» PC Interfacing |
using USB

!-

PC Interfacing
using USB

BP523
BP531
BP534
BPS541
BP542
BP549
BP556

Jther Titles of Interest

Easy PC Interfacing

Easy PC Upgrading

Build Your Own PC

Boost Your PC's Performance

Easy PC Case Modding

Easy PC Wi-Fi Networking

How to Transfer Computer Data and Settings

PC Interfacing
using USB

Peter Bates

Bernard Babani (publishing) Ltd
The Grampians

Shepherds Bush Road

London W6 7NF

England
www.babanibooks.com

% BROZ%F (v3 Ol
D04 - b

Please note

Although every care has been taken with the production of this book to
ensure that any projects, designs, modifications, and/or programs, etc.,
contained herewith, operate in a correct and safe manner and also that
any components specified are normally available in Great Britain, the
Publisher and Author do not accept responsibility in any way for the
failure (including fault in design) of any projects, design, modification, or
program to work correctly or to cause damage to any equipment that it
may be connected to or used in conjunction with, or in respect of any
other damage or injury that may be caused, nor do the Publishers
accept responsibility in any way for the failure to obtain specified
components.

Notice is also given that if any equipment that is still under warranty is
modified in any way or used or connected with home-built equipment
then that warranty may be void.

Important note

Due to processes used in preparing and printing this book, the accuracy
of the PCB track layout dimensions cannot be guaranteed. A graticule is
provided by the drawings to help in this matter.

© 2003 BERNARD BABANI (publishing) LTD

First Published — May 2003
Reprinted — March 2005

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 85934 535 1

Cover Design by Gregor Arthur
Printed and bound in Great Britain by Cox & Wyman Ltd

Preface

Interfacing to PCs has been around for many years but to many people
it is still a mystery as to how data can be transmitted to and from a PC
and the outside world. This book has been designed for both the
beginner and the expert fo interfacing. The only prerequisite is a
reasonable knowledge of Visual Basic, though to some extent an ability
to write very simple Visual Basic programs may be adequate if the user
is proficient in the knowledge of other computer programs.

The book is built around an interfacing module that is connected ta the
USB port of a PC. This means that there is no delving around inside the
PC which has prevented many beginners even embarking on interfacing
in the past. Some background to the USB standard is presented and
also details are introduced as to how the USB interface module is
programmed.

in the past the normal method of interfacing was to use the Intel 8255A
Programmable Peripheral interface and to many of those experienced in
interfacing this has become the standard approach to the tasx. interface
cards being produced at the current time use the same mode of
programming so that it seemed natural to transfer those programming
techniques over to the USB interface module. This will enable experts to
quickly grasp how to program the USB interface module and provide the
beginner with all the rudiments of interfacing to be able to gc off and do
their projects as quickly as possible.

Once the fundamentals of getting data in and out of the USB interface
module have been dealt with, the book then looks at five different areas
of use for it. Each of these areas has an interface board to accompany it

and full constructional details are provided including details of the pcb,
the components required and any necessary calibration details.

Ideally the reader should move through the book sequentially
performing all the programs but once chapters 1 to 3 have been read, it
is possible to dip into any of the remaining chapters in any order. The
purpose of the book is to stimulate an interest in interfacing and
studying the programs will help most users to understand the principles
that are being presented.

Once all the fundamentals have been leamt both beginners and experts
will be able to use stepper motors, DACs and ADCs in a variety of
projects. The important point always to observe is to save your program
before running it. This will prevent a vast amount of frustration and you
will always be in a position to correct the odd typo which so often creeps
into a program.

| should like to take this opportunity to thank my former colleagues Eric
Webster and Maurice Rhodes, both recently retired, for their
contributions to all our knowledge about interfacing. Also to the
technical support of Alan Kent, Helen Poulton, Barbara Ridding and
Rick Collins from the Department of Physics, Astronomy and
Mathematics of the University of Central Lancashire for their assistance
in maintaining the PCs, making pcbs, soldering components and testing
circuit boards and generally being very nice to everyone when things
have not been going well.

In addition | must acknowledge Margaret and Victoria who have both
been extremely tolerant of my enthusiasm for PC interfacing which has
developed over many years and has gone through many highs and
lows. | believe that this book illustrates one of the highs.

Peter Bates

About the Author

Peter Bates is currently the Course Leader of the MSc in PC Interfacing
in the Department of Physics, Astronomy and Mathematics at the
University of Central Lancashire, Preston, UK. He is a physics graduate
who went on to obtain a PhD in solid-state physics from Bangor
University and in over 30 years he has taught physics, solid-state
physics and microcomputer interfacing at all levels from A-level through
to postgraduate. His interest in electronics developed as a consequence
of being asked to teach the subject in 1974 when he was appointed to
the Department of Physics at Preston Polytechnic.

Peter's expertise in interfacing sensors, transducers and instruments to
computers was the foundation of the MSc in PC Interfacing in which he
is responsible for teaching fundamental interfacing and virtual
instrumentation using Microsoft Visual Basic and National Instruments
LabVIEW.

His hobbies are quite diverse ranging from hi-fi and music to CIY and
gardening.

Trademarks

Microsoft, Windows, Windows, XP, Windows 2000, Windows Me,
Windows 98 and Windows 95 are either registered trademarks or
trademarks of Microsoft Corporation.

All other brand and product names used in this book are recognised
trademarks, or registered trademarks of their respective companies.
There is no intent to use any trademarks generically and readers should
investigate ownership of a trademark before using it for any purpose.

Contents

1

What is USB? ... |

2

The Universal Serial BUSccooceeierieiiriniereeieeeeenereeeeceevenenes 1
USB fEAUMNES ... oeeeieeeeeeeeeeeeeeeesesnivesteseeearesseseesararanearesess 1
USB connectors and cablesccoeviermiiiiieieiciceenieneneenne 2
USB data communiCatioNcvueeiiiiririerieirieereeerereeneeees 3
Putting it all together ... 5
Types of data........cccooveeeeiiniii s 5
ISOCAIONOUSvveeeeeeeieeeeeeeeeeeeeeeervssnaesaerarasseseeserasessesanarees 6
INEEITUPL. ... 6
BUIK . .oeeeee e eeeeeeeeee e e e eeeeeteereeeaeee assaassasnensasesaseeeaeseraerersnannnenes 6
SUMMATY ..ooivi et e s et 6
REFEIENECES ... oeeeeeeieeeeeeeeeeeeetreres e e e s e s e s e eeeeeeeearaeeeenbenanasaee 7

USB I/0 24 Module............ o

USB AEVICES ..o eeeeeeeeeeseesvsesessasasasasaeeeens 9
THE FTBUZ4S.........oooeeeeeeeeeeeeeeeeeesevreee s e ereeee s e s renes s sneneens 9
The USBI/QO 24 medule..........coooeeieeieeiieeeer e eeeenes 10
The USB 1/0 24 madule Connectors............cccocvveeeeeeenencnne 12
The USB I/0 24 madule Command Protocol...................... 14
Using USB I/0 24 Command Protocols.............c.cccocoeeeeee. 15
How Mode 0 of the 8255A is programmed...............cceueee. 16
Why use the 8255A settings?............ccocevminiiniccnnniinnene 18
The 8255A regiSterscoccvrveeveiicniiinnrieees e 18
THE CONFOl LINES ...eeeeeeeeeeeeeeeeeercee e eeeeeneree s ererevan e een e 19
Connections to the USB 1/0 24 module..........cccccccceveenenns 20

SUMMANY ..ottt asnees 23

3

Programming the Module...... 2
The case for the USB I/0 24 Module...............cooveevvven. 25
The FT8U245 driVersc.ooooveveeeeeeeeeeeeeeeeeeeeeeens 25
How to set up the FTDI D2XX Drivers...........ccccovvvenenn...... 26
The role of the DLLcoooeieeeeeeeeeeeeeeeeee e 27
Visual Basic COde.............ooeeieeeeeeeee oo 29
Declarationscoueeiieeiiieeeeeee e 30
RAAPrOgc.cooiiiii et 31
WIEPIOG ...ttt 34
PORtOUL.......ceeeeeeeeeeeee e 35
PORIN. ... 39
SUMMANY.......oiiiiee e 40

4

Digital Input/Output.... . “

Using the USB I/O 24 module....................ccorveveeeerernn. 41
Interface Boards.............c...ooooeeimiiiieeieeeeeeeeeeeeeeeea 41
The User Port Testerboard................ccooooveeeenoeenen. 42
Creating a User Port Tester Input Formcooveo........ 43
The Declarations...............cco.ooievivieeeeeeeeeeee e 43
THE FOM ...t 44
The Command buttonccoovviiirecie e 45
The Userin program...............ccoeueeeeeeeeeeeeeeeeeeeeeeeensnon 47
Running the Userin program...............cccccoevevvreeenennnn. 47
EXErCiS@ 4.1ooomieeieieeeeeeeeeeeeeeeeee e 48
Creating a User Port Tester Output Form........................... 48
The Declarations...............oc.oeeeuieiiieieeeeereeeeeeeeeeeeeeeeenn 49
TRE FOM ..o 49
The Scroll bar.............ccooeiiieeieceeeeeeeee e 50
The Userout program............cco.ooeeeeeeevieieeeiieeerereeeeeenn 50

