

• ‘:;011.- _••""• ee
L. • tn. , • • ". • v .

. •

r-

• /WM ?•7,ifiafflealn
-„b•• f • rt.,

'

•

MORE ADVANCED
MIDI PROJECTS

OTHER TITLES OF INTEREST

BP74 Electronic Music Projects
BP173 Computer Music Projects
BP174 More Advanced Electronic Music Projects
BPI 82 MIDI Projects
BPI 85 Electronic Synthesiser Construction
BP246 Musical Applications of the Atari STs

MORE ADVANCED
MIDI PROJECTS

by

R. A. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

PLEASE NOTE

Although every care has been taken with the production of this
book to ensure that any projects, designs, modifications and/or
programs etc. contained herewith, operate in a correct and safe
manner and also that any components specified are normally
available in Great Britain, the Publishers do not accept respon-
sibility in any way for the failure, including fault in design, of
any project, design, modification or program to work correctly
or to cause damage to any other equipment that it may be
connected to or used in conjunction with, or in respect of any
other damage or injury that may be so caused, nor do the
Publishers accept responsibility in any way for the failure to
obtain specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

© 1989 BERNARD BABANI (publishing) LTD

First Published — July 1989

British Library Cataloguing in Publication Data

Penfold, R. A.

More advanced midi projects.

1. Music. Applications of computer systems

I. Title

780'.28'5416

ISBN 0 85934 192 5

Printed and Bound in Great Britain by Cox & Wyman Ltd, Reading

Contents

Page
Chapter 1

MIDI MESSAGES 1
Getting the Message 1
Modes 2
Mode 1 3
Mode 2 4
Mode 3 4
Mode 4 5
Multi-Mode 5
Transmission Modes 8
Note On/Off 8
Key Pressure 10
Controls 11
Mode Change 12
Program Change 14
Pitch Bend I 5
System Messages 15
Song Position Pointer 15
Song Select/Tune Request 16
System Exclusive 16
System Real-time 18
Code Numbers 20
Channel Message 20
System Messages 21
The Hardware 23

Chapter 2
SIMPLE MIDI ACCESSORIES 27

MIDI Indicator 27
THRU Box 32
The Circuit 34
MIDI Merge 36
The Circuit 41

Chapter 3
MIDI PROJECTS 45

Micro or UART 45

Chapter 3 (continued) Page
6402 UART 46
MIDI Code Generator 50
Hex Codes 54
Hex — Decimal — Binary Conversion Chart 55
Output Circuit 55
Power Source 57
Construction 58
Testing 63
MIDI Pedal 64
The Circuit 68
Construction 72
Setting Up 75
MIDI Programmer 75
System Operation 77
The Circuit 79
Construction and Use 86
MIDI Processing 91
System Operation 92
The Circuit 94
Construction 98
In Use 101
Simplification 101
MIDI Analyser 102
System Operation 102
The Circuit 106
Construction ' 110
Finally 112
Semiconductor Pinout Details 113

Preface

MIDI has not exactly been an overnight success, but after a
slow start it has gained in popularity to the point where it now
seems to dominate the world of electronic music. MIDI
sockets are not only found on synthesisers — they are common
on electronic pianos, electronic organs, and are even to be
found on some guitars. audio mixers, effects units, computers,
and portable keyboards. While in some spheres of the
electronics industry a lack of true standardisation has led to
promising products failing to gain acceptance by the con-
sumers, MIDI has had the opposite effect on the sales of
electronic music equipment. Compatibility between instru-
ments etc. from different manufacturers is guaranteed
provided they all have MIDI interfaces. Sales of electronic
music equipment have never been better.

Although MIDI equipment tends to be considered by
many as beyond the scope of the do-it-yourself enthusiast,
this is not entirely true. It is probably not possible for the
amateur builder to compete with electronic instrument
manufacturers. Their use of specially produced integrated
circuits and large volume production enables them to build
instruments of a sophistication and low cost that the amateur
could almost certainly never match. However, there are a
number of useful MIDI accessories that are well within the
capabilities of the average electronics enthusiast. These
include such things as simple merge units and channelisers.
Several such units are described in this book. These projects
are generally more complicated than those featured in
"MIDI Projects" (BP182), although a few very simple units
are included. While most of these projects are not suitable
for beginners, they should be well within the capabilities of
someone who has a reasonable amount of experience at
electronics construction. These circuits should also provide
some useful electronic building blocks for use in readers'
own designs.

R. A. Penfold

Chapter 1

MIDI MESSAGES

This book carries on where "MIDI Projects" (BP182) left off.
In "MIDI Projects" a number of computer interfaces were
described, together with some other reasonably simple MIDI
projects. The projects described here are generally a little
more advanced than those in book number BP182, and do not
include any computer interfaces. The emphasis is more on
units to extract the full potential from a MIDI system, whether
or not it is computer based. The projects are "advanced" not
only in that the circuits are generally more complex than those
in BP182, but also in that they are mainly aimed at users of
more sophisticated MIDI systems. With the current low prices
of some MIDI expander units you no longer need to be a
millionaire in order to put together an advanced music system!

The units described range from a simple MIDI merge unit
:hrough to more complex devices such as channelisers. I
;uppose that the projects fall into two main groups: those that
are designed to overcome a deficiency in an item of equipment
in the system, and those that are designed to enhance the
performance of the system or to make it easier to use. Most
modern items of electronic music equipment that implement
MIDI have a comprehensive MIDI specification. In fact many
modem instruments go somewhat beyond the MIDI standard,
with "multi" mode and the like. Even with units of this type,
there are still one or two simple gadgets that can enhance the
performance of a system or its ease of use. Older MIDI
equipment often has what is a considerably less than full
implementation, and add-on units can be especially useful
with equipment of this type.

Getting the Message
In BP182 the only MIDI messages that were considered were
the basic note on and note off types. These are only the
"tip of the iceberg" though, and there are a large number of
different MIDI messages. Although in the past MIDI tended
to be regarded as nothing more than an alternative to the old

1

gate/CV method of interfacing, as many users now realise, its
scope goes well beyond these confines. There is in fact no
limit on the type of information that can be exchanged via
MIDI. There are MIDI codes for specific types of message,
and general codes that can be used to carry virtually any
information you like. The only real limitation is the operating
speed of MIDI, which means that the exchange of large
amounts of information can take quite a long time.

In order to understand the function of some of the projects
featured in this book you need to be familiar with many of
these additional MIDI message types. In this first chapter a
reasonably detailed description of all the MIDI messages will
therefore be provided. It is well worth having a good know-
ledge of the MIDI messages as some of the less well known
ones can be very useful. It is worth mentioning that it is a
good idea to carefully study the MIDI specifications of any
MIDI instruments or other MIDI equipment you own.
Practically all equipment does not implement every MIDI
feature, or only partially implements certain features. Study-
ing the MIDI specifications for your equipment should make it
clear what facilities are available to you and (more importantly)
which ones are absent or not fully implemented. The MIDI
implementation chart should also give details of any "extras"
that go beyond the basic MIDI specification.

Modes
Before looking at the various types of MIDI message it would
be as well to examine the subjects of channels and operating
modes. Unless you understand the four MIDI modes and
channelling, a lot of MIDI messages will be difficult or impos-
sible to fully understand.

The concept of MIDI channels is quite easy to understand.
At the beginning of each MIDI message there is some data
which specifies the message type (note on, note off, etc.).
Most messages also carry a channel number in this initial part
of the message, so that they can be directed to one particular
instrument in a system, or even to one voice of an instrument
in the system. These are the MIDI "channel" messages. Some
messages do not carry a channel number, and are directed at
the entire system. Appropriately, these are called MIDI

2

"system" messages.
MIDI channels are notional rather than real, since any

device receiving a MIDI instruction can act on any channel
number the message may contain, in whatever way the equip-
ment designer chooses. This includes simply ignoring channel
numbers! Remember that MIDI channels are simply numbers
at the beginning of messages, and that they are not channels in
the sense of separate connecting cables. It is for this reason
that there are several MIDI modes, and these operating modes
only differ in the way that MIDI channel numbers are treated.
In all other respects they are the same.

With MIDI channel messages the most significant nibble
(i.e. the four most significant bits) carry the message type
code, while the least significant nibble contains the channel
number. This gives sixteen channels from 0000 in binary (0 in
decimal) to 1111 in binary (15 in decimal). Note that although
the values used to select MIDI channels run from 0 to 15,
the convention is to number MIDI channels from 1 to 16.
Therefore, the value used in a MIDI message to select a
channel is one less than the channel number (e.g. 10 is used
in order to place a message on channel 1 1).

System messages have the appropriate code for the most
significant nibble (11111 in binary — 240 in decimal). The
least significant nibble is not needed for the channel number,
leaving it free to identify different types of system message.

Mode 1
Mode 1 is alternatively known as "omni on/poly", and was
originally called just "omni" mode (and often still is). This
is the most simple mode, and the one to which many instru-
ments default at switch-on. The "omni" part of the name
means that channel numbers are ignored, and that an instru-
ment in this mode will respond to any note on and note
off messages that are received regardless of the channel
number they contain. Exactly how received notes are
assigned internally to an instrument's voices depends on the
design of the instrument, and there is no standard for this.
In most cases an instrument in mode 1 will respond to notes
received via the MIDI input in exactly the same way as it
would respond to the same sequence played on its keyboard.

3

This mode is intended as a basic mode which should enable
any piece of MIDI equipment to function to some degree in
conjunction with virtually any other piece of MIDI gear. It
lacks versatility though, and is far from ideal for most
sequencing. It is fine if you are using a single instrument
which has all its voices producing the sanie sound, but it is
not much use for anything else.

Mode 2
This has the alternative name of "omni on/mono". Like mode
1, channel numbers are ignored in this mode. The "mono"
part of the name indicates that only monophonic operation is
provided. This mode was presumably included in order to
accommodate monophonic synthesisers, but few monophonic
instruments equipped with MIDI interfaces have ever been
produced. This mode is not normally included on polyphonic
instruments, as there is no obvious advantage in downgrading
them to monophonic types (which is effectively what would
happen by switching to this mode)!

Mode 3
This is a powerful mode which does acknowledge the existence
of MIDI channels. It has the alternative name of "omni off/
poly". The "omni off" section of the name indicates that
channel numbers are recognised, while the "poly" part indi-
cates that polyphonic operation is possible. In other words,
an instrument in mode 3 will only respond to notes on one
channel, and the instrument will work with more than one
note at a time switched on. MIDI does not set down any
maximum or minimum number of notes that a mode 3 instru-
ment must be able to handle at once. It is up to the user to
ensure that an instrument used in this mode is not supplied
with more notes than it can handle. With most instruments
there is no major disaster if they should be fed with more
notes than they can accommodate. Usually it simply results
in existing notes being cut short so that new ones can be
sounded (or with a lot of recent instruments any excess notes
are ignored with existing ones sounding for their full duration).
This is obviously something that should still be avoided if at all
possible.

4

This mode has great potential for sequencing applications,
since it is possible to have a number of instruments on separate
MIDI channels providing different sounds. This gives you a
sort of computer controlled orchestra, and tremendous poten-
tial to develop complex pieces of music. This mode was
originally called "poly" mode incidentally, and is still
occasionally referred to by this name.

Mode 4
This mode is widely regarded as the most powerful one for
sequencing purposes, although I suppose that this is not
strictly true. Its alternative name is "omni off/mono", but it
is probably still better known by its original "mono" name.
As the "omni off" part of the name implies, MIDI channel
numbers are recognised in this mode. The "mono" part of
the name is perhaps a little misleading in that it suggests that
a mode 4 instrument can only provide monophonic operation.
This is not true though, and operation is monophonic only in
that each voice of the instrument operates monophonically.
If an instrument has sixteen voices, then in mode 4 each voice
is assigned to a different MIDI channel, and overall, sixteen
note polyphonic operation is possible. This may not seem to
be much better than the basic mode 1, but it gives tremendous
scope when applied to a multi-timbral instrument. Each
channel can then have a different sound, and a single instru-
ment can provide a computer controlled orchestra.

This sort of system is actually less powerful than a mode 3
type having a number of instruments, because in mode 4 each
channel only gives monophonic operation. It is popular with
MIDI sequencer users because it gives extremely good results
at an affordable price. A sixteen channel mode 4 instrument
(or two eight channel mode 4 instruments) should cost
substantially less than sixteen mode 3 instruments!

Multi Mode
This is an unofficial mode which is not mentioned in the MIDI
specification. However, it seems to be a feature of many of
the more recent MIDI instruments. It is only fair to point out
that the exact implementation of this mode varies from one
instrument to another, and it may be encountered under some

5

other name. The basic idea of multi-mode is to provide poly-
phonic operation on several channels. It is rather like mode 4,
but each channel is not restricted to monophonic operation.
Another way of looking at it is to regard a multi-mode instru-
ment as being like a number of mode 3 instruments set to
operate on different channels. Because of this, the term
"virtual instrument" is sometimes used to describe a channel
of a multi-mode instrument.

The number of notes available on each channel varies from
one instrument to another. So does the flexibility with which
tone generators of an instrument are assigned to channels.
With some instruments you have to specify a maximum
number of notes for each channel, or select one of several
preset allocations. With other instruments each channel can
have as many notes at once as the instrument can provide.
This is not to say that with, for example, a thirty-two note
polyphonic instrument you could have thirty-two notes
playing simultaneously on all sixteen MIDI channels.
However, you could have thirty-two notes playing on each
MIDI channel in turn, or eight notes playing on each of any
four channels, or any combination which gives no more than
thirty-two notes playing at once.
A good multi-mode instrument obviously provides great

power for the sequencer user. I have heard demonstrations
of multi-mode instruments which sound remarkably like a full
orchestra playing! An apparent drawback of multi mode is
that it is non-standard, and therefore would seem to poten-
tially raise the likelihood of incompatibility problems. In
practice this is really not a problem. As far as the device
driving a multi-mode instrument is concerned it is dealing
with several mode 3 instruments. From the MIDI point of
view, a multi-mode instrument is just several mode 3 types
in the same box.

An important point to realise is that you do not need to
have all the instruments in a system working in the same
mode. It is perfectly alright to have something along the lines
of the system shown in Figure 1.1. Here a computer based
sequencer is controlled two mode 4 instruments on channels
from 1 to 14, and an eight channel polyphonic instrument in
mode 3 on channel 15. These three instruments could not be

6

In Thru

CICI L i O GI 0 6 0
0 0 CI CI CI 0

0 0 0 0 0 CI •

In

o

•

0 CI CI CI CI 0 •
CI CI Ca 0 0 0

0 0 0 0 0 CI •

(Mode 4, Channels 10 To 15) (Mode 3, Channel 16)

(8 Note Polyphonic)

In Out Thru

Iiil 1111111U11
(Mode 4, Channels 1 To 9)

In Out
BUBB

L1:1

16 Channel Sequencer

Fig.1.1 For a multi-instrument setup a mixture of mode 3 and mode 4 operation usually offers the
best results

accommodated using mode 4 alone, as this would require
twenty-two MIDI channels, and there are only sixteen avail-
able. When sequencing using more than two instruments it is
normally the case that a mixture of modes 3 and 4 (or multi
mode) offers the greatest potential, but this obviously depends
on the precise facilities offered by the instruments.

Transmission Modes
So far we have only considered reception modes, and not
transmission modes. Really, modes are a standard for
handling received data, and talking about transmission modes
is perhaps not totally valid. With a sending device you do not
normally set an operating mode as such. If you have a
sequencer giving monophonic operation on four channels, then
I suppose that it could be accurately described as a mode 4
device. You would not set the device to mode 4 though, you
would set it up to have four monophonic tracks on separate
MIDI channels, and this would just happen to give a form of
mode 4 operation.

Even if a MIDI controller is driving an instrument (or
instruments) that are in mode 1, and which will ignore channel
numbers, a channel number must still be included in each
MIDI channel message. It does not matter which channel is
used, but the convention is to use channel 1.

Note On/Off
For basic sequencing it is only necessary for the controlling
device to be able to switch notes on and off, and to select
the required notes. Switching notes on and off is handled
using separate messages, and each note on message must
always be followed by a note off message after the appropri-
ate interval, or notes will be left "droning".

The note on and note off messages have the same basic
format with each message being sent as three separate pieces
of information. Most MIDI messages require more than one
byte of information, but as a three byte message can be sent
in less than one-thousandth of a second there is not normally
any problem with the data stream becoming overloaded. The
first byte of data contains the note on or note off code
number, plus the MIDI channel number. The second block

8

carries the note number, and MIDI supports a note range of
0 to 127. Each increment by one represents an increase in
pitch by one semitone. A range of 128 semitones is a compass
of well over ten octaves, which should be more than adequate.
This is over three octaves more than the range covered by
most pianos. In fact few MIDI equipped instruments actually
accommodate the full note range. It is useful to bear in mind
that many can handle a wider compass via their MIDI inter-
face than they can using their keyboard. Incidentally, middle
C is at a note value of 60.

