

Disitel Iacho

-k. check
nis.

Inside: computing today no3

. . . NEWS PROJEGTS MIGROPROCESSORS AUDIO

The DQ10. This design makes use of what the makers term a 'phased array'. This means that the driver units are staggered so that their effective radiator 'points' are equi-distant from the listener which eliminates the time delay distortion (phase linear?) flat baffle designs are prone to. In addition each driver is mounted on its own optimum sized baffle to minimise diffraction problems.

Transmission Lines

This is another method of 'losing' the rear radiation of a drive unit, or making it think it is working into an infinitely long column. This is achieved by having a maze of woodwork inside the enclosure which is filled with graduated damping material. In this way total column length can be far greater than enclosure dimensions.

If the far end of the column is open then help is afforded to the bass performance in much the same way as bass reflex cabinets.

The design is usually for almost total absorption of the rear wave - and this leads to a gradual and smooth fall off in bass response due to the almost constant velocity working conditions for the cone.

Conversely to both acoustic suspension and basis reflex loading methods, transmission line methods lower the bass resonance of the drive units and hence enhance LF performance.

IMF have championed this technique for long time passing now, and as exampled in their products transmission line bass possesses a solid' quantity totally different to that from the other methods. It is more extended and more realistic. Used in a large enough room there is no better way to replay the lower registers.

Oh for a successful combination of transmission line bass and electrostatic HFI

The basic principle behind the transmission line speaker enclosure. The air from the rear of the cone gets 'lost' down the line.

Horn Loading

A method of designing to considerably reduce required driver excursion for a given acoustic output. The driving element is coupled to its air load by a gradually 'flaring' throat - usually exponental in cross section

The horn converts the high pressure, low velocity sound energy present in the region of the driver into low pressure high velocity waves for propogation. The advantages of this type of loading are good damping of the driver, low distortion but a limited frequency response

The Decca London ribbon unit, loaded by a caternoidal horn. The flare can be clearly seen in this photo leading down to the ribbon itself somewhere in that block at the back!

To design a single horn to cover the entire audio spectrum is a confused exercise, and one yielding impractical results for domestic use, since an exponential horn to reproduce 30 Hz has a mouth of 1.5 m diameter and is some 4 m long! Folding the horn back and forth within an enclosure can reduce dimensions, and the American firm Klipsch market units which employ the room walls as extensions of the horn to reach lower frequencies. Usually though, the system is used to load MF and HF units within a system

Advantages of this principle are phenomenal efficiency $\approx 10 \%$ compared with 1% for bass reflex for bass reflex and 0.1% for transmission lines, and an attack unmatched by any other cone driver recipies.

KEFs 105 linear phase design. The upper two enclosures are rotatable to aid stereo imagery. Note the rounded edges to prevent re-radiation and the staggered drivers with respect to the listener.

ELECTROSTATIC

As we have seen the moving coil design suffers because the cone area is unevenly driven by the electrical music signal. The electrostatic principle, developed by both David Tombs and Peter Walker (of the Acoustical Manufacturing Company) is an attempt to produce a unit in which the entire surface of the unit is driven by the input signal.

At its most basic the design consists of two plates as shown in the diagram. The moveable plate is made to have as low a mass as possible and is so suspended that it cannot touch the fixed plate at any point in its travel. The fixed plate will usually in fact take the form of a etal 'mesh'. A high polarising voltage $\approx 5 \mathrm{kV}$ is applied between the plates, and the audio signal superimposed on this.

An electrostatic force-such as that which holds dust on to LPs and LPs onto turntables-is thus generated between the plates and the moveable one vibrates in sympathy with variation in the input signal.

A refinement of this is the push-pull system where the moving plate is situated between two fixed meshes as shown in the drawing. The polarising voltage is DC in nature, from a very high impedance source, and is of the order of 5 kV once again.
The outer plates (meshes) are fed from a step-up transformer connected to load the incoming signal. This applies a high voltage electrical AC signal to these plates (the music signal) and causes the center plate to move in sympathy with this. Distortion is greatly reduced using this push-pull arrangement and can equal 0.5% in a good design.

Scheme of operation for electrostatic loudspeakers. On the top we have the basic single ended design, and below that the commercially employed, much-improved push-pull scheme as employed by Quad and Koss amongst others.

This system first appeared on the market many many years ago in the form of the Quad electrostatic system - which remains largely unsurpassed for lack of colouration and mid-range clarity.

The advantage of driving the plate evenly over its whole area show up as a linear frequency response-no rippling or 'break-up'-very low distortion and a good transient performance due to low driver mass.

However this system does have inherent drawbacks. Consider the Quad system. as an example. It is noted for its mid-range clarity and its high frequency accuracy but also for its lack of extreme bass and its beaming of top end signals-poor vertical dispersion.

The reason for this is its physical size. Since the push-pull radiator is by nature a dipole radiator-sound emitted both front and back, some cancellation at frequencies whose wavelength exceeds the plate dimension is inevitable.

The Quad is also very room sensitive for this same reason. Rear radiation can be dumped, but not without acoustically loading the plate-an undesirable excursion into non-linearity. At high frequencies there is low energy in the wave to absorb, and so this is easier to affect without adverse consequences on the drive plate.
KLH made a brave attempt to reach the theoretical size of plate for good bass response with their superb KLH9 full range units. These are almost exactly door sized-and you need two per channel! And they cost $£ 2000$ a pair. And they are probably unbeatable by any speaker on the market for sheer accuracy and delicacy. Their size endows them with a hefty bass punch too. Units to sell your soul for. (Anyone listening down there?)

Loading Probiems

Another less serious drawback is that transformer into which the electrical signal is fed. This presents an awkward load to the amplifier, and can produce some nasty effects from transistor amps.

Modern designs however-Lecson, Quad and the rest, can cope perfectly and experience no traumas when presented with the wickedly reactive termination characteristic of electrostatic speakers.

Many attempts have been made to marry together electrostatic mid-high drivers with cone bass units. B\&W DM 70 was perhaps the first (and the best!) but not have been entirely successful. Perhaps its simply that the superior distortion and colouration properties of the electrostatics will always show up the bass units!

ISODYNAMIC

With the release of the Stathearn 21000 speakers, and the new Wharfedale series incorporating Isodynamic tweeters, this approach is gaining ground. It certainly has a lot of promise, which we shall undoubtedly see exploited as time goes on

The principle was pioneered by Wharfedale with their Isodynamic headphones some six years ago or so. It is really an attempt to gain the advantages of the electrostatic system, without the need for high voltages and attendant drawbacks.

A drive unit built to this principle consists of a thin sheet of mylar, or some such material, with a conductive track bonded onto it in a pattern which covers the surface in as symetrical manner as possible. This conductor acts as the voice coil of the speaker, and when an electrical signal is passed through it it responds to nearby magnets by moving the diaphragm in sympathy.

Once again colouration is low, and driver mass small-but alsó once again to obtain bass means large areas, and conductors capable of handling large currents. Strathearns units are above 500 Hz operators only and are transformer coupled to the input. Wharfedale employ their invention in high frequency units only

A pity-but one we might see rectified sometime in the future.

Exploded view of the Whardedale Isodynamic tweeker. The driver plane - second from the rear - uses a material 25 microns thick with an etched aluminium circuit.

The $\mathbf{2 1 0 0 0}$ from all angles. At the top we have the full system. Below that the diagram shows the operating principle of the SLC1. The polyester diaphram acts as the speaker cone. Below this caption two internal views of the unit. The radiating areas can be seen in the top diagram, and the lower rear view illustrates the damping material to control rear radiation.

RIBBON

If we take the voice coil of moving coil speakers, and make this the active element, instead of the cone, we would do away with a lot of the causes of colouration in the process. Mass would be much smaller, break-up or rippling would be greatly reduced, if not eliminated and thus transient handling improved.

The ribbon loudspeaker does exactly this. A very thin metal 'ribbon' is suspended between the magnet pole faces and the signal passed through it. It will vibrate with the signal, and thus produce the sound output

Acoustic output is low, and horn loading is usually employed to alleviate this problem.

Once again obtaining bass is a major problem, and moving coil units will take over from the ribbon as the frequency decreases.

Decca market an excellent example of this principle, which operates above 2.5 kHz .

Decca's ribbon loudspeaker. This features a ribbon element one tenth the thickness of human hair, and is horn loaded to increase efficiency. An 'acoustic lens' can also be fitted to aid sound dispersion.

PIEZO-ELECTRIC

In the July 1976 edition of ETI we reviewed the Motrola KN 6006A, the first piezo-electric unit to be released commercially. Since that time many commercial loudspeaker enclosures have employed piezo-electric tweeters for their total insensitivity to crossover networks, phenominal transient response and clean subjective sound quality.

Piezo-electrics have been around in hi-fi for a long time now in the guise of crystal/ ceramic cartridges. The principle of operation is based upon the fact that stress a piezo-electric crystal and a voltage proportional to the applied force is produced across its ends.

Conversely therefore if we apply a varying voltage across the ends of the crystal, mechanical deformation occurs, sympathetic to that voltage. No magnets aare required, and no coil is used.

In the Motorola design two thin slices of ceramic material-lead zirconite-lead titante in case it makes your life the fuller for knowng are epoxied onto a brass separator, and nickel electrodes deposited on to a facilitate connection. In order that the discs respond correctly to the input, they are polarised in opposite senses, so that on application of a common signal one disc expands and the other contracts-acting in the same direction therefore on the air load.

Pros..... .

Since the impedence curve for the unit shows a steep rise in value with falling frequency, the unit does not need a crossover to reject low frequencies.

A perfect tweeter.
Since there is no voice coil or cone the driver mass is significantly lower than an equivalent conventional speaker.

Being composed of a ceramic material heat dissipa tion is less of a problem also, and the Motorola can stand 35 V RMS for protracted periods with no signs of distress.

Due to the nature of its impedence, it is difficult to compare efficiency with normal units, suffice it to say that 4 V RMS produces 105 d BA at 18 ins distance, and that this can be considered efficient!

Motorola's KN 6006 piezo-electric high frequency driver. The actual driver is the small section at the rear, and the horn is to increase acoustic efficiency.

. And Cons.

Some amplifiers may not like the load any more than electrostatic units, but since these things are normall \dot{y} used with a good deal of attenuation and response shaping circuitry between them and the valued output stages this should not be too great a problem

Subjectively these units have always sounded a little 'hard' to me, and never as smooth as a good dome unit like the Isophon or Celestion 2000 designs. Still personal taste and all that

Once again acoustic efficiency is low, and hom loading is employed

Philips loudspeaker RH 544 Motional Feedback design. This unit incorporates a separate bass power amplifier, and a lower power amplifier for mid-high frequencies. Bass performance is exceptional for the tiny enclosure size, but other areas of output āre undistinguished.

MOTIONAL FEEDBACK
Although this perhaps only a modification of earlier systems, the performance gains at LF are such that it warrants a closer look.

Motional feedback is a form of feedback control of the driver cone in moving coil systems. The power amplifier are mounted within the enclosure, a separate amp for each drive unit, and so signal feed is from a preamplifier. The system is marketed by Philips.

The main advantage of this extra complication lies at the bottom end of the range where the output for given enclosure volume is considerably enhanced. The complication lies in the sensor fitted onto the driver.

This is mounted on a small PCB and is a ceramic acceleration sensor. This generates a signal proportional to the actual driver output, and this is compared electronically to the incoming audio. Correction is applied to remove any errors present. Cross over is carried out at small signal level, and active filters with all their inherent superiority are applied.

There is a 'slave' output which allows the enclosures to be stacked up to increase power handling and effective output.

This is one-eigth of the perfect speaker! Many experts consider that elusive device to consist of a pulsating sphere operating in free field conditions. Bose built this approximation to test pulse waveform response. From here sprung the excellent.Base 901 series III loudspeaker.

CAR

TACHOMETER

We've been contemplating a digital car tacho, but have been put off by resolution and response speed problems. However this Phase Locked Loop design overcomes these quite neatly - so here it is!

WE HAD OFTEN considered the design of a digital tacho for automobile use, but had rejected several schemes as we were unable to get both good resolution and response time - the two seemed to provide a very good demonstration of Heisenberg's Uncertainty Principle.

Consequently, we were rather pleased when Mike Pratt of SM Electronics came to us with his phase-locked loop based design which got round the problem. Would we like to do it as a project, he asked? Obviously, we said yes, and here it is.

This tacho features a fast response time, coupled with 10 Hz resolution, through the use of a phase locked loop frequency multiplier. It can be set up, by means of a single link, to work on 4, 6 or 8 cylinder motors.

Design Features

To measure the revolutions per minute of a motor is simply a matter of counting the number of ignition pulses over a given time. With a four-cylinder, four-stroke motor there is such a pulse twice per revolution. Therefore if we count these pulses for 30 seconds we will have revs / min with a one cycle resolution. Obviously this is much too long a sample period for practical use in a motor car and some compromise has to be made.

The usual solution is to use a 100 rev resolution and a, sample time of 0.3 seconds (on 4 cylinders). We considered this inadequate which is why we have not published a design until now.

In this design an oscillator is used which is phase locked to the ignition pulses except at a higher frequency ($x 8$ for 4 cylinder) allowing a short sample time $(0.375 \mathrm{sec})$ with a 10 rev resolution. By using a different multiplication factor compensation for different numbers of cylinders can be made. Unfortunately with the multiplication factors used ($\times 8, x 6$, $x 4$) the sample time for 6 cylinders is not exactly the same as that used for 4 and 8 cylinder motors. Altering the ratios to $\times 12, x 8$ and $\times 6$ would enable a 0.25 sample time to be used for all ranges, but this is not possible with the divider IC utilised in this design

Construction

Assemble the PCB with the aid of the overlay ensuring the components are
orientated correctly. The tantalum capacitors normally have a + mark indicating the positive load, or a dot on the side. When soldering the CMOS ICs $(4,6,7)$ earth the tip of the soldering iron.

Note that there is one feedthrough or link between the two sides of the board near C10

Calibration

Initially place a link between the point ' C ' and the terminal corresponding to the number of cylinders. Now with the power supply connected feed a 50 Hz signal of between 12 and 30 V into the points input using the 0 V as common. Now adjust RV1 until the display reads 1500 RPM for 4 cylinders, 1000 for 6 or 750 for an eight cylinder car.

Fig. 2. Full circuit diagram for the digital car tacho unit.

Fig. 1. The component overlay for the board. The board is double
sided although only the lower surface is shown here. Note the
link between the two surfaces of the board near C10.

Γ

.

POWER SUPPLIES

One more from Tim Orr. This tìme he takes us through a series of different methods for powering up circuits. On the way he explains the theory behind each.

THE JOB OF producing stable regulated power rails has been much simplified by the introduction (about seven years ago), of three terminal fixed voltage regulators. These devices can make the power supply design, problem relatively simple, but even so the designer must be fully aware of a lot of other important details that can cause poor results. Firstly, consider a simple unregulated power supply, fig. 1 .

Figure 1. Below: an unregulated power supply. Above: The output (with a load resistor).

The function of a mains isolating transformer is to physically separate the user end of a piece of equipment. from the 'potentially' (!) lethal mains voltage. The transformer also provides a suitable voltage which can be rectified and smoothed and connected to a voltage regulator. This is the secondary voltage of a transformer and it is measured in VRMS at a particular loading.

That is, if the transformer is rated at 15 V at 10 VA , then the output voltage will be 15 V when the load upon the transformer secondary is 10VA (10 watts).

If the load is removed the output voltage will rise. The percentage change from load to no load is known as the TRANSFORMER REGULATION and is typically of the order of 20%.

To convert the $\mathrm{V}_{\text {RMs }}$ voltage to a DC voltage it must, be multiplied by 1.4142 . Thus a 15 VRMS (loaded) transformer secondary will generate 21 V 2 DC when full wave rectified and smoothed, which will rise to 25 V45 DC when the load is removed (assuming 20\% regulation see Fig. 1).

Thus care has to be taken when selecting a transformer such that the smoothing capacitor working voltage is not exceeded. Also, make certain that the polarity on this capacitor is correct, they can LITERALLY explode if wired up backwards!

This piece of hardware has three sections, a step down, isolating transformer, a diode bridge and a smoothing capacitor. The transformer is driven from the mains, the voltage of which varies depending on where you live (it's 250V / RMS in Fulham). Some transformers have got a copper screen which isolates the primary winding from the secondary windings. For the purpose of safety, this should be connected to earth.
Also, for maximum safety, connect the 220/240/250 tapping to mains LIVE. Another type of mains transformer uses what is known as a split bobbip, the primary is wound on one bobbin, the secondary on another. Thus the two windings are inherently physically isolated, and so no safety screen is included. These two transformer types are generally constructed on what is known as an 'E' core; take one to bits and you will find that it is
constructed out of lots of ' E ' shaped laminations. These ' E ' laminations are butted into 'l' laminations, and clamped together. This butting together of the laminations can cause magnetic field problems. The wider the gap between the ' E ' and 'I' laminations, the larger the magnetic field around the transformer.

