
securely in the cavernous bosom of the GPO, and should they ever be disgorged, Audiophile will be more than pleased to follow up and complete the project.

Anyway, only slightly daunted we shall proceed with what we have, and consider the two amplifiers which did arrive (and the one on loan!)

Our source for the listening tests was to be a Sony EL-7 Elcaset machine which gives reel-to-reel quality of reproduction without all the time consuming drawbacks of that medium. When you're trying to compare several pieces of equipment such luxurious convenience is not to be scorned lightly

I could never understand why Elcaset has not done better for itself. The Sony machines in particular offer a standard of reproduction far above that which any cassette machine achieves

The reference amplifier was a Lecson AP3 II.

AL-120 BI-PAK

This unit arrives three quarters wrapped in a black heatsink, with connection being made to pads at one end which protrude beyond the edge of said heatsink. The output pair (2 N 3055 s) are bolted to the back of the heatsink and are hard wired into the circuit.

The quality of construction was generally high and in use the AL120s gave us no trouble at all. They drove the required speakers (Celestion/KEF) with no apparent distress and gave a sound technical account of themselves

Crimson CE608

There's not really a lot to say about Crimson Electrik that has not been said already. Their products are well constructed, well thought out and well thought of! The CE608 is no exception.

Crimson supplied us their unit completely assembled within the superb metalwork shown in the photograph, which includes a PSU and stabiliser board to run one of their pre-amp modules.

The metalwork is black, and in style looks not unlike a Quad 405 power amplifier unit.

ILP HY50

Since these are completely encapsulated we can offer no real comment on constructional finish. A mere five pins protrude from the metalwork, along which travels all communication between the HY50 and the world

Three In A Testbed

Once introduced to their proper PSUs all three amplifiers functioned well, and gave no real problems at all. The ILP gave a poorer 'hum' performance than the others, regardless of how we tried to wire it, so the problem must lie within the black box.

Of the three the Crimson gave what must be regarded as the best overall performance. Its sound is very clean and it possesses good attack. However the BI-PAK A2120 was not far behind, and loses out mainly due to a slight lack of transparency when directly compared to the CE608. It has a warmer sound overall too, and one that many people may well prefer.

Alas the ILP HY50 did not produce reproduction of the same quality as the other two. The test modules are about three years old though - our new review samples not having turned up in time - so things may well have improved here. We hope to give a listen to some more

BI-PAKs AL- 120 module, removed from its heatsink. The output pair sit centrally on the reverse of the black heatsink.

The Magnum Audio range. Their power amp is shown in the centre foreground. Note that this in fact a dual unit, incorporating two amplifier circuits.

The ILP HY50
This is an encapsulated unit, and only five pins are required for connection purposes.

recent samples as soon as possible to contirm or deny this, but as it is the impression is one of a hard "gritty" sound which was immediately distinguished in compar, isons.

Conclusions

Well there it is. Not as complete as might have been, but very interesting (we hope) nonetheless. As for the comparisons we never got, if the manufacturers agree we'll follow those up in the next few issues in Audiophile.

ETI

Left: the Sony EL-7 Elcaset unit which proved the source for the listening tests. Somehow the machine has never received the attention it deserves for its performance.

Below: remind you of anything? Looking like a squashed 405 its the Crimson unit all boxed and set to go.
Suppliers
Magnum Audio Ltd
13 Hazelbury Crescent
Luton
Beds
LU1 1 DF
BI-PAK Semiconductors
Dept ETI
PO Box 6
Ware
Herts
Crimson Elektrik
1 A Stamford Street
Leicester
LE1 6 NL
Stirling Sound
37 Vanguard Way
Shoeburyness
Essex
ILP Electronics Ltd
Graham Bell House
Roper Close
Canterbury
Kent
CT2 $7 E P$
Kingsley TV
40/42 Shields Road
Newcastle upon Tyne
NE6 1 DR

DEPT. ETI 1, 56 FORTIS GREEN ROAD MUSWELL HILL, LONDON N10 3HN TELEPHONE: 01-883 3705

LOW POWER SCHOTTKY and TTL CMOS

BITS and PIECES

VIDEOGRAPH

Turn your colour television into a dual trace oscilloscope with this UHF colour modulator and video display generator.

THE PURCHASE of even the simplest oscilloscope is probably unjustified for most amateur electronics constructors. Other amateurs feel, rightly or wrongly, that their money is better spent on projects which other members of the family can appreciate!

Which ever category you belong to, or even if you are in the scope league already, Videograph will be found to be a fascinating and useful piece of equipment which will give many hours of pleasure.

Principle Of Operation

The Videograph makes use of the fact trhat the television screen is scanned from top to bottom every 20 mS . This is used as the effective

"oscilloscope timebase, trace modulation being obtained by varying the timing between start of

Sinewave generation with Videograph
each line and a fixed-length 'bright-up' pulse.

Two complete circuits are required to produce a twin trace, and these are colour coded blue and orange respectively. These circuits are triggered by a common sync pulse generator, and further components generate an eight-stage background colour change, triggered by peak signals. There is also an internal frame-locked square wave generator wheh serves as a test waveform for injection into amplifiers and tape-recorders.

Controls are provided for inverting one channel, freezing the background colour and switching a filter to give a relatively "smooth' music display.

Complete kits can be obtained from William Stuart Systems Ltd, who hold the PCB copywright. They also produce a ready drilled cabinet. The heavy gauge anodised facia plate is screen printed to improve finish and the PCBs are silk screened to aid construction.

Construction

Two printed circuit board assemblies are involved, one consisting of a UHF Colour Modulator and the other the

HOW IT WORKS ~MODULATOR

ensures that no "earth loop" can
exist between the TV and the hi-fi
system, causing undesirable hum on
some equipment.

Setting up

jes s! dol!oedeo Gu!unt dole!npow әч1 to 30% of maximum. Generator antiols should be at minimum and the LOCATE controls at mid position. Connect a TV set via low-loss coax cable and switch on both TV and
Videograph. Tune the TV to obtain a good signal, searching from channel 21 upwards. The picture will be unstable.
ue $\partial \wedge!6$ ol (ouks әu!7) $6 \wedge$ y lsn !p \forall unbroken background, and adjust stability. Provided that the TV tuning is exact the picture should now be uniformly green. If the top of the picture is red then adjust RV8
(frame pulse width) for best (frame pulse width) for best
position.
 and orange vertical stripes: these
should appear from the left as the
main Videograph Display Generator Both are printed with detailed legends so that components can be Note that each board has a separate list!
The ICs should be inserted last of all, and IC7 on the generator board
should be left out initially: instead insert a link between pins $3 \& 12$ as shown. This gives a fixed green background and results in easier setting up and tuning. IC7 can be inserted later on to give the
The boards are connected to each other by short lengths of wire between the points labelled OV, Field, + ve, Video, B, R, G, X and
Sync.
 mounted and the only other wires aerial and DIN sockets, and 9 volt power.
The aerial socket can be connected directly to the modulator via two closed loops, one on the
board and one on the socket. The board and one on the socket. The closely with each other. This method

HOW IT WORKS ~GENERATOR

Fig. 6 Videograph generator component overlay

Circuit boards completed and
installed in the Videograph chassis

No, it's not something from outer space!
BUYLINES
A complete kit of parts is available for this project from William Stuart Systems Lid, Dower House, Herongate, Brentwood, Essex CM13 3SD. The PCBs remain their copyright and will be available only from them. All components are available separately, and the PCBs are normally supplied as a 'minikit' along with $\mathrm{ICl}-3$ and ready wound coils. See advert elsewhere in this issue for prices.
pots are turned clockwise. Position both stripes centrally, then separate them using the LOCATE controls. At this stage the line sync (RV9) should be fine-adjusted to give perfect colour registration on the stripes.

IC7 may now be inserted (and the link removed!) to give the background colour change function the sequence being black, white, cyan, yellow, green, mauve, blue, red.

PARTS LIST ~GENERATOR

Above and below: Videograph's two colour traces

Ca arones for VALUE \& VARIETY in FREQUENGY COUNTERS

In addition to our popular 250 MHz and 500 MHz counters we Sur new KF200 counter, although small, is a no-compromise design $1 t$ offers

* A full 8 digir LED display.

A frequency range of 10 Hz to 200 MHz .
An accu

* $5 / 6$ volt operation from barterias or mains PSU (not supplied)
* Power consumption of only 1 W maximum.

Small sizent. $\times 2^{\prime \prime} \times 1^{\prime \prime}$

* Uses only 4 i.c.s.

Fssembly time of abour 2 hours.
The KF200 consists of 2 PCB assemblies. one being the complete input and counter unit (Sulable for direct driving an 8 digit common cathode display), the other, the display unit. Counter Kit ... $\mathbf{E C 8 . 0 0}$.

This new Catronics model KF200 complements our DFM5, a $250 \mathrm{MHz}, 7$ DIGIT MAINS / 12v HIGH QUALITY Frequency d the DFM 500 - a REAL 500 MHz - try some of

Gm REVIIITED

Nothing to do with American car manufacturers Gm is in fact a throwback from the days of valves, now finding a new lease of life with up-todate semiconductor devices. K. T. Wilson explains

MANY A LONG YEAR ago, when transistors were an item which hadn't been dreamt of by science fiction writers, we all used valves, and we all knew the magic letters Gm. Gm stood for a quantity called mutual conductance, and it measured an important feature of the valve from which we could work out how much voltage gain we could get out of a given bottle. Well, the years have passed, and valves are dead for man.y purposes, but Gm lives and is back working for us

It's odd that Gm should have gone out of fashion for so long, because the idea of Gm is even more useful in transistor amplifier circuits than it ever was in valve circuits. Still, the idea seems to be coming back in a big way, so let's take a look at it.

Mutual conductance of any electronic device means the ratio of signal current at the output to signal voltage at the input. For a transistor, this is the ratio $\mathrm{\Gamma c} / \mathrm{Vbe}$. Ic being the collector current and Vbe the voltage between base and emitter, Fig 1. The squiggle above the letters means that it's $A C$ signal voltage and currents we're talking about not the steady bias voltages and currents.

Using Gm therefore allows us to represent a valve or transistor as a generator of signal currents, the amount of signal current being $\mathrm{Gm} \overline{\mathrm{V} i n}$. Now a current generator means a device which will deliver its current into any load, high or low. No valve or semiconductor is really like this, but for most of the uses we make of transistors, the idea of a current generator is not far from the mark.

Current Generators

If a transistor were a perfect current generator, it would have an infinite resistance at its output. That means just that a signal voltage applied between the collector and the enitter would cause no collector signal current

Fig. 1. Mutual con= ductance, lc/Vbe for a transistor.

Fig. 2. An equivalent circuit for a transistor.

Cince again, it's not quite correct but not tar trom the truth. A bit of collector signal current does flow, but not very much, about as much as would flow it there were a resistor of around 40 k between collector and emitter

Now the usefulness of all this is that it allows us to draw an equivalent circuit for a transistor. An equivalent circuit is a circuit made of simple components which behaves in just the same sort of way as some device which is, in reality, much more complicated. A simple equivalent circuit for a transistor is, therefore, as shown in Fig 2. It consists of a current generator, which generates a signal current GmVbe , and a resistor of about 40 k in parallel. This simple circuit accounts for the size of the signal current at the output (the collector) and the output resistance between collector and emitter.

How does this help us? Quite a lot if we remember all the time that equivalent circuits are about signal currents, not about bias currents. As far as signal currents are concerned, the positive supply line of an amplifier is just as earthed as the earth line. Why? Because in the power supply there's a smoothing capacitor of several thousand microfarads, connected between the $+v e$ and -ve lines. As far as DC is concerned, this capacitor is an insulator; but for AC signals the capacitor is just a short circuit, shorting the +ve line to the -ve line. When we connect a load resistor between the collector terminal of a transistor and' the positive line, then, as far as signals are concerned the load resistor is connected between collector and emitter. Draw this into the equivalent circuit, and the result is Fig. 3. Back in the old days of valves (nostalgia corner, this!), we found the sum of these two resistors in parallel, which was

$$
\begin{aligned}
& \text { Rce RL } \\
& \text { Rce }+ \text { RL }
\end{aligned}
$$

and then the voltage signal out was just the current signal times this resistance (Ohm's Law still rules, OK?) giving
$\frac{G m \text { Rce } R L}{R C e+R}$
Rce+RL

How To Use It! . . . p70

FEATURES

NEWS DIGEST
POWER AMP SURVEY
9 Did you know
19 Power to the people
Gm REVISITĒD
37
DATA SHEET READERS DESIGNS TEN 3080 CIRCUITS
Your designs built
MICROFILE
more than you think
TECH TIPS
103
A floppy pet
Circuits from you to you

PROJECTS

VIDEOGRAPH	$\mathbf{2 7}$	Sound to light on your telly
CLICK ELIMINATOR	$\mathbf{4 1}$	Clean up your records
AMBUSH	$\mathbf{6 1}$	The new space game with sounds
SPEED INDICATOR	$\mathbf{8 5}$	Get the wind up this unit
PITAR EFFECTS UNIT	$\mathbf{9 7}$	We think we've found a new one for you
PCB FOIL PATTERNS	$\mathbf{1 1 0}$	All in one place now

INFORMATION

BOOK SERVICE HOBBY ELEC \dagger RONICS PREVIEW

ETI PRINTS
MARKET PLACE ETI SPECIALS COMPUTING TODAY NEXT MONTH IN ETI

You name it, we have a book on it On its way to you For DIY PCB's Can you beat these prices? Specially for you On its own now What we've got for May

Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^0]

Fig. 3. For AC signals, a load resistor connected between collector and positive supply behaves as if connected between collector and emitter.

$$
\begin{array}{ll}
\mathrm{Gm}=\frac{\mathrm{e}}{\mathrm{kT}} \mathrm{lc} \mathrm{c} \quad & \begin{array}{l}
\mathrm{e} \\
\mathrm{k}
\end{array}=\text { CHARGE CARRIED BY AN ELECTRON } \\
& \mathrm{T}=\text { TEMPERANN'S CONSTANT } \\
& \mathrm{Ic}=\text { STEADY (BIAS) } \operatorname{IN} \text { KELVIN SCALE } \\
&
\end{array}
$$

Simple Silicon

One of the things that makes life simpler in these days of silicon transistors is that the quantity Rce, the output resistance of the transistsor, is quite a large value compared to most of the load resistors we use. An output resistance (the usual symbol nowadays is $h_{o \mathrm{o}}$) of 40 k is quite a bit larger than the 3 k 3 or so we use as a load, so that most of the signal current from the transistor is through this resistor in the equivalent circuit. That simplifies the output voltage to $G m R L$ so that the gain of a transistor amplifier is just GmRL.

