

. . NEWS PROJECTS MICROPROCESSORS AUDIO . . .

MARECS, a marine version of ECS, is intended to provide communications links between ships and shore stations.

Radio 1 and 2 use frequencies in the two and ten metre amateur bands and are intended for use by both American and Soviet radio hams, complementing the service already provided by America's Orbiting Satellite Càrrying Amateur Radio (OSCAR) satellites.

Active Limits And Passive Freedom

There are two basic types of navigational system active and passive. In an active system, the user has to interrogate the satellite(s) to determine his position. That necessarily limits the number of people who can use the system, because each satellite has a finite number of communications channels available at any time.

A passive system, however, relies on ground stations receiving continuously transmitted signals from the satellite(s) and then calculating position from them. It has the advantage that there is no limit to the number of users who can listen in to the satellite transmissions.

The capacity to fix position continuously is not available with the US Navy's Transit system, even with six satellites in operation. Transit is, therefore, not suitable for air traffic control, as an aircraft could travel a considerable distance between fixes. Also, as Transit uses a Doppler technique, the speed of an aircraft affects the measurement of the frequency shift.

Throughout the seventies, the system has been updated and improved. However, expansion of Transit has been dropped in favour of a new system, NavStar, which should be fully operational by about 1985 and will be suitable for use by aircraft.

Home Sweet Home

A major part of Earth satellite applications is concerned with turning the cameras and sensors back towards mother Earth to find out more about this lump of rock that is our home. This field of self-interest can be split into two related and overlapping areas - Earth resources and research satellites.

On the 26th of April 1978, an Applications Explorer Mission satellite (AEM-1) was launched from Vandenberg to measure day and night temperature differences on the Earth's surface. This is the first of NASA's Explorer missions. The second, AEM-2, followed it into orbit on February 18th, 1979 . The spacecraft were both cf a modular design to keep costs down

AEM-1, the Heat Capacity Mappint Mission (HCMM), will determine the feasibility of using data from thermal
infra-red sensors for:
-discrimination of rock types and possibly location of minerals
-monitoring surface soil moisture changes
-measuring plant canopy temperatures
-measuring urban heat islands
-measuring land and sea surface temperature changes
-predicting water run-off from snow field information
The results will also be correlated with Landsat data and ground observations.

Military Embryo

The early development of the American satellite programme was entirely in military hands, for obvious reasons. The motivation then was a belief in the axiom of conventional warfare that says, 'he who holds the high ground, controls the battlefield.' The military objective was the high ground - Earth orbit.

The Spy In The Sky

Satellites have been used for military reconnaissance since 1959, with the launch of the first of the Discoverer series, designed by Lockheed. In addition to the use of visible light photography to monitor ground operations, infra-red sensors can be used to detect, for example, heat from aircraft engines or local changes in sea temperature caused by submarines manoeuvring close to the surface or by surface craft manoeuvring at night.

It's difficult to estimate how many Soviet satellites are launched for military reconnaissance purposes, as most go by the 'family' name of Cosmos, whatever their application. However, information about their orbits and duration of flight can be used to deduce their possible applications.

In June 1971 a Titan 3D launch vehicle, capable of putting over 13 tonnes into a polar orbit, lifted a 'Big Bird' low altitude surveillance platform into a Sunsynchronous orbit. The Sun-synchronous orbit ensures that when the spacecraft overflies the target again and again, the Sun angle is always the same. That makes it much easier to compare photos of the same site and detect movements of troops, vehicles, missile launching sites, etc.

An engineer's conception of AEM-1, a heat capacity mapping mission (HCMM) spacecraft and the first of the NASA's Applications Explorer Missions. The hexangular shaped base module for this spacecraft, launched in April 1978, was built for the NASA / Goddard Space Flight Center by the Boeing Aerospace Company of Seattle, Washington.

Soviet satellites are generally recovered intact and the film removed on the ground, but American satellites remain in orbit, while a number of film magazines in protective capsules are ejected. They re-enter the Earth's atmosphere and begin their descent to the surface on parachutes but, long before they get there, they are collected by specially equipped military aircraft.

In the early years of military satellites, once a spacecraft reached its position in Earth orbit, it was relatively safe. However, recent years have seen the development of hunter-killer spacecraft. Search and find craft have been used before to locate targets for photoreconnaissance. More sinister is the hunter-killer craft, which manoeuvres close to a target spacecraft and then explodes. Just how many of these are active and already in Earth orbit is a matter for conjecture. There have also been reports of spy satellite cameras being 'blinded' by intense flashes of laser light. As they say, 'all's fair in love, war and spying.

Outward To Deep Space

If the sensors can be pointed down towards Earth, they can equally be pointed out into space. The greatest contribution of the satellite to near-Earth research has been the capacity to make on-the-spot measurements of parameters which previously could only be estimated by indirect means.

Britain has been particularly active in this field with the Ariel series. The satellites were called UK 1, 2, etc. until they achieved successful operational orbit, when they were renamed Ariel 1, 2, etc. Ariel 1 and 2, launched in 1962 and 1964 respectively, had substantial American involvement, but Ariel 3, launched in 1967, was the first satellite to be entirely designed and built in Britain. It was a very successful system, which operated for two years - twice its designed lifetime. British Aerospace was the principle contractor

The latest of the series, Ariel 6, was successfully launched in June this year.

The X-Ray Sky

NASA has focused its attention on X-ray sources in the sky with its high energy astronomy programme. The first High Energy Astronomy Observatory (HEAO-1) made a general X-ray sky survey and identified approximately 1500 sources. Precise altitude control is essential for astronomical observations. HEAO-1's mission came to an end, therefore, when its supply of altitude control gas ran out in January this year. HEAO-2, launched in November 1978, can be pointed at selected X-ray sources. A third HEAO is scheduled for launch this year. The satellites are placed in low circular orbits, but their altitude allows them to detect radiation which would not reach the Earth's surface.

The Future

The immediate future should bring improved communications and navigation by satellite as more powerful systems are launched to give global coverage. The, by now familiar, sight of a launch rocket slowly lifting off a pad, carrying its payload towards Earth orbit will inevitably become much rarer. The Space Shuttle will be the first of a generation of reusable spacecraft, which will gradually replace 'one-off' rockets.

Ariel 6 will spend the next two years orbiting the Earth every 96 minutes, studying the ultra-heavy component of cosmic radiation and investigating \mathbf{X}-ray sources.

Power From Orbit

When the oil wells finally dry up, we may supplement our energy requirement by building huge solar arrays in orbit and transmitting the collected power to Earth by microwave. The transmission of power by microwave has already been proven over short distances. You'll find more about power satellites in the August edition of Hobby Electronics.

Whatever the future does hold for satellites and their applications, it boils down to how much money governments are prepared to spend on space research. That begs the question - how do you value the returns from space? What price do you put on better weather forecasting, clearer and easier communications, improved air traffic control, etc? As if that wasn't a complex enough question, it doesn't stop there. Whether or not to embark on or continue an existing satellite programme is also inextricably tied up with national prestige, international relations, employment, high technology experience which can be translated to other fields of engineering and electronics shall I go on? In the long term, your crystal ball is as good as mine.

ETI

[^0]
CABLE TESTER

Quickly test your cables with this invaluable project

ALMOST ALL THE faults in an audio system are caused by cables. Have you ever tried to find which cable is broken among the many connections in a stage audio system, especially with anxious people looking over your shoulder?

The answer is to check each cable before the performance, a rather tedious business.

This Cable Tester checks each wire in turn for both open circuits and short circuits to earth. Each cable can then be thoroughly tested before use and hopefully faults can be found before they cause problems.

The circuit makes cunning use of a

7474 dual D flip flop to light one of three LED's after the test switch is pushed, indicating short, open or OK.

Construction

The unit is mounted on a standard plastic box measuring $196 \times 113 \times$ 60 mm . If it is to be used on-stave, then use the strongest box you can find, such as diecast aluminium. Wiring the switch is the only difficult part of the construction. Note that some of the switch contacts are linked together as shown in Table 1.

The transformer we used is a commonly available Ferguson PCB mounting type.

The sockets we have chosen for the prototype are the most common type, however there is no reason why others can't be substituted. The jack plugs, SK7, 8 and the phono sockets SK1, 2 must be insulated from the metal front panel, or the earth connections will be permanently connected together through the panel. Phono sockets are available with insulating mountings, while insulating washers can be made from plastic sheet for mounting the jack sockets.

HOW IT WORKS

IC1 is a 7474 dual D flip-flop with its clock (CLK) and D inputs held at 0 V .
First let's assume an open circuit cable. ZD1 conducts, as it has 12 V across it, and turn on Q2, which hold the preset (PR) input on ICla low. The PR input of IClb remains high because ZD2 is not biased. When the test switch is pressed, putting a 0 on the CLR input, the outputs of ICla become: Q , high; Q low. When the test switch is released, leaving both the CLR inputs high, the following outputs are obtained: ICla-Q, high; Q, low; ICla/b-Q, low; Q, high.

Since the output of Q, ICla is low, Q3 is turned off. Therefore LED1 is on, LED2 is off, and LED3 is off.

Now let's look at the 'short to earth' condition. The 12 V rail is shorted to earth through D1 (exit one diode). Q2 is turned off leaving the PR input of ICla high. The PR input of IC1b is held low. When the test button is pressed the outputs of ICla go: Q , low; Q , high. When the button is released, placing a high on the CLR inputs, these outputs remain the same. The outputs of IClb are: Q, high; Q, low. Therefore LED1 is off, LED2 is off because the base of Q3 is
held low by IC1b, and LED3 is on, indicating a short.

Finally, if the cable is OK, the voltage across ZD1 is held at 3 V 3 by ZD2. Q2 is off because ZD1 6 V 8 is not conducting The PR input of ICla is left high and the PR input of IClb is also high. When the test button is released the outputs of ICla go: Q, lowl Q, high. The outputs of ICla go: Q , low Q , high, when the button is pushed and remain the same when it released. Both the Q outputs are low so LEDs 1 and 3 are off and the Q outputs are high so Q3 is conducting and LED2 is on.

Fig. 1. Final circuit of the Tester.

Fig. 2. Component overlay and front panel connections.

PARTS LIST

RESISTORS	all $1 / 4 \mathrm{~W}$ 5\%	ZD1	6 V 8400 mW	
R1	100R	ZD2	5 V 1400 mW	
R2	220R	ZD3	3 V 3400 mW	
R3	10k	LED 1-3	TIL 209 or similar	
R4	150 R			
R5, 6	47R	SOCKETS		
		SK1, 2	phono skt	
CAPACITORS		SK3, 4	2 pin DIN	
		SK5, 6	5 pin DIN	
C. 2	22025 V electrolytic	SK7, 8	stereo jack	
SEMICONDUCTORS		MISCELLANEOUS		
IC1	7474	SW1 4 p $6 w a y$ T1 $6-0-6 \mathrm{~V} 500 \mathrm{~mA}$ PB1 push to make Box to suit, pcb, power lead, etc.		
Q1	2N5484			
Q2, 3	BC548			
D1-4	1 N400 1			
D5, 6	1 N914			

RAMS and PNoWS are MEMDRIES

MICROPROCESSO8 systems are made up from two distinct parts callec Hardware and Sodtware, the Software ts the proprain which is rut on the system, the Hardware is the physledf components which go to make up such a syatem, Wo will assume that you ase ableto differentiate between resistors, capacitors and diodes wach apart fom the crvstal and PCB (Printed Circuit Board) leaves only the mysterious ICs and sockets

Ais IC looks like a lump of black plastic or similar material with numerous pins sticking out on each side aach IC should have a sockef associated with it. For ease of itsting and feplacement the sockets are soldered into tha PCB and the I S plugged inta the sockets. The impontant things to fomember about inserung or removing $/ \mathrm{C}_{\mathrm{s}}$ from the sockets are
1 Make sure that no power is appled to the PCE
2 Nake sute It is the correct IC for that location.
3. Make sura it is he correct way round

4 Ensure that all of the pins are correctly sitting in the socket.
Each IC is Identitied by a number pinted on the top surface of the package, pin I'of each IC is markeo either with a dot indentation or horseshoe groove near pin 1 . If the it is held with the pins down ward and the dot or horseshoe a way from you then pin 1 is always the furthest pin on the left

SCRUMPI contains severallCs which may be broken down inio the following categories

Main Control Chip. This is the SC/MP microprocessor chip.

Suflers and encociers, otc These ICs tvpically have a code such as $741.5 \times x$ ar $81 L S x \times$ and are used to handie control of counting, device address decoding latching or buffering the address bus and data bus.

RAMS Random Access Memories. The theoly of the insides of these lCs can be likened to a chessboard or a sot of pigeon hales. The data in the MM2112 RAM chips is organised as 256 locations each of four bits, it we use iwo - M21 22 chus in paralle it is possible to have an organisation of 256 locations each of 8 bits (or byte). Each of the 256 locations can be accessed directly by the MPU chip and the data at that location copied onto the data bus or the
data on the data bus copied into the selected location. The data in such a momory will reman there tutat the suppiy volage is removed When fest powered up each ume the contents of RAM are random and varable

RAMs can be used for storage of prograns or data for the program to be operated upon, andar some aitcumstances even a poogram can be considered to be data

PROMS RDMs cec. There area seconc type of memory device simfafin concept to the RaMe except that the program or data stored in the device cerbans ewan if tae power supply is removet They are thus suitable for hoingigg the foxed programs and data and are a convonient method of shipping such chala fron one installation to anotier

ROM stands for READ ONLY MEMORY and it is usually assumed that the data in a RON is installed at the tina of menufacture of the chis and as such cin be nefened to as Mask progranmed ROMis. PROMS and EPROMs on the other hand are programmed after manufacture and ase thus reformad to ais Programable Read Only Memories. The E in EPROM shows that the datain the PROM can be elased by exausing the in side of the chy to mitense UV radiation, this is usually accomplished through the transparent quartz window let into the top of these devices.

The rype of Read Only Mempy used in SCRUMPI is the MM52040 EPhomh, thes can be lepleced wathe either of the following pin condeathe de devices -

MMS214 Aask Progranmed ROM
Field Programmatio ROM
The altel hatives offer the adyantages of turgo wolsme fow opse and for simplification er power supply to sy only (no - 12 V supply is required).

Perts are the method that an MPU uses to communicate to the exigrnal world. A polf issmoly an inte yratod circuit whose function is to intofface tha MPL. data bus in whole or only in port to devices which cannot interface directly to tha MPU system. There are severalreasons why extemal devices cannot be directly coupled to tho MPU dya bus

Firstly the devices may not Be TRISTATE rutput devices whinth meanis that they colld not be connected to the data bus otherwise ther outputs would always be in the logic 1 or logic 0 state and not in the highimpedance TRI-STATE mode required. Alternatively the exteinal devices may operale too fast for the MFU or too slowly a: require buffering so as not to unduly loed the drive capabilites of the MPU dira but The MS8:54 is a single chip device containing the logie reguired to operate 16 of its pins as porits. the 16 pins ofin be operated as twa 8 bil pons or as individual Inpat Output lines.. Each pla can operate in either Input mode or Output mode the cholce being made by Software selection, each oin is also eapable of tatching the data on that pinat eitherinput or oupput time. In additon to the two 8 bit porms the INSE 154 aleo cenarns 128 bytes of RAM which is sufficient as a wratking storage BAM in most applications

The effects of Scrumpi

If you study the circuit diagram of SCRUNPI you will quiskly see thatall of the major signals to and from the SC/MP chip are available at one of the two edge conmectors so that SCRUMPI is able to communicate with other electronic devices. It can thus be used as the heart of many electronic circuits and can be used in this form to help with the design and debugging of projects by the electronics engineer or by the amateur constructor.

