




PC Interfacing 

using USB 



Other Titles of Interest 

BP523 Easy PC Interfacing 

BP531 Easy PC Upgrading 

BP534 Build Your Own PC 



PC Interfacing 

using USB 

Peter Bates 

Bernard Babani ( publishing) Ltd 

The Grampians 

Shep'ierds Bush Road 

London W6 7NE 

England 

mvw.babanibooks.com  



Please note 

Although every care has been taken with the production of this book to 
ensure that any projects, designs, modifications, and/or programs, etc., 
contained herewith, operate in a correct and safe manner and also that 
any components specified are normally available in Great Britain, the 
Publisher and Author do not accept responsibility in any way for the 
failure (including fault in design) of any projects, design, modification, or 
program to work correctly or to cause damage to any equipment that it 
may be connected to or used in conjunction with, or in respect of any 
other damage or injury that may be caused, nor do the Publishers 
accept responsibility in any way for the failure to obtain specified 
components. 

Notice is also given that if any equipment that is still under warranty is 
modified in any way or used or connected with home-built equipment 
then that warranty may be void. 

Important note 

Due to processes used in preparing and printing this book, the accuracy 
of the PCB track layout dimensions cannot be guaranteed. A graticule is 
provided by the drawings to help in this matter. 

© 2003 BERNARD BABANI (publishing) LTD 

First Published — May 2003 

British Library Cataloguing in Publication Data 

A catalogue record for this book is available from the British Library 

ISBN 0 85934 535 1 

Cover Design by Gregor Arthur 

Printed and bound in Great Britain by Cox & Wyman Ltd 



Preface 

Interfacing to PCs has been around for many years but to many people 

it is sill a mystery as to how data can be transmitted to and from a PC 

and the outside world. This book has been designed for both the 

beginner and the expert to interfacing. The only prerequisite is a 

reasonable knowledge of Visual Basic, though to some extent an ability 

to wrte very simple Visual Basic programs may be adequate if the user 

is proricient in the knowledge of other computer programs. 

The book is built around an interfacing module that is connected to the 

USB port of a PC. This means that there is no delving around inside the 

PC which has prevented many beginners even embarking on interfacing 

in the past. Some background to the USB standard is presented and 

also details are introduced as to how the USB interface module is 

programmed. 

In the past the normal method of interfacing was to use the Intel 8255A 

Programmable Peripheral Interface and to many of those experienced in 

interfacing this has become the standard approach to the task. Interface 

cards being produced at the current time use the same mode of 

programming so that it seemed natural to transfer those programming 

techniques over to the USB interface module. This will enable experts to 

quick' grasp how to program the USB interface module and provide the 

beginner with all the rudiments of interfacing to be able to go off and do 

their projects as quickly as possible. 

Once the fundamentals of getting data in and out of the USB interface 

module have been dealt with, the book then looks at five different areas 

of use for it. Each of these areas has an interface board to accompany it 



and full constructional details are provided including details of the pcb, 

the components required and any necessary calibration details. 

Ideally the reader should move through the book sequentially 

performing all the programs but once chapters 1 to 3 have been read, it 

is possible to dip into any of the remaining chapters in any order. The 

purpose of the book is to stimulate an interest in interfacing and 

studying the programs will help most users to understand the principles 

that are being presented. 

Once all the fundamentals have been learnt both beginners and experts 

will be able to use stepper motors, DACs and ADCs in a variety of 

projects. The important point always to observe is to save your program 

before running it. This will prevent a vast amount of frustration and you 

will always be in a position to correct the odd typo which so often creeps 

into a program. 

I should like to take this opportunity to thank my former colleagues Eric 

Webster and Maurice Rhodes, both recently retired, for their 

contributions to all our knowledge about interfacing. Also to the 

technical support of Alan Kent, Helen Poulton, Barbara Ridding and 

Rick Collins from the Department of Physics, Astronomy and 

Mathematics of the University of Central Lancashire for their assistance 

in maintaining the PCs, making pcbs, soldering components and testing 

circuit boards and generally being very nice to everyone when things 

have not been going well. 

In addition I must acknowledge Margaret and Victoria who have both 

been extremely tolerant of my enthusiasm for PC interfacing which has 

developed over many years and has gone through many highs and 

lows. I believe that this book illustrates one of the highs. 

Peter Bates 



About the Author 

Peter Bates is currently the Course Leader of the MSc in PC Interfacing 

in the Department of Physics, Astronomy and Mathematics at the 

University of Central Lancashire, Preston, UK. He is a physics graduate 

who went on to obtain a PhD in solid-state physics from Bangor 

University and in over 30 years he has taught physics, solid-state 

physics and microcomputer interfacing at all levels from A-level through 

to postgraduate. His interest in electronics developed as a consequence 

of being asked to teach the subject in 1974 when he was appointed to 

the Department of Physics at Preston Polytechnic. 

Peter's expertise in interfacing sensors, transducers and instruments to 

compulers was the foundation of the MSc in PC Interfacing in which he 

is responsible for teaching fundamental interfacing and virtual 

instrumentation using Microsoft Visual Basic and National Instruments 

LabVIEVV. 

His hobbies are quite diverse ranging from hi-fi and music to DIY and 

gardening. 



Trademarks 

Microsoft, Windows, Windows, XP, Windows 2000, Windows Me, 

Windows 98 and Windows 95 are either registered trademarks or 

trademarks of Microsoft Corporation. 

All other brand and product names used in this book are recognised 

trademarks, or registered trademarks of their respective companies. 

There is no intent to use any trademarks generically and readers should 

investigate ownership of a trademark before using it for any purpose. 



Contents 

What is USB? 1 

The Universal Serial Bus 1 
USB features 1 
USB connectors and cables 2 
USB data communication 3 
Putting it all together 5 
Types of data 5 
I sochronous 6 
Inzerrupt 6 
Bulk 6 
Summary 6 
References 7 

2 

USB I/O 24 Module 9 
USB devices  9 
The FT8U245 9 
The USB I/O 24 module 10 
The USB I/O 24 module Connectors 12 
The USB I/O 24 module Command Protocol 14 
Using USB I/O 24 Command Protocols 15 
How Mode 0 of the 8255A is programmed 16 
Why use the 8255A settings? 18 
The 8255A registers  18 
The Control Lines 19 
Connections to the USB I/O 24 module 20 
Summary 23 



3 

Programming the Module 
The case for the USB I/O 24 Module 25 
The FT8U245 drivers 25 
How to set up the FTDI D2XX Drivers 26 
The role of the DLL 27 
Visual Basic code 29 
Declarations 30 
Readprog 31 
Writeprog 34 
PortOut 35 
PortIn 39 
Summary 40 

4 

25 

Digital Input/Output  41 

Using the USB I/O 24 module 41 
Interface Boards 41 
The User Port Tester board 42 
Creating a User Port Tester Input Form 43 
The Declarations 43 
The Form 44 
The Command button 45 
The Userin program 47 
Running the Userin program 47 
Exercise 4.1  48 
Creating a User Port Tester Output Form 48 
The Declarations 49 
The Form 49 
The Scroll bar 50 
The Userout program 50 
Running the Userout program  51 



Exercise 4.2 51 
Summary 52 

5 

Stepper Motors  

6 

53 

Stepper motor applications 53 
What is a stepper motor? 53 
The Stepper Board 55 
Determining the stepper motor code 56 
Declarations 57 
Command button - Send 57 
The Form 58 
Scroll bar 58 
Steptest.vbp Project 59 
Using the Steptest program 59 
Variable speed stepper motor 59 
The Form 60 
The Code 60 
Declarations 60 
The Form 61 
The Scroll Bar 61 
The Timer 62 
The Stepper routine 62 
The step.vbp 63 
Running the program 63 
Exercise 5 64 
Summary 64 

DAC 65 

Digital to Analogue Conversion  65 
Theory of the R-2R ladder DAC 65 
Unipolar and Bipolar 66 



Using the 8DAC board 67 
Configuring the port 68 
Features of the 8DAC board 68 
The Program 69 
The Form 69 
The Code 70 
The Option Buttons 70 
The Scroll Bar 70 
The Form 71 
The Display Procedure 71 
Command button 72 
Declarations 73 
Completing the program 73 
Running the program 74 
Exercise 6 74 
Summary 75 

7 

8-bit ADC  77 

8- bit Analogue to Digital Converter 77 
Unipolar and Bipolar 77 
Theory of Operation 79 
The 8ADC board 80 
Use of the 8ADC board 81 
Program 82 
Inserting Code 83 
The Form 83 
The Option Button 83 
The Timer Control 83 
The Command Buttons 84 
Declarations 85 
The Procedures 85 
Equipment 88 
Running the program 88 
Exercise 7 88 
Summary 91 



8 

12-bit ADC  93 

12-bit Analogue to Digital Conversion  93 
12ADC resolution 93 
Theory of Operation of the dual ramp integrating ADC 94 
Dual Ramp Integrating Analogue to Digital Conversion 97 
Method of obtaining the data 98 
Program 99 
Inserting Code 100 
The Form 101 
The Option Buttons 101 
The Timer Control 102 
The Command Buttons 102 
Declarations 103 
The Procedures 104 
Equipment 107 
Running the program 107 
Exercise 8.1  108 
Small signal measurement - Using the VGPA board 108 
Making connections to the VGPA board 109 
Selecting the gain 109 
Exercise 8.2 110 
Summary 110 

Appendix  
The Interface Boards 111 
Al The User Port Tester 112 
A1.1 Circuit   112 
A1.2 The Printed Circuit Boards 113 
A1.3 Components 115 
A2 The Stepper Motor board 117 

111 



A2.1 The Circuit  117 
A2.2 The Printed Circuit Boards 118 
A2.3 Components 120 
A3 The 8DAC board 122 
A3.1 The circuit 122 
A3.2 The Printed Circuit Boards 124 
A3.3 Components 125 
A3.4 Calibration of the 8DAC board 128 
A3.5 Application of the 8DAC board 130 
A3.6 References 130 
A4 The 8ADC board 132 
A4.1 The circuit 132 
A4.2 The Printed Circuit Boards 134 
A4.3 Components 136 
A4.4 Calibration of the 8ADC board 138 
A4.5 Reference 139 
A5 The 12ADC board 140 
A5.1 The circuit 140 
A5.2 The Printed Circuit Boards 141 
A5.3 Components 143 
A5.4 Calibration of the 12ADC board 146 
A5.5 Reference 147 
A6 The VGPA board 148 
A6.1 Making connections to the VGPA board 148 
A6.2 The circuit 149 
A6.3 The Printed Circuit Boards 151 
A6.4 Components 153 
A6.5 Calibration of the VGPA 155 
A6.6 References 156 
A7 Suppliers 157 

Bibliography 159 
Index 161 



What is USB? 

The Universal Serial Bus 

The Lniversal Serial Bus (USB) is an interfacing bus that is now 

becoming standard on all types of PC. It was introduced by Microsoft in 

Windows 98 and has subsequently been supported in Windows 2000, 

XP and ME but not in Windows NT. Its popularity has increased 

because of the relative ease with which it can be used and the range of 

hardware devices which incorporate it. These include printers, 

scanners, digital cameras, mice, keyboards, joysticks, etc. It is 

extremely popular with laptops because of the small size of its sockets 

and it is becoming common on desktop PCs as well. It is not beyond the 

realms of possibility that USB could easily replace the RS232 interface 

as the preferred serial interface. 

USB features 

USB is a serial data transmission system in which the data stream is 

time-shared. This means that all the devices, i.e. mice, keyboard, 

printers, etc., connected to the PC are polled regularly at 1ms intervals 

by the PC and in its 1ms time interval the device can place data on to 

the bus Each device has a unique address allocated by the PC and up 

to 127 devices can be connected to the USB at any one time. 

The speed of data transmission is dependent upon the version of USB 

being used. The latest version USB2.0 has a speed of 460Mbits/s whilst 

the older version USB1.1 supports two speeds 12Mbit/s and 1.5Mbits/s. 

In the latter case the two speeds can co-exist together on the same wire 

and the speed is determined in the hardware of the device. USB2.0 

interfaces fitted to PCs can support devices using USB1.1 but it is 

questior able whether USB2.0 devices can be used with USB1.1 PC 

interfaces. 



1 What is USB? 

USB connectors and cables 

The USB interface inside a PC is made up of a USB controller which is 

a set of chips that provide the interface between the hardware and the 

applications software resident in the PC. Within the PC is a host hub to 

which all the devices connected to the USB system connect. A PC 

normally has at least two connectors mounted on its case which 

connect to this host hub and users can then purchase further hubs 

which can provide additional ports for up to 127 devices. 

The cables, made up of 4 conductors, are used to connect devices to 

these hubs. Two types of USB connectors are used; Type A and Type B 

and these are illustrated in Figure 1.1. 

3 4 

Type A Type B 

Figure 1.1 USB connectors 

Normally a Type A socket is fitted to a PC and a device has a Type B. 

The connectors are different to indicate the normal flow of 

communication which may either be upstream or downstream. 

Two of the four conductors in the cable are differential data lines and 

the other two are 5V and GND. Figure 1.2 shows the configuration of 

the cable. 

A feature of the USB plugs is that pins 1 and 4, the supply lines, are 

slightly longer than the data lines. This means that when the plug is 

inserted into the socket, the supply is connected before the data. This 

not only reduces the risk of damage due to electrostatic charge but 

provides the USB feature of being able to connect and disconnect 

devices without having to power down the PC. The purpose of the 

supply lines is to provide power for the USB devices which are 

2 



What is USB? 1 

connected to the bus but in the main this is limited to them drawing no 

more tt.an 450mA. In most cases the device, e.g. printer, will need to be 

provided with its own power supply. 

'1 • 5V 

2 • D-

.3 • 

14 • 

Figure 1.2 USB cable configuration 

The two data lines, D+ and D—, are used to send either data or 

commands. A 1 bit is sent when D+ is high and D— is low and a 0 bit 

when D— is high and D+ is low. 

USB data communication 

USB devices contain a CPU, i.e. a microprocessor, a microcontroller, 

etc., which is used to control the communication process. Each device 

has a number of buffers which are used to store data prior to 

transmission to the PC or to store data received from the PC. These are 

referred to as IN and OUT endpoints and a device can have up to a 

maximum of 16 of each. 

The device's CPU pre- and post-processing ability provides the flexibility 

and standardisation of the USB system. Essentially it is an extension of 

the PC's BIOS and it is possible to plug a USB mouse or keyboard into 

a PC and for it to start immediately using the generic data held within 

the PC. There is no need to load specialised drivers which cause so 

many problems in installing software on a PC. It must be stated that with 

specialised devices, drivers are necessary and these are provided in an 

.INF file which is normally loaded in response to the Plug 'n Play 

Wizard. 

The IN endpoint of a device is the buffer into which data obtained from 

the device itself is placed and the OUT endpoint is the buffer in which 

data from the PC is placed so that it can be accessed by the device. 

3 



I What Is USB? 

Figure 1.3 (based upon a diagram by J Hyde (1999)) is a schematic of 

how the endpoints interface to the PC via the device drivers. 

Application program 

I/O manager 

Device driver 

a) 
c). 
o. 
co 

I/O CD 
o 

device 
Configuration 

Interface 
IN 

EndPoint 
OUT 

EndPoint 

P_ 
o 
o 

Host 

PC 

Control 
EndPoint 

Outside World 



What is USB? 1 

Putting it all together 

When a USB device is plugged into a port there is a voltage change on 

one of the two data lines. If D+ goes high the device is a high speed 

device, i.e. printer, scanner, etc., and the data that is transmitted within 

the 1ms packets is sent at 12Mbit/s. If D— goes high the device is a low-

speed device, i.e. keyboard, mouse, etc., and the data is transmitted at 

1.5Mbit/s 

A polling signal is then sent to the device requesting it to identify itself. 

The device responds with its own product and vendor Ids, i.e. the PID 

and VID. Windows then searches its directories for the correct driver for 

the device and if one cannot be found it requests one to be loaded. 

Once the driver is loaded the application programme then proceeds. 

The ability to connect and disconnect a USB device without switching 

off the PC is a distinct advantage when developing interfacing software 

as it often enables the interface to clear any corrupted settings very 

quickly and easily. 

The device is now part of the USB system with the PC being the master 

and the device being a slave.The PC polls devices to issue commands, 

request whether the device is ready to send or receive data and to be 

apportioned a time slice so that the device can transmit data upstream 

to the PC at regular time intervals. 

The PC's messages consist of three packets: a token packet, a data 

packet and a handshaking packet. The token packet contains an 

address and since the message is sent to all devices on the bus it is 

only the device whose address matches the token's address that will 

respond to it. The device then can send its data when the PC gives its 

permission. 

Types of data 

There are three types of data transfer between the PC and USB device 

and these are assigned priorities according to certain criteria. 

5 



I What Is USB? 

lsochronous 

This is real-time data transfer and has the highest priority. It is the 

transfer of a large amount of data where there can be no interruptions 

and there is no error checking provided. It is used for video and sound 

data which require large data transfers and can absorb some data loss. 

Interrupt 

This is used for keyboards, mice and joysticks which are low-speed data 

devices.They generate occasional interrupts and then transmit small 

amounts of data quickly. The priority is not as high as isochronous. 

Bulk 

This is used for the transfer of a large amount of data when speed is not 

of importance. It has low priority and is used for printers, scanners and 

digital cameras. 

There is a fourth data transfer mode which is called Control transfer. All 

USB devices support it and it has high priority and has error checking 

built in. It is used to provide initialisation information but there are 

occasions when it can be used for low-speed data transfer. 

Summary 

USB is a data transfer standard which enables a range of different 

devices to be attached to and removed from a PC without switching it 

off. Data is transferred to the PC in 1ms frames at speeds of 1.5Mbit/s, 

12Mbit/s and even 460Mbit/s in the latest USB2.0 version. A well-

defined set of protocols are used for data transfer and with the aid of 

external hubs it is possible to connect up to 127 devices to a USB port. 

The prospects of using USB to interface suitable devices capable of 

being used in instrumentation could be beneficial, as it would enable 

devices to be portable between PCs without having to provide plug-in 

cards. In addition it could also be extremely cost effective as most PCs 

are supplied with USB ports built in. 

6 



What Is USB? 1 

References 

J Hyde, USB Design by Example, (1999) J Wiley, New York 

T Worg, Understanding USB' (November 1999), Electronics World 

E Insam, 'USB made easy' (February 2002), Electronics World 

http://www.usb.org - web site of the USB organisation 

7 



1 What is USB? 

8 



2 
USB I/O 24 Module 

USB devices 

USB devices have become very popular with PC users as they can be 

easily connected and disconnected from the PC whilst it is still switched 

on. Consequently printers, scanners. cameras and even measuring 

instruments are being provided with USB interfaces. The major 

handicap to those of us who wish to develop instrumentation or simply 

to experiment with USB has been the complexity and cost of the 

electronics required to enable USB signals to be either generated or 

captured. 

This problem has now been surmounted with the appearance of several 

ICs with the capabilities of coping with the USB protocols in a similar 

manner to the UARTs that are used with RS232. UARTs (Universal 

Asynchronous Receiver Transmitter devices) can convert the serial 

RS232 signal into 8-bit parallel and 'vice versa and also deal with the 

handshaking requirements of the RS232 standard. A typical example of 

such a LISB integrated circuit is the FT8U245 manufactured by Future 

Technology Devices International ( FTDI) of Glasgow, Scotland. 

The FT8U245 

The FT8IJ245 is capable of sending and receiving USB data at up to 

1MByteis. The 8-bit parallel output/input port is connected to a 384-byte 

FIFO trarsmit buffer/128-byte FIFO receive buffer ( Figure 2.1). 

All the USB protocols are handled within the integrated circuit so that 

the user does not have to become involved in any complex 

programming to pass data to and from the device. In fact FTDI provide a 

USB driver for the system which ensures that the user can interact with 

the device with relative ease. The 8-bit I/O port of the FT8U245 is 

designed to be interfaced to any microcontroller using either the 

9 



2 USB I/O 24 Module 

memory I/O map of the microcontroller using DMA, or by controlling the 

I/O ports. 

The device has many commercial applications ranging from USB ISDN 

and ADSL modems to high-speed USB instrumentation. 

