AN INTRODUCTION TO
780 MACHINE CODE

by
R.A. & J.W. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON W6 7NF
ENGLAND

AN INTRODUCTION TO
780 MACHINE CODE

No.BP129
No.BP133
No.BP139

No.BP142
No.BP143

No.BP147
No.BP150
No.BP153

No.BP154
No.BP156
No.BP158

ALSO BY THE SAME AUTHORS

An Introduction to Programming the ORIC-1
An Introduction to Programming the DRAGON 32

An Introduction to Programming the BBC Model B
Micro

An Introduction to Programming the ACORN
ELECTRON

An Introduction to Programming the ATARI
600/800 XL

An Introduction to 6502 Machine Code
An Introduction to Programming the Sinclair QL

An Introduction to Programming the AMSTRAD
CPC464

An Introduction to MSX BASIC
An Introduction to QL Machine Code

An Introduction to Programming the Commodore
16/Plus 4

PLEASE NOTE

Although every care has been taken with the production of this book to
ensure that any projects, designs, modifications and/or programs etc.
contained herein, operate in a correct and safe manner and also that any
components specified are normally available in Great Britain, the
Publishers do not accept responsibility in any way for the failure,
including fault in design, of any project, design, modification or program
to work correctly or to cause damage to any other equipment that it may
be connected to or used in conjunction with, or in respect of any other
damage or injury that may be so caused, nor do the Publishers accept
responsibility in any way for the failure to obtain specified components.

Notice is also given that if equipment that is still under warranty is
modified in any way or used or connected with home-built equipment
then that warranty may be void.

All the programs in this book have been written and tested by the
authors using models of the relevant micros that were available at the
time of writing in Great Britain. Details of the graphics modes may vary
with versions of these machines for other countries.

© 1984 BERNARD BABANI (publishing) LTD

First Published — November 1984
Reprinted — June 1986
Reprinted — January 1988
Reprinted — January 1990

British Library Cataloguing in Publication Data
Penfold, R.A.

An introduction to Z80 machine code

(BP.152)

1. Microcomputers — Programming

2. Machine codes (Electronic computers)

I. Title II. Penfold. J.W.

001.64'24 QA76.6

ISBN 0 85934 127 5

Printed and bound in Great Britain by Cox & Wyman Ltd, Reading

PREFACE

Home computers are equipped with built-in software that
enables them to be ecasilv programmed to do quite
complex tasks. The price that is paid for this programming
ease is a relatively slow running speed. far lower than the
speed at which the computer is really capable of running.
Machine code programming entails direct programming of
the microprocessor without using a built-in high level
computer language such as BASIC. This gives a vast
increase in running speed. but is something that can only
really be undertaken by someone who has a reasonable
understanding of the microprocessor and some of the
other hardware in the computer.

Machine code programming is not as difficult as one
might think. and once a few simple concepts have been
grasped it is actually quite straightforward (although
admittedly never as quick and easy as using a high level
language). This book takes the reader through the basics
of microprocessors and machine code programming. and
no previous knowledge of these is assumed. The
microprocessor dealt with here is the Z80 which is not one
of the most simple types. but is generally acknowledged as
one of the most powerful 8 bit devices, and is by no means
excessively difficult for beginners. The Z80. or in most
cases now the faster version the Z80A, are used in many
home computers, including several of the most popular
machines such as the Sinclair ZX81 and ZX Spectrum, the
Memotech MTX500 and MTXS512 machines, and the
Amstrad CPC 464. A few simple demonstration programs
that can be run on these computers are included in this
book.

R.A. & J.W. Penfold

CONTENTS

Page
Chapter 1:
THE MICROPROCESSORcccconviiininnns 1
Assembly Languageccccovvvieiniiniiinnnens 3
The Processor vaseininissmvavoassvsaossivie 5
Binary coicisiioswainmesssavasisiivisoisis 9
Signed BINary ...osusonsiessoiniisacsssisssdorass 13
Twos Complementocevvuvinviiniinicaiannes 15
Overflow Flag......ccccaveviereniicnneserasercranens 17
Binary Coded Decimalccouvnvnvenninnnn. 18
Hexadecimalcccevivininiiiininiiincnnnnnn, 20
System Operationcceceveieieinrrrnninnenns 22
THE SLACK .vivvoimmicisesivosnsonsinvarssioseveivsrsie 26
Flags .. mmanevosivassissosssvsiversvavesois 29
Z8BOA PInouts...iciisisisississsavsssiissvississvson 31
Mode O.ciivivivinnsinmiiivesiisisiaeise 34
Mode 1i:oiasiiiiinnvensisainsiae 34
Mode 2. nsmnnanisnsannnnasam 34
Chapter 2:

ADDRESSING MODES......cccocoviiiiurnrnnnnns 37
Implied Adressing......ccccocvvveiiiiiininnnnnnnns 37
Immediate Addressingcccceeviiinininnnnns 38
Absolute Addressing........ccccevviiiiininininnnns 38
ZEXOPATE wuvsiuvvvsssvsisvinssavsssis diasviinminses 39
Relative Addressingc.cocevvereriiiiiecnnnnns 39
Indirect Addressing.......c.ccceevvereeeneencnrnnnns 40

Indexed Addressing......ccoceevevererirrecnnnnnnes 40

Chapter 3:

THE INSTRUCTION SETccccvvvvuneen.

Chapter 4:

STORING AND EXECUTION..........c.......

Execution

Chapter 5:

oooooooooooooooooooooooooooooooooooo

EXAMPLE PROGRAMS......ccccovveinnnanens

Machine Specific Listings

for Memotech

Machine Specific Listings

for ZX81.......

Machine Specific Listings

for ZX Spectrum.......cccceueuvniniecnsncnnnnns
Machine Specific Listings

for Amstrad CPC 464............c.cccvuvnnnens

Chapter 6:

INPUT/OUTPUT iiciissiisisssisviscapsiiisasovasss

The Z80 CTC ...
Control Register

Chapter 1
THE MICROPROCESSOR

All home-computers are equipped to operate using a high
level computer language such as BASIC or FORTH, and
these languages are designed to make program design as
quick and easy as possible. With most high level languages
the programmer uses words that are virtually plain
English. and the computer’s built-in - software then
converts these into machine code routines that the
microprocessor at the heart of the computer can interpret
and act upon. Writing programs direct in machine code is.
on the tace of 1t, rather pointless, as it is somewhat harder
and a considerably slower process than using BASIC or
another high level language to achieve the same ends.
The advantage of machine code programs is the speed
with which they run. The speed of a machine code
program is, in fact, only limited by the operating speed of
the computer’s microprocessor, and a computer can
perform no faster than when it is running a machine code
program. High level languages such as BASIC are
inevitably much slower due to the way in which cach
instruction has to first be interpreted (converted into
machine code) betore it can be executed. In other words.
the program is stored in memory in its BASIC form. and it
is only when the program is run that each instruction is
converted into machine code and executed. The program
is effectively brought to halt during the interpreting
process, which accounts for more time than the running of
the interpreted machine code. The difference in speed is
probably much greater than most people realise. and
machine code is typically something approaching one
thousand times faster than an equivalent BASIC program.

Action games written in BASIC are often a littie sluggish
due to this lack of operating speed. especialiv when a lot
starts to happen at once. but a muachine code cquivalen
normally appears to operate instanthy no matter how
much simultaneous action takes place. With some
scientific and business progams BASIC s too slow to be ot
any usc at all. and the use of machine code i1s mandatory.
However. the speed of machine code is its only advantage .
and apart (perhaps) from the fun of it. there is no point in
using machine code where a program written in a high
level language would be fast enough.

There are alternatives to machine code and high level
interpreted languages such as BASIC. and we will
consider these briefly before moving on to a description of
the microprocessor itself. Some high level languages arc
compiled rather than mnterpreted. The difterence is that
with a compiled language the interpreting process is
carried out betore the program is run. The program may
then run using the compiled machine code, or using a sort
of pseudo machine code which requires a minimal amount
of interpreting. In either case programs should run at high
speed. and should be far easier to write than equivalent
machine code programs. A compiled language may seem
like the ideal solution (and many people would argue that
it is). but languages of this type are generallv much more
difficult to use than interpreted languages when writing
and debugging programs. and languages such as BASIC
are probably much better for beginners to programming.
A mixture of BASIC and machine code (with the latter
only being used where high operating speed is essential)
can therefore be a more practical solution i many cases.

[ncidentallv. you may come across the terms source
code and object code occassionallv. The former is the
program in its high level language torm. and the latter is
the machine code or pseudo machine code produced after
interpretation or compilation.

ta

Assembly Language

The terms machine code and assembly language seem to
cause a certain amount of confusion, and there seems to
be a general beliet that they are different terms for the
same thing. In fact they are very similar. but there is @n
important difterence. When machine code programming
an 8 bit microprocessor the instructions for the
microprocessor are in the form of numbers from 0 to 255
(or in some cases. two numbers of this type). Thisis not a
very convenient way of doing things. and 1t mevitably
involves almost constantly looking up instructions to find
their code numbers, Assembly Language uses a program in
the computer to take three or four letter codes and
convert these into the corresponding machine code
instruction numbers. Most assemblers also provide the
programmer with some turther assistance. but not much
when compared to a high level language such as BASIC.
The main function of the assembler is simply to take the
three or four letter mnemonics and convert them to the
appropriate numbers. An assembler is really the most
basic of compilers. but as far as the programmer is
concerned there is no real difference between assembly
language and machine code. and it you can program in
one you can also program using the other.

Of course. the main advantage of using an assembler i1s
that the mnemonics are chosen to closely relate to the
instructions that they represent. For example. the Return
From Subroutine instruction has RET as its mnemonic
which is obviously much casier to remember than the
machine code number of 169. If vou intend to do a lot of
machine code programming an assembler could reason-
ably be considered essential. since using anything other
than a few short machine code routines is generally rather
awkward and inconvenient with most home-computers
which are designed primarily for BASIC programming. A
few computers (the Memotech MTXS500 and MTX512 for
instance) have built-in - assemblers. but assembler

programs are readily available for most othier Z80A based
computers. The tacilitics offered vary somewhat from one
assembler to another. but most give at least some aid with
debugging. although they are nothing like as sophisticated
as the best BASIC languages in this respect.

One final point to bear in mind is that a high level
language like BASIC varies only shehtly trom one
computer to another. and once you have mastered BASIC
it is usually not to difficult to write programs for any
computer equipped with this language. Problems can arise
with the sound and graphics facilities which vary trom one
machine to another. giving mevitable vartations in the
sound and graphics commands. However. the language is
fundamentally the same for all the computers that use it.
Machine code programming is identical for any computers
that use the ZS8SO0A microprocessor as the central
processor. Although there are again differences in the
sound and graphies facilities available on various
machines. these do not attect the instructions that are
available to the programmer (although to produce the
desired effect it might be necessary to use a different
routine for each machine because of differences in the
supporting hardware ftor the microprocessor). The
situation is very ditferent when dealing with a computer
that uses a different microprocessor such as the 6502,
Apart tfrom the differences in the sound and graphics
facilities. the microprocessor will have different machine
code numbers tor each instruction. and possibly even
different mnemonics. For instance. the Z80A Return
Subroutine instruction. as mentioned earlier. has RET as
its mnemonic. and 169 1s the instruction number. The
equivalents for the 6302 microprocessor are RTS and 60,
Furthermore. the instruction sets of various microp-
rocessors are substantially different. as are the registers
they contain and the wayv in which theyv handle certain
tasks. Obviously all microprocessors work on the same
basic principle. but rewriting a machine code program to
run on a different microprocessor is not usually just a

g

matter of coverting the MNCMOoNIcs or code nulthcr§. and
changing from programming onc type to programming an
alternative device usually involves a fairly substantial
amount of work.

The Processor

Although a microprocessor is an extremely complex
device. usually containing the equivalent of tens of
thousands of components. as far as the programmer is
concerned 1t can be regarded as a fairly simple set of
electrical circuits known as registers which will perform
certain functions if fed with the appropriae instruction
numbers. The registers consist of one or more circuits
known as flip/flops. and these can produce an output
voltage that is cither virtually zero. or one that is typically
about 5 volts. From the software point of view the
voltages are not important. and we can think in terms of
low or logic 0 if the output of a flip/flop is near zero volts,
and high or logic 1 if itis at about S volts. A circuit with an
output that can represent just 0 or 1 may not seem to be
very useful, and in isolation such a circuit is not of
tremendous value. but as we shall see later. a number of
flip/flops together can represent large numbers, and can
be used to perform complex calculations ete.

The registers of the Z8OA are shown in diagramatic
form in Figure 1. and the ones of main interest to the
programmer are the accumulator (A register). the flag (F
register). the six genceral purpose registers (the B, C. D,
E, H, and L registers). and the IX plus I'Y index registers.
The A, F, B. C. D. E. H. and L registers are in fact all
duplicated in the alternative register set. but only one set
at a time can be used (with instructions being included to
enable the programmer to switch from one set to the other
as desired). These are 8 bit registers apart from the 1Y and
IY index registers which are 16 bit tvpes. However. as

Main register set

Accum. A Flags F
B C
~ 8 bit registers
D E

H L J

Alternate register set

Accum. A Flags F’
B’ (o3
- 8 bit registers
D’ E’
H’ L

Interrupt vector | IRefresh R

Index register X IX
Index register Y 1Y
Stack pointer SP [~ 18 bitregisters
Program counter PC

(instruction counter)

7 6 5 4 3 2 1 Bit
S 7.4 H P/VI N Cc }Fregister details
— > -~
sg£e Sig 23z38% g
nE N=E s O _-_;E.::;: 8"
g 3
o 28
o
T°
<

Fig. 1. Z80 register set and F register details

indicated in Figure 1, the B-C, D-E, and H-L registers are
paired together. and can operate effectively as 16 bit
registers. In other words, they have two sets of eight
flip/flops and can handle numbers up to 16 bits long. The
accumulator and flag registers also operate together, but.

6

as We shall see later. not in the same way as }hc other
register pAirs. lncxdcn‘iall_\': a group of 8 bits is usually
called a byte. although strictly speaking a byte does not
have to be 8 bits long, and can be any length. The point
about a byte is that it is not just a collection of unrelated
signals or bits. but the bits operate together to represent a
number, alphanumeric character. or whatever.

The accumulator is very much at the centre of things.
and any data processed by the microprocessor has to be
handled by this register and the complex circuit associated
with it. With the Z8OA some of the other registers can
actually be used when processing data. but they are then
acting as a sort of pseudo accumulator. The circuit
associated with the accumulator is called the arithmetic
logic unit, or ALU. but this 1s something that can be
ignored by the programmer. If you feed an instruction to
the microprocessor the ALU will almost certainly be
involved in the oxecution of that instruction, but this is
something that is all handled internally by the
microprocessor itself, and the programmer does not get
directly involved with the ALU. At this stage we will not
consider in detail the type of data processing that the
accumulator can provide, but it includes such things as
addition and subtraction.

The IX and 1Y registers are index registers. Their
purpose is to act as pointers to tell the microprocessor
where to find data or instructions. In order to understand
their function, or the function of practically any part of the
microprocessor for that matter. it is necessary o
understand. amongst othier things, the basic make-up of a
computer. Figure 2 shows in block diagram form the
general arringement used in a Z8OA based computer. The
memory is a bank of 8 bit registers which are used to store
both program instructions and data. The number of
registers in the memory block varies from one computer
to another. but the Z8UA can operate with a maximum of
65536. The address bus is 16 bits wide. and these sistecn
bits are produced by the program counter {sce Figure 1).

-
/

$801A8p
indinQ/indu|

423nduiod v fo wwi3op yoo1g 'z g

(WOHY Pue WyH)

Alowapy

%2010

sng]01u0)

Jossadoidosoipy

sindul

dnuaiu|

It is the program counter, via the address bus. that selects
the particular memory register that is connected to the
MICroprocessor. The data bus is used to transfer data
petween the microprocessor and the memory block. An
jmportant point to note here s t.hat the data bus 1s
pidirectional. and is used by the microprocessor to talge
data and instructions from memory, and to place data in
memory. There are not separate input and output busses
on a microprocessor — the data bus is used for both types
of operation.

The control bus is used to make sure that all the
elements of the system are operating in unison, and that if
(say) the microprocessor sends data to a particular register
in memory. that register is ready to receive the data and is
not trying to output data to the microprocessor. Ali the
lines in the control bus operate automatically, are not
directly controlled by the programmer. and are not
something we need concern ourselves with here.

Binary

The 16 bit program counter can piace 65536 different
output combinations onto the address bus, and it is this
that limits the Z8OA to 65536 memory registers. Each
memory register occupies an address, which is merely a
number from 0 to 65535, and each of the 65536 output
combinations of the program counter corresponds to one
of these addresses. Therefore, by placing each bit of the
program counter at the appropriate state, the microp-
rocessor can read the contents of any memory register, or
can write data to that register. depending on the type of
instruction it is executing. In order to undertake machine
code or assembly language programming it is essential to
understand the way in which the bits of the address bus
(and the data bus) are used to represent a number.

The numbering system we normally use is commonly
called the decimal system and is. of course, based on the

9

number 10. There are ten single digit numbers from O to y.
This system of numbering is not very convenient for up
electronic circuit in that it is difficuit to devise a practicy)
svstem where an output has ten different voltage levels
that any single digit decimal number can be represented.
It is much casier to use simple flip/flops which have jug
two output levels. and can onlv represent 0 or |,
However. this bars such circuits from operating directiy in
the decimal numbering system. Instead. the binary system
of numbering 1s utilized.

This system is based on the number 2 rather than 10,
and the highest single digit number is 1 rather than 9. It we
take a decimal number such as 238. the 8 represents eight
units (10 to the power of 0), the 3 represents three tens (1)
to the power of 1), and the two represents 2 hundreds (10
to the power of 2 or 10 squared). Things are similar with 4
binary number such as 1101. Working from right to left
again, the | represents the number of units (2 to the power
of 0). the 0 represents the number of twos (2 to the power
of 1), the next | represents the number of fours (2 to the
power of 2), and the final 1 represents the number of
eights (2 to the power of 3). 1101 in binary is therefore
equivalent to 13 in decimal (1 + 0 + 4 + 8 = 13).