The singlestep circuitry shown as IC's 2, 3 and 4 allow the SC / MP to be run at a very slow speed down to il slep per hou if necessary) this slow single siep speed is useftul in checking the effect of each instruction as it is executed The actuation of the STEP switch causes a single pulse output from 1 C 4. This pulse sets a Flip Flop la simple electronic switch) at IC3 and thus drives the NHOLD line to a positive voltage which instructs the SC /MP to execute an instruction. During this instruction the SC \&MP outputs a pulse on the NADS (Address Strobe) output, this pulse

RESETs the Flipwfiop which in furn puts the NHOLD mput low and wiss stops the SC MP from axecuting any futher instrucxons. The nexw instructu will only beexecuted after the next actuation of the STEP swith

A simitar situation existi writh the singlo-etep sivich in the FAST position exceois that here IC 4 will generate a. putse automaticaly at a rate which is dependent on the vatue of Cl fusualhy abut 5 pulsesper second). This mode fon he used to step thrcuph a progian faster than singlestepping but not at the maximum possible speed.

If CS 4 is put anto th. RUN position then the SC. MiP will execute the program at the maximum speed. Between this move and the FAS : single-step mode is the HATT mode which can be used to stop execurion of the program at prodevomined ponns. Here the pulse for the Flip-Fop is generated whene the SC/MP execules a MALT (x 0) Astruction, this pulse RESETs the Flp-FIOp and thw terminates ekecution until the next actuation of the STEP
 Yor0 or to the dare bus at any time of in the ADDPESSED mode only when addressed by the SC/MP This allows the switckes to be used to program the memory in the smole steo mode or to enter date wher tuguled by a program.

Foth the oista bus and the andress bus are conmected via whe links to 1 ED lamps The LED lamps thus show the stetus of these buses at any stage of the program, the branching end datd addressing of the program can thus be chected oasily. Altantatively the \& ED lamps can be liniced to other signal lines by redirecting the wire lints they can then be used to show the states of an oulour devio.

A tracal input-output levice is shonmas IC 515 and 16 , two $74 \mathrm{C}: 73$ lames These ICs can latoh the status of a signal on the sputs so that the outputs cary a copy of that ctatus at a grem fime oven after the okginal atatus ha: disappuated in the oupput from SCRGMPI 2 mode the latch wan store the data on the data bus at the time that the lath was adcessed by the SC.MP Auy data wition to the fatch willappear on the data bue at the same line as a strobe pulse is output at poist ' P ' or Q. If the data bus is connected ro the inputsof the latch and the pulse used as The clocking strobe to the latch then the data wifi appear at tive cutputs of the latch and stay there until the next wite to the lath as an example, some of the LED ismp drivers could be connected to the lach outputs to indicate a particular date output to the operator

T, sug the hatch for itpult is similar operetion except that the latch is used the other way found. The outputs are connected to the data bum and the addess strone (P^{*} or O) Is used as the DUTPUT ENAELE control to the fatch. Anv data in the fatch will be readonto the data bus when P of Q is strobed, the data enters the latch via the inguts when the clocking itput is pulsed with a logic 0 .
 22. This circuitrv decodes the addressos specilied by the address bus and produces a set ot strobes whichenable on disable tit deviees connectad to the data bus. Three enable strobes are output to the RAM memories at 1 Cs 5 - 10 ouch par of IC shemg anable for fread or Write cperation. One enable strate can be used to enable the outputs from G lims 204 PROM if inere is such a PROM a 1021 . Output ' P is enabled if an addfess in the iange x ' $500-x$ 5 FF is addressed, simileriy 0 is enatlod for the X. 600 range, ether of these strobes can be used to strobe either of the latches for mput or outpul, Srrobed output Vis nomally comected to the ADDFESSED mode of the data switches which means that any dala on the sivithes will be input to the SC/MP when anv address in the 7 /OD range is read.

Examples of microprocessos interfaces to other pquipment can be seen in most of the associated hotby magozines and in the :SC.MP Applications Guide publisited by National Semiconductor.

Teaching Your Scrumpi to telk to Ausiders

Some microprocessors ars used soleliforwning, checking and executing, programs, the type is uswally to be found in offices handfing aceounts or stock control. Othan inicrop oce ssois control eowipment and machmery with complex testing and control imternace, usudilly this Type of MPU system can be found in vanding machmes, productedn lines, wimpley timing sustems, etc. Thas samo ntitoprocessor chip may be tound in bott types of application but the interieces to he outside world wall be diferent. In the firsi trpe the inverfaces will te to primert hexbagrd large VDU, flappy oisks, ele to handle the collection, sorting and \$phtigo of, for example bocount datals th the spound type the interfaces will be to switches, motors; lamps and wizzers fo handle the input of data from various serisars and cortrol machintery actiondingly.

Thou Art a You Art

Tho Universal Asynchnonous Peceiver : Tranismitter is better known as a UART (pronounced You Art) for nlaviels reasons its besic tunction is to translate the 8 bit data available on the data bis frön parallel form to a serial form Snd vice-versa, The advantage of this idea is that data can thus be transmitted alongassingle par of wires rather Han tha dozer or so wires which vould be needed for pafallel transmikston. Many intertaces to other equipment such as prnters. TYs and telephone use serial transmission to seve of wife costs or for convenience if the remote unit is any considerable distance from the MPU

Atransmission starts with the outout of the UART at a logig 1 state which s reterred to as a MARK condition Data is written from the date businte the UART by enabling she Data Strohe input this invediately stgnal's back to an internel Flip-Flop that the UART Transmither is BUSY and varnot receive ary more paraltel data at present in nomal practise this fip Flog ss tested by the WiU software belore any attempt to write to the UART, the pregram loops until we Flio-Flop is reset at the end of the data transmissian

Once the UART has some data to transmitit shifts to the SPACt concituen by craenlaing the UART outples to a logic 0. thi SIART sicnal is one bit time fong. The ime taken to trensmiteach bit is detined gy the rste of the f 6 x clonk imout. The frequency input at this pin is aivicted by 16 to give the bH iransmussion rate or BAUD MATE

After sending, the START BIT Ine UART sends each of the data bits in sequence os. MARK or a SPACE condition
 UAPT the Hansmitternow Dutputs two STOP BiTS which are deroted by a MARK condtion for two bit times thus the total number of bits thansmitteo is noe 8 but 11 made 40 from the 6 bits of dats piss 3 START and two STOP bits

In the receive mode the UARTloaks at its mput pin continuiously and waits for it to go from MA GK ro SPACE condition to indicate a START bit. After doing various check.s to ensure vatidty the UAfT will aben fead irt the 8 dato bits and verify the prisence of at hast one STop bt On recelpt of the first STOP bir the Dato Aveilable Fip Flop is sot to ndicute to the MPU that parallel data is avalable. the MPU can now raed this data find releasa the recelver by Fesetting the Date Available (RDAV) FlpwFlop.

The UART thas handles mest of the data shifting veritication transmitting and recenvag The UART is even clevir enought to handle both ransmittihg and receiving at the same tine - thys is refernd to at FULL DUPLEX MODE using a UART Soleiy for either transmission or recentols is known as SIMPLEX MODE:

Serial Stanyards

There are a sec of standards asecciated with serial data fransmission and uset bymany manufacturers in peripheral equipment. The usual one is the Telatype TM interlace working at 110 Baud over a 20 mA current loop. The 110 baud refers to the bit mansmission rate of 110 bils par second; wen a Uafit is used, this rale will tranimhit 80 data
-bits or 10 bytes per second. The 20 mA curient $100 n$ reters to an interface system in which the preserice or absence of a current loop defines whether a MARK or SPACE is being transmitted, a lot of TTY equipment still uses rolays ant switches as an interface where thes the circuit is oither opan or completed, the curtent loop is inmented from this type of equipment

An extemal printer mighr require al 1200 Baud RS 232 mtorface again the 1200 baud refers to the bit thansmission rate of approximately 100 bytes per seconc. Ihe RS232. interface is based on voltage levels and is utually someking simple such as MARK $=+3 v$ and SPACE $=-3 v$ with resivect to a common ground wire

> Interested in the mystic might of the microprocessor? Wrapped up in the crafty cabbalistic conjecturings of the software religion? Searching for a holy book to cover these black arts? Try Computing Today (surprise!) - The magazine for all

London. LIverpool and TIL

Wist as London end Livernool are ports allowing geods to enter antr leave the country so an MPU port alions data to enter and leave the MPU A port is usually essumed to be B aits wite that is it will carry 8 parallel bits of data into out of the MPU and in the case of the usual \& bit MPU the part antertace directry to the data bus.

To the MPU the port looks like a single address location at which it can read or write data, the MPU addresses the porf physically by decoding a unigue address atrobe from the address bus Aty time that this address is accessed the strobe will become actuve and thus intorm the port that it is being accessed and should thus take approptiate action.

To the engineer and to extemal equipment the port looks like an 8 bit TTL latch. When used for output the date on the MPU dais bus is latched into the port and thus appears latched at the port output pins from here onwards these outputs can be assumed to have come from any similar Tr Lype of device When used formput the portbecomes an 8 bit latok, presenting its mputs to the external circuitry. Usually one of the inputs or an additonal control pin acis as the alocking input, Data is presented to the port inputs and tatched by strobing the clock input, the data at the inpuis can now be released as the data is now held in the pont At ther same time the MPU is informed for finds out for Itself) that there is new data in the port, it can thus road the port address which will enable the port output to deposif their data onto the data bus and thus into the MPU chio In applications of this fupe the MPU would then signal to the port that ithad read the data and that the port could now input some more, this sequence of I ve gos some data for you" "thank you, Ive ead it" is called handsheking

The iwo theorevicat ports cescribed above are assumed to work in only one direction in each cireuit. Sume of the nower port chips aro bi-directional which means that under sofware control they can either read data from external devices or write to external devices. The latest port chips allow individual bits to be specified as input or output by the softwane and can thus be changed wiflway through a program En
> frantic fanatical followers of small system computation, competition and construction. ETIs answer to sliced bread. October issue now on sale - don't be behind the Jones in the queue, get yours today!

FEATURES

NEWS DIGEST	$\mathbf{7}$	Read it first here!
EARTH SATELLITES	$\mathbf{1 6}$	Round and round and round and \ldots
MICROSENSE	$\mathbf{2 7}$	Further into the MPU maze
RAVEN ON	$\mathbf{4 2}$	Carpet tiles with feeling and flat tellys!
MICROFILE	$\mathbf{5 2}$	News for the small (system) men!
LM 1O APPLICATIONS	$\mathbf{6 8}$	Circuits galore for a new goodie.
AUDIOPHILE	$\mathbf{8 0}$	Competitions result and new speaker concept.
DESIGNERS NOTEBOOK	$\mathbf{8 5}$	Diode gates to new fields!
TECH-TIPS	$\mathbf{9 3}$	It's all your own work.

PROJECTS

CABLE TESTER	$\mathbf{2 3}$	Build it once and stop worrying.
TRANSCENDENT DPX	$\mathbf{3 5}$	Control circuitry
SPEECH COMPRESSOR	$\mathbf{4 7}$	Avoid misunderstandings on the airways!
AUDIO AMPLIFIER	$\mathbf{5 5}$	The highest quality sound around.
REACTION TIMER	$\mathbf{7 5}$	Think you're quick huh?

INFORMATION

HOBBY ELECTRONICS	$\mathbf{1 5}$	Don't miss out.
MARKET PLACE	$\mathbf{4 1}$	Timely offers.
ETI PRINTS	$\mathbf{4 5}$	The only way to do it!
SPECIALS	$\mathbf{5 1}$	All our own work . .
ETI NEXT MONTH	$\mathbf{6 7}$	This you must see.
BOOK SERVICE	$\mathbf{7 9}$	Fine print indeed!
COME AND JOIN US!	$\mathbf{9 4}$	We need YOU at ETI.
PCB FOIL PATTERNS	$\mathbf{1 0 0}$	Get board with ETI.

Electronics Today International is normally published on the first Friday of the month prior to the cover date
COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

STRING THING

Abstract

We continue this month with Part 3 of the String Thing Saga [Son of Part 2 from Tim Orr. For those of you who missed Part 2, String Thing, otherwise known as the Transcendent DPX, is a digital, polyphonic, multi-voice keyboard instrument. [We suspect it probably makes marvellous coffee too.)

Voicing is one of the stronger parameters that goes to characterise generated sound structures. The sounds in the DPX are built out of the same basic components, asymetric squarewaves. The envelope contour is different for each type of instrument and vibrato can be added to emphasise the 'string' sound. However, all the voices, if they were left unfiltered would sound very much the same. But, by filtering the signals, it is possible to add a great deal of information to the sound structure. It must be remembered that natural instruments always sound very different from electronically produced ones, this being due to the incredibly complex structure of most instruments. If you have the opportunity to observe the low notes of a piano on an oscilloscope you will be amazed at the complexity of the signal.

Part 3: This month we bring you details of the String Thing's control circuitry and inter-board wiring.

BUYLINES

Powertran Electronics are supplying a complete kit of parts for this project at $£ 365+15 \%$ VAT. Delivery by Securicor is $£ 2.50$ extra. Everything is included in the kit, down to the last nut and bolt. They even give you a plug.

Powertran will also supply components, boards, etc separately Please send an sae for details.

Paif 4: Next month we conclude String Thing (no, we really mean it this time) with details of the power supply and dynamics boards, and the final constructional details to sort out your nuts and bolts.

Fig. 1. Circuit diagram of the voicing and control boards.

Each octave of the keyboard is mixed together on the main note generating board. These five octave blocks of signals are fed into virtual earth amplifiers (IC1,2,3) which serve to correct the signal amplitudes. By careful circuit design and layout it is possible to reduce this breakthrough to 70 or 80 dB down on the individual note generating circuits, but the overall effect of 61 circuits, each contributing a slight amount, makes the overall background chorus much worse. Some organs are particularly bad with a performance of about 30 to 40 dB .

