

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

CONSTRUFTIONACE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESこんE = = =iw
CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.

The kit includes fully finished metalwork solid teak cabiet
 board are made with connecter on the one professional quality fibre glass PCB printed with component locations. All the controls mount synthesizer comparable in performiance and quality with ready built units selling for symthesizercomparab

$200+200$ watt AMPIIFIER

As featured in Electronics Today International
400W rms continuous - 800W peak!
0.03% THD at FULL power!
PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed
oromal
* Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and
short circuit protection!
shart Circuit protection!
* Ultra low feedback (an incredible low 14 dB overalll). super high slewing rate ($20 \mathrm{~V} / \mathrm{\mu}$ s). 200 W rms continuous to 4 ohm from EACH channel, input sensitivity 0.775 V (OdB).
* Professional quality components, sturdy 19 rack mounting chassis complete with sleeve and feet for free standing work too.
* Easy to build - plenty of working space with ready access to all components, minimal wiring
extensive instruction suitable for both experience constructors and newcomers to electronics.
* Value for money - quality and performance comparable with ready-built amplifiers costing over
ε_{600}

 €6001

PSI 4002 STUDIO MODEL

PSI 4001
COMPLETE KIT ONLY £187.50 + VAT
PSI 4002
COMPLETE KIT ONLY £196.90

+ VAT

PRICE STABILITY: Order with confidence irrespective of any price changes
we will honour all prices in this advertisement until November 30 th, $978:$ en
Octoher 1978 ispe is mentis advertisement untin November
excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 500 hene
and documentation.
U.K. ORDERS. Subiect to 12% surcharge for VAT- (ie add $\%$ so the price) \because
charge is made for carriage. "or at current rate if changed
SECURICOR DELIVERY: For this optional service IU K
E2 50 (VAT inclusive) per kit
SALES COUNTER:
OUR CATALOGUEIS FREE $w=T E=\sim=\sim \sigma m E M O W!$
POWERTRAN ELECTRONICS

FEATURES

what a display p. 16

7 Find out here before you hear it elsewhere!
37 Details of the Multiprobe mission
51 Down with DPDTs at inputs
65 Concluding Tim Orrs survey.
79 Inside information obtained.
85 DIY Preamp and Sony's new 60 !
91 Your circuits to you.

PROJECTS

ONE BOARD COMPUTER 16 Wow!

TV CHESS PART 244 Full constructional details.
AUTOCHORD 57 Play along with the PROMs?
AUDIO OSCILLATOR 71 LCD DFM option too
sine of the times p. 71

INTERNATIONAL EDITIONS		EDITORIAL AND ADVERTISEMENT OFFICE 25-27 Oxford Street, London WIR IRF. Telephone 01-434 1781/2. Telex 8811896		
AUSTRALIA	Collyn Rivers Publisher Les Belf Acting Editor		Halvor W. Moorshead Ron Harris 8.Sc Gary Evans Jim Perry	Editor Assistant Editor Projects Editor Specials Editor
Holland	Anton Kriegsman Editor-in-Chief	Phil Co	hen B.Sc, William King John Koblanski	Editorial Assistants Project Design
CANADA	Steve Braidwood Editor Graham Wideman Assistant Editor		Steve Ramsahadeo Paul Edwards Margaret Hewitt Andrew Scott	Project Development Technical lllustrator Administration Office Manager
GERMANY	Udo Wittig Editor	Mark Strathern	Hamin, Bren Goodwin anager), Tom Moloney	Reader Services Advertising
Mury	ABC	$\begin{aligned} & \text { PUBLISHED BY } \\ & \text { DISTRIBUTED BY } \\ & \text { PRINTED BY } \end{aligned}$	Modmags Ltd., 25-27 Oxfo Argus Distribution Lidd. (Bri Gordon \& Gotch Lid. (Over QB Limited. Colchester	Street, London W1R 1 RF 4 isles) as)

Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^0]
AUDIO KITS OF DISTINCTION FROM
 POWERTRAN

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER $£ 99.30$ + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with goid plated contacts resulting in minimal wiring and construction delightfully straightorward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring whilst distortion is less than 0.01%

WIRELESS WORLD FM TUNER $£ 70.20$ + VAT

A pre-aligned front:end module makes this Wireless Worid published design very simple to construct and adjust without special instruments. Features include an excellent a m, rejection. stereo decod station selection as wall as infinitely variable funing and a phase locked lonp sereo decoder incorporating active filters for "birdy" suppression

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT

Thas design, published in Wireless World, although straightforward and relatively low cost provides a very high standard of performance. There are separate reterd and replay amplifiers and switchable equalisation together with a choice of bias levels are also provided. The mechanism is the Goldring-Lenco CRV with electronic speed control.

T20 + 20 AMPLIFIER £33. 10 + VAT

This kit, based upon a design published in Practical Wireless, uses a single printed circuil board and offers at very low cost ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kir ($30+30$) is also available for $£ 38.40+$ VAT

WWII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless Worid FM Tuner kit was designed to complement the $\mathrm{T} 20+20$ and $730+30$ amplifiers and the cabinet size, front panel format and electrical characteristics make this tuner compatible with either. Facimties included are preaigned front-end module. switchable ack, adjannel selection (adjustable. LED toning the front panel)

POWERTRAN SFMT TUNER $£ 35.90$ + VAT

This is a simple low cost design which can be constructed easily without special alignment equipment but which still gives a first class output suitable for feeding any of out very popular amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo decoding and controls include switchable afc. switchable muting and push-button channel selection (adjustable by controls on the front panel). This unit marches well with the $T 20+20$
and T30 +30 amplifiers

COMPLETE KITS: Our complete kits really are complete. All of the projects shown on this page are supplied with fully finished metalwork ready assembled high quality teak venee cabinet, cables, nuts, bolts, etc., and full instructions - in fact everything'
cabinets or metalwork. Prices are given in our FREE CATALOGUE.
FhICE STABILITY: Order with confidence! irrespective of any price-changes. We will honour all prices in this advertisement until November 30th, 1978. If ETI October, 1978 issue is mentioned with your order. Errors and VAT rate EXPORT ORDER
EXPORT ORDERS: No VAT, Postage charged at actual cost plus 50p handling and documentation
U.K. ORDERS: Subject to 12% surcharge for VAT' (i.e add $1 /$ e to the price). No $_{\text {charge is made tor carriage }}$ SECURICOR DELIVERY. For this optionat service (U
£2.50 (VAT inclusive) per kit.
SALES COUNTER: If you prefer to collect your kit from the factory, call at Sales Counter (at rear of factory). Open $9 \mathbf{a} \cdot \mathrm{~m}-430 \mathrm{pm}$ Monday-Thursday

our catalogue is FREE! white or phone NOW! POWERTRAN ELECTRONICS

ANDOVER HANTS SP 10 3NM

news digest

dmm(digital midget meter?)

Guinness take note - the world's smallest DMM it seems. Made by Heuer Time Ltd it measures just $4^{\prime \prime} \times 1.6^{\prime \prime} \times 0.5$ ($100 \times 40 \times 20 \mathrm{~mm}$ to you Euro-people) with a probe which is $4^{\prime \prime} \times 0.8^{\prime \prime} \times 0.5^{\prime \prime}$ (you mm lot can work that out yourselves). Volts Ohms and Amps either DC or AC can be accommodated between $2 \mathrm{~V}-1 \mathrm{kV}, 2 \mathrm{~mA}-2 \mathrm{~A}$ and $2 \mathrm{k}-20 \mathrm{M}$ although not necessarily in that order. AC measurement is true RMS. Display is $31 / 2$ digit LCD. Input $710 \mathrm{M}+$ Price around $£ 240$. Address: Heuer Ltd, Argyle House, 29/31 Euston Road, London.
the dalek connection

This lot looks like it could give Dr Who a few sleepless nights does it not? It's easy to imagine it lumbering across a smoke-circled hill and intoning "Take me to your leader.
Perhaps fortunately for the human race it is simply a noteworthy new connection system from Pressac Ltd. The PCB mounting plugs and sockets can be got at from either direction, and cable and chassis mounting assemblies are also available. Spacing can be either 2.5 mm or 5.0 mm and up to 40 ways are possible.

Pressac Ltd, Acton Grove, Long Easton, Nottingham NG10 1 FW .

eye of the tornado?

Britain and NATO's new aircraft the MRCA Tornado is to be fitted - in its inceptor role - with a Visual Augmentation System developed by Marconi. The system presents the crew with a television picture of what lies ahead of their machine using a newly-developed low-light TV camera system.

Based on an existing Marconi design for a low light camera, the equipment produces an image at ranges far in excess of what the unaided eye can manage, and in light conditions anywhere from daylight to starlight.

Every little helps.

on the face of it

It had to come. Someone somewhere had to go produce an ANALOGUE digital watch. And here we have it. Must confess it looks very nice too. Texas get the credit/blame or whatever.

The display is beautiful. 120 segments are used to produce the illusion of the dial. On normal LCD's up to half the area is used for contacts to the segments, which would mean that with 121 contacts to provide the display would have to be pretty big - a clock yes, but no watch. Texas have gotten this by multiplexing the drive to the segments, which allows 90% of the area to be freed for usage.

The chip is IL - and this is unusual. $\mathrm{I}^{\prime \prime} 2 \mathrm{~L}$ is not normally employed in LCD units because of the problem of driving the highly capacitive elements. Bipolar drivers are used to avoid this, and are designed to drive the large capacitance with a (relatively) large $150 \mu \mathrm{~A}$ initial current for about $100 \mu \mathrm{~S}$ and to provide the 100 nA 'sustan' current thereafter.

Another interesting point is that the material used for the display, a low voltage ester material would not usually be employed in watches because of its negative temp. Coeff. - higher the temp. the lower the drive required - which can lead to 'ghosting' and confusion of the display. The I-L however can compensate for this.
Naturally, since this is the first of its kind, the price of all this invention will be high initially - but the watch will function as a chronograph too and the Jones's will NEVER be able to keep up with this.
In the shops soon we hear.

watt batteries

Here is an amp to really annoy the neighbours with. If they complain about the hi-fi again, pack up the battery cassette recorder, speakers and this PAC 250 MB , drive around the back of the house and when they're least expecting it give 'em 250 W a channel straight in the back door. An outflanking move to warm Napoleon's heart.

The PAC 250 you see will run quite happily from 24 V DC or 250 V AC. Very handy for PA as well as neighbour baiting.

Details from: Millbank Electronics Ltd, Uckfield, Sussex TB22 1PS.

Sound of safety?

A car alarm which operates on the ultrasonic area protection principle usually employed in houses is now being imported from the land of pasta and pinched bottoms.

Called the 'Break' it uses four sensors to cover the interior of any vehicle, and has adjustable sensitivity so that spurious triggering can be avoided. Once activated you have 40 secs to clear out before it goes off - so don't get stuck in the seat belt - and coming back in 10 secs to swtich it off.

Once the alarm is in mid sing-song, the removal of the felon will lead to a shutdown 15 secs later. If he persists so will the alarm. Price around $£ 50$ - not including ear plugs - from:
Sofare Ltd, Stoke Heath, Market Drayton, Shropshire.

Hirni

VAT

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS POSATCHED BY RETURN OF POST. TERMS OF BUSINESS. CASHICHEGUE INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INOUIRY WELCOME, P\&P ADD $30 p^{\circ}$ TO ALL O
POSTAGE AT COST. AIR / SURFACE.

We atock thousande more itome. It paya to visit un. We ara altuated behind Warford Football Ground.
Noarest Underground/BR Station: Watford Migh Stroat. Opan Monday to Saturday. Ample Froe Cer Noaroct Underground/

POLYESTER CAPACITORS: Axial lead type (Values ace in $\mu \mathrm{FF}$ $400 \mathrm{~V}=0.001,0.0015,0.0022$ 0-0033 7p; 0.0047. 0-0068, 0-01, 0-015.0.0189p; 0.022 0.033 10p; 0-047-0.068 14p 0-1. 15 p 0-15, 0-22, 22p: $0.33,0.4739 p ; \quad 0.6845 p$.

$160 \mathrm{~V}: 0.039 .0 .15,0.22$

RF CHOKES

VERO WIRING PEÑ*
Plus Spool 325p
$\underset{115 \text { FRRIC CHLORIDE }}{\text { FR }}$

COPPER CLAD BOĀRDS̄
Fibre
Glass
6×6
6

$20 \mathrm{p}: 70$ pin 27 p: 22 pin $30 \mathrm{p}: 24$ pin 30 p
28 pin $42 \mathrm{p}: 40$ pin 55 p . 60 pin 245 p .
SOLDERCON PINS*Aplicable to U.K. Customars only. Uniones atariod otherwiza, allof VAPT. Plo
orders n
irs
more itor
Nearser Under
POLYESTER RADIAL LEAD Nalues in $\mu \mathrm{F})$ 250V:
CAPACITORS
5
8, $10,15.22$
$200,68 \mathrm{p} ; 40 \mathrm{~V}$:

$$
\begin{aligned}
& \text { 47pF, 100 40p. } \\
& 10 \mathrm{~V}: 22 \mu \mathrm{~F}, 33,47 \mathrm{gv}: 47,68,100 \\
& 3 \mathrm{~V}: 68,100 \mu \mathrm{~F} \text { 20p each. }
\end{aligned}
$$

\longrightarrow
\qquad VARICAP
MVAM2 135
MVAM115

TRANSISTORS

A
A
A
A
A
A

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!

(as published in ETI, August 1978)
you may analogue meters for with some of these you may often as not use a crystal ball to make circuit measurements instead gaze into our crystal

- not a ball but the $31 / 20$ DISPLAY - on our amazingly accurate DMM DISPLAY - on our amazingly accurate DMM incorporating
$5 \mathrm{AC} \& D C$ Voltage ranges: 6 resistance ranges AC \& DC Current ranges: 4 Capacitance range The prototype accuracy is better than 1%
This is a unique design usifig the latest MOS ICs and due to the minimal current drain, is powered by only one PP3 battery There is also a battery check facility

The DM900 is an attractive hand-held, light weight device, built into a high impact case Never before have all these features been offered to the electronics enth
unit Special introductory offer £54.50» (p\&p insured add 80p)
Calibration service charge for working Units $\mathbf{£ 5 . 7 5}$. Readybuilt Units available by special order at $£ 78.50 \star$ ($p 81 p$ add $80 p$)
(Optional extras, Probes $£ 1.50$ *, Carrying Case $£ 1.50$ *) (Demonstration on at our Shop)

all change

This is the month when the BBC plays hide and seek with the four stations. They are gonna move 'em - you've gotta find 'em again. Fun eh? Radio One goes to 275 m and 285 m ; Radio 2 goes to 433 m and 330 m : Radio 3 goes to 247 m ; and Radio 4 vanishes onto long wave at 1500 m . VHF is unchaged thank God.
The Beebs purpose in shuffling dials is to reduce interference from overseas stations. New transmitters are being fitted in some areas, so how it behaves now is no indication of how well you'll get the station once they change it around. Radio 2 will now be better in the day, but worse at night, with Radio 3 generally better.
The movement is to fit in with new European agreements which will allow more stations with better coverage to use the MW and LW bands, so we shouldn't complain.

Oh yes there is one more thing. Up to the switch November 23 will dawn with the new frequencies operating - unscheduled breaks in transmission will occur in MW and LW programmes lasting between a blink and several minutes. Don't smash your set it's the BBC's fault. They're working on the transmitters and aerials now to ready them for the big switch over, and well you never know who might drop a spanner or two.

Details will be plastered all over radio, TV and Radio Times between now and then so don't worry about not hearing what's going on. It's most unlikely.

short stuff

- GI has released an appliance timer - the AY-3-1251-MPU-based it is, and can be used in such things as cookers to replace nasty mechanical things like clocks Two versions are available and facilities include key board entry, direct display drive, four outputs et al.
- A new digital logic family called FAST (Fairchild Advanced Schottky TTL) is to be released soon. Power consumption is much lower than normal types - about 25% in fact. Typical delays are about 3 nS - hence the name. 66 circuits will be released by the year's end. Price? Competitive apparently, whatever that means.
- Prom programming overnight is offered by Memec Ltd of Thame Park Industrial Estate, Thame, Oxon. A 24 hr turnaround is quoted and all types of PROM can be handled.
- RCA have a new chip out which a smoke detector unto itself. It requires only an ionisation chamber and hom alarm to begin detecting and alarming. The number is T-A 10451 and it will operate on either battery or line. - Britain has produced a new design of terminal to operate with the European OTS test sattelite. The idea is a joint venture between Marconi, the Post Office and the Department of Industry
- Compe 78 will be held at Olympic this year to allow for more exhibitors. The exhibition deals with small systems, minis and micros, software and hardware and Uncle Tom Cobley and all.
Supervisor is a remote controlled helicopter for use on the modern battlefield. It has been developed by Marconi and Westland. The machine stands about as high as a man and contains cameras and other surveillance equipment. It has just passed its first flight tests successfully and could be of great use to NATO when in service.
- Two books from GI to full up the bookshelves usefully are the 600 p Catalogue and the 300 p Applications Handbook. Both will be of great use indeed to both engineers and serious home dabblers. They cost $£ 3.00$ and $£ 1.80$ respectively from any GI distributors.
- Toshiba and Rank have completed an agreement to produce TV sets and audio equipment in Plymouth and Cornwall
- Texas Instruments new 64 K RAM is at last released. Automation in production means that by 1980 each unit will require only 5 man MINUTES to produce from start to finish, and that a mere 1000 staff will be able to service entire world demand

It can be a nuisance can't it, going from newsagent to newsagent? "'Sorry squire, don't have it - next one should be out soon.'

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us à favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service Electronics Today International 25-27 Oxford Street, London W1 R 1 RF

 16 v w. $33 \mathrm{uf} 25 \mathrm{vw}, 47 \mathrm{uf} 6 \mathrm{vw}$ All at 9 p each
CLOCK P.C. BOAROS with Buzzer, Mercury Switch, Transistors, Only I.C. and Display missing @ £1.
.01uf 125v.w. + 10% CAPACITORS @ 10p each
JACKSON C8O1 VARIABLE CAPACITORS 5 pf or 10 pf . Both $75 p$ eah
ELECTRET MICROPHONE INSERT WITH FET PRE-AMP @ E1.85
400 mW UNMARKED GOOD ZENERS $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}$, 33 v , 36 volt. All at 10 for 40 p .
X BAND TUNING VARACTOR DIODES 1
X BAND TUNING VARACTOR DIODES 1 To 2 pf or 3 To 4 pf. Both E 1.65 each.
10AMP S.C.R': 100 PIV@ 25p. 400 PIV@ 00 p .800 PIV@ 60 p
MULLARD PRE-AMP I.C. TAA 435 with data @ 40 p
20 PHOTO TRANSISTORS, DARLINGTONS Asso with 2 Metres of Cable or $75 p$ pair
T.V. S.A.W. FILTERS Untested 3 for 35 p

10 MULTI-TURN TRIM POTENTIOMETERS Assorted @ 60p
100 MULLARD C280 CAPACITORS @ 57p. Assorted.
MULLARD ELECTROLYTICS 2240uf 40vw @ 40p, 4500uf 25v.w. @ 40p, 5000uf
10v.w.@ 15p. 6400uf 25v.w. (@) 25p.
TAA 661 F.M. I.C. By Cosem @ 50p, RCA CA 30890 (@) E
50 VARI-CAP DIODES LIKE BA 102 Untested @ 57 p.
502 WATT ZENERS Untested Assorted for $57 p$
SUB-MINIATURE $4.7 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}$. TANTALUMS @ $64 \mathrm{v} . \mathrm{w}$. @ 50 p
MOS PRE-AMPLIFIER I.C. TAA 320 with data @ 35 p.
McMURDO 8PINPLUGS@ 20p. 8 PIN SOCKETS @ 20p, COVERS @ 15p
2 GHz NPN STRIPLINE TRANSISTORS @ E1 each
20 WATT ZENER DIODES BZY 93 Types. $6.8 \mathrm{v}, 7.5 \mathrm{v}, 8.2 \mathrm{v}, 9.1 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}$
$18 \mathrm{v}, 20 \mathrm{v}, 22 \mathrm{v}, 27 \mathrm{v}, 30 \mathrm{v}$. Alla t 45 p each.
DUAL GATE MOS FET LIKE 40673 @ 33p. 4 for E 1.10.
TEN TURN POTENTIOMETERS 500 ohm, $1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 100 \mathrm{~K}$ All at $\mathrm{£1.50} \mathrm{each}$
ERIE RED CAP . 01 uf 100v.w. SUB-MINIATURE CAPACITORS @ 5p.
BD 1874 AMP NPN PLASTIC POWER TRANSISTORS @ 25 p, 5 for $\varepsilon 1$
BAW 62 HIGH SPEED DIODES 12 for 35 p.
OCTAL BASE CATHODEON CAYSTAL OVEN 6 or 12 volt, with Two HC6U HOLDERS
and octal Base @ E1 25.
(P\&P 25 P) Type €5.50 (P\&P 95p). Type 4. 20volt 2 Amp Twice. 10 volt 1 Amp Twice @ $@ 4.50$ (P\&P 95 p) Type 5.45 volt $2 \mathrm{amp}, 45$ volt $500 \mathrm{~mA} @ £ 3.50$ (P\&P 85p).
RADAR WIDE BAND AMPLIFIER I.C's 10 To 150 MHz Untested with data 5 for $57 p$. LIGHT EMITTING DIODES 2 Dia, Red or Green 15 p each
CMOS I.Cs CD 4001 @15p, CD 4011 @ 15 p . CD 4020 @ $60 \mathrm{p}, \mathrm{CD} 4029$ @ $60 \mathrm{p}, \mathrm{CD}$ 043@60p.
MYLAR MRSTALS 285 KHz at 20p each
MIAR MINIATURE CAPACITORS 50v.w., 01 uf or 1 uf. Both 20p doz.

Please add 20 p for post and packing unless othervise stated, on U.K. orders under $£ 2$
Overseas orders at cost

J. BIRKETT

Radio Component Suppliers, 13 The Strait, Lincoln.

GREAT AUTUMN SALE

High Ripple Current Electrolytics YOU CAN'T MISS THESE

Abstract

Sprague Powerlytic (Screwed Conns) 33,000 5 F 40vdc Sprague Powerlytic (Screwed Conns) 3,000 F F 100 vdc Plessey Relialytic (Screwed Conns) 15,000 F F 63 vdc Filmcap (Screwed Conns) 15.000μ F 40 vdc £2.00 inc. $£ 1.80$ inc alectrolytics $4,700 / 40 v 60$ 0/150v 40p. 33/450v \& 15/450v 40p HIGH VOLTAGE POLYESTERS* $0.1 \mu \mathrm{~F} / 1000 \mathrm{vdc}$ 5 for $£ 1.00$ 0.047μ F/ $1000 v d c$ 5 for 60p $0.1 \mu \mathrm{~F} / 600 \mathrm{vdc}$ 5 for 50p $0.047 / 25 v$ disc Ceramics $1 \mu \mathrm{~F} / 400 \mathrm{vdc}$ Polyester Blocks Radial Leads £2.00 for 100 10 for 60p

\section*{Resistors:*} $10 \mathrm{~K} 1 / 2$ watt by $1 T$ 200 for E.1.00 390R $21 / 2$ watt 100 for $£ 1.00$ Tantalum Beads* $1 \mu \mathrm{~F} / 35 \mathrm{v}$ 10 for 75p $1 \mu F / 50 v$ 10 for $£ 1.00$ Semiconductors $10 \mathrm{a} / 50 \mathrm{v}$ Bridges $E 1.50$ 18a/50v Diodes Type 1 N 1191 for $£ 1.00$ Opto Isolators Type OPT6016 pin D.I.L. 2 for $£ 1.50$ Meters' Sangamo Weston 60 mm sq $60-0.60 \mathrm{~mA}$ Taylor $1 / 25^{\prime \prime} \times 300 \mu A$ calibrated in Degrees Tilt £3.50

The following Items are not in the Sale
Mk. 2. Metal Locator Kit
Apollo Logic Tester
S.R.B. Miniature Soldering Iron $16 / 18 \mathrm{w}$
$\mathbf{E} 19.60$ inc. VAT and P\&P
£11.75 inc. VAT and P\&P $\mathbf{£ 3 . 7 5}$ inc. V.A.T. P\&P

Please include 35p P\&P on orders for goods where P\&P is not included. All prices include V.A.T.

R.F. EQUIPMENT SPARES LTD.

3 Lacy Close, Wimborne, Dorset BH21 1PY

Please note that our stores at Poole Road Works are open to personal shoppers on Friday afternoons and all day Saturday.

foiled again

These structures made of chrome-nickel and copper represent an integrated passive circuit with capacitors, coils and resistors, the carrier being a plastic foil. The rectangular, spiral and meandrous shapes largely deter mine the capacitances, inductances and resistances Using the name "Sicufol" (Siemens copper foil) Siemens is now offering modules for television sets as the first wares in this new technology

Resistances up to 300 R can be fabricated directly, capacitance to $150 \mathrm{pf} / \mathrm{cm}^{\prime}$ and inductances up to $10 \mu \mathrm{H}$. By meandering the track back and forth, an increase of up to 3800 per given area is possible

The carrier foil is a kind of Teflon so you shouldn't be stuck for ideas.

eat your heart out colgate

One might question the wisdom of a picture like this, bristling as it is with cunning. At least it's an excuse to brush up on DIL switches. These are made by ERG Components and can switch at up to 10 VA. Fitting a normal DIL format they are numbered in a standard BCD format, and can be very useful in any digital circuitry. Home constructors never seem to make much use of these components for reasons best known to themselves ERG Components, Luton Road, Dunstable, Bedfordshire.

ooops

Please note that the prices shown on the Gould Advance Ad on Page 14 of the October issue were incorrect. The correct prices are shown on page 14 of this issue. We apologise to Gould Advance and our readers for any inconvenience caused.

On October 13th a brand new magazine is launched in the electronics field. It is written and produced by ETI staff and aimed at the newcomer to electronics - not necessarily young people.

We did think of doing an ad which would tell you about the contents in minute detail but instead we have decided to appeal to your curiosity. We don't ask you to buy it; it may be of no interest to you but we hope that some ETI readers at least will pick up a copy and thumb through it. Please put it back neatly if you don't want to buy: the next person may be more interested.

No. 1 will carry a cover date of November and will be available at newsagents on October 13 th. 40p.

WANTED

Editorial Assistant for ETI and Hobby Electronics

If YOU have a genuine interest in electronics and project building and an above-average ability to express yourself in writing, you could be the person we're looking for. We are being serious.
We are looking for someone to join the editorial team and reckon that an enthusiastic reader is likely to be the type to join us. Not an uncritical reader - we want to continue to improve. The work will entail dealing with articles and news - licking them into shape - and making them better than anyone else's articles and news. The applicant will work on both ETI and our new sister publication Hobby Electronics. Readers employed in journalism at the moment will be considered but we are not primarily looking for someone with magazine experience.
We are flexible about age and experience but imagine that the person who gets the job will be between 21 and 28 .
Salary will depend upon age and experience but will be in the range $£ 3,700$ to $£ 4,100$, possibly more for someone with exceptional qualifications.

Experience has told us that people who read ads like this think a) that it doesn't apply to them b) that their own knowledge is far too limited or c) that ads of this type are only put in because we have to fill half a page. None of these is true.

> Apply in writing to:
> Halvor Moorshead,
> Editor,
> Electronics Today International,
> 25-27 Oxford Street,
> London WIR IRF.

Applications should reach us as soon as possible with C.V. Prospective applicants may telephone the Editor for further details but this must be followed by written application.

Gould Advance InstrumentsProfessional qualityata realistic price.

Alpha III Digital
 Multimeter
 Only £99

(excluding VAT)

OS245A Oscilloscope

Fault-finding, circuit testing or servicing - an oscilloscope is indispensable. It saves time, prevents costly mistakes, and enables you to tackle bigger, better projects

Now, Gould Advance offer you this professional-quality, dualtrace instrument, at a price which brings it within reach of the amateur enthusiast

Just look at these great Gould Advance features - then compare the OS245A for value!
*DC-10M Hz bandwidth
*Dual trace
*Clear controls, simple operation
*Fully guaranteed for 2 years

* $5 \mathrm{mV} /$ div. sensitivity
*Time-baserspeeds to $100 \mathrm{~ns} /$ div.
*4" CRT with 8×10 div.

Alpha III Digital Multimeter

With a choice of 25 ranges and basic accuracy of 0.2%, the Alpha Ill is a professional's multimeter, yet it is versatile enough to cover every amateur application

And although it is offered at such a modest price, it shares the advanced design features of the more expensive Gould Advance instruments - in particular, the purpose-built chip, incorporating all analogue and digital circuitry. *2,000 scale length $(100 \mathrm{mV}$ resolution)
*Tough, attractive moulded case
*Bright red LED display *25 ranges
*Fully guaranteed for 2 years

GOULD

Note: This offer applies to the U.K. and Ireland only.

ETIPRINTS

 ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).
HOW IT WORKS

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit', on the sheet to correct any breaks!.

0013 Channel Tone Control Spirit Level
Clock A
Digital Thermometer Skeet Game
Compander
002 House Alarm Rev Monitor Clock B
003 Race Track Game Hammer Throw Freezer Alarm
004 Metal Locator Mk II
Ultrasonic Tx/Rx
5 Watt Stereo Amp (modified)
Metronome
Shutter Time
005 Op-Amp Supply
Frequency Shifter
LCD Panelmeter
Light Dimmer (3 times)
006 CMOS Switched
Preamp
From Experimenters "Electronics
P.S.U

555 Boards (twice
007 Star Trek Radio
CD Ignition
CCD Phaser
White Line Follower
008 Tank Battle
Helping Hand
009 AM/FM Radio
Bridge Oscillator
CMOS Stars \& Dots
010 Bench Amplifier
Freezer Alarm
Marker Generator
LED Dice
Watchdog (2 PCBs)
Stars \& Dots PSU
011 Noise Generator
General Preamp
Flash Trigger
Compander
Active Crossover
(2 PCBs)
012 Disco Lightshow
Stereo Simulator
Digital Thermometer
013 Amplifier Module
Amplifier PSU
Equaliser
Equaliser PSU
014 Skeet Game
Sweep Oscillator
Burglar Alarm
GSR Monitor
015 UFO Detector
Torch Finder (twice)
Etiwet (twice)
016 Stac Timer
Xhatch Gen
Wheel of Fortune
017 Complex Sound Gen
Tele Bell Extender
Power Bulge
RF Power Meter
Proximity Switch
Audio Oscillator (2)
Oct 78
Nov 78

ONE BOARD HOME COMPUTER

ETI, Transam and Mike Hughes, who designed the system, present the Triton - a one board computer that includes all the features expected in a machine providing the basis of a really powerful home system.

ADD A STANDARD domestic TV set and a cassette recorder to the TRITON and you have a complete home computing system that is equa to, indeed in some areas superior to, many of the commercial ready built systems now on the market.

The TRITON has been designed on a single board, which means that construction should not pose any problems providing an adequate standard of soldering is maintained throughout. The case, designed specifically for the TRITON, means that the finished unit can safely and attractively be housed. In use, with the TV set on top of the case, the TRITON will be easy and convenient to operate.

The TRITON is based on the 8080

MPU, a device which has proven itself over a number of years. This MPU has a vast amount of software available for it and the TRITON's 1 K monitor system allows for easy entry and subsequent modification of such material.

The 2 K TINY BASIC that is also resident in the TRITON, allows this popular, easy to learn, language to be used in conjunction with the TRITON's versatile graphic character set and unique VDU function to develop everything from games to education programs quickly and easily.

The TRITON has space for $3 K$ of user RAM on board but the machine has been designed in order to make expansion a simple matter. All the

The single board that carries all of the Triton's circuitry with the areas concerned with various parts of the system indicated.
signals necessary to add further memory, I/O devices etc. are broughit out to an edge connector at the back of the board.

It is essential to use a top quality double sided plated through board for the project. Unlike many projects the PCB is likely to be the most expensive single item you have to invest in but it is this component which brings the whole project into scope for the average constructor with no significant theoretical knowledge.

The board has been designed to keep all the most intricate wiring on the top side - in particular the connections that run between IC pins. The latter are the most vulnerable to a heavy hand on the soldering iron but this is not saying that you can afford any carelessness underneath! Use the smallest soldering iron you can lay your hands on and the bit must, certainly, be no greater than $3 / 32$ in diameter. As stated, all soldering operations should be carried out on the underside of the board; the through hole plating will route all necessary connections to the topside.

Wherever possible it is worth trying to re-inforce the through hole plating by getting molten solder to creep through the hole by capilliary action, therefore hold the soldering iron in place long enough for the heat to flow through the hole and take the solder with it. A couple of seconds longer than your usual soldering time should suffice. You will notice that on the underside of the board there are hundreds of IC pin lands that do not appear to be connected to anything. These lands must be soldered in all positions because nearly all of them go somewhere on the top side!

Transam Components Ltd of 12 Chapel St, will be sole suppliers of the Triton and will also supply individual parts for the computer.

Construction Commences

Take your time with the soldering - even at a slow pace you can complete this project in a couple of days - because it is very easy to miss a connection or produce a dry joint. We recommend that you insert one component at a time and solder it in completely before moving on to the next; a visual check of each joint is essential and if you have any doubt don't be afraid to use a magnifying glass. A few seconds wasted doing this can save hours - if not days trying to find a single missed connection!

All the holes on the board have been pre-drilled to the correct diameters but in the event of you having a device which will not quite go through the hole do not UNDER ANY CIRCUMSTANCES attempt to drill out to size - you will ruin the through hole plating! The ONLY holes you may drill out are the fixing holes for the board and the mounting holes for the extender socket. If you have a stubbern component try scraping down the diameter of its lead with a sharp knife or use a needie file to reduce its dimensions slightly. Probably the only offender ,ou will find in this respect is the modulator which has rather large fixing lugs that sport a taper. These
might vary a little from device to device.

We recommend the use of sockets for all the integrated circuits as it is virtually impossible to remove ICs from a double sided THP board.

Start construction by soldering in all the DIL sockets while the board is flat - it makes life much easier and then insert all resistors and diodes. Next insert the nine board pins which connect to the transformer and IC1 (the off board voltage regulator). Proceed to solder in the in line strip sockets and the extender socket. When the latter is firmly soldered you should carefully drili out the board mounting holes with a drill using the connector's holes as a guide and then boit it firmly into place.

Switched On System

Insert the three transistors for the tape 1/O. Procede then to the capacitors and LEDs. Leave the three large smoothing capacitors till last and be very careful that you insert the LEDs the right way round. You will have to look very careful at the solid tantalum capacitors to find their polarity. You should then insert, and solder in the three preset
potentiometers.
Before progressing further check
the polarity of all the diodes and electrolytic capacitors you have inserted.

You can now insert, and solder in the three crystals making sure you have them in the correct positions. The crystals have their frequencies stamped on them (usually in kilohertz).

Continue with construction by putting in the modulator and the two on board regulators. Make sure you have the regulators in the right position. Ensure that you insert them the right way round. The metal fin should be on the face of them furthest away from the main smoothing capacitors.

Temporarily mount IC1 on its heatsink and run flying leads to the three pins allocated to it.

The great moment is close at hand but before inserting any integrated circuits give the power supply a dry run. Connect up the remaining six board pins to their corresponding terminals of the transformer and apply power. Use a voltmeter to see that you have the correct voltage rails present. You should get +5 V and +12 V at the output pins of ICs 1 and 2 respectively and -12 V at the output of IC3. You should read -5 V

HOW IT WORKS

The heart of the system is the microprocesso (MPU) itself - the faithful old 8080 A instruction set which is remarka understand for those who like to dabble in work at machine code level and because of its years of experience there is a great variety of software freely available to use with it In addition it is one of the cheapest MPUs on the market.

The MPU will sequence through a list of

These eight lines are decoded to activate any one of 256 possible external devices through What are called PORTS.
Before moving on from the heart of the system it is worth mentioning some of the When the computer is on the illustration. is necessary to give it the right instrued on it start with so that it can sequence on from there to complete the program in from manner. For this reason it is usual to have the
operation on the VDU screen and to do a re-initialisation without clearing all the memory (which would otherwise happen if one pressed the reset button). There are five remaining lines one of which is brought out to a spare push button on the front panel and the rest are piped down the multiway socket along with the busbars. The interrupt request lines have to be encoded and formatted into interrupt data byte. When this is done the
decoding the least signiticant eight bits ot the address bus) through the Port Select logic and issues a $\overline{I / O R}$ control signal will data busbar keyboard be placed on the dat the Output Port driving a bank of direction board LEDs is a set of eight latches which catch and hold whatever data is on the busbar when they receive a coincident pair of signals from the port selector and the I/OW line of the control bus. These onboard LEDs
 on tecctp of cach msituctoon will carty out an operathon which ranges from gecting memory to of data from somewhere else in arithmetical carrying out simple doga. It is not within the scope of this article to cover the inner workings of the MPU itself or, for that matter, to explain every operation that the 8080 can offer
As it operates sequentially the MPU needs clock. In this case the master frequency is 7.20MHz which is divided down to clock the of a microcycle and it takes from 4 to 11 microcycles for the MPU to complete an microcycles
The MPU itself has quite a large number of lines leading to it. The 8 data lines are in the Tie can carry data to or from the MPU). To cut down on the number of wires coming from the MPU the data busbar serves a secondary purpose. It carries what is called "STATUS" information at a certain point in time within an is in th form of an 8 bit byte and is decoded by the System Controller. When decoded the Status byte feeds one of 5 lines with a locigal "o" which tells the rest of the system what sort of instruction the MPU is executing during that cycle. These lines are grouped together to signated INTA (meaning that the computer has just been interrupted by an external "Interrupt Request"), MEMR (reading data from a memory location), MEMW (writing or storing - data into an internal memory location), $\overline{\mathrm{I} 70 \mathrm{R}}$ (inputting data from an ex ternal source - such as a keyboard or a tape system) and I/OW (outputting-data to an external destination such as a VDU or a tape system).
The 16 lines which carry a 2 byte WORD which is used to ADDRESS a specific byte of memory form the uni-directional ADDRESS BUSBAR. Using 16 binary lines one can therefore address up to 65,536 (decimal) memory locations. We have limited the capacity of the TRITON to 8 K of memory but the address busbar (in common with the data and contro busside world through can be fed to the outside world throug mansion to maximum capacity with add on pansion
The address bus also serves a duplicity of roles depending on whether the instruction cycle is a memory addressing or an I/O addressing cycle. As already stated all sixteen lines are used to address memory locations but during an I/O read or write cycle the CPU is limited to providing address dat on the eight least significant address lines.
firnt limatruction at addiesm location zero. W con reset the MPU by depressing a push RESET.
Those that want to can use the line marked HOLD for applications involving DMA means that by making this line go to logic " 1 " means that by making this line go to logic three busbars (using the tristate facility of the buffers) and allow an external device to do what it will with the internal memory. We have strapped this line to " O " with a removable link so the facility is there for those who want it. RDYIN is used if any memory of peripheral is incapable of responding as fast as the computer desires. The external device can make this line go to "O" for any period of time (usually set by a monostable) and when this happens the MPU goes intoa WAIT state and it does just that. It simply stops operating as long as ris line is it and if nothing had happened The only thing it does do during this time is issue a signal to the outside world called WAIT. You can see the WAIT line designated as one of the unbuffered outputs. In addition by connecting RDYIN via a push button switch to ground one can halt the computer momentarily in the middle of any operation. Facility for bringing this out to a push button is not made on the board but it is a simple matter to pick up the right point on the top side and take it via a single wire to the front panel see the circuit diagram of this section.

The RESET output goes high momentarily used to carry a synchronous reset on external equipment: the HDLA output tells the outside world, that the computer has gone into a HOLD (or DMA) state - if anyone takes the HOLD Line high; the INTE Line tells the outside world that the computer is permitting itself to be interrupted (the mnemonic stands for Interrupt Enabled) and the DBIN line indicates which way the computer expects data to be flowing on the bi-directional data bus. It goes high when the CPU is expecting data to flow INTO it.
We are using the $\overline{\text { STSTRB }}$ (STATUS STROBE) signal - to synchronise the memory mapping of the VDU - mor
As already implied the 8080 will allow itself to be interrupted in mid program provided that the program sets the Interrupt Enable flag. There is facility for eight possible interrupts but only seven can really be used on this machine (Interrupt 0 is redundant as it duplicates RESET). An interrupt is entered into the machine on a single interrupt requusing two within the machine to do a clearing

Hnal that an intertupt has been recelved When the CPU is ready to be interrupted it INTA which is used to place the encoded byte on to the data bus. This byte enters the MPU and directs the computer to operate the desired subroutine. At the end of the routine the computer reverts to the main program continuing at the point where it was inter rupted

The memory of TRITON is split into three types on the main board. There are locations or up to 4 K of Read Only Memory (ROM) which is split between four 2708 Erasable ROMs. These occupy address locations OOOOH to OFFFH. The standard TRITON uses the first IK to hold Monitor and Utility routines necessary to initialise the machine and re-vector interrupts. The next 2 K holds a block is left spare for future expansion
There is 1 K of Random Access Memory dedicated the ROM area starting at 1000 H . Normally this RAM is addressed in synchronism with the VDU line scan by the VDU control circuitry but the CPU can take over addressing under program control (in effect interrupting the VDU). The VDU RAM can only be written into by the computer.
The rest of memory is made up of RAM
which is both read and write. This area is used to hold the stacks and tables of the MONITOR and BASIC INTERPRETER (512 bytes) and the main work area starts at This represents the full capacity of the on this represents there is no reason, however why further read write memory should no be added externally starting from location 2000 H

The ROM and VDU RAM areas are blocked into units of $1 \mathrm{~K}-$ to fall into line with the types of integrated circuits used. laid out in blocks of 256 bytes.

The high order lines of the address busbar are used to decode which block is being addressed - this is done by the Chip Select decoder. Note that the ROM chip selects are gated with the MEMR signal from the Control Bus whereas this control signal and MEMW go straight to the RAM chips. This is because the 2in Ral ICs used have in output enables.
With the exception of the VDU which is "hybrid" the rest of the system is made up from a variety of $1 / 0$ stages. The most The keyboard data and strobe lines are fed on to the data busbar via tri-state buffers which form the keyboard input port. Only when the computer's software addresses this port (by
help to make the TRITON system more versatile and can be used for test purposes or in specialised development applications. The eight lines brought to the outside world as a spare general purpose output port.
By making use of a couple of spare latches on the board it was possible to provide two spare output lines on one port and a spare line on the port which also feeds the tape recorder power control relay.
The UART (Universal Asynchronous Receiver/Transmitter) is the device which the busbar to a specially formatted serial stream to feed the tape recorder modulator It also carries out the complementary function of converting a received serial stream into parallel data bytes. The device operates as if it were two input ports and one output port. One of each sort of port would be obvious for a device which receives and transmits but the requirement for a second innput port may not be so obvious. Because the device operates asynchronously from the main computer (it has its ow operatigg ater wait from time to time to allow the slower operating UART to complete a transmission cycle. This is indicated by the UART activating a flag which is regularly monitored by the second input port.

The VDU portion of the computer is based on the Thomson-CFS Control chip and operates in a unique manner for this integrated circuit. Not only can one output to the VDU through an output port (in similar manner to using a teletype) but one can use the computer to write data directly into the VDU's memory at extremely high speeds
A further extension is the way the control chip has been used to hande Graphics bits are used in this VDU application. This way enables the use of the complete set of ASCII codes. 64 extra character codes are therefore available by using those normally associated with lower case "alpha" characters and all the control codes. Within the overal context of the computer some of the control codes serve dual purposes and the VDU control ROM inhibits printing a graphic when a control code is issued for genuine control purposes.

The graphic select logic looks at the two most significant bits of the ASCII code, determines whether or not the symbol is graphic or alpha-numeric, then pro ROM or select the standard alpha-numeric ROMOM the specially programmed graphics ROM
There is quite a lot of extra logic associated with this operation as well as the Memory Map/IO changeover but we shall reserve comment on this to the section describing the circuit in detail.

at the junction between R 1 and the zener diode．If all is well here， systematically check that you have the correct voltages at the sockets of every integrated circuit．Use the schematic diagrams to help you identify the pin numbers．

Finally check that you have inserted the single wire link to the right of the extender socket．

Insert all the integrated circuits making absolutely sure that you have them orientated correctly and have them in the correct locations． Use the dot on the UART to locate pin 1 （the notch can be misleading） Note that the orientation of ICs varies a lot on the board and you must check each one individually．Insert the 2708 EROM chip that is marked MONITOR V4． 1 into the socket for IC21 the one marked BASIC L4． 1 ＂A＂into the socket for IC 22 and BASIC L4． 1^{\prime}＇ ＇＂into IC23．Insert $^{\prime}$ eight TMS 2111 －2 devices in IC locations 25 to 32 inclusive．The only gaps you should have on the board are the IC24 and ICs 33 to 48

Do not bother with a keyboard at the moment but simply make up a coaxial lead to go from the modulator to the aerial socket of a standard 625 line television set．Switch the TV on and allow it to warm up checking that a raster is just visible and tune it to approximately channel 36

Set the three on board
\checkmark potentiometers to their mid way

The table shows the decimal and hex codes associated with the Triton graphics and， where applicable，the key on the keyboard． The symbols may be used within a BASIC print statement or with the OUTCH monitor routine．
positions and apply power to the TRITON．You should see some change on the television screen even though you may not be spot on tune． Try adjusting the tuning over the whole range until a strong signal is locked in．You should see the welcome message：

TRITON READY FUNCTION：PGIOLWT

It may respond with INVALID as the keyboard is not fitted－do not worry this is still an indication that everything is working．

Hopefully this will be the case and you can rest assured that your computer is working！Switch the computer off；wait a few seconds and switch it on again．For a fraction of a second you will see a load of rubbish on the screen which will rapidly clear and the previous message will be repeated．

Switch off and make up an umbilical cord of wires to go from the keyboard socket on the board to the keyboard and associated push switches．Use colour coded wire and ensure that you make no mistake when connecting the relevant leads to the keyboard Cinch connector．It is double sided and you must make sure to holc＇it with the correct

GMAPHIC DEC．HEX | | | |
| :--- | :--- | :--- |
| 2 | 1 | 01 |

PARTS LIST

orientation or you may have disastrous consequences with the power lines. Different types of keyboards have different
connections. We refer you to the connection details supplied with your keyboard. The only comment we should make is that the specified keyboard, and some others, give you an option for bit 6 of the data. One option gives you upper case
characters only while the other gives both upper and lower case. This
application needs the latter. The strobe is the static strobe which goes
to " 1 " as long as a key is depressed.