The table following shows the number represented by
each digit of a 16 bit number when it is set high. Of course,
a bit always represents zero when it is set low.

Bit 0 1 2 3 4 5 6 7 8
2 4 8 16 32 64 128 256
9 10 11 12 13 14 15

SI2 1024 2048 4096 8192 16384 32768

Using 16 bits any integer from 0 to 65535 can be
represented in binary fashion. or using 8 bits any integer
from 0 to 255 can be represented. and this exposes the
main weakness of the binary numbering system. Numbers
of modest magnitude arec many binary digits in length. but

10

despite this drawback the ease with which electronic
circuits can handle binary numbers makes this system the
only practical one at the present time.)
Addition of two hinary numbers is a straightforward
pusiness which 1s really more simple than decimal
addition. A simple example is shown following:—

First number 11110000
Second number 01010101
Answer 101000101

As with decimal addition. start with the units column
and gradually work towards the final column on the left.
In this case there is 1 and 0 in the units column. giving a
total of 1 in the units column of the answer. In the next
column two Os give O in the answer. and the next two
columns are cqually straightforward. In the fifth one there
are two 1s to be added. giving a total of 2. Of course. in
binary the figure 2 does not exist, and this should really be
thought of as 10 (one 2 and no units), and it is treated in
the same way as ten in decimal addition. The 0 is placed in
the answer and the 1 1s carried forward to the next column
of figures. The sixth column again gives a total of 10, and
again the 0 is placed in the answer and the 1 s carried
forward. In the scventh column this gives a total of 3 in
decimal, but in this binary calculation it must be thought
of as the binary number 11 (one 2 and one unit).
Therefore., 1 is placed in the answer and 1 is carried
forward. In the eighth column this gives an answer of 10,
and as there are no further columns to be added. both
digits are placed in the answer.

Adding two 8 bit binary numbers together produces a
slight complication in that. as in this case. the answer is
some 9 bits long. When the accumulator is used to add two
8 bit numbers it cannot accommodate the extra bit when
there is a final carrv-forward. but the 1in column nine is
not simply lost (which would obviously give an incorrect

11

answer and would be unacceptable) Instead. the carry
forward is taken to one bit of the microprocessor’'s statyy
register. Not surprisingly. this is called the carry or C by
The main use of the status register bits or flags is ip
conditional instructions (i.c. it the carry bit is set high d
this. it it is not do that). Anvone who has done somg
BASIC programming should be familiar with conditiony
instructions in the form of BASIC IF..THEN o
[F...THEN...ELSE and similar instructions. Note thy
there are eight tlags in the status register. but only five of
these are actually used.

Of course. the fact that the accumulator can only
handle § bit numbers giving a maximum cquivalent to 233
in decimal. is not to sayv that 8 bit computers and
microprocessors can not deal in numbers of a higher
magnitude. Very large numbers can be accommodated by
using two or more bytes together. The usual way of doing
this is to have (sayv) two h\(cx used together with one bvte
providing the lower 8 bits of the number. and the other
providing the upper 8 bits. These are generally called the
low byte and high byte respectively. Two other terms that
are often used are least significant bit or LSB. and most
significant bit or MSB. These simply refer to the lowest
and highest bits respectively (e.g. bits 0 and 7 of ¥ bit
number).

When adding together two 16 bit numbers the basic
way in which it is done is o first add the two low bytes. to
give the low bvte of the answer. Then the two high bytes
are added together with the carry (if any) to give the high
byte of the answer. plus a possible 17th bit in the carry
tlag.

When machine code programming using a home-
computer the hardware between the programmer and the
microprocessor can help to make things very much easier.
but it can also be a hinderance. Few home-computers
allow numbers to be entered in binary form. or normally
display data in this form. although a few computers do
allow data to be entered in binary form (such as the

I v]

sinclair ZX Spectrum using the BASIC BIN instruction).
Thus, although the microprocessor would handle a
calculation such as 10 plus 20 in binary form. using a
home-computer and numbers would be entered n
decimal. and the answer would be displayed in decimal.
For simple data processing this 1s very convenient. but
when it comes to multibvte numbers and certain other
types of data processing it is rather inconvenient. A large
number such as 2050 1s processed by the microprocessor as
two 8 bit numbers. which are entered into the computer as
two decimal numbers in the range 0 to 255, In the case of
the number 2050, in decimal the high byte is 4. and the
low byte is 2. which bears little resemblence to the decimal
number 2050 or its binary equivalent. The point to
remember here is that bits 0 to 7 of the high byte represent
the 512s. 1024s. 2048s. etc., through to the 32763s.
However. as far as the number entered into the computer
is concerned. when set high bits 0 to 7 only represent 1, 2,
4, etc.

When using machine code you must be aware of the
way in which the microprocessor deals with data on a bit
by bit basis if vou are to fully master the situation. and a
reasonable understanding of binary is essential.

Signed Binary

The binary system described so tar, which is otten called
direct binary. is inadequae in many practical applications
in that it is unable to handle negative numbers. One way
around the problem is to use signed binary numbers where
the first bit is used to denote whether the number is
positive or negative. The convention has the first bitas a0
for positive numbers and as a 1 for negative numbers.
With this system the normal number range of 0 to 235 s
replaced with a range of —127 (1111111]) to +127
(01111111). The problem is solved only at the expense of
reduced maximum magnitude for a given number of bits.

Note though, that where two or more bytes are used g
form a multibyte number, only the most significant bit of
the high byte needs to be used to indicate whether the
number is positive or negative, and it is not necessary tq
use the most significant bit of each byte in the number tq
do this.

Obviously a certain amount of care needs to be
excercised when dealing with binary numbers and yoy
must know whether a number is in signed or unsigneq
binary. For example. 10000001 could be 129 (unsigned) or
—1 (signed). In this basic form the signed binary system
has practical limitations in that it can represent binary
numbers without any ditficulty, but calculations fail to
give the right result. which makes the system of little
practical value unless it is modified to correct this
anomaly. It is not used with the Z80OA microprocessor in
the basic form described above.

To illustraste the problem. consider the calculation:-

16 00010000
=5 10000101
Answer (—21) 10010101

Adding 16 and -5 should obviously give an answer of 11
not —21.

An alternative and related method of handling
negative numbers is the ones complement system. Here a
negative number is the complement of the positive
equivalent. For instance, +16 in binary is 00010000, and
—16 is therefore 11101111, In other words, the ones are
simply changed to zeros and the zeros are changed to
ones. This gives better results when used in calculations,
as demonstrated by the foillowing example.

16 00010000
=3 11111010

14

Answer (266) 100001010

This answer may seem to be less use than the one
obtained using ordinary signed binary, and the margin of
error is certainly greater, but this depends on how the
answer is interpreted. The first point to note is that the

itive number starts with a zero and the negative
apumber starts with a 1. Provided that sufficient digits are
used this will always be the case, and in this respect the
system is not much different to ordinary signed binary.
The answer is completely wrong of course, but if the carry
is ignored the answer is much closer to the right result. It
then becomes 10 rather than 11. So what happens if we try
another example and again ignore the carry in the answer?

32 00100000
-4 11111011
Answer (27) 100011011

As before, the answer is wrong, but is one less than the
right answer (which is of course 28 in this case).

Twos Complement

Clearly this system can be made to operate properly, and
it is just a matter of finding some way of correcting the
answer. The method used with simple microprocessors
such as the Z80 is the twos complement system. This
differs from the ones complement system in that once the
complement of a number has been produced one is added
to it. Therefore, rather than —5 being represented as
11111010, it becomes 11111011. If we now apply this to
one of the examples given earlier we obtain the following
result.

16 00010000
=5 11111011
Answer (11) 100001011

This time, provided we ignore the carry in the car
flag, we have the correct answer of 11. This is 3
convenient way of handling subtraction (for the
microprocessor anyway) since subtraction can be handleq
by the same circuit that handles addition. To handle a sup
such as 45 — 25 the figure of 25 is converted into (twog
complement) —25, and then added to 45. In other words,
rather than calculating the sum in the form 45 — 25 the
microprocessor calculates it as 45 + (—25), and either way
the answer is 20.

The table following shows some sample numbers in
twos complement form, and should help to clarify the
system for you. Note that, like ordinary signed binary, the
first digit is used to indicate whether the number is
positive or negative.

Number Positive Negative
0 00000000 00000000

1 00000001 11111111

2 00000010 11111110

3 00000011 11111101

4 00000100 11111100

32 00100000 11100000
126 01111110 10000010
127 01111111 10000001
128 010000000 10000000

Note that with 8 bit twos complement numbers the range
is from +127 to —128.

16

go far we have only considered calculations where the
answer is a positive quantity, but the twos complement
system works properly if the answer is negative. The
following example demonstrates this point:-

16 00010000
-31

11100001
Answer (—15) 11110001

The system also tunctions correctly when two negative
numbers are added together, as demonstrated by this
example:-

-4 11111100
-8 11111000
Answer (—12) 11110100

Overflow Flag

When using the twos complement system there is a slight
problem in that a number can be accidentally turned into a
negative quantity. The simple calculation shown below
demonstrates this point:-

64 01000000
127 01111111
Answer (—65) 10111111

If taken as an ordinary 8 bit direct binary number this does
give the right answer, but in the twos complement system
the carry forward from bit 6 to bit 7 has changed the sign

17

and magnitude of the number so that an answer of —-g3
instead of 191 is obtained.

This is termed an overflow. and it is handled by
microprocessors such as the Z80 by a flag called
(appropriately) the overtlow flag. In the diagram of
Figure 1 this is given its abbreviated name, the V flag,
This flag is actually a dual purpose type, and also acts ay
the parity flag. This will be described in more detail later,
Like the carry flag. there are special instructions
connected with the overflow tlag. and these can be used to
prevent erroneous results from being produced. or to give
warning that an error has occured. These flags are
normally at 0 and are set by an overflow or a carry
forward. They are automatically controlled by some of the
microprocessor’s instructions, and this helps to streamline
things so that he system operates rapidly and uses as little
memory as possible. Most microprocessors have instruc-
tions specifically for setting or resetting certain flags. but
the Z8OA has very few instructions of this type, and is
designed to operate in a way that renders them
unnecessary.

At this stage it is probably best not to go into any more
detail about binary calculations and the way they are
handled by microprocessors. It is a complicated subject,
and it is probably clarified most casily by trying out a few
programs which demonstrate the techniques involved.
Some simple practical examples that can be run on some
popular Z80A based home-computers are given later in
this book. Even if you can only understand direct binary.
provided you also understand the main principles of
microprocessors you should be able to run and understand
some simple machine code routines.

Binary Coded Decimal

The Z8OA can use another form of binary known as
binary coded decimal, or BCD. This is perhaps less

18

frequently used than the twos complement binary system
described above. and it has the disadvantages of being
relatively slow and uneconomic on memory. However. it
can be used to give a high degree of precision, and it can
pe advantagous in certain applications. It is certainly
worthwhile considering this system briefly here.

With BCD four binary bits (often termed a nibble) are
used to represent each decimal digit. The system operates
in the following manner:—

Decimal Number Bit Code
(0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

The binary number is in fact just the normal binary
representation of the number concerned. and it is only for
numbers of more than 9 that the system is different. The
binary codes from 1010 to 1111 are unused, and all two
digit decimal numbers require 8 bit binary codes. For
instance, the decimal number 64 would be represented by
the 8 bit BCD code 01100100. The first four bits (0110)
represent the 6. and the second four bits (0100) represent
the four. Each byte can therefore represent any two bit
number from 0 to 99, which compares to a range of 0 to
255 for a straightforward 8 bit binary number. This helps
to contribute to the relative inefficiency of the BCD

19

system. Of course, when a nibble is incremented by 1 from
1001 (9 in decimal) it does not go to 1010 (which is ap
illegal code in BCD). but cycles back to 0000. A carry
forward of 1 should then be taken to the next BCD nibble’

With this system there is no difficuity in handling large
numbers, and it is just a matter of using several bytes to
accomodate the required number of digits. Negative
numbers and decimal points can also be handled with ease
by this system. but this requires an additional byte or
bytes. This information is usually carried in the high byte
or bytes.

Hexadecimal

While on the subject of numbering systems it would
perhaps be worthwhile dealing with another system which
you will inevitably come across quite frequently, and this
15 the hexadecimal system. There is in fact yet another
system known as octal which, as its name suggests, is
based on the number 8. Octal seems to have fallen from
favour in recent years. and as it is something you are not
likely to encounter these days we will not consider this
system here.

A problem with binary numbers is that they tend to
have many digits with each digit being cither 0 or 1, which
makes them rather difficult to deal with in many
circumstances. For instance. trying to remember more
than just a very tew Z80A instruction codes in their 8 bit
binary form would probably be bevond most peoples’
ability. On the other hand. binary numbers give a graphic
representation of the state of each bit in the registers of
the microprocessor, and this is something that is often
important. Decimal numbers are casier to use in that they
are much shorter and are in a familiar form. Converting a
decimal number into an equivalent binary one is not a
very quick or easy process, especially where large
numbers are concerned, and this is tnconvenient when 1t 1s
necessary to visualise things on a bit by bit basis.

20

The hexadecimal system gives the best of both worlds
in that it requires just a few digits to represent fairly l?rgc
qumbers, and is in fact slightly better than the decimal
system in this respect. Qn the othqr .hand. it is easy to
convert hexadecimal to binary. angi it is casy to use when
operating at bit level. The hexz_xdecnmul system is based on
the number 16. and there are sixteen single digit numbers.
Obviously the numbers we normally use in the decimal
system are inadequate for hexadecimal as there are six too
fow of them, but this problem is overcome by augmenting
them with the first six letters of the alphabet. It is from
this that the system derives its name. The table given
below helps to explain the way in which the hexadecimal
system operates.

Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101
Continued

Decimal Hexadecimal Binary

14 E 1110
15 F 1111
16 10 00010000
17 11 00010001
163 A3 10100011

What makes hexadecimal so convenient is the way in
which multidigit numbers can be so easily converted into
binary form. The reason for this is that each hexadecimal
digit represents four binary bits. Take the hexadecimal
number A3 in the above table for instance. The digit A
represents 1010 in binary, and the digit three converts to
0011. A3 therefore represents 10100011 in binary. You
may find that you can memorise the four bit binary
number represented by each of the sixteen hexadecimal
digits, but a little mental arithmetic is all that is needed to
make the conversion if you can not.

The digits in a hexadecimal number represent.
working from right to left, the number of units, 16s, 256s.
4096s, 65536s, and 1048576s. You are unlikely to usc
hexadecimal numbers of more than six digits in length.

System Operation

If we now return to the block diagrams of Figures 1 and 2.
you should begin to get the idea of how data is moved
around the system and processed. At switch-on the
microprocessor has several of the registers set to zero.
including the program counter. The start-up procedure is
not normally of interest to the machine code programmer.
since few people design their own systems. It is far more
likely that you will be using a home-computer where all
this is taken care of by the computer’s operating system.

222

The program you write will normally gointo a section of
memory occupied by random: access memory (RAM).
This IS memory W here the micreprocessor can set its
contents at any desired § bit binary number. and then read
pack that number at a later time. The contents ot RAM
can be changed an unfimited number of times. but reading
the contents of RAM does not destroy the data there or
affect it in anyv wayv. However, when the computer is
switched oft the contents ot RAM are lost. Software such
as the computer’s operating system and BASIC
interpretter are usually in read only memory (ROM)
which retains its contents after the computer has been
switched oft (although the BASIC interpreter or other
language has to be loaded from tape or disc on a few
machines). The contents of ROM are fixed. and writing to
ROM does not alter its contents. ROM is not an arca of
memory that is normally used by the programmer. the
exception being when there are useful routines there that
can be utilized.

The block marked input/output in Figure 2 includes
such things as the kevboard and the chip which produces
the television picture. Many microprocessors use memory
mapped input/output. In other words. the microprocessor
reads data from or writes data to input/output devices just
as if they were RAM, and they are addressed in exactly
the same wayv. This has the advantage of making
programming more straightforward in that using a
common set of instructions for memory and imput/output
operations gives fewer instructions to contend with.
drawback of this svstem is that some of the 64k (a kis 1024
bytes incidentallv) memory address range is occupied by
the input/output devices. The Z80OA uses the alternative
system of having scparate lnpul (m(put and memory
maps, but the 16 bit address bus is in fact used for both
memory and input/output devices. The difference is in the
control bus signals generated by the microprocessor.
which scleet either a memory device or an iput/output
device depending on the type of instruction used. This

%
2

leaves the full 64k address range free for memory, and
gives more than adequate address space for input/output
circuits.

With the aid of the computer’s operating system ang
either the BASIC interpreter or an assembler. the
machine code program is placed in a suitable section of
memory, and the program is run by directing the
microprocessor to the appropriate address. The machine
code program then operates by fetching an instruction
from the start address of the program. and then shuftling
data around its registers and the memory as it gocs
through the set of instructions. This may seem a rather
vague description of things. but if you can grasp the basic
concept of instructions and data being taken from
memory . or possibly input output devices. with the daty
being processed i some way by the microprocessor
before being sent back to a memory location or an outpus
device. then vou should not find it difficult to understand
a few simple machine code programs and then gradually
progress to more complex ones. If vou can not see how the
system operates overall. individual machine code
instructions could, to say the least, be rather difficult o
understand. and even simple programs would certainly be
impossible to follow.

