
An Introduction
to 6502
Machine Code

I

AN INTRODUCTION TO
6502 MACHINE CODE

by
R.A. & J.W. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this book to
ensure that any projects, designs, modifications and/or programs etc.
contained herein, operate in a correct and safe manner and also that any
components specified are normally available in Great Britain, the

Publishers do not accept responsibility in any way for the failure,
including fault in design, of any project, design, modification or program
to work correctly or to cause damage to any other equipment that it may
be connected to or used in conjunction with, or in respect of any other
damage or injury that may be so caused, nor do the Publishers accept
responsibility in any way for the failure to obtain specified components.
Notice is also given that if equipment that is still under warranty is

modified in any way or used or connected with home-built equipment
then that warranty may be void.

All the programs in this book have been written and tested by the
authors using models of the relevant micros that were available at the
time of writing in Great Britain. Details of the graphics modes may vary
with versions of these machines for other countries.

C) 1984 BERNARD BABANI (publishing) LTD

First Published — August 1984
Reprinted — October 1989

British Library Cataloguing in Publication Data
Penfold, R. A.
An introduction to 6502 machine code. —
(BP 147)

1. 6502 (Microprocessor) — Programming
2. Machine codes (Electronic computers)
I. Title II. Penfold, J.W.
001.64'25 QA76.8.S63

ISBN 0 85934 122 4

Printed and bound in Great Britain by Cox & Wyman Ltd, Reading

CONTENTS

Page

Chapter 1: THE MICROPROCESSOR 1
Assembly Language 2
The Processor 4
Binary 8
Signed Binary 12
Twos Complement 14
Overflow Flag 16
Binary Coded Decimal 17
Hexadecimal 18
Systems Operation 21
The Stack 25
Flags 27
Paging 28
6502 Pinouts 28
Memory Organisation 32 •

Chapter 2: THE 6502 INSTRUCTION SET 35

Chapter 3: ADDRESSING MODES 57

Chapter 4: STORING AND EXECUTION 63
Execution 65

Chapter 5: EXAMPLE PROGRAMS 67
Add 67
Take 68
Loop 69
Times 70
Machine Specific Listings 73

Chapter 6: INPUT/OUTPUT 92
The 6522 92
Control Register 98

Instruction Set Chart 100

PREFACE

Home computers are equipped with built-in software that
enables them to be easily programmed to do quite complex
tasks. The price that is paid for this programming ease is a
relatively slow running speed, far lower than the speed at
which the computer is really capable of running. Machine
code programming entails direct programming of the micro-
processor without using a built-in high level computer
language such as BASIC. This gives a vast increase in running
speed, but is something that can only really be undertaken by
someone who has a reasonable understanding of the micro-
processor and some of the other hardware in the computer.

Machine code programming is not as difficult as one might
think, and once a few simple concepts have been grasped it is
actually quité straightforward (although admittedly never as
simple as using a high level language). This book takes the
reader through the basics of microprocessors and machine
code programming, and no previous knowledge of these are
assumed.

The microprocessor dealt with here is the 6502, which is an
excellent choice for beginners as it is in many ways a very
simple type, but it is also very well designed and is acknow-
ledged as one of the most powerful 8-bit microprocessors
available. It is the microprocessor utilized in many of the
popular home-computers, including the Electron, BBC Models

A and B, VIC-20, ORIC-1/Atmos, and the Atari machines.
The popular Commodore 64 uses the 6510 which is a slightly

modified (but software compatible) version of the 6502. Some
simple demonstration programs that can be run on a number
of these machines are included in the book.

R. A. Pee)Id

Chapter 1

THE MICROPROCESSOR

All home computers are equipped to operate using a high level
computer language such as BASIC or FORTH, and these
languages are designed to make program design as quick and
easy as possible. With most high level languages the program-
mer uses words that are virtually plain English, and the
computer's built-in software then converts these into machine
code routines that the processor at the heart of the computer
can interpret and act upon. Writing programs direct in
machine code is, on the face of it, rather pointless, as it is
somewhat harder and a considerably slower process than using
BASIC or another high level language to achieve the same ends.

The advantage of machine code programs is the speed with
which they run. The speed of a machine code program is, in
fact, only limited by the operating speed of the computer's
microprocessor, and a computer can perform no faster than
when it is running a machine code program. High level
languages such as BASIC are inevitably much slower due to
the way in which each instruction has to first be interpreted
(converted into machine code) before it can be executed. In
other words, the program is stored in memory in its BASIC
form, and it is only when the program is run that each
instruction is converted into machine code and executed.
The program is effectively brought to a halt during the inter-
preting process, which accounts for more time than the
running of the interpreted machine code. The difference in
speed is probably much greater than most people realise, and
machine code is typically something approaching one
thousand times faster than an equivalent BASIC program.
Action games written in BASIC are often a little sluggish due
to this lack of operating speed, especially when a lot starts to
happen at once, but a machine code equivalent normally
appears to operate instantly no matter how much simultane-
ous action takes place. With some scientific and business

1

programs BASIC is too slow to be of any use at all, and the
use of machine code is mandatory. However, the speed of
machine code is its only advantage, and apart (perhaps) from
the fun of it, there is no point in using machine code where a
program written in a high level language would be fast enough.

There are alternatives to machine code and high level inter-
preted languages such as BASIC, and we will consider these
briefly before moving on to a description of the micro-
processor itself. Some high level languages are compiled rather
than interpreted. The difference is that with a compiled
language the interpreting process is carried out before the
program is run. The program may then run using the compiled
machine code, or using a sort of pseudo machine code which
requires a minimal amount of interpreting. In either case
programs should run at high speed, and should be far *easier to
write than equivalent machine code programs. A compiled
language may seem like the ideal solution (and many people
would argue that it is), but languages of this type are generally
much more difficult to use than interpreted languages when
writing and debugging programs, and languages such as BASIC
are probably much better for beginners to programming. A
mixture of BASIC and machine code (with the latter only
being used where high operating speed is essential) can there-
fore be a more practical solution in many cases.

Incidentally, you may come across the terms source code
and object code occasionally. The former is the program in its
high level language form, and the latter is the machine code or
pseudo machine code produced after interpretation or
compilation.

ASSEMBLY LANGUAGES

The terms machine code and assembly language seem to cause
a certain amount of confusion, and there seems to be a general
belief that they are different terms for the same thing. In fact
they are very similar, but there is an important difference.
With machine code programming the instructions for the

2

microprocessor are in the form of numbers from 0 to • 255.
This is not a very convenient way of doing things, and it
inevitably involves almost constantly looking up instructions
to find their code numbers. Assembly language uses a pro-
gram in the computer to take three letter codes and convert
these into the corresponding machine code instruction
numbers. Most assemblers also provide the programmer with
some further assistance, but not much. The basic function of
the assembler is simply to take the three letter mnemonics
and convert them to the appropriate numbers. An assembler
is really the most basic of compilers, but as far as the
programmer is concerned there is no real difference between
assembly language and machine code, and if you can program
in one you can also program using the other.

Of course, the main advantage of using an assembler is that
the three letter mnemonics are chosen to closely relate to the
instructions that they represent. For example, the Return
From Subroutine instruction has RTS as its mnemonic, which
is obviously much easier to remember than the machine code
number of 60. If you intend to do a lot of machine code
programming an assembler could reasonably be considered
essential, since using anything other than a few short machine
code routines is generally rather awkward and inconvenient
with most home computers which are designed primarily for
BASIC programming. A few computers (the Electron and
BBC machines for instance) have built-in assemblers, but
assembler programs are readily available for most other 6502
based computers. The facilities offered vary somewhat from
one assembler to another, but most give at least some aid with
debugging, although nothing like as much assistance as the
best BASIC languages.

One final point to bear in mind is that a high level
language like BASIC varies only slightly from one computer
to another, and once you have mastered BASIC it is usually
not too difficult to write programs for any computer equipped
with this language. Problems can arise with the sound and
graphics facilities which vary from one machine to another,
giving inevitable variations in the sound and graphics corn-

3

mands. However, the language is fundamentally the same for all
the computers that use it. Machine code programming is iden-
tical for any computers that use the 6502, and although there
are again differences in the sound and graphics facilities avail-
able on various machines, these do not affect the instructions
that are available to the programmer (although to produce the
desired effect it might sometimes be necessary to use a differ-
ent routine for each machine). The situation is very different
when dealing with a computer that uses a different micro-
processor such as the Z80A. Apart from the differences in
the sound and graphics facilities, the microprocessor will have
different machine code numbers for each instruction, and
possibly even different mnemonics. Furthermore, the instruc-
tion sets of various microprocessors are substantially different,
as are the registers they contain and the way in which they
handle certain tasks. Obviously all microprocessors work on
the same basic principle, but changing from programming one
type to programming an alternative device usually involves a
fairly substantial amount of work.

THE PROCESSOR

Although a microprocessor is an extremely complex device,
usually containing the equivalent of tens of thousands of
components, as far as the programmer is concerned it can be
regarded as a fairly simple set of electrical circuits known as
registers which will perform certain functions if fed with the
appropriate instruction numbers. The registers consist of one
or more circuits known as flip/flops, and these can produce an
output voltage that is either virtually zero, or one that is
typically about 5 volts. From the software point of view the
voltages are not important, and we can think in terms of low
or logic 0 if the output of a flip/flop is near zero volts, and
high or logic 1 if it is at about 5 volts. A circuit with an
output that can represent just 0 or 1 may not seem to be very
useful, and in isolation such a circuit is not of tremendous
value, but as we shall see later, a number of flip/flops together

4

can represent large numbers, and can be used to perform
complex calculations etc.

The registers of the 6502 are shown in diagramatic form
in Figure 1, and the ones of main interest are the accumulator,
the X register, and the Y register. These are all 8 bit registers.
In other words, they have eight flip/flops and can handle
numbers up to 8 bits long. A group of 8 bits is usually called
a byte incidentally, although strictly speaking a byte does not
have to be 8 bits long, and can be any length. The point
about a byte is that it is not just a collection of unrelated
signals or bits, but the bits operate together to represent a
number, alphanumeric character, or whatever.

The accumulator is very much at the centre of things, and
any data processed by the microprocessor has to be handled
by this register and the complex circuit associated with it.
This circuit is called the arithmetic logic unit, or ALU. If you
feed an instruction to the microprocessor the ALU will almost
certainly be involved in the execution of that instruction, but
this is something that is all handled internally by the micro-
processor itself, and the programmer does not get directly
involved with the ALU. At this stage we will not consider in
detail the type of data processing that the accumulator can
provide, but it includes such things as addition and
subtraction.

The X and Y registers are index registers. Their purpose is
to act as pointers to tell the microprocessor where to find data
or instructions. In order to understand their function it is
necessary to understand, amongst other things, the basic make-
up of a computer. Figure 2 shows in block diagram form the
general arrangement used in a 6502 based computer. The
memory is a bank of 8 bit registers which are used to store
both program instructions and data. The number of registers
in the memory block varies from one computer to another,
but the 6502 can operate with a maximum of 65536. The
address bus is 16 bits wide, and these sixteen bits are produced
by the program counter (see Figure 1). It is the program
counter, via the address bus, that selects the particular
memory register that is connected to the microprocessor. The

5

X I X Index register

Y Index register

Accumulator

Y

A

PCH PCL

15

Negative

Overflow

Break

87

Li f

Fig. 1. The 6502 programming model

S

Program counter

0

Stack pointer

Status register

Carry

Zero

IRO mask

Decimal mode

Interrupt
inputs

Cluck

e

Microprocessor

onirol Bus

Eig. 2. Block diagram of a computer

Input/Output

devices

Memory

(RAM and ROM)

data bus is used to transfer data between the microprocessor
and the memory block. An important point to note here is
that the data bus is bidirectional, and is used by the micro-
processor to take data and instructions from memory, and to
place data in memory. There are not separate input and out-
put busses on a microprocessor, the data bus is used for
both types of operation.

The control bus is used to make sure that all the elements
of the system are operating in unison, and that if (say) the
microprocessor sends data to a particular register in memory,
that register is ready to receive that data and is not trying to
output data to the microprocessor. All the lines in the control
bus operate automatically, they are not directly controlled by
the programmer, and are not something we need concern
ourselves with here.

BINARY

The 16 bit program counter can place 65536 different output
combinations onto the address bus, and it is this that limits
the 6502 to 65536 memory registers. Each memory register
occupies an address, which is merely a number from 0 to
65535, and each of the 65536 output combinations of the
program counter corresponds to one of these addresses.
Therefore, by placing each bit of the program counter at the
appropriate state, the microprocessor can read the contents
of any memory register, or can write data to that register
depending on the type of instruction it is executing. In order
to undertake machine code or assembly language program-
ming it is essential to understand the way in which the bits of
the address bus (and the data bus) are used to represent a
number.

The numbering system we normally use, in every day life,
is commonly called the decimal system and is, of course,
based on the number 10. There are ten single digit numbers
from 0 to 9. This system of numbering is not very convenient
for an electronic circuit in that it is difficult to devise a

8

practical system where an output has ten different voltage
levels so that any single digit decimal number can be repre-
sented. It is much easier to use simple flip/flops which have
just two output levels, and can only represent 0 or 1. How-
ever, this bars such circuits from operating directly in the
decimal numbering system, and instead, the binary system of
numbering is utilized.

This system is based on the number 2 rather than 10, and
the highest single digit number is 1 rather than 9. If we take
a decimal number such as 238, the 8 represents eight units (10
to the power of 0), the 3 represents three tens (10 to the
power of 1), and the 2 represents two hundreds (10 to the
power of 2, or 10 squared). Things are similar with a binary
number such as 1101. Working from right to left again, the
1 represents the number of units (2 to the power of 0), the 0
represents the number of twos (2 to the power of 1), the next
1 represents the number of fours (2 to the power of 2), and
the final 1 represents the number of eights (2 to the power of
3). 1101 in binary is therefore equivalent to 13 in decimal
(1 + 0 + 4 + 8 = 13).

The table following shows the number represented by each
digit of a 16 bit number when it is set high. Of course, a bit
always represents zero when it is set low.

Bit 0 1 2 3 4 5 6 7 8

I 2 4 8 16 32 64 128 256

Bit 9 10 11 12 13 14 15

512 1024 2048 4096 8192 16384 32768

Using 16 bits any integer from 0 to 65535 can be represented
in binary fashion, or using 8 bits any integer from 0 to 255 can
be represented, and this exposes the main weakness of the
binary numbering system. Numbers of modest magnitude are
many binary digits in length, but despite this drawback the
ease with which electronic circuits can handle binary numbers
makes this system the only practical one at the present time.

9

Addition of two binary numbers is a straightforward
business which is really more simple than decimal addition.
A simple example is shown below:—

First number 11110000

Second number 01010101

Answer 101000101

As with decimal addition, start with the units column and
gradually work towards the final column on the left. In this
case there is 1 and 0 in the units column, giving a total of 1 in
the units column of the answer. In the next column two Os
give 0 in the answer, and the next two columns are equally
straightforward. In the fifth one there are two 1 s to be
added, giving a total of 2. Of course, in binary the figure 2
does not exist, and this should really be thought of as 10 (one
2 and no units), and it is treated in the same way as ten in
decimal addition. The 0 is placed in the answer and the 1
is carried forward to the next column of figures. The sixth
column again gives a total of 10, and again the 0 is placed in
the answer and the 1 is carried forward. In the seventh
column this gives a total of 3 in the decimal, but in this
binary calculation it must be thought of as the binary number
11 (one 2 and one unit). Therefore, 1 is placed in the answer
and 1 is carried forward. In the eighth column this gives an
answer of 10, and as there are no further columns to be
added, both digits are placed in the answer.

