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PREFACE 

Home computers are equipped with built-in software that 
enables them to be easily programmed to do quite complex 
tasks. The price that is paid for this programming ease is a 
relatively slow running speed, far lower than the speed at 
which the computer is really capable of running. Machine 
code programming entails direct programming of the micro-
processor without using a built-in high level computer 
language such as BASIC. This gives a vast increase in running 
speed, but is something that can only really be undertaken by 
someone who has a reasonable understanding of the micro-
processor and some of the other hardware in the computer. 

Machine code programming is not as difficult as one might 
think, and once a few simple concepts have been grasped it is 
actually quité straightforward (although admittedly never as 
simple as using a high level language). This book takes the 
reader through the basics of microprocessors and machine 
code programming, and no previous knowledge of these are 
assumed. 

The microprocessor dealt with here is the 6502, which is an 
excellent choice for beginners as it is in many ways a very 
simple type, but it is also very well designed and is acknow-
ledged as one of the most powerful 8-bit microprocessors 
available. It is the microprocessor utilized in many of the 
popular home-computers, including the Electron, BBC Models 

A and B, VIC-20, ORIC-1/Atmos, and the Atari machines. 
The popular Commodore 64 uses the 6510 which is a slightly 

modified (but software compatible) version of the 6502. Some 
simple demonstration programs that can be run on a number 
of these machines are included in the book. 

R. A. Pee)Id 



Chapter 1 

THE MICROPROCESSOR 

All home computers are equipped to operate using a high level 
computer language such as BASIC or FORTH, and these 
languages are designed to make program design as quick and 
easy as possible. With most high level languages the program-
mer uses words that are virtually plain English, and the 
computer's built-in software then converts these into machine 
code routines that the processor at the heart of the computer 
can interpret and act upon. Writing programs direct in 
machine code is, on the face of it, rather pointless, as it is 
somewhat harder and a considerably slower process than using 
BASIC or another high level language to achieve the same ends. 

The advantage of machine code programs is the speed with 
which they run. The speed of a machine code program is, in 
fact, only limited by the operating speed of the computer's 
microprocessor, and a computer can perform no faster than 
when it is running a machine code program. High level 
languages such as BASIC are inevitably much slower due to 
the way in which each instruction has to first be interpreted 
(converted into machine code) before it can be executed. In 
other words, the program is stored in memory in its BASIC 
form, and it is only when the program is run that each 
instruction is converted into machine code and executed. 
The program is effectively brought to a halt during the inter-
preting process, which accounts for more time than the 
running of the interpreted machine code. The difference in 
speed is probably much greater than most people realise, and 
machine code is typically something approaching one 
thousand times faster than an equivalent BASIC program. 
Action games written in BASIC are often a little sluggish due 
to this lack of operating speed, especially when a lot starts to 
happen at once, but a machine code equivalent normally 
appears to operate instantly no matter how much simultane-
ous action takes place. With some scientific and business 
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programs BASIC is too slow to be of any use at all, and the 
use of machine code is mandatory. However, the speed of 
machine code is its only advantage, and apart (perhaps) from 
the fun of it, there is no point in using machine code where a 
program written in a high level language would be fast enough. 

There are alternatives to machine code and high level inter-
preted languages such as BASIC, and we will consider these 
briefly before moving on to a description of the micro-
processor itself. Some high level languages are compiled rather 
than interpreted. The difference is that with a compiled 
language the interpreting process is carried out before the 
program is run. The program may then run using the compiled 
machine code, or using a sort of pseudo machine code which 
requires a minimal amount of interpreting. In either case 
programs should run at high speed, and should be far *easier to 
write than equivalent machine code programs. A compiled 
language may seem like the ideal solution (and many people 
would argue that it is), but languages of this type are generally 
much more difficult to use than interpreted languages when 
writing and debugging programs, and languages such as BASIC 
are probably much better for beginners to programming. A 
mixture of BASIC and machine code (with the latter only 
being used where high operating speed is essential) can there-
fore be a more practical solution in many cases. 

Incidentally, you may come across the terms source code 
and object code occasionally. The former is the program in its 
high level language form, and the latter is the machine code or 
pseudo machine code produced after interpretation or 
compilation. 

ASSEMBLY LANGUAGES 

The terms machine code and assembly language seem to cause 
a certain amount of confusion, and there seems to be a general 
belief that they are different terms for the same thing. In fact 
they are very similar, but there is an important difference. 
With machine code programming the instructions for the 

2 



microprocessor are in the form of numbers from 0 to • 255. 
This is not a very convenient way of doing things, and it 
inevitably involves almost constantly looking up instructions 
to find their code numbers. Assembly language uses a pro-
gram in the computer to take three letter codes and convert 
these into the corresponding machine code instruction 
numbers. Most assemblers also provide the programmer with 
some further assistance, but not much. The basic function of 
the assembler is simply to take the three letter mnemonics 
and convert them to the appropriate numbers. An assembler 
is really the most basic of compilers, but as far as the 
programmer is concerned there is no real difference between 
assembly language and machine code, and if you can program 
in one you can also program using the other. 

Of course, the main advantage of using an assembler is that 
the three letter mnemonics are chosen to closely relate to the 
instructions that they represent. For example, the Return 
From Subroutine instruction has RTS as its mnemonic, which 
is obviously much easier to remember than the machine code 
number of 60. If you intend to do a lot of machine code 
programming an assembler could reasonably be considered 
essential, since using anything other than a few short machine 
code routines is generally rather awkward and inconvenient 
with most home computers which are designed primarily for 
BASIC programming. A few computers (the Electron and 
BBC machines for instance) have built-in assemblers, but 
assembler programs are readily available for most other 6502 
based computers. The facilities offered vary somewhat from 
one assembler to another, but most give at least some aid with 
debugging, although nothing like as much assistance as the 
best BASIC languages. 

One final point to bear in mind is that a high level 
language like BASIC varies only slightly from one computer 
to another, and once you have mastered BASIC it is usually 
not too difficult to write programs for any computer equipped 
with this language. Problems can arise with the sound and 
graphics facilities which vary from one machine to another, 
giving inevitable variations in the sound and graphics corn-
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mands. However, the language is fundamentally the same for all 
the computers that use it. Machine code programming is iden-
tical for any computers that use the 6502, and although there 
are again differences in the sound and graphics facilities avail-
able on various machines, these do not affect the instructions 
that are available to the programmer (although to produce the 
desired effect it might sometimes be necessary to use a differ-
ent routine for each machine). The situation is very different 
when dealing with a computer that uses a different micro-
processor such as the Z80A. Apart from the differences in 
the sound and graphics facilities, the microprocessor will have 
different machine code numbers for each instruction, and 
possibly even different mnemonics. Furthermore, the instruc-
tion sets of various microprocessors are substantially different, 
as are the registers they contain and the way in which they 
handle certain tasks. Obviously all microprocessors work on 
the same basic principle, but changing from programming one 
type to programming an alternative device usually involves a 
fairly substantial amount of work. 

THE PROCESSOR 

Although a microprocessor is an extremely complex device, 
usually containing the equivalent of tens of thousands of 
components, as far as the programmer is concerned it can be 
regarded as a fairly simple set of electrical circuits known as 
registers which will perform certain functions if fed with the 
appropriate instruction numbers. The registers consist of one 
or more circuits known as flip/flops, and these can produce an 
output voltage that is either virtually zero, or one that is 
typically about 5 volts. From the software point of view the 
voltages are not important, and we can think in terms of low 
or logic 0 if the output of a flip/flop is near zero volts, and 
high or logic 1 if it is at about 5 volts. A circuit with an 
output that can represent just 0 or 1 may not seem to be very 
useful, and in isolation such a circuit is not of tremendous 
value, but as we shall see later, a number of flip/flops together 
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can represent large numbers, and can be used to perform 
complex calculations etc. 

The registers of the 6502 are shown in diagramatic form 
in Figure 1, and the ones of main interest are the accumulator, 
the X register, and the Y register. These are all 8 bit registers. 
In other words, they have eight flip/flops and can handle 
numbers up to 8 bits long. A group of 8 bits is usually called 
a byte incidentally, although strictly speaking a byte does not 
have to be 8 bits long, and can be any length. The point 
about a byte is that it is not just a collection of unrelated 
signals or bits, but the bits operate together to represent a 
number, alphanumeric character, or whatever. 

The accumulator is very much at the centre of things, and 
any data processed by the microprocessor has to be handled 
by this register and the complex circuit associated with it. 
This circuit is called the arithmetic logic unit, or ALU. If you 
feed an instruction to the microprocessor the ALU will almost 
certainly be involved in the execution of that instruction, but 
this is something that is all handled internally by the micro-
processor itself, and the programmer does not get directly 
involved with the ALU. At this stage we will not consider in 
detail the type of data processing that the accumulator can 
provide, but it includes such things as addition and 
subtraction. 

The X and Y registers are index registers. Their purpose is 
to act as pointers to tell the microprocessor where to find data 
or instructions. In order to understand their function it is 
necessary to understand, amongst other things, the basic make-
up of a computer. Figure 2 shows in block diagram form the 
general arrangement used in a 6502 based computer. The 
memory is a bank of 8 bit registers which are used to store 
both program instructions and data. The number of registers 
in the memory block varies from one computer to another, 
but the 6502 can operate with a maximum of 65536. The 
address bus is 16 bits wide, and these sixteen bits are produced 
by the program counter (see Figure 1). It is the program 
counter, via the address bus, that selects the particular 
memory register that is connected to the microprocessor. The 
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data bus is used to transfer data between the microprocessor 
and the memory block. An important point to note here is 
that the data bus is bidirectional, and is used by the micro-
processor to take data and instructions from memory, and to 
place data in memory. There are not separate input and out-
put busses on a microprocessor, the data bus is used for 
both types of operation. 

The control bus is used to make sure that all the elements 
of the system are operating in unison, and that if (say) the 
microprocessor sends data to a particular register in memory, 
that register is ready to receive that data and is not trying to 
output data to the microprocessor. All the lines in the control 
bus operate automatically, they are not directly controlled by 
the programmer, and are not something we need concern 
ourselves with here. 

BINARY 

The 16 bit program counter can place 65536 different output 
combinations onto the address bus, and it is this that limits 
the 6502 to 65536 memory registers. Each memory register 
occupies an address, which is merely a number from 0 to 
65535, and each of the 65536 output combinations of the 
program counter corresponds to one of these addresses. 
Therefore, by placing each bit of the program counter at the 
appropriate state, the microprocessor can read the contents 
of any memory register, or can write data to that register 
depending on the type of instruction it is executing. In order 
to undertake machine code or assembly language program-
ming it is essential to understand the way in which the bits of 
the address bus (and the data bus) are used to represent a 
number. 

The numbering system we normally use, in every day life, 
is commonly called the decimal system and is, of course, 
based on the number 10. There are ten single digit numbers 
from 0 to 9. This system of numbering is not very convenient 
for an electronic circuit in that it is difficult to devise a 
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practical system where an output has ten different voltage 
levels so that any single digit decimal number can be repre-
sented. It is much easier to use simple flip/flops which have 
just two output levels, and can only represent 0 or 1. How-
ever, this bars such circuits from operating directly in the 
decimal numbering system, and instead, the binary system of 
numbering is utilized. 

This system is based on the number 2 rather than 10, and 
the highest single digit number is 1 rather than 9. If we take 
a decimal number such as 238, the 8 represents eight units ( 10 
to the power of 0), the 3 represents three tens ( 10 to the 
power of 1), and the 2 represents two hundreds ( 10 to the 
power of 2, or 10 squared). Things are similar with a binary 
number such as 1101. Working from right to left again, the 
1 represents the number of units (2 to the power of 0), the 0 
represents the number of twos (2 to the power of 1), the next 
1 represents the number of fours (2 to the power of 2), and 
the final 1 represents the number of eights (2 to the power of 
3). 1101 in binary is therefore equivalent to 13 in decimal 
(1 + 0 + 4 + 8 = 13). 

The table following shows the number represented by each 
digit of a 16 bit number when it is set high. Of course, a bit 
always represents zero when it is set low. 

Bit 0 1 2 3 4 5 6 7 8 

I 2 4 8 16 32 64 128 256 

Bit 9 10 11 12 13 14 15 

512 1024 2048 4096 8192 16384 32768 

Using 16 bits any integer from 0 to 65535 can be represented 
in binary fashion, or using 8 bits any integer from 0 to 255 can 
be represented, and this exposes the main weakness of the 
binary numbering system. Numbers of modest magnitude are 
many binary digits in length, but despite this drawback the 
ease with which electronic circuits can handle binary numbers 
makes this system the only practical one at the present time. 
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Addition of two binary numbers is a straightforward 
business which is really more simple than decimal addition. 
A simple example is shown below:— 

First number 11110000 

Second number 01010101 

Answer 101000101 

As with decimal addition, start with the units column and 
gradually work towards the final column on the left. In this 
case there is 1 and 0 in the units column, giving a total of 1 in 
the units column of the answer. In the next column two Os 
give 0 in the answer, and the next two columns are equally 
straightforward. In the fifth one there are two 1 s to be 
added, giving a total of 2. Of course, in binary the figure 2 
does not exist, and this should really be thought of as 10 (one 
2 and no units), and it is treated in the same way as ten in 
decimal addition. The 0 is placed in the answer and the 1 
is carried forward to the next column of figures. The sixth 
column again gives a total of 10, and again the 0 is placed in 
the answer and the 1 is carried forward. In the seventh 
column this gives a total of 3 in the decimal, but in this 
binary calculation it must be thought of as the binary number 
11 (one 2 and one unit). Therefore, 1 is placed in the answer 
and 1 is carried forward. In the eighth column this gives an 
answer of 10, and as there are no further columns to be 
added, both digits are placed in the answer. 

Adding two 8 bit binary numbers together produces a slight 
complication in that, as in this case, the answer is some 9 bits 
long. When the accumulator is used to add two 8 bit numbers 
it cannot accommodate the extra bit when there is a final 
carry-forward, but the 1 in column nine is not simply lost 
(which would obviously give an incorrect answer and would 
be unacceptable). Instead, the carry-forward is taken to one 
of the status registers of the microprocessor. Not surprisingly, 
this is called the carry or C register. Like the other status 
registers this is used to control conditional instructions (i.e. if 
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the carry bit is set high do this, if it is not do that). Anyone 
who has done some BASIC programming should be familiar 
with conditional instructions in the form of BASIC 
IF . THEN or IF. .. THEN.. . ELSE instructions. 

