

PROJEGTS FOR ALLI
DRIL SPEED CONTROLLER TV SOUND AMPLIFIER DICHAL TEST METER RIAA PREAMPLIFIER ENVELOPE SHAPER SURMIMAL GAME VOCODER

8K ON BOARD MEMORY!
5 K RAM. 3K ROM or 4 K RAM. 4 K ROM (link selectable). Kit supplied with 3K RAM, 3K ROM System expandable for up to 32 K memory

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high leve language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS

64 character graphics option - includes transistor symbols! Only $£ 18.20$ extra!

MEMORY MAPPED

high resolution VDU circuitry using discrete TTL for extra flexibility. Has its own 2 K memory to give 32 lines for 64 characters.

KANSAS CITY

low error rate tape interface

PSI COMP 80

 Z80 Based powerful scientific computer design as published in WIRELESS WORLD

2 MICROPROCESSORS

280 the powertul CPU with 158 instruction, including 78 of the 8080, controls the MM57109 number cruncher. Functions include + , 一, , , squares roots, $\log _{5}$ exponentials, trig functions, inverses etc lange 10^{-99} to 9×19^{99} to 8 figures plus 2 exponen

EFFICIENT OPERATION
Why waste wablut memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC

with extended mathematical capability Only 2 K memory used but more powerful than mos 18 K Basics!

1K MONITOR
 resident in EPROM

SINGLE BOARD DESIGN
Even keyboards and power supply circuitry on the superb quality double sided plated through-hole PCB.

COMPLETE KIT NOW ONLY $\mathbf{f} 225$ + VAT

Cabinet size $19.0^{\prime \prime} \times 15.7^{\prime \prime} \times 3.3^{\prime \prime}$. Television not included in price

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is complete. Included in the PSICOMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board. 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer. 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

KIT ALSO AVAILABLE AS SEPARATE PACKS

 SUPER BOARO for which it can he rasiliy motifiad. Other meks lister in our FREE CATALOGUE.

PSI COMP 80 Memory Expansion System

Expansion up to 32 K all inside the computer's own cabinet!
By carefully thought out engineering a mother board with buffers and its own power supply (powered by the computer's transformer) enables up to 3 .8K RAM or 8 K ROM boards to be fitted neatly inside the computer cabinet. Connections to mother board from the main board expansion socket is made via a ribbon cable
Mother board: Fibre glass douole sided plated through hole PC.B.. $87^{\prime \prime} \times 3.0^{\prime \prime}$ set of all components including all brackets, fixing pars and ribbon cable with socket to connect to expansion plug £39.90

8K Static RAM board

8 K
ROM board

Fibre glass doubie sided plated through hole PC.B. $5.6^{\prime \prime} \times 4.8^{\prime \prime} \ldots . . .{ }^{\prime \prime} \mathbf{1 2 . 5 0}$ Set of components including ic sockets. plug and socket but excluding RAMs .. $£ 11.20$ Complete set of board. components 16 RAMS $\ldots \ldots . . \begin{aligned} & \text { 89.50 }\end{aligned}$ Fibre giass double sided plated through hole Set of components including iC sockets plug Set of components including IC sockets. plug
and socket but excluding ROMs
$£ 10.70$ and socket but excluding ROMs $\quad \mathbf{~} \mathbf{£ 1 0 . 7 0}$
$\mathbf{2 7 0 8}$ ROM (8 required) Complete set of board, components, 8 ROMs

THIS MONTH'S FRONT COVER FEATURE! \star ETI VOCODER \star

Panel size $19.0^{\prime \prime} \times 5.25^{\prime \prime}$. Depth $12.2^{\prime \prime}$

14 CHANNELS! NOISE GENERATOR! SLEW RATE CONTROL!

2 OSCILLATORS! VOICED/UNVOICED DETECTOR! LED PPM METERS!

COMPLETE KIT ONLY £195 + VAT

Kit includes FREE foot control and test oscillator!
Like all our kits the ETI VOCODER really is complete - fully finished metal work, professional quality components (all resistors 2% metal oxide), nuts, bolts, etc. - even a 13A plug!

MANY MORE KITS ON PAGE 8

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until October 31, 1980, if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded. EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation
U.K. ORDERS. Subject to 15% surcharge for VAT. No charge is made for carriage, or at current rate if changed. SECURICOR DELIVERY: For this optional service (U.K. mainland only) add £2.50(VAT inclusive) per kit.
SALES COUNTER: If you prefer to collect kit from the factory, call at Sales Counter. Open 9 a.m. 12 noon, 1-4.30 p.m. Monday-Thursday.

Vocoder ETI excitation p. 58

Testing Time p. 79

FEATURES

NEWS
HEAD AMP DESIGN CURRENT AFFAIRS MICRO BASICS SPOT DESIGNS AUDIOPHILE RAVEN ON
DESIGNERS NOTEBOOK TECH TIPS

7 The first and best right here.
15 Matching your moving coil.
23 Conducive reading this
28 A potted computer history.
34 Tested circuits for all.
39 It's music to your ears.
44 This one'll leave you speechles's.
48 An attenuated Project Editor.
53 We leave it up to you.

PROJECTS

VOCODER
DRILL SPEED CONTROLLER TV SOUND TUNER DIGITAL TEST METER SURVIVAL GAME ENVELOPE SHAPER RIAA PREAMP FOIL PATTERNS

58 Orchestrate your vocals.
69 Holy smoke!
73 Sound and vision.
79 Are your digitals up to scratch?
87 It's do or die on this one.
93 Shape your keyboards
98 Pure magnetism.
102 The nitty-gritty of our projects.

INFORMATION

NEXT MONTHS ETI NEXT MONTH'S CT CLOCK RADIO OFFER BOOK SERVICE

14 Look out for October.
31 Fill your RAMs here.
41 Time for a tune.
85 . A tome for the home.
105 PCBs galore.

[^0]
computer kit. The Sinclair ZX80.

Britain's first com

This is the $Z \times 80$. 'Personal Computer World' gave it 5 stars for 'excellent value.' Benchmark tests say it's faster than all previous personal computers. And the response from kit enthusiasts has been tremendous.

To help you appreciate its value, the price is shown above with and without VAT. This is so you can compare the ZX 80 with competitive kits that don't appear with inclusive prices

'Excellent value' indeed!

For just $£ 79.95$ (including VAT and p\&p) you get everything you need to build a personal computer at home... PCB, with IC sockets for all ICs; case; leads for direct connection to a cassette recorder and television (black and white or colour): everything!

Yet the $Z \times 80$ really is a complete, powerful, full-facility computer, matching or surpassing other personal computers at several times the price.

The ZX80 is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done: connect it to your TV... link it to an appropriate power source*... and you're ready to go.

Your ZX80 kit contains...

- Printed circuit board, with $1 C$ sockets for all ICs.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available-see coupon).

[^1] adaptor. Available from Sinclair if desired (see coupon)

The unique and valuable components of the Sinclair ZX80.

\therefore The Sinclair $Z \times 80$ is not just another personal computer. Quite apart from its exceptionally low price, the $\mathrm{ZX80}$ has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourself BASIC manual.

The unique Sinclair BASIC interpreter offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability-takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string inputto request a line of text when necessary. Strings do not need to be dimensioned
- Up to 26 single dimension arrays
- FOR/NEXT loops nested up to 26
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with. 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact design, volume productionmore power per pound!

The ZX 80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer. more powerful and advanced LSI chips A single SUPERROM, for instance, contains the BASIC interpreter. the character set, operating system, and monitor. And the $Z \times 80$ s 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines
And Benchmark tests show that the $Z \times 80$ is faster than all other personal computers

No other personal computer offers this unique combination of high capability and low price

Booking

Up

Bernard Babani (Publishing) Ltd of The Grampians, Shepherds Bush Road, London W6 7NF have brought out a brand new catalogue of Radio and Electronics books which they publish. They cover such subjects as Electronics, Semiconductors, Computers, Television, Radio, Hi-fi, etc. Whether you are a hobbyist, engineer, designer or student, they have something for you. The catalogue is free, just send them a reasonably large sta mped addressed envelope and you will recieve your copy by return.

Power Cuts On The Way

n 1968 your 20 inch colour telly using 90° deflection would have consumed over 200 W. Now, the figure is around 65 W . A new development from Finland will further reduce that to about $\mathbf{4 0} \mathbf{W}$.

The system, which results in a reduction of about 40% in power consumption, has been incorporated in the Salora G Series of portable colour sets. The design is basically a 90% efficient couple between the power supply and picture tube using an induction transfer system. The resultant cool running improves reliability and extends operational life.

The G Series, with its 16,20 and 22 inch models, will operate from a standard 60A/hour 12 V battery for 15 hours, or from mains for as long as you pay your biils.

All the models feature automatic electronic tuning, fine
tuning and memory plus add-on options for remoted control, 12 V battery and video frequency interface unit.

Salora products are available in the UK from Salora (UK) Ltd, 25A Techno Trading Estate, Swindon SN2 6EZ.

Computer
 Aided Yacht Race

This year the 1980 Observer Single Handed Transatlantic Yacht Race is being aided by a computer-based system. Known as the Argos system, each of the yachts involved in the race has an on-board transmitter which emits a signal picked up by two satellites regularly crossing the Atlantic. These signals are then rebounded to earth for decoding and processing. The information is fed via Toulouse in France to a CII Honeywell Bull computer in Paris and then is further processed by a Micral Computer in the Paris offices of Europe 1 radio sta-
tion. A Benson drafting machine on line to this computer is then able to give a graphic representation of the yachts' positions. This information is used by the radio station for its coverage of the race and also allows the race organisers to keep a constant eye on the progress of each yacht. This means increased safety for the race, as Coastguards can be immediately notified if they are in difficulty. After the disasters which occurred during last year's Fastnet race, this system will hopefully increase the safety factor in open sea racing.

Powering Down

E very piece of electrical and E electronic equipment needs a power supply of some sort. Larsen Sweeney's latest forecast of the use of power supplies in Europe up to 1986 reports a general downtrend. Not only is the general power supply business slowing down, but, in particular, newer supply systems, eg switching regulated and switched mode, are also feeling the pinch. This is largely a result of a slowdown in new product design and development.

The report warns that British power supply designers are at a distinct disadvantage in this marketplace and many will not
survive the recession. Their competitors in West Germany, France, Sweden and Japan are supported financially by their respective governments, but the British companies are on their own.

The 243 page Larsen Sweeney report covers 16 European courtries and 34 power supply product groups, including sections on marketing, the industry, the end user and distributors. Every home should have one. You'll have to raid the piggy bank, though. 'Power Supply In Europe To 1986' will set you back $£ 695$. Beat the rush. . .send your life savings now to Larsen Sweeney Publications Ltd, P O Box 36, Maidstone, Kent.

EMP - The Govt. Speaks

```
Your Ref..............................
                                    QUEEN ANNE'S GATE,
                                    LONDON, SWIH 9AT
Our Ref.
                                    2.7.1980
                                    The Under Secretary of State desires to acknowledge the receipt of
your letter of the.
```

\qquad

``` 27 . \(6.8 \circ\)
which is receiving attention
```

This is the entire text of the replies we have received to date from the vast machinery of the British government. Receiving attention? We shall keep plug ging away though, and report any sensible answers we do manage to obtain. Meanwhile what are your views on the subject of EMP? Let's hear about them.

Vetting VDUs

If your work involves reading data from a telly screen (operating a computer terminal for instance) you may occasionally wonder if it affects your eyesight, especially if you go home every night with a splitting headache.

The twin evils of radiation and eyestrain have attracted some attention with respect to VDU usage. For this reason the VDU Eye Test (VET) Advisory Group was set up to devise a test package for VDU users. Their final report has now been published as a 12 page booklet

The Group found that no significant hazard from X-ray, ultra-violet, visible or RF radiation has been detected' in modern VDU design. Moreover, the

Group found no evidence that VDU use could cause eyestrain. We consulted a practising Ophthalmic Optician who told us that normal use of the eyes cannot cause damage.

The report did, however, list several factors that could cause discomfort, which the layman might call eyestrain. These included the posture of the VDU user and the working environment.

The Group concluded that VDUs can be used safely, if designed and intalled with proper attention to the user's ergonomic requirements. Where there is intensive use of VDUs, the user's eyesight should be checked with the test recommended in the report.

If you would like a copy of the VET Advisory Group's report, write to Tom Stewart, Butler Cox \& Partners Ltd, Morley House, 26-30 Holborn Viaduct, London EC1A 2BF.

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
Another superb design by synthesizer expert Tim Orr — published in Electronics Today International
The Transcendent DPX is a really versatie new 5 octave keyboard instument. There are twa audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a vely you can play strings over the whole range of the keyboard or brass over the whole range of the Arass at the lower end (the keyboard is electronically split after the first two octaves) or vice versa or even a ombination of strings and brass sounds simultaneously. And an alvoices you can switch in circuitry to make the keyboard touch sensitive! The harder you press down a key the louder it ounds - just like an acoustic piano. The digitally controlied multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism. sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato omes in only after waiting a shor time ater the note is struck for even more realistic strong sounds.

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3.3^{\prime \prime}$ (front)

COMPLETE KIT ONLY £299 +vat

To add interest to the sounds and make them more natural. there is a chorus/ensemble unit which is a complex phasing systern using CCD (charge coupled device) analogue delay overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects. As the system is based
composing, etc., etc.) Although the DPX is an advanced design connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet boards which interconnect with mult way connectors, just four of which are quality components (all resistors 2% metal oxide), nuts, bolts, etc., even a 13 A plug!

POWERTRAN
MANY MORE KITS ON PAGE 110 MORE KITS AND ORDERING INFORMATION ON INSIDE FRONT COVER

TRANSCENDENT 2000 simgle baard srwhessizer

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED).ANO FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.

The TRANSCENDENT dynamic control, a mise a shaper There is ascilator, a new pitch modulation. a VCF with both low and high pass outputs and a separace
detector, ADSR repeat, sample and hoid, and special circuiry wide teak cabinet, filter sweep pedal. professional quality components (al resistors either 2% metal oxide or $1 / 2 \%$ metal film) and it really is complete - right down to the last nut and bolt and last piece or wire There is even a 13A plug in the kit - you need buy absolutely no mor parts before plugging in and making great music! Virs PCB printed components are on we one all the controls mount directly on the main with component locations. All the controls mount connector plugs and board, all connecto simple it can be built easily in a few evenings by construction is so sable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with ready-built units selling for many times the price.

COMPLETE KIT ONLY £168.50 + VAT!

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a pair of ears!

Cabinet size $24.6^{\prime \prime} \times 15.7^{\prime \prime} \times 4.8^{\prime \prime}$ (rear) $3.4^{\prime \prime}$ (front)

Metering Your Multis

The Alpha V is the latest and smallest hand-held digital multimeter from Gould Instruments. It has a $31 / 2$-digit liquid crystal display with 25 measuring ranges covering the five basic functions of DC voltage, AC voltage, DC current, AC current and resistance. It has a maximum reading of 1999 and maximum resolution of 100 uV . Range and function selection is by two rotary switches on the clearly coded front panel. The multimeter is powered by a 9 V carbon zinc or alkaline battery (PP3 or equivalent), the lafter giving a typical life of $\mathbf{2 0 0}$ hours. There is a battery low indicator provided by the display, which shows 'BAT' when less than 10% of useful battery life remains. The case is of high-impact ABS plastic and the display is shock mounted behind a polycarbonate plastic window. Accessories supplied with the basic instrument include standard red and black test leads, battery and handbook. The cost is $\mathbf{E 8 5 . 0 0}$ (plus VAT) from Gould Instruments Division, Roebuck Road, Haina

Anti Car Theft

$M^{\text {aywood }}$ Ltd is marketing a method of Ltd.is marketing a method of deterring vehicle thieves. A mobile service is offered which involves abrading the vehicle registration number on every window of a car, caravan, commercial vehicle or boat. This means that in order to mask the identity of a stolen car the thieves must replace all of its windows. The abrading process takes about five minutes at a cost of about $£ 5$ per vehicle (quantity discounts may be given). Maywood Security Services Ltd are operating as a franchise for Safecar and they will quite happily call at your place of work or home. This method has received the support of police crime prevention officers thoughout the country who have to deal with some 350,000 vehicle thefts a year. The address is Maywood Security Services Ltd, Peake House, 232 High Street, Harlington, Hayes, Middlesex, UB3 5DS. They cover North West, West and South West London.

Status Symbols

 D aindirk of Downham Market Norfolk are now supplying the Status range of audio equipment. Their Status 500 power amplifier delivers 250 W per channel into 8R, using power MOSFET output stages. Ths Status 20 Stereo Control Unit is a rack-mounting system with a modular disc replay amplifier that can be remotely located, three band equaliser with continously variable turn-over frequencies, built-in headphone amplifiers and external mains power supply. The range will soon also include a parametric equaliser. You can get more information on the Status 500 and the rest of the Status range from Raindirk Ltd, Downham Market, Norfolk.
Sharp Shapes

Charp Corporation are now S marketing an alternative to conventional tubular LEDs. They are designed for flush fitting to front panels and are currently offered in the form of round 'point' indicators, equilateral and isosceles triangles, square and flat sections, all in three different sizes, (3,4 , and 5 mm) and three different colours - red, yellow and green. The shapes make good function indicators and the 'squares and flats' can be stacked to form bar graphs. For 1,000 pieces the price is between $5 p$ and 10p each depending on the size, shape and colour. They are available from CRP Electronics Ltd, 13 Hazelbury Crescent, Luton, LU1 1DF.

Defence Ministries and may become an industry standard.

Aimed at managers, engineers and programmers, ICS's 'Computerised Robots' course will pinpoint where the new breed of 'intelligent' robots can be used to increase productivity and streamline production.

Japan is currently the major employer of robot labour with $\mathbf{6 , 0 0 0}$ in use ($\mathbf{4 0 , 0 0 0}$ if you include the simplest automata). The USA has 3,500 while Europe has only 2,000. If computer companies enter the robotics market, it is estimated that there could be 200,000 robots in use by 1990 in the USA alone with over 35% of all production in robot 'hands' by the turn of the century. As the increasing use of robot labour changes the face of society, all we will need is a machine that enjoys living in it.

You can get more information on the course programme from Dr David C Collins, ICS Publishing Co Ltd, Pebblecoombe, Tadworth, Surrey.

Small is Beautiful

Aminiature hi-fi system is now available from Misubishi Electric, called 'System 4'. It delivers 50 W per channel, both channels driven into $8 R$ and it measures $27 \mathrm{~W} \times 42.4 \mathrm{H} \times 27 \mathrm{cmD}$. The four units consist of the M-A04 Poweramp, M-P04 pre-amplifier, M-F04 AM/FM Tuner and the M-T04 front-loading Cassette Deck which is metal tape compatible. Their latest speaker system is also available. A 50 W 8R two way infinite baffle speaker, the SS 630E, retails at $£ 115.00$ for the pair. Frequency response is 60 Hz to 22 $\mathbf{k H z}$ and dimensions are 305W $\times 544 \mathrm{H} \times 257 \mathrm{mmD}$.

There are so many digital watches on the market, with varying functions, that the average person is bound to feel somewhat confused.
A new survey of the electronic watch industry has been produced to clarify this confusion and to give an unbiased and objective answer to the many questions that are constantly being raised.

* How accurate are electronic watches?
* Who makes Seiko's?
* What is the importance between brand names?
* Is solar power worth the extra money?
* What are the most important features in a watch?
* When will prices stop falling?

The survey answers all of these questions and tells you what to look for in a quartz watch; how they work; why the prices vary so much; what the future holds.

SPECIAL OFFER

Send today for this technical report, plus news of a unique Metac offer to beat all special offers.

Complete the coupon below and send it FREEPOST (no stamp required) and we will post, Same Day Despatch, the technical report giving you all you need to know about electronic watches and details of our special offer.

Which is the best watch?

These four watches are very different in price, durability and functions. How would you choose between them?

This unbiased and objective report helps you to make this decision and gives you a deeper insight into the rapidly changing and exciting world of the micro-chip.

For your copy of the report complete and return the coupon to: Metac Electronic \& Time Centres, 24-hour Despatch Centre, FREEPOST, 47A High St., Daventry, Northants.

110 projects in every book!

> The'110' books have been acclaimed by enthusiasts, students and engineers. Each contains 110 different circuit applications. Use them as project books or as source books for circuit ideas.

110 CMOS Digital IC Projects for the Home Constructor R. M. MARSTON 0408002166 £3.95

110 Electronic Alarm Projects for the Home Constructor R. M. MARSTON 0408002697
£3.95

110 IC Timer Projects for the Home Constructor JULES H. GILDER 0408004800 ; 03.95

110 Integrated Circuit Projects for the Home Constructor Second Edition
R. M. MARSTON

040800309 X
$£ 3.95$
Available from your bookshop or in case of difficulty direct from the publishers.

§ \bar{T} ewnes Technical Books Borough Green, Sevenoaks, Kent TN15 8PH

PCB FOIL PATTERNS

Above: The switching board for the DTM project.

Above: The RIAA preamp foil pattern. The board is intended to be mounted in side existing equipment and space maybe left for fixing.

Above: The Drill Speed Controller PCB. Construction is not critical here and other methods may be employed. Take care with the PCB as mains voltage will be present.

Below: Vocoder board B. The large PCB is not shown here as it is too large to go on the page. An SAE to Modmags will secure a copy.

Above: Project 80 board for this month's module. Note that copyright exists on the board and firms may not reproduce the PCBs for sale.

[^2]

ETIPRINTS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects.

ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

PARTS LIST

Shown below is the listing for the last year's ETIPRINTS.

Earlier sheets are available, ring Tim Salmon for details.

038	Buffer Moving Coil Preamp Process Controller	$\operatorname{Jan} 80$	040B	ETI 80 - PSU Tuning Fork Filter Coin Toss	Feb 80	042B	Touch Dimmer, Battery Charger RC Guardian (Top,Bottom)182	Apr 80
039A	Hum Filter Logic Probe Long Period Timer	Dec 79 Dec 79	041A	ETI Audiophile ETI VCA Signal Trace ETI HC	Mar 80	043	IR6O preamp, Receiver, PSU, Servo Tester, VU-PPM	May 80
)	Rain Alarm Touch Switch Flash Trigger Pseudo Random Noise Gen		041B	Electromyogram VCM Heater Controller	Mar 80	044A	IR60 Function Board (Top \& underside) Control Circuit. Line Transmitter. Tape Response Meter Ohmmeter	June 80
039C	Function Generator	Dec 79	042A	300 W Amp Module	Apr 80		FM receiver	June 80
040A	$\begin{aligned} & \text { ETI } 80-\text { VCO } \\ & \text { and VCLFO } \end{aligned}$	Feb 80	033	Fuel Level Nionitor, Alarm, Screen Controller Dynamic Noise Reducer	Sep 79		PSU \& Monitor Amp Drum Synth (function board)	

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

WEST HYDE CASES FOR E.T.I. PROJECTS
Bench Amplifier (August 1979) Order Code WEC 801
Audiophile Pre-Amp (October 1979) Order Code CL2 CDL
Audiophile Power Amp (October 1979) Order Code CL2 CGL Audiophile PSU (October 1979) Order Code CL2 AEL Pinball Wizard (November 1979) Order Code TEK 364 Points Controller (December 1979) Order Code BOC 680 Moving Coil Pre-Amp (January 1980) Order CL2 ADJ Synthesiser Project Order Code TEK A23G Stereo Image Co-ordinator (July, 1980). Order Code CL2 CDJ

PLEASE ASK FOR OUR FREE 80-PAGE CATALOGUE AND PRICE LIST

THE BIGGEST SELECTION OF CASES IN EUROPE
 Courses

It's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.

Understand Digital Electronics
 In the years ahead digital electronics will play an increasing part in

 your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards, TV messages from friends and electronic mail.After completing these books you will have broadened your career prospects and increased you knowledge of the fast-changing world

around you.
 DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 7.00$
 This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure
 that the points are understood.

 Everyone can learn from it - students, engineers, hobbyists, housewives, scientists. Its four A4 volumes consist of:Book 1 Binary, octal and decimal number systems; conversion between number systems; conversion of fractions; octat-decimal conversion tables.
Book 2 AND, OR gates; inverters; NOR and NAND gates; truth tables; introduction to Boolean algebra.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates: dual-input gates.
Book 4 Introduction to pulse driven circuits; R-S and J-K flip flops; binary counters; shift reg̣isters: half-adders.

DESIGN OF DIGITAL SYSTEMS $£ 12.50$

This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater. depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six A4 volumes lead step by step through number systems and.Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NANO, NOR and exclusio NOR functions; muitiple input gates; truth tables: De Morgans
conventions; karnaugh mapping; three state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shitt registers; asynchronous and synchronous counters; ring, Johnson and exclusive - OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding: instruction sets; instruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization; character representation; Book 6 Central processing unites; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and

time sharing.
 Flow Charts and Algorithms
 are the essentia! logical procedures used in all computer programming

 and mastering them is the key to success here as well as being a priceless tool in all administrative areas -presenting safety regulations, government legislation, office procedures etc.THE ALGORITHM WRITER'S GUIDE $£ 4.00$
explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC £9.00

Book 1 Computers and what they do wel; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and kow level languages; flowcharting; functions; REM and documentation; INPUT, IF....THEN, GO TO; limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR... NEXT, RESTORE; debugging; arrays: bubble sorting: TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming: examples; glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

A.N.S. COBOL $£ 4.40$

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded on return of the books in good condition.

Please send me:-
Digital Computer Logic \& Electronics @ $£ 7.00$
....Design of Digital Systems @ £12.50
....Algorithm Writer's Guide @ $\mathbf{E 4 . 0 0}$
....Computer Programming in BASIC @ 99.00
....BASIC Handbook@ £11.50
....A.N.S. Cobol @ $£ 4.40$

FOUR WAYS TO PAV

1) A U.K. Cheque or a U.K. postral order (Not Eire or overseas)
2) A bank draft, in sterting on a London bank lavailable at any major bank)
3) Please charge my Access/M.Ch Barclay/TrustC/Visa \square Am. Exp \square Diners \square 4) Or phone us with these credit card details - 048067446 (ansaphone) 24 hour sarvice

Card No...
Card No. PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE. AIRMAIL:
Eur, N.AF, Mid.E. add $1 / 3$ to price of books: Jpn, Aus. N Z. Pcfe add 3 : olswehere add $1 / 2$

Name

Address
U.K. Delivery: up to 28 days

Cambridge Learning, Unit 14 Rivermill Site. freepost. St. Ives. Muntingdon, Reg. in Eng. No. 132 B 762

CAPACITORS:
Mullard Ceramic 63v range 1 pF to $10,000 \mathrm{pF}$ E 24 range all at $£ 0.06$ each
Siemens Ceramic 63v B37448/9 .01: .022: .033: .047mF @ £0.06 .068: .1mF @ £0.08: .22mF @ £0.11
CSF High Voltage Ceramic Discs Prices $£ 0.07$ to $£ 0.18$ Range 100 pF to 10.000 pF
Voltage range up to 6 Kv .
See catalogue for details.
Comprehensive range Siemens Layer Polyester Caps: . 001 to 3.3 mF

Prices $£ 0.07$ to $£ 0.63$.
See catalogue for details.
Large range of Mullard/Siemens Electrolytic Axial/Radial
Capacitance values 1.0 mF to
$10,000 \mathrm{mF}$
Voltage ranges 25 v : 40 v : 63 v : 100v:
Prices and types as catalogue Also Mullard C280; Siemens B32231i4 and B32110. All prices net + VAT and postage/packaging

TOOLS BAHCO

Side Cutter with Bezel.
Side Cutter without Bezel. End Cutter without Bezel.
Vero Metal Shears.
Other items as catalogue.

BOXES \& CASES
See catalogue for full range. Aluminium boxes 13 sizes. Rexine Covered boxes 7 sizes. NEW RANGE TMEC CASES Send S.A.E. for details \& types Price range. $£ 14.04$ to $£ 17.00$ ABS PLASTIC BOXES

| $3^{\prime \prime} \times 2 \frac{1}{4^{\prime \prime}} \times 1 \frac{3}{8} \prime^{\prime \prime}$ | |
| :--- | :--- | :--- |
| $33 / 4^{\prime \prime} \times 2 \frac{3}{4^{\prime \prime}} \times 1 \frac{3}{8} \prime^{\prime \prime}$ | Prices as |
| $41 / 2^{\prime \prime} \times 33 / 4^{\prime \prime} \times 1 \frac{1}{2^{\prime \prime}}$ | catalogue | $8^{\prime \prime} \times 43 / 4^{\prime \prime} \times 3^{\prime \prime}$

BAZELLI INSTRUMENT CASES 5 sizes.
Miscellaneous hardware including
Vero Board: Superstrips:
Vero Breadboard.
Vero boxes (see catalogue for full range).

Card Frames: Fliptop boxes: etc etc.
1980 CATALOGUE U.K.: 65 p post paid Europe 85p post paid Rest of Worid $£ 1.25$ post paid
Mail order: 01-624 8582

TTL see catalogue for full range				SOLDERING EQUIPMENT IRONS-ANTEX
SNT400N	${ }^{\text {E0 }} 1{ }^{14}$	SN7491AN	${ }_{\text {co }}^{60} 51$	
SN7402N	${ }_{\text {co }}$	SN7493N	${ }_{\text {for }}$	15 watt C15 £3.95
SNT7403N	${ }_{\text {coil }}^{\text {E0. } 14}$		${ }_{\text {co }}^{60.55}$	15 watt CCN £4.20
SN7405N SN706	${ }_{\substack{\text { for } \\ \text { fo } 34}}$	SN7496N	coter	17 watt CX17 £4.20
¢	${ }^{\text {fo } 26}$	SN74100	cile	25 watt $\times 25 \quad £ 4.20$
SNN4098	${ }_{\text {co }}^{\text {E0. } 16}$	SN74118N	${ }^{\text {for }} 16$	Stand $£ 1.50$
SN74 SN7410	${ }_{\substack{\text { fo } \\ \text { fo } 15}}^{15}$	SN74119N	$\underset{\substack{\text { f1, } 20 \\ \text { fo } 25}}{\text { cos }}$	St
SN74,	${ }_{\text {co. }}$	SNT4122N	${ }_{\text {co. }}$	DESOLDERING TO
SN741	${ }_{\text {f0. }}^{60} \mathbf{4 7}$	SN74123	${ }_{\text {for }}^{\text {fo }}$ 532	Solder £6.50
	${ }_{\substack{\text { co } \\ \text { co } 22}}$	SN7412.	¢0.40	
SN74		SN744		SINCLAIR INSTRU
	${ }_{\text {¢0 }}^{1819}$	SNT4148N	¢ $\begin{gathered}\text { ¢10.09 } \\ \text { co.79 }\end{gathered}$	Digital Multimeter
${ }_{\text {SN }} \mathbf{5 4 2 6 \mathrm { N }}$	¢0. 19	${ }_{\text {SNP44515}}$	co 5	PDM35 £ 34.50
SNT7427N SN730N	${ }_{\text {¢0, } 15}^{\text {¢0, }}$	SN74154N	${ }_{\text {to }}$	DM235 ¢ 52.50
SN7 7432 N SN 733 N	${ }_{\text {co }}^{\text {co }} 17$		${ }_{6059} \mathbf{6 0 . 6 0}$	DM350 £ 72.50
SN 7438 N SN7400	${ }_{\text {co }}^{\text {fo } 21}$		${ }_{\substack{60 \\ 80 \\ 0 \\ 0}}$	DM450 £ 99.00
SN7441A	${ }_{\text {E0. }} 52$	SN74162A	${ }_{\text {E0 }} 70$	Digital Frequency Meter 99.00
SN7442N		SN/4163AN SN 74164 N	for ${ }_{\text {fo } 80}$	Digital Frequency Meter
SN7446AN	${ }_{\text {for }}^{\text {f0.48 }}$		co. ${ }_{\text {co }}$	PFM200 £ 49.80
		SN74174N	${ }_{\text {co }}$	Low Power Oscilloscope
SN7450N	${ }_{\text {co }}^{\text {¢0. } 15}$		¢063	SC110 £139.00
${ }_{\substack{\text { SN }}}^{\text {S } 745453 N}$	${ }_{\text {co }}^{\text {¢0, } 15}$		${ }_{\text {colo }}^{\text {to }} \mathbf{6}$	RIMSON ELEKTRIK HI
SN 7460 N SNT470		SN74181 SN/4182N	${ }_{\text {f10 }}^{65}$	MODULES
			¢1.29	CE608 Power Amp £18.26
SN $\mathrm{S}^{2} 774 \mathrm{~N}$	${ }_{\text {fo } 25}$		¢1.35	CE1004 ", "P 21.30
SN7475N SN7476N		SN74188A		CE1004 ., ., £21.30
	${ }_{\text {fo }}^{60.39}$		(6074	CE1008 ", ". £23.91
SN7882N	${ }_{\text {E0. } 65}$	SN7492N	¢0,79	CE1704 ", ", £30.43
SN7483N	${ }_{\text {f0. }}^{\text {¢0 }}$	SN74193N SN74 196 N	${ }_{\text {co }}^{\text {co } 79}$	CE1708 " " £30.43
	¢0.70		${ }_{\text {co }}^{\text {co }}$ ¢ 74	CPS1 Power Unit £16.96
		SN74980	¢1.09 61.09	CPS3 " " £20.43
NOBS \& SWITCHES				CPR1 Pre Amp
Big selection as catalogue -				CPR1S Pre Amp $£ 38.70$
Also Res Opto; S	iors	Presets; uctors et		All prices + VAT + postage/ packaging

Based on the ICLI7106. This kit contains a PCB resistors. presents. capacitors, diodes, IC and 0.5
hiquid crystal display. Components are also included to enable the basic DVM kit to be modified to a Digital $\begin{aligned} & \text { Thermometer using a single diode as the sensor. } \\ & \text { Requires a } 3 \mathrm{~mA} \text { aV supply (PP3 battery). } \\ & \mathbf{£ 2 0 . 7 5}\end{aligned}$

Codespese Hectronics

P.E. BOX 23,34 SEAFELD ROAD, COPMOR, PORTSMOUTH,
HAMTS., P03 5B. HANTS., P03 58.1

> GIANT 0.8° LED clock display, commor catrode. module with 0 . $7^{\prime \prime}$ LED display. With da:a $£ 5.95$ each. LIOUID crystat clock display. $0.5^{* 1}$ digits. With data
and FREE socket, $\mathbf{f 5} .25$ each. FLUORESCENT reject and FREE socket, £5. 25 ezch. FLUORESCENT reject
calculators. Modern, 10 function with full memory Most repairable but no 9 : transistor I.F. transformers. All brand nev. May include
several lypes. 55 p for to CLOCK CHIP MM 5316 IC several types. 55p for 10 CLOCK CHIP MM15316I.C. (has alarm outpul) Brand rew with dase $£ 2.35$ each.
POLARIZING filter. pisstic. $0.00 E^{\prime 2}$ thiek. Any size cui from 1 sq. in. to max. size $19^{r} \times 250$ feet. 3 p per sq. inch. MOMENTARY (push to 'make') switch. Red cap. $45 p$ each. SLIDE switch, 2 pole c.o. 1 fp each. TWO caleulator keyboarts (nor compatible wath 4204 calc.
chip). 99 p the pair. MULTMETE CHIP. I.C. to build $4 \% / 2$ digit d memer (needs. Madditional circuiry). With data $£ 3.55$ each. KNOBS, slider control knobs, fits 5 or 8 mm shafts. State colour, 14p each. Rotary control knobs. black (18 mm diam) with coloured cap. state colcur required. 20 p each. Skitted rolary
knob , same as rotary controi knob above but has flared skin around base. State cap colour required. 27p each. Colours available, black, red, green, blué, yellow, grey. white. E DIGIT common cathode caiculator display. W. ${ }^{\prime \prime}$. multiplexed, with data, 99p each. LED WRIST WATCH DISPLAY matches above watch enio. With data. 85p each. NOTE, the wristwetch chip and display are housed in 'tegless flatpack' style package and require some tairly fine soldering. QUALITY jack
sockets. mono 25 p each stereo $\mathbf{3 0}$ peach MEMORIES 2102 static RAM booklet. $25 p$ each NORTEC 4204. 4 function calc. chip. With data 80 p each. UNTESTED 0. $1^{\prime \prime}$ LED displays 10 single digit

> E1).
> For your FREE copy of our latest catalogue please send MEDIUM sized SAE VAT ADD 15% TO TOTAL CO INCLUDING POST AND PACKING).