Adding two 8 bit binary numbers together produces a slight
complication in that, as in this case, the answer is some 9 bits
long. When the accumulator is used to add two 8 bit numbers
it cannot accommodate the extra bit when there is a final
carry-forward, but the 1 in column nine is not simply lost
(which would obviously give an incorrect answer and would
be unacceptable). Instead, the carry-forward is taken to one
of the status registers of the microprocessor. Not surprisingly,
this is called the carry or C register. Like the other status
registers this is used to control conditional instructions (i.e. if

10

• • 3. • •,11111,1*.I.M. -

the carry bit is set high do this, if it is not do that). Anyone
who has done some BASIC programming should be familiar
with conditional instructions in the form of BASIC
IF . THEN or IF. .. THEN.. . ELSE instructions.

Of course, the fact that the accumulator can only handle
8 bit numbers giving a maximum equivalent to 255 in decimal,
is not to say that computers and microprocessors cannot deal
in numbers of a higher magnitude. Very large numbers can be
accommodated by using two or more bytes together. The
usual way of doing this is to have (say) two bytes used
together with one byte providing the lower 8 bits of the
number, and the other providing the upper 8 bits. These are
generally called the low byte and high byte respectively. Two
other terms that are often used are least significant bit or LSB,
and most significant bit or MSB. These simply refer to the
lowest and highest bits respectively (e.g. bits 0 and 7 of a 8
bit number).

When adding together two 16 bit numbers the basic way in
which it is done is to first add the two low bytes, to give the
low byte of the answer. Then the two high bytes are added
together with the carry (if any) to give the high byte of the
answer, plus a possible 17th bit in the carry flag.

When machine code programming using a home com-
puter the hardware between the programmer and the
microprocessor can help to make things very much easier,
but it can also be a hinderance. Few home computers (in
fact no 6502 based machines as far as I am aware) allow
numbers to be entered in binary form, ór normally display
data in this form. Thus, although the microprocessor would
handle a calculation such as 10 plus 20 in binary form, using a
home computer the numbers would be entered in decimal,
and the answer would be displayed in decimal. For simple
data processing this is very convenient, but when it comes to
multi-byte numbers and certain other types of data processing
it is rather inconvenient. A large number such as 2050 is
processed by the microprocessor as two 8 bit numbers, which
are entered into the computer as two decimal numbers in the
range 0 to 255. In the case of the number 2050, in decimal

11

the high byte is 4, and the low byte is 2, which bears little
resemblence to the decimal number 2050 or its binary
equivalent. The point to remember here is that bits 0 to 7 of
the high byte represent the 512s, 1024s, 2048s, etc., through
to the 32768s. However, as far as the number entered into
the computer is concerned, when set high bits 0 to 7 only
represent 1,2,4, etc.

When using machine code you must be aware of the way in
which the microprocessor deals with data on a bit by bit basis
if you are to fully master the situation, and a reasonable
understanding of binary is essential.

SIGNED BINARY

The binary system described so far, which is often called direct
binary, is inadequate in many practical applications in that it
is unable to handle negative numbers. One way around the
problem is to use signed binary numbers where the first bit is
used to denote whether the number is positive or negative.
The convention has the first bit as a 0 for positive numbers
and as a 1 for negative numbers. With this system the normal
number range of 0 to 255 is replaced with a range of — 127
(11111111) to +127 (01111111). The problem is solved only
at the expense of reduced maximum magnitude for a given
number of bits. Note though, that where two or more bytes
are used to form a multi-byte number, only the most signi-
ficant bit of the high byte needs to be used to indicate
whether the number is positive or negative, and it is not
necessary to use the most significant bit of each byte in the
number to do this.

Obviously a certain amount of care needs to be exercised
when dealing with binary numbers and you must know
whether a number is in signed or unsigned binary. For
example, 10000001 could be 129 (unsigned) or — I (signed).
In this basic form the signed binary system has practical
limitations in that it can represent binary numbers without
any difficulty, but calculations fail to give the right result,

12

which makes the system of little practical value unless it is
modified to correct this anomaly. It is not used with the 6502
microprocessor in the basic form described above.
To illustrate the problem, consider the calculation shown

below:-

16 00010000

—5 10000101

Answer (-21) 10010101

Adding 16 to —5 should obviously give an answer of 11 and
not —21.

An alternative and related method of handling negative
numbers is the ones complement system. Here a negative
number is the complementary of the positive equivalent. For
instance, +16 in binary is 00010000, and — 16 is therefore
11101111. In other words, the ones are simply changed to
zeros and the zeros are changed to ones. This gives better
results when used in calculations, as demonstrated by the
example given below:-

16 00010000

—5 11111010

Answer (266) 100001010

This answer may seem to be less use than the one obtained
using ordinary signed binary, and the margin of error is
certainly greater, but this depends on how the answer is
interpreted. The first point to note is that the positive number
starts with a zero and the negative number starts with a 1.
Provided that sufficient digits are used this will always be the
case, and in this respect the system is not much different to
ordinary signed binary. The answer is completely wrong of
course, but if the carry is ignored the answer is much closer to
the right result. It then becomes 10 rather than 11. So what
happens if we try another example and again ignore the carry

13

'

in the answer?

32 0010000

—4 1111011

Answer (27) 00011011

As before, the answer is wrong, but is one less than the right
answer (which is of course 28 in this case).

TWOS COMPLEMENT

Clearly this system can be made to operate properly, and it is
just a matter of finding some way of correcting the answer.
The method used with simple microprocessors such as the
6502 is the twos complement system. This differs from the
ones complement system in that once the compliment of a
number has been produced one is added to it. Therefore,
rather than —5 being represented as 11111010, it becomes
11111011. If we now apply this to one of the examples
given earlier we obtain the following result:-

16 00010000

—5 11111011

Answer (11) 00001011

This time, provided we ignore the carry in the carry flag,
we have the correct answer of 11. This is a convenient way
of handling subtraction (for the microprocessor anyway)
since subtraction can be handled by the same circuit that
handles addition. To handle a sum such as 45 — 25 the
figure of 25 is converted into (twos complement) —25, and
then added to 45. In other words, rather than calculating the
sum in the form 45 — 25 the microprocessor calculates it as
45 + (-25), and either way the answer is 20.

14

The table given below shows some sample numbers in
twos complement form, and should help to clarify the system
for you. Note that, like ordinary signed binary, the first digit
is used to indicate whether the number is positive or negative.

Numbers Positive Negative

0 00000000 00000000

1 00000001 11111111

2 00000010 11111110

3 00000011 11111101

4 00000100 11111100

32 00100000 11100000

126 01111110 10000010

127 01111111 1 0000001

128 010000000 1 0000000

Note that with 8 bit twos complement numbers the range is
from + 127 to — 128.

So far we have only considered calculations where the
answer is a positive quantity, but the twos complement system
works properly if the answer is negative. The following
example demonstrates this point:-

16 00010000

—31 11100001

Answer (- 15) 11110001

The system also functions correctly when two negative
numbers are added together, as demonstrated by this
example:-

15

›cl ,

—4 11111100

—8 11111000

Answer (- 12) 11110100

OVERFLOW FLAG

When using the twos complement system there is a slight
problem in that a number can be accidentally turned into a
negative quantity. The simple calculation shown below
demonstrates this point:-

64 01 000000

127 01111111

Answer (-65) 10111111

If taken as an ordinary 8 bit direct binary number this does
give the right answer, but in the twos complement system the
carry forward from bit 6 to bit 7 has changed the sign and
magnitude of the number so that an answer of —65 instead of
191 is obtained.

This is termed an overflow, and it is handled by micro-
processors such as the 6502 by a flag called (appropriately)
the overflow flag. In the diagram of Figure 1 this is given its
abbreviated name, the V flag. Like the carry flag, there are
special instructions connected with this flag, and these can be
used to prevent erroneous results from being produced, or to
give warning that an error has occurred. These flags are
normally at 0 and are set by an overflow or a carry forward.
They are automatically reset by some of the microprocessor's
instructions, and this helps to streamline things so that the
system operates rapidly and uses as little memory as possible.
There are also instructions to specifically reset one flag or the
other.

16

At this stage it is probably best not to go into any more
detail about binary calculations and the way they are handled
by microprocessors. It is a complicated subject, and it is
probably clarified most easily by trying out a few programs
which demonstrate the techniques involved. Some practical
examples that can be run on some popular 6502 based home
computers are given later in this book. Even if you can only
understand direct binary, provided you also understand the
main principles of microprocessors you should be able to run
and understand some simple machine code routines.

BINARY CODED DECIMAL

The 6502 can use another form of binary known as binary
coded decimal, or BCD. This is perhaps less frequently used
than the twos complement binary system described above, and
it has the disadvantages of being relatively slow and unecono-
mic on memory. However, it can be used to give a high degree
of precision, and it can be advantageous in certain applica-
tions. It is • certainly worthwhile considering this system
briefly here.

With BCD four binary bits (often termed a nibble) are used
to represent each decimal digit. The system operates in the
manner shown below:—

Decimal Number Bit Code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

17

7

8

9

0111

1000

1001

The binary number is in fact just the normal binary repiesenta-
tion of the number concerned, and it is only for numbers of
more than 9 that the system is different. The binary codes
from 1010 to 1111 are unused, and all two digit decimal
numbers require 8 bit binary codes. For instance, the decimal
number 64 would be represented by the 8 bit BCD code
01100100. The first four bits (0110) represent the 6, and the
second four bits (0100) represent the 4. Each byte can
therefore represent any two bit number from 0 to 99, which
compares to a range of 0 to 255 for a straightforward 8 bit
binary number. This helps to contribute to the relative
inefficiency of the BCD system. Of course, when a nibble is
incremented by 1 from 1001 (9 in decimal) it does not go to
1010 (which is an illegal code in BCD), but cycles back to
0000. A carry forward of I should then be taken to the next
BCD nibble.

With this system there is no difficulty in handling large
numbers, and it is just a matter of using several bytes to
accommodate the required number of digits. Negative
numbers and decimal points can also be handled with ease
by this system, but this requires an additional byte or bytes.
This information is usually carried in the high byte or bytes.

HEXADECIMAL

While on the subject of numbering systems it would perhaps
be worthwhile dealing with another system which you will
inevitably come across quite frequently, and this is the hexa-
decimal system. There is in fact yet another system known
as octal which, as its name suggests, is based on the number 8.
Octal seems to have fallen from favour in recent years, and as

18

it is something you are not likely to encounter these days we
will not consider this system here.
A problem with binary numbers is that they tend to have

many digits with each digit being either 0 or 1, which makes
them rather difficult to deal with in many circumstances. For
instance, trying to remember more than just a very few 6502
instruction codes in their 8 bit binary form would probably
be beyond most people's ability. On the other hand, binary
numbers give a graphic representation of the state of each bit
in the registers of the microprocessor, and this is something
that is often important. Decimal numbers are easier to use
in that they are much shorter and are in a familiar form.
Converting a decimal number into an equivalent binary one is
not a very quick and easy process, especially where large
numbers are concerned, and this is inconvenient when it is
necessary to visualise things on a bit by bit basis.

The hexadecimal system gives the best of both worlds in
that it requires just a few digits to represent fairly large
numbers, and is in fact slightly better than the decimal
system in this respect. On the other hand, it is easy to convert
hexadecimal to binary, and it is easy to use when operating at
bit level. The hexadecimal system is based on the number 16,
and there are sixteen single digit numbers. Obviously the
numbers we normally use in the decimal system are inade-
quate for hexadecimal as there are six too few of them, but
this problem is overcome by augmenting them with the first
six letters of the alphabet. It is from this that the system
derives its name. The table following helps to explain the
way in which the hexadecimal system operates.

What makes hexadecimal so convenient is the way in which
multidigit numbers can be so easily converted into binary
form. The reason for this is that each hexadecimal digit
represents four binary bits. Take the hexadecimal A3 in the
above table for instance. The digit A represents 1010 in
binary, and the digit three converts to 0011. A3 therefore
represents 10100011 in binary. You may find that you can
memorise the four bit binary number represented by each of
the sixteen hexadecimal digits, but a little mental arithmetic

19

Decimal Hexadecimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

16 10 00010000

17 11 00010001

163 A3 10100011

is all that is needed to make the conversion if you cannot.
The digits in a hexadecimal number represent, working

from right to left, the number of units 16s, 256s, 4096s,
65536s, and 1048576s. You are unlikely to use hexadecimal
numbers of more than six digits in length.

20

SYSTEM OPERATION

If we now return to the block diagrams of Figures 1 and 2,
you should begin to get the idea of how data is moved around
the system and processed. At switch on the microprocessor
has all the registers set to zero, apart from the program
counter which starts at a certain address. The start up pro-
cedure is not normally of interest to the machine code
programmer, since few people design their own systems. It is
far more likely that you will be using a home computer where
all this is taken care of by the computer's operating system.
The program you write will normally go into a section of
memory occupied by random access memory (RAM). This is
memory where the microprocessor can set its contents at any
desired 8 bit binary number, and then read back that number
at a later time. The contents of RAM can be changed an
unlimited number of times, but reading the contents of RAM
does not destroy the data there or affect it in any way.
However, when the computer is switched off the contents of
RAM are lost. Software such as the computer's operating
system and BASIC interpreter are usually in read only memory
(ROM) which retains its contents after the computer has been
switched off (although the BASIC interpreter or other langu-
age has to be loaded from tape or disc on a few machines).
The contents of ROM are fixed, and writing to ROM does not
alter its contents. ROM is not an area of memory that is
normally used by the programmer, the exception being when
there are useful routines there that can be utilized.

The block marked input/output in Figure 2 includes such
things as the keyboard and the chip which produces the
television picture. The 6502 uses memory mapped input/
output. In other words, the microprocessor reads data from or
writes data to input/output devices just as if they were RAM,
and they are addressed in exactly the same way. This has the
advantage of making programming more straightforward in
that using a common set of instructions for memory and
input/output operations gives fewer instructions to contend
with. A minor drawback is that some of the 64k (a k is 1024

21

bytes incidentally) memory address range is occupied by the
input/output devices, but this does not normally seriously
deplete the maximum amount of memory that can be included.

With the aid of the computer's operating system and either
the BASIC interpreter or an assembler, the machine code
program is placed in a suitable section of memory, and the
program is run by directing the microprocessor to the
appropriate address. The machine code program then
operates by fetching an instruction from the start address of
the program, and then shuffling data around its registers and
the memory as it goes through the set of instructions. This
may seem a rather vague description of things, but if you can
grasp the basic concept of instructions and data being taken
from memory, or possibly input/output devices, with the
data being processed in some way by the microprocessor
before being sent back to a memory location or an output
device, then you should not find it difficult to understand a
few simple machine code programs and then gradually progress
to more complex ones. If you cannot see how the system
operates overall, individual machine code instructions could,
to say the least, be rather difficult to understand, and even
simple programs would certainly be impossible to follow.
A simple example of how the system operates should now

be quite easy for you to understand. We will assume that the
program must take a number from one memory location, then
add this to a number taken from a second address, and then
finally place the answer at a third address. There is more than
one way of going about this, and the differences occur due to
the various addressing modes that the 6502 can use. In other
words, we can place the numbers at any addresses we like, and
by using the appropriate addressing mode (or modes) and
instructions the program can be made to obtain the numbers
from the correct addresses. Addressing modes is a fairly
complex subject which is fully discussed in a later chapter of
this book, and it will not be considered in detail here. For the
sake of this example we will use the most simple addressing
mode, which is immediate addressing. With this system the
first instruction would be to load a byte into the accumulator

22

from memory (i.e. the first number), and with immediate
addressing the byte of data is at the address which follows the
instruction. After receiving an immediate instruction the
program counter automatically increments by one and moves
the program on to the byte of data that is to be processed.
The next instruction would be to add the second number to
the number currently in the accumulator, and this would
again be a matter of having the instruction followed by the
number at the next address. Next, the instruction to store
the accumulator at the next address would be used, and then
finally the return from subroutine instruction would be given.
This last instruction simply ends the program and returns
control of the computer to the operating system.

