

POWER PACKED - by POWERTRAN

Powertan b black boxes ere packed with punch. Not only are ihey superb kits to buy and bulld they really do the jobl Imaginative and ingenioue design goes hand in hand with top quality materials and outstanding performance capability. With their smant black styling the kits harmoniso visually as well as musically.
Your can bulk aach unit indopendently for tite set tagk and then gradually Increase your array until you have a complete bank of formidable controllable power.

Complete Kir - C49.90 + VAT

Complere Kir - CA9.SO + VAT

Complete Kit - $\mathbf{1 1 7 5 . 0 0}$ - VAT

Complete Kit $-\mathbf{I 6 4 9 0}+$ VAT

MPA 200 is a low price, high power 100W amplifer. Its smart siyfing, professional appearance and performance. make if one of our masi popular designs. With adaptable inputs the mix or accepts a variety of sources ver siraightfonvard construction makes n ideal for the first-time buikder.

CHROMATHEQUE 5000
a
5-channet lighiing system Dowerful enough for professional discos yei consrollable for home-effocis. Sound io light. sirobe to music level, random or sequential effects - each channet can handle up 10500 W vot minimal wring is needed with our unique single-board design.

ETI VOCODER - 14 channols, each with independent level conisol, for maximum versatility and intelligibifity. Two inpui amplifiers - for speech/excitation - each with level control and ione conirol. The Vocoder is a powerfut vei flexible machine that is interesting to build and thanks io our easy to follow conspruction manual, is within the capability of most enthusussis.

SP2 200 imce the power with iwo of the retable. durable and economic amps from the MPA200; fed by separate power supplies from a common ioroidal iransformer. Supert finish and quality componenis throughoui - up io teven overll the standard of high priced factory-buit units

OJgo Siereo Mixer - this is a really versatite now mixer that enables the constructor DJ io produce a professional performance every time. There are iwo stereo inpuis for magnatic cariridges, a stereo auxiluory input and mike in. put. Other 'plus' features are auto-panning for fast or slow, slider controls, rieslitiomizang. ducking, interrupt, inpui mosulaitio. in short evervituing. . the whole works - AND under $£ 100$ completel (We nave illustrated the DJ90 tearned in Ouf JWn console with the Chromatheque and on SP2 200 and speakers.

Complere $\mathrm{Kh}-[97.50+$ VAT

Digital Deley Line - our latest kill With its ablity to give delay tumes from 1.6 mSecs to up to 1.6 secs. Many powerful effects including phasing. flanging, A.D.T., chorus, echo 8 nbrato are obtained. The basic kut is extended in 400 mS steps up to 1.6 secs. Simply oy adding more parts to the PCB. Compare with units costing over £ 1.0001 Complete kat 1400 mS delay) £135. Parts for extra 400 mS delay 59.50 p

WORLD LEADERS IN ELECTRONIC KITS

 covneres

- Ordering - File eroving oulons, dentiory sarvics. and sotes counte openng = cutries bect of ond iswe

PORTWAY INDUSTRIAL ESTA「E. ANDOVER. HANTS SP10 3NM. (0264) 64455.

Ron Harris B.Sc. Editor
Peter Green: Assistant Editor Tima Boylan: Editorial Assistant
Rory Holmes: Project Editors Phil Walker:
Alan Griffiths: Advertisement Manager
Paul Wilsor-Patterson: Group Art
Editor
T.J. Connell: Managing Director

PUBLISHED BY
Argus Specialist Publications Lid
1+5 Charing Cross Road, Iondon WC2H OEE DISTRIBUTED BY:
Argus Press Sales \& Distribution Lid. 12.18 Paul Street. London EC2A 415
(British Isles)
PRINTED BY
Q8 Limited Colchester
COVERS PRINTED BY:
Alabaster Passmore

OVERSEAS AUSTRALIA - Roger Harrison DITIONS
and their CANADA - Halvor Moorshead
CERMANY - Udo Wittis DITORS HOLLAND - Anton Kpiegsman

ABC

Member of the
Audit Bureau of Circulation

Electronics Ioday ts normaily publisthed on the fust Fridav in the month preceding cover date. D CArsus Specialist Publicatiom lad 1982. All material is subject to worldw ide copvright protection All feasonable care Is talien in the prepalation of the magazime contents. but the publishers cannot be held iegally responsible for etrors. Where mistalies do occur, a correction will normally be published as soon as possible afterwards All pukes and dala comained in advertisements are ac cepted by us in good fath as correct at time of guing to press Nerther the advertisers nor the publishers can be Geld responsible, however, for any variations affecting pice or avallability which mav occur aftef the pubilea
-
\square Subscription Rates, UK E11.95 including postage. Airmail and other rates upon application to ETI Subscriptions Department. 513 London Road, Thornton Heath, Surrey CR 4 6AR.

EDITORIAL AND ADVERTISEMENT OFFICE 145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5. Telex 8811896.

FEATURES	
DIGEST. 9	READWRITE 54
News at nine	Cet it off your chest
ELECTROMUSIC TECHNIQUES 17	IGNITION COMPETITION 61
Circuits to experiment with	Bright sparks might win it
CRIMSON COMPETITION 33	10th 8IRTHDAY SUPPLEMENT 63
Win yourself a hifi	Happy birthday to us
KIT REVIEW 35	BIRTHDAY COMPETITION 64
and build some speakers for it	Win a decade's subscription
\pm	Audiophile . ${ }^{\text {Putting on }}$
	VEROCOMPETITION 111
5	Some prize boxes TECH TIPS.....
	A smattering of readers' circuits
	CASIOCOMPETITION 117
DESIGNER'S NOTE8OOK 45	For cool, calculating types
Sample our delights	ENTRYFORMS 133 Only one cut required

PROJECTS

ACCURATE VOLTAGE MONITOR

Check out your battery
COMPUTEREXPANSION
This'll blow your EPROM
AUTOMATIC CONTRAST METER
Something unusual
for photographers

SOUND EFFECTS 1
Bomb drop and explosion HIGH IMPEDANCE 100 MHz PROBE
Top flight test gear

23 RO8OT CONTROLLER PART2 94

For producing PWM

SOLUDSTATE REVER8 101
It's great-eateateat
CAPACITANCE METER PART 2 108
We conclude with the construction SOUND EFFECTS 2 118
Steam train and whistle GUITAR PRACTICE AMP 121
Cheap, and keeps your neighbourcheerful
FOIL PATTERNS 136This is where our boards find lodging

INFORMATION

NEXT MONTH'SETI

Ever onward, ever better
800K SERVICE
Read all about it

15 PC8 SERVICE 44 Why mess with ferric chloride?
31 SUBSCRIPTIONS125

Sinclair XX81 Personal the heart of a system that grows with you.

1960 saw a genuine breakthrough the Sinctair $\mathbf{Z X 8 0}$, world's first complete personal computer for under \& 100 Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just £69.95 the Sinclair $\mathbf{Z X 8 1}$ offers even more advanced facilities at an even lower price. Inititally, even we were surprised by the demand - over 50.000 in the first 3 months!

Today, the Sinclair 2×81 is the neart of a computer system You can add 16 -times more memory with the ZXRAM pack The ZX Printer offers an unbeatable combination of pertormance and price. And the $Z X$ Software liorary is growing every day.

Lower price: higher capability

With the $\mathbf{Z} \times 81$, in's still very simple to teach yourself computing, but the 2X81 packs even greater working capability than the $\mathbf{Z X 8 0}$

It uses the same micro-processor, but incorporates a new, more power ful 8K BASIC ROM - the 'trained intelligence of the computer. This chip works in decimals, handles logs and ing. allows you to plot graphs. and builds up animated displays.

And the $\mathbf{Z X} 81$ incorporates other operation refinements - the facilty to load and save named programs on cassette for example, and to dnve the new $2 \times$ Printer

 nut eonctios io complop poprens

Kit: £49.s.

Higher specification, lower price how's it done?
Quite simply, by design. The $\mathbf{2 X 8 0}$ reduced the chips in a workung computer from 40 or so, to 21 The 2×81 reduces the 21 to 4!

The secret lies in a tofally new master chip. Designed by Sinclair and custom-buitt in Britain, this unique chip replaces 18 chups from the $\mathbf{2} \times 80^{\circ}$
New, improved specification - Z80A micro processor - new faster version of the famous $\mathbf{Z 8 0}$ chip, widely recognised as the best ever made.

- Unique "one-louch' key word entry: the ZX81 eliminates a great deal of tiresome lyping Key words !RUN, LIST, PRINT, elc.) have their own single tey entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scienific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities
- Multi-dimensional string and numerical arrays
- Up to 26 FOR/NEXT loops - Randomise function - useful for games as well as serious applications. - Casselte LOAD and SAVE with named programs.
- IK-byte RAM expandable to 16K bytes with Sinclair RAM pack - Able to drive the new Sinclair printer.
- Advanced 4 -chip design: micro processol, ROM, RAM, plus master chip - unique custom-built chip replacing 182×80 chips

Built: ع69.95

Kht or buill - $1 \mathrm{i}^{\prime}$ s up to you!

You'll be surprised how easy the ZX89 kit is to bulld: fust four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-lipped soldering tron And you may atready have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version).

Klt and bult versions come com. plete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Designed as a complete module to fit your Sinclair $\mathrm{ZX80}$ or $\mathrm{ZX81}$, the RAM pack simply plugs thio the existing expansion port at the rear of the computer to multiply your data/ program storage by 16

Use in for long and complex programs or as a personal database Yet it costs as fittle as haff the price of compettive additional memory.

With the RAM pack you can also run some of the more sophisticated Z) Software - the Business \& Household management systems for example.

Available nowthe IX Printer for only £49.5

Designed exclusively for use with the ZX81 (and ZX80 with BK BASIC ROM), the printer offers full alphenumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole IV screen without the need for further intructions

At last you can have a hard copy of your program listings - paricularly

How to order your $\mathbf{2 \times 8 1}$

BY PHONE - Access, Barclaycard or Trustcard hoiders can call 01.2000200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing of editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per fine and 9 lines per ventical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well A poll of paper (65 f long $x 4$ in wide) is supplied, along with full instructions
by cheque postal order. Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14 -day money back option We want you to be satisfled beyond doubt and we have no doubt that you will be.

COMBINED FORCES!

South East Computers PLUS Castle Electronics can now offer you Unequalled

Service -at Supermarket Prices!

Tllolour COMPUTER

Acorn Atom
BRITISH DESIGNED
PERSONAL COMPUTER
EK ROM - 2K RAM Li.
rit1000 ak flustimy fin
4189-95
 85 ROM : SK RAM AM [17450 Cotton focused cruse Miens firmer serin 120250

TANGERINE microtan

Maventedi os kit
 Tones Man Cats ron C90 05
 mANTEL PASTEL ADApTER - 119900 Wo hold e complete stock of ell the
ALL PRODUCTS
ARE FULLY
GUARANTEED
BUYVATH
CONFIDENCE
ALL PRICES
INCLUDE VAT

more for cevtstio.

From Only $£ 19$ Package A SILICON OFFICE SYSTEM
$1 \times$ CB 8096 Computer Ix CBM 8050 Dual Disk Drive $1 \times$ CBM 8023 Matrix Printer Connecting cables, plus Silicon Soft were

Fam Only 543
Package B ALTOS MULTI-USER per wed ALTRD MURDISKSYSTEM 1 is ALTOS 8000/10 Computer with 10 Mbyte Hard Disk 208K byte Memos (4 users) 500 K byte Floppy Disk Drive $2 \times$ TVI 912C VDU's 1×OKI Microcline 83A Printer

SEC BUSINESS SVSTEANS SUPPLY A WIDE RANGE OF EASYTO OPERATE SYSTEMS AND PROGRAMMES TO MEET ALL OF TODAVS BUSINESS NEEDS P FULL RANGE OF COMNUTEA

RELATED PRODUCTS - LEASING AGREEMENTS - PULL AFTER SALES SERVICE
 EAEC The Complete Computer Service!

15 CASTLE STREET, HASTINGS, BAST SUSSEX TN34 3DY DEPT. ETA

ALL PERSONAL COMPUTER ENQUIRIES:Contact Paul Brown or Sem Wright on Hastings (0424) 437875 (Formerly Castle Electronic) FOR ALL BUSINESS SYSTEMS ENQUIRIES:Phone Nick Rosenberg on Hastings (0424)

D DI G E S

ETI PRICE DECREASE

Readers will have no doubt noticed (painfullyl) the cover price increase on this issue of ETI. We apologise for this, but are happy to say it is ONLY FOR THIS ISSUE and the price returns to 75p with the May issue.

The one-month jump was made necessary by the sheer size of this special issue. We hope you will agree it is worth it. If you could see the price of paper shese days... (moan, moan).

Thank you for sticking with us through thick and thin... (and 10pl)

Tempus Fugit

Iris felt a betle uncomioriable worting in the ITI otlice this mowth, must Ibe something to do with the wocksloets and ashes witie wearing. Ourting the last few howes several of our revtews have featured Casio peoducts. but we have consistenth lalled to credif the company which lent us the eevien modets. The tindly foll in question sere Tempen of 30 Burleigh street. Cambeidge COI IDC and we'd hibe to thanis them lor all the help theq've baen giving us. Tempus are keading Casio spectalists and it there's something from Casio pow're hoving Froblems obtaining they will doubiless be as nice to customers as they are to un.

Sun-Day Driving

A Voll swagon Dasher car is presently being tested carpying a root-ach A of AtC-I elefuntien woler modutes which coavert soler enemey direct. Iy into electric current. The small ico W rolar power plent of the leat cap complements the dynamo and charges the baftery. This means that foel consumption can be reduced by appeosimately the percient. As vet the cost of manufacturing these solar panels mates them unpronomical to use, but mthe the riving priees of fuet. ith foreceeable that low-prited sotor generators will enter the mastet. Not only that future cae generations will mabe increased use of electeritity, for ecample with aufomatic starpstop devikes and pollution-fere electisical emever tor atr conditioning in can i warm countries Geal idea - but where will you put the lugengel

Tweeters That Go Cheap

M Vell. not lust the tweeters. in M lact Mullard hove a 40 W apeaber anstem consisting of an 0° wooter as well as a high-power tea. tile dome tweeter. They form part of a now how-potee. tro-w ay, self build sudio hit (whew!) being maplefed by On ifectrenica. The

BE Tlectronics cromover unit hove been combined with aprine-loaded terminsh and recessed mounfing panel. The complete system, when buile tato the 25 litre enclowure, is capable of handling 40 W comior. tably All this for the smafl outlay of $\{1130$ phos VAI and II SO caroluge per int Get rours now from on Electronics It1, 37 Whitehowse Meedowe. Lesperod, leden-OnSea, Imer SSO STV.

Heading For The

 TopHeadphonos weem to be getline Clighter and smalier there davs. se Sennheisef, that wellthown manutasturee of headphomes has decided to bunch a paie of theil own lightweight 'phomest The new model MO 40 is soon to be released to the Uft and weighs conly wo geam. met whth eatremely light contast perssure. They can be wapplied with evther a three or seven metre lead, the seven mefre variety incor. perations a volume controd in the lead so that voe don't hove to march all that way bact fo the amp It irs too loud Another feature io that each ear-phect can be revolv. ed on the headband by so degeees tif you have a funay thaped heed of Myou mant to store them compactin (I) The Sennhelser MO 50 will be bounched in the Ut with a sug gested selliong picice. including VAl of $£ 16.5 \mathrm{~s}$ for those of you interested in lechnical cpects forquency response ho 22 to 10,000 Hes dmpedonce to 600 ohoms. chersctertitie SPI to 90 de and distortion factor < 1.2M.

Electroware, OK?

O15 Machine and Toot (UII) ITd hove launched a mew division amed at providing the electronics uret with a ecelly wide cange of electronic hardware. All the products to the range will be availoble to everyone involved in building electronic equipment - that tur cludes enginepes. Btudento reaching atail. Lebonatory terhat clam and, not kean, the hobbrise. The sapage catalogue comtains various products selected from OX's bench tool range $=$ plus nome new hevm - and ischudes soldering bons. wher-wrapping blos. IC tools. PCDe cases. enclosures. connectors. soctefe and iest instruments to name fust a lew. Ifectioware to distributed throughout the UKi by leading elecreonic and compulet itomet. Catalogues are feec, but send 30p for postage and paching if you want any further information on one of theve catalogues contact OE Machime a Iool (UM) IIN. Dutton Lame Iastlough. Wants SOS SAA.

Lack of ZX8l memory giving you headaches .?

The Memotech 64K Memopak

The growth of interest in computer use caused by the introduction of the Sinclair $\mathbf{2 \times 8 1}$ has made new and excliting demands on the ingenulty of electronic engineers. At Memotech we have focused our attention on the design of an inexpensive, reliable memory extension.
The Memopak is a 64K RAM pack which extends the memory of the ZX 81 by a further 56 K . Following the success of our 48K memory board the new memory extension is designed to be whithin the price range expected by Sinclair users. It plugs directly into the back of the $\mathrm{ZX81}$ and does not inhibit the use of the printer or other add-on boards. There is no need for an additional power supply or for leads.

The Memopak together with the $\mathbf{2 X 8 1}$ gives a full 64 K , which is nelther switched nor paged, and is directly addressable. The unlt is user transparent and accepts such basic commands as 10 DIM A(9000) 0-8K ...Sinclair ROM
8-16K...Memopak memory which can switch in or out in 4K blocks to leave space for memory mapping.
12.16K.. Memopak memory which holds its contents during cassette loads and allows communication between programmes.
16.32 K ... This area can be used for basic programmes and assembly language routines.
$32.64 \mathrm{~K} \ldots 32 \mathrm{~K}$ of RAM memory for basic variables and large arrays.
Wlit the Memopak extension the $\mathbf{Z X 8 1}$ is transformed into a powerful computer. sultable for business, lelsure and educational use, at a fraction of the cost of comparable systems.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

High-res Printing

Now from Ma- Teth to the facir Nas42, a high-ppeed, high. resolution printer which combines a new type of "tleahamuer' prist. head with advanced micropiocemot control to malie tif equally willed to teat printing label or bat code production, and seaphicis outpout. Unime 260 chsuacler-porwcond bidtrectional iwe-colowe potneting and a $14: 9$ dot-matrits for mat. the 4\$2 can produce a vir. twally onfimited range of charac. ters as well as diflerent geen crales in Eesphiss applicalioms in normal teat-printing applications. the 4582 features propertional spac. ing. luatified right-hand margin and an extemive ent of up to $\$ 12$ chacacters in 11 national eepere. toins with eedblach, elongated and undertining factilities. for label petinting a veriable-wize option is
avablable which allowe characters or bac coder to be gemeraled in os dilferent wises from 2.52 mm up to 340 mm selection of were and pow tron is easily controlled by woteware commands. In the graphics mode, cunavine semi-graphiss and 10 levels of gerepoed scale are awallable to illuste ate reports with histogesme, curves and draguans. as well as generatimg half-tone if lustrafioms in applications worh as tomoglaphy, procker monetoring and computer-aided dewign ithe hey to the verwaftity of the $4 \$ 42$ tm the prime-heed. which comsists of a wet of aime stored-force flesible mpial hammers mounted direerty, on a magnet armature. No adjustment of luberkelion is necressary. wear is minimal, and a "thoating mount means that the correct papetlopiaf-head dislance is always muintained terespertive of the paper thicheness or number of copies. Iurther information bo avaliable from Mi- iet Oisterbution
 Cambridge. Ces eso.

BT Bill Beater

Collowing the succest of the Iekost IMASS from the Amelone Corpore fition, th was decided that a single line unif should be manulactured. the neen machime offers a eange of functions which are all dewgened to save money by monitoring lelephome use Amslone's alngie line iekeon i has leatures including a 2 -houe cloch dosplay, witich instantly shows the cost of a call as soon as a usep is connected with a number diafled. The unit ateo has a beiff in printer which recerth tetalle of the call including cost and number dialled. It atso prinfs out the date, fiame, machine identification number and the duration of the call iekoat i has a boilltin memoey which relaims information even it the machine in disconnected from a powee wource it ation ghon a opociot wecurify mids. might pointout each nught which frusteates amm aftempts to conceal the day's telephone costs by the desteuction of the daily pimitoul shept. ithe machime is virtually tismper-proot as the printout woll bidicate it bt has been disconnerted from the line af ant lime or I any information par amplers have been changed ithe mactione has provision for th ta be esproge ammed at any lime to enable the usee to teep in line with Boinioh felerom unit rate charges and the date, fime and identilication number can becthanged for any reasen if the machine is moved to a mew location This dech-toap unit ion no biggee than a telephane and for an ime estoment of sound [249 could help to cut out the abose of telephomes in both large and omall compenios.

Small And Beautiful

Usilied as the World's Smallent, Ughtest and towen Power Comsumption feleoteion, the TW3-W3V fiom Matsurhita certeindy Caught owe editorial eve Choser tospection eevealed a colour TV sel with a 3° coloue picture fubt, only 115 mm i 86 mm a 122.5 mm io cire and 1.5 lg in weight. Power consumption th o mere 9.5 W and h operates on AC power, car batteetrei and on optionally available rechargeable batteries. Vet, despite ha amall sle, it is equipped with video inputioutput terminals and operates as a colowe montion and a video fumer when commerted to a video camere and a portable VIR, respectively. This 3° colous TV was launched on to the lapanese marliet is mid-Deciember 1981 af the approzimate price of 1200 is is due for launch in the US in June this pear and, hopelully, will be seen io this coumery shority affer. I verther details will be supplised ity NS-

Sticky Clips

randouer adhecive cable clipa from stetemn provtio an then. persuive method of firing rownd or uibboun cables to ciran. dey surtacea. the iange can handle round cables from uns a few millimeters un to 19 mm and flet pibton cables from 13 mm in 75 mm can be ato commondated by a welection of clipe with wideths in stages of 6 mm The adhesboe is instant acting and polvelthyleme pado provide high levels of insulalion, where aprescosty. Further intormstion is available from Stotion Itd, Unit I. Marwoed Way, Prohowse Lane. Mastinga fast Susmet.

Video Victory

Thoen tMil have funt announced that agreements have been signad with Ieleluntien and IVC to form a holding company lot the manufacture of video consumet electionics products to furope. Thom con beandt was originslly botended as a four th partmet, but this was not poswble Mowever. the theree other pasties hope an oppossunify will ardue foe ThomsonBrandi to poun the venture.

Products manulactured by the foint venture will include VMS - idee casiefle ieconders. VMD wheo disc players and video cameiss.

Grabbed By The Dooleys

Those fireless chapptes down at Casio have talen time off from disguising AASIS computers and arcade cames as pockel cakculators and watcites, and have turned itheir aftestion to the music scene. Although these is undoubiedty a martef toe top-ilight organs and envthesesers amongot hoome musiciana, mamy people will preter something more modest for fimencial ressom, because the UVing room is too small on because they can't figure out what all the hnobs do. At the other end of the scale (eoery) the fyee of hand-held organ mude notorious ty toll Mam sis is a finile tow lomising. Whit the Casolone 701. Caso have not iust produced a solution to itim problem tui a radically aew ispe of in stivement.

The CTFiel is nof ius atstev polvphonic (eight volee) mint syntheseser, bot abo comiaims an ontourd compuler that acis is a builsth sequencer: ameine other thinge. You can play alone with the bualt-in ehythom unit shore vowe own muses in memony and pley if back automatically, of just load the machion with a Caso mute score and let if get on woth thinge by hepll. The latter function is
quile estecordimaey - Casco supphy the music sores as bap codes and you read them into the mactione usions a fight pen flue those at supermaplef cherl-out deskis) In melodr guide mode you can even teach yourself to play the instrument, as 1 ES above each hes lught up to tell voe which mote to play meat.

Imenty presef sounds are avallable. such as pipe organ. thele. peamo, oboe. bassoon efc. plus the synthesised drum sounds of the phyitim unle and the 'poeocum' wound so beloved by peoducers of disce eecerds. Opienom of the preepl sound quality vary from "beaufilulpo (Casbo) theough "oert poor lan independent eviewee) to "tou sharply flileredi (anoltive independent revirwen) simet they car'l agee and we lavoen't heard in (llough. weire irying hard to get oue muchy paws on onel, vou il have to lisien to one vourselt before partins with any cash, but prolessional mush clams seem to loke it - the Dooley: use Castotone mini-hevhourds in thete suse shows flellow headbonters may not see this as a compliment) With so much pactied into whit a compact case (onh sloghth lerger than ithe aciual hepboard) and weh a low pote (about ISNO) Cavio would certainly seem to have dome th again

Thin Meters

S- ifam Ied of Torquay in Devon are to martet a pange of wvy thim edzewise meters manutas. tured by Cemeral Iferteric of the USA. There are theree sises in the cong with case widith of 30 mom. 63 mm and O mm and the units are usted for vertical or hopizontal perveniation. The spectal teature of this desifen is the es. tecme thinnees: the smallest has on ovecall depth of lace of onis 18 asm and the iwo largee dises of about 17 mm . The smallest model has a mear-accest rero sel and.

ZX Revamp

coe those of you who are seprious - 2y-1 owners (is inere such an animalt of would sumply bie to disguise the machime. theree is a ppofermional standard hevboard and enx lasure now as ailable frem Profor Computer systems. The herboard is the lirat of a range of peripherals to male the compuler mitable los more heavy-duis wee. The sohey senclaie coded board uses top auality merhanical conpact ispe hey suilches with relegendable lopa. A steel moun fing board holds the heve firmily in position and a high qualliy potinied ciecuis board completes the boards electrical ctrubi. Gxonometfirnn to the sinctatr board in made by a Ifraible comention whish is a

Power For Peanuts

Grembon Ifectronics. desmeners and manulacturers of powee supploes for the Nuclear liesearth Induster have come up with a serves of beach power units. The first unit in the sertes is pricied at
push ith to the soritets prouided on the 2191. Acress to the edge board conneclor is wis a side port on the Protos enchosere and tape tivoet. power and UMF connections are made through the reae. Io in the Piotor enialls eemouta the Sinclair board from the blach ADS case if comes in and lising it inelide the Protos enckowe with bowe Phillips frpe ecreses. No soldeving sequired and all elacticieal cen nertions ape pluatwoclet conmerfions peovided either on the Sinctajs or the Protos. Further detash on this and ofther forthroming peripherals can be oblainerd from Protos Compuler Systems. Frome Compuiting 20 Ashiree laod, Prome. Somerver A11 2AS. Pleace enclose a lorge SAl with amy enguloties.
[59 and gives a variable stabiliend oulput up to 30 Y at 2 A in two eanges. hat foldbaci ep-entiont short sircedt ppofertion and cur. rent and voliage metering. This unit io atho avaitable in thit form as oniy t35 and further details are from Grenson Electronder Led. Migh March liad, Iong March, Industrial tifate. Daventey. Northents NNTI ANQ.

Miniature Magnification
 New lrom shotion lld is the

 scope Marl 111 pochet microscope with stand. Pricied af undee [20 in is a useful tool for Lboestorins. shools wortshope. seentce engineters and the elerfrondes. electrical, aulomotive. print and sraphic tracten. Unctis Tom Cobbloy and alli it is 125 mmlong with 20. magnification and a geatisule showing linese and anguler mosasurements themine fion is powered by mendard ivs ow-loghf batferles and a microstand finith speting clips for sample atideni) is availoble as an option co that the device can be uned litie a conventional microucope. Fupther detath on thes device are avallable from Stotron tid, Unil 1, Mavwood Wey, hy Mouse lane. Hastinges. tast Subser.
simple speing-ritp method of mounting. The fwo larger models have frowt access sevo set at end of casle and a slide beachet form of mounting. They incorpopate bewelled perot movements whth special high-torque magnets foe reliable and accueate operstion The standard meters are avablable en-atorl from SMam and hoves mastmum sensilitedty of so microamperes scale mortinges can be produced to mit individual reguirements. Faither details of there and SHamis own cance of meters are avaitable frown SMam Limited. Woodland Road, Forguav. Devon TQ2 7AV.

HIF STEREO AMPUFIEA KITS

From one of Britain's leading esoteric amplfier manufacturers comes an exciting new package of stereo amplifier kits, designed to offer all the advantages of true high fidelity but without the usual price peneity. These new kits offer the choice of moving magnet or moving coil inputs, 40 or 100 watts per channel, in fact, everyhthing that made the previous models so popular is im. cluded but with added style, easier construction and a full two year warrenty.
The New Range Consiste of The CK 1010 Stereo Pre Amplifier The CK 1404 WPC Power Amplifier The CK 1100 WPC Power Amplifier

CK 1010

This kit contains all the necessary parts to build a complete pre-amp. The main PCB is ready assembled and tested therefore construction is simply a matter of point to point wiring and mechenical assembly of the connections and controls to the pre punched chassis.

The CK 1010 takes its DC supply from the CK 1040, 1100 or, if using a different power amplifier a PSK power supply kit. Inputs for disc. funer and tape are provided and an optional add-on moving coil input can be fitted to extend its versetility. (MC2K)

CK 1040

This is a nominal 40 watt per channel power amplifier kit which features our dual power supply and the DC output for the CK 1010. All components such as heatsinks, wire and connectors are included and protection is provided from short circuit outputs.

CK 1100
Similar to the CK 1040 this model provides a nominal 100 watts per chonnel with extra heatsinking and thermal cutouts are provided as standard.

When correctly assembled these kits are guaranteed for two years.
"It would seem then that Crimson have maintained their position at the top of the commercial kitbuild field. There is no oriental amplifier I know of that can better the sound of this combination overall at any price and only a few - such as the KA-1000 $(500+1$ - are of comparable standard . . . I can say no more than that for E250 it (CK1010/MC2K/1100) is a bargain and one that becomes the reference point for kit amplifiers from now on."

SPECIAL INTRODUCTORY OFFER 10-15\% OFF!

As a special incentive to buy our new range of D.I.Y. Hifi Kits, we are offering the range for a limited period at silly discount prices
The offer closes on March 31st, with prices this low, demand is sure to be heavy, so order now and avoid delays at the same time save EfC's
CK 1010 - RRP C 90.00
. SPECIAL PRICE 179.20
CK 1100 - RPP . 190 .
MC2K - RRP 2500 .
PSK - RRP $£ 20.00$. .. SPECIAL PRICE 22.50
Barclaycard or Accoss accepted, otherwise send C.W.O. C.O.D. £1.00 extra
All prices include PGP to anywhere in the U.K. Export: Write for pro-forms

SLOT CAR CONTROLLER

Let's not beat about the bush. Slot cars are fun If vou're as keen on slot cars and electronics as we are. you'll be equally appalled at the crucle control systems provided in the basic sets. Naturalhy we decided something should be done about the situation and came up with this project. You can have controlled acceleration with overshool dynamic braking 'electronke' fuel tanks - and all from quite a simple circure Therell also be some advice on how to tune vour cars to get the ultimate in performance from them. A must to read for kids of all ages

COLUMN LOUDSPEAKER DESIGN

Now this ts good stuff. One of the busbears of public address systems is acoustic feedback, which can be largely overcome by the use of a highty directional sound source. This directs the sound imo the audience, where it's noeded and away from the microphone, where it in't. This article describes the design of a novel column loudspeaker design that is cheap and highly effective.

ROBOT CONTROLLER PART 3

In next month's ETI we continue this series with the construction information for this month's analogue pulse width modulation controller, plus full details and a PC8 for a dual digital PWM controller This witt not only be of interest to roboticists but to anyone who needs to control the speed of DC motors

DVMEG

Any scholars out there will know that D is Roman for 500 Since V stands for volts, if will come as no surprise that this project generates 500 V to enable the leakage current itrough insulation to be iested using the builitin meter. In effect it is a highwoleage resistance meter for measuring values above about 1MO - hence the last pant of the name We don't fust throw these things together, you know!

BREADBOARDING SYSTEMS

There appears to hive been a vertable explosion in the number of breadboarding and prototyping systems available to industry and the hobbvist, next month we'll be taking a fook at some of them. Both solderwiap and insulation dsplacement fechniques will be enamined and we'll have an exclusive first review of a major new development from a

ELECTROMUSIC TECHNIQUES

Tim Orr, our tame electronic designer, emerged from his workshop this month just long enough to hand over this bundle of circuits for the ardent build-it-yourself musician.

virtually all of the electronic music synthesisers that have been produced to date employ analogue circuits to generate the synthesised sounds. The process is known as subtractive synthesis, and operates by dynamically filtering out parts of the spectrum of a signal that is often rich in harmonics. The results are instant, easy to modify and relatively inexpensive to implement. It is not possible to produce an arbitrary output spectrum, and so it is very difficult to synthesise realistic copies of naturally generated sounds. This can be done using a digital technique known as harmonic synthesis, whereby the sound is constructed by precisely defining the amplitude and phase of each of the harmonics. These are then added together to produce the output. However, natural sounds are constantly varving and so the data defining all the harmonics must also vary. Harmonic synthesis can produce very realistic sounds and is in itself a powerful technique for generating completely new sounds, but the hardware is a combination of sophisticated microprocessor and digital technology and so is outside the scope of this article.

When we hear a sound we unconsciously analyse it for useful information; "Who wants another drink?" for example. Nobody knows how the human brain analyses incoming sounds, but it does it with incredible speed and sophistication. It can extract precise information from sounds (speech perception), it can experience pleasure from a rich harmony, or it can even learn to ignore certain sounds, such as a ticking clock. The brain is very good at perceiving pitch(or at least it thinks it is; it is also a fairly good liar), see Fig. 1. When you hear a pure tone you

Fig. 1 Pitch perception.
fig. I Pitch perception.

Fig. 2 (below) Keyboard layout with table showing equal temperament tuning.

쓰요I	Patourncy inol	natio
C	210	10000
Cab	272	10508
04	289	2188
D*	818.1	21808
54	28.1	12800
$\stackrel{4}{4}$	342	113 m
F4*	9700	14142
Ca	3020	10.1
GaO^{8}	4188	15984
\cdots	400	16010
as	464	22818
\cdots	4820	1807
Cs	5237	20000

will get a strong impression of its pitch. You will not be able to define its frequency in Hertz, but you will be able to remember its pitch. A sawtooth has a strong harmonic structure but even so-vou will get the same pitch perception. The ringing tone has virtually no energy at the fundamental frequency and yet it is still possible to correctly perceive the pitch of the signal, although it is more difficult than for the pure tone.

Most musical instruments produce a range of notes. Some instruments, like violins, can produce a continuous range of frequencies; because, unlike the guitar, there are no frets along the neck of the instrument. Keyboard instruments have fixed tuning the piano, for example. The keyboard is an excellent choice for controlling a synthesiser, as it is easily converted so that it generates suitable electrical signals and it is widely accepted by musicians. Equal temperament tuning is used, that is there are twelve notes per octave and they are spaced at intervals of the twelfth root of two (that is 1.0594631) along an exponential curve, as in Fig. 2.

When You Hear The Tone . . .

The keyboard is used to define the fundamental pitch of a sound, but the actual shape of the waveform will determine its harmonic structure (Fig. 3). A sinewave is a pure tone and has no harmonics. A halfwaverectified sine wave contains a fundamental plus a series of even harmonics. A fullwaverectified sine wave is composed entirely of even harmonics. The squarewave and the triangle are both composed of a series of odd harmonics; in fact if you lowpass filter a square wave you can produce a triangle. The triangle is a fairly pure tone, withlittle of the energy in the waveform contained in its harmonics. The sawtooth is a rich waveform, having both odd and even harmonics.

The harmonic structure of all these waveforms extends to infinity, but the drawings only show the first 15 harmonics. If we call the harmonic number n, then the harmonic amplitude is easy to define. The rate at which the harmonic amplitude

Fig. 3 Harmonic structure of various standard musical waveforms.
decreases is $1 / n$ for the sawtooth and square wave and $1 / n^{2}$ for the half and fullwave rectified sine wave and the triangle. Figure 4 shows a sawtooth being constructed from harmonics. The sum of the harmonics is beginning to look like a sawtooth. As more harmonics are added (with the correct phase and amplitude) the sum will converge upon the correct sawtooth shape. An interesting effect can be produced by changing the mark/space ratio of the square wave. This modifies the odd harmonic spectrum and introduces even harmonics. The mark/space ratio is often dynamically modified as a synthesis process.

Frequency modulation is often employed in synthesisers to produce vibrato and other dramatic pitch change effects. Figure 5 shows some of the effects of frequency modulation. As the modulation depth is increased, frequency sidebands are generated. Their spacing and amplitude are determined by the modulation depth and the modulation and carrier frequencies. To precisely calculate them involves some complex maths and Bessel functions (which I have forgotten all about). To make matters worse, synthesisers usually use voltage controlled oscillators with an exponential transfer function, which tends to exponentially distort the sideband positions. But so what I Music synthesisers are all about making music and not the calculation of sidebands. If a particular electronic device produces a useful musical effect, then use it, don't analyse it.

The output from an oscillator is known as an excitation signal. This defines the pitch of the signal, and to a certain extent the harmonic content of the final signal. It is common practice to filter the excitation signal (Fig. 6). The frequency response of the filter is referred to as a formant. The formant modifies the harmonic spectrum of the excitation, producing a colouration

Fig. 6 The effect of filtering an excitation signal.
of the sound. The format is usually a mobile filter and this makes it possible to dynamically alter the sound colour. If the formant has a sharp resonant peak, then the output signal will ring as it passes the harmonics of the excitation.

Another parameter that characterises a sound is its
amplitude contour or envelope (Fig. 7). A sound that has a sharp attack and a slow release is similar to a plucked instrument. Other envelopes will make the sound seem like something else.

Building Blocks

Most synthesisers are constructed from standard building blocks, and most of these blocks are voltage controlled. This is a very powerful concept, because it enables you to control a unit with a combination of control voltages and/or audio signals. Building blocks can be patched together in any arbitary order to produce any system that is wanted. Some standard building blocks are detailed below.

Voltage Controlled Oscillator Used to generate the pitched excitation signals. Often a VCO will generate a wide range of waveforms. The control sensitivity is usually $+1 \mathrm{~V} / \mathrm{octave}^{\mathrm{t}}$ Therefore a one twelfth of a volt change will alter the oscillator pitch by one semitone. The exponential control law is a very powerful concept. If a VCO is being driven so that it produces a melody, then adding +1 V to the control input will transpose the melody up by one octave. Thus musical transpositions are very simple to produce. Often more than one VCO will be used, so that a rich chord is obtained.

Voltage Controlled Filter This is used as a formant for the excitation signal. The VCF is generally a lowpass filter, but it can often be a multi-mode device with lowpass, highpass, bandpass and notch responses. The VCF also has a Q (resonance) control. The control sensitivity is +1 V/octave for the frequency parameter, and undefined for the Q .

Voltage Controlled Amplifier The VCA controls the level of audio signals. The control law can be linear or logarithmic. The VCA is usually controlled by an ADSR unit and is employed to generate signal envelope contours. The device is a two quadrant multiplier.

Attack, Decay, Sustain, Release unit The ADSR is used to generate the signal envelope contour and also the VCF sweep waveform.

Ring Modulator This is a four quadrant multiplier or balanced multiplier. The output voltage is the product of the two input signals. It is often used to generate discordant or clangerous sounds.

Noise source Generates random noise, which can be used in the synthesis of non-pitched sounds such as explosions. Filtered or sampled noise can be used as a random control voltage.

Low Frequency Oscillator These oscillators are used to generate vibrato in the VCO or a filter sweep in the VCF.

Keyboard Musical control interface, generating pitch voltages of +1 V/octave and also a gate signal to indicate that a note is pressed. A monophonic keyboard only allows one note at a time to be pressed, but if more than one can be pressed simultaneously then the system is polyphonic.

There are several other building blocks such as flangers, sequencers, frequency shifters, and pitch detectors, but there isn't enough space to deal with them.

Polyphonic synthesisers tend to be voice-based; ie all the building blocks are prerouted to form a voice (Fig. 8). Modular systems are not prerouted and have to be patched, either with lots of jack-to-jack patch leads or via a matrix patch board using patch pins. Patch leads are relatively inexpensive, but the leads get in the way and it is often difficult to see just what you have patched. Matrix patch boards are easy to understand, but they suffer from crosstalk and a large board (60 by 60) might cost £500!

BMADP ATTACK, sLow decar - nlucked

slow attack slow oflar - PWe ongan
Fig. 7 (Above) Two typical amplitude contours, or envelopes.

Fig. 8 (Top right) The standard synthesiser voice.

Fig. 9 (Right) Silicon diode transfer characteristics.

Diode Data

The silicon diode has an exponential transfer function, that is the diode current increases exponentially for linear increments in the diode voltage (Fig. 9). This can be used to turn linear changes from, say, a keyboard into exponential or musical intervals in a VCO. The required musical range is probably no more than 200 to 1 and so a suitable operating current would be 0.5 uA to 100 uA , thus avoiding the non exponential parts of the curve. The silicon diode is temperature dependent (it is often used as a thermometer) and so great care must be used to avoid thermal problems. The junction voltage changes by $-1.9 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, but a semitone change is equivalent to 1.5 mV .
therefore $a 1^{\circ} \mathrm{C}$ change could result in a 1.27 semitone change in pitchl Figure 9 shows two temperature effects in operation; there is a large shift and the slope of the line changes.

Figure 10 illustrates the equations that determine the diode operation. Two facts emerge from these equations. First. an 18 mV change in V_{tk} will double the current I_{c}, and second, this parameter has a temperature coefficient of $-0.33 \% /{ }^{\circ} \mathrm{C}$. Both the temperature problems can be resolved by using a circuit similar to that shown in Fig. 11. Transistor Q1 is run at constant current (12 uA) by the op-amp. Q2 is used as the exponentiator transistor. The emitter of Q 2 is held at a voltage of about -0 V 6 Any voltage change at the base of Q 2 will result in an exponen-

$\%$ IS soltrmanws comstant

- 15 The CMARGE ON NH LICCTMON

pmenetone us to, Veras
mernet $V_{\text {et }}$ if wetazuntotm mv
meagrancinc tme eovation. $3 \sin \left(\frac{k}{10}\right)-v a e$
 I ar ze se eel. howe ven. If iwe temeratune wene "l ${ }^{\circ} \mathrm{C}$ momen twen Vee WOULD NAVI TO EF INCMEASCD IN SIIE TO A NEW VALUC OF

$$
26=\left(\frac{20 . n}{3 n+15}\right)
$$

 Mrnempace chamol PCй ${ }^{\circ} \mathrm{C}$:

Fig. 10 Exponential transistor characteristics.

Fig. 11 (Below) An exporiential current sink.