If it's as easy as that, why don't we see it in text books? The reasons are historical - we didn't start with silicon transistors, and a transistor, unlike a valve doesn't have a constant value of Gm . If we plot a graph of collector current against base voltage ; as in Fig. 1) the result is not the nice straight line we get when we plot such a graph for a valve, or the not-too-crooked line we get when we plot the graph for an FET, but a very curved line indeed. This indicates that the value of Gm is not constant, but a value which changes as the current through the transistor changes. This, coupled with the rather low output resistance of the early gemanium transistors seemed to seal the fate of Gm for good

Ebers Moll

A few years back, though, the Ebers-Moll equation was noticed. You've never heard of it? You're not alone, very few text books mention it, and some mention it without explaining it. Very briefly, it's an equation which links the collector current with the Vbe value for a transistor. In other words, it's the equation for finding Gm . Now the full equation is a fearsome looking thing, full of mathematical symbols you may never have seen before. It repays close attention, though, because most of the symbols are of quantities that are pretty well constant, and only two of them vary very much. One of them is the steady bias current, !c, and the other is temperature. As it happens, temperature, for the purposes of the Ebers-Moll equation, is measured in the Kelvin scale, which starts at the absolute zero of temperature around - $273^{\circ} \mathrm{C}$. Room temperature is therefore around 293 K (no degrees sign) in the Kelvin

Fig. 4. Transistor circuit with load resistor (RL). Gm can be replaced by $401 c$.
scale, and a few degrees above or below doesn't make much difference to the equation

That leaves Ic as the one thing that really affects Gm, and the relationship works out at approximately

$$
\mathrm{Gm}=401 \mathrm{c}(\mathrm{lc} \text { in } \mathrm{mA})
$$

Put in words, that means we can take a Gm value of 40 times the steady bias collector current in milliamps. For a bias current of 1 mA , the Gm value of a transistor is $40 \mathrm{~mA} / \mathrm{A}$. Too good to be true? Looks it, but it really. does apply to any silicon transistor, apart from a few freak types.

This brings back the Gm idea in a big way, and we can forget a lot of the old formulae we once used in calculating the design of transistor amplifiers. The fact that Gm is not constant but varies with the bias current is, oddly enough, a help rather than a hindrance

Gain

Going back to our equivalent circuit, and ignoring the large output resistance of the transistor, we can now write 40 lc in place of Gm (fig. 4). This makes the gain of a transistor with load resistor RL become 40 Ic RL. But Ic in this equation is the steady bias collector current, and so IcRL must be the steady DC voltage across RL, the load resistor. This makes calculating the gain of transistor amplifiers with resistive loads a bit easier than falling off a log. Pick a value of voltage across the load resistor, multiply by 40 , and that's your value of gain!

For example, we very often design voltage amplifiers so that about half of the supply voltage is dropped across the load resistor. For a 9 V supply, that's 4.5 V . Do this, and you can expect a voltage gain of $40 \times 4.5=180$ times. Don't believe it? It works all right, and tests on a single transistor amplifier confirm it as a rule of thumb. You don't, of course, expect to get a gain of exactly 180 in the case I ve tliustrated -- there are 20% tolerances on load resistors apart from anything else, but you're never far out; that's what a rule of thumb is for.

When you couple a single transistor amplitier to another stage, of course, that's another story. You may have set the gain of the first stage to 180 times, but not all of its ouput signal ends up usefully at the input of the

next stage. Reason? The next stage has a rather low input resistance, and feeding signal from the collector of one transistor into the base of another, even if they are directly connected, is rather like feeding signal through a voltage divider. There are, in fact, two ways of calculating how much of the signal is passed on. One simple way is to imagine a voltage divider (Fig. 5) in which the load resistance of the first stage forms the upper resistor and the input resistance hie of the second stage. The quantity $h_{\text {ie }}$ (on k ohms) is equal to $h_{\text {fe }} / G m$, where $h_{\text {te }}$ is the current gain of the transistor, a quantity which does vary between one transistor and another. For a transistor with $\mathrm{h}_{\mathrm{fe}}=100, \mathrm{Gm}$ set to $40\left(1 \mathrm{~mA}\right.$ collector current) h_{ie} is $100 / 40=2 k 5$. If we feed this from a transistor with a 4 k 7 load resistor, the amount of signal reaching the second transistor is

$$
\frac{2.5}{2.5+4.7}=.35
$$

of the signal at the output of the first. This brings the gain of the first transistor stage down to $180 \times .35=63$ which is the sort of value we usually measure for one stage of a multi-stage amplifier.

With all this going for it, Gm, is coming back, folks. As Sam Goldwyn is supposed to have said, "simplicate and add lightness". Let's hope we've added a bit of lightness today

ET

It's crazy to build, unbuild, construct and destruct your circuits on expensive "Breadboards". Now very economicaliy on WONDERBOARD, vou pluy your components into clie side of the board, the wires into the other, and you install the finished circuit in your ecpuipment. They're like PC hoards, but no solderiny (which is enemy No. 1 of prototypes). Chanue any wire or component any time without disturbing others. Up to six interconnecting wires and one component lead into one multicontact. WONDERBOARDS accept all IC's from 4 to 60 pins and discrete components too.

Reliahle? They conform to applicable sections of USA Military Standard MIL.A. 46146 and are used by the US Navy. You can't ask for hetter. WONDE RBOARDS the universal board for elpuivalents of single-sided, double sided, plated thro' hole, and multilayer printed circuits.

> "Small Wonder"
> 12 IC DIL 14 ca!racity
> (Equiv. No. tie points 1302)
£2.80

> "Big Wonder"

48 IC DIL 14 casacity
(Equiv, No. tie-points 5208)
£11.20

All prices include VAT and P\&P. Send cheque or postal order to
CHARCROFT ELECTRONICS LIMITED
Charcrott House. Sturmer. Haverhill. Sutfolik CB9 7XR

CLICK ELIMINATOR

Part two of the Click Eliminator article, presented here, is in fact a redesign of the project leading to better performance and lower cost.

In the January issue of ETI we presented a design for dick eliminator unit. However, between that issue and the time for the February ETI - in which we were to complete the project we found several disturbing inconsistencies which would have rendered the design's repeatability doubtful--to put it mildly.

These problems mainly concerned the area around Q1, IC9 and IC10. The biasing arrangement for Q1, and its function within the circuit means that the adjustments are very very critical indeed. Our prototype operated satisfactorily, especially in its breadboarded form, but was too dependent upon too many variables for us to be happy with the project.

Taking Aim

The aim then, as now, was to present a design for a unit which would , remove the clicks and scratches from damaged LPs, without impairing the music material contained therein.

Operation was to be indicated by an LED, and threshold of operation was to be variable to make the Eliminator flexible in use

However, as we said, development work has continued since initial publication, and while we felt that there was nothing wrong with the aims of the project, our method of realising them left something to be desired.

Change Of Track

Accordingly we are presenting here an alternative design, and
recommend our readers to construct this in lieu of the design shown in Part One of the article. A comparison between both circuits will show this version to be greatly simplified, and using components which will make construction cheaper.

For example the 570 . has been replaced with a 4016, which is closed to the signal for a short period of time to blank the 'click' signal.

Fig 1. Basic block diagram for Click Eliminator Mk 2.

HOW IT WORKS

 The input signal from the pick-up is fed minimum distortion. The delay line is amplifier with an input impedance of 47 k . signals to pins 1 and 4 at a few hundred $\begin{array}{ll}\text { amplifier with an input impedance of } 47 \mathrm{k} . & \text { signals to pins } 1 \text { and } 4 \text { at a few hundred } \\ \text { The output of this stage is fed to the click } & \mathrm{kHz} \text {, to provide a total delay of about } 1\end{array}$ detector circuit and to IC1b, which is mS . wired as a second order low pass Butter-
worth filter with a turnover point of about 18 kHz . This stage also has a small
amount of gain in its pass band. fed into input pin- 5 of IC2, which is a TDA 1022 512-stage charge-coupled delay line.
The R9-RV1-R11-R12 and R10 network at The R9-RVI-RII-R12 and R10 network at
the input of the IC is used to set pin-13 at
The output of the delay line is taken, via
4 , to another second order Butterworth filter (IC3), which removes the unwanted high frequency clock signals that are line, and the cleaned-up signals are chen

Fig 3. Circuit of the click detector section of the Mk 2 Click Eliminator. The LED flashes
to indicate operation.
 ector block, which incorporates a "click that it amplifies the anti-phase "click" dentifier," a threshold detector, and a signals, but tends to cancel the prethat the output of the IC consists of an audio signal with greatly emphasised clicks." This signal is passed to threshold
detector IC5, which is wired as an openloop voltage, comparator, with its output The "threshold" level of IC5 can be adjusted via panel-mounted control RV3, high throughout the passage of a "clean" record. Then, each time that a "click"
arrives, the output of IC5 switches to品 negative-going pulse. This pulse is used
trigger monostable mult-vibrator IC6, which has a period of about 5 mS , and
which drives "click indicator" LED 1 on and drives output transistor Q1 to satu-

 unique characteristics. It has fast attack and decay times, and its output is consequently rich in high-frequency com-pick-up head as a set of recorded antiphase signals, since it causes purely ver-
 phase and cause predominantly horizonEliminator uses thest unique phase characteristics to provide its primary means
In the circuit the amplified pick-up signals are taken from the outputs of the two channel pre-amplifiers (ICla, Fig 2 ,
 wired as a differential ampliner or
tractor," and has a gain of about five on

Fig 4 (a). Above: the waveform of the Click Eliminator blanking pulse straddling the click 4 (b). Below: the combined waveform

 will show, the basic remains unchanged. The incoming 1022 long enough for the circuit to detect the click and generate a pulse which shuts off the transmission gate
(4016) as the 'click' arrives.

The waveforms shown in Fig. 8 give an indication of the timing of the circuit, and the manner in which the
blank period is made to 'straddle' the blank period is made to 'straddle' the
click signal.

Circuits and Components

 Figures 2-6 show the schematic for the Click Eliminator. Figure 2 is the audio input and delay line circuit. Figure 5 shows the click detection and blanking pulse generation components. Inputs A and B come left and right audio inputs respectively.Circuits 5 and 7 are the output blanking (and bypass) and system clock respectively. The latter is referred in the audio circuit simply as Q and $\overline{\mathrm{Q}}$.

Construction

 The unit is assembled onto a single quite straighforward. Assemble the board carefully, remembering to fit resistors and capacitors first, and ICs devices, especially the high cost tems. This will facilitate checking and servicing should this be neededThe easiest place to make a
mistake is in fitting the polarised components - electrolytics, diodes, best to build up the PSU first and
check this before connecting to the rest of the circuit.

Fig 5. Click blanking circuit. Note that SW1 is the bypass switch.

HOW IT WORKS

Abstract

The circuit of the click blanking block is shown in Figure 5. Circuit operation is fairly straightforward. The output of each channel is taken from its volume control (Fig 2) and is fed through a times-ten inverting amplifier (IC7 or IC9), and is then passed to one half of IC8, a 4016 quad bilateral switch. In each channel, two of the internal "switches" of the 4016 are wired in series, and are normally held on by the high control signal from the collector of QI (Fig 4), but turn off for 5 mS when a blanking pulse arrives from the click detector circuit. The output of each channel is then passed on to the outside world via a divide-by-ten (approx) attenuator network.

Thus, during "clean" parts of the record the output signal from the delay line ispassed through the click blanking circuit of Fig 5 via the two series-connected on

The power supply is a straightforward design based on a pair of three-terminal IC regulators, which provide plus or minus twelve volt outputs. LED 2 is a panel-mounted component, which indicates the power on state.

Next assemble and check the audio circuitry. Make sure a signal is present at the level control RV2a and RV2b. Normally IC8 gates will be 'open' and so an audio output should be present at the phono sockets. if all is well.

If no output is present, check the audio through to RV2, and if a signal is present here, the fault probably lies with IC6 and Q1. Disconnecting the base of Q 1 will restore output if this is the case.

Over the Threshold

In use, the unit is connected between the output of a record player pick-up
switches of IC8 with negligible loss or gain, but in the presence of a "click" the two series-connected switches of IC8 open 1 mS before the arrival of the click and remain open for about 5 mS , thus replacing the click with an imperceptible "blank."

Note in the circuit that the inputs of IC8 are biased at half-supply volts to enable
the IC to pass signals with a minimutm of distortion when operated from a singleended power supply. The 4016 IC suffers from a certain amount of control-signal breakthrough; by using a times-ten amplifier before the input and a divide-by-ten attenuator after the output of the IC, this breakthrough is reduced to insignificant levels relative to those of the basic audio signal.

Fig 6. Power supply for the unit. $\begin{gathered}\text { GND } \\ \text { OUT }\end{gathered}$
and the input of a stereo amplifier. Volume control RV2 should be adjusted so that no perceptible difference occurs in audio sound levels when the bypass switch is switched in and out. Pre-sets RV1 and RV101 should be adjusted for minimum distortion on the Right and Left channels respectively. Threshold control RV3 should be adjusted in use so that LED 1 just operates in the presence of a 'click'

It should be noted that the relative amplitude of a 'click' is proportional to the velocity of the record track past the pick-up head, and decreases as the head moves towards the centre of the disc: the threshold control may
consequently need occasional: readjustment as the record progresses through its play.

There is no equalisation circuitry within our design, and so it cannot be used in place of the preamp in your system, it must be used in front of it instead.

When playing damaged LP's simply advance the Threshold control, RV3 from its minimum setting until the click is removed This is the correct setting.

LED 1 will indicate the unit operation, and if it flashes on musical peaks, chances are you have the threshold control set too high and are removing some of the signal as well.

Fig 7. Component overlay for the Click Eliminator unit. Note that all the components bar the potentiometers mount on this PCB. The operation LED is also best front panel mounted.

Being composed mainly of 'standard' components, the Eliminator should pose most component shops no problems. The LF 356 is available from Watford in case of difficulty.

PARTS LIST

Fig 8. Clock generator circuit.

HOW IT WORKS

Abstract

Ping 1 anid 4 of the TDA in2 detay-ine ice mast be proserted with symmetrical anti-phase ofock stghais for" berrect ancration The bo tic clock yonal of a few Wandred latio is gergerated by a cyos fathle multuribrator formeif by iclua sad liciob the cinck rignal is taken to

each chanva sta 2 buffer bage (liod or
Cl0ct $20^{\circ} \mathbf{a}^{\circ}$ D-type fliptlop (iCl1a or
ICL1b), whach provides the required anti-
phase crive sighals from the Q and 9
outoutei for the delay line. The clock
解erator bas RF ito cisening grovided by
C16. which is raounted elose to the supply
pars otiCla and FiCl

> Close up of the socket wiring for the Click Eliminator. Keep these as close to the boards as possible, and use screened leads if this is not possible, earthing only one end of the screen.