VCC 

33V out 

USB DP 

USB DM 
4—* 

33V j 
LDO' 

Regulator I 

USB 
Transceiver 

USB CPLL 

Serial Interface 
Engne 
(SIE) 

• 

FIFO Recerve 
Butler 

128 bytes 
Controller 

 t Use 
Protocol 
Engine _ I. 

out _ j 

ENAFiz X8 Clock 
XT °stow," I Mulbpker 

* I 

RC dk 

FIFO Transnit 
Buller 

384 Odes 
Controller 

  emrtz ONO 

RESET* —* 
 > lag* TEST ----• 

FIFO 
Controller 

EEPROM 
Interlace 

4---* DO 

4-1. DI 
4—• 02 

4—• D3 

• (34 

4--* 05 

—4 38 

4— RDN 
• vgR 

 *FIXF11 
—* 

EERE01/ 

Eg_Gn4. 

— I, EEGS 

—* EESK 
4-1> 

Figure 2.1 FT8U245 Block Diagram (Simplified) 

The USB I/O 24 module 

The 8-bit I/O of the FT8U245 has limitations as far as the experimenter 

is concerned because there are many sensors and transducers which 

require control line facilities over and above the 8 data lines and these 

are not easy to implement with handshaking lines that are more suited 

for use with a microcontroller. The obvious answer is to use a 

microcontroller, but once again that can cause problems with 

experimenters who may not wish to learn to program microcontrollers or 

who have not got access to the equipment necessary to perform such 

tasks. Fortunately Ravar Pty Ltd of Queensland, Australia produce a 

USB 24-line general-purpose Input Output module based upon the FTDI 

FT8U245 IC 

10 



USB I/O 24 Module 2 

The USB I/O 24 module (Figure 2.2) has 24 independently 

programmable I/O pins in three groups of 8. 

FORT P-

rem/ 

: 
rg, is•• eet. 11.1 

e 10- Éttsnaa 
>1' 

iterle tee 
, 

POP 

Figure 2.2 The USB 110 24 module 

The module is based on the FTDI FT8U245 USB IC and a UNICOM 

SAC48 microcontroller and is capable of transfer rates up to 250,000 8-

bit port reads or writes per second. A Virtual COM Port Driver is 

available for a range of operating systems, so that the device can be 

accessed as a normal serial port which can be programmed in any of 

the popular programming languages. This means that when the module 

is connected to the USB port of the PC it is automatically recognised 

and will accordingly appear in the COM section of the Device Manager 

of Windows when Windows 98, 2000, ME or XP is usec. 

The module is USB1.1 Specification compliant and the USB VID, PID, 

Serial Number and Product is recognised and displayed. The on-board 

EEPROM and FLASH Microcantroller can be re-programmed according 

to whatever the user may -equire but in most cases the provided 

firmware data is more than satisfactory. 

Each IK) pin can be configured individually as art input or output. An 

input pin is TTL level compat ble and an output pin can sink or source 

up to 30mA. The device is connected to the USB port of the PC using a 

suitable cable. This normally has a Type A USB connector to the PC 

11 



2 USB I/O 24 Module 

and a Type B to the module. The module is powered from the USB with 

up to 450mA available current. This means that the USB I/O 24 Module 

can be used in a range of user applications without the need of an 

external power supply to drive peripherals. 

The USB I/O 24 module Connectors 

The USB I/O 24 module has its 24 I/O pins distributed into three eight-

pin ports A, B and C. Each port has two additional pins which are used 

for +5V and a ground. The description for the ten pins in each port is 

shown in Table 2.1. 

Pin Signal Description 

1 +5V USB bus supply 

2 1/08 Programmable I/O pin with bit value of 128 

3 1/07 Programmable I/O pin with bit value of 64 

4 1/06 Programmable I/O pin with bit value of 32 

5 1/05 Programmable I/O pin with bit value of 16 

6 1/04 Programmable I/O pin with bit value of 8 

7 1/03 Programmable I/O pin with bit value of 4 

8 1/02 Programmable I/O pin with bit value of 2 

9 1/01 Programmable I/O pin with bit value of 1 

10 GND USB bus and I/O ground 

Table 2.1 Description of USB 1/0 24 Port Connector 

The pins are distributed in each port according to Figure 2.3. and Figure 

2.4 shows the three ports arranged on the USB 24 I/O module. 

12 



USB 1/0 24 Module 2 

USB end 

O 0 
O 0 
O 0 
O 0 
O 0 

Pin 1 +5V I/O 8 Pin 2 

Pin 31/07 I/0 6 Pin 4 

Pin 51/05 I/O 4 Pin 6 

Pin 71/03 I/0 2 Pin 8 

Pin 9 I/01 GND Pin 10 

zigure 2.3 USB I/O 24 Port Connector pin configuration 

USB 

O 0 
O 0 
O 0 
O 0 
O 0 

O 0 
O 0 
O 0 
O 0 
O 0 

O 0 
O 0 
O 0 
O 0 
O 0 

Port C 

Port B 

Port A 

Figure 2.4 USB I/O 24 port layout 

13 



2 USB I/O 24 Module 

The USB I/0 24 module Command Protocol 

The USB I/O 24 module has a set of commands which enable the 

individual ports to be configured as either inputs or outputs. In addition 

data can be read from or written to each of the ports. There is also a 

command that can be used to identify the device which is connected to 

the USB port. These commands are summarised in Table 2.2. 

Command Data Function 
? Transmits ' ISB I/O 24' Identify Device 

!A 1 byte port I/O data Write to Port A 
direction register 

!B 1 byte port I/O data Write to Port B 
direction register 

!C 1 byte port I/O data Write to Port C 
direction register 

A Port A data Write to Port A 
B Port B data Write to Port B 
C Port C data Write to Port C 
a Port A data Read to Port A 
b Port B data Read to Port B 
c Port C data Read to Port C 

Table 2.2 USB I/O 24 commands 

Before the ports can be used they must be initially configured either as 

an output or as an input. 

The syntax to set port A as an output is : 

Portl/Ostring = "!A"+Chr$(0) 

Port A is set as an input with the following statement: 

Portl/Ostring = "!A"+Chr$(255) 

14 



USB I/O 24 Module 2 

In botn of these examples all Port A pins are set in the same direction. 

In many applications it is possible to have a mix of pins being both 

inputs and outputs: 

Port1/0String = "!A"+Chr$(&02) 

This sets pin 2 as an output and all other pins as inputs. 

The task of reading Port A is achieved using: 

DataString = "a" 

and to write data to Port A the following statement is used: 

DataString = "A"+Chr$(128). 

In the former case, data is placed into the variable Datastring. In the 

latter case Pin 8 is set high and all other pins are low. 

The examples given above can also be performed for ports B and C. 

Usina USB I/O 24 Command Protocols 

The USB I/O 24 module is very versatile with its 24 I/O pins and to 

some extent that is its major downfall especially for beginners to 

interfacing. There is almost an infinite number of ways in which the 

module can be used and it is difficult to decide how to begin and to 

ensure success. To the experienced user who can draw upon the 

techniques and programs used with other types of interface cards and 

modules used with the PC there are certain rules which have aided 

them in the past. In general these are: 

1. Configure the interface card for input or output 

2. Read from or write to the interface 

Close examination of devices attached to other commercial interface 

cards reveal that in many cases 8 data lines and 2 control lines will 

suffice lo create reliable operation. With 241/0 lines it would appear that 

two such devices could be supported. 

In fact 24 I/O lines divided into 3 ports is almost an industry standard 

and can be traced back to the Intel 8255A Programmable Peripheral 

15 



2 USB I/O 24 Module 

Interface (PPD. The PPI was used as the parallel I/O device with Intel 

microprocessors used in the original IBM PCs. 

The feature of the 8255A was that it could be programmed to operate in 

three distinct modes. Two of the modes, 1 and 2, involved complex 

handshaking processes but Mode 0 was very similar to the USB I/O 24 

module with 24 lines which could be configured as inputs or outputs 

divided into three ports A, B and C. The method of programming the 

8255A in Mode 0 will aid us in programming the USB I/O 24 module. 

How Mode 0 of the 8255A is programmed 

Mode 0 of the 8255A takes the 24 I/O lines and divides them into two 

groups A and B. Group A consists of all the lines of Port A plus the four 

upper lines of Port C (i.e. 1/08, 1/07, 1/06 and 1/05 of Port C). Group B 

consists of all the lines of Port B plus the four lower lines of Port C (i.e. 

1/04, 1/03, 1/02 and 1/01 of Port C). Figure 2.5 illustrates this distribution 

of I/O lines. 

Group A Group B 

Port A 

I/O 1 - 8 

Port C (Upper) 

I/O 5 - 8 

Port B 

I/O 1-8 

Port C (Lower) 

I/O 1 - 4 

Figure 2.5 Distribution of 8255A I/O lines for Mode 0 operation 

In many applications Ports A and B will be used for data and the upper 

and lower groupings of Port C can be used for control lines. 

Programming is then further simplified by each of the sub-groups shown 

in Figure 2.5 being configured as inputs or outputs. This alleviates the 

problem of programming each I/O line individually and Chapter 3 will 

show the advantages of programming the groups of I/O lines. 

Programming the 8255A involved configuring the device with an 8-bit 

control word. Each bit of the control word has a significance which is 

shown in Figure 2.6 

16 



USB I/0 24 Module 2 

Control word 

D1 i De D5 04 03 02 DI Do 

Mode 

set flag 

Mode 

selection 

Port A Port C 

(Upper) 

Mode 

selection 

Port A Port C 

(Lower) 

1=Active 00=Mode0 

01=Model 

1X=Mode2 

1=i/p 

0=o/p 

1=i/p 

0=o/p 

0=Mode0 

1=Model 

1=i/p 

0=o/p 

1=i/p 

0=o/p 

Group A Group 8 

Figure 2.6 8255A mode definition format 

Inserting the Mode 0 settings simplifies the control word (Figure 2.7) 

Control word 
D4 D3 O D1 Do 

Port A Port C 

(Upper) 

Port B Port C 

(Lower) 

1=i/p 

0=o/p 

1=i/p 

0=o/p 

1=i/p 

0=o/p 
1=i/p 

0=0/p 

Figure 2.7 8255A mode 0 control word 

Port A, F'ort B and the two parts of Port C can now be set as inputs or 

outputs simply by setting the bits D4, D3, 131 and Do. These settings are 

then added to the setting bit D7 which is already set to 1. This means 

adding decimal 128 to those other bits in the control word which are 

required 7.o set the Port direction. 

The net result is shown in Table 2.3 which indicates the control word 

codes required to configure the 8255A for Mode 0 operation. 

17 



2 USB I/O 24 Module 

Port A Port C 
(Upper) 

Port B Port C 
(Lower) 

Code 
(decimal) 

Output Output Output Output 128 
Output Output Output Input 129 
Output Output Input Output 130 
Output Output Input Input 131 
Output Input Output Output 136 
Output Input Output Input 137 
Output Input Input Output 138 
Output Input Input Input 139 
Input Output Output Output 144 
Input Output Output Input 145 
Input Output Input Output 146 
Input Output Input Input 147 
Input Input Output Output 152 
Input Input Output Input 153 
Input Input Input Output 154 
Input Input Input Input 155 

Table 2.3 8255A control word Mode 0 settings 

Why use the 8255A settings? 

The peculiar code settings are initially strange to the beginner but 

reference to Table 2.3 becomes second nature and ensures reliable 

programming of the chip in the future. In addition commercial 24-line 

digital I/O boards used with the ISA and PCI slots in PCs are often 

based upon the 8255A or its derivatives so that any programs written for 

one system should be portable to any of the other systems. Also if a 

suitable library program is written, either in C or Visual Basic, the task of 

programming the interface board becomes fairly easy. This is the task 

that will be tackled in Chapter 3 when the code settings are applied to 

the USB I/O 24 module. 

The 8255A registers 

There are four registers in the 8255A which are used to hold Port A, 

Port B, Port C and the Control Register data. Each of these registers 

can be addressed provided the base address of the 8255A device is 

known. Usually the 8255A sits on a card which is plugged into the I/O 

18 



USB I/O 24 Module 2 

slot of the PC and the registers are allocated addresses from the PC's 

memory. In the case of the USB I/O 24 module mimicking the 8255A, 

the base address of the registers can be taken as O. This means that 

the registers and the Ports, etc., have the following address allocations 

and functions. 

Address Register Function Lines 

0 Port A i/p / o/p data PAO — PA7 

1 Port B i/p / o/p data PBO — PB7 

2 Port C Control lines CA1,CA2,CB1,CB2 

3 Control Control register 

Table 2.4 Port and register addresses 

The Control Lines 

Port C las been divided into upper and lower sub-groups which can be 

progranmed as inputs or outputs. Examination of applications of 8255A 

interface boards reveal that one line from the upper group and one line 

from the lower group are assigned to Port A and a similar arrangement 

is founc for Port B. Table 2.5 shows a typical arrangement. 

High Low 

7 6 5 4 3 2 1 0 

CB2 CA2 CB1 CA1 

Table 2.5 Arrangement of Port C 

It can be seen that the upper sub-group contributes bit 4 as control line 

CA2 ard the lower sub-group contributes bit 0 as CA1 to Port A. 

Similarly Port B gets bits 5 and 1 as CB2 and CB1 respectively. Table 

2.6 shows both the binary and hexadecimal code required to have all 

possible combinations of these four control lines providing output 

signals. 

19 



2 USB I/O 24 Module 

Binary 

Pattern 

Hex Decimal CB2 CA2 CBI CA1 

0000 0000 00 0 OFF OFF OFF OFF 

0000 0001 01 1 OFF OFF OFF ON 

0000 0010 02 2 OFF OFF ON OFF 

0000 0011 03 3 OFF OFF ON ON 

0001 0000 10 16 OFF ON OFF OFF 

0001 0001 11 17 OFF ON OFF ON 

0001 0010 12 18 OFF ON ON OFF 

0001 0011 13 19 OFF ON ON ON 

0010 0000 20 32 ON OFF OFF OFF 

0010 0001 21 33 ON OFF OFF ON 

0010 0010 22 34 ON OFF ON OFF 

0010 0011 23 35 ON OFF ON ON 

0011 0000 30 48 ON ON OFF OFF 

0011 0001 31 49 ON ON OFF ON 

0011 0010 32 50 ON ON ON OFF 

0011 0011 33 51 ON ON ON ON 

Table 2.6 Control line settings (Outputs) 

Connections to the USB I/O 24 module 

The net result of considering all these aspects of using the 8255A PPI is 

that the 24 lines of the USB 1/0 24 module can be divided into 8 data 

lines of Port A with 2 control lines CA1 and CA2 and 8 data lines of Port 

B with 2 control lines CB1 and CB2. Associated with these pairings will 

be a +5V supply line and a GND line making 12 lines associated with 

Port A and 12 lines associated with Port B. These lines are to be 

connected to the different interface boards used in the following 

chapters and Figure 2.8 shows the wiring harness that is required for 

the purpose with the connections shown in Tables 2.7 and 2.8. 

The 20-way IDC sockets (RS 192-7388) provide the Ports A and B 

connections and the 10-way header sockets ( RS 360-6220) are used to 

connect the USB I/O 24 module. (All sockets are viewed from the rear.) 

20 



USB I/0 24 Module 2 

20-way IDC 10-way header 

Pin Function Header Pin 

2 CA1 Cl 9 

4 CA2 C5 5 

6 PAO Al 9 

8 PA1 A2 8 

10 PA2 A3 7 

12 PA3 A4 6 

14 PA4 A5 5 

16 PA5 A6 4 

18 PA6 A7 3 

20 PA7 A8 2 

1 +5V +5V 1 

19 OV OV 10 

Table 2.7 Port A connections 

20-way IDC 10-way header 

Pin Function Header Pin 

2 CB1 C2 8 

4 CB2 C6 4 

6 PBO B1 9 

8 PB1 B2 8 

10 PB2 B3 7 

12 PB3 B4 6 

14 PB4 B5 5 

16 PB5 B6 4 

18 PB6 B7 3 

20 PB7 B8 2 

1 +5V +5V 1 

19 OV OV 10 

Table 2.8 Port B connections 

21 



U
S
B
 I
/O

 2
4
 M
o
d
u
l
e
 

Pin 1 

-1-5V C8 
C7 C6 
CS C4 
C3 C2 
C 1 OV 

Pin 1 
--5V B8 
B7 B6 
B5 B4 
B3 B2 
BI OV 

Pin 1 
+5V A8 
A7 A6 
AS A4 
A3 A2 
Al OV 

O 0 
O 0  
0'0 
O 0  
0= 

1 
Cfi— C)--
0----CF  

 00 
  o 
 00 
 00 
 00 
 00 
 00 
 00 
 00 
00 

 00 
 00 

c(c)  
o r  
0' o  
0'0  

o 
o 
0 

 -e o 
 00 
 00 
00 
  o 

PB7 OV 
PB6 OV 
PBS OV 
PB4 OV 
PB3 OV 
PB2 OV 
PBI OV 
PAO OV 
CB2 +5V 
CBI -+-5V Pin I 

PA7 OV 
PA6 OV 
PAS OV 
PA4 OV 
PA3 OV 
PA2 OV 
PA I OV 
PAO OV 
CA2 +5V 
CAI +5V Pin 1 

Figure 2.8 Method of wiring the USB I/0 24 module for use with the interface boards 

Csi 



USB I/O 24 Module 2 

Summary 

The USB I/O 24 module is designed to enable digital input/output 

signals to be interfaced to the USB port of a PC. The interface cards 

that can be used with ISA and PCI slots of PCs are based upon the Intel 

8255A PPI and it is possible to configure the USB I/O 24 module to 

mimic this device. This means that programs already written for the 

8255A will be compatible with the USB I/O 24 module and, provided a 

suitable cable harness is used, it is possible for interface boards 

developed for the 8255A to be used with the USB I/O 24 module. 

The nExt stage of the process is to write a universal Visual Basic 

module that can store the library of calls that will achieve these tasks. 

23 



2 USB I/O 24 Module 

24 



3 

Programming the Module 

The case for the USB I/O 24 Module 

The USB I/O 24 module can be programmed either with serial device 

commands or by using a DLL which enables function calls to be made 

to it. Basically the mode of interface interaction is the same but with the 

serial method it is the user who has to ensure that all the correct 

protoccl steps are made whilst with the DLL method the steps are 

contained within the DLL. In addition the serial communication rate is 

115,200 Baud which means that the possibility of a communication 

breakdown occurring is very real so that for most applications the serial 

method is far from ideal. Using the DLL approach ensures a more 

reliable communication path. 

The FT8U245 drivers 

The USB I/O 24 module is driven by the FT8U245 IC and it is necessary 

to install its drivers on the PC. These drivers are obtainable from the 

FTDI website (http://www.ftdichip.com/support.htm). The drivers should 

be downloaded to a folder on the PC and then unzipped. When the USB 

I/O 24 module is plugged into the USB port the PC checks for suitable 

drivers and if none exist it will prompt the user to load the drivers. It is 

then a cpestion of following the instructions that appear on the screen. 

The instructions for installing drivers under Windows 98 differ from 

those for Windows 2000 and XP. Full Application Notes for the 

installation process can be downloaded from the FTDI web site. The two 

files that are loaded are a Windows Device Manager driver, 

FTD2XX SYS and an Applications Software Interface, FTD2XX.DLL. 

Figure 3.1 indicates the driver architecture. 

25 



3 Programming the Module 

USB 
physical 
layer 

Application 
Software 

Visual Basic 

Windows Windows Applications 
USB Device Manager software 

interface Driver interface 

Figure 3.1 The FTDI D2XX Driver Architecture 

These drivers can be used in conjunction with a range of different 

programming applications including Visual Basic, Visual C++, Delphi, 

etc. In addition to the FT8U245 IC the drivers can be used with the 

FT8U232 IC which is designed to convert USB signals to serial and vice 

versa. A comprehensive programmer's guide (FTD2)0( Direct Driver 

Programmer's Guide, 27 th July 2001) is available from the FTDI web 

site. This will assist experienced programmers to produce extremely 

complex programs using the USB I/O 24 module. 

