Digitallacho

ponn

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is portamento, pitch bending, a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a norse generator and an ADSR envelope shaper. There is also a slow oscillator. a new pitch detector. ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.
The kit includes fully firished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal film) and it really is complete - right down to the last nut and bolt and last piece of wirel There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music' Virtually all the components are on the one protessional quality fibre glass PCB printed with component locations All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering' When finished you will possess a synthesizer
comparable in performance and quality with ready built units selling for between $£ 500$ and $£ 700$ '

COMPLETE KIT ONLY $£ 172.00$ + VAT!

Comprehensive handbook supplied with all complete kits ${ }^{1}$ This fully describes construction and tells you how to set up your synthesizer with noing more elaborate than multi-meter and a pair of ears

LAST MONTH'S FRONT COVER FEATURE!

COMPLETE KIT
ONLY
$£ 49.50$ + VAT!

$200+200$ watt AMPlIfIER

As featured in Electronics Today International

 400W rms continuous -800 W peak!0.03% THD at FULL power!
PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers!
* Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and short circuit protectionl
* Uira low feedback (an incredible low 14 dB overall!), super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$). 200 W rms Continuous to 4 ohm from EACH channel, input sensitivity 0775 V (0 dB)
* Professional quality components, sturdy 19 rack mounting chassis complete with sleeve and feet for free standing work too
* Easy to build - plenty of working space with ready access to all components, minimal wiring extensive instruction suitable for both experience constructors and newcomers to electronics.
* Value for money -- quality and performance comparable with ready-built amplifiers costing over
£6001 E600

OUR CATALOGUE IS FREE! WRITE OR PHONE NDY!

POWERTRAN ELECTRONICS

FEATURES

NEWS DIGEST	$\mathbf{7}$	What goes on with whom and where!
LOUDSPEAKER PRINCIPLES	$\mathbf{1 4}$	Cone-fident appraisal of all types!
POWER SUPPLIES	$\mathbf{2 7}$	Tim Orr explains how - and why.
ELECTRONICS IN MEDICINE	$\mathbf{4 0}$	A history of the electron put to use.
DATA SHEET EXPLAINED	$\mathbf{5 7}$	This was your idea.
MICROFILE	$\mathbf{6 7}$	Big news for micro-men.
BORIS IN CHECK	$\mathbf{8 1}$	A new chess machine tested.
AUDIOPHILE	$\mathbf{8 7}$	A Shure winner?
TECHNICAL MEMORANDUM	$\mathbf{9 1}$	A revolutionary new concept!
TECH TIPS	$\mathbf{9 3}$	Readers own ideas.

PROJECTS

Check it out p. 81

De-click de hi-fi p. 73

ACHO
DIGITAL TACHO 23
DIGITAL MODULE
DIGITAL DIAL
LOG CONVERTOR
CLICK SUPPRESSOR

35
49
62
73

Going around in the car accurately Useful four digit design Medium wave high quality Turn your keyboard to use Record project!

INFORMATION

ETI BOOK SERVICE	$\mathbf{4 7}$	Fine print this.
SPECIALS FROM ETI	$\mathbf{5 5}$	All our publication on show.
PANEL TRANSFERS	$\mathbf{5 9}$	Finishing touch.
HOBBY ELECTRONICS	$\mathbf{6 1}$	Look out for it!
BINDERS	$\mathbf{6 9}$	Keep 'em looking good.
ETI PRINTS	$\mathbf{7 1}$	What other way is there?
FEBRUARY PREVIEW	$\mathbf{7 9}$	News of next month's ETI.
MARKETPLACE	$\mathbf{8 4}$	A new LADIES' watch!
SUBSCRIPTIONS	$\mathbf{9 2}$	Make it easy on yourself.
T-SHIRTS	$\mathbf{9 8}$	Good cover!

EDITORIAL AND ADVERTISEMENT OFFICE
25-27 Oxford Street, London W1R 1RF. Telephone 01-434 1781/2. Telex 8811896

Les Bell Acting Editor

Holland Anton Kriegsman Editor-in-Chief

CANADA Sieve Braidwood Editor
Graham Wideman Assistant Editor

GERMANY Udo Wittig Editor
$A B C$

Editor
Assistant Editor
Project Editor
Production Editor
Technical lllustrator
Project Development
Administration
Reader Services
Advertising Manager
Provincial Advertising Manager
Advertising Assistant

FUBLISHED BY Modmags Ltd, 25-27 Oxford Street, London W1R 1 RF DISTRIBUTEDBY Argus Disiribution Ltd (British Isles)

Gordon \& Gotch Lid. (Overseas)
QB Limited, Colchester
Electronics Today International is noimally putbished on the first Friday of the month prior the cover date

[^0]
High quality audio modules for Stereo and Mono

cabinet size $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$.

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER £99.30 + VAT

This easy to build version of our world wide acclarmed 75 W amplifier kıt based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in HI-FI News and Record Review and features include rumble filter, variable scratch filter. versatile tone controls and tape monitoring whilst distortion is less than 001%

WIRELESS WORLD FM TUNER £70.20 + VAT

A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments Features include an excellent a.m. rejection, push-burton station selection as well as infinitely variable tuning and a phase tocked loop stereo decoder incorporating active filters for "birdy" suppression.

Csbinet size $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$
$\mathbf{T} 20$ + 20 AMPLIFIER $£ 33.10$ + VAT
This kit, based upon a design published in Practical Wireless. uses a single printed carcuit board and offers at very low cost. ease of constructıon and all the normal facilities found on quality amplifiers A 30 watt version of thıs $k i t(T 30+30)$ is also available for $£ 38.40+$ VAT .

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT

This design, published in Wireless World, although straightforward and relatively low cost provides a very high standard of performance There are separate record and replay amplifiers and switchable equalisation together with a choice of blas levels are also provided. The mechanism is the Goldring-Lenco CRV with electronic speed control

cebinet size $15.5^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$.

WWVII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless World FM Tuner kit was designed to complement the T20 +20 and T $30+30$ amplifiers and the cabinet size. front panel format and electrical characteristics make this tuner compatible with either Facilities included are pre-aligned front-end module. switchable afc. adjustable switchable muting. LED tuning indication and both continuous and push-button channel selection (adjustable by controls on the front panel)
cabinet size $15.5^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$.

POWERTRAN SFMT TUNER $£ 35.90$ + VAT

This is a simple low cost design which can be constructed easily without special alignment equipment but which stiligives a first-class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo decoding and controls include switchable afc, switchable muting and push-button channel selection (adjustable by controls on the front panel). This unit matches well with the $\mathrm{T} 20+20$
and $\mathrm{T} 30+30$ amplifiers

cabinet size $15.5^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$

COMPLETE KITS: Our complete kits really are complete. All of the projects shown on this page-are supplied with fully finished metalwork ready assembled high quality teak veneer cabinet. cables, nuts. bolts. etc. and full instructions - in fact everything!
All of the kits shown on this page are avallable as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork Prices are given in our FREE CATALOGUE

PRICE STABILITY: Order with confidence' irrespective of any price changes We will honour all prices in this advertisement until February 28th. 1979 If ET January, 1979 issue is mentioned with your order Errors and VAT rate changes EXPORT ORDERS: No VAT Postage charged at actual cost plus 50 p handing and documentation
U.K. ORDERS: Subject to $1 \frac{1}{2} / 2 \%$ surcharge for VAT` (ie. add $1 / 3$ to the price) No charge is made for carrier, 'or at current fate if changed.
SECURICOR DELIVERY. For this optionäl service (U.K. mainiand only) add E2.50 NAT inclusive) per kit
SALES COUNTER: If you prefer to collect your kit from the factory. Call at
Sales Counter (at rear of factory) Open $9 \mathrm{am}-430 \mathrm{pm}$. Monday-Thursday
our catalogue is FREE! write or phone NDW! POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3NM

news digest

FLEET OF FOOT?

For all us kiddies (anyone who isn't - please leave now) this is a good idea. Those nasty sneaky MPUs have invaded our nice little game of Battleships. Based on a TMS 1000 the unit contains enough

RAM to hold the board as seen by both players, and make appropriate noises at time of defeat or victory or whatever. Nice explosion sound effects etc too. And what's more it's British designed - which

is a distinct recommendation and selling well in America - which isn't. Price $£ 29$ or thereabouts. AID, 10 RATHBONE PLACE, LONDON WIP 2DN.

NOT A TRACE OF GREED

Two new oscilloscopes for the home constructor, from the Scopex stable. Called the Calscope 6 and Calscope 10 they are probably indicative of the fact the home market is of growing importance to manufacturers. Specs. below.

Calscope 6: - single trace: sensitivity range 50 mV to 50 V per cm/in 12 ranges: Bandwidth 6 MHz : time base range 1 and to 100 ms per cm . Time base .triggering is claimed to be particularly good. Price e162.
Calscope 10:- dual trace: 10 mV sensitivity: bandwidth 10 MHz (displayable across full screen size): time base range 200 ns to 100 ms : accuracy 3% all ranges. Price £219.

Both available from Maplin and Marshall both of whom you should know already.

PEDIGREE CATS

Electronic Brokers superb range of second hand hardware that should interest most small firms and not a few individuals. Much new equipment is also included, and although the cost is high at $\mathrm{£l}$ to private individuals companies can get it free!

Not fair this world is it? ELECTRONIC BROKERS, 4a PAN. CRAS ROAD, LONDON NW1 2GB.
Ace Electronics - good range of components. Poorly produced catalogue but it is free, and adequate, and contains some nice little kits amongst other things worth sending for ACE MAILTRONIX TOOTAL STREET, WAKEFIELD.
YORKS.

PUT THESE TO GOOD USE

Some new PUTs (at last), and in different packages too. The MEU2l and 2N6028 are intended for use in long internal timers and such and have low leakage (100 nA max).
The MEU22 (and 2 N6027) are general purpose types. All have specs of: 150 nA peak point current (2N6028), low forward voltage (lV5 for 50 mA $1_{\text {FWD }}$) and high pulse output voltage (6 V minimum) MICRO ELECTRONICS LTD, YORK HOUSE EMPIRE WAY. WEMBLEY, MIDDX.

ambit
 internatianal

Production of the new catalogue has been held up for a few weeks. since we have just been appointed as distributors for two of the most exciting ranges of radio components products yet : The Micrometals range of iron dust torroids cores and formers, and the OKI range of VLSI for digital frequency dispiays for receivers. We apologize for any inconvenience, but these two ranges are really worth the wait and include some products you will find hard to believe, like the MSM5523 IC, an from LW to $39.999 \mathrm{MHz}, \mathrm{FM}$ frequency readout in 100 kHz steps. (all usual IF offsets programmable by diodes), a 24 hour format clock with 12 hour display. offsets programmable by diodes), a 24 hour format clock with 12 hour display.
independent on and off timers, time signals on the hours, stopwatch facility and independent on and off timers, time signals on the hours, stopwatch facility and
a sleep timer. This costs E 14 with its timebase crystal, and makes ati that has gone a sleep timer. This costs £ 14 with its timebase crystal, and makes all that has go
before an expensive and time wasting excercise. Rather dike the way the Intersil before an expensive and time wasting excercise. Rather like the way the Intersi)
ICM7216 has revolutionized the instrument counter market. (See the OSTS ad.) And those of you familiar with Amidon and IG dust torroids, favoured. in many new RF designs, will be pleased to know Ambit will be stocking a broad range of the Micrometals types for applications from EMI filters to RF PA stages. DK1 frequency counter ICs: details in cat2 MSM5523 for CA LEDs with RHOP such A brief summary of some of our range of ICs. MSM5525 for $31 / 2$ digit LCD AM/FM with direct segment drive. no clock
or timers Other types for fluorescent displays etc OA Other new semiconductor additions: KB4438 muting stereo preamp HA1370 supercedes TDA2020 supercedes TOA2
HiFi AM/FM TDA1062/1.95; TOA1083/1.95; HA1 197/£1.40

CA3123E/£1.40; TBA651/£1.81: CA3089/1.94 HA1 137/£2.20: MC1310/£2.20; HA1 196/£3.95 KB4424/£2.75; K84423/£2.53;SD6000/£3.75 MC1495L/E6.86 ${ }^{\circ}$; MC1496P/E1.25 LM381 N/£1.81: L'M1303/£0.99: ULN22838/ E1.00; LM3B8N/E1; TB A810AS/C1.09 TCA940E/f1.80; TDAZ002/E1.95: CL8038CCC/E4.50*; NE566/E2.50*; NE567 KE562B/E3.50*: NES65A/E2.50 SEE THE OSTS' ADVERT FOR CMOS/TTL REGULATORS, OPTO DISPLAYS, and other PRICES DOWN ON VMOS: as expected 1.4 new technology in power transistors is getting cheaper. 120 v comp pairs $/ 100 \mathrm{~W}$ for $£ 10.00$ Price reduction on CA3189E ...now $£ 2.20$ Now varicaps: to add to the biggest range.... KV12:1 2:9v bias to tune MW, like the New pilot tone filters from TOKO.... 208BLR series, individual per channel with a $26 / 38 \mathrm{k} \mathrm{Hz}$ version for pilot cancel decoder | applications. Flat to 15 kHz |
| :--- |
| New erystal filter for amateur NBEM |
| $\mathbf{C O}$ |
| 0.90 | TOYO $10 \mathrm{M4B}$ I with over 90 dB adjacent ch TOYO $10 \mathrm{M4B1}$ with over 90 dB adjacent ch

rejection for $2 \mathrm{~m} \mathrm{NBFM}, 10.7 \mathrm{MHz}$
$£ 14$ rejection for 2 m NBFM. 10.7 MHz CFM $455 \mathrm{H} 6 \mathrm{kHz} / 6 \mathrm{~dB}, 15 \mathrm{kHz}$ max $/ 60 \mathrm{~dB}$ CFM455H 6KHz/6dB,
ideal for MC3357 etc.
£10

Some transistors for RF specifically: 40673/8.55"; BF900/961/0.80"; BF960/1.60 8F224/0.22. BF274/0.18; BF 195/0.18; BF 240/0.22, BF241/0.22; BF362/0.70;
BF479/0.86: BF679S/0.70: BFY90/0.90.
PIN and other Varicap diodes BA 102/0.30; BA121/0.30; ITT $210 / 0.30$
BB $1048 / 0.40 ;$ MVAM2/E1.4B: MVAM115 BB 104B/0.40; MVAM2/£1.4B; MVAM115 BA479/0.35: TDA1061/0.95; BA182/0.21 METER MADE low cost panel meters : 3×930 series with blanks and dry transfer Catalogue part 1:45p, part 250 p al inclusive. Postage 25p per order, carriage on tuner kits
E3. Phone Brentwood (0277) $216029 / 2270509 \mathrm{ma} 7 \mathrm{7m}$. Callers welcome inc. Saturdays.

0515ectronic components appreciate our guarantee to supply goods only from BS9000 approved sources. More than

2 Greshum Roud, Brentwaod, E55.EK.

In much the same way as we have swephaway the oid technology in frequency/timer counters - with the OKI and Intersil single IC counters, we now offer a single iC "All Band" radio funer. Don't confuse this one chip radio with things like the ZN4 14 - for this is a genuine superhet receiver with a mechanical AM IF filter, and ceramic IF filters for FM. The AM section employs a balanced input mixer section, covering all broadcast bands - plus a BFO and MOSFET product decetor for SSB/CW - though at this price, the tuner is not intended as a "communications receiver". although we know of many lesser designs tha make that claim. The AM sensitivity is nevertheless better than 5 uV , and FM sensitivity is 1.2 uV for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. As a multiband broadcast superhet receiver, it is a unique constructor project that fulfills the requests we very frequently get for a general coverage circuit that isn't over complicated. The set has CA3089
stereo decoder with full pilot tone filtering.保 The tuner board. with on board PCB mounted switching, all components etc : $£ 33.00$ The case/cabinet with PSU, meter and mechanics etc

2 Gresham Roud, Brentwaud,Es5gs.

肘 Iast. DIV Hi Fi whith looks us if it isn't.

That's not to say it doesn't look like HiFi - just that it doesn't look like the usual sort of thing you have come to associate with DiY HiFi. The Mk3 outstrips and outperforms all imported ones too. Certainly at the price, there is send an SAE for details on the looks superb. A small pic

and now previewing the matching 60W/channel VMOS amplifier:
7. Matching both the style and design concepts of the MkIII HiFi FM tuner * Power output readily multiplied by the addition of further MOSFETs VU meters on the preamp - not simply dancing according to vol level
Backed with the usual Ambit expertise and technical capacity in audio

The PUU Darthester•LU,IIUW,SU, \& FIII sterea tuner

news

digest......

PROM-IN-AID TIME

Micro-men take note. The Prombix 12 can wipe out twelve PROMs at once with variable erase time with safety interlock Priced at $£ 59.00$ all inc. Should be of interest to
small firms and rich enthusiasts. GP INDUSTRIAL ELEC TRONICS, SKARDON WORKS, SKARDON PLACE, NORTH HILL PLYMOUTH PL4 8EZ.

GETTING INTO PRINT

A low cost printer is announced by Kimberley Business Records giving A low cost printer is announced by Kimberley Business Records giving good quality output. This will allow the expansion of many home systems into the extensive field of word processing, and God help you then! A standard lever operated 'typewriter mechanism has been used, driven by 240 V solenoids
Designed for parallel data input with handshake control. ASCIl coding is
accepted for the 88 characters available operating at a speed of 8 CAPS from a standard peripheral interface. It is sup plied fully built and cased at $£ 200$ (including carriage and VAT). Alternatively as a print mechanism only, requiring all power other than 240 V , case, and TTL logic to be added, the cost s £160.

KIMBERLEY BUSINESS RECORDS, 2, HARTING TON ROAD, GOSPORT HANTS. POI2 3AG

WATFORD ELECTRONICS

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!

(as published in E.T.I. August 1978) Away with analogue meters for with some of these you may often as not use a crystal ball to make cuit measurements instead gaze into our crystal - not a ball but the $31 / 20.5$ LIQUID CRYSTAL incorporating

5 AC \& $D C$ Voltage ranges: 6 resistance ranges AC \& DC Current ranges: 4 Capacitance ranges The prototype accuracy is better than 1%
This is a unique design using the latest MOS ICs and due to the minimal current drain, is powered by only one PP3 battery. There is also a battery check tacility

HM 500 is an attractive hand-held, light weight device, buit into a high impact case win carying handle and has been ingeniously designed to simplity assembly.
Never betore have all these features been offered to the electronics enthusiast in a single unit Complete Kit Only $£ 54.50$ (p oip insured add 80p)
Optional Extras Probes $£ 1.50$ *; Carrying Case $£ 1.50$
Calibration service charge for working Units only $£ 5,75$
Ready-built and tested units only $£ 78.50$ incl. Case \& probes $p \&$ ip $80 p$ Demonstration on at our Shop

POCKET ADVAN TAGE

A wallet type machine with hold-on memory. The new TI 50 has two memories, some scientific features, some statistical features and will turn itself off after 15 minutes if you aren't using it. Up to 15 levels of parenthesis are allowed. There is even a 'battery low' indicator

Available now, it will cost under $£ 30$ and be in most shops that sell this sort of thing.

SCREEN TEST

The UK is now Hong Kongs largest market for TV games. We absorbed 26% of their export in the field, some 523,506 items if you please, in the first eight months of this year. Germany finished second
on 22% and the USA came third with 13%.

Somewhat of a surprise, and a shame, that we take more than the States of these items. I always thought we had more taste.

SHORTS

Every Ready - now called Berec - have released four rechargable consumer batteries in the HP2, HP11, HP7 and PP3 varieties. Chargers are also available. An undoubted reaction to the phenominal loss of dry cell power these days. - Direct drive turntables yes. But direct drive MPUs? Also yes - now The S2000 is a new release from AMI which can drive flouorescent displays directly, with HT drive and 7 -segment decoding on chip. Also on board 64×4 RAM and 1 K ROM. Intended for low lost applications

- Ingersoll - the tick tock people - are into electronics. They have released three TV games, hree clock radios, two Door Chimes, and a port able micro cassette player Photo shows one of their new TV games. It must be Christmas.
- Fairchild are making a big fuss about having their F16K Dynamic 16K RAMs available at last. Access times vary from 150 ns to 300 ns .

news digest
 WHEN THE COMPUTING and Control department of Imperial College decided that they needed a logic hard-

 ware teaching lab, they were faced with several alternatives. One was to teach all the students in each year to solder and then let them loose on a hańdfull of TTL and CMOS chips each. This would have meant a plethora of supply problems, technicians and even minor burns.What they opted for instead was to use - you guessed it - a computer.

The setup works roughly like this: A computer terminal is situated in the centre of the 'lab' and is surrounded by 16 benches, each provided with an oscilloscope, a signal generator and other relevant test equipment and peripherals. Each bench also has a perspex case with several dozen sockets and LEDs in it. The student goes to the central console, tells the machine which bench he wishes to use and which logic elements he requires. He then goes to the bench and sticks labels on the perspex case. Each label is printed with the relevant logic symbol. By connecting patchcords between the sockets on the 'breadboard,' the student can build up a logic network. The LEDs indicate the state of the various outputs. Each of the boards also has various 'utilities' - several clocks, a random logic output and handswitches to provide inputs.

All of these functions are provided by the computer the sockets all lead into it's bus and it is the computer which drives the LEDs. This means that not only is there no possibility of the students damaging ICs which would then have to be'replaced, but also that any component can be 'synthesised' - the department has even designed an imaginary CPU for use with the system.

The computer also calculates propagation delays - the students learn the pitfalls of race hazards in digital systems. It is even possible to simulate faulty components - as a fault-finding exercise. Another system (experimental as yet) can pretend to be linear components as well. Clearly the teaching possibilities offered by such a system are tremendous - what price blobboards now?

- Phil Cohen

Martin Cripps telling the machine what it's supposed to be!

What the students see. The wires disappear into the table - some conjuring trick!

Our thanks to Roy Francis and Martin Cripps of Imperial College for their time and trouble

LOUDSPEAKER

PRINCIPLES

ON PAPER most loudspeakers look to be terrible pieces of design. Distortion averaging $1 \%-2 \%$ - and what's worse varying with frequency. Efficiency only rarely exceeding 1% - so that the vast majority of those carefully nurtured, 0.002% THD amplifier watts pumped in down those non-inductive $£ 10$ a metre cables turn into nice, safe, un-musical heat!

The purpose of any loudspeaker is to convert an incoming complex electrical signal into compressions and rarefactions in the air-sound waves - which can be perceived as being as close to the original signal as possible. The different methods now being used to realise this end form the basis of this article.

What Is Left Undone

You will find references throughout this article to frequency divider - crossover - networks. Unfortunately there is too much to be said on that subject to allow a full and proper treatment of it within this article, and we shall return to it in a companion article later

Forgive us our evasion
Loudspeakers of whatever variety interact crucially with the surroundings they are used in - the living room, studio or whatever. When judging performance it is vital to remember this, and even moving a speaker around in a room can significantly alter performance. Some manufacturers are becoming sensitive to this themselves - notably AR - and are producing designs specially tailored to a particular location, or allowing adjustment of output to suit varied positioning (AR 10 π, AR9).

Such adjustments are generally carried out within the crossover network, and alter the electrical inputs to the units to compensate for specific emphasis placed on certain frequencies - usually the bass - by the loudspeakers position.

And What Is Not

We have concentrated on the major fundamentally different systems in commercial use today, and tried to explain how they operate what their advantages are, and what are their drawbacks. Many minor variations have been left out simply through lack of space.

Forgive us our omissions.
The types covered are:

1. Moving coil - and methods of loading
2. Electrostatic
3. Isodynamic
4. Ribbon
5. Piezo-electric
6. Motional Feedback Control

Every hi-fi must have not one but two. Loudspeakers are perhaps the weakest link in the precarious hi-fi chain. Many methods of improving the sound we hear have been tried. Few have succeeded well enough to reach production. Ron Harris explains the innermost secrets of those that made it!

MOVING COIL

This system dominates the field at present, and is certain to do so for the forseeable future. The principle is an exact reverse of the microphone principle, and takes its being from the fact that a wire carrying a current I in a magnetic field of flux density B will experience a force, F where

$$
F=B \cdot I \cdot k \quad k=a \text { const } .
$$

A coil of wire carrying the audio is sited within an intense magnetic field, and is attached to a 'cone' as shown in the diagram. The cone is held in position by the edge suspension and 'spider'.

When a signal passes through the coil the force produced tries to push it out of the field in one direction or another, and this movement is transferred to the air by the movement of the cone. The suspension system provides a 'return-to-rest' force. This movement is related more or less linearly to the input as long as the coil remains within a constant field.

If it moves out, then the relationship will change, introducing non-linearity or distortion. For this reason large and powerful magnets are employed, which have as great a depth of field as possible.

Another solution is to use very long coils so that the number of turns of wire within the gap between the pole pieces remains relatively constant.

Basic schematic of moving coil loudspeaker. In practice the coil winding would be longer relative to the magnets, so that it did not move out of the field.

Heated Exchange

Heat is generated in the coil and must be conducted away, usually by the magnet assemblies and chassis. AR speakers now incorporate a heat conducting fluid which is present in the gap and the coil is immersed in this. Heat conduction is thus improved and power handling raised. The fluid also acts as a damper to aid movement control

The speaker chassis must be as rigid as possible, since the only reason the coil and cone move and it doesn't is that it weighs more! Any resonances present in the structure will act to transfer energy from the coil movement and hence distort the output.

Close-up of a voice coil. This is a machine wound unit belonging to a Bose driver. Note the winding is butted very close to the edge of the paper former, and the precise nature of the winding necessary for linearity.

Cone-ventional?

The greatest drawback of th is system is the cone itself. This is usually either doped paper or Bexetrene - an erstwhile packing material someone fell over once! It should act as a piston to the air, with the entire surface moving together to produce the required air movement.

However, since it is driven only at the centre, unless the material is possessed of infinite rigidity(!) flexing or

Cutaway photo of a moving coil unit - in this case a Bose driver. If you look carefully you should be able to identify the voice coil, magnet assembly, spider and cone assembly.
rippling will take place - once again deviating from the input signal. The larger the cone the worse the effect as the frequency rises, since the centre driven portion may well be oscillating with a period smaller than the time taken for the energy to be transmitted through the cone material to the outside edge.

Hence the centre of the cone leads the outside by a number of cycles, all of which appear as ripples in the cone. This is the reason for dividing up the incoming electrical signal, and for employing smaller coned drive units for higher, less energetic, frequencies.

To handle the high end of the audio spectrum, dome units have almost entirely replaced the coned variety, as they spread the sound more evenly, giving a better dispersion across the listening area. Also domes can be produced smaller, and a hemispherical dome, edge driven, will tend to act more as an integral surface than a centre driven cone.

Getting A Hangover

Since the cone has mass, and therefore inertia (Dr Who excepted) it cannot respond instantaneously to changes in direction called for by changes in polarity of the electrical signal. This inability to get back in time is called 'overhang' and is another problem facing designers. To minimise it driver mass has to be as small as possible, while rigidity has to be as high as possible.

This has led over the years to many experiments with metal cones, mylar cones, polyester et etc etc. Anywhere other than bass units most of these have proved successful.

An integral part of a moving coil loudspeaker design is the method of housing the units, and thus putting an acoustic-loading upon the actual units. A brief discussion of the various methods is thus required at this point.

Housing Shortages

There are basically six methods of providing a home for drive units and at the same time augmenting its performance. These are:
(i) Finite Baffle
(ii) Acoustic Suspension (sometimes called Infinite Baffle)
(ii) Bass Reflex
(iv) Auxiliary Bass Radiator
(v) Transmission Line
(vi) Horn Loading

All of these apply primarily to moving coil units with the exception of horn loading which can be used to entiance efficiency of several types. In order then:-

Finite Baffle

Since the vibrating cone is emitting sound waves in both directions, unless prevented the two waves will interact causing cancellation and reduction in acoustic output. The effect is reduced by placing the speaker in the centre of a large solid board to make it difficult for a compression produced in front to cancel the rarefaction produced behind the speaker.

Obviously an infinitely large piece of wood prevents this entirely, but such things don't grow on (ANY) trees(!?) and so the finite baffle is an attempt to do the best that can be done.

Once the sound wavelength approaches the baffle size destructive interference takes place and response rolls off.

This method is responsible for those hardened enthusiasts mounting their bass units flush into walls and sides of houses!

Sinclair marketed a finite baffle speaker some years ago but this seems to have ceased to be.

Acoustic Suspension

Here the rear radiation from the units is (hopefully) entirely suppressed by totally enclosing the unit in a box, and radiating through a hole in that box (sounds odd when phrased like that eh?).

The AR9. Coming from one of the 'founder' manufacturers it represents Acoustic Researches state of the art. The cabinet is treated around the baffle with absorbtion material to prevent diffraction and re-radiation offects that, lesser enclosures suffer from. It also stands an endearing 53in high!

Schematic of a Jordan Watts driver module. Numbers refer to: 1. Metal cone contoured to hyperbolic law. 2. Phase correcting dome. 3. Resistive termination to dome centre. 4. Resistive termination to cone edge. 5. Acoustic damping. 6. Direct input signal cable. 7. Coil completely immersed in magnetic field. 8. High efficiency "Feroba" magnet. 9. Resistive termination at junction of cone, coil and suspension. 10. Connections to coil via suspension. 11. Silvered berylium copper suspension cantilevers.

Damping of the cone movement occurs due to the compliance of the trapped air, and the suspension system now consists of both the actual cone suspension plus the air load.

In order to preserve bass response the enclosure should be fairly large and hence present a good air load allowing high levels of energy to be applied. Bass units designed for this type of loading have a high cone mass and high compliance. In addition they are generally of the long voice coil variety. The air load then applies most of the restoring force required by the design. Efficiency is reduced since the cone mass is increased and compliance (total) is low.

Bass Reflex

The aim of this method is to raise efficiency at low frequencies and thus decrease the required enclosure size for a given bass output. This is accomplished by addition of a vent, or port, in the front panel of the enclosure. This allows a controlled movement of air between cabinet and room. The effect of careful design of vent dimensions and placement is to produce an effective addition to bass response below a certain frequency, such that the air moving out of the vent aids the air movement produced by the bass driver.

Above the operating frequency the vent has no effect on performance (they hope).

Auxiliary Bass Radiator

Basically a variation on the above principle, but with the vent 'plugged' with a driverless unit or suspended mass. This is tuned to provide antiphase radiation in the required frequency band. Above this band the unit acts like part of the enclosure wall. Perfected and practised by Celestion, and perhaps epitomised by the Ditton 66 design.

The DQ10. This design makes use of what the makers term a 'phased array'. This means that the driver units are staggered so that their effective radiator 'points' are equi-distant from the listener which eliminates the time delay distortion (phase linear?) flat baffle designs are prone to. In addition each driver is mounted on its own optimum sized baffle to minimise diffraction problems.

Transmission Lines

This is another method of 'losing' the rear radiation of a drive unit, or making it think it is working into an infinitely long column. This is achieved by having a maze of woodwork inside the enclosure which is filled with graduated damping material. In this way total column length can be far greater than enclosure dimensions.

If the far end of the column is open then help is afforded to the bass performance in much the same way as bass reflex cabinets.

The design is usually for almost total absorption of the rear wave - and this leads to a gradual and smooth fall off in bass response due to the almost constant velocity working conditions for the cone.

Conversely to both acoustic suspension and basis reflex loading methods, transmission line methods lower the bass resonance of the drive units and hence enhance LF performance

IMF have championed this technique for long time passing now, and as exampled in their products transmission line bass possesses a 'solid' quantity totally different to that from the other methods. It is more extended and more realistic. Used in a large enough room there is no better way to replay the lower registers.

Oh for a successful combination of transmission line bass and electrostatic HF!

The basic principle behind the transmission line speaker enclosure. The air from the rear of the cone gets 'lost' down the line.

KEFs 105 linear phase design. The upper two enclosures are rotatable to aid stereo imagery. Note the rounded edges to prevent re-radiation and the staggered drivers with respect to the listener.

Horn Loading

A method of designing to considerably reduce required driver excursion for a given acoustic output. The driving element is coupled to its air load by a gradually "flaring' throat - usually exponental in cross section

The horn converts the high pressure, low velocity sound energy present in the region of the driver into low pressure high velocity waves for propogation. The advantages of this type of loading are good damping of the driver, low distortion but a limited frequency response.

The Decca London ribbon unit, loaded by a caternoidal horn. The flare can be clearly seen in this photo leading down to the ribbon itself somewhere in that block at the back!

To design a single horn to cover the entire audio spectrum is a confused exercise, and one yielding impractical results for domestic use, since an exponential horn to reproduce 30 Hz has a mouth of 1.5 m diameter and is some 4 m long! Folding the horn back and forth within an enclosure can reduce dimensions, and the American firm Klipsch market units which employ the room walls as extensions of the horn to reach lower frequencies. Usually though, the system is used to load MF and MF units within a system.

Advantages of this principle are phenomenal efficiency $\approx 10 \%$ compared with 1% for bass reflex for bass reflex and 0.1% for transmission lines, and an attack unmatched by any other cone driver recipies.

ELECTROSTATIC

As we have seen the moving coil design suffers because the cone area is unevenly driven by the electrical music signal. The electrostatic principle, developed by both David Tombs and Peter Walker (of the Acoustical Manufacturing Company) is an attempt to produce a unit in which the entire surface of the unit is driven by the input signal.

At its most basic the design consists of two plates as shown in the diagram. The moveable plate is made to have as low a mass as possible and is so suspended that it cannot touch the fixed plate at any point in its travel. The fixed plate will usually in fact take the form of a etal 'mesh'. A high polarising voltage $\approx 5 \mathrm{kV}$ is applied between the plates, and the audio signal superimposed on this.

An electrostatic force-such as that which holds dust on to LPs and LPs onto turntables-is thus generated between the plates and the moveable one vibrates in sympathy with variation in the input signal.

A refinement of this is the push-pull system where the moving plate is situated between two fixed meshes as shown in the drawing. The polarising voltage is DC in nature, from a very high impedance source, and is of the order of 5 kV once again.

The outer plates (meshes) are fed from a step-up transformer connected to load the incoming signal. This applies a high voltage electrical AC signal to these plates (the music signal) and causes the center plate to move in sympathy with this. Distortion is greatly reduced using this push-pull arrangement and can equal 0.5% in a good design.

Scheme of operation for electrostatic loudspeakers. On the top we have the basic single ended design, and below that the commercially employed, much-improved push-pull scheme as employed by Quad and Koss amongst others.

This system first appeared on the market many many years ago in the form of the Quad electrostatic system - which remains largely unsurpassed for lack of colouration and mid-range clarity.

The advantage of driving the plate evenly over its whole area show up as a linear frequency response-no rippling or 'break-up'-very low distortion and a good transient performance due to low driver mass.

However this system does have inherent drawbacks. Consider the Quad system as an example. It is noted for its mid-range clarity and its high frequency accuracybut also for its lack of extreme bass and its beaming of top end signals-poor vertical dispersion.

The reason for this is its physical size. Since the push-pull radiator is by nature a dipole radiator-sound emitted both front and back, some cancellation at frequencies whose wavelength exceeds the plate dimension is inevitable.

The Quad is also very room sensitive for this same reason. Rear radiation can be dumped, but not without acoustically loading the plate-an undesirable excursion into non-linearity. At high frequencies there is low energy in the wave to absorb, and so this is easier to affect without adverse consequences on the drive plate.

KLH made a brave attempt to reach the theoretical size of plate for good bass response with their superb KLH9 full range units. These are almost exactly door sized-and you need two per channel! And they cost $£ 2000$ a pair. And they are probably unbeatable by any speaker on the market for sheer accuracy and delicacy. Their size endows them with a hefty bass punch too. Units to sell your soul for. (Anyone listening down there?)

Loading Problems

Another less serious drawback is that transformer into which the electrical signal is fed. This presents an awkward load to the amplifier, and can produce some nasty effects from transistor amps.

Modern designs however-Lecson, Quad and the rest, can cope perfectly and experience no traumas when presented with the wickedly reactive termination characteristic of electrostatic speakers.

Many attempts have been made to marry together electrostatic mid-high drivers with cone bass units. B\&W DM 70 was perhaps the first (and the best!) but not have been entirely successful. Perhaps its simply that the superior distortion and colouration properties of the electrostatics will always show up the bass units!

ISODYNAMIC

With the release of the Stathearn 21000 speakers, and the new Wharfedale series incorporating Isodynamic tweeters, this approach is gaining ground. It certainly has a lot of promise, which we shall undoubtedly see exploited as time goes on.