The magnetic field generates a significant amount of induced hum in nearby electronics, this can be overcome by using a low leakage torroidal transformer which is constructed from circular laminations. The primary and secondary windings are wound through the centre of the torroid (see if you can imagine how). The torroidal transformer, by virtue of its 'continuous' laminations results in a low stray field and a low profile design, making it ideally suited for audio amplifier applications.

When a load is placed upon the power supply shown above, the output voltage appears as a DC voltage on top of which is a ripple voltage. This can be thought of as two separate periods, a charge period where the capacitor is charged up by the power supply and a discharge period where the load discharges the capacitor.

This charging and discharging generates a ripple voltage which has a period of $10 \mathrm{~ms}(100 \mathrm{~Hz})$. A load current of 100 mA , and a 100 U capacitor will result in a ripple voltage (Vpp) of about V7

As a rule of thumb I usually allow 1 to 1 V5 maximum ripple if a voltage regulator is being used. This will generally result in an output ripple of less than 1 mV . If this ripple were to be obtained by just using a larger capacitor, then a 700,000U-capacitor would be required!

Generally the discharge period is much longer than the charge period. This means that the transformer is only supplying power for short periods, in fact during the charge period. During these periods the smoothing capacitor is rapidly charged, and it is quite common for these current surges to exceed several amps. This can cause mains BUZZ problems when laying out printed circuit board designs for power supplies.

The correct layout is shown below the circuit. If the current surge is 1 A and the track resistance is 20 milliohms then the voltage developed will be $\mathbf{2 0} \mathbf{~ m V p p}$.

Voltage regulators

A voltage regulator takes a varying unregulated input voltage and produces a fixed regulated output voltage. There is a wide range of fixed voltage three terminal regulators to choose from, with a choice of maximum current handling, output voltage and positive or negative operation. The data sheets for these devices contain lots of seemingly complex pieces of information and so a glossary of terms is now included.

Ripple Rejection

The ratio of the ripple voltage at the regulator input to that at the output, generally expressed in dB. Typically of the order of $60 \mathrm{~dB}(1000$ to 1$)$, that is 1 Vpp of ripple at the input ends up as 1 mVpp at the output.

Temperature Coefficient

The output voltage change for a change in regulator temperature, expressed in $\mathrm{mV} /{ }^{\circ} \mathrm{C}$.

FEATURES

NEWS DIGEST LOUDSPEAKER PRINCIPLES POWER SUPPLIES ELECTRONICS IN MEDICINE DATA SHEET EXPLAINED

MICROFILE BORIS IN CHECK AUDIOPHILE TECHNICAL MEMORANDUM TECH TIPS

What goes on with whom and where!
14 Cone-fident appraisal of all types!
27 Tim Orr explains how - and why.
40 A history of the electron put to use
57 This was your idea
67 Big news for micro-men
81 A new chess machine tested.
87 A Shure winner?
91 A revolutionary new concept!
93 Readers own ideas

PROJECTS

DIGITAL TACHO DIGITAL MODULE DIGITAL DIAL LOG CONVERTOR CLICK SUPPRESSOR

23 35 49 62 73

Going around in the car accurately Useful four digit design Medium wave high quality Turn your keyboard to use. Record project!

INFORMATION

Check it out p. 81

De-click de hi-fi p. 73

EDITORIAL AND ADVERTISEMENT OFFICE
25-27 Oxford Street, London W1R 1RF. Telephone 01-434 1781/2. Telex 8811896

INTERNATIONAL EDITIONS
$\begin{aligned} & \text { AUSTRALIA } \text { Collyn Rivers } \\ & \text { Publisher } \\ & \text { Les Bell } \\ & \text { Acting Editor }\end{aligned}$
Holland Anton Kriegsman Editor-in-Chief

CANADA Steve Eraidwood Editor
Graham Wideman Assistant Editor

GERMANY Udo Wittig Editor
$A B C$

ETI BOOK SERVICE SPECIALS FROM ETI PANEL TRANSFERS
HOBBY ELECTRONICS
BINDERS
ETI PRINTS
FEBRUARY PREVIEW
MARKETPLACE SUBSCRIPTIONS

T-SHIRTS

Fine print this.
55 . All our publication on show.
59 Finishing touch.
61 Look out for it!
69 Keep 'em looking good.
71 What other way is there?
79 News of next month's ETI
84 A new LADIES' watch!
92 Make it easy on yourself.
98 Good cover!

47

[^0][^1] accuracy but.ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

Input Voltage range

The range of voltages over which the regulator will function normally. For example, a 12 V regulator may work from 14 V 5 to 30 V . At 14 V 5 the regulator will 'drop out' and lose its regulation. Regulators generally need 2 to 2 V 5 in excess of their output voltage. At 30 V the regulator will go 'pop' (time to buy a new one).

Output voltage

The voltage at the output terminal with respect to ground. Generally within $\pm 5 \%$ of stated value.

Line Regulation

The ratio of the change in the output voltage caused by a change in the input voltage, typically of the order of 0.2%.

Load Regulation

The output voltage change for a specific change in output load current.

Short Circuit Current

The output current when the output is shorted to ground.

Output Noise Voltage

The RMS noise voltage measured at the regulators output, not including any ripple.

Power Dissipation

The maximum power that the regulator can safely generate on a particular heatsink.

As a rule of thumb the regulator case should not exceed about $80^{\circ} \mathrm{C}$ (which is hot to touch). However, always run the device at as low a temperature as possible. It is thermal ageing that eventually kills electronic devices and for higher temperatures the ageing process is disproportionally faster.

Some applications of voltage regulators are given below.

The table below relates the secondary voltage of a transformer to the peak voltage at rated load and the off load voltage, which will be considerably higher.

TABLE ONE

V secondary at rated load	V peak at rated load	V peak off load transformer regulation
5 VRMS		20%
6 VRMS	$8 V 07$	$8 V 48$
9 VRMS	$12 V 78$	$10 V 18$
10 VRMS	$14 V 14$	$15 V 26$
12 VRMS	$16 V 97$	$16 V 97$
15 VRMS	$21 V 21$	$20 V 36$
20 VRMS	$28 V 28$	$25 V 45$
25 VRMS	$35 V 35$	$33 V 93$
30 VRMS	$42 V 43$	$42 V 42$
35 VRMS	$49 V 50$	$50 V 92$
40 VRMS	$56 V 57$	$59 V 40$
		$67 V 88$

TO92

(100mA rating)

(200mA rāting)
TO202
TO220
(500mA)

TO3
metal
(2A)

TO3
metal
(3A)

A)

This circuit shows a conventional arrangement of a three terminal device. It is advisable to use a decoupling capacitor connected close to the input terminals. This prevents high frequency instability. If this capacitor is left out then regulation can sometimes be greatly reduced. The decoupling capacitor on the output helps reduce the impedance at high frequencies, where the regulator loses its performance. For best results use a tantalum capacitor.

B)

The output voltage of a regulator can be increased by applying a voltage to the common terminal. This can be done by using a zener diode.

D)

A high voltage unregulated supply can cause problems when using regulators. It may at times exceed the maximum voltage rating of the regulator. A simple voltage regulator D_{2} and $Q 1$ can be used to overcome this problem. D, should be chosen so that it is about 6 V greater than the regulator output voltage. Inis technique has the added advantage that the power dissipated in the regulator is less (the rest being dissipated in Q1), and the regulator is presented with a semiregulated voltage, so the output will have less ripple.

Dual Power Supply

The circuit shows a complete regulated dual power supply. The unregulated rails are obtained from a split secondary transformer, a bridge rectifier and two smoothing capacitors. A positive and a negative regulator have been used to generate the + and - rails. These regulators should be mounted on heat sinks
and they should be insulated. The pin out of the negative regulator is different to that of the positive regulator. The two diodes at the output prevent latching up situations (on load) whereby one side starts up faster than the other and forcibly reverse biases it, preventing it from operating.

Tracking Regulator

Instead of using a negative voltage régulator to obtain the negative rail, an op amp and a power transistor can be used. The resistor ratio, R1, R2 determines the negative rail voltage. The negative rail is not, however, current limited. The internal current limiting of the regulator is shown. When the load current exceeds the current limit, the output voltage drops to almost OV. This makes the regulator short circuit protected. Another type of current protection is known as 'FOLD BACK' current limiting (shown dotted). This serves to reduce the short circuit current. These devices protect the power supply from abuse. Another type of protection device is the overvoltage clamp, which

FEATURE: Power Supplies

protects the 'non-power supply electronics' from an increase in the power supply voltage. These are two terminal heavy current devices which are placed across the power supply. When the supply voltage exceeds a certain level a thyristor is triggered on and clamps the rail to ground. This is intended to pop a fuse and so disconnect the faulty power supply (which is better than replacing a $£ 1,000$ worth of IC's).
-ve output $=-(+$ ve output \times R2/R1)

With foldback the short circuit power dissapated in the regulator is less than that with current limiting.

723 Voltage Regulator

The 723 is an industry 'standard' device. Many manufacturers produce it and the device itself is versatile. It comes in a 10 pin TO5 can or a 14 DIL pack. The device contains a precision voltage reference, with a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ an error amplifier, an internal transistor capable of handling 100 mA and a current limiting mechanism. By using a few external resitors, a capacitor and maybe an external power transistor, a wide variety of regulator designs can be realised.

Left is shown the block diagram of the $\mathbf{7 2 3}$ regulator. As pinouts vary depending upon package, no pin numbers are shown.

Current Limit

Adjustable Positive Voltage Regulator

By using a variable feedback path (RVI), a variable regulated output voltage can be generated. The voltage reference is connected to the non-inverting input of the error amplifier and the output voltage (via RVI), to the inverting input. The error amplifier drives the output transistor and hence the output voltage is controlled by the feedback voltage from VR1. A 100pf capacitor is used to stabilise the device. R1 is used as a current limit control. When the current through R1 (the load current), exceeds 100 mA a voltage of 560 mV is set up across it. This is just about sufficient to turn on the current limiting transistor which in turn shorts out the regulating transistor, causing the output voltage to collapse towards OV .

Regulated Power Supply

Sometimes it is necessary to make a simple power supply using discrete components when a non-standard voltage is required.

Left: Circuit diagram of discrete component PSU. Voltage measurements are taken with high impedance voltmeter.

The circuit shown uses all the basic elements of a voltage regulator, that is, a reference voltage $\mathbf{Z 1}$, an error amplifier and a series control Transistor Q1. The zener diode, $\mathbf{Z 1}$ sets up a reference voltage of 5V1. This diode has a temperature coefficient of $-1.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (a 5 V 6 zener is best at $-0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$). The resistor ratio of R3 and R2 sets the output voltage and the op amp provides the error correction (the regulation).

C1 is used to reduce the output impedance at high frequencies. The zener diode has a slope resistance of 76Ω, and so any fluctuations in the unregulated rail will be attenuated by the ratio of 76:7:0.016
R1 4700
Therefore a 1 Vpp ripple will end up as 16 mV Vp, but will be multiplied by the gain of the R3, R2 network to nearly 50 mV .

Improved Regulated power supply

This power supply has various improvements over that shown. The reference zener $\mathbf{Z 2}$ is run at almost constant current by the R12, Q1 $\mathbf{Z 1}$ network. This makes $\mathbf{Z 2}$ much less sensitive to ripple and unregulated supply fluctuations. The filter R3 C1 (7 HZ low pass), further reduces any ripple voltage and noise from the zener diode. The preset VR1 allows the output voltage to be varied.

If a precision power supply is required then a precision voltage reference should be used. These can be obtained with temperature coefficients as low as $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. When using this level of stability, high stability resistors (TC = $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$), and a low drift op amp should be used. Also, to reduce mains carried interference (mainly sharp clicks due to electric motors and thyristors turning on), a mains filter should be used. This is a passive inductor capacitor low pass filter network which attenuates high frequency spikes and clicks.

ETI

DIGITAL MODULE

*4 digit *Up/down counting *drives LEDs directly *latch *presettuble *second register *Equal and zero outputs *DC to 2 mHz *5U aperatian

THE THREE DIGIT display we previously published has proved to be one of our most popular projects. We have used it in a number of projects and we know of several commercial companies using it in their own equipment.

Many people have asked us for a 4 digit version and we have been looking round at ICs available. We have chosen this Intersil device because we believe it offers the best versatility at the moment. Apart from being a 4 -digit counter-latch-decoder driver needing no external components except the displays, it also is an up-down counter and can be preset to any number. In addition, it has a separate register which also can be set to any number and comparators which give outputs when the counter is equal to the register and when it is zero - all in one IC!

Mod Build

The unit is built on two small PCBs which are connected together with short links of tinned copper wire. Be careful to orientate the IC correctly as it is expensive!

The preset system is designed to use a 4 digit BCD thumbwheel switch

Fig 1. Full circuit diagram of the counter module. The How It Works section for this is given overleaf - but as this is really. a "How To Use It" section it don't matter - does it?

SPECIFICATION	
Number of digits	4
Readout	LED
Maximum frequency	2 MHz
Input impedance	100 k.
Output drive	1 TTL load
Supply voltage	$4.5-5.5 \mathrm{~V}$
Supply current	$500 \mu \mathrm{~A}$.
low power mode	100 mA
all eights	

(closed $={ }^{\prime} 1^{\prime}$) but individual switches can be used if required. Input is in $B C D$, therefore the switches will have the weighted values $8,4,2$ and 1 . If the preset is not needed then the diodes can be left out. If a preset is needed, but always to a fixed number, links can be inserted to replace the "on" switches and the other diodes left out. ET
Fig. 2. The positioning of the displays and the links which must be installed before the displays.

TO THUMBWHEEL SWITCHES

Fig. 3. The component overlay for the main board. The common connection from each of the thumbwheel switches goes to the track next to the other connections.

Full patterns for the digital module project. Shown full size. Board C - above is to fit high brightness displays such as employed in our digital dial project.

HOW IT WORKS

Count Input - Pin 8

The counter is incremented or decremented on the leading edge of this input. A schmitt trigger is provided with a 500 mV hysteresis on a 2 V trigger point. For high speed operation, or operation from a digital output, delete R2 and C1 and short out R1. Maximum frequency of operation is about 2 MHz .

Up-Down - Pin 10

If this pin is left open or taken to +5 V the counter will be incremented by the count input. If it is taken to 0 V the counter will be decremented by the count input.

Reset - Pin 14

If this pin is left open or taken to +5 V the counter is free to be incremented or decremented. If it is taken to 0 V the counters will be reset to zero and held there until reset is taken high again.

Store - Pin 9

Ig this input is left open or taken to +5 V the latches are "closed" and the information which was in the counters at the time the store input went high will be remembered, decoded and displayed. The counters can be reset, incremented or decremented without affecting the display.
If it is taken to 0 V the counter contents will continuously be displayed for as long as this input is at 0 V . Any change in the counter contents will be shown on the display.

Load Counter - Pin 12

This is a 3 level input. If it is left open the counter works normally. If it is taken to +5 V the counter is loaded with the BCD data which is set on the thumbwheel switches. If the latch is open, this number will also be displayed. If this input is taken to 0 V the $\mathrm{BCD} \mathrm{I} / \mathrm{O}$ pins become high impedance. If a 3 level input is to be controlled by other logic outputs they must be tristate devices.

Load Register - Pin 11

This is also a 3 level input. If it is left open the counter works normally. If it is taken to +5 V the register is loaded with the BCD data. If taken to 0 V the circuit goes to a low power state with the multiplexing oscillator stopped, the display off and the BCD I/O pins in a high impedance state. The operation of the counter is unaffected except that there is no display.

BUYLINES

Since this project is based entirely upon the one chip-ICM 7217A this is all there is to cause problems! Since it appears in most peoples catalogues we cannot foresee any trouble here. Displays can be any type really - but for outdoor work use high brightness types.

PROJECT: Digital Module

Display Control - Pin 20

This is also a 3 level input. If it is left open, leading edge blanking occurs. If all digits are zero then all are blanked. If it is connected to +5 V the display is completely blanked irrespective of the value. If taken to 0 V all digits are ON irrespective of value.

Scan - Pin 13

The internal multiplexing frequency is nominally 10 kHz giving a digit repetition rate of 2.5 kHz With a 20 pF capacitor from this point to 0 V the frequency drops to 5 kHz and with $90 . \mathrm{pF}$ it is about 1 kHz .

BCD $1 / 0$ - Pin 4-7

This is a multiplexed data port, normally an output which can drive 1 TTL load. It becomes an input when either LC or LR is at +5 V . Pin 7 is the least significant bit.

Digit Drives - Pins 15-18

These are used both to drive the LEDs and to provide data indicating which digit is being presented at the BCD I/O port. Pin 18 is the least significant digit.

Zero - Pin 2

If the value of the counter is zero this output will be at 0 V .

Equal - Pin 3

If the value of the counter is equal to the value of the register this output will be at 0 V .

