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PREFACE 

This booklet has been written, not for the family bookshelves, 
but for the electronic enthusiast's workshop bench. Its aim is 
to bridge the gap between complicated technical theory which 
sometimes seems to have little relevance to practical work and 
"cut and try" methods which may bring success in design but 
leave the experimenter unfulfilled. 

There is therefore a strong practical bias, tedious and higher 
mathematics have been avoided where possible and many 
tables have been included, partly to save calculation and partly 
because actual figures bring a greater intimacy with the design 
process. 

Yet for those who in their technical studies have found 
difficulty, or in consort with most other humans have lapses 
of memory, there is plenty of help and revision. 

As a reference book, sections have been written to be as 
self-contained as possible. 

F.A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M. 
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1. UNITS AND CONSTANTS 

1.1 UNITS 

1.1.1 Basic S.I. Units 

These are the metric units in 
(S.I.) 

Quantity 

Length 
Mass 
Time 
Electric Current 
Temperature 
Luminous Intensity 

1.1.2 Derived S.I. Units 

the Système International d'Unités 

Name of Unit Symbol 

metre 
kilogramme 
second 
ampere 
degree kelvin 
candela 

m 
kg 
s 
A 
°K 
cd 

Some derived units more commonly met in electronic engineering 

Quantity Name of Unit 

Force newton 
Work, Energy, 

Quantity of Heat joule 
Power watt 
Electric Charge coulomb 
Electric Potential volt 
Electric Capacitance farad 
Electric Resistance ohm 
Frequency hertz 
Magnetic Flux weber 
Magnetic Flux Density tesla 
Inductance henry 

Symbol 

N = kg m/s2 

J = Nm 
W = Jis 
C = As 
V = W/A 
F = As/V 
n = V/A 
Hz = s-1 
Wb = Vs 
T = Wb/m2 
H = Vs/A 
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1.2 ABBREVIATIONS AND SYMBOLS 

1.2.1 Multiples and Sub-Multiples of Units 

Multiplication 
Factor Prefix Symbol 

10 12 tera T 
109 giga G 
106 mega M 
103 kilo k 
102 hecto h 
101 deca da 
10-1 deci d 
10-2 centi c 
10 -3 milli m 
10-6 micro 1./ 
10-9 nano n 
10 -12 pico p 
10 -is femto f 
10 -18 atto a 

1.2.2 Mathematical Symbols 

A few, perhaps lesser-known, symbols used in this book are 
shown below: 

approximately equal to 
not equal to 

=7: is identical with 
00 varies as, proportional to 
> greater than 
< less than 
co infinity 
j complex operator, NÍT 
IZI modulus of complex number (Z) 
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1.2.3 Greek Alphabet 
Lower Case 

Name (small letter) Capital Letter 

Alpha a A 
Beta a B 
Gamma y r 
Delta 8 à 
Epsilon e E 
Zeta e z 
Eta n H 
Theta O e 
Iota t I 
Kappa K K 
Lambda X A 
Mu p M 
Nu 1, N 
Xi .,1. 
Omicron o o 
Pi ir II 
Rho P P 
Sigma a E 
Tau r T 
Upsilon a T 
Phi 0 c13 
Chi X x 
Psi iii qf 
Omega co St 

1.3 CONSTANTS 

This list is not exhaustive, it relates mainly to the subject of 
this book. 

r = 3.14159265 

\Ai= 1.77245385 

log 10 r = 0.4971 

log 10 i; - = 0.2486 

e = 2.71828183 

1 
—ir = 0.31830989 

1 
log ic, —Ir = 1.5029 

e2 = 9.8696044 

log 10 ir2 = 0.9943 

1 
—e = 0.36787944 

13 



log 10 e = 0.4343 

log io 1 = 1.5657 
e 

Radian = 57° 17 44.8" 

Radians Degrees 

1 57.30 
2 114.59 
3 171.89 
4 229.18 
5 286.48 
6 343.77 
2rr 360 

Velocity of light/radio waves 

= 299774 km/sec ".-' 3 x 108 metres/sec 
= 186271 miles/sec '-' 186000 miles/sec 

1.4 CONVERSIONS 

UK units in terms of SI (metric) units 

Length 1 in 25.4 mm 
1 ft 304.8 mm 
1 yd 0.9144 m 
1 mile 1.609344 km 

Area 1 in2 645.16 mm2 
1 ft2 0.092903 m2 
1 yd2 0.836127 m2 
1 mile2 2.58999 lan2 

Volume 1 in3 16387.1 rnm3 
1 ft3 0.0283168 rri3 
1 gallon } 4.54609 dm3 

::-: 4.546 litres 

Velocity 1 ft/s 0.3048 m/s 
1 mile/h 0.44704 m/s 

14 



Mass 1 lb 0.45359237 kg 

Power 1 hp 745.7 W 

Energy 1 calorie 4.1868 J 
1 Btu 1.05506 kJ 
1 kWh 3.6 x 106 J 

15 





2. DIRECT CURRENT CIRCUITS 

2.1 DEFINITIONS 

The Unit of Charge is the COULOMB which is defined as the 
quantity of electricity (Q) passing a given point in a circuit in 
one second when the current (I) is one ampere. 

Q (coulombs) 
Hence I (amperes) = 

t (seconds) 

The Unit of Resistance is the OHM which is defined as that 
resistance in which a current of one ampere flowing for one 
second generates one joule of heat energy. 

Since the heat generated is proportional to the square of the 
current, 

Heat generated in joules 
R —   ohms 

12 t 

where I = current in amperes 
t = time in seconds 
R = resistance in ohms 

01IM's LAW relates potential difference (V), current and 
resistance 

V 
— = R 
I 

V 
Hence, I = — , V = IR 

R 

V is in volts 
I is in amperes 
R is in ohms 

The unit of work is the joule and if a charge of electricity of 
Q coulombs is moved through a p.d. of V volts, then the work 
done, 

W (joules) = Q x V 

Power is the rate of doing work 
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je — where t = time in seconds 

QV 
.*. Power, P (watts) = — 

t 

and since 
= - 
t 

P (watts) = I (amps) x V (volts) 

and from Ohm's Law 

P = — = IR where R = resistance of 
circuit in ohms 

EXAMPLE: 
A 12V car headlamp bulb is rated at 36 watts. What current does 
it take and what is its working resistance? 

P 36 
I = — = — = 3 amps 

V 12 

V2 P V 
R = —  or — or — = 4 ohms 

P 12 I 

2.2 PRIMARY AND SECONDARY CELLS 

A primary cell produces electrical energy by chemical action 
by which one of the electrodes is consumed. Generally, it 
cannot be re-charged. A secondary cell produces energy by 
changes in the chemical composition of the electrodes. 
The changes can be reversed by charging, i.e. passing 
a current through the cell in the opposite direction to the 
discharge current. 

Representation of a battery on a diagram (Fig.2.1): 

All cells or batteries (a battery consists of more than one cell) 
have "internal resistance" represented by r in the diagram. 

18 



E represents the electromotive force (e.m.f.) of the battery 
which is assumed to be constant. V is the battery voltage, 
i.e. the p.d. across its terminals. 

With no load connected to terminals, I = 0, V = E 

With load connected, current flows: 

E 
I = — and battery voltage V falls to V = E — Ir 

R + r 

2.2.1 Connexion of Cells in Series and Parallel 

When n similar cells of e.m.f. E and internal resistance r are 
connected in series aiding (positive of one cell connected to 
negative of next) the battery e.m.f. = nE and the internal 
resistance = nr. 

When n similar cells as above are connected in parallel (all 
positive terminals connected together and all negatives), 
the battery e.m.f. = E and internal resistance = r/n. 

Hence, series connexions produce higher battery voltages e.g. 
4 1.5V dry cells make a 6V battery, but parallel connexions 
have the same voltage as a single cell but lower internal 
resistance. The capacity is, of course, greater. 

19 



2.2.2 Cell Voltages 

Most cells maintain a reasonably constant terminal voltage 
over the greater part of their life, with the voltage falling 
as a primary cell nears exhaustion or a secondary cell 
approaches the fully discharged state. 

Voltages of cells in common use are given in Table 2.1. 

e. 
-0 n o . 
cm 

Type of Cell 
Cell Working 

Voltage 
(approx.) 

Use 

Leclanché — 1.5 Universal — torches, tran-
"dry battery" sistor radios, calculators, 

etc. 

Mercury 1.3 Hearing aids, watches 

Lead-Acid 2.0 Where Charge/Discharge 
facility required — vehicles, 
standby batteries, etc. 

Alkaline 1.2 Heavy Duty, traction work. 
(Nickel-Iron) 

Nickel- 1.2 Electronic, photographic 
Cadmium applications etc. 

Table 2.1 Cell Voltages and Uses 

2.3 ELECTROMAGNETISM 

2.3.1 Useful Rules for the Workshop 

(1) Magnet poles: 

(i) the North Pole of a magnet is more correctly 
described as the "North Seeking Pole" because the magnet, 
when freely suspended, will take up a position with its N pole 
pointing to the Earth's North Magnetic Pole. The South 
seeking Pole of the magnet must therefore point to the Earth's 
South Magnetic Pole. 

(ii) Like poles repel, unlike poles attract. 
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(iii) (i) and (ii) above lead to the proposition 
that the Earth itself behaves as a bar magnet with its North 
Magnetic Pole actually a South Pole and vice versa in the 
terminology that is in use for labelling magnets. 

(2) Maxwell's Corkscrew Rule: 

If a corkscrew is visualized as being screwed along 
the wire in the direction of the current (conventional current 
flow, + to —), then the direction of the magnetic flux around 
the wire is the same as the direction of rotation of the 
corkscrew. Diagrammatically, a cross represents the tail end 
of an arrow and indicates current flowing away from the 
observer, while a dot represents the point of the arrow and 
indicates current flowing towards the observer. Thus 
Maxwell's rule is illustrated by both (a) and (b) in Fig.2.2. 

/ 
/ r ''\ \ ,/ /e \ \ 
1 / 1 / \ \ 
I ( • 

1 \ e \ \ 
/ / 

1 1 / l 1 
\ \ / /1 

\ •••• ____ -- / \ / 
\ 

Direction of — — 
'magnetic flux\,.,, 

— \ 

Cross section of straight (b) 
(a) 

conductor carrying current 

FIG. 2-2 Direction of flux with current flow 

(3) Magnetic Polarity of a Solenoid: 

Fig.2.3(a) represents a simple solenoid of 3 turns 
only with the direction of current marked, (b) shows a vertical 
section of the solenoid with magnetic flux directions added 
(only one "line of force" is shown for clarity). The direction 
of the main solenoid flux adds up as shown and within the 
solenoid is left to right with the magnetic circuit outside the 
solenoid being completed with flux from right to left. 
Since flux is considered to flow from N to S outside of a 
magnet, the solenoid must have magnetic polarity as marked. 

Equally the corkscrew rule can be used by imagining the 
21 



corkscrew being screwed along the line of progression of the 
current, the direction of the corkscrew then indicating the 
direction of flux within the solenoid. 

(4) Faraday's Law: 

When the magnetic flux through a circuit changes, 
an e.m.f. is induced, the magnitude of which is proportional to 
the rate of change of flux. 

(5) Lenz's Law follows: 

The e.m.f. induced in any circuit is always in such 
a direction that its effect tends to oppose the motion or 
change producing it. 

(6) Fleming's Rules: 

(a) Right Hand — for Generators ie. a conductor 
being moved through, and at right angles to, a magnetic field. 
The thumb and middle finger of the right hand are extended 
so that, with the forefinger, the threg are all at right angles to 
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each other (as the edges of the sides, meeting at a corner of a 
box). If the hand is then turned so that the thuMb points in the 
direction of the Motion of the conductor and the ForeFinger 
in the direction of the Flux then thE Middle Finger will point 
in the direction of the EMF induced in the conductor. 

(b) Left Hand -- for Motors. As above but using 
the left hand, with ForeFinger in the direction of the Flux, 
middle finger in the direction of the current (I), the thuMb then 
gives the direction of Motion of the conductor. 

It is fatal to get these two rules mixed, perhaps the word 
GRuMbLe might aid the memory, Generators Right, Motors Left. 

(7) Permeability: 

Magnetic permeability is analogous to electrical 
conductivity, and is usually assessed by measuring the magnetic 
flux density set up in a material by a given magnetic force. 

ie, relative permeability 0.0 = — where B is the flux density 
H H is the magnetizing 

force 

and if a material has a relative permeability of x, this means 
that the flux density produced in it by a given magnetizing 
force is x times greater than without the material. 

Note 

As mentioned earlier the rules in (2), (3) and (6) are for 
conventional current flow. If based on the modern concept of 
electron flow then the directions of magnetic flux in Figs. 2.2 
and 2.3 are reversed and Fleming's Rules as originally conceived 
do not apply although the same technique is applicable using 
the right hand for motors and the left for generators. 

23 





3. PASSIVE COMPONENTS 

3.1 RESISTANCE 

3.1.1 Resistivity 

Variation of Resistance with Dimension 

The resistance of a conductor of uniform gauge is directly 
proportional to its length and inversely proportional to its 
cross-sectional area. 

If length is denoted by I, diameter by d and cross-sectional 
area by a, 

1 1 
Resistance (R) co — , also R 00 — 

a d2 

Variation of Resistance with Material 

Each material has its own "volume resistivity".or "specific 
resistance" ("volume resistivity" is the preferred term but for 
brevity, the term "resistivity" is used here), denoted by p 
and accordingly 

/ 
R = p— 

a 

p is defmed as the resistance between opposite faces of a metre 
cube of the material as shown in Fig.3.1. 

whence / = 1 metre 
a = 1 sq metre 

ie R = p and in this case 
p is expressed in "ohm-metres" 

The ohm-metre is not a very convenient unit for conductors 
because of its very low value and frequently the microlun-metre 
or microhm-centimetre is used. Note that in the formula, 
whichever unit is used for p, then both / and a must be in the 
same system of units. 
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FIG. 3-1 Resistance of metre cube 

1 ohm-metre 
1 ohm-metre 
1 microhm-metre 

1 microhm-metre 

1 Megohm-metre 

Units in use for p with their equivalents are: 

= 106 microhm-metres 
= 108 microhm-centimetres 
= 39.4 microhm-inches 
= 100 microhm-centimetres 

= 106 ohm-metres 

Megohm-metres are used for insulating materials and the order 
of value of some commonly used materials for electronic 
work in Megohm-metres are 

Air (dry) — Infinite 
Ceramics and plastics — 10 1° 
Paraffin Wax — 109 

Mica — 108 — 109 
Rubber — 108 
Shellac — 107 — 108 

Porcelain — 104 — 107 
Cotton, paper, silk — 104 — 106 
Glass — 105 

It must be emphasized that these figures are very approximate 
and show the order of resistivities only. The actual figure for a 
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particular material depends greatly on the make-up and purity 
and for some, such as cotton and paper any moisture content 
will reduce the value considerably. Furthermore some materials 
allow current to flow also over the surface of the material and 
in fact, the 'surface resistance' may easily be the lower of the 
two. 

Note (1) p is usually but not necessarily, quoted at 0°C 
(2) it is important to remember that m and cm in these 

units refer to a metre or cm cube of the material, not simply 
a cu.m or cc, these could be of any shape. 

3.1.2 Temperature Coefficient 

Variation of Resistance with Temperature 

This has been determined for most electrical materials and 
when expressed as the fractional change per degree 
Centigrade, it is known as the Temperature Coefficient of 
Resistance, symbol a. If Rt is the resistance of a conductor 
at toc, and Ro the resistance at 0°C, 

Then Rt = Ro (1 + at + Ot2) 

where a is the coefficient 
depending on the particular material. /3 is a second coefficient 
but it can be shown that it can be neglected for most work, 
especially when the temperature does not greatly exceed 
100°C. In fact (3 for copper is +0.00000112 and neglecting 
this term results in only 0.04% error at 20°C rising to about 
0.8% at 100°C. 

Hence Rt 2-- Ro (1 + at) 

and if resistance = Ri at ti °C and R2 at t2°C 

Ri 1 + at i 
then — 

R2 1 + a t2 

a is positive when R increases with t, negative when R 
decreases with increase of t. 
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3.1.3 Calculation of Resistance 

Values of p and a for some commonly used materials are 
given in Table 3.1. 

Material p (4-licm) 
at 0 C a p' 

Silver 1.48 +0.0037 0.0202 
Copper 1.60 +0.0039 0.0220 
Aluminium 2.62 +0.0038 0.0359 
Carbon 3535 -0.0005 44.55 
Constant= 49.0 +0.000014 0.6239 
Eureka 49.0 +0.000014 0.6239 
Nickel 9.12 +0.0059 0.1298 
Nickel Silver 1 30.8 +0.00027 0.3942 
Nickel Silver 4 20.8 +0.00047 0.2673 
Nicrome 5% 89.1 +0.00105 1.1580 
Nicrome 15% 109.6 +0.0002 1.4008 
Manganin 44.0 +0.000014 0.5603 
Platinoid 41.75 +0.0003 0.5347 

For p in ¡.&2/inch, divide values in table by 2.54 

Table 3.1 Resistivity and Temperature Coefficient 

EXAMPLE: 
What is the resistance of 10 metres of copoper wire of 
diameter 0.2mm (approx. SWG 36) at 20 C? 

Cross-sectional area = irr2 = It x 10 -2 sq mm = IT x 10-4 sq cir 

1 = 10 X 102 = 103 cm 
From table p = 1.60 pEt/cm 

1.60 x 103 1.60 
Then R. (0°C) - µEt = - x 10E2 = 5.092E2 

irx 10-4 r 

and R20 (20°C) = 5.092 (1 + 0.0039 x 20) = 5.50E2 
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3.1.4 Resistance of Wires 

Because consideration of a practical range of wire sizes in each 
of the materials results in a multitude of tables, the following 

Diameter (d) 
mm d2 

0.1 0.01 

0.11 0.0121 
0.12 0.0144 

0.14 0.0196 
0.16 0.0256 

0.18 0.0324 

0.20 0.04 

0.22 0.0484 

0.24 0.0576 

0.26 0.0676 
0.28 0.0784 
0.30 0.09 
0.35 0.123 

0.40 0.160 

0.45 0.203 

0.50 0.250 

0.55 0.303 
0.6 0.36 
0.7 0.49 
0.8 0.64 

0.9 0.81 

1.0 1.0 

1.1 1.21 

1.2 1.44 

1.4 1.96 
1.6 2.56 

1.8 3.24 

2.0 4.0 

S.W.G. d2 

15 3.345 

16 2.644 

17 2.022 
18 1.486 

19 1.032 

20 0.836 

21 0.661 

22 0.506 

23 0.372 

24 0.312 
25 0.258 
26 0.209 
27 0.173 

28 0.141 

29 0.119 

30 0.0992 
31 0.0868 

32 0.0752 
33 0.0645 
34 0.0546 

35 0.0455 

36 0.0373 

37 0.0298 

38 0.0232 

39 0.0175 
40 0.0149 
41 0.0125 

42 0.0103 

Table 3.2 Values of d2 for Wire Resistance Calculations 
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method is given, by which, through a small calculation the 
resistance of wires for any material quoted in the table, can be 
quickly obtained. For materials not quoted it is also a straight-
forward calculation provided that p and a are known. Generally, 
wire resistance values are revired at "room temperature" 
which here is taken to be 20 C. 

The last column of Table 3.1 gives values for p', these figures 
have been calculated so that when simply divided by d (the 
wire diameter in mm) squared, the resistance of the wire per 
metre at 20°C is given. To simply further, Table 3.2 gives 
values of d2 for a practical range of wire sizes in both metric 
and Standard Wire Gauge form. The results of this method are 
accurate to within about 0.25%. 

EXAMPLE: 
What is the resistance per metre of (1) SWG 40 copper wire, 
(2) 0.5 mm diameter Eureka wire? 

(1) From Table 3.1 p' for copper = 0.022 
From Table 3.2 d2 for SWG 40 = 0.0149 

p' 0.022 
Resistance/metre = — — = 1.4765 ohms 

d2 0.0149 

(2) p' for Eureka 
d2 for 0.5 mm 

= 0.6239 
= 0.25 

Resistance/metre 

3.2 RESISTORS 

0.6239 
— 2.4956 ohms 

0.25 

3.2.1 Coding and Preferred Values 

The Colour Code for Resistors is given in Table 3.3 and Fig.3.2 
shows the method of reading on two commonly used types. 
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Colour Used as 
Significant Figure 

Used as 
Decimal Multiplier 

Silver 0.01 
Gold 0.1 
Black 0 1 
Brown 1 10 

Red 2 102 
Orange 3 103 
Yellow 4 104 
Green 5 108 
Blue 6 108 
Violet 7 10' 
Grey 8 108 
White 9 109 

Tolerances: Silver, 10%, Gold, 5%. 
Table 3.3 Colour Code for Resistors and Capacitors 

Decimal multiplier (number of noughts) 

1st 2nd Tolerance 
significant 

figures Body colour, 
1st significant figure 

Tip colour, 
2nd 
significant 
figure Spot or 

band colour, 
decimal 
multiplier 

FIG. 3-2 Colour coding of resistors 

Tip colour, 
Tolerance 
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The Preferred Value System has 
been designed for minimum 
overlapping between one value 
and the next due to tolerance 
spreads and the three series in 
use are given in Table 3.4. 

(Also see Appendix for other 
marking codes.) 
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3.2.2 Series Combinations 

Consider Fig.3.3 in which the same current I is flowing 
through two resistances R1 and R2 in series. 

RI R2 

—0+0-- v2 

FIG. 3-3 Two resistances In series 

Let V1 and V2 be the voltages developed as shown and V the 
total voltage 

le V = V1 + V2 

Now from Ohm's Law 

= V1 and IR2 = V2 

•VI ÷ V2 = V = I (RI + R2) 

V 
— = (R1 + R2) = R, the total resistance of the 

combination 

Thus the total resistance of two resistances in series is equal to 
their sum and this rule can be shown to apply similarly for any 
number of resistances in series, je 

R = R1 + R2 + R3 . . . 

EXAMPLE: 
A biassing circuit consists of two resistors connected across a 
9 V supply as shown in Fig.3.4. What is the voltage at point 
A relative to the negative line? 
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Total Resistance R = R1 + R2 = 9000 ohms 

9 
By Ohm's Law I = — .001 amps 

9000 

V2 = IR 2 = .001 X 1000 = 1 volt 

Two Preferred Value Resistors in Series 

Although it is comparatively easy to find two preferred values 
which, when connected in series make up a particular required 
value, Table 3.5 gives this in a convenient form as a reminder 
of all choices which can be made. It covers a complete decade 
of values for R and it is of interest that exact values for all 
numbers between 20 and 100 (with the single exception of 96) 
can be found from the 5% tolerance range. Higher or lower 
ranges are obtained by multiplying or dividing by multiples 
of 10. For some values several choices exist, eg 63 ohms can 
be obtained from (51 + 12), (47 + 16), (43 + 20), (39 + 24), 
(36 + 27) or (33 + 30). 

It is also worth remembering that if both R1 and R2 have a 
certain tolerance, then the value of the series combination, R, 
will have the same tolerance. The general formula where t, t1 
and t2 are the appropriate tolerances in percentage terms is: 

Rt RI + R2 t2 
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4) 
(J1 

100 
91 

82 

75 
68 

62 

56 
51 

47 

RI 43 

or 39 
36 

R, 33 

30 
i 27 

24 
CI 22 

or 20 

C, 78 
16 

IS 

13 

12 

11 

10 

200 
R1 2 182 191 

164 173 182 

150 157 166 175 
136 143 152 159 168 

124 130 137 146 153 162 

112 118 124 131 140 147 156 
0  

i c lc 102 107 113 119 126 135 142 151 
94 98 103 109 115 122 129 138 147 

86 89 94 99 105 111 118 125 134 143 o T 1 1' 2 78 82 85 90 95 101 107 114 121 130 139 
72 75 79 83 87 92 98 104 III 118 127 136 

66 69 72 76 80 84 89 95 101 108 115 124 133 

60 63 66 69 73 77 81 86 92 98 105 112 121 130 

54 57 60 63 66 70 74 78 83 89 95 102 109 118 127 

48 51 54 57 60 63 67 71 75 80 86 92 99 106 115 124 

44 46 49 52 55 58 61 65 69 73 78 84 90 97 104 113 122 

40 42 44 47 50 53 56 59 63 67 71 76 82 88 95 102 III 120 

36 38 40 42 45 48 51 54 57 61 65 69 74 80 86 93 100 109 118 

32 34 36 38 40 43 46 49 52 55 59 63 67 72 78 84 91 98 107 116 
30 31 33 35 37 39 42 45 48 51 54 58 62 66 71 77 83 90 97 106 115 

26 28 29 31 33 35 37 40 43 46 49 52 56 60 64 69 75 81 88 95 104 113 

24 25 27 28 30 32 34 36 39 42 45 48 51 55 59 63 68 74 80 87 94 103 112 

z2 23 24 26 27 29 31 33 35 38 41 44 47 50 54 58 62 67 73 79 86 93 102 III 
20 21 22 23 25 26 28 30 32 34 37 40 43 46 49 53 57 61 66 72 78 85 92 101 110 

10 II 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 SI 56 62 68 75 82 91 100 

R2 or e. / C2 or C. 

f R FOR R1 AND R2 IN SERIES 
TABLE 3.5 VALUES OF 1 

C FOR C1 AND C2 IN PARALLEL 

100 

91 

82 
75 
68 

62 

56 
51 

47 

43 

39 

36 

33 

30 

27 

24 

22 

20 

18 

16 

15 

13 
12 

11 

10 

R, 

or 

R2 

/ 

C. 

or 

C3 



Hence, tolerance of the combination: 

+R2t2 
t — 

for example, if the 51 and 12 used to make 63 as above are 
5% and 10% respectively, then 

63t = (51 x + (12 x 10) 

t = 5.95% 

3.2.3 Parallel Combinations 

Fig.3.5 shows two resistances R1 and R2 connected in parallel 
with currents II and 12 flowing through them respectively. 

R1 

12 R2  
 1  

V 

FIG. 3-5 Two resistances in parallel 

Let the combined resistance be R ohms. This is the converse 
of the series case in that the voltage V is the same across both 
resistances but the current I divides between them. 

Then 1 = I +12 

and by Ohm's Law 
V 

= — 
R1 

I = V(-1 + —1) 
R1 R2 

' 36 

and 
V 

12 = - 

R2 



I 1 
But — = — 

V R 

1 1 1 
+ — 

R Ri R2 

It can similarly be shown that 

1 1 1 1 
— = — 
R R1 R2 R3 

For two resistors only in parallel 

RI R2  
R — 

R1 + R2 

Two Preferred Value Resistors in Parallel 

Calculation of the resultant resistance in the parallel case is 
more time consuming than for series. The following two tables 
have therefore been designed to facilitate the search for 
resistors to make up any particular value required, to a 
reasonable degree of accuracy. Table 3.6 gives all combination 
values obtainable when R1 and R2 are within the same decade. 
Higher or lower ranges are obtained by multiplying or dividing 
the whole table by multiples of 10. Any combination value is 
given within ±-2.5%, usually much less. For example, suppose a 
resistance value of 950 ohms is required. The table shows three 
possible combinations: 

(1) 13 ohms in parallel with 36 ohms gives 9.55 ohms, 
hence 1.3 ks2 with 3.6 ks-2 gives 955 ohms 

(2) Similarly 1.8 kl2 in parallel with 2.0 kn gives 947 ohms 
(3) and 1.1 kn in parallel with 6.8 IcS2 gives 947 ohms 

and each of these produces the required value within 
approximately 0.5%. 

To increase the choice of resistors which can be selected (note 
that the values of R1 and R2 in Table 3.6 are within the same 
decade, irrespective of the fact that the required R may be in 
ohms, kilohms or megohms), the second table, Table 3.7, 
is given for R1 and R2 in adjacent decades, that is, if the 
smaller of the two lies in the range x to 10X ohms, (where 
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00 

100 

91 

82 

75 

68 

62 

56 
51 

47 

Ri 43 

or 39 
36 

R, 33 

30 
/ 27 

24 

C, 22 

or 20 

C3 11614 

15 

13 

12 
II 

10 

50.00 

45.50 47.64 

R 41.00 43.13 45.05 

37.50.39.17 41.11 42.86 
34.00 35.66 37.17 38 92 40.48 

31.00 32.43 33.94 35.31 36.88 38.27 

28.00 29.42 30.71 32.06 33.28 34.67 35.90 
25.50 26.69 27.98 29.14 30.36 31.44 32.68 33.77 

23.50 24.46 25.55 26.73 27.79 28.89 29.88 30.99 31.97 

21.50 22.46 23.33 24.32 25.39 26.34 27.33 28.21 29.20 30.07 
19.50 20.45 21.31 22.10 22.99 23.94 24.79 25.66 26.43 27.30 28.06 

18.00 18.72 19.59 20.39 21.10 21.91 22.78 23.54 24.32 25.02 25.80 26.47 
16.50 17.22 17.88 18.67 19.39 20.04 20.76 21.54 22.22 22.92 23.53 24.22 24.81 

15.00 15.71 16.36 16.96 17.67 18.31 18.89 19.53 20.22 20.82 21.43 21.96 22.56 23.08 

13.50 14.21 14.85 15.43 15.95 16.59 17.15 17.65 18.22 18.81 19.33 19.85 20.31 20.82 21.26 

12.00 12.71 13.33 13.89 14.40 14.86 15.40 15.89 16.32 16.80 17.30 17.74 18.18 18.57 18.99 19.3$ 
11.00 11.48 12.12 12.69 13.20 13.66 14.07 14.5$ 14.99 15.37 15.79 16.24 16.62 17.01 17.35 17.72 18.03 

10.00 10.48 10.91 11.49 12.00 12.45 12.86 13.22 13.65 14.03 14.37 14.74 15.12 15.45 15.79 16.08 16.40 16.67 

9.00 9.47 9.90 10.29 10.80 11.25 11.65 12.00 12.32 12.69 13.02 13.30 13.62 13.95 14.23 14.52 14.76 15.03 15.25 

8.00 8.47 8.89 9.26 9.60 10.05 10.43 10.78 11.08 11.35 11.66 11.94 12.18 12.44 12.72 12.95 13.19 13.39 13.61 13.79 
7.50 7.74 8.18 8.57 8.92 9.23 9.64 10.00 10.31 10.59 10.83 11.12 11.37 11.59 11.83 12.08 12.29 12.50 12.68 12.88 13.04 

6.50 6.96 7.17 7.55 7.88 8.17 8.43 8.78 9.07 9.33 9.55 9.75 9.98 10.18 10.36 10.55 10.75 10.91 11.08 11.22 11.38 11.50 
6.00 6.24 6.67 6.86 7.20 7.50 7.76 8.00 8.31 8.57 8.80 9.00 9.18 9.38 9.56 9.71 9.88 10.0$ 10.20 10.34 10.47 10.60 10.71 

5.50 5.74 5.96 6.35 6.52 6.83 7.10 7.33 7.54 7.82 8.05 8.25 8.43 8.58 8.76 8.91 9.05 9.19 9.34 9.47 9.59 9.70 9.81 9.91 
5.00 5.24 5.45 5.65 6.00 6.1$ 6.43 6.67 6.88 7.06 7.30 7.50 7.67 7.83 7.96 8.11 8.25 8.36 8.48 8.61 8.72 8.82 8.91 9.01 9.09 

Cl C2 

10 II 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91 100 

R, or Ri / C2 or C. 