THE SINCLAIR PDM35 Digital Multimeter		
meter at an analogue price and look at the		
price and look at thespec!		
D.C. 1000v		
10 mQ input. 1 c - 500 v .		
$40 \mathrm{~Hz} .5 \mathrm{kHz}(1 \%+2$		
dic. CURRENT		
RESISTANCE 1Ω20 m - $11.5 \%+1$		
count). $£ 29.82$ C.W.O. or $£ 32.95$ company or govi. purchase order.		
Adapto: ¢3.20. Padded case $£ 3.20 .30 \mathrm{kV}$ probe¢18.92.		
ع18.92.		
THE SINCLAIR MICROVISION The amazing pocker T.V. that will		
	with rechargea	
	c VA	
	Batueries ¢1,16. Adaplor 56.76.	
	detailed Brochure ex-stock)	
SINCLAIR DM235 Portable 3\% digit 6 function		
SINCLAIR DM350 \& DM450		
	Resistance range Omis to 20 mil (100 ml) on DM350	
	- Basic accurac	
	Input impedance	
	with 1000 M () selectable	
	Aut	
$\begin{aligned} & \text { OC Voltage range } \\ & 10_{\mu} V_{\text {to }} 1200 \mathrm{v}(100 \mu \mathrm{~V} \end{aligned}$	${ }_{\text {Push }}^{\text {Put }}$	
KRAMER \& CO		
Wo will mateh any lower adverrisod price on s cash w		
goctober Place, Holders Hill Rosd, London NW14 1EJ Telex 888941 Attn. Kramer K 7. Tel. 01-203 2473		

T.T.L.				$\begin{aligned} & \text { LINEAR } \\ & \text { LM709 } .20 \end{aligned}$	TRANSISTORS
7400	. 10	74121	. 25		
7401	. 10	74122	. 32	LM741. 17	8C177 12
7402	. 10	74123	. 38	LM380 . 55	BC182 09
7404	. 10	74125	. 32	LM3900	8C212 09
7405	. 13	74126	. 32	45	BC547 09
7406	. 22	74132	. 45	NE555 . 22	BC548 09
7407	24	74141	. 50	NE5566 . 55	BC549 . 09
7408	. 12	74150	. 65	NE565 . 80	BC557 09
7409	12	74151	. 45	NE566 1.15	BC558 . 09
7410	.12	74153	. 45	NE567 1.20	BC559 . 09
7411	. 15	74154	. 70		2N3055
7412	. 15	74156	. 45		2N3819
7413 7414	. 25	74157 74161		REGULA.	${ }^{2 N 3819}{ }^{18}$
7420	. 12	74163		LM340RS	$2 \mathrm{~N} 3904{ }^{.18}$
7426	20	74164	. 55	Lm340T5	2N304. 08
7427 7430	. 20	74165	. 75	LM340ti ${ }^{55}$	2N3906
7430 7432	. 12	74166 74175		\%M34. 55	. 08
7437	20	74175 74176		LM 340T15	
7438	. 20	74180		LM $340 \mathrm{~T}{ }^{\text {. }} 85$	
7440	. 12	74181	1.25	LM 34018	
7441	60	74182	. 50	LM 340 T 24	
7442	. 38	74190	. 70	55	
7444	. 60	74191	. 70		
7445	. 60	74193	. 60	BRIDGE	ES
7446	50	74194	. 55	(1a)	
7447	. 50	74195	. 55	wot 100 V	1N4T48
7448	50	74196	. 55	25	
7450	. 14.	74197	. 55	wo4 400V	1N5401
7451 7453	14	74198	1.00	. 35	. 11
7453	14.				
7454	. 14				
7460	. 14				
7470 7472	25			micros enc	
7473	. 21			450 ns	95
7474	21				4.95
7.475	25		82		1.90
7476	25		82		4.90
7480	. 40		82		2.50
7483	. 75		82		3.90
7485	. 60		82		7.50
7486	25		82		7.75
7489	1.20			1013	3.50
7490	. 25			2376	8.75
7491	. 40				
7492	32			OELECTRON	Ics
7493 7494	. 58			125 RED $3^{\prime \prime} \mathrm{CC}$. 99
7495	50			$73^{\prime \prime} \mathrm{CA}$. 95
7496	. 50			$500.5^{\prime \prime} \mathrm{CC}$. 92
74100	80			507. 5"CA	1.00
74107	22			307.8"CA	1.65

All prices include V.A.T. Please add 25p P\&P on orders under $£ 5.00$

H\& S ELECTRONICS

7 The Pavement, Chapel tid.
West Norwood
West Norwood, London SE27 OUN Tel: 01.7613614

data sheet

IC SURVEY

THERE ARE VERY many IC's available on the market today, and new devices seem to appear daily (probably hourly). This barrage of technology can be rather daunting, particularly to the newcomer to electronics. The following article tries to untangle some of the confusion by surveying IC technology in four groups of devices; Op Amps, audio amplifiers, multipliers, and oscillators.

Operational Amplifiers (Op Amps)

There are many different types of OP Amp and they are manufactured by several different companies. Most of these companies produce standard Op Amp devices but they put their own part number on them.
In recent years, the trend has been to develop IC's with more than one Op Amp inside. This has resulted in a range of dual and quad Op Amp packages. Texas have brought out a range of Bifet Op Amps. These are pin for pin compatible with standard types, but they are different in that they have FET inputs, giving them a very high input impedance.
Cihart 1 shows comparative performance for several standard Op Amp types. The parameters chosen are the most important ones when selecting Op Amps.

Audio Amplifiers.

Several manufacturers produce monolithic medium power amplifiers for audio use. This makes the design of small audio
amplifier sections relatively easy. There are some pitfalls to watch out for. IC amplifiers can easily destroy themselves if the power rails are high or if insufficient heat sinking is provided. There are now quite a wide range of devices, some of which are shown in Chart 2.

Multipliers

The range of multiplier IC's has never been very large, but recently a few more have been added to the list partly inspired by the needs of telephone compansion systems. These systems produce a better signal to noise ratio over the line. Another and very common noise reducer (a special multiplier) is the Dolby B chip. This unfortunately is only obtainable under license.

Oscillators

There are many oscillator IC's that can provide waveforms with periods of several hours to tens of nano seconds. For high frequency work there is the SN74S 124 at 85 MHz and the LM375 at 200 MHz . These are TTL devices, they are not linear and are intended for use in feedback circuits. The Teledyne 9400 is a well known linear VCO. Teledyne also make a wide range of VCO modules. The NM5837 and the S2688 are the same device. They are both pseudo random oscillators, that is, they oscillate but the waveform is so complex that the resultant output just sounds like noise. Chart 3 details the most common types.

CHART 1

OP AMP - ABRIDGED PERFORMANCE $s=$ Single $\quad D=$ Dual $\quad 0=$ ouad

Op amp type	Input offset voltage mV	Input bias current nA	Type of input structure	Bandwidth MHz	S̈lew rate V/NS	Voltage gain gain dB	Maximum supply voltage V	CMRR dB	Qty	Comments
709	2	300	NPN	1	0.25	90	± 18	90	S	Needs frequency compensation
307	2	70	NPN	1	0.25	100	± 18	90	S	Internal frequency compensation
301	2	70	NPN	10	0.5	100	± 18	90	S	Needs frequency compensation
741	2	80	NPN	1	0.5	106	± 18	90	S	Internal frequency compensation
748	1	120	NPN	10	0.5	103	± 22	90	S	A decompensated 741
308	2	†. 5	NPN	3	0.5	110	± 18	100	S	Low supply current drain 0.3 mA Needs frequency compensation Very low differential input voltage range
318	4	150	NPN	15	50	106	± 20	100	S	Very low differential input voltage range. Sometimes needs frequency compensation
747	2	80	NPN	1	0.5	106	± 18	90	D	internal frequency compensation
1458	1	80	NPN	1	0.8	103	± 18	90	D	Internal frequency compensation
4136	0.5	40	PNP	3	1.0	110	± 18	100	D	Lownoise
$\begin{aligned} & 3900 \\ & 3401 \end{aligned}$	Current inputs	30	Current sinks	2.5	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	70	± 18	-	Q	Current balancing amplifier
324	2	45	PNP	1	0.5	100	$+30$	70	Q	Ground sensing inputs Output voltage can go to ground Low power. 0.8 mA drain per IC
3403	2	150	PNP	1	1.2	100	$+36$	90	Q	Ground sensing inputs Class AB output Output voltage can go to ground Low power 3 mA drain per IC
348	1	30	NPN	1	0.5	103	± 18	90	Q	Low power 2.4mA drain per IC Class AB output

COME UP AND SEE ME.....

A new model of the familiar pocket bleeper will be keeping athletes on their toes at the Moscow Olympics.

Multitone's new RB151 receiver uses a combination of single digit numerical display, with a choice of eight audible codes to convey more information than any other long-range receiver on the market.
The receiver also has a memory. In a meeting, for instance, where bleeper sound would be intrusive, call information can be stored and recalled after the meeting.

Ten remote control units will be used in Moscow to send out
messages and all information can be displayed on a monitor or printed out.
Each remote controller has a conventional pad of ten keys for entering numerical information and four keys enable one of four call codes to be selected.
Additionally; a deafening alert call can be sent to a group of receivers. Another group of keys allows calls to be transferred automatically to any other designated receiver. There are also battery check and out-of range warning buttons. Multitone Electric Company Ltd, 10-28 Underwood Street, London N1 7JT.

GLOW BAR

The new RGB-1000 from Litronix is a red, 10 element, linear bar display in a one inch long 20 pin DIL package. Individual addressable anode and cathode and intensity colourcoding for display uniformity are featured. At 20 mA , typical
luminous intensity for display and element are 5 and 0.5 mcd respectively. Suggested applications include solid state meters and positional indicators. Details from Litronix Inc, 23 Churchgate, Hitchin, Herts, SG5 1DN.

CALL FOR ANALYSIS?

Hewlett Packard's new HP $377 \overline{9}$ is a microprocessor-based instrument for checking multiplexed telephone equipment. The 'scope-size unit replaces two large racks of test gear and automatically displays its results in minutes rather than days.

Over forty different meas urements from gain to intelligible crosstalk and local alarms can be assembled into a test sequence defined by the user.

The results are displayed in tabular form on the instrument's own CRT. The information can be fed to a computer or printer through an integral IEEE-488 (HP-IB) digital interface.

The analyser is produced in two models - the 3779A for the 3779B Europe and the 3779B for Bell system users. Further details from Hewlett Packard Ltd, King Street Lane, Winnarsh, Workingham, Berk shire RGll 5AR.

TELETEXT - A LOAD OF RUBBISH . . .

THE most infuriating aspect of teletext from the viewer's standpoint is trying to decipher the occasional sentence or word on a page that may look like this example. This week premium bond Winner is * $1 \times$!?//. The above statement emphasises a need for a device which could eliminate these annoying factors usually raised by multipath reception problems. A new large scale integrated circuit co-developed by Toshiba and NHK has proved successful in attenuating 'ghosts' of up to 27 uS delay by a reduction of up to 30 dB.

The principal method of circuit operation is as follows: The circuit examines the ordinarily stable intervals between equalising pulses in the composite video required, to determine the presence of ghostly images. They would actually appear as smaller trailing pulses. Through multiplexing and analog memory techniques, voltages accurately derived from the amplitude and amount of delay of the ghost pulses are applied to vary the gain on each of the 64 MOSFET weighting circuits fed in paral-
lel with a sample of the video signal. These outputs of the weighting circuits in turn feed 64 CCD delay lines each having a pre-determined delay time. The outputs of the delay lines are added and then applied as negative feedback to the composite video signal in a form having sufficient amplitude and delay to cancell the ghosts.

Do not however expect to see this ghost eliminator available just yet. It is still many months from the full production.
GERALD CHEVIN.

AND ALSO ...

An enterprising American TV station has finally decided to write a software package allowing American teletext to link up with British Viewdata.

In what is believed to be the first US attempt to interface the two systems, station KSL-TV (Salt Lake City) hopes to use the combination of the two systems to store and edit incoming US international wire copy in its General Automation 16/440 computer

TELEPHONE CALL TIMER-- Submitted by Mr A. M. Tucker of Dorchester.

TO CARRY OUT its function, which is to display the cost' of individual calls, and also to keep a running total of all metered calls, the circuit must add the amount of the unit charge (at present $3 p$) to each register when the call commences, and subsequently at the end of each charge period. This period will vary for peak, standard and cheap times, and with distance. Provision should be made for altering the settings of the counting circuits if there is a change in the Post Office charges.

Various circuits were considered, and this was considered to be as cheap to make as any for the facilities provided, as although there is a large number of ICs, the bulk are low priced.

The two sets of figures are circulated in a single shift register, the digits being interlaced; ie, the least significant figure in one register is followed by the least significant figure in the other register, and then by the next figure in the first register, and so on.

In order to be able to adjust the unit charge, and the periods available per unit, the outputs of the dividers are connected to sockets into which leads from the inputs of the resetting gates are plugged. These sockets, plus "parking places" for spare gates, can be made from IC sockets, or soldercon pins in plastic supports. To prevent damage to the pins of sockets when cutting into sections, push into a piece of rigid foam plastic. The wander leads are just lenghts of connecting wire. Solid core is suitable: if stranded wire is used, tin the end and check that it is thin enough to insert into the socket.

In the interests of economy, small low consumption displays have been used. If larger displays are required, it will probably be necessary to add segment drivers. The
drivers should then be supplied from the unregulated side of the supply, and S1 made a double-pole switch.

The 9 -volt standby battery is essential, as otherwise the "total cost" register would be cleared in the event of a mains failure. In order to reduce consumption during idle time, the counters IC1 and IC2 and their associated gates, the oscillator IC21 and the display buffers and driver IC 23 -IC26 are switched off by S 1 . It is unwise to try to include other ICs, as some inputs may be high. In any case, with the oscillator off, power consumption is very low in the remaining circuits.

It may simplify the wiring of a 4001 and a 4011 are substituted for the 4069. One NOR gate can be used instead of IC20a and IC22a, and a choice of ICs is available for the other inverters.

The meter can be adapted for battery power only by including a 4518 to divide the 10 kHz oscillator frequency down to 100 Hz , and doubling the division in IC1 by shifting each flying lead one place to the right. Setting the oscillator frequency exactly can be carried out either by comparing the 100 Hz output with 50 Hz from the mains on an oscilloscope, or by varying the setting until the charges are incremented at 10 second intervals for long distance calls at peak rates.

