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ABOUT THIS BOOK 

This book provides an introduction to the C++ 
programming language and its use in the design of object 
oriented software. The book is aimed at anyone interested in 
learning about C++ and object oriented programming but 
should be particularly useful for those wishing to rapidly 
acquire a good understanding of the language and start 
writing C++ programs. No prior knowledge of C++ (or 
indeed C) is assumed although a general background in 
computing will be helpful — the presentation is pyramidal in 
structure with early chapters laying the foundations for those 
that follow. Each new concept is fully explained with the 
help of line-drawings and illustrative coding examples. 

Following a general introduction in chapter 1 the book is 
divided into three parts: 

I. Basic Language Features (chapters 2 to 5) 
II. Classes and Objects (chapters 6 to 10) 
Ill. Advanced Language Features (chapters 11 to 15) 

The first part discusses C++ data types, expressions, 
statements and functions. Classes form the basis for all 
object oriented facilities available in the C++ language — 
the second part of the book covers constructors and 
destructors, regular classes, operator overloading and 
dynamic objects. The final part of the book examines the 
different sorts of class provided by C++ (concrete, template, 
inheritable, interface and exception) and details their uses. 
The coverage throughout is broad rather than deep — many 
esoteric details are omitted for the sake of clarity. 

The book contains numerous coding examples and several 
fully developed C++ classes — these can be modified to 
form the basis of a personalized C++ softwaic library. All 
the code has been compiled and tested under Microsoft's 
Visual C++ (version 4.0) — no Microsoft specific extensions 
are assumed and the software should work with any 
compiler conforming to the current ANSI standard for the 
C++ language. 
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1. Overview of the C++ Language 

The C++ programming language was originally 
conceived by Bjarne Stroustrup as an extension of the 
popular C language that would provide support for object 
oriented design. The C++ language started life as "C with 
Classes" and only later received its present name — the 
increment operator ++ denotes that C++ is something more 
than C. Indeed C++ inherits many of its features from C. It 
has a small number of intrinsic data types and programming 
constructs but complex data structures and processing 
algorithms can be built by combining the basic elements. 
Furthermore, both C and C++ provide a plentiful supply of 
operators for data manipulation. In fact, the main addition to 
C found in C++ is the class mechanism. Each C++ class 
defines a collection of objects all with similar characteristics, 
and every C++ object belongs to some class. Thus C++ 
classes underlie all of the object oriented facilities available 
in C++. An effective use of C++ consequently demands a 
good understanding of the base language shared with C and 
in addition a familiarity with the concepts of object oriented 
programming (00P). This chapter presents an overview of 
C++ as an object oriented programming language, 
chapters 2 to 5 cover the basic language features and 
chapters 6 to 10 discuss C++ classes and objects. Finally, 
chapters 1 1 to 15 outline the mechanisms provided by C++ 
to assist in the design of software that can easily be reused 
in new projects with little or no modification. The production 
of reusable software is an excellent reason for adopting an 
object oriented approach to software design. 

1.1 The C++ Programming Language 

A C++ program consists of a sequence of program 
statements ordered from top to bottom. The C++ language 
is free-format so that the text of the various statements may 
(with a few restrictions) be laid out in a fashion that best 
emphasizes the function of the code. In particular, extra 
spaces, blank lines and comments can be added where 
necessary and a semi-colon (;) is used to mark the end of a 
statement. Each program statement performs one of three 
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basic operations: 

1. To specify structure or format 
2. To allocate storage space 
3. To process data 

For every piece of data processed by the program, these 
three operations must be performed in sequence. Firstly, a 
data structure may be specified by a statement such as: 

struct DATE { 

int Day; 

int Month; 

int Year; 

1; 

Here a DATE structure is declared as consisting of three 
integers (it) which indicate the day, month and year. Of 

course, the C++ language itself defines the structure of 
some basic data types (such as int) to serve as building 
blocks for other data types. To allocate storage space for 
two data items, one of the basic type int and another of the 
user-defined type DATE, requires a pair of statements such 
as: 

int count; 

DATE today; 

These statements create variables with the names count 
and today as shown in the figure below: 

count variable 

today variable 

integer 

Day field 

Month field 

Year field 

integer 

integer 

integer 
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The variables can now hold data of the relevant type and be 
assigned values in subsequent data processing statements. 
For example, after the statement: 

count = 10; 

the variable count holds the value 10. This value may be 

modified as the count variable is processed further. To 

define a constant piece of data requires a statement such 
as: 

const int TEN = 10; 

A typical C++ program also defines a collection of 

functions to process its data. A function in C++ is a modular 
piece of code which accepts data in the form of variables 
and constants, performs various calculations using these 
parameters and finally returns a result. The format of the 
parameters passed to a function must be specified by some 
program statement that precedes the first use of the 
function to process data. For example, the following 

statement declares the Weekday ( ) function as accepting a 
single parameter of type DATE and returning an integer 

result: 

int Weekday ( DATE) ; 

The function calculates which day of the week corresponds 
to its parameter and returns a coded result: Sunday - 0, 
Moday - 1, , Saturday - 6. The important point to note is 
that this function declaration statement must precede any 
data processing statement such as: 

count = Weekday ( today) ; 

This statement invokes the Weekday ( ) function by passing 

it the value of the today variable and then stores the result 

calculated by the function in the count variable. The 

processing statements actually executed by the Weekday ( ) 

function must also be defined somewhere. A matching pair 
of braces { J are used to enclose these statements — an 

3 



example of the syntax follows: 

int Weekday(DATE date) { 

// perform processing here 

This introduction to the C++ language is expanded in 
chapters 2 to 5. 

1.2 Objects and Classes 

In object oriented programming a problem is solved by 
identifying the essential ingredients of the problem and 
defining various object types to represent these concepts. 
The interaction of the objects then models the original 
problem and a solution may be expressed in natural terms. 
The previous section looked at C++ constants and variables 
for basic and structured types. The C++ language provides 
built-in support for processing data of basic types — for 
example, the arithmetic operations on integers (such as 
addition or multiplication) form an intrinsic part of the C++ 
language. Objects in C++ allow the same sort of capabilities 
to be provided for structured data types that are 
user-defined. In other words, a C++ object comprises two 
elements: 

1. Structured data 
2. Functions for manipulating this data 

As an example, the C++ language provides an operator ++ 

which can be used to increment the value of an integer. An 
analogous operation could be defined for a DATE object by 

extending the structured data type DATE of section 1.1 with 
the definition of a function that moves a DATE object from 

today to tomorrow. However, C++ objects do not occur 
individually but each one belongs to a particular class. All 
objects from the same class share the code which defines 
their functionality so that a C++ class provides a blue- print 
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for generating a whole set of objects all with the same basic 
characteristics. Thus a DATE class could provide enough 

DATE objects to fill in the entire calendar! The individual 
objects are distinguished from each other by their own 
personal data structures — this data is not shared by other 
objects of the class. Hence, an object in C++ is associated 
with: 

1. Personal data 
2. Code shared with other objects of the class 

These two elements should be viewed as internal to the 
object so that the implementation details are hidden from 
the outside world — this notion is known as encapsulation'. 
Of course, a program must be able to send requests to an 
object (such as setting the Day, Month and Year fields of a 

DATE object or asking it to move on a day) and the object 

may want to acknowledge these requests. The solution is to 
provide a well-defined communications interface for passing 
messages to and from the object. As long as the program 
makes requests through the interface and leaves the 
internal processing to the object, encapsulation is 
guaranteed. In C++ an interface is implemented as a series 
of functions and requests are sent to an object by invoking 
the appropriate functions. The details are covered in 
chapters 5 and 6 but the following figure demonstrates the 
essential ideas: 

C++ Object 

Send request ---> 

by invoking function 

Function return value 

provides reply • 

Personal Datal 

, Pointer 

C++ Class 

Shared Code 

The benefit of encapsulating object implementation details 
and instead communicating through an interface is that code 
is modularised and interdependencies are reduced. Indeed 
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one object may be substituted for another as long as they 
both support the same interface — this is the concept of 
'polymorphism' and it is discussed more fully in chapters 13 
and 14. 

1.3 Building a C++ Program 

The construction of a C++ program can be quite a 
complicated business so it is important to understand the 
three main steps involved. Each of these steps uses a 
different tool: 

1. Editor 
2. Compiler 
3. Linker 

The editor is used to produce the text files containing the 
C++ source code. These files are fed to the compiler which 
checks them for errors in syntax and (assuming all is well) 
proceeds to convert them into object files — these contain a 
machine language version of the code. Finally, the linker 
combines all the object files into a single executable file. 
The process is illustrated in the following figure: 

Program Design 

EDITORJ 

Source file 

\If 

COMPILER 

Object file 

LINKER 

Executable file 

6 
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Object/Library files 



The figure shows that there are many different types of files. 

To help distinguish between the various types, each 
filename usually ends with the following extensions: 

source file: . cpp or . cxx 

header file: . h 

object file: . 0 or .obj 

library file: . lib 

executable file: .exe 

The source files contain C++ code consisting predominantly 
of statements for data storage allocation and data 
processing. The C++ program statements which specify 
data structures and function parameter formats typically 
appear in the header files. Header files are also a good 

place for constant definition statements. Each header file 
may be shared by a number of different source files all of 
which use the data structures, constants and functions 
declared in the header. A source file should contain include 
directives for the compiler that name the header files 

required: 

#include <system.h> 

#include "user.h" 

There are two flavours of include directive — for header 
files supplied by the system the filename must be enclosed 
by angle brackets < > whilst for user-defined headers 

double quotes " " are required instead. The include 

directives typically appear at the head of a source file so 
that the included specification statements and constant 
definitions are placed before any other statements. 

The code which implements the functions declared in the 
header files is provided by separately compiled object files 
and is linked into the executable file by the linker. A 

collection of related object files may be packaged into a 
single library file. This simplifies the process of providing the 
linker with all the necessary object files (of which there may 

be many). 
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1.4 The Hello Program 

It is time to try your hand at producing a C++ program. 
Every C++ program must contain the definition of a function 
called main() which performs all the processing for the 
program. When a C++ program is run control passes to the 
main () function and after the main () function returns the 
program execution ceases. The value returned from the 
main () function may be used by the operating system as 
the exit code for the program — a value of zero typically 
indicates that processing completed normally. In a Windows 
based environment the main () function is replaced by the 
winmain () function but the overall process is basically 
unchanged. The program shown below prints Hello! on 
the screen: 

#include <iostream.h> 

int main (void) ( 
cout << "Hello!\n"; 

return 0; 

This is a small program but there are lots of things to 
understand. Firstly, the format of the main () function is 

specified by the C++ language itself — it takes no 
parameters (indicated by the keyword void) and returns an • 
integer result. In this case, the return statement passes a 

zero value back to the operating system. The only program 
statement to perform any useful processing is: 

cout << "Hello!\n"; 

The Hello! message is provided as a character string 
value which must be enclosed in double quotes. The output 
operator « prints this string on the screen by sending it to 
the output stream cout (console output). The output 
stream cout is in fact an object defined in the header file 
iostream.h and so this header must be included with a 
suitable directive to the compiler: 

#include <iostream.h> 
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The output stream object cout is responsible for actually 

printing the Hello! string on the screen. Finally, the \n 

part of the character string is an escape sequence (newline) 

that tells the cout object to position the cursor at the start of 

the next line. 

1.5 Class Libraries and Software Components 

An object rarely exists in isolation and will usually be 

designed to work in connection with other objects. For 

example, in a document application one object may manage 

the document as a whole and act in concert with other 

objects, each of which controls an individual page within the 

document. There are essentially two ways to group objects 

into a larger functional unit: 

1. Class Libraries 

2. Software Components 

A class library is simply a collection of related class 

definitions. It is distributed with a set of header files that 

describe the object interfaces provided by the library — 

these header files must be included within the source files of 

any application using the library. The other half of the 

distribution consists of precompiled object code that 

provides the implementation of the library classes — this 

may be linked to the application code during the build 

operation or dynamically during execution. The important 

point to note is that the library and application are tightly 

bound together and so changes to the class library nearly 

always require that the application executable be rebuilt. On 

the other hand, the objects within a software component are 

entirely separate from the main application code and are 

manipulated only through pointers to object interfaces. 

Consequently, the main application and any components it 

uses may be updated independently without continual 

rebuilding. The following figure shows the construction of an 
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application from components: 

Main Application 

Component 

Reusable Component 

Object Object 

[Object 

Object LObject 

Each application represents an activity performed by the 
user such as searching a database, word-processing or 
sending an e-mail message. The application typically 
consists of several components each providing the 
functionality for some aspect of the application's overall 
processing. For example, a database application may 
employ one component to interact with the user and another 
to manipulate the database. Within each component are 
objects that together implement the services provided by 
the component. Every object is controlled by sending it 
messages through a communications interface — in fact, an 
object may support multiple interfaces, each one 
representing a different facet of the object's operation. 
Finally, the object interfaces are composed of various 

functions and sending a request to an object is achieved by 
invoking the appropriate function. Chapters 11 to 13 look at 

class libraries and discuss how to design classes for 
inclusion in a library whilst chapter 14 focuses on software 
components. 

1.6 Software Reusability 

One excellent motive for working with objects is to 
simplify the task of developing software which can be 
readily reused. Class libraries and software components 
permit such reuse but are essentially just ways of packaging 
C++ classes. However, the C++ language itself provides 
three basic mechanisms for enabling software reuse. 
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If the above constructor is supplied with a single float 
argument it will act as a type conversion operator from type 
float to type COMPLEX. This conversion will be applied 

implicitly by C++: 

COMPLEX z = 2.0; 

Here the floating-point value 2.0 is implicitly converted to 
a COMPLEX object. Similarly, real and complex numbers can 
be mixed in an expression: 

COMPLEX i = COMPLEX(0.0,1.0); 

COMPLEX z = i*3+2; 

The integer values 3 and 2 are converted to floating-point 
values by a built-in conversion and then to temporary 
COMPLEX objects — the C++ language will perform at most 
one built-in conversion and one user-defined conversion on 
each piece of data. Note that the overloaded * and + 
operators must be provided with a COMPLEX object as their 
left-hand operand — the next section demonstrates a 
technique to overcome this restriction. 

The second kind of user-defined type conversion operator is 
defined as an overloaded operator. For example: 

class COMPLEX f 

public: 

operator float(void) const; 

COMPLEX::operator float(void) const ( 

return (float)sqrt(Real*Real+Imag*Imaq); 

The operator function returns the modulus of the complex 
number held by the COMPLEX object. Note that the return 
type is not specified since it is implicit in the function name 
— the function performs a type conversion from COMPLEX 
to float. The result is calculated using the sqrt() 
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function which is declared in the math.h system header. 

The type conversion will be applied implicitly in code such 

as the following: 

COMPLEX z; 

float modulus - z; 

Care should be exercised when defining type conversion 
operators since they be may applied implicitly in unexpected 
circumstances. For example, if the + operator is overloaded 

by the COMPLEX class and type conversions from float to 

COMPLEX and back both exist, then the following addition 

expression is ambiguous: 

float x; 

COMPLEX z; 

z+x; 

The two possible interpretations of z+x are: 

1. Convert z to type float and add x 

2. Convert x to type COMPLEX and add z 

However, the expression x+z uniquely specifies the first 

option even though there is a float to COMPLEX 

conversion available. 

Of course, explicit type conversions involving user-defined 
functions are also possible. For example: 

z = COMPLEX(x); 

X = float(z); 

Alternatively using casting notation: 

z = ( COMPLEX)x; 

x = (float)z; 

9.8 Friend Functions 

The final point about operator overloading is that it may 
be performed using global friend functions instead of 
functions belonging directly to a class. For a unary operator 
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the operand is passed as the lone parameter of the friend 
function, whilst for a binary operator the left- and right-hand 
operands appear as the first and second parameters 

respectively — the left-hand operand need not be an object. 
However, in other respects operator overloading with friend 
functions is very similar to using class functions. For 

example: 

class COMPLEX f 

friendCOMPLEXoperator+(float,constCOMPLEX&); 

COMPLEX operator+(float x,const COMPLEX& z) f 

return COMPLEX(x+z.Real,z.Imag); 

The overloaded + operator function belonging to the 

COMPLEX class and the above friend function together 

permit the following pair of addition expressions involving a 
mixture of real and complex numbers: 

COMPLEX z; 

COMPLEX i(0.0,1.0); 

z = i+2; 

z = 2+i; 

The first addition invokes the class function whilst the 
second invokes the friend function. 

Friend functions are particularly useful when the « and » 

operators are overloaded to perform input and output — in 
this situation the stream object should be the left-hand 
operand and so overloading with a function of another class 
is not possible. The approach provides a more elegant 
solution to input/output processing than does the definition 
of assorted functions such as Print () for each class. For 

example, the STRING class can replace the Print() 

function defined in section 7.7 with an overloaded « 

operator function. 
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The necessary modifications are as follows: 

class STRING { 

friend 

°stream& operator<<(ostream&,const STRING&); 

ostream& 

operator<<(ostream& out,const STRING& string) 

for ( int i=0; i<string.Length; i++) 

out << string.String[i]; 

return out; 

1 

A string can then be displayed with code such as the 
following: 

STRING hello("Hello"); 

cout << hello << '\n'; 

An output operator for the COMPLEX class may be similarly 
defined: 

class COMPLEX { 

friend 

°stream& operator« (ostream&, const COMPLEX& ) ; 

I; 

°stream& 

operator<<(ostream& out,const COMPLEX& z) { 

out << '('; 

out << z.Real; 

out << ','; 

out << z.Imag; 

out << ')'; 

return out; 
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To display the complex number held by a COMPLEX object 
the following code may be used: 

COMPLEX z; 
cout << " z = " << z << '\n'; 

The output statement will print: 

z = ( 0,0) 
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10. Dynamic Objects 

The global, local and temporary objects considered in 
earlier chapters are examples of static objects — the 
lifespan of these objects is determined at compile time. By 
contrast dynamic objects are explicitly created and 

destroyed at run-time using the new and delete operators. 

Furthermore, storage space for static objects is typically 
allocated on the stack whilst that for dynamic objects is 
taken from a pool of free memory. Indeed the creation and 
destruction of dynamic C++ objects is intimately linked with 
the management of memory storage allocated to these 

objects. This chapter examines two implementations of the 
STRING class as examples of programming with dynamic 

objects. The overloading of the new and delete operators 

is also discussed. 

10.1 Static and Dynamic Objects 

The previous chapters have dealt with C++ objects that 
may be categorized as follows: 

1. Global Objects 
2. Local Objects 
3. Temporary Objects 

Objects of these three sorts may be described as static 
objects in the sense that their lifespan is fixed at compile 
time — global objects exist throughout the entire execution 
of the program, local objects exist whilst the block statement 

in which they are declared is processed and temporary 
objects exist during the evaluation of an expression. The 
storage space for static objects is typically allocated on the 
stack — the stack is a special area of memory reserved by 
the program and the total storage available within the stack 
is often limited. The operation of the stack is intimately tied 
with function invocations — the figure on the following page 
illustrates the state of the stack before, during and after a 
function call. 
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Before Call 

Allocated Allocated 
Storage Storage 

During Call After Call 

Available 
Storage 

Current 
Stack Frame 

Available 
Storage 

Allocated 
Storage 

Available 
Storage 

A chunk of memory to hold the current stack frame is 
allocated for the duration of the function call. The stack 
frame contains such items as the function parameters, local 
and temporary variables as well as the function return 
address — the return address indicates the point in the 
program where execution should resume once the function 

returns. When function calls are nested, new stack frames 

are added as the nested functions are entered and lost as 

the functions return. Hence the amount of storage allocated 

on the stack grows and shrinks as the program executes. 

In addition to static objects C++ also provides dynamic 

objects — the lifespan of a dynamic object is determined at 

run-time and is under complete control of the programmer. 

The creation and destruction of a dynamic object are not 
directly related to function invocations and so storage for a 

dynamic object cannot be allocated on the stack. Instead 

storage for dynamic objects is allocated from a pool of free 
memory which is typically much larger than the stack — 

indeed the dynamic memory pool will usually contain all the 

remaining memory not assigned to the stack or otherwise 
required by the system. 

The operators new and delete are provided to create and 

destroy dynamic objects. The process is very similar to that 
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for static objects — during creation the following two steps 
are performed: 

1. Storage Allocation 
2. Object Initialization 

and during destruction the steps are: 

1. Object Finalization 
2. Storage Deallocation 

As with static objects, dynamic objects are initialized by 
invoking their constructor and they are finalized by invoking 
their destructor. The only difference between static and 

dynamic objects is that the former have storage allocated on 
the stack whilst the latter have storage allocated from the 

free memory pool. Here is an example of creating and 

destroying a dynamic DATE object: 

DATE* today = ( DATE*) new DATE; 

delete today; 

The new keyword is followed by a type name and generates 

a dynamic object of the specified class — the operator 

returns a void pointer which must be cast to a pointer of 

the appropriate type before being assigned to a pointer 
variable. The dynamic object continues to exist until the 
delete operator is applied to its pointer — at this point the 

object is destroyed. Note that applying the delete operator 

to a null pointer is allowed and has no effect. 

Incidentally, the new and delete operators also work with 

basic C++ types so the following code processes a dynamic 
integer variable: 

int* count = ( int*) new int; 

delete count; 
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A dynamic object (or variable) is never referenced by name 
and is always manipulated through a pointer. For example: 

DATE* yesterday = ( DATE*) new DATE; 

yesterday->SetDate(1,1,1970); 

This code sets the value of the dynamic DATE object by 

applying the -> operator to its yesterday pointer. The 

information could also be passed directly to the object's 
constructor: 

DATE* yesterday = ( DATE*) new DATE(1,1,1970); 

Here the yesterday variable receives a pointer to a DATE 

object which has already been initialized. 

10.2 Dynamic Arrays 

C++ also supports the creation of dynamic arrays — the 
element type may be either built-in or user-defined. The 
syntax is straightforward: 

int* array - (int*) new int[10]; 

delete [ 1 array; 

This code processes an array of ten integer elements. Note 
the use of the [J marker with the delete operator — this 

tells C++ that it must determine the length of the array to be 
deleted. To enable this operation C++ stores the length of 
each array as it is created — the E ] mechanism means that 

this value need only be stored for arrays and not for every 
dynamic object. Nonetheless, the following (hypothetical) 

notation would be nicer: 

delete array[]; 

Anyway, when a dynamic array is created the default 
constructor is invoked to initialize each array element — 
unlike dynamic objects it is not possible to supply arguments 
to each array element constructor. 
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The STRING class defined in section 7.7 used a static 
characterarrayto hold its string — the class is updated here 
to handle arbitrary length strings by replacing the static 
array with a dynamic array. The class specification follows: 

class STRING I 

public: 

STRING(const char* = 0); 

STRING(const STRING&); 

-STRING (void); 

STRING& operator=(const STRING&); 

STRING operator+(const STRING&) const; 

private: 

char* String; 

int Length; 

I; 

The first constructor creates a dynamic character array just 
largeenoughtohokithestring passed in asa parameter: 

STRING::STRING(const char* string) ( 

Length = 0; 

if (! string) return; 

const char* letter = string; 

while (* letter++) Length++; 

if (! Length) return; 

String = (char*) new char[Length]; 

for ( int i=0; i<Length; i++) 

String[i] = string[i]; 

The copy constructor is similar but the Length field can be 
copied directly from the existing object: 

STRING::STRING(const STRING& string) { 

Length = string.Length; 

if (! Length) return; 

String = (char*) new char[Length]; 

for (int i=0; i<Length; i++) 

String[i] = string.String[i]; 
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These mechanisms are: 

1. Object Linking and Embedding 
2. Inheritance 
3. Templates 

The first option simply allows one object to be incorporated 
within another, either directly (embedding) or through a 
pointer (linking). The functionality provided by the inner 
object is readily available to the outer object with no further 
coding cost. Inheritance relies on the derivation of one C++ 
class from another (base) class. The derived class 
automatically inherits many of the characteristics of the 
base class. The mechanism of inheritance is discussed in 
detail in chapter 13. Finally, templates provide a means of 
creating several C++ classes from the definition of a single 
template class thus avoiding unnecessary code duplication. 
C++ template classes are the subject of chapter 12. 
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The copy constructor performs a deep copy as discussed in 

section 8.3 — an alternative approach which employs 

reference counting is presented in the next section. 