Procedure

The specified keyboard does not have any built in direct function keys and these have to be provided by separate push buttons. These have to be mounted on the front panel and are used to provide RESET, INT1 (Clear Screen), INT2 (Reset without clearing memory), INT3 (Spare) and TAPE MANUAL OVERIDE - ganged with PAUSE (see descriptions elsewhere). The first four push switches all have a common ground and are "push to make" with a spring return. Use the Common lead and the respective signal leads to go to each of these switches. The fifth switch must be double pole "push to make - push to break". One pair of contacts should take the special
"PAUSE" line to ground when it is on. This line does not exist in the umbilical cord coming from the board socket but must be soldered to the end of R3 going to pin 3 of IC4. The other pair of contacts is connected across the tape power control pins of the respective DIN socket.

You can make up all the above on flying leads to test the unit fully before putting it into its cabinet.

Power up again and get the initialisation message. Try pressing any key on the keyboard EXCEPT PGIOLW or T and the computer should respond by saying INVALID Press CONTROL C and the screen should clear and re-initialise. Press RESET. When the button is released the same should happen. Try INT2 and the machine should, again, reinitialise. When you try INT1 the screen should clear without the message appearing. To get
something back on the screen press any keyboard key except those in the "key character" message
(P.G.I.O.L.W.T). You should, once more, get INVALID. Depress CONTROL C once more and your computer is re-initialised and ready for test.

Program

We must assume at this stage that you do not know anything about programming so simply follow the instructions and check that you get what is described.

Depress P on the keyboard. You will get:

P
PROG START $=$
(The computer is asking you to tell it the address of part of memory you wish to inspect)
Type in 0000 followed by carriage return.
The display will now show
P
PROG START $=0000$
000031 (31 is the data in location 0000)

Depress carriage return repeatedly and you will get the following as you step through the Monitor program instructions

P
PROG START $=0000$
000031
000180
000214
0003 FB
etc
Reinitialise with CONTROL C and then type L. The computer will again ask you for a start address but this time will list out the contents of 15 adjacent locations starting from that address. We can use this to test that our memory is there and working in the RAM area

Answer the computer with the address 1600 and a carriage return (if you make a mistake before you press CR you can backspace with CONTROL H and change an entry but you must then type through the rest of the line on the screen). The computer will list the contents against the memory addresses and then stop and ask for "MORE?". If all is well you should see 00 in all locations. To continue type Y and keep doing this checking all the locations up to the highest order RAM on the board. Above that address the computer will read FF which indicates that there is no memory there. If you see any data above address 15 FF that is anything other than 00 or FF you can be sure you have a bad connection to the RAM IC which contains the data in question. This test only holds true immediately after first initialisation and cannot be used if you have attempted to write programs.

To get out of LIST type any character other than Y and the computer will reinitialise. Carry out this or any of the other reset procedures already described and procede to check the G function. This is to facilitate running a machine code program. The computer will acknowledge

G
RUN
PROG START $=$
(this means it is ready to run but wants you to tell it from where in memory it should get its first instruction). Give it this information by typing 02B9 followed by CR. You will actually be running a re-initialisation program in the Monitor which should just acknowledge with

The Triton's board mounted in its case. Note that the extender socket is available on the right hand side of the case and that the output of the modulator is brought out to a UHF socket on the back panel. The back panel also carries the DIN sockets and the mains fuse.

FUNCTION? PGIOLWT

You are now back where you started so you can try typing W which turns the computer into nothing more than a video display typewriter. You can type away to your heart's content testing out all the alpha numeric and graphics characters using the keys in unshifted, shifted, and control mode Do this while inspecting the coding tables shown in the section describing the VDU and get used to the cursor move commands. Type a full line of characters and adjust RV1 for best line length. To get out of this mode of operation use CONTROL C or any of the other methods of resetting.

The next test sees BASIC L4. 1 in action; depress T. The computer acknowledges with

T
BASIC L4. 1
OK

$>$

Type in NEW followed by CR to make sure the memory is cleared and the computer re-acknowledges with the BASIC header. Very carefully
type in the following message line by line with a CR at the end of each line. Remember you can correct by backspacing with CONTROL H before you hit CR.
>10 FOR $A=1$ TO 10
>20 PRINT "HELLO'
>30 NEXT A
$>$ RUN
You should not re-type the greater than " prompt signs - the computer is prompting YOU with these. When you press CR after typing RUN we hope you will be surprised - you have just written your first program!

You can now be pretty well assured that your computer is working correctly and it only remains to test and adjust the Tape I/O circuits. This must be done in stages

First check the Tape Output software. Connect an audio monitor (simple amplifier or crystal earpiece) between the "Tape Out" socket on the board and ground. You should hear a continuous tone. Call up BASIC by typing T and enter the above program again. Once you have done this get back to the Monitor without erasing your BASIC program

PROJECT: Computer

(use CONTROL C). Now press O to call up the Tape Output routine.

The computer will ask you for a TAPE HEADER which can be anything you like written in alpha-numerics. Preferably do not use a title longer than 20 characters as you might run out of input buffer space! We suggest you type in TEST ROUTINE. Follow this with CR while listening to the tone on the ear piece Nothing will happen on the VDU but after a pause of between 5 and 6 seconds (longer if you are using a master clock crystal lower than the 7.20 MHz as specified) you will hear about 1 second of regular high speed pulses followed by a few seconds of what can best be described as
'burble"' (this is your program going out). The burble will stop and you will hear just the continuous tone you heard at the beginning. After a further 5 or 6 seconds the VDU will confirm that the file has finished by displaying END followed by the re-initialisation heading.

On A Plate

Repeat this excercise but this time connect a continuity meter across the tape power control sockets on the board. (The manual overide switch must be open circuit). While you type in the tape header code the meter should show that the relay is open circuit but as soon as you depress the CR to start the operation the relay closes and stays closed until the VDU types END. It is obvious that the 5-6 second delay at each end of the routine is to allow a portion of blank tape to go by to reduce the chance of you overlapping files or missing the start of the active tape at the beginning of a new cassette.

You must now set the Baud rate for your system. The simplest way is to use a frequency meter connected to pin 3 of IC81. Adjust RV2 until the meter reads exactly 4800 Hz . A better way, and probably more viable for most constructors, is to use a standard test tape. It is better because different tape recorders might operate at different speeds which would influence the play back baud rate of your system. This does not matter if you are only recording a glaying back your own programs but If you wish to use those from other sources your overall system MUST aperate at 300 baud. Using a standard test tape calibrates your overall system to 300 baud as Newed from the outside worid.

Monitor Manipulation

To carry out this test properly you must have a master clock crystal having a frequency greater than 4.5 MHz otherwise the VDU may not print out as fast as the data is coming in from the tape. You must also enter and run a special machine code program to facilitate the test. We will not explain how the program operates in this article except say that it accepts any data on the tape and displays it, verbatim, on the VDU. If garbarge is received and decoded garbarge will be printed. The test tape contains the alphabet followed by CR and Line Feed repeated many times over a period of a few minutes. All you have to do when the program is running is set RV3 to its midway position and adjust RV2 until you get the alphabet reliably repeated on the screen. If, at the best setting of RV2 you still get the occasional bit of rubbish try altering RV3 for best sensitivity. You should, of course, be using the phono output from your tape recorder but if you do not have this use the extension speaker socket with the volume set about 2.0% up from minimum.

TRITON Trials

Carry out the following instructions TO THE LETTER!

Initialise the computer with RESET; type in P and enter the start address for the program as 1600. For zero always use 0 and not o. Press CR and location 1600 will be shown to contain 00. Now use the memory change facility to start writing your program. Simply type in the following list of hexadecimal instructions - each pair of digits should be followed by CR. You will end up with a column showing address locations to the right of which is a column showing what was in that location (should have been 00 in all cases) and to the right of that the new data you have just typed in. When you have typed in the complete list of instructions use CONTROL C to re-initialise then type L and list from location 1600 (as previously described). Check that the codes in each location correspond exactly with those in the published program. Use CONTROL C to re-initialise and then type G. Enter 1600 without pressing CR at this stage. Make sure your tape recorder
is properly connected to the board and switch on the recorder in PLAY mode. Press CR and procede to adjust RV2 as previously described. You should see:

ABCDEFGHIJKLMNOPQRSTUVW. XYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOP etc
until the recording ends or you switch off the tape recorder. While this is happening your computer is locked within a program loop and you will not be able to get out of this with CONTROL C. You will have to use INT2 to re-initialise.

Here is the program you must type in:
Address location Data you must enter

1600	$C D$
1601	27
1602	03
1603	$C D$
1604	$1 D$
1605	03
1606	$C D$
1607	13
1608	00
1609	$C 3$
$160 A$	03
$160 B$	16

Your computer is now completely set up and ready for use. You have already been shown how to enter and run simple programs in BASIC and Machine Code. Why not now read the further articles in the Supplement which will show you how to make more full use of the TRITON. You have made an extremely powerful computer whose applications are only limited by your own imagination and the development of more sophisticated software - coupled with extender boards to give you extra I/O functions (Floppy Disks, Line Printers, extra Tape Recorders, more Memory etc). Keep reading ETI for further exciting applications and developments
The following pages contain the circuit diagrams and descriptions for the complete Triton design. 'How It Works' sections refer to the diagram they accompany.

Computing Today carries an article on using the Triton's BASIC and a review of the machine by John Coll.

A fuller description of the Triton's monitor will follow in next month's Computing Today.

HOW IT WORKS

10. if the master clock oscillator which contains divider circuits to provide the two phase clock ($\$ 1$ and $\$ 2$) for the 8080 . You can use different frequency crystals for X1 but the ideal value is 7.20 MHz and this value should not be exceeded. Lower frequency devices are fine but the system will operate proportionally slower. If you put in a higher frequency crystal not only will you run into memory access time problems but the system will be operating at Monitor program has vrovided the maximum permissable print out provided the maximum permissabie pri
rate for a clock frequency of 7.20 MHz . but not used on the main board; this is fed to the extender socket. The chip also contains gating circuits to synchronise the externally generated RDYIN command before feeding this to the CPU. An internal Schmitt Trigger on the reset input line (RESIN) allows a very simple charge up circuit comprising R2 and C20 to provide power on reset. Manual reset is carried out by momentarily taking RESIN to 0 volts via a push button. The clock receives a feedback signal (SYN) from the CPU which is gated with to give ament the data busbars are carrying the status ment the data busbars are carrying the status
byte. The pulse (STSTB) is fed to the System byte. The pulse (STSTB) is fed to the System and is also used by the VDU to enable Memory Mapping changeover.
C19 discourages the crystals from harmonic operation. This shifts the operating frequency by about 10 Hz but this is of no real significance.
A description of the inner workings of the CPU (IC5) is beyond the scope of this article. It's general operations will however become apparent as this how it Works is read. Note that certain outputs (namely HDLA,
DBIN INTE and WAIT) are taken to the DBIN, INTE and WAI) are laken to the extender socket directly from the CPU.
These are unbuffered and account should be taken of this if you expand the system. Each line will adequately drive a single TTL load and maybe a handful if you use low power devices.
The HOLD line going to pin 13 of the 8080 is not used within the main board and is used to carry a DMA request which, via the HDLA signal puts all the busbar buffers into a high impedance state. This could facilitate a take over of the complete memory of this system by a peripheral device or, possibly, another computer. Normally this level "O" so we have hard wired it thus logic level " O " so we have hard wired it thus
with a board link. This link MUST be removed, or a switch substituted, if use is made of this line!

RDYIN is normally held at level " 1 ". If taken to it causes the CPlop operating. Nothing happens as long as the registers within the MPU are maintained registers within the MPU are "1aintained. carries on operating as if nothing had happened. By taking pin 3 of IC4 via a push switch to ground we have a ready made "PAUSE" control which will enable the TRITON to stop in mid program; say, the middle of long high speed VDU output to inspect the screen.
The chances are very high that you will not need RDYIN for external systems so the feature could be built in permanently. Note should be mitch hard wired to ground on thi line if at any time in the future you derive the RDYIN signal from a gate. Press the button and bang goes the output stage of one innocent gate.
IC6 is an 8228 N 8080 System Controller which gates out the five main control busbar signals from the status byte at the time of STSTB and holds these on latches. The chip also comprises a set of bi-directional buffers for the data busbar; the direction of these buffers is controlled by DBIN and thei outputs are disabled on the receipt of a DMA request by the HoLA signal. We were not happy that this buffer alone would be capable of supporting a fully extend system of IC9 (74LS245). Like the System Controller the latter chip is supervised by the HDLA and DBIN signals. Integrity of any DMA request is maintained on the data bus.
ICs 7 and 8 are uni-directional tri-state buffers which should allow the address bus bar to feed a fully extended system. Note that we have inverted A15 prior to putting it on the bus. By doing this we have been able to economise on chip select decoding circuitry elsewhere in the main board system. This
should present no problems to anyone working with extender boards provided that this fact

Remember, you must disable the push shown it dotted in and why Transam have not built this facility into their PCB in an obvious way. Why not use common sense and make use of this extremely valuable facility - all that is needed is the cost of 20 cms of wire! You do not even need another push switch because you can use a spare pair of contacts on the Tape Control Manual Overide. It does not normally matter if you press this butcon prof with its own control. IC11 is the Interupt Encoder which has eight lines going in to it. These are normally eight lines going in to it. These are normaly encoded three-bit nibble is output at pins 6,7 and 9. If all the inputs are high all the outputs are high and a " 0 " is placed on the Enable Output line at pin 15 (the latter is used to generate the INT signal - Interupt Request - to the CPU). If any single input is pulled to 0 volts, via the push switches or external logic, an equivalent code to describe that line number is output as the Interupt Data Nibble and pin 15 goes high telling the MPU that an carry on carry oniop it's cycle to service the interupt. When this point is reached the MPU outputs an Interupt Acknowledge signal (INTA) through the status byte which is decoded and latched by the System Controller. This signal is used to activate the Output Enable of IC12 (an eight wide tri-state inverting buffer) which formats the ID nibble to make an eight bit Interupt Data byte which is then accepted by the CPU as a RESTART instruction. The program counter jumps to one of eight fixed locations in memory - the location is defined by the ID byte - while the

and status information. The MPU then operates on the interupt routine and returns to its main program when it comes to an RET instruction.
Interupt 0 should not be used even though it is available on the PCB. It simply duplicates the manual reset operation but would create problems if used with the TRITON's Monitor
program. INT1 is dedicated by the Monitor to provide a Clear Screen and Reset Cursor provide a Clear Screen and ene which can be carried out at time. INT2 is also a dedicated function. The Monitor includes memory test facilites as part of the power up routine and use of the reset button will clear all memory. To by-pass this problem we are using INT2 as a nondestructive reset which, as far as any programs that are running are concerned, is just ike reset and the system will re-initialise but the memory will not be cleared. ALWAYS use INT2 for reset unless one of your programs has corrupted the Monitors stack! Only then should you press manal reset or swit switching the machine off and on

Photo of the underside of a underside of a
section of the section of the
Triton's PCB. Note that although it appears that there are no connectigns to some IC pins-ALL pins must be sold ered as these pins are used on the ropsid

HOW IT WORKS

IC61, the Thomson CFS VDU control integrated circuit, has a built in clock which generates standard TV synchronisation pulses (line and field sync) on pin 26. Random train is generated as opposed to the full CCIR specification

The chip, synchronously with this train of pulses, generates addresses for the VDU RAM so that the correct code of the character is selected as the TV raster spot is traversing the respective part of the television screen. An external "Picture Point Oscillator" (IC55c and d) in conjunction with a divider chain (icga) sep the address of the on chip output from pin 12(IC63) to the control chip, output from pin 12(IC63) to pin 9 (IC61). The inverted output of IC63 pin by the controller into IC68 (a seven wide latch), latch the picture point pattern generated by the character generator ROM into the serialiser (IC72) and reset the picture point divider chain (IC63) at the end of each character width.
The picture point width (hence the character width and number of characters per line) is set by the frequency of the oscillator control RVI.
We are using a 7 bit wide RAM to hold the FULL ASCII code - we need this to provide capacity for graphics. The outputs of the character generator (IC69) and a specially programmed ROM (IC70) which contains picture point data for the 64 graphic symbols. We use the EXCLUSIVE OR function (IC62d) on bits 6 and 7 of the ASCII code to select either the graphics or alpha-numeric ROM. The select signals go through further gating (ICs67a and d) to ensure that the integrity of the cursor generating pulse (pin 15 of IC61) is not corrupted.

Three further address lines from the VDU controller (pins 11, 12 and 13) address the picture point data ROWS in both ICs 69 and 70. Due to a limitation caused by the internal operation of IC61 chip the row address code 000 is output for the top row and the bottom four rows of the character cell. Normally inter line gaps for alpha-numeric displays while rows 1 to 7 carry alpha-numeric picture point data. We have had to take this into account when designing the font of graphics symbols - some of which cannot fill the complete character cell rectangle on the screen. Look at the table of graphics characters and you can see how we have adjusted the graphics to suit this restriction.
Further complications caused by this limitation are that a graphic must not appear. on the topmost line of the television screen if that graphic contains picture points in its present here in order to derive field blanking present here in order to derive field blanking. gating but this would have been at the expense of simplicity

A similar problem (involving line blanking) is resolved by gating the video output with the INI function (pin 26 of IC61) in IC71b. Without this any graphics symbol having a picture point in its most left hand column would have caused a "wrap around" while a line that interferes with the DC level of the line sync pulse. The only problem that remains in this respect is tha pount showing to get a single extra picture point showing to you use a graphic in the most left hand you use a graphic in the most left hand all graphics - only those that have picture points in their most left hand column.
The five outputs from the alpha-numeric ROM are wire ORED with five of the eight

outputs from the graphics ROM and held high via pull up resistors R22-26. They are serialiser shift register IC72. Note that the remaining three outputs from the graphics ROM have to be ANDED with a signal defining whether or not the character is a graphic (done by ICs71a, c and d). This is to ensure that if alpha-numerics are printed there is a correct inter-character gap.
So far we have avoided talking about how the VDU RAM is addressed by the control chip. Let's deal with that now.
We are allowing the CPU to memory map the VDU RAM. To do this we have had to allow the MPU to take over addressing taking all the address lines from IC61 and their equivalents from the system's busbar to a set of data selectors (ICs64, 65 and 66). If the MPU addresses the VDU memory location (any address between 1000 H and 13 FFH) the block select line (MAP VDU) is activated This of course, could happen if ever the address busbar went into a high impedance state (during HOLD etc) so to prevent any spurious pulses affecting the operation we gate the VDU block select line with STSTB which only occurs when valid address information is on the busbar. We do the gating in a D type latch so that during the complete cycle ore at to allow the computer addres bus to be transmitted to the inputs of the VDU RAM At the end of that cycle and at al other times the data selectors hand over address control to IC61
A similar transfer of responsibility takes place between the normal input data to the VDU (which gets to it via an output port) and the main system data bus. In this case th data is selected by ICs59 and 60. These als receive their changeover instruction from the changeover latch IC53. Note that we also have to do a changeover between the inter nally generated memory write command (pi This is done within IC60.
It only remains to describe the gates on the VDUs internal data lines and IC54. The former are used to force the ASCII code for "Space" on to the data lines when pin 13 (IC61) is at " O " in coincidence with a writing
pulse to the VDU memory. This is to allow for the very useful internal function provided by the IC61 to clear the screen and reset the cursor in one operation
The VDU controller carries out a number of non writing functions as well as entering and addressing data within its memory. By asing some of the ASCII codes as controlit is in steps to any ph things as move the cese the cursor, carry out a line feed or do a carriage return clearing only the unused part of the line. There are also a couple of control codes that we wish the VDU to gnore - OOH and O 4 H - respectively these are NUL (or no operation) and EOT (end of text) flags. Recognition of all these specia codes (IC54) This has had to be specially (IC54). for the TRITON progra best the TRITON.
To get best use from the TRITON and its decimal values of all the ASCII codes that are used to generate alpha-numerics, graphics and control characters. You also need to know which of the keyboard keys corres pond to each graphic character. To help you we show all the graphics with their respec tive codes and key names in Fig. 00. Alpha numeric codes are shown in Fig. 00 and the control codes in Fig. 00
Normally you may output a character to the VDU for printing in $1 / 0$ mode every 8.3 mS . The standard TRITON monitor ers outputs a character roughly every 9 mS . If ever you write your own software you must take this speed limitation into account. Fur thermore there are two I/0 operations which take a considerably longer time these are "Clear Screen and Home Cursor" and "Home Cursor". These instructions must be followed by a delay of at least 132 mS . Again the TRITON's monitor makes allowance for this but you can get direct access to these func tions if you use either the "PRINT CON TROL or VD commands in BASIC you BASCT fallow them with a delay BAS havin a time constant greater than 132 ms . (In practice we found that a 200 step "FOR NEXT" instruction was quite safe.)

HOW IT WORKS

During an INPUT or OUTPUT instruction cycle the MPU will generate the address of the $1 / 0$ port required on the least 8 significant bits of the address busbar. This has to be decoded to provide a single line signal which will activate the port. It is not sufficient to provide this address on its own because there is no way that the port can genuine port select instruction or whether it is the low order byte of a memory whether it cycle Furthermore there are times within the machine cycle when the address busbar can be in a transient, or high impedance state which could cause indeterminate address information to be decoded by the port select circuits.
To prevent these problems and also to differentiate between input and output ports the decoded port line is gated with either the $\overline{\mathrm{I} / \mathrm{OR}}$ or I/OW control line. One or other of these lines goes to "O" after the ports select address has been placed on the busbar and terminates BEFORE the address data to strobe the I/O data on the data bus into or out of the port in question. Take for example the control of the Keyboard INPUT port. The port itself is simply an eight wide set of non-inverting tri-state buffers permanently connected to the data bus.
Pins 1 and 19 enable the output of the port when they go to level " O ". Normally these pins are at " 1 " and held there by the output of IC13b and keyboard data cannot affect the data bus. IC18b and 15, between them allow 16 lines to be uniquely decoded from address bits 0 to 7 . We only use 8 ports on the main board so part of this fachity is redundant IC18b is a 2 to 4 line decoder operating as a 3 input NAND gate The reason for this is that the device was one left over in a half used package and its use avoided having to put in an extra IC just for the sake of one 3 -input gate. When address OOH is present on the bus pin 1 of ICl5 goes low which points to Port 0 (the Keyboard). This signal is ORED with I/OR by IC13c, d and b so when there is coincidence IC49 receives " 0 " on pins 1 and 19. Whatever data is coming from the keyboard is transmitted on to the data bus and then accepted by the CPU as genuine input data. The reason for using three NAND gates
to provide the OR function is again to use spare capacity in partly used ICs.
While on the subject of the keyboard port some might question the use of only ONE port for the keyboard instead of having a second one to check the status. We get around this apparent deficiency in the INCH Keyboard Input) sub routine of the monitor Interconnections with the keyboard put the 7 bits of ASCII on bits 1 to 7 and instead of parity strobe Output port 3 works in similar fashion. ICl5 decodes its address on pin 4 and ICl4a ORs it with in this case $\overline{\text { I/OW }}$ and resultant pulse is used as a clock to the D ype latches within IC50. The data is entered into the latches on the rising (trailing) edge of the pulse. Using the trailing edge does not matter here. There is just sufficient current inking capacity in a 74LS374 (IC50) to drive a small LED direct through a 1 k 0 limiting resistor. The byte of data is therefore transferred from the busbar to the latches and displayed in binary fashion on the LEDs Note that the LEDs are illuminated when a 0 " is output.
The VDU, when operating in I/O mode, is ituated at PORT 5. This works in much the NOR gate to give a positive going are using a NOR gate to give a positive going port enable the VDU strobe which is formatted to have the correct timing characteristics by the OUTCH (VDU Output) sub-routine of the Monitor program.
A further output port was required to switch the relay of the tape recorder power control (to effect automatic starting and stopping of the tape). Theoretically a single bit port was all that was required but as hings turned out in the design this would were no spare latches left over anywhere were no spare latches left over anywhere use a 74IS75 (IC52) which contains four atches connected as two pairs. This way we were able to provide a tape control signal to he relay at pin 11 (the Q output of one latch) by using data bit - and this left a spare line on that port (bit 7) which can be used by the experimenter as an output line. The port to call for this line is number 7. At the same time the other pair of latches in IC52 are used as OUTPUT PORT 6 which comprises bits 7 and
8. These are also spare

As we've moved on to the subject of tape control take note that there is a push button This is connected across the relay contacts This is to allow manual override so that the cassette recorder can be rewound etc. unde remote control without having to unplug the for more details about the serialiser I/O ports and MODEM for the tape recorder
The memory of TRITON comprises four 1 K解 RAM The high decode individual lines which enable each block while low order addresses point to a specific location within the previously de coded block.

ICl6 is a 3 to 8 line decoder but we are able use it to decode, uniquely, eight individual blocks of 1 K from the six most significant address lines. This is made possible by using A15 in inverted form and the internal gated Select inputs of the 74LSI38. The four lowes order selected lines correspond to memory blocks which start at $0000 \mathrm{H}, 0400 \mathrm{H}, 0800 \mathrm{H}$ and 0 C 00 H respectively and these hold the MONITOR. BASIC "A", and BASIC "B" read only memories. The block starting at 0 C 00 H The line decoded at pin 11 of IC16 expansion the block of VDU RAM and the raning three lines are fed to three 2 to 4 line decolng Cs 17 and 18 a along with address bits 48 and A9.

The latter three decoders break down the remaining 1 K blocks into 12 blocks - each goes to a specific pair of these 12 lines gemory integrated circuits that form the main work area of the computer.
Except for the ROMs gating with MEMR Except for the ROMs, gating with MEMR memories themselves. The 2708 read only memories only boast a chip select input and it is necessary to gate the MEMR control signal with each of the chip select lines prior to making connection with the appropriate pin. This gating is carried out by the quad 2 input OR gates contained within IC 19 .

The connection details for the keyboard recommended for the Triton.

The tape I/O section of the Triton system.

HOW IT WORKS

The AY-5-1013 Universal Asynchronous Receiver transmitter features tri-state out puts for received data and all status bits. Note that respective bits of the data in and data out terminals of the chip are commoned logether before joining the TRITON's data arly commoned with the DAV (Dare simiable) bit tied to bit 1 on the bus; PE (Parity Error) to bit 2; FE (Framing Error) to bit 3 , OR (Over Run Error) to bit 4 and TBMT (Transmitter Buffer empty) to bit 5. Note however that TRITON's standard Monitor only samples DAV and TBMT.
The DAV and TBMT flags are used to tell the system when the UART has received and has ready a complete byte of new data or when the UART has finished a current serialising cycle and is ready to accept a new byte for transmission. In actual fact the UART will accept a second byte while it is hufferines naturn of its tranamiter buffer
should be set on a frequency meter
In order to transmit data the TRITON UART first checks to see whether the activating which is, in effect PORT WRD ENABLE status word on the data bus and the MPU checks to see whether bit 5 (TBMT) flag is at . If so it indicates that the UART is ready the busbar whilen outputs its data on to STROBE (PORT2) DATA STROBE Sta transmission serialising cycle and the seria data is output to the MODEM (IC82) at pin 25. If the TBMT flag was at " 0 " the Monitor goes into a loop and waits until the UART is ready.
In order to receive data the MPU asks for status information, again through input port 1 but this time checks bit I (the Data Avail able flag). This goes high as soon as a com plete serial byte has been received and for
byte of data is received. Clearly the software cycle, which carries out this operation, MUST have a shorter loop period than the period between one received byte and the ext otherwise overrun errors will occur
The Motorola single chip MODEM seemed highly attractive from the word go as it is extremety economical on external components and needs no adjustment.
The MC14412VL is such a versatile chip that it was again difficult to decide which order to have a be used in. Eventually, in give best relie a frequency pair that would and to allow the MODEM to receive at up to 600 baud (not that this is used at present) we opted to go for the USA standard "originate" mode in which the transmitted frequency pair is:

MARK ("1") $=1,270 \mathrm{~Hz}$
SPACE (" 0 ") $=1,070 \mathrm{~Hz}$
Clearly we need to be able to demodulate the same pair of frequencies so have to

The MODEM interfaces directly with the UART and only needs a crystal and resistor to lock it to the correct frequency pairs. It is most important that a crystal of exactl 1.0000 MHz is used here otherwise you will not be able to use pre-recorded tapes! The transmitted carrier of the MODEM is an eight level digitally synthesised sine wave of about 300 mV rms which is buffered by TR1 before being fed via C27 to the tape recorder phono input.
To carry out a demodulation satisfactorily the MODEM IC requires a very precise unity mark/space waveform at pin 1. The tolerance on the mark/space ratio has to be better than $\pm 4 \%$. If the carrier being played back from this will result in an asymmetric sinusoid which will be difficult to convert to a square wave of the above specification. To further purify the sine wave it is amplified and filtered by Q3. To some extent the input sensitivity can be adjusted by RV3 but under 300 baud set by the clock comprising IC81 (an NE 555). Baud rate is adjustable by about ± 50 percent by means of RV2 and, of course, it is important that this is accurately set if tapes from other sources (recorded in TRITON's format) are to be played back. To obtain a rate of 300 baud the oscillator mus run at precisely 4800 Hz and ideally this
 condirfor is met. When the hluk goes to " the Mre uses port to send a Received Data Enable strobe to the UART. This enables the outputs of the receiver buffer latches and places the data byte on the system busbar. To prevent the system reacpulse from port 4 is also used to rese DAV which then stays low until a completely new
opetale in simplex mode hence pins 2, wal 14 of IC82 are allowed to be 1 ". Internal pul up resistors within the chip do away with the need for external pull ups hanging on thes pins! Pin 2 actualy is the MODEM's coceiver demodulate the same frequency pair that is being transmitted Keeping this active prevents any ambiguity as to whether one is "originating" or "answering".
normal circumstances (within the range of input voltages mentioned above) this should always be set in its mid-point position. Th fed to IC83 which is a zero crossing comparator which will sense the zero crossing of a sine wave to within about 3 mV . With a good input signal this results in a square wave that more than adequately meets the input specification of the MODEM.

The power supply section of the Triton is based on three ter minal regulators.

A close-up photograph of the PSU. Note the orientation of the IC regulators.

HOW IT WORKS

THE POWER supply has been kept as simple as possible, utilising three IC regulators to provide the main rail supplies which are +5 but do (thely on there being any to spare if you are thinking of hanging any other bits you are thinking of hanging any other bits -12 V at 0.5 A . A few milliamps are needed by the ROMs and the 8080 at -5 V and this is catered for by a simple zener shunt off the -12 V rail.
The $\pm 12 \mathrm{~V}$ rails are straightforward. Dis sipation by the regulators is low and no heat
sinks are necessary. The 470 n capacitors on the outputs of the regulators are to preven rail pas a dozen 47 n capacitors (C3 to C14) shunted across it These are anti-spiking devices and have been placed in strategic places on the board.
To avoid excessive dissipation in the main +5 V regulator (ICI) we decided on specially wound mains transformer, hence the rather obscure specification for an 8.25 V winding.

PSU

- ETI BOOK
 BEGINNERS
 Beginners Guide to Electronics squre E2. 65
 Beginners Guide to Transistors Reddihough $£ 2.65$
 Electronic Measurement Simplified C Hallmark $£ 2.20$
 Electronics Self Taught Aht $\mathbf{E 4} 40$
 Beginners Guide to Integrated Circuits sinclar £3.15
 Principles of Transistor Circuits s mi:ME4.75
 Understanding Electronic Circuits inclay E4.10
 Understanding Electronic Components sinclar $£ 4.10$
 Beginners Guide to Radio kink E3.15
 Beginners Guide to Audio unckirr $£ 3.10$
 Beginners Guide to Audio : R thel lan E3-20

COOKBOOKS

TV Typewriters Cookbook $\mathfrak{E 7} 40$
CMOS Cookbook $£ 8.00$
TTL Cookbook $£ 7.55$
Active Filters $£ 11.00$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook E9 40

APPLICATIONS

Advanced Applications for Pocket Calculators : whert $\mathbf{£ 4} 20$ Build Your Own Working Robot D Hetseman E3. 55
Electronics and Photography R Brown £2 30
Fire and Theft Security Systems b weln £2. 00
How To Build Proximity Detectors and Metal Locators I shilll- £3.35
How To Build Electronics Kits cuper £2.10
Linear Integrated Circuit Applications c Clavon $£ 5.40$
Function Circuits Design \& Applications Burt Hram ∓ 1595
110 Electronic Alarm Projects R in Murstun $£ 3.45$
110 Semiconductor Projects for the Home Constructor a m Marston E3. 25
110 Integrated Circuit Projects for the Home Constructor k w Murbior E3. 25
110 Thyristor Projects Using SCRs R \$ Maratom $£ 295$
Handbook of IC Circuit Projects Ahhe E2. 30

-TV AND HI-FI

Audio Handbook c. kime £6 50
Cassette Tape Recorders I Lull 55.25
Solid State Colour TV Circuits is A widing $£ 6.35$
Hi-Fi Loudspeakers and Enclosures fithen £8. 20
How To Build Speaker Enclosures Hatmanll E .10
Master Hi-Fi Installation kink $\mathbf{E} 280$

LOGIC

Logic Design Projects Using Standard ICs : "herrv £5. 10
Practical Digital Design Using ICs furcementio $£ 1.50$
Designing With TTL Intergrated Circuits Teval
How To Use IC Circuit Logic Elements , -1-at- £3. 65
110 COSMOS Digital IC Projects for the Home Constructor a \& watsun $£ 3.20$
Understanding CMOS Integrated Circuits: woto $£ 3.90$
Digital Electronic Circuits and Systems ran wern $£ 3.50$
MOS DIGITAL ICs 6 , thnn E4, 60

COMPUTING

Microprocessors Miccivnn £8.40
Introduction to Microprocessors A -plan $£ 5.90$
Modem Guide to Digital Logic (Processors, Memories and Interfaces) £4. 30

OP-AMPS

[^1]
SERVICE

TEST INSTRUMENTS

The Oscilloscope In Use sinclar £3.10
Test Instruments for Electronics M culford $£ 2.40$
Working With the Oscilloscope A Suluders $£ 195$
Servicing With the Oscilloscope G King $£ 5.60$
Radio Television and Audio Test lnstruments kink $£ 5.90$

SERVICING

Electronic Fault Diagnosis sinckur $£ 3.20$
Rapid Servicing of Transistor Equipment (o kin» $£ 2.95$
Tape Recorder servicing Manual (iardner Vol 1: 1968-70 E8.50
Vol 2: 1971-74 E8.50
FM Radio Servicing Handbook kinn $£ 480$
Basic Electronic Test Procedures I M Guthel $£ 2.45$

COMMUNICATIONS

Communication Systems Intro To Signals \& Noise e Carime £7.50 Digital Signal Processing Theory \& Applications \& R Rabiner £23.80 Electronic Communication Systems i kenneds $£ 8.50$
Frequency Synthesis. Theory \& Design Mannatsewitoch $£ 20.40$ Principles of Communication Systems bi Taub $£ 810$

THEORY

Introduction to Digital Filtering e.menter £9.40 Transistor Circuit Design Texas Instrumenč £9.35 Essential Formulae for Electrical and Electronic Engineers * M Murm £1.65 Modern Electronic Maths culfurd $£ 6.70$
Semiconductor Circuit Elements I D liwer $£ 6.40$ Foundations of Wireless Electronics м с. Scroние £4.45 Colour Television Theory Hudur E6. 20

REFERENC E

Transistor Tabelle (Includes physica! dimensions) £4.10 Electronic Engineers Reference Book (Ed. 4) L W Turncre $\mathbf{E} 27.70$ Solid State Circuit Guide Book b ward $£ 2,25$
Electronic Components M A Colwell $£ 2.45$
Electronic Diagrams u a colwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits Gondman $£ 2.30$
Intemational Transistor Selector \subset D Thwers $\mathbf{E 5} .25$
international FET Selector 1 1) rowers $£ 435$
Popular Valve/Transistor Substitution Guide $£ 2.25$
Radio Valve and Semiconductor Data A M B $\cdot \| \ell 2.60$
Master Transistor/Integrated Circuit Substitution Handbook E5. 60
World Radio TV Handbook 1978 (Station Directory) E8.00
Radio, TV and Audio Technical Reference Amus E24.85
TV' Technicians Bench Manual (New Ed.) Wilding £5.10

MISCELLANEOUS

Integrated Electronics । miman £7.70
Microelectronics Hu! mourh $£ 390$
Practical Solid State DC Supplies T. D thanc- $£ 6.20$
Practical Triac SCR Projects for the Experimenter R tme E2.25 Practical Circuit Assembly listos $6=$ E2.45

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.

Wilmslow Audio

THE firm for speakers!

Send 15 p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

> ATC AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL
> COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS HELME I.MF ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SK9 1HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

BONA FIDE UK TRADERS ONLY!

A Fast and Easy Profit Message from Lektrokit
For hobbyists and home project constructors, Lektrokit have put together the most comprehensive range of breadboarding and testing devices on earth For you, Lektrokit have display racks, window stickers and catalogues to help you sell the entire range-faster and easier. For you, too, Lektrokit will be advertising to hobbyists and home project construct ors continuously - telling them about the Lektrokit products that you supply If, of course, you have the stocks. And that's up to you.
Launch dates for Lektrokit's exciting new range are November 21-25-at
BREADBOARD 1978 - but you can get in on it NOW! Just use the coupon.

VENUS PROBE

Venus, the shrouded planet of Edgar Rice Burroughs and Ray Bradbury, has fascinated men and telescopes for many decades. It was the favourite choice to house monsters and the scientists' choice for life of a more mundane type. Conditions are not that favourable, however, but are still interesting enough to warrant the launch of the Multiprobe which should tidy up some of the mysteries remaining.

THE TWO Pioneer spacecraft should reach Venus around the end of this year, being sceduled to rach orbit on the 4th December. One of these probes, known as the Orbiter', will circle the plant for at least one Venusian year. It will collect data on the upper atmosphere of the planet (including field strengths and the types of particle present) and will also record events occuring on a global scale on or around the planet over a fairly long period of time.

The other spacecraft will consist of a transporting vehicle, known as a 'Bus', which will convey one large probe and three small probes to Venus. All five parts of this spacecraft will enter the Venusian atmosphere at widely separated points and will transmist data back to earth. The four probes will fall to the surface of the planet and should provide much information about the lower atmosphere at four widely separated points.

Although Venus is our closest planetary neighbour, it is always covered in very thick cloud; our knowledge of this planet is therefore very limited, especially as regards its lower atmosphere. The early probes have shown that Venus has a high surface temperature and an atmospheric pressure nearly one hundred times that of the earth, but a great deal of work remains to be carried out. It is expected that the two Pioneer spacecraft will increase our knowledge of this planet by a factor of about ten. They will also greatly increase our knowledge of the solar system and are expected to provide much information which will add to our theories about the origin of the earth.

Pioneering Spirit

The Pioneer missions were conceived as long ago as 1970 as a result of recommendations made by the Space Science Board of the US National Academy of

Sciences who decided that there is a need for relatively low cost orbiter and probe landing systems for Venus investigations. Overall responsibility and control of the mission has been given to the National Aeronatuic and Space Administration (NASA) Research Centre at Moffett Field, California

The Hughes Aircraft Company gained a contract to manufacture both space vehicles for the Pioneer mission in February 1974 after a series of competitions which started in 1972. The scientific instrument payloads were selected in June 1974, thirty instruments being included on the list. The spacecraft will be launched on top of Atals SLV-3D Centaur D-1AR rockets from Cape Canaveral, Florida. The vehicle tracking, command signal transmission and data reception will be carried out by the established US Deep Space Network stations in California, Spain and Australia.

The Multiprobe Mission

The Bus, the large probe and each of the small probes include payloads of scientific instruments. The Bus will be destroyed by burn-up in the Venusian atmosphere after its two instruments have transmitted data back to earth. It is, perhaps, somewhat surprising that work on the atmosphere and weather on Venus is expected to teach us more about the weather on earth.

The multiprobe vehicle is a circular, spin-stabilised craft with an array of solar cells around its exterior. The large probe will examine the atmosphere surrounding the planet, measuring the clouds, the atmospheric composition, etc. The three identical small probes will separate and enter the atmosphere some 7.000 miles apart two of them on the dark (night) side. They will collect information on the general circulation of the lower atmosphere.

Structure

The structure of the multiprobe unit is shown in the exploded view of Fig. 2. The cylidrical solar panel is 2.54 m (100 inches) in diameter and 1.22 m in length. The equipment shelf if 2.47 m in diamter, the electronic units and the scientific instruments being mounted on this shelf

The large probe is at the centre of the spacecraft on an inverted conical structure, whilst the three small probes are symetrically placed around the main probe. Each probe is fixed by spring loaded clamps which can be released (pyrotechnically) about 20 days before the craft arrives at Venus so that the five sections move independently.

The probe weight, including the interfacing connection with the launching vehicle, is designed to be 920 kg . Great care has been taken in the thermal design of the craft to ensure that the temperature is kept between suitable limits; heaters and thermal blankets are included and appropriate materials with suitable thermal properties are used.

The control system employs a sun sensor and a solid state sensor which can detect the radiation from 24 stars. The vehicle contains two tanks which will be filled with 32 kg of liquid hydrazine propellant. When this liquid is allowed to pass into a chamber containing a suitable catalyst, it decomposes into nitrogen and provides a thrust of about 0.5 kg as a jet for controlling the spacecraft's trajectory, attitude and spin rate.

The power for the spacecraft is obtained from the cylindrical array of solar cells which has an area of just over 6 square metres. This provides 228 W when the
spacecraft is near the earth, but extra power can be obtained for a limited time from two 7.5A-hr nickelcadmium batteries. The solar cells and batteries provide a 28 V supply; overload protection and undervoltage detection circuits are included in the power supply system.

Command signals are transmitted from the Deep Space Network ground stations to the Bus at 4 bits/ second using pulse code modulation or frequency shift keying. The electronic on-board equipment can store command instructions for execution at some later time. Six command output modules on the equipment shelf can distribute 384 pulse commands and 12 quantitative (or analogue) commands to scientific instruments and to the spacefraft units. Commands from the earth stations modulated onto a 2115 MHz carrier wave are received by the spacecraft transponders.

Data for transmission to the ground is convolutionally encoded, assembled into 8 bit words in a 64 -word frame and modulated into a data stream. Eight data input modules on the equipment shelf can receive the signals and establish up to 253 data channels with the telemetry processor for transmission to earth.

The data is transmitted on a 2300 MHz beam at a power of 10 or 20 W using one of three antennas and a data rate of between 8 and 2048 bits/second. The antennas comprise two omnidirectional types (forward and aft) to provide spherical coverage at both the transmit and receive frequencies together with a medium gain horn antenna at the aft end of the craft.

Fig. 4. An exploded view of the Orbiter spacecraft

To Boldly Go .. .

The launching vehicle will place the multiprobe spacecraft into an earth parking orbit about 167 km above the earth where it will remain for 18 to 23 minutes before adopting the interplanetary trajectory shown. The spacecraft will initially be spinning at 5 RPM, but it is expected that contact with the ground station at Canberra will occur within four hours from launch and the rate of revolution will then be increased to 15 RPM by a command from the ground.

During the passage of the spacecraft towards Venus, the forward antenna will be employed to communicate with the 26 metre diameter dish aerials of the Deep Space Nwtwork. A velocity correctin of up to $12 \mathrm{~m} / \mathrm{s}$ can be made five days after launch and further corrections at 20 days after launch, etc. Command signals for these corrections will be transmitted from one of the huge 64 metre diameter earth station aerials.

The large probe will be separated from the Bus about 24 days befora arrival at Venus. The spacecraft axis will then be precessed so that the medium gain horn can be used for earth communication. A velocity correction of $5.1 \mathrm{~m} / \mathrm{s}$ will be made to achieve the required small probe trajectory and the three small probes will be released about 20 days before reaching Venus. The spin rate will have been previously increased to 48.5 RPM so as to provide a suitable tangential velocity at separation for the small probes to acquire the desired trajectory.

The velocity of the Bus will be corrected 18 days before its arrival at Venus to achieve the desired arrival point and to delay its arrival by 90 minutes so that all of the probes will have impacted on the surface of the planet by the time the Bus arrives in the upper atmosphere. Burn-up will occur at some 120 km above the planet.

All five vehicles will enter the atmosphere in a two hour period and all will be transmitting simultaneously, so the time of entry will be arranged to be one at which two of the Deep Space Network stations can simultaneously receive signals to avoid possible loss of data.

Large Probe Mission

The large probe is to be aimed at a point on the daylight side of Venus, decelerations of up to 400 g being possible at times during entry. The large probe parachute opens at a height of 67 km and for the next 18 minutes the probe descends under the stabilising influence of the parachute to a height of 46 km at which point the parachute is jettisoned. The probe then falls to the surface of the planet over a period of some 38 minutes.

The probe is not required to survive impact with the surface of the planet, but will withstand the pressure and temperature at the surface. This requirement together with the requirement that the probe can withstand the fierce acceleration presents many design problems unique to this mission.

Fig. 6. The interior of the large probe

The large probe and its deceleration module have a total weight of some 316.6 kg . The deceleration module provides thermal protection during atmospheric entry; it consists of a pointed nose cone of 45 angle with a diameter of 1.42 m . The base of the probe is thermally protected by a coated fibreglass aft cover.

The dacron main parachute has a diameter of nearly 5 m and is deployed by a much smaller pilot chute 0.76 m in diameter ejected by a mortar. The pull of the parachute extracts the pressure vessel module from the deceleration module.

Pressure Vessel

This vessel contains nitrogen at a pressure of between about 0.5 and 2 earth atmospheres, but can withstand an external pressure of about 100 atmospheres. The 73 cm diameter titanium pressure vessel is constructed in three pieces and is about 6 mm in thickness. There are 15 apertures and 7.6 m of sealing are required to prevent gas leaks at the high temperature of the Venusian surface. The thermal insulation ensures that the electronics and instruments inside this vessel remain at a temperature not greater than 50 C even when the external temperature reaches $480^{\circ} \mathrm{C}$.