Of course, the fact that the accumulator can only handle 
8 bit numbers giving a maximum equivalent to 255 in decimal, 
is not to say that computers and microprocessors cannot deal 
in numbers of a higher magnitude. Very large numbers can be 
accommodated by using two or more bytes together. The 
usual way of doing this is to have (say) two bytes used 
together with one byte providing the lower 8 bits of the 
number, and the other providing the upper 8 bits. These are 
generally called the low byte and high byte respectively. Two 
other terms that are often used are least significant bit or LSB, 
and most significant bit or MSB. These simply refer to the 
lowest and highest bits respectively (e.g. bits 0 and 7 of a 8 
bit number). 

When adding together two 16 bit numbers the basic way in 
which it is done is to first add the two low bytes, to give the 
low byte of the answer. Then the two high bytes are added 
together with the carry (if any) to give the high byte of the 
answer, plus a possible 17th bit in the carry flag. 

When machine code programming using a home com-
puter the hardware between the programmer and the 
microprocessor can help to make things very much easier, 
but it can also be a hinderance. Few home computers (in 
fact no 6502 based machines as far as I am aware) allow 
numbers to be entered in binary form, ór normally display 
data in this form. Thus, although the microprocessor would 
handle a calculation such as 10 plus 20 in binary form, using a 
home computer the numbers would be entered in decimal, 
and the answer would be displayed in decimal. For simple 
data processing this is very convenient, but when it comes to 
multi-byte numbers and certain other types of data processing 
it is rather inconvenient. A large number such as 2050 is 
processed by the microprocessor as two 8 bit numbers, which 
are entered into the computer as two decimal numbers in the 
range 0 to 255. In the case of the number 2050, in decimal 
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the high byte is 4, and the low byte is 2, which bears little 
resemblence to the decimal number 2050 or its binary 
equivalent. The point to remember here is that bits 0 to 7 of 
the high byte represent the 512s, 1024s, 2048s, etc., through 
to the 32768s. However, as far as the number entered into 
the computer is concerned, when set high bits 0 to 7 only 
represent 1,2,4, etc. 

When using machine code you must be aware of the way in 
which the microprocessor deals with data on a bit by bit basis 
if you are to fully master the situation, and a reasonable 
understanding of binary is essential. 

SIGNED BINARY 

The binary system described so far, which is often called direct 
binary, is inadequate in many practical applications in that it 
is unable to handle negative numbers. One way around the 
problem is to use signed binary numbers where the first bit is 
used to denote whether the number is positive or negative. 
The convention has the first bit as a 0 for positive numbers 
and as a 1 for negative numbers. With this system the normal 
number range of 0 to 255 is replaced with a range of — 127 
(11111111) to +127 (01111111). The problem is solved only 
at the expense of reduced maximum magnitude for a given 
number of bits. Note though, that where two or more bytes 
are used to form a multi-byte number, only the most signi-
ficant bit of the high byte needs to be used to indicate 
whether the number is positive or negative, and it is not 
necessary to use the most significant bit of each byte in the 
number to do this. 

Obviously a certain amount of care needs to be exercised 
when dealing with binary numbers and you must know 
whether a number is in signed or unsigned binary. For 
example, 10000001 could be 129 (unsigned) or — I (signed). 
In this basic form the signed binary system has practical 
limitations in that it can represent binary numbers without 
any difficulty, but calculations fail to give the right result, 
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which makes the system of little practical value unless it is 
modified to correct this anomaly. It is not used with the 6502 
microprocessor in the basic form described above. 
To illustrate the problem, consider the calculation shown 

below:-

16 00010000 

—5 10000101 

Answer (-21) 10010101 

Adding 16 to —5 should obviously give an answer of 11 and 
not —21. 

An alternative and related method of handling negative 
numbers is the ones complement system. Here a negative 
number is the complementary of the positive equivalent. For 
instance, +16 in binary is 00010000, and — 16 is therefore 
11101111. In other words, the ones are simply changed to 
zeros and the zeros are changed to ones. This gives better 
results when used in calculations, as demonstrated by the 
example given below:-

16 00010000 

—5 11111010 

Answer (266) 100001010 

This answer may seem to be less use than the one obtained 
using ordinary signed binary, and the margin of error is 
certainly greater, but this depends on how the answer is 
interpreted. The first point to note is that the positive number 
starts with a zero and the negative number starts with a 1. 
Provided that sufficient digits are used this will always be the 
case, and in this respect the system is not much different to 
ordinary signed binary. The answer is completely wrong of 
course, but if the carry is ignored the answer is much closer to 
the right result. It then becomes 10 rather than 11. So what 
happens if we try another example and again ignore the carry 
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in the answer? 

32 0010000 

—4 1111011 

Answer (27) 00011011 

As before, the answer is wrong, but is one less than the right 
answer (which is of course 28 in this case). 

TWOS COMPLEMENT 

Clearly this system can be made to operate properly, and it is 
just a matter of finding some way of correcting the answer. 
The method used with simple microprocessors such as the 
6502 is the twos complement system. This differs from the 
ones complement system in that once the compliment of a 
number has been produced one is added to it. Therefore, 
rather than —5 being represented as 11111010, it becomes 
11111011. If we now apply this to one of the examples 
given earlier we obtain the following result:-

16 00010000 

—5 11111011 

Answer ( 11) 00001011 

This time, provided we ignore the carry in the carry flag, 
we have the correct answer of 11. This is a convenient way 
of handling subtraction (for the microprocessor anyway) 
since subtraction can be handled by the same circuit that 
handles addition. To handle a sum such as 45 — 25 the 
figure of 25 is converted into (twos complement) —25, and 
then added to 45. In other words, rather than calculating the 
sum in the form 45 — 25 the microprocessor calculates it as 
45 + (-25), and either way the answer is 20. 
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The table given below shows some sample numbers in 
twos complement form, and should help to clarify the system 
for you. Note that, like ordinary signed binary, the first digit 
is used to indicate whether the number is positive or negative. 

Numbers Positive Negative 

0 00000000 00000000 

1 00000001 11111111 

2 00000010 11111110 

3 00000011 11111101 

4 00000100 11111100 

32 00100000 11100000 

126 01111110 10000010 

127 01111111 1 0000001 

128 010000000 1 0000000 

Note that with 8 bit twos complement numbers the range is 
from + 127 to — 128. 

So far we have only considered calculations where the 
answer is a positive quantity, but the twos complement system 
works properly if the answer is negative. The following 
example demonstrates this point:-

16 00010000 

—31 11100001 

Answer (- 15) 11110001 

The system also functions correctly when two negative 
numbers are added together, as demonstrated by this 
example:-
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—4 11111100 

—8 11111000 

Answer (- 12) 11110100 

OVERFLOW FLAG 

When using the twos complement system there is a slight 
problem in that a number can be accidentally turned into a 
negative quantity. The simple calculation shown below 
demonstrates this point:-

64 01 000000 

127 01111111 

Answer (-65) 10111111 

If taken as an ordinary 8 bit direct binary number this does 
give the right answer, but in the twos complement system the 
carry forward from bit 6 to bit 7 has changed the sign and 
magnitude of the number so that an answer of —65 instead of 
191 is obtained. 

This is termed an overflow, and it is handled by micro-
processors such as the 6502 by a flag called (appropriately) 
the overflow flag. In the diagram of Figure 1 this is given its 
abbreviated name, the V flag. Like the carry flag, there are 
special instructions connected with this flag, and these can be 
used to prevent erroneous results from being produced, or to 
give warning that an error has occurred. These flags are 
normally at 0 and are set by an overflow or a carry forward. 
They are automatically reset by some of the microprocessor's 
instructions, and this helps to streamline things so that the 
system operates rapidly and uses as little memory as possible. 
There are also instructions to specifically reset one flag or the 
other. 
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At this stage it is probably best not to go into any more 
detail about binary calculations and the way they are handled 
by microprocessors. It is a complicated subject, and it is 
probably clarified most easily by trying out a few programs 
which demonstrate the techniques involved. Some practical 
examples that can be run on some popular 6502 based home 
computers are given later in this book. Even if you can only 
understand direct binary, provided you also understand the 
main principles of microprocessors you should be able to run 
and understand some simple machine code routines. 

BINARY CODED DECIMAL 

The 6502 can use another form of binary known as binary 
coded decimal, or BCD. This is perhaps less frequently used 
than the twos complement binary system described above, and 
it has the disadvantages of being relatively slow and unecono-
mic on memory. However, it can be used to give a high degree 
of precision, and it can be advantageous in certain applica-
tions. It is • certainly worthwhile considering this system 
briefly here. 

With BCD four binary bits (often termed a nibble) are used 
to represent each decimal digit. The system operates in the 
manner shown below:— 

Decimal Number Bit Code 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 
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7 

8 

9 

0111 

1000 

1001 

The binary number is in fact just the normal binary repiesenta-
tion of the number concerned, and it is only for numbers of 
more than 9 that the system is different. The binary codes 
from 1010 to 1111 are unused, and all two digit decimal 
numbers require 8 bit binary codes. For instance, the decimal 
number 64 would be represented by the 8 bit BCD code 
01100100. The first four bits (0110) represent the 6, and the 
second four bits (0100) represent the 4. Each byte can 
therefore represent any two bit number from 0 to 99, which 
compares to a range of 0 to 255 for a straightforward 8 bit 
binary number. This helps to contribute to the relative 
inefficiency of the BCD system. Of course, when a nibble is 
incremented by 1 from 1001 (9 in decimal) it does not go to 
1010 (which is an illegal code in BCD), but cycles back to 
0000. A carry forward of I should then be taken to the next 
BCD nibble. 

With this system there is no difficulty in handling large 
numbers, and it is just a matter of using several bytes to 
accommodate the required number of digits. Negative 
numbers and decimal points can also be handled with ease 
by this system, but this requires an additional byte or bytes. 
This information is usually carried in the high byte or bytes. 

HEXADECIMAL 

While on the subject of numbering systems it would perhaps 
be worthwhile dealing with another system which you will 
inevitably come across quite frequently, and this is the hexa-
decimal system. There is in fact yet another system known 
as octal which, as its name suggests, is based on the number 8. 
Octal seems to have fallen from favour in recent years, and as 
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it is something you are not likely to encounter these days we 
will not consider this system here. 
A problem with binary numbers is that they tend to have 

many digits with each digit being either 0 or 1, which makes 
them rather difficult to deal with in many circumstances. For 
instance, trying to remember more than just a very few 6502 
instruction codes in their 8 bit binary form would probably 
be beyond most people's ability. On the other hand, binary 
numbers give a graphic representation of the state of each bit 
in the registers of the microprocessor, and this is something 
that is often important. Decimal numbers are easier to use 
in that they are much shorter and are in a familiar form. 
Converting a decimal number into an equivalent binary one is 
not a very quick and easy process, especially where large 
numbers are concerned, and this is inconvenient when it is 
necessary to visualise things on a bit by bit basis. 

The hexadecimal system gives the best of both worlds in 
that it requires just a few digits to represent fairly large 
numbers, and is in fact slightly better than the decimal 
system in this respect. On the other hand, it is easy to convert 
hexadecimal to binary, and it is easy to use when operating at 
bit level. The hexadecimal system is based on the number 16, 
and there are sixteen single digit numbers. Obviously the 
numbers we normally use in the decimal system are inade-
quate for hexadecimal as there are six too few of them, but 
this problem is overcome by augmenting them with the first 
six letters of the alphabet. It is from this that the system 
derives its name. The table following helps to explain the 
way in which the hexadecimal system operates. 

What makes hexadecimal so convenient is the way in which 
multidigit numbers can be so easily converted into binary 
form. The reason for this is that each hexadecimal digit 
represents four binary bits. Take the hexadecimal A3 in the 
above table for instance. The digit A represents 1010 in 
binary, and the digit three converts to 0011. A3 therefore 
represents 10100011 in binary. You may find that you can 
memorise the four bit binary number represented by each of 
the sixteen hexadecimal digits, but a little mental arithmetic 
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Decimal Hexadecimal Binary 

0 0 0000 

1 1 0001 

2 2 0010 

3 3 0011 

4 4 0100 

5 5 0101 

6 6 0110 

7 7 0111 

8 8 1000 

9 9 1001 

10 A 1010 

11 B 1011 

12 C 1100 

13 D 1101 

14 E 1110 

15 F 1111 

16 10 00010000 

17 11 00010001 

163 A3 10100011 

is all that is needed to make the conversion if you cannot. 
The digits in a hexadecimal number represent, working 

from right to left, the number of units 16s, 256s, 4096s, 
65536s, and 1048576s. You are unlikely to use hexadecimal 
numbers of more than six digits in length. 
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SYSTEM OPERATION 

If we now return to the block diagrams of Figures 1 and 2, 
you should begin to get the idea of how data is moved around 
the system and processed. At switch on the microprocessor 
has all the registers set to zero, apart from the program 
counter which starts at a certain address. The start up pro-
cedure is not normally of interest to the machine code 
programmer, since few people design their own systems. It is 
far more likely that you will be using a home computer where 
all this is taken care of by the computer's operating system. 
The program you write will normally go into a section of 
memory occupied by random access memory (RAM). This is 
memory where the microprocessor can set its contents at any 
desired 8 bit binary number, and then read back that number 
at a later time. The contents of RAM can be changed an 
unlimited number of times, but reading the contents of RAM 
does not destroy the data there or affect it in any way. 
However, when the computer is switched off the contents of 
RAM are lost. Software such as the computer's operating 
system and BASIC interpreter are usually in read only memory 
(ROM) which retains its contents after the computer has been 
switched off (although the BASIC interpreter or other langu-
age has to be loaded from tape or disc on a few machines). 
The contents of ROM are fixed, and writing to ROM does not 
alter its contents. ROM is not an area of memory that is 
normally used by the programmer, the exception being when 
there are useful routines there that can be utilized. 

The block marked input/output in Figure 2 includes such 
things as the keyboard and the chip which produces the 
television picture. The 6502 uses memory mapped input/ 
output. In other words, the microprocessor reads data from or 
writes data to input/output devices just as if they were RAM, 
and they are addressed in exactly the same way. This has the 
advantage of making programming more straightforward in 
that using a common set of instructions for memory and 
input/output operations gives fewer instructions to contend 
with. A minor drawback is that some of the 64k (a k is 1024 
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bytes incidentally) memory address range is occupied by the 
input/output devices, but this does not normally seriously 
deplete the maximum amount of memory that can be included. 

