
. . .NEWS. . . .PROJECTS. . . .MICROPROCESSORS. . . .AUDIO. . .

8K ON BOARD MEMORY!
SK RAM. $3 K$ ROM or $4 K$ RAM, $4 K$ ROM (link selectable) Kit supplied with 3 K RAM, 3 K ROM

2 KEYBOARDS!

5 Key alphanumeric keyboard for entering high level machine code

GRAPHICS

- character graphics option - include MEMORY MAPPED
igh resolution VOU circuiry using discrete TTL for extra flexibility Has its own 2 K memory to give 32 lines for 64 characters

KANSAS CITY
low error rate tape interface

PSI COMP 80 280 Based powerful scientific computer design as published in
WIRELESS WORLD

2 MICROPROCESSORS

280 the powerful CPU with 158 instruction, including all 78 of the 8080 , controls the MM5 7109 number cruncher functions include,$+ \ldots$ squares, roots logs exponentials
Range 10^{-99} to 9×19^{99} to functions, inverses etc digits

EFFICIENT OPERATION Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC
with extended mathematical capability. Only 2 K memory used but more powerful than most 8 K Basics!

1K MONITOR

IK MONTI

SINGLE BOARD DESIGN

Even keyboards and power supply arcuitry on the superb quality double sided plated through-hole PCB

COMPLETE KIT NOW ONLY $\mathrm{f} 225+$ VAT

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is complete. Included in the PSICOMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board. 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer. 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

KIT ALSO AVAILABLE AS SEPARATEPACKS

PSI COMP 80 Memory Expansion System
Expansion up to 32 K all inside the computer's own cabinel
By carefully thought out ençineering a mother board with buffers and its own power supply (powered by the computers transtormer) enables up to cabinet Connections to the mother board from the main board expansion socket is made via a pibbon cable
Mother board: Fibre giass douole sided plated through hole PCB B $7^{\prime \prime} \times 30^{\prime \prime}$ set of all components cable with socket to connect to expansion plug cable with socket to connect to expansion $\mathbf{£ 3 9 . 9 0}$
8 K Static
RAM board

8 K
ROM board

Fibre glass double sided plated through hole
PC B $56^{\prime \prime} \times 48^{\prime \prime}$
$\mathbf{~} 12.50$ PCB $56^{\prime \prime} \times 48^{\prime \prime} \quad \mathbf{£ 1 2 . 5 0}$ and socket but excluding RAMs $£ 11.20$ 2114 RAM (16 required) $\quad £ 5.00$ Complete set of board components $\begin{array}{r}16 \text { RAMS } \\ \mathbf{£ 8 9 . 5 0}\end{array}$ Fibre glass doubie sided plated through hole PeB 5648 £ 12.40 Set of components including IC sockets plug
and socket but excluding ROMs
$\mathbf{£ 1 0 . 7 0}$ $\begin{array}{lr}\text { and socket but excluding ROMS } \\ 2708 \text { ROM (} 8 \text { required) } & \mathbf{£ 1 0 . 7 0} \\ \mathbf{~} 8.00\end{array}$ Complete set of board components. 8 ROMs

THIS MONTH'S FRONT COVER FEATURE! \star ETI VOCODER \star

Panel size $19.0^{\prime \prime} \times 5.25^{\prime \prime}$. Depth 12.2^{*}

14 CHANNELS! NOISE GENERATOR! SLEW RATE CONTROL!

2 OSCILLATORS!
 VOICED/UNVOICED DETECTORI LED PPM METERS!

COMPLETE KIT ONLY £195 + VAT

Kit includes FREE foot control and test oscillatorl
Like all our kits the ETI VOCODER really is complete - fully finished metal work, professional quality components lall resistors 2% metal oxide), nuts, bolts, etc. - even a 13 A plug'

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until October 31, 1980, if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded EXPORTORD U.K. ORDERS or at current rate if changed. £2.50IVAT inclusivel per kit. Counter. Open 9 a.m. 12 moon prefer to coilect kit from the

FEATURES

NEWS
HEAD AMP DESIGN
CURRENT AFFAIRS MICRO BASICS SPOT DESIGNS AUDIOPHILE RAVEN ON DESICNERS NOTEBOOK TECH TIPS

7 The first and best right here 15 Matching your moving coil. 23 Conducive reading this. 28 A potted computer history. 34 Tested circuits for all. 39 It's music to your ears. 44 This one'll leave you speechless 48 An attenuated Project Editor. 53 We leave it up to you

PROJECTS

VOCODER

DRILL SPEED CONTROLLER
TV SOUND TUNER DIGITAL TEST METER SURVIVAL GAME ENVELOPE SHAPER RIAA PREAMP FOIL PATTERNS

58 Orchestrate your vocals
69 Holy smoke!
73 Sound and vision.
79 Are your digitals up to scratch?
87 It's do or die on this one.
93 Shape your keyboards
98 Pure magnetism.
102 The nitty-gritty of our projects

INFORMATION

NEXT MONTHS ETI
NEXT MONTH'S CT CLOCK RADIO OFFER

BOOK SERVICE ETIPRINTS

14 Look out for October. 31 Fill your RAMs here. 41 Time for a tune. 85 A tome for the home. 105 PCBs galore.

EDITORIAL AND ADVERTISEMENT OFFICE
145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5

Ron Harris B.Sc.	Editor
ian Graham B.Sc.	Assistant Editor
Tina Boylan	Editorial Assistant
Diego M. Rincon	Art Director
Paul Edwards	Drawing Office Manager
Ray Marston	Project Editor
Christopher Surgenor	Group Advertisement Manager
Steven Rowe	Advertisement Manager
T.). Connell	Managing Director

PUBLISHED BY DISTRIBUTED BY

PRINTED BY

Modmags Ltd., 145 Charing CrossRoad,WC2 Argus Distribution Ltd. (British Isles) 12-18 Paul Street, London Gordon \& Gotch Ltd. (Overseas) QB Limited, Colchester

[^0]©MODMACS LTD 1980: All material is subject to worldwide copyright protection. All reasonable care is taken in the preparation of the magazine, contents, but the publishers cannot be held responsible for errors legally. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press
Subscription Rates: UK £10 including postage. Airmail and other rates upon application to ETI Subscriptions Service, PO Box 35, Bridge Street, Hemel Hempstead, Herts.

computer kit.

 Price breakdown

 Price breakdown}

Britain's first com £79.95

ZX80 and manual: £69.52
VAT: £10.43
Post and packing FREE
Please note: many kit makers quote VAT-exclusive prices.
You've seen the reviews ...you've heard the excitement...now make the kit!

This is the ZX80. 'Personal Computer World' gave it 5 stars for 'excellent value.' Benchmarktests say it's faster than all previous personal computers. And the response from kit enthusiasts has been tremendous.

To help you appreciate its value, the price is shown above with and without VAT. This is so you can compare the ZX 80 with competitive kits that don't appear with inclusive prices.

'Excellent value' indeed!

For just $£ 79.95$ (inciuding VAT and p\&p) you get everything you need to build a personal computer at home ...PCB, with IC sockets for all ICs; case; leads for direct connection to a cassette recorder and television (black and white or colour); everything!

Yet the ZX 80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The ZX80 is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done: connect it to your TV...link it to an appropriate power source*... and you're ready to go.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for allICs.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available-see coupon).

[^1]adaptor. Available from Sinclair if desired (see coupon).

The unique and valuable components of the Sinclair ZX80.

The Sinclair $Z \times 80$ is not just another personal computer. Quite apart from its exceptionally low price, the $Z \times 80$ has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability-takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The $\mathrm{Z} \times 80$ also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up to 26 .
- Variable names of any length
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions USR causes Jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols
- All characters printable in reverse under program control
- Lines of unlimited length.

Fewer chips, compact design, volume productionmore power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM. for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the $Z \times 80$'s 1 K byte RAM is roughly equivalent to 4 K bytes in a conventıonal computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines.
And Benchmark tests show that the ZX80 is faster than all other personal computers

No other personal computer offers this unique combinatıon of high capability and low price.

ETI SEPTEMBER 1960

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair $Z \times 80$ mean little to you-don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes earning easy, exciting and enjoyable, and represents a complete course in BASIC programming-from first principles to complex programs. (Available separately-purchase price refunded if you buy a $Z \times 80$ later.) A hardware manual is also included with every kit.

The Sinclair ZX80. Kit: $£ 79.95$.

Assembled: £99.95. Complete!

The ZX80 kit costs a mere $£ 79.95$. Can't wait to have a 2×80 up and running? No problem! It's also available, ready assembled and complete with mains adaptor, for only £99.95.

Demand for the $Z \times 80$ is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your $Z \times 80$ as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, Cambs., CB2 1\$N. Tel: 0223311488.

ETI SEPTEMBER 1980

ZX80 softwarenow available!

See advertisements in Personal Computer World, Electronics Today International, and other journals.

New dedicated software-developed independently of Science of Cambridgereflects the enormous interest in the ZX80. More software available soon-from leading consultancies and software houses.

I enclose a cheque/postal order payable to Science of Cambridge Ltd for £

Please print

Name Mr/Mrs/Miss
Address

DIGEST

Booking
 Up

Bernard Babani (Publishing) Ltd of The Grampians, Shepherds Bush Road, London W6 7NF have brought out a brand new catalogue of Radio and Elec tronics books which they publish. They cover such subjects as Electronics, Semiconductors, Computers, Television, Radio, Hi-fi, etc. Whether you are a hobbyist, engineer, designer or student, they have something for you. The catalogue is free, just send them a reasonably large stamped addressed envelope and you will recieve your copy by return.

Power Cuts On The Way

n 1968 your 20 inch colour telly using 90° deflection would have consumed over 200 W. Now, the figure is around 65 W . A new development from Finland will further reduce that to about 40 W .

The system, which results in a reduction of about 40% in power consumption, has been incorporated in the Salora G Series of portable colour sets. The design is basically a 90% efficient couple between the power supply and picture tube using an induction transfer system. The resultant cool running improves reliability and extends operational life.

The G Series, with its 16, 20 and 22 inch models, will operate from a standard $60 \mathrm{~A} / \mathrm{hour} 12 \mathrm{~V}$ battery for 15 hours, or from mains for as long as you pay your bills.

All the models feature automatic electronic tuning, fine
tuning and memory plus add-on options for remoted control, 12 V battery and video frequency interface unit.

Salora products are available in the UK from Salora (UK) Ltd, 25A Techno Trading Estate, Swindon SN2 6EZ.

Computer
 Aided Yacht
 Race

T- his year the 1980 Observer Single Handed Transatlantic Yacht Race is being aided by a computer-based system. Known as the Argos system, each of the yachts involved in the race has an on-board transmitter which emits a signal picked up by two satellites regularly crossing the Atlantic. These signals are then rebounded to earth for decoding and processing. The information is fed via Toulouse in France to a CII Honeywell Bull computer in Paris and then is further processed by a Micral Computer in the Paris offices of Europe 1 radio sta-
tion. A Benson drafting machine on line to this computer is then able to give a graphic representation of the yachts' positions. This information is used by the radio station for its coverage of the race and also allows the race organisers to keep a constant eye on the progress of each yacht. This means increased safety for the race, as Coastguards can be immediately notified if they are in difficulty. After the disasters which occurred during last year's Fastnet race, this system will hopefully increase the safety factor in open sea racing.

Powering Down

Every piece of electrical and Σ electronic equipment needs a power supply of some sort. Larsen Sweeney's latest forecast of the use of power supplies in Europe up to 1986 reports a general downtrend. Not only is the general power supply business slowing down, but, in particular, newer supply systems, eg switching regulated and switched mode, are also feeling the pinch. This is largely a result of a slowdown in new product design and development.

The report warns that British power supply designers are at a distinct disadvantage in this marketplace and many will not
survive the recession. Their competitors in West Germany, France, Sweden and Japan are supported financially by their respective governments, but the British companies are on their own.

The 243 page Larsen Sweeney report covers 16 European countries and 34 power supply product groups, including sections on marketing, the industry, the end user and distributors. Every home should have one. You'll have to raid the piggy bank, though. 'Power Supply In Europe To 1986' will set you back $£ 695$. Beat the rush. . . send your life savings now to Larsen Sweeney Publications Ltd, P O Box 36, Maidstone, Kent.

EMP - The Govt. Speaks

This is the entire text of the replies we have received to date from the vast machinery of the British government. Receiving attention? We shall keep plug ging away though, and report any sensible answers we do manage to obtain. Meanwhile what are your views on the subject of EMP? Let's hear about them.

Vetting VDUs

If your work involves reading data from a telly screen (operating a computer terminal, for instance) you may occasionally wonder if it affects your eyesight, especially if you go home every night with a splitting headache.

The twin evils of radiation and eyestrain have attracted some attention with respect to VDU usage. For this reason the VDU Eye Test (VET) Advisory Group was set up to devise a test package for VDU users. Their final report has now been published as a 12 page booklet.

The Group found 'that no significant hazard from X-ray, ultra-violet, visible or $R F$ radiation has been detected' in modern VDU design. Moreover, the

Group found no evidence that VDU use could cause eyestrain. We consulted a practising Ophthalmic Optician who told us that normal use of the eyes cannot cause damage.

The report did, however, list several factors that could cause discomfort, which the layman might call eyestrain. These included the posture of the VDU user and the working environment.

The Group concluded that VDUs can be used safely, if designed and intalled with proper attention to the user's ergonomic requirements. Where there is intensive use of VDUs, the user's eyesight should be checked with the test recommended in the report.

If you would like a copy of the VET Advisory Group's report, write to Tom Stewart, Butler Cox \& Partners Ltd, Morley House, 26-30 Holborn Viaduct, London EC1A 2BF.

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
Another superb design by synthesizer expert Tim Orr - published in Electronics Today International
The Transcendent DPX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound - fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a straightforward piano or a honky tonk piano or even a mixture of the twol Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitivel The harder you press down a key the louder it sounds - - just like an acoustic plano. The dightally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism. There is a master volume and tone control, a separate control for the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes in only after waiting a short time after the note is struck for even more realistic strong sounds.

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}($ rear $) 3.3^{\prime \prime}$ (front)

COMPLETE KIT ONLY £299 +vat

To add interest to the sounds and make them more natural there is a chorus/ensemble unit which is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry car'be switched in with either strong or mild effects. As the system is based on digital circuitry digital data can be easily taken to and from a computer (for storing and playing back accompaniments with or without pitch or key change, computer composing, etc. . etc.)
Although the DPX is an advanced design using-a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors. just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet The kit includes fully finished metalwork, solid teak cabinet, professional quality components (all resistors 2% metal oxide). nuts, bolts, etc., even a 13 A plug!

Рошегтमа

MANY MORE KITS ON PAGE 110 MORE KITS AND ORDERING INFORMATION ON INSIDE FRONT COVER

TRANSCENDENT 2000 smele baano swruhszzer

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.

The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is portamento, pitch bending, a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noice generator and an ADSR envelope shaper. There is also a slow oscillator, a new pitch modulation, a deter with both repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.
The kit includes fully finished metalwork, fully assembled solid teak
cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal film) and it really is complete - right down to the last nut and bolt and tast piece of wire ${ }^{1}$ There is even a 13A plug in the kit - you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professional quality fibreglass PCB printed with component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by possess a synthesizer comparable in performance and quality with possess a synthesizer comparable in periormance and quality with
ready-built units selling for many times the price.

> COMPLETE KIT ONLY $£ 168.50+$ VAT!

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a pair of ears'

Metering Your Multis

The Alpha V is the latest and smallest hand-held digital multimeter from Gould Instruments. It has a $31 / 2$-digit liquid crystal display with 25 measuring ranges covering the five basic functions of DC voltage, AC voltage, DC current, AC current and resistance. It has a maximum reading of 1999 and maximum resolution of 100 uV . Range and function selection is by two rotary switches on the clearly coded front panel. The multimeter is powered by a 9 V carbon zinc or alkaline battery (PP3 or equivalent), the latter giving a typical life of $\mathbf{2 0 0}$ hours. There is a battery low indicator provided by the display, which shows 'BAT' when less than 10% of useful battery life remains. The case is of high-impact $A B S$ plastic and the display is shock mounted behind a polycarbonate plastic window. Accessories supplied with the basic instrument include standard red and black test leads, battery and handbook. The cost is $£ 85.00$ (plus VAT) from Gould Instruments Division, Roebuck Road, Haina

Anti Car Theft

M
aywood Security Services Ltd. is marketing a method of deterring vehicle thieves. A mobile service is offered which involves abrading the vehicle registration number on every window of a car, caravan, commercial vehicle or boat. This means that in order to mask the identity of a stolen car the thieves must replace all of its windows. The abrading process takes about five minutes at a cost of about $£ 5$ per vehicle (quantity discounts may be given). Maywood Security Services Ltd are operating as a franchise for Safecar and they will quite happily call at your place of work or home. This method has received the support of police crime prevention officers thoughout the country who have to deal with some 350,000 vehicle thefts a year. The address is Maywood Security Services Ltd, Peake House, 232 High Street, Harlington, Hayes, Middlesex, UB3 5DS. They cover North West, West and South West London.

Status Symbols

P aindirk of Downham Market R Norfolk are now supplying the Status range of audio equipment. Their Status 500 power amplifier delivers 250 W per channel into 8 R , using power MOSFET output stages. Ths Status 20 Stereo Control Unit is a rack-mounting system with a modular disc replay amplifier that can be remotely located, three band equaliser with continously variable turn-over frequencies, built-in headphone amplifiers and external mains power supply. The range will soon also include a parametric equaliser. You can get more information on the Status 500 and the rest of the Status range from Raindirk Ltd, Downham Market, Norfolk.

Sharp Shapes

Sharp Corporation are now marketing an alternative to conventional tubular LEDs. They are designed for flush fitting to front panels and are currently offered in the form of round 'point' indicators, equilateral and isosceles triangles, square and flat sections, all in three different sizes, (3,4 , and 5 mm) and three different colours - red, yellow and green. The shapes make good function indicators and the 'squares and flats' can be stacked to form bar graphs. For 1,000 pieces the price is between $5 p$ and 10p each depending on the size, shape and colour. They are available from CRP Electronics Ltd, 13 Hazelbury Crescent, Luton, LU1 1DF.

Robot School

ntegrated Computer Systems Inc. have announced details of their new courses in 'ADA' and 'Computerised Robots'. 'ADA', a new high level computer language, has been developed by the US Department of Defence in co-ordination with European

Small is Beautiful

Aminiature hi-fi system is now available from Misubishi Electric, called 'System 4'. It delivers 50 W per channel, both channels driven into 8 R and it measures $27 \mathrm{~W} \times 42.4 \mathrm{H} \times 27 \mathrm{cmD}$. The four units consist of the M-A04 Poweramp, M-P04 pre-amplifier, M-F04 AM/FM Tuner and the M-T04 front-loading Cassette Deck which is metal tape compatible. Their latest speaker system is also available. A 50 W 8R two way infinite baffle speaker, the SS 630E, retails at $£ 115,00$ for the pair. Frequency response is 60 Hz to 22 $\mathbf{k H z}$ and dimensions are 305W $\times 544 \mathrm{H} \times 257 \mathrm{mmD}$.

* Who makes Seiko's?
* What is the importance between brand names?
* Is solar power worth the extra money?
* What are the most important features in a watch?
* When will prices stop falling?

The survey answers all of these questions and tells you what to look for in a quartz watch; how they work; why the prices vary so much; what the future holds.

SPECIAL OFFER

Send today for this technical report, plus news of a unique Metac offer to beat all special offers.

Complete the coupon below and send it FREEPOST (no stamp required) and we will post, Same Day Despatch, the technical report giving you all you need to know about electronic watches and details of our special offer.

These four watches are very different in price, durability and functions. How would you choose between them?

This unbiased and objective report helps you to make this decision and gives you a deeper insight into the rapidly changing and exciting world of the micro-chip.

For your copy of the report complete and return the coupon to: Metac Electronic \& Time Centres, 24-hour Despatch Centre, FREEPOST, 47A High St., Daventry, Northants.

Status Symbols

aindirk of Downham Market Norfolk are now supplying the Status range of audio equipment. Their Status 500 power amplifier delivers 250 W per channel into 8R, using power MOSFET output stages. Ths Status 20 Stereo Con-
trol Unit is a rack-mounting system with a modular disc replay amplifier that can be remotely located, three band equaliser with continously variable turn-over frequencies, built-in headphone amplifiers and external mains
power supply. The range will soon also include a parametric equaliser. You can get more information on the Status 500 and the rest of the Status range from Raindirk Ltd, Downham Market, Norfolk.

100 W Power Amp (August)

n Fig. 7 on page 67, C1, 2 and 4 are shown the wrong way round. However, they are shown correctly on the component overlay.

In the Power Amplifier Board Parts List on page 68, R15 should be 10R 1W and R16 should be 10R 2W. In the DC Sensing Board Parts List on the same page R7 should be 4 k 7, R20, 23 are 82 k , R18 is $1 \mathrm{k0}$, R26 is 91 k and R27 is $5 k 6$. C1,2 and 11 should be 22u 16 \checkmark electrolytic and C9, 10 should be carbonate types.

The component overlays on page 69 are correct.

Music To Your Ears

C asio have brought out four C new calculators to follow in the footsteps of their Melody Card M-80. They all have eight digits calculating capacity in four functions, with full percent and independent memory. Sliding the mode switch to 'music' converts them to an 11 note instrument for the user to play tunes on the numerals (0-9) and decimal keys.

The ML-720 is credit-card siz ed and is priced at £17.95. It is powered by two G-8 size batteries which last for 700 hours continuous calculating use. This is extended by an automatic power off function with full memory retention. The ML-860 is slightly bigger with a RRP of £16.95 and uses the larger G-10 batteries which last
almost twice as long as the C-8 type.

For E25.95 you have the choice of the ML-71 and the ML-81 which both tell the time as well. The ML-71 is credit-card size and keeps continuous track of time, with running second display and date and includes a one-tenth second stopwatch feature. It also has an alarm for any preset time of day as well as a countdown timer. The G-10 batteries last about a year. The ML-81 is larger again with the same facilities as the ML-71 plus an independent alarm. The two G-12 batteries last for 14 months continuous operation. All these calculators should be available from dealers soon.

Black Hole (May 1980)

21, R83 and C10 should R be $1 \mathrm{kO}, 18 \mathrm{k}$ and 10 nF respectively. A 39 k resistor should be connected in series with C40. Cut the appropriate PCB track and solder the resistor across the break. A 1N4148 diode should be connected across each SAD512D input (soldered to the underside of the PCB). Later issue PCBs from Powertran will be suitably modified.

Kit News

-K Electronics' contribution to making legs obsolete should be available in September. It's a touch-controlled light dimmer with single alternate action touch plate. Nothing strange in that, you say. Well, TK have married their touch dimmer with an infra-red remote control system. So, you needn't leave your water bed, with infra-red light controller in one hand and ultrasonic TV controller in the other (and the two will not interfere with each other). TK's TDR300K 300 W Remote Controlled Lightdimmer will probably cost around £10. Watch their adverts in ETI for latest details. Meanwhile TK can supply an infra-red on/off light controller for £12 plus VAT (order model RC500K). A multi-channel infrared remote control system for models, hi-fi, etc is also available separately.

Aura Sounds, who pioneered the introduction of Wersi organ kits in the UK, have been appointed marketing agents for Heathkit Electronics. Both companies and you and I come out on top - Heathkit broadens its sales representation, Aura Sounds expands its kit business and Heathkit products are a little more widely avaiable to the likes of you and me.

Hard Wire Side Cutter

A new specialist side cutter for A use in the electronics and electrical industries is now available from CeKa. Its hard wearing tungsten carbide tipped cutting edges provide the tool with long working life and cutting capacities of, for example, 0.6 mm on piano wire and 1.6 mm on hard electrode wire. The cutter is $41 / 2^{\prime \prime}$ in size and is box jointed for exact location, flush cutting and the prevention of cutting edge overlap. A smooth and controlled action while culting in sensitive or confined situations is achieved by double leaf return springs. The cutter handles are covered by moulded black PVC grips. In addition to cutting hard wires, CeKa states that use of the side cutters continually on ordinary soft wire will make its working life almost indefinite. The RRP of the CK Precision Side Cutter is $\mathbf{E 1 9 . 4 0}$ plus VAT. The address is CeKa Works Ltd, Pwllheli, Gwynedd, North Wales.

WATFORD ELECTRONICS ETI DIGITAL TEST METER (Sept. 1980)

ETI SEPTEMBER 1980

C3OD|ES2OO

high performance electronic ignition,to add power, economy, reliability, sustained smooth peak performance, instant all weather starting, to your car.
Surefire has sold in its thousands in ready made form from big name accessory firms, but it is now available in quality kit form to fit al vehicles with coll ignition up to 8 cytinders
ES200. A high performance inductive discharge ignition incorporating a power integrated circuit (special selection) :electronic variable dweth circuit (maximises spark energy at all speeds): pulse processo
(overcomes contact breaker problems). Coil governor (protects coil). Long burn output. Negative earth only. Compatible with all rev. counters C300. In it's ready built form (C3000) it came top of all systems tested byan independent national authority July' 79. A high energy capacitive discharge ignition incorporating a high output short circuit proof inverter. top grade Swedish output capacitor, pulse processor circut, transcient overload protection. Fast rise bidirectional output most rev counters. (Low cost adaptors available for rare cases Application list enclosed with each kit. Note: Vehicles with Smith Jaeger rev. counters code RVI on dial will require adaptor type TCI What's in the kits. Surefire's own precision anodised alumınıum extruded case. P.C. mounted security changeover switch, static ilming light. Special selection Motorola semi-conductors. Capacitors, resistors etc. selected after 5 years experience. Glass fibre pcb, solder complete down to last washer.
Fully illustrated comprehensive instructions
and full technical back up service:

Suretron Systems (UK) Ltd
Dept. ETIG
Piccadilly Place, London Rd., Bath BA1 6PW. Tel: Bath (0225) 23194
Name
'Phone order with Access/Barclaycard Quantily

ETI NEXT MONTH

October issue on sale September 6th - Don't miss out order your copy today.

FM Radio Control

In the course of the past year you've seen all the others produce radio control projects.
You've also seen them make a right mess of the idea!
Next month ETI presents the definitive FM, easy-to-build, every-home-should-haveone, radio control. We won't spin it out over 10000 issues either, our circuit is sufficiently refined for us to be able to present full details in one issue!

If you're at all intrigued by controlling things at a distance ETI October is the place to be.

Fuzz Sustain

Brilliantly innovative project to please all of the guitarists, all of the time. This nifty little box can provide a really rich fuzz sound and/or a true sustain. We stress the 'true' because there have been some attempts to pass off things which are decidedly second-rate before now. As usual ETI gets it right! Inexpensive, ingenious and simply magnificent are words which could well apply to this our latest musicians project!

Don't miss it lest your plectrum gets lonely!

Circuits Circuits And More Circuits

Spot Designs is our new 'tried and tested' circuits features. All the ideas presented have been built and proven - so it is not surprising that this is already a popular new addition to ETI. Next month we're presenting six pages of this top-class ideas material, in response to the many requests to increase the size of the feature.

This is a 'special' one-time only offer so don't get left out circuitless!

Universal Cassette Interface

Into micros? Then ETI has something a little bit special for you next month - a tape interface with switchable baud rate and flexible I/O. It can be run with any system and any tape machine (within reason) and offers all the benefits of being able to save programs on tape at a ridiculous price! Miss this and your fingers will undoubtedly drop off typing!

Einstein Relatives

Yep. The feature you said we would never do. A clear easily understood explanation of the Special Theory of Relativity. This is the topic that those smug little physicists are always telling us humans we can never hope to comprehend. Well we can. Just read ETI next month and see for yourself.

Also Appearing

Taking part in next month's production we also have: a Bench Amp for the experimenter; a review for the HP-41C alpha-numeric calculator; an audio signal generator; a flash trigger for quick-off-the-mark photographers plus, of course, all our usual brilliant regulars. It's got to be worth the mere 60 p we ask in exchange!

HEAD AMPLIFIER DESIGN

If you've taken the plunge into moving coil cartridges and you're looking around for a head amplifier, Andy Sykes of Videotone explains how you can design your own.

For those of you not yet smitten by the all consuming Hi-Fi bug, a'Head Amplifier' is not the latest tool for psychologists. The term is borrowed from the telecommunications industry where a preamplifier sited at the mast head is sometimes used to boost the received RF signal in areas of poor signal strength.

Over the past five years there has been a tremendous upsurge of interest in new methods of extracting the musical information from the depths of the record groove. Along with this has come a re-appraisal of the relative merits of the moving coil and moving magnet pickup cartridges. Each has a great deal to recommend it and we should start by comparing the two, albeit briefly.

The principle of operation is the same, ie a current is induced in a coil by a (relatively) moving magnetic field. In the moving magnet type it is, as the name suggests, the magnet that moves because it is mounted on the opposite end of the cantilever to the stylus.

Mass Tendencies

This system works well, but the mass of the magnet/stylus assembly has a nasty tendency to resonate within or just above the audio band. With careful design this effect can be minimised, but some colouration of the sound still occurs. Another problem is that the high impedence of the cartridge, due to the high number of turns required to achieve a usable output, also causes matching problems, lending to high fre-,
quency losses in the signal lead capacitance.
Despite all this, excellent results are achievable for a moderate cost and it worth noting that the most competitive area for moving magnet cartridges is between $£ 15$ and $£ 25$.

Role Playing

Recent developments in technology, however, have made possible an effective reversal of the roles of magnet and coil, neatly overcoming the problems just mentioned, as it is now the coil which moves, inside a static magnetic field. (it is only fair to mention at this point that Ortofon have been producing very underated moving coil cartridges for many years and are generally considered to be the pioneers of the field). The coil can be made very light, reducing the resonance problem and the output impedance is low due to the small number of turns used, which cures the lead losses.

All is not quite sweetness and light, however, as the system brings its own set of problems, which can be summarised as:

1. Low output -150 uV nominal
2. Very low source impedance
3. Expensive to manufacture

These problems can be overcome at a price, however, and if it is perfection for which you strive, the moving coil cartridge can be considered the best method of transferring data from the record to your ears at present. It is interesting to note that most of the current batch of professional Hi-Fi reviewers use a moving coil cartridge against which others are judged.

Coming Up in the World

A step up device is required to match the low output impedance of the cartridge and to raise its meagre output to a point comparable with the universal moving magnet input or amplifier at approximately 5 mV . One way to achieve this is by the use of a matching transformer similar to those used with low impedance microphones. This solution, however, brings in problems such as secondary load matching, third harmonic distortion, frequency response limitations and hum pickup, all of which require careful and thus expensive design to overcome successfully. An active amplifer is a more cost effective (the watchword of the eighties) solution and has the added advantage of being within the design capabilities of the home constructor.

Design Criteria

The criteria to be considered in the design of such a preamplifier are primarily noise, frequency response and distortion.

If we consider a general MC (Moving Coil) cartridge with an output of 150 mV , source impedance of 10 R , and frequency response of 20 Hz to 25 kHz , a matching head amp would have to have at least the following character istics to achieve Hi-Fistandards:

1. Gain $\times 30$ for nominal 4.5 mV output into 47 k
2. Signal to noise ratio better than 60 dB
3. Distortion less than 0.05%
4. Overload factor better than 40 dB
5. Frequency bandwidth better than 20 Hz to 20 kHz

The input impedance should theoretically be the same as the cartridge source impedance for maximum power transfer, but it has been argued that MC cartridges work best into loads somewhat higher than this, as it reduces the power dissipation in the (cartridge) coil. Manufacturers differ widely in their recommendations for input impedance, but values between 100R and 470R are most commonly quoted. These values are normally determined by audition, but in my experience strict adherence to the recommended value is by no means as important as one is lead to believe, the differences in sound being more likely due to circuit variation than to mismatch. A good general purpose design should, therefore, be suitable for all MC cartridges.

Noise Model

Noise can be thought of as an additional voltage appearing at the input of an amplifier, the ratio between this voltage and the input signal voltage being the measured signal to noise ratio. It is assumed in this model that all noise introduced by the amplifier is added to this input noise voltage and that subsequent amplification of both signal and noise takes place equally and noiselessly. If we wish to achieve a signal to noise ratio of better than 60 dB , this implies an equivalent input noise voltage of around 150 nV . As a comparison, a moving magnet input stage with a signal to noise ratio of 80 dB would have an input noise level of 450 nV and only the very best amplifiers ever achieve anything like this kind of noise figure.

There are three main sources of noise in a transistor amplifier; thermal noise, flicker noise and shot noise. The first two are common to all electronic components, both active and passive, whereas the last is produced in active devices only. Without getting too bogged down in semiconductor physics, shot noise is caused by random fluctuations in the diffusion of minority carriers at the base/emitter junction of the transistor and also by recombination effects within the base region.

Suffice it to say that this type of noise is proportional to the emitter current flowing through the transistor (or diode) and is broadband. Flicker noise is present in semiconductors, resistors and thin metal films, and is produced by skin effects in the surface of the conducting regions of the device. The noise level depends upon the material, but is typically proportional to $I 2 / \mathrm{F}$, where I is the current flowing, and is thus often called I/f noise. Thermal noise is, as the name suggests, produced by thermal agitation within the component material and is again broadband in character and proportional to the temperature of the device. The level of noise can be calculated from the equation

$$
\begin{aligned}
& \mathrm{e}^{2}=/ 4 \mathrm{KTBR} \quad \begin{aligned}
& \text { where }=\text { generated noise voltage } \\
& \mathrm{K}=\text { Boltzman's constant } \\
& \mathrm{B}=\text { frequency bandwidth over } \\
& \text { which to noise is measured } \\
& \mathrm{T}=\text { temperature in degrees } \\
& \text { Kelvin } \\
& \mathrm{R}=\text { the resistance value }
\end{aligned}
\end{aligned}
$$

Armed with this knowledge, the potential noise generated by any component used in our proposed head amp can be measured and steps taken to reduce its contribution to the total noise produced by the circuit.

In general there are four ground rules which should be followed to help achieve good performance.

1. Choose low noise components
2. Pay careful attention to transistor biasing arrangements
3. Keep resistor values as low as possible
4. Pay careful attention to avoid the pickup of external noise sources
Couldn't be simpler could it?
Low noise types of resistors are metal oxide, close tolerance metal glaze, or thick film. Avoid the use of large electrolytics as the (inevitable) leakage currents generate noise. Tantalum or polycarbonate types are best for the higher capacitance values and polystyrene or silver mica the best cost/size/noise level compromise for lower values. PTFE is the best of all, however, but tends to be on the expensive side. The noise levels produced by transistors are normally obtained from the manufacturer's data and there are several factors to be considered.

Fig.2. Noise curves for the BC413.

Equivalent Thinking

If we refer to the equivalent circuit for a transistor in common emitter configuration shown in Fig.1, and then consider the various noise sources contained within this circuit, a mathematical expression for the total noise generated can be derived. The exact form of this equation requires far too much deep thought for us to deal with it in detail here, but note that both noise voltage and noise current terms would be involved. It is also immaterial because transistor manufacturers are kind enough to measure it for us and provide noise versus frequen$c y$, and noise versus source resistance plots which take the general form shown in Fig. 2

The overall noise level is dependent upon the collector current flowing and for the lowest noise there is an optimum source resistance.

For use in our head amplifier this should ideally be the same as the source impedance of a moving coil cartridge, about 10 R , but due to the need to optimise other parameters it is more likely to be between 1 k and 10 k for a typical audio low noise transistor. This is because the vast majority of uses for these devices involve higher source impedances, ie 47 k and the manufacturers do not see sufficient market to justify the production of a special low noise, low source resistance type, except, that is, for the ever-industrious Japanese.

A Nipponese semiconductor firm recently introduced the answer to the head amp designers dreams with a range of low noise transistors with optimum source resistance's as low as 2R!

This ability to cobble up a special device to order, where no standard model is adequate, is one reason why the Japanese rule the audio kingdom.

Phenomenal

All is not yet lost, however, as there are two phenomena which may be used to advantage when designing a low noise amplifier with standard components. The first is that some medium power transistors exhibit better noise figures when driven from a low source resistance than normal low noise, low level types. This is mainly due to the need to keep rbblow (see Fig. 1) in order to obtain good hfe figures when operating at relatively high collector currents (values between 1 mA and 10 mA are common), which tends to rule out battery operation.

This brings the additional problem of the mains supply, of which more later. Suitable transistors for this type of use are 2N4405 or BC361, both of which have been successfully used in commercial designs.

The second possible answer is the use of a parallel transistor stage. This is where several transistors are wired in parallel, obvious really isn't it? The main advantage of which lies in the fact that in common emitter mode the base/emitter junctions are in parallel and thus the noise currents and voltages produced by each transistor are summed together, see Fig.3. The basic rule for Communications Engineers considering the noise levels of their systems is that noise signals from several separate sources, feeding into a common input, add by power

Therefore, the total noise voltage for our parallel stage will be given by the equation $E_{n t}=E_{n} / N$ where N is the number of transistors. Similarly the total noise current will be given by $I_{n t}=N I_{n}$. Now the best noise course resistance for a transistor is given by $R_{0}=E_{n} / I_{n}$ and so for our parallel stage this is $R_{0 t}=E_{n t} \|_{n t}=R_{0} / N . R_{\text {Ot }}$ is thus dependent upon the number of transistors used in parallel, the greater the number used the lower the best source resistance becomes.

Fig.3. Noise model of parallel stage.

Let us now consider a typical low noise transistor with a best source resistance of $2 k$ to be used with an MC of source impedance 10R. The number of parallel transistors required for the best match is given by $2000 / 10=200$. This is clearly impractical for reasons of cost, the physical space required and, more important, the high value of Miller capacitance that would result. As can be seen from Fig. 1, the Miller capacitance introduces feedback between the collector and base of the transistor and is the factor which limits the high frequency response. It would be a major problem if this many transistors were used. In practice eight transistors seems to be the best compromise and is the number most commonly used. Even so it is important to choose a transistor with both a low best source resistance and a good F_{t} if good results are to be obtained. The F_{t} of a transistor is the frequency at which the gain becomes unity and should be in the region of 200 MHz . Suitable types for this type of use are BC413, BC415, BC337, 2N4148.

Circuit Options

So much for the theory, we come now to consider the options open to us, in terms of the circuit configurations, which may achieve the required specifications for our Head Amplifier. Something to remember here is that any biasing components used will also add to the noise. Take a standard common emitter circuit, for example, with feedback to counteract thermal changes as shown in Fig. 4 . The noise voltages produced by R1, R2 and R3 all contribute to the overall noise of the stage. The base bias resistors are particularly important as their noise voltages are effectively in parallel with the input signal and will be amplified by such. The contributions of these biasing components can be reduced by decoupling as shown in Fig.5. The biasing under DC conditions remains the same, but the equivalent noise circuit is as shown.

Note that only the noise associated with R3 will contribute to the input noise and this may be made low in value reducing the thermal noise from this component.

Fig.4. A standard common emitter circuit.
These examples serve to illustrate the principle because a single stage circuit is unsuitable for use as a high quality Head Amp. The main reasons for this are the variations ingain due to the spread of H_{fe} values in any transistor type and the relatively high values of distortion which are produced. Some form of feedback is required to stabilise and reduce both these parameters and, in general, at least a two stage circuit must be used to produce an acceptable performance.

Controversial Distortion

There is no "best" circuit but there are, as always, some points to bear in mind. In order to reduce the distortion to an acceptably low level, a fair amount of feedback is required and care should be taken to avoid Transient Intermodulation Distortion (TID). This particular form of distortion has proved to be somewhat difficult to define rigorously and there is not an inconsiderable amount of controversy as to exactly what it is and how to avoid it.

Nevertheless it is generally accepted that TID is reduced by ensuring that any amplification stage has a greater gain bandwidth than the stage preceeding it. TID also depends on the amount of overall feedback applied around the circuit and careful design of each individual stage to control the amount of harmonic distortion produced will reduce the amount of overall feedback required and hence reduce the circuit susceptability to TID.

Fig.5. Low noise base bias circuit.