A 19 cell 40 A-hr silver-zinc battery supplies power to the pressure vessel assembly. A total of 15 magnetic latching relays provide on/off control, whilst parallel fuses provide overload protection. Four solid state amplifiers, each rated at 10 W , feed a cross dipole antenna mounted on the rear of the pressure vessel which sends the data back to earth. A data rate of 128 or 256 bits $/ \mathrm{sec}$ in a convolutionally encoded format is used, the system being capable of providing 72 data channels and 2 minor frame formats in an 8-bit word, 64 word frame. A 3072 bit memory provides storage facilities during the entry communications blackout; this blackout will have a duration of about 10 seconds.

The entire sequence of 128 commands is predetermined and programmed prior to the multiprobe launch. A timer with a 24.27 day capacity and a stability of ± 32 seconds turns on the system prior to entry.

Fig. 7. The interior of a small probe

The seven scientific instruments in the large probe weigh a total of 35 kg and require 106 W for their operation. Three of these instruments require inlets for sampling the atmosphere and four require windows for viewing the atmosphere. All of the windows except one are made of sapphire, the exception being the window for the infra-red instruments which is a 13 carat diamond nearly 2 cm in diameter; diamond is the only material able to transmit infra-red in the 10 micron region and to withstand the temperature and pressure at the Venusian surface.

The Small Probes

The three identical small probes are designed to measure the characteristics of the Venusian atmosphere simultaneously at three widely different locations. They are designed to withstand the high temperature and pressure at the surface of the planet, but need not necessarily withstand the impact with the surface. During entry into the atmosphere at a speed of about $11.6 \mathrm{~km} / \mathrm{s}$, a deceleration as great as 5652 may be encountered. The time of descent to the aurface will be about 59 minutes.

Each small probe contains a pressure vessel and a deceleration module. The total weight is some 97 kg . Unlike the large probe, there is no parachute with each small probe and the deceleration module is not detached during descent. The cone of the deceleration module has a diameter of some 76 cm .

The small probe pressure vessels which contain the electronics and the instruments are designed to operate with an internal atmosphere of xenon at between 0.25 and 2 earth atmospheres pressure. These vessels consist of a two piece titanium shell of about 46 cm diameter.

The small probes are each powered by a battery containing 20 silver-zinc cells with an 11 A -hr rating. Each probe employs a single, solid state power amplifier rated at 10 W RF output; this amplifier feeds a crossed dipole antenna mounted on the rear of the pressure shell. A stable oscillator maintains the S-band downlink frequency to 1 part in 10^{9}. The data rate used from the small probe to earth is 16 or 64 bits/second, whilst a

Fig. 8. A small probe

3072 bit memory is used for storage during entry blackout and when the bit rate is being changed. A $2 \div 27$ day timer turns on the system prior to entry into the Venusian atmosphere.

The 64 bit/second data rate is used initially, but at an altitude of some 30 km above the surface the data rate is reduced to $16 \mathrm{bit} / \mathrm{second}$ to allow for the attenuation of the radio frequency signal as it passes through the senser parts of the Venusian atmosphere.

[^2]
The Orbiter Mission

The main aim of the Orbiter mission is to put 12 scientific instruments in orbit around Venus and to receive informaiton from these instruments. It can be seen that the Orbiter spacecraft has much in common with the multiprobe vehicle, including a rather similar structure. Some of the most noticeable differences are the replacement of the probe structure by a high gain aerial system which can provide communication with the earth at distances of up to $250,000,000 \mathrm{~km}$. A 4.5 m long magnetometer boom is also used in the Orbiter craft.

The size of the Orbiter spacecraft is similar to that of the multiprobe craft. The diameter of the cylinder of solar cells is the same 2.54 m , but the surface area of the cells is greater, being almost $7.2 \mathrm{~m}^{2}$. The Orbiter is lighter than the multiprobe unit, being just under 600 kg and only 372 kg in orbit.

The slightly large solar cell area of the Orbiter provides a little more power than in the case of the Multiprobe Bus, this power being about 325 W in Venus orbit. Two 7.5 A-hr nickel cadmium batteris are also incorporated in the Orbiter spacecraft.

A bearing and power transfer assembly (BAPTA) serves an electrical and mechanical interface between the spinning part of the spacecraft and the despun aerial which must always point towards the earth. As in the case of the multiprobe Bus, 32 kg of liquid Hydrazine propellant is carried in two tanks and can drive seven jets, each with a thrust of about 0.5 kg , for the control of the trajectory, attitude and spin rate.

A solid propellant rocket motor, the Thiokol TEM 604 , is to be used to place the Orbiter in Venus orbit. It has a velocity change capability of $1060.6 \mathrm{~m} / \mathrm{s}$ for the maximum design weight.

Conclusion on Cost

A special feature of the Pioneer missions is the relatively low cost for such an ambitious programme. In order to reduce the cost, no experimental prototype craft have been built - only the one multiprobe and the one orbiter will be made, tested and orbited. Economies have also been made by using the same type of components (such as the RF amplifiers) in the Bus, Orbiter and in the probes. Identical command and data handling circuits are used in all of the probes, whilst about 78% of the Bus and Orbiter parts are identical. The cost of developing the probes themselves has been relatively high, since they involve new techniques, whilst special facilities have had to be developed to simulate the hostile Venus atmosphere.

It seems likely that craft similar to the Pioneer type will be useful for relatively economical missions to Mars

- Genuine 5 silicon transistor circuit. does not need a transistor radio tc perate
- Incorporates unique varicap tuning for extra stability.
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone operation (both supplied).
- Britain's best selling metal locator kit. 4,000 already sold.
- Kit can be built in two hours using only soldering iron. screwdriver. pliers and side-cutters.
- Excellent sensitivity and stability Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete after sales service

Weighs only 2zoz; handle knocks down to $17^{\prime \prime}$ for transport.
Send stamped, self-addressed envelope for literature.

Complete kit
 with pre-built

search coil
$£ 15.95$
Plus $£ 1.20$ P\&P
Plus £1.37 VAT (8\%)
Built, tested and
Guaranteed
$£ 20.95$
Plus $£ 1.20$ P\&P
Plus $£ 1.77$ VAT (8%)
MINIKITS ELECTRONICS, 6d Cleveland Road, South Woodford, LONDON E18 2AN
(Mail order only)

Prices are each, net \& excludeV.A.T.

Experimentor Series

EXP300 (6×2.1 in., 5×94 terminals \& 2 bus strips)
£5.75
EXP350 (3.5×2.1 in., 5×46 terminals $\times 2$ bus strips)
$£ 3.16$
EXP600 (6×2.4 in., 5×94 terminals $\times 2$ bus strips)
£6.30
EXP650 ($3.6 \times 2.4 \mathrm{in} ., 5 \times 46$ terminals $\times 2$ bus strips)
£3.60
EXP4B (6×4 in., 2 bus strips only) $£ 2.30$
Quick Test Series
OT 59 S (6.5×6.2 in., 118 terminals) £7. 20
QT-47S ($5.3 \times 5 \mathrm{in} ., 94$ terminals)
£5.75
QT-35S ($4.1 \times 3.8 \mathrm{in}$., 70 terminals)
QT-18S ($2.4 \times 2.1 \mathrm{in}$., 36 terminals)
QT-12S ($1.8 \times 1.5 \mathrm{in}$, 24 terminals)
QT-8S (1.4×1.1 in., 16 terminals)
OT-7S (1.3×1 in., 14 terminals)
QT-59B (6.5×6.2 in., 20 terminals)
AT-47B (5.3×5 in., 16 terminals)
QT-35B (4.1×3.8 in., 12 terminals)
Protoboard Series
PB-6 (630 tie points, 4 binding posts, 4×14 DIL capacity)
PB-100 (760 tie points, 2 binding
posts, 10×14 DIL capacity) $£ 11.80$
PB-101 (940 tie points, 1 binding post, 10×14 DIL capacity) £17.20
PB-102 (1240 tie points, 1 binding post, 12×14 DIL capacity) £22.95
PB-103 (2250 tie points, 4 binding posts, 24×14 DIL capacity) £34.45
PB-104 (3060 tie points, 4 binding posts, 32×14 DIL capacity) £45.95
PB-203 (2250 tie points, 4 binding posts, 24×14 DIL capacity built-in regulated 5 V d.c. power unit)
£55.15
PB-203AlAs PB-203 with 5V and 15 V d.c. power supply)
£74.70
Design Mate Instruments
DM-1 £45.95 DM-2 £57.45 DM-3 £57.45
DM-4 $£ 74.70$
IC Test Clips
PC-14 (14-pin) £2.60 PC-16 (16-pin) $£ 2.75$
PC-24(24-pin) £4.90
PC-40 (40-pin) $£ 7.90$
Logic Probes
Hand held logic probes,
TTL/DTL/CMOS compatible,
from
£18 to £49 00
Logic Monitors for
CMOS, HTL, DTL, TTL \& RTL
LM-1 Self-power clip-on logic

monitor
 £28.70

LM-2 As LM-1, with fully isolated
power supply
£68.95

[^3]
Now, from the breadboard specialistseven better boards!

Experimentor Series. Low-cost, interlocking,
solderless breadboard the world's first for 0.3 in . and 0.6 in. pitch DIPs.

3The Protoboard Series. Solderless breadboards with built-in 10\% regulated $5 \mathrm{Vd} . c .1 \mathrm{~A}$ power supply; 2,250 solderless tie points; and capacity for DIPs of 14 to 40 pins.

I

Since the appearance of the first breadboards back in the ' 40 's, we've really been going places. (The U.K., for one.) So we now have an exceptional range of prototyping products which are outstanding in their simplicity, versatility and reliability. Just see. (And for prices and specs., eyes left!)

Take a look at our low, low prices and quality specs., and get aboard! (Or if its data you're after, pick up the phone or drop us a line.)
For the best, from the specialists in breadboards.
 in

Quick Test Series.
Low-cost, snap-locking solderless circuit boards for fast design with discrete components.

5IIC Test Clips. Ultra-low cost IC clips in $14,16,24$ and 40 pin versions.
And, much more too logic monitors, probes, frequency counters and test equipment to ensure the best, fastest results from your design.

[^4]Please supply
vame \qquad Address
\qquad for $£$ \qquad is enclosed
M. Access/American Express/Barclaycard no. is

TELEVISION

Last month we described the operation of the Tolinka chess recorder - this month we deal with construction.

LAST MONTH WE described the overall principles of the Tolinka Chess Recorder and in this final part of the project we shall describe the circuit from the hardware viewpoint and go on to give constructional details.
First inspect the board on both sides to see if any of the holes have been blocked by tinning. The easy way to clear such holes is to melt the solder and apply the sharp point of a pencil Wipe the iron frequently on a damp sponge or cloth to avoid solder splashes

A Small Step

The first step in construction is to make the through board links support the board 4 mm approximately away from the bench surface by putting bolts in the corner holes. The side without the IC pads should be uppermost. Each of the small round pads which has a counterpart on the opposite side of the board is a pin-through whereby connection must be made through the board. A piece of wire must be inserted into each of these holes and soldered on both sides of the board

The board should now be cleaned of flux with a cleaning agent and inspected against a strong light. Look for missed pin-throughs, solder bridges and lifted tracks checking with a continuity meter any suspected opens or shorts. Spend a lot of time at this stage because this is where faults are most likely to exist-it is possible for another observer to find obvious faults on a board which has passed a lengthy examination

The ICs are inspected next.

Socket It To Me

Use the socket strip provided for any IC with more than 16 pins. The best way of socketing an IC is to push the pins into the socket strip and then trim off the surplus strip. Do not break off the pin carrier part of the strip until you are ready to switch on the power. This will keep the IC pins shorted together during the soldering
and assembly process. If desired socket strip or sockets may be used for the other ICs-and this is a wise precaution.

It is recommended that components be installed in the following sequence-first all discrete parts like resistors, capacitors and diodes; next integrated circuits and last the larger power supply capacitors and voltage regulators. Switches need not be installed until preliminary tests are completed and installation of the PCB behind the front panel has been carried out. The panel then forms a template which aligns the switches correctly

Remember that the space above the board is limited and solder any bulky components beneath the board: this is certainly necessary for the power supply electrolytics. Leave the output pins of the voltage regulators unsoldered so that supplies may be checked without damage to the circuitry. Note that the power supply components are soldered directly to the tracks on the top of the board and only the wires of the electrolytics pass upwards from the underside of the board through holes. All voltage regulators are 'face down', the main 5 volt supply regulator being bolted to an area of circuit board which acts as a heat sink.

Testing Time

Turn on the mains and test power supply voltages before soldering the regulator output pins down to the supply rails. Remove all ICs from their sockets and break off the pin carriers. Test voltages on supply rails again with the rails connected-do not of course fail to switch off the mains between tests. If all is well then instal the ICs and check the rails again.

Tune the TV set to receive a picture. There will be more than one picture available in the tuning range
and the best one should be found. If the picture has chessmen set up for the start of a game and move status information is correct then the printed circuit board may be installed beneath the lid of the box with the nuts, bolts and spacers provided and the keyboard switches soldered in place. If the device now functions correctly then attention may be turned to the cassette interface

In an ideal world you could buy audio equipment which had standard sockets using standard signal levels at a standard impedence. This you could connect together with standard leads. The manufacturers of our world do not see things that way, however, and they make equipment with sockets, signal levels and impedances which are different from those of their rivals.

It will therefore be up to you, to decide upon these things as far as your own tape recorder is concerned You might become involved in designing an attenuator to get things working properly. If you do not know how to do this and do not feel confident after reading the general remarks which follow, perhaps you really ought to be playing at something else

The Ins and Outs

Outputs vary from millivolt level for a 5 pin DIN socket, but could be only available on a microphone input and earphone output. If inserting a plug into the socket cuts out the internal speaker the cutout switch should be disabled-try bridging it with a 33 ohm resistor. It is essential to hear the data and commentary.
(Input/ Output can be the same pin)
It may be that volume and tone controls have an effect on the output signal but this is not usual

Inputs vary from millivolt level for a dynamic mike to a high level-sometimes marked AUX. The high level input should be used if

CHESS PART 2

available. The signal must be attenuated for a low level input to avoid overloading. Most recorders have Automatic Volume Control and this helps. The output from Tolinka is bursts of 3.9 khz at the data rate, which is 300 baud-or 150 Hz maximum. Every high bit generates 12 cycles aapproximately of the carrier. The main source of interference may be regarded as being the data rate itself and some sort of high pass filter is needed at the input and output to remove it. Attenutation may also be required to match the recorder's input characteristics. A series capacitor followed by a shunt resistor will perform both these functions and in some cases even the shunt resistor is not required-it depends upon the recorder's input impedance.

If an oscilloscope is available the recorder's output may be observed and should consist of clean bursts of 3.9 kHz separated by level blank intervals. If the signal swings up and down with the data the recorder is receiving too much signal and the shunt resistor should be reduced until this effect disappears. This process should not be carried to the point where the output level is reduced.

If in doubt use the following rules of thumb:
a) Put a 10 k pot between the output and ground, taking the signal from the slider. Reduce the input level until the sound loses volume on Diayback.
3. Take the output from the earphone or headphone socket. This will almost certainly cut out the ecorder's internal speaker, but the switch should be easy to find and zrdge with a 33 ohm resistor as described earlier. Adjust volume on zlayback to obtain satisfactory RECALL function. Note setting of zoth controls and check this setting acth time.

Photograph of the circuit board taken during construction. The switches are not fitted until the board is ready to be mounted in the case - Initial testing being done without them in position.

One of the exclamations often heard at a Chess Congress is 'J'Adoube' which is not a Russian four-ietter-word but a polite way of informing one's opponent that a piece is not situated in the centre of the square it is supposed to be occupying;-and this fact is bugging the exclaimer who intends to adjust it but does not wish to be committed to moving it subsequently according to the rules of the game

Tolinka has provision for moving
the pieces into the exact centre of their squares the 'J' ADOUBE' capacitor. This component (C5) loads one of the outputs of a binary counter introducing a propagation delay which is passed down the divider chain. The value mentioned in the parts list is satisfactory for all but the most neurotic. In order that centralization may be optimized provision has also been made to fit a resistor for fine adjustment which will explain two of those redundant holes

Fig. 1 Main circuit diagram of the Tolinka.

IC2 is National Semiconductor's SC/MP II Its Program memory is stored in a 2708 type EPROM (1024 bytes). The character generator PROM (IC22) is a $74 \mathrm{~S} 471,256 \times 8$ in structure. The RAM chips are 2111 s , two (IC10 and 11) for game memory and one (IC14) for on-screen information. (There are 8 bits in game memory but only 4 in screen memory.) Top locations in game RAM are used as temporary stores for other information and this restricts the number of moves per player to 62 instead of 64 (four bytes are required to store a move).

Screen RAM is normally addressed by the VDU divider chain's outputs but the MPU must be able to address the screen as well to move the pieces around and change the status information. The address lines are multiplexed through a pair of CMOS And/Or gates (IC 12 and 13). The vertical blanking signal is wired to a sense line of the MPU so that the MPU does not access the screen during the VIDEO INTERVAL which would produce annoying flicker.

The three lowest address lines of the MPU are connected to inverter gates (ICXX) which matrix the keyswitches in a three by four arrangement. Pressing any switch connects an inverted address line signal to one of four inputs of a tri-state buffer normally held high by a resistor (R18-21) to Vcc. When the buffer is selected the inverted address line may be read as data and the switch identified with a unique code by a process already described in the Software: How it Works

Generation of a Video Signal

All frequencies used are derived from a single MASTER CLOCK which is the MPU's own on-chip oscillator. An L/C combination sets the frequency to 1.92 MHz which defines the shortest horizontal change interval on screen at about half a microsecond. The MASTER CLOCK is divided by ten (IC4a) to give the FILE interval. Eight FILES form the visible board but the FILE interval is divided by twelve in a four-stage binary counter. The A. B \& C outputs of this counter are the LETTER addresses, the D output being the LINE BLANKING interval. Thus two-thirds of linescan are the chessboard.
During LINE BLANKING a R/C monostable (C18, R14) supplies the LINE SYNC pulse. Further division of the line interval by 32 gives the RANK interval which is taken from the $\overline{5}$ th stage of a binary ripple counter (IC5): the 2nd, 3rd, 4 th \& 5th outputs of this counter being the address lines to the character generator PROM. This PROM supplies the horizontal piece information as eight outputs in parallel and changes this information every other line. The 6th, 7th \& 8th outputs of the ripple counter are the FIGURE addresses. The 9 th output is the FIELD BLANKING pulse which is 'Anded' with the 7 th stage to reset the counter after 320 counts. 256 counts, or lines, are visible as the chessboard. During FIELD BLANKING monostable (C7, R13) supplies the FIELD SYNC pulse.

LINE BLANKING is also connected to the character generator PROM to select Status Figures presentation instead of chess pieces The same LINE BLANKING signal also permits the 4th output of the Board RAM, which contains the COLOUR BIT during the Chessboard interval, to address the character generator PROM instead of the 2nd output of the vertical binary ripple counter. (The COLOUR BIT is normally 'Exclusive-Or'd with the pieces during the Chess board interval to control their colour.) This is because the larger character set of Status Figures symbols are required thaChesspieces - and loss of vertical resolution (cut by half) is the price which must be paid.

The eight parallel outputs of the charact-generator PROM are converted to a ser: data stream in the Video Shift Regista (IC21), driven by the MASTER CLOCK $a=$ loaded by the FILE signal.
SQUARE COLOUR is derived from RAN: and FILE by Exclusive-Or function. SQUARE COLOUR, LINE BLANKING and COLOU BIT are aligned with SERIAL VIDEO by a type Flip Flop clocked by FILE.
LINE SYNC and FIELD SYNC are als passed through an Exclusive OR gate to for MIXED SYNC.
SERIAL VIDEO is combined with COL OUR BIT, LINE BLANKING, FIELD BL KING, etc, to form two mutually exclusi $=$ signals WHITING and BLACKING.

Fig. 2 The Tolinka's power supply is a straightforward design based on three monolithic regulators.

The photograph right shows how the power supply capacitors are mounted beneath the board and the wire link. Note that this photo was taken before the board was complete and not all components are in position.

A complete kit of parts for this project will be available only from Videotime Products, 56 Queens Road, Basingstoke, Hants, RG21 1REA for the all inclusive price of $£ 109.50$.

Individual parts are also to be made available but Videotime will offer help, advice and a repair service only to readers who purchase the complete kit. Note also that software, piece design PCB pattern, etc, are subject to copyright.

HOW IT WORKS

Forming a Video Composite

The video signal is formed by combining SINC. SQUARE COLOUR, WHITING and BLACKING at a summing point. SYNC is connected to Q2 which clamps the summing point (junction of R10, 12 and 15) to ground when SYNC is high. BLACKING is a tegative going signal connected to the sumTig point through diode D4: when ZLACKING is low the summing point is thamped a diode drop above ground. WHITING pulls the summing point up \#wards the positive rail through resistor FIA. SQUARE COLOUR is connected to the $3 u$ ming point through a higher value resisIIR R1 and supplies two shades of grey when mo other signal is present.

The signal is attenuated and passed trough an emitter-follower to form a low mpedance standard form video signal of veroximately 1 volt peak to peak. This aryiz is used to drive a UHF modulator.

- $-=$ reason that the SERIAL VIDEO outpur of IC21 is passed through a couple of mate inverter gates is to equalize propaga-$t-r$ delays. Otherwise the black pieces have - inite edges.

Cssette Interface

Trix -mited bandwidth available in audio asecte recording equipment does not permit serial data to be recorded directly. Some Fimp of modulation is required.

In Tolinka data is recorded as bursts of a single frequency. On playback other frequencies can be filtered out and the demodulation process performed with a diode.

Three CMOS gates are used as the Modem in the final design. Any CMOS inverter will operate as a linear amplifier if a resistor is used between input and output. In this con dition it may be regarded as an Op-Amp which has its non-inverting input connected to ground. A limited voltage gain of about 60 is available. The output data comes from the serial output port of the MPU and is combined with a signal of 3.9 KHz from the VDU divider in an AND gate. This supplies bursts of 3.9 KHz at data rate which can be recorded on tape.

The recovered signal is filtered by a CMOS inverter configured as a high pass filter. This rejects low frequencies at data rate and in the speech band. The output of this inverter which consists of high amplitude bursts of 3.9 KHz , is connected to the cathode of D5. The anode of D5 is taken to the input of another inverter and a low pass filter, consisting of a resistor (R26) to the positive rail and a capacitor (C12) to ground. Gates in the same package have similar transistion points - so when there is no input the output remains at ground level. If 3.9 KHz oscillations are present at the input the output is high. The demodulated transmission is fed to the MPU's serial input.

Power-on Reset

The MPU has a Reset input which clears all internal registers and restarts operations with the first instruction after it has been brought low for a specific interval of time. This function occurs when Tolinka is first switched-on and is not required again by the user.

At first sight this circuit seems to be overdesigned. In fact correct initiation of proceedings is vital and reliability suffers if any of the components are omitted. The diode connected across the charging resistor ensures that the capacitor will discharge if the power is interrupted only briefly.

ROM Select Diodes

The ROM occupies the first kilobyte of addressing space and it would seem logical to connect its Chip Select input directly to A10 because no write instructions will be made in this area. Conflict would still take place because the MPU outputs data on the bus at the start of the instruction fetch operation this data consists of flags and upper address bits and none of it is used by Tolinka. The conflict would be harmless but for the fact that a Video Signal is being produced and processed at the same clock rate as the MPU which produces a faint pattern on screen if the Chip Select diodes are omitted.

PARTS LIST

‘TOLINKA' CHESS REPORTER -FULL KIT OF PARTS

SOVER
 GAMES

‘ATARI’ VIDEO COMPUTER
 - READY BUILT CARTRIDGE SYSTEM(ROM)

The original unit used in conjunction with the World Chess Championship at Manilla, August ' 78 , by both Chess Champion Viktor Korchnoi and BBC TV news.

Records every game step, auto en passant, queening and castling. Entire games may be recorded on most domestic cassette recorders. Based on 8060 Mk II Scamp. Full kit including all components - No extras required - £109.50*

Designed and built by Atari (part of Warner Comms) in the USA this unit is the mos
advanced centre available advanced centre available
Just look at a few of the cartridges (up to 50 games each) avallable in full glorious
multi-colour and very realistic mult-colour and very realistic on TV Sounds

Examples of some of the many
cartridges available Combat. Air cartridges available Combat, Air
Sea Battles, Space War Outlaw, Sea Battles, Space War, Outlaw,
Video Olympics, Surround Black. jack, Breakout, Basic Math.

The Video Computer (based on Signetics 2650) comes complete with 27 Game Combat Cartridge (tanks, bi-planes, bombers, jets) 2 pysticks. 2 rotational controllers. 21 due by early (79) mostly priced at $£ 14.95 * 9.95$

Full Colour Brochure available on request

BARGAIN TV GAMES KITS AND COMPONENTS

Stand Alone Kits

Kits - full instructions, all PCB components, Mini-kits - instructions, chip skt, coil, PCB

B\&W Tank Battle (AY-3-8710) kits minikits
B\&W Stunt Rider (AY-3-8765) \quad £15.90 \quad £9.75
B $\&$ W Road Race (AY-3.8603)
B \& W 10 Game B/B (AY-3.8610)
NEW $\begin{aligned} & \text { B\&W Submarine (AY-3-8605) } \\ & \text { B\&W Wipeout }\end{aligned}$ (AY $B \& W$ Wipeout (AY-3-8606)

Astec Modulators \& Encoders
UM1 263 Sound Osc
UM1111 E36 UHF Mod ..

UM1168 Pal Encoder
UM1163 Pal Enc + UHF Mod
European Equivalents available

Accessories

AB Joystick controls 200 k lin

	$\mathbf{£ 1 . 9 5}$
Crystal $4.4 \mathrm{Mhz}^{2}$	$\mathbf{£ 1 . 0 0}$
Crystal 3.57 Mhz	$\mathbf{£ 1 . 2 5}$
Oscillator coil $100 \mu \mathrm{H}$	$\mathbf{£ 0 . 4 5}$
Mains adaptor +150 mA 8 reg	
I/	

Mains adaptor +150 mA 8 v reg $£ 3.50$
$£ 15.90 \quad £ 9.95$
$£ 14.90 \quad £ 8.50$
$£ 13.90 \quad £ 8.50$
TBA TBA
$£ 14.90 \quad £ 8.50$
£ 4.95

* Frises riculuevat. pask

(Trade \& Export Enquiries welcome)

SWITCH IN LINE SAVES NONE?

Stan Curtis of Mission Electronics, author of our series on super-fi amp design is back with us again to explain the faults inherent in many widely used comparative hi-fi tests. In particular he has a few things to say about switching methods

A SIGNIFICANT RE-APPRAISAL of amplifier design has been seen in the past few years. The revival of serious listening tests (so called "subjective" testing) has shown that laboratory measurements alone are not sufficient to indicate the performance of the amplifier when it is connected to real loudspeakers and pick-up cartridges and fed with a music signal. But it is crucially important that these listening tests be set up with great care. When different amplifiers are compared their gains should be equalised so that their outputs are within 0.1 dB of each other and preferably within 0.05 dB

Such level changes could be incorrectly interpreted as differences in amplifier performance. The design of the passive attenuators is important to prevent any significant loading of the circuitry or any imbalancing of impedances which could upset passive filter roll-offs and so alter the frequency response of the system. Even the choice of test signal is important when setting levels. Traditionally a sine wave of 1 Hz or 400 Hz has been used. However, the author prefers to use a noise source fed via a bandwidth limiting filter (to prevent any error by the different frequency responses of the amplifiers) as this more realistically simulates the dynamic conditions

Care should also be taken in the interconnection of the different amplifiers. All connections should be as short as possible using very high quality and identical (in length and quality) cables. Wherever connections have to be made (other than at the amplifier or loudspeaker) high-quality gold-plated instrumentation connectors should be used in preference, to the rather suspect RCA Fhono and DIN Connectors.

Switch Your Contacts

The next problem area is that of switching. Switching the outputs of the different amplifiers to a loudspeaker can be done using high-current, high-conductivity lever of knife switches. Relays can cause problems unless they have very strong springs; good contact design; highcurrent capability; and are new. The subject of switch contacts is quite complex but can be summed up as follows. A metal to metal contact is rarely a true "short circuit.

An almost invisible layer of oxidation or contamination forms on the contacts. This oxidation increases the anntact resistance but more importantly forms a nonliear junction that can in some ways be considered to be a woltage dependent diode-rectifier. The effect on the

Above: equivalent circuit of a mechanical switch. As you can see it is far from simple! Left: a good linear contact involves breaking the metal surface.
music signal at low levels can be imagined and - more importantly - heard! Even "pure" gold contacts and "self-cleaning" contacts suffer from this problem. A good contact can only be achieved when one contact breaks the surface of, and penetrates, the other contact metal. However, only a limited number of switching actions can occur before the contact material is sufficiently worn or damaged for inconsistent performance. Although this problem is discussed here in relation to testing it has as much significance in the design of the switches used in the amplifier

When it comes to switching the output of the cartridges the imperfections of the switches have so much effect upon the audible quality of the signal that the listening test ceases to have any real validity.

Test point

The test itself needs further thought. The listening panel should be experienced listeners and yet not be part of a "clique" where views are remarkable for the way" they follow the "party line." Testing should be conducted over two or more sessions. Short sessions to perceive the performance of the amplifiers before aural fatigue sets in; and longer sessions with each individual amplifier to judge whether such fatigue is caused by the amplifier and to judge whether the apparent improvement it offered was a "flash in the pan.

STRAIGHT LINE TEST

Fig. 2. The straight wire test. First popularised by Peter Walker of Acoustical Manufacturing (or Quad!) this test method has gained wider acceptance of late. It has its faults however.

During the initial sessions a number of "check" changes should be made to detect cheating (deliberate or involuntary) i.e. running amplifier No. 3 a second time as amplifier No. 7. Between each piece of music the reference numbers should be changed to minimise the effects of pre-conception. For example; if amplifier No. 3 is disliked for its reproduction of a bass drum, it may then be subconciously disliked on other pieces of music. Of course the tests should as far as possible, be conducted blind

A popular "subjective" test in use is the "Straight Wire Test." In this test the amplifier under evaluation is fitted with an attenuator at the output and substituted for a straight wire. The resulting signal is fed to a
"reference" amplifier and loudspeakers of known performance. Such a test is of help in evaluating the dependence of the amplifier on the loading made by different loudspeakers. But otherwise this test must be considered suspect. The "reference" amplifier may be far from perfect and it may well mask subtle changes. The dynamic interactions of two units in series can be quite complex and very difficult to predict in advance.

The foregoing (brief and incomplete) discussion of subjective testing serves only to indicate the difficulties that can be encountered. The reader should only consider seriously those comparative reviews where considerable effort has been expended to eliminate errors due to equipment and human beings.

DOrAm SEE THE RANGE OF MULTIMETERS IN THE NEW DORAM HOBBIES CATALOGUE.

Doram Electronics Lto
PO Box TR8 Leeds LS12 2UF
Please send my FREE Hobbies Catalogue (AVAILABLE LATE SEPT: I enclose 25p contribution to p \& p.

Name
Address
DR1/AM
Doram Electronics Ltd
PO Box TR8. Leeds LS12 2UF
Overseas customers (except for N. Ireland) -60p
including despatch by Air (or all-up post)

ETI SPECIALS

$£ 2.50+25 p$ P\&P

aUdNo limiter flas gUT HOW
FIVE WATT STEREL
RADIO BREAKDOW DIGITAL VOLT MET MIXER TEMPERATUR

MiXER TEMPERATL
TRAIN CONTROLKR SRGAN.

Ight warning. LM380 circuits, temperature alarm, aerial matcher. UHF TV preamp. metal locator, four-input mixer. IC power supply, rumble filter, IC tester, ignition timing light, 50 W steren amp. plus many mare 3-This issue was so popular that it is now sold cout 4 -Includes
Sweet tixteen stereo amp. waa-waa, audio level meter expander compressor, car theft alarm. headligh eminder, dua--tracking power supply, audio millivolt meter temperature meter, intruder alarm, touch switch, push-hutton dimmer, exposure meter, photo timer, bendit bandit
-Twenty-twa complete projects, including
5 W stereo amp. stage mixer, disco mixer, touch organ audio limiter. infra-red intruder alarm. model train double dice reaction tester, headphone radio. STD timer power meter gen purpose power supply, logic tester down beacen digital voltmeter, universal timer, break emperature mina
5-just fublished includes
Graphic equaliser. 50-100 W amp. modules, active rossover. flash trigger, "star and dot" game, burglar generator audio-visual metronime, LED dice, skeet game, generator audio-visual metro
lie detector. disco light show.

$£ 1.00+25 p$ P\&P

Ni-Cad charger, loudhailer, 'scope calibrator, electronic

$75 p+25 p$ P\&P Compnsed entirety of new matenal, the edition covers
such diverse subjects as Star Wars and hi-fl! The
magazine containsprojects for everyone - none of which magazine contains projects for everyone - none of which have appeared in ETI - and a look at the future of MPUs

£3.00 + 25p P\&P

ETL The senes appeared a couple of years ago in the magazine. and was so highly thought of by the Universit. of New E-ngiand that they have re-published the serie

brcom lme sxalishers of
 ETI CIRCUITS No2

Each volume contains over 150 circuts manly drawn from the best of our Tech-Tips. The circuits are indexed which gives transistor an adsecs which give
Sales
Sales of this publication have been phenomenal - hardly surprising wh
volume costs
£1.50 + 25p P\&P

Our successful beginners series cane to an end some time ago now and the whole serles is avalable from us in the information presented in the series (sometimes in more detail') and together form an excellent starting pornt for anyone interssted in learning the art of electronics.
$1.20+25 \mathrm{P}$ P\&
splendidly for use as a standard textbook. Written by Peter Sydenham. M.E. Ph.D., M.Inst.M.C., F.1.I.C.A., this and deals with equipment and techniques not covered in any other book. Enquiries from educational authorities, unversities and colleges for bulk supply of this publication are welcomed, These should be addressed to H W Moorshead Editor

HOW TO ORDER

Postage and packing also refers to over seas. Send remittance in sterling only.

ETI Specials

ETI Magazine
25-27 Oxford Street
London W1R 1RF
Please mark the back of your cheque or PO with vour name and address.
Please supply me with the following ETI Specials:

Total cheque $/$ PO enclosed $=\boldsymbol{£}$
Address:
M
\qquad
\qquad
\qquad

computing today Nor

November

 78
more on TRITON

THE NEW MAGAZINE FOR SMALL SYSTEMS WITH BIG IDEAS

Hop on a Nasbus to 32K of memory now

The Nascom - 1 is designed with expansion in mind. This is made possible by using the best products available. The Z 80 microprocessor incorporated in the basic system is so powerful it can support 64 K bytes of memorv and 256 ports. To utilize this capability, we have designed the buffered 77 - way Nasbus.
With this arrangement, the way is clear for considerable expansion, starting with our new memory expansion board. It has 16 memory sockets and two EPROM sockets. Therefore, you can fill it with 4 K dynamic RAM up to a maximum 8 K or with 16 K dynamic RAM up to a maximum of 32 K . A 2 K Tiny BASIC in EPROM has been developed for the board.

To go with the board, we have produced a very flexible I.O board with three PIOs each giving two, 8bit ports, plus a UART for serial interface.

As you start building up your Nascom system you will need a convenient means of storing boards. Our new, custom-designed, Vero frame

UK National Distributors

Camera Centre,

Barrow-in-Furness, Cumbria
Crystal Electronics Torquay, Devon

Electrovalue,

Egham \& Manchester

Eley Electronics,

Glenfield, Leicester
Henry's Radio,
London W2

Lock Distribution,
Oldham, Lancs
Lynx Electronics, Chesham, Bucks
Microdigital,
Liverpool L2

Teleplay,

New Barnet, Herts

Please send me
...................... tickets to your seminar at $£ 4.50$ each and further details on Nascom-1 expansion products/Nascom-1 Kit/Int. Nascom Microcomputer Club.*

* delete as applicable

Nascom Microcomputers
92 Broad Street, Chesham, Bucks Tel: (02405) 75151
will allow for a Nascom - 1 to link through a buffer board to a 77-way Motherboard. There is then the option of eight or more expansion boards. To power this capability there is a new 8.5 amp power supply especially designed for the frame.

No other system offers so much at such a low cost. And it all starts with the basic Nascom 1 kit which for just $£ 197.50$ offers an intelligently usable system with video and cassette interface, a full alpha-numeric keyboard and a mighty CPU chip. So if you want the best - make it a Nascom system.

Nascom-1 Kit still only £197.50 +VAT

Stop press...

Microcomputer Seminar
Nascom Microcomputer's highly successful seminar is coming to Bristol. The programme will be similar to London and Manchester, both of which were sold out. The day includes five lectures, demonstrations and an open forum. Venue is the Dragonara Hotel, Bristol, Saturday, October 14th, 09.50 to 17.30 .

Admission: $£ 4.50$ (inc. VAT). Lunch will be available at $£ 4.00$ (inc. VAT) per head if there is sufficient demand.

Name

Address

Tel. No

Cut out coupon and post to Nascom Microcomputers. Cheques and PO's should be made payable to Nascom Microcomputers.

computing today

NO 1 november 1978

NASCOM 1 REVIEW BASIC EXPLAINED CUTS CARD TRITON IMPRESSIONS EAST COAST REPORT TRITON BASIC

MICROFILE

5
9
19 Colling all TRITON users
21 Important show for US
23 Try it on Triton
30 Gary Evans in training

EDITORIAL ADVERTISING PRODUCTION

Halvon W. Moorshead Ron Harris B.Sc Gary Evans Jim Perry
Phil Cohen B.Sc, William King
John Koblanski
Steve Ramsahadeo
Paul Edwards
Margaret Hewitt Andrew Scott
Kim Hamlin, Bren Goodwin
Tim Salmon, Val Tregidgo
Mark Strathern (Manager), Tom Moloney

INTRODUCTION

The first issue of any magazine is an exciting time certainly for the people working on the project and, hopefully, for the readers. Computing Today, although presented free with ETI, is just such a new magazine, which will have a style and identity of its own.
Computing Today will cover the fields of computing, from the home, education, and small business viewpoints. Computing to us will mean everything from the complete small business system, floppies and all, to a single bit micro in a control application.

The growth of small systems over the past few years has been astounding the reasons for this growth are many and varied - we won't go into them here - and it is our hope that the next few years will see this expansion maintained.
One of the reasons for launching Computing Today was the fact that it was no longer possible to devote erough space within ETI to cover this important area of small systems without sacrificing other features of ETI that are equally important to many of our seaders. ETI plus CT will allow us to keep everybody haopy.
Although this first issue of CT is only 32 pages, if the growth we mentioned is maintained, rest assured that CT will grow to keep pace.

This first issue of CT is published to coincide with the launch of the TRITON, an exciting new system for the hobbyist/education areas. CT has similar, equally =waiting projects in the pipeline and if you don't want ios miss out on important news and developments in Computing be sure to read us every month.

Airamco Ltd. MICRO COMPUTER PRODUCTS

Distributors for JADE COMPUTER PRODUCTS
All products brand new with full industrial specification

COMPUTER SYSTEMS LIMITED

The new low cost VDU - Tangerine 1648 (See page 16, ETI, Oct. 78 for feature details)

ORDERING INFORMATION

The normal KIT price is $\mathbf{£ 1 3 9 . 8 6}$, which includes postage, packing and insurance and VAT @ 8\%. HOWEVER, as an introductory gesture we are discounting this price by £10, for all orders received postmarked BEFORE 12 th December, 1978.
If you require further information, send an A4 sized self-addressed envelope. If you wish to purchase a kit please send a cheque or money order made payable to

TANGERINE COMPUTER SYSTEMS LIMITED

RIVERMILL LODGE, LONDON ROAD, ST. IVES, CAMBS. PE17 4BR
Tel. St. Ives (0480) 65666

N
 NASCOM 1

Z80 Microcomputer kit Undoubtedly the finest value for money kit available anywhere. Fully socketed

INTERFACE FOR:
TV (UHF)
TV Monitor
Cassette
Teletype
32k Ram expansion board
May be seen working
9 a.m. - 5 p.m. Mon.-Fri.
Callers welcome
Price £197.50 + VAT (8\%)

Callers welcome

STRATHAND
44 ST. ANDREW'S SO GLASGOW G1 5PL 041 -552 6731
Tel. order welcome with Access and Barclaycard

B-BUG
 SUPER SMART NEW MONITOR FOR NASCOM OWNERS

FEATURES INCLUDE:-FULLY COMPATIBLE with existing hardware/software; NEW TAPE I/O 4 TIMES FASTER with extensive error checking (see cassettes below); INTELLIGENT COPY command for program relocation; ARITHMETIC for address and offset calculation; HEX KEYBOARD function - throw away your ASCII tables!; SUPERSHIFT allows all displayable characters to be entered from the keyboard; FLAG DISPLAY shows the flags set - C, Z etc. when using the EXTENDED REGISTER DISPLAY which shows the IX, IY etc. registers as well; SUBROUTINES include:-PSEUDO RANDOM NUMBER GENERATOR; ASCII to PACKED BCD and vice-versa; VARIABLE INTERRUPTABLE DELAY; CHARACTER STRING OUTPUT; TABLE SEARCH; STRING OUTPUT; CURSOR MOVEMENT; AUTO-RUN facility allows a high-speed tape to be loaded and program executed with no operator intervention.
B.BUG is supplied in 2×2708 EPROMS which plug into your existing sockets. NO MODIFICATIONS NEEDED. Demand will be high and orders will be handled in strict rotation. Delivery currently ex-stock so ORDER NOW AND BE A 'B.B.'!

B-BLG in 2×2708 's only $£ 23.40$ including documentation

C10 DATA CASSETTES . . . 35 pence each (Nascom, Pet, TRS80, Apple, etc.).
Please add 30 p p\&p for orders under $£ 10$. VAT inclusive. E\&O.E. Dealer enquiries welcome
VIEWFAX LTD.
KING EDWARD BUILDING, CORPORATION STREET, BIRMINGHAM B4 6SE.

We take a look at one of the most advanced CPUs evaluation kits

The Nascom 1 Reviewed

THE NASCOM 1 Microcomputer kit was launched by Lynx Electronics at the Wembley Conference in November 1977. At that time, a sales figure of 500 kits was anticipated but it has been so popular that orders in excess of 10000 kits have now been received. A look at the main features of Nascom 1 will explain this success.

For $£ 197.50$, you get:
A Z-80 CPU,
an uncommitted PIO,
2 K of static RAM,
a powerful 1 K monitor (in a 2708 EPROM),
a TV modulator,
a full keyboard (assembled),
cassette or RS 232 interface (but not both at the same time),
an IM6402 UART,
a double-sided PCB with plated-through holes,
all other active and passive components, wire, solder and complete documentation.

The system is easily expandable through a 43-way edge connector but there is no on-board buffering (due to cost) although Nascom's plans for future expansion include a buffer board. In order to have a working microcomputer, only a power supply and a domestic TV need be supplied, plus an ordinary portable cassette machine for program storage.

Construction

Constructing the kit is an easy task for the experienced constructor and even the first-timer should have no difficulty, providing the detailed and comprehensive instructions are followed carefully. It is, if anything, a little tedious - there are over 50 ICs, sockets are provided for all of them.
The PCB is worth special mention for its superb quality - a really professional job. All component and wiring positions are clearly marked on the board in a totally unambiguous fashion and since the instructions include a detailed section on component identification, there should be no location problems. The PCB has wire links to be made, each selecting a possible user option. Two deal with I/O port and memory selection, three with the UART and one with the on-board crystal clock. The instructions show standard connections for these links and explain the variations. They could also be replaced by miniature toggle switches to allow experimentation.

The keyboard is supplied pre-assembled and needs only the addition of the RESET switch to complete it. Again due to cost considerations, it is not ASCII coded, but is scanned by hardware under software control. Early keyboards had no engraving on the key tops for shifted characters but this has been corrected in a new version, which also has a more positive key action. However, both suffer from the amazing lack of a left-hand shift key!

Another minor criticism is the method of connection between the PCB and the keyboard. A multicore cable with a 16 pin DIL header plug is used at each end, which means that any strain on the cable is taken by the soldered joints. A proper ribbon cable with crimped connections to header plugs would be a much more satisfactory solution.

Power supply

The power supply requirements are:
$+12 \mathrm{~V} @ 150 \mathrm{~mA}$,
+5V@2A,
-5V@90mA
and - 12V @ 12mA (for RS232 only).
Lynx supply a PSU kit as an extra but it does rather let down an otherwise excellent product. The kindest thing I could say about the design is that it is unusual. It allows for further PSU kits to be 'parallelled off' for expansion. Early PCBs also has the + and - rail markings reversed - one of the IC regulators' connections are incorrect, although the outline is right. There is no provision for diodes to protect against

Fig. 1. Circuit to overcome 'snow' on multiple VDU RAM access.

Fig. 2. System memory
voltage crossover (although diodes are supplied in the kit).
Now for the good news - the PSU is being completely re-designed and the parallel expansion approach dropped. Instead there will be an 8 amp kit
for larger systems.

Memory and VDU

Before moving on to the operation of the kit, there are a couple of other hardware points to be mentioned. Firstly, the arrangement for resetting the CPU (by means of the RESET switch) would have to be altered for use with dynamic RAM expansion. CPU operation is suspended for as long as the RESET button is held down, so dynamic RAMs (assuming they are refreshed by the Z-80) would soon forget what they were doing. The buffer board will contain circuitry to correct this.
Secondly, the modulator seems to produce a very noisy signal. Picture quality is, to a large extent, dependant on the ability of a domestic TV to reject noise. Fortunately, commercial modulators are very cheap to buy and easy to fit to the NASCOM 1, as there is a 1 V video signal output from the board.
NASCOM 1 uses a memory-mapped VDU, which means that the video RAM is shared with the CPU, the latter having priority. The instructions say that the video is blanked during VDU RAM access by the CPU but this is only partially true. In fact, the blanking signal (VDUSEL) is not long enough, so that a noise signal which shows as 'snow', especially on multiple VDU RAM access, appears on the screen.

This can be simply corrected by using the circuit in Fig. 1 Pin 5 of IC 11 should be bent out from the socket and the connection made with an insulated 'sodercon' socket. Increase the potentiometer value until the snow just disappears.

Display Format

The format of the display is 48 characters wide by 16 lines deep, which produces a very readable picture on a domestic TV. The remaining 256 bytes ($1024-$ (48 x $16)=256$) of the 1 K video RAM block are in the margin of the display, since the video RAM address counter is not disabled during the undisplayed portions of the video signal. In addition, the bottom 15 lines of the display (plus margins) are scrolled by the monitor, making the unused RAM locations useless.

