably short, but the basic method of operation is the same
whether you need to output one bit or all 32 bits. The program starts
with an INPUT instruction, and this is used to supply a value that is output
to port D. There is no error trapping in the program, so make sure you
always enter an integer from 0 to 255. The value you enter is placed in
variable A, and this value has to be examined on a bit by bit basis so that
the correct bit pattern can be output on the data line. Line 30 uses a
bitwise AND instruction to determine the state of bit 0. Variable B will
have a value of 1 or 0, depending on whether this bit is at 1 or 0.

Having ascertained the state of bit 0, the Data Input must be set at the
corresponding logic level. A clock pulse is then generated so that this
bit is moved into the shift register. First variable C is set at a value of 7 or
3 depending on whether bit 0 is high or low. This value is then sent to
the handshake output of the printer port at &H37A. Obviously this address
must be changed in the relevant program lines if you are not using a port
that has &H378 as its base address. Note that the value sent to the
handshake outputs is not simply 0 or 1, because all three lines that are
used must be set at the correct states. Initially, the Strobe and Clock
Input terminal of the UCN5818AF must be low, which due to the inverters
on these lines requires a value of 3 to be sent to the port. This value is
boosted to 7 if the (non-inverted) output driving the Data Input must be
set high.

Next the clock pulse must be generated, and this is achieved by first
writing a value to the port that is 2 less than the existing value (C - 2).
Then the port is returned to its original value. The program then moves
on to bit 1, and its state is determined by bitwise ANDing the value in
variable A with a masking number of 2. The returned value is 0 if this bit
is low or 2 if it is high. The same process as before is then used to set

Printer port interfacing

the Data Input to the correct level and generate the clock pulse.
Essentially the same process is used to determine the states of bits 2 to
7 and to clock the correct logic levels into the shift register. Lines 590
and 600 then generate a strobe pulse so that the bit'pattern in the shift
register is transferred to the outputs of the UCN5818AF. Finally, line 610
loops the program back to the Input instruction so that a new value can
be entered. Use the normal Control-Break combination to break out of
the program.

Back to front

The program includes eight PRINT instructions that print the value of B
after each bitwise AND operation. This helps to show how the program
works, and the bit pattern contained in the printed values should be
reflected in the logic levels on the outputs of Port D. Of course, these
instructions are not needed in real world applications. If you try this
program you will notice that the functions of the eight outputs so not
agree with those shown in.Figure 3.21. What should be bit 0 acts as bit
7, what should be bit 1 acts as bit 6, and so on. This demonstrates the
point that the function of each output terminal is controlled by software
and is not governed by the hardware.

In order to get the system to agree with the line assignments of Figure
3.21 itis merely necessary to change the software so that bit 7 is checked
and clocked out first, running through to bit 0 at the end. You can use as
many or as few of the output terminals as you like, and the software
controls their functions. if you need 32 individual output lines, one 32-bit
port, or any other combination, with the appropriate software the hardware
will duly oblige.

Listing 3

10 REM UCNS818AF 8-bit program
20 INPUT A

30 B = (AAND 1)

40 PRINT B

S0 IF B =1 THEN C = 7

60 IF B = 0 THEN C = 3

70 OUT &H37A,C
80 OUT &H37A, (C - 2)

90 OUT &H37A,C

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

B = (A AND 2)
PRINT B

IF B = 2 THEN C
IFB=0THEN C = 3
OUT &H37A,C

OUT &H37A, (C - 2)
OUT &H37A,C

B = (A AND 4)
PRINT B

IF B = 4 THEN C
IFB=0THEN C = 3
OUT &H37A,C

OUT &H37A, (C - 2)
OUT &H37A,C

B = (A AND 8)
PRINT B

IF B = 8 THEN C
IFB=0THEN C = 3
OUT &H37A,C

OUT &H37A, (C - 2)
OUT &H37A,C

B = (A AND 16)

PRINT B

IF B =16 THEN C = 7
IFB =0 THEN C = 3
OUT &H37A,C

OUT &H37A, (C - 2)
OUT &H37A,C

B = (A AND 32)

PRINT B

IFB =32THEN C = 7
IFB=0THEN C = 3
OUT &H37A,C

OUT &H37A, (C - 2)
OUT &H37A,C

B = (A AND 64)

PRINT B

(]
~

(]
~

(]
~

Printer port interfacing 3

3 Printer port interfacing

Fig.3.23 A switch box enables two devices to share a single
parallel port |

470 IF B = 64 THEN C = 7
480 IF B = 0 THEN C = 3
490 OUT &H37A,C

500 OUT &H37A, (C - 2)
510 OUT &H37A,C

520 B = (A AND 128)

530 PRINT B

540 IF B = 128 THEN C = 7
550 IF B = 0 THEN C = 3
560 OUT &H37A,C

570 OUT &H37A, (C - 2)
580 OUT &H37A,C

590 OUT &H37A,2

600 OUT &H37A,3

610 GOTO 20

Frinter port interfacing 3

S e BRSO N L g 4
Fig.3.24 Rear view of the switch box showing the input and output
connectors

r-|

Fig.3.25 A PCI printer port expansion card

133

3

Printer port interfacing

Fig.3.26 An ISA printer port expansion card

Adding a printer port

Most PCs are equipped with a printer port as standard, but unlike PC
serial ports, there is usually just the one. This is not a problem if you
have the printer connected to a USB port, butitis a problem if the printer
port is needed for its primary purpose. It is possible to use a switch-box
(Figures 3.23 and 3.24) to permit the port to be used with either a printer
or your own add-on devices. In use this is not a very convenient way of
handling things, and it is easy to leave the switch at the wrong setting.
You might find the printer producing pages of garbage or your add-on
“going bananas” because the switch is at the wrong setting.

Where possible, it is probably best to opt for a second port provided by
an expansion card. PCI and ISA printer port cards are shown in Figures
3.25 and 3.26 respectively. It should be possible to add one of these

Printer port interfacing

Ee Edt Yiew Fovores Tools tep -
(] c = 5) QSeacn SFolers P G X D e
Addhass | g) Praters ~y] 6o
el e 55 I - g Q.
o Ade Prnter] Acrobet Bewvare Fax Genen: HP _aser fet
Printers Distitien Dover PostSen %®

T foler curtalns s mation
ahcut oretees hiat amm ourrenty
rstaled, ard & wiard v hep
you Ll e [F RS

To get ot maton abcut a
proter that & oumently rstafiec,
right-Chek the prirter's con.

To rwth 5 “ew prves, Click the
Adkd Printer xon

| Selctan mm D vew B
| descrption.

% object(s)

Fig.3.27 The Printers wincow shows all the installed printers

provided your PC has at least one spare PCl or ISA expansion slot. When
you have the choice, it is usually deemed better to opt for a PCI card
rather than an ISA card. A printer port card for use with you own add-
ons is an exception to the rule, and it is probably better to opt for an ISA
card if you PC has a free ISA slot. PCi cards have advantages such as
proper Plug and Play capability, but they also have a major drawkack in
the current context. A PCl stot does not interface expansion cards direct
onto the microprocessor’s buses.

Instead, it acts more like a highly complex input/output port. The
importance of this in a printer port context is that the port cannot cccupy
the normal addresses associated with this type of port. Instead, it must
be controlled indirectly via the PCI circuitry. This is not of any
consequence in its intended role as a printer po-t, because the expansion
card should be supplied with Windows device drivers. These =nable
Windows to use the port comectly even thoughit is not a standard printer
port.

There should be no problems if the software for your add-on project

runs under Windows and controls the printer port via the operating
system. However, in most cases direct accessing of the port is used,

3

135

136

Printer port interfacing

[1P Losnrior S TP

Printer Document View Heip
Document Name {Staws [Owner [Progress | Staned At 1

‘0 jobs in queue

Fig.3.28 Use this window to launch the printer's properties window

and this will not work with a PCl card because it does not use the standard
input/output addresses. There is no hardware to access at the normal
port addresses. The Windows drivers only work when running the
computer under Windows, and they will be of no use with another
operating system such as MS-DOS.

Unfortunately, modern PCs tend to have only one ISA expansion slot or
none at all. This gives no alternative to using a PC! expansion card and
trying to find a way of utilising it. One way around the direct access
problem is to use the PC’s built-in port for your add-ons and the new
card for the printer. The printer should work well using the new port and
the device drivers supplied with the card. Your add-ons should work
properly via the built-in printer port, which will have standard hardware
at one of the normal address ranges. This method might not work if the
device on the printer port is something other than a printer. Some external
drives for example, require direct access to the printer port in order to
operate at full speed. In most cases though, moving the printer or other
device to the new port will enable everything to work properly.

Remember to aiter the appropriate Windows setting so that programs
can direct data for the printer to the correct port. Go to the Start menu
and then select Settings followed by Printers. This launches the Printers
window (Figure 3.27) where there should be an icon for your normai
printer. Double-click on its icon, which will produce a small window like
the one in Figure 3.28. Next, go to the Printer menu and select the
Properties option. This brings up a window something like the one in
Figure 3.29, but the printer's Properties window is to some extent
customised to suit each printer. Therefore, the one for your printer will
probably not be the same as the one shown here. Operate the tabs one
by one and search each section for a menu that enables the printer’s
port to be selected (Figure 3.30). Select the appropriate port and then
operate the Apply and OK buttons. All Windows programs should then
output data for the printer to the appropriate port.

Printer port interfacing

3

Fig.3.29 The General section of a typical printer properties window

Re-mapping

The expansion card might be supplied with a software solution in the
torm of a re-mapping program. This tries to intercept instructions that
are directed at the standard port addresses. It then substitutes an
appropriate routine to drive the PCl card. There is no guarantee that this
type of thing will work proparly, but it usually works well enough. One
potential problem is that software often controls the hardware directly in
order to obtain greater speed. This method of intercepting instructions
and substituting appropriate routines might slow things down to an

137

3

Printer port interfacing

|-L

Fig.3.30 Select the required port from the menu

unacceptable degree. This does not seem to be a significant problem in
practice, probably due to serial and parallel ports being quite slow in
relation to the rest of the PC. Anyway, if you are going to use a re-
mapping facility it is probably best to use the re-mapped port for your
add-ons, with the built-in port being used for external drives, etc.

Note that a PCl card is unlikely to use the re-mapping facility by default.
The card’s device driver should have a properties window that enables
the re-mapping to be enabled. This might be available by double clicking
on the port’s entry in Device Manager, but this often gives access to a

Printer port interfacing

cut down version of the properties window. Where this is the case, look
for another entry for the card in Device Manager, in amongst the main
categories. Double clicking on this entry should give access to the full
properties window. If a re-mapping facility is provided, there should be
a Configuration section or something similar (Figure 3.31). In this
example, the re-mapping can be enabled by ticking the appropriate
checkbox, and base addresses of &H278 and &H378 can be selected
for the parallel port. Of course, the address selected must not be in use
by another port. Where necessary, check the properties windows for
the other ports to determine their base addresses, so that address
confiicts can be avoided.

Points to remember

By using the handshake lines to provide an eight-bit input port, the data
lines of the printer port are left for use as an output port. In this way the
printer port can be “stretched” to provide both a “byte size” input and
output.

The handshake inputs can be used to provide more than eight input
lines, but things inevitably get a bit more involved as more inputs are
added. There are probably better ways of handling things if more than
16 inputs are required.

Any modern PC should have a printer port that is capable of bidirectional
operation. This means that the eight data lines can be switched to operate
asinputs. If you only require an eight-bit input port plus a few handshake
lines, this method is much easier than using the handshake lines to
provide an eight-bit inpul. The software is simpler and no additional
hardware is needed.

For basic bidirectional operation the printer port should be set for SPP
or EPP operation. With a modern PC the printer port is normally controlled
via the BIOS Setup program, rather than using switches or jumpers on
the motherboard. The SPP mode is called “Standard” mode in some
BIOS Setup programs. The ECP mode is unlikely to provide basic
bidirectional operation.

Printer port interfacing

Using a synchronous serial connection to an add-on circuit helps to
reduce the number of wires in the link, and makes the best use of the
available input/output lines. However, it complicates the software and is
relatively slow.

In theory just two wires plus an earth line are needed for a synchronous
serial link. In practice the system might slip out of synchronisation, or
not get properly synchronised in the first place, unless a third wire is
used.

TTL and CMOS shift registers can be used as the basis of a synchronous
serial link, but there are special computer chips designed for this type of
interfacing. In general, itis better to use these chips when suitable devices
can be located.

Where possible, add an extra parallel port using an ISA expansion card
rather than a PCl type. A PCl type will be of limited use unless it has are-
mapping facility that permits it to mimic a standard parallel port. The re-
mapping facility is unlikely to be enabled by default, so you will have to
switch it on and select a suitable base address.

4

Serial port
interfacing

8-bit I/O

Most PCs have at least one spare serial port, which makes this seem like
a good way of interfacing a PC to your add-on devices. In practice using
a serial port tends to be far less straightforward than interfacing an
equivalent circuit to a paraliel port. Where possible | would certainly
recommend using a printer port or an add-on parallel port for yaur PC
based projects. The main problem with a serial port is that it can not
directly provide parallel data, or read it. A certain amount of interfacing
is needed in order to accomplish the serial to parallel and parallel to
serial conversions. You therefore need a fair amount of circuitry in addition
to the basic hardware for your add-on.

Another point to bear in mind is that this additional circuitry only provides
basic eight-bit input and eight-bit output ports with no handshake lines.
There are actually handshake inputs and outputs on the serial port which
can be used to control the flow of data into and out of the port, and in
some circumstances it might be possible to use these as part of the
handshake set-up for your add-on device. There may also be inputs
and outputs available on the serial interface device that can be used as
part of the handshake system for your add-on. In general though, it is
best to keep any handshaking to the bare minimum.

Of course, by utilising multiplexing techniques it is possible to provide
virtually any desired number of input and output lines using a serial port,
but this further complicates matters. It is easy to end up with a circuit
that is 90 percent serial encoding, decoding, and multiplexing and 10
percent the actual add-on device!

Another problem with a standard RS232C interface is that it is relatively
slow. Using the standard transmission rates, data can only be sent at
about one or two kilobytes per second. This compares to rates of around

4 Serial port interfacing

500 kilobytes per second or more for parallel interfaces. In fact a modern
parallel port in an enhanced mode can manage data transfers at up to 2
megabytes per second. This relative lack of speed is not always of
importance, but it does render an RS232C interface impractical for certain
applications. It is usually possible to use a PC serial port at speeds
beyond the normal standards, but this only speeds things up by a factor
of six. '

It should be pointed out that serial interfaces do have two or three
advantages: Firstly, they are truly bidirectional, and all PC serial ports
have the ability to both send and receive bytes of data. A serial port can
also be used with long connecting cables, whereas parallel ports are
normally restricted to quite short leads. In fact an ordinary PC parallel
printer port should not be used with a connecting cable more than about
two or three metres long. Somewhat greater ranges can be achieved
using special low capacitance cables, but around 15 metres is the normal
maximum.

The maximum cable length for an RS$232C serial port depends on the
rate at which data is transferred, but cables of around 10 to 20 metres
are normally satisfactory at the higher rates. Greater ranges can be
achieved using high quality cables. In theory at any rate, cables of a
kilometre or more are acceptable at the lower transfer speeds. Another
advantage of serial interfacing is that only simple connecting cables are
required. A basic two-way system requires just three connecting cables,
and only five wires are needed if hardware handshaking is utilised. This
compares to 17 wires for a basic two-way parallel system with no
handshaking.

Bit-By-Bit

A serial interface sends all eight bits of data over a single line, and it
must therefore send bits one at a time. This is the reason that serial
interfaces tend to be relatively slow. A parallel interface transfers whole
bytes at a time whereas a serial type literally transfers data on a bit-by-bit
basis. A normal RS232C serial interface is asynchronous, which means
that there are no additional connecting wires carrying a clock signal or
some other form of synchronisation signal. The transmitting and receiving
circuits must, of course, be kept correctly synchronised somehow.
Synchronisation is achieved by using standard transmission rates and
sending additional bits with each byte of data.

The two example waveforms of Figure 4.1 show how this system operates.
The first point to note here is that the signal voltages are not at any form

142

Serial port interfacing 4

PNBq 0096 JO 8IE] B J8 S6IA] [BUIGS OM] J0j SULIC)EABM ojdurexT | pBid

L L L L 0 0 0 0
T T T T 1 ' ') (1) A2L-
| | | | | | | 1
" \ (1 | | | 1
| 1 | |] | 1
I1g doig “ L eleq " 9 eleg " Geleg | vereq € ejeg " Zzeeqg | teeg " 0 eleg " g velg
[1
1 | 1 1 1 | | |
1 | 1 | | | 1 \
| | | | 1 { 1 1 AOV AL+
0 I 0 I I 0 0 I
T ' (1) A2L-
| 1
|)
1 (
g doig | L®eleg 9 eleg S eleg ¥ eleqg “ g€ eleg c Eleg “ 1 ejeq oekeq | iguels
\ i
l |
U L (0) AL+

—e SMZ'Y0L == SMZ95L =

4 Serlal port Intertacing

144

of standard 5-volt logic levels, but are instead at plus and minus 12 voits.
In fact the signal voltages can be as low as 3 volts when fully loaded, but
would more usually be at around eight to ten volts. Serial interface chips
do actually operate at normal logic levels, but they interface to the RS232C
connector via special line drivers and receivers. These provide level
shifting so that the interface operates at the correct voltage levels, and
they also provide an inversion. Hence positive and negative voltages
respectively represent logic 0 and logic 1, which is the opposite of what
one might expect.

RS232C serial interfaces operate at a number of standard transmission
rates, or baud rates as they are known. The baud rate is simply the
number of bits sent per second if there is a continuous data stream. All
the standard baud rates are listed here:

50 75 110 150
300 600 1200 2400
4800 9600 19200

Unless you need to use very long connecting cables it is advisable to
use one of the higher baud rates as these provide higher maximum
transfer rates. By electronic and computing standards the maximum
rate at which data can be transferred is quite low even at the higher baud
rates. Including the synchronisation signals there are typically ten bits
transmitted per byte, which means that baud rates of 9600 and 19200
provide maximum data transfer rates of just 960 and 1920 bytes per
second.

This is sufficient for many applications, but is totally inadequate for
something like audio digitising. Bear in mind that there is a small delay
between the commencement of data being sent and a fully decoded
byte appearing at the receiving device. Using a high baud rate keeps
this delay as small s possible (a little over 100 us at 9600 baud).

The synchronisation signais are called stop and start bits, which are, as
one would expect, sent immediately before and after the data bits. The
start bit indicates to the receiving circuit that it must sample the signal
line after a certain period of time, and this time is equal to the period of
1.5 bits. In the example of Figure 4.1 the transmission rate is 9600 baud,
which works out at approximately 104.2 us per bit (1000000 ps divided
by 9600 baud equals 104.2 ps). Sampling the input line after 156.2 ps

Serlal port interfacing 4

(1.5 bits) therefore results in the logic level being tested in the middle of
the first bit. This is always the least significant bit (D0).

The input line is then tested every 104.2 ps until bits D1 through to D7
have been read into the receiver register. The data line is then returned
to its standby state for 104.2 us to produce the stop bit, which reaily just
provides a guaranteed minimum gap from one byte of data to the next.
This gives the receiving dev.ce time to deal with one byte of data before
it starts to receive the next one.

Word formats

The serial signal in this example has one start bit, eight data bits, one
stop bit, and no parity checking, which is probably the most common
word format. However, there are many others in use, with anything from
five to eight data bits, one, one and a half, or two stop bits, and odd or
even parity checking. There is always a single start bit incidentally. In
the present context you will normally require eight-bit data transfers, and
there is no point in using anything less than an eight-bit word format.
Normally it is better to use one rather than two stop bits because this
gives a slightly faster maximum transfer rate, but two stop bits can be
used if your add-on circuit needs a little extra time to process one byte of
data before the next is received.

Parity checking is a simgle method of error checking that relies on an
extra bit being sent at the end of bytes, where necessary, so that there is
always an even or an odd number of bits. This method of checking is
not very reliable since a double glitch can result in data being corrupted
but the parity being left intact. It is little used in practice and | would
recommend avoiding word formats that involve either type of parity
checking.

Serial interfaces have a reputation for being difficult to deal with, and this
is at least partially due to the numerous baud rates and word formats in
use. Itis not simply enough to get the transmitting and receiving devices
connected together correctly. Unless both ends of the system are set
up to use the same word format and baud rate it is unlikely that the
system will function correctly. It will certainly fail to operate at all if the
sending and receiving baud rates are different. Always make sure that
both ends of the system are set to the same word format and baud rate.
If a serial system fails to transfer data correctly always recheck that the
transmitting and receiving circuits are set up correctly.

4 Serial port interfacing

Positive Supply ([}

No Connection

Ground

Receiver Register Disable ([
Receiver Butter Register 7 (]

Receiver Butter Register 6 ([}
Receiver Buffer Register 5 ([}

Receiver Buffer Register 4 ([}
Receiver Buffer Register 3 (]
Receiver Buffer Register 2 (]
Receiver Buffer Register 1 (]|
Receiver Buffer Register 0 ([
Parity Error

Framing Error

Overrun Error

Transmitter Clock

(1) Even Parity Enable
Character Length Select 1
Character Length Select 2
(D Stop Bit Select

[[) Transmitter Bufter Register 5

1) Transmitter Bufter Register 4

(1) Transmitter Butfer Register 3
(D Transmitter Buffer Register 2
) Transmitter Buffer Register 1
[Transmitter Buffer Register 0
[Transmitter Register Output

Receiver Register Clock
Data Received Reset
Data Received (]}

Transmitter Register Empty
Transmitter Butfer Register Load
[} Transmitter Buffer Register Empty

Receiver Register Input (] [[D Master Reset

Fig.4.2 Pinout details for the 6402 UART

UART

It is probably not that difficult to decode a serial signal using a circuit
based on a shift register, but there are numerous devices available that
provide the necessary decoding and control hardware. Many of these
devices are designed to operate on the bus of a microprocessor and are
not really suitable for operation in most PC add-ons. For serial interfacing
to a non-microprocessor-based add-on it is a UART (universal
asynchronous receiver/transmitter) that is required. The industry standard
UART is the 6402, which can handle any standard word format and baud
rate. This is a 40-pin device which has the pinout configuration shown in
Figure 4.2.

e

Serial port interfacing 4

As the UART name suggests, both serial-to-parallel and parallel-to-serial
conversion are catered for. The device has tristate outputs that can be
directly interfaced to the busses of many microprocessors, as can its
inputs. It works equally well in normal logic circuits with the outputs
permanently enabled and the inputs either hard-wired or controlled via
standard logic circuits. The important point here is that it does not require
a microprocessor and a software routine in order to set the required
word format. Simply connecting a few inputs to the correct logic ievels
is all that is needed in order to perform this task.

Pins 34 to 39 control the word format, and pin 34 is the control register
load input. A high level on pin 34 loads the control register and it can
simply be wired permanently to logic one if the other control inputs are
to be hard-wired. The functions of the other control pins are as follows:
Pin 35, Parity Inhibit

A high level on this input inhibits parity generation during transmission,
and switches off parity checking during reception.

PIN 36, Stop Bit Select

Setting this input high selects two stop bits (1.5 for five data bit formats).
With this input set low the word format has one stop bit.

Pins 37 and 38, Character Length Select 1/2

These two inputs select the word length (the number of data bits) as per
this table;

Word Length CLSH1 CLs2
5 bits Low Low
6 bits High Low
7 bits Low High
8 bits High High

Pin 39, Even Parity Enable

This input is set high for even parity or low for odd parity. Note that this
input has no effect if pin 35 (parity inhibit) is set high and parity is disabled.

4 Serlal port interfacing

The word control inputs are common to both the transmitter and receiver
sections of the 6402, but there are separate clock inputs. The transmitter
clock input is at pin 40 and the receiver clock input is at pin 17. In both
cases the clock frequency must be 16 times the required baud rate and
must not exceed 3.2MHz. This enables baud rates of up to 200000 (200
kilobaud) to be accommodated, which is far more than adequate for
normal requirements. Even if you set a PC serial port to operate at a
higher than normal rate a 6402 UART should be able to cope.

Pin 21 is the master reset input, and this must be supplied with a positive
pulse at switch-on in order to ensure that the chip initialises correctly. In
comparison to most chips a fairly long reset pulse is needed, but a simple
C - R network is still sufficient. The positive and 0-volt supplies connect
to pins one and three respectively. The 6402 will actually operate over a
supply voltage range of four to 10 volts (four to 6.5 volts for the 6402C),
but it will normally be operated from a standard 5-volt supply. Itis based
on CMOS technology and the supply current therefore depends on the
clock frequency, but the supply current is usually less than two milliamps.

Receiver

The input data, which must be at normal 5-volt logic levels, is fed to the
receiver register input at pin 21. Decoded bytes appear on the eight
receiver buffer register outputs at pins five (most significant) to 12 (least
significant). These are tristate inputs that are controlled by the receiver
register disable input (pin four). The outputs go to the high-impedance
state when pin four is taken high. This facility is not usually needed and
pin four is then connected to ground so that the receiver outputs are
permanently enabled.

When a new byte of data is received the data received flag at pin 19
goes high. A low pulse applied to the data received reset input at pin 18
can be used to reset this flag. In many applications these inputs are not
needed, because the main add-on circuit will automatically respond to
new bytes of data as and when they are received. For example, feeding
fresh data to a digital-to-analogue converter results in it altering its output
to suit without the need for any control signals such as a strobe pulse.
Not all circuits are so accommodating though, and in some cases a
signal is needed to indicate that fresh data is available.

As an example, in some applications data might be sent in (say) groups
of three bytes, and the receiving circuit then needs some means of
counting in the bytes so that it knows which byte is which, and when alt

Serial port interfacing 4

three have been received. This requires a strobe pulse each time a fresh
byte has been received. Using the data received flag to reset itseif can
produce this signal. All that is needed is an inverter and a short delay
circuit connected between the data received flag and its reset input. A
strobe pulse is then generated each time a fresh byte of data is piaced
on the outputs.

There are three error flags available at pins 13 to 15, and these respectively
indicate a parity error, a framing error (an incorrect stop bit or first stop
bit), and an overrun error. The latter occurs when a new byte of data is
fully decoded before the data received flag has been reset. These outputs
can be used to operate warning LEDs or something of this nature, but in
most cases you will be all too aware if something goes wrong with the
decoding process, rendering the warning LEDs of little practical use.

Transmitter

On the transmitter side of things the eight bits of parallel data are supplied
to the transmitter buffer register inputs at pins 26 (least significant) to 33
(most significant). In order to transmit the data the transmitter buffer
register load input at pin 23 must be pulsed low. As with most serial
devices, a system of buffering is utilised, with the data being transferred
to the buffer register on the high to low transition, and then into the
transmitter register on the low to high transition. If the transmitter register
is full the second transfer is delayed until it is empty. This still leaves the
possibility of overwriting a byte of data in the transmitter buffer register.

One way of avoiding this is to use a timing circuit to ensure that data can
not be written to the interface at an excessive rate. Another is to use the
two handshake outputs available on the 6402. These are the transmitter
buffer register empty (pin 22) and the transmitter register empty (pin 24)
flags, both of which go high when their respective registers are empty.
These flags, and those of the receiver section, are tristate types. They
are all set to the high-impedance state by taking the status flag disable
input (pin 16) high, or enabled by taking this input low. The serial data
stream is provided on the transmitter register output at pin 25, and this
operates at normal 5-volt logic levels.