The signals from the input amplifiers are then split up and sent to various voicing circuits. The piano/honky-tonk section doesn't have a split keyboard option and so it is driven directly by the sum of all the octave signals. The piano voicing (IC4, pins $5,6,7$) is a bandpass filter with a centre frequency of 500 Hz and a Q factor of 1 . A slight low frequency lift has been added via R14,C13. This provides moderately pure sinusoids at the top end of the keyboard and much richer sounds at the low end. To obtain the honky-tonk sound, a second resonance is added (IC4, pins $1,2,3$) at 5 kHz . This makes the sound much brighter.
The brass voice is a peaky low pass filter (IC6,7,8,9). The filter is swept up in

HOW IT WORKS

resonant frequency when a note is played, which greatly helps to characterise the brass sound. A tone control (RV3) determines the depth of the sweep. Switches SW11a and SW8a select the upper and lower sections of the keyboard and switches SW12a and SW9b attenuate the signal level when the 'SOFT' mode is selected. The filter is tuned with a pair of CA3080's. As the current into their control input (pin 5) is increased, the resonant frequency of the filter is also increased. This current is generated by IC6, pins $1,2,3$. When a note is played, the output of the op amp goes high, which is lowpass filtered by R47,C26. This voltage is used to sweep the brass filter via the common emitter pair Q4,Q5. PR2 is adjusted so that the filter sweep sounds correct.
The string voice (IC5) is composed of a set of high pass filters. The string sounds can be selected on upper and lower manuals (SW10a, SW7a), and there are also soft mode switches (SW12b, SW9a).
To reduce the effects of background and chorus/ensemble noise, a FET switch (Q1) is used to mute the output signal. When a note on the keyboard is pressed, the key-pressed signal goes low. This causes the collector of Q3 to fall to -12 V which turns off Q1. In this state the
output signal is not muted
When the note is released, the collector of Q3 goes high. D3 is then reverse biased and the voltage on the gate of Q1 moves towards 0 V with a time constant of C30. PR1, which is selected to be slightly longer than the longest time constant of any note on the keyboard. As the gate voltage of $\mathrm{Q1}$ approaches 0 V , Q1 turns on and mutes the output signal. RV1 is adjusted so that, with a key pressed, no attentuation is produced by Q1. The keypressed signal is also used to start the hold-off vibrato circuit. IC11 is a Schmitt trigger/integrator oscillator which produces a low frequency triangle waveform (pin 7). This signal is fed into a CA3080 (IC12) which distorts the triangle by bending it into a sinewave shape. A buffer (IC13) is used to amplify and filter the 'sinewave' which is then used to modulate the master oscillator. The size of the sinewave is controlled by the current flowing into pin 5 of IC12. This current has a delay time constant which is determined by RV5. When a key is pressed, the coliector of Q6 goes low and so C34 is charged up via RV5. The voltage on the end of C46 determines the current flowing into pin 5 of IC12. When the key is released, the collector of Q 6 goes high and so C34 is discharged via R89,D5.

Fig. 2. The voicing and control board component overlay. We had to cut it in half 'cos it's very long and thin.

PARTS LIST

RESISTORS all $1 / 4 \mathrm{~W} 5 \%$	
R1, 12,51,90	10k
R2, 31, 73, 87	15k
R3	22k
R4, 6, 11, 22	33k
R5, 7, 19, 20, 33,	
$65,66,68,69,85$	47k
R8, 9, 10, 48, 55	56k
R13, 32	39k
R14, 49, 52, 57, 59	
61, 63, 72, 75, 76	100k
R15	3k3
R16, 35, 41, 86	18k
R17	1 k 8
R18	560R
R21, 23, 24, 25, 27.	
28, 45, 71, 74	4 k 7
R26, 47, 50	1 kO
R29, 44	1 k 5
R30, 70, 89	8 k 2
R34	390R
R36, 42, 88	150k
R37, 81	270k
R38, 39, 92	27k
R40	270R
R43	180k
R46, 64, 67, 83	68k
R53, 54	2k7
R56, 58, 60, 62	2k2
R77	3k9
R78	820R
R79, 82	1 MO
R80	680k
R84	470R
R91	6 k 8

POTENTIOMETERS	
RV1, 4	10k log
RV. 2	47 k lin
RV3	$22 \mathrm{k} \log$
RV5	$1 \mathrm{MO} \log$
PR1	1 MO preset horiz.
PR2	100 k preset horiz.
CAPACITORS	
C1, 2, 3, 20	10n polyester
C4, 13, 22	22 n polyester
C5, 10, 15	47 n polyester
C6, 7	100 u 25 V electrolytic
C8, 9	15 n polyester
C11, 12, 18, 23, 244 n 7 polystyrene	
C14, 16, 29	2n2 polystyrene
C17, 19, 21, 27, 31	100 n polyester
C25	$33 n$ polyester
C26	47 u 25 V electrolytic
C28, 33	220 n polyester
C30	22 n 35 V tantalum
C32	1 n polystyrene
C34	2u 235 V tantalum

SEMICONDUCTORS

IC1-6, 8, 10,	
11,13	1458
IC7, 9, 12	C43080
Q1	BF244B
Q2	BC182L
Q3-7	BC212L
D1-3, 5, 6, 7	1N4148
D4	$5 V 1$ zener
LED1, 2	0.2 inch red

MISCELLANEOUS

PCB, PCB-mounting push-switches ($\mathbf{~} \mathbf{~} 2$ off), 8-pin
DIL sockets (13 off)

Fig. 3. When you' ve got your boards finished, this is how they go together.

RAVEN ON...

This month's little ramble takes us through foam backed carpets into flat tellys by Sinclair and the best LCD displays in the world - British!

PREDICTIONS OF the effect microprocessors will have in the home are still being made. However, it looks as though 1979 will see the first really domestic products starting to appear. Home Computing is now well established among electronics hobbyists, but the effect of MPU's is not so obvious to people outside the electronics arena. As with the other new technologies the novelty attractions are the first areas to be exploited. Calculators and LED watches were the first to appear using an LSI it has taken a further three to four years of serious product design to incorporate devices into industry.

Open Door

On the market in time for Christmas we shall see a whole new range of products that are only possible because of microprocessors. The now familiar twenty four tune door bells are being manufactured in Hong Kong along with new programmable TV Games that function like flight or vehicle simulators, coming complete with steering wheel. Hand held electronic pocket games, remote control cars and robots also the very sophisticated watches like the Seiko Memory Bank.

One further consumer product now available because of MPU's is the electronic bathroom scale.

This is of particular interest to me since I demonstrated a prototype to my Bank Manager back in 1975, when I had illusions of building a manufacturing complex the size of Plessey. The instrument was an adaption of a small capacitance meter my company was manufacturing and used a novel form of transducer.

It comprises of layers of foam backed carpet separated by layers of tin foil. The capacitance changed quite linearly when the mat was stood upon however I have no doubt that it may not have stood the test of time. The Bank Manager was very impressed but there was a noticeable lack of enthusiasm when it was suggested that he invest the bank's money in the project. With hind-sight he was a
very sensible chap since it is unlikely he would have won the support of his own boss in backing the project with the kind of money necessary to launch such an enterprise.

This major difficulty that companies experience in the UK is the main reason that new high volume consumer products are eventually manufactured in the Far East where large sums of development capital exists and also the huge export markets which soak up the bulk volume of these products.

Thousands of words have now appeared in print about minicomputers and the uses of MPU'S.

In fact you could quite easily form the impression that the only new developments taking place in electronics was associated with logic applications. This of course is nonsense and is a misconception that has arisen due to the fashionable use of words in science. One immediate consequence of these trends is that unless a scientist or development engineer can some how design a microprocessor into his proposals then he has less chance of winning the support of financial backers.

Material Gaín

Electronics enthusiasts generally know about silicon (or the "silicon chip" as they say on telly) but you never hear Robin Day or Angela Ripoff talk about, Zinc Selenide on Germanium chips, Gallium Arsenide chips or silicon on saphire chips.

Gallium Arsenide is an important semiconductor material. It is not particularly new since its been in use for making devices since the early sixties, Gunn Diodes, Light Emitting Diodes, Varactor Diodes and Field Effect Transistors.

FET's are probably the most exciting development coming from Gallium Arsenide since these transistors can operate at very high frequencies and are increasingly being used in satellite and space communications. Gallium Arsenide FET's (GaAs FET's) have been around for several years the first devices were made by Plessey ten years ago and it has taken all this time to establish the technology to a sufficient level for volume production. Many other companies around the world are also making GaAs fets now and you would currently have to pay in the region of $£ 100$ for a FET that will operate at about 18 GHz ., (Imagine how it feels to blow one up). The likely effects of GaAs FET's in the next few years are to be seen in the communications field. Computer controlled cars with microwave eyes which can see in all weatners, C.D. Radio using satellites for communications, Digital watches or calculators with C.B Radio why not?

Switch Called For?

One area of computerisation I am aprticularly looking forward to is a computer controlled electronic switchboards. Telephone calls to companies out of office hours
quite frequently result in the callers being talked to by a phone answering machine. The recording is usually a flat monotone voice which immediately makes the caller feel uncomfortable and results in the phone being hung up. One answering machine story I know was a farmer who because he couldn't get a sensible reply from the recorder shouted a stream of abuse down the telephone and cancelled his contract for fuel oil, with the unsuspecting supplier. To tackle just such problems as abusive farmers there is now a computer controlled switchboard that can answer up to eight telephones lines at once. The computer has a voice recognition system and also a small vocabulary for replies.

A comparison method technique based on statistical analysis of spoken words is used. The machines vocabulary is assembled by taking 500 samples of one word spoken in different dialects from male and female speakers. Each word is sampled 12 times and each sample's overall amplitude is measured and its frequency spectrum plotted at 31 points between 300 and 3 k 3 hertz. This produces 384 numbers, or elements that describe the word.

The elements resulting from all 500 speakers saying the same word are combined to produce a set of 384 mean values and standard deviations, which are stored in the system as the reference for that word, the incoming unknown word is similarly sampled, analysed and compared element by element with reference words using an algorithm that finds the probability density function for the unknown word. When this probability density is above a certain threshold - which can vary from word to word or system to system - the system declares the word recognised

Sinclar Flat Telly

More information is now available on the flat screened television mentioned in the September edition of ETI. The technology used is that of the conventional CRT and not liquid crystal that the Japanese are going for. The method described is a conventional cathode ray tube which is flat since the beam is projected at right angles to the screen instead of from the back as in a conventional TV.

Glassy Eyed

Two sheets of glass form the front screen and a vacuum formed backing plate. The interior of the backing plate is coated with phosphor and is viewed through the front face from the same side as the electrons strike. The result is that the brightness is more than double that of a conventional CRT. Electrostatic deflection plates in the gun assembly provide horizontal and vertical scanning, and a third set between the phosphor screen and front-face bends the electron beam toward the screen. Without this additional focussing field, the angle of beam incidence would vary across the screen, spreading the beam spot into an ellipse. The focussing electrode is formed on the front face by a transparent tin-oxide coating

The electron gun is set to one side of the screen with its axis parallel to the screen.

Folding the electron optics would normally distort the raster scan to produce a wedge shape with curved vertical edges, however, by using optical techniques corrections for distortion can be made.

Screen Test

The screen height is reduced by half but the width is kept constant. This narrows the angle subtended by the electron beam onto the screen reducing distortion and deflection power. The picture height is restored by use of a Fresnel lens which is formed in a flat plastic face plate.

The assembly techiques used in producing the new CRT lend themselves to mass production and it is aimed by Sinclair's to set up a new factory for this purpose.

Coincidently, news of a new imaging system with potential for use as a flat screen TV has been patented in Britain.

New Visions

This system uses techniques not unlike those described in this column in September ETI and consists of liquid crystal technology. Two flat screens contain arrays of very thin parallel stripes placed at right angles to each other.

With a electroluminescent or other type of translucent panel behind the liquid crystal screens, light would only be visible at the intersections of the stripes, if these were switched accordingly.

By switching at a very high speed a scanning effect could be achieved as in a conventional TV.

Light could be modulated by altering the intensity of the light panel or by polarising the screens. Filters could also be incorporated for colour operation.

ETI

NEW PRICES AND SOME NEW CNŌS̄ ÁDİITIÔNS If you need your CMOS by retum - buy if from SINIEL									
CO4000	0.15	CD4027	0.44	CD4051	0.82	CD4086	0.64	CDi0182	1.40
CD4001	0.17	CO4028	0.77	CD4052	0.82	CD4089	1.39	CD4D192	1.40
'CD4002	0.17	CD4029	1.03	CD4053	0.82	CD4093	0.80	CD40193	1.40
CD4006	1.04	CD4030	0.50	CD4054	1.04	CD4094	1.69	CD40194	1.19
CO4char	0.18	CD4031	2.00	CD4055	1.18	CD4095	0.94	CD40257	1.48
CLSSO8	0.87	CD4032	0.89	CD4056	1.18	CD4096	0.94	CD4502	0.81
CD4509	0.50	CD4033	1.25	CD4059	4.29	CD4097	3.35	CD4510	1.01
CD4010	0.50	CD4034	1.71	C04060	1.00	CD4098	0.98	CD4511	1.25
CD4011	0.18	CD4035	1.08	CD4063	0.98	CD4099	1.65	CD4514	2.47
CD4012	0.20	CD4036	2.86	CD4066	0.55	CD40100	2.50	CD4515	2.82
CD4013	0.43	CD4037	0.85	CD4067	3.35	CD40101	1.61	CD4516	1.01
CD4014	0.83	CD4038	0.98	CD4068	0.20	C040102	2.13	CD4518	0.97
C04015	0.83	CD4039	2.78	CD4069	0.20	CD40103	2.13	CD4520	1.04
CD4016	0.48	CD4040	0.97	CD4070	0.46	CD40104	1.10	CD4527	1.43
C04017	0.79	CD4041	0.75	CD4071	0.20	CD40105	1.08	CD4532	1.21
CD4018	0.83	CD4042	0.69	CD4072	0.20	CD40106	0.62	CD4555	0.78
C04019	0.50	CD4043	0.88	CD4073	0.20	CD40107	${ }^{0.69}$	CD4556	0.78
CD4020	1.11	CD4044	0.84	CD4075	0.20	CD40108	5.36	MC14528	0.83
CD4021	0.90	CD4045	1.26	CD4076	1.17	CD40109	1.03	MC14553	4.43
CD4022	0.82	CD4046	1.20	CD4077	0.39	CD40160	1.19	IM6508	8.05
CD4023	0.18	CD4047	0.89	CD4078	0.20	CD40161	1.19		
C04024	0.70	CD4048	0.50	CD408 ${ }^{1}$	0.20	CD40162	1.19		
CD4025	0.20	CD4049	0.50	CD4082	0.20	CD40163	1.19		
CD4026	1.55	CD	0.43	CD4085	0.64	CD40181	3.40		

Our offices are at Chapel Street, Oxford, but please do not use this as a postal address.
For full range of components send for Free Catalogue.
OFFICIAL ORDERS ARE WELCOME from Companies. Gvt. Deps. Natn. Inds., Univs,, Polys. ORDERS: CW.O. add VAT @ 35p p\&ip. TELEPHONE and CREDIT (Invoice) ORDERS add VAT @ $15 \%+60 \mathrm{p}$ p\&p minimum charge (the balance will be charged at cost). Please see FAST SERVICE EXPORT ORDERS welcome, no VA
but add 10% (Europe), 15\% (Overseas) for Air Mail p\&p. For Export rates on heavy items - contact is first.
ORDERS TÖ: SINTEL, PO BOX $75 A$, OXFORD

Tel: 086549791

FAST SERVICE: We guarantee that Telephone Orders for
goods in stock, received by 4.15 p.m. (Mon.-Fri.) will be
dospatched on the same day by 1 st Chast Post (some heavy
items by parcel post) snd our stock ing is good. Private
customers should telephone and pay by giving their Aceors or customerashould telephors and pay by giving her value of $\mathbf{E} 5$. official orders, no minimum.

AUDIO
 COMPRESSOR

Increase your talk power and improve legibility with this ETI Project team design
that avoids the complication of RF clipping!

