
Interfacing
PCs and

Compatibles

IP

INTERFACING PCs AND
COMPATIBLES

Other Titles of Interest

BP271 How to Expand, Modernise and Repair PC's
and Compatibles

INTERFACING PCs AND
COMPATIBLES

By

R. A. PENFOLD

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

Please Note

Although every care has been taken with the production of this
book to ensure that any projects, designs, modifications and/or
programs etc. contained herewith, operate in a correct and
safe manner and also that any components specified are
normally available in Great Britain, the Publishers and Author
do not accept responsibility in any way for the failure, includ-
ing fault in design, of any project, design, modification or
program to work correctly or to cause damage to any other
equipment that it may be connected to or used in conjunction
with, or in respect of any other damage or injury that may be
so caused, nor do the Publishers accept responsibility in any
way for the failure to obtain specified components.

Notice is also given that if equipment that is still under
warranty is modified in any way or used or connected with
home-built equipment then that warranty may be void.

© 1992 BERNARD BABANI (publishing) LTD

First Published — February 1992

British Library Cataloguing in Publication Data

Penfold, R. A.

Interfacing PCs and compatibles

I. Title

004.6

ISBN 0 85934 217 4

Printed and Bound in Great Britain by Cox & Wyman Ltd, Reading.

Preface

The IBM PCs and compatibles have become firmly established
as the "standard" business computers over the past five to ten
years. They have also become popular for other types of
computing, including various scientific and technical applica-
tions at one end of the spectrum, and games at the other.
One reason for their widespread use is undoubtedly their
versatility. Even if a basic PC is not well suited to a particular
application, adding an expansion card plus one or two peri-
pherals will probably remedy the situation. A PC can handle
practically any computing task, with only those applications
that require massive computing power being "off-limits".
Advances in PC technology and software over recent years
have resulted in this "off-limits" category steadily shrinking.

For someone who is interested in home constructed add-
ons for computers a PC is an attractive proposition. A PC
offers plenty of computing power and lots of scope for
adding in your own circuits. Furthermore, the prices of PCs
seem to drop ever lower. In so-called "real terms", a good
PC system probably costs less than most eight bit systems of
around ten years ago, but is in a totally different league. Of
course, there are other sixteen bit computers which offer
plenty of power at low cost, but these tend to be awkward
from the interfacing point of view. In fact the interfacing
potential of some 16 bit computers seems to be virtually nil.
A PC with its expansion slots is the only obvious candidate
as the successor to eight bit computers such as the BBC
Model B and Commodore 64, which have been popular with
electronics enthusiasts for many years.

This book shows you how parallel input/output ports,
analogue to digital converters, and digital to analogue con-
verters can be interfaced to the PC expansion bus. Using
the principles outlined here it should be possible to interface
any circuit (within reason) to the PC expansion bus. The
example circuits are all tried and tested types using real
components, not theoretical circuits using hypothetical
components. They can therefore act as the basis of your
PC interfacing projects. A detailed knowledge of interfacing

techniques has not been assumed, but the reader should be
familiar with basic electronic construction techniques. It is
also assumed that the reader is familiar with the basics of
running a PC, simple BASIC programming, etc. Building your
own PC interfacing projects is not particularly difficult, but it
is not really the right starting point for a complete beginner
either.

R. A. Penfold

Contents

Page
Chapter 1

PC BASICS 1
Slot Machines 1
Proprietary Cards 3
DIY Proto-Cards 5
The Expansion Buses 8
The ISA Bus 10
Data/Address Bus 12
Control Bus 13
DMA/Interrupts 14
Power and Clocks 15
The Rest 17
Sixteen Bit Bus 17
Important Lines 19
Getting Physical 20
Programming 24
Properly Addressed 26
Finally 28

Chapter 2
INTERFACING CIRCUITS 29 "

Bus Times 29
Practical Decoding 32
Gates and Decoders 41
Decoder Circuits 46
Parallel I/O Ports 51
The 8255 53
8255 Programming 57
Design Examples 62
Digital to Analogue 71
The ZN448E ADC 74
Finally 79

IC Pinout Details 80

Chapter 1

PC BASICS

Some of the popular eight bit computers of a few years ago
came equipped with a user port and (or) some sort of expan-
sion port that provided an easy means of connecting do-it-
yourself add-ons. Modern sixteen bit computers are generally
somewhat less accommodating. User ports seem to be non-
existent on sixteen bit computers, and proper expansion
ports are by no means a universal feature. Despite this,
sixteen bit machines do have some potential for the
electronic hobbyist, scientist, etc., who needs to use a
computer in measurement and control applications; The
IBM PCs and compatibles are probably more accommodating
in this respect than any other popular sixteen or thirty-two

bit computers.
There is no true PC equivalent to the user port of eight

bit computers such as the BBC Model B and the Commodore
64. These user ports are basically eight bit parallel ports
with each line individually programmable as an input or an
output. Additionally there are two handshake lines, plus two
sixteen bit timer/counters. This type of port makes it very
easy to interface a wide range of circuits to the computer. The
nearest PC equivalent to this is a parallel input/output card
added into one of the expansion slots. Such cards are pro-
duced commercially (but can be a bit difficult to track down).
They can, of course, be home constructed if you are not
daunted by the prospect of tackling do-it-yourself double-
sided printed circuit boards.

Slot Machines
The PCs do have something broadly comparable to the expan-
sion ports of the popular eight bit computers. This is in the
form of the vacant expansion slots within the computer, which
from the electrical point of view are very similar indeed to
traditional expansion ports. Physically they are clearly a rather
different proposition. A normal expansion port consists
physically of a multi-way connector on the exterior of the

1

computer. Only one add-on at a time can be fitted to the
port unless some form of expansion system is used. Normally
the add-on simply plugs straight onto the port, or it connects
to it via a multi-way cable terminated in a suitable connector.
This second method is the one that is generally the easier to
implement, and is the one 1 tend to favour for do-it-yourself
add-ons.

With the PC there is no need for any expansion units to
accommodate several user add-ons. - With most PCs there are
three or more free expansion slots for this type of thing. Multi-
function cards can help to keep a reasonable number of slots
free on a computer that must be well equipped with ports, etc.
It is only fair to point out that some PCs, particularly some of
the very small types, do not have many free slots once they
have been equipped with the bare necessities for normal PC
computing. If you are interested in do-it-yourself PC inter-
facing there is a lot to be said for a traditional PC case and
motherboard, with lots of free slots and space inside the case.

Having the add-on cards inside the computer has its advan-
tages and drawbacks. On the plus side, there is no need to
worry about connecting cables getting broken. Neither is
there any problem with units fitted on the back of the
computer getting in the way, or becoming accidentally detach-
ed. Units that mount direct onto expansion ports at the rear
of computers are notorious for crashing the computer if they
should be accidentally knocked. In fact one or two units of
this type have a reputation for crashing the computer if you
should happen to breathe too hard near them! With the
cards mounted securely inside the computer there is no real
problem with unreliability even if the computer should take a
few knocks.

The main drawback from the do-it-yourself point of view is
that any add-on circuit must be on an accurately made double-
sided printed circuit board of irregular shape. This should be
fitted with a metal mounting bracket so that the board can be
firmly bolted in place. Unfortunately, the metal mounting
bracket has a fairly elaborate shape which makes it a bit tricky
for home construction. Connections to the outside world are
via connectors mounted at the rear edge of the printed circuit
board.

2

In order to tackle this type of thing you need to have a
fair amount of experience at electronics construction, and a
fair degree of expertise. There are ways of making things a
little easier though. If you do not feel competent to etch and
drill your own double-sided printed circuit boards, or simply
do not have the necessary facilities to handle this type of
thing, there are companies that can produce prototype boards
if you can provide them with reasonable artwork for the
board design. However, having one-off boards made can be
quite expensive. Whether or not this method is practical
depends on how much you are prepared to pay, and on what
sort of deal you can negotiate with a printed circuit manu-
facturing company. For this type of thing a small company
is likely to be a better bet than one which normally produces
a few thousand boards at a time.

Proprietary Cards
An alternative approach is to use a proprietary printed circuit
board rather than a custom type. Ordinary stripboards, etc.,
are not much use in this context, where a double-sided edge
connector is needed to make the connections to an expansion
slot. It is actually possible to make up an edge connector to
fit an expansion slot, and to fit this onto a piece of stripboard.
The edge connector should be fitted with pins so that you can
easily make connections from the connector/slot to the strip-
board. In theory you can easily make up prototype circuits on
the stripboard, and wire them to the expansion slot. The
system is reusable in that fresh pieces of stripboard can be
fitted to the new connector when new circuits must be
developed. Connections to the outside world can be made
via a connector fitted on the stripboard, or by way of a flying
lead (the latter probably representing the more practical
solution).

While this all sounds fine in theory, and will work to some
extent in practice, it is a method which I have found to be less
than perfect. The main problem is that modern stripboard is
not particularly tough, and in fairness it must be said that it is
not intended for this type of use. This method tends to be
frustrating and expensive, as the stripboard tends to break at
the join with the edge connector. If you decide to adopt this

3

method you therefore need to proceed with caution, and must
treat the board/connector assembly with the proverbial "kid
gloves". This method has to be regarded as considerably less
than ideal for either prototyping purposes or finished cards.

What is probably a better approach is to use one of the
proprietary prototyping cards which are specifically designed
for PC prototyping (but which are also suitable for final units).
A major problem with these is that they do not seem to be
very widely available in the U.K. Also, those that are available
tend to be quite expensive. They vary in sophistication from
simple double-sided boards with no electronics, through to
boards which have buffers, an address decoder, breadboards,
etc. For most do-it-yourself enthusiasts only the simple
boards are a practical proposition, as anything beyond this
tends to be prohibitively expensive. Even simple prototyping
boards (at the time of writing this) cost around twenty pounds
or more.
A range of three PC prototyping boards are available from

Maplin Electronic Supplies Limited, and these would seem to
offer the best value of the few boards of this type currently on
offer. The three boards are a half length eight bit type (which
is actually about two-thirds of the length of a full size board),
and full size eight and sixteen bit boards. They are all made
from strong fibreglass, and have standard PC edge connectors
to which double-sided pads are connected. The main part of
each board is covered with holes/pads on a 0.1 inch matrix.
Bus bars for power lines are included around the edge of each
board, but apart from this the pads are not linked in strip-
board fashion. There is a cluster of pads for a 25-way (right
angle) D type connector at the rear of each board. This
provides a convenient route to the outside world. All the
holes in these boards are through-plated incidentally.

Presumably the boards are made for use with wire wrapping
techniques, but simple prototype circuits can be patched
together using pieces of thin insulated hook-up wire to inter-
connect the component leadouts and pins in the correct
fashion. Either way results are not likely to be very neat, but
prototyping cards are designed to permit circuits to be quickly
and easily checked. They are not designed to give neat or
pretty results. If neat cards are required, then there is probably

4

no realistic alternative to transferring the designs to custom
printed circuit boards.

DIY Proto-Cards
Of course, it is quite possible to build for yourself something
comparable to these ready made prototyping cards. However,
I think that even if you are fairly expert at making double-
sided printed circuit boards it would be necessary to settle for
a simplified version of a proprietary board. One problem is
simply that it could take weeks to manually drill the thou-
sands of holes in one of these cards! Having the holes through
plated is useful, but is probably not something for the do-it-
yourself board maker to bother with.

An approach to home produced prototype boards that I
have found useful is to have an edge connector which does not
have any pads connecting to terminals that will, in all proba-
bility, never be needed for any of your prototype circuits.
The functions of the various terminals on the edge connector,
plus their relative importance, is something that will be dis-
cussed more fully later in this chapter. However, it is fair to
say that less than half of these terminals actually need to be
used for most do-it-yourself expansion cards. Leaving out
some of the "fingers" of the edge connector does not actually
simplify things very much, but not having to bother with the
tracks and pads which would otherwise connect to them can
help simplify things a great deal.

On the main part of the board it is probably best to settle
for some d.i.l. clusters to take integrated circuits, including
one or two 40 pin types to accommodate the larger integrated
circuits which are a feature of so many computer add-ons.
Remember that if you use 20 and 40 pin clusters, between
them these will also accommodate most other sizes of inte-
grated circuit, albeit with some pads left unused. Each pad of
each cluster can connect to a row of pads, and some rows of
stripboard style pads can be used to provide a general proto-
typing area for discrete component amplifiers, oscillators, or
whatever.

Even using this approach there will be a large number of
holes to drill, but nothing like as many as would be needed if
the entire board was covered with holes on a 0.1 inch matrix.

5

You can actually eliminate most of the hole drilling by leaving
the main part of the board blank. You can then bolt onto this
area a piece of stripboard, or any form of general purpose
prototyping board. This includes solderless breadboards,
which are perfectly suitable for most PC prototype circuits
(but which are obviously not really appropriate to finished
units). A card of this type enables new circuits to be rapidly
checked and (hopefully) perfected, and can be used over and
over again.

For the ultimate in convenience when PC prototyping you
can build a card along the lines just described, but include an
address decoder on the card. This avoids having to make up
an address decoder each time you test a new circuit, and keeps
things as quick and simple as possible. This is certainly the
type of prototyping card 1 favour, and is the one I normally
use when checking PC prototype circuits. Ideally the address
decoder should have several outputs representing different
address ranges, or it should be switchable between several
address ranges. This enables prototype circuits to be set so
that they will not conflict with any user add-ons already in
the computer. Address decoding is discussed later in this
book.
A variation on this theme is to add an address decoder

onto a proprietary PC prototyping card. Connect pins to the
pads that connect to important terminals of the edge connec-
tor so that connections can be easily made to these lines. If
you do not like the idea of prototyping circuits direct onto
the board, simply fit it with stripboard, a couple of bread-
boards, or whatever. This arrangement gives you a very
versatile prototyping system, and avoids the need to make up
a difficult double-sided printed circuit board. I suppose that
you could even make up finished circuits on stripboard or
some similar proprietary board, mount it on a ready made
PC prototyping card, and then wire it to the edge connector.
This would not give the neatest of results, but it should work
well enough in practice.

If you require the simplest means of PC interfacing, the
obvious approach is to have an edge connector to fit the
expansion bus, with a ribbon cable connected to this. Your
add-on circuits can then be connected to the opposite end of

6

this cable, and situated outside the PC. They can be bread-
boarded, constructed on stripboard, or built using any desired
method. This is the PC equivalent to the method used for
most do-it-yourself add-ons for eight bit computers. Unfor-
tunately, in my experience at any rate, this system has proved
to be a bit unreliable when applied to PC add-ons. The
problem is presumably due to the higher clock frequencies
used for PCs, especially the "turbo" PCs which are now the
norm.

It would be wrong to say that this method is totally imprac-
tical, but it can be difficult to get it to work reliably in practice.
The chances of it working with a long connecting cable are
small, and the shorter the cable, the better the chances of
success. The slower the bus speed the greater the chances of
reliable operation. Some computers have a "jumper" on the
motherboard which can be used to select a slow or a fast
expansion bus clock frequency (or there may be a setting in
the ROM BIOS setup program of an AT type computer).
With some computers, especially XT types, the expansion
bus speed is dependent on the main system clock frequency.
Switching from the "turbo" mode to the normal one will then
slow down the expansion bus. You may have both options
available, permitting a very slow expansion bus speed if the
normal system clock and slow bus clock frequencies are
selected.