Running the Userout programcccoccoveveneevenennn.. 51

EXEICIS@ 4.2......c.oooeeeeeeeeeeeceeieeisresesssesseenseseeasenessn e nssnen 51

Stepper Motors ... 53

Stepper motor applicationsccecevvnniiinneiniiciennnen. 53
What is a stepper motor?...........cccccererricninincniciieininninnens 53
The Stepper Boardcccoeviviireniieinrcee e 55
Determining the stepper motor codeccoevmereennnn. 56
Declarations.............ccceeueeercrncieen et 57
Command button - Send............ccccceeeeniniiiniins 57
THE FOMN ... et 58
SCIOI DAoeeeiieieeeeieeccireereree et are e e naes 58
Steptest.vbp Project...........ccccoociniininini 59
Using the Steptest program............cccoceviinennninniennienen 59
Variable speed stepper motorc.cccoccivviininnininnnnns 59
ThE FOMM ..ottt srn e s ave e eaes 60
ThE COAE ...ttt 60
Declarations..........cccooeieireiiieeieceee et 60
THE FOMMN ..t erre e sva e 61
The SCroll Barcooceeeeeeiieeeeeeceee e eeeaere s 61
THE THMIEE ..ottt re e rer e s s s s ssrabeas 62
The Stepper routine ..., 62
The SteP.VDPoceeeeeeeeceeeeteteececcirc e 63
Running the program.............cccccmiiinnenninenie e 63
EXEICISE 5 ... oo eee vt creae e ssne e s e 64
SUMMANY ..ceoeeecrriecrcretrrt ettt ss e sae e e 64

Digital to Analogue Conversionc..cccceeercerienncrcnns 65
Theory of the R-2R ladder DACcccoevimieiiiinininnne 65
Unipolar and Bipolarccccooreiiiiniiinccncienne 66

I

Using the 8DAC board................c.ocvvevveeeeevieceeeeeeeeeen, 67

Configuring the portc.ccoouiiiieiiceee e, 68
Features of the 8DAC board...............cccoeveeeeeeeeeerannnn, 68
TRE Programcco.eeceeeieieeeiee et eeseeeases 69
TRE FOM ...t 69
THE COE ... 70
The Option BURONScooveieeeeeeeeeeeeeeeee e eeeeee 70
The Scroll Bar ..o 70
TRE FOMM .. 71
The Display Procedure...............cc..oooviieeioneeeeeeeeeeeeeen, 71
Command buttoncoooooivmiiinieeeeeeeeeeeeeen, 72
Declarations..............ccooeimeiioeieeiecee e, 73
Compileting the programccooovivveeveeneeeeeeenn, 73
Running the programccccooueeeeiereeeeeneeeeeeeeeenn 74
EXErCIS@ 6onieeeeieeeceeeee e 74
SUMMANY ..ottt 75

8-bit ADC ... o 7

8-bit Analogue to Digital Converter................cccocoovvvenn..... 77
Unipolar and Bipolar.................cooivveneeeeeeeee e, 77
Theory of Operation................cccoo.oeveimeeeeeeeeeeeeeeeeen, 79
The BADC b0@rd............cooooevieeeeeeneeeeeee e, 80
Use of the BADC board.................cooeeevemeeeeeeeeeeeeeeeen 81
Programc.cocoovoeeeieeeecece e, 82
Inserting Code...........ocooevimiiiiieeeeecceeeeee e, 83
TR FOMM .o 83
The Option Button..................coooeviiieineeieeeeeeeeeeeen 83
The Timer Control................ovveveeeeeeeeeeeeeeeeeeeeeeen 83
The Command Buttons...................cooooeveeemeereeeeeeeen 84
Declarations..............cccooeeiieieeiieiieeeeeeeeeeeeeeeeee e 85
The Proceduresc.ooueeeieeeeneeeeeeeeeeeeeeeeeeeeeeeeeseenen 85
EQUIPMENL..... ..o e s 88
Running the programcccooueeiieeenneeeeeeeeeeeenn. 88
EXEICIS 7 ...t 88

8
12-bit ADC .o 03

12-bit Analogue to Digital Conversioncccceueeeeene. 93
12ADC resolution..............cccvvereeeecorriiiiine e 93
Theory of Operation of the dual ramp integrating ADC94
Dual Ramp Integrating Analogue to Digital Conversion97
Method of obtaining the data ..., 98
Programc.cooeieeciinceceiieninis it e 99
InSerting Codeoccoeveieeriiiiiie e 100
THE FOIM c..coeceeeee ettt sttt e 101
The Option BUttonS.........c.ccooeiiviniciciiin e 101
The Timer Control.........cooviviivicecicriciiie e, 102
The Command BUtONS............ccccoenireviiiiniiiiiiirieees 102
Declarations...........ccccvvirerivericiieeeeree et 103
The Procedurescceoveevieeeeeeeieeniieenieeneeece e 104
EQUIPMENE......c.oooeiecc et 107
Running the program............ccccviiiiiiininnnineninni e 107
EXErcise 8.1ooe it s 108
Small signal measurement - Using the VGPA board 108
Making connections to the VGPA board........................... 109
Selecting the gaincc.cccceciviiiiiiininiie e 109
EXErCiSE 8.2.........vveeiie ettt 110
SUMMANY .ottt e s e 110
=== -

Appendix ... 111

The Interface Boardsccoooooveeuieeieiviviiie e eeeenns 111
A1 The User Port Tester........c.ccooieeiiiiiiinieeiiiieieis ceveeennn. 112
AT A CIICUIL ..ot eeeeeeeeee et e rrevevaaes e 112
A1.2 The Printed Circuit Boardsc.cccceveeviieieciinnenes 113
A1.3 COMPONENES.........eeecceereaniiiiiiiiiiiie e 1156
A2 The Stepper Motor board............ccoeoieviiniiiiiininan 117

A2.1The CirCUitcceereeeeeeeeeeeeeeeeeeeeeeeer e 117
A2.2 The Printed Circuit Boardsc.cooeevevveeevrenen. 118
A2.3 COMPONENLES ..o 120
A3 The 8DAC board.............cocooeeeeeeeeeeeeeeeeeeeeeeeeeean 122
A3 1 TRE CIFCUIt ... e, 122
A3.2 The Printed Circuit Boardscccoovoovveverenennn, 124
A3.3COMPONENEScooveeieiceieieeeeeeeeeeeeeeeeeeeeere e 125
A3.4 Calibration of the 8DAC boardcooevveevenenn. 128
A3.5 Application of the 8DAC board.............c.coeeennn....... 130
A6 REFEreNCeSoceviveeeeeeeeeeeeeeeeeeeeee e, 130
A4 The BADC board..............ccooeeveoeeeereeeeeeeeeeeeeeeeeeen, 132
Ad 1 TRECITCUIL ... 132
A4.2 The Printed Circuit Boardscocvevveeveeeennn. 134
A4.3 COMPONENLES ... 136
A4 .4 Calibration of the BADC boardcc.occvveevene.... 138
AQBERef€rence.........c..c.ooveeieeeeeeeeeeeeeeeeeeeeeee 139
A5 The 12ADC board.............coooeeemeeeeeeeeeeeeeeeeeeeeeeen, 140
A5 1 TRhE CIFCUILc.eoieiee e 140
A5.2 The Printed Circuit Boardscoooveeveeveeen.n, 141
AB.3 COMPONENESoceviveeeeeeeeee e, 143
A5.4 Calibration of the 12ADC boardcooevvnnen.... 146
ABEReference............c.oooveiieeimeeeeeeeeeeeeeeeeeeeeee 147
A6 The VGPA DOArdccoooveeeeeeeeeeeeeeeeeeeeeeen 148
A6.1 Making connections to the VGPA board 148
AB.2The CIFCUItc.oeeveieeeieeeeeeeeee e, 149
AB.3 The Printed Circuit Boardscccoovevvvvenvennn.. 151
AB.4 COMPONENESc.oovenieriieeeeeeeeeeeeeeeee e 153
AB.5 Calibration of the VGPAcooeoveeeeeceeaenn, 155
AB.B REfErencesccoo.eeeeeeeeeeeeeeeeeeeeeeeeeeee 156
AT SUPPIETS.....oerieieieeeiceee e, 157
BIibliOGraphy ..o 159

What is USB?

The Universal Serial Bus

The Universal Serial Bus (USB) is an interfacing bus that is now
becoming standard on all types of PC. It was introduced by Microsoft in
Windows 98 and has subsequently been supported in Windows 2000,
XP and ME but not in Windows NT. Its popularity has increased
because of the relative ease with which it can be used and the range of
hardware devices which incorporate it. These include printers,
scanners, digital cameras, mice, keyboards, joysticks, etc. It is
extremely popular with laptops because of the small size of its sockets
and it is becoming common on desktop PCs as well. It is not beyond the
realms of possibility that USB could easily replace the RS232 interface
as the preferred serial interface.

USB features

USB is a serial data transmission system in which the data stream is
time-shared. This means that all the devices, i.e. mice, keyboard,
printers, etc., connected to the PC are polled regularly at 1ms intervals
by the PC and in its 1ms time interval the device can place data on to
the bus. Each device has a unique address allocated by the PC and up
to 127 devices can be connected to the USB at any one time.

The speed of data transmission is dependent upon the version of USB
being used. The latest version USB2.0 has a speed of 460Mbits/s whilst
the older version USB1.1 supports two speeds 12Mbit/s and 1.5Mbits/s.
In the latter case the two speeds can co-exist together on the same wire
and the speed is determined in the hardware of the device. USB2.0
interfaces fitted to PCs can support devices using USB1.1 but it is
questionable whether USB2.0 devices can be used with USB1.1 PC
interfaces.

1

1___Whatis USB?

USB connectors and cables

The USB interface inside a PC is made up of a USB controller which is
a set of chips that provide the interface between the hardware and the
applications software resident in the PC. Within the PC is a host hub to
which all the devices connected to the USB system connect. A PC
normally has at least two connectors mounted on its case which
connect to this host hub and users can then purchase further hubs
which can provide additional ports for up to 127 devices.

The cables, made up of 4 conductors, are used to connect devices to
these hubs. Two types of USB connectors are used; Type A and Type B
and these are illustrated in Figure 1.1.

Type A Type B

Figure 1.1 USB connectors

Normally a Type A socket is fitted to a PC and a device has a Type B.
The connectors are different to indicate the normal flow of
communication which may either be upstream or downstream.

Two of the four conductors in the cable are differential data lines and
the other two are 5V and GND. Figure 1.2 shows the configuration of
the cable.