Breakthrough

The frequency response of the design is also important for two reasons. Apart from the obvious need to keep it wide enough to encompass the whole audio band (traditionally 20 Hz to 20 kHz), it also plays a part in the circuit's susceptability to Radio Breakthrough. This is a problem because of the high sensitivity of the front end coupled as it is to what is in effect a tuned circuit made up of the cartridge inductance and the input capacitance. My extensive, but completely unintentional, researches into this subject have shown that the two most popular sources of RF interference are Radio 4 at 200 kHz and the local Police/Fire/Ambulance/Taxi Services at anything between 90 and 120 MHz , though the latter is normally only a problem if the offending transmitter is passing close to your $\mathrm{Hi}-\mathrm{Fi}$. So, don't put your new moving coil set-up in the front room, folks, if you live on a busy road. The installation of a Mu metal garden gate and front door might also help (for explanation of Mu metal see Hums). Another potential source of RF comes from Citizen's Band transmitters on 27 MHz . But as we all know these are illegal in this country and so nobody really uses them, they just install them in their cars for show.

The offending RF signal is normally received by the first stage acting as a simple diode detector and can be tackled by careful attention to earthing and by the provision of RF filters in the input and supply lines. The input loading capacitor provides good RF decoupling only if a type with good high frequency characteristics is used. Ferrite beads on the input connecting leads can also be used to increase their inductance.

Breakthrough occuring from supply line pickup requires further decoupling to eliminate it. Large electrolytics have a substantial impedance at high frequencies and so should be shunted by a capacitor with better characteristics. A 100 n ceramic is suitable here and a small inductor in the supply line is also good practice.

Passing the Buck

Another method of avoiding breakthrough is to make the bandwidth of the head amp wide enough to include any potentially troublesome frequencies. A bandwidth of, say 10 MHz , would include most national $A M$ stations and any signal picked up would simply be amplified without being detected and passed into the main amplifier. This is known as "passing the buck" in the trade and relies upon the better RF rejections characteristics of the RIAA equalisation stage.

And so to Details

A typical two stage amplifer is shown in Figs. 6 and 7. These are of the common emitter/emitter follower and common emitter/common emitter types respectively and serve as good examples of typical designs. Both circuits are direct coupled and have overall negative feedback to set the required gain and reduce distortion.

Fig.6. Common emitter/emitter follower amplifier configuration.
The effect of temperature on biasing is also minimised and note that the low noise method of biasing is used in Fig.7. To reduce noise to a minimum the feedback components should be kept as low in value as possible, preferably around the 1-10R mark, though this is only practicable in the latter circuit as R1 in Fig. 6 is also the input impedance presented to the cartridge and thus should be somewhere near 100R.

This resistor is in series with the base of the first transistor, however, and as this is probably near to the best source resistance for this stage, assuming the use of parallel transistors, can provide a trade-off with the noise contributed by the relatively high values of the feedback components.

Fig.7. Common emitter/common emitter amplifier configuration.
When using low feedback resistor values make sure that there is sufficient drive capability in the circuit. A feedback resistance of 10R in Fig.7, for example, will require a drive of 100 mA for a 1 V swing and would, therefore, require the use of a medium power transistor in the second stage.

This component may also contribute its fair share of noise and some degree of experimentation will be required to reach the best compromise.

Fig.8. Differential input circuit.

Redundant Capacitor

A differential input stage as show in Fig. 8 may be used to great effect. The input is referenced to signal earth, eliminating the need for an input capacitor. The resistance to supply-borne interference and hum is also greater with this kind of configuration and can be further improved by replacing Re with a constant current generator.

This is just as well because the need for a differential supply makes battery operation expensive and somewhat impractical.

Fig.9. Differential input with op amp.

A second gain stage may be added to increase the amount of feedback applied and so reduce distortion. This may be another differential stage or even an operational amplifier (Fig.9).

This latter option may suffer a noise penalty due to the inherent noise output of the op amp but there are some good low noise types now available, such as the TDA1034N and TL071.

Next month we bring Andy Sykes' dissertation to a close with Part 2 of all you need to know about head amplifier design.

ETI

Simply ahead..

POWER AMPLIFIERS

Model	Outpur Power R.M.S.	Dis. tortion Typical t 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight ingms	$\begin{aligned} & \text { Price + } \\ & \text { V.A.T. } \end{aligned}$
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	002\%	100 dB	$20 \cdot 0+20$	$105 \times 50 \times 25$	155	$\begin{array}{r} 66.34 \\ +950 \\ \hline \end{array}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	-25-0.+25	$105 \times 50 \times 25$	155	$\begin{aligned} & £ 7.24 \\ & +£ 109 \end{aligned}$
HY 120	$\begin{aligned} & 60 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-35 0. +35	$114 \times 50 \times 85$	575	$\begin{array}{\|c\|} £ 15.20 \\ + \\ + \end{array} 228$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-45 0. +45	$114 \times 50 \times 85$	575	$\begin{array}{r} £ 18.44 \\ +\quad € 277 \end{array}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100 dB	$45 \cdot 0 \cdot+45$	$114 \times 100 \times 85$	115 Kg	$\begin{gathered} £ 27.68 \\ +\{415 \end{gathered}$

Load impedance - all models 4Ω - ∞
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
ILP POWER AMPS AND PSUS
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

POWER SUPPLY UNITS

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled laminated transformer, for PSU 30 and 36 - in the other, for larger PSUs, ILP toroidal transformers are used which are half the size and weight of laminated equivalents, are more efficient and have greatly reduced radiation.

PSU $30+15 \mathrm{~V}$ at 100 mA to drive up to $12 \times \mathrm{HY} 6$ or $6 \times H Y 66 \quad £ 4.50+\mathbf{£} 0.68$ VAT THE FOLLOWING WILL ALSO DRIVE ILP PRE-AMPS

PSU 36 for 1 or 2 HY30s $£ 8.10+£ 1.22$ VAT
PSU 50 with toroidal transformer for 1 and 2 $\mathrm{HY} 5 \mathrm{Os} \quad £ 9.75+£ 1.46$ VAT
PSU 60 with toroidal transformer for 1 HY 120
PSU 70 £9.75 $\mathbf{+ £ 1 . 4 6 \text { VAT }}$
pSU 90 HY120s £13.61+£204 VAT
PSU 90 with toroidal transformer for 1 HY200 $£ 13.61+£ 2.04$ VAT
PSU 180 with toroidal transformer for 1 HY400 or $2 \times H Y 200 \quad £ 23.02+£ 345$ VAT

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS

this time with two new pre-amps

 HY6 mono HY66 stereo

 HY6 mono HY66 stereo}

When ILP add a new design to their audio-module range, there have to be very special reasons for doing so. Youexpect even better results. We have achieved this with two new pre-amplifiers - HY6 for mono operation, HY66|for stereo. We have simplified connections, and improved performance figures all round Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction
Sizes - HY6-45 $\times 20 \times 40 \mathrm{~mm}$ IHY6690×20×40 mm Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag PU -3 mV Mic-selectable $1-12 \mathrm{mV}$ Allothers 100 mV Tape O/P - 100 mV Main O/P - 500mV: Frequency response - D C to $100 \mathrm{KHz}-3 \mathrm{~dB}$

- $0_{\text {mono }}$
$£ 5.60$
+ VAT 84 p
HY66 ${ }_{\text {sesece }}$
£10.60
+VAI £1.59
Connectors inchuded
86 Mounting Board
$78 p+12 p$ VAT
866 Mounting Board $99 p+15 p$ VAT
\square LOW DIStORTION - Typically 0.005\%
\square S/M RATIO- Typically 90 dB (Mag. P.U. -68 dB). high overload factor - 38 dB on mag. P.U. Latest besign migh guality commectors. REquire only pots, switches, plugs and sockets. COMPatible with all Ilp power amps and pSUs. MEEDS OWLY UNAEGULATED POWER SUPPLY $\pm 15 Y$ to $\pm 50 \mathrm{Y}$.,

NO QUIBBLE 5 YEAR GUARANTEE
7. DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE - see below

* ALL U.K. ORDERS DESPA TCHED POSTPAID

HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage onallletters senttous byreaders of this journal.

回

323 EDGWARE ROAD, LONDON W2. For Personal Shoppers Only
21 E HIGH STREET, ACTON W3 6NG. Mail Order Only. No Callers.

		$£ 76.00$ 100 WATT MDNO OISCD AMP Brusted aluminium
AMPLIFIER KI		
disco amp		EMI SPEAKER BARGAIN
		Ster
cele		
assemble teak simulate cabin information instructions are avallable price 50 p 		
50WATT MO		
AMP		
± 30.60		Shure M75 6 Magnetic Cartridge to suit. \qquad
p\&p $£ 3.20$		
		BSR \qquad reruin and cueting le ver thtied with stereo cantidge 2 speeds whth 451 pm ot discouse OUR PRICE $f 12.25$品
-		PHILIPS RECORD PLAYER DECK GCO37 rede cartidae-umiree stock £27.50 \qquad

CURRENT AFFAIRS

We seem to take for granted that circuits work, but why is it that conductors, semi-conductors and insulators do just what their names imply? A.S. Lipson takes us step by step through the whys and wherefores of atomic structure.

Most of us are reasonably familiar with what electricity is - the movement of electrons through a conductor. But there are some things that we tend to take for granted. For instance, why is it that some materials, like metals, conduct easily, whereas others - insulators - don't, and still others - semiconductors - seem to be somewhere in the middle; conducting, but not as well as metals? In order to find out why, we'll first have to learn something about atomic structure

First Theory

Essentially, the atom consists of a central, very small positively-charged lump called the nucleus, surrounded by negatively charged electrons. Many books - particularly old ones - tend to give the impression that the electrons are just like little planets orbiting a sun (the nucleus) and that the atom is like a miniature solar system. This is wrong. Electrons do not behave just like little billiard balls, or little solid lumps. It is in fact more accurate (although not quite so simple) to visualise the electrons in an atom as being spread out 'charge clouds' around the nucleus, with most of this charge being concentrated at specific distances from the nucleus. The comparison between the two points of view is made in Fig. 1

Fig.1. A hydrogen atom according to (a) The 'Solar System' model (b) The 'Charge Cloud' model.

The electrons within an atom can have different energies. If they obtain more than a specified amount of energy (for any particular type of atom), then they can actually break free from the atom. It is clear that the more energy a particular electron has within an atom, the less energy that electron will need to have added to it in order for it to break away from the atom; in other words, the easier it will be for that electron to escape.

Conduction and Insulation

But what has all this to do with conduction of electricity? In metals, some of the outer electrons present have quite high energies within their atoms and, in a solid lump of metal, one or two electrons from each atom are more or less free of their own atoms, although they are held into the metal as a whole. The positively charged ions left when electrons are removed from atoms are packed closely together and, in between them, the free electrons move about at random, (acting as a sort of 'atomic glue'). This negative charge attracts the remaining positive charge on the ions, and holds the whole thing together. (See Fig. 2.) The charge-clouds of all the free electrons join together, and form what is often known as an electron sea'. Because of this structure - the way that they are held together - metals can conduct electricity. Why?

Fig.2. The structure of a metal. Positively charged ions are surrounded by an electron 'Charge Cloud'.

Because of all those free electrons, which aren't held by any particular atom, only by the metal as a whole. They are so loosely attached that if you apply a potential difference across the metal, they can drift along under its influence, and so cause a current to flow. In insulators, on the other hand, the electrons are held much more tightly by the atoms, there is no 'electron sea', and the atoms are bonded together by other means. Consequently, if a potential difference is applied, the electrons are unable to break free from their atoms, and so no current can flow. Our problem is thus solved - we now know how electrical current is conducted in metals, and why it isn't in insulators. Or do we? This theory was widely accepted for some time, and in fact it's still accepted as being broadly true, but there are just one or two things it doesn't explain. Semiconductors, for instance? And why should metals hold their electrons less tightly than non-metals? Our theory is obviously incomplete

The New Approach

It was the physicists (naturally...) to the rescue. So we must once again return to the atom

In the first decades of this century, a startling new branch of physics - Quantum Mechanics - made its debut. This was the work of several men, including Einstein, Heisenberg and Schrodinger. One of the first results Quantum Mechanics produced was embodied in a conclusion that Niels Bohr published in 1913. This was that, contrary to what had previously been assumed, the electrons wifhin an atom could not have just any energy level, but could only exist at certain set energy levels. (See Fig. 3a.) This was a radical departure from what had been believed up until then, but it has been proved and is now unquestioned by physicists.

Fig.3a. The electrons within atoms can exist only at set levels. b) When two atoms interact with each other, their energy levels are split. c) In a solid, millions of atoms all interact with each other, and the energy levels are split into so many 'sub-levels' that they behave like continuous bands.

So electrons in atoms can only exist at certain set energy levels. But if you get more than one atom together, the situation changes again - energy levels are split. If, for example, you put two atoms close together, and then look at what has happened to a particular energy level in each atom, you will find that, in one atom, it has shifted up fractionally, in the other atom, it has shifted down slightly. The two atoms act as though the single energy level has been split into two (See Fig. 3b), one very slightly higher than the other. In a solid, where there are millions of atoms all together, the energy levels are split into so many 'sub-levels', all very close in energy, that they act like continuous bands. (Fig. 3c.) In a solid, instead of
there being several separate energy levels at which the electrons can exist there are, instead, several energy 'bands', within which electrons can have a whole range of energy levels. Between these bands however - and this is the important bit there are still 'forbidden gaps'; energy ranges in which electrons cannot exist because there are no allowable energy levels present. So how does all this help us to understand electrical conduction? Patience . . We're just coming to that.

Electron Distribution

The way a material behaves electrically, whether it acts as a conductor or an insulator or whatever, depends on the arrangements of its energy bands, and the way that the electrons are distributed within them. The energy bands of a) a conductor, b) an insulator and c) a semiconductor are shown in Fig. 4. Firstly we will deal with the conductor. The energy bands shown in Fig. 4a are fairly typical of a material like copper. As in any material, the lower energy bands tend to fill up with electrons more easily than the higher energy bands, and consequently, they contain all the electrons that they can possibly hold. There is then a 'forbidden gap' of energies, and above this is another band - known as the conduction band. This band, unlike those below it, is not full, but is capable of holding more electrons than it in fact does. An electron in this band is relatively loosely held by this atom and so it requires only a very small amount of energy, which can be obtained from an applied potential difference to raise it to a higher energy but still within the conduction band.

It can now drift along within the metal under the influence of the potential difference. Thus, in a metal, which has either a partially-filled conduction band (eg. copper) or an empty conduction band which overlaps a full energy band, (as in magnesium) it is possible for current to flow quite easily. So far, so good. What about insulators? The energy-band theory can also explain the behaviour of non-conducting materials (Fig. 4b). In such substances, there are still full energy bands at the lower energy levels, but the conduction band is empty. In other words in insulators, electrons do not normally exist with enough energy to be in the conduction band. And it is only in this conduction band that electrons are free enough to take part in a flow of electrical current. If it were possible to get the electrons out of the lower energy bands into the conduction band then these materials could conduct electricity, but in order for that to happen electrons would have to cross the forbidden gap, and the energy required to make them do this is much more than can be supplied by a normal potential difference. In terms of eV (the eV , or 'electron-volt', is a measure of energy which atomic physicists find it convenient to work with, 1 eV being the energy picked up by an electron in passing through a potential difference of 1 volt), the forbidden gap in insulators in normally about 5 eV , hence, under normal circumstances, insulators do not carry electricity.

What About Semiconductors?

Semiconductors are really an 'in-between' case. Like insulators, very pure semiconductors such as silicon or germanium have empty conduction bands when the temperature is 'absolute zero' (about minus $273^{\circ} \mathrm{C}$), separated from the other energy bands by a forbidden gap. At normal temperatures the conduction bands are not completely empty. Why? Because in semiconductors the forbidden gap is much smaller than in insulators - about 1 eV . It is so much smaller, in fact, that at normal termperatures, the vibration of the atoms in the semiconductor is sufficient to give enough energy to a few electrons to reach the conduction band. Eventually they fall back to the lower energy bands - but more electrons are entering the conduction band all the time, so eventually a balance is struck, with the number of electrons entering the conduction band in any period of time being equal to the number falling back. At normal temperatures, therefore, there are always just a few electrons in the conduction band of a semiconductor, and so it is able to conduct electricity. Though it conducts less well than a metal, since there are far fewer electrons in the conduction band.

But That's Not All

There is, however, another means by which a semiconductor can carry electricity. Every time an electron leaves a lower energy band for the conduction band, it leaves an electrically neutral space where there was previously some negative charge. These neutral spaces, surrounded by negatively-charged electrons, can behave almost like a positively charged particle, and when a potential difference is applied, this 'hole' as it is called travels in the opposite direction to that of the electrons. To underst and how this happens, imagine a row of chairs, with someone sitting in each of them except the one at the end. (Fig.5) If the first person in the row moves into the empty chair, the next person moves into the chair left empty by the first person, and so on, the 'space' where no one was sitting appears to move in the opposite direction to the people, and that's exactly how it works with 'holes' in semiconductors. While it appears that the hole is moving in one direction, carrying positive charge, what is really happening is that the electrons in the lower energy bands are travelling in the other direction, carrying negative charge, and are moving into the spaces left by electrons which have gone into the conduction band.

Conclusion

Therefore, in a semiconductor, there are two types of charge carriers involved in the conduction of electricity; electrons and 'holes'. Various experiments indicate that in germanium, for example, about one third of all the current is carried by the 'holes'!

Fig. 4. Comparison of the forbidden gap position and magnitude in the three basic types of material. Far left: a conducting substance. The lower energy bands are full of electrons and the forbidden gap is easily bridged by sufficiently energetic electrons which then enter the conduction band. Center: insulators. Note the empty conduction band and the wide forbidden gap in which there are no permissable energy levels. On the right: semiconductor materials in which the energy gap is around 1 eV and at room temperature sufficient energy is imparted by heat action to allow some electrons to cross the gap into the conduction band.

Fig.5. As each person moves into the space next to them, it appears that the gap moves in the other direction. In the conduction band this is an electrically neutral space where there was previously a negative charge. These 'holes' can behave almost like a positively charged particle when a potential difference is applied this 'hole' moves in the opposite direction to the electrons.

You will remember that, in semiconductors, electrons reach the conduction band because of the vibration of the atoms. This fact is quite important. At higher temperatures the atoms vibrate more, and so more electrons (and 'holes') are available for conduction purposes. To the extent that above about 1000 C for germanium, and $150 \circ \mathrm{C}$ for silicon, the conduction is no longer really under control, and so devices like transistors, which use semiconductors, have to be kept below these temperatures, if they are to remain reliable during operation. The fact that silicon is useful as a semiconductor at higher temperatures than germanium, was the major reason for the increased use of silicon rather than germanium devices!

ETI

Mk III FM Tuner series

Carriage for Mk III tuner £ $\mathfrak{3}$ in
The Mark III series FM tuner has been updated, and now ińcludes a centre zero tuning meter as standard. The instruction manual has been meticulously revised, enabling easy assembly by constructors of various levels of experience a preview copy may be purchased for $£ 1.00$. Mark III A series 'Reference series' tuner modules $\begin{array}{ll}\text { Mark III A series } & \text { 'Reference series' tuner modules } \\ \text { Mark III B series } & \text { 'Hyperfi' modules, with switched }\end{array}$ IF BW, pilot cancel decoder £ 171.35 inc.
. $£ 198.95$ inc.
A matching synthesiser unit will be made available later this year, and can be Vetrofitted to elther version. All versions include digital frequency readout/clock VU deviation meters, 6 preset stations, 10 turn pot manual tuning, toroidal PSÚ
output level adjustment, $110 / 240 \mathrm{y}$ AC ind output level adjustment, $110 / 240 \mathrm{v}$ AC input. Full alignment service available.

Power Amplifier \(\quad \begin{aligned} \& Sty/e and performance with a real
\& belt and braces' P S U design\end{aligned}\)

After a couple of preview comments, it seems that many of you are waiting to hear about the matching HMOSFET power amplifier for the Mk lll tuner. Well, it's out at last - complete with twin toroidal PSUs for comfortable 80 W RMS per channel, over 100 W peak, but limited by thermal shutdown of the HMOS. $10 \mathrm{~W}-100 \mathrm{~W}$ Iog LED output peak indicator. DC offset protection and -switch on pause relay. AC o DC input coupling, direct or relay protected output terminals. The works
Only one version of this item: Complete kit £178.25 inc. Carr. £5.
Prexe Preamplifier
More features and facilities, thanks Previewing the most comprehensive audio preamplifier yet.... OC switching of 7 inpuss, plus
two tape infouts. 2 low pass. 2 high pass active filters, genuine volume related loudness, 1dB
chanel intole channel matching, with DC volume, batance, bass and treble controls. Silatad loudness, 1 dB
control, tape dubbing, switched for bus/remote control, tape dubbing, switched monitor etc. 80dB S / NH, THD . 75 dB or better. Pluygable PU
equalization boards, tone control override. Price for complete unit about $£ 149$ ex VaT

LW-MW-SW-SW DC tuned and switched

91072. All switching of bands by a single pin to gnd. Varicap tuned, with LO output for synth. MW/LW version or $\mathrm{MW} / \mathrm{LW}$ plus 1 or 2 SW bands
$\mathrm{MW} / \mathrm{LW}: £ 15.58 \quad+1 \mathrm{SW} £ 16.73$

VHF Tunetheads

Europes largest stock range for broadcast and communications. Probably also the world's
details in the catalogues and
 also supplied in the region 30.220 MHz .

Pilot Cancel PLL Stereo decoders
Again, Europe's widest range of stereo decoders
including pilot cancel PLL types. The pic shows including pilot cancel PLL types. The pic shows
the 944378 - pilot cancel including post decode $26 / 38 \mathrm{kHz}$ filtering and muting preamp output

Switched bandwidth FM IF strips

Broadcast FM IF strips for all occasions, including the new 911225 - with diode switched narrow fitter option, ultra linear phase ceramic filters, $84 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$, and
0.04% THD $(40 \mathrm{kHz}$ deviation). Plus usual 0.04% THD (40 k Hz deviation). Plus usual things like AGC, AFC, dev. mute, level
meter drive. $\mathbf{£} 23.95$ (supplied in screen can with 0.1 edge connection meter drive. £23.95 (supplied in screen can with 0.1 edge connection system)
Also the 7230 hyperfi series - as the 911225 but with slope controlled Also the 7230 hyperfi series - as the 911225 , but with slope controlled AFC that
operates in conjunction with signal level - and an extra IF amp stage for DXing.

Various digital requency displays

The World's largest range of receiver DFMs is now joined by the DFM7 (shown) - and L shaped version
of the DFM3 with remote display mount connector possibility. 1 kHz SW resolution with 455 kHz ctor 10.7 MHz offsets 100 Hz riution with 455 kHz or 10. MHz offsets, 100 Hz res up to 3.9999 MHz , an
VHF to 299.99 MHz in 10 kHz steps : $£ 41.75$

Semiconductors

Radio/Communications ICs ${ }_{\text {dem }}$				
CA3099E CA3189E	${ }_{2.53}^{2.11}$	11 1 CA1197		${ }^{4.31}$
HA137\%	1.95	TDA 1072	${ }_{3} .09$ MC1330p	1.38
${ }_{\text {HA1 }}{ }_{\text {HA2 }}$	${ }_{2.81}^{2.47}$	T8A651	${ }_{3.51}^{2.53} \begin{aligned} & \text { MC1350p }\end{aligned}$	1.38 2.24 $\substack{\text { P }}$
${ }_{\text {K } 844220}$	1.95	5 TDA1220		2.24 2.24
	1.15 0.80	${ }^{5}$ TDAA1083	$\begin{array}{ll}2.24 \\ 2.24 & \text { K8a417 } \\ \text { MC357P }\end{array}$	
		SL1626		
SL1611	1.84	SL1630 1.86	VARICAP D	ODE
S1	SL	SL1640	A section from	
SL16	2.70	(1641	${ }_{88204} 0.41$	KV
SL1 1623	2.80 SL	SL6640 ${ }^{\text {S }}$	$88105 \quad 0.41$	KV1211 9v
1624	st	$526690{ }^{3.68}$		
625	2.50	MC 1496 1.44		

POWER MOSTETS 100 WA's made simple

ut devices and drivers that ought to revolutionise design of all LF amplification systems. We have a new 48 page application note ($f 1.50$ inc) and
 $\begin{array}{llllll}\text { 2SK } 1355 & 160 \mathrm{~V} \text { N-ch 100W MOSFET } & \text { £7.29 } & \text { 2S.150 Pch complement } & £ 6.33 \\ £ 7.39\end{array}$ PA101B Kit for 100W MOSFET PA less Heatsink £16.10. (£23 inc heatsink/bkt) ULIRA LOW NOISE PU PREAMPLDFIER
The HA12017 is the last word in PU preamps, and general low noise audio design. It is an SIL IC, with 86 dB S/N in RIAA configuration, 10 v RMS out put capability,
0.002% typ THD at 10 v RMS 0.002% typ THD at $10 v$ RMS output (imagine the overload margin !!). It comfort-
ably supercedes discrete circuit designs in ably supercedes discrete circuit designs in terms of price/performance, and takes
the ant beyond the TDA1042's capabilities the art beyond the TDA1042's capabilities. (Replaces HA1457) $£ 1.80$ each or an RIAA applications PCB with two ICs for $£ 5.75$. Complete with Rs\& ${ }_{s} \mathrm{C}_{5} £ 9.95$.

Radio Controles We have various RC ICs, including NE544
$\begin{array}{ll}\text { KB4445 } & 4 \text { channel dig.prop. FM TX IC. } 30 \mathrm{~mW} \text { out (amplifyable) } £ 2.30 \text { inc } \\ \text { KB4446 } & 4 / 5 \text { ch dig }\end{array}$ KB4445;6 pair $£ 475$. Prop FM RX RC. Suits KB4445 or RCME syst. £2. 65 .
CMOS, LPSNITL, TML, MPU:
Listings in the new pricelist.
p+ SAE. More RC ICs in list

6800P. 2708. NE555. NE556, et
Coming Soon.
Contain yourselves, RF fans ! Not vet ready for
a full launch until autumn but previewed here.
SSB transceiver system : 10 kHz to 1000 MHz !!
A modular VLF to UMF SSB TX/RX system at last. With the correct first mixer, the basic PCB
covers 10 kHz to 1000 MHz Using LO fed from ext. source $($ Our 2 IC Mullard synth for instance $)$
and RF

Components

Piezo Sounders The most efficient warning so::nders yet
The latest thing in electro-acoustic efficiency. 1 mA of drive from CMOS will give an SPL of 83 dB - 10v RMS drive from CMOS uses 3 mA for 100 dB SPL at $4.8 \mathrm{kHz}(88 \mathrm{~dB}$ at 1.65 kHz$)$
The data sheets shows various drive circuits, and give full
specifications with regard to broadband responses and power
consumption etc. 1 off 44 p inc 100 off 2875 p .

Keyboard switches and caps

From the world's most widely used switch

 manufacturers. ALPS - come the biggest and best range of keyswitches, and data entry key-board switches. The SCM8 1101 is shown here board switches. The SCM81101 is shown here, with the K T5 2-part cap (with clear top, to eriable
easy fitting of your chosen legend. Other types are available with built in LED, 90° mounting etc. SCM81101: 17p, KT5: 16p - or 29p/pair

LCD CLOCKS
LCD DVM
Clocks use 1.5 v at 15 uA on/y,
DVM $9 \mathrm{~V} / 1 \mathrm{~mA}$
CM161: 7 mm LCD 12/24hr, alarms etc $£ 11.44$ each CM172: $13 \mathrm{~mm}, 12 \mathrm{hr}$, alarms, timer etc $£ 14.32$ each CM174: $13 \mathrm{~mm}, 12 \mathrm{hr}$, $\mathrm{min} / \mathrm{sec}$ stopwatch $£ 14.32$ ea

DVM 176: ICM7106 based LCD $31 / 2 d i g i t ~ £ 22.36$ each

WHAT's NEW at AMBIT

NEW PRCELASTISHORTMFRN:28 pages, FOC with A5 SAE pse POWER MOSFET APPLCATIONS HANDBOOK by HITACHI

Bigger print than our recent one page list and vastly extended

Everything you should know about HMOSFET devices theory and application

MICROBASICS

Since the demise of Microfile, we felt it was time to initiate another on-going publishing situation computingwise. Henry Budgett kicks off the first instalment of this great new hardware series with a potted history of the technology

AImost without fail we read in some publication or other that the age of computers is upon us. Whilst this statement is unquestionably true it is well worth looking back at the developments that have resulted in this proliferation of computers and computer-based systems. There is a popular temptation to attempt to baffle readers with science and technical terms in articles like this and this has led to an almost 'cult' image being foisted upon the industry, whereas, in reality, we should be trying to do exactly the opposite. It is to this end that I will attempt to define and explain each piece of terminology as it is reached. It is also the reason that I have chosen to begin the series at the beginning rather than to look at just the current darling of the media, the microprocessor.

Three Wise Men

In taking a look over our shoulders at the names associated with the very early computers we find that three stand out as veritable beacons. Taking them in chronological order, for no better reason than simplicity, we first meet Blaise Pascal. Born in the seventeenth century in France he made a considerable impact on the field of mathematics at that time. His father was a tax collector and the sight of him spending many hours adding figures stimulated Blaise to produce a
mechanical engine that would remove the drudgery. The basic design worked, no mean feat in itself, and enjoyed a limited commercial success. Its main drawbacks were that it could only add or subtract (and only one of those at a time). The Pascaline, as it was called, is still in use today recording the mileage travelled in your car and its improved successor which was capable of multiplication survived until the first electronic calculator sent it to the scrap heap. If you are fortunate enough to have one lying in a corner it is worth the trouble to take its lid off and reveal the guts. Remember as you look that this was invented when the Industrial Revolution was still in the future and there were no facilities for making accurate mechanical parts, a problem that was to cause our next innovator to fail.

Inventor With A Difference

Charles Babbage began in a similar manner to Pascal. He was also a child prodigy in the field of mathematics and soon began to find fault with the tables of logarithms being published. It was to the end of producing a machine for calculating these tables that Babbage began his life's work. It was fortunate that he was a wealthy man because despite a Government grant of some $£ 17,000$ and eleven years work he finally
abandoned his Difference Engine. Despite this failure his thoughts on automated mathematical machines were still active and he conceived the Analytical Engine that was to eventually ruin him. This idea was to incorporate all the essentials of the Difference Engine but with the magic ingredient of being programmable'. The original specification of the machine was that it could perform mathematical operations to order on data provided.

At this instant the concept of computers as we know them today was born. The 'Engine' even incorporated most of the elements found in modern electronic machines. However the theory was not matched by the practice. The inability to make precision parts once again spelled doom and Babbage died aged 80 with not much left to his name except a pile of cogs and wheels. His son did manage to put together a working model, which can today be seen in the Science Museum, London.

Herman The Wise

Less than twenty years later our third individual, Herman Hollerith, forged the final link in the chain of events with his Tabulator. Designed as an entry in a competition to find a system that could analyse the results of the 1890 American census it harnessed the newly developed power source, electricity. Hollerith's machine completed the census in record time and made its inventor a very rich man. Indeed, the company he founded, IBM, is probably the largest mainframe computer producer in the world.

This combination of electricity and advanced mechanics was by no means an ideal solution. In the case of the 'Tabulator', it was designed for one specific job and could not be easily changed. This was not the programmable tool conceived by Babbage. It is interesting to note that, just as Babbage had looked toward the punched cards used by weavers to control their looms, so Hollerith used similar cards to record the census information on. These cards are still in use today in many computer rooms (some things never change!).

The Electronic Age

Just as the application of electrical energy brought Hollerith's 'Tabulator' the success it did, so it spurred on the development of the wide variety of electronic circuits based around the thermionic valve. By the time of the second World War there were many potential challengers for the title of the first computer but they all shared one common characteristic. The development of electronic switching had resulted in the universal adoption of the binary number system. The reason is simple, you can easily turn something on or off and hence create a binary code, but it is obviously much harder to turn something off or on in nine discrete steps. If Pascal or Babbage had designed their systems around binary mathematics instead of the conventional decimal they would have simplified their problems ninefold and the world may even have been introduced to the steam powered computer. Having taken the step to binary, computers never looked back and giants such as Collosus, ENIAC and ACE were born. Each of these was the descendent of the 'Analytical Engine' in that it could be programmed to do any logical task, within reason, and consisted of a number of basic elements, as in today's computers.

In much the same way as the transition from mechanical to electrical occurred, these early computers were replaced by pure electronic devices based on the newly invented transistor. The thermionic valve was an unreliable object, slow in operation and costly in terms of power consumption and space. Indeed, the processing capabilities of most of today's microprocessors greatly exceed the facilities offered even thir-
ty years ago. The advent of the transistor produced the 'second generation' of computers. A 'generation' in computer terms is generally defined as a tenfold decrease in size with a tenfold increase in processing throughput at a tenth of the original cost. As the transistor became the descendent of the valve, so the chip or integrated circuit became the descendent of the transistor. In those days, some ten to twelve years ago, the first integrated devices consisted of perhaps a half dozen transistors on a single chip of silicon. Rapid advances were made and soon a new kind of computer was born.

The Minis

Just as the Mini car revolutionised the way the world looked at motoring so the minicomputer changed the face of computers. Up till the advent of the integrated circuit there had been only 'computers', now there were 'mainframes' and 'minis'. These two were rigidly divided into sectors of operation, the mainframes were used for serious purposes, the minis were 'toys' used in research. Among the names of companies who were to make their fortunes producing minis was DEC, probably still the world leader. Soon the mini was to be found everywhere from research labs to classrooms and their spread was due simply to the fact that they were small, cheap and relatively easy to use. They were even built into pieces of equipment like machine tools. Indeed it is fair to say that the mini paved the way for the micro, although the actual distinctions between them have been rapidly eroded.

The pilot model of the National Physical Laboratory's ACE, one of the first computer giants(Crown copyright).

Firms involved in the business of integrated circuit production tend to follow a natural progression in the devices that they make. First off the production line come the standard logic elements, the AND OR type gates, and once the production of these is running at a profitable level they attempt to squeeze a little more onto the slab of silicon. As soon as this stage is proved they take another leap forward and so on. In the terminology this is a progression from SSI (Small Scale Integration) with about 10-20 actual devices on the 'chip' through MSI (Medium Scale Integration) which has a dozen or so gates (rather than discrete elements) up to LSI (Large Scale Integration) which is taken as being greater than 100 gates on the chip. At this stage of the game we are still talking about complex TTL type packages, the next jump is to VLSI which, believe it or not, stands for Very Large Scale Integration. We are now in the realm of memory devices and microprocessors.

Fig.1. Block diagram of a computer system.

Common Concept

If we take a look at Fig. 1 we can see a generalised block diagram of a computer. What kind of computer is not important; they all have the same functional blocks within them, be they micro or mainframe. The common misconception is that the "mighty chip" is a computer, far from it. Your average microprocessor still needs all the memory circuits, control circuits, mass storage devices and other components that even the old valve machines needed; they are merely smaller. The very first microprocessor came about in 1971 simply because it was realised that it would be possible to make a device of that complexity on a single chip. The device was called the 4004 and the company that made it was Intel. More on the micro next month - first some explanation on the basic building blocks of computers.

Eye Oh

The five fundamental elements of any digital computer are:- the ALU or Arithmetic Logic Unit, the control unit, the store or memory and the input and output devices. Taking these in the reverse order we have the input and output devices, often abbreviated to the I/O. Obviously the machine must be able to communicate with the outside world and vice versa, so the most common form of I/O is the Visual Display Unit or VDU. This has, to a very large degree, replaced the oldfashioned Teletype, a special electric typewriter often called a TTY, and is totally silent in operation, which is a welcome change from the racket the earlier device made. Other forms of I/O device are printers, for producing typed copy, plotters for producing graphical output or in the most esoteric cases digitisers and speech synthesisers.

The function of the I/O was simply to enable the user of the computer to load information for processing into the computer and to be able to get the answers back. Quite apart from this information there is the requirement of the computer programmer who wishes to put in information that will instruct the computer to perform certain operations. This, the program, is stored in the memory and of this vital component
there are two types; general purpose memory and off-line or backing memory. The general purpose memory is made up of a large number of bistable elements manufactured in either magnetic or semiconductor materials. In the context of the micro we often refer to these as the user memory. The backing memory is generally of a mass storage type like magnetic tape in one of several forms or magnetic discs or drums. Whilst the computer may have immediate access to some few thousand

The business end of NPL's ACE computer, used to develop sophisticated mathematical techniques.
storage elements in the user memory, it can often store a few million elements in the backing stores. We will discuss the various types of memory in much greater detail at a later date - only the concept is important at this stage.

The control unit performs the task of making sure that all the various bits of the computer are working in the correct order. It would not be a very efficient machine that had to pause for information because it gave priority to looking after a printer and left the user waiting. The basis of all the control signals is a clock, in fact a very accurate oscillator circuit running at several million cycles per second. This is the heart of the machine and almost without exception all the functions within the computer are locked or synchronised to it.

The one remaining piece of the jigsaw is the ALU. This exists solely to perform arithmetic operations on the elements that are fed to it. Some of these elements are recognised as being instructions, others are simply information which is to be processed according to the previously received instructions. All this takes place at the level of binary signals, that is, each separate piece of information is represented by a pattern of logical ones or logical zeros and this is commonly called 'machine code'. Indeed, at this level of operation the computer is only aware of two groups of patterns - those which correspond to the defined set inside the machine, its "instruction set" in computer parlance, and those patterns which do not match this set which must be data.

To Pastures New

That's the end of this month's offering. In the next part our concentration will lock on to the microprocessor itself and just what goes on inside that little lump of silicon. Those with a wish to pursue the hardware angle in books, might be interested in the following recommended texts on the subject: Introduction To Digital Computer Design by Woollons, published by McCraw Hill. Consumers Guide to Personal Computing and Microprocessors by Friebergèr \& Chew, published by Hayden.

ETI

FOXAND HOUNDS

Once again our reviewers have brought home an exclusive. This time it's an all Britigh machine featuring the first implementation of the new 10K BASIC from Microsoft. How does the machine rate in terms of value against the established favourites like Apples and NASCOMs? Read our exposé in the October issue and make your choice.
CT_{3} goes ruraf again, and not down the pub either. Amid scenes of pink clad men thundering across open country, the sounds of baying hounds, demure ladies in full chase and healthy fresh air we find a curious creature called the fox. No bloodshed here, this must be the only foxhunt where the fox can actually beat his pursuers at their own game turn on all your cunning and see how long you last against the hunters.

In the third part of our mammoth survey of computers and equipment we turn our attention to VDUs. Once again we present the facts and figures in clear and concise form to allow you to make the best decision. Don't miss it, it's the only one there is.

BUYERS GUIDE

Not just another version of $\mathrm{St}^{*} \mathrm{r}{ }^{*}$ re* but a real wargame simulation with tactical and strategic positioning. James T might find this a harder match than those Klingons he seems to have so much trouble with.