R FOR R1 AND R2 IN PARALLEL 
TABLE 3.6 VALUES OF 

C FOR C1 AND C2 IN SERIES 
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IS 
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12 
11 
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or 

R3 
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or 

C, 
or 

Cr 

100 

91 

82 

75 

68 

62 

56 

51 

47 
43 

39 

36 
33 

30 

27 

24 

22 

20 

18 

16 

15 

13 

12 

11 

10 

50.00 52.38 54.55 56.52 60.00 61.54 64.29 66.67 68.75 70.59 72.97 75.00 76.74 78.26 79.59 81.13 82.46 83.61 84.85 86.11 87.18 88.24 89.13 90.10 90.91 
47.64 49.80 51.75 53.53 56.64 58.01 60.44 62.54 64.37 65.98 68.06 69.82 71.33 72.64 73.78 75.11 76.24 77.22 78.28 79.35 80.26 81.15 81.91 82.73 83.41 

45.05 46.98 48.71 50.28 53.02 54.21 56.34 58.16 59.74 61.12 62.90 64.40 65.68 66.79 67.75 68.87 69.82 70.64 71.53 72.42 73.18 73.92 74.55 75.22 75.79 

42.86 44.59 46.15 47.56 50.00 51.06 52.94 54.55 55.93 57.14 58.70 60.00 61.11 62.07 62.90 63.86 64.68 65.38 66.14 66.91 67.55 68.18 68.72 69.29 69.77 

40.48 42.02 43.40 44.65 46.79 47.72 49.35 50.75 51.94 52.99 54.32 55.43 56.38 57.20 57.90 58.71 59.41 60.00 60.64 61.28 61.82 62.35 62.79 63.27 63.67 

38.27 39.65 40.88 41.98 43.87 44.68 46.12 47.33 48.37 49.27 50.42 51.38 52.19 52.89 53.50 54.19 54.77 55.28 55.82 56.36 56.82 57.27 57.64 58.05 58.38 

35.90 37.11 38.18 39.14 40.78 41.48 42.71 43.75 44.64 45.41 46.38 47.19 47.88 48.46 48.97 49.55 50.04 50.46 50.91 51.36 51.74 52.11 52.42 52.75 53.03 

33.77 34.84 35.79 36.63 38.06 38.67 39.74 40.64 41.40 42.06 42.90 43.59 44.17 44.67 45.10 45.59 46.01 46.36 46.74 47.12 47.44 47.75 48.01 48.29 48.53 

31.97 32.93 33.77 34.52 35.79 36.33 37.27 38.06 38.73 39.30 40.03 40.63 41.14 41.57 41.95 42.37 42.73 4103 43.36 43.69 43.96 44.23 44.45 44.69 44.89 

30.07 30.92 31.66 32.31 33.42 33.89 34.71 35.39 35.97 36.47 37.09 37.61 38.04 38.41 38.73 39.09 39.40 39.66 39.93 40.21 40.44 40.67 40.86 41.06 41.23 

28.06 28.79 29.43 30.00 30.95 31.36 32.05 32.64 33.13 33.55 34.08 34.51 34.88 35.19 35.45 35 76 36.01 36.23 36.46 36.69 36.88 37.07 37.23 37.40 37.54 

26.47 27.12 27.69 28.19 29.03 29.39 30.00 30.51 30.94 31.30 31.76 32.14 32.46 32.73 32.96 33.22 33.44 33.63 33.83 34.02 34.19 34.35 34.49 34.63 34.75 

24.81 25.38 25.88 26.32 27.05 27.36 27.89 28 33 28.70 29.01 29.41 29.73 30.00 30.23 30.43 30.65 30.83 30.99 31.16 31.33 31 47 31.61 31.72 31.85 31.95 

23.08 23.57 24.00 24.38 25.00 25.26 25.71 26.09 76.40 26.67 27.00 27.27 27.50 27.69 27.86 28.04 28.20 28.33 28.47 28.62 28.73 28.85 28.94 29.04 29 13 

21.26 21.68 22.04 22.36 22.88 23.10 23.48 23.79 74.05 24.27 24.55 24.77 24.96 25.12 25.25 2140 25.53 25.64 25.76 23.57 25.97 26.06 26.14 26.22 26.29 
19.35 19.70 20.00 20.26 20.69 20.87 21.18 21.43 21.64 21.82 22.04 22.22 22.37 22.50 22.61 22.73 22 83 22.92 23.01 23.11 21.18 23.26 23 32 23.38 23.44 

18.03 18.33 18.59 18.82 19.19 19.34 19.60 19.82 20.00 20.15 20.34 20.50 20.63 20.73 20.83 20.93 21.02 21.09 21.17 21.25 21.31 21.1." 21.43 21.48 21.53 

16.67 16.92 17.14 17.33 17.65 17.78 18.00 18.18 18.37 18.46 18.62 18.75 18.86 18.95 19.02 19 II 19.18 19.25 19.31 19.38 19.43 19.48 19!2 1917 19.61 

15.25 15.47 15.65 15.81 16.07 16.18 16.36 16.51 16.64 16.74 16.88 16.98 17.07 17.14 17.21 17.28 17.34 17.39 17.44 17.49 17.54 17.58 17.61 17.65 17.68 

13.79 13.97 14.12 14.25 14.46 14.55 14.69 14.81 14.92 15.00 15.10 15.19 15.26 15.32 15.37 15.43 15.47 15.51 15.56 15.60 15.63 15.67 15.69 15.72 15.75 

13.04 13.20 13.33 13.45 13.64 13.71 13.85 13.95 14.04 14.12 14.21 14.29 14.35 14.40 14.44 14.49 14.54 14.57 14.61 14.65 14.68 14.71 14.73 14.76 14.78 

11.50 11.63 11.73 11.82 11.96 12.02 12.12 12.21 12.27 12.33 12.40 12.46 12.51 12.55 12.58 12.62 12.65 12.68 12.71 12.73 12.76 12.78 12.80 12.82 12.83 

10.71 10.82 10.91 10.99 11.11 11.16 11.25 11.32 11.38 11.43 11.49 11.54 11.58 11.61 11.64 11.67 11.70 11.72 11.75 11.77 11.79 11.81 11.83 11.84 11.86 

9.91 10.00 10.08 10.14 10.25 10.29 10.37 10.43 10.48 10.52 10.57 10.61 10.65 10.67 10.70 10.73 10.75 10.77 10.79 10.81 10.82 10.84 10.85 10.87 10.88 

9.09 9.17 9.23 9.29 9,38 9.41 9.47 9.52 9.57 9.60 9.64 9.68 9.71 9.73 9.75 9.77 9.79 9.81 9.82 9.84 9.86 9.87 9.88 9.89 9.90 

100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680 750 820 910 1000 

or R, / C2 or C, 

f R FOR R1 AND R2 IN PARALLEL 
TABLE 3.7 VALUES OF 

C FOR C1 AND C2 IN SERIES 

100 

91 

82 

75 

68 

62 

56 

51 

4473 

39 

36 

33 

30 27 

2242 

20 

18 

16 

15 

13 

12 

II 

10 

R, 
or 

C, 
or 

Cl 



x= 1, 10, 100 etc.) then the other is within the range 10x to 
100x ohms. This increases the choices possible for the individual 
resistors as shown below. Higher or lower ranges are obtained 
by multiplying or dividing by multiples of 10 as above. Again, 
for the 950 ohm resistance required: 

10 ohms in parallel with 180 ohms gives 9.47 ohms, 
hence 1 kn in parallel with 181d2 gives 947 

and similarly 1 kS2 in parallel with 20 kS1 gives 952 

so that the two tables together immediately suggest five 
separate pairs of preferred value resistors which in parallel 
make up this particular required value to an accuracy within 
0.5%. Equally, several choices of combination will be found 
for any other value of R. 

The tables do not cover every combination possible; 
combination values may also be obtained by the practice of 
'padding,' that is, by taking a resistor of value close to that 
which is required and adjusting this by adding a low value 
resistor in series or a high value resistor in parallel e.g. 
950 ohms is obtained within a few ohms by taking the nearest 
lower preferred value of 910 and adding a 39 in series, or the 
nearest higher preferred value of 1 kn with an 181(12 in 
parallel (but note that the latter combination has already been 
suggested in Table 3.7). 

As in the series case, if both R1 and R2 have a certain 
tolerance, then the value of the parallel combination, R, will 
have the same tolerance. The general formula where t, t1 and 
t2 are the appropriate tolerances in percentage terms is: 

t = t + t2 
— — — 
R R1 R2 

Hence, tolerance of combination: 

t 
t = t2+ 

RI R2 
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3.2.4 Division of Voltage and Current in 2-Resistor 
Combinations 

Series: 
(Fig. 3.3) 

Parallel: 
(Fig. 3.5) 

R1 
Voltage across R1 = V   

R1 + R2 

Voltage across R2 — V 
R2 

R1 + R2 

2 
Current through R1 — I R 

R1 + R2 

Current through R2 — I  R1 
R1 + R2 

3.2.5 Calculation of Power Dissipation 

To avoid overheating, power ratings of resistors for transistor 
and other circuitry should not be exceeded. Table 3.8 gives the 
maximum voltage across and maximum current through, a range 
of preferred value resistors for four separate power ratings. 
All other resistor values can be covered on the basis that multi-
plication of the resistance value by multiples of 100 requires 
multiplication of the appropriate value of voltage or division of 
the appropriate value of current by an equal multiple, but of 10. 

For example: 
(1) What is the maximum working current through a 270 kn, 
Y4 watt resistor? From the table, the maximum current through 
a 27 £2 resistor so as not to exceed a power dissipation of 
Y4 watt is 96 mA, therefore the maximum current through a 
270 kn resistor is 

96 ÷ 10 ÷ 10 = 0.96 mA. 

(2) What is the maximum voltage in the above case? 
From the table, maximum voltage for 27 ohms is 2.60 

maximum voltage for 270 kS-2 is 

2.60 x 10 x 10 = 260v. 
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Resistance 
(ohms) 

10 

11 

12 

13 

15 

16 

18 

20 

22 

24 

27 

30 

33 

36 

39 

43 

47 

51 

56 

62 

68 

75 

82 

91 

YO0 

110 

120 
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150 

160 

180 

200 

220 

240 

270 

300 

330 

360 

390 

430 

470 

510 

560 

620 

680 

750 

820 

910 

1000 

1/8 watt 

volts mA 

1.12 

1.17 

1.22 

1.27 

1.37 

1.41 

1.50 

1.58 

1.66 

1.73 

1.84 

1.94 

2.03 

2.12 

2.21 

2.32 

2.42 

2.52 

2.65 

2.79 

2.92 

3.06 

3.20 

3.37 

3.54 

3.71 

3.87 

4.03 

4.33 

4.47 

4.74 

5.00 

5.24 

5.48 

5.81 

6.12 

6.42 

6.71 

6.98 

7.33 

7.66 

7.98 

8.37 

8.80 

9.22 

9.68 

10.12 

10.67 

11.18 

112 

107 

102 

98 

91 

88 

83 

79 

75 

72 

68 

65 

62 

59 

57 

sa 
52 

SO 

47 

45 

43 

41 

39 

37 

35 

34 

32 

31 

29 

28 

26 

25 

24 

23 

22 

20 

19.5 

18.6 

17.9 

17.1 

16.3 

15.7 

14.9 

14.2 

13.6 

12.9 

12.4 

11.7 

11.2 

1/4 watt 

volt, mA 

1.58 

1.66 

1.73 

1.80 

1.94 

2.00 

2.12 

2.24 

2.35 

2.45 

2.60 

2.74 

2.87 

3.00 

3.12 

3.28 

3.43 

3.57 

3.74 

3.94 

4.12 

4.33 

4.53 

4.77 

5.00 

5.24 

5.48 

5.70 

6.12 

6.32 

6.71 

7.07 

7.42 

7.75 

8.22 

8.66 

9.08 

9.49 

9.87 

10.37 

10.84 

11.29 

11.83 

12.45 

13.04 

13.69 

14.32 

15.08 

15.81 

158 

151 

144 

139 

129 

125 

118 

112 

107 

102 

96 

91 

87 

83 

80 
76 

73 

70 

67 

64 

61 

58 

55 

52 

50 

48 
46 

44 

41 

40 

37 

35 

34 

32 

30 

29 

28 

26 

25 

24 

23 

22 

21 

20 

19.2 

18.3 

17.5 

16.6 

15.8 

1/2 watt 

V 
volts mA 

2.24 

2.35 

2.45 

2.55 

2.74 

2.83 

3.00 

3.16 

3.32 

3.46 

3.67 

3.87 

4.06 

4.24 

4.42 

4.64 

4.85 

5.05 

5.29 

5.57 

5.83 

6.12 

6.40 

6.75 

7.07 

7.42 

7.75 

8.06 

8.66 

8.94 

9.49 

10.00 

10.49 

10.95 

11.62 

12.25 

12.85 

13.42 

13.96 

14.66 

15.33 

15.97 

16.73 

17.61 

18.44 

19.37 

20.25 

21.33 

22.36 

224 

213 

204 

196 

183 

177 

167 

158 

151 

144 

136 

129 

123 

118 

113 

108 

103 

99 

94 

90 

86 

82 

78 

74 

71 

67 

65 

62 

58 

56 

53 

50 

48 
46 

43 

41 

39 

37 

36 

34 

33 

31 

30 

28 

27 

26 

25 

23 

22 

1 watt 

volt: mA 

3.16 

3.32 

3.46 

3.61 

3.87 

4.00 

4.24 

4.47 

4.69 

4.90 

5.20 

5.48 

5.75 

6.00 

6.25 

6.56 

6.86 

7.14 

7.48 

7.87 

8.25 

8.66 

9.06 

9.54 

10.00 

10.49 

10.95 

11.40 

12.25 

12.65 

13.42 

14.14 

14.83 

15.49 

16.43 

17.32 

18.17 

18.97 

19.75 

20.74 

21.68 

22.58 

23.66 

24.90 

26.08 

27.39 

28.64 

30.17 

31.62 

316 

302 

289 

277 

258 

250 

236 

224 

213 

204 

192 

183 

174 

167 

160 

153 

146 

140 

134 

127 

121 

115 

110 

105 

100 

95 

91 

88 
82 

79 

75 

71 

67 

65 

61 

58 
55 

53 

51 

48 
46 

42 

42 

40 

38 

37 

35 

33 

32 

Table 3.8 Maximum Permissible Voltage and Current for 

Preferred Value Resistors 
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Note that values in the table for 270 ohms are not appropriate 
because 270 ks2 is not divisible by 270 ohms in multiples of 100. 

Should powers in excess of 1 watt be under consideration, 
these are simply calculated by doubling the table values for 
Y4 of the power value required. The table is thus effective for 
powers up to 4 watts. 

For example: 
What is the maximum current permissible through a 330 ohm, 
2 watt resistor? 

4 of 2 watts = 1/2 watt, so this is the appropriate table 
column to use. 

The maximum current for 330 ohms (1/2 watt) is given as 39 mA, 
hence the value for 330 ohms (2 watts) = 39 x 2 = 78 mA. 

EXAMPLE: 
What are the smallest resistors (from the power rating aspect) 
which can be used in the circuit of Fig.3.6? 

15 
Voltage across R1 = 220 x 

33 + 15 
= 68.75v. 

Voltage across R2 = 220 — 68.75 = 151.25v. 

Now, RI = 151(12 = 150 x 100 ohms 

From table, maximum voltage for Y4 watt = 61.2 
%watt = 86.6 
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Thus a % watt resistor is the smallest usable 

R2 = 33 ks2 = 330 x 100 ohms 

From table, maximum voltage for % watt = 90.8 
%watt = 128.5 
1 watt = 181.7 

thus a 1 watt resistor is necessary. 

Alternatively: 

220 
Current I = x 1000 mA = 4.58 mA 

48000 

R1 — From table, maximum current for % watt = 4.1 mA 
% watt = 5.8 mA 

R2 — From table, maximum current for % watt = 2.8 mA 
% watt = 3.9 mA 
1 watt = 5.5 mA 

giving the same requirements as above. 

3.2.6 Non-Linear Resistors 

There are two main types wherein a resistance change occurs 
within a mass of homogeneous material, temperature sensitive 
and voltage sensitive. The temperature or thermally sensitive 
resistor is generally known as a thermistor and most have a 
large negative coefficient of change of resistance with 
temperature, the change being produced by dissipating 
electrical power within the material itself or by a separate 
heater coil surrounding it. Positive coefficients are also available. 

A typical relationship between applied voltage and the current 
which flows in a directly heated (negative coefficient) 
thermistor is given in Fig.3.7. As V is increased from zero, the 
straightness of the characteristic shows that Ohm's Law is being 
obeyed until a value marked as V is reached. This is because 
the heat is being dissipated as fast as it is being generated within 
the material, the temperature of which therefore does not rise. 
At Vim, conditions change radically because the heat generated 
is sufficiently great that not all is lost and the material 
temperature rises with consequent fall in resistance, ie the 
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negative incremental resistance characteristic is obtained. The 
two curves show that as ambient temperature falls, Vrna„ 
increases because heat lost from the material is greater. 

30 

25 

17,20 

15 

10 

5 

v„,2, (0°C) 

141,0x(20°C) 

2 3 4 5 

1 (mA) 

FIG. 3-7 Current/Voltage relationship for 

Thermistor 

6 7 8 

Generally for a thermistor, the resistance at temperature t°K 
follows approximately the law 

R = AeBit ohms 

where A and B are constants for the particular type of 
thermistor. 

From the foregoing it is clear that the thermistor will not act 
until V. is reached and held, albeit for a very short period 
of time. An approximate relationship from which Vmax can be 
estimated is 

Vma„ 
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where R, is the "no current' resistance at the temperature 
under consideration 
K is a constant for any particular type of thermistor 

For the type illustrated by Fig.3.7, K = 20. 

Thermistors are frequently used for surge suppression, e.g. in 
series with valve heaters, projector lamps and also for 
electronic temperature measurement. 

Voltage-Sensitive Resistors, are usually a form of silicon 
carbide, the resistance of which falls as applied voltage 
increases. The current/voltage relationship is of the form 

I = KV'  where K and n are constants for the 
particular unit 

When I is given in mA, K usually has a maximum value of 2-3 
while n lies between 2 and 6. The action is not unlike that of 
copper oxide or selenium rectifiers except that the latter are 

20 

15 

I =1.5V4mA 

1 10 

5 

05 1.5 

V (votts) 

FIG. 3-6 Current/Voltage relationship for 

Voltage - Sensitive Resistor 

2 
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capable of higher values of n. The use is as surge limiters, 
voltage stabilizers, spark quenches, loudness limiters on ear-
phones etc. A typical characteristic is given in Fig.3.8. 
The capability of large resistance change can be judged from 
the fact that in this particular case, the resistance at 0.2V is 
about 80,000 ohms, whereas at 2.0V it has fallen to about 
80 ohms. 

3.3 CAPACITORS 

3.3.1 Defmition of Capacitance 

For a given capacitor, the ratio of the charge Q (coulombs) to 
the p.d. (volts) is constant and this ratio is known as the 
capacitance (C) in farads. 

Q (coulombs) 
i.e. C (farads) - 

V (volts) 

also Q = CV coulombs 

V = —c volts 

The farad is a large unit and in practice microfarads and 
picofarads are mostly used, 

le = 10-6 farad 

1pF = 10-12 farad 

3.3.2 Construction of Simple Capacitors 

General formula for capacity (C) 

A 
C = Co Cr — farads where Co is Cle absolute 

permittivity of free space 
(= 8.85 x 10 -12) . 
Cr is the relative 
permittivity of the 
dielectric (dielectric 
constant) 

A = cross-sectional area of dielectric in square metres 
t = thickness of dielectric in metres. 
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Modifying this formula for more practical units and considering 
2 plates only, each of A sq. cms area separated by air, 
since e, for air -.' 1 (actually 1.00059). Then 

(1) A 
C = 0.0885 — picofarads where t is the separation 

t between the plates 
in ems (ie 
dielectric thickness) 

If a dielectric other than air is used, the capacitance above is 
multiplied by the value of Cr for the dielectric ie 

(2) A 
C = 0.0885 — e, picofarads 

t 

Typical values of ex are 

Ceramic 100-1000 Glass 4-8 

Mica 6-7 Polystyrene 2-3 
Shellac 2-4 Waxed Paper 5 

If several plates are interleaved, the effective dielectric area is 
obtained by multiplying the effective area of one plate (ie 
excluding overlaps) by the number of dielectric spaces as in 
Fig.3.9 where in fact there are 4. 

Then: 

(3) A 
C = 0.0885 t — e, N picofarads where N = number 

of dielectric 
spaces 

Plate.,.,,t. 

 ----- Dielectric 
r 

FIG. 3-9 Multiplate capacitor 
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EXAMPLE: 
(1) A capacitor of 5 plates as in Fig.3.9, each 

4 sq. cms. in area has a dielectric of glass having a relative 
permitivity of 5 and thickness.0.2 cms. What is the capacitance? 

4 
From formula (3) C = 0.0885 x — x 5 x 4 pf = 35.4 pf 

0.2 

(2) A small, two-plate air-dielectric capacitor of 20 pf 
has to be constructed. The plates are to be separated by small 
diameter insulated washers 1 mm thick. What plate area is 
required? 

A 
From formula (1) 20 = 0.0885 —  sq.cms. 

0.1 

A = 22.6 sq.cms. 

Many small inaccuracies inevitably creep in, for example the 
knowledge of the exact permittivity of a dielectric (other than 
air). Nevertheless the formulae do give a good starting point and 
as in Example 2, a quick means of estimating plate size etc. 

3.3.3 Coding and Preferred Values 

The colour coding system used to indicate the capacitance, 
tolerance and if required, voltage rating of small capacitors 
is identical to that used for resistors, hence Table 3.3 applies. 

The three colours in the colour code representing the 1st Digit, 
2nd Digit and Multiplier give the capacitance in picofarads. 

A fourth band or spot shows the tolerance and if voltage rating 
is quoted (e.g. on moulded paper capacitors), one or two 
bands or spots give the rating in hundreds of volts, je only one 
band or spot is necessary up to 900 volts. 

The Preferred Values for the various tolerances are identical 
with those for resistors, hence Table 3.4 applies. 

(Also see Appendix for other marking codes.) 
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3.3.4 Series Combinations 

Consider Fig.3.10 in which two capacitors C1 and C2 are 
connected in series across a voltage V with voltages V1 and 
V2 existing across C1 and C2 as shown: 

Then V = Vi + V2 and since the charges are equal, 

saY Q, Q Q 
V1 = — and V2 = - 

C1 C2 

✓ 1 1 

Q C1 C2 

1 1 1 
.'. — = — + — where C is the combined capacitance. 
C C1 C2 

and it can similarly be shown that 

1 1 1 1 
-  = -  +-+- + - - - - 
C C1 C2 C3 

For two capacitors only in series C — 
CI C2 

C1 + C2 

le-- VI -tile-- V2 --al 
1 I i 

1 I 
o  

icl i C! 1  i 
1 I 
i 
h  V 

FIG. 3-10 Capacitors in series 

o 

These formulae have the same form as those for resistors in 
parallel, therefore Tables 3.6 and 3.7 apply except that whereas 
for resistors the table values are in ohms or multiples of ohms, 
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for capacitors the values are in picofarads or microfarads or 
multiples i.e. the whole tables may be multiplied or divided 
by multiples of 10 as required. 

3.3.5 Parallel Combinations 

Fig.3.11 shows C1 and C2 connected in parallel. Each has the 
voltage V across it, producing charges Q1 and Q2 

C2 

 II  

V 

FIG. 3-11 Capacitors in parallel 

Then, total charge Q = Q1 + Q2 

Now Q1 = VCI and 

Q = V(Ci +C2) 

— = Cl + C2 

Q2 = VC2 

and combined capacitance C = C1 + C2 

and it can similarly be shown that 

C = CI + C2 + C3 + — — — — 

EXAMPLE: 
What is the effective capacitance of the circuit in Fig.3.12(i)? 

Let combined capacitance of C2 and C3 = Cp 
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:. Cp = 2 + 4 = 6p.F 

(ii) Let C1 in series with Cp = C 

3 x 6 
Then C = — — 2#F  (iii) 

9 
\  

C2 2pF 

 I 
C1 3pF 

(1) 0.--i'  

C3 4pF 

 I 

C1 3pF 
(ii) 0----11  

Cp 6pF 

C 2pF 

(iii) o II  

FIG. 3-12 Equivalent capacities 

o 

Capacitors in parallel are additive and hence analogous to 
resistors in series, thus Table 3.5 applies and again the whole 
table may be multiplied or divided by multiples of 10 as 
required. 

t 
Applied 
voltage V 

1 
o  

R 

,, 
.!lc 7: 

FIG. 3-13 Voltages in CR circuit 
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3.3.6 Time Constants 

If a constant voltage V is maintained across a series combination 
of resistance R and capacitance Cas in Fig.3.13, then the p.d. 
across the capacitance will take on an exponential form rising 
from 0 at the moment of application of V to the value V over 
a certain period of time as shown in Fig.3.14, the value of vc 
at any instant being given by 

= VO — eteR) where t is the time elapsed since 
application of the voltage V 

Taking 3 points only, simply to establish the direction of the 
curve, 

t e-t/CR 
y c 

0 1 0 

CR 0.3679 0.6321V 

co 0 V 

thus clearly as t increases, the curve is rising from 0 to V. 
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The instantaneous current i in the circuit will in the same way 
follow a falling exponential curve and similarly it will be seen 
that at t = 0, CR and co, i = Vat, 0.3679 V/R and 0 respectively 
as in Fig.3.15. 

If, when the capacitor C is fully charged, the applied voltage V 
is removed and replaced by a short-circuit, then C is able to 
discharge through R and vc will follow a decay curve given by 

v = v e-eR c 
The current again falls from its maximum value to zero in the 
opposite direction given by 

V 
i = _ _ e-t/CR , again a decay curve. 

R 

The product CR is known as the "time constant". This has 
already been shown to be that time necessary for the voltage 
vc on a growth curve to reach 0.6321 of its final value, or on a 
decay curve to fall to 0.3679 of its maximum value. A second 
definition of the time constant is the time necessary for ye 
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to attain its maximum value were it to continue increasing at 
the rate at which it is so doing at any particular instant. 
These definitions have considerable practical application when 
it is required to produce a CR circuit with a required time of 
charge or discharge to a particular value of voltage. The 
equations, involving exponentials as they do, make plotting the 
curve from known values of V, C and R rather laborious 
although not so if a calculator is available. However two 
alternative methods are described below, the first achieving its 
object by simple calculations, the second graphically, they 
are illustrated best by practical examples: 

EXAMPLE: 
A battery of 9 V with negligible internal resistance is connected 
across a resistor of 2 megohms in series with a capacitor of 
0.1 microfarads. Draw the capacitor voltage/time curve. 

Let the time constant be denoted by the Greek symbol T. 

(1) Using the principle of the first definition of the time 
constant 

Time Constant T = CR = 0.1 x 10-6 x 2 x 106 = 0.2 secs. 

Construct a table (Table 3.9) as follows: 

Each time-constant interval is treated separately, adding on to 
the previous value of vc, (0.632 x the rise in voltage remaining). 
Thus Columns 2 and 3 are taken from Columns 5 and 6 of 
the previous line. 

In practice, it is unlikely that the graph would be required 
beyond 0.6 secs because at this point the change in voltage 
with time is small and becomes progressively smaller as time 
increases. Fig.3.16 shows the graph of ve (Column 5) 
plotted against time. 
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1 2 3 4 5 6 

Time 
Interval 
(secs) 

v at c 
beginning of 

Interval 

Voltage rise 
remaining at 
beginning of 

Interval 

Voltage rise 
during Interval 

(= 0.632 x Co1.3) 

ye at end of 
Interval 

(Cols. 2 + 4) 

Voltage rise 
remaining at 

end of Interval 

0 - 0.2 

0.2 - 0.4 

0.4 - 0.6 

0.6 - 0.8 

0.8 - 1.0 

0 

5.69 

7.78 

8.55 

8.83 

9 

3.31 

1.22 

0.45 

0.17 

5.69 

2.09 

0.77 

0.28 

0.11 

5.69 

7.78 

8.55 

8.83 

8.94 

3.31 

1.22 

0.45 

0.17 

0.06 

Table 3.9 Calculations for Growth Curve 



Table 3.9 shows the calculations in their entirety but in fact 
it is even more simple to express vc as a fraction of V 
for each time-interval thus 

vc 

o 

2r 

3r 
4r 

o 
0.632 V 

0.865 V 

0.950 V 
0.982 V 

and in this particular 
example where V = 9v. 
vc = 0.632 x 9, 
0.865 x 9 etc, giving the 
same points on the 
curve of Fig.3.16. 

(2) Using the principle of the second definition, a completely 
graphical method which is quick to construct is as shown in 
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Fig.3.17. The axes are drawn and labelled first as in Fig.3.16, 
then a horizontal line at V volts. At the instant V is connected, 
t = 0 and it has already been shown that vc = 0, but the 
subsequent rise is at such a rate that were it to continue 
without change, it would reach V in r seconds. On this basis 
right-angled triangles are constructed at various times so that 
the hypotenuses indicate the curve slopes. 

Note in Fig.3.17 

0Q1, AO2, BO3, CQ4 — — — are all drawn to equal 
r seconds. 

— — — are on the horizontal line 
drawn at V volts 

Points, P1 P2 P3 

P1 is vertically above Q1, P2 above Q2 etc. 
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(1) Draw OQI , then OPi 
(2) Mark point A at a short distance up OP' 

(3) Draw AQ2, then AP2 
(4) Mark point B at a short distance up AP2 

(5) Draw BQ3, then BP3 
(6) Mark point C at a short distance up BP3 
(7) Draw CQ.4, then CP4 
and continue. 

The points 0, A, B, C etc give a description of the curve as 
shown. Clearly the closer together the points are taken, the 
more accurate is the result. 

Decay curves may be produced similarly. 

3.4 INDUCTORS 

3.4.1 Defmition and Calculation of Inductance 

A coil has a self-inductance of 1 Henry when a change of 
current in it at a rate of 1 ampere per second induces an 
e.m.f. of 1 volt. 

The calculation of the inductance of a coil to a reasonable 
degree of accuracy is not easy to accomplish because some of 
the theoretical considerations do not wholly apply in practice 
e.g. that the flux links with all the turns or that the relative 
permeability is constant. However, for an air-cored solenoid of 
length at least five times the diameter the inductance can be 
calculated to within about 10% by 

Inductance, L — 21 Q-N henrys (H) 

where = permeability of free space (4e x 10-7 Henry! 
° metre) 
N = number of turns 
A = cross sectional area of coil in sq. metres 
/ = length of coil in metres. 

59 



EXAMPLE: 
What is the approximate inductance of an air-cored solenoid 
12 cm. long and 2 cm. diameter, close wound with 
2000 turns of wire? 

µ N2 A 477 x 10 -7 x 4 x 106 x e x 10-4 
Inductance, L = -   

/ 12 x 10 -2 

4 2 
= — x 10-3 H = 13.16 mH 
3 

When a core is added calculation becomes more difficult 
because the relative permeability /1r of the core varies with flux 
density, and especially difficult if the core is not closed, 
ie there is a relatively long air-path within the magnetic circuit. 
Nevertheless, for closed cores, some idea of the inductance can 
be obtained by extending the above formula with an 
estimation of the mean relative permeability thus 

N2A 
L - ° where p1 is the mean relative 

permeability 
I is the mean core path. 

3.4.2 Construction of Air-Cored Inductors 

Resistors and capacitors usually abound in plenty in the work-
shop, both new and second-hand and it is often useful to be 
able to make up a particular value from two or more others. 
Inductors, on the other hand seldom exist in large numbers 
conveniently colour-coded, they are usually made to order for 
a specific purpose. In this section therefore, more emphasis is 
placed on home construction although it is impossible to treat 
the subject at length because this would need a complete book 
on its own and in fact one has already been published in this 
series (No.160 "Coil Design and Construction Manual"). 

To allow for the inevitable small inaccuracies which creep into 
home construction it is a good idea to wind on a few more 
turns than are calculated to be necessary and then unwind 
until the desired results are obtained. Measurement of 
inductance is discussed in Section 6.2.3. 
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Most of the inaccuracy of the example in the preceding section 
arises from the fact that the flux due to the turns at the end 
of the coil does not cut as many other turns as happens at the 
centre, thus the self-inductance contribution is lower. 
Shape of coil therefore affects inductance considerably and it 
is necessary to build a factor into the formulae for this. 

Much effort has already been expended in producing formulae 
for circular cross-section coils and of the several ones which 
exist, two are worthy of mention here: 

0.2 N2d2  
(1) L — µH 

3.5d+ 8/ 
where L = inductance 

N = number of turns 
d = diameter of coil 

(strictly to centre of 
wire) in inches 

/ = length of winding 
in inches 

In metric terms this becomes: 

0.0787 N2 d2 
L — 

3.5d+ 8/ 
where d and / are in centimetres 

The second published formula is 

r2 x N2  
(2) L — µH where r = outside radius of coil 

9r + 10/ in inches 
/ = length of winding in 

inches 

In metric terms and substituting d for r this becomes: 

0.394 N2 d2 
L — pH where d and / are in centimetres. 

18d + 40/ 

It will be observed that these two formulae differ only slightly 
in the coefficient of d in the denominator. 
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An interesting formula which is offered here is one which takes 
greater account of the fact that the effect of the ratio //d on 
the inductance follows approximately an exponential law: 

(1) If //d is within the range 0.3 - 1.0 

0.007 N2 d'47  
L - µH 

/0.57 
where d and / are in centimetres 

/143 L x pm  cP-51 
where L is in microhenrys 

(2) If //d is within the range 1.2 - 8.0 

0.0073 N2 d1463 
L =   µH /0463 

again where d and / are in 
centimetres 

/137 L x /°*863 

d1.863 

where L is in microhenrys 

EXAMPLE: 
A coil of inductance 200µH is required, preferably on a circular 
former of 1.5 cm diameter and about 5 cms length. If such a 
coil is possible, how should it be wound? 

5 
//d = —  = 3.33, therefore formula (2) applies. 