Cash back' satisfaction guarantee on all items

ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets 6 in x $41 / 2$ in $£ 3.00$ with all symbols for direct application to P.C. board. Individual sheets 30 p each (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Conrectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90° and 130° (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.
'FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet 12 in $\times 9$ in. Price £1.20.

GRAPHIC TRANSFERS WITH SPACER
 ACCESSORIES

Available also in reverse lettering, colours red, blue, black or white. Each sheet 12 in . $\times 9 \mathrm{in}$ contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4$ in kit. $£ 1.20$ complete. State size.

All orders dispatched promptly. All post paid
Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS

P.C.B. TRANSFERS DEPT. ET19
46 LOWVFIELD ROAD STOCKPORT, CHES. 061-480 2179

ATARI CABTRIDCES

basics of computer language and pro gramming. What to say. And how to say it $£ 34.50$.
Klarm mains umis $£ 98.50$
Orders being tooked for H ball and Circus at£15.20.

SPACE INVADERS Game Program The ultimate Game Programme with 112 Shialds, Zigragging Laser Bombs, Fast Laser Bombs, Invisible Invaders and $1 \& 2$ Player Games! This superb cartridge uses
the joystick controllers and costs only £27.50 incl. VAT plus 50p Post and Packing Order Now Alarm with Spal
special price.

It's you and your favourite adversary, pursuing one another through bleak big
city streets. And blowing each other away city streets. And blowing each othe
with the bazookas on your hoods. The first to blast his opponen five times is the winner. cops discovered robbers. $\mathbf{£ 1 5 . 2 0}$. Orders now taken.
Slot racers ${ }^{\text {m }}$

GOLF - Now you can play golf at home. even in stomy weather. There are nine
tournament-quality hotes on Atari's course, each with a designated par. Total par for this course is 36 points. When playing a one-player game, try to match or
beat par: In a two player garne the winner is the player with the least amount of
is and strokes But swing carefully. There are the usual sandraps. lakes and trees to avoid The wrong play may cost penaity strokes. E15.20
ADVENTURE - Aciventure plays like the rold playing board game and ricludes the added dimension of video. A wicked and hidden it somewhere in the Kingdom, The oblect of the game is to rescue the
Gobles and replace it inside the Golden Castle where it belongs - no easy task. Three deadly dragons and a black bat hinder your quest, but scattered through
out the Kingdom are objects out the Kingdom are objects to help you
slay the dragons and outwit the evil slay the dragons and outwit
magician, $£ 22.50$ plus 50 P P\&

NEW COMPONENTS

```
Mack No. }10\mathrm{ PP3 battery leads 50p
    10 Red or black crocodile clips. 45p
    10 Red or black phono plugs. 80p
    10 single phono sockels.70p
    lol}102.5\textrm{mm}\mathrm{ unscreened jack plugs. 80
    10 3.5mm chassis sockers, 80p
    10 Standard mona jack plugs 130
    10 Srandard switched jack sockets. 170p
    105 pIn 180}\mathrm{ OIN plugs, 120p
    5 Standard toggle switches SPST: 100p
    10 Miniature DPDT slide switches. 130p
    10 Miniature push to make switches. 130p
    lomin
    Pair of ultrasonic transcuucers. 350p
    20 exas 8 pin sockets,170p
    20 Texas 16 pirn sockets. 220p
    Resistor kit 10 each value 4.7.
    Total of 650 resistors.480p
        Multiples of 20 per value only
        104.7u 63V radial electralytics. 50p
        10 10u 25vradial elecrolytics. 50
        10.00u 25V radial electrolytics. 75p
        100.01u Mullard C280 poiyester 50
        100.1 Muthard C280 polyester. 50p
        10 BC108 transistors. 90p
        10 EC, 84L transistors. 90
        10 BC2 14L ransistors. 90, 
        10 2N37O4 transistors. 80
        10 2N3819 transistors. 190p
        10 2N3905 ransistors. 90p
        42N3055 transistors.200p
        20 1N4002 rectiter diodes. 75p
        200AS1 signal dodes. 110p
        100 1N4148 signal diodes. 18G
        5C1060 4A 400V thyristors. 200p
        200.2in red LEDs. 170
        500.2in red LEDs.400
        1000.2In red LEDS 750
        200.2in green LEDs. 280
        4 FNO500 disolays. 350p
        S.741 aperational 350
        5 LM301A operational ampin 90p
        1 LM324 operational amplifiers % % 140p
        5 CA3140 operational amps.225p
        5 NE555 timers. $10, 
N5 i Dalo printed circuil board pen. 80p
```

All prices inctude VAT. Please add 50 p carriage on all orde
RAPID EIECTRONICS

The finest amplification from Crimson Elektrik

LATEST DEVELOPMENTS

CRIMSON ELEKTRIK Power amplifiers are the most sophisticated on the market today. Yet now with the latest issue 5 innovations THEY ARE EVEN BETTER! We have included sonic improvements and developed a unique electronic protection circuit which obviates the need for output fuses in fact. such fuses can seriously degrade the performance of an amplifier. They can blow under heavy drive conditions - even with non faulty loads (due to thermal fatigue), they can be a time consuming nuisance and even dangerous to replace, but more importantly they are responsible for "envelope distortion" i.e dynamic compression of the signal, even disadvantages, and the latter to a lesser extent

CP3000 POWER AMP MODULE 300 WRMS $4 R$

BEST VALUE

CRIMSON have an enviable reputation for supplying the best value amplifier kits. You can proove this to yourself by checking out the competition in the following crucial areas: *Professional grade phono sockets for All signal connections * Silver/Gold plated switch contacts \star Adequate heatsinking for fuli rated output \# Available a reputation for friendly and helppul service before and AFTER sale $\#$ Forms the basis for high quality active loundspeaker systems. Considering the adivantages of CRIMSON Kits. Why choose anything else?

SOUND ADVICE

Crimson Amplifiers are versatile and dependable. The new CP 3000 will give to 300 watts into 4 ahms at 0.03% THD and is the obvious choice for P.A. and Disco's requiring the best performance. For $\mathrm{Hi} \mathrm{F}-\mathrm{Fi}$ we produce the ever popular pre- and power amp hardware kits which enable our advanced modules to be housed in attractive metalwork and include everything down to the last nut and boit.
Our Pre-amplifier can be fitted with the moving coil module allowing it to be used with the latest M.C. cartridge (which can now be bought for as little as £30). Write for details, specifications and fuil price list or send 50p cheque/p.o. For our comprehensive application/ users manual.
Space precludes us from publishing all our products and prices, below are just a few examples
\star Power Amp Modules (single channel)
CE 608 (60 WRMS / 8 ohms)
$£ 23.10$
CE 1708-(170 WRMS / 8 ohms) $£ 38.50$
CP 3000- (300 WRMS $/ 4$ ohms) $£ 58.00$
$\$ 60+60$ watt stereo pre and power amplifier complete
\star Stereo Moving Coil Pre-Pre Amplifier Module MC1
$\star 3$ Way Active Crossover (single channel) £2850
Don't forget. Crimson modules are available throughout he country from all branches of Marshalls and Mat order from Badger Sound Services and, of course
Prices include V.A.T and post to anywhere in the U.K.

1A Stamford Street, Leicester E E1.6NL

100 W Power Amp (August)

n Fig. 7 on page 67, C1, 2 and 4 are shown the wrong way round. However, they are shown correctly on the component overlay.

In the Power Amplifier Board Parts List on page 68, R15 should be 10R 1W and R16 should be 10R 2W. In the DC Sensing Board Parts List on the same page R7 should be $4 k 7, R 20,23$ are $82 k$, R18 is $1 \mathrm{kO}, \mathrm{R} 26$ is 91 k and R27 is 5k6. C1,2 and 11 should be 22u 16 V electrolytic and C9, 10 should be carbonate types.

The component overlays on page 69 are correct.

Music To Your Ears

C asio have brought out four C new calculators to follow in the footsteps of their Melody Card M-80. They all have eight digits calculating capacity in four functions, with full percent and independent memory. Sliding the mode switch to 'music' converts them to an 11 note instrument for the user to play tunes on the numerals ($0-9$) and decimal keys.

The ML-720 is credit-card sized and is priced at £17.95. It is powered by two G-B size batteries which last for 700 hours continuous calculating use. This is extended by an automatic power off function with full meimory retention. The ML-860 is slightly bigger with a RRP of $\mathbf{E 1 6 . 9 5}$ and uses the larger G-10 batteries which last
trol Unit is a rack-mounting system with a modular disc replay amplifier that can be remotely located, three band equaliser with continously variable turn-over frequencies, built-in headphone amplifiers and external mains
power supply. The range will soon also include a parametric equaliser. You can get more information on the Status 500 and the rest of the Status range from Rairdirk Ltd, Dawnham Market, Norfolk.

Black Hole (May 1980)

221, R83 and C10 should K be $1 \mathrm{ko}, 18 \mathrm{k}$ and 10 nF respectively. A 39k resistor should be connected in series with C 40 . Cut the appropriate PCB track and solder the resistor across the break. A 1 N4148 diode should be connected across each SAD512D input (soldered to the underside of the PCB). Later issue PCBs from Powertran will be suitably modified.

Kit News

TK Electronics' contribution to making legs obsolete should be available in September. It's a touch-controlled light dimmer with single alternate action touch plate. Nothing strange in that, you say. Well, TK have married their touch dimmer with an infra-red remote control system. So, you needn't leave your water bed, with infra-red light controller in one hand and ultrasonic TV controller in the other (and the two will not interfere with each other). TK's TDR300K 300 W Remote Controlled Lightdimmer will probably cost around £10. Watch their adverts in ETI for latest details. Meanwhile TK can supply an infra-red on/off light controller for £12 plus VAT (order model RC500K). A multi-channel infrared remote control system for models, hi-fi, etc is also available separately.

Aura Sounds, who pioneered the introduction of Wersi organ kits in the UK, have been appointed marketing agents for Heathkit Electronics. Both companies and you and I come out on top - Heathkit broadens its sales representation, Aura Sounds expands its kit business and Heathkit products are a little more widely avaiable to the likes of you and me.

Hard Wire Side Cutter

A new specialist side cutter for A use in the electronics and electrical industries is now available from CeKa. Its hard wearing tungsten carbide tipped cutting edges provide the tool with long working life and cutting capacities of, for example, 0.6 mm on piano wire and 1.6 mm on hard electrode wire. The cutter is $4 \frac{1}{2}{ }^{\prime \prime}$ in size and is box jointed for exact location, flush cutting and the prevention of cutting edge overlap. A smooth and controlled action while cutting in sensitive or confined situations is achieved by double leaf return springs. The cutter handles are covered by moulded black PVC grips. In addition to cutting hard wires, CeKa states that use of the side cutters continually on ordinary soft wire will make its working life almost indefinite. The RRP of the CK Precision side Cutter is $£ 19.40$ plus VAT. The address is CeKa Works Lid, Pwllheli, Gwynedd, North Wales.

MPA 200100 watt (rmis into 8Ω) MIXER/AMPLIFIER

Featured as a constructional article irı ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplitier. It features an adaptable input mixer which accepts a wide range of sources such as a microphone, guitar, etc. There are wide range tone controls and a master volume control Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straightforward
The kit includes fully finished metalwork, fibreglass PCBs. controls, wire, etc. - complete down to the last nut and bolt.

Panel size 19.0" $\times 3.5^{\prime \prime}$. Depth $7.3^{\prime \prime}$

COMPLETE KIT ONLY
$£ 49.90$ + VATI
MATCHES THE CHROMATHEQUE 5000 PERFECTLY!

CHROMATHEQUE 5000 Бсиампец Leнtive EFFECTS SYSTEM

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500 W and as the kit is a single board design wiring is minima and construction very straightforward.

Kit includes fully finished m. ztalwork, fibreglass PCE controls. wire, etc. - Complete right down to the last nut and bolt!

COMPLETE KITT ONLY $£ 49.50$ + VAT!

POWEFTRTAN

de Luxe easy to build linsley hood 75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in $\mathrm{Hi}-\mathrm{Fi}$ News and Record Review and features include rumble filter, variable scratch filter, versatile tone
controls and tape monitoring while distortion is less than 0.01%.

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth 7.34

Above 2 kits are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet, cable, nuts, bolts, efc. and full instructions - in fact everything!

BLACK

MUSIC EFFECTS DEVICE - ÁS FEATURED

 IN ELECTRONICS TODAY INTERNATIONAL!The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mode which gives a "spacey" feel to the sound achieved by delaying the input signal and mixing it back with the original. Notches (HOLES), introduced in the frequency response, move up and down as the time delay is modulated by the chorus sweep generator. An optional double chorus mode allows exciting antiphase effects to be added. The device is floor standing with foot switch controls, LED effect selection indicators, has variable sensitivity, has high signal/ noise ratio obtained by an audio compander and is mains powered - no batteries to change! Like all our kits everything is provided including a highly superior, rugged steel, beautifully finished enclosure.
COMPLETE KIT ONLY E49.80 +VAT (single delay line system) De Luxe version (dual delay line system) also available for $\dot{\mathbf{\Sigma}} 59.80+V A \bar{T}$

Cabinet size $10.0^{\prime \prime} \times 8.5^{\prime \prime} \times 2.5^{\prime \prime}$ (rear) $1.8^{\prime \prime}$ (front)

REMOTE CONTROL. 32-channel ultrasonic infra-red transmitter I.C. (SL490) £2.85 each. 32 channel receiver IC.s (ML928 + ML929) $£ 3.60$ pair. Complete data/projects booklet add 50p. P\&P 25p. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.
POWERTRAN TRANSCENDENT DPX built to high professional standards available for only $£ 350$. Package includes swell pedal, handbook and "Anchor" tuition course. Phone High Wycombe (0494) 36923 (office hours)

VHF/FM TRANSMITTER KIT. New silicon chip design means low price (beats anyone else) and better performance. Very small - ideal bug etc.

Fully tuneable $88-108 \mathrm{MHz}$. Instructions etc. all included. INTRODUCTORY OFFER $£ 2,45+30 \mathrm{p}$ P\&P (unlicensable). M. Henry, Dept. ETI, 30 Westholme Gardens. Ruislip.
TRANSCENDENT 2000. Synthesizer. Fully set up and in perfect working order. Must sell, hence $£ 200$ only. Phone Worcester 354450 (evenings or weekends)
BOOKS BOOKS BOOKS - Large range of electronics books in stock. Send s.a.e. for list. Servio Radio. Dept ETI 10, 156-8 Merton Road, Wimbledon SW19 1EG.
A SUPERB VALUE STEREO POWER AMPLIFIER OFFER - Stabilised PSU: 2 N 3055 output - Stereo 60 watt RMS; IC Preamp. Case includes, controls volume, selector etc.. din output/inputs for magnetic pick-up/microphone (3.mv) + Tuner + Tape/Aux. 26 transistors - 2 IC Screened Douglas Transformer, $240 \vee$ AC mains lead. NEW-TESTED-DATA $£ 19.95$ (inclusive), KLIFCO ELECTRONICS 1 REGENT ROAD, ILKLEY, W. YORKSHIRE LS29 9EA.

MSF TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, self-setting at switch-on. 8 digits show Date. Hours, Minutes and Seconds, larger digit Hours and Minutes for easy QUICK-GLANCE time, auto, GMT/ BST and leap year, also parallel BCD output and can record when an event occurs, receives Rugby time signals, 1000 Km range, ACCURACY, £54. 80. 6OKHZ RUGBY RECEIVER. as in MSF Clock. serial data output, built-in antenna, $£ 15.70$.
.L.F.? EXPLORE 10.150 KHz , Receiver $£ 13.70$
Each fun-to build kit includes all parts, printed circuit. case, instructions, postage etc, money back assurance so SEND off NOW.

CAMBRIDGE KITS
45 (TJ) Old School Lane, Milton. Cambridge

BRAND NEW COMPUTER POWER SUPPLIES: -250 v .400 mA . -12 v . 2A. $+30 \mathrm{v} .400 \mathrm{~mA}+12 \mathrm{v} .500 \mathrm{~mA}$. and +5 v . at a staggering 12A!! Admirably Engineered Units. $£ 35+£ 3.50 \mathrm{carr} /$ insurance. Sold tested and working but without guarantee Payment with order to: J. Wright, 27 Broomhill Drive, Glasgow G1 1 7AB.

NUCLEAR RADIATION MONITOR. ESsential for the survivor of a nuclear attack Measures up to 100 rads/hour. S.a.e. details: Ray, Nucleonics, 13 Rosemead Gardens, Brentwood CM13 1 HZ.

INTENSIVE COURSES IN

 BASIC AND PASCALincluding hands on mini-computer operation
These intensive courses are intended to instruct from minimal knowledge to an operational capability of computer programming.
Courses are fully residential, allowing maximum time for instruction and programming.
BASIC - Weekends from Friday Evening to Sunday Afternoon.
PASCAL - Weekdays Monday Morning to Friday Afternoon inclusive.
For further details, dates available, fees Phone (0401) 43139, or write
CLEVELAND BUSINESS SERVICES
(Dept. ETI-2), Cleveland House
Routh, North Humberside HU17 9SR

RESISTORS (5 \% E12)			1.5p	VOLTAGE REGULATORS	
PRESETS (.15W HORIZONTAL)				7805	65p
	100 Ohms to 2 Moh	(7p	7812/15	65p
	POTENTIOMFTERS ($1 / a \mathrm{~W}$)			7818/24	65p
Linear \& Log Scales				7905	75p
4.7KOhms to 2.2 Mohms 30p				7912/15	75p
				7918/24	75p
$2.5^{\prime \prime} \times 5^{\prime \prime}$ 5 5p				DIL SOCKETS	
	3.75' $\times 5^{\prime \prime}$ CENER DIODES (400 mW) 65p			8 pin	*7p
	ZENER DIODES (400mW)			14 pin	*9p
$5 \vee 65 p$ ¢ 9V1 6p				16 pin	*10p
2V7 to 33V8p				18 pin	$16 p$
	POLYSTYRENE CAP (50V)			22 pin	20p
	10 pF to 1000 pF (24 pin	21p
CERAMIC CAP (50V)				28 pin	25p
33 pF to 4700 pF 3p				40 pin	35p
	POLYESTER CAP (100V)			OIOOES	
	1 nF to 68 nF (${ }^{\text {ap }}$			BY127	12p
100 nF 150 nF (7p				OA47	8 p
220 nF 330 nF				OA91	* ${ }_{\text {dp }}$
470 nF : 11 p		680 nF :	13p	OA200	6 p
1uF: 18p		2.2 uF	22p	, OA202	9 p
3.3uF: 15p*		4.7uF:	15p*	1 N916	$5 p$
	ELECTROLYTIC CAP (uF/V)			1 N4 148	4p.
	1/25 to 47/25: 6p 68/25, 100/35 8p			1 $\mathrm{N4001/2}$	4p
150/25, 8p 160/254p				1 N4003	5p
220/25: 10p		470/25	9p*	1 N4004/5	6 p
640/16:5p*		1000/10	5p*	1 N4006 / 7	8 p
1000/25: 22p		200/12	6p*	1 N5400	13p
1500/25: 12p*		2200/6.3V	10p*	1 N5401	14p
				1 N5402	15p
		bridge		1N5404	16p
		RECTIFIERS		LINEAR	
		WO2M	20p	CIRCUITS	
	2N5777 55p	W06M	30p	709-8	28p
	OCP7: 65p	$1 \mathrm{~A} / 50 \mathrm{~V}$	22p	710.14	35p
	ORP12 70p	1A/100V	27p	741.8	20p
	OL704 - 110p	$1 \mathrm{~A} / 200 \mathrm{~V}$	32p	747.14	50p
	DL707 110p	TA/400V	34p	748-8	35p
	$0.125^{\prime \prime}$ \& $02^{\prime \prime}$	2A/50V	40p	CA3018	70p
	LEDs:	2A/100V	42p	CA3028A	85p
	Red 10p	2A/200V	48p	CA3046	50p
	Green 13p	$2 \mathrm{~A} / 400 \mathrm{~V}$	55p	CA3080E	75p
	Yeilow 13p			CA3090AQ	
	$0.125^{\prime \prime} \text { Clip 3p }$	THYRISTO			200p
	$0.2^{\prime \prime} \text { Clip } 4 p$	2N5064	+12p	CA3130E	90p

LF351N	44p	4035	107p	7472	19p
LF356N	85p	4041	75p	7473	*16p
LM301AN	30p	4042	70p	7474	*17p
LM308N	55p	4043/4	88p	7475	26p
LM318N	120p	4047	92p	7476	20p
LM318H	120p	4048	55p	7480	32p
- LM324N	57p	4049	35p	7485	$80 p$
LM339N	52p	40508	44p	7486	18p
LM348N	90p	4066	50p	7490	*22p
LM377N	175p	4069	*16p	7491	57p
LM380N	90p	4070B	20p	7492	30p
LM381N	-120p	4071/2	20p	7493	*20p
LM382N	*90p	4073	20p	7494	50p
LM1310N	115p	40B1/2	20p	7495	40p
LM1458	*35p	4086	80p	7496	37p
LM3900N	50p	4510	100p	7497	200p
LM3909N	75p	4511B	*70p	74100	$\mathrm{GOP}^{\text {P }}$
MC1496P	80p	4516/8	100p	74107	22p
NE531	110p	4520/8	100p	74109	34p
NE555	22p			74118	$84 p$
NE556	*45p.	TTL		74121	22p
NE566	140p	7400/1	14p	74122	30p
SN76115	*80p	7402/3	14p	74123	50p
TBA641B	200p	7404/5	16p	74125/6	42p
TBA800	75p	7406	23p	74132	60p
TBA 810 S	110p	7407	25p	74141/5	46p
ZN414	100p	7408/9	17p	74150	55p
ZN 1034E	220p	7410	13p	74151	47p
CMOS AE		7411/2	17p	74153	43p
. 4000	16p	7413	21p	74154	66p
4001B	18p	7414	45p	74155	46p
4002	15 p	7416	20p	74156	42p
4006B	70p	7417	25p	74157	38p
4007	*17p	7420	15p	74160	70p
4008	80p	7421	30p	74161	55p
4009	40p	7422	26p	74162	60p
4010	44p	7427	20p	74163	45p
4011 B	15p	7428	28p	$74164 / 5$	56p
4012	20p	7430	16p	74166	95p
4013 B	35p	7432	20p	74173	70p
4014	80 p	7437	14p	$74174 / 5$ 74177	55p
40158	75p	7438	18p	74177 74180	70p $\mathbf{3 5 p}$
4016	44p	7440	13p 52p	74180 74181	35p $80 p$
4017 4018	55p $80 p$	7441 7442	52p 32p	74182	45p
4019	45p	7443	60p	74190	$50 p$
4020B	95p	7444	100p	$74191 / 2$	50p
4021	85p	7445	64p	74193	50p
4022	*70p	7446	$65 p$	74194	65p
4023	22p	7447A	45p	74196	78p
4024B	50p	7448	52p	74197	54 p
4025	20p	7450	10p	74198	100p
4027	45p	7451/3	13p	74199	900
4028	60p	7454	10p	TRANSIS	ORS
4029	82p	7460	13p	AC126/7	22p
4030	*35p	7470	20p	AC12B	20p

AC153	25 p	BD124	$81 p$
AC176	22p	BD131/2	35p
AC187/8	22p	B0135 to	
AC1B7K	30p	BD140	35p
AD149	*55p	BF178	30p
AD161/2	40p	BF180	34p
AF1 14	30p	BF1B1	8 p
AF 124	35p	BF183	34p
AF125/6	35p	BF184/5	25p
AF127	35p	BF194/5	12p
AF139	40p	BF196/7	12p
AF239	44p	BF2248	14p
BC107/8	10p	BF244B	35p
BC109	10p	Bf258	28p
BC117	23p	8F259	40p
BC142/3	30p	8FR39	$\star 12 \mathrm{p}$
BC147/8	10p	BFR79	32p
BC 149	10p	BFX29	25p
BC157/8	12p	BFX84	25p
BC159	12p	, BFX87/8	25p
BC167	14p	BFY50/1	20p
BC 169C	13p	BFY5 2	22p
BC171	10p	BRY39	50p
BC173	8p	BSX19	12p
BC177/8	16p	BSX20	22p
BC 179	16p	BU205	150p
BC1B2B	10p	BU208	210p
BC182L	*7p	M 22955	110p
BC183B	10p	MJE340	52p
BC184	10p	MJE2955	110 p
BC1B6	25p	MJE3055	80p
BC207/9	13p	MPF102	45p
BC212	10p	MPF 103/4	40p
BC212L	*7p	MPF105	40p
BC213L	10p	MPF 106	45p
BC214	10p	MPSA06	26p
BC214L	*8p	MPSA56	26p
BC238	18p	MPSU06	60p
BC261B	14p	OC28	92 p
8C301/3	32p	OC35	92p
BC328	17p	TIP29	40p
BC338	17p	TIP29B	42p
BC461	40p	TIP30	40p
BC477	23p	TIP308	42p
BC478	23p	TIP31/2	40p
BC261B=		TIP33	65p
SUPER BC47		TIP33C	70p
8C479	23p	TIP34A	75p
BC547/8	12p	TIP35B	200p
BC549	12p	TIP36A	200p
BC557/8	14p	TIP36B	210p
BC559	14p	TIP41A	60p
BCY70	18p	TIP42A	60p
BCY71/2	18p	IIP2955	70p
BD 115	58p	-1P3055	*30p
8D121/3	75p	2TX107/8	12p

DELTA TECH \& CO.
62 NAYLOR ROAD, LONDON, N20 OHN

MODULAR SENSOR SYSTEMS SPEED SENSOR FLOW SENSOR

Signal processing/display systems

$\mathrm{Gal} / \mathrm{Hr}$	PCB and 4 digit display without case require
$\mathrm{L}^{\text {/ }} \mathrm{Hr}$	5V DC 400 cycles input time base $£ 34.80$
RPM	PCB and 4 digit display without case requires $5 \mathrm{~V} D \mathrm{C}, 320 \mathrm{c} / \mathrm{sec}$ time base input $£ 35.95$
Total Galls	Complete system in case with reset. 12 V DC
Total Litre	power supply $£ 29.95$
G. Km/L	Complete system in case. 12 V DC
or L/ 100 Km \}	supply

All above prices include VAT. p\&p UK. These systems are ideally
suitable for automotive and other speed fliow measurement projects.

ENVIROSYSTEMS LTD.
Hampafoll Rond, Orenge-over-Sends, Cumbria LAi1 6 BE

MK14 CORNER. Interface Board, includes flag driven mains relays, LED Indicators for all Serial I/O, D/A and single step chips, and prototype area; also suitable for other Microcomputers; PCB and circuit $£ 3.95$. Replace calculator display with $1 / 2^{\prime \prime}$ FND 500s; PCD, filter, instructions £1.95. Ready-built replacement keyboard $£ 11$. Useful notes on MK14 75p. Rayner, "Kismet", High Street, Colnbrook, Bucks.

DO YOU TRANSMIT AUDIO SIGNALS OVER CABLE CIRCUITS?

We manufacture a full range of interface equipment for transmission of audio signals over private wire of telephone circuits, from Narrow Band STD systems ($300 \mathrm{~Hz}-3.4 \mathrm{kHz}$) up to Wide Band Music Circuits.

PARTRIDGE ELECTRONICS

(A. C. Partridge Ltd.)

56 Fleet Road, Benfleet, Essex Tel: (STD 03745) 3256
We also manufacture audio mixers and sub-assemblies

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors Hardware and accessories
Selected range of popular components Full range of HE printed circuit boards. normally ex-stock, same day despatch at competitive prices
P.C. Boards to individual designs

Resist-coated epoxy glass laminate for the dity man with full processing instructions ino unusual chemicals required)

Alfac range of etch resist transfers. and other drawing materials for p c boards.
Send 15 p for catalogue.
ramar constructor SERVICES
MASDNF ROAD STRATFORD-OMAVON WARWICKI. T. 467 .

CIRCUIT DESIGN, Prototype consuluctionx Analogue or Digital, Single Circuits or Complete Instruments 7 Systems. Write A. J. ATTWOOD, C.Eng., MIERE, Heathercote, Heatherton Park, Taunton, Somerset, TA4 1ET or Phone Bradford-on-Tone (082-346) 536.

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED L.E.D. DIGITAL ALARM CLOCKS

 guarantee period.

With alarm repeat. S.R.S.P. of $£ 17.00$. Offered at
£3.95, inc. VAT, or 3 for $£ 9.95$, inc. VAT.
2. With luxury lamp and repeat alarm. S.P.S.P.
$£ 31.00$. Offered at $£ 7.95 \mathrm{inc}$. VAT each, or 3 for
$£ 19.95$ inc. VAT.
These will be sold as received from our customers with the existing fault(s) and without guarantee U.K. only

Discounts available on large bulk purchase.
PRESCOTT CLOCK \& WATCH CO. LTD.
PRESCOTT HOUSE, HUMBER ROAD, LONDON PRESCOTT HOUSE, HUMBER ROAD, LONDON

LARGEST STOCKS ANYWHERE sheets, and manuals. Service sheets only $£ 1+$ sae. Sole suppliers of the famous TV Repair Systems. Complete Diagram Collection. Mono TV/Washing Machines/Col. TV/etc., in huge binders, only $£ 13.50$ each. SAE brings newsletter bargain offers, quotes: G.T., 76 Church Street, Larkhall, Lanarkshire (0698) 883334.

200 COMPONENTS £4. 100 diodes 85p. 150 caps $£ 1.50 .100$ resistors 85 p. All mixed. Lists $15 p$. Sole Electronics (ETI), 37 Stanley Street, Ormskirk, Lancs. L39 2DH.
TRANSCENDENT DPX Polyphonic Synthesizer, fully working, mint condition, professionally constructed. Save approximately $£ 100$ on kit and construction costs! For sale, £299. Telephone: 028235680 (Burnley).

DIGITAL WATCH BATTERY

 REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, nonmagnetic tweezers, watch screwdriver, case knife and screwback case opener. Also one doz. assort. push-pieces, full instructions and battery identification chart. We then supply replacement batteries - you fit them. Begin now. Send £9 for complete kit and get into a fast-growing business. Prompt despatch.

BARGAIN PACKS
£1 + 25p P.P.ea
Best quality NEw components at silly prices
 ${ }_{20} \times 10.22 \mathrm{FF} / 250 \mathrm{H}$ A 2 dial Polyester $80 \times 0.01 \mu F / 400 \mathrm{~V}$ Axial Polyester $10 \times 16 \mu \mathrm{~F} / 450 \mathrm{~V}$ Tag and Lyits $15 \times 32 \mu \mathrm{~F} / 150 \mathrm{~V}$ Tna and Lylics $20 \times 1000_{\mu}$ I/IION Wire ond Lytics $5100^{2} \mathrm{~F} / 160 \mathrm{y}$ mial Filim. $6 \times 50 \mathrm{~F}$ Jecken varistio - Scroweriver it
 40 assarted bish capcity polytyrane hatwen lici and 47 mF

 Fulf refund it not delighted
T. Scori, 37 Regent Street. Fowhedge. Essex

TRANSFORMERS MANUFACTURED to specification, many popular types ex-stock. Fast turn around on volume production. Send enquiries to Louth Transformers, Queen Street, Louth, Lincs. Tel: (0507) 606436.

TRANSCENDENT 2000 SYNTHESISER. Fully operational, with foot pedal and reverb unit, must sell, $£ 160$. Phone Colchester (0206) 211309 , evenings.

MAPLIN DISCO UNIT, only needs light unit fitting. Unit tested and used twice, fan cooled heatsinks. Very robust case. Offers around £180. Also Maplin Organ MESS 1/2/3/4. All PCBs finished and working (unit built and disassembled owing to moving house). Two 61-note keyboards, 13-note pedalboard, rotating base speaker unit, drawbars and stop tabs, reverb. Offers please. Tel: 01-445 8336 .