Recelver circuit

Figure 4.3 shows the circuit diagram for a simple serial-to-parallel
converter based on the 6402 UART. The crystal oscillator based on TR1

4 Serial port interfacing

generates the clock signal, and this operates at 2.4576MHz. The baud
rate provided by the UART is one sixteenth of this frequency, which works
out at a baud rate of 153,600 baud. A baud rate of 9600 is needed,
which requires the 2.4576MHz signal to be divided by 16. This division
is provided by the first four stages of IC1, which is a CMOS 4024BE
seven-stage binary counter. Using other outputs of IC1 can provide these
additional baud rates:

Output (pin no.) Baud Rate

Q3 (9) 19200
Q5 (5) 4800
Q6 (4) 2400
Q7 (3) 1200

Special line receivers are available, but unless long connecting cables
are used a simple transistor inverter stage is all that is needed to provide
the inversion and level shifting at the serial input. This is the function of
TR2. C4 and R6 provide the reset puise to the UART (IC2) at switch-on.
The control register inputs are hard wired for a word format of eight data
bits, one stop bit, and no parity checking, but you can obviously change
the wiring to produce any required format. However, this word format is
the most common one these days, and there is no point in using a different
one unless you really do need a different word format for some reason.

The decoded bytes of data are produced on outputs DO to D7, and are
at 5-volt CMOS logic levels. In practice they also seem to drive 74LS**
logic devices properly, but would probabty have insufficient drive currents
to drive standard TTL devices (which are now obsolete anyway). TR3
inverts the output signal from the data received flag and uses it to reset
this flag by way of the data received reset input. This produces an output
pulse each time fresh data appears on the outputs. C5 stretches the low
output pulse that is produced at the collector of TR3. This stretching will
not always be required, and if continuous streams of data are used it
might be necessary to reduce the value of C5 to around 47n.

Transmitter circuit

Figure 4.4 shows the circuit diagram for the parallel to serial converter.
The clock circuit is identical to the one used in the receiver circuit, and in

Serial port interfacing 4

peuoddns ase seje. 180
INq ‘Pneq 0096 1B UoHBIedOo SepincId UNduID ¥D0[0 8Y] J8AI8J8) [BLBS 8y) JO) wribeip ynono eyl £t bi4

A0 © : : — -
ny H @b W BYIPNL Hccw drz ._- a2 ._-
INS
A v axt
%22 6v509
6v508 I L 2z
L3 " 4 Zzao A _|. LH1
W 0l 20v9 2Hl e {1
€0 o——f
S 6 3820y l %06€
eRQMON £ 0 o—— L 9 Lol | 1
: 6 @ 8 2ol _m_
o—
g G vi . _ 4
9a o— 02 HWOLSE 2
9 — LX
4 lel ¥4
a1l - [] O il M0} b
aH B6E|BE[LE|SE| ¥E| | [Ny P cy 2y 13
v0
AS+ O

4 Serial port Interfacing

a transmitter/receiver circuit it is perfectly all right to use the same clock
circuit for both sections of the unit provided they are to operate at the
same baud rate. C4 and R7 provide the reset pulse at switch-on, and in
a transmitter receiver circuit these will be common to both sections of
the unit, as will IC2 itself. The control inputs of IC2 are programmed to
produce a word format of eight data bits, one stop bit and no parity
checking. They can be reconfigured to produce other formats, but
remember that in a two-way system the reception and transmission word
formats have to be the same.

The line driver consists of a simple transistor inverter stage based on
TR2. This does not provide proper RS232C signal voltages, which require
minimum loaded drive potentials of plus and minus 3 volts. This circuit
provides drive voltages of 0 and +5 volts. In practice the lack of a true
negative output level does not normally stop an RS232C interface from
working, and it avoids the need for plus and minus 12-volt supplies.
However, proper operation without the correct drive potentials can not
be guaranteed, and it is unlikely to work when using long connecting
cables. Itis certainly worth trying though, as it greatly simplifies things in
circumstances where it will work. If your application requires a proper
line driver, refer to the section of this chapter that deals with line driver
and receiver devices.

In order to transmit a byte of data the TBRL input of IC2 must be pulsed
low, and this function must be provided by some control logic in the
main add-on circuit. For reliable operation the data on the input lines
must be stable immediately prior to and during the puise on TBRL. This
pulse can be quite short, but it is probably best to err on the side of
caution and use a pulse that is about one UART clock cycle in length.
The transmitter register is loaded on the rising edge at the end of the
pulse, and transmission then commences.

Itis important that data is not written to the serial interface at an excessive
rate. In many applications this will not be a problem, with only the odd
byte of data be sent to the interface here and there. The real problem
occurs where bursts of data will be handled by the interface, even if
each data bust only consists of three or four bytes.

There are two ways of handling the problem, and one of these is to
design the control logic of the main circuit to regulate the flow of data,
and prevent bytes from being sent at an excessive rate. Where this
approach can be implemented reasonably easily it wll almost certainly
represent the best approach to the problem. The othe” method is to use
one of the handshake outputs of the UART to provide a hold-off so that

Serial port Interfacing 4

s/eAe] INdIN0 OZEZSH 1IN} 8PiA0d JOU S0P Jf “YNAD JBRILSURS (BUSS 8Y] ¥4 Dld

N © 7 ; ' !
et o||||||_ } il } M1 puo dze H dse H
)
£ .9 28 st Ao € " 2 T
IMS
0Q J vy Oxd A 1
\a olmml —.IA 6¥5048
20 Hoze ‘_ L < gl
[72]
2 ¢ea Ollm 3gv2oy 306¢E
£ ¥ao—o ov 9 101 | o
¢l
S0 0o—— v||_:_|||
e —— vi :
9a Gz — ZHINGLSY S
¢ IX
oy LyS08
4d Olﬂﬂ 4 24l
T H089 ol
6€ LE|SE| vE [2%) cd

AStH O

ol -
10

4 Serial port Interfacing

data can not be sent to the interface at a rate it can not handle. It will
probably not matter whether the TRE (pin 24) or TBRE (pin 22) output is
used, and in either case data should not be written to the interface unless
the handshake output is high.

Connections

The normal connector for an RS232C interface is a 25-pin D type, but
many PCs have the AT style 9-pin connector. In both cases the connector
on the computer is a male connector, and you require a female type to
make the connections to the port. Figure 4.5 provides connection details
for both types of PC serial port. Where possible, which in practice is
actually the vast majority of cases, no form of handshaking should be
used.

A serial interface is slow by normal computing standards, and very slow
by general electronic standards. Consequently, when sending data to
an add-on via a serial interface the add-on should be able to handle a
continuous flow of data. Similarly, even an old PC with a relatively slow
processor should be able to process a continuous flow of data without
difficulty. With no handshaking used the interconnections are very simple,
and it is just a matter of the two input or output leads of the interface to
the corresponding terminals of the PC’'s RS232C port.

There is a possible complication in that some PCs are reluctant to send
data unless the handshake inputs are held at the level that indicates the
receiving device is ready for action. For some reason this may even
“gum up the works” when the PC is set to use software handshaking or
no handshaking at all. The root of the problem is that handshake inputs
may assume the hold-off state if they are simply left floating. A simple
solution that usually works is to cross-couple the serial port’s handshake
lines. In practice this means connecting the clear to send (CTS) and
data set ready (DSR) inputs to the request to send (RTS) and data terminal
ready (DTR) outputs respectively. If that fails to free things up, try
connecting the ring indicator input to one of the handshake outputs as
well.

On the face of it there is no reason for having two sets of handshake
lines, since one set is all that is needed to control the flow of data. The
usual scheme of things, if both sets are actually operational, is to have
CTS and RTS to control the flow of data, with DTR and DSR indicating
whether or not the receiving device is actually operational. If a serial
printer is off-line because it is out of paper for example, this would be
indicated via DTR and DSR.

Serial port interfacing 4

RXD DIR

RTS RI

T™XD RTS DSR DCD

DTR

Fig.4.5 Connection details for both types of PC serial port

4 Serial port interfacing

The CTS and RTS lines would be used to control the flow of data when
the printer was on-line. In reality the way in which the handshake lines
are used varies somewhat from one serial device to another, and serial
links will sometimes only function if they are connected in what is
theoretically the wrong manner. It is mainly for this reason that hardware
handshaking is best avoided where possible. Where itis implemented it
often results in a try everything until it works approach.

Software handshaking

You may come across references to software handshaking, or XON/XOFF
handshaking, as it is also known. This is where the handshaking is
controlled via software codes sent from the receiving device to the
transmitting device via a data link. With this type of handshaking you
therefore need a full-duplex (two-way) link even though data is only being
sent in one direction (half-duplex operation). The ASCIl codes 17 and
19 are normally used for XON (switch on) and XOFF (switch off)
respectively.

intheory itis not necessary to have the handshake lines coupled together,
but in practice the sending device may refuse to send anything unless
its handshake inputs are at the “on” voltage. Presumably it decides that
the receiving device is off-line and refuses to start transmitting until it
gets the appropriate input level on one or both of its handshake inputs.
It would obviously be possible to use this type of handshaking with your
own projects, but it would seem to be doing things the hard way. Also,
this method is not noted for its reliability, so if handshaking is deemed
absolutely necessary it is best to adopt the hardware method.

DCE and DTE

You might also encounter references to DCE and DTE when dealing with
serial interfacing. These respectively stand for data communications
equipment and data terminal equipment. In theory a serial link normally
consists of a DCE device and a DTE type. A computer is normally the
device that controls the system, and would be a DTE unit. Something
like a printer or one of your add-ons would normally be the controlled
device, or the DCE unit in serial interfacing terminology. The difference
between the two types is that DTE units transmit on their “TXD" outputs
and receive on their “RXD” inputs.

Things are done the other way round with DCE units, which transmit on
their “RXD” lines and receive on their “TXD" lines. The handshake lines

Serial port interfacing 4

are also swapped over so *hat inputs become outputs and vice varsa.
This may seem to be pointless and potentially confusing, and | suppose
that a good case to this effect could be made. Apparently the reascn for
having the two categories of equipment is that it enables a so-called
“straight” connecting cable to be used. In other words, the cable connects
pin one at one end to pin one at the other, pin two to pin two, and so on.
Connecting two DCE units together, or two DTE types, requires the correct
method of cross coupling for successful operation. For example, pin
two at one end has to connect to pin three at the other in order to provide
a data link.

When you are constructing your own serial units there should be no
confusion about the method of connection. A PC is a DTE device, and it
does things in the logical way with data output from “TXD" and received
on “RXD". In the circuits of Figures 4.3 and 4.4 the labelling on the input
and output sockets shows the terminals of the PC serial ports that the
lines connect to incidentally.

Line drivers/receivers

As pointed out previously, it is often possible to use simple inverters
rather than proper RS232C line drivers and receivers. However, if you
are using long connecting cables it is best to opt for the real thing, and
clearly itis also necessary to fit proper line drivers to your projects when
faced with a PC that will not work reliably with reduced drive voltages.
The standard line drivers and receivers are the MC1488P and MC1489P
respectively. These are both quad devices, but any unwanted sections
can simply be left unused. Pinout details for both devices are provided
in Figure 4.6.

Three of the line drivers in the MC1488P have two inputs, and effectively
operate as NAND gates having outputs at line voltages. In most
applications the gate capability is not required and either the two inputs
of each driver must be driven in parallel, or the unused input must be
tied high. The line receivers of the MC1489P each have a control input
that can be used to alter the input threshold level, and it also has possible
application in counteracting certain types of noise. In most cases though
the control inputs are left unused.

One slight problem with the MC1489P is that it requires dual balanced
12-volt supplies in order to provide the correct output potentials. It would
often be more convenient it a single 5-volt positive supply could be used.
One solution to the problem is to use a switch mode power supply circuit

4 Serlal port interfacing

MC1488P

MC1489P

v- v+ Input 1 TS V+
Input 1] Input 4A Control 1 (] Input 4
Output 1] Input 4B Output 1] Control 4
Input 2A (] {D Output 4 Input 2 Output 4
Input 28 (] BID Input 3A Control 2 D input 3
Output 2 1D input3s Output 2 D Control 3

Gnd D Output 3 Gnd BID Output 3

Fig.4.6 Pinout details for the MC1488P and MC1489P line driver and
receiver chips

to produce dual balanced 12-volt rails from a 5-volt supply. An alternative
is to use a device such as the MAX202, which is effectively a standard
dual line driver plus a built-in switch mode power supply circuit. This
enables it to produce adequate output potentials from a standard 5-volt
logic supply.

As an added bonus the MAX202 also includes a couple of line receivers.
The circuit diagram for a dual line driver/receiver based on the MAX202
appears in Figure 4.7. The switch mode power supply is a simple
capacitive pump type, and no inductors are required. The five capacitors
must be high quality types suitable for use in switching circuits, and
tantalum capacitors are probably the best choice.

Making Contact

Any high level language should have built-in support for the PC's serial
ports. Unfortunately, this support is usually slanted towards the sending
and receiving of files rather than byte-by-byte operation. You can, of
course, send a one-byte file to a serial port, but there will probably be
another byte or bytes sent with the data byte, such as an end of file
marker. The hardware in your add-on has to be designed to take this
sort of thing into account. Similarly, when sending serial data to a PC's
serial port it may be necessary to include additional bytes to help the
software digest the data properly.

D

|
Serial port Interfacing 4

' i 3\
L c1 -LC4
== 00uF 16 = 100n
2 \

4

1
c2 £ j' 183n
100nT 3

6 100n

IC1 g
11 14

TTL/CMOS °——1 5 MAX202 90 Rgo32C

Inputs o | |~ o Outputs
12 13

TTL/CMOS © 9 © R$232C

Outputs o= | | = o Inputs

15

ov

Fig.4.7 A line driver and receiver circuit that requires a single
+5-volt supply

Where the programming language you are using supports direct port
access you can try controlling the serial port hardware directly. This is
not too difficult when sending data, where it is basically just a matter of
writing the data to the appropriate input/output address. A timing loop
can be used to ensure that data is not written to the port at an excessive
rate, or you could try reading the appropriate status flag of the chip.
Reading data direct from a serial port is much trickier, since the operating
system will be dealing with bytes of data as and when they arrive. This is
almost invariably achieved via interrupt routines. You must not use
software routines that compete with the operating system. Unless you
really know what you are doing, direct reading of the serial port is not a
practical proposition.

4 Serial port interfacing

The serial ports are written to and read at the base address of the port.
These are the four serial port base addresses, but note that under certain
circumstances the operating system might shuffie the ports into a slightly
different scheme of things (ports two and four having their address ranges
swapped over for example). This table also shows the IRQ numbers for
each port.

Port Base Address IRQ
One 3F8 4
Two 2F8 3
Three 3E8 4
Four 2E8 3

Direct control of a serial port, other than the data register, can be a slightly
“hit and miss” affair as there have been several serial interface chips
used in PCs over the years. However, they are to a large extent
compatible, and you are unlikely to encounter major problems to due to
a lack chip compatibility. The original PCs used an 8250 chip, but most
recent PCs have used the 16550, or a variant of this device. In fact
modern PCs have a single chip to handle the basic input/output functions,
and this chip includes a section that is functionally the same as a device
from the 16550 family. Anyway, this is the “standard® scheme of things
for the serial port registers.

Address R/W Register DLAB
Base Read Received Data 0
Base Write Data To Transmit 0
Base R/W Clock Divider Latch (LSB) 1
Base + 1 R/W Clock Divider Latch (MSB) 1
Base + 1 Write Interrupt Enable Register 0

Base + 2 Read Interrupt Identification Register
Base + 3 R/W Line Control Register
Base + 4 RW Modem Control Register

|

Serlai port interfacing 4

Base + 5 Read Line Status Register
Base + 6 Read Modem Status Register
Base + 7 - Reserved

There is a slight complication in that two registers have different functions
depending on the setting of the divisor latch access bit (DLAB), which is
bit seven of the line control register. This bit must be set fo 0 to gain
access to the data registers and the interrupt enable register, and to 1 to
access the two clock divider latches.

it can be useful to control the divider latches directly as they permit the
baud rate to be controlled. The clock for the serial chip is at a frequency
of 1.8432MHz, but there is an internal division by 16 so that the baud
rate is one sixteenth of this figures (115.2 kilobaud). Placing a divisor
into the clock divider latches, which together hold a 16-bit value, can
reduce the baud rate further. This gives a division range of 1 to 65535.
The baud rate of a serial port can usually be set via the operating system,
and can be set using the built-in facilities of some programming
languages. However, direct control offers a simple but effective
alternative.

it also enables the use of any baud rate supported by the hardware,
rather than restricting you to the standard rates. Using a value of zero
for the MSB and one for the LSB provides a baud rate of 115.2 kilobaud,
and permits substantially faster data transfers than the highest standard
rate of 19.2 kilobaud. Data can be transferred at over 11k per second
using this rate. This is still quite slow by parallel port standards, but it is
more than adequate for most applications. R has to be pointed out that
not all PC serial ports are guaranteed to work at 115.2 kilobaud, but the
serial ports of any reasonably modern PC should be able to do so.

Interrupts

The interrupt enable register is reasonably straightforward, and the
functions of each bit are detailed in this table:

Bit Function
0 Received Data Available
1 Transmitter Holding Register Empty

4 Serial port interfacing

Receiver Line Status

Modem Status

Enables Sleep Mode (only if 16750 UART fitted)
Enables Low Power Mode (only if 16750 UART fitted)
Reserved

Reserved

N OO O s w N

In each case setting a bit high enables that form-of interrupt. With bit 0
set high an interrupt is generated when the receiving register has a fresh
byte of data available. The easiest way of directly reading the port is
probably to disable this interrupt and use polling instead. Polling simply
means frequent testing of the appropriate status flag, with the port being
read when itindicates fresh data is available. This method is less efficient
in that it involves more work for the processor, but with the received data
interrupt disabled it should avoid conflicts with the operating system. Bit
1 produces an interrupt when the transmitter register is empty and the
chip is ready to receive a new byte of data for transmission. Again, it is
probably easiest to disable this interrupt and rely on polling or timing
loops to prevent data being written to the port at an excessive rate. Bits
2 and 3 enable receiver line status and modem status interrupts, which
you will probably have no need to implement.

When bit 0 of the interrupt identification register is at 0 an interrupt is
pending, and bits 1 and 2 identify the pending interrupt with the highest
priority in this fashion:

Bit2 Bit1 Priority Source

0 0 Fourth Modem Status
0 1 Third Transmitter Register
1 0 Second Receiver Data
1 1 First Receiver Line Status

Word control

The line control register controls the word format for reception and
transmission. This is a summary of the bit functions:

Serial port interfacing 4

Bits 0 and 1
These set the number of data bits as follows:

Bit 0 Bit 1 Word Length
0 0 5

0 1 6

1 0 7

1 1 8

Bit 2

This bit is set low for one stop bit or high for two stop bits (1.5 stoo bits
for five data bit operation)

Bit3

The parity enable bit. Set to 1 to enable parity or 0 to disable parity
checking.

Bit 4

This bit selects the type of parity checking used, but obviously has no
effect if parity is disabled via bit 3. Set this bit to 1 for even parity or O for
odd parity.

Bits5

The stuck parity bit.

The set break control bit. Set to O for normal operation, or to 1 to force
the serial output pin of the chip to logic 0.

Bit7
Divisor Latch Access Bit (DLAB).

4 Serlal port interfacing

Modem control

The modem control register is used primarily to control the data terminal
ready (bit 0) and request to send (bit 1) handshake outputs. In both
cases logic 0 sets the output to the standby state and logic 1 sets it to
the active state. Bit 4 provides a loopback feature for diagnostic testing.

Line status

The line status register enables various status flags to be read. Thisis a
summary of the bit functions:
Bit 0

This is the received data ready flag, and it is set high when a complete
character has been received and transferred to the receiver buffer register.
Writing a 0 to it can reset this bit, but it is reset automatically when the
received data is read.

Bit 1

This is the overrun flag, and it is set to 1 when a byte of data is placed in
the receiver buffer register before the previous byte was read. Itis reset
when the line status register is read.

Bit 2

Bit 2 is set to 1 when a parity error is detected. It is reset when the line
status register is read.

Bit3

The framing error bit. When it is set to 1 the iast character received did
not have a valid stop bit.

Bit 4

This is the break interrupt indicator. It is set at 1 when the received data
input is held at logic 0 for more than the duration of one complete
character inciuding start and stop bits, etc.

Bits 0 to 4 are all error flags, and any of these being activated causes a
line status interrupt to be generated.

Serial port interfacing 4

Bit5

The transmitter holding register empty bit. This flag is set to 0 when the
processor loads the transmitter holding register ard to 1 when a character
is transferred from the holding register to the transmitter register. In
other words, when set to 1 it indicates that the transmitter holding register
is ready to receive another byte of data. It also generates an interrupt
request.

Bit 6

This is the transmitter empty indicator. It is set to 1 whenever the
transmitter holding register and the transmitter shift register are both
empty. Ltis at 0 whenever either register contains a byte of data.

Bit7

Unused and always at logic 0.

Modem status

The modem status register enables handshake and other inputs tc be
read. The bit functions are as follows:

Bit0

This is the delta clear to send input. When set to 1 it indicates that the
clear to send input has changed state since it was last read.

Bit 1

Similar to Bit 0, but for the data set ready handshake input.

Bit 2

The trailing edge ring indicator detector. It indicates that the ring indicator
input has changed from the active state to the inactive state.

Bit3

This bit indicates that the data carrier detect input of the serial chip has
-changed state.

Note that bits 0 to 3 generate a modem status interrupt when they are
setto 1.

4 Serlal port Interfacing

Bit4
Reads clear to send line.

Bit5
Reads data set ready line.

Bit 6
Reads ring indicator line.

Bit7
Reads data carrier detect line.

An easy way to start experimenting with direct control of a serial port is
to first set the divisor latch access bit to 1 by writing a value of 128
(decimal) to the line control register. This gives access to the divisor
latches so that you can set the required baud rate. Use values of 0 and
12 (decimal) for the most and least significant bytes respectively, which
gives a baud rate of 9600. Set the registers back to nrormal operation by
writing a value of 0 to the line control register.

Bytes for transmission are then written to the transmitter register at the
base address, but where necessary use a timing loop to prevent bytes
from being transmitted at more than one byte per millisecond.
Alternatively, use a loop to monitor bit 5 of the line status register. A new
byte of data should only be written to the serial port when this bit is at
logic 1.

Received data is read from the base address of the port, but this address
should only be read when fresh data is available. Whether or not new
data is available can be determined by monitoring bit O of the line status
register. This bit goes to logic 1 when a fresh byte is available, and
therefore data should only be read when this bit is at 1. Itis automatically
reset when the received data register is read. Initially it is probably best
not to use interrupts, and to disable interrupts generated by the port so
that there are no conflicts with the operating system. This is achieved by
writing a value of zero to the interrupt enable register.

e
Serial port interfacing 4

Adding a serial port

Most PCs are equipped with two serial ports as standard, so it is not
normally necessary to fit adcitional serial ports. If your PC has a mouse
on one serial port and another device such as a modem on the other,
there will be aiternatives to adding another serial port. Switching to a
PS/2 mouse is likely to be the cheapest option, assuming the PC is
equipped with a suitable pot. A PS/2 mouse port seems to be onsa of
the standard ports these days, so there should be no problem here.
Changing to an internal modem is another possibility. Modem cards
can be obtained at surprisingly low prices these days. Another opticn is
to obtain a USB to serial adapter so that the modem or other device can
be operated via a USB port.

If you do need to add an extra serial port, suitable expansion cards are
produced. As with parallel port cards, where possible it is better to use
an ISA card. This gives a “proper” serial port at one of the input/output
addresses normally used with serial ports. A port of this type can be
used in exactly the same way as the built-in ports. A PCI version can
only be accessed directly if it is supplied with re-mapping software that
intercepts instructions sent to the empty input/output addresses, and
replaces them with appropriate routines.

Any reasonably recent printer port card should be capable of at least
basic bidirectional operation, but this feature is unlikely to be available if
you “dig up” an old printer port card or multi port card. Where available,
the input. mode is set in exactly the same way as for a built-in port In
other words, set bit 5 of the handshake output register to logic 1. It is
usually possible to alter the port’s base address and IRQ setting. These
settings are usually adjusted via configuration switches or jumpers on
the expansion card. The card should be supplied with an instruction
manual or an instruction sheet that gives details of the available options.

Four address ranges are set aside for serial ports, so adding one or two
extra ports should not give any problems in this respect. You simply
have to ensure that the address range of the expansion card is different
to the ones used by the built-in serial ports. The Windows System
Information utility can be used to check the addresses used by the built-
in serial ports. The card should permit its address range to be set at one
that will not conflict with the buit-in ports. However, if necessary, it should
be possible to alter the adcress ranges of the built-in ports using the
BIOS Setup program.

Interrupt request (IRQ) lines are a different matter, since spare IRQ
numbers are in short supply on the average PC. In order to avoid conflicts

4 Serial port interfacing

with the existing hardware it is best if the card is not set to use interrupts
at all. Unless you actually intend to use interrupts there is no point in
having them enabled. With interrupts enabled on the serial port card itis
quite likely that conflicts will occur, with the mouse or other hardware
ceasing to work properly.

" """/

Serial port Interfacing 4

Points to remember

An ordinary serial interface is not suitable for applications that require
high transfer rates. The highest standard baud rate of 19,200 transfers
data at less than 2 kilobytes per second. Even taking the port to its
highest rate of 115,000 baud, data can only be transferred at about 11
kilobytes per second.

A serial interface is a two-way type, enabling eight bits of data to be sent ‘
from the PC to a peripheral, or read from a peripheral. Full dupiex
operation is possible. In other words, data can be sent and received ‘
simultaneously.

Many serial interface chips are designed for use with microprocessors, ‘
and are not suitable for use in simple add-on devices based on TTL

chips. A UART such as the 6402 can be set to the correct word format |
by hard-wiring its control inputs to the appropriate logic levels. A very

basic control logic circuit is all that is required.

The baud rate of a UART is controlled using a crystal oscillator that
ensures accurate and consistent results. It is best to use a fairly high
baud rate so that relatively fast data transfers are obtained.

The signal voltages used for RS232C interfacing are nominally +12 volts.
UARTs and other serial chips must be interfaced to RS232C signals via
line drivers and receivers that provide the necessary voltage shifting.
Line receivers and drivers both provide an inversion. Consequently, +12
volts represents logic 0 and -12 volts represents logic 1.

It should not be necessary to use handshaking with your serial add-on
circuits. The relatively low speed of serial interfacing means that there is
little risk of the PC or the add-on device being fed with data at an excessive
rate.

Make sure that the PC's serial port is set for operation without
handshaking. It might otherwise refuse to output data because it is not

4 Serial port interfacing

receiving the correct handshake signal. The port's settings are controlled
via its properties window, which can be accessed via Device Manager.

Having two types of serial device (DTE and DCE) complicates normal
serial interfacing. Due to the lack of any form of handshaking, this should
not produce any problems with your own add-on circuits.

Most programming languages have some instructions for dealing with
serial communications. However, for the byte by byte communications
needed with most add-on circuits it is easier to directly control the PC'’s
serial port hardware. Directly controlling a serial port largely overrides
the Windows settings for the port.

<)

Game port
interfacing

Joystick port

Most PCs seem to be supplied complete with a “games” port, which is
usually part of the computer's sound system. It will therefore be on the
soundcard if the computer has one, or on the motherboard with the audio
connectors if the computer has an integrated sound system. Itis primarily
intended for use joysticks of the type that contain two potentiometers,
and not switch type joysticks. With the latter the user can only indicate
that an on-screen object should move in a particular direction (up, down,
left, right, or a combination of two adjacent directions).

With a potentiometer style joystick the user indicates a particular screen
position for the controlled object. There are two potentiometers in the
joystick, which provide X (horizontal) and Y (vertical) positions. From
the general interfacing point of view an input port intended for use with
potentiometer joysticks is normally of more value than one intended for
use with switch potentiometers. An input port that can read the settings
of potentiometers is an analogue type that, on the face of it, has numerous
practical applications.

Unfortunately, the “games” port of a PC is a rather basic form of analogue
port. It does not really compare to (say) the 12-bit voitage reading port
of the old BBC Model B machines. Itis actually more akin to the “paddie”
inputs on the old Commodore/Atari type joystick port. It responds directly
to the resistance of the potentiometer, rather than having the
potentiometer’s track connected across the supply lines and then reading
the wiper voltage. The general scheme of things seems to be to have
the potentiometer in a simple C - R timing circuit. At the beginning of a
timing cycle a software routine starts counting upwards from zero. When
the charge volitage on the capacitor reaches a certain value a “flag” in
the interface changes state, and indicates to the software routine that

Game port interfacing

Ground Ground
Position 1 Position 0
Button 5 Button 4

+5V —l l— +5V

00000000
1

\80o0c00e

) — Lo

Button 7 Button 6
Position 3 Position 2
Ground

Fig.5.1 Connection details for a PC game port

the count must be halted. The higher the resistance of the potentiometer,
the longer it takes for the charge voitage to be reached and the higher
the count produced by the software routine.