The STRING class destructor is responsible for destroying 

the character array if it exists: 

STRING::-STRING(void) 

if ( Length) 

delete [1 String; 

The assignment operator for the class combines the 

processing performed by the destructor and the copy 

constructor. However, the function must first check that the 

STRING object is not being assigned to itself — without this 

check the object's dynamic character array would be deleted 

before it could be copied. 

STRING& 

STRING::operator=(const STRING& string) { 

if ( this == & string) 

return * this; 

if ( Length) 

delete [] String; 

Length = string.Length; 

if (! Length) 

return * this; 

String - (char*) new char[Length]; 

for (int i=0; '<Length; i++) 

String[i] = string.String[i]; 

return * this; 

1 

Finally, the + operator is overloaded to permit string 

concatenation — the result of applying the concatenation 

operator to a pair of strings is another string that contains 

the original two strings one after the other. The STRING 

110 



class implements the concatenation operator as follows: 

STRING 

STRING::operator+(const STRING& right) const 

{ 

int length = Length + right.Length; 

if (! length) 

return STRING(); 

char* string = ( char*) new char[length+1]; 

for ( int i=0; i<Length; i++) 

string[i] = String[i]; 

for ( i=0; i<right.Length; i++) 

string[i+Length] = right.String[i]; 

string[length] = 0; 

STRING leftright(string); 

delete [] string; 

return leftright; 

The left- and right-hand STRING operands of the overloaded 

operator have their string fields copied to a dynamic 

character array. This array is then used to construct a new 
STRING object which is returned as the result of the 

concatenation. Here is some code to test the class: 

STRING good("Good"); 

STRING bye("bye"); 

STRING goodbye = good+bye; 

cout << goodbye << '\ n'; 

The STRING class needs a friend function to overload the 

« operator — see section 9.8 for a suitable definition. 

10.3 Reference Counting 

An alternative method of implementing the STRING 

class is to define a related TEXT class to hold the actual 

character strings — each STRING object contains a pointer 

to an associated TEXT object. The method involves shallow 

copying of STRING objects — see section 8.3 for further 

details on shallow and deep copying. 
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Each TEXT object maintains a reference count which 
indicates how many STRING objects are currently 
referencing it — whenever the reference count drops to zero 
the TEXT object destroys itself. The TEXT class specification 
is as follows: 

class TEXT ( 

public: 

TEXT(const char*); 

-TEXT (void); 

void Acquire (void); 

void Release (void); 

private: 

char* String; 

int Length; 

int Count; 

1; 

The TEXT constructor stores the string parameter and sets 
the count field to 1 indicating that one STRING object 
references this TEXT object: 

TEXT::TEXT(const char* string) ( 

Count = 1; 
Length = 0; 

if (! string) return; 

const char* letter = string; 

while (*letter++) Length++; 

if (! Length) return; 

String = ( char*) new char[Length]; 

for (int i=0; i<Length; i++) 

String[i] = string[i]; 

The destructor releases the dynamic character array if it 
exists: 

TEXT::-TEXT(void) ( 

if ( Length) 

delete H String; 
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The Acquire() and Release() functions respectively 
increment and decrement the TEXT object's reference 
count: 

void TEXT::Acquire(void) f 

Count++; 

} 

void TEXT::Release(void) 

if (--Count) return; 

delete this; 

The Release () function is responsible for destroying the 
TEXT object when its reference count drops to zero. 

The STRING class specification follows: 

class STRING f 

public: 

STRING(const char* = 0); 

STRING(const STRING&); 

-STRING (void); 

STRING& operator=(const STRING&); 

private: 

TEXT* Text; 

; 

The first constructor creates an associated dynamic TEXT 
object: 

STRING::STRING(const char* string) f 

Text = (TEXT*) new TEXT(string); 

The destructor releases the reference to the TEXT object: 

STRING::-STRING(void) ( 

Text->Release(); 

If the STRING object is holding the last reference to 
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the TEXT object when the destructor is invoked, the TEXT 
object will also destroy itself. 

The copy constructor duplicates only the pointer to the TEXT 

object. However, the reference count for the TEXT object is 
incremented by calling its Acquire() function: 

STRING::STRING(const STRING& string) f 

Text = string.Text; 

Text->Acquire(); 

The assignment operator combines the actions of destructor 
and copy constructor — as in the previous implementation 
of the STRING class, a check must be made for 

self-assignment to guard against releasing (and possibly 
destroying) the TEXT object before it is acquired again. 

STRING& 

STRING::operator=(const STRING& string) f 

if (Text == string.Text) 

return * this; 

Text->Release(); 

Text = string.Text; 

Text->Acquire(); 

return * this; 

To display the string represented by a STRING object the 
two classes should define friend functions: 

°stream& 

operator<<(ostream& out,const STRING& string) 

return (out << *( string.Text)); 

ostream& 

operator<<(ostream& out,const TEXT& text) f 

for ( int i=0; i<text.Length; i++) 

out << text.String[i]; 

return out; 

1 
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10.4 Memory Management 

Each C++ implementation supplies default versions of 

the new and delete operators, but a class can overload 

these operators much like any others. The first parameter of 

the overloaded new operator must be of type size_t — 

this type is defined in the stddef.h system header. The 

overloaded delete operator may accept either one or two 

parameters (but both variants are not allowed in the same 
class) — the first parameter is a void pointer whilst the 

second is of type size t. Additional parameters for the 

new operator are considered in the next section whilst the 

second parameter to the delete operator is discussed 

further in chapter 13. For both the new and delete 

operators, the size _t parameter indicates how many bytes 

of memory should be allocated or deallocated. The new 

operator must return a void pointer type and the delete 

operator should return no result. 

The POOL class will serve as an example of overloading the 

new and delete operators. This class acquires a large pool 

of memory and then allocates memory from the pool 

whenever new POOL objects are created. The specification 

for the POOL class follows: 

class POOL f 

public: 

void* operator new(size_t); 

void operator delete (vo id*) ; 

private: 

static POOL* Pool; 

int Free; 

int Data; 

1; 

The static Pool field belongs to the POOL class as a whole 

and it is used to detect the creation of the first POOL object. 
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The field is initialized in a global statement that is processed 

prior to execution of the main ( ) function: 

POOL* POOL::Pool = 0; 

When the overloaded new operator is invoked, it checks 

the Pool field and if it is zero the class memory pool is 

acquired: 

void* POOL: : operator new (size _t size) f 

if (! Pool) f 

Pool = ( POOL*) :: new char[100*size]; 

for ( int i=0; i<100; i++) 

Pool[i].Free = 1; 

1 

for ( int i=0; i<100; i++) 

if (Pool[i].Free) break; 

if (i<100) { 

Pool[i].Free = 0; 

return Pool+i; 

} 

return 0; 

The global new operator is invoked to allocate a memory 

pool by creating a dynamic character array. Since each 

element of the character array will hold exactly one byte of 

data, the allocated storage contains (100*size) bytes of 

memory — this is just big enough to support a hundred 

POOL objects. The global operator is specified by prefixing 

the new keyword with the :: operator as discussed in the 

next section. The static Pool field effectively acts as an 

array of POOL objects — each element initially has its Free 

field set to true to indicate that no dynamic POOL objects 

have been created. At each invocation of the new operator, 

the elements of the array are scanned to find an unallocated 

object — the Free field of the new object is set to false. 
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The overloaded delete operator returns an object to the 

pool by setting its Free field back to true: 

void POOL: : operator delete(void* pointer) f 

POOL* object = ( POOL*) pointer; 

object->Free - 1; 

10.5 Global new and delete Operators 

If a class does not overload the new and delete 

operators, the global new and delete operator functions 

provided by the C++ implementation are invoked instead. 
The global operators are always available (even within a 
class with overloaded versions) by prefixing the new and 

delete keywords with the : : operator. It is possible to 

redefine the global operators with user-defined functions. 
The global new operator has an initial parameter of type 

size_t whilst the global delete operator has a single 

parameter of void pointer type. Overloaded versions of the 

global new function can accept any number of additional 

parameters (as can overloaded new operators defined by a 

class) — these parameters are supplied in a parenthesized 
list following the new keyword. For example: 

DATE* today = ( DATE* ) new ( 1000) DATE ( 1, 1, 1970) ; 

The value 1000 appears as the second parameter to the 

new operator function whilst the other parameters (placed in 
parentheses following the DATE type name) are passed 

directly to the constructor of the dynamic object. One 
possible use for the additional parameters to the new 

operator could be to place objects from different classes in 
separate memory pools. 
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11. Concrete Classes 

Concrete classes are designed to provide some specific 

functionality — the COMPLEX and STRING classes from the 

previous chapters are examples of concrete classes. This 
chapter looks at several more concrete classes which 
embody the standard data structures commonly provided by 
a utility class library — the class oriented nature of C++ is 
especially well-suited to the implementation of these data 
structures. Lists, trees and heaps are all considered as 
examples of hierarchical data structures — such a structure 
organises its data into a number of logical levels arranged in 
a hierarchy below the root element. The manipulation of a 
hierarchical data structure can be considerably easier if 
recursive programming techniques are applied. 

11.1 Class Categories 

The remaining chapters in the book look at the various 
categories of C++ class: 

1. Concrete Classes 

2. Template Classes 
3. Base Classes 
4. Interface Classes 
5. Exception Classes 

All the examples of classes described in earlier chapters are 
concrete classes. They are designed for some specific 
purpose — typical examples of concrete classes are the 
utility classes found in a class library. This chapter looks at 
utility classes for handling lists, trees and heaps. C++ 
templates allow several classes to be defined using a single 
template class as a blue-print — the following chapter deals 
with template classes in detail. Base classes (or inheritable 
classes) are not complete classes in the same way that 
concrete classes are — they provide some general 
functionality but in most cases this must be extended with 
the definition of a concrete class derived from the base 
class. Chapter 13 explains inheritance in C++ and describes 
the process of constructing base and derived classes. An 
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interface class is an extreme variety of inheritable class that 
contains no functionality at all — its purpose is to specify the 
precise format of the functions which are available for 
communicating with objects of any concrete class derived 
from the interface class. Chapter 14 covers interface 
classes and their connection to software components. 
Finally, exception classes are supported by C++ as a means 
of structured error handling — chapter 15 discusses C++ 
exceptions and the related keywords try, throw and 

catch. 

11.2 Hierarchical Data Structures 

In a flat data structure the individual elements are all 
positioned at the same logical level and they can be 
reached directly from the root of the data structure. For 
example, a single-dimensional array is a flat data structure 
— given the array name each of the elements can be 
referenced using the [] operator. The following figure 
demonstrates the idea for an array x containing four 
elements: 

Root of Data Structure 

x[2] x[3] 

The root of the data structure and the individual elements 
are collectively known as nodes. In a flat data structure 
there is a clear distinction between the root node (which 
represents the whole structure) and the other nodes (which 
represent individual elements). However, in a hierarchical 
data structure this distinction is blurred and any node can 
act as the root node of a sub-structure. For example, a 
two-dimensional array may be regarded as a hierarchical 
data structure — the two-by-two array x [ 2] [2] is depicted 

120 



as such in the following figure: 

Root of Data Structure 

  1 
x 1 

/N 
x[0] x[1] 

At the top level the root node refers to the array as a whole, 
at the middle level each node refers to a row within the 
array and finally at the bottom level each node refers to an 
element within a row. In other words the root node 
represents a two-dimensional array, the internal nodes 
represent one-dimensional arrays and the terminal nodes 
represent zero-dimensional arrays. So every node 
represents an array and points to sub-arrays within that 
array — only the dimension of the arrays decreases as the 
structure is descended. Hence all nodes in a hierarchical 
structure are in some sense indistinguishable — at every 
level each node acts as the root of a sub-structure which 
has essentially the same form as at any other level. 

This chapter looks at three types of hierarchical data 
structure (lists, trees and heaps) and discusses their 
implementation as concrete C++ classes which could form 
part of a utility class library. 

11.3 Lists 

Lists are similar data structures to arrays and contain a 
number of items. Since these items can themselves be lists, 
a list is a hierarchical data structure. However, the essential 
functionality provided by a list can be examined by ignoring 
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the type of each item and treating the list as a flat data 
structure. The items within a list are ordered from head to 
tail as shown in the following figure: 

Head 
of 
List 

Item Item Item 
Tail 

Item of 
List 

Items can be added or removed at any point in the list and 
the existing elements retain their relative ordering during 
this operation. 

A C++ list is typically implemented using pointers to link the 

individual items together. An extra header item can be 

added at the head of the list — its only purpose is to avoid 

having an empty list. The item at the tail of the list sets its 
pointer to zero to indicate that no more items follow. For 
example, here is a list with two items: 

Header Item A Item_ B 

The earth symbol is employed to denote a null pointer. The 
ITEM class implements a list item and has the following 

specification: 

class ITEM f 

public: 

ITEM (void) 

void Add(ITEM*); 

void Remove (ITEM*); 

private: 

ITEM* Next; 

void* Data; 

1; 

The Next pointer creates the link to the next item in the list. 

122 



The default constructor simply zeroes the Next field — this 
is useful when creating the header for an empty list. Each 
ITEM object also contains a void pointer named Data — 
this allows the item to hold any type of data. In particular, for 
a hierarchical list structure the Data field could refer to an 

entire sub-list. 

The Add() function takes a pointer to an existing item in 
the list and positions the new item after this item. 

void ITEM::Add(ITEM* previous) 1 

Next = previous->Next; 

previous->Next = this; 

The following figure illustrates the situation when item_c 
has been placed after Item _A in the list depicted on the 
left: 

1 Header ---> Item_ A ---> Item_ C Item_ B 

The Remove () function is similar to the Add ( ) function: 

void ITEM::Remove(ITEM* previous) [ 

previous->Next = Next; 

Next = 0; 

1 

The problem with this solution is that a pointer to the 
previous element must be supplied when an item is 
removed from the list. However, each list item is an object 
and objects should be delegated power whenever possible. 
The provision of a Previous field in addition to the Next 
field enables an ITEM object to determine its predecessor 
during removal. The resulting list is known as a doubly-
linked list: 

Header Item A 
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To make the code more symmetrical a trailer item could be 
added at the tail of the list: 

Header --> Item A Item_ B Trailer 

However, a simpler alternative is to wrap the pointers 
around and form a circularly linked list — the header then 
acts as a trailer too: 

Header Item A Item B 

The updated ITEM class specification follows: 

class ITEM { 

public: 

ITEM (void) 

void Add(ITEM*); 

void Remove (void); 

private: 

ITEM* Next; 

ITEM* Previous; 

void* Data; 

; 

The default constructor sets the Next and Previous fields 
to point to the item itself: 

ITEM::ITEM(void) { 

Next = Previous = this; 

The Add () function must maintain the pointer links in both 
directions: 

void ITEM::Add(ITEM* previous) { 

Next = previous->Next; 

Previous = Next->Previous; 

Previous->Next = this; 

Next->Previous = this; 
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The Remove ( ) function now does not need to be passed a 

pointer to the previous item in the list: 

void ITEM::Remove(void) 

Previous->Next = Next; 

Next->Previous = Previous; 

Next - Previous = this; 

Note that these functions rely heavily on the fact that C++ 
supports encapsulation only at the class level. 

11.4 Recursive Programming 

A recursive function is one which invokes itself — each 
recursive function comprises two parts: 

1. A nested function call 
2. A terminating condition 

The first part provides the recursion whilst the second part 
prevents the function repeatedly invoking itself forever — 
without the terminating condition the result is infinite 
recursion and the program will eventually abort as it runs 
out of stack space. 

A simple example of recursion is the Factorial() 

function which calculates the product of its integer argument 
and all smaller integers: 

Factorial(1) -= 1 

Factorial(2) == 2*1 == 2 

Factorial(3) == 3*2*1 == 6 

Factorial(4) == 4*3*2*1 == 24 

The recursive definition of this function follows: 

int Factorial(int n) { 

if (n == 1) 

return 1; 

return (n*Factorial(n-1)); 

1 
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The recursive function call is provided by the statement: 

return (n*Factorial(n-1)); 

The conditional statement: 

if (n == 1) 
return 1; 

checks for the terminating condition n==1. 

Suppose the function is invoked by the following code: 

int answer = Factorial(4); 

Here a nested series of calls to the Factorial ( ) function 

occurs with n==4, n==3, n==2 and finally n==1. The results 

passed back as the nested functions return are 1, 2, 6, and 

finally 24. 

In some cases the recursive definition of a function has an 
iterative counterpart. For example: 

int Factorial(int n) { 
int factorial = 1; 
for ( int i=1; i<=n; i++) 

factorial *= i; 
return factorial; 

The iterative solution is more efficient because it avoids the 
overhead of several function invocations. However, a 
recursive solution is often a lot simpler to code and this is 
especially true for the hierarchical data structures (trees and 
heaps) that are discussed in the next two sections. 

11.5 Trees 

A tree is a classic example of a hierarchical data 
structure. It has a root node from which branches lead to 
nodes at the first level, each of these nodes is the root for 
its own sub-tree and more branches lead to nodes at the 
second level — the structure is repeated until at the final 
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level are the leaf nodes. A binary tree supports just two 
branches from each node — the following figure 
demonstrates the layout of such a tree: 

Root 

Node 

/\ 
Leaf Leaf 

Leaf 

Each node holds pointers to its left and right sub-trees — 
either of these pointers may be null to indicate that the 
sub-tree is empty. If both pointers are null then the node is a 
leaf node. 

The NODE class will implement the nodes within a tree 

structure. Each NODE object contains Left and Right 

pointer fields to refer to its sub-trees — an integer Data 

field is also associated with the node. 

class NODE { 

public: 

NODE(int); 

void Add(NODE*&,NODE* = 0); 

void Remove(NODE*&); 

NODE* Find(int); 

private: 

NODE* Left; 

NODE* Right; 

NODE* Parent; 

int Data; 
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The Parent field points to the node immediately above the 

current node in the tree structure — it serves the same 
function that the Previous field did in the ITEM class of 

section 11.3, namely to allow a NODE object to remove itself 

from the tree. 

The constructor sets the Data field using its parameter and 

simply zeroes the Left, Right and Parent pointers — the 

pointer fields are properly initialized when the node is added 
to a tree. 

NODE::NODE(int data) { 

Left = Right = Parent = 0; 

Data = data; 

New nodes will be placed in the tree acording to the value of 
their Data field. If their data value is less than that of the 
root node they will be placed in the left sub-tree of the root 
— otherwise they will be placed in the right sub-tree of the 
root. This decision process is applied recursively at each 
level within the tree — the Add( ) function is therefore easy 

to implement as a recursive function: 

void NODE::Add(NODE*& root,NODE* parent) { 

if (! root) { 

root = this; 

Left = Right = 0; 

Parent = parent; 

else if (Data < root->Data) 
Add(root->Left,root); 

else 

Add(root->Right,root); 

There are two interesting points concerning the Add() 

function — firstly, the Parent field of the tree's root node 

will be set to null by the optional parameter value and 
secondly, the root parameter is passed as a reference to a 

pointer so that the pointer value can be modified. 
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A new NODE is inserted into the tree by passing a pointer to 
the tree's root node: 

NODE* nodes[5]; 

for ( int i=0; i<5; i++) 

nodes[i] = new NODE(i); 

NODE* root = 0; 

nodes[3]->Add(root); 

nodes[]]->Add(root); 

nodes[4]->Add(root); 

nodes[2]->Add(root); 

nodes[0]->Add(root); 

This code builds the following tree structure: 

Data==3 

/N 
Data==1 

/\ 
Data==0 

Data==4 

Data==2 

The Remove ( ) function has the following definition: 

void NODE::Remove(NODE*& root) { 

if (! Parent) 

root = 0; 

else if (Parent->Left == this) 

Parent->Left = 0; 

else 

Parent->Right = 0; 

Parent = 0; 

} 

This definition allows an entire sub-tree to be removed by 
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2. Data Types and Expressions 

Chapter 1 introduced the notion of C++ data types — 
there are both basic C++ data types defined by the 
language and also structured types which may be 
user-defined. C++ provides built-in operators to manipulate 
data of the basic types whilst object classes can provide 
similar functionality for structured data types. This chapter 
details the basic types provided by C++ and looks at ways in 
which they may be combined into structured types. Every 
constant and variable used by a program must be 
associated with some data type through the use of a 

declaration statement. Thereafter, the data may be 
processed in expression statements by applying various 

C++ operators to it. There are many types of expressions in 
C++ (arithmetic, assignment, comparison, logical and 

bitwise) but each is considered here in turn. The chapter 

concludes with an overview of the input/output mechanism 
provided by the standard stream objects (cm n and cout). 

2.1 Basic C++ Data Types 

The C++ language only defines a small number of 

intrinsic data types: 

char — character type 

short, int, long — integer types 

float, double — floating-point types 

The keywords (char, int, float, etc.) are reserved by the 

C++ language and may not be used as names of 
user-defined types, variables, functions and so on — this is 

also true of other keywords (such as struct, if, return, 

etc.) which will subsequently be introduced. Anyway, a 

character variable is used to hold a single text character 
(letter a-z or A-Z, digit O-9, punctuation mark, space, etc.) 

and a character value is denoted by enclosing the character 
within single quotes " . For example: 

char letter = ' a'; 
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invoking the function on the NODE object at the root of the 

sub-tree. 

The ordering of nodes within the tree allows a particular 
node to be located easily given the value of its Data field. It 

is usually much faster to search a tree structure than to 
search an array containing the equivalent data elements — 
this is especially true when the number of elements 
becomes large. The Find() function is recursive and 

resembles the Add () function: 

NODE* NODE::Find(int data) 1 

if ( data == Data) 

return this; 

if ( data<Data && Left) 

return Left->Find(data); 

else if ( data>Data && Right) 

return Right->Find(data); 

return 0; 

The tree is searched by invoking the Find() function on 

the root node: 

NODE* node = root->Find(2); 

By providing each node with a key-value pair as data, the 
tree could be used to implement a dictionary — see section 
8.6 for more details. 

11.6 Heaps 

A heap is closely related to a tree — the main difference 
is that a heap reorganises itself so that recently added 
nodes appear near the root. Heaps are commonly employed 
to manage storage space since the rapid location of 
frequently-used storage improves efficiency. The BLOCK 

class will implement a heap data structure — for a memory 
management application new BLOCK objects can be 

allocated using a similar technique to that described in 
section 10.4 for the POOL class. 
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The BLOCK class has the following specification: 

class BLOCK ( 

public: 

BLOCK(int); 

void Add(BLOCK*&); 

void Remove(BLOCK*6); 

private: 

BLOCK* Left; 

BLOCK* Right; 

BLOCK* Parent; 

int Data; 

I; 

The constructor zeroes the pointer fields and sets the Data 
field using the parameter passed in. The Add() function 
has the following recursive definition: 

void BLOCK::Add(BLOCK*& root) { 

if (! root) 

Left = Right = 0; 

else if ( Data < root->Data) ( 

Add(root->Left); 

root->Left = Right; 

if ( Right) Right->Parent = root; 

Right = root; 

root->Parent = this; 

else { 

Add(root->Right); 

root->Right = Left; 

if (Left) Left->Parent = root; 

Left = root; 

root->Parent = this; 

} 

root = 

Parent 

this; 
= 0; 
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The following figures illustrates the transformations applied 
after the recursive calls to Add () — note that the nested 
calls leave the new node at the top of the sub-tree. During 
these transformations it is essential to maintain the ordering 
of tree nodes that was described in section 11.5 — this is 
achieved by ensuring that the relative positions of the nodes 
from left to right (as depicted below) are unaffected by the 
reorganisation of the heap. 