1.5 

N - 
/137 x 200 x 50'863 

1.5 1-863 

/137 x 200 x 4.011 

2.129 
- 227 
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Cr% 

Nominal 
Bare diam. 
mm 

TURNS/cm (min) 

Grade 1 Grade 2 Grade 3 

2.000 4.8 4.7 4.6 

1.900 5.0 5.0 4.9 

1.800 5.3 5.2 5.1 

1.700 5.6 5.5 5.4 

1.600 5.9 5.8 5.7 

1.500 6.3 6.2 6.1 

1.400 6.8 6.6 6.5 

1.320 7.2 7.0 6.9 

1.250 7.5 7.4 7.2 

1.180 8.0 7.8 7.6 

1.120 8.4 8.2 8.0 

1.060 8.8 8.7 8.5 

1.000 9.4 9.1 8.9 

0.950 9.9 9.6 9.3 

0.900 10.4 10.1 9.8 

0.850 11.0 10.7 10.4 

0.800 11.6 11.3 11.0 

0.750 12.4 12.0 11.7 

0.710 13.0 12.7 12.3 

0.630 14.6 14.2 13.7 

0.560 16.4 15.8 15.2 

Nominal 
Bare diam. 
mm 

TURNS/cm (min) 

Grade 1 Grade 2 Grade 3 

0.500 18.3 17.6 16.9 

0.450 20.2 19.4 18.6 

0.400 22.6 21.7 20.7 

0.355 25.3 24.2 23.0 

0.315 28.4 27.0 25.6 

0.280 31.8 29.9 28.3 

0.250 35.2 33.2 31.3 

0.224 39.1 36.8 34.5 

0.200 43.5 40.8 38.3 

0.180 47.9 45.1 42.2 

0.160 53.5 50.3 47.0 

0.140 60.2 56.8 52.9 

0.125 67.1 62.9 58.5 

0.112 74.6 69.9 64.5 

0.100 82.6 77.5 70.9 

0.090 90.9 85.5 78.1 

0.080 102.0 95.2 86.2 

0 071 113.6 105.3 0 

0.063 128.2 117.6 4 

0.050 161.3 147.1 0 

Table 3.10 Turns Per Centimetre for Enamelled Copper Wires* 

U1 t.J1 

: • 1••• : • C) 
'i OO 

II It II 

NPP 
;-•• 

•••••11 
‘0 00 ON 

II II II 

c▪ o' O' 
0 VD 

- Lo 
t‘à 

* Oleo - Resinous and Synthetic 4 not available 



If enamelled wire is used and the winding itself is 5 cm long, 
then from Table 3.10 a suitable wire would be 0.180 mm which 
with Grade 1 insulation winds to 47.9 turns per cm, thus 
227 turns would occupy 4.74 ems. 

3.4.3 Magnetic Cored Inductors 

The theory is simple, i.e. the inductance of a coil with a 
magnetic core is the inductance of the same coil with an air 
core multiplied by the relative permeability of the magnetic core. 
In practice however, the calculation of self-inductance with any 
pretence to accuracy is difficult because the core relative 
permeability is not constant, depending as it does upon the 
flux density which itself depends upon the current, i.e. the 
current/flux relationship is not linear. Account may also be 
taken of a small air-gap in the core but this truly becomes 
difficult if the air-gap is as long as the core itself, i.e. an open 
core as for example, with coils on a ferrite rod. Nevertheless, 
provided that a figure for the mean relative permeability of the 
complete magnetic circuit can be obtained, then the 
approximate inductance is calculated as above. 

To take an air-gap into account it is necessary to calculate the 
total reluctance of the complete magnetic circuit by adding 
together the individual reluctances of the air-gap and the 
magnetic core on the basis that the reluctance (S) of a single 
homogeneous path is given by: 

S = — 
µa 

where / = length of path 
a = cross-sectional area of path 
= permeability of medium 

(= 0 for air) 

and the total reluctance 

S = Si S + — — T 2 

/1 
.f. _ _ 

btiai /12a2 

therefore because inductance is inversely proportional to 
reluctance, comparison may be made of the inductance of a 
coil and magnetic core with or without air-gap(s). A further 
cause of inaccuracy with these formulae is that not all the 
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flux produced within the magnetic core flows directly 
across the air-gap. 

Nevertheless the formulae do give a starting point which can 
then be followed by "cut and try" bench work to obtain the 
desired results. 

3.4.4 Series and Parallel Combinations 

Combinations of inductances in series or parallel are less likely 
to be needed in the workshop because inductors are usually 
wound as required. However, the combination formulae are 
easily expressed because they are of identical form to those 
for resistances e.g. 

Series L = Li + 1,2 + L3 + - - — 

where L is the combined inductance 
of the individual inductances 
L1, L2, L3 etc. 

1 1 1 1 
Parallel _ = __ +._ + __ + _ 

L L1 In L3 

and for two inductançes only in parallel 

1-11-2  
L - 

1,1 + In 

and therefore, although not so labelled, Tables 3.5, 3.6 and 3.7 
apply fully by simply substituting L for R whether L is in 
microhenrys, millihenrys or henrys. 

These formulae are valid only when the individual inductors 
have no mutual coupling, i.e. the magnetic field of one does 
not cut the turns of another. When this does happen, 
Section 3.4.6 applies. 

3.4.5 Time Constants 

If a constant voltage V, is applied to a series combination of 
resistance R and inductance L as in Fig.3.18, then the current 
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i will take on an exponential form rising from 0 at the moment 
of application of V to the maximum value of V/R over a 
certain period of time, the curve shape being as shown by 
Fig.3.14 for capacitors. 

The instantaneous value of i for a time t elapsed is 

V 
i = — (1 — e t/1) . /(1 ___ e-Rt/L) where I is the final 

R steady value 
of current. 

The similarity of the build-up of current in an inductance with 
the build-up of voltage across a capacitor is clear, many of the 
principles developed in Section 3.3.6, therefore apply and are 
not duplicated in this section. 

The voltage across the resistance R, (vR) = i x R and therefore 
follows the same exponential law i.e. it too follows a 
growth curve. 

However, since the voltage (k) across the inductance L is equal 
to V — vR • then as vR increases' vL falls and in fact 

vL = V e-Rt/L giving a decay curve as shown in Fig.3.15. 

In this case, the expression R/L is known as the time 
constant (7). With R in ohms, L in henrys, 7 is expressed in 
seconds. 
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Curves such as in Fig.3.16 and 3.17 may be drawn for any 
LR circuit using r = L/R. 

If, after steady state conditions have been reached, je the 
current i has reached the maximum I, the voltage V is 
removed and replaced by a short-circuit, the magnetic field 
collapses and in so doing drives a current back through R and 
the short-circuit, the current falling as the energy remaining in 
the magnetic field decreases, giving now a decay curve of the 
form 

= e-RtiL 

and similarly for the voltage across the resistance, vR. 

3.4.6 Mutual Inductance 

When two coils are coupled magnetically, they have a mutual 
inductance of 1 Henry if a change of current at a rate of 
1 ampere per second in one coil induces an e.m.f. of 1 volt in 
the other. 

If all the flux of one coil links with all the turns of the other 
then maximum coupling exists and the mutual inductance M 
is given by 

M2 = Li L2 = N/L, 

where L1 and L2 are the self-
inductances of the 
two coils. 

This condition is unlikely to be achieved in practice and a 
coupling coefficient k is employed to denote the degree of 
coupling, it is obtained from the ratio of M to NrETL2 ie 

M = k N/7I 1ra 

With two coils coupled as closely as possible, k can reach a 
value of 0.98 — 0.99 while when the coils are completely 
separated, k = 0. In radio air-cored coils, k is usually less 
than 0.5. 

67 



When the two coils L1 and 1,2 are themselves connected in 
series, the combination inductance value is L1 + 1_,2 ± 2M 
depending on whether they are in series — aiding or opposition. 
The term 2M arises from the fact that both coils are affected 
by flux linkages with the other coil. Use is made of this 
feature in the measurement of mutual inductance (see 
Section 6.2.3). 

3.5 TRANSFORMERS 

3.5.1 General Theory 

Transformer action arises from the fact that the magnetic flux 
produced by the current in one coil links with the turns in the 
other coil(s). The Mutual Inductance which therefore exists 
between the coils is defined in Section 3.4.6. 

For a sinusoidal current Ip in the primary winding, the e.m.f. 

generated in the secondary is 

es = ± jcoMIp or coMI L.±90° 
P 

the angle being positive or negative according to the sense in 
which the windings are connected. 

To avoid confusion, the dot notation is frequently used on 
diagrams as shown in Fig.3.19. The dots are placed at the ends 
of the winding symbols to indicate that currents entering at 
those ends product magnetic fluxes in the core in the same 
direction. 
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The basic principles of coupled circuits are considered in greater 
depth in Section 4.7.5 which deals with h.f., low coupling 
factor transformers. These principles apply equally to the more 
generally recognised transformer, i.e. iron-cored, lower 
frequency and higher coupling factor (approaching unity). 

Transformers with Iron Cores 

By including iron or an alloy in the magnetic path of a 
transformer, the flux is greatly increased because of the 
increase in relative permeability. The expression for the 
primary inductance is 

;£014 Np2 A  
- henry 

where 40 = permeability of free space 
btr = relative permeability of the 

core material 
Np = no. of turns on primary 
A = cross-sectional area of coil 

and similarly for in sq. m. 
the inductance, / = length of coil in metres 
L5 of the 
secondary winding. 

The inductances are therefore directly proportional to the 
relative permeability, sir, of the core material and since 

M = k \FL T., where M = mutual inductance p s 

the mutual inductance of the transformer is also directly 
proportional to the relative permeability of the core material. 

1.104, NP IP A 
The flux 4) —  Wb 

and the r.m.s. value of the induced secondary voltage, 

es = 4.44 N 4)max f volts where f is the frequency 
of the current Ip 
in Hz. 

69 



Voltage Ratio 

Considering an ideal transformer, since, as above a flux (1),a, 

produces a voltage es in the secondary proportional to the 
secondary turns, then because the same flux cuts the primary 
winding, the primary induced voltage is proportional to the 
primary turns i.e. 

e 4.44 N .rD f . _ eN s  s max s s 
— or equally 

e 4.44/N1;4)f eN P P max P P 

Vs = Ns 

V N 

N, 
thus the secondary voltage is times the primary voltage, 

NP 
that is 

the voltage ratio is equal to the turns ratio. 

Current Ratio 

Again considering an ideal transformer, when its secondary is 
connected to a resistive load (Rs) the effective primary 
impedance becomes mainly a resistive component (coM)2 ¡Rs 
which has no phase angle. 

Since output power = input power (assuming no losses) 

Vp 
Vp Ip = Vsls and since = 

Vs Ns 

Is p N 
= 

p Ns 
that is 

the current ratio is inversely proportional to the turns ratio. 
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3.5.2 Impedance Matching 

As above, for the ideal transformer 

VI =VI 
PP ss 

VP 
and Ip = — , Is 

Rp RS 

where Rp and Rs are the primary and 
secondary load resistances. 

2 v. 2 
P = S 

Rp 
2 

Rs N 
that is 

Rp Np 

the resistance ratio is equal to the (turns ratio)2 

By similar reasoning it can be shown that if Zp and Zs are the 
appropriate impedances 

Zs C• 2 4 
—= = that is 
Zp NP 

the impedance ratio is also equal to the (turns ratio)2 

A common use for transformers in electronic systems is for 
matching a load to a source to obtain maximum power 
transfer (Section 5.1.5). A typical example is the matching of 
loudspeakers to power amplifiers (although transistor power 
amplifiers are designed wherever possible to avoid the bulk 
and expense of output transformers) e.g. an output stage 
requiring an optimum load of 2000 ohms and feeding a 
loudspeaker of impedance 8 ohms. The transformer needed 
in this instance must have a turns ratio of 

.1 2000 

8 
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......... ---............ LOA!! 1 2 4 5 6 7 8 9 10 

a a 
SOURCE ---.............„.. A. B ABABA B AB AB A B AB A B A B 

1 1.000 1162 .7071 2.236 .5773 1.826 .5000 1381 .4472 1.414 .4083 1.291 .3780 1.195 .3535 1.118 .3333 1.054 .3162 1.000 

2 1.414 4.472 1.000 3.162 .8165 2.582 .7071 2.236 .6325 2.000 .5774 1.826 .5345 1.690 .5000 1.581 .4714 1.491 .4472 1.414 

3 1.732 5.477 1.225 3.873 LOCO 3.162 .8660 2.739 .7746 2.450 .7071 2.236 .6547 2.070 .6124 1.936 .5774 1.826 .5477 1.732 

4 2.000 6.325 1414 4.472 1.155 3.652 1.000 3.162 .8944 2.828 .8165 2.582 .7559 2.390 .7071 2.236 .6667 2.108 .6325 2.000 

5 2.236 7.071 1.581 5.000 1.291 4.083 1.118 3.535 1.000 3.162 .9129 2.887 .8452 2.673 .7906 2.500 .7454 2.357 .7071 2.236 

6 2.450 7.746 1.732 5.477 1.414 4.472 1.225 3.873 1.095 3.464 1.000 3.162 .9258 2.928 .8660 2.739 .8165 2.582 .7746 2.450 

7 2.646 8.367 1.871 5.916 1.528 4.830 1.323 4.183 1.183 3.742 1.080 3.416 1.000 3.162 .9354 2.958 .8819 2.789 .8367 2.646 

8 2.828 8.944 2.000 6.325 1.633 5.164 1.414 4.472 1.265 4000 1.155 3.652 1.069 3.380 1.000 3.162 .9428 2.981 .8944 2.828 

9 3.000 9.487 2.121 6.708 1.732 5.477 1.500 4.743 1.342 4.243 1.225 3.873 1.134 3.586 I 061 3.354 1.000 3.1q .9487 MOO 

10 3.162 10.00 2.236 7.071 1.826 5.773 1 581 5.000 1.414 4.472 1.291 4.083 1.195 3.780 1.118 3.535 1.054 3.333 1.000 3.162 

MULTIPLY OR DIVIDE COLUMN A or B FIGURES AS SHOWN 

•,--
LOAD I 10 10 - 100 100 - 1000 1000 - 10.000 10,000 100,000 

SOURCE B A a A e A B A B 

1 - 10 NH - 10 ÷ 10 - 100 - 100 

10 - 100 NIL NIL - 10 + 10 , IOC 

100 - 1000 x 10 NIL NIL 10 + 10 

1000 10,000 > 10 x 10 NIL NIL 10 

10,000 - 100,000 x 100 x 10 x 10 NIL NIL 

(NIL indicates column to be used with no correction) 

Table 3.11 Values of Turns Ratio T = N1 /N2 for Impedance Ratio Source/Load 



Table 3.11 makes this calculation quickly for a wide range of 
practical ratios of source and load values commencing with a 
single integer — if the actual values lie between the table values, 
the table is still useful as a guide or as a check on calculations. 
In the above example, the answer is given exactly by the table 
which is used as follows 

(0 take the first figure of both source and load impedances 
and the table gives two ratios marked A and B. In the 
example against a source value of 2 ohms and load value 
of 8 ohms are ratios A, .5000 and B, 1.581. 

(ii) reference to the lower section of the table shows that 
for a source in the 1000 — 10,000 ohm range, and load 
in the 1 — 10 ohm range, the B figure is used and 
multiplied by 10, giving an answer of 15.81. 

However, if the source impedance happened to be 2400 ohms, 
then the correct answer must lie between 15.81 and 19.36 
(for sources of 2000 and 3000 ohms respectively), a guess 
might put the value around 17. 

EXAMPLE: 
A generator of e.m.f. 20V and internal resistance 600 ohms 
is to be matched by means of a transformer to a 1000 ohm line. 
Assuming an ideal transformer, what turns ratio is required and 
what is the power in the load with and without transformer? 

From Table 3.11 the turns ratio required is 0.7746 : 1. 

Power into load with transformer — the circuit equivalent is 
that of a 600 ohm load (RI) across the generator terminals. 
Let I be the current, 

20 
then II —   amps 

600 + 600 

( 
20 

Power into load = Iî RL = — 2 x 600 = 167 mW 
1200 
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Power into load without transformer Let 12 be the current 

20 
then 12 —   amps 

600 + 1000 

( 2 20 
Power into load = Il RI, = — x 1000 = 156 mW 

1600 

so demonstrating the greater power in the load when it is 
matched to the source. 
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4. ALTERNATING CURRENT CIRCUITS 

4.1 DERIVATION OF THE SINUSOIDAL WAVEFORM 

Consider a simple alternator having two poles and one single 
loop of wire rotating on an axis OQ within the magnetic field 
as shown in Fig.4.1. Faraday's Law (Sect.2.3) shows that the 
e.m.f. induced in the sides AB and CD of the loop is propor-
tional to the rate of change of flux through each wire, there-
fore when passing the centre of a pole the rate of change of 
flux is greatest and the e.m.f. induced is maximum, conversely 
when the wires are midway between the poles, their movement 
is in a plane parallel to the flux and the e.m.f. induced is zero. 
Fleming's Right Hand Rule (Sect.2.3) enables the direction of 
the e.m.f. to be determined. The sections of the loop, AD and 
BC contribute nothing because they too rotate in a plane 
parallel to the flux. 

For the purpose of diagrammatic illustration, OA, half of AD 
is considered as a rotating vector as projected to the right of 
the alternator in the figure and to the right of this the wave-
form is developed of generator output voltage, or equally, if 
the external circuit is closed, the current in OA. 

It will be seen that at 0° from position OA, the height of the 
wave is equal to PA2 and 

PA2 = sin 0 x OA = V sin 0 where V is the maximum 
voltage. 

Thus the waveform is considered sinusoidal because its height 
at any point is proportional to the sine of the angle through 
which it has turned. 

A 360° rotation of OA produces one complete wave. For 
certain calculations radians (360° = 2/r radians) or time scales 
are used. The time scale marked is the practical one for the 
public supply mains. 
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4.2 DEFINITIONS FOR SINUSOIDAL WAVEFORMS 

Amplitude or Peak Value 

is the maximum value of voltage or current either positive or 
negative. 

Average Value 
2 

E„ = — Emax = 0.637 Emu 
IT 

2 
lay = 

ir 

where Emax is the 
maximum value 
of voltage 

'max = 0.637 'ma, where 'max is the 
maximum value 
of current 

RMS Value 

The "root mean square" or "effective" value is that value 
which equals the value of a direct current which would 
dissipate the same power in a given resistor. 

Erms 
1 

= — Emax = 0.707 Emax 

1 
= — 'max = 0.707 1,,, 

Form Factor 

is the relationship between r.m.s. and average values 

1 

orr 
.*. Form Factor = —  = — 1.11 

2 2 V-2- 
ir 

If the circuit contains resistance only, Ohm's Law applies and 
the current is directly proportional to the voltage. 
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4.3 REACTANCE 

4.3.1 Capacitive Reactance 

The charge on a capacitor is in phase with the p.d. applied to it 
as shown in Fig.4.2. The current is proportional to the rate of 
change of charge and therefore follows the curve shown, 
leading the voltage by 90°. 

1 1 
Reactance Xc = = — 

27rfC coC 
ohms where f = frequency in Hz 

C = capacitance in 
farads 
= 2irf. 

The reactance falls with frequency as shown by Fig.4.3(i) and 
conventionally for impedance calculations is given a negative 
sign. 

For calculations and diagrams the phase differ-nce between 
voltage and current can be expressed by a vector, or phasor, 
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diagram, see Fig.4.3(ii) where Vc represents a voltage applied 
to a capacitor and lc represents the resultant current 90 
ahead as also shown in Fig.4.2. Phasors are considered to 
rotate anti-clockwise. 

150 

100 

Xc ohms 

50 

C =1}iF 

0 1 2 3 4 5 5 9 9 10 el 
kHz 

FIG. 4-3(i) Variation of Capacitive Reactance 
with Frequency 

IC 

90' vc 

FIG. 4-3(ii) Phosor diagram for Capacitance 

In electronic design an approximate idea of capacitive 
reactance values is frequently required, e.g. for by-pass or 
coupling capacitors. Table 4.1 is presented to enable a quick 
estimate to be made without the difficulty of reading fine lines 
on charts, nomographs etc. The table values are correct to four 
figures for the values and multiples of C and f as shown. Some 
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00 
o 

1.0 

1.1 

1.2 

1.3 

1.5 

1.6 

1.8 

2.0 

2.2 

2.4 

2.7 

3.0 

3.3 

3.6 

159.2 79.58 53.05 39.79 31.83 26.53 22.74 19.89 17.68 15.92 

144.7 72.34 48.23 36.17 28.94 24.11 20.67 18.09 16.08 14.47 

132.6 66.31 44.21 33.16 26.53 22.10 18.95 16.58 14.74 13.26 

122.4 61.21 40.81 30.61 24.49 20.40 17.49 15.30 13.60 12.24 

106.1 53.05 35.37 26.53 21.22 17.68 15.16 13.26 11.79 10.61 

99.47 49.74 33.16 24.87 19.89 16.58 14.21 12.43 11.05 9.947 

88.42 44.21 29.47 22.10 17.68 14.74 12.63 11.05 9.824 8.842 

79.58 39.79 26.53 19.89 15.92 13.26 11.37 9.947 8.842 7.958 

72.34 36.17 24.11 18.09 14.47 12.06 10.33 9.043 8.038 7.234 

66.31 33.16 22.10 16.58 13.26 11.05 9.474 8.289 7.368 6.631 

58.95 29.47 19.65 14.74 11.79 9.824 8.421 7.368 6.550 5.895 

53.05 26.53 17.68 13.26 10.61 8.842 7.579 6.631 5.895 5.305 

48.23 24.11 16.08 12.06 9.646 8.038 6.890 6.029 5.359 4.823 

44.21 22.10 14.74 11.05 8.842 7.368 6.316 5.526 4.912 4.421 



00 
1••+ 

3.9 

4.0 

4.3 

4.7 

5.0 

5.1 

5.6 

6.0 

6.2 

6.8 

7.0 

7.5 

8.0 

8.2 

9.0 

9.1 

10.0 

40.81 20.49 13.60 10.20 8.162 6.801 5.830 5.101 4.534 4.081 

39.79 19.89 13.26 9.947 7.958 6.631 5.684 4.974 4.421 3.979 

37.01 18.51 12.34 9.253 7.403 6.169 5.288 4.627 4.113 3.701 

33.86 16.93 11.29 8.466 6.773 5.644 4.838 4.233 3.763 3.386 

31.83 15.92 10.61 7.958 6.366 5.305 4.547 3.979 3.537 3.183 

31.21 15.60 10.40 7.802 6.241 5.201 4.458 3.900 3.467 3.121 

28.42 14.21 9.474 7.105 5.684 4.737 4.060 3.553 3.158 2.842 

26.53 13.26 8.842 6.631 5.305 4.421 3.789 3.316 2.947 2.653 

25.67 12.84 8.557 6.418 5.134 4.278 3.667 3.209 2.852 2.567 

23.41 11.70 7.802 5.851 4.681 3.901 3.344 2.926 2.601 2.341 

22.74 11.37 7.579 5.684 4.547 3.789 3.248 2.842 2.526 2.274 

21.22 10.61 7.074 5.305 4.244 3.537 3.032 2.653 2.358 2.122 

19.89 9.947 6.631 4.974 3.979 3.316 2.842 2.487 2.210 1.989 

19.41 9.705 6.470 4.852 3.882 3.235 2.773 2.426 2.157 1.941 

17.68 8.842 5.895 4.421 3.537 2.947 2.526 2.210 1.965 1.768 

17.49 8.745 5.830 4.372 3.498 2.915 2.499 2.186 1.943 1.749 

15.92 7.958 5.305 3.979 3.183 2.653 2.274 1.989 1.768 1.592 



Multiply Table Figures for Ranges of f and C as shown: 

00 

C 4. 

10-100 
Hz 

100-1000 
Hz 

1-10 
kHz 

10-100 
kHz 

100 kHz 
-1 MHz 

1-10 
MHz 

10-100 
MHz 

100 MHz 
-1 GHz 

1-10 pF x 105 x 107 x 106 x 105 x 104 x 103 x 102 x 10 

10-100 pF x 107 x 106 x 105 x 104 x 103 x 102 x 10 NIL 

100-1000 pF x 106 x 105 x 104 x 103 x 102 x 10 NIL ÷ 10 

.001-.01 biF x 105 x 104 x 103 x 102 x 10 NIL + 10 ÷ 102 

.01-0.1 µF x 104 x 103 x 102 x 10 NIL + 10 ÷ 102 ÷ 103 

0.1-1.0 IÀF x 103 x 102 x 10 NIL +10 ÷ 102 ÷*103 ÷ 104 

1-10 btF x 102 x 10 NIL + 10 ÷ 102 ÷ 103 ÷ 104 + 105 

10-100 µF x 10 NIL ÷ 10 ÷ 102 ÷ 103 + 104 ÷ 105 ÷ 106 

NIL — indicates no correction 

Table 4.1 Capacitive Reactance Values (ohms) 



approximation arises for other values which are obtained by 
interpolation. 

EXAMPLE: 
What is the reactance of a 68pF capacitor at 6 MHz? 

From Table 4.1 at C = 6.8 ,uF, f = 6 kHz, reactance = 3.901 ohms 

For C in the 10-100 pF range, multiply by 102 
" f " " 1-10 MHz " 

.'. Reactance = 3.901 x 102 = 390.1 ohms. 

EXAMPLE: 
What is the reactance of a 68pF capacitor at 6.5 MHz? 

In this case interpolation is necessary: 

At 6 MHz reactance is 390.1 ohms (as above) 
At 7 MHz " " 334.4 " 

6.5 MHz is half way between 6 and 7 MHz. 362 ohms is half 
way between 334 and 390 ohms Answer 362 ohms 

(This, in fact, is only 2 ohms, about 0.5%, inaccurate) 

4.3.2 Inductive Reactance 

The 'back e.m.f.' set up in an inductor by a changing current is 
proportional to the rate of change of that current. These two 
quantities are shown in Fig.4.4. 

The applied voltage y is at all times equal and opposite to the 
back e.m.f. and this too is shown on Fig.4.4 so that it can be 
compared with the current which it is seen to lead by 90°. 

The Reactance of an Inductor = XL = 27rfL = wL 

where f = frequency in Hz 
L = inductance in henrys 
w = 
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V 

Applied voltage Back emf Current 
/ /.•'.....:".../ 

/ \ 
\ 
\ 

/: i / 
/ 9Cr 360* / 

/ \ / 
/ \ / 

\....../ 

I FIG. 4-4 Relationship between Current, Back 

em,: and Applied Voltage for an Inductance 

XL is directly proportional to frequency as shown in Fig.4.5(i) 
and conventionally is given a positive sign. 

Fig.4.5(i) shows the phasor diagram for a pure inductance, 
VL representing the voltage applied and IL the current. 

,  

XL 
ohms 

70 

so 

50 

40 

30 

20 

10 

0 

- 

- 

- 

- 

_ 

4 6 6 7 
kHz 

1 21 3 8 9 10 f 

FIG. 4-5(i) Variation of Inductive Reactance 

with frequency 
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IL 

FIG. 4-5(11) Phosor diagram for Inductance 

Table 4.2 enables a quick estimate of inductive reactance to be 
made as in the capacitive case. Values for L are quoted in the 
range 1-10 mH with fin the range 1-10 kHz. Multiplication 
factors are given in the bottom section of the table. 

EXAMPLE: 
What is the reactance of a 6H choke at 50 Hz? 

From Table 4.2 for 6 mH at 5 kHz XL = 188.5 

For L in the 1-10 H range, 
fin the 10-100 Hz range 

multiply by 10. 

Then reactance of 6H choke at 50 Hz = 188.5 x 10 = 1885 ohms 

4.4 SERIES CIRCUITS 

4.4.1 Capacitance and Resistance 

Let a sinusoidal generator of frequency f be applied to a series 
circuit of capacitance C and resistance R as in Fig.4.6. V is the 
voltage applied and I the current and the component voltages 
are Vc and VR. 

Let the capacitive reactance = Xc 

1 
= — , where (.,) = 2ef 

coC 
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00 

Inductance 
L 

FREQUENCY f (kHz) 

1 2 3 4 5 6 7 8 9 10 (mH) 

1.0 6.283 12.57 18.85 25.13 31.42 37.70 43.98 50.27 56.55 62.83 
1.5 9.425 18.85 28.27 37.70 47.12 56.55 65.97 75.40 84.82 94.25 
2.0 12.57 25.13 37.70 50.27 62.83 75.40 87.96 100.5 113.1 125.7 
2.5 15.71 31.42 47.12 62.83 78.54 94.25 110.0 125.7 141.4 1.57.1 
3.0 18.85 37.70 56.55 75.40 94.25 113.1 132.0 150.8 169.7 188.5 
3.5 21.99 43.98 65.97 87.96 110.0 132.0 153.9 175.9 197.9 219.9 
4.0 25.13 50.27 75.40 100.5 125.7 150.8 175.9 201.1 226.2 251.3 
4.5 28.27 56.55 84.82 113.1 141.4 169,7 197.9 226.2 254.5 282.7 
5.0 31.42 62.83 94.25 125.7 157.1 188.5 219.9 251.3 282.7 314.2 
5.5 34.56 69.11 103.7 138.2 172.8 207.3 241.9 276.5 311.0 345.6 
6.0 37.70 75.40 113.1 150.8 188.5 226.2 263.9 301.6 339.3 377.0 
6.5 40.84 81.68 122.5 163.4 204.2 245.0 285.9 326.7 367.6 408.4 
7.0 43.98 87.96 131.9 175.9 219.9 263.9 307.9 351.9 395.8 439.8 
7.5 47.12 94.25 141.4 188.5 235.6 282.7 329.9 377.0 424.1 471.2 
8.0 50.27 100.5 150.8 201.1 251.3 301.6 351.9 402.1 452.4 502.7 
8.5 53.41 106.8 160.2 213.6 267.0 320.4 373.9 427.3 480.7 534.1 
9.0 56.55 113.1 169.6 226.2 282.7 339.3 395.8 452.4 508.9 565.5 
9.5 59.69 119.4 179.1 238.8 298.5 358.1 417.8 477.5 537.2 596.9 
10.0 62.83 125.7 188.5 251.3 314.2 377.0 439.8 502.7 565.5 628.3 



Multiply Table Figures for Ranges of f and L as shown: 

00 
••••3 

L , <f ,,,.. 

4 

10-100 
Hz 

100 Hz 
-1 kHz 

1-10 
kHz 

10-100 
kHz 

100 k.Hz 
-1 MHz 

1-10 
MHz 

10-100 
MHz 

100 MHz 
-1 GHz 

1-10 pH ÷ 105 ÷ 104 ÷ 103 ÷ 102 +10 NIL x 10 x 102 

10-100 uH ÷ 104 ÷ 103 + 102 ÷ 10 NIL x 10 x 102 x 103 

100 µ1-1-1 mH ÷ 103 ÷ 102 + 10 NIL x 10 x 102 x 103 x 104 

1-10 MH ÷ 102 4.10 NIL x 10 x 102 x 103 x 104 x 105 

10-100 mH ÷ 10 NIL x 10 x 102 x 103 x 104 x 105 x 106 

100 mH-1 H NIL x 10 x 102 x 103 x 104 x 105 x 106 x 107 

1-10H x 10 x 102 x 103 x 104 x 105 x 106 x 107 x 108 

10-100 H x 102 x 103 x 104 x 105 x 106 x 107 x 108 x 109 

NIL — indicates no correction 

Table 4.2 Inductive Reactance Values (ohms) 



The phasor diagram is set up using as a reference, a line 
representing I because this is common to both C and R — the 
line is OI in Fig.4.7. 

VR 

111 

Vc _ _ _ _ _ _ _ 

FIG. 4-? Phosor diagram for C and Rin Series 

VR is in phase with I and is marked on 01 according to its 
value VR = IR. 

Vc = IX c is also drawn to scale at right angles to CH, lagging 
by 90°. 

Then the resultant of Vc and VR is the phasor OV and from 
Pythagoras' Theorem 

(0V)2 = (OVR)2 +(0Vc)2 equivalent to V2 = V + 

in the circuit 

Hence V = N/Vg + NT 
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and the angle 0 by which the resultant voltage V lags on the 
current is given by 

Vc 
tan 0 = — 

VR 

From (1), since VR = IR and Vc = IXc 

V = I s/122 + 

(2) 

V 
— = Z = N/R2 + 3C where Z is the ratio of voltage 

to current for the series circuit and is known as the impedance. 

XC 
From (2) tan 0 = — 

R 

Thus the circuit of Fig.4.6 has an impedance of N/R2 + )( 
with a negative phase angle (the circuit is capacitive) 
equal to tan-' (Xc/R). 

Impedances may therefore be calculated or measured graphic-
ally by drawing for example Fig.4.7 to scale, Xc being obtained 
from Table 4.1. The latter method can be facilitated by use of 
a special chart, see Sect.4.6. 

4.4.2 Inductance and Resistance 

Fig.4.8 shows a resistance and inductance in series with both 
voltages and currents as marked. 

Let the inductive reactance = XL (= coL, where co = 27rf). 

As in the capacitive case (Sect.4.4.1), the current is common 
to both components and OI is drawn as the reference phasor as 
in Fig.4.9. 

VR is in phase with I and is marked on CM according to its 
value, VR = IR. 
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O VR 

FIG. 4-9 Phosor diagram for Inductance and 

Resistance in Series 

VL = IXL is also drawn to scale at right angles to CH, leading 
by 90°. 

Then the resultant of VL and VR is the phasor OV and from 
Pythagoras' Theorem 

(OV)2 = (OVR)2 + (OVL)2 equivalent to V2 = Vk + 

in the circuit 

Hence V = NiVk + 

and the angle 0 by which the resultant voltage V leads the 
current is given by 

(1) 

90 



VL 
tan 0 = —  

VR 

From (1) since VR = IR and VL = IXL 

V = IN/le + 

(2) 

V 
Z = N/R2 + Xi, where Z is the ratio of voltage to 

current for the series circuit and is known as the impedance. 

XL 
From (2) tan 0 = — 

R 

Thus the circuit of Fig.4.8 has an impedance of N/12.2 + XL 
with a positive phase angle (the circuit is inductive) equal 
to tan (XL/R). 