With the aid of the computer's operating system and either 
the BASIC interpreter or an assembler, the machine code 
program is placed in a suitable section of memory, and the 
program is run by directing the microprocessor to the 
appropriate address. The machine code program then 
operates by fetching an instruction from the start address of 
the program, and then shuffling data around its registers and 
the memory as it goes through the set of instructions. This 
may seem a rather vague description of things, but if you can 
grasp the basic concept of instructions and data being taken 
from memory, or possibly input/output devices, with the 
data being processed in some way by the microprocessor 
before being sent back to a memory location or an output 
device, then you should not find it difficult to understand a 
few simple machine code programs and then gradually progress 
to more complex ones. If you cannot see how the system 
operates overall, individual machine code instructions could, 
to say the least, be rather difficult to understand, and even 
simple programs would certainly be impossible to follow. 
A simple example of how the system operates should now 

be quite easy for you to understand. We will assume that the 
program must take a number from one memory location, then 
add this to a number taken from a second address, and then 
finally place the answer at a third address. There is more than 
one way of going about this, and the differences occur due to 
the various addressing modes that the 6502 can use. In other 
words, we can place the numbers at any addresses we like, and 
by using the appropriate addressing mode (or modes) and 
instructions the program can be made to obtain the numbers 
from the correct addresses. Addressing modes is a fairly 
complex subject which is fully discussed in a later chapter of 
this book, and it will not be considered in detail here. For the 
sake of this example we will use the most simple addressing 
mode, which is immediate addressing. With this system the 
first instruction would be to load a byte into the accumulator 
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from memory (i.e. the first number), and with immediate 
addressing the byte of data is at the address which follows the 
instruction. After receiving an immediate instruction the 
program counter automatically increments by one and moves 
the program on to the byte of data that is to be processed. 
The next instruction would be to add the second number to 
the number currently in the accumulator, and this would 
again be a matter of having the instruction followed by the 
number at the next address. Next, the instruction to store 
the accumulator at the next address would be used, and then 
finally the return from subroutine instruction would be given. 
This last instruction simply ends the program and returns 
control of the computer to the operating system. 

This program only uses seven bytes including the one 
where the answer is stored. Before the program was run these 
would be as follows:— 

Byte 1 Load immediate instruction code 

Byte 2 First number 

Byte 3 Add immediate instruction code 

Byte 4 Second number 

Byte 5 Store accumulator immediate instruction 

Byte 6 Any 8 bit number 

Byte 7 Return from subroutine instruction 

After the program was run things would be little different, and 
the only change would be that byte 6 would have been 
changed from a random number to the sum of the first and 
second numbers. In this simple example we are ignoring any 
carry forward indicated by the carry flag. 

It is only fair to point out that the program could not be 
run in this form on the 6502 as it does not have the store 
accumulator instruction in its immediate form. However, it 
could achieve much the same thing using an alternative form 
of this instruction, and this gives us an opportunity to briefly 
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consider the use of the X and Y index registers. With the 
immediate instructions the program counter automatically 
increments by one after the microprocessor has finished the 
instruction. This method of doing things is very fast, straight-
forward, and requires little memory, but it is in many ways 
limiting. 

The X and Y registers can be loaded with numbers which 
can then be used to control the program counter in some way 
so that the program jumps to the required address. In our 
simple example this indexed addressing is an unnecessarily 
complicated way of doing things, but it nevertheless illustrates 
the use of an index register, and should give you the basic idea 
of how they are used. 

Using indexed addressing to store the answer the program 
would be along the lines shown below:— 

Byte 1 Load accumulator immediate 

Byte 2 First number 

Byte 3 Add accumulator immediate 

Byte 4 Second number 

Byte 5 Load X register immediate 

Byte 6 Offset to be loaded into X register 

Byte 7 Store accumulator absolute X 

Byte 8 8 least significant bits of address 

Byte 9 8 most significant bits of address 

Byte Z Answer 

Byte Z+1 Return from subroutine 

The program starts in the same way as before, but at bytes 
5 and 6 we are loading a number into the X register. When the 
store accumulator instruction is reached it is followed by a 
16 bit address in the next two bytes. Note that the least 
significant bits are given first, followed by the most significant 
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bits, and not as one might expect, with the most significant 
bits first. The answer is stored at address Z, which is the 16 
bit address at bytes 8 and 9 plus the offset which was loaded 
earlier into the X register. This can be any address within the 
64k address range of the 6502. The program then goes to the 
next byte (address Z+1, not Byte 10) where the return from 
subroutine instruction is used to hand control back to the 
computer's operating system. 

Something that will probably have become apparent is 
that it takes a large number of machine code instructions to 
achieve quite simple tasks. When programming in a language 
such as BASIC each instruction is converted into a number of 
machine code instructions by the interpreter. This is one of 
the factors which makes writing machine code programs a 
relatively slow affair. 

THE STACK 

There are a number of registers in the 6502 (and shown in 
Figure 1) which we have not yet considered, and we will take 
a look at the function of these now. The one labelled S is 
the stack pointer, and this is actually a 9 bit register rather 
than the more usual (for the 6502 anyway) 8 bit type. How-
ever, the most significant bit is always set at 1. The stack is a 
set of registers which can be used for temporary data storage, 
and with some microprocessors the stack is an internal part of 
the microprocessor. This is often termed a hardware stack. 
This is in many ways the most elegant solution to the problem, 
and it has the advantage of high speed. It has the disadvantage 
of giving only a relatively small number of registers, and does 
of course add complexity to the microprocessor. 

The 6502, in common with most of the more simple micro-
processors, uses the alternative of a software stack. This is 
just an area of memory which is reserved for use as the stack, 
and the system must, of course, provide RAM at the relevant 
range of addresses. The stack pointer (the S register) points 
to an address in this block of RAM, and with the 6502 the 
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stack extends from 100000000 to 111111111 in binary, or 
256 to 511 in decimal. The stack register operates auto-
matically, and it is not like an index register which can be 
loaded with any desired 8 bit number. The stack uses the 
last in—first out or LIFO system. In other words, each time 
data is placed onto the stack the S register is incremented by 
1, and each time data is taken from the stack the pointer is 
automatically decremented by one. This is often looked on 
as being analogous to a stack of plates, with plates being 
loaded one on top of the other, building a pile from the 
bottom upwards, and then removing plates from the top of 
the pile and working downwards. This analogy does not work 
too well with the 6502 as it starts with the stack pointer at 
111111111 and cóunts downwards as the stack is enlarged. 
However, the last in—first out doctrine still applies. The fact 
that the stack grows downwards is really only of academic 
importance anyway, since the stack pointer increments and 
decrements automatically. 

Apart from use as a convenient temporary data store, the 
stack is also used when subroutines and interrupts are 
implemented. We will not consider these in detail here, but 
in both cases the microprocessor breaks out of its normal 
operating routine, and branches off into another routine. 
With an interrupt, the signal to the microprocessor that it 
must break out of its normal routine is provided by a hardware 
device via one of the 6502's two interrupt inputs. A typical 
application where interrupts are used is the timer that is a 
feature of many home computers. Here a counter circuit 
generates an interrupt (say) every 10 milliseconds, and a 
software routine is used to increment by one the number 
stored at a set of memory locations. With suitable manipula-
tion the number in these RAM locations can be converted into 
suitable data for a minutes and seconds display, or even for a 
real-time clock. The number can be POKEd to any desired 
figure so that the clock can be set at the required time. If the 
timer is to achieve a reasonable degree of accuracy it is 
important that the microprocessor carries out the software 
routine at each request without waiting to complete other 
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tasks first. It is for this type of application that interrupts are 
ideal. 

The problem with the use of interrupts is that the micro-
processor has to be able to break back into its main routine 
again after it has finished the interrupt routine. To facilitate 
this things such as the contents of the accumulator, the X 
register, and the Y register are stored on the stack when the 
interrupt is generated, and then retrieved again when the 
interrupt routine has been completed. Things are much the 
same when a subroutine is called; and a subroutine could be 
regarded as a software generated interrupt. In fact there is a 
6502 instruction (break) which has exactly the same effect as 
an interrupt request. When writing programs for home 
computers it is unlikely that you will need to deal with 
interrupts, and they are principally used as part of the com-
puter's operating system and in a few specialised add-on 
hardware applications. Because the computer is continually 
generating its own interrupts there will almost certainly be 
restrictions on the use of user generated interrupts, and they 
may not be usable at all. 

FLAGS 

The 6502 has status flags apart from the carry and overflow 
ones, and one of these is the zero flag (the Z register of 
Figure 1). This is used by conditional instructions which test 
to see whether or not this bit is set. As its name suggests, this 
bit is set when the result of an operation by the arithmetic 
logic unit has produced zero as the answer. 

The negative flag (the N register of Figure 1) is equally 
straightforward, and this bit is set when the result of an 
operation by the arithmetic logic unit gives a negative result. 

The I flag is the interrupt masking bit, and this can be set 
by the programmer to disable certain interrupts. The D flag 
is the decimal flag, and this is set to place the 6502 in the BCD 
mode. 
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PAGING 

When dealing with the 6502 it is common to find references to 
pages of memory. For example, you will often come across 
references to zero page. Pages of memory are simply blocks of 
256 bytes, with zero page at address from 0 to 255, page 1 
at 256 to 511, page 2 at 512 to 767, and so on. The 64k 
address range of the 6502 gives 256 pages in all. As we have 
already seen, page 1 is used as the stack, but the other pages 
are free for the system designer to use virtually in any way he 
or she desires. 

Although the use of paging may seem pointless, it can be 
helpful. Due to the use of 8 bit index registers in the 6502 
the page boundaries are real rather than imaginary when some 
addressing modes are used, and although there is no difficulty 
in crossing the boundaries in these modes, extra instructions 
(and processing time) are involved. 

6502 PINOUTS 

The 6502 is contained in a 40 pin DIL plastic package, and it 
has the pinout configuration shown in Figure 3. The pinouts 
of the device are really only of academic importance as far as 
the programmer is concerned, but a brief description of these 
will be given here as you might find it helpful in understanding 
how the overall system operates. 

The pins marked AO to AIS are the 16 bit address bus, and 
similarly, DO to D7 are the 8 bit data bus. ¡RO is the interrupt 
request input, and taking this low generates an interrupt, but 
the current instruction is completed first, and the micro-
processor would simply crash if it was not. Then the interrupt 
mask bit of the status register is examined, and the interrupt 
sequence will only be started if the interrupt mask bit is not 
set. The processor automatically stores the contents of the 
program counter and the status register on the stack, and it 
also sets the interrupt mask bit so that further interrupts are 
ignored until the current one has been completed. This is 
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Fig. 3. Pinout details of the 6502 

29 



obviously essential, since the microprocessor is then loaded 
with the numbers stored at (hexadecimal) addresses FFFE 
(low byte) and FFFF (high byte). These two addresses must 
therefore contain the start address of the interrupt routine. 

An important point to bear in mind regarding interrupts 
is that the microprocessor only saves (on the stack) and 
restores the contents of the program counter and the status 
register. If any other registers, such as the X or Y index 
registers, will have their contents altered by the interrupt 
routine, it is up to the programmer to provide a routine to 
save these on the stack and then restore them again at the 
end of the interrupt routine. The programmer is also 
responsible for resetting the interrupt masking bit once the 
interrupt has been serviced. 

The second interrupt input of the 6502 is the non-maslcable 
interrupt (NMI) input. As its name suggests, this has a higher 
priority than the IRQ input, and the interrupt routine is 
performed regardless of the state of the interrupt masking bit. 
Obviously this interrupt input has to be used with some care. 
In other respects the interrupt is handled in much the same 
way as for one generated via the IRQ inpi.d. However, the 
program counter is loaded with the address stored at (hexa-
decimal) addresses FFFA (low byte) and FFFB (high byte). 
Thus there is no difficulty in having separate interrupt routines 
for the IRQ and NMI inputs. It is actually possible to have 
several devices driving each interrupt input, with a separate 
interrupt routine for each device, but the methods of achieving 
this really goes beyond the scope of this book. 

The Reset input is taken low briefly at switch on, and this 
starts the microprocessor on its initialisation sequence. It can 
also be used to take the computer back to this sequence at any 
time, such as after the computer has crashed. Many 6502 
based computers have a Reset or Break switch which simply 
pulls the Reset pin low when the switch is operated. As part 
of the initialisation process the program counter is loaded 
with the numbers at (hexadecimal) addresses FFFC (low byte) 
and FFFD (high byte), and these direct the microprocessor 
to the start of the operating system routine. 
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The read/write (R/W) pin is an output, and is used to 
control memory and input/output devices. It goes high when 
the microprocessor is reading the data bus, and it switches the 
memory and input/output devices into the output mode so 
that the relevant device can be read by the microprocessor. 
Of course, only one device at a time must output data onto 
the data bus, and correct decoding of the address bus ensures 
that only one device is activated at any one time. The read/ 
write line goes low when the microprocessor is placing data 
onto the data bus, and this sets the memory and input/output 
devices in the state where they are ready to receive data from 
the data bus. Again, correct decoding of the data bus ensures 
that only the intended device receives the data written onto 
the data bus by the microprocessor. 

The pins marked 00, 01 and 02 are the clock terminals of 
the device, and the 6502 has a built-in clock circuit which 
has its frequency set by an external crystal. The clock simply 
provides a series of electrical pulses to the microprocessor, and 
it is these that move the component through the complex 
sequence of events that make up each instruction. The 
standard 6502 will operate with clock frequencies of up to 1 
megahertz (i.e. one million pulses a second), and it is normally 
used with a clock frequency at something in the region of 
1 MHz so that it carries out instructions at something 
approaching the highest rate possible. When using the 6502 
(or any microprocessor) in an application where high operating 
speed is important it must be remembered that each instruc-
tion takes several clock cycles, and that a clock frequency of 
1 megahertz does not equate with 1 million instructions per 
second. The number of cycles taken to execute an instruc-
tion varies from one instruction to another, but for the 6502 
it is typically about six clock cycles. 

There are higher speed versions of the 6502, such as the 
6502C, but these differ from the standard 6502 only in the 
maximum clock frequency that can be used. As far as 
programming is concerned there is no difference between the 
various versions of the 6502. 
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MEMORY ORGANISATION 

The manual for most home computers includes a memory 
map, which shows the functions of various parts of the 
computer's address range. The memory map varies consider-
ably from one computer to another, but there are strong 
similarities between maps for the various 6502 based home 
computers. Figure 4 shows a typical 6502 home computer 
memory map. This is not the map for any particular 
computer incidentally, and is a sort of generalised 6502 
memory map. 