There can be paradoxes with this system in that it might
fail to work properly with something like a 12 MHz XT com-
puter, but might work quite well with a 33 MHz 80386 PC.
This is simply due to the wide variation in expansion bus
speeds, with the system clock and effective expansion bus
speeds being very different in many cases. With a 12 MHz XT
the effective expansion bus clock rate may well be something
in the region of 12 MHz, but with a 33 MHz 80386 or 80486
computer it will certainly not be anything approaching the
system clock frequency. With my 33 MHz 80386 PC the
expansion bus can be switched between about 6 MHz and
8 MHz, and it seems to work better with the cable and connec-
tor method than does my 10 MHz XT. With a short cable
and slow expansion bus frequency selected, this method can
probably be made to work with any PC. However, you may

7

feel that these restrictions make this method of working
impractical.

The Expansion Buses
Many aspects of PC computing have developed substantially
over the years, and the expansion bus is no exception. The
original PC/XT bus is an eight bit type. This may seem
strange, since the PCs are sixteen and thirty-two bit com-
puters. However, the 8088 microprocessor used in the original
PCs (and many clones even today) is a so-called "cut down"
version of the 8086 microprocessor. This basically just means
that it has a eight bit data bus and must take in data and
output it eight bits at a time. Operations on sixteen bit
chunks of data are effectively accomplished using two eight
bit instructions rather than a single sixteen bit one. Once
data is inside the microprocessor's internal registers it is
handled as sixteen bit chunks, and internally the 8088 is a
true sixteen bit microprocessor. This gives some speed dis-
advantage compared to the 8086, but the speed difference in
practical applications is not very large. Although the 8088 has
an eight bit bus, because it is a proper sixteen bit component
in other respects, the PCs that are based on this chip are usual-
ly regarded as sixteen bit machines rather than superior eight
bit types.

It is worth mentioning that some XT class PCs do actually
have an 8086 microprocessor. Despite this, they usually retain
the standard eight bit expansion bus in order to give full
compatibility with 8088 based XT type PCs. Not many PCs
based on the 8086 have been produced, and certain Olivetti
and Amstrad PCs are probably the only examples of popular
PCs of this type. As far as interfacing 8086 based PCs is
concerned, they normally have a fully standard XT type
expansion bus, and are therefore interfaced in exactly the
same manner as any other XT class PCs.

The first development of the PC expansion bus was the
sixteen bit type. This became necessary when AT (advanced
technology) PCs came along. They have an 80286 micro-
processor which is a full sixteen bit type, complete with a
sixteen bit data bus. Presumably it would have been possible
to have an ordinary 8 bit expansion bus on these computers,

8

but it would have removed some of the potential advantages of
using the 80286. The solution was to retain the standard eight
bit bus, but to augment it with some further lines carried on a
second edge connector mounted in front of the existing con-
nector. This enables appropriate 8 bit cards to be used with an
AT computer, but still enables sixteen bit cards to be used
where these offer advantages. This sixteen bit PC expansion
bus is often called the "ISA" bus, and "ISA" simply stands
for "Industry Standard Architecture".

Note that PC compatibles which are based on the 80386SX
sixteen bit microprocessor are basically just AT computers,
and are interfaced in the same way. Similarly, PCs that are
based on the 80386, 80486SX, and 80486 thirty-two bit
microprocessors are essentially AT type PCs. They do usually
have a thirty-two bit expansion bus, but in most cases only
one slot is of this type. It is normally in the form of a stand-
ard sixteen bit PC expansion bus with an extra edge connector
mounted in front. This added edge connector carries the extra
lines needed for thirty-two bit interfacing. There is no true
standard for these thirty-two bit slots though, and they
normally only accept memory expansion cards produced
specially for each make of computer. These thirty-two bit
expansion buses are something that will not be considered

further here.
There is actually a standard thirty-two bit PC expansion

bus which is the result of agreements between several major
manufacturers of PC compatibles. This is the "EISA"
("Extended Industry Standard Architecture") bus. From the
physical point of view this is substantially different to the
thirty-two bit expansion buses of ISA 80386 and 80486 PCs.
It has the normal ISA bus, but an extra connector alongside
this provides the additional lines needed for thirty-two bit
interfacing. It is a high speed bus which has definite advan-
tages over the standard ISA bus for advanced applications that
genuinely require very high speed data transfers. However,
for many purposes, including most user add-on applications,
the ordinary ISA bus will suffice. The EISA bus is not some-

thing we will pursue further here.
There is a fourth type of PC expansion bus, and this is

IBM's MCA (Micro Channel Architecture) bus. This is anothei

9

high speed thirty-two bit type, and is one that is used on the
more advanced of IBM's recent PCs. These computers are not
really traditional PCs, and are intended to be a sort of new
generation of PCs. While they have good software compati-
bility with ordinary PCs, they are largely incompatible as far
as hardware is concerned. Consequently, interfacing to this
type of PC really falls outside the scope of this book.

The ISA Bus
The ISA bus has a two by 31 way 0.1 inch pitch edge connec-
tor to carry the basic eight bit section of the bus. The female
connectors are on the computer's motherboard, while the
add-on cards must have a male edge connector. This male
edge connector is basically just a protrusion on the card which
has the 31 "fingers" of copper on both sides of the board.
The extra lines for sixteen bit interfacing are carried by a
two by 18 way edge connector mounted in front of the two
by 31 way connector. Figure 1.1 gives details of this arrange-
ment, including the standard method of pin numbering used
for both connectors.

This is a list of the lines available on the 8 bit expansion
bus:

Terminal No. Function Terminal No. Function
Al —I/O CH CK
A2 D7 All Al4
A3 D6 Al8 Al3
A4 D5 Al9 Al2
A5 D4 A20 All
A6 D3 A21 A10
A7 D2 A22 A9
A8 DI A23 A8
A9 DO A24 Al
Al 0 I/O CH RDY A25 A6
All AEN A26 A5
Al2 Al9 A27 A4
Al3 Al8 A28 A3
Al4 Al7 A29 A2
Al5 Al6 A30 Al
A16 Al5 A31 AO

10

Rear Of
Compute

Bi

810

820

831

A 1

A10 831

D1

A20

D10

A31 D18

Three Terminal
Wide Gap

Fig.1.1 The edge connector pin numbering for eight and

16 bit PC buses

Terminal No. Function
B1 GND
B2 RESET
B3 +5V
B4 IRQ2
B5 —5V
B6 DRQ2
B7 —12V
B8 Reserved
B9 +12V
BIO GND

Terminal No. Function
BI 1 —MEMW
B12 —MEMR
B13 —IOW
B14 —10R
B15 —DACK3
B16 DRQ3
B17 —DACK1
B18 DRQ1
B19 —DACKO
B20 CLK

11

Terminal No. Function Terminal No. Function
B21 IRQ7 B27 TC
B22 IRQ6 B28 ALE
B23 IRQ5 B29 +5V
B24 IRQ4 B30 OSC
B25 IRQ3 B31 GND
B26 —DACK2

(A minus sign at the beginning of a function description
indicates that the line is negative active.)

Many of these lines will be familiar to anyone who has
undertaken interfacing on eight bit computers, and should be
particularly familiar to anyone who has dealt with computers
based on the 8080 or Z80 microprocessors. However, for the
benefit of those who have limited experience of computer
interfacing a description of each line (or set of lines) is
provided in the following sections.

Data/Address Bus
Unes DO to D7 are the standard 8 bit bidirectional data bus.
Any data provided by your add-on circuits is fed into the
microprocessor via these eight lines. Similarly, any data fed
from the microprocessor to your add-on circuits will come by
way of these eight lines. AO to Al9 are the address bus, and
are outputs provided by the microprocessor. These provide a
one megabyte address range for memory circuits. Sixteen
and thirty-two bit PCs have additional address lines on the
second edge connector which enables a much larger amount
of memory to be accommodated. However, PCs which have
sixteen or thirty-two bit microprocessors normally operate in
an 8088 emulation mode where only the basic twenty bit
address bus is utilized. These days increasing use of the
extended memory of sixteen and thirty-two bit machines is
made via disk caches, DOS extenders, etc. This is largely of
academic importance to the do-it-yourself add-on enthusiast,
and you will normally only need address lines AO to A19. In
fact you will not normally deal with interfacing memory
circuits, and will not even need all these address lines.

The address bus is also used for selecting the correct
input/output circuit. In this context only the lower sixteen

12

lines (AO to A15) are utilized. This gives some 64K of input/
output address space, or some 65536 input/output addresses
in other words. This is more than would ever be needed in a
real computer system, and a somewhat simplified approach
has therefore been used on the PCs. Only the lower ten
address lines (AO to A9) are utilized, which still gives some
1024 usable input/output addresses. The lower half of the
address range is reserved for internal use (i.e. circuits on the
motherboard), leaving the upper 512 addresses free for
expansion cards. Many of these addresses are reserved for
specific functions, such as the standard ports and disk con-
trollers. There is still plenty of space left for your own
expansion cards. The input/output map is a topic we will

discuss fully later on.

Control Bus
The 8088 microprocessor has a control bus which consists of
seven lines. Four of these are MEMR, MEMW, IOR, and
IOW, which are all forms of read/write line. Unlike some
microprocessors, the 8088 has separate read and write lines,
not one line that indicates one type of operation when set
high, and the opposite type when set low. Also, the 8088
has separate memory and input/output maps. 8088 based
computers do not have input/output devices placed at empty
spaces in the memory map, as do computers based on chips
such as the 6502 and 68000. Thus, what is a single control
line on some microprocessors becomes some four lines on the
8088 series. These lines are all active low. MEMR goes low
when the microprocessor is reading from memory — MEMW
goes low when it is writing to memory. IOR is activated when
data is read from an input device — IOW is activated when data
is written to an output circuit. These are obviously important
lines which will often have to be decoded by your add-on
circuits. Presumably any do-it-yourself add-on cards will not
fit in the memory map, but will go into the input/output map.
Accordingly, you will not normally need to bother with
MEMR and MEMW, but will need to use IOR and IOW
extensively.

ALE (address latch enable) is a control line that can be used
to synchronise events to microprocessor bus cycles. This is

13

not a line that you will normally need to bother with. The
same is not true of AEN (address enable) which goes low
during processor bus cycles (i.e. normal operations). It is
needed to distinguish between normal bus cycles and DMA
(direct memory access) cycles. This must be decoded to the
low state by the address/control bus decoder.

The reset line is an output generated by the computer
which is a standard active high reset line. This goes high at
switch on, or if there is a hardware reset (i.e. if you press the
computer's reset button). Software resets, which includes
those produced using the keyboard Control — Alt — Delete
sequence, do not normally result in a reset signal being pro-
duced on the reset line. It is not essential to use this line to
provide the reset signal for your add-on circuits. Some may
simply not require a reset signal at all, while with others it
might be easier to include a reset pulse generator circuit on
the expansion card. In most cases though, where a reset
signal is needed it is probably easier to use the computer's
reset line. If a negative active reset signal is needed, simply
feeding the reset line of the expansion port through an inverter
should provide a suitable signal.

DMA/Interrupts
There are nine DMA lines. DACKO to DACK3 are outputs,
as is the TC (terminal count) line. DIRQ1 to DIRQ4 are
inputs. These are lines which are only needed for circuits
which make use of the advanced DMA facilities. This is not
likely to include home constructed expansion cards, and we
will consequently not consider the DMA lines further here.

The 8088 has eight normal interrupt lines of the active high
variety, but IRQO and IRQ1 are not available on the expansion
bus. Neither are the special (high priority) interrupt lines such
as NMI (non-maskable interrupt). Interrupt lines IRQ2 to
IRQ7 are available, but bear in mind that some of these will be
used by standard expansion cards such as the serial and parallel
ports. For most user add-ons there is no need to utilize the
interrupt lines, but they can be useful where it is important
that the computer responds to the add-on very rapidly.
Applications of this type are usually where data must be
read intermittently, but when the data does come along, it

14

does so in large quantities and at a high rate. It is important
that each byte of data is read very soon after it has been
received, or it may be over-written by the next byte of data.
Using the interrupt lines on any computer is a fairly complex
business though, and it is much easier to crash the computer
than to get it right. Using interrupts on the PCs is perhaps a
little less fraught than using interrupts on some of the popular
eight bit computers. Even so, this is something that is strictly
for the advanced user.

Power and Clocks
The expansion bus includes two clock lines. OSC is a buffered
crystal controlled oscillator signal at 14.318 MHz. It is mainly
included to act as the clock signal for the colour graphics
adaptor, and it is probably not of much use for anything else.
The other clock signal is C LK, which is the system clock which
has a two-to-one duty cycle. For the original PCs the system
clock was at 4.77 MHz, but on modern PC XTs it is normally
8 MHz, 10 MHz, or even higher. On AT class computers the
clock frequency can be practically anything from 6 MI-lz to
50 MHz. Most modern AT type PCs have the ability to
operate at a "normal" clock frequency of about 8 MHz, and
a "turbo" mode of around 20 MI-Iz to 50 MHz (4.77 MHz and
about 8 MHz to 15 MHz for XT class PCs).

Clearly the system clock signal can not be relied upon to be
at a certain frequency. On AT computers it may well be
missing, with no connection made to this terminal of the
expansion bus. These factors must be borne in mind when
designing an interface that uses this clock signal. Of course,
if you are only producing a card for your own use in a com-
puter where this clock signal is present, and will always be at
a certain frequency, then you can design the card on the
basis of a known and reliable clock frequency. Remember
though, that if you change to a different PC you may have to
modify the card in order to get it to function correctly with
the new computer. In general it is better to simply ignóre
both the clock signals on the expansion bus, and where
necessary include a suitable clock generator on the expansion
card.

15

Four power supplies plus the 0 volt earth (ground) rail are
available on the expansion bus. The available voltages are
+5V, —5V, +12V, and — 12V. The +5 volt rail should be able
to supply several amps without any problems with overload-
ing.. It is difficult to be precise about how much power is
available on this line as it depends on the rating of the power
supply unit, and the current drawn by the motherboard,
expansion cards, etc. Some PCs have massive power supplies
and hardware which has very modest power requirements.
With these there is likely to be well over ten amps of spare
current available.

At the other end of the spectrum there are mini-PCs which
have relatively low power supply units, and which might have
as little as an amp or two to spare for your add-ons. Since
your cards are not likely to consume a total of even one amp
of current, any PC should be able to power your add-ons
without any difficulty. However, it is probably best to use the
PC's supply unit only for electronics. If you are using the PC
to control electric motors, filament bulbs, etc., then these
should have their own power supply units.

The +12 volt supply should also be able to provide an amp
or two without any problems. In fact it might be possible to
draw as much as 4 amps from the +12 volt line, but it is
probably best to stick to a maximum of about 2 amps unless
you can definitely ascertain that your computer can reliably
supply more than this. On many PCs the +12 volt supply does
not seem to be well stabilised, and often seems to be at around
+13 volts. I think that I am right in stating that this supply is
mainly intended for powering the motors in the disk drives,
and that the latter include their own regulator circuits. It is
probably not safe to assume that this line is well stabilised, or
particularly noise-free.

The ratings of the negative supplies are relatively small. The
—5 volt and — 12 volt lines are usually rated at 0.3 amps and
0.25 amps respectively (some of which may well be consumed
by other cards). It is probably best to keep the current drains
from the negative supplies down to about 100 milliamps (0.1
amps) or less. In most applications the negative supplies will
not be needed at all, and where they are required it will often
only be necessary to draw currents of a few milliamps or less.