Firstly, when the new node is inserted in the left sub-tree of 
the root: 

Root Node  

Before \ After 

Node 

[Left !Righti 

Rest Left Root 

Right Rest 

In this case the following two steps are performed: 

1. Move the right sub-tree of the new node to the old root 
node as its left sub-tree 

2. Move the old root (and its sub-trees) to the right sub-tree 
of the new node 

Secondly, when the new node is inserted in the right 
sub-tree of the root: 

Root 

After 
««t efore 

Rest 'Node  

Left] Right 

Root 

Rest] 

Node' 

Left 

Right 

The two transformation steps are simliar to before but are 
reversed left-to-right. In any event, the new node always 
finishes at the top of the heap! 
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The Remove () function deletes just one block from the 
heap: 

void BLOCK::Remove(BLOCK*& root) 

BLOCK* block; 

if (! Right) block = Left; 

if (! Left) block = Right; 

if (Left && Right) ( 

block = Left; 

while (block->Right) 

block = block->Right; 

block->Right = Right; 

Right->Parent = block; 

block = Left; 

} 

Left = Right = 0; 

if (block) 

block->Parent = Parent; 

if (! Parent) 

root = block; 

else if (Parent->Left == this) 

Parent->Left = block; 

else 

Parent->Right = block; 

Parent = 0; 

{ 

{ 

If the removed node has only a left or right sub-tree, the root 
node in this sub-tree is used to replace its parent. Otherwise 
the right sub-tree is moved into the left sub-tree and the root 
of the left sub-tree replaces the removed node. For 
example: 

Root Node 

Before \ After \ 

Node 
4......./ ---.......... 

Left Right 

Rest 
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Both the Add() and Remove() functions maintain the 
correct ordering of nodes within the heap and so the 
Find() function defined for trees in section 11.5 will work 

here too. 

11.7 Collection Classes 

Objects from the ITEM, NODE and BLOCK classes are 

able to assemble themselves into list, tree and heap data 
structures. The implementation of the functionality is hidden 
within these classes — this is a good example of the object 
oriented approach. However, it may be useful to process the 
collection of objects within each hierarchical data structure 
as a whole — this is the purpose of collection classes such 
as LIST, TREE and HEAP. These classes provide higher 
level services that may build on the functionality of the 
ITEM, NODE and BLOCK classes. For example, the LIST 
class could perform services such as the following: 

1. Manage the list's header object 

2. Track the current length of the list 

3. Generate a new ITEM object and then call the object's 

Add() function to place it at the head of the list 

The third option is made available by defining an Insert ( ) 

function for the LIST class — the service is requested by 

invoking the function. 

The essential idea is to separate the low-level code for 
manipulating the individual data elements from the 
high-level services which treat the collection of elements as 
a single data structure. 
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12. Templates 

C++ templates provide an important mechanism for 

creating reusable software. The data processing performed 

by C++ functions and classes is often influenced by the 

parameter values supplied to them — these parameters can 

be variables of basic and structured data types or even 

objects of user-defined classes. Templates extend the 

notion of parameterization by permitting not only data 

values to be parameterized but also data types. C++ 

template classes enable the parameterization of data types 

by treating a single template class as a blue- print for a 

whole collection of classes — each of the classes generated 

from the template performs essentially the same processing 
but acts on variables and objects of differing types. 

Consequently, the software which defines a template class 

may be reused many times and unnecessary duplication of 

coding effort can be avoided. 

12.1 Type Parameters 

The behaviour of an object can be controlled by passing 

various parameters to its constructor. For example, the 

ARRAY class of section 9.3 checks subscript values against 

the bounds of an array — depending on the parameters 

passed to the constructor of an ARRAY object, the upper and 

lower bounds of the associated array change. Hence one 

ARRAY object may accept a particular subscript whilst 

another will reject it — the ARRAY class parameterizes the 

array bounds. However, the data type of the array elements 

is the same (float) for all ARRAY objects. To handle 

bounds checking for an array of a new data type it would be 

necessary to duplicate all the code for the ARRAY class and 

then make the appropriate changes by replacing type 

float with the new data type. An alternative approach that 

avoids the duplication of code is to parameterize the data 

type of the array elements — C++ templates are designed 

to accommodate type parameterizations. 
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12.2 Template Classes 

A template class may parameterize a data type — the 
template serves as a blue-print for a whole collection of C++ 
classes all of which perform essentially the same processing 
but applied to variables and objects of different data types. 
For example, the ARRAY class may be converted into a 

template as follows: 

template <class T> 

class ARRAY { 

public: 

T& operator[](int); 

private: 

T Array[100]; 

1; 

A C++ template is prefixed by the template keyword and a 

list of the template parameters in angle brackets. The 
parameters can accept constant values (such as integers) 
but a more common application is to parameterize a data 
type — the keyword class is used to indicate a type 

parameter and the parameterized type name follows. 

For the parameterized version of the ARRAY class, the 
Array field is an array of one hundred elements of data 

type T and the overloaded subscript operator returns a 
reference to one of these elements. 

The template keyword is also required when the template 

class is defined: 

template <class T> 

T& ARRAY<T>::operator[] ( int ) ( 

// define function here 
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Function definitions for a template class should accompany 
the class specification in the header file. The name of the 
template class is ARRAY<T> — when a concrete class is 

generated from a class template the actual type name 
replaces the T parameter in the class name. 

It is now easy to create an ARRAY object which performs 

bounds checking on an integer array with ten elements — all 
that is required is the following declaration statement: 

ARRAY<int> x(10); 

The compiler takes care of generating the class code for this 
choice of type parameter. Only code that is actually used 
will be generated — to force the compiler to provide all the 
code for the ARRAY<int> class the following statement 

may be used: 

template ARRAY<int›; 

12.3 The VECTOR Class 

The VECTOR class provides a fuller example of working 

with C++ class templates. Each VECTOR object represents a 
vector with components (x,y,z) in three-dimensional space 

— the VECTOR class is useful for solving problems in 
cartesian geometry or linear algebra. The class provides 
overloaded operators to calculate the scalar and vector 
products of a pair of vectors. For two vectors a== ( x, y, z) 

and b== (X, Y, Z) the scalar product is: 

alb == x*X + y*Y + z*Z 

and the vector product is: 

a*b == ( y*Z-z*Y, z*X-x*Z, x*Y-y*X) 

These operations can be used to calculate the determinant 
of a matrix m composed of the three vectors a, b and c: 

det(m) == al(b*c) == cl(a*b) == bl (c-ka) 

The VECTOR class is parameterized so that it will work with 
floating-point or integer component values — the latter 
choice can provide faster computations. 
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The VECTOR class specification follows: 

template <class T> 

class VECTOR { 

public: 

VECTOR(T = 0,T = 0,T = 0); 

T operatorl(const VECTOR<T>&) const; 

VECTOR<T> operator* ( const VECTOR<T>&) const; 

private: 

T X,Y,Z; 

1; 

In a real implementation the class should be made regular 
(see chapter 8) — the addition and subtraction operators 
could also be usefully overloaded. The details are omitted 
here so that the essentials of defining a template class can 
be emphasized. 

The constructor sets the X, y and z fields from the 

arguments supplied: 

template <class T> 

VECTOR<T>::VECTOR(T x,T 

X = x; 

Y = y; 

Z = z; 

{ 

Note that the <T> extension to the class name need not be 

applied to the constructor in either the class specification or 
the function definition — the same is true for the destructor. 

The scalar product is calculated with the following function: 

template <class T> 

VECTOR<T>::operatorl(constVECTOR<T>&v) const 

1 

return X*v.X+Y*v.Y+Z*v.Z; 
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The vector product is constructed with a local VECTOR<T> 

object: 

template <class T> 

VECTOR<T> 

VECTOR<T>: :operator* ( const VECTOR<T>6t const 

VECTOR<T> product; 

product.X = Y*v.Z-Z*v.Y; 

product.Y = Z*v.X-X*v.Z; 

product.Z = X*v.Y-Y*v.X; 

return product; 

The following code calculates a determinant value: 

VECTOR<int> a(9,5,3); 

VECTOR<int> b(4,1,7); 

VECTOR<int> c(6,8,2); 

int det = al(b*c); 

Such a calculation is useful when solving simultaneous 
linear equations in three unknowns x, y and z. 

12.4 Wrapper Classes 

Template classes can help to avoid the duplication of 
source code. However, there is a problem — the object 
code for each of the classes built from a template must still 
be generated whenever it is required. This automatic 
generation of object code can increase the size of an 
executable file considerably. The effect may be lessened by 
placing most of the implementation in a concrete class and 
then wrapping this class with a template class — in this case 
only the wrapper code is duplicated and such code can be 
kept to a minimum. The concrete class typically operates 
with void pointers so that it can handle any type of data 

and the wrapper classes provide type checking. 

To provide an example of wrapper classes, the LIST class 
is defined here as a collection class for the ITEM objects of 

section 11.3 — objects of the ITEM class store their data 

using a void pointer. The template class BASKET acts as a 
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A collection of characters forms a string and a character 
string value is written within double quotes " ". The 

program in chapter 1 used the character string "Hello! \n" 

which includes the escape sequence \n (newline) — all 

escape sequences start with a backslash \ and they are 

each used to represent a single character that cannot be 
typed directly such as newline (\ n), tab (\ t) or 
formfeed (\ f). Character strings are closely related to 

arrays and these are discussed in the next chapter. 

An integer variable may be of type short, int or long and 

holds a whole number such as - not:), 0 or 33. Both 
positive and negative values are possible but the biggest 
(most positive or most negative) values that the variable 

can hold are implementation dependent. The principal 
guarantee is that the range of the allowable values 
increases (or remains the same) from short to int to 

long. An int variable should use the native integer size of 

the host computer which is typically 32 bits nowadays. 
Unsigned integer types are available by employing the 
keyword unsigned as follows: 

unsigned int count; 

The count variable then holds only positive values (or 

zero). 

Finally, variables of type float and double hold the 

values of real numbers such as 3.14, 0.001 or 25E+25 

which may include a fractional part. The letter E (or e) is 

used to express floating-point numbers in scientific notation 
— floating-point values are assumed to be of type double 

unless the letter F (or f) is appended. As with integer types 

the exact range of values which can be held by a float or 

double variable depends on the C++ implementation. 

Generally speaking, the float type should be used unless 

the double type is required for extra range or precision. 
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wrapper that performs compile-time type checking on the 
items stored by the LIST class — it also casts void 

pointers to the appropriate type when items are retrieved 
from the list. The SetData ( ) and GetData () functions for 
the ITEM class are defined below: 

void ITEM::SetData(void* data) { 

Data = data; 

1 

void* ITEM::GetData(void) { 

return Data; 

1 

The Shift ( ) function allows the LIST class to move along 
its list of ITEM objects: 

ITEM* ITEM::Shift(void) { 

return Next; 

1 

The function could be parameterized to permit shifts in both 
directions. 

The LIST class has the following specification: 

class LIST { 

public: 

LIST (void); 

-LIST (void); 

void Insert (void*); 

void* Extract (void); 

private: 

ITEM* Header; 

int Length; 

1; 

Most of the functionality for processing the list data structure 
is placed in the LIST class — the code for the 
corresponding wrapper class is kept to a minimum. 
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The LIST constructor creates a header item: 

LIST::LIST(void) { 

Header = ( ITEM*) new ITEM; 

Length = 0; 

and the destructor empties the list: 

LIST::-LIST(void) { 

ITEM* item; 

while (Length--) { 

item = Header->Shift(); 

item->Remove(); 

delete item; 

delete Header; 

The Insert () function creates a new ITEM object, sets its 
data and calls its Add ( ) function to place it at the head of 
the list: 

void LIST::Insert(void* data) { 

ITEM* item = ( ITEM*) new ITEM; 

item->SetData(data); 

item->Add(Header); 

Length++; 

The Extract ( ) function similarly retrieves data from the 
head of the list: 

void* LIST::Extract(void) { 

if (! Length) return 0; 

ITEM* item = Header->Shift(); 

void* data = item->GetData(); 

item->Remove(); 

delete item; 

Length--; 

return data; 
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Now a template wrapper class is straightforward to define 
— the BASKET class specification is: 

template <class T> 

class BASKET f 

public: 

BASKET (void); 

-BASKET (void); 

void Store(T); 

T Retrieve(void); 

private: 

LIST* List; 

); 

The BASKET class constructor and destructor simply create 
and destroy the associated LIST object. The store() 

function is: 

template <class T> 

void BASKET<T>::Store(T data) f 

T* pointer = ( T*) new T; 

*pointer = data; 

List->Insert ( pointer); 

A dynamic object of the parameterized type is created and 
its value is set using the argument passed to the store 0 
function — note that this assumes there is an appropriate 
assignment operator available. Since the store ( ) function 
accepts data of a definite type, the compiler can perform 
type-checking on the data that is to be inserted into the list. 
The Retrieve( ) function is defined as follows: 

template <class T> 

T RASKET<T>::Retrieve(void) f 

T* pointer = ( T*) List->Extract(); 

if (! pointer) return 0; 

T data = *pointer; 

delete pointer; 

return data; 
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Note that the void pointer returned by the LIST object is 

cast to point at data of the parameterized type — the 
referenced data is saved in a local variable before the 
dynamic object that stored it is destroyed. 

The BASKET class is a fairly general class for storing and 

retrieving objects — it need not use a LIST object to 

provide its implementation. For example, the BASKET class 

specification may be modified to include a second 
parameterized type: 

template <class V,class T> 

class BASKET f 

private: 

V* Holder; 

); 

The references to List in the store ( ) and Retrieve () 

functions should be updated to refer instead to Holder. 

Then any holder type y which supplies suitable Insert () 

and Extract ( ) functions can be used with the BASKET 

template class. The HEAP class might be one possibility: 

BASKET<HEAP,int> basket; 

basket.Store(6); 

This code stores the integer value 6 in a wrapped HEAP 

structure. 

12.5 Template Functions 

The C++ template mechanism also works with global 
functions — every template parameter should appear in the 
specification for the function parameter list. For example, a 
template function Debug() may be defined that prints 

debugging information about any variable or object it 
receives as a parameter: 

template <class T> void Debug(const T&); 
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A template function is defined in the usual way but the 
template keyword and the template parameter list must 
precede the definition: 

template <class T> 

void Debug(const T& object) f 
cout << "Object at address: "; 
cout << hex << &object << dec; 
cout << '\n'; 

This function prints out the location in memory of its 
object parameter. The stream manipulator hex changes 
the format in which the address is displayed to hexadecimal 
— similarly dec changes the format back to decimal. 

A non-template version of Debug() which explicitly 
specifies a parameter type will override the template 
function for that type. For example: 

void Debug(const int& i) f 

cout << "Integer (" << i; 
cout << ") at address: "; 
cout << hex << &i << dec; 
cout << '\n'; 

The following code: 

OBJECT object; 

int i(0); 
Debug(object); 
Debug(i); 

prints the debugging information: 

Object at address: Ox4153e57c 
Integer ( 0) at address: Ox4153e578 

As with template classes the object code for template 
functions is only generated by the compiler whenever it is 
required. 
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13. Inheritance 

Inheritance is the principal mechanism in C++ for 
enabling polymorphism — a collection of objects are 
polymorphic if they exhibit different behaviours from one 
another when they are sent identical messages. 
Encapsulation and polymorphism form the foundations of 
the object oriented programming philosophy — 
encapsulation is concerned with hiding implementation 
details whilst polymorphism allows diverse functionality to 
be exposed to the outside world through a well-defined 
communications interface. One C++ class may derive some 
of its characteristics from another by the process of 
inheritance. In particular, each derived class inherits the 
interface defined by its base class — when new 
implementations are provided for each derived class 
objects from different derived classes become polymorphic. 
This chapter covers the details of C++ inheritance — topics 
include the specification of base and derived classes, the 
process of inheriting or overriding base class fields and 
functions, the invocation of real and virtual functions, and 
finally the construction and destruction procedures for 
objects of derived classes. 

13.1 Base and Derived Classes 

In C++ one class may be derived from another — the 
original class is known as the base class of the derived 
class. The derived class inherits many of its characteristics 
from the base class — these fall into three categories: 

1. Data 
2. Code 
3. Interfaces 

The first two are the subject of this chapter whilst chapter 14 
deals with interfaces. The data fields defined by the base 
class are present in all objects of the derived class — the 
derived class may add more data fields if it needs them. 
Similarly, the functions of the base class are inherited by 
objects of the derived class — the exceptions to this rule 
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include the base class constructor and destructor as well as 
any overloaded assignment operators provided by the base 
class. In particular, the inheritance of class characteristics 
applies to static fields and functions — however, the static 

data fields for base and derived classes are distinct. 

Any C++ class can act as a base class but a good base 
class is specifically designed as such. A base class should 

ideally contain only functionality that is sufficiently general 

to make the base class widely applicable — at the very least 
it should be possible to derive at least two distinct classes 
from a base class. In other words C++ inheritance is a 
mechanism for software reuse — the source code provided 
by the base class need not be duplicated for each of the 

derived classes. 

13.2 Deriving a Class 

The derivation of a new class from a base class is 
straightforward. The following specification for the DERIVED 

class states that it inherits from the BASE class: 

class DERIVED : public BASE f 

The derived class name is followed by the : symbol, then 

the keyword public and finally the base class name. The 

public keyword indicates that the derivation is public — 

this is the commonest sort of inheritance. In fact, public 

derivation is the only kind of inheritance described in this 

book and the public keyword may be omitted. The class 

specification for the DERIVED class must occur after the 

BASE class specification — a typical approach is to include 

a header file for the BASE class. 

In general, the DERIVED class can use its inherited fields 

and functions exactly as if it had defined them itself. For 

example, suppose the BASE class has a Data field and 
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also a Print () function: 

class BASE ( 

public: 

void Print (void); 

int Data; 

1; 

The DERIVED class can create objects just like any other 

class: 

DERIVED object; 

and such objects inherit their characteristics from the BASE 

class: 

object.Data = 0; 

object.Print(); 

However, base class pointers can reference objects of the 
derived class — indeed, a pointer to the derived class will 
be implicitly cast to a base class pointer when required. For 
example: 

DERIVED object; 

BASE* pointer = &object; 

Here there is an implicit cast from DERIVED* pointer type 
to BASE* pointer type before the pointer variable receives 
the address of the object. This situation is similar to that 
with void pointers — any type of data may be referenced 

by a void pointer and implicit casts to void* pointer type 

are applied when necessary. 

Casts in the opposite direction from base class pointers to 
derived class pointers must be explicitly requested — the 
cast is only sensible when the referenced object is known to 
belong to the derived class: 

DERIVED object; 

BASE* base = &object; 

DERIVED* derived = ( DERIVED*) base; 
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Finally, the DERIVED class may itself act as a base class for 

yet another derived class. All the fields and functions of the 
DERIVED class (including those inherited from the BASE 

class) are available for inheriting as part of the new base 
class. In this way an extended chain of classes can be built 
with each class inheriting from the previous one in the 
chain. 

13.3 Protection Keywords 

The private, protected and public keywords 

guard against improper use of class fields and functions. 

The private and public keywords have appeared in 

many classes in previous chapters — the protected 

keyword is only relevant when inheritance is involved. The 

public keyword allows any source code to reference a field 

or invoke a function — the private keyword restricts these 

activities to functions belonging to the class and friend 
functions. The private and public keywords provide 

control that is too coarse when inheritance is involved. A 

derived class may need fields or functions from the base 
class — the private keyword is too restrictive but the 

public keyword releases all control. In these situations the 

protected keyword should appear in the base class 

specification before any fields and functions that a derived 

class may need — protected fields and functions can be 
used by both the base and derived class functions as well as 
friends of these classes. With public derivation the protected 

members of the base class become protected members of 
the derived class — this is useful if the derived class 
becomes the base class for yet another derived class. 

Finally, note that the private, protected and public 

keywords only provide compile-time protection — they are 
intended to identify inadvertent uses of fields and functions. 

It is easy to by-pass these protection mechanisms at 
run-time using devious means — for example, an object 
pointer may be cast to a character pointer and the entire 

contents of the object read byte by byte. 
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13.4 Field and Function Overriding 

Derived classes may define new fields in addition to 
those they inherit from their base class. For example: 

class BASE 

protected: 

int Data; 

class DERIVED : public BASE { 

private: 

int Array[100]; 

Here the base class has the integer Data field — this is 

inherited by the DERIVED class which also defines a new 

Array field. If the same name is used for fields in both the 

base and derived classes then the latter field overrides the 
former — within the functions of the derived class the name 
refers to the derived class field. For example: 

class DERIVED : public BASE { 

public: 

void SetData(float); 

private: 

float Data; 

void DERIVED::SetData(float data) { 

Data = data; 

Here the SetData() function assigns a value to the 

floating-point field of the DERIVED class and not the integer 

field inherited from the BASE class. To reference the 
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Sometimes it may be necessary to convert from one type to 
another — this may be achieved by employing a cast as in 
the following example: 

int count; 
float average = 2.5; 
count = ( int)average; 

The value of the float expression is converted (cast) to an 

integer type by discarding the fractional part. The cast 
ensures that the compiler does not object to the assignment 
statement — if the conversion were made automatically 
(without the cast) important information may be lost. An 
alternative notation is: 

count int(average); 

Similar conversions between other types are possible by 
specifying the appropriate data type in the cast statement. 

There have already been several examples of a variable 
declaration statement. This consists of a type name followed 
by a variable name. Sufficient storage space is allocated to 
the variable to hold a value of the specified type. A slight 
variation of the declaration statement includes an equals 
sign followed by a value. In this case, the variable is 
initialized to hold the given value. For example: 

int count = 10; 

This allocates storage for the count variable and initializes 

it with the value 10. An alternative notation is: 

int count(10); 

If a variable holds a constant value it should be declared 
using the cons t keyword and an initialization value must be 

supplied: 

const int TEN = 10; 

Finally, several variables of the same type may be declared 
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overridden field the : : operator is available. For example: 

class DERIVED : public BASE { 

public: 

void SetData(float); 

void SetData(int); 

private: 

float Data; 

I; 

void DERIVED::SetData(float data) { 

Data = data; 

1 

void DERIVED::SetData(int data) ( 

BASE::Data = data; 

The SetData () function is overloaded to permit either 

base or derived field to be set. 

An alternative approach is have a SetData () function 

defined in both base and derived classes — the base class 
function is overridden much like the base class Data field 

was overridden previously. However, a derived class 
function overrides all functions with the same name that 
occur in the base class — overloading the base class 
functions with different parameter lists does not prevent the 
overriding. The new BASE class specification is: 

class BASE { 

public: 

void SetData(int); 

private: 

int Data; 

1; 

The BASE class defines a SetData() function which 
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accepts an integer parameter: 

void RASE::SetData(int data) f 
Data = data; 

1 

The DERIVED class has a SetData() function that 
overrides the BASE class version even though it accepts a 
different parameter type: 

class DERIVED : public BASE f 

public: 

DERIVED (void); 

void SetData(float); 

private: 

float Data; 

1; 

void DERIVED::SetData(float data) f 

Data = data; 

1 

The DERIVED class constructor zeroes both the Data fields 
with function calls: 

DERIVED::DERIVED(void) f 

SetData(0); 
BASE::SetData(0); 

The first function call to SetData () invokes the DERIVED 
class function — the overridden base class version must be 
invoked using the : : operator. 