THE HUMAN VOICE varies considerably in level, even when one is speaking in a normal conversational voice. The peaks are considerably higher than the lower levels, which can give rise to problems when the speech waveform is being modulated onto a carrier by a transmitter. For example, if the mic gain control is set so that the peaks are just giving 100% modulation, then soft sounds can barely be heard, whereas if the gain is turned up to give a higher level on vowel sounds, etc., then plosives (p-sounds) will give overmodulation and consequent splattering and poor speech quality.

A higher ratio of average power to peak voltage can be achieved by several methods, including
compression or clipping of the audio signal and compression or clipping of the radio frequency signal. Radio frequency compression or ALC (automatic level control) is often used in the final states of SSB

transmitters.

Radio frequency clipping is the most effective method of increasing the average power; however it requires complex circuitry, since it is necessary to generate an SSB signal, clip, and then insert this signal into the transmitter IF chain.

Almost as effective as RF clipping is a combination of audio compression, clipping and filtering, which is relatively simple and can realise an improvement in signal to noise ratio of up to 5 dB on weak
signals.

Compression

When speaking into a microphone it is desirable to keep the voice level as constant as possible. This can be quite difficult as any change in the distance to the microphone will cause a drastic change in its output. To overcome this a variable gain amplifier can be used which senses the average speech level and adjusts its gain accordingly for a constant output voltage. The compressor operates with a fast attack (gain reduction) and a slow decay (gain increase), to quickly respond to the voice while remaining at this level to prevent amplification of background noise during speech pauses.

Inside view of the Processor.
The RF choke should be mounted as close as possible to the input socket.

BUYLINES
All the components here are standard items, and even the RF choke will be easily obtained. Keep looys se 6ull!m әपł pue 'əlq!ssod se

 will accept the PCB

Fig. 1. Circuit of the speech processor.
The input is fed to a common base ICla and the overall gain is reduced. The about lV5. When clipping occurs the

The active low pass filter, ICld,

 limited by the value of the coupling capacitors and C2.

HOW IT WORKS

ICla is a buffer to isolate the peak
limiter from the compressor input. R8
 peaks while R 9 provides output bias current to prevent crossover distortion
in the LM324 when driving capacitive in the LM324 when driving capacitive
loads. The diodes D3-D6 form the peak limiter by shorting any signal over amplified by ICla. Some of the output from ICla is rectified and negatively charges C8. This voltage is then fed to
Q 2, a depletion mode N - channel FET.

 and the impedance of Q2 increases. This increases the ratio of the feed back
signal applied to the negative input of

Filtering
When a waveform is clipped high order harmonics are produced which. if allowed to reach the transmitter, would cause splatter and interference o neighbouring stations. A filter must be used after the clipper to
rapidly attenuate all frequencies above 3 kHz , which are unnecessary for intelligibility. This is achieved by
using an active filter with. 12 2ks
dB / octave attenuation above 2 k 5
Hz .

Clipping

е u! pau!etuor дәmod ә6eıəле әч। speech waveform is quite low much less than the average power of a sine wave of the same amplitude. the low energy high voltage peaks remaining signal can be increased without overdriving the transmitter The average power is therefore increased. Clipping will soice but change the sound of the voice but weak signal, as well as preventing the transmitter form being overdriven by limiting the maximum signal voltage.

Construction
The speech processor is mounted in a diecast aluminium box to guard against feedback which can be measured $150 \mathrm{~mm} \times 80 \mathrm{~mm} \times 50$ mm deep. Either an interna battery or the 12 V transceiver supply designed to be used in the line from the microphone to the transmitter without any modification to either. used for the input and the output taken via a lead with a matching plug. The connections for the plug transceivers and will have to be taken from the circuit diagram to the

news digest

MAIDEN STAR CHESS FINALS

Some time ago we received a colourful piece of fluorescent (or is it phosphorescent?) plastic in the post. An eerie green glow pervaded the office as we deciphered the strange hierogrlyphs. They invited us to attend - wait for it - the Galactic, yes Galactic, finals of Star Chess, the TV game guaranteed to give a Grand Master a heart attack in 30 seconds flat.
When we arrived at the festival of cathode ray ballistics, we were instantly and eternally grateful to Colin Wild for designing the costumes which coffee and cream Star Maidens, Carolyn and Beverley, were in great danger of nearly wearing. It's truly amazing how a journalist's attention can wander from a six feet square telly screen so quickly.
Dr. Who's K-9 made a manly (dogly?) attempt at commentating on the final game, but I guess he's more familiar with multi-dimensional, hexagonal games with knobs on, because his speech circuits dried up after the first half dozen moves (thank goodness). The final itself was relatively uneventful, neither player risking anything, his sights firmly set on the first prize of a trip to America (and back, of course). It was won by Peter Bond - one of our men at the Inland Revenue, God Bless him.

The fun began when the game finished, as we embarked on a tour of new games from Videomaster. On our way to the screens we noticed a novel chess set - the pieces were glasses of wine (red versus white) engraved with pawn, rook, etc. When you take a piece, you drain the glass. The two ladies who were deeply engrossed in the game seemed to be basing their strategy on how they could exchange the maximum number of pieces in the shortest possible time.

Meanwhile, we hogged the Videomaster Database-a new programmable TV game, in cluding Black Jack, tank, horse racing, circus and boxing However, we found the air-sea battle the most compelling. Other systems on show included sportsworld (ten games) and Colourscore 2 (six games). We'll tell you more about them just as soon as we can get hold of samples to play with (it keeps us off the streets).

The 1979 Star Chess Galactic Champion, Peter Bond, clutches his trophy, guarded by K-9 and Star Maidens, Carolyn and Beverley. The gent in the kilt is Cameron Macsween, managing director of Videomaster. The proceedings were overseen by Harry Golombeck, the Times chess correspondent.

'CHIPS AND BUGS'
The Economist has taken two tiny technologies with a big future and combined them in the latest of their excellent booklets.

Chips and Bugs, edited by Richard Casement, takes the microprocessor and biotechnology, two apparently unconnected fields, and brings you up to date with the latest developments. In fact they have three things in common. They both rely on studies of microscopic phenomena; they are controversial; and they rely less on building upon past developments than on fundamental discoveries at the frontiers of modern science.

The first half of the twenty page booklet deals with microcomputers - the technology, hardware, software, systems development and the superchips effect on our lives and jobs. The second half takes you from an explanation of the DNA building block to the intricacies of genetic engineering.
'Chips and Bugs' is $£ 2.50$ from The Economist Newspaper Ltd, 25 St James's Street, London SWlA 1HG. Hint: If your can get ten or more 'Chips and Bugs' fans together, The Economist will slash the price to $£ 1.50$ per copy for bulk orders.

BOSSY LEDS

The BIM 33 and 34 from Boss, who have christened them BIMDICATORS, are front viewing, panel-mounting LED indicators.

Both devices use red, green or amber gallium phosphide LEDs, which have low current, low voltage characteristics, fast switching times and are fully IC compatible.

The BIM 33 has a nickelplated brass body and is mounted in a 6 mm hole, while the BIM 34 has a chromiumplaced brass body and is mounted in an 8 mm hole

Further details from Boss Industrial Mouldings Ltd, Higgs Industrial Estate, 2 Herne Hill Road, London SE24 0AU

BLUE RESEARCH

Your choice of LED colours might include blue in the not so distant future. The new devices, being developed by Siemens, use silicon carbide and are predicted to have a forward voltage drop of 4 V at 50 mA .

microfile

Henry Budgett, our busy micro-man, takes you on a tour of the latest shows and brings you up to date with the latest developments. Need a toolkit for your Pet?

IT'S BEEN one of those months, if you know what I mean. You don't? Well the summer just seems to explode with things to do and places to go, so some of the items covered in this month's column are gust a little late. Taking things chronologically, it helps. I shall start with the Microcomputer show. One short sentence can describe the overall situation. It was very hot and very busy!

Apparently the air conditioning had broken down on the Thursday but, despite repairs, it was still sweltering hot on the Friday morning. Nothing really spectacular was launched at the show but a large number of old friends were to be found. My first port of call was Technalogics, the Teletext/Prestel/BASIC system people, who were awaiting final PO approval. Well, as I mentioned briefly last month, they now have that approval and will commence delivery in September They also had one of the rack mounting versions on display, complete with mini floppy. After breakfast at their stand, a quick pint, I moved round the hall to see Julian Allason at Petsoft. Trade there was so brisk that they had to send a truck back up to Brum twice for fresh stocks of software. Also there was Harry Saal, the man who brought you Cluster One, the distributed processing system.

Lunch Break

Very thirsty work these shows, so after yet another pint in the company of a couple of my ex-colleagues who own a Research Machines, I carefully negotiated the rest of the hall. The Nanocomputer was there. A lot of people seemed to be very interested on the educational side.

Is it? No its a UK101. Nearly the same though!

The Nascom stand was overflowing as usual, they even sell T-shirts now. Apparently the '2' has gone into production at last, I wonder when we will see our review machine (gentle hint to Kerr)

The other main centre of interest was around the UK101. This is the redesigned Superboard II about which much rumour has been flying concerning legal action over software, PCB, etc. Nothing seems to have happend yet and the stand was certainly busy with interested people making up their minds to buy one.

The last laugh at the exhibition went to Online, the organisers. A friend of mine asked one of their staff where the nearest Tube was. "Thirty feet straight down" came the reply, nice one

Words On Words

Next in my crowded calendar comes the Word Processing Conference, held at Wembley. The Electronic Office seminar session that I attended was highly amusing. Presentations were given on the how's, why's and wherefore's of office systems by a number of companies, both British and American. However, the prize must go to the gentleman who floored the chair with some embarrassing comments on machine reliability after the Wang audio-visual extravaganza. After several seconds of embarrassed silence they decided to break for lunch. England 1, USA 0.

The companies on show all seemed to be vying for the most far out stand, the prettiest girls, etc. and overall I was left with the feeling that everyone had gone just a little over the top. Among the companies there were such giants as IBM and ICL as well as Wang and Wordplex among many others. It seems to me that the

TECS's rack mounted Prestel system, disks coming soon.

WP field is really trying to exploit a market that is just not ready. Even the most sophisticated system will fall foul of a naive user and then the system gets the blame.

Once again thanks are due to Online, especially to the young lady who found me a set of conference notes after much huntingi around.

Northward Bound

Stage three of the month's travalogue takes place not a stone's throw from the Mersey. Liverpool, home of the music of the sixties and sit-coms, is also the home of Microdigital, who are not connected with either. They are, however, connected with microcomputers, and very seriously at that. They are one of the few UK computer shops to provide a full backup service in both hardware and software. Bruce Everiss, my host for the day, is justly proud of his achievements over the past year. They have expanded from shop to hire company and along the road have collected a software engineer, two hardware designers and the largest range of computer books in the country.

The software that they produce is mainly for local clients and is business orientated. The sample 1 tried, albeit only half developed, was very high quality indeed. The hardware team are currently working on a series of boards for the Nascom. The first, a relay board will be ready soon and the next one, an analogue input board is currently under design.

Go West Young Man

Well, West was about the only direction left so I pointed my trusty vehicle in the direction of Newbury and went. The reason? To see the man who has probably done more to make the word software a household name than anyone, Julian Allason.

Despite the fact that Petsoft is now owned by ACT he has stayed on as a director and is actively engaged in finding software from any number of sources. His latest acquisition is the PET Programmers Toolkit, the goodie for PET that I mentioned earlier. Brought over from the States by Harry Saal and shown very briefly at the Microcomputer show it will so impressive that I went to see more.

It is really a piece of firmware, machine code program stored in a 2 K PROM that plugs onto the PET expansion port. If you have a new ROM PET you only need the IC as it will plug inside your machine. Apart from plugging it

An open and shut case for the AIM 65. Get yours from
Microdigital.

in no modifications are required and you have a vast increase in useability. If you have ever wished for built-in utility programs then this will provide them, it replaces about six cassette programs with single commands. I borrowed one of the only two samples to do a report for CT, but here are the available commands in a brief resumé

AUTO: Automatic line numbering, any start, any
step.
DELETE: Bulk line deletion, lines specified only
RENUMBER: Any start, any step.
HELP: Displays just what caused that syntax
TRACE: Displays the last six program steps continuously, can be stopped and started at any time during run.
STEP:
APPEND: Compile programs from subroutine libraries on tape.
DUMP: Displays all variables and strings used in program.
FIND: Finds all occurences of specified character string in the program.
The cost of this little gem is a mere $£ 75$ for the plug on version, $£ 55$ for the IC.

Micro Coup

The latest coup for the firm is the acquisition of an American single board computer. Called the ACFA, it is based on the 6808, hopefully the 6809 soon, and has an impressive list of features. Complete with an 8 K BASIC on cassette, it has 16 K RAM, expandable to 48 K RAM on-board, colour graphics using 4 K of RAM, ASCII keyboard, Kansas City cassette and an RS232 interface. It will be supplied as a kit complete with PSU and case. The manuals supplied with the system are really a computer course on their own and have been prepared by Dr Veronis, a well-known American author.

The Final Word

The University of Salford have asked us to let you know about their forthcoming series of microprocessor courses. They are all one day courses and are being held in September. Preparing for the Microprocessors Age (Sept $24 £ 40$), Fundamentals of Microprocessors (Sept 25 £60) and Microprocessor Systems (Sept 26 £60). A 10% discount is being allowed if more than one course is attended. For further details please contact Mrs Sumners, Room 110 , University of Salford, Salford M5 $4 W T$ or ring 061-736 5842 extn 449.

ETI

The PET programmer's Toolkit from Petsoft. The best thing to happen to a PET yet!

HIGH QUALITY AUDIO AMPLIFIER

If you're in the market for a true hi-fi amplifier, this is the place to start. A superb design which offers a reproduction quality equal to the very best around today.

IT HAS BEEN some time since we featured a complete stereo amplifier design in ETI - receivers and power amps yes, but not a full hi-fi set-up. When considering putting this right, we wanted to produce a design that could stand with the best commercial units of the day, and yet offer a considerable price saving over such designs in return for the effort of "doing it yourself."

We believe our Audiophile 4000 fulfills these aspirations nicely.

100W rated commercial designs in terms of transient delivery, bass quality and sheer 'dynamics'.

Listening tests played a large part in determining the final design, and particular stress was placed upon delivery of detail and elimination of TID.

Construction is modular, and we have housed the system in THREE cases. Pre-amp, power amps and pre-amp PSU. You can of course
ignore our suggestions and build the whole thing in one box using one PSU for everything. You can a/so expect degraded performance if you do! Separate power supplies for each channel of the power amp should not be considered optional - they are very important to the final specification.

The three case approach has several advantages - not least of which is hum reduction. Casing it

Full Of Philosophy

A study of the specification will show that our amp has no need to fear comparison with any other unit. That 60W RMS power rating is deceptive too - built with our PSU the 4000 will outperform most

HOW IT WORKS

The input stage of the amplifier consists of an emitter coupled differential pair (Q4, Q5) with a constant current source (Q1, Q2 and Q3). The use of a constant current source reduces distortion, as well as the possibility of high frequency oscillation and prevents any ripple on the positive supply from unduly affecting the input stage. Unequal emitter resistors (R1, R2) allow the currents in Q4 and Q5 to be optimised. Input lag compensation is provided by C3, limiting the slew rate of the amplifier to reduce high frequency intermodulation. The gain of the differential pair, driving Q10 and Q11, is very low.

