
im
em

p

41111111111.111

.
,

.

B
abani C

om
utfB

olton

.
P

C
Interfacing

using
U

S
B

...111111111,,

"....111111111/4

P
eter B

ates
-

I

_

-

PC Interfacing

using USB

.ether Titles of Interest

BP523 Easy PC Interfacing

BP531 Easy PC Upgrading

BP534 Build Your Own PC

BP541 Boost Your PC's Performance

BP542 Easy PC Case Modding

BP549 Easy PC Wi-Fi Networking

BP556 How to Transfer Computer Data and Settings

PC Interfacing

using USB

Peter Bates

Bernard Babani (publishing) Ltd
The Grampians
Shepherds Bush Road
Londor W6 7NF
England
www.babanibooks.com

44- Eg °1-4
t)OLI

Please note

Although every care has been taken with the production of this book to
ensure that any projects, designs, modifications, and/or programs, etc.,
contained herewith, operate in a correct and safe manner and also that
any components specified are normally available in Great Britain, the
Publisher and Author do not accept responsibility in any way for the
failure (including fault in design) of any projects, design, modification, or
program to work correctly or to cause damage to any equipment that it
may be connected to or used in conjunction with, or in respect of any
other damage or injury that may be caused, nor do the Publishers
accept responsibility in any way for the failure to obtain specified
components.

Notice is also given that if any equipment that is still under warranty is
modified in any way or used or connected with home -built equipment
then that warranty may be void.
Important note

Due to processes used in preparing and printing this book, the accuracy
of the PCB track layout dimensions cannot be guaranteed. A graticule is
provided by the drawings to help in this matter.

0 2003 BERNARD BABANI (publishing) LTD

First Published - May 2003
Reprinted - March 2005

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 85934 535 1

Cover Design by Gregor Arthur

Printed and bound in Great Britain by Cox & Wyman Ltd

Preface

Interfacing to PCs has been around for many years but to many pepple
it is still a mystery as to how data can be transmitted to and from .3 PC
and the outside world. This book has been designed for botl the

beginner and the expert to interfacing. The only prereqJisite s a
reasonable knowledge of Visual Basic, though to some extent an ability
to write very simple Visual Easic programs may be adequate if the Jser
is proficient in the knowledge of other computer programs.

The book is built around an interfacing module that is connected t.: the
USB port of a PC. This means that there is no delving around insida the
PC which has prevented many beginners even embarking on interfacing
in the past Some background to the USB standard is presented and
also details are introduced as to how the USB interface module is
programmed.

In the past the normal method of interfacing was to use the Intel 8255A
Programmable Peripheral Interface and to many of those experienced in

interfacing this has become the standard approach to the tasc. Interface
cards being produced at :he current time use the same mode of
programming so that it seemed natural to transfer those programming
techniques over to the USB interface module. This will enable experts to
quickly grasp how to program the USB interface module and orovide the
beginner with all the rudiments of interfacing to be able to gc off and do

their projects as quickly as possible.

Once the fundamentals of getting data in and out of the US8 interface
module have been dealt with, the book then looks at five different areas

of use for it. Each of these areas has an interface board to accompany it

and full constructional details are provided including details of the pcb,
the components required and any necessary calibration details.

Ideally the reader should move through the book sequentially
performing all the programs but once chapters 1 to 3 have been read, it
is possible to dip into any of the remaining chapters in any order The
purpose of the book is to stimulate an interest in interfacing and
studying the programs will help most users to understand the principles
that are being presented.

Once all the fundamentals have been learnt both beginners and experts

will be able to use stepper motors, DACs and ADCs in a variety of
projects. The important point always to observe is to save your program
before running it. This will prevent a vast amount of frustration and you
will always be in a position to correct the odd typo which so often creeps
into a program.

I should like to take this opportunity to thank my former colleagues Eric
Webster and Maurice Rhcdes, both recently retired, for their
contributions to all our knowledge about interfacing. Also to the
technical support of Alan Kent, Helen Poulton, Barbara Ridding and
Rick Collins from the Department of Physics, Astronomy and
Mathematics of the University of Central Lancashire for their assistance
in maintaining the PCs, making pcbs, soldering components and testing

circuit boards and generally being very nice to everyone when things
have not been going well.

In addition I must acknowledge Margaret and Victoria who have both
been extremely tolerant of my enthusiasm for PC interfacing which has
developed over many years and has gone through many highs and
lows. I believe that this book illustrates one of the highs.

Peter Bates

About the Author

Peter Bates is currently the Course Leader of the MSc in PC Interfacing
in the Department of Physics, Astronomy and Mathematics at the
University of Central Lancashire, Preston, UK. He is a physics graduate

who went on to obtain a PhD in solid-state physics from Bangor
University and in over 30 years he has taught physics, solid-state
physics and microcomputer interfacing at all levels from A -level tirough

to postgraduate. His interest in electronics developed as a consequence

of being asked to teach the subject in 1974 when he was appoi-fted to

the Department of Physics at Preston Polytechnic.

Peter's expertise in interfacing sensors, transducers and instruments to
computers was the foundation of the MSc in PC Interfacing in which he

is responsible for teaching fundamental interfacing and virtual

instrumertation using Microsoft Visual Basic and National Instruments

LabVIEW.

His hobbies are quite diverse ranging from hi-fi and music to CIY and

gardening.

Trademarks
Microsoft, Windows, Windows. XP, Windows 2000, Windows Me,
Windows 98 and Windows 95 are either registered trademarks or
trademarks of Microsoft Corporation.

All other brand and product names used in this book are recognised
trademarks, or registered trademarks of their respective companies.
There is no intent to use any trademarks generically and readers should

investigate ownership of a trademark before using it for any purpose

Contents

1

What is USB? 1

The Universal Serial Bus 1

USB features 1

USB connectors and cables 2

USB data communication 3

Putting it all together 5

Types of data 5

Isochronous 6

Interrupt 6

Bulk 6

Summary 6

References 7

2

USB I/O 24 Module 9

USB devices 9

The FT8U245 9

The USB I/O 24 mcdule 10

The USB I/O 24 mcdule Connectors 12

The USB I/O 24 mcdule Command Protocol 14

Using USB I/O 24 Command Protocols 15

How Mode 0 of the 8255A is programmed 16

Why use the 8255A settings? 18

The 8255A registers 18

The Control Lines . 19

Connections to the USB I/O 24 module 20
Summary 23

3

Programming the Module 25
The case for the USB I/O 24 Module 25
The FT8U245 drivers 25
How to set up the FTDI D2XX Drivers 26
The role of the DLL 27
Visual Basic code 29
Declarations 30
Readprog 31
Writeprog 34
PortOut 35
Portln 39
Summary 40

4

Digital Input/Output 41

Using the USB I/O 24 module 41
Interface Boards 41
The User Port Tester board 42
Creating a User Port Tester Input Form 43
The Declarations 43
The Form 44
The Command button 45
The Userin program 47
Running the Userin program 47
Exercise 4.1 48
Creating a User Port Tester Output Form 48
The Declarations 49
The Form 49
The Scroll bar 50
The Userout program 50
Running the Userout program 51

Exercise 4.2 51

Summary 52

5

Stepper Motors 53

Stepper motor appl cations 53
What is a stepper motor? 53

The Stepper Board 55
Determining the stepper motor code 56
Declarations 57
Command button - Send 57
The Form 58
Scroll bar 58
Steptest.vbp Project 59
Using the Steptest orogram 59
Variable speed stepper motor 59
The Form 60
The Code 60
Declarations 60
The Form 61

The Scroll Bar 61

The Timer 62
The Stepper routine 62
The step.vbp 63
Running the program 63
Exercise 5 64
Summary 64

6

DAC 65

Digital to Analogue Conversion 65
Theory of the R -2R ladder DAC 65
Unipolar and Bipolar 66

Using the 8DAC board 67
Configuring the port 68
Features of the 8DAC board 68
The Program 69
The Form 69
The Code 70
The Option Buttons 70
The Scroll Bar 70
The Form 71
The Display Procedure 71
Command button 72
Declarations 73
Completing the program 73
Running the program 74
Exercise 6 74
Summary 75

7

8 -bit ADC 77

8 -bit Analogue to Digital Converter 77
Unipolar and Bipolar 77
Theory of Operation 79
The 8ADC board 80
Use of the 8ADC board 81
Program 82
Inserting Code 83
The Form 83
The Option Button 83
The Timer Control 83
The Command Buttons 84
Declarations 85
The Procedures 85
Equipment 88
Running the program 88
Exercise 7 88
Summary 91

8

12 -bit ADC 93

12 -bit Analogue to Digital Conversion 93
12ADC resolution 93
Theory of Operation of the dual ramp integrating ADC 94
Dual Ramp Integrating Analogue to Digital Conversion .. 97
Method of obtaining the data .98
Program 99
Inserting Code 100
The Form 101

The Option Buttons 101

The Timer Control 102
The Command Buttons 102
Declarations 103
The Procedures 104
Equipment 107
Running the program 107
Exercise 8.1 108
Small signal measurement - Using the VGPA board 108
Making connections to the VGPA board 109
Selecting the gain 109
Exercise 8.2 110

Summary 110

Appendix 111

The Interface Boards 111

Al The User Port Tester 112

A1.1 Circuit 112
A1.2 The Printed Circuit Boards 113
A1.3 Components 115

A2 The Stepper Motor board 117

A2.1 The Circuit 117
A2.2 The Printed Circuit Boards 118
A2.3 Components 120
A3 The 8DAC board 122
A3.1 The circuit 122
A3.2 The Printed Circuit Boards 124
A3.3 Components 125
A3.4 Calibration of the 8DAC board 128
A3.5 Application of the 8DAC board 130
A3.6 References 130
A4 The 8ADC board 132
A4.1 The circuit 132
A4.2 The Printed Circuit Boards 134
A4.3 Components 136
A4.4 Calibration of the 8ADC board 138
A4.5 Reference 139
A5 The 12ADC board 140
A5.1 The circuit 140
A5.2 The Printed Circuit Boards 141
A5.3 Components 143
A5.4 Calibration of the 12ADC board 146
A5.5 Reference 147
A6 The VGPA board 148
A6.1 Making connectiors to the VGPA board 148
A6.2 The circuit 149
A6.3 The Printed Circuit Boards 151
A6.4 Components 153
A6.5 Calibration of the VGPA 155
A6.6 References 156
A7 Suppliers 157

Bibliography 159
Index 161

What is USB?

The Universal Serial Bus
The Universal Serial Bus (USB) is an interfacing bus that is now
becoming standard on all types of PC. It was introduced by Microsoft in

Windows 98 and has subsequently been supported in Windows 2000,
XP and ME but not in Windows NT. Its popularity has increased
because of the relative ease with which it can be used and the range of

hardware devices which incorporate it. These include printers,

scanners, digital cameras, mice, keyboards, joysticks, etc. It is

extremely popular with laptops because of the small size of its sockets
and it is becoming commor on desktop PCs as well. It is not beyond the

realms of possibility that USB could easily replace the RS232 interface
as the preferred serial inter`ace.

USB features
USB is a serial data transmission system in which the data stream is
time-shared. This means that all the devices, i.e. mice, keyboard,
printers, etc., connected to the PC are polled regularly at 1ms intervals
by the PC and in its 1ms t me interval the device can place data on to
the bus. Each device has a unique address allocated by the PC and up
to 127 devices can be conrected to the USB at any one time.

The speed of data transmission is dependent upon the version or USB
being used. The latest vers on USB2.0 has a speed of 460Mbits/s whilst
the older version USB1.1 sipports two speeds 12Mbit/s and 1.5M:its/s.
In the latter case the two speeds can co -exist together on the same wire
and the speed is determined in the hardware of the device U.EB2.0
interfaces fitted to PCs can support devices using USB1.1 but it is

questionable whether USE2.0 devices can be used with USB1 1 PC

interfaces.

1

1 What is USB?

USB connectors and cables

The USB interface inside a PC is made up of a USB controller which is
a set of chips that provide the nterface between the hardware and the
applications software resident in the PC. Within the PC is a host hub to
which all the devices connected to the USB system connect. A PC
normally has at least two connectors mounted on its case which
connect to this host hub and users can then purchase further hubs
which can provide additional ports for up to 127 devices.

The cables, made up of 4 conductors, are used to connect devices to
these hubs. Two types of USB connectors are used; Type A and Type B
and these are illustrated in Figure 1.1.

4

Type A Type B
Figure 1.1 USB connectors

Normally a Type A socket is fitted to a PC and a device has a Type B.
The connectors are different to indicate the normal flow of
communication which may either be upstream or downstream.

Two of the four conductors in the cable are differential data lines and
the other two are 5V and GND. Figure 1.2 shows the configuration of
the cable.

A feature of the USB plugs is that pins 1 and 4, the supply lines, are
slightly longer than the data lines. This means that when the plug is
inserted into the socket, the supply is connected before the data. This
not only reduces the risk of carnage due to electrostatic charge but
provides the USB feature of being able to connect and disconnect
devices without having to power down the PC. The purpose of the
supply lines is to provide power for the USB devices which are

2

What is USB? 1

connected to the bus but in the main this is limited to them draw'ng no
more than 450mA. In most cases the device, e.g. printer, will neec tc be

provided with its own powe- supply.

I

2
3 4

5V
D-
D+

Figure 11 USB cable configuration

The two data lines, D+ and D-, are used to send either data or
commands. A 1 bit is sent when D+ is high and D- is low and a 0 bit
when D- is high and D+ is ow.

USB data communication
USB devices contain a CPU, i.e. a microprocessor, a microcontroller,
etc., which is used to control the communication process. Each device
has a number of buffers which are used to store data prior to
transmission to the PC or to store data receivec from the PC. These are
referred to as IN and OUT endpoints and a device can have up to a
maximum of 16 of each.

The device's CPU pre- and post -processing ability provides the flexibility

and standardisation of the JSB system. Essentially it is an extension of
the PC's BIOS and it is possible to plug a USB mouse or keyboard into

a PC and for it to start immediately using the generic data held within
the PC. There is no need to load specialised drivers which cause so
many problems in installing software on a PC. It must be stated that with
specialised devices, drivers are necessary and these are providec in an
.INF file which is normally loaded in response to the Plug 'r Play
Wizard.

The IN endpoint of a device is the buffer into which data obtained from
the device itself is placed and the OUT endpoint is the buffer in which
data from the PC is placed so that it can be accessed by the device.

3

1 What is USB?

Figure 1.3 (based upon a diagram by J Hyde (1999)) is a schematic of
how the endpoints interface to the PC via the device drivers.

Application program

I/O manager

Device driver
cu

*Ei
co

I/O device
Configuration

Interface
IN

EndPoint
OUT

EndPoint

a)
CL.

0
00

Host
PC

Control
EndPoint

Outside World
Figure 1.3 USB interface model

The device also has the control endpoint which is bi-directional and is
used to identify the device, diszover its capabilities and also control it.
When the USB device is attached, a conversation takes place on the
control endpoint so that the device can be integrated into the operating
environment of the PC. This enumeration involves pre -formatted

standard USB requests and these have to be provided in software
design.

It will be seen from Figure 1.3 that communication between the device
and the PC takes place using pipes. These pipes are implemented in
the USB cable by using different types of packets of data. It is the
application program which opens devices and the operating system that
implements the low-level communication to the device. From the device
point of view, data arrives from the PC into the OUT endpoint and the
supplied data from the device is put into the IN endpoint.

4

What is USB? 1

Putting i1 all together

When a USB device is plucged into a port there is a voltage change on
one of the two data lines. f D+ goes high the device is a high speed
device, i.e. printer, scanner, etc., and the data that is transmitted within
the 1ms packets is sent at 12Mbit/s. If D- goes high the device is a low -

speed device, i.e. keyboarc, mouse, etc., and the data is transmit.ed at
1.5Mbit/s.

A polling signal is then sent to the device requesting it to identify itself.
The device responds with its own product and vendor Ids, i.e. the PID
and VID. Windows then searches its directories for the correct driver for
the device and if one cannot be found it requests one to be loaded.
Once the driver is loaded the application programme then proceeds.
The ability to connect and disconnect a USB device without switch ng
off the PC is a distinct advantage when developing interfacing software
as it often enables the interface to clear any corrupted settings very
quickly and easily.

The device is now part of the USB system with the PC being the rr aster

and the device being a slave.The PC polls devices to issue commands,
request whether the device is ready to send or receive data and to be
apportioned a time slice so that the device can transmit data upsream
to the PC at regular time intervals.

The PC's messages consist of three packets: a token packet, a data
packet and a handshaking packet. The token packet contair s an
address and since the message is sent to all devices on the bus it is

only the device whose adcress matches the token's address that will
respond to it. The device then can send its data when the PC gives its
permission

Types of data

There are three types of data transfer between the PC and USB cevice
and these are assigned priorities according to certain criteria

5

1 What is USB?

Isochronous

This is real-time data transfer and has the highest priority. It is the
transfer of a large amount of data where there can be no interruptions
and there is no error checking provided. It is used for video and sound
data which require large data transfers and can absorb some data loss.

Interrupt

This is used for keyboards, mice and joysticks which are low -speed data
devices.They generate occasional interrupts and then transmit small
amounts of data quickly. The p-iority is not as high as isochronous.

Bulk
This is used for the transfer of a large amount of data when speed is not

of importance. It has low priori:y and is used for printers, scanners and
digital cameras.

There is a fourth data transfer mode which is called Control transfer. All
USB devices support it and it has high priority and has error checking
built in. It is used to provide initialisation information but there are
occasions when it can be used for low -speed data transfer.

Summary

USB is a data transfer standard which enables a range of different
devices to be attached to and removed from a PC without switching it
off. Data is transferred to the FC in 1ms frames at speeds of 1.5Mbit/s,
12Mbit/s and even 460Mbit/s in the latest USB2.0 version. A well-
defined set of protocols are used for data transfer and with the aid of
external hubs it is possible to connect up to 127 devices to a USB port.

The prospects of using USB :o interface suitable devices capable of
being used in instrumentation could be beneficial, as it would enable
devices to be portable between PCs without having to provide plug-in
cards. In addition it could also be extremely cost effective as most PCs
are supplied with USB ports built in.

What is LSB? 1

References

J Hyde, USB Design by Example, (1999) J Wiley, New York

T Wong, 'Understanding USB' (November 1999), Electronics Work.'

E Insam, 'USB made easy' (February 2002), Electronics World

http://www.usb.org - web site of the USB organisation

1 What is USB?

8

2

USB I/O 24 Module

USB devices

USB devices have become very popular with PC users as they can be
easily conrected and disconnected from the PC whilst it is still switthed
on. Consequently printers. scanners, cameras and even measuring
instruments are being provided with USB interfaces. The -najor
handicap to those of us who wish to develop instrumentaticn or simply

to experiment with USB has been the complexity and cost the

electronics required to enable USB signals to be either generated or
captured.

This problem has now been surmounted with the appearance of several

ICs with the capabilities of coping with the USB protocols in a similar
manner to the UARTs that are used with RS232. UARTs (Universal
Asynchronous Receiver Transmitter devices) can convert the serial
RS232 signal into 8 -bit parallel and vice versa and also that wi:h the
handshaking requirements of the RS232 standard. A typical example of
such a USB integrated circuit is the FT8U245 manufactured by Future
Technology Devices International (FTDI) of Glasgow, Scotland.