Decoupling capacitors for pulses in the supply lines may be required. While CMOS is less exacting than TTL in this respect, 10 n non-inductive capacitors should be fitted across the supply pins of ICs at the end of supply lines, and across each of the more complex ICs.

A flashing LED is provided as an indication (and reminder!) that the timing circuits are operating.

HOW IT WORKS

To commence timing a call, sw 1 is switched on, and SW4 and SW5 set. When the person replies, SW2 is closed. That. removes the reset from Cl and $1 \mathrm{C2}$, which start counting 50 Hz mains pulses. At the same time IC6a is trigged, producing a lûk pulse which clears the single eall regtster the digits bing selected by tc 21 b and re78b.
At the termination of the pulse. O goes low and triggers IC66. The Q output of this IC then goes low for 7 ms or until reset by 107. Which is enabled by the ligh Q output of IC6b and is clacked through 1 C 20 b each time the LSB of the registers are present at Q_{0} and Q_{1} of $C 11$, mill the output comnected to IC2ze goes high, when IC6b resets and inhibits IC7.

The output from 167 is fed through 168 to the carry in of the adder (IC14) driving the

L LB Three cycies of the fifft tegist os ire required to increment the registers by $3 p$. SWI and SWS set the cime avalable fot one unit. For present Post office rates, fol is preset to drivide by 250, gaving an output pulse every $5 S$, C 2 a divides by twra, three or twelve. ic $2 b$ by three or swelve.

A pulse stretcher (K), C3, D5) is included to casare ICl resels.
When the timing pulse raches. $1 \mathrm{C} 20 \mathrm{a}^{\circ}$. LC6b is retriggefed, clocking up another unit charge. The two sus af figures are stored in four 8 stuge shift registers IC12 and 1613 and are circulated through the adder (C14). The digits are selected for displa by the divider $1 \subset 11$

Clocking of these PCs and relo ie effected by the 10 k astllater $1 \mathrm{C} 21 \mathrm{a}, \mathrm{b}$ the exact frequency of this is not mportant, but must be related to the lengith of the monostables
$168 \mathrm{and} 1^{8} 6 \mathrm{~b}$.
1C21c is a buffer and the low clocking pulse required by the shiff registers is pronted by IC Id
When the call is completed, SW2 is switched to off and the resets on ICI anc 1C2 go high, stoppinil the count. The cost of the call remains in the rebister until SW 2% closed for the next call. At the end of a quarter, the 'total east' register can be cleared by pressing SWh C4 D4, f6 jrovide a power-on reset which ensures that the flip-flops are correcty set initially, and that IC7 is not started in the middle of a charge period.
When wo more calls are expected to ber made for a while SWl is operied, drapping current consumptronto a very low Igureso that a battery backup can be weed agamot: nains falure.

PARTS LIST

54

This new feature is open to all our readers. exists as a showcase for projects YOU have de: igned and built. We pay full ETI page rates fo any designs we publish. We must stress the these designs must have been built by you. T further this end, we are giving preference t those which arrive at our offices with photc graphs, or which can be photographed by us. Initially a simple draft outlining th idea behind the project and what the uni can do is all that is required Photographs should be included this stage.
Write
Readers De
signs,
Offices, $25-2$
Oxford Stree
London, W1
1RF.

Science Project

Ambush! is a CMOS based design of considerable technical interest, and should make an exceilent educational project for schools and colleges. It uses seventeen IC's plus a couple of transistors. The IC types range from simple NAND and NOR gates to complete decade counter-decoder chips, and include flip-flops, data latches, 12 -stage ripple counters, and multiplexers

Playing The Game

Game Start. The game starts as soon as power is applied to its circuits. A game can be restarted by pressing the RESET switch.

Attacks:

(1). The game can be set for play against either ten (a DEK) or a hundred (a CENT) attacks.
(2). Attacks come at random intervals, variable between nought and approximately five seconds.
(3). The quadrant of each attack is randomly selected, except for the first attack of the game, which always

comes from the aft quadrant.
(4). The speed of attack can be pre-set by the player, to suit skill levels. A 'respectable' attack speed' is equal to about 50 mS per LED division on the quadrant attack indicator.
(5). At 'respectable' attack speeds, the player has approximately 250 mS of attack warning on the forward quadrant, 300 mS on the port and
starboard quadrants, and 350 mS on the aft quadrant
(6). Attacks on the aft quadrant are accompanied by a full volume staccato sound. Port and starboard attacks are at reduced volume, and those from the forward quadrant are silent.
(7). The accumulated number of attacks is registered on a 2 -digit display throughout the game

HOW IT WORKS

SIMPLITIED BLOCK DIAGRAM OF THE AMBUSH GAME

The heart of the unit is the Display Matrix Driver and Logic block, which in reality takes the form of a 401% dexcade counter with ten decoded outputs. Outouts 1 to 7 of the counter are fed to the UED Gisplay matrix, and outputs 6 to 8 are selectively fed via a multiplexer to the GAME LOST indicator block and to the CLOCK DISABLE pin of the 4017. The imput of the 4017 is derived from a clect generator via a gate, which in turn is controlled by a simple START-STOP (Reset Set) bistable.

The operating seguence of the above six blocks is fairly simple taitially the bistable is in the STOP mode, the gate is closed the 4017 is in the RESET state and all LED's in the display matrix are off At some randomly determined time a START pulse is fed to the bistable. the gate opens, clock pulses start to reach the 4017, and LED's are sequentially switched on in one of the arms of the display matrix. If the gate remains open, one of the selectively chosen 6.7.8 outputs of the IC. eventually goes high and operates the GAME LOST *indicator and disables the clock input line of the 4017 .
Alternatively, the bistable can be set to the STOP mede befort the game terman ates by operating the appropriate FIRE switch. In this case the bistable closes the clock gate, and the 4117 resets to the zero state. A newzequence of operations starts when trother random START pulse is fed
to the input of the bistable. Note that output 1 of the 0017 is fed to the ATTACK COUNTER so that the counter adwances by one count each time the clock genera-

Defence

(a). The player has four FIRE buttons for defence. The buttons are marked F (forward), P (port), S (starboard), and $A(a f t)$. To stop an attack, the player must press the FIRE button appropriate to the prevailing attack quadrant, before the attacking vessel reaches its target (the red LED at the centre of the display). A correct firing is accompanied by a rasping sound.

No sound is produced if the wrong button is pressed.
(b). The ship has sufficient ammunition to fight off attacks only if each FIRE duration is limited to about 100 mS or less. Thus, there is sufficient ammunition for about one second of continuous fire in the DEK game, and ten seconds of fire in the CENT game. The ammunition state is shown on a register throughout the game.
(c). When the correct FIRE button is pressed, the rate of ammunition usage is directly proportional to the total number of FIRE buttons that are pressed at that time. Thus, if all the fire buttons are pressed at once, the ammunition supply will exhaust in 0.25 seconds in the DEK game or 2.5 seconds in the CENT game. The audio frequency of the FIRE sound is proportional to the rate of ammunition usage. When the ammunition store is exhausted, the player has no defence, and loses the game after the next attack.

Game Lost. The player loses the game by having his starship hit by an attacking suicide craft. When the game is lost the red LED at the centre of the attack quadrant indicator turns off, and simultaneously a loud droning noise is generated and a red GAME LOST LED flashes on the control panel.

Game Won. The player wins the game by defeating all attacks. At GAME WON a green LED illuminates on the control panel, and a coarse beating or throbbing sound is generated
bistable via a multiplexer and a simulated firet sound is generated if the operator activates the correct switch; the frequency of the 'fire' sound is determined by the FIRE RATE SELECTOR circuit, and is proportional to the total number of FIRE swifches pressed at any given moment:

The output of the fire sound generator is used to drive the ammunition register, Which counts and gives a visual readout of the total number of cycles generated The sound is also used to generate a latclied randorn 'seleci' code for the four mutiplexers that are wsed in the gatre. These mutiplexers are used for we
syitey selecion for LEA Displas Matrir line and line rength selection, and to determing the Audio leyels of the ATTACK sounds.
The ATIACK, FIRE WIN and, LOSE ound s-gents are alf fed io a smople two transistor aedio amplifier which gif es a to oim output speaker.

HOW IT WORKS

RANDOM DELAY IND＇FIRE＇SOUND GENERATOR glus FIFE RATE SELECTOR AOd FIRE SWITCH MULT1． PLEXER
THIS IS probably the most amplex brock in the enture game because moet of if inciviaual sectionc are mierdeperi． dent Fg． 2 shows the circuit difgram of this major＂Block＇．

8

THE FHRE SOAND GENERATCUK

Let＇s deallirst with the TIRE SOUND aftetirator 162 is one half of a 4052 didel A chronet multiplever Tuis comnects d seiceted one of its fourdapufs to its oupui，Cepenowng on the a－b binary cole signal hat isfed to its select（pins 9 and lox cerminals．Thus，when the appro－
2 priate one of the four FIRE switches is pressed，a logic－ 1 sygnal appeart at outpui pins of the mutiplexer．This slignal is debounced by Rorco and R2 and is passed to the signan hput of the INWIBI－

（1）phases signals ony when itc
 temmingl of this particular gate，and is thed to grodut var R5 but can be driven high loy the outputs of he HOSERand OUT OF aMMO detectors．The gate thus passes on qute FIrez switch stanals only when the
gane is not lost and the ammuniton stane is not exhausted．

The output of the inhlat cate used to activate a gated पRE soumid oscilator designed around CC5／3 anitics／4 The main timing components of thio oscliator are C2 and R12 to R1s．These t imisg resastans ate contected via IC1． Which is a 4016 quad blateral switch which has each of ins fouv interma swheches activated by pue of the four FiRE：switches：these mternal swithes are nomafly open，and close when their apmonnate HRE switch is closed．

Thus，the complete action of the FIRE foxn genarator is such that a sound is produced only when the correct＇FIRE switch is pressed，and only when the game is not tost．or the ammunition Ghavsted．The frequency of the sound is proportonal ta the total number of Fire suritches pressed and varies from about 800 Hz for one switch，to shout 320 Hefor four switches．
He pin－4 output of the IIRE oscilator等 low in the nomal quiescent state，and its sjinids are passed to the input of an audio amplifier for sound efitects，and aiso to the mputs of the ammunition femester and the Randem Deldy generator An intreted output（nomally high）is also taken from the wia 3 output of the scillator and is fed to the WIN VGIC －efrcuitryy Note that the ale lnput signal
 of the display matrix dryef，so mat $1 C^{\prime} 13$ frreset each time the coriect FIRE swith is pressed

THE MANDON OEL K M ONETGYOR

The heant of the randati delay gevers－ tor is IC 4, a 4 估 7 dectale counter witu ten decodec outputs（numbered 6 to 9 ）the 9 output of the cowater is couplet to the START side of the bistable vio a normaly－ON inhoit gate The clockinvut 1）the counter is derived from a slow （about 2 Hal oscillator（C5／1 and IC5／2） and from the TTHE Oscillator output via an OR gate formed by D1－D2 and $R 3$
Whenevert the correct fl F E button is pressed during an attack a logic－1 stennation fed to the＇G＇（rin 13）terminal of the inhbrigate，which turns off and blocks the signals from he 4017 countex Simultameausty，frst ckete signat aise fog
 generator Consequentis，when the Flid switck 却 released and the inlinit gate relums to the ON state the comiter is an unknown ox random numbar of steps from the sy count（whichis the cont thet provides the STANI signal to the bist－ able）．Clock signials are then fed to the counter from the slow ascillator onty until，atter a delay that is infinitely yan： able trom zero to about fixe seconds，the counter reaches che 9 ＇state and feeds． SIART commave to the bistabls

Fig．2．Circuit diagram of random de－

HOW IT WORKS

THE BISTABLE，CLOCK GENEIRATOR ＇AITACK＇SOUND MULTIPLEKKR． ANO GAME LOST INDICATORS
THE BISIABLLE is a stmple R\＆typo． made from a pair of NOR sates（LC9／1 and IC9／2）．Its START input is derived from the random delay generator via C4，and Srop inputs are obtained from the FIRE log or the＇GAME LOST inteetor circuitro via the D6－D7－R30 diode OR gate．The＂pin－1 outpue of the bistuble is hosinally high，but goes low in the START mode and is fed to one input or the LCIO／3 NOR gate．which provides the dock input signal to IC12 the display matrix counter－diviver）．The other mput of the NOR gate is obtained from the
variable－speed CLOCR GENERATOR （IC10／1 and（C），2）or from the WIN DETECTOR circuitry via the D4－D5－R28 diode OF gate．
Thus input pin－6 of the NOR gate is normally high，and its output is locked low，so it is unable to pass clock signals When a＇START＇signal is fed to the Wistable from the random delay genera－ tor．rinpat pin－6 of the gate is driven low． and it does pass clock signals；The gate is turned off agaik when a STOP＇is ignal is fed to the bistable from the FIRE logic circuitry：Note that the gate gets locked into the off stateif a logicl signal is fed to its pins input from the＇WIN＇detector （via D4），or if a loge－ 1 GAME LOST
signal is fed to the STop side of the bistable vis Do．
The IC10／1 and $\mathrm{tclo/2}$ clock generator determines the spsed of any attack，and its frequency is variable via $R V_{1}$ ，The clock signal appearing at the pla－il ate put of the lCl0／3 NOR gate provides the Basic ATTACK sound of the game．The amplitude of this sound is cietermined by muliplever 1C2／2 and resistors R31 and R32．Attacks from the aft quadrant are at full volume those from port orstarboard are at feduced volume，and thos from the forward quadrant are silent．
The＇GAME LOST＇indicators use four NAND and one NOR gates：their basic Hrput signafs are obtamed frop rin－13 of ICi2，which is normally low but goes high under the game tost condition 1 c9／3 is wired as a simple inverters and dives thin

wired as a low-speed gated astable, which drives a rea GAMELOST LED. Both astables are normaly off, with their outputt low. Under the GAME LOST con dition both astables operate, the 'LOSE sound is renerated and the "I OSE' LFIN nashes on and off.

Fig. 4 (left) Display marrix counter/ driver, target LED and 'LOSE' indicator.
Fig. 5. (right) Bistable, clock gen.,
'ATTACK' sound multiplexer and 'GAME LOST' indicators.

eo oisplay mathix
Fig. 6a. LED display matrix.

HOW IT WORKS

Fig 6c. Audio amplifier.