A feature of the USB plugs is that pins 1 and 4, the supply lines, are
slightly longer than the data lines. This means that when the plug is
inserted into the socket, the supply is connected before the data. This
not only reduces the risk of damage due to electrostatic charge but
provides the USB feature of being able to connect and disconnect
devices without having to power down the PC. The purpose of the
supply lines is to provide power for the USB devices which are

2

What is USB? 1

connected to the bus but in the main this is limited to them drawing no
more than 450mA. In most cases the device, e.g. printer, will need to be
provided with its own power supply.

1 o v
2 &—D-
3 &—D+
4 o

1

Figure 1.2 USB cable configuration

The two data lines, D+ and D-, are used to send either data or
commands. A 1 bit is sent when D+ is high and D- is low and a 0 bit
when D-is high and D+ is iow.

USB data communication

USB devices contain a CPU, i.e. a microprocessor, a microcontroller,
etc., which is used to control the communication process. Each device
has a number of buffers which are used to store data prior to
transmission to the PC or to store data received from the PC. These are
referred to as IN and OUT endpoints and a device can have up to a
maximum of 16 of each.

The device's CPU pre- and post-processing ability provides the flexibility
and standardisation of the USB system. Essentially it is an extension of
the PC's BIOS and it is possible to plug a USB mouse or keyboard into
a PC and for it to start immediately using the generic data held within
the PC. There is no need to load specialised drivers which cause so
many problems in installing software on a PC. It must be stated that with
specialised devices, drivers are necessary and these are providec in an
INF file which is normally loaded in response to the Plug 'n Play
Wizard.

The IN endpoint of a device is the buffer into which data obtained from
the device itself is placed and the OUT endpoint is the buffer in which
data from the PC is placed so that it can be accessed by the device.

-3

1

What is USB?

Figure 1.3 (based upon a diagram by J Hyde (1999)) is a schematic of
how the endpoints interface to the PC via the device drivers.

Application program

I/0 manager Host
Device driver PC

[+}]

2 é

(3] -—

© 1/0 device g

e Configuration 5
(&)

Interface
IN ouT Control
EndPoint EndPoint EndPoint

L Ll
Outside World

Figure 1.3 USB interface model

The device also has the control endpoint which is bi-directional and is
used to identify the device, discover its capabilities and also control it.
When the USB device is attached, a conversation takes place on the
control endpoint so that the device can be integrated into the operating
environment of the PC. This enumeration involves pre-formatted
standard USB requests and these have to be provided in software
design.

It will be seen from Figure 1.3 that communication between the device
and the PC takes place using pipes. These pipes are implemented in
the USB cable by using different types of packets of data. it is the
application program which opens devices and the operating system that
implements the low-level communication to the device. From the device
point of view, data arrives from the PC into the OUT endpoint and the
supplied data from the device is put into the IN endpoint.

What is USB?

Putting it all together

When a USB device is plugged into a port there is a voltage change on
one of the two data lines. If D+ goes high the device is a high speed
device, i.e. printer, scanner, etc., and the data that is transmitted within
the 1ms packets is sent at 12Mbit/s. If D— goes high the device is a low-
speed device, i.e. keyboard, mouse, etc., and the data is transmitted at
1.5Mbit/s.

A polling signal is then sent to the device requesting it to identify itself.
The device responds with its own product and vendor Ids, i.e. the PID
and VID. Windows then searches its directories for the correct driver for
the device and if one cannot be found it requests one to be loaded.
Once the driver is loaded the application programme then proceeds.
The ability to connect and disconnect a USB device without switching
off the PC is a distinct advantage when developing interfacing software
as it often enables the interface to clear any corrupted settings very
quickly and easily.

The device is now part of the USB system with the PC being the master
and the device being a slave.The PC polls devices to issue commands,
request whether the device is ready to send or receive data and to be
apportioned a time slice so that the device can transmit data upstream
to the PC at regular time intervals.

The PC's messages consist of three packets: a token packet, a data
packet and a handshaking packet. The token packet contains an
address and since the message is sent to all devices on the bus it is
only the device whose address matches the token's address that will
respond to it. The device then can send its data when the PC gives its
permission.

Types of data

There are three types of data transfer between the PC and USB device
and these are assigned priorities according to certain criteria.

1

What is USB?

Isochronous

This is real-time data transfer and has the highest priority. It is the
transfer of a large amount of data where there can be no interruptions
and there is no error checking provided. It is used for video and sound
data which require large data transfers and can absorb some data loss.

Interrupt

This is used for keyboards, mice and joysticks which are low-speed data
devices.They generate occasional interrupts and then transmit small
amounts of data quickly. The priority is not as high as isochronous.

Bulk

This is used for the transfer of a large amount of data when speed is not
of importance. It has low priority and is used for printers, scanners and
digital cameras.

There is a fourth data transfer mode which is called Control transfer. All
USB devices support it and it has high priority and has error checking
built in. It is used to provide initialisation information but there are
occasions when it can be used for low-speed data transfer.

Summary

USB is a data transfer standard which enables a range of different
devices to be attached to and removed from a PC without switching it
off. Data is transferred to the PC in 1ms frames at speeds of 1.5Mbit/s,
12Mbit/s and even 460Mbit/s in the latest USB2.0 version. A well-
defined set of protocols are used for data transfer and with the aid of
external hubs it is possible to connect up to 127 devices to a USB port.

The prospects of using USB to interface suitable devices capable of
being used in instrumentation could be beneficial, as it would enable
devices to be portable between PCs without having to provide plug-in
cards. In addition it could also be extremely cost effective as most PCs
are supplied with USB ports built in.

What is USB? 1

References |
J Hyde, USB Design by Example, (1999) J Wiley, New York

T Wong, ‘Understanding USB’ (November 1999), Electronics World

E Insam, ‘USB made easy’ (February 2002), Electronics World

http://www.usb.org - web site of the USB organisation

|~l

2
USB 1/0 24 Module

USB devices

USB devices have become very popular with PC users as they can be
easily connected and disconnected from the PC whilst it is still switched
on. Consequently printers, scanners, cameras and even measuring
instruments are being provided with USB interfaces. The wajor
handicap to those of us who wish to develop instrumentation or simply
to experiment with USB has been the complexity and cost of the
electronics required to enable USB signals to be either generated or
captured.

This problem has now been surmounted with the appearance of several
ICs with the capabilities of coping with the USB protocols in a similar
manner to the UARTs that are used with RS232. UARTs (Universal
Asynchronous Receiver Transmitter devices) can convert the serial
RS232 signal into 8-bit parallel and vice versa and also deal with the
handshaking requirements of the RS232 standard. A typical example of
such a USB integrated circuit is the FT8U245 manufactured by Future
Technology Devices Intemnational (FTD!) of Glasgow, Scotland.

The FT8U245

The FT8U245 is capable of sending and receiving USB data at up to
1MByte/s. The 8-bit parallel output/input port is connected to a 384-byte
FIFO transmit buffer/128-byte FIFO receive buffer (Figure 2.1).

All the USB protocols are handled within the integrated circuit so that
the user does not have to become involved in any complex
programming to pass data to and from the device. In fact FTDI provide a
USB driver for the system which ensures that the user can interact with
the device with relative ease. The 8-bit /O port of the FT8U245 is
designed to be interfaced to any microcontroller using either the

2___USB /O 24 Module

memory /0O map of the microcontroller using DMA, or by controlling the
110 ports.

The device has many commercial applications ranging from USB ISDN
and ADSL modems to high-speed USB instrumentation.

vee

33V out v FIFO Receive
+«—— wo Bufter
Reguistor 128 bytes [¢—> DO
Controer [+—> D1
1 re—> D2
re—» D3
UsB oP e Seril Use N
usaom | T g Engioe Cartroler | > D¢
*-—> 0y
l T R
FIFO Tranen®t e
USB OPLL 3317.#‘ —> TXE#
[|- EEREQS
-— —L E
XT out > EECS
e X8 Clock Massg::: EEPROM | EEsx
XTin Oscltistor Mulipher B iy .
pa J
Figure 2.1 FT8U245 Block Diagram (Simplified)
The USB I/O 24 module

The 8-bit 1/0 of the FT8U245 has limitations as far as the experimenter
is concerned because there are many sensors and transducers which
require control line facilities over and above the 8 data lines and these
are not easy to implement with handshaking lines that are more suited
for use with a microcontroller. The obvious answer is to use a
microcontroller, but once again that can cause problems with
experimenters who may not wish to learn to program microcontroliers or
who have not got access to the equipment necessary to perform such
tasks. Fortunately Ravar Pty Ltd of Queensland, Australia produce a
USB 24-line general-purpose Input Output module based upon the FTDI
FT8U245 IC.

USB /O 24 Module

The USB /0 24 module (Figure 2.2) has 24 independently
programmable 1/O pins in three groups of 8.

Figure 2.2 The USB /0O 24 module

The module is based on the FTDI FT8U245 USB IC and a UNICOM
SAC48 microcontroller and is capable of transfer rates up to 250,000 8-
bit port reads or writes per second. A Virtual COM Port Driver is
available for a range of cperating systems, so that the device can be
accessed as a normal serial port which can be programmed in any of
the popular programming languages. This means that when the module
is connected to the USB port of the PC it is automatically reccgnised
and will accordingly appear in the COM secticn of the Device Manager
of Windows when Windows 98, 2000, ME or XP is used.

The module is USB1.1 Specification compliant and the USB VID, PID,
Serial Number and Product is recognised and displayed. The on-board
EEPROM and FLASH Microcontroller can be re-programmed according
to whatever the user may require but in most cases the provided
firmware data is more than satisfactory.

Each I/0 pin can be configured individually as an input or output. An
input pin is TTL level compatible and an output pin can sink or source
up to 30mA. The device is connected to the USB port of the PC using a
suitable cable. This normally has a Type A USB connector to the PC

2

USB I/O 24 Module

and a Type B to the module. The module is powered from the USB with
up to 450mA available current. This means that the USB 1/0 24 Module
can be used in a range of user applications without the need of an
external power supply to drive peripherals.