Impedances may therefore be calculated or measured graphic-
ally by drawing Fig.4.9 to scale, XL being obtained from 
Table 4.2. The latter method can be facilitated by use of a 
special chart, see Sect.4.6. 

4.4.3 Capacitance, Inductance and Resistance 

The reasoning here follows directly from the two preceding 
sections (4.4.1 and 4.4.2). 

Because the current leads the voltage in a purely capacitive 
circuit and lags in a purely inductive one, in both cases by 90°, 
it is clear from Fig.4.10 which shows a phasor diagram of a 
hypothetical circuit having a combination of both, that they 
are in direct opposition and therefore in the diagram subtrac-
tive, the net arithmetical reactance being positive or negative 
according to which of the component reactances is the greater. 

In Fig.4.10 VL and Vc are first.drawn as in the preceding 
sections and the equivalent phasor diagram follows where VL 
has been subtracted from Vc, leaving the circuit with a net 
capacitive reactance and a small resultant voltage V lagging on 
the current and given by 
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V = i(Xc - XL) 

But this is not a practical circuit therefore R must be intro-
duced (at least to account for the winding resistance of the 
inductor) which gives a further voltage component as before 
in phase with the current, the resultant phasor diagram being 
re-drawn in Fig.4.11. 

Thus, as reasoned in the preceding sections: 

Z = '/R2 + (XL — Xe)2 and 0 = tan' (XL — XC)  

FIG. 4-10 Phosor diagrams for Capacitance 

and Inductance in Series 
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When X.c happens to be greater than XL (as in Fig.4.11), Z is 
positive because the square of (XL - Xc) is positive, but 0 is 
negative showing that the voltage lags on the current. 

EXAMPLE: 
What is the impedance of a series combination of resistor, 
100 ohms, capacitor, 20 µF and inductor, 0.8 H at 50 Hz? 
What current flows if a voltage of 240 is applied at this 
frequency? 

R = 100 ohms, C = 20 µF, L = 0.8 H 

From Table 4.1 Xc at 50 Hz = 159.2 ohms 
" Table 4.2 XL at 50 Hz = 251.3 ohms 

Then (XL - Xc) = 92.1 ohms 

Z = N/1002+92.1 2 = 136 ohms 

92.1 = tan-' = 42.65° 
100 

(Reasonably accurate results without the above calculations 
can be obtained by use of the chart given in Sect.4.6). 

Current for 240V applied: 

V 240 LO° 
I = =   - 1.76 L-42.65° 

Z 136 L42.65° 

(Note Multiplication of vectors: r1L01 x r2LØ2 = rir2/ 01+02  

r L01 
Division r2L02 — L01 - 02 r2 

je current is 1.76 amps, lagging on the voltage by 42.65°. 

The complete solution as a phasor diagram is given in Fig. 4.12. 

The current I which is common to all components is unknown. 
Thus any convenient scale is chosen eg for I = 1 amp, then all 
voltages take on the same numerical values as the resistances or 
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reactances across which they are developed. By drawing 
these. the phasor V is produced at the correct angle to 01 but 
for a current of 1 amp. However, only the angle between V 
and I is necessary to determine one if the other is known, 
thus 240V is scaled onto the phasor for V from which, as 
shown, the value of IR is determined, hence of I by dividing 
by R. 

4.5 PARALLEL CIRCUITS 

4.5.1 Capacitance and Resistance 

A resistor in parallel with a capacitor is shown in Fig.4.14 with 
appropriate currents and voltage marked. 

94 



fe 

FIG. 4-13 Capacitance and Resistance 

in Parallel 

0 IR 

FIG. 4-14 Phosor diagram for Capacitance 
and Resistance in Parallel 

Let Xc = —1 be the reactance of the capacitor at frequency f. 
wC 

The quantity common to both C and R is the voltage V and 
the phasor diagram can be drawn with OV as the reference as 
in Fig.4.14. 

The current in R is in phase with V and is therefore marked 
along OV 

V 
as IR = — 

R 
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The current in C leads V by 90° and is equal to 

V 
— (= VwC) 
XC 

this is drawn vertically to scale from 0 as shown. 

Then the resultant current is CH, leading V by an angle 0. 

From Fig.4.14 

= ik+ 

V 

R.Xc 
from which Z =   

/R2 + 

V 

IC Xc R 
and tan 0 = — = —  

IR V Xc 
je 0 = tan -2 

XC-

1 
Xc can be calculated from — or obtained directly from 

27rfC 
Table 4.1 and hence Z and O calculated. 

4.5.2 Inductance and Resistance 

An inductor in parallel with a resistor is shown in Fig.4.15 
with appropriate currents and voltage marked. 

(1) 

(2) 

Let XL(= coL) be the reactance of the inductor at frequency f. 
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FIG. 4-15 Inductance and Resistance 

in Parallel 

FIG. 4-16 Phosor diagram for Inductance 

and Resistance in Parallel 

V 
IR = — is in phase with V, 

R 

V 
IL ' — lags on V by 90°. 

XL 

The resultant current is represented by 01 and 

As with capacitance in the previous section, the quantity 
common to both components is the voltage V, and the phasor 
diagram is set up on OV as the reference as in Fig.4.16. 
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iv V 
I = —R2 + —x2 

RXL , R 
from which Z —    and = tan— — 

N/122 + XL 

4.5.3 Capacitance, Inductance and Resistance 

The circuit, which is shown in Fig.4.17 is certainly the most 
complex of those examined so far, even though as a representa-
tion of a practical parallel circuit, no resistance has been 
allowed for in the capacitive branch. In fact full analysis of the 
complete circuit (i.e. resistance in both branches) involves 
mathematics beyond the scope of a "workshop manual". 

FIG. 4-17 Capacitance. Inductance and 

Resistance in POMIlel Arrangement 

However, the circuit as shown is an extremely important one 
because of its inestimable value when resonant, (see Sect. 4.7). 
It is not proposed to examine the circuit in great depth in this 
section as many of its features are brought out in the later one. 
Sufficient here to quote the impedance formulae and to go 
through the steps of the much more practical phasor diagram. 
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I  

IZI = /( R )2 ( coL 2 
— coC) 

R2 (02 1,2 R2 + W21,2 

0 = tan' 

( wL 
R2 + w2 — (-̀ )C) 

R  

R2 + 6)2 L2) 

Phasor Diagram 

A practical example will show the simplicity and clarity of the 
method compared with calculation. 

Suppose the values are as follows, with reactances from Tables 
4.1 and 4.2 

f = 200 IcHz 
C = 100 pF, .*. Xc = 7960 ohms 
L = 3 mH, .". XL = 3770 ohms 
R = 1000 ohms 

Although V is common to both parallel paths, its relationship 
to IL is not known, therefore it is perhaps better to commence 
with IL as the reference phasor which is marked in Fig. 4.18 as 
OIL, for convenience IL is given the value of 1 mA. 

IL gives rise to two voltages in series, VR and VL and these are 
accordingly constructed to scale on OIL giving OVR and OVL 
as shown, their resultant being OV, leading IL by the angle 01. 

By measurement V = 3.9 volts and 01= 75°. 

At this stage, having obtained the relationship between V and 
IL, V becomes a second reference phasor and the relationship 
between IL and lc has to be determined to obtain the total 
current I. 

V i Since Ic = „— , this s calculated to be 0.49 mA which is 
Ac 
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marked out as the phasor OIc leading V by 90°. Completion of 
the parallelogram on OIL and OIc enables the Iphasor OI to be 
drawn which measures 0.54 mA lagging on V by 62°. 

So, from the phasor diagram: 

V  3.9 L75°  
Z - - - 7220 L62° ohms. 

I (0.54 x 10 -3) L13° 

Summing up, the phasor diagram gives a complete picture of all 
the relative circuit conditions at once — for IL = I mA. For 
any other values, the scale is altered or the values multiplied 
or divided accordingly e.g. for an applied voltage V = 0.1v, all 
phasor values are divided by 39. The diagram is equally useful 
for a study of the effects of changes which may be made. 

4.6 SIMPLIFIED IMPEDANCE EVALUATION 

The impedance triangle can be readily solved by use of the 
special chart of Fig.4.19. Although slightly more approximate 
than the careful drawing, the accuracy is usually sufficient and 
furthermore it enables an especially quick answer to be 
obtained. It is also of use as a rapid check on calculations of 
impedance to ensure that decimal points, noughts etc. have 
not be misplaced. 

The intersection of lines drawn from the R and X axes at the 
appropriate values marks the end of the vector for Z, drawn 
from 0. The magnitude of Z is scaled by the circle quadrants 
which have their values marked on both the R and the X axes. 
Some interpolation between the nearest circle quadrants may 
be necessary but note that the distance between adjacent ones 
along any impedance vector is on the same scale as R or X and 
therefore a small piece of card or paper may be scaled for easy 
sub-division. The angle of the impedance is read off the circle 
quadrant so marked. 

To take a simple, known example, let R = 30 ohms, 
X = 40 ohms — their two vectors intersect on the circle 
quadrant marked 50 ohms (as would be expected from a 
3, 4, 5 triangle). 
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All values may be multiplied or divided together by multiples 
of 10 as required and this caters for all combinations of R and 
X when the ratio between them is less than 10:1. If the ratio 
happens to be greater than 10:1, calculation is probably 
unnecessary because the value of Z will be found to lie within 
0.5% of R or X whichever is the greater and the angle is very 
small, je the circuit is almost wholly resistive or reactive. 

EXAMPLE: 
A resistor of 200 ohms is connected in series with a capacitor 
of 0.1 µF. What is the impedance of the combination at 
5 kHz? 
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From Table 4.1 Xc = 318.3 ohms 

Fig.4.19 at R = 20, X = 31.8, Z = 37.5 
for R = 200, X = 318, Z = 375. 

Also 0 = 58°. Since the circuit is capacitive, the angle is 
negative, 

.". Impedance of combination = 375 L-58° 

4.7 RESONANT CIRCUITS 

4.7.1 Resonant Frequency 

A second glance at Fig.4.11 shows that an interesting condition 
occurs in the C,L,R circuit when Vc = VL and hence 
Vc — VL = 0, there is then no phasor at 90° lag or lead on the 
the reference phasor. The applied voltage and current are in 
phase and the impedance is at its lowest and equal to the 
resistance R. This is a series resonant circuit and resonance 
occurs when XL = Xc i.e. 

1 1 
= —, co — 

coC 

1 
T 2 n .07—£ 

where fr is the frequency of resonance. 

Because XL increases with frequency, and Xc falls, then at 
frequencies above fr the circuit has a net inductive reactance 
(positive) conversely at frequencies below fr there is a net 
capacitive reactance (negative). 

The parallel circuit is more complicated, it has not the 
advantage of the series circuit in that VL and Vc are directly 
additive. If the condition for reasonance is defined as that in 
which the current is in phase with the applied voltage, i.e. the 
circuit exhibits no net reactance, it will be found that XL and 
Xc are not quite equal. 
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By use of operator j (complex algebra) the resonant frequency 
fr can be most easily established, see Fig.4.17 

V 
I = IL + lc —   + j VwC 

R + jcol, 

which, by rearrangement and equating the j terms to zero (i.e. 
no net reactance) gives 

1 1 1 R2 f = 
r 2rr LC L2 

It may help in understanding the complexities of the voltages 
and current conditions if the exercise of Sect.4.5.3 is repeated 
for the resonant frequency, see Fig.4.20. The component 
values are unchanged but the frequency has been altered to 
the resonant one, 285.7 kHz. 

Again, choosing 1 mA for IL, the reference phasor is 
determined 

VL (= IXL = 5.385 V) is drawn, leading IL by 90° 
VR (= IR = 1.0 V) is marked along OIL, being in phase. 

Then OV is the resultant voltage phasor, with measured value 
5.47 V. 

V 
On OV as a second reference, IC =— = 0.982 mA is drawn, 

XC leading by 90° 

Completion of the parallelogram 0,Ic,I,IL, shows that I, the 
resultant of IL and lc falls on the phasor OV, i.e. the applied 
voltage and the current it produces are in phase. 

It will be further seen that if, for example, a coil were available 
of known values of L and R, and the value of C were required 
for tuning to a given frequency, this could be determined from 
a phasor diagram of the type of Fig. 4.20. The unknown phasor 
would be the length of OIc (at right angles to the phasor V) 
which would be obtained by completion of the 0,1c,I,IL, 
parallelogram. From the length of 01E, converted to mA, the 
value of C may be determined: 
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C = — x 10 -3 farads = — x 109 pF 
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Approximations 

In the above example, a high value for R has been used simply 
to aid demonstration by vector diagram. In practice the 
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resistance of the inductor would more likely be in the 
30-50 ohm range at the resonant frequency. It can be shown 
that provided that R is not greater than about 0.1 of coL (and 
in the practical case of 50 ohms, this is only about 0.01 of coL), 
the term R2/L2 in the expression for fr can be ignored for a 
loss of accuracy of 1% at the most. This is rather fortunate 
because the value of R is sometimes difficult to determine and 
varies with frequency (see Skin Effect, Sect.4.9). In this case 
the formula reduces to 

1 
f = 2/r VÍ as in the series case, 
r T,C 

so, with this approximation, resonance for both series and 
parallel circuits can be defined as the frequency at which the 
inductive and capacitive reactances are equal in magnitude and 
therefore cancel (the formula arises from this concept, 
Sect.4.7.1). 

So far in this section, resonance has been defined in two ways: 

(1) when the applied voltage and its current are in phase, 
more correctly termed "phase resonance". At this 
frequency the impedance is purely resistive 

(2) when XL = Xc, the approximation developed directly 
above and used to generalize over both series and parallel 
arrangements. 

There is a third: 

(3) Amplitude Resonance — this occurs in a parallel circuit 
when the impedance is maximum, the frequency is 
slightly higher than for phase resonance and the mathe-
matical expression for this is even more complicated. 

These can be confusing but it is important to remember that 
whichever definition is used, fr will not be appreciably 
different, therefore in practical work, very little is lost if the 
differences are ignored. 

Table 4.3 gives values of fr for a wide range of values of L and 
C when these commence with a single integer — if the actual 
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values lie between the table values, the table is still useful as a 
guide or as a check on calculations. 

EXAMPLE: 
What is the approximate resonant frequency of the circuit 
shown in Fig.4.17 if C = 100 pF, L = 3 mH and R is small? 

From Table 4.3 at C = 1, L = 3 

A figure = 91.888 B figure = 290.58 

From lower table for L within 1-10 mH range and C within 
100-1000 pF range, multiple B figure by 10i. 

S. Resonant frequency = 290.58 kHz 

Note that the range for C could have been chosen as 10-100 pf, 
in which case the figures at the bottom of the first table would 
be used, these give 

A figure 29.058 B figure 91.888 

Then, from lower table for L within 1-10 mH ranee and C 
within 10-100 pF range, multiply A figure by 10', giving 
the same answer. 

4.7.2 Impedance at Resonance 

Series Circuit 

At resonance a series circuit has minimum impedance, which 
is, in fact resistive and equal to the value of the resistance. 
From Sect.4.4.3 

Z = N/R2 )(c)2 = tan -1 ()(L— 

but since at reasonance XL = Xc, (XL — Xc) = 

Then Impedance at Resonance: Zr = R Or = 0° 
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o 
oo 

-). 

C 4, 

2 3 4 5  

A B A B A B A B A B 

1 159.15 503.29 112.54 355.88 91.888 290.58 79.578 251.65 71.175 225.08 

2 112.54 355.88 79.577 251.64 64.974 205.47 56.270 177.94 50.329 159.15 

3 91.888 290:58 64.974 205.47 53.052 167.76 45.944 145.29 41.093 129.95 

4 79.578 251.64 56.270 177.94 45.944 145.29 39.789 125.82 35.588 112.54 

5 71.175 225.07 50.329 159.15 41.093 129.95 35.588 112.54 31.831 100.66 

6 64.974 205.47 45.944 145.29 37.514 118.63 32.487 102.73 29.058 91.888 

7 60.155 190.23 42.535 134.51 34.730 109.83 30.077 95.113 26.902 85.071 

8 56.270 177.94 39.789 125.82 32.487 102.73 28.135 88.971 25.165 79.578 

9 53.052 167.76 37.514 118.63 30.630 96.859 26.526 83.881 23.725 75.026 

10 50.329 159.15 35.588 112.54 29.058 91.888 25.165 79.578 22.508 71.175 



L «.,-> 

C 4, 

6 7 8 9 10  

A B A B A B A B A B 

1 64.974 205.47 60.155 190.23 56.270 177.94 53.052 167.76 50.329 159.15 

2 45.944 145.29 42.535 134.51 39.789 125.82 37.514 118.63 35.588 112.54 

3 37.514 118.63 34.730 109.83 32.487 102.73 30.630 96.859 29.058 91.888 

4 32.487 102.73 30.077 95.113 28.135 88.971 26.526 83.881 25.165 79.578 

5 29.058 91.888 26.902 85.071 25.165 79.578 23.725 75.026 22.508 71.175 

6 26.526 83.881 24.558 77.660 22.972 72.643 21.658 68.489 20.547 64.974 

7 24.558 77.660 22.736 71.898 21.268 67.255 20.052 63.409 19.023 60.155 

8 22.972 72.643 21.268 67.255 19.894 62.911 18.757 59.313 17.794 56.270 

9 21.658 68.489 20.052 63.409 18.757 59.313 17.684 55.921 16.776 53.052 

10 20.547 64.974 19.023 60.155 17.794 56.270 16.776 53.052 15.915 50.329 



MULTIPLY COLUMN A or B FIGURES AS SHOWN: 

L —> 
C y ,,,,......„ 

1-10 pH 10-100 pH 100-1000 µH 1-10 mH 10-100 mH 100-1000 mH 1-10 H 

A B A B A B A B A B A B A B 

1-10 pF 106 105 105 104 104 103 103 

10-100 pF 105 105 
104 io4 103 103 102 

100-1000 pF 105 
104 i 04 103 103 102 102 

0.001-0.01 µF 
104 104 103 103 102 102 10 

0.01-0.1 µF 104 103 103 102 102 10 10 

0.1-1.0 µF 103 103 102 102 10 10 NIL 

1-10 µF 103 102 102 10 10 NIL NIL 

1 
fr —   Hz 

2ir ••,/ LC 
where fr = resonant frequency 

L = Inductance in Henrys 
C = Capacitance in Farads. 

Table 4.3 Resonant Frequencies (Hz) for Range of Values of L and C 



Parallel Circuit 

Consider the circuit of Fig.4.17 (i.e. an inductance with its 
series resistance in parallel with a capacitor, assumed to have 
no loss). 

As shown in the previous section: 

V 
I -  + jVc4C 

R + jwt. 

At resonance it is only necessary to solve for the in-phase 
component (since I has no reactive component). 

VR  
Then I - where cor = 27rfr 

R2 + 41,2 

V R2+ w,2L2  
Z - - 

But fr = 
1 1 R2 

2/r LC L2 

1 R 2 
• 2 

LC L2 

.'. Impedance at Resonance Zr = — ohms 
CR 

which is a pure resistance, i.e. Or = 

EXAMPLE: 
(1) What is the impedance of the tuning circuit shown in 

Fig.4.21 at the resonant frequency of 1185.9 kHz? 

Impedance at resonance, Zr = —L 
CR 

90 x 10 -6 

200 x 10-'2 x 50 

= 9,000 ohms 
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(2) What is the resonant frequency and impedance at 
resonance if L, R and C are all connected in series? 

1  
f — 
r 2/rVÍT 290 x 10-6 x 200 x 10 -12 

= 1186.3 kHz 

which again demonstrates that use of the series formula 
sacrifices little loss of accuracy. 

1 

Impedance at resonance Zr = R = 50 ohms. 

This example demonstrates an important point with regard to 
impedances of series and parallel circuits, i.e. the former have 
a low impedance at resonance whereas the latter have a high 
impedance. In fact, as R tends to zero, the series impedance 
also tends to zero whereas the parallel one tends to infinity. 

4.7.3 Q-Factor 

This is a measure of the quality of a component or circuit 
when carrying an oscillating current. It is defined as 

Q 
Energy dissipated during one cycle 

2tr x (maximum energy stored during one cycle) 
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Q-Factor of Inductor 

Let an inductor be represented by an inductance, L in series 
with a resistance, R. Suppose a sinusoidal (r.m.s.) current, 
I flows, then the maximum current = „,/7i and maximum 
energy stored 

= L(N/-2-I)2 joules = LI2 joules 

and the energy lost in one cycle of duration t (= —1)secs. 
f 

12R 
= — joules 

f 

2irLI2f wL 
Then Q — 

12R _ R 

An idea of the variation of Q with frequency of an inductor is 
shown in Fig.4.22. 

F16. 4-22 Variation of Inductor 0 with 
frequency 

At low frequencies Q increases as wL increases (i.e. directly 
proportional to frequency) but skin effect at higher frequencies 
causes R to increase approximately proportional to Nfi, thus Q 
varies as f/Nff--= ,./T. The curve follows this law until the 
shunting, effect of the reactance of the capacitance between 
the coil winding turns (self-capacitance of the coil) increasingly 
reduces the effect of col, until the latter becomes completely 
cancelled and Q falls to zero. At this point the inductor is 
self-resonant. 
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Q-Factor of Capacitor 

Similar reasoning to that shown above gives 

1 
Q - 

coCR 

Q-Factor of Series Resonant Circuit 

corL 
Q = where fr = frequency of resonance 

R cor = 27rfr 

L 1  
since cor — 

Another important feature of Q follows: 

At resonance, if VL and Vc are the voltages across the 
inductor and capacitor respectively, 

VcoL 
VL = IcoL — R = QV 

and Vc = VL = QV 

i.e. the voltages across both inductor and capacitor are Q times 
the applied voltage, hence Q expresses the "magnification 
factor" of the circuit. 

EXAMPLE: 
If the tuning circuit of Fig.4.21 is arranged as a series circuit 
and a signal of 1 mV is applied from the aerial at the resonant 
frequency of 1186.3 kHz, what voltage is developed across the 
capacitor? 

1 L 
(Or 

_ corL) 1 90 x 10' _   

R 50 200 x 10 -12 
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= 2NF-1-.5 = 13.42 

Then voltage across capacitor (or inductor) = 1 x 13.42 mV 
= 13.42 mV 

i.e. an aerial signal of 1 mV has been magnified to over 13 mV, 
a much more useful signal to apply to subsequent stages of a 
receiver. 

Generally, by making the not unreasonable approximation 
that the capacitor has no loss, at resonance, the Q-factor of the 
series circuit is equal to the Q-factor of the inductance. 

Q-Factor of Parallel Resonant Circuit 

Considering the parallel circuit with a no-loss capacitor 
(Fig.4.17), it can be shown that the maximum energy stored 
in the inductor is equal to the maximum stored in the 
capacitor. The Q-factor of an inductor has been shown to be 
equal to wrL/R at resonance, and it is also equal to the 
Q-factor of the parallel circuit. 

Furthermore, provided that Q is not very low (less than about 
10), the currents in the two branches are each approximately 
Q times the supply current, i.e. Q is a current "magnification 
factor". 

Q-Factor of Quartz Crystals 

If an electrical charge is applied in a certain manner to a quartz 
crystal, the piezo-electric effect results in a mechanical stress 
being produced. Thus if an alternating voltage is applied, the 
crystal will vibrate and if the frequency of the applied voltage 
is near to that at which mechanical resonance arises in the 
crystal, the amplitude of the vibration will be large. An 
equivalent electrical LCR circuit can be determined for any 
crystal such that the equivalent L and C resonate at the same 
frequency as the crystal. Thus Q-factor is appropriate to a 
quartz crystal as shown in the following typical example, see 
Fig.4.23 
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EIG.4-23 Equivalent circuit of typical 
Quartz Crystal 

1  
fr of series resonant circuit = _ 

2ruff--.,C 2rrN/120 x .03 x10 -42 

= 83.898 kHz 

I 

1 IT, 1 j 120  
Q = - —= R C 8000 .03 x10-12 = 7906 

thus demonstrating the very high magnification factors (Q) 
obtainable, in fact, modern crystals are capable of Q-factors of 
up to 500,000. In addition, of course, the high stability of 
resonant frequency is a great asset. 

4.7.4 Selectivity 

Definition: 

The degree to which a circuit which resonates at one frequency 
responds to other frequencies is known as selectivity. It is thus 
a measure of the rejection of frequencies other than the 
required one. 
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Series Circuits: 

The response of a typical series circuit through its resonant 
frequency fr is indicated in Fig.4.24 which shows the current I 
at constant voltage but at various frequencies. The change in 
phase angle between current and voltage is also shown. 

The formulae for Z and 0 are shown in Sect.4.4.3 and since 
I = VIZ 

V (XL—,q 
I -    han-i 

N/R2 + (XL — ›Cc)2 / - R )  

At resonance XL — Xc = 0 

V 
thus the current at resonance, I, = —R LO° 

At frequencies below fr Xc > XL therefore current leads voltage 
)5 9, above fr XL> Xc >, current lags on " 

At two particular frequencies fb and fa, below and above 
resonance 

(XL — X()2 = R2 

V ViV V 
= — = 0.707 — = 0.707 Ir 

N/2R2 2R R 

and the phase angle between I and V is tan-' ±1 = ±45° 

which easily determines two points other than Ir on the 
selectivity curve as shown in Fig.4.24. 

The power at either fb or fa is given by 

P = VI cos 0 

and the circuit power ratio at fb or fa compared with fr is 

VI cos 0  
where I cos 0 relates to fb or f, 

VIr cos Or 
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0 fb fr fa 

Current leads voltage 

f -iii. 

/ I 
Current lags on voltage 

FIG. 4-24 Current and Phase Angle for Series circuit 



= 0.707 x 0.707 = 0.5 

which in decibels is 10 log10 0.5 = —3.010, say —3 dB. 

Hence the general terms for the frequencies fb and f, are the 
lower and upper half-power frequencies respectively, or the 
"3 dB points". 

This also happens to be a convenient level on the curve to 
specify the bandwidth (i.e. fa— fb), especially since it can be 
simply related to Q as follows: 

By definition at fb and fa, if the appropriate angular velocities 
are cob and co, 

1 1 
‘obL   R coaL — — — R 

wbC coaC 

from which 

coa 
_ R 
- — cob 7 

(0a — cob 

cor corL 

. fa —  = 
fr 

fr 
i.e. the Bandwidth at the 3 dB points = - 

Q 

showing simply that as Q increases, the bandwidth falls but the 
curve becomes steeper and hence selectivity improves. This is 
demonstrated in Fig.4.25 where three curves plotted through 
the resonant frequency of 1000 kHz are shown for various 
values of Q. The response scale represents the fall in current 
for a fixed applied voltage as the frequency deviates from fr. 

The response is most usefully shown in decibels because, in 
radio receivers especially, more than one tuned circuit is 
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usually needed to provide sufficient selectivity and the rejec-
tion factors for each individual tuned circuit are then additive. 
The rejection factor for an unwanted signal is obtained thus: 

Consider, for example a series tuned circuit with a voltage 
applied at fr = 1000 kHz and Q = 100 as shown in Fig.4.25. 

960 970 980 990 1000 1010 1020 1030 
Frequency, kHz 

FIG. 4-25 Bandwidth vs Selectivity in a 

Series Resonant circuit 
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Let an unwanted signal appear at the same level but at a 
slightly different frequency, say 990 kHz. Then from the 
curve for Q = 100 it is evident that the current for the 
unwanted signal is 7dB down on that for the wanted signal, 
i.e. the rejection factor is 7 dB. If these two signals are fed to a 
second similar tuned circuit, then the output of the latter will 
contain the two signals but now separated by 14 dB. 

Variation of Selectivity with Q 

From the curves of Fig.4.25, a frequency deviating from fr by 
±-10 kHz results in a circuit current lower than that at fr by 
approximately 

7 dB for Q = 100 
3 dB for Q = 50 
0.7 dB for Q = 20 

which is evidence enough that selectivity improves as Q 
increases. 

Variation of Bandwidth with Q 

Again from the curves, the approximate bandwidth measured 
at the 3 dB points as shown, is 

For Q= 100, width of band is from 995-1005 kHz = 10 kHz 
Q = 50 " " " " " 990-1010 = 20 kHz 
Q = 20 " " " " 975-1025 = 50 kHz 

all of which satisfy the formula above, bandwidth = fr/Q and 
clearly the higher the value of Q, the lower the width of the 
pass band. 

Thus the design of a tuned circuit is a compromise between 
bandwidth and selectivity. In a radio receiver for example, the 
bandwidth depends on the information being transmitted, 
i.e. speech, music, telegraphy, data, TV while the selectivity 
depends on the proximity of other adjacent unwanted signals. 

Note also that 
corL 

Q = 
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1 L 
and since cor = , Q = 1 — — showing that Q „rrE R C 

is also affected by the ratio of inductance to capacitance, a 
further factor on which design depends. 

Simplified Calculation of Resonance Curves 

The full calculations involved in determining each point on a 
resonance curve (as in Fig.4.25) are lengthy thus a method for 
quick calculation is useful for the serious experimenter who 
wishes to determine the compromise mentioned above or 
examine differences in design. For very little loss of accuracy, 
Table 4.4 can be used to plot any curve provided that fr and Q 
for the series circuit are known. 

The main approximation arises from the assumption that Q 
does not vary over the range of frequencies near resonance. 
The actual variation can be shown to be very small. 

Suitable methods, not requiring expensive equipment, for 
measurement of Q are suggested in Sect.6.2.3. 

The only calculations required are to find the value of a 
factor d for each point to be plotted, and this is done for one 
side of resonance only since the other side is a mirror-image, 
thus 

Let 6 = the frequency deviation from resonance in Hz (or a 
multiple) 

Then d = — x Q provided that fr is expressed in the same 
fr multiple as 6 (i.e. Hz, kHz, MHz). 

e.g. at 990 kHz, with fr = 1000 kHz 6 = 1000 —990 = 10 kHz 

10 
d = — x Q = .01 Q 

1000 

Table 4.4 is subsequently used to obtain either the current 
ratio or the response relative to that at resonance in decibels, 
for the range of values of d. 
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As an example, the curves of Fig.4.25 were plotted from 
Table 4.4 as below: 

EXAMPLE: 
Plot the selectivity curve for a series tuned circuit having 
fr = 1000 kHz and Q = 50. 

-Q = 0.05. The following table is then constructed: 
fr 

d Current 
Ratio, K* 

Response 
dB 

(20 log10 K) 
(all values -) 

d Current 
Ratio, K* 

Response 
dB 

(20 log. K) 
(all values -) 

.02 0.9992 .006 0.44 0.7507 2.49 

.04 0.9968 .028 0.45 0.7433 2.58 

.05 0.9950 .044 0.46 0.7359 2.66 

.06 0.9929 .062 0.48 0.7214 2.84 

.08 0.9875 0.11 0.50 0.7071 3.01 
0.1 0.9806 0.17 0.55 0.6727 3.44 
0.12 0.9724 0.24 0.60 0.6402 3.87 
0.14 0.9629 0.33 0.65 0.6100 4.29 
0.15 0.9579 0.37 0.70 0.5812 4.71 
0.16 0.9524 0.42 0.75 0.5547 5.12 
0.18 0.9409 0.53 0.80 0.5300 5.51 
0.20 0.9285 0.65 0.85 0.5070 5.90 
0.22 0.9153 0.77 0.90 0.4856 6.28 
0.24 0.9016 0.90 0.95 0.4657 6.64 
0.25 0.8945 0.97 1.0 0.4472 6.99 
0.26 0.8872 1.04 1.1 0.4138 7.66 
0.28 0.8725 1.19 1.2 0.3846 8.30 
0.30 0.8575 1.33 1.3 0.3590 8.90 
0.32 0.8422 1.49 1.4 0.3363 9.47 
0.34 0.8269 1.65 1.5 0.3162 10.00 
0.35 0.8192 1.73 1.6 0.2983 10.51 
0.36 0.8116 1.81 1.7 0.2822 10.99 
0.38 0.7962 1.98 1.8 0.2676 11.45 
0.40 0.7809 2.15 1.9 0.2545 11.89 
0.42 0.7657 2.32 2.0 0.2425 12.31 

* for Series Circuit 1-1 for Parallel Circuit. 
Ir I 

Table 4.4 Data for Simplified Calculation of Resonance Curves 
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Col. 1 
5 = 

Deviation from 
fr, kHz 

Col. 2 
d = 

Column 1 x 
?r 

(Column 1 x .05) 

From Table 4.4 

Current Ratio Response, dB 

0 

tr) 
—
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 e
n
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'
f
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r."- °
0
 
0
\
 0
.
 —:
 (in-*: "el s

 O. 
0
 Cd. 0

 d
 o
 d
 0
 C; C; c; 

' N
 

1 0 
2 0.98 -0.17 
4 0.93 -0.65 
6 0.86 -1.33 
8 0.78 -2.15  

10 0.71 -3.01  
12 0.64 -3.87  
14 0.58 -4.71  
16 0.53 -5.51  
18 0.49 -6.28  
20 0.45 -6.99  
22 0.41 -7.66  
24 0.38 -8.30  
26 0.36 -8.90  
28 0.34 -9.47  
30 0.32 -10.00  
35 0.27* -11.22* 
40 0.24 -12.31 

* estimated from d = 1.7 and 1.8 

Both sides of the selectivity curve (with the vertical axis 
marked in decibels or current ratio, or both as required) can 
then be plotted as in Fig.4.25. 