ADAM HALL

Cabinet \& Flightcase Fittings, fretcloths, coverings, handles, castors etc. Jacks \& sockets, Cannons, Bulgins, reverb trays, Emilar compression drivers, AKG mics, Celestion speakers, ASS glassfibre horns.
Send 30p postal order for illustrated catalogues to: ADAM HALL (E T SUPPLIES)
Grainger Road, Southend-on-Sea Essex SS2 5BZ

ZX80 GAME. Ingenious and challenging $1-2$ player game of capture for $1 \mathrm{~K} Z \times 80$. Fully documented. Send E1.50 to HINDLE, 139 Penrhyn Road, Sheffield, S11 8UP.

Designed originally for logic wiring applications, it is now accepted and used extensively throughout industry, education and research. ROADRUNNER is used by tobbyists, students, technicians, desloners and engineers, to carry out work on:-
-P.C.B. REPAIRS *ANALOGUE BREADBOARDING *SIMPL LOGIC WIRING *COMPLEX INTERCONNECTING OF MICROS AND MEMORIES.
ÉURO INTROKIT £14.84. PROJECT INTROKIT E8.27. PENCIL WITH LOADED BOBBIN E2.44, WIRE DISTRIBUTION STRIPS:GLUE FIX 201pkt $6^{\prime \prime}$ LONG 22.80 . ADHESIVE 0 -36TUBE. PRESS
FIX $20 / \mathrm{pkt} 2^{\prime \prime}$ LONG $£ 2.92$. SINGLE EUROCARD HIGH DENSITY FIX $20 / P k t ~$
3 PLANE
(36X 16 CAPACITY OF 84×16 PIN DILS 87.25 . PROJECT CARD HIGH DENSITY S-SIDED 20x14 PIN DILS E2.65. BOBBINS - BLUE 4/pkt $£ 2.12$ GREEN $4 /$ pkt $£ 2.12$ PINK 4/pki $£ 2.12$ GOLD 4/pkt £2.12. 1 OF EACH COL. £2.20. TINNED COPPER WIRE 4/pkt E2.12. RECOMMENDED SOLDERING IRON FOR ROADRUNNER
HOBBYIST $£ 4.80$.

- Plsase add 40 p for pap $+15 \%$ VAT to all orders.

FOR FURTHER INFORMATION ON ROADRUNNER PRODUCTS SEND LARGE S.A.E. TO:-
T.J. BRINE ASSOCIATES, 116 Blackdown Riural Industries Haste Hill, Haslemere, Surrey

	EME $\mathrm{E}_{\text {m }}$
ACORN COMPUTERS 32	
AJD DIRECT SUPPLIES 100	INTERFACE COMPONENTS 68
ALTEK INSTRUMENTS 97	KEELMOOR LTD 77
AMBIT INTERNATIONAL 26	KODE SERVICES 46
AUDIO ELECTRONICS 90	KRAMER \& CO 109
AURA SOUNDS 35	LASCAR ELECTRONICS .-.,...... 52
BAYDIS . 68	LBELECTRONICS 76
BK ELECTRONICS 72	L\&BELECTRONICS 101
B.N.R.S. 43	MAPLIN . 116
BUTTERWORTHS 100	MARSHALLS 108
CLACULATOR SALES \& SERVICE 97	METAC 10
CAMBRIDGE LEARNINGENTERPRISES 107	MICRO CIRCuITS 42
C.B. CITY 113	MICRO-PRINT LTD 68
CHILTMEAD 78	MITRAD 47
CHROMASONICS CIEF PRODUCTS	MOUNTAINDENE 45
CLEFPRODUCTS . 99 CODESPEED	E.R. NICHOLLS NIC MODELS
CODESPEED COMMODORE	
COMP COMP, COMP 114 \& 115	PROGRESSIVE RADIO 106
CRIMSON ELEKTRIK 109	RAPID ELECTRONICS 109
CROFTON ELECTRONICS 52.	J. W. RIMMER 43
C.S.C. 33^{\prime}	R.T.V.C. 22
CYBER ELECTRONICS 76	SAFGAN ELECTRONICS 91
DELTA TECH \& CO 111	SCIENCE OF CAMBRIDGE 4 \& 5
DISPLAY ELECTRONICS , 38	SILICA SHOP 100
DORAM ELECTRONICS 56	SPECIAL PRODUCTS DISTRIBUTORS 97
DOVE ELECTRONICS 46	C. N. STEVENSON 92
E.D.A. 46	SURETRON 13
ELECTRONIC MAIL ORDER 68	SWANLEY ELECTRONICS 368
ELECTROVALUE 92	TANGERINE \ldots............... . 36 \& 37
ENVIRO SYSTEMS 99	TECHNOMATIC 6
GMTELECTRONICs 97	TEMPUS . 84
GREENBANK 51	TIMEDATA LTD 76
GREENWELD 90	TK ELECTRONICS 108
HAMEG LTD $700^{\text {\% }}$	TRANSAM COMPONENTS 27
HAPPY MEMORIES 76	T\&TELECTRONICS ${ }^{\text {a }} 92$
	WATFORD ELECTRONICS 12 \& 13
I.C.S. 91	WEST HYDE DEVELOPMENTS 106

BITS \& BYTES

8MHz Super Quality Modulators	$\mathbf{£ 4 . 9 0}$
6 MHz Standard Modulators	$\mathbf{£ 2 . 9 0}$
C12 Computer Grade Cassettes	10 for
$\mathbf{£ 4 . 0 0}$	
Anadex Printer Paper -2000 sheets	$£ 25.00$
Floppy Discs 54/4" Hard and Soft Sectored	$£ 3.50$
Floppy Disc Library Case 5\%/4"	$£ 3.50$
Verocases for Nascom $9 \& 2$ etc.	$\mathbf{£ 2 4 . 9 0}$
Keyboard Cases	$£ 9.90$

MEMORY UPGRADES $16 K(8 \times 4116) \quad £ 29.90$ +VAT
4K Compukit (8×2114) $£ 29.90$ + vat

EPROM $2716 £ 12.50$ + VAT

COMP PRO MIXER

Professional audio mixer that you can build yourself and save over $£ 100$.
6 into 2 with full equalization and echo, cve and pan controls.

All you need for your own recording studio is a stereo tape or cassette recorder

This superb mixer kit has slider faders level meters and additional auxilliary inputs

Only $£ 99.90$ plus VAT fo complete kit
Plus free
power:
supply
valued at
£ 25.00

Ideal for
DISCOS STAGE MIXING HOME STUDIOS AND MANY OTHER APPLICATIONS

NEC SPINWRITER only $£ 1490$

NEC's high quality printer uses a print "thimble" that has less diameter and inertia than a daisy wheel, giving a quieter, less diameter and inertia than a daisy wheel, giving a quieter,
faster, more reliable printer that can cope with plotting and faster, more reliable printer that can cope with plotting and
printing (128 ASCII characters) with up to five copies, fric tion or tractor fed. The ribbon and thimble can be changed in seconds. 55 characters per second bidirectional printing with red/black, bold, subscript, superscript, proportional spacing, tabbing, and much, much more

HITACHI PROFESSIONAL MONITORS
 $9^{\prime \prime}$ - $\mathbf{£ 1 2 9}$ $12^{\prime \prime}-\mathbf{£ 1 9 9}$

Reliability Solid state circuitry using an IC and silicon transistors ensures high reliability. - 500 lines horizontal resolution Horizontal resolution in excess of 500 lines is achieved in picture center. - Stable picture Even played back pictures of VTR can be displayed without jittering. - Looping video input Video input can be looped through with buitt-in termination switch. External sync operation (available as option for U and C types construction Two monitors are mountable side by side in construction Two monitors are mountable side by side in a
standard 19 -inch rack.

Super Quality - Low cost primer. Tractor Feed with full 96 ASCI character set Accepts PS232C at band rates between 100 and 9600 and Parallel Bit data
Attaches either directly or through interfaces to Pet, Apple TRS80, Sorcerer, Nascom. Compukit etc.

THE NEW ANADEX DP9501
A PROFESSIONAL PRINTER

COMPUPHONES

YOU NEED NEVER MISS. AN IMPORTANT CALL AGAIN TWO CORDLESS TELEPHONE SYSTEMS - DIRECT FROM USA

THE ALCOM
only $£ 147$ + VAT
Base station connects to your telephone line. Remote handset clips to your beit and gives you push-button dialling - Bleeps when call arriving - Nicad rechargeable batteries Charger in base unit

THE BOHSEI
only $\mathbf{f 1 2 5}+$ VAT
Base station connects to your telephone line. Remote handset stylishly designed in red - Push button dalling comes complete with chazger unit for batteries in handset.

LOW COST TELEPHONE $£ 99.95$ ANSWERING MACHINE
 VAT

Microprocessor controlled answering machine. Plug into your phone line. Records any phone call messages. Remote bleeper enables you to listen to your messages from anywhere in the world. Uses standard cassettes. Comes base unit, cassette with 30 sample pre-recorded messages

COMMERCIAL • EXPANDABLE • COMPLETE TRS 80 －MODEL II

This new unit from the world＇s most successful micro company is now available immediately with software．
The basic unit comes complete with 64 thousand characters（bytes）of Memory．The built in $8^{\prime \prime}$ ．Floppy disc adds another $1 / 2$ million extra characters including the disc operating system．More disc expansion is now available．
The Model II is a complete unit with a full keyboard including a numeric pad and $12^{\prime \prime}$ screen which gives 24 lines of 80 characters．The computer is supplied with both the disc operating system and the Level III Basic．
A full self test routine is written into the power up procedure to eliminate incorrect operation．Both serial and parallel expansion sockets are standard．A printer is a plug－in operation．
Both hardware and software necessary to talk to a mainframe are included．Terminal usage is very possible．With the addition of CPM2 you can operate with COBOL， FORTRAN，MBASIC，CBASIC in which languages are many other applications prackages i．e．accounting，payroll stock etc．

64K 1－Disk Model II $\mathbf{£ 1 9 9 5 . 0 0}$
CP／M2
£95．00
RRP $£ 2250.00 \quad$ CIS COBOL $\quad \mathbf{£ 4 0 0 . 0 0}$

1 DISK EXPANSION

Room for 3
500K per Drive gives total
of 1.5 M Byte -1 Drive plus Cabinet $\mathbf{£ 7 9 9}$＋vat

OMPOKIT JKTO1 EUROPE＇S FASTEST SELLING

NEW MONITOR FOR

COMPUKIT UK 101 － 12 En F
－Alowhing cursor Text scrolls down £22．00＋VAT
＊ 6502 based system－best value for money on the market．\star Powerful 8 K Basic－Fastest around \star Full Owerty Keyboard $\star 4 \mathrm{~K}$ RAM Expandable to 8 K on board．\star Power supply and RF Modulator on board． \star No Extras needed－Plug－in and go．\star Kansas City Tape Interface on board．\star Free Sampler Tape including powerful Dissassembler and Monitor with each Kit．\star If you want to learn about Micros，but didn＇t know which machine to buy then this is the machine for you．

$$
\begin{aligned}
& \text { 40 pin Expansion Jumper Cable for Compukit expansion } £ 8.50+\text { VAT } \\
& \begin{array}{c}
\text { Build, Understand and Program your own } \\
\text { Computer for only a small outlay }
\end{array} \\
& \text { The Compukit UK101 comes in kit form with all the parts necessary to be up and } \\
& \text { working, supplied. No extras are needed. After plugging in just press the reset keys } \\
& \text { and the whole world of computing is at your fingertips. Should you wish to work in } \\
& \text { the machine code of the } 6502 \text { then just press the M key and the machine will be } \\
& \text { feady to execute your commands and programmes. By pressing the C key the worlo } \\
& \text { of Basic is open to you. This machine is ideal to the computing student or Maths } \\
& \text { student, ideal to teach your children arithmetic, and is also great fun to use. } \\
& \text { Because of the enormous volume of users of this kit we are able to offer a new } \\
& \text { reduced price of } £ 179+\text { VAT } \\
& \text { Available ready assembled, tested } \mathbf{G} \text { ready to go } £ \mathbf{~} \mathbf{2 2 9}+\text { VAT }
\end{aligned}
$$

> We give a full one year＇s warranty on all our products．

We now have in stock demonstration models of the Atari 800 and Texas 99／4．
COME AND SEE THEM

SPECIAL OFFER

We will part exchange your Sinclair ZX80 for any of our products．
Refurbished ZX80＇s－fully guaranteed $\mathbf{£ 6 9 . 9 0}$
（Supply dependant upon stocks）．
We have one of the largest collections of Computer Books under one roof，along with racks of software for the PET and TRS80． COME AND SEE FOR YOURSELF

＂Europes Largest Discount Personal Computer Store＂

Please add VAT to all prices－including delivery．Please make cheques and postal orders payable to COMPSHOP LTD．，or phone your order quoting BARCLAYCARD，ACCESS，DINERS CLUB or AMERICAN EXPRESS number
CREDIT FACILITIES ARRANGED－send S．A．E．for application form．
14 Station Road，New Barnet，Hertfordshire，EN5 1QW Telex： 298755 TELCOM G Telephone：01．441 2922 （Sales）01．449 6596
OPEN • 10 am－ 7 pm －Monday to Saturday Close to New Barnet BR Station－Moorgate Line．
NOW in IRELAND at： 80 Marlborough St．，Dublin 1．Tel：Dublin 749933
＊COMPSHOP USA， 1348 East Edinger，Santa Ana，California，Zip Code 92705
Telephone： $01017145472526{ }^{2}$

Has got to be one of the world＇s greatest TV games．You really get hooked．As featured in ETI．Has also 4 other pinball game games．
MINI KIT－PCB，sound \＆vision modulator，memory chip and de－code chip．Very simple to construct $£ 14.90+$ VAT OR PCB $£ 2.90$ MAIN LSI $£ 8.50$ Both plus VAT

QR PCB £2.90 MAIN LSI £8.50 Both plus VAT

STEP INTO A NEW WORLD DTR WHEN YOU DISCOVER

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

4.1.2020 MAIL ORDER, CALLERS WELCOME Tol. Watford (0923) $40588 / 9$

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE, P.OR OR BANKEAS DRAFT WITH ORDER GOVERNMENT AND EDUCATIONAL WELCOME. PEP ADD 40p TO ALL ORDERS UNDER E10. OVERSEAS ORDERS POSTAGE AT COST. AIR/SURFACE. ACCESS ORDERS WELCOME.
VAT

Morroct Unomencres mod/

POTENTIOMETERS: Rotary. Cabon, Track. 0.25 W Log \& 0.5 W Lin. 4700 . 6800.1 KO \& 2 KO (Linear only) Single: Gang 5Kn-2MO Single Gang Log \& Lin 5KM2-2M S Single Gang D/P Switch 09p 5Kn-2MO Double Gang Log \& Lin Wire Wound Single Turn 1 Watt $20020 \mathrm{k} \Omega$
SLIDER POTENTIOMETERS $0-25 \mathrm{~W}$ log and tinear values 60 mm $5 K 0.500 \mathrm{~K} 日$ single gang 10KO-500K贝 dual gang Self Stick Graduated Bezels
PRESET POTENTIOMETERS 0.1W 500-5M@ Miniature Vertical 8. Horizontal $0-25 \mathrm{~W}$ 100N-3.3Mn horiz, larger 10 p $0-25 \mathrm{~W}$ 200n-4-7Mn Ver $\quad 10 p$ Cermet. Precision, muliturn. 0.75W $3 / 4$ in 100n-100K Ω

REsistors-- Erie make 5\%
Miniature High Stability, Low noise

FERRIC CHLORIDE
 COPPER CLAD BOARDS

SISTOR

74	
120	741
118	74
115	74

WATFORD ELECTRONICS

ETI DIGITAL TEST METER [Sept. 1980]

We supply all the
(Send SAE for parts list)

CBDD/E=ED0

high performance electronic ignition,to add power, economy, reliability, sustained smooth peak performance, instant all weather starting, to your car.
Surefire has sold in its thousands in ready made form from big name accessory firms. but it is now available in quality kit form to fit all vehicles with coil ignition up to 8 cylinders.
ES200. A high performance inductive dischargeignition incorporating a power integrated circuit (special selection): electronic variable dwell circuit (maximises spark errergy at all speeds): pulse processor (overcomes contact breaker problems). Coll governor (protects coil). Long burn output. Negative earth only. Compatible with all rev. counters. C300. In it's ready built form (C3000) it came top of all systems tested by an independent national authority July' 79. A high energy capacitive dischargeignition incorporating a high output short circuit proof inverter, top grade Swedish output capacitor, pulse processor circuit. transcient overload protection. Fast rise bidirectional output ideai for fuel injection. sports carburation. oily engines. Compatible with most rev counters. LLow cost adaptors available for rare cases. Application list enclosed with each kit. Note: Vehicles with Smith.s. Jaeger rev. Counters code RVI on dial will require adaptor type TCl)
What's in the kits. Surefire's own precisıon anodised aluminium extruded case. P.C. mounted securitv changeover switch, static tıming light. Special selection Motorola semi-conductors Capacitors, resistors etc. selected after 5 years experience. Glass fibre pcb, solder,
complete down to last washer.
Fully illustrated comprehensive instructions and full technical back up service.
Suretron Systems (UK) Ltd
Dept. ET16
Piccadiliy Place, London Rd., Bath BA1 6PW. Tel: Bath (0225) 23194
Name
Address
Phone orfer with Access. Barchaycard Quantity

ES200: Neg	£ I马95	£11.95	lenclose chapO's Chif No
C300: POS	E1395	£15.95	
C300: Neg	E7795	£15.95	
Tacho Adapt. TC1		+3.90	

ETI NEXT MONTH

October issue on sale September 6th - Don't miss out order your copy today.

FM Radio Control

In the course of the past year you've seen all the others produce radio control projects. You've also seen them make a right mess of the idea!

Next month ETI presents the definitive FM, easy-to-build, every-home-should-haveone, radio control. We won't spin it out over 10000 issues either, our circuit is sufficiently refined for us to be able to present full details in one issue!

If you're at all intrigued by controlling things at a distance ETI October is the place to be.

Fuzz Sustain

Brilliantly innovative project to please all of the guitarists, all of the time. This nifty little box can provide a really rich fuzz sound and/or a true sustain. We stress the 'true' because there have been some attempts to pass off things which are decidedly second-rate before now. As usual ETI gets it right! Inexpensive, ingenious and simply magnificent are words which could well apply to this our latest musicians project!

Don't miss it lest your plectrum gets lonely!

Circuits Circuits And More Circuits

Spot Designs is our new 'tried and tested' circuits features. All the ideas presented have been built and proven - so it is not surprising that this is already a popular new addition to ETI. Next month we're presenting six pages of this top-class ideas material, in response to the many requests to increase the size of the feature.

This is a'special' one-time only offer so don't get left out circuitless!

Universal Cassette Interface

Into micros? Then ETI has something a little bit special for you next month - a tape interface with switchable baud rate and flexible I/O. It can be run with any system and any tape machine (within reason) and offers all the benefits of being able to save programs on tape at a ridiculous price! Miss this and your fingers will undoubtedly drop off typing!

Einstein Relatives

Yep. The feature you said we would never do. A clear easily understood explanation of the Special Theory of Relativity. This is the topic that those smug little physicists are always telling us humans we can never hope to comprehend. Well we can. Just read ETI next month and see for yourself.

> Also Appearing
> Taking part in next month's production we also have: a Bench Amp for the experimenter; a review for the HP-41C alpha-numeric calculator; an audio signal generator; a flash trigger for quick-off-the-mark photographers plus, of course, all our usual brilliant regulars. It's got to be worth the mere 60 p we ask in exchange!

[^3]
HEAD AMPLIFIER

If you've taken the plunge into moving coil cartridges and you're looking around for a head amplifier, Andy Sykes of Videotone explains how you can design your own.

For those of you not yet smitten by the all consuming Hi-Fi bug, a 'Head Amplifier' is not the latest tool for psychologists. The term is borrowed from the telecommunications industry where a preamplifier sited at the mast head is sometimes used to boost the received RF signal in areas of poor signal strength.

Over the past five years there has been a tremendous upsurge of interest in new methods of extracting the musical information from the depths of the record groove. Along with this has come a re-appraisal of the relative merits of the moving coil and moving magnet pickup cartridges. Each has a great deal to recommend it and we should start by comparing the two, albeit briefly

The principle of operation is the same, ie a current is induced in a coil by a (relatively) moving magnetic field. In the moving magnet type it is, as the name suggests, the magnet that moves because it is mounted on the opposite end of the cantilever to the stylus.

Mass Tendencies

This system works well, but the mass of the magnet/stylus assembly has a nasty tendency to resonate within or just above the audio band. With careful design this effect can be minimised, but some colouration of the sound still occurs. Another problem is that the high impedence of the cartridge, due to the high number of turns required to achieve a usable output, also causes matching problems, lending to high fre-,
quency losses in the signal lead capacitance.
Despite all this, excellent results are achievable for a moderate cost and it worth noting that the most competitive area for moving magnet cartridges is between $£ 15$ and $£ 25$.

Role Playing

Recent developments in technology, however, have made possible an effective reversal of the roles of magnet and coil, neatly overcoming the problems just mentioned, as it is now the coil which moves, inside a static magnetic field. (it is only fair to mention at this point that Ortofon have been producing very underated moving coil cartridges for many years and are generally considered to be the pioneers of the field). The coil can be made very light, reducing the resonance problem and the output impedance is low due to the small number of turns used, which cures the lead losses

All is not quite sweetness and light, however, as the system brings its own set of problems, which can be summarised as:

1. Low output - 150 uV nominal
2. Very low source impedance
3. Expensive to manufacture

These problems can be overcome at a price, however, and if it is perfection for which you strive, the moving coil cartridge can be considered the best method of transferring data from the record to your ears at present. It is interesting to note that most of the current batch of professional Hi-Fi reviewers use a moving coil cartridge against which others are judged.

Coming Up in the World

A step up device is required to match the low output impedance of the cartridge and to raise its meagre output to a point comparable with the universal moving magnet input or amplifier at approximately 5 mV . One way to achieve this is by the use of a matching transformer similar to those used with low impedance microphones. This solution, however, brings in problems such as secondary load matching, third harmonic distortion, frequency response limitations and hum pickup, all of which require careful and thus expensive design to overcome successfully. An active amplifer is a more cost effective (the watchword of the eighties) solution and has the added advantage of being within the design capabilities of the home constructor.

Design Criteria

The criteria to be considered in the design of such a preamplifier are primarily noise, frequency response and distortion

If we consider a general MC (Moving Coil) cartridge with an output of 150 mV , source impedance of $10 R$, and frequency response of 20 Hz to 25 kHz , a matching head amp would have to have at least the following characteristics to achieve Hi-Fi standards:

1. Gain $\times 30$ for nominal 4.5 mV output into 47 k
2. Signal to noise ratio better than 60 dB
3. Distortion less than 0.05%
4. Overload factor better than 40 dB
5. Frequency bandwidth better than 20 Hz to 20 kHz

The input impedance should theoretically be the same as the cartridge source impedance for maximum power transfer, but it has been argued that MC cartridges work best into loads somewhat higher than this, as it reduces the power dissipation in the (cartridge) coil. Manufacturers differ widely in their recommendations for input impedance, but values between 100R and 470R are most commonly quoted. These values are normally determined by audition, but in my experience strict adherence to the recommended value is by no means as important as one is lead to believe, the differences in sound being more likely due to circuit variation than to mismatch. A good general purpose design should, therefore, be suitable for all MC cartridges.

Noise Model

Noise can be thought of as an additional voltage appearing at the input of an amplifier, the ratio between this voltage and the input signal voltage being the measured signal to noise ratio. It is assumed in this model that all noise introduced by the amplifier is added to this input noise voltage and that subsequent amplification of both signal and noise takes place equally and noiselessly. If we wish to achieve a signal to noise ratio of better than 60 dB , this implies an equivalent input noise voltage of around 150 nV . As a comparison, a moving magnet input stage with a signal to noise ratio of 80 dB would have an input noise level of 450 nV and only the very best amplifiers ever achieve anything like this kind of noise figure.

There are three main sources of noise in a transistor amplifier; thermal noise, flicker noise and shot noise. The first two are common to all electronic components, both active and passive, whereas the last is produced in active devices only. Without getting too bogged down in semiconductor physics, shot noise is caused by random fluctuations in the diffusion of minority carriers at the base/emitter junction of the transistor and also by recombination effects within the base region.

Suffice it to say that this type of noise is proportional to the emitter current flowing through the transistor (or diode) and is broadband. Flicker noise is present in semiconductors, resistors and thin metal films, and is produced by skin effects in the surface of the conducting regions of the device. The noise level depends upon the material, but is typically proportional to $12 / \mathrm{F}$, where 1 is the current flowing, and is thus often called I/f noise. Thermal noise is, as the name suggests, produced by thermal agitation within the component material and is again broadband in character and proportional to the temperature of the device. The level of noise can be calculated from the equation

$$
\begin{aligned}
& \mathrm{e}^{2}=/ 4 \mathrm{KTBR} \quad \begin{aligned}
& \text { where } \mathrm{e}=\text { generated noise voltage } \\
& \mathrm{K}=\text { Boltzman's constant } \\
& \mathrm{B}=\text { frequency bandwidthover } \\
& \text { which to noise is measured } \\
& \mathrm{T}=\text { temperature in degrees } \\
& \mathrm{K} \text { Kelvin } \\
& \mathrm{R}=\text { the resistance value }
\end{aligned}
\end{aligned}
$$

Armed with this knowledge, the potential noise generated by any component used in our proposed head amp can be measured and steps taken to reduce its contribution to the total noise produced by the circuit.

In general there are four ground rules which should be followed to help achieve good performance.

1. Choose low noise components
2. Pay careful attention to transistor biasing arrangements
3. Keep resistor values as low as possible
4. Pay careful attention to avoid the pickup of external noise sources
Couldn't be simpler could it?
Low noise types of resistors are metal oxide, close tolerance metal glaze, or thick film. Avoid the use of large electrolytics as the (inevitable) leakage currents generate noise. Tantalum or polycarbonate types are best for the higher capacitance values and polystyrene or silver mica the best cost/size/noise level compromise for lower values. PTFE is the best of all, however, but tends to be on the expensive side. The noise levels produced by transistors are normally obtained from the manufacturer's data and there are several factors to be considered.

Fig.2. Noise curves for the BC413.

Equivalent Thinking

If we refer to the equivalent circuit for a transistor in common emitter configuration shown in Fig.1, and then consider the various noise sources contained within this circuit, a mathematical expression for the total noise generated can be derived. The exact form of this equation requires far too much deep thought for us to deal with it in detail here, but note that both noise voltage and noise current terms would be involved. It is also immaterial because transistor manufacturers are kind enough to measure it for us and provide noise versus frequency, and noise versus source resistance plots which take the general form shown in Fig. 2.

The overall noise level is dependent upon the collector current flowing and for the lowest noise there is an optimum source resistance.

For use in our head amplifier this should ideally be the same as the source impedance of a moving coil cartridge, about 10 R , but due to the need to optimise other parameters it is more likely to be between 1 k and 10 k for a typical audio low noise transistor. This is because the vast majority of uses for these devices involve higher source impedances, ie 47 k and the manufacturers do not see sufficient market to justify the production of a special low noise, low source resistance type, except, that is, for the ever-industrious Japanese.

A Nipponese semiconductor firm recently introduced the answer to the head amp designers dreams with a range of low noise transistors with optimum source resistances as low as 2R!

This ability to cobble up a special device to order, where no standard model is adequate, is one reason why the Japanese rule the audio kingdom.

Phenomenal

All is not yet lost, however, as there are two phenomena which may be used to advantage when designing a low noise amplifier with standard components. The first is that some medium power transistors exhibit better noise figures when driven from a low source resistance than normal low noise, low level types. This is mainly due to the need to keep rbblow (see Fig.1) in order to obtain good hfe figures when operating at relatively high collector currents (values between 1 mA and 10 mA are common), which tends to rule out battery operation.

This brings the additional problem of the mains supply, of which more later. Suitable transistors for this type of use are 2N4405 or BC361, both of which have been successfully used in commercial designs.

The second possible answer is the use of a parallel transistor stage. This is where several transistors are wired in parallel, obvious really isn't it? The main advantage of which lies in the fact that in common emitter mode the base/emitter junctions are in parallel and thus the noise currents and voltages produced by each transistor are summed together, see Fig. 3. The basic rule for Communications Engineers considering the noise levels of their systems is that noise signals from several separate sources, feeding into a common input, add by power.

Therefore, the total noise voltage for our parallel stage will be given by the equation $E_{n t}=E_{n} / N$ where N is the number of transistors. Similarly the total noise current will be given by $I_{n t}=N I_{n}$. Now the best noise course resistance for a transistor is given by $R_{O}=E_{n} / I_{n}$ and so for our parallel stage this is $R_{\text {ot }}=E_{n t} / l_{n t}=R_{O} / N$. R $R_{\text {ot }}$ is thus dependent upon the number of transistors used in parallel, the greater the number used the lower the best source resistance becomes.

Fig.3. Noise model of parallel stage.
Let us now consider a typical low noise transistor with a best source resistance of 2 k to be used with an MC of source impedance 10R. The number of parallel transistors required for the best match is given by $2000 / 10=200$. This is clearly impractical for reasons of cost, the physical space required and, more important, the high value of Miller capacitance that would result. As can be seen from Fig.1, the Miller capacitance introduces feedback between the collector and base of the transistor and is the factor which limits the high frequency response. It would be a major problem if this many transistors were used. In practice eight transistors seems to be the best compromise and is the number most commonly used. Even so it is important to choose a transistor with both a low best source resistance and a good F_{t} if good results are to be obtained. The F_{t} of a transistor is the frequency at which the gain becomes unity and should be in the region of 200 MHz . Suitable types for this type of use are BC413, BC415, BC337, 2N4148.

Circuit Options

So much for the theory, we come now to consider the options open to us, in terms of the circuit configurations, which may achieve the required specifications for our Head Amplifier. Something to remember here is that any biasing components used will also add to the noise. Take a standard common emitter circuit, for example, with feedback to counteract thermal changes as shown in Fig.4. The noise voltages produced by R1, R2 and R3 all contribute to the overall noise of the stage. The base bias resistors are particularly important as their noise voltages are effectively in parallel with the input signal and will be amplified by such. The contributions of these biasing components can be reduced by decoupling as shown in Fig.5. The biasing under DC conditions remains the same, but the equivalent noise circuit is as shown.

Note that only the noise associated with R3 will contribute to the input noise and this may be made low in value reducing the thermal noise from this component.

Fig.4. A standard common emitter circuit.
These examples serve to illustrate the principle because a single stage circuit is unsuitable for use as a high quality Head Amp. The main reasons for this are the variations in gain due to the spread of H_{fe} values in any transistor type and the relatively high values of distortion which are produced. Some form of feedback is required to stabilise and reduce both these parameters and, in general, at least a two stage circuit must be used to produce an acceptable performance.

Controversial Distortion

There is no "best" circuit but there are, as always, some points to bear in mind. In order to reduce the distortion to an acceptably low level, a fair amount of feedback is required and care should be taken to avoid Transient Intermodulation Distortion (TID). This particular form of distortion has proved to be somewhat difficult to define rigorously and there is not an inconsiderable amount of controversy as to exactly what it is and how to avoid it.

Nevertheless it is generally accepted that TID is reduced by ensuring that any amplification stage has a greater gain bandwidth than the stage preceeding it. TID also depends on the amount of overall feedback applied around the circuit and careful design of each individual stage to control the amount of harmonic distortion produced will reduce the amount of overall feedback required and hence reduce the circuit susceptability to TID.

Fig.5. Low noise base bias circuit.

Breakthrough

The frequency response of the design is also important for two reasons. Apart from the obvious need to keep it wide enough to encompass the whole audio band (traditionally 20 Hz to 20 kHz), it also plays a part in the circuit's susceptability to Radio Breakthrough. This is a problem because of the high sensitivity of the front end coupled as it is to what is in effect a tuned circuit made up of the cartridge inductance and the input capacitance. My extensive, but completely unintentional, researches into this subject have shown that the two most popular sources of RF interference are Radio 4 at 200 kHz and the local Police/Fire/Ambulance/Taxi Services at anything between 90 and 120 MHz , though the latter is normally only a problem if the offending transmitter is passing close to your $\mathrm{Hi}-\mathrm{Fi}$. So, don't put your new moving coil set-up in the front room, folks, if you live on a busy road. The installation of a Mu metal garden gate and front door might also help (for explanation of Mu metal see Hums). Another potential source of RF comes from Citizen's Band transmitters on 27 MHz . But as we all know these are illegal in this country and so nobody really uses them, they just install them in their cars for show.

The offending RF signal is normally received by the first stage acting as a simple diode detector and can be tackled by careful attention to earthing and by the provision of RF filters in the input and supply lines. The input loading capacitor provides good RF decoupling only if a type with good high frequency characteristics is used. Ferrite beads on the input connecting leads can also be used to increase their inductance.

Breakthrough occuring from supply line pickup requires further decoupling to eliminate it. Large electrolytics have a substantial impedance at high frequencies and so should be shunted by a capacitor with better characteristics. A 100 n ceramic is suitable here and a small inductor in the supply line is also good practice.

Passing the Buck

Another method of avoiding breakthrough is to make the bandwidth of the head amp wide enough to include any potentially troublesome frequencies. A bandwidth of, say 10 MHz , would include most national AM stations and any signal picked up would simply be amplified without being detected and passed into the main amplifier. This is known as "passing the buck" in the trade and relies upon the better RF rejections characteristics of the RIAA equalisation stage.

And so to Details

A typical two stage amplifer is shown in Figs. 6 and 7. These are of the common emitter/emitter follower and common emitter/common emitter types respectively and serve as good examples of typical designs. Both circuits are direct coupled and have overall negative feedback to set the required gain and reduce distortion.