13.5 Virtual Functions 

The previous section described the overriding of class 
functions — the functions discussed there were real 
functions but C++ also supports virtual functions. Virtual 
functions behave somewhat differently to real functions — 
they are only important when dealing with objects of a 
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derived class. Virtual functions are marked as such by 
preceding them in the class specfication with the virtual 

keyword. As an example of virtual functions the FRUIT base 

class will be defined: 

class FRUIT ( 

public: 

void WhoAmI(void) const; 

protected: 

virtual void GetName(void) const; 

; 

The WhoAmI() function is invoked to tell a FRUIT to print a 

description of itself: 

void FRUIT::WhoAmI(void) const { 

cout << " I am 

GetName(); 

If ; 

The GetName () function actually supplies the name of the 

fruit — the FRUIT class is a base class and represents all 

fruits so its GetName () function is general: 

void FRUIT::GetName(void) const { 

cout << "a fruit.\n"; 

The following code: 

FRUIT fruit; 

fruit.WhoAmI(); 

prints the message: 

I am a fruit. 

Now that the FRUIT base class has been defined specific 

fruit classes can be derived from it — the derived classes 

will print a particular fruit name when the WhoAmI() 
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function is invoked. For example, the APPLE fruit class 

follows: 

class APPLE : public FRUIT { 

protected: 

virtual void GetName(void) const; 

} ; 

void APPLE::GetName(void) const 1 

cout << " an apple.\n"; 

The APPLE class inherits the WhoAmI () function and 

overrides the GetName () function. An APPLE object may 

be created and the WhoA.mI () function invoked: 

APPLE apple; 

apple.WhoAmI(); 

This executes the code for the WhoAmI ( ) code from the 

FRUIT base class. If the GetName () function were real the 

result would be: 

I am a fruit. 

However, the following situation now arises: 

1. A base class function executes within an object of a 
derived class 

2. The base class function invokes a virtual function 

3. The derived class of the object overrides the virtual 
function 

In these circumstances the base class function must call the 

derived class version of the virtual function. 

Here the base class function is WhoAmI U , the object is 

apple and it belongs to the derived APPLE class which 

overrides the virtual GetName() function. Hence the 

WhoArnI ( ) function must use the APPLE class version of 

the GetName( ) function. 
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The apple.WhoAmI () call thus produces the message: 

I am an apple. 

When the WhoArnI ) function is invoked for objects of 

different classes (FRUIT or APPLE) the processing that is 
performed differs — this is an example of polymorphism. 
The next section provides another example and Chapter 14 
discusses the whole subject in more detail. 

13.6 Pointers and Functions 

The previous two sections have discussed the selection 
of a real or virtual function when the function invocation is 
made directly by name. Actually, these function calls 
employ the implicit this pointer — this section extends the 

ideas to cover function invocations made through a general 
pointer. For real functions the decision of whether to call the 
base class function or an overriding version from a derived 
class is made at compile-time. If the function is invoked 
using a base class pointer then the base class function is 
used — this is true even if the base class pointer references 
an object of a derived class. To provide an example the 
following modifications are made to the FRUIT class: 

class FRUIT { 

public: 

void WhoAmI(void) const; 

; 

void FRUIT::WhoAmI(void) const { 

cout << " I am a fruit.\n"; 

and to the derived APPLE class: 

class APPLE : public FRUIT{ 

public: 

void WhoAmI(void) const; 

}; 

void APPLE::WhoAmI(void) const { 

cout << " I am an apple.\n"; 

1 
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The code below demonstrates the choice of real function: 

FRUIT* fruit - ( FRUIT*) new FRUIT; 

FRUIT* apple - ( FRUIT*) new APPLE; 

fruit->WhoAmI(); 

apple->WhoAmI(); 

Both calls to WhoAmI () print the message: 

I am a fruit. 

To obtain the proper response from the apple object it is 
necessary to cast its pointer to APPLE* type. For example: 

APPLE* apple = (APPLE*) new APPLE; 

apple->WhoAmI(); 

Now the derived class function is invoked. In general, to 
obtain the overriding version of a real function, a derived 
object must be referenced by a pointer for the derived class. 

These rules also cover function invocations made through 
the implicit this pointer. Within base class functions the 

this pointer is a base class pointer whilst within functions 

explicitly defined by the derived class the this pointer is a 

derived class pointer — however, within functions inherited 
from the base class the this pointer is a base class pointer. 

The choice of virtual functions is not made at compile time 
but at run-time and the class of the object is important as 
well as the pointers used. For a base class object, the base 
class virtual function is invoked — similarly for a derived 
class object referenced through a pointer for the derived 

class, the derived class virtual function is invoked. The 
interesting case occurs when: 

1. A base class pointer references an object of the derived 
class 

2. The pointer is used to invoke a virtual function 

3. The derived class of the object overrides the virtual 
function 
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This situation exactly mirrors that involving the implicit this 
pointer as discussed at the end in section 13.5. 
Consequently, the derived class version of the virtual 
function is invoked. As an example, the APPLE and BANANA 

classes are both derived from the FRUIT base class and 
this class now adds the keyword virtual to its WhoAmI() 

function to make it virtual: 

class FRUIT { 

public: 

virtual void WhoAmI() const; 

1; 

class APPLE : public FRUIT { 

public: 

virtual void WhoAmI() const; 

; 

class BANANA : public FRUIT 

virtual void WhoAmI() const; 

The overriding versions of the WhoAmI() function are 

suitably defined. The following code processes a BASKET 
object (see section 12.4) which holds a collection of FRUIT* 

pointers: 

BASKET<FRUIT*> basket; 

FRUIT* apple = ( FRUIT*) new APPLE; 

FRUIT* banana = ( FRUIT*) new BANANA; 

basket.Store(apple); 

basket.Store(banana); 

FRUIT* fruit; 

while (fruit = basket.Retrieve()) 

fruit->WhoAmI(); 

delete fruit; 

When the WhoAmI() function is called for each of the fruits 
in the basket, the appropriate derived class version of the 
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virtual function is chosen. If a first- in- last-out storage 
mechanism for the basket object is assumed then the code 

prints the following: 

I am a banana. 

I am an apple. 

This is another example of polymorphism — the APPLE and 

BANANA objects perform different processing when the 

WhoArnI () function is invoked. 

There is an exception to the above rules for function 
selection. When a base class constructor (or destructor) is 
called during the creation (or destruction) of a derived class 
object the implicit this pointer is a base class pointer — 

however, only functions from the base class are invoked 
even if they are virtual and overridden by the derived class. 
The following sections discuss the construction and 
destruction processes more fully. 

13.7 Derived Class Constructors 

The standard procedure for creating and destroying an 
object was discussed in chapter 7 — there are a number of 
modifications when the object belongs to a derived class. At 
creation the following steps are taken: 

1. Storage Allocation 
2. Base Class Initialization 
3. Derived Class Initialization 

The base class initialization step intializes any objects 
embedded by the base class and then invokes the base 
class constructor code. The base class initialization is not 
influenced by the existence of the derived class — in 
particular no virtual functions from the derived class are 
invoked. The derived class initialization performs similar 

processing for the derived class — the fields and functions 
inherited from the base class are available at this point. 

Chapter 7 introduced the : notation for choosing a 

constructor for any embedded objects — this notation may 

157 



also indicate which constructor will initialize the base class. 
If no constructor is explicitly specified for an embedded 
object or the base class then the default constructor of the 
appropriate class is invoked. For example, the EMBEDDED 
class holds a string passed to its constructor: 

class EMBEDDED f 

public: 

EMBEDDED(const char*); 

private: 

char String[100]; 

int Length; 

; 

EMBEDDED::EMBEDDED(const char* string) f 

Length = 0; 

if (! string) return; 

while ( String[Length] = * string++) 

Length++; 

The BASE class uses an embedded object to hold a "Base" 
string in its BaseName field: 

class BASE { 

public: 

BASE(int = 0); 

private: 

EMBEDDED BaseName; 

; 

BASE::BASE(int i) : BaseName("Base") { 

I 

As described in section 7.6 the embedded BaseName object 
is initialized just before the BASE class constructor is 
executed. 
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Now the DERIVED class is derived from the BASE class — it 

also embeds an EMBEDDED object but passes a "Derived" 

string instead of a "Base" string as a parameter: 

class DERIVED : public BASE f 

public: 

DERIVED (void); 

private: 

EMBEDDED Name; 

} ; 

DERIVED::DERIVED(void) 

: BASE(123), Name("Derived") { 

In fact, a DERIVED object contains two EMBEDDED 

objects — one inherited from the BASE class and another 

embedded directly. As well as initializing the second of 
these objects, the DERIVED class constructor explicitly 

passes the value 123 to the BASE class constructor. 

13.8 Virtual Destructors 

The destruction process is the exact opposite of the 
creation process: 

1. Derived Class Finalization 
2. Base Class Finalization 
3. Storage Deallocation 

The derived class finalization invokes the derived class 
destructor and then finalizes any objects embedded by the 
derived class. The base class finalization performs simliar 
processing for the base class. However, when a derived 
class object has the delete operator applied to a base 

class pointer which references it, the derived class 
finalization is not performed if the destructors are real 
functions. To avoid this happening the destructors should be 
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in a single statement by using commas to separate the 
individual variable names: 

int count, sum, total; 

2.2 Structured Data Types 

Now that the basic C++ types have been discussed, this 
section looks at combining these elements to form 
user-defined structured data types. Such a type is declared 
using the keyword struct. For example: 

struct DATE f 

int Day; 

int Month; 

int Year; 

1; 

The word following the struct keyword is the name of the 

new data type, here DATE. The specification of the 

structured data type is enclosed in a matched pair of braces 
{ } and a semi-colon must follow. The DATE type contains 

three elements (called fields) with the names Day, Month 

and Year. An uninitialized variable of the new type is 

declared as follows: 

DATE yesterday; 

Alternatively the variable may be assigned an initial value: 

DATE yesterday = { 1,1,1970}; 

The bracketed values in the initializer are stored in the fields 
of the yesterday variable with the first one being assigned 

to the Day field, the second to the Month field and the third 

to the Year field. Hence the yesterday variable 

represents 1st January 1970. As with variables of basic 
types, the const keyword may be employed to prevent a 

variable of a structured data type from changing its value 
after it has been initialized in a declaration statement: 

const DATE yesterday = 11,1,19701; 
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declared as virtual functions: 

class BASE f 

public: 

virtual -BASE(void); 

class DERIVED: public BASE { 

public: 

virtual - DERIVED (void); 

Furthermore, if the derived class overloads the delete 

operator its version is only invoked if the destructors are 
virtual. Alternatively, if the derived class inherits an 
overloaded delete operator from the base class which has 

two parameters, then the second parameter (of size t 

type) will only report the correct size for derived objects if 
virtual destructors are used. 
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14. Interfaces 

An interface class contains no code — its sole purpose 
is to force a derived class to support a well-defined set of 
functions. Interface classes are abstract classes and cannot 
generate objects directly — derived classes must provide 
implementations of the interface's functions before objects 
can be created. Objects from different classes that 
implement the same interface are interchangeable with one 
another — this is a classic example of polymorphism. 
A notification class is a type of interface class that allows an 
object to send notifications of internal events — notifications 
complete the two-way exchange of messages between 
objects. Within a software component an object typically 
supports multiple interfaces each representing a different 
facet of the object's functionality. The UNKNOWN interface 
class is designed to simplify the use of multiple interfaces 
with C++ objects — smart pointers can automate some of 
the troublesome book-keeping details. 

14.1 Pure Virtual Functions 

The previous chapter introduced the notion of virtual 
functions — the FRUIT base class contained general 

implementations of its virtual functions which where 
overridden by more specific implementations in the derived 
classes. However, it is possible to declare a virtual function 
in a base class without providing any implementation of the 
function — such a function is known as a pure virtual 
function and it is denoted in the base class specification with 
the = 0 marker. For example: 

class FRUIT f 

public: 

virtual void Draw(void) - 0; 

Here the FRUIT class defines a pure virtual Draw ( ) 

function — the function draws an illustration of the fruit 
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represented by an object. Without a generic depiction of a 
fruit the Draw () function cannot be implemented in the 

base class — instead it must be overridden in each derived 
class by providing code that draws individual fruits. 

If a class defines a pure virtual function or inherits such a 
function without overiding it then the class is an abstract 
class. An abstract class cannot be used to create objects — 
however, a class derived from the abstract class which 
implements all its virtual functions can create objects. 
Consequently the pure virtual functions declared by a base 

class force the derived classes to support these functions as 
part of their communications interface — for example, every 
object of a class derived from the FRUIT class can be sent 

a message by invoking its Draw() function. 

An extreme example of this approach is to specify a base 
class which contains only pure virtual functions — the class 
is then known as an interface class. If a concrete class 
inherits its interface from such a class, there is complete 
separation of interface and implementation. For example: 

class HOLDER f 

public: 

virtual void Insert(int) = 0; 

virtual int Extract(void) = 0; 

1; 

The HOLDER interface class specifies an interface that must 

be supported by all classes derived it. The interface defines 
the services which may be expected from a class designed 
to hold a collection of integer values — the LIST, TREE 

and HEAP collection classes discussed in section 11.7 are 

examples of classes that could support the HOLDER 

interface. 

14.2 Polymorphism 

In a C++ context polymorphism occurs when a collection 
of objects each exhibit their own individual behaviours upon 
receipt of identical messages — the name polymorphism is 
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applied because the objects in the collection represent many 
possible forms. Polymorphism arises when interface and 

implementation are separated — the interface remains 

constant but the implementation may change. The following 

figure illustrates the process of communicating with an 

object through an interface defined by an interface class: 

Derived Object 

Outside 
World 

Inherited Interface 

Function 

Function 

Function 

As long as the functions in the interface remain the same 

the underlying object may be changed — any object which 

supports the same interface will suffice. Of course, for this 

to work it is necessary to define the processing expected of 

each interface function — the interface class only fixes the 

function parameter formats and the function return types. It 

is the responsibility of the implementor of a new class 

supporting the interface to adhere to the functionality 

specification. The interchangeability of objects that results 

when a number of classes are derived from a common 
interface is a classic example of polymorphism — objects of 

different derived types are sent the same messages through 

the inherited interface but perform their own individual 

processing. 

In general, an interface is used to group together a related 

set of functions and hence it defines one facet of an object's 
functionality. The C++ language only allows an object to 

support one interface directly — section 14.4 discusses 

techniques for overcoming this limitation. Nonetheless, an 

object may conceptually support any number of interfaces 

— each interface is specified by a different interface class. 
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The following figure depicts an object with two distinct 

interfaces: 

Object with Multiple Interfaces 

First Interface Second Interface 

Function 

Function 

Function 

Function 

Function 

To permit one object to be substituted for another they must 
both support a common set of interfaces — the individual 

objects are polymorphic with respect to this shared set of 

interfaces. Of course, the two objects may also support 

other interfaces which they do not share but the 
polymorphism does not extend to these interfaces. 

14.3 Notification Classes 

Notification classes are a useful variety of interface 

class. These classes are needed when an object wishes to 

notify the outside world of events that occur within the object 

— they complement other interface classes which permit 

messages to be sent to an object from the outside world. 

The following figure demonstrates the idea: 

Master Object Slave Object 

Notification 
Object 

-> Interface 

The master object sends messages to the slave through the 
usual interface communications mechanism — if the slave 
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wants to send messages back to the master it passes them 

to a notification object within the master. The slave class 

catalogues the sorts of messages it will send by defining an 

associated notification class — this is an interface base 

class from which the actual class of the notification object 

must be derived. 

The notification class NOTIFY specifies an interface with 

two functions: 

class NOTIFY f 

public: 

virtual void MultipleEvents(int) = 0; 

virtual void SingleEvent(void) = 0; 

const static int Event 1; 

const static int Event 2; 

The notification class is designed to provide notification of 

three possible events that may occur within a SLAVE object: 

FirstEvent, SecondEvent and ThirdEvent. The 

function MultipleEvents () is called if either of the first 

two events occurs whilst the SingleEvent ( ) function is 

only called if the last event occurs. The function 

mui tipleEvents ( ) passes one of the constants Event _1 

or Event _2 as a parameter to identify the relevant event. 

Constant static data fields are acceptable additions to an 

interface class — they should be defined globally: 

const int NOTIFY::Event_l = 1; 

const int NOTIFY::Event_2 = 2; 

The SLAVE class source file is a good place for these 

constant definitions. 

Whenever a MASTER object wants to receive notifications 

from a SLAVE object it must derive its own class from 

the NOTIFY class. 
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For example: 

class MONITOR : public NOTIFY { 

public: 

virtual void MultipleEvents(int); 

virtual void SingleEvent(void); 

I; 

The interface functions are provided with appropriate 
implementations: 

void MONITOR::MultipleEvents(int event) { 

if ( event == NOTIFY::Event_1) { 

// processing for FirstEvent 

} 

else if (event == NOTIFY::Event_2) { 

// processing for SecondEvent 

void MONITOR::SingleEvent(void) { 

// processing for ThirdEvent 

The SLAVE object must be able to send messages to its 
masters notification object — a common technique is to 
pass a pointer into the SLAVE class constructor: 

class SLAVE { 

public: 

SLAVE(NOTIFY*); 

private: 

NOTIFY* Notify; 

I; 

SLAVE::SLAVE(NOTIFY* notify) { 

Notify = notify; 

Now the MASTER object can create a SLAVE object and 
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pass it a pointer to the masters MONITOR object: 

MONITOR monitor; 

SLAVE slave(&monitor); 

Since the MONITOR class is derived from the NOTIFY class 
the pointer is implicitly cast to NOTIFY* type. Now 

whenever an event occurs within the SLAVE object it can 
send a notification to the MASTER object: 

if (Notify) 

Notify->MultipleEvents(NOTIFY::Event_1); 

if (Notify) 

Notify->MultipleEvents(NOTIFY::Event_2); 

if (Notify) 

Notify->SingleEvent(); 

The MultipleEvents() and SingleEvent() functions 

are invoked through a base pointer but they are virtual 
functions and so the code from the derived MONITOR class 
is executed. The MASTER object thus receives notifications 

from its SLAVE object. 

14.4 The UNKNOWN Interface 

Unfortunately the C++ language does not directly 
support the notion of objects with multiple interfaces. It does 
allow a derived class to inherit from multiple base classes 
through the mechanism of multiple inheritance but all the 
inherited functions are merged into a single interface. 
Provided the merging operation does not result in any 
function name clashes, the individual interfaces can be 
selected by appropriate pointer casting. Nonetheless, 
programming with multiple inheritance can rapidly become 
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complicated and there is a simpler solution — the UNKNOWN 

interface. The UNKNOWN interface specifies the minimal 

functionality that any interface should provide in order to 
support objects with multiple interfaces — it forms a base 
class for all other such interfaces. The UNKNOWN class 

specification follows: 

class UNKNOWN ( 

public: 

virtual int Query(int,UNKNOWN**) = 0; 

virtual void Acquire(void) = 0; 

virtual void Release(void) = 0; 

The Query ( ) function is the most important — its purpose 

is to determine which other interfaces an object supports. 
The first parameter provides an interface ID that uniquely 
identifies the type of interface required. If such an interface 
is supported by the object the function returns true and a 
pointer to the interface is stored at the address provided by 
the second parameter — otherwise the function returns false 
and a null pointer is stored. For example: 

UNKNOWN* pointer = GetInterfacePointer(...); 

UNKNOWN* interface; 

int okay = 

pointer->Query(INTERFACE_ID,&interface); 

The Query () call asks whether the object supports the 

interface identified by the INTERFACE ID parameter — if it 

does the interface pointer is set to reference this 

interface. In this way any number of interface pointers can 
be acquired for the object's interfaces — however, the first 
one must be obtained in some other manner. A typical 
approach is to call an operating system function such as 
GetInterfacePointer () — the next section discusses 

this point in more detail. 

Finally, an object should continue to exist as long as any 
pointers still reference its interfaces — when the last 
reference is removed the object can destroy itself. This 
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mode of operation is enabled by the Acquire() and 

Release() functions which respectively increment and, 

decrement a reference count held by the object — 

whenever a new interface pointer is returned by the 

Query() function the Acquire() function is called 

internally. Reference counting is discussed in more detail in 

section 10.3 — automating the calls to Acquire() and 

Release() is the subject of section 14.6. 

14.5 Software Components 

The UNKNOWN interface is particularly useful when 

working with software components. Each component 

registers the objects it contains and the interfaces supported 

by these objects. Code in other components can then call a 

function such as GetInterfacePointer() to request a 

particular interface pointer for a particular object. The 
register-request exchange to transfer interface pointers from 
one component to another must be mediated by the 

operating system — in Microsoft's model this is the 

responsibility of COM. The following figure demonstrates 

the process of exchanging an interface pointer: 

Before Exchange 

Requesting 
Component 

Pointeirl 

After Exchange 

Requesting 
Component 

Pointer] 

Operating 
System 

Operating 
System , 

Registering 
Component 

Object 
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An alternative way to set the individual fields of a structured 
data object is to use the dot operator: 

DATE yesterday; 

yesterday.Day = 1; 

yesterday.Month = 1; 

yesterday.Year = 1970; 

These ideas will be developed further in chapter 6 when 
structured data types are extended to act as C++ objects. 

Another C++ keyword related to struct is union. This is 

used to define a new data type as follows: 

union RATE 

int Percentage; 

float Fraction; 

1; 

A variable of type RATE may hold either an int value or a 

float value but not both simultaneously since the storage 

space for the two fields is shared. For example: 

RATE multiplier; 

Here the multiplier variable may be used to hold a 

percentage integer value: 

multiplier.Percentage - 75; 

Alternatively it can hold a fractional floating-point value: 

multiplier.Fraction = 0.75; 

Unions are not particularly useful in C++ and will not be 
discussed further. 

2.3 Expressions 

Most data processing in C++ is performed using 
expressions. An expression is formed by combining 
constants, variables and objects with various operators. One 
expression can be combined within another as a 
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Once the interface pointer has been exchanged the 
operating system plays no further part and one component 
sends messages directly to an object in the other 
component. After the initial exchange further interface 
pointers for the object can be requested using the Query () 

function — the object may also provide other functions that 
return interface pointers to different objects within its 

component. A common technique is to arrange a 
component's objects within a hierarchy and let objects at 
each level supply pointers for objects at the next level — 
the first pointer requested is for an object at the top of the 
hierarchy. 