How to set up the FTDI D2XX Drivers 

The two drivers that have been installed on your PC are not normally 

loaded unless the USB I/O 24 module is connected to the USB port. 

When the module is connected the arrow cursor will change to the egg-

timer whilst the drivers are loaded and then revert back to the arrow 

after a short time. When the module is disconnected a similar process 

will take place. 

Once the module is connected and the drivers are loaded, the FTDI 

FT8U2XX device is recognised in the USB controllers of the Device 

Manager of the PC. (Figure 3.2) 

The Device Manager is accessed from Control Panel / System. It is 

possible to access the properties of the device by right-clicking on the 

mouse and checking that the driver is loaded and operational. 

26 



Programming the Module 3 

General Device Manager I Hardware Profiles I Performance I 

(. View devices by type e- View devices by connection 
- 

Modem 

XMonitors 
• :) Mouse 

ke Network adapters 
-rd Other devices 

'? PCI Input Controller 

PCI Mukimedia Audio Device 

1 Ports (COM & LPT) 

1 Communications Port (COM1) 

1 Communications Port [COM2) 

1 Printer Port (LPT1) 

g System devices 
Itre Universal Serial Bus controllers 

ETCH FT,-ri.::  

Intel 82371AB /EB PCI to US? Universal Host Controller 
u.-,r, R.-.,-. f H. L. 

PloPerties I Refresh j Rtsmove I Print 

L-J 

Ot. Cancel 

Figure 3.2 Device Manager Properties 

The role of the DLL 

A DLL is a Dynamic Linked Library. It is a file that contains functions or 

routines which a program can call upon whenever they are needed. 

Many applications programs, i.e. C, Basic, etc., use mathematical 

functions such as sin, cos, etc., which are built into the software. In the 

case of Visual Basic the mathematical function arcsin is not a 

recognised function and it is necessary for the user to write a little 

routine to calculate arcsin. Often the function is written in Visual Basic 

but it not unusual to write it in a language, e.g. C, which accepts 

mathematical manipulation more easily. This C program can then be 

compiled as a DLL which can be then called by the Visual Basic 

_ 27 



3 Programming the Module 

program. The feature of the DLL is that it is not loaded until it is required 

thus saving a great deal of memory space. 

A driver DLL contains functions which enable a program to access a 

particular device which in the case of the FTD2XX.DLL is the USB I/O 

24 module connected to the USB port. A feature of a function is that 

there are a number of parameters which are required within the function 

itself. It is important that the parameters are in the correct format 

otherwise an error will occur which could cause the PC to crash. This is 

one reason to ensure that whenever DLLs are being developed the 

program is saved before running or otherwise valuable work can be 

easily lost. 

In order to ensure that the parameters passed to and from the DLL are 

correctly formatted, they have to be declared and this has to be done in 

a formal way. The Visual Basic code below illustrates this quite clearly: 

Public Declare Function FT_Open Lib "FTD2XX.DLL" (ByVal 

intDeviceNumber As Integer, ByRef IngHandle As Long) As Long 

Public indicates that the function will be accessible from all parts of the 

Visual Basic project and the Function is FT_Open which is stored within 

the FTD2XX.DLL file. The two parameters that are being passed are 

quite different in their nature. The Device Number (intDeviceNumber) is 

an integer between —32768 and +32767 whose value is being passed to 

the function. The IngHandle is the port that is being opened for the 

device and ByRef indicates that it is the address of where that handle 

exists which is being passed to the function. Long indicates that the 

address lies between —214748348 and +2147483647. The As Long 

following the brackets indicates the number which is returned when the 

function is completed. Often either 1 or 0 is returned to indicate whether 

the function has completed its task successfully or not, though there are 

cases when a more meaningful number is returned. 

28 



Programming the Module 3 

Visual Basic code 

It is assumed that the reader has some knowledge of Visual Basic and 
will not be too daunted by the next few sections. 

A Visual Basic project consists of Forms and Modules. Forms are the 

visual parts that appear whenever the project runs and the module is 

similar to a BASIC program even to the extent of having a . bas 

extension. In the following chapters on interfacing you will find that the 

Forms are tailored to the devices that are being considered while a 

module, io_usb.bas will keep on appearing throughout the project. 

io_usb.bas is a module which contains all of the information which is 

required to communicate with the USB I/O 24 module. 

In essence io_usb.bas contains the following parts: 

1 Declarations 

2. A read device routine (Readprog) 

3. A write device routine (Writeprog) 

4. Data transfer out (PortOut) 

5. Data transfer in (PortIn) 

Parts 1, 2 and 3 are Visual Basic code supplied by FTDI with some 

modifications, and would appear in any Visual Basic software developed 

for the FTDI FT8U245 IC. Parts 4 and 5 have been developed 

specifically for the USB I/O 24 module to mimic the 8255A PPI 

discussed in the previous chapter 

The next task is to type in the relevant code into the module io_usb.bas. 

This must be done carefully to avoid any errors otherwise it will be 

necessary to spend time debugging the code. All of this code is required 

and it cannot be tested until a suitable Form is produced. Type in each 

of the sections and ensure that you save at the end of each section. To 

make the task easier, each section will be introduced by a short 

explanation of what the code is doing. 

29 



3 Programming the Module 

Declarations 

The first part of the Declarations involves declaring the four functions 

that are going to be used from the FTD2XXX.DLL. There are several 

other functions contained in this file which we will not need to use. 

The first two declarations are concerned with opening and closing the 

port. The parameters being passed have already been explained. 

The FT_Read and FT_Write functions are very similar with the 

appropriate port handle being selected, buffers for use of the variable 

being required and the size of the buffers being declared. The only 

difference is the addresses from where data is to be read and to where 

data is to be written. 

'Declare FTD2XX functions 

Public Declare Function FT_Open Lib "FTD2XX.DLL" (ByVal 

intDeviceNumber As Integer, ByRef IngHandle As Long) As Long 

Public Declare Function FT_Close Lib "FTD2XX.DLL" (ByVal IngHandle 

As Long) As Long 

Public Declare Function FT_Read Lib "FTD2XX.DLL" (ByVal IngHandle 

As Long, ByVal IpszBuffer As String, ByVal IngBufferSize As Long, 

ByRef IngBytesReturned As Long) As Long 

Public Declare Function FT_Write Lib "FTD2XX.DLL" (ByVal IngHandle 

As Long, ByVal IpszBuffer As String, ByVal IngBufferSize As Long, 

ByRef IngBytesWritten As Long) As Long 

There are a number of constants that are required in FTD2XX.DLL 

which have specific values and these are declared in the next section. 

30 



Programming the Module 3 

' Return codes 

Const FT_OK = 

Const FT_INVALID_HANDLE = 1 

Const FT_DEVICE_NOT_FOUND = 2 

Cone FT_DEVICE_NOT_OPENED = 3 

Const FT_IO_ERROR = 4 

Const FT_INSUFFICIENT_RESOURCES = 5 

The final part of the Declarations involves declaring a variable a$ which 

is to be used throughout the project, so that it is made Public and will 

reside in the io_usb.bas module. 

' Declare variable 

Public a$ 

Read prog 

This is rather an involved section as it necessitates writing to the port 

with certain information and then reading the response. Surrounding 

these two processes the USB port is opened and closed. 

Initially the parameters required by the four functions in the DLL are 

declared. 

'Read port routine 

Public Sub Readprog() 

Dim Ingliandle As Long 

Dim strVvriteBuffer As String * 256 

Dim IngBytesWritten As Long 

Dim strReadBuffer As String * 256 

31 



3 Programming the Module 

Dim IngBytesRead As Long 

Dim IngTotalBytesRead As Long 

Dim strLoggerBuffer As String 

Dim flFailed As Boolean 

Dim flTimedout As Boolean 

Dim flFatalError As Boolean 

Dim ftStatus As Long 

The next section opens the device and checks whether the step has 

been successful. The variables that are to be written to the device are 

then loaded prior to being written to the device. This is then followed by 

another error checking process. 

'Open device 

If FT_Open(0, IngHandle) <> FT_OK Then 

Exit Sub 

End If 

'Load write variables 

strWriteBuffer = (4) 

IngBytesWritten = 

'Write output 

If FT_Write(IngHandle, strWriteBuffer, Len(strWriteBuffer), 

IngBytesWritten) <> FT_OK Then 

xit = FT_Close(IngHandle) 

Exit Sub 

End If 

32 



Programming the Module 3 

The read process is preceded by the setting of a number of variables 

prior to the actual process itself. It will be seen that the read is encased 

in a Do.... While loop which, coupled with error checking, ensures that 

all the data to be read is accumulated. The read data is placed in the 

variable a$ 

'Load read variables 

flTimedout = False 

flFatalError = False 

IngTotalBytesRead = 

IngBylesRead = 

readsize = 1 

IngTotalBytesRead = 

Do 

IngBytesRead = 

'Read input 

ftStatus = FT_Read(IngHandle, strReadBuffer, readsize 

IngTotalBytesRead, IngBytesRead) 

'Check for success of read 

If (ftStatus = FT_OK) Or (ftStatus = FT_IO_ERROR) Then 

If IngBytesRead > 0 Then 

strLoggerBuffer = strLoggerBuffer + Left(strReadBuffer, 

IngBytesRead) 

IngTotalBytesRead = IngTotalBytesRead + IngBytesRead 

Else 

flTimedout = True 

33 



3 Programming the Module 

End If 

Else 

flFatalError = True 

End If 

Loop Until ( IngTotalBytesRead = readsize) Or (flTimedout = True) Or 

(flFatalError = True) 

'Display input data or reason for failure 

If (flTimedout = False) And (flFatalError = False) Then 

a$ = Asc((strReadBuffer)) 

End If 

To complete the Readprog routine the device is closed. 

'Close device 

xit = FT_Close(IngHandle) 

End Sub 

Writeprog 

The features of the Writeprog have already been described above. The 

device is opened, the variable is written to the device and the device is 

then closed. At each stage the process is checked for success. 

'Write port routine 

Public Sub Writeprog() 

'Open device 

If FT_Open(0, IngHandle) <> FT_OK Then 

Exit Sub 

End If 

'Load write variables 

strWriteBuffer = (a 

34 _ 



Programming the Module 3 

IngBytesWritten = 

'Write output 

If FT_Write(IngHandle, strWriteBuffer, Len(strWriteBuffer), 

IngBytesWritten) <> FT_OK Then 

xit = FT_Close(IngHandle) 

Exit Sub 

End If 

'Close device 

xit = FT_Close(IngHandle) 

End Sub 

PortOut 

It can be seen from the Readprog and Writeprog routines that a number 

of parameters are required for the Read and Write functions. This can 

be reduced by producing specific functions which only contain the 

essential information. 

The syntax required for using PortOut is: 

Port0=PortOut(Reg,OUr/o) 

As the USB I/O 24 module is mimicking the 8255A PPI, Reg refers to 

the Port address that is to be used and OUT% is data between 0 and 

255 that is to be transmitted. A Case structure is used to make the 

programming as compact as possible. Case 0, 1 and 2 refer to data 

being transmitted out of Ports A, B and C respectively. 

35 



3 Prouramminu the Module 

'Writing data function 

Public Function PortOut(Reg, OUT%) 

'Output data 

Select Case Reg 

'Port A 

Case 0 

a$ = "A" + Chr$(0UP/o) 

Writeprog 

'Port B 

Case 1 

a$ = "B" + Chr$(0UT%) 

Writeprog 

'Port C 

Case 2 

a$ = "C" + Chr$(0UT%) 

Writeprog 

In Case 3 Reg is accessing the Control Register which is used to 

determine the direction of data flow. OUT% now refers to the Code 

column of Table 2.3. 

If the Outputs are replaced by logic 0 and the Inputs by logic 1, Table 

2.3 can be converted into Table 3.1. 

36 



Programming the Module 3 

Active Port A Port C 
(Upper) 

Port B Port C 
(Lower) 

Code 
(decimal) 

128 16 8 2 1 Total 
1 0 0 0 0 128 
1 0 0 0 1 129 
1 0 0 1 0 130 
1 0 0 1 1 131 
1 0 1 0 0 136 
1 0 1 0 1 137 
1 0 1 1 0 138 
1 0 1 1 1 139 
1 1 0 0 0 144 
1 1 0 0 1 145 
1 1 0 1 0 146 
1 1 0 1 1 147 
1 1 1 0 0 152 
1 1 1 0 1 153 
1 1 1 1 0 154 
1 1 1 1 1 155 

Table 3.1 8255A control word code settings 

The settirgs of Port A, Port B, Port C(Hi) and Port C ( Lo) will produce a 

decimal cDde after taking into account the weightings of each column. 

The code has to initially take the decimal code and create the binary 

equivalen. 

Case 3 

'Control Register - set Ports A, B & C directions (use register codes) 

Dim M(8) As Integer 

z% = OUT% 

'Convert OJT% into binary format 

For i = O To 7 

x% = Int(z% / 2) 

M(i) = (z% - 2 * x%) 

z% = x% 

Next 

37 



3 Programming the Module 

Bits 4 and 1 store the direction of Port A and B respectively. 

'Set Port A direction 

If M(4) = 0 Then 

a$ = "!A" + Chr$(0) 

Else 

a$ = "!A" + Chr$(255) 

End If 

Writeprog 

'Set Port B direction 

If M(1) = 0 Then 

a$ = "! B" + Chr$(0) 

Else 

a$ = "! B" + Chr$(255) 

End If 

Writeprog 

Bits 3 and 0 hold the states of the Upper and Lower parts of Port C 

which must be concatenated to create the Port C direction. 

'Allocate Port C(Hi) direction 

If M(3) = 0 Then 

W% = 

Else 

w% = 240 

End If 

'Allocate Port C(Lo) direction 

38 _ 



Proorammino the Module 3 

If M(0) = 0 Then 

w% = 0 + w% 

Else 

w% = 15 + w% 

End If 

'Set Port C direction 

a$ = "! C" + Chr$(e/o) 

Writeprog 

End Select 

End Function 

PortIn 

The PortIn function is used to read data in from a particular Port of the 

USB I/O 24 module. The syntax is: 

inp% = Fortin (Reg) 

Reg is the Port address that is being accessed and inp% is the data 

between 0 and 255 which is being returned. Again a Case structure is 

used with Case equalling 0, 1 and 2 corresponding to Ports A, B and C, 

and the result being placed into inp% 

'Reading data function 

Public Function PortIn(Reg) As Variant 

'Input data 

Select Case Reg 

'Port A 

Case 0 

as = ,.a" 

Readprog 

Case 1 

39 



3 Programming the Module 

a$ = "b" 

Readprog 

Case 2 

a$ = "c" 

Readprog 

End Select 

'Get data 

PortIn = Val(a$) 

inp% = PortIn 

End Function 

Summary 

The io_usb.bas file is used in all of the Visual Basic projects that are 

going to be produced in future chapters. It provides all the reference 

material that is needed to write and read data to and from the USB I/O 

24 module. 

The relevant functions to be called from FTD2XX.DLL are initially 

declared. The writing and reading to the device has been shown clearly 

in all its code and finally two user-friendly read and write functions have 

been introduced. 

The code that you have written is involved, and typing mistakes are 

easy to make. The next stage is to write a simple project to use 

io_usb.bas and to rectify any errors before using it in more complex 

circumstances. 

40 



4 
Digital Input/Output 

Using the USB I/O 24 module 

The next phase in the development of the use of the USB I/O 24 module 

is to check that it works This will involve using an interface board called 

the User Port Tester which will monitor the state of the two Ports A and 

B plus their associated control lines. Two programs will then be 

developed. One will check the output capabilities of the module and the 

other tf-e input. These two programs are important since they will 

always come in useful later to check that the system is working. In any 

interface situation there are several items that have to work, i.e. the 

interface module, the interface board, the connecting cable and the 

software. Any one of these items may have a fault and it is always 

useful to revert back to well-tried and tested equipment and software. 

Interface Boards 

The programs used in the subsequent chapters use interface boards 

which are connected to the USB I/O 24 module. Details of the interface 

boards can be found in the Appendix. Each interface board has a 20-

way IDC ribbon cable connector plug which connects to the ribbon cable 

from the USB I/O 24 module. 

The interface boards are: 

i. User Port Tester — a board to monitor input and output data of 

tie USB I/O 24 module. 

ii Stepper — a board to vary the speed of a stepper motor. 

8DAC — an 8-bit digital to analogue converter which is 

capable of producing voltage outputs in the ranges 0 to +5.10V 

and —2.56V to +2.54V. 

41 



4 DiuRai Input/Output 

iv. 8ADC — an 8-bit successive approximation analogue to digital 

converter which can convert voltage inputs of between 0 and 

+5.10V with a resolution of 2mV and between —5.12 and 

+5.10V with a resolution of 4mV 

v. 12ADC — a 12-bit dual ramp integrating analogue to digital 

converter which can convert voltages between —4.095V and 

+4.095V with a resolution of 1mV. Using an instrumentation 

pre-amplifier it is possible to obtain additional resolutions of 

1µV, 10µV and 1001.N. 

The Appendix provides details of each board, the PCB design, a 

component overlay and a list of components required to make up the 

board. The boards can be assembled by any person who has some 

knowledge of electronic circuit construction. 

If it is not possible to use the interface boards, the reader should find 

sufficient detail in the programs such that the techniques can be used in 

other applications. 

The User Port Tester board 

This is a board which can be connected to either Port A or Port B plus 

the appropriate parts of Port C of the USB I/O 24 module. It is used to 

test input and output programs of the USB I/O 24 module card. The 

states of the data lines connected to the computer are set by the USB 

I/O 24 module and are indicated by a 10 LED bar display (Figure 4.1). 

In order to understand how the USB I/O 24 module can be used, its 

operation will be introduced by referring to examples written in Visual 

Basic. Data can be transmitted to and from the User Port Tester board 

using the Visual Basic functions PortOut and %din that have been 

introduced in Chapter 3. 

A program to achieve this requires the following steps: 

1) Initialisation - set up the USB I/O 24 module ports as inputs or 

outputs 

2) Read or write data through the desired ports A, B or C. 

42_ 



Diqital Input/Output 4 

P7 
P6 
PS 
P4 
P3 
P2 
PI 

PO 
C2 
CI 

'cr.) 
a) 

Figure 4.1 The User Port Tester board 

Creating a User Port Tester Input Form 

This program produces a User Port Tester Input Form to read data fed 

from the User Port Tester board to the USB I/O 24 module connected to 

the PC. 

On the Visual Basic Form, input data is plotted on a graph in a Picture 

Box. The Form should have the layout shown in Figure 4.2. and 

consists of one Label Box Data Recorded, one Text box and a 

Command Button. The lower part of the Form contains a Picture Box 

with two Label boxes (Voltage and Time) placed as shown. 

The Caption on the Form is Input. 

The code associated with the various items is listed below. 

The Declarations 

This assigns the addresses to the Ports A, B and C and also the control 

register. To make the program as versatile as possible the addresses of 

the registers are referenced to REGA. This means that should the 

program be used in the future with a commercial I/O plug-in card, only 

the base address of Port A will need to be altered. 

The Declarations also make the control register variable out% Private. 

43 



4 Digital Input/Output 

IN Input PICIEI 

Start I    Data Recotded IText1 

Voltage 

Figure 4.2 Layout of the User Port Tester Input Form 

'Declare parameters 

Const REGA = 

Const REGB = REGA + 1 

Const REGC = REGA + 2 

Const CREG = REGA + 3 

Private out% 

The Form 

This configures the USB I/O 24 module and initialises the input Text 

boxes. 

Private Sub Form_LoadO 

'Assign control register code 

out% = 155 

'Configure port as input 

44 



Mina, Input/Output 4 

Port° = PortOut(CREG, out%) 

'Display input value 

Text1.Text = 

End Sub 

The function which accesses the DLL to output data to the USB I/O 24 

module is: 

Port° = PortOut(CREG, out%) 

This feeds the data out% to the register address CREG. The dummy 

return value, 1, is assigned to the variable Port0 which is never used. 

out% must have a value assigned to it before the procedure is called. 

The Command button 

The function of the Command Button is to initiate the input of data from 

the User Port Tester board and plot it on the Picture Box. Whilst the 

data is being plotted the caption on the button changes from Start to 

Plotting. Initially the axes are drawn bearing in mind that the origin (0,0) 

is at the top left-hand corner of the Picture Box. 