Unique in concept-the home computer that grows as you do! New!-The Acorn Atom $\square \mathrm{ElOO}^{a}$ plus VaTand pEp. computer kit The ATOM - a definitive personal computer. Simple-to-build, simple-to-operate. But a really powerful full-facility computer. And designed on an expandable basis. You can buy a superb expanded package now - tailored to your needs. Or, you can $\sqrt{\text { buy just the standard Atom kit, and, as you grow in }}$ confidence and knowledge, add more chips. No need to replace your equipment. No need to worry that your investment will be overtaken by new technology. As you need more power, more facilities, you can add them!


``` provided thy the Standard Aton
```

The standard ATOM kit includes:

- Full sized QWERTY keyboard Rugged polystyrene case -Fibreglass PCB $2 K$ RAM $8 K$ ROM 23 integrated circuits - Full assembly instructions including tests for fault-finding. Once built, connect it to any domestic TV and power source) - Power requirement: 8 V at 800 M A. ATOM power unit avalable. See coupon. PLUS FREE MANUAL written in two sections-teach yourself BASIC and machine code for those with no knowledge of computers, and a reference section giving a complete description of the ATOM's facilties. All sections are fully illustrated with example programs.
 The ATOM concept
Adding chips into sockets on the PCB allows you to progress in affordable steps to large-scale expansion. You can see from the specifications that the RAM can be increased to 12 K allow. ing high resolution (256×192) graphics. Two further ROM chips, e.g. maths functions, can be added directly to the board giving a 16 K capacity. In addition to 5 I/O Ines partly used by the cassette interface. an optional VIA device can provide vared 1/O and timer functions and via a buffer device allow direct printer drive. An optional module provides red. green and blue signals for colour An in-board connector strip takes the ATOM communications loop interface. Any number of ATOMs may be Inked to each other - or to a master system with mass storage,
hard copy facility. Interface with other ACORN cards is simplicity Itself. Any one ACORN card may be fitted internally.
So you can see there are a vast number of modular options and additions available, expanding with your ablity and your budget. The ATOM hardware includes:
- Memory from 2 K to 12 K RAM on board (up to 35 K in case) - 8K to 16K ROM (two 4K additions) 6502 processor Video Display allows high resolution (256×192) graphics and red, green and blue output Cassette interface-CUTS 300 baud
- Loudspeaker allows tone generation of any frequency -Channel 36 UHF Modulator Output Bus output includes internal connections for Acorn Eurocard.
The ATOM software includes:
- 32-bit arthmetic ($\pm 2.000 .000 .000$) - High speed execution - 43 standard/extended BASIC commands Variable length strings (up to 256 characters) -String manipulation functions -2732.bit integer variables 27 additional arrays Prandom number function PUT and GET byte WAIT command for timing © DO-UNTLL construction Logical opera tors (AND. OR, EX-OR) LINK to machine-code routines PLOT DRAW and MOVE

4a Market Hill, CAMBRIDGE CB2 3NJ

Your ACORN ATOM mis , wality as a busmess expense To order complete the coupon helow and post to ACom Computer for dulivery within 28 days Retum as ecemperf withm 14 dava for full money refund if not completely satistied. All components are guaranteed with full service/repair facility available.
Please send me the following tems:

Oluantity

```
AT(IMHITEK + ?K|MIN)
    ATOMASS nn+3K (MIN)
    ATOMMIT1こ - !`K MAX!
    ATCMASS 1) - 1'H MAXI
    im RAM SFTS
```



```
    PRINTF KORIV: Nr??VIA
        Butter (IS?M4)
```

 M. MAIVS PO:VER SUPPLY!! 5 , נוז
 (a) $\quad: 30$
(a) $£ 1034$
Q :31,

To: Acorn Computer Ltd.. 4 a Market Hill CAMBRIDGE CB2 3NJ
l enclose cheque/postal order for $£$
Please debit my Access/Barclaycard No
Signature
Name (Please print)
Address

Telephone No.
Rogistried No 1403810 VAT Nu, 21, 4002.

EXPERIMENTOR BREADBOARDS

No solderıng modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes Start small and simply snap-lock boards together to bulld a breadboard of any suze
All EXP Breadboards have two bus-bars as an integral part of the board, If you need more than 2 buses simply snap on 4 more bus-bars with the ald of an EXP 4B
EXP $325 £ 1.60$ The ideal breadboard for 1 chip circuits Accepts 8, 14, 16 and up to 22 pin ICs Has 130 contact points including two 10 point bus bars

EXP 350 £3. 15 Speciatly designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs
Has 270 contact points including

two 20 point bus-bars

EXP 300 £5. 75 The

 most widely bought bread-board in the UK With 550 contact points, two 40 paintbus-bars, the EXP 300 will accept any size IC and up 106×14 pin DIPS Use this breadboard with Adventures in Microelectronics

EXP 600 £6.30 MOSt

MICROPROCESSOR projects in magazines and educational books
 are bult on the EXP 600

EXP $650 £ 3.60$ Has $\cdot 6$ ' centre
spacing so is pertect for
MICROPROCESSOR applications

EXP 48 £2.30 Four
more bus bars in snap-on" unit

The above pfices are exclusive of PGP and 15% VAT

THE CSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately
CONTINENTAL SPECIALTIES CORPORATION

C.S.C. (UK) LTD Dept. 9PP

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB1 1 3AQ,
Tel: Saffron Walden (0799) 21682 Telex: 817477

ELECTRONICS BY NUMBERS

No. 7 DIGITAL DICE
Roll the dice - the electronic way! The digital dice gives you an instant score randomly chosen from 1 to 6 , every time you press the button. No losing this under the table!
No. 8 QUIZ MASTER
Play your own 'Sale of the Century'? Up to four contestants pit their wits; the first one to get the answer lights up his 'win' light, and stops anybody else from having a go. No. 9 MOVING TARGET GAME Test your reactions! A moving 'line of light' travels along from left to right, over and over again. You've got to 'fire' at just the right moment to score a hit. Fun for all the family!
Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph;

You will need; One EXP 300 or EXP 350 breadboard, 15 silicon diodes, 6 resistors, 6 Light Emitting Diodes. Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a perfect working project.

For full detailed instructions and layouts of Projects, 7,8 and 9 , simply take the coupon to your nearest CSC stock ist, or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.
If you missed projects, 1, 2 and 3 , or 4,5 and 6 , please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minımum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posis accepts up to six 14 -pin Dips.
PROTO-BOARD 6 KIT E9.20

PB 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy. PROTO-BOARD 100 KIT $£ 11.80$

SPOT DESIGNS

Slide/Tape Synchroniser

With the aid of a tape recorder and a slide tape synchroniser it is possible to obtain programmed slide changing with an automatic projector. By using a synchroniser and a stereo tape deck or recorder it is possible to have music and a commentary recorded on one channel and signals to give automatic slide changes at the appropriate points on the other channel.

A slideltape synchroniser has two sections; a tone generator and an electronic switch. The tone generator is used to record short bursts of tone onto the tape at the points where slide changes are required. The electronic switch is fed with the tone burst output of the tape recorder and closes a pair of relay contacts for the duration of each burst. The relay contacts are, of course, used to control the automatic slide change mechanism of the projector. Usually the output of the tone generator is coupl ed to the input of the electronic switch, so that operating the tone generator causes the relay contacts to close. This is usetu when recording a tape. With the projector loaded with slides, the synchroniser connected to the projector, the output of the tone generator fed to one input of the recorder and the music/commentary signal ready to be fed to the other input, the tape is in serted. Then the music and commentary are recorded and the tone generator is operated at the appropriate times so that the slides are changed and the tone bursts are recorded onto the tape. If the tape is then rewound, the slide magazine is brought back to its starting point and the tone burst output of the tape recorder is fed to the input of the electronic switch, replaying the tape should give the slide show with accompanying sound track and automatic slide changing. The operator only has to start the tape at the beginning of the show and stop it at the end.

A similar technique is used when using the unit as a program-
med slide timer, the only difference being that there is no soundtrack to bother with.

The tone generator uses Q1 in a straightforward phase shift oscillator operating at about 500 Hz , although the exact operating frequency is not of great importance. It is merely necessary to use one at which the recorder is capable of operating reasonably well. The output from the collector of Q 1 is coupled to the tape recorder by DC blocking capacitor C5 and resistor R6. The latter attenuates the output. R6 also ensures that the oscillator cannot be so heavily loaded that it ceases functioning. SW1 is a non-locking, push to make switch. It is briefly pressed to connect the supply to the tone generator and produce the tone bursts.

The tone generator is based on operational amplifier IC1, which is used in the non-inverting mode. Its voltage gain is set at about 28 by R9,10 and R8 biases the non-inverting input to the negative supply rail. $\mathrm{R} 5,7$ form a simple passive mixer at the input of IC1, so that it can be fed from either the tone generator or from the output of the tape recorder without the need for any changeover switching. The output of IC1 is used to drive common emitter amplifier Q2, which has the relay coil and protective diode D1 as its collector load. Normally IC1's output is low and Q2 is cut off, but in the presence of an input tone the output of IC1 goes strongly positive on positive going half cycles. C10 integrates these pulses so that Q2 is continuously switched on in the presence of an input tone and the relay is energised. The relay contacts then close and operate the slide change mechanism of the projector.

The current consumption of the unit is only about 500 uA but rises to around 40 mA during the brief periods when the relay is activated. The relay can be any type having a $6 / 12 \mathrm{~V}$ coil with a resistance of about 185 R or more, provided it has at least one set of normally open contacts of adequate rating.

Clipping Monitor

When using an amplifier at virtually its full output power there is a risk of "clipping" occuring. The amplifier is overdriven to the point where output peaks are flattened because the amplifier simply cannot provide a high enough output voltage. The distortion caused by clipping is often quite severe and readily apparent, but this is not always the case. It is not uncommon for the tweeters in loudspeakers to burn out due to overloading caused by clipping producing strong high frequency signals!

The circuit relies on the fact that with less than about 2 V applied to a LED it will not pass any significant current and will fail to light up. If the voltage applied to the LED is only marginally increased above 2 V , the LED avalanches, a heavy current flows and it glows brightly. R 1 is adjusted so that the voltage applied to LED1 via current limiting resistor R2 is just sufficient to cause D1 to glow quite brightly when the amplifier is driven into clipping.

With the amplifier driven just below the clipping threshold there is just enough voltage applied to the circuit to cause LED1 to visibly glow, although it does so at less than full brightness. If the amplifier is driven significantly below the clipping level there will be insufficient voltage fed to D1 to cause it to conduct and it will not light up.

(1) III $=-1$. a AURA Sounos

Tomorrow's Electronic Organ Kit is Here

POSSIBLY A NEW NAME TO YOU, BUT KNOWN IN OVER 25 COUNTRIES FOR THE SUPERIOR INSTRUMENTS WHICH THIS GERMAN COMPANY PRODUCE.

> See us at RECRO 80 Leamington Spa, 1 st- 8 th August It's a great day out for all the family plus the opportunity to see the whole WERSI range demonstrated live.

WERSI is the first kit producing company applying the latest achievements of the space age technology
This has decisive effects on the technical and musical quality of WERSI'S electronic organs for the do-ityourselfer
The application of modern integrated circuits, so called ICs, simplifies the organ construction considerably. A single IC may replace up to 10,000 conventional electronic components.
In addition, ICs save a lot of space and they are extremely reliable devices.
WERSI, however, went a step farther yet IC's which were not available on the open market, were developed for specific purposes by WERSI engineering. They are being produced by the most highly reputed IC manufacturers in the world. The result: economical electronic organs with the most up-to-date techniques and unsurpassed musical capabilities

Without doubt the most comprehensive kits and the most up-to-date designs available today. Just consider a few of the features:

- Precision Master Generator, using MOS-LS 1
(Integrated electronic keying in $1^{2} \mathrm{~L}$ technology
- Unique - All switch functions are programmable.
- Even the smallest organ has drawbars in addition to fixed stops.
- Craftsman-made cabinets available in five veneers
* Ready-made wiring harnesses eliminate errors.

WERSI MAKES DO-IT-YOURSELF CONSTRUCTION EASIER THAN EVER before at a fraction of the price of the fully assembled WERSI RANGE. GET THE FACTS NOW.

AURA SOUNDS 14-15 Royal Oak Centre, Brighton Rd., Purley, Surrey. Tel: 01-668-9733 and at 17 Upper Charter Arcade, Barnsley, W. Yorks Tel: Barnsley (0226) 5248.

ETI SEPTEMBER 1980

'MICRON'

- FULLY BUILT,TESTED, and housed in ATTRACTIVE CASES
- 6502 based microcomputer
- VDU alpha numeric display
- Powerful monitor TANBUG
- 8K RAM
- 32 parallel I/O lines
- 2 TTL serial I/O lines
- 1 serial I/O port with
 RS232C, 20 mA loop and 16 programmable Baud rates
- Four 16 Bit counter timers
- 300/2400 Baud filenamed cassette interface
- Data bus buffering
- Memory mapping control
- 71key ASCII Keyboard, including numeric keypad
- Includes power supply
- Also includes the first
* 10K MICROSOFT BASIC * available in the U.K.
- All the usual BASIC commands
- Integer and real numbers
- Integer and real arrays
- Intrinsic functions ABS,INT,RND,SGN,SIN, SQR,TAB,USR,ATN,COS,EXP,LOG,TAN.
- User defined functions
- READ and DATA statements
- Dump and load programs for cassette recorders
- Program editing command
- String function for text I/O
- BASIC can call user machine-code sub routine
- User machine-code interrupt handler interfaces with BASIC

TANGERINE

Available soon!
 TANRAM-40K Bytes on one board! 12 slot SYSTEM MOTHERBOARD, supports 277K Bytes
 SERIAL \& PARALLEL I/O boards High Definition COLOUR GRAPHICS

 Forehill,Ely,Cambs. Tel: (0353)3633

Name
Address \qquad

AUDIOPHILE

Empire's new Dynamic Interface series comes under scrutiny this month and Ron Harris

 has some second thoughts on metal tape tests.
ENPIFE

After last months highly physical encounter with the JVC AX9 and its 37 lbs of muscle rending weight, I decided to cheat the truss a little longer and return to the realm of the phono cartridge - where weight is measured in grams and a man (and his assets) can feel comfortable in their woik.

A friend of mine - yes, even editors have friends - has for some time been muttering darkly about Empire cartridges being the best thing since the Big Bang. But after they managed to ignore my pleas for an EDR-9 when last I lined up the cantilevers I had all but given them up as a figment of his lurid imagination.

However, with the dawning of a new day - and the shuffling arrival of our geriatric postman - was delivered unto me a small brown parcel, containing not one but two Empire cartridges. Once more I am forced to revise my model of the Universe. Wrong again.

Having beaten off my friends grasping, avaricious little paws and refused all offers to kidnap Felicity Kendal in return for the contents of the box, I found myself confronted by the new Dynamic Interface series in the form of its 600LAC and 400TC manifestations.

Right then, into battle, SME raised against the fall of night and the howling of the wolves (i.e. neighbours).

Empire Strikes Back

These cartridges use a moving-iron principle to generate their millivolts, inherently more linear than the more common moving magnet. The top two in the range, the 600LAC and the 5001 D also employ an 'internally dampened' cantilever to overcome the mechanical h.f. resonance at around 18 kHz .

Other innovations include a cantilever composed of an Aluminium alloy with Boron deposited into it, reduced tip mass and 'two position locking' for the stylus assembly to ensure that it is correctly located.

Benefits claimed are flatter frequency response due to close control of resonance, reduced IM distortion, increased trackability (sorry Shure!), good hum rejection and reduced record wear. In fact everything short of the power of regeneration. Maybe that comes with next year's model.

The basic engineering concept of these cartridges differs from the 'norm' in that here the coils and magnets are fixed in place within the body, a hollow iron armature is attached to the cantilever and generates the output in the coils by moving within the field from the three magnets situated next to them.

Unusual is Empire's use of two 'front' magnets to linearise the field through the pole pieces and coils, which also act to reduce hum pickup. Field strength is effectively concentrated in the gap where the armature is in motion. Empire say this also reduces microphonics (susceptibility to outside vibration).

Inside Story

The 600LAC features the inertially dampened tuned stylus (IDTS) system, Empire's scheme to defeat h.f. resonance. This employs an assembly INSIDE the cantilever, consisting of elastomer ring and iron piecework, which provides an antiphase resonance at the critical point to produce a much flatter "twin peak" overall response around resonance.

The diagrams explain this better than any combination of letters and spaces.

Says it all better than words - Empire's IDTS system.

The 400TC pickup reclining in its box awaiting the moment of truth and the SME. All the DI range are physically similar and are distinguished by the colour of the stylus carriers. In the case of the 400TC this is an extremely lurid red.

LAC stands for 'Large Area of Contact' and implies that lower record wear should be expected from the 600LAC than from a normal elliptical or spherical point. Under high-power magnification a very high order of finish was revealed on our sample, confirming the manufacturer's claim of having paid special attention to stylus polish. Such care would manifest itself in better preservation of those irrepairable grooves and lower surface noise.

The 400 TC has the tapered cantilever of its more expensive brethren, and a lower tip mass than most units in this price range. The 400 TC retails at around $£ 30$ and the 600 LAC at

An exploded view of an Empire cartridge. Note the use of two small magnets ahead of the main assembly. This is to concentrate and linearise field strength in the region around the moving iron element.
about E 75 - both in very competitive areas indeed. Good performance is not a bonus here, merely a basic requirement for (commercial) survival.

Packet In?

One immediate disappointment must be the presentation of the cartridges. Both arrive wedged into a block of polystyrene, along with fixing hardware and mandatory screwdriver. Outer packaging is a simple cardboard sleeve. Whilst one can applaud the avoidance of expensive trappings that do nothing to enhance performance, surely this is going a little too far - especially at the $£ 80$ or so of the 600 LAC ?

Indeed, the overall appearance of the cartridges themselves does not manifest the overtly confident engineering that one gets from something like a Shure or an Ortofon. Not that they are anything but well made - please don't go thinking that Audiophile is casting needless aspersions! The company offer a two year guarantee on all the range as proof of their confidence in the product. It is certainly not misplaced, I think.

Sound Evidence

After the measurements had been taken and the lab stool vacated for a more comfortable armchair, the 600LAC was auditioned mounted in the inevitable SME series III pickup arm - still the Rolls Royce of its field. Comparison was drawn against the Ortofon/SME 30 H and Coral MC81 (moving coil) units.

Wh stever the criteria the 600LAC is a good cartridge. Its sound is characterised by a solid bass and a forward presentation. Treble is very well extended and smooth. Resonances are well controlled, so that damping is certainly effective audibly. The Empire works well with any type of music, but undeniably adds a certain amount of 'life' of its own that is most exciting with rock.

At times I could detect a slight 'edge' on difficult, heavily modulated passages although tracking was always impeccable and the 600l.AC was never tricked into mistracking. It has a great deal of the sparkle and transparency of the best cartridges around, but loses out in the mid-range where it is a little veiled when judged absolutely. Nonetheless all hi-fi is a compromise of some sort or other, and this pickup gives away less to perfection than most. Good value, I thought.

Onto the 400TC, which was compared against the Shure M97EJ and Goldring G900 IGC reference. In a straight A-B comparison the Empire betters the Shure, but falls short of the more refined C900 IGC. It does offer very good returns on the $£ 30$ investment required to secure its services, however.

Like the 600LAC, the sound is forward in nature and projects the music outwards from the loudspeakers. Presentation is confident with a good low frequency performance and very smooth top end. As long as speakers are chosen to complement the distinctive style this Empire would be a worthy addition to any system in the $£ 400-£ 600$ price range.

In fact the 400TC is close enough to the 600LAC to make me wonder what place exists for the 500ID, a model that sells for $£ 45$ and sits between the two in the Empire range.

Conclusions

Overall then, two good units well placed to succeed and which should be added to shortlists for audition at the friendly neighbourhood dealers. Good features common to both were an insensitivity to surface noise, extended bass and smooth treble. Well worth a listen.

I can see Empire gathering quite a following for this new

How about this for a set of specs? Empire are certainly unafraid to lay it all out in black and white. On test no significant differences were discovered. Hum susceptibility was not tested - you'll note that they have specified this at 60 Hz . Damn colonials again is it not? Tracking weight ranges are sensibly specified and I found that the lower values worked well.
range of cartridges without too much difficulty, and I can think of no higher praise than to comment that while auditioning the 600 LAC I was in no hurry to return to the familiar tones of my reference unit.

Tape Measures

Up-cock on the measurement front it seems. Many moons ago I reviewed the TCK 55 II from Sony and in doing so apparently discovered that said machine would not function to the best of its considerable ability with Sony tapes. Metal variety, anyway. Since then Sony have made a valiant effort to completely bury me in cassettes, on the principle that the one I had was a bad sample and all others will work.

After clambering out from under the little plastic boxes and clearing a space to work, I sat down to do a retest with some other examples of their metallic machinations. Lo and behold. Better frequency response and improved linearity. Suspicious editorial mind begins to dream up fiendish Japanese plots to "fix" results. Is Audiophile having its statistics interfered with?

A strong desire for impartiality, together with a fair helping of cowardice led me to pack off the TCK 55 II and all its little metal ammunition for independent testing once more. I neglected to tell the engineer concerned about the initial discrepency on a particular tape type, just to see if he'd turn it up independently. Come to think of it, those Samurai warriors polishing their swords outside my door may have slipped my mind too - still I probably imagined it

It would appear from a consideration of both our results that there ws something wrong with the tape rather than the machine, after all. That probably clears Sony Tape Recorders Ltd off my back, but enrages Sony Cassette Production 1921 Ltd, or some other such edifice.
(Maybe it is no coincidence that everyone in my train compartment this morning was of oriental extraction and carried a long and curved thin brown paper parcel. Anyone know the Japanese for: "Me given up reviewing hi-fi, taken up knitting instead"??)

ETI

ETI SPECIAL OFFER! 3-wave band alarm clock radio at a price that won't alarm you.

Every aspect of this beautifully designed elec tronic alarm clock radic has been carefully thought out. From the superb sound quality and immaculate white housing to the dark face which gives clear and easy reading of the time.

And at approximately $£ 8$ cheaper than con ventional shop prices it also makes a superb gift

WAKE TO MUSIC OFF THE ALARM
Unlike so many alarm clock radios you car actually choose how you want to be woken up by the insistent alarm tone or by soothing music

And in case you feel the need for an extra few minutes in bed there's even a repeatable 9 -minute snooze button.

Once the alarm or music has been activated you
can simply touch the snooze sensor for another
undisturbed, warming 9 -minutes under the covers
before you are woken again.
Similarly, the music snooze sensor can be set before you get into bed so that you can be gently serenaded into sleep before the radio automatically cuts itself off.

NO FEAR OF POWER FAILURE
So many alarm clock radios let you down because they are totally dependent upon a constant supply of electric power.

But not this one.
The advanced Hanımex design has even inco:
porated a stand by battery feature which automatically takes over to power the internal electronic clock and to keep the correct time and alarm setting accurate. ए To Modmags Lid. isales Office) -— O Modmags Ltd , isales O.
145 Charing Cross Road.
London WC2H OEE I enclose \& for alarm clock radios
Name
Address

PRIME COMPONENTS LOW PRICES

 become available and thase are featured regularly. Prices are axclusive of p\& p and $V A$
piease refer to "Ordering Intormation" before ordering. Official orders from Sch

6 Wilmslow Audio

THE firm for speakers!

SEND 50P FOR THE WORLD'S BEST CATA LOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC, AND DISCOUNT PRICE LIST.

AUDAX - AUDIOMASTER - BAKER - BOWERS \& WILKINS CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD DECCA - EAGLE - ELAC - EMI - FANE - GAUSS - GOODMANS HARBETH - ISOPHON - I.M.F. - JORDON - JORDAN WATTS KEF - LOWTHER - MCKENZIE - MISSION - MONITOR AUDIO MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS - SHACKMAN - STAG - TANNOY VIDEOTONE - WHARFEDALE

WILMSLOW AUDIO

SWAN WORKS, BANK SQUARE WILMSLOW, CHESHIRE SK9 1HF

Tel. 0625-529599 FOR MAIL ORDER AND EXPORT OF DRIVE UNITS, KITS, ETC.

Tel. 0625-526213 (SWIFT OF WILMSLOW) FOR HI-FI AND COMPLETE SPEAKERS

	CHAN	$\begin{aligned} & \text { VDS } \\ & \max V \end{aligned}$	$\operatorname{ID}_{\max A}$	$\begin{gathered} \text { PDISS } \\ \max W \end{gathered}$	RDSON Type Ω	Case	Price
B0512	P	60	15	10	t(3.5)	T0202	85p
BD522	N	60	15	10	2.5	T0202	80p
VMP4	N	60	2.0	25	2.0	380-50E	1250p
VN10KM	'N	60	0.5	1.0	4.0	T092t	55p
VN64GA	N	60	12.5	80	0.3	T03	750p
VN67AF	'N	60	2.0	15	2.0	T0202	75p
2SJ49	P	140	7.0	100	1.0	T03	395p
.2SK134	N	140	7.0	100	1.0	T03	395p

POWERFETS

Some day all power transistors will be made this way!

MANUFACTURERS/DESIGNERS. We will be stocking Powerfets by IR, TI and Intersil as well as by Hitachi, ITT and Siliconix. We can advise you on applications and type selection, supply samples and quantities
REMEMBER Powerfets need virtually no drive current, switch in nanoseconds, and are 2nd breakdown free, etc. etc.

LM3900	250p 555p 43 p 280p	83d8 S/N in phono application) 99p HA1397 P户oweramp 20 watts in 88 0.02% distontion (typ) 195p Both with data and circuits.	Built. C/W shits, chan select, choprate controle and instructions Useful display from DC to 10 MHz . Runs from 9v battery $£ 9.95$
MC3401 NE529 NE 555 SAD 1024 SD532 TL081 TLO82 2102 4001B 4011 B 4013B 40168 709 710 733 741 78L05/12	30p	POWERFET AMPLIFIER. High power designs otlering very low distortions Complete component set. 80 watt (\dagger YHD 0.008%) £8.95 120 wat (\dagger THD 0.004%) $£ 16.85$ (with corcuits) into $8 \Omega \dagger$ at all powers and all audio frequencies LED VU/PPM METER Complete component set. Displays positive and negative peak levels, and average levels simultaneousiy on 10 LEDs, with 3dB resolution. With 10 reds $\mathbf{£ 6}$, with 7 green, 1 yellow and 2 red $\mathbf{£ 6 . 4 0}$.	VCA High quality design offers attenuation from OdB 10 -90dB. S/N 90dB. THD 001%, B.W. DC to 100 KHz Complete component set and circuit $£ 2.50$.
	145p		
	25		
	050p		
	30p		
	17p		
	40 p		
			DM2502. NE529) with data
			£9
			388 (Power amps.
			car battery). With
	29p		

Conquer the chip.
 Be it a career, hobby or interest, like it or not the Silicon Chip

 will revolutionise every human activity over the next ten years.Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.
Learn the technology of the future today in your own home.

MASTER ELECTRONICS

 LEARN THE PRACTICAL WAY BY SEEING AND DOING- Building an oscilloscope. Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'
- Carry out over 40 experiments on basic circuits and on digital electronics
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS

- Complete Home Study library. Special educational Mini Computer supplied ready for use. Self Test program exercise - Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques
- Examination courses (City \& Guilds etc.) in electronics
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

RAVEN ON

Dave Raven of Metac Electronics chats about chips that answer back and discusses display developments.

Speech synthesis and voice recognition are techniques which are rapidly changing the interface between humans and their machines. Until now we have been content to read from a visual display or listen to prerecorded non-intelligent voices which merely pass on information.

Today, however, it is possible to incorporate a human voice which is not a recording and can appear intelligent by varying its responses to the inputs received from humans or data produced by a machine. If, in the past, a colleague was seen listening or talking to a car, calculator, microwave oven or television set, he would most likely be advised to visit a psychiatrist at the earliest opportunity. But now thanks to new devices and computer software technologies, behaviour such as this will become commonplace.

Speak \& Spell

The first consumer product which truly contains speech synthesis and which is on the market is Speak \& Spell, developed by Texas Instruments. Working with a pair of 128 -kilobyte read-only memories and a special version of Tl's TMS1000 8-bit microcomputer, the silicon chip can produce a total of 200 S of sound for a vocabulary of over 200 words. However, it is capable of accessing up to 2.1 megabytes of memory. Since the speech generator uses memory at a maximum rate of only 1200 bits per second, it could be designed to speak for as long as 30 minutes. The novelty value of Speak \& Spell does not wear off quickly as may be imagined and from the reactions of my own young children, it was a clear favourite over other electronic games they have been shown. The word games and spelling tests produced a new angle for creating an interest from children in learning and I also found it quite compulsive myself.

Prior to the breakthrough by Texas Instruments in speech synthesis, earlier products which have surfaced over the last decade have been quite cumbersome and certainly more expensive. Now, with rapid advances taking place in large scale integrated circuits - both analogue and digital - and developments in signal processing, it is realistic to expect a flood of new consumer and industrialised products entering the markets.

Vocal Chips

The techniques used to design speech synthesis circuits are split into three different methods - formant syrithesis, linear predictive coding and waveform digitisation with compression. Linear predictive coding is the technique chosen by Texas Instruments for their Speak \& Spell Game. The chips which are incorporated represent an integrated circuit model of the vocal tract. Basic to the model is the linear predictive coding technique (LPC) which provides feedback values or coefficients for a digital lattice filter on the synthesiser chip. This linear filter mimics the major resonant modes of the vocal cavity in the human vocal tract. A microprocessor then performs the calculations to derive the filter coefficients. The third chip is a word-storage read-only memory that holds the speech parts broken into four parameters - voicing, pitch, amplitude and frequency. From this information a complex software algorithm manipulates the sound parameters to create the speech synthesis.

Swings And Roundabouts

There are advantages and disadvantages with each of the three speech synthesis techniques mentioned here since they can vary considerably in the quality of speech provided, the amount of data required to achieve acceptable quality and the cost of memory for storing speech data. The technique that is normally chosen depends upon the application for which it is required.

Products using formant synthesis are currently being included in a number of hobbyist computers, among them the TRS80 home computer and PET, as well as in medical and business applications.

During recent years probably one of the most misunderstood pieces of consumer electronic technology has been the liquid crystal display. I well remember an article appearing in ETI which quoted some very out of date information on the life of liquid crystal displays (LCD), and for years after, I experienced worried customers quoting this article back to me about the unreliable life-time of the display.

Fig.1. A block diagram showing the elements of a speech synthesiser chip.

They were of course referring to displays which appeared back in history during the very early seventies and it has been my experience that the LCD is probably one of the most reliable display forms currently available. I stuck my neck out in 1976 in an article published in ETI predicting that LCD would win the day over LED, (Light Emitting Diode) remember, and I propounded the reliability of this technique back in those dark days. Well, they say that the good always win and there is little doubt that LCDs have stood the test of time.

Physical Contact

Recent advances in the synthesis (that word keeps appearing this month) of new liquid crystalline materials have made it possible to manufacture plastic sealed LCDs having very long operating lives. This new technique permits economical production of large area displays and at the same time improves the performance of multiplexed addressing. Thus, these new displays are capable of handling an ever-increasing amount of information in alphanumeric or quasi-analogue form. One of the major problems facing designers in their attempts to increase the amount of information which can be displayed, is how to make physical contact with each segment of the display. This is also a problem for chip designers who are restricted by the amount of space for lead-outs. One solution which is getting around this difficulty is by reducing the number of outside contacts to a display, especially when the display has more than 40 separately addressable segments. This can be achieved by means of a technique known as time-multiplexed addressing, in which appropriate segments are connected together to form a group and are sequentially addressed by means of a

Fig.2. The principle of time-multiplexed operation. The selection interval for each digit, $\mathbf{Z 1}$ to $\mathbf{Z N}$, is cyclically repeated at intervals of T . Only the driving signal for segment G is shown.
rear electrode consisting of several parts. Direct addressing of the LCD is presently employed in most watches and other measuring instruments which means there is a direct connection between each display element and a corresponding contact in the driving electronics, which is usually an integrated circuit. this addressing technique, whilst resulting in lots of connections, does have its advantages, since it affords much more freedom with respect to driving voltages and operating temperatures than do other addressing'systems. For a directly addressing display it is easy to increase the driving voltage to obtain a display which is readable over a wide range of viewing angles.

ETI

CALCULATORS.
scientiric

*TEXAS TI PROGRAMMER (Hexadecimal Oct) \quad ©46.50
(EXAS T151/iil (10 mem 32 Prog Steps Stat/Sci)
c28.50
TEXAS T 150 LCD (Sci/Stat. 2 Con Mems)
$£ 28.50$
$£ 23.00$
$\begin{array}{ll}\text { TEXAS } \\ \text { TEXAS T53 (Sci. } 32 \text { Prog Steps-Coa Mem }+80 \text { Prog List Applications book) } & \left.\begin{array}{c}\text { (} 17.00 \\ \\ \mathbf{E 2 5 . 0 0}\end{array}\right)\end{array}$

Make more of your
Toxas T158/68 Calculator
MATH/UTILITIES MODULE

If you write your own programs this library is for you! Most programs in this library are designed to be used either on their own or as subroutines of your programs. Applications range from utility programs such as printer formatting and large-scale plotting to advanced mathematical routines

Module includes:

Prompter. Alpha Mosenges. Printer Fomatting. Superplotter. Sorting. Date Arrayt. Data Packing. Prime Factors. Hyperbolic Functions. Gamma/ Factorial. Rendom Numbers. Normal Distribution. Interpolation. Roots of a nuction. Minimax. Romberg Integration. Differantial Equations. Discrete
Fourior Seris. Calculator Status. Variable Arithmetic. Module Chack.
*TEXAS T 158 with Maths / Utilities
*TEXAS T1 59 with Maths/Utilities
TEXAS T1 58 with Applied Statistics E90.00
ع 186.50
*TEXAS T159 with PC100C \& Applied Statistics $\quad \underset{~ £ 325.00}{ }$
*TEXAS T159 Calculator (complete as manufacturer's spec. master module. charger, etc). PLUS statistics module and extra set of 40 Blank Prog. Cards with wallet. etc.

ONLY $£ 180$

QUESTION?

1. Is your hobby home computing or electronics?
2. Do you understand the application of IC's, Transistors, Diodes, etc?
3. Have you used or applied analogue or digital techniques?
4. Are you applying TTL Logic to your home computer?
5. Are you programming your home computer using simple software techniques?

If the answer is YES to any of these questions then why not consider turning your hobby into a career - applying your knowledge to servicing electronic equipment ranging from basic terminals and data processing machines through to advanced micro-processor systems
We will train you through to advanced technology at the company training school, fitting the individual in at their own level.
We have vacancies over the whole of the U.K. especially in the London area, with the successful applicants working from home, usually in a radius of no more than 60-70 miles.
We supply all tools and test equipment, plus a company car which is available for private use.
If you are interested, then why not contact Mr. C. Marklew on 0249813771 to discuss your own career opportunities in confidence, or write to:

KODE SERVICES LIMITED
 Station Road, Calne, Wiltshire

HRUH Interlocking Touch Switch Systems

Have you ever made a quality project, for which you needed interlocking switches. but unsightly and electrically noisy mechanical switch?
You can now get an electronic switch touch-operated, with LE.D displays to indicate which channel has been selected, and incorporating totally reliable solid state relays to perform the switching.
There are three optuons avalable:2 channel. 4 channel, and 6 channel On each channel there are 2 sets of relay contacts acting in parallel. so that stereo signals may be switched - for example. when selecting between the tuner, deck. tape, or auxiliary inputs to an amplifier using the 4 channel unit
The units are supplied as easy to assemble kits, every kit containing -

* ALL the necessary components. including a high quality p.c.b. and IC sockets
* An atractive ready assembled front panel - comprising wipe clean stainless steel touch plates on a heat resistant white plastic base, which is pre-drilled for easy - LEDs above each switch plate to indicate which channel has been selected the brightness of these may be adjusted)
- Complete easy to follow assembly instructions
* Full technical information

Some of the special features are -

* Operation from a single supply rall, from 3 V .18 V
* It I IMPOSSIBLE to switch on

It is impossible to switch on more than one channel at a time - if more than one Switch plate is touched either none or only one channel will be selected

- EXTREMELY long life - far longer than that of mechanical switches
- The HAWKTM range are the ONLY interlocking touch switch systems that the home enthusiast can buy as complete systems
Please note, the solid state relays used are C.M.O.S. 4016 and the limits of these devices must be observed

Please send to M
at (address)
Number $\quad 2$ channel units@ @ 99 ea
Number $\quad 4$ channel units @ $£ 599$ ea P / P per
Number . . 6 channel units @ $£ 799$ ea
Total remittance enclosed order

Tolal remitance enclosed Cheque/P O No
OR Please send me the technical information only (enclose s a e)
\square tuck box

4A Harcourt Road, Rediand, Bristol BS6 7RG

Multi-function watch and stop-watch timer ONLY £20.95 (+ p\&p) with FREE Slimline 'Credit Card' Calculator (our usual price £7.95)

MITRAD CHRONO
Unique neckband/lapel/pocket watch and timer with large easy-to-read liquid crystol display 1. WATCH

Shows the time inhours, minutes and seconds. Press a button and it shows the day, date and month. 2. TIMER

Accurate to $1 / 100^{\text {th }}$ second stop-watch function. Shows elapsed time in hours, minutes, seconds and $1 / 100$ ths of seconds. Also records lap times in the middle of timing the overall event. Maximum capacity 24 hirs.
Overall dimensions of the timer are approximately. $3^{1 / 1 / \mathrm{e} \times 25 / \mathrm{x} \times{ }^{11 / 16} \operatorname{in}(79 \times 66 \times}$ 7 mm) so that it fits comfortably into the palm of the hand with the lap/reset and start/stop push buttons perfectly positioned tor operation by thumb and forefinger. In tough, impact resistant, black case.
GUARANTEED. MONEY BACK IF NOT DELIGHTED The Mitrad Chrono Quartz Timer is fully guaranteed for 1 year. And if you are not completely satisfied, iust send it back within 10 days and we'll refund your money. instructions for use included
SLIMLINE 'CREDIT CARD' CALCULATOF: with every Mirad Chrono duartz fimer TRADE DISCOUNT
Trade discount is available,for quantity orders of the Quartz Timer only Prices are:
5-10
11-15
16-50
£13.95
$£ 13.10$
£12.65

Prices are exclusive of VAT (15%) which should be added. Post and packing for all trade orders is $\mathfrak{L}^{1} 1.50$, which includes insurance. Please do not use the coupon for trade orders.

Please send me: QTY
Total value of my order E
I enclose my cheque/postal order
Or debit my Access Card No
SIGNATURE
NAME ($\mathrm{Mr} / \mathrm{Mrs} / \mathrm{Ms}$)
ADDRESS

DESIGNER'S NOTEBOOK

ETI project editor Ray Marston devotes this month's 'Notebook' to the rather unglamorous but vital subject of passive attenuators.

0ne of the most important types of artillery in the design engineer's armoury of 'vital weapons' is the apparently simple passive circuit known as the 'attenuator'. Naturally, these apparently simple weapons are full of nasty little surprises and have a tendency to explode in the face of the unwary designer. This month's 'Notebook' is devoted to a brief discussion of the subject.

Attenuators

Attenuators are used to reduce an awkward value input or output signal to a lower and more convenient level. The simplest example of a practical attenuator is the 'pot' circuit of Fig.1, which may be used as a volume control in an audio system or as an output level control in a simple audio generator, etc.

The input signal to the pot attenuator is connected across the total resistance chain and the output is taken from the pot slider. Note that the pot effectively comprises an upper (R1) and a lower (R2) resistive arm, thus forming a basic 'L'-type attenuator and that the degree of attenuation is determined by the ratio of lower arm resistance divided by the total resistance.

The precise amount of attenuation provided by a pot is generally of little importance and the control is usually left uncalibrated. If a precise amount of attenuation is required, a simple switched potential divider network of the type shown in Fig. 2 may be used. It is important to note, however, that this circuit is designed to feed into an infinite impedance, or at least one that is very large compared to the total resistance of the divider chain.

Fig. 1 A simple 'pot' attenuator, as used for a volume control or an urcalibrated output level control (left) is a common version of the 'L' attenuator (right).

Design Tips

The first step in designing an attenuator of the Fig. 2 type is to decide what its input impedance or total resistance is to be. Next, the values of the individual resistors are determined. Here the design is carried out in a simple sequence of logical steps, there being as many steps as there are attenuator switched positions. In each of these steps, the circuit is considered to consist of an upper and a lower half only. An example will help clarify matters.

Assume (as in our example) that the total resistance is to be 10 k and that two attenuation positions (excluding unity) are required and are $\div 10$ and $\div 100$. The values for the greatest amount of attenuation are always determined first, so for $\div 100$ the lowest arm must contain $1 / 100$ th of the total resistance, or 100 R . This gives the value for R 3 and leaves the remaining 9900R in the 'upper' ($R 1+R 2$) arm.

The values for the $\div 10$ position are next calculated and it is found that 1 k 0 is needed for the 'lower' arm. In this case, however, the 'lower' arm consists of R2 + R3, but as R3 is already known to be 100R, R2 must be $1 \mathrm{kO}-100 \mathrm{R}=900 \mathrm{R}$. The upper arm, R1, must obviously contain the remaining 9 k 0 of the 10 k chain.

This simple design procedure may be expanded up to give as many attenuator steps às are required for a particular application.

Fig. 2 The method of designing this simple switched attenuator is explained in the text.

It should be noted that the simple attenuator circuit of Fig. 2 is only accurate at low frequencies or when moderately low values of resistance are used. At high frequencies, stray capacitance will shunt the values of all resistors and may significantly reduce their values and thus the accuracy of the attenuator. This effect is particularly acute when high value resistors are used: a mere 2 pF of stray capacitance represents a reactance of about 800 k at 100 kHz and will have a very significant shunting effect on any resistor with a value greater than a few tens of kilohms.

Compensation

This problem can readily be overcome by shunting all resistors with correctly chosen values of capacitance, as shown in Fig. 3.