16

For example, the "tail" resistor of some analogue to digital
converters requires a negative supply current of well under 1
milliamp, and for a circuit which has a three or four opera-
tional amplifiers a negative supply current of less than 10
milliamps would normally be needed.

The Rest
The I/O CH RDY (Input/Output Channel Ready) line is an
important one. It is an input which can be used to insert
wait states. A wait state is simply a system clock cycle during
a read or write operation where nothing happens. The purpose
of introducing these "dummy" clock cycles is to slow down
the computer to the point where a slow memory or input/
output circuit can keep up. This might be necessary for some
user add-ons. However, if at all possible it is obviously better
to keep things simple by having add-on circuits that can keep
up with the computer. In most cases there is no difficulty in
doing this, and I/O CH RDY can be ignored.

I/O CH CK (Input/Output Channel Check) is an active low
input line. It is taken low in order to indicate that a memory
or input/output parity error has occurred. A non-maskable
interrupt is then generated. This line is not normally used
with user add-ons.

Sixteen Bit Bus
Most do-it-yourself PC interfacing only requires the eight bit
bus, but I suppose that there are some applications which
would benefit from use of the full sixteen bit bus. This is a
list of the extra functions available on the sixteen bit ISA bus.

Terminal No. Function Terminal No. Function
DI —MEM CS16 D10 —DAQ10
D2 —I/0 CS16 D11 DRQ5
D3 IRQ16 D12 —DACK6
D4 IRQ11 D13 DRQ6
D5 IRQ12 D14 —DACK7
D6 IRQ15 D15 DRQ7
D7 1RQ14 DI6 +5V
D8 —DACKO DI7 —MASTER
D9 DRQO D18 GND

17

Terminal No. Function Terminal No. Function
Cl BHE CIO —MEMW
C2 A23 C11 D8
C3 A22 C12 D9
C4 A21 C13 D10
C5 A20 C14 Dll
C6 A19 C15 D12
Cl Al 8 C16 D13
C8 A17 C17 D14
C9 —MEMR C18 D15

(A minus sign at the beginning of a function description
indicates that the line is negative active.)

When a PC is equipped with a sixteen bit bus there are
actually a few changes to the basic eight bit bus. —DACKO
for instance, becomes —REFRESH on the sixteen bit bus.
—REFRESH simply indicates that a memory refresh cycle is
in progress. This is really only of academic importance since
it is highly unlikely that you would ever use one of the lines
which is subject to these variations of usage. Most of the
extra lines on the sixteen bit bus are of no interest to the do-it-
yourself interfacing enthusiast. The extra address lines are
only needed when accessing extended memory, and are
irrelevant to input/output devices. Most of the other lines
are interrupt and DMA lines, etc., which you will probably not
need to use either.

Of course, the extra data lines (D8 to D15) will be needed
for sixteen bit interfacing, and permit data to be exchanged in
sixteen bit words rather than being limited to eight bit bytes.
BHE is the Bus High Enable output, and it is alternatively
known as SBHE (System Bus High Enable). It indicates that
data transfer is to be on the high byte (D8 to D15), as well as
on the low byte (DO to D7). Data transfers always involve the
lower byte, and so there is no equivalent to this on the eight
bit bus. —MEM CS16 and —I/O CS16 are inputs that are used
to inform the computer that memory and input/output data
exchanges are to be sixteen bit types. If suitable signals are
not applied to these inputs, sixteen bit data transfers will be
carried out as two eight bits transfers.

18

Important Lines
Clearly a large number of the lines included on the expansion
bus will not be needed for most interfacing. The terminals of
the edge connector that connect to unused lines can obviously
be omitted. This can help to simplify the printed circuit
boards if you are using custom printed circuit boards. It can
massively simplify things if you are making up your own
prototyping boards. This is a list of the terminals of the edge
connector that you will often need to implement, and which
should certainly be included in PC prototyping systems.

Terminal No. Function Terminal No. Function
A2 D7 A27 A4
A3 D6 A28 A3
A4 D5 A29 A2
A5 D4 A30 Al
A6 D3 A31 AO
A7 D2 B1 OV (GND)
A8 D1 B2 RESET
A9 DO B3 +5V
All AEN B5 —5V
A22 A9 B7 —12V
A23 A8 B9 +12V
A24 A7 B13 —IOW
A25 A6 B14 —IOR
A26 A5

This list is basically just the lower ten lines of the address bus,
the data bus, the supply lines, RESET, AEN, —IOW and
—10R. For 16 bit interfacing you will normally need these
lines as well.

Terminal No. Function Terminal No. Function
D2 —I/0 CS16 C14 D1 I
CI BHE CIS D12
C11 D8 C16 D13
C12 D9 C17 D14
C13 DIO C18 D15

19

Getting Physical
An important aspect of PC interfacing is getting the physical
dimensions of the cards spot-on. This is every bit as important
as getting things right electronically. Make small errors in
certain dimensions and you could find that the card will
simply not fit into the computer. Make the edge connector
inaccurately and it may well short circuit adjacent pairs of
contacts from one end of the expansion slot to the other!
This might not actually do any damage to the computer, since
most logic circuits are pretty tough, and PC power supplies
have comprehensive protection circuits which should avoid
catastrophe in the event of short circuits. However, with this
type of thing it is best not to find out the hard way. If your
PC should prove to be unable to withstand this type of prob-
lem, the result could be an extremely expensive repair bill.
When undertaking any computer interfacing ic is important to
proceed very carefully indeed, taking as few risks as possible.
The more expensive the computer, the more carefully you
need to proceed.

I prefer not to try out prototype cards on my 80286 and
80386 based PCs at all, and instead use an XT class PC that is
largely comprised of left-overs from upgrades to my main PCs,
plus parts obtained cheaply or in swops with friends. This PC
is good enough for most PC interfacing applications, and if the
worst should happen it would not be a major loss. A major
repair such as fitting a new motherboard would be an unwel-
come expense, but it would not "break the bank". I could
not say the same of a repair to something like a 33 MHz
80486 based PC. Interfacing to PCs is certainly something I
would not recommend for beginners at electronics. For begin-
ners the best advice is to gain some experience building up a
few simple electronic projects before trying your hand at any
form of computer interfacing. Either that, or you should be
prepared to write-off your PC against experience!

Physical details of eight and sixteen bit cards are shown in
Figures 1.2 and 1.3 respectively. These are largely self
explanatory, but there are a few important points to note.
Firstly, the length dimension given for the cards is for full-
length cards. Obviously cards do not have to be full-length
types, and probably most PC expansion cards are only about

20

13.3.

4.2 Max. 8 Bit Expansion Card (Full Length)

Fig. 1.2 Physical details for a full length 8 bit expansion card

111111111111111111111111111111111--

Fixing

Brackc'

t.)

1 3.3-

4.2 Max. 16 Bit Expansion Card (Full Length)

0.3 4 — 1.9—

— -- 0.2

3.2

Fig. 1.3 A 16 bit expansion card is basically an 8 bit type haying an extra edge connector

0.1

half length. There is no minimum acceptable size for PC cards,
but there is a practical limitation in that the card must be long
enough to include the full edge connector, or both connectors
in the case of a sixteen bit card. Of course, if a card is less
than full length, it is the front part of the card that is cut
down to size. The edge connector and mounting bracket at
the rear of the card make it unacceptable to shorten this end.
It is probably not a good idea to produce cards that are just
fractionally less than full length. It would seem to be better
to make such cards full length, so that the front end of the
card is properly supported by the guide rails in the computer.

PC expansion cards are generally about 4 inches high
(excluding the edge connector). With most computers it is
safe to have cards of up to about 4.2 inches in height, but
above this you may find the card will fit alright, but that the
lid of the case can not be closed properly. With some mini
PC cases it is necessary to have cards no more than about 4
inches high. There is no minimum height for PC cards, but
there are again practical limitations. If you make cards much
under 4 inches high it may be very difficult to slot them in
place and to remove them again. I generally make PC expan-
sion cards 4 inches high and a minimum of about 5 inches
long, even if this gives an area that is far larger than the
interface circuit really requires.

Making your own fixing brackets is a bit tricky, as they are
quite an intricate shape. I will not give any details of fixing
brackets here, as the best route to making your own is to
copy a blanking plate from one of the expansion slots in your
PC. You might actually have one or two spare blanking
plates, where these plates have been removed to make way for
added expansion cards. If so, then it will almost certainly
be easier to use these for your home constructed cards than
to try making your own brackets. Of course, a fixing bracket
is not absolutely essential, and PC cards fit quite firmly into
the expansion slots. If the bracket is omitted it is unlikely
that the card will be pulled out of place provided you take
reasonable care. It is clearly preferable to include mounting
brackets, but many constructors of PC expansion cards prefer
to simply omit them altogether. I must admit that I avoid
using them whenever possible:

23

Although in Figures 1.2 and 1.3 the mounting brackets are
shown as being fitted to the boards via simple right angled
brackets, these brackets are often unnecessary. Often PC
cards are fitted with right angled D connectors to permit
connections to be made to the outside world. In such cases
the D connectors will normally provide a convenient means
of fixing the mounting bracket to the board. A suitable
cutout for the connector must be made in the bracket, and
this can be cut using a miniature file or a coping saw.

If you are lucky, you may already have one or two brackets
which have cutouts for one or two D connectors. Multi-
function cards are often supplied with brackets of this type.
These cards often require more sockets than it is possible to
accommodate on the rear section of the card. The extra
sockets must therefore be mounted on blanking plates for
unused expansion slots, and connected to the card via jumper
leads. Many PC cases have mounting holes for D connectors
in the rear panel of the case. You can then use these instead
of the drilled blanking plates, leaving the latter free for use
with your own expansion cards. If you make your own
mounting brackets, unless you have access to some advanced
metal working facilities it will be much easier to use thin
(about 18 s.w.g.) aluminium than heavy gauge steel. Whatever
means you adopt for mounting the bracket on the expansion
card, make sure that it is the correct distance from the rear of
the card. Small errors here can make it impossible to fit the
card into the computer.

Programming
The hardware of a PC is normally handled via DOS routines,
but your home constructed expansion cards will usually be
types that have no DOS support. Your only means of reading
from them or writing data to them is to directly access the
hardware via a suitable programming language. Some langu-
ages are better for this type of thing than are others. It is only
fair to point out that some PC languages are of no use what-
ever in this context. They simply do not provide instructions
that give direct access to devices in the input/output map.

Obviously there should be no problem when using assembly
language or machine code since you have direct access to the

24

instructions of the microprocessor which access the input and
output circuits. Some computer languages enable programs to
call and run assembly language routines, and this provides a
means of controlling user add-ons. This method of handling
things is much used with eight bit computers running inter-
preted BASICs. These languages almost invariably provide
instructions that can be used to control user add-ons, but for
some applications they would simply run too slowly. A mix-
ture of BASIC and assembly languages give the convenience of
the former with the speed of the latter when required. This is
a system which I have always found to be very good in prac-
tice, but the speed of compiled BASICs for sixteen bit com-
puters tends to make it less attractive in a PC context.
However, it is an approach which could be well suited to some
situations, and it is certainly something worth keeping in mind.

The BASIC supplied with most PC compatibles is Micro-
soft's GW BASIC, which is an interpreted BASIC. This makes
it easy to use, but it is not fast by PC language standards. On
most PCs it is good enough for many applications though, and
it is certainly the language I would recommend when initially
experimenting with PC add-ons. In GW BASIC the OUT
instruction is used to write data to devices in the input/output
map (e.g. OUT 768,12 would write a value of 12 to output
address 768). Data can be read from devices in the input/
output map using the INP function. For instance, the instruc-
tion X = INP(768) would set variable X at the value read from
input address 768.

Most other BASICs, whether interpreted or compiled,
should work perfectly well with user add-ons. The only
exceptions are some of the higher level BASICs which have
mouse support, windowing facilities, etc. These often lack
facilities for direct accessing of the hardware. The BASIC 2
language supplied with some Amstrad PCs would seem to offer
no obvious means of directly controlling the computer's hard-
ware, and Microsoft's Visual BASIC is another example of a
PC BASIC in this category. A traditional BASIC would seem
to be a safer bet than a modern type in the current context.

The abilities of other PC languages to control the computer's
hardware seems to vary considerably. Most languages can
actually manage this type of thing, but not necessarily in a

25

particularly straightforward manner. If you are not a particu-
larly expert programmer, it is probably best to use a good
BASIC language. BASIC is a much maligned language, but any
fairly recent version should offer excellent facilities and
reasonably fast operating speed. While BASIC is not well
suited to all applications, it is very good indeed for measure-
ment and control applications. It is therefore well suited to
most applications which involve user add-ons.

Properly Addressed
As explained previously, the input/output map for PCs
consists of only 1024 addresses, as only the bottom ten
address lines are used for input/output mapping. The lower
half of the map is reserved for system hardware (i.e. circuits
on the motherboard), while the upper half is reserved for the
expansion bus. Standard circuits such as serial and parallel
ports do not count as system hardware, since they fit onto
the expansion bus. This means that the 512 address range
for the expansion bus is fairly crowded, with few gaps. This
is the PC input/output map.

System
Hex Address Range Function
000-01F DMA Controller #1
020-03F Interrupt Controller #1
040-05F 8254 Timer
060-06F Keyboard Interface
070-07F Real Time Clock
080-09F DMA Page Register
OAO-OBF Interrupt Controller #2
OCO-ODF DMA Controller #2
OF° Clear Processor Busy
0 Fl Reset Processor
OF8 — OFF Arithmetic Processor

Expansion Bus
Hex Address Range Function
1F0-1 F8 Fixed Disk
200-207 Games Port
210-217 Expansion Unit

26

220-24F Reserved
278-27F Parallel Port 2
2F0-2F7 Reserved
2F8-2FF Serial Port 2
300-31F Prototype Card
320-32F Fixed Disk
360-36F Reserved
378-37F Parallel Port 1
380-38F SDLC Bisynchronous #2
3A0-3AF SDLC Bisynchronous #1
3B0-3BF Monochrome Display/Printer Adapter
3C0-3CF Reserved
3D0-3DF Colour Graphics Adapter
3F0-3F7 Floppy Disk Controller
3F8-3FF Serial Port 1

It might actually be possible to exploit some of the lower
512 addresses for user add-ons, but this would not be doing
things in standard PC fashion, and is best avoided. It could
easily lead to problems. Although the upper half of the
address range is pretty crowded, there are some areas here
which can be exploited for user add-ons. In particular, there
are thirty-two addresses from &H300 to &H31F. These are
reserved for prototype cards, and your own expansion cards
could reasonably be deemed to be in this category. It is
certainly an area of the memory map that you can use without
any real risk of clashes with existing hardware. Thirty-two
addresses is not a great deal when compared to the number
available on some other computers, such as the BBC com-
puters with their two pages (512 addresses) of available
address space on the expansion bus. However, this should be
perfectly adequate for most users. It is sufficient for several
parallel port cards, plus some analogue converter boards, or
whatever.