Once the plotting starts, the DoEvents() statement is required to break 

in and stop the program. The function of this statement is to revert the 

program to the Windows operating system and initiate an interrupt 

process 200 data points are plotted. 

Private Sub Command1_Click() 

'Change Start button To Plotting 

Command1.Caption = "Plotting" 

'Clear picture box 

Picture1.Cls 

'Calibrate picture box 

Picture1.Scale (-50, -50)-(250, 300) 

45 



4 Digital Input/Output 

'Draw horizontal axis 

Picture1.Line (0, 255)-(200, 255) 

'Draw vertical axis 

Picture1.Line (0, 0)-(0, 255) 

'Goto origin 

Picture1.PSet (0, 255) 

'Plot 200 points 

For 1 = 1 To 200 

'Read Port 

inp% = PortIn(REGA) 

'Redirect to operating system 

t = DoEvents() 

'Display input readings 

Text1.Text = I NP% 

'Plot input readings 

Picture1.Line -( 1, 255 - INP`)/0) 

'Delay 

For n = 1 To 1000000 

Next n 

Next I 

'Start button reverts to stop status 

Command1.Caption = "Start" 

End Sub 

The other BASIC command which accesses the DLL is: 

inp%=Portin(REGA) 

46 



Digital Input/Output 4 

Figure 4.4. Userin.vbp in operation 

This reads register REGA and the returned value is assigned to the 

variable inp%. 

The Userin program 

Form1 is saved as userin.frm and the io_usb.bas module should be 

added to the project. Check in the project window that this has been 

done. The files should be as shown in Table 4.1. 

Project Project1 (userin.vbp) 

Form Forml (userin.frm) 

module module1 (io_usb.bas) 

Table 4.1 The userin.vbp project files 

Running the Userin program 

When the program is run Form1 will appear. Pressing the Start button 

will initiate the plotting routine. The switches on the User Port Tester 

board can be changed and the input to the USB I/O 24 module board 

monitored both on the graph and in the Data Recorded text box. Figure 

4.4 shows a typical set of results. The rate of data acquisition is 

dependent upon the delay and this can be varied by the For n = 1 To 

1000000 statement in the above program. 

47 



4 Digital Input/Output 

Exercise 4.1 

4.1.1 Check that the program works and then rem out the 

statement t=DoEvents0 in the Command button 

procedure. 

Does the program always now respond to a Break key 

press? 

Creating a User Port Tester Output Form 

This program produces a User Port Tester Output Form to feed data out 

from the PC into the USB I/O 24 module. 

Data is generated using a Scroll Bar on the Visual Basic Form. The Max 

value in the Properties Windows of the Scroll bar is set to 255 (Figure 

4.5). 

IMICIMMIMIN xl 

IH5crolll HScrollear 

itiPhAbetle , ce I 

(Name) HScroll I 

CausesValdabr Tr ue 

Dr agI, on (None) 

Drarode 0 Manual 

Enabled True 

HeIght 49:2 

HelpContextID 

Index 

argeChange 1 

eft 1200 

255 

0 

ouselcon (None) 

ousePointer O - Default 

IghtToleft False 

SmaliChande 1 

Figure 4.5 The Scroll bar Property Window 

The Form should have the layout shown in Figure 4.6. and consists of 

one Label Box (Output Signal), one Text box and a horizontal scroll bar. 

The Caption on the Form is Output. 

48 



Digital Input/Output 4 

Figure 4.6 Layout of the User Port Tester Output Form 

The code associated with the various items is listed below. 

The Declarations 

This is identical to the Declarations made in the Userin.frm program. 

'Declare parameters 

Const REGA 

Const REGB = REGA + 1 

Const REGC = REGA + 2 

Const CREG = REGA + 3 

Private out% 

The Form 

This rcads the setting of the Scroll bar, configures the USB I/O 24 

module and initialises the output Text box. 

Private Sub Form_Load() 

'Assign control register code 

out% = 128 

'Configure port as output 

Port° = PortOut(CREG, out%) 

'Read output value from scroll bar 

output% = HScro111.Value 

49 



4 Digital Input/Output 

'Display output value 

Textl.Text = output% 

'Send output value to port 

Port° =- PortOut(REGA, output%) 

End Sub 

out% is set to a value which is used to configure Ports A and B as 

outputs. 

The Scroll bar is then read and its value is then outputted to Port A. 

The Scroll bar 

This procedure enables the USB I/O 24 module to output data, which is 

displayed on the LEDs on the User Port Tester board. The data is 

changed by moving the setting of the scroll bar. This can vary from 0 to 

255. 

Private Sub HScrolll_Change() 

'Configure port as output 

Port° -= PortOut(CREG, out%) 

'Read output value from scroll bar 

output% = HScrolll .Value 

'Display output value 

Textl .Text = output% 

'Send output value to port 

Port° = PortOut(REGA, output%) 

End Sub 

The Userout program 

Form 1 should be saved as userout.Frm and the io_usb.bas module 

should be added to the project. Check in the project window that this 

has been done. The files should be as shown in Table 4.2. 

50 



Digital Input/Output 4 

Project Project1 (userout.vbp) 

Form Form1 (userout.frm) 

module module1 (io_usb.bas) 

Table 4.2 The userout.vbp project files 

Running the Userout program 

The program will start immediately it is set running. The mouse is used 

to move the Scroll bar up and down the scale. The output reading is 

displayed in decimal format in the Text box and in binary form on the 

User Fort Tester LEDs. Figure 4.8 shows the Form when the program is 

running. 

r Output FIRM 

Output Signal Li 

Figure 4.8 The userout.vbp project running 

Exercise 4.2 

4.2.1 Write a program which sets ports A, B and C as outputs 

and operating in a loop causes the lights in the bar code 

display to light up in sequence, moving back and forth 

across the 10 bars. 

Modify the Form to have a bar display which is illuminated 

in a similar manner. 

4.2.2 Extend the above program so that two LEDs light up in 

sequence, move in opposite directions across the bar 

display from either end and appear to cross over. Again 

use all ten LEDs. 

51 



4 Digital Input/Output 

Summary 

Once you have these two programs running successfully you will have 

managed to get data in and out of the USB I/O 24 module. The following 

chapters will now utilise these features and they will show you how easy 

PC interfacing can be. 

52 



5 
Stepper Motors 

Stepper motor applications 

Stepper motors may be used in many applications in the laboratory. 

They can be used in situations where accurate positioning is required, in 

automatic machinery and robotics, and where there is a requirement for 

continJous motion which can be controlled by a computer. Stepper 

motors are available with a wide range of power and torque ratings to 

suit a number of applications. 

What is a stepper motor? 

A simple stepper motor can be described as a permanent magnet (the 

rotor) which is free to rotate about an axis, and 4 coils located at equal 

positions around the rotor. Current can be passed through the coils so 

that magnetic fields are created and the rotor attempts to align with 

these fields. 

The permanent magnet, the variable reluctance stepper motor and 

hybrids of the two are more commonly available commercially because 

their design enables smaller step angles to be obtained with higher 

precisien. The Stepper driver board is designed to drive a 4-phase 

stepper motor which has 4 coils ( i.e. phases) and is the most common 

type available. The 4 coils are aligned at 90 degrees to each other and 

the dire::tion of the magnetic field produced by each coil alone is shown 

in Figure 5.1. 

The permanent magnet rotor will line up with the resultant magnetic field 

so that as the coils are energised in cyclic order, rotation of the rotor will 

be prodJced. In the full-step mode it is usual to energise 2 adjacent 

coils at once since this will produce more torque and power. Thus the 

coils are energised in the sequence given in Table 5.1, which rotates 

the rotor 

53 



5 Stepper Motors 

to the positions shown. To produce counter-clockwise rotation the coils 

are energised in reverse order. 

1 oi 

04 

M.3 
Figure 5.1 Permanent magnet stepper motor 

Step No Q1 Q2 Q3 Q4 Decimal Field direction 
1 1 1 0 0 3 ,Ir 
2 0 1 1 0 6 )1A 
3 0 0 1 1 12 At' 
4 1 0 0 1 9 

Table 5.1 Full-step mode, order in which coils are energised 

In the half-step mode the coils are energised in the sequence which 

sweeps the magnetic field and hence the rotor to the positions given in 

Table 5.2. 

Step No Q1 Q2 Q3 Q4 Decimal Field direction 
1 1 1 0 0 3 ,if 

2 0 1 0 0 2 --> 

3 0 1 1 0 6 sA. 

4 0 0 1 0 4 + 
5 0 0 1 1 12 Ar 

6 0 0 0 1 8 4-

7 1 0 0 1 9 
8 1 0 0 0 1 + 

Table 5.2 Half-step mode, order in which coils are energised 

54 



Stepper Motors 5 

The Stepper Board 

The Stepper board is used to directly drive the coils and has been 

designed to drive two stepper motors. As the PC cannot provide 

sufficient current for the coils of the motor, a laboratory power supply is 

used to supply 5V between the supply and ground terminals of the 

Stepper board. 

Figure 5.2 shows the layout of the Stepper board. 

3OV.1.10A AI:WS 

a. 

I I 
GROUND 

S
T
E
P
P
E
R
 

• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 

if) 

a) 

Figure 5.2 Layout of the Stepper board 

Figure 5..3 shows how the board is connected to the PC and to the 

stepper motor. A Dower supply is required to provide sufficient current 

for the motor cois, usually between 0.5A and 1.0A. The leads from the 

motor are plugged into the stepper board. 

Stepper motors are used for many different applications and a good 

source of ones suitable for this application is the motor out of an old disc 

drive. 

55 



5 Stepper Motors 

Power Supply 

Use 

PC 

USB VO 24 

Module 

BIM 11.1111 

im mug Stepper Motor 

Stepper Board 

Figure 5.3 Stepper motor connections to the Stepper board 

Determining the stepper motor code 

Sometimes the code for a stepper motor is unavailable and it is 

necessary to run a short program to find the code and also check the 

leads of the motor. Figure 5.4 shows how the leads of a stepper motor 

are connected. 

Ql 

COM 

02  

03 COM 04 

Figure 5.4 Connections to a stepper motor 

There are normally six leads from the motor. Two are common and are 

connected to ground (OV), the other four are connected to 01, Q2, 03 

and 04. These should be connected to P1, P2, P3 and P4 on the 

stepper board. 

The motor code can be found by applying signals to the motor and 

finding which combination will cause the motor to rotate. Using Visual 

Basic this can be easily achieved by modifying the userout.vbp project 

used in the previous chapter. 

Connect up the Stepper board, stepper motor and power supply as 

shown in Figure 5.3 and start up userout.vbp. 

56 



Stepper Motors 5 

The man modification to the Form is to add a Command button with the 

caption Send. Figure 5.5 shows the appearance of the Form. 

II Stepper motor test 

Output Signal 4 

Semi 

Figure 5.5 The stepper motor test Form 

The Caption on the Form is changed to Stepper motor test and the Max 

property of HScroll1 is changed to 15. 

The code required is: 

Declarations 

This is trie declaration of the USB I/O 24 module addresses and the 

parameter output% which may be found under Private. 

'Declare parameters 

Const REGA = 

Const REGB = REGA + 1 

Const REGC = REGA + 2 

Const CREG = REGA + 3 

Private output% 

Command button - Send 

Only one value at a time is sent to the USB I/O 24 module. 

Private Sub Command1_Click() 

'Send output value to port 

Port0 = PortOut(REGA, output%) 

End Sub 

57 



5 Stepper Motors 

The Form 

This is similar to the userout.frm routine. 

Private Sub Form_Load() 

'Assign control register code 

out% = 128 

'Configure port as output 

Port0 = PortOut(CREG, out%) 

'Read output value from scroll bar 

output% = HScro111.Value 

'Display output value 

Textl.Text = output% 

'Send output value to port 

Port0 = PortOut(REGA, output%) 

End Sub 

Scroll bar 

Again very similar to the userout.frm but without the transmission of the 

data statement. 

Private Sub HScro111_Change() 

'Read output value from scroll bar 

output% = HScrolli.Value 

'Display output value 

Text1.Text = output% 

End Sub 

58 



Stepper Motors 5 

Steptest.vbp Project 

The Form should be saved as steptest.frm, the module io_usb.bas 

added and the project saved as steptest.vbp. The files should be as 

shown in Table 5.3. 

Project Project1 (steptest.vbp) 

Form Form1 (steptest.frm) 

module module1 (io_usb.bas) 

Table 5.3 The steptest.vbp project files 

Using the Steptest program 

When the program is run the user should send separate values to the 

stepper board. A check should be made to see if the rotor of the motor 

moves. It should be possible to find a sequence of values which cause 

the rotor to rotate smoothly. This code sequence can then be used in 

the next experiment. 

Variable speed stepper motor 

This program is designed to simply start a stepper motor and enable the 

user to select a suitable speed of rotation. Initially it is necessary to 

configure all of the pins on the USB I/O 24 module to be outputs and 

then to write the correct code so that the rotor of the stepper motor is 

energised in the appropriate manner. Time has to be allowed for the 

rotor to reach its new position so that there have to be suitable time 

delays between energising each of the coils - this is achieved using 

delay loops. 

In the e>periment described below, the Stepper is connected to Port A 

of the USB I/O 24 module and the motor is connected to Connection 1 

on the Stepper board. 

59 



5 Stepper Motors 

The Form 

Start up Visual Basic and select File and New Project. Place on the 

Form a Horizontal Scroll Bar, a Timer and a Text box as shown in 

Figure 5.7. 

Set the Interval property of Timen 1 to 1000. 

The Max property of the Horizontal Scroll Bar should be set to 100. 

• Stepper Motor Control PICI 

Figure 5.7 Stepper Motor Control Form 

Add Labels above the Scroll bar and the Text box and change the 

Captions to Speed and %Max respectively. Also change the Caption of 

the Form to Stepper Motor Control. 

The Code 

The basis of the control of the stepper motor is via the Timer1 control. 

Each time the Timen 1 control is called the stepper motor is permitted to 

move. The frequency with which this occurs is controlled by the Timen1 

Interval property. It is this property that the user changes with the Scroll 

bar. 

Declarations 

This sets up the USB I/O 24 module registers. 

'Declare parameters 

Const REGA = 

Const REGB = REGA + 1 

Const REGC = REGA + 2 

Const GREG = REGA + 3 

60 



Stepper Motors 5 

The Form 

This sets up the variables for the USB I/O 24 module, reads the Scroll 

bar value and places it in the Text box and switches off Timen 1 This 

ensures the Stepper routine is not called and the stepper motor does 

not move. 

Private Sub Form_Load() 

'Display scroll bar setting 

Text1.Text = HScro111.Value 

'Switch off Timen1 

Timen 1 Enabled = False 

End Sub 

The Scroll Bar 

This enables the user to set the speed of the stepper motor. The setting 

of the scroll bar is read as a percentage of the maximum speed and 

then converted into a value which is placed into the interval property of 

Timen. Timen 1 is then enabled so that the Stepper routine is regularly 

called 

Private Sub HScro111_Change() 

'Display scroll bar setting 

Text1.Text = HScro111.Value 

'Assign scroll bar setting to variable 

scrolltime = HScro111.Value 

'Determine Timen 1 interval setting 

Timer1.1nterval = ( 1000 - scrolltime * 1000 / 100) + 1 

'Switch off Timen 1 when scroll bar setting is zero 

If Timer1.1nterval = 1001 Then 

Timer1.Enabled = False 

Else 

61 



5 Stepper Motors 

Timen Enabled = True 

End If 

End Sub 

The Timer 

This calls the Stepper routine at the set intervals. 

Private Sub Timer1_Timer() 

'Call stepper routine 

Stepper 

End Sub 

The Stepper routine 

Use the Tools/Add Procedure menu to create this routine which will 

appear in the General section of the program. Its function is to configure 

the USB I/O 24 module as an output and then output the relevant code 

to the coils so that they can be energised in the correct order. 

Private Sub Stepper() 

'Assign stepper motor parameters ( Insert code for your motor here) 

N1 = 3: N2 = 6: N3 = 12: N4 = 9 

'Assign control register code 

cregour/o = 128 

'Configure port as output 

Port° = PortOut(CREG, cregout%) 

'Send out stepper motor parameter 

Port() = PortOut(REGA, N1) 

'Delay (alter according to PC speed) 

For I = 1 To 100000: Next I 

62 



Stepper Motors 5 

'Send out stepper motor parameter 

Port0 = PortOut(REGA, N2) 

'Delay (alter according to PC speed) 

For I = 1 To 100000: Next I 

'Send out stepper motor parameter 

Port0 = PortOut(REGA, N3) 

'Delay (alter according to PC speed) 

For I = 1 To 100000: Next I 

'Send out stepper motor parameter 

Port° = PortOut(REGA, N4) 

'Delay (alter according to PC speed) 

For I = 1 To 100000: Next I 

End Sub 

The step.vbp 

The program is saved as step.frm. io_usb.bas is added to the project 

which is then saved as step.vbp. The files should be as shown in Table 

5.4. 

Project Project1 (step.vbp) 

Form Form1 (step.frm) 

module module1 (io_usb.bas) 

Table 5.4 The step.vbp project files 

Running the program 

The stepper motor does not initially move when the program is first run. 

As soon as the scroll bar is moved the motor will rotate and the speed 

will increase as the scroll bar is moved further to the right. If it is taken 

back to the origin the motor will stop. 

63 



5 Stepper Motors 

Exercise 5 

5.1 Modify the program so that the motor can rotate either 

clockwise or counter-clockwise. 

5.2 Add a separate stop/start command button. 

5.3 Use Table 5.2 to modify the program so that coils are 

energised in the half-step mode. 

5.4 Assume that the stepper motor is used to wind a lift-car up 

and down a shaft. 

If the number of revolutions to move the lift-car from one 

floor to the next is 20 and the number of floors including the 

basement is 6, write a program that will enable the lift-car to 

move up or down to any desired floor. 

Modify the program so that: 

a) users on the top and ground floor have priority 

b) an emergency button on the Form stops the lift-car. 

Summary 

A stepper motor is controlled by sending out a series of numbers in a 

repetitive manner. The major problem is getting the correct sequence of 

numbers and you now have a program to deduce those numbers. 

In addition you have developed a program that controls the speed of a 

stepper motor and are aware of the problems that are encountered with 

varying the speed of a motor and ensuring that the rotor moves cleanly 

from one step to the next. 

64 



6 
DAC 

Digital to Analogue Conversion 

A digital to analogue converter is a device which produces an analogue 

output, i.e. a current or voltage, when a digital input is applied to it. 

There are two basic forms that are available. One is the weighted 

resistor DAC and the other is the R-2R ladder DAC. Selecting suitably 

matched resistors makes the construction of the former very difficult and 

so it is not often used in modern DACs. Nevertheless the theory of it 

will be found in many electronics textbooks, e.g. Data Converters by G 

B Clayton. The R-2R ladder DAC is very common and is the basis of the 

device used in the 8DAC board which is used in this chapter. 

Theory of the R-2R ladder DAC 

The R-2R ladder is an arrangement of resistors that produces an 

analogue output which is proportional to the digital bit pattern which is 

applied to it. Figure 6.1 shows how the series resistors R and the shunt 

resistors 2R are connected for a 3-bit DAC. 

(1) 

Ekt 2 

Output 

Ekt 3 

(LSB) 

Bit 1 

(MS8) 

Figure 6.1 R-2R ladder DAC circuit 

65 



6 DAC 

The bottom of each shunt resistor has a single-pole double-throw 

electronic switch which connects the resistor to ground or to the 

reference voltage source. 

The output voltage is given by: 

-(fjj+(—V2)+M 2 4 8 

where I/1= OV or Vref, V2= OV or Vref, V3= OV or Vie 

This design of DAC has many advantages in that only two values of 

resistors are required and these can be trimmed and matched during 

the manufacture of the DAC integrated circuit. In addition the resistors 

are mounted on the same substrate so that all experience identical 

temperature fluctuations. This type of DAC is referred to as a multiplying 

DAC, which means that the output voltage is proportional to the 

reference voltage. Hence if the value of the reference voltage is altered, 

the range of the corresponding output will also change. The 8DAC 

board has an 8-bit resolution so that the 3-rung ladder shown in Figure 

6.1 is extended to 8 rungs. 