LED DISPLAY MARTIX DRIVERS, MULTIPLEXERS, AND LOGIC, PLUS AUDIO AMPLIFIER AND POWER SUP. PLY CONNECTIONS

THE MAIN PART of the LED display matrix is made up of four lines of LED's, arranged in the form of a cross. The upper (Forward) line is five LED's long, the lower (Aft) line is seven LED's long, and the other two lines are each six LED's long. The individual LED's in each line are selected by IC12 a 4017 decade counter with ten decoded outputs, and the lines are selected by multiplexer IC13/1. Note that diodes D15 to D25 are used to eliminate sneak paths in the matrix, and ensure that only a single selected LED
turns on at any one time. Figure 6 b shows the positions of the LED's in the actual display. Note that LED 11, at the centre of the display, is normally on and represents the players own vessel.
Prior to the start of each attack 1 Cl 2 is in the RESET state, so all LED's in the matrix (except LED 11) are off. As soon as an attack starts, IC13/1 selects a line of length ' n ' in the display matrix, and IC13/2 connects the ' $n+1$ ' output of IC12 to its own pin-13 'clock disable' terminal. Thus, when an attack starts the LED's in the selected line turn on sequentially and run towards the centre of the cross: if a RESET signal is fed to pin-15 of IC12 from the 'FIRE' logic circuitry before the ' $n+1$ ' state is reached, the attack is defeated: if

Fig. 6b. Line selection.

Fig. 6d. Panel LED display.
the attack is not defeated, pin- 13 -of ICl 2 is driven high as the counter reaches the ' $n+1^{*}$ state, and all further clock signals are inhibited and all GAME LOST indicators are activated.
All sound effects signals that are generated in the game are digital in form, and are fed via gate diodes and amplitude-determining resistors to the simple Q1-Q2 audio amplifier stage, which is unbiased. The amplifier directly drives a 40R speaker, which has transient limiting provided by D14.
The game is powered by a 12 V battery supply, and typically consumes 50 mA to 150 mA of current, depending on the state of play. Readers can, if they wish, power the game via a simple mains adaptor.

PARTS LIST

R1	6 M 8	SEMICONDUCTOR	
R2	390k	IC1	4016
R3, $8,9,10,11,31,40,48$	22k	1C2, 13	4052
R4	10 M	1C3, 9, 10	4001
ค5, 26, $28,29,30,3$	$47 k$	IC4, 6, 12	4017
R6, 16-25, 36, 37, 47	1k	IC5, 17, 11	4011
R7, 12, 13, 14, 15	100k	1 C 7	4040
R27	330k	IC8, 16	4026
R32	6 k 8	IC14, 15	4013
R33	680k		
R34, 41, 42.46	10 k	NOTE, All CMOS devices are B Series.	
R35	2 M 2	Q1	BC109 BFY50 1N4001 1N4148 common
R38	270R	Q2	
R43	33R	014	
R44, 45	1.M5	All other diodes are	
R49-62	470 R	LED $1-37$ are standard 0.2 in dia LED 7 segment displays ar cathode 0.3 in	
POTENTIOMETER RVI	1 MO		
		MISCELLANEOUS LS1 2 in 40R 5 off SPST push buttons 1 off SPST latching push button 1 off DPDT min. toggle	
CAPACITORS			
C1, 5, 6, 7, 8, 11, 14, 15	$100 n$	8 off HP11	
C2, 3, 4, 10, 12, 13	$10 n$	2 off 4 section battery holders	
C 9	$150 n$	case to suit	

BUYLINES

The case we used for the Ambush project is available from Boss Industries. Full details next month. Since panel layout is not critical, inventive ETI readers may be able to come up with their own hardware designs. All the ICs are common types, available from most component mail order firms.

If you think you are likely to spend every waking hour zapping the starfleet, it's worthwhile investing in a mains adaptor, available from your local Tranny shop.

HOW IT WORKS

THE ATTACK COUNTER AND GAME won detector and indicators

THE ' 1 ' OUTPUT of 1 Cl 2 . (the display matrix driver) briefly goes high at the start of each attack. This ' 1 ' signal provides the clock signal to the IC14-1C15 ATTACK COUNTER. These two IC's are 4026 decade counters with decoded outputs suitable for directly driving common cathode 7-segment LED displays at low power levels. The two counters are cascaded, to give 00 to 99 indications:
leading zero suppression is not used in the counter.

The 'GAME WON' detector is designed around IC16, a 4013 dual D flip-flop, and ICl0/4, a NOR gate. $1 \mathrm{Cl} 6 / 1$ is connected as a bistable divider stage, and is clocked via one or other of the attack counter outputs. The action is such that its \bar{Q} output is normally high, but switches low at the start of the l0th attack in a DEK game or the 100 th attack in a CENT game. The Q output is fed to one of the inputs of the IC10/4 NOR gate, which has its other

Fig. 7 (left) Circuit diagram of display drivers, multiplexers and logic with audio and power connections.

$1 C 1315$ s 4052
$01158 C 109$
0

O14 515 Na001
O5.-5 5 ARE
Na 148

组
LED32-36 ARE 0.2"ORANGE
input provided from the normally-high output of the IC5 'FIRE' sound generator. The output of the NOR gate is fed to the SET (pin-8) terminal of IC16/2, which is wired as an R-S flip-flop. Both bistables are reset at the start of each game.

The action of the complete 'GAME WON' detector is such that 'FIRE' signals are fed to one input of the NOR gate each time a 'FIRE' signal is generated. but are unable to reach ICI6/2 until IC16/1 changes state after the start of the 10 th (in a DEK game) or 100th (in a CENT game) attack, at which point the Q output of ICI6/2 goes low and drives green 'WIN' LED 37 'ON' via IC9/4, and the Q output goes high and activates the 'WIN' sound generator.
The 'WIN' sound generator is designed around 1 C 17 , and consists of two virtually identical medium-frequency gated astable multivibrators, which are operated in parallel and have their outputs fed to the audio amplifier via the D26-D27-R46 diode OR gate. Because of inevitable slight differences in timing component values, these two astables oscillate at slightly different frequencies, and produce a coarse 'beating' or 'throbbing' sound when they are activated by the WIN' detector.

Next month we conclude the project with full constructional details and component overlays. In addition we'll show you the act of inspired heroism which led to the saving of the starship Eatyeigh and the designing of this project! For those who to get started the Parts List and circuit diagrams given here are complete.

3080 CIRCUITS

The 3080 is not a run of the mill op amp. These ten circuits from Tim Orr show you why.

The CA3080 is known as an operational transconductance amplifier, (OTA). This is a type of op amp, the gain of which can be varied by use of a control current, (IABC). The device has a differential input, a control input known
as the 'Amplifier bias input' and a current output. It differs in many respects from conventional op amps and it is these differences that can be used to realize many useful circuit blocks.

SIGNAL INPUT

תดดคดดคกดคดดค

oV

Voltage Controlled Amplifier

The CA3080 can be used as a gain controlling device. The input signal is attenuated by $R 1, R 2$ such that a 20 mVpp signal is applied to the input terminals. If this voltage is much larger, then significant distortion will occur at the output. In fact, this distortion is put to good use in the triangle-to-sinewave converter. The gain of the circuit is controlled by the magnitude of the current IABG. This current flows into the CA3080 at pin 5. which is held at one diode voltage drop above the -Vcc rail. If you connect pin 5 to 0 V , then this diode will get zapped, (and so will the IC)! The maximum value of IABC permitted is 1 mA and the device is 'linear' over 4 decades of this current. That is, the gain of the CA3080 is 'linearly' proportional to the magnitude of the IABC current over a range of 0.1 uA to 1 mA . Thus, by controlling IABC, we can control the signal level at the output. The output is a current output which has to be 'dumped' into a resistive load (R5) to produce a voltage output. The output impedance seen at IC1 pin 6 is 10 k (R5), but this is 'unloaded' by the voltage follower (IC2) to produce a low output impedance. The circuit around IC3 is a precision voltage-to-current converter and this can be used to generate labc. When Vin (control) is positive, it linearly controls the gain of the circuit. When it is negative, IABC is zero and so the gain is zero.

This type of circuit is known by several names. It is a voltage controlled amplifier, (VCA), or an amplitude modulator, or a two

Vin

 CONTROL ov

OUTPUT
 OV
quadrant multiplier.
One problem that occurs with the CA3080 is that of the 'input offset voltage'. This is a small voltage offset between its input terminals. When there is no signal input and the control input is varied a voltage similar to the control input will appear at the output. By adjusting RV1 it is possible to null out most of this control breakthrough.

ILP MODULES 15-240 WATTS

We are now stockists for these world famous fully guaranteed (2 years guarantee on all modules) Pre amps. Ampifiers \& Power Supplies.
HY5 Preamplifier, Input, magnetic pickup 3 mV . ceramic 30 mV . Ourput: Mains 500 mV HY30 Amplifier Kit. 15 Watts into 8Ω, extrentely easy to construct. Output 15 W RMS Distortion 0.1% at 15 W Freq. $10 \mathrm{~Hz}-16 \mathrm{KHz}$. Supply $\pm 18 \mathrm{~V}$ Price $£ 6.27$ HY50 Hi-FiAmplifier Module. 25 Watts 8Ω. Input Sensitivity 500 mV . Output 25 W RMS. Distortion 0.04% at 25 W . Freq. $10 \mathrm{~Hz}-45 \mathrm{KHz}$. Supply +25 V
Module - 60 Watts 8Ω. Input sens. 500 mV . Output 60 W RMS
HY120 Amplifier Module - 60 Watts 80 . Input sens. 500 mV . Output 60 W RMS
Distortion 0.04%. Freq. $10 \mathrm{~Hz}-45 \mathrm{KHz}$. Power Supply +35 V Price: $£ 18.98 \star$
0 mV 120 W RMS HY200 Hi-Fi/Disco Amplifier Module -120 Watts 8Ω Input sens. 500 mV 120 W RMS
Freq. $10 \mathrm{HZ}-45 \mathrm{KHz}$. Power Supply +45 V . Size $114 \times 100 \times 85 \mathrm{~mm}$ Freq. $10 \mathrm{HZ}-45 \mathrm{KHz}$. Power Supply $\pm 45 \mathrm{~V}$. Size $114 \times 100 \times 85 \mathrm{~mm}$ HY400 (Big Daddy) Amplifier Module - 240 Watts $4(1)$. Ideal for High Power Disco or
Output 240 Watts RMS $4 \Omega 114 \times 100 \times 85 \mathrm{~mm}$. Distortion 0.1% Output 240 Watts RMS $4 \Omega 114 \times 100 \times 85 \mathrm{~mm}$. Distortion 0.1% Price: $\mathbf{E 3 8 . 6 0 *}$

POWER SUPPLIES
PSU36 - Drives $2 \times$ HY3Os
PSU50 - Drives $2 \times \mathrm{HY5Os}$
PSU70 - Drives $2 \times \mathrm{H} 120 \mathrm{~s}$ PSU90 one HY200
$\mathbf{8 8 . 1 8}$
PSU90 one HY200
PSU $1802 \times$ HY 200 or one HY400
JACK PLUGS SOCKET

Climaire have introduced what they believe to be the only low cost, large screen (17 inch) oscilloscope in Britain, de signated the BWD 1722.
The high sensitivity four channel amplifier can switch up to four traces with alternate or chopped presentation. All inputs are AC or DC coupled with independent gain and shift
controls. Trigger output is taken from channel one.
Continuously variable sensitivity, from 35 mV to 5 V per inch is provided. Auto, manual, line and external triggering with a horizontal sensitivity of 100 mV to 50 V per inch are provided. The BWD 1722 sells at $€ 1350$ from Climaire Ltd Instru= ments, Apsley House, Apsley Road, New Malden, Surrey.

MIGHTY MINI-SWITCH

Digitran's new series of miniat ure push buttons are built to last. The Series 12000 Minibut ton is designed for use in applications where severe environ mental conditions are expected.

The switch is designed for a life of one million detent operations. It meets the shock, vibration, moisture-resistance, thermal shock, salt spray, explosion - proofing and sand and dust requirements of MIL-STD-202, a stringent specification. Eight or ten standard dial positions are available. Series 12000 is available from Digitran UK, Melbourn, Royston, Herts.

Triangle To Sinewave Converter

By overloading the input of a CA3080 it is possible to produce a 'sinusoidal' transfer function. That is, if a triangle waveform of the correct magnitude is applied to the CA3080 input, the output will be distorted in such a way as to produce a sinewave approximation. In the circuit shown, RV1 is adjusted so that the output waveform resembles a sinewave. I tested this circuit using an automatic distortion analyser and found the sinewave distortion to be only 1.8%, mostly third harmonic distortion, which, for such a simple arrangement, seems very reasonable indeed. This could be used to produce a sinewave output from a triangle/square wave oscillator.

Voltage Controlled Oscillator

By using two CA3080's and some op amps it is possible to make an oscillator, the frequency of which is voltage controllable. This unit finds many applications in the field of electronic music production and test equipment. The circuit has been given a logarithmic control law, that is, the frequency of operation doubles for every volt increase in the control voltage. This makes it ideal for musical applications where linear control voltages need to be converted into musical intervals (which are logarithmically spaced) and also for audio testing where frequencies are generally measured as logarithmic functions.

IC2 is an integrator. The IABC current that drives this IC is used to either charge or discharge C1. This produces triangular waveforms which are buffered by IC3, which then drives the Schmitt trigger IC4. The hysterysis levels for this device are fixed at $\pm \mathbf{1 . 5 V}$, being determined by R6, R7.

The output of the schmitt is fed back in such a way as to control the direction of motion of the integrator's output. If the Schmitt output is high, then the integrator will ramp upwards and vice versa. Imagine that the integrator is ramping upwards. When the integrators output reaches the positive hysterysis level, the Schmitt will flip into its low state, and the integrator will start to ramp downwards. When it reaches the low hysterysis level the Schmitt will flip back into its high state. Thus the integrator ramps up and down in between the two hysterysis levels. The speed at which it does this, and hence the oscillating frequency is determined by the value of IABC into IC2. The larger the current, the faster the capacitor is charged and discharged. Two outputs are produced, a triangle wave (buffered) from IC3 and a squarewave (unbuffered) from IC4. If the squarewave output is loaded then the oscillation frequency will change.

The log law generator is composed of Q1, 2, 3 and IC1. Transistors Q1 and 02 should be matched so that their base emitter voltages (Vbe) are the same for the same emitter current, (50 uA). Matching these devices to within 5 mV is satisfactory, although unmatched pairs could be used. When matching transistors take care not to touch them with your fingers. This will heat them up and produce erroneous measurements. Transistor 02 is used to produce a reference voltage of about -OV6 which is connected to IC1 pin 3. This op amp and

Q3 is used to keep Q1 emitter at this same voltage of -OV6. The input control voltage is attenuated by $R 1, R 2$ such that a +1 V increase at the input produces a change of only +18 mV at the base of Q1. However the emitter of Q1 is fixed at -OV6, so the current through $\mathbf{Q 1}$ doubles. (It is a property of transistors that the collector current doubles for every 18 mV increase in Vbe).