Almost all the gain of the amplifier
is obtained from the parallel pair Q10 and Q11. They are operated with series ($R 13, R 14$) and shunt ($R 12$) feedback, and a constant current source (Q6, Q7). This results in a highly linear stage.

Q9 protects Q10 and Q11 from high peak currents or damage should a fault occur. When the current through R13 exceeds the safe limit, Q9 conducts and shorts out the drive to Q10 and Q11.

Bias from the output stage is set by RV1 and a shunt regulator (Q8). Q8 is mounted on the same heatsink as the output stages and stabilises the output bias current against heatsink temperature rise. Resistors R15-R24 in the emitters of the output Darlingtons, Q12 and Q13,
maintain operation in their safe region as well as reducing the chance of thermal run away.

Protection against ultrasonic oscillation is provided by C7 and the network consisting of R25-R 28 and C5, C6.

Both DC and AC feedback is taken from the output, via R8, to the negative input of the differential pair, the amount of feedback being set by the ratio of R8 to R7. C4 increases the feedback, and therefore decreases the overall gain, at very low frequencies. The feedback also automatically holds the DC output voltage at close to zero volts.

Abstract

Inside the power amplifier case. The power supply for each channel sits on the right of the enclosure, and the rectifier board and de-thump board sits on top of the transformers. Note the screen between channels and the screening between modules and PSUs. Don't be tempted to use a single PSU for both amps - this will degrade transient performance to a considerable degree.

SPECIFICATION ~POWER AMP

Power Output	s into 8 ohms ($\ddagger 40 \mathrm{~V}$ supply)
Frequency Response	10 Hz to $100 \mathrm{kHz} \mp 0.5 \mathrm{~dB}$
Input Sensitivity	. 500 mV rms for 60 W output
Hum and Noise	better than -110 dB on full output (dependent on power supply)
Feedback Ratio	. 35 dB
Distortion	$1 \mathrm{kHz}, 30 \mathrm{~V}$ p-p output into 8 ohms, . 0.04% (open loop 1%)

Stability: The amplifier was found to be completely stable when operated into reactive loads consisting of $R+C, L+C$ and pure L

Intermodulation (calculated values) . . at $1 \mathrm{kHz}, 30 \mathrm{~V}$ p-p output into 8 ohms, 3rd order less than 0.015%
5th order less than 0.0023%
(Intermodulation reduces with reduced power)
this way is a good 6 dB better than the cheaper alternative is likely to be. Separate PSUs for the power and preamp also avoids LF instability caused by supply line droop when the output pair draw heavy currents.

Preamp Pondered

The requirements for the control section of the system were set down after many hours of office discussion In fact it would be fair to say that it evolved rather than was conceived

There is still much discussion around the subject of tone controls and filters in amplifiers. A strong lobby exists to dispose of them completely, indeed in systems of the highest quality and in good listening conditions they have little to do with accurate sound replay.

However as most (nearly all) hi-fi falls far short of this level we have included them on our PCB. Also present are loudness, mute, low cut and high cut filters - the latter being of low phase shift variety at sensible turnover frequencies. These can be omitted from the final unit as you will. On our prototype, no loudness or mute facility was included, as you can see from the photos.

The MC input is in fact not RIAA equalised, to allow for connection of a head amplifier, one of which would almost certainly accompany the cartridge. We are working on a design for a mains powered unit ourselves and will present this at a later date, in a style to match the Audiophile.

The disc pre-amp section of an amplifier must be capable of handling very high input signals before clipping to preserve dynamic range - especially when used with head amps - and ours can take 400 mV ptp before clipping Dynamic range $>100 \mathrm{~dB}$).

Powerful Discussion

This power amplifier offers a significant improvement in specifications and ease of construction over most kit ampllifiers offered to date. It has been designed particularly with low transient intermodulation distortion in mind

Although a difficult parameter to measure, transient intermodulation distortion is an inherent characteristic of many amplifier designs especially those which incorporate large amounts of feedback to even out frequency response and reduce

PARTS LIST

POWER AMPLIFIER (each channel)

RESISTORS all $1 / 4 \mathrm{~W} 5 \%$ unless marked

R1, 6, 11	$100 R$
R2, 4, 7	$82 R$
R3	$33 k$
R5, 8	$3 k 9$
R9	$10 k$
R10	$22 R$
R12	$22 k$
R13, 14	$12 R$
R15-R24	$1 R 1 W$
R25-R28	$22 R 1 W$

POTENTIOMETERS
RV1
100R trimmer

CAPACITORS

C1.4	
C2	220 u 16 V
C3	470 p ceramic
C5.6	470 n tantalum
C7	470 n polyester
	2 u 2 polyester

A completed module - fitted with phono socket input. This is optional, and if omitted wire direct to the foil side of the board. Below: - Fig. 2. Component overlay for the amplifier module.

SEMICONDUCTORS

O1,2,4,5	BC557
O3,6	BC559
O7	BD140
O8, 10, 11	BD139
O9	BC549
Q12	BDV65B or TIP142
O13	B'DV64B or TIP147

MISCELLANEOUS
2A Fuse ; 2 off) with holders, insulating kits for 08, 12. 13 heatsinks, brackets, spacers, PCB

WHY LOW TID?

Looking at the circuit and a quick glance at the specifications, there's little in the circuit that looks outstandingly different from others. So what makes this amplifier special?

The difference in concept that makes this amplifier unique is the use of a very linear, high gain driver stage ($\mathbf{Q 1 0}, \mathrm{Q} 11$), with a constant current source ($\mathrm{Q}, \mathrm{Q}, 07$), so that the gain of this stage is dependent upon the input impedance of the output transistors. However, their input impedance is dependent upon their gain, and therefore the gain of the amplifier stage is dependent solely upon the characteristics of the output devices.

Series and shunt feedback is used with Q10 and Q11 which results in a highly linear stage with a very low input impedance (about 28 ohms). The gain of the differential pair when
fed into this low impedance is close to unity, so almost all the gain of the amplifier is concentrated in Q10 and 011.

Provided the phase shifts in the differential pair and the gain stage are negligible the feedback loop is unconditionally stable.

There are two other design features which result in low TID.

The total open loop (feedback disconnected) distortion is only 1% at 30 V p-p output. So, very little feedback is necessary to reduce this to an acceptable level.

Protection of the output transistors is done by fuses, rather than electronically, and very high transient currents can be fed to the speaker without being affected by the (inevitably) non-linear impedance of an electronic protection circuit.

PULSE TESTING

Operation into severely reactive loads was examined by looking at the ac component of the Vbe of Q10 as a measure of the 'overshoot of the loop and to see if transient overload occured.
$f=1 \mathrm{kHz}$. CRO is $0.2 \mathrm{mS} /$ div. Output is 30 V into 8 ohms.

Upper trace $10 \mathrm{~V} /$ div. Output into 8 ohms.

Lower trace $10 \mathrm{mV} / \mathrm{div}$. Vbe of BD139 gain stage. No evidence of transient overload was visible.

harmonic distortion. The heavy feedback 'school' of design produces an impressive list of specifications but the difference to the ear between such an amplifier and one designed for low TID has to be heard to be believed.
The design of the power supply can mean the success or failure of an otherwise well-designed amplifier. The supply voltage should be well-regulated, varying less than 10\% from no load to full load, and be able to supply high peak currents.

However, if a voltage regulator is employed it too must be capable of delivering the very high peak currents occasionally demanded This necessitates an expensive regulator device and large, expensive filter capacitors.

The alternative is to use a fairly large transformer and large value filter capacitors on a capacitor-inpuit bridge rectifier. This is what we chose.

Powering Supplies

The circuit given here shows a power supply suitable for supplying a stereo amplifier using two of these modules. The filter capacitors C8 and C9 consist of two $15000 \mathrm{uF}, 60$ volt electrolytic capacitors. This is the minimum value we would recommend.

The power supply output should be limited to a peak DC voltage of about 40 volts (for 60 W output). A C-core transformer will generally improve the hum and noise output figures apart from having a reduced field, thereby reducing possible hum pickup problems.

If the amplifier module is to be used with a 4 -ohm speaker system the supply voltage must be limited to about 30 volts maximum, otherwise the output devices will attempt to deliver 100 watts followed by rapid self.destruction!

Adventurous constructors may wish to try adding a second set of Darlington output devices, with their own emitter resistors as per the circuit, connected in parallel with the original pair. This combination may supply 100 watts or more into a four ohm speaker load. This technique is also recommended if you are contemplating driving highly reactive loads such as electrostatic loudspeakers.

Fig 3. Circuit diagram of one channel of
the preamp. Add 100 to all component the preamp. Add 100 to all component
numbers for second channel.
HOW IT WORKS The signal from a magnetic cartridge is
fed to the base of Ol via a low pass filter fed to the base of Q1 via a low pass filter
(R2 and C 1) for attenuation of radio frequencies. Q1 and Q2 form a differential pair, each half operating at low collector
current to minimise noise. The output of
 collector of Q1 and further amplified by
Q3. Feedback is taken to the base of Q2, Q3. Feedback is taken to the base of Q2,
the negative input of the differential pair,
through the RIAA equalisation network, through the RIAA equalisation network.
Overall gain of the phono stage is set by the ratio of the feedback network impedance to the value of R6.
Subsonic bass roll-off of 6 dB /octave, to conform to the new IEC 65 specification, is achieved by a high pass filter consisting
of C8 and RV2.
Output from the disc preamplifier is
then fed via the Source Switch (SW5), Tape-Source switch (SW6), R15 and the volume control (RV2), to an emitter fol-
lower, Q4. This emitter follower presents

sounce
Above: the finished preamplifier unit.
Below: the PCB some way into construction.
$=$ work boosts the high and low frequencies fact, all frequencies are attentuated but the midrange is attenuated more. When
the loudness is switched out, R16 approximates the impedance of the netMuting is achieved by switching R14 to
earth. The ratio of R14 to R13 sets the earth. The ratio of R14 to R13 sets the
attentuation to 20 dB . C11 shunts high fioquencies to earth for high cut, while
reduces low frequency content when switched in, providing low cut. a constant impedance source to the tone A Baxandall tone stage is used here, a common circuit in many designs. Q6 is a load, via C28, to the output. Bootstrapping increases the gain by increasing the effective collection load impedance. Q7 is the collector of $Q 6$. This provides a very taken from the output.

 adjusting the controls the percentage of appearing at the base of Q 6 can be varied, thereby varying the overall gain of the amplifier at either high or low frequen-
cies. The gain of the tone stage is set by the ratio of R37 to R38. As R38 is reduced in value the negative feedbalk is reduced To preserve the very low output impedance of the pre-amplifier the than after, the tone stage. is provided by 1000 u capacitors and resis-

[^1]

Fig 4. Component overlay for the pre-amp section of the 4000. Links X and Y are screened cable links to the 'phono' input of the selector.

Note: the PCB foil patterns for this project can be obtained from ETI offices at 145 Charing Cross Road, London WC2. The pre-amp PCB is far too large to print. The power and module appears with the rest of the foil patterns later in the issue.
the appropriate copper lands on the underside of the board.

The 'earthy' side of the speaker must be returned directly to the zero volt connection of the power supply. as close to the filter capacitors as possible (preferably direct to the negative terminal). Do not connect this side of the speaker to the amplifier board.

Setting Up

Once the amplifier has been assembled and carefully checked, the bias current for the output devices must be set. Remove the fuses, F1 and F2 and connect a 100 ohm resistor across each fuse holder. Remove any input signal. Connect the power supplies and measure the voltage drop across each of these resistors. Adjust the trim pot RV1 for a reading of 2 V 5 across each resistor. This corresponds to a bias current of 25 mA . The reading should be nearly the same across each resistor. Next check that there is no DC voltage across the output terminals.

If the reading across each of the resistors cannot be adjusted, or if there is a DC voltage across the output greater than one volt then there is a fault and the fuses should not be inserted.

If all is well, remove the two resistors and insert the fuses. Connect the speaker and away you

news digest

EXCLUSIVE - STAR WARS 2 LEAK

We've just received the first pictures of mechanical men from Star Wars 2, 'The Empire Strikes Back', to escape from their workshop (the pictures, not the mechanical men) somewhere in Hertfordshire. They arrived under plain cover (a brown envelope) by special messenger (GPO) from an. anonymous reader
R2-D2 peeps over the top of a work bench at the tall, dark handsome medical robot (microphone mouth), while an alien has a snooze in a plastic bag.
Thank you Mr Anonymous, whoever you are. Can we have some more please? How about 'Alien' this time?

ETISKI

As you can imagine we are invited to quite a few Press receptions, lunches, etc. to have a look at new products or meet people in the electronics industry.
This month our invitation-of-the-month award goes without a doubt to Sperry Univac, who are sponsoring the forthcoming first-ever World Water Ski Racing Championships. They decided to see how daft we really are by inviting us to have a bash at walking on water ourselves, while the British team was going through its paces in July. Thankyou Sperry, we would loved to have gone along, if only to see who else was mad enough to turn up and have a go

The Championships will be held from September 9th to 16th at Whitstable in Kent,

Allhallows near the mouth of the Thames and the Welsh Harp Reservoir in London.

Sperry Univac will be providing a computerised results service throughout the event.

PROGRAM REACTION

The NRC, the American nucl ear watchdog, was happily watching its nuclear dogs when the telephone went.
The caller alleged that some nuclear plants were using a flawed design method, piping in the plants had been designed by, invalid computer programs.
In March, the NRC closedfive plants because it was unhappy about piping design. It is now studying the likelihood of damage due to earthquakes. If reactors remain closed indefinitely, the lights might start switching off in the areas served.

TOP PROJECTS No 7

Have a look at the CCD Phaser circuit diagram on page 26. R31, 32 fix the voltage on IC5 pin 5 at 10 V 5 . However, as they are labelled, pin 5 sits at a puny 1V5. To make IC5 feel better, make R31 10 k and R32 lk 5 .

Power Supply

A completely separate PSU is used for each channel, as the performance is thus greatly improved at what amounts to a small cost increase.

Assemble both the PSUs first and test thoroughly before connection to the power amps. Make sure that within the common enclosure the actual amplifiers are well screened from the mains carrying circuits. See photos for guidance

DO NOT use DIN loudspeaker plugs for the output. Screw down terminals are all we would recommend, fastened as tightly as your fingers will allow! The amplifier itself is stable into any load, and so special cable CAN be used, but quite frankly RS 20A is just as good subjectively and neither as expensive nor as awkward to drive. A better deal all around.

Above: the rear end of the 4000 system. Note the use of Cannon connectors for power.

Right: fitting the power amps into the case. Here phono sockets have not been used, and stand-off piliars are employed to match up to the heatsinks cut into the side of the case.

BUYLINES

The cases chosen for the Audiophile amplifier was obtained from West Hyde Development (see below for address) from their CLASSIC 2 range, order as CL2 CDL (preamp case), CL2 CGL (amplifier case), CL2 AES (preamp PSU case).
The following items are available from Watford Electronics:-
TIP 142, TIP 147.
Hi-fi type switches, type TS14, TS15.