Fig. 13 A VCO using a monolithic device.
tial change in the collector current of Q2. Q1 and Q2 are in thermal contact and so any temperature change will effect both equally. Thus the $-1.9 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ factor is cancelled out by Q1 acting as a compensating thermometer for Q2. The slope change is removed by using a temperature sensitive resistance (Q81 - Tel Labs) which has an equal but opposite temperature coefficient to the diode junction. This resistor is often in thermal contact with the matched transistors. If this circuit is connected to a linear current controlled oscillator, a musical VCO is produced.

VCO Circuits

Figure 12 is the circuit for an exponential VCO using an exponential current source. The oscillator is a standard trianglesquare wave device. IC2 is a current-controlled integrator; the slow rate at its output is equal tol ${ }_{\text {aBC }} / \mathrm{C}$. This voltage is buffered by IC3 which drives a Schmitt trigger IC4. The output of IC2 ramps up and down between the two hysteresis levels which are determined by the two clamping diodes connected to the output of IC4. Any stray capacitance on the output of IC4 will slow down the Schmitt trigger and this will make the VCO go flat at high frequencies. Also the propagation time delay around the oscillator will cause a flattening out ot the response at high frequencies. These effects can be nulled out but they may not even affect things if the VCO frequency is kept relatively low.

A very good VCO is shown in Fig. 13. It is a monolithic device, the CEM3340 from Curtis Electromusic Specialities Inc who make a range of electronic music devices. As can be seen, very few external parts are needed to implement the VCO. All the temperature compensation is performed inside the chip. Triangle, sawtooth and variable mark/space square wave outputs are simultaneously available. The mark/space ratio is a voltage controlled parameter. A sync input is also provided so that the VCO can be slaved to another oscillator.

LFO Circuits

A couple of LFO units are shown in Fig. 14. All four output waveforms can be usefully employed to sweep VCOs and VCFs. Often the waveforms are mixed together to produce strange frequency modulations. When the sawtooth is fed into one side of a ring modulator and noise into the other, a beat track can be generated; it sounds a bit like a cymbal being hit.

Noise Generators

In 'the old days' noise sources were made by amplifying the noise current of a diode junction that was zenering. These were a bit unreliable, and always involved selecting the device. However, noise can be generated digitally with a maximum length pseudorandom sequence generator (Fig. 15). The noise spectrum is relatively flat and always the same. If you slow down the clock rate you can get some interesting sounds; I think that this is used on some TV games. If a longer shift register is used, say 30 or 40 stages (the 4006 is 18 stages long), and the noise source is turned on, a tone is initially heard which gradually changes into noise as the sequence becomes more scrambled up. You can purchase a monolithic noise generator (pseudorandom), it is the MM5837 made by National Semiconductor, also sold by AMI with the part number $\$ 2688$.

Fig. 15 A digital noise source (top) and a noise generator chip (bottom).

Five pages gone already, and we've still only scratched the surface of thls fascinating subject. In part two next month, Tim Orr will continue his discussion of electromusic techniques with yet more circult building blocks.

The WERSI Comet

Aura Sounds mave pleasure announcing the Comet, the "Band in One" organ, is now avallable through our branches. Once agais the Comet achieves the optimum performance in its class.
It offers:-

- Numerous realistic and interesting conal colours with gultar voices, synthesiser and other modern sounds together with the more tradirional drawbar and orchestral sounds
- Playing aids include chord memory, WRS, Keyboard Selector, Wemi matic rhythm and sutomatic accompaniment section plus much, much
more

AURA SOUNDS LTD. are the first company to succensfully market WERSI organs and tits in the U.K. We have modern showrooms where we pride ourselves you will receive a friendly welcome Why not pop in and see the WERSI range for yourself - we can alwaye arrange a free demonstration. We also offer a free technical telephone support service which is second to none.

Alternatively, fill in the coupon below for free details. For immediate action telephone 01-668 973324 hour answering eervice.

AURA SOUNDS LTD.

14-15 Royal Oak Centre, Brighton Road, Purley, Surrey. Tet: 01-6e8 9733
17 Upper Charter Arcade, Barnsley, Yorkehtre.
Tel: (0226) 5248
1729 Coventry Road, Sheidon, Btrmingham.
Tel: 021.7078244
Micro Contre, Albany Road, Newquay, Cornwall. Tel: Newquay 3953

- Comet can accept up so four satellite keybourds (in addition to the 2 keyboards on the organ - a five man band can play on oae instrument.
- Wersi have simplified self assembly even more, with plug in circuits etc.
- Ergonomic playing table eases operation.

The Comet is avallable in the elegant lines of the apinet (W10-S) and with chromed steel legs (W10 T) for transportability.
The Comet, the Organ to see us through the eighties - avallable now.

For more details of this supert organ, ring us now on 01-668 9733 or write to Aura Sounds Led. at the Purtey Branch.

WERSI and AURA - The Winning Combination

ACCURATE VOILAGE MONITOR

This simple, low-cost instrument can be built into power supplies or used as a portable or fixed 'battery condition' monitoring meter. Design by Simon Campbell and Roger Harrison.

Common storage batteries to power nominal $12 \mathrm{~V} D C$ electrical systems have a terminal voltage that ranges from a little over 10 V when discharged to around 15 V when fully charged, the operating voltage being somewhere in the range 11 V 5 to 13 V 8 . Lead-acid batteries, for example, may have a terminal voltage under rated discharge that commences at around 14 V 2 and drops to about 11 V 8 . A 12 V (nominal) nickel-cadmium battery may typically have a terminal voltage under rated discharge that starts at 13 V , dropping to 11 V when discharged.

Equipment designed to operate from a nominal 12 VDC supply may only deliver its specified performance at a supply voltage of 13 V 8 - mobile CB and amateur transceivers being a case in point. Other DC operated equipment may perform properly at 12 V 5 but 'complain' when the supply reaches 14 V 5 .

To monitor the state of charge/discharge of a battery, a batterv-operated system or the output of power supplies, chargers, etc, a voltmeter which can be easily read to 100 mV over the range of interest (10 to 15 V is an invaluable asset. This project does just that.

The Circuit

An LM723 variable voltage regulator is employed to set an accurate 'offset voltage of 5 V , and the meter (M1) plus the trimpot RV2 and $R 3$ make up a 5 V meter, with the trimpot allowing calibration. The negative terminal of the meter is connected to the output of the 723 so that it is always held at 5 V 'above' the circuit negative line. The positive end ETI APRIL 1982
of the meter goes to a zener which will not conduct until more than 5 V appears between the circuit $+v e$ and - ve lines. Thus the meter will not have forward current flowing through it until the voltage between the + ve and - ve rails is greater than 10 V , and will read full scale when it reaches 15 V (after RV2 is set correctly)

The meter scale limits may be adjusted by setting the output of the 723 higher or lower (adjusted by RV1) and setting RV2 so that the meter has an increased or decreased full-scale deflection range.

A variety of meter makes and sizes may be used.

Construction

Mechanical construction of this project has been arranged so that the PCB can be accommodated on the rear of any of the commonly available moving coil meter movements. We chose a meter with a 55 mm wide scale (overall panel width, 82 mm). A meter movement with a large scale is an

Fig. 1 Circuit diagram for the Voltage Monitor.

> HOW IT WORKS
> The meter, MI, is a 1 mA meter with series resistance - made up of R3 and RV2 - so that it becomes a 0.5 V voltmeter. The negative end of the meter is maintained at 5 V above the circull negative line by the output of IC1, a 723 adjustable regulator. The positive end of the meter is connected to the circuit postive line via 2 D 1, a 4 V \% zener diode. Thus, no 'forward' current will flow in the meter untll the voltage between the circuit negative line and the circuit positive line is greater than $5+4.7=9 \mathrm{V7}$.

> Bias current for the zener is provided by a FET, Q1, connected as a constant current source so that the zener current is aco curately maintained over the range of circuit input voltage. This ensures the zener voltage remains essentially constant so that meter reading accuracy is maintained.

> The trimpot RV1 sets the output voltage of the 723. This determines the lower scale voltage. Trimpot RV2 sets the meter scale range, less resistance decreases it.

> Diode D1 protects the circuit against damage from reverse connection.

Having chosen your meter, drill out the PCB to suit the meter terminal spacing first. The components may then be assembled to the board in any particular order that suits you. Watch the orientation of the 723, ZDI, the FET and particularly D1. The latter is an 'idiot diode'. That is, if you have a lapse of concentration or forethought and connect your project backwards across a battery, the fuse will blow and not the project. Fuses are generally found to be cheaper than this project!

Seat all the components right down on the PCB as the board may be positioned on the rear of the meter with the components facing the meter. The size of C2 may give you a little trouble. Polyesters are generally too large and therefore unsuitable. We used a ceramic type capacitor - as commonly used on computer PCBs as bypasses. Alternatively, a 100 n tantalum capacitor (+ ve to pin 2 of IC1) may be used. The actual value or type of capacitor is not all that critical.

We have used multiturn trimpots for RV1 and RV2 as they make the setting up a whole lot easier

Calibration

For this you will need a variable power supply covering 10 to 15 V and a digital multimeter (borrow one for the occasion).

First set the 10 V point. Connect the digital multimeter across the power supply output and adjust the power supply to obtain 10.00 V . Set the mechanical zero on the meter movement to zero the meter's pointer. Connect the unit to the power supply output and adjust RV1 to zero the meter needle.

Next, set the power supply to obtain 15.00 V . Now adjust RV2 so that the meter needle sits on 15 V (full scale). Check the meter reading with the power supply output set at various voltages across the range. We were able to obtain readings across the full scale within \pm half a scale reading ($\pm 50 \mathrm{mV}$). With a 2% FSD accuracy meter the worst error may be about \pm one scale division.

BUYLINES

Only one thing to comment on here; when you purchase your LM723 (or UA723 same thing) make sure you get the version that comes in a T099 case, not the DIL ver. sion. The PCB is designed for the 10 pin version as shown in the overlay and the DIL type wor't fit. Speaking of PCBs, as usual you can get lif from us using the order form on page 44.

Fig. 2 Component overlay for the Voltage monitor. Note that IC1 is in a 10 -pin $\mathbf{T 0 9 9}$ case.

BATTERY CONDITION AND TERMINAL VOLTAGE

The 12 V battery, in its many forms, is a pretty well universal source of mobile or portable electric power. There are leadacid wet cell types, lead-acid gel electrolyte (sealed) types, sealed and vented nickel cadmium types, and so on. They are to be found in cars, trucks, tractors, portable lighting plants, receivers, Iransceivers, aircraft, electric fences and microwave relay stations - to name but a few areas.

No matter what the application, the occasion arises when you need to reliably determine the battery's condition - its slate of charge, or discharge. With wel cell lead-acid types, the specific gravity of the electrolyte is one rellable indicator. However, it gets a bit confusing as the recommended electrolyte can have a different S.G. depending on the intended use. For example, a low duty lead-acid battery Intended for lighting appllcations may have a recommended electrolyte S.C. of 1.210 , while a heavy-duty truck or tractor battery may have a recommended electrolyte S.C. of $\quad: .275$. Car batteries generally have a recommended S.G. of 1.260 . That's all very well for common wet cell batteries, but
measuring the electrolyte S.C. of sealed lead-acid or nicket-cadmium batteries is out of the question.

With NiCads, the electrolyte doesn't change during charge or discharge.

Fortunately, the terminal voltare is a good indicator of the state of charge or discharge. In general, the terminal voltage of a battery will be at a defined minimum when discharged (generally between 10 and 11 V), and rise to a defined maximum when fully charged (generally around 15 V). Under load, the terminal voltage will vary between these limits, depending on the battery's condition.

Hence a voltmeter having a scale 'spread' to read belween these two extremes is a very good and useful indicator of baltery condition. It's a lot less messy and more convenient than wielding a hydrometer to measure specific gravity of the electrolyte?

The charge and discharge characteristics of typical lead-acid and sealed NiCad batteries are given in the accompanying figures.

Micro-processor

 universal
Timer

This incrodioly versetio programmetio timer cen control up to 20 functions at eccuratily timad infervels over e period of a weot. Originelly developed for incuestial and teboretory use th offers meny interesting and encring ponetbinies for the amateun conatructor Based on a pre progremmed TMS 1000 Microproceseor. the unit provides a 24 hour cloct winh foun mepondont relty

THE VELLEMAN KIT RANGE
28 Won Menemen
wonow ien iter
iwow ancieo
Donve 1000 W en

mion pocieon momerica
Merogroxesed Unveral tano
row wer menores mone
reseramor

Unveriey mono pre enneo.
co wer pows arine

poes moed to sureo to Wun omeinan
nurioy
Onte nond mexe
same cial courne
Prenteror ervion
Compion mino genveren
5 Mg crite Bom
 -0 necever
 nemeri
Coner niom und
1M shereo encode
Mip ovelor lat mine
 C. poon enen 3 SAmoiv C. pow en mownur

 pen sid toterol for toro Eme
 Tace vilo emenvonse
3 ehoner celound antion orem
20 em dento kcemmon onool
20 cm denton kemman onode
rrowe rone bed
S BEV OC i Amo Unnerel gow moor urvecmenter

sloweo RIMA copuction onnerer
 comorate
Meregpocienecr doortent min is runen
co wen cucio emonter
thente cie reved coner ol
Mreperocenon cenbolto IPmom progremmen tha fopent
Mrrearecen-ceneoted il mom roperner is in ens molopl! unveres merlretic ineo
The progrenmitio imer cen provide eeners control of domestic cioctricel cooting, hooting end entertenment equemant.
The posibititite ber tiviced onty by the imacinction of the uter. Control of howse lighting to discourege intrudentic control of TV or audio coppment; sound or vieo recording control: sutometic plent

Aepelir Service svaileble Mor a nominel chergel 1 y you soldering rechniave io not outso wher in should bof wotsing. eviomatic pot doces of hoobing - cre f tow emple enemotes. For tive protestiond or induatrici weer mory veas in the eree of procese control will be found
pronercan saye

contiox Ewitcmave

Alvions mions miv lo erenel neporily

sever cols otio mol Mil

NeCromoct
TMES 1000
ousciavs
 pequen Antisn alitever Diopicult omor: art muneen an mo

Amy iechuicel engulities wricomed - In witing - and will be ansurered promptiy by lerter.

TRADE ENQUIRIES WELCOME

COMPUTER EXPANSION SYSTEM

How's your memory? If you're lacking EPROM and the ability to program it, the fourth of our expansion cards is just what you need. Design by Watford Electronics.

This month we present an EPROM programmer and associated EPROM cards suitable for the machine code freak to store away those beloved extra routines or the space invaders freak to capture his aliens in O's and 1's for life.

The first major consideration when designing an EPROM programmer is just what EPROMs should it be capable of blowing. There is more than just a little confusion here. There are two basic types of EPROM currently available - those that run off a three rail supply and those that run from a

Fig. 1 You can program these EPROMs...
single +5 V rail. The two sizes of PROM most popular at the moment are $2 \mathrm{~K} \times 8$ and $4 \mathrm{~K} \times 8$. Ahal here manufacturers have had some fun. Intersil and others like calling their triple rail PROMs 2716 and 2732 whereas Intel make their 2716 and 2732 single rail; not to be missed out Texas try to settle the balance by nominating their EPROMs 2516 and 2532; both are single rail!

To clear up the matter our programmer will program single rail EPROMs only, these being the most popular. It will progran the Texas 2516 $2 \mathrm{~K} \times 8$ EPROM and Intel $27162 \mathrm{~K} \times 8$ EPROM as these are pin-for-pin compatible (see Fig. 1). However, 2532

HOW IT WORKS

PROM PROCRAMMER

The hearl of this board is Iwo 6520 peripheral inpuloutput chips - they serve to generate the address bus, the data and confrol signals for the chip being programmed.

R1 and C1 generate the power up reset: C4, 5 and 6 are included in for decoupling. The rather peculiar need of the $V_{p p}$ pin for $0,+5 \mathrm{~V}$ and +25 V is mel by the PSU and switching circuit. Transformer T1 supplies $30 V A C$ to the bridge which rec. tifles it and feeds it to smoolhing capacitor C3. IC3 and $2 D 1$ regulate this to +25 V DC. C 2 is included in the interests of stability. Transistors Q1 and Q2 handle the switching of $\mathrm{V}_{\text {pp }}$ beiween 0,5 and 25 V . This outpul is then fed to the DIL switch and then to the $V_{P P}$ pin of the EPROM to be programmed. Ports A and B of IC2 are used to generate the address bus - note A12 is connected to pin 1 of the EPROM (on a 28 pin basis) for use later with 2764 EPROMS. The data bus is generated by port A of IC1, while port B of IC1 generates the conirol for $V_{p p}$ and the CS and PCM lines which are switched with A11 to the correct pins of the EPROM by the DIL switch.

Inputs to the 6520 s are straight from the expansion sockets - $\$ 2$ being used to enable the chips to reduce power consumption.
and $27324 \mathrm{~K} \times 8$ EPROMs are not compatible and we have stuck to the 2532, as this then allows for use of the new $27648 \mathrm{~K} \times 8 \mathrm{EPROMs}$ with the minimum alteration (see Fig. 2). If you wish to program 2764's then you must make the alterations to correct the $\overline{\mathrm{OE}}$ / $\mathrm{V}_{\text {下 }}$ and CS lines. A12 has been brought to pin 1 and power $\left(V_{\alpha}\right)$ to pin 28.

Selection of the type of EPROM you want to program is made by means of a quad DIL switch. This switch is unusual in that each section operates two oppositely biased single pole switches - this means it can be

Fig. 2 ... or these ones.

Fis. 3 Circuit diagram of the EPROM programmer, with details of SW 1 .

ICX is the EPROM to be programmed.
 socket position has extra holes to allow for 2764 s .

PARTS LIST

R1,2	PROM PROGRAMMER Resistors (all 1/4W, 5\%)
R3	22k
Capacitors	
C1	4u7 25 V axial electrolytic
C2,4,5,6	100n ceramic
C3	4700 axial electrolytic

Semiconductors

Semiconductors	
IC1,2	652016820
IC3	78105
Q1	2N3904
Q2	2N3906
201	20 V , 1 W 3 zener diode
BR1	$1 \mathrm{~A}, 50 \mathrm{~V}$ bridge rectifier
Miscellaneous	
SW1 Quad DPST DIL switc	
PCB (see Buylines); DIL sockets;	
transí	$6 \mathrm{VA}, 0.15-0.15$)

used as a 4 pole changeover switch and makes it ideal for the job. Two of the four sections are used for chip power $(+5 \mathrm{~V})$ and the programming can be destroyed if $\mathrm{V}_{\text {DP }}$ is applied with $\mathrm{V}_{C C}$ disconnected the other two sections are used to switch $\overline{\text { CS, PGM and A11 to }}$ the correct pins of the ZIF socket according to whether a 2516 or 2532 is to be used.

A similar method has been used
the EPROM card. As there are four on the EPROM card. As there are four ofts of switches needed for four
sPROMs a 16 pin header plug an socket have been used. You can make up a header for four 2516 and two $2532 s$ and easily change the role of the
board by simply exchanging header plugs. This retains better flexibility than jumper links and is cheaper than the
 s! 8njd rapeay ay, моч to un,jeue, idxa $\frac{8}{3}$

Construction

 S! spieoq oms ayp jo uoupnasuos very straight forward - follow the want to move the card around in mot connections CS5, CS6 to CS2 of the6520 and remake to the CS line you desire.

Use two Veropins or similar to
bring the 30 V AC from the transformer to the board - unfortunate as it is using a transformer mounted off the
 pue 0 зo sues Alddns sey reyt rapnduios
 position on the EPROM board. This is chip at a later date. When you have finished you will
have a very powerful means of customising your system to your own sperifications. To mention one use: you ROM burn then while writing a BASIC program simply renumber by calling
 function.

michoo.

MICROCOMPUTER COMPONENTS AND SYSTEMS LOWEST PRICES FASTEST DELIVERY

electronics today international

O Boginners Guide to Electronics Squires EA 60
O Beginners Oulde to Intograted Cireutta Sinclar Cl.SO

- Beginners Guide to Rodio King CA 80
- Beginnere Ouide to Audio Sincter Ca.so
- Introducing Amptour Electronice Sincterr $\mathbb{E} 80$

Introducing Microproceneen as 20
Underatending Electronic CIreulite Sincter $\mathbf{8} .21$
Underetending Electronic Components Sincler CS 30
OTV Typewriters Coombook en 3
CMOS Cootibook olds
Active Filker Cookbook $\mathbb{1 1} 30$
IC Timer Coolbook tan
IC Op-Amp Coolibook I12.20
ITL Cookboot cs. 15
MC ETD Cookbook Cen O Werren 65.30
PLL Syntheatoer Coombook Kintoy C5_ 3 S

Mow To Build Electronic Kite Onepel C3 4s
110 Electronic Alerm Projects Meriton C5. 25
110 Semiconductor Projects for the Mome Convtructor Merston CB 25

- 110 Integreted Circult Projecte for the Mome

Conetructor Merston CS 25
110 Thyrieter Profectors Uzing SCRs Merston IS. 25
110 Weveform Oeneretor Projects Merstion IS 25
82 Prectical Electronie Profects Fredman $\$ 420$

O What to e Microprocessor 2 cascelio repes phus a 2-0ege book che. 0

- Boginnere Oulde to Computers and Microproceseore with propects ©s 05
- Besic Computer Comes ANM CL.0.
- Besic for Kome Computors ANrecht is 60
- Ithuetroting Bente Acocil 44.2

Troubleehooting Microprocespore and Olgital Logic Goodinan 81.10
SyOSS3DOHdOYJIW 3 DNILNdWOS
2 0 Microcomputer Mendbook a 36

- Microprocesesors in Instruments and Control Bibboro (15. 30

Bealc Besic Coen co.es
D Advanced Besic Coen COSS
[1001 Thinge to do with your Personal Computer Somulich Ce 00
(Microcompusers. Microproceseore. Merdwere. Softwere and Applicetione Milbum $\mathrm{C17} 40$

- Microproceseor Systoms Desiogn KIngmen C11.85

4 Introduction to Microprocebsore Leventhe 11125
Microprocessor Technology. Archirecture and Applicetione $\{1130$
B Bonte whth Sivte Negin cs. 3
Microcomputer Denign Oodin 0.2
D Monds on Beate with - PIT Pectinem K11.ns

- 690 Software Gourmor Guide and Coombeok Scollo c) 30

D 8080 Softwere Courmer Ouide and Cookbook dD 30
Tho sogen Bugbook hony f 10.05
coco/80es Software Decion Tisus f10.0s
How to Depign. Bulld and Progrem your own Working Compurer System $\mathbf{Q . 1 0}$

- Your Own Compurer Werte 22 .5
- Microcomputor Intortecing Mondbook A/D 6 D/A $\mathbf{1}$ 3s

Crash Course in Mierecomputens Frentel t14.53
Musied Applicetione of Microprocescors Chemberlain 020%
The Peecel Mondbook Iberglien $\mathbf{t 1 2 . 4 5}$

- 50 Basic Enerciees Lemoitior $\$ 11.10$

Learning Beole whth the sincialir $2 \times 0 \mathrm{ca}$
Microproceesors for Mobbylete Coles 4.25
Introduction to Mierocomputer Progremming Senderson C5 25

Microproceseors and Microcomputern for Engineering Students and Technicions Woollend CB.85
Using CP/M - Self Teaching Guide Aghiov Fomendes 0.5

Dightel Counter Mandbook Frentel 0.85
33 Challenging Computer Gemes for Thseo-Apple-Pot Chence [5:75
D Mow to Bultd Your Own Werking Nobot Per Deieste 4. 75

Dicreproceseor and Digtel Computer Technology [11.00
Guidobook to 8 mell Computers 8 arcon 4420
How to Debug Your Personal Computar Muftmen C8 30
How to Troubleahoot and Ropeir Microcomputere Lin 1330

- 6503 Miticrocomputer Progremmes and Intertacing with Enperiments Suygeerd C 11 ,46
Wordprocessope Fregremmed. Theining Ouide whth Prectical Application E
- Dighel Cleculte and Mitcrecomputers Jonneon 29.75

Expertments In Arthiciel Intelligence for Smell Computers 77.20

The Oecilloscope In Use Sinclen NEW EDTTION ise? How to Cet More Out of Low-copt Electronic Test Equipmone Totery ts so

Q Olvital Stand Procceeing. Theory and Applications Reaine D.4.0

- Electronte Communicetion $\$$ yyeteme Kennedy as
- Principies of Communicetion Syetome Toub Cued
- Imeroduciton to Dightel Firtering Boonor $\{1130$

Trensietor Circuh Desion Teres inetruments c10 es
Electronic Clicult Design Mendbook Dosign of active finees. with espenments berion ctes

Electronic Enginsere Roforonce Book Tumer CQ2.00

Elvetronic Components Colvil C400
Electronic Oingreme Conver is to
International Prenoibtor Soloctor Towers Now C 10.70
1

0 Internetiond Op-Amp Lincer IC Selactor Towers 03.00 International Mieroprocessor Selector Towers I15.00 Dicitonary of Audio - Rodio and Video Roberts El 1.00 Dietienery of Eloetronies Amos I1B 00
Dictionary of Electificel Enginewing Amos $\$ 18.00$ Oletionary of Telecommunicetions Amos EVL, 00 Clent 8ook of Electronic Circults Collng C12.75 World Rodio/TV Mandbeok Val. 36 Is 1 [10.50
How to Bulld Eloctronic Profects Malooim C3 48
Modern Electrente Cireut Reference Menuel Mercus ع3a 60

Pleese eend me the booke indiceted. I enclose choque/poetal order for C .
I with to poy by Accese/8arcleycerd. Ploese doblt my ec count.

Signed
Nome
Addrese

WIN A CRIMSON ELEKTRIK CK1010/CK1100 100 W AMPLIFIER WORTH £230!

Below are 16 amplifier parameters Choose the ten you think contribute most to a good quality sound and place them in ooder of importance For erample if vou thint that Flat frequen. cy Response is the most important factor determining good amplifier sound, place ' E ' in the first box

Fiff in your name and address on the coupon and liss your ten kemers (in order) on the outside back of the envelope. Closing date is Aprill 30th 1922, and you must use the coupon provided on page 133. Multiple entries are acceptable, but each must be on a separate coupon.

RULES

-
 combery

```
A. Wide Bandwidth
B PreciseRINA Equalisation
C. Separate PSU for Each Channel
    High Power Output
    Flat Frequency Response
    F. Low Harmonic Disoortion
    C. Low Crosstalk
    H. Stability of output under any loading
    J. Ability to drve low impedance
    K. Adequate heatsinking
    L Conservativelysated output stage
    M. Provsion of tone controls
    N. DCCoupling
    P}\mathrm{ Short Cincuit Prorection
R. Low Feedback
S. Flat openfoop response
```


OEM USERS
 New amplifier boerds to meet new needs

New Signals

Whth digital audio now a reality end third peneration nove reduction techniques with us dreedy, the dynamic range of progremme material is sbout to shoot up by e phenomenal 30d8. If the emp you work with of the moment can just cope. the going to be in serious troeuble when faced with the new signets. The clipoing that will result will scund nasty and probebly kill twoeters with its high frequency energy content
J.W.R. hive alreedy solved the probtom for you with their now high power PFAs. Oesigned to meet the exectine reouremants of heevy duty P.A. And the oven more exacting requirements of audiophile use, the utere mide dyamic range modules can handle the mosi demanding of source ci-nals

The PFANV

The four powerfer module is designed to run from supply raits uo to $\& 100 \mathrm{~N}$. Rated at 300 W continuous RMS into 4 and 8 ohms and 250 W into 16 ohms, the module can sustain, for musically significant periods of firme, AMS powers of 500 W into 8 ohms and 900 W into 4 ohma. It also hes the ability to crive JOV line distribution systoms directly, obvieting the noed for expenave and quality comprombing trenstormers.

This emp is designed partioulerty with mueic in mind. We anticipete usege often at only 50W to 100 W overage lovels leaving 1008 of heedroom.

PFA 500

This module uses 8 M-PAK powertets and is designed to produce a continuous RMS output current of 25 emps and will run from o supply of up to \& 70 volte. The Unit will drive 250W continuous RMS into 8 ohms, 450 W into 4 ohms, 600W lnto 2 hms and 700 W into 1 ohm .

Numerous features are included in the board $t 0$ aptimite efficimey. The H-Paks (thermathy more efficient then TO3) are presented at ninety degrees $t 0$ the P.C.B. so they can bolt directly onto the heatsink. instoad of ve the usual angle bracket. The resultent chip to heatsink thermel resistance is very low keeping iunction temporatures down and efficiencies up. The Powertet supply reils are kept separate from the rest of the amp. This encbles the driver stege to be run from slighty higher raits resulting in lerger undistorted outpu: owings af littie extre coet.

In addition a bridge mode Input pin is avallable on board permitring instant bridoe mode between eny two boerds withour the noed for separete inverting amps. Powers comfortably in excess of 1KW can be dellivered into 4 orms in this configuretion.
N.B. The now boards extibit the same exemplery noise and distortion performence of the PF ABO/ 120

OPTIONS

We are particularly sensitwe so manufacturers incividud requirements, and all our boends come with many options (including higher slow rates. reeponse teiloring etc.l. The chances ere we"ve got whet you're looking for, and it not, we cen probably do it for you by norit weekt

INTEAESTEO?
Phone Phil Rimrer on 018006667 whth your epplication requirement.

THE POWERFET SPECIALISTS

 J. W. RIMMERment coden oncy to
Oopt RIIn 1, 148 Querl Sirex. Urevpool US GHO Pocophome: 081-420 2s51

Tectinicel andribes

noenoans

\cdots	ceven
-	-3tan
\checkmark	32
-	*
-	
-nowner	- 0 -

THE POWERFET SPECIALISTS J. W. RIMMER

mal ordere oner to
Depl CTIL 11. 143 Ouerry Smed. Liverpeot iss GHO
Poteghomo os -4 202651
Pechanc ol comyerions

Fancy a pair of Wharfedale E70s? Can't afford them? Then why not build 'em yourself? Peter Freebrey underwent the mystic rites of woodworking and saved himself over $£ 100$.

For many vears now there have been speaker manufacturess who have marketed kies for the "do-ityourself" audio enthusiast. At the present time there are several well known and respected firms supplving high guality kits. One such firm is Rank HIFi who manufacture the Wharfedale range. Their approach to this market is the Wharfedale Speakercraft series of drive units and crossovers, toyether with the construc. tional information necessary to duplic ate therr ready bult units using these same components. If the dernand bs there someone will supply that demand such is the case with Wilmstow Audio who sell kits of the cabinets to surt the Wharfedale units This review follows the construction of the ETO svstem using the WETO flat pack cabinet kit.

Why build loudspeaker kits? Well, one obvious answer is to save money. often the cost of a kit is very much less than buying the completed unit. If you are reasonably competent at woodwork, it is perfecthy feasible to start from scratch with iust a large sheet of flooring grade $\%^{\circ}$ chipboard. An electric power saw makes the job mucheasier and cen alsogive a better edge to the cut It is often the edges which concem people as they are going to be visible somewhere around the loudspeaker cabinet and it is easy to think that to get rid of the ugly sight of these will be difficult, This 's not necessarily true, there are several ways in which unsighely edges may be hidden from view. The simplest answer is not only to buy a kit of speakers. crossovers, and so on, but perthaps to buy a ready cut cabinet hit as well - this does not rid you of dealing withedges, but at least they are all cleanly cut!

Abstract

I had heard that Wilmslowkis were of a very high standard - several people having commented upon the ease with which they went together. That sort of build up sometwmes takes a bit of Irving up to and I warted for the delivery of the WE 70 kit with some uncertainty. When they arrived my init ual reaction was favourabie, all cuts were clean and the method of construction looked simple and sensabie. The sides, pop and base are rebated by about $1 \%^{\circ}$ This not only gives vou a better mechanic al join. but also makes th almost imposisble to get amy voids or gaps which is good, acoustically speaking If also means that with the minimum of care the cabinet will stot together into its cornect shape with no unsquare comers or leaning sides. Included with the kit were two carcboard ir ansmission tubes for the midrange units, acoustic damping material, grilke matertal booth black plastic foam for the refler port and cloth for the frontl myton grille pluys and sockets. 3 mm wander plugs and sockets for loudspeater lead connections, and the screws to far the speaker units thernselves Last but not least there are written instructions on how to assemble the kil.

16 Steps To Heaven

Step one in the instructions is to examine the pancls for transin damage Presumably if any damage, is noticed. Wilmslow Audio should be contacted as soon as possuble Step two is to remove all dust. etc from the panels Any encess of wood dust from the sawing operation can only do harm so vacuum all surfaces If there were amy build up of sawdust at the surfaces to be glued that sawdust could concewably impaip amy glue joints and also cause the fit of the points to be out of true.

Step three is to assemble the cabinet without gluing to chack the fit It is also suggested that panels be swapped around to find the optimum results. Thes step proved to be most encouraging. I assembled one unil (panels only) and heid it together with just one turn of linen tape (no string please - it can bite into the corners of the chipboard and cause you extra work later). The cabinet felt as firm as a rock. No glue, fust wellfitteng joints. Thus encouraged I rapidly got on to step four. which was to paint the face of the baffle board matt black. I gave it a couple of coats of sanding sealer - not so muchto get a 'de luxe' finish but to seat the wood surface Chypoard is pretsy thirsty stuff and you can use up a lot of paint if you do not seal the surface first. Just be careful not to get amy of the sealer or paint on the edges, as this may affect the glue joint vou have to make later.

Step five is to glue the midrange enclosures ftransmission tubes) to the baffle boards, using plenty of ghe to ensure an airtight seat. The baffle boards are recessed to take the cardboard tubes so it is easy to Ine up for position. I used Evost"t Resin W. which is a PVA wood working adhesive for all glue points. It is easy to apply and may be cleaned off the handsiclothes as if is water soluble Just dor't put your speakers out in the rain! Light pressure to a PVA glued joint gives a better point so i placed one of the side panets across the top of the four tubes to ensure a tight even pressure. Rather than apply liberal amounts of glue in one dose I used sufficient so that a small bead of glue was squeezed out all around the tube This was smoothed around with a handy finger and when dry a further fillet of glue was applied all round the fuberbaftle joint. Four pleces of appos. mately 1° thick polvurethane foam are supplied which must be

glued to the rear (outside) end of the baffle tubes Wharfedale recommend a hard rubber pad at this position but as this 1° foam is to be compressed to about 316° " probably is just as good.

Step sit is probably the most critical point in the whole construction procedure, for at this point the cabinet panels are glved together. This entalls glving five of the six panels, the sacth (the side furthest from the midrange enclosures) is placed in its position while the glue is setting but is not glved This enables you to work inside the cabinet fitting the crossover, acoustic wadding etc.

Wharfedale suggest that the acoustle wadding be attached to the inside of the panels before you reach this step. Wilmslow Audio suspest that the wadding be fired ather the panets have been glued Although I only learnt of Whariedales suggestion after I had completed step six. Ifavour the Wimstow approach for several reasons

If the wadding is stucktacked or stapled to the panels before they are fitted toyether two things may happen 1) some of the wadding may inadvertantly get caught between the panels and cause erther an air gap or 2) force the cabinet to go together 'out of tive'. Also, with the wadding in place you cannot inspect the inside comers to check that there is a continuous fillet of glve all along the foint.

If you choose the Wilmslow way you will have to cut the wadding to fit around the midrange enclosures but in practice this proved to be a very simple task

Getting A Grip

Holding the whole thing together while the glue sets is quite a teaser. I was fortunate to have a set of excellem clamps known as let Svstem Clamps made by TMT Desien Lid of Leamington Spa They cost about $£ 10$ per clamp but are worth their weight in gold for this type of job The problem comes from the 1 "thick foam stuck to the rear of the midrange enclosunes, this tends to force the back panel out of position. Wilmslow suggest either that clamps be used or that the joints be held firmly together with masting tape. It is possible with mast ing tape but onty fust: remember that unike your trial fitting in step three, the foam pads are being compresed to about $3 / 16^{\circ}$ and all but one panel has glue all along the edges and is quite capable of sliding all over the placet i bought a wide webbing strap from a camping shop to assist the initial stages of holding the four vertical panels approximately in place while I set up the clamps. The cost of the strap was wasted as I could not get enough tension in it to over.
come the spring in the foam. . a linen tape would have done just as well If you are going to use masking tape then get someone to help apply the pressure to hold the front and back panels in position while you apply the tape Lastly, cut up a thin polythene bag and place four preces inside each comer of the panel that is not to be glued it would be a shame if this stuck firmly to the rest of the panels by accident!

It is useful to have a rubber faced hammer at this stage as. having clamped or taped the cabinet firmly together, you may wish to tap the panels firmly but lighty into position. A hammer and a block of wood do the trick just as well, but try not to mark or dent any edses The places so loot for out of true joints are the comers. . remember once the glue has set there is nothing vou can do, so a few lighe taps now can save the day. Wipe off eucess glue with a damp cloth. Wipe from the centre of each pancl out towards the edoe, iny not to get any glue smeared over the panela.

Having completed step sia the rest of the construction is plain sailing Step seven is simply to remove the loose side when the glue has sef (leave for at leas 24 hours) I then purt a small fillet of glue all around the inside of all joints BUT not up to the edges where the last panel is tofit . . . we want it to go back from whence in camef

Step eight is to place the drive units and reflex port trims in the baffle board and mark accurately where pilot holes for the fouing screws are to be dritled Although the chipboard is high density it has a fairly soft texture so it is well worth buying a new " 4 " drill bit This ensures the pillot holes are clean and in the right place ... wom bits tend to wander! Although I'm sure it is unnecessary I drilled all my pilot holes fust deep enough for the screws by slipping a small rubber sleeve over the drill bit at the right depth Noone could accuse me of having any extra holes or al gaps here!

Step nine is to postion the grille frame on the front of the cabinet with the cabinet thing on its back Use masking tape to hold it in position and carefully drill a pilot hole through the grille and into the baffle board. I used a $1 / 16^{\circ}$ drill bre and drilled four holes, one in each comer section of the grille frame. These holes can now be drilled out to the correct size to accept the nyton plugs and sockets that hold the grille in place Wimstow supply eight plugssockets for each grille but as Wharfedale suggested that four would be sufficient I chose the latter. It is far easier to line up four holes than eight! for the socker in the bafthe board I used a 7716° bit and for the grille a 732° bre Dort forget to drill only from the rear of the grille and only to a depth of $\% 5 / 16^{\circ}$. The $1 / 16^{\circ}$ pilot hole may be filled with wood filler
but when the grille material is fitted I doubt that these holes can be seen If you are happy with the finish on the baffle board then ghe the sockets in now, if not, then wait until you have quite finished before faxing them in position. Do not stick the plugs in the grille until you have ftred the material in place I used a quickset epory glue for these firtings

Siep 10 is to ghe the black, accusticath transparent foam over the inside of the reflex port aperture. You can use either PVA ghe or quickset epony, hust be careful not to get any of the adhesive on the foam where it is over the port.

Seep 11 is to position the crossover netwoot inside the cabinet on the rear panel opposite the bass unit aperture Before vou screw it into position check that the leads from the drive units can reach their appropriate tags! Wharfedale recommend that the crossover has a piece of felt or foam between te and the panel to prevent any vibration ratties Also in step 11 is the frtting of the input terminals through the rear panel, I smeared the threads on these sockets with some latex glue. again to ensure that there would be no atr gaps Solder the leads from the crossover to these terminals. make sure they are comnected correctly, red to red and bleck to black!

Step 12 is to cut three 5° discs of wadding and place these in the midrange tubes the Wharfedale instructions that come with every Speakercraft unit specity that the packing densuty of this wadding should increase towards the back of the tube and that the tube should be completely filled with wadding In view of this : cut two extra discs and fluffed out those towands the from of the tube.

It's In The Bag

Step 13 is to line the inside of the cabinet with the acoustic wadding and glue the remaining side into place Now comes the tricky bre - how do vou slide the wadding up betund the midrange tubest The wadding catches on the side panel and snags up behind the lubest Easy - get a large polythene bag 12° or more wide and sbout 15° to 18° long slice the wadding into the bag slide the bag plus the wadding up behind the tubes and. lighely holding the wadding in place, pull out the bag Cutting the wadding so ftr round the fubes sounds fiddly but turned out to be quite easy. Cut the holes for the tubes smaller rather than larger as the wadding will easily streich to fit comfortably in place No wadding is required on the baffle board but don"t forget to put wadding on the loose side panel before you glue it into placet The wadding may be tacked or stapled into place.

The wadding is taclued or seapled in place.

Step 14 ts to attach the wires to the dive units - observing the comect polarity (it in doubs refer to the Speakercraft instructions and double ched every connection! and screw all units and ports to the cabinet. Wire up and fit the bass unit last as the bass aperture gres you ample room to work inside the cabinet connecting wires to the crossover. The wires from the midrange units come through smafl holes in the tubes and theee holes should be sealed after you have connected the wires to the crossover. The fitting of the drive units should only be started after the glue foints of the final side have thoroughly set and any glue fumes have completely cleared The comment regarding fumes is highly pertinent if you are not using a waterbased adhestive There is a possibility that the fumes could affect certain plastics used in the construction of the drive units

Step 15: You have two working loudspeaker systems. so connect them to your amplifier and sut back and enjoy your favourite record

Step 16. The cabinets are now ready for their final cosmetic treatment. There are a number of options open to you they may ber - veneered cither by you or a local cabinet maker.

- covered in monon veneer or plastic laminate.
- sealed and then painted (prelerably spraved) in colour of your choice.
- Wilmslow Audio also suggest the use of a 'Contact inpe covering as these can be obtained in very realistic wood-rain finishes

Whichever method you ope for you will probably have to attend to the cabinet edgesjoints before vou can proceed Due to the small but noticeable tolerances in the cutting of the panets, the amount of glve and the pressure used during the construction, there are likely to be a few panels that are slightly proud of the edges that butt up to them There are several ways to solve these problems but the simplest is to use one of the proprietary wood fitlers. Which choice depenct upon verr choice of finish.

If the cabinets are to be covered in plastic laminate you can afford to use one of the more easily worked fillers such as fine Surface Polvillia, Alabastine or Plaster of Paris If, on the other hand, you are going to cover them with Contaet or stmply spravpaint them then I would suysest a tougher type of filler that is less likety to crack or crumble. My choide here would be one of the car body fillers - they are easier to sand than some of the loaded general puppose fillers from the DIY shop so vor are less likely to sand away the wood from the cabinet instead of the filler!