As pointed out earlier, page 1 is used as the stack, and this 
is something that will obviously be common to all 6502 based 
machines. Zero page is usually reserved for important 
variables and pointers, and this is due to the special form of 
addressing associated with zero page (which is discussed in 
more detail in the next chapter). Of course, there has to be 
RAM at pages 0 and 1 due to the variable nature of the data 
that will be stored there, and so the RAM starts at zero page 
and extends upwards. As we have seen, the six addresses at 
the top of memory point to the start addresses of the operat-
ing system and interrupt routines, and the operating system 
ROM therefore occupies the top section of the address range. 
It is convenient to have the language ROM immediately 
beneath this in the memory map. The top part of the RAM 
is normally used as the video display RAM, and this is conveni-
ent in that with most computers the amount of RAM required 
for the display depends on the display mode used. With this 
system it is easy to arrange things so that as less RAM is 
utilized by the display, more RAM automatically becomes 
available for program use, with the boundary between the 
two changing according to the display mode used. Of course, 
not all computers use the full 64k address range and can 
operate in this way, but these days the majority seem to do 
so, or have the option of extra RAM which brings them into 
this category. 

The area of memory used for input/output devices tends to 
vary considerably from one machine to another. Perhaps the 

32 



FFFF 

0200 

0100 

0000 

Moveable 
boundaries 

-"\ 

Operating system 
ROM 

Language ROM 

Memory mapped 
: video display area 

User memory area 

8-32k 
total 

One or more pages reserved 
for system use (Vectors, I/O, 
cassette/disc workspace, etc.) 

Page 1. Machine stack 

Zero page—reserved for 

important variables/pointers 

Fig. 4. Typical memory map of a 6502 computer 

33 



most logical place for it is low in memory, such as the page 3 
input/output used by the ORIC-1 and Atmos computers. 
On the other hand, many home computers have some unused 
ROM space, and it then makes sense to fit the input/output 
devices into this area of memory so that as much space as 
possible is left free for RAM to hold programs. This is the 
input/output system used in computers such as the BBC 
machines and the Electron. 
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Chapter 2 

THE 6502 INSTRUCTION SET 

This chapter is an alphabetical list of all the legal 6502 
instructions, giving a brief description of the operation per-
formed, the opcodes for all the address modes available with 
a particular instruction, and a list of the flags affected. All 
opcodes are given in hexadecimal notation. 

The number of bytes and number of cycles taken by each 
instruction are not given here. Information on instruction 
length is given in the next chapter (Address Modes), and 
number of cycles taken is given in the instruction set chart at 
the back of the book. 

1. ADD WITH CARRY 

Mnemonic — ADC 

Adds the contents of the memory address or immediate data 
to the contents of the accumulator and carry bit. The result is 
placed in the accumulator. The CLC instruction may be used 
before ADC to add without carry. This instruction may be 
used in either binary or decimal mode. 

'The N, V, Z and C flags are affected by this instruction. 

Address mode Opcode 

Absolute 6D 

Zero-page 65 

Immediate 69 

Absolute, X 7D 

Absolute, Y 79 

(Indirect, X) 61 
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(Indirect, Y) 

Zero-page, X 

2. LOGIC AND 

71 

75 

Mnemonic AND 

Logical ANDs the specified data with the contents of the 
accumulator on a bit-by-bit basis. The result is placed in the 
accumulator. 

Flags affected are N and Z. 
Logical AND operates according to the following rules:-

1 AND 1 = 1 

1 ANDO=0 

0 AND 0=0 

Address mode Opcode 

Absolute 2D 

Zero-page 25 

Immediate 29 

Absolute, X 3D 

Absolute, Y 39 

(Indirect, X) 21 

(Indirect, Y) 31 

Zero-page, X 35 
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3. ARITHMETIC SHIFT LEFT 

Mnemonic ASL 

Shifts the contents of memory location or accumulator left by 
one bit position. Bit 0 is set to 0, bit 7 is placed in the carry 
bit. The result is placed in the source. 

Flags affected are N, Z and C. 

Address mode Opcode 

Accumulator OA 

Absolute OE 

Zero-page 06 

Absolute, X lE 

Zero-page, X 16 

4. BRANCH ON CARRY CLEAR 

Mnemonic BCC 

Tests the carry flag. If clear, the program branches forward 
or backward by the number of bytes (not instructions) 
specified (maximum — 128 or + 127). If the carry flag is set, 
the next instruction in sequence is executed. 

Note that the displacement is in fact added to the first 
instruction after BCC, so the possible maximum displace-
ments are in fact + 129 to — 126. 

No flags are affected. 
Address mode is Relative only, opcode 90. 

5. BRANCH ON CARRY SET 

Mnemonic BCS 

Tests the carry flag. If set, the program branches forward or 
backward by the specified displacement (see BCC). If clear, 
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the next instruction in sequence is executed. 
No flags are affected. 
Address mode Relative only, opcode BO. 

6. BRANCH IF (LAST RESULT) EQUAL TO ZERO 

Mnemonic BEQ 

Tests the Z flag. If set, the program branches forward or 
backward by the specified displacement (see BCC). If clear, 
the next instruction in sequence is executed. 

No flags are affected. 
Address mode Relative only, opcode FO. 

7. TEST MEMORY BITS AGAINST ACCUMULATOR 

Mnemonic BIT 

Performs logical AND between the specified memory location 
and the accumulator, but the result is discarded. The accumu-
lator and memory contents are unchanged. The result of the 
comparison is indicated by the zero flag. It is set to 1 if the 
comparison fails, 0 if memory and accumulator are equal. In 
addition, the V flag is set equal to bit 6 of the memory data, 
and the N flag is set equal to bit 7. 

This instruction is used to test a specific bit (or bits) of a 
memory location by loading the appropriate value, usually 
called a mask, into the accumulator. It is mostly used in 
I/O applications. 

Flags affected are Z, N, V. 

Address mode Opcode 

Absolute 2C 

Zero-page 24 
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8. BRANCH ON MINUS 

Mnemonic BMI 

Tests the N flag. If N is set, the program branches forward 
or backward by the specified displacement (see BCC). If 
clear, the next instruction in sequence is executed. In general, 
this instruction is only appropriate when signed arithmetic is 
being performed. 

No flags are affected. 
Address mode Relative only, opcode 30. 

9. BRANCH ON (LAST RESULT) NOT EQUAL 
TO ZERO 

Mnemonic BNE 

Tests the Z flag. If clear the program branches forward or 
backward by the specified displacement (see BCC). If set, the 
next instruction in sequence is executed. 

No flags are affected. 
Address mode Relative only, opcode DO. 

10. BRANCH ON PLUS 

Mnemonic BPL 

Tests the N flag. If clear, the program branches forward or 
backward by the specified displacement (see BCC). If set, the 
next instruction in sequence is executed. In general, this 
instruction is only appropriate when signed arithmetic is being 
performed. 

No flags are affected. 
Address mode Relative only, opcode 10. 
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11. BREAK 

Mnemonic BRK 

This is in effect a software interrupt. The program counter 
and status register are saved on the stack, then PCL and PCH 
are set to the values in memory locations FFFE and FFFF 
respectively. The status register saved on the stack has the B 
flag set, to differentiate between a BRK and an IRQ. 

Unlike an interrupt, PC+2 is saved. This is because BRK is 
assumed to be used to replace a 2-byte instruction. This may 
not be the case when BRK is used in program debugging, and 
a correction may be necessary. 

Users of the BBC microcomputer and Acorn Electron 
should note that BRK is used in error handling, and cannot 
normally be used for other purposes in user-written machine 
code programs. 

Only the B flag is affected. 
Address mode Implied only, opcode 00. 

12. BRANCH ON OVERFLOW CLEAR 

Mnemonic BVC 

Tests the V flag. If clear, the program branches forward or 
backward by the specified displacement (see BCC). If set, the 
next instruction in sequence is executed. 

No flags are affected. 
Address mode Relative only, opcode 50. 

13. BRANCH ON OVERFLOW SET 

Mnemonic BVS 

Tests the overflow flag. If set, the program branches forward 
or backward by the specified displacement (see BCC). If 
clear, the next instruction in sequence is executed. 

No flags are affected. 
Address mode Relative only, opcode 70. 
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14. CLEAR CARRY FLAG 

Mnemonic CLC 

Clears the carry flag. This is to allow an addition without a 
carry, and is used before ADC. 

Only the carry flag is affected. 
Address mode Implied only, opcode 18. 

15. CLEAR DECIMAL FLAG 

Mnemonic CLD 

Clears the decimal flag, so that future ADC and SBC opera-
tions are performed in binary mode. It is wise to include this 
instruction at the beginning of any binary arithmetic routines 
called from BASIC. 

Only the D flag is affected. 
Address mode Implied only, opcode D8. 

16. CLEAR INTERRUPT FLAG 

Mnemonic CLI 

Enables interrupts. Interrupt handling routines must always 
clear this flag before returning to the program, or further 
interrupts will be lost. 

Only the I flag is affected. 
Address mode Implied only, opcode 58. 

17. CLEAR OVERFLOW FLAG 

Mnemonic CLV 

Clears the overflow flag. 
Only the V flag is affected. 
Address mode Implied only, opcode B8. 
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18. COMPARE TO ACCUMULATOR 

Mnemonic CMP 

The contents of the specified memory or immediate data are 
subtracted from the accumulator. The result is discarded. 
Flags N, Z and C may be set, depending on whether the result 
is positive, zero, or negative. The contents of the accumulator 
and memory are unchanged. 

If the result is zero, Z flag is set, otherwise reset. 
N is set, but is reset if bit 7 of comparison result = 1. 
C is set if the accumulator contents are equal to or larger 

than the data. 
CMP is usually used before a branch instruction. Use BCC 

to detect if the accumulator is greater than the data, BEQ to 
detect if the accumulator is equal to the data, BCS to detect if 
the accumulator is equal to or greater than the data. To detect 
if the accumulator contents are greater than the data, it is 
necessary to use BEQ followed by BCS. 

Flags affected are N, Z and C. 

Address mode Opcode 

Absolute CD 

Zero-page C5 

Immediate C9 

Absolute, X DD 

Absolute, Y D9 

(Indirect, X) C 

(Indirect, Y) D 

Zero-page, X D5 
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19. COMPARE TO X REGISTER 

Mnemonic CPX 

Subtracts the specified data from the contents of the X 
register. The result is discarded, and register and memory 
unchanged. The flags N, Z and C may be set, depending on 
the result. See CMP for details. 

CPX is usually used before a branch. See CMP for appro-
priate tests, substituting the X register for the accumulator. 

Flags affected are N, Z and C. 

Address mode Opcode 

Absolute EC 

Zero-page E4 

Immediate EO 

20. COMPARE TO Y REGISTER 

Mnemonic CPY 

Subtracts the specified data from the Y register. The result 
is discarded, and the register and memory unchanged. The 
flags N, Z and C may be set, depending on the result. See 
CMP for details. 

CPY is usually used before a branch. See CMP for appro-
priate tests, substituting the Y register for the accumulator. 

Flags affected are N, Z and C. 

Address mode Opcode 

Absolute CC 

Zero-page C4 

Immediate CO 
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21. DECREMENT 

. Mnemonic DEC 

Subtracts 1 from the contents of the specified memory loca-
tion, storing the result in that location. If the contents are 
0, the result will be FF (255 decimal). 

Flags affected are N and Z. 

Address mode Opcode 

Absolute CE 

Zero-page C6 

Absolute, X DE 

Zero-page, X D6 

22. DECREMENT X REGISTER 

Mnemonic DEX 

Decrements the contents of register X by 1. This allows the 
register to be used as a counter. 

Flags affected are N and Z. 
Address mode Implied only, opcode CA. 

23. DECREMENT Y REGISTER 

Mnemonic DEY 

Decrements the contents register Y by I. This allows the 
register to be used as a counter. 

Flags affected are N and Z. 
Address mode Implied only, opcode 88. 
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24. LOGIC EXCLUSIVE-OR 

Mnemonic EOR 

Exclusive-ORs the specified data with the accumulator, the 
result being placed in the accumulator. 

Flags affected are N and Z. 
Logical EOR operates according to the following rules:-

1 EOR 1 = 0 

1 EOR 0 = 1 

0 EOR 0 = 0 

Address mode Opcode 

Absolute 4D 

Zero-page 45 

Immediate 49 

Absolute, X 5D 

Absolute, Y 59 

(Indirect, X) 41 

(Indirect, Y) 51 

Zero-page, X 55 

25. INCREMENT MEMORY 

Mnemonic INC 

Adds one to the contents of the specified memory location, 
storing the result in that location. If the contents is $FF 
(255 decimal), the result will be O. 

Flags affected are N and Z. 
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Address mode Opcode 

Absolute EE 

Zero-page E6 

Absolute, X FE 

Zero-page, X F6 

26. INCREMENT X REGISTER 

Mnemonic INX 

Increments the contents of the X register by 1. This allows 
the register to be used as a counter. 

Flags affected are N and Z. 
Address mode Implied only, opcode E8. 

27. INCREMENT Y REGISTER 

Mnemonic INY 

Increments the contents of the Y register by I. This allows 
the register to be used as a counter. 

Flags affected are N and Z. 
Address mode Implied only, opcode C8. 

28. JUMP TO ADDRESS 

Mnemonic JMP 

Loads the address specified into the program counter, thus 
causing a jump in the sequence of program execution. The 
address may be absolute or indirect. This is the only instruc-
tion to allow straight indirection. 

No flags are affected. 
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Address mode Opcode 

Absolute 4C 

Indirect 6C 

29. JUMP TO SUBROUTINE 

Mnemonic JSR 

Loads a new address into the program counter, causing a jump 
to that address, having first saved the current program position 
on the stack as a return address (see RTS). Note that it is the 
contents of the program counter +2 which is saved, this being 
the áddress of the next instruction after JSR. 

No flags are affected. 
Address mode Absolute only, opcode 20. 

30. LOAD THE ACCUMULATOR 

Mnemonic LDA 

Loads the specified data into the accumulator. 
Flags affected are N and Z. 

Address mode Opcode 

Absolute AD 

Zero-page AS 

Immediate A9 

Absolute, X BD 

Absolute, Y B9 

(Indirect, X) Al 

(Indirect, Y) B I 

Zero-page, X BS 
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31. LOAD THE X REGISTER 

Mnemonic LDX 

Loads the specified data into the X register. 
Flags affected are N and Z. 

Address mode Opcode 

Absolute AE 

Zero-page A6 

Immediate A2 

Absolute, Y BE 

Zero-page, Y B6 

32. LOAD THE Y REGISTER 

Mnemonic LDA 

Loads the specified data into the Y register. 
Flags affected are N and Z. 

Address mode Opcode 

Absolute AC 

Zero-page A4 

Immediate AO 

Absolute, X BC 

Zero-page, X B4 

33. LOGICAL SHIFT RIGHT 

Mnemonic LSR 

Shifts the contents of the accumulator or specified memory 
one bit position to the right. Result is stored in the source. 
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Bit 0 is stored in the carry flag. Bit 7 is set to O. 
Flags affected are N, Z and C. 