Fig.6. Common emitter/emitter follower amplifier configuration.
The effect of temperature on biasing is also minimised and note that the low noise method of biasing is used in Fig.7. To reduce noise to a minimum the feedback components should be kept as low in value as possible, preferably around the 1-10R mark, though this is only practicable in the latter circuit as R1 in Fig. 6 is also the input impedance presented to the cartridge and thus should be somewhere near 100R.

This resistor is in series with the base of the first transistor, however, and as this is probably near to the best source resistance for this stage, assuming the use of parallel transistors, can provide a trade-off with the noise contributed by the relatively high values of the feedback components.

Fig.7. Common emitter/common emitter amplifier configuration.
When using low feedback resistor values make sure that there is sufficient drive capability in the circuit. A feedback resistance of 10 R in Fig.7, for example, will require a drive of 100 mA for a 1 V swing and would, therefore, require the use of a medium power transistor in the second stage.

This component may also contribute its fair share of noise and some degree of experimentation will be required to reach the best compromise.

Fig.8.Differential input circuit.

Redundant Capacitor

A differential input stage as show in Fig. 8 may be used to great effect. The input is referenced to signal earth, eliminating the need for an input capacitor. The resistance to supply-borne interference and hum is also greater with this kind of configuration and can be further improved by replacing Re with a constant current generator.

This is just as well because the need for a differential supply makes battery operation expensive and somewhat impractical.

Fig.9. Differential input with op amp.

A second gain stage may be added to increase the amount of feedback applied and so reduce distortion. This may be another differential stage or even an operational amplifier (Fig.9).

This latter option may suffer a noise penalty due to the inherent noise output of the op amp but there are some good low noise types now available, such as the TDA1034N and TL071.

Next month we bring Andy'Sykes' dissertation to a close with Part 2 of all you need to know about head amplifier design.

Simply ahead...

 POWER AMPLIFIERS

 POWER AMPLIFIERS}

ILP Power Amplifiers are encapsulated within heatsinks designed to meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pickups, tuners, etc. using digital or analogue sound
 sources.

Model	Output Power R.M.S.	Dis- tortion Typical at 1 KHz	Minimum Signal/ Noist Ratio	Power Supply Voltaga	Size in mm	Weight in gms	Price + V.A.t.
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	$20-0-+20$	$105 \times 50 \times 25$	155	$\begin{aligned} & \mathbf{£ 6 . 3 4} \\ & +950 \end{aligned}$
HY50	$\begin{aligned} & 30 \mathrm{w} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	-25-0-25	$105 \times 50 \times 25$	155	$\begin{aligned} & 67.24 \\ & +£ 109 \\ & \hline \end{aligned}$
HY120	$\begin{aligned} & 60 W \\ & \text { inco } 8 \Omega \end{aligned}$	0.01\%	100 dB	$-35 \cdot 0 \cdot+35$	$114 \times 50 \times 85$	575	$\begin{gathered} \mathbf{f} 15.20 \\ +\quad £ 228 \\ \hline \end{gathered}$
HY200	$\begin{aligned} & 120 W \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-45:0.+45	$114 \times 50 \times 85$	575	$\begin{aligned} & £ 18.44 \\ & +£ 277 \end{aligned}$
HY400	$\begin{array}{\|cc\|} \hline 240 \mathrm{~W} \\ \text { into } 4 & \mathrm{~S} \\ \hline \end{array}$	0.01\%	100 dB	$450 .+45$	$114 \times 100 \times 85$	1.15 Kg	$\begin{gathered} £ 27.68 \\ +1.4 \\ +15 \end{gathered}$

Load impedance - all models $4 \Omega-\infty$
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
ILP POWER AMPS AND PSUs
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

POWER SUPPLY UNITS

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled laminated transformer, for PSU 30 and 36 - in the other for larger PSUs, ILP toroidal transformers are used which are half the size and weight of laminated equivalents, are more efficient and have greatly reduced radiation.

PSU $30 * 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times \mathrm{HY} 6$ or $6 \times H Y 66 \quad £ 4.50+$ EO. 68 VAT THE FOLLOWING WILL ALSO DRIVE ILP PRE-AMPS

PSU 36 for 1 or 2 HY $30 \mathrm{~s} \quad £ 8.10+£ 1.22$ VAT
PSU 50 with toroidal transformer for 1 and 2 HY50s $\quad £ 9.75+£ 1.46$ VAT ransmerfor 1 EY 20 PSU 70 with toroidal $£ 9.75+£ 1.46$ VAT with toroidal transformer for 1 or 2 HY120s $£ 13.61+£ 2.04$ VAT with toroidal transformer for 1 HY 200 £13.61 + £2.04 VAT
PSU 180 with torordal transformer for 1 HY400 or $2 \times \mathrm{HY} 200 \quad$ £23.02 $+£ 3.45$ VAT

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS.

this time with two new pre-amps

 HY6 mono HY66 stereo

When ILP add a new design to their audio-module range, there have to be very special reasons for doing so. You expect even better results. We have achieved this with two new pre-amplifiers - HY6 for mono operation. HY66|for stereo. We have simplified connections, and improved parformance figures all round. Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction.
Sizes-HY6 - $45 \times 20 \times 40 \mathrm{~mm}$ |HY6690×20×40mm Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag PU - 3 mV Mic-selectable $1-12 \mathrm{mV}$ Allothers 100 mV : Tape O/P - 100 mV
Main O/P - 500mV: Frequency response -- D C. to 100 KHz -- 3dB
HY6 mond
£5.60
HY66
£ 10.60
+VA1 51.59^{3}
Cimemerctors methaded
B6 Menuntulg Board
$78 p+12 p$ VAT
B66 Mounting Boaras
$99 p+15 p$ VAT
tereosLOW DISTORTIOM - Typically 0.005\% S/W RATIO- Typically 90 dB (Mag. P.U. -68 dB). high OVERLOAD FACTOR - 38 dB on Mag. P.U. LATEST BESIGM HIGH QUALITY CONMECTORS. REQUIRE OMLY POTS, SWITCHES, PLUGS AND SOCKETS. COMPATIBLE WITH ALL ILP POWER AMPS AND PSUS. MEEDS ONLY UMREGULATED POWER SUPPLY $\pm 15 \%$ to ± 501.,

NO QUIBBLE 5 YEAR GUARANTEE 7 DAY DESPATCH ON ALL ORDERS
 BRITISH DESIGN AND MANUFACTURE
 FREEPOST SERVICE see below

\star ALL U.K. ORDERS DESPA TCHED POST PAID
HOW TO ORDER, USING FREEPOST SYSTEM
\star ALL U.K. ORDERS DESPA TCHED POST PAID
HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope -- wepay postage onallletters sent tous byreaders of this journal.

FREEPOST 4 GrahamBellHouse, Roper Close. Canterbury, Kent CT2 7EP.
Telephone (0227) 54778
Teiex 965780

CONSTRUCTORE PACK 7 ALL THE PARTS TO BUILD THE PRAGTIGAL ELEGTRONIES TBAVELLER CAR RADIO

* EASYTO BUILDKSPUSH

The pack contains all the electronic components to build the radio, you supply only the wire and solder as featured in the Practical Electronics March issue.
The P.E. Traveller features pre-set tuning with five push button options, black illuminated tuning scale, with matching rotary control knobs, one, combining on/off volume and tone-control, the other for manual tuning, each set on wood simulated fascia.
The P.E. Traveller has a 6 watts output, negative ground and incorporates an integrated circuit output stage, a Mullard IF module LP1 181 ceramic filter type, pre-aligned and assembled and a Bird pre-aligned push button tuning unit. The P.E. Traveller fits easily in or under dashboards. Complete with instructions.

R

TV

[323 EDGWARE ROAD, LONDON W2. For Personal Shoppers Only. 21 EHIGH STREET, ACTON W3 6NG. Mail Order Only. No Callers.

Mon-Sat
9.30am-5.30pm

Closed Thursday

NEW
 12+12

Eni:

AMPLIFIER KIT

An opportunity to build your own 12 watts per channel stere o ampiditier with up-to-the-minuts leaturas. To complete you just supply screws.
connacting wire and solder. Featuras include din input sodets for connacting wire and solder. Featuras include din input sodiats for
ceramic cartridge. microphone. lape or tuner. Dutputs-tape, speakers and caramic caruidga, microphone, lape or tuner. Duiputs-rapes speakers and disco amplifier with rwin dech mixing. The kit incarporates a Mullard LP 183 pre amp module. plus 2 power amplifier assembly kits. Also featurad 4 slider lavel conirols, rotary bass and treble conitiots and 6 push button switchas Silver finish fascia panel with matching knobs Easy to assemble reak simulate cabinet and ready made metal work. For further

 TWO WAY SPEAKER KIT To suit above amp. Comprising 2. $8^{\prime \prime}$ approx Phillips base unit, and $2.31 h^{\prime \prime}$ approx tweeters with
2 crossover capacitors $\mathbf{E 4 . 9 5}$ p\&ip $\mathbf{~ 1 . 6 5 .}$
Available only to first time purchesers of the $12+12$ kit.

50WATT MONO

DISCO AMP

f 30.60

p\&pf $£ 3.20$
Size aparox $133^{\prime \prime} \times 54_{4} \times 63 \%^{*}$
50 watts rms. 100 watts peak output. Big features include two disc inputs. control caramic canfridgas, tape input and microphone input. Lovel mixing controis and master volume.

$30+30$ WATT STEREO AMPLIFIER Viscount iv unit in teak simulate cabinet Silver Finish rotary contols and pushbutions with matching fascia. red mains indicatoo and stero jack socket
Functions switch tor mic magnetic and cyst pictions Functions switch for muc magnetic and crys al pickups. lape tuner and auxiliany Rear panal teatures luse holder. OiN spe akes and input socket $30+30$ watts RMS $60+60$ watts psak for use with 4 to 8 ohm speakers.
Sua $144^{\prime \prime} \times 3^{\prime \prime} \times 10^{\prime \prime}$ aporox
BUILTAND READY TO PLAY
pap 5330 Lat 40

1
PACK $12 \times L$ P11 17310 w RMS output power audio amp modules.
+1 LP1 $182 / 2$ Stereo pre amp for ceramic and auxdary inout
\%

2PACK2 $2 \times$ $+1 \mathrm{TP} 1184 / 2$ Stereo pre amip for magnetic. ceiaminc and aúxiliary illus. oun pace $\boldsymbol{\Psi} \mathbf{7 . 6 5}$ pap fl. 15
ACCE SSORIES Suitable manns power supply parts, consisting of mains transtormer, bridge rectiliet, smoothing capacitor and set of rotary stereo controls tor treble. bass.
volume and batance,
£ 3.0 plus p\&ip f1.60
Two Way Speaker Kit Comprising of two 8" $\mathrm{x}^{5 \prime \prime}$ approx 4 ohm
Per slereo parr
plus $p \& p \mathrm{f} f 1.70$ $\mathbf{4 5}$

323 EOGWARE ROAD, LONDON W2 21 EHIGH STREET. ACTON W3 6NG ACTDN: Mail Order only. No callers
ALL PRICES INCLUDE VAT ATI5\%
ALL PRICES INCLUDE VAT AT 15\%
AH items mbiect to ovalability. Price correct
All items eubject to svailability. Price correct at $8 / 7 / 80$ and subject to change without notice
All enquires Stamped Addressed Envelope.
NOTE Persans undef 16 years not served without parant's authorisation.

CURRENT AFFAIRS

We seem to take for granted that circuits work, but why is it that conductors, semi-conductors and insulators do just what their names imply? A.S. Lipson takes us step by step through the whys and wherefores of atomic structure.

Most of us are reasonably familiar with what electricity is - the movement of electrons through a conductor. But there are some things that we tend to take for granted. For instance, why is it that some materials, like metals, conduct easily, whereas others - insulators - don't, and still others - semiconductors - seem to be somewhere in the middle; conducting, but not as well as metals? In order to find out why, we'll first have to learn something about atomic structure

First Theory

Essentially, the atom consists of a central, very small positively-charged lump called the nucleus, surrounded by negatively charged electrons. Many books - particularly old ones - tend to give the impression that the electrons are just like little planets orbiting a sun(the nucleus) and that the atom is like a miniature solar system. This is wrong. Electrons do not behave just like little billiard balls, or little solid lumps. It is in fact more accurate (although not quite so simple) to visualise the electrons in an atom as being spread out 'charge clouds' around the nucleus, with most of this charge being concentrated at specific distances from the nucleus. The comparison between the two points of view is made in Fig. 1

Fig.1. A hydrogen atom according to (a) The'Solar System' model (b) The 'Charge Cloud' model.

The electrons within an atom can have different energies. If they obtain more than a specified amount of energy (for any particular type of atom), then they can actually break free from the atom. It is clear that the more energy a particular electron has within an atom, the less energy that electron will need to have added to it in order for it to break away from the atom; in other words, the easier it will be for that electron to escape

Conduction and Insulation

But what has all this to do with conduction of electricity? In metals, some of the outer electrons present have quite high energies within their atoms and, in a solid lump of metal, one or two electrons from each atom are more or less free of their own atoms, although they are held into the metal as a whole. The positively charged ions left when electrons are removed from atoms are packed closely together and, in between them, the free electrons move about at random, (acting as a sort of 'atomic glue'). This negative charge attracts the remaining positive charge on the ions, and holds the whole thing together. (See Fig. 2.) The charge-clouds of all the free electrons join together, and form what is often known as an 'electron sea'. Because of this structure - the way that they are held together - metals can conduct electricity. Why?

Fig.2. The structure of a metal. Positively charged ions are surrounded by an electron 'Charge Cloud'.

Because of all those free electrons, which aren't held by any particular atom, only by the metal as a whole. They are so loosely attached that if you apply a potential difference across the metal, they can drift along under its influence, and so cause a current to flow. In insulators, on the other hand, the electrons are held much more tightly by the atoms, there is no 'electron sea', and the atoms are bonded together by other means. Consequently, if a potential difference is applied, the electrons are unable to break free from their atoms, and so no current can flow. Our problem is thus solved - we now know how electrical current is conducted in metals, and why it isn't in insulators. Or do we? This theory was widely accepted for some time, and in fact it's still accepted as being broadly true, but there are just one or two things it doesn't explain. Semiconductors, for instance? And why should metals hold their electrons less tightly than non-metals? Our theory is obviously incomplete

The New Approach

It was the physicists (naturally . . .) to the rescue. So we must once again return to the atom

In the first decades of this century, a startling new branch of physics - Quantum Mechanics - made its debut. This was the work of several men, including Einstein, Heisenberg and Schrodinger. One of the first results Quantum Mechanics produced was embodied in a conclusion that Niels Bohr published in 1913. This was that, contrary to what had previously been assumed, the electrons within an atom could not have just any energy level, but could only exist at certain set energy levels. (See Fig. 3a.) This was a radical departure from what had been believed up until then, but it has been proved and is now unquestioned by physicists.

Fig.3a. The electrons within atoms can exist only at set levels. b) When two atoms interact with each other, their energy levels are split. c) In a solid, millions of atoms all interact with each other, and the energy levels are split into so many 'sub-levels' that they behave like continuous bands.

So electrons in atoms can only exist at certain set energy levels. But if you get more than one atom together, the situation changes again - energy levels are split. If, for example, you put two atoms close together, and then look at what has happened to a particular energy level in each atom, you will find that, in one atom, it has shifted up fractionally, in the other atom, it has shifted down slightly. The two atoms act as though the single energy level has been split into two (See Fig. 3b), one very slightly higher than the other. In a solid, where there are millions of atoms all together, the energy levels are split into so many 'sub-levels', all very close in energy, that they act like continuous bands. (Fig. 3c.) In a solid, instead of
there being several separate energy levels at which the electrons can exist there are, instead, several energy 'bands', within which electrons can have a whole range of energy levels. Between these bands however - and this is the important bit there are still 'forbidden gaps'; energy ranges in which electrons cannot exist because there are no allowable energy levels present. So how does all this help us to understand electrical conduction? Patience . . We're just coming to that .

Electron Distribution

The way a material behaves electrically, whether it acts as a conductor or an insulator or whatever, depends on the arrangements of its energy bands, and the way that the electrons are distributed within them. The energy bands of a) a conductor, b) an insulator and c) a semiconductor are shown in Fig. 4. Firstly we will deal with the conductor. The energy bands shown in Fig. 4a are fairly typical of a material like copper. As in any material, the lower energy bands tend to fill up with electrons more easily than the higher energy bands, and consequently, they contain all the electrons that they can possibly hold. There is then a 'forbidden gap' of energies, and above this is another band - known as the conduction band. This band, unlike those below it, is not full, but is capable of holding more electrons than it in fact does. An electron in this band is relatively loosely held by this atom and so it requires only a very small amount of energy, which can be obtained from an applied potential difference to raise it to a higher energy but still within the conduction band.

It can now drift along within the metal under the influence of the potential difference. Thus, in a metal, which has either a partially-filled conduction band (eg. copper) or an empty conduction band which overlaps a full energy band, (as in magnesium) it is possible for current to flow quite easily. So far, so good. What about insulators? The energy-band theory can also explain the behaviour of non-conducting materials (Fig. 4b). In such substances, there are still full energy bands at the lower energy levels, but the conduction band is empty. In other words in insulators, electrons do not normally exist with enough energy to be in the conduction band. And it is only in this conduction band that electrons are free enough to take part in a flow of electrical current. If it were possible to get the electrons out of the lower energy bands into the conduction band then these materials could conduct electricity, but in order for that to happen electrons would have to cross the forbidden gap, and the energy required to make them do this is much more than can be supplied by a normal potential difference. In terms of eV (the eV , or 'electron-volt', is a measure of energy which atomic physicists find it convenient to work with, 1 eV being the energy picked up by an electron in passing through a potential difference of 1 volt), the forbidden gap in insulators in normally about 5 eV , hence, under normal circumstances, insulators do not carry electricity.

What About Semiconductors?

Semiconductors are really an 'in-between' case. Like insulators, very pure semiconductors such as silicon or germanium have empty conduction bands when the temperature is 'absolute zero' (about minus $273^{\circ} \mathrm{C}$), separated from the other energy bands by a forbidden gap. At normal temperatures the conduction bands are not completely empty. Why? Because in semiconductors the forbidden gap is much smaller than in insulators - about 1 eV . It is so much smaller, in fact, that at normal termperatures, the vibration of the atoms in the semiconductor is sufficient to give enough energy to a few electrons to reach the conduction band. Eventually they fall back to the lower energy bands - but more electrons are entering the conduction band all the time, so eventually a balance is struck, with the number of electrons entering the conduction band in any period of time being equal to the number falling back. At normal temperatures, therefore, there are always just a few electrons in the conduction band of a semiconductor, and so it is able to conduct electricity. Though it conducts less well than a metal, since there are far fewer electrons in the conduction band

But That's Not All.....

There is, however, another means by which a semiconductor can carry electricity. Every time an electron leaves a lower energy band for the conduction band, it leaves an electrically neutral space where there was previously some negative charge. These neutral spaces, surrounded by negatively-charged electrons, can behave almost like a positively charged particle, and when a potential difference is applied, this 'hole' as it is called travels in the opposite direction to that of the electrons. To understand how this happens, imagine a row of chairs, with someone sitting in each of them except the one at the end. (Fig.5) If the first person in the row moves into the empty chair, the next person moves into the chair left empty by the first person, and so on, the 'space' where no one was sitting appears to move in the opposite direction to the people, and that's exactly how it works with 'holes' in semiconductors. While it appears that the hole is moving in one direction, carrying positive charge, what is real ly happening is that the electrons in the lower energy bands are travelling in the other direction, carrying negative charge, and are moving into the spaces left by electrons which have gone into the conduction band.

Conclusion

Therefore, in a semiconductor, there are two types of charge carriers involved in the conduction of electricity; electrons and 'holes'. Various experiments indicate that in germanium, for example, about one third of all the current is carried by the 'holes'!

Fig. 4. Comparison of the forbidden gap position and magnitude in the three basic types of material. Far left: a conducting substance. The lower energy bands are full of electrons and the forbidden gap is easily bridged by sufficiently energetic electrons which then enter the conduction band. Center: insulators. Note the empty conduction band and the wide forbidden gap in which there are no permissable energy levels. On the right: semiconductor materials in which the energy gap is around 1 eV and at room temperature sufficient energy is imparted by heat action to allow some electrons to cross the gap into the conduction band.

Fig.5. As each person moves into the space next to them, it appears that the gap moves in the other direction. In the conduction band this is an electrically neutral space where there was previousiy a negative charge. These 'holes' can behave almost like a positively charged particle when a potential difference is applied this 'hole' moves in the opposite direction to the electrons.

You will remember that, in semiconductors, electrons reach the conduction band because of the vibration of the atoms. This fact is quite important. At higher temperatures the atoms vibrate more, and so more electrons (and 'holes') are available for conduction purposes. To the extent that above about $100^{\circ} \mathrm{C}$ for germanium, and $150^{\circ} \mathrm{C}$ for silicon, the conduction is no longer really under control, and so devices like transistors, which use semiconductors, have to be kept below these temperatures, if they are to remain reliable during operation. The fact that silicon is useful as a semiconductor at higher temperatures than germanium, was the major reason for the increased use of silicon rather than germanium devices!

ETI

Complete Audio/Tuner Kits

Mk III FM Tuner series

Carriage for Mk III tuner $£ \mathbf{~} \mathbf{3}$ inc
The Mark III series FM tuner has been updated, and now includes a centre zero tuning meter as standard. The instruction manual has been meticulously revised, enabling easy assembly by constructors of various levels of experience a preview copy may be purchased for $£ 1.00$. Mark III A series 'Reference series' tuner modules Mark III B series 'Hyperfi' modules, with switched
IF BW, pilot cancel decoder
f171.35 inc.
£198.95 inc
A matching synthesiser unit will be made available fater this year, and can be retrofitted to either version. All versions include digital frequency readout/clock, VU deviation meters, 6 preset stations, 10 turn pot manual tuning, toroidal PSU output level adjustment, $110 / 240 \mathrm{v}$ AC input. Full alignment service available.

Power Amplifier Style and performance with a real beit and braces' PSU design.

After a couple of preview comments, it seems that many of you are waiting to hea about the matching HMOSFET power amplifier for the Mk III tuner. Well, it's out at last - complete with twin toroidal PSUs for comfortable 80W RMS per channel, over 100W peak, but limited by thermal shutdown of the HMOS. 10W-100W \log LED output peak indicator, DC offset protection and switch-on pause relay. AC oi DC input coupling, direct or relay protected output terminals. The works.
Only one version of this item: Complete kit
$£ 178.25$ inc. Carr. $£ 5$.
Preamplifier
More features and facilities, thanks Previewing the most comprehensive audio preamplifier yet. DC switching of 7 design two tape in/outs. 2 low pass, 2 high pass active filters. genuine volume related loudness, 1dB channel matching, with DC volume, balance, bass and treble controls. Suitable tor bus/remote channel matching, with witched monitor etc. $80 \mathrm{~dB} \mathrm{~S} / \mathrm{Nt}$. THD -75 dB or better. PHuggable PU
control, tape dubbing, swite
equalization boards, tone control override. Price for complete unit about $£ 149$ ex VAT.

Radio/Audio/Communications Modules

LW-MW-SW-SW DC tuned and switched

91072 - All switching of bands by a single pin to gnd. Varicap tuned, with LO output for synth. MW/LW version or MW/LW plus 1 or 2 SW bands MW/LW: $£ 15.58+1$ SW $£ 16.73$ VHF Tunerheads
Europes largest stock range for broadcast and communications. Probably also the world's details in the catalogues and PL. Specials ar
also supplied in the region $30-220 \mathrm{MHz}$ also supplied in the region $30-220 \mathrm{MHz}$.
Pilot Cancel PLL Stereo decoders
944378.2
526.45

Again, Europe's widest range of stereo decoders including pilot cancel PLL types. The pic shows $26 / 38 \mathrm{kHz}$ filtering and muting preamp output

Switched bandwidth FM IF strips

Broadcast FM IF strips for all occasions, including the new 911225 - with diode switched narrow filter option, ultra linear phase ceramic filters, 84dB S/N, and 0.04% THD (40 kHz deviation). Plus usual things like AGC, AFC, dev. mute, level meter drive. $\mathbf{f} 23.95$ (supplied in screen can with 0.1 edge connection system) Also the 7230 hyperfi series - as the 911225 , but with slope controlled AFC tha operates in conjunction with signal level - and an extra IF amp stage for DXing.
Various digital frequency displays
The World's largest range of receiver DFMs is now joined by the DFM7 (shown) - and L shaped version of the DFM3 with remote display mount connector possibility. 1 kHz SW resolution with 455 kHz or 107 MHz offsets 100 Hz res up to 3.9999 MHz and VHF to 299.99 MHz in 10 kHz steps : $£ 41.75$
 Semiconductors
 Since pioneering the 100 W complementary MOSFET technique. Hitachi have developed a range of output devices and divivers that ought to revolutionise opinions and attitudes towards the
design of all LF amplification systems. We have a new 48 page application note ($\mathbf{E 1 . 5 0}$ inc) and design of all LF amplification systems. Wa have a new 48 page application note (E 1.50 inc) and
complete sets of parts, modules and now the new complete PA system (see above). $2 S \mathrm{~K} 133 \mathrm{l}$. $\begin{array}{lllll}\text { 2SK } 133 & 120 v & \text { N-ch 100W MOSFET } & \text { E6.33 } & \text { 2SJ48 Pch complement } \\ \text { 2Sk } 135 & 160 v & \text { E63 }\end{array}$ $\begin{array}{llllll}\text { 2SK } 135 & 160 \mathrm{~V} \text { N-ch 100W MOSFET } & \text { £7.29 } & \text { 25J50 Pch complement } & \text { £7.39 }\end{array}$ PA1018 Kit for 100W MOSFET PA less Heatsink $£ 16.10$. ($£ 23$ inc heatsink/bkt) ULTRA LOW NOISE PU PREAMPLIFIER
The HA12017 is the last word in PU preamps, and general low noise audio design It is an SIL IC, with 86 dB S/N in RIAA configuration, 10 v RMS output capability, 0.002% typ THD at 10 V RMS output (imagine the overload margin !!). It comfort ably supercedes discrete circuit designs in terms of price/performance, and takes the art beyond the TDA 1042's capabilities. (Replaces HA1457) £1.80 each. or
an RIAA applications PCB with two ICs for $£ 5.75$. Complete with Rs $\&$ Cs $£ 9.95$.

Radio Control ICS We have various RC ICs, including NE544 KB4445 4 channel dig.prop. FM TX IC. 30 mW out (amplifyable) $£ 2.30$ inc KB4446 4/5 ch. dig. prop FM RX IC. Suits KB4445 or RCME syst. £2.65. KB4445/6 pair $£ 4.75$. New 8 page data sheet 35 p + SAE. More RC ICs in list

CMOS, LPSNTTL, TTL, MPU:
 Listings in the new pricelist.
 Most CMOS is available in low volume - also LPSN Standard limears and TTL OK

Things like ICM7216B, ICL8038, 8080A, 6800P, 2708, NE555,NE556, etc

Coming Soon. Contain yourselves, RF fans ! Not yet ready for
 SSB transceiver system : 10 kHz to 1000 MHz !!

A modular VLF 10 UHF SSB TX/RX system at last. With the correct first mixer. the basic PCB covers 10 kHz to 1000 MHz - using LO fed from ext. source (Our 2 IC Muliard synth tor instance) and RFPA for TX OP'. 0.2 V basic sensitivity in MF. Typ cost for MF synth SSB RX witl be
less than £200 Add an RF PA for full TRX for another f50. See one in our foyer, and maryel

Please send an SAE with all enquiries
Phone orders by ACCESS but minımum $£ 5$ Callers welcome

Bigger print than our recent one page list and vastly extended
mean and get this first POWER MOSFET APPLICATIONS HANDBOOK by HITACHI

Parts 1.3 AMBIT catalogues 60 pea , or $£ 1.60$ the lot.

GTUSCAN'AROM TRANSAM

Take astep up toyournext Computer!

THE CONCEPT

How many ways are there to build an S100 system? Not many, and all expensive.TUSCAN changes all that.

Five S100 boards on one single board--just for starters. Plus five extra slots for future expansion.

What a combination! Z80 and S100 with the TRANSAM total package of system and applications software.

How do we do it? Our prices start at $£ 195$ and you can build up in easy stages to a fully CP/M compatible disc based system. Something to think about!

THE HARDWARE

The first Z80 single board computer with integral S100 expansion. British designed to the new IEEE (8 BIT) S100 specification, the TUSCAN offers total system flexibility. A flexibility available now.

The board holds the equivalent of a $Z 80$ cpu card, $8 \mathrm{kram}, 8 \mathrm{k}$ rom video and $/ / \mathrm{O}$ cards with 5 spare S100 expansion slots and offers a price/performance ratio which is hard to beat.

Just compare our price with a commercial S100 ten slot motherboard with this specification.

THE SOFTWARE

TUSCAN offers the user the choice of system monitor, editor, resident 8 k basic, resident Pascal compiler or full CP / M disk operating system. All options are upwards
compatible and fully supported with applications software. Both $5 \frac{1}{4} 4^{\prime \prime}$ and $8^{\prime \prime}$ drives are supported in double density.

THE PACKAGE

TUSCAN is-available in kit form or assembled. With several hardware and software options to suit your requirements and budget. Attractive desk top case also available holds $2 \times 514^{\prime \prime}$ Drives.

7 RAN NAM
 NOBODY DOES IT BETTER!

Send to Transam Componeners Lud. 59 , 61 Theosadss Road. London WC1

MICROBASICS

Since the demise of Microfile, we felt it was time to initiate another on-going publishing situation computingwise. Henry Budgett kicks off the first instalment of this great new hardware series with a potted history of the technology

AImost without fail we read in some publication or other that the age of computers is upon us. Whilst this statement is unquestionably true it is well worth looking back at the developments that have resulted in this proliferation of computers and computer-based systems. There is a popular temptation to attempt to baffle readers with science and technical terms in articles like this and this has led to an almost 'cult' image being foisted upon the industry, whereas, in reality, we should be trying to do exactly the opposite. It is to this end that I will attempt to define and explain each piece of terminology as it is reached. It is also the reason that I have chosen to begin the series at the beginning rather than to look at just the current darling of the media, the microprocessor.

Three Wise Men

In taking a look over our shoulders at the names associated with the very early computers we find that three stand out as veritable beacons. Taking them in chronological order, for no better reason than simplicity, we first meet Blaise Pascal. Born in the seventeenth century in France he made a considerable impact on the field of mathematics at that time. His father was a tax collector and the sight of him spending many hours adding figures stimulated Blaise to produce a
mechanical engine that would remove the drudgery. The basic design worked, no mean feat in itself, and enjoyed a limited commercial success. Its main drawbacks were that it could only add or subtract (and only one of those at a time). The Pascaline, as it was called, is still in use today recording the mileage travelled in your car and its improved successor which was capable of multiplication survived until the first electronic calculator sent it to the scrap heap. If you are fortunate enough to have one lying in a corner it is worth the trouble to take its lid off and reveal the guts. Remember as you look that this was invented when the Industrial Revolution was still in the future and there were no facilities for making accurate mechanical parts, a problem that was to cause our next innovator to fail.

Inventor With A Difference

Charles Babbage began in a similar manner to Pascal. He was also a child prodigy in the field of mathematics and-soon began to find fault with the tables of logarithms being published. It was to the end of producing a machine for calculating these tables that Babbage began his life's work. It was fortunate that he was a wealthy man because despite a Covernment grant of some $£ 17,000$ and eleven years work he finally
abandoned his Difference Engine. Despite this failure his thoughts on automated mathematical machines were still active and he conceived the Analytical Engine that was to eventually ruin him. This idea was to incorporate all the essentials of the Difference Engine but with the magic ingredient of being programmable'. The original specification of the machine was that it could perform mathematical operations to order on data provided.

At this instant the concept of computers as we know them today was born. The 'Engine' even incorporated most of the elements found in modern electronic machines. However the theory was not matched by the practice. The inability to make precision parts once again spelled doom and Babbage died aged 80 with not much left to his name except a pile of cogs and wheels. His son did manage to put together a working model, which can today be seen in the Science Museum, London.

Herman The Wise

Less than twenty years later our third individual, Herman Hollerith, forged the final link in the chain of events with his Tabulator. Designed as an entry in a competition to find a system that could analyse the results of the 1890 American census it harnessed the newly developed power source, electricity. Hollerith's machine completed the census in record time and made its inventor a very rich man. Indeed, the company he founded, IBM, is probably the largest mainframe computer producer in the world.

This combination of electricity and advanced mechanics was by no means an ideal solution. In the case of the 'Tabulator', it was designed for one specific job and could not be easily changed. This was not the programmable tool conceived by Babbage. It is interesting to note that, just as Babbage had looked toward the punched cards used by weavers to control their looms, so Hollerith used similar cards to record the census information on. These cards are still in use today in many computer rooms (some things never change!).

The Electronic Age

Just as the application of electrical energy brought Hollerith's 'Tabulator' the success it did, so it spurred on the development of the wide variety of electronic circuits based around the thermionic valve. By the time of the second World War there were many potential challengers for the title of the first computer but they all shared one common characteristic. The development of electronic switching had resulted in the universal adoption of the binary number system. The reason is simple, you can easily turn something on or off and hence create a binary code, but it is obviously much harder to turn something off or on in nine discrete steps. If Pascal or Babbage had designed their systems around binary mathematics instead of the conventional decimal they would have simplified their problems ninefold and the world may even have been introduced to the steam powered computer. Having taken the step to binary, computers never looked back and giants such as Collosus, ENIAC and ACE were born. Each of these was the descendent of the 'Analytical Engine' in that it could be programmed to do any logical task, within reason, and consisted of a number of basic elements, as in today's computers.

In much the same way as the transition from mechanical to electrical occurred, these early computers were replaced by pure electronic devices based on the newly invented transistor. The thermionic valve was an unreliable object, slow in operation and costly in terms of power consumption and space. Indeed, the processing capabilities of most of today's microprocessors greatly exceed the facilities offered even thir-
ty years ago. The advent of the transistor produced the 'second generation' of computers. A 'generation' in computer terms is generally defined as a tenfold decrease in size with a tenfold increase in processing throughput at a tenth of the original cost. As the transistor became the descendent of the valve, so the chip or integrated circuit became the descendent of the transistor. In those days, some ten to twelve years ago, the first integrated devices consisted of perhaps a half dozen transistors on a single chip of silicon. Rapid advances were made and soon a new kind of computer was born.