In theory it is possible to obtain a high degree of linearity with this system.
In practice it usually seems to provide quite poor linearity, and is not
usually up to the task of accurate measurement. As implemented in a
typical PC “games” port there is a definite lack of linearity. Of course,
this non-linearity is notimportant in the port’s intended application, but it
renders it of relatively little value as a general-purpose analogue port.

There is a further problem in that the port reads resistance rather than
voltage, but most signal sources will provide a varying voltage not a
varying resistance. This makes it necessary to read most sensors via a
voltage-to-resistance circuit, which is a difficult form of conversion, and
one that is likely to further impair the linearity of the system. Consequently,
the analogue inputs of the games port are not really suitable for precise
measurement, but they can be used in non-demanding applications to
read sensors such as thermistors and cadmium sulphide photocelis.

Fig.5.2 The game port connector is a 15-way female D type

The PC joystick ports do not only have analogue inputs, and there are
also some digital inputs. These are included as a means of reading the
“fire-buttons” of the joysticks, but they are usable as general-purpose
digital inputs. With its simple analogue inputs, limited number of digital
inputs, and no digital outputs at all, the analogue port is clearly of
comparatively limited value as a general purpose port. It can still be
useful for a few applications though, and it is worthwhile familiarising
yourself with the basics of this port.

Connections

Connection details for the PC “games” port are provided in Figure 5.1.
The connector on the computer is a female 15-way D type (Figure 5.2),
and you therefore need a male 15-way D connector to make connections
to this port. As pointed out previously, it is primarily intended for use
with two joysticks of the potentiometer variety. However, there are various
types of games controller that use the port’s inputs in a variety of ways.
This demonstrates the point that it is actually rather more versatile than it

173

5 Game port interfacing

Ground Ground
Analogue 1 Analogue 0
&H201 Bit5 ——— &H201 Bit 4

+5V —l r +5V

ee0o0o0o0000
%“oooooé

] Lo

&H201 Bit 7 &H201 Bit 6
Analogue 3 Analogue 2
Ground

Fig.5.3 Connection details for a game port that is used for
general interfacing

is normally given credit for. Inthe normal scheme of things the “Position”
inputs read the settings of the potentiometers, and two of these are
needed per joystick (one to provide the X co-ordinate, and the other to
provide the Y co-ordinate). The “Button” inputs read the “firebuttons”,
and there are two of these per joystick.

When using the joystick port as a general-purpose interface it is better to
think in terms of the pin identifications shown in Figure 5.3. The inputs
that read the potentiometers are a form of analogue input, but they operate
in a relatively crude fashion. As explained previously, they directly read
the resistance of the potentiometers, rather than reading their wiper
voltages. Do not bother trying to get them to directly read voltages, as
this is not possible, and could conceivably damage the hardware. For
their intended purpose the analogue inputs function well enough, but
because they read resistance not voltage, and the degree of linearity
provided is very poor, they are of relatively little value for general analogue
interfacing.

Figure 5.4 shows the correct method of connection for the joystick
potentiometers. Each one simply connects between its analogue input

Game port Interfacing 5

VR1 H .] VR2
180k | | '} 180k

VR3 [, ' } VR4
ook LI+ ——1] 1a0k

Fig.5.4 Using potentiometers with the analogue inputs

and one of the port’s +5 volit supply terminals. The returned value from
each potentiometer seems to be roughly one per kilohm of resistance.
However, as already pointed out the linearity is far from good, and this
can only be used as a very rough guide. Alsc, on high readings there
seems to be a problem with noise, or there may be some other cause of
the port’s erratic operation. Whatever the cause, the port is effectively
rendered unusable with resistances of more than about 180k, and 150k
is a safer maximum resistance value. PC joysticks often seem 0 use
220k potentiometers in parallel with preset resistors, with the latter being
adjusted to limit the maximum resistance of each pair to about 150k or

SO.

5 Game port interfacing

Reading

The “firebutton” inputs can be read using the built-in functions of many
high level languages, including GW BASIC and Q BASIC. However, when
using the joystick port for general interfacing it is probably better if these
inputs are read directly. When using GW BASIC or Q BASIC this is
achieved using the INP function, and the four “firebutton” inputs are at
bits four to seven of address &H201. This is address 513 in normal
decimal numbering. You have to read all four bits at once, plus the four
unused bits of that address as well. It is a simple matter to mask off any
unwanted bits though, so that you can effectively read only the bit or bits
that are of interest to you. This is achieved using “bitwise” ANDing. This
process has been used in the software featured in earlier chapters, and
it is described in detail in the next chapter.

Analogue reading

Reading the analogue inputs directly is probably not worthwhile, and it
is much easier to exploit the built-in joystick reading functions of most
high level PC languages. When using GW BASIC (or a compatible BASIC)
itis the STICK function that is used to read the port. The STICK(0) function
returns a value from channel 0 (i.e. analogue input 0), and it also results
in readings being taken on the other three channels. These additional
readings are stored in memory and can then be returned using the
STICK(1), STICK(2), and STICK(3) functions. These read analogue inputs
one to three respectively. The important point to note here is that analogue
inputs one to three can only be read if a “dummy” reading is first taken
from analogue input 0. For example, these two lines of GW BASIC would
read analogue input two and print the returned value on-screen.

10 DUMMY = STICK(O)
20 PRINT STICK(2)

The first line reads analogue input 0 and places the returned value in the
variable called “DUMMY”. Nothing is actually done with this variable,
and the purpose of this line is to take readings on the other analogue
inputs, including input two. The second line then reads analogue input
two and prints the returned value on the screen. It would seem sensible
to use input 0 if only a single analogue input is needed, as this avoids
having to continually take dummy readings from this input so that one of

176

Game port interfacing 5

-

Hod
youskop
o

-

18118AU0D 80UB]SIS8) 0} 868}j0A B 40§ wresbeIp unduo eyl G'G'bi4

AS- o
v Uld o
ul oo)
9ud o ¢l _q 2
I)
o I mwﬁ_ : induy
8uld o “ P
L
IIIIIIIIII [
] :
cy
v ¢ —
..|@A6_ %O\
Q371 Py wws = | LNz Iy
L2NY = 2Dl / 1a
Olyivn = LO| / U0CZ e
o -

5 Game port interfacing

+5V o
Ri |
k5 |C1pin14 IC1 = 74LS14
g S
C2 D2
. 2|3 4 ‘10u 1N4148
' —0 -3V Out
ICla IC1b
mm Cl1 D1 — C3
|
10n IC1 pin 7 1N4148 T 10u
| !
ov o

Fig.5.6 A simple negative supply generator

the others can be read. For the same reason, if two or three inputs are
needed it would be advisable to ensure that analogue input 0 is one of
them.

PCI compatibility

There should be no problem in directly accessing the game port if it is
part of an ISA expansion card or it is included with the PC's integrated
audio system. There could well be problems if the port is part of a PCI
expansion card. This is the usual problem of the PCl card interfacing the
port to the processor's busses in an indirect fashion. This makes it
impossible to have the hardware directly accessible at the normal input/
output addresses. A port of this type will certainly be “invisible” to a
programming language running under MS-DOS.

Under the right circumstances the port might be usable under Windows,
where the drivers for the port will provide a means of accessing it. There
is no harm in trying to use a games port on a PCl card with your add-
ons, but there is no guarantee of success. Getting the port to operate
with your add-ons might not be worth the effort if you are ultimately
successful. Life will be much easier using a traditional game port on an
ISA audio card or fitted on the motherboard.

178

T

Game port interfacing 5

O +5V
C3 &
100u *™*
8
2
-5Vout © > of l C2
ICL7660 | 4 T 10u
3
mm C1
S 10u
o oV

Fig.5.7 The circuit diagram for a more efficient negative supply
generator, based on the ICL7660 or equivalent

V to R conversion

Some signal sources can be read directty by the analogue inputs, but in
most cases a voltage-to-resistance conversion will be needed. | have
experimented with various circuits of this type over the years, and most
failed to provide usable results. Of the sundry methods tried, the only
simple circuits that gave reasonable results were the ones based on
opto-isolators. Figure 5.5 shows the circuit for a voltage-to-resistance
converter of this type. The problem in using an opto-isolator is that the
LED at its input has an unhelpful forward conduction characteristic.
Virtually no current flows until a forward potential of almost two volts is
reached, after which only a small increase in voltage is sufficient to
produce a large current flow. Adding a resistor in series with the LED
gives a better voltage/current characteristic above the two-volt threshold,
but still leaves the problem of the threshold itself.

In this circuit non-linear feedback via LED D1 is used to introduce
distortion that counteracts the forward threshold voltage in the opto-
isolator's LED. This gives a much improved relationship between the

5 Game port interfacing

input voltage and the reading from the analogue port, but do not expect
good linearity. However sophisticated the voltage-to-resistance converter,
the basic lack of linearity in the analogue inputs themselves precludes
their use in any application that requires absolute measurement. They
are only suitable for use where relative measurement is required and a
high degree of stability and precision is unimportant.

| used a 5 millimetre RED LED for D1, but practically any LED should
give satisfactory results. IC2 can be any “bog standard” opto-isolator,
such as a 4N27 or a TIL111. It does not need to be a high efficiency
type. Infactit is not a good idea to use a high efficiency device, as this
would result in a very low full-scale voltage. Using a low efficiency opto-
isolator the full-scale potential is typically about one to three volts. Note
thatincreased input voltage results in decreased values from the analogue
input. This could be corrected electronically using an inverter stage
ahead of IC1, but it is easier if the software is simply written to take this
factor into account.

The circuit of Figure 5.5 requires a -5-volt supply. A simple negative
supply circuit such as the one shown in Figure 5.6 can supply this. The
circuit consists of a simple oscillator based on two inverting triggers from
a74LS14. The oscillator drives a simple rectifier and smoothing circuit
that produces what is likely to be a loaded output potential of about
-3volts. However, this is just about adequate for the negative supply in
this case. The circuit of Figure 5.7 is a more reliable way of providing the
negative supply, but the ICL7660 and its numerous equivalents are
relatively expensive. This circuit provides an unloaded supply voltage
that is quite close to -5 volts, but the output potential reduces slightly
under loading. The electronic switches in the ICL7660 provide a source
resistance of about 100 ohms, so the milliamp or two of supply current
drawn by the nA741C operational amplifier will result in minimal loading
of the negative supply.

An alternative to providing a negative supply is to use the single supply
version of the circuit, which is shown in Figure 5.8. The operational
amplifier used must be a type that is capable of single supply DC
operation, in addition to operation on a supply potential as low as +5
volts. Most of the popular operatnonal amplifiers (LF351N, puA741C, etc.)
will not work in this circuit.

Game port interfacing 5

18U8AU0D 8ouR)sIsal 0} ebeyon Aiddns ejbuis v 86614

pud o
uod
sonshop 9 Ud ©
ol
8 Uld o—

Nl
£y
a31pey wws = |Q
12NV = 2Dl /
30vLEVD = LI /

Bl
cd

n

8]
e ——

4

-0
ndy|
+ 0
| M)
Y01
8]
U0CC wim
10 "™

181

5 Game port interfacing

MIDI port

MIDI (musical instruments digital interface) enables electronic instruments
such as synthesisers and sound samplers to be connected together to
form a complex music making system. The standard connector for a
MIDI interface is a five-way (180-degree) DIN type. The MIDI standard
also allows for the use of XLR connectors, which are a high-grade
professional type. However, manufacturers of MIDI equipment that use
XLR connectors must make suitable adapters available, so that their
equipment can be used with standard (DIN type) MIDI leads. Predictably,
apart from a few upmarket MIDI expansion cards, PC MIDI ports do not
use DIN or XLR connectors. Instead, the game port doubles-up as a
MIDI port. A special MIDI cable or adapter is therefore needed to connect
a PC to MIDI devices.

Note that the soundcard does not produce any sound via the MIDI port.
In the early days of MIDI it was not unknown for uninformed users to
connect the output of a MIDI port to the input of an audio system. All this
produced was some “clicks” and general noise from the loudspeakers.
MIDI is a form of digital interface that has similarities to an RS232C port.
It operates on the basis of sending coded messages that carry information
such as switch on a certain note with the specified loudness, or switch
off a certain note. A synthesiser or other MIDI equipped musical
instrument is needed in order to turn these messages into music.

As pointed out previously, normal MIDI cables can only be used with a
PC MIDI port via a special cable, which is really an adapter rather than a
simple cable. These do not seem to be as readily available as most
other PC leads, but they are produced. Your chances of success are
probably better with one of the large retailers of electronic musical
instruments rather than a computer store. On the face of it, there is no
difficulty in making your own leads provided you are reasonably
competent with a small soldering iron. Figure 5.9 shows the pin functions
for the 15-way D connector when it is used as a MIDI oort.

Missing hardware

In reality there is problem in that the soundcard does not include all the
hardware for a MIDI interface. The main omission is that the opto-isolator
on the MIDI input is missing. It is part of the MIDI hardware standard that
all inputs include this isolation circuit. The basic idea is to have the
coupling made via light rather than a direct electrical connection. This
has each unit in the system electrically isolated from the others, which

e

Game port interfacing 5 |

+5V +5V

Ground

MIDI out

MIDI in +5V
Fig.5.9 Connection details for the game port when it is used in its
MIDI role

can help to avoid problems with “hum” loops and digital “noise” entering
the audio circuits of the system.

There can also be problems if some units in the system are not earthed,
but instead use double-insulation to guard aga'nst electric shocks. Itis
possible to have large voltage differences between the chassis of different
units when using equipment of this type. Although the current avzilable
is strictly limited, the high voltages are still capable of zapping some of
the semiconductors when two units are wired together. Opto-isolation
keeps the high voltages at bay and prevents any damage from occurring.

If you buy a PC MIDI lead or adapter, it should include the opto-isolator
atthe input. There could certainly be problems in using a lead or adapter
that lacks this feature.

An opto-isolator is needed at inputs but not at outputs. If you only require
a lead to connect the game port's MIDI output to a MIDI instrument, it is

5 Game port interfacing

5-way DIN Game port

’ e 4 »«‘-wk: et = M S A
\\ & 1 B

(@)
(©)
0
|0
|1 ®
0-

220 ohm resistor

Fig.5.10 Using the game port as a MIDI output

not difficult to make your own lead. The two connections required are
shown in Figure 5.10. Strictly speaking, the 220-ohm resistor should
always be included. In practice the lead will work perfectly well without
it, and this resistor is often omitted. Probably the best cable for MIDI use
is a good quality twin screened type intended for audio use. The screen
should be earthed to the metal shell of the 15-way D connector, but it
must not be connected to the 5-way DIN plug.

MID! input

Matters are not quite as simple if you wish to make your own MIDI input
port, but the MIDI input hardware is still very simple. An opto-isolator is
required, but few other components are needed. The circuit diagram for
aMIDlinput port is shown in Figure 5.11. This circuit also has an optional
MIDI Thru output, and it is well worth including this feature. It addsto the
usefulness of the interface and requires few additional parts. A Thru
socket simply retransmits any signals received on the MIDI input, enabling
the signals to be coupled to other MIDI devices. Many PC based
sequencers have a facility that permits the MIDI output to operate as a
Thru socket, but having a genuine Thru output gives greater versatility.

On the input side of the opto-isolator (IC1), R1 provides current limiting
in conjunction with a resistor or resistors in the device driving this input.
D1 protects the infrared LED at the input of IC1 from high reverse voltages.
This is probably not strictly necessary, but it seems to be a standard
feature of MIDI input circuitry. Note that no connections are made to

Game port interfacing 5

Indyno nuy1 & pue induj |GIW & sepioid 18y ynduo Y | 16614

HoJ ewoo)
1d

1414

6ELNS
12

1 4

N

NOIDINNOD ON = "IN

5 Game port interfacing

N.C.] @ D) V+

|
Anode (2} . 7D Base
NA

Cathode (2] —K {s]) Collector

N.C. (4 e \ED Emitter

Fig.5.12 Pinout details and internal circuit for the 6N139

pins 1 and 4 of IC1, and these pins are not connected to anything internally
either.

The MIDI drive current is just five milliamps, and this necessitates the
use of a high efficiency opto-isolator. Although the MIDI baud rate of
31,250 baud is not fast by general electronic standards, opto-isolators
are very slow devices. A “bog standard” type can not handle pulse
signals at the speeds involved in this application. The opto-isolator must
therefore have both good efficiency and higher than normal operating
speed. The 6N139 is a good choice because is more than adequate in
both respects. Figure 5.12 shows pinout details for this device, together
with its internal circuit.

On the input side it has the usual infrared LED. The light sensor on the
output side is a photo-diode, and this gives excellent speed. On the
other hand, it gives extremely low efficiency, and an amplifier is needed
in order to obtain worthwhile performance. This amplifier consists of an
emitter follower buffer stage driving a simple common emitter output
stage. The latter has an open collector output. This type of amplifier
gives excellent gain and a wide bandwidth. The efficiency of the 6N139
is more than adequate for this application and it can handle baud rates

o

Game port interfacing 5

something like 10 times higher than the rate used for MIDI links. Note
that the 6N139 is not a darlington type. Superficially the two-transistor
amplifier of the 6N139 looks similar to a darlington pair, but it is not the
same. Darlington opto-isolators have good efficiency, but are extremely
slow in operation. They are certainly far too slow for use in MIDI links
and will not work in this circuit.

Resistor R3 is the load resistor for the emitter follower buffer stage, and
it ensures that this stage operates at a reasonably high current. This in
turn ensures that the circuit has a high switching speed. R2 is the collector
load for the common emitter output transistor. If the MIDI Thru sochket is
included, the opto-isolator driven from this output also forms part of the
collector load for IC1’s output transistor. IC1 can provide enough output
current to drive a Thru output and the MIDI input of the PC’s game port. \

R4 and RS5, together with a resistor in the MIDI input circuit driven from ‘
SK2, limit the output current to the appropriate level of about five
milliamps. The circuitis powered from one of the +5-volt supply term:nals

of the game port, and the average current consumption is untikely to be

much more than a milliamp. Both transistors in IC1 are switched off

under standby conditions, and the circuit only draws a significant supply

current during the periods when the input LED is switched en. Clis a

supply decoupling capacitcr.

Testing

The interface is very simple, and if it fails to work it is unlikely that the
problem lies in the hardware. Problems with MIDI interfaces are more
usually due to the port not being set up correctly in Windows. Soundcards
tend to cause a certain amount of confusion due to the number of device
drivers that are usually associated with them. MIDI usually contributes
at least its fair share of drivers, and most soundcards have two or three
of these. One of the drivers is for the MIDI port, and it will produce a
Roland MPU-401 compatibie port. This driver enables the PC to
communicate with MIDI syrthesisers, keyboards, etc., via the MIDI port,
and this one must be installed if you are using the MIDI port.

Confusion often occurs because there are usually other MIDI device
drivers. Even the most simple of modern soundcards have some form
of built-in sound synthesis, and some cards offer two or three different
types. These enable the scundcard to mimic a MIDI synthesiser so that
it can be used to play MIDI files. The default MIDI device is normally one
of the card’s sound synthesisers rather than the MIDI port. The MIDI
port might be used in addition to the sound synthesiser, and it should

5 Game port interfacing

i

Fig.5.13 The Windows Control Panel (icon version). The entries vary
somewhat, depending on the hardware installed in the PC

then be possible to use MIDI software with external MIDI equipment via
the MIDI port. If the MIDI port is not used in addition 1o the built-in sound
synthesis, there will be no response from devices connected to the MIDI
port.

In order to check the MIDI settings, first launch the Windows Control
Panel by selecting Settings and Control Panel from the Start Menu. The
Control Panel should look something like Figure 5.13, but depending on
the View settings, there might be text entries rather than icons. Either
way, there should be an entry called Sounds and Multimedia, and double
clicking this entry will produce a window like the one in Figure 5.14. The
Sounds and Multimedia Properties window will probably default to the
Sounds section. It is the Audio section that is needed in this case, so
operate the Audio tab to change the window to one like Figure 5.15.

Game port interfacing 5

M PU-401 Sounds and Mulimedia Properties

Sc.mcsfmdml Voice E-Mmf

Activate the MIDI
Music Playback
menu near the
bottom of the
window to reveal the
available options. In : k- Exclomotion

the example of i Extwindows i
Figure 5.15 there are]
just two, which are a 3
form of sound Scheme

synthesis and =
MPU-401. The SavgAs | Doejew |
available options,
and to some extent
the terminology
used, might

Scund Events

Sound Volume
pry

Low _! Hign
& Showvolume contol on the faskoer 4

vary somewhat o
depending on the L]

sound system Fig 5 14 The Sounds section of the

concerned. The properties window
MIDI port is unlikely

to be described as such, and usually includes the MPU-401 name instead.
This is because the MIDI port of a PC soundcard or integrated audio
system is compatible with the Roland MPU-401 interface, but some are
more compatible than others are.

The genuine Roland MPU-401 is a sophisticated piece of electronics
that provides more than just some simple port hardware. It contains so-
called “intelligence” that takes some of the workload off the PC's
microprocessor. This was very useful in the days when PCs were relatively
slow and needed all the help they could get from the other hardware.
This sort of thing is less important these days, because most PCs have
an excess of computing power when used in many applications. In fact
the built-in facilities of an MPU-401 interface could actually slow things
down when applied to a modern PC.

A MIDI port that has full MPU-401 compatibility will include the built-in
intelligence, and should be usable with any applications software that
works properly with the real thing. The MIDI ports of soundcards and
integrated audio systems have the basic MPU-401 port hardware but
almost invariably lack the built-in “intelligence”. These are sometimes

Cancal | i

5 Game port interfacing

190

Sounds and Multimedia Properties n %
Sounds Audio I Voice I Devices I
Sound Ptayback
\E Preferred device: i
]
[SoundMAX Digital Audio - I |

Yolume J Advanced l

Sound Recording I
}" Preferred device.
, i
» {SoundMAX Digtal Audio =1

Volume ! Adveanced E

MIDI Music Playback

% Preferred device:

L onlad
Microsoft GS Wavetable SW Synth vl
Microsoft GS Wavetable SW Synth

———— e P—

™ Use only preferred devices

oo] ewa i =

Fig.5.15 The Audio section enables the MIDI output device to
be selected

called “dumb” MIDI ports. This lack of full compatibility is not really a
major drawback, since most modern MIDI software only uses the basic
hardware, or perhaps has the option of using either a full MPU-401
interface or a “dumb” type. Some soundcard devica drivers provide a
software emulation of the built-in “intelligence”. This method should
work well enough provided you are using a reasonably powerful PC.

Where appropriate, it is clearly necessary to set the software for use with
a basic MIDI port if that is all the soundcard can provide. To be certain
that the MIDI output will be used at all, the appropriate option must be

Game port interfacing

selected using the MIDI Music Playback menu. Some music software
has built-in facilities for selecting the destination for MIDI output. This
facility can only work by overriding some of the Windows sound settings,
so check this point if some MIDI software works properly while other
software produces no output via the MIDI port.

It can be useful to play a MIDI sequence using the Windows Media Player
that is supplied with recent versions of Windows. If a sequence plays
properly via an external instrument using this player, but not when using
a MIDI program, there is clearly a problem with the set-up of the MIDI
program. MIDI applications software usually has a menu that includss a
Preferences or Configuration option. Either of these should enable the
output of the program to be directed to the MIDI port

Right connections

Probably the most common mistake when wiring up a MIDI system s to
connect inputs to inputs, anc outputs to outputs. This is unlikely to cause
any damage, but will not get the system working properly. The correct
method is to connect the MIDI output of the soundcard to the MIDI In
socket of the synthesiser. If you need to use a sequencer program to
record tracks played on the synthesiser’s keyboard, the MIDI Out socket
of the synthesiser must be connected to the MIDI input of the soundcard.

Further instruments can be driven from the PC by using the Thru sockets
on the instruments and the chain method of connection. In other words,
the Thru socket on the first instrument connects the In socket on the
next, the Thru socket on that instrument connects to the In socket of the
third instrument, and so on.

Tapping off power

Obtaining power for a PC project is not usually difficult if the unit is in the
form of an internal expansion card. The ISA expansion ports give access
to the supply rails of the PC, and these will normally be sufficient to
power your add-on devices. Of course, there is a limit to the amount of
power that can be safely tapped off, but there should be no difficulty in
tapping off an amp or so from the +5-volt supply. The +12 volt suoply
can also provide quite hefty currents if required, but note that this suoply
is not usually well regulated, and it can contain massive amounts of noise.
The negative supplies usually ave quite modest maximum output cusrent
ratings, but it is unlikely that your add-ons will actually need to use them
at all.

5 Game port interfacing

+5V

Game Port

+5V

Line Socket

Fig.5.16 A +5-volt supply can be obtained from the game port or the
keyboard port

e

Game port Interfacing 5

For an add-on that connects to a serial or parallel port things are
somewhat trickier. Neither of these ports have any form of power sLpply
output. If your add-on requires anything other than a straightforward
+5-volt supply it is probably best to provide it wit" its own battery sLpply
or a suitable mains power supply unit. if only a +5-volt supply is needed
it is usually better to tap oft the supply from one of the PC’s ports that
does provide a supply output. With most PCs there are two options.

The easiest of these is to take power from the game port. In old PCs a
multifunction input/output card generally provides this port. As alrsady
explained, in recent models it is usually to be found on the sound card,
where it is combined with a MIDI port. With either type of game port it
should be possible to obtain a +5 volit supply. The game port connector
on the PC is a 15-way female D type, and you therefore need a 15-way
male D connector to make the connection to this port. The +5-volt supply
can be obtained from pin 1, as in the top drawing of Figure 5.16. Note
that many game ports seem to include a resistor or other current limiting
circuit on the supply outputs. Consequently, the maximum available
current may be just a few milliamps. Higher currents would result in the
supply voltage failing to an unusable level.

The usual alternative is to use the keyboard port. There is a slight
complication here in that it is necessary to make up a simple adapter in
order to enable power to be tapped off while still using the keyboard.
Basically all you need is a 5-way 180-degree DIN line socket and a
matching plug. The two are wired together as shown in the lower drawing
of Figure 5.16, using a short piece of any normal 5-way cable (ribbon,
screened, etc.). An additional lead connected to pin 5 of the plug provides
the +5-volt supply. The plug connects to the keyboard port of the
computer and the keyboard connects to the line socket.

USB power

The same method should be usable with a PC that has a PS/2 style
keyboard connector, but it might be difficult to obtain suitable connectors.
PCs that have PS/2 mouse and keyboard ports usually have a couple of
USB ports as well, and these provide a much easier means of tapping
off a +5-volt supply. Each USB port has a +5-volt supply output that
can provide up to 500 milliamps (0.5 amps), which is more than adequate
for most add-ons. Figure 5.17 shows the usual port arrangement for a
PC that has an ATX style motherboard, and it also shows the +5-volt
connector on each of the two USB ports.

5 Game port interfacing

+5V Outputs LPT1
Mouse
Q@ =
=
=
9 =
Keyboard T

Fig.5.17 If a spare USB port is available, this represents the best way
of obtaining a +5-volt supply

If a USB connector proves to be elusive, you can always buy a standard
A to B USB lead and cut off the smaller connector. Then strip back the
outer sleeving to reveal the individual wires, and do some checking with
a test meter to find the wire that carries the +5-volt supply. This wire is
then hard wired to your add-on, or the lead can be fitted with a new
connector such as a 2.1 millimetre power type. The add-on is then fed
with the supply via a matching socket.