Here, each resistor of the chain is shunted with a fixed capacitor, the reactance values of capacitance being in the same ratios as the resistive arms of the attenuator. The highest reactance (smallest capacitance) is connected to the largest resistor and typically has a value in the range 15 to 50 pF , the value being large enough to 'swamp' strays but small enough to present an acceptably high impedance to input signals.

This 'compensated' type of attenuator is invariably used in 'scopes and various other types of high freqency test gear, as shown in the typical circuits of Figs. 4 and 5. Once again, note that the compensated attenuator is intended to feed into a high impedance load.

Fig. 3 A method of providing frequency compensation (to give a wide frequency response) to a simple attenuator network.

Pot Pitfalls

At this point in our discussion it may have dawned on you that, because of the effects of stray capacitance, there can be certain pitfalls in using pots in some types of circuit. Suppose, for example, that you have designed an audio amplifier with a beautifully flat frequency response but have, in a moment of madness, fitted it with a 500 k volume control. You will (hopefully) not be unduly surprised to consequently find that, at low volume settings, stray capacitance of a few picofarads across the upper arm of the pot causes the amplifiers treble response to be boosted by several dB at 12 kHz or so!

Again, suppose that you have disigned a superb LF sine/square generator which produces square waves with rise and fall times of a mere 50 nS or so, but have fitted the beast with a simple 10k pot as an output level control. Naturally, you will not be surprised to find that the few picofarads of strays across the upper arm of the pot acts as a reactance of only a couple of thousand ohms to your fast rise and fall time signals and consequently causes your square waves to appear incredibly 'spiky' at low amplitude settings.

Both of the above problems can be solved or minimised by using pots with sensible low resistance values, bearing in mind the effects of strays at the operating frequencies in question.

Fig. 4 Section of a typical 'scope ' \mathbf{Y} ' amplifier attenuator.

Matched-Resistance
 Attenuators

Often, an attenuator is needed to feed into and/or from a fixed load of some kind, in which case the simple potential divider types of circuit discussed above are of little use. Instead, one of the many versions of the so-called matchedresistance attenuator must be used. Two of the most popular attenuators of this type are shown in Fig.6, together with their basic design formulae. Note that these formulae are valid only when the attenuators are correctly terminated at each end.

The ' T '-type attenuator is a perfectly simple design and several sections can readily be cascaded to form variable attenuator networks, as shown in the practical circuit of Fig.7. Here, the attenuation can be varied from 0 dB to 60 dB in 20 dB steps by switching individual sections into or out-of the circuit.

The π attenuator sections cannot be directly cascaded, as is made clear in Fig.8. Nevertheless, sections can be cascaded in modified form to produce a laddered attenuator network, the most popular of all attenuator types.

Looking at Fig.8, you can see that if three individual π sections are wired in cascade (Fig.8a) their adjacent R2 sections cónnect in parallel to give an impedance of P/2 (Fig.8b) while the two R2 end sections have impedances of P. If an external load, RL, is simply switched to the different outputs of the cascaded π attenuator sections (Fig.8c) the load will clearly see impedances of roughly half of the correct value and so be severely mismatched. To put things right, the formula for the component values of the ladder network of Fig. 8 c are re-jigged as shown.

The ladder attenuator of Fig. 8 c is very widely used in AF and RF signal generators. Figure 9 shows the practical circuit of a fully variable 600R attenuator that can be used in sine/square generators, etc. The odd resistor values (correct within 2%) can be made up by wiring pairs of resistors in series or parallel.

Fig. 6 Two popular types of matched-resistance attenuator.

Fig. 7 Three identical 20 dB 600 R ' T ' attenuators cascaded to make a $0-60 \mathrm{~dB}$ switched attenuator unit.

Fig. 8 The ladder attenuator (c) is a development of the basic π attenuator (a and b).

Fig. 9 Practical 600R output attenuator network for a modern sinelsquare generator. RV1 gives fine control. SW2 gives coarse control.

HAND HELD GAMES

Supersonic Mastermind Galaxy Invader
Mattel Soccer
ENTERPRISE 4 in
3 Games and calculator in one "Electronic Mastermind U.F.O. Master Blaster Amaze-a. Football (two players) ZAP missile game - DIGITS (like Mastermind) $£ 21.00$ $£ 22.95$ $£ 21.50$ $£ 24.95$ £ 12.90 £24.95 £18.95 $£ 26.95$ $£ 24.95$
$£ 11.95$ £14.95
ALL GAMES HAVE SOUND EFFECTS EXCEPT
ATARI video
computer \qquad
SPACEINVADERS CART STAR CHESS TV Game DATABASE Prog T.V Game
NEW $£ 89.95$
NEW $£ 59.95$
CHESSMATE 8 Level NEW £59.95
CHESS CHALLENGER 7 £99.00
CHESS CHALLENGER $10 \quad £ 160.00$
VOICE CHALLENGER £219.00 CHECKER CHALLENGER $2 \quad £ 54.00$ ZODIAC Astrology Comouter $\mathbf{~} 90.00$
ZODIAC Astrology Computer
Snooze Alarm $£ 1490$
EL.MAC 5 MHz Scope RADAT 10 MHz Scope $£ 169.00$

The latest from the U.S.A
PINBALL WIZARD

* Still available \# Featured in Nov issue of E.T
Home TV Game - B/W Kit

Basic Kie £28.90
Contains everything except box and conBox \& Controls - $\mathbf{£ 6 . 5 0}$. Mains Adaptor E3.90
Play 7 games with 4 options on each
game 4ame
4-Pinball games 2-Basket. 1-Breakou1
Versatile car alarm kit
£18.90
See review in Hobby Electronics
CHROMACHIME 24 tune door chimes kit £10.75 Built £15.95 C.B. Aerials and Accessories

COMPUTERS - Home, Business etc.

PET 8K
PET 16 K
£458.85
£573.85
SORCERER 16K $\quad \mathbf{~} 573.85$
SORCERER $32 \mathrm{~K} \quad \mathbf{~} \quad \mathbf{5} 61.35$
SUPERBOARD II $4 \mathrm{~K} \quad \mathrm{f} 180.00$
Built 4 K
TRS80 Level 216 K
£226.85

	$£ 286.35$
Ris80 Level 216 K	$£ 409.40$

51/4" Floppy Drive

NASCOM 2 Kit $\quad \mathbf{£ 5 0 6 . 0 0}$ HEATH WH89 | |
| :---: |
| 1.805 .00 | HEATH WH 14 Printer Sotty Kit

Softy Built $£ 586.50$ £115.00 Intelligent EPROM Programmer Sharp Software PRINTE: : . .n-. . . DISCS : BOOKS
S.a.e. Enquiries. Please allow up to 21 days lor delivery. All prices inc. of VAT.

\section*{
 Build the Practical Electronics handheld DMM. This superb product offers professional precision with extended battery life. Five function operation (AC and DC VOLTS, AC and DC CURRENT, RESISTANCE) with ability to check diodes. 0.5" LCD display with 'Battery Low' warning. Auto-polarity, Auto-zero. Full protection against transients and overloads with ability to withstand mains on any range 0.5% basic DC accuracy and 15 different ranges. It measures AC/DC voltages from 0.1 mV to 500 V . AC/DC current from $0.1 \mu \mathrm{~A}$ to 2 A . Resistance from 0.1Ω to $2 \mathrm{M} \Omega$. 200 hour battery life.
 The Kit contains all parts needed to construct the multimeter plus assembly instructions, battery and test leads.
 We also offer a calibration service

 | | $£$ | $P \& P$ | VAT | TOTA |
| ---: | :---: | :---: | :---: | ---: |
| PE-DMM KIT | 32.95 | 1.00 | 5.09 | $\mathbf{3 9 . 0 4}$ |
| ICL 7106 | 8.95 | 0.50 | 1.42 | $\mathbf{1 0 . 8 7}$ |
| LCD DISPLAY | 7.95 | 0.50 | 1.27 | $\mathbf{9 . 7 2}$ |
| PCB | 4.95 | 0.50 | 0.82 | 6.27 |
| FULLY ASSEMBLED
 DMM (INC. LEADS) | 39.70 | 1.25 | 6.14 | $\mathbf{4 7 . 0 9}$ |
 To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.} ($£ 5.00+$ VAT) and a trouble-shooting and calibration service ($£ 7.50$ + VAT). Various other component parts are also available as listed The multimeter is also available fully assembled and calibrated at a cost of $£ 39.70+\mathrm{P} \& P+$ VAT

Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon,
Essex. Telephone No: Basildon (0268) 727383. Please send me Data \square fulLy assembled dmm (INC. LEADS) £47.09 \square PE—DMM KIT £39.04 \square ICL $7106 £ 10.87 \square$ LCD DISPLAY $£ 9.72 \square$ PCB $£ 6.27 \square$

Name
Address

```
                                    Tel. No.
```

l enclose cheque/P.O value

TECH TIPS

Car Radio Suppressor L. Marks, Lancs.

TThis circuit will suppress mains-borne interference every time the car drives over a buried power line. It may also be used for suppressing ignition HT by a modification to the following equation:

$$
\mathrm{fc}=\frac{1}{2 \pi \mathrm{R} 1 \quad \mathrm{C} 1}
$$

where R1 $=1 / 2 R 2, C 1=1 / 2 C 2$.
The circuit works as a band reject notch filter.

VLF Ramp Generator
 C. Malloy, Whitby.

It $_{\mathrm{t}}$ is always satisfying to exploit the otherwise unwanted property of a device - the reverse bias current of a leaky germanium diode, in this circuit. This reverse saturation current is typically a few microamps for the OA90 and is relatively constant over 2-10 V . This constant current is used to linearly charge the capacitor in the relaxation oscillator built around the 741 .

When the diode becomes forward biased the capacitor is rapidly discharged by the limited output current of the op-amp. Frequencies below 0.01 Hz are possible, though measures may have to be taken to improve the linearity of the ramp.

PR1 allows some degree of DC offset of the ramp and the source follower (Q1) reduces the loading on the capacitor which tends to degrade the ramp's linearity. For the same reason tantalum (ie low leakage) types should be used for large values of C3. Linearity can be further improved by the use of a FET input op-amp such as the 3140.

The frequency can be made variable by using the FET constant current generator shown in Fig. 2, which should replace the diode, D1. With RV1 at 100 k the current will be about 30 uA and roughly inversely proportional to RV1. This constant current generator needs a voltage of about 3 V to function well. This may require an increased power supply. However, the resulting linearity is excellent, especially with the suggested FET input op-amp.

Parametric Equaliser
 C.E. Read, Norwich

The parametric equaliser offers six bands of tone control separated by an octave in frequency, each frequency band being selected by the six position rotary switch.

Potentiometer RV1 permits the selected frequency band to be boosted or cut by 12 dB . The filter is particularly ideal for use with a guitar to modify and enhance the tonal qualities of the instrument.

For example, the 500 Hz setting with cut gives a hollow funky sound, whilst the 500 Hz setting with boost gives an overdriven valve amplifier, the raunchy sound favoured by many rock guitarists, but without the unpleasant muddy, harsh should resulting from boosting the entire audio frequency spectrum.

FREQ (Hz)		C2 (pF)	C3 (pF)
a	125	47000	4700
b	250	22000	2200
c	500	12000	1200
d	$1 k$	5600	560
e	$2 k$	2700	270
f	$4 k$	1500	150

Ni-Cad Charger
 J. Grainger, Rugby

This circuit makes use of the new constant current LEDs which are now available for about 50 p (Radio spares). These devices pass a constant current of about 15 mA for applied voltages in the range $2-18 \mathrm{~V}$ and will also block up to 18 V peak in the reverse direction. Furthemore, they may be parallelled directly to give any multiple of 15 mA and, of course, they light up to give an indication that they are working.

The circuit shown will charge a single cell at 15,30 or 45 mA , or cells in series up to the supply voltage limit (about 14 V). If it is desired to charge cells at less than 15 mA , several cells may be parallelled using suitable sharing resistors, which should drop about 10 V at the cell current. The LEDs will be damaged if the peak voltage of the supplyexceeds $18 \mathrm{~V}(13$ VRMS).

PCBsFrom Film
 I. Parker, Bath.

There is no doubt that the most professional method to produce printed circuit artwork is by the photographic method. Unfortunately this involves the use of expensive cameras and complex enlarging systems.

However, the amateur can use this simple cheap method that produces equally good results.

Take the printed circuit artwork (from the back of ETI) to a commercial
printers and ask them to make an overhead transparency copy of it. This looks like an ordinary photocopy but instead of being printed onto paper the image appears on transparent film. Lay this on top of a piece of presensitised PCB (obtainable from most electronic retailers), use bulldog clips or adhesive tape to make sure of good contact. Then expose to sunlight for about half an hour, spray the board with the developer (following instructions carefully) and then etch the board in a normal solution of Ferric Chloride.

Burglar Alarm
 P.N. Durrant, Chester.

The original circuit was developed as a car burglar alarm, but it could be used as a digital combination lock or, with slight modifications removing counter 2 - a home burglar alarm.

A suitable 4 or 5 digit code is selected and, via a BCD switch wired to the appropriate latches of the 74118. Unused numbers commoned to the reset latch. Switch common is earthed through a pushbutton. Each is selected and entered by pressing the "enter" button. An incorrect number resets the latch. If the code is right then the unit is all reset and the relay is pulled in. The alarm is now disarmed.

If the code latch is reset a " 0 " appears at point A, counter 1 starts to count until it reaches eight, which sets the first RS latch, arming the
detectorlatch.
A digital " 0 " from the detector switches resets the latch and starts counter 2 , which allows a set time to elapse before RLA drops out and the alarm sounds.

Since originally designed for cars without external reset, the final delay was included to allow the owner to enter and reset before the alarm was activated. Therefore the oscillator is set to the fastest time the code can be set.

To arm the unit a noncode number is set in. This leaves enough time to leave the car before the unit is armed. I used an illuminated pushbutton and connected it to show when the counter had reached its reset point. This also has the advantage of showing the thief that your system is all go.

The power supply must be quite heavily smoothed as the unit was found to be quite sensitive to the noise found in car electrics. The coding switch was a thumbwheel type, since it fitted the holes already in the vehicle it was designed to be used in. A touch type keyboard could be substituted, but an enter button must also be fitted.

The whole unit can be built using CMOS, especially if it is required to run from a separate supply from the main battery. The relay is a reed type holding in a larger multicontact relay with its many enabling and disabling uses in a car. it will also operate many anti-theft devices in the home. A slow code input and 5 S clock acts as a reaction timer, which could be embarrassing after a "liquid lunch".

HOME

Steam train and whistle (80019). Simulates the sound on steam and whistle £6.50 light comes Elekdoorbell (79095). Program your own signature
Touch dimmer (78065). Room lighting contra single touch
Simple sound after (9925)
Simple sound effects (79077)
Ultrasonic transmitter (audio) (79510)
Ultrasonic receiver (audio) (79511)
DJ killer (79505)
Quiz master (79033)
Variable fuzz-box (9984)
Ioniser (9823). Produces a hin $\quad \underset{\mathbf{E 6 . 5}}{\mathbf{~}}$
negative ions
Oscillographics (9979) Random displays patterns on
your oscilloscope 11.25

Cackling egg timer (9985) Times your egg, then Pols forester (7
cols forecaster (79053). Weighs up the odds and
could win you a fortune
loudspeaking telephone amplifier (9987). Amplifies
signal without direct connection $£ 11.50$
Sensitive lightmeter (9886). Light measurement using silicon photodiode 12.55
Nicad charger (79024). Automatically prevents over
charge of cells
15.20
proximity detector (9974). Detects movement in a
room (electric field change) $£ 9.80$
Central alarm (9950). Master station slave station
$£ 10.85$
$£ 3.10$
Alarm unit $\mathbb{E 3 . 1 0}$
ouch tuning FM preselectunit (7951 With $£ 17.50$
display
$£ 17.50$
speech (80052). Deliberate electronic distortion of 2206 £9.60
Colour generator (80027). Using coloured light for an
$\mathbf{£ 1 9 . 7 0}$
pools predictor (79053)
ER. 15

HIGH FREQUENCIES

Aerial amplifier (80022) Improves the sensitivity of
an existing receiver specify VHF/ UHF $\mathbf{6 5 . 4 5}$ an existing receiver specify VHF/ UHF $C 5.45$
tier for TV signals \quad £6.25 Mini shortwave receiver (9920). Interesting introduc-
ton to SW radio
$\mathbf{E 6 . 9 5}$ ton to SW radio FM IF strip (78087). Using the CA 3189 limiter demodulator IC £ 13.05 Stereo decoder (79082) Compatible with the FM IF strip. E15.10
Digital tuning scale (80021) A sophisticated digital
ohm ency
hm aerial $(800761+2)$. A practical shortwave
aerial for 18.80 MHz
$\mathbf{E 1 0 . 3 0}$

Chorosynth (80060). A cheap mini-synthesizer Elector vocoder (80060). The first vocoder designed to be built from a kit with excellent features. It has E162.50 Front panels for vocoder per channel £1.25 Analog reverberation unit (9973). Kit with 1 SAD Piano. Excellent kit of an electronic piano with three voices. Master tone oscillator/generator $\mathbf{£ 3 7 . 0 0}$ Octave PCB (99 14)
Filter PCB (998 1) Power supply (9979)
Digital reverberation unit main board Extension boards

NEW - NEW

Battery protection (80109). Forgetting to turn off the headlights need no longer be a motorist's nightmare. This project is designed to monitor the call in all kinds of motor vehicles $\quad \mathbf{£ 5 . 1 5}$

* Tramsistorignition (80084). A system which combines the most significant advantages of other systems including the conventional systern
£20.45
- Intelligent wiper dooley (80086). This wiper delay only needs to be told once what is required of it. It will then carry out your orders until you change them, which you can at any time,
- Active car aerial ($80018-1+2$). If there is one place to use a good aerial it is in a car $£ 13.85$
- Stop thief! (80097). There are all sorts of systems for protecting cars, but this one is unusual: it is deception, rather than protection ... £4.20
* Battery voltage indicator (80101). Only a few components are needed to obtain an optional indication of the battery condition: a single lamp that changes colour as the battery goes into the danger area

Pest Pester (80130). An electronic insect repellent. Confuses mosquito with high pitch tone
$\mathbf{£ 2 . 3 5}$

* Morse Trainer (80072). Can be preset to generate the morse alphabet for tuition purposes. Morse key required
£11.00

Luxury Transistor Tester (80077). Not only checks that the device is functional but displays HFE group

NEW CATALOGUE

Send 40 p for our new catalogue giving details of our project packs and component range

Buying one of our PROJECT PACKS will save you the frustration of tracking down those evasive components that hold up the completion of your project. components listed in the article together with sockets and solder. Cases, knobs, etc., can be supplied as extra items if required. Ask for more information

MEASURING display (supplied whitsawtooth outputsV scope basic version (9968 1/5) Produces displayup to 1 KHz on TVbasic scope to 100 KHz bandwidth £48.25Digifarad (79088). A digital capacitance meter withGate dipper (79514). Checks the resonant frequency

Equaliser (9832). Single channel audio equal depots E13.65 with preset pots \quad £13.95
meter with LED £13.00 CAM 180 LED mar to give stereo audio display uminant 9949 + $2+3$) A novel iED $\mathbf{E 1 3 . 0 0}$. . £20.70 metric equaliser (9897) $£ 6.45$ ne control section (9897.2) pinpoint the (9932). An analyser which chain pinpoint the de 4.80 Preconsonant (9954). A high-performance amplifier

Consonant (9945). A complete audio control bream plifier 80031) Mini preamplifier for Topamp or any other Hi-Fi poweramp $\mathbf{E 3 4 . 3 0}$ Damp (80023). Hybrid audio power amplier wi with OM 961 (output 60 watt) £33.40 Stentor (79070). A portable amplifier ideally suited Assistentor (79071) A preamp for use with Stentor

Elektornado (9874) A 2×50 watt or single Electret microphone preamp (9866). Compact design that fits into the mike \ldots.

TRONICS ITD Fitzroy House Market Place, Swafham, Norfolk, PE $37 \mathbf{7 0 H}$. All our prices packing

Office hours: Monday-Friday, 9 atm. to 5 pom
Telephone Swaffham $(0760) 21627$. Telex 817912

AT BLINKIN' LAST! COLOURBOARD II
 THE NEW 50HZ COLOUR VERSION OF OHIO SCIENTIFIC'S SUPER

 BOARD II IS HERE AND LIKEA TON OF BRICKS DOWN CRASHES THE PRICE OF STANDARD SUPERBOARD II.
Mantri:

50HZ UK BLACK AND WHITE SUPER-
£159.95 + 15% VAT POST FREE COLOURBOARD II £205 + $\mathbf{1 5} \%$ VAT

THE UNIQUE SPECIAL OFFER YOU CAN'T RESIST

\star If bought with superboard or colout * prites shown first Also sold seperaeely
 ($£ 11$). 4 K extra ram $£ 20$ ($£ 244$. Case
 * £399 ($£ 399$). Colour conversion board for Superboard 11 E45 (E45).
 WE CAN CONVERT YOUR SUPERBOARD TO COLOURBOARD, SEND

PFM200 £51.95, case £2.07, adaptor £4.20, conE6.88. PDM 35 £34.23, mains adaptor $£ 4.20$, case £2.07. DM350 £76.70, DM450 £102.17. DM 235 855.55. Accessories tor all 3 models. - rechargeable batteries $\mathbf{\text { £7.99, mains adaptor / charger }}$ £4.20. case
c8.90. Enterprise prog calculator $£ 10.95$. New SC 110 10 MHz oscilloscope f144.95. TG 105 pulse generator

New Sensory Chess Chalienger 8 \&108. Chess chal. Conger 7 (illustrated) $£ 75$. Chess champion $6 £ 49.05$.
Cherker chailenger $2 \mathbf{~} 39$. Star Chess $£ 62$. Grandstand Checker chailenger $2 \mathrm{E39}$. Star Chess $£ 82$. Grandstand uideo entertainment computer $£ 79.98$, Videocar
$£ 12.60$. Phillips $\mathrm{G7} 7000$ Video Dak home comput $€ 139$. Video paks $£ 12.95$. Atern Videocomputer $£ 129$ Cartridges $\mathrm{E14.85}$ (except chess $\mathrm{E43.95}$ and back-

MAINS TRANSFORMERS
$6-0.6 \mathrm{~V} 100 \mathrm{ma}$ 80p, $1 / 2 \mathrm{a}$ £2.60. $9.0 \cdot 9 \mathrm{~V} 75 \mathrm{ma}$
$80 \mathrm{p}, 1 \mathrm{a} £ 2.40,2 \mathrm{a} £ 3.94 .12 .0 .12 \mathrm{v} 100 \mathrm{ma} 99 \mathrm{p}$, 1a £2.90. 15-0.15V ia $\mathbf{f 3}$. 15
JC12 and JC20 AMPLIFIERS Integrated circut audio amplifier chips with data
and printed circuits JC12 6 watts $£ 2.08$. JC20

CONTINENTAL SPECIALITIES

PRODUCTS

EXP 300 £6.61. Exp $350 € 3.62$. EXP325 £1.84

STABILIZED POWER KITS
The firsil price is for kit without
bracketed price includes uransformer TTI computer supplies $5 \mathrm{~V} 2 \mathrm{~A} £ 3.13(£ 7.44), 5 \mathrm{~V} 4 \mathrm{~A}$ $£ 5.12(£ 12.60)$. 8 wway types $3 / 41 / 2 / 6 / 71 / / 9 / 9 /$
$12615 / 18 V 100$ ma $£ 1.84$ ($\mathbf{~} 2.60$), $1 \mathrm{~A} \mathbf{£ 3 . 3 0}$ (£6.50), 2 A EE. 60 ($£ 9.84$). Varrable voltage
models 2.18 V 100 ma (1.84 (£2.60) $1-30 \mathrm{~V}$ IA

PRINTED CIRCUIT MATERIALS
PC eiching kits - economy $\mathbf{2 . 4 2}$, standard f4.76. 40 sq ins pcb 45 p . 1 ib FeCi f 1.50 . Eten ressst pens - economy 50p. dalo 84p. Drill bits $1 / 32^{\prime \prime}$ or 1 mm 34p. Etching dish 92p. Laminat
cutrer $£ 1.20$.

BI-PAK AUDIO MDOULES
AL30A $£ 4.53$.
PA12 $£ 9.31$.
PA 12 £9.31.
PS 12 E1.75.
TS

$1538 £ 2.70$.
$\mathbf{S} 450$

\$450 $£ 27.90$.
AL60 E5.62.
PA 100 E19.24.
SPM 80 E5.26.
SPM80 $£ 5.26$.
BMT80 $£ 6.06$.
Stereo 30

2114

COMPDNENTS

N4148 0.9p. 1N4002 3.1p. 72314 dil 33p. NE555 8 dit 24p. 7418 dit 18 p. bc 547 be549. oc182. be184. be212. be214, be548 5.5p. (ip31c, top 32 c 36 p . tip 49 c 40 p . bd 13227 p . pastic oquN bcy^{72}. 4.5 p . fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$
cartride $15.25,55.2,3$. 5 mp quickblow 2p. resistors $5 \% 1 / 4 \mathrm{WEE} 12$ 10R to 10 M 1 p , $0 . \mathrm{Sp}$ or $50+$ of one value. polyester capacitors 160 V
015 . 068 mf 2.6 p . 1 mf 4.0 p . 01 mf 3.0 p . 022 . 033 mf
4.3 .3 p . $047 \mathrm{mf} 4.0 \mathrm{p}, .15$. 47 mf . 6.0 mi
47
 capacitors $50 \mathrm{~V} E 6 \quad 22 \mathrm{pt}$ to 47 n 2 p . electrolytic
capactions 50 V
5 1.1 .2 mf 6 p .25 V . 10 mf 6 p . capacitors $50 \mathrm{~V} 5.1 .2 \mathrm{mf} 6 \mathrm{p} .25 \mathrm{~V} \mathrm{5}, 10 \mathrm{mf} 6 \mathrm{p}$,
$16 \mathrm{~V} 22.33 \mathrm{mf} 6 \mathrm{p}, 47.68 \mathrm{mf} 3.5 \mathrm{p}, 100 \mathrm{mf} 7 \mathrm{p}$, 330. $470 \mathrm{mf} 9 \mathrm{p}, 1000 \mathrm{mf} 11 \mathrm{p}$. zeners 400 mw E24 $2 V 7$ to $33 V 7 \mathrm{p}$. preset pots subminiature
01 W horiz or vert 100 to 4 M 77 p . poten. nometers $1 / 2 W 4 K 7$ to $2 \mathrm{M} 2 \log$ or lin single 29 p .
dual 71 p . $\mathrm{K}^{\prime \prime}$ red LEDS 9.7 p . 8.7p, 14 dil 10.1p, 16 ktl 12 p .

BATTERY ELIMINATORS

 71/2/9/12V800ma $\mathbf{~} 2.76$.

BATTERY ELIMINATOR KITS

 $11 / V$ E1 49 types with press-stud connectors S1. $£ 1.49,6 \mathrm{~V}$ £1.49, 9 V £1.49, $41 / 2+41 / 2 \mathrm{~V}$ $71 / 2 \mathrm{~V} 100 \mathrm{ma}$ with din plug $£ 1.49$. heavy duty 3 way types $41 / 2 / 6 \cdot 7 / 81 / 2 / 11 / 13 / 14 / 17 /$ convertor input 12 V de output $6 / 7 \% / \% / 9 \mathrm{~V}$ iA stabilized $£ 1,35$.EX-STOCK FROM US
J.V.G. BELT DRIVEN WITH STEREO MAGNETIC AUDIO TECHNICA CARTRIDGE

LIST PRICE OVER £50
J.V.C. Turntable supplied complete with Audio Technica AT10 stereo magnetic cartridge

Belt driven
-S' shaped tone arm
Modern design
Full size $12^{\prime \prime}$ platter
(alibrated counter balance weight ($0-3 \mathrm{grms}$).
Antr-skate (bias) device

AT ONLY
LIMITED
STOCKS \&25.99
PLUS VAT £3.89 FOSt $\{250$

GEC $\underset{\text { QUALITY }}{\text { HIIH }}$ STEREO

$10+10$ watt AMPLIFIER WITH AM/FM STEREO TUNER IDEAL FOR THE HOME
A cancelled export order brings you this offer from the worldfamous firm of G.E.C.
AM/FM stereo Tuner Amplifier
Ready builh. Comprising of a luner /pre-amp. board and separate power supply/power amp. board wilh wiring diagram.
Rotary Controis: Tuning. on/ot volume. balance. Ireble. bass. Slereo 8eacon indicalor.
Push-button Controls. Meno. Tape. Disc. A.F.C..

Power Output: 7 walts hMS per channel al belter Power Output: 7 watts RMS per channel. al befter than 2 e tho inlo 8 ohms. 10 walls speech and music.
requency Response: $6 \mathrm{OHz}-20 \mathrm{KHz}$ wilhin ± 308 ape Sensitivity: Dutpul
300 my for raled oupput.
Disc Sensitivity: 100 mv (ceramic cartridge) Radio: FM [WHF| 87.5 MHz -108MHz. long Wave $145 \mathrm{KHz} \cdot 2655 \mathrm{KHz}$ Medium Wave $520 \mathrm{KHz}-1620 \mathrm{KHz}$ Short Wave $5.8 \mathrm{KHz} \cdot 16 \mathrm{MHz}$. Size: Tuner -2^{\prime}, in. x 15in. $x 7^{\prime}$, in. Power Amp -2 in.
on/off balance. treble, bass, mono tape phono afc fm lw mw sw tuning. valume
Fully Guaranteed Ex-Stock

Limited stocks Superb Value Don't delay order one today
$5+5$ Watt Car Stereo Amplifier made for Motorola

* WTTH pre-amplifier and M. \& Long wave assombly. * Supplied as twa built and lasted units. * P.F. and I.F. stereo preamplifier and radio $4 \times 2 \times 1$ ". * $5+5$ whtt sierse amplifier $12 / 14$ voll $4 \times 2 \times 1$ " * Compfete with circuit. data and connection diagrams. * Limited quanlity availabla, ex-slock.	

| BRAND NEW
 Only E5 + VAT
 + YAT
 Posi 50p |
| :---: | :---: | :---: |
| MOTOROLA |

ONLY
$£ 19.95$

- VAT 1299 + VAT E 299
CARRIAGE $\{250$

CAR STEREO CASSETTE MECHANISM

* Front loading 12 volt transistorised
* Speed \& Voltage control
* Ex-equipment - Tested O K
* Takes standard C60 cassette
onlr£7.50
INC VAT
POST 80%

HENRYS

404 Edgware Road, London W2, England I.E.D.

PRD M25 Professional capacitor boom-arm microphone by Eagie.

VOCODER

Change sex or orchestrate yourself (same thing, really) with the ETI Vocoder, designed by Richard Becker of Powertran.

Avocoder could be simply defined as a device which will, in real time, superimpose the spectral characteristics of one signal upon another. To leave it at that, however, would result in many a yawn and a few skipped pages. In fact vocoders are anything but boring! Put speech and the output of an instrument into a vocoder and the instrument, not the operator, appears to be doing the talking or singing! Use the internal excitation oscillators, change the frequency and the speaker suddenly changes sex. Use the noise generator and there is whispering in the breeze. Use the output of a cassette deck and the London Symphony Orchestra recites the Karma Sutra! Just a few of the possibilities!

Human speech is built up from two basic components - the sound from the vocal chords which buzz when air is passed over them and the sound of air rushing past the teeth. These sounds are used to produce voiced and unvoiced speech respectively. By opening and closing the mouth and the nasal cavity, and by moving the tongue, thereby adjusting the resonances, the basic sounds are modified in amplitude and harmonic content. If the variations in amplitude and harmonic content can be analysed and applied to suitable electronic control circuitry then the basic sounds of speech can be substituted for by almost anything and this is just what a vocoder does.

The first part of a vocoder is a spectrum analyser producing control signals which are a measure of the strength of the speech signal in each of the frequency bands (14 in this design). The substitution (excitation) signal is also split into a number of frequency bands (using identical filters to those used for analysis) and each of these signals is passed through a voltage controlled amplifier whose gain is determined by the control signals. The sum of the outputs of these amplifiers is the vocoder output.

The system

The speech signal, after passing through the preamplifier and tone control stages, is separated into 14 bands by bandpass filters, a low pass filter and a high pass filter. The bandpass filters are double tuned that is to say each of the two stages has a slightly different resonant frequency. The effect of this is to broaden the band of accepted frequencies and give the response curve a flattened top. A high Q makes the filters cut off rapidly out of the pass bands.

The envelope followers consist of an active full wave rectifier and a low pass filter, the output of which is the control signal for the synthesiser section. The control signal passes through a sample and hold stage which is used to freeze the music, by means of a footswitch, at any required point of articulation. The stage is also used for slewing rate control which smooths out the control signals for slower and smoother changes in spectral balance and amplitude resulting in speech being changed into singing or chanting

Holy Responses

In the synthesis section there is a filter bank identical to that of the analysis section. Voltage controlled amplifiers modulate the outputs of these with the control signals from the analysis section. The outputs are then summed to produce the output signal. Alternate channel outputs are inverted since there is a change in phase as a signal is swept throughthe resonant frequency of the filter. Therefore, at the midpoint between adjacent bands phase cancellation will occur producing deep holes in the overall frequency response. By having adjacent channels outputs inverted with respect to each other there is addition instead of subtraction at the midpoints.

The analysis/synthesis board occupies the front half of the case. All the potentiometers are PCB mounting for ease of construction. The Power Supply Unit (to be described next month) is a respectable distance away, mounted on the rear panel.

SPECIFICATION

14 channel: Filters - 4 th order with bandpass filters at $1 / 3$ octave spacing.
LED Bar Display PPMs for both speech and excitation.
Speech input: amplifier:
mic input: sensitivity $1 \mathbf{m V}$
mic input: impedance 100 k
line input: sensitivity $\mathbf{5 0 0} \mathrm{mV}$
line input: impedance 10k
tone control: $土 6 \mathrm{~dB}$ Treble boost - Bass cut/Bass Boost - Treble cut.
excitation input amplifier:
low input: sensitivity 10 mV
low input: impedance 100k
high input: sensitivity $\mathbf{5 0 0} \mathbf{m V}$
high input: impedance 10 k
tone control: $\pm 6 \mathrm{~dB}$ Treble boost-B ass cut/Bass boost-Treble cut

Internal excitation:
pseudo-random counter noise generator
2 oscillators - range: $15 \mathrm{~Hz}-250 \mathrm{~Hz}$
pulse width: fully variable
Slew rate control: 100:1 range. FREEZE by footswitch
Voice/unvoiced detector:
AGC on noise generator to follow excitation signal

Output amplifier:
mixing controls for vocoder, speech bypass and external excitation bypass
Output level: 1 V

The internal excitation board.

Details of the smaller boards devoted to slew rate control (left), input amplifier (middle) and output amplifier (right) will be given in the concluding part of the Vocoder project next month.

Fig.2. Component overlay of the internal excitation board.

PARTS LIST

RESISTORS - ALL 2\% METAL OXIDE		CAPACITORS	
		C1,3	100n polyester
R 1,9,29,34,40,44,45,50	10k	C2,4	10 n ceramic
R2,10	5 k 6	C5	220p ceramic
R3,11	18k	C6	33n polyester
R4,12	560R	C7	100p ceramic
R 5,13	11k	C8	10n polyester
R6,8,16,18,35,39,43	47k	C9	10u 16V tantalum
R7,15	150k	C10	100n polycarbonate
R14,30,42	1M	C11	220 n polycarbonate
R17	100k	C12	1 u 0 polycarbonate
R19	15k		
R20,24,25,26,27,28	4k7	SEMICONDUCTORS	
R21,32	22k	IC1,2,7,10,11	1458
R22	330k	IC3,8	TL082 or LF353
R23	27k	IC4	741
R31	3k9	IC5	4006
R33,38	470k	IC6	4030
R36,37,46	1k5	IC9	CA3080
R 41, 47,48	1k	IC12	4016
R49	3k3	Q1,3	BC182L
		Q2,4	BC212L
		ZD1,2	5 V 1 Zener
POTENTIOMETERS		D1-D6	1N4148
RV1,2,5,7	10k logarithmic	LED 1	TIL209
RV3,4,6	10k logarithmic		
PR1,2 PR3	100k preset	MISCELLANEOUS	
PR4,5	2k2 preset	switch.	

Fig.3. Circuit diagram of the internal excitation network.

Raising the analysis/synthesis board reveals the smaller boards From left:- speech input amplifier, internal excitation, external excitation amplifier, output amplifier. Most pots are held firmly on their PCBs by pot mounting frames.

HOW IT WORKS

IC1, 2 form a pair of relaxation oscillators. IC2 is an integrator driven by the output of IC1. C1 is charged until it reaches about one third of the supply line voltage when the Schmidt trigger (IC1) changes state and C1 starts discharging until it reaches about one third of the supply line voltage in the opposite direction, making IC1 change state again. The output of IC2 is a triangular waveform which is compared with an adjustable DC voltage by IC 3 to produce a pulse output of adjustable mark/space ratio. The outputs of the two oscillators are mixed with the external excitation and the noise by IC4.

The noise generator is a pseudo-random counter. IC5a,b form an oscillator operator at about 40 kHz . This clocks IC6, which is an 18 stage shift register with feedback applied round it via IC 5c, d and Q1. The output of IC5c is a complex pulse train, which, when filtered by C8, R19, C6 has the characteristics of random noise with a very even frequency response.

The key part of the voiced/unvoiced detector is the comparator IC11a, which compares the levels of the speech components over 4 kHz with those below 2 kHz . It is not necessary to use separate filters for this purpose as the control signals at the outputs of IC3 of the analysis section contain the necessary information and these are summed by IC10a, b before comparison. When voiced speech is present IC11a goes low, Q3 turns off, its collector goes high and the analogue switch IC12b is opened allowing the output of IC4 to pass to the synthesis section. To match the noise level to that of the excitation from IC4 there is AGC. IC7a is a full wave rectifier peak detector which is buffered by IC8a. IC 8b and Q2 are a voltage to current converter to provide a control current for the OTA IC9 through which the noise is passed.

Fig.4.(below) Filter frequency response curves.

For external excitation, there is a pre-amplifier and tone control circuit similar to that used for speech. The output of this stage is mixed with the two oscillators (which generate pulses of variable width and frequency) and also with the output of the noise generator. The noise also passes through an ACC circuit to match its level to the excitation signals. This noise is then used to substitute for the other excitation signals by the voiced/unvoiced detector electronic switch when unvoiced speech is detected by the comparator which determines whether the majority of the energy in the speech is at low frequencies (2 kHz - voiced) or at high frequencies (4 kHz - unvoiced).

BUYLINES

Powertran Electronics, Portway Industrial Estate, Andover, Hampshire, are supplying a complete kit of parts for this project at $£ 195.00$ plus 15% VAT. Delivery by Securicor is $£ 2.50$ extra. Everything is included in the kit down to the last nut and bolt. They even give you a 'Freeze' footswitch and a test oscillator for setting it up!

Next month we conclude the Vocoder project with constructional details of the remaining boards and power supply, with notes on setting up and use.

HOW IT WORKS

IC1 in channels 2.13 is the analysis bandpass active filter. PR1 adjusts the first section in relation to the second. When correctly set up there is an overall voltage gain of 10 . In channels 1,14 IC 1 is a low pass filter and a high pass filter respectively. IC2 rectifies the signal to demodulate it to convert it into a control signal for the VCA. IC 3 is an active low pass filter with a cut off frequency of 200 Hz or one fifth of the frequency of the bandpass filter, whichever is the higher.

R14 takes the output of IC3 out for analysis by the voiced/unvoiced detector. IC4 is the slewing rate controller, Q1 and R 15 acting as a variable resistor which, in conjunction with C 7 , forms an RC network adjustihe slewing rate controller, Q1 and R15 acting as a variable resistor, which, in conjunction with C 7 , forms an RC network adjusting the slewing rate of the stage. Being a FET Q1 could, on its own, be used as a variable resistor by simply varying the Vas, but there are 14 of them to control simultaneously and without careful selection they would not track together. To deal with this Q1 is used instead as a switch which is turned on and off by a 1 kHz pulse signal of variable width. C 7 is then charged and discharged at a rate dependent on the duty cycle of the pulse
signal and R15. During the ON period Vas is maintained at O by the feedback via R17.

IC5 and Q2 form a voltage to current converter, the gain of which is set by PR2 to compensate for variations in gain in IC6. For correct operation IC 5's input must never go negative. To ensure that it doesn't, a bias voltage is applied via R15. This voltage together with the combined offiset voltages of IC $1-5$ is nulled out by PR 3.