If thirty-two addresses is deemed inadequate, there are
ways around the problem. Any addresses in the upper half of
the memory map which are not actually occupied by hard-
ware in your computer can safely be used. This statement has
to be qualified somewhat, as the real situation is that addresses
of this type can be used safely by you with your particular PC

27

system. It can not be assumed that home constructed cards
which use these addresses can also be used successfully with
other PCs. In practice, provided you use addresses that are
reserved for an unusual piece of hardware, it is unlikely that
there will be any problems. Something like the address space
for the second serial port would not be a wise choice, but
using the address space reserved for the SDLC Bisynchronous
Port #2 would seem to be a very safe bet. There are actually
a few small gaps in the input/output map which do not seem
to be allocated to anything, and it would presumably be
perfectly alright to exploit one or more of these.

Another means of obtaining more addresses for your add-
ons is to use some of the upper address lines that are normally
left unused. For instance, you could have some add-ons that
use the address space from &H300 to &H31F, but which
will only be activated if address line A10 is low. You could
have a second piece of hardware using the same address space,
but designed to operate only when A10 is high. The first set
of hardware would be accessed at addresses from &H300 to
&I-131F, but the second set of hardware would be at addresses
from &H700 to &I-171F. 1 have never found it necessary to
adopt this method, but in theory it would enable the basic
range of thirty-two addresses to be used many times over,
giving more expansion potential than could ever be used in
practice.

Finally
This covers the basics of PC interfacing in general terms.
Probably the main problem for the do-it-yourself PC add-on
enthusiast is that PC interfacing is a bit awkward from the
mechanical point of view. However, if you use proprietary PC
prototyping cards, or take care to get things accurate when
making your own cards, the mechanical aspects of construc-
tion should not prove to be insurmountable. In Chapter 2 we
will consider electronic circuits for PC address decoding, etc.,
and this aspect of PC interfacing is normally very straight-
forward. In fact interfacing to PCs is more straightforward than
interfacing to many popular eight bit computers as far as the
electronics is concerned. Thankfully, the PC is free from the
quirky methods of interfacing used on many 8 bit computers.

28

Chapter 2

INTERFACING CIRCUITS

When designing PC interface circuits the first task is to pro-
duce a suitable address decoder circuit. Although circuits
of this type are generally called address decoders, in most
cases they also need to decode a few lines of the control bus
as well. When you access one of your add-on circuits a certain
set of logic states appear on the address bus, and on certain
lines of the control bus. This set of logic states should be
unique to that particular add-on, and should not occur when
any other circuit is being accessed. The purpose of the
address decoder is to recognise this set of logic states, and to
produce a change in output state while that set of logic levels
persists. The output of the address decoder normally holds
the data bus of the add-on circuit in an inactive state. How-
ever, when it detects the appropriate combination of input
levels its change in output state activates the add-on circuit.

Bus Times
The basic way in which the add-on responds depends on
whether it is a "read" or a "write" device. If the computer
must read data from the circuit, once activated, the add-on's
data bus will become a normal set of logic outputs. It is
important to get things absolutely right with this type of
circuit. If it should be activated at the wrong time, it will
probably try to place data onto the data bus at the same
time as some other piece of hardware. It might even try to
place data onto the data bus at the same time as the micro-
processor is writing data. Modern logic circuits are generally
quite tolerant of this type of thing, and being realistic about
it, the chances of anything being damaged are slight. On the
other hand, it is clearly better not to risk any damage to
expensive hardware, no matter how small the risk might be.
Also, a data bus conflict of this type is almost certain to
crash the computer. Continuously crashing and rebooting
the computer is a good way to waste a lot of time.

29

It is also important for things to be just right when writing
data to an add-on circuit. The situation is slightly less critical
in that when an add-on of this type is activated it reads what-
ever is on the data bus. If it is activated at the wrong time it
will increase the loading on the data bus, but this is not likely
to cause any ill effects. The data read by the device will be
erroneous though, and the add-on will totally fail to function.
A device which only reads from the data bus can obviously not
try to force data onto the bus, and in theory at any rate, can
not cause any damage or even crash the computer.

Cl K1 CI K2

CLK

CI K3 WAIT

Address Bus

CL K4

Valid Address

CLK5

IOR

Data Bus

Valid

Data

Fig.2.1 The bus timing for a read cycle

Figure 2.1 shows bus timing for a read cycle. The correct
address is placed on the address bus some time before valid
data from the peripheral circuit must be ready and waiting on
the data bus, so that it can be read by the microprocessor.
Similarly, —10R goes low well before data is present on the
data bus. This gives time for the address decoder to operate

30

CLK

CI Kt

/

CI. K2 CLK3 WAIT

Address Unes

CLK4

Valid Address

Data Lines

IOW

CLK5

Valid Data

Fig. 2.2 The bus timing for a write cycle

and provide an active output level. The timing for a write
cycle is shown in Figure 2.2. The main point to note here is
that —IOW returns to the high state while valid data is still
being placed onto the data bus. This causes the active output
signal from the address decoder to cease, and it is this transi-
tion which is used to latch the data.

In normal logic circuit terms the address decoder does not
need to be particularly fast in operation. Computers, even the
faster ones such as some of the more advanced PCs, are simply
not that fast in general electronic terms. On the other hand,
the address decoder has nanoseconds rather than microseconds
in which to work. Ordinary CMOS integrated circuits are not
suitable as they are too slow. These components are designed
for low current consumption, which is achieved at the expense
of very sluggish performance. In any case, these components
are not logic compatible with the PC buses. The buses of a PC
operate at normal TTL levels. Ordinary 74LS** series devices

31

are well suited to this application as they are both fast and
load the buses by acceptable amounts. 74HCT** components
are also suitable, but the 74HC** components are not. The
74HC** logic devices operate at CMOS rather than TTL logic
levels.

Practical Decoding
Here we will only be concerned with decoders for use in the
prototype card address range of &H300 to &H31F. The
general principles discussed here apply to interfacing using
other address ranges, but obviously the address line states
that have to be decoded will be different if another address
range is used. As pointed out previously, it is unlikely that it
would ever be necessary to use other address ranges, since the
thirty-two available addresses from &H300 to &H31F will be
sufficient for most needs. It is probably best not to attempt
to use other address ranges unless you are absolutely sure you
know what you are doing.

If we first consider matters in fairly broad terms, the
minimal address decoding needed is to decode address lines
AS to A9. Additionally, AEN must be decoded, together with
—IOR and (or) —IOW. These are the states of these lines when
an input address in the range »1300 to &H31F is accessed.

Line Logic State Line Logic State
A5 Low A9 High
A6 Low AEN Low
A7 Low —10R Low
A8 High —IOW High

For read operations the state of —IOW is irrelevant, and it
does not need to be decoded. This gives us the basic read
address decoder represented diagrammatically in Figure 2.3.
This will respond to any read operation to an input device in
the address range &H300 to &H31F, but it should ignore any
other read operations, as well as all write types and memory
accesses. Most decoders are designed to have an output that
is normally high and which goes low when the circuit is
activated. Not all peripheral circuits require things this way
round though, and where appropriate the decoder must be

32

A9

A8

A7

A6

A5

AEN

IOR

Fig. 2.3 The most basic of -read" address decoders. This
will respond to any address from & H300 to
& H31F

designed to have an output : hat is normally low, and which
pulses high while it is activated. Remember that in order to
convert a decoder from one type to the other you merely need
to add an inverter at the output.

This is the set of states that raust be decoded when an
output circuit in the relevant address range is accessed.

Line Logic State Line Logic State
A5 Low A9 High
A6 Low AEN Low
A7 Low -IOR High
A8 High -10W Low

This is the same as before, but the states of -10R and
-10W have been reversed. In this case it is -10R that can be
ignored and -10W that must be decoded. This basic "write"
decoder is shown diagrammatically in Figure 2.4. When

33

Fig.2.4 The "write" equivalent to Figure 2.3

designing any address decoder or similar logic circuits it is a
good idea to write down the decoded state of each line, or
produce a diagram of the type shown in Figure 2.4, so that
you get a clear picture of what is required. This can help to
avoid time consuming errors.

In practice you will not always need an address decoder
specifically for a read circuit or a write type. Most practical
interfacing applications involve both reading and writing to the
peripheral circuit. Even if the purpose of a port is (say) to
output eight bit bytes of data, it may well consist of more
than just eight output lines. It is often necessary to carefully
control the flow of data from the basic eight bit port to some
further hardware. This requires one or more handshake lines,
one of which will probably be an input to monitor the status
of the secondary piece of hardware. A Centronics type
parallel printer port is a good example of an eight bit output
port of this type. It includes a strobe output which provides a

34

pulse each time a fresh byte of data is placed on the data out-
puts. It has two handshake inputs ("Acknowledge" and
"Busy"), one of which is used to indicate whether or not the
printer is ready to receive further data. The correct flow of
data into or out of the computer is something you need to
consider carefully when undertaking do-it-yourself interfacing.
Get this aspect of things slightly wrong, and you may well
find yourself having to do a complete redesign and rebuilding
job on the add-on card.

One way of tackling the problem of combined read and
write address decoding is to produce two separate address
decoders, one for each function. This has to be regarded as
doing things the hard way, and is also not a strictly valid
method of PC interfacing. Each line of the PC expansion bus
should be loaded by no more than one 74LS** series TTL
input, or an equivalent amount. Using two address decoders
would load some lines with two inputs. In practice this would
probably not matter too much, and there are ways around
the problem. One of these is to add buffers on the relevant
lines so that these limit the loading of the bus lines to one
74LS** TTL load. This further adds to the complication and
expense of the address decoder though.

In general it is better to produce an all-in-one address
decoder of the type depicted in Figure 2.5. With AEN and
the five address inputs at the appropriate states, the "Read"
output is activated if —IOR is low, and the "Write" output is
activated if —IOW is low. While it is quite possible to produce
a decoder of this type, in practice it is often easier to have a
decoder which does not process —10R or —IOW. The output
of this simple decoder is then fed to a further decoder, which
does process —10W and —10R. This scheme of things is shown
in Figure 2.6. The gate circuit which generates the separate
"Read" and "Write" outputs can be very simple indeed. This
system is very versatile in that it also provides a combined
"read/write" output, which is what is needed for some peri-
pheral chips. This type of decoder is therefore apposite to
just about any method of interfacing.

The interface chips that require a combined "read/write"
decoder output are the 82** series which are specifically
designed for operation with 8080 series microprocessors.

35

Fig.2.5 Many applications require an address decoder
which provides both "read" and "write" outputs

There are actually a number of other peripheral chips which
are designed to be bus compatible with the 8080 series of
microprocessors. These are less common than the 82**
series chips, but you may well encounter some devices of this
type. These chips are all used in the manner shown in Figure
2.7. The address decoder only has to process AEN plus
address lines AS to A9. —10R and —IOW are not simply
ignored, but are instead decoded by the appropriate inputs of
the 82** series integrated circuit.

So far we have only considered the situation where a single
input register and one output register are to be used. The
address decoder has treated the &H300 to &H31F address
range as if it was a single address. The peripheral circuit
effectively occupies all these addresses, and can be operated
using any address in this range. This means that no other
devices can exist in this address range, which is obviously a
bit restrictive. With many of the 82** series chips there are

36

A9 o High

48 0 High

47 0 Low

46 0 Low

450 Low

AEN 0 Low

IOW o

IOR

Main

Address

Decoder

Low
Gate

Low

o Output

o Read
Output

 0 Write
Output

Fig.2.6 A simple bui versatile method of decoding which
provides "Read", "Write", and a basic "read/write"
output

several registers, and each chip must therefore occupy several
addresses, with a different register located at each address.

This is easily accomplished, as the 82** series integrated
circuits which have more than one read/write register have
one or more register select inputs. These are simply fed from
the address bus, and would normally be fed from the least
significant address lines (i.e. AO, Al, etc.). In the example
setup of Figure 2.7 there are three register select inputs which
are fed from address lines AO to A2. This table shows the
number of registers available for various numbers of chip
select inputs.

37

49

48

47

46

45

AEN

lOw

IOR

AO

Al

42

o

o

High

High

Low

Low

Low

Low

Main

Address

Decoder

82**

Series

Chip

I/0

Lines

Fig.2.7 The basic scheme of things when using 82 "*
series peripheral chips, or other 8080 bus
compatible devices

No. of CIS
Inputs

o

2
3
4

Maximum No. of
Registers

1
2
4
8
16

38

In the example of Figure 2.7 there are three chip select
inputs fed from three address lines. This gives a maximum of
eight read registers and eight write types. These registers are
at addresses from &H300 to &H308. However, as less than
full address decoding is being used, with A3 and A4 being
left unprocessed, the full range of thirty-two addresses remain
occupied. The eight registers appear again as an echo at
addresses &H309 to &H3OF. There are further echoes at
&H310 to &H318, and &H319 to &H31F. This blocks any
further add-ons being used in the &H300 to &H31F address

range.
Two 82** series peripheral chips can be used in a set-up

of the type shown in Figure 2.8. The two chips are connected
to the expansion bus in parallel. We are ignoring the data
buses in these address decoding examples, but these would
both be connected to the data bus of the expansion bus.
The address decoder has two outputs, one for each peri-
pheral chip. These outputs cover different address ranges.
In practice this can only be achieved by processing further

address lines.
Conventionally, it would be address line A4 that was

decoded. One peripheral would be activated when A4 was
high, the other would be activated when it was low. This
would put the first peripheral device (A4 low) at addresses
from &H300 to &H308, and at echoes from &H309 to
&1130F. The second peripheral (A4 high) would be at address-
es from &H310 to &H318, and at echoes from &H319 to
&H31F. By also decoding A3 it would be possible to have
four chips. The two extra chips would occupy the address
ranges which were previously occupied by echoes. More than
four chips having eight registers would not be possible, as
this would require more than the available thirty-two
addresses. As pointed out previously, there are ways of
obtaining greater expansion, but it is unlikely that more
than thirty-two read registers and thirty-two write types

would be needed.
One slight flaw with this method of using devices in parallel

is that some lines of the expansion bus are loaded by more
than one input. In particular, the data bus will be loaded by
several inputs. This does not necessarily matter in practice,

39

49

A8

A7

A6

A5

AEN o

101,V o

IOR 0

AO

Al

A2 o

High

High

Low

Low

Low

Low

Main
Address
Decoder

82**

Series

Chip

82**

Series

Chip

 o Lines

 o I/0

 o Lines

)

Fig.2.8 Using more than one peripheral device. In reality
the address decoder must process at least one extra
address line

since there should only be one input in the active state at any
one time. The loading is therefore much less than it might at
first appear. However, in this sort of situation you can always
play safe by including buffers on the lines which might other-
wise be excessively loaded.

40

Gates and Decoders
There is no single solution to address decoding problems, and
there are often dozens of different ways of achieving much the
same thing. Some solutions are more practical than others. In
general, it is better to use simple gates and inverters.

These are fast in operation and inexpensive. They do some-
times have a disadvantage, which is that it can take a lot of
inter-wiring in order to get a few gates and inverters to give the
desired action. For a home constructed unit it may be better
to opt for more complex devices, such as three to eight line
decoders, in order to keep the board layout reasonably simple
and straightforward. The more complex decoder integrated
circuits can be quite expensive, and are often relatively slow in
operation. These ma); actually be perfectly usable for PC
address decoding, but it should be possible to find good ways
of handling the decoding without resorting to any of the more
exotic 74LS** series of integrated circuits.

The two basic types of logic gate are the AND and OR
varieties. Logic gates all have two or more inputs, and a single
output. If we consider a simple two input AND gate first, the
truth table provided below shows the function it performs.