The FT8U245

The FT8U245 is capable of sending and receiving USB data at J p to
1MByte/s. The 8 -bit parallel output/input port is connected to a 384 -byte

FIFO transmit buffer/128-byte FIFO receive buffer (Figure 2.1).

All the US3 protocols are handled within the integrated circuit so that
the user does not have to become involved in any co--iplex

programming to pass data to and from the device. In fact FTDI provide a
USB driver for the system which ensures that the user can nterac: with
the device with relative ease. The 8 -bit I/O port of the =T8U245 is
designed to be interfaced to any microcontroller using eithe- the

9

2 USB I/O 24 Module

memory I/O map of the microcontroller using DMA, or by controlling the
I/O ports.

The device has many commercial applications ranging from USB ISDN
and ADSL modems to high-speed USB instrumentation.

vcc

3 3V out

USB DP
41--10

USB DM

XT out4 --
XT

RC clk

-1
3 3V
LDO

Regulator

088
Tranicover

Senal Interface
Engine
(SIE)

FIFO Raceme
Buffer

128 Wes
Controller

USB DPLL

13MI-tz

Oscillator

4

Use
Protocol
Engine

X8 Clock
Mullsoller

FIFO Tremor*
Buffer

384 bytes
Controller

 48440-1, GNO

RESETS
12%.{, TEST -

FIFO
Contosler

4-0, DO

44-.-1. COM

41- 03
4-4. 04

0,5

4-1 DB
D7

RD/
VVR

+ RXF*
TXEll

EERECO

EEPROM
Interlace

Figure 2.1 FT8U245 Block Diagram (Simplified)

EEGNV

EECS

EESK
4-*

The USB I/O 24 module

The 8 -bit I/O of the FT8U245 has limitations as far as the experimenter

is concerned because there are many sensors and transducers which
require control line facilities over and above the 8 data lines and these
are not easy to implement with handshaking lines that are more suited
for use with a microcontroller. The obvious answer is to use a
microcontroller, but once again that can cause problems with

experimenters who may not wish to learn to program microcontrollers or
who have not got access to the equipment necessary to perform such
tasks. Fortunately Ravar Pty Ltd of Queensland, Australia produce a
USB 24 -line general-purpose Input Output module based upon the FTDI
FT8U245 IC.

10

USB I/O 24 Module 2

The USB I/O 24 module (Figure 2.2) has 24 independently

programmable I/O pins in three groups of 8.

I mit tt ,
1111411111-11 ill

f :i Z: ii 1411.41kiel '2IlltI S,/

MAN! e' t Mtilitii-vi
' Iiii

at!
111101 .11E F

l'i (Pilit\-9 Mr!
li/lifiitio

. ' 1
ii POR I A I '

.. POP,

Figure 2.2 The USB I/O 24 module

The module is based on the FTDI FT8U245 USB IC and a UNICOM
SAC48 microcontroller ant is capable of trans'er rates up to 250,000 8 -

bit port reads or writes per second A Virtual COM Port Driver is
available for a range of cperating systems, so that the device can be
accessed as a normal serial port which can be programmed in any of
the popular programming languages. This means that when the module

is connected to the USB port of the PC it is automatically reccgnised
and will accordingly appear in the COM secticn of the Device Manager
of Windows when Windows 98, 2000, ME or XP is used.

The module is USB1 .1 Specification compliart and the USB VID, PID.
Serial Number and Product is recognised and displayed. -he on -board
EEPROM and FLASH Microcontroller can be re -programmed according

to whatever the user may require but in most cases the provided
firmware data is more than satisfactory.

Each I/O pin can be con9gured individually as an input or output. An
input pin is TTL level compatible and an output pin can s nk or source
up to 30mA. The device is connected to the USB port of the PC using a
suitable cable. This normally has a Type A USB connector to the PC

11

2 USB I/O 24 Module

and a Type B to the module. The module is powered from the USB with

up to 450mA available current. This means that the USB I/O 24 Module
can be used in a range of user applications withoJt the need of an
external power supply to drive peripherals.

The USB I/O 24 module Connectors

The USB I/O 24 module has its 24 I/O pins distributed into three eight -
pin ports A, B and C. Each port has two additional pins which are used
for +5V and a ground. The description for the ten p ns in each port is
shown in Table 2.1.

Pin Signal Description

1 +5V USB bus supply

2 1/08 Programmable I/O pin with bit value of 128

3 1/07 Programmable I/O pin with bit value of 64

4 1/06 Programmable I/O pin with bit value of 32

5 1/05 Programmable I/O pin with bit value of 16

6 1/04 Programmable I/O pin with bit value of 8

7 1/03 Programmable I/O pin with bit value of 4

8 1/02 Programmable I/O pin with bit value of 2

9 1/01 Programmable I/O pin with bit value of 1

10 GND USB bus and I/O ground

Table 2.1 Description of USB I/O 24 Port Connector

The pins are distributed in each port according to Figure 2.3. and Figure
2.4 shows the three ports arranged on the USB 24 I/O module.

12

USB 110 24 Module 2

USB end

Pin 1 +5V 0 0 I/O 8 Pin 2
Pin 31/07 0 0 I/O 6 Pin 4
Pin 51/05 0 0 I/O 4 Pin 6
Pin 71/03 0 0 I/O 2 Pin 8
Pin 9 I/01 0 0 GND Pin 10

Figure 2.3 USB I/O 24 Port Connector pin configuration

USB

O 0
O 0
O 0
O 0
O 0

O 0
O 0
O 0
O 0
O 0

O 0
O 0
O 0
O 0
O 0

Port C

Port B

Port A

Figure 2.4 USB I/O 24 port layout

13

2 USB I/O 24 Module

The USB I/O 24 module Command Protocol

The USB I/O 24 module has a set of commands which enable the
individual ports to be configured as either inputs or outputs. In addition
data can be read from or written to each of the ports. There is also a
command that can be used to identify the device which is connected to
the USB port. These commands are summarised in Table 2.2.

Command Data Function
? Transmits 'ISB I/O 24' Identify Device

!A 1 byte port I/O data Write to Port A
direction register

B 1 byte port I/O data Write to Port B
direction register

!C 1 byte port I/O data Write to Port C
direction register

A Port A data Write to Port A
B Port B data Write to Port B
C Port C data Write to Port C
a Port A data Read to Port A
b Port B data Read to Port B
c Port C data Read to Port C

Table 2.2 USB I/O 24 commands

Before the ports can be used they must be initially configured either as
an output or as an input.

The syntax to set port A as an output is :

Portl/Ostring = "!A"+Chr$(0)

Port A is set as an input with the following statement:

Portl/Ostring = "!A"+Chr$(255)

14

USB I/O 24 Mcdule 2

In both of these examples all Port A pins are set in the same direction.
In many applications it is 3ossible to have a mix of pins being both
inputs and outputs:

Portl/O String = "!A"+Chr$(&02)

This sets pin 2 as an output and all other pins as inputs.

The task of reading Port A i; achieved using:

DataString = "a"

and to write data to Port A t le following statement is used:

DataString = "A"+Chr$(128).

In the former case, data is placed into the variable Datastring. In the
latter case Pin 8 is set high and all other pins are low.

The examples given above can also be performed for ports B and C.

Using USB I/O 24 Command Protocols

The USB I/O 24 module is very versatile with its 24 I/O pins and to
some extent that is its major downfall especially for beginners to
interfacing There is almost an infinite number of ways in which the
module can be used and it is difficult to decide how to begin and to
ensure success To the experienced user who can draw upcn the
techniques and programs used with other types of interface cares and
modules used with the PC there are certain rules which have aided
them in the past. In general these are:

1. Configure the interface card for input or output

2. Read from or write to the interface

Close examination of dev ces attached to other commercial interface
cards reveal that in many cases 8 data lines and 2 control lines will
suffice to create reliable operation. With 24 I/O lines it would appear that

two such devices could be supported.

In fact 24 I/O lines divided into 3 ports is almost an industry standard
and can be traced back to the Intel 8255A Programmable Peripheral

15

2 USB I/O 24 Module

Interface (PPI). The PPI was used as the parallel I/O device with Intel
microprocessors used in the original IBM PCs.

The feature of the 8255A was that it could be programmed to operate in
three distinct modes. Two of the modes, 1 and 2, involved complex
handshaking processes but Mode 0 was very similar to the USB I/O 24
module with 24 lines which could be configured as inputs or outputs
divided into three ports A, B and C. The method of programming the
8255A in Mode 0 will aid us in programming the USB I/O 24 module.

How Mode 0 of the 8255A is programmed

Mode 0 of the 8255A takes the 24 I/O lines and divides them into two
groups A and B. Group A consists of all the lines of Port A plus the four
upper lines of Port C (i.e. 1/08, 1/07, 1/06 and 1/05 of Port C). Group B
consists of all the lines of Port B plus the four lower lines of Port C (i.e.
1/04, 1/03, 1/02 and 1/01 of Por. C). Figure 2 5 illustrates this distribution
of I/O lines.

Group A Group B

Port A Port C (Upper) Port B Port C (Lower)

L 1/0 1 - 8 I/O 5 - 8 I/O 1-8 I/O 1 - 4

Figure 2.5 Distribution of 8255A I/O lines for Mode 0 operation

In many applications Ports A and B will be used for data and the upper
and lower groupings of Port C can be used for control lines.

Programming is then further simplified by each of the sub -groups shown
in Figure 2.5 being configured as inputs or outputs. This alleviates the
problem of programming each I/O line individually and Chapter 3 will
show the advantages of programming the groups of I/O lines.

Programming the 8255A involved configuring the device with an 8 -bit
control word. Each bit of the control word has a significance which is
shown in Figure 2.6.

16

USB I/O 24 Module 2

Control word

D7 De De D4 D3 D2 D, Do

Mode

set flag

Mode

selection

Port A Port C

(Upper)

Mode

selection

Port A Port C

(Lower)

1=Active 00=Mode0

01=Mode 1

1X=Mode2

1=i/p

0=o/p

1=i/p

0=o/p

0=Mode0

1=Model

1=i/p

0=o/p

1=i/p

0=o/p

Group A Group E

Figure 2.6 8255A mode definition format

Inserting the Mode 0 settings simplifies the control word (Figure 2.7)

Control word
D4 D3 0 Di Do

Port A Port C
(Upper)

Port B Port C
(Lower)

1=i/p
0=o/p

1=i/p
0=o/p

1=i/p
0=o/p

1=i/p
0=o/p

Figure 2.7 8255A mode 0 control word

Port A, Port B and the two parts of Port C can now be set as inpJts or
outputs simply by setting tt-e bits Da, D3, D1 and Do. These settings are
then added to the setting bit 07 which is already set to 1. This means
adding decimal 128 to those other bits in the control word which are
required to set the Port direction.

The net result is shown in Table 2.3 which indicates the control word
codes required to configure the 8255A for Mode 0 operation

17

2 USB I/O 24 Module

Port A Port C
(Upper)

Port B Port C
(Lower)

Code
(decimal)

Output Output Output Output 128
Output Output Output Input 129
Output Output Input Output 130
Output Output Input Input 131
Output Input Output Output 136
Output Input Output Input 137
Output Input Input Output 138
Output Input Input Input 139
Input Output Output Output 144
Input Output Output Input 145
Input Output Input Output 146
Input Output Input Input 147
Input Input Output Output 152
Input Input Output Input 153
Input Input Input Output 154
Input Input Input Input 155

Table 2.3 8255A control word Mode 0 settings

Why use the 8255A settings?

The peculiar code settings are initially strange to the beginner but
reference to Table 2.3 becorres second nature and ensures reliable
programming of the chip in the future. In addition commercial 24 -line
digital I/O boards used with the ISA and PCI slots in PCs are often
based upon the 8255A or its derivatives so that any programs written for

one system should be portable to any of the other systems. Also if a
suitable library program is written, either in C or Visual Basic, the task of

programming the interface board becomes fairly easy. This is the task
that will be tackled in Chapter 3 when the code settings are applied to
the USB I/O 24 module.

The 8255A registers

There are four registers in the 8255A which are used to hold Port A,
Port B, Port C and the Control Register data. Each of these registers
can be addressed provided the base address of the 8255A device is
known. Usually the 8255A sits on a card which is plugged into the I/O

18

USB I/O 24 Module 2

slot of the PC and the registers are allocated addresses from the PC's
memory. Ir the case of the USB I/O 24 module mimicking the 8255A,
the base address of the registers can be taken as 0. This means that
the registers and the Ports, etc. have the following address allocations

and functions.

Address Register Function Lines

0 Port A i/p / o/p data PAO - PA7

1 Port B i/p / o/p data PBO - PB7

2 Port C Control lines CA1,CA2,CB1,CP2

3 Control Control register

Table 2.4 Port and register addresses

The Control Lines
Port C has been divided into upper and lower sub -groups which can be
programmed as inputs or cutouts. Examination of applications of 8255A
interface toards reveal that one line from the upper group and one line
from the lower group are assigned to Port A and a similar arrangement

is found for Port B. Table 2.5 shows a typical arrangement.

High Lcw

7 6 5 4 3 2 1 0

CB2 CA2 CB1 CA1

Table 2.5 Arrangement of Port C

It can be seen that the upper sub -group contrioutes bit 4 as control line
CA2 and the lower sub -group contributes bit 0 as CAI to Port A.
Similarly Port B gets bits 5 and 1 as CB2 and CB1 respectively. Table
2.6 shows both the binary and hexadecimal code required to have all
possible combinations of these four control lines providing output
signals.

19

2 USB I/O 24 Module

Binary
Pattern

Hex Decimal CB2 CA2 CB1 CA1

0000 0000 00 0 OFF OFF OFF OFF

0000 0001 01 1 OFF OFF OFF ON

0000 0010 02 2 OFF OFF ON OFF

0000 0011 03 3 OFF OFF ON ON

0001 0000 10 16 OFF ON OFF OFF

0001 0001 11 17 OFF ON OFF ON

0001 0010 12 18 OFF ON ON OFF

0001 0011 13 19 OFF ON ON ON

0010 0000 20 32 ON OFF OFF OFF

0010 0001 21 33 ON OFF OFF ON

0010 0010 22 34 ON OFF ON OFF

0010 0011 23 35 ON OFF ON ON

0011 0000 30 48 ON ON OFF OFF

0011 0001 31 49 ON ON OFF ON

0011 0010 32 50 ON ON ON OFF
0011 0011 33 51 ON ON ON ON

Table 2.6 Control line settings (Outputs)

Connections to the USB I/O 24 module

The net result of considering all these aspects of using the 8255A PPI is
that the 24 lines of the USB I/O 24 module can be divided into 8 data
lines of Port A with 2 control lines CA1 and CA2 and 8 data lines of Port
B with 2 control lines CB1 and CB2. Associated with these pairings will
be a +5V supply line and a GND line making 12 lines associated with
Port A and 12 lines associated with Port B. These lines are to be
connected to the different interface boards used in the following
chapters and Figure 2.8 shows the wiring harness that is required for
the purpose with the connections shown in Tables 2.7 and 2.8.

The 20 -way IDC sockets (RS 192-7388) provide the Ports A and B
connections and the 10 -way header sockets (RS 360-6220) are used to
connect the USB I/O 24 module. (All sockets are viewed from the rear.)

20

USB 110 24 Module 2

20 -way IDC 10 -way header

Pin

9

5

9

Pin

2

4

6

Function
CA1

CA2

PAO

Header

Cl
C5

Al
1

8 PA1 A2 8

10 PA2 A3 7

12 PA3 A4 6

14 PA4 A5 5

16 PA5 A6 4

18 PA6 A7 3

20 PA7 A8 2

1 +5V +5V 1

19 OV OV 10

Table 2.7 Port A connections

20 -way IDC 10 -way header

Pin Function Header Pin

2 CB1 C2 8

4 CB2 C6 4

6 PBO B1 9

8 PB1 B2 8

10 PB2 B3 7

12 PB3 B4 6

14 PB4 B5 5

16 PB5 B6 4

18 PB6 B7 3

20 PB7 B8 2

1 +5V +5V 1

19 OV OV 10

Table 2.8 Port B connections

21

P
i
n

1

+
5
V

C
8

C
7

C
6

C
5

C
4

C
3

C
2

C
l

O
V

P
i
n

I

+
5
V

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
I

O
V

P
i
n

1

+
5
V

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
l

O
V

O

0

O

0

(1)

a-C
r

er--C
-

o' o
0
.
-
0
-

E
r

u
0
'

0

0
-

0

o
cb

0

0

0

0

0

0

0

0

0

0

0

0

0

0

O

0

o
q

P
B
7

O
V

P
B
6

O
V

P
B
5

O
V

P
B
4

O
V

P
B
3

O
V

P
B
2

O
V

P
B
I

O
V

P
A
O

O
V

C
B
2

+
5
V

C
B
I

+
5
V

P
i
n

I

P
A
7

O
V

P
A
6

O
V

P
A
5

O
V

P
A
4

O
V

P
A
3

O
V

P
A
2

O
V

P
A

I

O
V

P
A
O

O
V

C
A
"
)

+
5
V

C
A
I

+
5
V

P
i
n

I

F
igure 2.8 M

ethod of w
iring the U

S
B

 I/O
 24 m

odule for use w
ith the interface boards

C
V

USB I/O 24 Module 2

Summary
The USB I/O 24 module is designed to enable digital input/au:out
signals to be interfaced to the USB port of a PC. The interface cads
that can be used with ISA and PCI slots of PCs are based upon the Intel

8255A PPI and it is possible to configure the USB I/O 24 module to
mimic this cevice. This means that programs already written for the
8255A will be compatible with the USB I/O 24 module and, provided a
suitable cable harness is used. it is possible for interface boards
developed for the 8255A to be used with the USB I/O 24 module.

The next stage of the process is to write a universal Visual Basic
module that can store the library of calls that will achieve these tasks.

23

2 USB I/O 24 Module

24

3

Programming the Module

The case for the USB I/O 24 Module

The USB I/O 24 module can be programmed either with serial device
commands or by using a DLL which enables function calls to be made
to it. Basically the mode of interface interaction is the same but wit the
serial method it is the user who has to ensure that all the correct
protocol steps are made whilst with the DLL method the steps are
contained within the DLL. In addition the serial communication rate is
115,200 Baud which means that the possibility of a communication
breakdown occurring is very real so that for most applications the serial
method is tar from ideal. Using the DLL approach ensures a more
reliable communication path

The FT8U245 drivers

The USB I/O 24 module is d-iven by the FT8U245 IC and it is necessary

to install its drivers on the PC. These drivers are obtainable from the
FTDI websi7e (http://www.ftcichip.com/suoport.htm). The drivers should
be downloaded to a folder on the PC and then urzipped. When the USB

I/O 24 module is plugged into the USB port the PC checks for suitable
drivers and if none exist it will prompt the user to load the crivers It is

then a question of following the instructions that appear on the screen.

The instructions for installing drivers under Windows 98 differ from
those for Windows 2000 and XP. Full Application Notes for the
installation process can be downloaded from the FTDI web site. The two

files that are loaded are a Windows Device Manager driver,

FTD2XX.SvS and an App.ications Software Interface, FTD2XX DLL.
Figure 3.1 indicates the driver architecture.