IC6 is an OTA (operational transconductance amplifier), which could have been our old friend the CA3080, but a better device, the LM13600 is now available. It achieves very low distortion by having linearising diodes at the input. Bias current for these is supplied by R28. The gain is controlled by the current supplied to pin 1 . The output of the OTA is taken to a volume control RV1 from where it goes back into IC6 to a buifer stage before being taken out via C12 and R30 to a virtual earth mixer. C12 and R30 serve as a high pass filter to remove breakthrough of the control signal. The excitation or music signal is applied to the OTA via IC 7 which is a filter identical to that of IC1.

CHAN	PR 1,5	R1,21	R2,22	R3,23	R4,24	R5,25	R6,26	R7	R12,13	C1,3,8,10	C2,4,9,11	C12	IC1,7
1	-	10k	10k	2k0	220R	10k	10k	4k7	68k	47n	150 n	220n	TL082/LF353
2	2k2	2k0	82k	24k	910R	110k	110k	4k7	47k	68 n	68n	47n	1458
3	1k0	6k2	180k	47k	560R	220k	220k	4k7	30k	39n	39n	33n	1458
4	1k0	6k2	180k	47k	430R	220k	220k	4k7	24k	$33 n$	$33 n$	27n	1458
5	1k0	6k2	180k	47k	430R	220k	220k	3k6	18k	27n	$27 n$	22n	1458
6	1k0	6k2	180k	47k	430R	220k	220k	3k0	15k	22n	22n	18 n	1458
7	1k0	6k2	180k	47k	560R	220k	220k	2k4	12k	15n	15n	$15 n$	1458
8	1k0	6k2	180k	47k	560R	220k	220k	1k8	12k	12n	12 n	12 n	1458
9	1k0	6k2	180k	47k	510R	220k	220k	1 k 5	12k	10n	10 n	10 n	1458
10	1k0	6k2	180k	47k	470R	220k	WIRELINK	1k2	12k	8 n 2	8 n 2	8 n 2	TL082/LF353
11	1k0	6k2	180k	47k	430 R	220k	WIRELINK	1k2	12k	6 n 8	6 n 8	6 n 8	TL082/LF353
12	1k0	6k2	180k	47k	560R	220k	WIRELINK	1k2	12k	4 n 7	$4 \mathrm{n7}$	4 n 7	TL082/LF353
13	2k2	2k0	82k	24k	1k1	110k	110k	1k2	12k	3 n 3	3 n 3	$4 \mathrm{n7}$	1458
14	-	13k	43k	2k0	220R	43k	13k	1k2	12k	1 nO	1 no	$4 n 7$	1458

Table 1. Component values for the 14 channels of the analysis/synthesis section.

Fig.5a(above). Circuit diagram of analysis/synthesis section.

Fig.5b. In channel 1 band pass filters are replaced by the low pass filters shown above.

Fig.5c. In channel 14 band pass filters are replaced by the high pass filters above.

Fig.6. Component overlay of the analysis/synthesis section. We haven't shown the whole board, as the channels are very similar. The three parts of the board (above) show channels 1,2 and 14 and the power connections in the middle.

PARTS LIST

PARTS COMMON TO ALL CHANNELS	POTENTIOMETERS		D1.4 1N4148
	RV1	100k logarthmic	Q1 8F233C
	PR1,5	see Table 1	Q2 8C212L
	PR2	22k preset	*only $1 / 2$ of IC used in each channel
RESISTORS ALL 2% METAL OXIDE	PR3	100k preset	
R1-7, 21-26 see Table 1	PR 4	100R preset	
R8,9,10,11 4k7			PARTS SPECIFIC TO CHANNEL 1
R12,13 see Table 1	CAPACITORS		R33,34 220k
R14 100k	C1-4,8-12	see Table 1	C13,14 1u0 tantalum
R15 2k2	C5,7	100n polycarbonate	
R16 15k	C6	47n polycarbonate	PARTS SPECIFIC TO CHANNEL 14
R17,19 1M			R35 10k
R18 3k9	SEMICONDUCTORS		
R20,27 10k	IC1,7	see Table 1	PARTS SPECIFIC TO CHANNEL 13
R28 12k	IC 2, ${ }^{*}$	1458	R36 100R
R29 1k	IC3	741	
R30 22k	IC4	TL081 or LF351	Miscellaneous
R31,32 470R	1C6*	LM13600	IC sockets, 4 way connector, connector pins.

56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON N 10 3HN TELEPHONE 01-883 3705, 01-883 2289

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS

LATEST STOP PRESS AND PRICE LIST
Send sae or phone for up-to-date PRICES of all our range of items stocked
-MEMORY EXPANSION KIT=
Suitable for UK101, Superboard

D.RAMS	£ ρ
4027	2.75
4050 (350NS)	2.35
4060 (300NS)	2.39
4116	4.35
S. RAMS	
2102A	1.09
2102A2	1.09
2112 A	2.25
21102	. 98
2114-4045	2.95
4035	1.07
4044-5257	6.93
BULK PURCHASE	
8.2114	22.50
8.4116	29.95
8.21 L02	7.00
BULK PURCHASE	
162114	39.95
1621 L02	13.00
3221 LO2	25.00
64 21L02	45.00

EPROMS	
2708	$\mathbf{4 . 9 5}$
$2716(5 v)$	$\mathbf{1 3 . 9 5}$
2532	$\mathbf{3 9 . 9 5}$

Send sae or phone tor up-to-date PRICES of all our range of items stocked
LATEST STOP PRESS AND PRICE LIST

TAPES
Unique stackable tape
storage unit. Interlocking
drawers.
45 drawers each containing 2
C12 tapes
10 drawers $£ 9.50$
5 drawers $£ 5.25$
Single drawer $£ 1.10$

expansion using 2114 's each board
has 16 K ram capacity kit contains.

* On board power supply
* 4K Eprom expansion
* Fully buffered for easy expansion
via 40 pin socket
* 8 K kit ${ }^{2}$ 99.95
* 16 K kit $£ 139.90$

BUFFERS	
81LS95	$\mathbf{1 . 2 5}$
81LS96	$\mathbf{1 . 2 5}$
81LS97	$\mathbf{1 . 2 5}$
81LS98	$\mathbf{1 . 2 5}$
SN74365	$\mathbf{. 5 2}$
SN74366	$\mathbf{. 5 2}$
SN74367	$\mathbf{. 5 2}$
SN74368	$\mathbf{1 . 7 5}$
8T26	$\mathbf{1 . 7 5}$
8T28	$\mathbf{1 . 5 7}$
8T95	$\mathbf{1 . 5 7}$
8T96	$\mathbf{1 . 5 0}$
8T98	$\mathbf{1 . 5 7}$
MC14411 BAUD RATE GENS	$\mathbf{8 . 7 5}$
MM5307	$\mathbf{8 . 7 5}$
AY-5-1013	$\mathbf{3 . 4 5}$
AY-3-1015	$\mathbf{3 . 9 8}$
MM5503	$\mathbf{4 . 7 5}$
6011	$\mathbf{3 . 5 5}$

VALVE BARGAINS

ANY $5-80 p, 10-£ 1.50,50-£ 6$.
Your choice from the following: ECC82 Your choice from the following: ECC82 PCF802. PCL82, PCL85/805. PL504 PY800, PY88, PFL200.

COLOUR TV VALVES. PL508 PL509/519 - PY500/A.PL802 All tested 65p each.
100-MULLARD C280/C281 CAPACITORS. Values from 01 uf to $1.5 u f 250 \mathrm{~V} / \mathrm{W}$. Our choice $\mathbf{G 0 0}$
'mixed selection. Price per $100 \mathbf{£ 2}$. eac
able AF. which emits RF Harmonics into the UHF band. Protected up to 300 volts DC Complete with leads $£ 570$ each

ELECTRONIC MAILORDER LTD.
62 Bridge Strent, Ramabottom, via Bury, Lancs. Tel. RAMS 3036

TANGERINE
 Build your own Computer Kits, available from $£ 79.35$
 Assembled and tested from $£ 90.85$
 S.a.e. or telephone MICRO-PRINT LTD.
 21 Bankhouse Road, Hanford STOKE-ON-TRENT
 (0782) 657893
 for advice / assistance and Order Forms
 Prices include V.A.T. Post and packing extra

DRIIL SPEED CONTROLLER

> Keep your electric drill under control with this handy circuit. . . cheap and simple.

This circuit enables you to con trol the speed of any appliance that uses a 'universal' motor-drills, sanders, polishers, etc. Only a few components are required and this circuit is just about the simplest that can be built from discrete components. Don't let that put you off though! You get full-wave control from zero to full speed. Who could ask for more?

Construction

We built our unit on its PCB into a standard plastic switch-box and fitted the speed control onto a plastic blanking plate. No heatsink was used on the prototype and one will probably not be required for intermittent use.

Warning

Remember that when running an appliance at low speeds, the efficiency of the cooling fan normally built onto the motor-shaft will be severely reduced. This may result in your motor burning out, so remember to allow the windings to cool when running for an extended period or simply run the appliance at full speed off-load for a short while.

There are no special points to watch with this circuit. A PCB design is given, though any method of construction may be employed. Note that 400 V polypropylene capacitors were used in the prototype as these are better able to withstand connection to the AC mains. Despite its simplicity, this circuit will provide a smooth, wide-range control and amply repays the little effort involved in its construction.

BUYLINES

All the necessary components should be readily available from your usual suppliers. See mail order suppliers advertising in this issue. The polypropylene capacitors are available from Electrovalue Ltd, 28 St Judes Road, Englefield Green, Surrey TW200BH.
 *

Fig.1. Circuit diagram.

HOW IT WORKS

The essential feature of the circuit is triac Q1. This bi-directional electronic switch controls power flow through the load. This can be any 'universal' motor as may be found powering an electric drill, polisher, etc. The resistor-capacitor combination R3, C3 comprise a snubber network which prevents spurious switching effects in the triac. The triac is turned on when the current flow in its gate - MT1 junction exceeds a certain value. Direction of current flow is unimportant, though there will be a small difference in the sensitivity of the triac, and the device will switch on for both cycles of the alternating mains waveform.

The resistor-capacitor network built with R1, 2, RV1, C1, 2 cause an alternating waveform at mains frequency to appear at the 'hot' end of C2. Adjustment of RV1 controls the phase of this signal with respect to the mains input. When the voltage across C2 exceeds about 30 V , current will flow in the gate circuit of the triac, turning it on. It remains on until the applied mains voltage falls to zero. It then remains off until re-triggered. Dissipation in the triac is low as it is only ever either fully on or fully off and a heatsink is unlikely to be required.

A Range of Performance fromHAMEG

Tel: (0582) 413174

Buy a microcomputer for under £1,000 and you could be on yourown! Unless it's a Commodore PET.

Commodore produce Britain's number one microcomputer. But we don't stop there. We also insist on providing comprehensive support throughout our national dealer network.

Our dealers can examine your needs and demonstrate which hardware and software will suit you best. Their trained engineers are always at hand and a 24 -hour field maintenance service is available. Your local dealer can tell you more about the following Commodore Services.

C The Commodore PET

The Commodore PET computer range covers everything from the self-contained unit at under $£ 500$ to complete business systems at under £2,500:
C. Commodore Business Our software range covers hundreds of applications. Business software includes Sales and Purchase Ledgers, Accounting, Stock Control, Payroll, Word Processing and more. In addition over 50 Petpacks are available covering such titles as Strathclyde Basic Tutorial, Assembler Development System, Statistics, plus our Treasure Trove and Arcade series of games.

C틀Commodore Approved Products
Compatible products of other manufacturers with Commodore's mark of approval are also available.

C즐
Commodore Courses
Commodore offer a range of residential training courses and one day seminars. An excellent start. And when you hav: installed your system the PET User's Club
Newsletter can keep you informed of new ideas and latest developments. ETI SEPTEMBER 1980

LONDON AREA
 Advannced Management Systems,
EC2.01-6389319 Byteshop Computerland Byte shop Computerland
W1. $01-6360647$ C.S.S. (Business Equipment) Lid.
E8 $01-2549293$

Capital Computer Systems Capital Computer Sy
W1. $01-6363863$
Clat Centralex-LondonLtd,
SE13.01-3184213. Creasn Microcomputer Shop.
HARROW. $01-8630833$ Ha Vinci Computer Shop. EDGWARE,O1-9520526 L\& J Computers.
NW9. $01-2047525$ Home and Business Computers.
E12.01-472 5107 Merchant Systems Limited,
EC4.Ol-3531464 Metyclean Ltd, metyclean Lta,
SW1. $01-8282511$ Micro Computation,
N14.01-882 5104 Micro Computer Centre.
SW14. $01-8783206$ Sumlock Bondsin Ltd. ECL. $01-2500505$ EC4.01-6260in 0487
ECA EC4. O1-6260487 WCL $2.01-8393894$
TOPS TVLTD SW1.01.7301795

HOME COUNTIES
G. M. Marketing. HSV Microcompute BASINGSTOKE, 62444 MMS Lid.
Elex Systems Lid.
BRACKNELL. 52929 BRENTWOOD, 229379 Amplicon Micro Systems Ltd BRIG HTON. 562163 RUF Computers (UK) Ltd,
BURGESS MILL ${ }^{45211}$, I V Johnson (Microcomputers Etc Lidd CAMBERLEY, 20446 Cambridge Computer Store.
Wego Computers Ltd CATERHAM. 49235 Dataview Ltd,
COLCHESTER, 78811 South East Computers Lid MASTINGS, 426844
Ato Alpha Business Systems.
HERT FORD 57423 HERTFORD, 57423
Brent Computer Brent Computer Systems,
KINGS LANGLEY, 65056 KINGSLANGLEY, 65056
Isher-Woods Business Systems.
LUTON, 416202 .
SouthE South East Computers Lto
MAIDSTONE, 681263 Micro Facilities Lid. MIDOLESEX,01-979 4546 J. R. Ward Computers Ltd,
MiLTON KEYNES 562850 Sumlock Bondain (East Anglia) Led
NORWICH, 26259 T\&V Johnson (Microcomputers Etc) Lid. OXFORO. 721461 SOUTHAMPTON. 22131
S.S. Super-Vision.
SOUT HAMPTO Xitan Systems 14.174023 Xitan Systems Ltd, 38740
SOUTHAMPTON, 38740 Stuart R Dean Ltd.
SOUTHEND-ON-SEA. 62707 The Computer Room. 62707
TUNBRIDGE WELLS, 41645 Orchard Electronics.

Petalect Lid.
WOKING. 63901
Oxford Computer Systems,
WOODSTOCK, 811976
MIDLANDS AND
SOUTH HUMBERSIDE
Byteshop Computerland,
GIRMINGHAM, 6227149 CPS (Data Systems) Letd.
BIRMINGHAM, 7073866 Camden Electronics.
BIRMINGHAM 773820 Computer Services Midtands Ltd.
BIRMINGHAM, 3824171 BIRMINGHAM, 3824171 Catiands Computers Ltd.
BURTON-ON-TRENT, 812380 lbek Systems.
COVENTRY, 86449 Jondane Associates Ltd.
COVENTRY 664400 COVENTRY, 664400 DERBY, 366803 Caddis Computer Systems Lid. HINCKLEY,613544 KETTERING, 83922 Taylor.Wilson Systems Ltd.
KNOWLE 619 KNOWLE 6192
Machsize Lid,
LEAMINGTON SPA. 312542 Otfice Computer Techniques Ltd, LEICESTER. 28631 Lowe Electronics.
MATLOCK. 2817 Betos (Systems) Lt Aetos Systems) Ltd.
NOTHINGAM. 48108 Byteshop Computerland,
NOTTINGHAM, 40576 Keen Compaters Lld
NOTTINGHAM, 583254 Tekdata Computing,
STOKE-ON-TRENT,
STM Systems Micros.
SELFORO. 460214 McDowell Knaggs \& Associates
WORCESTER, 427077

YORKSHIRE AND

NORTH HUMBERSIDE
Ackroyd Typewriter \& Adding
Ma chine Co. Ltod BRADFORD, 31835 Allen Computers.
GRIMSBY, 40568
HULroware Computers Lt
HULL, 562107
HULL, 562107
HULL. 23146
Holdene Ltd.
LEEDS. 459459
. 459459
r
Commodore Information Centre,
360 Euston Road, London W1 13 BI.. 01-3885702
Please send me further information about the Com modore PET. Name
Position
Address

South Midlands Communications Ltd, LEEDS, 782326	NORTH WEST AND
Yorkshire Electronics Services Ltd, MORLEY, 522181	NORTH WALES
Computer Centre (Sheffield) Ltd.	Tharstern Ltd, BURNLEY 38481
Electronic Services. SHEFFIELD, 658767	$\mathrm{B}+\mathrm{B}$ (Computers) Ltd, BOLTON 26644
Hallam Computer Systems Ltd. SHEFFIELD. 663125	Preston Computer Centre. PRESTON, 57684
NORTH EAST WILmsLOw, 527166	
Dyson Instruments. CURHAM, 66937	LIVERPOOL
Currie \& Maughan. GATESHEAD. 774540	Aughton Microsystems Lfd, LIVERPOOL, 5487788
Wards (Office Supplies) Group.	B.E.C. Computers.
GATESHEAO, 6059	Rockcliff Brothers L
MARTLEPOOL. 61770	
Fiddes Mar keting Limited. NEWCASTLE. 81517	MANCHESTER AREA
Newcastle Computer Services. NEWCASTLE, 615325	Byteshop Computerland, MANCHESTER, 2364737
Format Micro Centre, NEWCASTLE 21093	Computastore Ltd. MANCHESTER, 8324761
Tripont Associated Systems	Cytek (U.K.) Lid.
Consultants Ltd.	MANCHESTER, 8724682
SUNDERLAND, 73310	Executive Reprographic Lid.
SOUTH WALES AND	N.S.C. Computer Shops Ltd, MANCHESTER, 8322269
	Sumlock Electronic Services
Radan Computational Ltd, Manchester) Ltd. BATH. 31848	
Computer Corner. BAYSTON $\mathrm{HLLL} \mathbf{4 2 5 0}$ OLDHAM. 6244605	
Bristol Computer Centre,	SALFORD 8346367
BRISTOL, 23430 Automated Business Equipment Ltd,	
BRIStOL. 779452 STOCKPORT, 061-432	
$T \& V$ Johnson (Microcomputers	SCOTLAND
Etc) Led. Bristol. 422061 SCAND	
Sumlock Tabdown Ltd. BRISTOL, 26685	EDINBURGH, 6682727
Sigma Systems. CARDIFF, 34869	
Office and Business Equipment Aethotrol Consult [Chester) Lid, DEESIDE, 817277 GLASGOW, 641	
$\begin{array}{ll}\text { A.C. Systems, } \\ \text { EXETER, } 71718 & \text { Byteshop Computerland, } \\ \text { GLASGOW, } 2217409\end{array}$	
Micromedia Systems, Robox Lt	
NEWPORT, 59276 Mac Micro	
NEWQUAY. 2863 INVERNESS. 712203	
Devon Computers. PAIGNTON 526303 Thistle computers KIRKWALL. 3140	
J.A.D. Integrated Services.	
Business Electronics.SOUTHAMPTON, 738248SoftechltdDUBLIN,S	
Computer Supplies (Swansea). Medical \& ScientificSWANSEA. 290047Services Lid. LISB	
ation Centre, on W'1 3BI. 01-388 5702	
nformation about the Commodore PET.	

Intended application

Do you own a PET? YES $\square \quad$ NO \square

6 piano type keys

B.K. ELECTRONICS A SOUND CHOICE

* PROMPT DELIVERY * PRICES INCLUDE V.A.T. * AMPLE STOCKS A PERSONAL SERVICE FROM A SMALL EXPANDING COMPANY

STEREO CASSETTE TAPE DECK ASSEMBLY. Comprising of a top pane assembly and tape mechanism coupled to a record/play back printed board assem bly. For horizontal installation into cabinet or console of own choice. Brand new, ready built and tested. Features: Pause control, auto stop. 3 digit tape counter, illuminated twin VU meters with individual level controls, twin mic, input sockets, AC erase system, LED record indicator. (Separate power amplifier required.) Input Sensitivity: 6 MV (with level control set at max). Input Impedance: 47 kOhms . Output Level: To both left and right hand channels 150 MV Output Impedance: < 10k. Signal to noise ratio: 45 dB nominal. Power Supply Requirements: $12 \mathrm{~V} A C$ at $300 \mathrm{M} / \mathrm{A}$. Connections: All connections to the unit are via a wander lead terminated with a nine pin plug (socket provided). Dimensions: Top panel - $111 / 2$ in $\times 61 / 2 \mathrm{in}$. Mechanism fits through a cut out $5^{3 / 4} \operatorname{in} \times 101 / 2 \mathrm{in}$. Clearance required under top panel $21 / 4 \mathrm{in}$. Supplied complete with circuit diagram etc. Price $£ \mathbf{£ 0 . 5 0}$ plus $£ 2.50$ postage and packing. Sụitable mains 12 -volt transformer, $£ \mathbf{3 . 0 0}$.

SCOTT AM/FM STEREO TUNER MODEL 516. This Scott tuner is one of the top American makes and is offered at a very realistic price. Features: FM tuning range 87.5 to 108 MZ * AM tuning range 535 to 1605 kHz Usable FM sensitivity $6.2 \mathrm{dBF} 2.2 \mu \mathrm{~V} \star 300 \mathrm{ohm} \& 75 \mathrm{ohm}$ Aerial inputs for FM \star Signal strength tuning meter \star Stereo beacon indicator $\#$ Ferrite aerial for AM \& Mute switch. 10 diodes, 9 transistors and 3 ICs . Size: Height 5 in , Width $141 / 2 \mathrm{in}$. Depth 12 in . Silver front panel. Black body. Modern stacking format. Suitable for 240 -volt 50 Hz AC operation. Price $£ 40.50$ plus $£ 2.50$ postage and packing

PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion leve than ordinary dynamic tweeters As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series) FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER

Type 'A' Type 'C' Type 'D

Type ' A ' 3 in round with removable wire mesh. Ideal for bookshelf hi-f speakers. Price (Type 'A') £ 3.75 each; Type 'B' $31 / 2 \mathrm{in}$ super horn. For genera purpose speakers disco and PA sys tems, etc. Price $£ 4.60$ each.
Type 'C' 2 in $\times 5$ in wide dispersion horn. For hi-ft systems and quality disco etc. Price $£ 6.20$ each.
Type 'D' 2 in $\times 6$ in wide dispersion horn. Frequency response extending horn. Frequency response extending
down to mid-range ($2000 \mathrm{c} / \mathrm{s}$) suitable for hi-fi systems and quality disco. Price E9 each.
Post and Packing, all types, 15 p each (or SAE for Piezo leaflets)
 TWEETER.

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

\star SAE for current lists. \#Official orders welcome. \star All prices include VAT. Mail order only. © All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572.

Access and Barclaycard accepted

TVSOUND TUNER

Enjoy high quality TV sound with this unit, using pre-aligned commercial modules for simple construction.

The BBC frequently 'simulcasts' the sound channel of some of its television music presentations. As well as providing stereo, this gives a dramatic improvement in sound quality. In fact TV sound is transmitted with frequency modulation and can provide good quality (though in mono). The weak link in the system is the TV audio stage and small loudspeaker.

This unit enables you to feed a high quality TV audio signal into your hi-fi; so you will not have to chip your speakers from their concrete columns or mount the TV in the fireplace (even though the chimney does provide an excellent ventilating system!) Use of ready built and aligned modules makes the project very easy to build and it is not expensive!

Tuner Control

An ELC1043 varicap tuner and IF board are bought separately (see 'buylines') and assembled. A handful of other components mount on our PCB and provide power supplies and an optional monitor amp. The varicap tuner is controlled by a single tuning voltage of $0-30 \mathrm{~V}$. We used a surplus pushbutton station selector unit but any source of a stable voltage may be pressed into service. If you are really up to date, you can even tune the system with your home computer.

Construction

The tuner mounts directly on the IF board. All the holes are there, as well as quite a few spares, though you will need to enlarge the holes for the screening can lugs. Two resistors set the ACC voltage and a capacitor filters the tuning voltage. Be
careful when dealing with the IF board not to disturb any of the adjustments. Remember the units are pre-aligned.

To The Manor Borne

We had our board running within an hour but then it failed mysteriously. Manor quickly sorted us out and sent us away with strict warnings about playing football with the board! Remember that the TV signal comes in on a wing and a prayer at a few hundred MHz and even the IF operates at 38 MHz so show it some respect.

Construction of the PSU and amplifier PCB is straightforward. Take special care to connect the screening braids as shown to avoid hum pick-up. When the unit is assembled into its case, with an aerial connected, a station should be tuned in. A slight buzz may be present. This can be nulled out by adjusting the tuning control whilst making slight adjustments to the quad coil. This is preadjusted and should not need to be moved more than a turn to compensate for the effects of added stray capacitance from the case, etc.

Home Programming

Two versions of the tuner frontend are available. They are interchangeable. Our prototype used the cheaper CI device and we were unable to make any comparison with the more expensive Mullard unit. You pays your money and you takes your choice. Whichever you choose, this project will reward you with quality TV sound. We cannot help with the programmes

Fig.1. Circuit diagram.

HOW IT WORKS

The TV signal is converted from its UHF carrier frequency down to a more manageable 38 MHz intermediate frequency (IF) by the varicap tuner module ELC1043. 'Varicap' refers to the variable capacitance diodes which replace mechanical tuning capacitors in the front end. The capacitance of the diodes varies according to the reverse bias voltage applied to them. All diodes exhibit this effect but varicap diodes are optimised for operation as capacitors. A relatively high voltage is required and an extra 30 V supply is generated (channels 21 to 34 can be tuned with 0 to 12 V supply).

The output from the tuner module is coupled to the If stage via a 1 n 0 capacitor. Our unit came with the capacitor mounted in place - a small disc ceramic is fine. The two cans on the IF sub-assembly are Philips G8 colour receiver modules. Their output is coupled to the TAA570 detector via a 6 MHz ceramic filter which removes the video signal but passes the 6 MHz FM sound carrier. Keep your wiring away from this area of the board. If you touch a finger to the ceramic filter you will hear a variety of AM broadcast stations come booming through! The audio output is coupled via a 1uF electrolytic capacitor.

Note that a video signal is available from the If board. Although it has a reasonable level - around 1 V0 peak-to-peak - you will need to buffer the signal before attempting to use it. Refer to the $\mathbf{G 8}$ service manual for suitable circuitry.

Both the tuner and if board are supplied prealigned. A 100 n capacitor is added to the board to filter any track noise from the tuning control and two resistors are used to preset the AGC for optimum gain. A TAA570 detects the sound signal and produces an AF output of a volt or so. This signal will drive your hi-fi directly or via a resistive divider if the amplitude is too high. We incorporated a simple monvitor amplifier in our design.

The power supply is quite conventional. A $30 \mathrm{~V} A C$ winding is half wave rectified producing a $D C$ voltage of about 43 V . This is pre regulated by the circuitry around Q1 to reduce the supply below the $\mathbf{4 0}$ V absolute maximum required by IC2. This is a 723 regulator chip connected to provide a stable nominal 30 V supply for the station control unit which feeds the turing voltage to the TV front end.

Output current is limited to about 20 mA though in normal operation only about 1 mA or 2 mA will be drawn. A 12 VAC winding is rectified and regulated with a 7812 IC regulator. This supplies the If board (about 100 mA) and an on-board monitor amplifier - the LM380. If you do not require an amplifier then omit RV1, IC3, C7,8 and the loudspeaker. Note that IC1 runs rather warm and should have a small heatsink fifted. Although we used a surplus TV station selector unit, any multiturn pot(s) may be pressed into service. 100k units work well.

The ready-built IF sub-assembly fits along the front of the case, with our monitor amp behind.

Fig.2. Connections between our amplifier and the ready-made IF board.

PARTS LIST

BUYLINES

The ELC1043 varicap UHF tuner and IF sub-assembly are available from: Manor Supplies,
172 West End Lane,
London NW6.
Tel: 01-794 8751.
They can also supply a suitable push-button station control unit.

Fig.3. Component overlay.

The UHF tuner mounted on the IF sub-assembly.

Happy Memories

NASCOM OWNERS

MICROPROCESSOR CASE

VAT

AT LAST A Case you don't have to lever your Micro into. Made from 16 Guage Aluminium, strong enough to support a Monitor and Cassette. Enough space for Keyboard, P.S.U. Mainboard AND two Expansion Boards (Can also be used for other type Micros. etc.)
Send cheques or POs for $£ 25.30$ to:
CYBER ELECTRONICS CO. LTD
Pavement Square, Addiscombe, Croydon SRO 6RD
Trade enquiries welcome

ASCII CODED KEYBOARD £47.15

Designed for ease and accuracy of use, with 60 keys arranged in stepped rows, auto repeat and 2 -key rollover. UC and LC ASCII coding. S.a.e. for data

THE ZX80 MAGIC BOOK £4.75

15 plus programs including Hammurabi, Animals and Othello Programming tips. Hardware notes. Memory extension circuit

ZX801/O and Memory Boards. S.a.e. for details
All prices inclusive of VAT, p\&p

TIMEDATA Ltd.

57 Swallowdale, Basildon, Essex

Tux

PCB OFFER

A) 100 bit shit: register PCB $15 \mathrm{~mm} \times 94 \mathrm{~mm}$ containing $9 \times 7491,6 \times 7496$ and 1×744 Terrific bargain 85p. p\&p 30p C) PCB $215 \mathrm{~mm} \times 290 \mathrm{~mm}$ $12 \times$ TMS 3122 J (or sim.) Hex 2-bishlineg. 3 sics

MPU CORNER 2122 (200ns), £3. 2114 (450 ns) £4.50
1702
E
£ $2.50 .2708(400 \mathrm{~ns})$ 4.50

74125 for $£ 1+\mathrm{psp} 250$ MK 1002 P (dual 128 bst Shift Reg). $35 p$.
M 711 CH (Voltage Comparator)
30p.
MM5240 Character Generator + Data 2560 Bit $(64 \times 8 \times 5)$ £3.50, p\&p 25p
2526 Character Generator (64×9 \times 9) $£ 2.95$ + data \& 8 \& $25 p$ - 9) $\mathbf{E 2 . 9 5}+$ data sip\&p $25 p$ STATE RELAY type A2402 Output 240 VAC 2.5 amps input 90. $240 \mathrm{VAC} / 45-200 \mathrm{VDC} £ 6.00$ p/p 25p.

D TYPE CONNECTORS
15 Way wirewrap plugs only 75 p. 25 Way ribbon plugs $£ 1.20$. 25 Way sockets (solder) £1.00. 50 Way skt $£ 1.45$, p\&p 25 p covers
37 Way 80p. (plastic) p/p $25 p$ DISPLAYS HP 50824 digit DIL display fult spec $£ 1.50$ each p\&op 25p. Large quantities POA
MAN 727 seg CC £ 1.25 p\& 25 p. Burroughs Panaplex $9 \mathrm{Dig}+$ sk and bezel £1.00, p\&ip 25p LED 3 Digit DIL 55p, p8ip 25p Bowmar 9 digit 1 in LED with red $£ 1.00+25 p$ p\&p.

SUPERSAVER Ribbon Cable Headers 16 DIL 45 p, p\&ig 25 PUPRSAVER 2 Tantalum Capacitors 25 volt. 4.7 uF. 14 for $£ 1.00$, $p \& p 25 p$ SUPERSAVER 3
PRICE SMASH FND 500.5 in LED displays. full spec $\mathbf{£ 5 0}$ peach, p\&p $25 p$, large quantities PQA HYBRID SYSTEMS DAC $371-88$ HYBRID SYSTEMS DAC $371-88$ Bit. Dil packaged ideal MPU user with data. £2.95, p\&p 25 p

SUPERSAVER 5 GVDC 200MA 240 VAC input ideal fo calculators, radios, etc., give away price 95p each. Large quantities P.O.A

SUPERSAVER 6
RS 338-383 Miniature Decad Thumbwheelswitch. £1.65, psp 25p SUPERSAVER SN74116 Dual 4 Bir letch 75p psp 25p.
metic Logic Unit 80p, prap 25p.
SN741944 Bit Register. 50p paip 250
SN 741988 Bit Shitt Register. $75 p$ SUP 25 SUPERSAVER 8 IT 4cx 250b brand new full spec $£ 7.50$ each $p / p 25 p$ 4 digit 7 segment DIL lead displays 4 for $£ 1.50 \mathrm{p} / \mathrm{p} 25$ p

SUPERSAVER 10 9 way male/temale connector ELCO 8129, 0.1 inch pitch. gold plated PCB mounting ideal for Superb value. 35p, p\& p 25 p . SUPERSAVER 11 STAR OFFER. Dynamic hand microphone 200 ohm with lead and 5 pin plug $£ 1.25$ (unrepeat able) p\&p 30p.

SUPERSAVER 12 TMS 31 28NC Static shift register £1.50, p\& p 25 p

SUPERSAVER 13 PL259 (UHF) Elbow Connectors 50p each, p\&p 25p.

SUPERSAVER 14 MPU peb containing 808A. 2708 2114×24 (all socketed) plus $74 \mathrm{TLL} / \mathrm{LS}$ etc. sorfy no circuit diagrams £ 28.50 each p / p £1 00

SUPERSAVER 15 5 K multiturn trimpots, PCB moun ting, per box of 14 £2.50, p\&p 25p SUPERSAVER 16 Yet another star bargain. Astec UM111E36 modulator 65p each p/p 25p.

LEDs (Full spec)

 LEDs (Full spec).TIL 209 red 10 p .0 .2 in , red 12 p. . 2 in green 28 p. 0.2 in , yellow 28

RL54 red Axial lead. 15p.
P\&p on all above 25 .
P\&p on all above 25ρ
VERNITRON Ceramic filters typ FM4 $107 \mathrm{MHz} 45 p$, p\&p 25 p TRANSISTORS, BD236 40p, BC 183k 10p, BF 195 10p, SGS 2N3055 30p, p\&ip on all 25p. TBA 810 S , with data. $85 p, 4$-way Dil switches, 75p. MC 1303 Duat Siereo preamp with data, $\mathbf{£ 1 . 2 5}$. 7 in. Nylon cable ties 100 for £1.50. All p\&p 25p.
NEW SN 76477 (Yes; back in stock) Sound Generator IC (Train. piane, explosion, laser 25 p . with data £3.25, p\& PCB KEYBOARD, $65 \mathrm{~mm} \times$ tops. ideal Hexadecimal use 35p, p\& $25 p$
CAPACITOR SCOOP. $1,600 \mathrm{uF}$ at $10 \mathrm{v}, 160 \mathrm{uF}$ at 25 v . Axial lead. 2 dozen for $£ 1+25 p$ psip. PAPST min-fans $80 \mathrm{~mm} \times 80 \mathrm{~mm}$ (approx) 220 V 50 Hz Brand new £8, p\&p $£ 1$ (limited stocks). Pewec Boxer. As above but 1 :5v at $£ 4.50+p \& p$ able socket 35p. p\& 25 p

TELEPHONE UXBRIDGE 55399

22 pin low profile 22 pin low
gold plated

$$
12 p \text { EACH }
$$

p\& p 25p
WE STOCK PETS

8 K version $£ 599$. SAE for the PET

 SORCERER solftware lists at dis count prices.We can also offer a 48-hour repair service for out of warranty PETs Telephone for details. PET edge connector $40 \times 04 £ 1.40$ each p\&p 25p
IC HOLDERS (Low-profile) 8 Dil 12p 14 Dil 15p 6 Dil 17p 18 Dil 20p 22 Dil 45p \quad All p\&p 35p

WE STOCK a vast range of TTL CMOS some
TOGGLES, etc.
PSUs. We have a large stock of power supplies
prices (callers)

RELAYS
TT 700 chm Single pole changeover. 45p. BANOR resetable Both 80 25

CIRCUIT BREAKERS

$450 v$ AC 65v DC $0.5 A 50$ p; ditto
7A 80p. $p 8 p$ 25p.
ALLENKEYS, $7 / 16$ in $5 p ; 12$ for
50p; psip 25p
ASR33 (with tape punch reader). generally overhauled $£ 185.00$ inc. of VAT
Centronics secondhand printers. various types ($0 / \mathrm{h}$), phone for your equirements

MEMOREX 651 dual disk drives complete with power supplies and format electronics (sorny no data as yet). $£ 350$ each inc. of VAT Recordacall telephone answering machines (GPO) line matching
ranstormer removed) sold as is from $£ 2$ to $£ 10$ depending on condition. Fitted with very nice standard casse he deck Wit ror circuit diagram CAlLeks only erders welcomed order (officia orders welcomed from colleges prices inclusive of VAT, unless otherwise stated Postage as shown per item.
FOR THE PROFESSIONAL USER. CP Clare Keyboard switches with buttons (blank) 65p each p\&p 25p
Gould PMA 47/10015V 3A Brand new 45p p\&p $£ 3.50$. Many more slease phone for numbers. P
PLEASE DO NOT ORDER GOODS FROM OLD ADVERTS. PHONE BEFORE ORDERING
SURPLUS STOCKS
PURCHASED
FOR CASH

LB ELECTRONICS 11 HERCIES ROAD

 HILINGDON MIDDLESEX UB 10 9LS, ENGLANDAll enquiries s.a.e. please

New retail premises, Mon, Thurs Fri, and Sat. 9.30 6.00 Lunch 1.2 .15 weekdays Closed all day Wednesday. We are situated just of the A40 Opposite Master Brewe

709 DIL 14 PIN pper case ASCII with V24 Interface. 240 volt operation.

INFRARED IMAGE CONVERTER type 9606 (CV 144)
$13 / 4^{\prime \prime}$ diameter. Requires single low current 3 KV to 6 KV supply Individually boxed. With data

£12.50 each P\&P 75p
 Infra Red Lamps also advertised

STEPPING MOTORS
200 steps - 20 oz . / in torque $12 / 24$ volt input, 4 wire. £12 each P\&P£1.50

0

ATIONAL AMPLIFIERS at 8 p each

MINIATURE KEYBOARD
Push contacts, marked $0-9$ and $A \cdot F$ and 3
optional function keys. $£ 1.75$ ea. P8P 65 p

optional function keys. $£ 1.75$ ea. P8p 65 p
BLUE THERMAL PAPER

hra Red
£2 per roll. P\&P $£ 1.75$
STEPPING MOTORS

200 steps. 20 oz./ in. torque
 200 steps. 20 oz. / in. torque 120 volt operation, 3 wire.

North American Philips 5 volt -200 revs per min. $0-250$ used. Tested. £16 each P\&P £ 150 $£ 4$ each P\&P $£ 1.50$

770R used
730 / 10 used
Limited quantity only

CONVERT THIS UNIT TO A

SUPER BATTERY
CHARGER
Attractive green ministry quality case with removable top \& bottom plates - heavy duty power switches-high powered resistors to control current - good quality centre mounted Amp Meter - strip of wing nut
terminals on front panel which can be used terminals on front panel which can be used for connecting leads.
ALLTHIS FOR $£ \mathbf{3 . 5 0}$. P\&P $\{2$
FOUR UNITS FOR $£ 12$. Carriage $E 5$

STEPPING MOTORS

$6 / 12$ position with additional where the
rotor is coils. Device can be used as a tacho Diagram supplied. Will actually work on 5
volts. $12 / 24$ recommended. £ 1.50 each $P \& P 75$ p or 5 for $£ 5$ p\&p

R14S

| | | | | |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |

MUST CLEAR

POLARAD SPECTRUM
ANALYSER
ANALYSER
"Display. These are supplied with STU 2
pug-in. 11045 GHZ .
LARGE QUANTITY OF PHOTOMULTI-
PLIERS all with information. British approx $2^{\prime \prime \prime}$ all with information. British approx $2^{\prime \prime}$
window $£ 2$. British approx $5^{\prime \prime}$ window £3.50 ea. American approx. $2^{\prime \prime}$ window £4
ea. Special American version by RCA £6 en. ea. Special American version by RCA £6 en

K\&P all photomultipliers E 1.50 e
Size $3 \times 21 / \times 2^{\prime \prime \prime}$ high with 12 Alma Reed
Switches. Blue keys matked in green 0.9 and a star with one blank.