The Minis

Just as the Mini car revolutionised the way the world looked at motoring so the minicomputer changed the face of computers. Up till the advent of the integrated circuit there had been only 'computers', now there were 'mainframes' and 'minis'. These two were rigidly divided into sectors of operation, the mainframes were used for serious purposes, the minis were 'toys' used in research. Among the names of companies who were to make their fortunes producing minis was DEC, probably still the world leader. Soon the mini was to be found everywhere from research labs to classrooms and their spread was due simply to the fact that they were small, cheap and relatively easy to use. They were even built into pieces of equipment like machine tools. Indeed it is fair to say that the mini paved the way for the micro, although the actual distinctions between them have been rapidly eroded.

The pilot model of the National Physical Laboratory's ACE, one of the first computer giants (Crown copyright).

Firms involved in the business of integrated circuit production tend to follow a natural progression in the devices that they make. First off the production line come the standard logic elements, the AND OR type gates, and once the production of these is running at a profitable level they attempt to squeeze a little more onto the slab of silicon. As soon as this stage is proved they take another leap forward and so on. In the terminology this is a progression from SSI (Small Scale Integration) with about 10-20 actual devices on the 'chip' through MSI (Medium Scale Integration) which has a dozen or so gates (rather than discrete elements) up to LSI (Large Scale Integration) which is taken as being greater than 100 gates on the chip. At this stage of the game we are still talking about complex TTL type packages, the next jump is to VLSI which, believe it or not, stands for Very Large Scale Integration. We are now in the realm of memory devices and microprocessors.

Fig.1. Block diagram of a computer system.

Common Concept

If we take a look at Fig. 1 we can see a generalised block diagram of a computer. What kind of computer is not important; they all have the same functional blocks within them, be they micro or mainframe. The common misconception is that the "mighty chip" is a computer, far from it. Your average microprocessor still needs all the memory circuits, control circuits, mass storage devices and other components that even the old valve machines needed; they are merely smaller. The very first microprocessor came about in 1971 simply because it was realised that it would be possible to make a device of that complexity on a single chip. The device was called the 4004 and the company that made it was Intel. More on the micro next month - first some explanation on the basic building blocks of computers.

Eye Oh

The five fundamental elements of any digital computer are:- the ALU or Arithmetic Logic Unit, the control unit, the store or memory and the input and output devices. Taking these in the reverse order we have the input and output devices, often abbreviated to the I/O. Obviously the machine must be able to communicate with the outside world and vice versa, so the most common form of I/O is the Visual Display Unit or VDU. This has, to a very large degree, replaced the oldfashioned Teletype, a special electric typewriter often called a TTY, and is totally silent in operation, which is a welcome change from the racket the earlier device made. Other forms of I/O device are printers, for producing typed copy, plotters for producing graphical output or in the most esoteric cases digitisers and speech synthesisers.

The function of the I/O was simply to enable the user of the computer to load information for processing into the computer and to be able to get the answers back. Quite apart from this information there is the requirement of the computer programmer who wishes to put in information that will instruct the computer to perform certain operations. This, the program, is stored in the memory and of this vital component
there are two types; general purpose memory and off-line or backing memory. The general purpose memory is made up of a large number of bistable elements manufactured in either magnetic or semiconductor materials. In the context of the micro we often refer to these as the user memory. The backing memory is generally of a mass storage type like magnetic tape in one of several forms or magnetic discs or drums. Whilst the computer may have immediate access to some few thousand

The business end of NPL's ACE computer, used to develop sophisticated mathematical techniques.
storage elements in the user memory, it can often store a few million elements in the backing stores. We will discuss the various types of memory in much greater detail at a later date - only the concept is important at this stage.

The control unit performs the task of making sure that all the various bits of the computer are working in the correct order. It would not be a very efficient machine that had to pause for information because it gave priority to looking after a printer and left the user waiting. The basis of all the control signals is a clock, in fact a very accurate oscillator circuit running at several million cycles per second. This is the heart of the machine and almost without exception all the functions within the computer are locked or synchronised to it.

The one remaining piece of the jigsaw is the ALU. This exists solely to perform arithmetic operations on the elements that are fed to it. Some of these elements are recognised as being instructions, others are simply information which is to be processed according to the previously received instructions. All this takes place at the level of binary signals, that is, each separate piece of information is represented by a pattern of logical ones or logical zeros and this is commonly called 'machine code'. Indeed, at this level of operation the computer is only aware of two groups of patterns - those which correspond to the defined set inside the machine, its "instruction set" in computer parlance, and those patterns which do not match this set which must be data.

To Pastures New

That's the end of this month's offering. In the next part our concentration will lock on to the microprocessor itself and just what goes on inside that little lump of silicon. Those with a wish to pursue the hardware angle in books, might be interested in the following recommended texts on the subject: Introduction To Digital Computer Design by Woollons, published by McGraw Hill. Consumers Guide to Personal Computing and Microprocessors by Frieberger \& Chew, published by Hayden.

ETI

Unique in concept-the home computer that grows as you do!

 New!-The Acorn Atom

EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, it you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP $4 B$
EXP $\mathbf{3 2 5} \mathbf{£ 1 . 6 0}$ The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 pont bus bars

EXP $350 £ 3.15$ Specially designed for working with up 1040 pin ICs perfect for 3 \& 14 pin ICs Has 270 contact points including two 20 point bus-bars

EXP $\mathbf{3 0 0} £ 5.75$ The

most widely bought bread-board in the UK With 550 contact points, two 40 point bus-bars, the EXP 300 will accept any size IC and up to 6×14 pin DIPS. Use this breadboard with Adiventures in Microelectronics.

EXP 600 f6.30 Most

 MICROPROCESSOR projects in magazines and educational books are built on the EXP 600

EXP $\mathbf{6 5 0} \mathbf{£ 3 . 6 0}$ Has $\cdot 6^{\prime \prime}$ centre
spacing so is perfect for
MICROPROCESSOR applications

EXP 4B $\mathbf{~} \mathbf{2 . 3 0}$ Four
more bus-bars in
"snap-on" unit

The above prices are exclusive of $P \in P$ and 15% VAT

THE CSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately

CONTINENTAL SPECIALTIES CORPORATON

C.S.C. (UK) LTD Dept. 9PP

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB1 1 3AQ.
Tel: Saffron Walden (0799) 21682 Telex: 817477

Roll the dice - the electronic way! The digital dice gives you an instant score randomly chosen from 1 to 6 , every time you press the button. No losing thiş under the table!
No. 8 OUIZ MASTER
Play your own 'Sale of the Century'! Up to four contestants pit their wits; the first one to get the answer lights up his 'win' light, and stops anybody else from having a go. No. 9 MOVING TARGET GAME
Test your reactions! A moving 'line of light' travels along from left to right, over and over again. You've got to 'fire' at just the right moment to score a hit. Fun for all the family!
Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, take one of our earlier projects, a L.E.D. Bar Graph;

You will need; One EXP 300 or EXP 350 breadboard, 15 silicon diodes, 6 resistors, 6 Light Emitting Diodes. Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD. do the same with all the other components, conneci to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a perfect working project.

For full detailed instructions and layouts of Projects, 7,8 and 9 , simply take the coupon to your nearest CSC stockist, or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.
If you missed projects, 1. 2 and 3 . or 4,5 and 6 , please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT £9.20

PB 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy
PROTO-BOARD 100 KIT $£ 11.80$

SPOT DESIGNS

Slide/Tape Synchroniser

With the aid of a tape recorder and a slide tape synchroniser it is possible to obtain programmed slide changing with an automatic projector. By using a synchroniser and a stereo tape deck or recorder it is possible to have music and a commentary recorded on one channel and signals to give automatic slide changes at the appropriate points on the other channel.

A slide/tape synchroniser has two sections; a tone generator and an electronic switch. The tone generator is used to record short bursts of tone onto the tape at the points where slide changes are required. The electronic switch is fed with the tone burst output of the tape recorder and closes a pair of relay contacts for the duration of each burst. The relay contacts are, of course, used to control the automatic slide change mechanism of the projector. Usually the output of the tone generator is coupled to the input of the electronic switch, so that operating the tone generator causes the relay contacts to close. This is useful when recording a tape. With the projector loaded with slides, the synchroniser connected to the projector, the output of the tone generator fed to one input of the recorder and the music/commentary signal ready to be fed to the other input, the tape is inserted. Then the music and commentary are recorded and the tone generator is operated at the appropriate times so that the slides are changed and the tone bursts are recorded onto the tape. If the tape is then rewound, the slide magazine is brought back to its starting point and the tone burst output of the tape recorder is fed to the input of the electronic switch, replaying the tape should give the slide show with accompanying sound track and automatic slide changing. The operator only has to start the tape at the beginning of the show and stop it at the end.

A similar technique is used when using the unit as a program-
med slide timer, the only difference being that there is no soundtrack to bother with

The tone generator uses Q1 in a straightforward phase shift oscillator operating at about 500 Hz , although the exact operating frequency is not of great importance. It is merely necessary to use one at which the recorder is capable of operating reasonably well. The output from the collector of Q 1 is coupled to the tape recorder by DC blocking capacitor C5 and resistor R6. The latter attenuates the output. R6 also ensures that the oscillator cannot be so heavily loaded that it ceases functioning. SW1 is a non-locking, push to make switch. It is briefly pressed to connect the supply to the tone generator and produce the tone bursts.

The tone generator is based on operational amplifier IC1, which is used in the non-inverting mode. Its voltage gain is set at about 28 by R9,10 and R8 biases the non-inverting input to the negative supply rail. $R 5,7$ form a simple passive mixer at the input of IC1, so that it can be fed from either the tone generator or from the output of the tape recorder without the need for any changeover switching. The output of IC1 is used to drive common emitter amplifier Q2, which has the relay coil and protective diode D1 as its collector load. Normally IC1's output is low and Q2 is cut off, but in the presence of an input tone the output of IC1 goes strongly positive on positive going half cycles. C10 integrates these pulses so that Q2 is continuously switched on in the presence of an input tone and the relay is energised. The relay contacts then close and operate the slide change mechanism of the projector.

The current consumption of the unit is only about 500 uA , but rises to around 40 mA during the brief periods when the relay is activated. The relay can be any type having a $6 / 12 \mathrm{~V}$ coil with a resistance of about 185 R or more, provided it has at least one set of normally open contacts of adequate rating.

Clipping Monitor

When using an amplifier at virtually its full output power there is a risk of "clipping" occuring. The amplifier is overdriven to the point where output peaks are flattened because the amplifier simply cannot provide a high enough output voltage. The distortion caused by clipping is often quite severe and readily apparent, but this is not always the case. It is not uncommon for the tweeters in loudspeakers to burn out due to overloading caused by clipping producing strong high frequency signals!

The circuit relies on the fact that with less than about 2 V applied to a LED it will not pass any significant current and will fail to light up. If the voltage applied to the LED is only marginally increased above 2 V , the LED avalanches, a heavy current flows and it glows brightly. R1 is adjusted so that the voltage applied to LED1 via current limiting resistor R2 is just sufficient to cause D1 to glow quite brightly when the amplifier is driven into clipping.

With the amplifier driven just below the clipping threshold there is just enough voltage applied to the circuit to cause LED1 to visibly glow, although it does so at less than full brightness. If the amplifier is driven significantly below the clipping level there will be insufficient voltage fed to D1 to cause it to conduct and it will not light up.

© 1

WERSI is the first kit producing company applying the latest achievements of the space age technology. This has decisive effects on the technical and musical quality of WERSI'S electronic organs for the do-ityourselfer
The application of modern integrated circuits, so called ICs, simplifies the organ construction considerably. A single IC may replace up to 10,000 conventional electronic components.
In addition, ICs save a tot of space and they are extremely reliable devices.
WERSI, however, went a step farther yet. IC's which were not available on the open market, were developed for specific purposes by WERSI engineering. They are being produced by the most highly reputed IC manufacturers in the world. The result: economical electronic organs with the most up-to-date techniques and unsurpassed musical capabilities.

Tomorrow's Electronic Organ Kit is Here

Abstract

POSSIBLY A NEW NAME TO YOU, BUT KNOWN IN OVER 25 COUNTRIES FOR THE SUPERIOR INSTRUMENTS WHICH THIS GERMAN COMPANY PRODUCE.

> See us at 'RECRO ' 80 ', Leamington Spa, 1 st- 8 th August. It's a great day out for all the family plus the opportunity to see the whole WERSI range demonstrated live.

Without doubt the most comprehensive kits and the most up-to-date designs available today. Just consider a few of the features:

- Precision Master Generator, using MOS-LS 1.
- Integrated electronic keying in $1^{2} \mathrm{~L}$ technology.
- Unique - All switch functions are programmable.
- Even the smallest organ has drawbars in addition to fixed stops.
- Craftsman-made cabinets available in five veneers.
- Ready-made wiring harnesses eliminate errors.

WERSI MAKES DO-IT-YOURSELF CONSTRUCTION EASIER THAN EVER before at a fraction of the price of the fully assembled WERSI RANGE. GET THE FACTS NOW.

AURA SOUNDS 14-15 Royal Oak Centre, Brighton Rd., Purley, Surrey. Tel: 01-668-9733 and at 17 Upper Charter Arcade, Barnsley, W. Yorks Tel: Barnsley (0226) 5248.

'MICRON'

- FULLY BUILT,TESTED, and housed in ATTRACTIVE CASES
- 6502 based microcomputer
- VDU alpha numeric display
- Powerful monitor TANBUG
- 8K RAM
- 32 parallel I/O lines
- 2 TTL serial I/O lines
- 1 serial I/O port with RS232C, 20 mA loop and 16 programmable Baud rates
- Four 16 Bit counter timers
- 300/2400 Baud filenamed cassette interface
- Data bus buffering
- Memory mapping control
- 71 key ASCII Keyboard, including numeric keypad
- Includes power supply
- Also includes the first
* 10K MICROSOFT BASIC * available in the U.K.
- All the usual BASIC commands
- Integer and real numbers
- Integer and real arrays
- Intrinsic functions ABS,INT,RND,SGN,SIN, SQR,TAB,USR, ATN,COS,EXP,LOG,TAN.
- User defined functions
- READ and DATA statements
- Dump and load programs for cassette recorders
- Program editing command
- String function for text I/O
- BASIC can call user machine-code sub routine
- User machine-code interrupt handler interfaces with BASIC

TAMGERIME

Available soon!

TANRAM-40K Bytes on one board! 12 slot SYSTEM MOTHERBOARD, supports 277K Bytes
SERIAL \& PARALLEL I/O boards High Definition COLOUR GRAPHICS

AUDIOPHILE

Empire's new Dynamic Interface series comes under scrutiny this month and Ron Harris

 has some second thoughts on metal tape tests.

After last months highly physical encounter with the JVC AX9 and its 37 lbs of muscle rending weight, I decided to cheat the truss a little longer and return to the realm of the phono cartridge - where weight is measured in grams and a man (and his assets) can feel comfortable in their work.

A friend of mine - yes, even editors have friends - has for some time been muttering darkly about Empire cartridges being the best thing since the Big Bang. But after they managed to ignore my pleas for an EDR-9 when last I lined up the cantilevers I had all but given them up as a figment of his lurid imagination.

However, with the dawning of a new day - and the shuffling arrival of our geriatric postman - was delivered unto me a small brown parcel, containing not one but two Empire cartridges. Once more I am forced to revise my model of the Universe. Wrong again.

Having beaten off my friends grasping, avaricious little paws and refused all offers to kidnap Felicity Kendal in return for the contents of the box, I found myself confronted by the new Dynamic Interface series in the form of its 600LAC and 400TC manifestations.

Right then, into battle, SME raised against the fall of night and the howling of the wolves (i.e. neighbours).

Empire Strikes Back

These cartridges use a moving-iron principle to generate their millivolts, inherently more linear than the more common moving magnet. The top two in the range, the 600LAC and the 500 ID also employ an 'internally dampened' cantilever to overcome the mechanical h .f. resonance at around 18 kHz .

Other innovations include a cantilever composed of an Aluminium alloy with Boron deposited into it, reduced tip mass and 'two position locking' for the stylus assembly to ensure that it is correctly located.

Benefits claimed are flatter frequency response due to close control of resonance, reduced 1 M distortion, increased trackability (sorry Shure!), good hum rejection and reduced record wear. In fact everything short of the power of regeneration. Maybe that comes with next year's model.

The basic engineering concept of these cartridges differs from the 'norm' in that here the coils and magnets are fixed in place within the body, a hollow iron armature is attached to the cantilever and generates the output in the coils by moving within the field from the three magnets situated next to them.

Unusual is Empire's use of two 'front' magnets to linearise the field through the pole pieces and coils, which also act to reduce hum pickup. Field strength is effectively concentrated in the gap where the armature is in motion. Empire say this also reduces microphonics(susceptibility to outside vibration).

Inside Story

The 600LAC features the inertially dampened tuned stylus (IDTS) system, Empire's scheme to defeat h.f. resonance. This employs an assembly INSIDE the cantilever, consisting of elastomer ring and iron piecework, which provides an antiphase resonance at the critical point to produce a much flatter "twin peak" overall response around resonance.

The diagrams explain this better than any combination of letters and spaces.

Says it all better than words - Empire's IDTS system.

The 400TC pickup reclining in its box awaiting the moment of truth and the SME. All the DI range are physically similar and are distinguished by the colour of the stylus carriers. In the case of the 400 TC this is an extremely lurid red.

LAC stands for 'Large Area of Contact' and implies that lower record wear should be expected from the 600 LAC than from a normal elliptical or spherical point. Under high-power magnification a very high order of finish was revealed on our sample, confirming the manufacturer's claim of having paid special attention to stylus polish. Such care would manifest itself in better preservation of those irrepairable grooves and lower surface noise.

The 400 TC has the tapered cantilever of its more expensive brethren, and a lower tip mass than most units in this price range. The 400 TC retails at around $£ 30$ and the 600 LAC at

An exploded view of an Empire cartridge. Note the use of two small magnets ahead of the main assembly. This is to concentrate and linearise field strength in the region around the moving iron element.
about $£ 75$ - both in very competitive areas indeed. Good performance is not a bonus here, merely a basic requirement for (commercial) survival.

Packet In?

One immediate disappointment must be the presentation of the cartridges. Both arrive wedged into a block of polystyrene, along with fixing hardware and mandatory screwdriver. Outer packaging is a simple cardboard sleeve. Whilst one can applaud the avoidance of expensive trappings that do nothing to enhance performance, surely this is going a little too far - especially at the $£ 80$ or so of the 600 LAC ?

Indeed, the overall appearance of the cartridges themselves does not manifest the overtly confident engineering that one gets from something like a Shure or an Ortofon. Not that they are anything but well made - please don't go thinking that Audiophile is casting needless aspersions! The company offer a two year guarantee on all the range as proof of their confidence in the product. It is certainly not misplaced, I think.

Sound Evidence

After the measurements had been taken and the lab stool vacated for a more comfortable armchair, the 600LAC was auditioned mounted in the inevitable SME series III pickup arm - still the Rolls Royce of its field. Comparison was drawn against the Ortofon/SME 30 H and Coral MC81 (moving coil) units.

Whi stever the criteria the 600 LAC is a good cartridge. Its sound is characterised by a solid bass and a forward presentation. Treble is very well extended and smooth. Resonances are well controlled, so that damping is certainly effective audibly. The Empire works well with any type of music, but undeniably adds a certain amount of 'life' of its own that is most exciting with rock.

At times I could detect a slight 'edge' on difficult, heavily modulated passages although tracking was always impeccable and the 600LAC was never tricked into mistracking. It has a great deal of the sparkle and transparency of the best cartridges around, but loses out in the mid-range where it is a little veiled when judged absolutely. Nonetheless all hi-fi is a compromise of some sort or other, and this pickup gives away less to perfection than most. Good value, I thought.

Onto the 400 TC , which was compared against the Shure M97EJ and Coldring G900 IGC reference. In a straight A-B comparison the Empire betters the Shure, but falls short of the more refined G900 IGC. It does offer very good returns on the $£ 30$ investment required to secure its services, however.

Like the 600LAC, the sound is forward in nature and projects the music outwards from the loudspeakers. Presentation is confident with a good low frequency performance and very smooth top end. As long as speakers are chosen to complement the distinctive style this Empire would be a worthy addition to any system in the $£ 400 £ 600$ price range.

In fact the 400 TC is close enough to the 600LAC to make me wonder what place exists for the 5001D, a model that sells for $£ 45$ and sits between the two in the Empire range.

Conclusions

Overall then, two good units well placed to succeed and which should be added to shortlists for audition at the friendly neighbourhood dealers. Good features common to both were an insensitivity to surface noise, extended bass and smooth treble. Well worth a listen.

I can see Empire gathering quite a following for this new

Model	600LAC	400TC
Frequency Response Bandwidth	$6 \mathrm{~Hz}-50,000 \mathrm{~Hz}$	$7 \mathrm{~Hz}-34,000 \mathrm{~Hz}$
Frequency Response	$20 \mathrm{~Hz}-28.000 \mathrm{~Hz} \pm 13 / 4.0 \mathrm{~B}$	$20 \mathrm{~Hz}-20,000 \mathrm{~Hz} \pm 2$ O8
Tracking force Range	1 to ${ }^{2}$ grams	$3 / 4$ to 2 grams
Recommended Tracking Force	17% grams	11/a grams
Separation@200Hz	2108	20 dB
@ 1 kHz	30 dB	$28 d B$
@ 5 kHz	20 CB	20 dB
(c) 12.5 kHz	17 AB	16 dB
I.M. Distortion@3.54 cm/sec	0.1\%	0.15\%
@ $14.5 \mathrm{~cm} / \mathrm{sec}$	04\%	0.5\%
Stylus Shape and Size	LAC	$0.2 \times 0.7 \mathrm{mil}$ bi-radial
Cantilever	Boron vapored, inentially damped. tapered Aluminum alloy	Tapered Aluminum alloy
Effective Tip Mass	0.6 mg	0.6 mg
Compliance (Dynamic)	$20 \times 10^{6} \mathrm{~cm} / \mathrm{d}^{\text {y }}$ e	$20 \times 10^{6} \mathrm{~cm} / \mathrm{dyn}$ e
(Static)	$285 \times 10^{6} \mathrm{~cm} /$ dyne	$23 \times 10^{6} \mathrm{~cm} / \mathrm{dyne}$
Tracking Abrlty @ 300Hz	$17.9 \mathrm{~cm} / \mathrm{sec}$	$17.9 \mathrm{~cm} / \mathrm{sec}$
(Q) 1 kHz	$38 \mathrm{~cm} / \mathrm{sec}$	$32 \mathrm{~cm} / \mathrm{sec}$
Channel Baiance	withen 1.0 dB	within 1.0 dB
Vertical Tracking Angle	$20^{\prime \prime}$	20°
Output@ 1 kHz @ $3.54 \mathrm{~cm} / \mathrm{sec}$	40 mb	3.8 mV
Number and Tyoe of Magnets	2 Samanum Cobalt. 1 Indox V	2 Samarium Cobalt, 1 Fnoox $\overline{7}$
Load Resistance	47 k Onms	47k Ohms
Capactance	150 pF	150 pF to 400 pF (350 pF optimum)
Hum Sensituvity @ 60Hz	$034 \mu \mathrm{~V} / \mathrm{A} / \mathrm{m}$	$0.5 \mu \mathrm{~V} / \mathrm{A} / \mathrm{m}$
Total Weight	53 grams	5.3 grams
Stylus Replacement No \& Color	S600LAC (Biack)	S4007C (Red)

Frequency Fesponse Bandwidth $6 \mathrm{~Hz}-50,000 \mathrm{~Hz}$
Frequency Response
$z \pm 13 / 40 \theta$
Tracking force Range
Recommended Tracking Force $21 d B$

20 cB
$17 d B$
04%

Boron vapored, inertially damped. tapered Aluminum alloy
$20 \times 10^{6} \mathrm{~cm} / \mathrm{dyne}$
$285 \times 10^{6} \mathrm{~cm} /$ dyne
. cmisec

2 Samarum Cobatt. 1 Indox ∇
47 k Onms
$034 \mu \mathrm{~V} / \mathrm{A} / \mathrm{m}$
grams
S600LAC (Biack)

S4007C (Red)

How about this for a set of specs? Empire are certainly unafraid to lay it all out in black and white. On test no significant differences were discovered. Hum susceptibility was not tested - you'll note that they have specified this at 60 Hz . Damn colonials again is it not? Tracking weight ranges are sensibly specified and I found that the lower values worked well.
range of cartridges without too much difficulty, and I can think of no higher praise than to comment that while auditioning the 600LAC I was in no hurry to return to the familiar tones of my reference unit.

Tape Measures

Up-cock on the measurement front it seems. Many moons ago I reviewed the TCK 55 II from Sony and in doing so apparently discovered that said machine would not function to the best of its considerable ability with Sony tapes. Metal variety, anyway. Since then Sony have made a valiant effort to completely bury me in cassettes, on the principle that the one I had was a bad sample and all others will work.

After clambering out from under the little plastic boxes and clearing a space to work, I sat down to do a retest with some other examples of their metallic machinations. Lo and behold. Better frequency response and improved linearity. Suspicious editorial mind begins to dream up fiendish Japanese plots to "fix" results. Is Audiophile having its statistics interfered with?

A strong desire for impartiality, together with a fair helping of cowardice led me to pack off the TCK 55 II and all its little metal ammunition for independent testing once more. I neglected to tell the engineer concerned about the initial discrepency on a particular tape type, just to see if he'd turn it up independently. Come to think of it, those Samurai warriors polishing their swords outside my door may have slipped my mind too - still I probably imagined it

It would appear from a consideration of both our results that there ws something wrong with the tape rather than the machine, after all. That probably clears Sony Tape Recorders Ltd off my back, but enrages Sony Cassette Production 1921 Ltd, or some other suchedifice.
(Maybe it is no coincidence that everyone in my train compartment this morning was of oriental extraction and carried a long and curved thin brown paper parcel. Anyone know the Japanese for: "Me given up reviewing hi-fi, taken up knitting instead"?)

PRIME COMPONENTS LOW PRICES

SPECIAL OFFER! 4K CMOS RAM ($1 \mathrm{~K} \times 4$) 450 NS ONLY £7.95! (8 for £50)
The TC 5514P from Toshiba, CMOS equivalent of the 2114!

Full Statics 18 Peration

Tosthiba's 5 CS5 14 P (industry type 6514) is a tull static read write memory organised as 1024 words by 4 bits using CMOS technology
 supply circuit design. Three state outputs simplify memory expansion for minimum data retention voltage is 2 V . The batrety back-up
systems needs only simple corcuit Toshiba sorignal cimus techoology also means wide operating and noise margins The TC 5514 P

X-RATED CLOCK!

£19.99
casem hith ruby leat moulded
X-TRA VALUE. All the components and high quatity plated G-10 PC Boards are provided X-TRA CARE IN DESIGN No wires between readout board and clock board Large o
X.CELLENCE IN IDEAS. 5 ybars of designed products for the amateur radio market. X-CELIENCE IN INSTRUCTIONS: Clear step-by-sIep instructions with quality iflust
assembly nanual is not a read between-the-lines afterthoughtl
X-TRA FEATURES: There has never been aclock kit with so many features - at any pricel X-TRA FEATURES: Trero has never been a clock

- Unit oporates on ether 12 VAC or 12 VD
ahout power falures agan' Reads tue 24 HOUR UIME and 31 DAY CALENDAR

UFW ULTRASONIC SENDER RECEIVER KIT

TOTAL SECURITY! Completely invisible ultrasonic (23 KHZ) Sound beam works like a photoelectric beam but is unafected by light. heat or noise. Separate Transmitter and Receiver low that will sink up to 150 MA to Drive a Relay. TRIAC. atc. Complete electromics are
provided. Works on 12 VDC (unrequlated) and draws less than 100 MA . Use it for burgiar alarms, object counters, automatic door openers, automatic door balls, slectronic rat trap(?) and more.

HEM WARBLE ALAMM KiT

A fun EASY kit to assemble that emits an ear piercing to
wati duai tone seream. Resembles European siren
waind Grat PROGRAMMABLE DUAL OP sound. Great for alarms or toys. Operates from 5-12VDC \quad TRANSCONDUCTANCE AMPLIFIER five thousand have been sold. All parts including PC
board. less speaker. ONLY $£ 4.99$ P\&F $67 p+$ VAT

NEVI M1871RC ENCODER/TRANSMITTER

तEW TUNES SYNTHESIZER

 lotal of 25 tumas.

LED BAR GRAPH AND

 ANALOG METER DRIVERNew from National LM3914. Dives 10 LED directiy for making bar graphs. audio power
meters. analag meters LED OScilaiors, etc
Units can be slacked tor more LEOS A super versatie and Ituly remarkable IC Special price Only
12 page data 250 Marhing deta bar display MV5 $7164 € \mathbf{~} \mathbf{2 . 2 5}$
Data 250 Marthing
Data $25 p$

THE NEW ULN-2232A INTEGRATED MOTION DETECTOR The most SOPHISTIGATED MOTION DETECTOR available!

Two Sound Patterns
Long hange Operation
Combining 12 L and Bipolar circuitry the ULN. 2232A Motion Detector is a complex optolinear IC which includes an on-thip pholodiode. high-gain loganthmic and linear amps, extensive digitalerrcuitry for sound generation and uming,
and high-curren output drivers. Add on tive small capacitors, a speaker and power source and vou furn this staie-At the art device into a coniplete Morion Detecior sensitive to small changes in light level as a function of time
DEAILED OEVICE OESCRIPTION AND APPLICATIONS INFORMATION INCLUDED WITH EVERY ULN-2232A

ONLY E7. | ONLY $£ 7.60$ |
| :--- |

Ordering information Unless otherwise
sated for orders under E50 add 50 p p\&p. sated for orders under 550 add 50 p p\&p,
Add 15% vat to lotal All devices are brand
new. factory prime and full spec and subject direcla 150 prece orchestra but, rather a tio
microcomputer contorling a bank of AY 3 -
8910 BYTE Suly 79 new. factory prime and f
to pror sale and avatiabit

$$
\begin{aligned}
& \text { SN } 75477 \mathrm{~N} \\
& \text { TEAR10DAS }
\end{aligned}
$$

THE INCREDIGLE MEW MUSIC MACHINE K

 Minimum elephone order
ising ACESS is F 10
If ordering by post with
Access, inclued name ad-
dress and card no written

The XR2266 Decoder/Sense \& Drive Chip for toy cars that DRIVE LIKE REAL! ONLY $£ 5.45$!
This versatile 18 -pin dual in-line IC combines both the decoder and the sense and drive functions to cut remote control car circuitry by at least a factor of two! Steerıng
$\mathbf{£ 5 . 4 5 !}$

TIGTMiarn Cirruits

4 Meeting Street, Appledore, Nr. Bideford, North Devon EX39 1RY. Tel: Bideford (02372) 79507. Telex: 8953084.

x

 Wilmslow

 Wilmslow Audio

 Audio}

THE firm for speakers!

SEND 50P FOR THE WORLD'S BEST CATA. LOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC, AND DISCOUNT PRICE LIST.

AUDAX - AUDIOMASTER - BAKER - BOWERS \& WILKINS CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD DECCA - EAGLE - ELAC - EMI - FANE - GAUSS - GOODMANS HARBETH - ISOPHON - I.M.F. - JORDON - JORDAN WATTS KEF - LOWTHER - MCKENZIE - MISSION - MONITOR AUDIO MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS - SHACKMAN - STAG - TANNOY VIDEOTONE - WHARFEDALE.

WILMSLOW AUDIO

SWAN WORKS, BANK SQUARE WILMSLOW, CHESHIRE SK9 1HF

Tel. 0625-529599 FOR MAIL ORDER AND EXPORT OF DRIVE UNITS, KITS, ETC.

Tel. 0625-526213 (SWIFT OF WILMSLOW) FOR HI-FI AND COMPLETE SPEAKERS.

Concruer the chip. will revolutionise every human activity over the next ten years.

Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

HRSTE ELGDONTG LEARN THE PRACTICAL WAY

- Building an oscilloscope. - Recognition of components.
- Understanding circuit diagrams. - Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electronics.
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS. - Complete Home Study library. - Special educational MiniComputer supplied ready for use. - Self Test program exercise

- Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics. - Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

RAVEN ON

Dave Raven of Metac Electronics chats about chips that answer back and discusses display developments.

Speech synthesis and voice recognition are techniques which are rapidly changing the interface between humans and their machines. Until now we have been content to read from a visual display or listen to prerecorded non-intelligent voices which merely pass on infor mation.

Today, however, it is possible to incorporate a human voice which is not a recording and can appear intelligent by varying its responses to the inputs received from humans or data produced by a machine. If, in the past, a colleague was seen listening or talking to a car, calculator, microwave oven or television set, he would most likely be advised to visit a psychiatrist at the earliest opportunity. But now thanks to new devices and computer software technologies, behaviour such as this will become commonplace.

Speak \& Spell

The first consumer product which truly contains speech synthesis and which is on the market is Speak \& Spell, developed by Texas Instruments. Working with a pair of 128 kilobyte read-only memories and a special version of TV's TMS1000 8-bit microcomputer, the silicon chip can produce a total of 200 S of sound for a vocabulary of over 200 words. However, it is capable of accessing up to 2.1 megabytes of memory. Since the speech generator uses memory at a maximum rate of only 1200 bits per second, it could be designed to speak for as long as 30 minutes. The novelty value of Speak \& Spell does not wear off quickly as may be imagined and from the reactions of my own young children, it was a clear favourite over other electronic games they have been shown. The word games and spelling tests produced a new angle for creating an interest from children in learning and I also found it quite compulsive myself.

Prior to the breakthrough by Texas Instruments in speech synthesis, earlier products which have surfaced over the last decade have been quite cumbersome and certainly more expensive. Now, with rapid advances taking place in large scale integrated circuits - both analogue and digital - and developments in signal processing, it is realistic to expect a flood of new consumer and industrialised products entering the markets.