This program only uses seven bytes including the one
where the answer is stored. Before the program was run these
would be as follows:—

Byte 1 Load immediate instruction code

Byte 2 First number

Byte 3 Add immediate instruction code

Byte 4 Second number

Byte 5 Store accumulator immediate instruction

Byte 6 Any 8 bit number

Byte 7 Return from subroutine instruction

After the program was run things would be little different, and
the only change would be that byte 6 would have been
changed from a random number to the sum of the first and
second numbers. In this simple example we are ignoring any
carry forward indicated by the carry flag.

It is only fair to point out that the program could not be
run in this form on the 6502 as it does not have the store
accumulator instruction in its immediate form. However, it
could achieve much the same thing using an alternative form
of this instruction, and this gives us an opportunity to briefly

23

consider the use of the X and Y index registers. With the
immediate instructions the program counter automatically
increments by one after the microprocessor has finished the
instruction. This method of doing things is very fast, straight-
forward, and requires little memory, but it is in many ways
limiting.

The X and Y registers can be loaded with numbers which
can then be used to control the program counter in some way
so that the program jumps to the required address. In our
simple example this indexed addressing is an unnecessarily
complicated way of doing things, but it nevertheless illustrates
the use of an index register, and should give you the basic idea
of how they are used.

Using indexed addressing to store the answer the program
would be along the lines shown below:—

Byte 1 Load accumulator immediate

Byte 2 First number

Byte 3 Add accumulator immediate

Byte 4 Second number

Byte 5 Load X register immediate

Byte 6 Offset to be loaded into X register

Byte 7 Store accumulator absolute X

Byte 8 8 least significant bits of address

Byte 9 8 most significant bits of address

Byte Z Answer

Byte Z+1 Return from subroutine

The program starts in the same way as before, but at bytes
5 and 6 we are loading a number into the X register. When the
store accumulator instruction is reached it is followed by a
16 bit address in the next two bytes. Note that the least
significant bits are given first, followed by the most significant

24

bits, and not as one might expect, with the most significant
bits first. The answer is stored at address Z, which is the 16
bit address at bytes 8 and 9 plus the offset which was loaded
earlier into the X register. This can be any address within the
64k address range of the 6502. The program then goes to the
next byte (address Z+1, not Byte 10) where the return from
subroutine instruction is used to hand control back to the
computer's operating system.

Something that will probably have become apparent is
that it takes a large number of machine code instructions to
achieve quite simple tasks. When programming in a language
such as BASIC each instruction is converted into a number of
machine code instructions by the interpreter. This is one of
the factors which makes writing machine code programs a
relatively slow affair.

THE STACK

There are a number of registers in the 6502 (and shown in
Figure 1) which we have not yet considered, and we will take
a look at the function of these now. The one labelled S is
the stack pointer, and this is actually a 9 bit register rather
than the more usual (for the 6502 anyway) 8 bit type. How-
ever, the most significant bit is always set at 1. The stack is a
set of registers which can be used for temporary data storage,
and with some microprocessors the stack is an internal part of
the microprocessor. This is often termed a hardware stack.
This is in many ways the most elegant solution to the problem,
and it has the advantage of high speed. It has the disadvantage
of giving only a relatively small number of registers, and does
of course add complexity to the microprocessor.

The 6502, in common with most of the more simple micro-
processors, uses the alternative of a software stack. This is
just an area of memory which is reserved for use as the stack,
and the system must, of course, provide RAM at the relevant
range of addresses. The stack pointer (the S register) points
to an address in this block of RAM, and with the 6502 the

25

stack extends from 100000000 to 111111111 in binary, or
256 to 511 in decimal. The stack register operates auto-
matically, and it is not like an index register which can be
loaded with any desired 8 bit number. The stack uses the
last in—first out or LIFO system. In other words, each time
data is placed onto the stack the S register is incremented by
1, and each time data is taken from the stack the pointer is
automatically decremented by one. This is often looked on
as being analogous to a stack of plates, with plates being
loaded one on top of the other, building a pile from the
bottom upwards, and then removing plates from the top of
the pile and working downwards. This analogy does not work
too well with the 6502 as it starts with the stack pointer at
111111111 and cóunts downwards as the stack is enlarged.
However, the last in—first out doctrine still applies. The fact
that the stack grows downwards is really only of academic
importance anyway, since the stack pointer increments and
decrements automatically.

Apart from use as a convenient temporary data store, the
stack is also used when subroutines and interrupts are
implemented. We will not consider these in detail here, but
in both cases the microprocessor breaks out of its normal
operating routine, and branches off into another routine.
With an interrupt, the signal to the microprocessor that it
must break out of its normal routine is provided by a hardware
device via one of the 6502's two interrupt inputs. A typical
application where interrupts are used is the timer that is a
feature of many home computers. Here a counter circuit
generates an interrupt (say) every 10 milliseconds, and a
software routine is used to increment by one the number
stored at a set of memory locations. With suitable manipula-
tion the number in these RAM locations can be converted into
suitable data for a minutes and seconds display, or even for a
real-time clock. The number can be POKEd to any desired
figure so that the clock can be set at the required time. If the
timer is to achieve a reasonable degree of accuracy it is
important that the microprocessor carries out the software
routine at each request without waiting to complete other

26

tasks first. It is for this type of application that interrupts are
ideal.

The problem with the use of interrupts is that the micro-
processor has to be able to break back into its main routine
again after it has finished the interrupt routine. To facilitate
this things such as the contents of the accumulator, the X
register, and the Y register are stored on the stack when the
interrupt is generated, and then retrieved again when the
interrupt routine has been completed. Things are much the
same when a subroutine is called; and a subroutine could be
regarded as a software generated interrupt. In fact there is a
6502 instruction (break) which has exactly the same effect as
an interrupt request. When writing programs for home
computers it is unlikely that you will need to deal with
interrupts, and they are principally used as part of the com-
puter's operating system and in a few specialised add-on
hardware applications. Because the computer is continually
generating its own interrupts there will almost certainly be
restrictions on the use of user generated interrupts, and they
may not be usable at all.

FLAGS

The 6502 has status flags apart from the carry and overflow
ones, and one of these is the zero flag (the Z register of
Figure 1). This is used by conditional instructions which test
to see whether or not this bit is set. As its name suggests, this
bit is set when the result of an operation by the arithmetic
logic unit has produced zero as the answer.

The negative flag (the N register of Figure 1) is equally
straightforward, and this bit is set when the result of an
operation by the arithmetic logic unit gives a negative result.

The I flag is the interrupt masking bit, and this can be set
by the programmer to disable certain interrupts. The D flag
is the decimal flag, and this is set to place the 6502 in the BCD
mode.

27

PAGING

When dealing with the 6502 it is common to find references to
pages of memory. For example, you will often come across
references to zero page. Pages of memory are simply blocks of
256 bytes, with zero page at address from 0 to 255, page 1
at 256 to 511, page 2 at 512 to 767, and so on. The 64k
address range of the 6502 gives 256 pages in all. As we have
already seen, page 1 is used as the stack, but the other pages
are free for the system designer to use virtually in any way he
or she desires.

Although the use of paging may seem pointless, it can be
helpful. Due to the use of 8 bit index registers in the 6502
the page boundaries are real rather than imaginary when some
addressing modes are used, and although there is no difficulty
in crossing the boundaries in these modes, extra instructions
(and processing time) are involved.

6502 PINOUTS

The 6502 is contained in a 40 pin DIL plastic package, and it
has the pinout configuration shown in Figure 3. The pinouts
of the device are really only of academic importance as far as
the programmer is concerned, but a brief description of these
will be given here as you might find it helpful in understanding
how the overall system operates.

The pins marked AO to AIS are the 16 bit address bus, and
similarly, DO to D7 are the 8 bit data bus. ¡RO is the interrupt
request input, and taking this low generates an interrupt, but
the current instruction is completed first, and the micro-
processor would simply crash if it was not. Then the interrupt
mask bit of the status register is examined, and the interrupt
sequence will only be started if the interrupt mask bit is not
set. The processor automatically stores the contents of the
program counter and the status register on the stack, and it
also sets the interrupt mask bit so that further interrupts are
ignored until the current one has been completed. This is

28

1
vss E

R DY E
01 E
IRO E
NC E
NMI E

SYNC E
v. E
AO E
Al E
A2 E
A3 E
A4 E
A5 E
A6 E
A7 E
A8 E
A9 E

A10 E
Al 1 E

20

0

6502

40

2 Reset

.: 02

2 SO

200

2 NC

2 NC

2 RAT/

: DO

2D1

202

D3

: D4

2 135

206

2 D7

: A15

: A14

2 A13

2 Al2

: Vss
21

Fig. 3. Pinout details of the 6502

29

obviously essential, since the microprocessor is then loaded
with the numbers stored at (hexadecimal) addresses FFFE
(low byte) and FFFF (high byte). These two addresses must
therefore contain the start address of the interrupt routine.

An important point to bear in mind regarding interrupts
is that the microprocessor only saves (on the stack) and
restores the contents of the program counter and the status
register. If any other registers, such as the X or Y index
registers, will have their contents altered by the interrupt
routine, it is up to the programmer to provide a routine to
save these on the stack and then restore them again at the
end of the interrupt routine. The programmer is also
responsible for resetting the interrupt masking bit once the
interrupt has been serviced.

The second interrupt input of the 6502 is the non-maslcable
interrupt (NMI) input. As its name suggests, this has a higher
priority than the IRQ input, and the interrupt routine is
performed regardless of the state of the interrupt masking bit.
Obviously this interrupt input has to be used with some care.
In other respects the interrupt is handled in much the same
way as for one generated via the IRQ inpi.d. However, the
program counter is loaded with the address stored at (hexa-
decimal) addresses FFFA (low byte) and FFFB (high byte).
Thus there is no difficulty in having separate interrupt routines
for the IRQ and NMI inputs. It is actually possible to have
several devices driving each interrupt input, with a separate
interrupt routine for each device, but the methods of achieving
this really goes beyond the scope of this book.

The Reset input is taken low briefly at switch on, and this
starts the microprocessor on its initialisation sequence. It can
also be used to take the computer back to this sequence at any
time, such as after the computer has crashed. Many 6502
based computers have a Reset or Break switch which simply
pulls the Reset pin low when the switch is operated. As part
of the initialisation process the program counter is loaded
with the numbers at (hexadecimal) addresses FFFC (low byte)
and FFFD (high byte), and these direct the microprocessor
to the start of the operating system routine.

30

•

The read/write (R/W) pin is an output, and is used to
control memory and input/output devices. It goes high when
the microprocessor is reading the data bus, and it switches the
memory and input/output devices into the output mode so
that the relevant device can be read by the microprocessor.
Of course, only one device at a time must output data onto
the data bus, and correct decoding of the address bus ensures
that only one device is activated at any one time. The read/
write line goes low when the microprocessor is placing data
onto the data bus, and this sets the memory and input/output
devices in the state where they are ready to receive data from
the data bus. Again, correct decoding of the data bus ensures
that only the intended device receives the data written onto
the data bus by the microprocessor.

The pins marked 00, 01 and 02 are the clock terminals of
the device, and the 6502 has a built-in clock circuit which
has its frequency set by an external crystal. The clock simply
provides a series of electrical pulses to the microprocessor, and
it is these that move the component through the complex
sequence of events that make up each instruction. The
standard 6502 will operate with clock frequencies of up to 1
megahertz (i.e. one million pulses a second), and it is normally
used with a clock frequency at something in the region of
1 MHz so that it carries out instructions at something
approaching the highest rate possible. When using the 6502
(or any microprocessor) in an application where high operating
speed is important it must be remembered that each instruc-
tion takes several clock cycles, and that a clock frequency of
1 megahertz does not equate with 1 million instructions per
second. The number of cycles taken to execute an instruc-
tion varies from one instruction to another, but for the 6502
it is typically about six clock cycles.

There are higher speed versions of the 6502, such as the
6502C, but these differ from the standard 6502 only in the
maximum clock frequency that can be used. As far as
programming is concerned there is no difference between the
various versions of the 6502.

31

MEMORY ORGANISATION

The manual for most home computers includes a memory
map, which shows the functions of various parts of the
computer's address range. The memory map varies consider-
ably from one computer to another, but there are strong
similarities between maps for the various 6502 based home
computers. Figure 4 shows a typical 6502 home computer
memory map. This is not the map for any particular
computer incidentally, and is a sort of generalised 6502
memory map.

As pointed out earlier, page 1 is used as the stack, and this
is something that will obviously be common to all 6502 based
machines. Zero page is usually reserved for important
variables and pointers, and this is due to the special form of
addressing associated with zero page (which is discussed in
more detail in the next chapter). Of course, there has to be
RAM at pages 0 and 1 due to the variable nature of the data
that will be stored there, and so the RAM starts at zero page
and extends upwards. As we have seen, the six addresses at
the top of memory point to the start addresses of the operat-
ing system and interrupt routines, and the operating system
ROM therefore occupies the top section of the address range.
It is convenient to have the language ROM immediately
beneath this in the memory map. The top part of the RAM
is normally used as the video display RAM, and this is conveni-
ent in that with most computers the amount of RAM required
for the display depends on the display mode used. With this
system it is easy to arrange things so that as less RAM is
utilized by the display, more RAM automatically becomes
available for program use, with the boundary between the
two changing according to the display mode used. Of course,
not all computers use the full 64k address range and can
operate in this way, but these days the majority seem to do
so, or have the option of extra RAM which brings them into
this category.

The area of memory used for input/output devices tends to
vary considerably from one machine to another. Perhaps the

32

FFFF

0200

0100

0000

Moveable
boundaries

-"\

Operating system
ROM

Language ROM

Memory mapped
: video display area

User memory area

8-32k
total

One or more pages reserved
for system use (Vectors, I/O,
cassette/disc workspace, etc.)

Page 1. Machine stack

Zero page—reserved for

important variables/pointers

Fig. 4. Typical memory map of a 6502 computer

33

most logical place for it is low in memory, such as the page 3
input/output used by the ORIC-1 and Atmos computers.
On the other hand, many home computers have some unused
ROM space, and it then makes sense to fit the input/output
devices into this area of memory so that as much space as
possible is left free for RAM to hold programs. This is the
input/output system used in computers such as the BBC
machines and the Electron.

34

Chapter 2

THE 6502 INSTRUCTION SET

This chapter is an alphabetical list of all the legal 6502
instructions, giving a brief description of the operation per-
formed, the opcodes for all the address modes available with
a particular instruction, and a list of the flags affected. All
opcodes are given in hexadecimal notation.

The number of bytes and number of cycles taken by each
instruction are not given here. Information on instruction
length is given in the next chapter (Address Modes), and
number of cycles taken is given in the instruction set chart at
the back of the book.