25

3 Prourammina the Module

Application
Software

Visual Basic

USB Windows Windows Applications
physical USB Device Manager software

layer interface Driver interface

Figure 3.1 The FTDI D2XX Driver Architecture

These drivers can be used in conjunction with a range of different
programming applications including Visual Basic, Visual C++, Delphi,
etc. In addition to the FT8U245 IC the drivers can be used with the
FT8U232 IC which is designed to convert USB signals to serial and vice

versa. A comprehensive programmer's guide (FTD2XX Direct Driver
Programmer's Guide, 271h July 2001) is available from the FTDI web
site. This will assist experienced programmers to produce extremely
complex programs using the USB I/O 24 module.

How to set up the FTDI D2XX Drivers

The two drivers that have been installed on your PC are not normally
loaded unless the USB I/O 24 module is connected to the USB port.
When the module is connected the arrow cursor will change to the egg -

timer whilst the drivers are loaded and then revert back to the arrow
after a short time. When the module is disconnected a similar process
will take place.

Once the module is connected and the drivers are loaded, the FTDI
FT8U2XX device is recognised in the USB controllers of the Device
Manager of the PC. (Figure 3.2)

The Device Manager is accessed from Control Panel I System. It is

possible to access the properties of the device by right -clicking on the
mouse and checking that the driver is loaded and operational.

26

Programming the Module 3

General Device Manacled Had*ate ProIdes I Perform ,.'Ice

ks *hew dovices by IYPe View devices by StC,rnec,:lon

E Modern

El Monstors

Mouse
rgp Network adapters

E J Other devices
Gtt PCI Input Cortroid

PCI Multimedia Audio Device

., i Ports (COM & LPT)
Communicaticns POI! (COM1)

Cornmunicaticns Por: (COM2)
Pinter Port (LDT1)

gSystem devices
Universal Send Bus controllers

Intel 82371ABA B PCI to USB Universal Host Controler
USB Root Hub

/11111,111rW-propemes I Refresh I Remove
I ".

[OIL I Canted

Figure 3.2 Device Manager Properties

The role of the DLL
A DLL is a Dynamic Linked Library. It is a file that contains functions or
routines which a program can call upon whe-iever they are needed.
Many applications programs, i.e. C. Basic, etc., use mathematical
functions such as sin, cos, etc., which are built into the software. In the
case of Visual Basic the mathematical function arcsii is not a

recognised function and it s necessary for the user to write a little
routine to calculate arcsin. Often the function is written in Visual Basic

but it not unusual to write it in a language, e g. C, which accepts
mathemat,cal manipulation more easily. This C program can then be
compiled as a DLL which can be then called by the Visual Basic

27

3 Programming the Module

program. The feature of the DLL is that it is not loaded until it is required
thus saving a great deal of memory space.

A driver DLL contains functions which enable a program to access a
particular device which in the case of the FTD2XX.DLL is the USB I/O
24 module connected to the USB port. A feature of a function is that
there are a number of parameters which are required within the function
itself. It is important that the parameters are in the correct format
otherwise an error will occur which could cause the PC to crash. This is
one reason to ensure that whenever DLLs are teing developed the
program is saved before running or otherwise valuable work can be
easily lost.

In order to ensure that the parameters passed to aid from the DLL are
correctly formatted, they have :o be declared and tVis has to be done in
a formal way. The Visual Basic code below illustrates this quite clearly:

Public Declare Function FT_Open Lib "FTD2XX.DLL" (ByVal
intDeviceNumber As Integer, ByRef IngHandle As Long) As Long

Public indicates that the function will be accessible from all parts of the
Visual Basic project and the Function is FT_Open which is stored within
the FTD2XX.DLL file. The two parameters that are being passed are
quite different in their nature. Tie Device Number (i itDeviceNumber) is

an integer between -32768 anc +32767 whose value is being passed to
the function. The IngHandle is the port that is being opened for the
device and ByRef indicates that it is the address of where that handle
exists which is being passed to the function. Long indicates that the
address lies between -214748348 and +2147483347 The As Long
following the brackets indicates the number which is returned when the
function is completed. Often either 1 or 0 is returned to indicate whether
the function has completed its task successfully or not, though there are
cases when a more meaningful number is returned.

28

Programming the Module 3

Visual Basic code
It is assumed that the reader has some knowledge of Visual Basic and
will not be too daunted by the next few sections.

A Visual Basic project consists of Forms and Modules. Forms are the
visual parts that appear whenever the project runs and the module is
similar to a BASIC program even to the extent of having a bas

extension. In the following chapters on interfacing you will find that the
Forms are tailored to the devices that are being considered wr-ie a
module, io_usb.bas will keep on appearing throughout the project.
io_usb.bas is a module which contains all of the information which is
required to communicate with the USB I/O 24 module.

In essence io_usb.bas contains the following parts:

1. Declarations

2. A read device routine (Readprog)

3. A write device routine (Writeprog)

4. Data transfer out (PortOut)

5. Data transfer in (P ortln)

Parts 1, 2 and 3 are Visual Basic code supplied by FTDI with some
modifications, and would appear in any Visual Basic software developed

for the FTDI FT8U245 IC. Parts 4 and 5 have been developed
specifically for the USB I/O 24 module to mimic the 8255A PPI
discussed in the previous chapter.

The next task is to type in the relevant code into the module io_usb.bas.

This must be done carefully to avoid any errors otherwise it will be
necessary to spend time debugging the code. All of this code is required

and it cannot be tested until a suitable Form is produced. Type it each
of the sections and ensure that you save at the end of each section. To
make the task easier, each section will be introduced by a short
explanation of what the code is doing.

29

3 Programming the Module

Declarations

The first part of the Declarations involves declaring the four functions
that are going to be used from the FTD2XXX.DLL. There are several
other functions contained in this file which we will not need to use.

The first two declarations are concerned with opening and clos,ng the
port. The parameters being passed have already been explained.

The FT_Read and FT_Write functions are very similar with the
appropriate port handle being selected, buffers for use of the variable
being required and the size of the buffers being declared. The only
difference is the addresses from where data is to be read and to where
data is to be written.

'Declare FTD2XX functions

Public Declare Function FT_Open Lib "FTD2XX.DLL" 1:ByVal

intDeviceNumber As Integer, ByRef IngHandle As Long) As Long

Public Declare Function FT_Close Lib "FTD2XX.DLL" (ByVal IngHandle
As Long) As Long

Public Declare Function FT_Read Lib "FTD2XX.DLL" (ByVal IngHandle
As Long, ByVal IpszBuffer As String, ByVal IngBufferSize As Long,
ByRef IngBytesReturned As Long) As Long

Public Declare Function FT_Write Lib "FTD2XX.DLL" (ByVal IngHandle
As Long, ByVal IpszBuffer As String, ByVal IngBufferSize As Long,
ByRef IngBytesWritten As Long; As Long

There are a number of constants that are required in FTD2XX.DLL
which have specific values and these are declared in the next section.

30

Programming the Module 3

' Return codes

Const FT OK = 0

Const FT_INVALID_HANDLE = 1

Const FT_DEVICE_NOT_FOUND = 2

Const FT_DEVICE_NOT_OPENED = 3

Const FT_IC_ERROR = 4

Const FT_INSUFFICIENT_RESOURCES = 5

The final part of the Declarations involves declaring a variable a$ which
is to be used throughout the project, so that it is made Public anc will

reside in the io_usb.bas module.

' Declare variable

Public a$

Readprog
This is rather an involved section as it necessitates writing to the port
with certain information and then reading the response. Surrounding
these two processes the USB port is opened and closed

Initially the parameters required by the four functions in the DLL are

declared.

'Read port routine

Public Sub Readprog()

Dim IngHar dle As Long

Dim strWriteBuffer As String * 256

Dim IngBytesWritten As Long

Dim strReadBuffer As String * 256

31

3 Programming the Module

Dim IngBytesRead As Long

Dim IngTotalBytesRead As Long

Dim strLoggerBuffer As String

Dim flFailed As Boolean

Dim flTimedout As Boolean

Dim flFatalError As Boolean

Dim ftStatus As Long

The next section opens the device and checks whether the step has
been successful. The variables that are to be written to the device are
then loaded prior to being written to the device. This is then followed by
another error checking process

'Open device

If FT_Open(0, IngHandle) <> FT_OK Then

Exit Sub

End If

'Load write variables

strWriteBuffer = (a$)

IngBytesWritten = 0

Write output

If FT_Write(IngHandle, strWriteBuffer, Len(strWriteBuffer),
IngBytesWritten) <> FT_OK Then

xit = FT_Close(IngHandle)

Exit Sub

End If

32

Programming the Module 3

The read process is preceded by the setting of a number of variables
prior to the actual process itself. It will be seen that the read is encased
in a Do....While loop which, coupled with error checking, ensures that
all the data to be read is accumulated. The read data is placed it the

variable a$

'Load read variables

flTimedout = False

flFatalError = False

IngTotalBytesRead = 0

IngBytesRead = 0

readsize = 1

IngTotalBytesRead = 0

Do

IngBytesRead = 0

'Read input

ftStatus = FT_Read(IngHandle, strReadBuffer, readsize

IngTotalBytesRead, IngBytesRead)

'Check for success of read

If (ftStatus = FT_OK) Or (ftStatus = FT_IO_ERROR) Then

If IngBytesRead > 0 Ther

strLoggerBuffer = strLoggerBuffer Left(strReadEuffer,

IngBytesRead)

IngTotalBytesRead = IngTotalBytesRead + IngBytesRead

Else

flTimedout = True

33

3 Programming the Module

End If

Else

flFatalError = True

End If

Loop Until (IngTotalBytesRead = readsize) Or (flTimedout = True) Or
(flFatalError = True)

'Display input data or reason for failure

If (flTimedout = False) And (flFatalError = False) Then

a$ = Asc((strReadBuffer))

End If

To complete the Readprog routine the device is closed.

'Close device

xit = FT_Close(IngHandle)

End Sub

Writeprog

The features of the Writeprog have already been described above. The
device is opened, the variable is written to the device and the device is
then closed. At each stage the process is checked for success.

'Write port routine

Public Sub Writeprog()

'Open device

If FT_Open(0, IngHandle) <> FT_OK Then

Exit Sub

End If

'Load write variables

strWriteBuffer = (a$)

34

Programming the Module 3

IngBytesWritten = 0

'Write output

If FT_Write(IngHandle, strWriteBuffer, Len(strWriteBuffer),

IngBytesWrthen) <> FT_OK Then

xit = FT_Close(IngHandle:

Exit Sub

End If

'Close device

xit = FT_Close(IngHandle)

End Sub

PortOut
It can be seen from the Readprog and Writeprog routines that a number
of parameters are required for the Read and Write functions. This can
be reduced by producing specific functions which only contain the
essential information.

The syntax required for usirg PortOut is:

PortC=PortOut(Reg,OUT%)

As the USB I/O 24 module is mimicking the 8255A PPI, Reg refErs to
the Port address that is to be used and OUT% is data between D and
255 that is to be transmited. A Case structure is used to make the
programming as compact as possible. Case 0, 1 and 2 refer to data
being transmitted out of Pots A, B and C respectively.

35

3 Programming the Module

'Writing data function

Public Function PortOut(Reg, OUT%)

'Output data

Select Case Reg

'Port A

Case 0

a$ = "A" + Chr$(OUT%)

Writeprog

'Port B

Case 1

a$ = "B" + Chr$(OUT%)

Writeprog

'Port C

Case 2

a$ = "C" + Chr$(OUT%)

Writeprog

In Case 3 Reg is accessing the Control Register which is used to
determine the direction of data flow. OUT% now refers to the Code
column of Table 2.3.

If the Outputs are replaced by logic 0 and the Inputs by logic 1, Table
2.3 can be converted into Table 3.1.

36

Programming the Module 3

Weighting

Active Port A Port C
(Upper)

Port B Port C
(Lower)

Coc:e
(decirial)

128 16 8 2 1 Total
1 0 0 0 0 128
1 0 0 0 1 129
1 0 0 1 0 130

1 0 0 1 1 131

1 0 1 0 0 136
1 0 1 0 1 137
1 0 1 1 0 133

1 0 1 1 1 133

1 1 0 0 0 144

1 1 0 0 1 145
1 1 0 1 0 143
1 1 0 1 1 147

1 1 1 0 0 152
1 1 1 0 1 153
1 1 1 1 0 154
1 1 1 1 1 155

Table 3 1 8255A control word code settings

The settings of Port A, Port B, Port C(Hi) and Port C (Lo) wil produce a
decimal code after taking into account the weightings of each column.

The code has to initially take the decimal code and create the tinary
equivalent.

Case 3

'Control Register - set Ports A, B & C directions (use register codes)

Dim M(8) As Integer

z% = OUT%

'Convert OUT% into binary 'ormat

For i = 0 To 7

x% = Int(z% / 2)

M(i) = (z% - 2 * x%)

z% = x%

Next

37

3 Programming the Module

Bits 4 and 1 store the direction of Port A and B respectively

'Set Port A direction

If M(4) = 0 Then

a$ = "IA" + Chr$(0)

Else

a$ = "'A" + Chr$(255)

End If

Writeprog

'Set Port B direction

If M(1) = 0 Then

a$ = "IB" + Chr$(0)

Else

a$ = "lB" + Chr$(255)

End If

Writeprog

Bits 3 and 0 hold the states of the Upper and Lower parts of Port C
which must be concatenated to create the Port C direction.

'Allocate Port C(Hi) direction

If M(3) = 0 Then

w% = 0

Else

w% = 240

End If

'Allocate Port C(Lo) direction

38

Programming the Module 3

If M(0) = 0 Then

w% = 0 + w%

Else

w% = 15 + w%

End If

'Set Port C direction

a$ = "!C" + Chr$(w%)

Writeprog

End Select

End Function

Portln

The Portln function is used to read data in from a particular Port of the
USB I/O 24 module. The syntax is:

inp% = Portln (Reg)

Reg is the Port address that is being accessed and inp% is the data
between 0 and 255 which is being returned. Again a Case structure is
used with Case equalling 0 1 and 2 corresponding to Ports 4, B and C,

and the result being placed into inp%

'Reading data function

Public Function Portln(Regi As Variant

'Input data

Select Case Reg

'Port A

Case 0

a$ = "a"

Readprog

Case 1

39

3 Programming the Module

a$ = "b"

Readprog

Case 2

a$ ="c"

Readprog

End Select

'Get data

Portln = Val(a$)

inp% = Portln

End Function

Summary

The io_usb.bas file is used in all of the Visual Basic projects that are
going to be produced in future chapters. It provides all the reference
material that is needed to write and read data to and from the USB I/O
24 module.

The relevant functions to be called from FTD2XX.DLL are initially
declared. The writing and reading to the device has been shown clearly
in all its code and finally two user-friendly read and write functions have
been introduced.

The code that you have written is involved, and typing mistakes are
easy to make. The next stage is to write a simple project to use
io_usb.bas and to rectify any errors before using it in more complex
circumstances

40

4
Digital Input/Output

Using the USB I/O 24 module
The next phase in the development of the use of the USB I/O 24 module

is to check that it works. This will involve using an interface board called
the User Port Tester which will monitor the state of the two Ports A and

B plus their associated control lines. Two programs will the- be
developed. One will check tie output capabilities of the module and the

other the input. These two programs are important since they will
always come in useful later to check that the system is working. In any
interface situation there are several items that have to work, i.e the

interface module, the interface board, the connecting catle an] the
software. Any one of these items may have a fault and it is a ways

useful to revert back to well -tried and tested equipment and software.

Interface Boards
The programs used in the subsequent chapters use interface boards
which are connected to the USB I/O 24 module. Details of tie interface
boards can be found in the Appendix. Each interface board has a 20 -
way IDC ribbon cable connector plug which connects to the ribbon cable

from the USB I/O 24 module.

The interface boards are:

i. User Port Tester -a board to monitor input and output cata of
the USB I/O 24 module.

Stepper -a board to vary the speed of a stepper motor.

8DAC - an 8 -bit digital to analogue converter which is

capable of producing voltage outputs in the ranges 0 to +5.10V

and -2.56V to +2.54V.

41

4 Digital Input/Output

iv. 8ADC - an 8 -bit successive approximation analogue to digital
converter which can convert voltage inputs of between 0 and
+5.10V with a resolution of 2mV and oetween -5.12 and
+5.10V with a resolution of 4mV

v 12ADC - a 12 -bit dual ramp integrating analogue to digital
converter which can convert voltages between -4.095V and
+4.095V with a resolution of 1mV. Using an instrumentation
pre -amplifier it is possible to obtain additional resolutions of
1µV, 10µV and 100µV.

The Appendix provides details of each board, the PCB design, a
component overlay and a list of components requited to make up the
board. The boards can be assembled by any person who has some
knowledge of electronic circuit construction.

If it is not possible to use the interface boards, the reader should find
sufficient detail in the programs such that the techniques can be used in
other applications.

The User Port Tester board

This is a board which can be connected to either Port A or Port B plus
the appropriate parts of Port C of the USB I/O 24 module. It is used to
test input and output programs of the USB I/O 24 module card. The
states of the data lines connected to the computer are set by the USB
I/O 24 module and are indicated by a 10 LED bar display (Figure 4.1).

In order to understand how the USB I/O 24 modu e can be used, its
operation will be introduced by referring to examples written in Visual
Basic. Data can be transmitted to and from the User Port Tester board
using the Visual Basic functions PortOut and PonIn that have been
introduced in Chapter 3.

A program to achieve this requires the following steps:

1) Initialisation - set up the USB I/O 24 module ports as inputs or
outputs

2) Read or write data through the desired ports A, B or C.

42

Digital Input/Output 4

PI
PP

Ps
P4
P3

P2

PO

C2

Figure 4.1 The User Port Tester board

Creating a User Port Tester Input Form
This program produces a User Port Tester Input Form to read data fed
from the User Port Tester board to the USB I/O 24 module connected to

the PC.

On the Visual Basic Form, input data is plotted on a graph in a P cture

Box. The Form should have the layout shown in Figure 4.2. and
consists o: one Label Box Data Recorded, one Text box and a
Command Button. The lower part of the Form contains a Picture Box
with two Label boxes (Voltage and Time) placed as shown.

The Caption on the Form is Input.

The code associated with the various items is listed below.

The Declarations
This assigns the addresses to the Ports A, B and C and also the control

register. To make the program as versatile as possible the addresses of
the registers are referenced to REGA. This means that should the
program be used in the future with a commercial I/O plug-in carc, only

the base address of Port A will need to be altered

The Declarations also make the control register variable out% Private.

43

4 Digital InpuVOutput

ft Input

Start I Data Recopied

Voltage

Tine

Figure 4.2 Layout of the User Port Tester Input Form

'Declare parameters

Const REGA = 0

Const REGB = REGA + 1

Const REGC = REGA + 2

Const CREG = REGA + 3

Private out%

The Form

This configures the USB I/O 24 module and initialises the input Text
boxes.