The fact that only 15 lines are scrolled leaves the top line for header text or data. This is a very useful feature, since almost all programs can make use of a fixed display line. Figure 4 gives details of the VDU addressing and scrolling.

Operating System

The operating system is held in a $2708(1 \mathrm{~K} \times 8)$ EPROM, which goes by the name of NASBUG. Since July, kits have been supplied containing NASBUG MK2 as the original version contained an error in the serial input routine and a couple of errors in the keyboard look-up table. However, these facts should not detract from the excellent software which is crammed into the 1 K of NASBUG.

To call a command, only a single letter need be entered, followed by a number of arguments in HEX. Leading zeroes may always be omitted on input.
The commands are as follows:

modify: M aaaa

The monitor responds by printing address aaaa followed by the contents of that memory location, followed by a prompt and the cursor. If only examination of the memory location is required, pressing NEWLINE will step through the memory sequentially, printing information in the same format. The command is aborted by fullstop newline. Memory may be modified by entering new data after the prompt.

tabulate: T aaaabbbb

Prints on the screen the contents of memory between addresses aaaa and bbbb.
copy: C aaaa bbbb ccec
Copies a block of memory, length cccc, from address aaaa to bbbb. Care must be taken that either bbbb is greater than aaaa plus cccc or that bbbb is less than aaaa, otherwise the data block will be corrupted.

execute: E aaaa

Executes a program starting at address aaaa. There are two occasions when no argument is required. Firstly, if a program is aborted by the RESET button, E NEWLINE will cause execution to start at the same place as the previous E command. Secondly, at a breakpoint, E with no argument will cause execution to resume from the breakpoint.

break: B aaaa

Will insert a special code at address aaaa in a user program. When this code is encountered during execution it will cause the program to stop, display

Fig. 4. VDU diagram
the registers and transfer control to the monitor. This means that any of the monitor commands may then be used. The BREAK command together with the STEP command provide very powerful debugging tools.

step: S aaaa

Will cause single step execution from address aaaa, with the registers displayed as in break at each step. Once single stepping is started, only NEWLINE need be pressed for the next stop and as with the execute command, the address will be assumed at a breakpoint.

dump: D aaaa bbbb

Dumps the contents of memory locations aaaa to bbbb to the serial output. Data is sent in blocks of 8 bytes, each with an address and checksum.

load: L

The opposite of dump. Loads data from the serial input (usually from cassette). The input format is the same as the dump output format (which is useful!).

Reflective Addressing

The monitor is made even more powerful by the use of 'reflective addressing' in the RAM. Some of the major routine addresses and data are found by the monitor by looking in certain RAM locations. The locations are set up at RESET but they can be changed manually (or during the course of a program).

The following data are found reflectively:
NMI routine address (used in single step and breakpoint exit),
command table address,
CRT address which controls cursor and scrolling, keyboard scanning routine address,
address of the keyboard lookup table and its length and the stack pointer address for user programs (i.e. end of RAM).

The use of reflection and a scanning keyboard gives NASCOM. 1 the advantage that the meaning of the

keys may be changed with ease and various combinations of simultaneous key pressing can easily be detected and acted upon. An example of the use of this feature is a program called SUPERSHIFT, by Richard Beal. The @ key is utilised as a sort of control key, enabling the complete character set of the MCM 6576 character generator to be used via the keyboard.

Summary

Overall, the NASCOM 1 is an excellent unit. It is easy to level criticism at any product, especially one which has been designed down to a price. rather than up to a specification, but I think that the compromise has been very successful in this case. There have been delays in the delivery, mainly caused by underestimation of demand, which in turn has caused delays in the development and despatch of the advertised add-on goodies (up to and including mini-floppy). Hurry up, Lynx.

To finish on a personal note, I've been using my NASCOM 1 for about 5 months (it worked first time) and I am very happy indeed with it. I can hardly wait for 16 K and an assembler (MENTAL NOTE: Must send Christmas card to bank manager), although I am continually surprised at what can be squeezed into the 944 bytes available. The monitor is easy to use and fairly comprehensive, bearing in mind that it is only 1 K . Debugging is a doddle with breakpoint and single step. NASCOM 1 is a real microcomputer at a relatively low cost and should be easily expandable to a really powerful system.

CTI

THE TOTAL SOLUTION FROM ALMARC

OF COURSE!

Now Almarc \& Vector Graphic offer the complete solution to your computing needs for $£ 2300.00^{*}$. The Vector MZ needs only the addition of a V.D.U. and it's ready to go. Completely assembled and fully tested, the Vector MZ offers the following features as standard -

- S-100 bus
- 4 MHz Z80A processor
- 158 instructions
- Two quad density Micropolis floppies - over 630k bytes on line
- Serial port
- Two parallel ports
- 32 K static ram
- 12 K prom / ram board with extended monitor

Simply connect your peripherals (Elbit V.D.Us \& Centronics printers are available from Almarc) and you're up and running and, because the MZ uses the $\mathrm{S}-100$ bus, you can plug in a massive range of add-on units.
Ring or write for a demonstration to -

ALMARC DATA SYSTEMS LTD.

29 Chesterfield Drive
Burton Joyce, Nottingham
Tel: 0602248565
'Discount terms available

Full 128 character set with ROM encoder (Upper and lower case + control shift).
Fully TTL - compatible - power requirements $+5 v-12 v$.
Supplied with full technical data, code chart, pin connections, circuit diagram and application notes.

FANTASTIC
VALUE AT f60

SELF-SCAN

 ALPHANUMERIC PANEL DISPLAY16/18 position display with 64 character repertoire, 5×7 dot matrix. In put 6-bit BCD-code, oower requirements $+5 v,-12 v$ Character size
$040^{\prime \prime} \times 028^{\prime \prime}$ Overall $0.40^{\prime \prime} \times 0.28^{\prime \prime} \quad$ Overall
dimensions $8 y^{\prime \prime} \times 21 / 4^{\prime \prime}$ dimensions $81 / "^{\prime \prime} \times 21 / 4$
$\times 1 / 4 / 4$ Supplied with $\times 1 \frac{1}{4} \quad$ Supplied with
full technical data. Price $655.00+75 p$ P\&P + 8\% VAT (Mail order total
E60 21) 660 21)

BALL MIRATEL VIDEO MONITOR

9" diagonal P4 phosphor tube Bandwidth 12 MHz (-30B) Input voltage put voltage +15 V DC (shor circuit protected) +12 kV DC; 126 V ms Supplied complete with high \& low voltage power supplies, amplifier, and attractive moulded plastic housing including $\mathbf{5 9 5 . 0 0}+$ carriage + VAT

SPECIAL PURCHASE-MITE

BRAND NEW SURPLUS only $£ 75$
$+£ 3.50$ P \&P $+8 \%$ VAT
(Mail' order total £84.78)
保
peripheralsecialise in. DEC minis-PDP8 and PDP11 processors, add on memory, Dynamics 390, Texas Silent 700 . Send for complete lists
ELECTRONIC BROKERS LTD. 49-53 Pancras Road, London NW1 20B. Tel: 01-837 7781. Telex: 298694.

HAZELTINE VISUAL DISPLAY UNIT

* Teletype Compatible * 12" Diagonal Screen * TTY Format Keyboard * 12 lines of 80 characters * 64 ASCII Character Set * 5×7 Dot Matrix
* Switch-selectable Transmission Speeds up to 9600 baud
* Switch-selectable Parity

* Standard CCITT V. 24 Interfa

MODEL H-1000 PRICEE350 + carriage Also available: -

Model H-1200: Specification as for H-1000 except 24 lines of 80 characters displayed. Price $£ 425.00$ + carriage + VAT
Model H-2000: Buffered/Editing model vith direct cursor addressing, dual intensity video, and detachable keyboard with separate numeric and edit clusters. 27 lines of 74 characters.
Price $£ 495.00$ + carriage + VAT.

This month we feature the first part of a software teaching series

Beginning BASIC

- A A Algorithms and flow charts

IT IS, UNFORTUNATELY, VERY EASY when watching a computer in action to subconsciously endow the machine with intelligence - under no circumstances is this the case.

Regardless of whether you are programming in the simplest of machine codes or the most sophisticated of high level languages, there is no way that the computer can do anything other than what it has been programmed to do, and the signs of intelligence that we seem to detect are present only because of the skill of the programmer. In fact, programming today is becoming quite a major business area, simply because of the amount of skill involved. As with every other trade, however, there are various tools which are at the disposal of the programer to help in in his work - one of the most important of these being the flow chart.

It does not matter what language we program in, be it machine code or BASIC, the technique of drawing and using flow charts is always the same.
We start with a problem, find an algorithm (finding an algorithm for a problem means finding a method of giving a complete and correct solution to the problem in a finite number of steps) to solve the problem, draw the flow chart and then write the program from the flow chart. In order that one programer can understand another's work, certain conventions are adopted when drawing flow charts (see Fig 1).
As a first example of algorithm and flow chart drawing, we will take the case of a young person applying for membership of a Social Club, wishing to discover what fees are payable as an annual subscription.
Consider the following -
"The annual subscription for a man is $£ 10$, unless he is under the age of 25 , when the subscription shall be halved. The annual subscription for a woman shall be 38 , unless she is under 25 , when the subscription shall ce halved. Married women applying for membership shall be charged half the amount payable by a single woman over 25 ."
In this instance, it is unnecessary to find an gorithm to solve the problem as we are only going to use the flow chart as a means of simplifying the wealth of information given above (see Fig 2).

So, for example, if you are a married female, it takes only a moment's glance at Fig 2 to answer the questions "Are you a man?" (no) and "are you married?" (yes) to arrive at the knowledge that your tnual subscription shall be $£ 4$.

You can see from this example how the flow chart -Eps to clarify and simplify an otherwise apparently complicated problem.

We will now go on to consider the generation of an algorithm, and to see how a flow chart can be drawn vice an algorithm has been obtained. As an example,

Fig. 1. Flowcharting symbols
we will look at how it might be possible to get a computer to generate a representation of, and randomly shuffle, a pack of cards.

The first thing we need to do is to decide what would be an acceptable representation of the pack. We could reasonably consider the problem solved if the computer could be made to generate a list of the numbers 1 to 52 in a random order, so that each number from 1 to 52 would represent a different card.

The first method that springs to mind is to get the computer to open a set of 52 storage locations. The first random number between 1 and 52 can then be generated and placed in storage location number 1 (the method used to generate the random numbers is

Fig. 2. Fee fie foe or fum?
unimportant as far as the flow chart is concerned). A second random number is then generated and placed in storage location number 2, a third number in storage location 3, and so on until all 52 storage locations have been filled.
Fig 3 shows a flow chart to describe this algorithm That appeared quite simple, didn't it? But if we give the problem some further consideration, you will see it is possible, since the numbers we are generating are random, to have generated two numbers which are the same. Indeed, this is most likely. This would mean that we would have at least two cards the same within one pack, and so our algorithm must be considered incomplete (though on the right track). To make the algorithm work correctly, we will have to include some form of check to ensure that when a number is generated which has already been used, it is not included in the list (see Fig 4 for a flow chart which takes this point into account). If you look through Fig 4, you will see that a number is generated and then a check is made through all the storage locations that have already been filled to see if the number we have just generated has occurred before. If it has, then the number is ignored and a new random number is generated and checked; if it has not, then it is inserted into the next empty storage location. We then jump back and generate another random number and the process continues until all 52 storage locations have been filled.
This algorithm and subsequent flow chart would appear to be quite sufficient to solve the problem. But

Fig. 3. Take a card, any card . . .
let us now consider this flow chart converted into a program and being run on a computer. Remember, every operation the computer executes takes some finite time to perform, albeit small, so that the more operations that need to be performed, the longer the program will take to run. This may appear to have been an obvious statement, but let us take a look now at our algorithm, bearing this point in mind. When we start off, with all storage locations empty, the first number we generate can be guaranteed not to have occurred before (though looking at the flow chart you will see that the computer does not know this) and can therefore be inserted straight into the first storage location. As the program proceeds, however, and more storage locations filled, it becomes more and more likely that the generated random number will, after some considerable checking, have to be abandoned and re-generated, until, when there are

Fig. 4. The new routine.
only two or three locations left to fill, we may have to generate and extensively check many tens of numbers to find one of the few remaining acceptable numbers. If the computer was made to print out each number as it was generated, we would notice a longer and longer time interval elapsing between the generation of consecutive numbers. Problems like this occur frequently when converting algorithms, where a solution which initially appeared to be satisfactory turns out to have some practical difficulties associated with it on closer inspection.
Fig 5 shows the flow chart of an algorithm designed ν overcome the previous problem.
It starts by putting 1 in storage locations $1 ; 2$ in ocation 2; 3 in location 3; and so on until all 52 ocations are filled, which in effect lays the cards out in sequence through the pack. It then takes the first ocation and exchanges its contents with the contents x another randomly chosen location, then the conents of location 2 are exchanged with the contents of a second randomly chosen location; the contents of ocation 3 are then exchanged with the contents of a =d randomly chosen location, and so on until the sontents of all 52 storage locations have been ranzomly exchanged in this manner. You may be a little sceptical as to whether the pack of cards thus enerated was truly random. Experiments have, nowever, convinced us that it is. As you can see, there In sever any need to generate more than 52 random n-mbers, because whatever the number generated

Fig. 5. The British Shuffle?
turns out to be, we are always guaranteed to use it, as it does not matter whether it has been generated before or not. Converting both of these flow charts into programs and running them on a computer, we discovered that this latter algorithm ran approximately ten times as fast, on average, as the first algorithm, so that there is a great saving in computer time used.

Looking through the algorithms and flow charts, you should begin to see that every operation a computer performs has to be very carefully planned and mapped out if a worthwhile program is to result. Although able to operate at extremely high speeds, the computer is merely manipulating pulses of electrical current according to a set of rules which the programmer lays down which, by careful manipulation and interpretation, can be made to have meaning.

Next month we will go on to consider the high-level programing language, BASIC, but do not forget the above routines, for when we have learnt sufficient BASIC, we will be returning to look at them again and see how they can be implemented

MK 14 - a complete computer for

 £39.95 (+8\% VAT)The MK 14 is a complete microcomputer with a keyboard, a display, 8×512-byte preprogrammed PROMs, and a 256-byte RAM programmable through the keyboard.
As such the MK 14 can handle dozens of userwritten programs through the hexadecimal keyboard. (20 sample programs are provided in the Manual - which also contains comprehensive building instructions, and instructions on program-writing.

Yet in kit form (which can be assembled by any fairly experienced kit-builder, the MK 14 eosts only $£ 39.95$ ($+\{.3 .20$ VAT. and p\&p).

But that's only the start....

The memory capacity of the basic kit is surprisingly powerful - but every computer owner, from a school boy to a multi-national corporation, soon feels the need for more memory.

With the MK14, it's yours!
Optional extras include an additional 256-byte RAM, and a 16 -line external input/ output device (allowed for on the PCB which give a further 128 bytes of RAM.

And the next step?

The next step is to add your own peripherals!
The first could be a low-cost module which provides an interface with a standard cassette-recorder. This means you can use ordinary tape-cassettes for the storage of data and programs.
To get the best from this configuration, you could uprate your system with a revised monitor-consisting of 2 replacement PROMs , pre-programmed with sub-routines for the interface, offset calculation and single step, and single-operarion data entry:

The second peripheral could be your own PROM programmer and blank PROMs to set up your own pre-programmed dedicated applications. (Fusible-link device guarantees program safety.)

All are available now to owners of MK 14and remember Science of Cambridge keep you up to date automatically with advances in the MK 14 range. A TV interface device is already in the pipeline!

A valuable tool - and a training aid

As a computer, it handles operations of all types - from complex games to digital alarm clock functioning, from basic maths to a pulse delay chain. Programs are in the Manual, together with instructions for creating your own genuinely valuable programs.

And, of course, it's a superb education and training aid - providing an ideal introduction to computer technology:

SPECIFICATIONS

MK 14

* Hexadecimal keyboard
* 8-digit, 7 -segment LED display
* 8×512 PROM, containing monitor program
and interface instructions
* 256 bytes of RAM
* 4 MHz crystal
* 5 V regulator
* Single 8 V power supply
* Space available for extra 256-byte RAM and 16 port I/O
Edge connector access to all data lines and I/O ports

Optional Extras

* Extra RAM - 256 bytes
* RAM I/O device

Simplest,most advanced, most flexible microcomputer -in kit form.

* Cassette interface module
* Revised monitor
- PROM programmer

Blank PROMS

Free Manual

Erer MK 14 Microcomputer kit includes a Manual which deals with procedures from soldering techniques, through programming ind use of RAM I/O to interfacing with complex enemal equipment. It contains operational Esiructions and examples for training weflications, and numerous programs including rext routines (square root, etc), digital alarm tock, single-step, music box, mastermind and mon landing games, self-replication, general Throose sequencing, etc.

Designed for fast, easy assembly

Exich 31-piece kit includes everything you need ts =ske a full-scale working microprocessor, ition 15 chips, a 4-part keyboard, display antertace components, to PCB , switch wole fixings.
The MK 14 can be assembled by anyone with - In---ip soldering iron and a few hours' spare tme, using the illustrated step-by-step msextions provided.

How to get your MK 14
Getting your MK 14 kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made pavable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK $1+$, return it to us with in 14 days for a full cash refund.

Science of Cambridge

Science of Cambridge Lid,
6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488
To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Please send me the following, plus details of other peripherals:

\square MK 14 Standard Microcomputer Kit $/ 24355$ inc 40 p p\&p.

\square ExtraRAM" E 3.88 incp\&p.
\square RAMI/Odevice" 88.42 (incp\&p.
I enclose cheque/money order $/ \mathrm{PO}$ for \mathcal{C} (indicate total amount.)

Name
Address'(please print

The exciting
 new
 Triton computer from

TRANDAM

Building a better computer wasn't easy but we did it.

TRANDAM
HAS A FULL RANGE OF MICROS AND SUPPORT, PLUS SOFTWARE

BRINGS YOU "MEMORY BANK" A FULL MEMORY SERVICE

TRANSAM COMPONENTS LTD.
12 CHAPEL STREET
LONDON NW1. TEL: 4028137
NEXT TO EDGWARE ROAD TUBE STATION MET LINE
TRITON COMPUTER IS THE TRADE MAKE OF
TANSAM COMPONENTS LTD

Complete kit available immediately for only £286 + var

The first
British-designed home computer kit with basic IN ROM and graphics. The single-board design makes the computer easy to construct, and when complete, a very compact and powerful tool for home, educational and industrial use.

All components can be bought separately and a fully comprehensive Triton manual is available for $£ 5$ or send 30p + SAE for our latest catalogue and price list.

This unit allows you to program your microprocessor from a prerecorded cassette or to record your own program for later use. Design by Trevor Marshall.

CUTS Cassette Interface

REPEATEDLY TYPING IN programs is not what hobby computing is about. Although most systems start life without any form of offline mass storage, as more memory is added so more programs are written and the need for some form of storage becomes more pressing. The ideal device for this job is probably the floppy disk, but this is (a) expensive and (b) usually dedibated to one processor or bus strucure. Many hobbyists are running several small systems, and a device which is less convenient but more suited to their needs (and pockets) is the humble cassette recorder.

This interface is designed to confert the digital signals from your computer to audio tones and back zzain, using a standard system calCUTS (Computer Users' Tape Erstem), which is also referred to as - Kansas City or Byte format. This records data at 300 baud, with a lugic ' I' recorded as eight cycles of $\pm \div \mathrm{OHz}$ and a ' 0 ' as four cycles of 200 Hz . A byte of data is recorded as a start bit of logic ' 0 ', followed by might bits of data and two stop bits df logic ' 1 ', and this is taken care of Iny the UART in your computer.

Although the standard is 300 baud, the monitor programs in some kits aliow only 110 baud operation, and this interface will work at 110 baud. It can also be run faster (up to 1200 baud) to allow faster program loading.

We have not described a case, as most constructors will wish to mount the board either on the back panel of their computer or in the VDU. Also switching between VDU and cassette will depend upon the user's computer - the ideal situation is to have two UARTs for both VDU and cassette, but many systems (or rather their monitors) do not permit this.

Construction

This is simply assembling the PC board. Take care when handling the ICs as most are CMOS. As the unit will probably be built into a system we have not given any mechanical assembly details. The record/play switch can be mounted remotely if desired.

Alignment

The only adjustments on the unit are the record frequency and the
monostable period. Switch the unit to record and monitor the frequency at any of the baud rate outputs and adjust RV2 to give the correct frequency. Now inject a 1200 Hz tone into the audio input (take of from the baud rate outputs when in the record mode) and adjust RV1 to give a 300 us wide pulse at pin 3 of IC4. If an oscilliscope is not available, setting RV1 to mid position should be close enough.

Recording

For best results recording should be done at a relatively low level. We found that about -7 VU gave the best results.

Unfortunately the use with a recorder with an automatic level control did not prove satisfactory. This is because the level control logic is designed for music where the peak level is about 10 dB or more higher than the average. This cannot cope with a continuous tone without it being recorded at too high a level.

One method which has been suggested to us is to record a high level high frquency tone (about 18 kHz) as well as the signal. Theory
 deleted.

How It Works

This unit records digital information on tape in serial form using two tones, 2400 Hz for a " 1 " and 1200 Hz for the " 0 ". The standard transmission rate is 300 baud but it will work equally well at 600 baud. The designer has operated his unit at 1200 baud with success but with only one cycle of 1200 Hz per bit it is more prone to dropout, etc.

Decoder

We will start the explanation of how it works by assuming you have a prerecorded tape. The output of the tape recorder (alternate tones of 1200 and 2400 Hz) is "squared up" by IC1 which is connected as a schmitt trigger with R3 and R4 providing the necessary positive feedback.

The gates IC2/1, IC2/2 and IC2/3 are used to generate a positive pulse about $3 \mu s$ wide on both the leading and trailing edges of the output of IC1. This gives a series of pulses at either 2400 Hz or $4800 \mathrm{~Hz}(417 \mu \mathrm{~s}$ or 208us period).

The pulse chain triggers the monostable IC4 which is 300μ s wide. If a second trigger pulse occurs before the 300μ s period (as it will if the input is 4800 Hz) the second pulse is simply ignored. The input pulse chain is gated with the monostable output in IC3/3, the resultant output being pulses at 2400 Hz
whether the input frequency is 2400 or 4800 Hz .

These pulses are used for the reference for the phase locked loop (PLL) IC7. This IC contains a phase detector and a voltage controlled oscillator. The output of the oscillator is divided by 2^{8} in IC8. After dividing by 2^{4} (16) IC5/2, IC5/3 and IC $5 / 4$ are used to generate 3μ s wide pulses on both leading and trailing edges and this output is the second input to the phase detector in IC7. The output of the phase detector (pin 13) is used to control the oscillator (input is pin 9) and the two pulse chains are equalised in frequency and phase. Using this technique the tape speed can be varied by up to $\mp 20 \%$ and the PLL will track it. The outputs of IC8 can be used to control the UART in the computer. If the UARTs own clock is used the allowable tape speed variation is $\mp 5 \%$.

To decode the pulse chain into " 1 " and " 0 " and to ensure correct phasing, IC2/4, IC $3 / 4$, IC $5 / 1$ and IC6 are used. The monostable IC4 is triggered at 2400 Hz , and its output clocks the D input of IC6/2 into the output. IC6/1 is used as an R-S flip flop being "set" if a pulse from IC2/3 occurs during the "mono" period (if the input is high frequency) it is reset every 417μ s by IC5/2. However, the information is clocked
into IC6/2 before the reset pulse occurs. If the input is only a 1200 Hz tone the set pulse does not occur and a " 0 " is strobed into IC6/2. An examination of the timing diagram in fig. 1 will help clarify the sequence.

Encoder

The encoder is a littie more complex than needed for 300 baud, but it allows operation at 600 or 1200 baud if needed. The output of IC9, which is a non-symmetrical 2400 Hz , triggers a $3 \mu \mathrm{~s}$ monostable IC $10 / 4$ which then toggles IC $11 / 2$ giving a 1200 Hz square wave output. However, if the "data input" is a " 1 ", IC11/1 is toggled to give a " 1 " at pin 1 which enables IC10/2. This then triggers the monostable IC10/4 midway between the pulses due to IC9. This then toggles IC11/2 at twice the rate to give 2400 Hz output. The clocking of the data input into IC11/1 is about 100μ s out of phase with the rest of the timing to give time for the UART to settle, eliminating any errors due to propagation delays.

The phase locked loop IC is used only as an oscillator in the transmit mode and the VCO input is switched to a preset voltage giving the correct frequency.

Fig. 2. The sequence of events in the decoder when receiving a ' $0,1,0,1$ ' input.

Fig. 3. The encoder waveforms when transmitting a ' $0,1,0,1$.'
is that this tone will adjust the automatic level control while being too high to be reproduced. However it can beat with the bias oscillator causing more problems than it
solves.
We therefore recommend that the unit be used only with a recorder with a manual recording control.

Fig. 4. The component overlay. When using a 5 V supply leave out IC12 and add a link between the two outside holes. C15 can also be deleted.

TRITON

 John Coll, PCW consultant and well

 John Coll, PCW consultant and well
 LIVERPOOL'S COMPUTER SHOP

known to the computer hobbyist

gives his impressions of the TRITON

I've had an early production model of the Triton for some time and I've been most impressed with it and with ETI's approach to the project.

On the hardware side it's clear that the designer Mike Hughes is a professional. The PCB is cleanly designed and good provision has been made for expansion at a future date. The addition of extra memory and of peripherals like printers and floppy disks will be a straight forward process. Whilst economy has been very much borne in mind. There has been no skimping, everything you need is provided to make a simple useful computer using a normal TV set as a display. The fact that where tracks have to go near IC pins, the tracks have been put on the upper side of the board - away from the constructors soldering iron - is typical of the attention to detail which is evident throughout the design.

On the software front the 2 K basic interpreter is Li Chen Wang's Palo Alto tiny BASIC which has been around for some time and is therefore pretty much bug free, ie it works.
The monitor on the other hand is very much a version one - it works but could be improved considerably. However, this does not worry me in the slightest because all the software is in EPROM and therefore can be easily and cheaply altered. It is difficult to explain just how important that is - it means that users will be able to return the monitors to Transam and get them reprogrammed with the latest software for a very reasonable sum. It also means that if you want to use the computer for something else you can remove the BASIC and use the whole 4 K of EPROM for your special application. This makes the machine potentially important in the process control field.

The documentation is good, however it seems only fair to say that the TOTAL novice would probably find it difficult to diagnose and repair any obscure fault. However, Transam's 'Get it going' service should deal with that in a satisfactory way. The availability of full source listings for both the monitor and BASIC will be useful in specialists applications as well as for the enthusiastic beginner.

It is clear that ETI are determined to 'Get this one right' and to support it in the future with further software and hardware.

I have no hesitation in recommending this kit to you.

Quality C15 cassettes for your PET, Apple, TRS80, NASCOM 1, etc.
10 cassettes for $£ 4.75$ including P. \& P. V.A.T., labels and library cases.

Science of Cambridge MK14. Socket Set. 5 $\times 14$ pin, 7×16 pin, £ $\mathbf{3 . 8 4}$ including P. \& P. and V.A.T. Power Supply. $£ 4.86$ including P. \& P. and V.A.T.

Barclaycard and Access accepted.

N NEWBEAR COMPUTING

Announcing the SYM-1:-from Synertek
(formally VIM-1)

* Fully assembled and tested
\star KI M.I. compatible
\star High speed cassette interface (2400 baud)
* 1 K byte storage, expandable on board to 3 K byte
$\star 4 \mathrm{~K}$ byte ROM Monitor
- Fully expandable and much much more
£ $\mathbf{1 9 9 . 0 0}$ plus 8% VAT $£ 1.00$ postage and packing

For further details Visit Newbear Computing Store, 2 Gatley Road Cheadle, Cheshire, 061-491 2290 Or visit, or write to Newbear Computing Store, 7 Bone Lane, Newbury, Berks. 063549223. Send for Catalogues of Hardware Components, Literature and Software.

From the representatives in Europe ... for America's leading Micro-computer magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing! Reading maketh a full man . . . Francis Bacon (1561-1626)
Tick or indicate quantity ordered.
From Adam Osborne Associates Price
Volume 0: The Beginners Book
Volume 1: Basic Concepts $£ 5.95$
Volume 2: Some Real Products (Revised Late 1977 £5.95 £5.95
6800 Programming for Logic Design $£ 5.95$
8080 Programming for Logic DesignZ80 Programming for Logic Design8080A/8085 Assembly Language Programming6800 Assembler Language Programming$€ 5.95$
Sorne Common BASIC ProgramsBUSINESS PROGRAMS IN BASICPayroll With Cost Accounting
Accounts Payable \& Accounts Receivable e9.95ner 78)General Ledger (Available from late summer 78)From Scelbi Computer Consulting Inc.£9.95
6800 Software Gourmet Guide \& Cookbook
8080 Software Gourmet Guide \& Cookbook $€ 7.95$
8080 Programmers Pocket Guide $£ 7.95$
$£ 2.25$
$£ 2.25$
8080 Hex Code Card £2.25
8080 Guide and One 8080 Code Card £2.25
8080 Guide and Both Code Cards 6.00
Understanding Microcomputers \& Small Computer Systems SCELBI 'BYTE' Primer £7.95
8080 Standard Assembler (In Block Format) 15.9
8080 Standard Monitor (In Book Format £9.95From Peoples Computer Company
£4.95
What to Do After You Hit Return
Dr. Dobbs Journal Volume 1 £10.00
*From Kilobaud/73 Magazine Inc.
Hobby Computers Are Here $£ 3.95$
New Hobby Computers £3.95
From Dymax Inc.
Instant BASIC by leraid R. Brown £4.95
Your Home Computer by James White £4.95
BASIC By Bob Albrecht £1.65Games With A Pocket Calculator byThiagarajan \& Stilovitch$£ 1.75$Games, Tricks and Puzzles For a HandCalculator by W. Judd£2.49
*From BYTE Publications IncPaperbytes:Tiny Assembler for 6800 Systems
Bar Code Loader for 68008080 Z Bar Code Loader for 6800, 8080, Z80 \& 6502 Micros £5.75
Best of Byte Volume 1 £8.95

HOW TO ORDER

Please note our prices include postage and packing, but not insurance, if wanted add 12 p for every E10 of books ordered. Make cheques, PO's etc payable to
L.P. Enterprisas

CREDIT CARDS accepted
BARCLAYCARD VISA / ACCESS
DINERS CLUB/AMERICAN EXPRESS
Phone 01-553 1001 for Credit Card orders (24 hour service)

Due to fluctuations of the dollar,
prices are subject to change

Tick or indicate quantity ordered	Price	Price
* From Creative Computing Press	UK	Overseas
Best of Creative Computing Volume 1	£6.95	If Different
Best of Creative Computing Volume 2	£6.95	
BASIC Computer Games (A revised 101 BASIC Games)	+5.50	
The Colossal Computer Cartoon Book	£5.50 £3.95	
Computer-Rage (A new Board Game)	£6.95	
Artist and Computer	£3.95	
* From Everyone Else	23.95	
Magazine storage boxes (hold 12 minimum)	£1.25	
Sybex: Microprocessors from Chips to Systems by R. Zacs	£7.95	
Sybex: Microprocessors Interfacing Techniques by R. Zacs	£7.95	
Dilithium: Home Computers		
Volume 1: Hardware	£6.50	
Dilithium: Home Computers		
Volume 2: Software	£5.95	
Getting Involved With Your Own Computer	£4.75	
The Z80 Microcomputer Handbook	£7.50	
TV Typewriter Cookbook by Don Lancaster	£7.50	
TTL Cookbook	¢7.95	
CMOS Cookbook	¢7.95	
IC Timer Cookbook	£7.50	
IC OP-AMP Cookbook	¢9.50	
RTL Cookbook	£4.25	
Computer Programs that Work (in BASIC)	¢2.55	
* From Basic Software Library		
(from Scientific Research Instruments)		
Vol 1: Business and Personal Booking Programs	$£ 17.50$	
Vol 2: Maths and Engineering Programs	£17.50	
Vol 3: Advanced Business Programs	£26.50	
Vol 4: General Purpose Programs	£7.95	
Vol 5: Experimenters Programs (General Purpose)	$\begin{array}{r}\text { ¢7. } \\ \hline 8.95\end{array}$	
Vol 6: General Ledger Program	${ }^{£} \mathrm{f} 32.950$	
Vol 7: Professional Programs	£32.50	
Magazines: Back Issues	E26.95	
Personal Computing	£1.75	
Interface Age	£2.25	
Dr. Dobbs Journal	¢1.75	
Computer Music Journal	£2.50	
Peoples Computers	£1.75	
*BYTE	£2.25	
Creative Computing	£1.75	
Calculators \& Computers	£1.75	
ROM	£1.75	
Kilobaud	£2.25	
73 MAGAZINES. Subscriptions	£2.00	
MAGAZINES: Subscriptions		
Personal Computing (Twelve Issues Yearly)	£16.00	£17.00
Interface Age (Twelve Issues Yearly)	£20.00	£20.50
Dr. Dobbs Journal (Ten issues Yeariy)	£13.00	£13.50
Computer Music Journal (Four Issues Yearly)	£8.50	£9.00
Peoples Computers (Six Issues Yearly)	£8.00	£8.50
Kilobaud (Twelve Issues Yearly)	£20.00	£21.00
BYTE (Tweive issues Yearly) via USA	£15.00	
BYTE (Twelve Issues Yearly) via UK	£21.00	
Creative Computing (Six Issues Yearly)	£8.50	£9.00
Creative Computing (Twelve Issues Yearly)	£16.00	£17.00
Calculators \& Computers (Seven Issues Yearly)	£10.00	£10.50
73 (Twelve Issues Yearly)	£20.00	£21.00

All Orders must be Prepaid Total Erclosed E

[^5]TRADE ENQUIRIES WELCOME

East Coast Report
 Proclaimed as the largest show ever,

Personal Computing ' 78 was held in the Philadelphia Civic Centre, from the 24th to 27th of August. Computing Today roving reporter Jim Perry was there with his box brownie.

With more than 300 stands and over 100 exhibitors the PC ' 78 show certainly was large by any standards! To celebrate its third birthday the show had moved to the Philadelphia Civic Centre from its birthplace in Atlantic City. The move of venue was brought about by the tremendous growth in attendance - Atlantic City was just too small for this year's show!

The promoters of the event claim that just over 20 per cent of the American Personal Computer Market is within 2 hours drive of Phildelphia, this is probably because New York is just 2 hours away.

Amongst the many exhibitors there were surprisingly few new products - well, new to the American market at least - most of the products would be new in the UK if available here. With companies such as Heathkit, Radio Shack (Tandy) and Southwest Technical Products in attendance, it was Commodore that was conspicious - by its absence.

General view of the main exhibition area, early on the first day.

Software for the TRS 80 was available from many suppliers. This stand is demonstrating a chess recorder program.

To complement the exhibition the organisers had arranged more than 80 hours of seminars, on everything from business systems to computer games. A good point was that all the daytime events were included in the exhibition admission fee. Other activities included a show of computer generated art, a computer music evening and traditional Saturday night banquet (read booze up).

Not quite what you expect at a Personal Computer Show, but a lot of people. were looking for complete systems for small businesses.

The RCA stand was dedicated to their COSMAC VIP, the two small boards plugged into the back are the new music synthesiser and drum machine attachments.

Computer music was the theme on the SOL stand. The interface, between man, machine and music is one of the exciting growth areas.

Is it a bird? Is it a plane? No, it's a Micro Mouse! The second trials for the IEEE/Spectrum Micro Mouse Maze competition were held during the exhibition - this MPUed mouse made it through the maze in 4 minutes 45 seconds.

The message centre used SWTP equipment to keep everybody up to date via several monitors.

Part of the British contingent, Chris Carey and Jim Wood from Comp Computer Components were scouting for new products to unieash on the UK market.

The Bit Pad is a rather nice (but expensive) device for turning freehand into computer input.

Computalker Consultants did a roaring trade with their versatile
speech synthesis units. speech synthesis units.

The Radio Shack (Tandy) area was equipped with 12 TRS 80 systems, the complete range of peripherals (printers, floppies etc) was also on continuous demonstration.

Exidy were demonstrating the $\mathbf{Z 8 0}$ based Sorcerer Computer nice feature of this machine is the plug in BASIC, which can be replaced with various other languages virtually instantly.

The TRITON software has some interesting facilities - we take a look at the whole package.

TRITON Software - BASIC

The TRITON BASIC Interpreter was designed to run on small $8080 / \mathrm{Z} 80$ micro processor systems. It contains many of the common BASIC commands and most small BASIC programmes will be easily converted to run on the Triton.

Variables

All variables and numbers are stored as 16 bit integers and therefore must lie in the range - 32767 to 32767 . There are 26 variables each denoted by a single letter A to Z. There is 1 array denoted by @, this array is automatically dimensioned to make use of any memory space left unused by your BASIC Programme. The number of bytes of memory space in this array can be obtained at RUN time using the SIZE function.

Funclions

There are three functions available.
$\operatorname{ABS}(\mathrm{X})$ which gives the absolute value of the variable X.
$\operatorname{RND}(\mathrm{Y}) \quad$ which gives a random number between 1 and Y inclusive.
SIZE which gives the number of bytes left unused by your programme.
Hence the maximum index for the array @ () is SIZE/2.

Arithmetic Operators

+ Add
- Subract
* Multipy

Divide
,,$+-{ }^{*}$ and / operations must result in a value in the range -32767 to 32767 and as they are also integer, any division is rounded down. E.G. $5 / 2$ gives 2. $2 / 3$ will give 0 .

Compare Operators
 $>$ greater than

$<$ less than
= equal to
$=$ not equal to
$>=$ greater than or equal to
$<=$ less than or equal to
The compare operators are usually used with the IF command but can also be used in expressions. The result of any comparison is 1 if true and 0 if not true (fialse).

Expressions

Expressions are formed from number, variables and functions.
E.G. 10 LET $A=10 \quad A$ is set to 10

20 LET $B=A \quad B$ is set to contents of A ie 10
Arithmetic operators are used in expressions and are evaluated from left to right, except that * and / ze always evaluated first.
spaces between numbers, variables and functions tre ignored. Spaces inbedded in command words are not allowed.

Parentheses can be used to change the order of =valuation.

Parentheses can be nested, the maximum depth being limited by the size of the stack.

Conditional operators are usually found with the IF command

$$
10 \text { IF } \mathrm{A}=1 \mathrm{~B}=\mathrm{B}+1
$$

In this statement when A is equal to 1 the expression $B=B+1$ is executed and one is added to the contents of B.

Conditional expressions can be combined to form multiple conditions and can also be used in arithmetic expressions.

Statements

A BASIC statement consists of a statement number between 1 and 32767 followed by one or more commands. If a statement contains more than one command, each command is separated by semi colon ; The statement is ended by a carriage return.
10 LET A $=10$
20 LET B $=\mathrm{A}$
30 LET C $=\mathrm{A}+\mathrm{B}$
This can be written
10 LET $\mathrm{A}=10 ;$ LET $\mathrm{B}=\mathrm{A} ;$ LET $\mathrm{C}=\mathrm{A}+\mathrm{B}$
It should be noted that the latter method will be harder to change or correct.

The commands GOTO, STOP and RETURN must be the last command in any statement.

Commands

The following commands are available in the TRITON BASIC L4.1

LET

LET is used to set a variable to the result of an expression.

$$
\begin{aligned}
& 10 \text { LET A }=10 \\
& \text { The variable } \mathrm{A} \text { is set to } 10 \\
& 20 \text { LET } \mathrm{B}=(\mathrm{A}-1) \text {. } \\
& 30 \text { LET@(3) } \\
& =\mathrm{B} / 3 \\
& \text { The variable } B \text { is set to the } \\
& \text { result of the expression (A-1)*2 } \\
& \text { i.e. } 18 \\
& \text { The fourth element of the array } \\
& @ \text { is set to } 6 \text { (The first element is } \\
& \text { @(0)) } \\
& \text { The expression need not be an arithmetic expression. } \\
& 10 \text { LET } C=A \neq B \quad \text { If } A \text { equals } B, C \text { will be set to zero } \\
& \text { If } A \text { is not equal to } B, C \text { will be } \\
& \text { set to one }
\end{aligned}
$$

The LET command can be used to set several variables

10 LET $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3$
each part being separated by a comma,
We can therefore rewrite an earlier example.
10 LET $\mathrm{A}=10, \mathrm{~B}=\mathrm{A}, \mathrm{C}=\mathrm{A}+\mathrm{B}$

Rem

The REM (Remark) Command allows the programmer to comment his programme. The interpreter will ignore the rest of the line.

100 REM THIS IS THE START OF THE SUBROUTINE $\mathrm{Y}=\mathrm{A}^{*} \mathrm{~A}+\mathrm{B}$

Print

The PRINT command is used to print numbers variables, expressions, and text.

10 PRINT A will print the contents of vari10 PRINT A*2
variable A contents of variable A
10 PRINT 'THIS IS A TITLE' prints THIS IS A TITLE
Several variables, etc. can be printed at once. Each item to be printed is separated by a comma.

10 PRINT $\overline{\mathrm{A}}, \mathrm{B}, \mathrm{C}$ will print the contents of $\overline{\mathrm{A}}$ followed by B and C on the same line.
Text can be used to qualify printout.
10 PRINT 'THE RESULT IS', A
Text can be contained by either single or double quotes, this allows the other type of quote to be printed.

10 PRINT ‘ABC"'CBA', " 123 '321" will print ABC"CBA123'321
Numerical values are printed with leading spaces (Right Justified) in a field of width 8 characters. The field width can be altered using a \# sign followed by the new width (i.e. $\# 3$ gives a width of 3).

The field width will then remain effective until another $\#$ or the end of the current PRINT statement.
10 PRINT A, $\# 3, \mathrm{~B}, \sharp 1, \mathrm{C}$
will print A in a width of 8 cha racters. B in a width of 3 and C in a width of 1 .
\#1 will result in C being printed Left Justified and any following printout will be shifted to the right if C
is greater than 9
The field width can also be an expression
PRINT \# I, A will print A in a field width equal to the contents of variable I
The maximum field width is 63.
Note that negative numbers require an extra character in the field width for the minus sign.
Extra spaces can be generated by repeated commas.

PRINT $\# 3, A,,, B$ will print a 3 character $A, 2$ spaces and a 3 character B
Several PRINT statements can be made to print on the same line by ending the statement with a comma.

Graphic characters can be printed using the PRINT statement. The description of the graphics font lists those Graphics which can be contained in quotes and will result in graphics being printed.

The PRINT statement can also be used to issue cursor control characters

10 PRINT $\dagger \mathrm{H} \quad$ will issue a control H which will backspace the cursor
10 PRINT $\dagger \mathrm{I} \quad$ will issue a control I which will
10 PRINT + Jorward space the cursor
moves cursor down
10 PRINT †L moves cursor up will clear the whole screen and reset the cursor. Note that this command must be followed by a delay before the next command (FOR I = 1 TO 250; NEXT I) will reset the cursor to the start of the line.

Input

The input command is used to read an expression

ANNOUNCING THE $m / 1 / c / R / \sigma / s$

JOIN THE MICRO REVOLUTION!

£550 for a $Z 80$ based microcomputer, built and tested

* Includes CPU, ROM, RAM, TV and Audio cassette interface, UHF modulator, ASCII keyboard, power supplies and cabinet.
* Connect to domestic TV or video monitor to complete the system.
* 48×16 character video matrix
* Hard copy on teletype
* Also available in kit form $£ 470$, or 5 kitpacks at $£ 95$ each
* Designed for educational establishments, personal computing and small business users
* Load and dump programmes on unmodified cassette recorder
* $\quad 57$ key contactless ASCII keyboard
* British designed and built
* Credit terms available
from the Keyboard. Normally the keyboard input is just an integer value between - 32767 and 32767 .

10 INPUT A When this statement is executed, the BASIC will first print A followed by a space and then wait for keyboard input. The input is terminated by carriage return. The input is then stored in variable A
10 INPUT A,B will print A,space,then wait for input, it will then print B, space, and wait for input again.
Instead of just allowing the machine to prompt you with the variable, it is much better to ask a specific question. This is done by enclosing the text of the question in quotes.

10 INPUT 'HOW MANY EGGS HAVE YOU LEFT?' I

The machine will print HOW MANY EGGS HAVE YOU LEFT? and then wait of a number to be typed in.

If during RUN time, the typed input is not a valid expression, the prompt will be repeated and then the machine will wait again.
It is also possible to reprint only part of the prompt. 10 INPUT 'WHAT IS ', ‘A + B?'C, 'A-B?'D
The first time the printout will be WHAT IS A + B? and after an invalid input it will just print $\mathrm{A}+\mathrm{B}$?

The BASIC interpreter uses its expression evaluation routine to decode the input and therefore the programmer or user can enter an expression using variables already set up.

10 LET A $=3, \mathrm{~B}=2$
20 INPUT C
30 PRINT C
Instead of entering a value for C , the user can enter
an expression such as $A+B$, the expression will then be evaluated by the interpreter and the result 5 stored in the variable C . The machine will then print 5.

It is also possible to enter single characters as a reply by making use of the expression input.

10 LET $\mathrm{Y}=\mathrm{O}, \mathrm{N}=1$
20 INPUT 'DO YOU WANT TO CONTINUE? Y OR $\mathrm{N}^{\prime} \mathrm{A}$

30 IF A $=1$ STOP
If the user replies Y, A will be set to the contents of Yi.e. zero. If the user replies N -A will be set to 1 and the programme will STOP.
If
The IF command is used to compare expressions, using the compare operators. If the result of this comparison is true (non zero) the rest of the statement is executed. If the result of the comparison is false (zero), the rest of the statement is skipped and execution resumes on the next statement.

10 IF A = O PRINT 'A IS ZERO'
The machine will print A IS ZERO only when A is zero.

Note that unlike other BASIC interpreters and compilers, the word THEN is not used.

Either side of the compare can be an expression.
10 IF $\mathrm{A}=\mathrm{B}^{*} 2$ PRINT 'A IS TWICE B'
20 IF $\mathrm{A}^{*} 3=\mathrm{B}^{*} 2$ PRINT ' $\mathrm{A}=\mathrm{B}^{*} 2 / 3$ '
A compare operator need not be used in the IF statement but this practice should be avoided where possible as it can make the programme very hard to follow.