A simple example of how the system operates should
now be quite easy for you to understand. We will assume
that the program must take a number from some memon
location, then add this to a number taken from a second
address, and then finally place the answer at a third
address. There is more than one way of going about this.
and the differences occur due to the various addressing
modes that the Z8OA can use. In other words, we can
place the numbers at any addresses we like. and by using
the appropriate addressing mode (or modes) and
instructions the program can be made to obtain the
numbers from the correct addresses. Addressing modes s
a fairly complex subject which is fully discussed in a later
chapter of this book. and it will not be considered in detail

24

phere. For the sake ot this example we will use the most
simple addressing mode. which 1s immediate addressing.
with this system the first instruction would be to load a
pyte into the accumulator from memory (i.e. the first
pumber). and with immediate addressing the byte of data
js at the address which follows the instruction. After
receiving an immediate instruction the program counter
automatically increments by one and moves the program
on to the byte of data that is to be processed. The next
instruction would be to add the second number to the
number currently in the accumulator. and this would
again be a matter of having the instruction followed by the
pumber at the next address. Next. the instruction to store
the accumulator at the next address would be used. and
then finally the return from subroutine instruction would
be given. This last instruction simply ends the program
and returns control of the computer to the operating
system.

This program only uses seven bytes including the one
where the answei is stored. Before the program was run
these would be as follows:—

Byte 1 Load immediate instruction code

Byte 2 First number

Byte 3 Add immediate instruction code

Byte 4 Second number

Byte 5 Store accumulator immediate instruction
Byte 6 Any 8 bit number

Byte 7 Return from subroutine instruction

After the program was run things would be little different,
and the only change would be that byte 6 would have been
changed from a random number to the sum of the first and
second numbers. In this simple example we are ignoring
any carry forward indicated by the carry flag.

25

It is only fair to point out that the program could noy
be run in this form on the Z80A as it does not have the
necessary store accumulator immediate instruction,
However, it could achieve much the same sort of thing
using an alternative form of this instruction. and this gives
us an opportunity to briefly consider the use of the IX and
[Y index registers. With the immediate instructions the
piogram counter automatically increments by one after
the microprocessor has finished the instruction. Thig
method of doing things is very fast. straightforward, and
requires little memory, but it is in many ways limiting.

The 1X and 1Y registers can be loaded with numbersg
which can then be used to control the program counter in
some way so that the program jumps to the required
address. In our simple example this indexed addressing is
an unnecessarily complicated way of doing things. and
they are principallv used when working with a block of
memory. but it nevertheless illustrates the use of an index
register, and should give you the basic idea of how they
are used.

Something that will probably have become apparent iy
that it takes a large number of machine code instructions
to achieve quite simple tasks. When programming n a
language such as BASIC cach instruction is converted into
a number of machine code instructions by the interpreter.
This is one of the factors which makes writing machine
code programs a relatively slow affair.

The Stack

There are a number of registers in the Z80OA (and shown
in Figure 1) which we have not yet considered, and we will
take a look at the function of these now. The one labelled
SP is the stack pointer, and this is a sixteen bit register
which is used to hold an address. The stack is a set ot
registers which can be used for temporary data storaee.
and with some microprocessors the stack is an internal

26

art of the microprocessor. This is often termed a
pardware stack. This is in many ways the most clegant
solution to the problem. and it has the advantage of high
gpeed. It has the disadvantage of giving only a relatively
small number of registers. and does of course add
complexity to the MICTOPTOCesSSOr.

The ZSOA. in common with most ot the more simple
and general purpose microprocessors, uses the alternative
of a softwire stack. Thisis just an arca of memory which is
reserved for use as the stack. and the system must. of
course. provide RAM at the relevant range of addresses.
The stack pointer (the SP register) points to an address in
this block of RAM, and with the Z8OA the use of a 16 bit
stack pointer enables the stack to be placed at any desired
section of memory.,

The stack uses the last in — first out or LIFO svstem.
In other words, each time data is placed onto the stack the
SP register is incremented by 1. and cach time data is
taken from the stack the pointer is decremented by 1.
This is often looked on as being analagous to a stack of
plates, with plates being loaded one on top of the other.
building a pile trom the bottom upwards, and then
removing plates from the top of the pile and working
downwards. The address in the stack pointer is the
address of the last byte to be placed on the stack (the
highest address in use in other words).

Apart from use as a convenient temporary data store,
the stack is also used when subroutines and interrupts are
implemented. We will not consider these in detail here.
but in both cases the microprocessor breaks out of its
normal operating routine, and branches off into another
routine. With an interrupt the signal which indicates to the
microprocessor that it must break out of its normal
routine is provided by a hardware device via one of the
Z80A’s three interrupt inputs. A typical application where
Interrupts are used is the timer that is a feature of many
home-computers. Here a counter circuit generates an
Interrupt (say) every 10 milliseconds. and a software

347
s |

routine is used to increment by one the number stored at 4
set of memory locations. With suitable manipulation the
number in these RAM locations can be converted int
suitable data for a minutes and seconds display. or evey
for a real-ume clock. The number can be set to amy
desired figure so that the clock can be set at the required
time. If the timer is to achieve a reasonable degree of
accuracy it is important that the microprocessor carries
out the software routine at cach request without waiting o
complete other tasks first. It is for this type of application
that interrupts are ideal.

The problem with the use of interrupts is that the
microprocessor has to be able to break back into its miun
routine again after 1t has tinished the interrupt routine. To
facilitate this. things such as the contents of the
accumulator, the IX register, and the 1Y register are
stored on the stack when the interrupt is generated. and
then retrieved again when the interrupt routine has been
completed. Things are much the same when a subroutine
is called, and a subroutine could be regarded as a sort of
soltware generated interrupt. When writing programs for
home-computers it is unlikely that you will need to deal
with interrupts. and they are principally used as part of the
computer’s operating system and in a few specialised add-
on hardware applications. although you might possibly
need to handle them when dealing with the computers
input/output devices. Because the computer is continually
generating its own interrupts there will almost certainly be
restrictions on user generated interrupts. and they may
not be usable at all. This is not to say that you can simply
ignore interrupts, as in some cases they might affect the
operation of your program by producing small but
important delays. but in most applications they will not be
of any consequence.

Flags

As we have already seen. the ZSOA has status flags apart

m the carry and overflow types. and one of these is the
gero flag (the Z register ot Figure 1), This 1s used in
certain conditional instructions. and comparison instruc-
tons. The zero tlag is set at 1 when the result of an

ration or data transfer is zero. and in other cases it is
set at 0. With comparison instructions it is set to | when a
match is found. and to 0 it no match is achieved.

There are other uses of this tlag which is also used n
conjunction with bit and certain input output instructions.
This is covered in the section dealing with the Z8OA
instruction set.

The N register of Figure | can be a little contfusing to
anyone who is tamiliar with certain microprocessors other
than the Z80A . since this is the name often given to the
negative flag. In this case it is used by the Z80A during
some BCD operations. and it cannot be tested by the
programmer using conditional instructions. It is therefore
only of academic importance to the programmer.

The S flag is the sign flag and this simply retlects the
state of the most significant bit of a byte that is being
transferred. Remember that with the twos complement
system this bit indicates the sign of a number (0 for
positive and 1 for negative).

The H flag is the halt carry of auxiliary carry flag. This
isused to indicate a carry from bit 3 to bit 4, and is necded
during BCD operations.

As mentioned carlier, the overflow flag is also used as
the parity flag (the P/V register of Figure 1), Parity is
mainly used when dealing with text of some kind, and the
various characters (upper and lower case letters. figures.
punctuation marks, ctc.) are then normally encoded using
the ASCII (American Standard Code for Information
Exchange) code. In fact most home-computers use slight
variations on this code. and one or two use totally
different codes (the manual for your computer should give

29

a table of the codes it uses). The principle is the Samg
though, with bit codes being used to represent the varioyg
characters. The ASCII code uses only seven bits. Since
this provides up to 128 different characters which is more
than adequate to provide a tull range of characters. Thy
leaves the most significant bit unused. and tree for use i
parity checking.

Thisis very simple in principle. and there are two typeg
OT parity: odd and even. With even parity there 1s JI\\Q\S
an even number of Is in the byvte. with the parity hy
(which 1s bit 7 in this case) being set to 1 oas and whey
necessary to ensure that the required even number of |
are present. Odd parity is basically the same. but the
parity bit is used to ensure that there is an odd number of
Is in each byte.

The purpose of parity checking is to search for errors,
particularly when data is sent to some peripheral device
such as a disc drive, and then recovered later. If the data s
corrupted and a bit changes state. an odd number of bits
will be changed to an cven number. or vice versa
However. parity checking is not perfectly reliable. and if
two or more bits of a byvte are corrupted it is quite possible
that a parity check will fail to indicate the error. Parity
checking is not used a great deal in practice.

An unusual feature of the Z80A is the R or Refresh
register which can be used in conjunction with dynamic
RAM devices to ensure correct operation. With most
microprocessors this register is provided by external
hardware. This is not a register which you are likely to use
and a detailed description of its use goes well beyond the
scope of this book.

The I register is the interrupt page register, and this is
only used in one of the Z8OA's interrupt modes. In this
mode the | register is used to provide the high byte of the
address where the interrupt routine starts. while the low
bvte must be provided by the device which generated the
interrupt.

When dealing with the microprocessors it is common

30

o find references to pages of memory. For example. you
will often come across references to zero page. Pages of
memory arc¢ simply biocks of 256 bytes. with zero page at
ddresses from 010 255, page 1 at 256 to 511, page 2at 512
to 767. and so on. The 64k address range of the Z80A
gives 256 pages in all.

780A Pinouts

The Z80A is contained in a 40 pin DIL plastic package.
and it has the pinout configuration shown in Figure 3. The
pinouts of the device are really only of academic
importance as far as the programmer is concerned, but a
brief description of these will be given here as you might
find it helpful in understanding how the overall system
operates.

The pins marked A0 to AlS are the 16 bit address bus,
and similarly, DO to D7 are the 8 bit data bus. BUSRQ is
taken low to set both the address and data busses at a high
impedance state. In other words they will simply assume
whatever logic level some external device dictates. and
will not act as inputs or outputs. The point of this is to give
an external circuit (a second processor perhaps) direct
memory access or DMA. The microprocessor completes
whatever part of an instruction it is performing before
responding to a BUSRO signal, and it then takes BUSAK
low to indicate that it has set the data and address busses
in the high impedance state. There are two flip/tlops in the
Z80A (FF1 and FF2) which are sct by signals received at
the two interrupt inputs of the device. so that interrupts
received while the device is disabled are not just ignored.
When BUSROQ is returned to its normal (high) state the
microprocessor carries on where it left off. It is really a
very simple form of interrupt input.

One of the other interrupt inputs is NMI. the Non

skable interrupt input. and taking this low generates an

~

31

interrupt. but the current instruction is completed firgy
and the microprocessor would simply crash if it was p’
As its name implies. this type of interrupt can not bé
blocked by the programmer. and the Z80A wili TCSpong
immediately to this type of interrupt. The only CXCCPtigy
is if the a signal on the BUSRQ line has disabled tp,
Z80A. The NMI interrupt bit is then automatically set p,
the processor. and the interrupt is serviced as soon as i,
Z30A is enabled again. The processor automatical),
stores the contents of the program counter on the stacy
and further interrupts are ignored until the current opg
has been completed. This is obviously essential. since the
microprocessor can only handle interrupts one at a time,
The program counter is then loaded with the hexadecimy
number 0066. which is where the start of the interrupy
routine must be placed. or alternatively data ang
instructions to direct the microprocessor to the interrupy
routine could be placed at this start address.

This tvpe of interrupt ofters very high operating speed,
but it is in certain ways a very simple and rather limited
form of interrupt.

An important point to bear in mind regarding
interrupts is that the microprocessor only saves (on the
stack) and restores the contents of the program counter. If
any other registers, such as the I1X or 1Y index registers.
will have their contents altered by the interrupt routine. it
is up to the programmer to provide a routine to save these
on the stack and then restore them again at the end of the
interrupt routine. The programmer is also responsible for
resetting the interrupt bit of the device which gencrated
the interrupt once the interrupt has been serviced.

The third interrupt input of the Z80A is the ordinary
interrupt (INT) input. This can be masked by the
programmer and is the lowest priority interrupt input.
There are instructions which give three interrupt modes
using INT. and these modes will be briefly described here.

1 40
ann]e L=] A10
a12 [[] A9
A13 [] A8
A14 []] A7
A15 []] A6

¢] As
D4 [] A4
D3 [] A3
DS [[] A2
D6 E Z80/Z80A :] Al
+5V [] A0
p2 [] ov
07 []] RFsH
Do (]] ™1
D1 [[] RESET
INT] BUSRQ
NMI [JwaIT
HALT []] BUSAK
MREQ [[WR
TORG RO
20 21

Fig. 3. Pinout details for the Z80/Z80A

33

Mode 0

This is the normal interrupt mode which is obtained w hep
the device is reset or by using the appropriate (1M
instruction. It is the interrupt mode used on the 80y
microprocessor incidentally. In principle it is very simpje.
with the microprocessor waiting for the device whigy
provided the interrupt to provide the next instructiop
(usually CALL or RST which automatically preserve the
program counter on the stack).

Mode 1

This is very similar to using the NMI interrupt, and is 4
vectored interrupt. In this case the microprocessor
automatically sotres the program counter on the stack and
then sets the program counter to hexadecimal address
0038. This is where the interrupt routine or directions to
the routine should be placed in memory.

Mode 2

This is a powerful but quite complex interrupt mode. The
basic scheme of things is to have the Interrupt register
loaded with the high byte of an address, and the device
which supplied the interrupt supplies the seven most
significant bits of the low byte (bit 0 is always 0). This does
not provide the start address of the interrupt routine. but
instead directs the microprocessor to the correct entry ina
table of up to 128 interrupt routine start addresses. This is
a fast arrangement with the microprocessor being rapidly
directed to the right routine, even though there may be
many devices generating interrupts, and many interrupt
routines. With most microprocessors, when an interrupt is
received an interrupt routine has to be included \\'hﬁCh
checks the interrupt flag in each interrupt generating

34

device until o flag that is setis found. and the source s
identified. Interrupt mode 2 of the Z80OA 15 more efficient
if a large number of interrupt generating devices are used
since it does not waste time polling devices that have not
enerated the interrupt. It is difticult to implement though
gnless the special Z80 Z80A peripheral devices are used
in the computer.

With this mode the program counter is automatically
stored on the stack.

The Resct input is taken low brietly at switch-on. and
this starts the microprocesor in its itialisation sequence.
[t can also be used to take the computer back to this
sequence at any time. such as after the computer has
crashed. Muany Z80OA based computers have a Reset or
preak switch in some form or other. which simply pulls the
Reset pin low when the switch is operated. As part of the
inialisation process the program counter. together with
the I and R registers. is set at zero and interrupts are
disabled. The start-up routine therefore commences at
address 0000 (but this is the start address of the
computer’s operating system. and not user supplied
machine code routines).

The RD and WR pins are the read and write lines. The
RD pin is placed low by the microprocessor when it reads
a memory or input output device, and the WR line is
placed low when it is writing data to an input/output or
memory device. Of course. only one device at a time must
output data onto the data bus. and normally only one
device at a time must receive data from the microp-
rocessor. Correct decoding of the address bus ensures that
only one device is activated at any one time. The
MREQ and TORQ lines are placed low to select a
memory device or an input/output device respectively.
The address on A0 to A1 is valid when MREQ is low.
but only A0 to A7 are valid when TORQ is low. In other
words, the input output address range is only from 0 to
255, but some 256 addresses is more than adequate in
Practice.

s
A

The pins marked & is the clock input. The clock circyjy
of many microprocessors is built-in. but this is not the cage
with the Z8OA. The purpose of the clock circuit is tq
simply provide a series of electrical pulses to the
microprocessor. and it is these that move the componeny
through the complex sequence of events that make g
cach instruction. The standard Z80 will operate with clock
trequencies of up to 2.5 megahertz (i.e. 2.5 million pulseg
per second). and it is normally used with a clock trequency
at something in the region of 2.3MHz so that it carnes oy
instructions at something approaching the highest rate
possible. The more popular ZROA operates at clock
frequencies of up to 4MHz. and can therefore perform y
given task correspondingly faster. When using the
Z80/Z8OA (or any microprocessor) in an application
where high operating speed is important it must be
remembered that each instruction takes several clock
cycles. and that a clock frequency of 4 megahertz does not
equate with 4 million instructions per second. The number
of cycles taken to execute an instruction varies from one
instruction to another. but for the Z80/Z80A it is typically
about eight clock cycles.

The purpose of the WAIT input is to enable the
microprocessor to be slowed down to a rate that can be
matched by a slow memory device. The HALT output
indicates that a HALT instruction has been performed.
and the microprocessor then performs continuous NOP
(no operation) instructions until an interrupt is received.
MI is an output. which goes low. together with IORQ.
when an interrupt has been received. This can be used to
acknowledge receipt of an interrupt from an input/output
device.

36

Chapter 2
ADDRESSING MODES

Addressing is the means by which the processor
determines. from the instruction, the location of the data,
or operand, on which the instruction will operate. The
780 uses 7 address modes, and in general does not allow
combinations of modes. However, where an instruction
refers to two operands. it may be possible to use a
different address mode for each. Thus an instruction may
use absolute addressing for one operand. and indexed
addressing for the other.

Many instructions can use more than one addressing
mode. Though the mnemonic used is the same for all
modes. the wav in which the rest of the instruction is
written in assembly language is difterent. The assembler
will determine the correct opcode to use from the special
symbols or syntax used to indicate some modes (e.g.
enclosing items in brackets). When hand-assembling. care
must be taken to select the correct opcode, and to provide
the correct number of bytes after the opcode. These may
vary with a given instruction depending on the address
mode in use.

Full use of the available address modes is important to
good programming, and it is important to understand
them thoroughly.

L. Implied Addressing

This mode of addressing is used only by instructions which
operate on one or more of the Z8('s internal registers
Without rcquiring external data.

37

All these instructions are a single byte long.

Zilog make a distinction between implied addressip
which is limited to instructions which do not have a
specific field to point to an internal register, and registe,
addressing, for instructions which do.

Examples of instructions using implied or registe
addressing are ADC A,;s ; ADD A,r ; ANDs ; CPs ;1p
r,r' ;ORs ; SBC As ; SUB s ; XOR s.