Private Sub Form Load()

'Assign control register code

out% = 155

'Configure port as input

44

Digital Input/Output 4

Porto = PortOut(CREG, out%)

'Display input value

Tex11.Text = ""

End Sub

The function which accesses the DLL to output data to the USB I/O 24

module is:

Porto = PortOut(CREG, out%)

This feeds the data out% to the register address CREG. The du -tmy
return value. 1, is assigned to the variable Pork) which is never used.
out% must have a value assigned to it before the procedure is called.

The Command button
The function of the Command Button is to initiate the input of data 'rom
the User Port Tester board and plot it on the Picture Box. Whilst the
data is being plotted the caption on the button changes from Start to
Plotting. Initially the axes are drawn bearing in mind that the origin ..0,0)
is at the top left-hand corner of the Picture Box.

Once the plotting starts, the DoEvents() statement is required to break
in and stop the program. The function of this statement is to revert the
program to the Windows operating system and initiate an interrupt
process. 200 data points are plotted.

Private Sub Command1_Click()

'Change Start button To Plotting

Command1.Caption = "Plotting"

'Clear picture box

Picture1.Cls

'Calibrate picture box

Picture1.Scale (-50, -50)-(250, 300)

45

4 Digital Input/Output

'Draw horizontal axis

Picturel.Line (0, 255)-(200, 255)

'Draw vertical axis

Picture1.Line (0, 0)-(0, 255)

'Goto origin

Picture1.PSet (0, 255)

'Plot 200 points

For I = 1 To 200

'Read Port

inp% = Portln(REGA)

'Redirect to operating system

t = DoEvents()

'Display input readings

Text1.Text = INP%

'Plot input readings

Picture1.Line -(I, 255 - INP%)

'Delay

For n = 1 To 1000000

Next n

Next I

'Start button reverts to stop status

Command1.Caption = "Start"

End Sub

The other BASIC command which accesses the DLL is:

inp%=PortIn(REGA)

46

D gital Input/Output 4

This reads register REGA and the returned value is assigned to the
variable inp%

The Userin program
Form1 is saved as userin.frm and the io_usb.bas module should be
added to the project. Check in the project window that this has been
done. The files should be as shown in Table 4.1.

Project

Form

Projectl (userin.vbp)

Form1 (userin.frm)

module modulel (io_usb.bas)

Table 4 1 The userin.vbp project files

Running the Userin program
When the program is run Form1 will appear. Pressing the Start button
will initiate the plotting routine. The switches on the User Port Tester
board can be changed and the input to the USB 1#0 24 module board
monitored both on the grapt- and in the Data Recorded text box. F gure
4 4 shows a typical set of results. The rate of data acquisition is

dependent upon the delay and this can be varied oy the For n = I To
1000000 statement in the above program.

4.1

Data Receded

Tam

Figure 4 4 Userin.vbp in ope-atipn

47

4 Digital Input/Output

Exercise 4.1

4 1 1 Check that the program works and then rem out the
statement t=DoEvents() in the Command button

procedure.

Does the program always now respond to a Break key
press?

Creating a User Port Tester Output Form

This program produces a User Port Tester Output Form to feed data out
from the PC into the USB I/O 24 module.

Data is generated using a Scroll Bar on the Visual Basic Form. The Max
value in the Properties Windows of the Scroll bar is set to 255 (Figure
4.5).

145cra11

allied(rtm

aOcan (None)

:owe 0-Marual

Ina

492

critextli)0

argeCiaxpe I

eft 1030

255

0

I_on (None)

0-DetatA

rghtTal.aft False

1

Figure 4 5 The Scroll bar Property Window

The Form should have the layout shown in Figure 4.6. and consists of
one Label Box (Output Signaf), one Text box and a horizontal scroll bar.
The Caption on the Form is Output.

48

Digital Input/Output 4

ft, Output

Output Sicputi...di

............
Figure 4.6 Layout of the User Port Tester Output Form

The code associated with the various items is listed below

The Declarations

This is identical to the Declarations made in the Userin frm program.

'Declare parameters

Const REGA = 0

Const REGB = REGA + 1

Const REGC = REGA + 2

Const CREG = REGA + 3

Private out%

The Form

This reads the setting of tt- e Scroll bar, configures the USB I/O 24
module and initialises the output Text box

Private Sub Form_Load()

'Assign control register code

oue/0 = 128

'Configure port as output

Porto = PortOut(CREG, out%)

'Read output value from scroll bar

output% = HScro111.Value

49

4 Digital Input/Output

'Display output value

Text1 Text = output%

'Send output value to port

Port0 = PortOut(REGA, output%)

End Sub

out% is set to a value which is used to configure Ports A and B as
outputs.

The Scroll bar is then read and its value is then outputted to Port A.

The Scroll bar

This procedure enables the USB I/O 24 module to output data, which is

displayed on the LEDs on the User Port Tester board. The data is
changed by moving the setting of the scroll bar. This can vary from 0 to
255

Private Sub HScro111_Change()

'Configure port as output

Porto = PortOut(CREG, out%)

'Read output value from scroll bar

output% = HScro111.Value

'Display output value

Text1.Text = output%

'Send output value to port

Port0 = PortOut(REGA, output%)

End Sub

The Userout program

Form1 should be saved as userout.Frm and the io_usb.bas module
should be added to the project. Check in the project window that this
has been done. The files should be as shown in Table 4.2.

50

Digital Input/Output 4

Project

Form

module

Projectl (userout.vbp)

Forml (userout.frm)

modulel (io_usb.bas)

Table 4 2 The userout vbp project files

Running the Userout program
The program will start immediately it is set running. The mouse is used
to move the Scroll bar up and down the scale. The output reading is
displayed in decimal format in the Text box and in binary form on the
User Port Tester LEDs Figure 4 8 shows the Form when the program is

running.

Figure 4.8 The J serout.vbp project running

Exercise 4.2

4.2.1 Wr to a program which sets ports A, B and C as outputs
and operating in a oop causes the lights in the bar code
display to light up in sequence, moving back and forth
across the 10 bars.

Modify the Form to nave a bar display which is illuminated

in a similar manner

4.2.2 Extend the above D ro gra m so that two LEDs light up in
sequence, move in opposite directions across the bar
display from either end and appear to cross over. Again
use all ten LEDs

51

4 Digital Input/Output

Summary

Once you have these two programs running successfully you will have
managed to get data in and out of the USB I/O 24 module. The following

chapters will now utilise these features and they will show you how easy
PC interfacing can be.

52

5

Stepper Motors

Stepper motor applications
Stepper motors may be used in many applications in the laboratory.
They can be used in situations where accurate positioning is required, in
automatic machinery and robotics, and where there is a requirement for
continuous motion which can be controlled by a computer. Stepper
motors are available with a wide range of power and torque ratings to

suit a number of applications.

What is a stepper motor?
A simple stepper motor can be described as a permanent magnet (tie
rotor) which is free to rotate about an axis, and 4 coils located at equal
positions around the rotor. CLrrent can be passed through the coils so
that magnetic fields are created and the rotor attempts to align with
these fields.

The permanent magnet, the variable reluctance stepper motor and
hybrids of the two are more commonly available commercially because
their design enables smaller step angles to be obtained with higher
precision The Stepper driver board is designed to drive a 4 -phase
stepper motor which has 4 coils (i.e. phases) and is the most common
type available. The 4 coils are aligned at 90 degrees to each other and
the direction of the magnetic field produced by each coil alone is shown

in Figure 5.1.

The permanent magnet rotor will line up with the resultant magnetic field

so that as the coils are energised in cyclic order, rotation of the rotor will

be produced. In the full -step mode it is usual to energise 2 adjacent
coils at once since this will produce more torque and power. Thus the
coils are energised in the sequence given in Table 5.1, which rotates

the rotor

53

5 Stepper Motors

to the positions shown. To produce counter -clockwise rotation the coils
are energised in reverse order.

Q1

Q4 Q2

Figure 5.1 Permanent magnet stepper motor

Step No Q1 Q2 Q3 Q4 Decimal Field direction
1 1 1 0 0 3 ;v
2 0 1 1 0 6
3 0 0 1 1 12 .e
4 1 0 0 1 9 l
Table 5.1 Full -step mcde, order in which coils are energised

In the half-step mode the coils are energised in the sequence which
sweeps the magnetic field and hence the rotor to the positions given in
Table 5.2.

Step No Q1 Q2 Q3 Q4 Decimal Field direction
1 1 1 0 0 3 -
2 0 1 0 0 2 -,
3 0 1 ' 0 6 siik

4 0 0 0 4 4,

5 0 0 1 1 12 Ar

6 0 0 0 1 8 4--

7 1 0 0 1 9 1r,

8 1 0 0 0 1 +

Table 5.2 Half-step mode, order in which coils are energised

54

Stepper Motors 5

The Stepper Board
The Stepper board is used to directly drive the coils and has been
designed to drive two stepper motors. As the PC cannot provide
sufficient current for the coils of the motor, a laboratory power supply is
used to supply 5V between the supply and ground terminals of the
Stepper board

Figure 5 2 shows the layout of the Stepper board.

30V110A AlcIdDS

`a-3

a)

I I

I I

GROUND

Figure 5.2 Layout of the Stepper board

Figure 5.3 shows how the board is connected to the PC and to the
stepper motor. A power supply is required to provide sufficient current
for the motor coils, usually between 0.5A and 1.0A. The leads from the
motor are plugged into the stepper board.

Stepper motors are used for many different applications and a good
source of ones suitable for this application is the motor out of an olc disc

drive.

55

5 Stepper Motors

US8
Poet

PC

use PO 24
Moc1.44

Power Supply

NMI

-0 Stepper Motor

Stepper Board

Figure 5.3 Stepper motor connections to the Stepper board

Determining the stepper motor code
Sometimes the code for a stepper motor is unavailable and it is

necessary to run a short program to find the code and also check the
leads of the motor. Figure 5.4 shows how the leads of a stepper motor
are connected.

mom 1111111

03 COM 04

Figure 5.4 Connections to a stepper motor

There are normally six leads from the motor. Two are common and are
connected to ground (OV), the other four are connected to 01, Q2, Q3
and Q4. These should be connected to P1, P2, P3 and P4 on the
stepper board.

The motor code can be found by applying signals to the motor and
finding which combination will cause the motor to rotate. Using Visual
Basic this can be easily achieved by modifying the userout.vbp project
used in the previous chapter.

Connect up the Stepper board, stepper motor and power supply as
shown in Figure 5.3 and start up userout.vbp.

56

Stepper Motors 5

The main modification to the Form is to add a Command button with the
caption Send. Figure 5.5 shows the appearance o' the Form.

111 Steppe! motto. lest RPIn

Send ...
Figure 5 5 The stepper motor test Form

The Caption on the Form is changed to Stepper motor test and the Max

property of HScrolll is changed to 15.

The code required is:

Declarations
This is the declaration of the USB I/O 24 module addresses and the
parameter output% which may be found under Private.

'Declare parameters

Const REGA = 0

Const REGB = REGA + 1

Const REGC = REGA + 2

Const CREG = REGA + 3

Private output%

Command button - Send
Only one value at a time is sent to the USB I/O 24 module.

Private Sub Command1_Click0

'Send output value to port

Port0 = PortOut(REGA, output%)

End Sub

57

5 Stepper Motors

The Form

This is similar to the userout.frm routine.

Private Sub Form_Load()

'Assign control register code

out°/0 = 128

'Configure port as output

Porto = PortOut(CREG, out%)

'Read output value from scroll bar

output% = HScrolll Value

'Display output value

Text1.Text = output%

'Send output value to port

Porto = PortOut(REGA, output%)

End Sub

Scroll bar

Again very similar to the userout.frm but without the transmission of the
data statement.

Private Sub HScrolll_Change()

'Read output value from scroll oar

output% = HScroll1 Value

'Display output value

Text1.Text = output%

End Sub

58

Stepper Motors 5

Steptest.v bp Project

The Form should be saved as steptest.frm, the module io_usb.bas
added and the project saved as steptest.vbp. The files should be as
shown in Table 5.3.

Project Projectl (steptest.vbp)

Form Forml (steptest.frm)

module modulel (io_usb.bas)

Table 5.3 The steptest.vbp project files

Using the Steptest program
When the program is run the user should send separate values :o the
stepper board. A check should be made to see if the rotor of the motor

moves. It should be possible to find a sequence of values which cause
the rotor to rotate smoothly. This code sequence can then be used in
the next experiment.

Variable speed stepper motor
This program is designed to simply start a stepper motor and enab e the

user to select a suitable speed of rotation. Initially it is necessary to
configure all of the pins on the USB I/O 24 module to be outputs and
then to wr te the correct code so that the rotor of the sterner mctor is
energised in the appropriate manner. Time has to be allowed for the
rotor to reach its new position so that there have to be suitable time
delays between energising each of the coils - this is achieved using
delay loops.

In the experiment described below, the Stepper is connected to Port A
of the USB I/O 24 module and the motor is connected to Connection 1

on the Stepper board.

59

5 Stepper Motors

The Form

Start up Visual Basic and select File and New Project. Place on the
Form a Horizontal Scroll Bar, a Timer and a Text box as shown in
Figure 5.7.

Set the Interval property of Timerl to 1000.

The Max property of the Horizontal Scroll Bar should be set to 100.

';ltltlnt Mont I. °Wool INIP3113

Figure 5.7 Stepper Motor Control Form

Add Labels above the Scroll bar and the Text box and change the
Captions to Speed and %Max respectively. Also change the Caption of
the Form to Stepper Motor Control.

The Code

The basis of the control of the stepper motor is via the Timerl control.
Each time the Timerl control is called the stepper motor is permitted to
move. The frequency with which this occurs is controlled by the Timerl
Interval property. It is this property that the user changes with the Scroll
bar.

Declarations

This sets up the USB I/O 24 module registers.

'Declare parameters

Const REGA = 0

Const REGB = REGA + 1

Const REGC = REGA + 2

Const CREG = REGA + 3

60

Stepper Motors 5

The Form

This sets up the variables for the USB I/O 24 module, reads the Scroll
bar value and places it in the Text box and switches off Timerl. This
ensures the Stepper routine is not called and the stepper motor does
not move.

Private Sub Form_Load()

'Display scroll bar setting

Text1.Text = HScro111.Value

'Switch off Timerl

Timerl.Enabled = False

End Sub

The Scroll Bar
This enables the user to set the speed of the stepper motor. The setting
of the scroll bar is read as a percentage of the maximum speec and
then converted is placed into the interval property of
Timerl. Timerl is then enabled so that the Stepper routine is regJlarly
called

Private Sub HScro111_Change()

'Display scroll bar setting

Text1 Text = HScro111.Value

'Assign scroll bar setting to variable

scrolltime = HScro111.Value

'Determine Timerl interval setting

Timerl.lnterval = (1000 - scrolltime * 1000 / 100) + 1

'Switch off Timed when scroll bar setting is zero

If Timerl.lnterval = 1001 Then

Timer1.Enabled = False

Else

61

5 Stepper Motors

Timer1.Enabled = True

End If

End Sub

The Timer

This calls the Stepper routine at the set intervals.

Private Sub Timer1_Timer0

'Call stepper routine

Stepper

End Sub

The Stepper routine

Use the Tools/Add Procedure menu to create this routine which will
appear in the General section of the program Its function is to configure
the USB I/O 24 module as an output and then output the relevant code
to the coils so that they can be energised in the correct order.

Private Sub Stepper()

'Assign stepper motor parameters (Insert code for your motor here)

N1 =3: N2 = 6: N3 = 12: N4 = 9

'Assign control register code

cregout% = 128

'Configure port as output

Port0 = PortOut(CREG, cregout%)

'Send out stepper motor parameter

Port0 = PortOut(REGA, N1)

'Delay (alter according to PC speed)

For I = 1 To 100000: Next I

62

Stepper Motors 5

'Send out stepper motor parameter

Port() = PortOut(REGA, N2)

'Delay (alter according to PC speed)

For I = 1 To 100000: Next I

'Send out stepper motor parameter

Porto = PortOut(REGA, N3)

'Delay (alter according to PC speed)

For I = 1 To 100000: Next I

'Send out stepper motor parameter

Port0 = PortOut(REGA, N4)

'Delay (alter according to PC speed)

For I = 1 To 100000: Next I

End Sub

The step.vbp
The program is saved as step.frm. io_usb.bas is added to the project
which is then saved as step.vbp. The files should be as shown ii Table

5 4.

Project

Form

module

Project1 (step.vbp)

Forml (step.frm)

modulel (io_usb.bas)

Table 5.4 The step.vbp project files

Running the program
The stepper motor does not initially move when the program is fist run
As soon as the scroll bar is moved the motor will rotate and the speed
will increase as the scroll bar is moved further to the right. If it s taken

back to the origin the motor will stop.

63

5 Stepper Motors

Exercise 5

5.1 Modify the program so that the motor can rotate either
clockwise or counter -clockwise.

5.2 Add a separate stop/star. command button.

5.3 Use Table 5.2 to modify the program so that coils are
energised in the half-step mode.

5.4 Assume that the stepper motor is used to wild a lift -car up
and down a shaft.

If the number of revolutions to move the lift -car from one
floor to the next is 20 and the number of floors including the

basement is 6, write a program that will enable the lift -car to
move up or down to any desired floor.

Modify the program so that:

a) users on the top and ground floor have priority

b) an emergency button on the Form stops the lift -car.

Summary

A stepper motor is controlled by sending out a series of numbers in a
repetitive manner. The major proolem is getting the correct sequence of
numbers and you now have a program to deduce those numbers.

In addition you have developed a program that controls the speed of a
stepper motor and are aware of the problems that are encountered with
varying the speed of a motor and ensuring that the rotor moves cleanly
from one step to the next.

64

6
DAC

Digital to Analogue Conversion
A digital to analogue converter is a device which produces an ana ogue

output, i.e a current or voltage, when a digital input is applied to it.

There are two basic forms that are available. One is the weighted
resistor DAC and the other is the R -2R ladder DAC. Select ng suitably
matched resistors makes the construction of the former very difficu t and

so it is not often used in modern DACs. Nevertheless the theory of it
will be found in many electronics textbooks, e.g. Data Converters Dy G
B Clayton. The R -2R ladder DAC is very common and is the oasis :f the
device used in the 8DAC board which is used in this chapter

Theory of the R -2R ladder DAC

The R -2R ladder is an arrangement of resistors that produces an
analogue output which is proportional to the digital bit pattern which is
applied to it. Figure 6.1 shcws how the series resistors R and the shunt
resistors 2R are connected for a 3 -bit DAC.

Output

Bet 3

(TSB)

&t2

Figure 6 1 R -2R ladder DAC circuit

65

6 DAC

The bottom of each shunt resistor has a single -pole double -throw

electronic switch which connects the resistor to ground or to the
reference voltage source.

The output voltage is given by:

+
(I/2)

+
(V3)

where V1= OV or Vrel , V2= OV or Vref, V3= OV or Vrel.

This design of DAC has many advantages in that only two values of
resistors are required and these can be trimmed and matched during
the manufacture of the DAC integrated circuit. In addition the resistors
are mounted on the same substrate so that all experience identical
temperature fluctuations. This type of DAC is referred to as a multiplying
DAC, which means that the output voltage is proportional to the
reference voltage. Hence if the value of the reference voltage is altered,
the range of the corresponding output will also change. The 8DAC
board has an 8 -bit resolution so that the 3 -rung ladder shown in Figure
6.1 is extended to 8 rungs.