Address mode Opeode 

Accumulator 4A 

Absolute 4E 

Zero-page 46 

Absolute, X 5E 

Zero-page, X 56 

34. NO OPERATION 

Mnemonic NOP 

Does nothing, but takes up two machine cycles. May be used 
to pad a software timing loop, or to rill patches in a program. 

No flags are affected. 
Address mode Implied only, opcode EA. 

35. INCLUSIVE OR WITH ACCUMULATOR 

Mnemonic ORA 

Logic inclusive-ORs the accumulator and specified data, the 
result being placed in the accumulator. May be used to force 
is at specified bit positions. 

Inclusive-OR is performed according to the following 
rules: 

Flags affected are N and Z. 
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Address mode Opcode 

Absolute OD 

Zero-page 05 

Immediate 09 

Absolute, X ID 

Absolute, Y 19 

(Indirect, X) 01 

(Indirect, Y) 11 

Zero-page, X 15 

36. PUSH ACCUMULATOR ONTO STACK 

Mnemonic PHA 

Stores the contents of the accumulator on the stack, updating 
the stack pointer. Accumulator contents are unchanged. 

No flags are affected. 
Address mode Implied only, opcode 48. 

37. PUSH PROCESSOR STATUS ONTO STACK 

Mnemonic PHP 

Stores the contents of the status register P on the stack and 
updates the stack pointer. P is unchanged. 

No flags are affected. 
Address mode Implied only, opcode 08. 
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38. PULL ACCUMULATOR FROM STACK 

Mnemonic PLA 

Loads the accumulator with the top word of the stack, and 
increments the stack pointer. 

Flags affected are N and Z. 
Address mode Implied only, opcode 68. 

39 PULL PROCESSOR STATUS FROM STACK 

Mnemonic PLP 

Transfers the top word of the stack into the processor status 
register P, and increments the stack pointer. 

All ilags are affected. 
Address mode Implied only, opcode 28. 

40. ROTATE LEFT (one bit) 

Mnemonic ROL 

Rotates the contents of the specified address or accumulator 
left by one bit position. The carry flag is used as a ninth bit. 
The carry goes into bit 0, and bit 7 goes into the carry. 

Flags affected are N, Z and C. 

Address mode Opcode 

Accumulator 2A 

Absolute 2E 

Zero-page 26 

Absolute, X 3E 

Zero-page, X 36 
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41. ROTATE RIGHT (one bit) 

Mnemonic ROR 

Rotates the contents of the specified address or accumulator 
right by one bit position. The carry flag is used as a ninth bit. 
The carry goes into bit 7, and bit 0 goes into thé carry. 

Flags affected are N, Z and C. 

Address mode Opcode 

Accumulator 6A 

Absolute 6E 

Zero-page 66 

Absolute, X 7E 

Zero-page, X 76 

42. RETURN FROM INTERRUPT 

Mnemonic RTI 

Restores the status register and program counter, which are 
saved on the stack when an interrupt occurs, and adjusts the 
stack pointer. 

All flags are affected. 
Address mode Implied only, opcode 40. 

43. RETURN FROM SUBROUTINE 

Mnemonic RTS 

Restores the program counter from the stack (saved by JSR) 
and increments it by 1. Adjusts the stack pointer. 

No flags are affected. 
Address mode Implied only, opcode 60. 
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44. SUBTRACT WITH CARRY 

Mnemonic SBC 

Subtracts the specified data from the accumulator, with 
borrow. The result is placed in the accumulator. Will operate 
in either decimal or binary mode, depending on the D flag. 

Flags affected are N, V, Z and C. 

Address mode Opcode 

Absolute ED 

Zero-page E5 

Immediate E9 

Absolute, X FD 

Absolute, Y F9 

(Indirect, X) El 

(Indirect, Y) Fl 

Zero-page, X F5 

45. SET CARRY FLAG 

Mnemonic SEC 

Sets the carry flag to 1. This can be used before a SBC to 
subtract without a borrow. 

Only the C flag is affected. 
Address mode Implied only, opcode 38. 

46. SET DECIMAL MODE FLAG 

Mnemonic SED 

Sets the decimal flag to 1. ADC and SBC will then be per-
formed in BCD until a CLD is executed. 

Only the D flag is affected. 
Address mode Implied only, opcode F8. 
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47. SET INTERRUPT DISABLE FLAG 

Mnemonic SE! 

Sets the interrupt mask to 1. Used during interrupt service 
routines and system reset, or whenever interrupts cannot be 
allowed. 

Only the I flag is affected. 
Address mode Implied only, opcode 78. 

48. STORE ACCUMULATOR IN MEMORY 

Mnemonic STA 

Stores a copy of the accumulator contents at the specified 
memory location. The accumulator is unchanged. 

No flags are affected. 

Address mode Opcode 

Absolute 8D 

Zero-page 85 

Absolute, X 9D 

Absolute, Y 99 

(Indirect, X) 81 

(Indirect, Y) 91 

Zero-page, X 95 

Absolute 8E 

Zero-page 86 

Zero-page, Y 96 
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49. STORE X IN MEMORY 

Mnemonic SIX 

Stores a copy of index register X at specified memory 
location. X is unchanged. 

No flags are affected. 

50. STORE Y IN MEMORY 

Mnemonic STY 

Stores a copy of index register Y at specified memory 
location. Y is unchanged. 

No flags are affected. 

Address mode Opcode 

Absolute 8C 

Zero-page 84 

Zero-page, X 94 

51. TRANSFER ACCUMULATOR TO X 

Mnemonic TAX 

Copies the contents of the accumulator into index register X. 
The accumulator is unchanged. 

The N and Z flags are affected. 
Address mode Implied only, opcode AA. 

52. TRANSFER ACCUMULATOR TO Y 

Mnemonic TAY 

Copies the contents of the accumulator into index register Y. 
The accumulator is unchanged. 

The N and Z flags are affected. 
Address mode Implied only, opcode A8. 
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53. TRANSFER STACK POINTER TO X 

Mnemonic TSX 

Copies the contents of the stack pointer into X. The stack 
pointer is unaltered. 

The N and Z flags are affected. 
Address mode Implied only, opcode BA. 

54. TRANSFER X TO ACCUMULATOR 

Mnemonic TXA 

Copies the contents of the index register X into the accumu-
lator. X is unchanged. 

The N and Z flags are affected. 
Address mode Implied only, opcode 8A. 

55. TRANSFER X INTO STACK POINTER 

Mnemonic TXS 

Copies the contents of the index register X into the stack 
pointer S. X is unchanged. 

No flags are affected. 
Address mode implied only, opcode 9A. 

56. TRANSFER Y INTO THE ACCUMULATOR 

Mnemonic TYA 

Copies the contents of index register Y into the accumulator. 
Y is unchanged. 

Flags N and Z are affected. 
Address mode Implied only, opcode 98. 
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Chapter 3 

ADDRESSING MODES 

Addressing is the means by which the processor determines, 
from the instruction, the location of the data, or operand, on 
which the instruction will operate. The 6502 has 9 possible 
address modes, though some of these have slight variants. 

Most instructions can use more than one addressing mode. 
Though the same mnemonic is used, for all addressing modes, 
the opcode is obviously different. When an assembler is used, 
it will normally determine the address mode from the way 
the instruction is written. Special symbols or syntax are used 
to indicate some modes. When hand assembling, care must 
be taken to select the correct opcode, and to provide the 
correct number of bytes after the opcode. These may vary 
with a given instruction depending on the address mode in 
use. 

Full use of the available address modes is important to 
good programming, and it is important to understand them 
thoroughly. 

1. IMPLIED ADDRESSING 

This mode of addressing is used only by instructions which 
operate on one or more of the 6502's internal registers 
without requiring external data. Some such. operations may, 
however, require some external memory access, for example, 
the stack. 

All these instructions are a single byte long. 
Instructions using this mode are CLC, CLD, CLI, CLV, 

DEX, DEY, INX, INY, NOP, SEC, SED, SEI, TAX, TAY, 
TSX, TXA, TXS, TYA, and with memory access BRIC, PHA, 
PHP, PLA, PLP, RTI, RTS. 
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2. IMMEDIATE ADDRESSING 

In this mode, the operand is included in the program, immedi-
ately after the opcode. As the 6502 only has 8-bit registers, 
the operand can only occupy a single byte. All such instruc-
tions are therefore two bytes long. The hash symbol is used 
to indicate immediate mode, thus LDA#16 means load the 
accumulator with the value 16. This address mode allows 
constant data to be included within programs. 

Instructions using this mode are ADC, AND, CMP, CPX, 
CPY, EOR, LDA, LDX, LDY, ORA, SBC. 

3. ABSOLUTE ADDRESSING 

In absolute addressing, the location of the operand in memory 
is specified in the instruction. Two bytes are used, so any 
position in the available 64k may be specified. This is the 
means by which variable data may be accessed by the 
program. 

These instructions are three bytes long. 
Instructions using this mode are ADC, AND, ASL, BIT, 

CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, 
WY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY. 

4. ZERO PAGE 

This is really a special case of absolute addressing. An 8-bit 
address follows the opcode, this being regarded as the low 
byte of the full 16-bit address, the upper byte being assumed 
to be zero. Thus, this mode can address only the first, zero, 
page of memory. 

Zero page has special significance in 6502 programming. 
This special address mode allows it to be accessed faster than 
other pages of memory, and it is used virtually as extra 
registers for important variables and data which needs to be 
accessed frequently or at speed. You should reserve zero page 
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for such purposes and not clutter it up with program code 
which could go anywhere in memory. 

Care should be taken over the use of zero page when using 
machine code and a high level language, such as BASIC, 
together. Many zero page locations will be used by the high 
level language and if these are corrupted during machine code 
execution a machine crash is likely. 

Instructions in this mode are two bytes long. 
Instructions using this mode are ADC, AND, ASL, BIT, 

CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, 
ORA, ROL, ROR, SBC, STA, SIX, STY. 

5. RELATIVE ADDRESSING 

With the 6502, this addressing mode is used only with branch 
instructions, and branch instructions only use relative mode. 

In relative addressing, the byte following the instruction 
contains a displacement, which is regarded as a signed number 
between — 128 and + 127. If the program branches, this dis-
placement is added to the contents of the program counter, 
causing a jump forwards or backwards. Note that the 
displacement is the number of memory locations, not the 
number of instructions. 

With most assemblers, you specify the address of the 
memory location to which the program is to branch, and the 
assembler calculates the displacement for you. 

All instructions using this mode are two bytes long. 
This mode is only used by BCC, BCS, BEQ, BMI, BNE, 

BPL, BVC, BVS. 

6. INDIRECT ADDRESSING 

In indirect addressing, two bytes following the opcode contain 
a memory address. The contents of this address, and the byte 
that follows it, give a further address, which is where the data 
is to be found. 
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In fact, very few microprocessors allow indirect addressing, 
and the 6502 allows it only with one instruction, JMP. This is 
a three-byte instruction. 

Indirect addressing is indicated by enclosing the second part 
of the instruction in brackets, thus JMP($0376) means that 
the program should jump to the instruction at the address 
given by the contents of the two bytes at $0376 and $0377. 

The concept of indirection is an important one. Some 
people find it hard to grasp, but it is important that you do so, 
even if straight indirection is limited to one instruction with 
the 6502, as a form of indirection is widely used in program-
ming. 

INDEXED ADDRESSING 

Indexed addressing, which may be combined with indirect 
addressing, means that the contents of one of the index 
registers, X and Y, are used to modify the address given or 
pointed to in the instruction. This makes it easy, using the 
increment or decrement instructions on the registers, to access 
a number of successive bytes of memory using a loop structure. 

7. ABSOLUTE INDEXED ADDRESSING 

In this mode, the contents of either the X or the Y register is 
added to the address contained in the instruction. In assembly 
language this is written as, for example, LDA $4800,X. 

Using the X register, it is permissible to have either a 16-bit 
or an 8-bit ( i.e. zero page) address. The Y register, however, 
can only be used with 16-bit addresses, with the exception of 
the instructions LDX and SIX, which may be modified by the 
Y register. 

The instructions which may be used with the X register are 
ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR, 
ORA, ROL, ROR, SBC, STA. 
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The instructions which may be used with the Y register are 
ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC, STA. 

Additionally, with zero page indexed addressing, STY may 
be used (with the X register only, of course). 

8. INDIRECT INDEXED ADDRESSING 

In this mode, the instruction contains an address of a memory 
location which, as it can only be one byte long, must be in 
zero page. The contents of this zero page location, plus the 
one following it, give an address anywhere in memory, to 
which the contents of the Y register (X cannot be used) are 
added to give the final address. 

This address mode is used to access elements in a table. By 
saving the base address in zero page, the Nth element in the 
table can be accessed by loading N into the Y register. It is 
also easy to access sequential elements in the table by using 
a loop structure and the INY or DEY instructions. 

This address mode also provides a way of accessing more 
than 256 bytes of memory sequentially, by incrementing or 
decrementing the high byte of the address in zero page after 
each 256 bytes. 

In assembly language, this mode is indicated by putting the 
zero page address in brackets, followed by the index register. 
For example, STA ($00D0),Y. 

The only instructions which can use this mode are ADC, 
AND, CMP, EOR, LDA, ORA, SBC, STA. 

9. INDEXED INDIRECT ADDRESSING 

In this mode, the instruction again contains an address in zero 
page, but this time the contents of the X register (Y cannot be 
used) is added to the zero page address. The contents of this 
byte plus the one following it give the address where the final 
data are to be found. In other words, the indirection occurs 
one stage earlier than in indirect indexed addressing. 
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This mode is used to pick out elements of a table of 
addresses stored in zero page. The base address of the table 
is contained in the instruction, and to access element N, 
2N is loaded into the X register. 

In assembly language, this mode is indicated by including 
the zero-page address and index register in brackets. For 
example, LDA ($0070,X). 

This address mode is unlikely to be of great use. The 
instructions which can use this mode are ADC, AND, CMP, 
EOR, LDA, ORA, SBC, STA. 
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Chapter 4 

STORING AND EXECUTION 

The home computers with which this book is primarily con-
cerned all have BASIC in ROM as their main language. BASIC 
normally expects to be able to use all the user area of memory 
either for program storage or for variables. 

In order to use machine code in these computers it is 
necessary to either fuld some way of protecting the code from 
being overwritten by BASIC, or to store the code in odd 
corners of the memory map which are normally not used 
either by BASIC or by the operating system. 

The BBC micro and its close relative the Acorn Electron are 
the most helpful in this respect. Not only do they havé built-
in assemblers as part of the BASIC language interpreter, but 
they also have a special version of the DIM statement to 
reserve a block of memory. This takes the form DIM START 
50. This reserves a block of 51 bytes, the address of the first 
byte being stored in the variable START. START could be 
any legal BASIC variable name. This method of code storage 
is so easy and straightforward that it is not usually worth 
considering other methods with these computers. 