1. ADD WITH CARRY

Mnemonic — ADC

Adds the contents of the memory address or immediate data
to the contents of the accumulator and carry bit. The result is
placed in the accumulator. The CLC instruction may be used
before ADC to add without carry. This instruction may be
used in either binary or decimal mode.

'The N, V, Z and C flags are affected by this instruction.

Address mode Opcode

Absolute 6D

Zero-page 65

Immediate 69

Absolute, X 7D

Absolute, Y 79

(Indirect, X) 61

35

(Indirect, Y)

Zero-page, X

2. LOGIC AND

71

75

Mnemonic AND

Logical ANDs the specified data with the contents of the
accumulator on a bit-by-bit basis. The result is placed in the
accumulator.

Flags affected are N and Z.
Logical AND operates according to the following rules:-

1 AND 1 = 1

1 ANDO=0

0 AND 0=0

Address mode Opcode

Absolute 2D

Zero-page 25

Immediate 29

Absolute, X 3D

Absolute, Y 39

(Indirect, X) 21

(Indirect, Y) 31

Zero-page, X 35

36

3. ARITHMETIC SHIFT LEFT

Mnemonic ASL

Shifts the contents of memory location or accumulator left by
one bit position. Bit 0 is set to 0, bit 7 is placed in the carry
bit. The result is placed in the source.

Flags affected are N, Z and C.

Address mode Opcode

Accumulator OA

Absolute OE

Zero-page 06

Absolute, X lE

Zero-page, X 16

4. BRANCH ON CARRY CLEAR

Mnemonic BCC

Tests the carry flag. If clear, the program branches forward
or backward by the number of bytes (not instructions)
specified (maximum — 128 or + 127). If the carry flag is set,
the next instruction in sequence is executed.

Note that the displacement is in fact added to the first
instruction after BCC, so the possible maximum displace-
ments are in fact + 129 to — 126.

No flags are affected.
Address mode is Relative only, opcode 90.

5. BRANCH ON CARRY SET

Mnemonic BCS

Tests the carry flag. If set, the program branches forward or
backward by the specified displacement (see BCC). If clear,

37

the next instruction in sequence is executed.
No flags are affected.
Address mode Relative only, opcode BO.

6. BRANCH IF (LAST RESULT) EQUAL TO ZERO

Mnemonic BEQ

Tests the Z flag. If set, the program branches forward or
backward by the specified displacement (see BCC). If clear,
the next instruction in sequence is executed.

No flags are affected.
Address mode Relative only, opcode FO.

7. TEST MEMORY BITS AGAINST ACCUMULATOR

Mnemonic BIT

Performs logical AND between the specified memory location
and the accumulator, but the result is discarded. The accumu-
lator and memory contents are unchanged. The result of the
comparison is indicated by the zero flag. It is set to 1 if the
comparison fails, 0 if memory and accumulator are equal. In
addition, the V flag is set equal to bit 6 of the memory data,
and the N flag is set equal to bit 7.

This instruction is used to test a specific bit (or bits) of a
memory location by loading the appropriate value, usually
called a mask, into the accumulator. It is mostly used in
I/O applications.

Flags affected are Z, N, V.

Address mode Opcode

Absolute 2C

Zero-page 24

38

8. BRANCH ON MINUS

Mnemonic BMI

Tests the N flag. If N is set, the program branches forward
or backward by the specified displacement (see BCC). If
clear, the next instruction in sequence is executed. In general,
this instruction is only appropriate when signed arithmetic is
being performed.

No flags are affected.
Address mode Relative only, opcode 30.

9. BRANCH ON (LAST RESULT) NOT EQUAL
TO ZERO

Mnemonic BNE

Tests the Z flag. If clear the program branches forward or
backward by the specified displacement (see BCC). If set, the
next instruction in sequence is executed.

No flags are affected.
Address mode Relative only, opcode DO.

10. BRANCH ON PLUS

Mnemonic BPL

Tests the N flag. If clear, the program branches forward or
backward by the specified displacement (see BCC). If set, the
next instruction in sequence is executed. In general, this
instruction is only appropriate when signed arithmetic is being
performed.

No flags are affected.
Address mode Relative only, opcode 10.

39

11. BREAK

Mnemonic BRK

This is in effect a software interrupt. The program counter
and status register are saved on the stack, then PCL and PCH
are set to the values in memory locations FFFE and FFFF
respectively. The status register saved on the stack has the B
flag set, to differentiate between a BRK and an IRQ.

Unlike an interrupt, PC+2 is saved. This is because BRK is
assumed to be used to replace a 2-byte instruction. This may
not be the case when BRK is used in program debugging, and
a correction may be necessary.

Users of the BBC microcomputer and Acorn Electron
should note that BRK is used in error handling, and cannot
normally be used for other purposes in user-written machine
code programs.

Only the B flag is affected.
Address mode Implied only, opcode 00.

12. BRANCH ON OVERFLOW CLEAR

Mnemonic BVC

Tests the V flag. If clear, the program branches forward or
backward by the specified displacement (see BCC). If set, the
next instruction in sequence is executed.

No flags are affected.
Address mode Relative only, opcode 50.

13. BRANCH ON OVERFLOW SET

Mnemonic BVS

Tests the overflow flag. If set, the program branches forward
or backward by the specified displacement (see BCC). If
clear, the next instruction in sequence is executed.

No flags are affected.
Address mode Relative only, opcode 70.

40

14. CLEAR CARRY FLAG

Mnemonic CLC

Clears the carry flag. This is to allow an addition without a
carry, and is used before ADC.

Only the carry flag is affected.
Address mode Implied only, opcode 18.

15. CLEAR DECIMAL FLAG

Mnemonic CLD

Clears the decimal flag, so that future ADC and SBC opera-
tions are performed in binary mode. It is wise to include this
instruction at the beginning of any binary arithmetic routines
called from BASIC.

Only the D flag is affected.
Address mode Implied only, opcode D8.

16. CLEAR INTERRUPT FLAG

Mnemonic CLI

Enables interrupts. Interrupt handling routines must always
clear this flag before returning to the program, or further
interrupts will be lost.

Only the I flag is affected.
Address mode Implied only, opcode 58.

17. CLEAR OVERFLOW FLAG

Mnemonic CLV

Clears the overflow flag.
Only the V flag is affected.
Address mode Implied only, opcode B8.

41

18. COMPARE TO ACCUMULATOR

Mnemonic CMP

The contents of the specified memory or immediate data are
subtracted from the accumulator. The result is discarded.
Flags N, Z and C may be set, depending on whether the result
is positive, zero, or negative. The contents of the accumulator
and memory are unchanged.

If the result is zero, Z flag is set, otherwise reset.
N is set, but is reset if bit 7 of comparison result = 1.
C is set if the accumulator contents are equal to or larger

than the data.
CMP is usually used before a branch instruction. Use BCC

to detect if the accumulator is greater than the data, BEQ to
detect if the accumulator is equal to the data, BCS to detect if
the accumulator is equal to or greater than the data. To detect
if the accumulator contents are greater than the data, it is
necessary to use BEQ followed by BCS.

Flags affected are N, Z and C.

Address mode Opcode

Absolute CD

Zero-page C5

Immediate C9

Absolute, X DD

Absolute, Y D9

(Indirect, X) C

(Indirect, Y) D

Zero-page, X D5

42

19. COMPARE TO X REGISTER

Mnemonic CPX

Subtracts the specified data from the contents of the X
register. The result is discarded, and register and memory
unchanged. The flags N, Z and C may be set, depending on
the result. See CMP for details.

CPX is usually used before a branch. See CMP for appro-
priate tests, substituting the X register for the accumulator.

Flags affected are N, Z and C.

Address mode Opcode

Absolute EC

Zero-page E4

Immediate EO

20. COMPARE TO Y REGISTER

Mnemonic CPY

Subtracts the specified data from the Y register. The result
is discarded, and the register and memory unchanged. The
flags N, Z and C may be set, depending on the result. See
CMP for details.

CPY is usually used before a branch. See CMP for appro-
priate tests, substituting the Y register for the accumulator.

Flags affected are N, Z and C.

Address mode Opcode

Absolute CC

Zero-page C4

Immediate CO

43

21. DECREMENT

. Mnemonic DEC

Subtracts 1 from the contents of the specified memory loca-
tion, storing the result in that location. If the contents are
0, the result will be FF (255 decimal).

Flags affected are N and Z.

Address mode Opcode

Absolute CE

Zero-page C6

Absolute, X DE

Zero-page, X D6

22. DECREMENT X REGISTER

Mnemonic DEX

Decrements the contents of register X by 1. This allows the
register to be used as a counter.

Flags affected are N and Z.
Address mode Implied only, opcode CA.

23. DECREMENT Y REGISTER

Mnemonic DEY

Decrements the contents register Y by I. This allows the
register to be used as a counter.

Flags affected are N and Z.
Address mode Implied only, opcode 88.

44

24. LOGIC EXCLUSIVE-OR

Mnemonic EOR

Exclusive-ORs the specified data with the accumulator, the
result being placed in the accumulator.

Flags affected are N and Z.
Logical EOR operates according to the following rules:-

1 EOR 1 = 0

1 EOR 0 = 1

0 EOR 0 = 0

Address mode Opcode

Absolute 4D

Zero-page 45

Immediate 49

Absolute, X 5D

Absolute, Y 59

(Indirect, X) 41

(Indirect, Y) 51

Zero-page, X 55

25. INCREMENT MEMORY

Mnemonic INC

Adds one to the contents of the specified memory location,
storing the result in that location. If the contents is $FF
(255 decimal), the result will be O.

Flags affected are N and Z.

45

»,1•14, I Me.. • • I elP

Address mode Opcode

Absolute EE

Zero-page E6

Absolute, X FE

Zero-page, X F6

26. INCREMENT X REGISTER

Mnemonic INX

Increments the contents of the X register by 1. This allows
the register to be used as a counter.

Flags affected are N and Z.
Address mode Implied only, opcode E8.

27. INCREMENT Y REGISTER

Mnemonic INY

Increments the contents of the Y register by I. This allows
the register to be used as a counter.

Flags affected are N and Z.
Address mode Implied only, opcode C8.

28. JUMP TO ADDRESS

Mnemonic JMP

Loads the address specified into the program counter, thus
causing a jump in the sequence of program execution. The
address may be absolute or indirect. This is the only instruc-
tion to allow straight indirection.

No flags are affected.

46

-

Address mode Opcode

Absolute 4C

Indirect 6C

29. JUMP TO SUBROUTINE

Mnemonic JSR

Loads a new address into the program counter, causing a jump
to that address, having first saved the current program position
on the stack as a return address (see RTS). Note that it is the
contents of the program counter +2 which is saved, this being
the áddress of the next instruction after JSR.

No flags are affected.
Address mode Absolute only, opcode 20.

30. LOAD THE ACCUMULATOR

Mnemonic LDA

Loads the specified data into the accumulator.
Flags affected are N and Z.

Address mode Opcode

Absolute AD

Zero-page AS

Immediate A9

Absolute, X BD

Absolute, Y B9

(Indirect, X) Al

(Indirect, Y) B I

Zero-page, X BS

47

31. LOAD THE X REGISTER

Mnemonic LDX

Loads the specified data into the X register.
Flags affected are N and Z.

Address mode Opcode

Absolute AE

Zero-page A6

Immediate A2

Absolute, Y BE

Zero-page, Y B6

32. LOAD THE Y REGISTER

Mnemonic LDA

Loads the specified data into the Y register.
Flags affected are N and Z.

Address mode Opcode

Absolute AC

Zero-page A4

Immediate AO

Absolute, X BC

Zero-page, X B4

33. LOGICAL SHIFT RIGHT

Mnemonic LSR

Shifts the contents of the accumulator or specified memory
one bit position to the right. Result is stored in the source.

48

Bit 0 is stored in the carry flag. Bit 7 is set to O.
Flags affected are N, Z and C.

Address mode Opeode

Accumulator 4A

Absolute 4E

Zero-page 46

Absolute, X 5E

Zero-page, X 56

34. NO OPERATION

Mnemonic NOP

Does nothing, but takes up two machine cycles. May be used
to pad a software timing loop, or to rill patches in a program.

No flags are affected.
Address mode Implied only, opcode EA.

35. INCLUSIVE OR WITH ACCUMULATOR

Mnemonic ORA

Logic inclusive-ORs the accumulator and specified data, the
result being placed in the accumulator. May be used to force
is at specified bit positions.

Inclusive-OR is performed according to the following
rules:

Flags affected are N and Z.

49

Address mode Opcode

Absolute OD

Zero-page 05

Immediate 09

Absolute, X ID

Absolute, Y 19

(Indirect, X) 01

(Indirect, Y) 11

Zero-page, X 15

36. PUSH ACCUMULATOR ONTO STACK

Mnemonic PHA

Stores the contents of the accumulator on the stack, updating
the stack pointer. Accumulator contents are unchanged.

No flags are affected.
Address mode Implied only, opcode 48.

37. PUSH PROCESSOR STATUS ONTO STACK

Mnemonic PHP

Stores the contents of the status register P on the stack and
updates the stack pointer. P is unchanged.

No flags are affected.
Address mode Implied only, opcode 08.

50

38. PULL ACCUMULATOR FROM STACK

Mnemonic PLA

Loads the accumulator with the top word of the stack, and
increments the stack pointer.

Flags affected are N and Z.
Address mode Implied only, opcode 68.

39 PULL PROCESSOR STATUS FROM STACK

Mnemonic PLP

Transfers the top word of the stack into the processor status
register P, and increments the stack pointer.

All ilags are affected.
Address mode Implied only, opcode 28.

40. ROTATE LEFT (one bit)

Mnemonic ROL

Rotates the contents of the specified address or accumulator
left by one bit position. The carry flag is used as a ninth bit.
The carry goes into bit 0, and bit 7 goes into the carry.

Flags affected are N, Z and C.

Address mode Opcode

Accumulator 2A

Absolute 2E

Zero-page 26

Absolute, X 3E

Zero-page, X 36

51

41. ROTATE RIGHT (one bit)

Mnemonic ROR

Rotates the contents of the specified address or accumulator
right by one bit position. The carry flag is used as a ninth bit.
The carry goes into bit 7, and bit 0 goes into thé carry.

Flags affected are N, Z and C.

Address mode Opcode

Accumulator 6A

Absolute 6E

Zero-page 66

Absolute, X 7E

Zero-page, X 76

42. RETURN FROM INTERRUPT

Mnemonic RTI

Restores the status register and program counter, which are
saved on the stack when an interrupt occurs, and adjusts the
stack pointer.

All flags are affected.
Address mode Implied only, opcode 40.

43. RETURN FROM SUBROUTINE

Mnemonic RTS

Restores the program counter from the stack (saved by JSR)
and increments it by 1. Adjusts the stack pointer.

No flags are affected.
Address mode Implied only, opcode 60.

52

44. SUBTRACT WITH CARRY

Mnemonic SBC

Subtracts the specified data from the accumulator, with
borrow. The result is placed in the accumulator. Will operate
in either decimal or binary mode, depending on the D flag.

Flags affected are N, V, Z and C.

Address mode Opcode

Absolute ED

Zero-page E5

Immediate E9

Absolute, X FD

Absolute, Y F9

(Indirect, X) El

(Indirect, Y) Fl

Zero-page, X F5

45. SET CARRY FLAG

Mnemonic SEC

Sets the carry flag to 1. This can be used before a SBC to
subtract without a borrow.

Only the C flag is affected.
Address mode Implied only, opcode 38.