Carry/Borrow - Pin 1
When the counter goes from 9999 to 0000 or from 0000 to 9999 a 500 ns positive pulse occurs on this output. This is connected to the count input of a second unit when an eight digit display is needed

RESISTORS (all $1 / 2 \mathrm{~W}$ 5\%)	
R1 R2	$\begin{aligned} & 100 \mathrm{k} \\ & 1 \mathrm{M} \end{aligned}$
CAPACITORS	
C1 C 2	$33 n$ polyester 14035 V tantalum
SEMICONDUCTORS ICM D1-D16 ICM 7217A DISPLAYS NN914 DL704	

A HISTORY OF ELECTRONICS \mathbb{N}

 MEDICINE

 MEDICINE}

THE USE OF ELECTRICITY FOR medical purposes dates back to the Ancient Greeks who used the electric eel to treat various maladies. In 1759 Wesley collected case histories of the use of electricity. The first recorded use of electricity for treatment in a hospital in London was in 1767.

Not quite 200 years ago, in 1786 to be precise, Professor Luigi Galvani - an anatomist at the University of Bologna, Italy - discovered by chance that the muscles of a dead frog contracted under the influence of an electrical quantity.

He wrongly assumed that animal electricity stored within the muscle caused this to happen. It was, in fact, the result of dissimilar metals forming a primary electric cell which energised the nerves of the muscle. Volta of the University of Paris proved it and subsequently gave the world the voltaic battery, in 1800.

The contribution of these two men provided, in the simple primary cell, a workable basis for using electricity in practical ways not previously possible with the electro-static form of electricity. Galvani's work on "animal fluid" was amongst the earliest electro-medical studies. The apparatus he used was crude by today's standards - see Fig. 1.

Fig. 2. Apparatus used by McKendrick to give lectures on life in motion to Royal Institution, London, audiences around 1890.

Fig. 1. Artist's idea of Galvani experimenting with frogs' legs in the 1780 s . Note the friction
electrostatic generator on the left and the Leyden jar on the right (Funk and Wagnells).

Body Electric?

Research into physiological electric quantities gradually became more sophisticated as the 19 th century passed. This development, however, had to wait for suitable experimental inventions such as the electromagnetic galvanometer which became available in its crudest form around 1830. A typical laboratory electromedical instrumentation set-up of the 1890 s is shown in Fig 2. A smoked glass plate moved steadily across the end of a mechanical pen secured to the end of a frog's leg muscle. The muscle was energised by high-voltage generated from a vibration induction coil which was energised by a chromate primary single cell of the Grenet kind. Smoked screen recorders are still in use today in some medical research measurements, blood flow parameters being one example.

The sphygmometrograph (as a pulse measuring instrument was known in that time) was originated by Marey in 1860. A later design by Verdin is shown in Fig 3. Electronic method was little used in medicine in early times, as powerful electric signal amplification was not obtainable until the beginning of the 20th century -

Electricity has long been used for medical purposes, here's the story of the past and a look into the future. By Peter Sydenham.

Fig. 3. Verdin's apparatus of the $\mathbf{1 8 9 0}$ s for recording action of the pulse.

Fig. 4. Schematic of McKendrick's 1891 method for measuring heat generation in muscie.
when the thermionic valve was invented by Fleming (in 1904)

Figure 4 shows experimental equipment for measuring heat production of muscular contraction around 1880. Thermocouples, forming a thermopile, drive the crude galvanometer

Ion Therapy

Another aspect of medicine where electricity is used is for therapeutic treatment. Since the very early 1800 s output of the various kinds of electric current generator, namely the Faraday induction coil, the galvanic chemical battery, the sinewave rotating generator and the friction statical generator have been applied to appropriate parts of the body to provide a cure for all sorts of ailments.

X-ray equipment was born in 1895 when Roentgen discovered X-rays in a chance situation using photographic plates. There is probably no case in instrument history where application was more rapid. Edison, and others, had equipment in use in hospitals within months. Figure 5 shows contemporary American X-ray plant of 1899.

Measurement and recording of heart performance also began around 1900. Professor Einthoven of Holland devised a rapid response, high sensitivity detection instrument in 1903 - the string galvanometer. Soon after this was coupled to a photographic recording system, by the Cambridge Instrument Co., to produce an electrocardiograph. The first installation of this was made in 1909. By 1945 cardiographs were available in portable form. Figure 6 shows the interior of a 1930s. Both Brothers portable electro-cardiograph invented and made in Adelaide, South Aústralia - possibly one of the first portable units devised anywhere. It used a loud speaker drive unit (right) to mark a rotating smoked disk.

The record was viewed by the physician using an optical magnifier. Amplification to drive the stylus from skin electrode signals was obtained by thermionic tubes.

As with all disciplines, electronic method opened the door to new accomplishments. In medical electronics it happened from the 1920s onward. Equipment for researching physiology at Oxford University, in 1949 is shown in Fig 7 The unit, advanced for its time, incorporated amplifiers, a temperature control unit, stimulators to induce responses, a time base and a cathode ray tube display unit.

Electronic equipment used in medicine has come a long way during the past 50 years. This can be seen by comparing the apparatus pictured above, which covers the 1800 s to 1930 s period, with modern equipment such as that used in pathological testing and nuclear medicine.

Future

Against this background let me now suggest developments we can expect to experience over the next quarter century.

Fig. 5. Complete X-ray apparatus in use in America around 1900. Note the lack of safety devices and precautions.

Fig. 6. Interior view of a Both portable electro-cardiograph machine made in Adelaide around 1930.

Fig. 7. E Electro-physiological research equipment used by Dickinson at Oxford University in 1949.

Monitoring

The largest proportion of electro-medical equipment is concerned with measurement; for detection of abnormal states. At present comparatively few of the incredibly great range of medical measurements needed can be made in situ on the body and without disturbing its functions. Samples of tissue, blood, urine, etc. are removed for analysis in the pathological laboratory. This process, although performed faster today than ever before, can still take several hours before a diagnosis is available to the physician in order that he or she can decide corrective action. Analysers now exist that handle many measurements of a sample entirely automatically once the sample is loaded into the analyser. But the sample must first be extracted from the body and then be transported to the machine, processes which consume time and in some circumstances alter the sample from its original state.

It is realistic to expect the transport step to be eliminated in the future with most local clinics having their own units for analysis of samples. The next stage in progress will come about by the invention of units that measure parameters such as blood count, albumin, etc, by contact externally to a suitable vein or artery. Direct measurement like this would also provide more accurate measurement as the blood would be in its normal working state. Furthermore, it would then be possible rapidly to optimize drug dosage and to investigate changes in parameters as they happen. The concept of in-situ measurement will apply to numerous other tests.

In special cases some people have already been equipped with sensors of critical body parameters. The outputs are telemetered to a remote observer. Examples of this are in space-medicine, in fitness studies and in a few heart disease cases.

Microbody

Considering the low-cost data processing power already available, and coupling this with inexpensive micro-miniature sensors we can expect to see developed in the future, it is possible that individuals will one day be able to obtain self-monitors that provide warning when body parameters exceed allowable limits.

Better measurements always leads to better control. As an example, respiratory tract problems, such as hay fever and asthma, are hard to combat effectively because of the lack of detailed data about each individual's characteristics in the various circumstances encountered. Not all people are allergic to the same pollens - we could benefit greatly if an easy way existed that determined the allergic pollens involved.

At present, a pollen count is usually taken by drawing the ambient air over a sticky surface for many minutes hours sometimes. The surface is then observed with a microscope, the technician counting all pollen grains together to obtain the total pollen count. This process is now sometimes carried out using computer-controlled video TV camera systems, but the systems are still barely able to group the various kinds of pollen grain. (They are typically a micrometre in diameter or smaller - counts of a few grains per cubic metre can cause unwanted symptoms.)

A development that could help is a sensor that provides a virtually instant count of the individual kinds of pollen grain present - a real-time sampling analyser.

news digest.

FLEET OF FOOT?

For all us kiddies (anyone who isn't - please leave now) this is a good idea. Those nasty sneaky MPUs have invaded our nice little game of Battleships. Based on a TMS 1000 the unit contains enough

RAM to hold the board as seen by both players, and make appropriate noises at time of defeat or victory or whatever. Nice explosion sound effects etc too. And what's more it's British designed - which
is a distinct recommendation and selling well in America - which isn't. Price $£ 29$ or thereabouts AID, 10 RATHBONE PLACE, LONDON W1P 2DN.

NOT A TRACE OF GREED

Two new oscilloscopes for the home constructor, from the Scopex stable Called the Calscope 6 and Calscope 10 they are probably indicative of the fact the home market is of growing importance to manufacturers. Specs. below.

Calscope 6: - single trace: sensitivity range 50 mV to 50 V per $\mathrm{cm} / \mathrm{in} 12$ ranges: Bandwidth 6 MHz : time base range 1 and to 100 ms per cm Time base triggering is claimed to be particularly good. Price $£ 162$.
Calscope 10:- dual trace: 10 mV sensitivity: bandwidth 10 MHz (displayable across full screen size): time base range 200 ns to 100 ms : accuracy 3% all ranges. Price £219.

Both available from Maplin and Marshall both of whom you should know already.

PEDIGREE CATS

Electronic Brokers superb range of second hand hardware that should interest most small firms and not a few individuais. Much new equipment is also included, and although the cost is high at $£ 1$ to private individuals companies can get it free!

ElectronicBrokersLTd

Not fair this world is it? ELECTRONIC BROKERS, 4a PANCRAS ROAD, LONDON NWI 2GB.
Ace Electronics - good range of components. Poorly produced catalogue but it is free, and adequate, and contains some nice little kits amongst other things worth sending for ACE MAILTRONIX TOOTAL STREET, WAKEFIELD. W. YORKS.

PUT THESE TO GOOD USE

Some new PUTs (at last), and in different packages too. The MEU21 and 2N6028 are intended for use in long internal timers and such and have low leakage (100 n A max).
The MEU22 (and 2N6027) are general purpose types. All have specs of: 150 nA peak point current (2N6028), low forward voltage (lV5 for 50 mA $I_{\text {FWID }}$) and high pulse output voltage (6 V minimum) MICRO ELECTRONICS LTD, YORK HOUSE, EMPIRE WAY, WEM BLEY, MIDDX.

With such a device the sufferer could test for the hostile situation before symptoms arise and take remedial action in time. Technologically such an instrument appears feasible. It is, however, cost and physical size that holds up its development and its practical everyday use at present.

A likely parallel already existing is the Coulter counter that analyses the size and number of cells in a blood sample. Blood-cell counting of several years ago required the blood to be smeared on a microscope slide and the cells counted by eye under a microscope. Today the machine makes the measurements in a few seconds by counting particles as they pass a small orifice - but it is neither portable nor inexpensive. Figure 8 shows a Coulter counter installation as used in the larger pathological laboratories.

Development of personal monitors will almost certainly pass first through a telemetry method in which a central computer processes the data, perhaps with the help of the trained physician to begin with. A direct self-contained method will then be developed in which the specific data processing requirements that have emerged from experience, are integrated into the unit.

Sensors

The human body is a vastly complicated chemical process plant. It has sensors feeding information to the brain for central processing. In turn, the brain sends signals to actuators - the muscles which cause the body to function and to do work. Nerves are the hardwired data channels for receiving and sending control information.

Slight deficiencies in the senses of sight and hearing have been aided using instruments - spectacles and hearing aids. The latter began as acoustic horns which provided sound pressure gain without active amplification. The advent of the telephone led to amplifierless hearing aids in the 1900's which used several mouthpieces coupled to the ear pieces (Fig 9). Then came electronic units which provided active signal gain from miniature thermionic tubes. Today we have integrated semi-conductor circuitry. We have still a way to go, however, before we are able to compensate for a failed. action of the inner ear mechanism.

Vision, until very recently, was aided only by optical lens compensation. But this applies only where the eye is still largely operative as an optical-to-electrical transducer. Quite recently experiments have been reported in which a miniature video camera provides electronic signals that drive cells in the brain to provide illusion of sight. The method is still crude compared with the performance of natural process. Given time for research it seems reasonable to assume that quite compact and useful artificial eyes will soon be available for blind people. Bionic man is not so fantastic! Interestingly, once the bionic eye is developed it is an easy matter to provide greater than natural visual acuity and to offer sensitivity to other than the visible light band - infra-red for instance.

Providing electronic replacements for the sense of smell will most likely be a much later development. We know too little about the olfactory senses and have no really compact and cheap smell sensors at this time to expect great progress to occur in the near future.

Fig. 8. Coulter counter unit of today that analyses blood sample particles providing a printout (IMUS, Adelaide).

Fig. 9. 1900's hearing aid. The three receivers, which fit into the case, provide signal to the two earpieces. No active amplifier was involved. (Birdwood Mill Museum, S.A)

FEATURE : Electronics in Medicine

Animals, such as dogs, possess a sense of smell vastly much more sensitive than humans. Ants track each other by a scent trail! Yet man has not yet produced small and inexpensive chemical analysers (smell is a largely chemical process) that can meet the complex sensing requirements of smell detection.

Scanners

X-ray and nucleonic diagnostic methods have the valuable feature that certain internal structures of the body can be seen. But all such methods lack the spatial resolution we obtain by visual examination with the unaided eye or through a microscope. A nuclear radiation source set-up within the body privides a rather diffuse output picture. Resolution is improved by increasing the number of individual elements at the sensing stage. The gamma camera, for example, provides two-dimensional pictures using over thirty scintillometers connected in such a way as to provide many more picture elements. The latest development senses the body area by scanning multiple sensors thereby collecting yet more data in a given time. Sophisticated processing is then used to provide video screen outputs which contain much more useful information than ever before. Similar techniques apply to X-ray, nucleonic and ultrasonic signal transmission. Now that vastly more powerful data processing capability exists the future development will be to incorporate many more sensors of the same kind and make more effective use of three-dimensional data. Other variables, such as, say, thermal emission will also be incorporated along with systematic experience gained into the processing, all this to providing data conversion for a more meaningful measurement process.

Surgery

Electrical methods in surgery traditionally include endoscopes with which to see into inaccessible places and cauterizing probes for sealing blood flow, cutting and destroying cells where need be. The recent introduction of the laser as a cutting tool has most valuable properties. Selection of the appropriate wavelength decides which kind of body tissue will be cut. For example, it is possible to weld the retina of the eye through the pupil without need for surgery. The radiation is only absorbed by retinal material, the pupil and fluid of the eye ball being transparent to the wavelength used.

The selective property of narrow-band radiation will enable some highly precise surgical operations in the future. An operation might go as follows: a rigid framework holds the patient fixed with respect to an $x-y-z$ translating pulsed laser operating head. Wired to the control unit of the translator are electrodes fixed to the body. These sense when low-power sensing pulses are energising the specific part of the body required to be operated upon. The unit scans until sensing signals (operated by a non-cutting wavelength source) verify the location of the beam. Once at such a point the laser is switched to full cutting power continuing to cut as the time-multiplexed sensing signals indicate position is satisfactory

Looking back, electro-medical apparatus has only been with us for a mere 50 years. In the last 10 years of that time we developed inexpensive and very powerful data processing methods. The next 25 years are likely to unfold undreamed of aids to medicine many of which we would regard as miraculous if we heard about them today.

ET

 \qquad 	

DIGITAL DIAL

Most AM radio dials are pretty hopeless - especially portables and car radios. This application of our counter module can be a decided improvement.

WITH MODERN RADIOS which are designed to be operated anywhere in the world, the local station call signs are no longer marked on the dial. Instead the dial is marked with frequencies making it more universal. Unfortunately the scaling on many receivers leaves a little to be desired, with many car radios lucky to have 3 or 4 markings. The use of pushbutton selection helps but when a cassette is fitted or you are out of your local area there is still the problem of knowing to what station you are tuned.

This project gives a direct readout of the station being received allowing for easy identification and selection. The display is remote from the receiver allowing it to be mounted on the dashboard for easy viewing.

Design Features

This project is the first to employ our four digit module presented elsewhere in this issue. We will be using the module again over the next few months so don't lose track of it!

If this device is to be used outdoors i.e. in the car it is recommended that high brightness displays, such as the Hewlett Packard HDSP 4133, be used. As these have a different pin-out a new display board is presented in this article.

The theory of operation is that we actually measure the frequency of the Jocal oscillator in the radio and subtract the IF frequency. While we could have subtracted this using digital logic we chose to do it by resetting the display not to zero but to 9545 ($10000-455$). The first 455 pulses in the timing period are then used getting to zero and in effect, only pulses after this are counted and displayed. This number can be loaded into the counter by

SPECIFICATION

Frequency range
Accuracy
Sensor
Power supply Display
$500-1700 \mathrm{kHz}$
$\mp 5 \mathrm{kHz}$
pickup coil or direct connection
7-20VDC @ 80mA or 240VAC
4 digit LED
selecting the appropriate diodes and using the "load counter" input instead of the reset line. The only difference is that as the data is entered into the counter serially the pulse used must be longer than 4 times the internal oscillator period Also as the LC input is a three state input it cannot be driven by conventional two-state.

Out of Tune

We initially tried capacitive coupling onto the tuning capacitor of our portable radio (oscillator section!) but the loading detuned the set too much. We then tried a pickup coil and found enough signal with it in the correct place not to require any electrical connection to the set. With
PROJECT: Digital Dial
 found which will give a reading without moving it off station. Permanently connect to this point.
With a portable radio try moving the pickup coil around the set, probably in line with the aerial coil, until the best results are obtained.