Other supplies

In many instances it is possible to design circuits that will work quite
happily from nothing more than a +5-volt supply. Occasionally it is
impossible to avoid the need for an additional supply. The two simple
supply circuits described previously are suitable when a low current
supply at about -3 to -5 volts is needed. If a +12 volt supply is needed,
itis possible to derive this from the +5-volt supply provided only a modest
supply current is required. Figure 5.18 shows the circuit diagram for a
suitable step-up regulator, which is based on the LM2577T-12.

The circuit is very efficient (about 80 percent or so), but the step-up
process inevitably result in an input current that is much higher than the
output current. In fact it is nearly three times higher. Although IC1 can
handle currents of up to about three amps, the maximum output current
is likely to be dictated by the spare output current available from the +5
volt supply. For example, the maximum output current would only be
about 167 milliamps (0.167 amps) with the circuit driven from the supply
output of a USB port. Even this figure assumes that no other current
was drawn from the supply output of the USB port.

Game port interfacing 5

unono Jojeinbes dn-deys yoa-g | weroiye Aybly v 816 b4

NOAD © , O U A0
= N000! uoee H N0 e
e 40 €0 10 &
UOO!
3 4
N0 AZL+ 0— o o $—o UIAS+
[ASIVIATAU N
—
| S |
[4 1Ol AT
X<}
225N HNOOL
1a 1

§ Game port interfacing

Because of the circuit's high efficiency, it should not be necessary to fit
IC1 with a heatsink. L1 must be a type that is intended for use in switch
mode power supplies, and it must also be capable of handling the
maximum output current involved in your application. D1 must have a
low forward voltage drop and fast switching speed. Hence a Schottky
rectifier has been specified for this component. Any Schottky rectifier
having adequate voltage and current ratings should be suitable.

It is not necessary to build your own supply converter, and there are
plenty of ready-made DC to DC converter modules available. These
permit a +5-volt supply to be stepped up to various voitages, or used to
generate negative supply potentials. Battery eliminators are useful if
you would prefer to opt for operation on the mains supply. However,
bear in mind that the actual output voltage from the non-regulated variety
can be almost double the stated voltage under low loading. The “hum”
and noise content can also be very high. These supplies will normally
be usable only if your add-on includes a suitable voltage regulator circuit.
Of course, the regulated type should provide a low-noise output close to
the stated output voltage. Battery eliminators can be used in conjunction
with DC to DC converts to provide additional output potentials.

Game port Interfacing 5

Point to remember

The game port has four analogue inputs, but they respond to resistance
rather than voltage and have very poor linearity. They are only suitable
for the least demanding applications.

It is possible to read voltages using the analogue inputs in conjunction
with a voltage-to-resistance converter. However, the poor linearity of the
very basic analogue-to-digital converters still precludes their use in
anything other than undemanding applications.

There are four digital inputs on the game port, and they can be -ead
using the INP function of GW BASIC or QBASIC, or any similar function.
There are no digital outputs on this port.

A game port provided by a PCI card might be of limited use for general
interfacing purposes. it will not operate with any MS-DOS programming
languages for example, and it is likely to be problematic even when used
with Windows programmirg languages.

If your PC has a spare ISA expansion slot, this can be used to provide a
variety of supply voltages. However, it is not a particularly neat way of
handling things.

A +5-volt supply can be obtained from the keyboard port or the game
port. The maximum current available from the game port is often quite
low though. If your PC has a spare USB port, this represents the best
way of obtaining a +5-volt supply. A maximum output current of 500
milliamps (0.5 amps) is available from each USB port.

Additional supply potentials can be derived from the +5-volit supply using
DC to DC converters. Bear in mind that these circuits are only about 75
to 80 percent efficient. Also, remember that a voltage step-up results in
a current step-down. These factors limit the maximum output current
that can be obtained using this method.

5 Game port Interfacing

A modern game port is combined with a MIDI port, but some of the
hardware for the MIDI port is missing. A suitable opto-isolator and a few
discrete components are needed in order to produce a fully working
MIDI interface.

Be careful when using unregulated battery eliminators as the power
source. Under low loading the actual output voltage can be nearly double
the stated output potential and the noise content on the output can be
very high. Supplies of this type need an external regulator circuit for
most applications.

6

Bits and PCs

Low level

Users of high level programming languages are often largely insulated
from the fact that computers cperate in binary, and that all the data they
handle is reduced to a series of 1 and 0s. The software and computer
hardware accepts text characters from the keyboard and produces text
output on the screen. The situation is very different for those dealing
with add-on projects, which usually require control on a bit-by-bit basis.
ltis possible to design (say) a computer robot that understands the text
string “tumn left”, but most do-it-yourself add-ons are not this sophisticated.
The robot is more likely to require something like the binary code
00001111 (OF in hexadecimal). In this chapter we will take a look at the
binary and hexadecimal numbering systems, bitwise operations, and
how to contact your projects with a high-level programming language.

Applied logic

Some applications are well suited to digital control and it does not take
much imagination to see how logic circuits can be put to use in these.
As an example, suppose thal a circuit must control a row of lights and
produce a moving-lights display. Each light is either on or cff, and this
type of control obviously suits the logic way of doing things with just two
signal levels. Each light can be switched on by alogic 1 level and switched
of by a logic O level. It is just a matter of producing a circuit that will
produce the right sequence of 0s and 1s atits outputs, and keep repeating
this sequence at the required rate.

Most “real world” applications do not require straightforward cn/off
switching, but instead deal with quantities of something. For example, a
weighing scale does not operate on the basis of something being heavy
or not, but deals in actual weights. Digital systems can handle quartities
quite easily, and it is just a matter of using a number of digital lines,
together with a suitable method of coding. Letters of the alphabet,
punctuation marks, etc., are usually represented by ASCII codes, and

Bits and PCs

these use seven lines to carry the codes. Each set of seven 1s and Os
represents a different character. For instance, the code 1010101
represents the upper-case letter “U”.

A digital circuit can represent numeric values of any magnitude, but it
requires a large number of digits to represent quite modest values. Even
s0, with the current technology this still represents by far the easiest way
of using electronic circuits to handle numbers. Although the mathematics
are being handled in what could be regarded as a rather clumsy fashion,
the speed of electronic circuits is such that number-crunching is carried
out at very high speeds. Also, as already pointed out, the fact that a
digital system is operating using 1s and Os is not normally apparent to
the user.

Sampling

Representing a single quantity using logic signals is clearly quite easy,
but how does a digital system handle something like an audio signal
that is constantly changing? A digital system can handle varying
quantities using a system known as sampling. Although this word is now
synonymous with digital audio recording, it is in fact a general term that
is applicable to any digital system that deals with what is essentially
analogue data. It basically just entails taking a series of readings so that
the system tracks the rises and falls in the amplitude of the audio signal,
temperature, or whatever.

Strictly speaking, a digital system can not fully accommodate analogue
signals since it can never have infinite resolution. With analogue signals
that are constantly varying, the input signal is converted into a series of
fixed values. No matter how frequently samples are taken, there will
always be a jump from one sample value to the next. However, provided
the resolution of the system is good enough, and samples are taken ata
high enough rate, for all practical purposes a digital systems will be as
good as an analogue equivalent. The jumps in level from one sample to
the next will be of no consequence.

In fact, in many areas of electronics it is now true to say that the best
digital systems outperform the best analogue types. Whether a digital
system is dealing with individual pieces of data, or a series of samples,
the resolution is crucial. In other words, is the jump from one level to the
next small enough to enable any value to be depicted with good
accuracy? There is no standard resolution that is guaranteed to give
adequate results in all applications. The minimum acceptable resolution
varies considerably from one application to another.

Bits and PC

Bits and bytes

The numbering system we use in everyday life is, of course, the decimal
system, or “denary” system as it is alternatively known. This method of
numbering is based on the number 10, but it is quite possible to have a
system based on any number. There is normally no point in doing so,
and the old imperial measures, which were based on a variety of numbers
(12 in the case of feet and inches for example), have now been largely
phased-out in favour of the metric system.

| suppose that binary could reasonably be regarded as the simplest
possible method of numbering. It is based on the number two. In the
decimal numbering system the single digit numbers are from 0 to 9, but
in binary they are only from 0 to 1. In other words, the only valid numbers
for each digit are 0 and 1, and absolutely nothing else is allowed! As
already pointed out, representing just two numbers by an electrical signal
is very easy. A low voltage is used to represent a 0, and a higher voitage
represents a 1. In the case of ports and other external signals hese
levels are often called “low” and “high” respectively, but these terms are
not usually applied to internai signals of a processor. When dealing with
internal signals the alternatives of clear (logic 0) and set (logic 1) are
often encountered.

Although convenient for the hardware producers, this simple logic system
has its limitations and drawbacks. There have been suggestions over
the years that circuits which can work directly in decimal will be a practical
proposition for widespread use before too long, but there seems to be
little real prospect of such a development in the near future. As
conventional logic and microprocessor circuits become faster and more
sophisticated it becomes more difficult for alternative technologies to
compete. Forthe time being anyway, circuits that work in binary are the
only practical ones for general use.

Binary

Binary is easier to understand if you first analyse what an ordinary decimal
number represents. If we consider the decimal number 238 for instance,
the eight represents eight units (10 to the power of 0), the 3 represents
three tens (10 to the power of 1), and the 2 represents two hundreds (10
to the power of 2). Things are similar with a binary number such as
1101. Working from right to left again, the columns of numbers
respectively represent the units (2 to the power of 0), the 2s (2 fo the
power of 1), the 4s (2 to the power of 2), the 8s (2 to the power of 3}, and

Bits and PCs

so on. 1101 in binary is therefore equivalent to 13 in decimal (1 + 0 + 4
+ 8 = 13).

It takes a lot of binary digits to represent numbers of quite modest
magnitude, but this is the price that has to be paid for the convenience
of simple binary hardware. A binary digit is normally contracted to the
term “bit”. One bit on its own is of limited value, and bits are normally
used in groups of eight, or multiples of eight. A group of eight bits is
normally termed a “byte”. A byte can only handle numbers from 0 to
255 (decimal). This is adequate for some purposes, but it is often
necessary to handle larger values.

A 16-bit binary number is usually termed a “word”, and this gives arange
of 0to 65535 (decimal). 32 bits gives a range of 0 to something over four
thousand miillion, which should be adequate for most purposes. A 32-
bit number is sometimes termed a “long word”. Modern PCs use 16 or
(more usually these days) 32-bit processors, but you will normally do
things 8 bits at a time when dealing with user add-ons.

This table shows the number represented by bits in 16-bit numbers, and
this might help to clarify the way in which the binary system operates.
The numbers in the table are the ones that the bits represent when a 1 is
present in that column of the binary number. If there is a 0 in a column,
then that column always contributes 0 to the value of the number. We
are using the convention of calling the units column bit 0, running through
to bit 15 for the left-most column (not bits 1 to 16). The units column is
often called the “least significant bit”, or “LSB” for short. Bit 31 (or the
left-most column that is actually used) is termed the “most significant
bit”, or just “MSB".

Bit Decimal Value Bit Decimal value
0 1 8 256

1 2 9 512

2 4 10 1024

3 8 11 2048

4 16 12 4096

5 32 13 8192

6 64 14 16384

7 128 15 32768

Bits and PCs

Signed binary

The binary system described so far, which is often called “direct binary”,
is inadequate for many practical purposes. Itis certainly all that is needed
when designing PC based projects, but it is not sufficient for all purposes.
The main drawback of direct binary is that it can not handle negative
numbers. Obviously you can simply add a minus sign ahead of a binary
number to indicate that it is a negative number, but you have to bear in
mind that for computer applications this is not valid. There is logic 0 and
logic 1, but no logic - levelt

The normal way around the problem is to use “signed binary”. With a
signed binary number the first bit is used to denote whether the number
is positive or negative. The convention is for the first bit to be a 0 for
positive numbers and a 1 for negative numbers. With this system the
normal 8-bit range of 0 to 255 is replaced with a range of -127 to +127
(11111111 to 01111111). The problem is solved at the expense of
decreased maximum magnitude for a given number of bits. Note though,
that where two or more bytes (or words or long words) are used together
to form a large number, only the most significant bit of the most significant
byte needs to be used to indicate the sign of the number. It is not
necessary to sacrifice the most significant bit of each byte to this task.

Obviously a certain amount cf care needs to be exercised when dealing
with binary numbers, and you must know whether you are dealing with
direct or signed binary numbers. For instance, 10000001 could be 129
(direct binary) or -1 (signed binary). | have encountered computers
which have a binary to decimal conversion facility, and which seem to
get confused in this way. Results were as expected for answers up to
32767, but things went completely wrong with higher numbers.

This happens where the computer operates with binary numbers of up
to 16 bits in length, and it interprets any values that it is fed as signed
binary. This works fine if you know that it is working with signed binary.
It also works fine if it is fed with binary values of 15 bits in length or less.
The leading zeros then inform the computer that the number is a positive
one, and the right answer is obtained. For numbers of more than 32767
the most significant bit is a 1, telling the computer that it is a negative
number, even if you require a direct binary conversion.

In this basic form the signed binary system has its limitations. The
problem is that although it can represent a wide range of positive and
negative values perfectly adequately, calculations on simple signed binary
numbers do not give the correct result. This is of only academic
importance to users of high-level applications programs and applications

Bits and PCs

software. You give the computer such numeric data, positive, negative,
or a mixture of the two, and everything is sorted out for you. Itis something
that is of greater importance to the low-level (assembly language or
machine code) programmer, but here we will only consider the high-
level approach.

Binary coded decimal

Several microprocessors can operate using another form of binary called
“binary coded decimal”, or just “BCD", and some computer add-ons
require signals in this form. BCD uses four binary bits (often termed a
“nibble”) to represent each decimal digit. The system operates in the
manner shown below.

Decimal number Binary code
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

© ® N OO s~ W N = O

The binary number is in fact just the ordinary binary bit code for the
number concerned, and it is only for numbers of more than 9 that the
system is different. The binary codes from 1010 to 1111 are unused,
and all two-digit decimal numbers require 8-bit BCD codes. Forinstance,
the decimal number 64 would be represented by the 8-bit BCD code
01100100. The first four bits (0110) represent the six, and the second
four bits (0100) represent the four. Each byte can therefore represent
any two-digit decimal number from 0 to 99, which compares to a range
of 0 to 255 for an ordinary 8-bit binary number. This helps to contribute
to the relative inefficiency of the BCD system.

Bits and PCs

Of course, when a nibble is incremented by 1 from a value of 1001 (9 in
decimal) it does not go to 1010 (which is an illegal code in BCD), but
cycles back to 0000. A carry forward of 1 should then be taken to the
next BCD nibble. Since the PCs do not operate directly in BCD, you
must provide the conversion from direct binary to BCD using suitable
software routines. Look-up tables are the normal method for handling
this type of thing.

With BCD there is no difficulty in handling large numbers, and it is just a
matter of using several tytes in order to accommodate the required
number of digits. Negative numbers and decimal points can aiso be
handled with ease by this system, but this requires several adcitional
bits. This information is usually carried in the most significant bits (i.e.
the left-hand end of the number), but you can design the softwa"e and
hardware to handle this type of thing in any way that you see fit. Provided
the software and hardware are designed to use the same system
everything should work fine.

Hexadecimal

The hexadecimal numbering system is much used in computing. The
hexadecimal name is usually abbreviated to just “hex”. A problem with
binary numbers is that they tend to have many digits with each one being
a 0 or a 1, which makes them rather difficult to deal with in many
circumstances. For instance, dealing with 10 or 12-bit addresses in their
binary form would probably be beyond most peoples’ ability, as would
dealing with eight-bit data values. On the other hand, binary numbers
give a graphic representation of each bit in the register of a
microprocessor, control register of a peripheral chip, output terminals of
a printer port, or whatever. This is something that is often important, but
is especially so when dealing with a microprocessor and its ports.

Decimal numbers are much easier to deal with in that they are much
shorter and are in a more tamiliar form. Unfortunately, a decimal number
does not give much idea of the state of each bit in its binary equivalent.
Converting a decimal number to its binary equivalent is not a particularly
quick or easy process (without the aid of some computerised help
anyway). Decimal numbers are consequently rather inconvenient when
things must be visualised on a bit by bit basis. Most computer add-ons
fall into this category.

The hexadecimal system gives the best of both worlds in that it takes
just a few digits to represent even quite large numbers, and it is in fact

Bits and PCs

slightly better than the decimal numbering system in this respect. On
the other hand, it is quite easy to convert hexadecimal numbers to their
binary equivalents when the state of each bit must be known. The
conversion process is quite simple even with very large numbers. The
hexadecimal system is based on the number 16, and there are sixteen
single-digit numbers.

Obviously the numbers we normally use in the decimal system are
inadequate for hexadecimal as there are six too few of them. This problem
is overcome by augmenting them with the first six digits of the alphabet
(AtoF). itis from this that the system derives its name. The table given
below helps to explain the way in which the hexadecimal system operates.

Decimal Hexadecimal Binary
0000
0001
0010
0011
0100
0101
0110
o111
1000
1001
1010
1011
1100
1101
1110
11

10000
10001
10010
10100011

© ©® N OO O b ON 2 O

- A A A A A A A
® N OO s, N =2 O
- o aom © O N OO O b~ W N = O
o= m o O m >»

2
8

Bits anc PCs

What makes hexadecimal so convenient is the ease with which multi-
digit numbers can be converted into binary equivalents. The reason for
this is that each hexadecimal digit represents four binary bits. Take the
hexadecimal number A3 in the above table for example. The digit A
represents 1010 in binary, and the digit 3 converts to 0011. A3 therefore
represents 10100011 in binary. You may find that you can memorise
each of the sixteen four-bit binary codes represented by hexadecimal
digits, but a little mental arithmetic is all that is needed in order to make
the conversion if you can not.

The digits in a hexadecimal number represent, working from left tc right,
the number of units, 16s, 256s, 4096s, 65536s, 1048576s, and
268435450s (approx.). In general computing you are unlikely fo use
hexadecimal numbers of more than eight digits in length, and mostly
you will probably only deal with hexadecimal numbers having four digits
or less. When dealing with PC add-ons you should not need to use
hexadecimal numbers having more than two digits and in most cases
you will use only one or two-digit numbers.

Conversions

Conversion from hexadecimal to binary is, as we have already seen,
fairly straightforward. With a little experience a little mental arithmetic is
all that is needed to make this type of conversion. Conversion in the
opposite direction is equally simple. It is just a matter of breaking down
the binary number into four-bit groups and then converting each group
to its corresponding hexadecimal digit.

Conversions that involve decimal numbers are a little more difficult to
deal with. The easy way of handling the problem is to use a computer to
make the conversion (or possibly a scientific calculator). Most BASICs
can provide a hexadecimal to decimal conversion. [f the computer
accepts hexadecimal numbers with (say) a “&H" prefix to indicate that
they are in hexadecimal, then giving the instruction:

PRINT &HXXXX RETURN

where “X0XXX" is the hexadecimal number to be converted, should resuilt
in the decimal equivalent being printed on the screen. A conversion in
the opposite direction might also be possible, and this is most commonly
found in the form of a HEX$ function. You may even find that decimal to

Bits and PCs

octal conversion is possible using an OCT$ function, although these
days such a function would seem to be of largely academic interest.

Bitwise operations

In computing numbers are not only manipulated using the normal
mathematical functions. There are also the “bitwise” operations called
“AND”, “OR", and “XOR". These compare two binary numbers (literally)
bit-by-bit, and the answer produced depends on the combination of Os
and 1s present in each column. ANDing produces a 1 in the answer
only if there is a 1 in that column of both the numbers being ANDed. In
other words, if a bit is set to 1 in the first number and the second, a 1 is
placed in that bit of the answer. Hence the “AND” name of this logic
operation. Here is a simple ANDing example

First number 15 00001111
Second number 243 11110011
Answer 3 00000011

The answers obtained from bitwise operations can tend to look a bit
random unless you consider what is happening on a bit by bit basis. A
common use of the bitwise AND function is when less than all eight bits
of a byte must be read. For instance, assume that we wish to know the
state of bit 3 of a register or input port. Most computer systems do not
provide any direct means of reading just one bit of a port or register.
One way around the problem is to use a bitwise AND operation to mask
off the unwanted bits.

In this case bit 3 represents eight when it is set to logic 1, and so the
masking number to use is eight (00000100 in binary). In the answer all
the bits except bit 3 must be set to zero, as there is no way they can be
set to 1 in both numbers. The situation is different for bit 3, where both
bits could be at logic 1 if the second number also has this bit set to 1.
The answer therefore reflects the state of bit 3 in the second number,
and is eight if this bit is high, or zero if it is at logic 0. The ANDing
provides the desired function with, in effect, only the required bit being
read.

ltis possible to read more than one bit if desired. Just set any bits which
must be read to logic 1 in the masking number - set any bits which must
be masked off to logic 0 in the masking number. As a couple of examples,

Bits and PCs

to read the least significant nibble a masking number of 15 (00001111 in
binary) would be used, and to read the most significant nibble the masking
number would be 240 (11110000 in binary).

Bitwise OR

Bitwise ORing is a similar process to ANDing, but a 1 is placed in a bit of
the answer if there is a 1 in that bit of the first number, or the second
number, or both. XORing (exclusive ORing) differs from normal (inclusive)
ORing in that it will place a 1 in a bit of the answer if there is a 1 in that bit
of the first number or the second, but not if there is a 1 in both bits of
these numbers. This could reasonably be regarded as the true OR
function, but it has been designated the XOR function. The fol-owing
example shows how these iwo types of bitwise operation can produce
different answers.

First Number 15 00001111
Second Number 85 01010101
ORed Result 95 01011111
First Number 15 00001111
Second Number 85 01010101
XORed Result 90 01011010

The main use of the bitwise OR function is to permit some bits of a register
to be altered without changing the states of the other bits. Suppase that
you wish to set bits 0 to 3 of a register to 1. You could simply write a
value of 15 (00001 111) to the register, but if any of bits 4 to 7 were originally
set to 1, this would result in them being changed to zero. The way around
this is to read the register, and bitwise OR the result with a suitable value.

Determining this value is quite straightforward. A one is used in the bits
that must be set to one, and a zero is used in the other bits. In our
example it is bits 0 to 3 that must be set to one, and bits 3 to 7 that must
be left unchanged. This gives a masking number of 15. If you look at
the bitwise OR example shown previously, where a value of 85 (01010101
in binary) is ORed with 15, you will note that the lower four bits in the
answer are all set to one, but the upper four bits remain unchanged.
This gives the desired result using just a single instruction.

Bits and PCs

If you needed to set the lower nibble to zero rather than one, it is a
bitwise AND operation that would be used. Use a one in any bits that
must be left unaltered, and a zero in bits that must be zero. A value of
240 (11110000) would therefore be used to set the four least significant
bits to zero, as shown in this example.

Number In Register 85 01010101
Masking Number 240 11110000
Answer 80 01010000

The bitwise XOR function perhaps has fewer practical uses than the AND
and OR functions, when dealing with do-it-yourself add-ons anyway. It
is probably the favourite bitwise operation for those involved in graphics.
Using an XOR instruction it is possible to complement the bits in a byte
(change the 1s to Os and vice versa) by XORing the byte with 255
(11111111 in binary).

AND in action

A typical application of the bitwise AND function in real world interfacing
is when something must not happen until the appropriate bit of an input
port goes to the correct state. As a simple example, we will assume that
the data lines of the printer port must be read when the Select In
handshake line is taken low. This GW BASIC or QBASIC simple routine
will do the job:

10 REM bitwise AND test

20 CLS

30 OUT &H37A,32

40 SELECT = (INP(&H379) AND 16)
50 IF SELECT = 16 THEN GOTO 40
60 LOCATE 10,10

70 PRINT *“ "

80 LOCATE 10,10

90 PRINT INP(&H378)

100 GOTO 40

Bits and PCs

Line 20 clears the screen and then line 30 sets the data lines to act as
inputs. The handshake inputs are read at line 40, where the returned
value it bitwise ANDed with a value of 16. The Select In handshake line
is read at bit 4 of the handshake input register at address &H379, so a
value of 16 is used to read this line and mask the other bits. The final
value is assigned to the variable called SELECT. This will be set at 16 if
the Select In line is high, or 0 if it is low.

The state of the Select In line is checked at line 50. The program loops
back to line 40 and tries again if this line is high. It therefore loops around
lines 40 and 50 until the Setect In line is low, and then the program moves
onto line 60. You have to be a little careful with this type of loop, because
some programming languages can get stuck with no way out other than
the appropriate condition being satisfied. This is not a problem with GW
BASIC, where the program can be halted from the keyboard using the
normal Control-Break combination. With some programming languages
itis necessary to add an instruction or two into the loop in order to provide
an “emergency exit”.

When the Select In line is taken low and the program moves on to line
60, a LOCATE instruction followed by a PRINT type are used to blank
any previous reading on the screen. A further pair of LOCATE and PRINT
instructions are then used to relocate the cursor, read the data lines, and
print the value on the screen. The program then loops back to line 40
and monitors the Select In line again.

In practice

It is easy to try this routine for yourself. The Select In line drifts high on
most printer ports, so the program will probably just loop around lines
50 and 60 when it is run. Connecting the Select In line to ground should
result in a reading being taken from the data lines and printed on the
screen. This just requires a wire link to be temporarily placed between
pins 13 and 25 of the printer port (Figure 6.1). In cases where the Select
In line does not drift low there is no major problem. Set one of the
handshake outputs high and use this to take the Select In line high. The
Strobe output at pin 1 of the port should go high by default, so this
provides a convenient means of taking the Select In line high.

if you try the program you will find that it does not work in precissly the
required manner. Rather than a reading being taken each time the Select
In line is taken low, the program takes a continuous stream of readings
whenever this line is low. When dealing with the control logic and program
flow it is important to carefully design things so that precisely the required

211

Bits and PCs

High

16000000000000}
\600000000006)

———

Fig.6.1 The links required to take Select In high or low

action is obtained. It is otherwise inevitable that the system will tend to
run out of control or hang up at some point in the proceedings. In this
example it is simply running out of control when the Select In line is
taken low, and some additional hardware or program code is needed to
correct matters.

One solution in this case would be to operate the Select In line via a
monostable circuit that provided a very brief low output pulse. A little
experimentation is often needed in order to find a suitable pulse length.
The pulse must be long enough to be detected reliably by periodic testing
of the software loop. On the other hand, it must be short enough to
ensure that it does not produce multiple readings. There should be a
wide range of pulse durations that give good results.

Another method is to use a second loop to provide a hold off after each
reading. This prevents the program from moving into the first loop until
the Select In line has retumed to the high state. This version of the
program includes the second loop:

10 REM bitwise AND test

20 CLS

30 OUT &H37A,32

40 SELECT = (INP(&H379) AND 16)
50 IF SELECT = 16 THEN GOTO 40
60 LOCATE 10,10

70 PRINT *“ .

80 LOCATE 10,10

Bits and PCs

90 PRINT INP(&H378)

100 SELECT = (INP(&H379) AND 16)
110 IF SELECT = 0 THEN GOTO 100
120 GOTO 40

The only difference between this program and the original is the addition
of a loop routine after the value has been printed on the screen. This
prevents the program from returning to line 40 until the Select In line has
returned to the high state. The loop at lines 100 and 110 works in exactly
the same way as the one at lines 40 and 50, except that a value of 0 is
used in the bitwise AND operation. The program therefore loops while
the Select In line is high, and exits the loop when it retums to the high
state. With the program then looped back to line 40, the first loop is
repeated until another pulse takes the Select In line low again. Arother
reading is then taken and displayed. The program continues in this
manner indefinitely with one reading being taken each time that an input
pulse is received on the Select In line.

Note that the signal on the Select In line must contain “clean” pulses.
On a modern PC it is likely than many thousands of loops per second
will be completed while the Select In line is being monitored. Any contact
bounce or similar noise on this input will therefore result in a rapid series
of readings being taken instead of a single reading. in some applications
the spurious readings will be of no practical consequence, but where
necessary the input pulses must be “debounced” so that single readings
are produced.

Read and write?