EXAMPLE: 
A radio station broadcasts on a frequency of 908 kHz. What is 
the minimum Q for a series tuned circuit to reject an unwanted 
signal at 903.5 kHz by 10 dB? 

From Table 4.4, for 10 dB rejection, d = 1.5 

5.Q frd 
and since d = - i.e. Q = - 

fr 

908 x 1.5 
  - 303 

4.5 
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Parallel Circuits 

Most of the considerations with regard to the selectivity and 
bandwidth of parallel tuned circuits follow those for the series 
circuit but in a reciprocal manner, this is illustrated by the 
fact that at resonance the series circuit has minimum 
impedance with maximum current, whereas the parallel case 
produces maximum impedance and minimum current. 
Generally the usefulness of the former lies in the resonant rise 
in voltage across the components whereas that of the latter 
comes from development of voltage across the high impedance 
of the circuit. 

Continuing on the "reciprocal" theme, it will be found that if 
IIr/II is plotted as a resonance curve for a parallel circuit, the 
same relationships as for the series circuit arise, e.g. that 
selectivity varies with Q and also, if fb and fa are the two 
frequencies where I = uI/.707 (the current has risen from the 
resonant value Ir to V2Ir), the bandwidth fa— fb is again 
equal to fr/Q. 

Thus it is legitimate to use Table 4.4 to determine the 
selectivity of a parallel circuit provided that the current ratio 
used is II/II or equally the scale could be IZ/Zrl (off 
resonance, the impedance is falling). 

EXAMPLE: 
A parallel tuned circuit (as in Fig.4.21) comprises an inductor 
L = 3 mH, capacitor, C = 100 pF and resistance R = 137 ohms 
the circuit resonating at 290.6 kHz. What is the value of the 
impedance (modulus only) at 10 kHz above the resonant 
frequency? 

3 x 10 -3 
Zr = — =   - 219 x 103 ohms, 

CR 100 x 10 -12 x 137 

col- 27r x 290.6 x 103 x 3 x 10 -3 

137 40 

SQ 10 x 40 
d - - - 1.38 

fr 290.6 
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From Table 4.4 for d = 1.38, lIr/II or 0.34 

i.e. Impedance at 10 kHz above resonance = 0.34 x Zr 
= 74460 ohms 

(Note that in this case, for a sacrifice of less than 0.7% of 
accuracy, the calculations arising from the formula 

1 
IZI — 

If 

R2 +RCO2 1,2) + ( L R2 + CO2 1,2 

CO 
coC) 

have been avoided.) 

 2 (Sect.4.5.3 

4.7.5 Coupled Circuits 

Two circuits may be coupled together magnetically, the 
coupling component being known as a transformer. However, 
because in general transformers are not resonant devices, they 
are considered at greater length in Sec.3.5 — in this section 
only those arrangements are considered in which the trans-
former windings are part of high-frequency, loosely-coupled 
resonant circuits as, for example, in the case of an intermediate-
frequency transformer. 

Consider the circuit of Fig.4.26 which shows two circuits P 
and S magnetically coupled via the inductive windings Lp 
and L. 

126 



The fact that a current in one circuit induces a voltage in the 
other is expressed by a quantity known as the mutual 
inductance (M) which theoretically can range from zero when 
the two windings are completely separated magnetically, to 
maximum when the coupling is perfect, whence 

To express the degree of coupling between these two limits, a 
"coefficient of coupling", k, is used, this is defined as the 
ratio between the mutual inductance in any particular case to 
the maximum value i.e. 

k =   
1•/7--'s 

"Critical coupling" is obtained with a particular value of 
k (= kc) at which 

(i) secondary current is maximum 

(ii) the impedance coupled into the primary by the 
secondary is equal to the resistance of the primary 
i.e. 

(coM)2 
— 

Rs 
(see below) 

(iii) from the latter expression it can be shown that 

1 
kc =   

Also, if Zp and Zs are the impedances of the separate circuits 
and 1p and Is their currents, then 

the e.m.f. induced in the secondary by the current 1p in 
the primary is 

es = —jc,)Mlp 

(the —j indicating that this voltage lags on Ip by 90°) 
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the effect of the secondary circuit on the primary circuit 
is to couple an impedance (wM)2/Zs in series into the 
primary and similarly from primary to secondary, adding 
in series (M)2/Z. 

Considering both circuits being tuned to the same frequency, 
if k is small, then Is is small and the response/frequency curve 
peaks singly at fr (Fig.4.27). As k is increased to its critical 
value, Is reaches maximum and becomes slightly flat-topped. 
A further increase in k causes "double-humping" which, with 
careful design can produce a characteristic having a reasonably 
even response over a band of frequencies with good discrimina-
tion against unwanted signals outside of this band, i.e. a band-
pass filter. 

FIG. 4-27 Typical Response for Pair of 

Coupled Tuned Circuits 

width of pass band = fr 
1 1 

NA-LT( k 

With even further increase of k, the width of the pass-band 
between the two peaks increases and if f1 and f2 are the 
frequencies at which the two peaks occur, then approximately 

fr  
since the higher of the two frequencies, f2 

and also f1 = 
fr 
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Over the range considered above, k is still small and thus 

width of pass band kfr. 

In practice, concern is mainly with selectivity and bandwidth 
and although production of a response/frequency curve is 
more difficult than for a single tuned circuit (Sect.4.7.4) it is 
relatively easy to estimate the curve when both primary and 
secondary circuits are tuned to the same frequency. The 
principle involved is that simplified equations may be used to 
determine the turning points of the secondary current charac-
teristic as in Fig.4.28, i.e. the points at frequencies f1, fr and 
f2, and in addition, the two frequencies below and above fr. 
(f3 and f4) at which the secondary current is equal to its value 
at resonance are easily calculated. This helps to estimate the 
slope of the characteristic at these frequencies, which is 
important in determining the degree of rejection of unwanted 
signals. 

PIG 4-20 Points for ckitertnining a coupled 

circuit response/frequency characteristic 

Note that the smaller (f1— f3) and (fa— f2) become, the greater 
the discrimination. 

This is best explained by an example, followed by a list of 
steps to be taken. 

EXAMPLE: 
The circuit and component values of an IF transformer are 
given in Fig.4.29. Sketch the response/frequency characteristic. 
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FIG. 4-29 I.F Transformer circuit 

E 
=   

icoro2 

Z +  
P Zs 

—jcoMIp 
and I, -   

Zs 

Current, Is at f,: 

Since, from the rules given above, 

—jcoME 1 —jcoME 
Then Is = x  + - 

(coM)2 Z, ZpZ, + (coM)2 

Zs 

The phase change over the circuit is unimportant in this 
consideration and if E is considered to be 1 volt, then 

coM  
Is - 

ZpZs + (coM)2 

Substituting the values from Fig.4.29 

1 

.07C N/1.172 x10-3 x100 x10 -12 

= 2921070 rads/sec 

2921 x103 rads/sec 

and at resonance 
COrM 

Rp Rs + (co, M)2 

io7 

N/H7.1 
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2921 x103x 25.2 x10 -6 
Is at fr - 

28.5 x 28.5 +(2921 x103x 25.2 x10 -6)2 

73.61 

812.25 +(73 .61)2 

= 11.81 mA 

25.2 x10 -6 
k =   

NFIFLs 1.172 x10 -3 

(or 2921 x103 
fr = =   465 kHz 

27r 27r 

= .0215 

fr fr 
= f2 
VT—F k Nfl 

465 kHz 465 kHz 

N- /1 + .0215 N- /1— .0215 

= 460.08 kHz = 470.08 kHz 

(note that fr is not exactly midway between f1 and f2). 

Current at fi and f2 

It can be shown that the secondary current at f1 and f2 is 
approximately equal to the maximum resonance value (which 
occurs with critical coupling) 

corM  
:. Is at fl and f2 = But (w,M)2 = Rp Its 

RR s + (rie 

Is at f1 and f2 =     - 17.54 mA 
2Nfiii7Its 2 x 28.5 
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Frequencies for secondary current equal to resonance value 
(f3and f4) 

The two frequencies above and below fr at which the 
secondary current is equal to its resonance value are given 
approximately by 

fr ± -707 f1) 

= fr ± 7.07 kHz 

From this information the characteristic can be sketched as in 
Fig.4.30. 

18 

16 

E.. 14 
In 

12 

:1 10 

-§ 

4 

2 

I.  
7-07kHz 7.07kHz — 

;f3 f1 r 

I 
if2 if4  

460 465 
Frequency, kHz 

470 480 

FIG. 4-30 Approximate characteristic for 

circuit of FIG. 4-29 

Summary of Method 

Calculate: 

1. Wr 



Wr 
2. fr 

2ir 

3. corM 

4. (corM)2 

M 
5. k —   For identical primary and 

N/upts secondary,.= M/L 

fr fr  
6. fi and f2 = and 

Then 

Current at fr — 
corM 

RR + (wrm)2 

1 
Current at fr and f2  F  For identical primary 

R/-7t.s and secondary, = 1/2R 

Frequencies for Secondary Current equal to resonance value 
(f3 and fa) 

f3 = fr — .707 (f2— fi) and f4 = fr + .707 (f2—f1). 

There may be doubt that the characteristic will exhibit two 
peaks (the double-hump). In this case, lc, must also be calcu-
lated and compared with k. As already explained, two peaks 
only appear when k exceeds ke. 

4.8 CALCULATION OF POWER 

Power, in the direct current case, as shown in Sect.2.1 is 
calculated by 

V 2 

V X I = 12 R watts where Vis in volts, 
1 is in ampères, 
R is in ohms. 
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In the alternating current case, the laws equally apply at any 
instant, i.e. the instantaneous power being dissipated is 
obtained by multiplying the voltage and current together at 
that instant. This must be stated because voltage and current 
in an a.c. circuit are not necessarily in phase. In fact, if the 
voltage and current waveforms in purely inductive or capaci-
tive circuits are considered together, it is found that the phasor 
dissipated over each half-cycle is zero. 

Usually an a.c. circuit has some phase angle, 0, between 
voltage and current represented typically in the phasor 
diagram of Fig.4.31. 

The reference phasor is,the current I, on which is marked off 
the voltage VR developed across the circuit resistance and at 
90°, the voltage Vx across the net circuit reactance. Then the 
applied voltage is the phasor V, lagging (in this example) by an 
angle Ø. 

The power is calculated by multiplying I by the component of 
V in phase with it, i.e. VR and since VR = V cos 0 

Power = VI cos 0 

The term cos 0 is known as the "power factor" and is the 
factor by which the apparent power (also referred to as 'volt-
amps') given by V x I is multiplied to obtain the true power. 
Hence 
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True Power 
Power Factor (cos 0) = 

Apparent Power 

and because the impedance of the circuit is expressed in the 
form ZLO then 

Resistance 
cos 0 =   

Impedance 

Table 4.5 gives the values of cos 0 to three significant figures 
at 5° and 0.1 radian intervals. Other phase angle values may be 
obtained from any book of standard tables. 

Phase 
Angle, 

cj) Degrees 

Power 
Factor, 

cos ci) 

0 1.00 
5 .996 

10 .985 
15 .966 
20 .940 
25 .906 
30 .866 
35 .819 
40 .766 
45 .707 
50 .643 
55 .574 
60 .500 
65 .423 
70 .342 
75 .259 
80 .174 
85 .087 
90 0 

Phase 
Angle, 

Radians 

Power 
Factor, 

cos :/5-7-- rads. 

0 1.00 

0.1 .995 
0.2 .980 
0.3 .955 
0.4 .921 
0.5 .878 
0.6 .825 
0.7 .765 
0.8 .697 
0.9 .622 
1.0 .540 
1.1 .454 
1.2 .363 
1.3 .268 
1.4 .170 
1.5 .071 
1.571 0 

Table 4.5 Conversion of Phase Angle to Power Factor 
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4.9 SKIN EFFECT 

When a conductor carries an alternating current, the changing 
magnetic flux (Sect.2.3.1) causes the effective resistance of the 
conductor to increase. 

The flux is concentric with the conductor and whereas the 
centre of the conductor is linked by all the flux, the surface 
(or skin) is linked only by the flux external to the conductor 
(hence the term "skin effect"). 

In terms of inductance, the conductor has greater self-
inductance (and therefore reactance) at the centre than at 
the surface, equally the effect can be explained in terms of 
back-e.m.f. which is also greater at the centre than at the 
surface. 

The result is that the current is constrained to flow more along 
the surface than in the centre, effectively resulting in a loss of 
conductor cross-sectional area and therefore a rise in resistance. 

Skin effect is usually expressed as the ratio Rac/Rdc for the 
particular conductor at a given frequency, f. The value of the 
ratio varies in a complex manner with (i) conductor conduc-
tivity, (ii) conductor diameter or cross-sectional area, (iii) 
frequency. For any particular conductor Rac/Rdc cx N/f. 

If copper conductors only are considered, then (i) is constant 
and (ii) and (iii) may be expressed in the form dN.5.(where 
d = conductor diameter) and values of Rac/Rdc may be 
obtained for a practical range of values of d.e. This is 
displayed in Table 4.6 where Rac/Rdc is expressed directly 
from combinations of d and f. 

Although figures will not apply exactly in any given case they 
are useful to show the order of change of 'high frequency 
resistance' when values of Q are being calculated. Also when 
the conductor is wound into a coil, skin effect becomes even 
more complicated and greater in magnitude. 

EXAMPLE: 
A 10 m length of copper wire of diameter 0.9 mm has a 
resistance of 0.271 ohms. What will be its effective resistance 
when carrying a current at 4 MHz? 
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.* kHz --> MHz -> 

d/mm 100 200 300 400 500 600 700 800 900 1 2 3 4 5 6 7 8 9 10 

0.2 1.002 1.005 1.008 1.015 1.025 1.035 1.05 1.065 1.08 1.18 1.32 1.56 1.77 1.95 2.11 2.26 2.40 2.53 2.65 

0.3 1.005 1.018 1.045 1.08 1.12 1.17 1.21 1.26 1.33 1.38 1.86 2.22 2.53 2.80 3.04 3.27 3.48 3.67 3.86 

0.4 1.015 1.06 1.135 1.29 1.32 1.42 1.52 1.61 1.69 1.76 2.40 2.88 3.29 3.65 3.98 4.28 4.56 4.82 5.07 

0.5 1.04 1.15 1.28 1.45 1.59 1.72 1.84 1.95 2.05 2.15 2.94 3.54 4.05 4.51 4.91 5.29 5.63 5.96 6.27 

0.6 1.08 1.26 1.49 1.69 1.86 2.01 2.16 2.29 2.41 2.53 3.48 4.20 4.82 5.36 5.85 6.30 6.71 7.11 7.48 

0:7 1.14 1.43 1.70 1.93 2.13 2.31 2.48 2.63 2.77 2.91 4.01 4.86 5.58 6.21 6.78 7.31 7.79 8.25 8.68 

0.8 1.29 1.60 1.91 2.17 2.40 2.60 2.80 2.97 3.14 3.29 4.55 5.53 6.34 7.06 7.72 8.31 8.87 9.39 9.89 

0.9 1.33 1.78 2.12 2.41 2.67 2.90 3.12 3.31 3.50 3.67 5.09 6.19 7.11 7.92 8.65 9.32 9.95 10.5 11.1 

1.0 1.45 1.95 2.33 2.65 2.94 3.20 3.44 3.65 3.86 4.05 5.63 6.85 7.87 8.77 9.58 10.3 11.0 11.7 12.3 

1.1 1.57 2.12 2.54 2.89 3.21 3.49 3.76 4.00 4.22 4.43 6.17 7.51 8.63 9.62 10.5 11.3 12.1 12.8 13.5 

1.2 1.69 2.29 2.75 3.14 3.48 3.79 4.08 4.34 4.58 4.81 6.71 8.17 9.39 10.5 11.5 12.4 13.2 14.0 14.7 

1.3 1.81 2.46 2.96 3.38 3.75 4.08 4.40 4.68 4.94 5.20 7.25 8.83 10.2 11.3 12.4 13.4 14.3 15.1 15.9 

1.4 1.93 2.63 3.17 3.62 4.02 4.38 4.72 5.02 5.31 5.58 7.79 9.49 10.9 12.2 13.3 14.4 15.3 16.3 17.1 

1.5 2.05 2.80 3.37 3.86 4.29 4.67 5.03 5.36 5.67 5.96 8.33 10.2 11.7 13.0 14.3 15.4 16.4 17.4 18.3 

1.6 2.17 2.97 3.58 4.10 4.56 4.97 5.35 5.70 6.03 6.34 8.87 10.8 12.5 13.9 15.2 16.4 17.5 18.6 19.5 

1.7 2.29 3.14 3.79 4.34 4.82 5.26 5.67 6.04 6.39 6.72 9.41 11.5 13.2 14.7 16.1 17.4 18.6 19.7 20.8 

1.8 2.41 3.31 4.00 4.58 5.10 5.56 5.99 6.38 6.75 7.10 9.95 12.1 14.0 15.6 17.1 18.4 19.7 20.8 22.0 

1.9 2.53 3.48 4.21 4.82 5.34 5.85 6.31 6.73 7.12 7.48 10.5 12.8 14.7 16.5 18.0 19.4 20.7 22.0 23.2 

2.0 2.65 3.65 4.42 5.07 5.63 6.15 6.63 7.07 7.48 7.86 11.0 13.5 15.5 17.3 18.9 20.4 21.8 23.1 24.4 

Table 4.6 Rac/Rdc for Circular Cross-Section Solid Copper Wires 



Rac . 
Rdc Is obtained directly from Table 4.6 i.e. 7.1 

:. Effective resistance of wire at 4 MHz = 0.271 x7.1 
= 1.924 ohms 
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5. NETWORKS AND THEOREMS 

5.1 NETWORK ANALYSIS 

There are several theorems and laws which greatly facilitate the 
analysis of electrical networks, the most widely known of 
these are set out in this section. 

5.1.1 Kirchhoff s Laws 

These enable simultaneous equations to be derived for 
calculating the values of currents in a network. 

Law 1 

The algebraic sum of the currents meeting at a point in a 
network is zero. 

Law 2 

In any closed circuit (or "mesh") the algebraic sum of the 
e.m.f.'s is equal to the algebraic sum of the products of the 
resistances and the respective currents in the separate parts. 

Both laws can be demonstrated by means of the simple (i.e. 
resistances only) Wheatstone Bridge network of Fig.5.1. 

Considering point A, then from Law 1 which in effect states 
that the current entering a point is equal to the current 
leaving it, 

= 12 + 13 so that for 13 could be written (11-12), 

eliminating one unknown quantity. 

Again, if 12 flows into point D and 14 and 15 flow away, then 

15 = 12 - 14 or 14 = 12 - 15 

Law 2 is illustrated by consideration of any closed circuit or 
mesh e.g. battery E, R2 and R4. 
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Then E = 12 R2 + IS R4 

Similarly for the mesh ADBA, 

0 = 12 R2 + 14 Rg — 13 RI (note that the p.d. 13 RI is in 
opposition to the other two). 

EXAMPLE: 
Find the current in each resistor in the network shown in 
Fig.5.2. 

Because some of the meshes considered using Law 2 will have 
common branches, it is important first to establish a direction 
of current flow which is considered to be, say, positive. In this 
example we choose the conventional current direction which is 
anticlockwise from the battery but we could equally work on 
the basis of electron flow (sect. 2.3.1) and go clockwise. 

From Law 1: Considering point C 

Current in = I 
Current out = II + (I — II) 

Considering point B, if 12 flows from B to D, 
(the true direction is 
unknown at this stage) 
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Current in = (I —II) 
Current out = (12 + 13) but 13 = (I —11-12) 

= 12 + (1 - 11- 12) 

Considering point D 

Current in 
Current out 

e-- II + 12 
(i.e. D to A) = II + 12 

Check at point A 

Current in = (I— Il — 12) + (II + 12) = I 
Current out = I 

Currents in each of the five resistors have therefore been 
allocated, using three unknowns, for which three simultaneous 
equations are required for complete solution, i.e. three separ-
ate meshes must be considered. 

From Law 2: Mesh AGFCDA 

6 = 911 + 12(11+12) 
.*. 2 = 711 + 412 (1) 
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Mesh DCBD 
0 = 15(I —11) + 412 — 911 

0 = 151 — 2411 + 412 

(II is clockwise, therefore 
negative according to the 
convention adopted) 

(2) 

Mesh ADBA 
o = — 412 — 12(I1+12) + 20(I — 11 - 12) 

.'.O = 51 — 811 — 912 

Solution: 

Multiply equation (3) by 3 
o = 151 — 241 1 — 2712 

Equation (2) 0 = 151 — 241i + 412 Subtract 

o = — 3112 

(3) 

••• 12 = 0 

From (1) II = 4 amps = 286 mA 

" (2) 0 = 151 —4e 
48  

amps = 457 mA 
7 x 15 

From these three values for I, II and 12, currents in all branches 
may be determined. 

Since 12 = 0, the circuit must be that of a balanced Wheatstone 
Bridge. 

5.1.2 Wheatstone Bridge 

The unbalanced bridge circuit can be solved completely by use 
of Kirchhoffs Laws but the most useful conclusions reached 
from the bridge are when it is in balance. Consider Fig.5.1. For 
zero current in Rg, B and D must be at the same potential 

i.e. p.d. across R1 = p.d. across R2 

= 12 R2 
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Also because the current in R3 is 13 and in R4 is 12 (no current 
is bypassed through Rg) 

13 R3 = 12 R4 

Hence, at balance 
R1 = R3 

— 
R2 R4 

also 

12 R3 = --
13 R4 

R1 R2 = 
R3 R4 

In the general case, some or all arms will be impedances as in 
Fig.5.3, E being an a.c. generator. 

E 

FIG. 5-3 Wheatstone Bridge with 

Impedance Arms 

Then for zero deflexion on detector D (or zero tone in 
receiver) 

Z1 Z3 

= - and 
Z2 Z4 

Z1 = Z2 

Z3 Z4 

IZ21L02  

1Z3IL03 1Z4IL04 

which is satisfied by the two conditions 1Z11/1Z3= IZ21/1Z41 and 
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01 - 03 =1)2 - 04 i.e. for balance, the impedance moduli must 
be in the correct ratio and the net phase angle differences on 
both sides of the detector must be equal. 

Examples of the use of the Wheatstone Bridge are in 
Section 6. 

5.1.3 Superposition Theorem 

In a network of linear impedances (i.e. impedances for which 
Ohm's Law applies) containing more than one generator, the 
current at any point is the vector sum of the individual 
currents that would flow if each generator were considered in 
turn, with the remaining generators replaced by their internal 
impedances. 

This is best illustrated by a simple example of two generators 
El and E2 having internal impedances Z1 and Z2 respectively, 
both connected to an impedance Z3 as in Fig. 5.4(a). El and 
E2 are so connected that currents flow in the two meshés as 
shown. 

Firstly consider El to be replaced by its internal impedance 
Z1, giving effectively the circuit in Fig.5.4(b). 

E2 
Total current from generator E2 =   — I 

2 1Z3  

Zi + Z3 
Z2 + 

and current 13 through Z3 = I X 
Z1 

Z + Z3 

E2Z1 

Z1Z2 + Z1Z3 + Z2 Z3 

i.e. the current in Z3 due to E2 alone but taking into account 
the impedance of generator El. 

Similarly, if E2 is replaced by its internal impedance Z2 
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Ei Z2 
Current in Z3 - 

Z1 Z2 + Z1 Z3 + Z2 Z3 

and total current due to both generators is the sum of the two 
currents calculated above, 

i.e. 
E1Z2 + E2Zi 

Z i Z2 + Z1 Z3 + Z2 Z3 

FIG. 5-4 Two Generators connected to One 

Impedance 

Solving this particular network by use of the Superposition 
Theorem is in fact very little easier than by using Kirchhoffs 
Laws. However, as the complexity of the circuit increases, the 
value of the Superposition Theorem usually predominates 
owing to the greater difficulty of handling many simultaneous 
equations with the Kirchhoff method. 
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5.1.4 Thévenin's Theorem 

This is better explained diagrammatically but the full theorem 
is first given. 

The current in a load impedance connected to the output 
terminals of a network of impedances and generators is 
unchanged if the network is replaced by a generator having 
(i) a constant e.m.f. equal to the open-circuit voltage measured. 
looking back into the output terminals of the network, (ii) an 
impedance equal to that looking back into the output 
terminals with each generator replaced by its own internal 
impedance. 

As in the preceding section, the theorem applies only to linear 
impedances. 

Diagrammatically, as in Fig.5.5(a). 

(a) (b) 

FIG. 5-5 Replacement of Network by 

Single Generator 

The load is disconnected, then 

The open-circuit voltage appearing across terminals 1 
and 2 is measured (E). 

(2) Each generator is replaced by its own internal impedance 
and the network impedance measured at terminals 1 and 
2 (Z). 
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The network of Fig.5.5(a) can then be simulated by a 
generator of e.m.f. E and impedance Z as in Fig.5.5(b). 

In practice, although measurement of (1) above is straight-
forward, carrying out (2) to obtain Z is not always practicable 
(e.g. the generators may be transistors). The following example 
shows how this is avoided. 

EXAMPLE: 
Suppose a network (e.g. a power amplifier) has two output 
terminals 1 and 2 and the open-circuit voltage measured across 
them is 3 volts at a certain frequency. Two further measure-
ments show that (i) a current of 35 mA flows between 
terminals 1 and 2 when they, are short-circuited (ii) a current 
of 28.7 mA flows through a load of 20 ohms. 

Find the equivalent circuit and the current which will flow in 
an 8 ohm load. 

E of the equivalent circuit is given, i.e. 3 volts. 

3  
Let Z = N/122 + X2, then from (i) .035 —   

N/R2+ X2 

32 

R2 + X2 = — 7347 ohrns 
.0352 

3 
from (ii) .0287 = 

NAR +20)2 + 

32 

(R +20)2 + X2 =   = 10926 ohms 
(.0287)2 

:. R2 + 4OR + 400 + X2 = 10926 

R2 + 4OR + X2 = 10526 

also R2 +X2 = 7347 

4OR = 3179 

R = 79.475 ohms 
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and since R2 + 79A752 = ,030.7 X2 = 7347 
X2 = 7347 —  

X = 32.1 ohms 

i.e. the equivalent circuit is that of a generator of 3V with 
impedance 79.475 + j32.1 ohms. 

3 
Current in 8 ohm load — 

N/(79.475 +8)2 + 32.1 2 

3 
—  amp = 32.2 mA 

93.18 

5.1.5 Maximum Power Transfer Theorem 

An important theorem mainly used to provide the guiding 
principles for interconnecting networks with lines, aerials, 
transducers etc. 

The full theorem states that 

(1) The maximum power will be obtained from a generator 
of internal impedance ZLO if its load has the conjugate 
impedance ZL-0. In the form R +jX for the generator 
impedance, maximum power transfer occurs with a load 
impedance R—jX. 

(2) If the modulus only can be varied, the power will be 
maximum when the moduli of generator and load are 
equal, irrespective of the value of 0. 

Transference of maximum power into a load from a generator 
should not be confused with maximum efficiency. When a 
generator is matched to its load, the efficiency is 50%. Higher 
efficiencies are obtained as load impedance is increased above 
the matched value but the power into the load actually 
decreases. High voltage power-line transformers are not 
matching transformers, they are more concerned with 
efficiency because power losses cost money e.g. in this case 
running at higher voltages and therefore lower currents to 
reduce I2R losses in the lines. 
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Frequently transformers are used for impedance matching, 
e.g. matching a loudspeaker to the output of an amplifier (the 
use of transformers for this particular purpose is considered 
more fully in Sect.3.5) or matching a line to the input or 
output of a network. The transmission loss of a transformer 
is low. Passive networks not employing transformers may also 
be used for matching (Sect.5.3) but in this case the network 
itself introduces a loss. 

The use of a transformer arises from the fact that its 
impedance ratio is equal to the square of its turns ratio so 
that if ZL is a load impedance connected to the secondary of 
a matching transformer of turns ratio Np/Ns, where Np and 
Ns are the turns on the appropriate windings, then the 
modulus of the impedance reflected back into the primary is 

(Np '\2 
ZL(— . 

Ns 

The angle of the impedance reflected back is unchanged, hence 
the second part of the theorem which caters for the more 
practical arrangement, i.e. perfect matching is seldom obtained 
because of the added complication of making the impedance 
angles equal and of opposite sign. 

Consider the circuit in Fig.5.6 which shows the matching 
required from, say, a coaxial line to an amplifier input. 
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By Thévenin's Theorem, the line may be represented by a 
generator of e.m.f. E and internal impedance ZL equal to that 
of the characteristic impedance of the line. 

Suppose a transformer to be connected as shown dotted 
having a turns ratio 

Np 
T = — 

Ns 
so that T2 

IZL I 

IZA I " 

Then impedance seen by line = IZAI x T2, but IZAI = 

= IZLI 

Similarly the impedance seen by the amplifier is ZA I, thus 
giving the condition of optimum matching. 

I ZL I 

T2 

EXAMPLE: 
Suppose in the case of Fig.5.6 the coaxial line has an 
impedance of 75 ohms and the amplifier input 550 ohms 
(both resistive). What transformer turns ratio will give 
optimum matching? 

ZL = 75 ohms, ZA = 550 ohms. 

Impedance seen by line = 550 x T2 which must also equal ZL 

75 
75 = 550T2 T —   = 0.369:1 

1 
or equally — = 2.71:1 

0.369 

Whichever way the turns ratio is quoted, the winding with the 
greater number of turns is connected to the higher impedance. 

5.1.6 Star-Delta Transformation 

(Also known as a star-mesh transformation) 

The theorem states that at any given frequency a star network 
can be interchanged with a delta network (as in Fig.5.7) 
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provided that certain relationships between the elements of 
the two networks are maintained. These are developed below: 

Considering the equivalence of the impedance looking into 
terminals 1 and 2 of both networks, 

ZA(ZB + Zc)  
Z1 + Z2 = ...(1) (2 resistors in parallel, 

ZA+ ZB +Zc Sect.3.2.3) 

Terminals 1 and 3: 

+ — ZB(ZA+ ZC)  
Z3  

ZA + ZB +ZC 

Terminals 2 and 3: 

ZdZA+ ZB) 
Z2 + Z3 —   

ZA+ ZB + Zc 

from which, by adding equations (1) and (2) and subtracting 

(3) 

ZAZB ZA ZC  
Z1 =   and similarly Z2 = 

ZA+ ZB + Zc ZA+ ZB +Zc 
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ZB Zc 
and Z3 — 

ZA + ZB + Zc 

These three equations give the conversion from delta to star. 
For star to delta, similar reasoning shows that: 

ZiZ2 
ZA = Zi + Z2 + —, 

Z3 

ZiZ3 
ZB = Zi + Z3+ , 

Z2 

Z2 Z3 
zc = Z2 + Z3 + 

Zi 

"Star" and "Delta" are terms also associated with power 
3-phase systems and it may be that they are better recognized 
in telecommunications engineering as T and it-networks 
respectively. Their equivalence is easily seen by comparing 
Fig.5.7 with Fig.5.8. 

Examples of conversion are not given here because the 
principle is employed in Sect.5.3.4 to change from one net-
work to the other and an example is given. 

5.2 WAVEFORM ANALYSIS 

Analysis of highly complex waveforms is not of much 
practical use in the amateur workshop because the equipment 
required for separating out the various harmonics is expensive. 
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Fundamental 
E sin cot 

(a) 

Second Harmonic 120° leading Second Harmonic 

e"•/ e'• E sin 2wt 
‘ • N L 

.... 

Complex Wave 

[(a) +(b)] 

(c) 

/-- ,--‘ Complex Wave 
/ \ / 11,/ (Second 
/ \ Harmonic 

+ 

/ 
/ 1 / 1  / 120° leading) 

1 
1 / 1 

/ 
/ 

1 / 1 
\ / 1 

/ 

e/ 
\ 1 t 
1 / \ 
1 --, / 

/ s-
t 

— 
\ / N.., (d) 

FIG. 5-9 Complex Waves of Fundamental 

+ Second Harmonics 
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When, however, an oscilloscope is available the purity of a sine 
wave can usually be estimated sufficiently well by eye. Never-
theless, an analysis of some of the complex waveforms more 
frequently met is instructive so that distorted waveforms may 
be recognised. 

Consider a fundamental sine wave, e = E sin cot as in Fig.5.9(a) 
and its second harmonic E/2 sin 2cot as in (b). These can be 
added together at all instants resulting in the complex wave 
shown at (c), and this is how the wave will appear on an 
oscilloscope. 

_ 

FIG. 

0 

Fundamental 
E sin tot 

(a) 

0. 

Third Harmonic 
E . 
-3- sin 3oJt 

(b) 

0. 

Complex Wave 

[(a) + (b)) 

(c) 

5-10 Complex Wave of Fundamental 

+ Third Harmonic 
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Also shown dotted on (b) is the same harmonic but leading by 
120° (on its own angular scale, not on that of the funda-
mental). The addition of this wave with the fundamental to 
form a complex wave is shown at (d). 

Fig.5.10 repeats the process for a fundamental wave with its 
third harmonic in-phase. 

These are the simplest forms of complex waves, consisting as 
they do, of a fundamental and only one harmonic but they 
help to demonstrate the dependence of a complex wave on 

(i) the number of odd and/or even harmonics present 

(ii) the relative amplitudes of fundamental and 
harmonics 

(iii) the phases of the harmonics relative to the 
fundamental and to themselves. 