Unipolar and Bipolar 

The smallest quanta of output that the DAC can produce depends upon 

the LSB (Least Significant Bit). A factor which affects the size of the 

LSB is whether the analogue range is entirely positive (unipolar) or both 

negative and positive (bipolar). The maximum value of the output is 

denoted by the term FS (Full Scale). In bipolar mode the minimum value 

is referred to as -FS. 

In the case of the unipolar 8-bit DAC with a nominal 5.12V output, the 

corresponding digital inputs and analogue outputs are given in Table 

6.1. 

66 



DAC 6 

Binary Input Analogue Output 

+FS - 1LSB 1111 1111 +5.10V 

1 LSB 0000 0001 +0.02V 

0 0000 0000 OV 

Table 6.1 Unipolar 8-bit DAC output 

If the output range is bipolar with a nominal range of ±2.56V, the digital 

inputs ana corresponaing analogue outputs are snown in i acme o.z. 

Binary Input Analogue Output 

+FS - 1 LSB 1111 1111 +2.54V 

1 LSB 1000 0001 +0.02V 

0 1000 0000 OV 

-1LSB 0111 1111 -0.02V 

-FS 0000 0000 -2.56V 

Table 6.2 Bipolar 8-bit DAC output 

If the Tables 6.1 and 6.2 are compared it can be seen that the extent of 

the voltage ranges are identical, though the bipolar range is centred 

about 0 \./ and the maximum positive voltage is half that of the unipolar 

value. Also the leading or most significant bit (MSB) in the bipolar mode 

is used to indicate the polarity of the analogue signal, i.e. 0 denotes 

negative, 1 is positive. 

Using t.ne 8DAC board 

The USB I/O 24 module provides two ports to which the DAC board 

may be connected. Each port consists of 8 data lines which can be set 

up as either inputs or outputs plus two control lines which are used as 

interrupt or pulse lines. These ports must be configured so that digital 

data can be transmitted to the 8DAC board. The digital data is 

latched into the DAC so that the analogue output will remain constant 

even when the DAC is not being addressed by the PC. 

The program steps are as follows: 

67 



6 DAC 

1. Configure the port Sets the data lines as outputs and 

initialises the control lines. 

2. Control line 2 low Sets the WR line low so that the DAC 

responds to data activity on the data bus. 

3. Apply data to the port Takes the data and places it at the input 

of the DAC. 

4. Control line 2 high WR goes high to latch data into DAC. 

Configuring the port 

Two registers are used to set up the port. 

a) Input/output register 

b) Control register 

In addition control line 2 is connected to the WR line of the DAC. This 

line is taken low to access the DAC and high to latch the data. 

Features of the 8DAC board 

The 8DAC is a voltage output 8-bit digital to analogue converter (DAC) 

board based upon the AD7524 8-bit multiplying digital to analogue 

converter (Figure 6.2). 

Figure 6.2 The 8DAC board 

68 



DAC 6 

The board connects to the USB I/O 24 module which is attached to the 

USB port of the PC. The 8DAC board can be used in either the unipolar 

(positive only output) or bipolar mode (positive and negative output) with 

a resolution of 255 steps between the maximum and minimum voltage 

outputs. The board is powered from the internal power supply of the PC. 

It is possible to obtain a full-scale range (FSR) of the voltage output up 

to a maximum of +5.12V in the unipolar mode. The selection of the DAC 

polarity mode is made using the on-board switch. 

The Program 

The configuration and output of data to the 8DAC can be reduced to two 

statements which can be easily handled by Visual Basic through the 

control register and Port A of the USB I/O 24 module. 

Start up Visual Basic and select New Project from the File menu. 

The Form 

Figure 6.3 shows the layout of the DAC Form. 

Figure 6.3 The DAC Form 

Place on the Form a Frame with a caption Polarity, a Horizontal Scroll 

bar and two Text boxes. Place two Option buttons into the Polarity 

frame. Insert three Label boxes with captions Output Signal, Decimal 

and Voltage N. Also add a Command Button with a caption of Exit. 

In the Properties window of the Option1 button, change Visible to True. 

This ensures that the Unipolar option appears active when the program 

starts up. 

The Max property of the Scroll bar should be changed to 255. 

69 



6 DAC 

The Code 

The code can now be assigned to the controls. 

The Option Buttons 

These are used in conjunction with the 8DAC board to select whether 

the output from the DAC should be unipolar or bipolar. The current 

setting of the scroll bar is converted into the appropriate Voltage scale 

and the DAC will follow the change. 

Private Sub Option1_Clicko 

'Set Polarity flag to Unipolar 

Polarity = 

'Goto display routine 

display 

End Sub 

Private Sub Option2_Click0 

'Set Polarity flag to Bipolar 

Polarity = 1 

'Goto display routine 

display 

End Sub 

The Scroll Bar 

This is used to change the value of the DAC output. The setting of the 

scroll bar is displayed in Text box 1. 

Private Sub HScro111_Change0 

'assign scroll bar setting to variable 

inval = HScro111.Value 

70 



DAC 6 

'Output setting to DAC 

Port° = PortOut(REGA, inval) 

'Goto display routine 

display 

End Sub 

The Form 

The interface board is configured as output for Ports A and B. The DAC 

is set to the current value of the scroll bar. This value in decimal form 

appears in Text box 1 and the voltage notation is in Text box 2. 

Private Sub Form_Load() 

'Select Port A as output 

out% = 128 

'Configure USB I/0 24 module 

Port° = PortOut(CREG, out%) 

'Zero DAC output setting 

inval = 

'set Polarity to Unipolar 

Polarity = 

'Goto Display 

display 

End Sub 

The Display Procedure 

This takes the setting of the scroll bar and converts it into the equivalent 

voltage based upon the polarity set on the DAC. The procedure also 

enables the DAC on Port A of the USB I/O 24 module, outputs a value 

to the DAC and then latches the data into the DAC. 

71 



6 DAC 

The procedure can be created by typing in Private Sub Display O upon 

which the procedure is then automatically created. Alternatively the 

Tools/Add Procedure menus can be used and the Private option 

selected. 

Private Sub display() 

'Select equivalent voltage settings 

If Polarity = 0 Then 

Invalvolt = (5.12 * inval) / 256 

Else 

Invalvolt = (inval - 128) * 2.56 / 128 

End If 

'Enable DAC for new data 

Port° = PortOut(REGC, 0) 

'Send output scroll bar setting to DAC 

Port° = PortOut(REGA, inval) 

'Latch data into DAC 

Port° = PortOut(REGC, 16) 

'Display scroll bar setting 

Text1.Text = Str$(inval) 

'Display equivalent voltage setting 

Text2.Text = Format$(1nvalvolt, "et.#/#") 

End Sub 

Command button 

On exiting from the program, Form 1 is unloaded and the program 

terminated. 

Private Sub Command1_Click() 

'Remove program and close 

72 



DAC 6 

Unload Form1 

End 

End Sub 

Declarations 

The Form is completed by declaring a list of the variables used in the 

program and these are placed in the General section. 

'Declare parameters 

Const REGA = 

Const REGB = REGA + 1 

Const REGC = REGA + 2 

Const CREG = REGA + 3 

Private out% 

Private Polarity As Integer 

Private inval As Integer 

Private Invalvolt As Double 

The Form is saved as 8dac.frm. 

Completing the program 

The only part of the program left to complete is accessing the DLL 

required for the Port0 statement. Here the modularity of Visual Basic is 

demonstrated as the project only has to add the file io_usb.bas which 

was introduced in Chapter 3. The project is saved as 8dac.vbp and the 

files should be as shown in Table 6.3. 

Project Project1 (8dac.vbp) 

Form Forml (8dac.frm) 

module module1 (io_usb.bas) 

Table 6.3 The 8dac.vbp project files 

73 



6 DAC 

Running the program 

8DAC board is connected to Port A of the USB 24 I/O module using the 

20-way ribbon connector. The output of the DAC should be connected 

to a digital multimeter set on Volts as shown in Figure 6.4. 

PC 

8DAC board 

Figure 6.4 The 8DAC test circuit 

An output is obtained from the DAC when the program is run. As the 

scroll bar setting is changed the voltage output will change. Check the 

polarity setting on the 8DAC board and also on the Form. Figure 6.5 

illustrates the Form when the program is running. 

Figure 6.5 The 8DAC Form in operation 

Exercise 6 

6.1 Include in your program a method of enabling the voltage to 

be ramped up and down. 

The scroll bar can be used to select the rate of the ramp and 

another scroll bar can be used to select the percentage of 

the ramp to be used. 

74 



DAC 6 

Option buttons can be used to select rise or fall of the ramp. 

6.2 Modify the original program to produce a sinusoidal output of 

varying rates and amplitudes. 

Use a storage oscilloscope to display the outputs. 

6.3 Repeat Exercise 6.2 for a square wave. 

Summary 

The DAC program is an extension of the programs used for the User 

Port Tester and the stepper motor. The exercises illustrate the possible 

range of applications the DACs possess. Their major limitations are the 

voltage ranges available and the speed of response of the output signal. 

The voltage range can be easily changed by suitable choice of output 

amplifiers. To improve the speed of response of the output signal will 

mean programming in C and creating a DLL to be called from the Visual 

Basic program. This is beyond the scope of this book but is certainly not 

a difficult task for an experienced C programmer. 

75 



6 DAC 

76 



7 
8-bit ADC 

8-bit Analogue to Digital Converter 

There are several methods of converting analogue signals into digital 

form. These include flash encoders, integrating conversion, successive 

approximation conversion and sigma-delta conversion. 

The flash encoder performs very fast conversions, and it is used in 

transient recorders and video cameras but tends to be very expensive. 

The design of the sigma-delta converter was proposed in the 1960s but 

it had tc wait until the development of large-scale integration on silicon 

chips in the 1980s before it went into mass production. Its cost is now 

reasonable because of their extensive use in the domestic market and 

they are available as 16-, 20- and 24-bit versions. 

In instrumentation the two most common Analogue to Digital Converters 

(ADCs) are the integrating and successive approximation converters. 

The integrating converter produces very accurate noisefree digital 

signals but tends to be relatively slow in performing the process. 

A compromise in speed, accuracy and cost of all the currently available 

converters is the successive approximation analogue to digital 

converter. It is a good general purpose device which has a wide range 

of applications in the laboratory. 

The 8ADC board considered in this chapter is based on an 8-bit 

successive approximation converter which can be used in either the 

unipolar or bipolar mode of operation 

Unipolar and Bipolar 

An ADC encodes an analogue signal into a digital number. Each digital 

number encompasses a range or quanta of analogue voltages. Like the 

DAC introduced in Chapter 6 the smallest quanta of input that the ADC 

77 



7 8-bit ADC 

can produce depends upon the LSB (Least Significant Bit). A factor 

which affects the size of the LSB is whether the analogue range is 

entirely positive or entirely negative (unipolar) or both negative and 

positive (bipolar). 

In the case of an 8-bit ADC with a nominal Full Scale (FS) of 5.12V 

input the corresponding digital outputs are given in Table 7.1. 

Binary Output Analogue Input 

+FS - 1 LSB 1111 1111 ' +5.10V 

1 LSB 0000 0001 +0.02V 

0 0000 0000 
, 

OV 

Table 7.1 Unipolar 8-bit ADC 

FS - Full scale, i.e. Maximum positive or negative analogue input 

LSB - Least Significant Bit, i.e. smallest incremental digital change 

If the input range is bipolar and extends from —5.12V to +5.08V the 

digital outputs are shown in Table 7.2. 

Binary Output Analogue Input 

+FS - 1 LSB 1111 1111 +5.08V 

1 LSB 1000 0001 +0.04V 

0 1000 0000 OV 

-1LSB 0111 1111 —0.04V 

- FS 0000 0000 —5.12V 

Table 7.2 Bipolar 8-bit ADC 

If Tables 7.1 and 7.2 are compared it can be seen that the MSB is used 

as a sign bit for bipolar operation, i.e. 0 denotes negative, 1 is positive. 

78 _ 



8-bit ADC 7 

Theory of Operation 

To actually program the ADCs it is also useful to understand the manner 

in which they operate. 

The 8ADC board uses the ADC0804 ADC which is a successive 

approximation device. Figure 7.1 shows a block diagram of the essential 

features of such an ADC. 

Clock 

Analogue 
Compagele 

RD 
o  

GND 
o  
v, 
o  
(+5V) 

Interface 

Control Logic 

I I 
Successive 
Approximation 
Register 

8 

 (  8-bit DAC 

3 state 
Buffers 

25V 
Reference 

Figure 7.1 A successive approximation ADC 

VVR 
Convert 

 o 

 o 

BUSY 

 0 D137 

 0 DE10' 

 0  V„, 
IN 

OUT 

Basically the input voltage is compared to a reference voltage which is 

produced by the internal DAC. The successive approximation register 

generates a digital output at each clock pulse and controls the DAC 

outpin which will eventually equal the input voltage. The use of a 

comparator enables the digital output of the successive approximation 

register to either increase or decrease in response to the DAC output 

being either greater or smaller than the input voltage. Figure 7.2 shows 

the signals generated within the ADC at each clock pulse. 

When a low level signal is applied to both the CS (Chip Select) and WR 

(Write) line of the ADC, the ADC is put into a hold state with the BUSY 

79 



7 8-bit ADC 

line low and the MSB of the ADC set to logic 1. A positive transition of 

either the CS or WR line at a falling edge of a clock pulse starts the 

successive approximation process. A decision is made whether or not 

the MSB remains at logic 1 or drops to logic 0 depending upon whether 

the input voltage is greater or smaller than the DAC output. At the next 

clock pulse the next bit is set and on the falling edge of a clock pulse 

this bit is left at logic 1 or changed to logic 0 depending again on the 

relative magnitude of the input signal with respect to the DAC output. 

The process continues and is completed when all 8 bits have made a 

decision and the BUSY line then goes high. The process takes a 

maximum of 8 clock cycles even though the input voltage and DAC 

output may have balanced earlier. 

Clock r— 

CS or WR 

BUSY 

MSB 1 0 

2 1 

4 !¡!¡i  o 

1 

5 

6 1 

1 

LSB 8 

1LJ2LJ3LJ4LJ5LJ6LJ7L.J8LJ9 

Figure 7.2 Successive approximation ADC waveforms 

The 8ADC board 

The 8ADC board is based upon an AD0804 8-bit successive 

approximation analogue to digital converter. This device is 

manufactured by several companies including National Semiconductors, 

Intersil and Philips. In the free running state it has a quoted conversion 

rate of 13690 conversions per second, and it may be used in either 

80 



8-bit ADC 7 

the unipolar (OV to +5V) or bipolar (-5V to +5V) input mode. The 

accuracy of the device is ± 1LSB. 

The ADC0804 has an internal clock, and conversions can be initiated by 

having both CS and WR inputs low and then allowing one to go high. 

On tl-e 8ADC board the CS line is used to start conversions and the 

only other connections are +5V, OV, and 8 data lines. These are all 

provided by the USB I/O 24 module. The end of conversion signal is not 

monitored. 

Use of the 8ADC board 

A slide switch on the 8ADC board (Figure 7.3) enables it to be used in 

either unipolar or bipolar mode. 

o 

o 
GD 

I I 1 II I III 
Milu  • 8ADC 

Figure 7.3 The 8ADC board 

In position B (Bipolar position) input voltages in the range —5.12V to 

+5.08V can be used and the code used is offset binary. In position U 

(Unipolar position) input voltages in the range OV to +5.10V can be used 

and these will be converted into a binary code. Full constructional 

details of the 8ADC board are supplied in the Appendix. 

Input voltages are applied to the 8ADC using the two 4mm terminals 

and the board is connected to the USB I/O 24 module using the 20-way 

ribbon cable (Figure 7.4). 

81 



7 8-bit ADC 

Power Supply 

0 0 _ 

+0 

DVM 

 o + 
 0 ADC 

USB VO 21 

Module 

USB 
Pod 

PC 

Figure 7.4 Connections for using an ADC with the PC 

Program 

Start up Visual Basic, select New Project and display Form1 on the 

screen. 

In the Properties window for Form1 change Caption to 8ADC. 

Figure 7.5 shows the arrangement of Form1. 

EMDC 

Nest, 

e Weak. 

SopoIrd 
Start bet 

Figure 7.5 Layout of Form1 

In the top left-hand corner place a Frame and change its Caption in the 

Properties window to Polarity. 

Within this Frame place two Option Buttons, one above the other as 

shown. 

Make the Captions for these two Buttons Unipolar and Bipolar. The 

Value property of the Unipolar Button is made True. 

82 



8-bit ADC 7 

Alongside the Frame place two Command Buttons which have the 

Captions Start and Exit. 

Below the Command Button place two Labels with Captions Decimal 

and VoltageN. 

Two Text Boxes are placed below the Labels. The Text in the Text 

Boxes should be cleared with the spacebar. 

The last control to be placed on the Form is the Timer which should be 

placed at the bottom left-hand corner. The Interval and Enabled 

properties should be set to 500 and False respectively. 

Inserting Code 

Initially code should be attached to the Form and buttons. 

The Form 

This initiates the Unipolar option button. 

Private Sub Form_Load() 

'Initialise Polarity 

Polarity = 

End Sub 

The Option Buttons 

Each Option Button is assigned a state for Polarity which is used to 

determine the voltage equivalent of the decimal signal read by the USB 

I/O 24 module. 

Private Sub Optionl_Click() 

'Set Polarity flag to Unipolar 

Polarity = 

End Sub 

_ 83 



7 8-bit ADC 

Private Sub Option2_Clicko 

'Set Polarity flag to Bipolar 

Polarity = 1 

End Sub 

The Timer Control 

This calls the Capture routine which initiates the 8ADC board and the 

Display routine which puts the Decimal and Voltage readings on to the 

screen. 

Private Sub Timer1_Timer0 

'Goto Capture 

Capture 

'Goto Display 

Display 

End Sub 

The Command Buttons 

The left-hand button is used to Start and Stop the reading of the ADC. 

This it does by enabling and disabling the Timer control. The caption of 

the button also changes. 

Private Sub Command1_Click0 

'Toggle Timen1 

Timen Enabled = Not Timen . Enabled 

'Toggle Command1 caption 

If Command1.Caption = "Start" Then 

Command1.Caption = "Stop" 

Else 

84 



8-bit ADC 7 

Command1.Caption = "Start" 

End If 

End Sub 

Private Sub Command2_Click0 

'Remove program and close 

Unload Form1 

End 

End Sub 

Declarations 

All of the parameters used in the program have to be declared and this 

is done under Declarations. This will include the addresses of the 

registers for Ports A, B and C and the control register. 

'Declare parameters 

Const REGA = 

Const REGB = REGA + 1 

Const REGC = REGA + 2 

Const GREG = REGA + 3 

Private out% 

Private Polarity As Integer 

Private inval As Integer 

Private Invalvolt As Double 

The Procedures 

There are two procedures which appear in the general part of the 

program. These can be created by typing in Private Sub Capture() such 

that the procedure is then created or by using the Tools/Add 

Procedure menus. 

85 



7 8-bit ADC 

Capture initiates the USB I/O 24 module. It has been written so that it 

can be adapted for use with either Port A or B. 

Port A will be used. 

The process for activitating the 8ADC is as follows: 

1. Send start conversion pulse by making CS high (Control line 

2 low to high). 

2. After a delay, take CS low to permit data latch to be read 

(Control line 2 low). 

3. Read data. 

This is encoded in the following way: 

Private Sub Capture() 

'Switch off timer 

Timer1.Enabled = False 

'Configure USB I/O 24 module 

out% = 147 

Port0 = PortOut(CREG, out%) 

'Control line 2 high 

Port0 = PortOut(REGC, 16) 

'Delay 

For k = 1 To 1000: Next k 

'Control line 2 low 

Port0 = PortOut(REGC, 0) 

'Read ADC 

inval = PortIn(REGA) 

'Switch on timer 

Timer1.Enabled = True 

'Check for any keyboard interrupts 

86 



8-bit ADC 7 

DoEvents 

End Sub 

Doevents ensures that the keyboard can be used to interrupt the 

program at any time. 