2. Immediate Addressing

In this mode, the operand is included in the program
immediately after the opcode. As the Z80 has both &-bj
and 16-bit registers, there are two types of immediate
addressing, for 8-bit and 16-bit operands. The second. and
possibly third, byte of the instruction contains the opcode,
followed by the literal, which may be one or two bytes,
Thus the total length of some instructions using this mode
is 5 bytes.

Examples of instructions using this mode are ADD
A.n (two bytes); LD dd,nn (three bytes); LD r,n (two
bytes).

When the operand is two bytes long, this mode is
referred to as immediate extended.

It is by this mode that constant data is included in a
program.

3. Absolute Addressing

In absolute addressing, the location of the operand in
memory is specified in the instruction. Two bytes are
used, so any position in the available 64k may be
specified. This is the means by which variable data may be
accessed by the program.

These instructions are three bytes long.

38

This mode is also called extended addressing, by
contrast with short addressing using an 8-bit address.

Examples of instructions using this mode are LD
A,(ﬂ”)' which means load the accumulator'with the
contents of memory location nn and JP nn. which means
jump to memory location nn.

4. Zero Page

[n zero-page addressing. an 8-bit address is provided. this
peing an address in the first page of memory (1.e. the high
byte is assumed to be zero). However, this mode is not
used in the Z80, withthe exception of the RST instruction.
This is a single-byte instruction, the effective address
being contained in bits 5. 4. and 3. It can thus point to 8
addresses in zero page, eight bytes apart. This instruction
is mostly used in interrupt handling.

5. Relative Addressing

With the Z80, this addressing mode is used only with jump
relative instructions.

In relative addressing, the byte following the
instruction contains a displacement, which is regarded as a
signed number between —128 and 127. If the program
branches, this displacement is added to the contents of the
program counter, causing a jump forwards or backwards.
Note that the displacement is the number of memory
locations, not the number of instructions.

With most assemblers. vou specify the address of the
memory location to which the program is to branch, and
the assembler calculates the displacement for you.

All instructions using this mode are two bytes long.

Something to bear in mind if timing is critical is that
the time taken by a conditional jump relative instruction

39

depends on whether or not the condition is met. If j; is
met, the instruction will take 12 T-states to execute, g
new address has to be loaded into the program counter, If
it is not met, the instruction only takes 7 T-states.

6. Indirect Addressing

In indirect addressing, two bytes following the opcog,
contain a memory address. The contents of this addres
and the byte that follows it, give a further address, whicy
is where the data is to be found.

In fact, very few microprocessors allow indireg
addressing, and the Z80 does not allow it in this form. |
does, however, allow register indirect addressing, where
each of the 16-bit register pairs BC, DE, and HL, may be
used as a memory address.

When the registers are used to point to two-byte data,
the address in the registers is the address of the low byte,
the high byte being at the next higher address in memory.

7. Indexed Addressing

In indexed addressing, the address specified in the
instruction is modified by the contents of one of the index
registers IX and I'Y. The contents of the register are added
to the address to give the final address from which the
data is retrieved.

This is most commonly used to access successive
elements of a table.

Instructions using indexed addressing include ADD.
CP, INC, RLC and SET.

For historical reasons, all instructions using indexed
addressing have opcodes two bytes long.

40

Chapter 3
THE INSTRUCTION SET

The following list is the full set of Z80ZSOA instructions.,
including all the variations on cach instruction where
appropriate. They are listed in alphabetical order. and in
addition 10 the mnemonics the code numbers (10
hexadecimal) are also given. Detatls of any changes to the
status flags produced by cach instruction are also detailed.
Note that a number of Z80 ZNUA instructions are two or
even three bytes long. plus an additional byte or bytes in
some cases (a two byte address following an absolute
instruction for cxample). The number of clock cvcies
(sometimes called T-states) tuken to execute each
instruction is included. and provided the clock trequency
of the system vou are using is known., the execution time
for cach instruction can be calculated from this. lor
example. with a clock frequency ot 4MHz (4 million cyeles
per second). an instruction which requires 8 clock cycles
obviously lasts 2 millionths ot a second (2 microseconds).
Do not confuse clock cyeies and machine cvceles.
Instructions are broken down into a sequence of steps by
the microprocessor, and cach group of steps s called a
machine cycle. The most simple of instructions take one
machine cycle. but most take more than this. A machine
cycle lasts at least three clock cyeles incidentally.

ADC A.s

Adds the operand (together with the carry flag) to the
accumulator. The result is placed in the accumulator.
There are several versions of this instructions:—

41

Immediate CE

Implicit (A) 8F
Implicit (B) 88
Implicit (C) 89
Implicit {D) 8A
Implicit (E) 8B
Implicit (H) 8C
Implicit (L) 8D
Indirect (HL) 8E
Indexed (IX) DD 8E offset
Indexed (1Y) FD 8E offset

The N flag is set to zero, other flags are altered depending
on the result of the operation.

Clock cycles, immediate and indirect = 7, implicit = 4,
indexed = 19.

ADC HL,ss

Adds the contents of the HL register pair to a second
register pair (ss). The carry flag is then added and the
result is place in HL.

BC ED 4A
DE ED 5A
HL ED 6A
SP ED 7A

The N flag is set to zero, H is set if there is a carry from bit
11, the other flags are altered depending on the result of
the operation.

15 clock cycles.

42

ADD A.(HL)

dds the contents of the accumulator to the indirectly
addressed (HL) memory location. Result is placed in
accumulator.

Code number 86

The N flag is set to zero. the other flags are altered
depending on the result of the operation.
7 clock cycles.

ADD A,(IX+d)

Adds the accumulator to the memory location addressed
by IX and offset d. The result is placed in the
accumulator.

Code numbers DD 86 offset

The N flag is set to zero, the other flags are altered
depending on the result of the operation.
19 clock cycles.

ADD A (IY+d)

Adds the accumulator to the contents of the memory
location addressed by I'Y and offset d. The result is placed
in the accumulator.

Code numbers FD 86 offset

The N flag is set to zero., the other flags are altered
depending on the result of the operation.
19 clock cycles.

ADD A.n

Adds the contents of the memory location following the
43

instruction to the accumulator, where the result is storeq_
Code number C6

The N flag is set to zero, the other flags are altereq
depending on the result of the operation.
7 clock cycles.

ADD A,r

Adds the contents of the specified register (r) to the
accumulator, where the result is stored.

87
80
81
82
83
84
85

CIImgoow»

The N flags is set to zero, the other flags are altered
depending on the result of the opertion.
4 clock cycles.

ADD HL,ss

Adds the contents of a specified pair of registers to the HL
pair. The result is placed in HL.

BC 09
DE 19
HL 29
SP 39

The N flag is set to zero, C flag is reset unless there is a

44

carry from bit 15, and the H bit is set by a carry from bit
11

11 clock cycles.
ADD IX,rr

The contents of the specified pair of registers is added to
IX, where the result is stored.

BC DD 09
DE DD 19
IX DD 29
SP DD 39

The N flag is set to zero, C flag is set by a carry from bit
15, and the H bit is set by a carry from bit 11.
15 clock cycles.

ADD IY,rr

The contents of a specified pair of registers are added to
the IY register, where the result is stored.

BC FD 09
DE FD 19
1Y FD 29
SP FD 39

The N flag is set to zero, the C flag is set by a carry from
bit 15, and the H bit is set by a carry from bit 11.
15 clock cycles.

AND s

The accumulator is logically *ANDed" with the specified
data, and the result is placed in the accumulator. -

45

Logical ANDing requires some further explanation
The two bytes are compared on a bit by bit basis, and a 1 jg
placed in a bit of the answer only if there is a 1 in that bj;
of both the ANDed numbers.

For example:

Byte 1 11110000
Byte 2 01010101
Answer 01010000

There are several addressing modes available with thig
instruction.

Immediate E6
Implicit (A) A7
Implicit (B) A0
Implicit (C) Al
Implicit (D) A2
Implicit (E) A3
Implicit (H) A4
Implicit (L) A5
Indirect (HL) A6
Indexed (IX) DD A6 offset
Indexed (1Y) FD A6 offset

The C and N flags are set to zero, the H flag is set to 1, the
S, Z, and P/V bits are altered depending on the result of
the operation.

Clock cycles, immediate and indirect = 7, implicit = 4,
indexed = 19.

BIT b,(HL)

A memory location is specified using the HL registers,

46

d then a specified bit of that memory location is tested
and the Z flag is set accordingly.

Bit 0 CB 46
Bit 1 CB 4E
Bit 2 CB 36
Bit 3 CB 5E
Bit 4 CB 66
Bit 5 CB 6E
Bit 6 CB 76
Bit 7 CB7E

The H flag is set to 1, the N flag is set to zero, the S and
p/V flags are altered randomly.
12 clock cycles.

BIT b,(IX+d)

This is the (IX) indexcd version of the previous
instruction.

Code numbers DD CB offset BIT

Here bit is a two digit hexadecimal number which specifies
the bit to be tested, and is the same as the second number
in the BIT b,(HL) instruction (sec above).

The H flagis set to 1. the N flag is set to zero, the S and
P/V flags are altered randomly.

20 clock cycles.

BIT b,(1Y +d)

This is the (1Y) indexed version or the previous
Instruction.

Code numbers FD CB offset BIT

47

The H flag is set to 1, the N flag is set to zero, the S apg
P/V flags are altered randomly.
20 clock cycles.

BIT b,r

A register and bit of that register are specified and testeq,
with the Z flag being set accordingly.

The first code number is CB, the second number cap
be found using the table following:—

Register A B C D E H L
Bit 0 47 40 41 42 43 44 45
Bit 1 4F 48 49 4A 4B 4C 4D
Bit 2 57 50 51 52 53 54 55
Bit 3 SF 58 59 5A 5B 5C 5D
Bit 4 67 60 61 62 63 64 65
Bit 5 6F 68 69 6A 6B 6C 6D
Bit 6 77 70 71 72 73 74 75
Bit 7 7F 78 79 7A 7B 7C 7D

The H flag is set to 1, the N flag is set to zero, the S and
P/V flags are affected randomly.
8 clock cycles.

CALL cc,pq

This instruction calls a subroutine if a condition is met.
Assuming it is, the progam counter is placed on the stack,
and the contents of the two memory locations
immediately after the instruction code are loaded into the
program counter (the first memory location being used as
the low byte — the second location being used as the high

48

byte). The program therefore jumps to this addrc§s. If the
condition is not met. these two memory locations are
kipped. and the program continues at the following
address.

Condition Code
Not zero C4
Zero CcC
No carry D4
Carry DC
Parity odd E4
Parity even EC
Plus F4
Minus FC

Flags not affected.
17 clock cycles if condition is met, 10 if it is not.

CALL pq

This is the unconditional version of the previous
instruction.

Code Number CD
Flags are not affected.
17 clock cycles.
CCF
Complement the carry flag.
Code Number 3F

The N flag is set to zero, the H bit is randomly affected.
4 clock cycles.

49

CPs

The specified data is compared with the accumulator. T,
be more precise, the data is subtracted from the
accumulator but the result is discarded (it is the effect oy
the status register that is of value).

Immediate FE
Implicit (A) BF
Implicit (B) B8
Implicit (C) B9
Implicit (D) BA
Implicit (E) BB
Implicit (H) BC
Implicit (L) BD
Indirect (HL) BE
Indexed (IX) DD BE offset
Indexed (1Y) FD BE offset

The N flag is set to 1, the others are set according to the
result of the operation.

Clock cycles, implicit = 4, immediate and indirect = 7,
indexed = 19.

CPD

This is the compare with decrement instruction. The data
in the memory location pointed to by the HL pair of
registers is subtracted from the accumulator, but the result
is discarded. The HL and BC register pairs are then
decremented.

Code number ED A9

The N flag is set to 1. The Z flag is set if the accumulator

50

and the data to which it is compared match. The P/V flag
is normally set, but it is reset if the BC register pair equal
zero.

16 clock cycles.

CPDR

This is the (memory) block compare with decrement
instruction. The data pointed to by the HL pair of
registers is subtracted from the accumulator and the result
is discarded. Both the BC and HL register pairs are
decremented. Furthermore. if the BC pair equal zero and
the compared data matches the accumultor the program
counter is decremented by two and the instruction is
repeated.

Code number ED BY

The N flag is set to 1. The Z flag is set if the compared
data matches the accumulator, and P/V flag is set to 1 if
the BC register pair equal zero after the execution of the
instruction.

16/21 clock cycles.

CPI

This is the compare with increment instruction. and the
data pointed to by the HL register pair is subtracted from
the accumulator, after which the result is discarded. The
HL pair of registers is increment, but note that the BC
register pair is decremented.

Code number ED Al

The N flag is set to 1. The Z flag is set if a data match is
achieved, and the P/V flag is set to 1 if the BC register pair
equal zero after the instruction has been executed.

16 clock cycles.

51

CPIR

This is the (memory) block compare with incremeng
instruction, and the data pointed to by the HL pair of
registers is subtracted from the accumulator, after which
the result is discarded. The HL register pair is thep
incremented, but the BC register pair is decremented. If 5
data match is obtained and the BC register pair equal
zero, the program counter is decremented by two and the
instruction is executed again.

Code number ED Bl

The N flag is set to 1. The Z flag is set if a data match is
achieved, and the P/V flag is reset if the BC register pair
reach zero after the instruction has been executed.

16/21 clock cycles.

CPL

Complement accumulator. In other words, any bits set to
1 are inverted to 0, and any bits set to 0 are inverted to 1
(ones complement). The result is placed in the
accumulator.

Code number 2F

The H and N flags are set to 1.
4 clock cycles.

DAA

Decimal adjust accumulator. This instruction is used to
conditionally add 6 to a nibble of the accumulator after an
arithmetic operation to provide BCD conversion. It will
not be considered in detail here.

Code number 27

52

The flags are altered depending on the result of the
operation.
4 clock cycles.

DEC M

Decrements the contents of the specified operand and
stores the result back in that location. There are several
versions of this instruction:—

Implicit (A) 3D
Implicit (B) 05
Implicit (C) 0D
Implicit (D) 15
Implicit (E) 1D
Implicit (H) 25
Implicit (L) 2D
Indirect (HL) 35
Indexed (1X) DD 35 offset
Indexed (1Y) FD 35 offset

The N flag is set to 1. the C flag is unaffected. the other
flags are set according to the result of the operation.
Clock cycles, implicit = 4, indirect = 11, indexed = 23.

DEC rr

Decrements the contents of register pair rr. storing the
result back in that register pair.

BC OB
DE 1B
HL 2B
SP 3B

wn

3

No flags are affected.
Clock cycles = 6.

DEC IX

Decrements the index register IX, storing the result back
in IX.

Code number DD 2B

No flags are affected.
Clock cycles = 10.

DEC IY

Decrements the index number 1Y, storing the result back
inIY.

Code number FD 2B

No flags are affected.
Clock cycles = 10.

DI

Resets the interrupt flip-flops, thus disabling all maskable
interrupts. (Interrupts are re-enabled by an EI in-
struction.)

Code number F3

No flags are affected.
Clock cycles = 4.

DJNZ e

Dec¢rements the B register. If the result is non-zero, the

54

offset value is added to the program counter (signed
arithmetic — allowing forward and backward jumps). The
offset value is added to PC+2, so the effective offset is
+129 to-126 bytes. An assembler should automatically
subtract the source code offset value to generate the hex
code.

Code number 10 offset

No flags are affected.
Clock cycles = 13 if B not 0. 8 if B = 0.

EI

Sets the interrupt flip-flops, thus allowing maskable
interrupts. Takes effect after the execution of the
instruction following the EI instruction. Until then,
maskable interrupts are disabled.

Code number FB
No flags are affected.

Clock cycles = 4.
EX AF,AF’

Exchanges the contents of the accumulator and status
register with the contents of the alternate accumulator and
alternate status register.

Code number 08

All flags are liable to change.
Clock cycles = 4.

EX DE,HL

Exchanges the contents of register pairs DE and HL.

55

Code number EB

No flags are affected.
Clock cycles = 4.

EX (SP),HL

Exchanges the contents of the HL register pair with the
top of the stack. The L register is exchanged with the
memory location pointed to by SP, the H register with the
one immediately following.

Code number E3

No flags are affected.
Clock cycles = 19.

EX (SP),IX

Exchanges the low byte of the IX register with the
contents of the memory location pointed to by the stack
pointer, and the high byte of IX with the contents of the
following location.

Code number DD E3

No flags are affected.
Clock cycles = 23.

EX (SP),IY

Exchanges the low byte of the IY register with the
contents of the memory location pointed to by the stack
pointer, and the high byte of IY with the contents of the
following location.

Code number FD E3

No flags are affected.
Clock cycles = 23. 56

EXX

Exchanges the contents of the general-purpose registers
A,B.C.D.E.F,H,L with the contents of the corresponding
alternate registers.

Code number D9

No flags are affected.
Clock cycles = 4.

HALT

Suspends CPU operation. The CPU executes NOPs in
order to continue memory refresh cycles until an interrupt
or reset is detected.

Code number 76

No flags are affected.
Clock cycles = 4, plus any number of NOPs.

MO

Sets interrupt mode 0, in which the interrupting device
may place one instruction onto the data bus, the first byte
of which must occur during the interrupt acknowledge
cycle.

Cycle number ED 46
No flags are affected.

Clock cycles = 8.
M1

Sets interrupt mode 1, in which an RST $0038 instruction
is executed when an interrupt occurs.

57

Code number ED 56

No flags are affected.
Clock cycles = 8.

IM 2

Sets interrupt mode 2, in which, when an interrupt occurs,
the calling peripheral provides the low byte of an address.
The high byte is provided by the I register. This points to 3
second address in memory, which is loaded into the
program counter.

Code number ED SE

No flags are affected.
Clock cycles = 8.

IN r,(C)

The register r is loaded with the contents of the peripheral
device addressed by the C register.

Code numbers

ED 78

ED 40

ED 48

ED 50

ED 58

ED 60

ED 68

CrTmoaow>»”

The N flag is set to zero. Other flags are altered depending
on the result of the operation.
Clock cycles = 12.

58

IN A,(N)
The accumulator is loaded from the peripheral device N.