Do not make the mistake of assuming that you can ascertain the states
of the bits in a write register by reading from that register. Some computer
chips do have this facility, but even then the ability to read the register is
dependent on the hardware being designed properly. If an address is
only used as an output type, reading from it will not produce sensible
results. The hardware will not be activated by a read operation, and the
data fines will just drift to their natural levels. This often seems tc mean
that all eight bits go high and a value of 255 is returned.

Another problem is that some input/output addresses have separate
functions for reading and writing. In fact it is probable that most input/
output addresses fall into this category. Reading from an address then
reads from an input port or a status register, rather than producing the
last value written to the output port or control register at that address.

213

Bits and PCs

Since there are minor differences in the hardware from one PC to another,
the fact that reading from a write address works properly on your PC
does not mean that it will do so using all PCs.

The safe option is to use a variable to store the value written to a port or
control register. This variable must be updated each time a new value is
written to the port or control register. You can then determine the value
written to each bit by reading the value stored in the variable and applying
the standard bitwise AND technique. The sure way of keeping the variable
fully up to date is to store new values in the variable, and to then use the
variable when writing to the port or register. For example, the two lines
shown here could be used to write a value of 127 to the output port or
register at address &H301:

X = 127
OUT &H301,X

If you needed to set bit 4 of a register high without changing the existing
states of the other bits, a value stored in the appropriate variable would
be bitwise ANDed with a value of 239 (255 - 16). In other words, every
bit except bit 4 would be read. A value of 16 would then be added to the
answer from the bitwise operation in order to set bit 4 high, giving the
final value to be written to the register. For the sake of this example,
assume that a value of 85 (01010101) is stored in the variable. This is
bitwise ANDed with a masking number of 239 (11101111), giving this
result:

Variable 01010101 85
Mask 11101111 239
Answer 01000101 69

Adding 16 to the value of 69 produced by the bitwise AND operation
gives this result:

Bitwise result 01000101 69
Value added 00010000 16
Answer 01010101 85

214

e

Bitsand PCs 6

In this example there is no difference between the initial value in the
variable and the new value, because bit 4 was already at logic 1. The
bitwise AND operation masks bit 4 so that it is set to 0, and the addition
sets it high again. The important point to note is that none of the other
bits have been altered. If bit 4 had originally been at logic 0, it would
have been set to logic 1 by this process, as demonstrated by the next
example. Here the initial value in the variable is 170 (10101010)

Varlable 10101010 170
Mask 11101111 239
Answer 10101010 170
Bitwise result 10101010 170
Value added 00010000 16

Answer 10111010 186

If you are sure that bit 4 is low, simply adding 16 to the existing value will
set it high. Similarly, if you are sure bit 4 is high, deducting 16 from the
existing value will set it low. The advantage of the masking and addition
method is that it will always give the desired result regardless of the
existing state of the bit that is being changed. This eliminates any risk of
things getting out of synchrcnisation, which would scramble the existing
bit pattern. Take the example given above, but simply add 16 to the

value with bit 4 already high:

Variable 10111010 186
Value added 00010000 16
Answer 11001010 202

Not only is bit 4 at the wrong state in the answer, but some of the other
bits have been altered as well. A bitwise AND operation before adding
the appropriate value is the safer way of handling things.

The process is simplified somewhat if you need to set one bit 10 zero
without disturbing the others. Having bitwise ANDed the existing value
with the appropriate masking number there is fittle point in adding zero

Bits and PCs

to the value before writing it to the register. Simply perform the bitwise
AND operation and then write the resuiting value to the control register
or output port.

Changing bits

In some cases it is necessary to alter more than one bit while leaving the
others unchanged. The same basic process can be used with several
bits. Suppose that you wish to set bits 0 to 3 high while leaving the other
bits unaltered. In order to mask bits 0 to 3, a binary value of 11110000 is
required in the bitwise AND operation. This is equivalent to 240 in decima!
numbering. Inthis example a value of 170 is present in the variable used
to store the current value in the register.

Varlable 10101010 170
Mask 11110000 240
Answer 10100000 160

Adding 15 to the answer (00001111 in binary) sets bits 0 to 3 high.

Bitwise resuit 10100000 160
Added value 00001111 15
Result 10101111 175

This has given the desired result, with bits 0 to 3 set high and bits 4to 7
at their original settings. Again, if you need to set certain bits low, it is
only necessary to bitwise AND using the appropriate masking value and
then write the result to the port. There is no point in adding zero to the
value first. Where it is necessary to set some bits low and some high,
start with a bitwise AND operation in the normal way and then add the
appropriate value to the answer. For instance, suppose that in the
previous example a bit pattern of 1001 rather than 1111 was required in
bits 0 to 3, and that the other bits had to be left unaltered. This method
would be used:

Bits and PCs
Variable 10101010 170
Mask 11110000 240
Answer 10100000 160

Adding 1001 to the answer (9 in decimal) sets the right bit pattern in bits
Oto 3.

" Bitwise result 10100000 160
Added value 00001001 9
Result 10101001 169

Once again, the required action has been obtained, with the appropriate
bit pattern in bits 0 to 3, and dits 4 to 7 left unaltered.

Changing addresses

With small programs it is not difficult to alter the input/output addresses
if, for example, you wish to change a program written for printer port 1 to
make it work with printer port 2. A ploy often used with longer programs
is to place the port addresses in variables near the beginning of the
program. | suppose that strictly speaking these are constants rather
than variables, since the program does not alter the values that they
contain. The idea is to use the variables in INP and OUT instructions in
place of the port addresses. Should it become necessary to use different
addresses, it is merely necessary to alter the lines where the addresses
are assigned to the variables. The new addresses will then be used in
INP and OUT instructions via the new values assigned to these variables.
This simple program repeatedly reads what will normally be printer port
1 at the base address of &H378 (888 decimal):

10 REM Easy to change port addresses
20 PRN1 = &H378

30 PRN2 = &H379

40 PRN3 = &H37A

50 CLS

60 OUT PRN3,32

217

Bits and PCs

70 LOCATE 10,10

80 PRINT * "
90 LOCATE 10,10
100 PRINT INP(PRN1)
110 GOTO 60

Lines 20 to 40 assign the three port addresses to variables called PRN1,
PRN2, and PRN3, but in this small program PRN2 is not actually used.
The OUT instruction at line 60 uses PRN3 instead of the relevant port
address, and PRN1 is used in the INP instruction at line 100. This indirect
way of using input/output addresses does not significantly alter the way
in which a program operates, and it provides the same action as an
equivalent program using the appropriate values in the INP and OUT
instructions. In theory it could slow things down slightly, but in practice
any reduction in speed is likely to be unnoticeable.

In order to change the program to operate with printer port 2 it is merely
necessary to change the values assigned to the three constants, as in
this version:

10 REM Easy to change port addresses (modified)

20 PRN1 = &H278
30 PRN2 = &H279
40 PRN3 = &H27A
50 CLS

60 OUT PRN3, 32

70 LOCATE 10,10

80 PRINT ™ "
90 LOCATE 10,10
100 PRINT INP(PRN1)
110 GOTO 60

In this example there are only two instructions that use the constants,
making their use a pointless exercise. However, these programs
demonstrate how this method is used, and with some types of interfacing
there are dozens of INP and OUT instructions. Using constants can
then save a great deal of time if the port addresses have to be altered.
Also, using constants reduces the risk of mistakes being made, and they
are easily spotted and rectified if you should slip up.

Bitsand PCs 6

Address selection

Things can be taken a step further, with the address range being selected
before the program starts operating properly. With a gadget that
interfaces to a printer port for example, a choice of the three address
ranges could be provided when the program is first run. The user then
selects the appropriate range and the program goes into its main routine.
In this way a single version of the program can accommodate any

standard printer port.

This program provides the same basic action as the one described
previously, but it enables the user to select the required printer port base

address via the keyboard.

10 REM Program to
20 CLs

30 PRINT “PRESS 1
40 PRINT “PRESS 2
50 PRINT "“PRESS 3

set port addresses

FOR BASE ADDRESS &H278”"
FOR BASE ADDRESS &H378"
FOR BASE ADDRESS &H3BC”

55 PRINT “AND THEN PRESS RETURN”

60 INPUT AS

70 IF A$ = “1” THEN PRN1l = &H278
80 IF A$ = “2” THEN PRN1 = &H378
90 IF A$ = “3” THEN PRN1 = &H3BC
100 IF A$ = “1” THEN PRN3 = &H27A
110 IF A$ = “2” THEN PRN3 = &H37A
120 IF A$ = “3” THEN PRN3 = &H3BE

130 PRINT PRN1
140 PRINT PRN3
150 OUT PRN3, 32
160 LOCATE 15,15
170 PRINT *“

180 LOCATE 15,15

190 PRINT INP(PRN1)
200 FOR D = 1 TO 20000

210 NEXT D
220 GOTO 160

6

220

Bits and PCs

PRESS 1| FOR BASE ADBRESS &K279
PRESS 2 FOR BASE ADBRESS &H378
PRESS 3 FOR BASE ADDRESS #H38C
AND THEM PRESS RETURM

1

IR RN S STD oED D SR B oEET

Fig.6.2 The initial screen when the program is run

The program starts by clearing the screen and it then prints four lines of
instructions on the screen (Figure 6.2). These indicate that keys 1, 2,
and 3 should be pressed to select base addresses of &H278, &H378,
and &H3BC respectively. The Return key is then operated to actually
input the selection. Line 60 is an INPUT statement, and it is this that
reads the keyboard. The string typed in here is assigned to the string
variable called A$.

A series of IF... THEN instructions test the contents of A$ and set variables
PRN1 and PRN3 to the appropriate values. For example, if line 100 detects
that A$ contains just the 1 character, it sets PRN3 at a value of &H27A. In
a real world application it would probably be necessary to inciude error
trapping in this part of the program. It has not been included in this
simple example program, so make sure you only enter 1, 2, or 3 if you
try it yourself.

Lines 130 and 140 are not essential, and they simply print the values of
PRN1 and PRNS on the screen so that you can see that the correct port
addresses have actually been selected. Note that the values will be
printed in decimal form (Figure 6.3), so the base addresses will be given

Bits and PCs

PRESS 1 FOR BASE ADDRESS &H278
PRESS 2 FOR BASE ADDRESS &H3T8
PRESS 3 FOR BASE ADDRESS &H33C
AND THEN PRESS RETURN

73

956

958

PN D N R SEOR SN0 N oD EN D

Fig.6.3 The screen once the address range has been selected

as 632, 888, and 956, and the handshake output addresses are 634,
890, and 958. Line 150 sets the data lines of the appropriate printer port
as inputs, and it uses the value stored in PRN3 as the output address.
The program then goes through the usual loop, which repeatedly reads
the data lines and prints the returned values on the screen. The
FOR..NEXT loop within the main loop is used to slow things down and
produce flicker-free display.

In this example program in GW BASIC the port addresses are set using
input from the keyboard. Visual programming languages make it easy
to use alternatives such as buttons, radio buttons, and menus to provide
address selection. With serial and paraliel port add-ons, it is certainly
worthwhile equipping programs to handle any of the standard port
address ranges.

6

Bits and PCs

Points to remember

Unlike an analogue system, a digital type can not represent an infinite
number of levels. With an eight-bit system for example, only 256 different
levels can be accommodated. There is inevitably some rounding up
and down when an analogue signal is digitised, but good results will be
obtained provided the resolution of the system is adequate for a given
application.

Bear in mind that there is more than one form of binary numbering. Simple
binary, signed binary, and binary coded decimal (BCD) are all in common
use. You will not get sensible results if one type of binary is processed
as if it was of a different type. Odd results are often produced by signed
binary values being treated as the simple binary variety, and vice versa.

Hexadecimal numbers are used a great deal in general computing, and
are likely to be encountered frequently when undertaking PC interfacing.
It is not essential to understand this numbering system, but you will
certainly find a knowledge of hexadecimal more than a little useful.

The bitwise AND operation is crucial to most PC interfacing. It enables a
certain bit or bits to be read while others are masked. PC programming
languages generally lack instructions for reading ports on a bit by bit
basis, so the bitwise AND option is usually the only option.

OR and XOR bitwise operations are also available. These have their
uses, but are used much less than bitwise AND operations in PC
interfacing.

Do not rely on reading an input address to determine the state of bits in
an output port or control register. In most cases you will get erroneous
results from an input port that is completely separate from the hardware
atthe output version of the address. In others you will simply be reading
from a non-existent port. The safer option is to write the output data to a
variable and then to the output address. Reliable data can then be read
from the variable.

Bits and PCs

It is often necessary to alter some bits of a register while leaving others
unchanged. This can be accomplished by first using a bitwise AND
operation to set to zero the bits that must be altered. Adding the
appropriate value then sets these bits at the correct state while leaving
the others intact.

With programs that operate in conjunction with hardware on a serial or
parallel port, it is advisable to provide an easy mans of changing the
input/output address range. The hardware and software should then be
usable with any PC that has standard ports.

6 Bits and PCs

Windows
programming

Windows in and outs?

The generally accepted wisdom is that Windows programming languages
do not permit direct accessing of the ports, but this is not totally true. In
factitis far from the truth. It is true many modern Windows programming
languages do not include direct port access as a standard feature,
including the most popular language of them all, which is Visual BASIC.
However, this facility can be added to virtually any Windows programming
language via an add-on, plug-in, or whatever. Of course, this is only
feasible in practice if you can find a ready-made add-on or can produce
one for yourself. Fortunately, there are several add-ons to choose from,
and some of them are free.

There are at least a couple of other options available, and one of these is
to use Borland's C+ + 4.5 to compile a standard MS/DOS C + + program.
In the MS/DOS versions ot C+ + it is usually possible to access the ports
using the “inp” and “out” instructions. Borland’'s C+ + 4.5 supports both
of these instructions, and will compile MS/DOS C+ + programs into
Windows programs. In fact you end up with what is still basically the
original MS/DOS program, but it runs under Windows in its own Window.

This could be more convenient than running the MS/DOS original via
the Windows “MS/DOS Prompt” option or rebooting in MS/DOS mode,
but it is not really a big step forward from either of these. Also, you have
to bear in mind that the program produced is a 16-bit Windows type.
This should work properly if run under Windows 3.1, 95, 98, or ME, but
would presumably fail to work with Windows NT or 2000. Full compatibility
with Windows XP is also unlikely, and total failure is quite likely.

Borland C+ + 4.5 is no longer available, but | believe that it was included
with some later versions in order to provide users with a means of
producing 16-bit Windows programs. It has also been given away free

7 Windows programming

with some computer magazines, but there are some restrictions on the
use of the “free” version. These should not be a problem if you are only
using the program for personal use, but any commercial or formal .
educational use seems to be prohibited. Anyway, if you wish to pursue
this approach it might be possible to track down Borland C++ on the
Internet. Unless you need to produce 16-bit Windows programs for some
reason, | would certainly recommend a different approach.

Delphi

There is a better solution to producing Windows programs for your
projects in the form of Delphi, which is another Borland product.
Unfortunately, only the original version of Delphi (now usually referred to
as Delphi 1) supports direct port access. You may find references to the
relevant commands in the on-disc documentation of later versions, but
the commands themselves are not implemented. Delphi 1 produces 16-
bit Windows programs, but like C++ 4.5 programs, these should run
perfectly well under Windows 95, 98 or ME. As far as | am aware, Delphi
1is no longer available as a separate product, butitwas certainly included
with some of the later versions to provide a means of producing 16-bit
programs. However, it would be as well to check this point before buying
version 4 in order to obtain the original Delphi program.

Delphi 1 has also been given away free with some computer magazines,
but like the “free” version of C++ 4.5 there are some restrictions on its
use. Anyway, a search of the Internet might produce a source for this
program, or it should be possible to buy an early version of Delphi at low
cost on the second-hand market. Using Delphi is probably not the best
method if you are an experienced BASIC programmer, but it is certainly
worth a try if you have some experience with Pascal or are new to
programming. As explained later in this chapter, the 32-bit versions of
Delphi can also be used with your add-ons, albeit in a more roundabout
way. If nothing else, Delphi 1 is useful as an easy way of gaining
experience before moving on to a later version.

Advantages

So why is Delphi better than using C+ + version 4.5, or simply sticking
with GW BASIC, etc? Delphi is a “visual” programming language (like
Visual BASIC) that makes it easy to produce standard Windows style
programs, complete with control buttons, dialogue boxes, scroll-bars,
and all the familiar Windows gadgets. There is insufficient space available

226

Windows programming 7

here for in-depth coverage of Delphi programming, which seems to
require a minimum of about 3000 pages! We will only consider the basics
of getting Delphi to directly access the ports. In order to produce Delphi
programs for most projects you do not need to be an expert in this
programming language, so once you have digested a few fundamentals
of Delphi programming it should not be too difficult to get your projects
operating via a Windows environment.

Visual programming

If you are only familiar with traditional programming languages such as
GW BASIC itis only fair to point out that Delphi and other visual languages
are a rather different concept. You still have to do some traditional
programming with variables, loops, and so on, but much of the cade is
produced without the need for any programming. Delphi is based on
the Pascal programming language, and Object Pascal is the language
at the heart of the system. This is apparently based on Borland's Turbo
Pascal programming language, which was very popular in its day. Anyone
who is familiar with the Pascal programming should have little difficulty
in learning to use any version of Delphi.

So just how does visual programming differ from the traditional approach?
The differences start to become apparent as soon as Delphi is first run.
Unusually, at start-up there are four windows open (Figure 7.1). The
window at the top of the screen has the usual menu bar, etc., and could
be regarded as the main program window. The majority of the section
below the menu bar contains the component palette. This makes it easy
to add all manner of objects into your programs, including buttons, pull-
down menus, and labels.

What is termed the form is situated below the component palette, and
the form is where you design the visual appearance of you finished
program. The size of the form determines the starting size of the program
window, and if you place a button in the bottom left-hand corner of the
form, a button will appear in exactly the same place in the program
window. The form has a grid of dots to help you place components
accurately, but these are not shown in the program window. You can
actually have more than one form per program, but we will settle for just
one form in the demonstration programs featured here. One form is
normally sufficient.

The Object Inspector occupies the left-hand portion of the screen. This
provides control over the form and the components contained within it.
You can adjust the size and position of objects by dragging them or by

227

7 Windows programming

228

S| - O i
[W
lmel. TForm1 - |
ActveContio!
+Bordericons [o:SystemMent]
BurderStyle bsSizeebie B b =r gy 2 } Semeiiie ¥
[Ceghon Form| e e 3 3

ClientHesght /268
Clientwigh 1427

Color ciBmFace s

e kis] ‘True

Cursor _cDeteutt

Enabled True

~+ont {{TFony

FormStie fsNorma!

Height 300

HelpContext 0

Hint R T T R o | TATe
PR Events [s S et S S

Fig.7.1 At start-up Delphi has four windows open

entering the relevant figures into the Object Inspector. in most cases itis
easier to drag objects to the required position and shape. It is only
necessary to resort to the Object Inspector when the size and (or) position
must be set with great precision. The Object Inspector also provides
control over colours, text fonts and sizes, and a great deal else.

Largely hidden behind the form you will find the Code window, which is
where the program code is entered. However, with the visual
programming method the amount of traditional program writing required
is sometimes quite small. A lot of the program code is produced simply
by dropping buttons, etc., onto the form and adjusting parameters. The
programming language generates the code that produces these objects.

This is not to say that no programming is required. You must enter some
code for a button or operating it will have no effect. In advanced
applications a great deal of “hand written” code will be required, but the
visual approach takes much of the hard work out of Windows
programming. It also makes it quick and easy to make changes to the
appearance of the program. If a button needs to be moved slightly to
the left and made smaller, you just drag it to the left, resize it and recompile
the program.

Windows programming

Itis only fair to point out that the structure of visual programs is radically
different to those produced using traditional programming techniques.
If you are used to using an old style programming language such as GW
BASIC, you will have to drastically change your ways of thinking in order
to properly utilise a visual programming language. The programmer is
less concerned with the flow of the program when using a visual
programming language. It is still necessary to ensure that the program
does not get stuck in loops, end prematurely, etc., but much of the flow
is controlled by the prograryming language.

Visual programs are event driven, and you have to master this concept
in order to produce working programs. Most cf the time the program
will just sit there doing the computer equivalent of twiddling its thumbs,
waiting for something to happen that generates an event. An event is
often generated by user input such as someone operating a button or
selecting a menu item. However, an event can be generated
automaticaily, by a timer timing out perhaps.

Outputting data

Delphi 1 provides access to the ports via the port and portw functions.
These are respectively used for eight and 16-bit operations, and here we
will only consider eight-bit port accesses. Depending on the syntax used,
port can be used to read from a port or write data to it. This program line
would write a value of 123 to printer port 1 at address 888 (decimal):

Port [888] := 123;

Note that the port address is contained in square brackets, and not the
ordinary brackets (parentheses) used with the BASIC OUT instruction.
Also note that in this context the equals sign must be preceded by a
colon, and that all normal Pascal program lines end with a semicolon.
As a simple test of writing to a port select the button component in the
component palette, and click the mouse at two points on the form. This
will drop two buttons onto the form. Select one of these and change its
caption to “85". Then double-click on the button to bring up the code
window, which will contain the basic framework for your program. Your
code for the button goes between the words “begin” and “end”, and
only this line of code has to be added:

Port [888] := 85;

7

7 Windows programming

Next click on the other button to select it and use the Object Inspector to
change its caption to “170”. Then double-click on the button and add
this program line in the code window between “begin” and “end”.

Port [888] := 170;

You can now save this project and the code, and then select the “Compile”
option from the “Compile” menu to produce a stand-alone program file
that can be run under Windows 3.1, 95, 98 and ME. This is different to
GW BASIC and QBASIC where your programs must be run within the
programming language. These are known as interpreted languages.
As the programming language encounters each instruction it converts it
into the appropriate machine code, and then runs it. Apart from the fact
that compiled programs are free to run independently, they are usually
very much faster than interpreted programs. The program code has
already been interpreted and is ready to run. Interpreting typically takes
at least 10 times longer than actually running the code, so compiled
programs are massively faster than interpreted equivalents.

Delphi gives the option of trying out the program without compiling to a
standalone program first. Simply select “Run” from the “Run” menu and
the program will run from within Delphi. Either way you should get a
program window the same size as the form, complete with the two
captioned buttons. Pressing the “85" button will output the binary code
01010101 to printer port one. Pressing the “170" button outputs the
binary code 10101010 to the port. Of course, a variable can be used
instead of a number in the Port instruction, but it must be a variable of a
suitable type such as a byte orinteger variable. Trying to output a variable
of an inappropriate type will generate an error message when compiling
the program. As explained in the next section, Delphi is less easygoing
with variables than are most versions of BASIC.

Reading

Reading a port requires the Port instruction to be used in this form:

Variable := Port [Address];

Delphi requires variables to be declared before they are used in the
program, and they can not simply be made up as you go along. Also,

230

TGS

Windows programming 7

you have to be careful that you only use variables in an appropriate
fashion. With BASIC you can read a port and then print the returned
value on the screen with a minimum of fuss. With Delphi matters are
slightly more difficult because the value read from the port must be placed
in an integer or byte variable, but writing text to the screen requires a
string variable. This requires a type conversion from a byte or integer to ‘
a string variable before the returned value can be printed. In order to set ‘
up the byte and string variables these two lines could be added in the |
Code window under the “var” heading:

Reading : Byte;
S : String;

This sets “Reading” as a byte variable, and this is the variable that will be
used to store the value returned from the port. Variable “S” is a string
variable, and this will be used to hold the text converted from “Reading”. |
These program lines could be assigned to a button, and would print the

value returned from printer port one each time the button was clicked.

Note that this will only work if printer port one is a bidirectional type.

Port (890] := 32;

Reading := Port [888];

Str (Reading, S);

Canvas.TextOut (50,50, ‘)
Canvas.TextOut (50,50, S);

The first line outputs a value of 32 to the port to set it to the input mode.
The next line then reads the port’s data register and places the resuilt in
the variable called “Reading”. The third line takes the value contained in
“Reading”™ and converts it info the corresponding text string, which is
placed in variable “S”. Line four writes a series of spaces to the form,
and this is done to blank any previous reading that is displayed. Finally,
the string contain in “S” is printed on the form, 50 pixels down and 50
pixels in from the top left-hand corner of the form. The value on the
screen is updated each time the button is clicked.

Time after time

Delphi provides facilities that are potentially very useful when writing
software for your add-ons. The next program demonstrates two of these,

231

7 Windows programming

which are the interval timer component and the graphics facilities. By
default the timer executes its section of code every second, but the interval
can be altered by the user and has a resolution of one millisecond. The
timer component can be found in the component palette but it is not in
the “Standard” set shown at start-up. If you click on the “System” tab of
the component palette the timer button will be displayed. If you click on
this and then click anywhere on the form the timer object will be installed
in the form.

This is not a visual component, and the timer icon will not appear in the
program window when the program is run. The icon appears on the
form to remind you that it is in use, and to provide you with access to its
properties. The positioning of the timer is therefore unimportant, and it
can be placed anywhere out of the way of other components. Double-
click on the timer icon to bring up the code window and then add this
code between “begin” and “end”:

Timerl.Interval := 250;
Canvas.TextOut (55, 0, ‘'0');
Canvas.TextOut (55, 50, ‘50’);
Canvas.TextOut (55, 100, ‘100');
Canvas.TextOut (55, 150, '150');
Canvas.TextOut (55, 200, '200’);
Canvas.TextOut (55, 250, ‘'250');
port [890] := 32;

Reading := port [888];
Forml.Canvas.FillRect (Rect (0, 0, 50, 300));
Forml.Canvas.Pen.Width := 5;
Canvas.MoveTo (25, 0);
Canvas.LineTo (25, Reading);

Also, under the “var” heading add this line:

Reading : Byte;

The purpose of the program is to produce a simple bargraph display
that shows the values returned from the printer port, which must be a
bidirectional type. The first line of the program sets the timer interval at
250 milliseconds, but you can use any valid value here. Bear in mind

232

Fig.7.2 A screen dump showing the bargraph program in operation

that the screen only updates at around 50 to S0 times per second, and
that there is no point in using very low interval values. A series of six
program lines then print a scale of values for the bargraph. Nextthe port
is setto the input mode and then the value read from the port is stored in
a variable called “Reading”. Then a rectangle is drawn in the default
colour (white), and this produces a panel for the bargraph to operate in.
It also blanks out the previous reading so that the new one can be
displayed properly.

The next three lines actually draw the line of the bargraph. First the pen
width is increased from the default value of one pixel to five pixels so that
the bargraph is easier to see and read. The MoveTo instruction moves
the pen to the specified screen co-ordinates but does not actually draw
anything on the screen. Finally, the LineTo instruction actually draws the
line, with variable “Reading” defining how far down the screen the line is
drawn. If you add a label to describe the function of the program, then

7 Windows programming

compile and run it, you should end up with something along the lines of
Figure 7.2.

Eventing

The event driven nature of visual programs was pointed out previously,
and even the very simple programs featured here demonstrate this point.
The program that uses two buttons to output values to the printer port
lacks any normal structure. In the conventional sense, it has no loops or
conditional branches. It even lacks a true starting point. When the
program starts it produces a window of the appropriate size and design,
and then waits for an event. In this example there are only two normal
events and operating the buttons generates these. The relevant program
code is performed when a button is operated and an event is generated.
You do not have to write code to repeatedly check each button to
determine whether it has been operated. This is handled by the
programming language, which detects all events and proceeds
accordingly.

The situation is similar with the port reading program, but it does not rely
on user generated events. Instead, an event is generated on each
occasion that the timer counts down to zero. This produces a regular
stream of events, and readings from the port. The program isin a simple
loop, but in this case there is no need for the programmer to bother with
loops and timing routines. Delphi and the timer component handle all
this. The programmer still has to produce some conventional loops and
conditional branches when writing most programs, but the event driven
method greatly reduces the need for this type of thing.

You generally start by working out the screen layout and then add the
code to make each element of the system work. Most conventional
programs are structured as a main routine and a number of subroutines
that are called from the main program as and when necessary. Things
are not really that much different when using a visual programming
language. The main program might not exist as such. Some initial setting
up is usually required, and this can be assigned to the form so that it is
executed when the form loads. This code forms part of the main program,
but most of it is generated by the programming language.