14.6 Smart Interface Pointers 

One problem with the Acquire () and Release ( ) 

functions for interface pointers is that it is all too easy to 
forget to invoke them. Smart pointers can automate the 
process — see section 9.6 for more information. The 
approach adopted here uses the COMMON base class to 

provide the functionality common to all types of interface 
pointer — this base class is inherited by template classes 
that each correspond to a different interface type. The 
technique is similar to that described in section 12.4 but 
now inheritance replaces embedding as the wrapping 
mechanism. The COMMON class specification follows: 

class COMMON f 

public: 

COMMON (void); 

COMMON(int,int); 

COMMON(const COMMON&); 

-COMMON (void); 

COMMON& operator=(const COMMON&); 

COMMON Query(int) const; 

protected: 

UNKNOWN* Interface; 

int Status; 

) ; 
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The default constructor simply sets the status field to 
false. The next constructor is a wrapper function to invoke 
the GetinterfacePointer() function supplied by the 

operating system — it takes parameters to identify the type 
of object and interface required: 

COMMON::COMMON(int classID,int interfaceID) { 

Status = GetInterfacePointer(classID, 

interfaceID,&Interface); 

The copy constructor takes care of the call to Acquire ( ) 

needed when an interface pointer is duplicated: 

COMMON::COMMON(const COMMON& x) 1 

Interface = x.Interface; 

Status = x.Status; 

if (Status) 

Interface->Acquire(); 

Similarly the destructor calls the Release( ) function: 

COMMON::-COMMON(void) 1 

if (Status) 

Interface->Release(); 

The assignment operator combines the actions of the 
destructor and copy constructor: 

COMMON& COMMON::operator-(const COMMON& x) f 

if ( this == & x) 

return * this; 

if (Status) 

Interface->Release(); 

Interface = x.Interface; 

Status = x.Status; 

if ( Status) 

Interface->Acquire(); 

return *this; 
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The COMMON class Query () function is a wrapper function 
for the UNKNOWN interface Query () function: 

COMMON COMMON::Query(int ID) const { 

COMMON x; 

if (Status) x.Status = 

Interface->Query(ID,&(x.Interface)); 

return x; 

The POINTER<T> template classes act as wrappers for the 
COMMON base class — the template class specification 
follows: 

template <class T> 

class POINTER : public COMMON { 

POINTER (void) 

POINTER(int,int); 

POINTER(const COMMON&); 

POINTER<T>& operator=(const POINTER<T>&); 

T* operator->(void) const; 

; 

The three constructors just invoke their counterparts in the 
base class: 

template <class T> 

POINTER<T>::POINTER(void) : COMMON() {} 

template <classT> 

POINTER<T>::POINTER(int classID, 

int interfaceID) 

: COMMON(classID,interfaceID) {} 

template <class T> 

POINTER<T>::POINTER(const COMMON& x) 

: COMMON(x) (I 

The last of these acts as a type conversion operator — its 
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main purpose is to permit the result of a Query ( ) request 

to be assigned to any type of POINTER<T> object. 

Finally, the overloaded -> operator is used to invoke the 
other functions belonging to an interface — the template 
type parameter T is required so that the Interface pointer 
may be cast from UNKNOWN* type to T* type: 

template <class T> 

T* POINTER<T>::operator->(void) const 

if (! Status) 

exit ( 999) 

return ( T*)Interface; 

The POINTER<T> template classes are easy to use — the 
Acquire() and Release() interface functions are 
invoked automatically whenever this is necessary. For 
example, suppose the INTERFACE class is derived from 
the UNKNOWN class and includes the Explode ( ) function: 

int main (void) { 

POINTER<UNKNOWN> first(CLASS ID,UNKNOWN_ID); 

POINTER<INTERFACE> second; — 

second = first.Query(INTERFACE_ID); 

second->Explode(); 

return 0; 

1 

The CLASS ID parameter selects a particular type of object 
whilst the UNKNOWN ID and INTERFACE ID parameters 
select the appropriate interfaces on the object. Note that the 
object is manipulated only through pointers to its interfaces 
and is never available directly. When the block statement of 
the main ( ) function is exited, the first and second 
smart pointers are both destroyed — their destructors 
automatically release the interface pointers to the object. To 
hold an interface pointer from one block statement to 
another a dynamic POINTER<T> object may be used. 
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15. Exceptions 

C++ exceptions provide a mechanism for structured 

error handling. Whenever an error is detected an exception 
may be thrown — this action passes information about the 
error from the point in the program where the error occurs to 

a higher level handler that knows how to deal with the 

problem. The C++ language defines the try, throw and 

catch keywords to support its exception mechanism — a 

section of code which may throw an exception is enclosed 

within a try block and thrown exceptions are caught by 

handlers that supply the error processing. In this way the 

program statements which perform the basic processing are 

separated from those which handle errors. The C++ 

exception mechanism is fully integrated with object creation 

and destruction procedures — whenever the throwing of an 

exception causes a block statement to be exited any local 

objects are automatically destroyed. Furthermore, an 

exception thrown from within an object constructor is treated 

in a unique manner. 

15.1 Error Handling Schemes 

The traditional approach to error handling is not 
structured — there are typically three options on finding an 

error: 

1. Generate an error code 
2. Transfer the flow of control 

3. Terminate the program 

An error code may be returned as the result of a function or 

used to set a global error variable. In either case the 

responsibility for handling the error is simply passed on — 

the error code should be tested at some point but this is not 

always done. For example, the new operator returns a null 

pointer if there is no more memory available to create a new 

object — the returned pointer should always be checked for 

a null value but this rarely happens. 
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The second option upon encountering an error is to transfer 

control to a set of program statements that will process the 

error — an error handler. This approach also requires 

constant checking for the occurrence of an error with the 

result that the main purpose of the code is often obscured. 

C++ provides the goto statement for transferring program 

control but the destination must be within the current 

function — the setjmp 0 and iongjmp () functions 

provided by the standard C libraries can increase the extent 

of the jump but they do not interact well with C++ objects. 

Finally, it may be impossible to handle an error satisfactorily 

and the only remaining option is to terminate the program — 

in earlier chapters the exit() function has been invoked 

when serious errors occur. 

In many situations the processing of errors can be elegantly 

handled by the C++ exception mechanism. The technique 

combines the 'error code' and 'control transfer' approaches 

by passing error information directly from the point at which 

the error occurs to the error handler. This has several 

advantages: 

1. Once an error is detected it cannot be overlooked 

2. Most code can assume there are no errors 

3. The error and its handler may be widely separated 

The first statement holds since control is always transferred 

when an error is detected — furthermore, control will only 

flow normally if no errors are encountered so the second 

statement follows. Finally, errors usually occur within 

low-level routines which do not understand the context of 

the error sufficiently well to be able to handle them — this 

job is much better suited to higer level routines but these 

rarely bother to check for error codes generated by the 

functions they invoke. The exception mechanism can 

transfer information about the error directly from a low-level 

routine to its high-level handler. 
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15.2 Throwing Exceptions 

An exception in C++ is a variable or object containing 
information about an error — it is transferred from the point 
at which the error occurs directly to an error handler. The 
process of reporting an error with an exception is known as 
throwing an exception — the throw keyword is used to 

throw an exception: 

int error = 1001; 

throw error; 

Here the throw statement causes the integer error code 

1001 to be passed to an error handler. For C++ to find a 
suitable handler the code must be enclosed in a try block: 

try I 

int error = 1001; 

throw error; 

catch ( int i) f 

cout << "Error code " << i; 

cout << " caught.\n"; 

exit(999); 

The try block is followed by a catch block which contains 
the code for the error handler. In fact, any number of error 
handlers can follow a try block each with their own catch 

block — the different handlers are distinguished by the type 
of exception that they catch. The code within the catch 
blocks is only executed if an exception is thrown from the 
try block — if the try block is exited normally then control 
passes to the statement following the last catch block. The 

parentheses after the catch keyword contain the type of 

exception caught as well as the local name of the exception 
— an exception is always copied to a variable or object that 
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is local to the catch block of the handler. The previous 
example copies the value of the error variable to the local 
variable i before printing the following message: 

Error code 1001 caught. 

The program then terminates with a call to the exit 
function. When an error can be successfully handled the 
program may instead continue its execution — if a catch 
block completes normally control is transferred to the 
statement following the last catch block in the list. 

The INTEGER class of chapter 9 is extended here to 
overload the division operator: 

class MATH ERROR f 

public: 

int Code; 

; 

class INTEGER f 

public: 

INTEGER(int = 0); 

INTEGER operator! ( const INTEGER&) const; 

operator int(void) const; 

private: 

int Data; 

The overloaded / operator throws a MATH _ERROR exception 
if division by zero is attempted: 

INTEGER 

INTEGER::operator/(const INTEGER& i) const f 

if ( i.Data == 0) f 

MATH ERROR error; 

error.Code = 1001; 

throw error; 

return INTEGER(Data/i.Data); 
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Now code may be written within a try block under the 

assumption that division by zero will not occur: 

int i,j,k; 

INTEGER I,J,K; 

while (1) 

try 

cout << " Enter two integers ...\ n"; 

cm n >> i >> j; 

I = INTEGER(i); 

J = INTEGER(j); 

K = I/J; 

k = int(K); 

cout << i << '/' << j; 

cout << " = " << k; 

cout << '\ n'; 

1 

catch (MATH ERROR error) ( 

if (error.Code == 1001) 

cout << "Division by Zero!\n"; 

The while loop repeatedly asks for two integers and prints 

out the result of dividing one by the other. The actual 

division operator takes two INTEGER operands — there are 

type conversions from int to INTEGER and back. If the 

overloaded division operator from the INTEGER class 

detects an attempt to divide by zero a MATH_ERROR 

exception is thrown — the exception is caught by a handler 

and the following message is printed: 

Division by Zero! 

The while loop then continues to ask for another pair of 

integers. The important point to note is that the basic 

processing (input, division, ouput) can assume no errors will 

occur — the error handler is completely separate from the 

rest of the code. 
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sub-expression and parentheses ( ) may be used to 

ensure the correct order of evaluation. For example: 

answer - 7*(3+6); 

Every C++ expression has an effect and a result. The result 
is simply the value produced by the expression whilst the 

effect is something that happens because the expression is 

calculated. Many expressions have no noticeable effect — 

however, those that do include the assignment expressions, 
expressions involving the increment/decrement operators 
(++ and --) and expressions which invoke functions. 

2.4 Arithmetic Expressions 

Arithmetic operators are defined for the integer and 

floating-point types. There are unary operators which act on 

a single operand and binary operators which combine a pair 
of operands. The binary operators are + (add), - (subtract), 

* (multiply) and / (divide). For example: 

six = 6; 
seven = 7; 
answer = six*seven; 

Here the answer 42 is generated. For integers there is also 

the % operator which gives the remainder after dividing one 

integer by another: 

int remainder = 15 % 6; 

This initializes the remainder variable with the value 3. 

The unary minus operator negates a value: 

five = 5; 
answer - - five; 

The most interesting arithmetic operators are the unary 

operators ++ (increment) and -- (decrement) which 

respectively increase or decrease the value of an integer 
variable by 1. 
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15.3 Error Handler Selection 

A try block may be followed by a number of catch 
blocks each for a different error handler — the question 
arises as to which handler to use when an exception is 
thrown. The previous section noted that a handler specifies 
which type of exception it catches by placing the type name 
in parentheses after the catch keyword — however, there 
are a few complications. 

Firstly, the exception is always passed to the handler by 
value and never by reference. Consequently, a catch block 
which handles a particular type (or class) is equivalent to 
one which handles references to this type (or class) — 
furthermore, the const keyword is ignored when selecting a 
handler. 

More importantly a catch handler for a base class will also 
catch objects from a derived class. This fact is useful if the 
exception classes are arranged into a hierarchy — general 
error processing may be performed in a base class handler 
whilst more specific processing is possible in a derived class 
handler. Since catch handlers are scanned from top to 
bottom of the list until a match is found, the handlers for 
derived classes must precede those for the corresponding 
base class — the C++ rules for implicit casting of pointer 
types means that the same is true for handlers which catch 
pointer types. 

Finally, the ... symbol is used to indicate that a handler 
will accept any type of exception — such a handler should 
be last in the list following the try block. 

As an example, suppose a DIVIDE BY ZERO class derives 

from the MATH ERROR class: 

class DIVIDE BY ZERO : public MATH ERROR { 

DIVIDE BY ZERO (void) ; 

I; 

DIVIDE BY ZER0::DIVIDE BY ZERO(void) f 

Code —= 1001; 
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The following arrangement of catch handlers is possible: 

try f 

catch (DIVIDE BY ZERO error) 1 

// specific error processing 

1 
catch (MATH ERROR error) ( 

// general. MATH _ERROR processing 

catch (...) ( 

// general error processing 

If a handler cannot be found in the list following the try 
block the exception is passed on to any enclosing try block 
and the process repeats. The same thing happens if an 
exception is thrown from a catch handler — the keyword 
throw on its own rethrows the original exception. When the 
outermost try block is reached and no handler can be 
found, the program will terminate. 

15.4 Unwinding the Stack 

The clever thing about exceptions is that they coordinate 
their activities with the creation and destruction of local 
objects. Whenever a block statement is exited through the 
action of throwing an exception any objects local to the 
block are destroyed. As discussed in secion 10.1 local 
objects are typically stored on the stack and so the process 
of automatically destroying the local objects is known as 
unwinding the stack. For example, the OBJECT class defines 
the following constructor and destructor: 

OBJECT::OBJECT(void) { 

cout << "Creating Object ...\n"; 

OBJECT::-OBJECT(veid) ( 

cout << "Destroying Object ...\n"; 

1 
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The following code demonstrates what happens when an 
exception is thrown: 

try f 

OBJECT object; 

int error = 1001; 

throw error; 

catch ( int i) ( 

cout << " Error code " << i; 

cout << " caught.\n"; 

exit(999); 

} 

The object is destroyed before the exception is caught — 
the following messages are printed: 

Creating Object ... 

Destroying Object ... 

Error code 1001 caught. 

In particular, the stack is unwound when a function is 
invoked from within a try block and it then proceeds to 

throw an exception — any local objects created by the 
function are destroyed before control is passed to an error 
handler for the try block. 

15.5 Constructors 

Constructors interact with exceptions in a unique way. If 
an exception is thrown from within a constructor then the 
object is not considered to be fully constructed — the 
destructor is not called for the object. For an object with 
embedded objects the construction process involves two 
steps: 

1. Construct the embedded objects 
2. Execute the object's own constructor 
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If an exception is thrown in either step, the only destructors 
invoked are those for embedded objects which were fully 
constructed before the exception was thrown. Similarly for 
an object of a derived class the construction steps are: 

1. Construct embedded objects defined in the base class 
2. Execute the object's own base class constructor 
3. Construct embedded objects defined in the derived class 
4. Execute the object's own derived class constructor 

Again if an exception is thrown only fully constructed 
embedded objects have their destructors invoked — the 
base class destructor is called only if the base class 
constructor completed successfully. 

A constructor is often used to acquire resources for the 
object — the destructor will release these resource. For 
example: 

OBJECT::OBJECT(void) ( 

Storage = ( char*) new char[1000]; 

if (! Storage) ( 

OUT OF MEMORY exception; 

throw exception; 

OBJECT::-OBJECT(void) { 

delete (} Storage; 

Here the OBJECT class acquires one thousand bytes of 

storage for each object to use. An OUT OF MEMORY 

exception is thrown by the constructor if it cannot acquire its 
storage — in this case the matching call to the destructor to 
release the resource becomes unnecessary and indeed 
never happens. 
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For example: 

count = 3; 
count++; 

The second statement increments the value of count to 4. 
As well as this effect of altering the value of a variable, the 
increment/decrement operators also produce an expression 
result which may be used within a larger expression. The 
result of the increment/decrement sub-expression is the 
value of the variable either before or after it is modified 
(depending on whether the operator is placed to the right or 
left of the variable name). For example: 

count = 3; 
answer = 5 * count++; 

The processing steps performed by the second statement 
are as follows: 

1. The count++ expression yields the result 3 

2. Since the ++ operator follows its count operand, the 

variable's value is incremented to 4 only after the result of 
the sub-expression is generated 

3. 5 is multiplied by 3 to give the answer 15 

By contrast, the following statements use the prefix form of 
the operator: 

count = 3; 
answer = 5 * ++count; 

Again the value of count is set to 4 but now the value of 
answer is 20. 

2.5 Assignment Expressions 

The ++ and -- operators provide expressions with an 
effect and a result. The various assignment operators 
(=, +=, *= and so on) also do this. The basic assignment 

operator = simply assigns a value to a variable — this is the 
effect of the assignment expression. However, the 
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assignment expression also produces a result which is a 
reference to the variable appearing on the left-hand side of 
the equals sign. The most common use is to chain together 
assignments which are then executed from right to left. For 

example: 

int row, column; 
row = column = 0; 

The chained assignment expression performs the following 
processing: 

1. The value of zero is assigned to the column variable 

2. The sub-expression column = o yields a reference to 

the column variable 

3. The other assignment is then effectively row = column 

and so the value of column ( 0) is copied to row 

The overall effect is that both row and column variables 

are assigned the value O. 

The other types of assignment operator combine the basic 
assignment operation with an arithmetic (or bitwise) 
operation. For example: 

total += count; 

This expression adds the value of count to the current 

value of total and then stores the result in the total 

variable as its new value. Similar operators are the -=, *=, 

and /= operators. 

2.6 Comparison Expressions 

Comparison expressions test a pair of operands for 
equality or inequality or relative ordering (less than, greater 
than, etc.) by using the following operators: 

== equal to 
< less than 

> greater than 

!= not equal to 
<= less than or equal to 

>= greater than or equal to 
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Do not confuse the assignment operator (=) with the equality 

operator (—). A comparison expression yields the logical 

result true (represented by a non-zero value) if the relation it 
represents holds, and yields false (represented by a zero 
value) otherwise. Some examples are shown below — note 

that the results of these expressions are not used here. 

six = 6; 
seven = 7; 

six == seven; (false) 

six != seven; (true) 

six < seven; (true) 

six >= seven; (false) 

The logical result of a comparison expression may be 
further combined in a logical expression as discussed in the 
next section. Both comparison and logical expressions are 

typically employed to control program flow — chapter 4 
discusses flow control and the associated C++ programming 
constructs. 

2.7 Logical Expressions 

Logical expressions process true (non-zero) and false 
(zero) values. The logical operators are: 

&& and 

I I or 

I not 

The && and I operators are binary and so take two 

operands. The && (and) operator yields true if both the first 

and the second operands are true, and yields false 

otherwise. On the other hand, the I (or) operator yields 

true if either the first or the second operand is true, and 

yields false otherwise. Both operators are short-circuit 
operators which means that the left-hand operand is always 
evaluated but the right-hand operand is evaluated only if the 
evaluation is necessary to determine the overall result of the 

logical expression. 
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Hence for the && (and) operator the procedure is: 

1. Evaluate the left-hand operand 

2. If it is false, return the result of the expression as false 

3. Otherwise evaluate the right-hand operand 

4. Return the result of the expression 

The procedure for the I I (or) operator is similar. For 

example: 

five = 5; 

six = 6; 

seven = 7; 

(five < six) && ( six <= seven); 

The logical && expression evaluates both of its operands 

and generates the result true (which is simply discarded in 

this example). The ! (not) operator changes true to false 

and false to true. Hence the following logical expression is 

true: 

black = 0; 

white — 1; 

!(black == white); 

Finally, the ternary operator ?: takes a logical expression as 

its first operand and depending whether this is true or false 

the operator proceeds to evaluate either its second or third 

operand (but not both) with the result being available for use 

in any containing expression. 

six = 6; 

seven = 7; 

smaller = ( six < seven) ? six : seven; 

Here the variable six is tested against the variable seven 

and since six holds a smaller value than seven, the 

variable smaller is assigned the value 6. 
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2.8 Bitwise Expressions 

The bitwise operators & (and) and I (or) combine integer 
values one bit at a time. For each bit position the result is 

defined by the following tables: 

& (and) operator I (or) operator 

0 1 

o 
1 

00 

0 1 

0 1 

0 0 1 

1 1 1 

The following code demonstrates the effect of the bitwise 
operators: 

three = 3; 

nine = 9; 

one = three & nine; 

eleven = three I nine; 

The variables one and eleven are assigned the values 1 
and 11 respectively The unary bitwise operator - (not) 

swops bits from 0 to 1 and from 1 to O. Bitwise expressions 

are typically used with flag variables where each bit of an 
integer acts as a flag to indicate whether or not some option 
is enabled. For example: 

int flags = MATH_COPROCESSORIMEMORY_CACHE; 

This sets the appropriate bits in the flags variable to select 

the desired options. 

2.9 Input and Output Streams 

The Hello program in chapter 1 introduced the notion 
of performing input/output with data streams and used the 
cout output stream object to display a string on the screen. 

There is naturally a corresponding input stream object 
called cm n (console input) for reading data in from the 

keyboard. The two stream objects cm n and cout work with 
the stream input and output operators » and « and they 
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can handle all the basic C++ types such as characters, 
strings, integers and floating-point numbers. For example: 

int count; 

cm n >> count; 

count++; 

cout << count << '\ n'; 

This code reads in a value for the count variable, 
increments the variable and then prints it out on the screen. 
Note that the stream expressions can be chained from left 
to right — here a newline character is sent to the output 
stream after the count variable is printed. The stream 
objects should always appear to the left of the input/output 
operators. 

2.10 Finding the Average 

The following program demonstrates some of the ideas 
from this chapter. It reads in a pair of integers and stores 
them in the variables x and y. The average is computed 
and the result is printed out. 

#include <iostream.h> 

int main (void) f 

int x,y; 

float average; 

cout << "Enter two integers ...\n"; 
cm n >> x >> y; 

average = 0.5*(x+y); 

cout << "The average is " << average; 

cout << '\n'; 

return 0; 

When this program is run the following text appears on the 
screen: 

Enter two integers ... 

36 

The average is 4.5 

24 



Note that the input values (3 and 6) are automatically 
echoed to the screen as they are typed. The expression 
statement that performs the computation is: 

average = 0.5*(x+y); 

Multiplication by the floating-point constant 0.5 ensures that 
the sum x+y is converted to a floating-point value before 
the average is calculated — dividing by the integer 2 would 
perform an integer calculation with the resulting value 4. An 
alternate method is to use an explicit type cast: 

average = float(x+y)/2; 

In any binary operation involving an integer and a 
floating-point value, the integer is converted to a 
floating-point number before the two values are combined. 
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3. Pointers, References and Arrays 

Chapter 2 introduced the notion of allocating storage 
space for a variable or constant by providing a declaration 
statement which specifies the data type. This chapter 
discusses in more detail how memory storage is allocated to 
newly declared data and describes the use of pointers to 
reference these storage locations. An important feature of 
the C++ language is that data may be manipulated indirectly 
through such pointers. Arithmetic operations on the pointer 
themselves are also possible and these operations are 
especially relevant when dealing with arrays. An array is a 
collection of several items all of the same type — the 
individual elements within the array are selected through the 
use of an integer subscript. This chapter covers both single-
and multi-dimensional arrays and also looks at character 
arrays (strings). 

3.1 Memory Storage 

A variable declaration statement may be used to 
allocate storage space for the variable. This storage is 
located somewhere within the computers memory. The 
memory is organised as an array of cells each containing 
8 bits ( 1 byte) of information. Every memory cell is assigned 
a unique address to identify it from all the other cells — the 
addresses take integer values beginning with zero at the 
start of memory and increasing by one for each new cell. 
The following figure shows the layout of memory cells: 

Start of Memory 

Address 0 

Address 1 

Address N-1 

Address N 

Cell 

Cell 

Cell 

Cell 

End of Memory 
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3.2 Address and Indirection Operators 

A char variable requires only 8 bits of storage and so it 

is allocated a single memory cell. To find the memory 
address of the char variable, the address operator & is 
applied: 

char letter; 

char* cell; 

cell = &letter; 

Here the address of the letter variable is assigned to the 
cell variable. If the letter variable is stored in cell number 
54178 then after the assignment, the cell variable will 

have this number as its value. The cell variable is 
declared as being of type char* which means that it is a 
pointer to a character variable — in this context the 
symbol * indicates a pointer type. Pointer variables are 
used to hold addresses of other variables — their value 
points to the memory location of the variable that they 
reference. The following figure illustrates the state of the 
letter and cell variables after the code fragment above 
has executed: 

cell variable 

address of 

letter variable 

letter variable 

value of 

letter variable 

The & operator returns the address of a variable — to 

manipulate the variable given only its address requires the 
dereferencing (or indirection) operator * which converts an 

address into a reference to a variable. The reference can be 
used anywhere that the variable name could appear directly. 
For example, the following code prints the letter a onto the 

screen: 

char letter = ' a'; 

cout << letter << '\ n'; 

The same result can be achieved indirectly using a pointer 
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as follows: 

char letter = ' a'; 

char* pointer = &letter; 

cout << *pointer << '\ n'; 

Note that a variable reference is not the same thing as the 
value of the variable. The following code demonstrates that 
a reference may appear on the left-hand side of an 
assignment operator (just like the variable name could) — 
this is not possible with a value. 

char letter; 

char* pointer = &letter; 

*pointer - 

cout << letter << 1\n'; 

Here the letter variable is assigned a value indirectly 
using a dereferenced pointer. The final statement 
demonstrates this by printing out the letter variable 
directly. 