The third byte in the message carries the velocity value for
the note, which with most instruments controls the volume
of the note. Most instruments are velocity sensitive these
days, but there are still some that are not, and many early
MIDI instruments did not implement this feature. This data
must always be present though, so as to maintain full compat-
ibility between items of MIDI equipment. A non-touch
sensitive instrument simply ignores any velocity information
it receives, and transmits an intermediate "dummy" value in
any note on messages it transmits (usually a value of 64 is
used). Once again, the range of values is from 0 to 127,
representing minimum and maximum velocity respectively.
MIDI data bytes always have the most significant bit set to 0,
which makes them easily distinguished from message bytes
where the most significant bit is always set to 1. Thus the
range of data bytes is from 0 to 127, and not the 0 to 255
range one normally expects from eight bit codes.

Note off messages only differ from the note on type in
that the message code in the first byte is different. It might
seem at first that not all the information provided in note off
messages is actually needed, but remember that there could
be sixteen polyphonic instruments connected to a MIDI output.
A note off message must make it clear which note on which
channel of which instrument must be terminated. There is an
alternative method of switching off notes, which is to use
note on type having a velocity value of 0. I am not quite sure
why this alternative method was deemed necessary, but
some instruments do seem to use it (the SCI synthesisers in my
original MIDI system certainly seemed to use this method for all
note off operations, and apparently many others do so as well).

9

Key Pressure
At one time very few instruments responded to any form of
key pressure (after-touch), but it now seems quite common
for overall key pressure to be implemented. This is the most
basic type of key pressure response, and it is a sort of average
pressure value for however many keys are pressed. There are
various ways in which this information can be used by an
instrument, but it normally controls either the volume or the
filtering after the initial attack and decay phases of the signal.

This type of message requires only two bytes of data to be
sent, and the first of these contains the overall pressure code
number together with the MIDI channel number for the
message. The second block of data is the pressure value,
which is from 0 (minimum pressure) to 127 (maximum
pressure).

Polyphonic key pressure is much the same as the overall
type, but individual MIDI messages are sent for each note.
This is much more sophisticated, and offers excellent control,
but it is relatively difficult to implement. It is a feature that,
as yet, is far from common. The polyphonic key pressure
message takes the same basic form as the overall type, but a
third block of data is needed to identify the note to which
the pressure value applies. This byte is placed between the
code number and pressure value bytes.

An important point to keep in mind when using instru-
ments that implement either form of key pressure is that
holding down keys can result in a lot of MIDI data being
generated. This applies more to the polyphonic type than
those which have overall key pressure. With polyphonic
key pressure, if you are holding down around five keys at a
time, five sets of key pressure data will be transmitted. Key
pressure is not something that is sent once per note, and
there can be several sets of pressure data for each note.
The implications of this for real-time sequencing are clear
— you could easily end up with most of the available
memory being taken up with pressure data rather than note
on/off messages! This might not matter with short sequences
if a lot of free memory is available. Otherwise, it might be
necessary to disable the instrument's after-touch, or to use
some method of filtering to remove the pressure data.

10

Key pressure is not something that is restricted to use with
keyboard instruments. A lot of MIDI rack-mount modules
wLl respond to after-touch, and there is no reason that a
step-time sequencer should not be designed to implement
key pressure. However, if you have equipment that can handle
this type of thing, the memory problem described previously
must be kept in mind.

Controls
MIDI includes a general purpose control message which can
be used to control master volume, filter resonance, or anything
a manufacturer cares to implement. The only MIDI control
number which th t MIDI specification allocates to a specific
function is control number 1, which is the modulation wheel.
It seems to be the convention for control 4 to be a foot pedal,
control 7 to be the main volume, and for control number 64
tc be the sustain pedal. However, these are only conventions,
and not all equipment necessarily conforms to them.

Controller messages are standard three byte types, with the
first byte carrying the controller message code and the channel
number. The next chunk of data is the number of the control,
and the last one is its new value (from 0 to 127). Control
n ambers from 0 to 63 are used for continuous controls (i.e.
adjustable types like volume and tone controls) whereas
control numbers from 64 to 95 are used for switches and only
give a simple on/off action. For these switch type controls,
only values of 0 (off) and 127 (on) are valid, and other values
will be ignored.

The continuous controls are complicated slightly by a
system of pairing, which has control numbers 0 to 31 paired
with controls 32 to 63 respectively. The idea is to have the
values sent to a pair . of controls merged to give one large
number. This permits much more accurate settings than are
possible using one control in isolation. Whereas one control
has 128 different settings from 0 to 127, a pair of controls
gives 16384 settings from 0 to 16383. In practice the degree
of control provided by pairs of control values is usually higher
than is needed. Also, where a control is being continuously
varied, such fuie resolution requires vast amounts of data to be
sent. It is unlikely that MIDI could send data fast enough to

11

fully utilize such high resolution. In practice it seems to be
quite common for the "fine tuning" controller not to be
implemented. It is then only control numbers from 0 to 31
that are used, while those from 32 to 63 are ignored. As a
point of interest, in several instruments I have used not even
the full 0 to 127 range has actually been used, with some
controls only having 64 or 32 different settings.

Mode Change
Control numbers from 96 to 127 are either not assigned to
any purpose, or are used for things such as mode changing.
The functions of the control numbers that have been assigned
a task are listed below:—

Control Number
121
122
123
124
125
126
127

Function
Reset all controls
Local control on/off
All notes off
Omni mode off
Omni mode on
Mono mode on (poly mode off)
Poly mode on (mono mode off)

These are all switches where the values sent to them is either 0
(off) or 127 (on) or a dummy data number of 0 is used. The
only exception is control number 126. Here the value sent
specifies the number of voices to be used in mono mode (a
value of 0 sets all available voices to mono mode).

Local control on/off is where the normal (built-in) method
of controlling the instrument can be disabled. This usually
means switching off the keyboard. One reason for doing this
is merely to prevent accidental operation of an instrument
while it is being sequenced from a computer. It also enables a
keyboard instrument to effectively be used as a separate key-
board and sound generation module. The salient point here is
that the keyboard will still transmit on the MIDI "OUT"
socket, and the instrument will respond to data received on
the MIDI "IN" socket. You can even feed the MIDI output
though some form of processor (which could be a computer
running a suitable program or a stand alone unit), and then

12

MIDI Processor

Out Thru In

In Thru Out

!!!!! !!!

Synthesiser (Local Off)

Fig. 1.2 One method of using a synthesiser in the "local

off" mode

feed the processed signal back into the instrument, as shown
in Figure 1.2.

The all notes off message is not intended as the normal way
of switching off notes. It seems to be intended more as a
means of switching off any "droning" notes in the event of
some form of malfunction. Incidentally, changes in MIDI
-node also switch off any notes that are switched on at the
time.

MIDI does not have specific messages to select mode I,
mode 2, etc., but instead the right combination of omni
on/off, mono, and poly have to be selected. This should all
be quite straightforward if you consider modes in terms of
their current names rather than their numbers (e.g. omni
on/poly instead of mode I).

13

Program Change
The program change message uses two bytes of data. The
first of these is the appropriate message code and channel
number, while the second is the new program for that channel.
In this context "program" generally means a set of control
settings for a synthesiser, so we are really talking in terms of
a change in sound for the voice of an instrument. It is usual
for synthesisers to have around 32 to 128 programs stored in
memory, with any of these being assignable to any voice of
the instrument. The ability to change sounds mid-sequence
via MIDI is more than a little useful. If you have a synthe-
siser with eight voices and capable of multi-timbral operation
in mode 4, on the face of it you only have eight different
sounds available. If the sequencer and the synthesiser both
support program changes, then you could have as many as 128
different sounds available. You would still be limited to no
more than eight notes at once, but would have a vast range of
sounds available for use in each piece of music. Not quite as
good as having a bank of synthesisers, but nearly!

There is potential for a lot of confusion with program
changes as there is no standard method of numbering. One
manufacturer might use numbers from 0 to 127, while another
might use numbers from 1 to 128. Some manufacturers have
a totally different approach. For instance, my Casio CZ1
synthesiser has programs selected by two banks of push-
buttons which are labelled " 1" to "8" and "A" to "Fr. This
gives sixty-four programs from "A-0" to "H-8". The manual
for an instrument should make it quite clear if there is a
discrepancy between the numbers of programs, and the
values used in program messages to select them. Often there
is a chart showing program change values and which program
each one selects.

It is worth noting that program change messages are not
only recognised by synthesisers and other instruments.
Devices such as MIDI controlled mixers and effects units often
make use of them as well. The usual way in which this works
is that sets of control adjustments are assigned to program
numbers so that they can be called up as and when required
using the appropriate program change instructions. Program
changes are an important part of much MIDI sequencing.

14

Pitch Bend
Pitch bending could be accomplished using an ordinary MIDI
controller, but it has been assigned its own MIDI message type.
This message consists of three bytes, with the first one con-
taining the pitch bend message code and the channel number.
The other two bytes of data contain the pitch bend value,
with the two numbers having to be combined into one large
pitch bend value at the receiving device. The MIDI specifica-
tion does not lay down rules stipulating exactly how much
given changes in pitch bend value actually affect the pitch
of an instrument. Pitch bend information recorded from one
instrument might not produce exactly the same degree of
bend if it is played back to a different instrument. Some
instruments now permit some control over the degree of pitch
bend produced by a given change in the pitch bend value.

System Messages
System messages have a variety of functions, but they are
mainly concerned with timing, and the synchronisation of
sequencers. This almost invariably means keeping the built-in
sequencer of a drum machine properly synchronised with
the main sequencer which controls the rest of the system.
There is another important category of system messages in the
form of "system exclusive" types, which seem to be playing
an increasingly prominent role in the world of MIDI.

Song Position Pointer
A MIDI sequencer which is capable of using MIDI synchronisa-
tion signals can keep track of the number of beats that have
elapsed since the start of a sequence (or "song"). The
maximum number of beats that can be handled is 16384,
and each beat is equal to 1/16th note. The idea of this is to
enable a sequencer to randomly access any part of a song.
Perhaps more accurately, the idea is to enable two sequencers
operating in tandem to be set to exactly the saine point in a
song, and any desired point in a song. Without this random
access feature they could only be kept in synchronisation by
always starting them both from the beginning of a sequece,
or by using a lot of trial and error.

15

The song position pointer uses two bytes of data, but these
two numbers are combined to give one large number of 0 to
16383. Note that some sequencers take a significant time to
adjust to a song pointer instruction, and that they must be
given time to respond to one of these messages before they are
restarted. Also note that this message only moves the
sequencers to a certain point in a song, it does not set the
sequencers in motion.

Song Select/Tune Request
Although these messages have names that suggest a similar
function, they are actually quite different. The song select
message is used to select the desired sequence from a sequencer
that can store more than one song, and which supports this
feature. As with virtually every type of MIDI message, do
not assume that your equipment actually implements this
feature. Always check the MIDI specifications very carefully
to find out what features are supported and which are ignored.
This message uses one data byte, and this is the song number.
Song numbers are from 0 to 127 in terms of the actual number
sent in a song select message. However, this is another
example of the identification numbers used by manufacturers
not necessarily being the same as the actual values used in the
MIDI message, and not necessarily being the same from one
manufacturer to another.

In the tune request message it is "tune" in the sense of
tuning an instrument. This is for use with instruments which
have an automatic tuning facility. The message only consists
of the message code with no data being sent. No timing
information is sent with this message, and all it is really doing
is telling instruments to tune themselves against their internal
tuning references. Presumably any instruments that imple-
ment this feature would then accurately tune themselves to
the usual pitch of A = 440 Hz, and would all be accurately in
tune with each other. This is not a feature that seems to be
much used these days, and few instruments seem to support
this MIDI message.

System Exclusive
Most MIDI messages are universal, and can be implemented by

16

any equipment manufacturer. This is an important aspect of
MIDI, as one of the prime reasons for its introduction was, as
far as possible, to eliminate incompatibility between devices
from different manufacturers. On the other hand, MIDI
needed to be flexible enough to permit future expansion and
developments. Manufacturers needed to be able to do their
"own thing", and implement any novel ideas that they might
develop. Without this built-in flexibility it was unlikely that
MIDI would have been adopted by all the main electronic
music equipment producers.

Much of MIDI's flexibility lies in the system exclusive
message. This consists of the message code followed by the
manufacturer's identification code. The idea of this code is
that it enables equipment to filter out and ignore system
3xclusive messages that do not have the correct manufacturer's
identification number. This is an important feature, because
the data that follows the identification code can be anything
the equipment manufacturer desires. The data here will either
be meaningless to the wrong piece of equipment or worse still,
it could have totally the wrong effect and render a piece of
equipment temporarily useless. The system is only usable with
this method of filtering included. There is no fixed number
of data bytes in a system exclusive message, and there can be
as much data here as the application requires. The end of a
system exclusive message is marked by a special (single byte)
MIDI message.

System exclusive messages are used for such things as
program dumps, sample dumps, or any non-standard feature
that an equipment producer wishes to implement via MIDI.
A number of recent instruments seem to use system exclusive
messages to provide MIDI control of their sound generator
circuits, rather than making these adjustable via standard MIDI
controller messages. This is perhaps an unfortunate trend, as
units (or a computer like the ST plus some software) that are
intended for general MIDI programming via controller mess-
ages are not usable with these system exclusive oriented
instruments. They can only be programmed by way of a
matching programmer unit, or custom software.

On the other hand, manufacturers who use system exclusive
messages are supposed to publish details of the method of

17

coding used, and to allow anyone to freely use this coding.
Once system exclusive details have been published, no changes
should be made to the specification (except perhaps, to extend
it rather than modify any existing details). It is quite in order
for a "third party" company to produce programming soft-
ware or hardware that accesses instruments via system exclu-
sive messages, and many programs of this type are available.

There have been moves towards standardising some system
exclusive messages. As far as I know, the only standard
system exclusive message at present is the MIDI sample dump
standard. This uses the sample dump standard identification
code where the manufacturer's code number would normally
be, and it then has quite a complex method of sending
samples. This complexity is inevitable, as this standard is
designed to accommodate a wide range of instruments at
different levels of sophistication. It is also designed to leave
sufficient "headroom" for future developments. It has
facilities for error checking, and has two way communications
so that a receiving device can temporarily halt the flow of data
if it is becoming overloaded. However, it is only fair to point
out that not all samplers use the sample dump standard at the
moment, and it might never be adopted as the only sample
dump standard.

Incidentally, this type of system exclusive message is some-
times known by the rather contradictory name of "system
exclusive common" message.

System Real-time
The system real-time messages are the ones which provide
synchronisation between two sequencers, and are analogous
to the clock pulses used to synchronise drum machines in the
pre-MIDI era (and probably still much used today). The MIDI
system is substantially different to the old system though. In
particular, the clock signal is not just a regular series of
electronic pulses. It is a regular series of MIDI clock messages,
and it is sent continuously, not just while a sequence is in
progress. Because of this a number of other messages are
needed in order to make the system workable. It should be
pointed out here that in the original MIDI specification
synchronisation was handled in a slightly different manner.

18

This original method is now completely obsolete though, and
is certainly not to be found on any currently produced
equipment.

With a continuous clock signal it is obviously necessary to
have stop and start messages so that sequences can be started
and halted as required. Actually, there are two types of start
message, "start" and "continue". They differ in that a "start"
message results in the sequence starting from the beginning,
whereas continue causes it to start from wherever it left off
(i.e. the current position of the song pointer). If a song
pointer instruction is used to move to the middle of a
sequence, it is "continue" and not "start" that should be used
to restart the sequence.

The system real-time messages include a "reset" instruc-
tion, which simply takes the equipment back to its initial
state (i.e. the state in which it would be if you were to switch
it off and then turn it on again). This is not implemented on
all instruments, and would not be worthwhile with many disc
based instruments such as samplers, which can not produce
any sound in their switch-on state (they must first have data
loaded from disc).

Another little used facility is active sensing. The idea here
:s that the MIDI controller sends out an active sensing message
at reasonably frequent intervals (not more than 0.3 seconds
Detween each one), and the controlled devices then check that
they are receiving these messages at suitable intervals. If a gap
of more than 0.3 seconds should elapse without an active
sensing message being received, all notes are terminated. This
is quite a good idea as it avoids having an instrument stuck
with notes activated or in some other "hung-up" state if a
connecting cable becomes damaged, or something of this sort
should occur.

This facility seems to be little used in practice though. It
has the disadvantage of increasing the amount of MIDI data
that is transmitted, which increases the risk of MIDI "choke".
This would not seem to be a major problem though, as it only
needs three to four messages per second to be transmitted.
Perhaps equipment manufacturers feel that the processing
power of their instruments and controllers could be put to
better use in other MIDI departments, or perhaps they feel

19

that this is an unnecessary complication that few people will
want to bother with. Anyway, you are unlikely to encounter
much equipment that actually implements this feature.

All these system real-time messages are single byte types,
and none of them contain any data. Being forms of system
message they do not carry a MIDI channel number either.

Code Numbers
This is a full list of the standard MIDI messages, and if you are
intending to use anything more than very simple MIDI systems
you need to be familiar with many of these. In particular, if
you are going to use the projects described in the next two
chapters of this book you should study the details of the
channel messages. The next section of this book consists of
several tables which provide details of the MIDI code numbers.
These are of little interest to many MIDI users, but if you
intend to write MIDI software, design your own hardware, or
do trouble-shooting when a system does not behave as anti-
cipated, details of the MIDI codes are essential. It is probably
not worthwhile trying to commit the MIDI code numbers to
memory, but this section of the book should be useful for
reference purposes.