Code number DB port address

No flags are affected.
Clock cycles = 11.

INCT
Increments the contents of the specified register, storing
the result in that register.
Code numbers:—
3C
04
0cC
14
1C
24
2C

X mg 0w >

The N flag is set to zero. Other flags are altered depending
on the result of the operation.
Clock cycles = 4.

INC rr

Increments the contents of the specified register pair,
storing the result back in that register pair.

Code numbers:—
BC 03
DE 13

59

HL 23
Sp 33

No flags are affected.
Clock cycles = 6.

INC (HL)

Increments the contents of the memory locatiop
addressed by the HL pair, and stores the result back g
that loction.

Code number 34

The N flag is set to zero. Other flags are altered depending
on the result of the operation.
Clock cycles = 11.

INC (IX+d)

Increments the contents of the memory location
addressed by the IX register plus offset d, and stores the
result back at that location.

Code number DD 34 offset

The N flag is set to zero. Other flags are altered depending
on the result of the operation.
Clock cycles = 23.

INC (IY+d)

Increments the contents of the memory location
addressed by the IY register plus offset d, and stores the
result back at that location.

Code numbers FD 34 offset

60

The N flag is set to zero. Other flags are altered depending
on the result of operation.
Clock cycles = 23.

INC IX

[ncrements the contents of the IX register. storing the
result back in IX.

Code number DD 23

No flags are affected.
Clock cycles = 10.

INC IY

Increments the contents of the 1Y register, storing the
result back in 1Y.

Code number FD 23

No flags are affected.
Clock cycles = 10.

IND

Reads the peripheral device addressed by the C register,
and stores the result in the memory location addressed by
the HL register pair. The HL and B registers are then
both decremented.

Code number ED AA

The N flag is set to 1. The Z flag is set if B=0 after
execution, reset otherwise. Flags S, H, and P/V are
randomly altered.

Clock cycles = 16.

61

INDR

Reads the peripheral device addressed by the C register,
storing the result in the memory location addressed by the
HL pair. The B register and HL register pair are they
decremented. If the B register is not 0, the instruction jg
re-executed.

Code number ED BA

The N and Z flags are set to 1. The S, H, and P/V flags are
randomly altered. The C flag is unaffected.

Clock cycles = 21 for each execution, but 16 cycles only
when B = 0.

INI

Reads the peripheral device addressed by the C register,
and stores the result in the memory location addressed by
the HL register pair. The B register is then decremented
and the HL register pair is incremented.

Code number ED A2

The Z flag is set if B=0 after execution, reset
otherwise.The N flag is set to 1. The S, H, and P/V flags
are randomly altered, the C flag is unaffected.

Clock cycles = 16.

INIR

Reads the peripheral device addressed by the C register,
and stores the result in the memory location addressed by
the HL register pair. The B register is then decremented
and the HL register pair is incremented. If B is not zero,
the instruction is re-executed.

Code number ED B2

62

The Z flag is set if B=0 after execution, reset otherwise.
The N flag is set to 1. The S, H, and P/V flags are
randomly altered, the C flag is unaffected.

Clock cycles = 21 for each execution, but 16 only when
B=0.

JP cc,pq

Tests the condition cc. If true, program execution
continues from address pq (low byte — high byte). If the
condition is not true, program execution continues with
the next instruction in sequence.

cc Code numbers

NZ C2 low byte high byte

Z CA low byte high byte
NC D2 low byte high byte
C DA low byte high byte
PO E2 low byte high byte

PE EA low byte high byte
P F2 low byte high byte

M FA low byte high byte

No flags are affected.
Clock cycles=10.

JP pq

Causes an unconditional jump to memory location pq.
The next instruction will be fetched from this address.

Code number C3 address low byte
address high byte

No flags are affected.
Clock cycles = 10.

63

JP (HL)

Causes an unconditional jump to the address stored in the
HL register pair. The next instruction is fetched from thjg
address.

Code number E9

No flags are affected.
Clock cycles = 4.

JP (IX)

Causes an unconditional jump to the address stored in IX,
The next instruction is fetched from this address.

Code number DD E9

No flags are affected.
Clock cycles = 8.

JP (1Y)

Causes an unconditional jump to the address stored in Y.
The next instruction is fetched from this address.

Code number FD E9

No flags are affected.
Clock cycles = 8.

JR cc,e

Tests the condition cc. If true, the offset e is added to the
program counter (signed arithmetic — forward and
backward jumps possible). The offset is added to PC+2, so
the effective range is +129 to-126 bytes. If the condition is
not met, the next instruction in sequence is executed.

64

cC Code numbers

NZ 20 offset
V4 28 offset
NC 30 offset
C 38 offset

No flags are affected.
Clock cycles: condition met = 12, condition not met = 7.

JRe

Causes an unconditional jump by the offset ¢. The offset e
is added to the program counter (signed arithmetic) and
the next instruction is fetched from this address. The
offset is added to PC+2. so the effective range is +129 to
—126 bytes.

Code number 18 offset

No flags are affected.
Clock cycles = 12.

LDdd,(nn)

The two bytes which follow the instruction code point to a
memory location. the contents of which is loaded into the
low order of the specified register pair. The contents of
the following memory location is loaded into the high
order of the specified register pair. The low byte of the
address is the one which immediately follows the
instruction codc.

BC ED 4B
DE ED 5B
HL ED 6B
SP ED 7B

65

The flags are not affected.
20 clock cycles.

LDdd,nn

Loads the contents of the two memory locations
immediately following the instruction code into the
specified register pair (the low byte is the first oné after
the instruction code).

BC 01
DE 11
HL 21
SP 31

The flags are not affected.
10 clock cycles.

LDr,n

This is the load register (r) immediate instruction. The
specified register is loaded with the contents of the
memory location immediately after the one containing the
instruction code.

3E
06
OE
16
1E
26
2E

Cnmo O W

The flags are not affected.
7 clock cycles.

66

LDr,r’

The load register (r) from register (r') instruction. The
contents of one specified register are loaded into a second
specified register.

gource Register A B C D E H L

Destination
JE 78 79 7A 7B 7C 7D
47 40 41 42 43 44 45

4F 48 49 4A 4B 4C 4D
50 51 52 53 54 55
SF 58 59 5A 5B 5C 5D
67 60 61 62 63 64 65
6F 68 69 6A 6B 6C 6D

CTnmo O W
U
)

The flags arc not affected.
4 clock cycles.

LD(BC),A

Loads the data in the accumulator into the memory
location pointed to by the BC register pair.

Code number 02
The flags are not affected.

7 clock cycles.
LD(DE),A

Loads the data in the accumulator into the memory
location pointed to by the DE register pair.

Code number 12

67

The flags are not affected.
7 clock cycles.

LD(HL),n

Loads the contents of the memory location immediately
after the instruction code into the memory locatiop
pointed to by the HL register pair.

Code number 36

The flags are not affected.
10 clock cycles.

LD(HL),r

Loads the contents of the specified register into the
memory location pointed to by the HL register pair.

77

70

71

72

73

74

75

CImOOw>

The flags are not affected.
7 clock cycles.

LDr,(IX+d)

Loads the contents of the memory location addressed by
the IX register plus the given offset, into the specified
register.

68

DD 7E offset
DD 46 offset
DD 4E offset
DD 56 offset
DD S5E offset
DD 66 offset
DD 6E offset

D mgogoOw

The flags are not affected.
19 clock cycles.

LDr, (1Y +d)

Loads the contents of the memory location addressed by
the 1Y register plus the given offset, into the specified
register.

FD 7E offset

FD 46 offset

FD 4E offset

FD 56 offset

FD SE offset

FD 66 offset

FD 6E offset

CrTmooOw»

The flags are not affected.
19 clock cycles.

LD(IX+d),n

The immediate data is loaded into the memory location
addressed by the IX register plus the given offset. The
immediate data follows the offset value.

Code number DD 36 offset
69

The flags are not affected.
19 clock cycles.

LD(AY+d),n

The immediate data is loaded into the memory locatiop
addressed by the 1Y register plus the given offset. The
immediate data follows the offset value.

Code number FD 36 offset

The flags are not affected.
19 clock cycles.

LD(IX+d),r

Loads the contents of the specified register into the
memory location pointed to by the IX register and the
given offset.

DD 77 offset

DD 70 offset

DD 71 offset

DD 72 offset

DD 73 offset

DD 74 offset

DD 75 offset

Cnmo O w >

The flags are not affected.
19 clock cycles.

LD(IY+d),r

Loads the contents of the specified register into the
memory location pointed to by the IY register and the
given offset.

70

FD 77 offsct
FD 70 offset
FD 71 offset
FD 72 offset
FD 73 offset
FD 74 offset
L FD 75 offset

monOw

——
[

The flags are not affected.
19 clock cycles.

LDA,(nn)

Loads the accumulator from the address provided by the
two bytes following the instruction code. The low byte of
the address is the first one after the instruction code.

Code number 3A
The flags are not affected.

13 clock cycles.
LD(nn),A

Loads the data in the accumulator into the address given
in the two bytes following the instruction code. The low
byte of the address is the first one after the instruction
code.

Code number 32

The flags are not affected.
13 clock cycles.

71

LD(nn),dd

Loads the low byte from the specified register pair into the
memory location specified by the two bytes following the
instruction code. The high byte is loaded into the address
following the one specified. The low byte of the address is
the one following immediately after the instruction code,

BC ED 43
DE ED 53
HL ED 63
SP ED 73

The flags are not affected.
20 clock cycles.

LD(nn),HL

Loads the data in the L register into the memory location
specified by the two bytes following the instruction code
(the first byte being the low order one of the address). The
contents of the H register are loaded into the memory
location following the specified address.

Code number 22

The flags are not affected.
16 clock cycles.

LD(nn),IX

Loads the data in the low order of the IX register into the
memory location specified by the two bytes following the
instruction code (the first byte being the low order one of
the address). The contents of the high order of the IX
register are loaded into the memory location following the
specified address.

72

Code number DD 22

The flags are not affected.
20 clock cycles.

LD(nn), Y

Loads the data in the low order of the IY register into the
memory location specified by the two bytes following the
instruction code (the first byte being the low order one of
the address). The contents of the high order of the 1Y
register are loaded into the memory location following the
speciﬁed address.

Code number FD 22

The flags are not affected.
20 clock cycles.

LDA,(BC)

Data in the memory location pointed to by the BC register
pair is loaded into the accumulator.

Code number 0A
The flags are not affected.

7 clock cycles.
LDA,(DE)

Daga in the memory location pointed to by the DE
register pair is loaded into the accumulator.

Code number 1A

The flags are not affected.
7 clock cycles.

73

LDA,I

Loads the contents of the interrupt vector register into the
accumulator.

Code number ED 57

The H and N flags are set to 0, the P/V flag is set to the
state of the interrupt flag IFF2, and the S and Z flags are
altered depending on the result of the operation.

9 clock cycles.

LDLA

Loads the data in the accumulator into the interrupt
vector register.

Code number ED 47

The flags are not affected.
9 clock cycles.

LDA,R
Loads the contents of the R register into the accumulator.
Code number ED 5F

The H and N flags are set to zero, and P/V flag is set to the
same state as the IFF2 interrupt flag, and the S and Z flags
are altered depending on the result of the operation.

9 clock cycles.

LD HL,(nn)

The two bytes following the instruction code specify a
memory location. The contents of this location are loaqled
into the L register. The contents of the memory location

74

following the specified one are loaded into the H register.
The low byte of the specified address is the one
jmmediately after the instruction code.

Code number 2A

The flags are not affected.
16 clock cycles.

LD IX,nn

Loads the IX register with the two bytes of data
immediately following the instruction code (the low order
byte is the first one after the instruction code).

Code number DD 21

The flags are not affected.
14 clock cycles.

LD IX,(nn)

The two bytes following the instruction code specity the
address from which the low order of the IX register is
loaded. The high order of the IX register is loaded from
the memory location following the specified address. The
low byte of the specified address is the one which
immediately follows the instruction code.

Code number DD 2A
The flags are not affected.

20 clock cycles.
LD IY,nn

The IY register is loaded with the data in the two memory
locations following the instruction code (the low order

75

byte being the first one after the instruction code).

Code number FD 21

The flags are not affected.
14 clock cycles.

LD 1Y,(nn)

The two bytes following the instruction code specify ap
address. The contents of this address are loaded into the
low order of the IY register. The contents of the address
following the specified address are loaded into the high
order of the IY register. The low byte of the address is the
one immeditely after the instruction code.

Code number FD 2A

The flags are not affected.
20 clock cycles.

LD R,A,

Loads the contents of the accumulator into the R register.
Code number ED 4F

The flags are not affected.
9 clock cycles.

LD SP,HL

Loads the data in the HL register pair into the SP register.
Code number F9

The flags are not affected.
6 clock cycles.

76

LD SP.IX
Loads the data in IX register into the SP register.
Code number DD F9

The tlags are not affected.
10 clock cycles.

LD SP,IY
Loads the data in the 1Y register into the SP register.
Code number FD F9

The flags are not affected.
10 clock cycles.

LDD

This is the (memory) block load with decrement
instruction. The contents of the memory location pointed
to by the HL register pair are loaded into the memory
location addressed by the DE register pair. The BC. DE.
and HL register pairs arc then all decremented.

Code number ED A8

The H and N flags are set to zero. The P/V flag is set to
zero if BC equals zero after the instruction has been
executed.

16 clock cycles.

LDDR

This is the repeating (memory) block load with decrement
instruction. It loads the data in the memory location
pointed to by the HL register pair into the memory

&1

location addressed by the DE register pair. The BC, D
and HL register pairs are all then decremented. If BC j
not equal to zero the program counter is decremented by,
two and the instruction is repeated. ’

Code number ED B8

The H, N, and P/V flags are all set to zero.
16/21 clock cycles.

LDI

This is the (memory) block load with increment
instruction. The data in the memory location pointed to
by the HL register pair are loaded into the address
pointed to by the DE register pair. The DE and Hi.
register pairs are then incremented, but the BC register
pair is decremented.

Code number ED A0

The H and N flags are set to zero. The P/V flag is set to
zero if the BC register pair equals zero after the
instruction has been executed.

16 clock cycles.

LDIR

This is the repeating (memory) block load with increment
instruction. The data in the memory location pointed io
by the HL registers is loaded into the memory location
pointed to by the DE registers. The DE and HL registers
are then incremented, but the BC register is decremented.
If BC is not equal to zero the program counter is then
decremented by two and the instruction is executed again.

Code number ED B0

78

The H, N, and P/V flags are all set to zero.
16/21 clock cycles.

LDr,(HL)

Loads the contents of the memory location pointed to by
the HL registers into the specified register.

7K

46

4E

56

SE

66

6E

CIXImoOw»

The flags are not affected.
7 clock cycles.

NEG

This is the negate the accumulator instruction. It subtracts
the contents of the accumulator from zero and places the
result in the accumulator (twos complements the
accumulator in other words).

Code number ED 44

The C bit will be set if the accumulator was zero before
the instruction was executed, and the P/V flag will be set if
the accumulator was 80 (hexadecimal).

8 clock cycles.

NOP

This is the no operation instruction, and it simply provides
79

a delay of four clock cycles.

Code number 00

ORs

This instruction logically ORs the specified data with the
data in the accumulator, and places the result in the
accumulator. Logical ORing compares the two pieces of
data on a bit by bit basis, and places a 1 in a bit of the
answer if there is a 1 in that bit of the first number or the
second one. The example given below demonstrates this,

First number 11110000
Second number 01010101
Answer 11110101
Implicit (A) B7

Implicit (B) B0

Implicit (C) B1

Implicit (D) B2

Implicit (E) B3

Implicit (H) B4

Implicit (L) BS
Immediate F6

Indirect (HL) B6

Indexed (IX) DD B6 offset
Indexed (IY) FD B6 offset

The H, N, and C flags are set to zero, the other flags are
altered depending on the result of the operation.

Clock cycles, Implicit = 4, immediate and indirect = 7,
indexed = 19.

80

OTDR

This is the block output with decrement instruction. The
HL register pair point to a memory location, the contents
of which are transferred to the output device addressed by
the C register. This is followed by the HL register pair and
the B register being decremented. If the B register is not
equal to zero the program counter is decremented by two
and the instruction is repeated.

Code number ED BB

The Z and N flags are set to one, and the other flags are
randomly affected.
16/21 clock cycles.

OTIR

This is the block output with increment instruction. The
HL register pair point to a memory location, the contents
of which are transferred to the output device addressed by
the contents of the C register. Then the B register is
decremented but the HL register pair is incremented. If
the B register is not equal to zero the program counter is
decremented by two and the instruction is repeated.

Code number ED B3
The Z and N flags are set to 1, and the other flags are
randomly affected.

16/21 clock cycles.

OUT(C),r

This instruction transfer the contents of the specified
register to the output device addressed by the contents of
the C register.

81

ED 79
ED 41
ED 49
ED 51
ED 59
ED 61
ED 69

Cmmgog 0wy

The flags are not affected.
12 clock cycles.

OUT(N),A

This instruction transfers the contents of the accumulator
to the output device addressed by the memory location
immediately following the instruction code.

Code number D3

The flags are not affected.
11 clock cycles.

OuTD

This instruction transfers the contents of the memory
location pointed to by the HL register pair to the output
device addressed by the C register. The HL register pair
and the B register are then decremented.

Code number ED AB

The N flag is set to 1, and the S, H, and P/V flags are
randomly affected. The Z flag is set if the B register equals
zero after execution of the instruction.

16 clock cycles.

82

OUTI

This instruction transfer the contents of the memory
Jocation pointed to by the HL register pair to the output
device addressed by the C register. The HL register pair is
then incremented, but the B register is decremented.

Code number ED A3

The N flag is set to 1, and the S. H, and P/V flags are
randomly affected. The Z flag is set if the B register equals
zero after execution of the instruction.

16 clock cycles.

POPqq

The data in the memory location addressed via the stack
pointer is loaded into the low order of the specified
register pair. Then the stack pointer is incremented, and
the contents of the memory location then addressed via
the stack pointer is loaded into the high order of the
specified register pair. The stack pointer is then
incremented again.