3.3 References 

Unlike its parent language C, C++ provides reference 
types in addition to its pointer types. References do not use 
the & and * operators but simply provide new names 

(aliases) for a variable. For example, here is another variant 
on the above theme: 

char letter; 

char& reference = letter; 

reference = 

cout << letter << '\ n'; 

In the same way that the * symbol is used to declare a 

variable of a pointer type, the & symbol indicates a 

reference type. A reference must be initialized when it is 
declared and cannot be redefined to reference a new 
variable. References are particularly useful as function 
parameters and will be discussed further in chapter 5. 
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3.4 Pointer Types 

A char variable can be stored in a single memory cell, 

but this is not generally true for variables of other types. For 
example, an int variable typically requires 32 bits of 
storage nowadays so each integer must occupy four 
memory cells. The four cells allocated are located at 
consecutive addresses but the exact way that the integer is 
stored within these cells is machine dependent. However, 
the & operator always returns the address of the first cell 

used. In other respects the & and * operators work with 

other data types in much the same way as with character 
variables and pointers. For example: 

int total; 
int* pointer = & total; 
*pointer = 6; 
cout << total << '\ n'; 

Here total is assigned a value 6 before being printed. 

A pointer which is currently pointing to no variable may be 
assigned the value zero (0) — this makes it a null pointer. It 

is then illegal to apply the indirection operator * to the 

pointer and a run-time error will result if this is attempted. 

int* pointer = 0; 
*pointer = 6; // run-time error 

In complete contrast to null pointers C++ also supports 
void pointers. Such a pointer may reference any type of 

variable but cannot be dereferenced directly. To manipulate 
the variable the pointer must be cast to a pointer of the 
correct type. For example: 

int total; 
void* void pointer = & total; 
int* int_pointer = ( int*)void_pointer; 
*void pointer = 6; // compile-time error 
*int pointer = 6; // okay 

30 



The syntax for a pointer cast is similar to a cast between 
basic C++ types but (as in a declaration statement) the 
symbol * must appear to denote a pointer type. However, 
the pointer type in a cast expression must be enclosed by 
parentheses. Any pointer type can be cast to any other 
(although this may not always be sensible). Some pointer 
casts are implicit, for example: 

int total; 

void* pointer = & total; 

Here an implicit cast is performed from int* pointer type 

to void* pointer type. The explicit version is: 

void* pointer = (void*)&total; 

Finally, the const keyword may appear in a pointer 

declaration statement to modify the pointer type. There are 
two variants: 

1. The pointer value must be constant 
2. The value of the variable pointed at must be constant 

In the first case the pointer must be initialized when it is 
declared and cannot subsequently be changed. Nonetheless 
the referenced variable may be altered indirectly through 
the pointer. 

int count; 

int* const pointer = & count; 

*pointer = 6; // okay 

In the second case the pointer value may change as 
required but the dereferenced pointer may not appear on the 
left-hand side of an assignment expression. 

const int count = 9; 

const int* pointer; 

pointer = & count; 

*pointer = 6; // compile- time error 

Of course, the two variants can be combined and then 
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neither the pointer nor the variable may be modified. For 
example: 

const int count - 9; 

const int' const pointer = & count; 

The const keyword is used in a similar fashion with 

references. 

3.5 Pointer Arithmetic 

Some arithmetic operations may be performed on the 
pointers themselves. The increment/decrement operators 
(++ and --) can be applied to a pointer just as they can to 

an integer variable — the only difference here is the size of 

the increment or decrement. With integers the value always 
changes by 1, but for pointers the value changes by the 

number of memory cells needed to store a variable of the 
data type associated with the pointer. For example, if an 
int variable occupies four bytes of storage then 

the ++ operator will increase the value of an int* pointer 

by 4 and the -- operator will decrease its value by 4. 

Similary, an integer value may be added to (or subtracted 

from) a pointer and the result is identical to applying the 

increment (or decrement) operator the number of times 
indicated by the integer value. This movement of a pointer 
in variable-sized steps is useful if several variables of the 
same type are located one after another in memory — the 
following section on arrays discusses this idea more fully. 

Finally, if two pointers are initially equal and one is moved a 
certain number of steps, then applying the difference 

operator to the two pointers yields the number of steps 

moved. For example: 

pointerl = pointer2; 

pointer2++; 

pointer2++; 

int count - pointer2-pointerl; 

Here the value of count is set to 2. 
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3.6 Arrays 

Chapter 2 described how the struct keyword can be 

used to combine basic data types to form a larger structure. 
Another possibility is to define an array of elements all of 
the same basic type — the individual elements are stored 
one after another in memory. The C++ language provides 

built-in support for arrays by allowing array variables to be 
declared and by supplying the subscript operator [] to 

reference the elements of an array. The following statement 
allocates storage for an array of five integers: 

int x[5]; 

The individual elements may be referred to as to x [ 0], 

x [ 1] , , x [ 4] and they are stored in memory as follows: 

Name x[0] x[1] x[2] x[3] x[4] 

integer integer integer integer integer 

Address N N+Size N+2*Size N+3*Size N+4*Size 

The number of memory cells used to store each integer is 
denoted in the figure by the quantity Size. The sizeof 

operator will indicate the number of bytes needed to store a 
variable of a particular type — for 32 bit integers 

sizeof ( int) equals 4. 

The [] operator is closely related to the * dereferencing 

operator and provides a reference to an element of the 
array. The particular element referenced is identified by the 
subscript which appears between the square brackets — the 
first element always has the subscript o. Indeed for any 

subscript n the following identity holds: 

x[n] == * ( x+n) 

The array name x on its own supplies a pointer to the first 

element in the array and so x+n is a pointer to the element 

with subscript n. Further * ( x+n) is a reference to this 
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element — however, the notation x [ n] is usually preferred. 
The following code uses an initializer list to set the array 
elements and then sums the individual values: 

int x[5] = { 7,8,6,9,5}; 
int total = x[0]+x[1]+x[2]+x[3]+x[4]; 

A much better way to process arrays is to apply the looping 
constructs discussed in chapter 4. 

3.7 Strings 

Character arrays are known as strings — the C++ 
language allows constant string values to be defined by 
enclosing the characters in double quotes. The effect of 
such a definition is to store the array of characters 
somewhere in memory and to supply a character pointer 
that points to the first element of the array. In addition to the 
characters which appear between the quotes another 
element is automatically placed at the end of the array. This 
final element has the value zero and can be used to identify 
the end of the string. For example: 

char* string = "Hello"; 

This statements results in the following memory usage: 

string variable 

pointer --> 'H' , e  , '1' '1' t o t o 

The pointer must not be used to modify the elements of the 
string constant. If a string needs to be altered then it should 
be stored in a character array: 

char string[6] = {' H','e','1', 111,10',0]; 

To simplify the initialization of such arrays C++ supports the 
following short-hand notation: 

char string[6] = "Hello"; 

Note that the length of the array must allow for the 
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terminating zero character. The elements of a character 
array may change as required. 

Here is a short program to print out a Help! message. It 

demonstrates some of the ideas about pointers and arrays 
presented in this chapter. 

#include <iostream.h> 

int main(void) { 
char string[6] = " Hello"; 
char* letter = string; 
letter += 3; 
*letter = ' p'; 
string[4] = 
cout << string << '\ n'; 
return 0; 

3.8 Multi-Dimensional Arrays 

The C++ language also supports multi-dimensional 
arrays — these use several subscripts to identify an element 
within the array. For example, a checker board may be 
represented as a two-dimensional array with one subscript 
for the row and another for the column. The declaration of a 
multi-dimensional array is quite straightforward: 

int board[8][8]; 

The top left-hand square of the board would correspond to 
the element board [ 0] [ 0] whilst for the bottom right-hand 

square the corresponding element would be board [ 7] [ 7]. 
A general square located by the values of row and column 

corresponds to the array element board [ row] [ column] . 

The elements for the board array are stored one after 

another in memory — the elements for the first row 
(board [ 0] [ 0], , board[0] [ ) are stored first, 
followed immediately by those for the second row and so 
on. 
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square the corresponding element would be board[7] [ 7] . 
A general square located by the values of row and column 
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The elements for the board array are stored one after 
another in memory — the elements for the first row 
(board[0] [ 0], , board[0][7]) are stored first, 
followed immediately by those for the second row and so 
on. 
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4. Statements 

The C++ language provides only a few program 

statement types and related keywords. However, nesting of 

statements one within another is permitted so that the basic 

elements can be combined to implement quite complex 

algorithms. This chapter summarizes the various statement 

types (simple, block and structured) which are available in 

C++. Block statements allow a number of related 

statements to be grouped as one — it is important to 

understand the interaction of block statements and data 

storage allocation in C++. Program execution usually flows 

from one statement to the next in top to bottom fashion — 

structured statements are designed specifically to modify 

this pattern of execution. The structured statements 

available in C++ include the conditional if, if-else and 

switch statements as well as the looping while, do-

while and for statements. 

4.1 C++ Statement Types 

A C++ program consists of collection of program 

statements ordered from top to bottom. Some statements 

specify new data types or the format of function parameter 

lists — such statements are discussed further in chapters 5 

and 6. The remaining statements implement the program's 

functionality by declaring variables and performing data 

processing — there are essentially three sorts of these 

statements: 

1. Simple statements 

2. Block statements 

3. Structured statements 

Examples of simple and block statements have appeared in 

previous chapters — this chapter is principally concerned 

with introducing the structured statements. The following 

sections each describe a different statement type. 
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4.2 Simple Statements 

Simple statements are always terminated by a 
semi-colon (;) and come in three flavours: 

1. Declaration statements 
2. Expression statements 
3. Transfer statements 

Declaration and expression statements were discussed at 
length in chapters 2 and 3 Examples are: 

int x,y; 

float average; 

average = float(x+y)/2; 

Program execution usually flows from one statement to the 
next but this natural flow may be broken and control 
transferred elsewhere by the occurrence of a transfer 
statement. The return statement is one example: 

int main(void) f 

return 0; 

} 

Here control passes back to the operating system — chapter 
5 looks at the return statement in more detail. Other 

transfer statements include: 

break; 

continue; 

These are used in conjunction with the structured 
statements presented in sections 4.4 and 4.5. 

4.3 Block Statements 

A block statement is simply a collection of other 
statements bracketed by a matching pair of braces { I and 

serves to group the enclosed statements as a single 
statement. Note that no semi-colon appears at the end of a 
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block statement: 

{ Statement Statement ... Statement Statement } 

A block statement is employed where the syntax of C++ 
permits only one statement but several statements are 
required to perform the necessary processing. Of course, 
the enclosed statements can themselves be block 
statements and so blocks can be nested to any depth. 

One important point about block statements is that they 
influence the allocation of data storage space in memory. A 
declaration statement is used to allocate the storage space 
initially. If the declaration statement is not enclosed by a 
block statement then a global variable is defined which 
exists for the entire time that the program is running. 
However, if the declaration statement is enclosed by a block 
statement then a local variable is defined. The local variable 
only exists until program control exits the (innermost) block 
statement containing the variable's declaration statement. 
Once a local variable ceases to exist its storage space is 
deallocated and any pointers which reference the variable 
should no longer be used. For example: 

int x; // global variable 

jut main (void) 1 
int y; // local variable 

{ 
jut z; // local variable 

return 0; 

The local variable z ceases to exist when the inner block is 

exited and the local variable y ceases to exist when the 

main() function returns. 

Different variables in different blocks may have the same 
name. When the name is used in an expression it refers to 
the variable declared within the innermost block containing 
the expression statement. 
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For example: 

include <iostream.h> 

int main ( void) 1 

int x = 1; 

{ 
int x = 
cout << 

1 

2; 
= 

This program will print: 

x = 2 

" << x << \n'; 

since the name x in the stream output statement refers to 

the x variable declared within the inner block. 

4.4 Conditional Structured Statements 

Structured statements control how the thread of 
execution flows through a C++ program. The syntax for a 
structured statement is defined by the C++ language — 
such a statement always contains one or more other 
statements within itself. There are two sorts of structured 
statement: 

1. Conditional statements 
2. Looping statements 

These are discussed in this section and the next 
respectively. 

The simplest conditional statement is the if statement — 

this structured statement executes a contained statement 
conditionally according to the result of a logical expression. 

if ( Expression) 

Statement 

The contained statement is executed if the bracketed 
expression is true (non-zero) but if the expression is false 

40 



(zero) then control passes directly to the statement following 

the if statement and the contained statement is not 

executed. For example: 

int total = 6; 

if ( total<9) 

total++; 

cout << total; 

The comparision total<9 is true so the total variable is 

incremented and the value 7 is printed. 

There is also an if-else conditional structured statement: 

if (Expression) 

Statement1 
else 

Statement2 

Here either Statement1 or Statement2 is executed (but not 

both) depending on whether the expression evaluates to 

true or false. The action is very similar to the ?: operator 

described in chapter 2. For example: 

if (x<O) 

absolute = - x; 

else 

absolute - x; 

or equivalently: 

absolute = ( x<O) ? -x : x; 

Here the absolute variable is made to hold the magnitude 

of x by reversing the sign of negative values. 

As with block statements nesting of structured statements is 

possible — in fact (with a few restrictions) all statement 

types are interchangeable as far as nesting is concerned. 
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An example of nested if-else statements follows: 

cout << "The letter is"; 

if (letter == ' a') 

cout << " ' a'."; 

else if (letter == ' b') 

cout << " ' b'."; 

else 

cout << " not ' a' or ' b'."; 

cout << '\n'; 

The C++ language provides the switch statement as an 

alternative method of coding such tests: 

switch ( Expression) 

BlockStatement 

The above example may be recoded as: 

cout << "The letter is"; 

switch (letter) ( 

case 'a': 

cout << " ' a'."; 

break; 

case 'b': 

cout << " ' b'."; 

break; 

default: 

cout << " not ' a' or 

break; 

} 
cout << '\n'; 

The case labels specify possible values of the bracketed 

expression which follows the switch keyword. Control 

passes to the statement immediately after the appropriate 
case label (or after the default label if no other labels 

match). The break statements transfer control out of the 

block statement contained by the switch statement. 
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4.5 Looping Structured Statements 

The second kind of structured statements are looping 

constructs. The simplest is the while statement which has 

the following syntax: 

while (Expression) 

Statement 

The processing performed by the while statement is 

depicted in the following figure. 

from previous statement 

evaluate Expression 

is result true? 

Yes 

execute Statement 

No 

to next statement 

The contained statement forms the body of a loop which is 

repeatedly executed until the logical expression evaluates 

as false (zero). A typical application is to copy one character 

string to another: 

char message[6]; 

char* string - "Hello"; 

jut i = 0; 

while (message[i] = * string) { 
i++; 
string++; 

cout << message << '\n'; 

Here the zero value at the end of the string causes the 
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while loop to terminate. A null statement sometimes 
appears as the body of a while loop. For example, the 
previous loop may be rewritten as: 

while (message[i++] - * string++) 

The lone semi-colon marks the end of a null statement 
contained by the while statement. 

The break and continue transfer statements may appear 

within the loop body to alter the usual program flow of the 
loop. The break statement immediately exits the loop 

whilst the continue statement ends the current iteration of 

the loop body and starts to re-evaluate the controlling 
expression. 

A slight variation of the while statement is the do-while 

statement which always executes the loop body at least 
once. 

do 

Statement 
while (Expression) ; 

The operation of a do-while loop is depicted below. 

evaluate Expression 

from previous r is result true?  

1, Yes statement 

execute Statement 

No 

to next statement 

The while loop is typically employed when the number of 

iterations is unknown beforehand — alternatively if the 
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number of iterations can be predicted a for loop may be 

more suitable. 

for ( lnitializer; ControlExpression; IterationExpression) 

Statement 

The for statement performs the processing shown in the 

following figure: 

from previous statement 

execute lnitializer  

evaluate ControlExpression 

is result true? 

Yes 

execute Statement 

No 

evaluate IterationExpression 

to next statement 

In comparison to a while loop the main difference is that 

initialization may be performed and after each pass through 

the loop an iteration expression is evaluated — this 
expression typically updates the value of a loop counter. For 
example: 

int x[5] = { 5,7,9,8,6}; 

int total = 0; 

for (int i=0; i<5; i++) 

total += x[i]; 

cout << "The total is " << total << '\ n'; 
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Here the five elements of the x array are summed to 

calculate the value of total. Note that a variable may be 
declared as part of the loop initialization — the variable 
continues to exist until the block containing the for 

statement is exited. 

As with a while100p,the break and continue transfer 

statements may appear within the body of a for loop to 
alter the usual flow of control. The break statement 
immediately exits the loop whilst the continue statement 
transfers control to the evaluation of the iteration 
expression. 

4.6 Insertion Sort 

A simple method of sorting a list of integers is the 
insertion sort. The following program implements an 
insertion sort for an array of five integers. 

#include <iostream.h> 

int main (void) ( 
cout << " Enter five integers ...\ n"; 

int x[5]; 

int i,j,n,t; 

for (n=0; n<5; n++) { 

cm n >> t; 

i = 0; 

while (i<n && t>x[i]) 

for (j=n; j>i; j--) 

x[j] = x[j-l]; 
x[i] = t; 

1 
cout << " Sorted list:"; 

for ( n=0; n<5; n++) 

cout << ' ' << x[n]; 
cout << '\n'; 

return 0; 

Starting with an empty array, each item in turn is inserted at 
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the correct position within the array — any existing items at 
the end of the array are moved along to make room for the 
new item. The while statement: 

while (i<n && t>x[i]) 

i++; 

finds the correct place to insert the new item and the for 

statement: 

for (j=n; j-- ) 
x[j] = x[j-1]; 

moves existing items which follow the new item. 
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5. Functions 

All data processing in a C++ program is performed by 
functions — the operating system passes control to the 
main () function and expression statements within main () 

invoke yet other functions. A C++ function is a block of code 
which accepts a number of data items as input, performs 
various operations using these parameters and finally yields 
a result. Whilst the function is executing it may also produce 

side-effects such as opening a file, clearing the screen or 
updating a database. This chapter details the process of 

declaring, defining and invoking a function. A function 

declaration specifies the function parameter list and return 
type — the corresponding function definition lists the 
processing steps which will be performed when the function 

is invoked. The various possibilities for function call 

semantics (by-value, by-pointer and by-reference) are also 
discussed. Finally, a function name in C++ may be 
overloaded by providing different function definitions for 

different types of parameter — optional parameters are also 
supported. 

5.1 C++ Functions 

Chapter 1 outlined the use of functions in a C++ to 
perform data processing — the whole of a C++ program is 
contained within the single function main H. Each C++ 

function is a modular piece of code which accepts a number 

of data parameters, performs calculations using these 

parameters and finally generates a result — the result can 
be processed further within an expression statement. There 
are three important steps involved in working with a C++ 

function: 

1. Function declaration 

2. Function definition 

3. Function invocation 

A function declaration statement specifies the format of the 
function parameter list and the type of result returned by 
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the function. For example: 

char Letter(int); 

This statement specifies that the function Letter () takes a 

single parameter of type int and returns a result of type 

char. The Letter () function is intended to provide the 

letter of the alphabet corresponding to its integer parameter 
— for example, a parameter value of 1 returns the letter a 
whilst a parameter value of 26 returns the letter z. The 

processing performed by the Letter () function must be 
defined somewhere — the definition should follow the 
function declaration statement. 

char Letter(int i) f 

char alphabet[28] = 

" abcdefghijklmnopqrstuvwxyz"; 

return alphabet[i]; 

1 

The processing performed by the function is defined by a 
series of program statements enclosed by a matching pair 
of braces { — in other words a function is defined using a 
single block statement. The general syntax is: 

RetumType FunctionName ( ParameterList) 

BlockStatement 

Individual parameters within the parameter list are 
separated by commas. If the function requires no 
parameters the keyword void should appear between the 

parentheses. Similarly the keyword void is placed before 

the function name to denote that the function does not 

return a result. 

For the Letter() function defined above, the result is 

taken from an array of characters. Note that alphabet [ 0] 

is the first element of this array and it contains a space 
character — similarly alphabet [ 271 is the final element of 

the array and it contains a zero character. 
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To invoke the Letter ( ) function requires a statement such 

as: 

char letter = Letter ( 13) ; 

This assigns the value ' mT to the letter variable. 

Any statement which invokes a function must appear after 
the corresponding function declaration. However, the 
relative position of the function definition and the function 

invocation is unimportant. Indeed these may occur in 
different source files if these files share a header that 
contains the function declaration. 

header file 

function 
declaration 

source file 

include 
directive 

function 
definition 

source file 

include 
directive 

function 
invocation 

The function definition provides an implementation of the 
function whilst the function declaration defines a 
communications interface between the function and any 
other code which wishes to invoke it. This approach of 
separating implementation from interface is particularly 
important for objects — the next chapter discusses this idea 
further. 

5.2 Invoking a Function 

This section examines the processing which occurs 
when a function is invoked. For each function invocation the 
parameters of the function are assigned actual values 
(arguments). These are provided by the statement which 
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invokes the function. For example: 

char letter = Letter(13); 

char Letter(int i) f 

Here the argument 13 is assigned to the i parameter. The 

variable i is local to the block statement defining the 

Letter () function and ceases to exist when the function 

returns. In particular, if the Letter () function is invoked 

with a variable as an argument then i is initialized using the 

value of the variable but if i were to be subsequently 

modified these changes would not be reflected by the 
argument variable. For example: 

int position = 13; 

char letter = Letter(position); 

char Letter(int i) f 
char alphabet[27] = 

"abcdefghijklmnoqrstuvwxyz"; 
return alphabet[ -- i]; 

Here the value of the position argument is copied to i 

during initialization of the parameter. Then i is 

decremented to account for the fact that array subscripts are 
zero-based. However, the position variable itself is 

unaffected by the function call. 

These semantics are known as call-by-value since only the 

value of the argument is passed to the function. Similarly 
return-by-value semantics are applied when returning the 
result of a function. For the Letter() function the 

character selected from the alphabet array is copied to a 
temporary character variable. The function then returns and 
the alphabet array ceases to exist. The value of the 

temporary variable is available within the statement that 
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invoked the function and so can be assigned to the letter 

variable. However, once the invoking statement finishes its 
processing the temporary variable disappears too. 