Channel Messages

Table 1

Header Function Data

1000 (128)
1001 (144)
1010 (160)
1011 (176)
1100 (192)
1101 (208)
1110 (224)

Note Off
Note On
Poly Key Pressure
Control Change
Program Change
Overall Pressure
Pitch Wheel

Note Value/Velocity Value
Note Value/Velocity Value
Note Value/Pressure Value
Control Number/Value
New Program Number
Pressure Value
1.s.b./m.s.b.

20

Table 2

Control No. Function Data

122
123
124
125
126

127

Local Control
All Notes Off
Omni Mode Off
Omni Mode On
Mono Mode On

Poly Mode On

O = off, 127 = on
O
o
O
Number of channels (0 =
All Channels Set To Mono
Mode)
o

System Messages
These all have 1111 as the most significant nibble in the
header byte. No channel numbers are used, as these messages
are sent to the whole system. This leaves the least significant
nibble free to indicate the type of system message. Table 3
gives a full list of these messages, but note that some of the
sixteen available codes are as yet undefined. Many of them do
not require data bytes, and are just single byte messages.

Table 3

Nibble Code Function Data

D000 (0)
0001 (1)
0010 (2)
0011 (3)
0100 (4)
0101 (5)
0110 (6)
0111 (7)
1000 (8)
1001 (9)
1010 (10)

System Exclusive
Undefined
Song Position Pointer 1.s.b./m.s.b.
Song Select Song Number
Undefined
Undefined
Tune Request
End System Exclusive
Clock Signal
Undefined
Start

21

ID/As Required

None
None
None

None
continued overleaf

Table 3 (continued)

Nibble Code Function Data

1011 (11) Continue None
1100 (12) Stop None
1101 (13) Undefined
1110 (14) Active Sensing None
1111 (15) System Reset None

The values shown in brackets are the decimal equivalents for
the binary nibbles. These must be boosted by 240 to give the
total decimal value for each header byte (e.g. the value sent for
a clock signal is 240 + 8 = 248). The system exclusive message
is followed by a data byte which gives the manufacturer's
identification code, and then as many data bytes as required
follow on from this. The "end system exclusive" message
marks the end of a system exclusive message. Table 4
provides a list of manufacturer's identification numbers. The
sample dump standard is a "system exclusive common"
message, which can be used by any MIDI equipment producer.

Table 4

Number Number Manufacturer Manufacturer
(decimal) (decimal)

SCI 1 Bon Tempi 32
Big Briar 2 SIEL 33
Octave 3 Kawai 64
Moog 4 Roland 65
Passport Designs 5 Korg 66
Lexicon 6 Yamaha 67
Ensonique 15 Casio 68
Oberheim 16 Sample Dump

Standard 126

22

The Hardware
MIDI is a form of asynchronous serial interface, and in this
respect it is very much like ordinary computer RS232C and
RS423 interfaces. The standard MIDI "baud" rate is 31250
baud, or 31.25 kilobaud if you prefer. This is not a standard
RS232C baud rate, and might seem to be an unusual choice.
Originally the baud rate was 19200 baud, which is the highest
standard baud rate for RS232C interfaces. However, this was
deemed to be too slow, and in the final MIDI specification it
was increased to 31250 baud. This is convenient from the
hardware point of view, as it is well within the capabilities
of most serial interface chips. Also, 31250 multiplied by 32
equals 1000000, and this fact enables the baud rate of MIDI
interfaces to be controlled using "off the shelf" crystals
intended for communications applications and micro-
processor circuits.

RS232C and RS423 interfaces use different voltages to
represent logic 0 and logic 1 levels, but MIDI is different in
that it uses a 5 milliamp current loop. In other words, the
current is switched on to indicate one logic level, and switched
off to represent the other logic state. This is done due to the
use of opto-isolators at each input, which keep items of
equipment in the system electrically isolated from one another.
This eliminates the risk of damage occurring when two or
more items of equipment are connected together, due to their
chassis being at different voltages. It also helps to reduce the
risk of "hum" loops being produced when a number of
instruments and other equipment are connected together.
Finally, it also helps to avoid having electrical noise coupled
from a computer or other micro controller circuit into the
audio stages of an instrument. If there is one thing computers
do better than space invaders or number crunching it is gener-
ating electrical noise! MIDI port connection details are shown
in Figure 1.3.

There is a slight problem in using opto-isolation with a
system that has a relatively high baud rate of 31250 baud.
Opto-isolators are inherently slow devices, and this rate of
switching is well beyond the capabilities of the popular low
cost types such as the TIL111. At least, it is beyond their
capabilities unless they are augmented with a switching

23

transistor at the output to boost their performance. 1 have
found that the arrangement shown in Figure 1.4 usually gives
excellent results.

Of course, there are various improved opto-isolators which
offer increased efficiency and switching speed. Of these, the

24

+5V

R3

¿ 4

IN

15

RI
220

21 ICI

TIL111

5

R2

1 k5

14

470

TRI
BC549

•--0 0 UT

Fig. 1.4 A MIDI input stage using an inexpensive
opto-isolator

OV

type which seems to offer the best results in a MIDI context
are the ones which have an infra-red I.e.d. driving a photo-
diode, which in turn drives a two stage amplifier circuit. This
arrangement is shown in Figure 13, which shows the internal
circuit and pinout details for the 6N139. Figure 1.6 shows
how this device can be used as a MIDI input stage. Opto.
isolators of this type are relatively expensive, but they provide
very good reliability. They are actually capable of operating
al speeds of up to something like ten times the MIDI baud
rate!

25

Fig. 1.5 Pinout details and internal circuit for the 6N139

26

Chapter 2

SIMPLE MIDI ACCESSORIES

In this short chapter two or three simple but useful MIDI
accessories are described. These are not really in the
"advanced" category, but it was felt that they were useful
gadgets that were well worth inclusion in this book.

MIDI Indicator
The first of these projects is simply a unit that connects into
a MIDI cable and indicates via a 1.e.d. whether or not MIDI
messages are being sent over the cable. Many MIDI instru-
ments and other MIDI units have a built-in 1.e.d. indicator
of this type, but it is by no means present on all MIDI
equipment. Also, most built-in indicators are only activated
wnen a MIDI message to which the unit must respond is
received. In other words, if an instrument is set to operate
on (say) channel 3, its MIDI indicator light will not respond
tc messages on anything other than channel 3. This can be
advantageous in certain circumstances. On the other hand, it
can sometimes lead to uncertainty as to whether the system is
not set up correctly, or there is a hardware fault such as a
b -oken cable.

The full circuit diagram for the MIDI indicator appears in
Figure 2.1. Strictly speaking, a unit of this type does not
need to have an opto-isolator at the input. The opto-isolator
a: the input of the unit fed from the indicator will ensure
that there are no problems with "hum" loops etc. Being
battery powered, there is little opportunity for this unit to
introduce any problems of this type.

Despite this, and the added expense of opto-isolation, this
type of input stage is used in the circuit. One reason for this
if. that it is a requirement of the MIDI specification that all
equipment, however simple or complex, should have opto-
isolated inputs. At a more practical level, MIDI outputs are
cnly designed to drive this type of input stage, and can not
te absolutely guaranteed to function properly with other
types of input stage.

27

\

SKI
IN

5
4

R1
220

 It

R3

27k

2 8

3 ICI

6N139

5

LED

I 7

220 U220k

R4 R6 Si
ON/OFF

SK2
THRU

4

R2

5

6

7

4 8

IC2

TLC555CP

3

1k5

Fig.2.1 The MIDI indicator circuit

2

ma C2 7 100n

_

R7

680

In this circuit the opto-isolator is a 6N139 — a device which
was described briefly in Chapter 1. The input section of this
circuit is similar to the input stage based on the 6N139 that
was described in Chapter 1. However, in this case the output
must drive a MIDI input, rather than a UART or other serial
interface device. The output transistor of the 6N139 is
therefore used as an open collector driver stage, in standard
MIDI fashion. R1 provides current limiting at the input,
while R4 and R5 provide the same function at the output.

The 1.e.d. indicator could be connected in the output cir-
c-nt of IC1, since this device is quite capable of driving an
indicator 1.e.d. at good current and driving a MIDI input.
However, with only infrequent MIDI messages, especially ones
which contained code numbers that caused the output transis-
tor of ICI to be switched off during most bits, the flashing of
the 1.e.d. could be so brief that it would be barely visible.
Much better results are obtained using a pulse stretcher
circuit to ensure that each flash of thel.e.d. is long enough to
make it clearly visible.

In this circuit the pulse stretcher is a monostable multi-
vibrator based on a 555 timer integrated circuit. The circuit
should work perfectly well using the standard 555, but I
would recommend the use of a low power version such as the
TLC555CP or L555P. This reduces the current consumption
of the circuit by about 5 milliamps and gives better battery life.

The monostable is a standard 555 type, and it is triggered
when pin 2 of IC2 is taken below one-third of the supply
voltage. This occurs when a MIDI message is received and the
output transistor of ICI switches on. R3 ensures that there
is always a load resistor for IC1's output transistor, and that
the unit will operate properly even if the THRU socket is left
unconnected. R6 and C2 set the output pulse duration at
roughly 250ms, which is long enough to ensure that a clearly
visible flash is produced by D1. The 1.e.d. current is only
about 6 mllliamps. Use a high brightness 1.e.d. for DI if the
-unit is likely to be used in high ambient light levels.

Current consumption from the 6 volt supply is largely
Jependent on how much data is passed through the unit.
Under standby conditions the current consumption is about
200 microamps, but this figure will vary somewhat depending

29

on which low power version of the 555 is used in the IC2
position. Even with a constant stream of data the current
consumption is unlikely to be much more than about 10
milliamps. A six volt battery comprised of four HP7 size cells
in a plastic holder should give at least a few hundred hours of
operation. Incidentally, connection to this type of battery
holder is usually via a standard PP3 style battery connector.

Construction of the unit should pose few difficulties.
Although most low power 555 devices seem to be based on
CMOS technology, most do not require anti-static handling
precautions. They have very effective built-in static protection
circuits. Neither IC1 nor IC2 are particularly cheap though,
and I would strongly urge the use of holders for both compon-
ents. Provided SK1 and SK2 are both 5 way (180 degree)
DIN sockets connected in the appropriate manner, the unit
will function properly with standard MIDI leads.

If you are making up your own leads, any reasonably good
quality twin screened cable will normally suffice. MIDI is
only guaranteed to operate at ranges of up to 15 metres, but
in order to obtain something approaching this range it might
be necessary to resort to a high quality cable. Most people
only need MIDI cables about 2 metres or so in length, and
virtually any cable will then suffice. The correct method of
connection is to use one of the inner conductors to connect
pin 4 on one plug to pin 4 of the other plug. The other inner
conductor is used to connect the two pin 5s together. The
screen connects the two pin 2s, while pins 1 and 3 are left
unconnected. The correct method of wiring up a MIDI lead
is shown in Figure 2.2.

Pin 2 of SK2 should be connected to the unit's negative
supply rail. In practice, this might not be very effective in
reducing the radiation of radio frequency interference from
the lead. Better results might be obtained by interconnecting
pin 2 of SKI and pin 2 of SK2. Note though, that this
method of interconnection should only be used on a simple,
battery powered, in-line unit such as this one. With more
major items of equipment pin 2 of the IN socket should
always be left unconnected.

30

C9mponents for MIDI Indicator (big 2.1)

Resistors (all 0.25 watt 5% carbon film)
RI 220
R2 1k5
R3 27k
R4 220
R3 220
R6 220k
R.7 680

Capacitors
C I 100µ 10V elect
C2 100n polyester

Semiconductors
Il 6N139 opto-isolator
IC2 TLC555CP or similar
Dl Red panel LED

31

Miscellaneous
BI 6 volt (4 x HP7 in plastic holder)
Si SPST sub-min toggle
SKI 5 way (180 degree) DIN socket
SK2 5 way (180 degree) DIN socket
8 pin d.i.l. holders (2 off)
Battery connector
Circuit board, case, wire, etc.

THRU Box
A simple THRU box project was described in the original
"MIDI Projects" book. It was actually called an "expander"
in book BP182, but these days this term seems to be
mainly used for MIDI instruments that lack a keyboard or
any other means of playing them manually. These instru-
ments can be in the form of 19 inch rack-mount units or
smaller boxes intended to stand on the top of an electric
organ. "THRU box" seems to be the accepted term for a
unit that takes one input and splits it to provide multiple
outputs, or THRU sockets as they become if MIDI termin-
ology is strictly applied.

The point of a THRU box is that it avoids the so-called
MIDI delays. The standard method of connecting several
MIDI units to a controller is to adopt the "chain" method of
connection. Here the THRU socket of the first unit is connec-
ted to the IN socket of the second unit, the THRU socket of
the second unit connects to the IN socket of the third, and so
on. The MIDI specification does not specify a maximum
number of units that can be "chained" together in this way.
In practice the signal tends to be degraded slightly as it makes
each journey from an IN socket to a THRU type. With a
number of units connected together in this way there is a real
danger of the signal being corrupted before it reaches the final
instrument in the setup.

Although this problem is popularly known as "MIDI
delay", it seems unlikely that the problem has anything to do
with delaying of the signal. The delay through even ten or
twenty units is likely to be just a fraction of a millisecond. It
is probably more the cumulative effect of frequency response
restrictions through each piece of equipment, finally distorting

32

Thrul Thru2 Thru3

MIDI Thru Box

In

In Out Thru

Synthesiser

I=1

In
00000
00000 0
00000 Co

MIDI Expander

11
CI CI CI 0 0 CI •

0000o cm
=moos= 0 •

• 00000 CI •
00000 0

• D I=1 0 CI 0 CI CI 0 •

Fig.2.3 Using a THRU Box to permit the "star" method of connection

MIDI Expander

MIDI Expander

the waveform to the point where it is no longer readable by
the serial interface chip of the equipment which receives it.
It is really a slowing up of the rise and fall times of the signal
rather than what could really be termed a delay.
A THRU box takes the output signal from the controller

and splits it several ways so that it provides a THRU socket for
each piece of controlled equipment. The "star" method of
connection is then used, as shown in Figure 2.3. Each item of
controlled equipment then receives a signal that has only taken
one trip from an "IN" to a "THRU", and which should there-
fore have undergone no significant waveform degradation.

Apart from increased reliability, a THRU box is essential
in a system where there are several instruments which lack a
THRU socket. There is no problem if only one instrument
lacks this facility — you simply use it at the end of the
"chain". With two or more instruments that lack a THRU
socket the "chain" method of connection is unusable. Use of
a THRU box is then mandatory.

The Circuit
The MIDI indicator project is easily modified to provide the
function of a THRU box while still indicating the presence (or
otherwise) of an input signal. The additional circuitry
required is shown in Figure 2.4.

This additional circuitry is just more output sockets and
current limiting resistors added in parallel with the existing
output circuit. This is quite acceptable since the 6N139 is
quite capable of driving four sets of output sockets (which
represents an output current of only about 20 milliamps). In
fact it would probably be possible to have half a dozen or
more THRU sockets driven from the 6N139, although I have
to point out that I have not tried the unit with more than four
outputs. Obviously there is a lack of isolation between each
THRU socket, but this does not matter. The pieces of equip-
ment driven from the unit should be isolated via their own
opto-isolated inputs.

The notes on constructing and using the MIDI indicator
unit apply equally well to the THRU box. The current con-
sumption of the THRU box will be somewhat higher than
that of the indicator unit as more outputs are being driven.

34

Components for THRU Box (Figs 2.1 & 2.4)

Resistors (all 0.25 watt 5% carbon film)
R I
R2
R3
R4
R5
R6
R7

220
I k5
27k
220
220
220k
680

35

Resistors (continued)
R8 220
R9 220
RI 0 220
RI 1 220
R12 220
R13 220

Capacitors
Cl100µ 10V elect
C2 100n polyester

Semiconductors
IC1 6N139 opto-isolator
IC2 TLC555CP or similar
D1 Red panel LED

Miscellaneous
Bi 6 volt (4 x HP7 in plastic holder)
Si SPST sub-min toggle
SKI to SK5 5 way (180 degree) DIN socket (5 off)
8 pin d.ii. holders (2 off)
Battery connector
Circuit board, case, wire, etc.

MIDI Merge
A MIDI merge unit is, more or less, the opposite of a THRU
box. In other words, it takes two or more input signals and
merges them into a single output signal. Remember that
normally only one controlling device is permissible in a
MIDI system, and that simply wiring two outputs together is
a very risky business which is unlikely to give satisfactory
results. Whether or not a merge unit is required depends on
whether your system will ever need to have more than one
controlling device. Probably the most common usage of a
MIDI merge unit would be when a system contains both a
sequencer of some kind and a keyboard. Sometimes you
might want to control the system from the sequencer, while
at other times you might prefer to play it "live". This can
involve a lot of plugging-in and unplugging of MIDI leads.