Unipolar and Bipolar

The smallest quanta of output that the DAC can produce depends upon
the LSB (Least Significant Bit). A factor which affects the size of the
LSB is whether the analogue range is entirely positive (unipolar) or both

negative and positive (bipolar). The maximum value of the output is
denoted by the term FS (Full Scale). In bipolar mode the minimum value
is referred to as -FS.

In the case of the unipolar 8 -bit DAC with a nominal 5.12V output, the

corresponding digital inputs and analogue outputs are given in Table
6.1.

66

DAC 6

Binary Input Analogue Output

+FS - 1 LSB 1111 +5.10V

1 LSB

,1111

0000 0001 +0.02V

0 0000 0000 OV

Table 6.1 Unipolar 8 -bit DAC output

If the output range is bipolar with a nominal range of ±2.56V, the digital
inputs and corresponding analogue outputs are shown in Mole 6.2.

Binary Input Analogue Output

+FS - 1 LSB 1111 1111 +2.54V

1 LSB 1000 0001 +0.02V

0 1000 0000 OV

-1LSB 0111 1111 -0.02V

-FS 0000 0000 -2.56V

Table 6.2 Bipolar 8 -bit DAC output

If the Tables 6.1 and 6.2 are compared it can be seen that the extent of
the voltage ranges are identical, though the bipolar range is centred
about OV and the maximum positive voltage is half that of the uripolar
value. Also the leading or most significant bit (MSB) in the bipolar mode

is used to indicate the polarity of the analogue signal, i.e. 0 denotes
negative, 1 is positive.

Using the 8DAC board
The USB I/O 24 module provides two ports to which the DAC board
may be connected. Each port consists of 8 data lines which can :e set
up as either inputs or outputs plus two control lines which are used as
interrupt or pulse lines. These ports must be configured so that digital

data can be transmitted to the 8DAC board. The digital cata is
latched into the DAC so that the analogue output will remain constant
even when the DAC is not being addressed by the PC.

The program steps are as follows:

67

6 DAC

1. Configure the port

2. Control line 2 low

3 Apply data to the port

4 Control line 2 high

Sets the data lines as outputs and
initialises the control lines.

Sets the WR line low so that the DAC
responds to data activity on the data bus.

Takes the data and places it at the input
of the DAC.

WR goes high to latch data into DAC.

Configuring the port
Two registers are used to set up the port.

a) Input/output register

b) Control register

In addition control line 2 is connected to the WR line of the DAC. This
line is taken low to access the DAC and high to latch the data.

Features of the 8DAC board

The 8DAC is a voltage output 8 -bit digital to analogue converter (DAC)
board based upon the AD7524 8 -bit multiplying digital to analogue
converter (Figure 6.2).

< I0
co

11411 0

ot

Figure 6.2 The 8DAC board

68

DAC 6

The boarc connects to the USB I/O 24 module which is attached to the
USB port Df the PC. The 8DAC board can be used in either the u-ipolar

(positive cnly output) or bipolar mode (positive and negative output) with

a resolution of 255 steps between the maximum and minimum voltage
outputs. The board is powered from the internal power supply of t -e PC.

It is possible to obtain a full-scale range (FSR) of the voltage output up
to a maximum of +5.12V in the unipolar mode. The selection of the DAC

polarity mode is made using the on -board switch.

The Program
The configuration and output of data to the 8DAC can be reduced to two

statements which can be easily handled by Visual Basic through the
control register and Port A of the USB I/O 24 module.

Start up Visual Basic and select New Project from the File menu.

The Form

Figure 6.3 shows the layout of the DAC Form.

Pdripo

tinOciir

094 %owl _
 _

Waage N

Ficure 6.3 The DAC Form

Place on the Form a Frame with a caption Polarity, a Horizontal Scroll
bar and two Text boxes Place two Option buttons intc the Polarity
frame. Insert three Label boxes with captions Output Signal, Decimal
and Voltage N. Also add a Command Button with a caption of Exit.

In the Properties window of the Option1 button, change Visible to True.
This ensures that the Unbolar option appears active when the program

starts up.

The Max property of the Scroll bar should be changed to 255.

69

6 DAC

The Code

The code can now be assigned to the controls.

The Option Buttons

These are used in conjunction with the 8DAC boarc to select whether
the output from the DAC should be unipolar or bipolar. The current
setting of the scroll bar is converted into the appropriate Voltage scale
and the DAC will follow the change.

Private Sub Option1_Click()

'Set Polarity flag to Unipolar

Polarity = 0

'Goto display routine

display

End Sub

Private Sub Option2_Click()

'Set Polarity flag to Bipolar

Polarity = 1

'Goto display routine

display

End Sub

The Scroll Bar

This is used to change the value of the DAC output. The setting cf the
scroll bar is displayed in Text box 1.

Private Sub HScrolll_Change()

'assign scroll bar setting to variable

inval = HScro111.Value

70

DAC 6

'Output setting to DAC

Port() = PortOut(REGA, inval)

'Goto display routine

display

End Sub

The Form

The interface board is configured as output for Ports A and B. The DAC
is set to the current value of the scroll bar. This value in decimal form
appears in Text box 1 and the voltage notation is in Text box 2.

Private Sub Form_Load()

'Select Port A as output

out% = 128

'Configure USB I/O 24 module

Pork) = PortOut(CREG, ouVio)

'Zero DAC output setting

inval = 0

'set Polarity to Unipolar

Polarity = 0

'Goto Display

display

End Sub

The Display Procedure
This takes the setting of the scroll bar and converts it into the equivalent
voltage based upon the polarity set on the DAC. The procedure also
enables the DAC on Port A of the USB I/O 24 module, outputs a value
to the DAC and then latches the data into the DAC.

71

6 DAC

The procedure can be created by typing in Private Sub Display 0 upon
which the procedure is then automatically created. Alternatively the
Tools/Add Procedure menus can be used and the Private option
selected.

Private Sub display()

'Select equivalent voltage settings

If Polarity = 0 Then

Invalvolt = (5.12 * inval) / 256

Else

Invalvolt = (inval - 128) * 2.56 / 128

End If

'Enable DAC for new data

Porto = PortOut(REGC, 0)

'Send output scroll bar setting to DAC

Porto = PortOut(REGA, inval)

'Latch data into DAC

Porto = PortOut(REGC, 16)

'Display scroll bar setting

Text1.Text = Str$(inval)

'Display equivalent voltage setting

Text2.Text = Format$(1nvalvolt, "$$#.#:#")

End Sub

Command button

On exiting from the program, Form 1 is unloaded and the program
terminated.

Private Sub Command1_Click()

'Remove program and close

72

DAC 6

Unload Forril

End

End Sub

Declarations
The Form is completed by declaring a list of the variables used in the
program and these are placed in the General section.

'Declare parameters

Const REGA = 0

Const REGB = REGA + 1

Const REGC = REGA + 2

Const CREG = REGA + 3

Private out%

Private Polarity As Integer

Private inval As Integer

Private Invalvolt As Double

The Form is saved as 8dac =rm.

Completing the program
The only part of the program left to complete is accessing the DLL
required for the Port0 statement. Here the modularity of Visual Basic is
demonstrated as the project only has to add the file io_usb.bas which
was introduced in Chapter 3. The project is saved as 8dac.vbp an: the

files should be as shown in Table 6.3.

Project Project1 (8dac.vbp)

Form Form1 (8dac.frm)

module modulel (io_usb.bas)

Table 6.3 The 8dac.vbp project files

73

6 DAC

Running the program

8DAC board is connected to Port A of the USB 24 I/O module using the
20 -way ribbon connector. The output of the DAC should be connected
to a digital multimeter set on Volts as shown in Figure 6.4.

PC

8DAC board

Figure 6.4 The 8DAC test circuit

An output is obtained from the DAC when the program is run. As the
scroll bar setting is changed the voltage output will change. Check the
polarity setting on the 8DAC Doard and also on the Form. Figure 6.5
illustrates the Form when the program is running.

2]

Deland

Ottput S9

Wins N

E* I

Figure 6 5 The 8DAC Form in operation

Exercise 6

6.1 Include in your program a method of enabling the voltage to
be ramped up and dowi.

The scroll bar can be used to select the rate of the ramp and

another scroll bar can be used to select the percentage of
the ramp to be used.

74

DAC 6

Option buttons can be used to select rise or fall of the ramp.

6.2 Modify the original program to produce a sinusoidal output or

varying rates and amplitudes.

Use a storage oscilloscope to display the outputs.

6.3 Repeat Exercise 6.2 for a square wave.

Summary
The DAC program is an extension of the programs used for the Jser
Port Tester and the stepper motor. The exercises illustrate the possible
range of applications the DACs possess. Their major limitations are the
voltage rances available anc the speed of response of the output signal.
The voltage range can be easily changed by suitable choice of output
amplifiers. To improve the speed of response of the output signal will
mean programming in C anc creating a DLL to be called from the Visual
Basic program. This is beyond the scope of this book but is certainly not

a difficult task for an experienced C programmer.

75

6 DAC

76

7

8 -bit ADC

8 -bit Analogue to Digital Converter
There are several methods of converting analogue signals into digital
form. These include flash encoders, integrating conversion, successive
approximation conversion and sigma -delta conversion.

The flash encoder performs very fast conversions, and it is used in
transient recorders and video cameras but tends to be very expensive.
The design of the sigma -delta converter was proposed in the 1960s but
it had to wait until the development of large-scale integration on s licon
chips in the 1980s before it went into mass production. Its cost is now
reasonable because of thei- extensive use in the domestic market and
they are available as 16-, 20- and 24 -bit versions.

In instrumentation the two most common Analogue to Digital Converters

(ADCs) are the integrating and successive approximation converters.
The integrating converter produces very accurate noisefree d gital
signals but tends to be relatively slow in performing the process.

A compromise in speed, accuracy and cost of all the currently avai able

converters is the successive approximation analogue to digital

converter. It is a good general purpose device which has a wide range

of applications in the laboratory.

The 8ADC board considered in this chapter is based on an 8 -bit
successive approximation converter which can be used in eithe- the
unipolar or bipolar mode of operation

Unipolar and Bipolar
An ADC encodes an analogue signal into a digital number. Each ...tigital
number encompasses a range or quanta of analogue voltages. Like the

DAC introduced in Chapter 6 the smallest quanta of input that the ADC

77

7 8 -bit ADC

can produce depends upon the LSB (Least Significant Bit). A factor
which affects the size of the LSB is whether the analogue range is
entirely positive or entirely negative (unipolar) or both negative and
positive (bipolar).

In the case of an 8 -bit ADC with a nominal Full Scale (FS) of 5.12V
input the corresponding digital outputs are given in Table 7 1.

Binary Output Analogue Input

+FS - 1 LSB 1111 1111 +5.10V

1 LSB 0000 0001 +0.02V

0 0000 0000 OV

Table 7.1 Unipolar 8 -bit ADC

FS - Full scale, i.e. Maximum positive or negative analogue input

LSB - Least Significant Bit, i.e. smallest incremental digital change

If the input range is bipolar and extends from -5.12V to +5.08V the
digital outputs are shown in Thole 7.2.

Binary Output Analogue Input

+FS - 1 LSB 1111 1111 +5.08V

1 LSB 1000 0001 +0.04V

0 1000 0000 OV

-1 LSB 0111 1111 -0.04V

- FS 0000 0000 -5.12V

Table 7.2 Bipolar 8 -bit ADC

If Tables 7.1 and 7.2 are compared it can be seen that the MSB is used
as a sign bit for bipolar operation, i.e. 0 denotes negative, 1 is positive.

78

8 -bit ADC 7

Theory of Operation
To actually program the ADCs it is also useful to understand the manne-

in which they operate.

The 8ADC board uses the ADC0804 ADC which is a successive
approximation device. Figure 7.1 shows a block diagram of the essential

features of such an ADC.

Analogue

CI)

O

Clock RC
or
Ext dodo

Comporetof

RD
0

GNU
0
V.
O

('5V)

Clod(

Interface

Control Logic

/1
Successive
Approximation
Register

8

8 -bit DAC

3 state
Buffers

2 5V
Refererco

Figure 7.1 A successive approximation ADC

WR
Convert
0

BUSY

0 DM

o DBO

V*"SIN

0 V.,
OUT

Basically the input voltage is compared to a reference voltage which is
produced by the internal DAC. The successive approximation register
generates a digital output at each clock pulse and controls the DAC
output which will eventually equal the input voltage. The use of a
comparator enables the digital output of the successive approximation
register to either increase or decrease in response to the DAC output
being either greater or smaller than the input voltage. Figure 7.2 shoves
the signals generated within the ADC at each clock pulse.

When a low level signal is applied to both the CS (Chip Select) and WR
(Write) line of the ADC, the ADC is put into a hold state with the BUSY

79

7 8 -bit ADC

line low and the MSB of tt- e ADC set to logic 1. A positive transition of
either the CS or WR line at a falling edge of a clock pulse starts the
successive approximation process. A decision is made whether or not
the MSB remains at logic 1 or drops to logic 0 depending upon whether
the input voltage is greater or smaller than the DAC output. At the next
clock pulse the next bit is set and on the falling edge of a clock pulse
this bit is left at logic 1 or changed to logic 0 depending again on the
relative magnitude of the input signal with respect to the DAC output.
The process continues and is completed when all 8 bits have made a
decision and the BUSY line then goes high. The process takes a
maximum of 8 clock cycles even though the input voltage and DAC
output may have balanced earlier.

Clock

CS or WR-LI

3 4 6

BUSY agli

MSB

r
2

3 I

5

6 iL

7 Mi
LSB 8

Figure 7.2 Successive approximation ADC waveforms

0

0

0

0

The 8ADC board

The 8ADC board is based upon an AD0804 8 -bit successive
approximation analogue to digital converter. This device is

manufactured by several companies including National Semiconductors,
Intersil and Philips. In the free running state it has a quoted conversion
rate of 13690 conversions per second, and it may be used in either

80

8 -bit ACC 7

the unipolar (OV to +5V) or bipolar (-5V to +5V) input mode. The
accuracy of the device is Ti_1LS 3.

The ADC0804 has an internal clock, and conversions can be initiated :y
having both CS and WR inputs low and then allowing one to go hich.
On the 8ADC board the CS Ihe is used to start conversions and the
only other connections are +5V, OV. and 8 data lines. These are all
provided by the USB I/O 24 module. The end of conversion sigr al is rot

monitored.

Use of the 8ADC board
A slide switch on the 8ADC board (Figure 7.3) enables it to be used n

either unipolar or bipolar mode.

1
II I III
MI
B u 8ADC

II

Figure 7.3 The 8ADC board

In position B (Bipolar position) input voltages in the range -5.12V to
+5.08V can be used and the code used is offset binary. In position U
(Unipolar position) input voltages in the range OV to +5.10V can be used

and these will be converted into a binary code. Full constructional
details of the 8ADC board are supplied in the Appendix.

Input voltages are applied to the 8ADC using the two 4mm terminals
and the boarc is connected to the USB I/O 24 mocule using the 20 -way

ribbon cable (Figure 7.4).

81

7 8 -bit ADC

Figure 7.4 Connecions for using an ADC with the PC

Program

Start up Visual Basic, select New Project and display Form1 on the
screen.

In the Properties window for Form1 change Caption to 8ADC.

Figure 7.5 shows the arrangement of Form1.

Figure 7.5 Layout of Form1

In the top left-hand corner place a Frame and change its Caption in the
Properties window to Polarity.

Within this Frame place two Option Buttons, one above the other as
shown.

Make the Captions for these two Buttons Unipolar and Bipolar. The
Value property of the Unipolar Button is made True.

82

3 -bit ADC 7

Alongside the Frame place two Command Buttons which have the
Captions Start and Exit.

Below the Command Button place two Labels with Captions Decimal

and VoltageN.

Two Text Boxes are placed below the Labels. The Text in the Text
Boxes should be cleared with the spacebar.

The last control to be placec on the Form is the Timer which should be

placed at the bottom left-hand corner. The Interval and Enabled
properties should be set to 500 and False respectively.

Inserting Code
Initially code should be attactied to the Form and buttons.

The Form

This initiates the Unipolar option button.

Private Sub Form_LoadO

'Initialise Polarity

Polarity = 0

End Sub

The Option Buttons
Each Option Button is ass gned a state for Polarity which is used to
determine the voltage equivalent of the decimal signal read Dy the USB

I/O 24 module.

Private Sub Option l_Clicke

'Set Polarity flag to Unipolar

Polarity = 0

End Sub

83

7 8 -bit ADC

Private Sub Option2_Click(

'Set Polarity flag to Bipolar

Polarity = 1

End Sub

The Timer Control

This calls the Capture routine which initiates the 8ADC board and the
Display routine which puts the Decimal and Voltage readings on to the
screen.

Private Sub Timerl_TimerO

'Goto Capture

Capture

'Goto Display

Display

End Sub

The Command Buttons

The left-hand button is used to Start and Stop the reading of the ADC.
This it does by enabling and disabling the Timer control. The caption of
the button also changes.

Private Sub Command1_Clicki)

'Toggle Timerl

Timer1.Enabled = Not Timer1.Enabled

'Toggle Command1 caption

If Command1.Caption = "Start' Then

Command1.Caption = "Stop"

Else

84

8 -bit ADC 7

Command1 Caption = "Star"

End If

End Sub

Private Sub Command2_CI ck()

'Remove program and close

Unload Form1

End

End Sub

Declarations
All of the parameters used in the program have to be decla-ed and this
is done under Declarations. This will include the addresses of the
registers for Ports A, B and C and the control register.

'Declare parameters

Const REGA = 0

Const REGB = REGA + 1

Const REGC = REGA + 2

Const CREG = REGA + 3

Private out%

Private Polarity As Integer

Private inval As Integer

Private Invalvolt As Double

The Procedures
There are two procedures which appear in the general part of the
program. These can be created by typing in Private Sub Capture') such

that the procedure is teen created or by using the Tools/Add
Procedure menus.

85

7 8 -bit ADC

Capture initiates the USB I/O 24 module. It has been written so that it
can be adapted for use with either Port A or B.

Port A will be used.

The process for activitating the 8ADC is as follows:

1. Send start conversion pulse by making CS high (Control line
2 low to high)

2. After a delay, take CS low to permit data latch to be read
(Control line 2 low).

3. Read data.

This is encoded in the following way:

Private Sub Capture()

'Switch off timer

Timer1.Enabled = False

'Configure USB I/O 24 module

out% = 147

Porto = PortOut(CREG, out%)

'Control line 2 high

Port() = PortOut(REGC, 16)

'Delay

For k = 1 To 1000: Next k

'Control line 2 low

Porto = PortOut(REGC, 0)

'Read ADC

inval = Portln(REGA)

'Switch on timer

Timer1.Enabled = True

'Check for any keyboard interrupts

86

8 -bit ADC 7

DoEvents

End Sub

Doevents ensures that the keyboard can be used to interrupt the
program at any time.

The Display function checks the state of the Polarity flag and

determines the voltage reading in either the Unipolar or Bipolar mode. It

also places the ADC readings in the appropriate text boxes.