Preamp transformer 15-0-15 type 749. Amplifier module transformer 30-0-30 at 2 A (also available from Electrovalue, type GP602).
All other components used are readily available from major stockists that advertise in this issue.

West Hyde Development, Unit 9, Park St., Industrial Estate, Aylesbury, Bucks. HP20 1ET.

Fig 5. (Above) power output distortion for the Audiophile 4000 power amplifier.

Fig 6 (above) circuit diagram for the power amplifier and de-thump sections of the Audiophile

HOW IT WORKS

Both supplies are fairly standard circuits. The pre-amp PSU uses IC regulators to achieve good stabilisation. The capacitors C3, C4 on the output arc to prevent interference reaching the pre-amp rails.
The power amp PSU incorporates two massive smoothing capacitors C3, 4. These should not be reduced in value. Indeed if the case chosen - and budget -
will allow higher values will show advantages in sound output.

The transistor Q 1 is part of an 'antithump' circuit which functions thus: as the power rails come up toward voltage, capacitor C5 charges via R2. Q1 conducts and pulls in RLA1 thereby connecting the loudspeakers. circuit

PROJECT: Audio Amplifier

Fig 8 (above) component overlay for bridge rectifier and de-thump circuitry.
Above right: the finished article
Fig 9 (below) component overlay
for the pre-amp supply.

- PARTS LIST

PRE-AMP SUPPLY
CAPACITORS

C1, 2	1000 u 35 V
C3, 4	470 n polyester
C5, 6	10 u 25 V tantalum
SEMICONDUCTORS	
D1-4	1 N 4001
IC1	7815
IC2	7915
LED	TIL220
MISCELLANEOUS	
SW1	DPDT mains
FSI	500 mA
TRI	$20-0-20 \mathrm{~V}$ secondary
PCB and hardware case etc	
R1	$1 \mathrm{k} 1 / \mathrm{lW}$

POWER AMP SUPPLY

CAPACITORS		
C1	$33 n$	240 V AC
C2, 5	47 u	63 V
C3, 4	15000	63 V
SEMICONDUCTORS		
D1-4	1 N5408	
D5	1 N4004	
01	BC548	
LED	TIL220	
MISCELLANEOUS		
R1 470R1W, R2 47k 1/4W,., T1 30-0-30 secondary, FS1/2 2A quick blow. RLA1 2 pole changeover 12 V coil 2 A contacts, R3		

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1.979

THE LM10 APPLICATIONS

Following on from last month's introduction, Ray Marston takes a closer look at the revolutionary LM10 amplifier, and comes up with a whole stack of practical applications.

THE LM 10 IS A REVOLUTIONARY new type of operational amplifier device that is capable of operating from single ended supplies with voltages as low as 1 V 1 to as high as 40 V . As can be seen from Figure 1, the device contains an op-amp, a precision 200 mV band-gap voltage reference, and a reference amplifier, all housed in an 8-pin package. We introduced basic details of the LM10 in the last edition of ETI.

Fig. 1. connections.
In this month's article we take a look at a whole stack of practical application circuits of the LM 10.

Voltage Regulator Circuits

The LM10 is, because of it's built-in precision voltage reference and op-amp, ideally suited to use in voltage regulator applications. Figures 2 to 9 show a few practical circuits of this type.

Fig. 2. The built-in reference and amplifier are used to generate a 200 mV to 20 volt potential that is fed to the input of the op-amp, which is configured as a voltage follower and boosts the available output current to about 20 mA .

Fig 3: the reference and amplifier produce a fixed 20 volts, which is fed to pot RV1. The op-amp and Q1 are configured as a voltage follower, which boost the $\mathbf{0 - 2 0}$ volts output to current levels up to several hundred milliamps.

Fig 4: the op-amp input is derived directly from the 200 mV reference, to give a 5 volt output. Fig 5: the op-amp input is derived from a $\mathbf{0 - 2 0 0} \mathbf{m V}$ refference, to give a $\mathbf{0 - 5}$ volt output.

Figures 6 and 7 show how the LM 10 can be used in the 'floating' mode, to generate high output voltages. Note in both of these circuits that the IC is used in the 'shunt' mode, with load resistor R3, and that only a few volts are developed across the LM10 itself.

The LM10 can be used in a wide variety of voltage, current, and resistance-sensitive fault-indicator circuits with audible or visual outputs. Figures 10 to 23 show examples of circuits of this type.

In Figures 10 to 17 circuits, the op-amp is used as a simple voltage comparator, with its output feeding to either a LED indicator or an audible warning device via a suitable current-limiting resistor.

Figure 8: a simple example of the use of the LM 10 as a 5 volt shunt regulator. Fig 9: how the IC can be made to act as a. negative voltage regulator.

Fig 10: over-voltage indicator circuit, the test voltage is fed to the non-inverting terminal of the op-amp, and the trigger reference voltage is produced by the LM 10 's voltage reference and reference amplifier and is fed to the non-inverting terminal of the op-amp.

${ }^{3}$ Fig 11: An alternative approäch is used in the over-voltage circuit here. A 200 mV . reference is fed to one input terminal of the op-amp and a potential-divided version of the test voltage is fed to the other.

Fig. 12: under-voltage circuit is similar, except that the op-amp inpurt connections are transposed. A feature of both of these circuits is that the LM 10 supply voltage must be greater than the required trigger voltage.

Fig 13 (above): precision under voltage indicator with LED or audible waming. Input sensitivity $\approx 50 \mathrm{k} / \mathrm{v}$.
Fig 14 (below): precision over voltage indicator with LED or audible warning.

Fig 15 (above): precision under current indicator with LED or audible warning device output.

Figures 16 and 17 show precision circuits that can be triggered by any paramters, such as light or temperature levels, that, can be sensed by a resistive element. In these circuits, the resistive element forms part of a Wheatstone bridge that is powered from the LM10's voltage reference amplifier, and the output of the bridge is used to activate the comparator-connected op-amp. In the examples shown, the bridge is powered from a 2 V 2 source.

Remote Amplifiers And 2-Wire Transmitters

One of the most interesting aspects of the LM 10 is its suitability for use in remote-amplifier and 2 -wire transmitter applications. The device has an output current drive capacity that is a couple of orders of magnitude greater than the devices quiescent current value, and has excellent supply-rejection characteristics. Consequently, the device can operate quite happily with its output terminal shorted to one or other of it's supply terminals, in which case the supply leads can be used to carry both supply and output signal currents.

Fig 18 (above): remote 20dB voltage amplifier for use with inductive or magnetic input devices.

Fig 19 (above): remote 40 dB voltage amplifier.
Figures 18 to $2 \overline{1}$ show examples of remote linear amplifiers or 2-wire analogue transmitters. The Fig 18 and 19 circuits are suitable for use with low- to medium impedance input devices, such as moving coil or magnetic microphones, etc., and the Fig 20 circuit is suitable for use with high impedance devices such as crystal microphones or vibration sensors, etc. The Fig 21 circuit is suitable for use with resistive sensors.

Fig 20 (above): 20 dB voltage amp for use with high impedance input device.

Fig 21 (above): a two-wire transmitter for use with a variable resistance sensor.

Figures 22 to 26 show the circuits of 2-level 2-wire 'fault-indicator' transmitters with either resistor, LED, or transistor outputs at their 'receiver' ends. Figures 25 ito 30 show 2 -wire 'fault indicator' transmitters with either Iflashing LED or monotone audio outputs.

Fig 22 (above): two wire precision over-voltage transmitter with LED or resistor / transistor output.

Fig 23 (above): under voltage version of Figure 22 circuit.
Fig 24 (below): over current version of basic circuit.

Fig 25 (above): two wire under current transmitter with LED, resistor or transistor output.

Fig 26 (above): two wire precision 'dark' or 'under-temp' transmitter with same basic outputs as previously. Transposing R1 and RV1 makes the circuit act as a 'light' or 'over-temp' alarm.

Fig 27 (above): two wire precision under-voltage transmitter with flashing LED or monotone audio output (400 HZ).
 $V_{t r i g}=200 \mathrm{mV}$ ($\mathrm{R} \underline{5}+\mathrm{R}_{6}$)

R6

Fig 28 (above): over-voltage transmitter - output options on Fig 27.

Fig 29 (above): under-current transmitter - output options as Fig 27.

Fig 30 (below): over-current transmitter - output options as Fig 27.

EATURE:The LM10~Applications

Meter Amplifier Circuits

To conclude this look at applications of the LM 10, Figures 31 to 33 show a variety of ways of using the device as a moving-coil meter amplifier.

Fig 31: the op-amp is used as a simple non-inverting amplifier, and increases the meter sensitivity by a factor of about 100. This circuit has no 'set null' facility, and can give no indication of reverse-connected signals. The modified circuit of Fig 32 (below) does not suffer from this defect.

Fig 33 (below) how the basic Fig 32 circuit can be adapted for use as a four-range DC millivoltmeter. Note that these meter circuits are powered from a 1 V5 cell! Not bad for an op-amp.

4

ELEGTROXALIE
Your leading direct suppliers for

- Wepay
postage
in U.K. on orders list value $€ 5$ or over. If under, add
27 p handling charge.
- We give
s follows on C.W.O. orders except items marked Net or N in our catalogues.
5% on orders, list value
10% on orders list value £25 or more.

Not applicable to Access or Barclaycard orders

- We stabilise prices.
by keeping to our printed price lists which appear but three or four times a year.
- We guarantee
all products brand new. No seconds, no surplus.
- WE WILL SEND YOU OUR 120-PAGE CATALOGUE NO. 9 FREE ON REQUEST. Comprehensive, informative, very well produced.
Write, phone or call for your free copy, together wour free copy, logether with separaty) (Available separately.)

Dept. ETI 1028 St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB Phone: Egham 3603. Telex 264475.
Northern Branch (Personal shoppers only), 680 Burnage Lane, Burnage,
Manchester M19 1NA. Phone (061) 4324945

REACTION TIMER

Check your reflexes with this ingenious project

WHILE WE HAVE published reaction timers before, the feature which makes this unit unique is that it gives a random time interval between tests. This prevents anticipation causing a shorter than actual reaction time. As the prototype was built on veroboard and used 9 TTL packages plus two of the nice (and expensive) HP displays (which have the decoder on board), we decided that at least one PCB was required.

On looking at the logic involved, we saw it could be simplified without any change in operation and with the use of CMOS the power supply is less critical than with TTL.

Operation

If the unit has not been used for more than 30 seconds the display will be blank. Pressing the button and releasing it will initiate operation. When the display comes on again it will start counting from zero until the button is pressed. It should be held depressed while the time (in hundredths of seconds) is read Releasing the button blanks the display for a random time before it comes on again, counting from zero for a second test. If the button is not pressed the display will blank after about 30 seconds to conserve power - no on/off switch is required.

Construction

We will describe only the electrical side of the project, leaving the housing details to individual tastes.

Assemble the PCB with the aid of the overlay in Fig. 1. Start assembly with the resistors, diodes and the four links. The 555 should now be fitted and soldered, followed by the other ICs. These are all CMOS and their pins should not be handled more than is necessary. As an added precaution, solder the power rails first (pins 7 and 14 on ICs 8 and 16) using an earthed soldering iron. The rest of the components can now be assembled.

SPECIFICATION

Reaction time
Delay between tests
Power reuiqrements

0 to 0.99 seconds $1 / 2$ to 10 seconds (random) 4 to 12 volts DC @ 50 mA (display on) $@ 1.9 \mathrm{~mA}$ (display off)

BUYLINES

Suitable displays for this project can be obtained from any of the large semiconductor suppliers advertising in this magazine. People like Technomatic, Marshalls, Maplin, etc. Most will stock all components needed.

WATFORD ELECTRONIES

ILP MODULES 15-240 WATTS

We are now stockists for these world famous fully guaranteed (2 years guarantee on all modules) Pre amps, Amplifiers \& Power Supplies
HY5 Preamp. 500 mV RMS £4.75; HY120 Power Amp. 60W RMS $/ 8 \Omega$ £15.40;

PSUVER SUPPLIES
PSU36 -- Drives $2 \times$ HY3Ós £6.38 PSU50 - Drives $2 \times$ HY50s $£ 8.18$ PSU70 - Drives $2 \times \mathrm{H} 120 \mathrm{~s}$ PSU $1802 \times$ HY200

ROTARY: Make your own multiway Switch.
Adjustabie Stop Shafting Assembly. Accom-
modate up to 6 Wafers
modate up to 6 Waters
Mains Swith DPST to fit

$\mathrm{preak} / 6$ way. $3 \mathrm{p} / 4$ way. $4 \mathrm{p} / 3$ way. $6 \mathrm{p} / 2$ way
47 p
Spacer and Screen
1 pole/2 to 12 way. $2 \mathrm{p} / 2$ to 6 way. 3
pole $/ 2$ to 4 way, 4 pole $/ 2$ to 3 way 41 p
ROTARY: Mains $250 \mathrm{~V} \overline{\mathrm{AC}} \mathrm{C} 4 \mathrm{Amp} \quad \mathbf{4 1 \mathrm { p }}$

news

 digest

CONTINENTAL BREAD
Continental Specialities Corporation aim to get you from circuit diagrams to final designs in the cheapest and easiest way possible with their range of solderless breadboarding systems
You can take your first plunge into breadboarding without wringing out your wallet, with the CSC Protoboard PB-6. For $£ 9.20$, you get a pre-assembled breadboard socket, two solderless bus strips, four 5 -way binding posts all on a metal baseplate. Up to six 14 -pin ICs can be accommodated on its 630 tie points.

Moving up the range, PB-100 gives you 760 solderless contact points. Other boards in the range also have built-in power supplies.
If you want to build an Lshaped circuit, you want CSC's Quick Test Sockets. Available in various sizes, they can be snapped together in any combination to produce a breadboard of any shape or size. It's as close to instant circuits as you'll get.

The Experimentor series of breadboards will snap together horizontally or vertically, if your circuit layouts are driving you up the wall. The range starts at $£ 3.15$ for Experimentor 350, offering 270 contacts. The Experimentor 650, at $£ 3.60$, and the 600 are the only breadboards on the market with full 4-terminal fan-out for microprocessors, clock chips, RAMs, ROMs and other large DIL packages. Also in the range, and particularly useful, is the Experimentor scratchboard a pad of paper with a full-size layout of the hole and connection pattern of the breadboard. Your finished design can then be transferred to the Experimentor Matchboard, already drilled and etched to match the breadboard contact layout.

CSC's new catalogue features their full range of breadboarding equipment and test instruments. Catalogues and further details of products are available from Continental Specialities Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CBll 3AQ.

Fig. 1. Circ̄uit diagram.

HOW IT WORKS

The unit is basically an oscillator, IC 1 , clocking two decade counters (i.e. \div 100), with their outputs being decoded by IC2 and IC3 and displayed on the LED displays. Control of the oscillator and displays is done by IC5 and IC6.
When the push-button is activated, IC6 is reset so that pin 13 is " 0 " and pin 12 is " 1 ". Also, a " 1 " is applied to the latches in the decoders (IC2, 3) so that the number presented to the decoders at that instant is stored. It also applies a " 1 " to pin 12 of IC5c, forcing its output low. As there is a " 0 " on pin 13 of IC6, the diode D3 brings the voltage on pin 8 of IC5d low. Two "lows" on these gates (NOR) make the output go high. As the output of this gate controls blanking (" 0 " $=$ dark), the display will be on.