BC Cl1
DE Dl
HL El
AF Fl

The flags are not affected.
10 clock cycles.

POP IX
The data in the memory location addressed via the stack

pointer is loaded into the low order of the IX register.
Then the stack pointer is incremented, and the contents of

83

the memory location addressed via this register are loadeq
into the high order of the IX register. The stack pointer jg
then incremented again.

Code number DD El1

The flags are not affected.
14 clock cycles.

POP 1Y

The data in the memory location addressed via the stack
pointer is loaded into the low order of the 1Y register,
Then the stack pointer is incremented, and the contents of
the memory location addressed via this register are loaded
into the high order of the IY register. The stack pointer is
then incremented again.

Code number FD E1l

The flags are not affected.
14 clock cycles.

PUSH qq

First the stack pointer is decremented, and the high order
of the specified pair of registers is transferred to the
memory location addressed via the stack pointer. After a
further decrementation of the stack pointer, the contents
of the low order of the specified register pair are loaded
into the memory location addressed via the stack pointer.

BC Cs
DE D5
HL E5
AF F5

The flags are not affected.
11 clock cycles.
84

pUSH IX

First the stack pointer is decremented. and then the
contents of the high order of the IX register are loaded
into the memory location addressed via the stack pointer.
After the stack pointer has been decremented again. the
contents of the low order of the IX register are loaded into
the memory location addressed via the stack pointer.

Code number DD ES

The flags are not affected.
15 clock cveles.

PUSH 1Y

First the stack pointer is decremented. and then the
contents of the high order of the 1Y register are loaded
into the memory location addressed via the stack pointer.
After the stack pointer has been decremented again. the
contents of the low order of the 1Y register are loaded into
the memory location addressed via the stack pointer.

Code number FD ES

The flags are not affected.
15 clock cycles.

RES b,r

This instruction is used to reset the specified bit of a
specified register. as detailed in the table provided. Note
that this only gives the second byte of the instruction’s
code number: the first byte is always CB.

A B C D E H L
87 80 81 8 8 8 85
8F 88 8 8A 8B 8C 8D
97 90 91 92 93 94 95
9F 98 99 9A 9B 9C 9D
A7 A0 Al A2 A3 A4 AS
AF A8 A9 AA AB AC AD
B7 BO Bl B2 B3 B4 BS
BF B8 B9 BA BB BC BD

~N O AW N = O

The flags are not affected.
8 clock cycles.

RES b,(rr)

This instruction is used to reset the specified bit of the
specified memory location.

0 1 2 3 4 5 6 7
Indirect (HL) 86 8E 96 9E A6 AE B6 BE

This list gives the second byte: the first byte of the
instruction is CB.

Indexed (IX) The list given above provides
the third byte: the first and
second bytes of the instruction
code are DD and CB.

Indexed (1Y) The list given above provides
the third byte; the first and
second bytes of the instruction
code are FD and CB.

The flags are not affected.
Clock cycles, Indirect = 15, indexed = 23.

86

RET

This 1s the return from subroutine instruction. This
“POPs” the program counter from the stack, and then the
program continues at the memory location addressed by
the program counter.

Instruction code C9

The flags are not affected.
10 clock cycles.

RET cc

Returns from subroutine if condition cc is met. If the
condition is met, the program counter is loaded from the
stack, and the next instruction fetched from this address.
If the condition i1s not met, the next instruction in
sequence is executed.

cc Code number
NZ C0
Zi C8
NC DO
(@ D8
PO [0
PE ES8
P FO
M F8

No flags are affected.

Clock cycles; condition met = 11, condition not met = 5.
RETI
This instruction is recognised by Zilog peripherals as the

87

end of a peripheral servicing routine. Its use allows prope;
control of a system of nested priority interrupts. The
program counter is loaded from the stack, and the neyt
instruction is fetched from this address. An EI instructiop
should be used before RETI to re enable interrupts.

Code number ED 4D

No flags are affected.
Clock cycles = 14.

RETN

Return from a non-maskable interrupt. The program
counter is loaded from the stack, and the state of the
interrupt flag is restored to what it was before the non-
maskable interrupt.

Code number ED 4

D

No flags are affected.
Clock cycles = 14,

RL s

Rotates the contents of the operand s one bit position to
the left. The carry flag is effectively used as the ninth bit,
the contents of the carry flag being moved into bit 0, and
the contents of bit 7 going into the carry flag. The result is
stored back in the original location.

There are several versions of this instruction.

Implicit A CB 17
Implicit B CB 10
Implicit C CB 11
Implicit D CB 12

88

Implicit E CB 13

Implicit H CB 14
Implicit L CB 13
Indirect (HL.) (B 16
Indexed (IX+d) DD CB oftset 16
Indexed (IY+d) FD CB offset 16

Flags H and N are set to zero. Cis set by bit 7 of source.
other tlags are altered depending on the result of the
operation.

Clock cveles: implicit = 8. indirect = 150 indexed = 23.

RLA

Rotates the contents of the accumulator one bit to the left.
the result being stored back in the accumulator. The carry
flag is used as a ninth bit.

Code number 17

The H and N flags are set to zero. The carry flag is set by
bit 7 of accumulator. Other flags are not affected.
Clock cycles = 4.

RLCA

Rotates the contents of the accumulator one bit position
to the left. The contents of bit 7 are copied into bit () and
the carry flag. This instruction is the same as RLC A.
except for the effect on flags.

Code number 07

The H and N flags are sct to (). The carry flag is set by bit 7
of accumulator. Other flags are not affected.
Clock cycles = 4.

NB. This instruction is included for compatibility with the
8080 processor.

RLCr

Rotates the contents of register r left one bit position. The
contents of bit 7 are copied into bit 0 and the carry flag,

Register code numbers

CB 07
CB 00
CB 01
CB 02
CB 03
CB 04
CB 05

CDmooOw»

The H and N flags are set to zero. The carry flag is set by
bit 7 of the register. Other flags are altered according to
the result of the operation.

Clock cycles = 8.

RLC (HL)

Rotates the contents of the memory location addressed by
the HL register pair one bit position to the left. The result
is stored back at that location. The contents of bit 7 are
copied into the carry flag and bit 0.

Code number CB 06

The H and N flags are set to 0. The carry flag is set by bit 7
of the memory location. Other flags are altered according
to the result of the operation.

Clock cycles = 15.

90

RLC (IX+d)

Rotates the contents of the memory location addressed by
the contents ot the IX register pair plus the offset d left by
one bit position. The result is stored back at that position.
The contents of bit 7 arce copied into the carry tlag and bit

0.
Code number DD CB oftset U6

The H and N flags are set to (. The carry flag is set by bit 7
of the memory location. Other tlags are set according to
the result of the operation.

Clock cyceles = 23.

RLC (1Y +d)

Rotates the contents of the memory location addressed by
the contents of the I'Y register pair plus the offset d left by
one bit position. The result is stored back at that position.
The contents of bit 7 are copied into the carry flag and bit

0.
Code number FD CB offset 06

The H and N flags are sct to 0. The carry flag is set by bit 7
of the memory location. Other flags are set according to
the result of the operation.

Clock cycles = 23.

RLD

Performs a rotate left in BCD mode. Simultaneously, the
4 low bits of the memory location addressed by HL are
moved to the 4 high bits of that location. The 4 high bits
are moved to the 4 low bits of the accumulator. The 4 low
bits of the accumulator are moved to the 4 low bits of the

91

memory location.

Code number ED 6F

The H and N flags are set to zero. The carry flag is not
affected. Other flags are altered depending on the resy]
of the operation.

Clock cycles = 18.

RR s

Rotates the contents of the operand s one bit position to
the right. The carry flag is used as a ‘ninth bit’. The
contents of bit 0 are copied into the carry flag, and the
contents of the carry flag are copied into bit 7.

There are several versions of this instruction.

Implicit A CB IF
Implicit B CB 18
Implicit C CB 19
Implicit D CB 1A
Implicit E CB 1B
Implicit H CB 1C
Implicit L CB 1D
Indirect (HL) CB 1E
Indexed (IX+d) DD CB offset 1E
Indexed (IY+d) FD CB offset 1E

The H and N flags are set to zero. The carry flag is set by
bit 0 of source. Other flags are altered depending on the
result of the operation.

Clock cycles; implicit = 8, indirect = 15, indexed = 23.

92

RRA

The contents of the accumulator are rotated one bit
position to the right. The carry flag is used as a ‘ninth bit’.
This instruction is the same as RR A, except for the effect
on the flags.

Code number IF

Flags H and N are set to 0. The carry flag is set by bit 0 of
the accumulator. Other flags are unaffected.
Clock cycles = 4.

NB. This instruction is provided for compatibility with the
8080 processor.

RRC s

Rotates the contents of the specified operand one bit
position to the right. The contents of bit 0 are copied into
the carry flag and into bit 7.

There are several versions of this instruction.

Implicit A CB OF
Implicit B CB 08
Implicit C CB 09
Implicit D CB 0A
Implicit E CB 0B
Implicit H CB 0C
Implicit L CB 0D
Indirect (HL) CB OE
Indexed (IX+d) DD CB offset OE
Indexed (1Y+d) FD CB offset OE

Flags H and N are set to zero. The carry flag is set by bit 0
of source. Other flags are altered depending on the result

93

of the operation.
Clock cycles; implicit = 8, indirect = 15, indexed = 23

RRCA

Rotates the contents of the accumulator one bit positiop
to the right. The contents of bit 0 are copied into the carry
flag and into bit 7.

Code number OF

The H and N flags are set to zero. The carry flag is set by
bit 0 of the accumulator. Other flags are unaffected.
Clock cycles = 4.

RRD

Performs a rotate right in BCD mode. Simultaneously,
the 4 high bits of the memory location addressed by the
HL register pair are moved into the 4 low bits of that
location. The 4 low bits are moved into the 4 low bits of
the accumulator. The 4 low bits of the accumulator are
moved into the 4 high bits of the memory location.

Code number ED 67

The H and N flags are set to zero. The carry flag is
unaffected. Other flags are set according to the results of
the operation.

Clock cycles = 18.

RST p

Stores the contents of the program counter on the stack.
and then loads the program counter with p. The next
instruction is fetched from this address. This instruction
can jump to one of eight addresses in low memory. It is
used as a fast response to an interrupt.

94

p(Hex) Code

00 C7
08 CF
10 D7
18 DF
20 E7
28 EF
30 F7
38 FF

No flags are affected.
Clock cycles = 11.

SBC A.s

Subtracts the contents of the specified operand s, plus the
contents of the carry flag, from the accumulator. The
result is stored in the accumulator.

There are several versions of this introduction.

Implicit A 9F

Implicit B 98

Implicit C 99

Implicit D 9A

Implicit E 9B

Implicit H 9C

Implicit L 9D
Immediate DE data
Indirect (HL) 9E

Indexed (IX+d) DD 9E offset
Indexed (IY+d) FD 9E offset

95

The N flag is set to 1. Other flags may be altereq
depending on the result of the operation.

Clock cycles; implicit = 4, immediate = 7, indirect < 7
indexed = 19. :

SBC HL,ss

Subtracts the contents of the specified register pair ss pJyg
the carry flag from the contents of the register pair Hf
The result is stored in HL.

Register code number

BC 42
DE 52
HL 62
SP 72

The N flag is set to 1. The H flag is set if there is a borrow
from bit 12. Cis set if there is a borrow. Other flags are set
according to the results of the operation.

Clock cycles = 15.
SCF

Sets the carry flag to 1.

Code number 37

The H and N flags are set to 0. The carry flag is set. Other
flags are unaffected.

Clock cycles = 4.
SET b,r

This instruction sets to 1 the specified bit of the specified
register.

96

The first byte is CB: the second byte is indicated in the
fouowing table:—

Register A B C D E H L

git 0 C7 Cu CI C2 C3 C4 G5
git 1 CF C8 C9 CA CB CC CD
Bit 2 D7 DU DI D2 D3 D4 D5
it 3 DF Ds DY DA DB DC DD
Bit 4 E7 EO El E2 E3 E4 ES
Bit 5 EF ES EY EA EB EC ED
Bit 6 F7 FO Fl F2 3 F4 FS
Bit 7 FF F8 FY FA FB FC FD

The flags are not affected.
Clock cycles = 8.
SET b,s

The specified bit of the specified memory location is set to
L.

Indirect (HL) CB xx
Indexed (IX) DD CB offset xx
Indexed (1Y) FD CB offset xx

Btye “xx" can be determined from the following list:—
Bit 0 (&)

Bit 1 CE
Bit 2 D6
Bit 3 DE
Bit 4 E6

Bit 5 EE
Bit 6 F6

Bit 7 FE

97

The flags are not affected.
Clock cycles; indirect = 15, indexed = 23.

SLA s

The contents of the specified operand s are arithmetically
shifted left by one bit position. Bit 7 is shifted into the
carry flag, and bit 0 is forced to 0.

There are several versions of this instruction.

Implicit A CB 27
Implicit B CB 20
Implicit C CB 21
Implicit D CB 22
Implicit E CB 23
Implicit H CB 24
Implicit L CB 25
Indirect (HL) CB 26
Indexed (IX+d) DD CB offset 26
Indexed (IY+d) FD CB offset 26

The H and N flags are set to 0. The carry flag is set by bit 7
of source. Other flags may be altered depending on the
result of the operation.

Clock cycles; implicit = 8, indirect = 15, indexed = 23.

SRA s

The contents of the specified operand s are arithmetically
shifted right by one bit position. The contents of bit 0 are
shifted into the carry flag. The contents of bit 7 are
unchanged.

There are several versions of this instruction.

98

Implicit A CB 2F

Implicit B CB 28
Implicit C CB 29
Implicit D CB 2A
Implicit E CB 2B
Implicit H CB 2C
Implicit L CB 2D
Indirect (HL) CB 2E
Indexed (IX+d) DD CB offset 2E
Indexed (I'Y+d) FD CB offset 2E

The H and N flags are set to zero. The carry flag is set by
bit 0 of source. Other flags may be altered depending on
the result of the operation.

Clock cycles; implicit = 8, indirect = 15, indexed = 23.

SRL s

The contents of the specified operand s are logically
shifted right by one bit position. The contents of bit 0 are
moved into the carry flag and bit 7 is set to 0.

There are several versions of this instruction.

Implicit A CB 3F
Implicit B CB 38
Implicit C CB 39
Implicit D CB 3A
Implicit E CB 3B
Implicit H CB 3C
Implicit L CB 3D
Indirect (HL) CB 3E
Indexed (IX+d) DD CB offset 3E
Indexed (1Y+d) FD CB offset 3E

99

The H and N flags are set to zero. The carry flag is set by
bit 0 of source. Other flags may be altered by the result of
the operation.

Clock cycles; implicit = 8, indirect = 15, indexed = 23

SUB s

Subtracts the specified operand s from the accumulator,
storing the result in the accumulator.
There are several versions of this instruction.

Implicit A 97

Implicit B 90

Implicit C 91

Implicit D 92

Implicit E 93

Implicit H 94

Implicit L 95
Immediate D6 data
Indirect (HL) 96

Indexed (IX+d) DD 96 offset
Indexed (IY+d) FD 96 offset

The N flag is set to 1. Other flags may be altered
depending on the result of the operation.

Clock cycles; implicit = 4, immediate = 7, indirect = 7,
indexed = 19.

XOR s

Exclusive ORs the specified operand with the accumula-
tor. The result is stored in the accumulator. XOR is
performed according to the following rules on a bit-by-bit
basis:—

100

1 XOR 1=0
1 XOR 0=1
0 XOR 0=0

There are several versions of this instruction.

Implicit A AF

Implicit B A8

Implicit C A9

Implicit D AA

Implicit E AB

Implicit H AC

Implicit L AD
Immediate EE data
Indirect (HL) AE

Indexed (IX+d) DD AE offset
Indexed (1Y +d) FD AE offset

The H, N. and C flags are set to zero. S, Z, and P may be
altered depending on the result of the operation.

Clock cycles: implicit = 4. immediate = 7, indirect = 7.
indexed = 19.

101

Chapter 4
STORING AND EXECUTION

The home computers with which this book is primarily
concerned all have BASIC in ROM as their maj
language. BASIC normally expects to be able to use ||
the user-area of memory either for program storage or for
variables.

In order to use machine code in these computers it js
necessary to cither find some way of protecting the code
from being overwritten by BASIC. or to store the code ip
odd corners of the memory map which are normally not
used either by BASIC or by the operating system.

The Memotech MTX computers are the most helpfu]
in this respect. Not only do they have built-in assembers,
but they also automatically take care of storing the
assembled machine code. It is, in fact, stored within the
BASIC program area of memory.

With the Sinclair ZX computers and the Amstrad CPC
464, no such in-built method exists. With these
computers. different approaches are necessary depending
on whether only a short routine or a longer machine code
program is to be stored.

With short routines, a very simple method of storage is
to use a REM at the very beginning of the program. This
can initially be filled with any character. The machine
code is then POKEd into the area of memory occuped by
these characters either from DATA statements when the
program is run. or directly from command mode a byte at
a time. This byte-at-a-time method is time-consuming. but
worthwhile on a computer like the ZX-81, which has 4
very small memory in its basic form. and which in any cas¢t

102

does not have READ and DATA statements in its
BASIC.

The advantage of the REM method is that. when the

rogram is recorded on disc or tape. the machine code in

the REM is recorded with it.

The REM must be at the start of the program, both to
make it easy to locate. and to prevent it moving if the
BASIC program is edited.

Odd corners of memory tend not to be ven
satisfactory. For a start. they tend to be very small.
perhaps 10 or 20 bytes. Secondly. computer manufactur-
ers tend to modify their products from time to time,
sometimes unannounced. and an unused corner can
suddenly find employment. This means that a program
using this storage method may not work on all versions of
a machine.