Calibration

Place the pickup coil in position such that reliable operation is obtained and tune to a known station
(preferably near the top end of the
dial). Now adjust RV1 until the digit dial agrees with that station. Check

Alternatively feed a known signal of between 1 and 2 MHz from an oscillator into the input and adjust RV1 until it reads 455 less than that frequency
mounted one above the other using 9.6 mm spacers. Check that these insulate them if too close. oing to be used with a car radio or
 vary. The pickup coil is made by winding about 80 turns of 0.25 mm enamelled wire onto a 25 mm long to died pərs!мit e oluo pareu!uiat pua plastic covered wires long enough to go between the radio and the position of the display. Do not use coaxial cable for this as the
apacitance is too high. the individual with our own being from a discarded digital clock. If you use the 240 V powered version be careful with the high voltage wiring. For the 12 V version the power can
come from the radio via a twisted lead (3 wires).

әле s!!оэ әч! дәләмоч о!peд леэ әч! shielded so well that reliable it was found that we could tap onto Łnoчł! M ! affecting the operation.

 accuracy of $\pm 5 \mathrm{kHz}$ is to be maintained its frequency has to be 1of sıolsisal \% Z pue - pәриашшоэәл әле 乙y pue Ly

[^2]

Photo showing where we tapped into the
car radio.

[^3]

PARTS LIST

DATA SHEETS EXPLAINED

The data sheets which we publish regularly are very popular, but from time to time we receive requests for a fairly simple explanation of the terms and abbreviations which one finds in semiconductor device data sheets, and so here it is!

THE INFORMATION contained in semiconductor device data sheets is often grossly misunderstood. Great care must be taken to ensure that the exact meaning of a term or abbreviation is clear. As an example, we can quiote the following conversation which actually occurred between two people who should both have known better

A representative of a semiconductor distributor was showing data on a new power device to a lecturer. The lecturer said that the device data was wrong, since the maximum collector current was quoted as 12 A and the maximum collector-emitter voltage ($\mathrm{V}_{\text {CEO }}$) as 80 V ; this is a power level of $12 \times 80=960 \mathrm{~W}$, but the maximum permissible dissipation quoted in the data sheet is only 90 W . The representative could provide no answer!

The data was, of course, perfectly correct. The problem arose because neither of the people concerned had appreciated the exact meaning of $V_{\text {cEO }}$ which signifies the collector-emitter voltage with the base open circuited. Under these conditions (with zero base current) the collector current will be very small and the power dissipation in the transistor will also be quite small. Thus there is a great deal of difference between $V_{C E}$ (the collector-emitter voltage under any conditions) and $\mathrm{V}_{\text {CEO }}$ (the collector-emitter voltage with the base open circuited). If still more information is required, one must look into the SOAR (Safe Operating ARea) graph to ascertain the regions of the collector voltage/collector current curve where the device can be safely operated for limited or unlimited times.

This is a very simple example of the pitfalls one can encounter if one does not really understand the exact meanings of the terms and abbreviations used in data sheets. Such misunderstandings are very common, but not (we hope!) amongst the devices covered in our data sheets, since it is equally important that our readers understand the exact meanings of abbreviations used in data sheets on relatively simple devices such as ordinary diodes and transistors.

Letter Symbols

Three of the most important symbols used in semi-conductor device data sheets are V, I and P for voltage, current and power respectively. Various subscripts are added to these three letters to indicate the electrode(s) to which the symbol is being applied and possibly certain circuit conditions. Some of the most commonly used subscripts are listed below.

anode

average
base
breakover
breakdown
collector
drain or delay
emitter
forward
gate
holding
input
junction
cathode
peak value of a quantity
open circuit or output

reverse or repetitive

source, short circuit, series or shield in the on state (that is, triggered) working
specified circuit
impedance

Order of subscripts

In most cases more than one subscript is needed; the subscripts are usually placed in a definite order governed by the following rules: The first subscript indicates the electrode at which the current or voltage is measured.
The second subscript denotes the reference terminal or circuit mode. (This subscript is often omitted if it is felt no ambiguity will arise.) The letter O may be used as a third subscript to show that the electrode not indicated by any previous subscript is open circuited. Similarly the letter S can be used as a third subscript to show the third electrode is shorted to the reference electrode of the second subscript, whilst the letter R as a third subscript indicates that a specified resistance is connected between the third electrode and the reference electrode. The supply voltage to a collector is indicated as $V_{c c}$, the second suffix being a repetition of the first in the case of supply voltages. Similarly, one often meets the symbol $V_{D 0}$ for the positive supply to a CMOS (or COS/MOS) device, this being the supply to the drain. The negative supply to CMOS devices is normally represented by the symbol $V_{\text {ss }}$.

It should now be clear why $V_{\text {cEo }}$ is the steady collector emitter voltage with the base open circuited. Similarly $I_{\text {CER }}$ is the collector cut off current with a specified resistance between the base and emitter. It is current with the base and emitter joined, since either the base or emitter can be used as the reference electrode without any change when they are joined.

The parameters of individual devices vary from one device to another of the same type number. The typical value of a parameter such as transistor current gain is often quoted in data sheets by the abbreviation 'typ' after the quantity, but minimum and maximum values are also often quoted. In economical devices no maximum and minimum values may be quoted. In the case of breakdown voltages the minimum value applicable to any device of that type number is usually quoted so that the circuit designer knows that he can apply that value of voltage without danger of the device junction breaking down.

The above discussion gives the general principles of the way in which the symbols for various parameters are chosen. It is not complete, since we have not yet covered such items as current gain of a transistor or thermal characteristics of a device. However, these and other quantities will be covered in the following tables.

Thermal characteristics

The symbols used for the following thermal quantities apply to all types of semiconductor device.
$\mathrm{P}_{\text {tot }}$ total power dissipated within the device
$\mathbf{T}^{m b}$ ambient temperature
$\mathbf{T}_{\mathbf{c}}$ temperature of the case of the device
temperature of the junction in the semiconductor material
temperature of the mounting base of the device ($=\mathrm{T}_{\mathrm{c}}$)
storage temperature
thermal resistance of heat sink. (Units. C/W) device and the heat sink junction to ambient thermal resistance

Symbols used mainly with diodes

diode capacitance with reverse bias
diode capacitance with forward bias capacitance of the junction itself minimum capacitance (which occurs at the rated breakdown voltage)
C. diode capacitance at zero bias
$\mathbf{f}_{\infty} \quad$ cut off frequency of a varactor diode
$\mathbf{I}_{\mathbf{F}}$ total dc forward current
$i_{F} \quad$ instantaneous forward current
$I_{\text {F(AV) }}$ average forward current
$I_{\text {FM }}$ peak forward current
$I_{\text {FRM }}$ repetitive peak forward current
IFSM non-repetitive peak forward current occurring under surge conditions
$I_{\mathrm{B}} \quad$ continuous reverse leakage current
$\mathrm{i}_{\mathrm{R}} \quad$ instantaneous reverse leakage current
$1_{\text {nsm }}$ non-repetitive peak reverse current
$I_{z} \quad z e n e r$ diode continuous operating current
$I_{\text {zM }} \quad$ zener diode peak current
ton turn on time
$t_{\text {off }}$ turn off time
t_{r} rise time
$t_{r r}$ reverse recovery time
t_{s} storage time
\mathbf{V}_{F} steady forward voltage
\mathbf{V}_{F} instantaneous forward voltage
\mathbf{V}_{F} steady reverse voltage
$\mathbf{V}_{\mathbf{R}}$ instantaneous value of the-reverse voltage
$\mathbf{V}_{\text {RM }}$ peak reverse voltage
$V_{\text {RRM }}$ repetitive peak reverse voltage
$V_{\text {rSM }}$ non-repetitive peak reverse voltage (on surges)
$\mathbf{V}_{\mathbf{z}} \quad$ zener diode working voltage

Symbols used mainly with transistors

$\mathbf{C}_{o b}$	transistor output capacitance in the grourded base circuit
$\mathbf{C}_{o b}$	transistor output capacitance in the grounded emitter circuit
transition frequency or gain-bandwidth product in	

collector cut off current with the base open circuited
collector cut off current with a specified value of resistance between the base and the emitter emitter cut off current with the collector open circuited base-emitter saturation voltage
breakdown voltage
collector to base break down voltage with emitter open circuited
$\mathbf{V}_{\text {(BR)CEO }}$ collector to emitter breakdown voltage with base open circuited
$V_{c B}$
cs collector-base voltage
cвo collector to base voltage with emitter open circuited
$V_{c c} \quad$ collector supply voltage
CE collector to emitter voltage
ceo collector to emitter voltage with base open circuited collector to emitter rms voltage
$\mathbf{V}_{\text {CE(SAT) }}$ collector to emitter saturation voltage
$V_{E B}$ emitter-base voltage
Vob
emitter-base voltage with collector open circuited emitter-base rms voltage

Symbols used mainly with FETS

Io steady value of the drain current

Symbols used mainly with thyristors

repetitive peak forward current.
non-repetitive peak (surge) current
gate current which does not trigger the device
gate trigger current
gate turn off current
holding current required to maintain conduction
steady reverse leakage current
reverse gate current
repetitive peak reverse current
non-repetitive peak reverse current (in surge conditions)
steady anode-cathode 'ON' state current
gate power
gate controlled turn-on time
gate controlled turn-off time
breakover voltage
continuous off state voltage
forward gate voltage
gate trigger voltage
steady reverse voltage

Operational amplifier terms

Bandwidth, $\Delta \mathbf{f}$. The frequency at which the gain falls by a factor of 0.7 relative to the gain at low frequencies

Common mode rejection ratio, CMMR. The gain when a signal is applied to one of the inputs of the amplifier divided by the gain when the signal is applied to both the inverting and non-inverting inputs. It is usually expressed in dB.
Frequency compensation. An operational amplifier requires a capacitor to enable it to be used in circuits which are stable over a wide frequency range. Internally compensated operational amplifiers have this capacitor fabricated on the silicon chip, but an external capacitor must be used with other types of operational amplifier which do not contain an internal capacitor.

Input bias current, $I_{\text {bias }}$. The mean value of the currents at the two inputs of an operational amplifier.
Input offset current, $I_{\text {os }}$. The difference in the two currents to the inputs of an operational amplifier. Normally much smaller than the input bias current.
Input offset voltage, $V_{\text {os }}$. The voltage which must be applied between the two input terminals to obtain zero voltage at the output.
Open loop voltage gain, $\mathbf{A}_{\text {vol }}$. The amplifier gain with no feedback applied
Output resistance, $\mathbf{R}_{\mathbf{0}}$. The small signal resistance seen at the output when the output voltage is near zero.

Voltage regulator terms

Dropout voltage, $\mathbf{V}_{\mathbf{D O}}$. When the difference between the input and output voltages falls down below the dropout voltage, the device ceases to provide regulation.
Foldback current limiting. In regulators with foldback current limiting, the current will 'fold back' to a fairly small value when the output is shorted.
Line regulation. The change in the output voltage for a specified change in the input voltage.
Load regulation. The change in output voltage for a change in the load current at a constant chip temperature
Quiescent current, $\mathbf{I}_{\mathbf{a}}$. The current taken by the regulator device when it is not delivering any output current
Ripple rejection. The ratio of the peak-to-peak ripple at the input of the regulator to that at the output. Normally expressed in dB.

Monolithic timer terms

Comparator input current. The mean current flowing in the comparator input connection during a timing cycle.
riming capacitor, $\mathbf{C}_{\mathbf{r}}$. This capacitor is normally connected between the comparator input and ground. The time taken for it to charge controls the delay time
Timing resistor, $\mathbf{R}_{\mathbf{r}}$. This is the resistor through which the timing capacitor charges.
Trigger current. The current flowing in the trigger input connection, at the specified trigger voltage
Trigger voltage. The voltage required at the trigger pin to initiate a timing cycle.

Conclusions

Data sheets must be used intelligently and with much thought Information on the conditions under which an entry in the data sheet is applicable is often stated in small print, but is of great importance. Data should always be thoroughly studied before a device is used for the first time, only then will you be able to fully understand the potential applications of the device.

Thus i_{E} is the instantaneous value of the total emitter current, i_{e} the. instantaneous value of the alternating component of the emitter current, and $\mathrm{I}_{\mathrm{E}, \mathrm{A},}$ the average (DC) value of the total emitter current. Other subscripts can be used in a similar way, I_{F} being the forward DC current with no signal, i_{F} the instantaneous forward current and $I_{F M}$ the peak forward current.

ETE

GOOD AND PROPER!

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet. which has been carefully designed to allow you to do exactly that.

The transfers are casily rubbed down, and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Lach sheet measures $180 \mathrm{~mm} \times 240 \mathrm{~mm}$ and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they'll look!

Sent $£ 1.75$ fincludes VAT and postage) for the two-
sheet set to:
Panel Markings
ETI magazine,
25-27 0xfard Street. London WiB IRE

TEMP STABIILSED

LOG CONVERTER

This design can be set up for either logarithmic or exponential operation and
incorporates a neat heater circuit for temperature stability.

IN THE CONVENTIONAL musical scale, consecutive notes are not separated by the same frequency, but by the same ratio - the twelfth root of two. This is quite acceptable for most musical instrument manufacturers, except that in electronic music equipment it is easier to make oscillators which have an accurately linear frequency/ control voltage characteristic. The keyboards of most music synthesizers give an output voltage of 1 V for each octave on the keyboard. This can easily be generated by a set of equal resistors between the contacts on each key and a voltage applied to each end (normally 5 V). However this means the oscillator is required to have an exponential frequency/control voltage response.

Trouble

This is where the trouble usually starts. An exponential converter is normally used which relies for its operation on the relationship between current and voltage in a silicon diode or transistor. However unless temperature stabilisation is used the oscillator will not stay in tune for very long. With this unit the transistor used is heated to around $55^{\circ} \mathrm{C}$ and stabilised at this temperature, eliminating the problem of thermal drift.

In the instrumentation field a lot of functions are displayed in dBs which are a logarithmic measurement. As this unit can be connected in either \exp or log modes it is useful for this purpose also.
As the unit will normally be used with some other equipment, we have not described any mechanical housing.

Below: the circuit diagram of the converter section. One channel only is shown here, the second - identical - uses the even components numbers. Above: the oven circuitry.

news

digest......

PROM-IN-AID TIME

Micro-men take note. The Prombix 12 can wipe out twelve PROMs at once with variable erase time with safety interlock. Priced at $£ 59.00$ all inc. Should be of interest to
small firms and rich enthusiasts.
GP INDUSTRIAL ELECTRONICS, SKARDON WORKS, SKARDON PLACE, NORTH HILL, PLYMOUTH PL4 8EZ.

GETTING INTO PRINT

A low cost printer is an nounced by Kimberley Business Records giving A low cost printer is an nounced by Kimberley Business Records giving good quality output. This will allow the expansion of many home systems into the extensive field of word processing, and God help you then! A standard lever operated 'typewriter mechanism has been used, driven by 240 V solenoids.
Designed for parallel data input with handshake control, ASCII coding is
accepted for the 88 characters available operating at a speed of 8 CAPS from a standard peripheral interface. It is supplied fully built and cased at $£ 200$ (including carriage and VAT). Alternatively as a print mechanism only requiring all power other than 240 V , case, and TTL logic to be added, the cost is £ 160 .

KIMBERLEY BUSINESS RECORDS, 2, HARTING TON ROAD, GOSPORT HANTS, POI 2 3AG

The photo on the left shows the complete unit with the oven top removed to show IC5. Link 1 is made from a couple of valve socket pins in this prototype.

HOW IT WORKS

This unit relies on the fact that the collector current of a transistor is exponentially related to the base voltage.
In the log mode the collector of the transistor is linked back to the input of IC1. In this way the collector current is proportional to the input voltage and therefore the voltage on its emitter is logarithmically related to the input viltage. This voltage is then amplified and level shifted by IC 3 to give the desired output.
In the exponential mode the 10 k resistor R9 is linked back to the input of IC1 and the voltage on the emitter of the transistor is proportional to the input voltage; the collector current is exponentially related to the input voltage. This current is converted to a voltage by IC3.

All this works well provided the transis-tor is at a constant temperature. Compensation can be made by using other junctions and thermistors, however even the self-heating effect of the transistors can affect linearity. The transistors we have used are part of a transistor array IC which has three individual NPN transistors and a differential pair. We heat the chip up by dissipating heat in the differential pair while measuring the base-emitter voltage of one of the individual transistors. IC8 is used to compare this voltage to one set by the divider R25, 26, 27 and RV7. The baseemitter voltage is normally about 0.67 V at $20^{\circ} \mathrm{C}$ and drops about 2.2 mV per degree above this temperature. IC8 then stabilises the chip temperature to about $35^{\circ} \mathrm{C}$ above the temperature at which it was initially calibrated. As it warms up the current in the transistors will fall and when hot the voltage drop across R3I will be low enough that the LED will extinguish. The transistor array is housed in a polystyrene housing to conserve heat.