46. SET DECIMAL MODE FLAG

Mnemonic SED

Sets the decimal flag to 1. ADC and SBC will then be per-
formed in BCD until a CLD is executed.

Only the D flag is affected.
Address mode Implied only, opcode F8.

53

47. SET INTERRUPT DISABLE FLAG

Mnemonic SE!

Sets the interrupt mask to 1. Used during interrupt service
routines and system reset, or whenever interrupts cannot be
allowed.

Only the I flag is affected.
Address mode Implied only, opcode 78.

48. STORE ACCUMULATOR IN MEMORY

Mnemonic STA

Stores a copy of the accumulator contents at the specified
memory location. The accumulator is unchanged.

No flags are affected.

Address mode Opcode

Absolute 8D

Zero-page 85

Absolute, X 9D

Absolute, Y 99

(Indirect, X) 81

(Indirect, Y) 91

Zero-page, X 95

Absolute 8E

Zero-page 86

Zero-page, Y 96

54

49. STORE X IN MEMORY

Mnemonic SIX

Stores a copy of index register X at specified memory
location. X is unchanged.

No flags are affected.

50. STORE Y IN MEMORY

Mnemonic STY

Stores a copy of index register Y at specified memory
location. Y is unchanged.

No flags are affected.

Address mode Opcode

Absolute 8C

Zero-page 84

Zero-page, X 94

51. TRANSFER ACCUMULATOR TO X

Mnemonic TAX

Copies the contents of the accumulator into index register X.
The accumulator is unchanged.

The N and Z flags are affected.
Address mode Implied only, opcode AA.

52. TRANSFER ACCUMULATOR TO Y

Mnemonic TAY

Copies the contents of the accumulator into index register Y.
The accumulator is unchanged.

The N and Z flags are affected.
Address mode Implied only, opcode A8.

55

53. TRANSFER STACK POINTER TO X

Mnemonic TSX

Copies the contents of the stack pointer into X. The stack
pointer is unaltered.

The N and Z flags are affected.
Address mode Implied only, opcode BA.

54. TRANSFER X TO ACCUMULATOR

Mnemonic TXA

Copies the contents of the index register X into the accumu-
lator. X is unchanged.

The N and Z flags are affected.
Address mode Implied only, opcode 8A.

55. TRANSFER X INTO STACK POINTER

Mnemonic TXS

Copies the contents of the index register X into the stack
pointer S. X is unchanged.

No flags are affected.
Address mode implied only, opcode 9A.

56. TRANSFER Y INTO THE ACCUMULATOR

Mnemonic TYA

Copies the contents of index register Y into the accumulator.
Y is unchanged.

Flags N and Z are affected.
Address mode Implied only, opcode 98.

56

Chapter 3

ADDRESSING MODES

Addressing is the means by which the processor determines,
from the instruction, the location of the data, or operand, on
which the instruction will operate. The 6502 has 9 possible
address modes, though some of these have slight variants.

Most instructions can use more than one addressing mode.
Though the same mnemonic is used, for all addressing modes,
the opcode is obviously different. When an assembler is used,
it will normally determine the address mode from the way
the instruction is written. Special symbols or syntax are used
to indicate some modes. When hand assembling, care must
be taken to select the correct opcode, and to provide the
correct number of bytes after the opcode. These may vary
with a given instruction depending on the address mode in
use.

Full use of the available address modes is important to
good programming, and it is important to understand them
thoroughly.

1. IMPLIED ADDRESSING

This mode of addressing is used only by instructions which
operate on one or more of the 6502's internal registers
without requiring external data. Some such. operations may,
however, require some external memory access, for example,
the stack.

All these instructions are a single byte long.
Instructions using this mode are CLC, CLD, CLI, CLV,

DEX, DEY, INX, INY, NOP, SEC, SED, SEI, TAX, TAY,
TSX, TXA, TXS, TYA, and with memory access BRIC, PHA,
PHP, PLA, PLP, RTI, RTS.

57

2. IMMEDIATE ADDRESSING

In this mode, the operand is included in the program, immedi-
ately after the opcode. As the 6502 only has 8-bit registers,
the operand can only occupy a single byte. All such instruc-
tions are therefore two bytes long. The hash symbol is used
to indicate immediate mode, thus LDA#16 means load the
accumulator with the value 16. This address mode allows
constant data to be included within programs.

Instructions using this mode are ADC, AND, CMP, CPX,
CPY, EOR, LDA, LDX, LDY, ORA, SBC.

3. ABSOLUTE ADDRESSING

In absolute addressing, the location of the operand in memory
is specified in the instruction. Two bytes are used, so any
position in the available 64k may be specified. This is the
means by which variable data may be accessed by the
program.

These instructions are three bytes long.
Instructions using this mode are ADC, AND, ASL, BIT,

CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX,
WY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY.

4. ZERO PAGE

This is really a special case of absolute addressing. An 8-bit
address follows the opcode, this being regarded as the low
byte of the full 16-bit address, the upper byte being assumed
to be zero. Thus, this mode can address only the first, zero,
page of memory.

Zero page has special significance in 6502 programming.
This special address mode allows it to be accessed faster than
other pages of memory, and it is used virtually as extra
registers for important variables and data which needs to be
accessed frequently or at speed. You should reserve zero page

58

for such purposes and not clutter it up with program code
which could go anywhere in memory.

Care should be taken over the use of zero page when using
machine code and a high level language, such as BASIC,
together. Many zero page locations will be used by the high
level language and if these are corrupted during machine code
execution a machine crash is likely.

Instructions in this mode are two bytes long.
Instructions using this mode are ADC, AND, ASL, BIT,

CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR,
ORA, ROL, ROR, SBC, STA, SIX, STY.

5. RELATIVE ADDRESSING

With the 6502, this addressing mode is used only with branch
instructions, and branch instructions only use relative mode.

In relative addressing, the byte following the instruction
contains a displacement, which is regarded as a signed number
between — 128 and + 127. If the program branches, this dis-
placement is added to the contents of the program counter,
causing a jump forwards or backwards. Note that the
displacement is the number of memory locations, not the
number of instructions.

With most assemblers, you specify the address of the
memory location to which the program is to branch, and the
assembler calculates the displacement for you.

All instructions using this mode are two bytes long.
This mode is only used by BCC, BCS, BEQ, BMI, BNE,

BPL, BVC, BVS.

6. INDIRECT ADDRESSING

In indirect addressing, two bytes following the opcode contain
a memory address. The contents of this address, and the byte
that follows it, give a further address, which is where the data
is to be found.

59

In fact, very few microprocessors allow indirect addressing,
and the 6502 allows it only with one instruction, JMP. This is
a three-byte instruction.

Indirect addressing is indicated by enclosing the second part
of the instruction in brackets, thus JMP($0376) means that
the program should jump to the instruction at the address
given by the contents of the two bytes at $0376 and $0377.

The concept of indirection is an important one. Some
people find it hard to grasp, but it is important that you do so,
even if straight indirection is limited to one instruction with
the 6502, as a form of indirection is widely used in program-
ming.

INDEXED ADDRESSING

Indexed addressing, which may be combined with indirect
addressing, means that the contents of one of the index
registers, X and Y, are used to modify the address given or
pointed to in the instruction. This makes it easy, using the
increment or decrement instructions on the registers, to access
a number of successive bytes of memory using a loop structure.

7. ABSOLUTE INDEXED ADDRESSING

In this mode, the contents of either the X or the Y register is
added to the address contained in the instruction. In assembly
language this is written as, for example, LDA $4800,X.

Using the X register, it is permissible to have either a 16-bit
or an 8-bit (i.e. zero page) address. The Y register, however,
can only be used with 16-bit addresses, with the exception of
the instructions LDX and SIX, which may be modified by the
Y register.

The instructions which may be used with the X register are
ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR,
ORA, ROL, ROR, SBC, STA.

60

The instructions which may be used with the Y register are
ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC, STA.

Additionally, with zero page indexed addressing, STY may
be used (with the X register only, of course).

8. INDIRECT INDEXED ADDRESSING

In this mode, the instruction contains an address of a memory
location which, as it can only be one byte long, must be in
zero page. The contents of this zero page location, plus the
one following it, give an address anywhere in memory, to
which the contents of the Y register (X cannot be used) are
added to give the final address.

This address mode is used to access elements in a table. By
saving the base address in zero page, the Nth element in the
table can be accessed by loading N into the Y register. It is
also easy to access sequential elements in the table by using
a loop structure and the INY or DEY instructions.

This address mode also provides a way of accessing more
than 256 bytes of memory sequentially, by incrementing or
decrementing the high byte of the address in zero page after
each 256 bytes.

In assembly language, this mode is indicated by putting the
zero page address in brackets, followed by the index register.
For example, STA ($00D0),Y.

The only instructions which can use this mode are ADC,
AND, CMP, EOR, LDA, ORA, SBC, STA.

9. INDEXED INDIRECT ADDRESSING

In this mode, the instruction again contains an address in zero
page, but this time the contents of the X register (Y cannot be
used) is added to the zero page address. The contents of this
byte plus the one following it give the address where the final
data are to be found. In other words, the indirection occurs
one stage earlier than in indirect indexed addressing.

61

This mode is used to pick out elements of a table of
addresses stored in zero page. The base address of the table
is contained in the instruction, and to access element N,
2N is loaded into the X register.

In assembly language, this mode is indicated by including
the zero-page address and index register in brackets. For
example, LDA ($0070,X).

This address mode is unlikely to be of great use. The
instructions which can use this mode are ADC, AND, CMP,
EOR, LDA, ORA, SBC, STA.

62

Chapter 4

STORING AND EXECUTION

The home computers with which this book is primarily con-
cerned all have BASIC in ROM as their main language. BASIC
normally expects to be able to use all the user area of memory
either for program storage or for variables.

In order to use machine code in these computers it is
necessary to either fuld some way of protecting the code from
being overwritten by BASIC, or to store the code in odd
corners of the memory map which are normally not used
either by BASIC or by the operating system.

The BBC micro and its close relative the Acorn Electron are
the most helpful in this respect. Not only do they havé built-
in assemblers as part of the BASIC language interpreter, but
they also have a special version of the DIM statement to
reserve a block of memory. This takes the form DIM START
50. This reserves a block of 51 bytes, the address of the first
byte being stored in the variable START. START could be
any legal BASIC variable name. This method of code storage
is so easy and straightforward that it is not usually worth
considering other methods with these computers.

With the Atari, ORIC-1 and Atmos, Commodore 64 and
VIC-20, no such in-built method exists. With these com-
puters, different approaches are mecessaw depending on
whether only a short routine or a longer machine code
program is to be stored.

With short routines, a very simple method of storage is to
use a REM at the very beginning of the program. This can
initially be filled with any character. The machine code is
then POKEd into the area of memory occupied by these
characters either from DATL statements when the program is
run, or directly from command mode a byte at a time. The
byte at a time method is time consuming, but worthwhile on
a computer like the VIC-20, which has a very small memory
in its basic form.

63

c

The advantage of the REM method is that, when the
program is recorded on disc or tape, the machine code in the
REM is recorded with it. The length of the code is, however,
limited to the length of a BASIC line, about 70 characters on
these computers. Though not impossible to split code
between two or more REMs, it is very difficult.

The REM must be at the start of the program, both to
make it easy to locate, and to prevent it moving if the BASIC
program is edited.

Odd corners of memory tend not to be very satisfactory.
For a start, they tend to be very small, perhaps 10 or 20
bytes. Secondly, computer manufacturers tend to modify
their products from time to time, sometimes unannounced,
and an unused corner can suddenly find employment. This
means that a program using this storage method may not
work on all versions of a machine. A good example of the
problems which can arise is with the ORIC-1. This has 20
(hex) bytes of memory free at the start of page 4 of memory.
Examples using this area are given in the user manual. How-
ever, if you buy the ORICMON machine code monitor
program, it uses the whole of page 4 as its input buffer,
which makes it hard to store routines there!

The best method of storing substantial machine code
programs is to store them above the area used by BASIC.
To do this, the area used by BASIC must be reduced, by
lowering the highest memory location available to BASIC.
The address of this location is stored in RAM, and is given
a name, such as HIMEM or MEMTOP.

In the BBC computer and Electron, HIMEM is a
pseudo-variable name recognised by BASIC. It can there-
fore easily be altered to any required value, by, for
example, the statement HIMEM=&2500, and PRINT
HIMEM will give the current value.

The ORIC also recognises HIMEM, but for assignment
only, and the equals sign is not used. Thus you can use
HIMEM #9000, but not PRINT HIMEM. The current value
can be found by PRINT DEEK #A6.

Atari prefer the name MEMTOP, but this is not recognised

64

by the computer. Instead, it is necessary to PEEK or POKE
the appropriate memory locations, which are 741 and 742
(decimal). The high byte is first, as usual, so
PEEK(741)+256*PEEK(742) will give the current value (the
highest actual address is one less than this).

Just to be different, Commodore use the label MEMSIZ,
and, like the Atari, this is not recognised by the computer.
The locations to PEEK and POKE are 55 and 56 (decimal).

It must be borne in mind that these memory locations are
liable to be reset by the operating system if the BREAK or
RESET key is pressed, or if the display mode is changed.

EXECUTION

Putting the machine code in memory is the first step. The
second is to cause it to be executed. Whether in a program
or from command mode, this normally has to be done with
a BASIC statement.

The simplest statement to use is CALL, which exists in
the BBC/Electron and in the ORIC BASICs. Commodore
BASIC has a similar command SYS. These commands are
followed by the start address of the machine code routine.
The routine must be terminated by an RTS instruction (not
matched to a JSR within the routine) to cause a return to
BASIC. Thus CALL START will execute a machine code
routine starting at an address stored in the variable START
in the BBC/Electron or ORIC, and SYS 2054 will execute a
machine code routine starting at address 2054 decimal (this
would be one stored in a REM on the Commodore 64).

The BBC/Electron CALL statement allows a variable
number of parameters to be passed to the machine code
routine, but a discussion of this is beyond the scope of this
introductory book.

The alternative statement is USR. This executes a
machine-code routine which is supposed to return a floating-
point value to the program, which is deposited in a variable or
printed. This is the only statement available to execute

65

machine code in the Atari computer. However, it is possible
to use this statement to execute any machine code program,
by using a dummy variable to take the (non-existent) result.
This statement takes the general form A=USR(AAAA),
where AAAA is the start address. The USR statement varies
considerably from computer to computer (in particular, the
Atari has provision for optional parameter passing) and refer-
ence to your computer's manual for details is advised.
Generally, return to BASIC is again by an RTS instruction.

66

Chapter 5

EXAMPLE PROGRAMS

The short demonstration programs in this chapter will be given
in standard 3-column assembly language form. The first
column contains labels of memory locations, to which branch
and jump instructions may refer. The second column contains
the operation mnemonics, and the third column the operand.

BASIC listings to enable the programs to be entered and
run on several popular 6502 based home computers are also
given. In the case of the BBC computer and Electron, these
use the in built assembler. In other cases, the machine code
is loaded from DATA statements.

If you have an assembler for your computer, you should be
able to enter the programs from the assembly language listings.

ADD

START LDA NUM1L
CLC
ADC NUM2L
STA RESL
LDA NUM1H
ADC NUM2H
STA RESH

This program adds together two 16-bit numbers. The result
will only be correct if it does not exceed 65535. The numbers
to be added are stored in memory locations which we call
NUM1H,NUM1L, and NUM2H,NUM2L, that is, high and low
bytes of the two numbers respectively.