An event is produced if someone clicks a button, but you do not write
any code to generate the event. You write the code that makes the right
thing happen when an event is generated. Writing this code is much like
writing a subroutine for a conventional program, and it is a form of

Windows programming 7

subroutine. Visual programming is sometimes criticised because it
enforces a “bits and pieces™ programming style, but well structured
conventional programming using subroutines is not really that much
different.

| am not sure if you can achieve anything using Delphi that could not
also be achieved using a conventional BASIC or Pascal programming
language, but it is clearly possible to do many things much more easily
using a visual language such as Delphi. Things that require no
programming using a visual language such as Delphi could easily take
hours of programming using conventional methods. Changes to the
layout are easily accomplished and simply require objects to be dragged
around the form. This type of change can involve hours of work will
conventional programming.

The fact Delphi produces stand-alone programs that run under Windows
3.1, 95, 98 or ME make it an attractive proposition for those who are no
longer prepared to use MS/DOS, which these days probably means the
vast majority of PC users. Although Delphiis not the fastest programming
language around, it is a compiled language and on any reasonably
modern PC it certainly runs at a rate that is fast enough for the vast
majority of applications.

Delphi 2, etc.

Later versions of Delphi lost the Port instruction, but they can still be
used to directly access the ports. This is possible due to the inclusion of
an inline assembler that makes it easy to add assembly language routines
into programs. The assembler does, of course, include standarg 80**
series instructions that enable the ports to be accessed. This method is
not as simple and straightforward as using the Port instruction, but it is
not particularly difficult either. The inline assembler is about as easy to
use as it could be.

Fortunately, you do not have to be an expert at PC assembly language
programming in order to use this method. In fact, you do not need to
know anything about assembly language at all. You can use standard
routines to read from ports and place the returned values in variables.
Everything else can then be handled using normal Delphi programming.
Similarly, when writing data to ports it is merely necessary to use a
standard assembly language routine to write the data to the port.
Everything else can be handled using normal Delphi instructions.

235

7 Windows programming

Assembler

Itis very easy to use the assembler, and it is just a matter of heading your
code with “asm”™ and finishing with “end”. There is one slight
complication, which is that you must ensure your assembly language
routines do not interfere with the normal running of the computer. What
this means in practice is that any changes made tc the contents of certain
registers must be reversed before the routine is terminated. The simple
routine shown here is all that is needed to write to a port.

begin

Optval := ScrollBarl.Position;
asm

push dx

mov dx, 888

mov al, Outval

out dx, al

pop dx

end;

end;

This routine reads the value produced by a scrollbar and outputs it to the
data lines of printer port 1. It is assumed here that this is at input/output
address 888 (&H378). Where appropriate, the address must be changed
to suit the base address of the port you are using. By default, a scrollbar
produces value from 0 to 100. In order to use the full range of eight-bit
values this must be changed to 0 to 255. This is just a matter of selecting
the scrollbar and then altering Max value in the Object Inspector (Figure
7.3). The scrollbar must be made reasonably large if it is to provide a
range of 256 different values. OptVal is the variable used to store the
reading from the scrollbar. This is a byte-size variable that must be
declared in the appropriate part of the program.

The assembly language routine accesses the port using indirect
addressing via the dx register. The push instruction stores the current
contents of this register on the top of the Stack. A move instruction is
then used to place the port address in dx. This is the base address of
printer port 1 (888) in this example, but any valid address can be used
here. Next another move instruction is used to transfer the value stored
in OptVal to the al register, which is the accumulator. Then the out
instruction outputs the value stored in accumulator to the address

236

contained in the dx register.
Finally, the contents of the dx
register are restored from the top
of the Stack by the pop
instruction. Two end instructions
are needed to terminate the
routine. The first one terminates
the assembly language routine
and the second one ends the
subroutine as a whole.

16-bit transfers can be achieved
by using the ax register instead
ofthe al register. There is actually
a direct addressing mode where
the port address is supplied in the
out instruction. On the face of it
this is a more simple method that
is better than the indirect metnod.
However, this method only
supports eight-bit addresses. As
user add-ons are normally at
addresses from 512 to 1023 and
are 10 bits long, direct addressing
is unusable with user add-ons.

Reading

A slightly longer routine is needed in order to read from a port, but the
process is still quite straightforward. The example program shown here
reads from the printer port at base address 888 (&H378), and the port
must obviously be a bidirectional type. The program is assigned to a
timer component having an interval of about 25 ms. Note that the program
requires a label component, which must be included on the form. This
component is needed to provide the program with somewhere to print

the readings.

begin

asm

push dx
mov dx, 890
mov al, 32

Windows programming 7

Object Inspecior E X
|ScrollBart: TScroliBar *
F%npemeslgvenm|

CH3D True -
Cursor crDetauit =
DragCursor crDrag
DragMode dmManual
Enabled True

Height 25

HelpContaxt 0

Hint

Kind sbHonzontal -~
LargeChange 1

Left 184

Mex 255/

Min]

Name ScrollBarl
ParentC3D True |

Fig.7.3 Altering the Max settinrg

237

7 Windows programming

out dx, al
mov dx, 888
in al, dx
mov InVal, al
pop dx

end;

Str (Inval, S);
Labell.Caption := S;
end;

As in the port writing program, first the contents of the dx register are
pushed onto the Stack. A value of 32 is output to address 890 to set the
data lines of the printer port to the input mode. Then the address of the
printer port’s data lines is loaded into the dx register, and the data read
from the port is loaded into the al register. The variable called “InVal® is
then used to store the contents of the al register. In other words, the
value read from the port is moved into and stored in variable “inval”.
Finally, the original contents of the dx register are restored from the Stack,
and the routine is then terminated.

The value stored in “InVal” must now be printed on the screen, and this
can be achieved using normal Object Pascal instructions. These start
by placing the value in “InVal” into string variable “S”. The latter is then
assigned to the label component where it is displayed on the screen.
Do not forget that Delphi requires all variables to be declared. The byte
and string variables called “InVal” and “S” must therefore be declared in
the appropriate section of the program or error messages will be
generated.

The inline assembler is included in Delphi 1, and these methods of reading
and writing will work with this version of Delphi. However, the Port function
would seem to be the better option when using Delphi 1. itis so easy to
use the assembler to access the ports that it is probably best to opt for
this method and a later version of Delphi. Many of the improvements in
the later versions are of little importance when producing software for
your PC projects, but there are some general improvements that make
programming life easier. Input and output functions can be defined and
then called up when required, but it is probably easier to simply paste in
the assembly language routines as and when they are required.

Remember that Delphi 2, 3, etc., produce 32-bit programs that are suitable
for Windows 95, 98, and ME, but not Windows 3.1. Also remember that
direct port accessing is not permitted with Windows NT4, 2000, and XP.

Windows programming

Even using the inline assembler, these operating systems will intercept
and block attempts to directly write to a port or read from it.

Visual BASIC

On the face of it, Visual BASIC is ideal for producing software for use
with your PC projects. It is powerful, relatively easygoing, and makes it
easy to produce fancy user interfaces having buttons, large digital
readouts, and analogue displays. The big drawback is that no version
of this programming language, from the original MS-DOS version to the
current 32-bit Windows variety, has included INP and OUT instructions.
There is no equivalent to either of these instructions, which would seem
to totally preclude Visual BASIC for use with PC add-ons.

Fortunately, there is a “get out clause” in the form of various add-ons
that provide INP and OUT instructions or permit direct port accesses by
some other means. A search of the Internet should produce details of
several add-ons that deal with general input/output operations, or with a
specific type of port such as the serial ports. There is actuaily a built-in
module (MSComm) for handling the serial ports in Visual BASIC 6
Professional and the more upmarket versions, but not in the standard
version. This module might be worthy of investigation if you intend to
use the serial ports a great deal, but it is not well suited to all types of
serial port use.

For most purposes the majority of the input/output add-ons have a large
amount of overkill. The sof:ware for the average PC project requires
nothing more than the straightforward INP and QUT instructions used in
other versions of BASIC. In fact these are sufficient for most projects,
including the more complex types. Fortunately, there is a freeware add-
on that adds these instructions to Visual BASIC. ltis genuinely freeware,
and using it therefore costs nothing apart from any costs involved in
downloading it from the Internet. The Zip file for inpout32 is only about
20 kilobytes, so it downloads almost instantly. Unlike many other Visual
BASIC plug-ins, itis also very easy to install and use. Having installed it,
the INP and OUT instructions operate just like any other Visual BASIC
instructions.

Inpout32

This add-on is available from more than one web-site, but the obvious
place to go is the excellent web site of its originator, Jan Axelson. This
site is at www.lvr.com, and here you will find a lot of information about

239

7 Windows programming

Fig.7.4 Selectect the Standard EXE option

interfacing PCs, plus links to numerous sites that have further information
on this subject. If you are interested in interfacing PCs this is definitely a
site you should study. There are two versions of the download, called
Inpout16 and Inpout32. These are respectively for 16 and 32-bit versions
of Visual BASIC. Here only the 32-bit version will be considered.

A dynamic link library (DLL) file, which seems to be an easier option than
the alternatives such as an ActiveX control, provides the additional
instructions. The download contains several files in addition to the DLL
file, and one of these is a text file that contains instructions on using the
DLL file. However, this process will be briefly covered here so that you
can see how simple the process is without having to download the files
first. The first step is to run Visual BASIC, and it is assumed here that
you are using Visual BASIC 6. The inpout32.dllfile also works with Visual
BASIC 5, but note that this has a slightly different menu structure. This
might necessitate minor alterations to the instructions provided here. It
might also be usable with other visual programming languages, but |
have not tried to use it with any others.

240

uﬁg-_ﬁg-q-hp-p*ﬂn

i

& ais> o

=
=
“
»
-
i
W
L
-
=

d#EALO

Frg 7. 5 The screen Iayout in V/sual BASIC 6.0

On launching Visual BASIC 6 you get the initial screen shown in Figure
7.4. This offers the option of producing several types of program, and it
is normal EXE file that is needed for PC add-ons. Select the
“Standard.EXE" icon and then operate the Open button. This takes you
into the main Visual BASIC program, which has a multi-window set-up
that it is broadly similar to the one used for Delphi (Figure 7.5). There is
a form with a grid of dots where the program window is designed. There
is a menu bar and a tooibar at the top of the main window.

Down the left-hand side of the main window there is a palette containing
components that can be placed on the form. The usual items are available
here, such as a timer, buttons, and a textbox. On the other sid2 of the
main window and towards the top, there is a window that shows the
constituent parts of the program. There is not much here initially, and
there will normally be just a single form, which will be called “form1” by
default. You can use this window to select items and switch them on
and offin the main window. Itis probably of more use with large programs
than the more simple vanety that will normally be used with vour PC
add-ons.

2

7 Windows programming

The window beneath this one is the Properties window, and it shows the
properties of any item that is selected. This item will usually be a form or
components on the form. An item can be selected using any standard
Windows method, such as left
o Projectl - Micrusoht Visust Basic fdasigel clicking on any non-active part of
B, Gt yow Bnm Fmat Qsbug & qm e it. The Properties window does
not simply show the current size
of objects, their position, and so
on. The parameters shown in this
window can be edited, and this
permits components to be sized
and positioned more accurately
than by dragging them. It also
gives access to parameters that
can not be adjusted via the
dragging method, such as the
interval of a timer component and
the font used for the lettering in a
textbox.

The bottom window on the right-
hand side of the screen shows a

St representation of a monitor with
Fig.7.6 Select the Add File option the current program shown on its
screen. Asthe formis resized, its
representation in this window will
change accordingly. The representation of the program window can be
dragged to any desired position on the screen, and this will be used as
the starting position for the real program when it is run.

inpout32.bas

In order to add the INP and OUT instructions to Visual BASIC it is
necessary to have two files in place. The first of these is Inpout32.dIl,
which was mentioned earlier. This must be moved to a folder on the
hard disc that will enable Windows to find it, and probably the best place
is in the C:\Windows\System folder. This is not sufficient in itself to add
the INP and OUT instructions. Visual BASIC must be told how and when
to use this DLL file. This is achieved using the second file, which is
called Inpout32.bas, which is included in the Inpout32 download. This
file must be loaded into your programs, or projects as they are called in
Visual BASIC terminology, in order to bring Inpout32.dil into operation.

242

Windows programming

2ix)

Look n l i VBprogs .:..; S

B INPOUT 32 FRM |

File name: llNPOUT}Z.BAS ‘ Qpen I I

Files oftype: !VB Files (*frm ~ -&* pag* dst*bas ds*res) _:J Cancel l l
Help {

&

[T add As Related Document i

Fig.7.7 Use the file browser to locate and open Inpout32.bas

Loading Inpout32.bas into & Visual BASIC project is very easy, and it is
just a matter of going to the Project menu and selecting the Add File
option (Figure 7.6). This produces the usual file browser (Figure 7.7)
where you can locate and open

the fite. This should result ina

Module entry appearing in the list Froject-Projectt 48

of items used in the progrem, and

expanding this entry should , D =S

confirm that Inpout32.BAS has - D projectl (Progecti)

been added (Figure 7.8). The INP B Fores

and OUT instructions will then 1] ,SbP

work properly, and in use will be R inoout (NPOUTIZ.BAS)

no different to any of the standard '

Visual BASIC commands. |

First steps

It is advisable to try some simple

programming exercises before mﬂ‘

getting deep into “real” programs r : :

for PC add-ons. These will help F'9-7-8 The project ncw inciudes
Inpout32

to familiarise you with Visual

7

243

7 Windows programming

BASIC's method of working, and will check that the newly added
instructions are working properly. To confirm that the OUT instruction is
functioning correctly, start by placing a scrollbar on the form. Itis probably
best to drag the form to a slightly larger size first so that it can
accommodate a fairly large scrollbar. Both horizontal and vertical versions
are available from the palette of components, and their icons are easily
recognised. However, if you are not sure which component a particular
icon represents, placing the pointer over the icon will result in a brief
description appearing.

In order to place the scrollbar on the form it is just a matter of left clicking
the icon for the appropriate type of scrollbar, and then dragging a
rectangle onto the form. In other words, position the pointer on the form,
hold down the left mouse button, and then move the pointer to a new
position on the form before releasing the left button. You do not have to
bother about getting the size and position of a component right first time.
Once on the form, the usual handles appear whenever a component is
selected. A newly added component is automatically selected, so you
can use the handles to drag it to a new size. To move a component,
simply position the pointer anywhere on the component and then drag it
to a new position.

Windows programming 7

Fig.7.10 This menu offers a full range of events

You should now have something like Figure 7.9, and in this example a
vertical scrollbar has been added. Now double-click on the scrollbar,
and this will bring the Code window to the front. Two lines of cade will
be added automatically for the scrollbar, which will be called “Vscroll1”
by defauit, or “Hscroll1” if you are using a horizontal scrollbar. The first
line starts with the word “Private”, and the second line is “End Sub”.
These mark the beginning and the end of the subroutine for the scrollbar.
You have to add the code that will make the scrollbar do something, and
this code is added between these two lines.

it is important to realise that Visual BASIC programs are event driven,
and the code you write is therefore assigned to a component and to an
event. The available evants vary from one component to another, as
does the event used by default. The first line in the subroutine indicates
the event that will activate your code, and in this example the word
“Change” appears in this line. In other words, an event is generated
when the setting of the scrclibar is altered. The other options are available
from one of the menus at the top of the Code window (Figure 7.10). The
defauit option will usually be the one that you need, as it is in this example.

245

7 Windows programming

Adding code

The purpose of this demonstration program is to permit the value output
to printer port 1 to be altered using the scrollbar. All the code has to do
is take the value from Vscroll1 and output it to the correct address. There
is No need to bother about loops or other program structures. An event
is generated each time the scrollbar’s setting is changed, and the code
used in the subroutine will therefore be executed each time a new value
is produced. This single line of code is all that is needed if a vertical
scrollbar is used:

OUT &H378,VScrolll.Value

Use this version for a horizontal scrollbar:

OUT &H378,HScrolll.value

The OUT instruction is used to send data to the printer port, and the
address used here will normally be correct for printer port 1. This address
should obviously be changed accordingly if you are using a printer port
at a different base address. The value read from the scrollbar is placed
in a variable called VScroll1.Value (or HScroll1.Value), and it is the
contents of this variable that are output to the printer port. The variables
associated with Visual BASIC components all take this basic form, with
the name of the component being used as the first part of the variable’s
name. Next there is a full stop, and then the name of the parameter.

If you are not sure of the correct name to use, select the component and
then look through the settings available in the Properties window. The
parameter you wish to use will be listed here under the correct name to
use in variables. Note that practically any parameter listed in the
Properties window can be used in programs via the appropriate variable.
In this example the variable is being used to read from a component, but
in most cases it is possible to alter parameters by changing the relevant
variable. This method can be used to change the size and position of
components, alter their colour, change the text on labels, and so on.

Windows _programming T

- T Bt S R B W g Dee b W et

B fd BN g MR

e A T L o

Fig.7.11 The grid of dots does not appear when the compiled program
is run

Scaling

With the line of code added, the program is not yet ready for testing. By
default, the minimum value produced by the scrollbar is zero, but the
maximum value is some 32767. Some mathematics could be used to
obtain the required maximum value of 255, but there is an easier way of
handling things. With the scrollbar selected, find the Max (maximum
value) parameter in the Properties window and alter it to 255.

There are two other parameters associated with changes in the scrallbar’s
value. Small Change is the amount by which the value changes when
one of the arrows at each end of the bar is left-clicked. The default value
of one is suitable in this case. Large Change is the amount of change
produced by left clicking immediately above or below the control knob
of the scrollbar. This will probably be reduced to one when the maximum
value is reduced to 255. You may prefer to use a larger vaiue herg'such
as5or10.

The program is then ready for testing. You do not have to compile the
program to an EXE file in order to test it. Prcgrams can be run inside
Visual BASIC by going to the Run menu and selecting either Start or

247

7 Windows programming

Start With Full Compile. The
second option is the more
thorough and reliable way of
testing programs, but either
option will suffice for checking this
simple program. Assuming the
code has been entered correctly,
the new program window should
& save project @ appear, complete with the
Save Project s scrollbar but minus the grid of
dots on the form (Figure 7.11). Try
the scrolibar at various settings
while monitor'ng the outputs of
the printer port. Note that with a
vertical scrollbar, zero is produced
& bt P with the scrolipar’s control knob
D eresetp.. at the top, and not as one might
have thought, at the bottom. The
Make Scroflingl.exe. . zero setting for a horizontal
. scrollbar is, as one would expect,
obtained with the control knob at
the extreme left-hand position.

#y, Projectl - Microsoft Visual Basic [d
Elie Edit View Project Fgrmat Rebug Ru
New Projct CtrkN
& COpen Project... Cwl0
Agdd Project..
Eemove Project

Save Sharlfrm CirlS

Save Sbarl.frm As...

1 Scroliingl.vbp
2 ANADCONY BAS

e — Compiling
Fig.7.12 Programs can be With interpreted programming
compiled to EXE files languages such as GW BASIC

and QBASIC there is no option

other than running your programs
from within the programming language. Visual BASIC, like Delphi, is a
compiled language and it can produce standalone programs. Actually,
this is not strictly true, and there are a few ifs, buts, and maybes with
Visual BASIC. Visual BASIC programs are often remarkably small, but
they are not true standalone programs. It is not a fully compiled language,
and it is reliant on the PC having so-called runtime modules installed.

This is not usually a problem, as these modules are installed as part of a
normal Windows installation. Difficulties will only occur if you try to run
Visual BASIC programs on a PC that has a customised Windows
installation that lacks the runtime modules. Installing the missing modules
should clear the problem. Note that when Visual BASIC compiles a
standalone program, the program file it produces will need any special
DLL files in addition to the normal runtime modules. In the current context

Windows programming 7

N 1l
Save in. [JVBprogs _._J «BD
|
|
i
|
Filepome. [Scrolling! exe { o
Concel
& Help -“!
QOptions '

—— e ——————

Fig.7.13 Use the file browser to select the destination for the compiled
program file

this means that Inpout32.dil must accompany the program file. The
program should work parfectly well with inpout32.dll in the
C:\Windows\System directory, or in the same folder as the program file.
The easiest way of handling things is to always have this file in the same
folder as the program file.

With simple programs Visual BASIC produces a pseudo stancalone
program file, but with more complex projects it might produce a program
group instead. In other words, it will produce a group of fites that includes
a Setup program. The Setup program is used to install the main program
in standard Windows fashion. The simple port writing program will
compile to a standalone EXE file, and this is the option that wili be offered
by the File menu (Figure 7.12). Selecting this cption produces the usual
file browser (Figure 7.13} where you can select the destination folder
and, if desired, change the name of the program. Operate the OK button
to generate the EXE program file.

To test the new program file, minimise Visual BASIC and launch Windows
Explorer. Use Windows Explorer to locate the program file and then
double-click on its entry to run the program. This should produce the
same program window and scrolibar as before, and the program should
control the printer port in the same manner as before. However, this

249

7 Windows programming

250

o
it 4

&

.

x

=

.)

¥

9

-
ss{ tl
fzitiids

PR RESEE CT 1 alsio
Fig.7.14 The compiled program running on the Windows desktop

time the program will operate on the Windows desktop independently of
Visual BASIC (Figure 7.14). The program shouid continue to operate if
Visual BASIC is closed down, but save the scrollbar project first so that
you can continue experimenting with it later. Try putting the program file
and Inpout32.dii onto a floppy disc, and then try running the program on
another PC. The program should run properly even if that PC does not
have Visual BASIC installed.

Refining

Itis easy to add a few refinements to the program, and the most obvious
one is to have a digital readout that shows the value being output to the
printer port. Return to Visual BASIC and, it it is not already loaded, open
the scrolibar project. Select the label component (its icon is the one that
contains the letter “A”) and then place a large label component on the
form using the normal dragging process. It might be necessary to
reposition the scroilbar or increase the size of the form in order to make
a suitable space for the label component.

Windows programming

A 2%
|

Eont Fore style Sue,

M3 Sar< Send {Re yuiar 8 Lo |

MS Sent
% OiHandicrat BT

I PanRoman

I PosterBodon 8T

Effects Sample |
I~ Sinkeout 1 |
A
I Underine bl
Scppt |
M astem _vJ

Fig.7.15 The font window provides the usual size options, etc.

The label will be called Latelt by default. It is Dossible to change the
name of any component using the Properties window, and forms can be
renamed using the same method. With very simple programs there is
probably no point in doing so, but it can be beneficial to use a more
meaningful name with mora complex programs. It is definitely a good
idea if there are several components of the same type. Renaming the
components then makes it easier to remember the function of each one.
Try renaming this label component as “Readout”. The name of a
component is always the first parameter listed in the Properties window
incidentally.

The default text on the label is its initial name, or Labelt in this case. This
text is not required when the program is run, and it is only added by
Visual BASIC so that you can see the default font, text size, etc., used for
the label. Use the Caption parameter in the Properties window to change
the text to read “255”, so that the text is more representative of what will
appear on the label when tne program is run. You can then experiment
with the text size, font, colour, etc., to get the label’s appearance exactly
as you require.

For the present application the default text size is rather small, anditis a
good idea to set a much largar size, Doubling clicking on the Font entry

251

7 _Windows Rrogrammlng

252

unmzﬂh_h’--—--—-

3LOo'® @ ‘)'i}
O SO I WY]

- 2]
@

Fig. 7 16 The form, complete with a large label component

in the Properties window launches the window shown in Figure 7.15.
Here the installed fonts are available in their usual range of sizes, as are
the standard font styles and effects. In Figure 7.16 the Swiss 721 font is
used, and the text size has been set at a massive 72 points. There are
other useful parameters available via the Properties window, and you
can alter the text colour, background colour, the text justification type,
and border style.

Auto-sizing

You can also enable the automatic sizing option. When this is enabled,
the size of the label is automatically adjusted so that it is always just big
enough to accommodate its caption text. This avoids the possibility of
text being clipped due to the label being too small, but always make
sure that the form is able to accommodate the label at its largest size.

No text is required initially, other than the text written to the label by the
program. Therefore, delete the caption when you have set all the
parameters to your satisfaction. Then double-click tha scrollbar to bring

Windows programming 7

up the Code window, and add this line of code after the line entered
previously:

Readout .Caption = VScrolll.Value

Obviously HScroll1 should be substituted for VScroll1 if you are using a
horizontal scrollbar. All this line does is to write the value read from the
scrolibar to the label each time that the position of the scrollbar is altered.

If you try running the
program it will look
something like

Figure 7.17 initially,
with no value
displayed on the
label. This happens
because the
program is event
driven, and no event
is generated until the
position of the
scrollbar is altered. A
value is then output

o

to the printer port, e
andthesamevalueis Fijg 7,17 The label is blank when the
displayed on the program is launched

label (Figure 7.18).

If it is important for an initial level to be output at startup, this is easily
accomplished. Double-click on the form to bring up the Code window.
The cursor will be on a blank line in the skeleton subroutine for the form.
This subroutine will be performed when the form is loaded, or when the
program is launched in other words. Try adding the appropriate line of
code for the type of scrolbbar you are using:

VScrolll.Value
HScrolll.Value

240
240

This sets the value of the scrollbar to 240 when the program is launched.
The initial value of the scrollbar is zero by deault, so this constitutes a
change in the value of the scrollbar. Accordingly, the subroutine assigned
to the scrollbar is activatad, causing a value of 240 to be written to the

253

7 Windows programming

254

o Fom PR —imix)

-

o Y - I i

Fig.7.18 A value is output when the scrollbar is adjusted

printer port and to the caption of the label component (Figure 7.19). Of
course, the scrollbar’s control knob also responds to the change and
takes up its new

[aeme &= position.

. Any initial value can
.~ be produced using
this method, apart
from zero. The
. problem with setting
the scrollbar’s value
| to zero is simply that
| it starts at this

value anyway.
Corsequently, no
il ~ change in value is
-y . produced, and the

subroutine assigned

Fig.7.19 The program can start by outputting to the serollbar is not

a value other than zero

S

Windows programming 7

activated at startup.
One way around this aal
problem is to use two

lines of code in the

subroutine for the

form. The first would

output a value of zero

to the printer port,

and the second

would write zero to

the label’s caption.

- {2 =il

An easier way of

doing things is to use - i
in the subroutine for F9-7.20 Starting with a value of zero

the form. This sets

the value to zero using essentially the same line of code provided
previously. The initial value of the scrollbar is then set to anything other
than zero using the Properties window. The scrollbar starts at a non-
zero value when the program is launched, and its value is then changed
to zero by the form’s subroutine. This activates the subroutine for the
scrollbar, resulting in zero being written to both the printer port and the
label (Figure 7.20).

Although the event driven system of Visual BASIC enables complex tasks
to be achieved using simple program code, this demonstrates the point
that you have to keep your wits about you. It is essential to think carefully
about the way programs will respond to events if programming errors
are to be avoided. You also have to make sure you understand exactly
what triggers an event before you try to use it in your programs. Othe-wise
the finished program might be remarkably inactive due to events not
being triggered as expected. Worse still, programs can run out of control
due to unexpected events being generated.

Inverting

The positions of items on the form and their sizes are set using screen
co-ordinates. The scaling seems to be arbitrary, and screen co-ordinates
do not operate on a one pixel per co-ordinate basis. The ratio is nearer
one pixel for every 10 screen co-ordinates. Co-ordinate 0,0 is in the top
right-hand corner of the form, and not the bottom left-hand corner as
one might have expected. This results in some things working in what

255

7 Windows programming

Fig.7.21 Zero is now produced with the control knob at the bottom

might be regarded as an upside-down fashion, including vertical
scrollbars. As already pointed out, the minimum value is produced with
the control knob at the top, and the value reduces as the slider is moved
downwards.