The Display function checks the state of the Polarity flag and 

determines the voltage reading in either the Unipolar or Bipolar mode. It 

also places the ADC readings in the appropriate text boxes. 

Private Sub Display() 

'Select equivalent voltage settings 

If Polarity = 0 Then 

invalvolt = (5.10 * inval) / 255 

Else 

invalvolt = (inval - 128)* 5.12/ 128 

End If 

'Display ADC decimal reading 

Text1.Text = Str$(inval) 

'Display ADC voltage reading 

Text2.Text = Format$(invalvolt, "itet/e) 

End Sub 

The file should be saved as 8adc frm. The file io_usb.bas should be 

added so that the Project window contains the following information 

(Table 7.3). 

Project Project1 (8adc.vbp) 

Form Form1 (8adc.frm) 

module module1 (io_usb.bas) 

Table 7.3 The 8adc.vbp project files 

87 



7 8-bit ADC 

The project should be saved as 8adc.vbp. 

Equipment 

The equipment required to use the 8ADC consists of an 8ADC board, 

laboratory power supply (0-30V, 2A) and a digital voltmeter (DVM). 

The equipment is connected to the PC as shown in Figure 7.4. 

The 8ADC board should be connected to the USB I/O 24 module by the 

20-way ribbon cable. 

Running the program 

Set the switch on the 8ADC board to Unipolar and run the program. 

Switch on the power supply, vary the input voltage applied to the 8ADC 

board and observe the change in readings on the screen. Figure 7.6 

shows some typical readings. 

is UDC 

Potanty 

Unpoird 

Bipcdar 
E,À 

Decimal Voltage N 

1173 [3 46 

Figure 7.6 Readings from the 8ADC 

Exercise 7 

7.1 Test the program with the 8ADC switch set to both Unipolar 

and Bipolar modes. 

You will have to reverse the connections from the power 

supply to obtain negative voltages. 

7. 2 Modify the program so that it either stops when 500 readings 

have been taken or when any key is pressed on the 

keyboard. 

88_ 



8-bit ADC 7 

7. 3 Use a CMDialog control to add Save, SaveAs and Print 

dialog boxes to the program. 

7.4 Adapt the program so that the voltages are captured at 1 

second intervals and displayed graphically. 

7.5 Check the frequency range of the 8ADC by applying a 

sinusoidal signal to the 8ADC and observing the waveform 

on the screen. 

What happens when the switch is set 

a) in the unipolar position, 

b) in the bipolar position? 

7.6 A simple signal processing technique is to take a number of 

readings, e.g 16, and average them before displaying them. 

This can be achieved quite simply by modifying the Timer 

routine so that each time a reading is taken it is added to a 

running total. When 16 readings have been taken an 

average can be taken and displayed. The counter and the 

running total are then zeroed and the process 

recommenced. 

The Timer routine will require the following modification: 

Private Sub Timerl_Timer0 

'Recover previous counter value 

Static j 

'Goto Capture 

Capture 

'Summate ADC readings 

adcsum = adcsum + inval 

'Increment adc reading counter 

89 



7 8-bit ADC 

j = + 1 

'Check for 16 ADC readings 

If j > 16 Then 

'Average adc readings 

inval = Int(adcsum / 16) 

'Reset counter and ADC sum 

j = 1 

adcsum = 

'Goto Display 

Display 

End If 

End Sub 

Static j ensures that the counter value from the previous 

pass through the routine is retained. 

Modify the original 8adc.vbp program so that this signal 

averaging can be used and remember that Declarations and 

Load will require some changes. 

7. 7 Connect a thermistor and a 1k resistor in series to a power 

supply. Maintain a constant voltage of 5V across the two 

components and monitor the p.d. developed across the 

thermistor using a DVM. Crocodile clips are ideal for making 

the connections. 

Heat the thermistor, e.g by bringing it close to a lamp bulb 

and observe the change in voltage on the DVM. 

7. 8 When the system is working correctly, replace the DVM with 

the 8ADC and plot a cooling curve of the thermistor. 

90 _ 



8-bit ADC 7 

Sum mary 

The 8ADC board has many general-purpose applications and will find 

numerous applications in project work. Its major disadvantage is that it 

is sensitive to noise but this can be turned to its advantage if it is used 

to experiment with different signal processing techniques. 

The Visual Basic programs do not reveal the full capabilities of the 

8ADC. If the reader has experience of C programming it may be 

advantageous to translate the Capture sub-routine into C, compile as a 

DLL and then incorporate the resulting DLL into the Visual Basic display 

Form. This procedure is beyond the scope of this book but it can 

provide an excellent program for reasonably fast data acquisition. 

91 



7 8-bit ADC 

92 



8 
12-bit ADC 

12-bit Analogue to Digital Conversion 

The 8-bit successive approximation ADC is very good for performing 

reasonably fast analogue to digital conversion but it is very susceptible 

to noise and spurious signals. Integrating ADCs are slower but their 

design ensures that noise is reduced significantly. The 12ADC board is 

based upon a dual-ramp integrating ADC, which uses the same timing 

system to measure an unknown voltage which is then compared with a 

reference voltage. This makes the 12ADC board ideal for use with 

thermocouples and strain gauges in bridge circuits where accuracy of 

the reading is far more important than speed of data acquisition. 

12ADC resolution 

The dual-ramp integrating ADC chip used in the 12ADC board has a 

quite different mode of presenting its digital data compared to that of the 

8ADC board. The 12ADC board data output has a sign bit as well as the 

data bits. 

In the case of a 12-bit ADC this means that there are 4095 quanta in the 

positive sense and 4095 quanta in the negative sense. The device is 

bipolar and may be regarded as having a 12-bit resolution in both 

senses. If the ADC has an LSB equivalent voltage of + 1mV, the inputs 

for such an ADC can range from —4.095V to +4.095V. The 

corresponding binary outputs are given in Table 8.1. 

93 



8 12-bit ADC 

Sign bit Binary Output Analogue Input 

+FS 1 1111 1111 1111 +4.095V 

+1 LSB 1 0000 0000 0001 +0.001V 

0 1 0000 0000 0000 +0.000V 

-1 LSB 0 0000 0000 0001 —0.001V 

- -FS 0 1111 1111 1111 —4.095V 

Table 8.1 12-bit ADC with sign bit 

Theory of Operation of the dual-ramp integrating ADC 

The 12ADC board is built around the ICL7109CPL which is a dual-ramp 

integrating ADC. The principle of operation of a dual-ramp ADC is 

dependent upon a capacitor which is charged up by the input voltage 

and discharged under the control of a reference voltage. The relative 

times of charge and discharge determine the amount by which the 

counter is incremented by a number of clock pulses. Figure 8.1 shows a 

schematic of the circuit. 

- - ,„ +v,., 

S1 (1\ S2c:\ e-

0)1)— 
S4 (Reset) 

111-111-

Control 
Logic 

Clock 

7/77 

Figure 8.1 A dual-ramp integrating ADC 

Counter 

94 



12-bit ADC 8 

Initially the input voltage is connected to the integrator in which the 

capacitor C is charged up. This causes the comparator to keep the gate 

open enabling clock pulses to be applied to the counter. The counter 

increments until it is fully loaded. It then clocks over into the unloaded 

state and transmits a pulse to the switch control. This disconnects the 

input voltage and connects the reference voltage to the integrator. The 

reference voltage is negative and causes the capacitor C to discharge. 

The gate remains open while the capacitor is discharged until the 

integrator output is zero and about to become negative. The gate is 

closed and no more pulses reach the counter. The number stored in the 

counter is proportional to the input voltage. 

This may be proved as follows: 

Figure 8.2 shows the voltage output of the integrator as the capacitor 

charges and discharges. The slopes are linear since the time constant 

RC is relatively large. 

Voltage t 

V, 7,\ 

t t Time 

Figure 8.2 Voltage output of the integrator 

If the time taken for the capacitor to charge up under control of the 

integrator is t,, the capacitor voltage is Vo(t1). V, is the input voltage. 

V0(t1) = of = -c—R-

The capacitor now discharges from Vo(ti) in the time t2. The integrator 

output voltage Vo(t2) is given by: 

Vn„t 2  

CR 

95 



8 12-bit ADC 

where \ire( is the reference voltage. 

Since Vo(ti) = Vo(t2) - (see Figure 8.2), 

yt, Vret2  
CR - CR 

and Val = Vreft2. 

Hence V, - Vrteft2 

If the clock is producing pulses at a regular rate of n per second 

N1 = nt1 and N2 = nt2-

V N 
Therefore V -  ref 2 

1 N. 

Vrof I Ni may be replaced by a constant K since Vref is a constant and 

N1 is the value of the loaded counter. 

Therefore V, = KN2. 

i.e. V, N2 

If the input signal is negative, the capacitor will charge up in the 

negative direction. This will be sensed by the control logic which will 

switch in a positive reference voltage causing the capacitor to charge up 

in the positive direction. The graph in Figure 8.2 will be inverted. The net 

result will be same, with the unknown voltage V, being proportional to 

the counter reading, N2 but with the sign bit set for negative. 

The main disadvantage of the dual-ramp integrating ADC is that it is 

relatively slow acquiring this charge and then discharging the capacitor. 

The major advantage is that it integrates the input signal and removes 

any spurious noise signals that may occur. 

96 



12-bit ADC 8 

Dual-Ramp Integrating Analogue to Digital Conversion 

There are many occasions in the laboratory when it is necessary to 

measure small voltages, e.g. microvolts. A dual-ramp integrating 

analogue to digital converter is ideal for such purposes since it can 

produce results with a high degree of reproducibility and accuracy. The 

major disadvantage of such ADCs is that they tend to be slow, i.e. 

conversion times in the order of tens of milliseconds but this is not too 

problematic in the laboratory environment where many sensors and 

transducers require long (in computer speed terms) times to acquire 

their readings. 

The12ADC board is a 12-bit analogue to digital converter which can be 

used in the range of ±4.095V. It may be used with the USB I/O 24 

module fitted to a PC. The board is based upon an ICL7109CPL device 

which has an auto zero facility and outputs its digital data in a high and 

low byte format. The high byte contains bits signifying polarity, 

overrange and the 4 most significant bits of digital data and the low byte 

has the 8 remaining bits of data. Figure 8.3 shows the appearance of 

the 12ADC board. 

I P 

g• •IV  I 

Figure 8.3 12ADC board layout 

In order to make measurements at lower voltages it is necessary to 

insert a pre-amplifier between the signal source, i.e. the sensor or 

transducer, and the 12ADC board. The Variable Gain Programmable 

Amplifier (VGPA) board serves this particular purpose (Figure 8.4). 

97 



8 12-bit ADC 

The VGPA board uses an AD524 precision instrumentation amplifier 

and increases the sensitivity of the 12-bit ADC board. The VGPA board 

contains a pre-amplifier input stage which has a gain that can be set to 

x1, x10, x100 and x1000. This gives the following voltage ranges: 

x1 —4.095V to +4.095V 

x10 —409.5mV to +409.5mV 

x100 —40.95mV to +40.95mV 

x1000 —4.095mV to +4.095mV 

u GND -VP 

•VP 

II 

fflM3 

o 

Figure 8.4 The VGPA board 

Method of obtaining the data 

A feature of the 12ADC board is that it has an 8-bit digital output yet it is 

capable of producing a resolution of 12 bits accompanied by a sign and 

overrange bit. This is achieved by introducing some additional circuitry 

on the board which enables the lowest 8 bits, i.e. the low byte, to be 

read separately from the highest 8 bits, i.e. the high byte. (2 of these 

bits are subsequently discarded). 

Figure 8.5 shows a schematic of the input circuitry that is used to 

access the high and low data bytes. This consists of a D-type flip-flop 

which is toggled by a control signal pulse. 

98 



12-bit ADC 8 

CA.! 

Figure 8.5 Circuit used to access high and low bytes 

The data is accessed by the PC by transmitting a control signal on 

Control line 2 (CA2 or CB2) of the interface board to read the high byte 

followed by another control signal on Control line 2 to read the low byte. 

The problem that arises is that the system has to be initialised so that 

the bytes are read in the correct order. This check is performed by 

using Control line 1 (CA1 or CB1) to indicate when the high byte is 

ready to be read. The sequence of events using Port A is indicated in 

Figure 8.6. 

Time 

Time 

Time 

Time 

Figure 8.6 Sequence to obtain high and low bytes 

Program 

Start up Visual Basic, select New Project and display Form1 on the 

screen. 

In the Properties window for Form1 change Caption to 12ADC. 

_ 99 



8 12-bit ADC 

Figure 8.7 shows the arrangement of Forml. 

In the top left-hand corner place a Frame and change its Caption in the 

Properties window to Gain. 

Within this Frame place four Option Buttons one above the other as 

shown. 

I 7ADC PIRE3 

Slut 

Eldt 

Polanty 

Hvh 

Low 

Decimal 

VoeW r 

Figure 8.7 Layout of Forml 

Make the Captions for these four Buttons x/, x / 0, x/00 and x/000. The 

Value property of the xl is made True. 

Place alongside the Frame two Command Buttons which have the 

Captions Start and Exit as shown in Figure 8.7. 

Place five Labels with Captions Polarity, High, Low, Decimal and 

VoltageN on to the Form. 

Five Text Boxes are placed alongside the Labels. The Text in the Text 

Boxes should be cleared with the spacebar. 

A further Label is placed adjacent to the second Text Box down (see 

Figure 8.7) and its Caption should be changed to x256. 

The last control to be placed on the Form is the Timer which should be 

placed at the bottom left-hand corner. The Interval and Enabled 

properties should be set to 500 and False respectively 

Inserting Code 

Initially code should be attached to the Form and buttons. 

100 



12-bit ADC 8 

The Form 

This initiates the Gain option button and ensures that the displayed 

voltages are set for unity gain. 

Private Sub Form_LoadO 

'Initialise Gain variable 

Gain = 1000 

End Sub 

The Option Buttons 

Each Option Button is assigned a state for the Gain which is used to 

determine the voltage equivalent of the decimal signal read by the USB 

I/O 24 module. With each Gain there is a setting for the label associated 

with the Voltage display. 

Private Sub Option1_Clicko 

'Set Gain 

Labe15.Caption = "Voltage N" 

Gain = 1000 

End Sub 

Private Sub Option2_Click0 

'Set Gain 

Labe15.Caption = "Voltage /mV" 

Gain = 10 

End Sub 

Private Sub Option3_Clicko 

'Set Gain 

Labe15.Caption = "Voltage /mV" 

Gain = 100 

101 



8 12-bit ADC 

End Sub 

Private Sub Option4_Click0 

'Set Gain 

Labe15.Caption = "Voltage /mV" 

Gain = 1000 

End Sub 

The Timer Control 

This calls the Capture routine which initiates the 12ADC board and the 

Display routine which puts the Decimal and Voltage readings on to the 

screen. 

Private Sub Timer1_Timer0 

'Goto Capture 

Capture 

'Goto Display 

Display 

End Sub 

The Command Buttons 

The left-hand button is used to Start and Stop the reading of the ADC. 

This it does by enabling and disabling the Timer control. The Caption of 

the button also changes. 

Private Sub Command1_Click0 

'Toggle Timen1 

Timen Enabled = Not Timer1.Enabled 

'Toggle Command1 caption 

If Command1.Caption = "Start" Then 

102 



12-bit ADC 8 

Command1.Caption = "Stop" 

Else 

Command 1 . Caption = "Start" 

End If 

End Sub 

The right-hand button, i.e. the Exit button, unloads the Form prior to 

closing down the system. 

Private Sub Command2_Click0 

'Remove program and close 

Unload Form1 

End 

End Sub 

Declarations 

All of the parameters used in the program have to be declared and this 

is done under Declarations. 

'Declare parameters 

Const REGA = 

Const REGB = REGA + 1 

Const REGC = REGA + 2 

Const CREG = REGA + 3 

Private out% 

Private Gain As Single 

Private HiX As Integer 

Private LoX As Integer 

Private inval As Integer 

103 



8 12-bit ADC 

Private Invalvolt As Double 

The Procedures 

There are two procedures which appear in the general part of the 

program. These can be created by typing in Private Sub Capture() when 

the procedure is then created or by using the Tools/Add Procedure 

menus 

Capture puts into practice the sequence of events that are shown in 

Figure 8.6. These are: 

1. Transmit pulse(s) on Control line 2 until Control line 1 goes high. 

2. Transmit pulse on Control line 2 and read high (Hi) byte. 

3. Transmit pulse on Control line 2 and read low (Lo) byte. 

4. Print (Hi byte 256) + (Lo byte). 

5. Repeat from 1. 

The routine first configures the USB I/O 24 module, it then ensures that 

the 12ADC is set up to output the high and low bytes in the correct order 

and then it reads the ADC. The routine has been written so that it can 

be adapted for use with either Port A or B. 

Port A will be used. 

Private Sub Capture() 

'Initialise High and Low bytes array 

Static X(2) As Integer 

'Configure USB I/O 24 module 

out% = 147 

Port° = PortOut(CREG, out%) 

'Initialise 12ADC board 

Do 

'Control line 2 low 

Port0 = PortOut(REGC, 0) 

104 



12-bit ADC 8 

'Control line 2 high 

Port° = PortOut(REGC, 16) 

'Control line 2 low 

Port° = PortOut(REGC, 0) 

'Check for control line 1 

z% = PortIn(REGC) And 1 

Loop While z% = 0 

For I = 1 To 2 

'Control line 2 high 

Port° = PortOut(REGC, 16) 

'Read ADC 

X(I) = PortIn(REGA) 

'Control line 2 low 

Port° = PortOut(REGC, 0) 

Next I 

'Load High byte 

HiX = X(1) 

'Load Low byte 

LoX = X(2) 

End Sub 

The Display function has the task of stripping the overrange and sign bit 

from the high byte, and it also checks the state of the Gain flag and 

determines the voltage reading. It places Polarity, the values of the high 

and low bytes and both of the ADC readings in the appropriate text 

boxes. 

Private Sub Display() 

'Determine polarity 

105 



8 12-bit ADC 

Polarity = (HiX And &H20) / 32 

Inval = (2 * Polarity - 1)* ((HiX And &HF) " 256 + LOX) 

If Polarity = 1 Then 

Text1.Text = 

Else 

Text1.Text = 

End If 

'Display High byte 

Text2.Text = (HiX And &HF) 

'Display Low byte 

Text3.Text = LoX 

'Adjust voltage for Gain setting 

Invalvolt = Inval / Gain 

'Display ADC decimal reading 

Text4.Text = Str$(1nval) 

'Display ADC voltage reading 

Text5.Text = Format$(1nvalvolt, "######") 

End Sub 

The file is saved as 12adc.frm and the file io_usb.bas should be added. 

The project is saved as 12adc.vbp and the files should be as shown in 

Table 8.2. 

Project Project1 ( 12adc.vbp) 

Form Form1 (12adc.frm) 

module module1 (io_usb.bas) 

Table 8.2 The 12adc.vbp project files 

106 



12-bit ADC 8 

Figure 8.9 Display 12ADC data 

Equipment 

The equipment required to use the 12ADC consists of the 12ADC 

board, a laboratory power supply (0-30V, 2A) and a digital voltmeter 

(DVM). To monitor low voltages the VGPA board and a selection of 

resistors will also be required. 

Running the program 

Initially the 12ADC board should be connected to the USB I/O 24 

module by the 20-way ribbon cable. A laboratory power supply should 

then be connected to the input of the 12ADC board. 

The circuit layout is shown in Figure 8.8. 

Figure 8.8 The 12ADC circuit layout 

Set the gain on the 12ADC Form to Gain x1 and run the program. 

Switch on the power supply, vary the input voltage applied to the 

12ADC board and observe the change in readings on the screen. Figure 

8.9 shows the 12ADC Form when the program is running 

107 



8 12-bit ADC 

Exercise 8.1 

8.1.1 Set up the 12ADC board and use the program to check 

that it is operating correctly. 

Apply both negative and positive voltage inputs to the 

board and investigate if there are any discrepancies in 

the readings that are obtained. 

Monitor the input voltage with a DVM and compare the 

12ADC readings. 

8.1.2 Add option boxes and modify the program so that the 

12ADC may be used on either Port A or Port B. 