Vocal Chips

The techniques used to design speech synthesis circuits are split into three different methods - formant synthesis, linear predictive coding and waveform digitisation with compression. Linear predictive coding is the technique chosen by Texas Instruments for their Speak \& Spell Came. The chips which are incorporated represent an integrated circuit model of the vocal tract. Basic to the model is the linear predictive coding technique (LPC) which provides feedback values or coefficients for a digital lattice filter on the synthesiser chip. This linear filter mimics the major resonant modes of the vocal cavity in the human vocal tract. A microprocessor then performs the calculations to derive the filter coefficients. The third chip is a word-storage read-only memory that holds the speech parts broken into four parameters - voicing, pitch, amplitude and frequency. From this information a complex software algorithm manipulates the sound parameters to create the speech synthesis.

Swings And Roundabouts

There are advantages and disadvantages with each of the three speech synthesis techniques mentioned here since they can vary considerably in the quality of speech provided, the amount of data required to achieve acceptable quality and the cost of memory for storing speech data. The technique that is normally chosen depends upon the application for which it is required.

Products using formant synthesis are currently being included in a number of hobbyist computers, among them the TRS80 home computer and PET, as well as in medical and business applications.

During recent years probably one of the most misunderstood pieces of consumer electronic technology has been the liquid crystal display. I well remember an article appearing in ETI which quoted some very out of date information on the life of liquid crystal displays (LCD), and for years after, I experienced worried customers quoting this article back to me about the unreliable life-time of the display.

Fig.1. A block diagram showing the elements of a speech synthesiser chíp.

They were of course referring to displays which appeared back in history during the very early seventies and it has been my experience that the LCD is probably one of the most reliable display forms currently available. I stuck my neck out in 1976 in an article published in ETI predicting that LCD would win the day over LED, (Light Emitting Diode) remember, and I propounded the reliability of this technique back in those dark days. Well, they say that the good always win and there is little doubt that LCDs have stood the test of time.

Physical Contact

Recent advances in the synthesis (that word keeps appearing this month) of new liquid crystalline materials have made it possible to manufacture plastic sealed LCDs having very long operating lives. This new technique permits economical production of large area displays and at the same time improves the performance of multiplexed addressing. Thus, these new displays are capable of handling an ever-increasing amount of information in alphanumeric or quasi-analogue form. One of the major problems facing designers in their attempts to increase the amount of information which can be displayed, is how to make physical contact with each segment of the display. This is also a problem for chip designers who are restricted by the amount of space for lead-outs. One solution which is getting around this difficulty is by reducing the number of outside contacts to a display, especially when the display has more than 40 separately addressable segments. This can be achieved by means of a technique known as time-multiplexed addressing, in which appropriate segments are connected together to form a group and are sequentially addressed by means of a

Fig.2. The principle of time-multiplexed operation. The selection interval for each digit, $\mathbf{Z 1}$ to $\mathbf{Z N}$, is cyclically repeated at intervals of T. Only the driving signal for segment G is shown.
rear electrode consisting of several parts. Direct addressing of the LCD is presently employed in most watches and other measuring instruments which means there is a direct connection between each display element and a corresponding contact in the driving electronics, which is usually an integrated circuit. this addressing technique, whilst resulting in lots of connections, does have its advantages, since it affords much more freedom with respect to driving voltages and operating temperatures than do other addressing systems. For a directly addressing display it is easy to increase the driving voltage to obtain a display which is readable over a wide range of viewing angles.

ETI

TEXAS/HP Accessories available
TEXAS T158 (Kard prog 960 prog steps of 100 mem)
*TEXAS PC 100C (Printing Unit for T158/159) $£ 156.50$
680.00

- $\quad \mathrm{E165.00}$	tTEXAS T157 (Key Prog 8 mem. 150 Keystrokes/50 Prog Steps)
for your Texas T158/59 Calculator	
ELECTRICAL ENG. MODULE	
LEISURE (GAMES) MODULE	LEISURE (GAMES) MODULE

STRUCTURAL ENG MODUL STRUCTURAL ENG, MODULE
NOW AVAHABLE
*TEXAS TI PROGRAMMER (Hexadecimal Oct) *TEXAS T $15 \uparrow$ /iii (10 mem 32 Prog Steps Stat / Sci)
TEXAS T 150 LCD (Sci/Stat. 2 Con Mems)
TEXAS T 150 LCD (Sci/Stat. 2
TEXAS T125 LCD (Sci/Stats)
$\begin{array}{ll}\text { TEXAS T125 LCD (Sci/Stats) } & \mathbf{£ 2 3 . 0 0} \\ \text { TEXAS T53 (Sci, } 32 \text { Prog Steps-Coa Mem + 80 Prog List Applications book) } & \mathbf{£ 2 5 . 0 0}\end{array}$
Make more of your
MATH/UTILITIES MODULE
If you write your own programs this librery is for you! Most programs in this library are designed to be used either on their own or as subroutines of your programs. Applications range from utility programs such as printer formatting and large-scale plotting to advanced mathematical routines.

Module includes
Prompler. Apha Meesages. Printer Fomatting. Superplotter. Sorting. Data Arrays. Data Packing. Prime Factors. Hyporbolic Functions. Gamma/ Factoria. Rendom Numbers. Normal Distribution. Interpolation. Roots of a Function. Minimax. Romberg Integration. Difforential Equationa. Diecrete

Fourier Serien Catculator 8 tatus. Variable Arithmetic. Module Check. *TEXAS T158 with Maths/Utilities

- TEXAS T159 with Maths/Utilities £90.00
E 188.50
*TEXAS T158 with Applied Statistics.
\#TEXAS T159 with PC 100 C \& Applied Statistics
$\mathbf{8 8 0 . 0 0}$
$\mathbf{£ 3 2 5 . 0 0}$

SUMMER SALE *TEXAS T159 Calculator (complete as manufacturer's spec mas charger. etc). PLUS statistics module and extra set of 40 Blank Prog wallet, etc. ONLY E180	ter module. Cards with
NEW TEXAS T158C*	
*Continuous program facility on all 480 Program steps / 60 mem	even when
calculator switched off	£79.50
tTEXAS T158C (complete plus Applied Stats. Module)	699.00
*TEXAS T158C + PC100C	£228.00

 2

Fits all 12 v negarive earth. vohiclest with coil/distributor ignifor: ix to 8 cylinders.

\therefore, F Kil:

 inclutiend

Roger Clark the world famous rally driver says" Sparkrite electronicignition systems are the best you can buy.

Electronics Design Associates, Dept ETI/9 82 Bath Street, Walsall, WS1 3DE Phone (0922) 614791

I enclose cheque: PO's tor

 ECheque No.
Send SAE "t brochure only required.

QUESTION?

1. Is your hobby home computing or electronics?
2. Do you understand the application of IC's, Transistors, Diodes, etc?
3. Have you used or applied analogue or digital techniques?
4. Are you applying TTL Logic to your home computer?
5. Are you programming your home computer using simple software techniques?
If the answer is YES to any of these questions then why not consider turning your hobby into a career - applying your knowledge to servicing electronic equipment ranging from basic terminals and data processing machines through to advanced micro-processor systems.
We will train you through to advanced technology at the company training school, fitting the individual in at their own level.
We have vacancies over the whole of the U.K. especially in the London area, with the successful applicants working from home, usually in a radius of no more than 60-70 miles.
We supply all tools and test equipment, plus a company car which is available for private use.
If you are interested, then why not contact Mr. C. Marklew on 0249813771 to discuss your own career oppor tunities in confidence, or write to:

KODE SERVICES LIMITED
 Station Road, Calne, Wiltshire

HRWh Interlocking Touch Switch Systems

Here is the 4 channel system complete: showing the fromt panal, the circuitry, and the ribbon cable connecting the two

Have you ever made a quality project. for which you needed interlocking switches, but all that was available was an unreliable. unsightly and electrically noisy mechanical
switch? switch?
You can now get an olectronic switch, touch-opersted, with L.E.D. displays to indicate which channel has been selected, and incorporating totally reliable solid state relays
to perform the switching. There are three options available: 2 channel; 4 channel: and 6 channel. On each channel there are 2 sets of relay contacts acting in parallel, so that stereo signals may be switched - tor example, when selecting between the tuner,
deck, tape or auxiliary inputs to an amplifier deck, tape, or auxiliary inputs to an amplifier
using the 4 channel unit. using the 4 channel unit.

The units are supplied as easy to assemble kits, every kit containing:-
\star ALL the necessary components, including a high quality p.c.b. and I.C. sockets

* An attractive ready assembled front panel - comprising wipe clean stainless steel touch plates on a heat resistant white plastic base. which is pre-drilled for easy mounting on the front panel of your project: complete with
* LEDs above each switch plate to indicate which channel has been selected (the brightness of these may be adjusted)
* Complete easy to follow assembly instructions
* Compiete easy to follow as
* Full

Some of the special features are:-

* Operation from a single supply rail, from $3 \mathrm{~V} \cdot 18 \mathrm{~V}$
* Current consumption only 20 mA
* It is IMPOSSIBLE to switch on more than one charmel at a time - it more than one switch plate is touched etther none or only one channel will be selected
EXTREMELY long lite - far tonger than that of mechanical switches
*The HAWKTM range are the ONLY interlocking touch switch systems that the home enthusiast can buy as complete systems
Please note the solid state relays used are C.M.O.S. 4016 and the limits of these devices must be observed
Please send to M . : at (address)
Number 2 channel unts @ £3.99 ea
Number.. A channel units @ $£ 599$ ea. P/P per
Number 6 channel units @ £7. 99 ea
Total semittance enclosed
Cheque/P.O. No
OR Please send me the technical information only (enctose sa.e.)
\square tuck box
ODUE ELECTROMICS
4A Harcourt Road, Redland, Bristol BS6 7RG

Multi-function watch and stop-watch timer ONLY £20.95 (+ p\&p) with FREE Slimline 'Credit Card' Calculator (our usual price $£ 7.95$) TRADE DISCOUNT
Trade discount is available for quantity orders of the Quartz Timer only. Prices are:

$5-10$	11-15	$\mathbf{1 6 - 5 0}$
£ 13.95	£ 13.10	$£ 12.65$

Prices are exclusive of VAT (15\%) which should be added. Post and packing for all trade orders is $£ 1.50$, which includes insurance.

MITRAD CHRONO

Unique neckband/lapel/pocket watch and timer with large easy-to-read liquid crystal display 1. WATCH

Shows the time in hours, minutes and seconds. Press a button and it shows the day, date and month 2. TIMER

Accurate to $1 / 180$ th second stop-watch function. Shows elapsed time in hours, minutes, seconds and $1 / 100$ ths of seconds. Also records lap times in the middle of timing the overall event. Maximum capacity 24 hrs
Overall dimensions of the timer are approximately $3^{1 / 8} \times 2^{3 / 9} \times 1 / 16 \ln (79 \times 66 \times$ 17 mm) so that it fits comfortably into the palm of the hand with the lap/reset and start/stop push buttons perfectly positioned tor operation by thumb and forefinger. In tough, impact resistant, black case.
GUARANTEED. MONEY BACK IF NOT DELIGHTED The Mitrad Chrono Quartz Timer is fully guaranteed for 1 year. And if you are not completely satisfied, just send it back within 10 days and we'll refund your money. Instructions for use included.

SLIMLINE 'CREDIT CARD' CALCULATOR Hardly any bigger than an ordinary credit card. Has liquid arystal display; addition, subtraction, multiplication, division, square root and memory facilities.

Please do not use the coupon for trade orders.
 MITRAD Chrono Quartz Timer
Total value of my order $£$
| enclose my cheque/postal order
Or debir my Access Card No.
SIGNATURE \qquad
\qquad
NAME ($\mathrm{Mr} / \mathrm{Mrs} / \mathrm{Ms}$)
ADDRESS

DESIGNER'S
 NOTEBOOK

ETI project editor Ray Marston devotes this month's 'Notebook' to the rather unglamorous but vital subject of passive attenuators.

0ne of the most important types of artillery in the design engineer's armoury of 'vital weapons' is the apparently simple passive circuit known as the 'attenuator'. Naturally, these apparently simple weapons are full of nasty little surprises and have a tendency to explode in the face of the unwary designer. This month's 'Notebook' is devoted to a brief discussion of the subject.

Attenuators

Attenuators are used to reduce an awkward value input or output signal to a lower and more convenient level. The simplest example of a practical attenuator is the 'pot' circuit of Fig.1, which may be used as a volume control in an audio system or as an output level control in a simple audio generator, etc.

The input signal to the pot attenuator is connected across the total resistance chain and the output is taken from the pot slider. Note that the pot effectively comprises an upper (R1) and a lower (R2) resistive arm, thus forming a basic 'L'-type attenuator and that the degree of attenuation is determined by the ratio of lower arm resistance divided by the total resistance.

The precise amount of attenuation provided by a pot is generally of little importance and the control is usually left uncalibrated. If a precise amount of attenuation is required, a simple switched potential divider network of the type shown in Fig. 2 may be used. It is important to note, however, that this circuit is designed to feed into an infinite impedance, or at least one that is very large compared to the total resistance of the divider chain.

Fig. 1 A simple 'pot' attenuator, as used for a volume control or an urcalibrated output level control (left) is a common version of the ' \mathbf{I} ' attenuator (right).

Design Tips

The first step in designing an attenuator of the Fig. 2 type is to decide what its input impedance or total resistance is to be. Next, the values of the individual resistors are determined. Here the design is carried out in a simple sequence of logical steps, there being as many steps as there are attenuator switched positions. In each of these steps, the circuit is considered to consist of an upper and a lower half only. An example will help clarify matters.

Assume (as in our example) that the total resistance is to be 10 k and that two attenuation positions (excluding unity) are required and are $\div 10$ and $\div 100$. The values for the greatest amount of attenuation are always determined first, so for $\div 100$ the lowest arm must contain $1 / 100$ th of the total resistance, or 100R. This gives the value for R3 and leaves the remaining 9900 R in the 'upper' ($\mathrm{R} 1+\mathrm{R} 2$) arm.

The values for the $\div 10$ position are next calculated and it is found that 1 kO is needed for the 'lower' arm. In this case, however, the 'lower' arm consists of R2 + R3, but as R3 is already known to be 100R, R2 must be $1 \mathrm{k0} 0-100 \mathrm{R}=900 \mathrm{R}$. The upper arm, R1, must obviously contain the remaining 9 kO of the 10 k chain.

This simple design procedure may be expanded up to give as many attenuator steps as are required for a particular application.

Fig. 2 The method of designing this simple switched attenuator is explained in the text.

It should be noted that the simple attenuator circuit of Fig. 2 is only accurate at low frequencies or when moderately low values of resistance are used. At high frequencies, stray capacitance will shunt the values of all resistors and may significantly reduce their values and thus the accuracy of the attenuator. This effect is particularly acute when high value resistors are used: a mere 2 pF of stray capacitance represents a reactance of about 800 k at 100 kHz and will have a very significant shunting effect on any resistor with a value greater than a few tens of kilohms.

Compensation

This problem can readily be overcome by shunting all resistors with correctly chosen values of capacitance, as shown in Fig. 3.

Here, each resistor of the chain is shunted with a fixed capacitor, the reactance values of capacitance being in the same ratios' as the resistive arms of the attenuator. The highest reactance (smallest capacitance) is connected to the largest resistor and typically has a value in the range 15 to 50 pF , the value being large enough to 'swamp' strays but small enough to present an acceptably high impedance to input signals.

This 'compensated' type of attenuator is invariably used in 'scopes and various other types of high freqency test gear, as shown in the typical circuits of Figs. 4 and 5. Once again, note that the compensated attenuator is intended to feed into a high impedance load.

Fig. 3 A method of providing frequency compensation (to give a wide frequency response) to a simple attenuator network.

Pot Pitfalls

At this point in our discussion it may have dawned on you that, because of the effects of stray capacitance, there can be certain pitfalls in using pots in some types of circuit. Suppose, for example, that you have designed an audio amplifier with a beautifully flat frequency response but have, in a moment of madness, fitted it with a 500 k volume control. You will (hopefully) not be unduly surprised to consequently find that, at low volume settings, stray capacitance of a few picofarads across the upper arm of the pot causes the amplifiers treble response to be boosted by several dB at 12 kHz or so!

Again, suppose that you have disigned a superb LF sine/square generator which produces square waves with rise and fall times of a mere 50 nS or so, but have fitted the beast with a simple 10k pot as an output level control. Naturally, you will not be surprised to find that the few picofarads of strays across the upper arm of the pot acts as a reactance of only a couple of thousand ohms to your fast rise and fall time signals and consequently causes your square waves to appear incredibly 'spiky' at low amplitude settings.

Both of the above problems can be solved or minimised by using pots with sensible low resistance values, bearing in mind the effects of strays at the operating frequencies in question.

Fig. 4 Section of a typical 'scope ' \mathbf{Y} ' amplifier attenuator.

Matched-Resistance

Attenuators

Often, an attenuator is needed to feed into and/or from a fixed load of some kind, in which case the simple potential divider types of circuit discussed above are of little use. Instead, one of the many versions of the so-called matchedresistance attenuator must be used. Two of the most popular attenuators of this type are shown in Fig.6, together with their basic design formulae. Note that these formulae are valid only when the attenuators are correctly terminated at each end.

The ' T '-type attenuator is a perfectly simple design and several sections can readily be cascaded to form variable attenuator networks, as shown in the practical circuit of Fig.7. Here, the attenuation can be varied from 0 dB to 60 dB in 20 dB steps by switching individual sections into or out-of the circuit.

The π attenuator sections cannot be directly cascaded, as is made clear in Fig.8. Nevertheless, sections can be cascaded in modified form to produce a laddered attenuator network, the most popular of all attenuator types.

Looking at Fig.8, you can see that if three individual π sections are wired in cascade (Fig.8a) their adjacent R2 sections connect in parallel to give an impedance of $\mathrm{P} / 2$ (Fig.8b) while the two R2 end sections have impedances of P. If an external load, RL., is simply switched to the different outputs of the cascaded π attenuator sections (Fig.8c) the load will clearly see impedances of roughly half of the correct value and so be severely mismatched. To put things right, the formula for the component values of the ladder network of Fig.8c are re-jigged as shown.

The ladder attenuator of Fig. 8 c is very widely used in AF and RF signal generators. Figure 9 shows the practical circuit of a fully variable 600R attenuator that can be used in sine/square generators, etc. The odd resistor values (correct within 2%) can be made up by wiring pairs of resistors in series or parallel.

Fig. 6 Two popular types of matched-resistance attenuator.

$$
R 1=R\left(\frac{n^{2}-1}{2 n}\right) \quad R 2=R\left(\frac{n+1}{n-1}\right)
$$

Fig. 7 Three identical 20 dB 600 R ' T ' attenuators cascaded to make a $0-60 \mathrm{~dB}$ switched attenuator unit.

Fig. 8 The ladder attenuator (c) is a development of the basic π attenuator (a and b).

Fig. 9 Practical 600R output attenuator network for a modern sine/square generator. RV1 gives fine control. SW2 gives coarse control.

Semi professional or professional available from stock.

Monitor PCB's including Transformers and Tubes also in stock.

Phone or write for details.

CROFTON ELECTRONICS

Crofton Electronics Limited 35 Grosvenor Road, Twickenham, Middx. Tel:01891 1513

HAND HELD GAMES

Supersonic Mastermind Galaxy Invaders Mattel Soccer ENTERPRISE 4 in 1 3 Games and calculator in one Electronic Mastermind U.F. O Master Blaster Amaze-A-Tron maze game Touch Me by ATARI (like Simo Football (two players) ZAP missile game "DIGITS (like Mastermind) EXCEPT

The latest from the U.S.A.

PINBALL WIZARD

* Still available *

Featured in Nov. issue of E.T Home TV Game - B:W Kit Basic Kit $\mathbf{£ 2 8 . 9 0}$
Contains everything except box and conBox \& Controls - $\mathbf{6 6 . 5 0}$. Mams Adaptor $-£ 3.90$
Play 7 games with 4 options on each 4ame
Versatule car alarmkit $\quad \mathbf{1 8 . 9 0}$ Versatile car alarm kit
See review in Hobby Electionics In Hobby
November
CHROMA CHIME 24 tune door chimes kit £10.75 Built $£ 15.95$

COMPUTERS - Home,

 Business etc.PET 8
£458.85 PET 16K 2458.85 SORCERER $16 K$ E85135
 SORCERER 32K 185 SUPERBOARD \| $4 K$ ع.180.00 UK 101 Kit 4K Built 4 K
TRS80 Level 216 K 51/4" Floppy Drive Dual Drive NASCOM 2 Kit HEATH WH89 HEATH WH 14 Printer Sotty Kit $£ 226.85$
CHESSMATE 8 Level NEW $£ 59.95$ CHESS CHALLENGER 7 $\mathbf{£ 9 9 . 0 0}$
CHESS CHALLENGER 10 £180.00
VOICE CHALLENGER £219.00
CHECKER CHALIENGER 2 .. $£ 54.00$
CHECKER CHALLENGER 4

E90.00

ZODIAC Astrology Computer
NEW £29.95
f 14.90
$£ 139.90$
$\begin{array}{lr}\text { EL-MAC 5MHz Scope } & \mathbf{£ 1 3 9 . 9 0} \\ \text { RADAT 10MHz Scope } & £ 169.00\end{array}$

Intelligent EPROM Programm
Sharp Sofiware
PRINTE..: DISCS : BOOKS
S.a.e. Enquirias. Please allow up to 21 days for delivery. All prices inc. of UAT.

 Build the Practical Electronics handheld DMM. This superb product offers professional precision with extended battery life. Five function operation (AC and DC VOLTS, AC and DC CURRENT, RESISTANCE) with ability to check diodes. $0.5^{\prime \prime}$ LCD display with 'Battery Low' warning. Auto-polarity, Auto-zero. Full protection against transients and overloads with ability to withstand mains on any range. 0.5% basic DC accuracy and 15 different ranges. It measures AC/DC voltages from 0.1 mV to 500 V . AC/DC current from $0.1 \mu \mathrm{~A}$ to 2 A . Resistance from 0.1Ω to $2 M \Omega$. 200 hour battery life.
 The Kit contains all parts needed to construct the multimeter plus assembly instructions, battery and test leads.
 We also offer a calibration service

 ($£ 5.00+$ VAT) and a trouble-shooting and calibration service ($£ 7.50$ + VAT). Various other component parts are also available as listed.The multimeter is also available fully assembled and calibrated at a cost of £39.70 + P\&P + VAT.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Basildon. Essex. Telephone No: Basildon (0268) 727383.

TECH TIPS

Car Radio Suppressor
 L. Marks, Lancs.

This circuit will suppress mains-borne interference every time the car drives over a buried power line. It may also be used for suppressing ignition HT by a modification to the following equation:

$$
\mathrm{fc}=\frac{1}{2 \pi \mathrm{R} 1 \mathrm{C} 1}
$$

whereR1 $=1 / 2$ R2, $C 1=1 / 2 C 2$.
The circuit works as a band reject notch filter.

VLF Ramp Generator C. Malloy, Whitby.

I_{t} is always satisfying to exploit the otherwise unwanted property of a device - the reverse bias current of a leaky germanium diode, in this circuit. This reverse saturation current is typically a few microamps for the OA90 and is relatively constant over 2-10 V. This constant current is used to linearly charge the capacitor in the relaxation oscillator built around the 741 .

When the diode becomes forward biased the capacitor is rapidly discharged by the limited output current of the op-amp. Frequencies below 0.01 Hz are possible, though measures may have to be taken to improve the linearity of the ramp.

PR1 allows some degree of DC offset of the ramp and the source follower (Q1) reduces the loading on the capacitor which tends to degrade the ramp's linearity. For the same reason tantalum (ie low leakage) types should be used for large values of C3. Linearity can be further improved by the use of a FET input op-amp such as the 3140 .

The frequency can be made variable by using the FET constant current generator shown in Fig. 2, which should replace the diode, D1. With RV1 at 100 k the current will be about 30 uA and roughly inversely proportional to RV1. This constant current generator needs a voltage of about 3 V to function well. This may require an increased power supply. However, the resulting linearity is excellent, especially with the suggested FET input op-amp.

Parametric Equaliser
 C.E. Read, Norwich

The parametric equaliser offers six bands of tone control separated by an octave in frequency, each frequency band being selected by the six position rotary switch.

Potentiometer RV1 permits the selected frequency band to be boosted or cut by 12 dB . The filter is particularly ideal for use with a guitar to modify and enhance the tonal qualities of the instrument.

For example, the 500 Hz setting with cut gives a hollow funky sound, whilst the 500 Hz setting with boost gives an overdriven valve amplifier, the raunchy sound favoured by many rock guitarists, but without the unpleasant muddy, harsh should resulting from boosting the entire audio frequency spectrum.

	FREQ (Hz)	C2 (pF)	C3 (pF)
a	125	47000	4700
b	250	22000	2200
c	500	12000	1200
d	$1 k$	5600	560
e	$2 k$	2700	270
f	$4 k$	1500	150

PCBs From Film

1. Parker, Bath.

There is no doubt that the most professional method to produce printed circuit artwork is by the photographic method. Unfortunately this involves the use of expensive cameras and complex enlarging systems.

However, the amateur can use this simple cheap method that produces equally good results.

Take the printed circuit artwork (from the back of ETI) to a commercial
printers and ask them to make an overhead transparency copy of it. This looks like an ordinary photocopy but instead of being printed onto paper the image appears on transparent film. Lay this on top of a piece of presensitised PCB (obtainable from most electronic retailers), use bulldog clips or adhesive tape to make sure of good contact. Then expose to sunlight for about half an hour, spray the board with the developer (following instructions carefully) and then etch the board in a normal solution of Ferric Chloride.

Burglar Alarm
 P.N. Durrant, Chester.

The original circuit was developed as a car burglar alarm, but it could be used as a digital combination lock or, with slight modifications removing counter 2 - a home burglar alarm.

A suitable 4 or 5 digit code is selected and, via a BCD switch wired to the appropriate latches of the 74118. Unused numbers commoned to the reset latch. Switch common is earthed through a pushbutton. Each is selected and entered by pressing the "enter" button. An incorrect number resets the latch. If the code is right then the unit is all reset and the relay is pulled in. The alarm is now disarmed.

If the code latch is reset a " 0 " appears at point A, counter 1 starts to count until it reaches eight, which sets the first RS latch, arming the
detector latch
A digital " 0 " from the detector switches resets the latch and starts counter 2 , which allows a set time to elapse before RLA drops out and the alarm sounds.

Since originally designed for cars without external reset, the final delay was included to allow the owner to enter and reset before the alarm was activated. Therefore the oscillator is set to the fastest time the code can be set.

To arm the unit a noncode number is set in. This leaves enough time to leave the car before the unit is armed. I used an illuminated pushbutton and connected it to show when the counter had reached its reset point. This also has the advantage of showing the thief that your system is all go,

The power supply must be quite heavily smoothed as the unit was found to be quite sensitive to the noise found in car electrics. The coding switch was a thumbwheel type, since it fitted the holes already in the vehicle it was designed to be used in. A touch type keyboard could be substituted, but an enter button must also be fitted.

The whole unit can be built using CMOS, especially if it is required to run from a separate supply from the main battery. The relay is a reed type holding in a larger multicontact relay with its many enabling and disabling uses in a car. it will also operate many anti-theft devices in the home. A slow code input and 5 S clock acts as a reaction timer, which could be embarrassing after a "liquid lunch".

HOME
Steam train and whistle (80019). Simulates the sound on steam and whistle
Clap switch $\langle 79$ E8.80 Elekdoorbell (79095) Program your own signature

Touch dimme
single touch
TV sound modulator (9925) $£ 3.75$
Simple sound effects (79077)
Electronic nuisance (80016)
Ultrasonic transmitter (audio) (79510)
Ultrasonic recelver (audio) (79511)
D. J killer (79505)

Quiz master (79033)
Variable fuzz-box (9984)
loniser (9823). Produces a high concentration of
Oscillographics E9.55 Oscillographics (9979). Random displays patterns on
Cackling egilloscope 19985) Times your egg then Cackling egg timer (9985). Times your egg, then Pools forecaster (79053) Weighs up the odds and
could win you a fortune $\mathbf{E 8 . 1 5}$ signal without direct connection \ldots... 11.50
Sensitive lightmeter (9886). Light measurement
using silicon photodiode $£ 12.55$
Nicad charger (79024). Automatically prevents over
Proximity of cells (9974) Detects movement in room (electric field change) $£ 9.80$ Central alarm (9950). Master station slave station
$£ 10.85$
$£ 3.10$
 Touch tuning FM preselect unit (79519), Withen Talk funny (80052). Deliberate electronic distontion of speech and music signals using a single IC, the Colour generator (80027). Using coloured light for an effective display $£ 19.70$
Pools predictor (79053).
E8. 15

HIGH FREQUENCIES

Aerial amplifier (80022). Improves the sensitivity of an existing receiver specify VHF /UHF an existing receiver specify VHF/UHF
UHF/VHF modulator (9976). Generates a carrier for TV signals $\mathbf{E 6 . 2 5}$ Mini shortwave receiver (9920). Interesting introducFM IF strip (78087). Using the CA 3189 limiter demodulator iC Stereo decoder (79082). Compatible with the FM IF
 Digital tuning scale (80021) A sophisticated digital frequency indication E46.30
Ohm aerial ($800761+2$) A practical shortwave aerial for $1.8-\mathbf{3 0 M H z}$.. £10.30

Chorosynth (80060). A cheap mini-synthestzer Elektor vocoder (80060) The first vocoder designed to be built from a kit with excellent features. It has 10 channels 162.50 Front panels for vocoder per channel ... $£ 1.25$ Analog reverberation unit (9973). Kit with 1 SAD 1024 Piano. Excellent kit of an electronic piano with three voices. Master tone oscillator/generator Octave PCB (9914
Filter PCB (998)
Power supply (9979)
£37.00 $\mathrm{E18.75}$ $£ 18.50$
$£ 19.05$ Fower supply (997) 58720 Digital reverberation unit main board £67.20
Extension boards

NEW - NEW

* Battery protection (80109). Forgetting to turn off the headlights need no longer be a motorist's nightmare. This project is designed to montior the battery voltage and switch off the lights automatically in all kinds of motor vehicles $£ 5.15$
\star Transietor ignition (80084). A system which combines the mosi significant advantages of other systems including the conventional system!
* Intelligent wiper deley (80088). This wiper delay only needs to be told once what is required of it It will theqn carry out your orders until you change them, which you car at any time. instantly $£ 15.85$
* Active car aerial (80018-1 + 2). If there is one place to use a good aerial it is in a car . E13.85
* Stop thiefl (80097). There are all sorts of systems for protecting cars, but this one is unusual: it is deception, rather than protection
\star Battery voltage indicator (80101). Only a few components are needed to obtain an optional indication of the battery condition: a single lamp that changes colour as the battery goes into the danger area
\star Pest Pester (80130). An electronic insect repellant. Confuses mosquitos with high pitch tone
\star Morse Trainer (80072). Can be preset to generate the morse alphabet for tuition purposes. Morse key required
£11.00
* Luxury Transistor Tester (80077). Not only checks that the device is functional but displays HFE group ©15.54

NEW CATALOGUE

Send 40 p for our new catalogue giving details of our project packs and component range

MEASURING
Digital thermometer (80045) LCD display (supplied without relay) E28.95
environment
Spot sinewave generator (9948). Programmable
Spot sinewave generator (9948)\% THD £12.95
Simple function generator (9453). Sine, square and
Simple function generator (9453). Sine, square and
sawtooth outputs
Sinewave generator (79019). Always sinewaves
Sinewave generator (79019). Always sinew you need them
when
TV scope basic version (99681/5). Produces display
up to 1 KHz on TV
TV scope advanced version (9969 1/3). Convens
basic scope to 100 KHz bandwidth $\mathbf{E 4 8 . 2 5}$
Digiscope (9926) 32.35
Digifarad (79088). A digital capacitance meter with a
wide range
Gate dipper (79514). Checks the resonant frequency
of a circuitE16.00

AUDIO
Equaliser (9832). Single channel audio equaliser with slidepots
Consonant (9945). A complete audio control pream-
plifier 5
plifier
Toppreamp (80031). Mini preamplifier for Topamp or
any other Hi-Fi poweramp … $\mathbb{E 3 4 . 3 0}$
Topamp (80023). Hybrid audio power amplifier with
OM 931 (output 30 watt) …....... 818.50
with OM 961 (output 60 watt) $\mathbf{E 3 3 . 4 0}$
Stentor (79070). A portable amplifier ideally suited
for PA
Assistentor (79071). A preamp for use with Stentor
Elektornado (9874) A 2×50 watt or single
100 watt power amplifier $\times 50$ watt or single
Electret microphone preamp (9866) Compact design
$£ 4.85$
that fits jnto the mike

HOW TO ORDER

Send a cheque or postal order to DOAAM ELECTRONICS LTD., Fitrroy Houee, Market Place, Swaffham, Norfolk, PE37 70H. All our prices include VA T. Please add 40 p for postage and packing.
Office hours Monday-Friday, 9 a.m, to 5 p m
Telephone Swaftham $(0760) 21627$. Telex 8179.12.

AT BLINKIN' LAST! COLOURBOARD II
 THE NEW 50hZ COLOUR VERSION OF OHIO SCIENTIFIC'S SUPER-

 BOARD II IS HERE AND LIKE A TON OF BRICKS DOWN CRASHES THE PRICE OF STANDARD SUPERBOARD II.