The principle was pioneered by Wharfedale with their Isodynamic headphones some six years ago or so. It is really an attempt to gain the advantages of the electrostatic system, without the need for high voltages and attendant drawbacks.

A drive unit built to this principle consists of a thin sheet of mylar, or some such material, with a conductive track bonded onto it in a pattern which covers the surface in as symetrical manner as possible. This conductor acts as the voice coil of the speaker, and when an electrical signal is passed through it it responds to nearby magnets by moving the diaphragm in sympathy.

Once again colouration is low, and driver mass small-but also once again to obtain bass means large areas, and conductors capable of handling large currents. Strathearns units are above 500 Hz operators only and are transformer coupled to the input. Wharfedale employ their invention in high frequency units only.

A pity-but one we might see rectified sometime in the future.

Exploded view of the Whardedale Isodynamic tweeker. The driver plane - second from the rear - uses a material 25 microns thick with an etched aluminium circuit.

The 21000 from all angles. At the top we have the full system. Below that the diagram shows the operating principle of the SLC1. The polyester diaphram acts as the speaker cone. Below this caption two internal views of the unit. The radiating areas can be seen in the top diagram, and the lower rear view illustrates the damping material to control rear radiation.

$>$

RIBBON

If we take the voice coil of moving coil speakers, and make this the active element, instead of the cone, we would do away with a lot of the causes of colouration in the process. Mass would be much smaller, break-up or rippling would be greatly reduced, if not eliminated and thus transient handling improved.

The ribbon loudspeaker does exactly this. A very thin metal 'ribbon' is suspended between the magnet pole faces and the signal passed through it. It will vibrate with the signal, and thus produce the sound output

Acoustic output is low, and horn loading is usually employed to alleviate this problem.

Once again obtaining bass is a major problem, and moving coil units will take over from the ribbon as the frequency decreases.

Decca market an excellent example of this principle, which operates above 2.5 kHz .

Decca's ribbon loudspeaker. This features a ribbon element one tenth the thickness of human hair, and is horn loaded to increase efficiency. An 'acoustic lens' can also be fitted to aid sound dispersion.

PIEZO-ELECTRIC

In the July 1976 edition of ETI we reviewed the Motrola KN 6006A, the first piezo-electric unit to be released commercially. Since that time many commercial loudspeaker enclosures have employed piezo-electric tweeters for their total insensitivity to crossover networks, phenominal transient response and clean subjective sound quality.

Piezo-electrics have been around in hi-fi for a long time now in the guise of crystal/ceramic cartridges. The principle of operation is based upon the fact that stress a piezo-electric crystal and a voltage proportional to the applied force is produced across its ends.

Conversely therefore if we apply a varying voltage across the ends of the crystal, mechanical deformation occurs, sympathetic to that voltage. No magnets aare required, and no coil is used.

In the Motorola design two thin slices of ceramic material-lead zirconite-lead titante in case it make wity your life the fuller for knowng are epoxied onto a brass separator, and nickel electrodes deposited on to a facilitate connection. In order that the discs respond correctly to the input, they are polarised in opposite senses, so that on application of a common signal one disc expands and the other contracts-acting in the same direction therefore on the air load.

Pros......

Since the impedence curve for the unit shows a steep rise in value with falling frequency, the unit does not need a crossover to reject low frequencies.

A perfect tweeter.
Since there is no voice coil or cone the driver mass is significantly lower than an equivalent conventional speaker.

Being composed of a ceramic material heat dissipa tion is less of a problem also, and the Motorola can stand 35 V RMS for protracted periods with no signs of distress.

- Due to the nature of its impedence, it is difficult to compare efficiency with normal units, suffice it to say that $4 V$ RMS produces 105 d BA at 18 ins distance, and that this can be considered efficient!

Motorola's KN 6006 piezo-electric high frequency driver. The actual driver is the small section at the rear, and the horn is to increase acoustic efficiency.

....... And Cons.

Some amplifiers may not like the load any more than electrostatic units, but since these things are normally used with a good deal of attenuation and response shaping circuitry between them and the valued output stages this should not be too great a problem.

Subjectively these units have always sounded a little 'hard' to me, and never as smooth as a good dome unit like the Isophon or Celestion 2000 designs. Still personal taste and all that

Once again acoustic efficiency is low, and horn loading is employed.

Philips loudspeaker RH 544 Motional Feedback design. This unit incorporates a separate bass power amplifier, and a lower power amplifier for mid-high frequencies. Bass performance is exceptional for the tiny enclosure size, but other areas of output are undistinguished.

MOTIONAL FEEDBACK

Although this perhaps only a modification of earlier systems, the performance gains at LF are such that it warrants a closer look

Motional feedback is a form of feedback control of the driver cone in moving coil systems. The power amplifier are mounted with in the enclosure, a separate amp for each drive unit, and so signal feed is from a preamplifier. The system is marketed by Philips

The main advantage of this extra complication lies at the bottom end of the range where the output for given enclosure volume is considerably enhanced. The complication lies in the sensor fitted onto the driver

This is mounted on a small PCB and is a ceramic acceleration sensor. This generates a signal proportional to the actual driver output, and this is compared electronically to the incoming audio. Correction is applied to remove any errors present. Cross over is carried out at small signal level, and active filters with all their inherent superiority are applied

There is a slave output which allows the enclosures to be stacked up to increase power handling and effective output

ETI
This is one-eigth of the perfect speaker! Many experts consider that elusive device to consist of a pulsating sphere operating in free field conditions. Bose built this approximation to test pulse waveform response. From here sprung the excellent.Base 901 series III loudspeaker.

Marshallis Come and get a great deal Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat. Tel. orders on credit sards $£ 10 \mathrm{~min}$. Trade and export enquiries welcome

A. Marshall (London) Ltd., Dept. ETI. Head Office mail order; Kingsgate House, Kingsgate Place. NW6 4TA. Tel. 01-624 0805. Retail Sales London: $40-42$ Cricklewood Broadway, NW2 3ET Tel. 01-4520161/2. Telex 21492 . London: 325 Edgware Road. W
G2 200. Tel. 041-332 4133. Bristol: 1 Straits Parade, Fishponds Road, BS $\uparrow 6.2$ LX. Tel. 0272654201.

CAR

TACHOMETER

We've been contemplating a digital car tacho, but have been put off by resolution and response speed problems. However this Phase Locked Loop design overcomes these quite neatly - so here it is!

WE HAD OFTEN considered the design of a digital tacho for automobile use, but had rejected several schemes as we were unable to get both good resolution and response time - the two seemed to provide a very good demonstration of Heisenberg's Uncertainty Principle.

Consequently, we were rather pleased when Mike Pratt of SM Electronics came to us with his phase-locked loop based design which got round the problem. Would we like to do it as a project, he asked? Obviously, we said yes, and here it is.

This tacho features a fast response time, coupled with 10 Hz resolution, through the use of a phase locked loop frequency multiplier. It can be set up, by means of a single link, to work on 4, 6 or 8 cylinder motors.

Design Features

To measure the revolutions per minute of a motor is simply a matter of counting the number of ignition pulses over a given time. With a four-cylinder, four-stroke motor there is such a pulse twice per revolution. Therefore if we count these pulses for 30 seconds we will have revs / min with a one cycle resolution. Obviously this is much too long a sample period for practical use in a motor car and some compromise has to be made.

The usual solution is to use a 100 rev resolution and assample time of 0.3 seconds (on 4 cylinders). We considered this inadequate which is why we have not published a design until now.

In this design an oscillator is used which is phase locked to the ignition pulses except at a higher frequency ($\times 8$ for 4 cylinder) allowing a short sample time $(0.375 \mathrm{sec})$ with a 10 rev resolution. By using a different multiplication factor compensation for different numbers of cylinders can be made. Unfortunately with the multiplication factors used ($\times 8, \times 6$, $x 4$) the sample time for 6 cylinders is not exactly the same as that used for 4 and 8 cylinder motors. Altering the ratios to $\times 12, \times 8$ and $\times 6$ would enable a 0.25 sample time to be used for all ranges, but this is not possible with the divider IC utilised in this design.

Construction

Assemble the PCB with the aid of the overlay ensuring the components are
orientated correctly. The tantalum capacitors normally have a + mark indicating the positive load, or a dot on the side. When soldering the CMOS ICs $(4,6,7)$ earth the tip of the soldering iron.

Note that there is one feedthrough or link between the two sides of the board near C10

Calibration

Initially place a link between the point ' C ' and the terminal corresponding to the number of cylinders. Now with the power supply connected feed a 50 Hz signal of between 12 and 30 V into the points input using the 0 V as common. Now adjust RV1 until the display reads 1500 RPM for 4 cylinders, 1000 for 6 or 750 for an eight cylinder car.

PROJECT: Car Tacho

Fig. 2. Full circuit diagram for the digital car tacho unit.

HOW IT WORKS

The output from the points of the distributor is basically a 0 to 12 V square wave with a 200 volt pulse 423 is used to remove the high voltage pulse (and points bounce) and Q1 buffers it giving a +5 to $0 V$ output on its collector. As the filter network removes the sharp edge of the input a schmitt trigger is needed on the output of Q1 to give fas edges. IC $3 / 1$ is used for this.
The output of IC3/1 is connected to the input of the phase-locked loop IC (4046). This IC has an internal voltage controlled oscillator and its output is divided by 4,6 or 8 by IC6 and this lower frequency is fed back to the phase-locked loop IC. The IC then compares this frequency to that at its input and adjusts the internal oscillator until it is the same. The result is a frequency which is an e^{*} act multiple of the input. The time sase is generated by IC2 (555) which has a negative output pulse, abou 300 us wide every 375 ms (or 333 ms for 6
cylinder). This is inverted by IC3/2 and is used as the strobe pulse for the 4 digit counter IC7. This pulse also triggers the first of the monostables in IC5 which gives a $200 \mu \mathrm{~s}$ delay before triggering the second half of IC5; this gives a $40 \mu \mathrm{~s}$ pulse to reset IC7 back to zero.
IC7 is a 4 digit counter with a latch (store) and seven segment decoder driver It needs four external transistors to drive the digits but the segment drivers are internal. As we need only a three digit counter, i.e. for good resolution, with the right hand permanently zero the least significant digit is connected to the second right digit, etc, with the most significant digit connected to the right hand digit. Provided one does not exceed 9990 RPM The 555 imer on 0 as intended. reeds a regulated +5 V and ICl provides this with Dl preventing damage due to reverse polarity inputs.

Fig. 1. The component overlay for the board. The board is double sided although only the lower surface is shown here. Note the link between the two surfaces of the board near C10.

Fig. 3. PCB foil patterns shown full-size.

Range

Resolution Reading rate

4 or 8 cylinders
6 cylinders
Power supply

SPECIFICATION

Suitable ignition system

100 to 9990 RPM 10 RPM

2.66 per second

3 per second 7 to 15V@400mA standard CDI
ransistor assisted "it will not operate on 'pointless' systems

BUYLINES

The components employed here are all readily available from any of the major mail order companies advertising in this issue. Note that the counter is a CMOS chip, and not a standard bi-polar TTC chip. The standard component will not operate on this mode.

PARTS LIST

ALARM-CHRONO WITH DUAL TIME

ONLY £34.95
 $+60 \mathrm{p} P \& \mathrm{P}$

This incredible watch is probably the mos
THE TIME gives hour, minute, sec, day, am or pm
THE CALENDAR gives hour minute, day or date by your selection.

DUAL TIME Time of any city of the world at your choice.
\vec{A} LARM sounds every day at set time until reset or cancelled

CHRONO-TIMER up to $12 \mathrm{hrs}, 59 \mathrm{~min} .59 .9$ secs and LAP TIMES as well
(Available in Stainless Steel or Gold Look)

KRAMER \& CO.

9 October Place, Holders Hill Road London NW4 1EJ. Telex: 888941 attn. Kramer k7. Tel: 01-203 2473 Mail ớder only. Callers by appointment

ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets 6 in $\times 41 / 2$ in £2.50 with all symbols for direct application to P.C. board. Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90 and 130° (8) $8-10-12$ T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (1.1) Lines 0.02 (12) Bends 0.02 (13) Quad in Line
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc Choice of colours, red, blue, black, or white. Size of sheet 12 in $\times 9$ in. Price $£ 1$.

GRAPHIC TRANSFERS

WITH SPACER

ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet $12 \mathrm{in} . x$ in contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4 \mathrm{in}$ kit. £1 complete. State size.
All orders dispatched promptly. All post paid
Ex U.K. add 50 p for air mail
Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS

P.C.B. TRANSFERS

Dept. HE/2
46 LOWFIELD ROAD
STOCKPORT, CHES.061-480 2179

TAMTRONIK LTD
 [DEPT ETI]

217 TOLL END ROAD, TIPTON

WEST MIDLANDS, TEL: 021-5579144

ONE STOP SHOPPING - P.C.B.
Components, Hardware, Cases, Part Kits, Full Kits. A complete service to the ETI Constructor
All Prices incl. VAT, P\& P 30p per order

POWER SUPPLIES

Abstract

One more from Tim Orr. This time he takes us through a series of different methods for powering up circuits. On the way he explains the theory behind each.

THE JOB OF producing stable regulated power rails has been much simplified by the introduction (about seven years ago), of three terminal fixed voltage regulators. These devices can make the power supply design, problem relatively simple, but even so the designer must be fully aware of a lot of other important details that can cause poor results. Firstly, consider a simple unregulated power supply, fig. 1.

Figure 1. Below: an unregulated power supply. Above: The output (with a load resistor).

The function of a mains isolating transformer is to physically separate the user end of a piece of equipment from the 'potentially'(!) lethal 'mains voltage. The transformer also provides a suitable voltage which can be rectified and smoothed and connected to a voltage regulator. This is the secondary voltage of a transformer and it is measured in VRMS at a particular loading.

That is, if the transformer is rated at 15 V at 10 VA , then the output voltage will be 15 V when the load upon the transformer secondary is 10VA (10 watts).

If the load is removed the output voltage will rise. The percentage change from load to no load is known as the TRANSFORMER REGULATION and is typically of the order of 20%.

To convert the $\mathrm{V}_{\mathrm{RMS}}$ voltage to a DC voltage it must, be multiplied by 1.4142 . Thus a 15 VRMS (loaded) transformer secondary will generate 21V2 DC when full wave rectified and smoothed, which will rise to 25 V 45 DC when the load is removed (assuming 20\% regulation see Fig. 1).

Thus care has to be taken when selecting a transformer such that the smoothing capacitor working. voltage is not exceeded. Also, make certain that the polarity on this capacitor is correct, they can LITERALLY explode if wired up backwards!

[^1]constructed out of lots of 'E' shaped laminations. These ' E ' laminations are butted into 'I' Iaminations, and clamped together. This butting together of the laminations can cause magnetic field problems. The wider the gap between the 'E' and 'I' Iaminations, the larger the magnetic field around the transformer.

The magnetic field generates a significant amount of induced hum in nearby electronics, this can be overcome by using a low leakage torroidel transformer which is constructed from circular laminations. The primary and secondary windings are wound through the centre of the torroid (see if you can imagine how). The torroidal transformer, by virtue of its 'continuous' laminations results in a low stray field and a low profile design, making it ideally suited for audio amplifier applications.

When a load is placed upon the power supply shown above, the output voltage appears as a DC voltage on top of which is a ripple voltage. This can be thought of as two separate periods, a charge period where the capacitor is charged up by the power supply and a discharge period where the load discharges the capacitor.

This charging and discharging generates a ripple voltage which has a period of $10 \mathrm{~ms}(100 \mathrm{~Hz})$. A load current of 100 mA , and a 1000 capacitor will result in a ripple voltage (Vpp) of about V7
As a rule of thumb I usually allow 1 to 1 V 5 maximum ripple if a voltage regulator is being used. This will generally result in an output ripple of less than 1 mV . If this ripple were to be obtained by just using a larger capacitor, then a 700,000U-capacitor * would be required!

Generally the discharge period is much longer than the charge period. This means that the transformer is only supplying power for short periods, in fact during the charge period. During these periods the smoothing capacitor is rapidly charged, and it is quite common for these current surges to exceed several amps. This can cause mains BUZZ problems when laying out printed circuit board designs for power supplies.

The correct layout is shown below the circuit. If the current surge is 1 A and the track resistance is 20 milliohms then the voltage developed will be 20 mV pp.

Voltage regulators

A voltage regulator takes a varying unregulated input voltage and produces a fixed regulated output voltage. There is a wide range of fixed voltage three terminal regulators to choose from, with a choice of maximum current handling, output voltage and positive or negative operation. The data sheets for these devices contain lots of seemingly complex pieces of information and so a glossary of terms is now included.

Ripple Rejection

The ratio of the ripple voltage at the re-rlator input to that at the output, generally expressed in dB. Typically of the order of $60 \mathrm{~dB}(1000$ to 1$)$, that is 1 Vpp of ripple at the input ends up as 1 mVpp at the output.

Temperature Coefficient

The output voltage change for a change in regulator temperature, expressed in $\mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Input Voltage range

The range of voltages over which the regulator will function normally. For example, a 12 V regulator may work from 14 V 5 to 30 V . At 14 V 5 the regulator will 'drop out' and lose its regulation. Regulators generally need 2 to 2 V 5 in excess of their output voltage. At 30 V the regulator will go 'pop' (time to buy a new one).

Output voltage

The voltage at the output terminal with respect to ground. Generally within $\pm 5 \%$ of stated value.

Line Regulation

The ratio of the change in the output voltage caused by a change in the input voltage, typically of the order of 0.2%.

Load Regulation

The output voltage change for a specific change in output load current.

Short Circuit Current

The output current when the output is shorted to ground.

Output Noise Voltage

The RMS noise voltage measured at the regulators output, not including any ripple.

Power Dissipation

The maximum power that the regulator can safely generate on a particular heatsink.

As a rule of thumb the regulator case should not exceed about $80^{\circ} \mathrm{C}$ (which is hot to touch). However, always run the device at as low a temperature as possible. It is thermal ageing that eventually kills electronic devices and for higher temperatures the ageing process is disproportionally faster.

Some applications of voltage regulators are given below.

The table below relates the secondary voltage of a transformer to the peak voltage at rated load and the off load voltage, which will be considerably higher.

TABLE ONE

V secondary at rated load	V peak at rated load	V peak off load transformer regulation 20%
5 VRMS	$7 V 07$	$8 V 48$
6 VRMS	$8 V 48$	$10 V 18$
9 VRMS	$12 V 72$	$15 V 26$
10 VRMS	$14 V 14$	$16 V 97$
12 VRMS	16V97	$20 V 36$
15 VRMS	$21 V 21$	$25 V 45$
20 VRMS	$28 V 28$	$33 V 93$
25 VRMS	$35 V 35$	$42 V 42$
30 VRMS	$42 V 43$	$50 V 92$
35 VRMS	49V50	$59 V 40$
40 VRMS	$56 V 57$	$67 V 88$

(200mA rating)

$$
\begin{aligned}
& \text { TO202 } \\
& \text { TO220 } \\
& \text { (500mA) }
\end{aligned}
$$

TO3
metal
(2A)

TO3
metal
(3A)

A)

This circuit shows a conventional arrangement of a three terminal device. It is advisable to use a decoupling capacitor connected close to the input terminals. This prevents high frequency instability. If this capacitor is left out then regulation can sometimes be greatly reduced. The decouplịng capacitor on the output helps reduce the impedance at high frequencies, where the regulator loses its performance. For best results use a tantalum capacitor.

B)

The output voltage of a regulator can be increased by applying a voltage to the common terminal. This can be done by using a zener diode. .

D)

A high voltage unregulated supply can cause problems when using regulators. It may at times exceed the maximum voltage rating of the regulator. A simple voltage regulator D_{z} and $Q 1$ can be used to overcome this problem. D, should be chosen so that it is about 6 V greater than the regulator output voitage. Inis technique has the added advantage that the power dissipated in the regulator is less (the rest being dissipated in Q1), and the regulator is presented with a semiregulated voltage, so the output will have less ripple.

Dual Power Supply

The circuit shows a complete regulated dual power supply. The unregulated rails are obtained from a split secondary transformer, a bridge rectifier and two smoothing capacitors. A positive and a negative regulator have been used to generate the + and - rails. These regulators should be mounted on heat sinks
and they should be insulated. The pin out of the negative regulator is different to that of the positive regulator. The two diodes at the output prevent latching up situations (on load) wheréby. one side starts up faster than the other and forcibly reverse biases it, preventing it from operating.

Tracking Regulator

Instead of using a negative voltage regulator to obtain the negative rail, an op amp and a power transistor can be used. The resistor retio, R1, R2 determines the negative rail voltage. The negative rail is not, however, current limited. The internal current limiting of the regulator is shown. When the load current exceeds the current limit, the output voltage drops to almost OV. This makes the regulator short circuit protected. Another type of current protaction is known as 'FOLD BACK' current limiting (shown dotied). This serves to reduce the shiort circuit current. These devices protect the power supply from abuse. Another type of protection device is the overvoltage clamp, which

protects the 'non-power supply electronics' from an increase in the power supply voltage. These are two terminal heavy current devices which are placed across the power supply. When the supply voltage exceeds a certain level a thyristor is triggered on and clamps the rail to ground. This is intended to pop a fuse and so disconnect the faulty power supply (which is better than replacing a $£ 1,000$ worth of IC's).

$$
\text { -ve output }=-(+ \text { ve output } \times R 2 / R 1)
$$

With foldback the short circuit power dissapated in the regulator
is less than that with current limiting.

723 Voltage Regulator

The 723 is an industry 'standard' device. Many manufacturers produce it and the device itself is versatile. It comes in a 10 pin TO5 can or a 14 DIL pack. The device contains a precision voltage reference, with a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, an error amplifier, an internal transistor capable of handling $\mathbf{1 0 0}$ mA and a current limiting mechanism. By using a few external resitors, a capacitor and maybe an external power transistor, a wide variety of regulator designs can be realised.

Left is shown the block diagram of the 723 regulator. As pinouts vary depending upon package, no pin numbers are shown.

Adjustable Positive Voltage Requlator

By using a variable feedback path (RVI), a variable regulated output voltage can be generated. The voltage reference is connected to the non-inverting input of the error amplifier and the output voltage (via RVI), to the inverting input. The error amplifier drives the output transistor and hence the output voltage is controlled by the feedback voltage from VR1. A 100pf. capacitor is used to stabilise the device. R1 is used as a current limit control. When the current through R1 (the load current), exceeds 100 mA a voltage of 560 mV is set up across it. This is just about sufficient to turn on the current limiting transistor which in turn shorts out the regulating transistor, causing the output voltage to collapse towards $0 V$.

Regulated Power Supply

Sometimes it is necessary to make a simple power supply using discrete components when a non-standard voltage is required.

Left: Circuit diagram of discrete component PSU. Voltage measurements are taken with high impedance voltmeter.

The circuit shown uses all the basic elements of a voltage regulator, that is, a reference voltage 21, an error amplifier and a series control Transistor Q1. The zener diode, $Z 1$ sets up a reference voltage of 5 V 1 . This diode has a temperature coefficient of $-1.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (a 5 V 6 zener is best at $-0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$). The resistor ratio of R3 and R2 sets the output voltage and the op amp provides the error correction (the regulation).

C1 is used to reduce the output impedance at high frequencies. The zener diode has a slope resistance of 76Ω, and so any fluctuations in the unregulated rail will be attenuated by the ratio of $76: 7: 0.016$
R1 4700
Therefore a 1 Vpp ripple will end up as 16 mVpp , but will be multiplied by the gain of the R3, R2 network to nearly 50 mV .

Improved Regulated power supply

This power supply has various improvements over that shown. The reference zener $\mathbf{Z 2}$ is run at almost constant current by the R12, $\mathbf{Q 1} \mathbf{Z 1}$ network. This makes $\mathbf{Z 2}$ much less sensitive to ripple and unregulated supply fluctuations. The filter R3 C1 (7 HZ low pass), further reduces any ripple voltage and noise from the zener diode. The preset VR1 allows the output voltage to be varied.

If a precision power supply is required then a precision voltage reference should be used. These can be obtained with temperature coefficients as low as $10 \mathrm{ppm} /{ }^{\prime \prime} \mathrm{C}$. When using this level of stability, high stability resistors (TC=10ppm/ ${ }^{\circ} \mathrm{C}$), and a low drift op amp should be used. Also, to reduce mains carried interference (mainly sharp clicks due to electric motors and thyristors turning on), a mains filter should be used. This is a passive inductor capacitor low pass filter network which attenuates high frequency spikes and clicks.

ㅌn

Hew Smat tourves dithialmitimeter

$3 / 2$ digits...6functions...fullyportable...

Underferes

The DM235 incorporates the most important features of a bench-top meter into a rugged yet lightweight instrument for true portability. High accuracy, resolution and input impedance mean superior performance to analogue meters - but at a price significantly lower than many. The DM235's design and specification makes it ideal for all but the most demanding applications.
Big, bright, unambiguous display
Full $31 / 2$ digit display, reading to ± 1999.
8 mm LEDs, ultra wide angle of view.
Six functions, 26 ranges
DC Volts.
1 mV to 1000 V
AC Volts........................... 1 mV to 750 V
DC Current.............................. $1 \mu \mathrm{~A}$ to 1 A
AC Current............................. 1μ A to $1 A$
Resistance........................... Ω to $20 \mathrm{M} \Omega$
Diode test.......................... $0.1 \mu \mathrm{~A}$ to 1 mA
$10 \mathrm{M} \Omega$ input impedance.

High accuracy

Basic accuracy of 0.5% (2 V DC range) Other DC ranges and Resistance 1.0% AC ranges $1.5 \% 30 \mathrm{HZ}-10 \mathrm{kHz}$.
Easy to use, by anyone, anywhere
Automatic polarity operation, automatic decimal point placement, automatic out-of-range indication.

Lightweight but strong

High-impact moulded ABS case, size 10 in $\times 5.8$ in $\times 1.6$ in. Weight less than $1 / 21 \mathrm{lb}$. Basic operation from disposable cells, for independence from AC supply.
Line operation available via optional AC charger/adaptor.
A full range of optional accessories DM235 meter complete with test leads and prods.
£49.80
AC adaptor/charger $240 \mathrm{~V} 50 \mathrm{HZ} \ldots \ldots . \ldots 30$
Eveready carrying case with lead stowage compartment.
£8. 50
Rechargeable battery units............. $£ 8.00$
30 KV high voltage probe.............. £15.00
(All prices subject to 8% VAT)

Find out more!

Sinclair Radionics are one of the world's largest producers of digital multimeters the DM235 embodies over seven years' expereince. It comes with a full 12 month guarantee. If you'd like to know more about the DM235,send the coupon below. We'll send all the facts (and a list of distributors) by return.

Sinclair Radionics Ltd, St Ives, Huntingdon, Cambs., PE174HJ.

World leaders in fingertip electronics

*Prices include VAT packing \& deliverv charges and money back guarantee. Send cheque or P.O. to
VIDEDTIME PRDDUCTS 56 Queens Road, Basingstoke, Hants RG21 IREA Tel: (0256) 56417 . Telex: 858747.
thanwin brew We welcome Barclay \& Access Orders by telephone (Trade and Export enquiries welcome)

TRANSFORMERS

Panel Meters, Bridge Rectifiers, Power Supply Units Multimeters - Semi Conductors - Timers - Safebloc

The Micro-Digital " own-brand"' C15-Cassette means high quality, specially made for your micro-computer.

* Tape made against DIN reference tape 45513/16 C528V with anti-static carbon additive.
* Five screw case fixing and transport mechanism using precision stainless steel roller axles.
* Two special graphite impregnated slip shields guide tape edges to prevent pack scramble and dispel. residual static.
10 quality $C 15$ cassettes with
libraly cases $\&$ special labels
$£$
25ICRODIGITAL LTD

DIGITAL MODULE

* 4 digit
 *up/down counting *drives LEDs directly *lath *presettuble *second register *equal and zero outputs *DC to 2 mHz *5U aperatian

THE THREE DIGIT display we previously published has proved to be one of our most popular projects. We have used it in a number of projects and we know of several commercial companies using it in their own equipment.

Many people have asked us for a 4 digit version and we have been looking round at ICs available. We have chosen this Intersil device because we believe it offers the best versatility at the moment. Apart from being a 4 -digit counter-latch-decoder driver needing no external components except the displays, it also is an up-down counter and can be preset to any number. In addition, it has a separate register which also can be set to any number and comparators which give outputs when the counter is equal to the register and when it is zero - all in one IC!

Mod Build

The unit is built on two small PCBs which are connected together with short links of tinned copper wire. Be careful to orientate the IC correctly as it is expensive!

The preset system is designed to use a 4 digit BCD thumbwheel switch

Fig 1. Full circuit diagram of the counter module. The How It Works section for this is given overleaf - but as this is really. a "How To Use It" section it don't matter - does it?

SPECIFICATION

SPECIFICATION-	
Number of digits	4
Readout	LED
Maximum frequency	2 MHz
Input impedance	100 k
Output drive	1 TTL load
Supply voltage Supply current low power mode all eights	$4.5-5.5 \mathrm{~V}$
	$500 \mu \mathrm{~A}$.

(closed $=$ ' 1^{\prime}) but individual switches can be used if required. Input is in $B C D$, therefore the switches will have the weighted values $8,4,2$ and 1 . If the preset is not needed then the diodes can be left out. If a preset is needed, but always to a fixed number, links can be inserted to replace the "on" switches and the other diodes left out.

ETI

Fig. 2. The positioning of the displays and the links which must be installed before the displays.

Fig. 3. The component overiay for the main board. The common connection from each of the thumbwheel switches goes to the track next to the other connections.

Full patterns for the digital module project. Shown full size. B oard C - above is to fit high brightness displays such as employed in our digital dial project.

HOW IT WORKS

Count Input - Pin 8

The counter is incremented or decremented on the leading edge of this input. A schmitt trigger is provided with a 500 mV hysteresis on a 2 V trigger point. For high speed operation, or operation from a digital output, delete R2 and Cl and short out R1. Maximum frequency of operation is about 2 MHz .

Up-Down - Pin 10

If this pin is left open or taken to +5 V the counter will be incremented by the count input. If it is taken to 0 V the counter will be decremented by the count input.

Reset - Pin 14

If this pin is left open or taken to +5 V the counter is free to be incremented or decremented. If it is taken to 0 V the counters will be reset to zero and held there until reset is taken high again.

Store - Pin 9

Ig this input is left open or taken to +5 V the latches are "closed" and the information which was in the counters at the time the store input went high will be remembered, decoded and displayed. The counters can be reset, incremented or decremented without affecting the display.

If it is taken to 0 V the counter contents will continuously be displayed for as long as this input is at 0 V . Any change in the counter contents will be shown on the display.

Load Counter - Pin 12

This is a 3 level input. If it is left open the counter works normally. If it is taken to +5 V the counter is loaded with the BCD data which is set on the thumbwheel switches. If the latch is open, this number will also be displayed. If this input is taken to 0 V the $\mathrm{BCD} 1 / \mathrm{O}$ pins become high impedance. If a 3 level input is to be controlled by other logic outputs they must be tristate devices.

Load Register - Pin 11

This is also a 3 level input. If it is left open the counter works normally. If it is taken to +5 V the register is loaded with the BCD data. If taken to 0 V the circuit goes to a low power state with the multiplexing oscillator stopped, the display off and the BCD I/O pins in a high impedance state. The operation of the counter is unaffected except that there is no display.

BUYLINES

Since this project is based entirely upon the one chip-ICM 7217A this is all there is to cause problems! Since it appears in most peoples catalogues we cannot foresee any trouble here. Displays can be any type really - but for outdoor work use high brightness types.

Display Control - Pin 20

This is also a 3 level input. If it is left open, leading edge blanking occurs. If all digits are zero then all are blanked. If it is connected to +5 V the display is completely blanked irrespective of the value. If taken to 0 V all digits are ON irrespective of value.

Scan - Pin 13

The internal multiplexing frequency is nominally 10 kHz giving a digit repetition rate of 2.5 kHz . With a 20 pF capacitor from this point to $0 \vee$ the frequency drops to 5 kHz and with 90 pF it is about 1 kHz .

BCD I/O - Pin 4-7

This is a multiplexed data port, normally an output which can drive 1 TTL load. It becomes an input when either LC or LR is at +5 V . Pin 7 is the least significant bit.

Digit Drives - Pins 15-18
These are used both to drive the LEDs and to provide data indicating which digit is being presented at the BCD I/O port. Pin 18 is the least significant digit.

Zero - Pin 2

If the value of the counter is zero this output will be at 0 V .

Equal - Pin 3

If the value of the counter is equal to the value of the register this output will be at 0 V

Carry/Borrow - Pin 1

When the counter goes from 9999 to 0000 or from 0000 to 9999 a 500 ns positive pulse occurs on this output. This is connected to the count input of a second unit when an eight digit display is needed.