The push-button also (yes, it does a lot) causes the 555 oscillator to run at about 50 kHz . The oscillator clocks the counter ICs - they are completely cycled 500 times per second.
When the button is released, the oscillator frequency drops to about 10 Hz . The display blanks as IC5c now has both zeros on its input, a " 1 " on its output and hence a " 0 " in the output of IC5d. The latches in the decoder ICs also
open, although counting cannot be seen as the display is blanked.

After about $1 / 2 \mathrm{sec}$ the voltage on the reset input of IC13 (pin 10) falls below the threshold level, allowing it to be toggled by the clock input (pin 11). As when the push-button was released, the counters (IC4) could have started at any count, the time until the voltage on pin 14 of IC4 goes low is random. The delay on the reset line going low is to prevent C6 from being toggled too soon.
When IC6 is toggled (after $1 / 2 \mathrm{sec}$ to 10 sec), pin 13 goes high and pin 12 low. IC5a now has two lows on its input, giving a " 1 " on its output. This raises the oscillator frequency to 100 Hz . The " 1 " now on pin 13 of IC5c gives a " 0 " on pin 9 of IC5d and a " 1 " on pin 10. This brings the display back on. As IC6 can only be toggled on the overflow of IC4, the display comes on at the zero count.

The display continues counting up at 100 Hz until the button is pressed, freezing the display to indicate reaction time. The whole thing is then repeated.

If the button is not pressed for more than 30 sec the voltage on pin 8 of IC5d will go above the high threshold, forcing the output low and thus blanking the display.

PARTS LIST

RESISTORS	all $1 / 4 \mathrm{~W} 5 \%$
R1, $4-17$	1 k
R2	330 k
R3	4 M 7
R18, 20	1 M
R19	10 k
POTENTIOMETERS	
RV1	500 k trimmer
CAPACITORS	
C1	
C2,4	22 n polyester
C3	33 ul 16 V tantalum
	1 u 16 V tantalum

SEMICONDUCTORS

IC1	555
IC2,3	4511
IC4	4513
IC5	4001
IC6	4013
D1-3	1N914
DISP1,2	SEL 521 or
	Similar"jumbo" LED

MISCELLANEOUS
PCB, box to suit, push to make pushbutton 6 V battery and holder

PROJECT: Reaction Timer

Theprofessionalscopes you've always needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope.

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.
The price $£ 219$ plus VAT.
The. Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus VAT.
Prices correct at time of going to Press

CALSCOPE DISTRIBUTED BY

Marshalls Electronic Components, Watford Electronics,
Kingsgate House.
Kingsgate House,
Kingsgate Place.
Kingsgate Place,
Londọn, N.W.6.
Audio Electronics,
301 Edgware Road, London W. 2. Tel: 01-724 3564

Watford, Herts.
Tel: 092340588
Maplin Electronics Supplies Ltd. P.O. Box 3

Rayleigh, Essex
Tel: 0702715155
Mail Order

audiophile

Competition results, a new amplifier manufacturer and a totally new concept in loudspeaker design. Ron Harris considers . . .

MANY THANKS to all the readers who entered the Audiophile competition a while back

Entries ranged from outright unprintable (but mostly hilaraious) to outright obscure. All but displayed a wit of which Oscar Wilde would have been proud. In consequence I chose four runners-up all of whom will be receiving copies of Top Projects No 7 as some consolation.

The winning entries are given below, Mr Percival's triumphant ditty first:-

"Oh maid so beautious and so fair,
What vanity makes you look out there?
The whistle was not from a handsome blade,
But from your hi-fi, wrongly played!"
F. PERCIVAL

SALE
CHESHIRE
'II know it's wrong to doubt, but does my
husband's fidelity match up to Marantz?'.
S. IBBS

WOLVERHAMPTON
W. MIDLANDS
'ft's transparently obvious that this unit has class - you don't need statistics to see there's no distortion."
P. HORSFALL.

SALE
CHESHIRE
"Now, if I can just find a SPEAKER salesman . . ."
P. PARSONS

BATH
AVON
"Complete home entertainment for the discerning amateur." S. GILLBARD

DYLOE
CORNWALL
Well done one and all

Now all I want is someone to offer ME a chance to enter a competition, with dinner at San Martinos with Felicity Kendal as the prize.

Quantum Jump

Formation of new audio companies is always good to see. Quantum Electronics is a new name in the DIY amplifier market, being an off-shoot in both personnel and (developed) product from another VERY well known module manufacturer.

Quantum sell kits in the main, but will supply ready built units upon request. In kit form the amps arrive as tested PCBs metwork and output transistors. Couldn't be easier really. The pre-amp is of the 'Naim' species lacking tone controls and other frills.

Assembly of any of the range seems to consist of bolting in all the bits and wiring up inputs and outputs to the PCBs.

There are four amplifier variations and two pre-amps (moving coil. and 'normal'). Prices range from £67.81 for the (mono) 45W P1 up to a mere $£ 99$ for the stereo 110 W P4. RMS of course.

Tests will be under way soon, and Audiophile readers will hear the results very shortly I hope. Meanwhile if you're interested Quantum are existing at Stamford House, 1A Stamford Street, Leicester - from which the eagle-eyed will be able to infer which module company Quantum is sired by!

Speaker Speaker

The following is from a letter I received from a reader named Mr H . Lipschutz. It outlines a brand new form of loudspeaker design he has pioneered (no pun - honest) and makes very interesting reading indeed.

Anyone - manufacturers for example - wishing to contact Mr Lipschutz can do so c/o Audiophile.

Description

The low frequency output of a speaker does not depend on size of box but on size of cone area. This can be quadrupled for a given size of box by mounting drivers in the four usually unused side walls. The combined increase in efficiency due to this, and the direct coupling of low-cost power-ICs to each driver from a common electronic cross-over/12db per octave attenuator (to attenuate excess output at higher frequency), is traded off against loss due to operating woofer below resonance frequency, while medium/high frequency driver(s) are operated above resonance frequency. Thus neither is influenced by resonance effects. Cost of multiple drivers and ICs is saved on box and usual cross-over.

Result is: Small box, but output equal to unit several times its size.
There is no getting away from the fact that loudspeaker development, in terms of distortion, efficiency, and size, is well behind the rest of the hi-fi chain, even if the better speakers sound quite 'nice.' It is debatable which of the parameters needs improving most, but I decided that to reduce size without impairment of the other parameters would be a good start, especially as most buyers of hi-fi speakers would prefer the convenience of small size when given the choice, provided everything else was equal or even better than other speakers.
I therefore decided to develop such a speaker. As the problem of size is normally associated with the woofer and its box, my approach was concentrated upon that area.
To avoid cancellation of the pressure waves front and rear, bass drivers have to be enclosed in a box, the size of which is normally governed by
a) the requirements of resonance of the system as a whole, and
b) the cone area, which ideally should increase in line with the increase in wavelength towards the lower bass.
As below 125 Hz sound directivity is minimal, it did not matter which way the driver(s) faced; it was therefore possible to increase cone area at least fourfold without increase of box size merely by utilizing four sides of the box. The result - a considerable improvement in efficiency. The enclosure comes into its own mainly when used as a resonator, when it is intended to use resonance in order to boost output at a particular frequency, usually the lowest for which the system was designed.
This, however, required large size, which was therefore decided by the laws of physics. While it is convenient to use resonance of the systems for this particular purpose, it is not necessarily the only, or best way.
It has been stated in a number of textbooks and magazines that it is for all practical purposes impossible to force a great deal of electrical power into a speaker from an amplifier at frequencies below..their main resonance, and that vastly greater distortion is produced below this resonant frequency, as well as speakers becoming very inefficient at generating sound output, so that normal designs suffer a great drop in output just where a peak is required, and distort badly as well.

This, however, is not the result of physical laws per se, but due to the limitations of the particular design. Clearly the normal bookshelf air suspension design with its 'enormous' 8 -inch driver, and design resonance at approx. 75 Hz would attain maximum cone excursion at this very same frequency, caused and helped by resonance of the system. In order to move correspondingly further in and out, which it cannot do without hitting its end-stops, quite apart from the fact that in its work to compress and rarefy the enclosed air it now does not get any help from the effects of resonance.

If, however, it is designed to attain its maximum excursion at 32 Hz , regardless of whether it is helped to do so by resonance effects or not, then this is a different matter, although its movement at resonance, now being far too much, would have to be controlled. This can be done most conveniently by making the box so small that system resonance falls above the cross-over point, i.e. above, say, 125 Hz .

Accordingly a speaker with these features was built, with quadrupled cone area, utilizing four sides of the box, active cross-over before the amplifier, in order to avoid power loss in the usual passive cross-over; and the gain in acoustical efficiency traded off against the absence of the usual gain from resonance, with the cross-over frequency at 125 Hz , and a roll-off of 12 dB per octave towards the high endin order to compensate for the increase in output due to the large cone area compared to the smaller wavelength towards 125 Hz .

The result was a speaker of similar efficiency to a transmission line speaker of 10 times its volume with the additional advantage of quadrupled voice-coils (connected in series/parallel) affording four times the heat dissipation capabilities of comparable normal designs, and therefore increased output reserve.

Furthermore, since the 'box' only consisted of not much more than a frame for the four drivers, it was extremely cheap and simple, and quite stiff as well.

Ideally each driver should be driven by its own amplifier.
In listening tests, compared to highly recommended professional monitor speakers, every listener so far has preferred the sound of the prototype, thus proving that the size reduction did not result in loss in any other parameter.
This principle has meanwhile been further developed, and patents are pending for new types of drivers, which permit an increased efficiency estimated to be more than tenfold over conventional systems, thus making possible the design of a speaker which combines small size, extended bass and very high efficiency design parameters which until now have been considered to be mutually contradictory.

It is intended to follow this development with the construction of an advanced speaker, in which distortion and linearity is improved likewise by a factor of ten at least, thus bringing it more in line with the quality of the other links of the audio chain.

DESIGNER'S NOTEBOOK

Another look at the notebook of ETI's chief design engineer, project editor Ray Marston.

THERE ARE MANY occasions when the electronics design engineer needs one or two basic gates in a circuit and is faced with the possibility of having to wastefully commit an entire IC to this simple function. Alternatively, it may be the case that the inputs to a gate come from such widely separated points of a circuit that the use of an IC in a particular application will result in an excessively complicted PCB layout. In both of these instances, a simple diode gate may offer an ideal solution to the problem.

Figure 1 shows the practical circuit of a 3-input diode OR gate. The circuit is simple, reasonably fast, very cost-effective, and can readily be expanded to accept any number of inputs by merely adding one more diode to the circuit for each new input.

Fig. 1. The diode OR gate is simple but efficient. Ht can be expanded to accept any number of inputs by adding iextra diodes.

The diode OR gate can be converted to a NOR type by either feeding its output through an NPN transistor inverting stage, as shown in Fig 2a, or by feeding it's output through any type of IC inverting stage that happens to be 'spare' in the circuit that you are playing. with, as shown in Fig 2b.

Figure 3 shows the connections for making a 3 -input diode AND gate. The circuit can again be expanded to accept virtually any number of inputs by simply adding an appropriate number of diodes.

Fig. 2. The diode OR gate can be converted to a NOR type by feeding its output through a transistor (a) or IC (b) inverting stage.

Fig. 3. The circuit of a 3-input AND gate. The number of inputs can be increased by adding extra diodes.

The AND gate can be converted to a NAND type by feeding it's output through a PNP transistor or an IC inverting stage, as shown in Figures $4 a$ and $4 b$ respectively.

Fig. 4. The diode AND gate can be converted to a NAND type by feeding its output through a transistor (a) or IC (b) inverting stage.

Linear Operation Of Diode Gates

Diode AND and OR gates can give very useful performances when one or more of their inputs are operated in the linear mode. Figures 5 and 6 show two useful ways of using the 2 -input diode OR gate in linear applications.

In the case of the Figure 5 circuit, in which analogue voltages are applied to both of the input terminals, the output of the circuit is (ignoring a diode volt drop of about 600 mV) equal to the greater of the two input voltages.

Figure 6 shows what happens when a pulse signal is fed to one input of the OR gate and an analogue voltage is fed to the other. The output signal comprises a pulse with

Fig. 5. When a diode OR gate is used in the linear mode, Vout equals the greater of the inputs.

Fig. 6. The effect of feeding a pulse to one input and a DC voltage to the other input of a 2 -input diode OR gate.
a peak amplitude equal to that of the input pulse, and with a 'zero' value equal to the analogue input voltage.

Figures 7 and 8 show similar circuits based on the 2 -input diode AND gate. In the Fig 7 circuit, where analogue voltages are fed to both inputs, the output is (ignoring a diode volt drop 'gain' of about 600 mV) equal to the lesser of the two inputs.

Fig. 7. When a diode AND gate is used in the linear mode, Vout equals the lesser of the inputs.

Fig. 8. The effect of feeding a puise to one input and a DC voltage to the other input of a 2 -input diode AND gate.

In the case of the Fig 8 circuit, where a pulse is fed to one input and an analogue voltage to the other, the output pulse has a peak amplitude equal to that of the analogue input voltage.

Diode Volt Drops

We've mentioned above that the output of the 'analogue' diode gate may be 'within a diode volt drop' of the input signal. The magnitude of this 'volt drop' depends on the type of diode that is in use, on the magnitude of the diode forward current, and on the temperature of the diode junction. All silicon diodes have a negative temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Figures 9 and 10 show typical volt-drop curves for the popular 1 N 4148 and 1 N 4001 silicon diodes at $25^{\circ} \mathrm{C}$. The graph of Fig. 9 spans the current range 0.1 to 1 mA , and the graph of Fig. 10 spans the range 1 mA to 50 mA .

Fig. 9. Volt-drop curves for 1 N4001 and 1 N4148 diodes over the 0.1 mA to 1 mA current range.

Fig. 10. Volt-drop curves for 1 N4001 and 1 N4148 diodes over the 1 mA to 50 mA current range.

Fig. 11. A simple but useful constant-current generator.

Note that the 1 N 4148 volt drop typically ranges from 519 mV at 0.1 mA to 874 mV at 50 mA , compared to the 1 N 4001 's range of 441 mV at 0.1 mA to 744 mV at 50 mA.

A point of particular note about the 1 N4001 curve is that it's volt drop of 714 mV at 25 mA increases by only a fraction over 4% (to 744 mV) when the current is doubled, to 50 mA . In other words, the diode has a voltage-to-current coefficient of about . $04 \% / \%$ in this current range. The diode can thus be used as a reasonably stable voltage reference at these current levels, but has a negative temperature coefficient of about $-0.3 \% /{ }^{\circ} \mathrm{C}$.

A Constant Current Generator

Figure 11 shows how the above mentioned 'voltage reference' characteristics of the 1 N 4001 can be put to good use in a simple constant-current generator circuit that can be used for re-charging Ni-Cad cells or for linearly
charging large capacitors, etc. Hēre, two 1N4001's are wired in series and operated at a current level of roughly 50 mA . Consequently, the voltage across R_{x} is equal to the volt drop of the two diodes minus the base-emitter volt of Q1 (about 700 mV), which gives an R_{x} voltage of about 700 mV . The emitter (and hence collector) current of Q1 is thus approximately $700 / R_{\mathrm{x}} \mathrm{mA}$.