£4 each P\&p £1
 or $\mathbf{5}$ for £15 p\&\& £2

\section*{| REGULATORS. |
| :---: |
| MCI 1496.70 |

 Siandarid whive 12 p. Standard y ellow 15 p. 5 mall while $8 p$
 WEST WEAR, OSCIL have a large quantity of SIGNAL GENERATORS ETC, and they are priced to move.
 Callers welconle or write or Bette, Stul PHONE
REMEMBER WE WILL
 DIODES
 All new full spec. devices. IN 3063; BAX 13: IN4148; IS 44.100 off $£ 1.50-1.000$ off £10.}

BRE E1.50.

PMOTODIODE DETECTOR A" fly terents 25 peo
AMPHENOL.

FANS. 115 V 13 Watts Sue 3 ' $-3+x+$ " BRAND NEW E4.50 en. Swoucthand $\mathbf{C 2 . 5 0}$ am.

each rated $8 V$ A output $£ 1.70$ each. P\&P $75 p$ Oulput 75p each P\&P 50p.	24V INVERTOR VERSION SPECIAL GOVT QUALITY
MAGNETOS NEW BOXED Originally for 14 cyl-gipsy Very adapiable £4.75 each	TANTALUM BEAD CAPACITORS. 4.7UI 25 V 10 off £1: 100 oft £7.50. TEXAS Low Profile 40 pin IC Sockets 45 peach. SMALL TRANS FORMER. 240 V Input. Output 2 windings 12 V \& 24 V 1 amp e 2 each.

VER FEW OF THESE $£ 175$ EACH

SO SIMPLE - SO SAFE FIt a push bution CIRCUIT BREAKER Small compact3 ratings $08 \quad 188 \%$
IOAMP State which one

AMP METER $2^{1 / 2} \mathbf{2}^{\prime \prime}$ dia. Scaled 0.60 Basic 75 MV FSD. Complete with external 60Amp Shunt $£ 2.50$
each. P\&P 150.50

(togi hangy 4 for $£ 1$ TRANSFORMERS AUTO 240 .
 AUANS 240 V Input 240 V in

240 V input. Soc $6 \mathrm{~V}: 86 \mathrm{Amp}$ oulpulf 1.25 each. P\&P Size 25

gluadity E1. 50 ea.
240 V input Bac
150

$\mathbf{2 4 0 V}$ input 12 V toom $\mathrm{SIze} 60 \times 40 \times 42 \mathrm{~mm}$ 50p each.
$\mathbf{2 4 0 V}$ input. Soc $: 20+12 \mathrm{~V} 50 \mathrm{MA}$ SIze $53 \times 45 \times 40 \mathrm{~m}$.
an.
115 V input. Soc 5 V 250 MA Size $1116 \times 15 \times 1 / \mathrm{a}^{\text {" }} 2$ for
50 P 115 V
50 p
SEMICONOUCTORS IN4005-5p; 1N4003-3p.

OA 81 BA 154 BA 243
 40p; BD228 50p: BD233 \& BO234 Comp Part 25 W - 80p per
pr. at 50 p sech. pr. 8150 pasch
REGULATOR TBAG25 8 w 20 V in - 5 V oul 100 MA TO5 CO
50p each BF 256 C 2 CP . TV AMPLFIER TBA 120 20p ench. Integrated Circuits

7453	$\mathbf{5 p}$
745 i	5 p
7402	12 p
7476	20 p
7495	35 p
74122	12 p

motorola dual in lite 6 pin Opio Coupler 30p each. Gold plate testet version 50 p aach.
EPROMS $2708 \mathbf{E 5 . 5 0}$ ach.
EELEPHONES 706 styach black or grey $\in 5.50$ each. 746 style
TElack or grey $\mathbf{C 7 . 5 0}$ each. Otder style black $£ 2.50$ each. P\& Honeywell humidty conliolle 1550 pach .
THYRISTOR TIMER. Solid State Hasik retay case Stal Sacd 7 State 15 secs adjustable treset MINIATURE PC MOUNT SLIDE SWITCH. Single poie 3 .
vartacs. 2 mins
 Other ranges avaibule Please enquire
TRIMMERS. Sub Min 02510125 at 6 p emech.
at
CROWN

MINIMUM ORDER $\{3$ VALUE OF GOODS MINIMUM P\&P \& 1 - where P\&P not slated please use own discretion - excess refunded CARRIAGE ALL UNITS P\&P or CARRIAGE and VAT at 15% on total MUST BE ADDED TO ALL ORDERS
CALLERS VERY WELCOME STRICTLY BETWEEN 9 am- $\mathbf{1 p m}$ and $\mathbf{2 - 5 p m}$ Monday to Saturday inc
BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome.

DIGITAL TEST METER

Abstract

This unique and modestly priced piece of test gear uses the very latest $31 / 2$ digit LCD DVM module and acts as a combined 25 -range digital multimeter and a 5 -range digital frequency meter. It's another 'first' from ETI.

Two of the most useful pieces of modern electronic test gear are the Digital Multimeter (DMM) and the Digital Frequency Meter (DFM). These instruments are highly accurate, rugged and can be used in any attitude (vertical, horizontal, upside down, etc). Trouble is, they tend to be a bit expensive; a decent pair of such instruments costs about £200.

We have overcome the price by producing a unique 30 -range digital instrument that acts as a combined 25 -range DMM and 5 -range DFM. We've decided to call this new instrument a Digital Test Meter, or DTM. Our DTM is designed around the very latest $31 / 2$ digit liquid crystal digital voltmeter module (thereby simplifying construction), is powered from two 6 V battery supplies and typically gives several months of operation from a single battery set.

The AV (alternating voltage) ranges of the DTM are frequency compensated; they are typical responses that are flat within 1% to 40 Hz or to within 1 dB to 120 kHz .

The resistance indicating section of the DTM uses a ratiometric measurement technique and a test voltage of about 300 mV maximum, thereby enabling in-circuit resistance measurements (such as a resistor in parallel with a semiconductor junction) to be made without forward biasing in-circuit junctions. The DTM is provided with an independent facility (via a specific test terminal) for testing semiconductor junctions.

The frequency meter section of the unit can be used to measure frequencies in the range 10 Hz to 1.999 MHz . The input impedance of the section is roughly 200 kHz and signal levels in the approximate range 10 mV to 100 V can be accepted.

The DTM is provided with a built-in precision 1V2 DC reference, which can be used for basic calibration of the DC and DV ranges. Resistance calibration is automatically established by built-in standard resistors. The instrument must be compared with external standards to calibrate the basic $A C, A V$ and frequency ranges.

Accuracy

The basic $31 / 2$ digit DVM module used in the DTM is intended to read 100 mV full scale, with 100% over-range capability (giving a maximum reading of 199.9 mV). The basic module is capable of reading with an accuracy that is within 0.1% (one digit, or 100 uV) of full scale, once it has been initially calibrated against a suitable reference standard.

In practice, all other ranges of the DTM are obtained by feeding inputs to the DVM module via resistive potential dividers, current ranging resistors and resistance standards.

In our prototype DTM we've used 1% resistors in all pertinent positions, thus giving the completed instrument an overall accuracy of 1% which we consider to be adequate for most practical purposes. If you want higher accuracy,

$\begin{gathered} \text { SW2 } \\ \text { RANGES } \end{gathered}$	SW1 MODE' SEtting					
	\dagger	DC	AC	OV	AV	R
1	-	100uA	100uA	100 mV	${ }^{100} \mathrm{mV}$	1008
2	1kHz	1 mA	1 mA	1 v	iv	tko
3	10kHz	10 mA	10 mA	10 V	10 V	10k
4	100kHz	100 mA	100 mA	100 V	100 V	100k
5	1MHz	1A	1 A	1kV	1kV	ıмо
6	-	1A	1A	1kV	1kV	10 m

Table 1. SW2 range details for the six meter functions.

Fig.2. The wiring of SW2 (above) can become a veritable jungle if you're not careful. Lock yourself away from all distractions for half an hour and work round each pole in turn.

The heart of the DTM is a DVM 176M RevC 31/2 digit liquid crystal
DVM module, available from Ambit International This module DVM module, available from Ambit International. This module a single 9 V battery. The complete module (including the readout) typically draws only 1 mA of current and is intended to read 100 mV DC full scale with 100% over-range capability (giving a maximum reading of 199.9 mV).

In our particular application we need, for various reasons, to power the module from a split $12 \mathrm{~V}(\mathbf{6 - 0}-6)$ battery supply, which makes it necessary to ignore the module's built-in voltage reference, and supply it with a reference voltage from an external source. IC1 and the RV1-R23 divider are used for this purpose.

In the completed DTM, voltage ranging is obtained by feeding inputs to the DVM module via the RG-R12 potential divider network. AC voltage ranging is obtained by feeding inputs to the DVM module via the same potential divider (which is ACIDC Current ranging is around IC7)
Current ranging is obtained by feeding the test current through the appropriate one of the R1 to R5 ranging resistors and generated voltages are fed directly to the input of the DVM module. In the AC mode, they are fed to the module via the ACIDC converter.

Frequency indication is obtained by feeding input signals to the DVM module via a precision frequency-to-voltage converter. The f-to-v converter has a basic range of 10 Hz to $1,999 \mathrm{kHz}$ and frequency ranging is achieved by feeding input signals to the converter via switch-selected decade divider networks.

Resistance measurements are made by disconnecting the external reference from the DVM module and connecting the test resistor in series with the appropriate one of the R13 to R18 ranging resistors and powering the combination with a few ranging resistor is monitored at the reference-input terminals of the DVM module and the voltage of the unknown resistor is monitored at the module's signal input terminals. The DVM module compares the ratios of the two voltages (and thus the ratios of the resistors) and gives a readout that is interpreted directly in terms of resistance.

This 'ratiometric' system of resistance measurement has two distinct advantages. First, maximum test voltages of only a few
hundred millivolts are applied to the unknown resistor, thereby enabling in-circuit resistance measurements to be made without causing semiconductor junctions to become forward biased. second, the accuracy of measurement is independent of the ranging resistors, thus determined solely by the accuracy of the circuit measures, thus eliminating calibration problems. Our

In the DIM multi-pole switch SW7 is used to sele ct of operation and SW2 is used for range selection SW2 sets the decimal point of the display to a position appropriate for the selected range.

The DTM has a facility for testing semiconductor junctions. To use this facility, the unit is switched to the 100uA range in the DC mode and the test device is connected between the DT + and + terminals of the instrument. The DT + terminal is energised from the built-in 1V2 source via RV2 and R25 and the resulting device current is read out by the DVM module. Open circuit devices give a reading of zero. Short circuit devices give a reading of 100
60.0 .

The AC/DC converter section of the instrument is designed around IC7, which is connected as a precision rectifier. The gain of output of the converter is incer calibration purposes, via RV5. The by an additional network that is incorporated in the DVM module

Frequency to voltage conversion input test signals are fed to high-impedance (roughly 200k) input buffer Q2 via safety resistor R26 and are then amplified by Q3 and converted to square waves at the input frequency via IC2. The resulting square waves are then divided down by decade dividers IC3 to IC5.

The heart of the converter is IC6 which, quite simply, is a dedicated precision frequency-to-voltage converter chip, in which the input signal is fed to pin 11 via R32 and a proportional analogue voltage appears at the junction of R38-R39. In our application, the IC is configured to cover the basic range of 10 Hz to 1.999 kHz . Frequency calibration can be set via RV4 and offse ulling (zero output for zero input) can be achieved via RV3.
Frequency ranging of the complete converter circuit is the IC2-IC5 network we SW 2 . directly from the output of IC2; on the 1 MHz range, IC6 is fed from the output of IC5.
self-tapping screws and $1 / 8$ inch spacers into studs moulded into the base of the case

Make up PCB A as shown in the overlay, taking special care over the construction. Note that 1% resistors are used in the range-determining positions. Fit Veropins in all appropriate positions on the board, to facilitate wiring interconnections. Make up the power supply $(+6 \mathrm{~V}, 0 \mathrm{~V}$ and -6 V) connections to the board via SW3

Make up the following interconnections to the DVM module, noting that the module is a MOS device and can be damaged by static charges; Vss to -6 V and VDD to +6 V on PCB A. Connect COM, IN LO and TEST together and connect to the 0 V power supply line. Connect the 0 V line to the instrument's common input terminal via FS1. Connect RFL to the common terminal of SW1f. Connect RFH to the common terminal of SW1d. Connect IN HI to the common terminals of SW1c and SW1e.

Refer to the main circuit diagram and make the following connections. Wire up SW1d and make the connection to RV1 slider on PCB A. Wire up SW1f and make the connection to COM terminal on the DVM module. Trace the DV (direct voltage) path through the circuit and make the appropriate connections as follows. From SK2 to SW1a common; from SW1a DV to R6 and from the R6-R12 chain to the 1 to 6 pins of SK2c; from SW2c common to SW1b DV/AV; from SW1b common to SW1c DV and AC; from SW1c common to SW1e common and to the IN HI terminal of the DVM module.

With all the above connections made, double check the wiring and then switch the unit on. Short the instrument's input terminals and check that the DTM reads 000 on all ranges in the $D V$ mode. Switch to the 1 V range, connect the unit's input terminal (SK2) to SK1 and trim RV1 to obtain a reading of 1V2 (1200). The unit is now approximately calibrated (within 5\%) on all DV ranges. Remove the connection from SK1 and check that the unit is functional on all DV ranges.

If you have access to a precision DV source or to an accurate DMM, you can precisely calibrate the DTM by switching it to the 100 mV DV range, connecting a known input test voltage ($100-199 \mathrm{mV}$) and adjusting RV1 for a correct reading.

Decimal Pointing

Refer to the main circuit diagram and make the connections from +6 V to SW2f common via R24 and from the SW2f range pins to the D1, D2 and D3 terminals on the DVM module. Switch the DTM on, on the DV ranges, and check that the decimal point appears in sensible positions on each range (eg 100 mV reads 100.0 on the 100 mV range or 100 on the 1 V range).

Refer to the main circuit diagram and trace the AV (alternating voltage) path, making additional connections as appropriate, as follows. From SK2 to the top of R6 via SW1a and C 1 ; from the output of the R6-R12 chain to SW1b via SW2c; from SW1b common to R41 of the AC/DC converter on PCB A and to the DV and DC pins of SW1c; from R46 of the converter on PCB A and to the DV and DC pins of SW1c common to 1 NHI on the DVM module.

When the above connections are complete, set the unit to the 100 mV AV range, connect a 1 kHz sine wave of known amplitude ($100-199 \mathrm{mV}$) to the input of the DTM and adjust RV5 for a correct reading. Switch the unit to the 1 V range, increase the input signal to a sensible value and check the frequency response of the instrument. The response should be virtually flat from 20 Hz to 40 Hz ; if necessary, the value of C2 can be padded up slightly to obtain the required response. Check that the unit is functional on all other $A V$ ranges.

DC Ranges \& AC Ranges

Refer to the main circuit diagram, trace the DC (direct current) circuit path (via R1-R5), add all appropriate switching connections and then give the unit a functional check on all DC ranges.

Refer to the main circuit diagram, trace the AC (alternating current) circuit path, add any appropriate switching connections and give the unit a functional check on all AC ranges.

Resistance Ranges

Refer to the main diagram again, trace the resistance measuring circuit (via R13-R18 and SW2d, SW1d-SW1e-SW1f and from the IN HI pin of the DV.M module to SK2 via SW1c

Fig.3. The mode switch assembly fits on its own PCB (above).
and SW1a) and make all appropriate connections. Give the unit a functional check on all ranges by connecting appropriate test resistors to the DTM test terminals.

Note that, due to the low-voltage ratiometric resistance measuring technique used in this instrument, the readout tends to jitter somewhat when used to test resistors with values in excess of 200 k or so. This tendency can be minimised by keeping test leads as short as possible, to avoid hum pickup.

Make the connection from R25 (on PCB A) to Diode Test Socket SK1. Short SK1 to SK2 and adjust RV2 for a reading of 100.0 on the 100 uA DC range. Remove the short and check that a reading of 00.0 is obtained. Connect a silicon diode between the two sockets and check that a reading of about 60.0 is obtained in the forward direction and 00.0 in the reverse.

Frequency Ranges

Construct the frequency-to-voltage converter circuit on PCB B and make its supply connections via SW1g (+6 V) and SW1 $(-6 \mathrm{~V})$ and the supply common line. Make the input connection to the PCB from SW1a and the output connection to SW1c. Wire up SW2e as shown, noting that a 4 k 7 resistor is connected directly to each of the $1 \mathrm{kHz}, 10$

Fig.4. Component overlays of the two Digital Test Meter boards. Frequency ranging (top board) is achieved by feeding IC6 from an appropriate point in the IC2-5 chain.
Resistance measurements are made by using one of the resistance ranging resistors $\mathrm{R} 13-18$ (bottom board). IC7 is the heart of the ACIDC converter.
PARTS LIST

Resistors $1 / 4$ W 5% unless specified		Capacitors	
R1	OR1 1/2W 1\%	C1	10 n 2 kV ceramic disc.
R2	1R0 1/2W 1\%	C2	33 p silver mica
R3,12	10R 1/2W 1%	C3	470 p silver mica
R4,11,13	100R $1 / 2 \mathrm{~W}$ W	C4	4 n 7 silver mica
R 5, 10, 14	1 kO 1/2W 1%	C5	150n polycarbonate
R6,18	10M 1/2W 1\%	C6,7,9,11	470u 16v electrolytic, PCB type.
R7,17	1M0 1/2W 1\%	C8	100n polycarbonate
R8,16	100k 1/2W 1\%	C10	$470 n$ polycarbonate
R 9,15	10k 1/2W 1\%	C12	2 n 7 ceramic
R19,30,39	1k0	C13	470 p ceramic
R20,24, 25,43,44	10k	C14	10n polycarbonate
R21,26	5k6	C15,17	220n polycarbonate
R22	3 k 3	C16	4 4 7 electrolytic, PCB type
R23	22k	Semiconductors	
R27	680k	DVM	176M Rev.C.
R28,45	3k9	IC1	Zn423
R29,46	470k	IC2	4093B
R31	47R	IC3,4,5	4017B
R32,47,48,49,50	4 k 7	IC6	9400 CJ
R33	390k	IC7	CA3140
R34,35	2 k 2	Q1,2,3	BC109
R36,41	100k	D1-4	IN4148
R37	820k	Miscellaneous	
R38	15k	SW1a, 8 pole ch	interlocking push button
R 40	22R	SW 1,b,c,d,e, 6 po	over interlocking push button
R 42	2M2	SW2a-f, 2 pole 6 SW3, DPDT mini	ers (3 off) rotary switch le
Potentiometers		SK1-4, 4 mm ban	
Rv1,2	4 k 7 miniature horizontal preset	2 off, 4 section b	ders for HP7
Rv3	47 k minialure horizontal preset	1 off, $11 / 4$ " fuse \&	hassis fixing or similar
Rv4	470 k miniature horizontal preset	1 off, winged kno	
Rv5	2k2 miniature horizontal preset	Case (see buylines)	

$\mathrm{kHz}, 100 \mathrm{kHz}$ and 1 MHz output pins of PCB B, with the connections to SW2e made via these resistors.

When construction is complete, switch to the 1 kHz range in the ' f ' mode, short the unit's input terminals and adjust RV3 for zero reading on the meter. Remove the input short, connect a 1 kHz input signal and adjust RV4 for a reading of 1.000 on the meter. Finally, check that the DTM is functional on all other frequency ranges.

BUYLINES

Watford Electronics have agreed to supply a full kit of parts for the ETI DTM.

Our Case for this project was obtained from OK Machine and Tool. (Order as CH23 Tan) Phone 0703-610944.

Ambit International Supply the DVM176 Rev. C.

Our condolences to purchasers of ZEON Hong Kong watches - ZEON have gone into voluntary

 liquidationYet another reason for paying a litile more for qUALITY, RELIABILITY AND CONTINUING SERVIGE

Our best selling alarm chronograph is now available from stock again

CASIO 810S-35B ALARM CHRONO

RRP £ 34.95
ONLY £29.95

Solid stainless steel, mineral glass. Water resistant. 5-YEAR BATTERY Hours, minutes, seconds, day and day, date, month and year. 12 or 24 -hour display. 24 -hour alarm, hourly chimes. Stopwatch from $1 / 100$ second to 7 hours; net, nap and 1 st and 2 nd place times.

NEW CASIO CHRONOGRAPHS

Hours, minutes, seconds, am/pm, day and date Automatic four year calendar $1 / 100$ second chronograph to 12 hours, measuring net lap and first and second place times. Backlight, 2-year lithium battery. Water resistant case. Mineral glass.

F-300 Rugged, lightweight resin case 1100S-37B Chrome plated. S/S bracelet

SEIKO

Hours, minutes, seconds with alpha day and date on upper display and day, date, month calendar. Alarm and hourly chimes. COUNT DOWN ALARM Stopwatch from $1 / 100$ second to 12 hours: net. lap and 1 st and 2nd place times on double display

DER 028 SOLAR ALARM CHRONOGRAPH
With weekly alarm, interval timer, 7-year battery 100 m water resistant

RETURN OF POST SERYICE

Postal and telephone orders received before $4.00 \mathrm{p} . \mathrm{m}$. will normally be despatched the same day by FIRST CLASS POST
Send your order by FREEPOST (2nd class post - no stamp required). Please phone urgent orders or use first class mail.

FREE
on request with order

With any purchase made from this section before September 30th 1980 GENTLEMAN'S and long life battery from world famous manufacturer. Value around $£ 12$. An ideal working watch for you or a present for someone else
Offers subject to availability.

FREE ON REQUEST

With any purchase made from this section before September 30th. 1980
From wortd tamous manufacturer
GENT'S DIGITAL WATCH, around $£ 17$
or LADY'S DIGITAL WATCH, around $£ 15$ or CALCULATOR /CLOCK, around $£ 17$

Offers subject to availability

Something to sing about with iwelve program-

Clock, hourly chimes, calendar to 1999 Alarm 17 different melodies, changing daily, a fixed melody or buzzer. Alarm 2, a fixed melody or buzzer. Date Wedding "Happy Birthday". Date memory 2. cember $24 / 25$ plays "Jingle Bells". Calculator with 11 -note keyboard, full access memory, square roots. $\%, 7 / 32 \times 21 / 2 \times 41 / 2$ inches. Wallet. 1 year bateries.

You asked for a metal version of the best seiling
C-80. Here it is!

CASIO C-801

Watch
Calculator Stopwatch RRP $£ 34.95$

ONLY

£29.95
finger touch keyboard. Hours minutes, seconds, m / pm and day. Day, date, month calendar pre-programmed to 2009. Professional 24-hour stopwatch, measuring net, lap and fisst and second place times to $1 / 100$ second. Dual time (24 hour). 8 digit calculator. Backlight. Water resistant chrome plated case with stainless steel bracelet
C-80 Black resin cased version $£ 24.95$

We PROMISE TO BEAT any sensible lower advertised prices ON THE SPOT if the advertiser has stocks AND you get Casio's guarantee from us!

OTHER STAR BUYS

SUMMERTIME SPECIAL OFFERS

WATCMES with chronograph (stopwatch) $950 \mathrm{~S}-42 \mathrm{~B} 12 / 24 \mathrm{hr}$ Dual time. S/S jacket
560s-388 Digi/ana. Timer chrome $\quad 17.95$ © £24.95 Alarm chronographs with hourly chime B10s-40b As 8 RS-35B but chrome $£ 24.95$ 790S-39 1/10 sec full calendar Chrome
£29.95
CALCULATORS
AQ-2200£19.95. MQ-12£19.95
Musical: ML-82 £19.95. ML-71, ML-81£22.95
Ulitra slim scientific: FX-3200 £21.95.

WATCHES

56QS.50B Digital/analogue Chronograph Fimer. Solid stainless steel E34.95
79CS-51B Universal calen ono with chimes. tone control Solids/ E3.95 $59 C S-338$ Ultra slim dress watch with alarm $£ 44.95$
Scientific calculator: FX-8000 Stopwatch. alarm timers

PRICE includes VAT, P\&P. Send your
Company Order, Cheque or P.O. or phone
your ACCESS or B'CARD number to:

TIMPUS
Tempus (Dept. ETI)
FREEPOST, 164-167 East Road Cambridge CB1 1 BR. Tel. 0223312866

BEGINNERS

Beginners Guide to Electronics Squires $£ 3.75$
Beginners Guide to Transistors Reddihough $£ 3.75$
Beginners Guide to Integrated Circuits Sinclair £3.75
Understanding Electronic Circuits Sinclair $£ 4.60$
Understanding Electronic Components Sinclair £4.60
Beginners Guide to Radio King £3.75
Beginners Guide to Audio Sinclair £3.75

COOKBOOKS

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook 88.20
Active Filters $£ 11.30$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $£ 10.00$
Video Cookbook $£ 7.00$
TIL Cookbook E 7.55
The Basic Cook $£ 4.00$ inc. p/p
IC Converter Cookbook $£ 9.50$

=APPLICATIONS

Fire and Theft Security Systems B. Weis $£ 2.15$
How to Build Electronic Kits Capel $£ 2.65$
110 Electronic Alarm Projects R. M. Marston $£ 4.45$
110 Semiconductor Projects for the Home Constructor R. M. Marston 4.45.

10 Integrated Circuit Projects for the Home Constructor R. M Marston $£ 4.45$
110 Thyristor Projects Using SCRs R. M. Marston £4.45
110 Wave Form Generator Projects R. M. Marston $£ 4.45$

=COMPUTING \& MICROPROCESSORS

What is a Microprocessor? 2 cassette tapes plus a 72 -page book 12.00

Beginners Guide to Computers and Microprocessors with Projects C Adams $£ 6.05$
Basic Computer Games Ahl £6.05
Basic for Home Computers A self-teaching guide. B. Albrecht £6.15 Illustrating Basic D. Alcock £3.75
Intro to Microprocessors Aspinall £6.55
Z-80 Microcomputer Handbook W. Barden $£ 7.75$
How to Program Microcomputers W. Barden $£ 7.25$
Introduction to Microcomputers and Microprocessors A. Barna £8.60
Microprocessors in Instruments and Control R. J. Bibbero $£ 13.00$
Basic Basic J. S Coan £7 80
Advanced Basic J. S. Coan $£ 7.30$
Getting Acquainted with Microprocessors L. Frenzel $£ 7.25$
Beginners Guide to Microprocessors C. M. Gilmore $£ 4.90$
Beginners Guide to Home Computers Grossworth $£ 4.50$
Beginning Basic R. E. Gosling £4.75
Microprocessor Programming for Computer Hobbyists N. Graham £7. 15
Miniprocessors from Calculators to Computers Heiserman $£ 5.00$ Microcomputers, Microprocessors, Hardware, Software and Appli cations J. L. Hilburn £17.40
Basic Programming J. G. Kemeny £7.25
Microprocessor Systems Design E. Klingman $£ 17.00$
Intro to Microprocessors Leventhal $£ 17.00$
Microprocessors - Technology, Architecture \& Applications D. R McGlynn $£ 10.55$
Interactive Computing with Basic Monro £4.25
Basic with Style P. Nagin £4.25
Software Design for Microcomputers Ogdin $£ 7.20$
Microcomputer Design Ogdin $£ 7.25$
Microcomputer Base Design Peatman $£ 5.70$
Hands on Basic with a PET Peckham $£ 9.55$
Basic - A hands on method Peckham $£ 6.95$
6800 Software Gourmet Guide and Cookbook Scelbi $£ 8.90$
8080 Soft ware Gourmet Guide and Cookbook £8.90
The 8080A Bugbook: Microcomputer Interfacing \& Programming P. H. Rony $£ 8.35$
$8080 / 8085$ Software Design Titus $£ 7.60$
57 Practical Programs \& Games in Basic Tracton £6.65
Microcomputer Primer M. Waite $£ 6.50$
Your Own Compqer Waite £1.60
Microprocessor/Microprogramming Handbook Ward $£ 6.20$

LOGIC
Logic Design Projects Using Standard ICs J. Wakerly $£ 7.15$ Practical Digital Design Using ICs J. Greenfield $£ 16.00$
Designing With TTL Integrated Circuits Texas Instruments $£ 9.35$
How To Use IC Circuit Logic Elements J. Streater $£ 3.80$
110 COSMOS Digital IC Projects for the Home Constructor
R. M. Marston $£ 4.45$

Understanding CMOS Integrated Circuits R. Melen £4.15
Dipital Electronic Circuits and Systems R. M. Morris $£ 4.50$ MOSS Digital ICs G. Flynn $£ 5.25$

TEST INSTRUMENTS

The Oscilloscope In Use Sinclair $£ 3.50$
Working with the Oscilloscope A. Saunders $£ 4.25$
Servicing with the Oscilloscope A. King $£ 6.65$
Radio Television and Audio Test Instruments King $£ 7.00$

=OP-AMPS

Applications of Operational Amplifiers Graeme (Burr Brown) $£ 8.45$ 110 Operational Amplifier Projects for the Home Constructor R. M Marston £4.45
Designing With Operational Amplifiers Burr Brown £19.00
Operational Amplifiers Design and Applications G. Tobery (Burr Brown) 7.55

COMMUNICATIONS

Communication Systems Intro To Signals \& Noise B. Carlson $£ 7.65$ Digital Signal Processing Theory \& Applications L. R. Rabiner £24.40 Electronic Communication Systems G. Kennedy $£ 8.75$
Frequency Synthesis. Theory \& Design Mannassewitsch $£ 25.00$
Principles of Communication Systems H. Taub $£ 8.40$

THEORY

Introduction to Digital Filtering Bogner $£ 10.60$ Transistor Circuit Design Texas Instruments $£ 9.75$
Foundations of Wireless Electronics M. G. Scroggie $£ 5.60$

REFERENCE

Electronic Engineers Reference Book (Ed. 4) L. W. Turner $£ 34.50$
Electronic Components M. A. Colwell $£ 2.90$
Electronic Diagrams M A Colwell 1290
International Transistor Selector T. D. Towers New update $£ 10.20$ International FET Selector T. D. Towers $£ 4.35$
International Op-Amp Linear IC Selector Towers $£ 7.65$
Radio Valve and Semiconductor Data A. M. Eell $£ 4.00$
Radio, TV and Audio Technical Reference Aqmos $£ 30.40$

MISCELLANEOUS

Electronic Fault Diagnosis Sinclair $£ 3.55$
Integrated Electronics J. Milman $£ 8.20$
Practical Solid State DC Supplies T. D. Towers $£ 6.40$
Practical Triac/SCR Projects for the Experimenter R. Fox $£ 2.35$
Printed Circuit Assembly Hughes \& Colwell $£ 2.90$

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

Microprocessors 280A. 8 bit CPU. This will run at 4 MHz but is selectable between $2 / 4 \mathrm{MHz}$. This CPU has now beerigenerally accepted as
POwertul, INTERFACE $^{\text {NTAC }}$
Keyboard New expanded 57 key Licon solid state Keyboard New expanded ard Nascom, monitor controlled, decoding.
T.V. The lv peak to peak video signal can drive a monitor directly and is also fed to the on-board modulator to drive the domestic T.V.
1.O. On-board UART (Int. 6402) which provides serial handling for the on-board cassette interface or the RS232/20mA teletvpe interface
The cassette interface is Kansas City standard at either 300 or 1200 baud. There is a link option on the NASCOM-2. For 2400 Baud.
The RS232 and 20 mA loop connector will interface directly into any standard teletype. The input and output sides of the UART are independently switchable berween any of the options -
i.e. It is possible to have input on the cassette and output on the printer.
P1O There is also a totally uncommltted Parallel 1/O (MK 3881) giving 16, programmable, W/O lines. These are addressable as
complete handshake controls.
Documentation Full construction article is provided for those who buy a kit and an extensive software manual is provided for the monitor and Basic.
Basic The Nascom 2 contains a full BK Microsoft Basic in one Rom chip with additional features like DEEK, DOKE, SET RESET for simple programming.

COMPUTER SYSTEMS
"MICRON" the latest Ine
In superb products

6502 based microcomputer

- VDU alpha numeric display
- Powerful monitor TANBUG
- 8K RAM
- 32 parallel I/O lines
- 2 serial I/O lines
- RS $232 \mathrm{C} / 20 \mathrm{~mA}$ loop, with 16 programmable Baud rates
- Four 16 Bit counter timers
- CUTS cassette recorder interface
- Data bus buffering
- Memory mapping control
- 71 Key ASCII Keyboard, including numeric keypad and with auto repeat
- Including metal cabinets for both keybosid and modules
- Including power supply 10K Microsoft BASIC
- All the usual BASIC commands
- Integer and real numbers
- Integer and real arrays
- Intrinsic functions ABS, INT, RND, SGN, SIN, SOR, TAB, USR, ATN, COS, EXP, LOG, TAN.
- User defined functions
- READ and DATA statements
- Dump and load programs for cassette recorders
- Program editing command
- String function for text I/O
- BASIC can call user machine-code sub routine
- User machine-code interrupt handler interfaces with BASIC

COMPUTER KEYBOARDS

TASA 56 key touch sensitive keyboard. All ASCII characters including control keys. Parallel output with strobe. Shift lock. Keys coded in 3 colours, to indicate function. $18 \vee D C$ at $35 \mathrm{~mA} .15^{\prime \prime} \times 6.25^{\prime \prime} \times$ $0.385^{\prime \prime}$ thick. Black resin encapsulated.
$49.50+$ VAT
Stard WEVES MK III 71 keytouch sensitive keyboard. With numeric pad. All ASCll characters
including control keys. Auto key repeat. Parallel including controb keys. Auto key repeat. Paralel Built in 'beeper' with level control. 5 V DC at 300 mA $15^{\prime \prime} \times 7^{\prime \prime} \times 1.25^{\prime \prime}$. Grey case with white keys on blue. 48.50 pus VAT

CARTER 57 key ASCII keyboard. Conventional key board. 128 ASCII characters including control keys. Parallal output with strober, Shift lock. +5 V and $-12 \mathrm{VDC}. 12^{\prime \prime} \times 5.5^{\prime \prime} \times 1.5^{\prime \prime}$. Black keys with white ledgends.
FERRANTI-"SIZE $14 \times 6 \times 3$ "SLOPING FRONT" 55 Key ASCII Coded in steel case. Complete with 55 Key ASCII Coded in ateel case. Complete with plug and Cable with circuit to convert to T.T.
levels.

MICROPROCESSOR BOARD (NASCOM 2)
$4 \mathrm{MHz} Z 80 \mathrm{CPU}$; TV or Video +1200 beud Kansas City + Serial RS 232 printer
Interfaces; Keyboard; 128 character ASCII plus 128 Graphics in $2 \times 2 \mathrm{~K}$ ROM; free 16 -way parallel port; 8K BASIC; NAS SYS operating monitor. £280 built and tested.
Firmware \& MOS IC.
Zeap Assembler (4, 1Kx8 EPROMS) £50
Nas Pen text editor ($2,1 \mathrm{Kx8}$ EPROMS) £30
Expension boards (in kit form)
16K RAM £127.50 - 32K RAM £ 175.00 48K RAM £220.00
High Resolution Programmable Graphics $£ 90$ Colour Board Kit E140
High Resolution Colour add on £37.50

NASCOM PRODUCT LIST + YaJ	
(1ART + BAUD rate generator + crvisial for	
clock generator for I/O board	8.25
P/IO-MK3881 + interconnect for I/O	
Econographics kit for additional 128 c	
actars (N1 only	
$2708 / 2716$ Programmer suitable for N1 and N2	
Nascom 19" rack mounting card frame for N1 and N2	
Nas-DA disassembler 3 EPROM for Nas-	
sys 37.60	
MK36271 8K BASIC in $8 \mathrm{~K} \times 8$ ROM	40.00
Naspen VS in 2 EPROM	
Nas-zys mionitor in 2 EPROM	28.00
Nasbug T2 $1 \times$ EPROM 12.50	
Nasbug T4 $2 \times$ EPROM	28.00
Tiny Basic $2 \times$ EPROM	
Super Tiny Basic upgrade $1 \times$ EPROM 12.50	
Tape Sotware	
ZEAP 2 tape and documentation for	
Nas-sys	
8K BASIC tape and documentation for N1 15.00	
MEMORIES Dhacounts 10\% for 4. 15\% for B,	
MK3880 (280) for N 1	7.50
K $4111616 \mathrm{~K} \times 1$ dYnamic RAM	
MK4027 4K $\times 1$ dynamic RAM $\mathbf{2 . 2 5}$	
$21021 \mathrm{~K} \times 1$ static RAM	
4118 ¢ $\mathrm{K} \times 8$ static RAM	
Unprogrammed 2708 (1980	
$21141 \mathrm{~K} \times 4$ Static RAM	3.8
8080 A	5.25

CENTRONICS QUICK PRINTER

EXCLUSIVE TO HENRY'S \& 195
50% OFF MAKER'S PRICE
50\% OFF MAKER'S PRICE L
for: Software selectable 20, 40 and 80 TANDY, $\begin{gathered}\text { column using } \\ \text { ised } \\ \text { paper. } 120 \mathrm{~mm} \\ \text { roll supplied. }\end{gathered}$

PET, 150 lines per minute.
NASCOM ${ }^{\text {Centronics }}$ parallel data interface for 240 volt mains input. ASCll character set Paper foed, and on/off select switches 'BELL' signal Weight 101 bs Size: $13^{\prime \prime} \times 10{ }^{\prime \prime} \times 4{ }^{\prime \prime}$
Now, boxed and fully guaranteed
POST PAID Price £ 195.00 + VAT
See COMPUTING TOUAY Recommendations
See COMPUTING TOUAY RACOMm
MARCH/MAY ISSUES

We have produced a mini-rack which accepts MICROTAN 65 and TANEX, it hes en integral power supply, just plug it into the mains and owey you gol Finished in Biack/Tangorina/Brushed shurninium, it gives
your mini-system the professional finigh.
\& 43.00 piut VAT SEND FOR COMPLETE COMPUTER BROCHURE

Tanex (min. con) Kit, Incl. VAT	$\mathbf{£ 4 9 . 4 5}$
Tanex Assembled Incl. VAT	$\mathbf{£ 6 0 . 9 5}$
Lower case pack. Incl. VAT	$\mathbf{£ 1 0 . 9 0}$
Chunky Graphics Pack, Incl. VAI	$\mathbf{£ . 5 0}$
20 Way Keypad Incl. VAT	$\mathbf{£ 1 1 . 5 0}$
Mini-mother board Incl. VAT	$\mathbf{£ 9 . 9 5}$
Complete Tangerine range available	

London Tangerine and National Nascom Distributor Export Orders deduct VAT, but add 5\% carriage Official Export \& Educational Orders welcome Our Telex 262284 Mono Ref. 1400 Transonics

LONDON STOCKISTS
Microtan 65 Kit, Incl. VAT $\mathbf{£ 7 9 . 3 5}$ Microtan 65 Assembled, $£ 90.85$

SURVIVAL GAME

A highly addictive but infuriating game. Escape from the tyranical machine if you can. Naturally, the game has sound effects, LED readouts and a skill level control.

Survival is a small hand-held game in which the contestant pits his wits against those of the machine. The machine is a tyrannical device, dedicated to enslaving you by repeatedly making threatening gestures towards you (indicated by a brief flash of a LED as the threat is unleashed). When a threat is made you can either submit, by doing nothing, or you can defy the tryant by pressing a JUMP button and trying to escape up a flight of steps (indicated by a vertical column of ten LEDs).

To escape, you must press the JUMP button only when the threat LED is on. Each time you make a successful jump, you move a discrete amount towards the top of the steps and eventual escape (indicated by a pulsed WIN sound as the top LED of the column illuminates). If you make a single wrong move while on the steps, however, the tyrant will instantly strike you (indicated by a 'bleep' sound) and send you tumbling back down to the bottom of the steps. Alternatively, if you submit to the threats (by doing nothing) the tyrant will slowly lure you down from your perilous perch.

An Evening's Work

The machine makes a threatening move once every second or so, but the actual threat lasts for only a fraction of this time. The game is provided with a SKILL level control, which enables the threat duration (and thus the escape time) to be varied from over 200 mS to less than 50 mS . At the lowest skill level, it is possible to escape from the tyrant in only four to five successful moves. At the top skill level, between thirty and forty successful moves are needed to ensure escape. The escape 'steps' are exponentially weighed, so that climbing becomes progressively more difficult with each move.

The SURVIVAL game is designed around three ICs and three transistors, is reasonably inexpensive to build and is powered from a single 9 V battery. The project can be built in one or two evenings

Construction

Construction of this project should present few problems if the overlay is followed with care. Note that IC3 is a CMOS device and should be mounted in a suitable socket.