-PARTS LIST'	
RESSISTORS (all 12 W (5%)	
${ }_{\text {R1 }}^{\text {R1 }}$	1 M
capacitors	
${ }_{C 1}^{C 1}$	33 polyester 14005 V tantalum

SAME AS ETI OFFER 5 FUNCTION LCD Hours mins. secs. month. date. auto calendar back-light. quality melal bracele!. $£ 7.65$ Guaranteed same day despalch fimm lhick.		* OUARTZ LCD ALARM * Snooze + backlight. Batteries last 1 year approx. Includes batteries and travel pouch Excellent value £17.65 Guaranteed same day despatch	THOUSANDS SOLD 11 FUNCTION SLIM CHRONO 6 digll 11 functions Hours. mins. secs Oay dale. day ol week $1 / 100.1 / 10$. secs. $10 x$ secs. mins. Split and tap modes. Back light. auto calendar. © Only 8 mm thlck This same watch is being sold for £22.00 in newspaper and magazine special otfer ads. Metac Price £12.65 Guaranteed same day despatch
SEIKO SUPERIOR WATCHES World famous piercing alarm chronograph Please ring for délivery details ALARM CHRONO List price £130 Metac Price $£ 98$	SEIKO S U P ER I O R WATCHES Please ring for delivery details CHRONOGRAPH List price $£ 85$ METAC PRICE £68	SEIKO SUPERIOR WATCHES 6 digit, 7 function watch with 4 alarms \& volume control. Please ring for delivery details MULTIPLE ALARM List price $£ 120$ METAC PRICE £98	SEIKO SUPERIOR WATCHES Full spec. calculator +6 function watch. Please ring for delivery details. CALCULATOR WATCH List price £165 METAC PRICE £125
HANIMEX Electronic LED Alarm Clock Same as ETI offer Thousands sold	genvine SOLAR 5 function LCD - Solar manal with batiery back un. beck light + wute calandar. hours. mins, secz, day, date. - Quatity metal tractiat. $£ 10.95$ Guaranteed same day despatch	LADIES LCD Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick. 5 tunctlon: hours, mins, sacs. diy. tale. + back light and aulo cal, silver or fold. State pre. Itrence. $£ 10.95$ Guaranteed same day despatch	ALARM LCD 6 digit 7 functions + penetrating alarm. Hours Mins Secs Day Date Alpha Day Year. Back light +200 year calendar. ONLY $£ 21.95$
Feature and Specification * Hour/minute dispiay * Large LED display with p.m. and alarm on indicator * 24 Hours alarm with on-oft contiol - Display flashing for power loss indication * Repeatable 9 -minute snooze * Display bright/dim modes control Size $5.15 \times 3.93 \times 2.36(131 \mathrm{~mm} \times 100 \mathrm{~mm}$ $\times 60 \mathrm{~mm}$) Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$ Guaranteed same day despatch	THE METAC DIGITAL CLOCK * COMPLETE KIT * - Fiasant or ben tizplay - $12 / 24$ Hour raadoul Sibant Synctrononous Accuracy - Fully olectronic Pulsating crion - Push-bution setting Buidting ilme 1 Hr - Attractive acrplic casa Easy-to-lollow insitructions - Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$ Ready drillad PCB to iccept componants PRICE E6.65	MICRO CASSETTE RECORDER Hand-held only $21 / 2 \times 5 \times$ $1 / 2$ inch. Identical to well known models baing sold I £ 35 OUR PRICE £24	SINCLAIR SCIENTIFIC PROGRAMMABLE + free program library worth $£ 4.00$ only $£ 11.65$ from metac
All products carry full 12 months guarantee. Please add 30 p p\&p with all orders. All prices include VAT. Shops open 9.30 to 6.00 daily. 1 rade enquiries welcome. Delivery: One week. Except where same day delivery is stated.	COMPONENTS 2N3055 transistors 50p 2 inch LED's, red 12p green 15 p yellow $15 p$ orange $15 p$ $\overline{\mathrm{DL}} 704$ displays 80 p DL 707 displays 80p Watch batteries $70 p$ (state type) Mercury tilt switches 50p Crystal mic. inserts 50p Also useful for sonic applications and sound transmitters (buzzers etc)	GENUINE SOLAR CHRONOGRAPH $£ 16.95$ 6 digit, 11 function. Hours Min Secs 1/100 1/10 Secs Mins Split \& lap modes, Auto cal + back light. Powered from solar panel with battery back-up.	TV GAMES Black \& white £8.95 Colouri £12.95. 4 games, 2 ball speeds, 2 ball angles, 2 bat sizes
		GWARE ROAD	(aARCLAYCARD)

SUPERIOR INDUCTION BALANCE METAL DETECTOR	LCD CLOCK RADIO GT-7801 MW/FM LCD CLOCK RADIO. Radio with gives minimum $15.000 \mathrm{hrs} .$. battery life from UM 3×1. Features Wake to music or alarm. sleep timer, snooze, dual time off, back light $190 \times 97 \times 43 \mathrm{~mm}$ metac price $£ 22.95$	FLUORESCENT dISPLAY CLOCK RADIO * Mains operated - Soft glow green display * MW/FM radio - Programma 9 min. snooze feature * Programmable play-10-sleep setting METAC PRICE ONLY £19.95	DIGITAL LED CLOCK * Automatic brightness control - Weekend alarm cancel * 9 minute snooze alarm our price £10.95
* Visual meter with audible indication * Distinguishes between gold, silver copper bronze and non-ferrous metals and useless m bottle tops, etc. * Range up to 10 inches on a single coin. Three feet for large objects - Battery lasts 50 hours - Telescopic $2 \cdot 31 / 2$ foot stem metac PRICE £28.65	military STYLE RADIO Medium wave Gong battery life. tion SPECIAL OFFER $£ 2.45$	CASIO SPORTS WATCH Model F-100 Black plastic case. (Epoxy based glass filled nylon.) Stopwatch. 11 functions. METAC DISCOUNT PRICE £23.95	CASIO CHRONOGRAPH 45CS-22B $£ 49.95$ CASIO WORLD TIME WATCH 29cs-11B $£ 59.95$
METAL DETECTOR BFO Principal Audible indication Telescopic stem Ideal for beginners	CBM ALARM WATCH Superb 6 digit, 8 function alarm watch. with snooze repeater and conference warning bleep. (it bleeps once 4 seconds before alarm sounds giving option to cancell. Hours - Mins. - Secs. Day Date - Month Back Light Auto. Call. Top quality 'CBM' finish. metac price £29.95	CBM EXTRA LARGE DIGIT 5 FUNCTION LCD * Hours mins secs * Month date Auto calendar * Back-light * Big digits in a slim 9 mm * Digits 50% larger than all'other watches. METAC SPECIAL OFFER $£ 9.95$	
but also excellent for linding hidden pipes and wires ONLY £11.95	A fabulous new toy will give hours of fun. Forward and reversing controls. Outdoor range 150 ft Indoor range 50 ft . A scale model of Bertoni's famous Lancia sports car List price as sold in well-known mail order catalogues and top stores, E16. METAC SPECIAL CHRISTMAS PROMOTION OFFER $£ 11.95$		AQ-1000 CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH - Calevilator with \% \downarrow \& memory. - conimuaus chock Hrs, mins. secs. day. month. day of week * Alarm © Stop-watch with $1 / 10$ secs 1010 hours + lap and split-time modes. 1st and 2ad. * batterias last 1 year conitnuous operalion - Complate with leatherette mall UST PRICE £21.95 metac special exclusive price £19.95 Gannot ha found cheaper anywhere eles
GOOD QUALITY CALCULATOR MODEL 3000 $x \div+-$ memory constant, per cent. 8 digits with red display. display METAC SPECIAL OFFER $£ 3.95$	WITH DUAL TIME ZONE FACILITY - Constant LCD display of hours and minutes plus optional seconds day of the week and am/pm indication - Perpetual calendar: day, date, month and year. 4 hour alarm with on 1/100 second chrono- graph measuring net lap and first and second piace times. Night light.	Telephone Special 24-hour phone service Credit-card customers are welcome to buy by phone simply phone 01-723 4753 with your credit-card number to place your order - Fully adjusiable bracelet Please note Metac are probably the only people with this watch in stock A very good alarm watch metac price only $£ 29.95$	PLEASE NOTE All our products carry full money back 10 -day reassurance Watches are despatched by FIRST-CLASS POST. They are fitted with new batteries, and in clude guarantee and instructions. Battery fitting service is available at our shops for no extra charge. We stock most watch batteries and this service is available to all Metac have been selling electronic watches probably longer than anyone eise in the UK. We take care of your watch not just this year but next year and the years after that.

A HISTORY OF ELECTRONICS IN MEDICINE

THE USE OF ELECTRICITY FOR medical purposes dates back to the Ancient Greeks who used the electric eel to treat various maladies. In 1759 Wesley collected case histories of the use of electricity. The first recorded use of electricity for treatment in a hospital in London was in 1767.

Not quite 200 years ago, in 1786 to be precise, Professor Luigi Galvani - an anatomist at the University of Bologna, Italy - discovered by chance that the muscles of a dead frog contracted under the influence of an electrical quantity.

He wrongly assumed that animal electricity stored within the muscle caused this to happen. It was, in fact, the result of dissimilar metals forming a primary electric cell which energised the nerves of the muscle. Volta of the University of Paris proved it and subsequently gave the world the voltaic battery, in 1800.

The contribution of these two men provided, in the simple primary cell, a workable basis for using electricity in practical ways not previously possible with the electro-static form of electricity. Galvani's work on "animal fluid" was amongst the earliest electro-medical studies. The apparatus he used was crude by today's standards - see Fig. 1.

Fig. 2. Äpparatus used by McKendrick to give lectures on life in motion to Royal Institution, London, audiences around 1890.

Fig. 1. Artist's idea of Galvani experimenting with frogs' legs in the 1780s. Note the friction
electrostatic generator on the left and the Leyden jar on the right (Funk and Wagnells).

Body Electric?

Research into physiological electric quantities gradually became more sophisticated as the 19th century passed. This development, however, had to wait for suitable experimental inventions such as the electromagnetic galvanometer which became available in its crudest form around 1830. A typical laboratory electromedical instrumentation set-up of the 1890s is shown in Fig 2. A smoked glass plate moved steadily across the end of a mechanical pen secured to the end of a frog's leg muscle. The muscle was energised by high-voltage generated from a vibration induction coil which was energised by a chromate primary single cell of the Grenet kind. Smoked screen recorders are still in use today in some medical research measurements, blood flow parameters being one example.

The sphygmometrograph (as a pulse measuring instrument was known in that time) was originated by Marey in 1860. A later design by Verdin is shown in Fig 3. Electronic method was little used in medicine in early times, as powerful electric signal amplification was not obtainable until the beginning of the 20th century -

Electricity has long been used for medical purposes, here's the story of the past and a look into the future. By Peter Sydenham.

Fig. 3. Verdin's apparatus of the 1890s for recording action of the pulse.

Fig. 4. Schematic of McKendrick's 1891 method for measuring heat generation in muscle.
when the thermionic valve was invented by Fleming (in 1904).

Figure 4 shows experimental equipment for measuring heat production of muscular contraction around 1880. Thermocouples, forming a thermopile, drive the crude galvanometer.

Ion Therapy

Another aspect of medicine where electricity is used is for therapeutic treatment. Since the very early 1800 s output of the various kinds of electric current generator, namely the Faraday induction coil, the galvanic chemical battery, the sinewave rotating generator and the friction statical generator have been applied to appropriate parts of the body to provide a cure for all sorts of ailments.

X-ray equipment was born in 1895 when Roentgen discovered X-rays in a chance situation using photographic plates. There is probably no case in instrument history where application was more rapid. Edison, and others, had equipment in use in hospitals within months. Figure 5 shows contemporary American X-ray plant of - 1899.

Measurement and recording of heart performance also began around 1900. Professor Einthoven of Holland devised a rapid response, high sensitivity detection instrument in 1903 - the string galvanometer. Soon after this was coupled to a photographic recording system, by the Cambridge Instrument Co., to produce an electrocardiograph. The first installation of this was made in 1909. By 1945 cardiographs were available in portable form. Figure 6 shows the interior of a 1930 s. Both Brothers portatble electro-cardiograph invented and made in Adelaide, South Australia - possibly one of the first portable units devised anywhere. It used a loud speaker drive unit (right) to mark a rotating smoked disk.

The record was viewed by the physician using an optical magnifier. Amplification to drive the stylus from skin electrode signals was obtained by thermionic tubes.

As with all disciplines, electronic method opened the door to new accomplishments. In medical electronics it happened from the 1920s onward. Equipment for researching physiology at Oxford University, in 1949 is shown in Fig 7 The unit, advanced for its time, incorporated amplifiers, a temperature control unit, stimulators to induce responses, a time base and a cathode ray tube display unit.

Electronic equipment used in medicine has come a long way during the past 50 years. This can be seen by comparing the apparatus pictured above, which covers the 1800 s to 1930 s period, with modern equipment such as that used in pathological testing and nuclear medicine.

Future

Against this background let me now suggest developments we can expect to experience over the next quarter century.

Fig. 5. Complete X-ray apparatus in use in America around 1900. Note the lack of safety devices and precautions.

Fig. 6. Interior view of a Both portable electro-cardiograph machine made in Adelaide around 1930.

Fig. 7. E Electro-physiological research equipment used by Dickinson at Oxford University in 1949.

Monitoring

The largest proportion of electro-medical equipment is concerned with measurement; for detection of abnormal states. At present comparatively few of the incredibly great range of medical measurements needed can be made in situ on the body and without disturbing its functions. Samples of tissue, blood, urine, etc. are removed for analysis in the pathological laboratory. This process, although performed faster today than ever before, can still take several hours before a diagnosis is available to the physician in order that he or she can decide corrective action. Analysers now exist that handle many measurements of a sample entirely automatically once the sample is loaded into the analyser. But the sample must first be extracted from the body and then be transported to the machine, processes which consume time and in some circumstances alter the sample from its original state.

It is realistic to expect the transport step to be eliminated in the future with most local clinics having their own units for analysis of samples. The next stage in progress will come about by the invention of units that measure parameters such as blood count, albumin, etc, by contact externally to a suitable vein or artery. Direct measurement like this would also provide more accurate measurement as the blood would be in its normal working state. Furthermore, it would then be possible rapidly to optimize drug dosage and to investigate changes in parameters as they happen. The concept of in-situ measurement will apply to numerous other tests.

In special cases some people have already been equipped with sensors of critical body parameters. The outputs are telemetered to a remote observer. Examples of this are in space-medicine, in fitness studies and in a few heart disease cases.

Microbody

Considering the low-cost data processing power already available, and coupling this with inexpensive micro-miniature sensors we can expect to see developed in the future, it is possible that individuals will one day be able to obtain self-monitors that provide warning when body parameters exceed allowable limits.

Better measurements always leads to better control. As an example, respiratory tract problems, such as hay fever and asthma, are hard to combat effectively because of the lack of detailed data about each individual's characteristics in the various circumstances encountered. Not all people are allergic to the same pollens - we could benefit greatly if an easy way existed that determined the allergic pollens involved.

At present, a pollen count is usually taken by drawing the ambient air over a sticky surface for many minutes hours sometimes. The surface is then observed with a microscope, the technician counting all pollen grains together to obtain the total pollen count. This process is now sometimes carried out using computer-controlled video TV camera systems, but the systems are still barely able to group the various kinds of pollen grain. (They are typically a micrometre in diameter or smaller - counts of a few grains per cubic metre can cause unwanted symptoms.)

A development that could help is a sensor that provides a virtually instant count of the individual kinds of pollen grain present - a real-time sampling analyser.

With such a device the sufferer could test for the hostile situation before symptoms arise and take remedial action in time. Technologically such an instrument appears feasible. It is, however, cost and physical size that holds up its development and its practical everyday use at present.

A likely parallel already existing is the Coulter counter that analyses the size and number of cells in a blood sample. Blood-cell counting of several years ago required the blood to be smeared on a microscope slide and the cells counted by eye under a microscope. Today the machine makes the measurements in a few seconds by counting particles as they pass a small orifice - but it is neither portable nor inexpensive. Figure 8 shows a Coulter counter installation as used in the larger pathological laboratories.

Development of personal monitors will almost certainly pass first through a telemetry method in which a central computer processes the data, perhaps with the help of the trained physician to begin with. A direct self-contained method will then be developed in which the specific data processing requirements that have emerged from experience, are integrated into the unit.

Sensors

The human body is a vastly complicated chemical process plant. It has sensors feeding information to the brain for central processing. In turn, the brain sends signals to actuators - the muscles which cause the body to function and to do work. Nerves are the hardwired data channels for receiving and sending control information.

Slight deficiencies in the senses of sight and hearing have been aided using instruments - spectacles and hearing aids. The latter began as acoustic horns which provided sound pressure gain without active amplification. The advent of the telephone led to amplifierless hearing aids in the 1900's which used several mouthpieces coupled to the ear pieces (Fig 9). Then came electronic units which provided active signal gain from miniature thermionic tubes. Today we have integrated semi-conductor circuitry. We have still a way to go, however, before we are able to compensate for a failed action of the inner ear mechanism.

Vision, until very recently, was aided only by optical lens compensation. But this applies only where the eye is still largely operative as an optical-to-electrical transducer. Quite recently experiments have been reported in which a miniature video camera provides electronic signals that drive cells in the brain to provide illusion of sight. The method is still crude compared with the performance of natural process. Given time for research it seems reasonable to assume that quite compact and useful artificial eyes will soon be available for blind people. Bionic man is not so fantastic! Interestingly, once the bionic eye is developed it is an easy matter to provide greater than natural visual acuity and to offer sensitivity to other than the visible light band - infra-red for instance.

Providing electronic replacements for the sense of smell will most likely be a much later development. We know too little about the olfactory senses and have no really compact and cheap smell sensors at this time to expect great progress to occur in the near future.

Fig. 8. Coulter counter unit of today that analyses blood sample particles providing a printout (IMUS, Adelaide).

Fig. 9. 1900's hearing aid. The three receivers, which fit into the case, provide signal to the two earpieces. No active amplifier was involved. (Birdwood Mill Museum, S.A)

Animals, such as dogs, possess a sense of smell vastly much more sensitive than humans. Ants track each other by a scent trail! Yet man has not yet produced small and inexpensive chemical analysers (smell is a largely chemical process) that can meet the complex sensing requirements of smell detection.

Scanners

X-ray and nucleonic diagnostic methods have the valuable feature that certain internal structures of the body can be seen. But all such methods lack the spatial resolution we obtain by visual examination with the unaided eye or through a microscope. A nuclear radiation source set-up within the body privides a rather diffuse output picture. Resolution is improved by increasing the number of individual elements at the sensing stage. The gamma camera, for example, provides two-dimensional pictures using over thirty scintillometers connected in such a way as to provide many more picture elements. The latest development senses the body area by scanning multiple sensors thereby collecting yet more data in a given time. Sophisticated processing is then used to provide video screen outputs which contain much more useful information than ever before. Similar techniques apply to X-ray, nucleonic and ultrasonic signal transmission. Now that vastly more powerful data processing capability exists the future development will be to incorporate many more sensors of the same kind and make more effective use of three-dimensional data. Other variables, such as, say, thermal emission will also be incorporated along with systematic experience gained into the processing, all this to providing data conversion for a more meaningful measurement process.

Surgery

Electrical methods in surgery traditionally include endoscopes with which to see into inaccessible places and cauterizing probes for sealing blood flow, cutting and destroying cells where need be. The recent introduction of the laser as a cutting tool has most valuable properties. Selection of the appropriate wavelength decides which kind of body tissue will be cut. For example, it is possible to weld the retina of the eye through the pupil without need for surgery. The radiation is only absorbed by retinal material, the pupil and fluid of the eye ball being transparent to the wavelength used.

The selective property of narrow-band radiation will enable some highly precise surgical operations in the future. An operation might go as follows: a rigid framework holds the patient fixed with respect to an $x-y-z$ translating pulsed laser operating head. Wired to the control unit of the translator are electrodes fixed to the body. These sense when low-power sensing pulses are energising the specific part of the body required to be operated upon. The unit scans until sensing signals (operated by a non-cutting wavelength source) verify the Jocation of the beam. Once at such a point the laser is switched to full cutting power continuing to cut as the time-multiplexed sensing signals indicate position is satisfactory.

Looking back, electro-medical apparatus has only been with us for a mere 50 years. In the last 10 years of that time we developed inexpensive and very powerful data processing methods. The next 25 years are likely to unfold undreamed of aids to medicine many of which we would regard as miraculous if we heard about them today.

ET

ELECTROVVALUE

Be safe! Be satisfied! Buy it from Electrovalue

Capacitors

GOODS SENT POST FREE U.K. on C.W.O. orders over £5 list value, add 27 p handling charge

- ATTRACTIVE DISCOUNTS ON C.W.O orders - 5\% where list is over $£ 10 ; 10 \%$ where list value is of $£ 25$.
TOP QUALITY MERCHANDISE - ALL GURANTEED BRANO NEW AND TO SPEC.
VAT - add 8% to value of order For tiems marked add $121 / 2 \%$
For ACCESS or BARCLAYCARD orders, just phone or write your number

No discounts allowable on prices marked NET or N . or on sales by credit card.
TEAR OUT AND TAKE GOOD CARE OF THIS PAGE AND REMEMBER TO LOOK
OUR COMPUTER AIDED SERVICETAKES
OUR COMPUTER-AIDED SERVICE TAKES TER HOW LARGE OR SMALL.

- COMPREHENSIVE PRICE LIST FREE ON REQUEST

WATCH FOR BIG NEWS NEXT MONTH FROM ELECTROVALUE

ELECTROVALUE LTD

28, ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM, SURREY TW20 OHB
Telephone Egham 3603 Telex 264475
Northern Branch - 680, BURNAGE LANE
BURNAGE, MANCHESTER M19 1NA(061)432 4945

CHESS CHALLENGER " 10 "
"It's You Against the Computer"
Are YOU good enough to challenge the CHALLENGER in any of the following 10 levels and WIN??

AVERAGE.
RESPONS
LEVEL TIME
1 Beginner 5 Sुeconds
2 Intermediate 15 Seconds
3 Experienced 35 Seconds
5. Advanced 120 Minutes

6 Mate In Two (2 move Puzzler
7 Postal Chess (For Minutes
by mail only) 24 Hours
8 Expert 11 Minutes

1. Ten Levels of play from beginner to expert including "Mate in two" and "Chess by mall'
Levels changeable during game Change from level 1 to any level through 10 at
3 Random Computer Responses vary every game
2. Selection of Legal Offense or Defense Play from the bottom board or the top of the board. Choose either black or white
5 Does not permit ilegal moves Never makes an illegal move according to all the Position verific
6 Position verification by computer memory recal
Plays opening defenses from chess books, ie Sicilian. French, Ruy Lopez, Queen Gambit declıned
3. Audio Feedback Single tone each time you press a key Double tone when computer responds.
Problem Mode Establish your own chess positions and watch the computer react
11 Override key to make multiple moves Make two. three, or more moves before the computer responds.
12 Add or subtract pieces during game Put back the plece you lost by override or take away the computer's Queen for a more even game
4. Pawn Promotion to selected piece Promote a pawn to a Queen automatically or select a knight or another piece instead
14 En Passen
5. Castlin

Numerous other features, including \bar{a} solid walnut case, $\overline{13 \times 8} \times 1 / 8$ inches high with a deluxe simulated leather and brushed gold foil playing surface large $1 / 2$-inch LED display and hand carved solid wood, magnetized French Chess Pieces CHESS' CHALLENGER " 10 " available from KRAMER \& CO., Depr. ET 1 9 OCTOBER PLACE, HOLDERS HILL RUAD. HONDON H
TEL $01-2032473$ TELEX 888941 ATTN. KRAMER K7
EXPORT ORDERS WELCOME. Access and Barclay by arrangement PRICE E199, INCL VAT P\&P, CWO
Slightly used Master Chess Challengers available SAE for detals
Computer Draughts (checkers available, SAE for brochure)
Computer Draughts (cherkers avanable,

Nascom UK Distributors

Barrow-in-Furness Camera Centre

Tel: 0229-20473
Torquay
CC Electronics
Tel: 0803-22699
Egham \& Manchester
Electrovalue
Tel: 07843-3603
Glenfield, Leicester
Eley Electronics
Tel: 0533-871522
London W2
Henrys Radio
Tel: 01-723 1008

Nascom Microcomputers

- ETI BOOK SERVICE

BEGINNERS

Beginners Guide to Electronics Squires $£ 2.65$
Beginners Guide to Transistors Reddihough £2.65
Electronic Measurement Simplified C. Hallmark $£ 2.20$
Electronics Self Taught Ashe $£ 4.40$
Beginners Guide to Integrated Cir cuits Sinclair $£ 3.15$
Principles of Transistor Circuits S A mos £4.75
Understanding Electronic Circuits Sinclair £4. 10
Understanding Electronic Components Sinclair $\mathbf{£ 4 . 1 0}$
Beginners Guide to Radio King $£ 3.15$
Beginners Guide to Audio Sinclair $£ 3.10$
Beginners Guide to Audio L. R. Sinclalr $£ 3.20$

COOKBOOKS

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook $£ 8.20$
Active Filters $£ 11.30$
1C Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $£ 10.00$
Video Cookbook E 7.00

APPLICATIONS

Advanced Applications for Pocket Calculators J. Gilbert £4.20
Build Your Own Working Robot D. Heiseman $\mathbb{E 3 . 5 5}$
Electronics and Photography R. Brown $£ 2.30$
Fire and Theft Security Systems B. Wels $£ 2.00$
How To Build Proximity Detectors and Metal Locators J. Shuelds £3.90
How To Build Electronic Kits Capel $£ 2.10$
Linear Integrated Circuit Applications G Clayton $\mathbf{£} 5.40$
Function Circuits Design \& Applications Burr Brown £15.95
110 Electronic Alarm Projects R. M.Marston $£ 3.45$
110 Semiconductor Projects for the Home Constructor R. M. Marston £3. 25
110 Integrated Circuit Projects for the Home Constructor R. M. Marston $£ 3.25$ 110 Thyristor Projects Using SCRs R. M. Marston $£ 2.95$
Handbook of IC Circuit Projects Ashe £2.30
Practical Electronic Project Building Ainslie and Colwell $\mathbb{C 2} .45$

TV AND HI-FI

Audio Handbook G King $£ 6.50$
Cassette Tape Recorders J. Earl $£ 5.25$
Solid State Colour TV Circuits G. R Wilding $£ 6.35$
Hi-Fi Loudspeakers and Enclosures Cohen $£ 8.20$
How To Build Speaker Enclosures Badmateff $\mathbf{\ell 3} .90$
Master Hi-Fi Installation King $\bar{£} 2.80$

LOGIC

Logic Design Proiects Using Standard 1Cs J. Wakerly $£ 5.10$ Practical Digital Design Using ICs J Greenfield £. 12.50
Designing With TTL Integrated Circuits Texas instruments $\mathbf{£ 9 . 0 5}$
How To Use IC Circuit Logic Elements J. Streater £3,65
110 COSMOS Digital IC Projects for the Home Constructor R. M. Marston $£ 3.20$ Understanding CMOS Integrated Circuits R. Melen $\mathbb{£ 4 . 0 0}$
Digital Electronic Circuits and Systems R. M. Morrs $£ 3.50$
MOS Digital ICs G. Flynn $£ 5.10$

COMPUTING

Microprocessors and Microcomputers B. Sowick $£ 18.00$ Microprocessors D. C. McGlynn £8.40
Introduction to Microprocessors Aspinall $£ 5.90$
Modern Guide to Digital Logic (Processors, Memories and Interfaces) £4.30
Beginners Guide to Microprocessars $£ 4.70$
Beginners Basic Gosling $£ 3.35$

OP-AMPS

Applications of Operational Amplifiers Graeme (Burr Brown) $£ 8.30$ Designing With Operationa: Amplifiers Burr Brown £.16.65
Experiments With Operational Amplifiers Clayton £3.40
110 Operational Amplifier Projects for the Home Constructor R. M. Marston $£ 2.95$ Operational Amplifiers Design and Applicatlons G. Tobery (Burr Brown) £7.40 Op. Amp Circuit Design \& Applications J. Carr £4.00

TEST INSTRUMENTS

The Oscilloscope in Use Sinclair $£ 3.10$
Test Instruments for Electronics M. Clifford $£ 2.40$
Working With the Oscilloscope A. Saunders £1.95
Servicing With the Oscilloscope G. King $£ 5.60$
Radio Television and Audio Test Instruments King £5.90

SERVICING

Electronic Fault Diagnosis Sinclair $£ 3.20$
Rapid Servicing of Transistor Equipment G. King $£ 2.95$
Tape Recorder Servicing Manual Gardner Vol. 1: 1968-70 18.50
Vol. 2: 1971-74 £8.50
FM Radio Servicing Handbook King $£ 4.80$
Basic Electronic Test Procedures J. M. Gottlieb £2.45

COMMUNICATIONS

Communication Svstems Intro To Signals \& Noist B. Carlson £7.50 Digital Signal Processing Theory \& Applications L. R. Rabiner $\mathbf{£ 2 3 . 8 0}$ Electronic Communication Systems G. Kennedy 88.50 Frequency Synthesis. Theory \& Design Mannassewitsch $£ 21.70$ Principles of Communication Systems H. Taub $£ 8.10$

THEORY

Introduction to Digltal Filtering Bogner $£ 10.20$ Transistor Circuit Design Texas Instruments $£ 9.35$ Essential Formulae for Electrical and Electronic Engineers N, M. Morrıs $£ 1.65$ Modern Electronic Maths cutford E6. 70
Semiconductor Circuit Elements T. D. Towers E6. 40
Foundations of Wireless Electronies M. G. Scroggie £4.45
Colour Television Theory Hudson E6.20

REFERENCE

Transistor Tabelle (Includes physical dimensions) £4. 10
Electronic Engineers Reference Book (Ed. 4) L. W. Turner £27.70
Solid State Circuit Gulde Book B. Ward E.2.25
Electronic Components M. A. Colwell $£ 2.45$
Electronic Diagrams M. A. Colwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits Goodman E. 2.30
International Transistor Selector T. D. Towers $£ 6.00$
International FET Selector T. D. Towers $£ 4.35$
Popular Valve/Transistor Substitution Guide £2.25
Radio Valve and Semiconductor Data A. M. Bell $£ 2.60$
Master Transistor/Integrated Circuit Substitution Handbook $£ 5.60$
World Radio TV Handbook 1978 (Station Directory) E8.00
Radio, TV and Audio Technical Reference Amos $£ 24.85$
TV Technicians Bench Manual (New Ed.) Wilding $£ 5.10$

MISCELLANEOUS

Integrated Electronics J. Milman $£ 7.90$
Microelectronics Hallmark $£ 3.90$
Practical Solid State DC Supplies T. D. Towers £6.20
Practical Triac /SCR Projects for the Experimenter R. Fox $£ 2.25$
Printed Circuit Assembly Hughes \& Colwell £2.4.

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.

Our new 1978 catalogue lists a whole range of plastic boxes to house all your projects. And we've got circuit boards, accessores, module systems, and metal cases - everything you need to give your equipment the quality you demiand. Send 25 p to cover post and packing, and the catalogue's yours

VERO ELECTRONICS LTD. RETAIL DEPT.

Industrial Estate, Chandlers Ford, Hants. SO5 3ZR
Telephone Chandlers Ford (04215) 2956

NEWNES RADIO AND ELECTRONICS ENGINEER'S POCKET BOOK

15th Elition

Prepared by the Editorial Staff of ETI
An invaluable compendium of facts, figures and formulae for all interested in electronics and project building.

- Completely revised and updated
- New material covers recent developments in radio and electronics
- New tables include TTL, CMOS and logic.
$1978 \quad 192$ pages $82 \times 123 \mathrm{~mm} \quad £ 2.55 \quad \$ 5.25$ 0408003146

Newnes-Butterworths

Borough Green, Sevenoaks,
Kent TN15 8PH

AUDIO AND microcomputers TEST EQUIPMENT EVEL I AND II TRS8O IN STOCK ALL PRICES ANCLUDE VAT

Only regular stocks listed - other makes and models available.

LONDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK $9 \mathrm{am}-6 \mathrm{pm}$ SCOPES - IN STOCK

PROBES $\times 1 \times 1014.50 \times 109.95 \times 17.95$ for $456 / 4010$
LED AND LCD DIGITAL MULTIMETERS

MULTIMETERS	
DM235 Sinclar portable 31/2 digit LED	48.95
PDM 35 Sinclair Pocket 31/2 digit LED	29.95
DM350 New Sinclarr 31/2 Digt	69.95
DM450 New Sinclair 41/2 Digit	99.95
(30Kv Probes 18.25. Marns adaptors 3.75. DM 235 ca	ase 8.85)
LM3A 3 Digit (Minature with large LED displays	98.00
LM3.5A 31/2 Digit Recharge Batts and charger 17 ranges	106.00
Lm40A 4 Oigit	210.00
LM 300 3-Oigit Minature battery operated 17 ranges	87.00
Lm 350 31/2-Digt with LCD displays $11 \mathrm{~A} / \mathrm{mV}$ resolution	98.00

MULTI-METERS - GENERAL PURPOSE 8. ELECTRONI Mult--Aange instruments featurinct $A C / O C$ volts. $D C$ current Resistance Ranges all with mirrar scale
 $\begin{array}{ll}\text { TM } 68 & \text { AC Micro voltmeter } 3 \mathrm{MHZ}>4 \mathrm{Megohm} \\ \text { 360TR } & \text { Bookivolt } \\ & \text { Broadbandvolimeter } 300 \mathrm{KHz}-400 \mathrm{MHz}\end{array}$
360TR
PROE $20 \mathrm{k} / \mathrm{volt}$ $708150 \mathrm{k} / \mathrm{volt}$ TmK500 $30 \mathrm{k} / \mathrm{volt}$ 880R $20 \mathrm{k} /$ volt
$720020 \mathrm{k} / \mathrm{volt}$ Micraso $20 \mathrm{k} / \mathrm{volt}$ $1 \mathrm{Mi}^{2} 220 \mathrm{k} / \mathrm{volt}$ LT22 $20 \mathrm{k} /$ volt
$\mathrm{T} 125 \mathrm{k} / \mathrm{volt}$ LT101 $\mathrm{lk} /$ volt 23 Range (plus transistor checker) Large scale 26 Range Large scale
36 Range Mult-meter
22 Range Multi-meter (plus Conininuity Buzzer)
52 Range Pocket Multi-meter
22 Range Oouble Multi-meter
26 Range Pocket Multi-meter
$\begin{array}{ll}\text { LT22 20k/volt } & 19 \text { Range Pocker Multi-meter w } \\ \text { T125k/volt } & 13 \text { Range Pocket Mult-meter } \\ \text { LT101 } 1 \mathrm{k} / \text { volt } & 12 \text { Range Pocker Multi-meter }\end{array}$
EM2000 FET IC VOM 20 Ranges 10 Meg Input
K200 FET VOM 38 Ranges
GT101, 20 K / Volt 23 Ran
AVO 8s and a large ra

TG152 Series RC Oscillators Sine/Squars output $3 \mathrm{~Hz}-300 \mathrm{KHz}$	
TG1520	75.00
TG152 Dm (with meter)	95.00
TG200 Series RC Oscillators	
Sine/ Square output $1 \mathrm{~Hz}^{\text {a }} 1 \mathrm{MHz}$	
TG2000	100.00
TG200 Dm (with meier)	121.00
TG 200 Dmp (Merei si Fina control)	125.00
TGEsA Digital Sine Wave Decade cata$02 \mathrm{~Hz}-1.22 \mathrm{MHz}$	control
	287.00
TE220 (audio) 4 bands Sine 20.20	000 $\mathrm{KHz}^{\text {c }}$
Square 20150 KHz .	65.00
TE200 (RF) 6 bands. $120 \mathrm{KHz}-500 \mathrm{MHz}^{2}$	
	57.00

CALL IN AND SEE FOR YOURSELF
AUDIO EIECTRONICS
301 EDGWARE RD., LONDON W2 1BN 01-724-3564. OPEN 9-6, MON-SAT.

DIGITAL DIAL

Most AM radio dials are pretty hopeless - especially portables and car radios. This application of our counter module can be a decided improvement.

WITH MODERN RADIOS which are designed to be operated anywhere in the world, the local station call signs are no longer marked on the dial. Instead the dial is marked with frequencies making it more universal. Unfortunately the scaling on many receivers leaves a little to be desired, with many car radios lucky to have 3 or 4 markings. The use of pushbutton selection helps but when a cassette is fitted or you are out of your local area there is still the problem of knowing to what station you are tuned.

This project gives a direct readout of the station being received allowing for easy identification and selection. The display is remote from the receiver allowing it to be mounted on the dashboard for easy viewing.

Design Features

This project is the first to employ our four digit module presented elsewhere in this issue. We will be using the module again over the next few months so don't lose track of it!

If this device is to be used outdoors i.e. in the car, it is recommended that high brightness displays, such as the Hewlett Packard HDSP 4133, be used. As these have a different pin-out a new display board is presented in this article.

The theory of operation is that we actually measure the frequency of the local oscillator in the radio and subtract the IF frequency. While we could have subtracted this using digital logic we chose to do it by resetting the display not to zero but to 9545 (10 000-455). The first 455 pulses in the timing period are then used getting to zero and in effect, only pulses after this are counted and displayed. This number can be loaded into the counter by

SPECIFICATION

Frequency range
Accuracy
Sensor
Power supply
Display
$500-1700 \mathrm{kHz}$
$\mp 5 \mathrm{kHz}$
pickup coil or direct connection
7-20VDC @ 80mA or 240VAC
4 digit LED
selecting the appropriate diodes and using the "load counter" input instead of the reset line. The only difference is that as the data is entered into the counter serially the pulse used must be longer than 4 times the internal oscillator period. Also as the LC input is a three state input it cannot be driven by conventional two-state.

Out of Tune

We initially tried capacitive coupling onto the tuning capacitor of our portable radio (oscillator section!) but the loading detuned the set too much. We then tried a pickup coil and found enough signal with it in the correct place not to require any electrical connection to the set. With .

HOW IT WORKS

A signal from the local oscillator in the uner is picked up either by a pickup coil or by direct connection to the set. It is then amplified by Q2-Q4 to give a square wave on the collector of Q4. The gain of this frequency of this signal will vary from round 1 MHz to about 2 MHz and this ignal is then frequency divided by 256 (2) IC4 This is used to clock the display module module.
o measure the frequency we have to count the number of these pulses for 256/ 1000 seconds (256 because we divided the nput by 256 and 1000 as we want a 1 kHz resolution). We used a 555 oscillator for the ime base and its output is also divided by 256 (by IC2). This improves the stability of the time base by averaging out any short term variations in the 555 frequency.
The output of IC2 is a symmetrical square wave and when the output goes low a 1.5 ms wide pulse is generated by R3, C3 and IC $3 / 1$. This is inverted by IC3/2 which turns Q1 on for the 1.5 ms period. Two 5V 2.5 V to ensure that the three level input will work.

This pulse "loads" 9545 into the counters in the display module). Counting now starts rom this number and after 455 pulses it is passing through zero. 256 ms after the load pulse ended the output of IC2 goes high. This resets IC4 back to zero, inhibits any further clocking via IC3/4 and opens the latches via the strobe line allowing the total in the counter to be displayed. 257.5 ms gain, the store is closed, the counter is once again preset to 9545 with the process starting again.
the car radio however the coils are shielded so well that reliable operation was not possible. However t was found that we could tap onto one side of the oscillator coil without affecting the operation.