8.1.3 The stability of the 12ADC board may be verified by 

setting the input voltage to a particular value and 

checking the displayed reading over a period of time, e.g. 

1 hour, 2 hour, 24 hours! 

8.1.4 Connect the 12 ADC to either an experiment or 

instrument which produces a voltage output in the range 

0.000 to 4.095V and investigate whether the 12ADC can 

be used as a substitute for the normally used voltmeter. 

8.1.5 Store your readings in an array and plot a graph in real 

time. 

8.1.6 Use a CMDialog control to add Save, SaveAs and Print 

dialog boxes to the program. 

Small signal measurement - Using the VGPA board 

The programs used with the combined 12ADC and VGPA boards are 

identical to those used with the 12ADC board, with slight modifications 

108 



12-bit ADC 8 

in the Full Scale Range (FSR) to account for the voltage range that is 

being used. Figure 8.10 shows the circuit connections. 

PC 

L19.0 24 

power Supply 

+0 0_ 

" 

12ADC lnst Amp 

0 0. 

123.45 
DVPul 

Figure 8.10 The 12ADC and VGPA circuit layout 

Making connections to the VGPA board 

There are 3 inputs to the VGPA board, a positive signal input, a 

negative signal input and a ground line (Figure 8.11). 

In most circumstances it is necessary to connect the GND and - I/P 

together. The signal input should then be connected between the - I/P 

and + I/P lines. The board is connected to the 12ADC board using the 15 

-pin D type connector. 

0 

0 

0 

GND 

-1/P 

+1/P 

Figure 8.11 Connections to the input of the VGPA board 

Selecting the gain 

The gain of the VGPA board is selected by jumpers A, B and C on the 

board. These are situated close to the input terminals and require the 

jumper connections to be made according to Figure 8.12. 

109 



8 12-bit ADC 

o o A 

o o B 

o o C 

Gain Connection 

Xt None 

X10 A 

X100 B 

x1000 C 

Figure 8.12 Selecting the gain of the VGPA board 

Exercise 8.2 

8.2.1 The program already written for the 12ADC can be used 

with the VGPA. 

If the FSR of 4.095 mV, i.e. gain of 1000, is used it will be 

necessary to use the circuit in Figure 8.13 to attenuate the 

input of the power supply if this is used for test purposes. 

Power 

Supply 
+1/P 

To VGPA 

Figure 8.13 Potential divider circuit to reduce power supply output 

Summary 

The 12ADC board has many applications in instrumentation. Its good 

stability means that it can be used for temperature measurements as 

well as the host of applications involving strain gauges. What must 

always be remembered is that time has to be given for the conversion to 

take place. The time taken by the hardware to perform is compensated 

by the considerable reduction in signal processing reauired within the 

PC needed for other types of converting devices. 

It is important to select the appropriate ADC for the task and in lots of 

respects this is the additional skill that has to be devefoped along with 

the skill of actually programming the device. 

110 



Appendix 

The Interface Boards 

This Appendix provides information about the circuit boards used in 

Chapters 4, 5, 6, 7 and 8. The circuit board designs have been 

developed in Aries 5.2 Professional produced by Labcenter Electronics. 

Each board has two copper masks and a silk screen overlay showing 

the position of the components. One copper mask shows the 

component side view, the other is the track side view. A problem with 

any printing process is that it is very difficult to reproduce the masks in 

this Appendix to the dimensional accuracy required to fabricate the 

boards directly from the mask. With the exception of the 8ADC board 

which is 5cm x 10cm in size, all boards should be 10cm square. 

To achieve these dimensions the relevant mask should be scanned and 

inserted into Microsoft Word for Windows. The resulting images can 

then be adjusted until the appropriate horizontal and vertical scales are 

achieved. Each copper PCB mask has scales attached. 

The component side mask can be copied on to good quality tracing 

paper using a laser printer. Alternatively the track side mask can be 

used as a pattern with acetate sheet and crepe tape to produce the 

component layout. 

The circuit board can then be produced by the normal procedure for 

manufacture of PCBs. 

Accompanying each PCB mask and silk screen overlay in this Appendix 

is a list of components and details of the circuit. Included in the list of 

components is the rame of a supplier and its catalogue number. The 

addresses of these suppliers are given in section A7. 

Once a circuit is produced it can be tested with the program listed in the 

appropriate Chapter. 

111 



Appendix 

Al The User Port Tester 

The User Port Tester board is used to test the digital input/output 

signals passing through the USB I/O 24 module card. The board can 

provide the input 8-bit digital signals by throwing the appropriate 

switches of the DIL switch on the board. The 8-bit code generated is 

displayed on the LED bar code. The board can also display, on the 

same LED display, 8-bit binary codes being fed out of the PC. The two 

remaining bars indicate the status of the two control mes of the port 

being tested. The board will automatically operate in the correct mode, 

input/output, as set by the USB I/O 24 module. 

A1.1 Circuit 

Figure A1.1 shows one of the ten circuits that drive each of the LEDs. In 

the input mode the position of the switch determines whether a logic 

one or zero is applied to the data and control lines of the USB I/O 24 

module. In the output mode the switch may be left ii either position 

since the state of the LED is set by the USB I/O 24 module. 

- P7, Cl, C2 

+5V +5V 

RA1/20 100k 100R 

1/4 74LS14 

RA3/411 1 

Figure A1.1 One LED driver circuit 

.17 
DIL Array 

112 



Appendix 

A1.2 The Printed Circuit Boards 

0 0 1.0 2.0in 

11111111111111llillii 

20 40rr-, 

TESTER 

22),L3118 1 

23-dg-/7.11 

 1 

Figure A1.2 The User Port —ester PCB (Component side view) 

113 



Appendix 

NINIS-0. SS 

Fl31-23T 

Figure A1.3 The User Port Tester PCB (Track side view) 

114 



Appendix 

1.3 Components 

Figure A1.3 shows the layout of the components on the board. 

CN1 

CC Li- CC 

I 

o 

o 

o 

f:t 

o 

P17 

PO 

C2 

Cl 

Figure A1.4 The User Port Tester board component layout 

115 



Appendix 

Resistors 

RA1 100k 

RA2 100k 

RA3 1k 

RA4 1k 

R1 100R 

7 commoned 

7 commoned 

7 commoned 

7 commoned 

0.4W tolerance ±5% 

Integrated Circuits 

ICI 74LS14 Hex Schmitt inverters 

IC2 74LS14 Hex Schmitt inverters 

Switch 

SW1 

Connector 

CON1 

LEDs 

DA1 

10-way PCB SPST 

IDC 20-way connector 

10 LED bar 

RS 168-718 

RS 168-718 

RS 168-516 

RS 168-516 

Famell 332-574 

Farnell 373-643 

Farnell 373-643 

Farnell 422-678 

RS 471-137 

Farnell 152-279 

116 



Appendix, 

A2 The Stepper Motor board 

Stepper motors are used in many applications requiring accurate 

positioning such as automatic machinery and robotics and in 

applications where continuous motion at variable speeds is controlled 

by a computer. They are available with a range of power and torque 

ratings to suit a wide range of applications. 

A2.1 The Circuit 

On the Stepper Motor board, a ULN 2064B Darlington driver chip is 

used to directly drive the coils. The pin configuration and the circuit for 

an individual stage is shown in Figure A2.1. The maximum supply 

voltage to the chip is 50V and the maximum current per stage is 1.5A. 

This supply can be connected to the board via terminal blocks. 

The stepper motor is connected to the board via either terminal blocks 

or plug connectors. 

1/4 ULN2064B 

Figure A2.1 Circuit configuration for an individual stage 

117 



Appendix 

A2.2 The Printed Circuit Boards 

0.0 1.0 2.0in 

111111111111111111811 
20 40mm 

cc=ne_ I  

STEPPER 

=LI 

Figure A2.2 The Stepper Motor board PCB (Component side \, iew) 

118 



Appendix 

ms.s 

11111y1111111111111111 

r-irQ SS 

FIc=1c71T2 

Figure A2.3 The Stepper Motor board PCB (Track side view) 

119 



Appendix 

A2.3 Components 

Figure A2.4 shows the layout of the components on the board overlay. 

39V110A AlcIdfIS 

2 
o o 

(5.  

CNJ 
CO 

I— 

v• 
m 
I— 

GROUND 

+ 

cl 
m 
I— 

+ 

S
T
E
P
P
E
R
 M
O
T
O
R
 2
 

Figure A2.4 The Stepper Motor board component layout 

120 



Appendix, 

Connectors 

CON 1 

CON2 6-way 

CON3 6-way 

TB1 4-way 

TB2 4-way 

TB3 4-way 

TB4 4-way 

IDC 20-way connector 

PCB headers (snap to length) 

PCB headers (snap to length) 

PCB std mtd screw terminals 

PCB std mtd screw terminals 

PCB std mtd screw terminals 

PCB std mtd screw terminals 

Integrated Circuits 

IC1 74LSO4 

IC2 74LSO4 

IC3 ULN2064B 

IC4 ULN2064B 

Hex inverter 

Hex Inverter 

Quad Darlington driver 

Quad Darlington driver 

Farnell 152-279 

Farnell 143-136 

Farnell 143-136 

Farnell 344-4555 

Farnell 344-4555 

Farnell 344-4555 

Farnell 344-4555 

Farnell 373-450 

Farnell 373-450 

Farnell 409-790 

Farnell 409-790 

121 



Appendix 

A3 The 8DAC board 

A digital to analogue converter is a device which produces an analogue 

output, i.e. a current or voltage, when a digital input is applied to it. The 

8DAC board is a voltage output 8-bit digital to analogue converter 

(DAC) board based upon the Texas Instruments TLC7524 8-bit 

multiplying digital to analogue converter. The TLC7542 is 

interchangeable with Analog Devices AD7524, PMI PM-7524 and Micro 

Power Systems MP7524. 

The 8DAC board can be used in either the unipolar (positive only 

output) or bipolar mode (positive and negative output) with a resolution 

of 255 steps between the maximum and minimum voltage outputs. The 

board is powered from the internal power supply of the PC. It is 

possible to obtain a full-scale range (FSR) of the voltage output up to a 

maximum of +5.12V in the unipolar mode. The selection of the DAC 

resolution is made using the on-board switch and the DAC is calibrated 

using a calibration routine and potentiometers. In bipolar mode the 

range extends from —2.56V up to +2.54V though this may be altered by 

adjustment of the appropriate potentiometers. 

The USB I/O 24 module provides two ports to which the DAC board 

may be connected. Each port consists of 8 data lines which can be set 

up as either inputs or outputs, plus two control lines which are used as 

interrupt or pulse lines. These ports must be configured so that digital 

data can be transmitted to the 8DAC board. The digital data is latched 

into the DAC so that the analogue output will remain constant even 

when the DAC is not being addressed by the PC. 

A3.1 The circuit 

Figure A3.1 shows the TLC7524 (IC1) used in the 8DAC board. IC5 

supplies the positive and negative voltage supplies to the two amplifiers 

IC3 and IC4. IC3 provides the gain for the voltage output of IC1 and in 

the unipolar mode IC4 acts as an approximately times two gain 

amplifier. In the bipolar mode IC4 is used as a summing amplifier so 

that the board can produce both negative and positive voltage outputs. 

IC2 provides a 2.5V reference voltage for the circuit. 

122 



C2 

_L  

i/p 
data 

MSB 

1 OUT1 R16 

2 OUT2 REFIS 

3 ONO Vo:, 14 

4 087 WR 13 

5 01561C 1CS 12 

6 DB5 080 11 

7 D84 DB1 1 

8 DB3 DB2 

SW1 a VR3 

LSB 
CB2  
+5V  

GND 

R2 

IC3   

VR2 

IC4 

VR1 

VR4 
cdp 

C6—C- ci v. 8 
;.:=- 2 C2. C1.7 

C5-"=" 3 d23, 

C4 

4V- ONO 9  

-r- C7 

Figure A3.1 The 8DAC board circuit 

SW1 b 

R1 



Appendix 

A3.2 The Printed Circuit Boards 

0.0 1.0 2.0,n IIIIIIIIII1111111 IIII 
0 20 

Figure A3.2 The 8DAC board PCB (Component side view) 

40rnrn 

124  



Appendix 

n:S.S 

Ill 'y111111111 I 1 I I I 

NS S 

DPos 

Figure A3.3 The 8DAC board PCB (Track side view) 

125 



Appendix 

A3.3 Components 

Figure A3.4 shows the layout of the components on the board overlay. 

o 
o co 

o 
o 

o 

LJ 

o 

LJ 

CN 
CÉ 7 

J. 
o 

L_I 

(1) 
CO 

09 

Figure A3.4 The 8DAC board component layout 

126 



Appendix 

Resistors 

R1 4.7k 0.4W tolerance +/-5% 

R2 10k 0.4W tolerance +/-5% 

Capacitors 

Cl 0.1µF multilayer ceramic 

C2 10pF multilayer ceramic 

C3 0.11.f multilayer ceramic 

C4 4.71.1F electrolytic (35V) 

C5 4.7µF electrolytic (35V) 

C6 4.7µF electrolytic (35V) 

C7 4.7µF electrolytic (35V) 

Variable resistors 

VR1 50k 18-way cermet trimmer 

VR2 10k 18-way cermet trimmer 

VR3 50k 18-way cermet trimmer 

VR4 10k 18-way cermet trimmer 

Integrated Circuits 

IC1 TLC7524 

IC2 AD680 

IC3 

IC4 

IC5 

TL081 

TL081 

MAX680 

8-bit DAC 

2.5V reference 

(T092 package) 

Bi-FET Op Amp 

Bi-FET Op Amp 

+5V to ±10V 

converter 

Farnell 332-770 

Farnell 332-811 

Farnell 108-925 

Farnell 108-926 

Farnell 108-925 

Farnell 920-575 

Farnell 920-575 

Farnell 920-575 

Farnell 920-575 

Farnell 306-6289 

Farnell 306-6265 

Farnell 306-6289 

Farnell 306-6265 

Farnell 411-218 

Farnell 411-218 

Farnell 400-660 

Farnell 400-660 

Farnell 246-551 

127 



Appendix 

Switch 

SW1 DPDT 

Connectors 

CON 1 

CON2 

CON3 

rightangle Farnell 150-209 

!DC 20-way connector 

black 4mm insulated terminal 

red 4mm insulated terminal 

Farnell 152-279 

Farnell 810-319 

Farnell 810-320 

A3.4 Calibration of the 8DAC board 

The switch SW1 on the 8DAC board selects either the unipolar or 

bipolar mode. In unipolar mode an input of 0 corresponds to OV and 255 

to +5.10V. In bipolar mode the voltage range is —2.56V to +2.54 for 

digital inputs of 0 and 255 respectively. 

An important feature of a DAC is the linearity of its output. This refers to 

its output voltage being directly proportional to the digital input, e.g in 

the unipolar mode digital inputs of 100 and 200 should give outputs of 

2.00V and 4.00V respectively. In the bipolar mode 0 will give a -FSR 

reading (-2.56V), 128 is equivalent to 0.00V and 255 will give +FSR 

less the voltage equivalent of 1LSB, i.e +2.54V. The 8DAC board 

normally retains its calibration over a long period of time but the 

procedure described below should be used if recalibration is required or 

a different FSR is needed. 

In the calibration process the 8DAC board is connected to the USB I/O 

24 module in the PC using the 20 way ribbon cable. A digital voltmeter 

(DVM) is connected to the output terminals. Another DVM with probes 

will also be required. The positions of the potentiometers and other 

relevant connections on the 8DAC board are indicated in Figure A3.5. 

128 



Appendix 

— — 
VR4 VR3 

swi VR1 

-5-4 

VR2 

Figure A3.5 Positions of VR1-4 

VR1 Unipolar - gain VR2 Unipolar - zero 1 

VR3 Unipolar - zero 2 VR4 Bipolar - +FSR 

Unipolar operation 

1) Connect one DVM to the output terminals of the 8DAC board. 

The respective probes of the other DVM are connected to the 

GND and TP (test point) terminals on the 8DAC board. 

Set switch SW1 to U and ensure that the 8DAC board is 

connected using the ribbon cable. 

2) Run the DAC program in Chapter 6 and move the scroll bar to 

O. 

Adjust VR2 until the voltage at the TP terminal is as close to 

0.00V as passible. 

Adjust VR4 until the voltage output is as close to 0.00V as 

possible. 

3) Move the scroll bar to 255 and adjust VR1 until the voltage 

output is 5.10V i.e. + FSR - 1 LSB. 

The linearity of the DAC board can be checked by moving the 

scroll bar to intermediate values between 0 and 255, i.e. 128, 

64, 192, etc. 

4) If necessary repeat steps 2) and 3). 

129 



Appendix 

Bipolar operation 

This calibration should be performed after the DAC has been calibrated 

for unipolar operation. 

1) Set the switch to B (Bipolar operation). 

2) Run the program and set the scroll bar to O. 

The output will be -FSR i.e. —2.56V. 

3) Move the scroll bar to 255 and adjust VR2 to +FSR - 1LSB 

i.e. +2.54V. 

4) The linearity of the DAC board can be checked by moving the 

scroll bar to intermediate values between 0 and 255, i.e. 128, 

64 and 192. 

5) If necessary repeat steps 3) and 4). 

The voltage ranges in the bipolar mode can be altered by adjusting VR1 

but this action will mean that the 8DAC board will have to be re-

calibrated before using the unipolar mode again. 

A3.5 Application of the 8DAC board 

Once calibrated the linearity of the DAC may be checked by entering 

different digital inputs and noting the voltage outputs on the DVM. If a 

FSR less than 5.10 V is required it will be necessary to recalibrate the 

8DAC board. It is unlikely that the step involving the altering of VR2 and 

VR3 will have to be done if FSRs are being changed. 

A3.6 References 

TLC5724, TLC7524E, TLC7524I 8-bit multiplying digital-to-analog 

converters (1998) 

Texas Instruments, Post Office Box 655303, Dallas, Texas 75265, USA, 

www.ti.com  

130_ 



Appendix 

AD580 Low Power, Low Cost 2.5V Reference (2001) 

Analog devices, One Technology Way, PO Box 9106, Norwood, MA 

01062-9106, USA 

www.analog.com  

MAX680 +5V to ± 10V Voltage converters ( 1989) 

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 

94086, USA 

www.maxim-ic.com 

TL081 Wide Bandwidth JFET Input Operational Amplifier ( 1995) 

National Semiconductor Corporation, 1111 West Bardin Road, 

Arlington, Texas 76017, USA 

www.National.com  

131 



Appendix 

A4 The 8ADC board 

The 8ADC board is based upon the ADC0804 8-bit successive 

approximation analogue to digital converter which is manufactured by 

National Semiconductors, Intersil and Philips. The free running 

conversion time is 13690 conversions per second when the INTR 

(Interrupt) and WR (Write) pins are connected together. The 8ADC is 

used in this continuous conversion mode with the CS (Chip Select) line 

being used to start a new conversion by going from low to high. A 

conversion that is in process is halted by CS going low and the data that 

can be read from the output latches correspond to the data from the 

previously completed conversion. 

The lines required for the 8ADC board are +5V, OV, a control line to 

operate the CS pin and 8 data lines. These are all provided by the USB 

I/O 24 module connected to the USB port of the PC. 

The 8ADC board may be used in either unipolar (OV to +5.10V) or 

bipolar (-5.12V to +5.08V) input mode. The accuracy is ± 1LSB. 

A4.1 The circuit 

Figure A4.1 shows a schematic circuit diagram for the 8ADC board. IC1 

is the ADC0804 which is an 8-bit successive approximation A to D 

converter with all active circuitry contained on the chip. R5 and Cl 

provide the self clocking for the converter and switch SW2 is used to 

momentarily take the INTR/WR connection to ground to ensure that the 

circuit starts conversion. 

The analogue inputs are switchable between unipolar (0 — 5.10V) and 

bipolar (-5.12 — +5.08V) using SW1. The bipolar input range is 

accommodated by offsetting the analogue input range so that only 

positive input voltages are applied to the comparator. 

There are no facilities to calibrate the 8ADC board and any calibration 

must be done in software. 