It is easy to correct this, and it is just a matter of subtracting the value
read from the scrollbar from the maximum value it can produce. In this
case the maximum value is 255, so deducting the value read from the
scrollbar from 255 gives the required inversion. A value of 0 is produced
with the control knob at the bottom, running through 1o 255 with it at the
top of its travel. The port writing program is easily modified to operate in
this fashion. Start by double clicking on the form to bring up its code in
the Code window. Then erase any existing code assigned to the form
and replace it with this line:

Vscrolll.Value = 255

Windows programming

g R ——rr

A 4

Fig.7.22 Moving the knob upwards produces an increase in the value
output to the port

Next, move down to the sub-outine for the screllbar, erase the existing
code, and insert these three lines instead:

Inverted = 255 - VS8Scrolll.vValue
Out &H378, Inverted
Readout .Caption = Inverted

In both cases, only erase the program code that you added previously.
The two lines per subroutin2 added by Visual BASIC should be left intact,
with the new code being added between these lines. You should get
something like Figure 7.21 when the program is run, with the control
knob at the bottom and “0" d'splayed on the digital readout. Movirg the
knob towards the top of its track should result in the value output being
increased, as shown by the digital readout in Figure 7.22.

The line of code assignec to the form simply sets the scrollbar at an
initial value of 255, which sets the knob at its lowest position. The first
line in the scrollbar’s subroutine inverts values read from the scrollbar.

257

7 Windows programming

The inverted values are then written to the printer port and the digital
readout by the next two lines.

Port selection

As things stand, the address range for the printer port has to be altered
by changing the program code. This is acceptable if you are only writing
programs for your own use, but it is still a bit inflexible. You can return to
the source code and recompile the program, but this is a slow and clumsy
way of handling things. It is not a good way of doing things if your
programs will be distributed to others. They either manage to use the
right port address or they do not use your program. Changing the code
and recompiling the program is not an option for them.

Itis easy enough to add buttons so that the required address range can
be selected once the program has been launched. Start by adding a
couple of buttons to the form. If necessary, enlarge the form and (or)
move the existing components around in order to make room for the
buttons. Change the caption for the first button (Command1) to “632",
and change the caption for the second button (Command2) to “888".
These are what will usually be the base addresses for printer ports 2 and
1 respectively. The default text size is quite small, so it is advisable to
use the Font setting in the Properties window to set a larger size of about
18 points.

Shortcuts

If you try using something like “&H378" as the text string for a button you
will find that the “&” character does not appear on the button. Instead,
the “H” character will be underlined. The ampersand (&) character is
used as a means of designating keyboard shortcuts. In this example it
appears ahead of the “H” character, and operating Alt and H keys provides
a keyboard alternative to left-clicking the button using the mouse. The
“H” character is underlined to indicate to users that this shortcut is
available. Keyboard shortcuts are not normally of any real use with simple
programs, but you can add them if you wish. The “&H” prefix should not
be used on buttons, etc. Instead, either use decimal addresses or
something like “Hex 278" for a hexadecimal address.

Retuming to the port selection program, normally a program is fully active

as soon as it is launched, but in this case it is preferable for it to be
suppressed until a port address has been selected. This avoids the

Windows programming

possibility of the program operating with the wrong address. The easy
way of having the program inactive initially is to use the Properties window
to disable the scrollbar and the label. Select each one in turn, and set
the Enabled property to False. The buttons must activate subroutines
that select the appropriate port address and then switch on the scrolbar
and the label. Bring the Code window to the front and edit the listirg to
make it the same as the one provided here:

Dim Portl As Integer

Private Sub Commandl_Click ()
Portl = 632

Readout .Enabled = True
VScrolll.Enabled = True

End Sub

Private Sub Command2_Click ()
Portl = 888

Readout .Enabled = True
VScrolll.Enabled = True

End Sub

Private Sub Form_Load ()
VScrolll.value = 255
End Sub

Private Sub VScrolll_Change()
Inverted = 255 - VScrolll.Value
Out Portl, Inverted

Readout .Caption = Inverted

End Sub

The first line is outside any of the subroutines, and this is important. Itis
declaring the variable called Port1 as an integer variable, and this is the
variable that is used to hold the selected port address. If this varable
originated in a subroutine it would be a private type. In other words, it
would be inaccessible to parts of the program outside that subroutine.
This property can be useful, but here we require a global variabie that

259

7_

260

Windows programming

p«q-u--cq_.;mu B e ol T SN

Fig.7.23 The completed form for the rewsed program

can be altered in one subroutine and then accessed by another
subroutine. This can be achieved by declaring the variable outside a
subroutine.

Essentially the same subroutine is used for each button. First variable
Port1 is set at the apposite base address for the button concerned. Then
the label and the scrolibar are enabled, which effectively starts the
program. When the setting of the scrollbar is altered, the Out instruction
in its subroutine uses Port1 to provide the address, so the address used
here depends on the button that the user operates.

If you try this program you can add a label to the form indicating that
operating a button selects the appropriate port address and starts the
program. It is always a good idea to make it as clear as possible to
users how a program is used, rather than simply leaving them to operate
buttons and menus and see what happens. With the form completed,
you should have soothing like Figure 7.23. When initially run, the program
should look similar to Figure 7.24, with the scrollbar and readout label
inoperative. Operating one of the buttons will bring toth into action, as
in Figure 7.25. Provided the right port address is selected, operating the
scrollbar should alter the value output to the relevant printer port.

Windows programming 7

Fig.7.24 /nr‘tié//y the program looks like this, with the scrollbar and
the label both inoperative

Fig.7.25 Operating one of the buttons activates the label and
the scrollbar

7 Windows programming

Now you see it

Apart from components that never appear when the program is run, there
is a Visible parameter that can be used to make components appear or
disappear. This can often be useful, and with this simple program it can
be used to hide the readout label and the scrollbar initially. They can be
made to appear when a button is operated, and the buttons can then be
hidden. This sort of thing is quite normal in Windows programming, and
it avoids having a confusing user interface that is ciuttered with things
that do not actually do anything. This is the modified version of the
program:

Dim Portl As Integer

Private Sub Commandl_Click ()
Portl = 632

Readout.Enabled = True
Readout .Visible = True

VScrolll.Enabled = True
VScrolll.Visible = True
Commandl.Visible = False

Command2.Visible = False

Labell.Caption = “Use Scrollbar To Adjust Port
Value”

End Sub

Private Sub Command2_Click ()
Portl = 888

Readout .Enabled True
Readout .Visgible True
VScrolll.Enabled = True
VScrolll.vVisible True
Commandl.Visible False
Command2.Visible = False
Labell.Caption = “Use Scrollbar To Adjust Port
vValue”

End Sub

Windows programming 7

{[w]
I

H
‘I

Select Base Address To Start Proaram

632

888

Fig.7.26 Initially, neither the scrollbar nor the label is displayed
Private Sub Form_Load()

VScrolll.Value = 255
End Sub

Private Sub VScrolll_Change()
Inverted = 255 - VScrolll.Value
Out Portl, Inverted
Readout.Caption = Inverted

End Sub

For this program to have the desired effect the Visible parameter for the
readout label and the scrollbar should be set False using the Properties
window. This prevents them from appearing when the program is
launched. The additions to the program are in the subroutines for the
two command buttons, and they are the same for both buttons. Two
lines are used to set the Visible parameter for the readout label and the
scrolibar at True. This causes both components to appear when a button
is operated. Two further additions set the Visible parameter for each
button at False, causing both buttons to disappear when either button is
operated. A fifth additional line provides a further refinement, which is to
have the onscreen instruction change to something more appropriate

7 Windows programming

264

a Fort e M-TE I

a |
e

Use Scrollbar To Adiust Fort Value

Fig.7.27 Operating a button produces the appropriate changes

for the program once it is underway. An alternative would be to simply
render the label invisible.

When initially run the program should look something like Figure 7.26,
with neither the readout label or the scrollbar in evidence. Operating
one of the buttons with result in a change to something more like Figure
7.27, with the digital readout and the scrollbar appearing, and the two
buttons disappearing. The instruction label should also change.

Reading

So far only writing to a port has been considered, but reading from a
port is very straightforward using Visual BASIC. 't is just a matter of
using the INP instruction to read the port, and then using the value read
from the port as the caption for a label. This is much the same as the
method used previously with Delphi, but Visual BASIC is much more
easy-going. There is no need to convert the numeric variable to a string
type before using it as the caption. The numeric variable can be used as
the caption, and Visual BASIC will automatically convert it to the
appropriate string of characters. This is essentially the same way that
traditional BASIC programming languages work. With GW BASIC and
QBASIC for example, it is not necessary to convert a variable to a string
before printing it on the screen.

Windows programming 7

Fig.7.28 The label and the timer added to the iorm

To try out reading a port, start with a new project and install Inpout32.bas.
Then enlarge the form slightly from its default size. Add a label component
and make it large enough to take a three-digit readout having large digits.
Rename this component as “Readout” and delete its default caption.
Set a large font size and make any other changes you require, such as
altering the justification or the colour scheme.

Next, add a timer
component to the
form. The icon for
this componentis the
one that looks like a
stopwatch. This
component is not
displayed when the
program s run, so its
position on the form
is unimportant.
Components of this
type can be
positioned anywhere

Fig.7.29 The finished program in action

265

7 Windows programming

that keeps them clear of other components. In order to use the Visual
BASIC timer component it is essential to set its time interval using the
Properties window. The default time is zero milliseconds, which effectively
switches off the timer. In this application the timer’s interval parameter
sets the gap between successive readings, or the frequency of readings
if you prefer to view things that way. An interval of 100 milliseconds
gives 10 readings per second, and this will usually give good results.

To complete the program it is merely necessary to assign a few lines of
code to the timer component. Double-click on the timer to bring up the
Code window, and then add these two lines of code into the timer's
subroutine:

Out &H37A, 32
Readout.Caption = Inp(&H378)

You should now have screen something like Figure 7.28, and when the
program is tested it should look similar to Figure 7.29. Inputting various
values to printer port 1 should result in the appropriate values being
displayed on the digital readout. The first program line assigned to the
timer component simply sets what will normally be printer port 1 to act
as an input port. The second line reads the data lines of the port and
prints the result via the caption of the label component.

Refinements

An obvious refinement to the program is to add some means of setting
the correct addresses for the printer port. This time three radio buttons
will be used to select one of the three standard address ranges. Start by
making the form wider so that there is space for the buttons and their
captions to the right of the digital display. Then place three of these
buttons on the form, one above the other, in this space. Note that in
Visual BASIC terminology the radio buttons are called option buttons.
Change the captions of the three buttons, as detailed here:

Button Caption
Option1 Hex 3BC
Option2 Hex 378
Option3 Hex 278

Y

Windows programming 7

Next, add an ordinary command button below the display and change
its caption to “START". Then select the timer component and set its
Enabled parameter at False using the Properties window. Finally, go to
the Code window and replace the existing program with this one:

Dim Prnl As Integer
Dim Prn2 As Integer

Private Sub Commandl_Click ()
Timerl.Enabled = True

Optionl.Vigible = False
Option2.Visible = False
Option3.Visible = False

End Sub

Private Sub Optionl_Click()
Prnl = &H3BC

Prn2 = &H3BE

End Sub

Private Sub Option2_Click()
Prnl = &H378

Prn2 = &H37A

End Sub

Private Sub Option3_Click()
Prnl = &H278

Prn2 = &H27A

End Sub

Private Sub Timerl Timer ()
Out Prn2, 32
Readout.Caption = Inp(Prnl)
End Sub

The first two lines declare two global variables (Prm1 and Prn2), and
these will be used to store the two port addresses used in the timer
component’s subroutine. The subroutine for each option button merely

267

7__Nlnd_ows _progrimmln_g_

268

Fig.7.30 The new version of the form, complete with the three radio
buttons that are used to select the port address range

assigns the appropriate two addresses to these variables. At this stage
the timer component is switched off and no readings are being taken, so
it does not matter if the option buttons default to the wrong address.
Once the right address has been selected, operating the START button
(Command?1) gets the program underway. The subroutine for Command1
enables the timer component, and then it renders the three option buttons
invisible. This ensures that the port addresses can not be accidentally
altered once the program has started taking readings.

It you try this program you should end up with something like Figure
7.30, and the program should look like Figure 7.31 when it is launched.
Use the radio buttons to select the correct port base address. When you
select a button, the previously selected button is deselected. Itis therefore
impossible to select more than one option using a bank of these buttons.
They are usually termed radio buttons, because they are similar in use
to the waveband buttons that used to feature on many radio sets.

if the default button (Option1) is the correct button, there is no need to
left-click it. Its code wilt have been performed when the program started,
and the two variables will already have the correct values. The program

Windows programming 7

Lo

|

=

| & Hex 380
 Hex378

i € Hex278

|
et

O S —— — S — g e e T =)

Fig.7.31 The port reading program as it appears initially

should change to something like Figure 7.32 when the START button is
operated. The display will start to produce readings and the threz radio
buttons will disappear, eftectively rendering them inactive.

Analogue display

Using Visual BASIC it is easy to do things like pseudo analogue displays,
and for this example readings from the printer port will be displayed via
the computer equivalent of a panel meter. It would no doubt be possible
to produce a meter having a curved scale like the real thing, but with the
computerised version it 's easier to have a scale that is straight and a
pointer that varies in length so that it always reaches the scale. In practice
this arrangement is no easier or more difficult to read than a conventional
scale, so itis a perfectly valid approach.

Start with a new project and enlarge the form slightly so that there is
room for a decent sized meter. Select the shape component fiom the
palette and then drag a square onto the form in a central position near
the bottom. By default the shape will be transparent, so set BackStyle
(background style) to Opaque and the FillStyle to Solid using the
Properties window. Then select the desired border and fill colours
(BorderColor and FillColor respectively). The shape is & rectangle by
default, but you may prefer to use a different shape. Others, such as

269

7 Windows programming

Fig.7.32 The port reading program in full operation

oval and circle, are available via the Properties window. | used a circle
for this shape, which represents the cail, etc., of the meter, and provides
the pivot point for the pointer.

Next, select the line component from the palette and drag a vertical line
from the middle of the shape to somewhere near the top of the form.
This line represents the pointer of the meter, and the default settings are
perfectly all right. However, you can change its width, colour, etc., should
you wish to do so. Do not take the line too close to the top of the form
because this would not leave enough space for the calibration marks
and labels. At this point you should have something resembling Figure
7.33.

Meter scale

We now require a series of short vertical lines across the form to provide
the scale for the meter. You can add a large number of these if you wish,
but bear in mind that the meter will have to be quite large in order to
accommodate a substantial number of calibration ticks. If you try to
overdo this aspect of the display you might find that when the program
is run the scale looks uneven. It is even possibie that some of the
calibration ticks would fail to appear when the program was run on some
PCs. The Visual BASIC co-ordinate system can tend to lull you into a

270

Fig.7.33 The meter’s pointer and pivot point added to the form

false sense of security, and you have to bear in mind that there will
normally be far fewer pixels than screen co-ordinates.

For the sake of this example we will settle for a simple scale having
about two dozen calibration ticks. However, the same basic process
can be used to provide a finer scale if desired. Readings from the printer
port run from 0 to 255, but here we will settle for a more convenient scale
of 0 to 250. This does not fully utilise the eight-bit resolution of the port,
but the loss of resolution is too small to be of any real significance.

With the pointer at its mid setting, the Properties window showed this
line to have an X co-ordirate of 3600. Obviously the X co-ordinate is
likely to be different on your version, but you can correct this by dragging
the pointer and the circle into the appropriate position. To select two
objects, either drag a rectangle around them using the arrow tool in the
component palette, or left-click on one, hold down the Controi key, and
then left-click on the second object. Both methods can be used to select
numerous objects incidentally.

It is possible for the pointer to go 2500 units either side of its central
position without getting too close to either edge of the form, ard this

27

7 Windows programming

Fig.7.34 The lines that provide the scale divisions have been added
to the form

gives convenient scaling. With the pointer covering a total of 5000 units
and the port readings going from 0 to 250, this works out at 20 screen
units per input unit (5000/250 = 20). The first calibration tick is at an X
co-ordinate of 1100 (3600 — 2500 = 1100). The top of the pointer is used
as the baseline for the scale, so it is a matter of drawing a line (say) two
grid points high with its base on the same row of dots as the top of the
pointer.

Sometimes the grid will obligingly snap objects to suitable co-ordinates,
but in most cases it will be necessary to do some “fine tuning” using the
Properties window. In this case the X1 and X2 values for the line must
both be set at 1100. The horizontal starting point of the line is therefore
unimportant, since final position in this plane will be set via the Properties
window. Itis then a matter of adding further lines and setting them at X
co-ordinates of 1300, 1500, 1700, and so on, up to a maximum 6100
(3600 + 2500). You should then have something like the form layout
shown in Figure 7.34.

Windows programming 7

. Projectt - Form1 (Farm) + 1R ; -0 x

0 50 100 150 200 250
FELTEREE TLECIN L LT
|

Fig.7.35 The numbers have been added to the scale and the lines for
the major divisicns have been widened

Figure work

Next the figures for the scale are added. | left too little room at the top of
the form to accommodate the legends comfortably, so | enlarged the
form, selected all the compcnents using the arrow tool, and then dragged
them a few grid points cown the form. The figures are easily added
using a separate label for each one. Start with the 0" legend, acjusting
the font, etc., to give wrat you deem to be the best effect. Use the
Properties window to adjust the label’s position “by eye”. With this type
of thing it is helpful to enable the AutoSize facility. Automatic sizing
ensures that none of the text will be accidentzily clipped.

This process is repeated with labels at the 50, 100, 150, 200, and 250
scale ticks. The easy way to do this is to use th2 Copy and Paste facilities
to copy the original label. Then use the Properties window to alter the
text and reposition the copies. The lines at the main calibration points
can be thickened slightly sc that they stand out from the other calibration

273

7 _Windows prrogramming

274

S e sy g 0 e g e s

B-a-TeE BHAo o, g a M

(V] 50 100 150 200 250
(CANRR SRR AR RN EERRN ARTIIN

DC Millivolts

Fig.7.36 The finished panel meter design

ticks. The line width is controlled by the BorderWidth parameter, and |
increased this setting from 1 to 3.

Finishing touches

When this process has been completed you should have something like
the form shown in Figure 7.35. You can opt for the basic approach and
simply leave it like this, or add one or two extra components to make it
look a bit more like the real thing. It is certainly a good idea to at least
add a label stating the units being measured (degrees Celsius, volts,
amps, etc.). Making the meter look pretty will not make it work any
better, but users generally prefer programs that are visually appealing,
and it is worth putting a little effort into this aspect of things.

With the drawing tools available when using Visual BASIC it does not
take long to add a few refinements. Figure 7.36 shows the final version
of my virtual panel meter, and Figure 7.37 shows a close-up view of the
form. Alabel has been added to show the unit of measurement, and the
text has been set to a suitably large font size. When you start adding

rojoctt - Forml (Farm)

Windows programming

0
||

50
1]

100 150 200 250
ARRERRRRERRRR AR R

DC Millivolts

Fig.7.37 A close-up view cf the form showing the finished design

refinements to an analogue display you often find that one component
covers another and spoils the effect. In this example the units label was

added after the line
representing the
pointer, and this label
will therefore appear
to be in front of the
pointer. With a real
meter this label is
usually on the scale
plate, and would
therefore be behind
the pointer.

There is an even direr
example of this inthe
form of the shape
component that is

rosull Visual Basic [designi
opct -grmat [ebug Run Query Diegram Tools Add-Ins \yindow

] o

Make Same See P
[3- See to Grig

l Hor contal Spacng
Yertcal Spacng »

Center nFarm »

Lok Controk
1 e i
Fig.7.38 Using the Ordar options

> §

275

7 Windows programming

used to represent the
outline of the meter.
' e — —— | | Wnen this is initially
0 50 100 150 200 250 | acded itis in front of
LELET L LR DT | | everything else, and
totally obscures the
pointer, scale, etc.
Fcrtunately, there is

DC Millivolts | an easy way around
| this. Simply select
| an item you wish to

. | move to the rear, go

| to the Format menu

g . i _.J, | andselect the Order
Camme s LU S D DR T . option, and then
Fig.7.39 The labels do not merge with the select the Send to
main background Back option (Figure

7.38). There are
actually two options available from this submenu, and the other one is
Send to Front. Only the appropriate one of these will be available if a
componentis already at the front or at the back. Both options are available
for components that are sandwiched between other components. With
a little experimentation you should soon manage to sort objects into a
satisfactory order.

The rectangle shape used to represent the outline of the meter has to be
sent to the very back, since anything behind it will be completely
obscured. With the background set to a suitable colour there is a slight
problem in that the background colour of the labels is unlikely to match
that of the rectangle. This gives a rectangle of a different colour around
each label. You might be happy with this effect (Figure 7.39), but it is
easily removed by first selecting all the labels. Then use the Properties
window to set the same background colour that was used for the main
rectangle. The Properties window provides an easy and quick means of
making this sort of en masse adjustment.

Making it work

As described so far the meter has just one major shortcoming. It looks
very plausible but it does not actually do anything. The obvious way of
making it read the printer port is to assign a suitable subroutine to a
timer component, and this is the method that will be adopted here. Start

276

Windows programming 7

by adding a timer component to any vacant area of the form, and then
use the Properties window to set a suitable interval. It is probably best to
set a fairly short interval of about 25 milliseconds so that the paointer
responds rapidly and smoothly to variations in the values read from the
port. With alonger interval it might jump around in an unrealistic fashion.

If you have not already installed Inpout32.bas, do so now. Then double-

click on the timer component to bring up the Code window, and then
add these lines of program code into the timer's subroutine:

Out &H37A, 32
Raw Inp (&H378)
Raw = Raw * 20
Raw = Raw + 1100
Linel.X2 = Raw

The first line sets printer port 1 as an input type. Then the second line
reads the data lines and stores the value in a variable called Raw.
Obviously the addresses used in these lines must be changed if the
printer port you are using is not at the base address of &H379. In order
to move the pointer to the appropriate point on the scale it is merely
necessary to alter the X2 parameter of Line1. This moves the top of the
line horizontally but otherwise leaves it as before. There is no need to
bother about deleting the old version of Line1 each time its position is
altered, because Visual BASIC will do this automatically.

It is clearly necessary to apply some mathematics to the values read
from the port in order to produce a suitable X2 value. The scale runs
from an X2 value of 1100 at the left end of the scale to a value of 6100 at
the right end, giving a span of 5000 screen units. The values from the
port run from 0 to 250. This means that there are 20 screen units per
port unit (5000/250 = 20). The value read from the port is therefore
multiplied by 20 in order to get the basic scaling correct. Some further
manipulation of the value is needed in order to obtain the final X2 value,
because the zero point on the scale is at an X2 value of 1100. Adding
1100 to the value in Raw corrects this and produces the final value that is
used as the X2 value of Line1.

Figure 7.40 shows the finished meter program in action. A value of 64
has been fed to the printer port, and the meter is providing the appropriate
reading. In general, analogue and pseudo analogue displays do not
provide the same degree of precision as digital types. The main

7 Windows programming

-loixi advantage of a
. display of this type is
0 50 100 150 200 250 | that you can take a
ERENE SR REE AR R RN . rough reading at a

. glance. In many
applications you
simply require a “ball

a1 park” figure, and a
DC Millivolts high degree of
precision is

' | unnecessary.
. This type of display is

also preferable
R R ——— where readings are
Fig.7.40 The finished program in operation changing fairly

rapidly. With a
pointer or other analogue style display it is easy to follow readings as
they rise and fall. It is very difficult to follow the blur of numbers in a
digital display that is continually changing. Using a relatively slow sample
rate makes reading the display much easier, but the readings might not
accurately track the changes in value. An analogue display is much
better for this type of thing. Of course, you do not have to settle for one
type of display or the other, and in some applications it is best to include
both types. With a PC based instrument you can have as many displays
as you like at no extra cost.

Development

The basic meter program is easily developed into something more usable
in real world applications, complete with buttons to select the required
port address range and an overload warning. Figure 7.41 shows the
modified form, with the additional labels and three command buttons.
The buttons have the labels shown here:

Button Label

Command1 Hex 278
Command2 Hex 378
Command3 Hex 3BC

278

.Windows programming 7

Fig7.41 The form for the improved panel meter program

One of the labels (Label4) simply gives an onscreen instruction to select
the required base address. The other label (LabelS) provides a red
“OVERLOAD!!!" warning that is displayed on readings of more than 250.
This is the full listing for the improved panel meter program:

Dim Prnl As Integer
Dim Prn2 As Integer

Private Sub Commandl_Click()
Prnl = &H278

Prn2 = &H27A

Timerl.Enabled = True
Commandl.Visible = False
Command2.Visible False
Command3 .Visible = False
Label4 .Visible = False

End Sub

5

7 Windows programming

_sgg

|

0 50 100 150 200 250 et |
ERNERRRRER ARACE RNNER RRRE N 3 g
Hex 378

DC Millivolts Hexase| |

Select Base |

. Address |

Fig.7.42 The initial appearance of the improved panel meter program

Private Sub Command2_Click ()
Prnl = &H378

Prn2 = &H37A

Timerl.Enabled = True
Commandl.Visible = False
Command2.Visible = False
Command3.Visible = False
Label4.Visible = False

End Sub

Private Sub Command3_Click()
Prnl = &H3BC

Prn2 = &H3BE]
Timerl.Enabled = True
Commandl.Visible = False
Command2.Visible False
Command3.Visible = False
Label4 .Visible = False

End Sub

I SSTTTTTTTETEEEEG"SSSSSSSSSSSSESEESESESESESESESSSESSSESSS

Windows programming 7

Private Sub Timerl_Timer ()

Out Prn2, 32

Raw = Inp(Prnl)

If Raw > 250 Then LabelS5.Visible
If Raw < 251 Then LabelS5.Visible
Raw = Raw * 20

Raw = Raw + 1100

Linel.X2 = Raw

End Sub

True
False

The first two lines declare global variables that will be used to hold the
two port addresses used in the INP and OUT instructions used in the
timer’s subroutine. The subroutine for each command button is
essentially the same. First the appropriate two addresses are assigned
to variables Prn1 and Pm2. Then all three butions and Label4 (the one
containing the onscreen instruction) are switched off. The subroutine
for Timer1 uses Prn1 and Prn2 to provide the port addresses in the INP
and OUT instructions respectively.

Two additional lines set the Visible parameter of LabelS at True if the
reading from the port is less than 251, or False if the reading is more
than 250. In other words, the overload warning will be displayed for
readings over 250, but will be suppressed for readings of 250 cr less.
Note that these two lines require the raw values from the port, and must
therefore be placed before any of the mathematics performed or these
values.

Figure 7.42 shows the program when it is initially run, complete with the
three command
buttons and the
onscreen instruction. 0 50 100 150 200 250
These disappear R R T SRR
when abase address ;
is selected by]
operating one of the e
buttonss,J and the DC Millivolts
meter then becomes /
active (Figure 7.43).

The “OVERLOAD!!” .
warning appears on
readings of more

than 250, as in Fi o . S
7.44. nFigure Fig.7.43 The improved program in operation

281

7 Windows programming

282

aremi e -iojx

0 50 100 150 200 250
RN ARREREN R ARREY! I

DC Millivolts

OVERLOAD!!

Fig.7.44 The meter program with the overload warning activated

Cheap VB

There are two or three options available if you would like to try out Visual
BASIC without going to the expense of buying one of the normal retail
editions. The best free version is the Visual BASIC 6.0 Working Model,
which has been given away with a few computer magazines.
Unfortunately, this version does not seem to be availatle as a download
from the Microsoft web site, so unless you happen tc have one of the
free CD-ROMs that contain it, this version is not an option. If you can
locate a copy, the Working Model edition does everything that the
standard version can do, except that it is not possible to compile either
an EXE file or a program group.

On the face of it, this renders the program useless. However, your
programs can be run from within Visual BASIC, including the Working
Model version. This means that you must have a version of Visual BASIC
loaded before you can use your programs, but this is not a major hardship.
The same is true of interpreted languages such as GW BASIC and
QBASIC, and the Working Model version is effectively an interpreted
version of Visual BASIC. Programs can be saved to disc, loaded again,
modified, and so on. Using the Working Model you can therefore develop
and store a range of software for use with your PC add-ons.