The best method of storing substantial machine code
programs is to store them above the area used by BASIC.
To do this, the area used by BASIC must be reduced, by
lowering the highest memory location available to
BASIC. The address of this location is stored in RAM,
and can be POKEd to a lower value. There may be a
BASIC statement to do this. such as CLEAR on the
Spectrum and MEMORY on the Amstrad CPC 464. The
space thus created will hold machine code safe from
corruption, in most cases even if a new program is loaded.
The address of the memory location(s) to be altered will
normally be found in the manual for your computer,
usually in an appendix (System Variables).

Execution

Putting the machine code in memory is the first step. The
second is to cause it to be executed. Whether in a program
or from command mode. this normally has to be done
with a BASIC statement.

103

The simplest statement to use is CALL. Thjg
command is followed by the start address of the machine
code routine. The routine must be terminated by an RET
instruction (not matched to a JSR within the routine) tq
cause a return to BASIC. Unfortunately, very few Zgg
BASICs support this statement, the LOCOMOTIVE
BASIC in the Amstrad being an exception.

The alternative statement is USR. This executes g
machine-code routine which is supposed to return j
numeric value to the program, which is deposited in 3
variable or printed. This statement takes the general form
A=USR(AAAA), where AAAA is the start address. The
USR statement varies considerably from computer to
computer and reference to your computer’s manual for
details is advised. In many Z80-based computers,
including the Sinclair ZX models and the Memotechs, the
value returned by USR is the contents of the BC register
pair, regarded as an unsigned integer. The Amstrad CPC
464 does not have the USR statement. Generally, return
to BASIC is again by an RET instruction.

104

Chapter 5
EXAMPLE PROGRAMS

The short demonstration programs in this chapter will be
given in standard Z-80 assembly language form.

BASIC listings to enable the programs to be entered
and run on 4 popular Z-80 based home computers are also
given. In the case of the Memotech, these use the in-built
assembler. The Sinclair Spectrum and Amstrad programs
use DATA statements, and a loader program is given for
the ZX81.

If you have an assembler for your computer, you
should be able to enter the programs for the assembly
language listings.

1. ADD

This program adds together two 8-bit numbers, i.c. they
must not be more than 255. The result. of course, can be
up to 510, so the answer may need two bytes. In fact, the
answer is placed in the BC register pair, so this routine can
be executed with the USR statement (in fact this is true of
all these demonstration programs except the Amstrad
versions, which have an extra instruction to place the
contents of the BC pair in memory locations at the end of
the program, where they can be retrieved by PEEKS).

LD B.0
LD A,(NILOC)
LD D.A
LD A,(N2LOC)

105

ADD D
LD C.A
JR NC OUT
INC B
OuT RET

The two numbers to be added are POKEd into twg
memory locations which I have called NILOC apq
N2LOC. In actually entering the program. you would
substitute the actual addresses. The first number is loadeq
first into the accumulator, and then into the D register.
The second number is then loaded into the accumulator,
and the contents of D added. The result is then stored in
the C register. If a carry resulted, the B register, (sct to ()
at the start of the routine) is incremented. Otherwise, the
routine branches directly to OUT, which is where it
terminates. A jump relative is used rather than a jump
absolute, as this makes the program relocatable in
memory. The result returned is 256* the content of the B
register, + the contents of the C register.

2. AND

This program performs the Boolean AND operation on
two 8-bit numbers. In essence, it is very similar to the
addition program, except the result is always an 8-bit
number, so there is no need for a conditional jump.

This program can also be easily modified to perform
OR and XOR by changing the appropriate instruction
(and one word in the BASIC program).

LD B.0
LD A.(NILOC)
LD D,A
LD A,(N2LOC)

106

AND D
LD C.A
RET

This routine may prove useful, as the Sinclair and
Memotech AND and OR functions do not work on a
pitwise basis.

3. LOOP

This program illustrates a loop structure in machine code,
and is functionally equivalent to the following BASIC
program:—

10 LET T=0

20 FOR C=1TO 255

30 LET T=T+C

40 NEXT C

S0 PRINT T

It is instructive to run both the BASIC and machine-
code versions and compare the time taken. The BASIC
version takes several seconds (longer on the ZX81),
whereas the machine code is virtually instantaneous.

LD B.0

LD C.0

LD D.,0
LOOP INC D

LD A.D

ADD A.C

LD C.A

JR NC.OVER

INC B

107

OVER LD A,255
CPD
JR NZ,LOOP
RET

The BC register pair is equivalent to the BAS|c
variable T (total), and the D register is equivalent to th,
BASIC variable C (counter). At the start of each loop, the
D register is incremented (which is why it is initialised to ()
rather than 1). It is then doaded into the accumulator, apg
added to the contents of the C register. The result is thep
loaded into the C register. (A common mistake among
beginners to machine code/assembly language is forget.
ting to store the results of operations — you have beep
warned!). If a carry resulted from the addition, the B
register is incremented. The D register is then compareq
with the limit, 255, which is loaded into the accumulator,
When D is equal to 255, the comparison will set the zero
flag. The loop continues until that happens.

4. TAKE

This program performs a subtraction between two 16-bit
numbers. It uses unsigned arithmetic, so the second
number must be smaller than the first. That is, the result
must not be negative.

LD HL,(N1LOC)
LD DE,(N2LOC)
SBC HL,DE

LD B.H

LD C,L

RET

108

The first two instructions load the register pairs
girectly with the 16-bit numbers. The addresses NILOC
and N2LOC are therefore the addresses of the first pairs
of bytes. The third instruction performs the 16-bit
qubtraction, leaving the result in the HL pair. Two
jpstructions are necessary to transfer this result into the
BC register pair.

When using pairs of bytes to hold 16-bit numbers, the
most important thing is to make sure you always get the
pigh-order and low-order bytes the right way round.

MACHINE SPECIFIC LISTINGS
Memotech Versions

ADD

10 CODE

8007 NOP

8008 NOP

8009 LD B0

800B LD A,(32775)
800E LDD.A

800F LD A.(32776)
8012 ADD A.D
8013 LDC.A

8014 JRNC,0UT
8016 INCB

8017 OUT: RET

8018 RET
Symbols:

ouT8017

20 INPUT "First Number? ";N1

30 POKE 32775.N1
109

40 INPUT "Second Number? ";N2

50 POKE 32776,N2

60 PRINT

70 PRINT N1;" + ";N2;"” = ";USR(32777)
80 PRINT : PRINT

90 GOTO 20

AND

10 CODE

8007 NOP

8008 NOP

8009 LDB,0

800B LD A,(32775)
800E LDD,A
800F LD A,(32776)
8012 AND D

8013 LD C,A

8014 RET
Symbols:

20 INPUT "First Number? ";N1

30 POKE 32775,N1

40 INPUT "Second Number? ;N2

50 POKE 32776,N2

60 PRINT

70 PRINT N1;” AND ";N2;” = ";USR(32777)
80 PRINT:PRINT

90 GOTO 20

110

LOOP

10 CODE

8007 LD B,0

8009 LD C,0

800B LDD,0

800D LOOP: INCD

800E LD A,D

800F ADD A,C
8010 LD C,A

8011 JRNC,0OVER
8013 INCB

8014 OVER: LD A,255
8016 CPD

8017 JRNZ,LOOP
8019 RET

Symbols:
LOOPR00DOVERS8014

20 PRINT USR(32775)

TAKE

10 CODE

8007 LD HL,(32787)
800A LD DE,(32789)
800E SBCHL,DE
8010 LD B,H

111

8011 LDC,L

8012 RET

8013 INCD
8014 NOP

8015 LD A,(BC)
8016 NOP

8017 RET
Symbols:

20 INPUT"FIRST NUMBER? ";N1

30 POKE 32787, MOD(N1,256)

40 POKE 32788,INT(N1/256)

S50 INPUT"SECOND NUMBER? ;N2
60 POKE 32789,MOD(N2,256)

70 POKE 32790,INT(N2/256)

80 PRINT

90 PRINT N1;"=";N2;" = ";USR(32775)
100 PRINT : PRINT

110GOTO 20

ZX81 Versions
ZX81 Loader Program

1 REM (ENOUGH CHARACTERS TO
TAKE THE MACHINE CODE)

10 LET M=16514
20 INPUT V
30 POKE M,V

112

40 PRINT PEEK(M)
SOLETM=M+1
60 GOTO 20

Use this program to enter all the machine code
numbers, then enter STOP. You can then replace lines 10
to 60 with the BASIC programs. Be sure to put sufficient
characters in the REM in line 1.

ADD

MACHINE CODE:—
0,0,6,0,58,130,64,87,58,131.64.130,79,48,1,4,201

BASIC:—
10 PRINT"FIRST NUMBER?”
20 INPUT NI
30 POKE 16514,N1
40 PRINT"SECOND NUMBER?”
50 INPUT N2
60 POKE 16515.N2
70 PRINT N1;” + ";N2;" = ";USR 16516
80 GOTO 20

AND

MACHINE CODE:—
0,0,6,0,58,130,64,87,58.131,64.162,79,201

BASIC:—
10 PRINT "FIRST NUMBER?”
20 INPUT N1

113

30 POKE 16514,N1

40 PRINT "SECOND NUMBER?"

S0 INPUT N2

60 POKE 16515,N2

70 PRINT N1;” AND ";N2;" = ";USR 16516
80 GOTO 20

LOOP

MACHINE CODE:—
6,0,14,0,22,0,20,122,129,79,48,1,4,62,255,186,32,244,201

Having entered this code, execute the program with
PRINT USR 16514 in direct mode.

TAKE

MACHINE CODE:—
0,0,0,0,42,130,64,237,91,132,64,237,82,68,77,201

BASIC:—
10 PRINT "FIRST NUMBER?"
20 INPUT N1
30 LET V1=INT(N1/256)
40 LET V2=N1-256*V1
50 POKE 16514,V2
60 POKE 16515,V1
70 PRINT "SECOND NUMBER?”
80 INPUT N2
90 LET V1=INT(N2/256)

114

100 LET V2=N2-256*V1

110 POKE 16516,V2

120 POKE 16517.V1

130 PRINT

140 PRINT N1;"—";N2:" = ";USR 16518
150 PRINT

160 GOTO 10

N.B. The zeros at the start of the machine code numbers
are the bytes that are used to pass the numbers to the
machine code routines. You are recommended to always
reset these to zero before trying to list the programs.

ZX Spectrum Versions

Enter CLEAR 32499 and NEW before typing in the
following programs.

ADD
10 FOR M=32502 TO 32520
20READ V
30 POKE M,V
40 NEXTM

50 DATA 6.,0,58,244,126,87,58,245,126,130,
79.48,1,4,201

60 INPUT "First number? ":N1

70 POKE 32500,N1

80 INPUT "Second number? ";N2

90 POKE 32501,N2

100 PRINT N1;" + ";N2;" = ";USR 32502
110 PRINT

120 GOTO 60

115

AND
10 FOR M=32502 TO 32513
20READ V
30 POKE M,V
40 NEXTM
50 DATA 6,0,58,244,126,87,58,245,126,162,79,201
60 INPUT "First number? ";N1
70 POKE 32500,N1
80 INPUT "Second number? ";N2
90 POKE 32501,N2
100 PRINT N1;” AND ";N2;"” = ";USR 32502
110 PRINT
120 GOTO 60

LOOP
10 FOR M=32500 TO 32518
20READ V
30 POKE M,V
40NEXTM
50 DATA 6,0,14,0,22,0,20,122
60 DATA 129,79,48,1,4,62,255,186
70 DATA 32,244,201
80 PRINT "Press a key”
90 IF INKEY$=""THEN GOTO 90
100 PRINT USR 32500

TAKE
10 FOR M=32504 TO 32515

116

20 READ V

30 POKEM,V

40 NEXTM

50 DATA 42,244,126,237,91,246,126,237,
82,68,77,201

60 INPUT "First number? ;N1

70 LET V1=INT (N1/256)

80 LET V2=N1-256*V1

90 POKE 32500,V2

100 POKE 32501,V1

110 INPUT "Second number? ";N2

120 LET V1=INT (N2/256)

130 LET V2=N2-256*V1

140 POKE 32502,V2

150 POKE 32503,V1

160 PRINT

170 PRINT N1;"=";N2;" = ";USR 32504

180 PRINT

190 GOTO 60

Amstrad CPC 464 Versions
ADD
10 MEMORY 32499
20 FOR m=32502 TO 32520
30 READ v
40 POKE m,v
50 NEXT m

60 DATA 6,0,58,244,126,87,58,245,126,130,
79,48,1,4,237,67,9,127,201

117

70 INPUT "First Number”;nl

80 POKE 32500,nl

90 INPUT "Second Number”;n2
100 POKE 32501,n2

110 CALL 32502

120 PRINT nl;” + ";n2;" = ";PEEK(32521)
+256*PEEK(32522)

130 PRINT
140 GOTO 60

AND
10 MEMORY 32499
20 FOR m=32502 TO 32517
30 READ v
40 POKE m,v
50 NEXT m
60 DATA 6,0,58,244,126,87,58,245,126,162,79,
237,67,6,127,201
70 INPUT "First Number”;nl
80 POKE 32500,nl
90 INPUT "Second Number”;n2
100 POKE 32501,n2
110 CALL 32502
120 PRINT nl1;” AND ”;n2;" = ";PEEK(32518)
130 PRINT
140 GOTO 70

LOOP
10 MEMORY 32499
20 FOR m=32500 TO 32522

118

30 READ v

40 POKE m,v

50 NEXT m

60 DATA 6,0,14,0,22,0,20,122,129.,79

70 DATA 48,1,4,62,255,186,32,244

80 DATA 236,67,11,127,201

90 PRINT "PRESS ANY KEY”

100 CALL 32500

120 PRINT PEEK(32523)+256*PEEK(32524)

TAKE
10 MEMORY 32499
20 FOR m=32504 TO 32519
30 READ v
40 POKE m,v
50 NEXT m

60 DATA 42,244,126,237,91,246,126,237,
82,68,77,237,67,8,127,201

70 INPUT "First Number”;nl
80 LET vI=INT(nl/256)

90 LET v2=nl1-256*vl

100 POKE 32500,v2

110 POKE 32501,v1

120 INPUT "Second Number”;n2
130 LET v1=INT(n2/256)
140 LET v2=n2-256*v1
150 POKE 32502,v2

160 POKE 32503,v1

170 PRINT

119

180 CALL 32504

190 PRINT nl;"- ";n2;" = ";PEEK(32520)
+256*PEEK(32521)

200 GOTO 70

120

Chapter 6
INPUT/OUTPUT

When using a high level language such as BASIC.
commands to control input output devices such as the
CRT controller and printer port are normally provided, or
they may be included in the form of operating system
commands. In either case the user is not directly accessing
registers of the input/output devices. and is unlikely to
need any knowledge of the way in which they tunction.
The situation is totally different with machine code, and in
order to take advantage of the speed of machine code
programs it is often necessary to directly access and
control peripheral devices. This can be a little difficult at
first, even for someone who is used to dealing with
electronic circuits, since the methods adopted in most
computer peripherals are rather different to those used in
non-computer electronic circuits. However, once a few
fundamental points have been grasped it is not too
difficult to use and understand practically any computer
peripheral device.

Even just restricting ourselves to peripherals for use
with the Z80 and Z80A microprocessors, there are many
devices in common use and it would not be feasable to
even briefly describe all of these complex devices here.
Fortunately, the basic way in which these devices are
controlled varies little from one type to another, and by
taking just a brief look at just one computer peripheral a
number of important and universal points can be
unveiled.

121

The Z8OCTC

As an example of a peripheral integrated circuit for use
with the Z80 we will consider the Z8OCTC (the ZSOACTC
1s the high speed version for use with Z8OA based
svstems). CTC simply stands for counter timer circuit. and
it can be used in @ number of counting and timer
applications 1in a computer system. We will not consider
the device in great detail here. since 1t has a great many
features which would take many pages to fully explain,
However. the device consists basiculiv of four N by
counter timer circuits with a prescaler for each one. It hus
the pinout configuration shown in Figure 4. DO to D7
connect to the data bus of the svstem, and data is sent o
and received from the chip via these terminals. Some of
the other lines (IORQ and MI for exaniples) are control
lines which arc fed from the corresponding lines of the
microprocessor. CSO and CS1 are the two channel select
inputs. which are used to select the desired channel by
feeding them with the appropriate 2 bit binary address
(there are four channels which are numbered from 0 to 3).
CS0 and CS1 are normally fed from address lines A0 to
Al respectively. CE is the chip enable input, and this is
operated from address lines A2 to A7 and some of the
control bus lines via a suitable decoder circuit. This places
the CTC at four consecutive addresses in the infout map.
For instance. the internal Z8OACTC circuit of the
Memotech MTX500 and MTXS512 computers is at in/out
addresses 8 to 1. and data can be either written to or read
from each of these addresses. Remember that the
Z80/ZBOA uses separate memory and input/output maps,
and that the instructions used with peripheral devices are
different to the instructions used when accessing memory.

There are two main ways of using each counter/timer
arcuit of the ZROCTC/ZSOACTC. One 18 to count input
pulses on the relevant clock/trigger input. The second
mode is the more common one. and it is where the systzm
clock signal is divided by the circuit to give an output at a

122

1 28
pal]e [] 03

DS [] D2

06 []] D1

D7] "] DO
GND [[] +5v

RO zgoere | CLK/TRGO
zcitoo [} zgoacte |JCLK/TRG1

zcito1 [] CLK/TRG2
ZC/TOQ[: [] CLK/TRG3
iIorQ[] [cst
1eo] []cse
iNT [} [] RESET
1e1 [[]cE
wi] [cLock
14 15

Fig. 4. Pinout details for the Z80/Z80ACTC

lower frequency. This feature can be used to give a range
of clock frequencies (and baud rates) for a serial interface.
or to provide the computer with a timer function. For
example. if the CTC circuit is used to provide a divide by
40000 action with a 4MHz clock signal, this would give
timing signals at intervals of one hundredth of a second.
This could be used to increment a memory location (or
series of locations) one hundred times a second with the
aid of interrupts and a suitable interrupt routine.