The USB /O 24 module Connectors

The USB 1/0 24 module has its 24 1/0 pins distributed into three eight-
pin ports A, B and C. Each port has two additional pins which are used
for +5V and a ground. The description for the ten p ns in each port is
shown in Table 2.1.

Pin Signal Description

1 +5V USB bus supply

2 1108 Programmable /O pin with bit value of 128
3 1107 Programmable I/0 pin with bit value of 64
4 1106 Programmable 1/O pin with bit value of 32
5 1105 Programmable I/O pin with bit value of 16
6 1104 Programmable 1/O pin with bit value of 8
7 1103 Programmable 1/O pin with bit value of 4
8 1102 Programmable 1/O pin with bit value of 2
9 1101 Programmable 1/O pin with bit value of 1
10 GND USB bus and /0O ground

Table 2.1 Description of USB 1/0 24 Port Connector

The pins are distributed in each port according to Figure 2.3. and Figure
2.4 shows the three ports arranged on the USB 24 1/0 module.

Pin 1 +5V
Pin 3 I/O7
Pin 5 I/OS
Pin 7 1/03
Pin 9 I/O1

USB end

ONONONOX®)
OO00O0O0

I/O 8 Pin 2
I/O 6 Pin 4
[/O 4 Pin 6
I/0 2 Pin 8
GND Pin 10

Figure 2.3 USB I/0 24 Port Connector pin configuration

USB

oo
o o
0 o |PortC
o0
oo
oo
o o
o ol (PortB
oo
oo
oo
o0
I Port A
oo
o0

Figure 2.4 USB 1/0 24 port layout

13

USB /O 24 Module

The USB /O 24 module Command Protocol

The USB I/0 24 module has a set of commands which enable the
individual ports to be configured as either inputs or outputs. In addition
data can be read from or written to each of the ports. There is also a
command that can be used to identify the device which is connected to
the USB port. These commands are summarised in Table 2.2.

Command Data Function

? Transmits ‘ISB 1/0 24’ | Identify Device

1A 1 byte port I/O data Write to Port A
direction register

B 1 byte port I/0 data Write to Port B
direction register

IC 1 byte port I/O data Write to Port C
direction register

A Port A data Write to Port A
B Port B data Write to Port B
C Port C data Write to Port C
a Port A data Read to Port A
b Port B data Read to Port B
c Port C data Read to Port C

Table 2.2 USB I/0 24 commands

Before the ports can be used they must be initially configured either as
an output or as an input.

The syntax to set port A as an output is :
Portl/Ostring = "IA"+Chr$(0)

Port A is set as an input with the following statement:
Portl/Ostring = "A"+Chr$(255)

USB /O 24 Mcdule

In both of these examples all Port A pins are set in the same direction.
In many applications it is possible to have a mix of pins being both
inputs and outputs:

Portl/OString = "lA"+Chr$(&02)

This sets pin 2 as an output and all other pins as inputs.

The task of reading Port A is achieved using:
DataString = "a"
and to write data to Port A the following statement is used:
DataString = "A"+Chr$(128).

In the former case, data is placed into the variable Datastring. In the
latter case Pin 8 is set high and all other pins are low.

The examples given above can also be performed for ports B and C.

Using USB /O 24 Command Protocols

The USB I/0 24 module is very versatile with its 24 I/O pins and to
some extent that is its major downfall especially for beginners to
interfacing. There is almost an infinite number of ways in which the
module can be used and it is difficult to decide how to begin and to
ensure success. To the experienced user who can draw upcn the
techniques and programs used with other types of interface cards and
modules used with the PC there are certain rules which have aided
them in the past. In general these are:

1. Configure the interface card for input or output
2. Read from or write to the interface

Close examination of devices attached to other commercial interface
cards reveal that in many cases 8 data lines and 2 control lines will
suffice to create reliable operation. With 24 I/0 lines it would appear that
two such devices could be supported. '

In fact 24 1/0 lines divided into 3 ports is almost an industry standard

2

and can be traced back to the Intel 8255A Programmable Peripheral ™

2

B /O 24 Module

Interface (PPI). The PPl was used as the parallel I/O device with Intel
microprocessors used in the original IBM PCs.

The feature of the 8255A was that it could be programmed to operate in
three distinct modes. Two of the modes, 1 and 2, involved complex
handshaking processes but Mode 0 was very similar to the USB 1/0 24
module with 24 lines which could be configured as inputs or outputs
divided into three ports A, B and C. The method of programming the
8255A in Mode O will aid us in programming the USB 1/0 24 module.

How Mode 0 of the 8255A is programmed

Mode 0 of the 8255A takes the 24 I/0 lines and divides them into two
groups A and B. Group A consists of all the lines of Port A plus the four
upper lines of Port C (i.e. 1/08, 1/07, 1/06 and 1/05 of Port C). Group B
consists of all the lines of Port B plus the four lower lines of Port C (i.e.
1104, 1103, 1102 and 1/01 of Port C). Figure 2.5 illustrates this distribution
of /O lines.

Group A Group B

Port A Port C (Upper) Port B Port C (Lower)
O1-8 I05-8 /1O 1-8 o1-4

Figure 2.5 Distribution of 8255A /0 lines for Mode 0 operation

In many applications Ports A and B will be used for data and the upper
and lower groupings of Port C can be used for control lines.
Programming is then further simplified by each of the sub-groups shown
in Figure 2.5 being configured as inputs or outputs. This alleviates the
problem of programming each /O line individually and Chapter 3 will
show the advantages of programming the groups of 1/0 lines.
Programming the 8255A involved configuring the device with an 8-bit
control word. Each bit of the control word has a significance which is
shown in Figure 2.6.

USB /O 24 Module 2

Control word
oo [|0 | o | & | Do | B | o
Mode Mode PortA | Pot C | Mode Port A Pot C
set flag selection (Upper) selection (Lower)
1=Active | 00=Mode0 1=ip | 1=ip =Mode0 | 1=ilp 1=ilp
01=Mode1 0=0/p =0/p 1=Mode1 0=o0/p 0=o0/p
1X=Mode2
Group A Group B

Figure 2.6 8255A mode definition format
Inserting the Mode 0 settings simpilifies the control word (Figure 2.7)

Control word

1(0(0 D4 Dj; 0 Dy Do
Port A Port C Port B Port C
(Upper) (Lower)
1=i/p 1=ilp 1=i/p 1=ilp
0=0/p 0=o/p 0=o0/p 0=0/p

Figure 2.7 8255A mode 0 control word

Port A, Port B and the two parts of Port C can now be set as inputs or
outputs simply by setting the bits D4, D3, D1 and Do. These settings are
then added to the setting bit D7 which is already set to 1. This means
adding decimal 128 to those other bits in the control word which are
required to set the Port direction.

The net result is shown in Table 2.3 which indicates the control word
codes required to configure the 8255A for Mode 0 operation.

2___USB /O 24 Module

Port A PortC PortB PortC Code
(Upper) (Lower) {decimal)
Output Output Output Output 128
Output Output Output Input 129
Output Output Input Output 130
Output Output Input Input 131
Output Input Output Output 136
Output Input Output Input 137
Output Input Input Output 138
Output Input Input Input 139
Input Output Output Output 144
Input Output Output Input 145
Input Output Input Output 146
Input Output Input Input 147
Input Input Output Output 152
Input Input Output Input 153
Input Input Input Output 154
Input Input Input Input 155

Table 2.3 8255A control word Mode 0 seftings

Why use the 8255A settings?

The peculiar code settings are initially strange to the beginner but
reference to Table 2.3 becomes second nature and ensures reliable
programming of the chip in the future. In addition commercial 24-line
digital 1/0 boards used with the ISA and PCI slots in PCs are often
based upon the 8255A or its derivatives so that any programs written for
one system should be portable to any of the other systems. Also if a
suitable library program is written, either in C or Visual Basic, the task of
programming the interface board becomes fairly easy. This is the task
that will be tackled in Chapter 3 when the code settings are applied to
the USB 1/0 24 module.

The 8255A registers

There are four registers in the 8255A which are used to hold Port A,
Port B, Port C and the Control Register data. Each of these registers
can be addressed provided the base address of the 8255A device is
known. Usually the 8255A sits on a card which is plugged into the 1/0

USB /O 24 Module

slot of the PC and the registers are allocated addresses from the PC's
memory. In the case of the USB I/O 24 module mimicking the 8255A,
the base address of the registers can be taken as 0. This means that
the registers and the Ports, etc., have the following address allocations
and functions.

Address Register Function Lines

0 Port A i/lp / olp data PAOQ - PA7

1 PortB i/p / o/p data PBO - PB7

2 Port C Control lines CA1,CA2,CB1,CB2
3 Control Control register

Table 2.4 Port and register addresses

The Control Lines

Port C has been divided into upper and lower sub-groups which can be
programmed as inputs or outputs. Examination of applications of 8255A
interface boards reveal that one line from the upper group and one line
from the lower group are assigned to Port A and a similar arrangement
is found for Port B. Table 2.5 shows a typical arrangement.

High Low
7 6 5 4 3 2 1 0
CB2 | CA2 CB1 cAa1

Table 2.5 Arrangement of Port C

it can be seen that the upper sub-group contributes bit 4 as control line
CA2 and the lower sub-group contributes bit 0 as CA1 to Port A.
Similarly Port B gets bits 5 and 1 as CB2 and CB1 respectively. Table
2.6 shows both the binary and hexadecimal code required to have all
possible combinations of these four control lines providing output
signals.