INPUT 1 INPUT 2 OUTPUT
Low Low Low
Low High Low
High Low Low
High High High

Its output is low unless input I AND input 2 are high, and
it is from this that the AND name is derived. The action is
much the same if there are more inputs. With all the inputs
high, the output is high. If one or more of the inputs are low,
the output is low.

This is the truth table for a 2 input OR gate.

INPUT 1 INPUT 2 OUTPUT
Low Low Low
Low High High
High Low High
High High High

41

The output of a two input OR gate is low unless one OR
other of its inputs is high, and it is from this that the OR name
is derived. Again, the action of the gate remains much the
same if there are more than two inputs. With none of the
inputs in the high state the output will be low, but if one or
more of the inputs should go high, the output will also go high.

There are a couple of variations on the AND and OR gates,
and these are called NAND and NOR gates. These are the
truth tables for two input NAND and NOR gates respectively.

INPUT 1 INPUT 2 OUTPUT
Low Low High
Low High High
High Low High
High High Low

INPUT I INPUT 2 OUTPUT
Low Low High
Low High Low
High Low Low
High High Low

These really only differ from the original truth tables in
that the output states are reversed. In effect, a NAND gate is
an AND gate with its output fed through an inverter. There-
fore, if input 1 and input 2 are taken high, the output goes
low. Any other set of input states sends the output high.
Similarly, a NOR gate is effectively just an OR gate with its
output inverted.

There is actually a fifth type of gate, but this is little used
in practice. It is the exclusive OR (XOR) gate, which is
similar to an OR gate. However, with an OR gate, the output
is not only high if input 1 or input 2 is high. If both inputs
are taken to the high state, then the output will still go high.
With an exclusive OR gate only taking one input high will
send the output high. Having no inputs set high, or more
than one input set to the high state, results in the output
going low. I suppose that this could reasonably be regarded
as the true OR gate action, but in practice it tends to be less
useful than the conventional OR gate action, and exclusive

42

Inverter

6 Input NAND

2 Input NOR 2 Input NAND 2 Input XNOR

2 Input OR 2 Input AND 2 Input XOR

D 1D—

Fig.2.9 Gate and inverter circuit symbols

OR gates are something of a rarity. There are also exclusive
NOR gates, and these are effectively just an exclusive OR gate
with an inverter at the output.

Figure 2.9 shows the circuit symbols for the various types
of two input gate. It also shows the circuit symbols for an
inverter and a multi-input (NAND) gate. Note that gate circuit
symbols seem to be less rigidly standardised than most other
circuit symbols, and that you may well encounter different
gate symbols in other publications. However, it is usually
fairly obvious what type of gate each symbol is meant to
depict.

Fig.2.10 Pinout details for the 74LS138. This is one of
the most useful chips for address decoding

Of the various decoder chips available the 74LS138 is
probably the most useful low cost type for address decoding
purposes. Pinout details for this 16 pin d.i.l. chip are shown
in Figure 2.10. It is a three to eight line decoder, and it has
outputs that are normally high. One of the outputs goes to
the low state, and which output this is depends on. the binary

44

code on the inputs. This table shows which set of input
states activates each output.

INPUT 0 INPUT I INPUT 2 OUTPUT
Low Low Low 0
Low Low High 1
Low High Low 2
Low High High 3
High Low Low 4
High Low High 5
High High Low 6
High High High 7

The 74LS138 is rather more useful than it might at first
appear. The first point to note is that there are three
further inputs. In most cases it is not limited to decoding
three lines, and can actually decode up to six lines. The
additional three lines are "enable" types, and unless they are
taken to the appropriate state, the outputs of the device all go
to the third logic state. In other words they simply go to a
high impedance state, and will not drive logic inputs. The
inputs at pins '4 and 5 are negative enable inputs, and they
must be taken to logic 0 in order to make the device function
normally. The enable input at pin 6 is a positive type, and this
pin must be taken high in order to produce normal operation
of the chip.

The second point to note is that different sets of input
states activate different outputs of the 74LS138. This gives
the potential of having the device decode several blocks of
addresses, with each block having its own output. Even if you
do not require several decoded outputs on one card, it is
possible to standardise on the same decoder circuit for several
cards, with a different output being used on each card. You
could, for example, have the &H300 to &H31F address range
split into four blocks of eight addresses, with each block acti-
vating a different output of the 74LS138. You could then
have up to four do-it-yourself expansion cards using the same
basic address decoder circuit, provided each card utilized a
different output of its address decoder.

45

It is perhaps worth mentioning that there is a very similar
device to the 74LS138, the 74LS137. This only differs from
the 74LS138 in that the activated output goes high, and all
the others are low. If you require an address decoder which
provides a high pulse when activated, then using a 74LS137
instead of a 74LS138 should provide the desired circuit
action. In practice it almost invariably seems to be a low
pulse that is required in order to drive computer peripheral
chips, and so we will be using the 74LS138 in the decoder
circuits described here.

Decoder Circuits
A popular method of PC address decoding is to have a decoder
circuit based on a 74LS30 eight input NAND gate. This has
an output which goes low if all eight inputs are high, or high
if any of the inputs are low. Obviously you will not need a
PC address decoder that decodes eight lines to the high state.
Typically the requirement is for something more like a
decoder which is activated by four lines high and four lines
low. The simple way around this problem is to feed to the
74LS30 via inverters any lines that must be decoded to the
low state.

Figure 2.11 shows a typical address decoder based on a
74LS30 eight input NAND gate plus some inverters. In this
case there are four inverters, and these are part of a 74LS14
hex Schmitt trigger/inverter package. However, this general
scheme of things should work properly using any 74LS**
series inverters. This decoder is designed to act as a "Write"
decoder. It decodes A4, A8, and A9 to the high state, and
A5 to A7 to the low state. This means that it will be acti-
vated when any address from &H310 to &H31F is accessed
for a write operation. If A4 was to be fed to IC2 via an
inverter, it would then be decoded to the low state, and the
circuit would be activated by write operations to addresses
from &H300 to &H3OF. Connect —IOR instead of —IOW,
and the decoder will then act as a read type.

This type of address decoder is very cheap and simple,
but as pointed out previously, it can be a bit awkward when
it comes to actually building the circuit. It is also slightly
lacking in versatility. Figure 2.12 shows the circuit diagram

46

+5V 0

A9 o

AS o

47

46

45

AEN

44 o

IOW o

IC1 Pin 14
102 Pin 14

ICla To IC1c1

ICI Pin 7
IC2 Pin 7

OV o

IC1 1- 7 4LS1 4
IC2 = 7 4LS30

1

2

8

Write
 o

Fig.2.11 A simple address decoder using inverters and an
eight input NAND gate

for a PC address decoder based on a 74LS138. This is still
pretty cheap and simple, but it is much more versatile than the
circuit based on the 74LS30.

A minimalist PC address decoder would have to decode
address lines from A5 to A9, plus AEN and possibly — 10R or
—IOW. It is just possible to do this using a 74 LS138, with the
only proviso that any decoding of —10R or —10W must be
provided separately. Figure 2.13 shows the circuit for a
minimalist address decoder of this type, and I suppose this

47

could be used if you only wanted to have (say) one 8255
parallel interface chip in the &H300 to &H31F address space.
However, by using a very simple address decoder of this type
you would be painting yourself into the proverbial corner,
and it would be difficult to add more user add-ons at a later
date.

The circuit of Figure 2.12 offers much greater versatility,
but it requires the use of an extra chip. This is a 74LS27
triple three input NOR gate. In this circuit only two of the
gates are required, and no connections are made to the third

48

+5V

49

A8

47 o

46

45

AEN o

OV o

6

8

1 6

Read/Write
Output

14

Fig.2.13 A very simple PC address decoder, but one which
lacks versatility

gate. IC2b is simply wired as an inverter, and it effectively
converts IC2a into a three input OR gate. It might seem to be
easier to simply use a three input OR gate, but a suitable
device seems to be difficult to obtain. The 74LS27 is widely
available, and is easily wired to give the required circuit action.

This arrangement enables three lines to drive one input of
the 74LSI38, permitting a maximum of eight rather than six
lines to be decoded. A6, A7, arrd AEN are decoded to the
low state by the gates and one of the low enable inputs of ICI.
The other low enable input decodes AS, while the high enable
input decodes A8. A9 is fed to input 0, and it is effectively
decoded to the high state. This renders four of IC! 's eight
outputs effectively inoperative. Inputs 1 and 2 of IC1 decode
A3 and A4, and the states on these lines, when all the other
decoded lines are at the appropriate logic levels, dictates
which of the four outputs of ICI is activated. In other words,
the &H300 to &H31F address range is divided into four blocks

49

of eight addresses. Figure 2.12 shows which range of addresses
activate each output.

If you only wanted two blocks of sixteen addresses, then
A3 would not be decoded, and instead, pin 2 of ICI would be
connected to the 0 volt supply rail. The output at pin 14
would then be activated by addresses from &H300 to &H3OF,
and the output at pin 10 would be activated by addresses
from &H310 to &H31F. Obviously more address decoding
can be added if more but smaller blocks of addresses are
needed. This can be accomplished using another gate or gates
ahead of one or more of IC1's inputs. This would enable A9
to be decoded elsewhere, leaving input 0 (pin 1) of ICI free
to decode A2. All eight outputs of ICI would then be brought
into action. However, for most purposes the address decoder
of Figure 2.12 will suffice without resorting to any modifica-
tions. Blocks of eight addresses are sufficient to accommodate
most add-ons, while four blocks should give enough scope for
expansion. With one address block per add-on card, this
would be sufficient to use up all the expansion slots in most
computers.

As already pointed out, with some peripheral chips there
is no need to bother about decoding —IOW and —10R, since
some chips provide inputs for these lines and do the necessary
decoding. This is not always the case though, and when using
circuits that are wholly or largely based on TTL logic chips,
you will normally have to decode —10R and —10W. Figure
2.14 shows a simple PC address decoder and the additional
circuitry needed in order to produce separate read and write
output signals. This basically just consists of processing the
—IOW line and the output of the decoder using a two input
OR gate. During a write operation to the appropriate address
range, both of these lines will go low, and so will the output
of the gate. Essentially the same system is used with a second
OR gate to process the —10R line and produce a read output.
A negative chip select output is still available from the basic
address decoder circuit, and can be used with any chips that
have built-in processing for —10W and —10R. Note that this
method of gating should work perfectly well with any address
decoder circuit, but only if it provides negative output
pulses.

50

IOR c--

+5V o

1
Pin 14

AEN

47

48

46 o

45

49 o-

OV

IOW

2

3

4

5

6

IC1

74L5138

8

11

o

3
2 Read

IC2 = 74LS32

O Wr te

 o CS,

Fig.2.14 Producing separate outputs for reao and write
circuits

Parallel I/O Ports
In order to produce an eight bit output port all that is needed
is an address decoder plus an eight bit latch. Simply using
something like a tristate eight bit buffer to provide an out-
put port is not usually acceptable. This would only provide
a valid output for the duration that the data bus was fed
through to the outputs. This is likely to be well under a
microsecond in practice. What is needed is a circuit that
will latch this momentary flash of data, so that the outputs
can be used to drive relays, 1.e.d.s, digital to analogue con-
verters, or whatever. The situation is generally somewhat
different when it comes to inputting data. You normally
have a set of what are essentially static input levels, and
these must be fed through to the data bus while the port is

51

 O Write

DO o

D1 o

02 o

03 o

04 o

05 o

06 o

07 o

OV o

3

4

7

8

13

14

17

18

IC3

74LS273

18

17

lO I 1 0

16

15

14

13

12

11

IC4

74LS245

20 1
+5V •

2

5

6

9

12

15

16

19

2

3

4

5

6

7

8

9

 o Output 0

 o Output 1

 o Output 2

 o Output 3

 o Output 4

 o Output 5

 o Output 6

 o Output 7

 o Input 0

 o Input 1

 o Input 2

 o Input 3

 o Input 4

 o Input 5

 o Input 6

 o Input 7

19 1 o Read

Fig.2.15 A simple 8 bit PC input/output port. Note that
this requires an address decoder circuit in order
to function properly

read. An eight bit tristate buffer is all that is needed to
achieve this.

Figure 2.15 shows the circuit diagram for a basic PC eight
bit input/output port. This is basically the same sort of
circuit that has been used with numerous eight bit home
computers over the years, and it seems to work reliably with
most PCs. Note that this circuit must be used in conjunction
with a suitable address decoder circuit. This must be a decoder

52

which includes the extra decoding to provide separate read
and write outputs.

It is also worth noting that although no supply decoupling
capacitors are featured in any of the circuits in this book,
these must be included on any PC expansion cards. These are
merely ceramic capacitors of about 100 nanofarads in value
connected across the supply lines. Some circuit designers use
one capacitor per TTL integrated circuit, with each capacitor
mounted as close as possible to its respective integrated
circuit. However, this is probably using a certain amount of
over-kill, and one decoupling capacitor per three TTL inte-
grated circuits (or other logic chips) should suffice.

The eight bit output port of Figure 2.15 is provided by a
74LS273 octal D type flip/flop. The data bus connects to its
D (data) inputs, and the latching output lines are provided by
the Q outputs. These are non-inverting outputs which latch
at whatever statps are present on the D inputs when there is a
positive transition on the CF (clock pulse) input. This transi-
tion is, of course, provided by the trailing edge of the write
pulse from the address decoder.

The input port is provided by a 74LS245 octal transceiver
(IC4). Conventionally an octal tristate buffer such as a
74LS244 is used in applications of this type. I prefer to use
the 74LS245 simply because its pinout arrangement is a more
convenient one which helps to keep board layouts more simple
and straightforward. In this case IC4 has pin 1 wired to the +5
volt supply so that it is permanently in the "send" mode. Its
tristate outputs are controlled by the negative chip enable
input at pin 19. When a negative pulse is received from the
read output of the address decoder, the outputs are activated
and the eight bit input code is fed through to the PC's data
bus.

The 8255
The standard parallel interface chip for the PCs (and many
other computers come to that) is the 8255. This is bus com-
patible with the 8080 and 8086 series of microprocessors,
and with the Z80 series. The Z80A microprocessor has been
used in several popular eight bit home computers, and the
8255 was popular in user add-ons for these machines. This

53

chip may well be familiar to many readers, but it will be des-
cribed in reasonable detail for the benefit of those who have
not encountered it previously.

It is a 40 pin dil. chip which provides three eight bit
input/output ports. This is one eight bit port more than many
parallel interface adaptor chips, such as the 6522 and 6821.
However, it is not quite as good as it may at first appear.
Whereas chips such as the 6522 only provide two eight bit
ports, they also provide two handshake lines per port. These
handshake lines are sufficiently versatile to accommodate any
normal handshaking arrangements. This enables the two eight
bit ports to operate properly in any normal situations, includ-
ing those where controlling the flow of data into or out of the
port is critical and difficult.

By contrast, the ports of the 8255 have no handshake lines
at all. Instead, where handshaking is needed, port C is split
into two four bit ports. One nibble is set as outputs while
the other nibble is set as inputs, and these act as the handshake
lines for Ports A and B. Thus, if you need eight bit ports plus
handshake lines, you only have two ports, plus (probably) a
few left-over input and output lines from port C. If you
require just basic input or output ports with no handshaking,
then the 8255 has more to offer than most other parallel
interface adaptors. On the other hand, if you do require
handshaking it has little advantage. Although it might provide
a few spare lines on port C, it is probably slightly less con-
venient to use than most other parallel port chips.