We use a NE55 as the time base with its output being divided by 128 to improve stability. However if an accuracy of $\pm 5 \mathrm{kHz}$ is to be maintained its frequency has to be better than $1 / 4 \%$ and a polystyrene capacitor for C 1 and 2% resistors for R1 and R2 are recommended

Construction

The display board should be built according to the overlay in Fig. 4 which shows which diodes are required. Note that R1, 2 and $C 1$ are not used in the display module and a link is used in place of R1

The control card can now be assembled and wired to the display module. The two boards are
mounted one above the other using 9.6 mm spacers. Check that these screws do not touch any tracks and insulate them if too close

Depending on whether the unit is going to be used with a car radio or portable the values of C4 and C7 will vary. The pickup coil is made by winding about 80 turns of 0.25 mm enamelled wire onto a 25 mm long piece of 10 mm ferrite rod with the end terminated onto a twisted pair of plastic covered wires long enough to go between the radio and the position of the display. Do not use coaxial cable for this as the capacitance is too high

The case chosen has been left to the individual with our own being from a discarded digital clock. If you use the 240 V powered version be careful with the high voltage wiring For the 12 V version the power can come from the radio via a twisted lead (3 wires)

When connecting into a car radio, tune the set to a local station and try the pickup wire on the terminals of the tuning coils in turn until one is found which will give a reading without moving it off station.
Permanently connect to this point. With a portable radio try moving the pickup coil around the set, probably in line with the aerial coil, until the best results àre obtained.

Calibration

Place the pickup coil in position such that reliable operation is obtained and tune to a known station
(preferably near the top end of the dial). Now adjust RV1 until the digital dial agrees with that station. Check then with other stations

Alternatively feed a known signal of between 1 and 2 MHz from an oscillator into the input and adjust RV1 until it reads 455 less than that frequency.

Photo showing where we tapped into the car radio.

Right: full site foil patterns for the Digidial control board. Refer to the module article for details of those PCBs. Not shown here i.e. the two display boards and the third for high brightness seven segment types.

PARTS LIST

RESISTORS	all $1 / 2$ W, 5%	${ }^{\text {C7 }} 7$	33 u tantalum
R1	39k	C8	10 u 25 V electrolytic
R2	8k2	SEMICONDUCTORS	
R3	1 M		
R4, 11	10k	IC1	555
R5, 6, 9, 13	1 k	IC2	4520
R7, 8	47 k	IC3	4001
R10	2 M 2	IC4	4520
R12	220k	IC5 01	$\begin{aligned} & 7805 \\ & \text { BC558 } \end{aligned}$
POTENTIOMETER		Q2-Q4	BC548
RV1	5 k trimmer	D1	1N4004
CAPACITORS	47 n	MISCELLANEOUS - Transformer 240V-12V6, 150 mA	
C2	1 uO tantalum	- For 12 V operation delete transformer. For 240 V version C 7 should be 220 u 25 V . For use with pickup coil increase C4 to 1 nO .	
C3	2 n 2 polyester		
*C4	10 p ceramic		
C5, 6	10 n polyester		

STEVENSON Electronic Components

\author{

VEROBOARDS
 \begin{tabular}{lrcl}
Size in. \& $0.1 i n$. \& $0.15 i n$ \& Veropins -

2.5×1 \& $14 p$ \& $13 p$ \& single sided

2.5×3.75 \& $42 p$ \& $40 p$ \& per 100

2.5×5 \& $52 p$ \& $50 p$ \& 0.1 in $35 p$

3.75×5 \& $60 p$ \& $60 p$ \& 0.15 in $40 p$

3.75×17 \& $195 p$ \& $180 p$ \&

 TRANSFORMERS

PRIMARY 240 Volts

Code \& Secondary \&

A1 \& $6 \cdot 0 \cdot 6$ at $0.5 A$ \& $155 p$

A4 \& $9-0 \cdot 9$ at 0.4 A \& $155 p$

B1 \& $6-0-6$ at 1 A \& $205 p$

B4 \& $12-0.12$ at 0.5 A \& $205 p$

B8 \& $15 \cdot 0.15$ at 0.4 A \& $205 p$

C4 \& $9-0-9$ at 1.2 A \& $305 p$

C8 \& $12 \cdot 0-12$ at 1 A \& $305 p$

D12 \& $0-12-15-20-24-30$ at 1.5 A \& $395 p$

E12 \& $0-20-25-33-40-50$ at 2 A \& $525 p$
\end{tabular}

}

MINIATURE TRANSFORMERS

240 Volt Primary
Secondary rated at 100 mA Available with secondaries
of: 6-0.6.9.0-9 and $12 \cdot 0 \cdot 12.92 p$ each

CRYSTALS
WIRE ENDED TYPE
Freq. MHz

0.100	$380 p$	4.000	$250 p$	12.000	$250 p$
0.300	$380 p$	5.000	$250 p$	18.000	$300 p$
1.000	$320 p$	6.000	$250 p$	20.000	$300 p$
2.000	$320 p$	8.000	$250 p$	32.000	$300 p$
3.276	$250 p$	10.000	$250 p$	48.000	$300 p$

LOUDSPEAKERS

56 mm dia. 8 ohms 64 mm dia. 8 ohms 64 mm dia. 64 ohms 70 mm dia. .8 ohms 70 mm dia. 80 ohms

70p

100p
$110 p$

We now have an express telephone order service. We guarantee that all orders received before 5 pm . are shipped first class on that day. Contact our Sales Office now! Telephone: 01-464 2951/5770.

Quantity discounts on any mix TTL, CMOS, 74LS and Linear circuits: $25+10 \% .100+15 \%$. Prices VAT inc. Please add 30 p for carriage. All prices valid to 30th April 1979. Official orders welcome.

TRANSISTORS

				N1302	88p
AC127	17p	BCY71	14p	2N2905	22p
AC128	16 p	BCY72	14 p	2N2907	22p
AC176	18p	BD131	35p	2N3053	18p
AD161	38p	BD132	35p	2N3055	50p
AD162	38p	BD135	38p	2N3442	$1: 35 p$
BC107	8 p	BD139	35p	2N3702	8 p
BC108	8 p	80140	35p	2N3704	8 p
BC109	8 p	BF 2448	36p	2N3705	9 p
BC147	7 p	BFY50	$15 p$	2N3706	9 p
BC148	7 p	BFY51	$15 p$	2N3707	9 p
BC149	8 p	BFY52	$15 p$	2N3708	8 p
BC158	9 p	MJ2955	98p	2N3819	22p
BC177	14p	MPSA06	20p	2N3904	8 p
BC178	14p	MPSA56	20p	2N3905	8 p
BC179	14p	TIP-9C	60p	2N3906	8 p
BC182	10p	TIP30C	70p	2N4058	12p
BC182L	10p	TIP31C	65p	2N5457	32p
BC184	10p	TIP32C	80p	2N5458	30p
BC184L	10p	$2 T \times 107$	14 p	2N5459	32p
BC212	10p	2T×108	14p	2N5777	50p
${ }_{\text {BC }} \mathrm{BC} 21214$	10p				
BC214	10p		Di	ES	
BC214	10 p	1 N914	4 p	1N4148	3p
BC477	19p	1N4]01	4 p	1 N5401	13 p
BC478	19p	1N4002	4 p	1N5402	15p
BC479	19p	1 N4004	5 p	1 N5404	$16 p$
BC548	10p	1N4006	6 p	1 N5406	18p
BCY70	14p	BZY88 ser	series 2	to $33 \vee 8 p$ e	each
11	3	$\begin{aligned} & \text { A SEL } \\ & \text { DETAI } \end{aligned}$	$\begin{aligned} & \text { ECTI } \\ & \text { ILS I } \end{aligned}$	ONLY! CATALOG	GUE.
709	25p	LM324	50p	NE556	60F
741	22p	LM339	50p	NE565	120p
747	50p	LM330	75p	NE567	170F
748	30p	LM332	120p	SN76003	200
CA3046	55p	LM1330	150p	SN76013	140p
CA3080	70p	LM3900	50p	SN76023	140.
CA3130	90p	LM3909	60p	SN76033	200
CA3140	70p	MC1496	60p	TBA800	700.
LM301 AN	28p	MC1458	35p	TDA1022	650
LM318N	125p	NE555	25p	2N414	75p

OPTO

LEDs 0.125 in . 0.2 n
Red TIL209 TIL220 9p
Yellow TiL213 Til223 $\begin{array}{llll}\text { 13p }\end{array}$
DISPLAYS
DL704 0.3 in CC
DL707 0.3 in CA
130 p
GND500 0.5 in CC

RESISTORS

Carbon film resistor
E12 series. 4.7 ohms to 10 M . Any mix:
$0.25 W$ each $100+1000$
0.5 W
$1.5 p$
$1.9 p$
$1.2 p$
Special development packs consisting of 10 of each value from 4.7 ohms tc 1 Megohm (650 res.) 0.5W £7.50. 0.25W £5.70

CAPACITORS
 HERE ARE JUST A FEW OF THE

TANTALUM BEAD
$0.1,0.15,0.22,0.33,0.47,0.68,182.2 \mathrm{uF} @ 35 \mathrm{~V} 9 \mathrm{p}$ 4.7.6.8, 10uF @ 25V

22 @ $16 \mathrm{~V}, 47$ @ $6 \mathrm{~V}, 10 \mathrm{C}$ @ 3 V
MYLAR FILM
$0.001,0.01,0.022,0.033,0.047$
0.068, 0.1

RADIAL LEAD ELECTROLYTIC
$\begin{array}{llllll}63 \mathrm{~V} & 0.47 & 1.0 & 2.2 & 4.7 & 10\end{array}$

\qquad

		LS95	65p
		LS123	$\begin{aligned} & 65 p \\ & 56 p \end{aligned}$
		LS125	40p
		LS1 26	40p
LS00	16p	LS 132	60p
LS01	$16 p$	LS:136	36p
LS02	16p	LS138	54 p
LS03	16p	LS139	50p
LS04	16p	LS151	50p
LS08	16p	LS153	50p
LSIO	16p	LS155	80p
LS13	30p	LS156	$80 p$
LS14	70p	LS157	$45 p$
LS20	16p	LS164	90p
LS30	$16 p$	LS174	60p
LS32	24p	LS175	60p
LS37	26p	LS190	80p
LS40	22p	LS192	70p
LS42	53p	LS193	70p
LS47	70p	LS196	80p
LS48	48p	LS251	60p
LS54	16 p	LS257	55p
LS73	29p)	LS258	55p
LS74	29p	LS266	40p
LS75	44p	-S283	60p
LS76	35p	LS290	55p
LS78	35p	LS365	45p
LS83	60p	LS366	45p
LS85	70p	LS367	45p
LS86	33p	LS368	45p
LS90	45p	LS386	35p
LS93	45p	LS670	180p

TIL

		7496	$50 p$
7400	$12 p$	74121	$25 p$
7401	$12 p$	74122	$33 p$
7442	$12 p$	74123	$40 p$
7404	$12 p$	74125	$35 p$
7408	$14 p$	74126	$35 p$
7410	$12 p$	74132	$50 p$
7413	$25 p$	74141	$56 p$
7414	$48 p$	74148	$90 p$
7420	$12 p$	74150	$70 p$
7427	$24 p$	74151	$50 p$
7430	$12 p$	74156	$52 p$
7442	$43 p$	74157	$52 p$
7447	$55 p$	74164	$70 p$
7448	$58 p$	74165	$70 p$
7454	$14 p$	74170	$125 p$
7473	$25 p$	74174	$68 p$
7474	$25 p$	74177	$58 p$
7475	$32 p$	74190	$72 p$
7476	$28 p$	74191	$72 p$
7485	$70 p$	74192	$64 p$
7489	$145 p$	74193	$64 p$
7490	$32 p$	74196	$55 p$
7492	$35 p$	74197	$55 p$

cmos

FULL DETAILS
in Catalogue
4029 60p

		4040	$68 p$
4001	$1.5 p$	4042	$54 p$
4002	$15 p$	4046	$100 p$
4007	$15 p$	4049	$28 p$
4011	$15 p$	4050	$28 p$
4013	$35 p$	4066	$40 p$
4015	$60 p$	4068	$20 p$
4016	$35 p$	4069	$16 p$
4017	$55 p$	4071	$16 p$
4018	$65 p$	4075	$16 p$
4023	$15 p$	4093	$48 p$
4024	$45 p$	4510	$70 p$
4026	$95 p$	4511	$70 p$
4027	$35 p$	4518	$70 p$
4028	$52 p$	4520	$65 p$

SKTS

委

101
9p
16p
$3 p$
$4 p$ $5 p$ 8 pin protile by Texas 8 pin $\quad 10 \mathrm{p} \quad 24$ pin 24 p 16 pin $\quad 13 \mathrm{p} \quad 40 \mathrm{pin} \quad 40 \mathrm{p}$ Soldercon pins: 100: 50p AT LAST! OUR NEW 40 PAGE CATALOGUE OF COMPON ENTS IS avaliable 0 send s.a.E.

Mail orders to: STEVENSON (Dept ET)

for the $\mathbb{D} \cdot \cdot \mathrm{Y}$ man who requires a stereo unit at a budget price. comprising ready assembled stereo amp. module. Garrard autof manual deck with cueing device, pre cut and finished cabinet work Outpur 4 watts per channel, phones socket and record/replay sockel including 2 SPHEFICAL HIFI speakers. $\mathbf{E 1 9 . 9 5}$ p\&p 8.05

BARGAINS FOR PERSONAL SHOPPERS

6 watts outpur Battereo VHF
$£ 69.95$

£2.50
BSR Record auto deck on plinth m
stereo carridge ready wired.
£11.95
stainless steel finish
£5.95
stainless steel finish
$f 6.95$
CO 8 Function CHRONOGRAPH men's digital f13.95
POCXET CALCULAT
£2.95
AM/FM DIGITAL CLOCK RADIO Accurate 4 Digit display. Buzzer and snoore timer.
f 11.95
125 Wor Pome, Amp Mosule
unit.
MUSIC CEWTRE CABIWET with hinged smake
acryic lop, inimished in natural teak veneers.
x x 5
OECCA OC 1000 Stereo Cassette P.C.B. complete with smitch oscillator coils and tape heads.
DECCA 20w Stereo speaker kót compnsing
$28^{\prime \prime}$ approx. bass units $\geqslant 231 /{ }^{\prime \prime}$ approx.
weeter inc. crossovers
£20.00
PORTABLE RADIO/CASSETIE RECOROER. AM/FM with LW. MW, SW, VHF mains/battery operation.
C41.95
7" TAPE TRANSPORT Mechanism-a selection
f8.95

 TUWER
Ready built Oesigned in a lim form for compa
heady buin. Oe signed in a slim form for compact, modern installation
Push Buttons for Gram, Tape. VHF. MW. LW and 5 button rotary selection switch.
Power Output 5 watts per channel Sine at 2% THD into 150 hm watts speech and music
Tape Sonsitivity Playback $400 \mathrm{mV} / 30 \mathrm{~K}$ OHM for max output Record FM signal Frequency Range (Audio) 50 Hz to 17 KHz within $\pm 1 \mathrm{~dB}$ Aadio FM sensitivity for $30 B$ below limiting better than $\cdot 10$ UV AM sensitivity for 20 dB S/N MW $350 \mathrm{uV} /$ Metre $\mathrm{LW} 1 \mathrm{mV} /$ Metre Size approx tength $16^{\prime \prime} \times$ height $2 y^{\prime \prime} \times$ ingth $^{2} 44^{\prime \prime}$ 240 Volts AC Complete with Circuit diagram.

Mullard AUDIOMODULESIN BARGAIN PACKS CURRENT Catalogue PRICE \& atover PER PACK SEEOURPRICES

PACK $1.2 \times$ LP 1173 10w. RMS output power audio amp modules, +1 LP1182/2 Stereo pre amp for
ceramic and auxiliary inout \|lus.

PACK $2.2 \times$ LP1173 10w. RMS output power audio amp modules +1 tP1184/2. Stereo pre amp for magnetic, ceramic and auxiliary inputs

$$
\underset{\substack{\text { OUR PRICE } \\ p+p E 1.00}}{57.45}
$$ PACK $3.1 \times$ LP1 119/2FM Tuning head with AM gang. $1 \times$ LP $1165 /$ AM/FM IF module. $2 \times$ LP $1173 / 10 \mathrm{w}$. RMS ourput power audio amp modules +1 LP $9182 / 2$ Stereo pre amp for ceramic and auxiliary input.

ACCESSORIES
Suitable power supply parts including no Recommended set of comprising BASS, TREBLE. vOLUME and BALANCE
$p+p 50 p 95 p$

3

20×20 WATT STEREO AMPLIFIER Viscount IV unit in teak finished cabinet. Silver fascia with aluminium rotary controls/pushbuttons, red mains indicator and stereo jack socket. Functions switch for mic. magnetic and crystal pickups OIN speaker and input sockets plus fuse 20×20 watts RMS 40×40 watts peak. For use with 8 to 15 ohm
$£ 29.90$
SPECIAL OFFER
FOR PERSONAL SHOPPERS ONLY
FREE 4 dimensional stereo sound adaptor, when purchasing the 20×20 Viscount amplifief
30×30 WATT AMPLIFIER IN KIT FORM facilities as Viscount IV, but with 30×30 output 60×60 watts peak. For use with 4.15 ohms speakers. $\mathbf{f} 23.00$ withoutcabinet. $£ 29.00$ complete with cabinet. p\&p $f 2.50$ in each case.
$\mathbf{f 2 3 . 0 0}{ }^{+} \mathbf{f 2 . 5 0}$ (NOTE Cabinet not $\quad \mathbf{£ 2 9 . 0 0}{ }_{〔 2.50}^{+p \& p}$ without cabinet. ${ }^{p \& p}$ available separately.) complete with cabinet sectal Offen
complete 30×30 WATT AMPLIFIER IN KIT with case WITH SPEAKERS
bass wooters with cropped size 14.000 weeters and crossovers.
whand handling $+3 / \mathrm{c}^{\prime \prime}$ approx.

BUILT AND READY TO PLAY $£ 49.00$ pap 14.00
30×30 Viscount. Available fully buils and tested. -pap 12.5

BARGAIN
 PORTABLE

 OISCO CONSOLEwith buik-in pro-amp

BSR MP 60 troe auro-return, singie play protessional secies record decks Plis all the controls and features you need to give fabulous disco.pertormances Simple connects imto your existing slave or external amplifier.
 50 watts ims. 100 watts peak ounpur. Big leatures include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches, Independent bass and treble conitrols and master volume. SPECIAL OF FEA. The above 50 watt amp plus 4 Goodmans Type 8P. 8" speakers. Package price $£ 45.00+f 4.00 \mathrm{P} \$ \mathrm{P}$

$70 \& 100$ WATT

 MONO DISCSize approx.
$14^{\prime \prime} \times 4^{-} \times 10$

Brushed alumimum

lascid and rotary controls.

five vertical slide coptiols mastervolume Ferl No (PFL) lets YOU hear next disc before fading 140 wail peat 57 it in. VU meter montiols output level. p \& p 4.00 Output 100 watts RMS 200 watts peak. 100 watt $£ 65$ STEREO CASSETTE
TAPE DECK ASSEMBLY Consisting of seady built tape
ransport sysiem/mechanism nated to the electronics Unil is ready buitt for in-
stalling into cabinet ol
pause control, solenoid assisted
deven balanced ly wheel by OC motor
 Track-2 chamel stereo record play-back Tape speed $4.8 \mathrm{~cm} / \mathrm{sec}$ F response 50.1200 Hz signal to noise ratio 42 dBB Recording system AC bias Erasing system AC erase Bias Iteq. 57 KHz Compatible for both normal and chrome dioxide tapes. Size of mech anism only $4 /^{\prime \prime} \times 6 \%^{\prime \prime} \times 11 /{ }^{\prime \prime}$ " approx
 Opt artas Mains wanstornes to she $\mathbf{~} 5.50$ ITP

323 EDGWARE ROAD. LONOON W2 21E HIGH STREET, ACTON W3 6NG All items subject to availability. Price correct al 1.11.78 and subject to change without notice

SPECIALS

$75 p+25 p$ P\&P
Comprised entirely of new material. the edition covers such diverse subjects as Star Wars and hi-fi! The magazine contains projects for everyone - none of which have appeared he future or MPUs. Audio, Calculators and Video. How can you not read it?

£3.00 + 25p P\&P

This book is rather an unusual reprint from the pages of ETI. The series appeared a couple of years ago in the magazine. and was so highly thought of by the University of New England that they have re-published the series
 CIRCUITS No2

£1.50

Each volume contains over 150 circuits, mainly draw from the best of our Tech-Tips. The circuits are indexed which gives transistor specs and plenty of other useful dat a.
Sales of this pubication have been phenomenal - hardly surprising when the circuits cost under ip each' Each volume costs.

$$
£ 1.50+25 p \mathrm{P} \& \mathrm{P}
$$

ETI's successful beginners series came to an end some time ago now, and the whole series is available from us in reprint form. The three books between them contain all more detail!) and together form an excellent starting point for anyone interested in learning the art of electronics. Each volume costs
$£ 1.20+25 p$ P\&P
splendidy for use as a standard textbook. Written by peter Sydenham ME Ph D M Inst MC F IIC A bis publication covers practically every type of transducer and deals with equipment and techniques not covered in any other book. Enquiries from educational authorities universities and colleges for bulk supply of this publica tion are welcomed. These should be addressed to H. W Moorshead Ẽditor. Hobby Electronics.

HOW TO ORDER

Postage and packing also refers to overseas. Send remittance in sterling only.

Specials

Modmags Ltd
25-27 Oxford Sireet
London W1R 1RF
Please mark the back of your cheque or PO with vour name and address
Please supply me with the following Specials:

SINCLAIR PRODUCTS *
Microvision TV E172. POM35 £27.25. Mains
adaptor $\mathrm{E3.24.24}$. Case £3.25.30kv probe £18.95
OM 235 E48.30. Rechargeable battery Adaptor/ harger $£ 3.70$ Case $\mathrm{C8} .50$. 30 kv probe 18.95. Cambridge prog calculator E13.15. Prog ibrary $\in 3.45$ Mains adaptor

S-DECS AND T-DECS *
S-Dec E3.17. T-DeC $£ 4.02$. u-DeCA E4. 40 . u-DeCB
E7.05 16 dil or 10 TO5 adaptors with sockets $£ 214$.

CONTINENTAL SPECIALITIES
PRDDUCTS*
EXP 300 ¢6.21. EXP350 €3.40. EXP600 £6. 80 EXP650 £3.89. EXP4B £2.48. PB6 £9.94. P8100

TV GAMES
Send sae for dala. Ay-3-8500 + economy kit $£ 895$ E7.05. Stunt cycle AY-3.8760 chip $£ 6.90$ economy kit $£ 5.60$. 10 game paddle 2 chp AY-3
$8600+$ economy kit E12.50. Racing car chip AV 3.8603 + economy kit $£ 19.95$. Moditied shoo kıt
£ 7.50 .96

MAINS TRANSFORMERS

 50 mia 74 p . 100 ma 90 p . $1 \mathrm{a} \varepsilon 249$. $13 \mathrm{~V} 1 / 2 \mathrm{a} 95 \mathrm{p}$

IC12. JC20 AND JC40 AMPLIFIERS
with Iree data and printed circuits. JC1 26 watts £1. 60. JC20 10 watts $£ 2.95$. JC40 20 watts $£ 3.95$ Send sae tor tee data on our range of matching

FERRANTI ZN414
ic radio chip $£ 1$ O5 Exira parts and pcb for radio
€ 3.85 Case $£ 1$ Send sae for free data

PRINTED CIRCUIT MATERIALS
sq ins. pcb 55p 1 tb FeCl ci 05 Etch resist pen economy 45 p . dalo 73 p SmaH drill birs $1 / 32$ ins or
1 mm 20 p each Etching dish 68 p Laminate cutter

BATTERY ELIMINATORS
 300 ma $£ 2.95$. 100 ma radio types with press-stud connectors $9 v £ 3.35 .6 v £ 3.35 .41 / 2 v £ 3.35,9+9 \mathrm{v}$
$£ 4.50,6+6 \mathrm{v} £ 4.50,41 / 2+41 / 2 v £ 4.50$ Cassette recorder mains unit $71 / 2 v$ 100ma with 5 -pin din plug 3.35. Fully stabilised type $3 / 6 / 71 / 2 / 9 \mathrm{v} 400 \mathrm{ma}$ E6 40. Car convertors 12 v de input, output 9 y
300 ma ह1. 50 , output $7 / 2 \mathrm{v} 300 \mathrm{ma}$ ह1. 50 . Output /4 / / / $/ 6 / 71 / 2 / 9 / 12 v 800 \mathrm{ma}$ \& 2.50

BATTERY ELIMINATOR KITS

 Cassetie type $71 / 2 \mathrm{~V} 100 \mathrm{ma}$ din plug $\varepsilon 1.80$ Heavy duty 13 -way types $41 / / 6 / 7 / B 1 / 1 / 11 / 13 /$
$14 / 1 / 21 / 25 / 28 / 34 / 42 \% / A E 465 / 2 A E 725$

 Car convertor 1
stabilized
\& 195

BI-PAK AUDIO MODULES
$\begin{array}{llll}\text { Send sae tor data. S450 E23.51. AL60 £4.86. } \\ \text { PA } 100 \mathrm{E} 16.71 \text { SPM80 } 44.47 \text { BMT80 } & \text { \&5.95. }\end{array}$ MK60 £38.74. Stereo 30 £20 12

COMPONENTS
N4148 $1.4 p$. $1 \mathrm{NAOO2} 3.6 \mathrm{p} .7418$ dil 15 p
NE 5558 dil 23 p . BC 182 B . BC 1838 . BC 1848 NE555 8 dil 23 p BC 182 BC BC1838, BC1848.
BC212B, BC213B. BC2 14 C . BC547, BC548.
 T\{P41C, T1P42C 37p. 80131, BO132 26p. Plastics
equivs. BC107. BC109. BCY71. BCY724.8p. Fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ Canridge $5,1,2,3,5 \mathrm{Amp}$ quick. 10 R to 10 M 1 p . 0.8 p for $50+$ of one value
Polyester capacitors $250 \mathrm{~V} \quad 015$, O6B. 1 mt , 5 p
 10000 pt 3p. Ceramic capacitors 50 V E12 22 to
10 1000 pt 1.7 p . E6, in 5 to 47 n 2 p . Electrolytic
 Zeners 400 mw E24 $2 v 7$ to 33 V 7 p Preset pots
sub-miniature 1.1 Whoriz or vert 100 to 4 M 76.8 p
Potentiometers $1 / 4 \mathrm{~W} 4 \mathrm{~K} 7$ to $2 \mathrm{M} 2 \log$ of lin single Potentiometers

SWANLEY ELECTRONICS
Mart order only. Please add 30 p to the total cost of order for postage. Prices include
deduct 7% on items marked *and 11% on others. Official credit orders welcome

NO DISCO SYSTEM IS COMPLIE WIHHOUT...

CITRONIC MM 313 MIXER
deal for the DIY enthusiast building up a complete disco via phono sockets at rear. Bargain price. including_PS £80.46 inc VAT P\&P £1.50|

BULGIN OCTAL PLUGS
AND SOCKETS
There's always hufidreds of Bulgin
Octal multiway plugs and sockets in stock at
Roger Squire's Each pin rated 6A. Perfect to
 our Sound to Light 5ystem P552 SOCKET C0.65 (P\&P 35p) P551 PLUG £ 1.84 (P\&P 35p) Carriage on 10 or more nominat $£ 1.00$ Also availabl

6 -way multicore cable (6 Amps per core) ex stock.
 A BARGAIN AT £40.50 (P\&P E1 00

PLUS MANY DISCO ACCESSORIES

2) STARLITE 250 An exclusive new line an exciusive new line
to Roger Squire's Disco re Roger Squire $\$$ Disco
res. Superb high powered cooled. accepts wide range of multifec atlachments. Unique connection slot for E70 1+P\&P]
 attach at discount prices.

Roger Sovires disco gzar

Send Mail Orders to: Roger Snuiles's Mail Orders. Barnet Trading Estate, Park Road, Barnet, Herts EN5 5SA
$01-4413527$ (Hotline) 01.441 1919 (Switchboard) Dpen Mon. Fri 9.5 .30
Personal callers: ROGER SOUIRE'S OISCO CENTRES
LOHDON: 175 Junclicn Road. Tulwell Park N19 500. 01-272 7474

DATA SHEETS EXPLAINED

The data sheets which we publish regularly are very popular, but from time to time we receive requests for a fairly simple explanation of the terms and abbreviations which one finds in semiconductor device data sheets, and so here it is!

THE INFORMATION contained in semiconductor device data sheets is often grossly misunderstood. Great care must be taken to ensure that the exact meaning of a term or abbreviation is clear. As an example, we can quote the following conversation which actually occurred between two people who should both have known better.

A representative of a semiconductor distributor was showing data on a new power device to a lecturer. The lecturer said that the device data was wrong, since the maximum collector current was quoted as 12 A and the maximum collector-emitter voltage ($\mathrm{V}_{\text {CEO }}$) as 80 V ; this is a power level of $12 \times 80=960 \mathrm{~W}$, but the maximum permissible dissipation quoted in the data sheet is only 90 W . The representative could provide no answer!

The data was, of course, perfectly correct. The problem arose because neither of the people concerned had appreciated the exact meaning of $\mathrm{V}_{\text {CEO }}$ which signifies the collector-emitter voltage with the base open circuited. Under these conditions (with zero base current) the collector current will be very small and the power dissipation in the transistor will also be quite small Thus there is a great deal of difference between $V_{C E}$ (the collector-emitter voltage under any conditions) and $\mathrm{V}_{\mathrm{CEO}}$ (the collector-emitter voltage with the base open circuited). If still more information is required, one must look into the SOAR (Safe Operating ARea) graph to ascertain the regions of the collector voltage/collector current curve where the device can be safely operated for limited or unlimited times

This is a very simple example of the pitfalls one can encounter if one does not really understand the exact meanings of the terms and abbreviations used in data sheets. Such misunderstandings are very common, but not (we hope!) amongst the devices covered in our data sheets. since it is equally important that our readers understand the exact meanings of abbreviations used in data sheets on relatively simple devices such as ordinary diodes and transistors.

Letter Symbols

Three of the most important symbols used in semi-conductor device data sheets are V, I and P for voltage, current and power respectively. Various subscripts are added to these three letters to indicate the electrode(s) to which the symbol is being applied and possibly certain circuit conditions. Some of the most commonly used subscripts are listed below.

A	anode
AV	average
B.	base
BO	breakover
BR	breakdown
C	collector
D	drain or delay
E	emitter
F	forward
G	gate
H	holding
I	input
J	junction
K	cathode
M	peak value of a quantity
O	open circuit or output

R reverse or repetitive.
S source, short circuit, series or shield in the on state (that is, triggered) working specified circuit impedance

Order of subscripts

In most cases more than one subscript is needed; the subscripts are usually placed in a definite order governed by the following rules:
The first subscript indicates the electrode at which the current or voltage is measured.
The second subscript denotes the reference terminal or circuit mode. (This subscript is often omitted if it is felt no ambiguity will arise.)
The letter O may be used as a third subscript to show that the electrode not indicated by any previous subscript is open circuited. Similarly the letter S can be used as a third subscript to show the third electrode is shorted to the reference electrode of the second subscript, whilst the letter R as a third subscript indicates that a specified resistance is connected between the third electrode and the reference electrode.
The supply voltage to a collector is indicated as V_{cc}, the second suffix being a repetition of the first in the case of supply voltages. Similarly, one often meets the symbol $V_{D O}$ for the positive supply to a CMOS (or COS/MOS) device, this being the supply to the drain. The negative supply to CMOS devices is normally represented by the symbol $\mathrm{V}_{\text {ss }}$.

It should now be clear why $\mathrm{V}_{\text {ceo }}$ is the steady collector emitter voltage with the base open circuited. Similarly $I_{\text {CER }}$ is the collector cut off current with a specified resistance between the base and emitter. It is current with the base and emitter joined, since either the base or emitter can be used as the reference electrode without any change when they are joined.

The parameters of individual devices vary from one device to another of the same type number. The typical value of a parameter such as transistor current gain is often quoted in data sheets by the abbreviation 'typ' after the quantity, but minimum and maximum values are also often quoted. In economical devices no maximum and minimum values may be quoted. In the case of breakdown voltages the minimum value applicable to any device of that type number is usually quoted so that the circuit designer knows that he can apply that value of voltage without danger of the device junction breaking down.

The above discussion gives the general principles of the way in which the symbols for various parameters are chosen. It is not complete, since we have not yet covered such items as current gain of a transistor or thermal characteristics of a device. However, these and other quantities will be covered in the following tables.

Thermal characteristics

The symbols used for the following thermal quantities apply to all types of semiconductor device.
$P_{\text {tot }}$ total power dissipated within the device
$\boldsymbol{T}_{\text {amb }}$ ambient temperature
$\boldsymbol{T}_{\mathbf{c}}^{\text {amb }}$ temperature of the case of the device
temperature of the case of the device
temperature of the junction in the semiconductor material
$\mathbf{T}_{\mathbf{m b}}$ temperature of the mounting base of the device ($=\mathrm{T}_{\mathrm{c}}$)
thermal resistance of heat sink. (Units. "C/W) contact thermal resistance between the case of the device and the heat sink
junction to ambient thermal resistance junction to case thermal resistance

Symbols used mainly with diodes

```
C. diode capacitance with reverse bias
C. diode capacitance with forward bias \(^{\text {. }}\) dithe
\(C_{\text {j }}\) capacitance of the junction itself
\(C_{\text {min }}\) um capacita breakdown voltage)
Co diode capacitance at zero bias
\(f_{c \infty}\) cut off frequency of a varactor diode
\(\mathrm{I}_{\mathrm{F}}^{\infty}\) total dc forward current
i \(_{f}\) instantaneous forward current
\(I_{f(a v)}\) average forward current
IFM
\(I_{\text {FRM }}\)
\(I_{\text {FsM }}\)
\(I_{n} \quad\) continuous reverse leakage current
\(\mathbf{i}_{R} \quad\) instantaneous reverse leakage current
IR \(_{\text {R }}\)
Insm
\(\mathrm{I}_{\mathrm{z}}\)
\(t_{0}\) turn on time peak curren turn on time
turn off time
rise time
reverse recovery time
storage time
steady forward voltage
instantaneous forward voltage
steady reverse voltage
instantaneous value of the reverse voltage peak reverse voltage
repetitive peak reverse voltage
\(\mathbf{V}_{\text {Rem }}\) non-repetitive peak reverse voltage (on surges
\(\mathbf{V}_{\mathbf{z}}\) zener diode working voltage
```


Symbols used mainly with transistors

collector cut off current with a specified value of
resistance between the base and the emitter
emitter cut off current with the collector open circuited
base-emitter şaturation voltage
breakdown voltage
collector to base breakdown voltage with emitter open circuited
$\mathbf{V}_{\text {(sh)ceo }}$ collector to emitter breakdown voltage with base open circuited
$V_{c=} \quad$ collector-base voltage
$V_{c s o} \quad$ collector to base voltage with emitter open circuited
$V_{\text {cc }} \quad$ collector supply voltage
$\mathbf{V}_{\mathbf{C E}}$ collector to emitter voltage
$\mathbf{V}_{\text {ceo }} \quad$ collector to emitter voltage with base open circuited
$\mathbf{V}_{\mathrm{ca}} \quad$ collector to emitter rms voltage
$\mathbf{V}_{\text {ce(sat) }}$ collector to emitter saturation voltage
$\mathbf{V}_{\text {es }}$ emitter-base voltage
$V_{\text {eso }}$ emitter-base voltage with collector open circuited
Vob emitter-base rms voltage

Symbols used mainly with FETS

I_{G} steady gate current
\mathbf{I}_{5} steady source current
Steady value of the drain current
steady value of the drain current with the gate connected to the source
peak drain current
drain to source (or channel) resistance
steady drain to source voltage
steady gate to source voltage

Symbols used mainly with thyristors

repetitive peak forward current.
non-repetitive peak (surge) curren
gate current which does not trigger the device
gate trigger current
gate turn off current
holding current required to maintain conduction
steady reverse leakage current
reverse gate current
repetitive peak reverse current
non-repetitive peak reverse current (in surge conditions)
steady anode-cathode 'ON' state current
gate power
gate controlled turn-on time
gate controlled turn-off time
breakover voltage
continuous off state voltage
forward gate voltage
gate trigger voltage
steady reverse voltage

Operational amplifier terms

Bandwidth, $\Delta \mathbf{f}$. The frequency at which the gain falls by a factor of 0.7 relative to the gain at low frequencies.