Transfer functions exponential log.	$\begin{aligned} & \text { Vout }=0.15625 \times 2 \text { Vin } \\ & V \text { out }=\operatorname{Ln}(\operatorname{Vin} / 0.15625) / \operatorname{Ln} 2 \end{aligned}$
Useful dynamic range	50 dB or 8 octaves
Oven temperature	approx. $55^{\circ} \mathrm{C}$
Warm up time	about 2 minutes
Power supply	± 10 to ± 15 volts

Fig. 1b. The power supply section which supplies the stable $\pm 7 \mathrm{~V}$ needed for the bias and adjustment controis.

The only difference between the assembly of this board and any other is the oven and the connections to the transistor array package. The oven is made out of two pieces of polystyrene about $55 \times 35 \times 12 \mathrm{~mm}$ The outside of the oven should be covered with aluminium foil to help reduce heat loss. The aluminium itself should be covered with a layer of adhesive tape where the leads can touch. A piece of thick paper should be used between the oven and the pcb to insulate the tracks.

Half Baked

The centre of the oven should be hollowed slightly to hold the IC (bend the leads out straight as shown in the photo; a hot soldering iron is the easiest method. Do not remove more than necessary. Now solder a 40 mm length of thin copper wire (a single strand of multistrand cable is best) to each pin, then with the base of the oven in position, sit the IC in the oven and connect the leads to the appropriate holes. If a small amount

Component overlay for the complete log converter project.

BUYLINES

The project depends upon the CA 3046 device - near equivalents will probably not function. The CA 3046 itself is readily available - we
found it in both the Marshalls and Stevenson catalogues when we looked for it! Initial reaction here had been that it would be difficult to obtain.
of epoxy cement is placed under the oven it will stay in position. Now fit the top of the oven and secure with a piece of adhesive tape until it has been checked out. It finally can be cemented with epoxy adhesive.

The potentiometer valuves chosen are a compromise between ease of adjustment and the ability to compensate different transistors. If the potentiometer does not have enough range then the series resistor will have to be varied. We have
specified 2\% resistors throughout to obtain a better temperature coefficient than is possible with conventional 5% resistors. It will not help to select out of normal 5\% types.

Calibration

The equipment needed comprises an accurate digital voltmeter and a variable power supply with a fine voltage control. The +7 V rail can be used for this with a mutli-turn potentiometer.

PARTS LIST

CALIBRATION TABLE

A	B
-3.00 V	19.5 mV
-2.00 V	39 mV
-1.00 V	.78 mV
0.00 V	156 mV
+1.00 V	312 mV
+2.00 V	625 mV
+3.00 V	1.25 V
+4.00 V	2.50 V
+5.00 V	5.00 V
+6.00 V	10.00 V

This table shows the relationship between the input and output. In the exponential model A is the input with B the output while in the log mode B is the input and A the output.

Oven Control

1. Before switching on, remove liñk 2 and fit link 1.
2. Switch on and monitor the voltage on the output of IC8 (pin 6).
3. Adjust RV7 until the voltage is about -5 V . The potentiometer is sensitive in this area but the actual voltage is not critical.
4. Remove link 1 and fit link 2. The LED should now come on for about two minutes before slowly going out. This indicates that the oven is stable.

Calibration of Log Mode

1. Set 0 V on the input.
2. Monitor the voltage on the junction. of R7 and R9.
3. Adjust RV1 to give a negative voltage on this point. Now adjust RV1 slowly until the voltage just switches. positive.
4. Set 0.15625 V in the input.
5. Adjust RV5 to give 0 V output.
6. Set 5.00 V on the input.
7. Adjust RV3 to give 5.00 V output. 8. Set 1.25 V on the input and check the output voltage. It should be 3.00 V. If it is higher go back to step 4 except adjust RV5 to give -0.010 V and use RV1 to bring it back to zero. Continue with step 6.7 and 8 . If the output voltage at 1.25 V input is less than 3.00 V adjust RV 5 to give +0.010 V instead of -0.010 V .

Continue until all three points are correct.

Calibration of Exponential Mode

1. Place a link between the junction of $R 7$ and R9, and OV.
2. Adjust RV5 to give 0.00 V output. Remove the link.
3. With 0.00 V input, adjust RV1 to give 0.15625 V output.
4. With 5.00 V input, adjust RV3E to give +5.00 volts output.
5 . Check output voltage with 3.00 V input. It should be 1.25 V
5. If high repeat steps $1-5$ except output. If low, repeat steps $1-5$ except adjust RV5 to give about 10 mV output.

[^4]

microfile

This month dynamic Gary (mines a pint) Evans goes random, ROMs the seas as a pirate and plays strange games with a T.V., but still finds time to visit North London.

BEING CAUGHT PIRATING software could lead to ali sorts of unpleasantness-boys in blue or more likely the boys in black (the legal eagles) looking for a large fee in some test case. At any rate copying, or rather being caught copying, software that someone, somewhere is willing to protect is something to avoid. It's for this reason that the guys at Transam - they who supply kits for the Triton - suffered a few nervous twitches when they heard that someone called Dobbs on the phone and he wanted to have a few words with them.

Now the BASIC that was used in the Triton has been around for some time. When development of the computer started we realised we could not undertake to write an 8080 interpreter from scratch and we looked around for something that was "in the public domain". The listing of an interpreter that appeared in Dr. Dobbs journal seemed to us to be just the thing we wanted had we made a dreadful mistake.

Well gentle reader (I'm an Asimov fan) as it turned out we need not have worried at all. On picking up the phone, instead of some irate, distant American voice a softspoken northerner (north of England that is) greated the ear.

This Dobbs had nothing to do with publishing a software journal working - as it turned out - for British Rail. He wanted to order a Triton.

Relief all round - is there a Mr. Byte in the house. What the manufacturers produce today, industry uses the next day and we, the amateurs, use the day after that and what the manufacturers are producing now are 16 bit MPUs. Intel, Motorola, Zilog Texas - everybody seems to have caught the 16 bit bug.

The first small system for the Home Office to use a 16 bit beast is almost certain to be the long awaited, and much talked about, Texas machine. Just what overnight "'quantum jump" in performance these 16 bit based systems are going to provide, remains to be seen - but at least we should have something with a bit more to offer in terms of throughput and facilities than the current crop of 8 bitters. At what cost penalty will become evident over the next year or so

Dynamic RAMs are very cheap, are they not? A couple of systems in use in this country feature such devices - the TRS-80, although here any cost savings do not seem to be passed on to the end user, and the NASCOM.

The more extensive use of dynamic RAM in small systems is probably a hang over from the days when it was all anybody could do to get a dynamic memory card up and running. There is no doubt that a dynamic card
can be a real pig to fault find. So many things have to happen at exactly the right time for the system to work at all. Unless some very sophisticated diagnostic equipment is available, it could prove almost impossible to decide what is wrong.

With the current crop of dynamic RAM controllers, however, hopefully there will be so little margin for error that we shall start to see nice cheap 4 K and 16 K memory expansion systems.

One example of a RAM controller that seems to do it all is the Intel 8202 - I have not yet managed to get a data sheet for this device but when I do l'll let you know just what it can do. In the meantime, if any of you have played around with dynamic devices, perhaps you'll let me know how you got on

The North London Hobby Computer Club seems to be going from strength to strength. I was at their second meeting a while back and there was standing room only in the two rooms occupied by the club for demonstrating on the PET and the Triton. A continuing program of interesting talks and demonstrations is planned and if you live in North London, is recommended that you go along to the North London Poly in the Holloway Road and see what is going on for yourself.

Mine of Information Ltd is a company that is out to contest the high prices charged for many of the American microcomputer books brought over to this country. To quote from their literature "some worthwhile books are distributed by companies with exclusive European or British rights; there is a temptation to capitalize on the monopoly by increasing prices. In these circumstances Mol has to charge its customers more than is reasonable! Mol is taking action to contest the high prices. (When the choice of books is wider there will be no need to buy from such suppliers)."

A freshing attitude, as I can think of at least one outfit which must be making a mint from a number of exclusive titles sold at a high mark up. Some increase in cost from a straight $\$ 70 £$ conversion is acceptable - to quote Mol again - "It means extra hassle and expense to bring books to Britain" - but not as much expense and hassle as some would have us believe.

I wish Mol luck in their campaign and if you would like their lists send an SAE to

Mine of Information Ltd
1 Francis Avenue
St. Albans
AL3 6BL
By the way members of the North London Computer Club get 10% off the prices in the list - yet another reason to pay a visit to the club.

NEWS: Microfile

The trend in America at the moment, or at least one of the trends, is for the home computer and the TV games to meet in a sort of common ground. One example of such a product is the Bally Arcade "box". The machine features a calculator style keyboard with slot for a Bally cartridge as well as sockets into which a number of accessories can be plugged, these include the two hand controllers supplied with the basic machine.

The machine features a number of built in games including the excellent gunfight which many of you may have seen in the arcades over here. This game produces good high resolution graphics in colour as well as a repertoire of musical sounds

By plugging a ROM cartridge into the font panel socket additional games can be played on the machine and if a BASIC cartridge is used the Arcade is converted to a computer running the familiar TINY BASIC as per the.TRITON

Z80 based, the Arcade is supported by 8 k of ROM to store the resident games and 4 K of RAM which acts mainly as a screen memory.

The Bally Arcade is not the only product to appear in this area. Magnavox has the "Dyssey 2" machine from Interacot and it's rumoured, Atari are ready to launch something into this market.

ETI

LINES FROM OUR VAST STOCKS-IMMEDIATE DELIVERY

All below manufacturers' prices - all now
stocks. Quantity discounts - export enquiries e2ocks. Quantity discounts - export enq
invited. Postage $\&$ packing 35 p per order. CALCULATOR CHIPS General instrument
GIMT4 On ati-sar use with Bowmar display ± 1.50 ea. Pack of 25 chips ± 25.100 for $£ 80.500$ tor $£ 350$.
BOWMAR 9 OIGIT CALCULATOR DI with PC connector 0.2 digits. COmmon with PC connector 0.2 digits. Com
with red bezel $t 1.25$ ea. $10-\star 10$.
TEXAS 19 gid
TEXAS 19 gold-plated snap key contact on gold-plated P C. board. Size $70 \times 80 \times 2 \mathrm{~mm} 75$ paa. 2 for $E 1$, 10- $£ 4,100-£ 35$.
FAIRCHILD FND 100.157 ; 7 segment display. C
cathode 50 p .10 for $£ 4.50,10$ or cathode 50 p . 10 for $£ 4.50$, 100 tor $£ 40$. BA 120A T.V. I.C. amplifier Siemens 75p.
$10-£ 6,100-£ 50,1000-£ 350$. BECKMAN 500 kGe Triggerable clocking oscillator for use with calculator chips 5 v supply
with circuit $\$ 1,10$ for $£ 8,100$ for $£ 65$. with circuit $\$ 1,10$ for 48,100 tor E 65 .
BURROUGHS 9 DIGIT Panaplex calculator display 7 segment 0.25 digits. Noen tyen wewth
red bezel socket and data. $£ 2.25$ ea. 10 for $£ 20$. red bezel socket and data. $£ 2.25$ ea. 10 for $\& 20$.
ALMA PUSHBUTTON
high reliability read ALMA PUSHBUTTON high reliability reed
switches. Push to make $18 \times 27 \times 18 \mathrm{~mm} 40$ pea, 10 switches. Pushto make
for $\$ 3.50 .100$ for $£ 33$
SMITSS 3 INDUSTRE
SMITHS INDUSTRIE S Audible warning devices
6.12 volts. 2 transistors $30 \times 10 \mathrm{~mm}$ encapsulated HONE YWWELL PROXIMITY DETECTOR integral amplifier $8 v$ D.C. $£ 2.50$ ea, 10 tor $£ 20.100$ for E 175.
OSMOR
OSMOR CHANGE OVER REED RELAY 12 v
coil $20 \mathrm{~m} /$ a operating current $59 \times 17 \times 13 \mathrm{~mm} 75 \mathrm{p}$ coil $20 \mathrm{~m} /$ a oparating current $59 \times 17 \times 13 \mathrm{~mm}$
ea. 10 for $\& 5,100$ for $£ 45,1000$ for $£ 400$. MAINS TRANSFORMERS (miniature) all wi $240 \vee$ prima

 OLDER (multicore 10 metres for $£ 1,50$ metres for $£ 4$ Oosimeters. Pen tyen with clip wivariz Fibre EACH. Originally over 10 for $£ 8$ OUR PRIC 10 for $£ 60$ I 10 P CLOCKING OSCILLATOR (Pye-Dynamics) hick film 1 mHZ supply $5 \mathrm{v} ~ 19 \times 25 \times 6 \mathrm{~mm} 85 \mathrm{p}, 10$. V V , 100 for $\mathbf{E 6 0}$.
 T.V. SOUND TUNER KIT. Through your F.M. luner. Kit of parts with instructions $£ 5.50$.

JoYstick CONTROLS. (Ideal for TV Games iving full 360 movement and control. Each unit $\overline{4} / \mathrm{RF}$ LONG-MEDIUM 8 F/M TUNER WII MC1310 DECOOER * 5-BUTTON SELECTOR SWITCHES \pm INPUT SELECTORS FOR GRAM ANO TAPE * Supplied complete with FRONT-END CONNECTIONS * Size $19 \times 13 \times 6 \mathrm{~cm}$. HIS OUALITY AMPLIFIER EI CIRCUIT.
POWER 5/28 UNIT KIT FOR ABOVE MODELS APE HEADS $1 / 4.95 \mathrm{track}$. Record Marriolt XRPS3 6 \&5. XES 11 erase $£ 1.25$. XRPS $18 £ 3.50$. MULLARO TUNER MOOULES with data. P1179 FM front end with AM tuning gang, used mith LP1171 - £3.50 *LP1171 and 79 pair 5.75 * LP1 157 complete AM strip - E2.05 * SEVEN DIGIT MINIATURE COUNTER by Durant $12-24$ volts D.C. 3 Watis. Size $40 \times 25 \mathrm{HX}$ 55 Lmm £ 1 oach, 10 for $£ 9,100$ for $£ 88$. 0 ior $£ 2.50,100$ lor $£ 2200$ VOLT VERSION. TRANSISTORS BY BULLARO. TEXAS. FAIRCHILD

Price oa per	10	100	500	1.000
AC128	0.230	ס. 200	0.180	0.150
AD149	0.750	0.650	. 0.550	0.490
AD161	0.380	0.330	0.290	0.250
AD162	0.380	0.330	0.290	0.250
EC107	0.100	0.085	0.075	0.065
BC109	0.110	0.095	0.080	0.070
BC109C	0.120	0.100	0.085	0.075
${ }^{\text {BC } 114}$	0.080	0.065	$\frac{0.055}{0.050}$	0.040
BC132	0.080	0.065	0.050	0.040
BC153	0.085	0.070	0.055	0.045
BC 172 BC 173	0.075	0.060	0.050	0.040
BC205	0.075 0.070	${ }_{0}^{0.060}$	0.050	0.040
BC208C	0.075	0.060	$\stackrel{0}{0.040}$	0.035 0.040
8C209	0.075	0.060	0.050	0.040
E0181	0.600	0.500	0.440	0.400
80182	0.700	0.600	0.500	0.440
BF181	0.240	0.200	0.185	0.160
BFY50	0.180	0.16	- 0.140	0.125
BFY51	0.180	0.160	0.140	0.125
BFY64	0.220	0.195	0.175	0.150
BFY90	0.750	0.680	0.630	0.550
Bu20s	1.00	0.900	0.800	0.750
84208	1.250	1.100	1.000	0.750
BY127	0.110	0.090	0.075	-065
CA3085	. 0.440	Q. 385	0.350	
LM311H	0.700	0.600°	0.055	0.500
TBA625BX5	0.680	0.600	0.055	0.500