5.3 Pointers and References 

There may be times when a function must modify data 
that exists outside of the function. C++ provides two 
methods to circumvent the limitations of call- by-value 
semantics: 

1. call- by-pointer 
2. call- by-reference 

The first option is simply an extension of the call-by-value 
approach but passes a pointer to a variable instead of the 
variable itself — the value of the pointer argument is still 
copied to the corresponding function parameter. For 

example: 

int x = 3; 

Square(&x); 

cout << "x = " << x << T\n'; 

void Square(int* pointer) { 

int i = *pointer; 

*pointer = i*i; 

return; 

The square ( ) function squares the value of an integer 

variable. The address of the variable should be passed as 
the argument to the function and this address is used to 
initialize the pointer parameter. By dereferencing this 

pointer the actual value (not a copy) of the x variable can be 

manipulated. Hence the code prints: 

x=9 

Note that the Square () function has a void return type 

since it does not produce a result — it is invoked only for its 
effect. 
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An array is automatically passed to a function using 
call-by-pointer semantics — the function parameter receives 
a pointer to the first element of the array. For example: 

int a[5] = { 6,9,7,5,8}; 
int answer = Sum(a); 

int Sum(int* array) f 
int total = 0; 
for ( int i=0; i<5; i++) 

total += array[i]; 
return total; 

The second method of modifying the value of a function 
argument is to employ a C++ reference. The square () 

example can be rewritten as: 

int x = 3; 
Square ( x); 
cout << "x = " << x << '\n'; 

void Square(int& i) f 
i = i*i; 
return; 

1 

The syntax is often more elegant when references are 
substituted for pointers since the address and dereferencing 
operators are unnecessary. Within the Square () function 

the reference i is an alias for the x variable and so any 

operations involving i affect x directly. 

5.4 Return Values 

As discussed in section 5.2 the value returned from a 
function is usually stored in a temporary variable. However, 
as with function parameter passing there are actually three 
possibilities: 

1. return-by-value 
2. return-by-pointer 
3. return-by-reference 

The first option returns a temporary value which exists only 
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whilst the expression which invoked the function is being 
evaluated. The second option is a variant of the first where 
the temporary variable holds a pointer to more persistent 
data. For example: 

char* word = " alphabet"; 

char letter = * Letter(word,5); 

cout << "The fifth letter is: "; 

cout << letter << '\n'; 

char* Letter(char* string,int i) 

i--; 

return ( string+i); 

The Letter( ) function returns a pointer to the fifth letter of 
the "alphabet" string. The pointer is temporary but the 
character pointed at is more permanent. It is important to 
avoid mistakes such as the following: 

char* Letter(int i) { 

char alphabet[28] = 
" abcdefghijklmnopqrstuvwxyz"; 

return (alphabet+i); 

1 

Here a pointer is returned which references data that no 
longer exists after the function returns. 

The third option for returning a result from a function is to 
employ a reference. Again it is important to ensure that the 
reference is not for a variable which is local to the function. 
The following example computes the fourth power of the x 
variable: 

int x - 3; 

Square(Square(x)); 
cout << "x = " << x '\n'; 

int& Square(int& i) { 

i = i*i; 

return i; 

1 
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This code prints: 

x = 81 

The inner call of Square () squares x from 3 to 9 and 

returns a reference to x. The outer call then uses this 

reference to again square x from 9 to 81. 

5.5 The const Keyword 

The const keyword can be employed with function 

declarations in many different ways. These can be 
categorized as follows: 

1. constant parameters 
2. constant result 
3. constant object 

The first two possibilities apply when pointers or references 
are used to pass function parameters or return a result. 
Chapter 3 discussed the basic meaning of the const 

keyword with pointers and references but there are two 
important applications relating specifically to functions. 
Firstly, call- by-pointer or call- by-reference semantics may 
be used simply to avoid the overhead involved in copying 
the value of an argument to the corresponding parameter. 
The argument is not to be modified by the function and this 
should be indicated by placing the const keyword in the 

function parameter list before the relevant parameter. For 
example: 

int Weekday (const DATE& ) ; 

This declares the Weekday () function as accepting a 

reference to a variable of the user-defined type DATE — the 

const keyword indicates that the DATE variable will not be 

altered by the Weekday () function through this reference. 

Similarly, return-by-pointer or return-by-reference semantics 
may be employed to return a result without having to copy 
the value to a temporary variable. However, if the variable 
referred to must not be modified using the returned pointer 
or reference then the keyword const should precede the 

function return type. 
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Finally, the third use of const with functions places the 
keyword after the function parameter list. This usage is 
relevant only to functions defined for a C++ class and will be 
covered in the next chapter — the const keyword indicates 
that invoking the function will not change the internal state 
of the associated object. 

5.6 Function Pointers 

Just as the name of an array is automatically converted 
to a pointer so is the name of a function when written 
without an argument list. Such function pointers may be 
used to invoke the function indirectly. For example: 

void (*pointer)(void); 

if ( arriving) 

pointer = Hello; 

else 

pointer = Goodbye; 

(*pointer)(); 

void Hello (void) f 

cout << "Hello!\n"; 

void Goodbye (void) f 

cout << "Goodbye!\n"; 

The declaration statement: 

void (*pointer) (void); 

declares the pointer variable as being a pointer to a 
function taking no arguments and returning no result. 
Depending on the logical value of arriving the pointer is 
set to reference either the Hello() function or the 
Goodbye () function. The expression: 

(*pointer)(); 

invokes the function referenced by the pointer and so prints 
either Hello! or Goodbye! as appropriate. 
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5.7 Function Overloading 

A feature of C++ is the ability to define several functions 
all with the same name but having different types of 
parameters — this is known as "function overloading". The 
particular function invoked is determined by the types of 
arguments passed to the function. The actual selection 
procedure is quite involved but overloaded functions are 
generally easy to use. For example: 

char* Next(char*); 

char* Next(char*,int); 

The Next ( ) functions are used to move a pointer along a 
string — the first function always moves the pointer one 
step whilst the second function allows the number of steps 
to be specified by an integer parameter. Typical 
implementations might be: 

char* Next(char* string) f 

return ++string; 

char* Next(char* string,int 1) f 

return ( string+i); 

An alternative approach here would be to declare a single 
Next () function with an optional parameter: 

char * Next(char*,int = 1); 

char* Next(char* string,int i) { 

return ( string+i); 

The integer parameter defaults to the value 1 if it is not 

supplied in the argument list. Optional parameters must 
always be located at the end of the parameter list. 

Only the function name and the parameter types are used to 
distinguish one overloaded function from another. 
Consequently there cannot be two functions which differ 
only in their return type. 
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6. Classes and Objects 

C++ classes form the basis for all object oriented 
mechanisms supported by the language. A C++ class can 
be obtained by combining a user-defined data structure with 
functions designed to manipulate this data. The technique 
permits a C++ class to provide its objects with similar 
facilities to those supplied intrinsically by C++ for built-in 
data types. A class specification lists both object data 
structures and related function declarations — these class 
functions are defined in a similar manner to the global 
functions discussed in Chapter 5. Objects of a C++ class are 
created in essentially the same way as variables of basic 
and structured data types although the procedure is slightly 

more complicated. Thereafter the program code sends 
requests to an object by invoking the appropriate functions 
and the object manages its own internal data structures — a 
reply may be returned as the result of the function 
invocation. The . and -> operators are used to associate a 

function call with a particular object. The object 
implementation details are hidden from the outside world 
and all communications pass through an interface specified 
by the format declarations for the class functions. 

6.1 From struct to class 

Chapter 2 discussed the use of the struct keyword for 

specifying structured data types. This section details the 
extension of a structured data type into a C++ class by the 
addition of functions which will manipulate the data. Here 

the starting point is the structured data type DATE: 

struct DATE ( 

int Day; 
int Month; 

int Year; 

; 

The first step is to change the keyword struct to class 

and add some function declarations. 
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For example: 

class DATE f 

public: 

void SetDate(int,int,int); 

int GetDay(void) const; 

int GetMonth(void) const; 

int GetYear(void) const; 

int Day; 

int Month; 

int Year; 

1 ; 

The SetDate() function takes three integer parameters 
which will be assigned to the Day, Month and Year fields. 

The GetDay(), GetMonth() and GetYear() functions 
each return the value of an individual field — the const 

keywords following each function indicate that the functions 
do not alter the internal state of the DATE object. The 
public keyword is explained in section 6.3. The next step 

is to provide function definitions: 

void DATE: : SetDate ( int day,intmonth,int year) { 

Day = day; 

Month = month; 

Year = year; 

1 

int DATE::GetDay(void) const { 

return Day; 

) 

int DATE::GetMonth(void) const { 

return Month; 

} 

int DATE::GetYear(void) const f 

return Year; 

) 

The class name DATE followed by the :: operator must 
precede the function name in each of the definitions. Within 
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these functions the Day, Month and Year fields are simply 

referred to by name. 

6.2 C++ Objects 

Now that the DATE class has been defined it is possible 
to create objects of the class. The notation is identical to 
that for variables of basic or structured data types: 

DATE yesterday; 

The declaration statement allocates storage space for the 
yesterday object — the object ceases to exist when the 
block containing this declaration is exited. The object 
contains its own personal Day, Month and Year fields as 
well as a pointer to the functions which it shares with all 
other objects of the DATE class. As with a variable of a 
structured data type, the fields contained by an object may 
be referenced by applying the . operator: 

yesterday.Day = 1; 

yesterday.Month - 1; 

yesterday.Year = 1970; 

However, the object's functions may be invoked in a similar 
manner. For example: 

yesterday.SetDate(1,1,1970); 

int month = yesterday.GetMonth(); 

An alternative way to describe the action of each of these 
statements is to say that the yesterday object receives a 
message, performs some internal processing and sends 
back a reply if appropriate. 

6.3 Encapsulation 

The technique of communicating with an object using 
messages allows the functionality of the object to be split 
into two: 

1. Interface 
2. Implementation 

The communications interface fixes the format of messages 
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sent and received by the object — it is specified by the 
function declaration statements for the object's class. Upon 
receipt of a message, the object performs some internal 
processing — the implementation details are determined by 
the data structures which the object contains and by the 
related function definitions. The important point is that when 
the implementation is isolated from the interface then the 
internal workings of the object may be hidden from the 
outside world — this idea is known as encapsulation' and it 
is depicted in the following figure: 

External 

L Code 

Outside World 

Interface 

• —› 
Internal 

Implementation  

Object 

External code can continue to successfully communicate 
through the interface even if the implementation is changed. 
For example, the implementation of the DATE class may be 

hidden by addition of the private keyword: 

class DATE f 

public: 

void SetDate(int,int,int); 

int GetDay(void) const; 

int GetMonth(void) const; 

int GetYear(void) const; 

private: 

int Day; 

int Month; 

int Year; 

1; 

The public keyword allows the fields and functions which 

follow to be referenced by any program code. However, the 
private keyword restricts this activity just to code within 

the function definitions for the class. Since C++ objects 
share function code this means that encapsulation occurs at 
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the class level — C++ is thus class oriented rather than 
object oriented and this fact is exploited in later chapters. 

Anyway, the Day, Month and Year fields are now private to 

the DATE class and implementation details are consequently 

hidden. The class can change its implementation but retain 
the same interface: 

class DATE f 

public: 

void SetDate(int,int,int); 

int GetDay(void) const; 

int GetMonth(void) const; 

int GetYear(void) const; 

private: 

int Seconds; 

I; 

Here the date is stored internally as the number of seconds 
since 1st January 1970. Existing external code will still 
function as before but needs to be recompiled with the new 
class specification. Chapters 13 and 14 look at ways in 
which even this recompilation step can be avoided. 

6.4 Object Pointers 

Pointers (and references) can be used with objects in 

much the same way as with variables. The & operator gives 

the address of an object and the * operator dereferences an 

object pointer. 

DATE yesterday; 

DATE* pointer = & yesterday; 

The . operator will work with a dereferenced object pointer 

to reference a field or function: 

(*pointer).Year = 1970; 

(*pointer).SetDate(1,1,1970); 

However, it is more usual to apply the -> operator directly 
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to the pointer: 

pointer->Year = 1970; 

pointer->SetDate(1,1,1970); 

Finally, within the function definitions for a class the 

keyword this supplies a pointer to the object for which the 

function was invoked. The this pointer is used implicitly 

within these functions to reference the object's fields and 
functions. For example, the SetDate ( ) function definition 

appearing in section 6.1 may be rewritten in explicit form as 
follows: 

void DATE: : SetDate (int day, int month, int year) { 

this->Day = day; 

this->Month - month; 

this->Year = year; 

One possible use for the this keyword is to return a 

reference to the object itself: 

DATE& DATE::GetDate(void) { 

return * this; 

6.5 Data and Function Categories 

Data which is declared in a statement that does not lie 

within a block is global data — it is initialized before the 
main ( ) function starts to run and continues to exist until the 

program terminates. Similarly, a function which is declared 
outside of a class specification is a global function and it can 
be invoked from anywhere within the program. The names 

of global data and functions can be hidden by the same 
name being declared within a block or class but the global 
version is always available by prefixing the name with the 
:: operator. 
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For example: 

int x = 1; 

int main (void) 

int x = 2; 

cout << "x = 

return 0; 

} 

1 

It << :: x << '\n'; 

This will print: 

x = 1 

since : : x refers to the global variable x. 

Global functions generally cannot manipulate data or invoke 
functions which are private elements of a class. However, a 
function can be granted this right by including it in the 
class specification preceded by the friend keyword. For 

example: 

class DATE; 

void Print(DATE&); 

class DATE { 

friend void Print(DATE&); 

private: 

int Day; 

int Month; 

int Year; 

1; 

void Print(DATE& date) { 

cout << "The date is "; 

cout << date.Day << '/'; 

cout << date.Month << '/'; 

cout << date.Year << '.'; 

cout << '\n'; 

} 
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The forward declaration: 

class DATE; 

allows the Print () function to use the DATE& type in its 
declaration statement. The Print ( ) function prints out a 
representation of the DATE object — chapter 9 
demonstrates a more elegant way to do this. The friend 
keyword can also be used with functions belonging to 
another class — alternatively all functions of another class 
may be made into friend functions by a single statement 
such as: 

friend class ClassName; 

within the specification of the first class. 

Finally, the keyword static may appear in a class 

specification to denote that a field or function belongs to the 
class as a whole rather than to individual objects of the 
class. Such elements may be referenced by prefixing their 
names with the class name and the :: operator. For 
example: 

class MATH ( 

public: 

const static float Pi; 

static int Random(void); 

I; 

const float MATH::Pi = 3.142; 

int Main (void) { 

cout << "The random number is: "; 

cout << MATH::Random() << '\ n'; 

return 0; 

Static data fields should be declared globally — constant 
fields like Pi must also be initialized. A good place for these 
declarations is in the class source file along with the function 
definitions — if they appear in a header file there is the 
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possibility of allocating storage for the same data more than 
once. The Random () function returns a random number 
and can be invoked without first creating any objects of 
type MATH. 

6.6 Creating and Destroying Objects 

There are essentially four categories of objects: 

1. Temporary objects 
2. Local objects 
3. Dynamic objects 
4. Global objects 

These are listed in order of generally increasing length of 
existence. Temporary objects exist only within the statement 
which processes them — they are usually created implicitly 
as function return values but the next chapter discusses how 
to create temporary objects explicitly. Local objects exist 
from the point at which their declaration statement is 
encountered until the block containing this statement is 
exited. Dynamic objects are created and destroyed explicitly 
by the programmer with the new and delete keywords — 

this is the topic of chapter 10. Finally, global objects exist 
throughout the execution of the program. The following 
chapter examines the object creation and destruction 
processes in more detail. 
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7. Constructors and Destructors 

During the execution of a program numerous C++ 
objects may be created and destroyed. When an object is 

created storage space is allocated for it in memory — 

deallocation of the storage occurs when the object is 

destroyed. At creation the object may require initialization to 
place it in a well-defined state and to acquire any system 
resources that it utilizes — similarly during finalization the 
object may need to release any resources it holds before 
ceasing to exist. To define the initialization and finalization 
procedures for an object its class must provide constructor 
and destructor functions that are implicitly invoked to 
perform the necessary processing. The constructor function 
can be overloaded to provide a variety of ways of initializing 
an object. A constructor which takes no parameters acts as 
a default constructor — it is invoked when no initialization 

arguments are available. Finally, a temporary object may be 
created by an explicit call to a class constructor. These 
objects can serve as constant values within expressions in a 
similar fashion to the integer, floating-point and character 
values supported directly by the C++ language. 

7.1 Object Creation and Destruction 

Most objects are created when a declaration for the 
object is encountered — the object continues to exist until 
the block containing the declaration statement is exited. 

Two operations occur when an object is created: 

1. Storage Allocation 
2. Object Initialization 

and similarly two operations occur when the object is 
destroyed: 

1. Object Finalization 

2. Storage Deallocation 

The storage allocation and deallocation operations are fairly 
straightforward — sufficient memory space is made 
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available to the object to hold its data and so on. Chapter 10 
delves a little more deeply into the management of memory 
storage. The initialization operation puts the object into a 
well-defined state and acquires any system resources that 
the object may need to perform its function — the 
corresponding finalization operation releases these 
resources. Unless explicitly specified by the program code 
both initialization and finalization operations are effectively 
null. 

7.2 Constructors and Destructors 

To provide initialization and finalization for an object its 
class must define respectively constructor and destructor 
functions. The name of the constructor is the same as the 
name of the class whilst the name of destructor prepends 
the - character to the class name. For example: 

test. h: 

class TEST f 

public: 

TEST (void); 

-TEST (void); 

I; 

test.cpp: 

#include "test. h" 

TEST::TEST(void) { 

cout << " Initializing ...\ n"; 

TEST::-TEST(void) f 

cout << " Finalizing ...\ n"; 

The TEST class performs no useful purpose except to 

demonstrate when the constructor TEST ( ) and destructor 

-TEST () are invoked. The class specification appears in 

the test. h header file whilst the function definitions appear 
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in the text. cpp source file. Note that constructors and 
destructors do not have return types — furthermore a 
destructor always has an empty parameter list. 

Here is a program to test the TEST class: 

#include <iostream.h> 

#include "test.h" 

int main (void) { 

cout << " Before Object Creation\n"; 

{ 
TEST test; 

cout << "Object Exists\n"; 

cout << "After Object Destruction\n"; 

return 0; 

The TEST class specification within the test . h header file 

is included by the directive: 

#include "test.h" 

The sharing of a header file between two source files is 
depicted at the end of section 5.1 — the discussion there 
regarding global functions applies equally well to classes. 
The program produces the following output: 

Before Object Creation 

Initializing ... 
Object Exists 

Finalizing ... 
After Object Destruction 

Hence the constructor is implicitly invoked to perform 
initialization when the object is created by its declaration 
statement — the constructor call occurs immediately after 
memory storage has been allocated for the object. Similarly, 
the destructor is implicitly invoked to perform finalization 
just before the object's storage space is deallocated — here 
the object is destroyed when the inner block containing its 
declaration statement is exited. 
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7.3 The Default Constructor 

A class can define only a single destructor but it may 
have several constructors — this is an example of the 
function overloading technique discussed in section 5.7. The 
default constructor is the constructor which takes no 
parameters. If no constructors are explicitly defined then the 
implicit null constructor acts as a default constructor. If any 
constructors are explicitly defined then a default constructor 
must be supplied if it is needed — a constructor which has 
all its parameters optional can serve as a default 
constructor. The default constructor is needed in situations 
where an object of the class is created but no parameters 
are available. For example, an object declaration statement 
which does not include an initializer invokes the default 
constructor: 

TEST test; 

Similarly, if an array of objects are declared then the default 
constructor is used to initialize each element of the array: 

TEST test [ 10] ; 

7.4 Constructor Overloading 

As noted in the previous section, a class may overload 
its constructor function. The COMPLEX class will serve as an 

example of constructor overloading — the class is further 
developed in chapters 8 and 9. An object of the COMPLEX 
class represents a complex number — just as real numbers 
correspond to points on a line so complex numbers 
correspond to points in a plane: 

Imaginary Axis 

Y 

 > Real Axis 
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The point at coordinates (x,y) corresponds to the complex 
number x+iy — the x-axis is the real axis and the y-axis is 
the imaginary axis. The extraordinary thing about complex 
numbers is that i*i equals - 1 but in other respects they act 
much like real numbers. The COMPLEX class defines a pair 
of constructors: 

class COMPLEX ( 

public: 

COMPLEX(float = 0.0,float = 0.0); 

COMPLEX(const COMPLEX&); 

private: 

float Real; 

float Imag; 

I; 

COMPLEX::COMPLEX(float real,float imag) { 

Real = real; 

Imag = imag; 

1 

COMPLEX::COMPLEX(const COMPLEX& complex) ( 

Real = complex.Real; 

Imag = complex.Imag; 

I 

The first constructor has both parameters optional and so 
can serve as a default constructor: 

COMPLEX z; 

Alternatively, both real and imaginary components can be 
supplied as parameters: 

COMPLEX z ( 1. 0, 1. 0 ) ; 

Finally, if the first constructor is supplied with a single 
float parameter then it can act as a type conversion 
operator from type float to type COMPLEX. Type 
conversion operators are discussed further in chapter 9. 
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The second constructor copies the value of one COMPLEX 
object to another and so can act as a copy constructor: 

COMPLEX z(1.0,1.0); 

COMPLEX w = z; 

Here the copy constructor is invoked to copy the value of z 
to w. Copy constructors are covered in more detail in the 
next chapter. 

7.5 Temporary Objects 

Temporary objects are usually created implicitly to hold 
the result of a function call. However, they may be created 
explicitly by directly invoking a constructor function. For 
example: 

COMPLEX z = COMPLEX(1.0,1.0); 

Here a temporary COMPLEX object is created and then used 
to initialize the z object — in some cases a compiler may be 
able to optimize the code so that a temporary object is not 
actually created but the effect is the same. This usage of 
temporary objects is similar to that involving the integer, 
floating-point and character constants that are directly 
supported by C++. A comparable example would be: 

char letter = ' a'; 

Similarly, it may be helpful to explicitly generate temporary 
objects within an expression to serve as constants from a 
user-defined class. 