The low byte of the first number is placed in the accumu-
lator. The carry flag is cleared. The low byte of the second
number is added to the accumulator contents, and the result
is stored in a memory location which we call RESL.

67

The high byte of the first number is then loaded into the
accumulator. This time any carry from the low bytes must be
added in, so the carry flag is not cleared. The high byte of the
second number is added, and the result stored in RESH. This
completes the operation.

The memory location used for the storage of the numbers
and result could be anywhere in memory, but in the listings
given I have used 6 bytes immediately before the machine
code routine.

TAKE

START LDA NUM I L
SEC
SBC NUM2L
STA DIFFL
WA NUM 1H
SBC NUM2H
STA DIFFH

It can be seen that this routine is very similar to the addi-
tion routine in structure. However, this time, after loading
the low byte of the first number into the accumulator, the
carry flag is set, rather than cleared, as we do not want a
borrow at this stage. The carry flag is not set for the high byte
subtraction, as any borrow is relevant. Note that the listings
as given cannot cope with the second number being larger than
the first, i.e. a negative result.

Note that the only address mode used in these programs is
Absolute (apart from CLC and SBC which use implied address-
ing) and there are no branch instructions.

68

LOOP

START LDX e
LDA #0
STA $70
STA $71

LOOP INX
TXA
CLC
ADC $70
STA $70
BCC OVER
INC $71

OVER CPX #255
BNE LOOP

This is an example of loop structure, and is equivalent to
the following BASIC program.

10 FOR X=1 TO 255
20 T=T+X
30 NEXT X

It is interesting to run both programs and compare the time
taken. The BASIC version takes from about half a second
(BBC computer) to nearly 5 seconds (VIC-20). The machine
code version is virtually instantaneous.

The X register is used as the equivalent of the control
variable to count the number of loops. It is initially set to 0.
Two zero page locations are used to hold the total, and these
too are initially set to 0. Zero page is used here for speed,
always worthwhile in loops with many cycles. (The zero page
locations given are as used in the BBC and Electron listings,
different locations are used for other computers.) At the start
of the loop, the X register is incremented. The X register
contents is then transferred to the accumulator, and added to
the low byte of the total. If there is a carry from this addi-
tion, the high byte is incremented. If the carry flag is clear,

69

this instruction is jumped over. Using a branch and an incre-
ment instruction in this way is faster than the alternative of
using LDA #0:ADC NUMH:STA NUMH. The contents of the
X register is then compared to 255. If this value has not been
reached, the program branches back to LOOP. Otherwise it
terminates.

This program has been written to model the BASIC version
as closely as possible. In general, in machine code, it is easier
to count down in loops than to count up. Try changing the
beginning to LDX #255, take out the INX, and change the
CPX #255 to DEX. It can be seen that this saves an instruc-
tion, and is consequently faster.

This program uses a forward branch, so in the BBC/Elec-
tron listing, two pass assembly is used.

TIMES

START LDA #1
STA CHECK
LDX #8

LOOP LDA MULT
AND CHECK
BNE ADD
BEQ ROUND

ADD LDA NUM
CLC
ADC RESL
STA RESL
LDA NUMH
ADC RESH
STA RESH

ROUND ASL NUMH
ASL NUM
BCC OVER

70

INC NUMH
OVER ASL CHECK

DEX
BNE LOOP

This program multiplies together two 8-bit numbers, yield-
ing a 16-bit result.

Binary multiplication is performed by shifting and adding.
If you shift the bits of a binary number one place to the left,
inserting a zero on the right, the number is multiplied by two.
To multiply two numbers together, the following method is
used. We will call the two numbers Number and Multiplier.
If bit 0 of the Multiplier is set, Number is added to the result.
Number is then shifted one bit to the left. If bit 1 of
Multiplier is set then Number (shifted) is again added to
the result. This is repeated until all the bits of Multiplier
have been tested.

To perform this in practice, a loop structure is used. 1 is
loaded into a byte in memory which I have called CHECK. 8
is loaded into the X register. The multiplier is loaded into
the accumulator, and is ANDed with CHECK to see if bit 0 is
set.

If it is, a two-byte addition is performed, adding NUM and
NUMH to RESL and RESH.

If it is not, the program branches to ROUND (and this part
of the program is also performed after each addition). The
two bytes of NUM are shifted to the left. If a carry is gener-
ated when the low byte is shifted, it is added into the high
byte by using INC. CHECK is also shifted left. The X
register is decremented. When it reaches zero, all 8 bits
have been checked, and the routine terminates.

You will have noted that although NUM is an 8-bit number
to begin with, two bytes have to be reserved for it, to allow
for the 8 stages of shift performed on it.

These simple programs are just intended to give a brief
introduction to some of the principles of machine code
programming. The only way to learn how to program is to
program. It is intended that you will use these routines as

71

jumping boards for your own experiments. In particular, try
to extend the programs to cope with 3 and 4 byte numbers,
and the loop program to cope with more than 256 cycles
(Hint: Use both index registers).

Experimenting with machine code may cause more
frequent (and sometimes more spectacular) crashes than
experimenting with BASIC, but remember, nothing you can
type in at the keyboard can do any permanent harm to your
computer. All you can lose is your typing.

NOTE ON THE BBC/ELECTRON LISTINGS

At the beginning of the assembler parts of three of these
listings you will see labels followed by a BRK instruction.
This is a simple method of reserving bytes for variable storage.
The instructions are just dummys and are never executed.
BRIC is chosen because it has the opcode O. An alternative,
which will work with the Electron and the most recent version
of the British Broadcasting Corporation microcomputer (as it
is now officially called) is as follows:—

OLD: 50.NUML:BRK
NEW: 50.NUML:EQUB

This will not work with versions of the BBC computer using
BASIC 1 as the pseudo-operations EQUB, EQUD, EQUW,
and EQUS are not supported.

72

MACHINE SPECIFIC LISTINGS

BBC/Electron Versions

ADD

A REM ' ADD"
?0 REM BBC/ELECTRON version
30 DIM STORE 50
40 P%*STORE
50C.NUM1H:BRK
30.NUM1L:BRK
70.NUM2H:BRK
30.NUM2L:BRK
30.RESH:BRK
30.RESL:BRK
10. START
2OLDA NUM1L
30 CLC
40 ADC NUM2L
j0 STA RESL

LDA NUM1F,
70 noc NUM2H
DO STA RESH
90 RTS:7
00 INPUT"FIRST NUMBER",N1
10 INPUT"SECOND NUMBER" H2
20 ?NUM1H=N1 DIV 256'?NUM1L*N1 MOD 256
30 leNUM2H=N2 DIV 256:?NUM2L*N2 MOD 256
40 CALLSTPRT
50 PRINT 256*?RESH+7RESL
60 COTO 200

73

TAKE

10 REM TAKE"
20 REM PBC/ELECTRON VerSie
30 DIM STORE et
40 F%2ISTORE
50E.NUM1H.BRK
60.NUM1L:BRK
70.NUM2H:BRK
130.NUM2L.BRK
90.DIFFH.BRK
100.DIFFL.BRK
110. START
120 LD8 NUM1L
130 SEC
140 SPC NUM2L
150 ST8 DIFFL
160 LDA NUM1H
170 E.BC NUM2H
180 STA DIFFH
190 RTS.1
200 INFUT"FIRST NUMBER",N1
210 INEUT°SECOND NUMBER" ,N2
"0 TNUM1H22N1 DIV 256.7NUM1L=N1 MOD
230 7NUM2H=N2 DIV 256.7NUM2L=N2 MOD 25t:
240 CALL-START
250 PRINT 256*?DIFFH+7DIFFL
260 COTO 200

74

LOOP

10 REM " LOOP"
20 REM BBC/ELECTRON version
30 DIM START 50
40 FOR 1%1=0 TO R STEP 2
es P%=START
60 (OPT I.
70 . START
80 LDX #0
90 LOA #0
100 ST8 8470
110 SIR 8471
120 . LOOP
130 INX
140 T><8
150 CLC
160 ADC 8470
170 ST8 8470
180 BCC OVER
190 INC VI
200 . OVER
210 CPX #255
220 BNE LOOP
230 RTSIJ
240 NEXT I%
250 CALLSTRRT
260 PRINT256*78.71+78.70

75.

TINES

10 REM " TIMES"
20 REM BBC/ELECTRUM-versiem
30 WM STORE 70
40 FOR L=0 TO 3 STEP 3
50 P%=STORE
6000PT L
70 .NUM:BRK
80 . NUMH114RK
90 . MULT'BRK
100 . CHECK:SRK
110 . RESH:SRK
120.RESL:BRK
130. START
140 LOA # 1
150 STA CHECK
160 LOX #8
170.LOOP
190 LOA MULT
190 AND CHECK
200 BNE ADD
210 BEQ ROUND
220. ADD
230 LOA NUM
240 CLC
250 ADC RESL
260 STA RESL
270 LOA NUMH
280 ADC RESH
290 STA RESH
300. ROUND
310 ASL NUMH
320 RSL NUM
330 BCC OVER

76

340 INC NUMH
350. OVER
360 RSL CHECK
370 DE)
380 8NE LOOP
390 RTSII
400 NEXT L
410 INPUT"FIRST NUMSER",7NUM
420 INPUT"SECOND NUMBER",?MULT
430 CFILLSTRRT
440 PRINT 256VRESH+7RESL
450 TRESH000:7RESL=0:7NUMH010
460 GOTO 410

77

VIC-20 Versions

ADD

10 REM " ADD"
20 REM VIC-20 VERSION
30 POKE 55,0:POKE 56,29
40 FOR M=7611 TO 7630
50 READ V
60 POKE M,V
70 NEXT M
80 DATA 173,181,29,24,109,183,29

,141,185,29
50 DATA 173180,29,109,182,29,14

1,184,29,96
100 INPUT " FIRST NUMBER")N1
110 INPUT"SECOND NUMBER".; N2
120 FH=INT(N1/256):POKE 7604,FH
130 FL=N1-256*FH.POKE 7605,PL
140 SH=INT(N1/256).POKE 7606,3H
150 SL=N2-256*SH.POKE 7607,SL
160 SYS 7611
170 PRINT 256*PEEK(7608)+PEEK<760

9
180 GOTO 100

78

TAKE

10 REM " TAKE"
20 REM '•/ IC-20 VERSION
SO POKE 35:0:POKE 56,29
40 FOR M=7618 TO 7637
30 READ V
60 POKE M,V
70 NEXT M
80 DATA 17S:139,29,56:237:191:29

141:193,29
90 DATA 173,188,29,237J190,29,14

1,192:29,96
100 INPUT"FIRST NUMBER"Ni
110 INPUT"SECOND NUMBER' HZ
120 FH=INT(N1/256):POKE 7612,FH
130 FL=N1-256*FH:FOKE 7613,FL
140 SH=INT(N2/256):FOKE 7614,SH
130 SL=N2-256*SH:POKE 7615:SL
160 SYS 76i8
170 PRINT 256*PEEK(7616)+PEEK(761

7)
ISO ' OTO 100

79

o-)

e)

,
at

,-
-
,-
-
ra

e)

eâ
 C

D
)

--
 E
D

b)
 E
D

ED

er

t
ED

CD
 e
â

E
D
 C
D

-

(

J)

-1
.1
C
O
 t

f_
k
r
,

r.
)
C,
 2

:
11
 P

U
11

13

 ;
1i

PU

.7
0

-C
 C
h
 3
D
,

7D

M
O
M

CD
 C
D

R
I
M

i-
1
C
O

-
I

›-
 -

4
X
 7

.::

2)

XI

a'
 _

.%

-•

.7.
.

JD
 (

e)
 7
D

-i
 r
n
c,

rn
 „

::
 =

4•

U-
D
C
 b
)

-

t-
 h
)

O
h

-
-
g
 c
n
0

C
D

C
A

4-

4
,

4.
.
h
)

<

4:
à

-
I

C
D

C
I

„

if
:

b
)
 i

--

CD

ro
 E
D
 h
)

I
l

4.
›
-

C
D

=
-

r..1

oc

R
I

p.
)

b-
-.

1
-
.

-
1
o

<

0

al
 l

(J)
 -

Or*
1

7:

in

Dà
 u
)

rn
 'A

l
s-

Ca
 -

-
g

C
O

ra

e)
 ›

..
 C

D
4•

 1
4

)-
4

C
A

C
A

-

-

4.
 C
h
 C
D

P
O

h)
 ›

--

i-
-
-

,I

-

.
e_

t%
)

+

-

G)
 c

o
u)

73

e)
 (
J)
 c
o

F'
)'

--
-

m

m

4•
 h
)
 P
O

-
11

1
Li
l

/-
4.
-

s.

ci
l
,

h)

C
A

F
a

C
d

,

(

e
)

..
-

b)

GI

P
l

.
.
.
 Cr)

e

(

JD
h
l

-
.
.
-.e_

,-4
C

r) CA
v4
Or) Cil

h
l

.
.

CA
-. -,

P
l

-

N
.

CD
-
4

-

O

r) C
r) -

eD

s
.
:

,

TI- cn co eJ cq on --4
F-

M

C
7

a
-

-4
CA 1

M

-4

-
 CA

C
A

_J

I
U

,
C
A
 -4 -, I

: :D

L
U

1.11
,
Cl
 C9

-

C
O
 :

D
 I:

CL

M
.

+

CD
c
h

0
4
 -

4 p._ -4

,

CI c
q

•

•

cl_
CA

(.0

,

-
4

,

1
-
4
 im

z

,

r
i

'
-
'

h
l

-

Or) Tt -.

C
Y
 C
É
 U
J

h
l

P-.
CD (.0

-
4

-

Tt

Cr) (A

-
4 C

O
 C
D
 LU CO

W7
W
l

1-4
0

(
£

1
C
D

,

•
-
4

,

,

,

C
A
 C
O
 E:

N-
h
l

0
7

U-
-

Cr) -. C

O
 Or)

,r1" ,
7:

:)
,_,

Is-
Cir.: U

U

C
D

CA C

D

CO

CA
I
-
C
r) :D ---

h
-

LU :M

8
-
1
-

-
 1

- --8 - --4
Cg ::

Y: _J

IU
f
l

C
D
 C
D
 P
A

- C

A

-

-

a

-
1

—

I
111

F-
=

CL

-
.
 Pl

-. -4

CO Clr)

-4
 F-

5:

5: .1:
CL

C
O
 CD

-
C
A

(S
t -

4 eJ -1
-

,
4

C
q

C
l

i
f
,
 C
D

-

-
,

ii*
C1

L
U
 P

l C
D

h
l

,

Cr:
CD P

I
 a

-
tiO

W7
.e._

1

,

0

:
›

C
D
 CO C

O

-

Clrl C

O

-
.

1-
1 Ill 0

 h
)
 O
D

hl

V
7

0
1

,

,

(
.
.
-
 C
D
 Cri C

D
 eJ

-1
-
LIL

0)
hl
h
-) h

l
 17,J

h-
f.-',1

H

.
.
-
.
4

-.:
-,..›.
7

,

,

-

F-
 F-

f,-
F-

7
-

L
U

(.3
 I
U

F-

CE
CO CE C

O
 CE

Tr
CC
:D
 2
)
 L
U
 L
U

.

i..
CD

•
7; " cr: lm m

Y

: ,--- , F-

C
O
 F-

-
4

F-
 CL

CL

M

-M

0
7

i-t

Cr:
F-

L
U

L
u
 C
D

CD

LU C
D
 L
U
 CE eJ cc --« cc ,

CC
1:

7.::
CD

C
D
 D-

O
f

C
D

CD
(cf

CÉ
CL

LL

Cr:
CL

5:

C.1
1.1)

C.:1 - 'C.) c
h
 f:,

k
-
4

1
-
i

CL

CL

Crl CL

LL
LD

-
4

(

1)
CA

CD %D
m

C
D

C
D
 CD eD C

D

-

CD

CD
CD

-
C
D
 C
D
 e
D
 C
D

CD

C
D
 CD

C
D

CD
u
c

-
4
 P
l

CO
1
-
hl t

O

1.-

C
O
 Cil (1)--;

C
D
 Or) -4

CA P

l
 TI

-
Ill

1.0 Is-
CO

Cil
ta
a

(
.