36

I El! 0,7-1
@BUB

L::1 I
Sequencer

In Thru Out

MIDI Keyboard

Fig.2.5 A typical setup using a MIDI merge unit

In 1 In 2

MIDI Merge Unit

Out

Thru
dOCICI0

00000 CI
0 0 00000 0

MIDI Expander

Using a MIDI merge unit a set-up of the type outlined in
Figure 2.5 might give the desired effect. Here the merge unit
combines the output of keyboard and the sequencer, and uses
it to drive a MIDI expander unit. Although only one expander
unit is shown in Figure 2.5, there could be a number of these
"chained" together. If the keyboard is part of a synthesiser,
then the instrument could be set to the local off mode, and
the expander could then be the sound generator circuits of
the synthesiser. The THRU output of the expander is connec-
ted to the IN socket of the sequencer. This provides a route
from the keyboard to the sequencer so that sequences played
on the keyboard can be recorded. There is a potential
problem here in that sequences sent from the sequencer will
be fed back to its input. This will not necessarily cause any
problems, but in some circumstances it certainly could. When
building up any fairly complex MIDI setup you need to look
carefully for any unwanted connections that could cause
problems.

Figure 2.6 shows what looks like a plausible way of obtain-
ing a similar setup to Figure 2.5, but without using a merge
unit. The flaw in this system is that the signal fed to the
input of the sequencer will not appear at its output. The
input signal is normally only fed through to the THRU
socket. At least, in a standard MIDI system the input signal is
only fed to the THRU socket. It is increasingly common for
computer based sequencers to have a "THRU" mode, where
the input signal is echoed to the OUT socket. This feature is
also available on a few synthesisers. Obviously a merge unit
should not be used with equipment that could obtain the
same result without one, and it is worth reading the "small
print" in equipment manuals to see if there are any useful
extra features available such as a "THRU" facility.

There are other situations in which a merge unit could be
used to good effect. Suppose that you wish to control a
system from a computer based sequencer for the majority of
the time, but that you wish to occasionally feed the system
from a programmer unit. This could be achieved using the
setup shown in Figure 2.7. Note that in this case there is no
way of using any "THRU" facility of the sequencer to permit
the desired action to be obtained without the aid of a merge

38

ri Out THRU In

Sequencer

saFe

In Thru Out

!! !!! !! II!

In Thru
 e
DD....
pc3Dpcic.

1:

MIDI Expander

In I Thru

1

0 0 0 CI CI 0 •

C100CI0
CI CICICI0 0 •

MIDI Expander

MIDI Keyboard

Fig.2.6 This equivalent of Fig.2.5 looks plausible, but with most equipment it will not work!

Sequencer

Out

Out THRU In

••••

:::1

In Thru Out

Synthesiser

I=1

MIDI Programmer

In 1 In 2

MIDI Merge Unit

Thru

t. J. I=1

00000 CI

00000 CI

00000 0

MIDI Expander

Fig.2.7 A merge unit used in conjunction with a MIDI programmer

unit. The IN socket of the sequencer is already occupied by
the OUT signal of the keyboard instrument.
A sophisticated merge unit is a quite complex microproces-

sor based unit which can mix two input signals to give a
coherent output signal. At least, it can do so provided the
two input signals are not so heavily laden with messages that
the output becomes "choked". This type of merge unit
requires a buffer (i.e. a block of memory) that can be used to
store messages received at one input while messages received at
the other input are sent through to the output. In this way
the unit can cope with messages sometimes being received on
hoth inputs simultaneously.

The Circuit
A simple unit of the type described here simply mixes the two
inputs, so that a signal on either input is coupled through to
the output. However, if signals are received on both inputs at
cnce, the output signal is a mixture of the two input signals.
This is almost certain to give an output signal that is com-
pletely "scrambled" and unusable. This might seem to be a bit
useless, but the salient point is that in many instances where a
system has two controllers, only one of these will be used at a
time. You can use a switch to select the desired controller,
but a merge unit is more convenient in that, in effect, it
automatically switches over to whichever of the controllers is
producing an output signal.

The full circuit diagram of the unit appears in Figure 2.8.
This consists of what is really just three opto-isolator circuits
having open collector output stages that are connected in
parallel. Thus, any one of the opto-isolators being activated
results in an output current flowing, and there is a signal
path from each input to the single output. Three 6N139 or
similar high specification opto-isolators would be rather
expensive. For economy the unit has therefore been based on
inexpensive opto-isolators with a discrete output transistor to
give a suitably high efficiency and switching speed. Although
the TIL111 is specified for ICI to IC3, similar inexpensive
cpto-isolators such as the 4N27 should work equally well.
There is just a slight risk that one of the opto-isolators will
not give sufficiently high efficiency or switching speed, causing

41

t -t

ore of the inputs to operate unreliably. However, even if an
extra TIL111 is ottained in order to guard against this eventu-
ality, the unit can still be built quite cheaply.

The circuit is not fitted with an on/off switch as the current
consumption under quiescent conditions is negligible. Obvious-
ly a SPST on/off switch could be added in the positive battery
leed if desired. The current consumption of the circuit is
largely dependent on the amount of data passed by the unit,
but it should never average much more than about 5 milliamps.

Construction of the unit should be quite straightforward.
You may not deem it worthwhile fitting the opto-isolators in
sockets as they are inexpensive devices. I prefer to use holders
fo:- all components regardless of their cost, but in this
care there is a slight difficulty in that the necessary 6 pin d.i.l.
holders are not widely available. You might be able to track
down suitable holders, but if not it is quite easy to trim an 8
pin &LI. holder down to size.

Although the unit is shown here as having three inputs, it
can easily be cut back to two inputs if preferred, simply
omit IC3, TR3, SK3, R7, and R8. Similarly, more inputs can
be added if desired, and in theory any number of opto.
isolator stages can be wired in parallel, giving any desired
number of inputs.

Components for MIDI Merge (Fig.2.8)

Resistors (all 0.25 watt 5% carbon film)
R 1 220
R2 1k2
R3 220
R4 220
R5 220
R6 1k2
R7 220
R8 1k2

Semiconductors
ICI TIL111 or similar
IC2 TIL111 or similar

TI LI 11 or similar

43

Semiconductors (continued)
TRI BC549
TR2 BC549
TR3 BC549

Miscellaneous
BI 9 volt (PP3 size)
SKI to SK4 5 way (180 degree) DIN socket (4 off)
6 way d.i.l. holder (3 off, see text)
Battery connector
Circuit board, case, wire, solder, etc.

44

Chapter 3

MIDI PROJECTS

The projects in this chapter are concerned with the generation,
decoding, and modification of MIDI signals. The topics
covered include such things as a MIDI program change pedal
and a channeliser. By modern standards these projects are not
terribly complex, but they are certainly not suitable for com-
plete beginners at electronic project construction. However,
tney should be within the capabilities of anyone who has had
a moderate amount of experience at building electronic
Projects.

Micro or UART?
Something that these projects have in common is that they are
based on the industry standard 6402 UART (universal
asynchronous receiver/transmitter). In fact they will also
work using the AY-3-1015D which is generally a little cheaper.
The AY-3-1015D is not an exact equivalent for the 6402, but
the differences are so minor as to be of no significance in the
current applications.

The 6402 is a serial interface chip which provides both
serial to parallel and parallel to serial conversion. Whereas
many serial interface devices are only intended for operation
m microprocessor based circuits, UARTs are general purpose
devices that will operate in both micro and non-micro based
circuits. They have tristate outputs, and inputs that are used
for programming the word format etc. These can be used
with the busses of a microprocessor, but they operate just as
well driving 1.e.d. indicators and being fed from programming
switches. This second option is not applicable to most serial
interface chips which rely totally on a microprocessor plus
suitable software to set them up and to regulate the flow of
data.

Of course, projects of the types featured in this chapter
could be based on a simple microprocessor based circuit. One
circuit plus suitable software routines could probably provide
all the functions afforded by these projects! The problem

45

with a microprocessor based circuit for these types of applica-
tion is that it is simple only in microprocessor terms. It would
be quite a complex and expensive gadget in normal project
terms. It would require the constructor to have access to an
EPROM programmer, or the purchase of comparatively
expensive custom programmed EPROMS, as these represent
the only practical method of program storage for units of this
general type. Circuits based on a UART plus some ordinary
logic integrated circuits were felt to be a more practical
proposition for home constructor projects. None of the
circuits described in this book are microprocessor based.

6402 UART
Understanding the way in which these projects function is very
much easier if you are reasonably familiar with the 6402
UART. Pinout details for this device are shown in Figure 3.1,
and an explanation of the function of each pin is given in the
next section of this chapter.

Pin 1, V+
This is the positive supply terminal, and should be fed with a
nominal 5 volt supply (4 volts minimum — 7 volts absolute
maximum).

Pin 2, NC
There is no internal connection to this pin.

Pin 3, GND
The ground, or negative (0 volt) supply terminal in other
words.

Pin 4, RRD
Receiver Register Disable. A high level on this input takes the
8 bit output of the receiver section to the high impedance
state. In a non-microprocessor based unit this facility is not
normally needed, and this pin would be tied to ground.

Pin 5 to Pin 12, RBRO to RBR7
These are the parallel outputs of the receiver section of the
unit. As soon as a byte has been received and decoded it is
placed on these outputs.

46

Pin 13, PE
Parity Error. This output goes Ligh if the serial decoder
crcuit detects a parity error.

47

Pin 14, FE
Framing Error. This output goes high if the serial decoder
detects a framing error (i.e. the first stop bit was at the wrong
logic level).

Pin 15, OE
Overrun Error. This output goes high if an overrun error
occurs (i.e. the data received output was not reset before the
last received byte was transferred to the receiver buffer
register).

Pin 16, SFD
Status Flags Disable. Taking this input high results in the
status flag outputs (PE, FE, 0E, DR, TBRE) going to the
high impedance state. Like RRD, in a non-microprocessor
based circuit this pin is normally taken permanently low.
The status flag outputs can be used to drive indicator 1.e.d.s,
control logic circuits, or can simply be ignored.

Pin 17, RRC
Receiver Register Clock. This is the clock input for the
receiver section of the device. The clock rate is sixteen
times the baud rate, which for a MIDI application means
500 kHz (31250 x 16 = 500000).

Pin 18, DRR
Data Received Reset. Taking this input low resets the data
received flag. There is no built-in automatic resetting of this
flag, which is not really a practical proposition with a non-
micro based system anyway.

Pin 19, DR
Data Received. This output goes high when a complete byte
has been received and transferred to the receiver buffer register.
This flag can only be reset using DRR or MR.

Pin 20, RR1
Receiver Register Input. This is the input to which the serial
input signal is fed.

48

Pin 21, MR
Master Reset. Taking this input high clears the status flags,
but not the receiver buffer register. This input must be fed
with a positive pulse at switch-on in order to initialise the
device (which becomes fully operational within 18 clock
cycles of MR going low).

Pin 22. TBRE
Transmitter Buffer Register Empty. This output goes high
when the transmitter buffer register has transferred its data
to the transmitter register. In other words, a high level on this
terminal indicates that the transmitter section of the device is
ready to receive the next byte of data.

Pin 23, TRBL
Transmitter Buffer Register Load. A low level on this input
results in the data on the parallel input of the transmitter
section being transferred to the transmitter buffer register.
As this input goes high again the data is transferred to the
transmitter register, provided the latter is not currently send-
ing a byte of data. If it is, then the transfer is automatically
delayed until transmission of the current byte has been com-
pleted. Virtually all serial interface chips use a similar method
of buffering at the transmitter's input.

Pin 24, TRE
Transmitter Register Empty. This output goes high when a
byte of data has been fully transmitted, including the trans-
mission of stop and any parity bit.

Pin 25, TRO
Transmitter Register Output. The serial output signal is
produced on this pin.

Pin 26 to Pin 33, TBRO to TBR7
Transmitter Buffer Register 0 to Transmitter Buffer Register
7. Parallel data for the transmitter section of the UART is
coupled to these eight pins.

49

Pin 34, CRL
Control Register Load. This input is taken high in order to
load the control register with the data fed to these five inputs
(pins 35 to 39). In a non-micro based circuit this input can
be taken high permanently.

Pin 35, PI
Parity Inhibit. A high level on this input switches off parity
checking and generation. MIDI does not use parity checking,
and this input is therefore taken high in the circuits featured
in this book.

Pin 36, SBS
Stop Bit Select. This input is taken low for 1 stop bit opera-
tion, or high for 1.5/2 stop bit operation. It must be taken
low in order to give the single stop bit required for MIDI use.

Pins 37 and 38, CLS1 — CLS2
Character Length Select 1 and 2. The binary code set on these
inputs selects a character length of 5, 6, 7, or 8 bits. MIDI
operation requires 8 data bits, and this mode is obtained with
both CIS1 and CLS2 taken high.

Pin 39, EPE
Even Parity Enable. Taking this input low sets odd parity —
setting it high selects even parity. This assumes that parity
has been enabled using pin 35. In a MIDI application parity is
disabled, and the logic level on pin 39 is therefore unimportant.

Pin 40, TRC
Transmitter Register Clock. This is the clock input for the
transmitter section of the device. Like the receiver clock
input, the clock frequency must be 16 times the required
baud rate.

MIDI Code Generator
It can often be useful to have a unit that can generate MIDI
codes. This can be necessary for testing purposes, or you
might find that certain functions can only be obtained by
sending an instrument the proper MIDI codes. For example,

50

1 IC1 = 40408E

1.
1 Cl R2

7 22MHzu xi T 4 1 k

H UH
R1

470k 10

9-1

TR 1

um C2 7 22p ma C3 722p

IC2 = 6402 TRI. = BC549

R3

lk

6

A

C5
47u

• 34 35373839

25

"3

R4

47

C4 L=1
PB1 1 u T

Fig.3.2 The main MIDI code generator circuit

40

R5

1M

R6

2k2

21

IC2

L s6
DO

27 le
 28 0 D1

- D
29 2
—0 D3
30
 0 D4
31
 0D5
32
—0 D6
33
—0 D7

2 3 16 36
0 V

"local off" operation is often only selectable via MIDI, and
not via an instrument's front panel controls. A return to
normal operation might only be available via the same route.

If you have a computer based MIDI system, a simple pro-
gram is all that is needed in order to provide a MIDI code
generator action. In fact the program can be made quite
sophisticated if desired, with (say) menu selection of MIDI
messages and mouse control of data bytes. Some commer-
cial MIDI software has the ability to send a useful range of
MIDI message types. If you have a suitable computer based
setup, then this unit is likely to be of little use to you. On
the other hand, if your MIDI system is not computer based,
or you require a code generator that is light and portable,
then a unit of the type described here should prove to be
very useful.

The main circuit diagram for the MIDI code generator
appears in Figure 3.2. The clock signal is generated by TRI
and ICI. TR1 operates as a standard crystal oscillator having
an output frequency of 4 MHz. No trimmer for output
frequency adjustment is included as any error in this respect
will be far too low to be of significance. ICI is a CMOS
4040BE 12-stage binary ripple counter. In this circuit a
divide by eight action is required, and so only the first
three stages of the device are used. Strictly speaking, the
input frequency is slightly too high for the standard 4040BE
operated from a 5 volt supply. However, in practice CMOS
counters (including the 4040BE) seem to operate perfectly
well under these conditions. To be sure of correct operation
the high speed version (the 7411C4040) can be used for IC1.

IC2 is the UART, and this has its control inputs connected
to give the required word format of one start bit, 8 data bits,
one stop bit, and no parity. C5 and R6 produce a positive
reset pulse at switch-on. In order to transmit a byte of data
from the unit, pin 23 of IC2 must be pulsed low. This is
achieved by pressing PB1, and the byte present on the data
bus (DO to D7) is sent as PB1 is released. C4, R4, and R5 are
a "debouncing" circuit, and should be adequate to deal with
any contact bounce from PB1. I would recommend the use
of a good quality component in the PB1 position though, as
some of the cheaper types produce very generous amounts

52

—

s 5

•••••

R19 R20 R21 R22 R23

1k lk T . 1 k lk 1k
é

Fig.3.3 The Hex code generator circuit

S6 S7

«MD OfflII fMM,

S8

+5V

 0 D0

 0 DI

 0D2

D3

 0D4

 0 DS

 0D6

 0D7

R24

lk

R25

lk

R26

lk

0V

of contact bounce.

Hex Codes
For the unit to be usable it is necessary to have a reasonably
quick and easy way of generating the required eight bit codes
on DO to D7. There are sophisticated methods of handling
this type of thing, including circuits which use keypads and
1.e.d. or 1.c.d. displays. For the present application these
methods are somewhat too costly and complex though, and a
switch circuit of the type shown in Figure 3.3 is a more
practical proposition. This merely uses a switch and load
resistor at each binary input of IC2. When a switch is open
it generates a logic 0 level — when it is closed it generates
logic 1.

SI to S8 could simply be individual toggle switches with
the required binary code being set on them prior to operating
PBI. Operating at binary code level is sometimes convenient
in a MIDI context, but often it is rather cumbersome. A
better option is to use two hexadecimal ("hex") switches.
These are four pole rotary or "thumbwheel" switches that are
numbered "0" to "F", and produce the appropriate four bit
binary code at each position. Two of these switches are
therefore needed in the circuit of Figure 3.3.