10 IF A - 1 PRINT 'A IS NOT ONE'

A more interesting way to learn

you are considering buying a Micro computer, Development System, or just want to learn more about this exciting technology, then this short introduction to Microprocessors is for you Comprising of a 72 -page book keyed to over two hours of cassette tapes the many aspects of Microprocessors are explained, including Binary and Hexadecimal counting. Internal structure. Operation. Programming Techniques. Devising a program. etc. Learn at your own pace with this valuable addition to your reference library

To Technical Book Services

P. O. Box 79

Maidenhead, Berks SL6 2EG
Please send mecopy/copies of What is a microprocessor?』 $£ 10.75$ each inclusive lenclose remittance $£$

Name

(Print Please)
Address
the PRINT command is only skipped when the result of the expression in the IF command is zero.

Several commands can follow the IF command
10 IF A = 0 PRINT 'A IS ZERO'; GOTO 50
When A is zero, the machine will print A IS ZERO and then jump statement 50.

GOTO

You will probably be fairly familiar with the GOTO command already as it has appeared in several of the examples for the other commands.

The GOTO command is used to break the sequential processing of the BASIC interpreter and cause the interpreter to jump either forward or backwards to the specified statement number.

50 GOTO 10
When the interpreter executes this statement it will jump back up the program to statement 10 and continue its processing from statement 10.

Again, the statement number following the GOTO can be an expression.

20 GOTO A*2
Will jump to the statement number calculated from the expression $A * 2$. If the expression gives a non existent statement number the BASIC will give an error report.

Using a simple expression for a GOTO is useful where different routines may be required as a result of an input.

Another method of using a computed GOTO is to use the array variable and index it.
10 LET $@(1)=100, @(2)=200, @(3)=100$, $@(4)=25$
20 INPUT I
30 GOTO @(I)
If the input for I is 1 the interpreter will jump to statement 100
for $I=2$ it will jump to 200
for $I=3$ to 100 again
for $I=4$ to 25
It is advisable when using the computed GOTO to check the variable for valid values, ie in the above example it would be advisable to insert
25 IF I <1 GOTO 20
27 IF I >4 GOTO 20
This will only allow an input of 1 to 4 , any other input will result in a repeat request for input.

Gosub and return

The GOSUB command although similar to the GOTO command, is used to exit from a statement and jump to a routine starting at the specified statement number. Execution continues from the specified statement number until a RETURN command where upon the BASIC returns to the command following the original GOSUB.

10 PRINT 'LETS EXECUTE ROUTINE 100 '
20 GOSUB 100 ; PRINT 'WE HAVE NOW RETURNED'

30 STOP
100 PRINT 'THIS IS ROUTINE 100 '
120 PRINT 'I WILL RETURN WHEN I HAVE FINISHED'

130 RETURN
This will result in the following printout
LETS EXECUTE ROUTINE 100
THIS IS ROUTINE 100
I WILL RETURN WHEN I HAVE FINISHED
WE HAVE NOW RETURNED
The GOSUB 100 command causes the BASIC to jump to statement 100 but also to remember where it is in statement 20. It now executes from statement 100 until it reaches the RETURN command. It then
returns to statement 20 and continues processing it.

For and next commands

The FOR command is a very powerful command. It is used to make the BASIC interpreter loop 'FOR' a specified number of times, the end of the loop being defined by the NEXT command.

10 FOR I $=2$ TO 10 STEP 2
20 PRINT I
30 NEXT I
I is set to 2 when the FOR statement is first encountered. It will then remain at 2 until the NEXT command is encountered. On reaching the NEXT command 2 is added to I and the BASIC returns to the command following the FOR command. This is repeated until I becomes greater than 10 where upon execution continues with the command following the NEXT command.

Hence, the machine will print
2
4
6
8
10
On exit from the loop I remains at its next value ie 12. If statement 10 had been
10 FOR I = 2 TO 11 STEP 2
I will be left at its first value greater than 11 ie 12.
Negative indexing is allowed as long as the first value is greater than or equal to the second and the step is negative.

10 FOR I = 10 TO 1 STEP -1
50 NEXT I
I will start at 10 and step down to 1 in increments of 1.

If STEP is omitted, a step of 1 is assumed.
10 FOR I = 1 TO 100
I will start at 1 and step up to 100 in increments of 1.
Once more, expressions can be used in all three positions instead of numbers. The expressions are evaluated when the FOR command is executed and any following changes to the variables used will not effect the loop.

10 LET $\mathrm{I}=10$
20 FOR I = I TO I +5
50 NEXT I
The initial value of I is evaluated as 10 , the final value is 15 . Within the loop, I will index from 10 to 15 in steps of 1

FOR and NEXT commands can be 'nested' within each other, the limit being that of the size of the stack.

10 FOR I = 1 TO 10
20 FOR J = 1 TO 5
30 PRINT I*J
40 NEXT J
50 NEXT I
This will result in the machine printing I*J when
$\mathrm{I}=1$ and $\mathrm{J}=12345$ then
for $\mathrm{I}=2$ and $\mathrm{J}=1$ to 5
etc. etc.
until $\mathrm{I}=10$
When a NEXT command is executed, the BASIC interpreter checks that the variable specified is the same as that used by the most recent FOR. If they are not the same, the FOR is terminated and the previous FOR examined. This continues until a match is found.

10 FOR I = 1 TO 10
20 FOR J = 1 TO 10
30 IF $\mathrm{J}=5$ GOTO 50
40 NEXZ J
50 NEXT I
Each time J gets to 5, the BASIC jumps to statement

BASIC

50. This cancels the J FOR loop leaving J at 5 and continues with the I for loop.
If within a FOR loop, another FOR loop using the same variable is encountered, the first FOR loop is terminated.

Stop

The stop commands stops the execution of the programme when it is executed. Any number of STOP commands can be included within a programme.

10 GOSUB 100
20 GOSUB 200
30 GOSUB 300
40 STOP

VDU

The VDU command allows the programmer direct access to the VDU control chip and its memory hence allowing a wide range of graphics applications.

The VDU command has two parameters, the first being the VDU memory address, the second being the desired graphic symbol specified as a decimal number.

10 VDU 5, 126
This will result, in the graphic $\rightarrow>$ being placed in the fifth byte of the VDU memory.

The VDU memory is arranged as 16 rows each containing 64 bytes therefore addresses 1 to 64 are on the first row, 65 to 128 on the second etc.

Due to the function of the VDU control chip, care should be taken when using the first row and the first column as certain graphics characters will produce strange effects.

To allow the programmer to use all the VDU control commands, address zero has been allocated. 10 VDU 0, 12
This does not use memory location zero, instead the value 12 is output to the VDU controller.

12 is the command to clear the screen and reset the cursor.

Note that commands 12 and 28 require an extra delay while the command is executed. A FOR loop should be used (FOR I = 1 TO 150; NEXT I before the next PRINT, VDU or INPUT command.

Other useful VDU commands are as follows:
8 Backspace cursor one character
9 Forward space cursor one character
10 Line Feed (Move cursor down on line)
11 Move cursor up one line
12 Reset cursor to top and clear screen
13 Carriage Return - Reset cursor to start of line clearing rest of line
27 Line Feed
28 Reset cursor to top without screen clear
29 Reset cursor to start of line without rest of line clear.

When using the memory mapping option, care -ust be taken to make sure that the memory address is between 1 and 1024 inclusive. If you exceed 1024 it is possible to overwrite the stack and your proEramme.

It is possible to make your BASIC programme =odify itself using VDU but this is fairly difficult and
not really worth the trouble it can cause.
Before using memory mapping it is advisable to use either command 12 or 28 to reset the cursor. If the screen has been scrolling, row 1 will not be at the top of the scan unless this is done.

The graphic symbol specified in the second parameter is a decimal number between 0 and 255 inclusive. If a larger number is specified, only the least significant byte is used.
The graphics and character code are given elsewhere in ETI but some of the more useful are listed below.

0 to 31
32 Space
$33-47$
48 - 57
$58-64$
$65-90$
$91-95$
96-127
128-225
see Graphic Font
$!’ \neq \$ \% \&{ }^{\prime}()^{*}+,-. /$
0 to 9
$: ;<=>$? @
A to Z
[]
see Graphics Font
Is a repeat of 0 to 127 (The high order bit is ignored)

To print a variable between 0 and 9 using VDU just add 48.

VDU $0, I+48$
This will print the value of I if it lies between 0 and 9.

To produce moving graphics, it is necessary to use FOR loops to index the memory mapping.

Direct commands

The following are direct commands to the BASIC Interpreter. They are obeyed as soon as they are entered.

RUN will start the execution of the programme at the lowest statement number.

LIST will print out all statement in ascending numerical order.

LIST 100 will print out all the statements starting at statement 100.

LIST 50, 10 will print 10 lines starting at statement 10.

NEW will delete all programme statements ready for a new programme.

Control C will return you (at any time) to the Monitor.

Any BASIC command can be entered as a Direct Command by leaving off the statement number. The statement is then executed immediately and not stored as part of the programme.

This feature is very useful when your programme stops due to an error report. (see Error Reports)

Abbreviations

All the commands can be abbreviated as follows.
It is advisable only to abbreviate when you are tight on memory as the abbreviated programme can be extremely difficult to follow.

Functions

A.	$=$ ABS
R.	$=$ RND
S.	SIZE
Commands	
Implied	LET ie $A=B+C, D=E+F$ etc

BASIC

REM.	$=$ REMARK
P.	$=$ PRINT
IN.	$=$ INPUT
I.	$=$ IF
G.	$=$ GOTO
GOS.	$=$ GOSUB
R.	$=$ RETURN
F.	$=$ FOR
TO.	$=$ TO
S	$=$ STEP
N.	$=$ NEXT
S.	$=$ STOP
V.	$=$ VDU
Direct Commands	
L.	$=$ LIST
R.	$=$ RUN
N.	$=$ NEW

Error Reports

It is quite probable that you can have already seen some of the error reports generated by the BASIC Interpreter.

Although there are only three different error messages (WHAT? HOW? and SORRY) the BASIC will insert a question mark at the point where the error occurred.
WHAT? This means the interpreter has come across a command or expression that it can't interpret.
WHAT?
300 I? PUT A - INPUT is spelt wrongly. WHAT?
$40 \mathrm{~A}=300 /(\mathrm{B}+\mathrm{C}$? - The close parenthesis is missing
HOW? This means the interpreter can not execute the command.
HOW?
$60 \mathrm{~A}=300^{*} 500$? - The result is greater than 32767
$10 \mathrm{~A}=5, \mathrm{~B}=0$
$20 \mathrm{C}=\mathrm{A} / \mathrm{B}$?
HOW? - You can't divide by zero
40 GOTO 37?
HOW? - Statement 37 is missing
SORRY This means that there is not enough memory. This can occur during typing in a programme or during the execution when the array is used - @(). It is worth checking the variable or expression if the array is involved to make sure that it is a sensible value.
$210 \mathrm{~A}=@(\mathrm{I} * \mathrm{~J}+\mathrm{K})$
SORRY
If this occurred during typing in of the programme then there is not enough memory.
If this occurred during execution (RUN) then either there is not enough memory for (a) or the expression I*J + K may be incorrect.
To check this type
PRINT I,J,K,I* ${ }^{\text {J }}+\mathrm{K}$
and the values of I J K and I ${ }^{*} \mathrm{~J}+\mathrm{K}$ will be printed. You can now check if the result is correct.
This shows how useful the direct command option is. If the result of the PRINT is OK then another check is
PRINT SIZE
This will give how much memory space (in bytes) is left.

CTI

NASCOM I micro.computer for the HOBBYIST

As reviewed in this issue

THE ONLY COMPLETE MICRO-COMPUTER AVAILABLE TO THE HOME CONSTRUCTOR

FEATURES

* Supplied in kit form for self-assembly
- Full documentation supplied

Full 48 key keyboard included plated through hole printed circuit board

- $2 \mathrm{~K} \times 8$ Ram
- Powerful Mostor program in Eprom
\star Powerful Mostek Z80 CPU
* 16×48 character display interface to std un-modified T.V.
* On board expansion to $2 \mathrm{~K} \times 8$ Eprom speed access
* On board exparnsion to $2 \mathrm{~K} \times 8$ Eprom
- Memory may be expanded to full 60 K / © lines
- Memory may be expanded to full 60 K (plus 4 K existing on board)

SOFTWARE FEATURES

- $1 \mathrm{~K} \times 8$ monitor program providing
* 8 operating commands, supporting Mem examine/modify, tabulate, copy break, single step execute tape, load, tape dump.
* Reflective monitor addressing for flexible monitor expansion through user programs
Monitor sub-routines include - delay ASCII coding, binary to hex conversion, cl screen, scroll up, string print, cursor shift and many others

EXPANSION

* Expansion butfer board
- Memory board, with decoders and all hardware except memory iCs
- 8 K dynamic memory ICS
* 16 K dynamic memory ICS
- 32 K dynamic memory ICS
will accept up to 3 PIOs, 1 CTC and 1 UART
NEW "B-BUG" extended monitor in 2 K of EPROM. Fully software compatible with NASBUG, supporting additional features -
Full keyboard shift for all 128 characters, full cursor movement routines, Read ASCII code directly into proge load and dump). H and N commands (for inserting jumps), Generate command (for automatic programme star calculating relative Intelligent copy (for non-destructive relocation of DAT
handling, ASCII to BCD and BCD to ASCll routines and many . Random, block 2 EPROMS + full documentation - $£ 24.50$.
* S.a.e. for full expansion details.

OTHER HARDWARE

* 2.2A power supply for up to 4 K expansion
* 8A power supply for larger than 4 K expansion
- Programming manual
* Hardware \& software manuals (supplied in kit)

Trade, Govermmant and Educational Enquiries Invired
Add VAT at $\mathbf{8} \%$ on all items exeept manuals
Demonstrations Continuous at our Store
£197.50
+VAT 8%
POST"PAID

S100 PRODUCTS

LOGOS I BK STATIC RAM

DC HAYES DATA COMMUNI－ CATIONS ADAPTER

MICRODESIGN MR－16 2716 EPROM BOARD

TARBELL FLOPPY INTERFA	
＊Jumper Selectable	－Persci，Shugari，etc
Assembled and lested	\＄269．95
Bare PC Board	\＄ 39.95
NOTE：FO CPM Add S	$\$ 70,00$

TRS BO UPGRADE KIT

 or fallouts．Guaranteed money back．We stand behind our products．| DATABOOKS a manuals | | | | | | DISKETTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ${ }^{1} 19{ }^{\text {a }}$ ， | AMMEStiction | 395 | We． | | |
| 7， | \％ 45 | | \％50 | W．\％wim | | |
| Say | | | ， | Mo．Moutamam | | |
| Somer | 23 | OS | 覅 | Min smision | | eath |
| | 緼 | \％is． | 49 | 2 | | NORTH STAR MINI
 5495 rach $5450 \div 0$ |
| 二isturaty | \％ | Stisit | 19\％ | bin minein | | |
| S543 woma | ${ }^{4}$ | 2at | 3\％ | Ta | | |
| Prgass Hathem | ${ }_{4}^{195}$ | | | ${ }_{7}$ | ＋+5 | momi |

$6800 \begin{aligned} & \text { desianer boahos } \\ & \text { moovLes proto }\end{aligned}$

NEK 6800 D2 Kil
95006800 MPU Module

360116 siot Mother Bo $\$ 80216$ siot Card Cage P504 System Powert Su 9610 P．Porlype Board $\$ 82016$ port parailet lio $\$ 525$ ak Static HAM 9526 K 8K STatic RAM．Ki E30 Extenden Card | 550 Muthple Tuner Prog |
| :--- |
| -55 a |
| -50 |

 AME EVK 200 Ki
A5：EVK 300 Assembled

NEW CTS DIPSWITCHES

8080 USER＇S LIVERMORE BASIC

GENERATORS

TV CHIPS

microfile

Gary Evans has found himself a new home this month and reports on a way to save money and the latest in train controlers amongst other things.

OVER THE PAST FEW months the advertising pages of ETI have seen the inclusion of a number of American firms offering a wide range of components aimed in the main at the DIY computer hobbyist. The prices of many of the goods available, when converted into pounds, make very attractive reading. The snag - ahd there must be one - is just how do we go about getting the things over from the States.

The procedure is not as harrowing as one might suspect. The first thing to do is to identify exactly what it is you want to buy and the exact cost in dollars of the goods plus packing. Go along to your bank with the advert and tell them exactly what you want to buy and the cost in dollars. They will prepare a dollar draft, a document which, in conjunction with a sister bank in the States, will be as good as cash to the firm supplying the components. Note that your bank account will be debited at this stage.

Now its just a matter of sending off the draft plus your order - the things should arrive in the post within the next few days.

If the firm in the States 'does a bunk' with your hard-earned greenbacks, however, getting anything back will prove very difficult if not impossible. We would let you know of any companies that we know are not honouring their orders but it would be best to place a small order to try out a firm's credibility before parting with a large amount of money.

I might mention that an advert in last month's ETI, not even I've seen this month's ad pages, from an American firm, is advertising a TR5-80 16 K conversion kit with information about which jumpers to change for a good bit under $£ 100$. When you compare this to the $£ 200$ plus Tandy want in addition to the fact that with the DIY way you keep your original 4 K , you can see that shopping in the States can be very profitable.

Club Together

I've had a few, not a lot, but a few replies to my 'Club Call' a couple of months ago.

In the Midlands, a group of the ACC has been having successful bi-monthly meetings for about a year contact John Diamond at 27 Loweswater Road, Binely, Coventry. Also in the midlands is the West Midlands Computer Club which has just held its first meeting in Brierly Hill. Contact Tony Bridgewood on 021-557 6709.

Now a plea for those interested in starting a branch of the ACC in Bristol, those interested contact Rex Godby at 16 Williamson Road, Ashley Down, Bristol.

Finally the Cambridge University Processor Group (they've got very nice notepaper) which despite the name is open to everyone and holds regular meetings during term time (that's about four months out of twelve from what I hear). Tim Hopkins is the man to contact at Magdaline College, Cambridge.

In all the above cases please enclose an SAE with any letter.

News of another firm generating games - initially for

- you quessed it PET - the firm plan to expand into Z80 machine code programs - NASCOM, MICROS, RM 380 Z with possibly games for KIM-1.

Mini micro are at 47 Queens Road, London, N11 2QP. Their catalogue is available - again send an SAE.

Shocking Story

It was my pleasure to build up one of the Triton prototypes. Enough has been said about the machine elsewhere in this issue, I'll just add my congratulations to the designer Mike Hughes for producing a really excellent project.

Before leaving the subject you might be interested to hear of an experiment I performed with the machine. It was designed to test the Triton under extreme conditions, namely applying high voltage AC the selected components via a high resistance. Needless to say I was the high resistance and the fact that I'm telling the tale show I'm OK, the Triton hardly twitched which could not be said for me.

House Trained

Details are scarce, but the model train exhibition at the end of August saw the preview of an MPU controlled train system.

Designed by Hornby, who have designated it the Zero-1, the controller will enable up to 16 trains to be controlled on a layout, each being called up by a key pad. The trains will have programmable levels of inertia.

This is not a section' system, control being, presumably, by a pulse code system. The conversion of the train is simple, a small circuit block being inserted in the motor's power lines.

Due for launch late next year the Zero- 1 should make Christmas ' 79 something to remember, as at a price of about $£ 30 / £ 40$ it must be a must, to coin a phrase.

[^6]

MICROCOMPUTER BARGAINS

We have a stock of untested microcomputer PCB's which are surplus to our requirement. Each board contains an Intel 4040 (CPU), 4201 (Clock), 4289 (Standard Memory Interface), 5 MHz crystal, zero crossover detector cct, power on reset cct, skts for $6 \times 1702 \mathrm{~A}$ PROM and on board power supply containing transformer, rectifier, regulator, heatsink and reservoir capacitor. These PCB's are sold with data on all chips and cct diagram, as untested units at the bargain price of

$£ 19.00$ ea

Also available
1702A memory, used but erased
$£ 6.00$
1702A memory programmed to
your requirement
$£ 7.50$
6265 gen purpose i/p-o/p device £5.00

Cheque / Postal Order to

VERDURE LTD.
 54/64 Morfa Road Strand, Swansea

Mail Order Supplies Only
Tel: (0729) 41241 /462684

MEMORIES

2112 (256 x 4 Static RAM)
£1.11
2ILO2 (450ns)
£ 1.07
(1K x 1 Static RAM)
21 LO (250ns) £ $\mathbf{1 . 6 0}$
2114 (1K×4 Statis RAM)
$£ 7.70$
$4027(300 n s$, equiv 2104$) £ 2.02$
($4 \mathrm{~K} \times 1,16$ pin, Dynamic RAM)
5208 (equiv. 2107) £3.21
($4 \mathrm{~K} \times 1,22$ pin, Dynamic RAM)
4116
$£ 18.00$
(15K $\times 1$, Dynamic PAM)
2708 (1K×8 UVEPROM)
8080A (CPU) £7.45
81 LS95 (Buffer TriS) 75p
81 LS 96 (Buffer TriS) 75p
All VAT inclusive
$35 p$ for $p \& p$ orders under $£ 5$
Please write for discounts over 100 pieces
ALL FULL SPEC AND UNUSED
(Mall Order only)

PET CORNER

Lotus now carry an exciting range of products for your CBM PET.

26is Memory Expansion

* Mounts inside PET
* Runs from PET's own power supply
* Takes 10 minutes to fit
\star Includes memory test program
* 6 month warranty
£399 inc. VAT \& P\&P

MUSIC BOX

Turns your PET into a programmable musical instrument. You can record and play up to 90 pages, 16 notes per page, change tempo, key etc
£ 37.50 inc. VAT \& P\&P

T.I.S. WORKBOOKS

A set of 5 workbooks to give you a full understanding of all the ins and outs of your PET more fully than any previous manuals.
£15.95 per set inc. P\&P

Dustcover $£ 17.95$ inc. VAT $\&$ P\&P
Lots of software and other goodies. Send large SAE.

INTERESTED
 IN HOME COMPUTING?

Start now and don't get left behind THE NASCOM 1 is here
Ex-stock with full technical services

Introducing the personal computer you've waited for. THE EXIDY SORCERER.

SORCERER

COMPUTER SYSTEM
The Sorcerer Computer in a completely astenderd and resked computtr systum.
Standard configuration includes $63-\mathrm{key}$ typewriter style keyboard and 16 -key
numberic nurtier ic pad 280 processor, duat casserre
$1 / 0$ with remivet compute,
 and 1200 baud data rates, RS232 serial $1 / / \mathrm{C}$
for communications. paraliel port lio direct Centronich printer atitachiment ROM Operatimg system, 8 k KOM
Microsoit BASIC in Rom PacTM cartidg
composite video of 64 char/line 30 .ine: composite video of 64 char/line 30 linet
screreen, 128 upper/lower case ASCII set soreen, 128 upper |lower case ASCII set
and 128 s ser det ned graphic mbols, operation manual, BASIC programming manual and cassette/videc cables, connect ion for $5-100$ bus expansion. only $£ 950$
$+8 \%$ VAT

AS SEEN ON OUR STAND AT PCW SHOW

LOOK!

32 k RAM (16 K available)

- RS232 interface - 8K BASIC ROM - CUTS interface 4K MONITOR - \$100 BU User defined graphic symbols - 280 cpu

VIDEO GAMES \& Components
 UHF Vision modulator Standard channel 36

Sound modulator compatible with above
AY-3-8500 6 Games 4.90 PCB 1.90 AY-3-8550 6 Games $\quad 3.90$ PCB 1.90 •ETI Tank Battle AY-3.8610 10 Games 5.90 PCB 1.90 kit - iust add AY. 3.8760 Motor-bike 6.90 AY-3-8710 Tank-battle 6.90 AY-3-8603 Road Race 5.90 CB 1.90 PCB 1.90 РСВ 1.90 РСВ 1.90
controls £14.90 reduced from £19.90.

JOYSTICKS - $£ 1.90$ each Dual 200 K lin

COMPUTER COMPONENTS

A selection of our Computer components

CPU AND SUPPORT DEVICES			MEMORIES			
280	cpu $\quad 14.90$					
Z80A	cpu $\quad 20.50$		21L02	$\begin{aligned} & 1 K \\ & 1 K \end{aligned}$	40	
280 880	P1O CTC $\mathbf{9 . 9 0}$ 9.90		2101	1 K	1.40 2.95	
8080A	cpu 1.95		2111	1 K 1 K	5	
8212	8 Bit l/O Por1	3.50	2114	1 K 4 K		
8214	Priority Interrupt Control	9.00	4116	16 K	19.90	
8216	${ }^{\text {Bi- Directional }}$ Bus Driver	3.75	1702A	256B	5.00	
$\begin{aligned} & 8224 \\ & 8224-4 \end{aligned}$	Clock Generator \& Driver ($2 \mathrm{MH} \mathrm{z}^{\text {\% }}$) Clock Generator \& Driver (4 MH)	3.50	2708	1 K	10.90	
8226	Inverting Bi-Directional Bus Driver	9.95 3.95		(NASBUG)	13.90	
8228	System Controller \& Bus Driver	7.95		(5V, INTEL)	29.00	
8251	Srstern Controller \& Bus Driver	7.50	OTHER			
8253	Programmable Interval Timer		USEFUL DEVICES			
8255	Programmable Peripheral Int.	12.00				
8257	Prog. Direct Mem. Access Cont,	17.95	6576 char gen 6402 UART 1771 Floppy disk controlier		$\begin{array}{r} 10.90 \\ 9.90 \end{array}$	
8259	Programmable interrupt Cont.	17.95				
6800		11.90				
${ }_{6810}^{6810 p}$	128×8 Static Ram (450ns)	4.95			49.0	
6820 P	128×8 Static Ram (250ns)	6.00				
6821 P	Peripheral Inter face Adaptor	5				
6828P	Priority Interrupt Controller	11.25				
6834 P	512×8 Bit Erasable Prom, 500	16.95	British Magazines and books for the Computer			
6850P	Asynchronous Comm. Adaptor	9.75				
6825 P	Synchronous Serial Data Adaptor	11.75	Hobbyist.			
6862 P	2-600 RPS Modem	10.00	Prices always changing (usually downwards) Phone with your requirements			
6871P	Clock	28.00				
6875P	Clock	8.75				
6880 P	MPU Bidir, Bus Ext.	2.50				

All prices include VAT except where shown. Orders over $£ 5$ post and packing free otherwise add 20 p.

COMPUTER COMPONENTS

[^7]
ETI MARKET PLACE

Digital Alarm

Size: 105 mm wide 115 mm deep $\times 55 \mathrm{~mm}$ high.

THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.
The Hanimex HC-1100 is designed for mains operation only $(240 \mathrm{~V} / 50 \mathrm{~Hz})$ with a 12 hour display, AM / PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim / Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a locking switch is provided under the clock. A 9-minute 'snooze' switch is located at the top.

ع8.95

(Inclusive of VAT and Postage)

An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:
Hanimex Alarm Offer
ETI Magazine
25-27 Oxford Street London W1R IRF

Please find enclosed my cheque P0 for $£ 8.95$ (payable to ETI Magazine) for a Hanimex Digital Alarm Clock.

Name
Adress

New low price!

The enormous numbers involved in ETI offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate.

This watch gives continuous display of hours and minutes press the button once and you'll get the date (American style). After a couple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display

Press another button and you get a back light, enabling you to see the display in the dark. Setting, or resetting is simplicity itself and a hold facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year

£8-95

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

To:
LCD Watch Offer
ETI Magazine
25-27 Oxford Street
London WIR 1RF
Please find enclosed my cheque/PD for £8.95 (made payable lo ETI Magazine) for my LCD Digital Watch.

Name
Address

Please allow 14 days for delivery

AUTOCHORD PART ONE

WHILE NÖT QUITE an instrument in its own right the auto chord is certainly more versatile than the common or garden rhythm generator

The instrument is designed to be added to the lower two octaves of an organ and will provide a variety of accompaniment controlled by the mode selected.

The specification shows that the eights rhythms provided cover most requirements and gives some idea of the extra facilities offered by the auto chord.

The instrument will offer chords major or minor third, fifth or diminished fifth and sixth of seventh. It will also provide a walking or alternate bass as well as arpeggios.

They say a picture is worth a thousand words, and at this moment we feel that at some time someone must have said much the same about sound. It's difficult to convey all the facilities offered by the auto chord on paper, so if you cannot visit Maplin's shop, where a unit will be on demonstration, you will just have to take our word that the auto chord provides everything that the solo musician could want.

The auto chord is designed to be incorporated within existing organs and is easiest to interface with a DC keyed organ although it is possible to use the auto chord with a direct keyed instrument.

Full constructional details plus a description of the auto chord in use will be presented next month.

SPECIFICATION

8 selectable rhythms Covering waltz, rock to Latin. Latin American rhythms can be combined. Non-Latin American rhythms can be combined.
5 instruments

Bass. Snare drum. Low bongo. Claves. Cymbals.

CHORD ACCOMPANIMENT (with keyboard)

Three mode selection
 1. AUTO

Playing one note produces a chord structured around this note, and will play continuously. SEMI-AUTO
Individual notes or chords played are remembered and played continuously. MANUAL
Notes or chords played only continue whilst the keys are held operated.

AUTO RESET

Variable bass. Delay-auto-stop and over-ride in all 3 modes. On/off. Walking or alternating in modes 2 and 3. A minimum of three notes. Must be played for bass accompaniment.

Auto: On/off.

Chord accompaniment: On/off.
Two octaves progressive in modes 2 and 3. Selectable maj/min 3rd/7th.
Variable tempo
Harmonic attack
Arpeggio
Five tones added in short bursts Three selectable pitches
Chord accompaniment volume
Rhythm volume

FRONT PANEL CONTROLS

SW1	Mains on/off
SW2	Auto on/off
SW2 to 10	Rhythm select
SW11	Chord on/off
SW12	Harmonic attack
SW12	Major/minor 3rd
SW13	7th
SW14	Bass on/off
SW16	Bass - walking/
SW17	alternating

SW18	Auto/semi-auto/ manual
SW19	Auto-stop/ continuous
SW20	Autoreset
SW21	Arpeggio.Off/1/2/3
R13	Tempo
R26	Auto-stop time delay
R131	Auto-accom. volume
R140	Rhythm volume

PARTS LIST

R107, 112, 119.	
R196, 213, 228	2M2
R108	4M7
$1 / 4 \mathrm{~W}$	
R141	39R
R110	100 R
R146, 147	180R
R144	330R
R142, 145	820R
R148	1 k 5
R194	43k
POTENTIOMETERS	
R111	1 kO
R61, 247	47k
R164, 190, 202	100k
R109	470k
R68, 84, 97	1 MO
CAPACITORS	
C68, 72, 79, 86, 93.	
$94,95,101,103 .$	
110	10 n polyester
C100, 111.85	22 n polyester
C21, 22, 23, 107	$33 n$ polyester
C5, 11, 17, 25, 31.	
$35,70,99,105,10847 \mathrm{n}$ polvester	
C10, 40, 71	68 n polyester
C1, 12, 20, 28, 30 .	
47, 69, 76, 104, 109100 n polyester	
C75	150 n polyester
C9	220 n polyester
C13-16	27 n polycarbonate
C24	$47 n$ polycarbonate
C6, 7, 8	82 n polycarbonate
C2, 66, 97, 106	1 u 0 polycarbonate
C3	1 nO ceramic
C19, 27, 29, 33.	
38,43	10 n ceramic
C4	22 p ceramic
C78. 80	220 m mylar
C49,52,55	100p polystyrene.
C44, 74, 88, 96	330p polystyrene
C73, 89	470 p polystyrene
C91.92	680p polystyrene
C39, 90	1 no polystyrene
C32	1 n 5 polystyrene
C45, 87	2 n 2 polystyrene
C18, $26,36,41$,	
67, 82, 83, 84	3 n 3 polystyrene
C102, 77, 81	4 n 7 polystyrene
C34	6 n 8 polystyrene
C98	lu5 63 V electrolytic

C48,50,51,53,54
56, 59, 60, 64, 6510 u 25 V electrolytic C37,42 22 u 10 V electrolytic C58, $63 \quad 100 \mathrm{u} 25 \mathrm{~V}$ electrolytic C61,62 220 u 16 V electrolytic
$\mathrm{C} 57 \quad 470 \mathrm{u} 25 \mathrm{~V}$ electrolytic C46 $\quad 1000 \mathrm{uV} 16 \mathrm{~V}$ electrolytic ${ }^{\circ}$

SEMICONDUCTORS

IC1	M254
IC2-5	4011
IC6	M251
IC7	M087
IC8	4069
IC9-11	741
IC12	4016
IC13	4013
O1-4, 7, 8, 10, 11,	
12,13,15,16	BC548
Q9,14	BC177
Q5	BFY51
Q6	BFX87
D1-86, 94, 105	1N4148
D87-90	1N4002
D91	12V400mW
D92	SV6400mW
D93	$12 V 400 \mathrm{~mW}$
LED1	TIL209

SWITCHES
SW1 Mains latchswitch
SW2 2 pole latchswitch
SW3 to 10 8. 2 pole latchswitch
interdependent
SW11 2 pole latchswitch
SW12 2 pole latchswitch
SW13 2 pole latchswitch
SW14 2 pole latchswitch
SW16 2 pole latchswitch
SW1 72 pole c/over latch-
SW18 4p. 3W rotary
SW19 2 pole latchswitch
SW20 Push (break) sw
SW2 1 3p. 4W rotary
MISCELLANEOUS
PCBs, 15-0-15 250mA transformer. fuse plus holder, sockets, clip on heat sinks, cable, etc.

Production problems have meant that the circuit diagrams feor this project are without the usual component annotations.

Circuit diagrams of the generator and coder

HOW IT WORKS

PRE AMPLIFIER

The chord and rhythm outputs are amplified and filtered in ICs 9 and 11 respectively. The outputs from these devices are fed, via level control potentiometers to the input of ICl0. This mixes the two signals and provides the final output of the instrument at a level suitable for feeding to a power amplifier.

POWER SUPPLY

The various ICs used in the auto chord require supplies of $+12 \mathrm{~V},+11 \mathrm{~V},-5 \mathrm{~V}$ and -11 V . The +12 V line is derived from the rectified AC output of T1 by the series pass element Q5. The voltage at the emitter of Q5 is determined by D91, a zener diode. The +11 V supply is a simple shunt from the 12 V line.

The -5 V line is again a series pass circuit, this time the output voltage being set by D92.

The - 11 V rail is simply stabilised by zener diode D93 as the current demanded from this rail is not enough to warrant the use of another series pass transistor.

The LED supply is taken from the negative voltage rail and is current limited by R148.

GENERATOR AND CODER

The rhythm generator section of the instrument is centered on IC1. This is the M254, a device that contains a ROM that will drive the sound generators with a selection of eight rhythms. To select a desired rhythm, the appropriate input must be taken to ground, via SW3-10, will the other inputs are held high by resistors R1-R9.

The M254 requires a clock signal to operate and this is generated by the CMOS oscillator formed by IC2. The frequency of this oscillator, and ultimately, the tempo of the rhythm, is controlled by R13.
The arpeggio, chord and bass accompaniment are generated by IC6, the M251.
The IC is fed with 12 input frequencies from the tone generator, IC7. This is clocked by the output of the CMOS astable based on ICSC and d.
The M251 is used in conjunction with the M254 which is responsible for the selection of the various notes in the arpeggio/chord/bass accompaniment.

The M251 features a number of different modes of operation, in the automatic mode, anen a number of keys in the two available coctaves are played, the lowest note will be taken as a reference and memorised.
The memorized key, by means of an inter--ad multiplexer, selects the corresponding zonic and all other notes programmed for =peggio, chord and bass accompaniment.

In the semi-automatic mode, the M251 will -emorise the lowest four keys played ogether with the top note played. The circuit -ill then provide accompaniment until the -ode is cancelled by selecting automatic -ode briefly and returning to semieutomatic while no keys are played.
The semi-automatic mode can also be wected without memorization of keys.
Due to the pin out restrictions of the 40 pin -aciage a system of multiplexing has had to -e adopted, this explains some of the comElexty in this area of the circuit.

Circuit diagram of the preamplifier

Circuit diagram of the power supply

Circuit diagram of the voice generator

HOW IT WORKS

VOICE GENERATOR

THE bass drum, tom-tom and low bongo sounds are generated by the damped sinusoidal oscillators based upon the six invertors of IC8. Each of the oscillators are the same apart from the values of the timing capacitors which set the characteristic frequency of
oscillation. oscillation.
In each oscillator the variable resistor (R68, R84 and R97) will control the rate at which any oscillations will delay once triggered by the M254 rhythm generator.
The square wave output of the M254 is held low by a resistor, necessary because the M254's outputs are open drain, and fed via a differentiating network to the damped Oscillator. A pulse from the output of the M254 will trigger the characteristic instrument sound.
In addition to the output of the damped oscillator based on IC8c and d the tom tom, to give it a more realistic sound, contains a white noise component.
The white noise is produced by the reverse biased zener effect of Q4 and after filtering and buffering, by Q1, with further filtering by Q2, is mixed with the oscillators output to provide a realistic tom-tom sound.
The brush sound consists of filtered white noise, the white noise again being generated by $\mathrm{Q4}$ - the filtering this time being performed by Q3 and associated components.
The clave output is generated by the resonant circuit centered around L1 and C30.

The outputs from the various voice generating circuits are summed and fed to the instruments pre-amplifier.

BUYLINES

Maplin Electronics will be supplying a Contact Maplin for details of price complete kit of parts for the auto Full constructional details for the chord, including screened boards. auto chord will follow next month.

Next month - full constructional details plus the auto stop board.

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ $-8 \% \mathrm{VAT}$, it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM135 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, Lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PD $M 135$ is eeffectly suited for hand work in the tield, while its angled display and optional AC power facility make it iust as useful on the bench.

What you get with a PDM35

3) digit resolution.

Sharp, bright, easily read LEI)
Jisplay, reading to ± 1.999.
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA
0.0001 HA

Direct reading of semiconductor
Sonsard voltages at 5 different currents,
Tusstance measured up to 20 M 亿.

- of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 Ms input impedance.

Compare it with an analogue meter!

The PDM 35's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of 10 Ma 1 is 50 times higher than a $20 \mathrm{ku} /$ volt analogue meter on the 10 V range.

The PIDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over ζ decades of current.

Technical specification

DC Volts (4 ranges)

Range: 1 mV to 1000 V
Accuracy of reading $1.0 \% \pm 1$ count. Note: 10 Ms input impedance. AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: 1 V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts. DC Current (6 ranges)
Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max, resolution 0.1 nA .

Resistance (5 ranges)

Range: 1 s to 20 Mas .
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / 1 / 2$ in.
Weight: $61 / 2$ oz.
Power supply: 9 V battery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

The Sinclair PDM35 comes to you fully built, tested, calibrated and guaranteed It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ P() for the correct amount usual 10-day money-back undertaking, of course, and send it to us.

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ, England. Regd No: 699483.
To: Sinclair Radionics Itd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ.
Please send me__ qty PDM 35 s
It $£ 32.35$ (incl. V'T each
if $\AA 3.24$ incl. VAT each...................

- qty AC adaptor's for 240 V
power if $£ 3.24$ incl. VAT each..
Post and packing please add \& 0.65
I enclose cheque $P \mathrm{P}$) made payable
to Sinclair Radionics Itd for
(indicate total amount
I understand that if I am not completely
satisfred with my PDM 35, I may return
it within ten davs for full cash refund.

CITIZEN large reductions
FAIRCHILD TIMEBAND
C6110 Mains diginal alarm clock

STILL THE BEST! Large LED display 24 hour alarm 9 minute snooze concealed controis
$3 / 4 \times 5 / 6 \times 31 / 6$ ins. Black or white
£10.95
FROM CASIO - OF COURSE BEDSIDE TRAVEL ALARM CLOCK
Okay, genius, so you KNEW Casio would bring one out soon! were right to wait
Provisonal spec. LARGE 6 digit LCD display. Night light
£19.95
AQ-1000 CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH
Hours, minutes, seconds, am/pm, 24 hour Alarm with sign, Stopwatch: Net
times, lap times, 1st \& 2nd place times from $1 / 10$ sec. to 10 hrs with $S T \& \perp A P$ signs. Calculator: 4 key memory. \%, 1 year batteries, ± 20 secs/month. $1 / 4 \times 21 / 9 \times 4$
RRP E26.95

> Our Price £21.95

CQ-81 CALCULATING ALARM CLOCK. Plus 2 Alarm Tmers. 24 hour alarm and alarm/timers, 6 digit LCD clock One year battery life. $15 / 8 \times 23 / 4 \times 5$ inches RRP E22.95)
£17.95
FX.8000. 41 sc funct $1 / 100 \mathrm{sec}$ slopwatch 2×5 Alarm/Timers (€35 95)
£29.95

Full memory, \%, V' K
FX -48 Math. Card. Full SC, with S D
E16.95 ST-24 Card Time. 24 hour stopwatch (or Elock) $\mathbf{E 1 9 5}$ Alarm /Timers, Calc. as LC-78
All Casio scientifics. Lowest prices £19.95
ST-1. Four way stopwatch
$£ 24.95$

CARTRIDGE T/V GAMES

OPTIM Coronet 600

$£ 48.50$
FAIRCHILD TIMEBAN
Cartridges from E12 50 £169.95
The very best available to dete
Cariridges from $£ 14.95$

* SPECIAL INTRODUCTORY OFFER

FREE extra cartridge worth $£ 1495$ with Alari

SAVE E£Es WITH THE MONITEL

\qquad
\qquad

Chrono

THIS MONTH'S STAR BUY

TODAY'S MOST ADVANCED ELECTRONIC WATCH
Hours, minutes, seconds.
Perpetual calendar
from 1/10 second to
12 hours
Mineral glass face

Stainless steel case, bracelet

10 micron gold plated

SOLAR powered watchas - so callod.

Misrepresentation? We WON'T sell them
LED display watches - we don't sell them. Send us a
PH-ALARM and ALARM CHRONO
ALARM (Lefi)
secs or date.
day, am/pm Day, date,
month. yea
$£ 28.95$
chrono
Functions
as abo
plus

Chrono. Measuring net, lap and 1 st \& 2 nd place times from All stainiess steel, mineral glass $\mathbf{£ 3 9 . 9 5}$
CBM, 6 DIGIT and ALARM WATCHES
16×3 (Left) 6 digits. 6 functions £13.95
ALARM 18×3 (Right) 6 digits 6 functions 5 alarm setting £27.50

analogue

BICO 700. Cushion shape, Day, Mineral glass face. Water esistant to 100tr.
Ladies' LCD WATCHES
5 functions, Backlight. Gold or silver finish Dres Ph.L2
Matching
aracelat
£14.95
Cocktail
Internal
bracelet
$(4$ other
(4 other
£18.95

CASIO LADIES' LCD WATCHES

P\&P. Send your cheque, PO or phone your credit card no

CASIO QUALITY

All CASIO watches have a calendar display, night illumina tion, mineral glass and stainless steel cases, water resistant to

SPORTS WATCHES

F-100

Left, 945 m
£24.95
$520 \mathrm{~s}-14 \mathrm{~B}$
Right 8 mm
(E44 95)
$£ 34.95$

Up to 25 functions. Net, lap and first and second place ,S Ses to 100 th sec. F-100. Resin case, strap 52QS-14B.

4 DIGIT WATCHES (except Worid Time). Hours, minutes, en seconds, seconds by flash, am/pm. Day, date, month, Slopwach. Dual time (except 310R-20B)

DIGIT WATCHES (except Sports and Alarm). Hours, minutes, seconds, day OR Hours minutes, date, day, ten bends. second by mash day date, month, year. Select able 12 hour (with am/pm) or 24 hour clock

CHRONOGRAPH. 6 digits as above, with stopwatch measuring net, lap and 1 st \& 2 nd place times from $1 / 100$ sec to 6 hrs. Dual time facility

WORLD TIME WATCH. The time in ten capitals plus one optional time. Instant summertime correction. Hrs, mins, 10 secs, secs by flash. Perpetual calendar, day, date, month Running digital seconds display.

ALARM WATCHES

Hours, mins, seconds (or hrs, mins, date) day, am/pm. Day date, month, year. 24 hr . alarm, on/off indicator.

ULTRA SLIM DRESS WATCHES (Not 24 hour)

Not illustrated $53 \mathrm{CS}-19 \mathrm{~B}, 4$ digit, barrel shaped, $\mathbf{E 5 4 . 5 5}$ 49CS-24B, 6 digit (£74.95) £59.95. 53CGS-17L. Gow ated. on strap (e84 95) £69.95.

Cambridge. Tel. 0223312866

Achtrintisitotat
 international

What to look for in the December issue: On sale Nov 3rd

ETI LIGHT SHOW

HANDS UP all those who've never been to a disco. None? Good - that means you've all seen sound-to-light units in action, although it's more than likely it was a normal threechannel affair. Usually boring, are they not? Well ETI plans to change that next month; ours has five frequency channels, with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straight sound to light, or have it strobe all lights. At a
speed dependent upon music level (not volume - the unit is independent of that!) or hand over control to an internal digital circuit which produces some superb random effects. If you fancy a five colour manually controlled strobe unit it can do that as well!
Each channel handles up to 500 W of lighting, and a complete kit of parts will be available from Powertran, who designed this project especially for ETI.

Electronics in Model Railways
 An essential part of the education of any young

 man is his electric train (checking with ETI technical staff shows all eight had one - and five still have). Most of us however remember the controls as crude; today things are changing sophisticated electronic controls are perfectly suited to model railways and the manufacturers are about to announce some dramatic advances We take a look at what's happening
CURVE TRACER

Evising the shape of Voltage-Current charac -rics of diodes, transistors and other non-linear Doss is usually dull as it normally involves a a more elegant solution is aval data
A more elegant solution is available to anyone a DC coupled scope capable of taking an E-emal X-input. Next month we carry a project the additional circuitry necessary to do this yoursel:

How It Works

In the November issue we begin a new type of article. The idea came to us when discussions with xperts in one area of electronics admitted to almost total ignorance of other areas - especially commercial circuitry. Mass-produced electronics use techniques which are not widely understoo elsewhere - we hope to put that right. In the first of this occasional series we have asked Gordon King to discect a Thorn Monochrome TV; we shall show the complete circuit and explain the function of each stage. It's not done as a beginners series but to give those outside this field the true "Inside

Car Anti-theft System

...- project to build but sophisticated in it - -anates several features of large and expens - conmercial systems and using state-of-art $\ldots \ldots$ ut is extremely reliable. A kit will be

computing today No. 2

Win a IRITON

Computer

Want to get your hands on a Triton Computer Kit but can't afford it (yet)? In No. 2 of our new supplement Computing Today, we have a free-entry competition for one to be won. If you've read this far you'll probably know what it's worth - but in case you don't it's about $£ 300$

Microprocessors by Experiment

Learn about microprocessors - not from some abstract description of a make believe MPU but by hands on experience with an MPU system. The series, based on the MK14 development kit, will take you through the operation of the SC/MP MPU and show you how to use it to do everything from control your heating system to land on the moon.