B l/ Module

Binary Hex | Decimal | CB2 CA2 cB1 CA1

Pattern
00000000 | 00 0 OFF OFF OFF OFF
0000 0001 01 1 OFF OFF OFF ON
0000 0010 | 02 2 OFF OFF ON OFF
0000 0011 03 3 OFF OFF ON ON
0001 0000 10 16 OFF ON OFF OFF
0001 0001 11 17 OFF ON OFF ON
0001 0010 12 18 OFF ON ON OFF
0001 0011 13 19 OFF ON ON ON

00100000 | 20 32 ON OFF OFF OFF
0010 0001 21 33 ON OFF OFF ON
00100010 | 22 34 ON OFF ON OFF
0010 0011 23 35 ON OFF ON ON
00110000 | 30 48 ON ON OFF OFF
0011 0001 31 49 ON ON OFF ON
0011 0010 | 32 50 ON ON ON OFF
0011 0011 33 51 ON ON ON ON

Table 2.6 Control line settings (Outputs)

Connections to the USB I/O 24 module

The net result of considering all these aspects of using the 8255A PPl is
that the 24 lines of the USB I/O 24 module can be divided into 8 data
lines of Port A with 2 control lines CA1 and CA2 and 8 data lines of Port
B with 2 control lines CB1 and CB2. Associated with these pairings will
be a +5V supply line and a GND line making 12 lines associated with
Port A and 12 lines associated with Port B. These lines are to be
connected to the different interface boards used in the following
chapters and Figure 2.8 shows the wiring hamess that is required for
the purpose with the connections shown in Tables 2.7 and 2.8.

The 20-way IDC sockets (RS 192-7388) provide the Ports A and B

connections and the 10-way header sockets (RS 360-6220) are used to
connect the USB /O 24 module. (All sockets are viewed from the rear.)

USB I/O 24 Module 2

20-way IDC 10-way header
Pin Function Header Pin
2 CA1 C1 9
4 CA2 C5 5
6 PAO A1 9
8 PA1 A2 8
10 PA2 A3 7
12 PA3 A4 6
14 PA4 A5 5
16 PA5 A6 4
18 PA6 A7 3
20 PA7 A8 2
1 +5V +5V 1
19 oV ov 10
Table 2.7 Port A connections
20-way IDC 10-way header
Pin Function Header Pin
2 CB1 C2 8
4 CB2 C6 4
6 PBO B1 9
8 PB1 B2 8
10 PB2 B3 7
12 PB3 B4 6
14 PB4 B5 5
16 PB5 B6 4
18 PB6 B7 3
20 PB7 B8 2
1 +5V +5V 1
19 oV oV 10

Table 2.8 Port B connections

/10 24 Module

S S| rrov
ye 88 35| R oy
€l 6V | O o o | PB2OV
S o PBlOV
) ¢ S & | PAo oV
Pin1 d o 5 CB2 +5V
+w« WM G CB1 +5V Pin 1
B5 B4 |O T
B3 B2 |O O n_U
Bl ov |[O7T O PA7 OV
© O | pa6 OV
© O | pas ov
Pin 1 S 9| pasov
5V A8 | OO o o| PA3OV
A7 A6 | OO S o| PA2OV
A3 A2 | OO _ S o| PA0OV
Q| CAl1+5VPinl
1]

Figure 2.8 Method of wiring the USB 1/0 24 module for use with the interface boards

USB /O 24 Module

Summary

The USB I/0 24 module is designed to enable digital input/output
signals to be interfaced to the USB port of a PC. The interface cards
that can be used with ISA and PCI slots of PCs are based upon the Intel
8255A PPI and it is possible to configure the USB 1/0 24 module to
mimic this device. This means that programs already written for the
8255A will be compatible with the USB I/O 24 module and, provided a
suitable cable hamess is used, it is possible for interface boards
developed for the 8255A to be used with the USB /0 24 module.

The next stage of the process is to write a universal Visual Basic
module that can store the library of calls that will achieve these tasks.

2 ___USB /O 24 Module

3

Programming the Module

The case for the USB 1/0 24 Module

The USB I/0 24 module can be programmed either with serial device
commands or by using a DLL which enables function calls to be nmade
to it. Basically the mode of interface interaction is the same but with the
serial method it is the user who has to ensure that all the correct
protocol steps are made whilst with the DLL method the steps are
contained within the DLL. In addition the serial communication rate is
115,200 Baud which means that the possibility of a communication
breakdown occurring is very real so that for most applications the serial
method is far from ideal. Using the DLL approach ensures a more
reliable communication path.

The FT8U245 drivers

The USB I/0 24 module is driven by the FT8U245 IC and it is necessary
to install its drivers on the PC. These drivers are obtainable from the
FTDI website (http://www.ftdichip.com/support.htm). The drivers should
be downloaded to a folder on the PC and then urzipped. When the USB
I/0 24 module is plugged into the USB port the PC checks for suitable
drivers and if none exist it will prompt the user to load the crivers. It is
then a question of following the instructions that appear on the screen.

The instructions for installing drivers under Windows 98 differ from
those for Windows 2000 and XP. Full Appiication Notes for the
installation process can be downloaded from the FTDI web site. The two
fles that are loaded are a Windows Device Manager driver,
FTD2XX.SYS and an Applications Software Interface, FTD2XX.DLL.
Figure 3.1 indicates the driver architecture.

3 Programming the Module

Application
USB driver Software
Visual Basic

uss Windows Windows Applications
physical uss Device Manager software
layer interface Driver interface

Figure 3.1 The FTDI D2XX Driver Architecture

These drivers can be used in conjunction with a range of different
programming applications including Visual Basic, Visual C++, Delphi,
etc. In addition to the FT8U245 IC the drivers can be used with the
FT8U232 IC which is designed to convert USB signals to serial and vice
versa. A comprehensive programmer's guide (FTD2XX Direct Driver
Programmer's Guide, 27" July 2001) is available from the FTDI web
site. This will assist experienced programmers to produce extremely
complex programs using the USB I/O 24 module.

How to set up the FTDI D2XX Drivers

The two drivers that have been installed on your PC are not normally
loaded unless the USB 1/0 24 module is connected to the USB port.
When the module is connected the arrow cursor will change to the egg-
timer whilst the drivers are loaded and then revert back to the arrow
after a short time. When the module is disconnected a simitar process
will take place.

Once the module is connected and the drivers are loaded, the FTDI
FT8U2XX device is recognised in the USB controllers of the Device
Manager of the PC. (Figure 3.2)

The Device Manager is accessed from Control Panel / System. It is
possible to access the properties of the device by right-clicking on the
mouse and checking that the driver is loaded and operational.

Programming the Module 3

j System Propeitie

1

‘y Communicaticns Port (COM2)
L. Printer Port (L>T1)

System devices
Universal Serial Bus controllers
i—- Intel 82371AB/EB PCl to USB Universal Host Controller
USB Root Hub

.2
23]
&
&
&
%
B
=

Figure 3.2 Device Manager Properties

The role of the DLL

A DLL is a Dynamic Linked Library. It is a file that contains functions or
routines which a program can call upon whenever they are needed.
Many applications programs, i.e. C, Basic, etc., use mathematical
functions such as sin, cos, etc., which are built into the software. In the
case of Visual Basic the mathematical function arcsin is not a
recognised function and it 1s necessary for the user to write a little
routine to calculate arcsin. Often the function is written in Visual Basic
but it not unusual to write it in a language, e.g. C, which accepts
mathematical manipulation more easily. This C program can then be
compiled as a DLL which can be then called by the Visual Basic

3 Programming the Module

program. The feature of the DLL is that it is not loaded until it is required
thus saving a great deal of memory space.

A driver DLL contains functions which enable a program to access a
particular device which in the case of the FTD2XX.DLL is the USB 110
24 module connected to the USB port. A feature of a function is that
there are a number of parameters which are required within the function
itself. It is important that the parameters are in the correct format
otherwise an error will occur which could cause the PC to crash. This is
one reason to ensure that whenever DLLs are being developed the
program is saved before running or otherwise valuable work can be
easily lost.

In order to ensure that the parameters passed to and from the DLL are
correctly formatted, they have to be declared and this has to be done in
a formal way. The Visual Basic code below illustrates this quite clearly:

Public Declare Function FT_Open Lib "FTD2XX.DLL" (ByVal
intDeviceNumber As Integer, ByRef IngHandle As Long) As Long

Public indicates that the function will be accessible from all parts of the
Visual Basic project and the Function is FT_Open which is stored within
the FTD2XX.DLL file. The two parameters that are being passed are
quite different in their nature. The Device Number (intDeviceNumber) is
an integer between —32768 and +32767 whose value is being passed to
the function. The IngHandle is the port that is being opened for the
device and ByRef indicates that it is the address of where that handle
exists which is being passed to the function. Long indicates that the
address lies between —214748348 and +2147483547. The As Long
following the brackets indicates the number which is returned when the
function is completed. Often either 1 or 0 is returned to indicate whether
the function has completed its task successfully or not, though there are
cases when a more meaningful number is returned.

Programming the Module 3

Visual Basic code

It is assumed that the reader has some knowledge of Visual Basic and
will not be too daunted by the next few sections.

A Visual Basic project consists of Forms and Modules. Forms are the
visual parts that appear whenever the project runs and the module is
similar to a BASIC program even to the extent of having a .bas
extension. In the following chapters on interfacing you will find that the
Forms are tailored to the devices that are being considered wrie a
module, io_usb.bas will keep on appearing throughout the project.
io_usb.bas is a module which contains all of the information which is
required to communicate with the USB 1/0 24 module.
In essence io_usb.bas contains the following parts:

1. Declarations

2. A read device routine (Readprog)

3. A write device routine (Writeprog)

4. Data transfer out (PortOut)

5. Data transfer in (Portin)
Parts 1, 2 and 3 are Visual Basic code supplied by FTDI with some
modifications, and would appear in any Visual Basic software developed
for the FTDI FT8U245 IC. Parts 4 and 5 have been developed
specifically for the USB 1/O 24 module to mimic the 8255A PPI
discussed in the previous chapter.
The next task is to type in the relevant code into the module io_usb.bas.
This must be done carefully to avoid any errors otherwise it will be
necessary to spend time debugging the code. All of this code is required
and it cannot be tested until a suitable Form is produced. Type in each
of the sections and ensure that you save at the end of each section. To
make the task easier, each section will be introduced by a short
explanation of what the code is doing.