It is only fair to point out another relative shortcoming of
the 8255, which is a lack of individual control over the
functions of its input/output lines. With devices such as the
6522 and 6821 there is a data direction register for each port.
By way of this register it is possible to set each line as an input
or an output, as desired. If you require a port to have five
lines as outputs to control relay drivers, and three as inputs to
read sensor switches, then this is perfectly possible. You have
full control over which lines are used as the inputs and which
are set as the outputs. With the 8255 all eight lines of a port
must be set as outputs, or all eight must be set as inputs. The
only exception to this is port C. As explained previously, this
can be set for simple split operation (four lines as inputs and

54

E
X
P
A
N
S
I
O
N

B
U
S

DO o

D1 o

D2 o

D3 o

D4 o

D5 o

D6 o

D7 o

AO o

Al o

34

33

32

31

30

29

28

27

101N

IOR

RST o

+5V o

GND

Address ,
Decoder -

36

5

35

26

7

DO

D1

D2

D3

D4

05

06

L.)/

AO

Al

WR

RD

RST

VCC

GND

CS

8255A

PAO

PA1

PA2

PA3

PA4

PA5

PA6

PA7

PRO

PB1

PB2

PB3

PB4

PB5

PB6

P97

PCO

PC1

PC2

PC3

PC4

PC5

PC6

PC/

 PAO

3
o PA1

 0 PA2

 o PA3

40 o PA4

39

38

37

18

 o PA5

 o PA6

 o PA7

 o PAO

19 o PB1

20 0 PB2

21 o PB3

22 P84

23

24

25

14

15

16

17

13

12

11

1c)

 o PB5

 o PB6

 o PB7

 o PCO

 o PC1

 o PC2

 o PC3

 o PC4

 o PC5

 o PC6

 o PC7

Fig.2.16 Pinout and connection details for the 8255

four lines as outputs).
Figure 2.16 gives pinout details for the 8255, and it also

shows the correct method of connecting it to the PC expansion

55

bus. The negative chip select input (pin 6) is fed from the
address decoder, which must obviously be a type that pro-
vides negative output pulses (as do the address decoder
circuits featured earlier in this chapter). The RST, —10W,
and —IOR lines of the control bus all connect to correspond-
ing terminals of the 8255, as does the 8 bit data bus. There
are two register select inputs on the 8255, which would
normally connect to AO and Al. Accordingly, they are
called AO and Al rather than RSO and RS! (or something
similar). If the address decoder responds (say) to eight
addresses from &H309 to &H3OF, then the 8255 will occupy
four addresses from &H308 to &H30B. It will also occupy
addresses from &H30C to &H3OF in the form of one set of
echoes. Therefore, these addresses would be unusable for
other purposes. Of course, the 8255 could be placed in just
four addresses with no echoes, but in most cases there will
not be a great enough shortage of address space to make this
worthwhile.

The outputs of the 8255 are latching types, and are com-
patible with 74LS** and 74HCT** TTL devices. The inputs
are also compatible with these devices. In fact the device will
work reliably with most logic devices, including most CMOS
types.

Although it might seem better to use simple TTL input and
output ports for most applications, the 8255 tends to be a
more popular choice. One reason for this is undoubtedly that
it provides a reasonably simple and inexpensive means of pro-
viding a lot of input/output lines. Also, it is designed speci-
fically for operation with microprocessors such as the 8088
and 80286, and should operate very reliably with these. I
have encountered one or two PCs that seem to be something
less than 100% reliable when used with some simple TTL
output ports, especially when operating at higher bus speeds.
I have never experienced any problems when using the 8255
though, regardless of the bus speed. I therefore tend to use
it as my standard method of interfacing the PC expansion
bus to digital to analogue converters, speech chips, or
whatever.

56

8255 Programming
There is insufficient space available here to go into great detail
about all the 8255 operating modes, and methods of using this
device. Anyone using practically any computer peripheral
chip would be well advised to obtain the relevant data sheet,
and I would certainly recommend this for anyone who is
going to use a chip as complex as the 8255. However, here we
will consider the basic ways of using this interface chip, which
should at least get you started, and may be all that you need in
order to use the chip effectively in your particular applications.

The 8255 has four read/write registers. Three of these are
ports A, B, and C. Obviously each one of these would normal-
ly be used only as a read register or a write type, depending on
whether its port has been set as an input or an output type.
The exception to this is when port C is used in the split mode
of operation, and it is then a form of read/write register. The
fourth register is a control type, and data would normally
only be written to this. You can read data from this register,
but it will not furnish anything meaningful. If you need a
record of what has been written to the control register, a byte
of RAM must be used to store a copy of each control number
that is written to this register. If we assume that the 8255 is at
the example address range mentioned earlier (&H308 to
&H30B), then the base addresses of the four registers would
be as follows:

HEX ADDRESS DEC. ADDRESS REGISTER
&H308 776 Port A
&H309 777 Port B
&H30A 778 Port C
&H3OB 779 Control

Using the ports is straightforward enough, but the control
register is a bit tricky to fully master, Figure 2.17 helps
illustrate its use. There are three modes of operation for the
8255, which have been designated modes 0, 1, and 2. Mode 0
is the most simple, and is the one you should use when initial-
ly experimenting with the 8255. In this mode the ports
operate as simple input/output types, with the only compli-
cation that port C can operate in the split mode (one nibble

57

Port C Lower Direction

O = Output, 1 = Input

Port B Direction

= Output, 1 = Input

MODE (Port B & C Lower

DO

D1

D2

D3

00 = Mode 0

01 = Mode 1

Port C Upper Direction

D4

D5

06

D7

O = Output, 1 = Input

Port A Direction

= Output, 1 = Input

MODE (Port A 8c C Upper)

00 = Mode 0

01 = Mode 1

1X = Mode 2

Always 1 To Change Mode

Fig.2.17 The functions of the bits of the 8255 control
register

as inputs and the other nibble as outputs).
The required operating mode is set by bits five to seven of

the control register. Bit seven is set high in order to enable

58

the operating mode to be changed. Be careful to set this bit
high, as the control register operates in a totally different
manner if this bit is set to zero. Bits five and six control the
operating mode. This table shows how this scheme of things
operates.

MODE BIT 7 BIT 6 BIT 5
0 1 0 0
1 1 0 1
2 1 1 0
2 1 1 1

As will be apparent from this table, there are two control
codes which select mode 2. It does not matter which one you
use, the effect on the 8255 is exactly the same. These bits
only control the mode of port A and the upper nibble of port
C. Port B and the lower nibble of port C are controlled by
bit 2 of the control register. This is either high for mode 1
operation, or low if you require mode 0 operation. Mode 2
is not applicable to these ports, and so one bit is all that is
needed for their mode control.

Bits zero, one, three, and four are used to control the
functions of the ports (i.e. whether they operate as inputs or
outputs). This operates in the following manner.

PORT CONTROL DEC VALUE
BIT WHEN HIGH

O C Lower 1
1 B 2
3 C Upper 8
4 A 16

In order to set a port as an output type the control bit is
set to zero. Setting a control bit to 1 obviously sets its respec-
tive port as an input type. Those who are used to the 6522,
6821, etc., should note that this works the opposite way
round to the data direction registers of these chips.

When writing to the control register you must set the mode
of operation and the port directions in a single write opera-
tion. You can not write to bits five to seven first, and then

59

bits zero, one, three, and four. However, working out the right
control register values is not difficult. For mode 0 operation
bits five and six are low, and bit seven is high. To set bit
seven high a decimal value of 128 is required. The table
provided previously shows the decimal value needed for each
control bit when it is set high (i.e. when its port is to be set as
an input). A value of zero is, of course, needed for any bits
that will be set low.

Simply take the values given in the table for the ports that
are to be set as inputs, and add 128 to the total of these
values. You then have the value to write to the control
register. For example, assume that port A and both nibbles
of port C are to be set as inputs. The values for these ports
as inputs are sixteen, eight, and one. This gives a total of
twenty-five. Adding 128 to this gives a grand total of 153,
which is the value that must be written to the control register.
In GW BASIC, and using the example port addresses men-
tioned previously, this value would be written to the control
register using the instruction:

OUT 779,153

You can use hexadecimal addresses with GW BASIC if you
prefer, but remember that hexadecimal numbers are indi-
cated using the "&H" prefix, not just the "&" prefix used in
some languages. Numbers havirig just the "&" prefix may
well be accepted, as I think that these are interpreted by GW
BASIC as octal (base eight) numbers. This has led me into
some time consuming errors in the past as I tend to use just
the "&" prefix from force of habit (having mainly used a BBC
computer for interfacing in the past). Consequently, I now
always use decimal input/output addresses when using GW
BASIC.

For many purposes mode 0 operation will suffice. For
example, there are many applications which do not require
any form of handshaking. These include such things as driving
digital to analogue converters, relay drivers, etc., and reading
simple sensors. For applications of this type you only need
simple input and output lines, and there is no point in using
anything beyond mode O. Where handshaking is needed,

60

setting port C for split operation to provide the handshake
input/output lines will often suffice. This does not provide
edge triggered inputs or anything of this type, but simple
input and output lines will usually be sufficient. Remember
that where necessary you can always use some external signal
processing, such as a pulse stretcher or shortener, in order to
make things more reliable. For instance, if an output is pro-
viding very brief pulses, a pulse stretcher might provide a signal
which can be read more reliably, with no pulses passing un-
detected by the handshake input.

Where complex handshaking is needed it might be better to
resort to mode 1 operation. This uses port A and port B as
eight bit input/output ports, and six lines of port C to act as
strobed handshake lines and interrupt control signals (three
lines per port). Mode 2 provides strobed bidirectional opera-
tion through port A, with five lines of port C acting as what I
suppose is a sort of control bus. This is not a mode that I
have ever lased, and it is presumably only needed for a few
specialised applications. Anyway, to fully get to grips with
the 8255 you really need to study the data sheet and then
experiment a little.

Other 82** series devices interface to the PC buses in much
the same way as the 8255. Devices that are bus compatible
with the 82** series of peripheral chips should also interface
to the PC expansion bus without difficulty. It is often possible
to interface peripheral chips for one series of microprocessors
to a microprocessor from a different range. For example,
chips intended for the 6502 and similar microprocessors have
been used successfully with the Z80 microprocessor. It is
usually possible to overcome the differences between the
control buses, but it can take a certain amount of experimen-
tation to get things right. For example, where a peripheral
chip has a combined read/write line, either —10W or —IOR
might provide a suitable signal. If not, then inverting one of
these lines or feeding it through a monostable might produce
the desired result. If a negative reset signal is needed, then
feeding the PC's reset line via an inverter should give the
desired result, or you can put a suitable reset generator circuit
on the expansion card. Studying the timing diagrams in data

61

sheets can steer you in the right direction, but in the end
it comes down to the "suck it and see" approach.

Design Examples
Bear in mind that devices which are described as "microproces-
sor bus compatible", or something similar, might not be
compatible with the PC's version of a microprocessor bus.
While most microprocessor compatible devices can probably
be interfaced direct to the PC buses successfully, this may not
always be feasible. With some peripheral chips it is probably
best not to attempt to interface them direct onto the PC
expansion bus. With a device such as the Ferranti ZN426E
digital to analogue converter for example, it is generally easier
to drive it from a simple eight bit output port (such as a port
of an 8255) than to connect it direct onto the data bus. In
fact with devices such as this there is usually no option but to
use an 8 bit latching port, since there are no built-in latches.
With some analogue to digital converters, such as the popular
Ferranti ZN447E series, direct interfacing of a sort is usually
possible, but it can sometimes be easier to interface them via
an eight bit input (which will need to be augmented by one
or two handshake lines).

On the other hand, the ADC08** series of analogue/
digital devices are designed to interface on to PC type buses,
and should do so without difficulty. You have to carefully
assess each interfacing problem, and work out the most appro-
priate solution. When in doubt it is probably best to take the
safer but more complex approach, and interface to the PC
expansion bus indirectly via an 8255 (or whatever).

We will now consider some examples of interfacing devices
to the PC bus, in order to illustrate the problems that can
arise and some possible solutions to them. We will use
analogue to digital and digital to analogue converters as our
design examples as these are fairly typical in the interfacing
problems they provide. The circuits described can actually
be used as the basis of your own projects, as we will be
dealing with practical integrated circuits, not notional devices.
The circuits have all been tried and tested.

Some devices are much easier to interface to the PC expan-
sion bus than others, and the ZN426E and ADC0844

62

ADC0844
1 20

RD

CS

CH1

CH2

CH3

CH4

A.GND

V.REF

DB7

GND

+5V BIT 5

WR BIT 6

INTR BT 7

DBO/MAO A.OUT

DB1 /MA1 V.REF IN

DB2/MA2 V.RE F OUT

DB3/MA3 GND

DB4

DB5

DB6

ZN426E
1 4

+5V

BIT 4

BIT 3

BIT 2

BIT 1

BIT 0

NC

Fig.2.18 Pinout details for the ADC0844 and ZN426E

respectively represent the difficult and the easy. Pinout
details for these devices are shown in Figure 2.18. The
problem with the ZN426E is that it is not a microprocessor
compatible device. The ADC0844 on the other hand, is
designed specifically to interface to 8080 and 8088 type
buses. We will consider the ADC0844 first.

This analogue to digital converter chip has an eight bit
data bus (DBO to DB7) with tristate outputs. It can therefore
output to the data bus by driving the chip select (—CS) input
from a suitable address decoder circuit. There is no need for
the address decoder to process —10R or —10W as there are
inputs for these on the ADC0844 (—RD and —WR).

You will notice from Figure 2.18 that the lower four bits
of the address bus are labelled DBO/MAO to DB3/MA3. This
is due to the fact that these pins are dual purpose, and also
operate as what the ADC0844 data sheet refers to as address
inputs. This is perhaps not a strictly accurate way of looking
at things since the chip only occupies a single address, and

63

these pins do slightly more than switch between several inter-
nal registers.

The basic method of using the ADC0844 is to first write
to the device in order to start a conversion, and to then read
it in order to extract the converted value. Sometimes with
this type of thing the value written to the chip is simply a
dummy value, and can be any legal value (i.e. any integer
from 0 to 255). The ADC0844 is a fairly complex device
though, and it has four analogue inputs. There is actually
only one converter, but this is preceded by a four-way
multiplexer (an electronic switch) that can connect any one
of these inputs through to the converter. The value written
to the device determines which input is connected through to
the converter.

Matters are actually a bit more complicated than this,
because there are three modes of operation available. The
most simple of these is the single-ended mode, and with this
there are four inputs. The voltage converted is the potential
from the analogue ground pin to whichever input has been
selected. In other words, this is the normal four channel mode
of the device. You will notice from Figure 2.18 that there are
separate analogue and digital ground terminals. These do not
necessarily have to be held at the same potential, but in most
cases they would simply be wired together and connected to a
common analogue/digital ground.