The grille material must be stretched over the grille frames and evther tacked/stapled or glued (or both) to the mside of the frame. The matertal supplied by Witmslow Audio stretched easily and evenily, I smeared PVA glue over the rear faces of the frames (having first sainted them black) and stapled the material in place while the glue set When sel 1 trimmed off the excess material (having removed the soodd staples) and ran another bead of the adhesive over the edee of the material.

Looking back on the construction of this E 70 loudspeaker system using the WETO flat packs, I can onty say that I am very satisfied with the way they went toyether. There were one or two instructions that could have been a little clearer but they have been covered in this article Common sense would probably have solved any uncertainties but I chose to phone Rank Hi Fi to confirm my conclusions The people i spoke to did not know that I was wrring this review and so it is a pleasure to say the they could not have been more helpful. This entire project has been enjovable from first to last.

BUYUNES

[^0]

SAFGAM POATARLE OSCILCOSCOPES

LOCIC PROBES/MONTORS/PULSEAS EArcen guwared en en mis
 Mon/tices ismin hies.

niced ever. Snetor socope

-

3.01 EDGWARE ROAO.LONOON, WR 1BN, ENGLAND. TEL 01-724 3564 ALSO AT HENRYS RADIO. 404/403 EDGWARE RDAD. LONDON W2 WE HEE CPAN 6 DAN' A MEEX - CALL W WDDEE FOR VOURGLF!

Order by Post WITh CME OUE S, accessivisa or Telephone your order Allow up to10 divy for detivery

AUTOMATIC CONTRAST METER
 What's black and white and read all over? Answer - a photographic negative, providing you've built this simple and useful device. Design and development by Rory Holmes.

Contrast ratio is a very important quality of photographic negatives that must be assessed during the printing process, in order to select the correct grade of photographic paper. The contrast of negatives depends on the type of film used, the lighting conditions and the developing process; consequently five grades of printing paper are available to enable the full range of tones from black to white to be reproduced from any negative. Grade 1 is termed the softest and it is used with the highest contrast negatives. At the other end of the scale, grade 5 is the hardest paper, which will enhance the tonal variations of poor contrast negatives.

During the design stage of this project we experimented initially with two separate photodetectors which measured the instantaneous light difference between two points. There are a number of problems with this approach, as the photodiodes and their associated amplifiers must be carefully matched in light sensitivity.

Secondly, the lightest and darkest points of the image must be known exactly, and the two photodetectors need to be simultaneously positioned on these points while the reading is taken. This is an awkward business at the best of times, but especially so in a darkroom!

We considered that a different
approach was required and developed the circuit of Fig 1 to overcome some of these difficulties. Only one photodetector is used and the peak positive and negative voltages obtained from different light levels are followed and stored independently by sample and hold circuits.

Now, as long as the photodiode is scanned at some time through the lightest and darkest points of the image, the peak detectors will memorize the maximum and minimum voltages, and thus provide a contrast measurement.

The photodetector input stage of our meter is rather unusual in its configuration. Photodiodes are usually

Fig. I Circuit diagram of the Contrast Meter.
used in the 'photovoltaic mode' where the photocurrent developed and measured is linearly proportional to the light intensity. Our input amplifier has an extremely high input impedance and thus measures the open circuit voltage generated by the photodiode. This voltage is logarithmically proportional to irradiance as the graph of Fig. 2 illustrates. This is a very convenient property since the sampling circuitry can now work on the log of the light level to provide maximum and minimum values. By simply subtracting these two values with a differential amplifier we obtain a voltage that is logarithmically proportional to the ratio of the maximum and minimum light levels, ie the contrast.

Fig. 2 Response of the photodiode used in this project.

Meter Made

The ETI contrast meter was intended primarily to determine the paper grade for a well balanced print; consequently a 10 LED bargraph type meter is sufficiently accurate for calibrating the five grades of paper. At today's prices this also works out somewhat cheaper than a moving coil meter and is less prone to damage. After calibration, the meter will be found very easy to use. It is switched on with the 'sample/hoid' switch in the 'hold' position and placed down flat on the enlarger base with the photodetector probe anwwhere in the image area. (The photodiode has been mounted in a separate probe with its amplifier in order to keep it as close to the focused image plane as possible. If it were much higher than this the detecting element would pass through an unfocused image, giving a false contrast reading)

Any red safety lights should be switched off before the reading is taken to avoid error since the photodiode is responsive at this wavelength. The sample/hold switch should now be moved to the sample position; this will clear any previous reading and start measuring light variations. Now the photodiode may be moved across the image and through the areas that look the brightest and darkest, This can be
done quite slowly thanks to the peak detectors' long memory time; however, several areas should be scanned to ensure the recording of the true maximum and minimum. The eye can be deceived quite easily by those cunning optical illusions lurking among the shades of grey!

During the scanning process the reading on the LED scale will increase and finally level-off at the true contrast ratio when the black and white peaks have been covered. Before removing the meter from the image area the sample/hold switch should be set to 'hold'. The meter will now be immune to further light variations and will continue to display the contrast reading for a considerable time, thanks to the even longer memory of the - samplehold circuitry!

A true ratio is provided by the meter and thus the contrast reading for a given negative will be independent of the light source intensity and enlargement size (photographic aberrations known as "circles of confusion" may produce sources of error under certain conditions). Negatives may thus be compared or matched for contrast.

Construction

The meter is built into a slim style plastic enclosure produced by OK Machine and Tool company. This houses the battery and main PCB on which all the parts are mounted. Since the light sensing element must be as close to the enlarger base plane as possible, we have mounted it externally on a separate small PCB with its associated amplifier. A probe to house the external sensor is made from a short length of aluminium channel extrusion. Figure 3 shows the

Fig. 3 Details for the aluminium extrusion that houses the photoprobe.
dimensions for the probe; if the aluminium channel proves difficult to obtain, a piece of the slotted aluminium extrusion used for commercial shelfracking systems is ideal. This is available from most DIY
stores in short lengths with the required internal width. After filing or cutting to the right size, a piece of insulating tape should be stuck down on the inside to prevent shorting out the PCB. As shown in the diagram, a hole is drilled on the end for bolting it to the bottom of the case. This bolt should eventually be connected to circuit ground, thus providing screening for the photoamplifier. The two PCBs for probe and main meter circuits are laid out as one board, and should be sawn apart along the lines shown on the foil patterns.
for other construction arrangements, the circuit can be left as a single board, since the interconnections are already made.

Three wires are used to connect the two boards together as indicated on the overlay; these should pass through a small hole drilled in the case side where the metal probe case is bolted on. When the probe board is mounted and stuck down in its channel, a piece of thin aluminium sheet is cut to form a lid with appropriate holes for the photodiode and preset. (The photodiode case is internally connected to the cathode, so it must not short against the lid).

Calibration

Start with preset PR1 fully clockwise to set a gain of 1; also set PR2 fully anticlockwise, setting the voltage required to illuminate the lower end of the bargraph at zero. First. measure a high contrast negative that is known to require grade 1 paper for a good average contrast after developing Initially a low contrast reading will be obtained, say about grade 4 or 5. Now , adjust PR1 anticlockwise to increase the gain of the photoamplifier. Take another measurement, when the contrast reading should be greater. Repeat this process until a grade 1 is consistently recorded.

Now select a negative with very poor contrast ratio, one known to require paper grade 5 for bringing out the contrast. Take meas urements several times while adjusting only PR2 clockwise, until the bottom end of the scale illuminates at grade 5 . The other contrast grades should now fall linearly between these points and can be checked for accuracy.

Although the bargraph display has a low resolution and accuracy, the rest of the metering circuit is obviously much better than this; consequently a moving coil meter could easily be added to measure the contrast voltage for those who may desire greater resolution.

The general circuit arrangement consists of a photo amplifier which feeds a voltage derlved from varying light levels in an enlarger, to a pair of peak detectors. One follows the peak positive voltage and the other the peak negative voltage. The capacitors used for storing the voltage peaks in the followers also form part of sample and hold circuits which are then switched to 'hold after measurement. Their outputs represent the maximum and nilnimum values of light Intensity. A dif. ferential amplifier then computes the ratio of these values and the result is displayed on an LED bargraph meter.

IC1, a CA 3140 CMOS op-amp, is used as the photodetector amplifier. It is configured as a non-inverting DC amplifier with a gain variable from unity to about 10, set by PR1. Although IC1 can have input and output voltages all the way to ground, this facility is not used owing to the driving requirement of the TLO84 quad op-amp. This requires inputs at least 1 V above ground, and thus IC1's oulput is offset by a reference voltage of 3V9 provided by R1, ZD1 and C1. The anode of the photodiode is connected via R2 to the non-inverling terminal of IC1 which has an effeclively infinite input impedance. Thus the open circuit voltage generated by the photodiode is amplified according to the gain set around IC1 and appears at the output on pin 6 added to the reference voltage.

The voltage at point A (lgnoring the reference offset) will be logatithmically
proportional to the intensity of incident light, owing to the properties of the photodiode (see Fig. 2) R4 and C2 form a simple filter to remove 100 Hz ripple caused by AC mains bulbs. This voltage is fed directly to the peak detectors. These circults are essentially the same, the difference being the polarity of the rectifier diodes. They operate in evactly the same way, and we shall deal only with the peak positive voltage follower.

Assume initially that the CMOS analogue switch IC3C is open and IC3d is closed. C5 will be connected to the output of op-amp IC2c via the rectifiers D4 and 5 (we can ignore the action of R7 for the moment). C5 will charge up via the rectifiers to the most positive voltage peak when the voltage at point A on the non-inverting terminal is greater than the capacitor voltage applied to the inverting terminal. The voltage held on C5 will droop over a period of time due to leakage current through the rectifiers D 4 and 5 and the inpur bias current of IC2c. IC2c was chosen as a FET opamp with a low input blas current and R7 is included to reduce the dinde leakage current.

IC2d is connected to C5 as a straightforward high impedance voltage follower to buffer the stored voltage. When the input voltage to IC2c at point A drops below the peak value, IC2c's output will go negative, reverse biasing D4. However, IC2d applies the Capacitor voltage via R7 to the anode of D5, effectively remnving
leakage current through D5
The peak positive value of the signal at A thus appears at point C, and likewise the peak negative value at point B. When the analogue switch IC3d is now opened, C5 is disconnected from the peak detector and acts in conjunction with IC2d as a sample and hold circuit thus isolating the measured values from further light variations.

When SW 1 is open, R8 and R 5 hold the control pins 13 and 5 of IC 3 low, opening both analogue switches. This is the 'hold' mode. When SW1 is now closed, the control pin 13 is taken high, switching to the 'sample' mode. C3 and R5 produce a positive pulse (about 50 mS) on control pin 5 to brief. ly short out D4 and D5, so resetting the peak detector to the current voltage at point A. When C3 has charged the IC3c switch will open again, allowing the peak detector to functión.

IC 4 is wired as a differential amplifier with a gain of 2 , to subtract the voltage at point C from point B. Since these voltages are the \log of the light levels, the output on pin 6 will represent the contrast ratio of these lifht values.

IC 5 is a standard LED bargraph driver. the LM3914. The input voltage on pin 5 is converted linearly to illuminate one LED on a scale of 10 . Full scale deflection (LED 10) is set internally at IV2; the zero scale deflection is set by PR2 anywhere between 0 V and 1V2 during the calibratlon process. C6, a 10 uF tantalum, is required for IC 5 to ensure stability from oscillation.

NOTE: $k=$ CATHODE

Fig. 4 (Left) Component overlay for the meter (showing the board uncut).

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)	
R1, 3, 8	10k
R2, 11, 12	100k
R4	2 k 2
R5	1 MO
R6, 7, 9, 10	47 R
Presets	
PR1	100k subminialure horizontal preset
PR2	1k0 miniature horizontal preset
Capacitors	
C1	10u 35 V tantalum
C2	22 u 25 V tantalum
C3	220u 16 V electrolytic
C4. 6	82n polycarbonate
C5	68 n ceramic
Semiconductors	
IC 1,4	CA31 50
IC2	TL084
IC3	40668
IC5	LM3914
D1	BPX65
D2, 3, 4, 5	1N4148
LED1-10	3 mm red LED
Miscellaneous	
SW1,2 miniature slide switches	
Case (see Bu	ylines); PCB (see Buylines); B1

BUYLINES

The photodiode specified in the Parts List is the one used in our prototype, but any general purpose type should do. The case we used is a Pactec type HP, size 146 :91 * $2 B \mathrm{~mm}$. The PCB is available from us using the order form on page 44 - price is $£ 2.12$.

ง⿰丬夕 SCNEWOWIVER SET
 un sime -081 e． 8.20
srai MUT ORGVER SeT

momenem

81.96

Slel TOOL SET

Ompan privel sorveres

M． 80002800 ET．78

 Weative ontion sios，is． 2.8 sin 6． 8.5 .3 encen Winl

BLDAKPCEETCMAMT

 AMO ORUL KITt tape mia Do se acomon is ac ad contis 810 then her c ？
 ithe hese hen
i DO gese biveric cis onat snmes 3 wives spoe det mext
i sures bremgens onever ane thent
 nemb
Cot tuces oun hour swan of mact es． 70 ONODO SMI

BHAK SOLDER otsolotakit

acerras ondinco．seo

 \boldsymbol{y}
 menncs equice surve co emoer eming ovy tito merre
 enames
 1 mat siner tes remove iver： tue cien move ciece oun ynom of hial ce．es

SBEICONOUCTORS FROM AROUNO TME WORLD

100

EXPEnNMEMTOR OOXES－ALUMAMIUM Mastic alumomun coxes

 sen is is is ise

$$
=5400 \rightarrow 0
$$

nise
180
19
19
18.08

Plastic Boxes

wli	－	m	$0 \times$	men
－	8	1	4	C1．00
00	80	16	433	¢ 0.50
0	80	8	0	Elato
4	10	－	sios	C．t．e
のnemeravent				
50	46	78		
		5x		
		\pm		
		18	193	E8 14

ERANO MEW LCO OISPLAY MULTITESTER． Time
te0 so wiconen eifl merema
 murnverme Mon mon in －wow＂Fow seaina nuecter － 10 eoti

Yainativenomemen nuen everme laptinem Bucue matery mive －acer
tive montact on cepren Souster sandiog lan^{0} formovian new somen re enmen anomen －Mon en min \rightarrow Son 150 ion istion ances
© 0 Heme 20005 a Cutran？ 2001400 ace 1 ras oc Comon ren
 － $2: 80$ develow suot oms agnene an sect －ign wov Lomst moss mol 13600

The Third and Fourth Hand．．

Men Cob

 021001 ec．se

BHPAK AUDOO W：

HIGH OUALITY MOOULES FOR STEREO MONO AND OTHER AUDIO EOUIPMENT
 \rightarrow－ 0 －
 －

AUONO AMPLIFIEA
 ancont
－ －

 －cours －-130 －0
©1314

AUDIO AMPLIFIEA

 $\rightarrow-\infty$
 - on－moos on ooom －nern $-\infty$

 ＋

STEREO PAEAMPLIFIENS Nu man avana gin wot tan
 0 y －minconctim
 $\rightarrow 0 \rightarrow 0$

 －60かった。 ーが $\rightarrow \infty$

MIMLATURE FM

ThaNSMITER MOOULE

 MAONETIC CAATRIDOE PREAMPLIFIER
 －
 mex mex oxa een
 －utictover －リーゴ心

MONO PAE－AMPLIFIERS
 \rightarrow mon
－

 Hoin
 $\operatorname{lnc}+\infty$

4nomerex on $\rightarrow \cos \operatorname{con}$

TRANSFORMERS

 voun se

ACCESSORIES

 om ore totaterand． －ammbneome。 20 am nemmon
 une nricnean on to

PUSM
 BUTTON
 STEAEO FM

TUNEA

 －1．V．

 Te hem an Wi
$\rightarrow \infty$
－
c1sas

O－DAK＇S COMPLETRL Y NEW CATALOOUE

REOULATED
VARIABLE

 © sma

 STABILISED POWE号 SUPPLY
 1 －meon $1-n \rightarrow 1=0$

 －

Num mis ot CB

SIREN ALARM MODULE
\because Man onmontov
－mionolocose －Moscom s－4 n 91.0
 －

 amolime man it roime mo
 $0 \square \square$

 8
－Comernomben Manmurwo

ETI PCB SERVICE

Up until now PCBs were always the hardest component to obtain for a project. Of course vou could make your own, but why bother anymorel
Now you can buy your boards straight from the designers - us! As of this issue all (norcopyright) PCBs will be available automatically from the ETI PCB Service. Each board is produced from the same master used to build our prototypes, so you can be sime irs accurate, and will be finished to the high standard you would expect from ETI.
In addition to the PCBs for this montits projects, we are making available some of the nore popular designs from our recent past. See the list below for details. Please note that NO OTHER BOARDS ARE AVAILABIE. If ir's not listed we dor't have it!

APRIL 79

Cuhar Effects Unes
Click Eliminator
IUNE 79
Accentuated Beat Metronome
february 80Tuning fork
MARCH 80
-
Signal Tracer

AUGUST 80
保
ance Merer
october 90
\square
Casserte Interface
fuzz/Sustain Boz
november 20

Touch Buzzer
Lighe Switch
metronome
Z 2W Power Amp
RIM Preampldier
DICEMBER 20Muskal Doorbelt
Bench Amplitler
Four Inpur Marer
fANUARY B1
LED Tacho
Multioption Siren
Universal Timer
fEBRUARY 81Infre red A Larm (four boards)
Pulse Cenerator

	MARCH 81
¢1.96	- Engineer's Stethoscope
	APRIL 81
	- Musical Box
$¢ 2.70$	- Drum Machine (two bourds)
	\square Cuitar Note 5 ypander

¢1.98	JUNE 81	
81.70	\square Antenns friender	
	- Alien Alrack	
	- LED Jewellen. Cross	
¢1.90 Sp		
C2.20		
E2.15 Wasphase		
	IULY 80	
C220	- SnsemaAMMAMC	
c2as	$\square \mathrm{sm}$	
	- Smart Battey Ch	

C1.A5 AuGUST 81

System A Power Amp(A PA) Flash Sequencer Hand-lap Synthesiser Heartbeat Monitor Watchosog Home Security (nwobowh)
SEPTEMBER 81

-

 Lebormony PSU
ES.51

63.10
[2.40
OCTOBER 81
Entarger Timen Sound Bender Thermal Alarm $[2.35$
C1.99 E1.97
12.68

[3. 88

NOVEMBER 81
Music Processor
C5.51
Voke-Over Unit Car Alarm

28 Car Alarm C211

DECEMBER 81
Akohometer(two bounds)
6199
Bodywork Checker $\$ 1,48$
Component Tester $\$ 1.12$
JANUARY 82
Parking Meter Timer $£ 1.78$
Infant Cuerd E1.35

IfBRUARY 82

Ripple Monito
[156Pest Monitor 81.34
[3.83. I Ching Computer (two bourds) 83.98
Moving-magnet stage
£2.85
C2.85

[3.50	MARCH 82 20	
C2.58	- Infinute Improbability D	C2.53
E2.98	- Capactance Meter fiwo	10.64
51.37	- Robot Motor Controller	c2.es
	Lighe W and	61.40

Micropower Pendulum

APRIL 82

Wattmiser $£ 3.39$

Migh Impedance Probe 51.48
Guitar Practice Amp 55.6

Accurate Voltage Monitor

How to order: indicate the boards required by ticking the boxes and send this page. together with your payment, to: ETI PCB Senvice. Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE. Make cheques payable to ETI PC8 Service. Payment in sterling only please. Prices may be subject to change without notice.

Total for boards	E....
Add $40 p$ p\&p Total enclosed	$\frac{0.40}{£ \ldots . .}$

DESIGNER'S NOTEBOOK

Five into one does go. This month Don Keighley explains all about sampling and time-division multiplex systems, and looks closely at the advantages of pulse-width modulated telecommunications networks.

Sampling is a process we can undertake if we want to combine many different signals on to a single transmission line. The transmission line can be of any type such as wire, radio, or optical. Combining several signals into one is called 'multiplexing' and can save the expense of having many separate lines. Sampling is used in a specific type of multiplexing called timedivision multiplexing (TDM) which I'll explain later. The othef form of multiplexing - frequency-division multiplexing (FDM) - is the basis of all standard radio transmissions. Each signal to be transmitted is mixed with a carrier wave (or radio frequency) on to a set frequency within the radio spectrum. Thus many signals can be transmitted and received by radio link - one on each defined frequency of the radio spectrum.

Figure 1 shows an illustration of sampling. In the figure, a sinusoidal signal (known as the message signal) has a series of values taken at regular intervals. These sample values can be used to represent the message signal. For instance, we can pass the actual DC values of the samples, ie their voltages, along the line. At the other end of the line the sample values, or pulses as they are usually called, are converted back into the message signal, simply by passing them through a lowpass filter. The filter removes the high frequency pulses and thus re-creates the envelope of the original message signal - as shown by the sinewave of Fig. 2.

One of the most important questions arising is - How often do we need to sample the message signal? It is obvious that if the signal is sampled too few times we won't be able to
reconvert the pulses into the message signal at the receiving end of the transmission line.

The minimum number of samples is given by the sampling theorem, which states that a message signal of bandwidth BHz can be represented by a set of sample values taken at a frequency of $2 \mathbf{B ~ H z}$. For example, an audio system has a frequency response of 20 Hz to 20 kHz . Its bandwidth is thus $20,000-20$ $=19,980 \mathrm{~Hz}$. The audio signal of the system can thus be represented if samples are taken at $2 \times 19,980 \mathrm{~Hz}=39,960 \mathrm{~Hz}$.

But the minimum number of representative samples (2 B Hz) isn't the easiest number of samples to convert back into the message signal. It's usual to take a greater number of samples because doing so makes the reconversion easier. To see why this is so we've got to take a look at the spectra of the transmitted samples and see how they differ when different sample frequencies are used. Figure 3 shows the possible spectrum of a message signal such as an audio signal. It's the sort of resule you would see on the screen of a spectrum analyser. Frequency f_{m} is the maximum frequency contained in the signal. The lowest frequency contained is 0 Hz (the signal extends down to $D C$), so the bandwidth of the message signal is $f_{m}-0=f_{m} \mathrm{~Hz}$.

When the message signal is sampled at a frequency f, the overall spectrum looks something like that shown in Fig. 4 and consists of components at harmonics of the sampling frequency , with upper and lower sidebands around them, as well as the original spectrum of the message signal. In Fig. 4 you can see the sampling frequency. f_{y} is more than twice f_{m} - hence there is a gap between the highest frequency of the higher sideband of a

Fig. I A message signal can be represented by a series of sample values of the signal.

Fig. 3 Power density spectrum of typical audio signal. The higher frequency component in the signal is f_{m}. The signal extends down to 0 Hz_{2}, so the bandwidth of the signal is $\mathrm{f}_{\mathrm{m}} \mathrm{Hz}$.

Fig. 2 If the series of sample values is passed through a low pass filter the original message signal is recrealed.

Fig. \& Power density spectrum of an audio signal, sampled at a frequency of f_{4}. In this example, f_{s} is greater than $2 f_{m}$.

Fig. 5 Sampling frequency $f_{\text {, equals }} \mathbf{2 i _ { m }}$. A simple lowpass filter may filter out some of the wanted message signal.

Fig. 6 Sampling frequency less than $\mathbf{2 i}_{m}$. A lowpass filter cannot be used to recreate the original message signal.

Fig. 7 A simple lime-division multiplex (TDM) system.
component and the lowest frequency in the lower sideband of the next component. This gap between bands means that a simple lowpass filter can be used at the receiver to pass only the message signal and not the higher components: so the message signal is recreated.

With a sampling frequency of only $2 f_{m}$ (Fig.5) the highest frequency of one band and the lowest frequency of the next occur at the same point. A simple lowpass filter would filter out some of the message signal, as shown in the figure. A more complex lowpass filter (with a steeper roll-off slope) could be used to correctly recreate the message signal.

In Fig. 6, f_{s} is less than $2 f_{m}$ and, as you would expect, the spectrum shows how message signal and sidebands overlap. A lowpass filter cannot be used to recover the whole of the message signal without letting through part of the next sideband.

TDM Tricks

A simple TDM system is shown in Fig. 7, in block diagram form. Each signal to be transmitted is connected to an input of switch SW1. This switch, although shown in the diagram as a mechanical-type switch, will be of electronic construction in a real TDM system, so that a high switching speed can be obtained. The output signal from the switch is transmitted along the transmission line to switch SW2, which connects each receiver, in turn, to the line. Providing the switches are operating fast enough so that the sampling theorem is fulfilled ($f, \geq 2 f_{m}$) for all the message signals, everything is fine and we have five signals passing down one line

The whole process of sampling and TDM is a form of modulation because only a representation of the message signal is transmitted, not the actual signal. And because pulsed samples of the message signal are transmitted, we call the process pulse modulation.

Fig. 8 Pulse-width modulation. The width of each pulse varies in accordance with the amplitude of the message signal.

Fig. 9 Pulse-position modulation. Each pulse's position, with respect to a reference point, varles in accordance with the message signal amplitude.

Fig. 10 A pulse-width modulation microphoneloudspeaker system.
There are various forms of pulse modulation which can be used in a TDM system, all relying on the fact that the original sample values control some property of corresponding pulses. The one just described uses the DC value (ie amplitude) of the pulses and is therefore known as pulse-amplitude modulation. Other forms of pulse modulation are: pulsewidth modulation (where the width of the pulses is varied according to the sampled value) and pulse-position modulation (the position of the pulse, relative to a reference position, is proportional to the sample value). Figures 8 and 9 show examples of these pulse modulation systems and the sampling frequencies of both must follow the sampling theorem - the sampling frequency must be at least twice that of the message signal bandwidth. There is a final pulsed system, in which each sampled value is converted into a train of binary digits. This is, strictly speaking, a digital system and doesn't concern us here; however the system must still follow the sampling theorem.

Practical Matters

With careful design all the pulse modulation systems can give good results in TDM but perhaps the best - because it's easy to use, has a high immunity to interference and yet needs a minimum of component hardware - is pulse-width modulation (PWM). Figure 10 shows a block diagram of a PWM microphoneiloudspeaker setup - such as you might have in a multistation intercom system or similar.

We can investigate the modulation and demodulation blocks in more detail, as in Fig. 11 and 12. Figure 11 shows a simplified pulsewidth modulator. It consists of an oscillator to provide sampling pulses at a rate of over $2 f_{m v}$ so that the sampling theorem is fulfilled. In a good quality audio modulator, the sampling rate is therefore over 40 kHz and the time between pulses must be $1 / \hbar_{i}=25 \mathrm{uS}$.

The pulse duration is less than this, say 1 uS, and each pulse charges the capacitor C1 to full voltage. After charging, the capacitor is linearly discharged via the const ant current source. The cycle repeats itself at every pulse. The capacitor's discharge rate is a product of the capacitor/constant current time constant, which should be about 2 uS. Comparator IC1 compares the ramp discharge with the incoming audio signal - when the non-inverting input voltage is above that of the inverting input

Fig. 11 A pulse-width modulator in detail.
the comparator output is high; when the non-inverting input is below the inverting input the output is low. Thus the output is high the instant of every sampling pulse, but falls low again after a time which is linearly related to the amplitude of the audio signal. In other words, the width of the pulse is modulated by the audio signal.

A pulse-width demodulator is shown in Fig. 12. A capacitor with a parallel constant current source is again used and the incoming width-modulated pulses cause a charge/discharge cycle similar to that in the modulator. The average DC level of charge across the capacitor is dependent on the width of the pulses - the wider the pulse, the higher the DC level. Buffer IC1 prevents loading of the voltage across the capacitor and the output is lowpass filtered by capacitor C2 to remove the sharp spikes of the sampling pulses, thus re-creating the original audio message signal.

Fig. 12 A pulse-width demodulator can be builf using the same basic components used in a pulse-width modulator.

The advantages of such a system aren't always immediateIy obvious, but you must remember that the audio signal is being represented by a pulse of nominal width 2 uS in a cycling time of 25 us . This means that 12 different, high-quality audio signals can be time-division multiplexed down that transmission line simultaneously and without interference - and this is just a simple system. With a shorter nominal pulse width and more accurate modulators and demodulators, many more signals can be multiplexed on to a single transmission line.

It's all down to economics really. When you look at a large telecommunications system like the telephone network, there are literally thousands upon thousands of miles of expensive copper cable. By putting 100 telephone conversations down one line the overall cable cost is only $1 / 100$ th of that of a nonmultiplexed system. Makes sense, doesn't it!

MIIS, COWPON: MCRios $\&$ PAiris

Gara The AT YOUGEDOOR 4.

 apente evinave merie you on or the thate tepling foom hormed perepe
DISCO LIOHTING KITS

anme

OVMIULTRA SENSITIVE THERMOMETER KIT

DO YOU LONG TO MEAR
YOUR DOORBELL RING? YOUR DOORBELL RING? =ond No CMIMC y.moint Bircos cruinet: - moncenan 0∞上xiccos
 Noverer normio. ---nisicuerion cetal montcr mon esommens-

WE ALSO STOCK:

 VERO PROOUCTS ANTEX SOLOERING IRONS BABANI BOOKSALL PRICES
 any anuse bing mo boo entron 4 to os Now No

 ASFEATURED OM HO

EXCLUDE VAT

EOUCATIONAL EXPANSION WITH SOFTY 2

$\cdots \infty$ mocio

 osmo 00 50 covio
 Nown
 -rucr cuir ano veorte- on reven
 \cdots 再

Nen \cdots-no 20 do min on
 covan wion tove ce

veen

THE MULTI-PURPOSE TIMER HAS ARRIVED

-

 noo $0+00000$

Tapume maver-

 $\because 0 \mathrm{~m}$
: $\operatorname{enc}=-\infty$
conch et ineo no

 to metion

THE PERFECT AIO FOR "LAZVITIS

24 HOUR CLOCK/APPLIANCE TIMER KIT
 Criver ane
neery
 vin ver mine tibe
 sonss.al for mom stoci cetane.
OPEN

TKEDWPDNETIETIV

2114	85
2700	225
2116	245
2138	A 00
6010	. 125
68219	1.85
60500	1.50
60528	255
80356	550
	105
zeoaces	330
20MCTC	230
20mapio	2.80

comors cansmon

0

74 LSTTL

(men 13	${ }^{6} \mathrm{H}$	
ism is	Lis)	(20) A
13	(11) 3	Imen
${ }^{4}$	t138 31	500
4	153	(1)
, 19	1919 38	w, 4
319	L330 30	Wry
$4{ }^{4} 8$	L19 31	148)
401. 3	(13) 13	
4838 38	H10 10	414
(3) 81	Hex	500 ${ }^{11}$

CMOS
\qquad

 크ํํํํํํ 0×1 $\therefore \infty$

LEO

 -

$$
x
$$

旡

0

case

MOS Po
 vereon inem

คOTENTIOMETERS

arsistoms
 Provets

$$
\begin{aligned}
& \text { ise } \\
& \text { ime } \\
& \text { inea }
\end{aligned}
$$

品

0

SOUND EFFECTS 1: BOMB DROP

One of the attractions of the more sophisticated video games seen in 'fun' arcades these days is the realistic array of sound effects that go with the action - gunshots, bomb whistles and explosions, etc. Make some yourself with just one IC. Design by Phil Wait.

Those 'cannon shots' and explosions that go with the popular 'Space Invaders' video games and its variants add a measure of interest, feedback and stimulation to the action in which you participate on screen. Those sounds are electronic ally synthesised - that is, they consist of a complex mixture of waveforms that make up the required sound.

A 'bomb drop and explosion' is a remarkably complex sound when analysed carefuly. Looking at it simply, there is a descending tone followed by a burst of noise that dies away in intensity. The descending tone starts at quite a high pitch and is not a 'pure' tone (ie a sine wave). The explosion is a burst of noise that commences suddenly and dies away slowly in a recognisable way (usually exponentially). While it is possible to electronically produce very nearly an exact replica of a bomb drop and explosion, some compromises are acceptable to reduce the complexity and cost of the task and yet produce a recognisable replica of the sound.

To produce such sound using conventional components transistors, diodes, op-amps, resistors and capacitors - would require a whole legion of components. Fortunately, the IC maufacturers can come to our rescue here and much of the circuitry can be incorporated into a complex integrated circuit requiring the addition of a minimum of external components and the appropriate interconnections to synthesise the required sound. Cenerating a wide variety of sounds fortunately requires only a limited number of functional blocks, such as: a noise generator, voltage controlled oscillators, multivibrators, envelope generators (a sort of modulator), mixers and amplifiers. Tim Orr discusses such circuitry elsewhere in this issue.

Texas Instruments, the giant USbased component and equipment
manufacturer, have designed a series of complex function ICs for various applications and among them is the SN76488 Complex Sound Generator. This chip contains both linear and digital circuitry and is intended for use in applications requiring audio feedback to the user - video games, pinball, alarms, toys, etc, or industrial indicators, feedback controls and the like. Power consumption is quite low. allowing battery operation, and only a single supply rail is required.

The SN76488 is contained in a 28 -pin package and can be purchased for less than $£ 5$. It is quite a versatile chip, but we have chosen to describe how to obtain only two sound effects, these being a bomb drop and explosion, and a steam train and whistle. The former is described here; the latter appears on page 118.

Construction

Both the projects described use the one PCB design. Only the required components are assembled into the board according to each overlay diagram to obtain the required sound generator. Naturally enough, the polarity of the IC should be noted as well as the polarity of electrolytic and tantalum capacitors used. Commence construction by assembling the passive components, followed by the IC. This is not a CMOS device and no special care is required, apart from being careful not to bend any pins under the device when inserting it. If you wish, a socket may be used for the IC. This way, you can assemble both projects and purchase only one IC, swapping between the boards as you need to use them!

Fig. 1 Circuit diagram of the Bomb Drop and Explosion sound effects board.

Wiring to the switches, the speaker and the supply should be attached last.

The unit may be mounted in any convenient-sized box and the speaker mounted on the front. Alternatively, it may be wired into an existing piece of equipment. We'll have to leave these arrangements up to you.

Projectile Project

This produces a 'bomb drop and explosion' sound at the press of a button. Alternatively, the pushbutton PB1 could be replaced by a pair of relay contacts operated by a piece of equipment or a transistor (emitter to pin 9, collector to other side of P81) that is turned on by a logic high applied to its base via a resistor.

This project is one of the most complex, using almost every functional block within the SN76488. Varying R3 and C3 a little will vary the pitch range of the 'bomb drop' (desending whistle), while varying R4 or C4 a little will alter the characteristics of the explosion. Note that it is generally easier to "fine tune' things by varying the resistor values. The duration of the event can be varied by changing the value of either C1 or R1 and the decay of the explosion can be changed by varying R5 (varying C5 produces quite gross changes in the decay period).

Watch that you insert the link on the PCB in this one, located at the 'notch' end of the IC.

PARTS LIST

Resistors (all	1/W, 5\%)
R1,2,5	1 MO
R3	470k
R4	20k
Capacitors	
C1.5	$44^{7} 16 \mathrm{~V}$ PCB electrolytic
C2	22 u 16 V tantalum
C3	4 n 7 ceramic
C4	470p ceramic
C6	10n ceramic
C7	100u 16 V PCB electrolytic

Semiconductors
ICi SN76488 (see Buylines)
Miscellaneous
PBi SPST push-button switch PCB (see Buylines); $\mathbf{5 0} \mathbf{~ m m}$ diameter $\mathbf{8} \mathbf{~ o h m}$ speaker; PP3 battery and clip.

BUYLINES

Very few components and very few supply problems with this one. The SN76488 is an improved version of the Jexas SN76477 and 'can be obtained from Technomatic. The PCB will cost you $£ 1.80$ from our PCB Service: see page 44 for details.

Fig. 2 Component overlay for the Bomb Drop board.

HOW IT WORKS

This unit employs most of the function blocks in the SN76488. The SLF provides a linearly increasing voltage waveform, or ramp, to the VCO, taking several seconds for the ramp voltage to rise from zero to maximum value. The causes the VCO to produce a tone which 'glides' down in pitch, making the 'bomb drop' effect. The explosion is generated by the Nolse Generatorlfilter and the Envelope Generator. It starts with a burst of noise, which dies away in intensity exponentially in a few seconds.

The whole sequence is triggered by operating the pushbutton, PB 1 . This a pplies a high (+5 V) to the input of the System Inhibit block, pin 9. This in turn triggers the One Shot and the Envelope Generator. At the commencement of the Ore Shot timing period, the One Shot triggers the 5LF HI/LO Sync, starting the SLF, and the VCO does its things. At the end of the One Shot timing period the Envelope Select Logic becomes operative. the SLF is disabled and the

Envelope Generator commences to do its thing. The Mixer selects the VCO output at the start of the One Shot timing period and the Noise Generator/Filter output at the end of the One Shot timing period. Thus the two sounds are switched through to the audio output slage in sequence, the Envelope Generator modifying the noise so that it dies away, the time it takes to do so being controlled by the time constant of R5, C5.

The starting pitch of the VCO is determined by R3 and C3, the rate of rise of the voltage ramp produced by the SLF is determined by C2 and R2, while the One Shot timing period is determined by the time constant of C1 and R1. The frequency characteristics of the broad-band noise produced by the Noise Generator are modified by R4 and C\& connected to the noise filter control pins (5 and 6).

Audio output is coupled to the loudspeaker via C7, a 100uF electrolytic capacitor.

THE 1982 CASID WORLD BEATERS

AND

BY TEMPUS

Our prices are the lowest authorised dealers are allowed to advertise; lower prices $=$ no Casio guarantee (E\&OE). Nevertheless we can beat any lower price by $5 \%^{\circ}$. We have scanned last month's magazine for you and marked the lowest price we could find against a star $\$$

chas mov ing un an chavero amom ond mand

 OTMER MODELS

 somel muoth come

 Me mancts

Oum mest erlumo cciotme

hare tima 18 mitn ons
5 mexper mas wetme
unen eice I $=10 \mathrm{man}$ buror Unep Anco Con) ands

- 100
 arieng mperatios noudi 15:* Whe is noole. unen
Hol Rep CM
nuce dueven AC175s

 CALCULATINO ALAAM CLOCNS

are mevero fles

The new encooche

SYMPHONIC ALARN CLOCK

VINO REALISM

 GENERAL SPECIFICATION

Mencr ONLYER
 HD =00 Min
Mors Mand

 10 Res

Sacturnows ever a ectever foe cote
 min med cove AC $1020=1184.4$ min min

VL.TONE M. 11 Monophoric

 aosh w bes auto forring an ranno

Catalogile ON REOUEST 15upremp apprecialed

THE SENSATION OF THE JAPANESE MUSIC FAIR

Designed by a genius. Controlled by a computar. Programmed by a laser. Played by amateurs professionally and by professionats superbly,

THE NEW CASIOTONE 701

what it going to become TME instrument of 1982 probably the best instructiv keyboard I heve come acrose But ik is also s top tine muscal insirument capabie of watisflying oven the most proficient muelcian. . . I suggest you plece vour orders now
KKorbased 8 Music Plaveri.
opensip home music mating for all the family . . . one of the most advanced music aching cios so far develeped. . . This instrument in going to be one of the bingest sellers of ,obctronics of Music Mokerl.

Complete Programmable Polyphonic Keyboard (RRP £555)

ONLY £495

* Input an entire piece of music. specisitly acored in bal code and read by a light pen trected to the pitioce of
Aternatively, program your own molodien (man. 345 srece). chords (mar. 201 steps) and ampo whe the keboard, into the extensive momory, IUD to 5 minutes doyng of morel mith ful eoiting factries
- 3WAY PLAYBACK.
. Automasic pleybock of the ontire piece: melody, chord, bass and ryythm with erpeggio. Follow the melody as it plavs vie lamps sbove each individuel key

2. Manual metody ploying, guided by the kerboard tamps. with automatic bass and mythm accompanimen.

- ONE KEY PLAY feclity, allows the metody line to be ployed, sumptr by stroluing one ker.

Non-ptoyors can become Instont Musiciana
The 5 octove, 8 -note potrphonic keyboard can to split into 263 octaves and a diftieren voice cen be selected for the accomponiment.

* 20 "breatheteingly cheor and bright" pio-set instrumente and vorces
* 3-way chord sections - Fingered, Memory and Cesochord avto accompeniment.
- 16 rhythen accompeniments with "Pill in" variation and two percuseion effect buttons. Start/Stop. Synchro. Tempo and Balance controls. Variabie Vibesto and Sustain. 1/p 8 o/p jecks. Integrey ampifier/speeker. Music boot, AC only. Dums: $5 \times 373 / 4 \times 134 / 16$ Dptionel extris: Foot podeis Mard cas.

FREE
CREDIT. 0\% interess, 17 deposit, 12 monthly repaymenta. (Not MT-31 TTER or VL.11, or reduced rates for ionger period. WTEREST (0\%) on ACCESS, B'CARO or VISA for first 9 months, for any keybourd purchase over $\mathrm{E90}$

NEW PORTABLE KEYBOARDS

CASIOTONE MT-40
(RRP £125)
AN INCREDIBLE 199

解 37 key, 3 octove kevoourd

- 15 key bess kerboerd with sutomatic aynctro onised bass funct

22 Ively and restistic buit in onstument sounds and vorces.
Susvin. Vibrato and Pitch controls. Line out and Meadphone jecles

- Sustain. Vtortio and speaket. Battery powered, or optional AC admptor. Dirnse $61.6 \times$ $584 \times 178 \mathrm{~mm}\left(27 / 161 \times 23 \times \mathbf{T}^{\prime} 1\right.$. Weight: $\mathbf{2} .2 \mathrm{~kg}\left(4 . \mathrm{Sm}^{2}\right)$

CASIOTONE MT.31

(RRP 579) ONLY $£ 69$
sasically a revision of the MT-30 fone of rmy all time fevourns dectronic kevbaurds) Elactranics 8 Music Maker
min to MT A0 bur withoun the thythm box, pross and auto functione. Dimeneions: As MT- 40 . Weight: $2.0 \mathrm{~kg}(4, A \mathrm{~A}))_{\text {inctuding batteries }}$

£100 COMPUTER

"Can do the job of a micro costing four times as much"l Personal Computer World
CASIO FX-702P POCKET COMPUTER

ONLY $£ 99.95$ manufacturar's price reduetion $1 / 2 / 821$ Plus FREE MICROL Protessuonsel Programming Pack IRRP 59.951
Or we will beat any lowe advertised prica by 5%
Eat your hearts out, H.P. Sharp and Texas!
The Casio EX-702p features: The biggest program storege capaciny fup to 1680 steps), the ongest date storage capacity fup to 226 memoriest, and the widest cange of math. scrence Enolish-like BASIC progrem-writing lenguage and the lastest operation, for results withous English-like BASIC progrm-writing language and the lastest operation, ior results withour end trice modes 240 nours bettery lifte. $17 \times 16 \times 5$ tamm.
FA-2. Cassette adaptor for bulk storage of programs and date, with powerful five name and remote control options ONLY EIg 9s

FR-10. Permanent hard copy primter; full 20 character line width, fast 40 character per second owint speed, 2.600 lines pee roll. (Low cost replecement rolls, ©2 50 for five). 6,000 to 9.600 ines battery the. Rechsigeable battery pack, NP-4M, orintes $\mathbf{1 3}, 000$ lines (f8 sol Mains adaptor. AD-4150. E5

> EP-10 Printer ONLY $\$ 4.95$ Plus FAEE Pack worth E5. or we will beat eny tower price by 5%

SYSTEM PAICES - Save up to ISO on RRP
PACK A: FX-702P + MICROL Protensional Progrenming Pach
PACK C: FX-702P + FP-702P + FP. 10 Printer + FA. $2+\mathrm{PPP}+\mathrm{PROCOS}$

MiCROL PROCOS for the 702P. Exclusive to TEMPUS
Now you can create powertul, reliable programs in just minutes with inis alavanced integrated operating system, oven it you have never programmad a computer beforet "Visscalc type" syatem answers "what ${ }^{\prime \prime}$ " questions and analyses trends On ready-torun cassette. with use mencual.