The emitter current of 01 flows through 03 and into IC2 thus controlling the oscillator frequency. It is possible to get a control range of over 1000 to 1 using this circuit. With the values shown, operation from 10 Hz to 10 kHz is achieved. Reducing C 1 to 1 n will increase the maximum frequency to 100 kHz , although the waveform quality may be somewhat degraded.

Changing C1 to 1 uf (non-polarized) will give a minimum frequency of 0.1 Hz .

Fast Comparator

The high slew rate of the CA3080 makes it an excellent fast voltage comparator. When pin 2, IC1 is more positive than Vref the output of IC1 goes negative and vice versa. Vref can be moved around so that the point at which the output changes can be varied. As long as the input sinewave level is quite large (1 V say) then the output can be made to move at very fast rates indeed. However, care must be taken to avoid overloading the inputs. If the differential input voltage exceeds 5 V , then the input stage breaks down and may cause an undesired output to occur.

One use of a fast comparator is in a tone burst generator. This device produces bursts of sinewaves, the burst starting and finishing on axis crossings of the sinusoid. The comparator is used to detect these axis crossings and to produce a square wave output which then drives a binary divider (IC3). The divider produces a 'divide by sixteen' output which is high for eight sinewave cycles and then low for the next eight. This signal is then used to gate ON and OFF the sinewave. The gate mechanism is a pair of transistors which short the sinewave to ground when the divider output is high and let it pass when the divider output is low. The resulting output is a toneburst. However, if the comparator is not very fast, then there will be a delay in generating the gate and so the tone burst will not start or finish on axis crossings. Using the circuit shown, operation up to 20 $\mathbf{k H z}$ is obtainable.

Slew Limiter

The current output of a CA3080 can be used to produce a controlled slew limiter. By connecting the output current to a capacitor, the output voltage cannot move faster than a rate given by
slew rate $=\quad \frac{\text { IABC }}{C T}$ Volts per sec. C1
Note that IABC determines the slew rate and as IABC is a variable then so is the slew rate. The output voltage is buffered by a voltage follower, IC2. This is a MOSFET op amp which has a very high input impedance, which is necessary to minimise the loading on C1.

When an input signal is applied to IC1 the output tries to move towards this voltage but its speed is limited by the slew rate. Thus the output produces a linear ramp which stops when it reaches the input signal level.

R2	C1	FASTEST SLEW RATE
150 k	100 n	$1.5 \mathrm{~V} / \mathrm{mSec}$
150 k	10 n	$15 \mathrm{~V} / \mathrm{mSec}$
150 k	$1 \mathrm{u0}$	$0.15 \mathrm{~V} / \mathrm{mSec}$
1 M 5	$1 \mathrm{u0}$	$15 \mathrm{~V} / \mathrm{sec}$

Sample And Hold

The slew limiter can be modified so that it becomes a sample and hold unit. In this circuit IABC is either hard ON (sample) or completely OFF (hold). In the sample mode, the output voltage quickty adjusts itself so that it equals the input voltage. This
enables a short sample period to be used. In the HOLD mode, IABC is zero and so the voltage on C1 should remain fixed. The circuit is in fact an analogue memory. It is used in music synthesisers (to remember the pitch), in analogue to digital converters and many other circuits.

RING MODULATION

4 Quadrant Multiplier

The CA3080 is a two quadrant multiplier but, with the addition of a few extra bits of electronics, it can be made into a four quadrant circuit. A two quadrant multiplier has two inputs, one can accept bipolar signals (the inverting or non inverting input) and one can only accept a unipolar signal, (the labc current). However, a four quadrant multiplier can accept bipolar signals on both of its inputs which enables it to perform frequency doubling and ring modulation.

The circuit is fairly similar to that of the two quadrant multiplier described earlier except for two differences. IC3 is used to generate IABC in such a way that the Y inpit can go both positive and negative, thus the Y input is bipolar, when Y is at 0 V
and there is a signal on the X input the desired output $(X \times Y)$ should be zero. This is achieved by adjusting RV1 so that the signal via IC1 (this is inverted) is exactly cancelled out by that via R3. Now, when Y is increased positively, a non-inverted value of X is produced at the output and, when Y is increased negatively. an. inverted value of X is produced. When Y is zero, so is the output. This is known sometimes as ring modulation. If a speech signal is connected to the X input and a variable frequency oscillator to the Y input the resulting sound is that of a 'dalek'. Also, if a sinewave is connected to both the X and Y inputs, the $X Y$ product is a sinewave of twice the frequency. This is known as a frequency doubler, but it will only work with sinewaves.

Single Pole Filter

A singlepole lowpass filter can be constructed using a CA3080 as a current controlled resistor. The filter is, in fact, just a simple RC low pass section where the R, which is controllable, is constructed out of IC1, R4, R5. Varying IABC changes the amount of current drive to C 1 . This would normally make the circuit a slew limiter, but because the signal level that IC1 (pins 2
and 3) handles is so small, the CA3080 works in its linear mode. This enables it to look like a variable resistor. When this resistor is varied, the break frequency of the filter also varies. By applying some positive feedback around the filter (R6, C2) it is possible to produce a peaky filter response. The peak actually increases with frequency making the circuit useful as a guitar Wah Wah unit.

total amplification from CRIMSON ELEKTRIK

WE NOW OFFER THE WVIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIERS

MC 1

CPR 1

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplilier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overioad margin
is a superb 40dB, this together with the high slewing rate ensures clean top even with high outout cantridges racking heavily modulated records. Common-mode distortion is eliminated by an unusual design. R.I.A A. is

 controls are fitted. There is no provision for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15
volts.
MC 1 PRE-PRE-AMPLIFIER Suitable for nearly all moving-coil cartridges. Sensitivity $70 / 17$ OuV switchable on the p.c.b. This module brings
signals trom the now popular low output moving-coll cartridges up to 3.5 mmV (typical signal required by most
.pre-amp disc inpuis). Can be powered from a 9 VV battery or from our REG 1 regulator board. X02 : X03 - ACTIVE CROSSOVERS

REG 1 - POWER SUPPLY
The regulator modute. REG 1 provides $15-0.15 \mathrm{~V}$ to power the CPR 1 and MC 1 . It can be used with any of our
power amp-supplies or our small rransformer TR 6 . The power amp kit will accommadat is power amp-supplies or our small ransformer TR 6 . The power amp kit will accommodate it.

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios, educational and government
establishments. etc., who have been using CRIMSON amps satistactorily for quite some time. We have a
reputation for the highest quabity at the lowest prices. The power amp is avalable in twe types, they reputation tor the hiphest quality at the lowest prices. The power amp is avalable in live lypes. they ait have the
same specification P. H. . .yppically 01% any power 1 kHz 8 ohms: $\mathrm{I} . \mathrm{D}$. insignificant; slew rate limit $25 \mathrm{~V} / \mathrm{uS}$: signal to noise ratio 110 dB ; frequency response 10 Hz -35 $\mathrm{kHz},-3 d \mathrm{~B}$; stability unconditional: protection drives any load sately: sensitivity $775 \mathrm{mV}(250 \mathrm{mV}$ or 100 mV on request $)$; size $120 \times 80 \times 25 \mathrm{~mm}$.

POWER SUPPLIES

We produce suitable power supplies which use our superb TOROIDAL, uransformers only 50 mm high with a
$120-240$ primary and single bolt fixing

POWER AMPLIFIER KIT

The kit includes all metalwork. heats inks and hardware to house any two of our power amp modules plus a.power
supply. It is contemporarily styled and its quality is consisten with supply. It is contemporarily styled and its quality is consistent with that of our other products. Comprehensive
instructions and full back-up service enables a novice to build it with confidence in a few hours

POWER AMPLIFIER MODULES CE 608 GOW/8 ons $35 \cdot 0.35 \mathrm{v}$
CE $1004100 \mathrm{~W} / 4$ ohms $35-0.35 \mathrm{v}$ CE $1008100 \mathrm{~W} / 4$ ohms $35-\mathrm{O}-35 \mathrm{v}$ CE $1704170 \mathrm{~W} / 4$ ohms $45-0.45 \mathrm{~V}$
CE $1706170 \mathrm{~W} / 8$ ohms 60.0 .4 V TOROIDAL POWER SUPPLIES
CPS Tor $2 \times C E 608$ or $1 \times C E 1004$
CPS 2 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608 CPS2 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608
CPS3 $2 \times 2 \times C E 1008$ or $1 \times$ CE 1704 CPS4 for $1 \times$ CE 1008
CPS 5 for $: \times$ CE 1708 CPS5 for $: \times$ CE 1708
CPS6 for $2 \times$ CE 1704
heatsinks
Light duty. $50 \mathrm{~mm} .2 \mathrm{C} / \mathrm{W}$
Medium power 100 mm . $1.4 \mathrm{ch} \mathrm{W} ~$
Disco/group. 150 mm
Disco/group. $150 \mathrm{~mm} .1 .1 \mathrm{C} / \mathrm{W}$
Fan. 80 mm , state 120 or 240 v
Fan mounted on two drilled 100 mm neatsinks. $2 \times 4 \mathrm{C} / \mathrm{W}, 65 \mathrm{C}$ max. with two 170 W modules THERMAL CUT-OUT, 70 C
Distributor
Minic Teleprodukier
Box 12035

Box 12035
$\mathrm{~S}-75012$
-121

Uppsala 12
Sweden

ع16.30
£ 19.22
£23.22
c29.12
$\mathbf{E 2 3 . 2 2}$
$\mathbf{E 2 9 . 1 2}$
E 31.90

All prices shown are UK Please allow up to 21 days for delivery
write for specific quote Send and include VAT and post. COD 90p extra. \&IOO limet. Export is no pro

microfile
 Gary Evans looks at PET add-ons, a Simon that's not simple and has news on superboard II.

WITH THE PLETHORA of new small computer systems appearing on the market, its nice to see some of the old warhorses beginning to meet this onslaught by supporting the user with a broad base of hardware. Surely one of the oldest warriors (its flowery prose this month) and one which has to date been poorly supported by its manufacturer, is the PET

A number of companies have stepped into the void caused by lack of commodore peripherals, everything from RS232 interfaces to PET compatable floppy drives are available but not from Commodore. The latest issue of the PET User's Club newsletter indicates that this situation is about to change

The most exciting of the PET add-ons from Commodore is their 2040 Dual Drive Floppy Disk. Details are sketchy at present but I'll outline the spec of the 2040 as presented in the newsletter.

The drive will allow 360 K bytes of data to be stored on two standard $51 / 4$ in Disk drives (Shugart SA390). This is accomplished without resorting to double tracking or double density. This is achieved (we're not told exactly how) by lthe use of two MPUs - 6504 and 6502 - and fifteen memory ICs within the 2040

Formatting is by the drive itself and any mini-floppy disk may be used. 35 tracks with a constant density recording on each track provide 171520 bytes for user storage per disk side

The 2040 requires only one connection to the PET, an interface cord connecting the unit to PET's IEEE port.

Just what we've been waitingfor - but you'll have to wait until May and part with $£ 799.20$ for the pleasure of fitting this box of tricks next to your PET

Good news that we don't have to wait tor is a price reduction in the PET model 2001-8. The 8K machine that until now has been the only PET computer is down in price to $£ 594.00$.

The 8 K machine is to be joined by a 4 K machine at $£ 496.00$ and two models featuring 16 K and 32 K of memory. The memory used in these larger systems is dynamic, a departure from the static 'RAM used in the 8 K and 4 K versions. The 16 K and 32 K machines will also feature a full typewriter style keyboard in place of the calculator keyboard that was one of the most persistant criticisms of the 8K 2001-8. In order to make room for the larger keyboard the integral cassette deck has been omitted and a seperate deck will have to be obtained in order to record programs.

The 4 K PET is due in February while the larger versions will be here in May.

The last addition to Commodore's hadware is the 2023 printer. This will replace the ill fated 2020 printer announced but not seen - and has to quote "a significantly better quality and more reliable print head." The 2023 is due in April.

Well there we are then, a range of well speced. PET peripherals. Let's hope that Commodore manage to meet the promised delivery dates as in the past, this is the area in which Commodore have been distinctly lacking in performance.

If you can't wait for Commodore's floppy disk unit, this product from Compu-think is available now and plugs into a PET that has been fitted with a minimum of 16 K additional memory.

Toying With MPUs

At last the MPU has found its way into the toy market Christmas saw a number of electronic games, Invicta's Mastermind being one of the most popular and the new year is seeing many more games added to the shop's shelves.

The current rage in America is a game called Simon. Presented with four buttons of different colours, the player has to remember the sequence in which the machine "calls" them. The sequence starts off with just two colours but rapidly extends this until the player must press the four buttons in a sequence that as it extends will eventually defeat the user.

Not very easy to explain, but its all the rage in the US and will be over here soon - you'll be able to see it for yourself then.

Super Ohio

I am assured that the long awaited Ohio Scientific's Superboard II will be available "off the shelf" within the next 45 days. Needless to say I am trying very hard to get hold of one of these boards and will report on its pertormance soon.

Back numbers

Not all back issues of ETI are available. Indeed more are not than are! The table below shows which copies can be obtained from our offices. Each copy costs 60p inc p\&p and please mark your envelopes "Back Issues".

| | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Jan | | | No! | No! | No! | No! | |
| Feb | | | No! | | | No! | |
| March | | No! | No! | | No! | | |
| April | | | No! | No! | | No! | No! |
| May | No! | No! | | No! | | No! | No! |
| June | No! | | No! | No! | | | No! |
| July | | No! | | No! | | | No! |
| Aug | No! | No! | | No! | | No! | No! |
| Sept | | No! | | No! | No! | No! | No! |
| Oct | | No! | | No! | No! | No! | No! |
| Nov | | No! | No! | No! | No! | No! | No! |
| Dec | | No! | No! | No! | No! | No! | No! |

Photocopies of any article from any one issue are available, and cost 50 p regardless of nos. of pages. Copies of series will be charged at article rate per installment. Mark envelope " p ".

WIND METER

Here is the project all you amateur meteorologists have been waiting for. When this meter gets the wind up you'll know how fast and where it's coming from.

TRADITIONALLY, THE FOUR primary elements are fire, earth, water and air. At ETI, we've designed projects concerned with the first three (temperature meters, soil moisture indicators, rain alarms), but not much for the last. The major property of the air, apart from the fact that it is necessary to support life, is the movement of the air wind. Light winds generally aren't of terribly much significance except to meteorologists, but stronger winds can be useful as a source of power; for traditional milling, for electricity generation or as a means of propulsion for sailing yachts. Stronger winds such as hurricanes, can be destructive, causing damage to life or property.