Private Sub Display()

'Select equivalent voltage settings

If Polarity = 0 Then

invalvolt = (5.10 inval) / 255

Else

invalvolt = (inval - 128) " 5.12/ 128

End If

'Display ADC decimal reading

Text1.Text = Str$(inval)

'Display ADC voltage reading

Text2.Text = Format$(invalvolt, "##.#4")

End Sub

The file should be saved as 8adc.frm. The file io_usb.bas shou'd be
added so that the Project window contains the following nforrnation

(Table 7.3).

Project Project1 (8adc.vbp)

Form Form1 (8adc.frm)

module module1 (io_usb.bas)

Table 7.3 The 8adc.vbp project files

87

7 8 -bit ADC

The project should be saved as 8adc vbp

Equipment

The equipment required to use the 8ADC consists of an 8ADC board,
laboratory power supply (0-3CV, 2A) and a digital voltmeter (DVM).

The equipment is connected to the PC as shown in Figure 7.4.

The 8ADC board should be connected to the USB I/O 24 module by the
20 -way ribbon cable.

Running the program

Set the switch on the 8ADC board to Unipolar and run the program.
Switch on the power supply, vary the input voltage applied to the 8ADC

board and observe the change in readings on the screen. Figure 7.6
shows some typical readings.

Decimal Voltage N

1173 13.46

Figure 7.6 Readings from the 8ADC

Exercise 7

7.1 Test the program with the 8ADC switch set to both Unipolar
and Bipolar modes.

You will have to reverse the connections from the power
supply to obtain negative voltages.

7. 2 Modify the program so that it either stops when 500 readings
have been taken or when any key is pressed on the
keyboard.

88

8 -bit ADC 7

7 3 Use a CMDialog control to add Save, SaveAs and Print
dialog boxes to the program.

7.4 Adapt the program so that the voltages are captured at
second intervals and displayed graphically.

7.5 Check the frequency range of the 8ADC by applying a
sinusoidal signal to the 8ADC and observing the waveform

on the screen.

What happens when the switch is set

a) in the unipolar position,

b) in the bipolar pos tion?

7.6 A simple signal processing technique is to take a number :f
readings, e.g. 16, and average them before displaying then.

This can be achieved quite simply by modifying the Timer
routine so that each time a reading is taken it is added to a

running total. When 16 readings have been taken ai
average can be taken and displayed. The counter and th
running total are then zeroed and the process

recommenced.

The Timer routine will require the following modification:

Private Sub Timerl_Timero

'Recover previous counter value

Static j

'Goto Capture

Capture

'Summate ADC readings

adcsum = adcsum + inval

'Increment adc reading counter

89

7 8 -bit ADC

j = j + 1

'Check for 16 ADC readings

If j > 16 Then

'Average adc readings

inval = Int(adcsum / 16)

'Reset counter and ADC sum

j = 1

adcsum = 0

'Goto Display

Display

End If

End Sub

Static j ensures that the counter value from the previous
pass through the routine is retained.

Modify the original 8adc.vbp program so that this signal
averaging can be used and remember that Declarations and
Load will require some changes.

7 7 Connect a thermistor and a 1k resistor in series to a power
supply. Maintain a constant voltage of 5V across the two
components and monitor the p.d. developed across the
thermistor using a DVM Crocodile clips are ideal for making
the connections.

Heat the thermistor, e.g by bringing it close to a lamp bulb
and observe the change in voltage on the DVM.

7. 8 When the system is working correctly, replace the DVM with
the 8ADC and plot a cooling curve of the thermistor

90

8 -bit ADC 7

Summary
The 8ADC board has many general-purpose applications and will find
numerous applications in project work. Its major disadvantage is that it
is sensitive to noise but this can be turned to its advantage if it is used
to experiment with different signal processing techniques.

The Visual Basic programs do not reveal the full capabilities of the
8ADC. If the reader has experience of C programming it may be
advantageous to translate the Capture sub -routine into C, compile as a

DLL and then incorporate the resulting DLL into the Visual Basic display

Form. This procedure is beyond the scope of this book but it :an

provide an excellent program for reasonably fast data acquisition.

91

7 8 -bit ADC

92

8

12 -bit ADC

12 -bit Analogue to Digital Conversion
The 8 -bit successive approximation ADC is very good for perform ng
reasonably fast analogue to digital conversion but it is very susceptible

to noise ano spurious signals. Integrating ADCs are slower but their
design ensures that noise is reduced significantly. The 12ADC board is
based upon a dual -ramp integrating ADC, which uses the same timing
system to measure an unknown voltage which is then compared with a
reference voltage. This makes the 12ADC board ideal for use with
thermocouples and strain gauges in bridge circuits where accuracy of
the reading is far more important than speed of data acquisition.

12ADC resolution

The dual -ramp integrating ADC chip used in the 12ADC board has a
quite different mode of presenting its digital data compared to that o' the
8ADC board. The 12ADC board data output has a sign bit as well as the

data bits.

In the case of a 12 -bit ADC this means that there are 4095 quanta ir, the
positive sense and 4095 quanta in the negative sense. The device is
bipolar and may be regarded as having a 12 -bit resolution in :oth
senses. If the ADC has an LSB equivalent voltage of +1mV, the inputs
for such an ADC can range from -4.095V to +4.095V. The

corresponding binary outputs are given in Table 8.1.

93

8 12 -bit ADC

Sign bit Binary Output Analogue Input

+FS 1 1111 1111 1111 +4.095V

+1 LSB 1 0000 0000 0001 +0.001V

0 1 0000 0000 0000 +0.000V

-1 LSB 0 0000 0000 0001 -0.001V

-FS 0 1111 1111 1111 -4.095V

Table 8.1 12 -bit ADC with sign bit

Theory of Operation of the dual -ramp integrating ADC

The 12ADC board is built around the ICL7109CPL which is a dual -ramp

integrating ADC. The principle of operation of a dual -ramp ADC is
dependent upon a capacitor which is charged up by the input voltage
and discharged under the control of a reference voltage. The relative
times of charge and discharge determine the amount by which the
counter is incremented by a number of clock pulses. Figure 8.1 shows a
schematic of the circuit.

-v ,
0 0 0

SI\ S2\ S3Ck

Clock

Figure 8.1 A cual-ramp integrating ADC

94

12 -bit ADC 8

Initially the input voltage is connected to the integrator in which the
capacitor C is charged up. This causes the comparator to keep the gate

open enabling clock pulses to be applied to the counter. The counter
increments until it is fully loaded. It then clocks over into the unloaded
state and transmits a pulse to the switch control. This disconnects the
input voltage and connects the reference voltage to the integrator. The
reference voltage is negative and causes the capacitor C to discharge.
The gate remains open while the capacitor is discharged until the
integrator output is zero and about to become negative. The gaze is
closed and no more pulses reach the counter. The number stored in the

counter is proportional to the input voltage.

This may be proved as follows:

Figure 8.2 shows the voltage output of the integrator as the capacitor
charges and discharges. The slopes are linear since the time constant
RC is relatively large.

Voltage

V

Figure 8.2 Voltage output of the integrator

If the time taken for the capacitor to charge up under control of the
integrator is ti, the capacitor voltage is Vo(ti). V, is the input voltage.

t' 1 Vt,
(t ,) = =

CR

The capacitor now discharges from V°(ti) in the time t2. The integrator
output voltage V°(t2) is given by:

Vc,(12)
CR

95

8 12 -bit ADC

where Vre, is the reference voitage.

Since Vo(ti) = V.(12) - (see Figure 8.2),

Vt, V,,,t2

CR CR

and V,t, = Vreft2.

Hence y _
V7,t2

If the clock is producing pulses at a regular rate of n per second

= nth and N2 = nt2'

Therefore VI -
VrefN2

Ni

Vie, / NI may be replaced by a constant K since Vier is a constant and
N1 is the value of the loaded counter.

Therefore V, = KN2.

i.e. V f N2

If the input signal is negative, the capacitor will charge up in the
negative direction. This will be sensed by the control logic which will
switch in a positive reference voltage causing the capacitor to charge up
in the positive direction. The graph in Figure 8.2 will be inverted. The net
result will be same, with the unknown voltage V. being proportional to
the counter reading, N2 but with the sign bit set for negative.

The main disadvantage of the dual -ramp integrating ADC is that it is

relatively slow acquiring this charge and then discharging the capacitor.
The major advantage is that it integrates the input signal and removes
any spurious noise signals that may occur.

96

12 -bit ADC 8

Dual -Ramp Integrating Analogue to Digital Conversion

There are many occasions in the laboratory when it is necessary to
measure small voltages, e.g. microvolts. A dual -ramp integrating
analogue to digital converter is ideal for such purposes since i: can
produce results with a high degree of reproducibility and accuracy. The
major disadvantage of such ADCs is that they tend to be slow i.e.

conversion times in the order of tens of milliseconds but this is not too
problematic in the laboratory environment where many sensors and
transducers require long (in computer speed terms) times to acquire
their readings.

The12ADC board is a 12 -bit analogue to digital converter which can be
used in the range of ±4.095V. It may be used with the USB I/O 24
module fitted to a PC The board is based upon an ICL7109CPL device
which has an auto zero facility and outputs its digital data in a hig- and
low byte format. The high byte contains bits signifying polarity,

overrange and the 4 most significant bits of digital data and the low byte

has the 8 remaining bits of data. Figure 8.3 slows the appeararce of
the 12ADC board.

n

II [I1

I I I LI
Figure 8.3 12ADC board layout

In order to make measurements at lower voltages it is necessary to

insert a pre -amplifier between the signal source, i.e. the sensor or
transducer, and the 12ADC board. The Variable Gain Programmable
Amplifier (VGPA) board serves this particular purpose (Figure 8 4).

II

I7©1

og

97

8 12 -bit ADC

The VGPA board uses an A3524 precision instrumentation amplifier
and increases the sensitivity of the 12 -bit ADC board. The VGPA board

contains a pre -amplifier input stage which has a gain that can be set to
xl, x10, x100 and x1000. This gives the following voltage ranges:

xl -4.095V to +4.095V _

x10 -409.5mV to +409.5mV

x100 -40.95mV to +40.95mV

x1000 -4.095mV to +4.095mV

71
71

D

&ND
-1/P

UP

Figure 8.4 The VGPA board

Method of obtaining the data
A feature of the 12ADC board is that it has an 8 -bit digital output yet it is

capable of producing a resolution of 12 bits accompanied by a sign and
overrange bit. This is achieved by introducing some additional circuitry
on the board which enables the lowest 8 bits, i.e. the low byte, to be
read separately from the highest 8 bits, i.e. the high byte (2 of these
bits are subsequently discarded).

Figure 8.5 shows a schematic of the input circuitry that is used to
access the high and low data bytes This consists of a D -type flip-flop
which is toggled by a control signal pulse.

98

12 -bit ADC 8

CA2

Figure 8.5 Circuit used to access high and low bytes

The data is accessed by the PC by transmitting a control signal on
Control line 2 (CA2 or CB2) of the interface board to read the high byte
followed by another control signal on Control line 2 to read the low bee.

The problem that arises is that the system has to be initialised so .hat

the bytes are read in the correct order. This cieck is performed by
using Control line 1 (CA1 o- CB1) to indicate when the hich byte is
ready to be read. The sequence of events using Port A is indicatet in
Figure 8.6.

CA2/Clock

CA2/
CE/LOAD

CA1/
Q/ HBEN

Q/ LBEN

Time

Time

Timep.
Tine

Figure 8.6 Sequence to obtain high and low bytes

Program
Start up Visual Basic, select New Project and display Form1 on the
screen.

In the Properties window for Form1 change Caption to 12ADC.

99

8 12 -bit ADC

Figure 8.7 shows the arrangement of Form1

In the top left-hand corner place a Frame and change its Caption in the
Properties window to Gain.

Within this Frame place four Option Buttons one above the other as
shown.

Figure 8.7 Layout of Form1

Make the Captions for these four Buttons x/, x10, x/00 and x1000. The
Value property of the x1 is made True.

Place alongside the Frame two Command Buttons which have the
Captions Start and Exit as shown in Figure 8.7.

Place five Labels with Captions Polarity, High, Low, Decimal and
VoltageN on to the Form.

Five Text Boxes are placed alongside the Labels. The Text in the Text
Boxes should be cleared with the spacebar.

A further Label is placed ad:acent to the second Text Box down (see
Figure 8.7) and its Caption should be changed to x256.

The last control to be placed on the Form is the Timer which should be
placed at the bottom left-hand corner. The Interval and Enabled
properties should be set to 590 and False respectively

Inserting Code

Initially code should be attached to the Form and buttons.

100

12 -bit ADC 8

The Form
This initiates the Gain option button and ensures that the displayed
voltages are set for unity gain.

Private Sub Form_Load()

'Initialise Gain variable

Gain = 1000

End Sub

The Option Buttons
Each Option Button is assigned a state for the Gain which is used to
determine the voltage equivalent of the decimal signal read by the USB

I/O 24 module. With each Gain there is a setting for the label associated

with the Voltage display.

Private Sub Option1_Click()

'Set Gain

Label5.Caption = N"

Gain = 1000

End Sub

Private Sub Option2_Click()

'Set Gain

Label5.Caption = "Voltage /mV"

Gain = 10

End Sub

Private Sub Option3_Click()

'Set Gain

Label5.Caption = "Voltage /mV"

Gain = 100

101

8 12 -bit ADC

End Sub

Private Sub Option4_Click()

'Set Gain

Label5.Caption = "Voltage /mV"

Gain = 1000

End Sub

The Timer Control

This calls the Capture routine which initiates the 12ADC board and the
Display routine which puts the Decimal and Voltage readings on to the
screen.

Private Sub Timer1_Timer0

'Goto Capture

Capture

'Goto Display

Display

End Sub

The Command Buttons
The left-hand button is used to Start and Stop the reading of the ADC.
This it does by enabling and disabling the Timer control. The Caption of
the button also changes.

Private Sub Command1_Click0

'Toggle Timerl

Timer1.Enabled = Not Timer1.Enabled

'Toggle Command1 caption

If Command1.Caption = "Start" Then

102

12 -bit ADC 8

Command1 Caption = "Stop"

Else

Command 1 .Caption = "Start"

End If

End Sub

The right-hand button. i e. the Exit button, unloads the Form prior to
closing down the system.

Private Sub Command2_Click0

'Remove program and close

Unload Form1

End

End Sub

Declarations
All of the parameters used in the program have to be declared anc this

is done under Declarations

'Declare parameters

Const REGA = 0

Const REGB = REGA + 1

Const REGC = REGA + 2

Const CREG = REGA + 3

Private out%

Private Gain As Single

Private HiX As Integer

Private LoX As Integer

Private inval As Integer

103

8 12 -bit ADC

Private Invalvolt As Double

The Procedures

There are two procedures which appear in the general part of the
program. These can be created by typing in Private Sub Capture() when
the procedure is then created or by using the Tools/Add Procedure
menus

Capture puts into practice the sequence of events that are shown in
Figure 8.6. These are:

1. Transmit pulse(s) on Control line 2 until Control line 1 goes high.

2. Transmit pulse on Control line 2 and read high (Hi) byte.

3. Transmit pulse on Control line 2 and read low (Lo) byte

4. Print (Hi byte * 256) + (Lo 3yte).

5. Repeat from 1.

The routine first configures the USB I/O 24 module. it then ensures that

the 12ADC is set up to output the high and low bytes in the correct order
and then it reads the ADC. The routine has been written so that it can
be adapted for use with either Port A or B.

Port A will be used.

Private Sub Capture()

'Initialise High and Low bytes array

Static X(2) As Integer

'Configure USB I/O 24 module

out°/0 = 147

Porto = PortOut(CREG, out%)

'Initialise 12ADC board

Do

'Control line 2 low

Porto = PortOut(REGC, 0)

104

12 -bit ADC

'Control line 2 high

Porto = PortOut(REGC, 16)

'Control line 2 low

Port0 = PortOut(REGC, 0)

'Check for control line 1

z% = Portln(REGC) And 1

Loop While z% = 0

For I = 1 To 2

'Control line 2 high

Port0 = PortOut(REGC, 16)

'Read ADC

X(I) = Portlr(REGA)

'Control line 2 low

Port0 = PortOut(REGC, 0)

Next I

'Load High byte

HiX = X(1)

'Load Low byte

LoX = X(2)

End Sub

The Display function has the task of stripping the overrange and sign bit

from the high byte, and it also checks the state of the Gain flat and
determines the voltage reading. It places Polarity, the values of the high
and low bytes and both of the ADC readings in the appropriate text
boxes.

Private Sub Display()

'Determine polarity

105

8 12 -bit ADC

Polarity = (HiX And &H20) / 32

Inval = (2 ' Polarity - 1) ((HiX And &HF) * 256 + LoX)

If Polarity = 1 Then

Text1.Text = "+"

Else

Text1.Text =

End If

'Display High byte

Text2 Text = (HiX And &HF)

'Display Low byte

Text3.Text = LoX

'Adjust voltage for Gain setting

Invalvolt = Inval / Gain

'Display ADC decimal reading

Text4.Text = Str$(Inval)

'Display ADC voltage reading

Text5.Text = Format$(1nvalvolt, "#:#.#4/44")

End Sub

The file is saved as 12adc frm and the file io_usb.bas should be added.
The project is saved as 12adc vbp and the files should be as shown in
Table 8.2.

Project

Form

module

Project1 (12adc.vbp)

Form1 (12adc.frm)

modulel (io_usb.bas)

Table 8.2 The 12adc.vbp project files

106

12 -bit ADC 8

Equipment
The equipment required to use the 12ADC consists of The 12ADC
board, a laboratory power supply (0-30V, 2A) and a digital voltmeter
(DVM). To monitor low volages the VGPA board and a selection of
resistors will also be required.

Running the program
Initially the 12ADC board should be connected to the USB I/O 24
module by the 20 -way ribbon cable. A laboratory power supply should
then be connected to the input of the 12ADC board.

The circuit layout is shown in Figure 8.8.

Figure 8.8 The 12ADC circuit layout

Set the gain on the 12ADC Form to Gain x1 and run the prcgram.
Switch on the power supply, vary the input voltage applied :o the
12ADC board and observe the change in readings on the screen =figure

8.9 shows the 12ADC Form when the program is running

CIIESMMIIGZEI

r. 0
Pcianly Ftow

r no HO F----- 066
r OOP

(4 I
LOW FT -r ,4

Decimal 1 1519

Voltage N 1517

Figure 8.9 Display 12ADC data

107

8 12 -bit ADC

Exercise 8.1

8.1.1 Set up the 12ADC board and use the program to check
that it is operating ccrrectly.

Apply both negative and positive voltage inputs to the
board and investigate if there are any discrepancies in
the readings that are obtained.

Monitor the input voltage with a DVM and compare the
12ADC readings.

8.1.2 Add option boxes and modify the program so that the
12ADC may be used on either Port A or Port B.

8.1.3 The stability of the 12ADC board may be verified by
setting the input voltage to a particular value and
checking the displayed reading over a period of time, e.g.
1 hour, 2 hour, 24 hours!

8.1.4 Connect the 12 ADC to either an experiment or

instrument which produces a voltage output in the range
0.000 to 4.095V and investigate whether the 12ADC can
be used as a substitute for the normally used voltmeter.