1/0 for 6800

The microprocessor user rapidly arrives at the need to understand and apply input/output circuitry to interface peripheral equipment to the computer system. A standard choice, when using a 6800 microprocessor, is to employ a Peripheral Interface Adapter (PIA). Many engineers now buy readybuilt systems then wish to utilise the PIA as straightforward outputs and inputs. When data sheets are consulted they are found to give concise yet complete hardware and software information. The user of a ready-built system needs help in simply getting the PIA to act as outputs and inputs without becoming involved in the intricate details needed by designers of microcomputer boards. This article aims to give this help.
our last index went back to the shows that 96% of readers never throw research copies it should be useful to most of you.

Features mentioned here are in an advanced state of preparation as we go to press but circumstances of preparation as we go to press but circumstancer
may affect the final contents of the rext issue

ETCH RESIST TRANSFER KIT SIZE 1:1
Complete kit 13 sheets 6 in $\times 41 / 2$ in £2.50 with all symbols for direct application to P.C board Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90 and 130 (8) $8-10-12$ T.O. 5 Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording Over 250 symbols, signs and words. Also available in reverse for perspex, etc Choice of colours, red, blue, black, or

GRAPHIC TRANSFERS
WITH SPACER
ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet $12 \mathrm{in} \times 9$ in contains capitals, lower case and numerals $1 / \mathrm{in}$ kit or $1 / 4$ in kit $£ 1$ complete. State size

AH orders dispatched promptly.
All post and VAT paid
Ex U.K. add 50p for air mail
Shop and Trade enquiries welcome
Special Transfers made to orde

E. R. NICHOLLS

P.C.B. TRANSFERS

DEPT. ETI/9
46 LOWFIELD ROAD
STOCKPORT, CHES.061-480 2179

SUPER SAVERS ALL FULL SPEC.

7490N-10p, £8-100, 7460N-10p. £8-100. ? $4190 \mathrm{~N}-15 \mathrm{p}, \mathrm{£12-100,74155-35p,741} \mathrm{(8DIL)} \mathrm{)}$ 17p. Min order 10 of one type $100+$ POA. P/P 20 p .
SLIDER POTS PIHER 47 K LOG. TRACK 70 mm . OVERALL 85 mm , SINGLES 20p, £15-100, DOUBLES 50p, $£ 40-100$. MIN. ORDER 10. $100+$ POA. P/P20p
SUPERB STEREO CASSETTE DECKS, BRAND NEW. PIANO KEYS, 6 V MOTOR. END OF TAPE STOP, USED IN NATIONAL PANASONIC MUSIC CENTRES USED IN NATIONAL PANASONIC MUSIC
VERO EDGE CONNECTORS 22×22 TYPE 2245 , 2.743140p, $42 \times 42 \mathrm{ww}$ KEY AT 7 TYPE $1360 / 2$ £1.

TRIM POTS 50Ω TO5 20p, 100Ω CERMET 20p, 100Ω PAINTON PCE $20 p, 200 \Omega$ DITTO 20p, 250Ω
DITTO $20 p, 500 \Omega$ DITTO 20p, IK DITTO 20p, 2 K DITTO 20p, 2 KO
OITTO 20p, $2 K$ HELITRIM 20p, 5 K PCB 20p, 1 MEG SKELETON MIN VERT 12p. P/P 20
CANNON "D" TYPE PLUGS/ SKTS. 15p-50p, SKT -50p, 25p-60p, SKT 60p, 25 RIBBON PLUGS 90 p, SKTS $90 \mathrm{p}, 37$ PLUG $80 \mathrm{p}, 5$
$50-$ W WRAP COVERS SKFS $\mathbf{1} 1.30$.
COVERS WITH RETAINERS, 15 WAY 60p, 25 WAY 80p, 37 WAY £1, 25 WAY PLASTIC (3M), 50p. ALL ABOVE LIMITED P/P 20p

All enqu
goods
Now distributor for Mutek Products including Ides Micro Systems In stock. Video Interface board, 16 line, 64 characters data and control inputs, video output Ideal P / P plus insurance, E1 Brochure avallable s a e

POCKET PAGER

Miniature crystal controlled FM RX Single Superhet around 30 MHZ 450 KHZ IF contains various tone detectors Ideal for modifications to 27 MHZ Radio mateur Band Complete, without
of similar type $£ 3.95$ P/P 25 p
L. B. ELECTRONICS 43 WESTACOTT, HAYES MIDDLESEX UB4 8AH

SEMICONDUCTOR OFFERS ALL FULL SPEC.

Common anode 2 N 381918 seg displays Moset Sim 104067335 p 3 N 140

 Mostets 50p M203 Dual Matched Pairs Mosfers Single Gate perEET 40 p Intel 1024 but MOS Rams 950 Mullard 88113 Per Varicap Diode 35p MC1310 Siereo Decoder I Cs E1 20 CD4051 CMOS 50p 7418 -pin D I L $23 p$. 500 v 600 mA Bridge Recs (ex
equip) 25 p iN4002 100 V A Diodes 4 p 14005 BOOv 1 ADiodes

 Candwidih M5 MAN LM 380 mop LED Displays 50 p 741 S (wide alpha-numerical Displays with data $£ 2.75$ ORP61, Mullard W. MICROPHONES. EM 506 Condenser Mikes Uni-directional switch E11 00 Miniarure Tie Pin Condenser mike 1 K imp
 Mike Inseris 37 mm 45 p Electret Condenser Mikes $1 \mathrm{~K} \Omega \mathrm{imp}$ with
std Jack Plug $\varepsilon 285$ Cassette Condenser Mikes with 25 and 35 Jack Plugs $\varepsilon 285$ Standard Cassente Mikes 200 ohm imped with MORSE KEYS - Hi-speed Type, all metal, E2 25 Plastic Morse
Keys 95p Belling Lee L4305 Masthead Amplliters and $240 \vee$ AC
 65 p 32 way 40 p
RELAYS. Min 220 v AC Sealed Relay 2 pole C/0 45 p 240v AC Sealed Relay 3 pole C/O 5 amp Contacts 11 -pin base BOp 12 volt
4 pole NO Reed Relay 20 M Min 24 OC Sealed 2 -pole C / O

Gearbox 30p 240 V AC Model 20 p 115 VAC min 3 R PM wit Synch Motor $1 / 24$ th R PM Motor 65 Crouzel 115 V AC 4 R PM

BOXES. Black A B S Plastic with brass inserts and lid $75 \times 56 \times$
$35 \mathrm{~mm} 40 \mathrm{p} 95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p} 115 \times 95 \times 16 \mathrm{~mm} 57 \mathrm{p} 225 \times$ $30 \times 84 \mathrm{~mm}$ £ 195

TOOLS. Radio pliers 5in insulated handles $€ 140$ Diagonal side MAINS TRANSFORMERS, all 240 VAC primary Posiage shown | | |
| :--- | :--- |
| $6-0-6$ | 100 mA | $\mathbf{9 - 0} 975 \mathrm{~mA}, 12-0-1250 \mathrm{~mA} .75 \mathrm{p}$ each (15 p) $100 \mathrm{~mA}: 95 \mathrm{p}(15 \mathrm{p}) 12 \mathrm{v} 500 \mathrm{~mA}$ A 95 p (22p) 12 v 2 Amp , 225

 enon/triac pulse transformer, 30 p

SWITCHES - Min Toggle SPST $8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p}$ DPDT $8 \times 7 \times$ 7 mm 60 p OPDT Centre Of $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$ DPDT C/
SIders 20 p R S Single Pole C/OP P Sh Butons 45 p . Roller Micro Witches 15 p Min Micro Switches $13 \times 10 \times 4 \mathrm{~mm}$ 20p Min
Push to make or push to break Swiches $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$

SOLDER SUCKER. Plunger type eye protection, replaceable each

TAPE HEADS - Cassette Stereo E3 00 BSR MN $13301 / 2$ Track Dual Impedance Rec / Playback 50p BSR SRP90 1/4 Track Stereo Rec Playback R Staggered Stereo with built-in erase per head -1 20 Tape Head Demag 240 VAC ci
BUZZERS-GPO Type 6-12v 20p Min Solid State Buzzers
$6-9-12$ or 24 v 15 mA 75 p All Metal Buzzer. 30 mm diam, $6-12$ volts high tone 25p
U. H.F TV Transisiorised Push Bution Tuners (not Varicap) new

MURATA MA401L. 40kHz Transducers rec/send. E3 25 pair
METERS-Grundig Bati Level Meter $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm}$ E1 10
Min Level Meler 200μ a $25 \times 15 \mathrm{~mm} 75 \mathrm{p}$ Ferranti 600 v AC Meter
EDGE METER - Large scale $0-100$ new $E 275$
POT CORE UNIT. Has 6 -pot cores including 1 FX 2243 (45 mm , and 2 FX2242 (35 mm) 320 mm Panel Fuseholders, 3 T03 SI

LA1230 adj core 15 mm dia $14 \mathrm{mH}-1 \mathrm{BmH}$. HIO O 10p each
8 TRACK 12 volt motors new, £1 25
CASSETTE MOTORS 6 volit new $£ 1.25$
SOLENOIDS-240v AC 45 p $12 v$ DCH Duty 75 p 240v $25=$
12-WAY MOTORISED CAM UNITS. 50 V AC low rev mever
偖
13 Amp rubber traller extension sockets, 38 p .
B WAY RIBBON-CABLE, min solid core, 15 p metre
POSTAGE REFUNDED WITH ORDER) OVERSEAS POST

SAE FOR LISTS
PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2 051-236 0982

GAIN CONTROL

PART 2

To conclude his survey of electronic gain control methods, Tim Orr presents us with more circuits which vary from a light bulb compressor to a markspace modulated universal filter unit, and a noise gate/expander.

Basic Limiter Circuit

Most professional limiter circuits use a FET as the variable gain element. Relatively low distortion with a reasonable signal to noise rati- can be obtained. A basic limiter circuit is shown this being no c.ifferent to previous circuits except for the variable gain element.

When a relatively small voltage (20 mV) is applied to the drain source of a FET, it acts like a fairly linear resistor. As the gate source voltage is varied, this resistor (RDS) also varies.

In fact the channel resistance RDS is inversely proportional to gate source voltage $V_{\text {Gs }}$. When $V_{g s}$ is ov, then RDS is at its generally minimum resistance ($R_{\text {ON }}$) which can be as low as $5 R$, but it is generally more like 100 R . When $\mathrm{V}_{\text {Gs }}$ exceeds the pinch off voltage (V_{p} or $V_{\text {GS }}$ off) the channel resistance goes up to several hundred Megohms. So a junction FET can be used as a voltage controlled resistor, except that $R_{\text {ON }}$ and $V_{G S}$ (OFF) tend to vary widely from device to device. However with a bit of perseverance suitable devices can be selected and made to work.

One circuit trick that greatly reduces distortion is shown here. Half of the audio signal at the drain of the FET is presented to the gate. This is superimposed on top of the control voltage and produces a distortion cancelling effect. Distortion levels below 0.1% can be achieved using this technique.

OUTPUT A

Transistor VCA

A circuit similar in operation to a CA3080 can be constructed with a matched pair of transistors and an op amp. Transistors Q1, 2 form a differential transistor pair which is used to sieer whatever current is available between the two collectors, just as in the CA3080. the difference between the collector currents is equal to the product of the input voltage times the current $I_{\text {EE }}$ times a constant. This difference is extracted by the differential amplifier IC1. The current $I_{E E}$ is controlled by $\mathbf{Q e}$. As the control voltage goes positive, Qe robs most of the current flowing down the 39 k resistor, and hence I EE and the output of IC1 decrease.

Two Channel Low Level Expander/Noise Gate

+12 V ?
IC7 is $\frac{1}{2}$ NE570
IC2 IS CA3140
D1,D2 ARE 1N4148

THRESHOLD	RA/RB
$-36 \mathrm{dBM}(33 \mathrm{mVpp})$	30
$-46 \mathrm{dBM}(10 \mathrm{mVpp})$	100
$-56 \mathrm{dBM}(3 \cdot 3 \mathrm{mVpp})$	300

Incredibly Simple Compressor

Not all gain control systems need be complicated or indeed active. One product which I saw advertised was a compressor to help prevent loudspeakeroverloads. All it was was a lightbulb in series with the loudspeaker. When the power exceeds a certa; level, the lamp will turn on, glow, its resistance increases dramatically and hence a bigger percentage of the power outpent is dissipated in the lamp. A nice, simple solution, but I think it would require some experimentation to find the right sort of c headlamp bulb!

It is often required that a rather noisy signal be cleaned up a bit. This is not possible to do continuosuly, but it is possible to clean up noise in what was initially the gaps. The results of this cleaning up process can quite often be heard when telephone conversations from "foreign correspondents" are broadcast.

By turning down the signal level in the gaps, (by performing a low level expansion) the perceived sound quality improves dramatically.

The circuit performs just such an expansion. The inputs signal passes through the variable gain cell and then appears at the op amp output. The gain of the gain cell is controlled by the signal coming from IC1. This is a high gain amplifier with diode clamping, so that the output swing is limited to about 1 VO ptp. Therefore for input signals of 10 mV pp to 10 V pp , the output of IC1 remains at about 1 VO ptp to 1 V 2 ptp .

So, for this range of input voltages the gain of the gain cell remains roughtly static. Now when the input level drops below 10 mV , the output of IC1 will start to fall and so will the gain of the gain cell. This produces a $2: 1$ downwards expansion curve, which means that the output then gets quieter at a rate faster than the input. To accentuate this effect, a bleed resistor can be placed in parallel with C.

The resistor robs some of the current that would have otherwise gone to the gain cell and causes the input output curve to roll off much more rapdily at low signal levels. Also, by varying the resistor ratio of RZ/RB, the expansion threshold level can be altered.

Switched Frequency Low Pass Filter

In this example the effective resistance is switched by using 4016 gates. The filter is a lowpass Butterworth and by turning gates A or B ON or OFF the cut off frequency can be altered. This allows the filter control to be physically remote or even to be computer controlled. Mark Space modulation of A and B would enable continuous control over the cut off frequency.

Four Quadrant Multiplication

(3)

(B)

- تsing a few circuit tricks, the CA3080 can be made to Fiorm 4 quadrant multiplication. In fact the CA3080 performs Iandrant multiplication and the trick is to move the axis on the m-niplying graph. If we ignore the RA resistor chain then we -re a quadrant multiplier circuit similar to that shown - iously. Imagine that V_{x} is a 1 kHz sine wave. 1 Vptp and V_{y} is 를. The output of IC2 is a sine wave of fixed amplitude. Now E We connect RA, and adjust the balance control, it will be - ine to cancel out the output, because the signal coming -IC1 is out of phase with that from the RA resistor chain. So $\geq \mathrm{V}$, set at 0 V there is no output for IC2. If V_{y} goes +ve , the - of IC1 will become greater than the current via the RA and the output if IC2 will grow.

F Y, goes-ve the current through the RA chain will exceed from IC1 and the output of IC2 will grow, the phase being moposite to that when V_{y} was a sinewave from an oscillator, then this circuit could be used to generate ring modulation effects.

When V_{x} is set up $O V$ there may be some V_{y} breakthrough and this can be minimised by adjusting the V_{y} rejection preset.

2kO

"'No. I thought you were supposed to bring the key!"'

[^8] got to talk about PRAMS!"

It is possible to change the gain of an amplifier by effectively altering the input resistor. This can be done by markspace modulating a voltage controlled switch in series with the resistor.

When the markspace ratio is low, the switch is OFF most of the time and the effective resistance is large. When the markspace ratio is high the switch is ON most of the time and the effective resistance approaches that of the series resistor.

Having generated a markspace control waveform, it is possible to gang up together literally hundreds of voltage controlled switches. This enables large numbers of variables to be simultaneously changed.

The circuit is a markspace modulated universal filter (IC-6) and the markspace generator itself (IC-11).

IC7-10 forms a triangle square wave oscillator. IC7 is an integrator whose outout ramps up and down between OV and a +3 V reference. IC8-10 are all fast comparators. IC8 detects
when the integrator outputs of IC8 \& 9 are used to flip over a schmitt trigger IC10, which then drives the integrator. Thus the integrator output ramps up and down between OV and +3 V at a rate of $\mathbf{2 0} \mathbf{~ k H z}$.

It is important that the frequency of the markspace oscillator be relatively high. As a rule of thumb it should be $21 / 2$ times the highest frequency components of the signals that you hope to process. The triangle output is fed into IC11's inverting inpurt. the control voltage into the non inverting input. The output of IC11 is the markspace modulation which is used to drive the switches IC5,6. The filter resonant frequency is directly proportional to the mark space ratio that drives these switches.
The number of IC's used is a quad package, and so is the 4016 and so can be the op amps (use RC4136). Thus the whole circuix can be realised with only 4 IC's. Also the mark space oscillator canbe used to drive other independent comparators.

15

 240

 240
 Watts!

HY5

Preamplifier

15 Watts into 8Ω

HY50
25 Watts into 8Ω integral heatsink LP 5 total integration approach to power amplifier design The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years Fidelity modules in the World. FEATURES: Low Distortion -

- No external components

APPLICATIONS: Medium Power Hi-Fi systerns -- Low power disco - Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500mV
OUTPUT POWER 25 W RMS in 89 LOAD IMPEDANCE $4-1612$ DISTORTION 004% at 25 W at 1 kHz
SIGNAL/ NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPIY VOLTAGE -25 V SIZE 1055025 mm
HY120
60 Watts into 8Ω

Price $£ 8.18+£ 1.02$ VAT. P\& $\mathbf{1}$ P free.

The HY120 is the baby of ILP s new high power range, designed to meet the most exacting requirements including load line and thermal protection, this amplitier sets a new standard in modular FEATURES: Very low distortion - Integral Heatsink -- Load line protection -- Thermal protection FIve connections -- No external components
APPLICATIONS: Hi-F -- High quality disco - Public address -- Monitor amplifier -- Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8: LOAD IMPEDANCE A-16! DISTORTION 004% at 60 W at SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SÜPPLY VOLTAGE $\pm 35 \mathrm{~V}$
size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 19.01$ + £1.52 VAT. P\& P free.

120 Watts into 8Ω
The HY200, now improved to give an output of 120 Watts has been designed to stand the mos rugged conditions. such as disco or group while still retaining true Hi. Fi performiance
FEATURES: Thermal shutdown - Very iow distortion - Liadiline protection - Integral Henisink -
No external components
APPLICATIONS: Hi-HI - Uisco - Monitor -- Power Slave - Indus: a - Public address
SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 80 LOAD IMPEJANCE $-: 5$ DISTORTION 005% at 100 W at
1 kHz SIGNAL/NOISE RATIO 96dB FREOUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOITACE SIGNAL/NOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - -3 dB SUPPLY VOLTAGE

SIZE $114 \times 100 \times 85 \mathrm{~mm}$

Price $£ 27.99+\mathbf{£ 2 . 2 4 ~ V A T . ~ P R 1 P ~ f r e e ~}$

HY400
240 Watts into 4Ω
he HY400 is LLP- 5 "Bia Daddy" of the ranae proaucing 240W into 4 2 ! It has been designed for high power disco or public address applications it the ampltier is to be used at continuous figh power evels a cooling fan is recommended The amplifier includes al the qualities of the rest of the family to lead the market as a true hiah power hi-fidelity onwer mondile
FEATURES: Thermal shutdown - Very low distortion - Load line protection - No external applat

Public address -- Disco -- Power slave - Industria
PECIFICATIONS
OUTPUT POWER 24UW RMS into 4!) LOAD (MPEDANCE 4-16! DISTORTION 01% at 240 W at
SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$. - 3dB 5 UPPLY VOLTAGE NPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 38.61+£ 3.09$ VAT. P\&P free.
POWER
SUPPLIES
The HY5 is a mono hybrid amplifier ideally suited for all applications All common input functions (mag Cartndge, tuner elc); are catered for internaliy, the desired function is achieved either by a
multi-way switch or direct connection to the appropriate pins The internal volume and tone circuits merely require connecting, ito external potentiometers (not included) The HY5 is compatible with all LP power amplifiers and power supplies To ease construction and mounting a P C connector is Supplied with each pre-amplifier distortion - High overload .- two simply combined for stereo
APPLICATIONS: Hi-Fi - Mixers -- Disco -- Guitar and Organ -- Public address
SPECIFICATIONS:
INPUTS Magnetic Pick-up, 3 mV Ceramic Pick-up 30 mV Tuner 100 mV Microphone 10 mV . OUTPUTS Tape 100 mV . Mair output 500 mV R
ACTIVE TONE CONTHOLS T $\overline{2}$ 隹
ACTIVE TONE CONTROLS Treble - 2 ab at Rakz Bass $=$ at 100 Hz
DVFRLOAD 38 dB on Manetic Pick-uD. SUPPLY VOL
Price $£ 6.27$ + 78p VAT. P\&P free

The HY30 is an exciting New kit from I L P it features a virtually indestructible IC with short circuit and thermal protection the kit consists of $1 C$ heatsink $P C$ board, 4 resistors, 6 capachors, mounting kit, together with easy to follow construction and operating instructions This amplifier is FEATURES. to the beginner in audio who wishes to use the most up-to-date technology available FEATURES: Complete kit - Low Distortion - Short Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier -- Test amplifier -- Audio osciliator
SPECIFICATIONS
OUTPUT POWER 15W R M S 10 DISTORTION 0 19 19 15W
INPUT SENSITIVITY 5OORV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz} 3 \mathrm{~J}$
SUPPLY VOLTAGE $=18 \mathrm{~V}$
$3 d B$

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd. Crossland House
 Nackington, Canterbury
 Kent CT4 7AD

Tel. (0227) 64723

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square Account number
Name \& Address

AUDIO OSCIILLATOR WITH LCD DFM OPTION

An audio oscillator combines with a new design in frequency meters that provides accuracy and fast reading rates.

Front view of the audio oscillator. Note that this is an early prototype and the 3 V range has been deleted.

THE WEIN BRIDGE oscillator published in our June issue did not provide a performance of adequate standard for many test
applications-one would not have expected so from such a simplified design. Since then we have had many requests to provide a high performance oscillator.

This oscillator started life as another wein bridge, started to evolve as a voltage controlled sweep oscillator but when it became too complex reverted to a simple wein bridge.

One major problem with all home made oscillators is that of scaling the frequency dial. This is not just a problem of positioning the knob but since normally available potentiometers have a tolerance of $\pm 20 \%$, the scale length will also vary. In commercial units the use of an expensive wire wound potentiometer solves most of the problems giving reasonably accurate scaling.

We then decided to build in a frequency meter and the high power consumption and the poor resolution, especially at low frequencies, of previous designs led us to develop a completely new design.

This uses what is literally an analogue computer to convert a period measurement into frequency with some digital electronics controlling it and displaying the results. We based this on the Intersil ICL7106 IC which, due to its liquid crystal display drive circuitry, allows a low power consumption design. Due to the method of conversion from period to frequency the range is limited from about 50 to 1999 counts and therefore automatic range selection is used. As the oscillator itself has less range than this, this limitation is no problem.

To simplify wiring we initially used CMOS analogue switches to select the range changing capacitors in the oscillator but this unfortunately increased the second harmonic

Fig．1．The circuit diagram of the frequency meter section

HOW IT WORKS

This section works by generating a voltage proportional to the period of one cycle and Intersil voltmeter IC with a fixed voltage for the normai input This gives the inverse unction of nommal operntion and the diaplay
and $\mathrm{C} 5 / 2$ will turn on．This discharges C 3 to zero volts．After a short delay to allow C3 to discharge IC5／4 is turned on transferrin that voltage level onto C5．After a total of two cycles the process recommences．The vellage difference between the two capaci

 discharged and for hews. le of thy C3 discharged and for one cycle of the input stable voltage between pin 1 and pin 32 a stable 28 V the output of IC6 will fall linearly with time and as IC5 1 is on for exactly one cycle the voltage change will be proportional to that period. After IC5 $5 / 1$ turns off the output of IC 6 wi stay fixed. IC5 $/ 3$ is then turned on and 4 will IC5 $/ 3$ will turn off leaving C4 at that voltage

A reference voltage less than half the input voltage will result in the ICL7106 counting past 2000 (over ranging). The two inputs 5 V) from 5 Hz to 200 Hz . For the higher frequency ranges, three decade drivers are provided and he necessary output selected by IC3. The correct decimal point is also selected by the other half of this IC

PARTS LIST

Shown on this page are the foil pattern overlay and photo graph of the frequency meter sec tion

Fig. 2. The circuit diagram of the oscillator section.

PARTS LIST

Oscillator Board

RESISTORS all $1 / 2 \mathrm{~W} 5 \%$	
R1, 2,5	4 k 7
R3, 4, 15, 16	47 k
R6	680 R
R7, 12, 14	10 k
R8	220 R
R9, 10	68 R
R11	1 k
R13	100 k
1111	1001
1111	1011
1111111	111

CAPACITORS	
C1, 5	220 n polyester
C2, 6	22 n polyester
C3, 7	2 n 2 polyester
C4. 8	220 p ceramic
C9, 12, 13, 14	10 u 25 V electrolytic
C10	$470 \mu 25 \mathrm{~V}$ electrolytic
C11	10 p ceramic
$C 15$	1000u 16 V electrolytic
C17	100u 25 V electrolytic
SIMICONDUCTORS	
11	101A

HOW IT WORKS

The oscillator is of the conventional Wein bridge type with a differential amplifier made up by Q1-Q5. Gain stabilization is provided by the thermistor TH1. This type of circuit oscillates at the frequency where the impedance of the capacitors equals the resistors in the Wein bridge arms. With this feedback network the attenuation does not vary geatly like that of a twin tee but the phase
shift does. The result is a sine wave oscillator vith low distortion
For frequency variation a two gang potentiometer is used to give a $20 / 1$ continuous variation with switched capacitors giving four ranges each a decade apart
The sine wave output is converted to quare wave by Cl with the amplitude stabilized by D3-D6

1111 IItHMISIIMM		\therefore WIICHI:		
1111	'yın llfis	SW1	Three pole four way rotary SPDT	
POTENTIOMETERS SW2 SPDT				
'RV1	100 k dual rotary	MISCELLAN		
RV2	10k lin rotary	PCB		
RV1 - the preferred curve giving best resolution is antilog. If reverse rotation is acceptable \log is as good. Otherwise use a linear curve.				

Thaert the LCD such that the +1 digit is on the left.

distortion when the supply voltage dropped below 12 volts. This is due to the non-linearity of the "on" resistance when the input voltage changes. We therefore reverted to the good old mechanical switch!

Construction

Assemble the frequency counter board first, following the overlay provided. As this board is mounted very close to the front panel (only the height of the LCD) the capacitors should have leads long enough to allow them to be laid on their side on top of the resistors, etc. Also the CA3130 and the transistor will have to be mounted close to the board While it is not essential that a socket be used (we didn't) for the LCD, one is recommended. Be very careful
with the display as it is glass and therefore fairly fragile

The oscillator board can now be assembled following its overlay diagram. The thermistor should be tied down using a loop of tinned copper wire and pins should be used on all external wire terminating points. Cut all leads short on the back of the PCBs as the two are mounted back-back with only 6 mm spacing

We built the units into a large box with all the components mounted on the front panel. The PCBs are secured by four 6BA c/s screws through the aluminium but hidden by the front panel. The frequency meter board is spaced using 6BA nuts to give just enough clearance for the display and is held in place using 6.4 mm long tapped spacers. Check that the spacers do not touch any track on
the PCB and if so add pieces of insulation material under them

The switches and potentiometers can now be mounted on the front panel and the wiring from the frequency counter board to the range switch done. Add wires from the two power connections and the input for ater connections to the oscillator board.

The oscillator board can now be mounted onto the back of the requency meter board ensuring that no leads short between the two boards. Also check that the spacers do not touch any tracks on the oscillator board. The wiring of the front panel can now be completed

Checking and Adjustment

Switch on the check that the frequency meter and oscillator are

working. Monitor the output of the oscillator with an accurate frequency counter and adjust the oscillator to the top end of one range. The frequency meter can now be calibrated by means of the 10 turn potentiometer on that board

Check that the display range changes correctly and that the decimal point also moves. Each range while nominally having a 10-100 variation will be adjustable from about 7 to 150 . Check the attenuator has 10 dB between steps.

A．Marshall（London）Ltd．，Dept．ETI．Head Office mail order；Kingsgate House，Kingsgate Place，NW6 4TA．Tel．01－624 0805．Retail Sales London： 40.42
 G2 2QD．Tel．041－332 4133．Bristol： 1 Straits Parade，Fishponds Road，BS 1.6 LXX．Tel 0272654201

TRANSISTORS				1339	0.17	24037
24696	0.39	${ }^{212218}$	0.35	2 N33	0.17	58
24697	0.31	222218	0.38	243395	0.19	240059
2×688	0.49	2 2 2219	0.38	2к3396	0.19	24060
699	0.58	2 N 22194	0.39	24339	0.19	2 L 4061
24706	0.30	242220	0.39	2234388	0.85	244662
24706	0.30	2 2 2221	0.25	2×34	0.75	2 L
2\％700	0.30	2622214	0.25	2 N 344	0.32	234074
118	0.30	232222	0.25	21334	1.45	2 K 412
2月718	0.54	2к2222A	0.25	2N353	0.17	244122
120	0.05	2 223369	0.27	2×3631	0.17	224123
24122	0.45	2 223694	0.27	2N370	0.14	2×4124
W2\％	0.50	${ }^{2} 232645$	0.80	$2 \mathrm{z37}$	0.14	24125
2 NOL	0.38	2N2547	1.55	2 n 37	0.14	2 N
$2 \mathrm{k916}$	0.33	222903	1.50	2437	0.14	244284
2917	0.38	2w2904	0.31	2×37	0.14	2k4266
2 F 438	0.45	2 2 2904 A	0.31	2637	0.14	244287
$2 \mathrm{ns29}$	0.37	2w2905	0.31	2037	0.12	244288
29291	0.37	2229e5	0.31	2437	0.12	2×4289
29330	0.37	242906	0.25	2 n 37	2	2 W
2 K 330 A	0.95	2 2 2906	0.25	2 2377	2.20	2 m
771	0.30	212907	0.25	2×3773	3.15	2449
2×1885	0.30	2 2 2907 A	0.25	213819	0.36	2 N
99	0.30	212923	0.17	2 23820	0.39	2 H
21833	0.30	212924	0.17	2к382：	0.96	
212102	0.50	2 N 2925	0.19	2N3900	0.28	2 W 4
212192	0.58	2 R 2326	0.17	2H3901	0.30	2 N 492
212193	0.50	${ }^{2} 123053$	0.25	213903	． 3	析
2121934	0.52	$2{ }^{2} 3054$	0.72	2139004	0.18	2 V 5086
212194	0.42	2 23055	0.75	24905	d．	H5
$2 z^{2} 19414$	0.45	2N3390	0.50	2 239006	0.1	2 H 5
Z12195	0.40	2 233391	0.40	2N40	0.5	
212195 A	0.40	$2 \mathrm{2N33914}$	0.45	2 W 4032	0.6	
312217	0.55	2 2 3392	0.1	2 N	0.72	

LINEAR CIRCUITS

LINEAR CIRCUITS							
50019		${ }^{143795}$	4.25	LM7915K	1.75		
43018 a		¢ззваия	0.96	LITP724K		Tта5300	${ }_{2.45}^{235}$
cam	2.20	［／3300\％14	1.08	Lmplosicz	0.30	T84540	
z32200	2.50	（мззіан	2.70	M78112C7	0.30	тиа	${ }_{2.70}^{2.70}$
230288	0.90	LM3811	1.69	m7315cz	0． 30	тва55	${ }^{3.60}$
201238	1.25		1.32	Mm5314	4.60		${ }^{3.80}$
${ }^{2}$	1.50	［mзз4\％	1.55	mm5316	4.60	TBA55000	${ }_{3.00}$
Sussen		Lus36\％	0.88	NE555	0.33		
38323	2.90	LM387\％	1.10	HE556	0.85	tan5	2.20
48394		Lмзвв	1.00	W558M	1.98	тва70	2.20
23045	1.55	Lıз99\％	1.00	He560	4.50	тад720¢0	2.06
		LTM026	0.81	Ne561	4.50	твa750	236
2		Lm709	0.70	He562	4.50	807500	2.45
3		7098	0.50	ve565	1.39	тata	1.30
		70914	0.49	Me566	1.75	¢AB10S	30
0	2．10	71014	0.64	HE567	1.90	төаго	
20xs	19	711 cm	0．	Kesin		тая920	99
20038	29810	${ }^{2235}$	． 72	sas		tcal60	
－uson	4.4	1 m 23314	．	sas	2.70	TCA 1608	55
23130	1.06	L4726	5.8	salp	2.10	tcaz70	9
23140	1.04	LT7416	0.70	Sa42P	1.35	rca 30	． 50
	0.30	$1741{ }^{\text {1 }}$	0．30	satr	1.35	tca7a	
폮	0.50	LM1711614	0．30	SN150034	＋．30	tcap 50	3.00
$\underline{\text { cea }}$	0.95	LM177CN	0.99	S1476013	150	teat 60	2.00
Hex	1.95	L177488	0.50	54175023	1.50	TLa440	． 65
Hex	3.35	LM4814	0.90	S176603	2.35	taA1022	7.50
－	2.45	LM1303\％	1.15	tan233		toalioz	．24
－20012		LM3054	${ }^{1.52}$	тatano	${ }^{3} .78$	ToA1034	75
TMIT	2.15	Lm13074	1.22		$\stackrel{1}{3.00}$	（1atazo	
cent	215	Lwilior	210	Thas2］	1.10		15
50］	1，15	Lum3519	1.30	тas．${ }^{\text {a }}$		тl080	25.
－2en	． 15	LmILS58	0.45	TAF－50	0.48	т1091cp	0.90
－	15		0.97	Tasiod	210		10
－		Lim1 1212 N	6.20		－		40
1 lc	0.60	LM18200	1.16	таназ	2.40	Lr35	
Esats	0．88	LM 288 $^{\text {2 }}$	1.90	TAA960	3.90	1 1F35	500
ceat	0.88		1.90	тм97	4.20	L－35	0
H	0.88	mibatin	1.90	TM6118	2.50	¢132014	
	0.80	（1945	1.50	тA662	2.50	［｜3331M	
－	0.00	mibab	1.98	Mab6｜	1.65	［1］341H	
Sen	0.80	Lmi 8 89M	4.90	${ }_{\text {TM7 }}^{\text {cos }}$	1.45	L13741\％	0.55
Pr	0.95		0.50		1.45		
5	0.60	L13332\％	0.55	T493308	1.45	MANY	
		Limatin	${ }^{0.55}$	TAD100	2.00		
5	235	Lm3955	1.15	（18A500	年24，		
兑		Lm39093	0.78		234	catal	
cer	${ }_{3,36}^{3.35}$	M3971／	． 17	т8510	235		
－		$2{ }^{\text {5 }}$			88		
．	240	Lm324	0.75	${ }_{\text {TB65200 }}$	${ }_{2}^{260}$		

LEDS＋OPTO SIEMENS

B
FULL RANGE＋DATA IN OUR 1978 CATALOGUE

－01 COST VDU	
SONYERT TV SET TO VDU	
De tew CRT control chip from Thomson CSF Er TV set into an electronic VDU－ 16 lines meires RAM．character generator and lilte els	F96364．Conver！ 64 characters－ for a basic VDU．
iflilulatle as chip or full display card．	
zrer conirol， 5 voits TTL compatible，line a sll card included UART．Modem．char． zere Comp video out from encoded keyboard	$\begin{aligned} & \text { NEMV } \\ & \text { CHIP £1720 } \\ & \text { FULL CARD } \\ & £ 151.00 \end{aligned}$
IEND S．A．E．FOR DETAILS	

EXPAND AND KIM GROW WITH

Mor akr TO USE
MICROCOM
SVSTEM

AMERICA＇S FASTEST SELLING MOST POPULAR 6502 BASED SYSTEM－EASILY EXPANDED
INTO A PERSONAL HOME COMPUTER INTO A PERSONAL HOME COMPUTER

TTL \＆CMOS

UnNond

NEW LOW PRICES

BUILD-IT-YOURSELF
 NEW!TEST GEAR KIT
 BASIC SERVICING

 INSTRUMENTS WITHEASY STAGE BY STAGE BUILDING INSTRUCTIONS - IDEAL FOR THE AMATEUR MULTI RANGE TEST METER
A general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

AUDIO SIGNAL GENERATOR

New design covering 10 Hz to 10 KHz and variable output. Distortion less than 0.01% Ideal for HIFI Testing.

OSCILLOSCOPE

A basic 3" general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts $/ \mathrm{cm}$

NO DECO SYSTEM IS COMPIEIE WHHOUT...

PIEZO HORNS
FANTASTIC SPE
TO READERS OF
ELECTRONICS TOMA
Tweeters for your disco,
system or Hi-Fi. Frequency range 5 K -20K No x over required They can be used in
any PA system up to 100 W Why pay more

ROPELIGHTS Ropelight kits now waviabie tom Roger Squire's - 22 feet long 4 channel, ncluding fube exdemonstration stock and will require some hule exdemenstration stock and wil require some bulh
replacement - we will suppiy 20 spare bulbs fee wither kit Adcitional sets of 20 hulhs cost E 486 each

BULGIN OCTAL PLUGS

 AND SOCKETS
There 3 aways hundreds of Bulpion

 Octal multiway plugs and of Bucketpin in stockRoger Squire's Each pin rated BA Pertect our Sound to light Scstem. P552 SOCKET £0.65 P\&P 35 p P551 PLJG £1.84 P\&P 35 pi
 Way multicure cahle 6 Amps per corel er stock
PROJECTORS

a bargain at 840.50 prep cine

Si41 3527 Hotlinel 01.441 1919 Switchboard! Baraet Trading Estate, Park Road, Barnet Herts EN5 5SA Personal callers ROGER SOUIRE'S DISCO CENTRES
BRISTOL 125 Church Road. Tufneil Park, N19500 01-2727474 Cpen from 10-5 Tues-Sat

INSIDE ULTRASONICS

Ultrasonic sound at very high frequencies is being used increasingly for medical diagnosis. Dr P. N. T. Wells of Bristol General Hospital reports.

THE IMPORTANCE OF ultrasonic diagnostic methods lies in the fundamental differences between them and other techniques such as radiology and radioisotope scanning. The symptoms of some diseases, and ot natural conditions such as pregnancy, are best investigated by ultrasound. It maps out anatomical crosssections, measures the performance of the heart and the flow of blood, and identifies many kinds of abnormality, ncluding several types of cancer, all without encroaching into the body in any way

Twenty-five years ago, doctors seeking to investigate the structures of the body had no alternative to X-rays and this often involved injections of substances to give better contrast to obtain information about soft tissues, Nowadays, ultrasonic methods have replaced radiology in helping to solve a number of clinical problems doctors depend on ultrasonic diagnosis, and patients demand this kind of investigation. The procedures are rapid and painless and nothing enters the body other than ultrasound waves. Unlike ionizing radiations, ultrasound at diagnostic exposure levels seems to be farmless

Basic Principles

Most diagnostic applications of ultrasound depend on - reflection of ultrasonic waves at surfaces between -issue structures which differ in their so-called characTristic impedance. The characteristic impedance of a -aterial is equal to the product of its density and the - =locity of ultrasound within it. The densities of soft issues, about $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ (kilograms per cubic metre), and the velocities of ultrasound within them, about $1500 \mathrm{~m} \mathrm{~s}^{-1}$ (metres per second), are similar to those for water. When an ultrasonic wave strikes the boundary between tissues that differ in characteristic impedance, a proportion of the energy in the wave is reflected in much the same way that light is reflected when it meets a change in reflectivity at a surface.

The characteristic impedances of soft tissues are similar, so the echoes from their boundaries are very sinall. For example, only about 0.5 per cent of the

Fig. 1. Basic arrangement of the A-scope system, in use in this instance to show the mid-line structures of the brain in their relative position halfway between the sides of the skull, as indicated by symmetry of the deflections of the cathode-ray tube trace. Asymmetrical spacing of the deflections may mean that disease has brought about a physical change such as a tumour on one side of the brain. The swept-gain generator gradually increases the receiver amplification over each sweep of the time base to compensate for the attentuation of the deeper echoes by
intervening tissues.
energy striking the boundary between kidney and fat is reflected. However, such echoes are large enough to be detected by a sensitive receiver, but almost all the energy crosses the boundary and is available for reflection by deeper structures.

Much larger reflections occur at boundaries between soft tissues and either bone or gas, because of large differences in characteristic impedance. These large reflections restrict the use of ultrasound in medical diagnosis. Moreover, it is necessary to exclude air from between the probe and the patient. This may be done either by examining through a water bath or through a film of oil smeared on the patient's skin.

Resolution

Ultrasonic echo-ranging techniques depend on the measurement of the time interval between the transmission of a brief pulse of energy and the reception of its echo, just as in radar. In any imaging system, whether using light, ultrasound or any other kind of radiation, the resolution is limited by the wavelength of the radiation. It is for this reason that ultrasound, as opposed to sound, s used in medical diagnosis. We need to visualise structures of only a few millimetres in size, so that wavelength has to be around a millimetre or less. In soft tissues, it is about 1.5 mm at a frequency of 1 MHz and proportionately less at higher frequencies. The highest audible frequency, about 20 kHz , has a wavelength of 75 mm . In principle, the performance might appear likely to improve as the frequency is increased, but ultrasound is attenuated as it travels through tissues and the rate of attenuation also increases with the frequency, so we have to compromise between better resolution and reduced penetration.

Pulse-Echo Techniques

In an ultrasonic instrument for diagnosis, a probe containing a piezoelectric transducer converts electrical signal into ultrasound waves for transmission into the patient. It does the opposite for the echoes

The simplest type of ultrasonic pulse-echo diagnostic system is called the A-scope. (See Fig. 1). The clock triggers the transmitter, which feeds a brief pulse with a large amplitude to the transducer. Echoes return to the probe from those reflecting surfaces inside the patient that lie along the ultrasonic beam. Electrical signals from the echoes are amplified by the receiver and applied to the vertical deflection plates of the cathode-ray tube; the time-base generator, which is triggered into operation by the clock at the instant the ultrasonic pulse is transmitted by the probe, is connected to the horizontal deflection plates to drive the spot on the display at a constant speed from left to right. In this way the beam sweeping across the display is deflected vertically at intervals along the horizontal axis, corresponding in distance from the start of the sweep, to echo-producing surfaces at various distances along the ultrasonic beam. A special circuit in the receiver increases the amplification of the deeper echoes to compensate for theit attentuation by intervening tissues. The clock operates at a repetitin rate fast enough to give a flicker-free trace on the display.

The A-scope has clinical applications in neurology, ophthalmology and internal medicine. It allows the

Fig. 2. Time-position recording system based on the B-scope display, shown in use for echocardiography. The fibre-optic face plate of the cathode-ray tube collects enough light to produce a self-developing trace on ultra-violet recording paper.

Fig. 3. Two-dimensional scanner and B-scope display system studying a foetus. The time-base generators are driven by electrical outputs from a series of resolvers that measure the position of the ultrasonic beam as it moves across the patient. Horizontal and vertical time-bases combine to deflect the spot in such a way that its movement across the display corresponds to the movement of the beam. Echoes received as the probe moves over the patient produce a cross-sectional image in a plane corresponding to that of the scan. In this example, the image is built-up on the screen of an electronic storage tube for direct viewing.
depths of echo-producing surfaces to be measured, and the characteristics of echoes from within structures to be studied.

Echoes from moving structures, such as the valves of the heart, oscillate in position along the horizontal axis, or time base, of the display. In cardiology particularly. patterns of movement can give diagnostic information. They can be studied by making recordings with the aid of a B-scope display (see Fig. 2).

In the B-scope, the time-base sweep is normally visible, but it is brightened by returning echoes to

Fig. 4. A two-dimensional scan reveals twins at about 25 weeks of pregnancy. The placenta on the anterior wall of the uterus is clearly defined while the abdomens of the twins, identified in the explanatory diagram, appear in section.
produce spots of light on the display in places where, on an A-scope, there would be deflections of the beam. The positions of the spots of light correspond to echoproducing structures in the patient, and the pattern of their movement can be permanently recorded.

Cross-Sectional Images

The B-scope forms the basis of another display method, the two-dimensional ultrasonic scanner (see Fig. 3). The utrasonic probe, instead of being held in the hand, is mounted on a scanner. It can be moved to any position in a two-dimensional plane. In this way it is possible to arrange for the beam to pass through structures lying in E chosen plane within the patient, while the position of
the probe and the direction of the beam are measured continuously by 'resolvers' mounted in the scanner. The electrical signals from the resolvers control two timebase generators, driving the vertical and horizontal beam deflection plates of a cathode-ray tube. The direction and position of the ultrasonic beam across the patient controls the position of the cathode-ray beam showing up on the display, related to the positions of the echo-producing surface.

A cross-sectional image of the surfaces can be built up photographically by a camera with an open shutter that records the bright spots on the display while the patient is being scanned. The echo information can also be stored electronically

Two-dimensional scanners in which the probe is moved in contact with the patient produce individual images in scanning times of about 10 seconds, images can be produced at a much faster rate by moving the probe mechanically. Images in rapid succession allow physiological movements to be studied; their main importance is in cardiological diagnosis. But although these rapid mechanical scanners produce so-called real-time images, they lack flexibility. This difficulty can be overcome by using ultrasonic probes containing many separate transducer elements, operated separately or in groups, which can produce ultrasonic scans made up of parallel lines or or lines arranged in a fan shape, at frame rates of tens per second.

As well as making it possible to study rapidly moving structures, real-time scanners can also be used to explore large volumes of anatomy in a short time. A doctor using one can examine a patient in about a quarter of the time it takes with a 'conventional' twodimensional scanner.

Doppler Effect

The frequency of an ultrasonic wave reflected from a stationary structure is equal to that of the incident wave. If the beam is reflected by a surface which is moving

F.y. 5. The Doppler effect occurs when a wave is reflected from a moving surface, giving an upward or downward 'shift' in siequency as in (b) and (c).