CASIO FX.602P The World's Fastest Programmable?

* LCO atphe/ mumeric (dot matrix)
- Varisbie ingut from 32 program step with 88 memories, to 512 steps with 22 memorias.
- Memory and program retention when switched off
- Up to 10 pairs unconditional iumos
igotor.
- Conditionel fumps and count jumpe. Indiect addressing. Manual jumo - Up 109 subrcutines, up to 9 invols 50 screntific functions. sll usable
- PaM (Algobrac) with 33 brackets ar

11 levels.

- Program and data storege on cassett ape using optional control adspiof. $£ 19.95$
- Compatite with the FX.501P and FX.502P
. $8 \times 71 \times 1412 \mathrm{~mm} .1000$
ONLY £74.95

Pus frfe microl Profossionsi Progremming Pack tRRP 99.95
Or we wilt beal any lower sdvertised price by 5\%

READ/WRITE

Dear Mr. Ron Harris Sir,
We seem to have been hearing quite a bit about System A recently; technically it looks a rather nice amplifier. However, it's difficult to tell how good commercially-produced units are with only limited information available about them. So what about the other end of the problem - what does System A sound like, compared with other amplifiers? Unfortunately, I can't see any of the hifi mags doing a review of it, so - how about you doing one (totally unbiased, of course) please, pretty please? Come on, put your reputation on the line!

Yours grovellingly,
M.R. Barrett,

Hove.
Certainly not. Someone might chop it off!

System A has a comparable sound to any of the more highly regarded
commercial units. Listening tests we have conducted over the months since the creature's completion, have shown it (the power amps) to have a more detailed and open midrange/top than ANY we have compared it to. The top commercial boxes - Threshold, Monogram, Carver, etc can exhibit a better bass control than the System A however, but as to whether or not that is important for your particular application (ie loudspeaker), I could not say (because you haven't told me what speakers you've got, have you?).

Anyone contemplating building a System A is welcome to write to us for advice on speaker matching.

Dear Sir,
I read with interest the articles in the July and August editions of ETI describing the construction of the System A Audio Amplifier, as I have been on the lookout for a high-quality
class A amplifier design for some time My particular interest in class A stems from the fact that lown a pair of Lowther loudspeakers - these units are almost ridiculously sensitive, requiring only some 10 W or so of input to produce the equivalent sound output of a conventional 100 W system. Civen this sensitivity, most high quality class $A B$ amps are only ticking over when driving a pair of Lowthers, and hence are working at the highest distortion end of their operating range. Hence the interest in class A, where no penalty is paid for operating the amplifier at low levels of power output However. before going ahead and building the System A, I would like the answers to a couple of questions. Firstly, the July article heralds System A as "quite simply the best, designed to out-perform even commercial equipment." There is, however, no objective assessment or comparison to back up this claim, and before laying out the not insignificant construction cost, I would like to see the amplifier reviewed, preferably alongside its "competition" in the commercial amplifier field. Is this a possibility?

Secondly, the high power output of the System A seems more than a slight degree of overkill in the context of my

It's true! Continuing our special offer (while stocks last) means there's still nearly $£ 5.00$ off the price of 'Speechtime' - the first ever easy-to-build speaking clock kit. 'Speechtime's combination of electronics and quartz technology plus clear instruction manual make it fun to build and fun to own - equally suitable for beginner or expert.
Speechtime also makes a great gift to build for someone else. Look at these 'plus' features:

- Accurate to a minute a year - Adjustable voice pitch
- Pocket size - approx. $5 \mathrm{in} . \times 21 / 2 \mathrm{in} . \times 1 \mathrm{in}$.
- Grained stainless-steel case
- Useitul in the home or office

Silicon Speech Systems (A Powertran Subsidiary)

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3NM
EASY ORDERING BY TELEPHONE - RING ANDOVER (0264) 64455 AND GIVE YOUR ACCESS OR BARCLAYCARD NUMBER -

Lowthers is it reasonable therefore, to construct a lower power version of the power amp section? If so, what modifications should be made to the present design?
Youns sincerely.
7. leffree.

Mitton Keynes
Taking the two points you raise, in order, first we feel th is insppropriste for us to review our own product against amyone else's. (Would you believe us anywayl' 'Objective' would not be an appropriate word to apply to wuch a text.

System A has aroused a great deal of interest and we know that a large number of sets have been completed. There is probably, however, a larger number of people still who would tackle the proiect, If only they could get to hear one first! Accordingly any owners of a Sytem A who would be prepared to lef a fellow ETI reader have a lister, can write to us and well run the letters herein Secondly the high power output of the amp witt not be wasted, even on your lowthers, it will simply provide you with more headroom - and hence a cleaner sound with befter bass output on transients.

Dew Mr Harris.
I am wrining for advice on the purchere of an amplifier and speuters combination I list my present system below.

Homebrew 10 W amp
Ferguson (1) 3way spenkers (actually 2 -way, 3 cone) Realistic $31-937$ Craphic Equaliser Mrachi 0.225 Casette Dock Pioneer PL - 300 furntable the latest addition!)

The amplifier now ceases to be of any great use in terms of power. athough qualey is more than adequate (bused on BL-PaL ALSONI I have considered NAD3020, Pioneer SA1t0, and also the "Audiophile" amp, the MOSFE T amps from IW Rimmer, and the Limsler Hood knf from Powertan The last thee give me ertra headroom. and I would like to feed them info AR18 speakers from Acoustic Reseurch.

Basically. I would tive your opinion on the Linsley Hood 75 De LuravR 18 combination plus any comments on the other "possibles".

Also, the Pioneer Pl 300 I have just bought is certainly the best furneable I
have heard at the price (59.95) and I cant help wondering why a gets so intile attention. Pechaps vou can filt me ind

Thank you for your valuable time. D Crany.
Iford. Esser
PS When is Felicity Kendall to return to our screens?

The AR18 is a fine unit and if you like the sound of them, go ahead and buy yourself a pair, You haven't named your cartridge so live no idea if h malches.

Ditch the equaliser, with decent speakers and amp, you wor't need it?

As to amplifien, from the units you mention the linsley Hood power amps are the best bet, but the preamp of that unit is getting a bit lons in the tooth now, although the sound quality is still very good by any standarch. Have a listen to the Crimson CK1010r1100 set. up belore you decide, however, as it is in vour price range and offers a hight. quality alternative.

The Ploneer PL300 I have not been able to listen to at any length and must thus refrain from commenting upon!

TECHNOMATIC

"TECHNOMATIC" compliments "ETI" on its 10th anniversary and takes this opportunity to announce some facts about "TECHNOMATIC". ETI readers and our customers, have seen, over a number of years, our advertisements containing product listings etc., but no details on our policies or capabilities. We now rectify this situation for sake of completeness.

Our aim is to supply prime grade components which are fully guaranteed and backed by manufacturer/distributor. We stress the fact that we are totally quality and value conscious and handle components from major manufacturers.

Our volume buying enables us to obtain preferential prices and the savings are passed onto the customers in the form of low prices - sometimes lower than trade!

As a matter of routine, we provide "by return of post" service, and all orders received by 3.30 pm are despached on the same day. Our in depth stock holdings enable us to do this. Why not test us on your next order?

And some more facts:

LONDON'S No 1 of micico procoessors in LONDON

We are fully authorised distributors to the hobbyist market for TEXAS INSTRUMENTS, World's No 1 semi conductor manufacturer.

We are a major distributor of ACORN COMPUTERS who manufacture ATOM, ECONET and BBC microcomputers. Other dealerships include VERO, OK Machine Tool, GSC, ILP, and AP PRODUCTS.

We carry large stocks of MICROS, MEMORIES, TTLs, CMOS, LINEARS, OPTO-Devices, TRANSISTORS and other semi-conductors. We can normally offer ex-stock deliveries to volume buyers at special prices.

Our connector range includes: TI Sockets, IDC connectors, Euro connectors, Min-D connectors, Juniper Leads and a variety of Edge connectors.

We also carry in stock EPROM programming equipment including Softys, ganged programmers, erasers etc.

GET THE BEST VALUE FOR YOUR MONEY

TECHNOMATIC LIMITED

1517 BURNLEY ROAD
LONDON NW10 1ED
305 EDGEWARE ROAD
LONDON W2
Tel 01.452 1500/450 6597
Tel 01.7230233
Telex 922800
LONDON'S No 1 RETAIL COMPONENT OUTLET

INSTRUMENT PROBE

> This probe will allow you to make CRO or frequency meter/timer measurements on high impedance circuits with waveforms having rise times as fast as three or four nanoseconds. Cost is well below commercial equivalents. Design by Jonathan Scott.

Most readers would be aware that, when taking a measurement on electronic circuitry. the input impedance of the measuring instrument must be much greater than the impedance of the circuit to which it is attached, otherwise the accurary of the measurement suffers. The input impedance of the majority of oscilloscopes is generally 1 MO with a parallel capacitance of between 20pF and 40 pF . For a wide variety of applications this is perfectly adequate and will suffice for measurements of frequencies up to 5 MHz or so. The input impedance of the CRO falls with increasing frequency owing to the falling reactance of the input capacitance. For example, a capacitance of 30 pF - which may be made up of direct input capacitance plus cable capacitance - has a reactance of only 500 ohms at 10 MHz The input capacitance also affects the rise time of the input - that is, the speed at which a 'step' input will rise from the 10% amplitude value to the 90% amplitude value.

The input impedance of an oscilloscope can be effectively raised, and the capacitance decreased, by using a 'stepdown' probe. For example. a ' $\times 10$ ' probe will generally have an input impedance of 10 M and a parallel capacitance of between 5 pF and 15 pF . While this improves the input impedance there are two trade-offs. Firstly, unless elaborate (and expensive) compensation is employed, the rise time is degraded, and secondly. maximum sensitivity is decreased by a factor of 10 . As Murphy's law would have it, your CRO will run out of grunt just when you need it most.

Taking the situation with digital counterttimers, we find similar problems. Those that operate beyond 30 MHz or 50 MHz generally employ a prescaler with an input impedance of 50 ohms - which is perfectly all right if you're working on low impedance circuits and/or with high signal levels. But there are those occasions when you need a high impedance input and a fast (high frequency) rise time. As with the CRO. this is where your

counter/timer runs out of grunt.
It's times like these you need this project; a $\times 1$ active instrument probe using a special buffer IC with an input impedance of typically 100,000 megohms! - that's 10^{11} ohms - a very low input capacitance of around four to five picofarads, a fast rise time (around three nanoseconds) and a bandwidth of 100 MHz . Output impedance is around 50 ohms and the device is capable of driving capacitive loads up to several thousand picofarads. Thus it is eminently suited for use with high speed, wide bandwidth oscilloscopes and digital frequency meter/timers at frequencies up to 100 MHz . Output impedance is close to 50 ohms and it is thus suited tc drive both high impedance instrument inputs and low impedance inputs (which are generally 50 ohms).

Design

It's all done inside a special IC an LH0033CC from National Semiconductors. This is described as a 'fast buffer amplifier'. (It has a companion designated LHOO63. described as a 'damn fast buffer amplifier!). The LHOO33 is a directcoupled FET-input voltage followerbuffer (gain ≈ 1) designed to provide high current drive at frequencies from DC to over 100 MHz It will provide $\pm 10 \mathrm{~mA}$ into 1 kO loads ($\pm 100 \mathrm{~m}$ A peak) at slew rates up to 1500 V/uS, and the chip exhibits excellent phase linearity up to 20 MHz No offset voltage adjustment is required as the unit is constructed using specially selected FETs and is lasertrimmed during construction. Input is directly to the gate of a

AXIAL LEAD
SOLIO TANTAL UM
CAPACTTOA
CAPACTTO
Fig. 1 Circuit diagram for the probe. C2 and C4 need to be ceramic Fig. 1 Circuit diagram for the probe. C2 and C4 need to be 10 n ceramic chip or 1 n0 ceramic disc or plate types. C5 and C6 need only be disc or plate ceramic. See 'Bypassing' over the page.
junction FET, operated as a source follower, driving a complementary output pair of bipolar transistors.

Regulated plus and minus supplies of 15 V each provide power to the IC. Low-power threeterminal regulators are used to keep the unit compact. An external unregulated supply of between 18 and 22 V at around 50 mA is required to power the probe.

The supply pins on the IC need to be well bypassed over a wide frequency range so that the IC can maintain its characteristics, and the construction has been specially arranged to achieve this. Axial lead solid tantalum capacitors are used to bypass the IC's supply pins at the lower frequencies, while low inductance ceramic capacitors are employed as bypasses for the higher frequencies. A double-sided fibreglass PCB is used to preserve the high frequency response and the high input impedance, and the layout is arranged to permit direct connection to the probe tip and provide low input capacitance.

However, the presence of the PCB substrate will degrade the input impedance, surprisingly enough, and you can drill out the area of board immediately beneath pin 5 of the IC and solder the pin directly to the probe tip. For those who wish to go 'all the way (as Frank Sinatra sings), the plastic insulation of the probe tip can be replaced with a similar piece of Teflon - if you can afford it and have access to a lathe.

The maximum input voltage permissible, when driving a high impedance load, is plus or minus 15 V . When driving a 50 ohm load, maximum input voltage permissible is only plus or minus 10 V (limited by maximum output current). No input protection has been included. However, if you are only working with circuits where voltages are no greater than about 1 V peakto-peak, protection can be added by putting two diodes backtoback in parallel with the input, along with a 10 M resistor. The maximum input voltage figures include any DC voltages present, plus the superimposed signal voltage

At this stage it is only fair to tell you that the LHOO33CC is an expensive device (by comparison). But compare the total cost of this probe to a similar commercially-made type and you won't catch your breath a second tine!

Construction

The project is constructed on a small doublesided fibreglass PCB with

BYPASSING

Supply lead bypassing is important in order that the LH0033 can operate correctly over the full bandwidth from DC to 100 MHz . To ensure this, the bypassing has been special. ly arranned and the techniques employed are probably unfamiliar to many readers.

The output circuit signal return path for the IC is via the ground and the two sup ply rails. Any signiflcant impedance in series with this path (or paths) will subtract signal from the output load. Thus, the supply pail bypassing has to present an impedance which is a fracrion (like one tenth or better) that of the minimum output load impedance. Here, the minimum outpul load is about 100 ohms ($\mathrm{R} 1+50$ ohms in strument input impedance) and the supply bypassing impedance should ideally be less than $\mathbf{1 0}$ ohms across the firequency range.

The bypassing on each supply rail to the TC leads here takes advantage of the characteristics of three separate components to cover three sections of the frequency range

From DC to around 100 kHz , each three-terminal regulator (IC2, IC 3) has an output impedance well below one ohm, ris. ing to four or five ohms al $1 \mathrm{MHz}_{\text {, as shown }}$ In Fig. 1. The two tantalum capacitors, C1 and C3, then take over.

Solid tantalum capacitors have a characteristic Impedance that falls with frequency according to its value, which then 'flattens out in the region around $500 \mathrm{kHz}-1 \mathrm{MHz}$, fising to a few ohms apound $10 \mathrm{MHz}_{\text {, as }}$ can be seen in Fig. 2. Thus, C1 and C3 serve as effective bypasses across the range from around 100 kHz to around 10 MHz . Axial lead bantalum capacitors were chosen as their construction exhibits the slowest impedance rise following the minimum impedance value.

To provide bypassing over the decade from 10 MHz to 100 MHz , capacitors C2 and C4 have been specially chosen and positioned on the PCB. For the prototype 'chip' ceramic capachors were used. These tiny, 'naked' chips of ceramic with a capacitor embedded in them are probably the most effective bypass capacltors made. The leads and physical construction of all capacitors form an inductance which is

Fig. 1.

Fig. 2.
effectively in series with the capacitance of the component. The combined effect forms a series resonant circult, the írequency of which (that is, the self-resonant frequency of the component) is mainly dependent on the length of the connecting leads, the parlicular construction of the capacitor and the way in which it is mounted. Ceramic chip capacitors, being a tiny block with connecting pads or suríaces on each end, have extremely low values of series inductance and thus very high self-resonant frequencies - see Fig. 4. Now, any value of chip capacitor between 1 n 0 and 10 n can be used for C2 and C4. The self-resonant frequency of a 1 n 0 chip capacitor is somewhat above 100 MHz (as per Fig. 4), but that of a 10 n chip is between 10 MHz and 50 MHz . Now, this isn't a problem, for the chip's im. pedance falls with firequency as usual until near the self-resonant frequency where it falls rapidly, reaching a minimum at the self-resonanl frequency. Above that frequency its impedance rises again, but is still low enough for effective bypassing.

Ordinary ceramic disc and plate capacitors behave in much the same way. The selloresonant frequency of a typical 5 mm diameter disc or 5 mm square plate capacitor depends on the lead length, as shown in Fig. 5. Thus, you could use 470pF or 1000 pF (1 nO) capacitors of this type for C2 and Cf, provided you installed them on the underside of the board with absolute minimumr lead length.

Fig. 3 Ceramic chip capacitors shown about actual size.

Fig. 4.

Fig. 5.
components mounted on both sides of the board. Commence by soldering in place the components that go on the top side of the board, leaving IC1 until last. Note that the positive leads of both C3 and C8 are soldered to the groundplane areas on both the top and the bottom sides of the board. Take care with the orientation of the tantalum capacitor, as well as IC2 and IC3. Having done that, solder C2, C4, C5 and C6 to the bottom side of the board. Now you can install IC1. You will have to juggle the legs a little. Push the can as far down on the board as you're able; its base should sit no more than 3 mm from the board.

Now that you have everything in place, check it all. It seems pretty simple, but Murphy's law will ensure that the simplest things have the highest stuff-up rates!

All's well? - now you attach the output coax cable to the underside of the board, plus the DC input and ground (0 V) wires. But - before you do, slip the output end piece of the probe case over the cable and supply wires, push it down about 150 mm or so and then slip the case of the probe case down the wires. This saves slipping them over the other end of the whole business and sliding them all the way to the probe.

The probe tip can be attached and soldered in place last of all. Now you can screw it all together and attach the appropriate plugs to the other end of the cable and supply wires.

With the construction completed, you can power up and try it out. Note that the transformer suggested in our power supply is but one of many suitable types. Any transformer that will deliver at least 26 V AC at a load of about 50 mA will suffice. Alternatively, any dual polarity DC supply having an output between 18 and 22 V at 250 mA will power the probe.

Note

Always take care that you don't exceed the input voltage limitation; LH0033s are expensive.

BUYLINES

Cer amic chip capacitors and solid lantalum

 asial capacitors are a trifle unusual; however, they are stocked by C.T. Electronics (Action) Ltd, 267 \& 270 Acton Lane, London $W 4$ 5DG. (They also stock the BNC plug should you have any problems there). We will be selling the double-sided board through out PCB Service - the order form is on page 44.PARTS LIST

Resistors (all $1 / \mathrm{W}, 5 \%$)		Semiconductors
R1	47R	IC1 LH0033CG
R2, R3	68R	IC2 78L15A
		IC3 79115A
		D1-D4 IN4001,2,etc.
		(fi required)
Capacitors		Miscellaneous
C1, C3	3 u 316 V solid tantalum	
	axial leads	PCB (double-sided fibreglass); RG58U COAX
C2, 4, 5, 6	10 n ceramic block	cable and BNC plug: T1- (if required)
C7, 88	10u 25 V tantalum	240 V to 30 V iransformer or similar; op-
C9, C10	470u 35 V electrolytic (lf required)	tional $10 \mathrm{M} / 1 / \mathrm{WW} 5 \%$ resistor and $2 \times 1 \mathrm{~N} 914$ dlodes; wire; probe housing.

 Fg. 2 Component overiays for the top of the board (top) and the bottom of the board (bottoml).

HOW IT WORKS

Kh includes eape tremport mectenism. texdy punctiand and buck printed quelify circurs bowrd and ell electron Ie perts be. semiconductors, resistors. empeitors, herdware, ion cover. pminted scole and mum remsformer. You only subpily solder of hook up wire. Sell cuembly sumulaters
copocoviont

P.E. SIERE0 CASS7II RECORDERKII
 - NOISE REDUCTION SVSTEM

 - AUTO STOP OTAPE COUNTER - SIMTCHABLE E.O. - INDEPENDENT LEVEL CONTROLS - TVIN V.U. METER - vow a flutter 0.1s - RECORD PLAYBACKI.C. WITH ELECTRONIC SWITCMING - FUll y variagle reconoing bias for ACCURATE MATCHING OF ALL TAPES
STEREO AMPUFIER KII

- Queverng remon sose ates toa soes 10 waer weve

 (npopel.

 The or uscepereme o Murve 1 II lle meome media tio wower ons wom th th eno mes power swepi.

 texice men moren an
copes and cencimetion
cebione ingervesen
£16.50
apmeno boce for
C2 so aco eprciricarions Preeviver memona woue mentoricy
 40N - 201 M

 -min mixy
 onowbers 84 N
 ct. 1000 P
PRACTICAL ELECTRONICS cai:

Rablo

KII stries il
2 WAVE BAMO. MW - LW

 O 1 Triens has of netl outeut nat round ond a

- ca 00 ase

RRDAUDIO
STERIEOCAR
RADIO:00STER
To moner var cer moso ar rese
89.95

C1 20000

125W HICH POWER AMP MODULE

Kıт: $£ 10 \cdot 50$ вult $£ 14 \cdot 25$
 - 1.15 pan
 - 1.15 p

 Everems eve even hi) powe sombetis vevems the ubt
 pie on open cortut ceverion. A werp nocet mory

 Acelot wit il gov. smove doyons ond wevecteos

HL-F SPEAKERS
 ATBabGAIN PRICES

GOODMANS TWEETEAS

 ovesomy nove 2 evinome croeno

Mon ovent pewe (mass) ixivi. Operetion revige toct: 50 - 10 mas leen e- 16 chore

C3.50 eech wes (11) e 85.95 pair men

36 WATT MICAO 2WAV SPEAKEA SVSTEM
 F Ander ben miono 380 ove nif yusy conoine mell Tores inporione 0 wwe 14 com C7.95
คแ ser. C2.70 dea

P.E.STEREO TUNER KIT

 orevis.

£17.95
foll mencre eaniond moed

 C 3.60 n Cl 50 mon

TV SOUND TUNERKIT
 ع11-45

-

(1) 80 : 6

 comeronw osesoty seso.
 - 0 mo

ALL MAL TO:

21E MIGM STAEET. ACTON, WI SNG. Noter Goeds derpetched to UK postel edoresves onty. For further informetion send for thetrues tom 200 plen atumped eddresed envolopes. All hnems euthet to eveloedry. Piress correct on 31/1/12 end wibiect to ohenpe whlout notica. haow dlow 7 merking devs frem receitot of order for orvosten.
ALL PRICES INCLUDE VAT AT 16%.

моно
miXER AMP

£39.95

ALL CALLERSTO: 323 Idiomero Ad. Lendon the. Teipphones 01.723432 Open 9 30-5 30en Closed ell dey Thuridov. ATVC li-miod roven the rive to uodoto thew product witheut notice.

WIN AN ELECTRONIC IGNTIION!

Hands up all those who had trouble starting their cars during the recent appalling weather. Don't you wish your car was fitted with an electronic ignition to make the most of your battery, as well as increasing the life of your contact breaker and giving you more miles to the gallon into the bargain?

The prize in this competition is a Total Energy Discharge ignition unit designed by Electronize Design, a company with a great deal of experience in
the field. The unit is supplied as a kit of parts and is easy to assemble.

To win this kit you have so answer these two questiops:-
(1) The standard ignition circuit, using a coil and contact breaker, has been fitted to virtually all mass produced cars for 60 years. Who designed it? (We'll accept surname only).
(2) In a four-cylinder engine, firing the cylinders in the order 1.2.3-4 would lead to excessive engine vibration. Give one
firing sequence commonly used to overcome this problem.

Write your name, address and answers on the form on page 133 (there's no need to cut up this page) and send it to us by April 30 th . 1982. (All right, you can put your hands down now!)

RULES

-

MASLYH: MnTMmionics
 $$
\begin{aligned} & \text { INOW! } \\ & \text { The PRAGHCAL way! } \end{aligned}
$$

This now styio course will enctio enyons to heve o reel understending of clectronics by imodern. prectien and viened method No previous
tnowiedep is reoutred. no mothe, and en ebeolute minimum of theory.
Vou loern the precticel woy in eavy geeot meptering ell the exempiak of your hotey or to stert or furthers cerser in electronics or as a self. emptoved turvicing engineer.
Nlthe training cen be cerrlod our in the cemfort of your oun home and af your own pece a futor is rrallabio to whom you cen writo personalty at eny time. for covice of halo during your wort, A Certificete is oven at ine and of every courte.
You will do the following - Build a modern oscilloscope

- Recognise and handle current electronic componenis
- Read, draw and understand circuit diegrems - Carry ou: 40 experiments on basic elecironic circuits used in modern equipment
- Build and use digital electronic clrcuits and current solid stase "chips"
- Learn how so rest and service every type of electronic device used in industry and commerce soday. Servicing of radio. T.V.. Mi.Fi and microprocessor/computer
 equipment.
NewJOb? NewCareer? NewHobby?GetintoElectronics Now!

.. AUDIO....COMPUTING....MUSIC....RADIO....ROBOTICS..

IF YOU'VE READ THE LAST TEN YEARS OF ETI WIN THE NEXT 10 FREE!

This is a special competition for our regular readers We're offering a ten vear subscription to ETI as a "thank vou' prize for supporting us this far All the questions pefer to back copies of ous magazine and will be easy if you've kept the issues! (Survers tell us that over 90% of readers keep ETI for longer than a vearl) Index issues will be particularty useful, but will not give you all the answers fitt in the coupon on page 133 - you don't need to ruin this issue - and don't forget your name and addness! In the event that no one gets all the answers correct, the highest number of right answers will win. In the event of a tie. h will be the earliest postmank that lakes the ten vear subscription.

Read the questions carefully before answering

1. Which issue was designated a" 4 Channel Sound Special lssue"?

2 Who edited the May 1973 issue of ETI?
3. What month did the first issue of ETI appear in Brrains
4. What makes March 1979 good the atrel
5. ETI published the first ever TV games proivct In which issuet
6 Which IC is featured in the fuly 1976 "Data Sheet"?
7. The amplifier on the cover of the februany 1932 ksue has also appeared on a previous cover of ETI. Which onel
8. In 1979 who reviewed Star Chess for ETI?

9 Who first wrote the series "Electronics Tomornow"
10. The 100 W Cuttar Amplifter (the first onel) appeared whent
11. Microfile is the title of ETI's regular computing hardware section In which issue did it first appear?

12 In what year did we publish a symthesiser, an LED multimeter and an FM tuner in successive monthst

13 What was "The Beass"? \qquad
14. How many parts of the popular "Electronics - It's Eav" series were published in ETII
15 How many editors has ETI had in the past vears?

16 In October 1976, who was ETI's Assistant Editor?
17. Who designed the Transcendent DPX?
18. Which issue began "Prolect 80"' \qquad
19. The $\mathbf{4 6 0 0}$ symthesiser is one of our alkime most populas projects. In which issue did the series begin?
20. DIY Polyphonic keyboards came so ETI when'

RULES

haseraphes ang of arceplebe

 sergeteme

		SE SE FOR YOURSEL
moustaial-gducail	CENTRES	OPEN SIX DAYS A WEEK
 	pelartiy foursic. eloctronic suspenalin.	
	IUK $\mathrm{E} / \mathrm{D} 51.501$ whin loather cane TErcturbe to Autio flectrenies	cosex

TRIO OSCILLOSCOPES

 fint imet CBiMes 5 ver mev 1 maces 206 csisem soce? Snv aseore nes

 couns in osm coe zov e8=400 soc tined oute ${ }^{(2)}$

centiteag

OSCILLOSCOPE PROBE HITS

CLAMP.ON-METERS INSULATION TESTERS

 cres torange portel $24 / 1 /$
 C3 30

 का

 cesse

semente in Merge sackint
EA\%

	0	
SCOPF AOD ON UNITS		sourligeme tres
	pout lico	
eris compenomi loctor	cis	

Mo-racge clease te eite menerge nayg, cery cme b thass the boy ont cente more aken rage gT2 men eooistrongen cres
 - .ase boa bow Acfronger ches - Yutila Cow Mc pranges ice
 clue roon rave Ac vrimpes (l) So arien rowa rav cilien ofle fuctero menation nitics
 tane emfle

CROTECH OSCILLOSCOPES

 nis mecnel loon os urch C3 ot
 celouete rester. Mine laso

 tho licen bot. os eige sec

 assy crise

Tre nites

£168.50

TMANOAR - SINCLAIR

 crat euntilue
 csis

 ippal ors

81138

 Sino llener linat Co sephens Thems

Frose uather of re mosection mev
रIE is
24i3

 nem Tiep ricer

 Mosen SC ITO
 ontion intes

KEITHLEY PROFESSIOMAL DIGITAL MULTIMETER

 100 one sio $1.3 .1,15$ Hosese

 ac curnen for ionn in I loos one

 t16 3
[135 4 IV COLOURGEMERATORS
ral us one wid moems tc. Wis 4 conem certio to cone tovin wo ty nthe coll

TV GAMES COME OF AGE

It is fust over two years since the firss TV games started to appear in pubs. since then a lot has hoppened in this field with a large number of small companies marketing various units by e variefy of methods. Although the TV games have recolved a considerable
amount of publicity they have not yet caught on in a big way.
"No one who has ever pleved TV games has ever said anything derogatory about the concept". Richerd Fsirhurst a' Videomester Lid., sold ETI, ' they moy not like the price of the packaging but they always like the lidea".

ETINEWS NOV 1975

Doctor Who

0 ne of our resoors. Mr. S. Knowies of Mampshire, sent us - xope picture the soot entite
dewgning with a Tewtrond 9503 on $500 \mathrm{nS} / \mathrm{c}_{\mathrm{t}} \mathrm{t}$ eith $\times 10$ expand. if seems he was looting for a putie, bul he may vell have dis. covered the secref of time travel!

Pet Chip

This should appeal to those of you who spent your hard. eemed prennies on a 'pet rock."

We recontly received a letter from an anonymous dad who made an apparently irivial Christmas prest for his doupthter Mowever, atice then he has been inundared with erems.

ETI NEWS MARCH 1980

Mr A. Nonymous pointed a tace on ose end of an IC (reet IC. you mee) and mate a match wtict cagefor ${ }^{(2)}$ cumplese with watch battery feeding bowl.

The chip should quickly Latcur on to tos mem erim. As for feeding. A few Bits of CURRENTS a day should be A MPhe Juse lex it NOR oway to Its heari' coment You can teach le trikks
Te. Ar Nonymous. We haveris had a giod groan in neet

- Farctuld are malung a bug funs atinet having their Flak Denneme IGK RAMg avalabie at lact Acrems tumes vary frum iso no in 300 na

- Every Ready - now called Beres - have rekaed fouer rechargeate evonsurmer buttertios. fin the MP2 HPII. HP7 and PP3 rarieties. Chargers are aloo avallable. An un. doubtred reaction to the phenuminal loss of dry cell porvoer these days
- Pírect drive furmiablurs eey But dtreet drive mpls? Alan yef - now. The $\$ 2000$ b a neve relrume frim Alll whwh can sidve Aourrescent displays dirurty. with ITT drme and J-megrome dercoding on chep, Alvi om board 이 y 1 KADI and IK RODA In. tomded for ther hive ayphto. rotions
- Inger moll - the tick everis proyphe - are into elocrifunien fhey hate risezand thre TV' games three clock radum iwn thens Chomes and at purt. ahip mirme cusortte phonere. Phorto showe tine ef thry form Ni ganme it must he Chorstmas.
their tocth af newt munths ts Solid State Clicuits Confer: fack. The pause hetis con fity and betting foome of this bounds as if were will almions cerrainly mean late aupumn production. On yer marte.

ETINEWS MARCH 1978

SHORTS

TALKING IN TRAINS

British Rail's plans for 150 mph vains include improved communication systems befween drivers and quardin. Also planned are pessenger address systems.
A range of equipment - known as EMTEL - has been designed spocil. icelly for this task by Brrtain's Nelson Tansley Lid.
The main problem to be overcome was the impossibulity of providing a special cable, running the length of the train, on which so caery the signals.

The equipmeni was sherefore designed to accommodate any conilnuous circuit, for example. the control wires for the lighting relays which fin British Rail). are she only conductors always connacted throughout any passenger train. In this case, deparsure from the ided of a 600 ohm noist-free line is caused by the connexion across the wires of many relay solenoids, the impedence of which is nos only comglex. but variable.

LASER MISSILE INTERCEPTOR

The US armed forces may soon have - laser missile interceptor. Air force reports state that protorype deuterium fluoride lasers hove been successfully fested at 'very wery high' power out. puts.

Power output is apparently so high that the laser beam burns straight through heavy gauge stainless nickel steel plate.

ETINEWSJULV 1975

BIAS - AUTOSELECTION

Cassette iape iecorders that have been designed specifically for use with chromoum deride sapes require spocial bias switching facilties.
At present this is done manually. However the latest BASF 'SM' chrommum dioxide cassettes hove a notch on the rear of the cassette fin addition so the tab now used to prevent er osure of recorded material and, hop 8ASF - and Philips who are bucking the systom - future cassette players will have a switch mechanism actuated by this seb 80 bring in the nocessary bias circuitry.

ETI NEWS APRIL 1972

lighting the way

Many locat authortties aro now using a street lighting control system in which a photoelectric cell masures the light level and varies the input to
a thick film heating element controlling - temperature sensitive switch. The street lights are therefore automatically switched on at dusk and ofl at down, which means thet light is proviond only when is is noeded and ensures that electricity is not wasted.

If had to happen. The integrated circutt to so old ithat it has earned ths place in a museum. Dosen' th make you feel of d? The wond's firse IC. invensed by jack Killoy of Thases Instruments in 1958, is one of three enhibits on loon from II in Dalls for the "Chalienge of the Chip eatibition at the scitence Museum. The other two are the first silition tranwitor and the first sinde chip mierocomputer.

ETI NEWS MAY 1970

GETIING AEADY FOR COMMERCIAL RADIO

Commercial redio is on its wav: enyone doubting this should iune around the madium waw band where iesis iransmissions are already being conducted. Contrects for the supply of the transmitters and the aeribls have been placed with EMI. the value of the order is put at $£ 160,000$.

ETI NEwS MAY 1973

shorts

- Tandy is doing well whith lis home computer in the USA. and is expanding. both physically and finen. clally, thas side of the bustneme
- New from OI - the Cricluet chipo The AY-3. 8910 is a programmable sound generator and is sofiware controlled. neoding onty a power sup: ply and clock 10 begin chirping or hooting or ...

BE WARNED (IN A SMALL WAYI)

The Mini-8leeptone 525 is a unit which provides a choice of two contín ous signats of up to sodis with current consumption ranging from $3-15 \mathrm{~mA}$.

Its applications are wide, being ideally suited as a fault indicator mounted onto portable equipment and Instrument panels, or for localised worning of such things as intruders and/or fire

NEW LC DISPLAYS FOR WATCHES
A new ruries of Liquid Crystal dis. days have been announced by Beckman for digital wotches. These display hours and minutes continually with either date of seconds, selected by a push-button. Contrast ratio is

20: 1. Dower requirmont is i microweit so that even with constant read out bettery the is overt year. LC and modutes are available for comperible. 6 V models and a cminents L id. Bockman Instruments. Fife, Scotiond. OUCOnswor, GINEWS OCT 1998

Pocket

Companion

Nor juse an electronic dictionary or a eranslatop of an appointments diary or an emxy. ctopedia. but enverthing of ill these rolled into one. the 'Bratnbank' is hatled as the worlots firs pockep Anformation centre and languege Laborevary.

Arainhank 复 pengrammed vis - cortes of incercliangreable pluse in meminry cetts in yous have surtually untimited infore. matton stor age posifbiltites farmed with a bucker full of memony celles.
Each language cell. which contains 12 K of ROM houlds about 1200 of the mant common
worts serned indiridualty and in groumo up in inty in cate. fortir weth is iraveinint and forad The pruer am abso includes sthon phrases. automasically curricto spelling errons and ex. plains words with double mounury enth its tounte to tendre chap?

The infurmation cenire's hear fo Mostek 5370 microproceneng Memery e-llo ere curpently available on diet and nutritoon, firse ade taxntion and a the ourus New erells will be come evailahte every monoth A culdm celt servtre is stro matahir
Brainbank wall coot around C150 mus ©20 of low for each ctrforat ctit. We wit iet ynt moner elonut thes fitsle marvel. whin we can gre hold of une to glay with

Compurerised control and dests recording equipment thet can handle information from uo to 413 differens sources will be used in the developmens of Britain's tracked hovertrain during lits period of full.scale Qivetopmens.
From this console, commonds will be trensmitred by radio to the hovertrisen and redioed signals from the measuring Instruments inside the vehicle witl be recelved, rocorded and andlysed.
The 25 -ton veticle straddles the track and is supported approximotely an inch above $i t$ by a system of fans employing the hovercrate principle. The linear motor consists of an aluminium strip set into the top of the track as the motor's "stator", and a complex set of electrical windings mounted inside the booty shell. Power is picked up from a treckside rail.
The train made its first run over a mille of the trick recently, watched by visiting experts and the press from severd countries. It performed perfectly during the stow speed run and is now expected to resch speeds of up to 90 mpt during the next two months.
The hoverzsoin has been designed and constructed by Tracked Movercr aft

300 MPH HOVERTRAIN - PUBLIC SHOWING

ETINEWS APRIL 1972 (OUR FIRST EVER NEWSITEMI) Lid.. e compeny set up by Britan's London end the arpore plinned for National Research Developmens Council, ant would be cacable of providing a link between central

Foulness, its sassengers completing the journey in quier pollution-free comfort in aboul 20 minules
the locel sarnutaple. Mass radio club with the hetp of the Rodto Club of Americe.

Now for the red tape. President C-Tter sent a mesmape no KMI CC and the Quoen manted 10 send a peply nis CB3 MSA. just ble Edward vil did beat in 1903. The Home Orrice wid that 4 she did. in would breal a contation in oll Mrimah amateurs ticences - mamely the one sbout not passing on mesages from 3rd parties' So after 2 yeass preparatwin the Cornish Amateurs and the Oueen were senied perminalon to reply to Presodent Carter.

ETI NEWS MARCH 1978

CTINEWS OCT 1980

W
ith the licrevease in tefoghone Lappinat and boardroom bugs Audiotel Imermational have developed a simple to eve. Wel cophisticated suecresor to theit conloch redio mervellilonce rectiver. It ts called the scantoct Mart Ve and in a lact eany means of defrertions and locatine an eavendropplote tranumit tow as enil as beine capoble of routine 'mooep' merches of hajes level mexting rooms (avied un a ather if If cas choo loxale an bloeper bug er d lor itreitiot.

The scantort is not bemited to the comemtiond esdio merever ano of 3108 MMs. If covers the wider frequency specirum of 1a. 1000 MM e and the sutomutic moeep mode sume this range hown times a monute limelt all that is necemin ib to perine the "torald but fon and vee the handheld wand to guide rou to where the bug is focated time hit is the wee of a amull
 whith apere bantery park. There to aloo provition for mate unge. for thenther informufion sontext Andiotel internothonal itd at sedthon Coure Vebly. Surner. GU17 7RX.

CONCORDE BAN?

Whilst we are currently bombarded with PR marerial excolling the "virtues" of the Concorde supersonic airliner it is interesting to note that in the USA Senctar Alan Cranston has introduced - bill, co-sponsored by Senators Edward Muskie and Catiborne Pell, so prohibit overseas supersonic trensports from landing at any US airports or flying over US ierritory at supersonic speeds.
The SSTs which carry less than half the passenger load of a 747 make ten simes as much noise on rake-off and landing ETINEWSIULY 1972

RICE LOGIC?