When construction of the PCB is complete you can either make temporary connections to the eleven LEDs and the transducer, etc and give the unit a functional check, or you can dive in and fit the whole shebang in a suitable box and give the unit a functional check afterwards. If you decide on the latter approach, note that the unit typically consumes some $30-40 \mathrm{~mA}$ and should ideally be powered from a PP7 or larger battery, but that our own prototype is in fact powered (or under-powered!) from a PP3.

It is advisable, before completing the interwiring, to functionally check the performance of each of the eleven LEDs used in the unit.

When construction is complete, switch the game on and check that LED 11 flashes briefly once every second or so and that the flash duration can be varied by RV1. You can check the action of C4 and the ten-LED read-out circuit by temporarily shorting the top of R 8 to the positive supply line, in which case the LEDs in the column should sequentially illuminate and the WIN alarm (a pulsed tone) should sound when the upper LED (LED 10) turns on. Finally, remove the temporary short and press PB1 when LED 11 is off, checking that the column of LEDs turn off and a brief tone is generated. Your game is then complete and ready for use.

Construction of the Survival game is relatively straightforward - PCB in one half of the case, LEDs and controls in the other.

Fig.1b. The sound effects generator consists of two gated astable multivibrators. The game just isn't complete without it.

HOW IT WORKS

The basic operating principle of the game is quite simple. IC1 is a low frequency (less than 1 Hz) astable; its output switches alternately between the low (zero) and high (+9 V) states, driving LED 11 on whenever the output is high. The idea of the game is to close PB1 whenever LED 11 is on, thereby causing C4 to slowly charge up via R8, but to ensure that PB 1 is open whenever LED 11 is off, thereby preventing C4 from rapidly discharging via R9 and D2. The voltage of C4 is monitored by a LED voltmeter (IC2 and ten LEDs) and the game is won when C4 charges to roughly half supply voltage (LED 10 on). IC3 is used as a sound effects generator and produces a brief tone whenever C4 goes into the discharge mode or a pulsed tone when the game is won.

The operation of the IC1 astable is slightly unusual. Here, C2 alternately charges (LED 11 on) via R1-D1-RV1-R3 in parallel with R2 and discharges (LED 11 off) via R2 only, thereby producing a non-symmetrical output waveform in which LED 11 is on for a shorter period than it is off. The on/off ratio is variable via RV1, which thus acts as a Skill Level control.

The pin 1 ('ground') terminal of IC1 is taken to the $0 V$ line via the base-emitter junction of Q1, shunted by R4and C3. Whenever C4 is inadvertently discharged by closing PB1 at the wrong time, the capacitor discharges through this junction and turns Q1 on,
thereby causing Q2 to turn on and activate the IC 3c-IC3d half of the sound-effects generator circuit.

Capacitor C4 charges slowly in the exponential mode via R8 when PB1 is correctly closed and discharges rapidly via R9 and D2 when PB1 is incorrectly closed. The capacitor discharges very slowly via R10 when PB1 is open. The C4 voltage is monitored by LED voltmeter IC2, which drives a line of ten LEDs in the 'dot' mode. The voltmeter is programmed (via R11) to read full scale (LED 10 on) when C4 is charged to approximately half supply volts and is offset by approximately 600 mV via D3. The base-emitter junction of Q3 is wired in series with LED 10, causing Q3 to turn on and activate the IC 3a-IC 3b half of the sound effects generator when LED 10 turns on (game won).

The sound effects generator is made up of two gated astable multivibrators. IC 3c-IC 3d act as a fast (1 kHz or so) astable which directly drives a piezo transducer or sounder and is gated on via Q2 collector whenever PB1 is incorrectly closed. IC 3a-IC 3b act as a slow (a few Hertz) astable which is activated via Q3 collector when LED 10 turns on and pulses the fast astable on and off to produce a distinctive pulsed-tone GAME WON sound.

The entire circuit is powered from a 9 V battery. The circuit typically consumes some $30-40 \mathrm{~mA}$, so this battery needs to be a PP7 or larger size.

PARTS LIST

BUYLINES

All components used in the ETI Survival game are common types and should present no problems.

The case for this project can be obtained from OK Machine \& Tool Lid. Phone: 0703-610944. Order as Series HP colour tan. Ambit International are stockists for the Iransducer.

Fig.2. Component overlay. Lots o^{\prime} LED leads to lace up - there's nothing to it.

MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC

GREENWELD

443A Millbrook Road Southampton SD1 DHX All prices include VAT @ 15% - just add 4Op post
have you got your
COPY OF THE AMAZING GREENWELD CATALOGUE YET????
WHY MOT?? - LOOK AT ALL THESE FEATURES:

* $\begin{aligned} & \text { 600 Discount Vouchers } \\ & \text { Ounatut Prices tor tuik buyers }\end{aligned}$

Quantity Prices for but
Bargain List Supplement
Reply pald envelope
Priority Order Form

- Priority Order Form

Iso included is the NEW VERO catalogue.
normally 40 p on its own!
ALL THIS FOR JUST 40 p
SLIDER POT SCOOP!!
Made by Piner. types PL40CP \& PL60C Silly
prices for superb goods
Pi40CP $-69 \times 16 \times 9 \mathrm{~mm} 40 \mathrm{~mm}$ slide length
$20 \mathrm{p} ; 25.9917 \mathrm{p} ; 100+14 \mathrm{p}$.
20p; 25.99 17p; $100+14 \mathrm{p}$.
PL60C $-84 \times 10 \times 7 \mathrm{~mm}$. 60 mm slide length 5 k
10 k 22k and 100 k
10k 22 k and 100 k log. only Pices (any mix)
$1.2425 \mathrm{p}: 25.9922 \mathrm{p}: 100+17 \mathrm{p}$.
BUZZERS, MOTORS \& RELAYS
metal consiruc
on 50 mm da 20 mm 70 p
2402 Mintature type buzzer 6 ,
$22 \times 15 \times 16 \mathrm{~mm}$ Very neat 53 p
2450 Miniature 6 V DC motor, high quality sype
32 mm dia $\times 25 \mathrm{~mm}$ high. with 12 min spindle
32 mm dia $\times 25 \mathrm{~mm}$ high. wim 12 mm spinde
A 372 Audible Warning device - solid state circuit drives high efficiency iransducer to give high direct from TTL or CMOS Module size $45 \times 21 \times 12 \mathrm{~mm}$ Comprehensive data supplied ¢1.50
W892 Havy Duty 12 V refay, deal for car use-
single 15 A make coniact Coil 25 A in sealed metal can with mounting bracket 85 p.
W890 DIL Feed retay SPCO 24.10 V 200 R coll
Only $£ 2.20$.
FSRA60 relay
FSRA60 relay $2 \times 10 \mathrm{~A}$ contacts 1 M 1 B Corl is
250 R and rated 60 V ac, but works on 12.24 DC
Solid Encapsulation with screw terminals makes it

REGULATED PSU PANEL

aeld design - better spec than anything on the market being oftered at the price
Panet $110 \times 82 \times 33 \mathrm{~mm}$ high contans all comm ponents including bridge rectither and smoothing capactior Ready bult and lested - Iust adda a 30 V
24 transtormer and two pots tor a fully variable $2 A$ transtormer and two po
voltage and current supply
SPEC Output voltage 0-28V
Source Impedance OF
Open crecuit ripple 10 mv
Send SAE for full detats of the many ways this
useful module can be used, together with price list useful module can be used, togetherw. of parts for various options Only $£ 6.75$

TRANSISTOR PACK K516

Take advantage of thus unbelievable ofter"1
Small signai NPN PNP transistors in plastic
package at an incredibly package at an incredibly low
ase marked with type number - almost all are full
sper devices Some have bent leads Oyer 30 spec devices Some have bent leads Over 30
ditierent types have been found by us including BC184/212/238/307:328 BF 1967 able as a mixed
E25 per 1000
buy a complete range of COMPONENTS AND THESE

PACKS WILL HELP YOU ALL PACKS CONTAIN FULL SPEC BRAND NEW
MARKED DEVICES - SENT BY RETURN OF POST VAT INCLUSIVE PRICES

 $\mathbf{5 5 . 5 3 .}$

$\mathbf{K 0 0 3}$ Polyester capacitors 10 each of these | values | 0 | 01 | 0 | 015 | 0 | 022 | 0 | 033 | 0 | 047 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 068 | 0 | 1 | 0 | 15 | 0 | 22 | 0 | 33 | 0 | 47 | attogether for E 5.07

kog Mylar capacitrors min 100 V lype 10 each
all values trom 1000 pF to 10000 pF Total 130 tof $\mathbf{E 4 . 0 5 \text { . }}$ physical size 10 each of these popular values 1
2247102247100ω Fotal 70 for $£ 3.59$. K008 Extended range as above also meluding
220470 and $1000 \mu \mathrm{~F}$ Total ot 100 tor $\mathbf{£ 6 . 0 5 .}$ K021 Minature carbon film 5% resistors CA 25 or
sumular similar io of each value from 10 to 1 M E 12
series Total 610 resistors E 6.15 . serlies Total 610 resistors
$K 022$ Extended range Total 850 KR:0 10 M £8.50.
K041 Zener diodes, $400 \mathrm{~mW} 5^{5 \%}$ BZY 88 etc 10
of each value from 27 V : 36 V E 24 series Total 0^{4} each value from
280 for $E 16.37$.

TM4030 RAM
4096 bit dynamic RAM with 300 ns access lime
470 ns cycle time single low capaciance hig level clock ' p tully TTL compatible
dissipation Supplied with data $£ 2.75$

COMPONENT PANELS

Cons il

 116 V 8 zeners 11 iN4004 diodes plus Rs Csetc On E .
74 . ICs on panels $£ 1 ; 100 \mathrm{Ks} \in 4$.
$25272 \times 6 \mathrm{~V}$ reed relays 6×25030 or 2 S 230 $\times 400 \mathrm{~V}$ rects. plus Rs Only 50 p . 531 Trimpot Pack - Ex-computer panels with 20
mixed value multi-turn types $\mathrm{E1.00}$.

VEROCASE SALE!!!

Only one size left now - these have sold very fast - if you want a $1 / 2$ price case like $21051180 \times 120 \times 85 \mathrm{~mm}$ \& 2.30
P.C. ETCHING KIT MK IV he best value in etching kits on the market -
contains 100 sa ins copper clad board, 116 Ferric Chloride Eich resist pen, abrasive cleaner. two
miniature drill bits etching dish and instructions All for $£ 4.95$.

BULK SUPPLIES

 All naw full spete. devicen. Pricse are for a exclude VAT, which must be edded at 15%. Minimum order value from the sactionRESISTORS
Min
iM). all $\mathbf{E 6 . 0 0} / 1,000$ The following values onlv at $£ 3.50 / 1.000$ per
value 4 Ry 8R2. $18 \mathrm{R} \quad 39 \mathrm{R}, 56 \mathrm{R} 220 \mathrm{R}, 1 \mathrm{k} 4 \mathrm{k} 7$
 820k MIN.PRESETS

- IW miniature type. open construction All
values from 100 R to 1 M . vertical or horizontal values from 100 R to 1 M . vertical or horizontal
The folting All at .042 . The following values only at $.03470 \mathrm{RV}, 470 \mathrm{RH}$
$500 \mathrm{RH}, 1 \mathrm{kH} .1 \mathrm{k} 5 \mathrm{H}, 2 \mathrm{kV}, 2 \mathrm{k} 2 \mathrm{H}, 2 \mathrm{k} 5 \mathrm{H}, 4 \mathrm{k} 7 \mathrm{H}$ Also some Pither enclosed type at .042 150RV
pотs
$5 \mathrm{k} \operatorname{lin} 100 \mathrm{k} \operatorname{lon} 220 \mathrm{k} \operatorname{lin} .500 \mathrm{k} \log 1 \mathrm{M} \operatorname{lin}$ All
with sid bush and spinde . 14.

Electrdiytic caps			
$22 / 25 \mathrm{R}$	R . 028	47/63 R	0
$22 / 63 \mathrm{~A}$	A . 032	$100 / 63 \mathrm{~A}$. 020
$47 / 10 \mathrm{R}$	R . 022	$100 / 35 \mathrm{RPC}$. 035
$47 / 258$. 028	$220 / 16$ A	. 055
$47 / 50 \mathrm{R}$	R . 034	$220 / 25 \mathrm{~A}$. 085
10/16 R	. 030	$220 / 70$ A	. 075
$10 / 25$ R	. 032	330/50 A	. 075
$10 / 25 \mathrm{RPC}$	PC . 022	330/100 A	. 085
$10 / 25 \mathrm{~A}$. 035	470/16 R	. 080
10/50 A	. 040	$470 / 100 \mathrm{RC}$	150
10/100 R	R . 042	1000/40 A	230
15/40 A	A . 030	$1000 / 63$ A	80
22/10 R	. 021	$2200 / 10 \mathrm{~A}$ $2200 / 25 \mathrm{~A}$. 280
$22 / 25 \mathrm{R}$	- 027	2200/40 RC	. 350
$22 / 63 \mathrm{~A}$	A . 040	$3300 / 10$ A	. 080
33/16 A	A 022	$3300 / 25$ A	. 180
47/6A	. 015	4700 /10 A	. 100
47/25 A	A . 032	$4700 / 25 \mathrm{AC}$. 250
47/35 R	A .038	$4700 / 40 \mathrm{RC}$	
47/40 A	A . 045	10000/15 RC	. 250
$R=$ radial leads $A=$ axial leads $R C=t a g$ ended can			
pdlyester cap			
0140	400 V	С296	. 025
01525	250 V	C280	. 025
02240	400 V	C280	. 025
06825	250 V	Advance	. 025
22.25	250 V	C280	. 035
22.25	250 V	Advance	. 035
2210	100V	Minibox	. 035
47 250	250 V	C280	. 05
4716	160 V	C296	. 04
10 250	250 V	C280	. 055
15	63 V	Filmcap	. 065
2216	160 V	Filmeap	086
3310	100 V	Wima MKS	. 15
4.10	100 V	C281	. 195
47 68	100 V 100 V	Wima MKS	. 285

polystymenecaps tant beads
 $\begin{array}{lllll}\text { 1500pF } & 125 \mathrm{~V} & 10 \% & \varepsilon 14 / 1000 & 10 / 2 \\ 8200 \text { pF } & 125 \mathrm{~V} & 10 \% & \mathrm{E18} / 1000 & \end{array}$

MINIATURE CERAMIC CAPS
 $\cdot 10 \%+20 \%$
prices up 10 82

560 pF
$67 / 1000$
$69 / 1000$
$65 / 1000$
270 OFF
Samples on request (sae please)
$65 / 1000$
$69 / 1000$
Mullard min ceramics

Mulard min cerar
33 pF
5%

67/1000
E8, 1000
$\begin{array}{lr}3300 \mathrm{FF} 10 \% 10 \mathrm{~V} & \mathrm{EE} / 1000 \\ \text { Stetner min } & \text { E13/100 }\end{array}$
 022 uF 63 V £14/1000
\&16/1000

semiconductidas

 E36/k Ge signal diode DK 14 E2O/k SCRs
PP4M (C106D)4A 400V. $25 \quad 2 \mathrm{~N} 5060$ 8A 30 V P4M (C106D) $4 A 400 V$
15 CR201 1A 200 V .18.
ee last month s advt for transistors send sae tor

PROFESSIONAL TOOLS for the workshnD home laboratory or on-site use

literature and prices on reques

Special Products Distributors Limited (Dept. ETI) 81 Piccadilly, London W1V OHL
el: 01-6299556
Cables: Specirod, London W1
Telex: $\mathbf{2 6 5 2 0 0}$ (Answerback RACEN)

SAFGAN ST-45

High-quality low-cost single trace Oscilloscope that is simply SUPERIOR. Compare us and see.

Price at $£ 1 \mathbf{1 3}^{*}$

$10 \mathrm{mv} / \mathrm{div}-5 \mathrm{MHz}$ BRITISH - ONE YEAR GUARANTEE

TRIGGER

 Internal 05 div $(20 \mathrm{~Hz}-2 \mathrm{MHz}), 1$ div
$\left(2 \mathrm{MHz}^{2} \cdot 5 \mathrm{MHz}^{2}\right)$ External $100 \mathrm{mv}(20 \mathrm{~Hz}-2 \mathrm{MHz}), 200 \mathrm{mv}$
$(2 \mathrm{MHz}-5 \mathrm{MHz})$ ($2 \mathrm{MHz}-5 \mathrm{MHz}$) Bright Line Auto
Trace free runs in absence of signal Trigger Level selects triggering point
Trigger (+)ve and (-)ve slope selection Trigger $i+$)ve and (-)ve slope selection
FRONT PANEL FRONT PANEL
Black-Silver-White-ST-45-S The Silver
Scope Black-Gold-White-ST-45-G The Gold Scope GENERAL
Blue display graticule ruled 8×10 div ($64 \mathrm{~cm} \times 8 \mathrm{~cm}$)
Power consumption 10VA approx
Mains selection $200 \mathrm{v}-220 \mathrm{~V}-240 \mathrm{~V} \mathrm{rms}$ $(40 \mathrm{~Hz}-60 \mathrm{~Hz})$
Size H, 215 mm W 165 mm, D, 280 mm Weight lolbs 45 kg approx
Case aluminuum with black pve finish and black handle. scratch-resist front panel black control knobs, black feet and tult bar
Safgan Electronics Ltd.
56 Bishops Wood, St. Johns
Woking. Surrey, GU1 30B
ST-45 SPECIFICATION
VERTICAL SYSTEM
Sensitivity $10 \mathrm{mv} / \mathrm{div} 5 \mathrm{v} / \mathrm{div}$ in 9 cal steps
Bandwidth $(3 \mathrm{~dB})$ Bandwidth (3dB)
DC Coupted DC 5 MHz
AC Coupled $5 \mathrm{~Hz}-5 \mathrm{MHz}$
AC Coupled $5 \mathrm{~Hz}_{z}-5 \mathrm{MHz}$
Risetime $70 \mu \mathrm{sec}$
Input Impedance $1 \mathrm{MO}+22$ PF approx. (for all ranges 50 on for $10 \mathrm{mv} / \mathrm{div}$
Input Coupling AC CND DC
Input Coupling AC CND
Input volts 400 V max
Accuracy $+5 \%$
HORIZONTAL SYSTEM
Time base speeds
$50 \mathrm{~ms} / \mathrm{div} 1 \mu \mathrm{sec} /$ div in 15 cal steps with X5 Multiplier to $250 \mathrm{msec} / \mathrm{div}$ and X 5 Expansion to 200 nsec / div
External - X sensitivity $1 v /$ div
External $-X$ Bandwidth 500 KH
Accuracy $+5 \%$

ACCESSORIES

Passive Probe switched (X 1 . REF $\times 10$)
100 MHz bandwidth $\mathbf{5 1 1} 50$.
IOOMHz bandwidth E11.50 + VAT

A wide range of other technical and professional courses are available including GCE.

SIEMENS
 SEMI-CONDUCTOR CAPACITORS FERRITES

NASCOM
MICRO COMPUTERS AND ANCILIARIES

\author{

SKRA
 RESISTORS
 | RADIOHM | BREADBOARDS | |
| :---: | :---: | :---: |
| POTENTIOMETERS | SOLDER TOOLS | |
| OPTO-ELECTRONICS | SWITCHES | CATALOGUE ID |

}

ALL GOOD PROJECTS START WITH CATALOGUE 10 IT'S FREE FOR THE ASKING 128 pages packed with almost everything everyonew. electrovalue ltd. head office (Mail Orders) $28(\mathrm{H}) \mathrm{St}$, Judes Road.
northern branch (Personal Shoppers Only) 680 Burnage Lane, Burnage Manchester M19 iNA. Phone: (061) 4324945

BOMB PROOF POWER!

The WINTON is still the OUTSTANDING KIT ACHIEVEMENT of the decade. Using POWER MOS-FETs in the OUTPUT STAGE it provides $50+50$ WATTS at less than 01% distortion over the whole audio band.
The Power MOS-FETs we use are practically 'Bomb Proof' without the need for distortion introducing protection devices, or as some coyly name them "Thermal Overload Cutouts." Our MOS-FETs don't suffer from thermal runaway or secondary breakdown as ordinary transistors do.
Requiring around twenty hours to build you finish up with an amplifier which is equal to, or better than ready-built designs costing upwards of $£ 600$, and you have the enormous satisfaction of having built it yourself.
A $12 p$ stamp will bring you the full details or better still, send your cheque for the best amplifier kit around. POWER MOS-FETs RULE, O.K.

COMPLETE KIT of all parts necessary to build the P.W. WINTON
£133.50
Order with complete confidence \{C.W.O. only please) from:
T. \& T. ELECTRONICS (Dept. E)

Green Hayes, Surlingham Lane, Rockland Si. Mary Norwich NR14 7HH. Telephone 05088632

PRICE INCLUSIVE OF V.A.T. \& CARRIAGE
Callers by appointment only

$$
\begin{aligned}
& \text { Siz } \mathcal{F I S O N} \\
& \text { Electronic Components }
\end{aligned}
$$

TRANSISTORS

 ALOGUE IS NOW AVAILABLE. "t contans 100 illustratedline items. These include.
\& ${ }^{*}$ Electronic components
and
and our catalogue you will receive

- a reply paid envelope for your first order
- a mail order form to facilitate rapid despatch
- a 50 p discount voucher to be used against mail order purchases over $£ 10.00$.
-

Due to stock and administrative problems over the last few months, the quality of our service had suffered considerably. These problem the quality of sesvice wed we are conficmed to. We wish to convey our apologies to any customers who have been inconvenienced.

All prices include VAT Please add
50p carriage on orders below £15
Contact our sales ofrice with your

AT LAST! OUR NEW 1980/81 CAT Our new caralogue is iust packed with components.

0.70

Red $0125 \mathrm{~m}, 024 \mathrm{n}$

 Red TIL209 TIL220 10, $\begin{array}{llll}\text { Green TIL211 TIL221 } & 160 \\ \text { Yellow TIL }\end{array}$ $\begin{array}{llll}\text { Yellow TiL213 TIL223 } & 16 \mathrm{p} \\ \text { Clips } & \text { 3p } & & \end{array}$ DISPLAYS $\begin{array}{lll}\text { DL704 } & 0.3 \text { in CC } & 130 \mathrm{p} \\ \text { DL707 } & 0.3 \mathrm{n} \text { CA } & 130 \mathrm{p} \\ \text { FND500 } & 0.5 \text { n CA } & 100 \mathrm{p}\end{array}$+

ENVELOPE SHAPER

Is it Mantovani or a Project 80 synthesiser? You can't tell the difference with this VCES designed by R.C. Blakey

Conventional ADSR envelope generators are adequate for most practical purposes since they are capable of providing a reasonable simulation of the amplitude envelopes of many musical instruments. The Project 80 Voltage Controlled Envelope Shaper (VCES) is provided for those who wish to obtain more realistic simulation or to obtain dynamic control over envelope shape. It is also a useful tool for innovative synthesis. The design incorporates the following features; bending of the standard exponential attack, decay and release curves to other shapes; alteration of attack, decay and release times by an external voltage thus allowing the envelope to be altered in proportion to the note played; the use of non linear sustain; built-in timer for re-triggering to create dual peak envelopes and also the generation of a delayed $A D$ envelope.

Design and Application

The VCES is based on the CEM 3310 Voltage Controlled Envelope Generator produced by Curtis Electromusic Specialties. While it is well suited for use as a conventional ADSR envelope generator for both monophonic and polyphonic synthesisers the facilities provided on chip also make it ideal for configuring a complex envelope generator. The attack (A), decay (D), and release (R) parameters have a scale sensivity of $60 \mathrm{mV} /$ decade ($18 \mathrm{mV} /$ octave) while sustain level (S) is linearly proportional to the voltage applied to pin 9. To facilitate generation of complex shapes each of the four inputs has been buffered by an op amp configured as a summer and our standard 0 to +10 V control voltages allow the A, D and R times to be varied from 2 mS to greater than 20 S . Likewise for the sustain input a voltage of 0 to +10 V varies the sustain level from 0 to 100% of the peak attack voltage which has also been normalised to +10 V .

The A, D and R responses follow an exponential curve. These characteristic curves may easily be altered in this design by taking a proportion of the output from the module and feeding it back to the appropriate input for the attack curve. The greater the amount of feedback the more convex the response and, although the overall time constant will increase, this may be adjusted over a wide range with the manual control provided. If the output is inverted prior to feedback then the attack curve will become concave in shape. Some of these curves are closer approximations to
conventional instruments while others offer some novel responses. The shape of the decay curve, or the release curve, may be similarly altered and thus the VCES offers virtually unlimited scope for generation of envelope shapes. The use of low frequency waveforms to modify the time constants is also practical but setting up to obtain useful results is quite time consuming. Two attenuators, with or without inversion, are provided and the 80-5 Processor module may be used for distribution and attenuation when more complex patching is required.

Fig.1. The effect of feedback on the attack response.

Tremolo

The sustain level also has provision for external control and one application is to apply a low frequency waveform to this input in combination with an attenuator and perhaps the manual control to produce a varying sustain. If this envelope is now used to control a VCA the effect is a tremelo only during the sustain part of the note. In the design both the upper and lower levels of the sustain control have been clamped for protection.

Another application for voltage control of envelope shape is the automatic alteration of the time constants or sustain level while the instrument is being played.

Time and Time Again

A simple timer has been incorporated in the design which allows re-triggering, or initial trigger delay, for periods up to about 2.5 S . The effect of re-triggering is to produce an envelope with two peaks, which is a transient effect exhibited by a number of conventional instruments. Often, however, as such instruments reach their peak output the

The attack, decay and release control inputs (pins 15, 12 and 13 respectively) have a control sensitivity of 18 mV /octave and a $10 \mathrm{k} / 470 \mathrm{R}$ attenuating network is place ahead of these inputs. The time constants of the attack, decay and release curves are determined by $R \times C x$ times the exponential multiplier, exp ($-\mathrm{Vc} / \mathrm{Vr}$); where $\mathrm{R} x$ is $\mathbf{R} 31$ plus part of $\mathrm{PR} 1 ; \mathrm{C} x=\mathrm{C} 12 ; \mathrm{Vc}=$ the control voltage at the appropriate pin; and $V_{I}=k T / q$. The values of $R x$ and $C \times$ have been chosen to minimise errors and to retain the very low voltage feedthrough which is a feature of the CEM 3310 With the values used an increasing negative voltage at the 10k/470R attenuator will increase the time constant and a voltage from 0 to about -5 V 6 will give a range of 2 mS to 20 S for each time control input. To obtain both external and manual control of the time constants an inverting summer with a nominal gain of 0.62 has been placed ahead of the atteriuating resistors; in the case of the attack control, using IC2a and associated resistors R6 to R9 ahead of attenuator R10/R 11. Thus increasing positive voltages up to +10 V will now give the same control range. $R 7,8$ are for external control voltages while RV2 via R6 provides manual control over the same range. R8 is connected with R14 (release control) and R20 (decay control) such that an external voltage applied to R 8 will simultaneously change all three time constants.

Sustain level on the CEM 3310 is determined by the voltage at pin 9 and a voltage from 0 to +5 V will change the sustain level from 0 to $\mathbf{1 0 0 \%}$ of the peak attack voltage. To obtain both manual and external control of sustain and retain the control polarity this input is preceded by IC 3a and IC 3b configured as two inverting summers with an overall gain of 0.5 . Thus 0 to +10 V at R 25 will produce the 0 to 100% sustain level control. Manual control is obtained with RV5 and R24. If the sustain voltage were to exceed the peak attack to 100% sustain level control. Manual control is obtained with RV5 and R24. If the sustain voltage were to exceed the peak attack voltage then the envelope will ramp up to this higher voltage level with undesirable results. Pin 3 of the CEM 3310 outputs the peak attack voltage and so the sustain level and pin 3 are connected to IC 3c arranged as a precision peak follower to prevent the aforementioned situation.

The output buffer within the CEM 3310 (pin 2) has adequate drive capability for most applications but in this design it may be used to drive several inputs and overloading of the buffer will result in a loss of performance. The internal buffer has been bypassed by IC5a and the outputincreased to the Project 80 standard of +10 V by a non inverting amplifier, IC5b, which has a gain of two.

The attack output pin (pin 2) provides a voltage of between - 0V4 and -1 V 2 only during the attack phase to provide a visual indication of the attack phase using LED 1. Pin 16 is connected to IC6a arranged as a comparator. IC6b is also a comparator and will turn on LED 2 when a gate voltage is present.

The CEM 3310 requires both gate and trigger pulses to generate an ADSR envelope. The $\mathbf{8 0 - 1 0}$ module is designed to operate with a gate voltage of +5 V and the trigger is generated by differentiating the gate pulse using C8 and R4 which is then applied to pin 5 via C11 (SW1 closed). To obtain the re-triggering and delay facilities IC1a and IC1b are used to form a monostable. The time delay is determined by the charging time of C9 via RV1 and when the voltage on C9 exceeds the threshold voltage of IC1b its output will go low and reset the monostable. IC1c is used to generate a second trigger pulse whose short duration is determined by the time required to charge up C10, to the threshold voltage level, via R5. With SW1 closed two trigger pulses are therefore generated when RV1 provides sufficient resistance to produce a noticeable delay. With SW1 open only the delayed trigger pulse is presented to pin 5 of IC4, which will allow it to operate in an AD mode

To operate the CEM 3310 from $土 15 \mathrm{~V}$ supplies it is necessary to place a series current limiting resistor on the negative supply line to pin 6 . The value of R20 has been chosen to comply with the general equation $\mathrm{ReE}_{\mathrm{EE}}=(\mathrm{V} \mathrm{EE}-7.2) / 0.010$. For the timer a nominal +5 V is derived from the voltage divider formed by $\mathrm{R} 1,2$ since power supply to IC1 is not critical. These latter components may be changed to suit other gate voltages.

PROJECT: Envelope Shaper
sound alters due to the presence of noise and complex waveforms in the transient. A better simulation of this effect is obtained by using two envelope generators, two sound sources, a dual VCA and mixing the outputs from the latter together. In this example the VCES timer is in the delay mode and will initiate an $A D$ envelope when the trigger occurs. It should be noted that only AD envelopes are practical in the delay mode since if the sustain level is above zero the voltage will ramp up to the set level when the gate pulse is received.

Fig.4. Patch for obtaining realistic transient effects.

Construction

In common with other Project 80 modules the Voltage Controlled Envelope Shaper may be panel mounted or installed in a Teka Alba A23G case. The latter, however, does not have sufficient panel area to neatly accommodate all of the facilities provided. In the cased module illustrated we have omitted the two inverters and controls RV6 and RV7.

The panel markings for the inverters are,-+ and $A 1$ (or A2) with the latter being associated with the attenuating potentiometer RV6 (or RV7). Taking Inverter 1 as the example: R35 is wired to the jack socket marked - at the connection which makes contact with the jack plug; the output of the inverter (R37) is wired to the jack socket marked + but to the connection disabled when a jack plug is inserted, whereas the other connection on this socket is wired to RV6; finally the wiper of RV6 is wired to the make connection on the A1 jack socket. This allows a jack plug into the - socket to access the inverter and the output is obtained at A1, with attenuation when required. For noninverted voltages which require attenuation these are obtained via the + socket with the output at A1.

One external control of attack, decay and release times is commoned and accessed on the PCB at R8. This allows all three time constants to be altered simultaneously and is connected to jack socket marked TC, denoting time constants. If required, however, the constructor may obtain two independent controls for each time constant by cutting the PCB tracks that join up the inputs of R8, R14 and R20. PCB connections are provided at R14 and R20 to cater for this modification.

The module may be manually gated by connecting a push-to-make switch from the +5 V line to the gate input.

Calibration and Testing

The attack, decay and release manual controls are numbered $0-10$ for reference purposes since once external voltages are applied a time calibration becomes meaningless.

Tackle the control wiring methodically, otherwise you're in for a case of the wiring jungles.

PR1 allows more than one module to have the same time constants for a given input voltage. For precise calibration a triggered timing device is required but in most instances the following technique is adequate. Set PR1 to mid-position and connect a voltmeter between ground and the junction of R6 and R9. Turn RV2 until a voltage of -5 V 6 is obtained. Set all other control pots to zero. Gate the module manually and time the attack time as shown by the attack LED being on. The manual push button is held down until the LED goes off. Gate the unit several times to allow all components to stabilise for this long attack time and then commence adjusting PR1 to give an attack time of 20 S .

Note that the gate LED is only on while the manual button is depressed. Next set the attack time for a short duration, switch to re-trigger mode, turn RV1 fully clockwise and manually gate the module and keep push button held down until the test is complete. The attack LED should come on when the button is first depressed and again about 2.5 S later when the unit re-triggers. Keep settings the same but put the switch into delay mode. In this test the attack LED should come on about 2.5 S after manually gating the unit. Finally connect the output to a VCO which is in turn connected to an audio amplifier and set the attack, decay, sustain and release controls to about mid-position. Gate the module and release the push-button when a steady note is obtained. The test is a simple means of checking that the A, D, S and R functions are all operational. The functioning of the inverters may also be checked in the same way by putting the output from the VCES through the inverters without attenuation prior to the VCO. In this test the envelope will be inverted, that is, the frequency starting high, decreasing, holding steady and then finally going high again.

BUYLINES

[^2]
CALCULATORS

ALL EQUIPMENT FULLY GUARANTEED
so order with confidonce ©nd PAY NO MORE
PROGAMMABLE CALCULATORS

BUILD YOUR OWN METAL DETECTOR VLF／TR VCO／TR IB／TR BFO

Pre－aligned search heads－test equipment not required．Literature available in return for SAE． Manuals and parts sold separately：write or phone for price．Export welcome：write for quote．

4 nead is thermally and capactively shiedde 1

Shadow
 TR／1B
 cens also available separately）（han ET aricle－and extra function）E1 12 All inc．VAT \＆poast（Other

Shadow TR／VCO．An advanced version of the TR iB Use as a sensitive 1 B machine or switch to VCO mode when the sound changes to a varying pinch，allowing easier use over mineralssed grou
enabling delocion of negative high permability anomalies Kit price E 38.67 Inc VAT and Post

```
Matching morao hosdotiones for all Shadow modele f5.85 nc VAT and Posi
```

Beginners BFO model．A very detailed assembly manual and pre－wound corls make this an ideal first
 headphones $\mathbf{E 5 . 4 5}$ inc VA
Shall Kit．Consists of the（thard to find）hardware tems tor detectors of your own design Fully adjustable shat with handie．search head mouldings sint diam 185 mm ）with hinge as sembly special clips to mount
your own controi housing（any box is suitabie）Completely non－metallic and undriled With assembly

ALTEK

（ETI）， 1 Green Lane
Walton－on－Thames Surrey
Orfor by posi or hone（24 hours）
Phome（ 093 22） 44110 anyume）

C．MOS	，Hro					LINEAR		SEMICONDUCTORS			
＋te．			13		${ }^{136}$	CA3046	84	ingi4	5	ectis2	12
－the 1	\cdots	Hefiour	133	mifalo	$12 i$	Cajobeg	17	in4001	5	${ }_{\text {BCiba }}$	11
	\because	－ k ＋0，	104	＋tFial	48	CA3130E	9	iN4002	5	BC18aL	12
－¢F ¢	117	Hefor 19	1	HEfdsit	118		${ }^{48}$	IN4004	7	$8{ }^{8} 212$	11
－¢t mox	12	Mfficut			${ }^{\circ} 8$	Caj109E	293	in4007	9	BC212t	12
${ }_{-2+4}$	．		0		118	LMJJTM	34 78	IN4 148	15	${ }^{\text {BC2 } 214}$	11
$\cdots 101$.	．\cdot	Het 4053	90	HEF422日	124	Lmszon	104	${ }_{\text {2N2369 }}$	${ }_{21}^{15}$		12
－F4）		metracto	62	HiFd 32	150	LMJzian	198	2 27646	46	BCSab	11
		MEFACS	13	MLE4304	43 b	LM3900\％	75	2N2926G	13	${ }_{8 C 549}$	12
	4	HEEFCOSB	27	HRFF439	${ }^{38}$	мС3403P	156	2 N 3053	19	${ }^{8 C 557}$	13
$\cdots 1-$		Het fues	22	Hefradia	122	NE531	131	2 23054	55	BC558	15
Mer．－	\cdots	－Ef 4070	${ }_{23}^{22}$	${ }_{\text {HeFsa }}$	214 113	Ne536T	${ }^{259}$	${ }_{2} \mathbf{N 3 0 5 5}$	55	acrio	15
Her－1	00		${ }_{2}^{23}$	HCF 4009%	113	NE555N	28	2N3702	9	BCY7	15
1．1．10	\％		${ }_{23}^{23}$	H2F 40098 HEFP010	${ }_{78}^{98}$	NE556N	66	2N3704	9	B0131	39
－ 0 ¢ -1	1	H2140	23	Hff 401 （ $0^{\text {c }}$	49	Ne570	${ }_{485}$	（2N3773	$\begin{array}{r}10 \\ 297 \\ \hline\end{array}$	80132	39
－F．．．	1us	meraus	－	＋1E8．40192	1×9	NE521N	505	${ }_{2}{ }^{\text {N38 }} 19$	22	880140	39
\cdots \％	\cdot	Hepra	22			RC4136	146	2N3820	39		333
H1t：${ }^{\text {a }}$			${ }_{23}^{23}$	Voltage		T8At20s	${ }^{88}$	${ }^{2 N 3904}$	9	8F×85	29
			${ }_{23}^{23}$	Regulators		TDA 1022 TOA1036	${ }^{73}$	2N5457	39	$8 \mathrm{Cr50}$	17
	．$:$		${ }_{80}^{23}$	Regulators		TOA 10343		${ }^{2 N 5459}$	35	${ }^{\text {afY } 51}$	17
Hel 402 -15028	\％	MEFFA0S3	80	UA 723CN	${ }^{19}$	TL081CP	84 156	40673 BC107	${ }_{14} 8$	${ }^{88 \times 39}$	50
$\cdots \mathrm{FH}$－	13	－EFP5993	43	Ua＞boscu	78	UATAICN	156 30	${ }_{\text {BC }} 108$	14	85 $\times 20$	21
ret ：	，	－EEF W9，	219	lapalicu	${ }^{78}$	UAJalct	47	8 Cl 109 C	18	TIP31	${ }_{48} 8$
\cdots	230	HEFP1 4	${ }^{205}$	UA 7915CU	${ }^{78}$	Zener		${ }^{\text {aclos }}$	14	＋1032	54
$\cdots{ }^{*}$ ： 3	36	MEF：${ }^{\text {a }}$	14	UA＞912CU	97			${ }^{8 C 1098}$	19	tipaic	76
： 4		4148505	$1:$	UA7915CU	97	Diodes		日C109C	20	tipazac	76
MEFA＂	\cdots	－－1F45696	230	UA78loscs	${ }^{38}$	400mw Civ	$7 \mathrm{C3}$	${ }_{8 C 148}$	10	TIP7955	15
＂${ }^{\text {a ：}}$ ，	\％	MLFA	153	UA78LI2CS	38	BZY88／BZx	$\times 79$	${ }_{8 C 158}$	10	TIP 3055	60
＋14：	1.30	HEFA，${ }^{\text {l }}$		Ua7日LISCS	38	－Voltage		BC17	17	Tisal	36

GMT SELL PA．EQPTI

SEND A LARCTE SAAE FOR OUR ：ioctus otheatio

RIAA

PREAMP

Fit a magnetic cartridge to your stereo system with our economical preamp design

Fig.1. Circuit diagram.

HOW IT WORKS

The desired RIAA frequency response is achieved through the use of a resistor-capacitor network in the feedback loop of an op-amp. Use of an internal resistor matrix in the LM382 chip enables a very simple practical circuit to be used. The circuit is absolutely conventional. A 12 V supply was chosen as the LM382 is characterised for operation in automobiles and its output is biased to 6 V .

The circuit offers a gain of $46 \mathrm{~dB}(200 x)$ at the RIAA 0 dB reference fre quency of 1 kHz . As the output of a typical magnetic cartridge is in the range $2-7 \mathrm{mV}$, this should result in a preamp output of around 1 V , an ideal level for the 'line' input of most amps. A 47k resistor at the input provides the standard cartridge load and a single 1,000 uF capacitor is used for overall supply decoupling.