4

,

s-t (.4 ..-4

r
i

r
i

r
i

r
i

•
i

,
i

1
-
4
 F-t

,
r

„
-
t

.
.
-
.
.

F-
1

,
.
.

t
p
l

,

f
,-

UJ

Commodore 64 Versions

ADD

10 REM " ADD"
20 REM C-64 VERSION
30 POKE 55,0:POKE 56,143
40 FOR M=36795 TO 36814
30 READ V
60 POKE M,V
70 NEXT M
80 DeR 173,181,143,24,109,183,1

43,141,185,142,173,180,143,109,182,
143,141,184

90 DATA 143,96
100 INPUT"FIRST NUMBER"jN1
110 INPUT"SECOND NUMBEFUjN2
120 FH=INT(N1/256):POKE 36788,FH
130 FL=N1-256*FH:POKE 36789,FL
140 SH=INT(N2/256):POKE 36790,SH
150 SL=N2-256*SH:POKE 36791,SL
160 SYS 36795
170 PRINT 256*PEEK(36792)+PEEK(36

793)
180 COTO 100

82

TAKE

10 REM " TAKE"
20 REM C-64 VERSION
30 POKE Woe:POKE 56,143
40 FOR M=36802 TO 36821
50 READ V
60 POKE M,V
70 NEXT M
SO DATA 173,189,14356,237,191,1

43,141,193,143,173,188,143,237,190,
143

90 DATA 141,192,143,96
100 INPUT"FIRST NUMBER"iN1
110 INPUT"SECOND NUMBER" N2
120 FH=INT(N1/256):POKE 36796,FH
130 FL=N1-256*FH:POKE 36797.. FL
140 SH=INT(N2/256):POKE 36798,SH
150 SL=N2-236*SH:POKE 36799,SL
160 SYS 36802
170 PRINT 256*PEEK(S6800)+PEEK(36

801)
180 COTO 100

83

LOOP

10 REM " LOOP"
20 REM C-64 VERSION
30 POKE 55,0:POKE 56,143
40 FOR M=36608 TO 36631
30 READ V
60 POKE M,V
70 NEXT M
80 DATA 162,0,169,0,133,251,133,

252,232,138,24,101,251,133,231
90 DATA 144,2,230,252,224,255,20

8,241,96
100 SYS 36608
110 PRINT 256*PEEK(252)+PEEK(251)

84

TIMES

10 REM " TIMES"
20 REM C-64 VERSION
30 POKE 55,0:POKE 56;128
40 FOR M=32896 TO 32955
50 REiRD V
60 POKE M,V
70 NEXT M
80 DATA0,0,0,0,0,0,169,1,141,131

,128,162,8)173,130,128,45,131,128
90 DATA 208:2,240,19,173,128)128

24,109,133,128,141,133,128,173,129
,128

100 DATA 109,132,128,141)132,128)
14,129,128,14,128,128,144)3,238,129
,128

110 DATA 140131,128,202,208,210,9
6

120 INPUT"FIRST NUMBER" HUM
130 INPUT"SECOND NUMBER")MULT
140 POKE S2896,NUM
150 POKE 32898,MULT
160 SYS 32902
170 PRINT 256*PEEK(32900)+PEEK(32

901)
180 FOR M=32896 TO 32901:POKE M,0

:NEXT
190 GOT° 120

85

ORIC-I and Atmos Versions

ADD

10 REM " ADD"

20 REM ORIC-1 versic,n

30 HIMEM #APOO

40 FOR M=4/8FEA TO #8FCD

50 READ V

60 POKE M,V

70 NEXT M

80 DATA #AD,4035,#8F,*18,#61)

,#87,#8FA8D,#89,4#8F,SeRD,#8

4A8F,4e6DAB6,#8F

90 DATA *81),#88,#8F,*60

100 INPUTHFIRST NUMBERniN1

110 INPUTuSECOND NUMBER")N2

130 FH=INT(N1/256):POKE 449F

84,FH

86

140 FL=N1-256*FHiPOKE #8F85

'FL

150 SL=INT(N2/256).AOKE #8F

BG,SL

160 SL=N2-255*SH.POKE #8F87

)31.

170 CALL #8F8R

1E3 PRINT 256*PEEK(#8F88)+P

EEK:#GF89:

190 COTO 100

TAKE

10 REM " TAKE"

20 REM ORIC1 version

30 HIMEM #8F00

40 FOR M=4$8FC2 TO #8FD5

50 READ V

60 POKE MJV

70 NEXT M

87

SO DATA #RD,#90,#SF,#38,#ED

,#SF,#SF:#8D,#C1,#8F,SeAD,#8

C,#SF,#ED,#SE,#8F

90 DATA #8D,#CO3#8P,#60

100 INPUT"FIRST NUMSER"JN1

110 INPUT"SECOND NUMSER")N2

120 FH=INT(N1/256)1POKE #SF

SC,FH

130 FL=N1-256*FH ,POKE #SFSD

,FL

140 SH=1INT(N2/256);POKE *SF

BE, 3H

130 SL=N2-255*SHPOKE #SFBF

,SL

160 CALL #SFC2

170 PRINT 256*PEEM#SFC0)+P

EEK(#SFC1)

180 GOTO 100

LOOP

10 REM " LOOP"

20 REM ORIC-1 vtrsion

30 HIMEN #F00

40 FOR M=#8F3C TO #8F53

50 READ V

60 POKE m,v

72 NEXT M

80 DATA #A2,0,#A9,0,#85,#70

,#85#71,#E81#8FL#18,#65,#7

o,#135,#7e,#9o,#02

92 DATA #E6,4$71,#E0,#FF,tDO

,#F1.#60

100 CALL #8F3C

110 PRINT DEEK(#70)

89

TIMES

10 REM " TIMES"

20 REM ORIC-1 version

30 HIMEM #8000

40 FOR M=#8080 TO #8068

50 READ V

SO POKE M,V

70 NEXT M

75 DATA 0,0.'0,0,0,0

SO DATA #A9,#01,#8D,#83,#80

,#A2,#08,#AD,#62,#80,#2D,#6

3:#80,#D0,#02,#F0,#13

90 DATA #RD480,#80,#18,#6D

,#85,#80,#SD,#85,#80,#AD,#8

1:#80,#6D,#84,#80

100 DATA #SD,#84,#80

90

110 DATA #0E,#81,#S0,#0EAS

0:#80,#90,#03,#EE,#81,#S0A

OE:#83:#80)#CA

120 DATA #D0,#D2,*60

130 INPUT"FIRST NUMBER"iNUM

140 INPUT"SECOND NUMBER" MU

LT

150 POKE #8080,NUM

160 POKE #8082,MULT

170 CALL #80S6

180 PRINT 256*PEEK(#8084)+P

EEK(#8085)

190 FOR M=#8080 TO #8085:PO

KE M,O;NEXT

200 GOTO 130

91

Chapter 6

INPUT/OUTPUT

When using a high level language such as BASIC, commands to
control input/output devices such as the CRT controller and
printer port are normally provided, or they may be included in
the form of operating system commands. In either case the
user is not directly accessing registers of the input/output
devices, and is unlikely to need any knowledge of the way in
which they function. The situation is totally different with
machine code, and in order to take advantage of the speed
of machine code programs it is often necessary to directly
access and control input/output circuits. This can be a
little difficult at first, even for someone who is used to
dealing with electronic circuits, since the methods adopted in
computer peripherals are rather different to those used in
non-computer electronic circuits. However, once a few
fundamental points have been grasped it is not too difficult
to use and understand practically any computer peripheral
device.

Even just restricting ourselves to peripherals for use with
the 6502, there are a number of devices in common use, and
it would not be feasible to even briefly describe a few of
these here due to the complexity of these components.
Fortunately, the basic way in which these devices are
controlled varies little from one type to another, and by taking
a brief look at just one or two computer peripherals some
important and universal points can be unveiled.

THE 6522

As an example of a peripheral integrated circuit we will con-
sider the 6522. This has been chosen as it is to be found in
several 6502 based home-computers (including such machines
as the BBC A and B, the ORIC-1 and Atmos, and the VIC-20),

92

and in many ways it is a fairly simple device (although only
in relation to other computer peripherals which run the full
gamut from complex to extremely complex)! The fact that
these devices have very complicated circuits should not deter
you, since to the programmer they appear to be relatively
straightforward, and much of the complexity is not apparent.
This is in much the same way that a microprocessor has an
almost unbelievable array of electronics internally, but as far
as the programmer is concerned it appears to be just an array
of registers, as shown in Figure 1 and discussed earlier in this
book.

Figure 5 gives pinout details of the 6522, which is a form of
parallel interface adaptor, or PIA as these are more usually
termed. A device of this type is used to get parallel data into
and out of the microprocessor. By parallel data we simply
mean that it normally transfers data in complete bytes, or
perhaps in nibbles if a full byte of data is not required. The
alternative is serial data where data is transferred one bit at a
time (usually commencing with the least significant bit and
ending with the most significant one). Parallel data transfer
is the quicker and simpler method, and is the one normally
used for data transfer within a computer. Serial data is restric-
ted mainly to communications between one computer and
another, or between a computer and a piece of peripheral
equipment such as a printer or cassette recorder. Here the
lesser number of connecting wires (as little as two can be
used) and the fact that the system will work over long
distances outweighs the slowness and relative complexity of
serial data transfers. Serial data transmission and reception
can actually be handled by the microprocessor using a suitable
software routine and a very simple hardware interface, but it
is more usually handled by a special interface device. These
are known by a variety of names such as UARTs (universal
asyncronous receiver/transmitters) and ASCIAs (asyncronous
serial communications interface adaptors).

Returning to the 6522, the chip manufacturers refer to this
as a VIA (versatile interface adaptor) rather than a PIA, as it
has a few features in addition to its two parallel input/output

93

1
ov E

PAO E
PA1 E
PA2 E
PA3 E
PA4 E
PA5 E
PA6 E
PA7 E
PBO E
pE31 E
PB2 E
PB3 E
PB4 E
PB5 E
PB6 E
PB7 E
CB1 E
CB2 E
+5V E

20

O

6522

40

2 CA1

2 CA2

1 RSO

2 RS1

RS2

2 RS3

2 Reset

2 DO

2D1

2 02

2 D3

2 D4

2 D5

2D6

2D7

102

2 NCS1

2 NCS2
2 R/V—V

2 I RO

21

Fig. 5. Pinout details of the 6522 VIA

94

ports. These are two 16-bit counter/timers and a serial shift
register. The latter can be used for serial data transmission and
reception, but it is extremely basic when compared to a device
such as a UART, and is of much less practical value than one
might expect.

Looking at the pinouts of the 6522 you will notice pins
marked NCS1 and NCS2. These are chip select pins, and in
order to communicate with the device the microprocessor
must take NCS1 high and NCS2 low. Normally these pins are
driven from the twelve most significant address lines via a
suitable decoder, so that the chip is enabled when any address
in a block of sixteen consecutive addresses are accessed by the
microprocessor. The pins marked RSO to RS3 are the register
select pins, and are usually fed direct from the four least
significant address lines. By setting these at the appropriate
states any one of the 6522's sixteen 8-bit registers can be
accessed. In other words, by using suitable address decoding
the registers are placed in the desired block of sixteen
addresses in the memory map. The following list gives names
of the sixteen registers and gives example addresses (these are
actually the addresses for one of the two 6522s in the VIC-20
computer).

Address Register
37136 Peripheral Register B
37137 Peripheral Register A
37138 Data Direction Register B
37139 Data Direction Register A
37140 Timer 1 low byte
37141 Timer 1 high byte
37142 Timer 1 counter low byte
7143 Timer 1 counter high byte
37144 Timer 2 low byte
37145 Timer 2 high byte
37146 Shift Register
37147 Auxiliary Control Register
37148 Peripheral Control Register
37149 Interrupt Flag Register

95

37150 Interrupt Enable Register
37151 Peripheral Register A (no handshaking)

The basic function of the 6522 is to provide two 8-bit
input/output ports, and these are named Port A and Port B
by the manufacturer. These are pins PAO to PA7 and PBO to
PB7 of Figure 5. The ports are connected to the data bus via
pins DO to D7, so that the microprocessor can read from
them or write to them. The R/W line is operated from the
corresponding line of the microprocessor so that the 6522 is
placed in the appropriate mode. If we wish to read (say) Port
A, using BASIC it would just be a matter of PEEKing address
37137 (Peripheral Register A, or Port A in other words).
Using machine code things are equally straightforward, and the
LDA instruction would be used to read the contents of Port A
and transfer it to the accumulator. PAO corresponds to DO
of the data bus, PA1 corresponds to D1, and so on. Thus, if
PAO to PA3 were set high, and PA4 to PA7 were set low, the
number transferred to the accumulator would be 00001111
in binary, or 15 in decimal.

Things are also reasonably simple if we wish to write to the
port. The first task is to set the lines of Port A as outputs, and
the lines are controlled in this respect by data direction
register A at address 37139. Like the peripheral register, each
bit of this register corresponds to one of the lines of Port A.
Setting a bit low designates the relevant line as an input, while
setting it high designates the line as an output. At switch-on a
negative pulse is supplied to the reset pin of the 6522 (and also
to many other chips in the computer including the 6502),
and this pulse sets all the 6522's registers at O. The lines of the
two ports therefore all start off as inputs. To set Port A as an
8-bit output, 11111111 in binary (255 in decimal) is written
to data direction register A. Using BASIC this would be:—

POKE 37139,255

The machine code/assembly language equivalent of this is:-

96

IDA 255
STA 37139

As each line can be individually set as an input or an output
it is possible to have some lines as inputs and some as outputs,
and the eight lines could be used with eight entirely separate
items of peripheral equipment. However, care has to be taken
if this is done as it is only possible to write to all 8 bits and to
read all 8 bits. There is no problem in writing to bits that are
set as inputs — the 6522 will just ignore data written to these.

When reading a port (or any register for theynatter) the
logic AND function can be used to mask any bits that are not
of interest. For example, if only bits 6 and 7 are of interest,
these bits represent 64 and 128 when set high, giving a total
of 192. The accumulator is therefore loaded with 192, and
the data at the port is then logic ANDed with this. With the
logic AND instruction a bit of the accumulator will only be
set at 1 if that bit was 1 in both of the ANDed numbers.
Bits 0 to 5 were set at 0 when 192 was loaded into the
accumulator, and these must be 0 in the answer. On the
other hand, bits 6 and 7 were set at 1, and will be 1 in the
answer if the corresponding bits of the data read from the
port are also 1. Thus the required masking is obtained, with
the unwanted bits being set at 0, and the bits of interest
being set at the state read from the port.