Later this summer - about June National Semiconducror and Kellog's tre to hook up on a promotional deal. All Kellon coreal packets will
 carry coupons for reductions on National calculatons. Barley ereatible is if noi? ETI NEWSIULY 1976

ELETIONC GAMES

COLOUR CARTRIDGE

sen mothervititi it Gans

DATABASE T.V. GAME \square

Sutr moorammater calmoce iv Gave SOS
(43bencibl ATARI
T.V. GAME

CHESS COMPUTERS

whe ciory o ionge of own is amorent Chose compurers. (locvens Choes 819 es
 Cross chuelong 7 T7000
 sercmu orpyas oct ciass chuymer. -nay Ause 1345 now 8123.00 mocy is eons 2? momateo $62 \boldsymbol{r}$

MAND HELO GAMES
EARTH INVADERS

WAND WELO GAMES gaLaxy 1000

 \oplus
 $\infty-\infty$ $=223.95=$

ADDING MACHINE
OLYMPIA HHP 1010

-	
-00:	
	50vo -uvio

THE OLYMPIA - POST OFFICE APPROVED TELEPHONE ANSWERING MACHINE WTH AEMOTE CALL IN BLEEPEA

TELETEXT

24 TUNE
ELECTRONIC DOOR BELL
now neouceo 10 §12 nove 20 enoen rove
 ceveor sobel now in - ind io en mopopos

 $\operatorname{mosen}+\operatorname{coc} 5195$

hammer fet-ish

A new range of lm coast VMOS power FET: in platite have been intre duced by Sullicontr These devices are almed at replacing convenitonal otpotar tranntutors in a great many applications This development in VMOS techmology has cut the price of suct evices by a third ensbling them to compete directly with bipolar devicm ETINEWS APRIL 1978

CALCULATOR CHIPS NOW LESS THAN E1

Calculator chips prices continue their inexorable fall in price. Latest prices in the USA for four function elopt digit MOS chips are now as low as 40 p
to 800. Even the complex scientific calculator chips are down to $\mathbf{£ 6}$ or less compared to $\mathbb{E 2 0}$ this time last vear.

MOS Technology Corporation for instance are selling a single chip scientific unit for $\mathbb{\text { E } 7 . ~}$

ETI NEWS IULY 1975
ETINEWSDEC 1977

sasilng into space...........

A 12 bloded solar sail spacecraft to a new candidate for mankind's first interplanetary shutile. Dedigned to be emptoyed in the 19:0s ths fins use might well be a renderwous with thition Comet in tses.

The 'hellogyru' sall uses a heli-: copier type desten with 12 "blades. compored of reflective alumintum platic Mim, and depleyed th two tlers of sis each. After launch from the spoce shurtle, centrifugal force
mould open the hlades to theis 4 y MILE length. (They're ?8fc wide). The craft sits in the centre of the arगy.

The craft would be slowly spun by the ten's photon radiortion, sud complete a rotation every three minutes. A square sall, and hence windlymming to the stans, wes rejected in faruur of the blades, which now fight it out with an tan streem propulsion system for NASA comsudorali

ACC AFTER ONE YEAR

Now moving into liss second year of

- Bowmar has Texas - ange and th homing th range and being wed for 93 Textion by bowmar who million by Bownary of lere. allege the supplefective cal. number of deterds. new quad op. amp. Very how mose and betcer tren
 - 741 li air RASTRA at ZTS able from. Hammerimllith. Ktns St . Hammideal tof
London We ldere the London wets where the sudio projects where circuits hiscing or summ.
6 not reguired. - tirm. stesthem ore 10 firm. Strath new 5 M 2000 bunch thets new surumn. cumble in the sutum. which will reglace sichen SMM2 model. lechnicelly she unis boots lecrocests at the und - majre succe-f? Lus for nationaliser 1978
 existence the Amsteur Computer Club has now formulised its activities inio a constitution and has a membership of
over 200. ETINEWS AUG 1974

The Way

Power Cuts On

In 14e rou 20 inch colour inelly uilm 90° dellection would have concumard over 200 W. Now, the ligure is around 6 W W. A new devilogment from finland will further reduce that to dbout 10 W .

The system. which rewutts ita Anduction of about cos in power corservention, has been incer. porated in the satore 6 series of portable colour sets. The douign is baskically a sers efficient couple between the power upply and plcture tube using an induction treosiet orstem. The pecultiont cool rumning haproves reliabiliny and entends operational life.

ANTISKIO CONTROL

The first stenderd I.c.'s designed epecifically for the automotive market have boen announced by Fairchild. Both are complex linear círcuits devetoped over the pest two years as "custom' circuits before boing added to the stenderd product line.

ETI NEWS OCT 1973

ELECTRONIC CHEQUEBOOK CALCULATOR

A pocket calculator that will hold and display bank cheque account bulances for a year or more is shortly to be announced by the US Mortek Corporation.

During the times that the catculator is "off" dots is stored in a static shits register (drowing a mere 100 micro. emps). This deta is then clocked solefy when eccess is required.

The unit is expected to retail for less than £ 16 and will be buili into a plastic chequebook holder.

ETINEWS JULY 1975

BUBBLING OVER

Next year Rockwell are hoping to launch their now developed one--megabit butble memory price? One millicent per bit!
Their device can uperate up to 300 kHz and measures $10 \times 9.5 \mathrm{~mm}$ and is designed for a 1.8 micron bubble diameter. ETI NEWS SEPT 1977

The C soriec. Noth the 1420 and 22 inch modeth. efll operste from a standord coakour 12 V battery for is hourh. of from mains for as lonag as you pay your Eills.

All the modets feature sutomatic elactronic turine fine
tuning and memary plus add-an options lor remoted comerol, 12 V baltery and video trequency inter. lace unil.
salora products are available to the UII from salora (ULI) CUd. 25A Techno Trading Istate. Sotr. don SN2 ME2.

Extremely pure silica glass has been manufactured for at least 40 years longer than jet adrcraft have been around. Now it is to atd and abee the

ultimate alrcraft . the U.S. Space Shuttle. Made into tiles (composed of 96% sllica glass) of which 34.000 are used, the material covers well ovet 70% of the surface of the Shutile.

These tiles are incredible heat 'shedding' devices (see photo) and will be expected 10 withstand temperatures of up so $1260^{\circ} \mathrm{C}$ for 100 re-entries Into the atmosphere. Previous heas shields were destroyed on re-entry.

Each tile is precisely milled to fit exactly against the curvature of the Shutte body, thus making the composite craft as light as possible. and as aerodynamic as is feasible. This does however mean that no two of those 34,000 tiles are alike! Imagine the litite man in a white coat with the job of fitting them to the aircraft - a huge 3.D jigaw puzzle with only one solution out of 34,000 (1.e. $34,000 \pi$ $33.999 \times 33.998 \ldots \times 1)$ posibilities! Rather him than me.

ETI NEWS MARCM 1977

If the latest puodie from Jexas inatruments is as sucresaful as we thintr if wall be, the ness ownernition will ixcak meth an American accentl Called "Speak a Spetr it is a bos that talks 10 the liths (whin a "etandard" Amerticen aceent).
hnd theuretically helps them pronounce new words pourucaly - in aboo compares bow the kuds mpell tbe word woth the correct (Amertican) thelling and indicates whether they gand the rughs answret

ETINETMS AUG 1998

ORACLE ON AIR

ORACLE, JTV's Toletext system (soe ETI, July 1975) begen on on-eir axperiment on the ITV network on 30th June. Operating the experiment are two editorial teams and three computer systems. At ITN there is an editorial team (plus computer) for news and ussociated information. At London Weekend Television there will be an aditorial team preparing public service and similar information pages, and the second computer. At Thames Television the third computer will be used to insert data into the network during the Mondey to Fridoy broodcasting period with LWT raking over for the weekend transmissions. If is hoped that there will soon be sets with decoders in the main entrece lobbies of ITN Mouse, London Weekend Television's South Bank Studios and Thames Television's Euston Studios, so thet visitors cen interrogate the system and see how ORACLE works.

ETINEWS SEPT 1978

WATCHES FACE COLLAPSE!

Five companies have dropped production of digital watches, due entifely to the price war raging around the product. Gruen, Benrus, Armin Litronix and Gillette have dectded the wrist borne digit is not for them. Those stitl there are sufferin 800. Bulove are expected to make a loss this year. Gillette in fact pulled out before they pulled in, scraping well laid plans to burst tinto the "marketplace' at the eleventh hour.

ETINEWS SEPT 1997

Even the cheapest pl domestic redio receivers mav soor have Dolby circuitry inbuilt zcording to Alan Gregory of the Signetici Corporation. monulacturers of the NE 545 Dolby IC chip.

Gregory believes that the inclusion of the chip (which will be sold to manutacturers for less than a dollar will increase the price of domestic eceivers by o oound at the most. | ECEVVETS CTINEWS APRIL 1975 |
| :--- |

SCREEN TEST

The C'K to now Huna Kangs thargeal market for TV games tVe abourtind 3ज1 of thon - int in the field, some ses teas items it yous please in ine firot eghe mevetion of shis reap fiermany finiated wicond
in 298 and the UMA rame thend with 1.5 F : Snmwhet of a sumprion and 5 thamer, that we idlur more than the States of these tiems I alwaye thoughe tre had more © ace

A POCKET CALCULATOR IN EVERY HOUSEHOLD

"By the mid-70's the pocket - lectronic calculator will be as much en essential part of tho household as the transistor radio is now". This is the prediction made by Sinclair Radionics.

Recent merket research confirms thet increesing numbers of the population are becoming aware of the possibie applications of pocket electronic calculstors. This is most monted in the educationat flete, at school and college levels although considerable interest is abso being shown on the domestic front by thebends and wives who spe sble to use a calculator to halp control the family budpet.

ETINEWS OEC 1973

THE END OF THE AMP?

A British invention (ihree cheersl) coutd well mark the end of the amplifier as o circuis block. A new device called a voltage-to-eurrent transactor' can do everything an op-omp can - but better. Invented by Professor Gosting and Cart Brinker. the device contains no passive components ot all. and consists of a network of irensistons.

The advantages are that it integrates amoothly rather than as a series of steps, follows an input quicker and with e wider dynamicringe, is smaller in chip form and uses less external components. A VCT can also double as a transformer!

ETINEWS OCT 1996

Blonde

Bombshell

Now be honess with yourself sunit there times during those long cold winter days when you could do with one of these in your offica. No, unfortun. atery I dan't meen fiondie in the white panta. The blonde bombihells here are the brushed aluminium bozes of ITT Terryphone's new solld state intercom unisa

The intercom, which doubles as a mecunty and alarm syatem. coniets of a master unit and from one to nine aub-units. The system ts easily installed in many confguraciona.

Simple prets bution-to tallis operation is featured on the master and sub-units. Each sub-unit can be called tndependently from the master unit. or all sub-unlts can be called atmuleaneousty. Preesing the self-latching eocurity butson allows notses from chilidren. equipment, burglars, ete to be pritited up and transmitted $t 0$ other parts of the premises. So. the intercom can be used as a security system in small businemes of a beby alarm at home

Each sub-unkt comes complete with cable and coble furns pads for ca0 each The mastep untt coses cas and comes whit a mains plog and a screwdriver. Talkins of Biondis - she can inseall on intercomin my oflice any time.

Funther detaits of this syatem ds avallable from ITT Ter. Dphone, Station Approach. London Roud, Bicester. Ozon OXS TB2.

ETI NEWS JAN 1980

BANDING TOGETMER

The Rador. Topar Internationel.
36 Itiburn serept.
.ondon swivilw.
Dear Sir. d the arniele Cd. foe BAtcain" in Vowr Juy beowe The ith were thent pleased to read the anseler the establinhonent of VHF Clusens Mend in

We have Priared for diprustiva and eonceons a number of propneameriean abse. These
 proptioh ciceiveran inde

equipment broakth.

wany lime the trancimit
 mishorpostreed

$$
\begin{aligned}
& \text { Apart from the above, and a fow purely tochmed propervices but mot oo unnerepartly }
\end{aligned}
$$

huh o in phec Clizens Rand equipmon of resulationa.
Crisome cand showld have a minimum of regulatiocia.
Slambervisio of
Yours feithfully.
domes M. Coyont. Bend Agoothetion.

STEERING WHEEL? WOT STEERING WHEEL?

We hed a very cereful second look at this photograph, vowed so give up wine, women, and especially song. (for at least the minutes) then checided yes he was in the bock seat, and yes the car was moving. Visions of a huge hoas flashed to the ediforill mind frenaibed navvies rushing about with the beckdrop to simulate movement tiny men crammed into the wing mirrors steering vis cunning Chinese arrengements of levers and geans. The mind bogoled.

Alas the answer is nought so scandalous. Ouite simply on Ausiralion electronics enthusiast has packed his cer full of voice recognition and MPU circuitry to the end that it will now
obey vertal commends - even by walkis-talkle up to a rance of 12 miles (Naturally is obeys only its owners voice).

The car has a CCTV system Installed which encbles the driver 10 see behind him - very usofut in injon country. Infra red sensors pick up red traffic lights and brake the car auto. matically - no weire not joking. Radar ranging maintains o constans distance with respect so the car in front, and semsors apply the brakes should the car come soo close to any object - even people.

All this makes is a bertor driver then most of us.

right hook

In a Nimanc ruling, the US Sapreme Court has confirmed that privete tindividuals have the right to buy of make their owen telephoine equipmemt and connect th to the US telephoine netwurth.
Under the ruling it will be legal to hoult
up as many devicen ef ithe user wishes computer conspolled systems. "phone diverterk memory duallers. pictureptiones etc. etc. The ondy restriction is that the various bus must meet the relevant FCC requarementis.

DIGITAL RECORDING

Japan's Nepion Columbias con pony tow
 The ent equpmernt. wad to coll over L125,000 uses pulce cofs modutation
advereare of info mhniove m ths fir en thpornomerest to move and dmportion Further detwis cril be pulitured as they comes to hamed.

ETINEWS JAN 1973

LASER STICK
 FOR THE BLIND

A stick specially derigned for blind persons gives the bearer a loud sonic signal in the event of impediment in his path at wrist height or above. The new device was commistioned by the Swedish Institute for the Handicapped and work on the project was initially finenced by the Swedish Boerd for Technical Oevelopment (STU). The protoiype stick comprises a 1.3 -metro long tube made of glassfiberereinforced plastic. To it is atteched - gallium-arsenide laser. a midope transmitter and recpiver, and an amplifier. The power source is a tiny nickel-cedium eccumulator. The laser beam's irajectory is almost at fight-angles so the stick's length, and as such sticks are normally held forward as an angle of about 45 degrees to the ground, the beam is directed both upward and forwand. The laser sends about 1000 pulses per second and when one of these meets an object - such as a lorry. car or a roadsign - it is reflected buck to the stiok, where it is electronically transformed into a sonic warning stanal to alert sthe bearer. ETI NEWS NOV 1912

GIRL BY INSTALMENTS!
Eloctronics menufecturers throughout Europe are noceiving a series of unusuel seles leaflets from e monufocturer of spocioniss chomicals used in the mating of
printed circuit bounds
Dynachem are sending out four leaflets spaced at roguler intervals. On the front of each will be printed - tantatising pert of the compery's DVNAGIRL, an exquisite young lady well worth a second loak. Oy keeping
the leallets, the recrpient will be able to build up a complete picrure.

On the reverse sides will be information sbout the campeny's range of phoro-rosists, plating solutions, orighteners, cleaners and ancillery chemicets.

ETI NEWS SCPT 1981
Mini DiSCS

STEREO CONTROL UNIT

Conmert the unit to yous existing powes amplifier, and at your fingertips you all how a dearee of controt over the andio spectum prevtounly unatainable fith con ventional tone control syeteme. JVC's unique Model SEA- 10 tales the full audibo range of 20 to 20,000Hz and divides up into five sixcrete frequency bands centred at 40,250 . 1000,5000 . and $15,000 \% 12$. Exth band can then be rasied independently by $\$ 120 \mathrm{~B}$ tuing the profectoral type slides controls vith $2 d B$ cheit stoph.

ETINEW'S IULY 1973

CARTRIOGE PERCUSSION UNIT

Bandmaster Limited of Gloucester Street, Glasgow, have designed a rhythm unit called the Powerhouse
which uses multi-rrock conilnuous tape loop to produce multi bar synehronised "live" pereursion mythms

OIGITAL MULTIMETER FROM ADVANCE

The way things are poing. the adjective "Ulital' will eson be dropped when estling about test peas. The advantages of diptal rtadout are overe helmina compured to the standard meter (which has of cours an analogres readout) and most new quality
test equipment urfibers desect dipial readous. One of the recently intruduced DMM's is the Alphs from Advance Electronios: amongit the many attractive features to the price of ESS.

ETINEWS IUNE 1973

\&PG meter........

A derice called a Milcaye (iomputer (whut else?) from the Young (iorpurat. ion in Anserica is deugned to pronlexe a dieflal readout of miles per pallown heing ubrained from a vehicle at any anen instant.

The tevice is componed of speed and distame seours. fuel level indicator and calculater cricuin. A senur attached to the sperdo pheks up pulas every revalution to prowide sume of the info necded.
The MPCo meter will well at around $\$ 20$ th the USA. ETINEWS DEC 1977

COLOUR PREJUDICE?

Official figures for the number of homes with colour TV's. l.e. those with a ticense, have just exceoded 50\% of "'re total. Some lesser mortals onght well be tempted to conjecture how high the cotal would be If the un-licemsed fetons in our miost coutd be stood up and counted. Naturally we refrein from any such thoughts. ETI NEWS DEC 1976

TELEPHONE COMPONENTS

Migh-standerd telephony roday relies on components and function eloments whose design and properties render them equally suitable for use in complotely different fields. Read-anly momortes, MT components, keytock connectors and sutomatic cutouts are some examples of such compon. ents.
The MT (megnetic eore iremistor) component developed detection of switching criterit in de signalling systems, has a magnstic core with a rectenguter hysteresig toop to detect signals which are amplifiod by the transistor. The core and transistor circuits are operated at the same potenthat and the definod Yes/No statements can be evaluatod electronically or vie relay circuits.

ETINEWS APRIL 1973

PLASTIC BOXES

Vero Electronics Limited have recently become disterbutofy for the Odenvalder Kunststofferert range of plestic products which lnclude a range of plastic bower. Them are masulactured from high impact polyse yrene, which is sultable for machiniag engreving and ell screen peinting the upper portion of the bos is coloured light pery and the lowet portion, dart grey. The butter is provided with integral fixump potints for charest bourde. The boses con be free standing or wall mounting and ahowle pro wide in attractive enclosure for reader: projects

Vero Ehcroonics Lemtred, Indumfial Em ete, Ohendter's Ford. Easilitith. Hsnts ETI NLWS JAN 1974

CMOS IN PLASTIC PACKAGES
Motorole Semiconductors have fuse ennounwed that so devies from thetr itancord CMOS logic famity are now avilible in plastic paikigen In the past, cerzank peckaper huw toen used for all CNOS devios:

ETINEWS SEPT 1973

FAIRCHILD TO MAKE CONSUMER PRODUCTS

The USA's Fairchild group are actively planning to enter the consumer products market, according to o usually reliable source.

Fairchitd's first products are betieved to be a low-end of the market onschip hand-held calculator with 8-12 digiss. However several industry commentors query Foirchild 's ctitity to produce the nocessary MOS chips. quoting Lester Hogmn's (president of Feirchild) own description of his company's performance in the MOS field as "disappointing".

SOVIET RADAR BLAMEO FOR HIGH HEART DISEASE

A Russian radar erscking station near the Finnish town of Ilomaritsi moy be responsible for a sharp increase in heart disease and cancer according to Or. Mitron Zares, in American microwave expert.

The Finnish border towns have the highest rate of heart disease in the world and concer has increased inexplicebly.

ETINEWS IUNE 1974

the little cb that

santa forgot
Chiren Band. rodio manufacturers around the world are cryime into their transcetven efter Xmas They experted a boost to sales to revive thats drooping bultheens. and if didn't malerabive Seems no-one mented to contact anyone ctre - not even the reindeer.

ETI NEWS MARCH 1978

ETINEWS JULVI97s

BLUE RESFARCH
Your chatce of LED colours maght inctude blue in the not so distant future. The new devicea. being developed by Supmena. use sulicon cartuco and are pre. dicted to have a forward vel. tage trup of $+\mathbb{V}$ at 50 mA

ETINEWS OCT 1979

- Polaroid are about to release an automacic focueting camera that uses an whre-boint trans ducer to measure distance.
- Computers stores in the US are opening up literally every Any - we have fust heard that 700 have been ideathified by commone pexparing an exhibycion's In cidirion to thoee dediested to Mome comperers. aftice equipment suppliens and camera shops are at the fore front when it comes to jumping on the bendwerom: even Macry's stores have now got e computer departiment in some of their storms
- Senyo have demonstrated a 6 mm thin solld stase green and bleck selevinion The display is made out of 6.14 green LEDs in an anee only 50 mm by 75 mm They hope to have a cornmer. cial sox by 1551.
- A redar based ormepeed desector is in use in the US. of A the unit mpesures your speed and tights up a neon atgh eayta YOUR SPEED IS....REDUCE SPEED The unif is very effec utve, only problem was tho local hoteroderers using fer $t 0$ choct their cap speed Probiem solved by hmiting display to 75 instead of 9

ETINEWS SEPT 1975

Watch This!

Vou'pe suck of digital warchon How about taling a look of thi waich from Casio, Its all analogut. but woth - difterence li's fully eloctronits and has no moving perts It uses ICD and has conven. tional houre. minuien and sweet seconds hands ithe Model ANBCl is designed to be attrecime and fashoonable lace colour matches the symthetie step Mou potriom are marlied by standard Roman numerats and all the time settings and adpustments are handied by two buitoms heepins the compect sold ptated watch case sumple and unchuteered. The display shows hour and minute hands, anc secionds indication is by a ented nvwep hand or es eseres of marts on the lace edge to show ac. cumulated seconds Accuracy is to withun is seconds a month RRP in $\$ 27$ os, but produces of thus type are often sold cheaper fuether information can be obremed from Casno flectronis Co ted. 28 scrution Sireet. I ondon EC2A ATY

ETINEWS NOY I9E1

GREENWELD

443A Mionook Roed Eouthemoton SO1 O-4X
All prices inchude VAT at 15% - Just add 50 p post
CONGRATULATIONS TO ETI ON THEIR 1OTH ANNIVERSARY
Here are some special Bargains to celebrate!!!
 150 cen on cs

 rvom nue -

rmion iza motre.

 -rin row rearelor morso

STABILLDED PSU PANEL

 cen w en N Non cente to aro cose enteros

SPECIAL ETI BIRTHDAY OFFER

(Aron's wo nicellll)
 n. o- iov ond ou-2A mone ank no evos eapen on

Just $£ 24.95$

MIXED LED PACK

IW AMP PANELS
Moll Cenext now er mated to
 $\infty \operatorname{cosec} \infty \operatorname{mos}+\infty$ ans an en rivion an. mos then - realu now e
 om rrue

OP-AMP PSU KIT
 nerinfle

P.C. ETCHING KIT MkV

 -ou an cun cher bun cenem No moll

PANELS

 mat ene mues an menemor 80 OCl cosen coa moveco an
 Now. .0

 asot chet cen $80 \cdot 50 \cdot \operatorname{ran} \rightarrow$ doiv 7a sch is. sh gion joct ous cepo

CHEAP CMIPS

nons sunicer
hesamiont mos
Angec. mitiolion A)no mixlo resvizourr 8
 $0-1004-1$ whe seto cive

\section*{DEVELOPMENT PACKS

 \cdots en a - Nis
 we men mos io , 0000 not no came

 12180 2.2.28. car rou vere N100 2000
 ance ofe

- on cze ento novion conereor
 om en. 2n in in 10 en she rince is ± 0

 cose deo coll Nose ane sers

 \cdots ance cen $0 \rightarrow \infty$ 10 coch an en bioni. 224 U
 00

 cen oers menoss on cien non

 -nci is:
 - mon mos Mo mion 200 men mact is -
revi live Pece of eo comperse 10 axs na veen os rive sum eat

UMF TUNERS
an wain Mro onern $n=$ bensam nomer

VHF TUNERS

[^1]GRLAYTUNC PANEL MXI
ashan

 -ntion

LUE DETECTOR

 anco onem mon

1000 RESISTORS 2.50

-2 $-\infty$

 co chat

200 ELECTROLYTICS E4.00
 Acte ver c11

CAPACITOR BARGAINS

 38

 ㄴ..上.2ycestren ix

20, 2
ansan inso

TOROIDAL TRANSFORMEA
m 8\% M xon ox oner voulen foos topoto is.

TRANSFORMERS

DISC CERAMICS
 c en en

IN4005 DIODES

 rese \sin in

AUDIBE WARNONO DEVICE

 $-\infty, 2 n \cdot \cos$NICAD CHARGER

\rightarrow an onccomen

cocernin uonmes.

ULTRASONK ALARM \qquad บ-a

 2nexus $-\infty=1$

SOLENOUS ANO RELAY
 -0 $21=0$
 HT
 Wris 11 年 num zal jov oco 20 ono
weer lou son ace an li. 0.2 one meprece to now ex en

AMATINOI COMPUTER OAMES
FCETB For FLANUTEII
 civo som noll me mom reso
-tansiro

- an at encol
von uneve Ne vem oud ound
co $-\infty 15 \cdot 0$ oncon
"semow
mon
 No
"COMNUTER EATTLEANFS
 nome mon an mon

THOCROVI81ON Certs

 -xit

ONLV 2up eschll!
LOGIC 5 PANEL
 coro eing lio.

ELECTRODIAL

1982 CATALOGUE

WHOLESALE LUST

$-\cos$ co cont

 - mincocomano \rightarrow
NEW CONTROL SYSTEM FOR SLR CAMERAS

Electronic shutter speed and exposure controls cen now be built into single lens reflex cameras withour mechan. icatly modifying the camera bodies or lenses.

A new control system, developed by Matsushita Electrical Industrial Corporation, measures the tight af a preset aperture fin less than two
milliseconds) and then sets exposure time sccordingly. Control range varies from 0.0005 seconds to four seconts - dependent upon lens aperture and film speed.

Prior to the Matsushita development. If was necessary to have a light measuring device socommodated behind the main lens - calculating light intensity with the lens held wide open. ETINEWS JULY 1975

Elrad: EVI Germany..................
A new edition of ETI starts this month - Elrad in Germany The name Elrad itself means nothing and is simply an amalgamation of electronics and radio. It is baing publishod by Heinz Heise in Hanover and is edited by Udo Wittig

ETINEWS JAN 1978

RIDING HIGH

The next step in Americs's spece programme is the lesing of NASA's space shurtle. Landing tests are to be carried out in mid 1977. Amazingly the machine will be lounched "pigov. bock from a fumbo 7471 Several

flights will be made to ensure stability before the shuttle is actually released. Trust Americens to build the wortds largest airliner and then carry people outside ifl ETINEWS AUG 1976

COSMOS NOW CHEAPER THAM TTL FOR MAJORITY OF OIGITAL SYSTEMS

RCA has announcad further price reductions in its CD4000 range of COS/MOS integrated circuits. The reductions range from 35\% to 50\%. The biggest price reductions have stfected the more estatilathed MSI devices of the CD 4000 range, with many ivpes being reduced by over 50\%.

As a pesult of the price euts, many of the popular TTL devices are curr. ently more expensive than the equivalent COS/MOS funcrions.

ETINEWS SEPT 1975

CB2B

A' lone lost a mectifocation has A been publinhind ? ofie Mome OS fice tor the kematmetion of Clilisevis amdrata. iwo frequention in ill br almeated 94005 to 93.955 MHz and 27 colzs to 27 .9.125 MM8 for the 218 MHa (AM) Arequenciod the mssimum power is a WI 25 W Ind
 was Mand held unifa are restricied to 3 is MP On the GMs कौ the tre cueveries the masimum pienere is 4 is f2W inns so chameto as 10 hHz opasing. irequencen iolerances e $9.3+\mathrm{H}_{8}$ कीathum frogurnty derlation 2.2 LMg . Adiacemt chanad promer: - M 0 dB to $2 \mathrm{uN}_{\text {. }}$ courtous emiveion lese then 50 nW .

PLAY-ALONG-WITH-RCA
Single chip I/O for video games is she laudible aim of messers. RCA. To be intructuced in tenuary the device is primerily a vertical and horizoned synching circuit designed for use with RCA's 1802 MPU . Pilce coutd well be around \& 12 when and 11 introduced into this country.

ETINEWS DEC 1976

Right - now you've stopped staring at the picture can we proceed with this month's news. Thank you. Once again our old ffiends CBM have managed to get in on the act The above watches - yes watchee - represent theif ETINEWS JAN 1977
long-awaited entry into the digital watch market - with the 5.000 series. All three use a common module, witt the casings making for a price range of
\&17.50\&2100.

CZECH ON CALCULATOR PRICES ETINEWSMAY 1976

A mpical dour Crech day. The rain sleots across Prague.
Somewhere in the back streels well away from the petrols and the populace, Ivan scuttles into a dingy corner shop.

There amid the Western papers and naughty mags. he spots the object of his desires

Eyes alight he lifts the proscribed machine from the rack, and carries it reverently to the counter, behind which stands the owner.
"How much?" he stammers. rands shaking.

Novus 650 comrade? To you. \&172. Crossed the border this morning right under the army's noses " he looks around funively. and leans across the counter. whispering
"Interested in the REAL thing of comrade? "Ivan nods. The man reaches bolow the counter and produces a battered show bax. Ivan's eves are wide by now. miveted to the lid as it lifts. Inside lies a full fronsal scientific. a MP 45.

Ivan faints

Now before you dismiss this as merdy the aiconolic follies of the ETI statt, following o pariy, let us inform you dear reader, that whilst wo moy be guilty of slighs embroidery, our flight of tancy is basod on fact.

If soems our Eastern friends consider pocket calculators to be highly prieed inems, and will pay vest sums to acquire them. What would cost you or 1 \&7, our Iven would need \& 172 to own. For that MP 45 you could possibly get a weekend with Siberian Sue, belle of the Battans.

The reason behind this black marketing and smuggling is that calculator ships are not produced behind the ferric curtain and the machines are banned from imponers fists by the governments. to preserve foreign erchange as their value is so high.

I wonder how they count it?

FOUR CHANNEL OISCS

In the UK the EMI group have announced plons to release quadrephonic discs - using the CBS developed SO Matrix' system - in April.
The company claims that the new discs will be fully computible with existing stereo equipment.

COMPUTER 'ON A CHIP WITH CASSETTE TAPE

A now byto-ortentatod micro-computer with its own in-buite cosserte tape backing storage has been produced by Computer Electronics Lid, of Salfron Walden. Ester. as purt of tis range of cassette tape data systems.

Bolieved to be one of the firse 'processors on a chip' computers to be developed in this country, the com. plete computer fits on one of the compeny's standerd printed circuir cards. ETINEWS AUG 1973

TV GAMES LSI CHIP AVAILABLE SOON

Rumours have been abounding for about a vear now that an LSI chip for television games was boing developed.

We now have deffinite news that Lopic Leisure, o British Compeny have proouced a chip which will produce four TV games, with two varistions on each, giving eight permutations. There is score and sound facility. Type number is not yet known but the chip is suitable for both 625 -line, 50 Hz and 525 -line, 50 Hz .

It is hoped that the chip will be on sale in October and the price tag is going to be in the £10E12 range (plus VAT). U.K, distributorship is in the hands of Television Sprots Co. Lid., 6 Half Moon Street, Mavfair, London, WIY 7RA. ETI NEWS AUG 1975

brief news

NASA have received weak ngnals from Styleb for the firse time in four yeara The posetublity of sending it deeper into space in being conadidered.. - A sudy by the Amert. can National Institute for Ocruparional Salety and Health (Niosh) has con. cluded that VDUs in use in the offices of the New York Times are not res. ponaible for cataracts de. swloped by iwo copy eds. tors working there.
ETI NEWS SEPT 1978

Hitachi MAGic

Hdrachl have developed an esperimental colour video ana cowninad with a viaco tape
 the MAG Canmed. Uning hent the wit rexidine vechuquet five covery proun lepte therex then ans nese cine comeva. The cmotie uind no cene, to almous as ancll as on andin cemetie and sempe two frow of necanalingtiantert the conipiete
 rocturgpoti bomer part Wawh the sexer for nevis ondevelspment of - MAC C Rome

ETI NEWS IAN 1981

From a firm called James Niell comes the Micto $\mathbf{2 0 0 0}$ to rise tinto our News Digesi with carefulty measured precision. This instrument gets our vote for the best innovation of the year already! A digital micnometer no less.

As you cen see from the pieture, to actually reads out a measurement in seven-serment format. Goodbye verniers. It has so many features and ad. vences, to is pechaps hest simply to list them.

Accuracy to $\$ 0.002 \mathrm{~mm}$., with a "constant force" spindle and self. callbration factitry. As soon as it is switched on, the 2000 self zeros.

The eern resel means that it can be used as a comparator against a known standard, and vartations from that can

BRITISH? PRECISELYI

be read direcily. Also in awkward situations, the instrument can be
refoed, utilised, and then removed to
be read. ETINEWS JUNE 1979

Sat 54

Well, It was Sptcom 3 actually. but the plaxt is reminiseent of that ofd. off Amepticen relly eeries. The Cor 54 in this case. huwever, was an RCA communicatrens suteltite. Last heard of in Weosmber. 22.000 miles above mother Euth

If anyone finds a communications satettite answering to the name of Satcom 3. send it to RCA, nto ur shind yoe., tf it has cons up to a puif of smoke. it has protubly burned up on ths way bect to Earth. NASA qubet to ascure us that it won't cemse amother Skylab inctident. So. , ou needn't dust off yous anti. Skylab umtrella, yer.

HP AT A (CALCULATED) LOSS;

Hewlett.Packard - renowned for their up market calculatons, are apparentiy running this section of the business at a loss. Equipment and other activities are kreping then in the bleck, and H.P. cite the delays occurring on the introduction of new modets as the caune for this. Also named as a culprtt is "severe price erosion in the pocket calculator marketplaci". Pick the bones out of that ve rivals of the beast.

ETINEWS NOV 1976

CEEFAX AND ORACLE SYSTEMS CDMBINED

The 88C and 18A, rogether with BAEMA and the Broadcasting Department of the Home Office have agreed on a unified system of dete brosdcasting.

Until now the 88C have been wort. ing on CEEFAX, the IBA ON ORACLE. Both systoms allow a TV viewer 80 select at will from a number of different 'pages' of informsetion and put these onto his screen.

ETI NEWS IULV 1974

Text To Talk

Kurnellicomperier Products of Comionder. mumarhuwens has developed a machine to tum writime ivel inso speech

The machine conesims an optr. cal kcanner. a small compueer. a whill ornthesmer and a loudspectier unt.

The pap to be read is pluxed over the ccanning unit which then conveets the wrimen met to dheitel wipnat for the compter. The computer then comers them into sound

ETI NEWS APRIL 1980

junk calls

From the land that brought us Muzal and MPUs comes the Junk call - she same as Junk mall but vertaly A machine is being used to dial up to 1.000 numbers a day and make a 90 recorded sales piteh, unlite funk mall there is no way of fnowing when the call will be Junk of not. By dialing up numbers from 0001 to sepg the machine annoys everybody who answers on a paricular exchange. even $\&$ you hang up

- hows the line open untll the pitch is Antished - shis has coused emergency catts to te delayed in some casos.

Ten states are considering begaitation to curtall the ectiv. ries of the machines. However they intend to exempt chartiles, polisters and politiciam some peopt want in electronk mo thanks' sugn to De developed. akhou h notody is quite surn how if would work. What nexth

ETINEWS SEPT 1978

ANRS INTEGRATED INTD A SINGLE IC CHIP

In 1972. JVC firse introduced their Automatic Noise Reduction System (ANAS) into their top-range cassette decks. Since then, ARNS has boen incorporated into o wide range of tapt decks. Recent improvements howsver. in cassetre deck quality and the possibility of "noise-reduced" FM broodcasts have meent improvements in the quality of noise reduction systems and the application of these systems to components other than caswitte tape decks.

To meet these new requirements. NC has recenily completed the development of the ANRS IC.

ETINEWS OCT 1975

A Preview from the Next Issue of

 AMBITINTERNATIONAL'S

Worid

兴年

The LOWEST PRICE Full-Spec. NICADS in the UK

Prices exclude VAT Postage \& Packing 50p per order.

Send your orders to: Ambit International 200, North Service Road, Brentwood, Essex CM14 4SG

Civ Tikereme
 HilytekELECTRONICS IN-CAR VIDEO

WV-TEA PA1s0 A mulli porpoed mitre-eng. colvers 150 wete imo loneris, thy apen and thor circul proot thae ore i/p crinnete eith fict the sevection on engh Tho ore eng hes tecieties for comnecring on ectio Grwt. who fectured weages end rimer controie eviow cociver and a mapor natime.
Mr- Te Epucler OMer Rioe enty eth norplo CZ sa sieve inerion evevipto ilto to into $\mathbb{R} 00$

Semencte ghonov ling if ge Crope lede on dectae PFA an cech $/ 1 \mathrm{gm}$ mapter Folume comerol. Mone opereted
ess wo lobeczool

wTEL Ownan

min OUNHT onsco math
2 m turntable vgen 1 w teg Ma. Mic If p with copercto tiab end truon
Mandenone monimor lecilily. Cstso plo fl so nequece powe eupov (3PV-soV oc)

DISCO \& P.A. EOUIPMENT

cow O-co men rave cignis. 180w O-soon han Eun at.

 Cow oond 17 Cron juble Oocenens ir 8 hero humplite cooonens ir 3 hore lepete? rsow Sho Anghor sion to cow rion Amother can ge ra os
 icoojchensondien esempoctso nong Minectony neshon. Conswach monocionce.
sown (untic conoruco
is9 - mornt noundin 21hlow esk-erero inco

COOOMANS LOUDSPEAKENCMASSIS

IT bow Conere arpoes $17120 w$ O-30 somens y $25 \times \mathrm{m}$ les soment.

3win loow. cen eech

18FR~
S-chenner evereo dieco muner emen 7 -oend eraphic equmes buin in has display, hemephond montror, orowe leot and whe. Guep-rice controte. And wivi owner hemure.

7 benal chenci. Iepe monitor oution 1200 boon end cut leneh bendi mions opmened (130 00 (1) of200)

> SMAAPAT 10 STEREO
> CASSETE DECK

LE VU meters Doly sniom muts and chinemp tacilisien and esoft ciect overem ptra sound ownery you wound orpect rom tho sherp compery MY-TEK SPECLAL OPFERCAOS hriplaco

esnenocuto Dinxo coscour comidge -iverys. - beron san f1400 abycise castiea

CB EQUIPMENT RIGS

Fereny 100040 oh Ux beos cro 0 reme 200040 ch UR leog 170

Priper ITY Cear al co ca Un howl ng cepoed of
 Cen 810 ceation so on uri ingel rog cepelio ot 180 ci matu

EIIC00
Sere 1000 enmen 40 ch UK moge res 99
 Bole 1000 simine 40 Cn un toget the
 ot nes supeled umblice if feing kits

CB ACCESSORIES

World's most versatile alarm chrono graph watch Caslo AX210 avernceve liypevo or oo veen hancrione. cortinuove smoticy of hre cone excenea on om cuen Anso conende unter an - con Aciners: drien cal so umo cran

Cmictupe 2 stereo line I/pe
Sinde rolum gontrol for ench
Stertafimono oentrol ovteut isogeo ip 8 DC2 00)

100 ment Maneo now No crepeovon, low oncionion. ts wiol of fres

100 wets

 Henco monbrsco monm
mo cropenover. ras tos oinem
swa neter
Wh Amperc. inmene Pour Mon hion Leed. hooh leed.
Mingoes Moust
Boot Les Mout
Apoorne mine sion Moure.

 3.
c7 Co raco e1p se ingets II C) Im mos silw aso fion ilatino iso cs 00 uncision cs 90 und tion 120040 (100 clive aiocino
\square

ME os cens ant suoutct 10 avan anally
48 Dalston Lane London, $\mathbf{5 8}$ Tel 01-249 4814
oon hown to chone

AUDIOPHIIE

Soon burglars won't be bothering to nick your whole hi-fi; they'll just take the cartridge. This month Ron Harris reviews two new pickups, one with a gemstone cantilever and the other a work of modern art.

News just in of a new piece of Ertish circuitry genius. This is a new protection circuit, soon to be added to a famous manufacturer's product. which is claimed to make an amplifier iotally invulnerable electically.

Totally in this case means "even from 240 V mains at input or outpur". Ultrafast relays are set at the output and on the supDly lines to the PCB These are diven from the new circuit. which has as its final stage a voleage amp with an incredibly high slew rate. This ensures a high speed of operation for the relays

Out Of Phase

The protection circuit operates like this. if an amplafier is suddenly faced with a massive input signal, the ratio of the feedback siznal to input will drop dramasically. A comparator semes the change and a 'low feedosck' signal is generated. This by iself is sufficient to trip the suppty relass. so that the overload cannot be passed on to the output stages, thus destroying them - and probably the speakers

A second block within the circuitn watches the supply ralls and anv surges which are outside the requirements of normal drive will tip the protection circuik. since this is a "low-feedback Itkethood situation" as the designer puts it. Creat play is made of the fact that the music signal and the feedbuck voltage are in antiphase at the point of comparson. so no interaction within the buffer to likely 'Antiphase resel', as it is called, thus introduces no colouration Hence the protection reset of the relays can occur either in the case of low feedbuck tosignal patho, or in event of an "overload likelihood". I suppose this is where the somewhat pompous tite of the circuit is derved AntiPhase Reset in Low Feedback (Or Overlowd) Litelihood.

Shure MV30HE

A dedicated offshoot of the renowned VIS IV design, the MV3OHE is for use in the SME Series III or IIIS only. The cartridge is built into a SME carryarm such that no headshell is used, or needed

The moving components are those of the Vi5, save that no damper is provided The cartidge body is all new, however, and quike a few problems it must have given them getting the coils and poles into a body as slim as this. The design is so arranged that the point of bearing intersection and the sytus line up parallel to the record. This will tend to aid stability in the replay of warped records

As in the VIS a hyperelliptical stylus is used, which will give lower distortion results than either a spherical or elliptical tip Tip mass is commendably low and output level is on a par with the VIS IV.

Once fitted into the SME the MV3OHE looks very smant indeed is and visually extremely clasey!

Testing an Armful

In the lab the MV 30HE had an easy time passing just about every text It tracks as well as the VIS IV and measures slightly better. There is no higher technical accolade than that. The LI resonance came out - surprisingly - at around 16 Hz , a little higher than opt imum in my opthion. Best values are somewhere around $10-12 \mathrm{~Hz}$ so as not to affect extreme Lf reproduction. Best tracking was obtained at around 1.0 g and no improvement was forthcoming for increased force

Frequency response was borinty perfect at $20 \mathrm{~Hz}-$ $20 \mathrm{kHz} \pm 1.3 \mathrm{~dB}$ whth a separation fruure of 27 dB at 1 kHz . Comptiance measured very high at 34 cu , so only the smaflest damping paddle is required it is required however - see later.

Instructive Stuff

The inseruction booklet is worth a special mention it is a straight 'COpV of the SME style, right down to the litile diagrams with ticks and crosses for right and wrong answers Some sort of deal has been struck here. methinks!