Common mode rejection ratio, CMMR. The gain when a signal is applied to one of the inputs of the amplifier divided by the gain when the signal is applied to both the inverting and non-inverting inputs. It is usually expressed in dB
Frequency compensation. An operational amplifier requires a capacitor to enable it to be used in circuits which are stable over a wide frequency range. Internally compensated operational amplifiers have this capacitor fabricated on the silicon chip, but an external capacitor must be used with other types of operational amplifier which do not contain an internal capacitor.

Input bias current, $I_{\text {bias }}$. The mean value of the currents at the two inputs of an operational amplifier
Input offset current, $I_{\text {os }}$. The difference in the two currents to the inputs of an operational amplifier. Normally much smaller than the input bias current
Input offset voltage, $\mathbf{v}_{\text {os }}$. The voltage which must be applied between the two input terminals to obtain zero voltage at the output
Open loop voltage gain, $\mathbf{A}_{\text {vol }}$. The amplifier gain with no feedback applied
Output resistance, \mathbf{R}_{o}. The small signal resistance seen at the output when the output voltage is near zero

Voltage regulator terms

Dropout voltage, $V_{\text {Do }}$. When the difference between the input and output voltages falls down below the dropout voltage, the device ceases to provide regulation
Foldback current limiting. In regulators with foldback current limiting, the current will 'fold back' to a fairly small value when the output is shorted
Line regulation. The change in the output voltage for a specified change in the input voltage
Load regulation. The change in output voltage for a change in the load current at a constant chip temperature
Quiescent current, $I_{\mathbf{a}}$. The current taken by the regulator device when it is not delivering any output current
Ripple rejection. The ratio of the peak-to-peak ripple at the input of the regulator to that at the output. Normally expressed in dB

Monolithic timer terms

Comparator input current. The mean current flowing in the comparator input connection during a timing cycle
riming capacitor, $\mathbf{C}_{\mathbf{r}}$. This capacitor is normally connected between the comparator input and ground. The time taken for it to charge controls the delay time
Timing resistor, $\mathbf{R}_{\mathbf{t}}$. This is the resistor through which the timing capacitor charges
Trigger current. The current flowing in the trigger input connection, at the specified trigger voltage
Trigger voltage. The voltage required at the trigger pin to initiate a timing cycle

Conclusions

Data sheets must be used intelligently and with much thought Information on the conditions under which an entry in the data sheet is applicable is often stated in small print, but is of greast importance. Data should always be thoroughly studied before a device is used for the first time, only then will you be able to fully understand the potential applications of the device.

Thus i_{E} is the instantaneous value of the total emitter current, i_{e} the instantaneous value of the alternating component of the emitter current, and $\mathrm{I}_{\mathrm{E}(A)}$ the average (DC) value of the total emitter current. Other subscripts can be used in a similar way, i_{F} being the forward $D \vec{C}$ current with no signal, i_{F} the instantaneous forward current and I_{FM} the peak forward current

ET

Rapitupe di pane

GOOD AND PROPER!

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that.

The transters are casily rubbed down. and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Lach sheet measures 180 mm X 240 mm and comes packed flat in a stiff cardboard envelope for protection. There sliould be enough for dozens of projects here - and the longer you wait the worse they'll look!

Send E1.75 fincludes VAT and postage) for the two sheet set to:
Panel Markings ETI magazine, 25-27 0xford Street. London WIR IRF.

Understanding Digital Electronics New teach-yourself courses
 In the years ahead the products of digital electronics technology will play

Design of digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates. NOT, exlusive OR. NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables: De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and tull adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organisation; character representation; program storage; address modes; input/ output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing

Digital Computer Logic and "Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer. executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems: AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates: R-S and J-K flip flops; binary counters, shift registers and half adders.

CAMBRIDGE LEARNING ENTERPRISES, UNIT I, RIVERMILL SITE,

FREEPOST. ST. IVES, HUNTINGDON, CAMBS. PE17 48R, ENGLAND
TELEPHONE: ST. IVES (0480) 67446
PROPRIETORS: DRAYRIDGE LTD. RËG. OFFICE: RIVERMILL
LODGE, ST IVES
REGD. IN ENGLAND No. 1328762
an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consúmption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.
These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being, faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece: of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of
Digital Systems cost only:

And the four volumes of
Digital Computer Logic and
Electronics cost only:

But if you buy both courses,
the total cost is only:

Price includes surface mail anywhere in the world - Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT

safety'procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.
E2.95 $\quad+45$ pand 2 porpacking by surface extra.

gúariantee

If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, Unit 1 Rivermill Site.
Freepost, St. Ives, Huntingdon, Cambs. PE1 7 4BR
England.
Please send me the following books
sets Digital Computer Logic \& Electronics @ £5.50. p \& p included
sets Design of Digital Systems @ £9.00, p. \& p. included
Combined sets @ £13.00, p \& p included
The Algorithm Writer's guide @ £3.40.p \& p included

Name

Address

I enclose a cheque/PO payable to Cambridge Learning Enterprises for $£$
Please charge my *Access/Barclaycard/Visa/Eurocard/ Mastercharge / İnterbank account number
Signature
-deleted as appropriate Telephone orders from credit card holders accepted on 0480 67446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

Hobby

Electronics

4-Channel Equaliser

A fully-fledged graphic equaliser with four bands, allowing you to adjust the response of your Hi -Fi to suit the room it's in! Alternatively, this unit can be used as a really sophisticated tone control. This project was designed by a professional audio consultant especially for HE. We think it'II be a winner!

||||||||||||||||||||||||||||||||||||||

Viewdata

One of the most exciting developments in modern TV technology is the advent of data transmission and display. Viewdata is Britain's answer to advances which could mean shopping from the home, a computer terminal in every room or even the abolition of commuting!

Slave Flash

Using one flash gun is fairly straightforward - but how do you use two or more simultaneously?

||

Touch Switch

A switch with no moving parts! Just touch it and turn on the lights, motors or whatever turns you on. By the way, the above photo is not an illustration of the switch in action, but one of our staff having a bright idea.

Holograms

Following on from the LASER article in this issue, we look into (!) holograms - what are they, how are they made and what use are they. This is a fascinating topic and one which is sure to make a big impact on all our lives in the future.

Project Daedalus

The British Interplanetary Society has just published a report which shows that interstellar flight by an un-manned vehicle is possible with modern technology. The report is nearly 200 pages of detailed drawings, calculations and specifications. We examine it clearly in detail.

BASIC Programming

If you've ever wondered exactly what's involved in programming a computer, then this is for you. We look at BASIC - one of the most popular computer languages - and see what it's all about. This article will require no previous knowledge and will be much more than an introduction to the subject.
||||||||||||||||||||||||||||||||||
Variwiper

Ever been driving in one of those horrible drizzles which is too fine for the wipers to work properly? This circuit makes them repeat one sweep at pre-set time intervals - ideal for those conditions.

January issue will be on sale on December 8th

[^2]
TEMP STABILISED

LOG CONVERTER

This design can be set up for either logarithmic or exponential operation and incorporates a neat heater circuit for temperature stability.

IN THE CONVENTIONAL musical scale, consecutive notes are not separated by the same frequency, but by the same ratio - the twelfth root of two. This is quite acceptable for most musical instrument manufacturers, except that in electronic music equipment it is easier to make oscillators which have an accurately linear
frequency/control voltage characteristic. The keyboards of most music synthesizers give an output voltage of 1 V for each octave on the keyboard. This can easily be generated by a set of equal resistors between the contacts on each key and a voltage applied to each end (normally 5 V). However this means the oscillator is required to have an exponential frequency/control voltage response.

Trouble

This is where the trouble usually starts. An exponential converter is normally used which relies for its operation on the relationship between current and voltage in a silicon diode or transistor. However, unless temperature stabilisation is used the oscillator will not stay in tune for very long. With this unit the transistor used is heated to around $55^{\circ} \mathrm{C}$ and stabilised at this temperature, eliminating the problem of thermal drift.

In the instrumentation field a lot of functions are displayed in dBs which are a logarithmic measurement. As this unit can be connected in either exp or log modes it is useful for this purpose also.
As the unit will normally be used with some other equipment, we have not described any mechanical housing.

Below: the circuit diagram of the converter section. One channel only is shown here, the second - identical - uses the even components numbers. Above: the oven circuitry.

The photo on the left shows the complete unit with the oven top removed to show IC5. Link 1 is made from a couple of valve socket pins in this prototype.

HOW IT WORKS

This unit relies on the fact that the collector current of a transistor is exponentially related to the base voltage.
In the log mode the collector of the transistor is linked back to the input of ICl. In this way the collector current is proportional to the input voltage and therefore the voltage on its emitter is logarithmically related to the input viltage. This voltage is then amplified and level shifted by IC3 to give the desired output.

In the exponential mode the 10 k resistor R9 is linked back to the input of IC1 and the voltage on the emitter of the transistor is proportional to the input voltage; the collector current is exponentially related to the input voltage. This current is converted to a voltage by IC3.

All this works well provided the transistor is at a constant temperature. Compensation can be made by using other junctions and thermistors, however even the self-heating effect of the transistors can affect linearity. The transistors we have used are part of a transistor array IC which has three individual NPN transistors and a differential pair. We heat the chip up by dissipating heat in the differential pair while measuring the base-emitter voltage of one of the individual transistors. 1 C 8 is used to compare this voltage to one set by the divider R25, 26, 27 and RV7. The baseemitter voltage is normally about 0.67 V at $20^{\circ} \mathrm{C}$ and drops about 2.2 mV per degree above this temperature. IC 8 then stabilises the chip temperature to about $35^{\circ} \mathrm{C}$ above the temperature at which it was initially calibrated. As it warms up the current in the transistors will fall and when hot the voltage drop across R31 will be low enough that the LED will extinguish. The transistor array is housed in a polystyrene housing to conserve heat.

SPECIFICATION	
Transfer functions exponential log.	Vout $=0.15625 \times 2$ Vin
Useful dynamic range	Vout $=\operatorname{Ln}($ Vin $/ 0.15625) / \mathrm{Ln} 2$
Oven temperature	approx. $55^{\circ} \mathrm{C}$
Warm up time	about 2 minutes
Power supply	± 10 to ± 15 volts

Fig. 1b. The power supply section which supplies the stable $\pm 7 \mathrm{~V}$ needed for the bias and adjustment controis.

The only difference between the assembly of this board and any other is the oven and the connections to the transistor array package. The oven is made out of two pieces of polystyrene about $55 \times 35 \times 12 \mathrm{~mm}$. The outside of the oven should be covered with aluminium foil to help reduce heat loss. The aluminium itself should be covered with a layer of adhesive tape where the leads can touch. A piece of thick paper should be used between the oven and the pcb to insulate the tracks.

Half Baked

The centre of the oven should be hollowed slightly to hold the IC (bend the leads out straight as shown in the photo; a hot soldering iron is the easiest method. Do not remove more than necessary. Now solder a 40 mm length of thin copper wire (a single strand of multistrand cable is best) to each pin, then with the base of the oven in position, sit the IC in the oven and connect the leads to the appropriate holes. If a small amount

Component overlay for the complete log converter project.

PARTS LIST

RESISTORS	all $2 \%, 5 \mathrm{~W}$
R1,2	470 k
R3-R6	see table 1
R7-R10, 22,	2310 k
R11, 12, 24	100 k
R13-R18	see text
R19-R21, 28,	291 k
R25	2 k 7
R26	18 k
R27	470 R
R30	$47 R$
R31	$82 R$

POTENTIOMETERS	
RV1-RV4	200k multiturn trimmer
RV5, 6	50 k multiturn trimmer
RV7	1 k multiturn trimmer
CAPACITORS	
C1-C4	33 p ceramic
C5, 6	10 u 25 V electrolytic
C7	1 nO polyster
C8	10 u 25 V electrolytic
C9	33 p ceramic
C10	10 u 25 V electrolytic
C11	33 p ceramic
C12	100 n polyester

SEMICONDUCTORS	
IC1-IC4	LM308
IC5	CA3046
IC6	723
IC7.8	LM301A
Q1	BC558
D1-D3	1N914
LED	T1L 209

MISCELLANEOUS

PCB
Polystyrene foam for oven

BUYLINES

The project depends upon the CA 3046 device - near equivalents will probably not function. The CA 3046 itself is readily available - we
found it in both the Marshalls and Stevenson catalogues when we looked for it! Initial reaction here had been that it would be difficult to obtain.
of epoxy cement is placed under the oven it will stay in position. Now fit the top of the oven and secure with a piece of adhesive tape until it has been checked out. It finally can be cemented with epoxy adhesive.

The potentiometer valuves chosen are a compromise between ease of adjustment and the ability to compensate different transistors. If the potentiometer does not have enough range then the series resistor will have to be varied. We have
specified 2% resistors throughout to obtain a better temperature coefficient than is possible with conventional 5% resistors. It will not help to select out of normal 5\% types.

Calibration

The equipment needed comprises an accurate digital voltmeter and a variable power supply with a fine voltage control. The +7 V rail can be used for this with a mutli-turn potentiometer.

CALIBRATION TABLE

$\quad A$	B
-3.00 V	19.5 mV
-2.00 V	39 mV
-1.00 V	78 mV
0.00 V	156 mV
+1.00 V	312 mV
+2.00 V	625 mV
+3.00 V	1.25 V
+4.00 V	2.50 V
+5.00 V	5.00 V
+6.00 V	10.00 V

This table shows the relationship between the input and output. In the exponential model A is the input with B the output while in the \log mode B is the input and \mathbf{A} the output.

Oven Control

1. Before switching on, remove liñ̉k 2 and fit link 1
2. Switch on and monitor the voltage on the output of IC8 (pin 6)
3. Adjust RV7 until the voltage is about -5 V . The potentiometer is sensitive in this area but the actual voltage is not critical.
4. Remove link 1 and fit link 2. The LED should now come on for about two minutes before slowly going out This indicates that the oven is stable.

Calibration of Log Mode

1. Set 0 V on the input
2. Monitor the voltage on the junction. of R7 and R9.
3. Adjust RV1 to give a negative voltage on this point. Now adjust RV1 slowly until the voltage just switches positive.
4. Set 0.15625 V in the input
5. Adjust RV5 to give $0 \vee$ output
6. Set 5.00 V on the input
7. Adjust RV3 to give 5.00 V output.
8. Set 1.25 V on the input and check the output voltage. It should be 3.00 V. If it is higher go back to step 4 except adjust RV5 to give -0.010 V and use RV1 to bring it back to zero. Continue with step 6.7 and 8 . If the output voltage at 1.25 V input is less than 3.00 V adjust RV5 to give +0.010 V instead of -0.010 V

Continue until all three points are correct.

Calibration of Exponential Mode

1. Place a link between the junction of R7 and R9, and OV
2. Adjust RV5 to give 0.00 V output. Remove the link.
3. With 0.00 V input, adjust RV1 to give 0.15625 V output.
4. With 5.00 V input, adjust RV3E to give +5.00 volts output.
5 . Check output voltage with 3.00 V input. It should be 1.25 V .
6 . If high repeat steps $1-5$ except output. If low, repeat steps $1-5$ except adjust $R V 5$ to give about 10 mV output.

ETI

Both sides of the PCB shown full size. On the top is the underside and the pattern beneath that is for the topside of the board.

eti LOG CONVERTOR

DISCOUNT
 BOXES INSTRUMENT CASES AND COMPONENTS

Aluminium box with lid
and screws.
L W H
$3 \times 2 \times 1$
$4 \times 3 \times 11 / 2$
$4 \times 3 \times 11 / 2$
$4 \times 3 \times 2$
$4 \times 3 \times 2$
$6 \times 4 \times 2$
44p
$\begin{array}{ll}4 \times 3 \times 2 & 60 p \\ 6 \times 4 \times 2 & 67 p \\ 6 \times 4 \times 3 & 705 p\end{array}$
$\begin{array}{rr}6 \times 4 \times 3 & 78 p \\ 8 \times 6 \times 2 & 105 p\end{array}$

AD161/2 MP
OC36
BC108A
BC148
BC149C
BC149C
BC 154
BC 154
BC 171 B
BC 171 B
BC 172 B
BC 172 B
BC 183 A
BC30B
10 p
Ceremic Fithers
15 p
Protessional black P.V.C. coated case with satin
anodised front panel and trim.
w.

W D H $9 \times 6 \times 3$

$9 \times 6 \times 41 / 2$ $9 \times 6 \times 6$

$12 \times 8 \times 3$
$12 \times 8 \times 41 / 2$
$12 \times 8 \times 6$
$\begin{array}{rr}660 p \\ B C 347 A & 14 p\end{array}$
Black P.V.C. top with U. shaped alumınium chassis.

$L W H$	
$6 \times 41 / 2 \times 2$	$134 p$
$6 \times 4 \times 31 / 2$	$145 p$
$8 \times 51 / 2 \times 21 / 2$	$165 p$
$10 \times 61 / 2 \times 3$	$\mathbf{2 1 5 p}$

BC347A
BD1B3 14 p

BF274	$\mathbf{2 4 p}$
8F394	$\mathbf{3 0 p}$
BF422	$\mathbf{2 0 p}$
LM741C	$\mathbf{1 7 p}$
TBA120A	$\mathbf{7 5 p}$
SN76013N	$\mathbf{1 2 0 p}$
SN76033N	$\mathbf{1 2 0 p}$
SN76110N	$\mathbf{7 5 p}$
SN76131N	$\mathbf{1 5 0 p}$
SN76660N	$\mathbf{7 5 p}$

AXIAL ELECTROLYTIC		220/16v	11p	$22 / 50 \mathrm{v}$	8p
		-330/10v	12p	$33 / 63 \mathrm{~V}$	9p
10/25v	5 p	$330 / 25 v$	10 p	47/16v	7 p
$15 / 16 \mathrm{v}$	6 p	$330 / 63 v$	16p	$100 / 18 \mathrm{v}$	8p
22/10v	5 p	470/16v*	15p	220/16v	11p
22/16v	6 p	470/40v	15p	220/40v	12p
22/25v	7p	$1000 / 25 v$	18p	220/63v	16p
$33 / 35 v$	8 p	2000/30v	20p	$330 / 10 \mathrm{v}$	12p
$33 / 50 \mathrm{v}$	9 p			$330 / 25 v$	12p
47/40v	10p	PC MO		$330 / / 50 \mathrm{v}$	15p
100/10v	8p	10/25v	$6 p$	470/25v	15p
100/63v	10p	$10 / 50 \mathrm{v}$	7p	$1000 / 35 \mathrm{v}$	190
MIXED PACK OF 100 AXIAL AND P.C. ELECTROLYTICS 300p					
DISCOUNT ON ALL ORDERS OVER £5 5\% OVER £ 1010% OVER E2O 15\%. OVER E30 20\%					
All prices include post and packing All orders under $£ 1$, please add 20 p for handling charge					
HARRISON BROS., P.O. BOX 55, Westcliff-on-Ses, EssexSSO 7LO Phone: Southend 32338					

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

MC 1

CPR 1

CPR 1-THE ADVANCED PRE-AMPLIFIER

The best proampltier in the $U K$ The superiority of the CPR 1 is probably in tie disc stage The overload margin tracking heavily, modulated records tommon-mode distortion is oliminated by an unusual dosign $R \mid A . A$ is
accita Following this stage is the flat gain is balance stage to bring tape distortion < 005% at 30 dB overlosd 20 kHz .
 controls are fitted There is no proviston for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$ Supply to be ± 15

MC 1 PRE-PRE-AMPLIFIER

Sutable for nearly all moving-coil carridges. Sensituvity $70 / 170 u \mathrm{v}$ switchable on the p.c b This module brings signals from the now popular low output moving-coil carridges up to 35 mV (typical signal required by mosit
-preamp disc inputs) Can be powered from a 9 V battery or from our REG 1 regulator board.

REG 1 - POWVR SUPPLY

The regulator module. REG 1 provides $15-0.15 \mathrm{~V}$ to power the CPR 1 and MC, It can be used with any of our
power emp supplies or our small transformer TR 6 . The power amp kit will accommodate it

POWER AMPLIFIERS

It would be pointiess to list in so small a space the number of recording studios, educational and government reputation for the highest quality at the lowest prices The power amp is available in tive types the we have a
 signalon safoly sansitivity 775 mV (250 mV or

POWER SUPPLIES
We profluce suitable power supplies which use our superb TOROIDAL transfarmars only 50 mm high with a

POWER AMPLIFIER KIT

the kit includes all metalwork, heatsinks and hardware to house any two of our power amp modules plus a power instructions and full back-up sarvice enables a novice to build it with confidence in a few hours

microfile

This month dynamic Gary (mines a pint) Evans goes random, ROMs the seas as a pirate and plays strange games with a T.V., but still finds time to visit North London.

BEING CAUGHT PIRATING software could lead to all sorts of unpleasantness-boys in blue or more likely the boys in black (the legal eagles) looking for a large fee in some test case. At any rate copying, or rather being caught copying, software that someone, somewhere is willing to protect is something to avoid. It's for this reason that the guys at Transam - they who supply kits for the Triton - suffered a few nervous twitches when they heard that someone called Dobbs on the phone and he wanted to have a few words with them.

Now the BASIC that was used in the Triton has been around for some time. When development of the computer started we realised we could not undertake to write an 8080 interpreter from scratch and we looked around for something that was "in the public domain". The listing of an interpreter that appeared in Dr. Dobbs journal seemed to us to be just the thing we wanted had we made a dreadful mistake.

Well gentle reader (I'm an Asimov fan) as it turned out we need not have worried at all. On picking up the phone, instead of some irate, distant American voice a softspoken northerner (north of England that is) greated the ear.

This Dobbs had nothing to do with publishing a software journal working - as it turned out - for British Rail. He wanted to order a Triton.

Relief all round - is there a Mr. Byte in the house. What the manufacturers produce today, industry uses the next day and we, the amateurs, use the day after that and what the manufacturers are producing now are 16 bit MPUs. Intel, Motorola, Zilog Texas - everybody seems to have caught the 16 bit bug.

The first small system for the Home Office to use a 16 bit beast is almost certain to be the long awaited, and much talked about, Texas machine. Just what overnight "quantum jump" in performance these 16 bit based systems are going to provide, remains to be seen - but at least we should have something with a bit more to offer in terms of throughput and facilities than the current crop of 8 bitters. At what cost penalty will become evident over the next year or so.

Dynamic RAMs are very cheap, are they not? A couple of systems in use in this country feature such devices - the TRS-80, although here any cost savings do not seem to be passed on to the end user, and the NASCOM.

The more extensive use of dynamic RAM in small systems is probably a hang over from the days when it was all anybody could do to get a dynamic memory card up and running. There is no doubt that a dynamic card
can be a real pig to fault find. So many things have to happen at exactly the right time for the system to work at all. Unless some very sophisticated diagnostic equipment is available, it could prove almost impossible to decide what is wrong.

With the current crop of dynamic RAM controllers, however, hopefutly there will be so little margin for error that we shall start to see nice cheap 4 K and 16 K memory expansion systems.

One example of a RAM controller that seems to do it all is the Intel 8202 - I have not yet managed to get a data sheet for this device but when I do I'll let you know just what it can do, In the meantime, if any of you have played around with dynamic devices, perhaps you'll let me know how you got on.

The North London Hobby Computer Club seems to be going from strength to strength. I was at their second meeting a while back and there was standing room only in the two rooms occupied by the club for demonstrating on the PET and the Triton. A continuing program of intereśting talks and demonstrations is planned and if you live in North London, is recommended that you go along to the North London Poly in the Holloway Road and see what is going on for yourself.

Mine of Information Ltd is a company that is out to contest the high prices charged for many of the American microcomputer books brought over to this country. To quote from their literature "some worthwhile books are distributed by companies with exclusive European or British rights; there is a temptation to capitalize on the monopoly by increasing prices. In these circumstances Mol has to charge its customers more than is reasonable! Mol is taking action to contest the high prices. (When the choice of books is wider there will be no need to buy from such suppliers).'

A freshing attitude, as I can think of at least one outfit which must be making a mint from a number of exclusive titles sold at a high mark up. Some increase in cost from a straight $\$ 70 £$ conversion is acceptable - to quote Mol again - "It means extra hassle and expense to bring books to Britain" - but not as much expense and hassle as some would have us believe.

I wish Mol luck in their campaign and if you would like their lists send an SAE to

Mine of Information Ltd
1 Francis Avenue
St. Albans
AL3 6BL
By the way members of the North London Computer Club get 10\% off the prices in the list - yet another reason to pay a visit to the club.

NEWS: Microfile

The trend in America at the moment, or at least one of the trends, is for the home computer and the TV games to meet in a sort of common ground. One example of such a product is the Bally Arcade "box". The machine features a calculator style keyboard with slot for a Bally cartridge as well as sockets into which a number of accessories can be plugged, these include the two hand controllers supplied with the basic machine

The machine features a number of built in games including the excellent gunfight which many of you may have seen in the arcades over here. This game produces good high resolution graphics in colour as well as a repertoire of musical sounds

By plugging a ROM cartridge into the font panel socket additional games can be played on the machine and if a BASIC cartridge is used the Arcade is converted to a computer running the familiar TINY BASIC as per the TRITON.

Z80 based, the Arcade is supported by 8k of ROM to store the resident games and 4 K of RAM which acts mainly as a screen memory.

The Bally Arcade is not the only product to appear in this area. Magnavox has the "Dyssey 2" machine from Interacot and it's rumoured, Atari are ready to launch something into this market,

ETI

24 HR. CLOCK/APPLIANCE TIMER KIT

Wilmslow Audio

THE firm for speakers!
Send 15 p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

ĀTC AUUDAX BAKER BOWERS \& WILKINS - CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE - ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI
SWAN WORKS, BANK SQUARE, WILMSLOW CHESHIRE, SK9 1 HF
Discount Hi-Fi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 0625529599 FOR SPEAKERS MAIL ORDER AND EXPORT WILMSLOW 0625526213 FOR HI-FI

KEY:
1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant).
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined egg timer/laser cannon project.

5: ETI makes a fairsoldering iron stand.

6: The dog insisted on carrying your copy to you along with your slippers.

WHAT A BIND!

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.00$ all inc. you get a great deal of peace of mind too!

ETI Binders
25-27 Oxford Street,
London W1R1RF.

900-90日

WHERE YOU CAN BE SURE OF A BARGAIN

Full Spec. Devices

CALCULATOR PACK M4. Contains a production line reject catculator. Either fix them not much Wrong with some we checked) or strip them for spares (whichever part is defective the sest must be
good value for money - case/keyboard /display/chip/PCB). We include all the into we can find on repairing calculators. What a bargain at $£ 2.50$.
PACK M1. 2 Calculator keyboards. Each has 17 keys and wo switchos. Only $£ 1.00$
essional and
PACK M3. Build Your own calculatorl MM 5725 calculator chip and dats book e1.00
PACK E2. An 8 digit calculator style Liquid Crystal display. 0.33 high tigits with right hand decimal
points and overtlow indicator. With data. $\mathbf{E 2 . 9 5}$.
points and overlow indacalor Wih dala, E2.95.
PACK E4. A $11 / 2$ digit 0.3 high 7 segment gas discharge display. Aequires 180 V anode volts bur Can make an excellent replacement for LEDs in some of your mains operated projecis. Fantastic value
PACK E5. Same as Pack E4 but dual digit. 90p.
with buils-in bubble magnitiers. \&1 00.

0 digits. We include the special socket FREE. With data $£ 1.50$.
PACK T2. Back again by popular temand. A $0.2 \quad 31 / 2$ diglt Liquid Crystal wristwatch display with
Pack T4. An 0
An excellent display for your digital clock projects at $£ 4,95$.
using this versatife chip. With data and circuit diagram. \& 3.95 .
data. 50
PACK C1. 10×12 pin Hybrid circuits each containing 16 resistors/capacitors. Useful values. Ideat -- SPECIAL OFFER PACK OM1/C1 \ldots Buy a pack OM1 and a pack C1 for he the special p.
85 p for the pair

Untested Devices

Pxcelk E1. 80% Gua
PACK DL1. (Untested - so no guarantees.) Fantastic value for money. A jumbo pack of 30 mixed E1.00. PACK MU1. (Untested - so no guarantees.) Another bargain. 2 x . Upper half of a calculater cas Your satistaction is guaranteed or return the complete pack for replacement or a refund.

MAIL ORDER ONLY - NO CALLERS PLEASE
CODESPEED, P.O. Box 23, 34 Seafield Road Copnor, Portsmouth, Hants. PO3 5BJ

For a merry musical Christmas an electronic musical door chime which can play 24 different tunes!

Greensleeves

God Save the Q
Rule Brtannia.
Land of Hope and Glory
Oh Come All Ye Fathful
Oranges and Lemons.
Westminster Chimes
Sallor's Hompipe
Beethoven's"Fate Knocking
Beethoven's "Fate Knocking
The Marseillaise
Mozart
Wedding March
Cook House Door
The Stars 8 Stripes
Beethoven's Ode to Joy
Beethoven's Ode to Joy
Willam lell Overlure
Soldiar lell Chorus
OHROMAFTRORICS

Twinkie Twinkle Litle Stat
Great Gate of Kiev
Maryland
Deutschland uber Alles Bach
Colonel Bogie The Lorallie

- These funes play longes it
push buttoniskepipressed
3 push outton is kepl'pressed
Mlease send }\square\mathrm{ Chroma Chimekits at fl20es
Mlease send }\square\mathrm{ Chroma Chimekits at fl20es

Name
Name
Address
Address

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of óur projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

—HOW IT WORKS

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit'. on the sheet to correct any breaks!

001	3 Channe! Tone Control Spirit Level Clock A Digital Thermometer Skeet Game Compander	Oct 77 Oct 77 Nov 77 Oct 77 Nov 77 Nov 77
002	House Alarm Rev Monitor Clock B	Jan 78 Dec 77 Dec 77
003	Race Track Game Hammer Throw Freezer Alarm	Jan 78 Jan 78 Dec 77
004	Metal Locator Mk II Ulitrasonic Tx/Rx 5 Watt Stereo Amp (mod	$\begin{array}{r} \text { Feb } 78 \\ \text { Feb } 78 \\ \text { fied) } \end{array}$
	Metronome Shutter Time	$\begin{aligned} & \text { Jan } 77 \\ & \text { Feb } 78 \\ & \text { Feb } 78 \end{aligned}$
005	Op-Amp Supply Frequency Shifter LCD Panelmeter Light Dimmer (3 times)	Mar 78
006	CMOS Switched Preamp From Experimenters PSU 555 Boards (iwice	Electronics Tomorrow
007	Star Trek Radio CD Ignition CCD Phaser White Line Follower	May 78 May 78 May 78 April 78
008	Tank Battle Helping Hand	May 78
009	AM / FM Radio Bridge Oscillator CMOS Stars \& Dots	June 78
010	Bench Amplifier Freezer Alarm Marker Generator LED Dice Watchdog (2 PCBs) Stars \& Dots PSU	Project Book Six
011	Noise Generator General Preamp Flash Trigger Compander Active Crossover (2 PCBs)	Project Book Six
012	Disco Lightshow Stereo Simulator Digital Thermometer	Project Book Six
013	Amplifier Module Amplifier PSU Equaliser Equaliser PSU	Project Book Six
014	Skeet Game Sweep Oscillator Burglar Alarm GSR Monitor	Project Book Six
015	UFO Detector Torch Finder (twice) Etiwet (twice)	July 78 July 78 Aug 78
016	Stac Timer Xhatch Gen Wheel of Fortune	Sept 78
017	Complex Sound Gen Tele Bell Extender Power Bulge	Oct 78
018	RF Power Meter Proximity Switch Audio Oscillator (2)	$\begin{array}{r} \text { Oct } 78 \\ \text { Oct } 78 \\ \text { Nov } 78 \end{array}$
019	Car Alarm (2) Wine Temp (2) Curve Tracer	Dec 78 Dec 78 Dec 78

SEMICONDUCTOR OFFERS ALL FULL SPEC.

 Mostets 50 p M 203 Dual Matched Pairs Mosfets Single Gate per
 CMOS 50 p .7418 -pin D.1.L 23 p .500 v 600 mA Bridge Recs (ex

 12 p each. MAN 3 A 3 mm LED Displays 50p. 741 S (wide
bandwidth) 35 p LM 38080 p . LM 381900 ZN414 75 p . Tition Alpha-numerical Displays, with data. €2.75. ORP61. Mullar
new, boxed 30. Special OHfer SGS TBABOO ICs 10 for $£ 500$. MICROPHONES. EM506 Condenser Mikes. Uni-directional F.E.T. Amp. Dual imped.
switch. E1, 00 Miniature Tie Pin Condenser mike iK imp omnt-directional, uses hearing aid battery (supplied) $£ 4.95$ Grundig Electret Inserss with built in F.E.T. Preamp E1,50. Crys Mike Inserts 37 mm 45 p . Electret Condenser Mikes 1 KQ 2 mp . wh Jack Plugs $\mathbf{E 2 . 8 5}$. Standard Cassette Mikes 200 otim Imped with 2.5 and 3.5 Jack Plugs $\mathrm{E}^{1.20}$

MORSE KEYS - Hi-speed Type, all metal. E2.25. Plastic Morse Keys. 95p. Berling Le UHF. Only $£ 7.50$
CRYSTALS. 300 KHz HC6U 40p. 0.1 Edge Connectors. 64 way 65 p. 32 way 40 p

ReLars. Min, 220 vaC Sealed Relay 2 pole C/O 45 p 240 vaC Sealed Relay 3 pole $C / O 5$ amp Contacts 11 -pin base 80 p. 12 volt
 relays 3 -a
$50 p$ each
MOTOAS. 1.5 to 6 V DC Model 20p. 115 V AC min 3 R.P. M. with Gearbox 30 p 240 VAC Synch Motor $1 / 5 \mathrm{th}$ R.P. M. 65 p .240 V AC
Synch Mor $1 / 24 \mathrm{th}$ R.P.M. 65 p . Crouzet 115 v AC 4 R.P.M Motors, new $95 p$ 12v DC 5 -pole 35p.
BOXES. Black A B.S. Plastic with brass inserts and lid. $75 \times 56 \times$ $35 \mathrm{~mm} 40 \mathrm{p} .95 \times 71$
$130 \times 84 \mathrm{~mm}$ E1. 95
TOOLS. Radio pliers. 5 in , insulated handies $£ 1.40$. Diagonal side culters. 5 in, insulated handies $£ 1.40$
in brackets per transiormer
$6-0.6100 \mathrm{~mA}, 9-0.975 \mathrm{~mA}, 120.1250 \mathrm{~mA}, 75 \mathrm{p}$ each (15 p).

 $\mathrm{Amp}, \mathrm{E} 4.50$ (54 p). $20-0.20 \mathrm{v} 2 \mathrm{amp}$. $£ 3.50$ (54 p). 25 v 1.5 Amp
 Xenon/triac pulse transformer. 30 p .
SWITCHES - Min Toggle, SPST $8 \times 5 \times 7 \mathrm{~mm} 45$ P. OPDT $B \times 7 \times$ 7 mm 60 p . DPDT Centre Off $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$ DPDT C Cl
Sliders 20 p . S. Sliders 20 . R.S. Single Pole C/O Push Buttons
5 witches $15 p$. Min. Micro Swithehes $13 \times 10 \times 4 \mathrm{~mm}$ 20p. Min Di push to break Switches $16 \times 6 \mathrm{~mm}$ 150

SOLDER SUCKER. Plunger type, eve protection, replaceable nozzle. high suction, £4.95. Reed swithes 28 mm norm. open. 6 TAPE HEADS -Cassette Stereo $£ 3.00$. BSRMN $13301 / 2$ Track Dual Impedance Rec. / Playback 50p. BSR SRP90 $1 / 4$ Track Stereo Rec. /Playback E1.95. TD 10 Assemblias, two heads, $1 / 8$ Track Rec./Playback Staggered Stereo will
E. 20 Tape Head Demag 240 V AC E .95.