This is generally a convenient way of handling MIDI codes
as MIDI header bytes are split into two four bit "nibbles" of
information anyway. The manuals for MIDI equipment
generally make extensive use of hexadecimal numbers.
Obviously you need to have at least a basic understanding of
the hexadecimal numbering system in order to use the unit
efficiently, but hex is not difficult to master. It is based on
the number 16, whereas the decimal system is based on the
number 10, and binary is based on the number 2. There are
not enough single digit numbers in the decimal numbering
system to accommodate the hex system. The ten numbers of
the decimal system (0 to 9) are therefore augmented by the
first six letters of the alphabet (A to F). Single digit numbers
in the hex system therefore run from 0 to F. The table gives
hex to decimal to binary conversions, and should help to
clarify the way in which the system operates. Note that
leading zeros have not been supressed in the binary column, so

54

that it is easier to visualise the codes on a bit by bit basis.

Hex-Decimal-Binary Conversion Chart

Hu Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
10 16 10000
11 17 10001
12 18 10010

Hex switches are normally very convenient for entering
header byte codes, but are more awkward for entering data
bytes. However, in most cases you will not want to enter a
particular data value, merely one that is very low, intermediate
or high. 00 is the minimum value, 40 is an intermediate value,
aid 7F is the highest valid data byte value.

Output Circuit
The output direct from pin 25 of 1C2 is not suitable for
driving MIDI inputs. The circuit of Figure 3.4 provides the
unit with two MIDI OUTs, and it consists of two identical
switching circuits. TR3 operates as a standard MIDI open
cDllector output stage, and it is preceded by an inverter stage
based on TR2. This inverter is needed as TR3 would otherwise
be switched on when it should be switched off, and vice versa.

55

u,
:-27

Note that if only a single MIDI output is required, R13 to
R18, TR4, and TR5 should be omitted. On the other hand, if
more outputs are required, further output stages could be
added to the circuit. Reliable results should be obtained with
four output stages, and in practice it is likely that half a
dozen or more could be used without any difficulties arising.
However, I have not tried the unit using more than four
outputs.

Power Source
The current consumption of the circuit is approximately 15
milliamps. This is low enough to permit economic operation
from batteries, and four HP7 size cells in a plastic holder are
suitable. These provide a supply voltage that is a little higher
than the required 5 volts, but even with fresh batteries fitted
it is unlikely that the circuit would malfunction. However,
four AA size nickel-cadmium rechargeable cells might be a
better choice, and would give almost exactly the required
supply potential of 5 volts. Another alternative is to use a
9 volt battery such as a PP9, plus a 5 volt monolithic regu-
lator to drop the output voltage to the required level. A
suitable circuit is provided in Figure 3.5.

If it is not important for the unit to be self-contained, there
is the third option of a mains power supply unit. Figure 3.6
shows a suitable circuit, and this is a standard type having
push-pull rectification and a 5 volt monolithic voltage
regulator. FS1 should be an anti-surge type and not of the
more usual quick-blow variety. The latter would tend to live
up to its name and "blow" at switch-on due to the initial
surge current as Cl charges up.

Of course, if you use the mains power supply it is essential
to observe the usual safety precautions. The unit must be
fitted in a case that has a screw fixing lid or cover, so that
there is no easy way for anyone to gain access to the danger-
ous mains wiring. Any exposed metalwork must be earthed
to the mains earth lead. What this generally means in prac-
tice is that the unit has to be fitted into a case of all metal
construction. By earthing the case, any metal fixing screws
etc. fitted onto it will automatically be earthed via the case.
A soldertag fitted onto one of TI's mounting bolts makes a

57

convenient connection point for the mains earth lead. Need-
less to say, great care should be taken to avoid any mistakes
in the wiring, and the finished unit should be thoroughly
checked for errors before it is switched on and tested.

Construction

There should be no difficulty in building the unit using any of
the standard forms of construction. Neither the 6402 or
AY-3-1015D UARTs are particularly cheap, and they are both
MOS devices. Consequently it would be wise to scrupulously
observe the standard anti-static handling precautions when

dealing with 1C2. Use a 40 pin d.i.l. holder for this device, and
leave it in its anti-static packaging (conductive foam, plastic
tube, etc.) until it is time for it to be fitted in place. This is
not until all the other components have been fitted and all the

58

240V
A.C.
MAINS

Sla
ON/OFF

S1 b

240

T I
D1

k 9 +

9
D2

>1.

D1,2 z 1N4002

IC1 , uA7805

IN

 I

OUT

C2
100n C3

100n

COM

E

FS1 12,'1 Cl
0.5A 2200u

Fig.3.6 The mains P.S.U. circuit diagram

+5V

0 V

hard wiring has been completed. Handle the device as little as
possible.

The two hex switches pose a minor problem. While these
components are not too difficult to obtain, many of them are
designed for printed circuit mounting and have either a built-in
control knob or are intended for screwdriver adjustment!
This is obviously less than ideal for this application where
some form of panel mounted switch is required. One option is
to simply settle for eight toggle or slider switches and to enter
data into the unit in binary form. A much better solution is
to use a pair of "thumbwheel" style hex switches. The type I
used are the RS miniature type, which should be available to
amateur users through RS retail outlets (such as "Electro-
mail").

These switches are rather unusual in that they require a pair
of mounting end-cheeks which are sold separately. This is
actually quite sensible, as two or more switches can be fitted
together as a single unit with just one pair of mounting cheeks.
In this case it is clearly advantageous to have the two switches
mounted close together, and it would seem to be best to have
them joined together as a single unit. Therefore, two hex
switches but only one set of end-cheeks are required.

The end-cheeks are supplied complete with threaded brass
rods and mounting nuts which are used to hold the whole
switch assembly together. The brass rods must be cut to a
length that is exactly the same as the width of the switch
assembly. If the rods are cut slightly too long it might not be
possible to fit the switch into its mounting hole — if they are
marginally too short it will not be possible to fit the mounting
nuts onto them properly. It is probably best to cut them
slightly too long and then carefully file them down to exactly
the required length.
A rectangular mounting hole is needed for the completed

switch assembly. As the switch is a click-fit into this cutout, it
must be made quite accurately. It is not a major disaster if the
cutout is made a little too small, as it can then be carefully
filed out to the correct size. Making the cutout slightly over-
size is more serious, as it may then be difficult to get the
switch assembly firmly clipped in place. There would prob-
ably be no option but to use a powerful adhesive to fix the

60

switch in position properly. The correct size for the cutout is
31 millimetres high by 24.5 millimetres. A suitable cutout can
be made using a fretsaw or a coping saw, or a miniature round
file can be used. Either way, it is advisable to cut the hole
slightly too small and then carefully file it out to exactly the
required dimensions.

DO -
D1 -

Corn

IMP

D2
D3

—u u

S1 To S8

D4
D5
Corn

D6
D7

Fig.3.7 Connection details for the RS Hex switch

Connections to the switches are via a sort of miniature
printed circuit board at the rear of the component. Connec-
tions can be made direct to this, but it is probably safer to
make the connections via printed circuit pins. Connection
details for this type of switch are provided in Figure 3.7.

Obviously the unit should operate perfectly well with
other hex switches, but as pointed out previously, these
are mostly intended for printed circuit mounting. Also,
note that some switches are open for logic 1, and closed for
lcgic O. This circuit is only designed for switches that are

61

open for logic 0, and closed for logic 1. The other type of
switch can be used in this circuit, but only if the switches
and load resistors are swopped over.

Components for MIDI Code Generator (Figs 3.2, 3.3 & 3.4)

Resistors (all 0.25 watt 5% carbon film)
RI 470k
R2 I k
R3 I k
R4 47
R5 1M
R6 2k2
R7 5k6
R8 2k7
R9 5k6
R10 2k7
R11 220
R12 220
R13 5k6
R14 2k7
R15 5k6
R16 2k7
R17 220
R18 220
R19 to R26 lk (8 off)

Capacitors
Cl 221/16V elect
C2 22p ceramic
C3 22p ceramic
C4 ltt 63V elect
C5 47i.i 10V elect

Semkonduc tors
ICI 4040BE or 74HC4040 (see text)
IC2 6402
TRI BC549
TR2 BC559
TR3 BC549

62

Semiconductors (continued)
TR4 BC559
T.R5 BC549

Miscellaneous
SK1
SK2
X1
SI to S4
S5 to S8
PB1
16 pin d.i.l. holder
40 pin holder
Case, circuit board, wire, solder, etc.

5 way (180 degiee) DIN socket
5 way (180 degaee) DIN socket
4 MHz crystal
Hex switch (see text)
Hex switch
Push to make, release to break switch

Components for Mains P.S. U. (Fig.3.6)

Capacitors
Cl
C2
C3

Semiconductors
ICI
DI
D2

Miscellaneous
S1
Tl

FS1
20 mm fuse holder
Circuit board, wire, etc.

2200gf 16V elect
100n ceramic
100n ceramic

pA7805 (5V IA positive regulator)
1N4002
1N4002

Rotary mains switch
Mains primary, 9 —
secondary
0.5 A 20 mm anti-surge

— 9 volt 500 mA

Testing
The best way of test the unit is to connect its output to a
computer running software which will print received MIDI

63

values on the screen. In the absence of a suitable system, it is
just a matter of sending some trial codes/data to any MIDI
device. The obvious test is to try a note on message followed
by a note off type. For example, to switch on middle C on
channel 0 the values sent (in hexadecimal) would be 90, 3C,
40, and to switch it off again values of 80, 3C, and 0 would
be transmitted. Although some control systems that involve
the transmission of multi-byte messages only work properly
if there is no more than a certain gap between one byte and
the next, I know of no such time limit in the MIDI system.
Consequently, the inevitable delay from one byte to the
next when using a unit of this type should not prevent correct
operation from being obtained.

MIDI Pedal
A MIDI pedal is merely a unit that has a foot controlled
switch, and which sends a program change message each time
the switch is activated. The idea is to permit an instrument to
be taken through several different programs (i.e. sets of sound
data) without having to operate the front panel controls.
There is an obvious attraction in being able to change the
sound of an instrument without having to remove one hand
from the keyboard. Although this is a highly useful feature,
it is surprising how few instruments have any facility to use a
pedal switch in this manner.

The block diagram of Figure 3.8 helps to explain the way
in which this project functions. It is inevitably a bit more
complicated than the MIDI code generator unit, as in this
case operating the push button switch must send two bytes
of information (the program change header byte and the
new program number). Ideally a unit of this type would
permit the user to choose a sequence of program numbers,
but this feature would greatly complicate the unit. Instead,
the more simple approach of having the program number
start at 1, and then increment by one on successive opera-
tions of the unit is used. With most MIDI instruments it is
reasonably easy to assign any desired set of sound data to
each program. However, with instruments where this is not
possible the pedal unit featured here will be of relatively
little value.

64

Code
Generator

Binary
Counter

Tristate
Buffer

Tristate
Buffer

Divide
By 2

Fig.3.8 The MIDI Pedal block diagram

Clock
Oscillator

Oscillator

Inverter
Driver

onostable

Like the previous project, this one has a UART to provide
parallel to serial conversion. A clock oscillator sets the
correct baud rate and an inverter/driver stage provides the
correct 5 milliamp current loop output signal. The parallel
input of the UART is fed from a code generator circuit and a
binary counter via two tristate buffers. The code generator
circuit is simply a set of wires that tie the inputs of the buffer
to the appropriate logic levels, so that the program change
header byte is produced. A divide by two circuit controls the
two buffers, and ensures that only one or the other of them
is connected through to the UART at any one time. Initially
it is the code generator that is connected through to the
UART.

An oscillator drives the divide by two flip/flop, and also
triggers the UART. Therefore, if the oscillator is permitted to
operate normally, the unit will send a continuous stream of
program change messages. The oscillator drives the binary
counter via the divide by two circuit, and it is the latter that
sets the program number on each transmitted message. There-
fore, the program number increments in the desired fashion.
As described so far the circuit almost provides the required
function, but obviously some means of controlling the
oscillator is required, so that the unit sends program changes
one at a time, and under manual control.

Several methods of controlling the circuit were tried, and
the most simple method that worked reliably was to use a
monostable multivibrator. This controls the oscillator, and
normally holds it in the inactive state. Triggering the
monostable using the foot switch results in an output pulse
that gates the oscillator briefly into operation. Provided
the pulse duration is made roughly equal to two oscillator
clock cycles, a two byte program change message will be
transmitted before the oscillator is cut off by the monostable.

There is an apparent flaw in this system in that it could
give problems with "creeping sync". If the pulse duration is
other than precisely two oscillator cycles, after a few opera-
tions of the foot switch the unit might produce three output
bytes, or just one. The more accurate the pulse duration,
the greater the number of operations before the unit glitches.
In practice this does not happen, as the oscillator commences

66

IC1 - 40409E

cl I

xl
4MHz

RI
470k

TRI

C2
7 22p

IC2 = C402 IC3 = 7411C244

C
R2

1k

10

C4 1 1 14 351 3 1

47u mu
25

A

6

23

40

21

R3

2k2

IC2

1

TRI ,• DC549

33 18

32 16

31 14

30 12

29 9

28 7

27 5

26 3

19 20

2 3 6 36

IC3

1

2

4

6

 0— + 5V

e
—4

17

Fig.3.9 The main MIDI Pedal circuit diagram

 ..- 0V

a new cycle from the beginning each time the unit is activated.
Any charge on the oscillator's timing capacitor is lost each
time the output pulse from the monostable ends. Quite large
errors in the pulse duration are therefore acceptable, as the
circuit incorporates what is a crude but quite effective form

of synchronisation.

The Circuit
The main circuit diagram for the MIDI program change pedal
appears in Figure 3.9. The clock oscillator, frequency divider,
and UART sections of the unit are much the same as the
equivalent sections of the MIDI code generator project des-
cribed previously. IC3 is one of the eight bit tristate buffers,
and its inputs are wired to give the correct header byte for
program change messages (11000000 in binary). This assumes
that transmission is only required on channel 1, and in most
cases this will be adequate. However, if preferred the channel
selector circuit of Figure 3.10 can be used to provide the least
significant nibble for IC3. A hex switch is probably the best
choice for SI to S4, but a little thought is needed in order to
convert switch settings into the MIDI channels they provide.
The switch is calibrated from 0 to F, whereas MIDI channels
run from 1 to 16. Some recalibration of the switch would be
more than a little helpful, but might prove to be difficult in
practice.

Figure 3.11 shows the circuit diagram for the binary counter
and divide by two sections of the unit. IC4 is the second eight
bit tristate buffer, and like IC3, it is a 74HC244. This is the
high speed CMOS version of the 74244. Its outputs are
switched to the on state by taking pins 1 and 19 low. The
divide by two circuit is one section of a CMOS 4013BE dual
D type flip/flop (IC6). Its Q output drives IC3 while its not Q
output drives IC4. This may seem to be the wrong way round,
but before the first byte has been transmitted the flip/flop
changes state, resulting in IC3 being switched on and IC4 being
switched off.

IC5 is the binary counter, and this is a CMOS 4024BE
seven stage binary type. Seven stages are adequate in this
application, bearing in mind that the most significant bit of a
data byte is always set to zero. The clock input of IC5 is

68

driven from the not Q output of IC6. This results in IC5
being incremented from 0 to 1 by the time the first data byte
is transmitted. The first operation of the unit therefore sets
the controlled unit or units to program 1. This is not really a
fault, since the controlled equipment will presumably be set
to program 0 initially, and the unit is then required to move it
to program number 1 on the first operation of the foot switch.
Note though, that you can start from any desired program
number, but that the pedal unit will always take the control-
led equipment to program 1 on the first operation, program 2
on the next operation, and so on. C5 and R4 provide an
initial reset pulse to IC5 and IC6 at switch-on. PB1 can be
used to manually reset the unit whenever necessary.

The circuit diagram for the monostable and oscillator
stages of the unit appear in Figure 3.12. Both stages are based
on standard 555 circuits, but in order to keep the current

69

IC4 = 74HC244 IC5 = 40248E IC6 = 40138E

+5V -11

TO

IC2

18

16
32

14
31

12
30

9
29

28
5

27
3

26

OV

19

IC4

C5
20 14 100n 1M.

2 2

4 3

ri 4

8 5

U 6
13

15 11

17 12

10

'CS

PB1
2

111111111111111111111111I

14

135

47

5
e— e----

4

7
100k

IC6

3

1
,•••••••411•••

11

10

9

8

Fig.3.11 The binary counter and divide by two circuitry

IC7, 8 = TLC555CP
+5V

3

OV

R6

47k

R7

1M5

mg C6
33n

Fig.3.12 The monostable and oscillator stages

VR I

1M

C7 am
220n7

R8

R10

1M

PB2

R9

10k

C8
1 u

consumption of the unit down to a reasonable level the use of
low current 555s is recommended. IC7 acts as the basis of the
oscillator, and this is controlled by the monostable via pin 4.
Taking this pin high activates the oscillator — taking it low
disables it. The positive output pulses from IC8 therefore
give the required bursts of oscillation. VR1 is used to trim the
pulse duration of the monostable to a suitable figure. PB2 is
the foot switch, and it triggers IC8 via a simple "debouncing"
circuit.

The circuit of the inverter/output stage is shown in Figure
3.13. This is much the same as the equivalent circuit in the
MIDI code generator unit. However, in this case only a single
output is used. Of course, two or more outputs can be fitted
to the unit if desired, and it is just a matter of adding some
extra inverter/output stages to the unit.