7.6 Embedded Objects 

In C++ one method of reusing software is to embed one 
object within another. The embedded object is simply listed 
as another data field in the class specification for the 
embedding object. For example, suppose an INNER class is 
declared: 

class INNER f 

I; 
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Now an object of class INNER may be embedded within 

each object of class OUTER as follows: 

class OUTER 1 

private: 

INNER Inner; 

) ; 

When an object has another object embedded within it, the 

creation and destruction procedures are modified slightly. 
The memory storage supplied to the OUTER object includes 

enough space to hold the INNER object as well as any other 

data that is required. The initialization and finalization 
procedures are also a bit more complicated. For creation of 
an OUTER object the steps are as follows: 

1. Storage Allocation 
2. INNER Object Initialization 

3. OUTER Object Initialization 

and similarly for destruction of the OUTER object the steps 

are: 

1. OUTER Object Finalization 

2. INNER Object Finalization 
3. Storage Deallocation 

In particular, note that when either the constructor or the 
destructor for the OUTER object is called the INNER object is 

in good health. The final point to explain is what happens 
when the INNER object is initialized — of course, a 

constructor for the INNER class is invoked but which one? If 

no constructor is explicitly specified then the default 
INNER () constructor is called. However, C++ supports the 

: notation to explicitly specify a constructor for the 

embedded object as part of the OUTER() constructor 

definition. 
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For example: 

OUTER::OUTER(void) : Inner() ( 

} 

Here the default INNER ( ) constructor is explicitly invoked 

— the invocation appears between the : symbol and the 
opening brace of the OUTER ( ) constructor. Naturally if the 
INNER class has other constructors besides the default one 
they may be chosen instead. For example, if there is an 
INNER ( it) constructor declared then the following code is 

possible: 

OUTER::OUTER(void) : Inner(123) f 

1 

The : notation also allows ordinary data fields within an 
object to be initialized before the constructor block is 
executed. For example: 

class OUTER ( 

private: 

INNER Inner; 

int Data; 

} ; 

OUTER::OUTER(void) : Inner(123), Data(0) { 

} 

The individual items following the : symbol are separated 
by commas and the initialization values for ordinary data 
fields appear within parentheses. 
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7.7 The STRING Class 

In C++ character strings are usually held in arrays with a 
terminating zero character — the STRING class will package 
a character string within an object and add some useful 
functions to manipulate strings. The class is fully developed 
throughout the next three chapters. This section considers 
the definition of a constuctor that initializes a STRING object 
given a C++ character pointer. 

class STRING f 

public: 

STRING(const char* = 0); 

void Print(void) const; 

private: 

char String[100]; 

int Length; 

; 

The constructor takes an optional char* parameter and so 
will act as a default constructor. The internal character 
array String is used to hold the string represented by the 
STRING object — the string will not have a terminating zero 
character and so the length is stored in the Length field. 
The constructor is defined as follows: 

STRING::STRING(const char* string) f 

Length = 0; 

if (string) 

while (String[Length] = * string++) 

Length++; 

return; 

The characters from the C++ string initializer are copied one 
at time to the string array until a terminating zero 
character is encountered. There is no check that the 
string array is big enough to hold the character string 
supplied — chapter 10 will fix this problem. The STRING 

77 



class also provides a Print() function to display its string: 

void STRING::Print(void) const { 

for ( int i=0; i<Length; i++) 

cout << String[i]; 

cout << '\n'; 

return; 

1 

The following program demonstrates the STRING class: 

#include "string, h" 

int main (void) ( 
STRING hello ("Hello!"); 

hello.Print(b 

return 0; 

} 

The program creates a STRING object named hello and 
initializes it with the "Hello!" string — the Hello! 
message is then printed by invoking the Print () function 
of the hello object. 
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8. Regular Classes 

This chapter discusses ways of making a C++ class as 
user-friendly as possible. The C++ language supports 
various built-in operations to handle the intrinsic character, 
integer and floating-point types — C++ classes can provide 
similar facilities for user-defined data types. Indeed some 
functions are essential for practically every class — a 
regular class is one which supports at least this minimal 
functionality. The relevant functions are the default 
constructor, the destructor, the copy constructor, the 
assignment operator, the equality operator and the 
inequality operator. C++ implicitly supplies basic versions of 
these functions if they are not explicitly defined. This 
chapter examines the individual functions in turn using the 
COMPLEX and STRING classes as examples. 

8.1 User-Friendly Classes 

The C++ language defines certain built-in operations for 
its basic data types. For example, a new integer variable 
can be created with a declaration statement: 

int x; 

Similarly, one variable can be assigned to another: 

y = x; 

C++ classes can provide similar functionality for 
user-defined data types — this helps to make objects much 
easier to work with. For example, the COMPLEX class 
introduced in the previous chapter is more user-friendly if it 
supports statements such as: 

COMPLEX z; 

and: 

w = z; 

These two statements should respectively declare an 
uninitialized COMPLEX object and assign the value of one 
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COMPLEX object to another. In such situations the C++ 
language supplies appropriate implicit functions for classes 
that do not define explicit versions — these implicit 
functions are discussed further in subsequent sections. 
Nonetheless, it is usually worthwhile defining the following 
functions explicitly: 

1. Default constructor 
2. Copy constructor 
3. Assignment operator 
4. Equality and inequality operators 
5. Destructor 

Any class which defines these functions (or accepts their 
implicit counterparts) is known as a 'regular' class — a 
regular class is typically quite user-friendly. 

8.2 Default Constructor and Destructor 

As discussed in the previous chapter, the implicit forms 
of the default constructor and destructor perform no 
noticeable processing. The default constructor is one which 
takes no parameters — a constructor with all its parameters 
optional can act as the default constructor. If any 
constructor is explicitly defined for a class then the implicit 
default constructor is not available. In particular this 
prevents the declaration of uninitialized objects and arrays 
of objects — the default constructor must be explicitly 
defined to enable these declarations. 

8.3 Copy Constructor 

A copy constructor is used to initialize a new object by 
copying the value of an existing object of the same class. 
The C++ language provides an implicit copy constructor 
which copies each data field in turn — if the class uses 
embedded objects then the procedure is applied recursively 
to each embedded object. The entire copy operation may 
reduce to a simple memory-to-memory copy. 

The commonest form of copy constructor takes a constant 
reference to an existing object as a parameter — this object 
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will not be modified by the construction process. For 
example, the DATE class can declare a copy constructor 
with the following function format: 

DATE(const DATE&); 

The parameter must be passed by reference since 
call-by-value semantics require the copy constructor to 
initialize the function parameter and this would lead to 
infinite recursion. 

The COMPLEX class copy constructor is defined as follows: 

class COMPLEX ( 

public: 

COMPLEX(const COMPLEX&); 

private: 

float Real; 

float Imag; 

; 

COMPLEX::COMPLEX(const COMPLEX& complex) { 

Real = complex.Real; 

Imag = complex.Imag; 

The action of this copy constructor is the same as that of the 
implicit version. Note that the Real and Imag fields of the 
existing object can be referenced within the constructor by 
applying the . operator to the function parameter. This is 
possible even though the fields are declared as private data 
— C++ supports encapsulation only at the class level and 
not at the object level. As another example here is a copy 
constructor for the STRING class: 

STRING::STRING(const STRING& string) { 

Length = string.Length; 

for ( int i=0; i<Length; i++) 

String[i] = string.String[i]; 
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The COMPLEX and STRING class copy constructors both 

perform a shallow copy operation. A shallow copy simply 
copies the contents of one object to another — this is the 
only sort of copy operation available implicitly. However, if 
the original object contains a pointer field then a shallow 
copy just copies the pointer and so both the new and 
existing objects reference the same item through their 
pointers. This is depicted in the following figure: 

Existing Object 

Pointer 

New Object 

Pointer 

Original Data 

In contrast, a deep copy duplicates the data referenced by 
the pointer and the new object receives a pointer to the new 
copy of the data. If the data itself contains pointers this 
process can descend through several levels. The following 
figure demonstrates a deep copy involving one level of 
indirection: 

Existing Object 

Pointer 

Original Data 

New Object 

Pointer 

Copy of Data 

A compromise between shallow and deep copying options is 
to perform a shallow copy of a pointer but to maintain a 
reference count for the data pointed at. When the reference 
count drops to zero the data is no longer needed and may 
be discarded. These ideas are developed further in chapter 
10 when the STRING class is updated to handle arbitrary 

length strings. 
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8.4 Assignment Operator 

A feature of the C++ language is that the action of 
operators on user-defined types can be defined. This topic is 
covered in detail in the next chapter but this section and the 
next look at assignment and equality operators. The 
processing performed by the assignment is usually very 
similar to that performed by the copy constructor — the 
implicit version of the assignment operator just copies the 
contents of one object to another in much the same way as 
the implicit copy constructor. In fact, the main difference 
between a copy constructor and an assignment operator is 
that the former initializes a newly created object whilst the 
latter changes the value of an existing object. The 
assignment operator thus effectively combines the actions 
of the destructor and the copy constructor since assigning a 
new value to a object is a lot like erasing its contents and 
starting again. An assignment operator for the COMPLEX 

class may be defined as: 

COMPLEX COMPLEX::operator=(COMPLEX complex) { 

Real = complex.Real; 

Imag = complex.Imag; 

return * this; 

The function name is formed using the keyword operator 

and the = operator symbol. An operator function is invoked 
by applying the operator within an expression statement in 
the usual fashion. For example: 

COMPLEX w,z; 

w = z; 

The expression statement invokes the assignment operator 
function for the COMPLEX class to copy the value of z to w. 

Note that the assignment operator returns a COMPLEX value 

so that assignments can be chained: 

w = z = COMPLEX(1.0,1.0); 

The above definition for the assignment operator causes the 
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function to be invoked using both call-by-value and 
return-by-value semantics — this involves a lot of copying 
and the process can be made more efficient by employing 
references: 

COMPLEX& 

COMPLEX::operator=(const COMPLEX& complex) f 

Real = complex.Real; 
Imag = complex.Imag; 

return *this; 

Here is another example involving the STRING class: 

STRING& 

STRING::operator=(const STRING& string) { 

Length = string.Length; 

for ( int i=0; i<Length; i++) 

String[i] = string.String[i]; 

return *this; 

8.5 Equality Operators 

There are no implicit equality or inequality operators 
supplied by C++. Nonetheless, it can often be useful to 
define these functions explicitly since the notion of two 
objects being equal (or unequal) is usually sensible. For the 
COMPLEX class these operators may be defined as follows: 

int 

COMPLEX::operator==(const COMPLEX& complex) { 

return (Real==complex.Real 

&& Imag==complex.Imag); 

int 

COMPLEX::operator!=(const COMPLEX& complex) { 

return !(*this == complex); 

Both functions return a logical result that can be processed 
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further within a logical expression. The inequality operator is 
defined in terms of the equality operator — this ensures that 
exactly one of the two operators returns true when 
comparing the same pair of COMPLEX objects. The use of 

these operators is intuitive as the following example 
demonstrates: 

COMPLEX w; 

COMPLEX z = COMPLEX(1.0,1.0); 

if ( w != z) { 

The equality operators for the STRING class are a little more 

complicated: 

int STRING::operator==(const STRING& string) 

if ( Length != string.Length) 

return 0; 

for ( int i=0; i<Length; i++) 

if ( String[i] != string.String[i]) 

return 0; 

return 1; 

int STRING::operator!=(const STRING& string) 

return !(* this == string); 

Here two STRING objects are equal if and only if they hold 
identical character strings of the same length. 

8.6 Dictionaries 

A dictionary is a collection of entries each containing two 
elements: 

1. Key 
2. Value 
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For example, in a dictionary of words each key is a word 
and the corresponding value is its definition. The folowing 
code scans through the dictionary array of ENTRY 
objects looking for an entry which matches a given key: 

ENTRY dictionary[100]; 

ENTRY entry = ENTRY(key); 

int i = 0; 

while (entry != dictionary[i]) 
i++; 

entry = dictionary[i]; 

There is no error checking to ensure that a valid entry 
actually exists in the dictionary array. Of course, the 
code requires the ENTRY class to be defined properly — to 
keep things simple both key and value elements in the 
ENTRY objects are integers. 

class ENTRY ( 

public: 

ENTRY(int = 0,int = 0); 

ENTRY(const ENTRY&); 

ENTRY& operator=(const ENTRY&); 

int operator==(const ENTRY&); 

int operator!=(const ENTRY&); 

private: 

int Key; 

int Value; 

; 

The first constructor builds an entry from a key-value pair — 
if only the key parameter is supplied as an argument then 
the value field is filled with a null value. 

ENTRY::ENTRY(int key,int value) ( 

Key = key; 
Value = value; 

1 
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The definitions for the copy constructor and the assignment 
operator are very similar: 

ENTRY::ENTRY(const ENTRY& entry) { 

Key = entry.Key; 

Value = entry.Value; 

} 

ENTRY& ENTRY::operator=(const ENTRY& entry) { 

Key = entry.Key; 

Value = entry.Value; 

return * this; 

Finally, the equality operators are defined as follows: 

int ENTRY::operator==(const ENTRY& entry) { 

return (Key == entry.Key); 

} 

int ENTRY::operator!=(const ENTRY& entry) { 

return ( Key != entry.Key); 

1 

The interesting point is that the equality operators work just 
with the Key fields of the ENTRY objects they compare 

whilst the copy constructor and the assignment operator 
duplicate both the Key and Value fields. 
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9. Operator Overloading 

Operator overloading is an important feature of the C++ 
language — it allows the C++ operators to work with 
user-defined objects in much the same way as they do with 
variables of basic data types. To overload an operator a 
class must define a function which specifies the processing 
that is performed when the operator is applied to an object 
of the class. Most C++ operators can be overloaded. In 
general, the operator functions can produce any effect and 
return any result that is appropriate — the only restriction is 
that the overloaded versions must appear in expressions 
using the same syntax as their built-in counterparts. 
However, some operators require particular attention and 
they are discussed in detail in this chapter — such operators 
include the increment/decrement operators, the subscript 
operator, the function call operator and the pointer operator. 
Type conversion operators convert data from one type to 

another — operator overloading permits conversion to and 
from user-defined class types. Finally, the « and » 

operators may be overloaded to provide consistent handling 
of stream input/output processing. 

9.1 Operators and Operands 

The previous chapter looked at three operators which 
can be overloaded by a class — these were the assignment 
operator, the equality operator and the inequality operator. 
Most C++ operators can be overloaded in this way. For 
binary operators the left-hand operand must be an object of 
the class defining the operator function whilst the right-hand 
operand is passed as a parameter to the function. For unary 
operators the object is the only operand and the operator 

function takes no parameters. 

The INTEGER class provides a simple example of both 

binary and unary operators — the binary form of the 
overloaded - operator performs subtraction whilst the unary 

form performs negation. Each INTEGER object holds an 

integer Data field upon which the operations actually 
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operate. The class specification is as follows: 

class INTEGER f 

public: 

INTEGER(int = o); 

INTEGER operator-( INTEGER) const; 

INTEGER operator-(void) const; 

void Print(void) const; 

private: 

int Data; 

1; 

The constructor simply stores an integer data value within 
the object: 

INTEGER::INTEGER(int data) { 

Data = data; 

1 

The overloaded operator functions have names composed 
of the keyword operator and the - operator symbol. The 
two functions are distinguished by their different parameter 
lists: 

INTEGER 

INTEGER::operator-(INTEGER integer) const 

{ 

return INTEGER(Data-integer.Data); 

1 

INTEGER INTEGER: : operator-(void) const f 

return INTEGER( - Data); 

1 

In both cases a temporary INTEGER object is used to 

construct the result of the operator function. The INTEGER 

class also includes a Print ( ) function to display the data it 

contains: 

void INTEGER::Print(void) const ( 

cout << Data << '\ n'; 
1 
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The application of the INTEGER class is straightforward: 

INTEGER i(7),j(3); 

INTEGER k = i-j; 

k.Print(); 

k = - j; 

k.Print(); 

In the declaration statement for k the binary - operator 

function is invoked whilst in the assignment statement the 
unary - operator function is invoked instead. Hence the 

code prints the values 4 and -3 respectively. 

9.2 Arithmetic Operators 

For the COMPLEX class the arithmetic operators + (add), 

- (subtract), * (multiply) and / (divide) all need to be 

defined. In complex addition and subtraction the real and 
imaginary components of a complex number are treated 
separately. If z and w have the following complex values: 

w == u-1- Iv 

z == x+iiy 

then 

w+z == ( u+x)+i(v+y) 

This may be implemented in the COMPLEX class by 

overloading the + operator as follows: 

COMPLEX 

COMPLEX::operator+(const COMPLEX& z) const f 

return COMPLEX(Real+z.Real,Imag+z.Imag); 

The subtraction operator is similar. For multiplication the 
relation i*i == -1 must be applied: 

w*z == ( u+iv)*(x+iy) == ( u*x-v*y)+i(v*x+u*y) 

The implementation of the overloaded * operator for 
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the COMPLEX class is consequently: 

COMPLEX 

COMPLEX::operator*(const COMPLEX& z) const f 

float real = Real*z.Real-Imag*z.Imag; 

float imag = Imag*z.Real+Real*z.Imag; 

return COMPLEX(real,imag); 

The most complicated operation is complex division. To 
calculate w/z it is necessary to multiply both w and z by 
x-íy (the conjugate of z): 

w*(x-iy) == ( u*x+v*y)+i(v*x-u*y) 

z* ( x-iy) == x*x+y*y 

The denominator of the fraction (x*x+y*y) is then real and 

it can be used to scale the real and imaginary components 
of the numerator appropriately. The implementation of the 
overloaded / operator for the COMPLEX class follows: 

COMPLEX 

COMPLEX::operator/(const COMPLEX& z) const I 

float real = Real*z.Real+Imag*z.Imag; 

float imag = Imag*z.Real-Real*z.Imag; 

float denom = z.Real*z.Real+z.Imag*z.Imag; 

if ( denom == 0) 

exit ( 999); 

return COMPLEX(real/denom,imag/denom); 

1 

If the denominator of the division is zero the program 
terminates abruptly with a call to the exit ( ) function. This 

function is declared in the stciiib h system header and so 
the header file should be included by the source file for the 
COMPLEX class. Chapter 15 discusses another method of 
handling error conditions that involves C++ exceptions. 

With the arithmetic operator functions defined, the COMPLEX 

class allows complex numbers to be manipulated easily — 
the functionality supplied by the COMPLEX class is 
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analogous to the built-in support for real numbers that is 
provided by the intrinsic C++ type float. For example: 

COMPLEX x(2.0); 

COMPLEX y(3.0); 

COMPLEX i(0.0,1.0); 

COMPLEX z; 

z = x+i*y; 

The z object is assigned a complex value of 2+3i by this 

code. Sections 9.7 and 9.8 discuss in more detail the 
subject of mixing real and complex data within an 
expression. 

9.3 Subscript Operator 

The subscript operator H is typically overloaded to 

select an individual item from a collection of items. A simple 
example is provided by the STRING class introduced in the 

previous two chapters: 

char STRING::operatorMint ) { 

if ( i<0 11 i>=Length) 

return 0; 

else 

return String[i]; 

The subscript selects a character from the string held by the 
object — if the subscript falls outside the range of the string 
array then a zero character is returned. 

A related application is to provide bounds checking for an 
array — in C++ if an array subscript tries to reference an 
element beyond the bounds of the array the result is often 
the modification of some unrelated piece of data that is 
stored in memory adjacent to the array. This sort of error 
can be very hard to trace — the ARRAY class checks that a 
subscript is within range before permitting the corresponding 
element to be referenced. As defined here the ARRAY class 

contains a float array and allows the subscript of the first 

element to be set by the class constructor — arrays in C++ 
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are intrinsically zero-based but one-based arrays are 
sometimes useful. The ARRAY class specification follows: 

class ARRAY { 

public: 

ARRAY(int,int = 0); 

float& operator[](it); 

private: 

float Array[100]; 

int Length; 

int Base; 

The constructor simply stores its parameters in the Length 
and Base fields — a check is also performed on the 
requested array length. 

ARRAY::ARRAY(int length,int base) ( 

if (length<0 II length>=100) 

exit(999); 

Length = length; 

Base = base; 

The overloaded H operator performs most of the wort — it 
checks each subscript against the bounds of the array and if 
it is within bounds then a reference to the appropriate 
element is returned. 

float& ARRAY::operator[](int i) ( 

i -= Base; 

if (i<0 II i>=Length) 

exit(999); 

return Array[i]; 

Here is an example which uses the ARRAY class: 

ARRAY Months(12,1); 

Months[6] = 0.0; 

Months[13] = 0.0; 
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The Months array contains twelve elements and the first 

element is Months [ 1] Hence the first assignment 

statement references the array element for June whilst the 
second causes the program to abort with an array bounds 
error. 

9.4 Increment and Decrement Operators 

The overloading of the increment and decrement 
operators is complicated by the fact that they occur in two 
forms: 

1. Prefix form 
2. Postfix form 

In prefix form the operators precede their operand whilst in 
postfix form they follow it. When these operators are 
overloaded, the two forms are distinguished by allotting the 
postfix operator function a dummy integer parameter — the 
prefix operator function takes no parameters. The INTEGER 

class from section 9.1 can be extended to support both 
forms of increment operator with the following modifications: 

class INTEGER { 

public: 

INTEGER operator++(void); 

INTEGER operator++(int); 

; 

The prefix form of the operator is overloaded as follows: 

INTEGER INTEGER::operator++(void) f 

return INTEGER(++Data); 

1 

The postfix form is implemented in a similar fashion: 

INTEGER INTEGER::operator++(int junk) f 

return INTEGER(Data++); 

1 
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The operators are applied in the usual way: 

INTEGER 1(0); 

i.Print(); 

This code prints out the value 2 as expected. 

9.5 Function Call Operator 

The function call operator ( ) is interesting in that it can 

take any number of parameters — the operator can be 

overloaded several times by the same class as long as the 
parameter list for each version is different. One possible 
application is to extract a substring by providing the start 
and stop positions within a larger string as parameters: 

STRING 

STRING::operator()(int start,int stop) const 

{ 

int length = stop- start; 

const char* string = String+start; 

return STRING(string,length); 

The function performs no error-checking and relies on a 
STRING constructor which takes two parameters: 

STRING::STRING(const char* string,int length) 

Length = length; 

for ( int i=0; i<Length; i++) 

String[i] = * string++; 

The substring operator is easy to use: 

STRING hippo("Hipp0"); 

STRING hi = hippo(0,2); 

hi.Print(); 
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Another possible application for an overloaded function call 
operator is to reference elements within a multi-dimensional 
array. For example, the MATRIX class implements a 

two-dimensional array: 

class MATRIX [ 

public: 

MATRIX(int); 

float& operator()(int,int); 

private: 

float Array[100]; 

int Dimension; 

; 

The constructor accepts the second dimension of the matrix 
as a parameter: 

MATRIX::MATRIX(int dimension) { 

Dimension - dimension; 

The ( ) operator acts as a subscript operator which takes 

two parameters: 

float& MATRIX::operator()(int i,int j) I 

return Array[i*Dimension+j]; 

The elements of the two-dimensional array are stored within 
the memory space allocated to the one-dimensional array 
field Array. The elements for the first row (i==0) of the 

matrix are followed immediately by those for the second row 
(i==1) and so on. As described in section 3.8 this layout 

mimics the way in which C++ stores multi-dimensional 
arrays. 

9.6 Pointer Operator 

The overloading of the pointer operator -> is handled in 

rather an unusual way. The first action is to invoke the 
overloaded operator function — the object associated with 
the function call is the left-hand operand of the -> operator. 
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For example: 

class POINTER f 

INTEGER* operator->(void); 

POINTER pointer; 

pointer->Print(); 

Here the -> operator function for the pointer object is 
invoked. The function must take no parameters and return 
one of the following: 

1. a pointer 
2. an object of a class that overloads the -> operator 

In the first case the built-in -> operator is applied using the 
returned pointer and the original right-hand operand. In the 
above example the Print ( ) function of an INTEGER object 
is invoked. 

In the second case the whole procedure is applied 
recursively using the new object in place of the original 
operand. For example: 

class SLAVE f 

INTEGER* operator->(void); 

class MASTER f 

SLAVE operator->(void); 
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The following code provides a demonstration: 

MASTER pointer; 

pointer->Print(); 

Here the MASTER object supplies a SLAVE object which 

returns a pointer to an INTEGER object. The Print() 

function is then called for the INTEGER object. 

The point of overloading the -> operator is that some 

user-defined processing (often error checking) can be 
performed before the pointer is dereferenced. Objects with 
an overloaded -> operator are consequently known as 

'smart pointers' — this topic is discussed further in 
chapter 14. 

9.7 Type Conversion Operators 

Type conversion operators are closely related to type 
casts. The C++ language supplies type conversion 
operators to cast between the basic types: 

float x; 

int count = int(x); 

C++ will sometimes apply type conversion operators 
implicitly — in particular this is true for type conversion 
operators that are user-defined. There are essentially two 
ways to provide a user-defined type conversion operator — 
both involve class functions: 

1. A constructor 
2. An overloaded operator 

In the first case the constructor should take a single 
parameter — the conversion is from the type of the 
parameter to the class type. For example: 

class COMPLEX ( 

public: 

COMPLEX(float = 0.0,float = 0.0); 
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