There is more than one way of writing data to one bit of a
port or register without affecting the states of the other bits,
but the use of logic operations is probably the easiest. For
instance, assume we wish to set bit 2 of a register to logic 1.
All that we need to do is to place 4 in the accumulator (bit 2
high and all the others low), then logic OR the number
returned from the port with this. With the logic OR function
a bit is set at 1 if there is a 1 in that bit of the first number
OR the second number OR both. Therefore, bits 0, 1, and
3 to 7 will remain unaltered, but bit 2 will be set high. The
number in the accumulator is then transferred to the port.

The situation is equally straightforward if a bit must be
set low, and if we assume that bit 2 is to be set low this time,

97

we must first logic AND the number at the port with 251
(11111011 in binary). This ensures that bit 2 is set low,
but the other bits will be unaffected. The number in the
accumulator is then written to the port using the STA
instruction.

CONTROL REGISTER

Peripheral devices normally have at least one control register,
and may have several. The data direction register is actually a
very simple form of control register, but most are somewhat
more complex than this. The peripheral control register of
the 6522 is a fairly typical example. We will not consider
this register in detail, but will briefly consider just one
section of it.

Bits 5 to 7 control line CB2 of the device. CB2 is a
handshake line, and its primary purpose is to control the flow
of data into or out of Port B. For example, CB2 could be set
to the pulse mode, and it then acts as an output which gives
a brief negative pulse each time data is written to Port B.
This could be used to indicate to a piece of peripheral equip-
ment that fresh data is present at the port and must be acted
upon. Alternatively, CB2 could be used as an input, with the
peripheral equipment indicating via this input when it has
finished processing the last byte of data and is ready to process
the next byte. CB2 has four input modes and four output
modes, with whichever of these is required being selected by
placing bits 5 to 7 at the appropriate states. For example,
they are set at 101 to produce the pulsed output mode
referred to earlier. This system of using a register to control
the way in which a device functions is an important one to
understand as it is a feature of so many computer peripherals.

The 6522 has all its registers at separate addresses, but this
is not a feature of all computer interface devices. For
example, the 6845 CRT controller (as used in the BBC
machines) has some eighteen registers, but only occupies two
addresses. The way in which this system operates is to have

98

one address used to select the desired register, and the selected
register then appears at the second address. For example, with
the 6845, if you wish to access register 16 (the horizontal light
pen register), 16 is written to the first address, and then the
horizontal light pen value is read from the second address.

This system has the advantage of using up few addresses
for input/output purposes, but has the disadvantage of requir-
ing more instructions, especially if it is necessary to continu-
ously access different registers. Some peripheral devices, such
as the 6520 PIA, use a system where there are (say) six
register, but only four addresses are used. This is very similar
to the system just described, but there are perhaps just two
registers sharing an address, with one bit of a control register
being used to determine which of these can be accessed.

When using a high level language such as BASIC the
programmer is largely isolated from the hardware of the
computer by some sophisticated software. When using
machine code this software is absent, and the programmer has
to deal directly with the devices in the machine. With most
practical machine code applications it is therefore necessary
to have a good understanding of the computer you are using
and its hardware, and you should try to find as much informa-
tion of this type as possible.

99

INSTRUCTION SET CHART

Hexadecimal Decimal Instruction Address Mode Gock Cycles

00 0 BRK
01 1 ORA
05 5 ORA
06 6 ASL
08 8 PHP
09 9 ORA
OA 10 ASL
OD 13 ORA
OE 14 ASL
10 16 BPL
11 17 ORA
15 21 ORA
16 22 ASL
18 24 CLC
19 25 ORA
1D 29 ORA
1E 30 ASL
20 32 JSR
21 33 AND

7
Indirect X 6
Zero Page 4
Zero Page 6

3
Immediate 2
Accumulator 2
Absolute 4
Absolute 6

2
Indirect Y 5/6
Zero Page X 4
Zero Page X 6

2
Absolute Y 4/5
Absolute X 4/5
Absolute X 7

6
Indirect X 6

INSTRUCTION SET CHART (continued)

Hexadecimal Decimal Instruction Address Mode Clock Cycles

24 36 BIT Zero Page 3
25 37 AND Zero Page 3
26 38 ROL Zero Page 5
28 40 PLP 4
29 41 AND Immediate 2
2A 42 ROL Accumulator 2
2C 44 BIT Absolute 4
2D 45 AND Absolute 4
2E 46 ROL Absolute 6

30 48 BMI 2
31 49 AND Indirect Y 5/6
35 53 AND Zero Page X 4
36 54 ROL Zero Page X 6
38 56 SEC 2
39 57 AND Absolute Y 4/5
3D 61 AND Absolute X 4/5
3E 62 ROL Absolute X 7
40 64 RTI 6
41 65 EOR Indirect X 6

INSTRUCTION SET CHART (continued)

Hexadecimal Decimal Instruction Address Mode C7ock Cycles

45 69 EOR
46 70 LSR
48 72 PHA
49 73 EOR
4A 74 LSR
4C 76 JMP
4D 77 EOR
4E 78 LSR
50 80 BVC
51 81 EOR
55 85 EOR
56 86 LSR
58 88 CL1
59 89 EOR
5D 93 EOR
5E 94 LSR
60 96 RIS
61 97 ADC
65 101 ADC

Zero Page 3
Zero Page 5

3
Immediate 2
Accumulator 2
Absolute 3
Absolute 4
Absolute 6

2
Indirect Y 5/6
Zero Page X 4
Zero Page X 6

2
Absolute Y 4/5
Absolute Y 4/5
Absolute X 7

6
Indirect X 6
Zero Page 3

INSTRUCTION SET CHART (continued)

Hexadecimal Decimal Instruction Address Mode Clock Cycles

66
68
69
6A
6C
6D
6E
70
71
75
76
78
79
7D
7E
81
84
85
86

102
104
105
106
108
109
110
112
113
117
118
120
121
125
126
129
132
133
134

ROR
PLA
ADC
ROR
J MP
ADC
ROR
BVS
ADC
ADC
ROR
SE!
ADC
ADC
ROR
STA
STY
STA
STX

Zero Page

Immediate
Accumulator
Indirect
Absolute
Absolute

5
4
2
2
5
4
6
2

Indirect Y 5/6
Zero Page X 4
Zero Page X 6

2
Absolute Y 4/5
Absolute X 4/5
Absolute X 7
Indirect X 6
Zero Page 3
Zero Page 3
Zero Page 3

INSTRUCTION SET CHART (continued)

Hexadecimal Decimal Instruction Address Mode aock Cycles

88 136 DEY 2
8A 138 TXA 2
8C 140 STY Absolute 4
8D 141 STA Absolute 4
8E 142 STX Absolute 4
90 144 BCC -,
91 145 STA Indirect Y 6
94 148 STY Zero Page X 3
95 149 STA Zero Page X 3
96 150 STX Zero Page Y 3
98 152 TYA 2
99 153 STA Absolute Y 5
9A 154 TXS 2
9D 157 STA Absolute X 5
AO 160 LDY Immediate 2
A 1 161 LDA Indirect X 6
A2 162 LDX Immediate 2
A4 164 LDY Zero Page 3
AS 165 LDA Zero Page 3

INSTRUCTION SET CHART (continued)

Hexadecimal Decimal Instruction Address Mode Clock Cycles

A6 166 LEA
A8 168 1 AY
A9 169 LDA
AA 170 TAX
AC 172 LDY Absolute
AD 173 LDA Absolute 4
AE 174 LDX Absolute 4
BO 176 BCS 2
B1 177 LDA Indirect Y 5/6
B4 180 LDY Zero Page X 3
BS 181 LDA Zero Page X 3
B6 182 LDX Zero Page Y 3
B8 184 CLV 2
B9 185 LDA Absolute Y 4/5
BA 186 TSX 2
BC 188 LDY Absolute X 4/5
BD 189 LDA Absolute X 4/5
BE 190 LDX Absolute Y 4/5
CO 192 CPY Immediate 2
Cl 193 CMP Indirect X 6

Zero Page

Immediate

3
2
2
2

INSTRUCTION SET CHART (continued)

o
CT

Hexadecimal Decimal Instruction Address Mode Clock Cycles

C4
C5
C6
C8
C9
CA
CC
CD
CE
DO
D1
D5
D6
D8
D9
DD
DE
EO
El

196 CPY
197 CMP
198 DEC
200 INY
201 CMP Immediate
202 DEX
204 CPY Absolute
205 CMP Absolute 4
206 DEC Absolute 6
208 BNE 2

209 CMP Indirect Y 5/6
213 CMP Zero Page X 3
214 DEC Zero Page X 5
216 CLD 2
217 CMP Absolute Y 4/5
221 CMP Absolute X 4/5
222 DEC Absolute X 7
224 CPX Immediate 2
225 SBC Indirect X 6

Zero Page
Zero Page
Zero Page

3
3

2
2
2
4

INSTRUCTION SET CHART (continued)

Hexadecimal Decimal Instruction Address Mode Clock Cycles

E4 228 CPX Zero Page 3
E5 229 SBC Zero Page 3
E6 230 INC Zero Page 5
E8 232 INX 2
E9 233 SBC Immediate 2

EA 234 NOP 2
EC 236 CPX Absolute 4
ED 237 SBC Absolute 4
EE 238 INC Absolute 6
FO 240 BEQ 2
Fl 241 SBC Indirect Y 5/6
F5 245 SBC Zero Page X 4
F6 246 INC Zero Page X 6
F8 248 SED 2
F9 249 SBC Absolute Y 4/5
FD 253 SBC Absolute X 4/5
FE 254 INC Absolute X 7

Note that only the codes that are used are shown in this table. In some addressing modes
(Absolute X for example) the instruction may take additional clock cycle if crossing a page

boundary.

BP132 25 Semple Shortwave Broadcast Band Aerials £1 95
BP133 An Introduction to Prover/tiring the Oregon 32 E1.95
EIP 135 Secrets of the Commodore 64 £195

EIP136 25 Simple Indoor and Window Aerials £1.75
BP137 BASIC & FORTRAN in Perallel £1.95
BP138 BASIC & FORTH in Parallel El.95
BP139 An Introduction to Progrernming the BBC Model B Micro
BP140 Dryinal IC Equivalents & Pen Connection. £5.95
13P141 Linear IC Equerelents & Per Connections cs.o5
BP142 An Introduction to Programming the Acorn Electron £1.95

BP143 An Introduction to Programming the Ater, 600/800%L £1.95
BP144 Further Prectical Electronics C•lculatons and Formulae £4.96
BP145 25 Simple Tropical and MW Band Anials £1.75

BP146 The Pre-BASIC Book £2.95
BP147 An Introduction to 6502 Machine Code £2.50
BP148 Computer Terminology Cap]...] [1.95

BP149 A CONIC« Introduction to the Language of BBC BASIC £I.95
BP152 An Introduction to Z80 Machine Code £2.75
BP153 An Introduction to Progroorning the Amstrad CPC464 and 664 £2.50
BP154 An Introduction to MS% BASIC £2.50
BP156 All I ntroduction to CIL Machine Code £2.50

BP157 How to Write 2% Spectrum end Spenrom. Games Programs £2.50
13P158 An Introduction to Programmong the Commodore 16 end Plus 4 £2.50

BP159 How to write Amstrad CPC 464 Games Programs £2.50
BP161 Into the OL Archive £2.60

BP162 Counting on [IL Abacus £2.50
BP169 How to Get Your Computer Programs Running £260
BP170 An Introduction to Computer Peripherals £250

BP171 Easy Addeo Projects for Amstred CPC 464. 664, 6128 end MS% Computers £3.50
BP173 Computer M.. Projects E2.95
BP174 Mor• Advanced Electronic Moto Projects f2.96
BP175 How to Write Word Game Programs for the Amstrad CPC 464, 664 and 6128 £2.95
BP176 A TV•D%en Handbook £5.95
BP I 77 An Introduction to Computer Communications £2.95

BP179 E/aCtIOMC Circuits lot the Computer Control of Robots E2.95

BP180 Electron. Circuits for the Computer Control of Model Railways £2.95
13P181 Getting the Most front Your Printer £2.95

BP182 MIDI Protects E/95
10183 An Introduction to CP/M C2.95
BP184 An Introduction to 68000 AseembN Language £2.95

BP185 Electron., Syntheeser Cantruction £296
BP186 Walk e-T•5 te Projects £2.95

BP187 A Pr eCteell Reference Guide to Word Propeono on the Amstrad PCW8256 & PCW8512 £5.96
BP188 Getting Started with BASIC and LOGO on the A rnstretl PCWs £5.95
EIP189 Using Your Amstred CPC Dee Drives £296
0P190 More Advanced E lectrone Sesur ity Projects £2.96

BP191 Simple Applications of the Amstrad CPC, for Writers £2.96

BP192 More Advanced Power SuppN Projects £2.96
BP193 LOGO for Beginners 42.95
9P194 Modern Opto Devoe Protects £2.95
BP195 An Introduction to Setellne Television £5.96

BP196 BASIC & LOGO in Parallel [295
BP197 An Introducton to the Amstrad PC's E5.95
BP198 An Introduction to Antenna Theory £2.96
BP199 An Introduction to BASIC.2 on the Amstrad PC's £5.95

BP230 An Introduction to GEM [6.95
BP232 A Concise Introduction to MS-DOS £2.95
80233 Electronic Hobbyists Handbook £4.95
BP234 T rennet. Selector Guide E4.95
f3P235 Posver Selector Guide £4.95
BP236 Digital IC Selector GLid•-Part 1 E4.95
BP237 Digital IC Selector GuidePart 2 £4.96

BP238 Linear IC Selector Guid• £4.96
BP239 G•tting the Most from Your Multimeter £2.95

BP240 Remote Control Handbook £3.95
13P241 An Introduction to 8066 Machine Code £5.95
BP242 An Introduction to Computer Aided Drawing E2 96
BP243 BBC BASIC86 on the Amstrad PC's and IBM Compatibles - Book 1 Language £3.96
BP244 BBC BASIC136 on the Amstrad PC's ancl IBM Compatibles - Book 1 Graphics & Dre Files £3.95
BP245 Digital Audio Projects£296 .
BP246 Musical Applicators of the Atari ST', £4.96
BP247 More Advanced MIDI Projects £2.95
BP248 Tot Equipment Constr... £2.96
BP249 More Advenced Test Equipment Construction [2.95
BP250 Progremnung in FORTRAN 77 [4.95
BP251 Computer Hobbyists Handbook E5.95
BP252 An Introduction to C £2.95
BP253 Ultra High Power Amish.. Construction £3.95

BP254 From Atoms to Amperes £2.95
BP255 International Redo Statrone Guide £4.96

BP256 An Introduction to Loudspeakers end Enclosure Design £2.95

BP257 An Introduction to Amateur Radio E2.95

BP258 leerning to Program in C £4.95

•

rte

frJ BERNARD BABANI BP147

An Introduction
to 6502 Machine Code

• In essence, mpchine code programming is direct programming of the
microprocessor without using a built-in high-level computer language
such as BASIC.

• The vast increase in running speed obtained when writing programs
in machine code is offset, to a degree. by the added complexity in writing
them. However, it is not as difficult as one might think and this book tells
the story.

• The 6502 microprocessor is utilised in many popular home computers

including the Electron, BBC models A and 6, VIC-20. ORIC-1 Atmos and
the Atari machines. Also, the Commodore 64 uses tie 6510 which is a
slightly modified but software compatible version of the 6502.

• Some simple demonstration programs which can be run on a number
of the above machines are included in this book.

ISBN 0-85934-122-4

£2.95 1ll
00295

9 780859 341226