BUZZERS-GPO Type 6-1 $2 v 20 \mathrm{p}$. Min. Solid State Buzzers
U.F.F TV Transistorised Push Bution Tunefs (not Varicap). now and, boxed, £2.50
MURATA MA 401 L .40 kHz Transducers, rec/send. £. 3.25 pair
METEAS-Grundig Bart. Level Meter $9 \mathrm{~mA} 40 \times 40 \mathrm{~mm}$ E1.10 E3. 95

EDGE METER - Large scate $0-100$, new $£ 2$.
POT CORE UMIT. Has 6 .pot cores, inciuding 1 FX2243 445 mm and 2 Fx 2242 (35 mm), 320 mm Panel Fuseholders, 3 to3 SHL

A1230 adi. core 15 mm dia $14 \mathrm{mH}-18 \mathrm{mH}$. HI O. 10 p each
CASSETTE MOTORS 6 volt new. $£ 1,2$

SOLENOIOS-240
pull. 2 travel 83.95
12.WAY MOTORISED CAM UNITS. SOV AC LOW REV MORO driving $12 \mathrm{C} / 0$ micro switches. suppli
$A C$ use. Ex. equip. $£ 1.95+35 \mathrm{p} P \& P$
3 Ampp rubber trailer extension sockets. 38 p
a WAY RIBBON-CABLE, min solid core, 15 p metre.
POSTAGE 30p UNLESS OTHERWISE SHOWN (EXCESS COST VAT INCLUDED IN ALL PRICES
S.A.E. FOR LISTS

ORDER ADDRESS
PROGRESSIVE RADIO
31 CHEAPSIDE LIVERPOOL?

CALCULATORS

SCIENTIFIC

TEXAS T 159 together with PC IOOB

```
Complele as manufaciurer
```

TEXAS/HP Accessories avaitable
*TEXAS I159 (New Card prog 960 prog sleps of 100 mem)
$£ 156.50$

*TEXAS T157 (Key Prog 8 mem. 1.50 Key Strokes/ 50 Prog Steps)
140.00

EXXAS Y133 (New - same spec. es T 130 , but 3 mem) $£ 13.95$
 *TEXAS 42 MBA (10 Dig Fin/Stat Prog 12 mem 32 key strokes) $\begin{aligned} & \text { E42.95 }\end{aligned}$ *TEXAS TI PROGRAMMER (Hexadecimal Oct) E46.50 E25.30 TEXAS T; 25 (new LCD Sci/Star) $E 18.90$ TEXAS Littie Profes sor (Child's Calculator / Game $5 / 9$ year olds)

MOUNTAINDENE

22 Cowper St., London, EC2

CLICK ELIMINATOR

The Gat Sat On The Mat: or was there one of your favourite records on the mat? Never mind - ETI steps in to rescue your valuable vinyl from those evil clicks and pops.

EVEN THE MOST fastidious of record collectors must have some records in his collection which during their career have picked up the odd scratch or two. Perhaps your record collection dates back to the time before you obtained that second mortgage, sold the wife or whatever, to get the latest in laser controlled fluid damped, tangential tracking phonograms, sorry record deck, and the previous system has left it's mark on these early platters.

In The Click Of Time

However the scratches got there, they are bound to be obtrusive on any reasonably $\mathrm{Hi}-\mathrm{Fi}$ set up and even if you do not qualify for the title $\mathrm{Hi}-\mathrm{Fi}$ purist - someone who listens, not to the music, but to the defects, real or imagined, in the Hi-Fi chain - the clicks will detract from your enjoyment.

Enter ETI - we can help. The click suppressor described here will remove or greatly reduce the audible transient sounds - nice phrase resulting from scratches on a record's surface.

Design Decisions

When designing a click suppressor it is fairly obvious that we have to be able to tell the click from the cacophony as it were. Fortunately a click has several unique characteristics which set it apart from a music signal. For instance it will have very fast attack and delay times - even high frequency percussive sounds will delay slowly, although attack will be fast. A click will also be of a very short duration - again musical sounds are in general of a longer duration.

Once we have spotted our click, it is necessary to remove it. In our case we substitute a short period of silence

- subjectively unnoticable - in place of the click.

As our click detection circuit requires a finite time in which to operate, we will also have to provide some sort of delay for the music signal within the system. Our circuit, and all the commercially available units, use a CCD delay line to provide this delay. It is the recent availability of this device that has made the click suppressor possible, or rather brought it within the financial reach of the constructor.

Next month we will be giving the full details for building and setting up the Click Eliminator

HOW IT WORKS

Overall operation of the circuit can best be understood by reference to the block diagram shown in fig 1 . The signal from each of the inputs is fed both to a delay line, with associated low pass filters, and to the "Click Detection" block. This provides a negative going signal at it's output coincident with a click appearing on either input channel.
With the click identified, the next step is to remove it without affecting the subjective quality of the program material. The circuit operates by dramatically attenuating the signal passing through the unit for a brief period of time "Either Side" of the click.

If the attenuation is large enough and it's period accurately synchronised to the occurrence of the click, the effectiveness of the unit is dramatic. The loss of program material during this blanking period which might be thought to be as objectionable as the click itself, seems to produce little subjective disturbance.

It has been shown that periods of attenuation of this nature, up to 10 ms , do not unduly disturb the signal, and the 2 ms or so necessary to "straddle" a click goes entirely" unnoticed.

It is necessary to incorporate a delay line within the circuit as a finite time is necessary for the click detection circuits to operate. The chain of events is shown in fig 2 . The click is fed to the input of the delay line and at some time later will emerge from this device where it is passed to the attenuator. Meanwhile the click has been detected and activates two 555 timers acting as monostables. The first provides a click detection indicator for the front panel. As this returns to it's stable state, it triggers the second 555 . It is this IC that causes the 570 IC to suppress the signal.
By careful selection of the timing components associated with the 555 's, the signal is blanked during the time when the click is emerging from the delay line.

A detailed description of the various circuit blicks now follows.

Fig. 1. Block diagram of the ETI click eliminator.

Fig. 2. Above are shown the waveforms that illustrate the action of the circuit when a click has been identified and is to be suppressed.

The signal attenuation stage configured around NE 570 dual compandor IC.

Circuit diagram of the delay block and the first half of the "click detection" circuit. Note: the diagram shows the right hand channel only - for left hand component annotations add 100, o.g. R1 right hand channel becomes R101 for the left hand

clock signal used in controlling the device. If this precaution is not observed, the result is severe distortion.
The clock drive circuitry is described below.
The input of the delay line kis pin 5 , the resistor chain R10, R11, R12, R13 and RV2 is to hold pin 13 at IV0 above ground, this ensures maximum dynamic range in the delay line, and to bias pin 5 for class A operation which minimises distortion
The output from the delay line is taken, via C5, to another Butterworth filter, this stage being used to remove any high frequency

click detector described below

CLOCK AND POWER SUPPLY

Pins 1 and 4 of the delay line must be presented with 180° out of phase wave forms The clock signal is generated by the CMOS oscillator based around $1 \mathrm{Cl1a}$ and b , which after buffering is fed to the two D type flipflops contained within ICl2. The Q and Q outputs of this device provide the required 180° out of phase drive signals.
The power supply is a straightforward design based on two three-terminal regulators.

PARTS LIST

RESISTORS
R1, 3, 34, 35, 36,

101, 103	22 k
R2, 102	180 k
R4 104	220 k

R4. 104 220k R5, 18, 105, 118 10k R6, 8, 106, 108 R7, 11, 15, 16, 17 111 115 , 116, 117 R9, 109 , 100 k
R10, 110

R12, 23, 24, 112,123, 124 6k8

R13.			
R14.	19,	25	29,

R14, 19, 25, 29, 32.
125, 43, 114, 119.
R20, 28, 120 \quad 27k
R21,121 3 3k
$\begin{array}{ll}\text { R21,121 } & \text { 39k }\end{array}$
R26.126 560
$\begin{array}{ll}\text { R26, } 37 & \text { R } \\ \text { R31. } & 4\end{array}$
R31 330R

POTENTIOMETERS

RV1 + 101	100k log gang
RV2, 102	4 k 7 min . preset
RV3	10 k
RV4, 6	10 kmin . preset
RV5	100k min. prespt
CAPACITORS	
C1. 101	10 u 16 V tantalum
C2, 3, 37, 102, 103330 p polystyrene	
C4, 5, 11, 16, 20	
21, 24, 25, 30, 104,	
105, 111	100n polyester
C6, 106	56p polystyrene
C7, 107	100p polystyrene
C8, 9, 10, 108, 10	, 1101 n 5 polystyrene
C12, 13, 35, 36	47 u 16 V electrolytic
C14, 17	1 nO polystyrene
C15, 18	10 n polyester
C19	22 n polyester
C22, 23, 28, 29	220 n polyester
C26, 27	33 p polystyrene
C31, 32	1000 u 25 V electrolytic
C33, 34	470 n polyester
SEMICONDUCTORS	
IC1, 4	TL084
IC2	TDA1022
IC3	TL083
1C5, 6, 7, 105	LF356
1C8, 9	555
IC10	NE570
IC11	4001
IC12	4013
IC13	78L12
IC14	79 L 12
Q1	BC108
D1, 2, 3	1N914
D4, 5, 6, 7	1N4001
LED 1,2	T1L209
MISCELLANEOUS	
PCB as pattern. sockets, fuse (50 (DPDT), knobs to s	ase (Maplin B3), phon mA) plus holder, switc it, cable etc.

BUILD-IT-YOURSELF NEW! TEST GEAR KIT
 BASIC SERVICING

 INSTRUMENTS WITH EASY STAGE BY STAGE BUILDING INSTRUCTIONS I IDEAL FOR THE AMATEUR MULTI RANGE TEST METERA general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

AUDIO SIGNALGENERATOR

New design covering 10 Hz to 10 KHz and variable output. Distortion less than 0.01% Ideal for HIFI Testing.

OSCILLOSCOPE

A basic 3" general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts/cm

Aphtroninstonta
 international

What to look for in the February issue: On sale Jan 5th

TODAYS 100 WATT AMPLIFIER AT YESTERDAYS PRICES

ETI, Britain's most ingenious magazine has come up with a 100W mixer amplifier, with distortion below 0.1% at all signal levels, S / N ratio greater than 80 dB , inputs for four sources, including one or two disc inputs as you wish. Somehow or other the design, by Richard Bekker, cost less than $£ 50$ to build
complete with metalwork.
A complete kit of parts will be made available and full constructional details will be given next month. The unit is finished to match the five channel light show presented in the December issue of ETI.

Crowds are expected to throng shops early next month newsagents are preparing.

BUILD YOUR OWN VCT AND FIND OUT WHAT VCT MEANS

The revolutionary device that will replace the op-amp.
We got fed up waiting for it to be released.
We did something about it.
We show you how to construct your very
own VCT next month!
Astound your friends!
Confuse your budgie!
Amuse your boss!
No home dare be without its VCT!
ETI brings home the bacon next month!

MACHINES SPEAK OUT!

Panic in the streets! Women and children unsafe! Machines can speak! Prime Minister to go on steam radio tonight! From our uncover agent - Tim Orr - comes full details of the invention that could cause a bigger stir than the
double breasted jacket! Several methods are in use, and a new unlt is soon to be available which promises to confound us all.

Speech synthesis is here to stay, and Special Agent Orr is right
there in the forefront reporting back for ETI readers exclusively next month. If you value your sanity you cannot afford to miss this! Thinking people everywhere will be talking about this - don't be left out at the dinner table!

SLIDING INTO SYNCH?

OK you guys youse asked for this and now youse gonna get it, see? Youse bin ringing and hassle us boys down at ETI to do youse a slide synchroniser so long now dat the broad on de phone is going bananas see? So we gotta give it to youse see? Nuffin personal see? OK?

[^3]NEXT MONTH: COMPUTING TODAY GOES TO 48 PAGES! CAN MANKIND SURVIVE? WILL YOU BYTE OFF MORE THAN WE CAN CHEW? FIND OUT IN COMPUTING TODAY NEXT MONTH!

Composer goes SCAMP

An amazing revelation came to the attention of the British electronics public today. ETI have plans for an MPU composer! Bach and Handel have been heard to revolve in their graves at $\mathbf{2 0 0 0}$ RPM at this stunning news! This audacious machine employs a SC/MP processor and an amazingly low component count. All will be finally revealed in the next issue of ETI, and anyone remotely interested in music, synthesisers or electronics is urged not to miss it! A machine that thinks up and plays its own tunes has to be seen to be believed.

BORIS IN CHECK

There are quite a few chess machines lying around the shops these days, and this one has a reputation for being one of the best. Armed with his "Best of Spassky Volume 2" Ron Harris went to check it out.

BORIS is a multi-level chess machine with the disconcerting ability to comment on its opponent's (your) moves. The level of its analysis is set by the user who determines how long BORIS may consider its reply Thus a tyro may set the machine to minimum time to begin with, and steadily advance the machine as he improves

Present Arms

The presentation of the machine is excellent. The electronics consist of an F8 based system accessed by a 16 (multi-function) key array and interfaced to the outside world by a display consisting of eight alpha numeric devices. These are packed into a very smart wooden case which also holds the mains adaptor and chess pieces. A board is also provided, but is of a standard which suggests it is included out of duty rather than devotion. Alas, the chess pieces fall into this lamentable category also, but improvements are now being made by the importers, and the quality of replacements is much higher

On the two units we were able to examine the mains adaptor terminates in a two pin American 'hi-fi' type of plug - which now fails BS of course. This is moulded into the adaptor body and makes life very awkward for the buyer. At first glance there is no way of getting mains into BORIS aside from wrapping wires around them. DANGEROUS. The importers must look into this very quickly. We are assured they are doing so - let us hope.

In the mean while I would advise purchasers to take a trip down to good ole Woolies and make off with one of their shaving adaptor plugs, into which BORIS's adaptor will neatly plug. 240 V AC is a poor opening gambit in any game

Getting Rooked . . . and Pawned And . . .

Using this machine is both simple and interesting. The keyboard sets up your move on the display - which is also showing elapsed time - and the ENTRY key presents it to BORIS for reply

BORIS exposed to the world!

Once he's thinking about, the display flashes at 1 Hz , the timer counts down the time allotted to BORIS and the various moves he's cogitating appear on the display, settling finally at time 00 seconds. The display then counts down your time - but there's no penalty for not playing inside the time limits you've imposed on BORIS.

If for some reason (like cheating) you wish to alter the board at any time during a game, pressing RANK displays the contents of each row of the board using a very ingenious symbols set. The keyboard now creates or destroys pieces as required. Korchnoi could have done with that in his armoury. This makes correcting errors very easy

Use of the RANK key while BORIS is having a think lets you watch the pieces moving around in his head(!?). Hypnotic.

Alpha-numeric Big Mouth

Undoubtedly the first thing to impress about BORIS has nothing to do with his chess abilities. It's his big mouth. Exactly how many comments his PROMs contains is anyone's guess - the importers Optimisation aren't saying - but we counted 47 in two evenings of chess, and I don't think we got them all!

The comments appear in the eight displays and are clocked along right to left at about 2 Hz . At any position on the board the program limits BORIS to a shortlist of appropriate comments, and a 'random' choice is made amongst them - or indeed not to comment at all. Saying nothing is the most likely choice of all, which means that the sayings do not always appear and so do not become boring with repetition.

Play It Again BORIS

Once in play BORIS is a fair match for most people. On its basic level the machine plays a good beginner's game, and will find most things you leave lying around the board. Responses differ sufficiently even at this level to make 'psyching out' difficult. The biggest drawback of BORIS's chess is his passion for exchanging pieces.

Being cowards we started at this level to see what he could do. The first comment we got was 'AWFUL' to our opening move. Frightening! From here we kept increasing the time BORIS had to think about his answers. At five minutes he was winning consistently, and at two it's a long, long struggle to get him to lie down and die!

The symbols BORIS uses to identify the chess pieces. Shown here is the back rank of the white men. The black appear upside down so you can tell which men are which. Pawns appear as triangles.

FEATURE:Boris

Below: BORIS in play at the computer chess championship recently. He finished second to a prftate program.

We're only average chess players ourselves and so passed the infernal pawn-pusher onto a club standard player to get his comments

On the longer response times, five minutes upwards, he considered BORIS a good opponent - and of course wouldn't admit how often he'd lost! Certainly everyone who had a game against him considered BORIS entertaining - the comments really do seem appropriate at times.

For example, in the middle of a game with BORIS hard pressed and the telephone ringing - 1 NEED LESS NOISE appears! Coincidence but fun all the same. One move away from being checkmated and he asks READY TO RESIGN? The classic must be after losing a queen to a knight fork - WHOOPS!

Conclusions

All in all then BORIS can be confidently recommended to anyone interested in the game of chess. It can play a good game, and entertain while doing so. It is very difficult indeed not to think of the machine containing an (evil) little elf - a grand master type elf - plotting against your every manoeuvre, and unleashing sarcastic comments where possible. A definite winner.

ETI

Our thanks to Kramer and Co for their assistance in the preparation of this article - they lent us a BORIS! (They also supply to the public!)

443 Mibrook Fooct Southernown

All prices quoted include VAT. Add 25p UK/BFPO Postage. Most orders despatched on day of receipt. SAE with onquiries please. MINIMUM ORDER VALUE E1. Official orders sccepted from schools, etc. (Minimum invoice charge £5). Export/Wholessle enquiries wolcome. Wholessle list now available for bona-fide traders. Surplus components always wanted.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No delars in wating
* SAVE ON MONEY - Bu/k buying means lowest prices - just compare with othersl
* have the right part - No guesswork or substitution necessaryl
ALL PACKS CONTAIN FULL SPEC. BRAND NEW. MARKED DEVICES - SENT BY RETURN OF POST. VAT INCLUSIVE PRICES
K001 50V ceramic plate capacitors. 5\%. 10 of each value 22 pF to 1000 pF . Total 210, $£ 3.35$
$K 002$ Extended range. 22 pF to $0.1 \mu \mathrm{~F} .330$ values £4.90
K003 Polyester capacitors, 10 each of these values: $0.01 .0 .015,0.022,0.033,0.047$ $0.068,0.1,0.15,0.22,0.33,0.47 \mu \mathrm{~F}$ 110 altogether for $\mathbf{£ 4 . 7 5}$
K004 Mylar capacitors, min 100 V rype. 10 each all values trom 1000 pF to $10,000 \mathrm{pF}$ Total 130 for $£ 3.75$
K009. Extended mylar pack. Contains al vapacitors to $£ 11.25$
K005 Polystyrene capacitors, 10 each value from 10 pF to 10,000 pF, E12 Series 5% 160 V . Total 370 for $£ 12.30$
K006 Tantalum bead capacitors. 10 each of the following: $0.1,0.15,0.22,0.33,0.47$ $0.68,1,2.2,3.3,4.76 .8$, all 35 V $10 / 25,15 / 1622 / 1633 / 1047 / 6$ $100 / 3$. Total 170 tants for $£ 14.20$
K007 Electrolytic capacitors 25 V working small physical size. 10 each of these popular
values. $1,2.2,4.7,10,22,47,100 \mu \mathrm{~F}$ values: $1,2.2,4.7$
Total 70 for $£ 3.50$
Total 70 for $£ 3.50$
K008 Extended range, as above, also for $£ 5.90$
K021 Miniature carbon film 5\% resistors CR25 or similar. 10 of each value from 10R to 1 M . E12 series. Total 610 resistors £ 6.00
K022 Extended range, total B 50 resistors from $1 R$ to $10 \mathrm{M} £ 8.30$
K 041 Zener diades. $400 \mathrm{~mW} 5 \%$ BZY 88 etc. 10 of each value from 27 V to 36 V , E2 series. Total 280 for $£ 15.30$

STEREO AMPLIFIER

CHASSIS $£ 5.50$
Complete and ready built. Controls: Bass, treble, volume/on-oft, balance 8 transisto circuit gives 2 watts per channel output. Jus needs transtormer and speakers for (ow 374)
stereo amp. Suitable metal cabinet (W3 $\mathbf{8 2 . 0 0 ~ - ~ o r ~ b u y ~ t h e ~ a m p , ~ c a s e ~ a n d ~ t r a n s - ~}$ former for £ 10,00 and get DIN speaker sockets and knobs free!!

AMPLIFIER KIT E1.75

Mono gen. purpose amp with tone and
vol. /on-off controls. Utlizes sim. circuitry to above amp. Output $2 W$ into 8 ohms Input matched for crystal cartridge. 4 transistor circuit. Simple to build on PC8 provided. Can be either battery or mains operated. (For mains powered version add £2.20 for aluminium case to suit (W372) E1.30.

BC182B OFFER

Special Offer for quantity users. 1k.035 + VAT: $5 k \quad 032$ + VAT Price negotiable on $10 k+$ approx. 80 k available

PC ETCHING KIT MK II!

 Now contains 200 sq. ins. copper cład pen, abrasive cleaner, two miniature drill bits, etching dish and instructions $£ 4.25$.
EDGE CONNECTORS

Specia purchase of these O. pitch ables sid gold-plated than one-third of their original list price!
18 way 41 p; 21 way 47 p; 32 way 72p; 40 way 90p.

THE NEW 1978-9 GREENWELD catalogue

* 50 p Discount Voucher

* Quantity prices for bulk buyers
* Bargain List Supplement
* Reply Paid Envelope
- Priority Order Form

Price 30 p +15 p Post
HEAT SINK OFFER Copper TO5 sink 17 mm dia $\times 20 \mathrm{~m}$
$40 \mathrm{p} ; 100$ for $£ 3 ; 1,000$ for $£ 25$.

74 SERIES PACK
Selection of boards containing many different 74 series ICs. 20 for £1; 50 for £2.20: 100 for $£ 4$.

TMS4030 RAM
4096 bit dynamic RAM with 300 ns access time, 470 ns cycle time: single low capacit ble: Low power dissibation. Supplied with data $£ 2.75$.

MISCELLANEOUS ICs Supplied with data if requested. MC3302 quad comp. 120p; 710 diff comp. (TO99 LM71 1 NOSE precision limer E2.25 stereo preamp 75p. MC1469R volta dual £1.50; UPC 1025 H audio $£ 3.50 ; 575 \mathrm{C} 2$ audio $£ 2.88$; TDA 2640 audio $£ 2.92$; TBAB10S audio 70p; SN75110 dual line driver 70p; MC8500 CRCC gen POA.

OSCILLOSCOPES

We have available from stock the following SCOPEX models: $4010 A-D C-10 \mathrm{MHz}$ Dual beam; 3\% accuracy. Excellent value at £214 inc. VAT and carriage 4S6 - DC $6 \mathrm{MHz}^{1} 10 \mathrm{mV}$ sensitivity \ddagger deal portable scope Solid state circuitry. All for $£ 150 \mathrm{inc}$ VAT and carriage

RESISTOR PACK

Carbon film 5% mosily $1 / 4 \mathrm{~W}$ few $1 / 2 \mathrm{~W}$ resistors. Brand new but have pre-formed leads, ideal for PC mitg. Wide range of price popular values a $£ 11$ per 5.000.

DIN SOCKET OFFER

2 pin switched speaker socket. PC mntg: 5 pin $180^{\circ} \mathrm{PC}$ mntg. or chassis mntg. (clip 25 for $£ 1.60 ; 100$ for $£ 5.50$.

PUSH BUTTON
SWITCHBANKS
Lots of diff. types illustrated in Bargain List

RELAYS

W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ 6V,roil, SPCO 3A contacts $93 p$.
W832 Sub. min type, $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ coil DPCO $2 A$ contacts $£ 1.15$.

A contacts $20 \times 30 \times$
$25 m m$ Only 56 p.
but works well on 6 V relay; rated 24 V AC. corated 3 pole W819 12V 1250R DPCO 1A contacts. Size $29 \times 22 \times 18 \mathrm{~mm}$ min. plug-in type 72p. W839 50V ac (24 V DC) coil. 11 pin plug-in type. 3 pole c/o 104 contacts. Only 85p. W846 Open construction mains relay. 3 sets OA c/a contacts. £1.20.
Send SAE for our relay list - 84 types listed
and illustrated. and illustrated.
LOW COST PLASTIC BOXES
Made in high impact ABS. The lids are retained by 4 screws into brass inserts. In V219)
$\mathrm{V} 21080 \times 62 \times 40 \mathrm{~mm}$ black
V213 $100 \times 75 \times 40 \mathrm{~mm}$ black
$\checkmark 216120 \times 100 \times 45 \mathrm{~mm}$ black
$58 p$
$72 p$
V219 $120 \times 100 \times 45 \mathrm{~mm}$ white
$86 p$
$86 p$
DIODE SCOOPI!!
We have been fortunate to obtain a large quantity of untested. mostly unmarked glass revealed about 70% useable devices signal diodes, high voltage rets and zeners may all be included. These are being offered at the incredibly low price of $£ 1.25 / 1.000$ - or a bag of 2,500 for $£ 2.25$. Bag of 10,000 £8. 8 ox of 25,000 £ 17.50 . Box of $100,000 € 60$.

NEW PRICES AND SOME NEW CMOS ADDITIONS If you need your CMOS by return - buy it from SINTEL									
CO4000	0.15	CD4027	0.44	CD4051	0.82	CD4086	0.64	CO40182	1.40
CD4001	0.17	CD4028	0.77	C04052	0.82	CD4089	1.39	CD40192	1.40
CD4002	0.17	CD4029	1.03	CD4053	0.82	C04093	0.80	CO40193	1.40
C04006	1.04	CD4030	0.50	CD4054	1.08	CD4094	1.69	CO40194	1.19
C04007	0.18	CD4031	2.00	CD4055	1.18	CD4095	0.94	CO40257	1.48
CD4008	0.87	C04032	0.89	CO4056	1.18	CD4096	0.94	C04502	0.81
CD4009	0.50	C04033	1.25	CD4059	4.29	CD4097	3.35	CO4510	1.01
CD4010	0.50	C04034	1.71	CD4060	1.00	CD4098	0.98	C04511	1.25
CD4011	0.18	CD4035	1.06	CD4063	0.98	CO4099	1.65	CO4514	2.47
CD4012	0.20	CD4036	2.86	CD4066	0.55	CD40100	2.50	C04515	2.82
CD4013	0.43	CD4037	0.85	C04067	3.35	CD40101	1.61	C04516	1.01
CD4014	0.83	CO4038	0.96	CD4068	0.20	CD40102	2.13	C04518	0.97
CD4015	0.83	CD4039	2.78	CD4069	0.20	CO40103	2.13	CD4520	1.04
C04016	0.48	CD4040	0.97	CD4070	0.46	C040104	1.10	CD4527	1.43
CD4017	0.79	CD404 1	0.75	C04071	0.20	CO40105	1.06	CD4532	1.21
C04018	0.83	CD4042	0.69	CD4072	0.20	CO40106	0.62	CD4555	0.78
C04019	0.50	CD4043	0.88	cD4073	0.20	CD40107	0.89	, C04556	0.78
C04020	1.11	CD4044	0.84	CD4075	0.20	C040108	5.36	MC14528	0.93
CD4021	0.90	CD4045	1.26	CD4076	1.17	C040109	1.03	MC14553	4.43
C04022	0.82	CD4046	1.20	CD4077	0.39	CD40160	1.19	IM6508	8.05
CD4023	0.18	CD4047	0.89	CD4078	0.20	CD40151	1.19		
CD4024	0.70	CD4048	0.50	CD4081	0.20	C040162	1.19		
C04025	0.20	C04049	0.50	, CD 4082	0.20	CD40163	1.19		
CD4026	1.55	CD4050	0.43	- $\mathrm{CO4085}$	0 k 4	CD40181	3.40		

Our offices are at Chapel Sireet, Oxford, butplease do not use this as a postar aaaress. PRICES VALID UNTIL 3151 MARCH, 1979
OFFICIAL ORDERS ARE WELCOME from Companies. Gow. Oepts. Natn, inds. Univs. Poyys.
OROERS: C.W.O. add VAT @ $8 \%+35 \mathrm{p}$ p\&ip' TELEPHONE and CREDIT ((livoice) ORDERS add VAT @ $8 \%+600$ p\&p minimum charge (the balance will be charged at cost). Please See FAST SERVICE EXPORT ORDERS welcome,
no VAT but add 10% (Europe). 15% (Overseas) for Air Mail p\&p. For Export pusiage rates on heavy items - contaci ustirst Tel: 086549791
FAST SERVICE: Wo guarantoo then Tolophone Orders for goods in stock, recelved by $4.45 \mathrm{p.m.m}$. (Mon.-Fri.) will bo items by parcel poat) and our stocking io good. Private itoms by parcal poat) and our stocking io good. Private
customert ehould tetophore and pay by giving their Access or Customera
Ofrd number, with a minimum order value of ES .

SINTEL

LISTEN TO THE SECRIET WORLD OF PLANTS

As featured on Horizon, Nationwide. Radio and Worldwide Press FIRST TIME IN THE U.K. IN KIT FORM, THE REVOLUTIONARY CONCEPT OF A BIOLOGICAL AMPLIFIER AND SOUND SYNTHESISER IN ONE UNIT, THE AMAZING
 Bio Activity Translator

* Experience the unique musical form of plants
* Hear the beautiful patterns of sound - created by their natural response
* Compare house plants reactions to people - with the distinct tunes of those outside
* Easy to operate, internal speaker and batteries

The naturally generated bio electrical potential across a plant leaf is picked up by 2 carbon foam electrodes. When amplified and filtered, a VCO, VCA and other exclusive synthesiser circuits are programmed by the control voltage from the plant to produce tracking sequences of notes. These follow in pitch, rhthym and volume the ever changing signal from the plant
The Kit includes 6 I.C.s, 3 transistors, all high quality components, tinned and dilled fibreglass p.c.b., loudspeaker and comprehensive assembly instructions. Also included is a free case, ready punched, with wooden end cheeks and stick-on silk-screened front panel for a really professional finish. Runs on 2 $41 / 2$-volt batteries (not supplied)

SPECLAL INTRODUCTORY OFFER INCLUDES FREE GASE
 KBT E19:90 ASSEMBLED AND TESTED E27.50 Price includét

Allow 21 days for delivery. OFFER ENDS DECEMBER 31,1978 JEREMY LORD SYNTHESISERS
52 BECMEAD AVENUE, LONDON SW 161 V .

Ladies LCD Watch

and don't you ever say we don't listen to you again! Ever since we first did a gentlemans watch, we have been dealing with a constant never ending stream of requests for a ladies model. Well at long last we can claim to have done something about it!

It wasn't easy arranging this sort of price on a product this good - but ETIs done it again! The watch is small enough to look good on the prettiest wrist, and accurate enough to satisfy the most fastidious. Normal display shows time of course, with both date and seconds available on a push of a button. A backlight is also included

Battery life should be greatly in excess of a year, and the bracelet is a smart stainless steel.

ع9.95

Inclusive of VAT and Postage

An example of this watch can be seen and examined in our reception at our Oxford Street offices.
To:Ladies LCD Watch OfferETI Magazine
25-27 Oxford StreetLondon W1R 1RF
Please find enclosed my cheque/PO for
£9.95 (made payable to ETI Magazine) for a
ladies LCD watch
Name
Address
IIPlease allow 14 days for delivery.

MARKET

Digital Alarm

Size: 105 mm wide 115 mm deep $\times 55 \mathrm{~mm}$ high.
THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1 100 is designed for mains operation only $(240 \mathrm{~V} / 50 \mathrm{~Hz})$ with a 12 hour display, AM /PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim / Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking' switch is provided under the clock. A 9-minute 'snooze' switch is located at the top.

The enormous numbers involved in ETI offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate.

This watch gives continuous display of hours and minutes press the button once and you'll get the date (American style). After a ccuple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display.

Press another button and you get a back light, enabling you to see the display in the dark. Setting, or resetting is simplicity itself and a 'hold' facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year.

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

CRIOMASONTE electranics
your soundest connection in the world of components

DEPT ETI 1,56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON. N10 3HN TELEPHONE: 01-883 3705

LOW POWER SCHOTTKY and TTL CMOS BITS and PIECES I.C.'s

FIDELITY CHESS CHALLENGEP "TO"
"It's You Against the Computer"

Are YOU good enough to challenge the CHALLENGER" in any of the following 10 levels ... and WIN??

LEVEL

1. Eleginner
2. Intermediate
3. Experienced
4. Advanced
5. Superior
6. Mate In Two (2 move puzzlers)

AVERAGE
RESPONSE TIME
RESPONSE TIME
7. Postal Chess (For games by mailonly)
8. Expert
9. Excellent
10. Tournament Practice

11 Minutes
5 Seconds
15 Seconds
35 Seconds
1:20 Minutes
2:20 Minutes
60 Minutes
24 Hours
6 Minutes
3 Minutes

In addition to its superb playing ability, look at these features: 1. Ten Levels of Play: From beginner to expert including "Mate in Two" and Chess by Mail. 2. Levels Changeable During Game: Change from level 1 to any level through 10 at any time on any move. 3. Random Computer Responses Vary Every Game.4. Selection of Legal Offense or Defense: Play from the bottom of the board or the top of the board. Choose either black or white. 5. Does Not Permit Illegal Moves: Never makes an illegal move according to all the rules of Chess. 6. Position Verification by Compputer Memory Recall.7. Plays Opening Defenses From Chess Books, i.e. Sicilian, French, Ruy Lopez, Queen Gambit Declined. 8. Analyzes as many as 3,024,000 board positions.9, Audio Feedback: Singlet one each time you press a key, DoubleTone when computer responds. 10. Problem Mode: Estabish wour own chess positions and watch the computer react. 11. Override Key to Make Multiple Moves: Make two, three, or more moves before the computer responds. 12. Add or Subtract Pieces During Game: Put back the piece you lost by override or take away the computers Queen for a more even game. 13. Pawn Promotion to Selected Piece: Promote a Pawn to a Queen automatically, or select a Knight or another piece instead. 14. En Passant Capture: The computer captures legally or accepts your legal capture. 15. Castling.

Numerous other features, including a solid walnut case, $13 \times 8 \times 1 / / \mathrm{inches}$ high, with a deluxe simulated leather and brushed gold foil playing surface; large $1 / 2$ inch LED Display; and hand carved solid wood, magnetized French Chess Pieces.
Callers welcome

audiophile

Abstract

What would you say if we told you about a cartridge which has a totally new stylus shape, a new improved magnet structure and revolutionary two part cantilever system - and a new radically different method of controlling operating conditions? It is all true, and its been around a few months too! Ron Harris took his time getting to the V15 Mk. 4 - but found it worth the wait!

IT HAS BEEN some time now since the launch of the V15 IV from Shure, and by now I hope all the fuss has died down. Never has a product been rumoured to appear for so long, and met with such polarised comment when it did. In the meanwhile since the release the cartridge has slowly gained ground, and now would appear to be highly regarded in all but the most partisan anti-moving-magnet circles.

Changes By Design

There is a lot in this design to interest the engineer, so let's consider that aspect first. The criteria to be met were to produce a cartridge which performed as close to perfection as possible under ideal conditions, and which went some way to creating those conditions.

The ambition I applaud!
Naturally these days computer analysis of just about anything numerically expressable was undertaken and quite right too! Everything down to body size and mass were considered, and then more models set up to attempt to blend the whole design successfully. (I don't think it would be an outrageous suggestion to make that the SME Series III was used as the optimum arm in all these cavortings.

The new features to come out of of all this are a dynamic stabiliser - and it's not just a brush, a new cantilever assembly, a new stylus shape, and a static reduction system. In addition the effective mass of the dynamic system has been lowered significantly.

Tipped For Shape

Shure have decided, somewhat bravely, to go it alone and produce a new stylus profile. The reason is they wanted lower distortion but without sacrifice of low wear and trackability in the process.

Any design for a stylus must include consideration of such factors as the actual groove itself, tip mass, manufacturing cost, record wear etc etc.

As you can see from the diagram the end result of Shures endeavours is a long contact profile, basically a hyperbola from the front, termed a hyperelliptical design. Its actual contact radius is around 38 microns. while its tracing radius (parallel to groove tangent) is smaller than other types. The compromise does appear to offer advantage over other types, right enough.

Left: a conventional elliptical stylus profile, as used in the earlier V15/III, and right, the new hyperelliptical prfile. The "footprint" (black oval) is longer and narrower than in the conventional profile.

Magnetic Heart

The cantilever assembly is always the first section to come under scrutiny whenever a cartridge is to be improved, (just shows what improvements could be made if you ask me!) and it has not escaped this time

After much playing with computers and trading off advantages against system requirements, Shure put themselves some prototypes together and carted them off for listening tests. Measurements, mathematical models and ears later a telescopic two element design emerged as the overall best solution, and was duly adopted

Part of the reason for this is vibration control presumably to supress resonances excited by dynamic stresses - and this is assisted by an elastomer damping device. The earlier M24 featured something like this, but not so sophisticated apparently.

The magnet itself is of a new type, of lower mass but higher strength than its predecessors, allowing the cantilver unit mass as a whole to be lower. Taken together the improvements to the system are claimed to provide better high frequency tracking ability, and the shifting of the HF resonance to beyond 20 kHz

Brush Up On Damping

Now down to the obvious bit - which I had to do last just to keep you reading. Static on records can be blamed for most of the ills besetting disc reproduction as it now stands. It attracts dust - and holds it - leading to quicker wear of both disc and stylus and higher replay noise

There are umpteen devices on the market for clearing static charge, most of which resemble gas lighters. But Shure make the valid point that unless you know what polarity the charge is you're trying to clear, you've a $50-50$ chance of making if worse by pumping ions at it.