Construction
Construction of this project should not be too difficult, and
many of the points raised about the previous project apply
equally to this one. The integrated circuits are all CMOS
types, and apart from the TLC555CPs (which have fully
effective protection circuits) they require the normal anti-
static handling precautions to be taken.

PB2 can be a heavy duty push button switch mounted on
the top panel of the case. Heavy duty push button switches
can be rather noisy and awkward to operate. Also, they are
mostly of the latching type, whereas this circuit requires one
that opens when you raise your foot. You might prefer to use
a large push button switch not specifically intended for foot
operation, and to replace it from time to time if it proves to
be not quite strong enough for the task. Either way, the
case should be a strong type, such as one made from steel or
a diecast aluminium box. An alternative is to buy a foot-
switch/pedal assembly, and to connect this to the main unit
via a twin lead. This should be easy to operate and reliable in
use, and the case does not then need to be a very tough type.
Although in some ways a slightly cumbersome solution to
the problem, in many respects it is the most practical one.

The current consumption of this project is somewhat higher
than that of the MIDI code generator unit, but the same

72

methods of powering it apply. With a unit of this type port.
able operation is often a desirable asset, and batteries may well
be the most convenient method of powering the unit.

Components for MIDI Pedal (Figs 3.9, 3.11, 3.12 & 3.13)

Resistors (all 0.25 watt 5% carbon film)
R1 470k
R2 lk
R3 2k2
R4 100k
R5 47

73

Resistors (continued)
R6 47k
R7 1M5
R8 220k
R9 10k
R10 1M
R11 5k6
R12 2k7
R13 5k6
R14 2k7
R15 220
R16 220

Potentiometer
VR1 1M sub-min hot preset

Capacitors
C 1 22µ 16V elect
C2 22p ceramic
C3 22p ceramic
C4 47µ 10V elect
C5 100n polyester
C6 33n polyester
C7 220n polyester
C8 1µ 63V elect

Semiconductors
ICI 4040BE or 74HC4040
IC2 6402
IC3 7411C244
IC4 74HC244
IC5 4024BE
IC6 4013BE
IC7 TLC555CP or similar
IC8 TLC555CP or similar
TRI BC549
TR2 BC559
TR3 BC549

Miscellaneous
SKI 5 way (180 degree) DIN socket

74

Miscellaneous (continued)
PB1 Push to make, release to break switch
PB2 Heavy duty push to make, release to

break switch
X1 4 MHz crystal
8 pin di.!. holder (2 off)
14 pin d.i.l. holder (2 off)
16 pin dn. holder
20 pin dn. holder (2 off)
40 pin di!. holder
Case, circuit board, wire, etc.

Additional Components for Channel Selector (Fig.3.10)

Resistors (all 0.25 watt 5% carbon film)
R17 to R20 lk (4 off)

Miscellaneous
SI to S4 Hex switch

Setting Up
Setting up the unit is easiest if a computer can be used to
monitor the output from the unit. It is then just a matter
of using trial and error to find a setting for VR1 that results
in each operation of the foot switch instigating the trans-
mission of two bytes. In the absence of a computer and
software to monitor the output of the unit, it can be
connected to any MIDI device that responds to program
change messages, and trial and error can again be used to
find a setting for VR1 that gives satisfactory results. There
should be a range of settings that give correct operation of
the unit, and VR1 should be set at roughly the middle of
this range.

MIDI Programmer
Although modern electronic musical instruments are
undoubtedly much more sophisticated than those of a
decade ago, there is one respect in which most users seem
to consider them substantially inferior. This is the ease

75

(or difficulty) with which the sound generator circuits can be
adjusted. In the days of analogue synthesisers there was a
separate and clearly marked control knob for each parameter
that could be adjusted. Altering and setting up sounds was
very easy because you could adjust any parameter immedi-
ately simply by grabbing the correct control knob.

This approach does not lend itself too well to modern
digital instruments where there are generally a lot more
parameters to adjust, with a different set of adjustments for
each of what is usually six to sixteen voices. A separate con-
trol for each parameter would probably cost hundreds of
pounds to implement, possibly even thousands! This would
result in instruments that were excessively expensive and
were physically huge. In the early days of digitally control-
led instruments a popular solution to the problem was to have
a single control knob, with a keypad being used to assign this
control to whatever parameter you wished to adjust. A
numeric display usually indicated the number of the current
control, and in conjunction with a chart it was reasonably
easy to ascertain that you were adjusting the correct para-
meter.

In my experience this system worked quite well. It was not
as good as having a separate control for each function that
needed to be adjusted, but under the circumstances it gave a
good compromise between size and cost on the one hand, and
ease of use on the other.

Unfortunately, this system seems to have given way to one
which dispenses with the control knob altogether. These days
the standard system is to have a keypad, and as before, this is
used to select the desired parameter. Also as before, a display
normally sh-ows you which parameter has been selected.
Things are actually a bit more advanced in this respect, in
that a modern display is often an alpha-numeric type which
will tell you which parameter you are adjusting (e.g. "Filter
Envelope Attack") rather than just showing the number of the
control. The parameter is usually adjusted by entering new
values via the keypad, or perhaps by using "up" and "down"
keys to increment or decrement the control's setting.

This system may be popular with instrument manufacturers,
but it is not one that is favoured by many users. Setting up

76

and "fine tuning" the sound generator circuits tends to be a
very long winded process indeed. This fact, plus the complex-

of modern instruments, has led to many users giving up
any ideas of setting up their own sounds, and simply settling
for the factory presets or other ready programmed sounds.

With some instruments MIDI offers the opportunity to go
back to the convenience of the control knob era. Where an
instrument allows the sound generator circuits to be adjusted
via MIDI controller messages, an external unit with a set of
control knobs can be used to program the sound generator
circuits. Such a unit is likely to be quite expensive though.
This leads us back to the single knob compromise, where one
control is used for every parameter, with some means of
selecting the control you wish to adjust. This is something
that can be easily implemented using quite a simple MIDI
controller unit.

The unit featured here uses two hex switches to select the
required MIDI control number, and has a control knob which
can be used to vary that controller over its full 0 to 127 data
range. It gives easy control of any MIDI controller, including
;witch types which are easily set on or off by adjusting the
control fully in one direction or the other.

It is only fair to point out that it is a good idea to check
the MIDI specifications of your equipment before building a
unit of this type. The specification might show that there is
easy access to a wide range of parameters via MIDI controllers.
There might even be a facility that enables each controllable
feature to be assigned to a user specified MIDI control num-
ber. On the other hand, some recent instruments permit only
a few basic functions such as modulation depth and master
volume to be accessed via MIDI controllers. There may be no
MIDI access to such things as the filters and envelope shapers,
or (more probably) they might only be accessible via system
exclusive messages. Obviously a MIDI controller of the type
described here is of relatively little use with a unit that falls
into this second category.

System Operation
The requirements for a MIDI controller are somewhat differ-
ent to those for the MIDI pedal described previously. Whereas

77

the MIDI pedal had to send two byte messages, and only when
triggered, the MIDI controller must send three byte messages
more or less continuously. The modified arrangement used to
give this action is shown in the block diagram of Figure 3.14.

The clock, UART, and output stages are the same as those
of the MIDI pedal unit. This unit also has the parallel input
of the UART fed via tristate buffers, but in this case there are
three of them, as each message contains threé bytes. The first
tristate buffer is fed from a code generator circuit which
simply ties the inputs of the buffer to the appropriate logic
levels so that the correct header byte is produced. The second
tristate buffer is fed from a hex switch, and this is used to
select the required MIDI control number. An analogue to
digital converter feeds the input of the third tristate buffer,
and this circuit is fed with the output voltage of a potentio-
meter. This component is, of course, the control that is used
to vary the MIDI controller value.
A control logic circuit ensures that each of the tristate

buffers are activated in turn, and that the UART is triggered
into action as each new byte of data is fed to its parallel
inputs. An oscillator controls the rate at which data is trans-
mitted, and a frequency of several hundred hertz ensures
that there is no appreciable delay between adjusting a control
and the MIDI equipment responding to the change in value.

The Circuit
The circuit diagram for the clock and UART sections of the
controller appears in Figure 3.15. This requires little comment
as it is much the same as the equivalent section of the program
change pedal project. The only difference is that the wiring at
the input to IC3 has been changed to give the control change
header byte (10110000 in binary). The circuit only transmits
on MIDI channel 1, but like the program change pedal, a hex
switch circuit can be used to provide the least significant
nibble for IC3 if multi-channel operation is required.

Figure 3.16 shows the control number selector circuit. Si
to S3 and S4 to Si will presumably be a pair of hex switches.
In the case of SI to S3 the most significant bit of the switch is
left unconnected, so that values above the legal MIDI maxi-
mum (7F hex) can not be accidentally selected.

79

ICI = 4040BE IC2 = 6402 IC3 = 74HC244 TRI = BC549

C1
M22u

X1
4MHz

HF
RI

470k

TR1

um C2 7 22p

R2

1k

10

47u am
25

A

16 B

6
IC1

um C3
722p

23

40

8 11

R3

2k2

21

C4 3413513738139

• 4.

 1

IC2

33 18

1 119120

32 16

31 14

30 12

29 9

28 7

27 5

26 3

2 3 16 3

IC3

2

4

+5V

6
-0
8

11

13
—4

15

1

17

Fig.3.15 The clock and UA AT sections of the MIDI controller

• OV

IC4 = 74HC244

+5V

18
33

16
32

14
31-e---

12
30

9
o

7
28

27

26

5

3

OV

IC4

2

2

S3 liS4

 L

4

6

8

5 S6 7

11

13

15

10

17

• f
Fig.3.16 The control number selector circuit

R4

1k

R5

1k

R6 f

1k

R7

1k

Re

1k R9 E1k

TO

IC2

+5V «le

19 20

18
33

16
32

14
31

12
30 •••--

9
29

7
28

5
27 -0-

3
26

0V

IC5

2

10
4 Imm•••••w 390

11

4 12

6 13

8 14

11 15

13 16

15 17

IIIIIIIMIL
10

17

Fig.3.17 The analogue to digital converter circuit

IC6

R10

5

6

IC5 = 74HC244

IC6 = ZN449E

R11
47k

 r----1 -4V

7

8

3
7 1111eC5 min ='' C6

100p 9.11111111 2u2
• é •

10k

The analogue to digital converter circuit appears in Figure
3.17. This is based on the Ferranti ZN449E successive
approximation converter. The ZN447E and ZN448E are also
suitable for use in this circuit, and they differ from the
ZN449E only in that their guaranteed accuracy is somewhat
better. High accuracy is of little importance in this applica-
tion, and the lower cost of the ZN449E makes it a better
choice. However, it is a bit more difficult to obtain than the
ZN447E and ZN448E, and it might be necessary to use one
of these if the ZN449E proves to be elusive.

VR1 is the control potentiometer, and it is fed from IC6's
internal 2.55 volt regulator. R10 and C6 are the load resistor
and decoupling capacitor for this regulator. C5 is the timing
capacitor in IC6's internal clock oscillator, and it sets the
clock frequency at typically a little under 1 MHz. It takes no
more than nine clock cycles per conversion, or about 10 jis in
other words. This is obviously more than adequate for the
present application, where only a few hundred conversions
per second are required. IC6 is an 8 bit converter, but in this
case only a seven bit output is required. Consequently, the
least significant output of IC6 is left unused. 106 requires a
negative "start conversion" pulse in order to trigger it into
action, and this is provided by the control logic stage while
the header byte is being transmitted. There is an "end of
conversion" status output available, but it is not needed in
this application. Each conversion will have been completed
well before the output of the converter is fed through to the
UART for transmission.

The analogue to digital converter requires a negative supply
of about 4 volts for the "tail" resistor in its high speed voltage
comparator (R11). If the unit is powered from a mains power
supply it would not be difficult to add a simple negative
supply generator circuit to it. With battery power extra
batteries could be used to provide the negative supply. How-
ever, in either case it is probably easier and better to generate
the negative supply from the +5 volt supply. A suitable circuit
appears in Figure 3.18. This is based on a couple of CMOS
inverters which are utilized in the standard CMOS astable
(oscillator) configuration. The output from the oscillator is
rectified and smoothed to give an output of about — 4 volts.

83

IFig.3.18 Generating a negative supply for the A/O converter

+5V

14
9 12>ce22,

11

IC7 = 4069BE

D112 = 1N4148

IC7a

C7 C8
lOn 4u7 D2

R12
100k

IC7b

10

7

DI

—4V
OUT

C9
c=3 4u7

IC7 pin 13

0 V -.b.

Only a very limited supply current is available from the
output of this circuit, but as the ZN449E only draws about
60 microamps from its negative supply there is no problem in
this respect.

Note that the two inverters are "spares" from the control
logic circuit, which uses a further three of the six inverters in

84

+5V

OC

R13

27k

R14

100k

7

6

8 4

IC8

16

15

3 14

2

IC9

IC8 = TLC555CP
IC9 = 40170E ne,.. F

3
 C

2

4

2

IC7c

3 N 4

IC7d

77773

51> 6

IC7e

D

 a- E

Fig.3.19 The control logic section of the MIDI controller

OV

IC7. This leaves one inverter unused, and its input terminal
(pin 13) should be connected to the negative supply rail to
prevent spurious operations and possible damage by static
charges.

Refer to Figure 3.19 for the control logic circuit. This has
a 555 (IC8) operating as the oscillator and driving a CMOS
4017BE one of ten decoder (IC9). The latter has ten outputs
numbered from "0" to "9", only one of which is high at any
one time. Initially output "0" is high, but after one input
cycle output " 1" goes high, then on the next clock cycle
output "2" goes high, and so on. After output "9" has gone
high, the circuit cycles back to the state where output "0"
is high again, and it continues cycling in this manner
indefinitely.

In this circuit IC9 operates as what could be more accurate-
ly termed a one of three decoder, since output "3" is connec-
ted to the reset input. Therefore, as output "3" goes high the
unit resets itself, and output "0" goes high. This effectively
eliminates outputs "4" to "9", and output "3" does no more
than provide this automatic resetting. This gives the required
sequence of three control pulses from outputs "0" to "2",
but the pulses are positive whereas the tristate buffers need
negative enable signals. All three outputs are therefore
inverted prior to being fed to the tristate buffers. The UART
is triggered direct from the output of IC8, and it is triggered
on each output cycle from IC8.

The invert/output stage circuit is shown in Figure 3.20.
Apart from the component numbering this is exactly the
same as the equivalent stage of the MIDI program change
pedal unit.

The current consumption of this circuit is somewhat higher
than that of either of the previous two projects at approxi-
mately 50 milliamps. However, this is still low enough to
permit the same power sources to be used.

Construction and Use
This project is a bit too complex to be easily constructed on
stripboard, and a custom double-sided printed circuit board
would be ideal. On the other hand, do-it-yourself double-
sided boards are far from easy to produce, and either a single-

86

+5V

R15

5k6

R16

2k7 '

TR2

R17

5k6

TR2 = BC559

TR3 = BC549

0V

R18

2k7

R19

220

4
SK1

R20

220

T R3

5 2 07o

Fig. 3.20 The in verer/ou4out stage

skied board or a stripboard plus a substantial number of link
wires are probably more practical propositions. Stripboard
probably represents the most simple method of construction,
but is only suitable if the unit does not need to be particularly
small. As MIDI units are often housed in 19 inch rack-mount
cases, small size will probably not be a major consideration in
most instances.

Use a good quality component for VR1. Apart from the
fact that this control is likely to receive a lot of use and may
quickly wear out if it is of mediocre quality, cheap types may
fail to operate properly at all. It is important that the wiper
of VR1 can reach both ends of its track, so that the full 0 to

87

127 control range is available from the unit. Without this full
range it will not be possible to control the switch type con-
trols. It is not uncommon for cheap potentiometers to have
wipers that do not quite reach one end or the other of their
tracks.

Most MIDI instruments have control number 1 as the
modulation depth (as per the MIDI standard) and control
number 7 as the master volume (as per a sort of unofficial
MIDI standard). These provide an easy means of initially
testing the unit with most instruments.

It is important to bear in mind when using the unit that it
transmits MIDI controller changes continuously. If you adjust
the hex switches while the unit is switched on, you are almost
certain to inadvertently set numerous control values at what-
ever value the control happens to be set to at that time! You
must switch the unit off before setting a new control number,
and switch it on again once the new control number has been
set. There is a slight flaw in doing this, in that the unit is
likely to cut off during a three byte group, rather than finish-
ing the message and then cutting off. In practice this is unlike-
ly to cause any major problems, and it is quite likely that the
equipment fed from the unit will simply ignore any messages
that are cut short.

However, if preferred, the unit can be fitted with a mute
switch using the modification shown in Figure 3.21. Normally
Ra takes pin 4 of IC8 high, and the oscillator functions
normally. When Sa is closed, pin 4 of IC8 is controlled by the
inverted signal from output "0" of IC9. This is high and
enables the circuit to function normally until the start of a
new message when output "0" goes high. The circuit is then
brought to a halt before the new header byte is transmitted,
and whole three byte messages are always transmitted.