132 



+5V 

input 

GND 

R2 R3 

R1 

R4 

D1 

2 

R5 

Cl 

SW2 

• • 

0-

0-

0-

1 CS Vcc 20 

2 RD CLK IN 19 — 

3 WR 

4 CLK IN 

5 INTR IC1 

6 VIN(+) 

7 VINO 

8A GND 

9 VREF/2 

10 D GND 

DO 18 

01 17 

D2 16 

D3 15 

D4 14 

D5 13 

D6 12 

D7 11 

Figure A 4.1 The 8ADC board circuit 

CS 

DO 

DI 

D2 

D3 

D4 

D5 

D6 

D7 



Appendix 

4.2 The Printed Circuit Boards 

1 1 1 1 1 1 1 1 11 1 

u 

+ 

Figure A4.2 The 8ADC board PCB (Component side view) 

134 



Appendix 

J1111111 

Figure A4.3 The 8ADC boarc PCB (Track side view) 

135 



Appendix 

A4.3 Components 
Figure A4.4 shows the layout of the components on the board overlay. 

CON1 
o 

co 

IC1 
C2 SW2 

R5 
R4 

C1 „ R3 SW1 

R2 

Tl i  R1 T2 

o 
I/P %ND 

Figure A4.4 The 8ADC board component layout 

136 



Appendix 

Resistors 

R1 

R2 

R3 

R4 

R5 

10k 0.4W tolerance +/-5% 

10k 0.4W tolerance +/-5% 

100k 0.4W tolerance +/-5% 

22OR 0.4W tolerance +/-5% 

10k 0.4W tolerance +/-5% 

Capacitors 

Cl 150pF 

C2 0.1µF 

Dipped radial multi-

layered ceramic 

multilayer ceramic 

Diodes 

D1 1N4148 signal diode 

Integrated Circuit 

IC1 ADC0804 8-bit ADC 

Switches 

SW1 DPDT 

SW2 SPNO 

Connectors 

CON1 

Ti black 

12 red 

switch 

momentary switch 

IDO 20-way connector 

4mm insulated terminal 

4mm insulated terminal 

Farnell 332-811 

Farnell 332-811 

Farnell 332-938 

Farnell 332-616 

Farnell 332-811 

Farnell 647-755 

Farnell 108-925 

Farnell 885-660 

Farnell 396-187 

Farnell 150-209 

Farnell 151-137 

FameII 152-279 

Farnell 810-319 

Farnell 810-320 

137 



Appendix 

A4.4 Calibration of the 8ADC board 

The calibration of the 8ADC has to be performed using the 8adc.vbp 

program. It is necessary to alter the corresponding full scale (FS) values 

in both the unipolar and bipolar modes. This is done in the Display 

routine. 

Private Sub Display() 

'Select equivalent voltage settings 

If Polarity = 0 Then 

invalvott = (5.10 * inval) / 2 

Else 

invaivolt = (inval - 128) * 5.12/ 128 

End If 

'Display ADC decimal reading 

Text1.Text = Str$(inval) 

'Display ADC voltage reading 

Text2.Text = Format$(invalvolt, Wier) 

End Sub 

The shaded portions of the code show where the changes must be 

made. The first one refers to the unipolar FS, the second one to the 

bipolar FS. 

The FS values are determined by finding the input voltages which just 

cause the decimal output of the 8ADC board to change from 254 to 255. 

The accuracy with which the value can be determined is affected by the 

sensitivity of the measuring voltmeter and how smoothly the output of 

the power supply can be changed. The procedure will have be carried 

out separately for both the unipolar and bipolar modes, and the 

measured values will replace the 5.10 and 5.12 values shown in the 

shaded portions of the code. 

138 



Appendix 

This type of calibration cannot accommodate any zero offset or non-

linearity that may be present but it can be an improvement upon the 

values Mat are already in use in the program. 

A4.5 Reference 

ADC080803/0804 CMOS 8-bit AID converters Data sheet (17 Oct 2002) 

Philips Semiconductors, Koninklijke Philips Electronics NV, 

www.semiconductors.philips.com  

139 



Appendix 

A5 The 12ADC board 

The 12ADC board is a 12 bit analogue to digital converter which can be 

used in the range of ±4.095V. It may be used with the USB I/O 24 

module attached to the USB port of the PC. The board is based upon an 

ICL7109CPL device which has an auto zero facility and outputs its 

digital data in a high and low byte format. The high byte contains bits 

signifying polarity, overrange and the 4 most significant bits of digital 

data and the low byte has the 8 remaining bits of data. Chapter 8 

provides extensive details of how the 12-bit digital data is taken from 

this ADC. 

A5.1 The circuit 

The ICL7109CPL dual-ramp integrating A to D converter outputs its 

digital signal in two bytes i.e. Hi and Lo. The circuit shown in Figure 

A5.1 has to enable the data to be extracted such that it is not corrupted 

when only 8 data lines and 2 control lines are used. This is put into 

practice using IC3 (a dual D type flip flop). All of the circuitry to the right 

of IC1 provides the necessary clocking and integrating circuits and the 

reference sources. It also provides the analogue inputs. IC4 provides 

the necessary —5V for IC1. 

140 



.5V 

CA1 

CA2 

OV 

'4 RSR8T 

1/6 IC2 

11 10 

1 GND V• 40 
2 STATUS REF WY 39 
3 POL REF CAP 38 
4 OR REF CAP • 37 
5 B12 REF IN. 36 

6 611 IN HI 35 
7 B10 111034 
889 COMMON 13 
9B8 INT 32 
10 B7 IC1 AZ 31 
11 B6 BUF 30 
12 B5 REF OUT 29 
13 B4 V- 28 
14 B3 RuNnISE0LNOD2276 
15 B2 
16 B1 BUF OSC OUT 25 
17 TEST OSC SEL 24 
18 LBEN OSC OUT 23 
19 HBEN OSC IN 22 
20 CE/LOAD MODE 21 

Ce  
 Lo 

CS 7 . 

  R2 

() 0 

3 

PRE 
D 

IC3 - 
UK Q 

ÇkFt  

y 

5 

6 

XTAL I 

-r-

VR1 

Figure A5.1 The 12ADC board circuit 



Appendix 

A5.2 The Printed Circuit Boards 

0.0 1.0 

11111111, 111 1111111d 

0 RO 40r-1 ,1 

au,—r 
• 

11 0 0 

2PDC 

o 

Figure A5.2 The 12ADC board PCB (Component side view) 

142 



Appendix 

I 1 11 y111111 11111111 

DGPS 

Figure A5.3 The 12ADC board PCB (Track side view) 

143 



Appendix 

A5.3 Components 

Figure A5.4 shows the layout of the components on the board overlay. 

V 

CV 
o 

0 -7 0 

--\_I----

.i. 

-r 
H 

C'•) 
(-) (..) -r-

r•-..__L 
U-r-

C) 
T Ct 

izt 
O  L--i —  

Figure A5.4 The 12ADC board component layout 

- 

J 

144 



Appendix 

Resistors 

R1 1M 

R2 200k 

R3 1k 

R4 1k 

R5 1k 

R6 1k 

Capacitors 

Cl 0.1µF 

C2 1µF 

C3 0.01µF 

C4 0.15µF 

C5 0.33µF 

C6 10µF 

C7 10µF 

C8 0.1µF 

0.4W tolerance +/-5% 

0.4W tolerance +/-5% 

0.4W tolerance +/-5% 

0.4W tolerance +/-5% 

0.4W tolerance +/-5% 

0.4W tolerance +/-5% 

multilayer ceramic 

miniature layer 

monolithic ceramic 

polyester 

polyester 

electrolytic (50V) 

electrolytic (50V) 

multilayer ceramic 

Variable resistors 

VR1 1k 18-way cermet trimmer 

VR2 50k 18-way cermet trimmer 

Diode 

D1 0A47 signal diode 

Farnell 333-050 

Farnell 332-811 

Farnell 332-690 

Farnell 332-690 

Farnell 332-690 

Farnell 332-690 

Farnell 108-925 

RS 114-430 

Farnell 430-559 

Farnell 143-681 

Farnell 143-683 

Farnell 383-7117 

Farnell 383-7117 

Farnell 108-926 

FameII 306-6230 

Farnell 306-6289 

FameII 306-003 

145 



Appendix 

Integrated Circuits 

IC1 ICL7109 12-bit ADC Farnell 335-7601 

IC2 74LSO4 Hex inverters Farnell 373-400 

IC3 74LS74 D trigger flip flops Farnell 374-027 

IC4 ICL7660 voltage converter Farnell 408-566 

Crystal 

XTAL1 3 579MHz crystal HC18/U Farnell 170-229 

Connectors 

CON 1 IDC 20-way connector Parnell 152-279 

CON2 9-way D-type socket Farnell 737-579 

Ti black 4mm insulated terminal Parnell 810-319 

12 red 4mm insulated terminal Parnell 810-320 

A5.4 Calibration of the 12ADC board 

The auto zero facility of the ICL7109CPL means that there is no zero 

adjustment on the board. The only adjustment necessary is the Gain 

range and this is achieved using two variable resistors VR1 and VR2 

(Figure A5.5). 

--

VR1 VR2 

Figure A5.5 Positions of VR1 and VR2 

Each of these variable resistors requires 18 turns to alter the resistance 

from its maximum to minimum value. VR2 should be initially set to its 

mid-value, i.e. 9 turns from either extremity. The calibration procedure 

then requires the use of a variable voltage laboratory power supply (0 to 

146 



Appendix 

10V) and a DVM which has a resolution of 1mV If +2.000V is applied to 

the 12ADC board, VR1 and VR2 can be adjusted such that 2000 

appears on the 12ADC Form when the program 12adc.vbp is used. It is 

useful to check the linearity of the board by varying the input voltage 

and noting the digital output This should also be done for a negative 

voltage input. 

A5.5 Reference 

ICL7109 12 Bit Binary AID Converter with 3-state Binary Outputs 

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 

94086, USA 

www.maxim-ic.com  

147 



Appendix 

A6 The VGPA board 

This board is designed to be used in conjunction with the 12ADC board 

and increases the sensitivity of the 12-bit ADC of that board. The board 

contains a preamplifier input stage which has a gain that can be set to 

x1, x10, x100 and x1000. This gives the following voltage ranges: 

x1 —4.095V to +4.095V 

x10 —409.5mV to +409.5mV 

x100 —40.95mV to +40.95mV 

x1000 —4.095mV to +4.095mV 

Table A6.1 

The programs used with the combined boards are identical to those 

used with the 12ADC, with slight modifications in the FSR to account for 

the voltage range that is being used. 

A6.1 Making connections to the VGPA board 

There are 3 inputs to the VGPA board, a positive signal input, a 

negative signal input and a ground line (Figure A6.1). 

GND 

- i/p 

+ i/p 

Figure A6.1 Inputs to the VGPA board 

In most circumstances it is necessary to connect the GND and -I/P 

together. The signal input should then be connected to between the - I/P 

and + I/P lines. The board is connected to the 12ADC board using the 

15-pin D type connector. 

148 



Appendix 

00 

Selecting the gain 

The gain of the VGPA board is achieved by jumpers A, B and C on the 

board. These are situated close to the input terminals and require the 

jumper connections to be made according to Figure A6.2. 

Gain Connection 

x1 None 

x10 A 

x100 B 

x1000 C 

Figure A6.2 Selecting the gain 

A6.2 The circuit 

The VGPA board is based upon the AD524 precision instrumentation 

amplifier. Figure A6.3 shows a schematic of the board. The ±15V supply 

is provided by the voltage converter IC2. VR1 and VR2 are used to 

provide input and output offset. The gain of the board is altered using 

jumpers on CON4. The analogue input can be allowed to float by 

removing the jumper at CON2. 

149 



CQN 2 
GND 

pp - 
1 p 

IC2 

+5V 

OV 

VR1 

R2 R1 IC1 

C21 ici 

1 - i/p RG1 16 

2 +i/p o/p null 15 

3 RG2 o/p null 14 

4 i/p null G=10 13 

5 i/p null G=100 12 

6 REF G=1000 11 

7 -VS SENSE 10 

B +VS o/p 9 

VR2 

 o 

CON4 

Figure A6.3 The VGPA board circuit 

o/p 

o 
gr. 



Appendix 

A6.3 The Printed Circuit Boards 

1.0 

20 40r-ir-^ 

LL 

loi 

VOPP 

Figure A6.4 A6.4 The VGPA PCB (Component side view) 

151 



Appendix 

niS.S S S.S 

111111111111111111111 

NI S SS 

II  

Eti 
P9Dl.) 

Figure A6.5 The VGPA PCB (Track side view) 

152 



Appendix 

A6.4 Components 

Figure A6.6 shows the layout of the components on the bo» d ovei-13y. 

o 

0 0  

\.)1-11-

o 
o 

> 

A ce) 
B 0  
C C\J 

CË 

Figure A6.6 The VGPA board component layout 

153 



Appendix 

Resistors 

R1 10k 0.4W tolerance +/-5% 

R2 10k 0.4W tolerance +/-5% 

Capacitors 

Cl 0.01µF multilayer ceramic 

C2 0.01J multilayer ceramic 

Variable resistors 

VR1 

VR2 

10k 18-way cermet trimmer 

10k 18-way cermet trimmer 

Integrated Circuits 

Cl AD524AD 

IC2 NMA0515D 

(Newport) 

Connectors 

CON1 

CON2 

CON3 

Instrumentation amp 

dc to dc converter 

5 to +/ —15V 

Farnell 332-811 

Farnell 332-811 

Farnell 430-559 

Farnell 430-559 

Farnell 306-6265 

Farnell 306-6265 

Farnell 402-138 

Farnell 330-760 

9-way D-type plug Farnell 637-531 

1+1 pcb pin-strip header Farnell 143-132 

3-way pcb mted screw Farnell 101-785 

terminal 

CON4 3+3 pcb pin-strip header Farnell 621-857 

2 off jumper link Farnell 150-410 

154 



Appendix 

A6.5 Calibration of the VGPA 

The VGPA is calibrated in two stages. Initially the gain of the 

ICL7109CPL analogue to digital converter is adjusted on the 12ADC 

board and then the input and output offsets of the AD524 on the VGPA 

board are adjusted. 

Stage 1 

The 12ADC board should be initially calibrated using the instructions in 

Section A5. 

Stage 2 

The laboratory power supply should now be connected to the + I/P and 

-UP terminals of the VGPA board. If the AD524 is connected for high 

gain it may be necessary to use a potential divider across the output 

terminals of the laboratory power supply ( Figure A6.7). 

100k 

POWER 

SUPPLY 

1OR 
DVM 

  + i/p 

To VGPA 

  i/p 

Figure A6.7 Method of obtaining very small voltages 

The only controls that must be altered now are VR1 and VR2 on the 

VGPA board (Figure A6.8). A known voltage is applied to the VGPA. If 

the gain of the AD524 is high, VR1 (input offset) is adjusted first 

followed by VR2 (output offset) until the input voltage and digital output 

agree. If the gain is low VR2 is adjusted first followed by VR1. 

155 



mapendix 

 é VR1 

VR2 

Figure A6.8 Positions of VR1 and VR2 

A6.6 References 

AD524 Precision Instrumentation Amplifier 

Analog Devices, One Technology Way, PO Box 9106, Norwood, MA 

01062-9106, USA 

www.analog corn  

156 



Appendix 

A7 Suppliers 

The components used in the circuit boards described above may be 

obtained from the following suppliers in the UK: 

RS 

RS Components Ltd, PO Box 99, Corby, Northants, NN17 9RS 

Tel: 01536 201201; Fax: 01536 201501 

http://rswww.com 

Farnell 

Farnell Electronic Components Ltd, Canal Road, Leeds, LS12 2TU 

Tel: 0113 263 6311; Fax: 0113 263 3411 

www.farnell.corniuk 

The supplier of the USB I/O 24 module is: 

Alpha Micro Components Ltd, Springfield House, Cranes Road, 

Sherbourne St John, Basingstoke, Hants, RG24 9LJ 

Tel: 01256 851770; Fax: 01256 851771 

www.alphamicro.net 

157 



Appendix 

158 



Biblography 

Bibliography 

Books 

Francesco Balena, Programming Microsoft Visual Basic 6.0, (1999), 

Microsoft 

Evangelos Petroutsos and Kevin Hough, Visual Basic 6 Developer's 

Handbook, (1999), Sybex 

Eric A Smith, Valor Whisler and Hank Marquis, Visual Basic 6 Bible, 

(1998), IDG Books 

G B Clayton, Data Converters, (1982), Macmillan Education 

Devices 

Many of the data sheets can be downloaded from the relevant 

manufacturers or suppliers web sites: 

Analog Devices 

www.analog.com  

Farnell Electronic Components 

www.farrell.com/uk 

Future Devices Technology International Ltd 

www.ftdichip.com  

Maxim Integrated Products 

www.maxim-ic.com  

159 



Bibliography 

National Semiconductor Corporation 

www.National.corn  

Philips Semiconductors 

www.semiconductors.philips.com 

RS Components Ltd 

http://rswww.com  

Rayar Pty Ltd 

www.ravar.net 

Texas Instruments 

www.ti.com 

160 



Index 

Index 
12ADC 42, 93, 140 
8255A 16 
8ADC 42, 77, 132 
8DAC 41, 65, 122 
addresses 5, 19, 30, 43, 57, 

85 
bipolar 66, 78, 130 
control register  43, 58, 62 
control word 16, 37 
D- 3 
D+ 3 
DAC 65, 122 
data packet 5 
declarations 30 
digital input/output 23, 112 
DLL 25, 45 
endpoints 3, 4 
Forms 29 
FT8U245 25 
FTD2XX.DLL 25 
full step mode 51 
half step mode 54, 64 
handshaking packet 5 
interface boards  19, 41 
interrupt 45, 67, 87, 122 
io_usb.bas 29 
isochronous 6 
Least Significant Bit 66, 78 
LSB 66,93 
Mode 0 16 
Modules 29 
MSB 67 
PID 5, 11 
pipes 4 
Port A 14 
Port B 14 
Port C 14 
Portln 29 

PortOut 29 
ports 42, 112 
PPI 16 
Programmable Peripheral 

Interface 16 
R-2R ladder 65 
Readprog 29 
Reg 35 
REGA 43 
registers  18, 43 
RS232 1, 9 
step.vbp 63 
Stepper 41, 53, 117 
stepper motor 41, 53, 117 
stepper motor code 56 
steptest.vbp 59 
token packet 5 
Type A 2, 11 
Type B 2, 12 
unipolar 66 
Universal Serial Bus 1 
USB 1 
USB connector 2, 11 
USB I/O 24 module 10 
USB1.1 1, 11 
USB2.0 1, 6 
User Port Tester 41, 112 
Userin.vbp 47 
VID 5, 11 
Visual Basic code 28, 29 
Writeprog 29 

161 



Notes 

162 





Babani Computer Books 

e PC Interfacing using USB 
For many years professioral scientists, engineers and errhusi-

astic hobbyists have been able to connect computers to the 

outside world by L sing specialist nterface cards inserted into 

slots in their computers. Times have changed and both desktop 

and laptop oCs new have Universal Serial BUS (USB) ports as 

well as serial and printer ports and as PCs have become more 

sophisticated, less available slots for the insertion of input/out-

put cards. 

The USB port is popular or connecting printers, scanners, mass 

storage systems, digital cameras and other peripherals to a PC, 

and the interfacinc entltitusiast has Ih.ad to look on with envy at 

these develcpments until' now! 

Raver Pty Ltd of Queensland, Australia have developed a USB 

interface module which s equivalent to an old 24-line parallel 

plug-in inputioutput card. This now re-opens the entire interfac-

ing world to the computer enthusiast but without having to 

Delve inside the PC. 

This book outlines the basics of USB , shows how the Fever 

JSB interface modJle can be connected to and programmed by 

-.he PC and explores how digital data. stepper -notors, digital-to-

analogue and analogue-to-digital converters can be used with 

the system. It strives to assist the user to become conversant 

with USB and provde a source book which can be dipped into 

at anytime wnenever an interfacing project is being developed. 

• Beginners IN Intermediate Advanced 

BP 535 

-777'9 

we>  

SBN 0-85934-535-1 

1 1 

1 I ( 

1: 11 111 11 1111 111114 9 780859 345354 