Programming the Module

Declarations

The first part of the Declarations involves declaring the four functions
that are going to be used from the FTD2XXX.DLL. There are several
other functions contained in this file which we will not need to use.

The first two declarations are concerned with opening and closing the
port. The parameters being passed have already been explained.

The FT_Read and FT_Write functions are very similar with the
appropriate port handle being selected, buffers for use of the variable
being required and the size of the buffers being declared. The only
difference is the addresses from where data is to be read and to where
data is to be written.

‘Declare FTD2XX functions

Public Declare Function FT_Open Lib "FTD2XX.DLL" (ByVal
intDeviceNumber As Integer, ByRef IngHandle As Long) As Long

Public Declare Function FT_Close Lib "FTD2XX.DLL" (ByVal IngHandle
As Long) As Long

Public Declare Function FT_Read Lib "FTD2XX.DLL" (ByVal IngHandle
As Long, ByVal IpszBuffer As String, ByVal IngBufferSize As Long,
ByRef IngBytesReturmed As Long) As Long

Public Declare Function FT_Write Lib "FTD2XX.DLL" (ByVal IngHandle
As Long, ByVal IpszBuffer As String, ByVal IngBufferSize As Long,
ByRef IngBytesWritten As Long} As Long

There are a number of constants that are required in FTD2XX.DLL
which have specific values and these are declared in the next section.

Programming the Module 3

' Return codes

Const FT_OK=0

Const FT_INVALID_HANDLE = 1

Const FT_DEVICE_NOT_FOUND =2

Const FT_DEVICE_NOT_OPENED =3
Const FT_IC_ERROR = 4

Const FT_INSUFFICIENT_RESOURCES =5

The final part of the Declarations involves declaring a variable a$ which
is to be used throughout the project, so that it is made Public and will
reside in the io_usb.bas module.

' Declare variable
Public a$

Readprog

This is rather an involved section as it necessitates writing to the port
with certain information and then reading the response. Surrounding
these two processes the USB port is opened and closed.

Initially the parameters required by the four functions in the DLL are
declared.

‘Read port routine

Public Sub Readprog()

Dim IngHardle As Long

Dim strWriteBuffer As String * 256
Dim IngBytesWritten As Long

Dim strReadBuffer As String * 256

Programming the Module

Dim IngBytesRead As Long

Dim IngTotalBytesRead As Long
Dim strLoggerBuffer As String
Dim fIFailed As Boolean

Dim fiTimedout As Boolean

Dim fiFatalError As Boolean
Dim ftStatus As Long

The next section opens the device and checks whether the step has
been successful. The variables that are to be written to the device are
then loaded prior to being written to the device. This is then followed by
another error checking process.

‘Open device

If FT_Open(0, IngHandle) <> FT_OK Then
Exit Sub

End If

‘Load write variables
strWriteBuffer = (a$)
IngBytesWritten = 0

‘Write output

If FT_Write{IngHandle, strWriteBuffer, Len(strWriteBuffer),
IngBytesWritten) <> FT_OK Then

xit = FT_Close(IngHandle)
Exit Sub
End If

Programming the Module

The read process is preceded by the setting of a number of variables
prior to the actual process itself. it will be seen that the read is encased
in a Do....While loop which, coupled with error checking, ensures that
all the data to be read is accumulated. The read data is placed ir the
variable a$.

'Load read variables
fiTimedout = False

fIFatalError = False

IngTotalBytesRead = 0
IngBytesRead = 0
readsize = 1

IngTotalBytesRead = 0

Do

IngBytesRead = 0

‘Read input

fiStatus = FT_Read(IngHandle, strReadBuffer, readsize -

IngTotalBytesRead, IngBytesRead)

‘Check for success of read
If (ftStatus = FT_OK) Or (ftStatus = FT_IO_ERROR) Then
If IngBytesRead > 0 Ther:

strLoggerBuffer = strLoggerBuffer + Left(strReadBuffer,
ingBytesRead)

ingTotalBytesRead = IngTotalBytesRead + IngBytesRead
Else

fiTimedout = True

33

3

Programming the Module

34

End If
Else

fIFataiError = True
End If

Loop Until (IngTotalBytesRead = readsize) Or (fiTimedout = True) Or
(fIFatalError = True)

‘Display input data or reason for failure

If (iTimedout = False) And (fIFatalError = False) Then
a$ = Asc((strReadBuffer))

End If B

To complete the Readprog routine the device is closed.

'‘Close device
xit = FT_Close(lngHandle)
End Sub

Writeprog

The features of the Writeprog have already been described above. The
device is opened, the variable is written to the device and the device is
then closed. At each stage the process is checked for success.

‘Write port routine

Public Sub Writeprog()

‘Open device

If FT_Open(0, IngHandle) <> FT_OK Then
Exit Sub

End if

'Load write variables

strWriteBuffer = (a$)

Programming the Module 3

IngBytesWritten = 0

"Wirite output

If FT_Write(iIngHandle, strWriteBuffer, Len(strWriteBuffer),
IngBytesWritten) <> FT_OK Then

xit = FT_Close(IngHandle}
Exit Sub
End If

'Close device
xit = FT_Close(IngHandle)

End Sub

PortOut

It can be seen from the Readprog and Writeprog routines that a number
of parameters are required for the Read and Write functions. This can
be reduced by producing specific functions which only contain the
essential information.

The syntax required for using PortOut is:

PortC=PortOut(Reg,0UT%)

As the USB 1/0 24 module is mimicking the 8255A PPI, Reg refers to
the Port address that is to be used and OUT% is data between 0 and
255 that is to be transmitted. A Case structure is used to make the
programming as compact as possible. Case 0, 1 and 2 refer to data
being transmitted out of Ports A, B and C respectively.

3 __Programming the Module

‘Writing data function
Public Function PortOut(Reg, OUT%)
‘Output data

Select Case Reg

‘Port A

Case 0

a$ ="A" + Chr$(OUT%)
Writeprog

'‘Port B

Case 1

a$ = "B" + Chr$(OUT%)
Writeprog

‘Port C

Case 2

a$ ="C" + Chr$(OUT%)
Writeprog

In Case 3 Reg is accessing the Control Register which is used to
determine the direction of data flow. OUT% now refers to the Code
column of Table 2.3.

If the Outputs are replaced by logic 0 and the Inputs by logic 1, Table
2.3 can be converted into Table 3.1.

Programming the Module 3

Active | Port A Port C PortB | PortC Code
(Upper) (Lower) | (decimal)
|_Weighting 128 16 8 2 1 Total
1 0 0 0 0 128
1 0 0 0 1 129
1 0 0 1 0 130
1 0 0 1 1 131
1 0 1 0 0 136
1 0 1 0 1 137
1 0 1 1 0 138
1 0 1 1 1 139
1 1 0 0 0 144
1 1 0 0 1 145
1 1 0 1 0 145
1 1 0 1 1 147
1 1 1 0 0 152
1 1 1 0 1 153
1 1 1 1 0 154
1 1 1 1 1 155

Table 3.1 8255A control word code settings

The settings of Port A, Port B, Port C(Hi) and Port C (Lo) will produce a

decimal code after taking into account the weightings of each column.

The code has to initially take the decimal code and create the binary

equivalent.

Case 3

'‘Control Register - set Ports A, B & C directions (use register codes)

Dim M(8) As Integer

z% = OUT%

'‘Convert OUT% into binary format
Fori=0To 7

x% = Int(z% / 2)

M(i) = (z% - 2 * x%)

z% = x%

Next

Programming the Module

38

Bits 4 and 1 store the direction of Port A and B respectively.

‘Set Port A direction
If M(4) = 0 Then

a$ ="IA" + Chr$(0)
Else

a$ ="IA" + Chr$(255)
End If

Writeprog

‘Set Port B direction
If M(1) = 0 Then

a$ = "IB" + Chr$(0)
Else

a$ = "IB" + Chr$(255)
End If

Writeprog

Bits 3 and 0 hold the states of the Upper and Lower parts of Port C
which must be concatenated to create the Port C direction.

‘Allocate Port C(Hi) direction
if M(3) = 0 Then

w% =0

Else

w% = 240

End If

‘Allocate Port C(Lo) direction

Programming the Module

3

if M(0) = 0 Then

w% =0 + w%

Else

w% =15 + w%

End if

'Set Port C direction
a$ ="IC" + Chr$(w%)
Wiriteprog

End Select

End Function

Portin

The Portin function is used to read data in from a particular Port of the
USB 1/0 24 module. The syntax is:

inp% = Portin (Reg)

Reg is the Port address that is being accessed and inp% is the data
between 0 and 255 which is being returned. Again a Case structure is
used with Case equalling 0, 1 and 2 corresponding to Ports A, B and C,
and the result being placed into inp%

‘Reading data function

Public Function Portin(Reg) As Variant
‘Input data

Select Case Reg

‘Port A

Case 0

a$="a"

Readprog

Case 1

3 Programming the Module

a$ ="b"
Readprog
Case 2

a$="c"
Readprog

End Select
'Get data

Portin = Val(a$)
inp% = Portin
End Function

Summary

The io_usb.bas file is used in all of the Visual Basic projects that are
going to be produced in future chapters. It provides all the reference
material that is needed to write and read data to and from the USB I/O
24 module.

The relevant functions to be called from FTD2XX.DLL are initially
declared. The writing and reading to the device has been shown clearly
in all its code and finally two user-friendly read and write functions have
been introduced.

The code that you have written is involved, and typing mistakes are
easy to make. The next stage is to write a simple project to use
io_usb.bas and to rectify any errors before using it in more complex
circumstances.