OHZ UK BLACK AND

BOARD II

£159.95 + $\mathbf{1 5} \%$ VAT POST FREE COLOURBOARO II £205 + $\mathbf{1 5} \%$ VAT

THE UNIQUE SPECIAL OFFER YOU CAN'T RESIST $\star \star \star \star \star \star+\star \star \star \star$ $* \begin{aligned} & \text { If bought with supetboard or colour } \\ & \text { board these hems are al the reduced }\end{aligned}$ - prices shown first Also sold separately - Modulator and power supply kits 7.95 .
 * (E15). Super Print 800 MST printer E399 (E399). Colour conversion
board for Superboard II $£ 45($ (E45). 푸푸푸푼
 WE CAN CONVERT YOUR SUPERBOARD TO COLOURBOARD, SEND A SAE FOR DETAILS

PEM200 £61.95, case £2.07, adaptor $£ 4.20$, con
 £6.\&. PDM35 £34.23. Mains zdaptor £4.20, case
£2.07. DM 350 £78.70. DM450 £102.17, DM 235 555.E5. Accessories tor all 3 models:- rechargeable batlerios $\mathbf{E 7 . 8 9}$, mains adaptor/charger C.4.20, case E8.00. Enterprise prog calculator E19.95. New SC 110 10 MHz oscilloscope E144.95. TG 105
¢87. Bench frequency counter $£ 150$.

COMPUTER GAMES

New Sensory Choss Challenger 8 £100. Chess chalIenger 7 (illustated) E 75 . Chess champion 6 E49.95. Checker chalianger $2 £ 39$. Star Chess $£ 62$. Grandstand
video entertainment computar $£ 79.95$. Videocart $\mathbf{~} \mathbf{1 2 . 6 0}$. Phillips $G 7000$ Vider $£ 79.95$. Videocarts f139. Video paks $£ 12.85$. Atari Videocomputer $£ 129$ £139. Video paks £12.85. Atari Videocomputer £129. Cartridges $£ 14.85$
gammon $£ 33.95$).

SWANLEY ELECTRONICS

Dapt. ETI, 32 Gokdsel Rond. Swanlay, Kent bra Bez. add 35p postage. Prices includa VAT unless stated. List
customers deduct 13%. Ofticial credit orders weicome

TV GAMES
AY-3.8500 chio
$£ 3.00$. Kit $£ 4.26$. Stunt cycle AY. 3 . 8760 chip $£ 0.14$, kit C4.95. paddle 2 Ar. 3.8600 chip £5.25, kit
E7.03. Moditied shoot kit E5.28. Col our generator kit

MAINS TRANSFDRMERS

$6-0-6 \mathrm{~V} 100 \mathrm{ma} 80 \mathrm{p}, 1 / 10 \mathrm{ED} .60 .9 .09 \mathrm{~V} 75 \mathrm{ma}$

JC12 and JC20 ANPLIFIERS
Integrated crircuit audio amplifier chips with data
and printed circuits. JC12 6 watts $\mathbf{£ 2 . 0 8}$. JC20 to wats $£ 3.54$.

CDNTINENTAL SPECIALITIES

PRDDUETS
EXP300 E8.61. EXP350 €3.82. EXP325 £1.84
TABILIZE POWER RITS
The first price is for kit without uranstormer, the brackeled price includes transtormer TTL.

 E3.30 (E6.75), 1-30V $24 \mathrm{E5} .60$ (E 12.10).

PRINTED CIRCUIT MATERIALS
PC etching kits:- etonomy £2.42, standard f4.76. 40 sq ins pcb 45 p . 1 it FeCl $\mathbf{E 1 . 5 0}$. Etch resist pens - econorny $\mathbf{5 0 p}$. dalo 84p. Drit bits
$1 / 32$ or 1 mm 34 p . Etching dish 92 p . Laminate $1 / 32 "$ or 1 mm 34 p . Etching dish 92p. Laminate
cutter $\mathrm{E}, 20$.

BI-PAK AUDID MODULES AL30A E4.53. PA12 $£ 9.31$.

PS12 51.75. | $\mathbf{r} 538 £ 2.70$. |
| :--- |
| S 450 |

 PA 100 E. 19.24 . SPMBO E5.26. BMT80 E6.
Stereo 30 Steren 30
c23. 94. Al80 £8.56.

2114

Full apec, memony chip Low current, 300NS

CDMPONENTS

N4148 0.9p. 1N4002 3.1p. 72314 dil 33p. VE555 8 dil 24p. 7418 dil 18p. bc547. bc549. bc182. be184. bc212. be214. be548 5.5 p tip3tc. tip32c 36p. to 41 c 40 p . bd 132 27p.
 2p. resistors $5 \% 1 / \mathrm{WWE} 12$ 10R to $10 \mathrm{M} 1 \mathrm{p}, \mathbf{0 . 8 p}$ or $50+$ of one velue. polyester capecitors 160 V $015.068 \mathrm{mf} 2 . \mathrm{sp}, 1 \mathrm{mf} 4.0 \mathrm{p}, .01 \mathrm{mf} 3.0 \mathrm{p}$. .022. 033 mf 3.3p, $.047 \mathrm{ml} 4.0 \mathrm{p}, .15 .33 \mathrm{ml}$ 4.9p. 47 mt 5.0 p . polystyrene capacitors E12
 $\begin{array}{ll}\text { capacitors } 50 \mathrm{~V} 5,1,2 \mathrm{mi} & \mathrm{sp}, 25 \mathrm{~V} 5.10 \mathrm{mt} \\ 16 \mathrm{p} \\ \text {. }\end{array}$ $16 \vee 22,33 \mathrm{mt} 4 \mathrm{p} .47,68 \mathrm{mt} 3.5 \mathrm{p} .100 \mathrm{mt} \mathrm{7p}$. 330.470 mt \%p. 1000 mt 11 p . zeners 400 mw
E24 2 V 7 to 33 V p. preset pots subminiature IW horiz or vert 100 to $4 \mathrm{M} 7 \mathrm{7p}$. poten ilometers $1 / \mathrm{WW} 4 K 7$ to 2 M 2 log of lin single 29 p . duai 71p. 1/" red LEDS 9.7p. ic sockets 8 di 8.7p, 14 dil 10.1p, 16 kil 12 p .

BATTERY ELIMINATORS
3-way types with

 \% $\% / 9 / 12 \mathrm{~V} 800 \mathrm{ma}$ ¢2.75.

BATTERY ELIMINATOR KITS 100 ma radio types with press-stud connectors
$41 / 2 \mathrm{~V}$ f1.49. 6 V £1.49, 9 V E1.49, $41 / 2+41 / 2 \mathrm{~V}$ $\mathrm{E1.92}, 6+6 \mathrm{~V}$ £..22.9 $+9 \mathrm{~V} \mathrm{E1.92}$, cosserte typo 71/v 100ma with din plucg E1.49. heavy dury
 convertor input 12 V dc. outpul $6 / 7 \mathrm{~V} / \mathrm{FV} 14$

S-DECS AND T-DECS S-DECS AND T-DECS 16 dil adaptor $£ 2.31$

EX-STOCK FROM US
J.V.C. 期 RRNEN WITH STEREO MAGNETIC AUDIO TECHNICA CARTRIDGE

LIST PRICE OVER £50
J.V.C. Turntable supplied complete with Audio Technica AT10 stereo magnetic cartridge.

- Belt driven
'S' shaped tone arm
Modern design
Full size 12 platter
Calibrated counter balance
weight (0-3 grms).
Anti-skate (bias) device
Size - $12^{3} .^{*} \times 15^{4 \prime \prime}$ (approx) atonlr
LIMITED
STOCKS
$£ 25.99$
PLUS VAT £3.89 Fosi 1250

GEC ${ }_{\text {QUALITY }}^{\text {HIG }}$ STEREO
 $10+10$ watt AMPLIFIER WITH AM/FM STEREO TUNER IDEAL FOR THE HOME

A cancelled export order brings you this offer from the worldfamous firm of G.E.C.

AM/FM stereo Tuner Amplifier
heady buill. Comprising of a tuner/pre-amp, board and separate power supply/power amp. board with wiring diagram.
Rotary Controls: Tuniag. on/atl volume. baiance Ireble. bass. Siereo Beacon indicator.
Push-button Controls. Mono. Tape. Disc. A.F.C. F.M. (NHF). LW. MW. SW

Power Output: 7 walls RMS per channel. al better than 2^{*} e THO into 8 ohms. 10 watts speech and music.
frequency Response: $60 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ within ± 3 (H Tape Sensitivity: Dutpul 300 miv lor raled output Oisc Sensitivity: 100 mv (ceramic cartridge) Radio: FM (WHF) $87.5 \mathrm{mHz}-108 \mathrm{MHz}$. Long Wave $145 \mathrm{KHz} \cdot 265 \mathrm{KHz}$ Medium Wave 520 KHz -1620KHz Short Wave $5.8 \mathrm{kHz} \cdot 16 \mathrm{MHz}$.

LOW

 PRICE DFFER
on/off balance. treble. bass. mono tape phono afc fm lw mw sw tuning. Volume

Fully Guaranteed Ex-Stock

CAR STEREO CASSETTE MECHANISM

* Front loading 12 volt transistorised
- Speed \& Voltage control
- Ex-equipment - Tested O.K
* Takes standard C60 cassette
onlr £7.50
INC VAT
POST 80p

SUITABLE

 SPEAKERS IN CABINETSPAIR $£ 19.95$
POST ${ }_{\text {£ } 2.50 \text { Pair }}$ 10 WATTS ${ }^{\text {IMC. }}$

ONLY
$£ 19.95$

+ VAT E299
CARRIAGE E250

5 +5 Watt Car Stereo Amplifier made for Motorola

* with pre-amplifier and M. 8 Long wave assembly.
* Supplied as lwa buill and lested units.
* A.F. and I.F. slerea preamplifier and radio $4 \times 2 \times 1^{\text {² }}$
* $5+5$ wath siste a mplifiter $12 / 14$ wh $4 \times 2 \times 1^{\prime \prime}$
* Compiele with circuit. data and conneclion diagrams
- Limiled quantity zvailable. ex. slock.

[^4]
VOCODER

Change sex or orchestrate yourself (same thing, really) with the ETI Vocoder, designed by Richard Becker of Powertran.

Avocoder could be simply defined as a device which will, in real time, superimpose the spectral characteristics of one signal upon another. To leave it at that, however, would result in many a yawn and a few skipped pages. In fact vocoders are anything but boring! Put speech and the output of an instrument into a vocoder and the instrument, not the operator, appears to be doing the talking or singing! Use the internal excitation oscillators, change the frequency and the speaker suddenly changes sex. Use the noise generator and there is whispering in the breeze. Use the output of a cassette deck and the London Symphony Orchestra recites the Karma Sutra! Just a few of the possibilities!

Human speech is built up from two basic components - the sound from the vocal chords which buzz when air is passed over them and the sound of air rushing past the teeth. These sounds are used to produce voiced and unvoiced speech respectively. By opening and closing the mouth and the nasal cavity, and by moving the tongue, thereby adjusting the resonances, the basic sounds are modified in amplitude and harmonic content. If the variations in amplitude and harmonic content can be analysed and applied to suitable electronic control circuitry then the basic sounds of speech can be substituted for by almost anything and this is just what a vocoder does.

The first part of a vocoder is a spectrum analyser producing control signals which are a measure of the strength of the speech signal in each of the frequency bands (14 in this design). The substitution (excitation) signal is also split into a number of frequency bands (using identical filters to those used for analysis) and each of these signals is passed through a voltage controlled amplifier whose gain is determined by the control signals. The sum of the outputs of these amplifiers is the vocoder output.

The system

The speech signal, after passing through the preamplifier and tone control stages, is separated into 14 bands by bandpass filters, a low pass filter and a high pass filter. The bandpass filters are double tuned that is to say each of the two stages has a slightly different resonant frequency. The effect of this is to broaden the band of accepted frequencies and give the response curve a flattened top. A high Q makes the filters cut off rapidly out of the pass bands.

The envelope followers consist of an active full wave rectifier and a low pass filter, the output of which is the control signal for the synthesiser section. The control signal passes through a sample and hold stage which is used to freeze the music, by means of a footswitch, at any required point of articulation. The stage is also used for slewing rate control which smooths out the control signals for slower and smoother changes in spectral balance and amplitude resulting in speech being changed into singing or chanting.

Holy Responses

In the synthesis section there is a filter bank identical to that of the analysis section. Voltage controlled amplifiers modulate the outputs of these with the control signals from the analysis section. The outputs are then summed to produce the output signal. Alternate channel outputs are inverted since there is a change in phase as a signal is swept through the resonant frequency of the filter. Therefore, at the midpoint between adjacent bands phase cancellation will occur producing deep holes in the overall frequency response. By having adjacent channels outputs inverted with respect to each other there is addition instead of subtraction at the midpoints.

The analysis/synthesis board occupies the front half of the case. All the potentiometers are PCB mounting for ease of construction. The Power Supply Unit (to be described next month) is a respectable distance away, mounted on the rear panel.

SPECIFICATION

The internal excitation board.

Details of the smaller boards devoted to slew rate control (left), input amplifier (middle) and output amplifier (right) will be given in the concluding part of the Vocoder project next month.

Fig.2. Component overlay of the internal excitation board.
PARTS LIST

RESISTORS - ALL 2\% METAL OXIDE		CAPACITORS	
		C1,3	100n polyester
R1,9,29,34,40,44,45,50	10k	C2,4	10n ceramic
R2,10	5 k 6	C5	220p ceramic
R3,11	18k	C6	33 n polyester
R4,12	560R	C7	100p ceramic
R5,13	11k	C8	10n polyester
R6,8,16, 18,35,39,43	47k	C9	10u 16V tantalum
R7,15	150k	C10	100n polycarbonate
R14,30,42	1M	C11	220n polycarbonate
R17	100k	C12	140 polycarbonate
R19	15k		
R20,24, 25,26,27,28	4k7	SEMICONDUCTORS	
R21,32	22k	$\text { IC } 1,2,7,10,11$	1458
R22	330k	IC3,8	TL082 or LF353
R23	27k	IC4	741
R31	3k9	IC5	4006
R33,38	470k	IC6	4030
R36,37,46	1k5	IC9	CA3080
R41,47,48	1k	IC12	4016
R49	3k3	Q1,3	BC182L
		Q2,4	BC212L
		ZD1,2	SV1 Zener
$\begin{aligned} & \text { POTENTIC } \\ & \text { RV1,2,5,7 } \end{aligned}$	10k logarithmic	D1-D6 LED 1	$\begin{aligned} & \text { 1N4148 } \\ & \text { TIL209 } \end{aligned}$
RV3,4,6	10k logarithmic		
PR1,2	100k preset		
PR 3 PR4,5	220k preset 2k2 preset	9 way connector and switch.	IC sockets, terminal pins, rotary on/off

Fig.3. Circuit diagram of the internal excitation network.

Raising the analysis/synthesis board reveals the smaller boards. From left:- speech input amplifier, internal excitation, external excitation amplifier, output amplifier. Most pots are held firmly on their PCBs by pot mounting frames.

HOW IT WORKS

IC1, 2 form a pair of relaxation oscillators. IC2 is an integrator driven by the output of IC1. C1 is charged until it reaches about one third of the supply line voltage when the Schmidt trigger (IC1) changes state and C1 starts discharging until it reaches about one third of the supply line voltage in the opposite direction, making IC1 change state again. The output of IC2 is a triangular waveform which is compared with an adjustable DC voltage by IC3 to produce a pulse output of adjustable mark/space ratio. The outputs of the two oscillators are mixed with the external excitation and the noise by IC4.

The noise generator is a pseudo-random counter. IC5a,b form an oscillator operator at about 40 kHz . This clocks IC 6 , which is an 18 stage shift register with feedback applied round it via IC5c, d and Q1. The output of IC5c is a complex pulse train, which, when filtered by C8, R19, C6 has the characteristics of random noise with a very even frequency response.

The key part of the voiced/unvoiced detector is the comparator IC11a, which compares the levels of the speech components over 4 kHz with those below $\mathbf{2 k H z}$. It is not necessary to use separate filters for this purpose as the control signals at the outputs of IC3 of the analysis section contain the necessary information and these are summed by IC10a, b before comparison. When voiced speech is present IC11a goes low, Q3 turns off, its collector goes high and the analogue switch IC12b is opened allowing the output of IC4 to pass to the synthesis section. To match the noise level to that of the excitation from IC4 there is AGC. IC7a is a full wave rectifier peak detector which is buffered by IC8a. IC8b and Q2 are a voltage to current converter to provide a controt current for the OTA IC9 through which the noise is passed.

Fig.4.(below) Filter frequency response curves.

For external excitation, there is a pre-amplifier and tone control circuit similar to that used for speech. The output of this stage is mixed with the two oscillators (which generate pulses of variable width and frequency) and also with the output of the noise generator. The noise also passes through an AGC circuit to match its level to the excitation signals. This noise is then used to substitute for the other excitation signals by the voiced/unvoiced detector electronic switch when unvoiced speech is detected by the comparator which determines whether the majority of the energy in the speech is at low frequencies (2 kHz - voiced) or at high frequencies (4 kHz - unvoiced).

BUYLINES

Powertran Electronics, Portway Industrial Estate, Andover, Hampshire, are supplying a complete kit of parts for this project at $\mathbf{E 1 9 5 . 0 0}$ plus $\mathbf{1 5 \%}$ VAT. Delivery by Securicor is $£ 2.50$ extra. Everything is included in the kit down to the last nut and bolt. They even give you a 'Freeze' footswitch and a test oscillator for setting it up!

Next month we conclude the Vocoder project with constructional details of the remaining boards and power supply, with notes on setting up and use.

HOW IT WORKS

IC1 in channels 2-13 is the analysis bandpass active filter. PR1 adjusts the first section in relation to the second. When correctly set up there is an overall voltage gain of $\mathbf{1 0}$. In channels 1,14 IC1 is a low pass filter and a high pass filter respectively. IC 2 rectifies the signal to demodulate it to convert it into a control signal for the VCA. IC3 is an active low pass filter with a cut off frequency of 200 Hz or one fifth of the frequency of the bandpass filter, whichever is the higher.

R14 takes the output of IC3 out for analysis by the voiced/unvoiced detector. IC4 is the slewing rate controller, Q1 and R 15 acting as a variable resistor which, in conjunction with C 7 , forms an RC network adjustihe slewing rate controller, Q1 and R15 acting as a variable resistor, which, in conjunction with $C 7$, forms an RC network adjusting the slewing rate of the stage. Being a FET Q1 could, on its own, be used as a variable resistor by simply varying the Vgs, but there are 14 of them to control simultaneously and without careful selection they would not track together. To deal with this Q1 is used instead as a switch which is turned on and off by a 1 kHz pulse signal of variable width. C7 is then charged and discharged at a rate dependent on the duty cycle of the pulse
signal and R15. During the ON period VGs is maintained at O by the feedback via R17.

IC5 and Q2 form a voltage to current converter, the gain of which is set by PR2 to compensate for variations in gain in IC6. For correct operation IC5's input must never go negative. To ensure that it doesn't, a bias voltage is applied via R15. This voltage together with the combined offset voltages of IC1-5 is nulled out by PR3.

IC6 is an OTA (operational transconductance amplifier), which could have been our old friend the CA3080, but a better device, the LM13600 is now available. It achieves very low distortion by having linearising diodes at the input. Bias current for these is supplied by R28. The gain is controlled by the current supplied to pin 1. The output of the OTA is taken to a volume control RV1 from where it goes back into IC6 to a buffer stage before being taken out via C12 and R30 to a virtual earth mixer. C 12 and R30 serve as a high pass filter to remove breakthrough of the control signal. The excitation or music signal is applied to the OTA via IC7 which is a filter identical to that of IC1.

CHAN	PR 1,5	R1,21	R2,22	R3,23	R4,24	R5,25	R6,26	R7	R12,13	C1,3,8,10	C2,4,9,11	C12	IC1,7
1	-	10k	10k	2k0	220R	10k	10k	4k7	68k	47n	150n	220n	TL082/LF353
2	2k2	2k0	82k	24k	910R	110k	110k	4k7	47k	68n	68n	47n	1458
3	1k0	6 k 2	180k	47k	560R	220k	220k	4k7	30k	39n	39n	33n	1458
4	1k0	6k2	180k	47k	430R	220k	220k	4k7	24k	33 n	33n	27n	1458
5	1k0	6 k 2	180k	47k	430R	220k	220k	3k6	18k	27n	$27 n$	22n	1458
6	1 kO	6k2	180k	47k	430R	220k	220k	3k0	15k	22n	22n	18n	1458
7	1k0	6k2	180k	47k	560R	220k	220k	2k4	12k	$15 n$	15n	15n	1458
8	1 kO	6 k 2	180k	47k	560R	220k	220k	1 k 8	12k	12n	12n	12n	1458
9	1k0	6k2	180k	47k	510R	220k	220k	1k5	12k	10n	10n	10 n	1458
10	1k0	6 k 2	180k	47k	470R	220k	WIRELINK	1k2	12k	8 n 2	8 n 2	8 n 2	TL082/LF353
11	1k0	6k2	180k	47k	430R	220k	WIRELINK	1k2	12k	6 n 8	6 n 8	6 n 8	TL082/LF353
12	1k0	6k2	180k	47k	560R	220k	WIRELINK	1k2	12k	4 n 7	$4 \mathrm{n7}$	4 n 7	TL082/LF353
13	2k2	2k0	82k	24k	1k1	110k	110k	1k2	12k	$3 n 3$	3 n 3	4 n 7	1458
14	--	13k	43k	2k0	220R	43k	13k	1k2	12k	InO	1n0	4n7	1458

Table 1. Component values for the 14 channels of the analysis/synthesis section.

Fig.5a(above). Circuit diagram of analysis/synthesis section.

Fig.5b. In channel $\mathbf{1}$ band pass filters are replaced by the low pass filters shown above.

Fig.5c. In channel 14 band pass filters are replaced by the high pass filters above.

Fig.6. Component overlay of the analysis/synthesis section. We haven't shown the whole board, as the channels are very similar. The three parts of the board (above) show channels 1, 2 and 14 and the power connections in the middle.

PARTS LIST

56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON N10 3HN

 TELEPHONE 01-883 3705, 01-883 2289

D.RAMS	£ p
4027	2.75
4050 (350NS)	2.35
4060 (300NS)	2.39
4116	4.35
S. RAMS	
2102A	1.09
2102A2	1.09
2112A	2.25
21102	. 98
2114.4045	2.95
4035	1.07
4044-5257	6.93
BULK PURCHASE	
8.2114	22.50
8.4116	29.95
8.21 LO 2	7.00
BULK PURCHASE	
162114	39.95
16 21L02	13.00
32 21L02	25.00
64 21L02	45.00

EPROMS	
2708	
$2716(5 \mathrm{v})$	$\mathbf{4 . 9 5}$
2532	$\mathbf{1 3 . 9 5}$
	$\mathbf{3 9 . 9 5}$
ROMS	
2513 (UC)	$\mathbf{5 . 9 5}$
2513 (LC)	$\mathbf{5 . 9 5}$
6502	CPUS
8080	$\mathbf{9 . 5 0}$
9900	$\mathbf{4 . 7 5}$
6800	$\mathbf{5 . 9 5}$
Z80	$\mathbf{8 . 9 5}$

VALVE BARGAINS	AERIAL AMPLIFIERS
ANY 5.EDP. 10.E1.50. 50.E6. 	
colour tv valves. plsob. rested 65p each	
100.MULLARD $\mathrm{CzOOC281}$ $1.541250 \mathrm{~V} / \mathrm{W}$. Our chice Good mixed selection. Price per 100 £2	ready to uas. Battery tvpe PP3 or $8 v$ to $18 v$ DC. next to th he set type fitting. Prices $\mathbf{£ 5 . 7 0}$
SIGNAL INJECTORS with (Pre-set) variable AF, which emits RF Harmonics into the UHF band. Protected up to 300 volts DC. Complete with leads $£ 5.70$ each	
ELECTRONIC MAILORDER LTD. 62 Bridge Street, Rambbottom, v Tel, RAMS 3036	
Build your own Computer Kits, available from $£ 79.35$	
Assembled and tested from £90.85	
S.a.e. or telephone	
MICRO-PRINTLTD.	
21 Bankhouse Road, Hanford	
STOKE-ON-TRENT	
for advice/assistance and Order Forms	

DRIIL SPEED CONTROLIER

Keep your electric drill under control with this handy circuit . . cheap and simple.

This circuit enables you to con trol the speed of any appliance that uses a 'universal' motor-drills, sanders, polishers, etc. Only a few components are required
 and this circuit is just about the simplest that can be built from discrete components. Don't let that put you off though! You get full-wave control from zero to full speed. Who could ask for more?

Construction

We built our unit on its PCB into a standard plastic switch-box and fitted the speed control onto a plastic blanking plate. No heatsink was used on the prototype and one will probably not be required for intermittent use.

Warning

Remember that when running an appliance at low speeds, the efficiency of the cooling fan normally built onto the motor-shaft will be severely reduced. This may result in your motor burning out, so remember to allow the windings to cool when running for an extended period or simply run the appliance at full speed off-load for a short while.

There are no special points to watch with this circuit. A PCB design is given, though any method of construction may be employed. Note that 400 V polypropylene capacitors were used in the prototype as these are better able to withstand connection to the AC mains. Despite its simplicity, this circuit will provide a smooth, wide-range control and amply repays the little effort involved in its construction.

BUYLINES

[^5]

Fig.1. Circuit diagram.

HOW IT WORKS

[^6]

HM812 Dual Tracè as per HM512
Plus Storage, Automatic
Storage and Variable
Persistence

Hameg Ltd.,
74-78 Collingdon St.,
Luton, Beds.

LU1 1 RX.

Buy a microcomputer for under $£ 1,000$ and you could be on your own! Unless it's a Commodore PET.

Commodore produce Britain's number one microcomputer. But we don't stop there. We also insist on providing comprehensive support throughout our national dealer network.

Our dealers can examine your needs and demonstrate which hardware and software will suit you best. Their trained engineers are always at hand and a 24 -hour field maintenance service is available. Your local dealer can tell you more about the following Commodore Services.

cThe Commodore PET The Commodore PET computer range covers everything from the self-contained unit at under $£ 500$ to complete business systems at under £2,500:

CCommodore Business Software and Petpacks Our software range covers hundreds of applications. Business software includes Sales and Purchase Ledgers, Accounting, Stock Control, Payroll, Word Processing and more. In addition over 50 Petpacks are available covering such titles as Strathclyde Basic Tutorial, Assembler Development System, Statistics, plus our Treasure Trove and Arcade series of games.

CZ Commodore Approved Products
 Compatible products of other

 manufacturers with Commodore's mark of approval are also available.

Commodore Courses
Commodore offer a range of residential training courses and one day seminars. An excellent start. And when you haw, installed your system the PET User's Club Newsletter can keep you informed of new ideas and latest developments.

\section*{LONDON AREA} | Adda Computers Litd |
| :---: |
| W5.01.579 5845 |

 Byashop Computerlan C.5.5. (iessiness. Equipment) Lot Capital Computer Systems. Centraiex-Lorndon Led Centralex C LOndon Ltod, Cream Microcomputer Shop
HARROW $01-8630833$ HARROW, 01-8630833

 Home and Eusiness Computers, Merchant Systims Limited, EC4 01. 3531464 Metyclean Ltd, SWl. O1-828 2511
Micro Computation N14.O1.8825104.
Micro Computer Cen Micro Computer Centre,
SW14 SW14.01-878 3206 Sumlock Bondain Ltd.
EC1. 01.2500505 Sumlock Bondainlt EC4. 01 -626 0487 T.L.C. World Trading Ltd,
WC2. $01-8393$. WC2. $01-18393894$
TOPS TVLTD. SW1 01-730 179

HOME COUNTIES

G. M. Marketing. HSV Microcomputers. BASINGSTOKE, 62444 BEDFORO, 4060 Elex Systems Lid, DDM Directicata Marketing Ltd,
BRENTWOOD 229379 Amplicon Micro Systems Ltd BRIGHTON, 562163 RUF Computers (UK) Ltd BURGESSHILL 45211 T\&IC LTd, CAMBERLEY, 20446 Cambridge Computer Store CAMBRIDGE, 65334 Wego Computers Lid
CATERHAM 49235 DataviewLtd, COLCHESTERR. 78811 Houth East Computers Ltd,
HASTINGS. 426844 Alpha Business System HERTFORO, 57423 Brent Computer Systems,
KINGS LANGLEY. 65056 sher.Woods Business 56 LUTON. 416202 Mouth East Computers Ltd. MAIDSTONE, 68126 Micro Facilities Ltd J. R. Ward Computers Ltd,
MILTON KEYNES 562850 Sumlock Bondain (East Anglia) Ltd.
NORWICH, 26259
T\& V Johns on (Microcomputers
Ete) Ltd OXFORD, 721461 S.V. Microcomputers. SODer-Vision 2213 SOUTHAMPTON, 774023 Xitan Systems Lid,
SOUTHAMPTON, 38740 SOUTHEND-ON.SEA 62707 The Computer Room.
TUNBRIDGE WELLS. 41645 WALLINGFORD 355

YORKSHIRE AND

NORTH HUMBERSIDE
Ackroyd Typewriter \& Adding

Machine Co. Ltd. BRADFORD, 31835 | Allen Computer s. |
| :--- |
| GRIMSBY. |

Microware Computers Ltd,
HULL, 562107
Microproces sor Services
HULL. 23146
Holdene Lid.
LEEDS, 459459
South Midlands Communications Lto
LEEDS. 782326
Yorkshire Electronics Services Ltd,
MDRLEY. 522181
Computer Centre $/$ Sheffield) Ltd,
SHEFFIELD, 53519
Electronic Services.
SHEFFIELD, 688767
Hallam Computer Systems Ltd,
SHEFFIELD, 663125

NORTH EAST

Oyson instruments
OURHAM, 66937
Currie \& Maughan
GATESHEAD, 774540 Wards (Office Supplies) Group
GATESHEAD. 605915
Elfton Ltd,
HARTLEPOOL, 61770
Fiddes Marketing Limite Fiddes Marketing Limited,
NEWCASTE, 8157 Newcastle Computer Services NEWCASTLE, 615325 Format MicroCentre, Tripont Associated Systems Consultants Ltd
SUNDERLAND. 73310 SOUTH WALES AND WEST COUNTRY Radan Computational Ltd, BATH, 318483 BAYSTON HILL. 4250 Bristo Computer Cen
BRISTOL 23430 CS.S. (Bristol) Ltd, \& V Johnson (Microcomputers
Etc) Lid. BRISTOL 422061 . Sumlock Tabdown Ltd. BRISTOL. 26685 Sigma $\begin{gathered}\text { Sy stems. } \\ \text { CARDIFF, } 34869\end{gathered}$
Ottice and Business Equipment
(Chester) Ltd, DEESIDE. 817277 A.C. Systems.
EXETER 71718 Micro Media Systems
NEWPORT. 59276 M. Computer Services Ltd NEWQUAY, 2863 Devon Computers.
PAIGNTON 526303 A.D. Integrated Services, PLYMOUTH 62616 Business Electronics,
SOUTHAMPTON, 738248 Computer Supplies (Swansea).
SWANSEA. 290047

NORTH WEST AND NORTH WALES
TharsternLtd.
BURNLEY, 38481 B+ B (Computers) Ltd.
BOLTON 26644 Preston Computer Centre,
PRESTON 57684 Catlands (Computers) Lid. LIVERPOOL Aughton Microsystems Ltd
LIVERPOOL, 5487788 B.E.C.COMPUTers' LIVERPOOL 5215830

MANCHESTER AREA

Byteshop Computerland,
MANCHESTER. 2364737 Computa store Ltd,
MANCHESTER 8324761
Cytek (U.K. Led. 824682 xecuive Reprographic Lt MANCHESTER. 2281637 M. MANCHESTER, 8322269 Sumlock Electronic Services Manchester) Lid, Professional Computer Services Ltd
OLDHAM 6244065 Kipping Ltd. SALFFRD, Q3 36367 STOCKPORT 061-4320708 SCOTLAND Holdene Microsy stems Ltd.
EDINBURGH 6582727
EDINBURGH, 6682727
Microcentre,
EDINBURGH, 5567354 Aethotrol Consultancy Services,
GLASGOW. 6417758 GLASGOW. 6417758 Byteshop Computerland
GLASGOW, 2217409 Robox Ltd.
GLASGOW, 2215401
INVERNESS, 712203
Thistle Computers
KIRKWWLL. $3140{ }^{\circ}$
IRELAND
Softech Ltd,
DUBLIN, 784739
Medical \& Scientific Computer,
Services Lid. LISBURN 7753

[^7]360 Euston Road, London W1 3BL. 01-3885702
Please send me further information about the Commodore PET
Name

Position
Address

ETID.I.
Intended application
Do you ownalli:? YES $\square \quad$ NO \square

6 piano type keys
B.K. ELECTRONICS A SOUND CHOICE

\star PROMPT DELIVERY * PRICES INCLUDE V.A.T. \star AMPLE STOCKS A PERSONAL SERVICE FROM A SMALL EXPANDING COMPANY

STEREO CASSETTE TAPE DECK ASSEMBLY. Comprising of a top panel assembly and tape mechanism coupled to a record/play back printed board assembly. For horizontal installation into cabinet or console of own choice Brand new ready built and tested Features: Pause control, auto stop, 3 digit tape counter. illuminated twin VU meters with in dividual level controls, twin mic, input sockets. AC erase system, LED record indicator. (Separate power amplifier required.) Input Sensitivity: 6 MV (with level control set at max). Input impedance: 47 kOhms . Output Level: To both left and right hand channels 150 MV Output impedance: $<10 \mathrm{k}$. Signal to noise ratio: 45 dB nominal. Power Supply Requirements: 12 V AC at 300M/A. Connections: All connections to the unit are via a wander lead terminated with a nine pin plug (socket provided). Dimensions: Top panel - $111 / 2$ in $\times 61 / 2 \mathrm{in}$. Mechanism fits through a cut out $53 / 4 \mathrm{in} \times 101 / 2 \mathrm{in}$. Clearance required under top panel $21 / 2$ in Supplied complete with circuit diagram etc. Price £30.50 plus $£ 2.50$ postage and packing. Suitable mains 12 -volt transformer, £3.00.