Fig. 6. One use of the Doppler 'shift' is to monitor the foetal heart. The echoes usually fall in the range of audible frequencies.

FEATURE : Ultrasonics

towards the ultrasonic source, the reflected wave is compressed into a shorter space. This means that the wavelength is reduced. It shows as an upward 'shift' in its frequency. Reflection by a surface moving away from the source gives a downward shift. This phenomenon the well-known Doppler effect, conveniently gives shift frequencies that fall in the audible range when ultrasound is reflected by moving structures in the body such as heart valves or flowing blood. A simple instrument based on this makes it possible to detect the movement of the foetal heart. Similar instruments to measure blood flow allow peripheral arterial disease to be assessed

Because Doppler shifted signals are received only from structures that move, two-dimensional maps of them can be built up by using a Doppler probe to scan the patient. In this way the distribution vessels close to the surface can be studied. Such information may obviate the need for X-ray angiography, which is a dangerous and expensive procedure

It can also be combined with other information about structure position obtained by the pulse-echo method, making it possible to map out blood vessels within the body and measure the rate of blood flow at the same time

The clinical value of ultrasonic techniques has already been proved, but their spread into general, everyday service will depend on the development of instruments that are simple to use. These, paradoxically, may be more complicated than the ones we already have. It will also mean training doctors and technicians to obtain and interpret results. But it is clear that ultrasonic diagnosis is, in many instances, the best and most economical way of getting the information essential to proper care of the patient.

IN 41481,3 . 1 d $£ 3$ any mix from this section 1N4 148 1.3p. 1 N 4002 3.6p. $\mathrm{BC} 212 \mathrm{8p}$. 7418 si
$15 \mathrm{p} . \mathrm{NE} 5558 \mathrm{dit} 29 \mathrm{p}$ 15 p . NE 5558 dil 29 p . 723 p .4 dif 43 p . AC76023
exact equiv of SN 76023 N with 79 p . Plastic of SNuivs of popular transistors BCT10 4.4 p . BCY71 4.7 p . BCY 72 4.4p. Funers 20 mm
5 mm 5 mm cartndge 25 . 5 , 1, 2, 3 . Funes 50 mm quickblow
type 0.7 p . antisurge type 3.4 . Resistors 5% E12

 $3 \mathrm{p}, 0.33 \mathrm{mt} 2.5 \mathrm{p}, 0.47 \mathrm{mi} 4.8 \mathrm{p}$. Polyatyrane
capacitora E12 63 V 15 to $8200 \mathrm{pt} 21 / 1 \mathrm{p}$. Ceramic capheitors 50 EV E12 22 pt to 1000 Op . 1.7 p . Et
1500 pt to 33000 pt 1 7p 1500 pt to 33000 ot $1.7 \mathrm{p}, 47000 \mathrm{pt} 2 \mathrm{p}$. Flec-
trolytics $50 \mathrm{~V}, 47$, 4 mi 5 p .25 V 5 mt . 10 p trolytics $50 \mathrm{~V}, 47,1,2 \mathrm{mf} 5 \mathrm{p} .25 \mathrm{~V} 5 \mathrm{mt} 5 \mathrm{p}$. 10 mt
$4 \mathrm{p} .16 \mathrm{~V} 22 \mathrm{mi} 5 \mathrm{p}, 33,47.100 \mathrm{mt} 6 \mathrm{p}$. 220.330 mt
 2 V 7 to 33 V 6.1 p . Proset pota sub-miniature 0.1 W horiz or vert 100 to 4 M 76.8 g . Potentiomate
4 K 77 to 2 M 2 log or lin. singie 26 p , dual 76 p .

SWANLEY ELECTRONICS

Mall order only Plesse add 30p to the total cost of prder for postage. Prices include VAT Overs

THE WORLD'S MOST ADVANCED MICROPROCESSOR VIDEO GAME DIRECT FROM THE USA

 THE ATARI' VIDEO COMPUTER SYSTEM- READY BUILT CARTRIDGE SYSTEM EX-STOCK

Just look at a few of the numerous games available to you in multi-colour lon colour TV's) with realistic sound effects.

This Video Computer System (based on Signetics 2550) is available complete with the 27 game Combat Cartridge, multi-function joysticks, mains adaptor and aerial switching unit. Fully guaranteed for 12 months.
£169.95 £149.00
(inc. VAT)
At present there are 9 cartridges available - a total of 192 games - plus many more on the way. Price per cartridge)
£14.95 £13.95
full colour brochure avaliable on reques
Securicor delivery avaitable Add £4.00.

Please make cheques and postal orders payable to DISCOUNT COMPUTING, or phone your order quoting BARCLAYCARD or ACCESS number.

14 STATION ROAD • NEW BARNET • HERTS. TEL: 01-441 2922/01-449 6596
CLOSE TO NEW BARNET BR STATION - MOORGATE LINE
OPEN - 10 a.m. to 7 p.m. - Monday to Saturday

BUILT AND READY TO PLAY

SPEAKERS Two models - Duollb, teak veneer, 12 watts

RECORD for the $0-+Y$ man who requires a stereo unit at a budget price PLAYER comprising ready assembied stereo amp, module Garrard KIT auto/manual deck with cuesing device, pre-cut and finished cabinet work Output 4 watts ger channel. $£ 19.95$ nckuding 2 SPHERICAL HIFI speaker

M/FM STEREO TUNER AMPLIFIER CHASSIS COMPLETE Ready buit Designed in a silm lorm for compact modern installation hotary Controls Vol On/OIt. Bass Treble Balance
Push Buntons lor Gram. Tape VHF MW LW and 5 button rolary
selecion switch
Power Supply Seienum Eridge-35V DC from 21025 OV AC 50 Hz npul
 ad lor FM aerial
7 watts speech and music
upe Sensitivity Playback $400 \mathrm{mV} / 30 \mathrm{~K}$ OHM for max oulpul Aecord $200 \mathrm{mV} / 50 \mathrm{~K}$ outpul available lrom $25 \mathrm{KHz} \quad(150 \mathrm{mV} / 100 \mathrm{~K}$) deviation Msignal Froquency Range (Audio) 50 Hz to 17 KHz wilhin \pm idB Redio FM sensilivity lor 308 below limiling beller than 10 uV AM senstivity for 20 dB S/N MW $350 \mathrm{uV} /$ Metre LW $1 \mathrm{mV} /$ Meire

VALUE FOR PERSONAL SHOPPERS
iso 16 VOLT MAINS TRAMSFORMEA, 21/2 Emp
£2.50
SSA hecord auto deck on plinth wit
treo cartridge ready wired.
f11.95
W 5 tunction men's digital watch
mentess sleel imish
£5.95
CD 5 function men's digital watch
CO 8 Function CHRONOGRAPH men's digital
£7.95
f13.95
25 Wirt Power Amp Module
£13.95
Mans power supply for above unit EFTEK Monitor loudspeaker cabinet approx $43 \% \times 15 / \times 15 / 4$ £3.50

50x Multiturn Varicap uning pots. 6 lor
£24.95
USIC CEITHE CA日IMET with hingad smoke $£ 1.00$
Exde tof. Itrished in nalural leak veneers,
ze 30 4" $\times 14 / 2^{\prime \prime} \times 7 / h^{\prime \prime}$ аррго
$£ 5.95$
(ULABD Bult power supply
EDCA OC 1000 Starso Cassetie PC B
Triter mih smich oscillator coils and
EPCA 20w Stereo spaaker bot comprising
2r ageras bass unils + 2 31/h" approx
me inc trossovers
maemuster Supar Score TV Geme mant pastol ma ins dobration NCE HASTER Door TUnes at efrent inles Wrax zasseria tape recordar £1.50 £2.95

- TRPE TRANSPORT Mechanism-a selection
£20.00
£14.95
£12.95 - mient from
£13.95
-TTAL CLOCK RADIO Mains operated

TEEO MADID/CASSETTE RECORDER MW, LW, SW and

 Iea WHF 6 watts output Battary mains oparation. $\mathbf{~ 7 7 5 . 0 0}$ -TABER RADIO/CASSETTE RECOROER, AM/FM with cioct 1) WW. SW. VHF mains/battery operation
Mullard AUDIOMODULESIN BARGAIN PACKS CURRENT CATALOGUE

 PRICE ATOVER ~ ${ }^{+}$ PER PACK SEEOUR PRICES PACK $1,2 \times$ LP 1173 10w RMS output power audi
amp modulses, +1 LP $1182 / 2$ Stereo pre amp for
ceramic and auxiliary input.

PACK $22 \times$ LP 117310 w RMS oulput power audio ACCESSORIES amp modules +1 LP $1184 / 2$ Stereo pre amp for magnetic. ceramic and auxiliary inputs

3PACK 31×1 P1179/2 FM Tuning head with AM gang. $1 \times$ LP 1 165/ AM/FM IF module, $2 \times$ LP1173/10w RMS output power amp modules +1
and auxiliary innut

oun price p+pt.1.00 $£ 9.95$

TRADE ENQUIRIES INVITED

0

20×20 WATT STERE O AMPLIFIER Viscount IV unit in leak-finished cabinet Silver fascia with aluminium rotary controls and pushbuttons, re mains indicator and slereo jack socket Function witch for mic. magnetic and crystal pick-ups, lape, tuner, and auxilian Rear panel lealures two mains oullets DIN speaker and input sockets, plus fuse $20+20$ watts rms. $40+40$ watts peak
30×30 WATT AMPLIFIER KIT
or the experienced constructor complete in every detail $\quad \mathbf{£ 2 9 . 0 0}$ Similar lacilities as Viscount IV amplifier 60+60 peak * SPECIAL OFFER: PACKAGE PRICE WITH 30×30 KIT

Mk II version operates into 4 to 15 ohms speakers, Specially designed by RT VC lor the experienced constructor, complete in every detail Same facilities as Viscount IV amplifier $60+60$ peak supplied with 2 GOODMANS COMPACT 12 " Bass woofers with cropped sides. 14,000 Gauss magnet. 30 watts rms handling $+31 / 4^{\prime \prime}$ approx weeters and crossovers.
p\&p $£ 400 \mathbf{£ 4 9 . 0 0}$ NOW AVAILABLE fully built and tested Output $30+30$ watts rms. $60+60$ peak.
$p \& p \varepsilon 2.50 £ 39.00$

ADD-ON STEREO CASSETTE TAPE DECK KIT

 Designed for the experienced D.I Y, man. This kut comprises of a lape transport mecready built and tested recordireplay electronics with twin $V U$ melers and level control for mating with mechanis Specificalions: Sensitiviey - Mic
085 mV : 20 K OHMS: Din 40 mV

$$
085 \mathrm{mV} \text { " } 20 \mathrm{~K} \text { OHMS: Din } 40 \mathrm{mV}
$$

m K HMS : Outpin 30umV per channel " 1 KHz 3 Digit. Resettable: Frequency Response - $40 \mathrm{~Hz}-8 \mathrm{KHz} \pm 6 \mathrm{~d}$ Deck Motor - 9 Volt DC with electronic speed regulations Key Functions - Record. Rewind. \quad £ 995 Key Functions - Record. Rew. ast Forward. Mar. Stop a Eject
\square —— D Drder by giving credil card
number ONLY

323 EDGWARE RDAD, LONDON W2 21 E HIGH STREET, ACTON W3 6NG ALL PRICES INCLUDE VAT AT $121 / 2 \%$
All items subject to availability. Price correct at 1.10 .78 and subject to change without notic

50 WATT MONO
DISCO AMP
$\mathbf{1 2 9 . 9 5}$ P\&P 1250

50 watts rms 1000 warts peak ourput. Big features include two dise inputs, both for ceramic carridges, tape inpul and microphone input Level mixing controls fitted with integral push-pull switthes independen bass and treble controls and master volume SPECIAL OFFER. The above 50 watt amp plus 4 Goodmans Type 8P 8 speakers. Package price $[4500+5400$ P\&P.

70 \& 100 WATT

MONO DISCO AM

Size appror
$14^{+} \times 4^{-} \times 10:$
brushed alumumium
Five vertical slidecoatiols mastervolume.
lape level mic level deck leval PIUS INTER OECK FA or perlect gradualed change trom record deck CK FADE No 2. or vice versa Pre ladelevel control 70 watt $[57$ (PFL) lets YOU hear next discbefore fading po ip $[4.00$ Output 100 watts RMS 200 watls peak. 100 watt $\mathbf{6 5}$

BOS 95 TYPE Belt drive chassis turntable less cartridge \quad e2.55 p \& p $\mathbf{£ 2 4 . 9 5}$ BSR MP50 TYPE Single play $\mathbf{f 1 5} 95$ record player less cartridge. $\mathbf{£ 1 5 . 9 5}$ | CARTRIDGES to suit above | 55 p \& |
| :--- | :--- |
| $\mathbf{~} 4.95$ | |

BSR automatic record player deck cueing device
and stereo ceramic head. $\mathbf{f 2 . 5 5 p \& p} \mathbf{~} 9.95$ and stereo ceramic head
 PERSOMAL SHOPPEFS
GARPARD 86SB Deck $£ 24.95$ garraro Sp25 MKIV Deck GARMAR $35 s$ S Deck $£ 24.95$ with Shure $\mathbf{f 2 6 . 9 5}$

portable disco comsole Here's the bioyatuo portable disco cansole Here s the biovalue pornable disco cansole
trom RT-VC! It tatures a pair ol BSR MP 60 Krom RT-VC! f toalures a pair ol BSR MP 60
rypa auto-reurn, single play prolassional with series record decks. Plus all the controis and fe atures with you need to pive fabulous disco performances.

*ut Shoppers EDGWARE ROAD LONDON W2 Tel: $01-7238432$. $9.30 \mathrm{am}-5.30 \mathrm{pm}$. Half day Thursday. ACTON: Mail Order only. No callers GOODS NOT DESPATCHED OUTSIDE UK

Buy direct from the importers
and get more scope for your money
KRAMER \& CO
4 Oscilloscope for under $\mathbf{E 1 0 0}$
(as recommended by ETI)

LISTEN TO THE SECRET WORLD OF PLANTS

FIRST TIME IN THE U.K. IN KIT FORM, THE REVOLUTIONARY CONCEPT OF A BIOLOGICAL AMPLIFIER AND SOUND SYNTHESISER IN ONE UNIT, THE AMAZING

Bio Activity Translator
Experience the unique musical form
of plants

- Hear the beautiful patterns of sound - created by their natural response Compare house plants reactions to
people - with the distinct tunes of people - with the distinct tunes of
those outside Easy to operate, internal speaker and
batteries batteries

The naturally generated bio electrica potential across a plant leaf is picked up by 2 carbon foam electrodes. When amplified and filtered, a VCO, VCA and other ingenious synthesiser circuits are programmed by the control voltage from the plant to produce tracking sequences of notes. These follow in pitch, rhthym and volume the ever changing signal from the plan
The Kit includes 6 I.C. 's, 2 transistors, all high quality components, tinned and drilled fibreglass p.c.b. loudspeaker and comprehensive assembly instruc tions. Also included is a free case, ready punched, with wooden end cheeks and stick-on silk-screened front panel for a really professional finish. Runs on 2 $41 / 2$-volt batteries (not supplied).
SPECIAL IWTRODUCTORY OFFER INCLUDES FREE CASE Kit $£ 19.90$ ASSEMBLED AND TESTED $£ 27.50$ price memivai

audiophile

A woeful tale of the pre-amp to make you red in the face this month. Crimsons CPR1 considered by Ron Harris who recovered enough to visit Sony's launching of sixty new models!

MEANWHILE back at the Crimson pre-amp, i shall begin this month by finishing what I began last, and furnishing details of the CPR1 module. To begin with, quoting specs would be largely superfluous in this context, but as I know there are some of you out there high on numbers, try these for size:

$$
\begin{array}{ll}
\text { SENSITIVITY: } & 3.4 \mathrm{mVRMS}(1 \mathrm{kHz})-\mathrm{mag} \\
& 70 \mathrm{mVRMS} 1 \mathrm{kHz} \text { all others }
\end{array}
$$

for 770 mV RMS output
SIGNAL/NOISE: -70 dB unweighted 10 kHz bandwidth mag
-86 dB unweighted 10 kHz bandwidth others

CROSSTALK: $\quad-80 \mathrm{~dB} 20 \mathrm{~Hz}-20 \mathrm{kHz}$
THD:
008\% any level below clipping

There are pages of figures in the leaflets Crimson issue for free, so if you've at all interested get after one of those. The nice thing about these specs is their comzleteness - nothing hidden away here in shrouds of Eiviality. All the parameters are given as test results -nder very precise conditions. I could find no reason to Ergue with any of them and as I'm usually mean and -asty about such things Crimson should take that as zraise indeed.

tuilding Up To It

=ower requirements are simply 15-0-15 at under 0.0 mA , and mine measured in the region of 40 mA per =annel while in full flow. Crimson naturally produce a ESU for this, and it is termed not unreasonably REG1.

The pre-amp arrives as an assembled PCB with set of: zcelication notes, and as such cannot be considered a kit F. any but the most stretched imagination. Not for the meginner this, as a fair bit of experience comes in most randy - although the notes are very good (but poorly moduced) and if you're feeling brave by all means get suck in - I shan't say 'I told you' - not too loud arway.

Gter a few minutes fussing around with pen and prorer I decided to house pre-amp and PSU in separate xes - with appropriate nod in direction of Meridian fier Eason of neatness and hum foiling. Let me say now the: these circuits are good enough to merit such armention.
is there are no tone controls, metalwork is simplified

- glad to say, and for a basic system should be very indeed.

Crimson make out a very good case in their design notes for doing things their way, but nonetheless there are a few things I would like to disagree with.

Firstly they feed straight into the volume control with auxiliary inputs via the selector switch. This presents the equipment driving into the amp with a varying load, and I would personally prefer to see a high impedence buffer in there, with a lower sensitivity; than the 70 mV now prevailing, and a higher input impedance. A small point perhaps, but under music conditions a constant load is to be preferred I feel.

Secondly the magnetic input is 'fairly' standard although better than most. I would differ from Crimson philosophy enough to prefer the idea of buffering the cartridge input at a constant value, say $47 \mathrm{k} / / 200 \mathrm{p}$ with unity gain in the first stage, picking up equalisation over two further stages both run at lower gain than usual. This configuration results in a cleaner sound with better transient performance providing the capacitance of each stage is carefully designed for

I'm offering up these ideas for perusal, not criticising Crimson in particular, its just that the Crimson approach encourages you to drag out your personal theories and give 'em a good airing. I'd be very interested to hear from any of you out there with your ideas on how audio design should be done - we'll print the best we get.

Back To Wires

Anyway to return to the point the CPR1 auditioned very well indeed. Mind you our first sample gave me a hard time for a while. It kept doing things it couldn't do and doing them when I least expected it. After a few bottles of Vallium and several hair pulling sessions with Crimson we discovered I'd been given a non-production board. A quick GPO job and we're back in business. Sanity is saved.

I still don't know what the odd sample was up to and don't intend to to find out any further that way lies madness. I suspect Crimson save that board to assassinate reviewers in the most fiendish way possible. Who'd believe it was murder?

The production model has never given the slightest problem and has behaved impeccably throughout. I compliment Crimson on the attentive way they panicked along with me over the rogue PCB, several poor unsuspecting boards now on soak test because of my nervous breakdown.

Inputting Pickups

To use this input, you add a passive network to the input to optimise loading for the particular device in use. Crimson themselves recommend adding several networks and switches to increase flexibility. I don't. Switches at this signal level are a menace - if you don't believe me, see Stan Curtis's article elsewhere in this
issue. Leave out the switches and hardware for your choice of pickup - how often do you change anyway?

With the switches added a thickening of detail occurs, and transients don't transient nearly as well.

Other inputs are straightforward, although perhaps a little low on input impedance. Noise and hum were commendably low on all inputs, and the separate boxes earn their worth on first power-up. The ten second switch-on blank period to eliminate 'clunks' is a great idea, although on both my samples the delay was so long I almost had time to go make a cup of tea before power came through.

It can be most detrimental to confidence to be left standing there, soldering iron still smoking, poised over the completed unit hand on power switch counting off seconds wondering why the b. . . y hell it hasn't come on yet. Smiles fade rapidly like that.

Listen In

On magnetic input the Crimson CPR1 produced a very nice sound indeed, of very high quality with good detail and fair extension into the bass registers. On a quick A-B with a very highly priced integrated amp the CPR1 surprised me by showing itself clearly superior! OK wiseguy - wheel out the heavies.

Now my personal idol amongst pre-amps is the Lecson AC1 which I feel has never been approached for quality of reproduction, at any price. As such it makes an excellent reference against which to judge lesser machines. However not everyone agrees, and a champion of the Naim offered up his favourite to give the Crimson a run.

You can see from the opposition how seriously the CPR1 managed to get itself taken. Against the Lecson it was frankly outclassed. The AC1 had better depth, and better bass control. Treble came out smoother from the Lecson showing up the Crimson as slightly hard in this register. Mind you the Lecson costs nearly ten times as much and the Crimson gave a very good account of itself.

Comparing it with the Naim unit nearly liost me a friend. I preferred the CPR1! There was not much in it mind you, and Crimson can be justly proud to have produced a home build design capable of this level of performance.

grumbles

A few niggles. The balance control is very limited in operation. More so than is even trendy, never mind useful, and a little extra swing would do no harm. I'm not at all happy about those auxiliary inputs really, but they seemed to cause no problems so I'll shut up about them.

In order to obtain the level of performance the design can offer very careful construction is required. All cables screened. All as short as possible. Good soldering. Good earthing. Isolated PSU and sound routing of cables carrying HT - away from anywhere at signal level. Leave the on-off switch on the PSU box so that mains need not even enter the case

Also the subjective quality, although of a very high quality, is a little hard, and judged against the best designs around slightly lacking in detail. Still none of this detracts from the fact that here we have a DIY amplifier that can compete with the very best commercial units, and make mincemeat of many far higher priced designs. Highly recommended.

Outlook: Warm and Sony

Sony have gone berserk. Only gone and scrapped practically their entire hi-fi range they have and launched no less than 60 new models if you please. Its enough to give leaflet collectors a heart attack. There is some very clever gadgetry in amongst the flock, and scattered here before you are some of the gems.

The TA-E88 looks very, very interesting indeed, representing as it does the state-of-the-art for Japanese pre-amp design. I'm at present still on my knees to Sony (and my trousers are wearing out fast) to get a closer look so hopefully more details on that one later (Please Mr Sony? . . Sir?).

The G1 and G7 speakers came as a surprise too, they're better than any oriental offering previously to assail my ear drums, and are capable of giving any competitor a good run for its cones.

They have divided up the dealers too, creating a new super-fi franchise. This basically means that only the best dealers can sell the best of the range, although the division looks to be a bit unsure in places.

ETI

And here we have the TC K8B the new $£ 469$ cassette deck released as part of the super-fi Sony range. It incorporates that magnificent LCD display (details on the right) and on the short listen so far gave an excellent audio account of itself.

Below: the G1 speakers. Very good indeed for the price (circa £190 the pair) and deserving of none of the usual anti-Japanese speaker bias. Give them a listen if you get the chance.

NEWS:Audiophile

Above: the LCD level meter as used in the TCK8B in close-up. This uses 64 segments to indicate signal level, and has red settable stops to hold peak values. The colours are nice too.

This is a nice touch. A portable Elcaset machine. Gives really nice reproduction and is quite easy to cart around. All the controls are mounted so as to be accessible when in mid-carry. The format would seem to be ideal for this usage. All the quality of a reel-to-reel and no fiddling about while rapidly unspooling tape in a gale! Priced sensibly at £459 and called the EL D8 for the wandering rich amongst you.

Wot that I'm obsessed with cassette decks or anything, but here's another one. The TC K6B this time. It's main Ettle gimmick is the MPU program selector. That little LED Eieplay in the centre can be stepped to read the number of the track you wish to hear. The machine will promptly go and find it and play it for you. Again LCD level meters, athough not as good as the TC K8Bs obviously less engments. Bèlow: The incredible TAE8B. The unit has two COMPLETELY separate channels inside its box. Selecttole phono load on one input, and one straight in for people who don't like switches in line (Like me) at this low level. Moving coil pre-pre amp is standard of course. Price £699 (What did you expect?)

GREENBANK ELECTRONICS (Dept. TIIE)

92 Now Chostor Road, Now Forrv, Wirmi, Merityuide LG2 SAG Enytand. Tol: 051.645 339

KEY:
1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant).
3: A useful-sized bit of stiff paper to stop the window from rattling
4. Rough calculations for your new combined egg timer/laser cannon project.
5. ETI makes a fair soldering iron stand.
6. The dog insisted on carrying your copy to you along with your slippers.

WHAT A BIND!

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.00$ all inc. you get a great deal of peace of mind too!

[^9]
SINTEL

THE SINTEL SIX DIGIT MAINS CLOCK KIT
with BLEEP ALARM and TOUCH SWITCH SNOOZE
high brightness display
automatic intensity control

- DEEP RED DISPLAy FILTER

SLIM WHITE CASE $205 \mathrm{~mm} \times 40 \mathrm{~mm} \times 140 \mathrm{~mm}$

- batterr backu

- CAYStal control foh improved accuracy

Order as ACK + BBK + XTK
The ACK is also avalable without battery backup and cristal control Order as ACI
The kit is suppled complete with the exception of a mains plug cable and battery

$\overline{Z 8} \overline{\mathrm{Z}} \overline{\mathrm{P}}$ Inter 8085 Also free data on some components.

Some Popular Memories available from SINTEL

ASSEMBLED LATCHED COUNTER MODULES

SIX DIGIT TTL COUNTER MODULE
Our range of Industrial Latched Counter Module Kits is now avaliable ready-built These counters use both CMOS and TTL $C S$ and will save you considerable design, purchasing building and de-bugging time Each nodule uses a set of red LED displays and features a singie in-line plug and sockel Instructions are provided

	Parino	Buil	Par No	K11	Part No	Built	Parl No	Kit
2 sigit	401.484	613.22	526-412	E10.52	985-558	${ }^{113,02}$	$545-470$	$\underline{10.42}$
4 digt	715-488	${ }_{\text {c23, }}^{1238}$	657-412	E17.98	512-568	${ }_{\text {E22.63 }}$	869-470	E18.11
6 digit	293-434		721-412	£25.66	$393-568$	c32.31	191-470	£25.85

NEW PRICES AND SOME NEW CMOS ADDITIONS If you need your CMOS by retum - buy it from SINTEL									
CD4000	0.15	CD4027	0.44	CD405 ${ }^{\circ}$	0.82	CD40日6	0.64	CD40182	1.40
$\mathrm{CO4001}$	0.17	CD4028	0.77	CD4052	0.82	CD4089	1.39	CD40192	1.40
CD4002	0.17	CD4029	1.03	CD4053	0.82	CD4093	0.80	CD40193	1.40
CD4006	1.04	CD4030	0.50	CD4054	1.04	CO4094	1.69	CD40194	1.19
CD4007	0.18	CD403 1	2.00	CO4055	1.18	CD4095	0.94	CD40257	1.48
CD4008	0.87	CD4032	0.89	CD4056	1.18	CD4096	0.94	C04502	0.81
CD4009	050	CD4033	1,25	CD4059	4.29	CD4097	3.35	CD4510	1.01
C04010	050	CD4034	1.71	CD4060	1.00	CD4098	0.98	CD4511	1.25
CD4019	0.18	CD4035	1.06	CD4063	0.98	CD4099	1.65	C04514	2.47
CO4012	0.20	CD4036	286	CD4066	0.55	CD40100	2.50	CD4515	2.82
CD4013	0.43	CD4037	0.85	CD4067	3.35	CD40101	1.61	CO4516	1.01
CD4014	083	CD4038	0.96	CD4068	020	CD40102	2.13	CD4518	0.97
CD4015	0.83	CD4039	278	CD4069	0.20	CD40103	2.13	CD4520	1.04
CD4016	0.48	CD4040	0.97	CD4070	0.46	CD40104	1.10	CD4527	1.43
CD4017	0.79	CD4041	0.75	CD4071	0.20	CD40105	1.06	CD4532	1.21
CD401日	0.83	CD4042	0.69	CD4072	0.20	CD40106	0.62	CD4555	0,78
CO4019	0.50	CD4043	0.88	CD4073	0.20	CD40107	0.69	CD4556	0.78
CD4020	1.11	CD4044	0.84	C04075	0.20	CD40108	5.36	MC14528	0.93
CD402 1	0.90	CD4045	126	CD4076	1.17	C040109	1.03	MC14553	4.43
CD4022	0.82	CD4046	1.20	CD4077	0.39	CD40160	1.19	IM6508	8.05
CD4023	0.18	CD4047	0.89	CD4078	0.20	CD40161	1.19		
CD4024	0.70	CD4048	050	CO4081	0.20	CD40162	1.19		
CD4025	0.20	CD4049	0.50	CD4082	020	CD40163	1.19		
CD4026	1.55	CD4050	0.43	CD4085	0.64	CD40181	3.40		

[^10]OFFICIAL ORDERS ARE WELCOME FITOM Companies Govi Depts Natn Inds Univs Polvs
 p8p minimum charge (the balance will be charged at cost) Please see FAST SERVICE EXPORT ORDERS
no VAT but add $10^{\circ 1}$ (Europe) $15^{\circ \%}$ (Overseas lor Air Mail p\&p For Export postage rates on heaw

ORDERS TO: SINTEL, PO BOX 75A, OXFORD Tel: 086549791

FAST SERVICE: We guarantiae that Tolephone Orderif for
 items by parcel post), and ous stocking in good pince

officiel ortan no min with
SINTEL

56 FORTIS GFEEN ROAD, MUSWELL HILL, N10 3HN TELEPHONE: 01-883 3705

OUR LATEST CATALOGUE

 CONTAINS FREE 45 pence WORTH OF VOUCHERSCONTAINS MICROPROCESSORS + BOARDS MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC

SUPERSAVERS

ALL FULL SPEC DEVICES

TEXAS	TIMER	
741	555	RED LED
5 for		
E1.OO		
VAT INCLUSIVEPRICE $+25 p$ P. \& P.		

A4 IC BOOKLET
SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH $£ 5.00$ OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35p + SAE IF SOLD ALONE).

RF POWER METER

(ETI project 139 - October '78)

Most components in stock including
12.7 mm toroid - F14@16p, F25@28p. PCB £1.00.

2 METER POWER AMP

(ETI project 710 - September '76)
This is a simple-to-build, easily-aligned Class C PA suitable for CW and FM amplification at 2 metres from a nominal 13.5 V (-ve earth) supply (7 amps at ful power). T / R 'switching' is performed by diodes and $1 / 4$ wave lines. A power input of 10 watts is required for the nominal 40 watts output power Complate with cabinet - £19.50 + 65p p\& p

LOW COST V.D.U.

(ETI project 560 - Aug/Sept/Oct '76)

All components available for this popular low $\operatorname{cost} V$ D U project. Complete kit at Special Price $£ \mathbf{6 4 . 0 0}+£ 1.00 \mathrm{p} \& \mathrm{p}$
Separate components -
PCB set $£ 7.20 ; 2112-2, £ 4.50 ; 2513, £ 8.50 ; 555,47 p$
All prices INCLUDE VAT but please add minimum of 34p for post and packing.
Send SAE for FREE PRICE LIST or 45p + large (A4) $181 / 2 p$ SAE for copy
of our Data-Catalogue.

TELETEXT DECODERS

From Catronics - the Number One company for Teletext Decoders for CEEFAX and ORACLE. We now offer a wide range starting at below €145.00. KITS - Based on 'Wireless World' design:

Basic upper case only - $£ 144.50$
Standard decoder $-£ 157.25$
De-luxe with ALL new facilities - £194.40
Complete kit (as published) - £220

TIFAX MODULE

special offer including mounting board and interface circuitry plus full application information £129.35.

READY BUILT DECODERS

Prices from $\mathbf{E 2 3 0}$ to a full specification professional model at $£ 310$. Send SAE for full details

7400 SERIES TTL

All new, tull specitication, full Guarantees

			,							
	$\begin{aligned} & E_{B C}^{2} \\ & B_{2} \end{aligned}$									

Guitar Sustain Unit
S. D. Maistre

Q1, 2 are 2 N3819
Q3,4,5 are BC109C
D1 is OA91
IC1 is MC3340

The sustain to be described here holds the output at a constant level over a wide range of input levels. It was designed for use with electric guitars and has a maximum effect with the guitar pick-up volume full $u p$.
The principle employed is that of an AGC, whereby the circuit output is monitored by a DC voltage follower which controls the gain of the VCA through which the signal passes. The advantages of this circuit are that, unlike many such devices, it does not use optocoupling which draws too much current for battery powered equipTrent: it produces no audible distormon components are easily obtained - and cost is low.

Construction method is not critic

This unit provides push-bike speed measurement between zero and 90 km hr or 100 mph ! The circuit s based on the Sintel MOS counter Bock, which counts the pulses from the onoto transistor Q1

These pulses are provided by fing 18 aluminium 'barriers' to the wheels Q1 was an unmarked type in the F-ototype, in a TO 18 package. This mounts in an old felt-tip pen

Digital Bike Speed

case opposite the lamp so that the barriers interrupt the beam in operation. The counter operates whilst PB1 is pressed, but latches after a time determined by RV1 or RV2. IC 1 and associated components. IC 1 forms a square-wave oscillator with
variable mark-space ratio. The time for which pin 3 is taken low is determined by RV1/RV2 - this enables the counter.

The speedo accuracy is cetermined by the accuracy of sett-g of controls RV1 and or R: 2

D 3 ECTRONICS 22 NEWLAND STREET, KETTERING TELEPHONE KETTERING 053683922520910

BULK OFFERS
BARGAIN PACKS

CMOS Gate Identifier

C．Ching
This circuit can be used to dis－ tinguish four types of dual input gates－AND，OR，NAND，NOR－it is also a quick method of checking IC function．If an AND gate is inserted into the socket，an A appears on the LED．An O denotes an OR gate．The decimal point is used to denote in－ verted function，i．e．A is an NAND gate．

Electronic Ignition Switch

K．A．Last

CTE

Es BFY50
＝ 2.4 are BC108
－zare BC108C
Sごーシー $50 \mathrm{~V}, 1 \mathrm{~A}$ TYPES
$5=550 \mathrm{~V}, 3 \mathrm{~A}$
＝．is TIL 209
．LA ： 5 10V，50R COIL WITH 2p／CO CONTACTS

When used with a calculator type keyboard，this circuit provides a ＇combination lock＇ignition switch which only activates if the correct sequence of three numbers is keyed in．The keyboard has 14 keys numb－ ered 1 to 12，＇START＇and＇FINISH＇ To start the car，the＇start＇key is pressed and the start LED will light The correct sequence of 3 numbers is
then keyed in．If the sequence is wrong，the cars horn will be sounded． If the right sequence is entered，the ＇START＇LED will extinguish and the ignition will be energised．The correct sequence will be PB1，PB2，PB3，but these can be arranged amongst the other keys in the keyboard，and given any numbers．

BAD NEWS for knob twiddlers A 300W Lightdimmer with NO knob．Dimming and on／off functions are controlled by touch Features include \star No mains rewiring $\star \begin{aligned} & \text { Switches on to preset } \\ & \text { brightness }\end{aligned}$ brightness ＊Can he switched and dimmed from many locations using TDE／K kit making 2 －way switching easy ＊＊PRICE £8．99 TDE／K E1．00	TH
	400V Plastic Case 3A 6． 6．with trigger 8A
LIGHTING CONTROL KITS（300W） bined One touch－plate for on off Small knob controls brightness．$£ 5.50$ TS300K TOUCHSWITCH Two touchplates ON／OFF £4．00 SA300K AUTOMATIC One touchplate Preser time delay offi $£ 4.00$ LD300K LIGHTDIMMER．$£ 2.80$	
DICITAL VO THERMOM	
	MINI MAI RANSFOR
	 Standard 240 V mains primary 100 mA secondary $6-0-6 \mathrm{~V}$ $\mathbf{8 5 p}$ $9.0-9 \mathrm{~V}$ 90 p $12-0-12 \mathrm{~V}$ $\mathbf{9 5 p}$
24 HR．CLOCK／APPLIANCE TIMER KIT	
Switches any appliance of up to 1 KW on and off at preset times once a day KIT contains AY－5－1230 Clock／Appliance Timer IC， 05 LED display，mains supply display drivers switches，LEDs，triac，complete with PCBs and ful instructions $£ 13.75$ White box $(56 \times 131 \times 71 \mathrm{~mm})$－drilled $\quad \begin{gathered}\text { undrilles }\end{gathered}$	
PLEASE ADD 8% VA T（ $\boldsymbol{*} 121 / 2 \%$ ）TO ABOOVE PRICES QUANTITY DISCOUNTS ON REQUEST．ADD 25 P POSTAGE \＆PACKING．MAIL ORDER ONLYTO： t．K．electronic̄s， $1 \mathbf{1 0 6}$ Studley Grange Road，London w7 2LX	

TRANS		BC328	15p	80208	160 p	2N4061	12p	7490	32p	74194					
AC126	18p	8С338	15p	0 C 25	76p	2 N 4062	20 p	7491	65p	$\begin{aligned} & 74194 \\ & 74195 \end{aligned}$	82p 85	45507 $19 p$ $59 p$	DYODES BY127	ZENER DIODES 400 mW	
ACI27	$17 p$	8C547	11 p	$0 \mathrm{OC28}$	108p	2N4123	23p	7492	45p	74196	92p	4510 110p	$\begin{array}{ll}\text { BY127 } & 16 p \\ 0447 & 10 p\end{array}$	2.7 V Io 33 V	10p
AC128	16p	8C548	10p	0 C 35	108p			7493	34 p	74197	92 p	$4516110 p$	0487 10p		
AC141	24p	8 C 549	11p	$0 \mathrm{C71}$	19p			7494	80 p	74198	150p	4510 75p	OAB1 15p		
ACI42	24p	BC557	14p	0 C 72	34 p			7495	55p	74199	150p	4519 60p	OA200 6p	Yeho boands 0．1＂coppar	
AC151	42p	всү30	67p	0 OCP4	45	ITL		7496	$62 p$			$\begin{array}{rr}4519 & 60 p \\ 4520 & 110 p\end{array}$	OA2U2 ${ }_{\text {LVG14 }}$		57p
AC152	53p	BCY34	74p	TIP29	40p	7400	12p	7497	240p	Cmos		4528 107p	iN914	3．75＂$\times 5^{\prime \prime}$	67p
AC153	58p	BCY59	24p	TIP30	40p	7401	12p	74100	95p	4000		4578	1 N 916 5p		
4 Cl 176	18 p	8CY70	14p	TIP31	50p	7402	12p	74104	50p	4001	${ }^{15 p}$	4578 4583 $27 p$ $83 p$	IN4001	CERAMIC CAP 50V	
AC187	23p	BCY71	14p	TIP32	55p	7403	12p	74105	40p	4002	15 l	$\begin{array}{rr}4583 & 83 p \\ 4585 & 105 p\end{array}$	IN4002 ${ }^{\text {a }}$	22pF to 47000．pF	2p
ACIAB	23p	80115	52p	TIP33	75p	7404	13p	74107	2日p	4006	110 p	$4585105 p$	$1 \mathrm{N4003}$－ p^{1}		
AD149	65p	80121	79p	TIP34	98p	7405	13p	74109	45p	4007	16		1N4004		
AD161	38p	BD123	79p	TIP35A	$253 p$	7406	29p	74110	46p	4008	94p	hegulators	1N4005 100	．01． 015.022 .033 .047 ． 068.1 F	
ADI62	38p	80124	97p	TiP36A	389p	7407	29p	74116	160p	4009	$46 p$		$1 / 44006$ 144007	15．22． 33 ，033．．047，068．． 1 uF	5 p
AFI14	30 p	BD131	$35 p$	TIP4iA	59p	7408	14p	74118	82p	4010	50p	$\begin{array}{ll}7812 & 82 p \\ 782 p\end{array}$	144007 11p	47， 68 uF	7p
AFII ${ }^{\text {a }}$	30p	80132	35p	TIP42A	59p	7409	14p	74120	125p	4011	15p	7815 82p	1N5400 16p	1uF ${ }^{\text {47，}} 6$	13 p
AF125	27p	BD135	38p	T1P2955	$126 p$	7410	12p	74121	26 p	4012	$16 p$	7818 （82p	IH5401 16p	2.2 uF	17p
AFI26	27p	80136	$36 p$	TIP3055	64 p	7411	$19 p$	74122	55p	4013	35p	7824 82p	1M5402 18p	6．8 uF	28p
AF127	27p	80137	${ }^{38 p}$	2TX108	14 p	7412	21p	74123	40p	4014	108 p	7905 98p	IN5403 20p	6.8 uF	48p
AF139	$36 p$	BD138	38 p	2Tx109	14 p	7413	25p	74125	45p	4015	80p	7912 98p			
AFI86	54p	80139	35p	27×300	16p	7414	54 p	74126	$46 p$	4016	45p	7915 98p		ELECTROLYTIC CAP 250	
AF239	40p	BD140	35p	27×500	16p	7416	27p	74132	70p	4017	65p	7918 98p		luF to 47 uF	7 p
ASY53	$81 p$	BF115	25p	2 2 706	13p	7417	27p	74136	79p	4018	90 p	7924 98p		6BuF，100uF	8 p
ASY54	81p	日F167	29p	2N1131	23 p	7420	12p	74141	56p	4019	$65 p$		bridge	150uF	9 p
${ }^{\text {ASY55 }}$	69p	8F173	27p	$2 \mathrm{2H1132}$	23p	7421	28p	74142	202p	4020	95p	THYRISTORS	RECTIFIERS	220uF	10 p
BCIO7	${ }^{\text {ip }}$	㫙178	34 p	2N1302	38 p	7422	18 p	74145	${ }^{651}$	4021	98 p	IA／50V 2Bp	IA／50V 22p	330 F	12p
${ }^{\text {BCIO8 }}$	${ }^{8 p}$	8F179	37 p	2W1304	54 p	7427	25p	74147	135p	4022	$85 p$	1A／ILIOY 30p	1A／IODV 24p	470uF	15p
BC109	8 p	BFIB0	37 p	2N1305	25 p	7428	34p	74148	120p	4023	15p	1A／200V 38 p	$1 \mathrm{~N} 200 \mathrm{~N} \quad 27 \mathrm{p}$		
BC113	17p	日F181	37 p	2N1306	39 p	7430	12p	74150	70p			$1 \mathrm{~A} / 400 \mathrm{~V}$ 40p	$1 \mathrm{~A} / 400 \mathrm{~V}$ 30p	RESISTORS 0.25 W	
8C117	20p	8F182	37p	$2 \mathrm{2W1308}$	40p	7432	24p	74151	50p	CMOS		3A／100Y 36p	24／50V 34 p	4.1 ohms to 1 Mohm	$1 p$
BCII 19	29 p	BF183	37 p	2N1613	22p	7433	32p	74153	60p	4024	68p	3A／200V 38p	2A／100V 36p		ip
BC140	34p	BF184	28 p	2N1711	21 p	7437	24p	74154	$106 p$	4025	15p	3A／400V 51p	2A／200V 38p		
BC142	27p	8 PF 185	30p	2N1893	44 p	7438	24 p	74155	63 p	4027	35 p	3x4cor 51p	2A／400V 40p	POTENTIOMETEFS（carbon）	
8C143	27 p	${ }^{\text {BF }} 194$	13p	2N2217	27p	7440	13p	74156	$63 p$	4028	70p	LINEARS		1 Kohm to 2 Mohms log／lingar	
BC147 BC149	7 p	㫙196	13p	2N2219	$21 p$	7441	52 p	74157	63p	4029	90 p	710CN 41p		5 Kohm lo 1 Mohm log swilched	60p
日C149 BC157	8p 90	日F197 BF198	16p	2N2369 2N2483	$16 p$ $26 p$	7442 7443	${ }^{45 p}$	74160 74161	80p	4030	50p	741 DLL8 22p			
BC158	9	BFF20 BF200	$16 p$ $36 p$	2N2483	26p	7443	90p	74161 74162	80 p 80 p	4035	130p	$747 \mathrm{CBL1} 14 \mathrm{lop}$		PRESETS 0．1W	
8C159	9 p	BF224	16p	2N2905	$22 p$	7445	70p	74163	80 p	4042	87p	$\begin{array}{ll}748 \mathrm{C} \text { DIL8 } & 35 \mathrm{p} \\ \text { Ca3011 } & 80 \mathrm{p}\end{array}$	2N5777 50p	100 ohm to I Mohm	$6 p$
日C168	8 p	日F257	37 p	2N2906	22p	7446	70p	74164	70p	4043	85p	$\begin{array}{ll}\text { Ca3011 } & 80 \mathrm{p} \\ \text { Ca3018 } & 80 \mathrm{p}\end{array}$	0CP71 70p		
BC170	9 p	BF258	40p	2N2907	22	7447	55p	74165	90 p	4044	96p	$\begin{array}{ll}\text { CA3028A } & 85 \mathrm{p}\end{array}$	QRP12 70p		
BCI71	9 p	日F259	44p	2H29266	180	7448	58p	74166	100p	4047	95p	CA3035 140p	01704 90p	6．0．6V 100 mA ars 240 V primary	
BC172	9 p	BF月39	30 p	$2 \mathrm{H2926R}$	$\stackrel{1}{10}$	7450	14p	＋410̂7	270p	4048	63p	CA3036 120 p	01707 90p	$0.6 \mathrm{~V} \times 21 \mathrm{~A} \times 2$	95p
BC173	9 p	日F月4D	$30 p$	243053	10 p	7451	14 p	74173	120	4049	$40 p$	CA3046 75 p	LED $3 / 5 \mathrm{~mm}$	9.0 .9 V 100 mA	3509
日C182	10 p	BFR79	30p	2 23054	50 p	7452	13p	74174	90 p	4050	45p	Ca3054 110p	hed 10p	9－0．9V 1A	2509
$8 \mathrm{8C183}$	10 p	日FR80	$30 p$	2N3055	50 p	7453	19p	74175	$70 p$	4066	40p	CA3080 70p	Yellow 17p	9.0 .9 V 2 A	2909
BCIBA	10p	日F×29	25p	2 23702	8 p	7454	14 p	74176	90 p	4068	16p	CA3140E $\quad 74 \mathrm{p}$	Green 17p	0.12 V 2 A	400p
BC186	23 p	BF×30	3pp	2 2 3703	8 p	7460	14 p	74177	90p	4069	$16 p$	LMSOIAN 30p	Clip 3p	0．15Vx2 200max2	3709
日C187	26p	${ }^{\text {日f } \times 85}$	29p	2N3704	8 p	7472	28p	74178	120p	4070	16p	LM308N 54p		O－15v2 200maxz	240p
日C207	13p	BFX86	$31 p$	2N3705	9 p	7472	24 p	74180	85p	4071	$16 p$	LM380N 76p			
日C212	10p	BFX87	20p	2 23707	9 p	7473	25 p	74181	195p	4072	20p	LM381N 105p	Add 25p	p\＆p．All items new and	
${ }^{\text {BC2 }}$－ 13	10 p	BFY50	15 p	2 23710	8 p	7474	25 p	74182	75p	4073	20p	HE555 25p			
B6214 BC237	10p	BFY51 BFF53	15p	2 2N3711 2N3772	$8 p$ 177 p	7475 7476	48p	74184 74190	243p	4077	65p	NE556 65p			
8с238	14p	BSX19	$25 p$	2N3773	230 p	7480	${ }_{46 p}$	74191	100p	${ }^{4078}$	$16 p$ $19 p$	TBA641 $\begin{array}{rr}\text { 240p } \\ \text { TBA800 } & 70 \mathrm{p}\end{array}$			
8C3D	30p	BSX20	21p	2N3866	$61 p$	7485	90p	74192	100p	4082		$\begin{array}{rr}\text { T8A800 } \\ \text { T8A810 } & \text { 70p } \\ 113 \mathrm{p}\end{array}$			
ВСЗО3	30p	BU205	140p	2 2－3904	8 p	1486	26p	74193	110 p	$\begin{aligned} & 9082 \\ & 4086 \end{aligned}$	24p	184810 113p	62 NAYLOR	ROAD，LONDON，N20	OHN

IN4148 Diodes by ITT/Texas. 100 for $\mathbf{£ 1 . 5 0}$. These are full spec. devices.			
Unencoded Hexadecimal 19 keyboard 1-10 ABCDEF. 2 optional keys. Shift key. £12.50.			
MM2102 AN-4L 1024×1 Bit. 450 nano sec Static Ram. $£ 1.00$ each.			
FND500 Seven Segment Common Cathode Display $£ 1.30$ each. $4 / £ 5.00$.			
AY5-1013 UART/T £6.00.			
$\text { Red Leds } 01.125 \text { or } 0.2 \text {. } 10 \text { for } £ 1.20 \text {. }$$100 / £ 9.00 .$			
2112256×4 Bit Static Ram 450 nanosec. £2.95 each. $4 / £ 11.60 .8 / £ 22.60$.			
Murata Ultrasonic Transducer $£ 2.50$ each $£ 4.00$ pair.			
741 Op Amp 25p each. 10/£2.00.			
555 Timer 28p each. 10/£2.50.			
4001 4007	$14 p$ $16 p$	4029 4047	$110 p$ 100 p
4011	14p	4049	100p
4012	$14 p$	4060	120 p
4013	50p	4066	55 p
4015	90p	4069	20p
4106	40p	4071	$16 p$
4017	90p	4072	16 p
4020 4022	100p 90 p	4081	16p
4023	16 p	4510	120p
4024	65p	4511	150p
4025	16 p	4516	110 p
4026	160 p	4518	130p
4027	50 p	4528	100p
4028	90 p		
Prices include Post and VAT			
T. POWELL 306 ST. PAUL'S ROÁD, HİGHBURY CORNER, LONDON N.1. Tel. 01-226 1489 Callers welcome 24. hr. Ansaphone order service with ACCESS or BARCLAYCARD No.			