Al mail to:	
Henry's Radio	
404 Edgware Rd	
London w2	
Phone 01723 1008	

full spec Paks El_{1}	tramsistions				
PAK T: TanxMotorola	Malching	20 p *		10p*	
Piaslic Power MPM 2amp	AC127	17p*	${ }^{80131}$	37p*	
	${ }^{\text {ACL }} 176$	$10 p *$	80132	37p*	
Pak A: $12 \times \mathrm{xed}$ Leds $\mathrm{E} 1^{*}$	${ }^{4} \mathrm{C} 187$	20p*	80695	69p*	
Pak B: 6x741 DIL 8 £1*	AC188	20p*	80696	69p*	
PAK C: 4x2\% 3055 £1*	10161	40p*	BFY50	16 p *	
PAK D: $12 \times 8 \mathrm{CLIO9} 51 *$	AD162	40p*	8F551	16p*	
PAK E: 13x8C 182 ¢1*	${ }^{15239}$	42p*	8Fx29	28p*	
MEW PAK D: 10xEC212 E1	${ }^{8 C 107}$	6p*	BSX20	18p**	
PAK F: $13 \times 2 \times 3704 \mathrm{E} 1$	${ }^{81} 108$	7p*	M. 22955	¢1*	
PAK G: $7 \times 8 \mathrm{PF5151}$ E1*	BC109	8p**	Muezan	44p**	
PAK H: 7x243819e $£ 1$	BC109C	15p*	MJE2955	75p*	
	BC147	${ }_{12 p}^{12 p}$	me L 2305	${ }^{75 p}{ }^{\text {che }}$	
Metal Irim\|SYnhtiesiser	¢1	EC148	$12 p$	MPU131.	35p*
PAK J: 6x 2 2̇3053 E1*	BC149	$12 p$	ORP12\|P		49p*
PAK K: 50×114148 £1	${ }^{\text {BC15 }}$	$15 p$	TIP41/A	60p ${ }^{\text {+ }}$	
Pak t: $50 \times 33 \mathrm{ul} 10$ vatt $£ 1$	${ }_{8 C 158}$	15p	T1P424	65p*	
PaK m: 4xPairs MPM/P4P	BC159	$15 p$	TiP2995	60p*	
2 Amp bu volt $\mathrm{E1}$	BC167	10p	TIP3055	5np*	
PAK K: $50 \times 0 \mathrm{AB1/9}$ £ 1	${ }^{\text {BC158 }}$	$11 p$	11543	35p	
PAK P: $20 x$ mall Signal MP.	BCL^{69}	12p	212646	39p*	
Similar to 109 Et	${ }^{\text {BCII7 }}$	18p**	2 2 2905	$22{ }^{2}$	
PAK Q: 50x220ul	вС178	16p*	2स29264	10p	
6.3voll Elecirolytie $£ 1$	8 8179	$18 p^{*}$	223053	16p*	
PAK R: $14 \times 8 \mathrm{Cl} 107 \mathrm{E1*}$	$8 \mathrm{CL182}$	10p*	2133055	35p*	
PAK S: $14 \times \mathrm{CCH} 108 \mathrm{¢} \mathrm{I}^{*}$	$8 \mathrm{Cli82}$	10p	2 H 3614	£1*	
PAK U: $4 \times 1 \mathrm{C}$ 50N SCR E1*	${ }^{\text {BC183 }}$	10p	2и3702	\%	
	$8 \mathrm{CC1831}$	10p	2 23704	9p	
PAK W: 40xE ieciroplics	8С184	10p	2 23706	$9 p$	
Mixed. All good E1	$8 \mathrm{CCP4}$	10p	2 2338196	$18 p$	
PAK X : 4×555 Timer f 1*	日C212	129	2 23820	38p	
PaK Y: 5xDual Iransistors	8C212	12p	2 23904	15p	
M07021. 6 Leas T05 £1*	ac213	129	243906	15p	
Pax Z: 20xPNP Smal\|	8С2131 1	12p	2 2M5457	32P	
Signal 3702 Typa $£ 1$	8С214	12	245777	$44 p^{*}$	
LOOX. Plasic powder. La Moise.	BC2141	12	Th31 1f	c2*	
Hi Spaed ior Digilal swiching atc.	8cryl	20p*	TlL63	£1*	
Similar to BFY51 spec. 60 volt 20 Walt. Bulk Fak of 100 E8*			BRIDGES ge $18 p^{*}$ Dp^{p} 15p* rpe Dorde		

ALL FULLES STEC
FANTASTIC PRIEES

CLICK
 ELIMINATOR

The Cat Sat On The Mat: or was there one of your favourite records on the mat? Never mind - ETI steps in to rescue your valuable vinyl from those evil clicks and pops.

EVEN THE MOST fastidious of record collectors must have some records in his collection which during their career have picked up the odd scratch or two. Perhaps your record collection dates back to the time before you obtained that second mortgage, sold the wife or whatever, to get the latest in laser controlled fluid damped, tangential tracking phonograms, sorry record deck, and the previous system has left it's mark on these early platters.

In The Click Of Time

However the scratches got there, they are bound to be obtrusive on any reasonably Hi - Fi set up and even if you do not qualify for the title $\mathrm{Hi}-\mathrm{Fi}$ purist - someone who listens, not to the music, but to the defects, real or imagined, in the $\mathrm{Hi}-\mathrm{Fi}$ chain - the clicks will detract from your enjoyment.

Enter ETI - we can help. The click suppressor described here will remove or greatly reduce the audible transient sounds - nice phrase resulting from scratches on a record's surface.

Design Decisions

When designing a člick suppressor it is fairly obvious that we have to be able to tell the click from the cacophony as it were. Fortunately a click has several unique characteristics which set it apart from a music signal. For instance it will have very fast attack and delay times - even high frequency percussive sounds will delay slowly, although attack will be fast. A click will also be of a very short duration - again musical sounds are in general of a longer duration.

Once we have spotted our click, it is necessary to remove it. In our case we substitute a short period of silence

- subjectively unnoticable - in place of the click.

As our click detection circuit requires a finite time in which to operate, we will also have to provide some sort of delay for the music signal within the system. Our circuit, and all the commercially available units, use a CCD delay line to provide this delay. It is the recent availability of this device that has made the click suppressor possible, or rather brought it within the financial reach of the constructor.

Next month we will be giving the full details for building and setting up the Click Eliminator

HOW IT WORKS

Overall operation of the circuit can best be understood by reference to the block diagram shown in fig 1 . The signal from each of the inputs is fed both to a delay line, with associated low pass filters, and to the "Click Detection" block. This provides a negative going signal at it's output coincident with a click appearing on either input channel.
With the click identified, the next step is to remove it without affecting the subjective quality of the program material. The circuit operates by dramatically attenuating the signal passing through the unit for a brief period of time "Either Side" of the click
If the attenuation is large enough and it's period accurately synchronised to the occurrence of the click, the effectiveness of the unit is dramatic. The loss of program material during this blanking period which might be thought to be as objectionable as the click itself, seems to produce little subjective disturbance.
It has been shown that periods of attenuation of this nature, up to 10 ms , do not unduly disturb the signal, and the 2 ms or so necessary to "straddle" a click goes entirely" unnoticed.
It is necessary to incorporate a delay line within the circuit as a finite time is necessary for the click detection circuits to operate. The chain of events is shown in fig 2 . The click is fed to the input of the delay line and at some time later will emerge from this device where it is passed to the attenuator. Meanwhile the click has been detected and activates two 555 timers acting as monostables. The first provides a click detection indicator for the front panel. As this returns to it's stable state, it triggers the second 555. It is this IC that causes the 570 IC to suppress the signal.
By careful selection of the timing components associated with the 555 's, the signal is blanked during the time when the click is emerging from the delay line.
A detailed description of the various circuit blicks now follows.

Fig. 1. Block diagram of the ETI click eliminator.

Fig. 2. Above are shown the waveforms that illustrate the action of the circuit when a click has been identified and is to be suppressed.

Second stage of the

"click detection"' circuitry.

CLICK DETECTOR AND ATTENUATOR
 \section*{CONTROL}

Outputs from the low pass filters described above are passed to comparators IC6 and 7. The outputs of these IC's are usually high, but if the level at their inputs exceeds a level (set by RV3) they will go low. This control is set such that the comparator will operate only when a high amplitude click is passed to IC6 and IC7, the click being of greater amplitude than the program material.
Another unique characteristic of a click is that it will appear on both channels simuitaneously. We therefore pass the outputs of the comparator IC's to the NAND gate formed by D1, D2, and R28. The junction of these components and Cl4 will be high unless both the comparator outputs are low. A negative going signal applied to IC8 via

Cl4 will trigger this IC and illuminate LED 1 the click indicator LED. After X mS the IC's output will return to its stable state and in so doing will trigger IC9. This IC controls the attenuator and will suppress the program material during its astable state.

ATTENUATOR STAGE

The attenuator is built around an NE570 dual compandor IC (see data sheet Oct 77 p .59). The inputs to the IC are at pins 14 and pin 3 , the outputs - with suitable filters - are taken from pins 10 and 7. Gain control is achieved by robbing current from the NE570. As the input to Ql is taken high, the device will start to conduct and thus rob the NE570 of current, thus reducing the gain of the amplifier within the device. The control action is set up by RV4.

The signal attenuation stage configured around NE 570 dual compandor IC.

Circuit diagram of the delay block and the first half of the "click channel only - for left hand component annotations add 100, e.g. R1 right hand channel becomes R101 for the left hand
channel.
input
DELÁY LINE AND FIRST STAGE OF CLICK DETECTOR
The circuit block shown above forms one clock signal superimposed on the output that channel of the delay line and click detector might cause HF overload in subsequent
circuitry (the other channel is identical).
stages.
The input of the delay line is pin 5 , the filter section that forms the first stage of the A click has a number of unique characteristics, one of which being that it is rich in HF
energy - a result of its fast attack and delay energy - a result of its fast attack and delay through a low pass filter will be to highlight the high energy click amongst the generaly
low high frequency content of normal pro-
gram material. filter is once again built around a second order Butterworth stage. The signal is passed to this stage after a
simple HF filter and buffer (IC4a). The output
 amplifier IC5 and fed to the second half of the
 to hold pin 13 at 1 V 0 above ground, this ensures maximum dynamic range in the
delay line, and to bias pin 5 for class A operation which minimises distortion. $\mathrm{C5}$, to another Butterworth filter, this stage being used to remove any high frequency RV1 +101
RV2, 102
RV3
RV4, 6
RV5
CAPACITORS \qquad C1, 101
C2, 3, 37, 102, 103 330p polystyrene
C4, 5, 11, 16, 20 10 u 16 V tantalum 100 n polyester
56 p polystyrene auaskis 시od gul Oll' 601 ' 801 'Ol' 6 ' 8 C12, 13, 35, $36 \quad 47 \mathrm{u} 16 \mathrm{~V}$ electrolytic 1 nO polystyrene
10 n polyester
22 n polyester $\begin{array}{ll}\text { C19 } & \\ \text { C22, 23, 28, } 29 & 22 \text { polyester } \\ \text { 220 }\end{array}$ 220n polyester
33 p polystyrene
1000 u 25 V elect 1000 u 25 V electrolytic
470 n polyester N~~ C19, -M SEMICONDUCTORS

WATFORD ELEGTRONIGS
 incorporating.

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!
(as published in E.T.I. August 1978)
Away with analogue meters for with some of these you may often as not use a crystal ball to make circuit measurements instead gaze into our crystal DISPLAY - on our amazingly accurate DMM

5 AC \& DC Voltage ranges: 6 resistance ranges The prototype accuracy is better than 1%
This is a unique design using the latest MOS ICs and due to the minimal current drain, is powered by only one PP3 battery. There is also a battery check facility.
The DM900 is an attractive hand-held. light weight device, built into a high impact case with carrying handle and has been ingeniously designed to simplify assembly.
Never before have all these features been offered to the electronics enthusiast in a single unit Optional Extras Probes £1.50*: Carrying Case £1.50* Calibration service charge for working Units only $\mathbf{£ 5 . 7 5}$
Ready-built and tested units only $\mathbf{E 7 8 . 5 0}$ \& incl. Case \& probes p\&p 80p Demonstration on at our Shop

BORIS IN CHECK

There are quite a few chess machines lying around the shops these days, and this one has a reputation for being one of the best. Armed with his "Best of Spassky Volume 2" Ron Harris went to check it out.

BORIS is a multi-level chess machine with the discon certing ability to comment on its opponent's (your) moves. The level of its analysis is set by the user who determines how long BORIS may consider its reply. Thus a tyro may set the machine to minimum time to begin with, and steadily advance the machine as he improves.

Present Arms

The presentation of the machine is excellent. The electronics consist of an F 8 based system accessed by a 16 (multi-function) key array and interfaced to the outside world by a display consisting of eight alpha numeric devices. These are packed into a very smart wooden case which also holds the mains adaptor and chess pieces. A board is also provided, but is of a standard which suggests it is included out of duty rather than devotion. Alas, the chess pieces fall into this lamentable category also, but improvements are now being made by the importers, and the quality of replacements is much higher.

On the two units we were able to examine the mains adaptor terminates in a two pin 'American 'hi-fi' type of plug - which now fails BS of course. This is moulded into the adaptor body and makes life very awkward for the buyer. At first glance there is no way of getting mains into BORIS aside from wrapping wires around them. DANGEROUS. The importers must look into this very quickly. We are assured they are doing so - let us hope.

In the meanwhile I would advise purchasers to take a trip down to good ole Woolies and make off with one of their shaving adaptor plugs, into which BORIS's adaptor will neatly plug. 240 V AC is a poor opening gambit in
any game.

Getting Rooked . . . and Pawned And . . .

Using this machine is both simple and interesting. The keyboard sets up your move on the display - which is also showing elapsed time - and the ENTRY key.

BORIS exposed to the world!

Once he's thinking about, the display flashes at 1 Hz , the timer counts down the time allotted to BORIS and the various moves he's cogitating appear on the display, settling finally at time 00 seconds. The display then counts down your time - but there's no penalty for not playing inside the time limits you've imposed on BORIS.

If for some reason (like cheating) you wish to alter the board at any time during a game, pressing RANK displays the contents of each row of the board using a very ingenious symbols set. The keyboard now creates or destroys pieces as required. Korchnoi could have done with that in his armoury. This makes correcting errors very easy

Use of the RANK key while BORIS is having a think lets you watch the pieces moving around in his head(!?) Hypnotic.

Alpha-numeric Big Mouth

Undoubtedly the first thing to impress about BORIS has nothing to do with his chess abilities. It's his big mouth. Exactly how many comments his PROMs contains is anyone's guess - the importers Optimisation aren't saying - but we counted 47 in two evenings of chess, and I don't think we got them all!

The comments appear in the eight displays and are clocked along right to left at about 2 Hz . At any position on the board the program limits BORIS to a shortlist of appropriate comments, and a 'random' choice is made amongst them - or indeed not to comment at all. Saying nothing is the most likely choice of all, which means that the sayings do not always appear and so do not become boring with repetition

Play It Again BORIS

Once in play BORIS is a fair match for most people. On its basic level the machine plays a good beginner's game, and will find most things you leave lying around the board. Responses differ sufficiently even at this level to make 'psyching out' difficult. The biggest drawback of BORIS's chess is his passion for exchanging pieces.

Being cowards we started at this level to see what he could do. The first comment we got was 'AWFUL' to our opening move. Frightening! From here we kept increasing the time BORIS had to think about his answers. At five minutes he was winning consistently, and at two it's a long, long struggle to get him to lie down and die!

The symbols BORIS uses to identify the chess pieces. Shown here is the back rank of the white men. The black appear upside down so you can tell which men are which. Pawns appear as triangles.

Below: BORIS in play at the computer chess championship recently. He finished second to a prfate program.

We're only average chess players ourselves and so passed the infernal pawn-pusher onto a club standard player to get his comments.

On the longer response times, five minutes upwards, he considered BORIS a good opponent - and of course wouldn't admit how often he'd lost! Certainly everyone who had a game against him considered BORIS entertaining - the comments really do seem appropriate at times.

For example, in the middle of a game with BORIS hard pressed and the telephone ringing - I NEED LESS NOISE appears! Coincidence but fun all the same. One move away from being checkmated and he asks READY TO RESIGN? The classic must be after losing a queen to a knight fork - WHOOPS!

Conclusions

All in all then BORIS can be confidently recommended to anyone interested in the game of chess. It can play a good game, and entertain while doing so. It is very difficult indeed not to think of the machine containing an (evil) little elf - a grand master type elf - plotting against your every manoeuvre, and unleashing sarcastic comments where possible. A definite winner

ETI

Our thanks to Kramer and Co for their assistance in the preparation of this article - they lent us a BORIS! (They also supply to the public!)

All prices quoted include VAT. Add 25p UK/BFPO Postage. Most orders despatched on day of receipt. SAE with enquiries please. MINIMUM ORDER VALUE £1. Official orders accepted from schools, etc. (Minimum invoice charge bona-fide traders. Surplus components always wanted.
bilater

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

SAVE ON TIME-No delays in waiting for parts to come or shops to open!