Note that the integrated circuit pins are identified for the left and right channels with pairs of numbers on the circuit diagram. Also that all components except IC1 and C6 are duplicated on the component overlay.

Fig.2. Internal structure of the LM382.

Resistors	
R1	47k
R2	$1 k 0$
Capacitors	
C1	1u0 tantalum
C2	330n polyester
C3	1n5 polyester
C4	47u tantalum
C5	22u tantalum
C6	1000 u electrolytic
Semiconductor	LM382
IC1	

BUYLINES

No problems here. All the components should be readily available from your usual suppliers.

The LM382 can be obtained from Watford Electronics \& Delta Tech and Co.

Fig.3.(left) Component overlay.
Fig.4.(below) RIAA playback equalisation curve.

Construction

Use of a printed circuit board is recommended for this project. If you use another method of construction, ensure that connecting leads are kept short and locate the decoupling capacitor close to the supply pins of the integrated circuit. The unit may be assembled into a metal case for good screening. Once assembled, just connect your cartridge to the inputs and connect the outputs to your amp, either directly to the 'line' input or via the passive tone controls if you have them. Then put on your favourite disc and relax and enjoy it.

ETI

FUEL ECONOMY in kil form

FUELSTRETCHER, the leading UK in-car petrol computer, now available in kit form to save EEEEEE's from staft to finish
You have a choice from two kits
FSX20 gives accurate instantaneous digital mpg readings to obtain maximum fuel economy. Standard features include choice of two update frequencies, automatic clear down under idling and owner calibration facility
FSX10 gives a digital gallons used reading to allow determination of total fuel and average mpg .
Kits are complete with all necessary components and comprehensive instructions. All components guaranteed for 12 months, full technical backup services avalable

ENVIROSYSTEMS LTD., Dept. ETI
Hampsfell Road, Grange-over-Sands, Cumbria, LA11 6BE
Tel: $044844233 / 4$
Name
Address

Phone your order with Access or Barclaycard

| | inc. VAT \& p\&p. | Qty Rqd |
| :--- | :---: | :---: | | I enclose cheque/ |
| :--- |
| POs for $£ ~$ |
| FSX20 |

11 projects in every book!

The'110' books have been acclaimed
by enthusiasts, students and engineers. Each contains 110 different circuit applications. Use them as project books
or as source books for circuit ideas.

110 CMOS Digital IC Projects for the Home Constructor R. M. MARSTON 0408002166
$£ 3.95$
110 Electronic Alarm Projects for the Home Constructor R. M. MARSTON 0408002697
£3.95
110 IC Timer Projects for the Home Constructor JULES H. GILDER 0408004800
£3.95
110 Integrated Circuit Projects for the Home Constructor Second Edition
R. M. MARSTON
040800309 X
$£ 3.95$

110 Operational Amplifier Projects for the Home Constructor R. M. MARSTON $0408001534 \quad £ 3.95$

110 Semiconductor Projects for the Home Constructor Second Edition
R. M. MARSTON
0408003227
£3.95

110 Thyristor Projects using SCRs and Triacs R. M. MARSTON $0408000745 \quad £ 3.95$

110 Waveform Generator Projects for the Home Constructor R. M. MARSTON $0408003537 \quad £ 3.95$

Available from your bookshop or in case of difficulty direct from the publishers.

§ Borough Green, Sevenoaks, Kent TN15 8PH

PCB FOIL PATTERNS

Above: The switching board for the DTM project.

Above: The RIAA preamp foil pattern. The board is intended to be mounted inside existing equipment and space maybe left for fixing.

Above: The Drill Speed Controller PCB. Construction is not critical here and other methods may be employed. Take care with the PCB as mains voltage will be present.

Below: Vocoder board B. The large PCB is not shown here as it is too large to go on the page. An SAE to Modmags will secure a copy.

Above: Project 80 board for this month's module. Note that copyright exists on the board and firms may not reproduce the PCBs for sale.

Above: Foil pattern for the SURVIVAL game. This has been designed to fit the specified case.
Right: The monitor amplifier board for the TV Sound Tuner. This circuit is an optical extra to aid tuning and setting up.

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects.

ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

PARTS LIST

Shown below is the listing for the last year's ETIPRINTS.

Earlier sheets are available, ring Tim Salmon for details.

038	Buffer Moving Coil Preamp Process Controller	Jan 80	0408	ETI 80 - PSU Tuning Fork Filter Coin Toss	Feb 80	0428	Touch Dimmer, Battery Charger RC Guardian (Top,Bottom)1\&2	Apr 80
039 A 0398	Hum Filter Logic Probe	Dec 79 Dec 79	041A	ETI Audiophile ET VCA Signal Trace	Mar 80	043	IR6O preamp, Receiver, PSU, Servo Tester, VU-PPM	May 80
0398	Long Period Timer Rain Alarm Touch Switch Flash Trigger Pseudo Random Noise Gen	Dec	041B	ETIHC Electromyogram VCM Heater Controller	Mar 80	04A	IR60 Function Board (Top \& underside) Control Circuit. Line Transmitter, Tape Response Meter	June 80
039C	Function Generator	Dec 79	042A	300W Amp Module	Apr 80		Onmmeter	
040A	ETI 80 - VCO and VCLFO	Feb 80	033	Fuel Level Monitor, Alarm, Screen Controller Dynamic Noise Reducer	Sep 79	O44B	FM receiver PSU \& Monitor Amp Drum Synth (function board)	June 80

HOW IT WORKS

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

BUY LINES
ORDER TODAY
Send a cheque or PO (payable to ETI Magazine) to ETI PRINT, ETI MAGAZINE 145 Charing Cross Road, London WC2H OEE.

Price $\mathbf{E 1 . 2 0 p}^{\text {p }}$.

CAMBRIDGE Learinita

Self-
 Instruction Courses

It's faster and more thorough than classroom learning: you pace

 yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.
Understand Digital Electronics
 In the years ahead digital electronics will play an increasing part in

 your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards. TV messages from friends and electronic mailAfter completing these books you will have broadened your career prospects and increased you knowledge of the fast-changing world around you.

DIGITAL COMPUTER LOGIC AND
 ELECTRONICS $£ 7.00$

This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood,

Everyone can learn from it - students, engineers, hobbyists, housewives, scientists. Its four A4 volumes consist of:
Book 1 Binary, octal and decimal number systems; conversion between number systems; Book 1 Binary, octa and decimai number systems, con
Book 2 AND. OR gates; inverters; NOR and NAND gates; truth tables; introduction to Boolean algebra
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates; dual-input gates.
Book 4 Introduction to pulse driven circuits; R-S and J-K flip flops; binary counters; shift

registers; half-adders
 DESIGN OF DIGITAL SYSTEMS £12.50

This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six $A 4$ volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication
and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR. NAND, NOR and exclusiveNOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems
and exclusive - OR feedback counters; random access memous counters; fing, Johnson and exclusive-OR
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding: control programme structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interfupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas - presenting safety regulations, government legislation, office procedures etc.
THE ALGORITHM WRITER’S GUIDE $£ 4.00$
explains how to define questions, put them in the best order and draw the flow chart, with numerous examples

Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you
 never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC £9.00

Book 1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation: INPUT. IF...THEN, GO TO, limitations of computers, problem detinition.
Book 3 Compilers and interpreters; loops, FOR...NEXT, RESTORE; debugging; arrays; bubble sorting, TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming examples; glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

A.N.S. COBOL $£ 4.40$

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

GUARANTEE - No risk to you
If you are not completely satisfied your money will be refunded on return of the books in good condition.

Please send me:
.Digital Computer Logic \& Electronics @ £7.00
Design of Digital Systems @ £12.50
Algorithm Writer's Guide @ £4.00
Computer Programming in BASIC @ £9.00
BASIC Handbook@E11.50
A.N.S. Cobol @ E4.40

FOUR WAYS TO PAY

1) A U.K. cheque or a U.K. postal order (Not Eire or overseas)
2) A bank draft, in sterling on a London bank (avallable at any major bank 3) Please charge my Access/M.Ch Barclay/TrusiCVVisa Am. Exp. \square Diners \square
3) Or phone us with these credit card detals - 048067446 (ansaphone) 24 hour service

Card No PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE, AIRMAIL
Eur. N.AF. Mid.E. add $1 / 3$ to price of books: Jpn. Aus. N. Z. Pcff add $4 /$: elswehere add $1 / 2$

Name

Address
U.K. Dalivery: up to 28 days

Cambridge Learning, Unit 14 Rivermill Site, fREEPOST. St. Ives. Huntingdon.
Reg. in Eng. No. 1328762

ATARI GARTRIDGES

Atwi beaic Progromming. You'll get the
basics of computer language and pro
gramming. What to say. And how to say basics of computer language and pro
gramming. What to say. And how to say
it $£ 34.50$ it. $£ 34.50$
Alarm mains units $£ 98.50$.
Keyboard control e e $£ 11.95$ Orders being booked for th
ball and Circus atf 15.20

SPACEINVADERS Geme Progrmm The ultimate Game Programme with 112
game variations including Moving
Shiel dos, Zigrogging Laser Bombs. Fast Laser Bombs. In visible Invaders and 18 Player Games! This superb cartridge use
the joystick controtlers and costs onl £27.50 incl. VAT plus 50p Post and
Packing. Order Now' Alarm with Space

It s you and your favourite adversary,
pursuing one another through bleak bi city streets And blowing each other away with the bazookas on your hoods
The first to blast his opponent twentySo get set for the wildest action since

Slot racers ${ }^{\text {T }}$

 now taken

GOLF - Now you can play goff at home even in stomy weather There are nime
tournament-quality holes on Alari's course, each with a designated par. Total
par for this course is 36 poonts. When playing a one-player game, try to match o
beat par. In a is the player with the least amount of strokes. But swing carefully. There are the usual sandtraps, lakes and trees to avoid
The wrong play may cost penalty strokes . 15.20 addictive Dungeons and Dragons fantasy tole plaving board game and includes the
added dimension of vide added dimension of video. A wicked
magician has siolen an Enchanted Goblet and hidden it somewhere in the Kingdom The object of the game is to rescue the
Goblet and replace in inside the Geld Castle where it betongs hinder youly dragest. but scattered through bat out the Kingdom are objects to help you slay the dragons and outwit th
magician E22.50 plus 50 p P\&P.
Kramer \& Co., Dapt ET12, 29 October Plece, London NW4
Kal 01 203 2473 Tder 38981 Arn K
Visa, Access, \&arclaycard \& Company orders accepted. Orders by
telephone / (elex Open Mon -Fri.'(Sunday by appointment only)

ETCH RESIST TRANSFER

 KIT SIZE 1:1Complete kit 13 sheets 6 in $\times 4 \frac{1}{2}$ in $\mathbf{£ 3 . 0 0}$ with all symbols for direct application to P.C. board. Individual sheets 30 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90° and 130° (8) 8-10-12 T.O.5 Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line

FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times 9 \mathrm{in}$. Price £1.20.

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES

Available also in reverse lettering, colours red, blue, black or white. Each sheet $12 \mathrm{in} \times 9 \mathrm{in}$ contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4$ in kit. $£ 1.20$ complete State size

All orders dispatched promptly. All post paid
Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS

P.C.B. TRANSFERS

DEPT. ET19

46 LOWFIELD ROAD STOCKPORT, CHES. 061-480 2179

NEW COMPONENTS

All prices include VAT. Piease add 50 p carriage on all orde
RAPID ELECTRONICS

The finest amplification from Crimson Elektrik

LATEST DEVELOPMENTS

CRIMSON ELEKTRIK Power amplifiers are the most sophisticated on the market today. Yet now with the latest Issue 5 innovations THEY ARE EVEN BET TER! We have included sonic improvements and developed heed for output fuses. In fact, such fuses can seriously degrade the performance of an amplifier. They can blow under heavy drive conditions - even with non faulty loads (due to thermal fatigue), they can be a time consuming nuisance and even dangerous to replace, bu more importantly they are responsible for envelope distes in the feedback loop suffer from the first two disadvantages, and the latter to a lesser extent

CP3000 POWER AMP MODULE 300 WRMS 4R

BEST VALUE

CIMSON have an enviable reputation for supplying the best value amplifier kits. You can proove this to yourself checking out the competition in the following crucia connections *Silver/Gold plated switch contacts Adequate heatsinking for full rated output * Available rom stock * Manulactured by a specialist company with a reputation for friendly and helpful service before and AFTER sale Forms the basis for high quality active CRIMSON Kits. Whys. Considering the advantages o CRIMSON Kits. Why choose anything eise

SOUND ADVICE

Crimson Amplifiers are versatile and dependable. The new CP3000 will give up to 300 watts into 4 ohms a 0.03% THD and is the obvious choice for P.A. and Disco s requiring the best performance. For Hi-FI we kits which enable our advanced modules to be housed in attractive metalwork and include everything down to the ast nut and bott.
Our Pre-amplifier can be fitted with the moving coil module allowing it to be used with the latest M.C cartridge (which can now be boughi for as little as $£ 30$) Write for details, specifications and full price list or send users manual
Space precludes us from publishing all our products and prices, below are just a few examples

CE 1708 (170 WRMS $/ 8 \mathrm{ohm}$
223.10

CP 3000-(300 WRMS / 4 ohms) 58.00 - $60+60$ watt stereo pre and power amplifier complete
*Stereo Moving Coil Pre-Pre Amplifier Modul $£ 208.86$

* 3 Way Active Crossover (single channel) £28.50

Don't forget Crimson modules are avaitale throughout the country from all branches of Marshalls and Mail order from Badger Sound Services and, of course Crimson Elektrik

MPA 200100 WATt (rms into 8Ω) MIXER/AMPLIFIER

Featured as a constructional article ir ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplitier. It features an adaptable input mixer which accepts a wide range of sources such as a microphone, guitar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself minimal wiring needed making construction very straightforward
The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc. - complete down to the last nut and bolt.

Panel size 19.0" $\times 3.5^{\prime \prime}$. Depth 7.3"

COMPLETE KIT ONLY
$£ 49.90$ + VAT!
MATCHES THE CHROMATHEQUE 5000 PERFECTLY!

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channei. Control of the ight is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control and construction very straightiorward

Kit includes fully finished r. 3talwork, fibreglass PCB controls, wire, etc. - Complete right down to the last nut and bolt!

COMPLETE KIT

 ONLY$£ 49.50$ + VAT!

рошенгдам

SYNTHESIZER KITS ON PAGE 8. MORE KITS AND ORDERING INFORMATION ON INSIDE FRONT COVER.

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER $£ 99.30$ + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightuully straightorward. The design was published in Hi-Fi News and Record Revilu and controls and tape monitoring while distortion is less than 0.01%

T20 + 20 20W STEREO AMPLIFIER $£ 33.10$ + VAT
This kit, besed upon a design published in Practical Wireless, uses a single printed circuir board and offers at very low cost, ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit $(T 30+30)$ is also available for
$E 38.40+V A T$ E $38.40+$ VAT. \quad MATCHING TUNERS - See our FREE CATALOGUE

Above 2 kits are supplied with fully finished metaiwork, ready assembled high quality teak veneer cabinet, cable, nuts, bolts, etc. and full instructions - in fact everything!

BLACK HOLS

MUSIC EFFECTS DEVICE - AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL!
The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both naturar and electronic instruments. offering genuine VIBRATO (pitch modulation) and a CHORUS mode which gives a "spacey" feel to the sound achieved by delaying the input signal and mixing it back with the original. Notches
(HOLES), introduced in the frequency response, move up and down as the time delay is modulated by the chorus (HOLES), introduced in the frequency response, move up and down as the time delay is modulated by the chorus
sweep generator. An optional double chorus mode allows exciting antiphase effects to be added. The device is sweep generator. An optional double chorus mode allows exciting antiphase effects to be added. The device is
floor standing with foot switch controls, LED effect selection indicators, has variable sensitivity, has high floor standing with foot switch controls, LED effect selection indicators, has variable sensitivity, has high
signal/noise ratio obtained by an audio compander and is mains powered - no batteries to changel Like all our kits everything is provided including a highly superior, rugged steel, beautifully finished enclosure

COMPLETE KIT ONLY E4O.80 + VAT (single delay line system) De Luxe version (dual delay line system) also available for $\mathbf{£ 5 9 . 8 0} \mathbf{~ + V A T}$
Cabinet size $10.0^{\prime \prime} \times 8.5^{\prime \prime} \times 2.5^{\prime \prime}$ (rear) $1.8^{\prime \prime}$ (front)

REMOTE CONTROL. 32-channel ultrasonic infra-red transmitter I.C. (SL490) £2.85 each. 32 channel receiver IC.s (ML928 + ML929) £3. 60 pair. Complete data/projects bookiet add 50p. P\&P 25p Dataplus Developments, 81 Cholmeley Road Reading, Berks
POWERTRAN TRANSCENDENT DPX built to high professional standards available for only $£ 350$. Package includes swell pedal, handbook and "Anchor" tuition course Phone High Wycombe (0494) 36923 (office hours).

VHF/FM TRANSMITTER KIT. New silicon chip design means low price (beats anyone else) and better performance. Very small - ideal bug etc. ... Fully tuneable $88-108 \mathrm{MHz}$. Instructions etc. all included INTRODUCTORY OFFER $£ 2,45+30$ p P\&P (unlicensable). M Henry, Dept ETI, 30 Westhalme Gardens. Ruislip.
TRANSCENDENT 2000. Synthesizer. Fully set up and in perfect working order. Must sell hence $£ 200$ only. Phone Worcester 354450 (evenings or weekends)
BOOKS BOOKS BOOKS - Large range of electronics books in stock. Send s.a.e. for list Servio Radio. Dept ETI 10, 156-8 Merton Road, Wimbledon SW19 1EG
A SUPERB VALUE STEREO POWER AMPLIFIER OFFER © Stabilised PSU: 2 N 3055 output Stereo 60 watt RMS; IC Preamp. Case includes, controls volume selector etc., din output/inputs for magnetic pick-up/microphone (3 mv) + Tuner + Tape/Aux. 26 transistors - 2 IC Screened Douglas Transformer, 240 V AC mains lead NEW-TESTED-DATA £19.95 (inclusive) KLIFCO ELECTRONICS 1 REGENT ROAD ILKLEY, W. YORKSHIRE LS29 9EA.

MSF TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses. self-setting at switch-on, 8 digits show Date.
Hours, Minutes and Seconds, larger digit Hours and Hours, Minutes and Seconds, larger digit Hours and
Minutes for easy QUICK-GLANCE time, auto. GMT BST and leap year, also parallel BCD output and can record when an event occurs, receives Rugby time signals, 1000 Km range, ACCURACY, £54.80.
GOKHZ RUGBY RECEIVER GOKHZ RUGBY RECEIVER, as in MSF Clock, serial data output, built-in antenna, $£ 1570$
V.L.F.? EXPLORE $10-150 \mathrm{KHz}$. Receiver $£ 13.70$ Each fun-to-build kit includes all parts, printed circuit,
case, instructions, postage etc, moner back assurance case, instructions,
so SEND off NOW.

CAMBRIDGE KITS

MAIL ORDER ONLY
DELTA TECH \& CO.
62 NAYLOR ROAD, LONDON, N20 OHN
Please add 35 p for P\&P

RESISTORS (5 \% E12) 10 Ohms to 10 Mohms
PRESETS
100 Ohms 152 W Hohms
POTENTIOMETERS 100 Ohms to 2 Mohm
POTENTIOMETERS
Linear \& Log Scales
Linear \& Log Scales
4.7 KO hms to 22 Mohms 4 KKOhm to 22 Mohms
VEROBOARRS (. $1^{\prime \prime}$ COPPER) $2.5^{\prime \prime} \times 5^{\prime \prime}$
$3.75^{\prime \prime} \times 5^{\prime \prime}$
 $5 \mathrm{~V} 65 \mathrm{p} \star 9 \mathrm{~V} 16 \mathrm{p}$
2 V 7 T 33 V 8 p

POLYSTYRENE CAP (50V)

 10 pF 10 1000 pFCERAMIC CAP
(50 V$)$ 33 pF to 4700 pF
POLYESTER CAP (100V) OF to 68 nF
100 nF 150 nF 100 nF 150 nF
220 nF 330 nF
$470 \mathrm{nF}: 11 \mathrm{p}$ 1uF. ${ }^{18 p}$
3. $3 \mathrm{pLF}{ }^{15 \mathrm{p} \star}$
ELECTROLYT 680 nF

ОРТО ELECTRONIC	BRIDGE	
	RECTIFIERS	
	W02M	20p
2N5777 55p	W06M	30p
OCP71 65p	$1 \mathrm{~A} / 50 \mathrm{~V}$	22p
ORP12 70p	$1 \mathrm{~A} / 100 \mathrm{~V}$	27p
DL704 110p	$1 \mathrm{~A} / 200 \mathrm{~V}$	32p
DL707 110p	$1 \mathrm{~A} / 400 \mathrm{~V}$	34p
$0.125^{\prime \prime}$ \& $0.2^{\prime \prime}$	2A/50V	40p
LEDs.	2A/100V	42p
Red 10p	2A/200V	48p
Green 13p	$2 \mathrm{~A} / 400 \mathrm{~V}$	55p
Yellow 13p	A/	-
$0.125^{\prime \prime} \mathrm{Clip} 3 \mathrm{p}$	THYRISTOR	
0.2'S ${ }^{\prime \prime}$	2N5064	+12p

voltage REGULATORS	
7805	65p
7812/15	65p
7818/24	65p
7905	75p
7912/15	75p
7918/24	75p
DIL SOCKETS	
8 pin	*7p
14 pin	+9p
16 pin	*10p
18 pin	$16 p$
22 pin	20p
24 pin	21p
28 pin	25p
40 рin	35p
DIODES	
BY127	12p
OA47	8p
OA91	* 6 p
OA200	$6 p$
OA202	$9 p$
1 N916	5 p
1 N4148	4 p
1 N4001/2	4 p
1 N 4003	5p
1 N 4004 / 5	6 p
1 N4006 / 7	8p
1N5400	13p
1 N5401	14p
1 N5402	15p
IN5404	16p
LINEAR	
CIRCUITS	
709-8	28p
$710 \cdot 14$	35p
741 -8	20p
747-14	50p
748 -8	35p
CA3018	70p
CA3028A	85p
CA3046	50p
CA3080E	75p
CA3090AO	
	200p
CA3130E	90 p

BRAND NEW COMPUTER POWER SUPPLIES: $-250 \mathrm{v} 400 \mathrm{~mA}-12 \mathrm{v} 2 \mathrm{~A}$ $+30 v \cdot 400 \mathrm{~mA}+12 \mathrm{v} \cdot 500 \mathrm{~mA}$. and +5 v . at a staggering 12 A!! Admirably Engineered Units. $£ 35+£ 3.50 \mathrm{carr} /$ insurance. Sold tested and working but without guarantee Payment with order to: J. Wright, 27 Broom hill Drive, Glasgow G1 1 7AB
NUCLEAR RADIATION MONITOR. Es sential for the survivor of a nuclear attack Measures up to 100 rads/hour. S.a.e. details: Ray, Nucleonics. 13 Rosemead Gar dens, Brentwood CM131HZ

INTENSIVE COURSES IN BASIC

 AND PASCALincluding hands on mini-computer opera
These intensive courses are intended to instruct from minimal knowledge to an operational capability of computer programming
Courses are fully residential, allowing maximum time for instruction and programming.
BASIC - Weekends from Friday Evening to Sunday Afternoon
PASCAL - Weekdays Monday Morning to Friday Afternoon inclusive
For further details, dates available, fees
Phone (0401) 43139, or write
CLEVELAND BUSINESS SERVICES
(Dept. ETI-2), Cleveland House
Routh, North Humberside HU17 9SR

SEND TO:- ETI CLASSIFIED, 145, CHARING CROSS ROAD, LONDON WC2H 0EE. TEL: 01-437 1002 Ext. 26

MK14 CORNER. Interface Board, includes flag driven mains relays, LED Indicators for all Serial I/O, D/A and single step chips, and prototype area; also suitable for other Microcomputers; PCB and circuit $£ 3.95$. Replace calculator display with $1 / 2^{\prime \prime}$ FND 500s; PCD. filter, instructions £1.95. Ready-built replacement keyboard £11. Useful notes on MK14 75p. Rayner, "Kismet", High Street, Colnbrook, Bucks.

DO YOU TRANSMIT AUDIO SIGNALS OVER CABLE CIRCUITS?

We manufacture a full range of interface equipment for transmission of audio signals over private wire of telephone circuits, from Narrow Band STD systems ($300 \mathrm{~Hz}-3.4 \mathrm{kHz}$) up to Wide Band Music Circuits

PARTRIDGE ELECTRONICS

(A. C. Partridge Ltd.)

56 Fleet Road, Benfleet, Essex Tel: (STD 03745) 3256
We also manufacture audio mixers and sub-assemblies

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors Hardware and accessories

Selected range of popular components Full range of HE printed circuil boards normally ex-stock, same day despatch at competitive prices
P.C. Boards to individual designs

Resist-coated epoxy glass laminate for the di.y man with full processing instructions (no unusual chemicals required)

Alfac range of elch resist Iransfers and other drawing matertals for pe boards

Send 15 p for catalogue.

RAMAR CONSTRUCTOR SERUICES
MASONE ROAD
STRATFORD-OW-AVON
WABWICKS. TE. 4875

CIRCUIT DESIGN, Prototype cumsuction: Analogue or Digital, Single Circuits or Complete Instruments 15 ystems. Write A.J. ATTWOOD, C.Eng., MIERE, Heathercote, Heatherton Park, Taunton, Somerset, TA4 1 ET or Phone Bradford-on-Tone (082-346) 536.

CENTURION ALARMS

BURGLAR ALARM EQUIPMENT AT UNBEATABLE VALUE JUST LOOK!

Onder No

OO ALARM TRIGQER MODULE 100% Solid State. Battery operation. Pos \& Neg . Rings. N/C for 4 -wire contacts. N/0 for
Mats etc. One Amp Switching Capacity Only 210 duality White Flush fitting 4-wire MAGNETIC REED CONTACT + metching magnet 4 -wire wa 240 PRESSURE MAT, Standard size 4 -wire $30^{\prime \prime} \times 1$ 250 PRESSURE MAT. Stair size 4 wire $23^{\prime \prime} \times 6{ }^{\prime} / 2^{\prime \prime}$ 260 VIBRATION DETECTOR, Pendulum type in lyory $\begin{array}{r}\mathrm{E} 1.73 \\ \hline 102\end{array}$ contacted Lid + self.adhesive Dacking. Adjustable sen sitivity f3 with 390 BEST QUALITY EELL MOUSING, PVC......... $\mathrm{Eq}_{9.95}$ confused with the cheaper decoy covers. Fully signwritten with 400 Decor P.V.C. Beil coven
Note: All equipment operates on 12 Vorte DC
Typ SCOOP Offer SMOKE ALARMS. Seltcontained lonisation Yype (1.5\% obscuration) with low battery warning at th Temer : Add 15\% VAT io Prices 400 P Postage \& Packing Lmerl! Tomes Ans 1

LARGEST STOCKS ANYWHERE sheets, and manuals. Service sheets only $£ 1+$ sae Sole suppliers of the famous TV Repair Systems. Complete Diagram Collection. Mono TV/Washing Machines/Col. TV/etc., in huge binders, only $£ 13.50$ each. SAE brings newsletter bargain offers, quotes: G.T., 76 Church Street, Larkhall, Lanarkshire (0698) 883334.

200 COMPONENTS $£ 4.100$ diodes 85 p. 150 caps $£ 1.50 .100$ resistors 85 p. All mixed. Lists 15 p. Sole (Electronics (ETI), 37 Stanley Street, Ormskirk, Lancs. L39 2DH
TRANSCENDENT D̈PX Polyphonic Synthesizer, fully working, mint condition, professionally constructed. Save approximately $£ 100$ on kit and construction costs! For sale. £299. Telephone: 028235680 (Burnley)

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non driver, case knife and screwback case opener. Also one doz assort. push-pieces, full instructions and battery identification chart. We then supply roplacement batteries - you fit them. Begin now. Send E9 for complete kit and get into a fast-growing business. Prompt
despatch.

BOLSTER INSTRUMENT CO. [ETI6]
11 Percy Avenue, Ashford, Middx. TW 15 2PB

BARGAIN PACKS
£1 + 25p P.P. ea

50×4.74 F/ION Tim Tastamm
$50 \times 0.1 \mathrm{FF/LOON}$ Ralial Polyasiter
$20 \times 0.22 \mu \mathrm{~F} / 250 \mathrm{Y}$ Aadial Palyetter $80 \times 0.01 \mathrm{~F} / 400 \mathrm{~V}$ Axial Palyester

30×47 rfiov Berd Tamalam
 $10 \times 22 \mu F / 250 V$ Radial Polysiter $20 \times 1.0 \mu F / 150 \mathrm{~N}$ Axial Palyestir $7 \times 32 \mathrm{~F} / 450 \mathrm{~V} \mathrm{Tal}_{\mathrm{gl}}^{\mathrm{man}}$ and lytics $3 \times 1500 \mathrm{HF} / 50 \mathrm{~T} T \mathrm{Top} 1 \mathrm{an}$ Lrtics
$2 \times 4500 \mathrm{p}$ f/25V Serm Tw

I. SCOTT, 37 Regent Street. Ruwhodge, Essex

TRANSFORMERS MANUFACTURED to specification, many popular types ex-stock. Fast turn around on volume production. Send enquiries to Louth Transformers, Queen Street, Louth, Lincs. Tel: (0507) 606436.

TRANSCENDENT 2000 SYNTHESISER.
Fully operational, with foot pedal and reverb unit, must sell, £160. Phone Colchester (0206) 211309 , evenings.

MAPLIN DISCO UNIT, only needs light unit fitting. Unit tested and used twice, fan cooled heatsinks. Very robust case. Offers around $£ 180$. Also Maplin Organ MESS $1 / 2 / 3 / 4$. All PCBs finished and working (unit built and disassembled owing to moving house). Two 61-note keyboards, 13-note pedalboard, rotating base speaker unit, drawbars and stop tabs, reverb. Offers please. Tel: 01-445 8336.

ADAM HALL

Cabinet \& Flightcase Fittings, fretcloths, coverings. handles, castors etc., Jacks \& sockets, Cannons, Bulgins, reverb trays, Emilar compression drivers, AKG mics, Celestion speakers. ASS glassfibre horns.
Send 30p postal order for illustrated catalogues to ADAM HALL (E T SUPPLIES)
Grainger Roed, Southend-on-Sea Essexx SS25BZ

ZX80 GAME. Ingenious and challenging 1-2 player game of capture for $1 \mathrm{~K} Z \times 80$. Fully documented. Send $£ 1.50$ to HINDLE, 139 Penrhyn Road, Sheffield, S11 8UP.

AVERTISEMENT INDEX

BITS \& BYTES

8MHz Super Quality Modulators	E4.90
6 MHz Standard Modulators	$\underline{22.80}$
C12 Computer Grade Cassettes	10 for E4.00
Anadex Printer Paper - 2000 sheets	£25.00
Floppy Discs 5 $1 / 4^{\prime \prime}$ Hard and Soft Sectored	¢3.50
Floppy Disc Library Case 51/4'	E3.50
Verocases for Nascom 182 etc .	$\underline{54.90}$
Keyboard Cases	59.80

MEMORY UPGRADES

 16K (8×4116) £29.90 + vat4K Compukit (8×2114) £29.90 + vat

EPROM 2716 £ 12.50 + vat

COMP PRO MIXER

Professional audio mixer that you can build yourself and save over $£ 100$.
6 into 2 with full equalization and echo, cve and pan controls.

All you need for your own recording studio is a stereo tape or cassette recorder

This superb mixer kit has slider faders, level meters and additional auxilliary inputs

Only $£ 99.90$ plus VAT for complete kit Plus FREE
power
supply valued at
$£ 25.00$

Ideal for
DISCOS STAGE MIXING HOME STUDIOS AND MANY OTHER APPLICATIONS

NEC SPINWRITER
 only £1490

NEC's high quality printer uses a print "thimble" that has less diameter and inertia than a daisy wheel, giving a quieter, faster, more reliable printer that can cope with plotting and printing (128 ASCI characters) with up to five copies, fric tion or tractor fed. The ribbon and thimbie can be changed in seconds. 55 characters per second bidirectional printing with red/black, bold, subscript, superscript, proportional spacing, tabbing, and much, much more

HITACHI PROFESSIONAL MONITORS $9^{\prime \prime}-\mathbf{£ 1 2 9}$ $12^{\prime \prime}-\mathbf{£ 1 9 9}$

- Reliability Solid state circuitry using an IC and silicon transistors ensures high reliability. 500 Innes horizontal esolution Horizontal resolution in exces achieved in picture Venter. back pictures of VTR can bed without jittering, - Looping vidoo input Video input can be looped through with built-in termination switch. - External sync operstion (available as option for U and C types) - Compact construction Two monitors are mountable side by side in a standard 19 -inch rack

Super Quality - Low cost primter Tractor Feed with tull 96 ASCll character set. Accepts RS232C al band rat 100 and 9600 and Parallel Bit data.
Altaches ether difectly or through interfaces to Pet. Apple
TRS80. Sorcerer, Nascom Compukir eic
THE NEW ANADEX DP9501
A PROFESSIONAL PRINTER

COMPUPHONES
YOU NEED NEVER MISS AN IMPORTANT CALL AGAIN
TWO CORDLESS TELEPHONE SYSTEMS - DIRECT FROM USA

THE ALCOM
only $£ 147$ + VAT
Base station connects to your telephone line. Remote handset clips to your belt and gives you push-button dialing Bleeps when call arriving - Nicad rechárgeable batteries Charger in base unit

THE BOHSEI
only $£ 125$
Base station connects to your telephone tine. Remote handset stylishly designed in red - Push button dialling comes complete with charger unit for batteries in handset.

LOW COST TELEPHONE
£ 99.95 ANSWERING MACHINE

E99.95
Microprocessor controlled answering machine. Plug into your phone line. Records any phone call messages. Remote bleeper enables you to listen to your messages from anywhere in the world. Uses standard cassettes Comes complete with mains adaptor, microphone, remote bleeper base unit, cassette with 30 sample pre-recorded messages

COMMERCIAL - EXPANDABLE COMPLETE TRS 80 • MODEL II

This new unit from the world's most successful micro company is now available immediately with software
The basic unit comes complete with 64 thousand characters (bytes) of Memory. The built in $8^{\prime \prime}$ Floppy disc adds another $1 / 2$ million extra characters including the disc operating system. More disc expansion is now available.
The Model II is a complete unit with a full keyboard including a numeric pad and $12^{\prime \prime}$ screen which gives 24 lines of 80 characters. The computer is supplied with both the disc operating system and the Level III Basic
A full self test routine is written into the power up procedure to eliminate incorrect operation. Both serial and parallel expansion sockets are standard. A printer is a plug-in operation
Both hardware and software necessary to talk to a mainframe are included. Terminal usage is very possible. With the addition of CPM2 you can operate with COBOL, FORTRAN, MBASIC, CBASIC in which languages are many other applications packages i.e. accounting, payroll stock etc.

MACHINE IN OUR BUSINESS

64K 1-Disk Model II $£ 1995.00$

RRP $£ 2250.00$

1 DISK EXPANSION

 Room for 3500 K per Drive gives total of 1.5 M Byte - 1 Drive plus Cabinet $£ 799$ + vat

CP/M2 $\quad \begin{array}{r}\text { £95.00 } \\ \text { C }\end{array}$ CIS COBOL
C BASIC $\quad \begin{aligned} & £ 400.00 \\ & £ 75.00\end{aligned}$ $\begin{array}{lr}\text { C BASIC } & \begin{array}{r}\text { £75.00 } \\ \text { MBASIC }\end{array} \\ \mathbf{E 1 5 5 . 0 0}\end{array}$ FORTRAN £220.00 WORDSTAR $£ 255.00$

COMMERCIAL - EXPANDABLE - COMPLETE TRS 80 . MODEL II

This new unit from the world's most successful micro company is now available immediately with software.
The basic unit comes complete with 64 thousand characters (bytes) of Memory. The built in $8^{\prime \prime}$ Floppy disc adds another $1 / 2$ million extra characters including the disc operating śystem. More disc expansion is now available.
The Model II is a complete unit with a full keyboard including a numeric pad and $12^{\prime \prime}$ screen which gives 24 lines of 80 characters. The computer is supplied with both the disc operating system and the Level III Basic.
A full self test routine is written into the power up procedure to eliminate incorrect operation. Both serial and parallel expansion sockets are standard. A printer is a plug-in operation.
Both hardware and software necessary to talk to a mainframe are included. Terminal usage is very possible. With the addition of CPM2 you can operate with COBOL, FORTRAN, MBASIC, CBASIC in which languages are many other applications packages i.e. accounting, payroll stock etc
64K 1-Disk Model II £1995.00

CP/M2	$\mathbf{£ 9 5 . 0 0}$
CIS COBOL	$\mathbf{£ 4 0 0 . 0 0}$
C BASIC	$\mathbf{£ 7 5 . 0 0}$
M BASIC	$\mathbf{£ 1 5 5 . 0 0}$
FORTRAN	$\mathbf{£ 2 2 0 . 0 0}$
WORDSTAR	$\mathbf{£ 2 5 5 . 0 0}$

WE USE THIS
 MACHINE IN OUR BUSINESS

per Drive gives total

(OMPUKITUK101 $\begin{gathered}\text { EUROPE'S FASTEST SELLING } \\ \text { ONE BOARD COMPUTER }\end{gathered}$

* 6502 based system - best value for money on the market. \star Powerful 8 K Basic - Fastest around \star Full Owerty Keyboard * 4K RAM Expandable to 8 K on board. * Power supply and RF Modulator on board. \star No Extras needed - Plug-in and go. \star Kansas City Tape Interface on board. * Free Sampler Tape including powerful Dissassembler and Monitor with each Kit. * If you want to learn about Micros, but didn't know which machine to buy then this is the machine for you.

40 pin Expansion Jumper Cable for Compukit expansion $\mathbf{E 8 . 5 0}+$ VAT	
Buld Undemband at Proquan , oha awn Compater is urly a smil widy	KIT ONLY£179 - vAT NO EXTRAS NEEDED

The Compukit UK101 comes in kit form with all the parts necessary to be up and
working, supptied. No extras are needed. After plugging in yust oress the reset keys and the whole world of computing is at your fingertips. Should you wish to work ir the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programmes. By pressing the C key the world of Basic is open to you. This machine is ideal to the computing student or Maths student, ideal to teach your children arithmetic, and is also great fun to use. Because of the enormous volume of users of this kit we are able to offer a new
reduced price of $£ 179+$ VAT

Available ready assembled, tested $\&$ ready to go $\mathbf{£ 2 2 9}+$ VAT

BITS\& BYIES

FOR THE COMPUKIT

NEW MONITOR FOR COMPUKIT UK101 - in 2 K Eprom 2716

- F Allows screen editing - Saves data on tape

We give a full one year's warranty on all our products.

SPECIAL OFFER

We will part exchange your Sinclair ZX80 for any of our products.
Refurbished ZX80's-fully guaranteed $£ 69.90$
(Supply dependant upon stocks)
We have one of the largest collections of Computer Books under one roof, along with racks of software for the PET and TRS80.

COME AND SEE FOR YOURSELF

We now have in stock demonstration models of the Atari 800 and Texas 99/4. COME AND SEE THEM

Please add VAT to all prices - including delivery. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number
CREDIT FACILITIES ARRANGED - send S.A.E. for application form
14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G Telephone: 01.4412922 (Sales) 01.4496596 OPEN • $10 \mathrm{am} \cdot 7 \mathrm{pm}$ - Monday to Saturday Close to New Barnet BR Station - Moorgate Line

* NOW in IRELAND at: 80 Marlborough St., Dublin 1. Tel: Dublin 749933
(COMPSHOP USA, 1348 East Edinger, Santa Ana, Californa, Zip Code 92705

"momemigetn

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

Catalogue now available in all branches of WHSMITH 质 Price $£ 1.00$

[^0]: Electronics Today is normally published on the first Friday in the month preceding cover date.

[^1]: *Use a 600 mA at 9 VDC nomınalunregulated mains

[^2]: An 80-10 Voltage Controlled Envelope Shaper module kit (PCB plus components) is available for the inclusive price of $£ 19.20$ from Digisound Limited, 13 The Brooklands, Wrea Green, Preston, Lancs. PR4 2NQ.