IS

4

Digital Input/Output

Using the USB 1/O 24 module

The next phase in the development of the use of the USB 1/0 24 module
is to check that it works. This will involve using an interface board called
the User Port Tester which will monitor the state of the two Ports A and
B plus their associated control lines. Two programs will then be
developed. One will check the output capabilities of the module and the
other the input. These two programs are important since they will
always come in useful later to check that the system is working. In any
interface situation there are several items that have to work, i.e. the
interface module, the interface board, the connecting cable and the
software. Any one of these items may have a fault and it is aways
useful to revert back to well-tried and tested equipment and software.

Interface Boards

The programs used in the subsequent chapters use interface boards
which are connected to the USB I/0O 24 module. Details of the interface
boards can be found in the Appendix. Each interface board has a 20-
way IDC ribbon cable connector plug which connects to the ribbon cable
from the USB 1/O 24 module.

The interface boards are:
i. User Port Tester — a board to monitor input and output data of
the USB 1/0 24 module.
ii. Stepper - a board to vary the speed of a stepper motor.

iii. 8DAC - an 8-bit digital to analogue converter which is
capable of producing voltage outputs in the ranges 0 to +5.10V
and -2.56V to +2.54V.

4 Digital Input/Output

iv. BADC - an 8-bit successive approximation analogue to digital
converter which can convert voltage inputs of between 0 and
+5.10V with a resolution of 2mV and between -5.12 and
+5.10V with a resolution of 4mV

V. 12ADC - a 12-bit dual ramp integrating analogue to digital
converter which can convert voltages between —4.095V and
+4.095V with a resolution of 1mV. Using an instrumentation
pre-amplifier it is possibie to obtain additional resolutions of
11V, 10uV and 100pV.

The Appendix provides details of each board, the PCB design, a
component overlay and a list of components required to make up the
board. The boards can be assembled by any person who has some
knowledge of electronic circuit construction.

If it is not possible to use the interface boards, the reader should find
sufficient detail in the programs such that the techniques can be used in
other applications.

The User Port Tester board

This is a board which can be connected to either Port A or Port B plus
the appropriate parts of Port C of the USB I/0 24 module. it is used to
test input and output programs of the USB I/0 24 module card. The
states of the data lines connected to the computer are set by the USB
I/0 24 module and are indicated by a 10 LED bar display (Figure 4.1).
In order to understand how the USB I/0 24 module can be used, its
operation will be introduced by referring to examples written in Visual
Basic. Data can be transmitted to and from the User Port Tester board
using the Visual Basic functions PortOut and Portin that have been
introduced in Chapter 3.

A program to achieve this requires the following steps:

1) Initialisation - set up the USB I/0 24 module ports as inputs or
outputs

2) Read or write data through the desired ports A, B or C.

Digital Input/Output 4

=

Figure 4.1 The User Port Tester board

Tester

Creating a User Port Tester Input Form

This program produces a User Port Tester Input Form to read data fed
from the User Port Tester board to the USB I/O 24 module connected to
the PC.

On the Visual Basic Form, input data is plotted on a graph in a Picture
Box. The Form should have the layout shown in Figure 4.2. and
consists of one Label Box Data Recorded, one Text box and a
Command Button. The lower part of the Form contains a Picture Box
with two Label boxes (Voltage and Time) placed as shown.

The Caption on the Form is Input.
The code associated with the various items is listed below.

The Declarations

This assigns the addresses to the Ports A, B and C and also the control
register. To make the program as versatile as possible the addresses of
the registers are referenced to REGA. This means that should the
program be used in the future with a commercial /O plug-in card, only
the base address of Port A will need to be altered.

The Declarations also make the control register variable out% Private.

Figure 4.2 Layout of the User Port Tester Input Form

‘Declare parameters
Const REGA =0

Const REGB = REGA + 1
Const REGC = REGA + 2
Const CREG = REGA + 3

Private out%

The Form

This configures the USB I/0 24 module and initialises the input Text
boxes.

Private Sub Form_Load()
‘Assign control register code
out% = 155

‘Configure port as input

“_

Digital Input/Output 4

PortO = PortOut(CREG, out%)
‘Display input value
Text1.Text=""

End Sub

The function which accesses the DLL to output data to the USB 1/0 24
module is:

PortO = PortOut(CREG, out%)

This feeds the data out% to the register address CREG. The dummy
return value, 1, is assigned to the variable PortO which is never used.
out% must have a value assigned to it before the procedure is called.

The Command button

The function of the Command Button is to initiate the input of data from
the User Port Tester board and plot it on the Picture Box. Whilst the
data is being plotted the caption on the button changes from Start to
Plotting. Initially the axes are drawn bearing in mind that the origin (0,0)
is at the top left-hand comner of the Picture Box.

Once the plotting starts, the DoEvents() statement is required to break
in and stop the program. The function of this statement is to revert the
program to the Windows operating system and initiate an interrupt
process. 200 data points are plotted.

Private Sub Command1_Click()
‘Change Start button To Ploiting
Command1.Caption = "Plotting"
‘Clear picture box

Picture1.Cls

'Calibrate picture box
Picture1.Scale (-50, -50)-(250, 300)

s

4 Digital Input/Output

‘Draw horizontal axis
Picture1.Line (0, 255)-(200, 255)
‘Draw vertical axis
Picture1.Line (0, 0)-(0, 255)
‘Goto origin
Picture1.PSet (0, 255)
'Plot 200 points
For1=1 To 200
‘Read Port
inp% = Portin(REGA)

| 'Redirect to operating system
t = DoEvents()
'Display input readings
Text1.Text = INP%
'Plot input readings
Picture1.Line -(l, 255 - INP%)
'‘Delay
Forn =1 To 1000000
Next n
Next |
‘Start button reverts to stop status
Command1.Caption = "Start"
End Sub

The other BASIC command which accesses the DLL is:

inp%=Portin(REGA)

46

Digital Input/Output _ 4

This reads register REGA and the returned value is assigned to the
variable inp%.

The Userin program

Form1 is saved as userin.frm and the io_usb.bas module should be
added to the project. Check in the project window that this has been
done. The files should be as shown in Table 4.1.

Project Project1 (userin.vbp)
Form Form1 (userin.frm)
module module1 (io_usb.bas)

Table 4.1 The userin.vbp project files

Running the Userin program

When the program is run Form1 will appear. Pressing the Start button
will initiate the plotting routine. The switches on the User Port Tester
board can be changed and the input to the USB 1/0 24 module board
monitored both on the graph and in the Data Recorded text box. Figure
4.4 shows a typical set of results. The rate of data acquisition is
dependent upon the delay and this can be varied by the Forn =1 To
1000000 statement in the above program.

Figure 4.4. Userin.vbp in operation

4 __ Digital Input/Output

Exercise 4.1

411 Check that the program works and then rem out the
statement t=DoEvents() in the Command button
procedure.

Does the program always now respond to a Break key
press?

Creating a User Port Tester Output Form

This program produces a User Port Tester Output Form to feed data out
from the PC into the USB I/0O 24 module.

Data is generated using a Scroll Bar on the Visual Basic Form. The Max
value in the Properties Windows of the Scroll bar is set to 255 (Figure
4.5).

Figure 4.5 The Scroll bar Property Window

The Form should have the layout shown in Figure 4.6. and consists of
one Label Box (Output Signal), one Text box and a horizontal scroll bar.
The Caption on the Form is Output.

8

Digital Input/Qutput 4

Figure 4.6 Layout of the User Port Tester Output Form

The code associated with the various items is listed below.

The Declarations

This is identical to the Declarations made in the Userin.frm program.

‘Declare parameters
Const REGA =0

Const REGB = REGA + 1
Const REGC = REGA + 2
Const CREG = REGA + 3
Private out%

The Form

This reads the setting of the Scroll bar, configures the USB I/C 24
module and initialises the output Text box.

Private Sub Form_Load()

‘Assign control register code
out% = 128

‘Configure port as output

PortO = PortOut{CREG, out%)
‘Read output value from scroll bar
output% = HScroll1.Value

4

Digital Input/Output

50

'Display output value

Text1.Text = output%

'Send output value to port

PortO = PortOut(REGA, output%)
End Sub

out% is set to a value which is used to configurz Ports A and B as
outputs.

The Scroll bar is then read and its value is then outputted to Port A.

The Scroll bar

This procedure enables the USB 1/0 24 module to output data, which is
displayed on the LEDs on the User Port Tester board. The data is

changed by moving the setting of the scroll bar. This can vary from 0 to
255.

Private Sub HScroll1_Change()
‘Configure port as output

PortO = PortOut(CREG, out%])
'Read output value from scroll bar
output% = HScroll1.Value
'Display output value

Text1.Text = output%

‘Send output value to port

PortO = PortOut(REGA, output%)
End Sub

The Userout program

Form1 should be saved as userout.Frm and the io_usb.bas module
should be added to the project. Check in the project window that this
has been done. The files should be as shown in Table 4.2.

Digital input/Output 4

Project Project1 (userout.vbp)
Form Form1 (userout.frm)
module module1 (io_usb.bas)

Table 4.2 The userout.vbp project files

Running the Userout program

The program will start immediately it is set running. The mouse is used
to move the Scroll bar up and down the scale. The output reading is
displayed in decimal format in the Text box and in binary form on the
User Port Tester LEDs. Figure 4.8 shows the Form when the program is
running.

w Dutput

Figure 4.8 The userout.vbp project running

Exercise 4.2

421 Write a program which sets ports A, B and C as outputs
and operating in a loop causes the lights in the bar code
display to light up in sequence, moving back and forth
across the 10 bars.

Modify the Form to have a bar display which is illuminated
in a similar manner.

422 Extend the above program so that two LEDs light up in
sequence, move in opposite directions across the bar
display from either end and appear to cross over. Again
use all ten LEDs.

Digital Input/Output

Summary

Once you have these two programs running successfully you will have
managed to get data in and out of the USB I/0 24 module. The following
chapters will now utilise these features and they will show you how easy
PC interfacing can be.