- SAVE ON MONEY - Bulk buying means fowest prices - iust compare with others!
* HAVE THE RIGHT PART - No guesswork
1 PACKS CONTAIN FULL SPEC BRAND ALL PACKS CONTAIN FULL SPEC. BRAND RETURN OF POST. VAT INCLUSIVE PRICES.
K001 50V ceramic plate capacitors. $5 \% .10$ of each value 22 pF to 1000 pF . Total 210 £ 3.35

K002 Exten values $£ 4.90$

$K 003$ Polyester capacitors, 10 each of these values: $0.01,0.015,0.022,0.033,0.047$. $0.068,0.1,0.15,0.22,0.33,0.47 \mu \mathrm{~F}$. 110 altogether for $\mathbf{£ 4 . 7 5}$
K004 Mylar capacitors, $\min 100 \mathrm{~V}$ type. 10 each all values from 1000 pF to $10,000 \mathrm{pF}$ Total 130 for $£ 3.75$
K009. Extended mylar pack. Contains all alues from 1000 pF to 0.47 H . Total 290 capacitors to $£ 11.25$
K005 Polystyrene capacitors, 10 each value from 10 pF to $10,000 \mathrm{pF}$. E12 Series 5\% 160 V . Total 370 for $£ 12.30$
K006 Tantalum bead capacitors. 10 each of the following: $0.1,0.15,0.22,0.33,0.47$ $0.68,1.2 .2,3.3,4.7,6.8$, all 35 V $10 / 25,15 / 1622 / 1633 / 1047 / 6$ $100 / 3$. Total 170 tants for $£ 14.20$
$K 007$ Electrolytic capacitors 25 V working. small physical size. 10 each of these popula values: $1,2.2,4.7,10,22,47.100 \mu \mathrm{~F}$
Total 70 for $£ 3.50$
K008 Extended range, as above. also
including 220,470 and 1000 including 220
for $£ 5.90$
K021 Miniature carban film 5\% resistors CR25 or similar. 10 of each value from 10R to 1 M , E12 series. Total 610 resistors £6.00
K022 Extended range, total 850 resistors from 1R to 10 M £8. 30
K041 Zener diodes. $400 \mathrm{~mW} 5 \%$ BZY88. etc. 10 of each value from 27 V to 36 V , E24 series. Total 280 for $£ 15.30$
K042 As above but 5 of each value $£ 8.70$

STEREO AMPLIFIER

CHASSIS E5.50

Complete and ready built. Controls: Bass, treble, volume/on-off, balance. 8 transistor circuit gives 2 watts per channe output. Jusi stereo amp. Suitable metal cabinet (W374) $\mathbf{£ 2 . 0 0 ~ - ~ o r ~ b u y ~ t h e ~ a m p , ~ c a s e ~ a n d ~ t r a n s ~}$ former for $£ 10,00$ and get DIN speake sockets and knobs free!!

AMPLIFIER KIT £1.75

Mono gen. purpose amp with tone and val. on-off controls. Utilizes sim. circuitry to above amp. Output 2 W into 8 ohms. Inpu matched for crystal cartridge. 4 transistor
circuit. Simple to build on PCB provided. Can be either battery or mains operated. (For mains powered version add $\mathbf{£ 2 . 2 0}$ for suitable transformer). Blue vinyl covered aluminium case to suit (W372) $£ 1.30$.

BC182B OFFER

Special Offer for quantity users. 1k 035 + VAT: $5 k .032+$ VAT. Price negotiable on 10k + approx. 80k available

PC ETCHING KIT MK III Now contains 200 sq ins. copper clad pen, abrasive cleaner two miniature drill bits. etching dish and instructions. £4.25.

EDGE CONNECTORS

Special purchase of these $0.1^{\prime \prime}$ pitch double-sided gold-plated connectors enables us to ofer ihem at less than one-third of their original list price
18 way $\mathbf{4 1 p}$; 21 way 47 p; 32 way 72p; 40
way 90 p.
way 90p.

THE NEW 1978-9 GREENWELD Catalogue

FEATURES INCLUDE:

-50p Discount Vouchers

* Bargain List Supplement buyers
* Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices Price $\mathbf{3 0 p}+15 p$ Post

HEAT SINK OFFER Copper TO5 sink 17 mm dia $\times 20 \mathrm{~mm}$. 10 for 40p: 100 tor $£ 3$: 1,000 for $£ 25$

74 SERIES PACK
Selection of boards containing many different 74 series 1C
$£ 2.20$: 100 for $£ 4$.

TMS4030 RAM
4096 bit dynamic RAM with 300 ns access time; 470 ns cycle time; single low capacitance: Low power dissipation Supplied with data $£ 2.75$.

MISCELLANEOUS ICs

Supplied with data if requested. MC3302 quad comp. 120p: 710 diff comp. (TO99) 40p; ZNIO34E precision timer £2.25; LM7I1 Dual diff comp 65p; LM1303 dual stereo pre-amp 75p; MC1469R voltage reg E1.50; UPC1025H audio E3.50; 575C2 TBAB10S audio 70p. SN75110 dual line driver 70p; MC8500 CRCC gen POA.

OSCILLOSCOPES
We have available from stock the following SCOPEX models: 4D10A - DC-10MHz; 10 mV sensitivity. Stab. power supplies. $£ 214$ inc VAT and carriage 4S6-DC$6 \mathrm{MHz} \cdot 10 \mathrm{mV}$ sensitivity Ideal portable scope Solid state circuirry. All for $£ 150$ inc VAT and carriage.

RESISTOR PACK
Carbon film 5% mostly $1 / 4 W$, few $1 / 2 \mathrm{~W}$ resistors. Brand new but have pre-formed leads, ideal for PC mnig. Wide range of mixed popular values at the unrepeatable price of $£ 2.50$ per 1.000 : $£ 11$ per 5,000 .

OIN SOCKET OFFER

2 pin switched speaker socket, PC mntg; 5 pin 180° PC mntg. or chassis mntg. (clip 25 for $£ 1.60 ; 100$ for $£ 5.50$.

PUSH BUTTON

SWITCH BANKS

Lots of diff. types illustrated in Bargain List Lots of diff. types ilustrated in Ba
No. 6 - send SAE for your copy.

RELAYS

W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ 6 V coil. SPCO 3 A contacts 93 p .
W832 Sub. min type. $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ coil DPCO 2 A contacts $£ 1.15$.
W701 6V SPCO 1A contacts $20 \times 30 \times$ 25 mm . Only 56 p .
N817 11 pin plug in relay; rated 24 VAC . but works well on 6 V DC. Contacts 3 pole c/o rated 10A. 95p.
W81912V 1250R DPCO 1A contacts. Size W839 $22 \times 18 \mathrm{~mm}$ min. plug-in type 72p. V839 50 V ac (24 VDC) coil. 11 pin plug-in W846 pole c/o 10A contacts. Only 85p. 10 A open consiruction mains relay. 3 sets Send $/ 0$ contacts. E1.20. and illustrated
LOW COST PLASTIC BOXES Made in high impact ABS. The lids are reained by 4 screws into brass inserts. In V219)
V210 $80 \times 62 \times 40 \mathrm{~mm}$ black
V213 $100 \times 75 \times 40 \mathrm{~mm}$ black $\begin{array}{ll}\text { V216 } & 120 \times 100 \times 45 \mathrm{~mm} \text { black } \\ \text { V219 } & 120 \times 100 \times 45 \mathrm{~mm} \text { white }\end{array}$ 58p
72p

DIODE SCOOP!!!

We have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing a sample batch evealed about 70\% useable devices may all be included. Thage rets and zeners at the incredibly low price of $£ 1.25 / 1.000$ - or a bag of 2.500 for $£ 2.25$. Bag of $10,000 \mathrm{£8}$. Box of $25,000 £ 17.50$. Box of
$100,000 \mathrm{£60}$. 100,000 £60.

audiophile

Abstract

What would you say if we told you about a cartridge which has a totally new stylus shape, a new improved magnet structure and revolutionary two part cantilever system - and a new radically different method of controlling operating conditions? It is all true, and its been around a few months too! Ron Harris took his time getting to the V15 Mk. 4 - but found it worth the wait!

IT HAS BEEN some time now since the launch of the V15 IV from Shure, and by now I hope all the fuss has died down. Never has a product been rumoured to appear for so long, and met with such polarised comment when it did. In the meanwhile since the release the cartridge has slowly gained ground, and now would appear to be highly regarded in all but the most partisan anti-moving-magnet circles.

Changes By Design

There is a lot in this design to interest the engineer, so let's consider that aspect first. The criteria to be met were to produce a cartridge which performed as close to perfection as possible under ideal conditions, and which went some way to creating those conditions.

The ambition I applaud!
Naturally these days computer analysis of just about anything numerically expressable was undertaken and quite right too! Everything down to body size and mass were considered, and then more models set up to attempt to blend the whole design successfully. (I don't think it would be an outrageous suggestion to make that the SME Series III was used as the optimum arm in all these cavortings.

The new features to come out of all this are a dynamic stabiliser - and it's not just a brush, a new cantilever assembly; a new stylus shape, and a static reduction system. In addition the effective mass of the dynamic system has been lowered significantly.

Tipped For Shape

Shure have decided, somewhat bravely, to go it alone and produce a new stylus profile. The reason is they wanted lower distortion but without sacrifice of low wear and trackability in the process

Any design for a stylus must include consideration of such factors as the actual groove itself, tip mass, manufacturing cost, record wear etc etc.

As you can see from the diagram the end result of Shures endeavours is a long contact profile, basically a hyperbola from the front, termed a hyperelliptical design. Its actual contact radius is around 38 microns, while its tracing radius (parallel to groove tangent) is smaller than other types. The compromise does appear to offer advantage over other types, right enough.

Magnetic Heart

The cantilever assembly is always the first section to come under scrutiny whenever a cartridge is to be improved, (just shows what improvements could be made if you ask me!) and it has not escaped this time.

After much playing with computers and trading off advantages against system requirements, Shure put themselves some prototypes together and carted them off for listening tests. Measurements, mathematical models and ears later a telescopic two element design emerged as the overall best solution, and was duly adopted.

Part of the reason for this is vibration control presumably to supress resonances excited by dynamic stresses - and this is assisted by an elastomer damping device. The earlier M24 featured something like this, but not so sophisticated apparently.

The magnet itself is of a new type, of lower mass but higher strength than its predecessors, allowing the cantilver unit mass as a whole to be lower. Taken together the improvements to the system are claimed to provide better high frequency tracking ability, and the shifting of the HF resonance to beyond 20 kHz

Brush Up On Damping

Now down to the obvious bit - which I had to do last just to keep you reading. Static on records can be blamed for most of the ills besetting disc reproduction as it now stands. It attracts dust - and holds it - leading to quicker wear of both disc and stylus and higher-replay noise.

There are umpteen devices on the market for clearing static charge, most of which resemble gas lighters. But Shure make the valid point that unless you know what polarity the charge is you're trying to clear, you've a 50-50 chance of making if worse by pumping ions at it.

Another nasty well-known to LPs of all age groups is the warp. Warps come free with most records these days and provide such delights as variation in tracking angle, mis-tracking due to effective reduction of applied tracing force and overall disruption of the ideal conditions in which cartridges like to operate

Damping applied at the arm pivots can help with this, but represent a compromise at best. It is better to have the control as close to the tip as possible. The dynamic stabiliser is designed to do exactly that. The carbon fibre brush is mounted to ride just ahead of the stylus, and is equipped with viscous damped pivots. These are designed to absorb the shock produced by a warp, be it gradual or sudden. The optimum distance between cartridge body and record is thus preserved.

Bristling With Pride

That brush is made up of about 10,000 carbon fibre bristles, ten of which would fit nicely into a record groove. Since it is carbon fibre it is conductive and can leak static charges to system earth since it is connected to one channel earth. Shure's research has indicated too that local static charges can increase tracking force by attracting the cartridge to the LP!

Sounds logical once someone tells you doesn't it? The brush does a good job shifting dust and muck out of the way too!

The outrigger carbon-fibre brush may be set in any one of three positions: 1) in the "Up" position. 2) the dynamic stabiliser in its operating position 3) set down as a quard.

The V15 Type IV's brush with damped pivot is said to aid the tracking of warped discs by matching stylus movement more closely to the motion of the arm

The carbon-fibre brush is in continuous contact with one of the earth pins and leaks static charges to earth.

Having A Fit

Setting up the $V 15$ was very simple indeed. It's a shame to have to take it out of the box at all unfortunately, the packaging is superb indeed! Holding the body into the arm is done by screwing into a small metal block tapped for the bolts. Simpler than using fiddly nuts - if you'll pardon the expression - but probably more massive.

A close-up view of the stabiliser fitted to the V15 Mk-4, reposing in its guard position. The white line tells you where to line up the stylus when at play!

Because of the stabiliser, the stylus sees 0.5 g less than is applied to the arm as a whole. This means that to get 1 g tracking force, you set 1.5 g . It can look confusing at first, and don't forget later and clip up the stabiliser, else the cantilever gets the lot!

Tracing Class

After brief experiments, all our tests were conducted with 1 g applied to the stylus, as the $V 15$ tracked anything at this weight, regardless of how torturous we made our torture tracks. I failed to catch it out even once. Foiled again. One to Shure.

In contrast to the Mk3 the new model is sensibly specified for capacitive loading, and is apparently as insensitive to these things as it can be. Using a Sony TA-88 preamp enabled me to vary the loading while the cartridge was playing - a reviewers delight! No adverse effects can be expected in normal use. Noise seems to be reduced too.

The stabiliser does offer real benefits as it definitely aids tracking and makes the system as a whole very tolerant of record 'flatness'. I tried the cartridge with and without pivot damping on the SME and would suggest it be used with damping - it somehow gains confidence that way!

Sound Stuff?

This is the bit where I lose some 'musical' friends no doubt, because whatever anyone may have said amid the initial rash of reviews you will not find a cartridge better.at information retrieval than the V 15 IV . Its sound is incredibibly detailed, a nd free from audible vices. It has a nice confidence about it altogether, and did not mis tracks - or mis-anything - even once.

The sound has an overall smoothness that is perhaps its most 'nameable' feature. The bass quality is good, although I have heard better. In the mid-range and treble the sound stands forward towards the listener presenting a good stable image with all the detail you could wish for; with no trace of hardness or brightness whatsoever

Conclusions

So there it is - interesting and worth the wait for its appearance. Whether you like the sound of the V15 or not only you can tell, but if you're considering spending around $£ 70$ on a cartridge you'd be ill-advised to miss listening to it.

Main Trouble

One of the most oft repeated queries to Audiophile concerns the problem of mains borne clicks and pops appearing out of loudspeakers.

Unfortunately there is no immediate overall solution. The first thing to try is to move either the hi-fi or the appliance - usually a fridge - causing the clicks to another outlet

If this doesn't work then there are several suppressors on the market, at varying prices, to deal with the trouble. The most expensive is the QED unit at about $£ 10$. It does work in most cases, but no more so than some others.

The cheapest such unit available is probably the RS mains suppressor. Your local component stockist should be able to order this for you, and fitting it is pretty simple. Its input comes from the mains, and its output feeds the hi-fi in question.

Otherwise

If none of this works then pretty obviously your problem is not mains borne. For radiated problems there's not much you can do except move things around. This is pretty rare though.

Change of Load

Above is the Sony TA88E preamp I mentioned a couple of months ago. Next month I'll be going through the circuits of this device in detail, as it represents a job done very very properly. At $£ 699$ so it should. The effect of all this engineering on the sound proved to be interesting too.

ETI

A TECHNICAL MEMORANDUM

By Simian

DURING THE LAST FEW weeks some valuable research work has been incorporated into BSI and MIL standards, and this will greatly ease the specification of equipment. These standards help to combat a hitherto neglected environmental hazard; the users of equipment. A range of Standard Idiots (SIDs) has been defined, and these will be useful additions to any development laboratory

Using Standard Idiots

Standard Idiots are useful both for acceptance testing of incoming equipment, and for developing foolproof electronics. The latter is of particular value to manufacturers producing consumer goods. In general the technique of using SIDs is very simple: it consists merely of letting them come into contact with the equipment to be tested. Any flaws will be quickly shown up.

SIDs locate ergonomic faults very rapidly. It is instructive to watch them at work sometimes. If something is weak, they will break it; if no-one in their right minds would dry-off a poodle in a microwave oven, they will do just that

Almost all old-style quality-control testing can be abolished. If SIDs are allowed to get at all products before they leave the factory, it will be found that only the perfect get through. This reduces the number of complaints received from users, but the cost of dis= posing of the rejects (in bulk) can be rather high.

Types of Standard Idiot

Several specialist schools have been set up to train SIDs since these students are not well received at normal colleges. The coursework is intensive, and there are rigorous examinations to maintain standards. Over 600 people have received a Diploma in Idiocy (Dip. I) to date.

Many people have been found to have a natural aptitude for this work.

There are various grades of SID, ranging from the merely incompetent to those capable of sinking the Titanic, and there are many specialist fields:
(1) The 'non-technical' person (BS 91000-FOOL) This type normally panics when faced with more than two control knobs simultaneously. She (sometimes he) always mis-tunes radios, and would be hard put to it to recognise the difference between a watch and an oil refinery.
(2) Fiddler, or fidgeter (MIL-ID-99436/010). This
type is rapidly becoming an industry standard; the real word is full of them. If, for example, there is a switch controlling a lamp, the fiddler will flick it on and off for hours until either if breaks, or he spots something more exciting to play with. He will also use calculators to divide numbers by zero or to find $\arcsin (-10)$.
(3) The Ph.D (MIL-ID-12345/678) never reads instruction manuals. 'Of course, it's obvious that this piece of equipment works like so ...It is only when clouds of blue smoke issue from a new t: 2.000 oscilloscope that he scuttles back to his desk to read in the unused handbook that this model is for 110 V , not 240 V .

Ph. Ds are often quite intelligent.
(4) Dismantler. A member of this species is guaranteed to dismember any piece of equipment which he owns or uses. However, it is very rare for the article ever to be re-assembled. (They are usually foxed by the new child-proof pill boxes).

There are a few other specialist categories: for example, the 'jonah', whose mere presence in a room is enough to make clocks stop and television sets neurotic; or the Standard Irishman with fourteen fingers.