Generally, the presence of even harmonics results in an 
asymmetrical complex wave, whereas with odd harmonics, 
a symmetrical wave is produced. This is evident from Figs.5.9 
and 5.10. 

5.2.1 Fourier's Theorem 

The theorem states that any continuous periodic function can 
be expressed as the sum of a number of sine waves of differing 
frequency and amplitude, i.e. in voltage terms 

e = c +Ei sin (cot + 01) + E2 sin (2cot + 02) 

E3 sin (3wt + 03) + 

where c is a constant and El, E2, E3 etc. are the maximum 
voltage values of the various components. 

Some simplification in the mathematics can be gained by 
producing constants containing the phase angles 01, 02 etc. 
thus: 

Since, for example, 

Eisin(cot +01) = Eisinwt cos 01+ Ei cos wt sin 01 
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if El cos 01 is represented by al 
and El sin cki is represented by b1 etc. 

Then e = c+ai sin wt + a2 sin 2cot + a3 sin 3cot +  
+ b 1 cos cot + b2 cos 2cot + b 3 COS 3cot +   

This is the general expression from which the components of 
complex waveforms may be deduced. Some in common use 
are as follows: 

(1) Square Waveform 

This is illustrated in Fig.5.11. It has a maximum value of E 
and, as shown, the frequency of the fundamental is co/2r Hz. 

+E 

e 
0 volts 

-E 

2/7 4ff 

FIG. 5-71 Symmetrical Square Wave 

cot 

Determination of the values of the coefficients in the above 
expression gives: 

c (which is in fact, the mean value of the curve over 
one cycle) = 

4E 4E 4E 
al = — a3 — as = —   

rr 3rr Sir 

a2 = O a4 = O a6 =   

all b terms = 0. 
4E 

Therefore e = — (sin cot + sin.3cot + I sin 5cot +  ) volts. 
IT 
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This is shown graphically in Fig.5.12 and from the dotted 
curve in the first half-cycle of the top graph, the squaring of 
the sine curve by the addition of the 3rd and 5th harmonics 
only, is already becoming evident. 

+ il 

iT 

zIE 
+377- 

0 

37/ 

4E 

0 
_4E_ 
57T 

+E 

0 

—Er 

FIG. 

i \ ,,--' Fundamental Fundamental 
V" + 3rd and 5th 4E —sin <A 

i harmonics 7 1 
I i 

I 

¡I 
3rd harmonic 

4E Ft sin 3wt 
1 
i e. 

t 
+ 

+ 
5th harmonic 1 
4E 
5rr sin 5 cat 

i 
it 

+ 

all other odd 
harmonics to infinity 

= square wave 
of maximum amplitude E 

5-12 Graphical 

Components 

e. 
t 

of 

a Square Wave 

--

Representation 

of 
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Thus the square wave consists of a fundamental wave with an 
infinite series of odd harmonics progressively decreasing in 
peak value. This conception is important because overloading 
in amplifiers and systems usually results in "squaring" a wave-
form (e.g. cutting off the top of a sine wave), thus producing 
odd harmonics. 

E 

e volts 

o 2ff 4/T 

FIG. 5-13 Asymmetrical Square Wave 

Cat 

The asymmetrical square wave is shown in Fig.5.13. In this 
case the waveform is displaced to one side of the time axis and 
on considering the constant c in the general expression above, 
it is clear that since c is the mean value of the curve over one 
complete cycle and therefore zero for the symmetrical wave, 
in the case of the asymmetrical wave now under consideration, 
c is obviously equal to E/2. The coefficients a and b have the 
same value as before, hence 

E 2E 
e = — + — (sin cat + sin 3wt + sin Scat + ) volts. 

2 if 

(2) Output of Full-Wave Rectifier 

Graphically, this is shown in Fig.5.14. Again, working in 
terms of voltage, E is the maximum value and e represents 
instantaneous values. There is obviously some value to the 
constant c of the general expression, this is what a full-wave 
rectifier is designed for, and in this case 

The coefficients a all = 
b1, bs, bs  

le 

1)2, 1)41136  

= 0 

are given by the overall expression 

158 



4E cos n wt 

ir (n+1)(n-1) 

where n = 2, 4, 6   

FIG. 5-14 Output Voltage of Full-Wave 

Rectifier 

Hence the complete expression for the components of Fig.5.14 
is 

2E 4E 4E 4E 
e = — — — cos 2wt — —  cos 4wt — —cos6wt— 

ir 3rr 157r 357r 

i.e. e = 
1 2E 4E cos 2wt cos 4wt cos 6wt  
 + + +  volts. 

ir ir 3 15 35 

(3) Output of Half-Wave Rectifier 

This is shown graphically in Fig.5.15. 

FIG. 5-15 Output voltage of Half-Wave 

Rectifier 
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As in the full-wave case the constant c has a value, but now 
reduced to half, i.e. c = Ehr. 

E 
Also al = —2 a2, a3, a4  = 

bi,b3,b5  = 0 2E cos n cot 
b2, 1)4, b6 are expressed by ir (n+ 1)(n —1) 

where n = 2, 4, 6   

giving the complete expression: 

{ E sin wt 2 cos 2cot 2 cos 4cot 2 cos 6cot 
e = — + E —   

ir 2 3rr 15r 35ir 

(4) Saw-Tooth Waveform 

By following the above principles, see Fig.5.16 

 } volts 

2E 
e = — {sin wt — I sin 2cot + sin 3cot — sin 4cot + } volts. 

5.3 ATTENUATING AND MATCHING NETWORKS 

These exist in several forms, L, T, ir etc., symmetrical, 
asymmetrical, balanced and unbalanced, the latter terms are 
first defined. 
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Symmetrical networks are used to provide attenuation 
between equal impedances, accordingly the pad itself has 
equal resistances on both sides. 

Asymmetrical networks provide attenuation between unequal 
impedances and the pad resistances on the two sides are 
unequal. 

Balanced — the series arm is divided equally between the two 
legs of the circuit. 

Unbalanced — the series arm of the pad is placed in one leg of 
the circuit only. 

These features are demonstrated by the various configurations 
of, for example, a T-type pad in Fig.5.17. 

Unbalanced Balanced 

Symmetrical, Unbalanced RI = R2; Balanced RI =R2=R3=R4 

Asymmetrical, Unbalanced R1#R2 ; Balanced R1 =R3, R2 =R4 

RI #R2 , R3*R4 

FIG. 5-17 Configurations of T- type Networks 

The pads usually contain resistors only so that the attenuation 
is independent of frequency. 

5.3.1 L-type Network 

The L-type is the simplest, minimum attenuation network 
used for matching two different impedances e.g. RH to RL 
(high to low) as in Fig.5.18. 
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To match RH, terminals 1 and 2 must present an impedance 
RH hence 

R2 RL  
R1 + RH 

R2 + RL —  

and at terminals 3 and 4 

R2(RH +Ri)  
— RL 

R2 + R1 + RH 

Adding equations (1) and (2) gives RI R2 = RH RL 

R 
... R1 —HRL 

R2 

and by further substitution: 

R1 = N/RH (RH-- RL) R2 — 

(1) 

(2) 

Clearly, the higher impedance of the two to be matched by the 
circuit of Fig.5.18 must be RH and connected to terminals 1 
and 2 for if RL is greater than RH, there is no solution to the 
two equations. 

As a guide, Table 5.1 gives a range of L-type pad values for 
values of RH/RL up to 100:1. The whole table can be multi-
plied by multiples of 10 as required. 

Attenuation 

Calculation of the attenuation (or "insertion loss") of the pad 
is simplified by using the principle of the division of current 
in a 2-resistor parallel combination (Sect.3.2.4). Consider the 
circuit of Fig.5.19 in which R1 and R2 form an L-type pad 
matching RH to RL. 
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RH 
RL 0 
o 

2 3 4 S 6 / 8 9 10 

R, R2 R. R, R, R, R, R, R, R, R, R, R. R2 R, R, R, R, R, R, 

1 0 .... 1.414 1.414 2.450 1.225 3.464 1.155 4.472 1.118 5.477 1.095 6.481 1.080 7.483 1.069 8.485 1.061 9.487 1.054 
2 0 ... 1.732 3.464 2.828 2.828 3.873 2.582 4.899 2.450 5.916 2.366 6.928 2.309 7.937 2.268 8.944 2.236 
3 0 .s. 2.000 6.000 3.162 4.743 4.243 4.243 5.292 3.969 6.325 3.795 7.349 3.674 8.367 3.586 
4 0 .. 2.236 8.944 3.464 6.928 4.583 6.110 5.657 5.657 6.708 5.367 7.746 5.164 
5 0 ... 2.450 12.25 3.742 9.354 4.899 8.165 6.000 7.500 7.071 7.071 
6 0 0. 2.646 15.87 4.000 12.00 5.196 10.39 6.325 9.487 
7 0 .. 2.828 19.80 4.243 14.85 5.477 12.78 
8 0 «. 3.000 24.00 4.479 17.89 
9 0 .. 3.162 28.46 
10 0 ...» 

RH 20 30 40 50 60 70 80 90 100 
RL a 

It, R, R. R2 R, R2 R, R2 R, R, R, R, R, R2 R, R 2 R. Rr o 

1 19.49 1.026 29.50 1.017 39.50 1.013 49.50 1.010 59.50 1.008 69.50 1.007 79.50 1.006 89.50 1.006 99.50 1.005 
2 18.97 2.108 28.98 2.070 38.99 2.052 48.99 2.041 58.99 2.034 68.99 2.029 78.99 2.026 88.99 2.023 99.00 2.020 
3 18.44 3.254 28.46 3.162 38.47 3.119 48.48 3.094 58.48 3.078 68.48 3.066 78.49 3.058 88.49 3.051 98.49 3.046 
4 17.89 4.472 27.93 4.297 37.95 4.216 47.96 4.170 57.97 4.140 67.97 4.119 77.97 4.104 87.98 4.092 97.98 4.083 
5 1732 5.774 27.39 5.477 37.42 5.345 47.43 5.271 57.45 5.222 67.45 5.189 77.46 5.164 87.46 5.145 97.47 5.130 
6 16.73 7.171 26.83 6.708 36.88 6.508 46.90 6.396 56.92 6.325 66.93 6.275 76.94 6.239 86.95 6.211 96.95 6.189 
7 16.12 8.682 26.27 7.995 36.33 7.707 46.37 7.548 56.39 7.448 66.41 7.379 76.42 7.328 86.43 7.289 96.44 7.259 
8 15.49 10.33 25.69 9.342 35.78 8.944 45.83 8.729 55.86 8.593 65.88 8.501 75.90 8.433 85.91 8.381 95.92 8.341 
9 14.83 12.14 25.10 10.76 35.21 10.22 45.28 9.939 55.32 9.762 65.35 9.641 75.37 9.553 85.38 9.487 95.39 9.435 
10 14.14 14.14 2430 12.25 34.64 11.55 44.72 11.18 54.77 10.95 64.81 10.80 74.83 10.69 84.85 10.61 94.87 10.54 

Table 5.1 L-Type Pad Values (ohms) for Matching RH to 14, 



Let IH be the current in RH and IL the current in RL. 

R2  
Then IL -= IH 

RL + R2 

IH - RL + R2  

R2 

I?IRH (Sect.6.2.6) and the attenuation in decibels = 10 log 10 
It RL 

ÍRL +R2)2 RH 
= 10 log io   

R2 RL 

FIG. 5-19 Currents in Terminations of 
L-Type Pad 

Th, attenuations of the pads shown in Table 5.1 vary from 
about 2.5 dB for the smallest matching ratio (RH/RL) to over 
30 dB for the highest. Table 5.2 shows this expressed to the 
nearest 0.5 dB as a function of matching ratio. The approxi-
mate values are useful to check calculations or for example, 
when a choice is to be made between pad arid transformer 
matching. 

[The attenuation can also be obtained from Table 5.5 in the 
next section by substituting RH/RL for (n2/ni)2 in the 
heading of the last column, e.g. for a matching ratio of 3.023, 
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the L-type pad attenuation is 10 dB. This arises from the fact 
that when RH/RL = (n2 ¡n1)2, a T-pad is reduced to an L-type, 
hence the attenuation quoted in the table is appropriate.] 

Matching 
Ratio 
RH/RL 

Pad 
Attenuation 

dB 

1.1 2.5 
1.2 3.5 
1.3 4.5 
1.4 5.0 
1.5 5.5 
1.6 6.0 
1.7 6.5 
1.8 7.0 
1.9 7.5 
2.0 7.5 
2.2 8.0 
2.4 9.0 
2.6 9.0 
2.8 9.5 
3.0 10.0 
3.5 11.0 
4.0 11.5 
5.0 12.5 
6.0 13.5 

Matching 
Ratio 
RH/RL 

Pad 
Attenuation 

dB 

7.0 14.0 
8.0 15.0 
9.0 15.5 
10 16.0 
12 16.5 
14 17.5 
16 18.0 
18 18.5 
20 19.0 
25 20.0 
30 20.5 
40 22 
50 23 
60 24 
80 25 
100 26 
150 28 
200 29 
250 30 

Table 5.2 Approximate L-Type Pad Attenuations for 
Matching Ratios RH/RL 

EXAMPLE: 
A coaxial line of 70 ohms must be correctly terminated with 
70 ohms to minimize reflexions. The input impedance of the 
amplifier to which the line is to be connected is 400 ohms. 
Design a matching pad having minimum attenuation. What is 
the attenuation? 

For minimum attenuation, the L-type pad is used, see Fig.5.20. 
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From Table 5.1 for RH = 40 ohms, RL = 7 ohms, 

R1 = 36.33 ohms, R2 = 7.707 ohms 

Therefore, for RH = 400 ohms, RL = 70 ohms 

R1 = 363.3 ohms R2 = 77.1 ohms 

The nearest preferred value resistors e.g. 360 ohms and 
75 ohms are likely to produce sufficiently accurate matching, 
but if greater precision were to be sought, then R2 can be 
made up from two resistors, 62 and 15 ohms (both are 
preferred values) in series to give 77 ohms. 

Attenuation = 10 log ic, 
(RL + R2'\2 RH 

R2 ) RL 

+ 77.1) 70 2 400 
= 10 logio  77.1 • — = 10 log io 20.8 

= 13.18 dB. 

This can be checked from Table 5.2 which shows that for 
RH/RL = 400/70 = 5.7, the approximate pad attenuation is 
just over 13 dB. 
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5.3.2 T-type Network 

Symmetrical 

The symmetrical T-type pad is used as an attenuating network 
between two equal impedances, designed so that its insertion 
does not upset the impedance match already existing. The pad 
has the form shown in Fig.5.21. 

From the previous section it is seen that the L-pad, being 
asymmetrical, is incapable of maintaining the matching 
between two equal impedances, it can only function between 
two unequal ones. Hence the symmetrical T-pad which in 
effect is similar to the L-type but with the series arm equally 
divided on both sides of the shunt arm. Because it can main-
tain the matching, the symmetrical T-pad can be designed for 
attenuations other than the minimum. 

The starting point in the design of a symmetrical T-pad is the 
attenuation required, but in analysis of the network, voltages, 
currents and resistances only are considered (attempting to 
work directly in decibels is an unnecessary complication 
involving logarithmic equations) so it is most convenient to 
coeert the attenuation into the current ratio first. If this is 
designated by N and the pad attenuation required is cc dB, 

then since cc = 20 log10 —Is = 20 log 10 N 
IR 

Œ 
.*. N = antilog — 

20 
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Considering Fig.5.21 and using the principle of the division 
of current in a 2-resistor parallel combination (Sect.3.2.4) 

IR = 
RI + R2 + R• O 

IS RI + R2 +  
— — N 

IR R2 

R2 

But the impedance looking into terminals 1 and 2 = Ro 

R2 (711 + Ro)  
i.e. Ro = Ri + 

Ri + R2 + R, 

Ri + R, 
= Ri +  

N 

NR0 = NR1+ Ri + Ro 

— 1)  
Ri = R, 

(N + 1) 

and by further substitution: 

R2 = Ro   
(N22—N 1 ) 

N-1 2N  
Now let — = ni and = n2 

N + 1 N2-1 

to make Table 5.3 possible. This is constructed on the basis 
of values for ni and n2 being given for a range of pad 
attenuations, from which design is greatly simplified, i.e. 
by multiplying the terminating impedance by ni and n2 in 
turn, the values of Ri and R2 are given directly. 

EXAMPLE: 
A 3-position variable attenuator is required to work 
between 600 ohm impedances, having values of 3, 6 and 
10 dB. Design the circuit using T-type networks. 
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«, 
dB 

T-type Pad 2T-type Pad 

n, 112 n, n2 

1 .0575 8.667 17.39 .1154 
2 .1147 4.304 8.722 .2324 
3 .1708 2.842 5.854 .3519 
4 .2263 2.096 4.419 .4770 
5 .2800 1.645 3.571 .6078 
6 .3322 1.339 3.010 .7469 
7 .3825 1.116 2.614 .8962 
8 .4305 .9461 2.323 1.057 
9 .4762 .8120 2.100 1.232 
10 .5195 .7028 1.925 1.423 
11 .5602 .6124 1.785 1.633 
12 .5985 .5362 1.671 1.865 
13 .6342 .4714 1.577 2.122 
14 .6673 .4156 1.499 2.406 
15 .6980 .3673 1.433 2.723 
16 .7264 .3251 1.377 3.076 

Design: 

T - type Ro Ro 

R1 = Ro x n1 

R2 = Ro x n2 

.,, 

dB 

T-type Pad n-type Pad 

17 .7524 .2883 1.329 3.469 
18 .7764 .2559 1.288 3.909 
19 .7982 .2273 1.253 4.400 
20 .8182 .2020 1.222 4.950 
22 .8528 .1599 1.173 6.255 
24 .8813 .1267 1.135 7.893 
26 .9045 .1005 1.106 9.951 
28 .9234 .0797 1.083 12.54 
30 .9387 .0633 1.065 15.80 
35 .9651 .0356 1.036 28.11 
40 .9802 .0200 1.020 50.00 
45 .9888 .0112 1.011 88.91 
SO .9937 .0063 1.006 158.1 
55 .9964 .0036 1.004 281.2 
60 .9980 .0020 1.002 500.0 

IT- type Ro 

Table 5.3 Values of Multiplying Factors, n for Symmetrical T and it-type Pads 

Rl = Ro x ni 
Ro 

R2 = Ro x n2 



Calculation of Resistor Values. From Table 5.3: 

3 dB pad n1 = .1708 RI = 600 x .1708 = 102.5 ohms 
n2= 2.842 .*. R2= 600 x 2.842 = 1,705 ohms 

6 dB pad n1 = .3322 • R1= 199.3 ohms 
n2= 1.339 

10 dB pad n1=.5195 
n2= .7028 

R2 = 803.4 ohms 

R1= 311.7 ohms 
R2 = 421.7 ohms 

The variable attenuator is therefore as shown in Fig.5.22. 

Asymmetrical 

This type of T-pad is capable of matching together two 
unequal impedances RH and RL and at the same time 
inserting a specified attenuation between them, see Fig.5.23. 
As shown later, there is a certain minimum design loss 
which is dependent on the ratio of the termination 
impedances, i.e. RH/RL. 

RH is the higher of the two terminating impedances and 
RL, the lower. 

The formulae for calculation of the pad resistances are 
naturally more complicated than for the symmetrical case 
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because there are more parameters to be handled. For 
example, the attenuation cannot be resolved as a current 
ratio because the two impedances differ, nevertheless, for 
the asymmetrical case if 

N = — 

ti 
where PH and PL are the two powers, 

PL 

then as before: 
Œ 

N = antilog — where cc dB is the attenuation of the 
20 pad. 

This considerably simplifies the equations. 

By similar reasoning as in the symmetrical case: 

R2 = ‘/1.1--RL ( N 2 - 1) 

2N 

( 2N2 + 1) 
R1 = RH   R2 

N - 1 

( N 2 + 1)  

R3 = RL 2- R2 
N 1 
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MULTIPLY COLUMN A OR B FIGURES AS SHOWN: 

RH -* 
RL St 
S2 

140 10-100 100-1000 1000-10,000 104 105 

A B A B A B A B A B 

1-10 

10-100 

100-1000 

1000-10,000 

NIL 

x 10 

NIL x 10 

x 100 

x 10 x 100 

x 1000 

x 10 

x 100 

x 100 

x 1000 

x 100 

x 1000 

NIL - indicates column to be used with no correction. 

RH = Terminating Impedance (higher value) 
RL = Terminating Impedance (lower value) 

Table 5.4 Attenuator Terminating Impedances — Values of NÍIVI—RL 



Tables can therefore be constructed to facilitate design on the 
basis that 

2N N2 + 1 
(N2_ 1) — n1 and N2_ l — n2 

Then R2 = 0/T7- ---IRL X n1 

R1 = n2RH — R2 

R3 = n2 RL — R2 

For calculation of R2, Table 5.4 may be of use to quickly 
determine N/Iii—IRL for example, if RH is 900 ohms and 
RL 50 ohms, then at RH = 9, RL = 5 in the first section of 
the table, the figures 

A 6.708 B 21.21 are given while the second section 

of the table shows that for RH in 100-1000 ohm range and 
RL in the 10-100 ohm range, the B figure should be used and 
multiplied by 10, thus 

v"900 x 50 = 212.1 . 

Table 5.5 is subsequently used to give the value of n1 and this 
is multiplied by the figure for \'H RL to calculate R2. With 
the value of R2 determined, R1 and R3 follow from the figure 
for n2, again from Table 5.5. 

Minimum Pad Loss 

As an asymmetrical T-pad is progressively designed for lower 
pad attenuations, R3 gets smaller and the limit is reached when 
R3 = 0 because for an attenuation lower than this, R3 has a 
negative value which cannot be achieved in a practical circuit. 
In fact, at R3 = 0 the T-pad has been transformed into an 
L-pad which, as previously shown has a fixed attenuation for 
any given ratio RH/RL. This indicates that the asymmetrical 
T-pad has a minimum loss, so that design of a pad matching 
RH to RL for a lower attenuation than this minimum is not 
possible. This value can be determined by considering the 
condition R3 = 0 which occurs when n2RL = R2 or 

n2 RL =n1 N/1TF—iRL 
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ni 

Table 5.5 includes the values of (n2/n1)2 so that comparison 
may be made with RH/RL to ensure that 

< RH ( n2y 

RL n1 

for any particular magnitude of attenuation required. 

Œ, dB n, 
ri2 (r-n,)Z 

1 8.667 8.725 1.013 
2 4.304 4.418 1.054 
3 2.842 3.013 1.124 
4 2.096 2.323 1.228 
5 1.645 1.925 1.369 
6 1.339 1.671 1.557 
7 1.116 1.498 1.802 
8 .9461 1.377 2.118 
9 .8120 1.288 2.516 
10 .7028 1.222 3.023 
11 .6124 1.173 3.669 
12 .5362 1.135 4.481 
13 .4714 1.106 5.505 
14 .4156 1.083 6.791 
15 .3673 1.065 8.407 
16 .3251 1.052 10.47 

Design: 

cr, dB n, n, (-1;1i)2 n  

17 .2883 1.041 13.04 
18 .2559 1.032 16.26 
19 .2273 1.026 20.38 
20 .2020 1.020 25.50 
22 .1599 1.013 40.14 
24 .1267 1.008 63.30 
26 .1005 1.005 100.0 
28 .0797 1.003 158.4 
30 .0633 1.002 250 
35 .0356 1.0006 790 
40 .0200 1.0002 2501 
45 .0112 1.00006 
50 .0063 1.00002 
55 .0036 •-• 1.0 
60 .0020 •••• 1.0 

R2 = x n1 

R1 = n2 RH - R2 

R3 = n2 RL - R2 

Table 5.5 Values of Multiplying Factors, n, for Asymmetrical 
T-type Pads 
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EXAMPLE: 
A 75 ohm line feeds a loudspeaker of 40 ohms. A control on 
the loudspeaker is required to give full volume with optional 
10 and 20 dB reductions. Design a practical T-type attenuator 
to match the line to the loudspeaker and to give the required 
volume reductions. 

First check for minimum pad loss: 

RH 75 
— = — = 1.875 
RL 40 

From Table 5.5, for 10 dB attenuation RH/RL must be equal 
to, or less than 3.023. This is so, therefore a pad can be 
designed for 10 dB loss. 

Design 10 dB pad — from Table 5.5 n1 = .7028, n2 = 1.222 

R2 = N/75 x 40 x .7028 = 38.49 ohms 

R1 = (1.222 x 75) — 38.49 = 53.16 " 

R3 = (1.222 x 40) — 38A9 = 10.39 " 

Design 20 dB pad — from Table 5.5 n1 = .2020, n2= 1.020 

R2 = N/75 x 40 x .2020 = 11.06 ohms 

R1 = (1.020 x 75) — 11.06 = 65.44 " 

R3 = (1.020 x 40) — 11.06 = 29.74 " 

A suitable circuit would therefore be as follows (Fig.5.24). 

The nearest preferred-value resistor has been used in each case. 
Considering that the output is sound from a loudspeaker and 
the ear can only detect a 1 dB change in loudness with great 
difficulty, the discrepancy in attenuation is negligible. 
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FIG. 5-24 Matching and Volume Control 

for Loudspeaker 

5.3.3 it-type Network 

Symmetrical 

Whereas the T-pad consists of two series and one shunt arm, 
the 7r-pad has two shunt and one series. Many of the considera-
tions in the previous section (5.3.2) apply and by similar 
reasoning it can be shown that: 

R1 = Rce 
N-1 

R2 = Ro 

(N2— 1  

2N j 

cc 
where N = antilog — 

20 

aid cc is the pad attenuation in 
decibels. 

N + 1 N2-1 
Now let   n1 and   n2 

N-1 2N 

then Table 5.3 can be used as before to assist in design. 
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EXAMPLE: 
Re-design the pads shown in Fig.5.22 as symmetrical >types. 

Calculation of pad resistance values: from Table 5.3: 

3 dB pad n1 = 5.854 
n2= .3519 

6 dB pad n1= 3.010 
n2= .7469 

10 dB pad nl= 1.925 
n2= 1.423 

= 600 x 5.854 = 3512 ohms 
R2 = 600 x .3519 = 211 " 

:. R1 = 600 x 3.010 = 1806 
R2 = 600 x .7469 = 448 

:. R1= 600 x 1.925 = 1155 
R2 = 600 x 1.423 = 854 

Using the above values for the two resistors R1 and for R2 for 
each pad, the circuit of Fig.5.22 can be redesigned. 

Asymmetrical 

The design formulae are more complicated than for the 
T-network and do not permit the type of simplification that 
is necessary for a table, such as Table 5.5, to be constructed as 
an aid to design. Referring to Fig.5.26, the formulae are: 

R1 = RH 
(N2 -  

N2+ 1 — 2N i RH 
RL 
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-%/RH RL (N2 — l) 
/(2 

cc 
where N = antilog and « is the pad attenuation in decibels. 

20 

The values of the pad resistors may therefore be calculated 
directly from the above, but see the next section for a sugges-
tion of an alternative method of calculation. For direct 
calculation, values of N and N2 may be obtained from 
Table 5.6. 

5.3.4 Choice Between T and ir-type Networks 

The two preceding sections have shown the complete design 
procedure for both T and type networks but no reference 
has been made as to which is preferable in a particular case. 
The performance of both is the same, the ónly differences 
being configuration and resistance values. Configuration may 
be important if, for example, d.c. is being carried by the 
attenuator in addition to its normal function and its resistance 
to d.c. matters. With resistance value, it may well be that one 
type will have more suitable values by being nearer to pre-
ferred values, than the other. 
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Therefore it is suggested that design should commence with 
the T-type as this is simpler, if there remains any doubt about 
its suitability, then a IT -type can be calculated directly from 
the T design by use of the star-delta transformation, developed 
in Sect.5.1.6 which also shows the equivalence to T to ir 
transformation. 

Thus, having calculated the values RI, R2 and R3 for a T-pad, 
the equivalent ir -pad follows as shown in Fig.5.27. 

c,,dB N NI2 cc, dB N N2 

1 1.122 1.259 17 7.079 50.11 
2 1.259 1.585 18 7.943 63.09 
3 1.413 1.997 19 8.913 79.44 
4 1.585 2.512 ./0 10.00 100.0 
5 1.778 3.162 22 12.59 158.5 
6 1.995 3.980 24 15.85 251.2 
7 2.239 5.013 26 19.95 398.1 
8 2.512 6.310 28 25.12 631.0 
9 2.818 7.941 30 31.62 1000 

10 3.162 10.00 35 56.23 3162 
11 3.548 12.59 40 100.0 10,000 
12 3.981 15.85 45 177.8 31,623 
13 4.467 19.95 50 316.2 10' 
14 5.012 25.12 55 562.3 316,230 
15 5.623 31.62 60 1000 106 
16 6.310 39.82 

cc 
N = antilog — where cc = pad attenuation in decibels. 

20 
Table 5.6 Values of N and N2 for Asymmetrical ir-type Pads 
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EXAMPLE: 
Re-design the 10 dB T-pad of Fig.5.24 as a ir-pad. Use the 
calculated (not preferred) values. 

The 1-pad resistance values are 

R1 = 53.16 ohms, R2 = 38.49 ohms, R3 = 10.39 ohms 

R = RiR2+ RiR3+ R2R3 = 2046.13 + 552.33 + 399.91 

= 2998.37 

R 2998.37 
  = 56.4 ohms 

R1 53.16 

R 2998.37 
— =  — 77.9 ohms 
R2 38.49 

R 2998.37 
— =  = 288.6 ohms 
R3 10.39 

The original 1-pad and its ir equivalent are shown in 
Fig.5.28. 

5.3.5 Balanced L, T and u-type Networks 

The pad series resistance must be equally divided between the 
two legs of the circuit as shown in Fig.5.29 for the three types. 
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Design proceeds as before, with one further step, i.e. of 
dividing the series resistance value(s) by 2 and connecting 
this in each leg. Symmetrical pads are treated similarly. 

5.3.6 Bridged-T Network 

This is a symmetrical network which, although containing one 
resistor more than the T-type, has the advantage that only two 
resistors need to be varied to change the attenuation. Referring 
back to Fig.5.22 shows that all three resistors of each pad are 
changed as the switch moves, thus the advantage of the 
bridged-T network in a switched attenuator increases in 
proportion to the number of attenuator steps. Fig.5.30 shows 
the circuit. 

Design formulae: 

RO  
R1 = R0 R2 = R3 = Ro(N — 1) 

(N — 1) 
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cx 
where N = antilog —20 and cc = pad attenuation in decibels. 

Thus the two resistors R1 remain constant, irrespective of 
attenuation. Values of N are given in Table 5.6. 

EXAMPLE: 
Re-design the circuit of Fig.5.22 using bridged-T networks 
(3, 6 and 10 dB pads, 600 ohms). 

3 dB pad: N (from Table 5.6) = 1.413 (N — 1) = 0.413 

600  
R1 = 600 ohms R2 = 0.413 — 1452.8 ohms 

R3 = 600 x 0.413 = 247.8 ohms 

6 dB pad: N = 1.995 (N — 1) = 0.995 

R1 = 600 ohms R2 = 06.90905 = 603 ohms 

R3 = 600 x 0.995 = 597 ohms 

10 dB pad: N = 3.162 (N — 1) = 2.162 

600  
R1 = 600 ohms R2 = 2.162 = 277.5 ohms 

R3 = 600 x 2.162 = 1297 ohms 

The variable 600 ohm attenuator using bridged-T networks is 
therefore as shown in Fig.5.31. 
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5.4 FILTERS 

The design of very sharp cut-off filters is a subject on its own, 
warranting a whole text-book for full treatment. It is also 
unlikely that there will be a call for the more complicated 
filters, if at all, in the amateur workshop. Nevertheless there 
are occasions when a simple low or high pass filter is needed, 
for example, for attenuation of noise in audio systems, 
therefore design details of these are included here. A few 
definitions are first appropriate. 

Iterative Impedance: 
This is defined as "the value of the impedance measured at one 
pair of terminals of a two-terminal-pair network when the 
other pair of terminals is terminated with an impedance of the 
same value." 
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Diagrammatically this is shown in Fig.5.32 for the symmetrical 
types of network to be considered. 

FIG. 5-32 Iterative Impedance of o 
Two-Terminal Pair Network 

If the network has an iterative impedance of Zo, then with 
this impedance connected across terminals 3 and 4, the same 
impedance, Zo, will be measured at terminals 1 and 2 and vice 
versa. 

As also found in the case of attenuators, the performance of 
the network depends upon the terminating impedances, and 
the network must bear the correct relationship to these, they 
are called the "design impedances" for the particular filter 
section. When this is done, sections may be connected in series, 
each being correctly terminated as can be seen from Fig.5.32 
where, if the impedance Zo is replaced by terminals 1 and 2 of 
another similar network, itself terminated at terminals 3 and 4 
by Zo, the original impedance measured at terminals 1 and 2 
of the network shown is unchanged and both the original and 
the added network are correctly terminated. 

Characteristic Impedance: 
This is a term more usually associated with transmission lines 
but may be used with symmetrical attenuator and filter 
sections. In Fig.5.32 it denotes the common value assumed by 
the iterative and terminating impedances, i.e. Zo. In the cases 
being considered, characteristic impedance is synonymous with 
iterative impedance. 