One point that I just have to memtion here, I could not,

[^2]Bripe spocitication:

F	1 v	If Reprection	10088
S/N (1 V lipout)	7 de (stereo)	AM Supression	6088
Dissertion (1 KMz)	0.155	Image Retoction	8088
Capture Ratio	2.548	Crosetalit (1 KMz)	40 dB

A limited application, then, but a very creditable performance and one which will compete with Shure's own V15 IV. After all, if you've got an SME and were contemplating a V15 IV, the MV30HE is a better bet all around. It is no more expensive than the V15 IV with a CA1 arm to hold it and it provides a cleaner, more refined performance. All in all, a nice touch Shure. Whither goest thou now?

Dynavector Karat Ruby

Both this month's cartridges are unusual in their own way, Dynavector's Karat is notable for its gemstone cantilever. This 2.5 mm long piece of single-rystal ruby is Cut with a laser to accept the stylus (diamond) and then allowed to cool, thus fixing the stylus in place. The length is remarkably short, since Dymavector say that the less material the stylus information has to pass through, the higher will be the fidelity of the output.

Wave propagation through a medium is something not many of us take up as a hobby, but someone down at Dynavector must have it all well sussed! Apparently this equation:-
$\frac{E I}{m} \frac{\partial^{4} y}{\partial x^{4}}+\frac{\partial^{2} y}{\partial t^{2}}-\rho \frac{E I}{m}\left(\frac{1}{E}+\frac{r}{G}\right) \frac{\partial^{4} y}{\partial x^{2} \partial r^{2}}+\frac{\rho^{2} r}{m G} \frac{\partial^{4} y}{\partial t^{4}}=0$
$C_{B}=a \sqrt{2 \pi}\left[1-\frac{1}{4} \beta \frac{2 \pi}{\alpha^{2}}+\frac{1}{4} \delta(2 \pi)^{2}+\cdots \cdots\right]$

[^3]sums up the vibrational behaviour of a cantilever under dynamic conditions. It can also be used to prove that rigid materials, such as ruby and diamond, make for better cantilevers than boron, berylium and the rest.
(There is a 'big brother' to the Ruby, which has a diamond cantilever and costs around £450 as opposed to the Ruby's $£ 100$. If I can persuade the everhelpful Dynavector into lending one I hope to report on the differences soon. Maybe if I say "please". ?)

Temperate Zones of Test

Another piece of original thinking has gone into solving the problem of temperature dependence and damping material. The only rubber used in the Karat is to prevent the cantilever taking its jewelled self up into the body whilst playing records. Normally the pivot damping in a cartridge is accomplished by a rubber block and this is prone to suffer from changes in temperature and slow deterioration as it ages - the Karat suffers neither of these weaknesses.
in fact, due to the short rigid construction of the cantilever. the Ruby requires no damping at all.

Under test the Karat showed a ruler flat response from 100 Hz to 30 kHz of under $\pm 0.5 \mathrm{~dB}$! It was only 1 dB down at 30 Hz and separation measured an excellent 24 dB at 1 kHz and a more than adequate 18 dB at 20 kHz . Stylus resonance fell at 49 kHz and in the SME Series III (what else?). LF resonance was well placed at 12 Hz , below audibility and above warps.

Tracking was exemplary for a moving-coil unit - at 1.75 g it tracked all my test bands perfectly, the first moving coil to do so. Bias was set for 2.0 g , a high value, but one that worked well. In actual use the K arat was never caught out by any recorded information.

If at this point you're looking around the pages in search of the usual response graphs, don't bother - 1 haven't included any. If you really want to see a straight line, go buy a ruler. Dishearteningly disappointing for us cynics.

Listening Out

As the Karat Ruby matches the SME Series III so well, it was left in that arm all through the listening test. One brief excursion into a Linn Itokk showed the two to be completely incompatable in my opinion, as the sound stage broke up and the bass became so loose as to be positively flapping! Strange that, as both are capable of much better and there is little on paper to point to such obvious mutual abhoration.

The loudspeakers used were my trusty KEF 105 II's fed by a variety of amplification from Crimson, Monogram and Trio. Source equipment remained at Thorens $1605 /$ SME III throughout.

On the very first LP side I played with the Ruby it was obvious that here was something special. The sound is so detailed and open, with such tight control of the bass that it makes you sit up and take notice of the music. This is a cartridge that will be much appreciated by reviewers, as it is so easy to listen through for long periods.

In fact there is little I can say against the Karat. It is a trifle recessed - I cannot account for this impression from the lab results, however, but it remains a definite impression - but is so relaxed and balanced a sound that none but the most obnoxious could find aught to quibble with. The sound quality reminded me greatly of the Ortofon MC30, but with greater resolution of complex passages and a more extended bass end.

At around $£ 100$ the Karat Ruby is an excellent bargain. Even accounting for the required step-up device, this pickup is required listening for anyone in the market. I have no hesitation in saying that it out-performs many units costing much, much more and will give more musical pleasure than just about any other cartridge I know.
6 Mind you, I haven't heard the Karat Diamond yet . . but can it really be worth $£ 350$ more? On this evidence I would doubt it! (Pause while Dynavector work out whether this is a compliment or an insult . .)

ELECTRONIC IONITION Makes a geod car betfer

TOTAL ENERGY DISCHARGE dectronis pution pives ell the mem inoen avevtars of the boul cepecitive excherg ivtioms.
 condifien.
IMPROVED ECONONY \longrightarrow no low of ivition perlormence betimem mivione
FIhES FOULEO SPANK MCOS mo orter ovetem cen botter the cepecithe dincherpe ovition t elmoty to fire louled ane
AECUAATE TIMONO - mevents contest ene and ersine by miveing loed to e low volts and ofrection of an ump.
BMOOTM PERFORMANC ह - Enumbe to contect bounce and timity oflocte which cen ceves low of powe and rouninimes.

PLUS

SUPER POWER SPAQK —— In sumes the enery of endinery

OPTIMUM SPARK DURATION 3 timm the furobion of ontimery
 manturet
 Eertery.
CORRECT SPARK POLABITY untite most ardinary CD ynven
 M.T. uretern and oper oto all voltap bineered tachometers.
C.ED STATIC TIMING LIONY to ecourete erteng of the enivinais most importent arpatimane.
BOW DAOIO INTE日FEDENCE Thily mpporeed mpply ond amonce

 combined with top enelity componinits $-\infty$ dis the "limete ineurence" of e diengowe switch to revert imsemety beck so stenderd innem.

IN KIT FORM A1 proutins e top pertormance

 complote with circuit demptem, wo provided - you naed to ment collering iron and of bivic tooh
AS AEVIEWEO IN
EEEGTRONICS TOOAV INTERNATIONAE JUN "I I Iswe and EVERYOAY ELECRONICS December "BI lswe

FITS ALL NEGATIVE EARTM VEMICEES.
6 or 12 volt. with or without ballest
OPERATES ABE VOBTAOE IMPUESE TACNOMETERS
 PWICS Pas

STANDARD CAR	£ 14.85	
Assembled and Tested	£24.95	61.00
		8
TWIN OUTPUT KIT	5	
Assembled and Test	£ 34.70	VAT

ELECTRONIZE DESIGN

Dept D. Magnus Road. Wilnecote Tamworth. 877 58Y Phone: 108271281000

(\%) TT TR

Accristeved in fantend 1179820
2678. 270 ACTON LANE, LONDON W4 50G. Telephone

Telex 291429
01.7471555
$01-9946275$

13 andos co sai ceririves

RELAYS

CONTINENTAL

SUBMIN FOWER, 5A coneacts. small physical eisa, SPCO 100p, beses 25p

FOWER RELAYS. Plug in octal and 11.Pin 2 and 3 PCO troos with Ih Amp contact rotings By Schrech. BaR Omron. Ate.

Only 2000
2ETTER LOW PROFME TTVD A25 and 6)
Just in, olorge quantity of tlot pect relove in stenderd, heow duty and letching ivpes We cen offer these of ofraction of list price in many coil voltages and contact awangements. Full dete suppliad on request. Sond SAE or ring for list.
OIL Rolaws
form 4 .
Only 100p en

SWITCHES

Spectel omers include.
LLUMINATED
Licon 01-800 push frr 2PCO swichea. Seperate bulb contects TTVe ftongel SA reted contacts. lenses included. Letching of momentery ection.

Arention: Licon stoctes repidly diminishing - BUY NOW and SAVE

ROCKER

Hlumenoted mains ructer swiches. 164 contacts
DPST. Rod, push fit. $20 x 30 \mathrm{~mm}$ standerd type . 30
SPST Amber, pushift. 14m30mm stenderd Pype 300

ROTARY

1P12W, 2P6W, 3PAW Lontin trpe Sop ea.
2pilw Elms gold plated adiustable. Migh quality _it.
MICRO

V4 roller, arm or slendard _._..._._ 500.
Oll
4mDPOT: SrOPOT, gold contacte. DVEAG \& CTS, only _op
Industrial type

2 Pol 12NGOOVAC	1150
8 Pol 10w 3HOVAC	300
10 Pole $12 A 600 V A C$	300

CABLE

Our cable etock must be seen to be believed, so is is impossible to list it all. ELECTRICIANS... buY our $2.5 \mathrm{~mm}^{2}$ for only lis/100 and $15 \mathrm{~mm}^{2}$ only \& 1 100. VIOEO CABLE. UR75 750 COon Mil soer only CRW100 BELDEN CABLE. MOOL Up WYe in 24. 30 and 18 AWG SUper prioes MAINS CABLE in $0.5 \mathrm{~mm} .075 \mathrm{~mm}^{2} 1 \mathrm{~mm}^{2} .15 \mathrm{~mm}^{2}$ T.V. DOWNLEAD. excellont rotes for 100 m . MULTICORES of all trees RIBBON CABLE. We've got it. Why not see for yoursolf.

SEMICONDUCTORS

We of course cerry a full rence of transistore, diodes. CMOS, TTL Lineors. Triecs. Thyrietors and other devices but lack space to print bong boring lists. Suffice to sev we will beot most of our competi. tors on price, availobifity and quality of produce.
The folloring ere eveleble in enormous quentity. generous trede discounts are olvered:
$8 C 184-8 U Y 69 C-8 F R 87-2 T X 312(n p n)-27 \times 32(p n p)$ 8y203. Our price $200 p-2$ N3373. Our price 180p

> lus series TI

The foffowing numbers ere hold in cuentity. Mextmum sevings

CONNECTORS

MAJNS CONNECTOAS

US pettorn 2 pin fiet plugs. sockets, line societs all $20 p-a$ IEC Europlugs
Qulain 3 Our price ontry sop tree soctel 6 Amp plug and Connon LNE letching mains free socket .an 1. \%o Chassis mounting plugs - is EDGE CONNECTONS IALL GOLD PLATEDI
0.15 piech

18 wov
22 wov_......80p
1.00
2.22 wor $\quad 1.50$
0.9 prich

24 way $\quad 100$
37 woy _-.... 150
40 woy $\quad 1.75$
2x40 way 2,00 78 way 250.2778 wov 450

AUON CONNECTORS

We srock all fypes of jack, phono and DiN pluge soo numerous to list. phone for detedte in prolossional types we hove:
CBC Trpe ning lockung multiwey connectors lashioned in heev duty nickel plated steel with cable clemp In 2,3.4.5 and 6 wey

Only $\$ 1.00$ per pe
Switchepaf XLR Serves the profession ts choiep-

03 M 3 pin chassis plug $\quad 1.10$ p
OJF 3 pin chassis stre 1.60 p
FUSES: 20 mm OB 7p. AS 10p, i\% inch OB 7p. AS 12p. \% inch 6p each.
MOLDERS: 20 mm P/M J5p, Chassis mounting $10 \mathrm{p} .1 \%$ tnch Pand mounting $40 p \mathrm{C} / \mathrm{M} 100$ H inch P/M 250 .
MAINS AETIERS: Computer grede but ided for Mifl, etc. 8 or 15
Amp.
ctes.
SLOW MOTONS: Mains or 115 V operotion, great for timing pur. poses or discos.

Mains or II5V operction, great for
NON BULAS: Wo hove very lorge quanities in stock
of gutes: 50 W 12N projector ivpe, to cloar.
500
LOCTITE: Penotreting eohosme. If realy stiche. 50 ML for only - 23 DVEITAL MULTMETEAS: Superb value, coov of professional model. Full ronges and spoce. OUN FiICE 440 TMKSOO METERS: Tough dependeble Multimoter RON N sens. Full renges in V_{0} A B R OUR PRICE RE CA, SPEAKERS: 3 woy 20 watt sholl mounting. 4 "Bass driver. 2V" Midirange. i" Tweoter. Intornd poserve crossover Greet sound aripr. PLUS 4" oriver BALL SPEAKERS. real 20 W outpul, criso, clean sound, genuine bergein at .
SOLDEA: 60/40 1ESWG, 500 gm R3.50. 2500m 13 so
IRONS: Anter X25 4450 Antor Cis E4.EA. 12 V 25 W Irons CB ,
This advenisement ts mainty of our excess stoctholding. We deo hive emcellont stocts of semiconductors, hardware. cables. asc. Ac For lurther deteiles sand for our lipis and retail pilce catalogue. phone or visit our shop. All pribes are exclusive of Vat fend Pegh. Mintmum Med Order C5 - PEP \& VAT, Government depertmente, echoole, colloges, ipede and export welcome.

267 8 270 ACTONLANE. LONDON W4 50G. Telephone
 Telen 291429

STABILISED POWER SUPPLIES

FARNELL A15: 210/240V IP Oual OD 12-17V pee roal of 100 mA Romote sonsing, curront limit protection $(16 A \times 130 \times 30 \mathrm{~mm})$, with manua. 12
FANNEL 7 ISC: $120 / 240 \mathrm{~V}$ IP. AGjustobit curnent limit. Aomote sensing. (188r96m 93 mm) Two versions aveilable: ISV of 2 A or 30 V at lalis ee.
COUTANT OLZ: Op. emp, pen, 120V240V IP Oual Op 12-15v a 100nh ($138 \times 80 \times 45 \mathrm{~mm}$) C12 ee or 2 for 22.
BRANDENBURG Photomukiptor PSU. igin reck mounting Motered, curront limtr protection.
374300 V -1KV as 5mA 376660 V . 1 K 6 V at 10 mA
375 500V. IKSV of ema. All models 440
PIONEER MAGNETICS FOWEA SUPPLIES ...5V 150 amp, output Input 118 vec. (Swischmade) Price (120 each.
Verious other mates of power supplies in slock Plesse send for lists S.AE. please.

DTO A CONVERTERS
 15MM2. Bert

By Micro Consultants Lid. 50 cable dirve op. Unearity 0250 , man 0.125% tya Serting time. 2V etep 7ons typ. 2MV step sons colour telovision trangmission standerd DiF gain 0.5s dift. phaso shif 0.5° ipes ied 802 and MC22018 Unused En-metor's pact SPECUL OFFER PAICE: COO

NEW IN STOCX

Aronge of hing quality transformers SPE CULLY WOUND for us By buying direct wo con offer those superb SPIIT PRIMARY E SECONDARY iesnslormers at mighly competitive perices

	0.15.0.15	220
I2VA	0.-4V5, O-4V5	
	0.6 V .0 .0 V	
	0.9V, 0-9V	
	$0.12 \mathrm{~V}, 0.12 \mathrm{~V}$	2.30
	$0.15 \mathrm{~V}, 0.15 \mathrm{~V}$	
	$0.20 \mathrm{~V}, 0.70 \mathrm{~V}$	
20VA	O-4V5, O-4V5	
	$0-6 \mathrm{~V}, 0.6 \mathrm{~V}$	
	O.9V, O.9V	

	$0.12 \mathrm{~V}, 0.12 \mathrm{~V}$	3.80
	$0.15 \mathrm{~V}, 0.15 \mathrm{~V}$	
	$0.20 \mathrm{~V}, 0.20 \mathrm{~V}$	
SOVA	0.6 V .06 V	
	$0.9 \mathrm{~V}, 0.9 \mathrm{~N}$	
	0.12 V .0 .12 V	A. 83
	$0.15 \mathrm{~V}, 0.15 \mathrm{~V}$	
	a-20V.0.20V	
120 Va	0.30V,030V	
	$0.40 \mathrm{~V}, 0-40 \mathrm{~V}$	130

CASED AUTO TRANSF ORMERS

240V Cable Inout. American outler socter.

Asping-.. Price	750 Va	C2350
300 V (11300	1000VA	127.00
500 VA - 18.00	1500VA 8360	
Other Trenslormers	12 VA	
12 VA 6-0.6. -0.9. 12-0.12	0.12.0.12	250
-ll 1.14	18VA	
1.5VA	9.0 .9	2640
I2V	2ava	
15V 1.00 p	12-0.12	3.30
24.4	12 V	4 40
	30VA	
24 V (pcb) $\ldots \ldots$. 1.000	15.0.15	362p
SVA	36 VA	
$5.0-5$ - 1.25	90.9	470p
6 VA	SOVA	
24V	0.2-4-6-8 10	6000

VERO PRODUCTS

Aopte proto boerds \quad C.009 Vero bomes - 2 tome grev/white plastic bores
4x2ninno....... 1950
422\#1\% 2220

7x4y $21 / 6$ (ainfiont) $351 p$
Vero AES Buack Plasic Bores
4hz3Marl\% Tep
$741 / 2 \pi 2 \%$
Veropim ispvice. Stend of $45 \mathrm{p} / 100$. Trech cufters $\$ 1.16$ p.

4 MILLION

 I.T.T. ELECTROLYTICS NEW AND BOXED NOW IN STOCKEN 1212 AXIAL EN 1235 RADIAL
The whole range available at unbeatable prices. Send for list.

Abstract

5 million Disc Ceremics in stock. Ceramic plate. Mulfi-layer ceramic. Low voltage discs. Monolithics Ceramics. Migh voltage discs. Subminisfure plete, epory cesed. Send for lists or pleese phone for details.

MULLARD: Serios 106 Compuler geade electrofvice 10.000 wf af 18V. Brand new and bomed 340 es. SPPAGUE: Speres 350 Computer gerste electeotrict 3.300^{31} at sov Brand now and bosed - 35p ee Sifmens: Prociond Madial Polvesten Film Cepecitors 10 mf af 63 V Brend new Only 40p
Ouantoty availabie

RESISTORS - PRESETS - POTS

CARBON FILM KWW Irom IRO 10 12M Only $\$ 1 / 100$ or CSW 1000 METAL OXIDE: TRA. TRE. TR6, TR8 in E2s renge. OV Elnctrosti or Phillpe in 50.2% 1\% Save CTIS on manulacturev's prices
Whitwound: We spociatise in Welwyn Vitreaus Enomollod W. series types in 2'/W so 12 Watl. Aso a good selection of HSA ivpo mpter clad power resistors and TV dropper replecmement sections HIGM STABMITY: 0.1% Tolerance Ressiors for instrumentation purposet By Fitmot or Wetwy 3k. 10x. 30k. 1M Jonly 30p beAncerts: Steleton and enclosed. horizontal or verical Piner qual. ity prosets, Rance trom 100 P to SM Powler P1 10 suse 10 p aach ANO GAEAT DESCOUNTS ON OUANTITY
CERMET PRESETS Too qualety presete good renge stocked
Only 15p ee MUL TITURN PRESETS: $\% \%^{\circ}$ and 1% "Bourns ivpe Only 500 eech. SPECIALI 100k is iurn is". Only 20p each
SWIT CMED FOTS Push swith pots from AB in 22 K lin and 100 K
ting Switch independent of pot ection 300 es RESISTON NETWORKS Large range in DIL \& SLL pacteges by Beckmen BAB Send SAE or phone lop lise.
WELWYN STRAIN GAUGE. (Precimion Micro-Measuremenis). Romulus wichegan froe MA 09 50084-350. Our price il 25 ea List price C3 85 Large quantitios availabie.

WE PURCHASE

Surplus component stocks, redundant materials, obsolete computers, for cash.

We also collect - distance no object. Just call:
> C. T. Electronics (Acton) Lid.

> 267 \& 270 Acton Lane. London W4 50G Telephone 01-747 1555; 01-994 6275.

> Tolex 291429

[^4]
ROBOT MOTOR CONTROL

This month we feature a control board for last month's motor driving board. This is part 2 in a series of DIY robot modules - collect them all! Design and development by Rory Holmes.

n thes second part of the series on the EII intelligent proyrammable mobile we shall describe the desian of an analogue pulse width modulator for conkrolling the motor drwer sage featured last month We shall also take a brief look at some of the modules being offered teter in the series which can be added in stages to enhance the motorsed whicle. The intention is to build up to a complete computerised mobile

A lot of flevibility has been allowed for in the actual use and conflguration of the modutes, as we are well aware that consenctors imerested in this type of project hove firm ideas of their own on the final form and capubilities of their mobile.
Construction and interconnection details for all the modules we are presenting will be given along with guidelines to a renge of applications

The facilries we have plenned for the mobile will contime with the digtal motor control and an onboard programmable compuner for overall contiol of other modules A ligheweight manipulator am complete with seaching arm has also been drenered. for mounting on the front of the mobile th is powiond ty four retso control servo motors and the electronics intertecs beeseren to servos and computer will be descritend
along with details of the arm mechanics. Optical proximity detectors for object sensing and infrased lachogenerators for speed sensing will also be featured on the ETI mobile.

It is hoped that the designs will also prove useful as stand alone modules for individual use in other applications. Optical proximity detectors, for example, have numerous applications in batch counting Iimit sensing detection alarms and so on

The digital pulse width modulator in nevt month's issue will find many uses in the control of analogue functions how about a computer interfaced to a pulse width modulated opitcal data lint, for analogue information transmission? Our version will control two pulse width modulated channels, whth a resolution of one part in 25t, via an eghe bit data port modulation being achieved solely by logic to satisty the alldigital purists.

Optical Proximity Detectors

These have been designed as small independent units with as much inbuilt venatility as possible The circuitry is housed in a short length of aluminum tube avially aligned in the derectior divection, with three external
connecting points. ground. positive supply, and an open collector digital output A number of detectors can thus be easily mounted in strategic locations All circur operating parameters are independent of the supply voltage, which can be amwhere between 5 and 35 V at a current of 20 mA

The proximity switch works on the principle of transmitting and detecting a modulated infraved beam. The infrared iransmitter recenes 1 A peak current pulses of 10 us duration, with a modulation frequency of 1 kHz . The 100.1 dutviactor thus achieved allows high currents to be used to increase the detection range. while reducing the average supply current to only 10 mA

The sensor can be set by a preset pot, accessible through a small hole. to detect an object at any distance in the range 1 cm to 35 cm .

A small amount of hysteresis is introduced into this switching distance to ensure clean switching thresholds and stability of the output signal. The use of tuned detector amplifiers provides etcellent infra red interference refection

Analogue Speed Control

The analogue speed control has

Fig． 1 Various voltages associated with the circuitry around Q3．The control voltage is for the motor driver amplifier．

The circuit is designed to provide a linear control－voltage－to－pulse－width relationship for greater flexibility in application，and to simplify the addition of speed feedback velocity control．

The modulator can be built either single or dual，and the manual control section，if not required，is easily omitted．Speed control is achieved via two remote potentiometers，allowing speed to be set in either forward or reverse directions independently for each traction drive．

Since both motors are controlled via switching amplifiers from the same battery supply，it is important to reduce the peak currents that are drawn．This can be achieved by offsetting the phase of the switching waveforms relative to each other，such that at 50% duty cycle modulation，power

BUYLINES

[^5]

Fig．3．How PWM waveforms may be generated using a comparator．
measured at point A in Fig． 5.

Fig． 2 PWM motor driving waveforms for last month＇s circuit．
been devised for manual control of the main traction motors；it provides two pulse width modulated signals suitable
－12v－ーーーーーーーーーーーーーーーーーー－FORWARD／REVERSE

Fig． 4 The waveforms needed by our motor driver board，published last month．（Q3 and Q4 refer to last month＇s clrcuit．）

The circuit for the dual analogue pulse width modulator is shown in Fig. 5 ; it will be seen that each channel is identical with the exception of the circuitry around the CMOS gates IC1 and IC4. As described earlier the two switching waveforms must be the same frequency and synchronized 180° out of phase, to distribute the motor current peaks more evenly through the cycle. This is achieved by synchronizing both pulse generators to a master clock based around IC1a and b. $A 20 \mathrm{kHz}$ square wave is generated by this conventional astable arrangement and its frequency, set by R1 and C1, is fairly independent of supply variations.

The output of IC1d at pin 6 provides a buffered square wave in the same phase as the output on pin 10 of IC1b. C2 and R3 differentiate the positive-going edge of the square wave to produce a very short logic low pulse at the output of Schmitt inverter gate IC1C. In similar fashion C9 and R16 produce a logic high pulse coinciding with the negative-going square wave edge. IC4b further inverts this signal to a logic low pulse. Two separate trains of 500 nS negative-golng pulses are thus provided in the correct phase relationship for resetting the charging cycle of two sawtooth oscillators as described below.

The pulse width modulators are iden-
tical from here on and we shall refer to the topmost circuit for description. Voltage controlled pulse width modulation is, in principle, very simple; a ramp waveform (sawtooth) is applied to one input of a comparator and the modulation voltage to be encoded is applied to the other, producing the required PWM squarewave at the comparator output. Figure 3 illustrates this operation.

Due to the design requirement of a linear relationship between control vollage and pulse width, a constant current source formed from Q2 is used to generate the linear ramp waveform. LED1 and the baseemitter junction of Q2 are forward biased by R6 and together define a temperaturecompensated voltage across $R 7$ which in turn defines a constant emitter and collector current of about 1 mA . C3 is charged up negatively from this current, unfil the negative-going reset pulse arrives from inverter IC1c. This pulse turns Q1 hard on for a very short period ($\mathbf{5 0 0} \mathrm{nS}$), during which C3 is completely discharged, taking the ramp voltage back to +8 V . This process repeats at the clock frequency of 20 kHz , providing a negative-going sawtooth of about 3 V peak-to-peak referenced to the +8 V rail.

IC 3b, the comparator used to perform the modulation, is an LF 353 dual op-amp,
chosen for its large bandwidth and high slew-rate. The inverting terminal on pin 2 is fed from the ramp waveform, while the noninverting terminal is fed from op-amp IC 3a, an inverting amplifier configured to sum control voltage inputs relative to a 4 V reference.

The potential divider R11 and R12 provides the $4 V$ reference to the non-inverting terminal of IC3a, and the control voltage applied to R13 at point A is summed relative to the 4 V . An offset voltage set by PR1 is also summed at the Inverting terminal of IC3a, and is used to bring the control voltage into the correct operating range and for setting a deadband region on the manual control pot RV1.

The output of op-amp IC3b (and indeed most others) will not swing to the full supply rail voltages, so the inverter gate ICle is used to buffer the square wave to full CMOS logic levels.

The manual control system included in this circuit enables a single potentiometer to control the speed in both forward and reverse directions. When the pot is at centre travel, and for a certain deadband around this point, the motor must be stopped and no switching pulses should occur (ie the PWM signal is continuously low). As the pot is turned in either direction from its midpoint, the pulse width should in-

crease and this requires a positive-going input voltage to the summing amplifier IC3a. The forwardireverse logic level should also change state as the pot moves through its midpoint. Q3 provides the necessary voltage transfer function from the pot RV1 to the control voltage summing amplifier, as explained graphically in Fig. 1.

The emitter and collector resistors of Q3 are both equal and the base voltage is laken directly from the slider of the manual control pot RV1. The output voltage is taken from the collector of Q3 to feed the summing amplifier, and will be held at +8 V via R9 when Q 3 is switched off. As the slider of RV1 moves toward the centre of travel, the base voltage rises, slowly furning on Q3 and lowering the collector voltage.

When Q3 is turned hard on as RV1 reaches its mid-polnt, R9 and $\mathbf{1 0}$ will form a potential divider giving 4 V as the minimum control voltage. Further increase of base voltage can now only increase the emitter and collector voltages back up to the positive rail, reaching a maximum at one $\mathrm{V}_{\text {be }}$ drop from the +8 V rall.

During the above process the voltage on the emitter of Q3 rises from zero to the same maximum voltage, and is fed to the inverting terminal of IC2, a CA31s0 used as a comparator. The other comparator input receives 4 V derived from the potential
divider R11 and R12. This provides the required forwardireverse signal that corresponds to each half of the control pot. Inverter gate IC1f buffers the output of IC2.

C7 and C8 provide supply decoupling for both channels, while C5 and C6 provide further smoothing for the 8 V zener regulator formed by R16 and ZD1. This $8 V$ relerence rail is used for two reasons; firstly to allow for fluctuation in the 12 V battery power supply that would otherwise affect the oufput pulse width, and secondly to ensure that the op-amp supply voltage is well above the maximum input voltage.

The resistor marked as R_{1} in the circuit shows where a speed feedback voltage will be added to the controller to close the velocity control loop. An infra-red tachometer module to directly sense the traction speed will be described later in the series.

If the manual control input is not required, the components associated with this can be simply omitted (ie RV1, R8, R9, R10, C4, Q3, IC2 and their equivalents in the other channel). Control voltages may now be fed to the unconnected end of R13, where a variation of 3 V , set by PR1 to be anywhere in the range 0 V to 8 V , will provide $\mathbf{1 0 0 \%}$ control of the output pulse width. Forwardireverse switching must also be applied to the input of IC1f on pin 3.
will be switched alternately to each motor. This spreads the current peaks more evenly over the switching cycle.

Construction and setting up with interconnection details for the motor driver will be described next month.

PARTS LIST

Resistors (all \% W, 5\%)	
R1	100k
R2	15k
R3,6, 17,20	2k7
R 4,18	470R
R 5, 7, 8, 19,	
21,22	1 k 0
R9,10,23,24	22k
R11,12,25,26	10k
R13,15,27,29	1M0
R14,28	330k
R16,29	150R
Potentiometers	
RV1,2	10k linear
PR1,2	10k linear miniature horizontal preset
Capacitors	
C1	1 n 0 ceramic
C2,9	220p ceramic
C3, 10	15n polycarbonate
C4, 11	$\mathbf{2 u 2} 35 \mathrm{~V}$ tantalum
C5, 7, 12	100 n cer amic
C6, 13	220u 16 V axial electrolytic
C8	100u 25 V axial electrolytic
Semiconductors	
IC1	401068
IC 2,5	CA3140
IC 3,6	LF353
IC4	40938
Q1,4	BC21sL
Q2,3,5,6	BC184L
LED1,2	red LED
201,2	8 V 2400 mW zener diode

Miscellanous
PCB (see Buylines)

CRICKLEWOOD ELECT 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET

Tel: 014520161 TAVthicel 10 minnion tineis nom
TRY OUR SERVICE 6 WE MOPE YOU WIL BE OELIGMTE ON

HOW TO SUCCEED IN TME ELECTRONICS BUSINESS:

Aunalable at your
 newsegent or drect for
 GOP P B P inc

INVEST 60p AND MAKE $\$ 2.40$ net profit

Buy Ambit's new concise component catalogue and get £I vouchers. Use them for a $£ 1$ discount per $£ 10$ spent. But even without this, you will still find WR\&E offers the low prices. fast service and technical support facility second to none. Here are some examples from the current issue:

CIIMIT international 200 north Service Roond, Brentwoud, Essen

SOLID STATE REVERB UNIT

Where have all the spring lines gone? Gone to lesser projects in other magazines, that's where. Meanwhile we present this cheap, simple, but high-quality unit using solid state technology. Design by Charles Blakey.

Ai last - a reverberation unit which is not a pseudo echo effect and does not suffer from the defects of spring line devices The unit described below will interface with virtually amy preamplified signal and is ideal for direct use with most musical instruments or for incorporating in the 'echosend line of misers The design has been made possible by a new 3328-stage bucket brigade device hoving sit tapped delars and capable of producing a useful reverberation time of about three seconds.

Sound emitted in an enclosed space will be subjected to both simple and multiple reflections from internal surfaces Since these surfaces are at varying distances, the time for these reflections to occur and then decay by absorption will vary. The effect is a buildup of sound known as reverteration When playing a muskal instrument in the home, small studio or some other venue, the decay ime can be very small coupled with a high absorption loss, the result is a weat sound when compared to recorded music or to live music plaved in a large hall.

Until now the only low cost method of simulating acoustic reverberation has been the use of spring lines These units, however, are prone to vibration, require a high
power consumption for effecive driving and are prone to producing distoried resonant peaks Furthermore th is not possible to adjust the reverberation time and in many instances a shor reverberation can be very effecive Another option has been available for some vears namely, the use of bucker brigade devices to electronic ally delay signals. While claims have been made for reverberation effects based on these products. a realistic unit would require at least three dual 512 -stage B8Os. such as the Reticon SAD102* . The cost and complexty of the latter approach puts th bevond the reach of the average constinctor.

Beyond The Pail

The reverberation unit utilises the MN3011, which is the latest in a series of bucket brigade devices for audio applications to come from National Panasonic. They are all fabricated in PMOS and for a seart you can forget most of what you may have read about the disadvantages of PMOS BBOs. It is a fact that they are somew hat limited in clocking speed (10 kHz to 100 kHz) and also have a limited bandwidth. typkally 10 to 12 kHz . The latter. however, is not usually a limitation since the bandwidth is often rescricted
by the desire for long delay times What makes the series ideal for audio applications is theit low insertion loss. low distortion and excellent signaltonoise ratio and for the MN3011 the specified values are $0 \mathrm{~dB}, 04 \%$ and 76 dB respectively.

The IC is unusual in that it has 12 pins but is the length of a normal 18 pin package the functional block diagram and pinout for the MN3011 is shown in Fig. 1. As is normal with such devices it requires two power supplies. $V_{c o}$ and $V_{C c}$ the former may be up to - 18 V with respect to ground while $V_{O C}$ should be +1 V higher than V_{00} Bucket brigade or charge coupled, devices are analogue shift registers which operate by sampling the ingut signal at a rate determined by an eriernal clock The signal level at the time of sampling is stored on an internal capacitor, this charge is then clocked down a series of capacitors by means of in:ernal switches The transter process is accomplished by a dual clock whose outputs are in antiphase and so are alternately opening and closing adjacent switches it wifl be apparent that the slower the clock speed the longer the delay Since the devices operate at high clocking speeds the input sienats are faithfulty reproduced at the output.

The most interesting feature of the

Fig. 1 Pinout and internal layout of the MN3011. The centre three pins on each side of this 18 pin package are absent.

MN3011 is that it has six tapped delays and Fig. 1 shows the number of stages for each tapping. The tappings are not evenly spaced since othenwise the reverberant sound would have a distinct flutter. If the device was being clocked at 10 kHz then the delays from outputs one to six would be 19.8, 33.1, 59.7, 86.3, 139.5 and 166.4 milliseconds respectively. If these delay times are mutiplied by 0.33 then one obtains the equivalent room path length for one trip, ie the longest delay is equal to a room length of 55 metres (181 feet). Reverberation time is usually measured as the time taken for the power to decay to one millionth of its initial level (60 dB down). For the present design the time was measured for the output level to fall to one hundredth of its initial level $(-40 \mathrm{~dB})$ and at the longest delay this was found to be about three seconds.

Blocks 'n Clocks

The block diagram of the circuit for the reverberation unit is shown in Fig. 2. First there is the dual clock driver, which is another National Panasonic device, the MN3101. It has an oscillator, divider and wave form shaping and produces the dual clock pulses required by the MN3011. It reduces component count and is lower in cost than other alternatives, such as a 4007. A further advantage is that it also generates the required $\mathrm{V}_{C C}$ voltage.

The unit will operate satisfactorily

with any input signal greater than 280 mV RMS and higher input signals are attenuated by the input potentiometer. The signal is also reduced by half in amplifier A1 and inputs higher than 140 mV to the first filter are indicated by a LED peak detector circuit. Although the MN3011 will accept signal levels up to 780 mV before the distortion value stated earlier is exceeded, it will become apparent that the effect of reverberation can lead to reinforcement of signals and consequently this has to be allowed for. The only preset in the circuit is used to apply a bias voltage to the signal. The precise value of this voltage is not very critical in the current design and the object is to keep the signal at a level where it will not be distorted or clipped within the BBD.

The main problem with BBDs is the inability to completely cancel out the clock pulses and these can form audible cross products with the input signal. In order to prevent this foldover distortion, the bandwidth of the input signal should be limited to between a half and a third of the clock frequency. Filter F1 in Fig. 2 is a lowpass filter with a cut-off frequency of 3.6 kHz . This may seem rather low but in fact it is equivalent to the upper reverberation limit of most spring lines and the BBD scores in respect of low frequency responses since springs usually give rise
to 'booming' below 100 Hz . The limited bandwidth is compensated by mixing the original signal with the reverberated signal at the output stage. The filtered signal goes to the MN3011 and the six output stages are summed to give a composite signal with different delay times. This signal is again filtered with a lowpass filter with a cut-off frequency of 3.6 kHz , to remove residual clock glitches, prior to mixing with the original signal at the output amplifier, A2.

The most important feature, however, is that the signal from the longest delay is returned, slightly attenuated, to the input and subjected to further delays. This is the reverberation effect and with the times given earlier the sound will simulate the effect of the first reaching a surface 55 metres away (assuming slowest clocking rate) and then being reflected back as well as being reflected from other surfaces closer than the 55 metre surface. The whole process is repeated until the original delayed signal and its reflections die away. In the meantime new signals are being recycled and the overall effect is a build-up of sound reverberation.

Construction

The construction is very straightforward but the following precautions should be observed. First,

Fig. 2 Block diagram of the ETI
Solid State Reverberation unh.

BUYLINES

The PCB and a kit of components for the reverberation unit is avallable for $\$ 32.00$, inclusive of postage and VAT, from Digisound Limlted, 13 The Brooklands, Wrea Green, Preston, lancs PR 4 2NQ. The power supply may aiso be obtained for an inclusive price of $\mathbf{8 7 0 0}$. As the PCBs are copyright they will not be available from our PCB Service; however, the foil palterns are reproduced at the back of the magazine. National Panasonic do not distribute active components in the UK and the ICs may only be obtained from Digisound.

Fig. 4 Circuit diagram of a suitable PSU for this project.

Fig. 3 Component overlay for the reverberation unit.
make sure you get the correct orientation of the ICs which are clearly shown on the component overlay. Second, the MN3011 is a CMOS device and with the advent of ' B ' series devices we have all become rather careless as regards handling such ICs. For the MN3011, however, take the precaution of working on a grounded

Resistors (All \%W 5\% except wherestated)		PR1	47k miniafure horizontal presel
R1	10R 1\%W		
R2,5,7,9.			
13,32,33,39	100k	Capactiors	
R $\mathbf{3 , 3 4}$	51/	C1.2	10u 35 V PCB electrolytic
84	330R	C3,4	100 n polyester
R6	143	C5	22u 35 V PCE electrolvtic
R8,12,27,31	33k	C6	220 n polyester
R 10,29,37	47k	C7,10,13.	
R11, 30	56k	20.22	220p polystyrene
R14.16, 18,20.		C8, 14,15,	
22,24	56k 1\%	21.24	3 u 363 V PCB electrolytic
R15	100k 1\%	C9,11,12.	
R17	110k 1\%	18,19	2 n 7 polystyrene
R19	120 ${ }^{\text {¢ }}$ 1\%	C16	2 n 2 polystyrene
R21	130k 1\%	C17	270p polystrrene
R23	150k 1\%	C23	33p polystyrene
R25	160k 1\%		
R26	200k	Semiconductors	
R28	82k	IC1	11074
R35	18k	IC2, 4	LM358
R36	1k0	IC3	MN3011
R38	$36 k$	IC5	MN3101
R 40	68\%	$\begin{aligned} & \text { D1 } \\ & \text { LED } \end{aligned}$	1N414 5 mm red LED
Potentiometers		Miscellameous	
RV1	100k logarithmic	SK1,2	mono iack sockets
R V2	10k logarithmic	PCB (see B	ylines), IC wockets; case (Vero
RV3	470 k linear	order no. 91	$2673 C)$

metal surface, such as a piece of aluminium foil, do not insert the IC with the power on and do not use a soldering iron on the PCB with the IC installed.

The PCB supplied with the kit has a ground plane to reduce interference from and to other electronic equipment as well as to reduce noise. This feature allows greater freedom in locating the unit, eg it does not have to be housed in a separate metal case. A ground plane comprises a metallized surface on the component side except for small areas around the holes for the components. Ensure that the component leads do not touch the ground plane - which is not difficult - and preferably solder the resistors and axial capacitors in place with a thin piece of card between the component and the board so that the former are not in physical contact with the ground plane. After soldering the card is removed. Th latter step is not essential. The one wire link must be made with insulated wire. The ground plane has to be connected to the 0 V line and some 15 mm from where the latter is connected to the PCB there is a hole marked 'join'. A piece of wire should be placed through this hole and soldered on both sides of the PCB.

The PCB has been laid out such that the BBD and clock are as far away as practical from the signal input and output. This separation should be maintained if the unit is housed in a
box and all wiring should be kept as short and as neat as practical, with the audio connections being made with miniature screened cable.

The unit requires $\mathrm{a} \pm 15 \mathrm{~V}$ power supply and the current consumption is a miserly 13 mA at +15 V and 9 mA on the -15 V line. If a separate power
supply is required then a suitable PSU is shown in Fig. 4. A PCB-mounted transformer is preferred, and it should be mounted as far away from the BBD as practical. The photographs show the unit inside a Vero ' G ' range case with internal dimensions of approximately $218 \times 138 \times 50 \mathrm{~mm}$.

HOW IT WORKS

The input signal is attenuated by RV1 and also by the inverting ampllifier bullt around IC1a which has a gain of about 0.5. From IC1a the signal goes three ways. A comparator built around ICib forms a peak detector to indicate optimum signal level, while RV2 and R35 allow mixing of the original signal with the reverberated signal in the inverting amplifier conflgured around IC1c. The component values in this section are such that equal proportions of the two signals may be mixed. Finally the signal also passes to two active filters constructed around IC2 which have a 12 dBloctave roll-off for each stage and a cut-off írequency of 3.6 kHz .
from the above filter stages the signal passes into the MN 3011 and the six delay oulputs are summed by the resistor network formed by R14 to R25. Nole that the shorter the delay, the less the altenuation. from the longest delay (pin 4) the signal goes via R25 back to the input of the filter and thus provides recycling of the delayed signal in order to generate a true reverberation effect. The reverberated signal is ittered by two active filters constructed around ICA and these have the same characteristics as the inpul filters. Between the active filter stages some passive filters have also been
added to increase the roll-off; the loss in these filters is compensated by increasing the gain of the active filters.