So for all the private pilots, yachtsmen, amateur meteorologists and general weather watchers who read ETI, here is a device which will. tell you the wind's speed and direction, with a remote indication of both quantities. Our design is, we'd like to think, both stylish and unusual, but there are simpler methods of mechanical construction which you can follow if you wish.

The Head

The drawings along with the photos will give the general design that we used. The actual dimensions have to be left to the individual constructor as components such as the ball races and light bulbs may vary in size.

While we used a single head for both speed and direction, it may be simpler to Üse separate heads.

The discs we used were 1.5 mm thick clear plastic with a piece of photographic film glued onto it. It may be easier to make it out of thin aluminium and cut out the slots. For the speed disc simply drilling holes will suffice.

The most important part of the design, apart from ensuring that the discs rotate with a minimum of friction, is the shielding of the light and preventing light scatter striking a

transistor which should be dark. As can be seen from the photos and diagram the bulbs and transistors are embedded in aluminium blocks with small holes providing a passage for the light beam.

The wiring of the head is shown in fig. 3. Note that the base lead is not used and can be cut off close to the body. Insulate the joints onto the transistors to ensure that they do not short on the aluminium blocks. The bulbs may touch the block with their outer connection but this is the 0 volt line and does no harm. In fact it provides some electrical shielding for the leads. The bulbs we used were 12 V but they were bright enough on 6 V giving a much longer life.

Design Features

When we started design on this project it was to have a digital
readout of wind direction with a resolution of either one or two degrees. This would also make it useful in a sailing boat to tell the wind direction relative to the heading.

Difficulties however soon became apparent. The first of these was the sensor head. The only accurate method is a digital head, probably optical. Two methods could have been used, one using a disc with a single optical track of 360 slots and an updown counter and the second using eight or nine tracks in a grey code. The first is simpler in head design but the second is less prone to error. The problem, and the reason for rejecting both, is that with such resolution, the reading would move around so much when the wind is gusty to be unreadable. What is needed is an averaging circuit which unfortunately becomes

Fig. 1. Complete circuit diagram of the ETI Wind Meter
difficult when the wind is changing from just west of north to just east of north. i.e. 355 to 005. How do you average these (use a microprocessor?).

As this was intended to be a simple project we relaxed our original speification, deleting the use in a boat (we may get back to this. problem. A four track 'Grey' scale allows the wind to be given to within 11° of its true heading, without the complexity of a nine track one, and the use of LEDs to give direction solves the problem of averaging as the variations can be seen and averaged by the brain.

Construction

The electronics is relatively simple provided the PCB described is used Due to a height limitation C1 should be mounted on the rear of the board. The LEDs should be mounted about 7 mm from the board with care being taken not to damage them as the leads have to be bent out slightly The regulator also has to lie down to give clearance.

We mounted the unit behind an aluminium front panel with the LEDs protruding through holes. If this is to be done it is preferable not to solder the LEDs until after alignment with
the front panel.
The head is more difficult as some mechanical ability is necessary to ensure good results. The requirements are basically simple. A disc is to be allowed to rotate, either continuously with the wind or aligning it to the wind, with a bulb on one side and phototransistors on the other

The method used by us is shown in fig 4 with the aluminium blocks providing the shielding necessary to give accurate results. As the unit will be exposed to the weather it must be made waterproof otherwise the ball races will corrode. The races used

FROM THE INVENTORS OF MICROPROCESSOR MUSICAL CHIMES

New price for the

 originalCHROMACHIME KIT
24 tune mode!!
Due to the fantastic success of this product right
 across the World we are able to offer it at
only £9.95 + 75p p\&p

Comes complete with:

| * TMS 1000 Micro | * Fully prepared PCB |
| :--- | :--- | :--- |
| * Superb cabinet | * All semiconductors |
| * All R's \& C's | * Loudspeaker |
| * Switches \& pots | * Socket \& Hardware |
| * Fully detailed kit manual | |

TMS 1000 N - MP0027A Microcomputer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.

New low price only $£ 4.95$ inc. p\&p
(Only present 24 tune repertoire currently available.)

A COMPLETE KIT FOR THE

 NEW MICRO CHIMEThis easy to
build kit includes:

* TMS1000 Custom MPU Chip
* Special purpose designed case
*: Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!
only $£ 8.95+55 \mathrm{p}$ p\&p
ALL CHROMATRONICS PRODUCTS
SUPPLIED WITH MONEY BACK GUARANTEE
PLEASE ALLOW 7-21 DAYS FOR DELIVERY
Please sendme:
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX.UK NAME.
ADDRESS

I enclose cheque/PO value \mathcal{E}
or debit my ACCESS/BARCLAYCARD account no.

digest......

DIL SWITCHES

The Series 206 DIL programming switches from AB Controls has been extended to include SPST, DPST, SPDT and DPDT version. Applications include logic functions in computers and test equipment. Switches are available with two to ten sections.
Gold-plated wiping contacts and terminals ensure long term corrosion resistance. Further details from AB Electronic Products Group Ltd, Abercynon, Mid Glamorgan CF45 4SF.

IN BEZELLED?

This new display bezel from Vero Electronics comes with your choice of neutral, red or clear lens (polarised or unpolarised).

The bezel is positioned in a single, rectangular cut-out by four removable pegs. and firmly secured by two screwed studs, which also secure the display mounting board on the spacers provided. A full range of com-
patible mounting boards for LED and LCD displays is available

Prices range from $£ 1.50$ for a four digit bezel with clear lens, to $£ 2.65$ for a six digit with coloured lens. Further details on Display Bezel AB064 from Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hampshire, SO5 3ZR.

OOPS AND ALL THAT ...
Disco Lightshow - Dec 78

Page 46 - C14, 19, 24, 29, 34 are shown upside down. unctions T1/R33, T2/R43, T3/R51, T4/R60, T5/R68 all should be shown going to -12 V .
Page 47 - R7l 1 k (between D18 and ZD5) was not shown on the circuit diagram (it is however shown correctly on the overlay) Transformer.
Page 47 - ZD6 is 5 V 6 not 4 V 7 .
Page 48 - (Parts list) R73 is 4K7.
Page 49 - Switch 3: the two brown wires should be
shown on tag 3 not 4 . On the output terminal blocks N and L are interchanged.

Stage Dimmer - March

 79We omitted details of the choke L 1 from the Parts Lists. On our prototype this was wound onto a one inch square core with a 50 thou gap. The 10 A version is wound full of 16 SWG wire, and the 20 A is wound full of two parallel windings of 16 SWG .
T1 can be wound as 45 t primary and 15 t secondary on Neosid core 4329R/3/F7/ EC, if available.

HOW IT WORKS

Wind Direction

Wind direction is imdicated by a seyles of 16 equally spaced LEDs around a circle. These represent the mainpoints on the compass. These are controlled by 1 C 2 and $1 C / 4$ wich are in turn aontrolled by the dir action sensor head.
The sensor head, which is ascribed in fig 3 consists of a dise which has four optical tracks and four bulbs and photo tranisistors. The phototranisistors sense either a claz disc (logical "1') ar a hack disc (logical "0) and Hus control IC2 and IC4. Tre code used is special in that onity one bit is changed at each locazion eliminating geoss etrors which occur wity the binary code af the heads are not perfectly alpned Arl example of this is going from loctation 7 (0111) to location $8(10 \pm 0)$. I the is not done simutaneously ilmost any focation can be sweeified. With the grey cade twe same change is from 0100 to 1100. Here thane can be no ambiguty as only ane bis is changed. Remember these bits are not weighted similarly to bunary and a lookup whle must be used to decide what number (decimal) a particular code is.
The decoder, lez, is an efght outpat analogue demulupleser whth the common line jolned to the 750 bine, When a particular 3 bit coda is presented to its control mputs one of the eight ottputs will bo joned to he thV 踇e. The fourth output fixm the seencor head controis Il a which give two, inverfed, omputs to drip e eithet bank of LEDs. The complete fur bit cote tharelore spectifes a mat lieular LEE to be It. By placing we LEDs correctly around the circle the drey code is decuded

Wind Speed

This is a simple requency coumter mat suring pulset frow ine sensor head. The anade const te at a dise with elight holes. witionbreaks light beam to its assocuated. phototransistor. The output of this phototransistoz ic squared up by a scomitt trigget formed by IC5E and IC

The counting is cone by K'ratand if xo fo (uat detade counter) with IC6 and IC7 providing the store and LED drivers nucessaty to cive the seven segment dis play. Tme base is ponided by 103 which gives a 7 ms wide tegative pulse about every one gecond, We say about as at is adjustable by RV1 as indivdual heads will have dfferent responses and catibration will be necessary

This negative, puser opens the store to allow the havaber reached by the comnters to be displayed winite simultaneously stopping any furthes counting by disabling the schmit rt घer On the completion of the 7mspmase C5a, and IC5b gemerate a yous wide pulse which resets the counter'ICs as recomment the seduence

Power Supply

This is simply a futh wave rect fied supply Suth Col givins a regulatea $+6 v$ outpux. This reculation is needea to ensure that the time base ((C) fermam accurate.

Above and Below: Constructional details of the sensor head

TO TRANSFORMER

Fig. 2. Component overlay for the Wind Meter

PARTS LIST

 that transistor bases are not used.

will normally have to be washed out to give low enough friction with a light spray of WD40 or similar to give some protection.

While our housing is a little ornate, it did work but the more usual half ping pong balls may be more suitable.

Calibration

Wind Speed.
The easiest method for wind speed calibration is to provide the unit with a DC supply (via the common and one of the AC inputs) and to take a drive in the car with the unit supported above the vehicle. Providing there is no wind the potentiometer should be adjusted until the reading corresponds to the speedo.

Direction alignment is simply a matter of aligning the vertical rod so that it gives the correct results.

ET

BUYLINES

The metalwork for this'.) rojeot we must leave to our raaders as thuc will be fabricated to suit ndividual requirements. The display's can be any typa no s retlly just observe polarity Similarly with the 1 EDs The ohatoda lingtois can be supplied by Marshalls.
Discs used in the sensor head $\mathbf{- 1 . 5} \mathbf{~ m m}$ thick, clear plastic wiṭh photographic film glued on.
 sensor head.

GUITAR שFFECTS UNIT

Our guitar effects unit isn't just a fuzz box. Use it to give you a new sound to play with.

LIKE US, YOU probably thought.that one guitar effects unit was much the same as any other. After fuzz and Wah-Wah, what do you do? Well, we think we have come up with a new one, which we have christened

struzz.

With this unit you can select either a conventional fuzz effect or our new struzz effect. A depth control allows you to alter the sustain rate of the effect. If the neighbours start banging the wall, you can instantly cut out the crunchy effects with a bypass switch.

Make-up

Construction should not pose any problems. It's even easier if you use our PCB. Make sure the electrolytic capacitors are put in the correct way round. As always, don't plug in the ICs until you have checked the circuit thoroughly. Happy fuzzing and struzzing.

BUYLINES:

Smashing sound

Now you are wondering what struzz sounds like, aren't you. Well, it's a distortion of fuzz. The fundamental frequency of the input is full wave rectified but the numerous harmonics are not. The result sounds rather like an antique piano finally succumbing to the ravages of woodworm, and collapsing. If you play the guitar (we don't) you will, no doubt, find many more musical uses for this effect than we could.

Switching between fuzz and struzz while playing produces an interesting sound. You might like to use a footswitch for this purpose.

PARTS LIST

Fig.1. (above) PCB component overlay

(Above right) Completed PCB

Fig.2. (Below) Circuit diagram

HOW IT WORKS

ThE SICNA from the guitar pick－up is led to commonwmitter amplifer Q1 via blocking canacitor Cl Dl has a voltage gain of about twenty－five and brings the guitar signal up to a reasonable level for driving the fuzz and struzz circuitwy．The upper fraquency response of Q1 is rest－ ricted by Cz ，in the interest of circuit stabilit：

Dperational amplifiers ICl anc IC2 are wired iogether as a procision full wave rectifier，with its true satput signal appearing at pin 6 of 「留 op－amp JC2 A very heavily chipped version of the mput （O1 collector）signal appears at pin 6 of C1，and has a peak－to－peak amplitude of about 1.2 folts．RV据 engles the small－ gnal voltage gain of Cl to be varsed from $\times 10$ to about $\times 1$ in and controls the Gepth and sustain characteristics of the sound effect unit：｜e｜nas a Targeosionai gate of unity：
The furz output of the unit is taken fonm 難e output of ICI via potential
divider R8－R9，and is a perfectly wanwan－ tional heavily－clipped，fuzz signat，with variable depth and sustaim．The struzz output，on the other hand is reny uny sual．and is taken from the outpuf of 2 via potential divider R13－R14．In the struzz mode the orginal cuitar signal is full－wave rectified，so that its tondranen tal tone（which passes throlghizero cross－over points in each cycle）has its frequency doubled，but the overtones （which modulate the fundamental and 6 not pass through zero cross－over points） do not have their frequencies atereat The struzz output signal also has amplitude distortion imparted to it，due to the full－ wave rectifier action．
Thas，the fuzz ofutput signal has very heavy amplitude distortion，and the struzz output has both amplitude and frequency distortion．The sound effects unit can be switched in and out via bypass switch SWl，and should be iziterposed betseen the guitar and the main amplifier．

The PCB and batteries，mounted in the verecase，showing one of the jack sockets on the side of the case．

Gentle Clock Alarm

I. Hill-Smith

RING! RING! BUZZ! This is DLT CLANG! PIP PIP PIP!

There are gentler ways to wake up. This circuit provides an alarm which builds up from being inaudible to loud over about one minute. As a result you are always woken by the minimum volume required to wake you; a far more comfortable experience than the usual trauma. The three multivibrators in cascade provide a signal like the sound of a warbler telephone. As C slowly charges through R a larger fraction of the signal is amplified by the op amp producing a louder output.

Calculator Radio Alarm

T. Corringham

This very simple circuit, used with a Sinclair Cambridge Programmable calculator, enables a transistor radio to be turned on after a predetermined time, (within the range of a few seconds to five months).

None of the components are critical, but the SCR should have a suf-
ficiently high voltage and current rating for the radio used.

If a transistor radio is used the SCR is connected in series with the battery, but if a cassette recorder/player is used it can be connected to the remote socket

The LDR is placed above the left hand three digits of the display. RV1 is adjusted so that the circuit is triggered by ' 888 ' being displayed, but not by the background light only

Using the program given, the time
in minutes of the required delay is put in and /RUN/ pressed to start the timing period

To stop the program prematurely $1 \div / \mathrm{c} / \mathrm{CE} /$ is pressed.