185 



Variation of Attenuation (Œ) with Iterative Impedance Zo: 
For a correctly terminated ideal (i.e. no resistance losses) filter 
section, for the range of frequencies over which Z, is purely 
resistive, « is zero. When Z, is purely reactive, « is greater 
than zero. 

This is the theorem from which the cut-off frequency can be 
determined. A simplified reasoning is that if at a particular 
frequency, Zo is resistive (real) then power must be absorbed, 
but not by the filter section because it contains reactive 
components only, the power is thus passed on to the load, 
i.e. the frequency lies in the pass band. If, however, Zo is 
reactive (imaginary), no power is absorbed by either filter or 
termination, the frequency therefore lies in the attenuation 
band. 

Two basic types of filter are considered, the "Constant-k" or 
"Prototype" and the "M-Derived". In the constant-k section 
the component impedances are related directly to the design 
impedance, in the m-derived, an improved cut-off characteris-
tic is obtained by changing the internal filter component 
relationship. 

Generally the T-section is considered, but where appropriate 
the ir-section is also shown. 

5.4.1 Constant-k Low-Pass Filters 

Fig.5.33 shows the elements of the basic sections. 

For the constant-k section, the total series and shunt 
impedances (i.e. of L and C in Fig.5.33) are related to the 
"design impedance" by 

ZiZ2 = 11,2„, 

where Z1 and Z2 are the total series and shunt impedances 
respectively and Ro is the design impedance which is made 
purely resistive. 

Hence, from Fig.5.33 Z1 = jcoL Z2 = 

coC, 
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and if ZiZ2 

—j 2 L 
jcoL x — = = — 

coC 

R. = 

(j2 = —1) 

— note that this applies to both types of section. Z, in fact 
varies with frequency so this design value of R, is chosen to 
provide a reasonable compromise. 

Looking into terminals 1 and 2 of the general T-section of 
Fig.5.34 

FIG. 5-34 T-section terminated with 4 
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Z1 
Z2 + Zo) 

Z1  2  
Zo — + 

2 Z1 
Z2 + + Zo 

2 

j Z from 21 om which, Zo = — + Z 1 Z2 • 
4 

This is the general formula. In terms of the reactive 
components of Fig.5.33, it becomes: 

j  L)2 —j —co2L2 L 
Zo = +jc...)L x = 

4 coC 4 C 

but R0 = 

Zo = Ro 11 
0)2 Lc 

4 

c.o2LC 
= /1 — 

4 C 

From the theorem given above on the variation of « with Zo; 
the pass band occurs over the range for which Zo is resistive. 
This is only when c.o2LC/4 < 1 and the cut-off frequency, fc, 
arises at the change-over point, i.e. when 

02 Lc 
  = 1 
4 

1 
i.e. f, =   

ir\FL 

The filter will have a characteristic as shown typically in 
Fig.5.35. 

The attenuation « may be given by 

20 log 10 

ziz2 

Z1 V 4  
1 + + 

2Z2 Z2 
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35 

FIG. 5-35 Variation of Attenuation with 

Frequency for Constant -k LP Filter 

This is a complicated expression involving much manipulation 
of the operator j, but a more easily managed expression may 
be developed by use of hyperbolic functions (the mathematical 
treatment involves line propagation constants which are not 
considered here) and this is 

Œ = 17.37 cosh"' — dB 
fc 

where f is the frequency in question and fc the cut-off 
frequency. 

For two or more sections in series, cc is increased 
proportionately. 

It must be emphasized that these formulae are approximate 
as no account has been taken of resistance in the inductor nor 
of the frequency dependent mismatch between the filter 
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section and its termination, the design impedance, Ro. Never-
theless an attenuation/frequency characteristic calculated by 
use of the above formula is a very useful guide in assessing the 
value of a filter section. To simplify calculation even more, 
Table 5.7 gives the attenuation in decibels directly as a 
function of f/fo. 

Thus the formulae from which the basic L.P. filter sections 
(both T and it) are designed are: 

Ro = 
1  

- and fo - 

Ro 
L = - Henrys, 

from which, 

1 
C = - Farads. 

efelto 

f 

fc dB 

1.00 0 
1.005 1.74 
1.01 2.43 
1.02 3.47 
1.03 4.24 
1.04 4.90 
1.05 5.47 
1.06 6.00 
1.07 6.46 
1.08 6.90 
1.09 7.35 
1.10 7.71 
1.15 9.40 
1.20 10.8 
1.25 12.0 

f 
- 
fo 

cc, 
dB 

1.30 13.1 
1.40 15.1 
1.50 16.7 
1.75 20.1 
2.0 22.9 
2.5 27.2 
3.0 30.6 
4 35.8 
5 39.8 
6 43.0 
7 45.8 
8 48.1 
9 50.2 
10 52.1 

fc = cut-off frequency 
f = frequency under consideration. 

Table 5.7 Effect on Attenuation of Deviation from Cut-Off 
Frequency for Constant-k LP Filter 
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EXAMPLE: 
A 400 ohm microphone is matched into an amplifier input. 
A simple LP filter is required to progressively attenuate 
frequencies above 10 kHz. 

Ro = 400 ohms fc = 10,000 Hz 

400  
— = 6.365 mH. x 104 H = 12.73 mH 
2 

C = 
1 

  F = 0.0796 µF — = 0.0398 µF. 
x le x 400 2 

The two alternative constant-k sections are shown in Fig.5.36. 

o  

6.365mH 6.365mH 12.73mH 

0.0796mo 0.0398.» mem0398 
saFT TpF 

0 0  

T - section 7T-section 

FIG. 5-36 Low-pass T and /1" - sections, 
lq0 z 400 ohms, fc zlOkHz 

The two sections have similar R, and fe values. They differ 
only in the variation of iterative impedance with frequency. 

The attenuation/frequency characteristic is the one actually 
used for Fig.5.35. 

Clearly a filter for this purpose does not need great accuracy in 
the value of fc and it is instructive to examine the change if, 
for example, only 6 mH inductors were available and, as is 
likely, only preferred values for C could be used. 

If L is smaller than the design value, then to maintain Ro, 
C should also be smaller e.g. .075 F. 
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1  
Then fe — — 10,610 Hz Ro = 

ir N./LC 
= 400 ohms. 

Conversely, should the accuracy of fc be more important, the 
next higher preferred value for C would be chosen so that 
VI:Ewould change least. 

Some help with the design of small inductors may be gained 
from Sect.3.4.2 and with the measurement of inductance 
from Sect.6.2.3. 

5.4.2 Constant-k High Pass Filters 

Fig.5.37 shows the elements of the basic sections. 

FIG. 5-37 T and Constant-k High Pass 

Filter Sections 

Being a constant-k section, as in the case of the L.P. filter, 

ZiZ2 = R?) 

where Z1 and Z2 are the total series and shunt impedances and 
Ro is the (resistive) design impedance. 

Hence, from Fig.5.37 

Z1 = Z2 = jc.oL and R, = — for both 
coC ic 
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T and ir-sections. 

A similar algebraic approach as for the L.P. filter gives 

Zo = Roil 
1 

4w2LC 

where Z, is the impedance looking into terminals 1 and 2 
with terminals 3 and 4 closed with the same value. 

When 4w2LC > 1, Zo is real and f is within the pass band, 
when 4w2 LC < I, Z, is imaginary and f is within the 
attenuation band. 

Hence the cut-off frequency, fe, is given by 

4w2LC = 1 
1 

fc -   
4ir N/71 

The filter will have a characteristic as shown typically in 
Fig.5.38, calculated from the formula for the attenuation of 

the H.P. section, 

= 17.37 cosh-' —fc dB. 

Fig.5.38 has been plotted for f, = 10 kHz, the same as used 
for Fig.5.35. Note that there is a difference in scale so that 
Fig.5.35 may show better the change in attenuation near the 
cut-off frequency while Fig.5.38 demonstrates how the 
attenuation curve rises towards infinity at frequencies very 
remote from cut-off. 

For the H.P. filter, Table 5.8 is included for quick estimation 
of the attenuation/frequency characteristic. 

Rearranging the formulae already given for Ro and fc, the 
basic H.P. filter section component values (for both T and ir 
sections) are given by 

Ro 1 
L = —  Henrys, C -   Farads. 

4irf 4irf,Ro 
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5-38 Variation of Attenuation with 

Frequency for Constant-k HP. Filter 

EXAMPLE: 
A 50 kHz supply from a tape recording bias oscillator needs a 
high pass filter cutting off at about 45 kHz to minimize pick-
up of lower frequency signals. Design a constant-k filter for 
this purpose for connexion between 200 ohm impedances. 
What is the approximate filter attenuation at 42 kHz? 

R0 = 200 ohms, f, = 45 kHz 

200 

4/7 x 45 x 103 
Henrys = 354 pH 2L = 708 pH 
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1 
C =  Farads = 0.00884 ,i/F 

47r x 45 x 103 x 200 

2C ;0.0177 µF 

The two alternative constant-k sections are shown in Fig.5.39, 
but clearly for a filter for this particular purpose the nearest 
preferred value capacitors would be appropriate, e.g. 0.018 
and 0.0091 le. 

f 
- 

fc 

cc, 
dB 

.995 1.74 

.990 2.43 

.98 3.47 

.97 4.24 

.96 5.02 

.95 5.63 
94 6.18 
.93 6.69 
.92 7.19 
.91 7.69 
.90 8.11 

f 

fe dB 

.85 10.2 

.80 12.0 

.75 13.8 

.70 15.6 

.60 19.1 

.50 22.9 

.40 27.2 

.30 32.6 

.20 39.8 

.10 52.1 

fe = cut-off frequency 
f = frequency under consideration. 

Table 5.8 Effect on Attenuation of Deviation from Cut-Off 
Frequency for Constant-k H.P. Filter 

Filter attenuation at 42 kHz:-

f 42 
- = - = 0.933 From Table 5.8 cc = 6.69 dB for 
fe 45 

- = 0.93 
fe 

i.e. approximate attenuation at 42 kHz = 7 dB. 
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Choice of T or it-section might depend on d.c. considerations, 
for example, if d.c. has to flow between terminals 1 and 2 or 
between 3 and 4, the ft-section has the obvious advantage. 
Choice is also affected by availability of components. 

5.4.3 M-Derived Filters — General Theory 

The "m-derived" filter section has an improved (i.e. steeper) 
attenuation/frequency characteristic compared with the 
constant-k section, the price which has to be paid is a more 
complicated filter in that it contains one more component and 
actually has less attenuation at frequencies well above the 
cut-off value, fc. 

The main technical difference between the two types is that 
the m-derived contains a resonant circuit such that resonance 
produces (theoretically) infinite attenuation at some desired 
frequency whereas the constant-k provides infinite attenuation 
only at zero or infinite frequency according to the type of 
filter (see Figs.5.35 and 5.38). Both filters have their own 
particular field of use, this will become evident from the 
practical examples given later in this section. 

Consider first the general form of a rudimentary m-derived 
section as in Fig.5.40. 

In (a) the series impedances Z1/2 of the constant-k section 
have been replaced by impedances of value mZi/2, and Z2 
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must therefore have some new value depending on the value 
of m. Let this be Z2(m ).. 

The general formula for the iterative impedance of a T-section 
which is 

Z, = — + ZiZ2 now becomes 
JZ1 

4 

Z, = + mZ,Z2(.„) 
4 

Equating the two expressions shows that 

Z2 ( 1 _ m 2) 

Z201.9 = - Z1   
4m 

that is, two separate impedances in series as shown in 
Fig.5.40(b). Similarly the rr-section can be developed as 
in (c). 
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Referring to the T-section, it will be seen that the new shunt 
arm contains components of both Z1 and Z2, that is, reactances 
of opposite sign and it is this feature from which the resonance 
effect is obtained, because there will be some frequency at 
which the net reactance of the shunt arm is zero, producing 
series resonance with theoretically zero impedance. At this 
frequency the attenuation will be infinite because there is a 
short-circuit across the through path. 

Equally in the case of the it-section, a parallel resonant circuit 
is inserted in series with the through path, at resonance pro-
ducing infinite impedance and therefore infinite attenuation. 
Resonance is considered fully in Section 4.7 in which it is 
shown that, with very little sacrifice of accuracy, both series 
and parallel resonant circuits containing the same values of 
inductance and capacity have the same resonant frequency 
which is given by the general expression 

1 
fr —   

2/r 

where fr is the resonant frequency and L and C are the 
inductance and capacity of the components of the resonant 
circuit in Henrys and Farads respectively. 

Using this to calculate the resonant frequencies of both types 
of section (Fig.5.40(b) and (c)) it will be found that the result 
is the same, thus the equality of design for both T and 

sections found to exist in the constant-k case continues to-
apply for the m-derived. 

5.4.4 M-derived Low Pass Filters 

The two m-derived sections are shown in Fig.5.41. 

The frequency of resonance (fr) of the T-section shunt arm or 
7r-section series arm is given by 

1 1 

fr 

2ir   Jm(1 — m2) LC irN/(1 —m2) x N/L-E 
4m 

198 



1  
but since the cut-off frequency, fc — (Sect.5.4.1) 

ir 

fr -%/1 — M 2 

fe 
and 

fr  1 

fc /71 — M 2 

The problem, is, of course, what value of m to choose, because 
although small values of m give sharp cut-off, the attenuation 
falls at frequencies above this value. This is shown in 
Figs.5.42(i) and (ii) which show the comparison between the 
m-derived section and the prototype or constant-k section (for 
which m = 1). A study of the range of m-derived characteristics 
as shown in Fig.5.42 with the constant-k characteristic for 
comparison, and with a knowledge of the purpose for which 
the filter is required is helpful in making a choice. It must be 
emphasized that the curves are calculated on the basis of loss-
free components and correct matching between the section 
and its terminations. Although neither condition applies in 
practice it can be shown that the inaccuracy arising from the 
assumptions can be made quite small. 
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10 1;25 1.5 1.75 20 f 2.5 30 35 4-0 4.5 50 

fc 

FIG. 5-42(i) Attenuation Band of constant -k 

and in-derived (m a CP4-0-6) Low Pass Fitters 

The attenuation/frequency characteristics have been calculated 
from the general formula for the propagation constant (y) of a 
T-section: 

1 (Z1 
cosh y = 1 + - — Inepers, 

2 Z2 

and because reactances only are being considered, Z1 and Z2 
become X1 and X2 and the propagation constant will be found 
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to have no phase angle. Hence, for this purpose the formula 
may be written, 

1 Xi 
cosh cc = 1 + — — Inepers, 

2( X2 

where, for example, in the case of the T-section, X1 is the 
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reactance of the series arm and X2 the net reactance of the 
shunt arm as shown in a later example (Fig.5.45). 

As it is unlikely that in the amateur workshop, precision filters 
will be required, the formula gives ample accuracy for most 
work for choosing both the type (constant-k or m-derived) of 
filter and if m-derived, the value of m. 

A practical range of m-derived filter attenuations and charac-
teristics is given so that design is greatly simplified. These are 
in Table 5.9 and Fig.5.42(i) and (ii), which cover a practical 
range for m, although values of less than 0.4 or greater than 
0.9 may be used. Note that there is a change in the scale for 
fife between the two figures, this is to show more clearly the 
attenuation change near the resonance point. The constant-k 
characteristic will also appear to be different when compared 
with that on Fig.5.35, this is because of change of scale from 
linear to logarithmic. 

In Table 5.9 the column headed fe/f should be ignored — this 
refers to high-pass filters. 

Design Procedure 

The following parameters must be known or estimated: 

(i) cut-off frequency, fc 

(ii) design impedance, IZ,„ 

(iii) attenuation required in the attenuation band, oc. 

Because universal characteristics such as shown in Fig.5.42 can 
only be drawn on a frequency ratio basis, it may be found 
convenient first to construct a scale converting f/f, back into 
actual frequencies relative to the cut-off value required. 

The first choice to be made is between the constant-k and 
m-derived filters. This choice is made straightforward by 
consideration of Fig.5.42. Assuming an m-derived section is 
needed the range of characteristics shown will further help in 
choice of m. If the value chosen happens to be one of those 
shown, then the actual attenuations at various ratios of fife 
may be obtained directly from Table 5.9. 
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f m 
fc 
f 0.4 0.5 .0.6 0.7 0.8 0.9 

1.05 17.4 12.3 9.7 8.1 7.0 6.1 0.95 
1.10 33.8 20.8 14.9 11.9 10.0 8.7 0.91 
1.15 19.6 44.4 20.3 15.3 12.5 10.7 0.87 
1.20 15.9 26.0 27.7 18.6 14.7 12.4 0.83 
1.25 14.0 20.8 c«, 22.3 16.9 14.0 0.80 
1.30 12.8 18.3 30.0 26.8 19.0 15.4 0.77 
1.35 11.9 16.7 25.8 33.8 21.2 16.8 0.74 
1.40 11.3 15.6 22.3 80.0 23.5 18.1 0.71 
1.45 10.8 14.8 20.6 35.4 26.1 19.3 0.69 
1.50 10.4 14.1 19.3 30.1 29.0 20.5 0.67 
1.6 9.8 13.2 17.7 25.3 38.2 23.0 0.63 
1.7 9.4 12.5 16.6 22.9 45.4 25.4 0.59 
1.8 9.1 12.1 15.8 21.3 34.3 28.1 0.56 
1.9 8.9 11.7 15.3 20.3 30.3 30.9 0.53 
2.0 8.7 11.4 14.8 19.5 28.0 34.3 0.50 
2.2 8.4 11.0 14.2 18.4 25.4 45.7 0.45 
2.4 8.2 10.7 13.8 17.7 23.9 46.0 0.42 
-2.6 8.1 10.5 13.5 17.2 22.9 38.0 0.38 
2.8 8.0 10.4 13.2 16.9 22.2 34.6 0.36 
3.0 7.9 10.3 13.1 16.6 21.7 32.7 0.33 
3.5 7.7 10.1 12.8 16.2 20.9 30.1 0.29 
4.0 7.6 9.9 12.6 15.9 20.4 28.8 0.25 
5.0 7.5 9.8 12.4 15.6 19.9 27.4 0.20 
7.0 7.4 9.7 12.2 15.3 19.5 26.5 0.14 

10.0 7.4 9.6 12.1 15.2 19.3 26.0 0.10 

-f at fr 1.091 1.155 1.250 1.400 1.667 2.294 
fc 

HIGH-> 
PASS 0.917 0.866 0.800 0.714 0.600 0.436 

fc 
-f at fr 

fc = frequency of cut-off 
fr = frequency of resonance. 

Table 5.9 M-derived Filter Attenuations in Decibels 

Design of the filter follows from the formulae for the basic 
(constant-k) section i.e. 

Ro 
L = - Henrys 

efc 

1 
C =   

irfcR0 
Farads. 

and, for example, for the T-section, as shown in Fig.5.41, the 
series inductances are of value mL/2 and the shunt arm has a 

203 



capacitor of value mC in series with an inductor (1—m2/4m)L. 
The ir- section component values are calculated similarly from 
Fig.5.41. 

This, in fact, completes the paper design of the filter and its 
attenuation/frequency characteristic is as shown on Fig.5.42 
for the appropriate value of m. 

If values of m shown are not suitable, for example there is a 
precise frequency at which very high attenuation is required, 
then the value of m must first be calculated. The frequency of 
resonance, fr is the one at which attenuation is highest, and 
the value of m is linked to this as already shown by 

m /1 — (fe 
\ fr/ 

By artistic interpolation on Fig.5.42, the characteristic may be 
sketched, if however, greater accuracy is required, recourse 
may be had to the formula already given for calculating the 
attenuation either directly with frequency or the ratio f/fc. 

The following examples should amplify and clarify the 
procedure. 

EXAMPLE: 
A single section low-pass filter is required with as steep a 
cut-off at 10 kHz as possible and with at least 15 dB attenua-
tion at 100 kHz. It is to work between 200 ohm impedances. 
Design the filter. 

This is quite straightforward because Fig.5.42(ü) shows that 
the m-derived section with m = 0.7 has an attenuation of 
15.2 dB (Table 5.9) at f/fc =10, i.e. 100 kHz. 

fc = 10 kHz 

(ii) R, = 200 ohms 

T-section: 

m = 0.7 

L = —Ro H — 200  — 6.366 mH 
Irfc ir x 104 

_ m 2 

 = 0.182 
4m 
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mL 0.7 x 6.366 
— = = 2.228 mH 
2 2 

(1 _ m 2) 

  L = 0.182 x 6.366 = 1.159 mH 
4m 

C = 
106 106 

se — 
/TfcRo 77 X 104 x 200 

= 0.1592µF 

mC = 0.7 x 0.159 = 0.1114e 

ir -section: 

From T-section, L = 6.366 mH 

.. mL = 0.7 x 6.366 = 4.456 mH 

C = 0.1592 µF 
mC 0.7 x 0.1592 
— =   — 0.0557 pF 
2 2 

(1_ m 2) 

  C = 0.182 x 0.1592 = 0.029 µF 
4m 

The filter sections are illustrated in Fig.5.43. Either can be 
used. 
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EXAMPLE: 
In a system of ultrasonic alarms, one unit working at 40 kHz 
is occasionally triggered falsely by other remote units, especial-
ly one working at 50 kHz. Design a low pass filter for the 
40 kHz unit to install between the transducer and the amplifier 
input (both 2000 ohms) to have as high an attenuation as 
possible at 50 kHz. 

The requirement may be satisfied by an m-derived low-pass 
filter having a cut-off frequency slightly above 40 kHz, say at 
42 kHz with such a value of m that highest attenuation is 
obtained at 50 kHz. 

Thus: fc = 42 kHz 

fr = 50 lcHz 

Ro = 2000 ohms 

fr 
— = 1.1905 
fc 

The bottom line of Table 5.9 shows that ft/f, =1.1905 falls 
between m = 0.5 and 0.6, thus a vertical line could be drawn on 
Fig.5.42(i) at f/f, =1.19 (the line which the characteristic 
theoretically meets at infinity), the characteristic sketched in 
and the estimated attenuations read off. 

The filter design, say for a T-section, is as follows: 

m (1- = 42 
— (-1 = 0.5426 

50 

1 - m2 

4m 
— 0.3251 

Ro 
L = — Henrys — 

frfc 

2000 x 103 
mH = 15.158 mH 

ir x 42 x 103 

mL 
— = 4.1124 mH 
2 

/1 _m 2\ 

IL = 0.3251 x 15.158 mH = 4.9279 mH 
4m 

206 



106 106 
C =   

nfelto x 42 x 103 x 2000 
1./F = .003789 1.¡F 

mC = 0.5426 x .003789 = .002056 µF 

The filter section is shown in Fig.5.44. 

4-1124mH 4.1124mH 3 

M 002056pF 

2000fl e— —.2000(1 
4.9279mH 

FIG. 5-44 Low-Pass Filter with fc 42kHz 

ond Ira 50kHz 

This is the correct filter and it will be found that the shunt 
arm resonates at almost exactly 50 kHz, irrespective of 
resistance losses. But the values of the components may be 
difficult to realise in practice. 

Inductors may be overwound when constructed and turns 
removed until the correct value of inductance is measured but 
capacitors are usually bought in preferred values, not made. 
Thus minor changes to component values may be made to 
obtain more practical values, e.g. if in the shunt arm the 
capacitance is made .002 'IF then with the inductance raised 
slightly to 5.066 mH, the arm will still resonate at 50 kHz, 
which is the most important function of the filter. This 
calculation follows from the formula for the frequency of 
resonance of the shunt arm 

1 
fr =   where L and C are the components of 

2/r N/F—_,C the shunt arm in Henrys and 
Farads respectively 
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1 106  
L — H — 5.066 mH 

(2rrfr)2C 477.2 x 25 x 108 x .002 

(However, it just so happens that the exact value of capaci-
tance in this particular case would be relatively easy to provide 
by use of a .002 i..tF in parallel with a 56 pF). 

Earlier in this example it was shown how the approximate 
filter attenuation/frequency characteristic could be estimated 
from Fig.5.42. 

Should something better than this be required, the simplest 
formula to use for calculation of the attenuation is the one 
previously quoted i.e. 

1 (X1 
cosh « = 1 + — — nepers 

2 X2 

= 8.686 
1 

1 + — decibels 
2 X2 

(Xi 
(Sect.6.2.6) 

where « is the filter attenuation and X1 and X2 are the net 
reactances of the filter sections as shown in Fig.5.45. 

EXAMPLE: 
Transform the low-pass T-section filter shown in Fig.5.36 into 
an m-derived section with m = 0.6. Show by calculation that 
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the filter has minimum attenuation at 10 kHz, maximum at 
12.5 kHz. Also calculate the attenuation at 10.75 and 21 kHz. 

For the m-derived sections: 

Series arm inductance = mL = 0.6 x 12.73 = 7.638 mH 

fl _ m 2\ 

Shunt arm inductance —   L = 0.2667 x 12.73 
4m 

=- 3.395 mH 

Shunt arm capacitance = mC = 0.6 x 0.0796 = 0.04776 µF 

as shown for the T-section in Fig.5.46. 

= 7•638mH\  

1 3•819mH 3•819mH 3 

C 0.047761JF 

L 3•395mH 

Fla 5-46 Low Pass Filter of FIG.5-36 os 

m-derived section (ma 06) 
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1 2 3 4 5 6 7 8 9 

f, 

kHz 

X, 

= 47.99 x Col.' 

XL, 

=j21.33 xCo1.1 

XC 

-j3332.39 

X, 

- Co1.3+Col.4 

1 (t) 
Co .2 

1 + 4 (3 ) 
X, 

. 1 + Co1.6 

cosh-' 

X L 1 + i -- 

= cosh -ICX012.7 
nepers 

cc 

= 8.686 x Col 8 
dB 

- 
Col. 1 

= i 
Co1.5 

10 

10.75 

12.5 

21 

j 479.9 

j 515.89 

j 599.88 

j1007.8 

j213.3 

j229.3 

j266.6 

j447.9 

-j333.24 

-j310.0 

-j266.6 

-j158.7 

-j119.9 

-j 80.7 

0 

j289.2 

-2.0 

-3.196 

oc, 

1.742 

-1.0 

-2.196 

co 

2.742 

0 

1.423 

co 

1.667 

0 

12.4 

ce 

14.5 

Table 5.10 Calculation of Attenuation of Filter Section 



When several calculations from the same formula are required 
it is often convenient to first design a table so that columns 
may be calculated separately, thus minimizing the risk of 
error. An example follows: 

X1 (Figs.5.45 and 5.46) = 2/rfLi = 47.99 x f where fis in kHz 

XL2 " 

XC 
99 

le = 2/rfL2 = 21.33 x f 

—1 —3332.39 
_ 

coC 

1) e, )1 ff 

These figures simplify the repeated calculations as typically 
shown for this example in Table 5.10. The figures in Column 9 
give the answers required. 

Notes on Table 5.10: 
1. Values of cosh x are given in most books of tables. 
2. The attenuation values calculated can be checked from 

Fig.5.42. 
3. It will be observed that the operator j can be omitted 

because it ultimately cancels out in column 6. 
4. The signs in column 7 are irrelevant to the calculation 

of c.r, the negative sign simply indicating a phase change 
of 180° through the filter. 

5.4.5 M-derived High-Pass Filters 

There is such similarity between the low and high-pass 
m-derived filters in their analysis and design that this section 
should be treated more as a supplement to the previous section 
than as a complete design procedure on its own. 

The T and ir m-derived high-pass filter sections are shown in 
Fig.5 .47. 

The overall series and shunt component values L and C are 
calculated from the design formulae for the constant-k or 
prototype section i.e. 

Ro 1 
L = —- Henrys C   Farads 

4rrfc 4irfcRo 
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With L and C determined, the component values in the circuits 
of Fig.5.47 follow when the value of m is known. 

As in the case of the low-pass filter, infinite attenuation is 
theoretically obtained in the T-section when resonance occurs 
in the shunt arm and in the ir -section when it occurs in the 
series arm and these are at the same frequency, fr. For either 
section: 

1 1 

1  
but since the cut-off frequency, fc — (Sect.5.4.2) 

LIrr\./iTC 

fr 
fr fcNil m2 and — = -\/1 — m2 

fe 

= 

It will be noticed that, compared with the low-pass case, the 
relationship of m with f/f, has become reciprocal, thus the 
attenuation/frequency characteristics for various values of m 
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of Fig.5.42 apply equally to the high-pass filter if reciprocal 
values for f/f, are used on the bottom scale. However, this 
tends to lead to confusion because the frequency scale is 
running backwards thus Fig.5.48(i) and (ii) is to be preferred 
although in fact the curves are simply a repeat of those on 
Fig.5.42 to a different frequency scale. 

Table 5.9 is also appropriate if the right-hand column for 
values of fc/f is used and the left-hand column for f/f, ignored. 

Design procedure follows that for the low-pass filter but of 
course using the formulae for the high-pass. 

EXAMPLE: 
It is required to filter out two audio tones at 1200 and 
1600 Hz on a 600 ohm line carrying higher frequency signals. 
At least 30 dB attenuation is required at 1200 Hz and 12 dB at 
1600 Hz, with minimum attenuation at and above 2400 Hz. 
Design a suitable single-section filter. 

A high-pass filter is required and first, fc has to be determined, 
it must not be higher than 2,400 Hz, preferably slightly lowers 

Consider the values of f/f, for 1200 and 1600 Hz for various 
values of fc 

f f 
fc, Hz —, at 1200 Hz —, at 1600 Hz 

Ic lc 

2400 0.5 0.67 
2200 0.55 0.73 
2000 0.6 0.8 

With these ratios in mind, Fig.5.48 can be studied and it is 
firstly evident that a constant-k filter cannot provide the 
attnuation required because this does not reach 30 dB unless 
the ratio fec is less than 0.35. Also none of the m-derived 
sections with m = 0.4 to 0.7 gives 30 dB attenuation with 
flfc = 0.5-0.6 therefore these are also rejected. 

Then, considering m = 0.8 and 0.9 and the more stringent 
requirement of 30 dB at 1200 Hz, 
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m=0.6 m=0.5 
m=0.4 

11111111111 

m-derived(m=0.6) 

ect„ 

"Stod.v 

m-derived 

m-derived m=0.4 (m=0.5) 

Attenuation is zero above k = 1.0 
01 0.2 0.3 0.4 0.5 0.6 0-7 0 0.9 0-95 1.0 

fc 

Ris 5-48(0 Attenuation Bond of awn tant-k 
and nv-derivod(ma0.4 -ad) High-Pau Filters 

with fe = 2400 Hz t , -7—= 0.5 and m = 0.9 is satisfactory 
c 

= 2200 Hz = 0.55 " = 0.8 is satisfactory 

= 2000 Hz ,, = 0.6 " = 0.8 is satisfactory and in 
fact gives very high 
attenuation. 

In each case the requirement at 1600 Hz is amply met. 
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48 

46 
m=0-9 m=041 m=0/ 

41. 

42 

40 

38 

36 

34 

32 cri 

v. 30 
ZS- 28 
c 

26 .2 
ti 24 

22 = 
a 2 

m -derived (m=0-9) 

18 

16 
m - derived (m = 0-8) 

14 7- 
12 

m-der ived (m=0.7) 
10 

8 

6 

4 

2 
Attenuation is zero above—f =1 0 

fc 

0-1 0-2 0-3 0-4 0-5 0-6 0-7 f 08 0-9 0-95 1-0 

ii 

FIG. 5-a(ii) Attenuation Band of constant -k 

and m-derived (rna01-0-9) High Pass Filters 

The best design would therefore appear to be for fc = 2000 Hz 
with m = 0.8 because this gives plenty of room for manoeuvre 
in choice of component values and tolerances, but the other 
values for fc = 2200 and 2400 Hz are technically suitable. 
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Summary of design requirements: 

(i) fc = 2000 Hz (ii) R,, = 600 ohms (iii) m = 0.8 

Then: 

600 L 
L -  H = 23.9 mH — = 29.9 mH 

4tr x 2000 m 

2L 
— = 59.8 mH 
m 

106 C 
C = 4F = 0.0663 4F - = 0.0829 4F 

4e x 2000 x 600 m 

2C 
— = 0.1658 mF 
m 

4m 
  L = 8.889L = 0.212 H 
1- m2 

4m 
  C - 8.889C = 0.589 µF 
1_ m 2 

from which the T and H filter circuits can be drawn as in 
Fig.5.49. 

0.1658pF 0.16581JF 3 
0_ 111 , 1  

29.9mH 

o 
2  70.589jf 

4 2 
o 

T — section if— sect ion 

59'8 
mH 

0.0829pF 

0.212H 

3 

FIG. 5-49 m-derived High-Pass Filter 

Sections. fc= 2000Hz. Ro=600ohrns.m=0-8 
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The practical filter: 
Unless other considerations apply, the T-section is the obvious 
choice because it contains one inductor only compared with 
three in the ir -section. The series capacitors may be 0.16 with 
0.0056#F in parallel, giving 0.1656 le with practically no 
change in performance of the filter. The shunt arm compo-
nents may be an inductor of 30 mH (a slight increase) with a 
capacitor 0.56 in parallel with 0.027 elF giving a slight decrease, 
both changes resulting in practically no change in fr. The filter 
will therefore meet the specification with attenuation to spare. 
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6. MEASUREMENTS 

6.1 EXTENSION OF THE RANGE OF MOVING-COIL 
INSTRUMENTS 

Ammeters for general electronic construction work are 
available at full scale deflexion currents (f.s.d.) upwards from 
50 µA or even less. The more sensitive the movement is (lower 
f.s.d. current), the greater the ohms-per-volt value will be when 
arranged for the measurement of voltage. A high ohms-per-volt 
value is important so that the voltmeter does not appreciably 
affect the circuit it is measuring. Equally a low f.s.d. current 
means that smaller currents will be indicated by larger move-
ments of the needle and thus measured more accurately but in 
this case the movement resistance must not be forgotten 
because as an ammeter, the movement on its own will add an 
appreciable resistance to the circuit. 