Disadvantages

One major problem with SIDs is that of 'storage when they are not in use. Obviously they cannot be left to roam freely around the lab.! Normal work under these conditions is difficult. Even when they are stored in cupboards the voluble and plaintive cries of 'let me out' are disruptive

There is another hazard which should not be overlooked: there have been a few unfortunate cases where standard idiots have been mistaken for engineers. Most of the companies where this has happened have now ceased trading

Conclusions

Standard idiots, in their present form, can be useful development tools, but there are associated hazards; on no account should they be left alone to amuse themselves. The new specifications are a major advance in a naturally chaotic field and standard idiots are adding a new dimension to destructive testing. This technological advance is helping to provide jobs for those people whose natural talents previously made them unemployable.

Microphone Speaker

J. Smith

What do you do if you need a microphone in a hurry - the shops are closed and your friends are on holiday? Or you are just a little short of money? The answer is to build the following circuit from your odds and ends box. This circuit uses a small speaker as a microphone, one transistor and only four other parts. draws only about 2 mA of current from a 9 volt battery so an on / off switch is not really necessary.

The transistor shown is 2 N 1184 and is a PNP germanium medium power type but is not critical - try the ones you have first before buying this new type. The components too are not critical and the prototype was found to work OK with 20% variation in values. The output is high impedance and is fed into the mic input of a tape recorder or pick-up input of an amplifier.

Speed Alarm

D. Ian

It is all too easy, during a long journey on a motorway, to allow one's speed to gradually creep beyond that point which the boys in blue take an unwelcome interest; this alarm gives an audible nudge whenever you drift over a pre-set speed.

Pulses from the distributor points (due to the ignition coil up to 400 V . may be developed as the points open) are passed through a current limiting resistor, rectified and clipped at $4 \vee 7$. Via Q1 and the diode pump a DC voltage, which is proportional to engine revs, is presented to RV1; the sharp transfer characteristic of a CMOS gate, assisted by feedback, is used to enable the oscillator formed by the remaining half of the 4011

At the pre-set 'speed' (revs) a non-
ignorable tone emits from the speaker, and disappears as soon as the speed drops by three or four mph

Calibration of Ca may be conducted with an accurate pulse generator remembering that, for a four stroke engine, frequency $=$ revs per minute times the number of cylinders divided by 120 ; for a car with a specification of $17 \frac{1}{2} \mathrm{MPH}$ per 1000 revs, in top gear, $f=133 \mathrm{~Hz}$ at $70 \mathrm{MPH}, 124 \mathrm{~Hz}$ at $65 \mathrm{MPH}(4000$ RPM and 3714 RPM). The necessary frequency should be fed to Q1 and VR1 set so that the alarm is just off. Reliable switching occurs on the prototypes with a change of only 5 Hz (150 RPM), ie less than 3 MPH for the above example.

Direct calibration on the road', while covering discrepancies due to tyre size, etc, will only be as good as the speedometer and obviously should be carried out by a passenger rather than the driver.

A dynamic function (touch sensitivity) greatly increases the flexibility of expression available to the player of a music synthesizer. This circuit achieves the dynamic function by measuring the change over time of the keyboard switches, and hence the velocity of the key depressed.

The circuit is basically composed of three parts; firstly an RC timeconstant network ($R_{1} C_{1}$) controlled by the keyboard switches, a buffer amplifier and monostable ($\mathrm{Q}_{1}, \mathrm{IC}_{3}$) and a sample/hold circuit (IC1, $\mathrm{C}_{2} I \mathrm{I}_{2}$).

Normally C_{1} is kept charged up to +7 volts through the 'chain' of closed keyboard switches. When a key is depressed, the 'chain' is broken and C_{1} discharges through R_{1}. As the key is further depressed, contact is made with the trigger busbar, TR_{1} is turned on, and the monostable triggered. The monostable gives out a 1 millisecond pulse, which causes the analog switch (IC I_{1}) to close allowing C_{2} to charge up to the voltage on C_{1} at that time. After this, the voltage is stored on C_{2}, the output being buffered by $I C_{2}$. Since the input impedance of IC is $\sim 1.5 \times 10^{12}$ ohms the delay time of C_{2} is very long. An output is available from the emitter of TRQ1 to trigger envelope shapers etc. To make sure the response is the same all over the keyboard, the distance between the gold wires on all the contact assemblies should be made the same.

Overvoltage Protection for Logic

E. Parr

With the introduction of integrated circuit voltage regulators it is very easy to make power supplies for logic circuits. Unfortunately it is only easy to blast a board of TTL by letting the voltage rise above 7 V as could happen if the common line came off a
regulator IC or the sense lines came off a commercial power supply

The described circuit was designed by the author as a "last ditch" defence after a disconnected sense line
allowed a commercial 5 V supply to allowed a commercial 5 V supply to
rise to 9 V and blast 50 TTL chips. The circuit is simple to add onto any power supply, and it is the author's intention to build it "on board" with any future system containing more than about

Zener diode ZD1 senses the supply, and should the supply rise above 6 V Q1 will turn on. In turn Q 2 conducts clamping the rail.

Subsequent events depend on the source supply. It will either shut down, go into current limit or blow its supply fuse. None of these will damage the TTL chips.
The rating Q 2 depends on the source supply, and whether it will be required to operate continuously in the event of failure. Its current rating obviously has to be in excess of the source supply. If the source supply is likely to sit down, LED1 should be added to indicate the circuit has operated.

The circuit will operate in approximately 500 nS space, so it will also protect the logic from transient spikes which a norma! regulator would not block.

Geiger Counter

A. Wheatley

Although the circuit is imexpensive and simple it is just as sensitive as many commercial devices. The important part is the geiger tube and this will probably cost about $£ 1.90$. It needs a high voltage supply which, in this case consists of 01 and its associated components. The transformer is a low current $250 \mathrm{~V} 9-0-9$ and is connected in reverse. The secondary is connected into a Hartley oscillator, the base bias being provided by R1. RV1 is connected to control the voltage to the Geiger tube. A device to double the voltage is included because otherwise the voltage would still be insufficient to drive the tube. This comprises D1, D2, C4 and C5. This also rectifies it and smooths it. It is very important that C4 and especially C5 are of good quality and have low leakage. RV1 should be set so that each click heard is a nice clean one because over a certain voltage all that will be heard is a continuous buzz. The high voltage section is perfectly safe although if touched it wili give a slight shock. This is unpleasant but quite harmless.

news digest
 WHEN THE COMPUTING and Control department of Imperial College decided that they needed a logic hard-

 ware teaching lab, they were faced with several alternatives. One was to teach all the students in each year to solder and then let them loose on a handfull of TTL and CMOS chips each. This would have meant a plethora of supply problems, technicians and even minor burns.What they opted for instead was to use - you guessed it - a computer

The setup works roughly like this: A computer terminal is situated in the centre of the 'lab' and is surrounded by 16 benches, each provided with an oscilloscope, a signal generator and other relevant test equipment and peripherals. Each bench also has a perspex case with several. dozen sockets and LEDs in it. The student goes to the central console, tells the machine which bench he wishes to use and which logic elements he requires. He then goes to the bench and sticks labels on the perspex case. Each label is printed with the relevant logic symbol By connecting patchcords between the sockets on the 'breadboard,' the student can build up a logic network. The LEDs indicate the state of the various outputs. Each of the boards also has various 'utilities' - several clocks, a random logic output and handswitches to provide inputs.
All of these functions are provided by the computer the sockets all lead into it's bus and it is the computer which drives the LEDs. This means that not only is there no possibility of the students damaging ICs which would then have to be replaced, but also that any component can be 'synthesised' - the department has even designed an imaginary CPU for use with the system.
The computer also calculates propagation delays - the students learn the pitfalls of race hazards in digital systems. It is even possible to simulate faulty components - as a fault-finding exercise. Another system (ex perimental as yet) can pretend to be linear components as well. Clearly the teaching possibilities offered by such a system are tremendous - what price blobboards now?

- Phil Cohen

Martin Cripps telling the machine what it's supposed to be!

What the students see. The wires disappear into the table - some conjuring trick!

LOUDSPEAKER

PRINCIPLES

ON PAPER most loudspeakers look to be terrible pieces of design. Distortion averaging $1 \%-2 \%$ - and what's worse varying with frequency. Efficiency only rarely exceeding 1% - so that the vast majority of those carefully nurtured, 0.002% THD amplifier watts pumped in down those non-inductive £10 a metre cables turn into nice, safe, un-musical heat!

The purpose of any loudspeaker is to convert an incoming complex electrical signal into compressions and rarefactions in the air-sound waves - which can be perceived as being as close to the original signal as possible. The different methods now being used to realise this end form the basis of this article.

What Is Left Undone

You will find references throughout this article to frequency divider - crossover - networks. Unfortun ately there is too much to be said on that subject to allow a full and proper treatment of it with in this article, and we shall return to it in a companion article later

Forgive us our evasion.
Loudspeakers of whatever variety interact crucially with the surroundings they are used in - the living room, studio or whatever. When judging performance it is vital to remember this, and even moving a speaker around in a room can significantly alter performance. Some manufacturers are becoming sensitive to this themselves - notably AR - and are producing designs specially tailored to a particular location, or allowing adjustment of output to suit varied positioning (AR 10 , AR9)

Such adjustments are generally carried out within the crossover network, and alter the electrical inputs to the units to compensate for specific emphasis placed on certain frequencies - usually the bass - by the loudspeakers position

And What Is Not

We have concentrated on the major fundamentally different systems in commercial use today, and tried to explain how they operate what their advantages are, and what are their drawbacks. Many minor variations have been left out simply through lack of space.

Forgive us our omissions
The types covered are:

1. Moving coil- and methods of loading
2. Electrostatic
3. Isodynamic
4. Ribbon
5. Piezo-electric
6. Motional Feedback Control

Abstract

Every hi-fi must have not one but two. Loudspeakers are perhaps the weakest link in the precarious hi-fi chain. Many methods of improving the sound we hear have been tried. Few have succeeded well enough to reach production. Ron Harris explains the innermost secrets of those that made it!

MOVING COIL

This system dominates the field at present, and is certain to do so for the forseeable future. The principle is an exact reverse of the microphone principle, and takes its being from the fact that a wire carrying a current I in a magnetic field of flux density B will experience a force, F. where

$$
F=B . I . k \quad k=a \text { const. }
$$

A coil of wire carrying the audio is sited within an intense magnetic field, and is attached to a 'cone' as shown in the diagram. The cone is held in position by the edge suspension and 'spider'

When a signal passes through the coil the force produced tries to push it out of the field in one direction or another, and this movement is transferred to the air by the movement of the cone. The suspension system provides a 'return-to-rest' force. This movement is related more or less linearly to the input as long as the coil remains within a constant field.

If it moves out, then the relationship will change, introducing non-linearity or distortion. For this reason large and powerful magnets are employed, which have as great a depth of field as possible.

Another solution is to use very long coils so that the rumber of turns of wire with in the gap between the pole pieces remains relatively constant

Basic schematic of moving coil loudspeaker. In practice the coil winding would be longer relative to the magnets, so that it did not move out of the field.

Heated Exchange

Heat is generated in the coil and must be conducted away, usually by the magnet assemblies and chassis. AR speakers now incorporate a heat conducting fluid which is present in the gap and the coil is immersed in this. Heat conduction is thus improved and power handling raised. The fluid also acts as a damper to aid movement control

The speaker chassis must be as rigid as possible, since the only reason the coil and cone move and it doesn't is that it weighs more! Any resonances present in the structure will act to transfer energy from the coil movement and hence distort the output

Close-up of a voice coil. This is a machine wound unit belonging to a Bose driver. Note the winding is butted very close to the edge of the paper former, and the precise nature of the winding necessary for linearity.

Cone-ventional?

The greatest drawback of this system is the cone itself. This is usually either doped paper or Bexetrene - an erstwhile packing material someone fell over once! It should act as a piston to the air, with the entire surface moving together to produce the required air movement.

However, since it is driven only at the centre, unless the material is possessed of infinite rigidity(!) flexing or

Cutaway photo of a moving coil unit - in this case a Bose driver. If you look carefully you should be able to identify the voice coil, magnet assembly, spider and cone assembly.
rippling will take place - once again deviating from the input signal. The larger the cone the worse the effect as the frequency rises, since the centre driven portion may well be oscillating with a period smaller than the time taken for the energy to be transmitted through the cone material to the outside edge.

Hence the centre of the cone leads the outside by a number of cycles, all of which appear as ripples in the cone. This is the reason for dividing up the incoming electrical signal, and for employing smaller coned drive units for higher, less energetic, frequencies.

To handle the high end of the audio spectrum, dome units have almost entirely replaced the coned variety, as they spread the sound more evenly, giving a better dispersion across the listening area. Also domes can be produced smaller, and a hemispherical dome, edge driven, will tend to act more as an integral surface than a centre driven cone.

Getting A Hangover

Since the cone has mass, and therefore inertia (Dr. Who excepted) it cannot respond instantaneously to changes in direction called for by changes in polarity of the electrical signal. This inability to get back in time is called 'overhang' and is another problem facing designers. To minimise it driver mass has to be as small as possible, while rigidity has to be as high as possible.

This has led over the years to many experiments with metal cones, mylar cones, polyester et etc etc. Anywhere other than bass units most of these have proved successful.

An integral part of a moving coil loudspeaker design is the method of housing the units, and thus putting an acoustic-loading upon the actual units. A brief discussion of the various methods is thus required at this point.

Housing Shortages

There are basically six methods of providing a home for drive units and at the same time augmenting its performance. These are:
(i) Finite Baffle
(ii) Acoustic Suspension (sometimes called Infinite Baffle)
(ii) Bass Reflex
(iv) Auxiliary Bass Radiator
(v) Transmission Line
(vi) Horn Loading

All of these apply primarily to moving coil units with the exception of horn loading which can be used to enhance efficiency of several types. In order then:-

Finite Baffle

Since the vibrating cone is emitting sound waves in both directions, unless prevented the two waves will interact causing cancellation and reduction in acoustic output. The effect is reduced by placing the speaker in the centre of a large solid board to make it difficult for a compression produced in front to cancel the rarefaction produced behind the speaker

Obviously an infinitely large piece of wood prevents this entirely, but such things don't grow on (ANY) trees(!?) and so the finite baffle is an attempt to do the best that can be done.

Once the sound wavelength approaches the baffle size destructive interference takes place and response rolls off.

This method is responsible for those hardened enthusiasts mounting their bass units flush into walls and sides of houses!

Sinclair marketed a finite baffle speaker some years ago but this seems to have ceased to be.

Acoustic Suspension

Here the rear radiation from the units is (hopefully) entirely suppressed by totally enclosing the unit in a box, and radiating through a hole in that box (sounds odd when phrased like that eh?).

The AR 9. Coming from one of the 'founder' manufacturers it represents Acoustic Researches state of the art. The cabinet is treated around the baffle with absorbtion material to prevent diffraction and re-radiation effects that lesser enclosures suffer from. It also stands an endearing 53in high!

Schematic of a Jordan Watts driver module. Numbers refer to: 1. Metal cone contoured to hyperbolic law. 2. Phase correcting dome. 3. Resistive termination to dome centre. 4. Resistive termination to cone edge. 5. Acoustic damping. 6. Direct input signal cable. 7. Coil completely immersed in magnetic field. 8. High efficiency "Feroba" magnet. 9. Resistive termination at junction of cone, coil and suspension. 10. Connerlions to coil via suspension. 11. Silvered berylium copper suspension cantilevers.

Damping of the cone movement occurs due to the compliance of the trapped air, and the suspension system now consists of both the actual cone suspension plus the air load.

In order to preserve bass response the enclosure should be fairly large and hence present a good air load allowing high levels of energy to be applied. Bass units designed for this type of loading have a high cone mass and high compliance. In addition they are generally of the long voice coil variety. The air load then applies most of the restoring force required by the design. Efficiency is reduced since the cone mass is increased and comglance (total) is low.

Bass Reflex

The aim of this method is to raise efficiency at low frequencies and thus decrease the required enclosure size for a given bass output. This is accomplished by addition of a vent, or port, in the front panel of the enclosure. This allows a controlled movement of air between cabinet and room. The effect of careful design of vent dimensions and placement is to produce an effective addition to bass response below a certain frequency, such that the air moving out of the vent aids the air movement produced by the bass driver.

Above the operating frequency the vent has no effect on performance (they hope).

Auxiliary Bass Radiator

Basically a variation on the above principle, but with the vent 'plugged' with a driverless unit or suspended mass. This is tuned to provide aritiphase radiation in the required frequency band. Above this band the unit acts like part of the enclosure wall. Perfected and practised by Celestion, and perhaps epitomised by the Ditto 6.6
design.

[^0]: Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^1]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure

[^2]: Construction
 The display board should be built
 not used in the display module and a link is used in place of R1.

 The control card can now be module. The two boards are

[^3]: Right: full site foil patterns for the | 0 |
 | :---: |
 | 0 |
 | 0 |
 | 4 |
 | 4 |
 | 0 |
 | 0 |
 | 0 |
 | 0 |

 display boards and segment types.

[^4]: Both sides of the PCB shown full size. On the top is the underside and the pattern beneath that is for the topside of the board.