5

Stepper Motors

Stepper motor applications

Stepper motors may be used in many applications in the laboratory.
They can be used in situations where accurate positioning is required, in
automatic machinery and robofics, and where there is a requirement for
continuous motion which can be controlled by a computer. Stepper
motors are available with a wide range of power and torque ratings to
suit a number of applications.

What is a stepper motor?

A simple stepper motor can be described as a permanent magnet (the
rotor) which is free to rotate about an axis, and 4 coils located at equal
positions around the rotor. Current can be passed through the coils so
that magnetic fields are created and the rotor attempts to align with
these fields.

The permanent magnet, the variable reluctance stepper motor and
hybrids of the two are more commonly available commercially because
their design enables smaller step angles to be obtained with higher
precision. The Stepper driver board is designed to drive a 4-phase
stepper motor which has 4 coils (i.e. phases) and is the most common
type available. The 4 coils are aligned at 90 degrees to each other and
the direction of the magnetic field produced by each coil alone is shown
in Figure 5.1.

The permanent magnet rotor will line up with the resultant magnetic field
so that as the coils are energised in cyclic order, rotation of the rotor will
be produced. In the full-step mode it is usual to energise 2 adjacent
coils at once since this will produce more torque and power. Thus the
coils are energised in the sequence given in Table 5.1, which rotates
the rotor

_53

5 Stepper Motors

to the positions shown. To produce counter-clockwise rotation the coils
are energised in reverse order.
E o

£
o)
gos

Figure 5.1 Permanent magnet stepper motor

Step No Q1 1Q2 | Q3 | Q4 | Decimal | Fieid direction
1 1 1 0 0 3 ~
2 0 1 1 0 6 X
3 0 0 1 1 12 x
4 1 0 0 1 9 ®

Table 5.1 Full-step mode, order in which coils are energised

In the half-step mode the coils are energised in the sequence which
sweeps the magnetic field and hence the rotor to the positions given in

Table 5.2.
Step No Q1 1Q2 | Q3 | Q4 | Decimal | Field direction
1 1 1 0 0 3 ~
2 0 1 0 0 2 -»>
3 0 1 1 0 6 A
4 0 0 1 0 4 ¥
5 0 0 1 1 12 rs
6 0 0 0 1 8 <
7 1 0 0 1 9 w
8 1 0 0 0 1 4

Table 5.2 Half-step mode, order in which coils are energised

'ﬂ

Stepper Motors 5§

The Stepper Board

The Stepper board is used to directly drive the coils and has been
designed to drive two stepper motors. As the PC cannot provide
sufficient current for the coils of the motor, a laboratory power supply is
used to supply 5V between the supply and ground terminals of the
Stepper board.

Figure 5.2 shows the layout of the Stepper board.

FOVLIOA AlddNS

e

Stepper

P4PIP2PI
STEPPER MOTOR 2

P4P3P2PI
STEPPER MOTOR 1

Figure 5.2 Layout of the Stepper board

Figure 5.3 shows how the board is connected to the PC and to the
stepper motor. A power supply is required to provide sufficient current
for the motor coils, usually between 0.5A and 1.0A. The leads from the
motor are plugged into the stepper board.

Stepper motors are used for many different applications and a good
source of ones suitable for this application is the motor out of an old disc
drive.

5 Stepper Motors

Power Supply
+Q 0.
i
|§ O’ C Stepper Motor
PC
Stepper Board

Figure 5.3 Stepper motor connections to the Stepper board

Determining the stepper motor code

Sometimes the code for a stepper motor is unavailable and it is
necessary to run a short program to find the code and also check the
leads of the motor. Figure 5.4 shows how the leads of a stepper motor

e ; @
e

Q3 COM Q4
! Figure 5.4 Connections to a stepper motor

There are normally six leads from the motor. Two are common and are
connected to ground (0V), the other four are connected to Q1, Q2, Q3
and Q4. These should be connected to P1, P2, P3 and P4 on the
stepper board.

The motor code can be found by applying signals to the motor and
finding which combination will cause the motor to rotate. Using Visual
Basic this can be easily achieved by modifying the userout.vbp project
used in the previous chapter.

Connect up the Stepper board, stepper motor and power supply as
shown in Figure 5.3 and start up userout.vbp.

Stepper Motors

The main modification to the Form is to add a Command button with the
caption Send. Figure 5.5 shows the appearance of the Form.

w Steppes motor lest

Figure 5.5 The stepper motor test Form

The Caption on the Form is changed to Stepper motor test and the Max
property of HScroll1 is changed to 15.

The code required is:

Declarations

This is the declaration of the USB I/O 24 module addresses and the
parameter output% which may be found under Private.

‘Declare parameters
Const REGA =0

Const REGB = REGA + 1
Const REGC = REGA + 2
Const CREG = REGA + 3

Private output%

Command button - Send

Only one value at a time is sent to the USB 1/0 24 module.

Private Sub Command1_Click()
'‘Send output value to port

PortO = PortOut(REGA, output%)
End Sub

57

Stepper Motors

The Form

This is similar to the userout.frm routine.

Private Sub Form_Load()

'Assign control register code
out% = 128

‘Configure port as output

PortO = PortOut{(CREG, out%)
‘Read output value from scroll bar
output% = HScroll1.Value
‘Display output value

Text1.Text = output%

‘Send output value to port

PortO = PortOut(REGA, output%)
End Sub

Scroll bar

Again very similar to the userout.frm but without the transmission of the
data statement.

Private Sub HScroll1_Change()
‘Read output value from scroll bar
output% = HScroll1.Value
‘Display output value

Text1.Text = output%

End Sub

Stepper Motors 5

Steptest.vbp Project

The Form should be saved as steptest.frm, the module io_usb.bas
added and the project saved as steptest.vbp. The files should be as
shown in Table 5.3.

Project Project1 (steptest.vbp)
Form Form1 (steptest.frm)
module module1 (io_usb.bas)

Table 5.3 The steptest.vbp project files

Using the Steptest program

When the program is run the user should send separate values to the
stepper board. A check should be made to see if the rotor of the motor
moves. It should be possible to find a sequence of values which cause
the rotor to rotate smoothly. This code sequence can then be used in
the next experiment.

Variable speed stepper motor

This program is designed to simply start a stepper motor and enable the
user to select a suitable speed of rotation. Initially it is necessary to
configure all of the pins on the USB I/0 24 module to be outputs and
then to write the correct code so that the rotor of the stepper mator is
energised in the appropriate manner. Time has to be allowed for the
rotor to reach its new position so that there have to be suitable time
delays between energising each of the coils - this is achieved using
delay loops.

In the experiment described below, the Stepper is connected to Port A
of the USB 1/0 24 module and the motor is connected to Connection 1
on the Stepper board.

5 Stepper Motors

The Form

Start up Visual Basic and select File and New Project. Place on the
Form a Horizontal Scroll Bar, a Timer and a Text box as shown in

Figure 5.7.
Set the Interval property of Timer1 to 1000.
The Max property of the Horizontal Scroll Bar should be set to 100.

Figure 5.7 Stepper Motor Control Form
Add Labels above the Scroll bar and the Text box and change the
Captions to Speed and %Max respectively. Also change the Caption of
the Form to Stepper Motor Control.

The Code

The basis of the control of the stepper motor is via the Timer1 control.
Each time the Timer1 control is called the stepper motor is permitted to
move. The frequency with which this occurs is controlled by the Timer1
Interval property. It is this property that the user changes with the Scroll
bar.

Declarations
This sets up the USB 1/0 24 module registers.

'‘Declare parameters
Const REGA =0

Const REGB = REGA + 1
Const REGC = REGA + 2
Const CREG = REGA + 3

Stepper Motors 5

The Form

This sets up the variables for the USB /O 24 module, reads the Scroll
bar value and places it in the Text box and switches off Timer1. This
ensures the Stepper routine is not called and the stepper motor does
not move.

Private Sub Form_Load()
‘Display scroll bar setting
Text1.Text = HScroll1.Value
'Switch off Timer1
Timer1.Enabled = False
End Sub

The Scroll Bar

This enables the user to set the speed of the stepper motor. The setting
of the scroll bar is read as a percentage of the maximum speec and
then converted into a value which is placed into the interval property of
Timer1. Timer1 is then enabled so that the Stepper routine is regularly
called

Private Sub HScroll1_Change()

‘Display scroll bar setting

Text1.Text = HScroll1.Value

‘Assign scroll bar setting to variable

scrolltime = HScroll1.Value

‘Determine Timer1 interval setting
Timer1.Interval = (1000 - scrolltime * 1000/ 100) + 1
‘Switch off Timer1 when scroll bar setting is zero
If Timer1.Interval = 1001 Then

Timer1.Enabled = False

Else

Stepper Motors

62

Timer1.Enabled = True
End If
End Sub

The Timer

This calls the Stepper routine at the set intervals.

Private Sub Timer1_Timer()
‘Call stepper routine
Stepper

End Sub

The Stepper routine

Use the Tools/Add Procedure menu to create this routine which will
appear in the General section of the program. Its function is to configure
the USB 1/0 24 module as an output and then output the relevant code
to the coils so that they can be energised in the correct order.

| cregout% = 128

Private Sub Stepper()
‘Assign stepper motor parameters (Insert code for your motor here)
N1=3:N2=6:N3=12:N4=9

‘Assign control register code

‘Configure port as output

PortO = PortOut(CREG, cregout%)
‘Send out stepper motor parameter
PortO = PortOut(REGA, N1)

‘Delay (alter according to PC speed)
For | = 1 To 100000: Next |

Stepper Motors 5

'Send out stepper motor parameter
PortO = PortOut(REGA, N2)

'Delay (alter according to PC speed)
For | =1 To 100000: Next |

'Send out stepper motor parameter
PortO = PortOut(REGA, N3)

'Delay (alter according to PC speed)
For | =1 To 100000: Next |

'Send out stepper motor parameter
PortO = PortOut(REGA, N4)

'Delay (alter according to PC speed)
For | =1 To 100000: Next |