Components for MIDI Programmer
(Figs 3.15, 3.16, 3.17, 3.18, 3.19 & 3.20)

Resistors (all 0.25 watt 5% carbon film)
RI 470k
R2 lk
R3 2k2

88

IC7
P I N 2

Sa

R13

27k

R14

:00k

7

6

Ra

4k7

8 4

ICS

2

15

3 14

7 16

IC9

3

2

4

A117 1773
•

Fig.3,21 Adding a mute switch to the MIDI controller

Resistors (continued)
R4 to R9 lk (7 off)
RIO 390
R11 47k
R12 100k
R13 27k
RI4 100k
R15 5k6
R16 2k7
R17 5k6
R18 2k7
R19 220
R20 220

89

Potentiometer
VR1 10k lin

Capacitors
C 1 22µ 16V elect
C2 22p ceramic
C3 22p ceramic
C4 47µ 10V elect
C5 100p ceramic
C6 2µ2 63V elect
C7 10n polyester
C8 4µ7 63V elect
C9 4µ7 63V elect
C10 lOn polyester

Semiconductors
IC1 4040BE or 74HC4040
IC2 6402
IC3 7411C244
IC4 74HC244
IC5 74HC244
IC6 ZN449E (or ZN447E or ZN448E)
IC7 4069BE
IC8 TLC555CP or similar
IC9 4017BE
D1 1N4148
D2 1N4148
TR1 BC549
TR2 BC559
TR3 BC549

Miscellaneous
SKI 5 way (180 degree) DIN socket
SI to S3 Hex switch
S4 to Si Hex switch
X1 4 MHz crystal
8 pin di]. holder
14 pin dil. holder
16 pin dn. holder (2 off)
18 pin dn. holder

90

Miscellaneous (continued)
20 pin d.i.l. holder (3 off)
40 pin dn. holder
Case, circuit board, wire, etc.

Additional Components for Mute Switch (Fig.3.21)

Resistor (0.25 watt 5% carbon film)
Ra 4k7

Miscellaneous
Sa SPST switch

MIDI Processing
A lot of MIDI add-ons are concerned with the processing of
MIDI data. Units of this type provide a wide range of
processing types, including such things as filtering certain
types of MIDI message, harmonising (changing note on and
note off messages to alter their pitch value), and channel-
ising (changing the channel number of messages which are on
a certain channel or channels). Some types of MIDI processing
are beyond the scope of simple add-ons, and require micro
based hardware running some quite sophisticated software.
However, there are some useful functions that can be provided
by relatively simple and non-micro based hardware, and one
of these is channelising.

Probably the most common use of channelising is in con-
junction with an instrument which only provides operation on
channel 1, to effectively enable it to operate on other channels.
Few (if any) current instruments have this restriction. It was
cuite a common constraint in the early days of MIDI, and is
cne that afflicted some instruments until quite recently.
Consequently, there are quite a few MIDI equipped instru-
nents in circulation that give a "Ford" choice, operation on
any channel, provided it is channel 1!

There are two basic types of channelising. The first is for
use with an instrument which can only receive on MIDI
channel 1. The channeliser must let most MIDI messages pass
without processing them in any way. It must only process
messages that are on a user specified channel, and it must

91

change those messages to MIDI channel 1. This enables the
instrument to operate on any MIDI channel.

Ideally the unit would block messages on MIDI channel 1,
or move them onto the user specified input channel. This
would then leave channel 1 free for use. The simple channel-
iser described here allows messages on channel 1 to pass
unaltered. Therefore, channel 1 must be left unused, and if
there are two or more instruments in the system that only
give operation on channel 1, these must each be preceded by a
channeliser. There are actually other permutations. Consider
the situation where there are two instruments in the system
operating on channel 1, with one unit fed direct from the
controller and the other fed via the channeliser. Messages on
channel 1 would be fed to both instruments while those
shifted to channel 1 via the channeliser would only be fed to
that particular instrument. This would give the option of
directing messages to one or both instruments — something
that is not normally possible except by doubling-up messages
on two channels.

For effective operation with an instrument that can only
transmit on channel 1, a channeliser simply needs to convert
any MIDI channel messages to a user specified channel. It
does not need to filter out messages that are not on channel 1,
or process them differently, since it will never be fed with
messages on any other channel. This enables a somewhat more
simple circuit to be used. This channeliser normally only
alters messages on a specified channel. However, as described
later in this chapter, if it is only required for use at the output
of a single channel MIDI instrument, it can be used in some-
what simplified form.

System Operation
The block diagram of Figure 3.22 shows the basic arrangement
used in the channeliser, albeit in rather over-simplified form.
On the output side of the circuit there is the transmitter
section of the UART, together with the clock oscillator and an
invert/driver at the output. Unlike the previous projects, this
one also utilizes the receiver section of the UART. This is
preceded by an opto-isolator circuit which converts the incom-
ing signal into a form that is suitable for connection to the

92

Hex
Switch

UART
(Receive)

Opto—
Isolator

Tristate
Buffer

Tristate
Buffer

Decoder

Fig. 3.22 The channeliser block diagram

Clock
Oscillator

UART
(Trans)

Inverter

Inverter
Driver

OUI

serial input of the UART. It uses the same clock signal and
control register as the transmitter section of the device.

The UART has a status output ("data received") which
goes high when a complete byte of data has been received. It
also has an input ("data received reset") which is taken low
in order to reset this status flag. In this circuit the status
output drives its own reset input via an inverter, so that as
soon as a full byte of data has been received the status flag is
reset. The point of this is to generate a short pulse which
triggers the transmitter section of the UART, and causes each
byte of data to be transmitted as soon as it has been decoded.

Normally each received byte is passed from the receiver to
the transmitter via a tristate buffer, and is immediately trans-
mitted in unmodified form. A decoder circuit monitors the
received bytes, and activates a second tristate buffer if certain
conditions are met. The most significant bit is monitored, and
will produce a positive result if it is high (which means that
the received byte is a header byte). However, the other three
bits of the most significant nibble are also monitored, and a
negative result will be produced if all three of these plus the
most significant bit are high. This occurs when a system
message is received. It is important that these are not pro-
cessed by the unit as they.do not contain a channel number.
Instead, the least significant nibble contains a code that
identifies the message type, and altering this would change
the message type.

The least significant nibble is monitored to see if it con-
tains the user specified channel number. As the decoder
circuit detects a channel message byte on the appropriate
channel it activates a second tristate buffer. This allows the
most significant nibble to pass straight through to the trans-
mitter section of the UART, as before. A hex switch provides
the least significant nibble, and this replaces the channel
number in the received message. You therefore dial up on
the hex switch the channel number you want to be substituted
on processed header bytes.

The Circuit
Figure 3.23 shows the main circuit diagram for the channeliser.
This has obvious similarities with the previous UART based

94

'J1

ICI = 4040BE IC2 = 6402

' C1 lR2 ca igi. 34
22u I lk 47u um

X1 25

4MHz I
A

— I ' 16 B 23

R1
10 40

470k

TRI

ma C2 7 22p

17

21

R3

2k2

IC3 = 74HC244 TR1 = BC549

5137138139

IC2a

1

33 18

32 16

31 14

30 12

29 9

28 7

27 5

26 3

2 3 16 36

19 20 D
19

E

2 5

+5V

46

67

IC3 88 ICJ

13 10

15 11

17 12

10 F
 - 0 V

Fig.3.23 The channeliser main circuit diagram

TO
TCP

IC4 = 74HC244
+5V •

33

32

31

30

29

28

27

26

G

1R

16

19 20

14

12

9

7

5

3

OV -ub

IC4

4

6

8

11

si

5

6 TO

7 IC2

8

13

15

17

10

-

 •

R4 fl R5
1k li k

R6

1k

R7

1k

Fig.3.24 The output channel selector circuit

IC5 = 74HC10 IC6 = 40118E IC7 = 4069BE ICS = 40638E
+5V

5

U 6
31

4
o 7

e

0V

14

6
IC5a

2

13

IC6 PIN 14

IC7 PIN 14

IC56
1

9

10
111—,

11

IC5c

7

e 33
IC6

2 7

15 -willinriamwmamma
2 9 ••.•—

('J 13
u

12
o 11 —

I-
12

IC7a 6
4

7

•
r I -

'171
86)) S7 88\4 I

'Ce

1

14

11

8 2 4

Re

1 k

9

R9

1k

RI@

1k

Fig.3.25 The decoder/input channel selector circuit

projects, and the clock, divider, and UART (transmitter)
sections of this circuit are the same as their equivalents in the
previous projects. In this case ICI drives both the transmitter
and receiver clock inputs of IC2. IC3 is the first of the tri.
state buffers, and it simply couples the output of the UART's
receiver section through to the transmitter when it is activated.

The circuit diagram for the output channel selector circuit
is shown in Figure 3.24. IC4 is the second of the tristate
buffers, and four of its bits simply couple the most significant
nibble straight through to the transmitter section of the
UART. The other four bits are provided by the hex switch
circuit based on S1 to S4.

Refer to Figure 3.25 for the decoder circuit. The four
most significant bits are handled by IC5, which is a triple 3
input NAND gate. The least significant nibble is monitored
by IC8, which is a 4 bit magnitude comparator. In this circuit
it is used in the mode where it provides a high output when
the bit patterns on its two sets of inputs match. Here it is
comparing the least significant nibble from the UART with the
bit pattern from the hex switch circuit based on S5 to S8.
The hex switch is therefore used to select the desired input
channel. If the unit will only be used to process an input on
channel 1, then the hex switch can be omitted.

The rest of the circuit is shown in Figure 3.26. IC7b is
the inverter stage that connects between the UART's data
received output and the corresponding reset input. IC9 is
the opto-isolator input stage, while TR2 and TR3 act as the
inverter/driver at the output of the unit.

Construction
The constructional notes for the previous projects in this
chapter largely apply to this unit as well, and will not be
repeated here. The current consumption of this circuit is a
little higher than that of the previous three projects, but the
same methods of powering it can be used. However, if the
unit is powered from a 9 volt battery it would need to be a
fairly high capacity type. A 100 milliamp regulator should
still be adequate, but it will probably run quite hot. A 500
milliamp type might be a better choice for good long term
reliability.

98

R12

10k

2

IC7b

SKI R13
IN 220

2
5 = -- 4

3

R14

680

8 6

1C9 = 6N139

TR2 = BC559

TR3 = BC549

OV

IC9

ememeammuimmL
5 7

A
R17

2k7

R16
5k6 TR2

R18

5k6

IC7 PINS
5, 9, n, 13

R15fl R19

1k5 2k7

R20

220

5K2 2 0-
5

R21

220

TR3

Fig.3.26 The inverter. input, and output circuits

Components for MIDI Cizanneliser
(Figs 3.23, 3.24, 3.25 & 3.26)

Resistors (all 0.25 watt 5% carbon film)
RI 470k
R2 lk
R3 2k2
R4 to R11 lk (8 off)
RI2 10k
R13 220
R14 680
R15 1k5
R16 5k6
R17 2k7
R18 5k6
R19 2k7
R20 220
R21 220

Capacitors
Cl 22µ 16V elect
C2 22p ceramic
C3 22p ceramic
C4 47µ 10V elect

Semiconductors
IC1 4040BE or 74HC4040
1C2 6402
IC3 74HC244
1C4 7411C244
105 74HCIO
IC6 4011BE
IC7 4069BE
IC8 4063BE
IC9 6N139
TRI BC549
TR2 BC559
TR3 BC549

100

Miscellaneous
Si to S4 Hex switch
S5 to S8 Hex switch
SKI 5 way (180 degree) DIN socket
SK2 5 way (180 degree) DIN socket
X1 4 MHz crystal
8 pin d.i.l. holder
14 pin di]. holder (3 off)
15 pin d.i.l. holder (2 off)
23 pin dn. holder (2 off)
43 pin di.l. holder
Case, circuit- board, wire, etc.

In Use
If the unit is to be used to process incoming signals, its IN
socket is fed with the input signal, and its OUT socket
cpnnects to the IN socket of the instrument. If it must
process outgoing data, its IN socket is fed from the OUT
socket of the instrument, and its OUT socket is coupled to
the IN socket of the second instrument or other equipment
that must be fed with the processed signal. Of course, it is
perfectly acceptable to process both incoming and outgoing
messages, but two units will be required to do this. Once
everything is wired up correctly it is then just a matter of
tying out the unit to ensure that it provides the required
channel shifting action. Remember that it will only change
messages on the channel selected using S5 to S8 to the one
selected using Si to S4. All messages on the wrong input
channel pass through the unit without undergoing any
changes.

Simplification
IF the unit will only be used at the output of an instrument to
sraft its output to a different channel, a somewhat simplified
circuit can be used. Pin 3 of IC7 and point "G" (Fig.3.24)
should be fed from pin 12 of IC5. IC6, IC8, S5 to S8, and R8
to R11 can then be omitted. The action of the unit is then to
convert all MIDI channel messages to the channel set on Si to
54, no matter what input channel they are on.

101

MIDI Analyser.
When putting together complex MIDI systems and trying to
get everything set up correctly it can sometimes be difficult to
track down malfunctions. Most of these faults are not actually
faults at all — it is just that something in the system is not set
to the right operating mode, or sub-mode of an operating
mode. With modem MIDI equipment and software there are
usually a large number of options to choose from, and it is
very easy to overlook something when setting-up a system.
It can be quite time consuming (and frustrating) to track
down these errors. Is it the transmitting device or the
receiving one which is set to the wrong mode, or is there a
genuine fault in the system?

This unit helps with the tracking down of problems in MIDI
systems by indicating what type of MIDI message or messages
a MIDI source is producing. With channel messages it shows
the type of message (note on, pitch wheel, etc.) plus its MIDI
channel number. For system messages it shows that the
message type is indeed of the system variety, and exactly what
kind of system message it is (start, continue, etc.). If the
MIDI source is sending data on the wrong channel or some-
thing of this nature, this analyser should quickly identify
the problem. The message type and channel number are
indicated on a twenty-four LED display.

System Operation
The block diagram of Figure 3.27 shows the general arrange-
ment used in this project. It is based on a UART which has
a clock oscillator circuit to set the correct baud rate, and an
opto-isolator circuit to convert incoming signals into a form
that the UART can read. In this application only the receiver
section of the UART is utilized.

The UART gives a series of eight bit codes on its parallel
output, and the rest of the circuit must filter out the header
bytes from the data bytes, and provide information on the
header byte. This processing is done by two decoder circuits.
The first of these detects message bytes, and indicates the type
of message by setting one of eight outputs high. It is easy for
the unit to differentiate between header bytes and data types
as the most significant bit is always high on the former and

102

Opto—
Isolator

Clock
Oscillator

UART

Fig.3.27 The MIDI analyser block diagram

+5V

D4

D5

D6

D7

16

2

3

6

IC4

IC4 = 74HC138
ICS = 46148E
IC6 = 40699E

15
A

14

13

12
D

11
E

10
—41.F
9

8 4 5

7
G

H

D3 0—

D2 0--

DI

DO 0-

0 V 4Ir-

IIC6 PINS 11.13, 14

1 2 3 4 5 6 7 8

i24 1 11 9 10 8 7 6 5 4
J ik " 1 i

ICS

2

IC6

Fig.3.29 The two decoder circuits

23I 121181710191 4131615

9 10111213141516

IC6 PINS 3, 5, 7, 9

low on the latter. The other three bits of the most significant
nibble are processed by a three to eight line decoder. Each
message type activates a different output of this circuit.
A four to sixteen line decoder forms the basis of the

channel decoder. This monitors the least significant nibble,
and each channel number causes a different output of the
device to be activated. Of course, when the other MIDI
decoder indicates that the received message is a system type,
then this decoder indicates the type of system message and
not the channel number (which is not applicable to system
messages).

Directly driving the LEDs from the decoder circuits is not
likely to be very successful as the LEDs would be activated for
only very brief periods. Even where the same message was
being sent repeatedly, the appropriate LEDs would probably
only light up very dimly. This problem is overcome by using a
simple pulse stretcher ahead of each LED. Even if a message
occurs just once, the pulse stretchers will ensure that the
corresponding LEDs will be activated for a long enough period
to give a clear indication.

The Circuit
Figure 3.28 shows the circuit diagram for the input stages of
the MIDI analyser. This uses the same clock, opto-isolator,
and UART circuits that have been used in previous projects.
The two decoder circuits are shown in Figure 3.29. IC4
decodes the most significant nibble, and this is a 74HC138
3 to 8 line decoder. Its positive enable input is fed with the
most significant bit, so that it is only activated when a message
header byte is received. The two negative enable inputs are
not needed in this application, and are simply connected to
the 0 volt supply rail. This table shows the message type
indicated by each of IC4's eight outputs.

IC4 Output Message Type
A Note Off

Note On
Polyphonic Key Pressure

D Control Change
E Program Change

106

1C4 Output Message Type
Channel Pressure

G Pitch Wheel Change
H System Message

The second decoder is based on IC5, which is a 4514BE
4 to 16 line decoder. This decodes the least significant nibble.
It has an "inhibit" input at pin 23, and this is driven from the
most significant bit via an inverter (IC6). Consequently, IC5
is deactivated when data bytes are present on the output of
IC3. The numbers marked on the outputs of IC5 show the
MIDI channel number that activates each one. When the
message is a system type, the outputs indicate the kind of
system message that has been received, as detailed in this
table. Note that some of the available codes are not yet
assigned, and have therefore been omitted from this table.