8.1.5 Store your readings in an array and plot a graph in real
time.

8.1.6 Use a CMDialog control to add Save, SaveAs and Print
dialog boxes to the program.

Small signal measurement - Using the VGPA board
The programs used with the combined 12ADC and VGPA boards are
identical to those used with the 12ADC board, with slight modifications

108

12 -bit ADC 8

in the Full Scale Range (FSR) to account for the voltage range teat is
being used. Figure 8 10 shows the circuit connections.

PC

cr..

too" -.1..

Pow,/ Sry:4y

.0 0.

12ADC Inst Amp

.0 o_
123.45

DVM

Figure 8.10 The 12ADC and VGPA circuit layout

Making connections to the VGPA board
There are 3 inputs to the VGPA board, a positive signal input, a
negative signal input and a ground line (Figure 8.11).

In most circumstances it is necessary to connect the GND and -I/P
together. The signal input should then be connected between the -I/P
and +I/P lines The board is connected to the 12ADC board using he 15

-pin D type connector

0 GND

0 -I/P

0 +I/P

Figure 8.11 Connections to the input of the VGPA board

Selecting the gain
The gain of the VGPA board is selected by jumpers A, B and Con the
board. These are situated close to the input terminals and requ -e the
jumper connections to be made according to Figure 8.12.

109

8 12 -bit ADC

O o A
O o B
o o C

Gain Connection

X1 None

X10 A

X100 B

x1000 C

Figure 8.12 Selecting the gain of the VGPA board

Exercise 8.2

8.2.1 The program already written for the 12ADC can be used
with the VGPA.

If the FSR of 4.095 mV, i.e. gain of 1000, is used it will be
necessary to use the circuit in Figure 8.13 to attenuate the

input of the power supply if this is used for test purposes.

100K

Power
Supply

1 OR DVM

+I/P

To VGPA

Figure 8.13 Potential divider circuit to reduce power supply output

Summary

The 12ADC board has many applications in instrumentation. Its good
stability means that it can be used for temperature measurements as
well as the host of applications involving strain gauges. What must
always be remembered is that time has to be given for the conversion to
take place. The time taken by the hardware to perform is compensated
by the considerable reduction in signal processing required within the
PC needed for other types of converting devices.

It is important to select the appropriate ADC for the task and in lots of
respects this is the additional skill that has to be developed along with
the skill of actually programming the device.

110

Appendix

The Interface Boards
This Appendix provides information about the circuit boards used in
Chapters 4, 5, 6, 7 and 8. The circuit board designs have been
developed in Aries 5.2 Professional produced by Labcenter Electro=nics.

Each board has two copper masks and a silk screen overlay showing

the position of the components. One copper mask shows the

component side view, the other is the track side view. A problem with
any printing process is that it is very difficult to reproduce he masks in
this Appendix to the dimensional accuracy required to fabrica:e the
boards directly from the mask. With the exception of the 8ADC board
which is 5cm x 10cm in size, all boards should be 10cm square.

To achieve these dimensions the relevant mask should be scanned and

inserted into Microsoft Word for Windows. The resulting images can
then be adjusted until the appropriate horizontal and vertical scales are
achieved. Each copper PCB mask has scales attached.

The component side mask can be copied on to good quality tracing
paper using a laser printer. Alternatively the track side mask can be
used as a pattern with acetate sheet and crepe tape to produ:e the
component layout.

The circuit board can then be produced by the normal p-ocedure for
manufacture of PCBs.

Accompanying each PCB mask and silk screen overlay in this Apcendix
is a list of components and details of the circuit. Included in the list of
components is the name of a supplier and its catalogue number. The
addresses of these suppliers are given in section A7.

Once a circuit is produced it can be tested with the program listec in the

appropriate Chapter

111

Appendix

Al The User Port Tester

The User Port Tester board is used to test the digital input/output
signals passing through the USB I/O 24 module card. The board can
provide the input 8 -bit digital signals by throwing the appropriate
switches of the DIL switch on the board. The 8 -bit code generated is
displayed on the LED bar code. The board can also display, on the
same LED display, 8 -bit binary codes being fed out of the PC. The two
remaining bars indicate the status of the two control lines of the port
being tested. The board will automatically operate in the correct mode.
input/output, as set by the USB I/O 24 module.

A1.1 Circuit

Figure A1.1 shows one of the ten circuits that drive each of the LEDs. In
the input mode the position of the switch determines whether a logic
one or zero is applied to the data and control lines of the USB I/O 24
module. In the output mode the switch may be left in either position
since the state of the LED is set by the USB I/O 24 module.

r0 - P7, C1, C2

+5V

RA1/20 100k

RA3/4I I 1k

1/4 74LS14

Figure A1.1 One LED driver circuit

DIL Array

+5V

100R

112

Appendix

A1.2 The Printed Circuit Boards

0.0 1.0 2.01m

111111111111111111111

0 20 40mr-,

TESTER

Figure A1.2 The User Port Tester PCB (Component side view)

113

Appendix

r-1 i B. S 61 r m.

r -i61 A 61 S

Fl3T23T

Figure Al .3 The User Port Tester PCB (Track side view)

114

Appendix

1.3 Components

Figure Al 3 shows the layout of the components on the board.

^ W U

Z
0

0

v Pi7

PO

C2
Cl

Figure Al .4 The User Port Tester board component layout

115

Appendix

Resistors

RA1 100k 7 commoned RS 168-718

RA2 100k 7 commoned RS 168-718

RA3 1k 7 commoned RS 168-516

RA4 1k 7 commoned RS 168-516

R1 100R 0.4W tolerance ±5% Farnell 332-574

Integrated Circuits
IC1 74LS14 Hex Schmitt inverters Farnell 373-643

IC2 74LS14 Hex Schmitt inverters Farnell 373-643

Switch

SW1 10 -way PCB SPST Farnell 422-678

Connector

CON1 IDC 20 -way connector RS 471-137

LEDs

DA1 10 LED bar Farnell 152-279

116

Ap:.endix

A2 The Stepper Motor board

Stepper motors are used in many applications requiring accurate
positioning such as automatic machinery and robotics and in

applications where continuous motion at variable speeds is controlled
by a compute-. They are available with a range of power and torque
ratings to suit a wide range of applications.

A2.1 The Circuit

On the Stepper Motor board, a ULN 2064B Darlington drive- chip is
used to direct y drive the coils The pin configuration and the circuit or
an individual stage is shown in Figure A2.1. The maximum supply
voltage to the chip is 50V and the maximum current per stage is 1.EA.
This supply can be connected to the board via terminal blocks.

The stepper motor is connected to the board via either terminal blocks

or plug connectors.

1/4 ULN2064B

 e

Figure A2.1 Circuit ccnfiguration for an individual stage

117

Appendix

A2.2 The Printed Circuit Boards

0.0 1.0 2.0in

111111111111111111111

0 20 40mm

STEPPER

Figure A2.2 The Stepper Motor board PCB (Component side view)

118

Appendix

ms.s s.r s.s
I I I I SI I I I I 1 1 1 1 1 1 1 1 1 I

(1N1 NS

Ra=lc=IT2

Figure A2.3 The Stepper Motor board PCB (Track side view)

119

Appendix

A2.3 Components

Figure A2.4 shows the layout of the components on the board overlay.

0

30V.I.10A AlddflS
n-
CO
I-

CNA

CO
I-

CO

GROUND

Figure A2.4 The Stepper Motor board component layout

120

Connectors

CON1 IDC 20 -way connector

Appendix

Farnell 152-279

CON2 6 -way PCB headers (snap to length) Farnell 143-136

CON3 6 -way PCB headers (snap to length) Farnell 143-136

TB1 4 -way PCB std mtd screw terminals Farnell 344-4E 55

TB2 4 -way PCB std mtd screw terminals Farnell 344-4555

TB3 4 -way PCB std mtd screw terminals Farnell 344-4555

TB4 4 -way PCB std mtd screw terminals Farnell 344-4555

Integrated Circuits

IC1 74LSO4 Hex in erter Farnell 373-450

IC2 74LSO4 Hex Inverter Farnell 373-45C

IC3 ULN2064B Quad Darlington driver Farnell 409-79C

I C4 ULN2064B Quad Darlington driver Farnell 409-79C

121

Appendix

A3 The 8DAC board

A digital to analogue converter is a device which produces an analogue
output, i.e. a current or voltage, when a digital input is applied to it. The

8DAC board is a voltage output 8 -bit digital to analogue converter
(DAC) board based upon the Texas Instruments TLC7524 8 -bit
multiplying digital to analogue converter. The TLC7542 is

interchangeable with Analog Devices AD7524, PMI PM -7524 and Micro
Power Systems MP7524.

The 8DAC board can be used in either the unipolar (positive only
output) or bipolar mode (positive and negative output) with a resolution
of 255 steps between the maximum and minimum voltage outputs. The
board is powered from the internal power supply of the PC. It is

possible to obtain a full-scale range (FSR) of the voltage output up to a
maximum of +5.12V in the unipolar mode. The selection of the DAC
resolution is made using the on -board switch and the DAC is calibrated
using a calibration routine and potentiometers. In bipolar mode the
range extends from -2.56V up to +2.54V though this may be altered by
adjustment of the appropriate potentiometers.

The USB I/O 24 module provides two ports to which the DAC board
may be connected. Each port consists of 8 data lines which can be set
up as either inputs or outputs, plus two control lines which are used as
interrupt or pulse lines. These ports must be configured so that digital
data can be transmitted to the 8DAC board. The digital data is latched
into the DAC so that the analogue output will remain constant even
when the DAC is not being addressed by the PC.

A3.1 The circuit

Figure A3.1 shows the TLC7524 (IC1) used in the 8DAC board. IC5
supplies the positive and negative voltage supplies to the two amplifiers

IC3 and IC4. IC3 provides the gain for the voltage output of IC1 and in
the unipolar mode IC4 acts as an approximately times two gain
amplifier. In the bipolar mode IC4 is used as a summing amplifier so
that the board can produce both negative and positive voltage outputs.
IC2 provides a 2.5V reference voltage for the circuit.

122

i/p da
ta

M
S

B

C
2

L
1

O
U

T
 1

2.
 1

6
2

O
U

T
2

R
E

F
15

3
G

N
D

V
..r

 1
4

4
D

B
7

N
R

 1
3

5
D

e6
IC

 lc
s

12

6
D

B
5

D
E

W
 1

1

7
D

B
.1

D
B

1
10

6
D

13
3

D
e2

LS
B

C
B

2
+

5V G
N

D

1C
2

V
.,

3

V
 ,

2

G
N

D
 1

1C
3

S
W

1a
V

R
3

1

IC
3

V
R

2R
2

V
R

1

IC
a

t V
R

4

ci
v

8

C
4

1=
-,

 2
 C

2(
.`

C
51

.7
--

C
S

Z
3

C
IT

Y
6

r4
-N

D

C
7

F
ig

ur
e

A
3.

1
T

he
 8

D
A

C
 b

oa
rd

 c
irc

ui
t

S
W

1b

T

R
1

Appendix

A3.2 The Printed Circuit Boards

0.0 1.0 2.0,m
11111111IIIIIIIIIIIII
0 20

8DPC

40r1N1

Figure A3.2 The 8DAC board PCB (Component side view)

124

Appendix

m . s m.r m.m

III y111111111111111
61 SS

Figure A3.3 The 8DAC board PCB (Track side view)

125

Appendix

A3.3 Components

Figure A3.4 shows the layout of the components on the board overlay.

-r

0
"LP

Wc

M

O

03

009

Figure A3.4 The 8DAC board component layout

126

Appendix

Resistors

R1 4.7k 0.4W tolerance +/-5%

R2 10k 0.4W tolerance +/-5%

Farnell 332-770

Farnell 332-811

Capacitors

C1 0.1µF multilayer ceramic Farnell 108-925

C2 10pF multilayer ceramic Farnell 108-926

C3 0.1µF multilayer ceramic Farnell 108-925

C4 4.7µF electrolytic (35V) Farnell 920-575

C5 4.7uF electrolytic (35V) Farnell 920-575

C6 4.7µF electrolytic (35V) Farnell 920-575

C7 4.7µF electrolytic (35V) Farnell 920-575

Variable resistors

VR1 50k 18 -way cermet trimmer Farnell 306-6289

VR2 10k 18 -way cermet trimmer Farnell 306-626E

VR3 50k 18 -way cermet trimmer Farnell 306-628c

VR4 10k 18 -way cermet trimmer Farnell 306-6265

Integrated Circuits

IC1 TLC7524 8 -bit DAC Farnell 411-218

IC2 AD680 2.5V reference Farnell 411-218

(T092 package)

IC3 TL081 Bi-FET Op Amp Farnell 400-660

IC4 TL081 Bi-FET Op Amp Farnell 400-660

IC5 MAX680 +5V to ±10V

converter

Farnell 246-551

127

Appendix

Switch

SW1 DPDT rightangle Farnell 150-209

Connectors

CON1 IDC 20 -way connector Farnell 152-279

CON2 black 4mm insulated terminal Farnell 810-319

CON3 red 4mm insulated terminal Farnell 810-320

A3.4 Calibration of the 8DAC board

The switch SW1 on the 8DAC board selects either the unipolar or
bipolar mode. In unipolar mode an input of 0 corresponds to OV and 255

to +5.10V. In bipolar mode the voltage range is -2.56V to +2.54 for
digital inputs of 0 and 255 respectively.

An important feature of a DAC is the linearity of its output. This refers to

its output voltage being directly proportional to the digital input, e.g in
the unipolar mode digital inputs of 100 and 200 should give outputs of

will give a -FSR
reading (-2.56V), 128 is equivalent to 0.00V and 255 will give +FSR
less the voltage equivalent of 1LSB, i.e +2.54V. The 8DAC board
normally retains its calibration over a long period of time but the
procedure described below should be used if recalibration is required or
a different FSR is needed.

In the calibration process the 8DAC board is connected to the USB I/O
24 module in the PC using the 20 way ribbon cable. A digital voltmeter
(DVM) is connected to the output terminals. Another DVM with probes

will also be required. The positions of the potentiometers and other
relevant connections on the 8DAC board are indicated in Figure A3.5.

128

Appendix

VR4 VR3 VR2

SW1 VR1

cw

-Er

Figure A3.5 Positions of VR1-4

VR1 Unipolar- gain VR2 Unipolar - zero 1

VR3 Unipolar - zero 2 VR4 Bipolar - +FSR

Unipolar operation

1) Connect one DVM to the output terminals of the 8DAC board.

The respective probes of the other DVM are connected to the
GND and TP (test point) terminals on the 8DAC board.

Set switch SW1 to U and ensure that the 8DAC board is
connected using the ribbon cable.

2) Run the DAC program in Chapter 6 and move the scroll ba- to

0.

Adjust VR2 until the voltage at the TP terminal is as close to
0.00V as possible.

Adjust VR4 until the voltage output is as close to 0.00V as
possible.

3) Move the scroll bar to 255 and adjust VR1 until the vol-.age
output is 5.10V i.e. +FSR - 1 LSB.

The linearity of the DAC board can be checked by moving the
scroll bar to intermediate values between 0 and 255, i.e. 128,

64, 192, etc.

4) If necessary repeat steps 2) and 3)

129

Appendix

Bipolar operation

This calibration should be performed after the DAC has been calibrated
for unipolar operation.

1) Set the switch to B (Bipolar operation).

2) Run the program and set the scroll bar to 0.

The output will be -FSR i.e. -2.56V.

3) Move the scroll bar to 255 and adjust VR2 to +FSR - 1LSB
i.e. +2.54V.

4) The linearity of the DAC board can be checked by moving the
scroll bar to intermediate values between 0 and 255, i.e. 128,
64 and 192.

5) If necessary repeat steps 3) and 4).

The voltage ranges in the bipolar mode can be altered by adjusting VR1
but this action will mean that the 8DAC board will have to be re -
calibrated before using the unipolar mode again.

A3.5 Application of the 8DAC board

Once calibrated the linearity of the DAC may be checked by entering
different digital inputs and noting the voltage outputs on the DVM. If a
FSR less than 5.10 V is required it will be necessary to recalibrate the
8DAC board. It is unlikely that the step involving the altering of VR2 and
VR3 will have to be done if FSRs are being changed.

A3.6 References

TLC5724, TLC7524E, TLC75241 8 -bit multiplying digital -to -analog

converters (1998)

Texas Instruments, Post Office Box 655303, Dallas, Texas 75265. USA,

www.ti.com

130

Appendix

AD580 Low Power, Low Cost 2.5V Reference (2001)

Analog devices, One Technology Way, PO Box 9106, Norwood, MA
01062-9106, USA

www.analoq.com

MAX680 +5V to ±10V Voltage converters (1989)

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA
94086, USA

www.maxim-ic.com

TL081 Wide Bandwidth JFET Input Operational Amplifier (1995)

National Semiconductor Corporation, 1111 West Bardin Road,

Arlington, Texas 76017, USA

www National.com

131

Appendix

A4 The 8ADC board

The 8ADC board is based upon the ADC0804 8 -bit successive
approximation analogue to digital converter which is manufactured by
National Semiconductors, Intersil and Philips. The free running
conversion time is 13690 conversions per second when the INTR
(Interrupt) and WR (Write) pins are connected together. The 8ADC is
used in this continuous conversion mode with the CS (Chip Select) line
being used to start a new conversion by going from low to high. A
conversion that is in process is halted by CS going low and the data that
can be read from the output latches correspond to the data from the
previously completed conversioi.

The lines required for the 8ADC board are +5V, OV, a control line to
operate the CS pin and 8 data lines. These are all provided by the USB
I/O 24 module connected to the USB port of the PC.

The 8ADC board may be used in either unipolar (OV to +5.10V) or
bipolar (-5.12V to +5.08V) input mode. The accuracy is ±1LSB.

A4.1 The circuit

Figure A4.1 shows a schematic circuit diagram for the 8ADC board. IC1
is the ADC0804 which is an 8 -bit successive approximation A to D
converter with all active circuitry contained on the chip. R5 and Cl
provide the self clocking for the converter and switch SW2 is used to
momentarily take the INTR/WR connection to ground to ensure that the
circuit starts conversion.

The analogue inputs are switchable between unipolar (0 - 5.10V) and
bipolar (-5.12 - +5.08V) using SW1. The bipolar input range is
accommodated by offsetting the analogue input range so that only
positive input voltages are applied to the comparator.

There are no facilities to calibrate the 8ADC board and any calibration
must be done in software.

132

+

in
pu

t

G
N

D

R
2

R
3

R
4

D
1

A

2 R
5

C
l

S
W

2

--
7

V
,,,

,(
-)

D
4

14
1"

--
8

A
 G

N
D

D
5

13

9
V

R
E

F
/2

D
6

12

10
 D

 G
N

D
D

71
1

1
C

S
V

cc
 2

0

2
R

D
C

LK
 IN

 1
9

3
W

R
D

O
 1

8

4
C

LK
 IN

D
1

17

5
IN

T
R

IC
1

D
2

16

6
V

iN
(+

)
D

3
15

F
ig

ur
e

A
 4

.1
 T

he
 8

A
D

C
 b

oa
rd

 c
irc

ui
t

+
5V C
S D
O

D
1

D
2

D
3

D
4

D
5

D
6

07

Appendix

4.2 The Printed Circuit Boards

+II 1 I I I I I I

Figure A4.2 The 8ADC board PCB (Component side view)

134

Appendix

0

1111111 +IIl

TOR 0

Figure A4.3 The 8ADC board PCB (-rack side view)

135

Appendix

A4.3 Components

Figure A4.4 shows the layout of the components on the board overlay.