Another nasty well-known to LPs of all age groups is the warp. Warps come free with most records these days and provide such delights as variation in tracking angle, mis-tracking due to effective reduction of applied tracing force and overall disruption of the ideal conditions in which cartridges like to operate.

Damping applied at the arm pivots can help with this, but represent a compromise at best. It is better to have the control as close to the tip as possible. The dynamic stabiliser is designed to do exactly that. The carbon fibre brush is mounted to ride just ahead of the stylus, and is equipped with viscous damped pivots. These are designed to absorb the shock produced by a warp, be it gradual or sudden. The optimum distance between cartridge body and record is thus preserved.

Bristling With Pride

That brush is made up of about 10.000 carbon fibre bristles, ten of which would fit nicely into a record groove. Since it is carbon fibre it is conductive and can leak static charges to system earth since it is connected to one channel earth. Shure's research has indicated too that local static charges can increase tracking force by attracting the cartridge to the LP!

Sounds logical once someone tells you doesn't it? The brush does a good job shifting dust and muck out of the way too!

The outrigger carbon-fibre brush may be set in any one of three positions: 1) in the "Up" position. 2) the dynamic stabiliser in its operating position 3) set down as a guard.

The V15 Type IV's brush with damped pivot is said to aid the tracking of warped discs by matching stylus movement more closely to the motion of the arm

The carbon-fibre brush is in continuous contact with one of the earth pins and leaks static charges to earth.

A close-up view of the stabiliser fitted to the V15 Mk-4, reposing in its guard position. The white line tells you where to line up the stylus when at play!

Because of the stabiliser, the stylus sees 0.5 g less than is applied to the arm as a whole. This means that to get 1 g tracking force, you set 1.5 g . It can look confusing at first, and don't forget later and clip up the stabiliser, else the cantilever gets the lot!

Tracing Class

After brief experiments, all our tests were conducted with 1 g applied to the stylus, as the V15 tracked anything at this weight, regardless of how torturous we made our torture tracks. I failed to catch it out even once. Foiled again. One to Shure.

In contrast to the Mk3 the new model is sensibly specified for capacitive loading, and is apparently as insensitive to these things as it can be. Using a Sony TA-88 preamp enabled me to vary the loading while the cartridge was playing - a reviewers delight! No adverse effects can be expected in normal use. Noise seems to be reduced too.

The stabiliser does offer real benefits as it definitely aids tracking and makes the system as a whole very tolerant of record 'flatness'. I tried the cartridge with and without pivot damping on the SME and would suggest it be used with damping - it somehow gains confidence that way!

Sound Stuff?

This is the bit where I lose some 'musical' friends no doubt, because whatever anyone may have said amid the initial rash of reviews you will not find a cartridge better at information retrieval than the V15 IV. Its sound is incredibibly detailed, a nd free from audible vices. It has a nice confidence about it altogether, and did not mis tracks - or mis-anything - even once.

The sound has an overall smoothness that is perhaps its most 'nameable' feature. The bass quality is good, although I have heard better. In the mid-range and treble the sound stands forward towards the listener presenting a good stable image with all the detail you could wish for, with no trace of hardness or brightness whatsoever.

Conclusions

So there it is - interesting and worth the wait for its appearance. Whether you like the sound of the V15 or not only you can tell, but if you're considering spending around $£ 70$ on a cartridge you'd be ill-advised to miss listening to it.

Main Trouble

One of the most oft repeated queries to Audiophile concerns the problem of mains borne clicks and pops appearing out of loudspeakers.

Unfortunately there is no immediate overall solution. The first thing to try is to move either the hi-fi or the appliance - usually a fridge - causing the clicks to another outlet.

If this doesn't work then there are several suppressors on the market, at varying prices, to deal with the trouble. The most expensive is the QED unit at about $£ 10$. It does work in most cases, but no more so than some others.

The cheapest such unit available is probably the RS mains suppressor. Your local component stockist should be able to order this for you, and fitting it is pretty simple. Its input comes from the mains, and its output feeds the hi-fi in question.

Otherwise

If none of this works then pretty obviously your problem is not mains borne. For radiated problems there's not much you can do except move things around. This is pretty rare though.

Change Of Load

Above is the Sony TA88E preamp I mentioned a couple of months ago. Next month l'll be going through the circuits of this device in detail, as it represents a job done very very properly. At $£ 699$ so it should. The effect of all this engineering on the sound proved to be interesting too.

ETI

XMAS AND NEW YEAR BONUS 10 \% DISCOUNT ON ALL PURCHASES UNTIL JANUARY 14th, 1979

TEKTRONIX OSCILLOSCOPES

Main trames 545 with CA $£ 225 ; 536,585$ with type $82 £ 395$; $10 \mathrm{MHZ} £ 425 ; 551$: 502 High gain. Special $£ 160$. The prices of main frames will vary enormously on condition and plug-ins. Hence prices are guides only
The fact we don't advertise modern oscilloscopes, etc., doesn't mean we don't handle them. only that at our prices they are not normally around long enough to advertise For example
H.P. OSCILLOSCOPE type 183A with 1830A and 1840A 3db 250MHZ £950
TEKTRONIX $4533 \mathrm{db} 50 \mathrm{MHZ} £ 650$
TEKTRONIX $4543 \mathrm{db} 150 \mathrm{MHZ} £ 1,000$
S. LABS SM 1113 db 20 MHZ £ 325
S.E. LABS SM $1113 \mathrm{db} 20 \mathrm{MHZ} £ 325$

TEKTRONIX SPECTRUM ANALYSER 1 L40 Plug-in 1.5 GHZ to
40 GH E 550 40GHZ £550.
BONTOON RX METER type 250 A 0.5 to 250 MHZ Clean £ 85 Fixed 50 KHZ frea. $£ 45$ ea
TEKTRONIX TIME MARK GEN type 180A £60 ea
SOLARTRON PULSE GEN GO 1101 £ 30 ea
R\&S SWEEP GEN 50KHZ-12MHZ SWH BN4242/2£100.
R\&S ENOGRAPH-G ZSG BN1B531 £ 120.
R\&S AM/FMGEN SMAF BN41404 4MHZ - $300 \mathrm{MHZ} £ 300$ ea.
R\&S AM /FM GEN SDAF BN4 1023/2 170-940MHZ £300.
R\&S POWER SIG GEN SMLR BN4 1001 0.1MHZ-30MHZ
£80.
R\&S Z-G DIAGRAPH $30-300 / 420 \mathrm{MHZ}$ type ZDU BN35610
R\&S AM GEN $30-300 \mathrm{MHZ}$ SMLM BN4 $105 £ 90$ ea
R\&S AM GEN 30-300MHZ SMLM BN4 105 £ 90 ea
R\&S ATTENUATOR DPU BN $18044 / 500-3000 \mathrm{MHZ} \mathrm{O}$ R\&S ATTENUATOR
109 db 50 ohm $£ 150$.
109 db 50 ohm $£ 150$.
MARCONI AM /FM GEN TF $1066 \quad 10-470 \mathrm{MHZ} £ 275$
MARCONI FM GEN TF $1077 / 1 £ 120$.
PHILIPS AM/FM GEN type $201 £ 160$
BONTOON AM/FM GEN type 202 H with Low freq adaptor
£525. ${ }^{\text {R\&S AM GENERATORS } 300.1000 M H Z ~ £ ~} 120$ ea
AIRMEC AM/FM GENERATOR TYPE $365 £ 140$.
HP SAMPLING Oscilloscope type 18581000 MHZ complete with Plug-in, probes, etc. £195 ea
SOLARTRON Oscillator C 054625 HZ .500 KHZ . Sine wave only. Metered. Good attenuator $£ 25$ ea,
SOLARTRON PRECISION VOLTMETER VF252. Large clear scale. 1.5 mV full scale to 150 V full scale $£ 25$ ea.
H.P. Osciloscope type 140A. with sampling.plug-in 1425A and

1410A DC-1000MHZ £550.
1411 A and 1432 A Sampling head DC. 4 GHz H . F 750 .
SOLARTRON DVM type LM 1440 £ 75 ea. Other Solartron models available. Call and see.
H.P. Digital Recorders 11 digit $£ 35$ ea

BIRD TERMALINE WATTMETER METER type $210 £ 80$.
£ 95.
E.H. PULSE GEN model 122 £140

MARCONI AM/FM MODULATION METER TF 2300 with
TM8045 £450.
R\&S POLYSCOP SWOB1 Scruffy, working $\mathbf{£ 2 5 0}$ ea; Nice R\&S POLYSCOP S
R\&S POLYSCOP SWOB2. Fair condition, working $£ 425$ ea Very clean £ 550 ea
EX MHZ-420MHZ calibrator and many othental controls. Auto lock. Crysial accessories and manyal $£ 195$ ea
COSSOR OSCILLOSCOPE type CDU150 DB DC -35 MHZ
R\&25 E-G. DIAGRAPH 300-2400MHZ BN3512 Good condition £60 ea.
MARCONI SIG GEN TF801D/8/S. Very good condition $£ 325$
MARCONI RF POWER METER TF1 152A/1 50 ohm \& 55 ea. PLUG-INS for Telonic Sweeper SM2000 Various from $£ 50$ ea TELONIC SWEEPER SD3M $425-930 \mathrm{MHZ} \mathrm{£} 80$ ea
MARCONI TF868 Universal Bridge £ 70 ea.
AIRMEC SIG GEN type $2041.320 \mathrm{MHZ} £ 225$.
MARCONI SIG GEN TF8018 £160 ea
204 GHZ f 200 ea
8RUEL \& KJOER Automatic Vibration Exciter type 1016 Sine Wave sweep from 5 HZ to 10 KHz . 75 ea
GENERAL RADIO Osc Unit 1209B $250920 \mathrm{MHZ} £ 50$ POLARAD SPECTRUM SIGNATURE MONITOR 14 OHZ $\pm 12.5 \mathrm{MHZ}$ Sensitivity 120 dbm . Price $£ 250$. POLARAD SIGNAL GENERATOR GB2/G. 711 £ 250. GENERAL INSTRUMENTS TRANSFER FUNCTION ANCE BRIDGE type 1607 A in transit case $£ 425$. MARCONI SIGNAL GENERATOR TF1060 £185. BRADLEY MULTI METER CT471£45 ea
H.P PULSE GEN $212 \mathrm{~A} £ 55$ ea
H.P. Microwave Freq Converter type 2590B $£ 175$. MARCONI CT 44 Wat1 Meter $0-6$ Watts $£ 25$ ea AVOTR TRANSFORMER 240 V input CT 537 § 50 ea £ 14 ea.
FLUKE AC-DC VOLTMETER Model BO3B $£ 75$ ea.

TELETYPE ASR33 with 20 MA LOOP. Good
Special low price $£ \mathbf{3 9 5}$ ea. KSR 33 s from $£ 275$.
DON T FORGET YOUR MANUALS S.A.E. WITH REQUIREMENTS

STEPPING MOTORS

All motors 200 steps per revolution. 200z. inch torque, 120 V Data supplied. £8 ea
Supplied for $12 / 24 \mathrm{~V}$ operation $£ 13$ ea. P\&

JUST IN

variac 0.6 AMP in altracive small modern case with 20
 E16 ea Car 3.25
Roband Square Wave Inveriors type EPv $50 / 100$. Provides $115 / 230 \mathrm{~V}$ r.m.s. Square Wave from 12 V . Output frequency 50 HZ . Output Power 100 Watts. Size $31 / 2 \times 31 / 2 \times 43 / 4$ approx BRAND NEW at "/̌i'Manufacturers' Price

ONLY £ 50 each. P\&P E2
VIEWLEX INSTRUCTIONAL SUPER VIEWERS MODEL 136 with Headphones, 9 screen. Takes standard cassette. Front keys. Brand
$€ 3.25$ ea.

* TRANSISTORS/DIODES/ RECTIFIERS, ETC *

Gurantee
At $5 p$ ea
BC 147 ;
BC147; 2N3707; BC172B; BC251B; BC348B; BC171A/B CC413; D10, BAX15; RN937, BA102BE, 8ZX83: TiS6
2N5040. ZENER DIODES 4 V Sub-min 5 p ea. 2N5040. ZENER DIODES 4. 7V Sub-min 5p ea.
At 10 p ea 1 N 4733 A SN7451N: BYX10. 15 V 0.36 A TIP34A-50p ea BD538-40p ea. Heavy Duty Bridge Rectifier-20p ea CA3123E-£1 ea. BDY55-£1 ea

2N5293-16p ea. 8YZ1015p ea.
TBA560CO 2 ea. 1 N4436T-TO3 Flat Mount 10A 200piv £ 1 ea. 2 N 5897 with 2 N 5881 Motorola 150 W Comp pair $£ 2$ BU208 £1.20 ea
BD535. BD538 Comp. pair - 75p.
Linear Amp 709 25p ea
P\&P exira on all items.
FINNED HEAT SINK
FINNED HEAT SINK
1/ain 50p ea. P\&P $75 p$.
Texas 8ridge Rectifier 5S805-50V 5A 60p ea. P\&P $20 p$.

A MILLION MUST GO

HIGH NOISE IMMUNITY LOGIC
DUAL IN LINE 16 -PIN CERAMIC. $1,2 \mathrm{~V}$ Rail Conventional TTL package Guaranteed spec devices. Full data. 2p ea package Guaranteed spec.
MIXED PACK $£ 1$. P\&P $25 p$

OSCILLOSCOPE TUBES

Brand New Boxed-Carriage all tubes $£ \mathbf{3 . 2 5}$.
Telequipment $552 £ 10$ ea; D51 $£ 15$ ea; S42. $£ 10$ ea; D53A $£ 20$ ea: D52 £15 ea; S31 £10 ea. Bradley $200 £ 85$ ea, Advance OS $3000 £ 85$ ea. GEC types $924 \mathrm{E} £ 17.50$ ea. 14968 £ 75 ea; 8rinuar D13-51HG £65 ea D $10-210 \mathrm{GH} / 32$ £ 40 ea: D13-46GM £35 Pa.
NOT BOXED - NE
NOT BOXED - NEW - WARRANTED. Telefunken D14 Labs SM112 and GEC/MOV1474 at £55 ea.

BUILD YOUR OWN BUS

Approx. $11 / 2$ metre multiway ribbon cable terminated each end
with a 50 way female edge connector. Takes 0.1 printed circuit board, £2 ea P\&P 75p

TELEPHONES. Post Office style 746 Black or two tone $\mathbf{£} \mathbf{6 . 5 0}$ ea. Modern style 706 8lack or two-1one grey $£ \mathbf{4 . 5 0}$ ea $\mathrm{P} \& \mathrm{P}$
HANDSETS 706 style $£ 1.75$ each. Older style $£ 1$. P\& P 75p. TELEPHONE EXCHANGES. EG : 5 -way automatic exchange TELEPR
only from $£ 95$.

$\mathbf{7 4 S 0 0}$	$\mathbf{1 2 p}$	74510	$\mathbf{5 p}$	74451	7p
7401	$5 p$	7417	$14 p$	7453	$5 p$

REED SWITCHES Blue keys marked in green 0.9 and a sta REED SWITCHES Blue keys marked i
with one blank ONLY £5 ea P\&P 75 p.

Photo Resistor ORP 12-35p ea
Small TELESCOPIC AERIAL extending to $221 / 2$ with swiv
base 40 pea. P\&P 20 .
Small Black SUCKER FEET - always useful 10 for $\mathbf{5 0 p}$. MERCURY SWITCHES. Heavy duly with lever \& flyleads 20p PHOTODIODE DETECTOR \& EMMITTER. Independently mounted with 4 flyleads - 50p per pair.
RESISTORS 680 Ohms 5 Watt - 10 for 50 p .

ALMA Min. PUSH BUTTON REED SWITCHES. High reliability $18 \times 27 \times 18 \mathrm{~mm}$. Ideal for KEYBOARD 50p ea. P\&P extra
MINI
P\&P P\&P $75 p$
HONEY
HONEYWELL HUMIDITY CONTROLLERS 25p ea P\&F
SPRAGUE $100 \mathrm{mfd}+500 \mathrm{mfd} 210 \mathrm{VDC}$ working Brand new 5 for 50p. P\&P 50p
REED SWITCHES. Sub-min Size 20 mm 10 p ea
SMITHS encapsulated transistorised AUDIBLE WARNING DEVICES 4 V - 12 V . Can be driven from ITL. 50pea. $P \& P$ P $25 p$ AMPHENOL 17-WAY CHASSIS MOUNT EDGE CON NECTOR. 0.1 spacing $20 p$ ea. P\&P extra BURROUGHS 9 digit PANAPLEX numeric display. 7

TRANSFORMERS 115 V AC input. Secondary 30 V and 2.6 V 10VA 50p ea. P\&P 50p
21.WAY SELECTOR SWITCH. Single pole with reset coil E1.45 ea P\&P 750
As ABOVE with additional 240 V relay on base and lulf black plastic cover £ 2.45 ea. P\&P 1.50
SNAIL BLOWER 110 V AC 500 MA Brand new by Airflow Developments Quiet and very good looking. £2.50 ea. P\&P
POTTER \& BRUMFIELD $18-48 \mathrm{~V}$ DC Relay. 3 pole c/o Heavy Duty Plug-in type with base 50p ea. P\&P 25 p
MINIATURE KEYBOARD. Push contacts, marked
MINIATURE KEYBOARD. Push contacts, marked 0.9 and A-F and 3 user definable keys $£ 1.75$ ea. P\&P $35 p$
CLAREREEDRELAYS $24 V$ DC Coil. Single pole make Size CLAREREED RELAYS 24V DC COII. Single pole make Size
$11 / 4 \times 7 / 16 \times 7 / 16$ at $25 p$ ea. P\& $10 p$. ROTRON CENTAUR FANS. Size 45×45
blade $£ 4$ ea. Ps, 75 p
MIN. PLUG-IN tY
CROUZET/MURTENSCHWEIZ MOTORS. $110 \mathrm{~V} \cdot 50 \mathrm{HZ} 4$ fpm. Gear box can be removed 75p ea. P\&P 75p.
FRAMCO MOTORS. 11550 HZ Input single phase, $1 / 12 \mathrm{th}$ HP 1.450 rpm on silent mount. As new. £2.75 ea. P\& P PYE DYNAMICS THICK FILM. 1 MHZ Clocking Osc 5 V supply. Size $19 \times 25 \times 6 \mathrm{~mm}$ Drives one TTL load 75 p ea P\&P
COMPRESSOR UNIT. Compact, 115 Y 50HZ single phase $15 A$
3
3 $\frac{18}{}$ ea. Psp 1.425 rpm . Outside piston housing approx. MAGNET DEVICES
MAGNET DEVICES. Plug-in RELAYS 240 V AC. 3-pole c/o.
Heavy duty 10 amp. Complete with base. BRAND NEW Heavy duty EQUIPMENT NOT USED. 3 on sub assembly £2.50. P\&\& $£ 1$ or £ 1.25 ea. P\&P $45 p$
SMALL MAINS TRANSFORMER 240V Pri. 12 V 100 MA
sec $60 \times 40 \times 42 \mathrm{~mm}$. 50p ea. P\&P 75p.
G.I. BRIDGERECTIFIER type W01 (ideal for above) $17 p$ ea. FAIRCHILD FND10 7 segment display 0.15 , Red, Common cathode 65 p ea. P\&P $15 p$. Info supplied.
MULLARD TUNER MODULES - with data
LP1171 combined AM/FM IF strip. $10.7 \mathrm{MHZ} £ 3.50$ ea LP1179 FM front end with $A M$ tuning and 87.4 MHZ to
104.5 MHZ tuning. 10.7 MHZ IF $£ 3.50$ ea P\&P 50 p each Unit The Pair £5.75. P\&P 75p
POWER UNIT MODULE containing 2 small, 3 med \& POWER UNIT MODULE containing 2 small, 3 med, \& large fernte cores: 3-TO 9 power transistors, caps, resislors.
high powered diodes 9 transistors. 3 min fuse holders, etc $£ 1.50$ ea $P \& P \subseteq 125$
GENERAL ELECTRIC OPTO-ISOLATORS type H $15 \mathrm{~V} \times 504$ 65p ea P\&P $15 p 10$ for £5. P\&P
MINIATURE REED SWITCHES 9p ea P\&P $15 p$.
ROTARY SWITCHES 250 V 10A 10 p ea. P\&P 15 p .
LEDEX ROTARY SOLENOIDS 115 V DC. No swith assem. bly 25p ea. P\&P 25p
POTTER \& BRUMF
POTTER \& BRUMFIELD TIMER RELAYS. $24 / 48 \mathrm{~V}$ Heavy duty 2 pole $c / 0$ with 5 secs. delay at $48 V$ increasing with
voltage feduction. Timing can be altered by changing value of voltage reduction. Timing can be altered
resistor /capacitance 50 p ea. P\&P 25 p. resistor/ capacitance 50 p ea. P\&P $25 p$.
CABLE NEATERS - neaten up your wire on a chassis with CABLE NEATERS - neaten up your wire on a chassis wit
these push-on clips 10 for 20 p . 100 for $\mathbf{1 . 5 0}$. P\& extra. these push-on clips 10 for 20p. 100 for £1.50. P\&P extra
AUDIO AMPLIFIER BOARD. Size $41 / 21 / 2$ Output TIP31s. Circuit supplied $£ 1.50$ ea P\&P 30 p.
DIGITAL 24 HOUR CLOCK with built-in alarm as used 8RAUN Digital Clocks Silent running, Large Illuminated Numerals. AC Mains Size $6 \frac{1 / 8}{} \times 21 / 3 \times 2^{3 / 4}$ ONLY $£ 4.25$ ea BROOKE CROMPTON \& PARKINSON extractor fan assembly 115 V operation $\mathbf{£ 1} \mathbf{e}$. P\&P $\mathbb{P} 2$. OR TWO for $£ 1.50$.
NOW-INCREASE AREA GIVEN TO
PICK-A-PACK AT 50p per ib

A TECHNICAL MEMORANDUM

By Simian

DURING THE LAST FEW weeks some valuable research work has been incorporated into BSI and MIL standards, and this will greatly ease the specification of equipment. These standards help to combat a hitherto neglected environmental hazard; the users of equipment. A range of Standard Idiots (SIDs) has been defined, and these will be useful additions to any development laboratory.

Using Standard Idiots

Standard Idiots are useful both for acceptance testing of incoming equipment, and for developing foolproof electronics. The latter is of particular value to manufacturers producing consumer goods. In general the technique of using SIDs is very simple: it consists merely of letting them come into contact with the equipment to be tested. Any flaws will be quickly shown up.

SIDs locate ergonomic faults very rapidly. It is instructive to watch them at work sometimes. If something is weak, they will break it; if no-one in their right minds would dry-off a poodle in a microwave oven, they will do just that.

Almost all old-style quality-control testing can be abolished. If SIDs are allowed to get at all products before they leave the factory, it will be found that only the perfect get through. This reduces the number of complaints received from users, but the cost of disposing of the rejects (in bulk) can be rather high

Types of Standard Idiot

Several specialist schools have been set up to train SIDs since these students are not well received at normal colleges. The coursework is intensive, and there are rigorous examinations to maintain standards. Over 600 people have received a Diploma in Idiocy (Dip. I) to date.

Many people have been found to have a natural aptitude for this work

There are various grades of SID, ranging from the merely incompetent to those capable of sinking the Titanic, and there are many specialist fields:
(1) The 'non-technical' person (BS 91000-FOOL). This type normally panics when faced with more than two control knobs simultaneously. She (sometimes he) always mis-tunes radios, and would be hard put to it to recognise the difference between a watch and an oil refinery.
(2) Fiddler, or fidgeter (MIL-ID-99436/010). This
type is rapidly becoming an industry standard; the real word is full of them. If, for example, there is a switch controlling a lamp, the fiddler will flick it on and off for hours until either if breaks, or he spots something more exciting to play with. He will also use calculators to divide numbers by zero or to find $\arcsin (-10)$.
(3) The Ph.D (MIL-ID-12345/678) never reads instruction manuals. 'Of course, it's obvious that this piece of equipment works like so ...'It is only when clouds of blue smoke issue from a new $\mathfrak{k z} 2,000$ oscilloscope that he scuttles back to his desk to read in the unused handbook that this model is for 110 V , not 240V

Ph .Ds are often quite intelligent
(4) Dismantler. A member of this species is guaranteed to dismember any piece of equipment which he owns or uses. However, it is very rare for the article ever to be re-assembled. (They are usually foxed by the new child-proof pill boxes).

There are a few other specialist categories: for example, the 'jonah', whose mere presence in a room is enough to make clocks stop and television sets neurotic; or the Standard Irishman with fourteen fingers.

Disadvantages

One major problem with SIDs is that of storage when they are not in use. Obviously they cannot be left to roam freely around the lab.! Normal work under these conditions is difficult. Even when they are stored in cupboards the voluble and plaintive cries of 'let me out' are disruptive

There is another hazard which should not be overlooked: there have been a few unfortunate cases where standard idiots have been mistaken for engineers. Most of the companies where this has happened have now ceased trading

Conclusions

Standard idiots, in their present form, can be useful development tools, but there are associated hazards; on no account should they be left alone to amuse themselves. The new specifications are a major advance in a naturally chaotic field and standard idiots are adding a new dimension to destructive testing. This technological advance is helping to provide jobs for those people whose natural talents previously made them unemployable

- A second generation Induction Balance; system with improved Variable-Tone detection.
- Designed by protessionals for easy assembly by amateurs but with very good performance.
- The search coils are fully assembled and adjusted for you.
- Automatically rejects ground effect

Uses include:

* Treasure hunting - it's amazing what you can find in the garden or on the beach.
* Finding lost metallic items.
* Locating waterpipes and cables under floorboards on in walls.
* Checking old timber for nails before cutting, etc.. etc., etc., etc.

KIT - COMPLETE WITH PREASSEMBLED SEARCH COILS
f 16
£1-00p\&p
ASSEMBLED \& TESTED
£ 22.50
s $£ 1-00 \mathrm{p} \& \mathrm{p}$ Plus $£ 1-80 \mathrm{VaT}$
tor tree components sit
Communication Measurement Ltd 15 mallinson oval. harrogate yorks.

NON-SUBSCRIBERS START HERE

 MOVED TO THE NINTH FLOOR, OR WAS IT.....?'"

GIVE UP, GO MOME:
GIVE UP, GAKE OUTA
POSTAL SUBSCRIPTION
TOETI
TO ETI.

It can be a nuisance can't it, going from newsagent to newsagent? 'Sorry squire, don't have it - next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service Electronics Today International 25-27 Oxford Street, London W1R1RF

J. Smith

What do you do if you need a microphone in a hurry - the shops are closed and your friends are on holiday? Or you are just a little short of money? The answer is to build the following circuit from your odds and ends box. This circuit uses a small speaker as a microphone, one transistor and only four other parts, draws only about 2 mA of current from a 9 volt battery so an on / off switch is not really necessary

The transistor shown is 2N1184 and is a PNP germanium medium power type but is not critical - try the ones you have first before buying this new type. The components too are not critical and the prototype was found to work OK with 20% variation in values. The output is high impedance and is fed into the mic input of a tape recorder or pick-up input of an amplifier

Speed Alarm

D. Ian

It is all too easy, during a long journey on a motorway, to allow one's speed to gradually creep beyond that point which the boys in blue take an unwelcome interest; this alarm gives an audible nudge whenever you drift over a pre-set speed

Pulses from the distributor points (due to the ignition coil up to 400 V may be developed as the points open) are passed through a current limiting resistor, rectified and clipped at $4 \vee 7$. Via Q1 and the diode pump a DC voltage, which is proportional to engine revs, is presented to RV1; the sharp transfer characteristic of a CMOS gate, assisted by feedback, is used to enable the oscillator formed by the remaining half of the 4011

At the pre-set 'speed' (revs) a non-
ignorable tone emits from the speaker, and disappears as soon as the speed drops by three or four mph.

Calibration of Ca may be con. ducted with an accurate pulse generator remembering that, for a four stroke engine, frequency $=$ revs per minute times the number of cylinders divided by 120 ; for a car with a specification of $17 \frac{1}{2} \mathrm{MPH}$ per 1000 revs, in top gear, $f=133 \mathrm{~Hz}$ at $70 \mathrm{MPH}, 124 \mathrm{~Hz}$ at $65 \mathrm{MPH}(4000$ RPM and 3714 RPM). The necessary frequency should be fed to Q1 and VR1 set so that the alarm is just off. Reliable switching occurs on the prototypes with a change of only 5 Hz (150.RPM), ie less than 3 MPH for the above example

Direct calibration 'on the road' while covering discrepancies due to tyre size, etc, will only be as good as the speedometer and obviously should be carried out by a passenger rather than the driver

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer

7400	10p	7460	12p	74137	p	74195	50p	4055	130p	CA 3140	60p	LM 3909 N	65p	-	200p
7401	10p	7470	25p	74138	100p	74196	50p	4056	120p	LF 356	$80 p$	MC 1310 P	140p	TBA 520 Q	200p
7402	10p	7472	20p	74141	50p	74197	50p	4060	100p	LF 357	80p	MC 1312 P	150p	TBA 530 Q	200p
7403	10p	7473	25p	74142	180p	74198	100p	4066	35p	LM 211 H	250p	MC 1314 P	190p	TBA 540	200p
7404	12 p	7474	25p	74143	270p	74199	100p	4069	12p	LM 300 TR5	$170 p$	MC 1315 P	230p	TBA 5500	250p
7405	12p	7475	25p	74144	270p	74293	90p	4070	12p	LM 301 AN	30p	MK 50398	650p	TBA 560 C	250p
7406	25p	7476	25p	74145	55p	741500	18p	4071	12p	LM 304	200p	MM 5314	380p	TBA 641 A1	250p
7407	25p	7480	40p	74147	100p	745112	80p	4072	12p	LM 307N	65p	MM 5316	480p	TBA 700	180p
7408	12p	7481	85p	74148	90p	CMO	S	4081	12p	LM 308 T05	100p	NE 529 K	150p	BA 7200	225p
7409	12p	7482	75p	74150	65p	4000	12p	4082	12p	LM 308 DIL	100p	NE 555	25p	tBa 750 Q	200p
7410	12p	7483	75p	74151	45p	4001	12p	4093	70p	LM 309 K	100p	NE 556	90p	TBA 800	80p
7411	15 p	7484	70p	74153	45p	4002	12 p	4510	60p	LM 310 TO5	150p	NE 562 B	400p	TBA 810	100p
7412	15p	7485	60p	74154	70p	4006	80p	4511	70p	LM 311 TO5	150p	SAD 1024	1500p	TBA 820	100p
7413	25p	7486	25p	74155	45p	4007	14p	4516	65p	LM 317 K	325p	SL 917 B	650p	TBA 920 Q	280p
7414	45p	7489	130p	74156	$45 p$	4009	30p	4518	65p	LM 324	70p	SN 76003 N	150p	TCA 270 Q	220p
7416	25p	7490	25p	74157	45p	4011	12p	4520	65p	LM 339	60p	SN 76013 N	110p	'TCA 270 S	220p
741	25p	7491	40p	74160	55p	4012	12p	4528	80p	LM 348 N	90p	SN 76013 ND	D 125p	TCA 760	300p
7420	12p	7492	35p	74161	55p	4013	30p	4583	70p	LM 380	60p	SN 76023 N	110p	TCA 4500 a	450p
7421	20p	7493	30p	74162	55p	4015	50p		IEAR	LM 381 N	90p	SN 76023 ND	D 125p	TDA 1008	350p
7422	15p	7494	70p	74163	55p	4016	30p	AY3 85	450p	LM 382	90p	SN 76033 N	150p	TDA 1034	450p
74	20p	7495	45p	74164	60p	4017	50p	CA 303	40p	LM 391	180p	SN 7627 N	160p	TDA 2002	300p
7425	20p	7496	45p	74165	60p	4018	55p	CA 304	60 p	LM 555	25p	SN 76228 N	180p	TDA 2020	300p
7426	22p	7497	120p	74166	75p	4019	40p	Ca 3060	225p	LM 709 C	40p	SN 76660 N	75p	TL 084	120p
7427	22p	74100	80p	74167	160p	4020	50p	Ca 306	200p	LM 710 TO5	60p	taa 300	100p	XR 320	250p
7428	25p	74104	40p	74170	100p	4022	50p	CA 307	250p	LM 710 DIL	65p	TAA 350	190p	XR 2206	450p
7430	12p	74105	40p	74173	80p	4023	12p	CA 308	250p	LM 723 TO5	40p	TAA 550	35p	XR 2207	450p
7432	20p	74107	25p	74174	60p	4024	40p	CA 308	250p	LM 723 DIL	40p	TAA 570	220p	XR 2208	600p
7433	28p	74108	100p	74175	60p	4025	12 p	CA 308		LM 733	120p	TAA 661 B	140p	XR 2216	650p
7437	20p	74166	75p	74176	50p	4026	80p	CA 308		LM 741	20p	TAA 700	350p	XR 2567	250p
7438	20p	74109	25p	74177	50p	4027	30p	Ca 3088	190p	LM 748	40p	TAA 790	350p	XR 4136	150p
7440	12p	74118	75p	74178	75p	4028	45p	Ca 3089	160p	LM 1303 N	100p	TAD 100	150p	XR 4202	150p
7441	45p	74120	80p	74179	120p	4029	50p	CA 3090	AQ360p	LM 1458	100p	TAD 110	130p	XR 4212	150p
7442	40p	74121	25p	74180	90p	4030	30p			LM 3080	75p	TBA 120 S	60p	XR 4739	150p
7443	60p	74122	35p	74181	130p	4032	80p	CA 3130	- 100p	LM 3900	55p	TBA 120 T	85p	ZN 414	00p
7444	60p	74123	40p	74182	50p	4033	100p		100p	IN 4148 Di	es by	/ Texas, 100	for		
7445	65p	74125	35p	74184	120p	4040	60p			$\text { c Ram } 2102$	$024 \times$	bit 450 nano	sec,	00	
7446	50p	74126	35p	74185	100p	4043	60p			211225	$\times 4 \text { bit }$	450 nano sec	£2.50		
7447	50p	74128	60p	74188	320p	4046	90p			asonic Tra	sducer	rs $40 \mathrm{kHz}, £ 2.00$	00 each	£3.50 pair	
7448	50p	74130	120p	74190	70p	4047	80p				es	de post and Vat			
7450	12p	74131	90p	74191	70p	4048	50p					-			
7451	$12 p$	74132	45p	74192	60p	4049	25p								
7453	12p	74135	90p	74193	60p	4050	25p				Acc	redit cards accept			
7454	12p	74136	80p	74194	55p	4054	100p			Shop c	ed from	21/12178 to 2,1	$1: 79$		

FIRST GRADE DEVIGES by MAOR MANUFIGTURERS Special Xmas Offer. of fopolatitems selected

TEXAS TTLs

We stress the fact that we are totally quality conscious and do not offer sub-standard or rebranded products for sale.

STAR OFFER

LOW PROFILE SOCKETS

8 Pin	$9 p$	18 Pin	$20 p$	24 Pin
$27 p$				
14 Pin	$10 p$	20 Pin	$22 p$	28 Pin
16 Pin	$11 p$	22 Pin	$25 p$	10 Pin
$43 p$				

VOLTAGE REGULATORS PLASTIC TO-220

1 Amp +ve		1 Amp -ve			
5 V	7805	$55 p$	5 V	7905	55p
12 V	7812	55p	12 V	7912	55p
15 V	7815	55p	15 V	7915	55p
$100 \mathrm{~mA}-\mathrm{TO} 92$ (+ve) $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ 100 mA -TO 92 (-ve) $5 \mathrm{~V}, 15 \mathrm{~V}$					25p
					50p
78HO5KC 5Amp/5Volts TO-3					550p

OPTO DEVICES

LEDS: 0.2" Red 14p. Green 16p. TIL209 10p.
DISPLAYS:

FND 357	$0.37^{\prime \prime}$	100 p	Red C.C.
FND $500 / 507$	$0.5^{\prime \prime}$	100 p	Red C.C./C.A
TIL $321 / 322$	$0.5^{\prime \prime}$	110 p	Red C.A./C.C.