To give an idea of the magnitudes of things, an $R x$ value of $1 R 2$ gives an output current of about 600 mA , 3R9 gives about 200 mA , and 6 R8 gives about 100 mA . All in all, a simple but very useful circuit.

Diode Protection Circuits

To wrap up this edition of 'Notebook', let's take a quick look at some diode 'protection' circuits. By 'protection' we mean circuits that are designed to insure devices against irreversible damage, and also circuits that are designed to prevent simple malfunctioning. Figures 12 to 15 show four circuits in this latter category.

Fig. 12. An example of the use of a diode to rapidly discharge a timing capacitor when the power supply connection is broken.

Fig. 13. A modification in the use of a capacitor discharge diode.

In the case of Fig 12, we have a basic time constant circuit in which a rising voltage with a time constant of about 100 seconds is developed across C1 each time

SW1 is closed. This voltage may be used to activate some additional circuitry. The problem is that once C1 has charged up, it has no means of rapidly discharging again (resetting) once SW1 is opened. If there is a load in parallel with the C-R network, as shown dotted in the diagram, C1 will of course discharge via R1 and the load, but then has a very long (greater than 100 seconds) time constant.

An easy way round this problem is to connect a discharge diode in parallel with R1, as shown in Figs 12 and 13. If there is a low-impedance load in parallel with the C-R betwork, a current-limiting resistor must be wired in series with the discharge diode, as shown in Fig 12. If there is no load in parallel with the C-R network, then an artifical load must be provided to complete the discharge path, as shown in Fig 13.

Figures 14 and 15 show two basic variations of the above circuits, in which the C and R networks are configured to give a falling output voltage across R1 Circuit operation should be self-evident.

Fig. 14. A basic-variant of the Fig. 12 circuit $_{z}$

Fig. 15. A basic variant of the Fig. 13 circuit.

Finally, Figures 16 and 17 show ways of using diodes to protect two types of transistor circuit from destructive damage. Figure 16 shows how to protect a pulse-driven common-emitter amplifier that has a highly inductive collector load, such as a transformer or a relay coil. Very high back EMF's can be generated by inductive loads, and can easily be sufficient to destroy transistor junctions. In the diagram, D1 prevents the collector of Q1 from being driven above the positive supply rail value by these back EMF's and D2 prevents it from being driven below the zero-volts value.

Fig. 16. An example of the use of diodes to protect a pulse-driven common emitter amplifier with an inductive collector load.

Fig. 17. An example of the use of diodes to protect the complementary emitter follower output stage of a power amplifier that is used to drive an inducting load.

Figure 17 shows how a similar type of protection can be given to the complementary emitter follower output stages of a power amplifier that is used to drive highly inductive loads. This circuit can give good protection to Hi-Fi amplifiers in which the speakers may be inadvertently plugged in at a moment when the amplifier is being hard driven. The protection diodes must have a current rating that is compatible with the inductive (speaker) load.

ETI

Simple Sound to Light Modulator

Trimpots 1 and 2 are adjusted so that, with the maximum voltage to be registered present on the input, 1 V is registered at pin 6 of IC1. Any cheap SCR may be used, and with due reference to the gate current of the SCR, VRx can be calculated: R (ohms) $=V / I$, where $V=1 V$ and $I=$ gate current. In setting up, VRx is adjusted in section 1 so that the LED lights up when 1 V is present at pin 6 of IC1. This is repeated in sections $2-10$ with VRx being adjusted with 0.9:0.8 .. -0.1 V at pin 6. Any number of sections can be added/ subtracted with due adjustment to VRx. If the supply voltage is changed

Voltage Controlled Filter

T. W. Stride

The voltage controlled state variable filter has become almost standard in sound synthesizers, especially since the advent of the CA3080 transconductance amplifier. However, the

CA3080 is a reasonably noisy device and this can be annoying when large passbands and/or high Q values are being used in the filter. This circuit is for a low noise, high performance transconductance multiplier, which though not cheap, will offer a truly Hi-Fi performance.

R1 and R2 attenuate the input signal to keep distortion low, and Q1, Q2 with R3, R4 form the transconductance multiplier. The differential output current is integrated by means of IC1, C1 and C2, a differential integrator. RV1 is provided to cancel out the offset of Q1, Q2; it is best adjusted. by sweeping the filter and adjusting for minimum DC output shift.

Fig. 2
$-15 \mathrm{~V}$
As can be seen from Fig. 1, the gain of the integrator is controlled by a constant current IC. This current can be provided in two ways, either from a current mirror (Fig. 2) which then makes the circuit an almost exact replacement for the CA3080, or for original equipment designs, from a current source. If it is desired to use this circuit as a replacement for a CA3080 in, for example, the Transcendent 2000 synthesizer, the following modifications are necessary. The integrating capacitor on the output of the 3080 must be replaced with a 10 k resistor and the input attenuator on the above circuit is discarded. The control current that would flow into pin 5 of the 3080 is input to the current mirror and the output current is drawn from the transconductance multiplier (point A).

Measure Resistance to 0.01Ω

At a Price that has no resistance at all
New/ELEACOM preasin Digital Multimeter M1200B

THE ULTIMATE IN PERFORMANCE -

 MEASURES RESISTANCE TO 0.01 OHMS VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!FEATURES

- $31 / 2$ digits $0.56^{\prime \prime}$ high $L E D$ for easy reading
- $\quad 100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- lnput overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

SPECIFICATIONS

DC Volts

AC Volts

DC Current

AC Current

Resistance
Environmental
General

Fiange $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1 \% \pm 1$ digit, Resolution .1 mV Overload protection 1,000 volts max Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1.5 \% \pm 2$ digits, Resolution 1 mV Overload protection 1000 V max, 200 mV scale 600 V Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{amp}$.
Accuracy $1 \%, \pm 1$ digit, Resolution 1 Microamp Overload protection - 2 amp fuse and diodes Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{mp}$
Accuracy $1.5 \% \pm 2$ digits, Resolution 1 Microamp Overload protection -2 amp fuse and diodes Range 20, 200, $2 \mathrm{~K}, 200 \mathrm{~K}, 2 \mathrm{Meg} .20 \mathrm{Meg}$. Accuracy $1 \% \pm 1$ digit, Resolution .01 ohms
Temp coefficient 0° to $30^{\circ} \mathrm{C} \pm .025 \%^{\circ} \mathrm{C}$
Operating Temp 0° to $50^{\circ} \mathrm{C}$ Storage -20° to $00^{\circ} \mathrm{C}$ Mains adaptor: 6-9 Volts @ 200 mA (not supplied) 4 C size batteries (not supplied)
Size $81 / 4 \times 5 \frac{1}{6} \times 21 / 4 \quad$ Weight $21 / 2$ lbs.

Maclin-Zand Electronics Ltd 38 Mount Pleasant, London WC1XOAP

news digest.

IN-CAR COMPUTING

There's a lot of it about. It's even happening in cars now microprocessor control, I mean General Instrument Microelectronics have developed a clever little car brain based on its PIC 1655 single chip microcomputer. It's designed to replace speedometer, odometer and tripmeter (how far you've travelled since reset) functions. If you want to go mad and computerise everything in sight, there is sufficient on-chip memory to be allocated to other functions, such as water temperature, oil pressure, fuel, tachometer, etc.
Considering the wide variations in current car systems
requirements, it's not surprising that GI's system has been designed with a great deal of in-built flexibility. It can drive fluorescent discharge tubes, LED or LCD devices. Distances can be shown in kilometres or miles and pressure, temperature, fluid measures, etc can be displayed in metric or in good, old-fashioned pounds, bushels and inches.
GI claim that the system will save space and weight, and increase reliability and performance. Further details, specification, etc are available from General Instrument Microelectronics Ltd, Regency House, 1-4 Warwick Street, London WIR 5WB

NEVER SAY DIE

Norbain claim that if you use their Vactrols properly (within their ratings) they have virtually unlimited life expectancy - the Vactrols, not Norbain.

Sounding like the baddie in a Sci-Fi saga, a Vactrol consists of an LED and a photoresistor in a common package. It provides high input-output isolation and low coupling capacitance (about 0.5 p).
One of the several types of audio attenuators possible is shown. The degree of attenuation is varied by adjust-
ment of the control voltage The distortion level for Norbain's VTL5 Vactrols is about 0.5% at IV rms, for a cell resistance of 3 k , when using VTL5C4 or 7 types. It is reduced to less than 0.1% with a VTL5C2 and can be further reduced when using the VTL5C3 and 6 types under the same conditions.

Maximum attenuation with a single cell is 40 to 60 dB . Higher values can be achieved by cascading several stages.
For more information contact Norbain Electro-Optics Division, Norbain House, Arkwright Road, Reading, Berk shire RG20LT

EARTH SATELITIES

Sputnik 1 started the ball rolling jn 1957. Since then, thousands of tons of hardware

IT IS TEMPTING to toek upon current satellite systems as highly sophisticated miracies of the space age, but the reality is that the technology is, indeed, in its infancy. Even so. Earth satallites already affect our everyday lives. As we watch live television from America, make mienatunal telephone calls and see how the next anticyclone is winding its way to wards us, all by courtesy of satellites, in sasy to forget that the satellite age has been with us for itte more than 20 years. The first weather satellite was not lammotud until the dawn of the sixties. The first telecommunications satellite, Telstar, was launched in 1962. Earth satellites fall into six categories - communication, navigestional, meteoroligical, Earth resources, research and military.

Betore The Pawn

Pefpre the age of the weaulat saumitio metroralogisis hath tor rely on data from surtare obsewtyreries and bawoublorne instruments. The sysisin1 provitpa good coverage of land masses, particularly over areas of ingh pipalation density, but left the aceansilargely uncou

This made accurate, long-range weather forecasting and fundamental studies of global weather patterns virtually impossible. The met men were then in an unenviable position for any screntist - trying to predict the progress of an ever-changing system, basing their predictions on information which was itself imprecise.

The outstanding feature of the weather satellite is its ability to transmit a picture of, for example, a large depression perhaps several hundred miles across, in its entirety. The forecaster no longer has to build up his own weather picture from scattered individual observations. However, surface observations have not been dispensed with. They are of great value when assessing the local components of a much larger weather system.

Späce Age Forecasting

Regulaf satellite monitoring of atmospheric phenomena began in April 1960 with the launch of the first of ten Television Infra.Red Observational Satellites (TIROS-1). The forecaster still has to use his skill to interpret the pictures but satellites affer the possibility of watching recognisable features develop over several hours or

days, an obvious aid to the timing of expected weather events.

So far satellites have been launched into two different types of orbit to achieve global coverage. Three satellites in geostationary (geosynchronous) orbits can just cover the lower latitude regions of the Earth. Although they can see most of the polar regions, the extreme angle of view distorts pictures to such an extent that warrants launching further satellites into polar orbits.

Arresting Motion

As the name suggests, a satellite in a geostationary orbit appears to hold its position in the sky over the same spot on the Earth's surface. It is, of course, orbiting the Earth as any other satellite does, but at an altitude of nearly .36000 km , in a circular orbit, it keeps pace with the Earth's rotation and so appears to be stationary.

Around The World In $\mathbf{9 0}$ Minutes

From TIROS-9 onwards satellites have also been launched into polar orbits, with a period of $1 \frac{1}{2}$ to 2 hours. The satellite orbits in the same plane, with the Earth rotating beneath it. The ground track of each orbit is some 28 degrees to the west of the previous one. Each spot on the Earth's surface is overflown twice a day, once at night and once during daylight hours. Two imaging systems are used. Visible light pictures are taken during daylight and infra-red at night.

Clearly IR

Infra-red sensors on the spacecraft can monitor temperatures from sea level up to the highest cloud. High cloud is the coldest and tropical sea the warmest. Light grey or white patches on the familiar black and white weather pictures of the UK, now a regular feature of television weather forecasts, are the colder cloud areas. Darker areas are the warmer land and sea masses. Coastlines will show clearly if there is sufficient difference in temperature between land and sea. In general, infra-red pictures show more detail than those taken by visible light, as they successfully avoid the problems of reflected glare from cloud tops and ground shadows from thick cloud.

Communications - The Early Days

It all started with Telstar in 1962. During each orbit of about five hours, Telstar and the succeeding Relay could only provide simultaneous visibility from both sides of the Atlantic for about 45 minutes. The Syncom series of satellites in 1963 explored the possibility of building a system from a small number of satellites in geostationary orbits. Syncom also showed that minor perturbations in a satellite's orbit, due to the non-uniformity of the gravitational sea in which it floats, could be rectified by the use of small correcting gas jets.

OTS-2, the forerunner of the European Communications Satel= lite, is intended to provide pre-operational capacity until ECS begins operations in 1981/2.

The European Communications Satellite (ECS) will carry a large proportion of European telephone, telex and television traffic.

Delay Fears

One fear, which never materialised, was that the increase in transmission time when bouncing telephone conversations off high altitude satellites would be unacceptable. The one way delay is a little over a quarter/ of a second. In 1964, Early Bird (later to become known as Intelsat 1) showed that the delay, inherent in the system, was not a serious problem.

Intelsat is an important name in the short history of communication satellites. In 1969, three Intelsat-3 satellites established the first global communications network. Even before the launch of Telstar, the Earth to satellite (uplink) and satellite to Earth (you guessed it downlink) frequencies had been carefully selected. Below about $1 \mathrm{GHz}\left(10^{12} \mathrm{~Hz}\right)$ galactic background noise is a significant factor. Below about 0.5 GHz it exceeds atmospheric noise. Above 10 GHz atmospheric noise rises steeply, moreso in heavy rain. The frequencies chosen then and adopted for the Intelsat programme were, therefore, between 1 and $10 \mathrm{GHz}-6$ GHz for the uplink, 4 GHz for the downlink.

Britain is playing a particularly active role in satellite communications. British contractors contributed to the Intelsat 3, 4 and 4A programmes and British Aerospace is currently involved in the Intelsat 5 system, due to become operational in 1980.

European Communications

In May 1978, the European Space Agency's Orbital Test Satellite (OTS) was launched. It will test transmission techniques and prove the performance and reliability of on-board equipment in space. This is the forerunner of its operational successor, the European Communications Satellite (ECS) - a regional satellite communications system. It will be capable of carrying a significant proportion of future European telephone, telex and television traffic. OTS-2 will also provide adequate pre-operational traffic capacity. Two ECS spacecraft should become operational in 1981/82. Two maritime versions of ECS, to be known, not surprisingly, as MARECS, are also scheduled for launching in 1981/ 82. MARECS is planned to provide direct telephone and telex links between ships and shore stations in the UK and elsewhere.

Radio Piggy Back

In October 1978, the 1045th Cosmos satellite was placed in Earth orbit. It carried two smaller satellites called Radio 1 and 2, designed and built by radio hams.

[^0]: I would like to express my thanks to the following for their assistance in preparing this article.
 British Aerospace
 The Boeing Aerospace Company, Seattle

[^1]: Construction - Preamplifier

 Assemble the PCB as per the overlay, checking carefully the polarity of all semiconductor and polarised components. Only attempt controls once you are satisfied that all
 is well. Check VERY thoroughly as mistakes now will cause quite a few headaches.