The dual clock for the MN3011 is provided by IC5 and with the components shown, the clock firequency may be manually varied with RV3 over the range 10 kHz to 100 kHz , allowing maximum first pass delays from 16.64 to 166.4 milliseconds. Pin 8 of IC5 provides the $\mathbf{V}_{\text {GG }}$ voltage for the MN3011. Since both IC 3 and IC5 are P-channel CMOS it would be normal to operate them from a -15 V supply. Voltages are, however, relative and by connecting +15 V to the ground pin and ground (0 V) to the $V_{D P}$ pin they will operate happily with posifive signal inputs. R1 and C5 prevent clocking signals getting back into the power lines. The filters are also operated from a single +15 V supply and this avoids any problems which may arise from excessive bipolar signals, ie they will be clipped at +15 V or ground and not damage the BBD. The bias voltage required by the BBD and the filters is primarily to allow them to accept bipolar signals; this volfage is provided by the resistlye dividet using components R39, PR1 and R 40 and is applied to the non-inverting input of the filter op-amps.

Fig. 5 Circuit diagram for the ETI Reverb.

PROJECT : Solid State Reverb

Setting Up And Use

The only setting up required is adjustment of PR1 if a sinewave source is avallable then the latter may be used as the signal source and PR1 aclusted by ear, of with an oscilloscope, for minimum distontion. Alternatnety measure the voltage at the function of PR1 and R 40 and adjuse PR1 to give a reading of $6 \sqrt[V]{ } 2$

The unit has a signal-fonoise tatio of better than 60 dB but this requires that it is operated with the peak indlcator LED just glowing or occasionally illuminating the output level will vary from about OV5 to 1 V RMS, depending on the amount of mbting of the original signat, and these levels should ensure adequate response from most amplifiers, miters. and so on In other words. by keeping input stenals at maximum levet the ampltitier setting will be such that during periods of no signal the residual noise will not be obtrusive This is common practice with recorders, many of which have much lower signalionoise ratios.

For the man who has everything else. . .
 there is the $E I I$ binder. Spend voun nighes enioying the

 finer thiges in tibe secure in the knowledre the the liner maruines of the we suke and sound Under one now and ket the loneser kerp up with you.©II Bunders cose ©1.95 each for UK nesidenes includmys postepe paching and VAT. For overseas onders sodd 30 , Send the completed coupon roperher with your remirlance 10
ETI Binders. Angus Sperialise Publications Lad. 145 Chwring Crow Road Iondon WC2M ORE
Please allow three four weats for fulfillment of order

Tominsso LB ELECTRONICS
 sunemsul 11

 ilu vory 11000 Noon covice bovi ane on bowel un onverer Mase no avo Uurouv．dice nom enven － 100 －vial coovive no 190 －hive fung mownen flus oun one pete cruper a －tury oren
sals compansio
 Cong nen sen wos

 zimuan mon ace nem

 owou sucten huret ho Wwou meves ont PWon hatentive P wor socion heven（1）so 8 wow sacionmel in in A Wer facter terivel sword an sewn leter somer ferber liverition －Wen hat hemel ca Mo on

covtes

 －


```
arp on move %
```

denars
－sou2nvol4 40 ．nile oughor
－500 thise ent ado jop
 \Rightarrow
sumemava：
 4 ver 10 st mer 24 mm
 the move x wor（1） anner 00 mone no $\ln \sin$ in woy $\rightarrow 0$ worction
ententia？
Fonevin Canistors 85 vem 41 ，14 Mil go mo．
 Nat ple Mo voo ouantom Bet

cunteavia

 enen cre C

entataven

vino leao
th moter masio on Mry － 4
wetmenven y

 4
 no wo 1200 and on 0 Castor

sumaravia

Ont ontr－TELAS minnt hiraminal manes 110 tous As now－Cis cembee or ent surthenveno
viltenn chom －a Cit var BAt
 suninsartio so
 casis wo fibl crove higen
－anst conoct 35＝$=385^{\circ}$ 。
 －curne 3 tono sunk envin ix 2 low rown an ond 2 maves onl in On 11 a0 poo nole
 mor sundnenven is
 － 10 Cl 00
tuntmaven is
Er wo nurion burn movatay oor how 14 da co As abow it und sor，ion Tho sumaryt 4 ODTAON OPTO BLOTICO sumicor tive ondion et． ap Ilip
we arten manala if
for over ens bece moo fem ower ens bece meo ave（19．15 ofty 300 rione et －avenoverprant

NCe AM INU U O 12 OC E Den toorer．12 0 OC Dos
cuntusavta is
19 eert reat tio oiep on clakn ext end wan enn anow on ons turn in lows

－un unvo ro
thin 具mith MAD it or hoecer to is of nowoer iso ple rom
ing Jungurne it is en needo is or nowoe Mo abo 300
eunemaveny
10 men on ies swo cas

A remanc orvawav，MC
 te en so the Ler
suptmavtin 2π sex thow hoe thum On utio it exraes．
以）
NHT AMNVIO yon exven of
 velat bentin nome neves －
COMOS 80000
cone18 vo fe（12）coepr）ro conoro wo con comen no

 conery io to en cones ore con fer con 10 or es er
orveaway it en woum
aneana is licM on if it
veat is socmits
Ten been oveluin
$\begin{array}{ll}10020 & 2000 \\ 100 & 000\end{array}$

Wt gYock a veet amoe of m gros veme ias M HuTLIE fopolis eve
hus No newe a vore mari of onces icelites

UHE New unte
ver ran cemacto of h Wov 015
nec hey moan componenoul．IV
 inge meonmi enend con
 3 B alc nowers a with contro oboplay lovern with censto
pl2se socket cmassis Mount Rop der Than ion
 ITI YN 1410 Re revs ith
 gespen relot mass oss唓
new Pay pounges－duet aned 4 anplenel it mov and eactor teme io in oll res． he
Ho
Terme cooh neen ordor loblend orcere wricomet loam cel
 VAI．Na mex mise stevec Postoge es Movin por mom

PPP FREE

Please 00 mot onota coors hom 0.0 aowners mont erons onotnes

is ELectmonics neilioncon molisex yavice mo． reverione enpureray mocing wou rerel pumices．now ope Mor Tuen hiva in on － 10000 bence 1.81 wontiove，cloeet ell an wod
 the A 400000150 Mooret

UXBRIOGE 55399

ONE STOP SHOPPING

No noed so weate vou tirne and moner teerching for componowes
 compenent
 on the enocterice and censtruction

3WAYS TO BUY：

ALEN ATTACK Len lt MANI DAIL SPECO COWTMOLLER JNO BI OUTTAN MOTE EXPANOER－CTI AON BI DNUM MACMINE AOA 61 Musical Boxamel EWGINE RS ETETMOSCOPE Mo 81 SOUND PAE SSUAE LEVEL METEA FOO B1 INERA RED MLAGM RTO OT MULTIOTMON SAnEM ron en 4 infur mixth Doceo musical doonect Des to AUDIO TEST OSCILLATOQ Nov to －RIMA MEI AMP inteot Mov 20 Me TRONOME Nome
SUSTAINFUZZ 80X Oct 00.
CASSETTE INTEMFACE OcI 20
ULTMASONIC BUAGLA ALABM ANg EO
CADACITANCE METER ANE 20
CMOS LOOIC TESTEN Aug ${ }^{\text {Co }}$
SIGMAL TMACEA MO EO
TUNING FONX FFot 0
CUCK ELMMAMATOA AOM T
GUITAA EFECTS UNIT Aod R．．．．．．．．

12
111 2200 115 L2 38 －
$\square \quad 0$
145211.10
e12 2
सुत is 25
18% i8
$\begin{array}{ll}21.49 & 18 \pi \\ 18.8\end{array}$
29 1780
-8
$-\quad-$
$497-$
217
34

TMIS MOWTHS PNOJECTS WhTt CAE）OA MNONE FOM Pinces

－en ever ho nect

MAGENTA ELECTRONICS LTD．
 EU11． 13 MUWTER STREET，berton OM TMENT．STAFFS，DE11 2ST

ALL PAICES INCLUDE VAT
ADO 45O PGP TO ALL ORDERS
S．A．E WITH ALL ENOUIRIES PLEASE
 ave to in exither
accrever to ghons of ent

GUITAR TUNER
Ful tur as doscribed in Jen
85．Incluoes cain．pcbe
and moter etc Czise
A perts eveleotio eeperetely

Рошекгпй WITH THEIR
 NEW MICROPROCESSOR CONTROLLED programmable orllegig ROBOTS

 IS BRINGING THE FUTURE

 IS BRINGING THE FUTURE A STEP NEARER

 A STEP NEARER}

CLOSED LOOP CONTROL SYSTEM

UNITS MAY BE OPERATED USING ROBOTS OWN DEDICATED
Foatures MICROPROCESSOR SYSTEM OR BY AN EXTERNAL COMPUTER

Low cost
Up to 6 controllable movements
Positional sensing
Continuous path motion
Microprocessor controller
Loarning ability

RS232C computer intertace

mputer	-0.0	10	100	∞	∞
Gencis mile	834	804	-	S14	647
Genais SIUT	Ess	cus	-	177	85
Gencis P101	caso	-	8505	177	2350

all paices vat excl.
as being publismed in
PRACTICAL ELECTRONICS

Kh prices below. Prices for reedy built oystoms on request

M101 MOBILE

For further dotels place contect:-
POWERTRAN CYBERNETICS
PORTWAY INDUSTRIAL ESTATE, ANDOVER. HANTS SPIO 3NM

AUTORANGING CAPACITANCE METER

Look - no hands! The only control on this piece of test-gear is the on/off switch; the only connection is to the test terminals. This month - construction.

Design and development by Phil Walker.

This is a fairly complex project and should only be attempted by those with a good deal of constructional experience. It is well worthwhile checking the PCB for shorts between tracks before doing anything eise. Ensure that there is a hole through the board under the PR1 position to facilitate adjustment later.

Put links through the board at all positions marked with a dot on the overlay and solder on BOTH sides of the board. The other components may now be inserted into the board preferably using sockets for all the ICs except IC4 and IC15. IC4 is a T092-type package 100 mA regulator and does not need a socket, while IC15 may foul PR1 if a socket is used.

The LEDs should not be fitted until the board is test-fitted in position as

Fig. 2 Component overlay for the display board.
Insert the link under the display first.

PARTS LIST

Resistors (all 1/nW, 5\% except where stated)	Capacitors		IC15	Lf 353
R1,2 470R	C1	10p ceramic	IC16	ICM7224
R3,4,5,	C2	1 mo ceramic	Q1,7,8,9,	BC182
28.37 15k	C3-7	100 n ceramic	Q26	BC212L
R6,25 4k7	C8	100u 10 V tantalum	Q3.7	BC2121
R9 10k			D16	1N4148
R10,14,17,			LED1-7	miniature green LEDs
21.1004				
R11,15,18,	Semicondu			
22,23 1k0	IC1	741504		
R12 100R 1\%	IC2, 3	741590	Miscellaneous	
R13 1M0 5\% or better	IC4	78105		
R16 1601\%	IC5,8	4518 B	XTAL1	miniature 10 MHz crystal
R19 10k 1\%	IC6	40538		DPDT toggle switch
R20 100k 1\%	IC7	40298	SK1,2	press terminals (one red, one
R24,27 27\% 2\%	1 C 9	40138		black)
R26 1k8	IC10	40518	PCBs (see Buylines) $31 / 2$ digit LCD display; IC sockets: display socket (if required); PP9 battery and conmectors; PP3 battery and connectors; mounting hardware; case (Vero 220 : 156 mm sloping front box, order no. 65-25231).	
R24,27 27k 2\%	IC11	40498		
	IC12	40128		
Potentiometer ${ }^{\text {PR1 }}$ miniature horimontal prent	IC13	40118		
PR1 47k miniature horizontal preset	IC14	40018		

fra cal Gosesy

Therolan Vou cerd

The tit omy 1

Tho Ceu bove ines tro hot newed wivis of

for with orvamx hawa

 antrument cose.

 probvcos in both inverpreting wid cormotig verwans.
 Ch so tson tho cetove vou itul no pice mal
NEW RELEASE
等

These cut prices for Ameteur Usere
Note indurtitat users quentity Di
Mostly Motorole RCA

TEX MICROSVSTEMS TPROMPT' UV ERASER

CMOS

7
,

 74 C

Abstract

 \qquad ine

 and

WIN $£ 50$'s WORTH OF VEROBOXES!

There's no doubt that no matter how clever the project you've built is, your friends and family are not going to be impressed with it if you display it in a cardboard box or the proverbial tobacco tins. What's more, the feeling of satisfaction you get from project-bullding can be that much greater if you end up with something that looks as good as commercial equipment.

One of the companies with the largest range of cases is Vero industries. They've given us a collection of their cases worth E5O, and we're going to give them to one of you - but the lucky recipient has to have
answered these three questions correctly.
(1) How many bores in the plle on the left? (There are no concealed box tops).
(2) How many of this month's projects are housed in Veroboxes?
(3) Is the Vero 'G' range of cases made from plastic or metal?

Answers on the form on page 133 please, together with your name and address, 10 reach us before April 30th, 1982.

RULES

Meperense nor errepteris

 senerime

${ }_{c} 0^{\circ} / \Delta s^{5}, 00^{\circ}$			wis	TELEPHONE UXBRIDGE 65399
	supinsavia 29 Jicksonncad cation Son cherger tor in M. sumensavea m avtiut is wotr motion mon cesson n suptheaveas cocob mix men minaro or roocolomir cisorno cioo supiasaven es mais seod 2 mesors. . with movited N.C. mane pion ea zovr 11.00 oush Map 500 SUPEASAVEA 37 mexthow meanes is mov supersaveran Tbib Mrion Lo.C. Comestorn 20 ant evion plo 00 Nos 16 moy Hal Sbi MP as cech SUPTASAVEA 30 MOLEX ow eht s^{2} mil but and to ond ell oving ! "Ce mounce 4 lou 180. 12W Do 12p men PPI.	surimgaven to P 30×30 Goid phosed P.C. Quo. C1 00 eoeh f-20 men FCl mill 250 eech. Jow po pora soo eech - 10 2so eech supensaven es AUQATIC ess fithe beet eval stiel round twrnot pien the I.C. pincure a groovo in eve the Woy 500 rech P/P 250 Woy sop ench PIP 2sp.	bupinsavia es 2510 uned lian eranod puerun tor (1700 Rip Fate supensavea ma Pi.G. Per mignolon es bent gron la do miscel beond in on boerdi P/P sop eveh. micno nevolution Her nen a Rociener compine - C.E end pens no procico vio bysic and est mul ony 45 froter brecto to ictow. supinsaven es M.C. Ren as 232 nocovio LC. Sto enen RIP 200 B. ELECTRONIC . HILLINGDON, MIDD TEL: UXBRIDGE 55399	SUPRRAVEAGT Aborom, 2 meners - comen ina -1p 20 supensavin as FNO 5005^{-}LEO dintone. nog. had evo esen uno owentir P.O.A. PIP 10 surtnsaven as as woy onvisis ason con nection to m Miscoten enc. Dit Angind 38 wer do 6 an (und to in ex poe poin Mp Mo supensavia so 2 Smm Powe Do : 2 moter ef cetion io macom Anom 3 un dee ere. Onit 11.00 for 19 Dip zima imot evountes welcoma postage siateo is fon ONE TTEM IF VOU OADEA sevtaal mems. plast ust rovin own orscaetion.

CLEF electronic MUSIC

ELECTRONIC PIAROS
SPECLALISTS SINCE 1972
$020 \cos =\sim$
14 DCTAVE OOMESTIC MOOEL compomitm mit ces COMPUTE MIT OSS 70 Ponern
 ox 2
 -2n- $-5=5$

SIX OCTAVE

 DOMESTIC MODEL compontive ait Ely susiosmabecenconion
คy vix
대능
-x row - - =
SIX OCTAVE STAGE MODEL
COMPONENT MIT C219
-2060

"THE compura BAND-BOX
complerti fivie meacric at blecraonery

Mand moces inclver mapre

THE Morm DRUM MACHINE

TECH
 Frequency-To-Phase Controlled Power Supply
 Dilbay Singh (B.Tech), Crawley

The circuit shown in the diagram was initially designed to obtain a phasecontrolled power supply to use with $1 / /$ horsepower stepping motor. The phase angle can be varied over the complete $\frac{62 \mathrm{VamsAc}}{}$

TIPScycle period and is dependent on the frequency of the input. Clearly the circuit can be used to control resistive loads such as lamps or motors.

The first stage of the circuit consists of a frequency-to-voltage converter. C1. R1, and Q1 effectively differentiate and amplify the input signal waveform to provide triggering pulses for the 555 timer, which is used in the monostable mode. The output of the monostable is used to charge C3 by a constant amount of charge every time a pulse is received
at the base of Q2. The voltage across C3 acts as an input to the common collector stage formed by Q3. The voltage across C3 is DC-shifted by means of the zener diode ZD2 to a suitable value, providing the input to the trigger IC (the Mullard TCA280A). The TCA280A provides the phase control signal for the gate of the thyristor.

A triac may be used in place of the thyristor, if phase-controlled AC is required.

The component values shown are suitable for providing phase control using frequencies in the range 200 Hz 8 kHz on the control input. The firing angle can be varied from 0° at 8 kHz to 170° at 200 Hz .

Fully Debounced Keyboard

Graham Kyte, Bexleyheath
This circuit produces a debounced output whenever a key is pressed. Each matrix point is scanned in turn and the output of the 4052 data distributor goes high when a pressed key is detected. This stops the scanning oscillator (555) for about 10 mS and a'key pressed' output is produced, thus enabling the BCD output to be stored in a latch or othenvise made use of. The use of CMOS ICs enables current consumption to be minimised, making the circuit suitable for operation in a car. The circuit is easily modified for a larger number of keys by using an eightway data distributor (with relevent counter made from three J.K flip-flops rather than the two as used here).

Remote Camera Release

Geoffrey Ammon, Welling
When taking photographs from a distance, a pneumatic remote release is normally used. These will only work over a limited distance and it is not always possible to tell if the camera has operated. This simple circuit uses a low current trigger circuit to operate the camera and provides a visible indication that the camera or flashgun has worked correctly.

The circuit operation is as follows. When the remote release push-button PB1 is operated, a current flows via the extension lead, which may be a 100 metres or more in length, to switch transistors Q3 and Q4. This combination provides the load current of up to 2 A for the camera release solenoid. When the flashgun fires, light falling on the CdS cell

not used, the camera flash contacts (SW1) may be connected to bypass the CdS cell and remotely operate the indicator LED1.
causes a current pulse to appear at the base of Q1. When Q1 switches on it will discharge C 2 , extending the pulse duration to about one second. While C2 is charging Q 2 will be turned on, causing a large enough current to flow in the extension lead to operate LED1. If a flashgun is

Cheap PET Cassette

D.J. Cocker, Portsmouth

In view of the price of the Commodore cassette unit, the following adaptation may be of interest. I have been using this arrangement for some time and have experienced very few problems. In order to signal the PET when the PLAY key has been pressed, a switch mus be incorporated into the cassette key assembly - a small microswitch is ideal. This is an improvement on the Commodore unit.
in which any key activates the switch, leading to confusion and ambiguity. The 'signal present LED is very useful in locating the start and end of the data tape. The cassette recorder is supplied with power from the PET, batteries only being required for fast forward and rewind functions - a switch should be fitted to facilitate this. When the PLAY key is depressed, the PET has control of the tape motor. It may be found necessary to disable any tone control circuitry or ACC which may be fitted in the cassette recorder. Any suitable TTL Schmitt gate may be used as IC1.

Room Thermometer
 J. P. Macaulay, Crawiey

${ }^{\prime}$ With the advent of the LM3911 temperature controller IC the task of measuring temperature has become simple in the extreme. The internal circuitry of this device comprises a temperature sensing element, an op-amp and a stable reference voltage. The device gives, in its simplest form, a stable 10 mV change in output for every 1° change in temperature over the range -25 to $85^{\circ} \mathrm{C}$. For the application of room thermometer it is only necessary to utilise part of this range from, say. $0^{\circ}-50^{\circ} \mathrm{C}$. The circuit to be described measures this range.

The figure shows the complete circuit of the thermometer. The meter, a 500 u A FSD type, is connected between the output and inverting input of the internal op-amp. Resistor R1 connects the inverting input to the output of the 741 op-amp. This is used with 100% AC and DC feedback to form a unity gain voltage follower with a current output capacity of several milliamps. The input of the 741 is connected to the slider of PR1 which in turn is connected across the stable supply voltage produced by the IC. D1 and D2 protect the meter from overrange temperatures and thus protect its delicate movement from harm.

Once.completed, a calibration can be made with a room thermometer of known accuracy. Simply leave the equipment in the room for 10 minutes or so for its own temperature to stabilise and then adjust PR1 until both thermometers read the same; the calibration is now complete.

Enlarger Timer

C. E. Basson, South Africa

The circuit of the enlarger timer can time periods from 0 to 99.9 seconds in 0.1 second steps. PR1, C1, R1, IC1 a,b form an oscillator that feeds a 10 Hz signal to the first 4017 counter stage. Either the 'carry out' or ' 0 ' outputs of IC2 and IC3 can be used to feed the next stage, as the frequencies are the same and the positivegoing edges of the pulses appear at the same time. Outputs ' 0 ' to ' 9 ' go high in sequence as the pulses are received at the 'clock in'. The desired time is selected by SW2, SW3 and SW4.

Q1 is used as an inverter and with the NAND gate it performs the same function as an AND gate. As soon as the desired time is reached, all the inputs on the gate will be high and this will trigger SCR1. The relay will be turned on and switch off the enlarger lamp. The lamp will remain off until the circuit is reset

The circuit can be resetted by closing SW1a and opening SW1b and SW1C. SW1a will reset the 4017s and keep them in the reset condition. SW1b will remove the current from SCR1 to reset it. SW1c prevents the light from going on when in the reset condition. When SW1 is switched back to normal, the light will go on and remain on for the desired time.

NAMAL ASSOCLATES

No. 1 CLAYGATE ROAD, CAMBRIDGE CB1 ALZ Tel. 0223248257 TLX 817445

COMPUTERS

We stock computers and accept Sinclair ZX 81 in part exchange. Minimum of $£ 20.00$ is offered for your $\mathbf{Z X 8 1}$ in part exchange for a VIC 20 or Arcom colour Computers.

NEW

Domestic cassette INTERFACE for VIC 20 ONLY $£ 17.00$
Simply connects your VIC 20 to any Cassette player. A bargain at half the usual price.

NEW

VIC 20 Memory expension Packs
\qquad
8K RAM $£ 58.70$
(Expandable to 16K)
16K RAM
$£ 83.48$
Simply plug into the existing expansion port of VIC 20.
Battery Ram backup available. Price on application.

WE GUARANTEE FACTORY PRIME PARTS
In depth stocks. Competitive prices. Government and colleges orders welcome. Please inquire for special prices for quantity orders. Ploase add P\&P \&1 8 VAT. Minimum Order £10. Access orders weicome.

The finest $\mathfrak{A m p l i f i e r s}$ deserve the finest Rits

The Electronies Today System A. designed by Stan Curtis comprises two monophonic Class A Power Amplifiers and a modular pre-amplifier of such superlative performance that they stand comparison with commercial products in any price range.

DRAMATIC PRICE REDUCTION!

Increased production has enabled us to slash the price of the complete system (two power amps; pre-amp \& powerunit) by 30% to $£ 386$ incl VAT \& carriage.
YES a $\mathbf{3 0 \%}$ Price Reduction! But no reduction in performance.

Details and price list from:
Braithuaite kits
215. High Sereet, Offord Cluny. Huntingdon, Cambs. (0480) 811659

PAOGAAMMABLE CALCULATOR

That's right - In this compethion we're offering you a chance to win the fabulous Casio FX-702P pocket BASIC computer, kindly donated for the occasion by Tempus. The features of this computer include:-

A scrolling LCD alphanumeric dot matrix display
A memory which can be varied between 1680 program steps and 26 memories to 86 program steps and 226 memories

Auto power off
All data and programs are retained in the memory when the computer is switched off

Up to 10 different programs may be stored at once

Subroutines may be nested to 10 levels
FOR/NEXT loops may be nested to eight levels
Full debugging and editing faciltities
55 built-in functions (including regression and correlation), all of which may be used in programs

Program or data storage on tape (using an FA. 2 adaptor)

All this would normally cost you $£ 134.95$ (recommended retail price) but it can be yours FREE - if you can answer one simple (!) question. Eyes right.....

First, let AS = STRS (the product of 7K (in decimal) and the standard audio bandwidth). We'll use this later. Now, add the UK AC mains frequency to yellow/violet/red and divide by the number of our modular synth project. Divide the result into VAL(RIGHT\$(A\$,4))-VAL(MID\$(A\$,5,3))/LEN(A\$) Add to this result the difference between our office street number and the TTL prefix. Multiply by the \log (to base 10) of the sum of the digits of a CMOS quad EXNOR IC divided by the number of pins on a 555. Finally, add the decimat number represented in binary by 10111.

If you've managed all that (hint - people who know BASIC well have an advantage), write the answer on the entry form (page 133) with your name and address and send it to us by April 30th 1982.
Answers to six decimal places, please.

SOUND EFFECTS 2 : STEAM TRAIN

Railway modellers looking for something special to improve their layout need look no further. Our second sound effect project simulates a steam train and whistle. Design by Phil Wait.

Aahh, the nostalgial If you're young at heart, old in years, or both, then this is for you - a steam train (chuff chuff) and whistle. The electronic construction details are given on page 50 in the bomb drop project; but for that authentic touch. deft constructors can also fashion a cow-catcher out of tinned copper wire to attach to the unit!

The chuffichuff runs continuously once power is applied and the whistle sounds when the pushbutton is pressed. The VCO is used to provide the whistle while the SLF modulates the noise generator/filter output to produce the steam train's chuff-chuff sound. The chuff chuff rate may be varied by changing the values of R1 and C 1 , while the chuffechuff sound may be varied by changing the values of R2 and C2. For a special effect, you can control the chuff-chuff rate manually by replacing R1 with a 1 M 0 potentiometer.
 Buylines, see page $\$ 1$.

Fig. 1 Circuit diagram of the Steam Train and Whistle unit.

HOW IT WORKS

In this unit the Noise Generatorlfilter is employed to produce the basic 'steam engine' sound, this being modulated by the SLF 10 produce the 'chuff-chuff' so characteristic of sleam locomotives. The whis tle is produced by the VCO, which is sel to a particular non-varying pitch, and the output is switched into the audlo Input pin to produce the whistle.

The broadband noise from the Noise Generator is modified by the Noise Filter, the frequency characteristics being determined by R5 and C3 connected to the Noise Filter Control pins (5 and 6). The Noise Filler Output is fed via the Mixer and the Envelope Generator (which doesn't function here) to the audio output stages. The SLF square wave output effectively modulates the noise to produce a noise burst followed by a slient period, then another noise burst. Thus the chuff-chuff sound is produced. This sound is continuous whilst power is applied to the unlt.

A resistive divider, R3/R4, provides about IV8 at the VCO convenient pitch within its range, providing a suitable pitch for the whistle. The VCO oulput is coupled to the audio inpul (pin 10) via C4 and the push-button, P81. When P81 Is pressed, the whistle is heard over the chuff.chulf sound.

The SLF frequency is determined by C1 and R1, while the combination of R2/C2 and the voltage on pin 15 determines the VCO is coupled via C5, a 100uF electrolytic capacitor.

Having trouble containing yourself? Then why nor BOX CLEVER with one of our STANDARD or CUSTOMISED BIMENCLOSURES

Instrument Cases

 Small ABS Desk Consoles Low Profite Keyboard Consoles Easy Access Hinged Lid ConsolesDiecast and ABS Multi-Purpose Boxes All Metal or Genuine Wood Panelled Consoles

BIMCASES BIMBOXES BIMCONSOLES FOR PROFESSIONAL QUALITY AT REALISTIC PRICES

James Carier Road, Mildenhall, Suffolk. Mildenhall (0638) 716101

Telen: 818758

E.T.I. 10TH ANNIVERSARY ISSUE SPECIAL OFFER 10\% OFF ANY ORDER OVER \&10

USE ROADRUNNER PRODUCTS FOR VERSATILITY, ECONOMY AND PROFESSIONAL RESULTS

TAKE ADVANTAGE OF THIS E.T.I. 10TH ANNIVERSARY OFFER AND ORDER NOWI
WHEN ORDERING ASK FOR THE NEW ROADRUNNER CATALOGUE FREE!

VISIT TME ROAORUNNER STANO 384
HALL B UPPER AT THE ALL ELECTRONICS SHOW, THE BARBICAN, CITY OF LONDON, APAIL 20.22.

FREE TICKET SUPPLIED WITH EACH ORDER

I enclose cheque/P.O. for \& or debit my Barclay Card/Access No
\square
Signature
Name (Please print)
Address

ELECTRO SUPPLIES

FLOPPY DISC DRIVES

Drico 7200 Obla, Sided of Drives (Now) P.EP. [4

National Diec Drive Board BLC 8801
(Now) P.EP. C1
Notional CPU Board BCL 8010 (Nowl
U5es 8000A CPU P. ©P. 61
$\uparrow 120$
16° VOU Migh Resolution Oreen Phosphor (Now) 30 VAC/TI Sync. I/P P. © P. ©5

These Unks are in Open Chassts Form

FARNELL POWER SUPPLIES (ALL NEW)
O6-105 (5V 10A Swtehed Mode)
FT15/1 (16-0.15V IAI
C35
024.1-4M (2.aV I.AA Swleched Model

C40
Each hem P.\&P. Q
ALL TTEMS INCLUSIVE OF VAT.

MAIL ORDER DEPT.
Culier places phone forel BOWNE ES MILL SMAWCLOUOM RD. WATERFOOT, ROSSENOALE. LANCS. TEL. AOSENOALE 21SSSS

RETAIL SMOP
10pen 6 dovel 6A TOOOST MANCHESTER ingur to Vietorto Senl TEL 061 B4 118

ITREDAL

The Explorer: Guide to the $\mathbf{2 \times 8 1}$
if rou've cot a 201 nes rou mion miss boor I Progreas for it mW. and prograns for lok mW. Geaps, Dusiness and Engineering Appilications. hav is 10 Cireules. Mar toutines. Mines is Tips.
And muen mueh more. for only \& 4.95

Mastering Machine Code on your 2X80/81

mis 180 pege book by Tony theler is ideal for shose tho wat so explore the fust potentel of their $2 x$. mether you lanow nothing af all about eachine code. of thether you are an erperienced 330 programer. ilis is definitely the boot for you.

Getting Acquainted with your 2X81
This book by fie Mortneli is designed to get your zxil up and rumalng worthahlie. Interesting, progreas from the very first day.
8. 8.95

The $\mathbf{2 \times 8 0}$ Magic Book 'witm as mow 2 mel sepplbeent Goses prograes, coopurer mislc, convorising prograas uritien in othor misics, faproving the pleturo. the and $1 / 0$ clircults, ond moxh sore.
$23 \cdot 23$ mar $2460 / 81$ EDC Connacton socret
is. 50 23023 mar 2reo/e1 nole rlatio plug ertension
13.50

GUITAR PRACTICE AMPLIFIER

Simple construction, low cost, good performance and super neighbour relations are the features of this project! Design and development by David Tilbrook.

T- his project has been designed to enable guitarists to put in long hours of practice and still keep that high power amp in the cupboard, where it belongs! It is a compact amp capable of about 7 W into a 4 ohm load. This is enough power for practice purposes and just think of the greatly improved relations you will have with your neighbours.

We were in a considerable quandary as to how to present the project, whether it should be done as a complete practice unit with inbuilt speaker or simply as an amplifier to be connected to an external speaker. Finally we chose a compromise. The PCB has been designed in such a way that it can be used as a totally selfcontained unit. The heatsinks for the output stage have been mounted on the PCB so that the only components separate to the board are the power transformer, 240 volt power switch controls, input and output jacks. We have shown the project mounted in its own box with power transformer but it should be a simple matter to construct the whole unit inside a small loudspeaker cabinet.

The unit has two inputs so that two guitars can be mixed together using the relative settings of the two input level controls. A preamp output enables your main high power amp to be driven from the guitar practice amp using the practice amp as foldback.

We provided the PCB with the necessary circuitry for a battery input but you might elect not to use this feature. If so diode D8 and the battery switch can be omitted with points ' A ' and ' C ' connected together by a wire link.

Construction

Construction of the project is reasonably simple since it is almost entirely devoted to construction of the PCB. Start as always by mounting the resistors and non-polarised capacitors. Mount the tantalum and electrolytic capacitors next, being careful to orient them correctly. These components could be irreparably damaged if inserted the wrong way around. Mount the LM301 IC, transistors and diodes, again being careful to insert these the correct way round.

Finally the output devices can be mounted. Although the transistors are in TO220 packages, our PCB is laid out to accept heatsinks drilled for TO3 transistors. The overlay and photograph should make the construction method clear. Cut the centre (collector) lead off. This lead is connected to the case of the transistor internally, so in this case, electrical connection is made through the mounting screw that also serves to hold the heatsink in place. Place the heatsinks on the PCB and secure with the lower nut and bolt (not used to mount the transistors). There is only one right way round. Bend the leads of the output transistors and, using a small amount of thermal compound, mount the transistors with the leads protruding through the PCB.

Secure each transistor with a nut and bolt through both the transistor 'flag' and heatsink. Use a star washer between the head of the bolt and the copper pad on the PCB to ensure good electrical contact. Now the base and emitter leads can be soldered to their pads.

The prototype unit was constructed in a steel box measuring

HOW IT WORKS

The two input stages formed around Q1 and Q2 are identical. Resistors R1, R2 and R4 form a very stable biasing configuration around $\mathbf{Q 1}$. The gain of this type of circuit is determined by the values of R3 and R4 (specifically, the gain is $\mathbf{R} 3 / R 4$). The load impedance on the output of the Input stages is in parallel whth $R 3$. effectively decreasing the total value of impedance from collector to ground. Remember that, as far as signal is concerned, the positive supply rall is a short circuit to ground, since if is connected to ground through C17, a2200uF capacitor. When all these factors are taken into account the gain of the first stage is about 10 since the impedance from collector to ground is about $4 k 7$.

The signal, which should now be around 200 mV , is then applied to the input of the second stage through potentiometers RV1 and RV2. The 22 k resistors R9 and R10 prevent the output of one of the stages being shorted to ground when the other is turned right down.

The second stage works in exactly the same manner as the input stages, resistors R11. R12 and R14 forming the bias network for Q3. The voltage present on the collector of Q3 is around 9 V which is approximately half the supply voltage. This is used to bias Q 4 which is an emitter follower. This type of amplifier has no voltage gain but provides a low output impedance to drive the preamp output socket. Q3 has a gain of approximately 10. If the volume controls RV1 and RV2 are used in theit middle positions, the vollage out will be around one tenth of the voltage at their inputs since these are logarithmic pots. So, the signal voltages into Q3 should be in the order of 20 mV . This will be amplified to a level of 200 mV and applied to the input of the power amp. The power amp has been designed to deliver full power with an input voltage of 300 mV , so the amp should be easily diliven to
full output with usable settings.
Since this is a guitar amplifier, it will spend most of tis life hard into clipping. The output stage had to be robust! The basis of the outpul stage is the LM 301 op-amp. This device gives all of the voltage gain in the power amp. The output ICI is fed through a voltage follower Q5. This has no voltage gain and, like Q4, serves to decrease the impedance feeding the output stage. The three diodes, D1, D2 and D3, maintain 1V8 between the bases of Q6 and Q7. Each of these transistors will drop approximately 0 V across their base-emitter junctions. This leaves a total of OV6 to be dropped by the two 33R resistors, R24 and R25. Since these are of equal value they will each drop OV3 and hold this voltage across the base-emitter junctions of the two output tran sistors Q8 and Q9. As these transistors require OV6 to turn on they will remain off until the applled signal voltage causes the yoltages on their bases to rise above 0 V 6 . The extra 0 V 3 needed to turn on the output devices will be supplied by a mere 10 mA of current through the 33R resistors. Resistor R22 forms a feedback loop around the entire output stage to decrease distortion, stabilise the DC output voltage and set the overall gain of the power stage (a process too difficult to go into here).

The op-amp will at all times attempt to make the DC voltage at the output equal to that voltage set up on its positive input. This voltage is determined by the potential divider formed by R18, R19 and R20. Since this is also the main input to the power amp any noise which might be on the positive supply rail (and supplies can get very nolsy sometimes!) will be communicated directly to the input of the power amp, only to be amplified and applied to the loudspeaker. Capacitor C12 prevents this from happening by bypassing to ground ary noise above a frequency of around 0.1 Hz
approximately $250 \times 210 \times 80 \mathrm{~mm}$ Mount the pots and switches on the front panel, using the pot and switch nuts to secure the front escutcheon if you have one. Mount the output and battery input sockets on the rear panel. If you are using a battery input socket use something different to the output socket (which is usually a two-pin DIN socket or a 6.5 mm jack socket) to avoid confusion.

Mount the power transformer and make the 240 V connections. The mains lead should be terminated immediately inside the case into a terminal block and the earth lead secured firmly to the chassis by a solder lug bolted to the case using a star washer. This lead must be the longest. A length of 240 V cable should be used between the terminal block and the power switch. Wire the transformer to the power switch as shown in the circuit diagram, then wrap the whole switch with insulation tape or enclose in large diameter heat-shrink tubing so that no 240 V connection is exposed.

Finally, the fully-loaded PCB can be secured into the case using short metal spacers. If Veropins are used, all the connections to the board can be made after the board has been mounted. Connect the front panel controls, rear panel sockets and input sockets, using short lengths of shielded cable to make the connections to the two inputs and preamp output.
 The original design used a BC639/BC640 complementary pair for Q6 and Q7, and these are shown on the overlay, but they may prove hard to obtain. Consequently the PCB we will be supplylng is laid out for a BC140/BC160 pair, which have different pad layouts - the b,c and e pads are etched onto the board for your guidance.

Powering Up

Make a final check of the wiring and PCB. If all is well, apply power. A slight turn-on thump should be heard at the moment of turnon. If the 'Input 1' volume control is now wound up, some hiss should be heard from the loudspeaker. Do the same check on the other input. There is no set-up procedure since the power amp stage is operating in class \mathbf{B} and requires no bias adjustment.

BUYLINES

Lots of nice, standard, easy-to-obtain com. ponents in this proiect, so you shouldn't encounter any problems with supply. The PCB will be available fro our PCB Service at the price listed on page 44 .

FORA SOOWD diacwosis．

New CLEAN N CMECK is a unious ano complete cassotle machine maintenance pack
The paterted－Dive Analyser wall check in seconds the orve mechannsm of your casselfe machine io locele faulls which cen lead to domage and breakoown
II the Urive Analyser shows no laut，then you cen conficently use the impe hoad and capstan cleaning solutions orovidad io ensure optimum periormance
Proper mamieruace of any machine should consist not only of cleaning．but also of checking the machenism

The Clean－n－Check oach contains
－Mead cleaning solution
－Capstan cleaning solufion
－Colron buds and holder
－Drive analyser cassette wrih indicator regispering as lauliy／normal／service required soon．on play／rewind／ FFwd functions of your casselte player． The chech drive analyser is presently being used by growing numbers of hi－fi sevice organisations

CLEAN N CHECK pectes of（4 50 each（thal．pbep）．Total encloend：if mavt
adoness：

CAMBRIDGE LEARNING SELF－INSTRUCTION COURSES

A PRACTICAL DIGITAL ELECTRONIC KIT FOR i LESS THAN £20
 SUPERKIT
 SUITABLE FOR BEGINNERS
 －リーロー $=-\ln$

Na
Abtimeram

，1－1
Lest ste wonsers of eliglial electrontics＝ed an hev sucbly you 0 we arelaning your owe ciccults．Tho lift conleino： oresambort．filho．ond all the

 Erecmapor
nowe aldering tren．
 melplese
foches Pay obest boule findong．
subsyretere chorliand．

120 ．or sietlotl．or a slebition gy peover oupply．
 finis courco tearhes bocleon logk，itating．A．s and Jas

 osvoneren of
 incluses

aesici ol biciral swstes（16．0）

Guamamplet tie rood te wes．If wou are mot remulerply
 ite in teces condirien vilition 2t dave of macespor
 plefort．©I TVIs．wales．poil cmo．ifickavo．

blece charge mer

\qquad

 memer．

Come．．．

Aedrebs．
 in England 門 i3seriz）．

Here's the case...now what's the project? If youre about to start on a new propect, you'te no doubt looking

 for the right enclosure. With around 1.000 ditlerent cases and 250.000 cese parts currently in stoct. we must on your number ono choice Why not send for our catalogue, price $£ 1$ Including PSP.

The MICROPROFESSOR

MICRO-PROFESSOR is a low-cost $Z 80$ based microcomputer which provides you with an interesting and inexpensive way to get into the microprocessor world. MICRO-PROFESSOR is a microprocessor learning tool for students, hobbyists and personnel. It is also an ideal microprocessor educational tool for teaching in schools and universities. Besides. MICRO-PROFESSOR is more than a learning tool. It provides a wide range of applications such that you will be surprised at its amazing power.

The main object of MICROPROFESSOR is for the user to understand the software and hardware of a microcomputer easily and corveniently. Besides
the complete hardware/software system, you have the User's experiment manual available to you. It includes self-learning text with 20 experiments which range from simple software programming to design a complex electronic game.
$2 K$ bytes of monitor source program with documentation is also provided in the manual. It shows how to write system programs including system initialization. keyboard scan. display scan, tape write and tape read. APPLICATIONS:
Learning and teaching tool Low cost prototyping tool Low cost development tool Tester

MICAO-PAOFESSOA ts e trede menti of
Mukitech industrial Corporation.

Process controller
Electronic game
Electronic music box Master mind
Timer
Noise generator
Home appliance control
Burglar alarm
Sysiem control simulation
... and many more.
Low Price, High Capability experimental tool for only

POWER SUPPLY
$+p \& p$
A 9V, 0.5A Adaptor is provided.

280 is a lrade mathof Ziog ine.

solves the'mystery' ofmicro-processors.