IC5 Output Message Type
1 System Exclusive
3 Song Position Pointer
4 Song Select
7 Tune Request
8 End Of System Exclusive
9 Clock
11 Start
12 Continue
13 Stop
15 Active Sensing
16 System Reset

There is an important difference between IC4 and IC5 in
that 1C4's outputs are normally high and go low when acti-
vated, whereas ICS's outputs are normally low and go high
when activated. Consequently they require slightly different
pulse stretcher/LED driver circuits. IC4 requires the stretcher
circuit shown in Figure 3.30. There are four pulse stretchers
here, with one based on each of IC7's gates. These are NAND
gates, but in this circuit they are wired to operate as simple
inverters. The diode, resistor, and capacitor at the input of
each circuit, aided by the very high input impedance of

107

IC7 4011BE D1,3,5,7 1N4148 D2,4,6.8 = RED LED

+bV

R7

1M5

IC7
PIN 14

C6 R11 IL CB
100n 1M5 100 1M5 I 100n

2
11

D1 2 D3 6 D5 9 D7 13
R8 R14

560 560

D2 D4 D6 De \

0V

Fig.3.30 The pulse stretchers for IC4 (two sets required)

r-,

+5V

0V

IC9 . 40118E

017

R23

1MS

018 •\\ g

R24

560

-

D17, 19, 21, 23 . 1N4148 018, 20, 22, 24 . RED LED

IC9 PiIN 14 % 4D20 D22

D19

1
R26

560

le C13 R25 — C14

- T100n 1MS _ T100n

Fig.3.31 The pulse stretchers for IC5 (four required)

R28

560

D21

:I RI m257 —__. TIC015 0r, le- -1 R29

1M5

D24

R30

560

T 100n
IC9

PIN 7

-~

CMOS logic integrated circuits, give these circuits a fast attack
and slow decay, thus providing the required pulse stretching.
Note that only four stretcher/drivers are provided by the
circuit of Figure 3.29, and that two of these are therefore
needed.

The circuit of Figure 3.31 shows the pulse stretcher/LED
drivers for IC5. These are essentially the same as the ones for
IC4, but the configuration has been inverted to suit the out-
puts of IC5. As IC5 has sixteen outputs, and this circuit
provides only four stretcher/drivers, four of these circuits are
required.

Construction
Construction of this project should not be too difficult, but
obviously the large number of LEDs in the display does
complicate things slightly. Probably the best arrangement is
to have them in three vertical rows of eight LEDs. Leave
plenty of space between each row so that each LED can be
clearly marked with the channel number it represents, etc.
It is important to add these labels as it would be very difficult
to interpret the display without them. Even if they are not
very neat they should still prove to be very worthwhile.

The current consumption of this project is under 20 milli-
amps under standby conditions, but it increases substantially
above this figure if several LEDs are switched on. The current
consumption is still quite low enough to permit the unit to be
powered in the same manner as the other projects in this
chapter.

Components for MIDI Analyser

(Main Circuir, Figs 3.28 & 3.29)

Resistors (all 0.25 watt 5% carbon film)
RI 470k
R2 1 k
R3 220
R4 680
R5 1k5
R6 2k2

110

Capacitors
Cl
C2
C3
C4

Semiconductors
Ici
IC2
IC3
IC4
IC5
IC6
TR1

221.i 16V elect
22p ceramic
22p ceramic
47µ 10V elect

4040BE or 74HC4040
6N139
6402
74HC138
4514BE
4069BE
BC549

Miscellaneous
SKI 5 way (180 degree) DIN socket
X1 4 MHz crystal
Case, circuit board, wire etc.

(Display, Fig.3.30, also component values apply to Fig.3.31)

Resistors (all 0.25 watt 5% carbon film)
R7 1M5
R8 560
R9 1M5
R10 560
R11 1M5
R12 560
R13 1M5
R14 560

Capacitors
C5
C6
C7
C8

Semiconductors
/C7

100n polyester
10(hi polyester
100n polyester
100n polyester

4011BE

111

Semiconductors (continued)
D1 1N4148
D2 Red LED
D3 1N4148
D4 Red LED
D5 1N4148
D6 Red LED
D7 1N4148
D8 Red LED

Miscellaneous
LED panel holder (4 off)
14 pin d.i.l. holder
Wire, solder, etc.

Note that six sets of display components are needed in
order to provide a full twenty-four LED display.

Finally
The projects featured in this book are all tried and tested
designs, but they also provide a useful selection of basic
building blocks which experienced readers can use as the basis
of their own designs. Something that is well worth pursuing
is MIDI processing. Apart from channelising, there are other
possible applications for simple processors, including MIDI
filters and harmonisers. There is plenty of scope for experi-
mentation, and MIDI enables the imaginative user to do
practically anything he or she wishes to.

Semiconductor pinout details are shown in Figure 3.32.

112

74H C1 0
4011 BE 40638E
401 38 E 74H 01 38 ZN 4-47E

6N 1 39 4-0248E 4040BE ZN 448E
TLC555CP 4069BE 401 7BE ZN 449E 74HC244

8
4 n 5 ,n 14 1 n 1 6 1 18 1 n 20 1
1

7 Li 8
8 9 u A7805

OUT

uA78L05

OUT

DI COM
IN

10
10

1 N 41 48

1 N 4002

11

12

Fig.3.32 Semiconductor details (1.C. top views, transistor base views)

451 4BE
24 1

13

6402

BC549
BC559

E D e

20 21

Notes

115

Notes

117

Please note following is a list of other titles that are available
in our range of Radio, Electronics and Computer Books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any
title in your area, then please write directly to the publisher
enclosing payment to cover the cost of the book plus adequate
postage.

If you would like a complete catalogue of our entire range
of Radio, Electronics and Computer Books then please send a
Stamped Addressed Envelope to:

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

160 Coil Design and Construction Manual £2.50
205 Iii•Fi Loudopeaker Erich:gum £2.95
208 Precticed Stereo & Guedroplrony Handbook £0.75
214 Audio Enthusiast'. Hendbook £0.85
219 Soled Stele Novelty Projects £0.85
220 Build Your Own Solid State Hi -Fi end Audio Acceresories £0.85
222 Solid Stone Short Wave Receivers for Beginners £2.95
225 A Precticel Introduction to Depitel ICs £2.50
226 How to Build Advonced Short Were Receivers £2.95
227 Beginners God. to Building Electronic Protects £1.95
228 Esential Theory for the Electronics Hobbyist £2.50
002 Hendbook of Radio, TV, Industrial and Traromitteng Tube end Valve Equivalents £0.60
BP6 Engineer's & Machinist's Reference Trebles £1.25
BP7 Radio & Electronic Colour Codes Date Chart [0.95
BP27 Chart of 6 echo Electronic. Semiconductor and Logic Symbols £0.96
8028 Renew, Selection Handbook £0.60
BP29 Majo, Solid Ste. Audio lit.Fi Conittruction Projects £0.85
BP33 Electronic Cola lelo, Men Hendbook £1.60
BP36 50 Circuits Using Germanium Silicon end Lefler Drodes £1.50
8037 50 Projects Using Relays, SCRs and 7 R IACs £2.96
BP39 50 (PET/ Fiekl Effect Transistor Projects £2.95
BP42 50 Simple LED Circuits £1.96
BP44 IC 566 Projects f2.95
BP45 Projects in Opro.Electronicis £1.96
13048 Electronic Project. for Beginners £1.96
BP49 Popular Electronic Project. £2.50
BP53 Practical Elecnonies Calculeterene and Formulae £3.95
BP54 Your Electronic Cakulator & Your Money ELMS
BP56 Electronic Security Devices £2.50
8058 50 Circuits Using 7400 Serino IC's £2.50
BP137 The Simple Electronic Circuit & Components (Elements of Electronics - Book 11 £3.50
13063 Alternating Current Theory lElements of Electronics - Book 21 £3.50
BP6A Seticoollot., TechnslogY (Elements of Electronics - Book 31 £3.50
13066 Beginners Guide . Microptooneout end Computing £1.96
1068 Choosing end Using Your Hi-Fi £1.66
8069 Electronec Game. £1.76
BP70 Transistor Betio Feultfinding Chart £0.96
BP72 A Microprocateor Primer £1.75
8074 Electronic Music Projette £2.50
BP76 Power Supply Project, £2.50
BP77 Mitroproorning Systems end Circuit. ' Elements of Electronics - Book 4) £2.96
BP78 Practical Computer Experiments £1.75
8P80 Popular Electronic Cirtt1113 - Book 1 £2.56
8094 Digital IC Project. £1.96
BPI» International Trailer., (tromelents Guide £3.50
BP» An Introduction to BASIC Progremming T eclvi roues £1.95
8097 50 Semple LED Cineurts - Book 2 £I.36
8098 How to Um op-Arnpe £2.95
13089 Communication (Elements of Electronic. - Book 51 £2.96
8090 Audio Project. £2.50
BP91 An Introduction to Radio Dsing £1.16
0092 Electronics Si-reified - Cryetal Set Conetructron £1.75
0093 Electronic Timer Projects £1.95
8094 Electronic Projects for Co.. and Boats £1.95
0095 Model Ritilway Projects £1.96
13P97 IC Projects for Beeroners £1.96
0098 Popular Electron< Circuits - Book 2 £2.25
8099 Mini-rnetriii Bore Projects £2.60
80101 How to Identify Jnmerked ICs £0.55
80103 Muni-circuit Board Projects £1.95
BP104 Electronic S.M. Protect. £Z96
BP105 Aerial Protects £1.86
80106 Modern Op-ernp 0,01•Gt1 £1.105
BP107 30 Soldieries. Briudbowd Projects - Book 1 £2.25
80 011. Internetional Diode Equivalent. Guide £2.25
BP109 The Art of Programming the 11(2%81 £1.95
BP110 How to Get Your Electronic Project, Work.ng £2.60
BP111 Audio (Element, of Electronics - Book 61 £3.50
BP112 A 2-80 lekorliehop Manual £3.50
00103 30 Soldieries Breedboard Projects - Book 1 £3.25
BP114 The Art of Programming the 161(2%81 £2.50
BP115 The Pre-computer Book £1.96
80117 Practical Electronic Building Blocks - Book 1 £1.95
80119 Prectical Electronic Building [Hooka - Book 2 £1.95
80119 The Art of Programming the ZX Spectrum £2.50
80020 Audio Amplifier 0 eult.1 ending Chart £0.93
(40121 How to Design end 1.4.k• Your Own PCB's £2.50
80122 Audio Amplifier Conatruction £2.25
130123 A Prettied Introduction to Meroproceneors £2.50
00124 Er, Add-on Projects for Spectrum. 2)(81 & Aim [2.75
00125 25 Semple Ameteur Band Aenele £1.96
80026 BASIC & PASCAL in Parallel £1.50

00127 How to Deng. [Wt.^. Prtkette £2.26
00128 200 °grams for the 2% Spectrum and 160 2%81 (1.96
80129 An Introduction to Programming the OR IC-1 £1.96
EIP130 Now Interfacing Circuits - Book 1 £2.25
BP131 Moro I nterf icing Circuits - Book 2 £2.75

BP132 25 Simple Shortwave Broad..., Band Aerials £1.95
BP133 An I nooductmn to Progrenuning the Dragon 32 £1.95
BP135 Secrete of the Commodore 134 £1.95
BP138 25 Simple Indoor wed Motto« Aerial. £1.75
BP137 BASIC & FORTRAN w, Peredel £1.95
BP 138 BASIC & FOR TH m Pendent £1.96
BP139 An Introduction to Prizewinning the BBC Model B MiCr0 £1.95
13P140 Orgrtel IC Equivalents & Pin Connections £5.95
BP141 Linmr IC Equivalents & Pin Connection. £5.95
BP142 An Introduction to Progracnnung the Acorn [Moron £1.95
BP143 An Introduction to Progrernmeng the At,., 600/800XL £1.95
BP, 44 Further Inched Electronics Ca/culehore and FO•Inli lee £4.96
BP145 25 Simple Tropical and MW Bend Aerials £1.75
811146 The Pre-BASIC Book £2.96
BP147 An Introduction to 6502 Michene Code £2.60
BP148 Comp... Terminology Explained £1.95
BP149 A Cootie Introduction to the Longtime ot BBC BASIC £1.96
BP152 An Introduchon In Z80 Mechine Code £2.75
BP153 An Introduction to Programming the Annual CPC464 end 6134 £2.50
BP154 An Introduction to MS X BASIC £2.50
BP156 An Introduction to 01 Machine Code £2 50
BP157 How to Wrst• Z X Spectrum and Spectrum , owns. Progrgm. £2.60
BP158 An Imroduction to Progrerruning the Commodore 16 end Plus 4 C2.50
BP159 How to lento Amstred CPC 484 Genet Program. £2.50
BP161 Into the 01 Archim £2.50
BP162 Counting on 01 Abet. £2.50
BP169 How to Gel Your Computer Programs R unsung £2.50
BP170 An Introduction to Compute. Penisherds £260

BP171 Emy Adder, Projdts for /kindred CPC 484, 664, 8128 and INSX Computers £3.50
BP173 Computer MUSK PrOjarb £2 95
BP174 Mor• Admitted Electronic MUM Projech £2.95
BP175 How Ht Write Word Game Prosper's. for the Anwtred CPC 464, 664 end 6128 £2.96
BP17e A TV-CIXers Hendhook £5.95
BP177 An Introduction to Computer Communnations £2135
BP179 Electronic ern:tenth', the Computer Control of Robots £2.95
8F 80 Electronic Circuits for the Computer Control of Model Railways £2.95
BP 181 Getting the Mod bon, Your Printer £2.96
BP182 MIDI Projects £2 95
BP183 An I ntroductron to CP/M 12.95
BP184 An Introduction to 68000 Amnon's, Lmguage £2.96

BP185 Electronic Synthesiser Construction £2 96
BP186 Walk w-Ta& re Project. £2.95
BP 187 A Practical Reference Guide to Word Processing on the Amstrad PCW8256 & PCW8512 £5.96
11P1643 Getting Stinted with BASIC and LOGO on the Amstrad PCINs £5 96
13P189 Using Your Amstrad CPC Doc Drive. £2.95
BP190 Mme Advanced ElectronicSecurity Projects £296
96'191 SimIsh APplKetrons of the Amstrad CPC. for Writers £2.95
BP192 More Advenoed Power Supply Projects £2.95
BP193 LOGO for Begetnent £2.95
BP194 Modern Opto Device ProjecN £2.95
BP196 An Introduction to Satellite Television £5.96
BP196 BASIC & LOGO in Punnet £2.95
BP 197 An I ntroductron to the Amstrad PC's £5.96
BP198 An I ntroduchon to Antenna Theory £2.96
aPlee An Irmoductron Ht BASIC.2 on the Amstrad PC. £5.96
BP230 An Introduction to GEM £5.96
BP232 A Concise Introduction to MOCOS £2.96
BP233 Electronec Hobbyets Hendbook [4.95
BP234 Trentistor Selector 0 ude £4.95
BP235 Power Selector Guide £4.95
BP236 Drignal IC SeNctor Gude-Part 1 fil 96
BP237 Digital IC Selector GudePert 2 £495
BP238 Linear IC Selector Guide £4.96
BP239 Getting Ow Most from Your Muttimeter £2 95

BP240 Remote Control Hereitiook £3.95
BP241 An Introduction to sot> Machine Code [5 96
BP242 An Introduchon to Computer A rded Drawing C2 96
BP243 BBC BAS1C88 on the Panned PC's and IBM Compatible. - Book 1: Language £3.95
BP244 BBC BASIC86 on the Amstrad PC's end IBM Compindslet - Book 2. Graph.= & Duc Film £3.95
BP245 Digitel Audio Projects £2.95
BP2411 MueKel Applications of the Al., ST s £4.95
8P247 More Advanced MIDI Project. £2.95
BP248 Ted EQ.P...i Comtroc6.1. £2.96
BP249 Mon Advencad Ted Equipment Corstruction £2 95
BP250 Programming at FORTRAN 77 14.95
BP251 Computer Hobbyists Hendbook £5.95
BP252 An Introducoon to C f 2 96
BP253 Ohre High Power Amplifier Construction (3_95
BP254 From Atoms to Amperes £2.95
BP255 I nternehonel R.I. Stetiorn Guide £4.96
BP256 An Introduction to Loudopeaken and Enclosure Design £2 95
BP257 An Introduction to Amateur Radio £2 95

BP258 Learning to Progrem In C £4 55

ell

I

BERNARD BABANI BP247

More Advanced
MIDI Projects

E-1 The projects in this book fall into two main càtagories; those that
are designed to overcome a deficiency in an item of equipment in the
system and those that are designed to enhance the performance of
the system or to make it easier to use.

C] Included are circuits for a MIDI indicator, THRU box, merge unit,
code generator, pedal, programmer, channeliser and analyser.

C_J These projects are generally more complex than those featured
in book number BP1 82 'MIDI Projects', although a few simple units
have been included as well. While most of the projects are not
suitable for beginners, they should be well within the capabilities of
someone who has a reasonable amount of experience in electronics
construction.

E The circuits should also provide some useful electronic building
blocks for use in readers own designs.

£2.95

9

SBN ,-85934-192-5

111
80 59 3 1 929

0 0 2 9 5