With the Atari, ORIC-1 and Atmos, Commodore 64 and 
VIC-20, no such in-built method exists. With these com-
puters, different approaches are mecessaw depending on 
whether only a short routine or a longer machine code 
program is to be stored. 

With short routines, a very simple method of storage is to 
use a REM at the very beginning of the program. This can 
initially be filled with any character. The machine code is 
then POKEd into the area of memory occupied by these 
characters either from DATL statements when the program is 
run, or directly from command mode a byte at a time. The 
byte at a time method is time consuming, but worthwhile on 
a computer like the VIC-20, which has a very small memory 
in its basic form. 
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The advantage of the REM method is that, when the 
program is recorded on disc or tape, the machine code in the 
REM is recorded with it. The length of the code is, however, 
limited to the length of a BASIC line, about 70 characters on 
these computers. Though not impossible to split code 
between two or more REMs, it is very difficult. 

The REM must be at the start of the program, both to 
make it easy to locate, and to prevent it moving if the BASIC 
program is edited. 

Odd corners of memory tend not to be very satisfactory. 
For a start, they tend to be very small, perhaps 10 or 20 
bytes. Secondly, computer manufacturers tend to modify 
their products from time to time, sometimes unannounced, 
and an unused corner can suddenly find employment. This 
means that a program using this storage method may not 
work on all versions of a machine. A good example of the 
problems which can arise is with the ORIC-1. This has 20 
(hex) bytes of memory free at the start of page 4 of memory. 
Examples using this area are given in the user manual. How-
ever, if you buy the ORICMON machine code monitor 
program, it uses the whole of page 4 as its input buffer, 
which makes it hard to store routines there! 

The best method of storing substantial machine code 
programs is to store them above the area used by BASIC. 
To do this, the area used by BASIC must be reduced, by 
lowering the highest memory location available to BASIC. 
The address of this location is stored in RAM, and is given 
a name, such as HIMEM or MEMTOP. 

In the BBC computer and Electron, HIMEM is a 
pseudo-variable name recognised by BASIC. It can there-
fore easily be altered to any required value, by, for 
example, the statement HIMEM=&2500, and PRINT 
HIMEM will give the current value. 

The ORIC also recognises HIMEM, but for assignment 
only, and the equals sign is not used. Thus you can use 
HIMEM #9000, but not PRINT HIMEM. The current value 
can be found by PRINT DEEK #A6. 

Atari prefer the name MEMTOP, but this is not recognised 
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by the computer. Instead, it is necessary to PEEK or POKE 
the appropriate memory locations, which are 741 and 742 
(decimal). The high byte is first, as usual, so 
PEEK(741)+256*PEEK(742) will give the current value (the 
highest actual address is one less than this). 

Just to be different, Commodore use the label MEMSIZ, 
and, like the Atari, this is not recognised by the computer. 
The locations to PEEK and POKE are 55 and 56 (decimal). 

It must be borne in mind that these memory locations are 
liable to be reset by the operating system if the BREAK or 
RESET key is pressed, or if the display mode is changed. 

EXECUTION 

Putting the machine code in memory is the first step. The 
second is to cause it to be executed. Whether in a program 
or from command mode, this normally has to be done with 
a BASIC statement. 

The simplest statement to use is CALL, which exists in 
the BBC/Electron and in the ORIC BASICs. Commodore 
BASIC has a similar command SYS. These commands are 
followed by the start address of the machine code routine. 
The routine must be terminated by an RTS instruction (not 
matched to a JSR within the routine) to cause a return to 
BASIC. Thus CALL START will execute a machine code 
routine starting at an address stored in the variable START 
in the BBC/Electron or ORIC, and SYS 2054 will execute a 
machine code routine starting at address 2054 decimal (this 
would be one stored in a REM on the Commodore 64). 

The BBC/Electron CALL statement allows a variable 
number of parameters to be passed to the machine code 
routine, but a discussion of this is beyond the scope of this 
introductory book. 

The alternative statement is USR. This executes a 
machine-code routine which is supposed to return a floating-
point value to the program, which is deposited in a variable or 
printed. This is the only statement available to execute 
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machine code in the Atari computer. However, it is possible 
to use this statement to execute any machine code program, 
by using a dummy variable to take the (non-existent) result. 
This statement takes the general form A=USR(AAAA), 
where AAAA is the start address. The USR statement varies 
considerably from computer to computer (in particular, the 
Atari has provision for optional parameter passing) and refer-
ence to your computer's manual for details is advised. 
Generally, return to BASIC is again by an RTS instruction. 
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Chapter 5 

EXAMPLE PROGRAMS 

The short demonstration programs in this chapter will be given 
in standard 3-column assembly language form. The first 
column contains labels of memory locations, to which branch 
and jump instructions may refer. The second column contains 
the operation mnemonics, and the third column the operand. 

BASIC listings to enable the programs to be entered and 
run on several popular 6502 based home computers are also 
given. In the case of the BBC computer and Electron, these 
use the in built assembler. In other cases, the machine code 
is loaded from DATA statements. 

If you have an assembler for your computer, you should be 
able to enter the programs from the assembly language listings. 

ADD 

START LDA NUM1L 
CLC 
ADC NUM2L 
STA RESL 
LDA NUM1H 
ADC NUM2H 
STA RESH 

This program adds together two 16-bit numbers. The result 
will only be correct if it does not exceed 65535. The numbers 
to be added are stored in memory locations which we call 
NUM1H,NUM1L, and NUM2H,NUM2L, that is, high and low 
bytes of the two numbers respectively. 

The low byte of the first number is placed in the accumu-
lator. The carry flag is cleared. The low byte of the second 
number is added to the accumulator contents, and the result 
is stored in a memory location which we call RESL. 
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The high byte of the first number is then loaded into the 
accumulator. This time any carry from the low bytes must be 
added in, so the carry flag is not cleared. The high byte of the 
second number is added, and the result stored in RESH. This 
completes the operation. 

The memory location used for the storage of the numbers 
and result could be anywhere in memory, but in the listings 
given I have used 6 bytes immediately before the machine 
code routine. 

TAKE 

START LDA NUM I L 
SEC 
SBC NUM2L 
STA DIFFL 
WA NUM 1H 
SBC NUM2H 
STA DIFFH 

It can be seen that this routine is very similar to the addi-
tion routine in structure. However, this time, after loading 
the low byte of the first number into the accumulator, the 
carry flag is set, rather than cleared, as we do not want a 
borrow at this stage. The carry flag is not set for the high byte 
subtraction, as any borrow is relevant. Note that the listings 
as given cannot cope with the second number being larger than 
the first, i.e. a negative result. 

Note that the only address mode used in these programs is 
Absolute (apart from CLC and SBC which use implied address-
ing) and there are no branch instructions. 
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LOOP 

START LDX e 
LDA #0 
STA $70 
STA $71 

LOOP INX 
TXA 
CLC 
ADC $70 
STA $70 
BCC OVER 
INC $71 

OVER CPX #255 
BNE LOOP 

This is an example of loop structure, and is equivalent to 
the following BASIC program. 

10 FOR X=1 TO 255 
20 T=T+X 
30 NEXT X 

It is interesting to run both programs and compare the time 
taken. The BASIC version takes from about half a second 
(BBC computer) to nearly 5 seconds (VIC-20). The machine 
code version is virtually instantaneous. 

The X register is used as the equivalent of the control 
variable to count the number of loops. It is initially set to 0. 
Two zero page locations are used to hold the total, and these 
too are initially set to 0. Zero page is used here for speed, 
always worthwhile in loops with many cycles. (The zero page 
locations given are as used in the BBC and Electron listings, 
different locations are used for other computers.) At the start 
of the loop, the X register is incremented. The X register 
contents is then transferred to the accumulator, and added to 
the low byte of the total. If there is a carry from this addi-
tion, the high byte is incremented. If the carry flag is clear, 
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this instruction is jumped over. Using a branch and an incre-
ment instruction in this way is faster than the alternative of 
using LDA #0:ADC NUMH:STA NUMH. The contents of the 
X register is then compared to 255. If this value has not been 
reached, the program branches back to LOOP. Otherwise it 
terminates. 

This program has been written to model the BASIC version 
as closely as possible. In general, in machine code, it is easier 
to count down in loops than to count up. Try changing the 
beginning to LDX #255, take out the INX, and change the 
CPX #255 to DEX. It can be seen that this saves an instruc-
tion, and is consequently faster. 

This program uses a forward branch, so in the BBC/Elec-
tron listing, two pass assembly is used. 

TIMES 

START LDA #1 
STA CHECK 
LDX #8 

LOOP LDA MULT 
AND CHECK 
BNE ADD 
BEQ ROUND 

ADD LDA NUM 
CLC 
ADC RESL 
STA RESL 
LDA NUMH 
ADC RESH 
STA RESH 

ROUND ASL NUMH 
ASL NUM 
BCC OVER 
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INC NUMH 
OVER ASL CHECK 

DEX 
BNE LOOP 

This program multiplies together two 8-bit numbers, yield-
ing a 16-bit result. 

Binary multiplication is performed by shifting and adding. 
If you shift the bits of a binary number one place to the left, 
inserting a zero on the right, the number is multiplied by two. 
To multiply two numbers together, the following method is 
used. We will call the two numbers Number and Multiplier. 
If bit 0 of the Multiplier is set, Number is added to the result. 
Number is then shifted one bit to the left. If bit 1 of 
Multiplier is set then Number (shifted) is again added to 
the result. This is repeated until all the bits of Multiplier 
have been tested. 

To perform this in practice, a loop structure is used. 1 is 
loaded into a byte in memory which I have called CHECK. 8 
is loaded into the X register. The multiplier is loaded into 
the accumulator, and is ANDed with CHECK to see if bit 0 is 
set. 

If it is, a two-byte addition is performed, adding NUM and 
NUMH to RESL and RESH. 

If it is not, the program branches to ROUND (and this part 
of the program is also performed after each addition). The 
two bytes of NUM are shifted to the left. If a carry is gener-
ated when the low byte is shifted, it is added into the high 
byte by using INC. CHECK is also shifted left. The X 
register is decremented. When it reaches zero, all 8 bits 
have been checked, and the routine terminates. 

You will have noted that although NUM is an 8-bit number 
to begin with, two bytes have to be reserved for it, to allow 
for the 8 stages of shift performed on it. 

These simple programs are just intended to give a brief 
introduction to some of the principles of machine code 
programming. The only way to learn how to program is to 
program. It is intended that you will use these routines as 
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jumping boards for your own experiments. In particular, try 
to extend the programs to cope with 3 and 4 byte numbers, 
and the loop program to cope with more than 256 cycles 
(Hint: Use both index registers). 

Experimenting with machine code may cause more 
frequent (and sometimes more spectacular) crashes than 
experimenting with BASIC, but remember, nothing you can 
type in at the keyboard can do any permanent harm to your 
computer. All you can lose is your typing. 

NOTE ON THE BBC/ELECTRON LISTINGS 

At the beginning of the assembler parts of three of these 
listings you will see labels followed by a BRK instruction. 
This is a simple method of reserving bytes for variable storage. 
The instructions are just dummys and are never executed. 
BRIC is chosen because it has the opcode O. An alternative, 
which will work with the Electron and the most recent version 
of the British Broadcasting Corporation microcomputer (as it 
is now officially called) is as follows:— 

OLD: 50.NUML:BRK 
NEW: 50.NUML:EQUB 

This will not work with versions of the BBC computer using 
BASIC 1 as the pseudo-operations EQUB, EQUD, EQUW, 
and EQUS are not supported. 
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MACHINE SPECIFIC LISTINGS 

BBC/Electron Versions 

ADD 

A REM ' ADD" 
?0 REM BBC/ELECTRON version 
30 DIM STORE 50 
40 P%*STORE 
50C.NUM1H:BRK 
30.NUM1L:BRK 
70.NUM2H:BRK 
30.NUM2L:BRK 
30.RESH:BRK 
30.RESL:BRK 
10. START 
2OLDA NUM1L 
30 CLC 
40 ADC NUM2L 
j0 STA RESL 

LDA NUM1F, 
70 noc NUM2H 
DO STA RESH 
90 RTS:7 
00 INPUT"FIRST NUMBER",N1 
10 INPUT"SECOND NUMBER" H2 
20 ?NUM1H=N1 DIV 256'?NUM1L*N1 MOD 256 
30 leNUM2H=N2 DIV 256:?NUM2L*N2 MOD 256 
40 CALLSTPRT 
50 PRINT 256*?RESH+7RESL 
60 COTO 200 
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TAKE 

10 REM TAKE" 
20 REM PBC/ELECTRON VerSie 
30 DIM STORE et 
40 F%2ISTORE 
50E.NUM1H.BRK 
60.NUM1L:BRK 
70.NUM2H:BRK 
130.NUM2L.BRK 
90.DIFFH.BRK 
100.DIFFL.BRK 
110. START 
120 LD8 NUM1L 
130 SEC 
140 SPC NUM2L 
150 ST8 DIFFL 
160 LDA NUM1H 
170 E.BC NUM2H 
180 STA DIFFH 
190 RTS.1 
200 INFUT"FIRST NUMBER",N1 
210 INEUT°SECOND NUMBER" ,N2 
"0 TNUM1H22N1 DIV 256.7NUM1L=N1 MOD 
230 7NUM2H=N2 DIV 256.7NUM2L=N2 MOD 25t: 
240 CALL-START 
250 PRINT 256*?DIFFH+7DIFFL 
260 COTO 200 
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LOOP 

10 REM " LOOP" 
20 REM BBC/ELECTRON version 
30 DIM START 50 
40 FOR 1%1=0 TO R STEP 2 
es P%=START 
60 (OPT I. 
70 . START 
80 LDX #0 
90 LOA #0 
100 ST8 8470 
110 SIR 8471 
120 . LOOP 
130 INX 
140 T><8 
150 CLC 
160 ADC 8470 
170 ST8 8470 
180 BCC OVER 
190 INC VI 
200 . OVER 
210 CPX #255 
220 BNE LOOP 
230 RTSIJ 
240 NEXT I% 
250 CALLSTRRT 
260 PRINT256*78.71+78.70 

75. 