CON1 0
co

IC1
C2 SW2

R5 r
R4

,R3 SW1

, R2
C1

T1-1 R1 T2

03

I/P ND

Figure A4 4 The SADO board component layout

136

Appendix

Resistors

R1 10k

R2 10k

R3 100k

R4 220R

R5 10k

Capacitors

C1 150pF

C2 0.1µF

Diodes

0.4W tolerance +/-5%

0.4N tolerance +/-5%

0.4W tolerance +/-5%

0.4N tolerance +/-5%

0.4W tolerance +/-5%

Dipped radial multi -

layered ceramic

multilayer ceramic

D1 1N4148 sigial diode

Integrated Circuit

iC1 ADC0804 8 -tit ADC

Switches

SW1

SW2

DPDT

SPNO

Connectors

CON1

T1 black

T2 red

sw tch

mcmentary switch

IDC 20 -way connector

4rrm insulated terminal

4rrm insulated terminal

Farnell 332-81'

Farnell 332-81'

Farnell 332-938

Farnell 332-616

Farnell 332-81'

Farnell 647-755

Farnell 108-925

Farnell 885-660

Farnell 396-1E7

Farnell 150-209

Farnell 151-137

Farnell 152-279

Farnell 810-3' 9

Farnell 810-32)

137

Appendix

A4.4 Calibration of the 8ADC board

The calibration of the 8ADC has to be performed using the 8adc.vbp
program. It is necessary to alter the corresponding full scale (FS) values

in both the unipolar and bipolar modes. This is done in the Display
routine.

Private Sub Display()

'Select equivalent voltage settings

If Polarity = 0 Then

1) / 255

Else

Invalvoft = (inval - 128) " 5.12/ 128

End If

'Display ADC decimal reading

Text1.Text = Str$(inval)

'Display ADC voltage reading

Text2.Text = Format$(invalvolt, "##.#4")

End Sub

The shaded portions of the code show where the changes must be
made. The first one refers to tie unipolar FS, the second one to the
bipolar FS.

The FS values are determined by finding the input voltages which just
cause the decimal output of the 8ADC board to change from 254 to 255.
The accuracy with which the value can be determined is affected by the
sensitivity of the measuring voltmeter and how smoothly the output of
the power supply can be changed. The procedure will have be carried
out separately for both the unipolar and bipolar modes, and the
measured values will replace the 5.10 and 5.12 values shown in the
shaded portions of the code.

138

Appendix

This type of calibration cannot accommodate any zero offset or non -
linearity that may be present but it can be an improvement upon the
values that are already in use in the program.

A4.5 Reference

ADC080803/0804 CMOS 8 -bit A/D converters Data sheet (17 Oct 2002)

Philips Semiconductors, Koninklijke Philips Electronics NV ,

www.semiconductors.philips.com

139

Appendix

A5 The 12ADC board

The 12ADC board is a 12 bit analogue to digital converter which can be
used in the range of ±4.095V. It may be used with the USB I/O 24
module attached to the USB port of the PC. The board is based upon an
ICL7109CPL device which has an auto zero facility and outputs its
digital data in a high and low byte format. The high byte contains bits
signifying polarity, overrange and the 4 most significant bits of digital
data and the low byte has the 8 remaining bits of data. Chapter 8
provides extensive details of how the 12 -bit digital data is taken from
this ADC.

A5.1 The circuit

The ICL7109CPL dual -ramp integrating A to D converter outputs its
digital signal in two bytes i.e. Hi and Lo. The circuit shown in Figure
A5.1 has to enable the data to be extracted such that it is not corrupted
when only 8 data lines and 2 control lines are used. This is put into
practice using IC3 (a dual D type flip flop). All of the circuitry to the right

of IC1 provides the necessary clocking and integrating circuits and the
reference sources. It also provides the analogue inputs. IC4 provides
the necessary -5V for 101.

140

 5
V

R
4

R
5

R
6

1

1/
6

IC
2

11
10

1
G

N
D

V
 4

0
2

S
T

A
T

U
S

R
E

F
 P

1
39

3
P

O
L

4
O

R
5

81
2

6
B

11
7

B
10

81
39

9B
8

R
E

F
 C

A
P

38
R

E
F

 C
A

P
 3

7
R

E
F

 IN
 3

6
P

1
H

I 3
5

LO
 3

4
C

O
M

M
O

N
 3

3
IN

T
 3

2
10

 6
7

IC
I

A
Z

 3
1

11
 8

6
B

U
F

 3
0

12
 8

5
R

E
F

 O
U

T
 2

9
13

64
V

-
28

14
 B

3
S

E
N

D
 2

7
15

 B
2

R
U

N
A

1O
LD

 2
6

16
 B

1
B

U
F

 O
S

C
 O

U
T

 2
5

17
 T

E
S

T
O

S
C

 S
E

L
24

18
 L

B
E

N
O

S
C

 O
U

T
 2

3
19

 H
B

E
N

O
S

C
 IN

 2
2

20
 C

E
A

O
A

D
M

O
D

E
 2

1

21

_L
C

5

74
1/

 X
T

A
L

O

4

P
R

E
5

C
A

 1
D

0-
-

C
A

2
3

C
LK

IC
3

-C
D

S
ib

7
1

6

T
D

V

C
LL

.
a

3
Ic

a
6

4
5

C
B

1
M

C
4 R

2

V
R

1

V
R

2
/4

1-

0

F
ig

ur
e

A
5.

1
T

he
 1

2A
D

C
 b

oa
rd

 c
irc

ui
t

Ll 7

Appendix

A5.2 The Printed Circuit Boards

0.0 1.0 2.0in

0 PO 40mm

2PDC

Figure A5.2 The 12ADC board PCB (Component side view)

142

Appendix

mn.s n.r n.n
Illly11111111111111

,,s.p., ns n

DOPS r

Figure A5.3 The 12ADC board PCB (Track side view)

143

Appendix

A5.3 Components

Figure A5.4 shows the layout of the components on the board overlay.

0

0

_L-r 0
ZJ-

Cr)0
ti -

CI"
.4t

UT

_L

0 0

HX
[)2

00

6Z00
cc c\I

0

o >

Figure A5.4 The 12ADC board component layout

144

Resistors

Appendix

R1 1M 0.4W tolerance +/-5% Farnell 333-050

R2 200k 0.4W tolerance +/-5% Farnell 332-811

R3 lk 0.4W tolerance +/-5% Farnell 332-690

R4 lk 0.4W tolerance +/-5% Farnell 332-690

R5 1k 0.4W tolerance +/-5% Farnell 332-690

R6 lk 0.4W tolerance +/-5% Farnell 332-690

Capacitors

C1 0.1µF multilayer ceramic Farnell 108-925

C2 1µF miniature layer RS 114-430

C3 0.01µF monclithic ceramic Farnell 430-559

C4 0.15pF polyester Farnell 143-681

C5 0.33µF polyester Farnell 143-683

C6 10pF electrolytic (50V) Farnell 383-71'7

C7 10µF electrolytic (50V) Farnell 383-7117

C8 0.1pF multilayer ceramic Farnell 108-926

Variable resistors

VR1 1k 18 -way cermet trimmer Farnell 306-6230

VR2 50k 18 -way cermet trimmer Farnell 306-6289

Diode

D1 0A47 signal diode Farnell 306-003

145

Appendix

Integrated Circuits
IC1

IC2

IC3

IC4

ICL7109

74LSO4

74LS74

ICL7660

Crystal

XTAL1 3 579MHz

Connectors

CON1

CON2

T1

T2

12 -bit ADC

Hex inverters

D trigger flip flops

voltage converter

crystal HC18/U

IDC 20 -way connector

9 -way D -type socket

black 4mm insulated terminal

red 4mm insulated terminal

Farnell 335-7601

Farnell 373-400

Farnell 374-027

Farnell 408-566

Farnell 170-229

Farnell 152-279

Farnell 737-579

Farnell 810-319

Farnell 810-320

A5.4 Calibration of the 12ADC board

The auto zero facility of the ICL7109CPL means that there is no zero
adjustment on the board. The only adjustment necessary is the Gain
range and this is achieved using two variable resistors VR1 and VR2
(Figure A5.5).

VR1 VR2

Figure A5.5 Positions of VR1 and VR2

Each of these variable resistors requires 18 turns to alter the resistance
from its maximum to minimum value. VR2 should be initially set to its
mid -value, i.e. 9 turns from either extremity. The calibration procedure
then requires the use of a var able voltage laboratory power supply (0 to

146

Appendix

10V) and a DVM which has a resolution of 1mV. If +2.000V is applied to

the 12ADC board, VR1 and VR2 can be adjusted such that 2000
appears on the 12ADC Form when the program 12adc.vbp is used. It is

useful to check the linearity of the board by varying the input voltage
and noting the digital output. This should also be done for a negative
voltage input.

A5.5 Reference

ICL7109 12 Bit Binary AID Converter with 3 -state Binary Outputs

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA
94086, USA

www.maxim-ic.com

147

Appendix

A6 The VGPA board

This board is designed to be used in conjunction with the 12ADC board
and increases the sensitivity of the 12 -bit ADC of that board. The board
contains a preamplifier input stage which has a gain that can be set to
x1, x10, x100 and x1000. This gives the following voltage ranges:

x1 -4.095V to +4.095V

x10 -409.5mV to +409.5mV

x100 -40.95mV to +40.95mV

x1000 -4.095mV to +4.095mV

Table A6.1

The programs used with the combined boards are identical tc those
used with the 12ADC, with slight modifications in the FSR to account for
the voltage range that is being used.

A6.1 Making connections to the VGPA board

There are 3 inputs to the VGPA board, a positive signal input, a
negative signal input and a ground line (Figure A6.1).

GND

- i/p

+ i/p

Figure A6.1 Inputs to the VGPA board

In most circumstances it is necessary to connect the GND and -I/P
together. The signal input should then be connected to between the -I/P
and +I/P lines. The board is connected to the 12ADC board using the
15 -pin D type connector.

148

Appendix

Selecting the gain

The gain of the VGPA board is achieved by jumpers A, B and C on the
board. These are situated close to the input terminals and require the
jumper connections to be made according to Figure A6.2.

0o A

0o

0o

Gain Connection

x1 None

x10 A

x100 B

x1000 C

Figure A6.2 Selecting the gain

A6.2 The circuit
The VGPA board is based upon the AD524 precision instrumentEtion
amplifier. Figure A6.3 shows a schematic of the board. The ±15V supply
is provided by the voltage converter IC2. VR1 and VR2 are used to
provide input and output offset. The gain of the board is altered using
jumpers on CON4. The analogue input can be allowed to floa: by
removing the jumper at CON2.

149

G
N

D
i/p -
,/p +

IC
2

+
5VO

V

xaa

R
2

V
R

1

R
1

T
IC

1

1 -i/p
R

G
1 16

2 +
U

p
o/p null 15

3 R
G

2
o/p null 14

4 i/p null
G

=
10 13

5 tip null
G

=
100 12

6 R
E

F
G

=
1000 11

7 -V
S

S
E

N
S

E
 10

8 +
V

S
o/p 9

-1
V

R
2

1

000

AB

C
O

N
4

F
igure A

6.3 T
he V

G
P

A
 board circuit

o/p

Appendix

A6.3 The Printed Circuit Boards

0 . 0 1 . 0 2.01 n
1111111111111111111111 111111

0 20 4 0 NI NI

.)G1='lq

I I

Figure A6.4 The VGPA PCB (Component side view)

151

Appendix

r-i i S. S m. r B. S
1111111111111111111111

Nir-IS-P OS cs)

I I

L

152

1

)

L

A9DC)

Figure A6.5 The VGPA PCB (Track side view)

Appendix

A6.4 Components

Figure A6.6 shows the layout of the components on the board overlay.

Z GN D
[0 0 -i/p

+i/p

0z _1

0 oN I-

A co
B 0

(I (IC 0 C\1

Figure A6.6 The VGPA board component layout

153

Appendix

Resistors

R1 10k 0.4W tolerance +/-5% Farnell 332-811

R2 10k 0.4W tolerance +/-5% Farnell 332-811

Capacitors
Cl 0.01µF multilayer ceramic Farnell 430-559

C2 0.01µF multilayer ceramic Farnell 430-559

Variable resistors
VR1 10k 18 -way cermet trimmer Farnell 306-6265

VR2 10k 18 -way cermet trimmer Farnell 306-6265

Integrated Circuits
101 AD524AD Instrumentation amp Farnell 402-138

IC2 NMA0515D dc to dc converter Farnell 330-760

(Newport) 5 to +/ -15V

Connectors

CON1 9 -way D -type plug Farnell 637-531

CON2 1+1 pcb pin -strip header Farnell 143-132

CON3 3 -way pcb mted screw Farne11101-785

terminal

CON4 3+3 pcb pin -strip header Farnell 621-857

2 off jumper link Farnell 150-410

154

Appendix

A6.5 Calibration of the VGPA

The VGPA is calibrated in two stages. Initially the gain of the
ICL7109CPL analogue to digital converter is adjusted on the 12AEC
board and then the input and output offsets of the AD524 on the VGPA

board are adjusted.

Stage 1

The 12ADC board should be initially calibrated using the instructions in

Section A5.

Stage 2

The laboratory power supply should now be connected to the +I/P and
-I/P terminals of the VGPA board. If the AD524 is connected for high
gain it may be necessary to use a potential divider across the output
terminals of the laboratory power supply (Figure A6.7).

POWER
SUPPLY

100k

1OR
DVM

+ i/p

To VGPA

i/p

Figure A6.7 Method of obtaining very small voltages

The only controls that must be altered now are VR1 and VR2 on the
VGPA board (Figure A6.8). A known voltage is applied to the VGPA. If
the gain of the AD524 is high, VR1 (input offset) is adjusted =first

followed by VR2 (output offset) until the input voltage and digital output

agree. If the gain is low VR2 is adjusted first followed by VR1.

155

Appendix

lo VR1

a VR2

Figure A6.8 Positions of VR1 and VR2

A6.6 References

AD524 Precision Instrumentation Amplifier

Analog Devices, One Technology Way, PO Box 9106, Norwood, MA
01062-9106, USA

www.analog.com

156

Appendix

A7 Suppliers
The components used in the circuit boards described above may be
obtained from the following suppliers in the UK:

RS

RS Components Ltd, PO Box 99, Corby, Northants, NN17 9RS

Tel: 01536 201201; Fax: 01536 201501

http://rswww.com

Farnell

Farnell Electronic Components Ltd, Canal Road, Leeds, LS12 2TU

Tel: 0113 263 6311; Fax: 0113 263 3411

www.farnell.com/uk

The supplier of the USB I/O 24 module is:

Alpha Micro Components Ltd, Springfield House, Cranes Road,
Sherbourne St John, Basingstoke, Hants, RG24 9LJ

Tel: 01256 851770; Fax: 01256 851771

www.alphamic-o.net

157

158

Biblography

Bibliography

Books

Francesco Balena, Programming Microsoft Visual Basic 6.0, (1599),
Microsoft

Evangelos Petroutsos and Kevin Hough, Visual Basic 6 Developer's
Handbook, (1999), Sybex

Eric A Smith, Valor Whisler and Hank Marquis, Visual Basic 6 Bible,
(1998), IDG Books

G B Clayton, Data Converters, (1982), Macmillan Education

Devices

Many of the data sheets can be downloaded from the relevant
manufacturers or suppliers web sites:

Analog Devices

www.analog.com

Elexol Pty Ltd

www.elexol.com

Farnell Electronic Components

www.farnell.com/uk

Future Devices Technology International Ltd

www.ftdichip.com

159

Bibliography

Maxim Integrated Products

www.maxim-ic.com

National Semiconductor Corporation

www.National.com

Philips Semiconductors

www.semiconductors.philips.com

RS Components Ltd

http://rswww.com

Ravar Pty Ltd

www.ravar.net

Texas Instruments

www.ti.com

160

Index

Index
12ADC
8255A
8ADC
8DAC
addresses.... .5, 19,

bipolar

42, 93, 140
16

42, 77, 132
41, 65, 122
30, 43, 57,

85
66, 78, 130

PortOut
ports 42,
PPI
Programmable Peripheral

Interface
R -2R ladder
Readprog

29
'12

16

16
55
29

control register 43, 58, 62 Reg 35
control word 16, 37 REGA 43
D- 3 registers 18, 43
D+ 3 RS232 1, 9
DAC 65, 122 step.vbp 63
data packet 5 Stepper 41, 53, 117
declarations
digital input/output

30
23, 112

stepper motor 41, 53,
stepper motor code

117
56

DLL 25, 45 steptest.vbp 59
endpoints 3, 4 token packet 5
Forms 29 Type A 2, 11
FT8U245 25 Type B 2 12
FTD2XX.DLL 25 unipolar 66
full step mode 51 Universal Serial Bus 1

half step mode 54, 64 USB 1

handshaking packet 5 USB connector 2, 11
interface boards 19, 41 USB I/O 24 module 10
interrupt 45,
io_usb.bas

67, 87, 122
29

USB1.1
USB2.0

1, 11
1, 6

isochronous 6 User Port Tester 41, '12
Least Significant Bit 66, 78 Userin.vbp 47
LSB 66, 93 VID 5, 11
Mode 0 16 Visual Basic code 28, 29
Modules 29 Writeprog 29
MSB 67
PID 5, 11
pipes 4
Port A 14
Port B 14
Port C 14
Portln 29

161

Note

162

J

MIN
Mbani Cornouter Books

PC Interfacing using USB
For many years professional sc enttsts, engineers and enthusi-
astic hobbyists have beer able to connect computers to the
outside world by usi-ig specialist interface cards inserted into
slots in their computers. Times l-.E.ve changed End both desktop
and laptop PCs now have Universal Serial Bus (USB) ports as
well as serial and prriter pals and as PCs have beccme more
sophisticated, less available slots for the insertion of iiput/out-
put cards.

The USB port is popular for connecting printers scanners, mass
storage systems, digral cameras Ind other per pherals to a PC,
and the interfacing enthusiast has had to look on with envy at
these developments until now!

Ravar Pty Ltd of Queenslard, Austral a have developed a USB
interface module which is equivalent to an olc 24 -line parallel
plug-in input/output card. This now re -opens the eltire interfac-
ing world to the computer enthusiast but wthout having to
delve inside the PC.

This book outlines tre basics of USB, shows hcw the Ravar
USB interface module can Ix corrected to and prograrimed by
the PC and explores how dig.tal czta, stepper motors,
analogue and analogue -to -d gita converters can be used with
the system. It strives to assist tre user to become conversant
with USB and provide a source book which car be dipped into
at anytime whenever an interfacing pro ect is beng developed.

IIII Beginners PA Intermediate Pg Advanced

BP 535

E7.99 9

ISBN 0-85934-535-1

0
780859 345354

0 0 7 9 9>