Minimum order $£ 10$ exc. VAT
DISCOUNTS $\left\{\begin{array}{l}10 \% \text { on orders over } £ 50 \\ 15 \% \text { on orders over } £ 100\end{array}\right.$
OFFER CLOSES ON FEBRUARY 15, 1979

Please add VAT to total
Please add Ins. P\&P 54p

TECHNOMATIC LTD. (ETI) 17 BURNLEY ROAD
LONDON, NW10

Geiger Counter

A. Wheatley

Although the circuit is imexpensive and simple it is just as sensitive as many commercial devices. The important part is the geiger tube and this will probably cost about $£ 1$. 90 . It needs a high voltage supply which, in this case consists of $Q 1$ and its associated components. The transformer is a low current 250 V 9-0-9 and is connected in reverse. The secondary is connected into a Hartley oscillator, the base bias being provided by R1. RV1 is connected to control the voltage to the Geiger tube. A device to double the voltage is included because otherwise the voltage would still be insufficient to drive the tube. This comprises D1, D2, C4 and C5. This also rectifies it and smooths it. It is very important that C4 and especially C5 are of good quality and have low leakage. RV1 should be set so that each click heard is a nice clean one because over a certain voltage all that will be heard is a continuous buzz. The high voltage section is perfectly safe although if touched it will give a slight shock. This is unpleasant but quite harmless

Cuts Above

B. Houseley

The circuit here is an improved version of the original cuts encoder. If Q1 is preceded by a high impedance buffer, quite low signal levels can be accommodated successfully - and still trigger the 74123. A 74C02 or a 7402 was found to trigger only unreliably in this circuit.

THIS MONTH'S SPECIAL OFFER "Motorola Audio Amplifier 1 watt I.C."	
1 watt plus into B-16 ת. $9-16 \mathrm{~V}, 10-400 \mathrm{MV}$ sensitivity. Short circuit proof. no heatsink required Only 90p with Data and circisis	
Sentinel Smoke and Gas Detector. This beautifully made unit uses quality components on fibreglass board encased in heavy duty, domed diecast box, $31 / 2$ diam $\times 1 / 2$ high. LED. indicator. TGS 105 plug in sensor, 24 v , or 12 v by altering 3 resistors, will drive relay or lamp. Ideal for caravans. boats. kitchens. etc. etc. $£ 6.45$ with circuit and data. Suitable relay for above EI, state voltage	Don't let your environment dehydrate YOU, BUY OUR "HONEYWELL 'HUMIDITY CONTROLLER'. Membrane actuated. adjustable by $1 / 4$ shaft. Ideal for greenhouses. offices. centrally heated homes. etc. 3.75 A contacts at 250 V . Build Humidifiers or dehydration alarms with this novel gadget at a fraction of original cost. E1 each. 3 for $£ 2.50$
Miniature Vemitron' FM4 10.7 MHz ceramic filters Data and circuits 20 p	Semiconductor Bargains
50p each. 3 for £1 Crystal earpieces with lead 40p each. 3 for £1	1000 Mixed Diodes, mostly unmarked, similar to IN4 148 etc, 70% okay. E1.50
Magneric earpieces with lead and plug 25 p each 5 for $£ 1$	New Improved Transistor Packs: 100 New and marked transistors including BC
Ultrasonic transducers transmitter and receiver. 14 mm diam 40 kcs	14B, BC 154, BF 274, BC 212L, BF 200 and lots of others, only E4.95.
£4. 25 per pair m boxes $12 \mathrm{~B} \times 44 \times 38 \mathrm{~mm}$, ideal	200 transistors as above and including 2N3055. AC128, BD131. BFY50, only
for signal injectors, etc	£9.95.
100 miniature reed awitches, ideal for burglar alarms, model railways. etc E3.30	ITT 25 kV ctv eht triplers for Decca "Bradford chassis brand new £2.50. 5 for $£ 10$
6.6-pole 12 volt reed relays on board	BD 131 4 for £1.00
E2.45	SN76115N (equivalent MC 1310) 50p
High quality computer p	TBA 120A 50p
top-grade components	
Slbs 4.75	BF 200 6-f1 BF 274 12-£1
10 lbs EB. 95	$\begin{array}{lllll}\text { BC } 2122 & 10-£ 1 & \text { BC } 148 & 12-£ 1\end{array}$
New U.H.F. transistor TV tuners. Rotary	BC 154 12-£1
type with slow motion drive, aerial socket and leads ©2.50	
Aluminium TV cóax Plus B for E1	luxe Fibre Glass Printed
Miniature edgewise panel mounting	Includes 150 sq ins. copper clad f/g board.
level meters $\mathbf{2 0 0 \mu a}$ F.S.D. $\quad 90 \mathrm{p}$	1 lb ferric chloride. 1 dalo etch resist pen.
300 mixed resistors $1 / 2$ \& $1 / 4$ watt E \quad E .50	abrasive cleaner, 2 mini drill bits, etch tray
300 modern mixed caps most types £3. 30	and instructions Only E5 30
100 mixed electrolytics E2.20	150 sq ins. fibre glass board .. E2.00
00 mixed printed circuit components ε_{1}	Dalo pen ... 90p
	1 lb ferric chloride to mil spec .. E1.25
300 mixed printed circuit resistors £ 1.00	5 lbs ferric chloride to mil spec. E5.00
0 high-wattage resistors. W W. . etc. $\text { E2 } 20$	Instruction sheet 20p
20 assorted VDRs and thermistors £1.20	
25 assorted presats, skeleton etc £1. 20	30p P\&P ON ALL ABOVE ITEMS. SEND CHEOUE OR POSTAL ORDER WITH
25 assorted pote and presets £1.50	CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY DEPT.
150 100 kixed varicap pots, can be banked side by	
100k varicap pots, can be banked side by side, very compact 10 for E 1	
100 mixed modern miniature ceramic and plate caps	Callers by appointment only

COST EFFECTIVE FREQUENCY COUNTERS

Frequency range 4Hz-32MHz Sensitivity 10 my Stabilily 1 in 10^{6} [unovened] Neon numerical indicators Average or standard period tacility Two Tone Blue Case Start / Stop option

TYPE 401A £ 138 plus VAT
Full range of 6 and 8 digit Counters with neon and 7 segment LED indicators covering frequency range $4 \mathrm{~Hz}-1.2 \mathrm{GHz}$ Literature available Manufacturers of Frequency Standards and Generators

SERVICE TRADING CO

 1

5 .
3

IBEH SUSTETIS
32 Ouncwille Orive, Coventry cV2 2H5

BUILD THE

 TREASURE TRACER Gentune 5 silicon transistor circuit. does not need a transistor adio to uperate.

- Incorporates unique varicáp tuning Cor extra stabili
- Search head fitted with Faraday screen to eliminate capacitive effecis
- Loudspeaker or earphone opera(ion (boll supplied)
- Britain's best selling metal locator kit. 4.000 alreads sold.
- Kit can be buikt in two hours using unly soldering iron. screwdriver. pliers and side-cutters.
- Excellent sensitivity and stability
- Kit absolurely complete including drilled. cinned. fibreglass p.c. board with components sitine printed on.
- Complete atter sales service
- Weighn onty 220z: hande knocks down to $1 \mathrm{l}^{\prime}$ for transport. Send stamped, self addressed envelope for literature.

Complete kit with pre-buil search coil

Built, tested

and
Guaranteed
$£ 20.95$
Plus $£ 1.20$ P\&P
Plus $£ 1.77$ VAT (8%)
MINIKITS ELECTRONICS
6d Cleveland Road, South Woodford. LONDON E 18 2AN
(Mail order only)

SANTA'S GOODIES

7409 N 10 p . £8.100, 7460 N 10p. £8-100 $74109 \mathrm{~N} 15 \mathrm{p}, \mathrm{£} 12-100,7415535 \mathrm{p}$, Min Order 10 of one type $-100+$ POA p/p 20p
PIHER SLIDER POTS 47 K Log Track 70 mm Overall 85 mm , Singles $20 \mathrm{p}, £ 15.100$, Doubles 50 p, £40.100; Min Order 10, $100+$ POA, p/p $20 p$

MAINS TRANSFORMER

250 v Prim $0.10 \mathrm{v}-18 \mathrm{v} 2 \mathrm{amp} 51.00+50 \mathrm{p}$ p/p. Octal Cable fitting plug. 20 way, 20 p Chassis mounting plug, 20 way, 20p. Cable mounting socket, 20 way $20 \mathrm{p} p / \mathrm{p} 20 \mathrm{p}$
$7454025 p, 7456430 p$. MC 1488 L 75p. MC1489AL $75 p+20 p p / p$.

TRIMPOTS 50 TO5 20p, 100Ω Cermet 20p, 1000 Painton PCB 20p, 200 ditto 20p, 250 ditto $20 \mathrm{p} .500 \Omega$ ditto $20 \mathrm{p}, 1 \mathrm{~K}$ ditto 20 p . 2 K ditto 20p, 2K Helitrim 20p. 5K PCB 20p. 1M skeleton min. vert. $12 p \mathrm{p} / \mathrm{p} 20 \mathrm{p}$

CANNON D-TYPES 1.5 way plugs 50 p .15 way sockets 50 p, 25 way plug 60 p, 25 way socket 60 p. 37 way plug 80 p, 50 way socket ribbon plugs $90 p$. covers with retainers 15 way 60 p, 25 way 80 p. 37 way E1, 25 way plastic (3M) 50p, all above limited stocks. P/P 20 p .

7400	$12 p$	7401	$12 p$	7402	15p
7404	14p	7407	30p	7409	16p
7410	13 p	7412	18p	7414	45p
7416	24p	7417	25p	7420	15p
7427	30 p	7428	32p	7430	15p
7432	26p	7438	30p	7442	50p
7451	15p	7472	76p	7460	15p
7474	28 p	7475	30 p	7485	95p
7486	30 p	7490	30 p	7491	80 p
7495	601p	7496	55p	7497	£1:50
74107	30 p	74109	50p	74121	$25 p$
74123	48p	74150		74151	
74153	70p	74154	11.10	74155	80p
74157	60p	74162	90p	74163	90 p
74164	£1:00	74165	£1.10	74188	£2.50
74190	£1.00	74192	90 p	74195	90p
74198	£1.30	74279	£1.20	74284	£3.60
74368	£1.35	75450	35p	76660	50p
					P/P 20p

SUPERSAVER 1 cassette recorder motor $9 v$ Speed governed, brand new. fantastic value. $95 p$ p/p 20p

SUPERSAVER 2 Hybrid Systems DAC 371 -8 (8-bit) DIL packaged + data, ideal MPU users brand new £2 (fraction of original cost) p / p 20p.
SUPERSAVER 3 ICL P.S.U. 12 v 1.8 A (7.5v 15 v) in makers carton $£ 10 \mathrm{p} / \mathrm{p}$ £?

MEMORIES 2708 £6.85, 2102 (Signetics) £1. 1702A £2.95, 2513 (upper case) £5. p/p 20 p .

SUBMIN. TOGGLES (C \& K. USA) spco extended toggle (1.25 inch) superb quality 75 p Standard submin toggle dpco 80p.p/p 20p

9-WAY MALE/FEMALE connector (Elco 8129) 0.1 inch pitch. PCB mounting ideal for bussing two PCBs together 35 p/pair p/p 20p.

LEDS (red) TIL 209 8p, $0.210 p$. Vernitron Ceramic filters FM-4 10.7 MHz 45 p, BD 236 40p, 2N3055 (Tl) 40p, BC183L 10p, BC213L $10 p$, BF195 10p, 2521 V (Dual 128 bit static shift register 65 p). RS $12 \cdot 0-1250 \mathrm{~mA}$ subminiature transformer £1.35. 5LTO1 (green phosphor) £4, suitable clock IC E3. 25. N82S126N (PROM 256×4 bit) E1'30 TMS3128NC (static shift reg) £ 1.25. LM711CH T0-99 (Voltage comparator) 25p. FPE 100 infra red emitter + data 15 p MM5314 E2 95. DIL SWTS 4 way $60 p$ TBAB1OS + DATA 65p.

All enquiries SAE please, Cat. SAE 8×6 or free with goods. P/P same for quantities except where greater than f1.

Merry Christmas to all customers and ETI
L. B. ELECTRONICS

43 WESTACOTT, HAYES mIDDLESEX UB4 8AH, ENGLAND

15-240 Watts!

HY5

Preamplifier
The HY5 is a mono hybrid amplifier ideally suited for all applications All common input functions (mag Cartidge, tuner etc), are catered for internally the desired function is achieved etther by a multi-way switch or direct connection to the appropriate pins The internal volume and tone circuits. merely require connecting to external potentiometers (not included) The HY5 is compatible with all I. P power amplifiers and power supplies To ease construction and mounting a PC connector is UEATURES With pre-amplifier
FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise -- Low istortion - High overload - iwo simply combined for stereo
APPLICATIONS: Hi-Fi Mixers - Disco - Guitar and Organ Pustic address
SPECIFICATIONS
INPUTS Magnetic Pick-up.3mV Ceramic Pick-up 30 mV . Tuner 100 mV Microphone 10 mV Auxiliary 3.100 mV input impedance $47 \mathrm{k}:$ at 1 kHz
lactive tone Controls treble - 12 dB ai 10 kHz Bass - at 100 Hz
DISTORTION 07% at 1 kHz Signal/ Noise Ratio 68 dB
OVERLOAD 38 dB on Maanetic Pick-up: SUPPLY VOLTAGE +16.50 V

HY5 mounting board B1 $48 p+6 p$ VAT P\&P free

HY30

15 Watts into 8Ω
and mounting kit together with easy to follow consiruction and operard 4 resistors, 6 capalifier is ideally suited to the beginner in audio who wishes to use the most up-io-date technology available FEATURES: Complete kIt - Low Distortion -- Short Open and Thermal Protection -- Easy to Build APPLICATIONS: Updating audio equipment -- Guitar practice amplifier =- Test amplifier - Audio SPECIFICATIONS:
SPECIFICATIONS:
OUTPUT POWER 15 W R.M.S inio 8
DISTORTION 01% al 15 W
INPUT SENSITIVITY 500 mV FREOUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{HB}$
SUPPLY VOLTAGE +18 V
Price £6.27+78p VAT. P\&P free.
HY50
25 Watts into 8Ω
The HY50 leads I.L.P s total integration approach to power amplifier design The amplifier teatures an integral heatsink together with the simplicity of no external components During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High
Fidelity modules in the World FEATURES: Low Distortion
No
APPLICATIONS: Medium
APPLICATIONS: Medium Power Hi-Fi systems - Low power disco - Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
TIVITY 500 mV
1 kHz
SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz} .45 \mathrm{kHz}-3 \mathrm{~dB}$
SUITPLY VOLTAGE - 25 V SIZE 10550.25 mm

Price E8.18 + £1.02 VAT. P\&P íree

HY120
60 Watts into 8Ω requirements including load line and thermal protection thits amplifier sets a new standard in modular
FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection Five connections -- No external components. . APPLICATIONS: HıF \quad High quality disco - Public address - Monitor amplifier - Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8:2 LOAD IMPEDANCE :4-16!) DISTORTION 0.04% at 60 W at
SIGNAL/NOISE RATIO 9OdB FREQUENCV RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ 3dB SUPPLY VOLTAGE Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 19.01+£ 1.52$ VAT. P\& P free.
HY200
The HY200 now improved to give an output of 120 Wats has been designed in stand the most rugged conditions, such as disco or group while still retaining "true H_{1}-Fi performance FEATURES: Thermal shytdown - Very low distortion - Loadline protection - Integral Heansink
120 Watts into 8Ω
APPLICATIONS: Hi.Fi - Disco - Monitor -- Power Slave - Indusprial - Public address SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 8:) LOAD IMPEDANCE 4-96) DISTORTION 0 05\%, at 100W at
SIGNAL/NOISE RATIO 96तB FREQUENCY RESPONSE $10 \mathrm{H} 7-45 \mathrm{kH} 7$ - 3 dB SUPPLY VOLTAGE SIZE 1 SIZE $114 \times 100 \times 85 \mathrm{~mm}$

HY400

240 Watts into 4Ω
The HY400 is I.L.P s Big Daddy" of the range producing 240 W into 4Ω It has been designed fol high omwer disco or nuhtic address applications if the amplitier is to he used at cnntinunus high nowe levelc it conling fan is recommended The amplifier includes att the qualities of the rest of the tamily to lead the marker as a trie high power hi-fidelity power module
FEATURES: Thermal shudown -- Very low disiortion FEATURES: Thermal shutdown -- Very low distortion -- Load line protection -- No external APPLICATIÓN

Pic address - Disen - Power slave - Industral
OUTPUT POWER 2
OUTPUT POWER 24ÓW RMS into 4i) LOAD IMPEDANCE 4-16: DISTORTION 0) w al $240 W$ at
SIGNAL NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kFiz}$ - 3dB SUPPIY VOLTAGE INPUT SENSITIVITY 500 mV SIZE $114 * 100 * 85 \mathrm{~mm}$
Price $£ \mathbf{3 8 . 6 1 + £ 3 . 0 9}$ VAT. P\& P free.
POWER
PSU36 suitable for two HY30'\$ $\mathbf{£ 6 . 4 4 + 8 1} \mathbf{~} \mathbf{~ V}$ VAT
SUPPLIES
PSU 50 suitable for two HY50 $£ £ 8.18+£ 1.02$ VAT
PSU 70 suitable for two HY $120 \mathbf{s} £ 14.58+\mathrm{E}^{2} 197$ VAT
PSU90 suitabre for one HY $200 £ 15.19+£ 121$ VAT
PSU180 suitable for two HY2000's or one HY400 $£ 25.42+5703$ VAT

two years' guarantee on all of our products

I.L.P. Electronics Ltd.
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel. (0227) 64723

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

MIIN-ADS\& CLASSIFIED

BabGain packs ex

TTL
Tônn 01, 02, 03, 04, 08, 10, 20,30,51 ANY MIX 7433, 48, 104. 105. 109. 122. ANY MIX 10/£1.90, $100 / £ 18.00$
7445, 46, 92, 95, 151. ANY MIX $4 / £ 1.00$ $7443,83,96$. $156.160,162,163$.
74165. 180, 193. 194. ANY MIX 3/£1.30, 10 $€ 5.20$.
BC184. 2N711, 12/£1.00. OCP70 5/£1.00
SIMILAR TO 2N2t92 20/E1.00. MAN 101.27 4/£3.00
BAX13. IN4151 100/£1.50. TBA 120A 2/£ 1.00 IN5400 10/E0.80. 74S 10 20/£1.00
PANAPLEX 9 DIGIT 7 SEG DISPLAY $2 / \mathbf{E 2} .50$ THYRISTOR $3 A 25 V$ 3/£0.50
L/SP $21 / 2$ DIA. 40 OHMS $2 / E 1.00^{\circ}$ RESISTORS 10/£0.09, 100/£0.80
E12-10 OHMS TO 1 MEG
CAPACITORS
CERAMIC 27P ro 8,700P E12 Serias 10/£0. 30
POLYESTER 0.01 to $10 / \mathrm{E} 0.50$, ANY MIX 10/E1.00
ELECTROLYTIC 63V 1 MF TO 1OMF 10/£0.70. 16 V 10MF TO 100MF 10/E0. 70
TELEPHONE ORDERS: COV. (O203) 611597.USING V:A.T. add $12 \frac{1}{2} \%$ TO TTEMS MARKED : TO ALL OTHERS ADD 8\%

IBEK 32 dunsville drive
 SYSTEMS

MICROBITS

NOW OPEN IN SURREY

Stockists of a wide range of Micro-Systems and Peripherals including the Exidy Sorcerer, Newbear 77-78, Panda, Nascom and Kim 1. Please telephone for details.

Also a wide range of Computer books and Bear Bags in stock

34B London Road
Blackwater
Camberley
SURREY
Tel 027634044

VIDEO

 MUSIC

Videograph II links to the aerial socket of your tv and provides a full colour GIANT oscilloscope display. A must for hi-fi, home entertainment, discos, organs etc.
New - signal invert controi, integral square wave generator. Plus - full details for testing vour audio system for transient distortion, crosstalk etc
 Kit only fid NC POST. PACKING, VAY REAUY BULI VIDEOGRAPH E59.95 STLAATI
 STLAAT SYSTEMSLEO Essix CM133SO
3SD
Hix

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

Returned to Service Department within guarantee period
(1) With alarm repeat - S.R.S.P. of E17.00 offered at $£ 4.95$ inc. VA
(2) With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues. S.R.S.P. 531.00 - offered at $£ 8.95$ inc. VA
(3) With integral luxury light and repeat alarm also as eatured in most major .K. Mall $\mathbf{6 8 . 9 5}$ inc VAT
ese will be sold as received from our customers with the existing fault(s) and without guarantee.

PRESCOTT CLOCK AND
WATCH COMPANY LIMITED
Prescott House, Humber Road, London NW2 6ER

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors' Hardware and accessories

Selected ränge of popular components Full range of $H E$ printed circuit boards. normally ex-stock, same day despatch at competitive prices.
P C. Boards to individual designs
Resist-coated epoxy glass laminate for the di.y. man with full processing instructions (no unusual chemicals required)

Alfac range of etch resist transfers, and other drawing materials for p.c. boards.

Send 15p for catalogue.

RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. TeI. 4879

STRATHAND SECURITY ALARMED?

If not you should be. We soecialise in Alarm equilament suitable for home. office or factory. All items brand new top quality fully quaranteed.
101 Magnet and reed 3wich. Flush
as hole
$90 p$
102 Magnet and reed swith. Flush ghting screw terminals. Aequires
hole 15 mm diameter by 14 mm deep
103 Magneef and reed switch. Surface fitting. 4 wire. Size 65 mm 'by 13 mm by 11 mm
104 Magnel and reed switch. Heary duly. Size 103 mm by 20 mm by 18 mm . Twa hole fixing
105 Pressure pad - stair Irad $2211^{\prime \prime}$ by 61
106 Pressure pad - large $29 / 2^{\prime \prime} \times 15^{\prime}$
$\begin{array}{ll}61 / 8 & \\ & \end{array}$
107 Window foil - seli-adhesine - top quality. $70^{\prime \prime}$
108 Foil blocks - self-adhesive. (Joins foil to cab
110 Keyswitches with mounting plate and cover
111 Beli boxes heary duty plastic coated metal
112 Beil $6^{\prime \prime}$ heavy duty - very loud 12v O.C.
1164 core cable 100 mm - white
123 Control panal to British Standard. Malns/..... £10.75
 All prices inctude VAT and poslage
Radar [mucrowaved units. automatlc 999 dialling units with tape message. and many other items.

STRATHAND SECURITY
44 St. Andrew's Square
Gtasgow, G1
Tel: 041 -552 6731/2 rel: $041-5526731 / 2$
Callers Welcome

STCKIES are printed self-adhesive labels that stick to the top of iCs. They make dull, anonymous plastic blocks into diagrams that come ALIVE! See at-a-glance where to place your test probe or soldering iron-take the hassle out of ICs.
STICKIES are great for building and debugging prototypes, faultfinding, experimenting, teaching - even designing PCB layouts.
STICKIES come in packs for 7400 - or 4000 series ICs. Each pack contains a sensible mix of more than 60 different IC types.
120-label pack-80p. 480-label pack-£2.80, or 2 -10 packs at $£ 2.50$ each. 11 -plus $£ 2.20$ each Prices include VAT and first-class postage Official orders welcome Please state whether TTL or CMOS required.

For your STICKIES by return of post
CONCEPT ELECTRONICS, 8 Bayham Road Sevenoaks, Kent 1413 .

Phone: 0293514110

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY

MINI-ADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3 £ 38,4-11 £ 36,12$ or more $£ 34$ per insertion. CLASSIFIED DISPLAY: $19 p$ per word. Minimum 25 words. Boxed classifieds are £6.33 per col. centimetre. No P.O. Box Numbers can be accepted without full address.

Enquiries to: Advertising Department, 01-4375982. 25-27 Oxford Street, London W1R 1 RF

VMOS POWERFET VN67AF (2A, 60V. 15W) 99p. Regulator 78L05 (TO-92) 29p. Fast LOCMOS, $4001 \mathrm{~B} / 07 / 11 \mathrm{~B} / 69$ 17p. 4013 B 35p. 4016 B 40p. 4017B65p. 4020B 80p. Cheap Linear, 741 19p. CA3140E 40p. LF13741N (JFET 741) 35p. MC3401P (18 V LM3900) 45p. 555 24p. 2N381914p. 10% discount over €5. P \& P 20p. Mail Order only. More in informative lists. SAE to J. W. RIMMER, 367 GREEN LANES, LONDON N4 1 DY.

NASCOM 1

Complete with power supply, improved television modulator, updated monitor, full documentation and several useful programmes on cassette. Price E239. Tel. 0296712097.

COMMODORE PET HOME COMPUTER

Six months old, as new. Plus books, manuals games, tapes. and membership to users club. §620. Write to A. Swenson, 'Lyndale, Grange Road, Bowdon, Cheshire.

MICROPROCESSORS 6800/280 CREED TELEPRINTERS

Consultancy, Stock
Manufacture, Maintenance

EPED
189 Hadlow Road Tonbridge, Kent

DIGITAL TACHOMETER in kit form

Join the digital revolution Buy a Digitac rev. counter
Features:
Readable in direct sunlight
Zero blanking
Stable two digit reading
Excellent resolution and linearity Suits all neg. earth ign. systems.

Low cast. $£ 16.65$ fully inclusive
Please state system voltage, 2 or 4 stroke, number of cylinders and ign. coils.

ELECTRONEQUIP

36, Merton Avenue,
Portchester, Hants. PO16 9NE 0701873455

MICROPROCESSORS AND

 COMPUTINGA book to give you á start Contents. Binary Arithmetic, Principle of Operation, Programming, Glossary of Terms. 50 pages of explanation and diagrams. Price £2.30 plus $45 p$ p\&p (cheques, crossed P.O. only).
Educational Data and Technical Services 59 Station Road, Cogenhoe, Northampton NN7 1 LU

NEW QUALITY STEREO AMP.CHASSIS 60 W (RMS). Protected $3 \Omega \mathrm{~min}$. 0.03% THD $12 / 30 \mathrm{~V}$ Wkg 20 Trans, din socks controls; select, V / C, etc. Boxed data $£ 9.95$ (inc.) K. Lawrence, 1 Regent Road, Ilkley, W. Yorks.

RAINBOW RIBBON CABLE at silly prices. SAE for details. Trading Post, 4 Castle Street, Hastings, Sussex.

HEWLETT-PACKARD HP-67. As new, little used Complete with: Case. recharger, battery. programme cards. blank cards, user's manual. E190. P. Burton, 10 Knowsley Close Hoghton, Preston, 0254852136

COLOUR MODULATOR $\mathrm{Kin}_{\text {inc. UMF }}$ FOR ALL TV GAMESI Red. Green. Blue inputs (can be mixed) SUPER EXPLOSION TANK BATTLE FRE INTERFACE DE inc. UMF
Moduiator TANK
TARLS
WILLIAM STUART SYSTEMS
Dower House. Billericay hoad. Herongate. Brentwood. Esse CM133SO Tel (0277) 810244 Barclaycard/Access welcome

VALVE SOUND. 16 - and 30 -watt Amplifiers by Parmeko. Excellent condition. Ex services £18. - EPED 189 Hadlow Road, Tonbridge, Kent.

FIFTEEN CMOS PROJECTS - e.g. 70m.p.h. Alarm; Mini-'trombone'; Mystery Maze: Micro-power Indicator. Only £1 inc brings FIFTEEN detailed circuits PLUS 14-pin socket and kits voucher, from DAVID IAN DESIGNS, 47 Hampton Court Parade, East Molesey, Surrey.

CAR BATTERY MONITOR all electronic with LED readout. PCB, IC and instructions only ¢2. 75 inc. SAE for details. TRITECH ELECTRONICS 190 RODING ROAD. LOUGHTON, ESSEX.

TVH7 TELEVISION SOUND. For high clarity Hifi listening and recording of Television programmes. Supplied built and tested on a single board measuring $105 \times 52 \mathrm{~mm}$, for TV internal fitment, $£ 9.80$ inclusive, with wiring and comprehensive instructions. Eve Products, 7 Adel Heights, Leeds 16.

20 INTO 2 E.T.I. MIXER SLIGHTLY CUSTOMISED. Consisting of front panel and boards, sliders with pan, monitor, vol., gain, bass, treble. ETC. £220 ono, no pots. Must sell. Tel. (40) 64456.

```
SPECIAL INTRODUCTORY OFFER E275 inc. VAT \& P\&P OHIO SUPERBOARD II
```

computer on a board. 8 K basic in ROM. M/C code imonitor in ROM 4K user RAM plus 1 K display RAM K.C. cassette interface. Modified for UK TV standard. Qwerty keyboard
Extra avalable 24 K RAM Mini floppy interface. Outpu ports Bus extensions. Ass/editor. etc.
C.T.S

1 HIGHER CALDERBROOK, LITTLEBOROUGH
Tel Littleborough (0706) 79332 any time

ASSISTANT FILM RECORDISTS \&TRAINEES

Would you like to specialise in sound with BBC TV's Film Department? There are vacancies in West London

ASSISTANT FILM RECORDISTS work initially in sound transfer and dubbing areas operating sound recording and reproduction equipment for a wide range of programmes. There are prospects of progressing to mobile Film Recording work in due course. If you have professional experience in this field, the starting salary would be $£ 3440$ p.a. perhaps higher if exceptionally qualified, rising to $£ 4140$ p.a. An additional allowance is paid for shift work (not nights). Normal hearing is essential.
EXCELLENT TRAINING is given if you have ambitions
to do this type of work but lack experience. You will need
'O' level standard of education, a basic knowledge of electronics and should be able to demonstrate a practical interest in sound and recording. Trainees will start at a salary of $£ 3130$ p.a. in Spring 1979 and should qualify for promotion to Assistant Film Recordists about a year later.
Conditions of Service are good and relocation expenses will be considered. Telephone or write immediately for an application form, enclosing addressed envelope and quoting reference number 78.G.2614/ET, to Appointments Department, BBC London W1A 1AA. Telephone 01-580 4468 Ext. 4619.

B⿴囗

AD INDEX

ALTEK 80
AMBIT 8
ASTRA-PAK 80
AUDIO ELECTRONICS 48
BAMBER 78
BAYDIS 34
BI-PAK 485
B.N.R.S. 78
CAMBRIDGE
LEARNING 60
CATRONICS 9
CHILTMEAD 90
CHROMASONICS 86
CHROMATRONICS 70
CRIMSON ELECTRIK 66
CODESPEED 70
COMMUNICATIONS MEAS 92
COMP, COMP, COMP 107
DELTA TECH 70
DORAM 13
E.D.A. 56
ELECTROVALUE 45
GREENBANK 37
GREENWELD 83
HARRISON BROS 66
H.B. COMPUTERS 78
HENRY'S $21,32,46$ \& 66
IBEK SYSTEMS 100
I.L.P. 102
JEREMY LORD
SYNTHESISERS 84
KRAMER 26 100
LB ELECTRONICS 100
LEKTROKIT 103
MAPLIN 108
MARSHALLS 22
METAC 38 \& 39
MICRODIGITAL 34
MINIKITS 100
MOUNTAINDENE 72
NASCOM 46
NEWNES-BUTTERWORTH 48
NICHOLLS 26
NIC MODELS 98
NORMAN INSKIP 101
POWELL 94
POWERTRAN $2 \& 6$
PROGRESSIVE RADIO 72
R.C.S. 106
ROGER SQUIRES 56
R.T.V.C. 54
SENTINEL SUPPLY 98
SERVICE TRADING 99
SINCLAIR 33
SINTEL 84
STEVENSON 53
STRATHAND 86
STRUTT 44
SWANLEY 56
TAMTRONIK 26
TECHNOMATIC $12 \& 94$
TEMPUS 96
T.K. ELECTRONICS 69
TRAMPUS 68
VERO 48
VIDEOTIME 34
WATFORD $10,11 \& 46$
WILMSLOW 69

THE SORCERER HAS ARRIVED

Introducing the personal computer you've waited for. The Exidy Sorcerer.

I didn't buy my personal computer until I found the one that had all the features I was looking for.
The Exidy Sorcerer does everything I wanted to do and a few things I never dreamed of.
It isn't magic. Exidy started with the best features of other computers, added some tricks of their own, and put it all together with more flexibility than ever before available. Presto! My reasons for waiting just disappeared.
I wanted pre-packed programs.
Software on inexpensive cassette tapes for the Sorcerer is available from Exidy and many other software makers.
I wanted user programmability
The Sorcerer's unique plug-in ROM
PAC ${ }^{\text {M }}$ Cartridges contain programming languages such as Standard (Altair. $8 \mathrm{k}^{*}$) BASIC, Assembler and Editor (so I can develop system software), operating systems such as DOS (so I can also use FORTRAN and COBOL) and applications packages such as Word Processor.
*Altair is a trademark of
Pertec Computer Corp.

I wanted Graphics, and the Sorcerer is super. Its 256 character set - more than any other personal computer includes 128 graphic symbols that I can define.
I wanted high resolution video. With 122,880 points in a 512×240 format, I get the most detailed illustra. tions.
I wanted to display more information. The Sorcerer displays 1920 characters in 30 lines of 64 characters - equal to a double-spaced typed page.
I wanted a full, professional keyboard. The Sorcerer's 79 -key data processing keyboard provides designated graphics, the complete ASCII character set in upper and lower case, and a 16 -key numeric pad.
I wanted memory. The 12k of ROM holds a Power-On Monitor and Standard BASIC; 32k of RAM is supplied on board.
I wanted expandability. Serial and parallel I/Os are built in, and the op-
tional 6-slot S-100 expansion unit lets my system grow.
I wanted a computer that's easy enough for children to use. I just connect my Sorcerer to a video display and a cassette tape recorder, and if I have any questions the easy-to-understand Operation and BASIC Programming manuals have the answers.
I wanted to buy from an experienced Manufacturer. In five years Exidy has become the third largest producer of microprocessor-based video arcade games.
I wanted to spend less than $£ 1,000$. (This is where COMP. does a little magic). My Sorcerer cost me £950!. Now, what are you waiting for?
Call COMP. on 01-441 2922 or write to

14 Station Road,
New Barnet, Herts. EN5 10W.
(Price shown ex. VAT)

กกลคเำ: lounch their new \& calalogue... *
 A massive new catalogue from Máplin that's even bigger and better than before. If you ever buy electronic components, this is the one catalogue you must not be without. Over 240 pages - some in

 full colour-it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page of invaluable data.We stock just about every useful component you can think of. In fact some 5,000 different lines, many of them hard to get from anywherè else. Over 1000 new lines in our new catalogue. And with the service only Maplin provides, you won't regret sending for a copy of our fantastic catalogue. Orders paid before publication date will receive a set of 10 special offer coupons
Big Discounts on popular lines.

กาเสрน ELECTRONIC SUPPLIES

P, б. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 715155 Shop: 284 London Road, Westcliffe-on-Sea, Essex ff (Closed on Monday).
, Telephonê Soutnend (0702),715157.

Post this coupon now for your copy of our 1979-80 catalogue price 75p.
Please send me a copy of your 280 page catalogue as soon as it is published (8th Jan. 1979). I enclose 75 p but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 75 p refunded immediately. If you live outside U.K. send £1 or ten International Coupons.
NAME
ADDRESS

[^0]: COPYRIGHT: All material is subject 10 world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afteiwards.

[^1]: This piece of hardware has three sections, a step down, isolating transformer, a diode bridge and a smoothing capacitor. The transformer is driven from the mains, the voltage of which varies depending on where you live (it's $250 V / R M S$ in Fulhem). Some transformers have got a copper screen which isolates the primery winding from the secondary windings. For the purpose of safety, this should be connected to earth.

 Also, for maximum safety, connect the 220/240/250 tapping to meins LIVE. Another type of mains transformer uses what is known as aplit bobbin, the primary is wound on one bobbin, the secondary on another. Thus the two windings are inherenty 'physically isolated, and so no safety screen is included. These two transformer types are generally constructed on what is known as an 'E' core; take one to bits and you will find that it is

[^2]: The items mentioned here are those planned for the next issue but circumstances may affect the actual content.

[^3]: Articles mentioned here are in an advanced state of preparation but circumstances may affect the final contents.

 ## SCILLY SCOPE

 Make more use of your tele folks! Here is a unit to make the room pulsate with colour in time to your hi-fi! Hooks into music signals to give an oscilloscope type display on a television screen, in full glorious colour! What will they think of next? Pocket calculating machines?