Windows programming 7

“Micrpsort o
‘VisualBasic
New | Eusting| Recent |

factivex Control JESEe P12 (T P
|

R
Cancel]

N |

tielp‘ | ’

= Don't show this dralog in the fyiure

Fig.7.45 The Standard EXE option is available at the opening screen

vB5 CCE

If you can not obtain the Visual BASIC 6.0 Working model, the next best
thing is Visual BASIC 5.0 Ccnirol Creation Edition. This is available as a
download from the Microsoft web site, and the site's search engine should
soon locate the program file and some documentation for it. As far as |
can gather, version 6.0 of this edition has not been produced, but version
5.0 is perfectly adequate fcr oroducing software for PC adc-ons. The
intended purpose of this version is the production of ActiveX controls,
but on running the program you get the opening screen of Figure 7.45.
The number of options available is ciearly far smaller than the number
offered by the real thing, but the Control Creation Edition does havz the
all-important Standard EXE option.

Selecting this takes you intd the main program, which looks very much
like the equivalent in the normal versions of Visual BASIC 5.0 and 6.0
(Figure 7.46). There is the usual component palette on the left, the
Properties window, etc., on the right, and the form plus concealed Code

283

7 Windows programming

Fig.7.46 The initial screen has the standard Visual BASIC layout with all
the normal elements present

window in the middle. The Project
menu includes the Add file option
(Figure 7.47) that can be used to
load Inpout32.bas in the normal
way. You then add components
to the form, set their parameters
using the Properties window, and
add code into the Code window,
just as you would using one of the
retail versions of Visual BASIC.

When the program is finished it
can be tested using the normal
options under the Run menu.
Figure 7.48 shows a simple port
reading program in Visual BASIC
5.0 CCE, and Figure 7.49 shows

' this program in operation. This is
Fig.7.47 Inpout32.bas is added all exactly the same as when

using the Add File option sing an ordinary edition of Visual

284

Windows programming 7

Fig.7.48 The timer and label components added to the form

BASIC 5.0 or 6.0.
The normal Open
and Save options are
available under the
File menu, but both
Make options are
greyed out and
unavailable. Like the
Visual BASIC 6.0
Working Model, this
version can not be
used to produce
either an EXE file or
a program group.
Programs have to be
run from within Visual

Fig.7.49 The port reading program running
within Visua! BASIC 5.0 CCE

BASIC 5.0 CCE itself, agzin giving what is effectively an interpreted version
of Visual BASIC. However, with both the version 6.0 Working Model and
the version 5.0 Control Creation Edition, programs should run at full speed
provided the Run with Full Compile option is selected from the Run menu.

285

7 _Windows programming

You are not limited to ultra simple
programs, and the full range of
components and instructions are
available. Figure 7.51 shows a port
writing program under construction
in Visual BASIC 5.0 CCE, and this
has command buttons, a label and
horizontal scrollbar. Figure 7.52
shows the program in operation.
The line and shape components
are available, making it possible to
produce pseudo analogue
displays. In fact anything that can
be undertaken using the standard
editions of Visual BASIC 5.0 and 6.0
should be possible using this
edition, apart from compiling
programs of course.

ig. 7.51 The usual components are all available, including scrollbars

286

Windows programming 7

Fig.7.52 The port writing program running within Visual BASIC 5.0 CCE

VBA

It is quite possible that your PC aiready has a form of Visual BASIC
installed. Some of the more upmarket applications programs are suoplied

complete with Visual
BASIC for
Applications, or VBA
as it is more
commonly called.
This is intended
as a means of
adding facilities
to applications
programs, and it is
inciuded with
Microsoft Office
and AutoCAD for
example. The exact
method of accessing
VBA varies slightly

Fig.7.53 Accessing VBA from the Tools menu

from one program to another, but it is usually_ faunched via the Tools
menu of the main application. In Word for Windows 2000 for example, it

7 Windows programming

Fig.7.54 The VBA layout is different to the normal Visual BASIC type

Fig.7.55 Things look more familiar with the form added

288

Windows programming 7

Additional Controls NP x|

Availeble Cantrols:

Dm ; l
O) VideaSott FlexStang Contrai

[AchonBwr Class
0 ActveMowvieControl Object
O Actve>Plugin Object
O ActorBwr Class
O adbaner Class
[Adobe Acrobet Controf for Acrvex
[AppW zardb SubWizard
0 AxBrowse AxBrowser
[Br549 Zontrol Show
[Caiencar Control 9.0 ’:J £ Selacind hams'tinky
< | 1 .
-} VideoS ot FlexArray Contro
Locetion CAWINDOWS\ SYSTEM\VSFLEXI OCX I

ISR =P S——.__ §

Fig.7.56 Additional components can be activated

is accessed via the Tools menu, and then the Macro submenu where the
Visual Basic Editor option is selected (Figure 7.53).

Once into VBA it looks substantially different to the normal Visual BASIC
environment (Figure 7.54). The obvious differences are the lack of the
component palette, and tha form is also absent. Both can be added to
the main window by going to the Insert menu and selecting the User
Form option. You then have the normal constituents of Visual BASIC,
with the Properties window, form, etc., all present (Figure 7.55). However,
the component palette is a cut-down version of the one found in Visual
BASIC, and there are a few notable omissions, including the timer
component.

More controls are available by selecting Additional Controls from the
Tools menu. This produces a window like the one in Figure 7.56, where
there is a checkbox for each of the available components. Tick the
relevant checkbox to add a component to the palette, or remove a tick to
clear the palette of an existing component. Unfortunately, most of the
vast array of available conirols are of no relevance to producing software
for PC add-ons. Itis still worth looking down the list in case you can find
something of use. Incidentally, there is a similar facility available using

289

7 Windows programming

290

|
1 Jactve Setup Control Library | e ’
Adobe SVG Viewsr Type Library 2.0 2 ==l]
AaxBrowse = L=
~ AxMetaStream 1.0 Type Library &3 r !
AxMstaStrears 1.0 Type Lbrary l
iBlue Sky Software Active Popup = @
br$49 OLE Control module |
| 1C:\WINDOWS\S YSTEMMSCONE DLL
| CIAWINDOWS\SYSTEM\TDC.OCX '
I COCBCorol(ADL) 1.0 Type Lbrary
i
| il Browse. l !
, Cerberus 1.0 Type Lirary _{ it
L4 J‘ .’J I~ seleced ltems Onily I
:-) VideoSoft vsFiex3 Controls |

Lacation: CAWINDOWSISYSTERM\VSELEX3.0CX |

x 0K 3 Cancal } b g __J |

Fig.7.57 Additional tools are also available in Visual BASIC 6.0

Visual BASIC. Selecting Components from the Projects menu produces
a window like the one shown in Figure 7.57.

Adding Inpout32.bas

In order to use with VBA with inpout32.dll it is necessary to install
Inpout32.bas first. This is achieved by selecting Import File from the File
menu. The usual file browser appears and it is then just a matter of
locating and selecting Inpout32.bas, and then operating the Open button.
Inpout32 should then appear in the Project window (Figure 7.58), and
the INP and OUT instructions should work correctly.

As an initial experiment with VBA, load Inpout32.bas and then add a
scrollbar to the form. There is only one scrolibar component available
using VBA, but it can act as a vertical or horizontal type. As Figure 7.59

Windows programming 7

shows, the type of scrolibar
obtained depends on the aspect
ratio of the rectangle dragged
onto the form. Drag a tall and
narrow rectangle to produce a
vertical scrollbar, or a wide dumpy
one if a horizontal scrollbar is
required. For this example a
horizontal scrollbar will be used,
and its maximum value must be
set at 255 using the Properties
window. The default values
should be satisfactory for the
other parameters.

Next add a label component and
adjust its parameters to give large
digits, the required background
colour, and so on. Double-click
on the scrollbar to bring up the
Code window and add these lines
of code into the scrollbar’'s
subroutine:

Fig.7.58 Inpout32 has been added

Labell.Caption = Scrollbarl.Value
Out &H378,Scrollbarl.Value

All this program does
is to display the value
read from the
scrollbar on the label,
and then output it to
what will usually be
printer port 1. Where
appropriate, use a
different port address
in the second line.
You should now have
something like
Figure 7.60, and the
program should look Fig.7.59 Both types of scrollbar are available

7 Windows programming

Fig.7.60 The simple port writing program being built in VBA

initially like Figure 7.61 when it is run. To run the program, select Run
Sub/User Form from the Run menu. Operating the scrollbar should resutt
in a value being output to the printer port and this value will also be

Fig.7.61 The initial appearance of the program

292

shown on the digitat
display (Figure 7.62).

In crder to save the
program to disc,
select Save from the
File menu and save
the current
document as a
normal Word DOC
format file. To load
the program again,
go into Word for
Windows, load the
document that
contains the
program, and then

Windows programming 7

Fig.7.62 The program fully up and running in VBA

go to the Visual BASIC editor. Your program should already be loaded
into the editor, complete with Inpout32.bas, and ready to run. Do not go
into the Visual BASIC editor first and try to load the document from there.
There is no way of doing this, and the document must be loaded into
Word for Windows.

VBA is a relatively restrictive and clumsy way of producing Visual 3ASIC
programs for your PC add-ons. itis still worth trying if you already have
a suitable application program on your PC. You can make some initial
experiments with Visual BASIC programming at no cost and the only
download you will need is Inpout32. However, if you intend to do a lot of
Visual BASIC programming it is better to either obtain Visual BASIC 5.0
CCE or one of the retail versions of Visual BASIC.

Other BASICs

Visual BASIC dominates the world of Windows programming, and you
could be forgiven for thinking that it is the only BASIC programming
language for Windows. This is not the case, and there are a few other
BASIC programming languages for use under Windows. A search of

293

7 Windows programming

294

& = - T A F T e < TS P b b ey

‘W pi%ml A% 2

{~
]
L]
$

Fig.7.63 A simple program running within Liberty BASIC

the Internet should reveal some of the alternatives, such as a version of
BBC BASIC for Windows, and Liberty BASIC. The latter is probably the
most popular of the alternative BASIC languages, and a free
demonstration version is available from www.libertybasic.com.

With aregistered version of Liberty BASIC it is possible to use the supplied
runtime module to produce programs that can run independently of
Liberty BASIC. This feature is not available in the free demonstration
program. Instead, the code is entered into the main window, and a
separate program window appears when the program is run from within
Liberty BASIC. In other words, it operates more or less as a traditional
interpreted BASIC. Figure 7.63 shows a very simple program running,
and this repeatedly reads printer port 1 and prints the returned value in
the program window. This is the program I used:

10 CLS

20 PRINT INP(888)

30 FOR D = 1 TO 20000
40 NEXT D

50 GOTO 10

T

Windows programming 7

The line numbers are optional, and labels can be used for unconditional
branches. As this program demonstrates, Liberty BASIC is much more
like a conventional BASIC language than Visual BASIC, and it should
appeal to those who require an MS-DOS style BASIC that produces
Windows programs. Both INP and OUT instructions are included as a
standard part of Liberty BASIC, so there is no need for any ActiveX controls
or DLL files.

Windows XP

As pointed out previously, Windows NT4, 2000, and XP can not be used
with Inpout32.dil, or with a BASIC programming language trat has the
INP and OUT instructions built-in. Neither can they be used with programs
that use assembly language routines to access the input/output ports.
These operating
systems do not
permit programs to

Pandetier! Properties

directly access the Geveml Version Compatibiity Summary

ports, but instead b
. . e

insist on programs b ParMeter]

using the ports via

the operating Type of fle. Applcation

system. With the Descrption PanMeter

operating system =
controlling access to Locstion: CATEMP

the ports there is no
danger of two
programs trying to
simultaneously
access the same

Sz 24 DKB (24 576 bmtes)

Sizmondisk: 24.0KB (24 576 btes)

Jiested 30 March 2002, 185200

port. This aids good Aadhed 30 March 2002, 1942 36

stability and makes Sceessed 30 March 2002. 212647

Windows NT4, 2000, e
and XP less prone to ttibutes: [Readonky [Hidden [Advancec |
crashing than

Windows 95, 98, and
ME. It inevitably
complicates the . =
process of writing Lok][Cconce
software for PC
based electronic Fig.7.64 The Properties window for a program
projects though.

7 Windows programming

296

)

PanMeter1 Properties
Genela Veision Compatbity ' Sumenary

1 you have problems with this program and & worked comectly on
an earlier version of Windows, select the compatibity mode that
matches that sariier version

Compatibdity mode

[1Run this program in compatibiy mode tor

Display cettrgs
I Run in 256 cokrs
[[] Run n 640 x 480 screen resolutior:
[J Disable visual themes

Leam maore about prosganm compatiblity

Loc J[coce J[aoow |

Fig.7.65 The Compatibility section

Cetnpaubity made

[} Run this program ;1 compatibilty mode tor:
Windows 95 A

‘windows 38 / Windows Me
qwindows NT 4.0 {Service Pack 5)
Windows 2000

{_JRunn 236 colors

[J Run in 640 x 480 screen resokution
[Disable visual themes

Fig.7.66 Selecting compatibility with an earlier
version of Windows

It is sometimes
suggested that
Windows XP can be
made to operate with
programs that break
its input/output rules
by using its
compatibility feature.
This feature permits
programs to be run
in a so-called
compatibility mode.
If a program worked
previously with (say)
Windows 95, but it
fails to work when
used under Windows
XP, then, then setting
the compatibility
mode to Windows 95
should get the
program working
under Windows XP.
Setting a
compatibility mode is
easy enough, but it is
only fair to point out
that this method is
unlikely to work with
programs that
directly access the
ports.

In order to use a
compatibility mode,
first find the
appropriate program
file using Windows
Explorer. Program
files are executable
files that have an
exe” extension.

S S ST

Windows programming 7

Having located the correct file, right-click on it to produce a popup menu,
and then select Properties from that menu. A properties window like the
one in Figure 7.64 will then appear, showing some general information
about the program file. Operating the Compatibility tab changes the
window to one like Figure 7.65, and here the Compatibility Mode
checkbox should be ticked. The menu immediately beneath it then
becomes active and the required level of compatibility can be selected
(Figure 7.66).

Disabling ports

Another ploy is to disable the port you are trying to access if it is one of
the standard ports such as a printer or serial type. This effectively
persuades Windows XP to loosen its grip on the port, which it will
otherwise tend to guard against any external interference. This method
can also be used with
other versions of

Windows if your [l

program and the . _System Restore Automatic Updates Femate
operating system i T B
both try to control a Syetem

port. To disable a Miciosolt Windoves XP
port, start by Sumesgea
selecting Control :

Panel from the Start f a3 Regstered to

menu, and then et Robert Penfold

Perlold Techrucal Services

double click on the o was

System icon or text
entry. This launches Compuer

the System v bl
Properties window 256 MB of FAM
(Figure 7.67) where
the Hardware tab is
operated, followed
by the Device
Manager button
when the new
version of the Fig.7.67 The initial System Properties window
window appears.

Next, double-click on the Ports (Com and Lpt) entry to expand it, and
then right-click on the entry for the appropriate port. This will produce a
popup menu (Figure 7.69) where the Disable option is selected. Operate

297

7 Window_s pr_ogr_ammin_g

«0@

[~ B PENFOLD-RRWCOU
§ Computer
* <o Duk drives
8 @ Onplay slapers
* b DVDID-ROM arives
& G Floppy disk controers
¢ B Floppy dsk dves
. _j IDE ATAJATAP! controlers
o Up Keyboards
7 Mce and uther pomting devices
. Modems
. Moritors
o Jf Ports (COM& LPT)
+ o Processors
« @ sound, wdec and game controlers
. System devies
. Universal Serial Bus controllers

Fig.7.68 The Windows XP version of Device Manager

Fle Acton ‘dew Help

[= &) PevFOLD RRWCOU
® ’ Compuger
i+ < Disk dnves
+ B Duplay a3apters
* & DVDICD-ROM ditves
. g Flonpy drsk controlers
« .4 Fapoy drsk drrves
& 3 IDE ATAJATAP] controllers
U Keyboards
% %) Mce and ather ponting devices
o B Modems
. Monkors
S Ports (COM 3 LPT)
Y Convnurscations Port (COM1)
&F Commuracations Port (COM2)
P

F @ Processors

@ @ sound, vwdeo and ¢
&49,'221'-“5 Ursnstal
#

Propesties

m&:mmm."

v BIEE 2 A xRS

tpxdate Oriver ..

Ureversal Serial B ¢ o, for nardware charnyes

Fig.7.69 Selecting and disabling a standard port

298

Windows programming

the Yes button when you are § - %mms
s L Mondors
a;ked to gonfnrm that you wish tp 7 Ports (COMB.LOT)
disable this port. A red cross will ¥ Conmunicetions Port {(CCM1)
then appear across the entry for o Conmurcations Port (CCM2)
the port to indicate that it has
been successfully deactivated + B 50und, sdec and game cort-olers
(Figure 770) - ‘ f:\::vm:S::Bus controlle's
In practice Windows XP is not fjg 7.70 The red cross shows
easily persuaded to give access that the port is disabled

to the ports, and all this is unlikely

to help. Figure 7.71 shows the panel meter project running under
Windows XP using Windows 95 compatibility and the printer port
disabled. It looks quite plausible, but it should be displaying a reading
of 255 with overload warning in operation. Itis not causing ary instability
in Windows XP, but it is not working properly either. These two ploys
might be more effective with other methods of accessing the ports, but
they do not seem to work with Windows XP and Inpout32.dil.

There are add-ons specifically for providing port access under Windows
NT4, 2000, and XP. Some ouilt-in port handling facilities go throuch the

=, Form1

0 50 100 150 200 250
R RRERERRRRRURRER RRREY

DC Millivolts

N

Fig.7.71 The panel meter program running under Windows XP

7

299

7 Windows programming

official channels and should work properly with these operating systems.
A utility worth investigating is the Tinyport program, which is available
via the www.lvr.com site mentioned previously. It is only fair to point out
that port access utilities for use with Windows NT4, etc., are generally
much less straightforward in use than Inpout32.dil. Also, some of them
require programs to be run in a compatibility mode under Windows XP,
and may additionally require standard ports to be disabled using Device
Manager. Where possible it is better to use Windows 95, 98, or ME,
where direct port accesses are permitted, and these complications are
avoided.

&

Windows programming 7

Points to remember

Programs produced using visual programming languages are event |
driven. The relevant subroutine is executed when an event occurs, such

as the user operating a button or selecting a menu item. Conventional
program structures are not relevant to programs produced using a visual
programming language.

Delphi 1 has a Port command that provides access to the input and
output ports. Unfortunately, this facility is not included in the later versions
of Delphi, although the in-line assembler provides a reasonably
straightforward means of accessing ports.

No version of Visual BASIC has INP and OUT instructions, or any
equivalent to them. However, these instructions or something similar
can be added using an ActiveX control or a dynamic link library (DLL)
file. Inpout32 is probably the easiest add-on that provides this facility,
and it is free.

Using a visual programming language such as Visual BASIC it is easy to
produce neat user interfaces that have control buttons, digital readouts,
menus, etc. The basic screen layout can be produced without resorting
to any programming, and changes are easily made.

You still need some programming skills in order to use a Visual
programming language. Having produced the screen layout, none of
the buttons, labels, menus, etc., will do anything until you write the code
that makes them work. Fortunately, you do not have to be an expert
programmer in order to produce the software for most PC add-ons.

Using the basic drawing tools of Visual BASIC it is easy to produce pseudo
analogue displays such as bargraphs and panel meters. These are
preferable to digital readouts in certain applications. In particular, they
are better where readirgs will be changing quite rapidly, which tends to
give confusing resuits using a digital readout.

7 Windows programming

There are at least a few alternatives to Visual BASIC if you require a
BASIC programming language for use with Windows. These are mostly
traditional BASIC languages that should appeal to those who do not like
the visual approach to programming.

Direct port access is not permitted with Windows XP, or with the Windows
NT4 and Windows 2000 operating systems. There are ploys that can be
used in an attempt to make Windows XP work with programs that access
the ports. However, programs are unlikely to work with this operating
system, or with Windows NT4 and 2000, unless ports are accessed via
the operating system.

Programs should work with Windows XP if they use built-in facilities of
the programming language that do things via the approved channels.
Alternatively, there are various types of add-on avaitable that permit the
ports to be accessed when using Windows NT4, 2000, and XP.
Unfortunately, these add-ons tend to be far less straightforward in use
than Inpout32.

eSS

Index Index
Symbols B

16-bit bus 20 Dbargraph 233
16550 160 BASIC 29
32-bit 10 baudrate 144
6402 146 BBC BASIC 294
6522 60 BCD 204
6N139 186 BHE 21
74** 39 bidirectional 80, 142
74LS** 39 bidirectional operation 109
745138 52 Dbinary 199
74LS244 58 binary counter 150
74L8273 58 BIOS 9, 89
80386 10 BIOS Setup 111
80486 10 bits 202
8086 9 Dbitwise 96, 208
8088 9 blanking plates 27
82** 45 board 4
8255 60 border style 252
A BorderColor 269
ADC 17 gLeﬁae‘:smard 98
AD 00844 67 bus timing 38
adding {(port) 167 puses 3
address 6, 16 Littons 263
address bus 14 ,
address checking 33 byte e cat2
address decoder 16,39 C

address range 8, 33, 40 C-R network 106
AGP 2 C-Rtiming 171
ALE 16 C++ 225
amps 19 cable length 142
analogue 200 Caption 251
analogue converter 58 card 4, 24
analogue display 269 cases 4
analogue input 172 CCE 283
AND 47 Centronics 43
ASCII 156 channel 70
assembler 29, 236 circuit board 5
assembly language 29, 235 circuit symbols 50
ATPC 10 clock 9, 17
ATX 193 clock signal 120
auto-sizing 252 clone 18
ax register 237

Index

CMOS 39
co-ordinate 174, 271
Code window 228
compatibility 299
compiled 30
compiling 248
component 250
component palette 289
conflicts 168
connector 4, 12, 82
control bus 16
Control Panel 188, 297
control register 63
Control-Break 123
conversion 120, 172, 207
conversion time 72
coping saw 28
counter 150
CTS 154
D

D connector 82
D type flip/flop 58
DACK 17
data bus 14, 59
data latch 103
data lines 21
DCE 156
decimal 202
decoder 6, 16
decoding 37
delay 122
Delphi 31, 226
Delphi 2 ‘235
design example 67
device drivers 187
digit 202
digital readout 250
digital to analogue 58
dimensions 24
DIN 182
direct memory access 16

direction control
disabling ports
disc

DLL file

DMA

DOS extender
doubie-insulation
double-sided
drive current
drivers

DTE

DTR

dx register

E

echoes

ECP mode
edge connector
EISA

End Sub

EPP mode
EPROM

error trapping
events

EXE

exit

expansion bus
expansion card
expansion slot
extended memory

F

feedback
File menu
FillColor
FillStyle
fixing bracket
flag

flipMiop
floppy disc
font

form

Format menu

114
297

242
16, 17
15
183

186

28
156
154
236

113
6, 12
1
245
mn
81

234
240
123

47
133

21

178
269

27
171

251
241, 289
276

FOR...NEXT
frequency

Full Compile
full-length card
full-scale

G

game port

gates

graphics adapter
grid

guide-rails

GW BASIC

H

handshake
handshake line
hardware conflict
heatsink
hexadecimal
history

hum loop

|

I/O ports
ICL7660
impedance

INP

Inpout32

input modes
input port
input/output
input/output map
integrated circuit
integrated sound
interpreted
interrupt
interrupts
interval

inverter

inverters
inverting

IOR

122

248
24
180

171
47
17

272
27

66, 114

168
196

183

180
115
242

70

16

31

7, 39
171
30
161
17

47
255
16, 23

IOW
IRQ
ISA

J
joystick port
jumper

K
keyboard
keyboard port

L

label

laptop

latch
latching
LED

Liberty BASIC
line

line drivers
line receiver
line status
linearity
logic state
loop

LPT1

M

mapping
mask
MAX202

MCA
measurement
MEM
memory
MEMR
MEMW
microprocessor
MIDI

MIDiI file

MIDI Out
MIDI port

]

index

16, 23

17,

167

2, 11,37

122,

171

193

250
115
102

179

270
157
158
164
172

37
212

31

158
1
172
21
21
16
16

187
191
182

index

MIDI settings
MIDI Thru
modem
modem control
modem status
modes
motherboard
mounting bracket
MPU-401
MS-DOS
MSComm
multi-function
multi-way
multimedia
multiplexing

N

NAND

negative supply
nibble

noise

NOR
numbering

(o]

octal

old buses
operating system
opto-isolator

OR

Order options
ouTt

out of sync
overloading

P
paddle

palette

parallel

parity checking
Pascal

PC basics

PCI

188
184

164
165
62

27
189
136
239

188
80, 93

49
19, 180

183
51
205

102
10

180

49

275

30, 122, 242
124

18

171
289

147
227

PCI compatibility
PEEK

peripheral circuit
plug

Plug and Play
POKE

Port command
potentiometer
power

power supply
preset resistor
printed circuit
printer port
Private
programming
Propertes window

proprietary card
protection circuit
prototype card
prototyping board
PS/2 mouse
pulse

Q
QBASIC
quad buffer

R

RAM
re-mapping
read cycle
read operation
readout
receiver
reference
reference voltage
REFRESH
register

relay

RESET
resistance

178

85

42

82

135

85

229

17

17, 191
18

175

5

43, 79
245

28, 225
137, 242,
289

5

24

33

4

167

119

88

137
38
213
250
148
118
71
21
45

23
172

RS232C
RTS
runtime module

S
sample-and-hold
sampling

Save

SBHE

scale

scaling

Schmitt trigger
Schottky rectifier
scrolibar

Send to Back
Send to Front
serial

serial ADC

serial port
settings (MIDI)
Setup program
shape

shift register
shortcuts

signed binary
single-chip

slot

software handshake
software loop
sound system
soundcard

speed

SPP mode
stabilised

Stack

standalone program
standard

Standard EXE
step-up regulator
STICK function

stop bit

string variable

236, 244,

141
154
248

102

292

21
270
247

196
291
276
276
116
117
141
188

270
129
258
203

156
212
171
171
142
111

19
237
248
111
240
194
176
147

stripboard
strobe
structure
subroutine
supplies
switch box
switch mode
symbols
synchronous
synthesiser
system clock

T

text size

Thru socket
timer

timing diagram
TLC5491P
transition
transmission rate
transmitter
transparent
trigger/inverter
tristate

tristate buffer
truth table

TTL levels
turbo

Turbo Pascal

U

UART
UCN5818AF
usB

USB power
User Form
user port

\'}
variable
vB5 CCE
VBA
Visible

232,

287
263

Index

Visual BASIC 239
Visual programming 227
volt 19
voltage 71, 172
voltage reference 118
voltage-to-resistance 179
V to R conversion 179
w

Windows 225
Windows XP 295
word 202
word control 162
word format 145
write cycle 39
X

XOFF 156
XON 156
XOR 51
XT 10
Z

280 14, 60
Zip file 239

&

ot omputer Books

~ » Easy PC interfacing
i

1 A PC is normally the first choice of scientific, educa-
-— il tional, industrial and hobby users who require a com-
puter to control or monitor external equipment.

PCs can interface to external devices via many different
routes. One of these is by utilising the standard ISA
expansion slots, a method that is only really suitable for
advanced users. However, options more suitable for
beginners are available that use the paralle! and serial
pofts. All three methods of interfacing are covered in
some detail. The use of MIDI and games ports for inter-
facing is also considered.

-
'.

’l
'l

Once connected the PC and external device have to be
able to communicate, but getting signals in and out of PC
ports is not nomally a mainstream aspect of programming.
Therefore, the author covers the necessary techniques
using Visual programming languages such as Visual BASIC
and Delphi. It is then relatively easy to produce attractive
and effective user-interfaces complete with virtual control
panels, meters, etc.

This book contains everything that you are likely to need to
know about the practical interfacing of electronic devices
to PCs.

Beginners Intermediate W@ Advanced

N\
-BP'523

00799>

| |-99