123

Control Register

So how is the required operating mode selected? There
are no pins which can be used to program the device. ang
it is in fact done under software control by writing data 1
the control registers of the device. Let us assume that we
wish to usc timer 2 in the mode where it divides the clock
signal. and that we wish to divide by 2560. There are twg
divider stages in cach channel. one of which is a simpl¢
prescaler which divides the signal by 1. 160 or 236, The
other is an 8 bit counter which divides by any integer from
I to 256. The division rate provided by this register iy
equal to the number written to it. except where 018 sent
(this gives a division rate of 236).

There is a shight complication here in that cach
timer/counter occupies just one address, and the conuol
register and the 8 bit divider register theretore share the
same address. This problem is overcome by first writing to
the control register of the appropriate channel. and then
writing to the counter. First the data to the control register
1s sent. with bit O being set high to indicate that the data s
to be stored in the control register, and bit 2 being set high
to indicate that the next byte written to that address is to
be loaded into the counter circuit Other bits of the
control register control other functions. and bit 1is set to ()
to allow operation of the counter. or high to inhibit it. In
this case bit 1 must obviously be set low. Some of the
control register bits are not very relevant in this mode of
operation. but bit 6 i1s of importance. This is set high to sct
the prescaler in the divide by I mode (effectively
eliminating it). or low to set the prumlcr in the divide by
16 or 256 mode. Assuming bit 6 is set low, bit 3 then
determines whether the prescaler is in the divide by 16 (sct
to 0) or the divide by 256 (set to 1) mode.

In this case we require the prescaler in the divide by
256 mode. with 10 written to the counter cireuit. giving the
required total division rate of 2560. We must therctore sct
bits 0. 2, and 5 high in order to set the desired mode of

124

B

operation. which gives a total 37 (1 + 4 + 32 = 37) to write
to the control register. Then the value of 10 would be
written to the counter as the same address. In order to set
a new division rate data would again be writien to the
control register to set the mode of operation (even if it had
not changed) and then the number to the counter would
be sent.

This method of having more than one register at cach
address is not something that 18 common to every
peripheral device. but it s not a rarity either. In the read
mode there isin fuct only one register at cach address. and
a read operation alwavs returns data from the counter and
not from the control register. The two important concepts
here are the use ot bits of 4 control register to set a
peripheral device in the desired operating mode. and
writing data to or reading it from a peripheral device in
much the same way as data is written to and taken trom
memory (but using the special input output instructions of
course).

The (positive) output pulses are obtained on the zero
counter’timeout pin of the relevant channel. but as
mentioned carlier. and alternative to using this signal is to
use the device to generate an interrupt. This is done by
setting the interrupt enable bit to 1. and this is bit 7 of
each control register. As mentioned in an earlier chapter,
in two interrupt modes the deviee generating the interrupt
has to provide the low byvte of the first of two addresses
where the start address of the inte rrupt routine is stored.
In actual fact the least significant bit is always 0. but the
interrupting device must supply the other seven bits. With
the ZSOCTC ZSOACTC the interrupt vector is loaded by
writing the appropriate value to channel 0 (with the least
significant bit set at 0). In this case the CTC sets bits 1 and
2 automatically so that priority is given to channel 0.
through to minimum priority for channel 3. This enables
each channcl to have its own interrupt routine. giving
maximum versatility.

—
tJ
L

Asond
15aM0"

03l

131

Aoud 3dnuazus fo wayshs uivgo Asiwp aq] ¢ S

Ajuiond
1saybiH

031

ANI

131 o3l

131

o3l

131

ANI

ANI

LNI

08z oL

126

You will often come across the term daisy chain
interrupts when dealing with Z80/Z80A peripheral
devices. This is where several devices which generate
interrupts are connected together in the manner shown in
Figure 5. The idea is simply that the device which is closest
to the microprocessor has the highest priority, since it
blocks signals from other devices from reaching the
microprocessor until its own interrupt routine has been
serviced. This gives a chain of priority, with the highest
priority being given to the devices close to the
microprocessor. and the lowest of those that are furthest
away.

When using a high level language such as BASIC the
programmer is largely isolated from the hardware of the
computer by some sophisticated software. When using
machine code this software is absent. and the programmer
has to deal directly with the devices in the machine unless
it is acceptable to revert to BASIC when dealing with
these devices (which will not always be the case). With
many machine code applications it is therefore necessary
to have a good understanding of the computer you are
using, and its hardware, and you should try to find as
much information of this type as possible. You may well
find it useful to obtain data sheets on some of the
peripheral devices in the machine. If you are in doubt
about the correct way of programming and using a
peripheral device, in most cases a little experimentation
will soon clarify matters.

127

Notes

128

Notes

129

Notes

130

Notes

131

OTHER BOOKS OF INTEREST

BP112: A Z80 WORKSHOP MANUAL

E.A. Parr, B.Sc., C.Eng., M.L.LE.E.

Intended for people who wish to progress beyond the stage of BASIC
programming to topics such as machine code and assembly language
programming or need hardware details of the Z80 based computer.

Starting with a review of computer principles, the book describes
typical machine code instructions followed by a detailed description of
the Z80 instruction set. Assembly language programming is discussed
with examples.

Also given are hardware details of the Z80 and the use of associated
I/O devices such as UARTs. PIOs and CTCs.

This book is not purely a descriptive text, however, Z80 hex machine
code and assembler instructions are given in tabular form, along with
infout connections for Z80 and associated devices. It will therefore also
be a useful reference book for the more experienced user.

192 pages 1983
ISBN 0 85934 087 2 £3.95

BP119: THE ART OF PROGRAMMING THE ZX SPECTRUM

M. James, B.Sc., M.B.C.S.

The incredible ZX Spectrum presents its user with virtually unlimited
scope. It allows versatile use of colour, offers high and low resolution
graphics and also adds sound. The result can mean some very effective
and exciting programs from BASIC — if you know how!

The problem is that there is a little more than meets the eye in getting
your spectrum to do clever things. It is one thing to have learnt how to
use all the Spectrum’s commands but a very different one to be able to
combine them into programs that do exactly what you want them to,
This is just what this book is all about — teaching vou the art of effective
programming with your Spectrum.

The Text is divided into the following chapters: 1. Getting to Know
Your Spectrum; 2, Low Resolution Graphics; 3, Fun at Random: 4,
High Resolution Graphics; S, Sound; 6. Moving Graphics, 7, PEEK and
POKE; 8, A Sense of Time; 9, Strings and Words; 10, Advanced
Graphics.

Essential Reading for all Spectrum users be they beginners or
seasoned programmers.

144 pages 1983
ISBN 0 85934 094 5 £2.50

BP153: AN INTRODUCTION TO PROGRAMMING THE AMSTRAD
CPC464

R.A. & J.W. Penfold

The excellent hardware of the Amstrad CPC 464 running with

Locomotive BASIC go to make up an extremely potent and versatile

machine and this book has been written to help the reader expand the

potential of this powerful combination, with the minimum of difficulty.

The authors adopt a step-by-step approach starting with the
fundamentals and then moving on to more advanced topics, with many
example programs being included to illustrate and clarify points.

In a book of this size it is impossible to fully cover every aspect of a
machine as complex as the Amstrad CPC464, but the authors have tried,
as far as possible, to complement the information supplied by the
manufacturer rather than just duplicate it.

The text is divided into the following chapters: 1, Variables &
Arrays; 2, String Variables; 3, Decisions; 4, INPUT, PRINT & DATA;
5, The Sound Generator; 6, Graphics 1 — Modes & Colours; 7, Graphics
2 — Animation; 8, Binary & Hex; 9, Interfacing; 10, Interrupts.

144 pages 1984
ISBN 085934 1283 £2.25

133

Please note adjacent and overleaf is a list of other titles that are available
in our range of Radio, Electronics and Computer Books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any title in
your area, then please write directly to the publisher enclosing payment
to cover the cost of the book plus adequate postage.

If you would like a complete catalogue of our entire range of Radio,
Electronics and Computer Books then please send a Stamped Addressed
Envelope to:

BERNARD BABANI (publishing) LTD
THE GRAMPIANS
SHEPHERDS BUSH ROAD
LONDON W6 7NF
ENGLAND

134

BP103
BP1Da
BF105
BP106
BF107
BP0
BP109
BP110
Brin
arie
aP113
ar1a
a8rP115
BP117
BP118
B8P119
aP120
8Pzl
8rPi22
BP172
BPI21
BP125
BP126
Br127
er128
8P129
BP130
aria

Coil Detign and Comtrucion Menual
Hi-Fi Loudmpeaker Enclosures
Practicsi Stereo & Quadrophony Mendbook
Audo Enthusisst’s Handbook
Solrd State Noveity Projects
Buid Your Own Sohd State Hi F i and Audio A cosssories
Solud State Shart Wave Rece vers tor Beginne
A Practical | ntroduc tion 1o Dagital ICs
How 10 Build Advanced Short Wave Recesvers
Boginner: Gude 10 Buikding Emctronic Projects
Emential Theory for the Emctronscs Mobbyst
Handbook of Asdw, TV Indust-al and Tramemitting Tubs and Vatve Equivalents
Enginest s & Machinitt's Reference Tabkwes
Radio & Emctrone Colour Codes Dsts Chart
Chart of Raco. Electronic, Semicanuctor and Logk Symbcls
Resstor Selection Handbook
Major Solxd State Audwo M1 Fi Construction Projects
Elsctronk Calcusetor Users Handbook
50 Circuits Using Cermanium Siikcon und Zener Drodes
50 Projects Using Reteys. SCRy anc TRIACS
S0 {FET) Fiekd Effect T ransistur Projects
50 Simpte LED Cireurts
1C 555 Projects
Projects i Opto-Electromics
Emctronic Projects tor Bagmnars
Popular Electroni Projects
Practical Eectroncs Calculations and Formulae
Yous Electronic Lalcutator & Your Money
Electroric Security Devace,
50 Cirzurts Using 400 Seres IC's
The Simple Electronic Circurt & Components (& lwments of S tronies - Beok)
Atternoting Curren [heory € lement of Elactronics Bouk Zi
Semiconductor T achnology 1€ kments of Elctronics — Book 3!
Gude to mnd Crmputing
Choosmg and Uung Your Hi-Fy
Electronk Games
Trarsaior Radio Fault-finding Chart
A Microprocussor Primer
Elecirnnwe Music Projecty
Power Supgly Projects
Micropeocessing Systems and Circuits (Elinents of Electionics — Book 41

Populee Eisctrens Circunts - Book 1

Dugital IC Projects

Intornaticnal Transstar Equivetents Guide

an | to BAS!C P T

50 Simple LED Circuits — Buok 2

How to Use Op-Amgps

Communicat.on (Elerments of Flectonics - Book &)
Audio Frojects

An Iutraduchon 10 Risiio DXing

Elociromcs Simplitwd Crystal Swt Construction
Esectronic Timer Projects

Ewctronic Projects 1or Cars am0 Rosts

Modei Raiiway Projects

1C Projects for egunners

Poputar Electroni Cicuits - Book 7
Mini mitror Board Projects

Huw 1o Identify Unmarkad ILs
Mult circuit Bosed »*toju s
Eloctronic Scance Proje ts

Aera! Projcts

Internztional D ode Equivakents Guide

The Art of Programming the 1K ZX81

How to Get Your Elecsronw: Projscts Working
Audio (Elenwnts of Esctoonics — Book 6)

A 280 Wauiks1op Manuel

30 Soldortess Broadboars Projmts - Book 2
Tha Art of Prugramning the 16K 2 X81

The Pracompute Bock

Practical Elertronie Buiding Blocks - Eook 1
Practical Elacrran Buitding Blocks — Book &
The Art cf Progeamming the ZX Spectrum
Audio Amp Fault finding Chart

Haw 10 Dreg Make Your Own #CB's

Auaio Ampliter Sontrecnion

A Practical introduction 10 Microprocessors
Easy Acd. 20 Projects fur Spectrym, 2X81 F, Ace

25 Simpie Acateur Band Aerinly

BASIC & PASCAL in Paalle)

How to Design Elestronic Frojscts

20 Programs for the £ X Spectium and 16K ZX81

An o cduction 16 Prcgiamming the ORIC 1
Tacrn | ntarfacing Cors s - Buck 1

Muxcio Intertacing Cicuiss Book 2

o m
SNN

2B00RREGREINIAREE38338ERRR33:
RSB RERRR R R RS RO AR N IR REREERIRE

el eleia v ialals)
SNROSIgan
FRELHER

psdrlud]
HRERY

nIRmRRRRRRENRRRD
RRRRRONRRRBIRERS

mm
49
o

£1.95

25 Simple Shortwave Broadcast Band Avrials

An Introduction 1o Programming the Dragen 32

Secrets of the Commodore 64

25 Simph Indoor and Window Aerials

BASIC & FORTRAN in Paratlei

BASIC & FORTH i Parallel

An Intreduction 1o Programming the BBC Mordei B Micro
Dugital IC Equivatents & Pin Cannectians

Linear IC Equivalents & P Connections

An latreduction 1o Programming the Acurn Elactron

An Introduction 1o Programming the Ata: 500/800XL

Further Pracuical Eiectronics Calculations and Formulae

25 Sinple Tropical and MW Bund Aenils

The Pra-B4SiC Bock

An Inweduction 1o 6302 Machine Code

Computer Teiminology Explained

A Concsse Introduction 1o the Langusge of 3BC BASIC

Ar Intreduction 12 Z80 Machine Code

An Iatroduction to Programming the Amstrad CPC464 and 664
An Introduction 1o MSX BASIC

An Intreducton 1o QL Machine Code

How 1o Write ZX Spoc"um andt Spectrum + Gamws Prog: ams
Aa d. the C 16 and Plus 4
How 10 wrrte A.nllmﬂ CP(‘ 464 Games Programs

Into the QL Archive

Counting on QL Abacus

How to Get Ymn cmum P:oqemx Running

An
Easy Add-on Pm.-u for Amstrad CPC 464 664 6128 and MSX Computers
Compute: Musiv Projocts

Moca Advanced Electronic Music Projects

How 0 Writo Ward Game Programs for the A~ astrad CPC 464, 664 wrid 6128
A TY.DXars Handbook

An 1w Computer C s

Ei Circuits tor the G tor Centrof uf Roooly

Ectronic Circurts for the Computer Control uf Model fnilways

Garting the Most from Yaous Printer

MIDI Projects
Ar Introduction 1o CP/M

An Introduction to 8000 Assambly Language
E v s

Véalkm-Talkie Froiacts

A Practes! Referencs Gude 1o Word Proce sing on the Amstiad POWS256 i PCWE512
Getteig Startod with BASIC and LOGO on the Amsuad PCWs
Using Your Amstead CPC Disc Disves

More Advanced Clectroni: Sacurity Projects

Simple Applications of the Amsirad CPCs for Writers

PAnre Advancad Power Supply Projocis

LOGO for Baginnars

Modern Gpto Device Projocis

An Introduction 1o Saisihite T eles.son

BASIC & LOGO m Parstlel

An Introduction tc the Amstrad PC's

An Introduction to Antanns Theory

An Iatroduction 10 BASIC-2 on the Amsitad PC's

An Introduction to GEM

A Concise Intuduction 1 MS-DOS

Ecuanie Hobbysts Handbook

Tranustor Selector Guide

Powor Sawctor Guide

Oigital IC Seiector Guide Part 1

Dgital IC Seloctor Guide Part 2

Linoar IC Salctor Guide

Gatting tho Mozt from Your Multimater

Ruemote Control Handbook

An Introducton to 8086 Machine Code

An Introduction to Computer Asded Drawing

BBC BASICB6 on the Amstrad PC's and I1BM Compatibles - Book 1 1 anguaga

£3.95
BBC BEASICHS on the Amstrad PC's aod 1BM Compatibias — Book 2: Graphnics & Disc Files [3 95

Digital Audio Projects

Musical Applations of the Atari ST's

Mors Advanced MID! Pmjects

Tt Equipmant Comstruction

More Advanced Test Fquipment Corstruction
Programming in FORTRAN 77

Compater Hobbyists Handbnok

An Introduction to C

Ultea High Power Amplifiar Cunstruction
From Atoms to Ampres

International Racio Stauens Guida

An Introduction to Loudspeskers and Enclosure Desgn
An Introduction 1o Amateur Radio

Lrarning to Program i C

&=/ BERNARD BABANI BP152

_An Introduction

to Z80 Machine Code

» | In essenge. machine code programming is direct programming of the
mi¢roprocesgor withoul using a| built-in high-level gomputer language
such as BASIC.

m | The vastfincrease In running speed obtained when writing programs
in machine code 1s offset, to a degree, by the added complexity In writing
them. Howevler, it is not as difficult as one rmght think and this book tells
the story.

m | The Z80| or faster version Z8OA microprocessor fis utilised|in many
popular home computelrs including the Sindlair ZX Spectrum and ZX81.
Méemotech MTX500 and MTX512 as well as the Amsjrad CPC464

u | Some simple demonstration programs which can be run on the above
machines are included |in this book.

GB £ NET +002-75
ISBN D-85934-127-5

TR R R e e

An

zwqon:To.: L Nmo ZT:S@ Twomm” Tvdmw_ Bl _ ”

-

i

A& J.W. PENFOLD

npn I_\OCR

HE htt1:-5 ffacpe,.me/

[FRA] Ce document a été § prASErve numeri riquement a des fins éducatives et d 'études, et non commerciales.
[ENG] This document has been dlg IIIII y preserved for educational an d study purposes, nnt tnr commercial purposes.
[ESP] Este documento se ha conservado digitaimente con fines educativos y de estudio, no con fines comerciales.

	An introduction to Z80 machine code
	PREFACE

	CONTENTS

	1 - THE MICROPROCESSOR
	2 - ADDRESSING MODES
	3 - THE INSTRUCTION SET
	4 - STORING AND EXECUTION
	5 - EXAMPLE PROGRAMS
	6 - INPUT/OUTPUT
	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Cover restoration/Layout/OCR/Coca light : ACME – https://acpc.me | Thanks to Rafa CPCMANIACO for lending the book ● 2020-11-04