There are two differential modes available, and in the
standard differential mode there are two inputs available. The
first uses what would normally be the channel 1 and channel 2
inputs, while the second uses the channel 3 and channel 4
inputs. The other differential mode is a pseudo type, in which
the channel 4 input acts as a common negative input, and the
other three inputs respond to their voltage relative to the
channel 4 input. In other words, if you wish to measure
voltages with respect to a potential other than the earth one,
connect the channel 4 input to a suitable offset voltage, and
then use inputs 1 to 3 to measure the voltages. Note that in
the differential and pseudo differential modes the analogue
ground terminal is not used as an input, but it would normally
be connected to ground anyway. Figure 2.19 shows the avail-

64

SINGLE- ENDED

CH1 o

CH2

CH3

CH4

PSEUDO-DIFF.

IN 1 CH1 o

IN 2 CH2 o

IN 3 CH3 o

COM. CH4 o

DIFFERENTIAL

(+)

(+)

(+)

()

Fig.2.19 The input arrangements for the three modes of
the A DC0844

able modes in diagrammatic form, and might help to clarify
matters.

This table shows the values that must be written to the
ADC0844 in order to select each of the available operating
modes, and the options available within each mode (e.g.
which channel is to be read). The table shows the polarity
with which the input signals must be applied to the device.

CONTROL CHI CH2 CH3 CH4 A.GND MODE
0 + — XXX Differential
1 — + XXX Differential
2 X X + X Differential
3 X X — + X Differential
4 + XXX Single-ended
5 X + X X Single-ended
6 X X + X — Single-ended
7 X X X + Single-ended
12 + XX — X Pseudo Diff.
13 X + X — X Pseudo Diff.
14 X X + — X Pseudo Diff.

The full range sensitivity of the device is controlled by the
reference voltage fed to the V.REF pin. The full range value is
achieved at whatever voltage is used as the reference potential.
This voltage must be in the range 0 to 5 volts, but for good
results it should not be much less than about 1 volt. For some
purposes the reference voltage can simply be provided by
the +5 volt supply, or can be a fraction of this supply obtained
via a simple potential divider.

Neither method is particularly satisfactory because the +5
volt rail is not likely to be highly stable or noise-free. The
stability of most PC +5 volt rails is not actually all that bad,
but for a critical application such as using an analogue to
digital converter for accurate measurements, very well stabi-
lised reference voltages are often needed. One method of
using the device which avoids the need for a highly stable
reference voltage is the ratiometric method. This is where
the input voltages are derived from potential dividers across
the +5 volt supply, as in Figure 2.20. Although the potentio-
meters are shown as being presets in Figure 2.20, in reality

66

+5V
D
/
A

C
O
N
V
E
R
T
E
R

o

CH1

CH2

CH3 -

CH4

OV

VR1

10k

VR2
10k

VR3
10k

VR4
10k

Fig.2.20 Using the ADC0844 in the ratiornetric mode.
The +5V supply is used as the reference voltage

they could be ordinary potentiometers, or even potential
dividers having a fixed resistor for one element, and a therm-
istor or some other type of sensor as the other element. The
+5 volt rail is used as the reference voltage. The point about
this method is that any change in the supply voltage will
affect both the reference potential and the input potential.
The two changes cancel out one another, giving no change
in readings.

Where a highly stable reference voltage is needed, any of
the many low voltage reference generator chips should be
suitable. Figure 2.21 shows a simple 1.2 volt regulator circuit
based on the 8069 voltage regulator or an equivalent device.
This gives a highly stabilised reference voltage which has
excellent temperature stability.

The —INTR pin is a status output. The conversion process
is not an instant process, or even a particularly fast one. The

67

+5V -•

R1

1 Ok

V.REF

(1V2)

IC1

8069

OV

Fig.2.21 A simple voltage reference using an 8069

ADC0844 is fairly average in terms of its conversion time,
which is typically about 30 ps at 25 degrees Centigrade.
Obviously data must not be read from the device prematurely,
as invalid data would then be obtained. One method of avoid-
ing this problem, and one which usually works well in practice,
is to simply have a timing loop to provide a delay between
issuing each start conversion signal and reading the converter.
If necessary, some experimentation can be used in order to
find the optimum delay time (i.e. the shortest delay which
gives reliable operation). Bear in mind that if you are using
a fairly slow computer language, such as an interpreted
BASIC, you may well find that you can not read the device
prematurely. No time delay loop will then be needed. Using
GW BASIC on a 10 MHz "turbo" XT type PC I found that
no time delay was needed.

68

An alternative to using a time delay is to have an input
line to read the —INTR output. This is normally high, and
goes low when a conversion has been completed. The hold-off
would then be obtained by monitoring —INTR using a simple
loop routine, and only permitting the converter to be read
once —INTR had gone low. Incidentally, —INTR is reset
automatically when the converter is read.

There is a slight problem with this method in that an input
line is required. If the analogue to digital converter is part of a
large interface card, then there may well be a spare input
somewhere that can be used. However, if it is on a simple
ADC card, there will probably be no spare lines that can be
used. Clearly, adding an 8255 in order to read one line would
be using the proverbial "sledgehammer to crack a nut", and
using a 74LS245 to provide one line would not be much
better. A more practical approach is to use a device such as
the 74LS125 which can provide up to four input lines. Figure
2.22 shows how this device can be used as a quad input port.
Of course, if you only need one input line, you can use one of
the buffers and ignore the other three. However, it is not a
bad idea to implement all four lines, since the spare inputs
might turn out to be useful for something.

There is a third option, which is to use the —INTR output
to generate an interrupt. This is not difficult from the hard-
ware point of view, but you need to be fairly expert at PC
programming in order to handle this type of thing. In an
application of this type it is not normally necessary to resort
to using interrupts. It is only likely to be worthwhile doing
so in applications that are processor intensive, and where it
would therefore be unacceptable to have the processor idling
away waiting for conversions to be completed. Few applica-
tions for analogue to digital converters fall into this category.
Mostly a set of readings are read and stored in memory, and
they are only processed once a full set has be gathered, and no
more readings will be taken. In some cases readings are taken
and immediately displayed on the screen, which is not usually
very demanding on the microprocessor.

Figure 2.23 shows the circuit diagram for an analogue to
digital converter based on the ADC0844, complete with
details of the connections to the PC expansion bus. This

69 ,

Read

E
X
P
A
N
S
I
O
N

B
U
S

DO c

DI

D2 c

3

IC la

4
6

Cl b

13
11

IC1c

10
8

IC1c1

IC1 = 74LS125

5

IN ;)

IN 3

IC1 Pin 7

IC1 Pin 14

Fig.2.22 Using a 74LS125 to provide up to four inputs

circuit uses the +5 volt supply as the reference voltage. Rem-
ember that the address decoder should be a type which does
not decode —10R and —IOW, as these are dealt with by the
ADC0844. This circuit does not utilize the —INTR status
output, and my preference is to simply use a delay loop if
there is a danger of taking readings too frequently.

70

+5V o
2

P
C

E
X
P
A
N
S
I
O
N

B
U
S

DO

D1

D2

D3

D4

D5

D6

D7 o

IOW o

IOR

GND o-

Address
Decoder

o

17

16

15

14

13

12

1 1

9

19

1

10

2

IC1

ADC0844

8

18

3

4

5

6

7

Status
Output

 O CH1 IN

 O CH2 IN

 o CH3 IN

 o CH4 IN

 O A.GND

Fig.2.23 An analogue to digital converter based on the
ADC0844

One final point is that the ADC0844 usually has a suffix
to the basic type number. The suffix indicates the case style
and operating temperature range of the component. You are
most likely to see the ADC0844CCN advertised in compon-
ent catalogues, and this is the version 1 use. Any version of the
device should be satisfactory for normal purposes though.

Digital to Analogue

The ZN426E provides the opposite function to the ADC0844
— it converts a digital value into a corresponding analogue

71

voltage. The ZN426E is a fairly simple converter, but it does
have the refinement of an on-chip reference voltage generator.
This is a high quality type which gives a 2.55 volt reference
voltage. This is a convenient figure as it represents 10 milli-
volts per digit. In other words, the output voltage in millivolts
is equal to the value written to the device multiplied by ten.
Alternatively, dividing by one hundred gives the output poten-
tial in volts. For example, a value of 123 would produce an
output potential of 1230 millivolts, or 1.23 volts. It is not
essential to use the integral reference voltage generator, since
there are separate reference input and output pins. However,
in practice there will normally be no point in using a separate
reference voltage source. If an external reference voltage
should be used, it must be in the range 0 to 3 volts. For
optimum performance it should be between 2 and 3 volts.

The ZN426E has no built-in data latches, and its data
inputs must therefore be fed from an 8 bit latching port. In
a PC context this could be one port of an 8255, or eight lines
provided by a 74LS273. Only eight lines are needed, as there
is no need for any form of handshaking with a digital to
analogue converter. You write data to it, and the output
adjusts very rapidly to the new voltage. In reality the response
time is less than instant, but the ZN426E can handle up to
about one million conversions per second. In most practical
applications the computer would not be in danger of out-
putting values at a higher rate than this. In any event, the rate
at which data is sent to the device must be kept down to a
suitable level by software routines, as there is no hardware
solution to this problem.

Figure 2.24 shows the circuit diagram for a digital to
analogue converter based on the ZN426E. The main point
to note here is that the internal reference voltage source
requires a discrete load resistor (R1) and decoupling capacitor
(Cl). The source impedance of the output voltage is about
10k, which means that in most practical applications it will
need to be buffered using an operational amplifier. In fact in
most applications the output will need a certain amount of
amplification anyway.

A device such as the ZN426E is probably only a worth-
while prospect in a PC add-on if it is part of a large interface

72

board which has a spare eight bit output. Where no such
port is available, it is probably better to use a PC bus com-
patible device. The ZN428E is a suitable device, and although
this is not designed specifically for an 8080/8088 type bus, it
will readily interface to the PC expansion bus. In fact the
ZN428E will readily interface to practically any micropro-
cessor buses. This device has the pinout arrangement shown
in Figure 2.25, and it is basically just a ZN426E with an eight
bit data latch added at the input. Interfacing this device
straight onto the PC expansion bus is therefore quite straight-
forward. It might actually be cheaper to use a ZN426E plus
an external data latch such as a 74LS273, but the convenience
of the ZN428E is probably well worth the additional cost.

Interfacing the ZN428E onto the PC expansion bus is very
much like using an 8 bit data latch. You simply connect its
data bus and supply lines to the corresponding PC bus lines,

73

ZN428E
16 1

Bit 1

Bit 0

NC

Enable

A.OUT

V.REF In

V.REF OUT

A.GND

8 9

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

+5V

D.GND

Fig.2.25 Pinout details for the ZN428E DAC

and drive the negative enable input from the write output of
an address decoder. Figure 2.26 shows the circuit diagram
for a digital to analogue converter based on the ZN428E.
Like the ZN426E, a load resistor (RI) and decoupling capaci-
tor (Cl) are needed for its internal 2.55 volt reference
generator.

The ZN448E ADC
There is a sort of complementary chip to the ZN428E in the
form of the ZN427E analogue to digital converter. These
days the ZN448E tends to be more popular, and this is basic-
ally just a ZN427E having a built-in clock oscillator. There
are actually three devices in the ZN448E series, which are the
ZN447E, the ZN448E, and the ZN449E. They are esentially
the same device, and differ only in their guaranteed accuracies.
These are respectively: 0.25 LSB, 0.5 LSB, and 1 LSB. The

74

ummmmeir

F
R
O
M

E
X
P
A
N
S
I
O
N

B
U
S

+5V o

DO o

Dl

D2

D3 o

D4

D5 o D6 o

D7

GND o

10

6

5

14

3

' 2

Write 0—

ZN428E.

Cl lu 7

A.OUT

Fig. 2.26 A digital to ana/ope converter based on the
ZN428E

ZN448E is the most popular of this series, as it offers a good
compromise between accuracy and cost. It is the only version
of the device offered by many component suppliers. Pinout
details for the ZN448E series of chips are provided in Figure
2.27.

In common with the other Ferranti ADC/DAC chips men-
tioned in this book, the ZN448E has a built-in 2.55 volt
reference voltage generator, plus the option of using an
external reference if desired. It has an eight bit data bus with
tristate outputs. This can therefore interface direct onto
the data buses of a microprocessor. The device has read
(—RD) and write (—WR) inputs, but these are not compatible
with the read and write lines of the PC expansion bus.
Although the ZN448E is designed to be microprocessor bus

75

ZN448E
1 8

BUSY

RD

CLOCK

WR

R.EXT

V.IN

V.REF.IN

V.REF.OUT

GND

9 10

BIT O

BIT 1

BIT 2

BIT 3

BIT 4

BIT 5

BIT 6

BIT 7

+5V

Fig.2.27 Pinout details for the ZN448E ADC

compatible, it is not designed to be bus compatible with a
particular family of microprocessors.

The write input must be driven from the write output of
an address decoder circuit. All this actually does is to start a
conversion. The value written to the converter is simply a
dummy value which will be ignored by the ZN448E (its data
bus is a set of outputs, not a bidirectional type). The read line
must be fed from the read output of an address decoder. This
activates the tristate buffers and takes a reading from the
device. There is a status output in the form of the —BUSY
line. As its name implies, this terminal goes low while a
conversion is in progress. A hold-off to prevent premature
readings being taken can be provided by monitoring this
output until it goes high. Like the ADC0844 described
previously, this requires an input line to be provided by one
section of a 74LS125, or whatever. In practice it is usually

76

easier to simply ignore the status output and use a timing
loop to provide the hold-off.

Pin 3 is the clock input, and a capacitor connected between
this terminal and ground sets the clock frequency. The clock
frequency can be up to 1 MHz, and a conversion takes nine
clock cycles. This represents a conversion time of 9 le, or a
maximum of over 100,000 conversions per second, which is
pretty good for a successive approximation converter. A
"tail" resistor connects to pin 5 (R.EXT). This is part of the
high speed comparator which compares the input voltage to
internally generated reference levels. The other end of the tail
resistor must go to a negative supply, and the —5 volt supply
of the PC expansion bus is suitable for this purpose.

Figure 2.28 shows the circuit diagram for an analogue to
digital converter based on the ZN448E. R2 and Cl are
the load resistor and decoupling capacitor for the, internal
precision 2.55 volt reference generator. With a full scale
sensitivity of 2.55 volts and eight bit resolution, the resolu-
tion in voltage terms is 10 millivolts (0.01 volts). To convert
readings into an input voltage simply divide by one hundred.
RI is the "tail" resistor, and a value of 82k is apposite for a
negative supply rail of —5 volts. The current drawn from
the negative supply rail is only about 60 microamps, so there
is no risk of overloading the —5 volt rail! The ZN448E seems
to be largely immune to noise or instability on the negative
supply rail incidentally. If your PC's —5 volt rail is not
particularly well smoothed or stabilised, this should not affect
the performance of this converter.

C2 is the capacitor which sets the clock frequency. This
sets the operating frequency at roughly the maximum figure
of 1 MHz. It is worth noting that the ZN448E is guaranteed
to operate up to at least 1 MHz, and that most of these devices
will in fact operate quite happily at somewhat higher fre-
quencies. In my experience, ZN448Es will invariably operate
at frequencies well beyond 1 MHz. Where high speed opera-
tion is needed, it is therefore worthwhile experimenting with
lower values for C2 in an attempt to find the lowest value
(highest clock frequency) that gives reliable results. You may
even find that the device operates without C2 included, and

77

READ o

WRITE o

+5V o

E
X
P
A
N
S
I
O
N

B
U
S

DO

D1

D2

D3

D4

D5

D6

D7

18
4 2 10

17

16

15

14

13

12

11

R1

Cl

ZN448E

R 2
390

6

3

 C A.IN

7

8

82k
—5V 0—I

GND o

5 9
Cl
4u7

Fig. 2.28 An analogue to digital converter based on the
ZN448E ADC

the self-capacitance of the device, etc., will then give an
operating frequency of about 2 MHz.