TECHNICAL SPECIFICATION
CPU
SOFTWARE COMPATIBILITY
RAM
ROM
INPUTIOUTPUT
MONITOR

DISPLAY
AUDIO CASSETTE INTERFACE

EXTENSION CONNECTORS

COUNTER TIMER CIRCUITS PARALLEL I/O CIRCUITS

SPEAKER AND SPEAKER DRIVER CIRCUITS
USER AREA
POWER REQUIREMENT
USER'S AND EXPERIMENT MANUAL
OPTIONS (Prices on application)
KEYBOARD

280 CPU high performance microprocessor with 158 instructions. Capable of executing Z80/8080/8085 machine language program. 2 K byles expandable to 4 K bytes.
2 K bytes of sophisticated monitor expandable to 8 K bytes.
24 system I/O lines.
2 K bytes of sophisticated monitor. It scans the keyboard and executes the command entered immediately after the power is turned on. The monitor includes: syslem initalization, keyboard scan, display scan tape write and tape read.
6 digit 0.5° red LED display.
165 bit per second average rate for data transfer between memory and cassette tape.
Provides all buses of CPU. channel signals of CTC and I/O port bus of PIO for user's expansion.
Socket is provided. 280 CTC IC extra
Sockel is provided. Z80. P10 IC extra
A 2.25° - diameter speaker is provided for user's applications.
Provides a $3.5^{\circ} \times 1.36^{\circ}$ wire wrapping area for user's expansion.
Single +5V DC.
Complete sell-learning text with experiments and applications
Z80 - CTC EPROM programmer board Prototyping board Z80-PIO Speech synthesiser board Audio Cassette 2K Ram 36 keys including 19 function keys. 16 hex-dign keys and 1 user defined key.

Use the unique MICRO-PROFESSOR to truely understand the inside workings of microprocessors. Open up a whole new spectrum of projects in home electronics, or simply use the MICRO. PROFESSOR as a practical learning/teaching aid.

Flight Electronics Led.

To receive your MICRO.PROFESSOR Complete the coupon today!
Please send me MICRO-PROFESSOR(S)
I enclose cheque/P.O. for $£ ~(~+~ £ 2.95 p \& p)$
Name
Address:

Please aliow 21 days for delivery
Flight Electronics Ltd. Flight House, Quayside Road,
Bitterne Manor, Southampton, Hants SO2 4AD.
Tel: (0703) 34003/31323
 उTe $=0$ -

 rul vavic

 nex moncormen
 $3 n+a$ coron

isicu
 -moris
no Nroverince non

 nemo

mesum

 - Cint

vincs

 $\rightarrow-\infty-\infty$

 200 curn

cons risico wionemonem
cones inticos coso weor

 - 1

 $\cdots \cos$

筑

CHILTMEAD LTD

A moving coil arritidge thet breals the pice briviert Cois

The new MC88E represents a breakthrough in high output moving coil cartridges. No step-up device or amp is required and it is available at a sensational price of only $£ 29.95$.

The high output voltage of 2.5 mV does away with the need for a head amplifier or step up transformer, which add to the expense of using most previous moving coil cartridges.
We can t emphasise enough, just how advanced the tech. nology that has produced this breakthrough is - a miniaturised and specially shaped armature; unique coil winding technique; a magnet that is so compact,
yet generating high magnetic flux density; compliance of 17 cu .s. The result is a cartridge with flat frequency response over the super wide range of $20 \mathrm{~Hz}-40 \mathrm{KHz}$, removing the distortion caused by certain frequencies, which can be found in many conventional cartridges. Coral's considerable exper. ience in moving coil cartridges has enabled them to offer the ultimate in quality and performance at this incredibly low price.

- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information phone: 01-690 8511, Ex. 32.
- All products are only available direct or from selected authorised dealers throughout the U.K.
VIOEOTONF 98 CROFTON PARK ROAD LONDON SE4.
Send for our free brochure and details of outlets in the U.K.

EX STOCK!

BOOKS

Getting acquainted with your 2×81	[4.95
Mastering machine code (ZX80 or 81)	C6.95
Programming for real applications	C6,95
Tape for above	¢11.44

REDDITCH ELECTRONICS

DEPT ETI.

21 FERNEY HILL AVE
REDDITCH.
WORCESTERSHIRE.
B97 4RU

Kit keyboard	820.75
Built keyboard	825.75
Case for keybourd	¢10.30
Buit keyboard in case	¢36.15
16 bit LED board (kir)	c9.50
24 line in/out port	¢16.95
built	$¢ 1895$
3 channel music b	116.95
butle	¢18.95
Motherboard with 2 con	necrors
	¢15.75
buit	818.50
23 way edge connector	¢2.95
23 way male connector	¢1.30

Kit keyboard
220.75

Buil keyboard £10.30
Bull keyboard in case . £36.15
16 br LED board (kir) ...ec9.50
built ¢18 95
bull 118.95
Motherboard with 2 connectors
£15.75
118.50

23 way male connector . $£ 1.30$

Prices included Postage and VAT (Overseas add £1.80)
SAE for free illustrated catalogue

Happy Memories

Port type	1 off	2599	100 up
4116200 ns	\%	5	65
4116200 ns	90	. 80	60
2114 200ns Low power	1.20	1.10	S5
2114 450ns Low powep	1. 10	1.00	. 86
4118 250ns	325	2.55	2.65
6116 150ne CMOS	495	4.45	3.65
2700450 ns	1.56	1.85	1.75
2716 460ns 6 vole	225	2.15	1.96
2716 460ns three rall	6.40	6.00	4.55
2732 450ns Intel type	425	395	335
2532 460ns Texas type	4.26	3.95	3.36

2EOACPUC4TS Z80APIOC425 ZMOA-CTC CA 25 Low profile IC sochets: Pins 8 pp. 14100 is 110 is 14 p . 20 15p 22 16p. 24 19p. 24 2ip. 40 30p
Soft secotred floppy discs per 10 in plestic hibreny case 5 inch SSD C17 005 inch SSOD C19.25 5 ineh DSOD E21 00 8 inch SSD C1825 8 inch SSDD 12365 inch DSDO 12560

74LS series TTL. lorge stockes af low prices when OIY escounts seerting ei o mur of fesi 25 pieces. Write or ahone for liere
Ploose add 30p post 6 oocting to ortors under fis and VAT to totil
 Government 6 Educetiond orders welcome, C15 minmum Trede eccounts apersted, phone ar write for derelo
Prices ere still tending to drop. phon for a quote betore you buy

Happy Memories (ETI). Gladestry, Kington. Herefordshire HR5 3NY Tel: (054 422) 618 or 628

 cive eve ore rixe.

Pome vone mo ne torporig
19 moons
loolsurthume gros
HonctresCreser
\square
hien oows \square at thent Doow
\square

neme
noorest

Syenm

120NESOMN= stavahead. STAY WITh Us

MONTHLY IN ELECTRONICS TODAY YOUR OWN 'WHERE TO BUY IT' GUIDE

LOOKING FOR
COMPONENTSI HARDWAREI
CASESI TRY YOUR LOCAL
LISTED STOCKIST

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002

S. WAlES

CAPOCAT ELECTRONCS
Chancery Lene, Cardigan.
Tel: Cardigan (0239) 614483
oson mon-set foum fom Goes Whe
 Acom comouter modise

WILTSHIRE

camlab electronics

27 Faringdon Rd. Swindon Tel: (0793) 34917
Oom 6 ders inm 530 pm

> PLEASE MENTION ELECTRONICS TODAY WHEN USING THESE SHOPS!

If you would like your business details to be included in Electromart - please fill In the below coupon and post to: Electromart. Electronics Today International, 145. Charing Cross Road, London WC2M OEE

Please include my business details in the nezt available issue of ELECTRONICS TOOAY INTERNATIONAL:
BUSINESS NAME
AOORESS:

RETAIL WHOLESALE \square MAILORDER (Please Rick)
CONTACT: IFOR OFFICE USE ONLY

PARNDON ELECTRONICS LTD．

 resistoms \qquad tices ma

Ct $4+$ mon
DR SWITCRES：Gyy men

DuL SOCXETS：man enem vontorn

\section*{ pow：rand pack

 themens vel policion squase germenek shor crat
 severil－in spes

 enum sunder en meriens．
 | \cdots | 10 | | | | 2000 | | | ang |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| －3 | 7－3 4 cry | 00 ms | C6 3688 | －Ters | 8 Cratan 40 | 200 | cte | 18% |
| 00 | $\operatorname{som} 0$ 戈1 | Sors | ctoos\％ | －Pes 10 | \％aces $=0$ | 201 | Ny | 108 |
| 0ve | yowner | 0 ors | cesoms | －${ }^{\text {3 }}$－ 045 | 18.1080 | 50 | CVO | （1） 0 |
| 000 21 | victer | 0 0ers | （c）noit | －Whe | | 5 | （8） 20 | cr 8 |
| 4 mmo | Xoperal | －＊ | c abe | | 40ックッロ1 | | （1） 0 | c） 9 |

 ys 6 x x $\mathrm{c} x$

GIIT 9yIV Co reverns

$\square 9$		Brenter					\rightarrow	\cdots
			$\begin{gathered} 100 \\ 10 \end{gathered}$					
20\％	moun	－ges	41） 0 as	－bay	¢10 10	M	1808	178
0	N 40.0	－9\％s	41 0.03			40	53 ${ }^{5}$	（18）
080	jueser	0 mos	40 5 \％ 8	－ncon			（4） 4	（1） N

NTM EuTV men mations

nots	10	6318	1	－ 1 l		同		119
2000	1300 cell	ens	－2	－ $\mathrm{CSO}^{\text {易 }}$		\pm.	$1: 7$	

000	8 cosec 4	60 comes	ceser	＊）\％¢	9，		

 ome ${ }^{3} 30$ vit shouc endonci of thot crat not be memesume．

 as ly swandor tyan．

cone tre mone fowers
1）masion
ioter buctinegrice

Nume
Lapuss

Sprana

－
STAYAHEAD．STAY WITHUS

Above: the PCB for the Voltage Monitor.

Above: the two foils for the double-sided 100 MHz High Impedance Probe PCB.

Above: the board for the two sound effects projects.

Left : the board for the Guitar Practice Amplifier. Please note the alteration to the pad layout for Q6 and Q7.

The Computer Expansion PCBs are the copyright of Watford Electronics and are not reproduced here. Readers wishing to etch their own boards should contact Watford for the foil patterns.

ETI REVERB.

Above: the foil pattern for the ETI Solid State Reverb unit. Commercial firms should note that this board is the copyright of Digisound, and may not be reproduced for sale.

[^6] as it is or cut it in two where marked, as we did.

Computer

Programming in

 BASKCBADEME
Mant I En hes

(CPB)
Microcomputers are here - teach yourself to program! Learn BASIC, the easjest and most widespread language for the small computer. 60 illustrated lessons teach the essentials of good programming: problem definition, coding, flowcharting, debugging and clear documentation. And you don't even need a computer!

£10.50 inc pEp

ZX81 Supplement

When used in conjunction with the aisove course, it enables you to apply your knowledge to the Sinclair 2×81 microcomputer. lt includes some amusing programs to help get you started on the new machine.

50 pence if purchased with CPB, 75 pence (inc p\&p) if purchased alone.
Credit card orders may be phoned through on 0480-67446 (24 hrs).
Cambridge Learning
Unir 14A Rivermill Site, FREEPOST,
St lves, Cambs PE17 4BR England VAT No 313026022 Giro No 2789159 All credit carus acceplid. Prises finclude vorldwide
post and packing fairmats exalro ask for prepayment involicel. Overseas customers linc for should send a bank draft in stepling drawn on l.ondon bank. or quote credit sard number. Allow 28 dayp for dellivery in the UK. Guarantec No risk io you. If you are not completely salisfied. Tull refund given on return of the them, In good condition, wthin 28 days.

[^7]SEND TO:- ETI/HE CLASSIFIED, 146, CHARING CROSS ROAD. LONDON VC2H OEE. TEL. 01-437 1002 Ex. 50.

600 RESISTORS

 es manemo vat me COVE COMPONENYS nomenern mosm curs ew mor oner en

CHEAP hard copy. Telorype 12 ASA 7 Boud. is now, CS6. Basidon 2025, around Combest.

TRANSCENDANT 2000 Boued Worting thoel now Ertes. ©169 Oflers. Minienic MK2. (129, Phone Bridige 01.755 1852.

NEW 1982 ACE COMPONENT CATALOGUE Lef your problerns be our busuness be certain, heve yout components detivered quickly and efficiently and get that propect working. Send 30p now for the easy to use 1962 Caralogue to: Ace Maitronut. Dep E, II 3A. Commerciel Sireet. Batiey. W. Yorks WFI7 5MJ

[^8]PARAPHYSICS JOURNAL IRussien transtations): Psychotronic Generators, Kiffianography. gravity lesers, relekinous Detels SAE $4 \times 9^{\circ}$. Paralis. Downton, Wits

AMAZINC ELECTRONICS PLANS Lemers. Super powerod Curting Ailis. Pistol. Lighi Show, Uwresonic Force Fieits. Pocter Do fence Weeponry. Gunt Tests. Setaltite IV Proenchnice, 150 more propecis Catalogue Ssp - From Pancentre. 16 Me Grove. emoroct Cococt Worvortemoton

SFCUAITY ALARMS Knis foom [37 Full renge of eccessories MFP Lid. Hevition Roed, Erolington. Berminghem B24 9AB 0213730450.

PROXIMITY SENSORS Intre-red range 3 inch single 5-7 supply ideal for mobite robors 21.95 leeflet. Chechire Micro Dosign, 66 Close Lene. Alseger. Stokeon- Irent, Stafts.

COPPER CLAD BOARO dovole sided fibre gless. 10 sheets $12^{\circ} \times 8^{\circ} \mathrm{C6} 00.6$ shegre $12^{\circ} \times 8^{\circ} \mathrm{E4.00}$. including PGP. Comptete PCB service. Devron, I Bankside. off New Streer. Cheimstord.

CENTURION BURGLAR ALARM EQUIPMENT SOnd SAE for free list or a choqua/PO for 25 ss for our epeciel offer of a full sized decoy bell cover. To Centurion Dopt ETL205, Watcatield Rd. Huddersfield W Yorkshire. Acceas \& Bercloycard Telephone orders on 0494 कर22

CIRCUIT DESIGN. Frotorype conctruction. ensioper of Digitel. Suangto Circuits a Complone instrumonta/Svitoms Wito A. d. ATTWOOD. C.ENg., MIEAE, Hoathercote. Heotherton Pert. Pounton. Somersel IAA 1ET, a Fion Eractord on Tone tose 3ms) 536.

DO YOU TRANSMIT AUDIO SIGNALS OVER CABLE CIRCUITS?

We manulacture full range of interface equipment for transmission of audio signals over private wire of telephone corcuits. from Narrow Band STO systems $(300 \mathrm{~Hz}-34 \mathrm{kHz}$) up to Wide Band Music Circuits

PARTRIDGE ELECTRONICS

(A. C. Partridge Ltd.)

56 Floet Road, Bonfloet. Essex Tol: (STO 03745) 3256
We also manulaciure audio mixers and sub-ass amblies

DIGISOUND 80 MODULAR SYNTHESISER

A synthesiser for the professional and amateur keyboard player, for education and for the beginner. The DIGISOUND 80 suits all levels of keyboard skill. If you want to know how, then read on.

BEGINNERS: A small synthesiser may be assembled at a price comparable with pre set types. The DIGISOUND 80 has unique facillities and you can learn about electronic music synthesis with the ald of our User's Manual. When you are ready to go beyond the 'minisynth' stage then simply add more modules to suit your requirements and your purse.
EDUCATION The modular concept is kieal for reaching both music and the physics of sounds. The microprocessor add-on converts it to a project of even wider application.
KEYBOARD PLAYERS: The use of the ALPHADAC 16 microprocessor controller allows up to 16 voices in the polyphonic mode as well as providing many other real time keyboard control routines. NEW recording/ composing/sequencing programs provide you with the opportunity to create exciting music - imagine playing back a composition with each voice set 10 a different instrument!
KEYBOARD SKILL: The ALPHADAC programs have facifties for composing and recording in both real time and not real time. The letter allows entry of notes at any speed and subsequent playback at the required tempo. The not real time mode is essential to synthesists of limited skill and a boon to the experienced player.
THE DIGISOUND 80 - IN ANY CONFIGURATION - OFFERS YOU THE BEST PRICEJPERFORMANCE CHARACTERISTICS
Kits supplied ex stock and ready built modules, or complete synthesisers, are evailable to order.
NEW IC's from Curtis electromusic Specialties; NEW modules: NEW users manual plus easy to follow construction notes.
Write or telephone for more information from the ELECTRONIC MUSIC SPECIALISTS:

DIGISOUND LIMITED
13 THE BROOKLANDS, WREA GREEN. PRESTON. LANCS. PR 4 2NO TEL:0772683138

D2114L2 intornal, cevernic 200ns Stanc RAM

PGP 40 for MAM unce 120
Mon Compure CASSETVE a tery ion CUADANTEED
C-12
PGP 400 per 5 cancertes

INTELIBENT COMPUTING

 ELECTRONTCS6 Orydon Court London SE 11 UNH Tat or 735 esis

DIGISOUND ison Moduter Smut Cosed be Coltireted. Contonte: 6 UCO's. 1 LFO. 4 LP Filers. 2 Stote Veriato Fitoms, 3 Dud UCA's. 2 Duw ADSR s. 2 UC Emviope Generators. 2 Mocsesors. I Dud Ring Modulator, I Noiop/ S. Motid, I UC Mirer, I Estomat ingut, I Stervo omp. I A per iel PSU. C.00.00 ono. Aphadex Symth Controter 42 Oued DAC Basids Keveoned 6 Kevooperd Controtior $\mathbf{C 2 0 0}$ ona. Solertion 10 mog Scopo CS:O ono. As hems must go. Owner emigreting Contact P. Lemes, 50 Acres Lone, Steptoridee. Chechiron.

The Complete Sngra Red Butalar Alarm System for Domestic \& Commercialise

Designed to specifically detect body heat andmotion

 256 A/BLewisharn High St London SE 13 \qquad

UNREPEATABLE OFFER

 men. Orsom

 -oo se
Coun Dues ennery
Cenper \rightarrow a \quad On
MICNO ELECTRONIC SYETEMS
Mertin Buildings. Stonmouse St Middlestrough Civveland Tielaphone No 0.42829230

```
MOS-FET AUDIO MODULES
```



``` moners
120 wateril onmer, 1200/24 suopr. C12ss 200 wermid onma 120,1.4 mpop, ('9 95 400 werm \(/ 7\) onma. 170. r7A moev. [8 \%
Power supplite/pre enos everned hem pecting dip Scerp low detets. Ovenety cen-
Anererech. A Preons Ciges. Cinuren Groethom, ilspences Monts OUIJ CNI Tin 00: 1420010
```

T. 1. 1. ELECTRONICS COMPONENTS

Ouality components, compotitive pricoss. lilustrated catalogue 450 96 Burrow howd. Chigwall, Essen.

CLOSE ENCOUNTERS GROUP. Personal introductions/donces. penties, ialles, soetial events. Meet interesting. aftesctive people All ereca. - Tel. (Liverpool) 051. 9312844124 houral.

SPARE PARTS For til digeel wetches Barnerion, crretcit. displons otc. Sond SAE for full lise. Profords. Copnensorive, Moimor. oreen. Bucks MPI5 6SG.

ETl imernationd 4000 Syntheesser: fury worting meplin cese and front pand. immeculote, Cisbo ana. Coín Jonitins, 6 John Street, Ponenveridd, Trolorces, Mid.Giom.

KEYBOARD, 74 key. ASCII output, cened, connection dieprem. ES5, MP levboerd, 107 ber. uncoded, ont [33, Teteronts 581A Scope, twat $820 / 8$ plug in module. probe. menuit E150-CEr. SAE for detele. I4 lechiede Gercons, Ferchom, Monss

1000 ASSTD 5\% resiations. preformed for PCB mounting 1250.50 assed thetroec LEO' 38 ent cotours. T3 23, 50 enerd fil sope trensistons. BC1 $2 / 212 / 257 / 308$ ete C300. 100 evetd PC mnig enectrotyics. 0300 Ons of each pack [11. N post free. SAE Whotesiol line. PC Efoctronics 1. Tharim. ETI. Romeny Roed, Wrimperieh, Selictury. Whes.

ONE PCB by Cemeche gives you ALL the following fecilties for your 2x81: fully buffered 8x memory; \& output - 13 inqui hnes: 8 bit D/A A/D converswon: wre wito aree for your own circuils.
Quality fully documented pre-drillad sith-screened fibreglass boerd. PCB. corcut diagram and example soffware - 112.95 from Cemeche Lid.. 133 Cromwell Rd.. London SW7. Ac cess/Barcleycerd accepied.

BURGLAR atom equpmant hing Breotord 1ce974 300920 for our catriogue, or cat er our lerge showrooms opposite Oded Stadium. C W.A.S. Ind

Courses in Electronics

BSc IN ELECTRONIC ENGINEERING

A four year part-time degree course for meture students. Of particular interest to those engaged in Digital. Telecommunications or Control Systems. Entry qualification required is an HNC or equivalent in Electrical and Eloctronic Engineering or Applied Physics. This CNAA degree is considered by the Council of Engineering Institutions as meeting thoir C.Eng, academic requirements.

CEI PART II

One year full-ime or wwo years part-ime course in preparation for the CEI Part II examination which is the present academic qualification for Chartered Engineers. Subjocts offered include Electronics. Communicetion. Control and Computer Engineering. Entrants should have passed CEI Part I or have been exempled; holders of HNC and endorsements of HND are so qualified.
further detals and epplicaeion forms ere evalubif from the Informotion Office. Noom 1303. Cembridgethire Coliege of Arts and Technologv. Cembridee, C81 2A, Telephone 100231 62271.

Motal cosed 9° PMion
CROFTON MONITOR

10 MHZ Bandwidth P4 Standard Also avaitable with P31. Price on application.

NEW

NEW. PPIINE MONITOR

High resolution 24 MHz Bandwidth P31 (green) and P4 high resolution standard. Price on application.

Dealer and OEM enquiries welcome CROFTON ELECTRONICS LTO
35 Grosvenor Roed, Twickentem, Miden TWI 4AO $08-891$ 1923/15 13

WRONG TIME?

MSF CLOCX IS ALWAYS CORAECT - never geins or lomas SELF SETTING it swich-on, 8 Eits show Oapo, Hours Minutes and Secondes, evio GMT/ ST and lieap veer, cen empend to Years. Monthe. Weetdove and Mimiesconds, ateo pertial BCO output for computer or cterm eic STOPCLOCK and eutio to record and thow rime on ptovbect, receives
Auger corku atomic sime sonale. built it enterne. 1000 Km renoe CET the RIGHT TIME ONIV CLZ 80
combt mugey neceIver os in MSF Cock eorial dote output for computor etc, Gocoding dotem, cI1se
fach fun so buidd tat inctudes af parrs, printed cercur. case. postage ert. instructions, monoy bact assurance so GET vours NOW

CAMBAIOGE KITS

45 TTDI Old School Lene. Mimon. Cembildye

-icits can , 550, ©75, 2.5 including full instructions © CONTAOL PANELS C18, 23, 129, E37•AELL BOXES C8.25, 7.600 - PAESSURE PAOS $\mathbb{C 1 . 0 6 , ~ \$ 1 ~ 4 5 , ~} \$ 1.9504$ CONE CABLE
 - ULTAASONCIS EAS.80® DOOR PHONES C 49.42. BUY A KIT OR DESIGN YOUR OWN SYSTEM sovo sut on mone wow pon reer nur custmarto carmoout TT THE Vou as rou iot Cemep moven var fino Mso

AERIAL AMPLIFIERS Improve weak elevision reocotion. Price 1670 . S. A.E. for leafiets. Elecrronic Mailorder. Aamsbortom, Lencesthire BLO 9AGH.

COADLESS TELEPHONES Buld You own emplo and inengeneve units. Send $\mathbf{C 3 . 0 0}$ for plans 10: 1. F. Aghiov, Bhry Grenge Correge Ferm. Boslow hosd. Curthorpe, Dortintirs.

PRINTED CIRCUITS Make YOu Own sum. phr. cheaply and quicklyl Golden Fotolec pight sonsitive tacquer - now grestly im. proved and vely much isster, Arosol cons with full lnstructions. C2 25. Develocer 350. Fertic Chieride 550 Clese scetate sheet for moster 14p. Copper-clad fiberepless boerd approm. 1 mm inick $[1.75$ eg n. Post/puading 750. White Mouse Électronics. Cestlo Drive. Prees Sonds. Ponsence. Comwall

VHRFM TRANSMITTER KIT. NOW IC dowign moens low price and becter pertorm ence. Smeler then el imatations - idoed bue etc. Aoceive on domette redio (VHF 88 108 MHz). Inetructions otc anl included. Onty II 5 + 300 P6P. (Uniloensable). M. Monv. Dept ETI, 30 Weethotme Gortons, Muve.
"MACIC' promminy (no motal roucholeta). light cimmer inf. replaces comestic ightewitch. Imumineted fronepteto. 59 48. Primers Epeon Mx80T I [397, Mxeor IT I Casi. Prices inctuive. Tremorren Dere Svisems. Toms Poft, ifrecombo, Owvon.

WANTED Crcuite on sendes informetion on Negend Oncllloecope type OTics end power eupoly. Wit buy or thes. Td. evenings of woptends 40063 Chettenhom or writo Werton 245 Presibury Roed, Chetentiem.

OET THE MESSAOE

 mornues lio bis mon fto

 vempechimpanmosh onsinost guron Coving Evon tivione engen

TONISER KIT (Mains Operated)
Thi negetive con generetor gives you the power to seturete voue home or office with
 oune flow of ions pouss out the weter from a lountem, inging vour room. The resul? Youl et leols fresh, cure, crips and wondertulty rofreshing.
A parts. PCB and int inetructions
A surtebis cese inclucing front panel, noon switch, aes.
C10 50
Prion netuces poet 6 VAT. Barctovcerd/Accese netcome

T. POWELL

Mourn mon fos S om $\mathrm{Sor}_{\mathrm{D}} 430 \mathrm{pm}$

USE ELECTRONICS TODAY INTERNATIONAL'S CLASSIFIED
(30p per word, minimum 15 words. Box Nos. $\mathbb{£ 2 . 0 0}$ extra or $£ 9.00$ per single column centimetre - all prepaid).
Just write your ad on the form below and send it with your cheque, made payable to A.S.P. Lid, to Jenny Naraine, 145 Charing Cross Road, London WC2 OEE.

Please place my ad in the next avallable issue of E.T.I.:
Name
Address
Tel. No.
I enclose my cheque/P.O. for the value of £

1 9 8 2
 FINAL RADIO AND ELECTRONICS EXHIBITION at BELLEVUE

by the
NORTHERN AMATEUP RADIO SOCIETIES ASSOCIATION in the

LANCASTER HALL BELLEVUE, MANCHESTER on SUNDAY 4th APRIL 1982

Doons ooen at 11 a.m.

The Northis Premier Amsteur Redio and Electronice Even roen

 no monso Once ard never suas
lonelm
tonem
cintones
Lone Oincrente

- Me criven sencien
 2. tow antso frontinety J Now inan worposice vinan rexime SMC. Unat P
heno lece frotove nog havero undo shos youthe y Cosen wn mexos Teron Lexp ampore bece monengous poor Conticery oos mate an Movery . $\$ 0.0$ noots comon
 mano fievone arg parants or meen ho corpere dre she Arsu Dectonice 10 ard fiervonice ase Mrimorio 1 anfo bisuone pornpuos 1 wa intras Sore combrin in Mr ancruics

Antur Merenter sepo

 on wrot nomo ay

So you've fancied some

The tris conten afl cetinet components - cocurptely machined for eesy
 oor then, muss bome terminet. gries fetric. ete the cotinctic can bo
 cesombly instructions are supplied - no electronc of woodworting unowhoop neceseen
Pricen: ESO Li fie2 per per incluoing VAT, cerriepe end imerence f E70 in C200 por pai including VAT. cumege end imeurence f e E90 in $\{330$ per pew including VAT. cerriage end ineurance Clo Pro 〔so un f369 por pein inctuding Var. cernepe end inewrence Clo

8

0625529595
35/39 Church Streot. Wilmslow. Cheshire SK9 IAS
\square t-pmenang eervice on imiophoneso creen ceno orcers!

It's easy to complain about advertisements.

The Advertising Standerds Authority. H an advertisement is wrong. wh're hore to put it right.

Don't miss the May issue of E.T.I.

Phone Jennie on 01-437 1002 for all your classified advertising requirements
Deadline Friday March 5th

LECTRO-LINES

101 Heinout Roed. Romford, Eeeor RMS 3MF Tal. Romford 22.01E/9

Now bowed pre-digned and tested. Complote wnth tarrite rod cerial. 6 wey function swich, drive dium, cord drves, knobs, sem pio ceibretion scait end crat diegrem

3 stege FM tuning. phase lock 1000 excoder. LE O sterco inocator. FM sonsitivity 4 UV

Wowebende FM $88.108 \mathrm{MMz}_{2}$ LW 160.280 KMz , MNW 525-1660 KHE
Ourpur eperomimetely 200 mV ingur 12V DC
Price only $£ 10.95$ including VAT
plact.20 PGP

An entire
range of low-cost
high-
performance instruments

sabtronics

Making Performance Affordable


```
2 0 3 3 \text { N-0.jece mowe ons}
-2009a swonnlCa man om,
'2031a swo) LeD mens oum
Lve verem,
```



```
-mplar roouna ocure Dremueny mon
```



```
sorose low, O,00
    cen+M=
uces coonmed Dreemery
    coos sumer smine luece Oncmuncege
                        avo soccumpio in mu nere.
```

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices - no-one can beat our price/performance ratio.
Full colour illustretod brochure and price llat from: BLACK STAR LTD.
9 Crown Street, St. Ives,
Cambs. PE17 4EB
Tel: (0480) 62440. Telex 32339

AD INDEX

Ad. Electronics 141
Amble Internetional 866100
Amtron (UK) Led
38,668130
38,668130
Audio Electronice
136
136
Audio Video Services.
Audio Video Services.
42843 Bi-Pek Semiconductors
16861
BK Electronics
145
145
Brack Ster Lid.
Brack Ster Lid.
62
62
B.N.R S. 119
Brolthwire Khe. 116
Calculotor Salas 6 Service
12
12
Cambridge Kits
918124
918124
Combridge Loarning
8
8
Castle Electronice
Castle Electronice
128
128
Chiltmoed Led 112
Clef Products
Clef Products
98699
98699
Cricklowood Electronic 129
Crimson Elektrith 14
Crofton Electronios
92893
92893
C.T. Electronles Lid
128
128
Dole Techn 8 Ca
139
139
Digisound Lid
Digisound Lid
134
134
Display Electronics
Display Electronics
7
7
Electronize Design 105
Electro Supplios. 120
Electrovelue
1268127
1268127
Flight Electronics 110
Greenbent
81
81
Greenwold
Greenwold
131
131
Mappy Momorias.
119
119
Henry' Redio. 136
My. Tok 87
ILP 131. 135, 139. 141. 1438145
LB Electronice 1066111
L8 B Eloctronics. 112
Lectro Lines 145
LEM Services 54
Uinton Electronics 130
Mogente Electrondes 106
Mowson Associotes 125
Memotech Lid 10
Micro Times. 131
Midwich Computer CO. 30
Namal Assochotes 116
N.A.R.S.A. 143
Parndon Electronics 136
Powertran Electronics 2. 1076148
Rapld Electronics
Rapld Electronics
776130
776130
Rodditch Electronics
97
97
Rolay A Oulp 34
Riscomp Lid
120
Roedrunner Electronics.
60
60
R.T.V.C. 72
Silice Shop
Silice Shop 54
Sinclair Research. 6. 76147
Solid State Securty 125
Swanley Electronice 61
Switt of Willmslow
124
124
Technology Resources 5388
52653
Tempus lid
120
120
Timedeta Led 48849
TK Electronics
25
Velleman (UK) Lid
1298133
1298133
Videotone Lid.
Videotone Lid.
465
465
West Hyde Devolopments 125 143Wilmslow Audio

Make the most of your Sinclair ZX Computer... Sinclair ZX software on cassette.

 £3. ${ }^{-5}$ per cassette.

 £3. ${ }^{-5}$ per cassette.}

The unprecedented popularity of the ZX Series of Sinclair Personal Computers has generated a large volume of progrims withen byusens

Sinclair has undertaken to publish the most elegant of these on pre-recorded cassettes. Each program is carefully verted for interest and quality, and then grouped with other programs to form a single-aubiect cassette.

Each cassette costs (3.95 (enctuding VAT and prop) and comes complete with full instructiona

Although primarily designed for the Sinclair 2X84, many of the cassettes are suitable for running on a Sinclair XX 80 - is finted with replacement 8 K BASIC ROM.

Some of the more elaborate programs can be run orly on a Sinclair ZX Personal Computer augmented by a 16 K -byte add-on RAM1 pack

This RAll pack and the replacement ROM are described below. And the description of each cassetre makes it clear what hardware is required.

8K BASIC ROM

The BK BASIC ROM used in the 2X81 is available to ZX 80 owners as a drop-in replacement chip. With the exception of animated graphics, all the advanced feetures of the $Z \times 81$ are now available on a ZX80-including the ability to run much of the Sinclair ZX Software.

The ROM chip comes with a new keyboard template, which can be overlaid on the existing keytoand in minutes, and a new operating manual.

16K-BYTERAM pack

The 16K-bree RAM pack provides 16 -imes more memory in one complete module. Compsable with the $2 X 81$ and the TX8O it can beused for program storage or as a database.

The RAN pack simply plugs into the existing expansion port on the rear of a Sinctair 2X Perional Computer.

Cassette 1-Games For ZX8I (and ZX80 mevh 8K RASIC ROAD

ORBIT - your space craft's mission is to gick up a very valuable cargo that's in orbit around a stat.

SNIPER-yov're surrounded by 40 of the enemy. How quickly can you spor and shoot them when they appear?

MEFEORS - your stanship is cruising through space when you meet a meteor storm. How long can you dodge the deadly danger?

LIFE-J.H Conway's Game of Life' has achleved tremendous popularity in the computing world. Scudy the life, death and evolution parterns of cells

WOLFPACK - your naval deatroyer is on a submarine hure. The depth chmrges are armed, but must be fired with precision

GOLF -what's your handicap? lis a tricky course but you control the strength of your shota

Cassette 2-Junior

Education: 7-11-year-olds For ZX8I mivi SOK RAAI nuck

CRASH-simple addition-with the added attraction of 8 car crash if you get it wrons.

NULTTPLY - long muldiplication with five levels of difficulty, If the answer's wrongthe solution is explained.

TRAN-multiplication tests agninst the computer. The winner's train resches the station first.

FRACTIONS-fractions explained at three levels of difficulty. A ten-question ter completes the program.

ADDSUB-addition and subtraction with three levels of difficulty Again, wrong answens are followed by an explanation.

DMTSION - with five levels of difficulty. Mistakes are explained graphically, and a running score is displayed

SPELL.NNG - up to 500 words over five levels of dificulty. You can even change the words yourself
Cassette 3-Business and Houschold
For 2×81 (and 2×80 ratith $8 K$ BASYC ROAD with 160 R 1A1 pack

TELEPHONE-set up yourown computerised telephone directory and address book Changes additions and deletions of up to 50 entries arc easy.

NOTE PAD-a pow erful, eagy-to-run system for storing and
retrieving everyday information Use it as a diant; a catalonue, a reminder aszeem, or a directory.

BANK ACCOUNT-E sophisticated financial recording system with comprehensive documentation Use it at home to keep track of 'where the moncy goes, and at work for expenses, departmental budgets, etc.

Cassette 4-Games

Fow ZX81 (and ZX80 meth $8 K$
B.ASIC ROM and 16 K RAM nack

UNAR LANDNG-bring the lunat module down from orbis to a soft landing Yos comtrol artirude and orbital direction-bux watch the fuel gauge! The screen displays your fliche stams-digiouly and griphically:
TWENTYONE-a dice version of Blackiack.

COMBNT-you're on a suicide space mission You have only 12 missiles but the aliens have unlimited strength. Can you take 12 of them with you?

SUBSTRUKE:-on patrol, your frifate detects a pack of 10 enemy subs. Can you depeh-churge them before they torpedo you?

CODEBREAKER - the computer thinks of a 4 -digit number which you have to guess in up to 10 triex. The logical approach is best!
MAMT)AY - in answer to a diseress call, you ve namrowed down the search area to 343 cubic kilometers of deep spare. Can you find the aseronaut before his life-support sywem fails in 10 hours time?

Cassette 5-Junior

Education: 9-11-year-olds For ZX8I fand 7×80 Esith $8 R$ BASNCROM

MATHS-tests anithmetic with three levels of difficulty, and gives your score out of 10 .

BALANCE- tests undensanding of levers/fukrum theory with a series of grephic example.

VOLUMES - yes' or 'no' answers from the computer to a series of cube volume calculations.

AVERAGES - what's the average height of your class? The average shoe sire of your fimily? The average pocker money of yous friends? The computer plots a bas chan, and disenguishes ME.N fromMEDLN.

BASES-convert from decima! (base 10) to other beess of your choice in the range 2109 .

TEMP-Volumes temperatures -and their combinations.

How to order

Simply use the order form below, and either enclose a cheque or give us the number of your Aocess, Barclaycard or Trustcard accoune. Please allow 28 days for delivery.
If-day money-back option.

zXSOFTWARE

Sinclair Rescarch Led.
6 Kinger Parade, Cambridge.
Cambs.,CB2 ISN. Tel: 027666104.

To: Sinslair Revearch, I REEBOST, Cemeveriey, Sarrey, CUS 3ith. Plicese print | Please vent me the He ino I have indiaticed helow.

0.	Cons	Hem	tromentor	8 Bal
	21	Cowere 1 -Gimes	c1s	
	28	Comerter 2-fundor E.aymina	cass	
	23	Cosserte S-Pwoinces mad llemelate	acs	
	30	Cemotte 4-Cumes	cas	
	85	Conome S-Junior Efucmion	pass	
	17		ciess	
	13		cues	
			cas	
			Toad 6	

-Picose ase C2 ess to tesel ieder valwe enty is onderieg he:M madion Rull

-Mow dibre al applinelac.
Nemer MermivMiss
1111111111111

PRECISION - by

POMRTMAD

For more then eleven years Powertran have been designing and manufacturing the finest quallity olectronic kits. All of our now considerable range have featured in the electronics pross and literally thousands havo been bought and buite by contractors in the UK and World-wide.
Our philosophy is always the same - we offer ingenulty and originality in the construction phase by using only top class dosigners. We offer machines with power, versetility and performance - capability fully equal to their factory built stivals. We offer only the highest quality materials and components throughout to ensure years of useful and relinble service, wo offer clear comprehensive and easy to follow construction manuals to place our kits within the scope of the ceroful first time bullder as woll as the dedicated enthusiast.
Our hallmark of success lies in the number of our clients who have built our whole range - many assembling several units for others to use often on the professional music scene.
We belleve in taking every care throughout - months spent checking and testing tho design and development. Vigorous checking of every component. constant pre despatch quality control, careful packaging ...even door to door delivery by Securicar!
We are naturally very proud of our Transcendent range of synthesizers designed by Tim Orr and regularly featured in ETI. They represent the best in constructional Interest and in musical performance.

TRANSCENDENT POLYSYNTM A A lou Ocleve gol rionc symhesied wren oubstending oosign cherecser sticis and werwatily end performence to matigh Complete lur TZア 00 plus VAT Itingle voroel Eutra vorce lwa lo three morel 9.00 pius Vatr

EXPANDER - A now matching t wooe waconder fo foum up whin your pohremin lon erem a grealer pange and capeowipy

Complove bi CO 0 plas VA?
YRANSCENDENT DPX - Ollers a tho ocime thevoend wert power 10 meich feo eso owpuis ican be wied memeteneoulyl to giv nerpechord and penothonlytont of reed wim stingehbress and bosh ee fivy povphonic Oinet woures indude swichibs touch serminity and ochorus ensemete unif with
 tor out inetructen menu.

Compleso lus 1205 00 plas VAT

THANSCENDENT 2030 - Amough onty 3 octeve tenbord the 2000

comgure lir tiso.00 oun
1024 COMPOSER - Come thene vo so the minule wrth thip nove coegen if well conirol roue symthesmer with a sequence of up to 1024 notes - or in eovel seliction of shopter sepurnoes the composer is mem powerced with eulometicely cherged turions io preserve rou propyemme atier switon-ott

Complene lui C8S 00 al us Vall
DEMONSTRATION TAPE - Demonser ation tape now swalable of all the Ce lits (30 mimutes)

1200

[^0]: Widmstow Audios well the complete wito package fltat pach ditivers and all components for two spesaleers) for [220 plus CO (A0. piage Wilmelow Aucho, 33/39 Church Street, withmatow, CMeshire sto IAS.

[^1]: Puserne

[^2]: At long last Quad have released their mew tuner, the FM 4. It was athown for the first time at the Audle 82 extibition in Swin Cotzege recontly. Designed to match the Quad 44 control unis freamp to the rest of us) the FM . only unit has digizal tuning and woven presert stations. Programme locations are stored in memery.

 A tunima tnob has been retained in preference to a set of pusho buttons, wince Ousd iny it it easher to use.

[^3]: where $E=$ Young's modulus; $I=$ secondary moment of section area; $\mathbf{G}=$ shear modulus; $m=$ mass per unit length of a canillever; $p=$ densty of the cantilever material; $x=$ distance from the end of the cantilever; $y=$ flexural displacement of the cantilever; $r=$ constant; $t=$ time.

[^4]:

[^5]: No problems here with any of the com－ ponents specified－most mall order com－ panies who advertise in the magazine will be able to supply everything．We can supp－ Iy the PCB－see page 44 for details．

[^6]: Above: the board for the ETI Contrast Meter. You may use the board

[^7]: Computer Programming in BASIC (CPB) $\mathbf{C 1 0 . 5 0}$
 … 2×81 Supplement 50 p with CPB
 $75 p$ alone
 … FREE BOOKlist
 Or charge myedit card
 \qquad

 Cambridge Lesming Lid. Untiliai Rivermill Sile FGEEPOST. St lves. Cumbs. PELi CBR. England. (Registered in England No 1328762)

[^8]: Man OnOU日 日motiction scutme

 monind and

 ando evi ael lose wen 8 moremo from not evi

 -

 cinviris
 The peperen cever ext evence evomen an

 - encitra