The calculator should be used with a mains adaptor.

The timing is accurate to within five minutes in eight hours.

If a buzzer or similar alarm is used the same circuit can be used to give an audible indication of the termination of long programs.

Keyboard/display sound converter

K. G. Reid

This circuit can be used in several modes: It can provide quantized feedback (a distinct improvement over the normal singie 'bleep') from the key actions made on a calculatortype keyboard: It can be used to give a 'sound' translation of a digital display. or completely replace the display when sound would be a better communication medium.

The keyboard or display information (a maximum of 16 bits with one 16 -line 74150 multiplexer) is translated into a series of 16 high or low frequency tone pulses, corresponding to the 'high' or 'low' logic state of the 16 bits.

The circuit illustrated was used in conjunction with a digital multimeter, requiring three 4 -bit words for the digits and three additional bits for over-range, negative and decimal point. Thus, 15 lines only were required, the 16 th being used for resetting.

The 15 bits are latched on to the inputs of the 74150 multiplexer. Presentation of the enable pulse results in a logic ' 1 ' appearing at the output of gate B, allowing clock pulses to pass via gates A and H to the 7493 counter. Gates B, E, D and C form a latch which remains 'set' until all 15 bits have been sampled. As each bit is sampled, the inverse state appears at. the multiplexer output, opening gate
J or K and thus operating one of the two reed relays. As a count of 1111 appears from the counter, the output of F drops low, resetting the latch and counter. The operation of either relay results in a tone appearing at the loudspeaker (or earpiece), the tone frequencies being set $(1.2 \mathrm{kHz}$ maximum) by the 1 megohm pots. The tone pulse length is governed by the clock rate.

Digital Pulse Compressor

N. C. Hall

Whilst constructing a digital frequency meter the author found it necessary to be able to accurately trim the width of a gate pulse. The circuit! shown uses only two ICs and can reduce the width of a pulse applied at its input by up to a few milliseconds. The table shows the reduction achieved by using different values of C1.

Darlington Drivers for a few pence

C. J. Ramey

This circuit offers a very efficient way of driving a pair of transistors in Darlington configuration from CMOS The circuit in Fig 1 shows how two loads of up to 1 A may be driven from a single 14007 chip with no external resistors. Using a 2 N3055 in place of the BFY5 1 will enable loads of up to 3A to be driven at voltages limited only by the Vceo of the transistors (V cc).

Fig. 2 shows the internal circuit of one section of the 14007. A high on
pin 6 switches the lower CMOS transistor on, holding Q2 off and sinking the leakage current of Q1. A low on pin 6 drives Q1 and switches the lower CMOS transistor off and the upper CMOS transistor on

The result is fast switch off at low cost and efficient switch on

A bonus is the inverter between pins 10 and 12. Note: Vcc should be $5-6 \mathrm{~V}$ to prevent excessive current being drawn from the CMOS chip.

Precision Rectifying with the LM3900

A. Winsor

The LM3900 is different from most op-amps in that it is current differencing and operates from a single supply rail, which mean that the inputs bias at one base-emitter voltage above ground. Hence standard techniques are not applicable as the diode would always be forward-biased. Two feedback paths are therefore provided:R3 for DC stability, and R4 for the AC signal after C2 and R5 have filtered out the $D C$ bias. When $R 2=2 \times R 3$ point A will be at Vcc/2, allowing the diode to be reversed at will. For large positive input returned to ground. Input impedance equals R1, and voltage gain equals - R4/R1 since R4 is

made very much smaller than R3. C1 and C3 are DC blocking capacitors and determine the low frequency roll= off. Component values quoted are those used on the prototype and may be altered to suit individual require-
ments
This circuit has obvious potential, especially in portable equipment where the 4 amps . in one package and single supply rail yield a more compact, more convenient unit

PCB FOIL PATTERNS

GATHERED HERE are all the PCBs for this month's projects. From now on the boards will be grouped together like this in order to facilitate their use by those readers wishing to produce their own PCBs from these patterns.

All are shown foil side up, and full size. Companies wishing to produce these for sale as ready made PCBs should note that where the board carries a copyright
symbol, the designer retains that copyright to himself, so his company, and that particular board may not be produced on a commercial basis.

These pages form the basis of our ETIPRINT sheets, which are etch resistant transfers of the foil patterns, designed to simplify one-off PCB production. See the ad on page 49 for further details.

news digest

INFRARED EYES

NORBAIN have announced the introduction of two new reflective object sensors. Optron types OPB708 and OPB709 are reflective transducers incorporating a gallium arsenide infrared emitting diode and a planar silicon phototransistor (OPB708) or photodarlington (OPB709).

With a reflective surface of magnetic tape 0.15 inches from the read head, typical values of

photo-current are 65 mA (OPB708) and 8 mA (OPB709). An aluminium foil at the end of a tape produces typical values of 1 mA and 140 mA respectively. With an opaque reflective surface flush to the read head, maximum crosstalk current is 100 nA (OPB708) and 250 nA (OPB709). Further details from Norbain-Optoelectronics Division, Norbain House, Arkwright Road, Reading, Berkshire RG2 0LT.

THREE FUNCTION TOOL

Cut the copper conductor of a wire free, strip off a length of insulation and wrap several times around a terminal, all in one operation with this bit and sleeve combination from Vero Systems (Electronic) Ltd. The three functions are performed in one rotating operation using any electric or pneumatic tool with normal output and a speed of about 3,000 RPM. Vero's Standard Pneumatic 230 V wrapping tool is suitable.

The bit and sleeve, designed to use a specific gauge of conductor and insulation dameter, are available in the range 22-30 AWG. Low strip-force Mylene wire for use with these bits and sleeves is available in six colours from Vero Systems. Cut, strip and wrap tool AB065 is £98 from Vero Systems (Electronic) Ltd, 362 Spring Road, Sholing, Southampton, Hampshire SO9 5QJ.

DOING TIME?

ARE you one of the select few whose calculator is doing six months in Parkhurst? Have you been ordering digital watches from the Lord Chancellor? What ETI reader in his right mind would do that?
It seems that Mountaindene's old phone number was similar to that of the Lord Chancellor's Prison Office. Hence the confusion.
If you still have a piece of paper with Mountaindene's old number on it, use it to pack convict 4017 back to the Lord Chancellor. If you ask nicely he might give your calculator parole.

AUDIO MODULES

1 Stereo Cassette Deck N999

Complete with electronics uses: Music centres, disco consols, tape editing, etc. Freq resp $63 \mathrm{~Hz}-10 \mathrm{KHz}$. WOW: 0.15% FLUTTER. 0.18% channel; separation 55 dB . Electronic speed control. ALC Mic and line inputs. JAPANESE manufacture - requires 12 VDC
 £23.95.

2 Preamp Amp- PSU Wimborne 11 W per channel. Four Rotary controls. Vol., Bass, Treble, Bal. $2 \times$ PSUs for RF Board - cassette deck, LM 387 preamp IC driver. TIP 31 - TIP 32 Output Pairs. Special price includes transformer, $£ 16.95$. (October, 1978. PW).

3 AMP 0418 watt RMS per channel amp - preamp supplied with pots. Fully complementary requires 2ℓ VDC. Price complete $£ 6.99$.

4 AMP 020 Stereo power amp 30 W RMS per channel. Class ABI TIP 34A - TIP 33A. 16 Transistor circuit. Fre. resp. $15 \mathrm{~Hz}-18 \mathrm{KHz}-1 \mathrm{~dB} . £ 7.99$.

5 Matching Hi-Fi Preamplifier, four rotary controls, Vol., Bal., Treble, Bass. Treble - 14 dB Bass- 14 dB facility for loudness control. $\mathbf{£ 6 . 9 9}$.

RF MODULES

6 Surplus RF Board 020

Complete MW/LW /FM / MPX Tuner uses 3-stage FET front end 2 ceramic filters 3089E-1310 Decoder. AM section built around 3132E, 2-stage tuning comes with 4-way switch - ferrite rod aerial. £9.99.

7 RF 030

Improved version of above extra gain stage imposed S / N ratio and 1.5 $\mu \mathrm{V}$ sensitivity for 26 dB S/N way selector switch AFC stereo/mono switching - two additional inputs. $£ 19.95$.

8 RF 040 MW/LW/FM/MPX varicap tuned RF board as per 78 Nov./Dec. PW Dual gate MOSFET front end, 2×1 F gain stages 3189 Deviation mute, interstation mute, MPX filters. STab PSU $1 \mu \mathrm{~V}$ sensitivity and $75 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio. AM Section also varicap tuned HA1197, excellent performance. Special price £28.95.

9 VT01 $108-150 \mathrm{MHz}$ MOSFET front end 26 dB gain 10.7 MHz 1 F output. Covers 2 metres. Amateurs. Aircraft, etc. £7.99.

10 IF15 Matching IF Strip double conversion $10.7 \mathrm{MHz} / 470^{\circ} \mathrm{KHz}$ $\mathrm{AM} / \mathrm{NB} / \mathrm{FM}$. Excellent performance. $£ 12.95$.

We have all parts in stock for the Wimborne Music Centre - parts for amps/tuner amps and music centres up to 25 watts per channel. We stock all hardware and trim to give units a professional finish. Front panels, meters, knobs, sockets, etc.
All prices inc/ude VAT, P\&P Eं। per item. Max. $\dot{E} 2$ postage. All items fully wired. Full data supplied. 3-YEAR guarantee. 7-day delivery.
ESE
RAILWAY HOUSE, HARDHAM CROSSING, PULBOROUGH, SUSSEX

Below left: Wind Speed Indicator PCB

Below right: Click Eliminator Mk 2 board
Right: Struzz effects unit
All are shown full size and will form the basis of ETIPRINT sheet 023 which will be available shortly

POWER AMP SURVEY

Abstract

The Americans would describe it as a 'crowded marketplace'. Power amplifiers appear almost daily and the resulting choice can easily lead to confusion. Ron Harris attempts an overview.

UPGRADING HI-FI is a costly business using commercial units, as 'better' can somehow read 'dearer' once over the threshold into a hi-fi emporium. Once contracted, however, the improving 'bug' is no respector of price and pocket

Quite commonly the malady can be caught via the cones of new loudspeakers which are crying out for more watts to drive them. The amplifier just has to go!

The Modular Connection

One method of gaining the extra power - if you're quite content with facilities etc - is to replace output stages of your present equipment with two power amplifier modules. There are certainly enough on the market to choose from.

This will certainly be cheaper, and most of these modules outperform similarly priced commercial units, so performance need not suffer. Since you need not necessarily have to pay for a PSU and case you don't need, it must be cheaper. Very often too, the existing case can be utilised to house the new boards, with attendant saving in that most onerous of tasks metalwork.

Judging by the continuing popularity of the audio projects which appear within these pages, do-it-yourself hi-fi continues to abound, even though building up from scratch is often no cheaper than buying commercial units. Modular construction - with most designs being pre-tested - can make this task easier and more certain.

With kit construction, however, there is obviously more to go wrong, and this tends to mean the results are more dependent (at times!) upon the constructor than the supplying company. We have been told by several reputable kit suppliers that the greatest single reason for non-functioning units is poor soldering!

Board Decision

With the large number of available kits for power amplifiers in mind, we decided to exclude them from our deliberations, and concentrate on modules alone. This was defined as a unit in which the amplifier is supplied completely pre-assembled; in other words as a PCB which can then be utilised

Undoubtedly there are some modules we have missed out in our scan across the adverts - and if you know of any we have missed please let us know so that as few injustices as possible are perpetrated!!

Wot Happened?

One part of this survey which somehow never material ised was the proposed listening tests with one sample from each range. Most manufacturers seemed unable to respond within the time required - approx. two weeks borrowed' from a neighbour!

The idea had been to select a power output which was common to all ranges - 60 W seemed reasonable, and build up a unit from each suppliers modules. This would have told us much about the sound quality, reliability
and overall standard of the amplifiers. Press On
n fairness to Magnum Audio they came upon the scheme late and were very quick indeed sending us
 yet - it is at least possible that our samples are reposing

O－NOM $\forall レ \wedge \sim \infty$ Wफ Wफ ω

 －
－

¢ 30 30 0 0 0

耑宸 твии моязинаиоо

POWER	THD
OUTPUT	（at given
	load at $1 \mathbf{k H z}$ ）．

$\begin{array}{ll}\text { POWER } & \text {（at given } \\ \text { OUTPUT } & \text {（at } \\ & \\ & \end{array}$

$$
\begin{array}{r}
\mathrm{S} \mathrm{\exists} \text {, } \\
\text { s|opou } \| \forall
\end{array}
$$

$$
\begin{array}{r}
S^{n} 0 Z \\
\text { sןom } \| \forall
\end{array}
$$

$$
\begin{array}{rll}
55 \mathrm{~W} & (8 R) & \text { All models } \\
81 \mathrm{~W} & (4 R) & 0.01 \% \text { full } \\
92 \mathrm{~W} & (8 R) & 0.0035 \% 10 \mathrm{~W} \\
160 \mathrm{~W} & (4 R) & \\
145 \mathrm{~W} & (8 R) &
\end{array}
$$

$$
\begin{aligned}
& \text { All models } \\
& 20 \mathrm{~Hz}-2 \mathrm{OkHz} \pm 1 / 2 \mathrm{~dB}
\end{aligned}
$$

CRIMSON
CE608
CE1004

$$
\begin{aligned}
& \text { All models } \\
& 110 \mathrm{~dB} \\
& \text { unweighted: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { All models } \\
& 775 \mathrm{mV}
\end{aligned}
$$

$£ 16.30$
$£ 19.22$
£23．22
£29．12
£31．90

$$
\begin{aligned}
& \frac{0}{0} \\
& \frac{0}{0} \\
& 0 \\
& \frac{E}{6} 0 \\
& \overline{4} 0
\end{aligned}
$$

sןopou IIV

$$
\begin{aligned}
& \begin{array}{r}
10 \\
\sim \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
E \\
\hline
\end{array} \\
& \begin{array}{l}
\ggg \gg \\
0 \\
\text { n } \\
\text { m } \\
\text { m } \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\end{aligned}
$$

 NMナレN
いいいいいいいぁ

11111111

응ㅇㅇㅇㅇ앙

11111111
75 dB
75 dB
90 dB
96 dB
94 dB

100 dB

106 dB

쑤ㅇㅜㅜ웅뭉
1｜｜옷웃

｜\｜｜1｜O N

STERLING
SOUND
SS103

20
0
$=$

[^0]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but.ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