TINES 

10 REM " TIMES" 
20 REM BBC/ELECTRUM-versiem 
30 WM STORE 70 
40 FOR L=0 TO 3 STEP 3 
50 P%=STORE 
6000PT L 
70 .NUM:BRK 
80 . NUMH114RK 
90 . MULT'BRK 
100 . CHECK:SRK 
110 . RESH:SRK 
120.RESL:BRK 
130. START 
140 LOA # 1 
150 STA CHECK 
160 LOX #8 
170.LOOP 
190 LOA MULT 
190 AND CHECK 
200 BNE ADD 
210 BEQ ROUND 
220. ADD 
230 LOA NUM 
240 CLC 
250 ADC RESL 
260 STA RESL 
270 LOA NUMH 
280 ADC RESH 
290 STA RESH 
300. ROUND 
310 ASL NUMH 
320 RSL NUM 
330 BCC OVER 
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340 INC NUMH 
350. OVER 
360 RSL CHECK 
370 DE) 
380 8NE LOOP 
390 RTSII 
400 NEXT L 
410 INPUT"FIRST NUMSER",7NUM 
420 INPUT"SECOND NUMBER",?MULT 
430 CFILLSTRRT 
440 PRINT 256VRESH+7RESL 
450 TRESH000:7RESL=0:7NUMH010 
460 GOTO 410 
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VIC-20 Versions 

ADD 

10 REM " ADD" 
20 REM VIC-20 VERSION 
30 POKE 55,0:POKE 56,29 
40 FOR M=7611 TO 7630 
50 READ V 
60 POKE M,V 
70 NEXT M 
80 DATA 173,181,29,24,109,183,29 

,141,185,29 
50 DATA 173180,29,109,182,29,14 

1,184,29,96 
100 INPUT " FIRST NUMBER")N1 
110 INPUT"SECOND NUMBER".; N2 
120 FH=INT(N1/256):POKE 7604,FH 
130 FL=N1-256*FH.POKE 7605,PL 
140 SH=INT(N1/256).POKE 7606,3H 
150 SL=N2-256*SH.POKE 7607,SL 
160 SYS 7611 
170 PRINT 256*PEEK(7608)+PEEK<760 

9 
180 GOTO 100 
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TAKE 

10 REM " TAKE" 
20 REM '•/ IC-20 VERSION 
SO POKE 35:0:POKE 56,29 
40 FOR M=7618 TO 7637 
30 READ V 
60 POKE M,V 
70 NEXT M 
80 DATA 17S:139,29,56:237:191:29 

141:193,29 
90 DATA 173,188,29,237J190,29,14 

1,192:29,96 
100 INPUT"FIRST NUMBER"Ni 
110 INPUT"SECOND NUMBER' HZ 
120 FH=INT(N1/256):POKE 7612,FH 
130 FL=N1-256*FH:FOKE 7613,FL 
140 SH=INT(N2/256):FOKE 7614,SH 
130 SL=N2-256*SH:POKE 7615:SL 
160 SYS 76i8 
170 PRINT 256*PEEK(7616)+PEEK(761 

7) 
ISO ' OTO 100 
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Commodore 64 Versions 

ADD 

10 REM " ADD" 
20 REM C-64 VERSION 
30 POKE 55,0:POKE 56,143 
40 FOR M=36795 TO 36814 
30 READ V 
60 POKE M,V 
70 NEXT M 
80 DeR 173,181,143,24,109,183,1 

43,141,185,142,173,180,143,109,182, 
143,141,184 

90 DATA 143,96 
100 INPUT"FIRST NUMBER"jN1 
110 INPUT"SECOND NUMBEFUjN2 
120 FH=INT(N1/256):POKE 36788,FH 
130 FL=N1-256*FH:POKE 36789,FL 
140 SH=INT(N2/256):POKE 36790,SH 
150 SL=N2-256*SH:POKE 36791,SL 
160 SYS 36795 
170 PRINT 256*PEEK(36792)+PEEK(36 

793) 
180 COTO 100 
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TAKE 

10 REM " TAKE" 
20 REM C-64 VERSION 
30 POKE Woe:POKE 56,143 
40 FOR M=36802 TO 36821 
50 READ V 
60 POKE M,V 
70 NEXT M 
SO DATA 173,189,14356,237,191,1 

43,141,193,143,173,188,143,237,190, 
143 

90 DATA 141,192,143,96 
100 INPUT"FIRST NUMBER"iN1 
110 INPUT"SECOND NUMBER" N2 
120 FH=INT(N1/256):POKE 36796,FH 
130 FL=N1-256*FH:POKE 36797.. FL 
140 SH=INT(N2/256):POKE 36798,SH 
150 SL=N2-236*SH:POKE 36799,SL 
160 SYS 36802 
170 PRINT 256*PEEK(S6800)+PEEK(36 

801) 
180 COTO 100 
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LOOP 

10 REM " LOOP" 
20 REM C-64 VERSION 
30 POKE 55,0:POKE 56,143 
40 FOR M=36608 TO 36631 
30 READ V 
60 POKE M,V 
70 NEXT M 
80 DATA 162,0,169,0,133,251,133, 

252,232,138,24,101,251,133,231 
90 DATA 144,2,230,252,224,255,20 

8,241,96 
100 SYS 36608 
110 PRINT 256*PEEK(252)+PEEK(251) 

84 



TIMES 

10 REM " TIMES" 
20 REM C-64 VERSION 
30 POKE 55,0:POKE 56;128 
40 FOR M=32896 TO 32955 
50 REiRD V 
60 POKE M,V 
70 NEXT M 
80 DATA0,0,0,0,0,0,169,1,141,131 

,128,162,8)173,130,128,45,131,128 
90 DATA 208:2,240,19,173,128)128 

24,109,133,128,141,133,128,173,129 
,128 

100 DATA 109,132,128,141)132,128) 
14,129,128,14,128,128,144)3,238,129 
,128 

110 DATA 140131,128,202,208,210,9 
6 

120 INPUT"FIRST NUMBER" HUM 
130 INPUT"SECOND NUMBER")MULT 
140 POKE S2896,NUM 
150 POKE 32898,MULT 
160 SYS 32902 
170 PRINT 256*PEEK(32900)+PEEK(32 

901) 
180 FOR M=32896 TO 32901:POKE M,0 

:NEXT 
190 GOT° 120 
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ORIC-I and Atmos Versions 

ADD 

10 REM " ADD" 

20 REM ORIC-1 versic,n 

30 HIMEM #APOO 

40 FOR M=4/8FEA TO #8FCD 

50 READ V 

60 POKE M,V 

70 NEXT M 

80 DATA #AD,4035,#8F,*18,#61) 

,#87,#8FA8D,#89,4#8F,SeRD,#8 

4A8F,4e6DAB6,#8F 

90 DATA *81),#88,#8F,*60 

100 INPUTHFIRST NUMBERniN1 

110 INPUTuSECOND NUMBER")N2 

130 FH=INT(N1/256):POKE 449F 

84,FH 
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140 FL=N1-256*FHiPOKE #8F85 

'FL 

150 SL=INT(N2/256).AOKE #8F 

BG,SL 

160 SL=N2-255*SH.POKE #8F87 

)31. 

170 CALL #8F8R 

1E3 PRINT 256*PEEK(#8F88)+P 

EEK:#GF89: 

190 COTO 100 

TAKE 

10 REM " TAKE" 

20 REM ORIC1 version 

30 HIMEM #8F00 

40 FOR M=4$8FC2 TO #8FD5 

50 READ V 

60 POKE MJV 

70 NEXT M 
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SO DATA #RD,#90,#SF,#38,#ED 

,#SF,#SF:#8D,#C1,#8F,SeAD,#8 

C,#SF,#ED,#SE,#8F 

90 DATA #8D,#CO3#8P,#60 

100 INPUT"FIRST NUMSER"JN1 

110 INPUT"SECOND NUMSER")N2 

120 FH=INT(N1/256)1POKE #SF 

SC,FH 

130 FL=N1-256*FH ,POKE #SFSD 

,FL 

140 SH=1INT(N2/256);POKE *SF 

BE, 3H 

130 SL=N2-255*SHPOKE #SFBF 

,SL 

160 CALL #SFC2 

170 PRINT 256*PEEM#SFC0)+P 

EEK(#SFC1) 

180 GOTO 100 



LOOP 

10 REM " LOOP" 

20 REM ORIC-1 vtrsion 

30 HIMEN #F00 

40 FOR M=#8F3C TO #8F53 

50 READ V 

60 POKE m,v 

72 NEXT M 

80 DATA #A2,0,#A9,0,#85,#70 

,#85#71,#E81#8FL#18,#65,#7 

o,#135,#7e,#9o,#02 

92 DATA #E6,4$71,#E0,#FF,tDO 

,#F1.#60 

100 CALL #8F3C 

110 PRINT DEEK(#70) 
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TIMES 

10 REM " TIMES" 

20 REM ORIC-1 version 

30 HIMEM #8000 

40 FOR M=#8080 TO #8068 

50 READ V 

SO POKE M,V 

70 NEXT M 

75 DATA 0,0.'0,0,0,0 

SO DATA #A9,#01,#8D,#83,#80 

,#A2,#08,#AD,#62,#80,#2D,#6 

3:#80,#D0,#02,#F0,#13 

90 DATA #RD480,#80,#18,#6D 

,#85,#80,#SD,#85,#80,#AD,#8 

1:#80,#6D,#84,#80 

100 DATA #SD,#84,#80 

90 



110 DATA #0E,#81,#S0,#0EAS 

0:#80,#90,#03,#EE,#81,#S0A 

OE:#83:#80)#CA 

120 DATA #D0,#D2,*60 

130 INPUT"FIRST NUMBER"iNUM 

140 INPUT"SECOND NUMBER" MU 

LT 

150 POKE #8080,NUM 

160 POKE #8082,MULT 

170 CALL #80S6 

180 PRINT 256*PEEK(#8084)+P 

EEK(#8085) 

190 FOR M=#8080 TO #8085:PO 

KE M,O;NEXT 

200 GOTO 130 
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Chapter 6 

INPUT/OUTPUT 

When using a high level language such as BASIC, commands to 
control input/output devices such as the CRT controller and 
printer port are normally provided, or they may be included in 
the form of operating system commands. In either case the 
user is not directly accessing registers of the input/output 
devices, and is unlikely to need any knowledge of the way in 
which they function. The situation is totally different with 
machine code, and in order to take advantage of the speed 
of machine code programs it is often necessary to directly 
access and control input/output circuits. This can be a 
little difficult at first, even for someone who is used to 
dealing with electronic circuits, since the methods adopted in 
computer peripherals are rather different to those used in 
non-computer electronic circuits. However, once a few 
fundamental points have been grasped it is not too difficult 
to use and understand practically any computer peripheral 
device. 

Even just restricting ourselves to peripherals for use with 
the 6502, there are a number of devices in common use, and 
it would not be feasible to even briefly describe a few of 
these here due to the complexity of these components. 
Fortunately, the basic way in which these devices are 
controlled varies little from one type to another, and by taking 
a brief look at just one or two computer peripherals some 
important and universal points can be unveiled. 

THE 6522 

As an example of a peripheral integrated circuit we will con-
sider the 6522. This has been chosen as it is to be found in 
several 6502 based home-computers (including such machines 
as the BBC A and B, the ORIC-1 and Atmos, and the VIC-20), 
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and in many ways it is a fairly simple device (although only 
in relation to other computer peripherals which run the full 
gamut from complex to extremely complex)! The fact that 
these devices have very complicated circuits should not deter 
you, since to the programmer they appear to be relatively 
straightforward, and much of the complexity is not apparent. 
This is in much the same way that a microprocessor has an 
almost unbelievable array of electronics internally, but as far 
as the programmer is concerned it appears to be just an array 
of registers, as shown in Figure 1 and discussed earlier in this 
book. 

Figure 5 gives pinout details of the 6522, which is a form of 
parallel interface adaptor, or PIA as these are more usually 
termed. A device of this type is used to get parallel data into 
and out of the microprocessor. By parallel data we simply 
mean that it normally transfers data in complete bytes, or 
perhaps in nibbles if a full byte of data is not required. The 
alternative is serial data where data is transferred one bit at a 
time (usually commencing with the least significant bit and 
ending with the most significant one). Parallel data transfer 
is the quicker and simpler method, and is the one normally 
used for data transfer within a computer. Serial data is restric-
ted mainly to communications between one computer and 
another, or between a computer and a piece of peripheral 
equipment such as a printer or cassette recorder. Here the 
lesser number of connecting wires (as little as two can be 
used) and the fact that the system will work over long 
distances outweighs the slowness and relative complexity of 
serial data transfers. Serial data transmission and reception 
can actually be handled by the microprocessor using a suitable 
software routine and a very simple hardware interface, but it 
is more usually handled by a special interface device. These 
are known by a variety of names such as UARTs (universal 
asyncronous receiver/transmitters) and ASCIAs (asyncronous 
serial communications interface adaptors). 

Returning to the 6522, the chip manufacturers refer to this 
as a VIA (versatile interface adaptor) rather than a PIA, as it 
has a few features in addition to its two parallel input/output 
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1 
ov E 

PAO E 
PA1 E 
PA2 E 
PA3 E 
PA4 E 
PA5 E 
PA6 E 
PA7 E 
PBO E 
pE31 E 
PB2 E 
PB3 E 
PB4 E 
PB5 E 
PB6 E 
PB7 E 
CB1 E 
CB2 E 
+5V E 

20 

O 

6522 

40 

2 CA1 

2 CA2 

1 RSO 

2 RS1 

RS2 

2 RS3 

2 Reset 

2 DO 

2D1 

2 02 

2 D3 

2 D4 

2 D5 

2D6 

2D7 

102 

2 NCS1 

2 NCS2 
2 R/V—V 

2 I RO 

21 

Fig. 5. Pinout details of the 6522 VIA 
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ports. These are two 16-bit counter/timers and a serial shift 
register. The latter can be used for serial data transmission and 
reception, but it is extremely basic when compared to a device 
such as a UART, and is of much less practical value than one 
might expect. 

Looking at the pinouts of the 6522 you will notice pins 
marked NCS1 and NCS2. These are chip select pins, and in 
order to communicate with the device the microprocessor 
must take NCS1 high and NCS2 low. Normally these pins are 
driven from the twelve most significant address lines via a 
suitable decoder, so that the chip is enabled when any address 
in a block of sixteen consecutive addresses are accessed by the 
microprocessor. The pins marked RSO to RS3 are the register 
select pins, and are usually fed direct from the four least 
significant address lines. By setting these at the appropriate 
states any one of the 6522's sixteen 8-bit registers can be 
accessed. In other words, by using suitable address decoding 
the registers are placed in the desired block of sixteen 
addresses in the memory map. The following list gives names 
of the sixteen registers and gives example addresses (these are 
actually the addresses for one of the two 6522s in the VIC-20 
computer). 