Many movements are marked with both the f.s.d. current and 
the movement resistance. However, all too frequently, the 
latter is omitted and this must therefore first be measured. 

6.1.1 Measurement of Movement Resistance 

There are obviously several ways of measuring the movement 
resistance but care must be taken that current greatly in excess 
of the f.s.d. value is not passed or the familiar expression of 
"wrapping the needle round" becomes a distinct possibility. 
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A simple method is by using a constant current supply as in 
Fig.6.1 and this method is suitable for all moving coil instru-
ments because deflexion is proportional to current. 

As an example, suppose the meter under test has an f.s.d. of 
100 µA. The resistor R is chosen to be of such value that with 
the battery voltage used, f.s.d. current is obtained (as read on 
the meter). A reasonably high battery voltage is used (say, in 
this case, 6 V) so that R is high, e.g. neglecting R,, 

6  
R — — 60 000 ohms 

100 x 10 -6 

and it is obvious that a movement resistance of 100 ohms or 
so will affect the current only slightly. Power dissipated in R is 
very small, thus an ordinary radio potentiometer (e.g. 100 K2) 
or selection of fixed preferred value resistors will suffice. If a 
potentiometer is used, its value is reduced from maximum 
until f.s.d. is obtained. Next a variable low resistor R„ is 
connected across the meter and adjusted until the reading 
falls to half (or fixed resistors tried for the same result). Since 
the current supply lis constant, then equal currents now flow 
through the meter and R„, hence because the voltage V across 
them both is the same, 

6.1.2 Ammeters 

Let the currents and resistances be symbolized as in Fig.6.2. 
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Then Is.Rsh = Im Rm 

and I = Ish + Im 

I Rsh + 
multiplying factor of shunt, n — —   

Im Rsh 

This is the factor by which the ammeter reading (with shunt) 
must be multiplied to give the true value of measured current, I. 

Rm 
Also Rsh 

n — 1 

which enables the value of a shunt resistance to be calculated. 

EXAMPLE: 
Suppose a 5 mA movement of 20 ohms resistance is required 
to measure currents up to 500 mA. What value of shunt is 
required? 

500 20 
n = — = 100 Rsh =   — 0.202 ohms. 

5 100 — 1 

This example can be used to illustrate the practical problem of 
obtaining a temporary meter shunt when a sufficiently precise 
resistance measuring instrument is not available, it is quite 
simply solved by use of an exact length of a resistance wire 
(see Section 3.1.2) or what is more likely to be at hand, a 
length of copper wire. Using the latter method, the gauges or 
diameters of the available wires must be known and for 
convenience Table 6.1 gives the resistance per metre of copper 
wires. An appropriate one can be chosen and the exact length 
(i.e. the circuit length, not the overall length which must be 
greater to allow for termination) calculated. A wise precaution 
is to choose a wire which is not likely to rise excessively in 
temperature when in use, i.e. a longer length of thick wire is 
preferable to a short length of thin wire. 
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Diameter 
mm 

Resistance/metre 
ohms S.W.G. Resistance/metre 

ohms 

2.6 
2.4 
2.2 
2.0 
1.8 
1.6 
1.4 
1.2 
1.1 
1.0 
0.9 
0.8 
0.7 
0.6 
0.55 
0.5 
0.45 
0.4 
0.35 
0.3 
0.28 
0.26 
0.24 
0.22 
0.20 
0.18 
0.16 
0.14 
0.12 
0.11 
0.10 
0.09 
0.08 

.003247 

.003811 

.004535 

.005488 

.006775 

.008575 

.01120 

.01524 

.01814 

.02195 

.02698 

.03430 

.04480 

.06098 

.07257 

.08781 
0.1084 
0.1372 
0.1792 
0.2439 
0.2800 
0.3247 
0.3811 
0.4535 
0.5488 
0.6775 
0.8575 
1.120 
1.524 
1.814 
2.195 
2.698 
3.430 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

.003146 

.004020 

.005440 

.006563 

.008307 

.01085 

.01477 

.02127 

.02625 

.03323 

.04340 

.05907 

.07030 

.08506 
0.1050 
0.1265 
0.1553 
0.1840 
0.2213 
0.2529 
0.2917 
0.3402 
0.4020 
0.4822 
0.5891 
0.7358 
0.9451 
1.258 
1.477 
1.757 
2.127 
2.625 
3.323 
4.340 

Table 6.1 Resistances of Copper Wires per Metre 
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Continuing the example in which a 0.202 ohm shunt is 
required, the table shows for example, copper wire of SWG 30 
has a resistance per metre of 0.2213 ohms, hence for 
0.202 ohms: 

100  
length required — x 0.202 cms = 91.28 ems 

0.2213 

This can be cut easily to a fraction of 1% and it is not too 
inconvenient a length to be accommodated on the workbench. 

6.1.3 Voltmeters 

To convert an ammeter into a voltmeter, a series resistance Rse 
is required as in Fig.6.3 

FIG. 6-3 Resistance in Series with anvneter 

movement for voltage measurement 

Hence 

V = Vm + V„ 

Vm = Im Rm 

Vse = imRse 

V 
Rse = -- Rm 

Im 
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EXAMPLE: 
Suppose a 5 mA movement with resistance 20 ohms is required 
to cover the voltage range 0-10 volts. What value of series 
resistor is required? 

10 
R„ = — — 20 oluns = 1980 ohms 

.005 

The total meter resistance is now 2000 ohms, therefore the 
meter has an ohms-per-volt value of 2000/10 = 200. In general 
the ohms-per-volt value (the higher this is, the more efficient is 
the voltmeter) is given by the reciprocal of the current for f.s.d. 
(in ampères), i.e. 1/Im , in the above example 1/.005 = 200. 

The practical problem of obtaining a series resistor of such 
value is less than for the shunt case because a much lower 
current has to be carried and resistor values lie in the practical 
radio resistor range. For example, Table 3.7 shows that a value 
of 1892 ohms can be obtained by use of a 20 kilohm and a 
2.2 kilohm in parallel (see Section 3.2.3). 

6.1.4 AC Voltmeters 

Alternating voltage can also be measured on a moving coil 
instrument, the general principles of the above section apply 
except for the added complication of a voltage drop across the 
rectifier network connected in the circuit as shown in Fig.6.4. 
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A sine vèltage applied to the full-wave rectifier bridge results 
in a current through the meter as in Fig.6.5. With perfect 
rectification, the meter deflexion will be proportional to the 
mean value. However it is normally required to measure the 
r.m.s. value. 

Since mean value = 0.637 x max. value 

and r.m.s. value = 0.707 x " 

r.m.s. 
= 1.11, 

mean 

the familiar figure for the "form factor" of a sine wave. Thus 
the reading of a d.c. meter must be multiplied by 1.11 to give 
the r.m.s. value of an alternating current. 

To calculate Rs, for any given voltage range it is first necessary 
to know the voltage drop across the series combination of 
meter plus rectifier at f.s.d. If this is then subtracted from the 
maximum voltage to be measured, then the voltage Vse to be 
dropped across Rs, is given. 

Then Rse — 
1.11 x Im 

(note that Im represents the direct current for f.s.d., therefore 
(1.11 x Im) represents the alternating current). 

Vse 

225 



EXAMPLE: 
Suppose a 1 mA movement with series rectifier bridge, having 
a total a.c. voltage drop at f.s.d. of 0.6 V is required to 
measure a.c. voltages in the range 0-100 V. What value of 
series resistor is required? 

At f.s.d. 0.6 V is dropped across meter + rectifier, therefore 
99.4 V must be dropped across the series resistor, Rse, then 

99.4  
Rse - - 89550 ohms. 

1.11 x 1 x 10-3 

6.2 MEASUREMENT OF ELECTRICAL QUANTITIES 

This section is intended to bring out the more salient points 
and basic formulae with regard to measurements which can be 
made in the amateur workshop or laboratory. The sophisti-
cated engineer will possess multi-range meters, digital volt-
meters, oscilloscope, counters, distortion analyser, and the 
like but much can be done with a handful of components, 
milliarruneter, oscillator and a simple valve-voltmeter, which 
although now almost a relic of the past is a useful term used 
here to embrace all high-input-impedance voltmeters. 

For bridge measurements at frequencies within the audio 
range, the valve-voltmeter can be replaced by the much less 
expensive earphone. Of the many methods available those 
shown in this section are probably the most practical and will 
produce results with sufficient accuracy for most purposes, 
but if however, greater accuracy is essential then certain 
precautions usually become inevitable and it is suggested that 
the more serious experimenter reads further from specialist 
text-books. 

6.2.1 Resistance 

(1) Single meter methods 

The simplest method of measuring resistance is by the use of 
a battery and milliammeter as shown in Fig.6.6. Because of its 
simplicity, it is somewhat lacking in accuracy but is occasion-
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F7G. 6-6 Simple Resistance Measurement 

ally useful when an approximate answer is acceptable. If the 
unknown resistance R„ is connected across A and B and the 
battery voltage (V) known (e.g. a 1.5 V cell), then the total 
circuit resistance R is given by Ohm's Law as Va. However 
R includes both battery and meter resistances so these must 
be subtracted to give the true value for R. The meter 
resistance is probably known (or can be measured as shown 
in Sect.6.1.1) and an allowance of say 2-3 ohms for the single 
1.5 V cell would be appropriate. This latter value varies with 
the condition of the battery and is the main source of 
inaccuracy although this is small if R„ is comparatively high. 
The method which follows does not suffer from this. The 
danger of damaging a sensitive meter if terminals A and B 
become short-circuited, or R„ is very low can be overcome 
by a resistor in series with the battery, this resistor being 
short-circuited when a reading is taken. Fig.6.7 shows a circuit 
in which compensation for battery internal resistance changes 
is made: 

Terminals A and B are short-circuited and R is adjusted for 
full-scale deflexion (f.s.d.). A known resistance It, is con-
nected and the (lower) reading noted. Other values of R„ are 
then substituted to cover the whole scale which can either be 
marked directly with resistance values or alternatively a 
separate graph may be plotted relating resistance values to 
deflexion. Changes in battery resistance are accommodated 
by readjusting R as necessary. Again, a current limiting 
resistor may be an advantage. 

The method of calibration in fact converts the milliarnmeter 
into an ohmmeter. For a single or a few measurements only, 
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full calibration is unnecessary and the following formula may 
be used provided that a particular value used for R is known, 
this value need not produce f.s.d. With terminals A and B 
short-circuited, the meter current is read (II), then with R, 
in position, a second (lower) reading is obtained (12) 

) 
Then R„ = (R + Rm)(-- 1 

12 

The above methods are not well suited to measurement of 
high resistances e.g. above 1 megohm and even this value 
would need a sensitive meter and relatively high battery 
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voltage. A method more suited to measuring high resistance 
values substitutes a voltmeter for the milliammeter as shown 
in Fig.6.8. With terminals A and B short-circuited, the volt-
meter simply reads the battery voltage (V1). With Rs con-
nected, a second reading is given which is lower by the voltage 
drop across Rs due to the voltmeter current flowing, call 
this V2. 

Then = Rm - 
V2 

VI 

(2) Two-meter methods 

If two measuring instruments are available then the measure-
ment technique shown in Fig.6.9 is a straightforward Ohm's 
Law one i.e. a current is made to flow through the unknown 
resistance 12,, the voltage across Rs is also measured and the 
value of 12,, calculated. Some inaccuracy arises from the 
current taken by the voltmeter (which adds to the reading on 
the milliammeter), this is greatly reduced if a valve-voltmeter 
is used. A single multi-purpose meter can of course be used in 
place of the two separate meters. 

(3) Comparison methods 

These need in addition, a calibrated resistance or resistance 
box, and even simple methods using comparison are capable 
of greater accuracy than the methods already shown because 
meter or battery resistances no longer affect the answer. For 
example, as in Fig.6.10 a current flows through the variable 
(R,) and unknown (Rs) resistances in series. If the voltmeter 
is switched between them and Rv adjusted for the same 
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reading as obtained from 12,„ then since the current I is the 
same through both resistances 

Rx = R. 

Equally a circuit could be set up in which measurements are 
made on 12„ (i.e. voltage across, or current through) and 12, 
then used. to replace R„ and adjusted for the previous result. 

(4) Wheatstone Bridge 

The general principles of the Wheatstone Bridge are given in 
Sect.5.1.2. A d.c. bridge for the measurement of resistance is 
shown in Fig.6.11. R1 and R2 are the ratio arms, 12„, a variable 
known resistance and 12, the unknown. 

Then 

and 

R1 R, = 
R2 R v 

R1 
R„ = R.,. - 

R2 

When R1= R2 the range of measurement is limited to the 
range of 12,. If RI = 10 or 100 x1(2 resistances much higher 
can be measured and similarly, if R2 = 10 or 100 x R1 resistances 
much lower can be measured. Thus the Ri/R2 ratio can easily 
range over 104. Typically both may have a choice between 

230 



three values, 10, 100 or 1000 ohms and if Rv is variable over 
say 1 to 10,000 ohms, the bridge will have a range of 108 i.e. 
from 0.01 ohms to 1 megolun. 

6.2.2 Capacitance 

Small capacitors (e.g. in the picofarad range) may be measured 
by the resonance method shown in Fig.6.12. 

FIG. 6-12 Measurement of Capacitance by 

Resonance Method 
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C, is a variable, calibrated capacitor and C, the unknown. 
With C, not connected, a convenient oscillator frequency is 
chosen and C, is adjusted for maximum reading on the valve-
voltmeter, i.e. the LC v circuit is resonant. Let this value of Cv 
be Cvi . C, is then connected and C„ reduced to restore the 
maximum reading. Let this second value of Cv be C. 

Then because Cv1 = C‘,2+ 

Cx = CV' CV2 

Two Wheatstone Bridge techniques are suggested for general 
capacitance measurement. The less complicated one is for low 
loss capacitors and simply compares the unknown capacitor C, 
with a known variable one, C„, as in Fig.6.13. 

Solution of the bridge is 

R1 
Cx = Cv• - 

R2 

and balance is obtained by adjustment of Cv or more conveni-
ently by using a fixed value for C„ and altering the ratio of R1 
to R2 as in Fig.6.14. R1 and R2 together form a calibrated 
potentiometer. 
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When measurement of the loss of the capacitor is also required, 
the Schering Bridge is probably the most practical since it 
requires only one standard capacitor of negligible loss together 
with a small calibrated variable. In Fig.6.15 C, and R, 
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represent the unknown capacitor, Cs is the standaid fixed 
capacitor and C‘, the variable. Balance is given by 

R1 Cv 
Cx = Cs. — R = R2•— 

R2 Cs 

tan .5 = 

.*. loss angle (5 = tan-1 coCvRi 

(where co = 2ir x frequency of oscillator). 

6.2.3 Inductance, Mutual Inductance and Q-Factor 

As with capacitance, inductance can also be measured by a 
resonance method but in the circuit shown (Fig.6.16) the self-
capacitance of the coil and the small effect of the coupling coil 
are neglected. 

Cv is a variable calibrated capacitor 
R is of convenient value for reading on valve-voltmeter 

Then at frequency f, C, is tuned for maximum reading and 

1 

L. = 411.2 f2C 
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There are several Wheatstone Bridge circuits available for 
measurement of inductance e.g. Maxwell's method of 
balancing an unknown inductance with a known one or an 
alternative method of balancing an unknown inductance with 
a capacitance. The latter is more practical since a variable 
standard inductor is less likely to be available than a variable 
capacitor. However, the Owen Bridge is better still because it 
can employ fixed capacitors with variable resistance. Fig.6.17 
refers. 

For balance 

Lx = C2 R1 R2 

C2 
Rx = R2 - 

CI 

Thus usually C1 and C2 are fixed and balance is obtained by 
adjustment of R1 and a resistance box in series with Lx and 
Rx, the known value of the added resistance then being 
subtracted from the value of R„ given above to obtain the 
true resistive component of the inductor. 
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Neither of the above two methods produces a value for the 
self-capacitance (Cs) of an inductor. This may be obtained by 
a graphical method using the test circuit already given in 
Fig.6.16. The values of C, for resonance (maximum reading) 
over a range of frequencies are noted. Then plot Cv against 
1/f2 as in Fig.6.18. This should give a straight-line graph which 
can be extended back to cut the Cs, axis on the apparently 
negative side and it is this intercept which gives the value of Cs 
as shown. Cs is the lumped self-capacitance of the whole 
circuit but most of it is associated with the inductor. 

Cv 

..•••• 

Cs 

FIG. 6-18 Measurement of Inductance and 

Self-Capacitance by Resonance Method 

The inductance is given by the slope of the line since 

1 
1 

Slope = — = and since L = 

Slope = 4.72 4. 

1 
4712 f2 cv 

Mutual Inductance 

If an inductance measuring bridge is available, mutual 
inductance can also be measured. Consider the two mutually 
coupled coils L1 and La connected in series aiding in 
Fig.6.19(a) and in series opposition in (b) [the dots indicate 
that when the current enters (or leaves) both coils at these 
ends the mutual inductance is +ve and vice versa] . Let LA be 
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the inductance measured at the terminals in (a) and Lo the 
inductance in (b). L1 and L2 are also measured separately. 

Then LA = Li + L2 + 2M 

L„, = LI + L2 -  2M 

LA— LO = 4M 

LA — Le 
and M =   (all values will be complex). 

4 

Q-Factor 

This is usually required at a resonant frequency and a circuit 
for measurement is given in Fig.6.20. 

+ Rx is the inductor under test. 

R1 is a small non-reactive resistor. The valve voltmeter across 
R2 measures the oscillator current I which flows through R1 
and therefore injects a voltage M I into the tuned circuit. Cv is 
adjusted for resonance as indicated with the valve voltmeter 
connected across it as shown. The valve voltmeter reading is 
noted, V. 

V 
Then Q = 
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6.2.4 Frequency 

A simple tuned frequency meter, more commonly known as a 
wavemeter as shown in Fig.6.21 uses a pick-up coil as its 
inductance and also for coupling to aerial, oscillator or other 
circuit carrying the frequency to be measured 0'0. C is 
adjusted for resonance and if L is known and C is calibrated, 
then provided that the resistive component (R) of L is 
reasonably small compared with coL, 

fx =   
2rre.-.£ 

Frequently the wavemeter is calibrated directly in frequency 
on the dial of C so that no calculation is involved. 

Frequency measurements are most conveniently made by use 
of a calibrated time base of an oscilloscope, but one bridge 
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(the Wien) is worthy of mention because by a particular 
arrangement it is economical in its need of test apparatus. 
It operates by balancing resistance and capacitive reactance 
at the unknown frequency (f,c). See Fig.6.22. 

The arrangement is to make R4 = 2R3. Also C1 and C2 are 
made equal. Then R1 and R2 are varied simultaneously and 
also kept equal. 
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Thus let R1 = R2 = R 

Cl = C2 = C 

and balance is given when 

1 
  R3R + 
2R3 (  

1 
—R + jtoC 

which expression conveniently reduces to 

w 2 =   
e2 R2 

1 
and therefore f„ - 

27rCR 

The frequency range of the bridge can be altered by changing 
C1 and C2 to other fixed and equal values. 

Check of RF Test Oscillators:— 

A simple but reasonably accurate check of the frequency of an 
r.f. test oscillator (signal generator) which needs no special 
equipment is to use the freely available accurate carrier 
frequencies of radio broadcast stations. The oscillator is simply 
connected to a piece of wire to act as a transmitting aerial and 
this is placed near to any radio receiver which tunes over the 
range required. A station is tuned in on the radio and the 
oscillator adjusted to near its frequency. This will produce a 
beat-note in the loudspeaker because when two frequencies are 
mixed under the correct conditions (and these are provided 
within the radio receiver) then certain other frequencies are 
produced, the one of interest here being the difference 
between the two. When this difference falls within the audio 
range, it appears as a pure tone in the loudspeaker, super-
imposed upon the programme but distinctive. 

Take, for example, comparison with a station on 1214 kHz. 
The graph in Fig. 6.23 shows that as the frequency of the test 
oscillator is varied from 1211 to 1217 kHz a note of 3 kHz -> 
O -> 3 kHz will appear. Between about 123.9 and 124.1 kHz, 
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approx range of 
'dead space' 

the note is within the range 0-100 Hz and this possibly will 
not be reproduced by the loudspeaker, even if it were, there 
is certainly a small range or 'dead space' centering on 1214 kHz. 
The oscillator should be adjusted by 'feel' to the centre of this 
space. In any case, although the 'dead space' may be as much 
as 200 Hz wide, this on the average r.f. test oscillator is 
frequently hardly a discernible movement of the pointer. 
Thus the test oscillator scale can be checked or calibrated at 
this point and other radio transmitters subsequently tuned in 
for further checks to be made. 

N4000 

13000 

S 2000 

1000 
o 

co • loo 
o 

1211 1212 1213 1214 1215 1216 1217 
Frequency of Test rf. Oscillator kHz 

FIG. 6-23 Test Oscillator Output mixed 

with 1214 kHz Carrier 

6.2.5 Power 

Measurement of power is not often required in the amateur 
workshop or laboratory but a simple method suitable for low 
power mains or higher frequency circuits is worth recording 
because the only measuring device it needs is a high resistance 
voltmeter (or valve-voltmeter). Three voltage measurements 
are made across and each side of a single resistance, R, as 
shown in Fig.6.24. 
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N  

 V2 

o  

Supply V1 

o  

 o 

Load 

o 

FIG 6-24 3-Voltmeter Measurement 

of Power 

Then True Power into Load = 
V? — (V1 + 

2R 

Vî — (Nq + 
Power Factor (cos 0) =   

2V2 V3 

6.2.6 Transmission Loss and Gain 

Transmission loss or gain in a system (amplifier, attenuator, 
line etc.) is measured most conveniently in the decibel 
notation. The basic unit is actually the Bel and the number of 
bels transmission loss or gain is equal to the logarithm to the 
base 10 of the power ratio of the system (i.e. power out to 
power in). The decibel is one-tenth of the bel and is a unit of 
more convenient magnitude for general wtrk. It is defined as 
follows: 

If P1 and P2 are the input and output powers respectively of a 
system, 

P2 
No. of decibels = 10 log 10 — 

Pl 

Although the numerical answer is the same whether P2/Pi or 
Pi/P2 is considered, a positive sign is used to express gain in a 
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system, and a negative sign, loss. Note that 

10 logio -PP21 = -10 log 10 —Pi no 
P2 

EXAMPLE: 
(1) An amplifier has an output power of 2 watts when the 
input power is 1 mW. What is the gain? 

P2 = 2 watts, P1 = 1 mW = 1 x 10 -3 watts 

P2 2 
.*. — = = 2000 

Pi 10-3 

log 10 2000 = 3.3010 

.*. Gain = 10 x 3.3010 = 33.01 dB. 

(2) An attenuator delivers 1 mW of power when its input is 
2 watts. What is the loss? 

P2 = 1 MW, P1 = 2 watts 

P2 1 x 10-3  
= 5 x 10 -4 

P1 2 

log 10 5 x 10-4 = 4-.6990 = —4 + 0.6990 = —3.3010 

:. Loss = 10 x —3.3010 = —33.01 dB 

(the minus sign indicating that it is a loss). 

Consider Table 6.2. 
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Input/Output 
Power Ratio Bels Decibels 

0.001 —3 —30 
0.01 —2 —20 
0.1 —1 —10 
1 0 0 

10 1 10 
100 2 20 

1000 3 30 

Table 6.2 Bel and Decibel Equivalents of Power Ratios 

It is clear that when power ratio multiples of 10 are considered, 
the number of decimal places or noughts gives the loss or gain 
in bels. In decibels it is therefore ten times this figure. 

Also, very nearly 

A power ratio of 1.25 : 1 is equivalent to 1 dB 
2 : 1 " " " 3 dB 

and from the last figure it is seen that doubling or halving the 
power adds or subtracts 3 dB each time e.g. 4 xpower = 3+3 
= 6 dB. This provides a quick means of obtaining the approxi-
mate power ratio from a knowledge of the number of decibels. 

EXAMPLE: 
What are the approximate power ratios corresponding to 23 dB 
and 27 dB 

23 dB = 20 dB + 3 dB 

Corresponding power ratios to 20 dB and 3 dB are 100 and 2 

.". 23 dB represents a power ratio of 100 x 2 = 200 

27 dB = 20 dB + 3 dB + 3dB + 1 dB 

Corresponding power ratios are 100, 2, 2, 1.25 (or î) 

:. 27 dB represents a power ratio of 100 x2x2xi = 500 
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The precise answer to the latter is 501.2 showing that the 
quick method suffers very little from loss of accuracy. 

The Neper system which is also in use, but mainly for 
theoretical work expresses current or voltage ratios logarith-
mically, but this time in natural logarithms (i.e. to the base e) 
thus: 

No. of Nepers = loge — 
I2 

and the decineper is equal to Neper 

so that No. of decinepers = 10 loge — 
12 

It can be shown that 1 Neper is equivalent to 8.686 decibels 
or 1 decibel " " " 0.1151 nepers 

provided that nepers are measured in the same resistive 
components of the input and output of the system. 

No mention has yet been made (except above with regard to 
nepers) of measuring transmission loss or gain by comparing 
input and output voltages or currents. Strictly this can only 
be done when input and output impedances are equal as 
developed below: 

Consider a gain calculation where input and output voltages 
(V1 and V2) and impedances (Z1 and Z2) are known, 

i2 
Input power = — Output power = — 

Z1 Z2 

z1 
:. Gain in decibels = 10 log 10 — x —2 

z2 VI 

If Z1 = Z2 
V2 )2 V2 

Gain in decibels = 10 logio ( —v1 = 20 log 112 — 
V1 
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and similarly for currents I and 12 

1 
Gain in decibels = 20 log10 2 — 

I 

But this cannot be true unless Z1= Z2. In spite of this current 
and voltage gains (especially the latter) are frequently errone-
ously quoted as 20 log io (V2/Vi) irrespective of input and 
output impedance differences which, for example, in the case 
of an audio power amplifier may be very great. Thus an 
"amplifier voltage gain of 40 dB" is meant to imply that 

V2 
40 = 20 log io — 

VI 

V2 

= antilog 2 = 100 
VI 

Therefore, as the appropriate British Standard says, "to avoid 
confusion such use of the word 'decibel' should be accom-
panied by a specific statement giving in the particular case the 
quantities concerned." 

However, what is legitimate is the practice of quoting decibel 
changes to show improvement or degradation at the same 
point in a system due to some action taken. In most cases the 
impedance is the same for both measurements and therefore 
20 times the logarithm of the voltage or current ratio is valid. 
An example will make this clear. 

EXAMPLE: 
The mains hum voltage measured across the loudspeaker of an 
audio system is reduced from 0.2 mV to 0.1 mV. What is the 
decibel improvement? 

Signs can nearly always be ignored in this type of case because 
it is obvious whether a change is an improvement or not. 

Thus 

0.2 
decibel improvement = 20 log io = 6.02 

0.1 
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Alternatively it could be stated that the hum after reduction is 
—6 dB relative to its previous level. 

For accurate assessment care must be taken to ensure that the 
impedance does not change from one measurement to the 
next — it may change with frequency, with signal level and 
even the output impedance of a transistor amplifier may be 
affected by changes within its earlier stages. 

Standard Reference Levels: 

Absolute levels can only be expressed in decibel notation by 
reference to a known, fixed quantity e.g. in line transmission 
the generally accepted reference is 1 mW and the impedance 
600 ohms, non-reactive. To avoid having to quote this 
reference with each measurement the term dBm is used. It is 
for this reference level only and no other. Hence +20 dBm 
means 20 dB above the reference level, i.e. an absolute power 
level of 100 mW. 

Another convenient reference level when working in terms of 
voltage is 1 volt in which case values are expressed in dB/1V. 

A reference level being brought into greater use as aircraft and 
other noises increase is the one used in audio acoustics. This is 
the reference sound pressure level (SPL) of 2 x 10" Newtons 
per square metre (approximately 1 picowatt) which is the 
minimum sound pressure discernible by the human ear 
(measured at 1000 Hz on persons with normal hearing). 
Because sound pressure and electrical voltage have a direct 
relationship, sound pressure levels are compared by 

PI 
20 log 10 — dB where P1 and P2 are the two levels 

P2 being compared 

Any sound level (P) is then quoted as SPL relative to 
2 x 10 N/m2 i.e. 

SPL = 20 log 10  dB. 
2 x 10' 

Noise creates many measurement problems compared with 
pure tones and modern "noise meters" incorporate special 
filters or "weighting networks" to resemble the listening 
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acuity of the human ear over the audio range. The most 
commonly used network is referred to as the ̀ A' and this 
gives rise to noise sound pressure levels quoted as dBA. As an 
example, an office having a noise level of 60 dBA would 
produce this measurement on a noise meter using an A net-
work, the level in fact being 60 dB (1000 times) above 
reference level, i.e. .02 N/m2 sound pressure. 

Other noise weighting networks are in use, including a special 
one for aircraft noise, the D network, giving rise to the unit 
dBD. 

Measurement 

Power, of course can be measured from the principles of 
Ohm's Law, i.e. voltages, currents, resistances/impedances (the 
latter are required if differing between input and output) but 
generally a system gain or loss is measured at any given 
frequency by connexion of an oscillator to the input and 
measurement at the output by a decibelmeter. The latter is 
an a.c. voltmeter, effective over the frequency range required 
and calibrated directly in decibels against the reference level 
of the oscillator. 
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APPENDIX 

MARKING CODES FOR RESISTORS AND CAPACITORS 

A system developed comparatively recently which is gaining 
in popularity uses a slightly abbreviated printed code. A single 
letter indicating the multiplier is added to the first two figures 
of the resistance or capacitance value and its position relative 
to these figures places the demical point which is therefore not 
shown. Only three multiples are needed, R for x 1, K for x 
100 and M for x 1,000,000, conveniently remembered since K 
(but lower case) already stands for kilo ( = 1000) and M for 
mega (= 1,000,000) in the normal decimal system. The 
examples which follow show the use of the multiples and 
demonstrate the method. For values less than 1 a 0 is used 
in the leading position. 

The code OR3 = 0.3 x 1 = 0.3 
2R7 = 2.7 x 1 = 2.7 
27R = 27 x 1 = 27 
K27 = 0.27 x 1000 = 270 
2K7 = 2.7 x 1000 = 2,700 
27K = 27 x 1000 = 27,000 
M27 = 0.27 x 1,000,000 = 270,000 
2M7 = 2.7 x 1,000,000 = 2,700,000 
27M = 27 x 1,000,000 = 27,000,000 

A fourth letter indicates the tolerance: 

F = 1%, G = 2%, H = 2.5%, J = 5%, K = 10%, M = 20% (all ±). 

thus a resistor marked 6K8K has a value of 6800 ±10% ohms. 

A further method simply uses three digits followed by the 
tolerance letter (as above). The first two digits are those of 
the actual value while the third indicates the number of O's 
which follow, thus a marking 682K represented 6800 ± 10% 
(ohms or say, picofarads). 
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Please note overleaf is a list of other titles that are available 
in our range of Radio, Electronics and Computer Books. 

These should be available from all good Booksellers, Radio 
Component Dealers and Mail Order Companies. 

However, should you experience difficulty in obtaining any 
title in your area, then please write directly to the publisher 
enclosing payment to cover the cost of the book plus 
adequate postage. 

If you would like a complete catalogue of our entire range 
of Radio, Electronics and Computer Books then please send 
a Stamped Addressed Envelope to:— 

BERNARD BABANI (publishing) LTD 
THE GRAMPIANS 

SHEPHERDS BUSH ROAD, 
LONDON W6 7NF 

ENGLAND 
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BERNARD BABANI BP53 

Practical Electronics 
Calculations and Formulae 

• is book has been written not for the family bookself but as a workshop 
• ual for the Electronics Enthusiast. Its aim is to bridge the gap between 
complicated technical theory, which sometimes seems to have little relevance to 
practical work and 'cut and try' methods which may bring success in design but 
leave the experimenter unfulfilled. 

There is, therefore, a strong practical bias, tedious arid higher mathematics have 
been avoided where possible and many tables have been included, partly to save 
calculation and partly because actual figures bring a greater intimacy with the 
design process. 

Yet for those who in technical studies have found difficulty or in common with 
most other people have lapses of memory, there is plenty of help and revision. 

As a reference book, sections have been written to be as self-contained as 
possible. The book is divided into six basic sections:— Units and Constants, Direct 
Current Circuits, Passive Components, Alternating Current Circuits, Networks and 
Theorems, Measurements. 

Companion volume to BP144 FURTHER PRACTICAL ELECTRONICS CALCULA-
iONS AND FORMULAE 

AMIIIMIMIIMIL., 

£3.95 

ISBN 0-900162-70-8 

9 780900 162701 

0 0 3 9 5 