As explained previously, the negative write input must be
driven from the address decoder, and the latter must include
decoding of — IOW. Similarly, the negative read input must be
fed from an address decoder which includes decoding of
—10R. The status output at pin 1 can be monitored if desir-
ed, and used to prevent premature reading of the converter.
My preference is for a timing loop, which should do the job
just as efficiently and simplifies the hardware slightly.

78

Finafly
With the information provided here, anyone with a reasonable
amount of experience at electronics construction should be
able to interface a wide range of devices to the PC expansion
bus without too much difficulty. PC interfacing is really very
straightforward, and is actually much easier than interfacing
to most of the eight bit computers I have dealt with (which
includes practically all the popular eight bit machines). Com-
plications can arise if wait states have to be added, but in my
experience this has never been necessary. The PC expansion
bus is not particularly fast, and most peripheral chips seem to
be able to keep up with it. If you end up trying to add wait
states, you are probably doing things the hard way, and might
be better advised to have a complete rethink.

Some applications might require the added complication
of using interrupts, but there are probably few PC add-ons
where the use of interrupts are essential. This is a subject
which is more a matter of software than hardware, and so it
will not be pursued further here. Interrupts on the PC are
less fraught than on most eight bit computers, but you still
need to be fairly expert at the software side of things. You
have to get things just right or each time the add-on is acti-
vated it will crash the computer.

Probably the best advice when designing PC add-ons is to
use sensible choices for the chips that actually interface onto
the expansion bus. There are plenty of integrated circuits
that will easily interface with the PCs, which means that
there is probably no point in using any devices which prove
to be awkward.

79

ZN426E
74LS14
74LS27
74LS30
74LS32
74LS125

1 14

7

74L5 138
ZN428E

1

8 8

NC

16

74LS245
74LS273 1 ct
ADC0844

ZN448E
1 20

1 18

ct

9 9 10 10 11

8069
cr

20c

82554

D40

Ii

D 21

Fig.2.29 IC pin numbering (top views). Note that detailed pinout details are provided for several of
these devices elsewhere in this book

Notes

81

Notes

82

No tes

83

Notes

84

Notes

85

Please note following is a list of other titles that are available
in our range of Radio, Electronics and Computer books.

These should be available from all good Booksellers, Radio
Component Dealers and Mail Order Companies.

However, should you experience difficulty in obtaining any
title in your area, then please write directly to the Publisher
enclosing payment to cover the cost of the book plus adequate
postage.

If you would like a complete catalogue of our entire range
of Radio, Electronics and Computer Books then please send a
Stamped Addressed Envelope to:

BERNARD BABANI (publishing) LTD
THE GRAMPIANS

SHEPHERDS BUSH ROAD
LONDON W6 7NF

ENGLAND

86

ISO Coil Deign and ConsoleIron Manual £2.50
205 Huh Lasdapeakaf Enclosures £2.95
206 Practical Stereo Ilk Ouadrophony Handbook £0.75
211 Aude Enthusien's Handbook £0.86
219 Solid State Novelty Projects £065
220 Budd Your Own Solid State Hi Fiend Aside Accewories 0065
222 Solid Ste. Short Wave Receivers for Beginners £2.96
225 A Procter' I ntroducten to Digital ICs £2.50
226 How to Budd Advanced Short Wave f4 sewers £2.96
227 Beginners Get', to Barreling Electronic Projects £1.96
228 Enamel Theory for the Electronics Hohbert £2.50
BP2 Handbook of Radéo, TV, Industrial end Traremotteg Tube and Vahe Equivalents £.60
BP6 E melee's 6 Machinnt's Reference Triples £1.25
BP] Radio & Electron.< Colour Cod« Data Chart £0.95
BP27 Chart of Rade, Electronic, Semiconductor and Loge Senile'. £0.95
BP28 Reato, Selection Handbook £660
BP29 Minor Solid Surt•Ausho Ho Fi Construction Projects £0.85
BP33 Electione Calculator Users Handbook £1.50
BP36 50 Circuits Using Germanrum Silicon and Zees, Eteocles £1.50
BP37 50 Projects Uong Huey, SCRs and 7 R IACs £2.95
BP39 50 IF E TI Field Effect Transistor Projects £2.95
BP42 50 Simple LED Circuits £1.95
BP44 IC 555 Projects £2.96
BP45 ProSacts in Opto ,Elechonscs Et%
BP48 Electronic Projects for Bagmen £1.96
BP49 Popular Electronic Project. £2.50
BP53 Practical Electronics Celculetersio and Forme'. £3.96
BP54 Your Electronic Calculator Ili Your Money £1.35
5750 Electronic Security Devices £2.50
BPS8 50 Circuits Ustne 7400 Saner IC's £2.50
EIP62 The Simple Electron« Corte, 6 Components IE lemon. of Electronw. - Book II £3.50
BP63 A nernatorg Current T heory (Elements of Electronics - Book 2/ £3.50
BP54 Sorheonthrit.' Tech.:091Y l(brinents of Electron« - Book 3) £3.50
8P66 Bowmen Guido to Microprocessors and Computing £1.95
13P68 Charming and Using YOU, Ht Fo £1.86
BP69 Electronic Game £1.75
BP70 Transetor Rade f eult,frnding Chet f0.915
BP72 A Miceproorwor Primer £1.75
BP74 Electrone Mine Projects £2.50
BP76 Power Supply Proems £2.50
BP77 Meroprocesaire Systems and Circuits (Elements of Electronics - Book 4) £2.95
BP78 Practical Computer Experrments £1.75
BP80 Popular Electronic Comets - Book 1 £2.96
8754 Dread IC ereillet• £1.96

5185 I nterneenal T nonuser Egurreenn Guide £3.50
BP86 An I moducten to BASIC Programming Techniques £1.96
8187 50 Simple LED Circuits - Book 2 £1.35
13 ,88 How to theOp-Arnps £.95
BP89 Communicaten lElernents of ['moon. - Book 51 £2.95
BP90 Audio Projects £2.50
BP91 An Introduction to Radio DX rem £1.96
BP92 E heron». Smolders' - Crystel Sat Conuruction £1.75
BP93 Electronic Ten« Protests £1.96
BP94 Electronic Projects for Cars and Boa. £1.96
5196 Model Railway Promote £1.96
8197 IC Projects for Beginners £1.95
8198 Popular Electronic Cite°. - Book 2 £2.25
BP99 Mini-rnatrur Board Projects £2.513
BP101 How to Identify Unmarked ICs £0.95
BP103 Multi-circuit Board Projects £1.96
8P104 EleCtrtaniC Science Projects £2.95
BP 105 Aerial Projects £1.95
BP 106 Modern Op-amp Projects £1.95
BP107 30 Solderlew Breeclboard Projects - Book 1 £2.25
BPI% Internees,* Diode Egurvelents Guide £2.25
8P109 The An of Programmes the 1K 2X81 £1.95
BP110 How to Ge Your Electronrc Projects Perking £2.50
BP 111 Audio (Elements of [Whom. - Book 6/ £3.50
BP112 A 2-80 Workeep Menud £3.50
BP113 30 Schierl.» Breadboard Ph:netts - Book 2 £2.25
8P114 T he Art of Programming the 16K 2081 £2.50
BP115 TM Precomputer Book £1.96
BP117 Prectical Electronic Biokling Blocks - Book 1 £1.95
BP118 Practical Electronic Bu riding Blocks - Book 1 £1.96
BP119 The An of Pros...moms the Z X Spectrum £2.50
BP120 Audio Amplifier ,wilt f nwleng Chen £0.96
BP121 How to Design and NIA's Your Own PCB's £2.50
BP122 Audio Amplifier Construction [2.25
BP123 A Practice' Introduction to Meroprocessors £2.50
BP124 Easy Add-on Protects for Spectrum, 2081 & Am £2.75
BPI% 25 Smple Amateur Band Amara £1.96
BP126 BASIC & PASCAL in Parallel £1.50
BP1 27 How to Dann [Who.. P.P.« £2.25
BP128 20 Programs for the 2 X Spectrum and 16K 2081 El.%
BP129 An Introduction to Programming the OR IC 1 £1.96
BP130 Mae Interfacing Comets - Book 1 £3.25
BP131 Mero Interlacing Circuits - Book 2 £2.75

BP132 25 Swede Shortwave Broadcast Band Am.'s £1.96
0P133 An Introduction to Progrernmang the Dragon 32 £1.96

BP135 Secrets or the Commodore 64 £1.96
BP136 25 Simple Indoor and Window Aurae's £1.75

BP137 BASIC IL FORTRAN m Peelle, £1.96
BP138 BASIC 8 FORTH in Parallel £1.95

BP139 An Introduchon to Progrenuning the BBC Model B Macro £1.96
ElP140 Digital IC Equnelents 8. Pin Connecter:ere £5.96
BP141 Loner IC Equrvalents 8. Pm Connectrons £5.96
BP142 An I ntroducnon to Prograwnrnong the Acorn Ekrectron £1.95
BP143 An Introduction to Prograrnmang the Ater. 600/8001(1 £1.95
BP144 Further Prectrul EWcoones Calculate:ea and Formulae £41.116
BP145 25 Sample Tropes, •nd MW Band Ad.'s £1.75
BP146 Ti. Pre-BASIC Book £2,95
BP147 An I ntroductoon to 6502 Machme Code £2.50
BP148 Computer T•rrnanology E eplarneal £195
BP149 A Concee Introduction to the Lenguage of BBC BASIC £195
BP152 An I ntroducteen to ZOO Mdhone Coda £2.75
BP153 An Introductron to Programmed the Amstrad CPC464 and 664 £2.50
BP154 An Introdudoon to MS% BASIC £2.50
BPI56 An I ntrocluctdn to 01 Machu. Code £2.50
9P157 How to Wrot• 20 Spectrum and Spectrum • Games Programs £2.50
BP158 An Introductron to Programmang the Commodore 16 and Plus 4 £2.50
BP159 How to wnte Arnaud CPC 464 Games Program, £2.50
BP161 Into the 01 Arch.. £2.50

BP162 Counting on 01 Abdu. £2.50
BP169 How to Get Your Computer Prowarns II unn.ng £2.50
BP170 An Introduction to Computer Peripherah £2.50

BP171 Emy Addon Protects for Arrastred CPC 464. 564, 6129 and MSS Computers £3.50
BP 1 73 Computer MUM Protects £2.95
BP174 More Advanotd Electrone Muse Protects £2.95
BP175 How to Wrat• Word Game Programs /or the Amstrad CPC 464,664 and 61/8 £2.95

BP176 A TV.DOen Hendbook £5.96
BPI?) An Introduction to Computer Commumcarhons £2.05
BP179 Elechone Car...Wk., the Computer Control of Robots £295

OP1130 ElecOone Carouns tor the Computer Control of Model Railways £2.95
BP181 Gettang the Mott hum Your Prenter £2.95
BP182 MIDI Protects £2.95
BP183 An I ntroductron to CP/M £2.95

BP184 An Introduction to 68000 Aseernbly Language £2.95
BP185 Electronic Syntheereer Constructéon £2.96

8P 186 Walk oge- Tait le Projects £2.96

BP 187 A Precteal Reference Goode to Word Proosratreg on the Amstrad PC1N8256 8. PCVY8512 [5.96
BP ISO Get., Started with BASIC and LOGO on the Amstrad PCSks 0.95
BP189 Dung Vont Amstrad CPC Doc Doves £2.95
BP190 Mor•AdvencedElestrone Secur ay Protect, £2.95
BP191 Sample Appledeons of the Amstrad CPC. for Will0.1 £2.95
BP192 More Advanced Power Supply Protects £2.95
BP193 LOGO tor Begrnners £2.95

BPI ea Modern Opto One* Protects £2.95
OPIOS An I ntrodtetoon to Satellite T Mermen £5.95

BP196 BASIC IS LOGO an Parallel [2.95
BP 197 An I ntroducten to the Arndred PC. [5.95

BP198 An Introductoon to Antenna Theory £2.96
BP199 An Introductron to BASIC 2 on the Amstrad PC's £5.95
BP230 An I ntroducteon to GEM £5.95
BP232 A Comae Inooduchon to MS-DOS £2.95

BP233 Electronec Hobbyets Handbook f 4. 95
BP234 Tramistor Selector Grade £4.95
BP235 POW*, Selector Goode £4.95

BP236 Deatal IC Selector Gut:M.P.-11 £4.95
BP237 Dead IC SIIIIKIOI Guele-Pert 2 £4.96
BP238 Lower IC Selector Guida £4.95
131.239 G•nang the Most horn Your Multarneter £2.95
BP240 Remote Control Handbook £3.95

BP241 An I ntroduchon to 8086 Mdlune Code £5.96
8P242 An I ntroductIon to Compute. Anted Drew.,£96
EIP243 BBC BASIC86 on the Amstrad PC's and IBM Compatibles - Book 1 Language £3.95
13P244 BBC BASIC86 on the Amstrad PC's and IBM Compatiblet - Book 2. Graph.« et 0« Fats £3.95

BP245 Digital /Sod. Protects £2.95
BP246 Musrcal Appleatrom of the Air'. ST S £4.95
BP247 More Advanced MIDI Protects [2.95
BP248 Tut Equapment Construction £2.95
BP249 Mont Advanced Ted EquIpment Condructoon £2.95
BP250 Programming in FORTRAN 77 Et%

BP251 Computer Hobbyists Handbook £5.95
BP252 An I ntroductoon to C [2.95
BP253 Ultra Meth Power Ansplifror Construchon £3.95
BP254 From Atoms to Amperes £2.95
BP2SS I ntern•toone Radio Stations Goode £4.96

BP256 An Introduction to Louddeek to and Enclosure Deten [2.95
13P257 An I droductoon to Amateur Radio £2.9.5

£4.95 13P258 Learnmg to Program an C

1

BEMIq111ffl1BP272

Interfacing
PCs and Compatibles

El With many of the popular eight bit computers now obsolete and no longer on
sale, the PC is the clear choice for anyone who requires a computer that can take
their own add-on projects. Its expansion bus, in the form of the internal expansion
slots, represents a reasonably easy means of adding your own temperature sensors,
relay drivers or whatever. Utilizing the expansion slots for do-it-yourself projects is
more straightforward than you might think. Once you know how, PC interfacing is
less involved than interfacing to many eight bit machines, which have tended to use
some unusual interfacing methods.

El This book gives you:-

A detailed description of the lines present on the PC expansion bus.

A detailed discussion of the physical characteristics of PC expansion
cards.

The I/O map and details of the areas where your add-ons can be fitted.

A discussion of address decoding techniques.

Practical address decoder circuits.

Simple TTL 8 bit input and output ports.

Details of using the 8255 parallel interface adaptor.

Digital to analogue converter circuits.

Analogue to digital converter circuits.

In fact everything you need to know in order to produce successful PC add- ons.

23.95

9

ISBN 0-85934-217-4

78
0

085 9 3 1 79

0 0 3 9 5