£27.95 cash with order or $£ 29.95$ company purchase order. A.C. Mains adaptor $£ 3.95$
deluxe padded carrying case. $£ 3.20$
30kV probe $£ 18.64$ THE SINCLAIR MICROVISION
 The amazing pocket TV that will
pick up programs throughout the pick up programs throughour the
wortd complete with rechargeable
hatteries
$£ 189.95$ inc VAT Sae (for debuied Brochure exs soock

SINCLAIR DM235

Portable $31 / 2$ digit 6 functio MC vols 1 mV to 1000 V
AC volis 1 mV io 75 V $A C$ volis 1 mV 10 750V Aesistance $101020 \mathrm{~m} \Omega$
Diode tesi $01 \mu \mathrm{~A}$ Diode lesi $01 \mu A 101 \mathrm{~mA}$
10 m input. DC acc $10 \% \mathrm{AC}$ 10 mn input. $D C$ acc $\quad 10 \% \mathrm{AC}$
acc $1.5 \% 30 \mathrm{~Hz}-10 \mathrm{KHz}$ £52.80
inc VAT or E5
53.70

A full range of optionai accessoories. (Prices include VAT) DM 235 meter complete with test leads and prods DMeready metery rompliste with case with lead stads and prods Rechargeabie battery units $£ 8.50$. AC adaptop/charger $240 \mathrm{EB.95} 50$
$\mathrm{~Hz} £ 3.75 .30 \mathrm{kV}$ votrape probe

> KRAMER \& CO We will match any lower advertisod price om a ca
order basia if compotitor has goods in stock 9 October Place. Holders Hill Rood, London NW 14 1EJ. Toler 888941 Attn. Kramer K7. Tol. 01-203 2473 Mail order only SAE for dats sheets Expon enquiries welcome

As suplied te Posi Dficice, Indusiry and Goverameal Depts SINGLE UNITS (1D)
(5in $\times 2^{1 / 4}$ in $\times 2 \frac{1}{4}$ in.) $£ 3.50$ DOZEN DOUBLE UNITS (2D)
(5 in $\times 4^{1 / 2 i n} \times 2^{1 / 4}$ in) $\mathbf{E 5 . 5 0}$ DOZEN TREBLE (3D) $\mathbf{E 5 . 5 0}$ for 8

2 drawers. in one outer case (6D2)

XTRA LARGE SIRE (6D1) £6.90 for 8 PLUS QUANTITY DISCOUNTS Orders over \&20. less 5%. Orders over E60 less $71 / 2 \%$ PACKING/ POSIAGE, CARAIAGE Add $¢ 100$ to all
10 Orders $=10$ and over please add 10% catiane
QUOTATIONS FOR LARGER OUANTITIES Plasse add $\mathbf{B} \%$ V.A.T. to total ramittance

Modern slim line power panei countless uses in home atice lactory showrooms Perfectly sale unbeatable Can be mounted
on wall or trailed anywhero in room. Noat rubber base Smat on wall or trailed anywhers in room. Noat rubber base. Smart
PVC outer cover Black $\mathbf{E 3 . 1 0}$. White $\mathbf{E 3 . 3 0}$, P\&P 60p each ired 200 per yard
FLAIRLINE SUPPLIES (Dept. ET20) 124 Cricklewood Broadway, London N.W. 2 124 Crickiowood Eroadway, Londo
Telephone $01-4504844$

BLOB BOARD BUILDS BETTER BROJECTS BHEAPER, BASTER \& BEAUTIFULLY BLOB-BOARD

Blob-Board is now available in many different layouts and sizes to allow the home constructor to build any project from the most simple to the most complicated without the need of layout drawings or having to work out complex component patterns.
Blob-Boards are normally much cheaper than existing matrix boards and do not need any cutting or breaking of contact rails
The roller tinned tracks and letter number identification of holes make soldering so much easier than nontinned copper boards and make transferring from circuit diagram to BlobBoard virtually error free
Components can be re-used and resoldered making circuit project modifications and amendments fast and cheap. All Blob-Board packs contain step-bystep instructions of how to build projects and a project booklet. The "IC" range has a 20 project booklet with easy to follow circuit diagrams and the " D " range has a 9 project booklet including Radio Receiver, Radio Microphone, Light Operation Switch etc.

Bred circuit board BCB4

CODE	SIZE mm	PRICE
ZB5D	92×61	$\mathbf{£ 0 . 4 4}$
ZB6D	61×186	$\mathbf{£ 0 . 8 5}$
ZB7D	125×186	$\mathbf{£ 1 . 6 7}$
ZB8D	165×241	$\mathbf{£ 2 . 8 8}$
ZB1 IC	114×76	$\mathbf{£ 0 . 6 6}$
ZB2 IC	115×78	$\mathbf{£ 0 . 7 1}$
ZB4 IC	127×203	$\mathbf{£ 1 . 9 0}$
ZB8 IC	254×203	$\mathbf{£ 3 . 6 9}$
BCB 1	120×150	$\mathbf{£ 1 . 0 3}$
BCB 2	175×65	$\mathbf{£ 0 . 6 3}$
BCB 3	125×75	$\mathbf{£ 0 . 5 4}$
BCB 4	125×50	$\mathbf{£ 0 . 4 9}$
ZB4V	229×165	$\mathbf{£ 2 . 5 5}$
ZB4V5	229×165	$\mathbf{£ 2 . 5 5}$

PB Electronics (Scotland) Ltd

9 Radwinter Road
Saffron Walden, Essex CB11 3HU

All prices include VAT
Please add 35p p \& p minimum order $£ 3.00$ Available from all good component stockists

counter attrattions:

New this month from Intersil, the ICM 7216. This is procator The manr mpminer mine for frequency counter/timer applications ever devised, It ETE a $1 \leq$

 The IC cost is $£ 19.82$, and the $10 \mathrm{MHz} \mathrm{HC18UX} \mathrm{Xtal} £ 2.50$ for anment
circuit data is free with the IC, or $£ 1$ purchased separstey, Insur New from Ambit is the MC3357. $6 \mathrm{v}, 2 \mathrm{~mA}$ standby NSFM $=$ = with 10.7-455 kHz balanced mixer, onboard oscillator jer ideally suited to our CFM and LFY filter series, and coss $=:=0$ nth thel Please note that OSTS prices exclude VAT at 8%

c04000 cmos

From the Warld's leading radia innountion source:
surn from the MC3357, mentioned alongside, Ambit has the first easy-to-use low noise ase figure of only $2,8 \mathrm{~dB}$ at 800 MHz , you will see whens. With a gain of 18 dB , and yain is 23 dB , and NF only 1.6 dB . Combine these figures with the famous ease of use of Luate MOSFET, and you have the easiest and most effective front end device ye

Moving Coil Meters

Stereo Dacoder Dovices

CA3090AO RCA's plig decoder
CA 1310 KB4

CA758 Buffered version of 13

LM1307/uA707 non pil type HA1196 advanced adj sep pll low thd HA11223 newpilot cancel low thd $/$ imin

Discrete semiconductors
FET transistors for radio in the UK

Hitachi VMOS 100 W power devices
Hitachi 2 SK $134 / 2$ SJ48 100 W comp
VMOS. Data and circuit info $£ 1$, and

DISCRETE LEDs from Tulatunken, squal
sided and round, AMBIT hat the bent val

A vary wide selection of BOTH Alps SUB series units, (Schadow/AB/Oreor compatible)
the miniature Dialistat units. Availabla in DIY
And Finaliy
Further details of these, and many more of
the wonders of the world of wireless in the
new Ambit catalogue - with magazine suppnew Ambit catalogue -
lement. 45 p inc pp etc.
Phone (0277) 216029/227050 9am-7pm,
2 Gresham Road, Brentwand, E55er.

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

 WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS STEREO PRE-AMPLIFIERSMC 1

CPR 1

CPR 1-THE ADVANCED PRE-AMPLIFIER

MC 1 PRE-PRE-AMPLIFIER

REG 1 - POWER SUPPLY

POWER AMPLIFIERS

[^11]POWER SUPPLIES

POWER AMPLIFIER KIT

supply tis contemporarall styled and tit quality is consititent any two of our power amp modules plus a power
instructions and full back-up service anablen thovice tof our ather products. Comprehensive

POWER AMPLIFIER MODULES
$\begin{array}{ll}\text { CE } & 608 \\ \text { CE } 1004 & 60 \mathrm{~W} / 8 \text { ohms } 35-0.35 \mathrm{~V} \\ \text { CE } 1008100 \mathrm{ommm} 35-0.35 \mathrm{v}\end{array}$

66 170W/8 ohms 60.0 .60 v
TOROIDAL POWER SUPPLIES
CPSI tot $2 \times$ CE 608 or $1 \times C E 1004$
CPS 2 lor $2 \times$ CE 1004 or $2 / 4 \times$ CE 608
CPS3 for $2 \times$ CE 1008 or $1 \times$ CE 1704
CPS5 for $1 \times$ CE 1708
heatsinks

Mediump power, $100 \mathrm{~mm}-14 \mathrm{c} / \mathrm{W}$

Disco group 150 mm .11 CFW
Fan, 80 mm atate 120 or 240 w
2:4.C.W 65 C max with tho 170 neatinks
THERMAL CUT-OUT, 70 C

Understanding Digital Electronics New teach-yourself courses

Design of digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers: complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates. NOT, exlusive OR NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables: De Morgans Laws; canonical forms; logic conventions: Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and tull adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding: decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU): memory organisation: character representation; program storage; address modes: input/ output systems; program interrupts; interrupt priorities; programming: assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed hough the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digitai electronics. Everyone can learn from it - designer, erecutive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND zares and inverters; Boolean algebra and truth tables: De Morgans aws: design of logic circuits using NOR gates; R-S and J-K flip flops; znary counters, shift registers and half adders.
Eथ RIDGE LEARNING ENTERPRISES, UNIT 12, RIVERMILL SITE,
Fi giost, ST. IVES, HUNTINGDON, CAMBS. PE17 4BR, ENGLAND
TELEPHONE: ST. IVES (0480) 67446
PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE RIVERMILL
LODGE, ST, IVES REGD. IN ENGLAND No. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.
After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.
The six volumes of Design of
Digital Systems cost only:
And the four volumes of
Digital Computer Logic and
Electronics cost only: Electronics cost only:

But if you buy both courses, the total cost is only:
+90 p. post \& packing
$+£ 1$ post \& packing

Price includes surface mail anywhere in the world - Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

$£ 2.95$

+45 p post $\&$ packing by surface mail anywhere in the world. Airmail. extra

GUARANTEE

If you are not entirely satisfied your money will be refunded,
Cambridge Learning Enterprises, Unit 12 , Rivermill Site,
Freepost, St. Ives, Huntingdon, Cambs. PE1 17 4BR England.
Please send me the following books
sets-Digital Computer Logic \& Electronics@ @5 50, p \& p included
sets Design of Digital Systems @ $£ 9.00$, p. \& p. included
Combined sets @ 1300 p
Combined sets @ £13.00, p \& p included
The Algorithm Writer's guide @ £3.40, p \& p included

Name

Address

I enclose a cheque/PO payable to Cambridge Learning Enterprises for E
Please charge my * Access/Barclaycard/Visa/Eurocard 'Mastercharge/İnterbank account number
Signature
*deleted as appropr:ate Telephone orders from credit card holders accepted on 0480 67446 (ansafone). Overseas customers should send a bank traf: in sterling drawn on a London Bank.

GREENWELD
 443 Millonook Foad Southampton SO1 OHX Tel:COTOU 772501

All prices quoted include VAT. Add 25p UK/BFPO Postage. Most orders despatched on day of receipt. SAE with enquiries please. MINIMUM ORDER VALUE £1. Official orders accepted from schools, etc. (Minimum invoice charge
£5). Export/ Wholezale enquiries welcome. Wholesale list now available for £5). Export/Wholesale enquiries welcome. Wholes

BUY A COMPLETE RANGE OF
 THE NEW 1978-9 GREENWELD CATALOGUE

 COMPONENTS AND THESE PACKS WILL HELP YOUSAVE ON TIME-No delavs in warting for parts to come or shops to open!
SAVE ON MONEY - Bulk buying means lowest prices - just compare With others! guesswork or sub necessary!
ALL PACKS CONTAIN FULL SPEC BRAND NEW, MARKED DEVICES - SENT BY PRICES
K00150V ceramic plate capacitors, 5\% 10 of each value 22 pF to 1000 pF . Total 210 £ 3.35
values $£ 4.90$
$K 003$ Polyester capacitors, 10 each of these values 001,0015,0022,0033,0047 $0.068,01,015,022,033,047 \mu \mathrm{~F}$ 10 altogether for $£ 4.75$
K004 Mylar capacitors, min 100 V type 10 each all values from 1000 pF to $10,000 \mathrm{pF}$ K009 Extend
K009. Extended mylar pack Contains al capacitors to $£ 11.25$
$K 005$ Polystyrene capacitors, 10 each value 160 V Total 370 for $£ 12.30$
K006 Tantalum bead capacitors 10 each or
the following 0.1.0.15,0.22,0 33,047
$10 / 25,15 / 16 \quad 22 / 1633 / 10$
$100 / 3$ Total 170 tants for $£ 14.20$
K007 Electrolytic capacitors 25 V w
Ko07 Electral size 10 each of smal physical size 10 each of these popular
values $1,22,47,10,22,47,100 \mu \mathrm{~F}$ values 70 for $£ 3.50$
K008 Extended range, as above, also for $£ 5.90$
K021 Minature carbon film 5\% resistors CR25 or similar 10 of each value from 10 R 101 M
E 6.00
K022 Extended range, total 850 resistors
from $1 R$ to 10 M £8.30
K041 Zener diodes, $400 \mathrm{~mW} 5 \% 82 Y 88$ series Total 280 for $£ 15.30$
K042 As above but 5 of each value $£ 8.70$
STEREO AMPLIFIER CHASSIS £5.50
Complete and ready buit Conirols Bass, treble, volume/on-off, balance 8 transistor circuit gives 2 watts per channel output Just
needs transformer and speakers for low cost stereo amp Sutable metal cabinet (W374) former for $£ 10,00$ and , case and tran sockets and knobs free!!

AMPLIFIER KIT £1.75

vol/on-off controls. Utilizes sim, circuitry to above amp Output 2 W into 8 ohms Input matched for crystal cartridge 4 transistor
circuit Simple to build on PCB provided Can be either battery or mains operated (For mains powered version add $£ 2.20$ for suitable transformer) Blue vinyl cove

BC182B OFFER

VAT, $5 \mathrm{k} .032+$ VAT Price
PC ETCHING KIT MK III
board, 11 b Ferric Chloride, DALO etch-resis pen, abrasive cleaner, two miniature drill
bits, etching dish and instructions $£ 4.25$. EDGE CONNECTORS double-sided gold-plated connectors en ables us to offer them at l
of their original list pricel
18 way 41p; 21 way 47p; 32 way 72p; 40 y 90p

FEATURES INCLUDE

* 50p Discount Vouchers
- Quantity prices for bulk buyers
\star Reply Pard Envelope
* Priority Order Form
* VAT inclusive price

Price 30p+15p Post
HEAT SINK OFFER
$\mathbf{4 0 p}: 100$ for $£ 3: 1,000$ for $£ 25$.
74 SERIES PACK selection of boards containing many dit £2.20: 100 for $£ 4$.

TMS4030 RAM

4096 bit dynamic RAM with 300 ns acces lime; 470 ns cycle time, single low capacible: Lon: power dissipation Supplied with data $£ 2.75$.

MISCELLANEOUS ICs upplied with data if requested MC3302 d0p; ZN 1034 E ; 110 diff comp (1099) M711 Dual dift comp 65p; LM1303 dua tereo pre-amp 75p; MC1469R voltage reg 1.50; UPC 1025 H audıo $£ 3.50$; 575C2 udio £2.88; TDA2640 audio £2.92 BA810S audio 70p; SN75110 dual

EXPERIMENTERS

CALCULATOR
Based on the C500 chip, this pack of parts enables the more experienced constructor to nake an 8 digit 4 function calculator. The size layout of PCB data supplied includes rable display a Components included in the pack are C500 calculator chip, driver IC all components for E3.50. E3.50

RELAYS

6 V coll, SPCO 3 A contacts 93 p
W832 Sub min type, $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ coil DPCO 2 A contacts $£ 1.15$.
W701 6V SPCO 1A contacts $20 \times 30 \times$ 25 mm Only 56 p .
W817 11 pin plug in relay: rated 24 V AC, out works 10A 95p N819 12V 1250 R
W819 12V $29 \times 22 \times 18 \mathrm{~mm}$ min DPO 1 A contacts Size W83950V ac 24 V DC C coit. 11 pin plu type 3 polec/o 10A contacts Only 85 p. W846 Open construction mains relay. 3 se 10A $/ 0$ contacts $£ 1.20$. Send SAE for our relay list - 84 types listed

LOW COST PLASTIC BOXES etained hy 4 impact AbS terior of box has PCB guide slots (except V219)
$\begin{array}{ll}V 210 & 80 \times 62 \times 40 \mathrm{~mm} \text { black } \\ V 213 & 100 \times 75 \times 40 \mathrm{~mm} \text { black }\end{array}$
$216 \quad 120 \times 100 \times 45 \mathrm{~mm}$ black
72p $216120 \times 100 \times 45 \mathrm{~mm}$ black $\quad \mathbf{8 6 p}$

SPECIAL SUMMER OFFERS $76003 \mathrm{~N} \quad £ 1.40 \quad 76013 \mathrm{~N} \quad £ 1.00$ $\begin{array}{llll} & & \text { A6013N } & £ 1.00 \\ 76023 \mathrm{~N} & £ 1.00 & 76033 \mathrm{~N} & \mathrm{E1.40}\end{array}$ $\begin{array}{lll}\mathrm{M} 380 & \mathbf{8 0 p} \text { TBAB105 } 90 \mathrm{p}\end{array}$

741 (8DIL) Linear ICs etc. $\begin{array}{lrr}555 & \mathbf{2 5 p} & \text { BD132 } \\ \text { 1N4148 } & \mathbf{2 p} & 2 \text { N3819 }\end{array}$ 24p

DIODE SCOOPII!

 quantity of untested mostly obtain a large silicon diodes. Testing a sample batch revealed about 70\% useable devices signal diodes, high voltage rets and zeners may all be included. These are being offered at the incredibly low price of $£ 1.25 / 1,000$ 10000 £8. Box of $25,000 £ 1750$. Bag of $100,000 £ 60$.\section*{Eecroviluive Buying Guide Section 5
 Tou have bought from us before, you will know just how large It varied our stocks are. For those who have yet to know, we publishing a series of five advertisements month by monertan ms we carry. These advertisements will appear in stepped
 ption in mue jountion
 Practical Electronics and Everyday Electronics, so that the complete series will be available each month. In this way, no matter which journals you read, BY DETACHING AND SAVING THESE PAGES, YOU WILL HAVE A VALUABLE AND COM

PREHENSIVE
Section One.}

HARDWARE/SOLDER TOOLS

-TEMEES
$2+\frac{10}{2}=5$
TIIE

\square

SWITCHES
ERG Dual in Line
One pole change over SDC1 42p Two-SDC2, 78p 3-SDC3, £1.0B On Off 2 pole SDC2 42p 4 pol SDS4 75p. 6p SDS6 £1.08. 3p SDS8, £1.32
Multiple - 1p/8 way DS 16A1-8 99p 2 / ROTARY MAINS WAVECHANGE

$$
\begin{array}{rll}
12 W & \mathbf{3 7 p} & \mathbf{1 p} \\
6 W & 37 p & \mathbf{2 p} \\
4 W & \mathbf{3 7 p} & \mathbf{3 p} \\
3 W & \mathbf{3 7 p} & \mathbf{4 p}
\end{array}
$$

3W 37p
ROTARY SWITCH KIT Type RA 6 wafers 60 RA Wafers MBB RA Wafers BBM
1P 12W, 2P 6W
3p 4W, $4 P 3 W$
$3 \mathrm{p} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}$. 66
6 P 2 W

RA Shorting wafer, MBB
Rotating open-circuit66p
PUSH BUTTONS
Standard Size
SSP10, 250V 3A ac
push on, push off
panel hole 0.5
SSP 11 as SSP10
push to make 250 V 05 A a
8531 push to make
8533 push to break (Panel hole 0.25')

CASTELCO RANGE 250V 1A

a c
0

TOGGLE 250V 1.5 A a.c

\star V.A.T. -8% to value of order, For items marked ', add $121 / 2 \%$

FFOR ACCESS OR BARCLAY CARD orders, just phone or write your number.

No discounts allowable on prices

TEAR OUT AND TAKE GOOD CARE OF THIS PAGE AND REMEMBER TO LOOK OUT FOR MENT TO ADO TO IT

OUR COMPUTER-AIDED SERVICE
TAKES GOOD CARE OF YOUR ORDER NO MATTER HOW LARGE OR SMALL

ELEGTROVALUE LTD

28, ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM, SURREY TW2O OHB Telephone Egham 3603 Telex 264475
Northern Branch - 680,BURNAGE LANE,

© 3
 WIRE WRAPPING CENTRE

HOBSY WRAP
Model BWW 630

\qquad

See us at
BREAD BOARD'78 21st-25th November. Seymour Hall, Londo - Are offered in ten
contigurations. DISTRIBUTION STRIPS Bread boarding buthding
blocks with universal
matitices of solderless plug-in tiepoints.
solderless circuit build-up
and check-out on Accopt all components
with ieas up to $032^{\prime \prime}$ dlamoter. - Require no special patch includes integral nonIncludes integral non-
shorting instant mounting
backing.

HOBEY WRAP TOOL wnwrapping, stripping, AWG 30 on . $025(0,63 \mathrm{~mm}$

A £4.74 BE5.07

OK Machine\&ToolU.K. Limited
48a The Avenue Southampton SO12SY

FROM 29p
DIP SOCKET
Dual-In-line package, 3
level wire-wrapping.

 \begin{tabular}{l}
$(2.54 \mathrm{~mm})$ centre spacing.

$\begin{array}{l}\text { 14. Pin Dio } \\
\text { Socket }\end{array}$

\hline

Socket

\hline 16 Pin Dio

\hline

\hline Sor Pin Dio \& 16 Dio

\hline Socket \& 16 Did

\hline
\end{tabular} RIBBON CABLE ASSEMBLY

With 14 Pin Dip Plug 2° Long DE 14

 22.92 DISTRIBUTORS WANTED*** Telephone Southampton(0703) 389667 Telex 477222 Cablegram OKMAC

SAME AS ETI OFFER 5 FUNCTION LCD Hours, mins, secs. month, date, auto calendar, back-light. quality metal bracelet. £8.95		Solar + alarm LCD watch	QUARTZ LCD ALARM • Snooze + backlight Batteries last 1 year approx Includes batteries and travel pouch Excellent value	THOUSANDS SOLD 11 FUNCTION SLIM CHRONO 6 digit 11 Iunctions - Hours. mins, secs. * Day. dale, day ol wabk. * $1 / 100,1 / 10$. secs. $10 \times$ sacs. mins. * Splii and lap modes. - Back light, auto calandar. Only 8 mm thick. This same watch is heing sold for £22.00 in newspaper and magazine special offer ads. Metac Price £12.65
SEIKO The Seiko Quartz Collection encompasses a wide and exciting range of quartz watches for men and women. Day/Date quartz. Ultra-thin quartz. Digital quartz watches with liquid crystal display for continuous readout. Even a digital quartz alarm chronograph. It's what you'd expect of Seiko. The first quartz watch ever sold was a Seiko. And Seiko's expertise in every phase of the watchmaking process makes it possible for Seiko to make any part of any Seiko watch, and to exercise a unique quality control system through every step from design to more than just a technologically advanced timepiece.				
HANIMEX Electronic LED Alarm Clock Silde Sivico NaW \qquad Silde switch sinde Swith lide \qquad snopre	SOLAR 5 funclion LCD * Solar panel with battery back-up. * Back light + auto calendar, ${ }^{\text {* }}$ Hours, mins, secs, * Puality melal bracele £12.95		LADIES LCD Only $25 \times 20 \mathrm{~mm}$ and 6 aाra thick 5 function: hours, mins, socs, day, date. + Elegani melal bracelel in silver or goid. State pre- ference. ference. £10.95	ALARM LCD 5 -i 7 hactipn hours. rata alan Back lighl + Hits calanetar Unly E24.95
Faeture and Specification - arge LED display with a m and alarm on indicalor aspiay llashing lor power loss indication ${ }^{\text {an }}$ Isplay bright /dim modes control $£ 8.95$ "nempano war		METAC CLOCKS ETE KIT \star - 12/24 Hour readout button setting ractive acrylic case ans - Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$ £6.65	MICRO cassette recorder Hand-held only $21 / 2 \times 5 \times$ 1/r inch, Identical to well at E35 OUR PRICE £24	SINCLAIR SCIENTIFIC PROGRAMMABLE + free program library worth $£ 4.00$ omey $£ 12.95$ from metac
All products carry full 12 month guarantee. Please add 30 p P\&P with all orders. All prices include VAT. Shops open 9.30 to 6.00 caily. Tade enquiries welcome.		PNENTS transistors $50 p$ LED's, red $12 p$ een 15 p low $15 p$ displays $80 p$ displays 80p batteries ate typel ilt switches 50p ic inserts 50p sonic applications and mitters (buzzers etc)	metac EXCLUSIVE calculator WATCH + STOP-WATCH SEIKO STYLE Calculalor: $\mathrm{X} . \div \mathrm{z} .-\mathrm{K}$ Tima: hours, miss, secs. date, dey of wet PRICE $\mathrm{E}_{\mathbf{4} 9}$	TV GAMES Black \& white $£ 9.95$ Colour $£ 12.95$ 4 games. 2 ball speeds, 2 ballangles 2 bat sizes
METAC Electronics \& Time Centre 67 HIGH STREET DAVENTRY, NORTHANTS 327 EDGWARE ROAD LONDON W2 Barclay \& Access welcome Tel. (032 72) 76545 Tel. (01) 7234753 Phone or Send Card Number with order				

MINT-ADS \& classirizd

Safety fast! Shows: 1, If all wires correct, 2, Live wire faulty, 3, Live and Neutral wires reversed, 4, Earth faulty, 5, Neutral faulty. Shows exact fault instantly. British made. £ $\mathbf{3 . 9 5}$ post free. Save time. Be sure. Be safe

PERSONAL SAFETY CO.

Dept. ETI, P.O. Box 1
LLANRWST
Gwynedd, North Wales

HAPPY MEMORIES

21 LO2 RAM (450ns)
1-15@95p,16-63@92p, 64 up@ 89p $2114 E M M$ RAM (300ns) 1-3@ @6.25.4 up @ £6 2708 EPROM (450ns) 1-3@モ7.25.4 up@モ7 16 PIN DIL SOCKETS
Gold 22p, 100 up 21 p Tin 12p, 100 up 11 p
RAMS LIKE A SPARE BIT bits for Antex CX17 and CCN soldering irons $45 p$
Cheque or P.O to G. J. Greaves

5 Cranbury Terrace Southampton Hants SO2 OLH
C.O.D available at cost

All prices include V.A. T Add 20p postage

AT LOW COST

Tags available at exira $10 p$ per cell for 0.5Ah, 1.2 Ah and 1.8 Ah nicads only

Charger - Suitable for any of the above vented nicads charges up 10
200 mA rate

MICROCOMPUTER

VIM-1

Use the VIM by itself with its on board
28 double function keypad and 6 character LED
display
Then expand to full mainframe via 3-44 way edge
II comes to
II comes to you assembled and tested

VIM-1 is operational in minutes
Three manuals provided enable you to
MASTER MICROPROCESSOR TECHNOLOGY Plus features include

- Hi speed cassette interface 185 bytes/se
- IK user RAM with sockets for additional 3K
- Sockets for 20K ROM expansion
- ASIl alpha/numerics direct to an oscilloscope
- 4 K SUPERMON MONITOR includes
- Regie step modify/inspect whilst in prog
- Hex displacement calculator
£199 plus 8\% VAT = £15.92 TOTAL = £214.92

Plus ful technica suppor tand demonstrations trom

11 The Precinct, Romiley, Stockport SK6 4AE Tel: (061) 430-4770

E.T.I. P.C.B.s	
Epoxy glass laminate - drilled and tinned	
Complex Sound Gen.	2.0
R F Power Meter	0.54
Power Bulge	0.30
Bell Extender	0.59
STAC Timer	1.99
Wheel of Fortune	0.98
Cross Hatch Gen.	1.32
ETIWET	0.76
Metal Loc II	0.88
Metronome	0.55
House Alarm A \& B	2.47
Hammer Throw (3 of)	3.98
Clock A \& B	2.85
3 ch Tone Con.	0.56
Dig Thermometer	1.08
Graphic Equal	1.38
TV Game	1.25

Many more available including this month's circuits
SAE for full list. Prices include VAT. Please add 20 p post and packing. Orders over $£ 5$ pos free
PCBS from your own artwork - write for quote
T.S.I. (St. Ives) Ltd. 37 Telegraph Street
Cottenham, Cambridge, CB4 4QU
Tel. (0954) 51177

DIGITAC DIGITAL REV. COUNTER

The Digitac is a voltage impulse digital tachometer, which is suitable for all negative earth ignition systems. It has a 2 digit 7 segment display housed in a black case. Please specify no. of cylinders and if 6 or 12 volt system.

Ready built $£ 19.78$ Kit form £14.96
Prices are fully inclusive (Quantity discounts)

ELECTRONEQUIP

36 Merton Avenue, Portchester Hants PO16 9NE. 0701873455

Linsley-Hood 75 watt Power Amp modules, built and tested, from $£ 12.50$ Complete module kit $£ 10.50$ inclusive. Linsley-Hood 75 watt amplifiers constructed and repaired, comprehensive range of spares in stock. Details and list free. I. G. Bowman Dept. ETI), 59 Fowey Avenue, Torquay, S Devon.

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

Returned to Service Depariment within guミrantee period.

> With alarm rep £4.95 inc. VA

E4.95 inc. VAT
(2) With luxury lamp and repeat alarm as fearured in most major UK Mail Order catalogues S F S P £31.00-offered at $£ 8.95$ inc VAT
(3) With integral luxury light and repeat alarm also as SR.S P of $£ 32.00$ - offered al $£ 8.95$ ins $V=9$ These will be sold as received from our customers with the existing fault(s) and without guarantee

PRESCOTT CLOCK AND

WATCH COMPANY LIMITED
Prescott House, Humber Road, London NW2 6ER

Capacitors. Tantalum Bead (ITT Union Carbide, NCC). $50 \mathrm{v} .33 \mathrm{uf}, .68,35 \mathrm{v}, .22 .33 .47$ $1-01-54.7,6.816 v 2.24 .7=10 p .10 v$ 22uf $3368=18 p .63 v 100 u f=20 p 10 v$ 100uf $=30$ p. Electrolytic 250v 10uf CEIO .08P. 1000 uf $63 v$ erie. 50 p $50 \mathrm{v}, 4.7$ uf CEW 80.06p, 10uf CRO4W . 07 p, $35 v 33$ uf ITT . 0747 uf CEO\&W . 08 30v, 4700 uf Plessy 50, 25v 100uf Mullard 09, 470uf Mullard 17 p 10v 1000 uf CE04W 15 . Price breaks 50-199 less $10 \% 199-500$ less 15% 500 + less 20%. Same type components obtained to order. Min order $£ 2.00$. 35 p P\&P all orders below $£ 10.00$. Larkswood Electronics, 25 Larkswood Road, Chingford London E4 9DS. 01-529 8255

THE ROYAL FREE HOSPITAL HAMPSTEAD
 MEDICAL PHYSICS TECHNICIAN IV [ELECTRONICS]

An Electronics Technician is required for the Electronics Workshop of this major teaching hospital to assist with the development and maintenance of electronic circuits and equipment.
Applicants should hold the City and Guilds Final Certificate in appropriate subjects or an equivalent qualification. Some practical experience in the use of analogue and digital circuit techniques is desirable
Salary on scale: £3,423-£4,488 per annum, including all allowances. The star: ting point depending on qualifications and experience and the successful cancicate will be encouraged to study for a higher qualification, by means of Day Reicase
Application Form (to be retumed by 3rd November, 1978) and Job Des cription from the Personnel Department, The Royal Free Hospital, Pond Street, Hampstead, London NW3 20C. Tel: 01-794 0500. Please quote ref: 0761.
Camden and Islington Area HEelth
Authority (T)
L.C.D. CHRONOGRAPHS, ô digit dispiay stopwatch to 100 th seconds, Lap timer, PM indicator. S/S bracelet display backl:ght £16.96. L.C.D. Solar watch £16.95. Ladies L.C.D watch S / S or gilt bracelet $£ 13.95$ L.C.D. watch/stopwatch to seconds $£ 13.95$ Prices fully inclusive Cheques, P / Os to RAM ELECTRONICS, 49 Avondale Road Fleet Hampshire

ETI
 ADVERTISEMENT INDEX

Ace 90
Ambit 97
Astra-Pak 98
Audio Electronics 13
Bamber 84
Baydis 53
Bi-Pak $4 \& 5$
Birkett 10
B.N.R.S 78
Bull 53
Cambridge Learning 99
Catronics 90
Chittmead 34
Chromasonics 90
Crimson Elektrik 98
C.S.C 42 \& 43
Dalston Electronics 92
Delta Tech. \& Co. 94
Discount Computing 82
Doram 49, 53
E.D.A. 100
Electrovalve 101
Fladar 92
Flairline 96
Gould Advance 14
Greenbank 88
Greenweld 100
H.B. Electronics 92
Henry's 78, 88, 92
Ibek Systems 42
LP 69
Integrated Circuits 95
Jeremy Lord 84
Kramer 42, 84, 96
L.B. Electronics 64
Lektrakit 36, 70
Maplin 108
Marshalls 77
Metac 103
Minikits 42
Mountiandene 64
Nicholls 64
Nic Models 92
O.K. Machine 102
P.B. Electronics 96
Powell 96
Powertran 2, 6
Progressive Radio 64
R.F. Equipment 10
Roger Squires 78
R.T.V.C. 83
Sentinel Supply 78
Sintel 89
Stevenson 12
Sinclair Radionics 61
Swanley 82
Tamtronik 102
Target 36
Technomatic 11
Teleplay 107
Tempus 62
Trampus 70
T. K 94
Trident 52
Vero 94
Videotime 50
Watford 8, 9
Wilmslow Audio 36

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors' Hardware and accessories

Selected range of popular components. Full range of ETI printed circuit boards. normally ex-stock, same day despatch at competitive prices.
P.C. Boards to individual designs.

Resist-coated epoxy glass laminate for the
d.i.y. man with full processing instructions (no unusual chemicals required)

Alfac range of etch resist transfers, and other drawing materials for p.c. boards.

Send 15p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON
WARWICKS. Tel. 4879

COMPUTER HOBBIST, components at lowest prices. Write for free price list, stating your specific interests. PACS, 12 Alma Road, Monkstown, Co. Dublin, Eire.

PLEASE MENTION ETI WHEN REPLYING TO ADVERTS

COLOUR MODULATOR

 £6.95 for All tv ganes!

WILLIAM STUART SYSTEMS
137 Bill ericay food, Herongalo. Brentwood, Essex CM 13 3SD

STRATHAND SECURITY ALARMED?

If not vou should ber We soecializa in Alarm anuibment sullabla for home. ontice or fatory. All ilems brand naw lop qualily fully guarinitad.
101 Magnet and reed wilch. Flush lititing. 4 wire. Requires hole
12 mind diameter by 34 min 12 mm diameter by 34 mm deap
Magnel and reed switch flust fiting screw lo.....,90p hole 15 mm filimetar ty 14 mm deep.
103 Magnat and reed switch. Surface fitting. 4 wire. Size 65 mm by
13 mm by 71 mm
4 Megnet and reed switch. Heary duty, Size io3mm by 290 p
18 mm . Two hoil fixiag
105 Pressure pad - stair trisad $22 / /^{\prime \prime}$ by $6 / 2^{\prime \prime}$
106 Frassure pati - large $29 /^{\prime \prime} \times 15^{\prime \prime}$
107 Winfow toil - seff.adhasive - top quality. $70^{\prime \prime}$ rall iny $\mathrm{i} \%$ wide
109 Foil blecks - sell-edhastive (Joina toil lo cabié) 110 Keyswitches wilh mountion plate and cover 111 Beil buxse hasy duty plasicic conied matal
112 Ball $^{60^{4}}$ heay duty - very loud 12 v D.C.
123 Contrel cable 100mm - white

PLUS
hadar [microwave) units. aulomatic g99 dialling units with lape message, and many other items.

STRATHAND SECURITY
44 St. Andrew's Square Tal: 041-552 $6731 / 2$ Callers Welcome

MOTOROLA 6800 COMPUTERS

Single board 6800.17 command 1 K Mikbug compatible Monitor, 1 K user RAM, 1 K Crystal Controlled VDU, CUTS, fully buffered, room for extra 3×2708 PROMS
£175.00
Single board 2. Similar to above but with QWERTY keyboard £205.00 NEW Mini 6800. Two p.c.b. kit, 1 K monitor, 1 K VDU, RAM, CUTS, QWERTY keyboard £145.00 VDU kit. 1 K Crystal controlled, memory mapped, parallel input video output. Should suit most processors . . $£ \mathbf{6 0 . 0 0}$

All prices include VAT and post. Please send SAE for leaflets. Mail Order only

HEWART MICROELECTRONICS

5 Blakelow Road

Macclesfield, Cheshire
LED PPM Single chip Peak Programme Meter (SN16880N) drives 5 LED's directly, easily cascaded to increase range / resolution. $£ 3-50$ ea inclusive. Applications sheets alone 18p. Peter Francis, 34 Ashley Dr., Twickenham TW2 6HW.

DIGITAL WATCHES. See my range of high quality L.C.D. watches and clocks all with 12 month guarantee from as little as $£ 9.50$. Send S.A.E. for colour brochure. D. HULLAH (Watches), 14 Willow Grove, Harrogate, N/Yorks.

Soundtoligith Fantastic!

Videograph II links to the aerial socket of your tv and provides a full colour oscilloscope display! A must for hi-fi, home entertainment, discos, organs etc.
New - signal invert control, integral square wave generator. Plus - full details for testing your audio system for transient distortion, crosstalk etc. Complete $\mathbf{~ 1 4 . 1 5}$ Luxury cabinet and Kit only b/b'd controls. E9-95 NL POST, PACKING, VAT READY BULT VIDEOGAAFH 55995 WILLIAM Dower House, Bilheticay Road STUART Erongate Brenti
SYSTEMS Led Teiconhono: Erentwood (0277) 81026

A GENUINE BARGAIN OFFER. LCD

 Twenty Function Square Slim Chronograph CONSTANT DISPLAY: Hours, Minutes, Seconds, A.M., P.M.. Month, Date, Day, Roll-over, Backlight, CHRONOGRAPH:Minutes, Seconds, 10 th., 100 th., Lap Time, Lap Indicator, Total Time, Return Ordinary Time, Freeze Time, Memory, Stainless Steel Locking Bracelet. 12 Month Guarantee. Money Back Guarantee. ONLY £18.50. Without Chronograph $£ 14.50$. To J. RAMINGER, 1 St. Laurence Way Stanwick. Northants, NN 9 6Qs
or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that.

The transfers are easily rubbed down, and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Each sheet measures $180 \mathrm{~mm} \times 240 \mathrm{~mm}$ and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here-and the Ionger you wait the worse they'll look!

Send E1. 75 fincludes VAT and postage) for the twosheet set to:
Panel Markings ETI Magazine. 25-27 Oxfard Sireet, London WIR IRF.

TELEPLAY Thew product games, for out of date. partridge,

 Teleplay 1 1 have pr to assemblemily, that Just ADD each available, and your as it becomes centre will be up tocolour video will date the Teleplay way. White TV.

Joystick Hand Contro We offer In j One cartridge Tennis, Solo Squash (1 \& 2 28.90)
$+£ 2.31$ VAT
Fully Assam Every 3 months a NEW game will beconlude Submarines.
 Additional cartridges NOW how easy it is it instruction Manual
professional
kit profession separately at 0.45 . N B BUILD
supplied
Fully Assemb Stunt Cycle- 4 gantes and Hand

Electrical knowledge is not a necessity to assemble this project - just simple soldering
Cheques and Postal Orders to be made payable to TELEPLAY; send your order (No Stamp Needed) to
Teleplay, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number.

everything for the modern D.I.Y. electronics enthusiast and more.
 OUR 1979-80 CATALOGUE PRICE 75p

Please rush me a copy of your 216 -page catalogue I enclose 75 p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 75 p refunded immediately.

[^0]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a corŕection will be published as soon as possible afterwards.

[^1]: Applications of Operational Amplifiers tirisem- (Rurf Hrawn! E8,30
 Designing With Operational Amplifiers 甘urr Arum $£ 13.75$
 Experiments With Operational Amplifiers Claswon $£ 3.40$
 110 Operational Amplifier Projects for the Home Constructor R M Marmun E2.95 Operational Amplifiers Design and Applications © Tiber: (Burr Broun) $£ 7.40$
 Operational Amplifters Design Design \& Applications I (urr E4.00

[^2]: The Orbiter craft. Note the long magnetic probe to measure the magnetic field well away from any interfering field from the ceft

[^3]: Postage, Packing and Insurance per
 shipment $£ 1.25$
 Please add 8\% VAT to overall total
 Export orders: credit cards or internation \equiv money orders, bank drafts and cheques drawn in $£$ sterling. Please add 10% (Eurc= $ニ$ or $12 \frac{1}{2} \%$ (all other countries) to total pricः

[^4]: Continental Specialties Corporation (U.K.) Ltd., Unit 1, Shire Hill Industrial Estate, Dept. 9 H Saffron Waiden, Essex. CBII 3AO Telephone (0799) 21682 Telex 817477 Reg. in London: 1303780. - AT No: 2248074 71. *Trade Mark applied for © CSC (UK) Ltd. 1977 Dealer enquiries welcome.

[^5]: All publications are published in U.S.A. and shipped air-freight by L.P. Enterprises. In unusual cases, processing may exceed 30 days U. K. Subcriptions start within three week

[^6]: "Any
 "Any truth in the rumour we're about to be replaced by an MPU

[^7]: 14 STATION ROAD • NEW.BARNET • HERTFORDSHIRE • TEL: 01-441 2922 CLOSE TO NEW BARNET BR STATION -- MOORGATE LINE 01-449 6596 OPEN-10am to 7pm-Monday to Saturday

[^8]: "'Forget about RAMS, ROMS AND PROMS, darling . . . we've

[^9]: E.l Binders

 25-27 Oxford Street.
 London W1R 1 RF.

[^10]: For our full range of components send for Free Catalogue
 Our Offices are at 209 Cowtey Road OXford bur please do nor use ehis as a postal address

[^11]: If would be pointless to list in so smail \& Epace the number of recording studios educationaf and governmen
 estabishments etc. who thave been using CAIMSON ambs satisfactorily for quire some time We have all