Address Register 
37136 Peripheral Register B 
37137 Peripheral Register A 
37138 Data Direction Register B 
37139 Data Direction Register A 
37140 Timer 1 low byte 
37141 Timer 1 high byte 
37142 Timer 1 counter low byte 
7143 Timer 1 counter high byte 
37144 Timer 2 low byte 
37145 Timer 2 high byte 
37146 Shift Register 
37147 Auxiliary Control Register 
37148 Peripheral Control Register 
37149 Interrupt Flag Register 
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37150 Interrupt Enable Register 
37151 Peripheral Register A (no handshaking) 

The basic function of the 6522 is to provide two 8-bit 
input/output ports, and these are named Port A and Port B 
by the manufacturer. These are pins PAO to PA7 and PBO to 
PB7 of Figure 5. The ports are connected to the data bus via 
pins DO to D7, so that the microprocessor can read from 
them or write to them. The R/W line is operated from the 
corresponding line of the microprocessor so that the 6522 is 
placed in the appropriate mode. If we wish to read (say) Port 
A, using BASIC it would just be a matter of PEEKing address 
37137 (Peripheral Register A, or Port A in other words). 
Using machine code things are equally straightforward, and the 
LDA instruction would be used to read the contents of Port A 
and transfer it to the accumulator. PAO corresponds to DO 
of the data bus, PA1 corresponds to D1, and so on. Thus, if 
PAO to PA3 were set high, and PA4 to PA7 were set low, the 
number transferred to the accumulator would be 00001111 
in binary, or 15 in decimal. 

Things are also reasonably simple if we wish to write to the 
port. The first task is to set the lines of Port A as outputs, and 
the lines are controlled in this respect by data direction 
register A at address 37139. Like the peripheral register, each 
bit of this register corresponds to one of the lines of Port A. 
Setting a bit low designates the relevant line as an input, while 
setting it high designates the line as an output. At switch-on a 
negative pulse is supplied to the reset pin of the 6522 (and also 
to many other chips in the computer including the 6502), 
and this pulse sets all the 6522's registers at O. The lines of the 
two ports therefore all start off as inputs. To set Port A as an 
8-bit output, 11111111 in binary (255 in decimal) is written 
to data direction register A. Using BASIC this would be:— 

POKE 37139,255 

The machine code/assembly language equivalent of this is:-
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IDA 255 
STA 37139 

As each line can be individually set as an input or an output 
it is possible to have some lines as inputs and some as outputs, 
and the eight lines could be used with eight entirely separate 
items of peripheral equipment. However, care has to be taken 
if this is done as it is only possible to write to all 8 bits and to 
read all 8 bits. There is no problem in writing to bits that are 
set as inputs — the 6522 will just ignore data written to these. 

When reading a port (or any register for theynatter) the 
logic AND function can be used to mask any bits that are not 
of interest. For example, if only bits 6 and 7 are of interest, 
these bits represent 64 and 128 when set high, giving a total 
of 192. The accumulator is therefore loaded with 192, and 
the data at the port is then logic ANDed with this. With the 
logic AND instruction a bit of the accumulator will only be 
set at 1 if that bit was 1 in both of the ANDed numbers. 
Bits 0 to 5 were set at 0 when 192 was loaded into the 
accumulator, and these must be 0 in the answer. On the 
other hand, bits 6 and 7 were set at 1, and will be 1 in the 
answer if the corresponding bits of the data read from the 
port are also 1. Thus the required masking is obtained, with 
the unwanted bits being set at 0, and the bits of interest 
being set at the state read from the port. 

There is more than one way of writing data to one bit of a 
port or register without affecting the states of the other bits, 
but the use of logic operations is probably the easiest. For 
instance, assume we wish to set bit 2 of a register to logic 1. 
All that we need to do is to place 4 in the accumulator (bit 2 
high and all the others low), then logic OR the number 
returned from the port with this. With the logic OR function 
a bit is set at 1 if there is a 1 in that bit of the first number 
OR the second number OR both. Therefore, bits 0, 1, and 
3 to 7 will remain unaltered, but bit 2 will be set high. The 
number in the accumulator is then transferred to the port. 

The situation is equally straightforward if a bit must be 
set low, and if we assume that bit 2 is to be set low this time, 
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we must first logic AND the number at the port with 251 
(11111011 in binary). This ensures that bit 2 is set low, 
but the other bits will be unaffected. The number in the 
accumulator is then written to the port using the STA 
instruction. 

CONTROL REGISTER 

Peripheral devices normally have at least one control register, 
and may have several. The data direction register is actually a 
very simple form of control register, but most are somewhat 
more complex than this. The peripheral control register of 
the 6522 is a fairly typical example. We will not consider 
this register in detail, but will briefly consider just one 
section of it. 

Bits 5 to 7 control line CB2 of the device. CB2 is a 
handshake line, and its primary purpose is to control the flow 
of data into or out of Port B. For example, CB2 could be set 
to the pulse mode, and it then acts as an output which gives 
a brief negative pulse each time data is written to Port B. 
This could be used to indicate to a piece of peripheral equip-
ment that fresh data is present at the port and must be acted 
upon. Alternatively, CB2 could be used as an input, with the 
peripheral equipment indicating via this input when it has 
finished processing the last byte of data and is ready to process 
the next byte. CB2 has four input modes and four output 
modes, with whichever of these is required being selected by 
placing bits 5 to 7 at the appropriate states. For example, 
they are set at 101 to produce the pulsed output mode 
referred to earlier. This system of using a register to control 
the way in which a device functions is an important one to 
understand as it is a feature of so many computer peripherals. 

The 6522 has all its registers at separate addresses, but this 
is not a feature of all computer interface devices. For 
example, the 6845 CRT controller (as used in the BBC 
machines) has some eighteen registers, but only occupies two 
addresses. The way in which this system operates is to have 
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one address used to select the desired register, and the selected 
register then appears at the second address. For example, with 
the 6845, if you wish to access register 16 (the horizontal light 
pen register), 16 is written to the first address, and then the 
horizontal light pen value is read from the second address. 

This system has the advantage of using up few addresses 
for input/output purposes, but has the disadvantage of requir-
ing more instructions, especially if it is necessary to continu-
ously access different registers. Some peripheral devices, such 
as the 6520 PIA, use a system where there are (say) six 
register, but only four addresses are used. This is very similar 
to the system just described, but there are perhaps just two 
registers sharing an address, with one bit of a control register 
being used to determine which of these can be accessed. 

When using a high level language such as BASIC the 
programmer is largely isolated from the hardware of the 
computer by some sophisticated software. When using 
machine code this software is absent, and the programmer has 
to deal directly with the devices in the machine. With most 
practical machine code applications it is therefore necessary 
to have a good understanding of the computer you are using 
and its hardware, and you should try to find as much informa-
tion of this type as possible. 
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INSTRUCTION SET CHART 

Hexadecimal Decimal Instruction Address Mode Gock Cycles 

00 0 BRK 
01 1 ORA 
05 5 ORA 
06 6 ASL 
08 8 PHP 
09 9 ORA 
OA 10 ASL 
OD 13 ORA 
OE 14 ASL 
10 16 BPL 
11 17 ORA 
15 21 ORA 
16 22 ASL 
18 24 CLC 
19 25 ORA 
1D 29 ORA 
1E 30 ASL 
20 32 JSR 
21 33 AND 

7 
Indirect X 6 
Zero Page 4 
Zero Page 6 

3 
Immediate 2 
Accumulator 2 
Absolute 4 
Absolute 6 

2 
Indirect Y 5/6 
Zero Page X 4 
Zero Page X 6 

2 
Absolute Y 4/5 
Absolute X 4/5 
Absolute X 7 

6 
Indirect X 6 



INSTRUCTION SET CHART (continued) 

Hexadecimal Decimal Instruction Address Mode Clock Cycles 

24 36 BIT Zero Page 3 
25 37 AND Zero Page 3 
26 38 ROL Zero Page 5 
28 40 PLP 4 
29 41 AND Immediate 2 
2A 42 ROL Accumulator 2 
2C 44 BIT Absolute 4 
2D 45 AND Absolute 4 
2E 46 ROL Absolute 6 

30 48 BMI 2 
31 49 AND Indirect Y 5/6 
35 53 AND Zero Page X 4 
36 54 ROL Zero Page X 6 
38 56 SEC 2 
39 57 AND Absolute Y 4/5 
3D 61 AND Absolute X 4/5 
3E 62 ROL Absolute X 7 
40 64 RTI 6 
41 65 EOR Indirect X 6 



INSTRUCTION SET CHART (continued) 

Hexadecimal Decimal Instruction Address Mode C7ock Cycles 

45 69 EOR 
46 70 LSR 
48 72 PHA 
49 73 EOR 
4A 74 LSR 
4C 76 JMP 
4D 77 EOR 
4E 78 LSR 
50 80 BVC 
51 81 EOR 
55 85 EOR 
56 86 LSR 
58 88 CL1 
59 89 EOR 
5D 93 EOR 
5E 94 LSR 
60 96 RIS 
61 97 ADC 
65 101 ADC 

Zero Page 3 
Zero Page 5 

3 
Immediate 2 
Accumulator 2 
Absolute 3 
Absolute 4 
Absolute 6 

2 
Indirect Y 5/6 
Zero Page X 4 
Zero Page X 6 

2 
Absolute Y 4/5 
Absolute Y 4/5 
Absolute X 7 

6 
Indirect X 6 
Zero Page 3 



INSTRUCTION SET CHART (continued) 

Hexadecimal Decimal Instruction Address Mode Clock Cycles 

66 
68 
69 
6A 
6C 
6D 
6E 
70 
71 
75 
76 
78 
79 
7D 
7E 
81 
84 
85 
86 

102 
104 
105 
106 
108 
109 
110 
112 
113 
117 
118 
120 
121 
125 
126 
129 
132 
133 
134 

ROR 
PLA 
ADC 
ROR 
J MP 
ADC 
ROR 
BVS 
ADC 
ADC 
ROR 
SE! 
ADC 
ADC 
ROR 
STA 
STY 
STA 
STX 

Zero Page 

Immediate 
Accumulator 
Indirect 
Absolute 
Absolute 

5 
4 
2 
2 
5 
4 
6 
2 

Indirect Y 5/6 
Zero Page X 4 
Zero Page X 6 

2 
Absolute Y 4/5 
Absolute X 4/5 
Absolute X 7 
Indirect X 6 
Zero Page 3 
Zero Page 3 
Zero Page 3 



INSTRUCTION SET CHART (continued) 

Hexadecimal Decimal Instruction Address Mode aock Cycles 

88 136 DEY 2 
8A 138 TXA 2 
8C 140 STY Absolute 4 
8D 141 STA Absolute 4 
8E 142 STX Absolute 4 
90 144 BCC -, 
91 145 STA Indirect Y 6 
94 148 STY Zero Page X 3 
95 149 STA Zero Page X 3 
96 150 STX Zero Page Y 3 
98 152 TYA 2 
99 153 STA Absolute Y 5 
9A 154 TXS 2 
9D 157 STA Absolute X 5 
AO 160 LDY Immediate 2 
A 1 161 LDA Indirect X 6 
A2 162 LDX Immediate 2 
A4 164 LDY Zero Page 3 
AS 165 LDA Zero Page 3 



INSTRUCTION SET CHART (continued) 

Hexadecimal Decimal Instruction Address Mode Clock Cycles 

A6 166 LEA 
A8 168 1 AY 
A9 169 LDA 
AA 170 TAX 
AC 172 LDY Absolute 
AD 173 LDA Absolute 4 
AE 174 LDX Absolute 4 
BO 176 BCS 2 
B1 177 LDA Indirect Y 5/6 
B4 180 LDY Zero Page X 3 
BS 181 LDA Zero Page X 3 
B6 182 LDX Zero Page Y 3 
B8 184 CLV 2 
B9 185 LDA Absolute Y 4/5 
BA 186 TSX 2 
BC 188 LDY Absolute X 4/5 
BD 189 LDA Absolute X 4/5 
BE 190 LDX Absolute Y 4/5 
CO 192 CPY Immediate 2 
Cl 193 CMP Indirect X 6 

Zero Page 

Immediate 

3 
2 
2 
2 



INSTRUCTION SET CHART (continued) 

o 
CT 

Hexadecimal Decimal Instruction Address Mode Clock Cycles 

C4 
C5 
C6 
C8 
C9 
CA 
CC 
CD 
CE 
DO 
D1 
D5 
D6 
D8 
D9 
DD 
DE 
EO 
El 

196 CPY 
197 CMP 
198 DEC 
200 INY 
201 CMP Immediate 
202 DEX 
204 CPY Absolute 
205 CMP Absolute 4 
206 DEC Absolute 6 
208 BNE 2 

209 CMP Indirect Y 5/6 
213 CMP Zero Page X 3 
214 DEC Zero Page X 5 
216 CLD 2 
217 CMP Absolute Y 4/5 
221 CMP Absolute X 4/5 
222 DEC Absolute X 7 
224 CPX Immediate 2 
225 SBC Indirect X 6 

Zero Page 
Zero Page 
Zero Page 

3 
3 

2 
2 
2 
4 



INSTRUCTION SET CHART (continued) 

Hexadecimal Decimal Instruction Address Mode Clock Cycles 

E4 228 CPX Zero Page 3 
E5 229 SBC Zero Page 3 
E6 230 INC Zero Page 5 
E8 232 INX 2 
E9 233 SBC Immediate 2 

EA 234 NOP 2 
EC 236 CPX Absolute 4 
ED 237 SBC Absolute 4 
EE 238 INC Absolute 6 
FO 240 BEQ 2 
Fl 241 SBC Indirect Y 5/6 
F5 245 SBC Zero Page X 4 
F6 246 INC Zero Page X 6 
F8 248 SED 2 
F9 249 SBC Absolute Y 4/5 
FD 253 SBC Absolute X 4/5 
FE 254 INC Absolute X 7  

Note that only the codes that are used are shown in this table. In some addressing modes 
(Absolute X for example) the instruction may take additional clock cycle if crossing a page 

boundary. 
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frJ BERNARD BABANI BP147 

An Introduction 
to 6502 Machine Code 

• In essence, mpchine code programming is direct programming of the 
microprocessor without using a built-in high-level computer language 
such as BASIC. 

• The vast increase in running speed obtained when writing programs 
in machine code is offset, to a degree. by the added complexity in writing 
them. However, it is not as difficult as one might think and this book tells 
the story. 

• The 6502 microprocessor is utilised in many popular home computers 

including the Electron, BBC models A and 6, VIC-20. ORIC-1 Atmos and 
the Atari machines. Also, the Commodore 64 uses tie 6510 which is a 
slightly modified but software compatible version of the 6502. 

• Some simple demonstration programs which can be run on a number 
of the above machines are included in this book. 
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