SCOTT AM/FM STEREO TUNER MODEL 516. This Scott tuner is one of the top American makes and is offered at a very realistic price. Features: FM tuning range 87.5 to $108 \mathrm{MZ} \star A M$ tuning range 535 to 1605 kHz Usable FM sensitivity $6.2 \mathrm{dBF} 2.2 \mu \mathrm{~V} \star 300 \mathrm{ohm} \& 75 \mathrm{ohm}$ Aerial inputs for FM \star Signal strength tuning meter $\#$ Stereo beacon indicator $\#$ Ferrite aerial for $\mathrm{AM} \star$ Mute switch. 10 diodes, 9 transistors and 3 ICs. Size: Height 5 in , Width $141 / 2 \mathrm{in}$, Depth 12 in . Silver front panel. Black body. Modern stacking format. Suitable for 240 -volt 50 Hz AC operation. Price $\mathbf{£ 4 0 . 5 0}$ plus $£ 2.50$ postage and packing

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion leve than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER

Type 'A' Type 'C' Type 'D'

Type 'A' 3 in round with removable wire mesh. Ideal for bookshelf hi-fi speakers. Price (Type 'A') £3.75 each; Type ' B ' $31 / 2$ in super horn. For general purpose speakers disco and PA sys tems, etc Price $£ 4.60$ each.
Type ' C ' 2 in $\times 5$ in wide dispersion horn. For hi-fi systems and quality disco etc. Price $£ 6.20$ each.
Type 'D' 2 in $\times 6$ in wide dispersion horn. Frequency response extending down to mid-range ($2000 \mathrm{c} / \mathrm{s}$) suitable for hi-fi systems and quality disco. Price £9 each.
Post and Packing, all types, 15 p each (or SAE for Piezo leaflets)

GEC AM/FM STEREO TUNER AMPLIFIER CHASSIS. Originally designed for installation into a music centre. Supplied as two separate built and tested units which are easily wired together. Note: Circuit diagram and nterconnecting wiring diagrams sup plied. Rotary Controls: Tuning, on /of volume balance. treble, bass. Push button controis: Mono, Tape, Disc. AFC. FM NHF). LW, MW. SW. Power Output: 7 watts RMS per channel, at better than 2% THD into 8 ohms. 10 watts speech and music. Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{kHz}$ within $\pm 3 \mathrm{~dB}$

DE-SOLDERING PUMP

Tape Sensitivity: Output - typically 150 mV . Input - 300 mV for rated output. Disc Sensitivity: 100 mV (cer amic cartridge). Radio: FM (VHF) $87.5 \mathrm{MHz}-108 \mathrm{MHz}$. Long wave $145 \mathrm{kHz}-108 \mathrm{kHz}$. Medium wave $520 \mathrm{kHz}-1620 \mathrm{kHz}$. Short wave 5.8 MHz - 16 MHz . Size: Tuner $23 / 9$ in $\times 15$ in $\times 71 / 2$ in approx. Power amplifier -2 in $\times 71 / 2$ in $\times 41 / 2$ in approx. 240 V AC operation. Supplied complete with fuses, knobs and pushbuttons, and ED stereo beacon indicator. P. and £21.50 plus £2.50 postage and pack ing.
JVC TURNTABLE. JVC Turntable supplied complete with an Audio Tech nica AT10 stereo magnetic cartridge * 'S' shaped tone arm

- Belt driven
* Full size 12 in platter
- Precision calibrated counterbalance weight ($0-3 \mathrm{grms}$.)
\star Anti-skate (bias) device. Nylon thread weight.
\star Damped cueing leve
*240V AC operation, (50 Hz)
\star Cut-out template supplied.
Size $-123 / 4$ in $\times 153 / 4$ in (approx). Price $£ 29$ plus $£ 250$ postage and packing.
This de-soldering pump made to a very exacting specification is ideal for the removal of small com ponents from printed circuit boards etc. Comes complete with spare PTFE tip. £5.30 post free.
B.S.R. P163 BELT-DRIVEN TURN TABLE. This famous B.S.R. turntable is ideal for both disco and hi-fi use where a more rugged unit is required.
* 'S' shaped tone arm
* Belt driven
* Slide-in cartridge carrier
* Calibrated styli pressure gauge
* Calibrated anti-skate device
* Damped cueing lever
* 240 v .50 Hz AC operation

Size approx. $11 \frac{1}{4^{\prime \prime}} \times 1314^{\prime \prime} \mathbf{£ 2 2 . 0 0}+$ £2.50 P/P Suitable magnetic cartridge type TTC/J2203
Price £4 post free. (Also available separately)

LOUDSPEAKER

High quality full range $8^{\prime \prime}$ loudspeaker 10 watts RMS. 80 HM . Rolled surround with aluminium centre dome
Price $£ \mathbf{3 . 7 5}$ each +75 p Postage and Packing each.

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

[^8]Access and Barclaycard accepted

TVSOUND TUNER

Enjoy high quality TV sound with this unit, using pre-aligned commercial modules for simple construction.

The BBC frequently 'simulcasts' the sound channel of some of its television music presentations. As well as providing stereo, this gives a dramatic improvement in sound quality. In fact TV sound is transmitted with frequency modulation and can provide good quality (though in mono). The weak link in the system is the TV audio stage and small loudspeaker.

This unit enables you to feed a high quality TV audio signal into your hi-fi; so you will not have to chip your speakers from their concrete columns or mount the TV in the fireplace (even though the chimney does provide an excellent ventilating system!) Use of ready built and aligned modules makes the project very easy to build and it is not expensive!

Tuner Control

An ELC1043 varicap tuner and IF board are bought separately (see 'buylines') and assembled. A handful of other components mount on our PCB and provide power supplies and an optional monitor amp. The varicap tuner is controlled by a single tuning voltage of $0-30 \mathrm{~V}$. We used a surplus pushbutton station selector unit but any source of a stable voltage may be pressed into service. If you are really up to date, you can even tune the system with your home computer.

Construction

The tuner mounts directly on the IF board. All the holes are there, as well as quite a few spares, though you will need to enlarge the holes for the screening can lugs. Two resistors set the AGC voltage and a capacitor filters the tuning voltage. Be
careful when dealing with the IF board not to disturb any of the adjustments. Remember the units are pre-aligned.

To The Manor Borne

We had our board running within an hour but then it failed mysteriously. Manor quickly sorted us out and sent us away with strict warnings about playing football with the board! Remember that the TV signal comes in on a wing and a prayer at a few hundred MHz and even the IF operates at 38 MHz so show it some respect.

Construction of the PSU and amplifier PCB is straightforward. Take special care to connect the screening braids as shown to avoid hum pick-up. When the unit is assembled into its case, with an aerial connected, a station should be tuned in. A slight buzz may be present. This can be nulled out by adjusting the tuning control whilst making slight adjustments to the quad coil. This is preadjusted and should not need to be moved more than a turn to compensate for the effects of added stray capacitance from the case, etc.

Home Programming

Two versions of the tuner frontend are available. They are interchangeable. Our prototype used the cheaper Cl device and we were unable to make any comparison with the more expensive Mullard unit. You pays your money and you takes your choice. Whichever you choose, this project will reward you with quality TV sound. We cannot help with the programmes

Fig.1. Circuit diagram.

HOW IT WORKS

The TV signal is converted from its UHF carrier frequency down to a more manageable 38 MHz intermediate frequency (IF) by the varicap tuner module ELC1043. 'Varicap' refers to the variable capacitance diodes which replace mechanical tuning capacitors in the front end. The capacitance of the diodes varies according to the reverse bias voltage applied to them. All diodes exhibit this effect but varicap diodes are optimised for operation as capacitors. A relatively high voltage is required and an extra 30 V supply is generated (channels 21 to 34 can be tuned with 0 to 12 V supply).

The output from the tuner module is coupled to the IF stage via a 1n0 capacitor. Our unit came with the capacitor mounted in place - a small disc ceramic is fine. The two cans on the IF sub-assembly are Philips G8 colour receiver modules. Their output is coupled to the TAA570 detector via a 6 MHz ceramic fifter which removes the video signal but passes the 6 MHz FM sound carrier. Keep your wiring away from this area of the board. If you touch a finger to the ceramic filter you will hear a variety of AM broadcast stations come booming through! The audio output is coupled via a 1uF electrolytic capacitor.

Note that a video signal is available from the IF board. Although it has a reasonable level - around 1V0 peak-to-peak - you will need to buffer the signal before attempting to use it. Refer to the $\mathbf{G 8}$ service manual for suitable circuitry.

Both the tuner and If board are supplied pre-aligned. A 100 n capacitor is added to the board to filter any track noise from the tuning control and two resistors are used to preset the AGC for optimum gain. A TAA570 detects the sound signal and produces an AF output of a volt or so. This signal will drive your hi-fi directly or via a resistive divider if the amplitude is too high. We incorporated a simple monitor amplifier in our design.

The power supply is quite conventional. A 30 V AC winding is half wave rectified producing a DC voltage of about 43 V . This is pre regulated by the circuitry around Q1 to reduce the supply below the $\mathbf{4 0}$ V absolute maximum required by IC2. This is a 723 regulator chip connected to provide a stable nominal 30 V supply for the station control unit which feeds the tuning voltage to the TV front end.

Output current is limited to about 20 mA though in normal operation only about 1 mA or 2 mA will be drawn. A 12 V AC winding is rectified and regulated with a 7812 IC regulator. This supplies the IF board (about 100 mA) and an on-board monitor amplifier - the LM380. If you do not require an amplifier then omit RV1, IC3, C7,8 and the loudspeaker. Note that IC1 runs rather warm and should have a small heatsink fitted. Although we used a surplus TV station selector unit, any multiturn pot(s) may be pressed into service. 100k units work well.

The ready-built If sub-assembly fits along the front of the case, with our monitor amp behind.

Fig.2. Connections between our amplifier and the ready-made IF board.

PARTS LIST

Fig.3. Component overlay.

The UHF tuner mounted on the IF sub-assembly.

Happy Memories

NASCOM OWNERS

MICROPROCESSOR CASE

AT LAST . . A Case you don't have to lever your Micro into. Made from 16 Guage Aluminium, strong enough to support a Monitor and Cassette. Enough space for Keyboard. P.S. U. Mainboard AND two Expansion Boards (Can also be used for other type Micros., etc.).
Send cheques or POs for $£ 25.30$ to
CYBER ELECTRONICS CO. LTD.
MEMOREX mini discs soft sectored
£19.95 per ten with free library case

WE'VE MOVED

All prices include VAT, 30p postage on orders below £10
Access and Barclaycard All orders to:
Dept. ETI HAPPY MEMORIES Gladestry, Kington Herefordshire HR5 3NY Telephone (054422) 618

Pavement Square, Addiscombe, Croydon FR0 6RD
(Trade enquiries welcome)

ASCII CODED KEYBOARD £47.15

Designed for ease and accuracy of use, with 60 keys arranged in stepped rows, auto repeat and 2 -key rollover. UC and LC ASCll coding. S.a.e for data

THE ZX80 MAGIC BOOK £4.75
15 plus programs including Hammurabi, Animals and Othello Programming tips. Hardware notes. Memory extension circuit.

ZX80 I/O and Memory Boards. S.a.e for details
All prices inclusive of VAT, p\&p
TIMEDATA Ltd.
57 Swallowdale, Basildon, Essex

PCB OFFERS

(1A) 100 bit shift register PCB $115 \mathrm{~mm} \times 94 \mathrm{~mm}$ containing $9 \times 7491,6 \times 7496$ and 1×7441 Territic bargain 85p. p\&p 30p. (1C) PCB $215 \mathrm{~mm} \times 290 \mathrm{~mm}$ $12 \times$ TMS 3122 J (or.sim.) Hex 32-bit Shift Reg +39 ICs $\mathbf{E 2}$. + 50p p\&p (limited stocks)

MPU CORNER
2122 (200ns). ¢3. 2114 (450ns) $€ 4.50$
1702 £2.50. 2708 (400ns) E4.50.
74125 for $£ 1+p \& 825$ p
MK 1002 P (dual 128 bit Shift Reg) 35p.
LM711CH (Voltage Comparator) 30p.
MM5240 Character Generator + Data 2560 Bit ($64 \times 8 \times 5 \%$ E3.50. p\&p 25p
(All Full Spec)
2526 Character Generator 164×9 $\times 9) \mathbf{£ 2 . 9 5}+$ data $\& p \& p 25 p$ International rectifier SOLID STATE RELAY type A2402. Out put 240 VAC 2.5 amps inpul 90 $240 \mathrm{VAC} / 45.200 \mathrm{VDC} £ 6.00$ p/p 25p

D TYPE CONNECTORS
15 Way wirewrap plugs only 75p 25 Way ribbon plugs $£ 1.20$. 25 Way sockets (solder) £1.00 50 Way: skt (wirewrap) $£ 1.65$. 50 Way skt $£ 1.45$ p\&p 25

COVERS

37 Way $80 p$. (plastic) p/p $25 p$ DISPLAYS
HP 50824 digit DIL dısplay fult spec £1.50 anch p\&p 25p. Large quantities POA
MAN 727 seg CC $11.25 \mathrm{p} \& \mathrm{p} 25 \mathrm{p}$ Burroughs Panaplex 9 Dig. + sk Burroughs Panaplex 9. Dig 2
and bezel $£ 1.00, p$ \&ip $25 p$ LED 3 Digit DIL 55p, p8p $25 p$ Bew Digit Dit 55p, p8p 25p
Bowmar 9 digit 1 in LED with re Bowmar 9 digit 1 in LED with red
bezel. (As used in calculators) bezel. (As used
$\mathbf{£ 1 . 0 0}+25 p$ p\&p

SUPERSAVER Ribbon Cable Headers 16 DIL Jermyn, gold plated. with cover 45p, p\&p 25 p .
SUPERSAVER 2 Tantalum Capacitors 25 volt. 4.7 uF. 14 for £1.00, p\&p 25 p PRIC SUPERSAVER 3
PRICE SMASH FND 500, 5in LED displays. futl spec $\mathbf{5 5 0}$ p each, $p \& \rho 25 p$, large quantities POA SUPERSAVER 4 HYBRID SYSTEMS DAC 371-B 8 Bit. Dil packaged, ideal MPU users with data, E2.95, p\&p 25p SUPERSAVER 5
Battery eliminator 6VDC 200MA 240VAC input ideal for calculators, radios, etc.. give away price 95p asch. Large quantities P.O.A. SUPERSAVER 6 RS 338-383 Miniature Decade Thumbwheelswitch. £1.65, p\&p 25 p SUPERSAVER 7 SN74116 Dual 4 Bit letch 75p, p\& 25p.
SN7418 Arithmetic Logic Unit 80p, p\& 25 p .
SN741944 Bit Fiegister, 50p p\&p 25p.
SN741988 Bit Shift Register, 75p p\&p 25p

SUPERSAVER 8
ITT 4cx 250b brand new full spec £ 7.50 each $p / \mathrm{p} 25 \mathrm{p}$ SUPERSAVER 9 4 digit 7 segment OIL lead displays 4 for $£ 1.50$ p/p 250

SUPERSAVER 10
9 way male/female connector. ELCO 8129. 0.1 inch pitch, gold lated PCB mounting, ideal. fo ussing two PCBs logether Superb value. 35p, p\&p $25 p$ SUPERSAVER 11 STAR OFFER. Dynamic hand microphone 200 ohm with lead and 5 pin plug. $£ 1.25$ (urrepeat able) p\&p 30p

SUPERSAVER 12 TMS 3128 NC Static shift register. £1.50, p\&p 25 p.

SUPERSAVER 13
PL259 (UHF) Elbow Connectors 50p each, p\&p 25p.

SUPERSAVER 14 MPU pcb containing 808A, 2708, 2114×24 (all socketed) plus $74 \mathrm{TTL} / \mathrm{LS}$ etc. sorry no circurt diagrams $£ 28.50$ each p / p £ 1.00 .

SUPERSAVER 15 5 K multiturn trimpots. PCB moun ting per box of 14 £2.50, p\&p 25p SUPERSAVER 16 Yet another star bargain. Astec UM111E36 modulator 65p each. $\rho / \rho 25 p$

LEDs (Full spec). TIL209. red 10p. 0.2 in , red 12 p . 02 in . green 28p. 0.2 in , yellow 28p.
RL54 red Axial lead 15p. P\&p on all above 25p
VERNITRON Ceramic filters type FM4 107 MHz 45 p , p\& P 2 25 p . TRANSISTORS, BD236 40p. BC 183L 10p, BF 195 10p, SGS 2N3055 30p, p\&p on all 25p. TBA 810S with data. 85p, 4-wa Dil switches. 75p. MC1303 Dual Otereo preamp with data, £1.25. Stereo preamp with data, $\mathbf{E 1 . 2 5 .}$
7 in Nylon cable ties 100 for f1.50. All p\&p 25p.
NEW SN76477 (Yes, back in stock). Sound Generator IC (Train. stock). Sound Generator gun etc.) with data £3.25, p\&p $25 p$. PCBKEYBOARD, $65 \mathrm{~mm} \times$ $82 \mathrm{~mm}, 18$ key Clickers less Key 82 mm , 18 key tops, ideal Hexadecimal use $\mathbf{3 5 p}$, tops, ideal
p\&p $25 p$.
CAP 25p. CAPACITOR SCOOP. at 10 v .160 uF at 25 v . Axia
dozen for $£ 1+25 \mathrm{p}$ \& p . dozen for $£ 1+25 \mathrm{p} \boldsymbol{\mathrm { P }} \mathrm{Ap}$.
PAPST min-fans $80 \mathrm{~mm} \times 80 \mathrm{~mm}$ PAPST min-tans 80 mz Brand new (approx) $220 \vee 50 \mathrm{~Hz}$ Brand £8, p\&p£1 (limited stocks\}.
Pewec Boxer, As above but $115 v$ Pewec Boxer. As above but 115 v
at $\mathbf{c 4 . 5 0}+\mathrm{p} \mathrm{\&} \mathrm{p}$.
IC mains chassis plug 75 p sult-
able socket 35p. p\& 25 p

22 pin GIVEAWAY

gold plated \qquad

WE STOCK PETS

 $8 K$ version $\mathbf{5 5 9 9}$. SAE for the PET SORCERER Solttware lists at dis count prices.We can also offer a 48 -hour repair service tor out of warranty PETs Telephone for details PET edge connector $40 \times 04 £ 1.40$ each p\& p_{p} 25p.

IC HOLDERS (Low-profile)

8 Dil 12p	14 Dil 15p
16 Dil 17p	18 Dil 20p
22 Dil 28p	24 Dil 35p

28 Dit 45p \quad All $p \& p 35 p$

WE STOCK a vast range of TTL CMOS some T4LS MINIATURE TOGGLES, etc.
PSUs. We have a large stock of power supplies at very realistic prices (callers)

RELAYS

TT 700 ohm Single pole hangeover 45p. BANOR resettable double pole changeover 12 V £1. Both p\&p 25p.

CIRCUIT BREAKERS 4450v AC 65v DC 0.5A 50p; ditto 7A 80p, p\&p 25p.
ALLENKEYS, $7 / 16 \mathrm{in} 5 p$; 12 for
50p; p\&p 25p.
ASR 33 (with tape punch reader), generally overhauled $£ 185.00$ inc of VAT.
Centronics secondhand printers. various types ($0 / \mathrm{h}$). phone for your requirements.

MEMOREX 651 dual disk drives complete with power supplies and format electionics (sorry no data as yet), $£ 350$ each inc of VAT Recordacall telephone answering machines (GPO) line matching

TELEPHONE UXBRIDGE 55399
transformer removed) sold as is from $£ 2$ to $£ 10$ depending on condition. Fitted with very nice standard cassette deck. With circuil diagrams. SORRY BUT FOR CALLERS ONLY.
Terms cash with order fofficial orders welcomed from colleges etc). All enquiries s.a.e. please. Al prices inclusive of VAT, unless otherwise stated. Postige as shown per item.
FOR THE PROFESSIONAL USER. CP Ctare Keyboard switches with buttons (blank) 65p each 0 \& 025 p. each paip 25p. Gould PMA 47/10015V 3A more in stock but in small numbers. Please phone for numbers.
PLEASE DO NOT ORDER GOODS FROM OLD ADVERTS PHONE BEFORE ORDERING

SURPLUS STOCK PURCHASED

 FOR CASH
LB ELECTRONICS

11 HERCIES ROAD HILLINGDON, MIDDLESEX

UB10 9LS, ENGLAND

All enquirias s.a.e. please

New retail premises, now open Mon. Thurs Fri, and Sat, 9.30 600 . Lunch 1-2.15 weekdays Closed all day Wednesday. We are situated just oft the A40 Opposite Master Brewer

OLIVETTI PRINTER \& KEYBOARD type Te 300
with PUNCH \& READER. Upper case ASCII with V 24 Interface. 240 volt operation
£125 each
INFRA RED IMAGE
CONVERTER type 9606 (CV 144)
$13 / 4^{\prime \prime}$ diameter. Requires single low current $3 K V$ to $6 K V$ supply Individually boxed. With data
$\mathbf{£ 1 2 . 5 0}$ each P\&P 75p Infra Red Lamps also advertised

709 DIL 14 PIN
OPERATIONAL AMPLIFIERS
at 8p each
00 ott 25% disco

MINIATURE KEYBOARD Push contacts. marked $0-9$ and A-F and 3 optional function keys £1.75 ea. Psp 65 p
 BLUE THERMAL PAPER

430 ft . roll, $81 / 2^{14}$ wide
£ 2 per roll. $\mathrm{P} \mathrm{\&} \mathrm{P} £ 1.75$
STEPPING MOTORS
North American Philips. 5 volt
3.3 amp operation. 2 wire. PPS
$0-200$ revs per min. $0-250$ used.
Tested
£16 each P\&P £1. 50

MUST CLEAR

POLARAD SPECTRUM
ANALYSER
Display. These are supplied with STU 2
plug-in 1 to 45 GHZ .
EB5 each

TRANSISTOR INVERTER

115 V AC. 1.7 Amp Input Swithing is at
20 KHZ Output windings from Pot Core 20 KHZ Output windings stom Pot Core
Can be rewound to suit own purpose or unit Can be rewound to suit own purpose or unit
can be broken for host of components. can be broken
Circuit supplied

CONVERT THIS UNIT TO A SUPER BATTERY CHARGER

Attractive green minisity quality case with

 removable top \& bottom plates - heavy duty power switches-high powered resist ors to control current - good quality centre mounted Amp Meter - strip of wing nu for connecting leads. for connecting leads.ALL THIS FOR $£ \mathbf{3 . 5 0}$. P\&P $£ 2$
FOUR UNITS FOR $£ 12$. Carriage $£ 5$

STEPPING MOTORS

6/12 position with additional where the rotor is coils. Device can be used as a tacho Diagram supplied. Will actually work on 5 £1.50 aech Pg P 75 p or

15 p or 5 for $\mathrm{f} 5 \mathrm{p} \& \mathrm{p}$

LARGE OUANTITY OF PHOTOMULTI. all with information. British approx. 2" window $£ 2$ en. British approx. $5^{\prime \prime}$ window £3.50 an. American approx $2^{\prime \prime}$ window £4 ea. Special American version by RCA $\mathbf{8 6}$ ea.

P\&P all photomultipliers Et .50 en.

KEYBOARD PAD

Size $3 \times 21 / 2 \times 2^{\prime \prime}$ high with 12 Alma Reed
Switches. Blue keys marked in green $0-9$ Swiches. Bue keys ma
and a star with one blank.

£4 each P\&P £1
5 for $£ 15$ P\&p £2

REGULATORS - att at 45p *ach. MC7805. 7812.7815 .7912 .7915
16 pin DIL Socker 10p. 14 pin DIL Socker 8 p LED Dype TIL 209 Red wih holde 1 10p each ROCKER SWITCHES 2 Dole c 10 - 1 Sp cach - normäliy over E2 OUR PRICE $75 p$ each Soting Action TERMINALS - nolmally over 30p oa OUR PRICE $15 p$ onen Sub-min TRANSFORMER 0120.240 V Input $12 \mathrm{~V}-0.12 \mathrm{~V}$ rated 4 VA Output 75 F each P . 70 each $\mathrm{P} \mathrm{\& P} 75 \mathrm{p}$ C.E.D.

Standerd Whiue 12p. Stendard Yellow 15 p. Small White Bp

TEST GEAR, OSCILLOSCOPES, SIGNAL GENERATORS ETC. and they are priced to move.
 Cinters wetcome or watte or Benter Stul PHONE for detals REMEMBER WE WILL
 CONSIDER OFFERS

DIODES

All new full spec devices IN3063; BAX 13 ; IN4148; is 44 . 100 off $£ 1.50-1.000$ off £10.
20 AMPS
${ }_{6}^{825}$:5:
Summ 3 phase avalable Please condin CRYSTALS
19 2KHZ FLAT METAL CASE - 50p each. $10 \mathrm{MHZ} \mathrm{B7G50p} \mathrm{aach}$.

20 each P\&P:?

TRANSFORMERS Secondaly outputs 6KY 0 .

$34+10 \mathrm{O}$ O6A wilh matchung 40 C Choke E 30 the pair
3 KV 50 MA ES en.
18 KV 30 MA 6 O .
?2 SKV $110 M A \mathrm{E} 50$ es. SKV 30OMA C15.
MULTI PURPOSE MAINS TRANSFORMER 12 KV 30 C
wirting 0 10 110125 तt $48 A E 15$ -
425 V 50 HZ 2 Wire mpul Outpul 8 SKV
'uncon 740 V al ' 'ating $£ 15$ ea. 5, IHZ CuIDUI 115 I I I 8 KVA BRAND NEW The 220250 V renservatively ritiell $£ 20$ ea
CAPACITORS
Smatrve4an
\square

INFRARED QUARTZ LAMDS 23O, 6, O Wallis sial 13° :
BRIDGERECTIFIER. ? Amp 50p en.
PHOTODIODE DETECTOR $4^{\prime \prime}$ tiv leat $25 p$ oe.
AMPHENOL.
1\%
If C Siamond MAINS LEAD. Multided it vertical that bins ceme

C4.50 en. Srx williank $\mathbf{2 2 . 5 0}$ en

MAGNETOS NEW BOXED Originalfy for 14 cyl-gipsy

$$
\begin{aligned}
& \text { Very adaptable } \\
& \text { £4.75 each }
\end{aligned}
$$

RXs ${ }_{940}^{770 \mathrm{RMk} .11}$
$24 V I N V E R T O R$ VERSION SPECIAL GOVT. QUALITY

TANTALUM BEAD	
CAPACITORS.	4.7 ut

SMALL SMALL TRANS FORMER. 240 V Input.
Output 2 windings $12 \mathrm{~V} \&{ }^{2} \mathrm{l}$ Output 2 windings
24 V 1 amp. $£ 2$ each.

 \section*{St20 1, a \times "dra New 300 ea MOTOR 12 V OC with

}
morn New E:

IEDEX ROTARY SOLENOIOS
${ }^{35 p}$ as.
DIAMOND H CONTROLS ROTARY SWITCH

PULSE TRANSFORMER. Sut, mul
Seroutary centre lapora Now $\mathbf{2 0 p}$ on.
Sexombary centre lapuer Nfw 20 p an.
MOTOR by Inand Motor Con OC

Hund fi eork.
DON'T TAKE CHANCES. USN The MOPVE EHT CAB1: 10p per motre in il 50 Der 100 metre drum. P\&P

MYSTERY IC PACK. Some 40 pin - good mixture - all new
devices 25 IC: for $\mathrm{E1}$. PQP 50 p You find out what they ae and we Lull buy the information lrom rou
VACUUN: PUMPS.-TRAPS
VACUUWH PUMPS - TRAPS, ETC. Send for list
DECOUPLING CAPACITORS. 005 mid 10 V .001 mid 01 mtd $50 \mathrm{~V}, 047 \mathrm{mtd} 250 \mathrm{~V}$ All values 100 for f 1 .
E.H.T CAPACITORS 500 pt 8 KV 20 p ench.
10-WAY multi colour ribeion cable. New 40p per movere 10 merras for $£ 3$.
GEC UHF 4 -bution Iuner E1.50 mach

POTER \& BRUMFIELD TIMER REL

SPEAKERS ? : 50 , ihm (1) ?n Nrw 40p each
RAPIÓ DISCHARGE capaciors 8 mto 4 kV E5 each. P\&P $£ 2$
 BIS IN
each.
CONT
CONTACTORS Heavy Duty 2 AV or i, mithe 11 each
GEC IJH VHF fi butten hury $\mathbf{f} 2$ each.
DIGITAL $24-$ HOUR CLOCK

93IA PHOTO MULTIPLIER ONTYE3.75 EACh
SLIVER CONTROL 500 W .
SLIVER CONTROL 500W
RANCO 250V 18ATHERMOSTATS MHP C.......t mull
SOLID STATE UHF TUNER5 NO NI MS

Sin SOLIO RUBBER RINGS

VER FEW
OF THESE
£175
EACH

MINIMUM ORDER \& 3 VALUE OF GOODS MINIMUM P\&P f 1 - where P\&P not stated please use own discretion - excess refunded CARRIAGE ALL UNITS 6 P\&P or CARRIAGE and VAT at 15% on total MUST BE ADDED TO ALL ORDERS
CALLERS VERY WELCOME STRICTLY BETWEEN 9am-1pm and 2-5pm Monday to Saturday inc.
BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome.

DIGITAL TEST METER

This unique and modestly priced piece of test gear uses the very latest $3^{1 / 2}$ digit LCD DVM module and acts as a combined 25 -range digital multimeter and a 5 -range digital frequency meter. It's another 'first' from ETI.

Two of the most useful pieces of modern electronic test gear are the Digital Multimeter (DMM) and the Digital Frequency Meter (DFM). These instruments are highly accurate, rugged and can be used in any attitude (vertical, horizontal, upside down, etc). Trouble is, they tend to be a bit expensive; a decent pair of such instruments costs about £200.

We have overcome the price by producing a unique 30 -range digital instrument that acts as a combined 25 -range DMM and 5 -range DFM. We've decided to call this new instrument a Digital Test Meter, or DTM. Our DTM is designed around the very latest $31 / 2$ digit liquid crystal digital voltmeter module (thereby simplifying construction), is powered from two 6 V battery supplies and typically gives several months of operation from a single battery set.

The AV (alternating voltage) ranges of the DTM are frequency compensated; they are typical responses that are flat within 1% to 40 Hz or to within 1 dB to 120 kHz .

The resistance indicating section of the DTM uses a ratiometric measurement technique and a test voltage of about 300 mV maximum, thereby enabling in-circuit resistance measurements (such as a resistor in parallel with a semiconductor junction) to be made without forward biasing in-circuit junctions. The DTM is provided with an independent facility (via a specific test terminal) for testing semiconductor junctions.

The frequency meter section of the unit can be used to measure frequencies in the range 10 Hz to 1.999 MHz . The input impedance of the section is roughly 200 kHz and signal levels in the approximate range 10 mV to 100 V can be accepted.

The DTM is provided with a built-in precision 1 V2 DC reference, which can be used for basic calibration of the DC and DV ranges. Resistance calibration is automatically established by built-in standard resistors. The instrument must be compared with external standards to calibrate the basic $A C, A V$ and frequency ranges.

Accuracy

The basic $31 / 2$ digit DVM module used in the DTM is intended to read 100 mV full scale, with 100% over-range capability (giving a maximum reading of 199.9 mV). The basic module is capable of reading with an accuracy that is within 0.1% (one digit, or 100 uV) of full scale, once it has been initially calibrated against a suitable reference standard.

In practice, all other ranges of the DTM are obtained by feeding inputs to the DVM module via resistive potential dividers, current ranging resistors and resistance standards.

In our prototype DTM we've used 1% resistors in all pertinent positions, thus giving the completed instrument an overall accuracy of 1% which we consider to be adequate for most practical purposes. If you want higher accuracy,

PROJECT:Digital Test Meter

hundred millivolts are applied to the unknown resistor, thereby enabling in-circuit resistance measurements to be made without causing semiconductor junctions to become orward biased. energising voltage and is determined solely by the accuracy of the ranging resistors, thus elimina ing tails.
circuit measures resistances of 0 R1
19.99M in six ranges.

In the DTM, multi-pole switch SW1 is used to select the mode of operation and SW2 is used for range selection. SW 2 sets the decimal point of the display to a position appropriate for the
selected range.

The DTM has a facility for testing semiconductor junctions.

 from the built-in 1V2 source via RV2 and R25 and the resulting
device current is read out by the DVM module. Open circuit devices give a reading of zero. Short circuit devices give a reading of 100.0. Good silicon junctions give a forward reading of roughly
60.0

The ACIDC converter section of the instrument is designed around IC7, which is connected as a precision rectifier. The gain of output of the converter is integrated by the R46, C17 network and by an additional network that is incorporated in the DVM module. high-impedance (roughly 200 k) input buffer Q2 via safety resistor R26 and are then amplified by O_{3} and converted to square waves divided down by decade dividers IC3 to IC5. divided down by decade dividers IC3 to IC5.
The heart of the converter is IC6 which,
dedicated precision frequency-to-voltage converter chip, in which the input signal is fed to pin 11 via R32 and a proportional analogue voltage appears at the junction of R 38 -R39. In our to 1.999 kHz . Frequency calibration can be set via RV4 and offset nulling (zero output for zero input) can be achieved via RV3. Frequency ranging of he complete converter circuit is
obtained by feeding the input of IC6 from an appropriate point in the IC2-IC5 network via SW2e. Thus, on the 1 kHz range IC6 is fed directly from the output of IC 2 ; on the 1 MHz range, IC6 is fed from
the output of IC5.
self-tapping screws and $1 / 8$ inch spacers into studs moulded into the base of the case.

Make up PCB A as shown in the overlay, taking special care over the construction. Note that 1% resistors are used in the range-determining positions. Fit Veropins in all appropriate positions on the board, to facilitate wiring interconnections. Make up the power supply $(+6 \mathrm{~V}, 0 \mathrm{~V}$ and
$-6 \mathrm{~V})$ connections to the board via SW 3 .

Make up the following interconnections to the DVM module, noting that the module is a MOS device and can be damaged by static charges; V SS to -6 V and VDD to +6 V on PCB A. Connect COM, IN LO and TEST together and connect to the $0 \vee$ power supply line. Connect the 0 V line to the the common terminal of SW1f. Connect RFH to the common terminal of SW1d. Connect IN HI to the common terminals of SW1c and SW1e.

The heart of the DTM is a DVM 176 M R ev C $31 / 2$ digit liquid crystal
DVM module, available from Ambit International. This module has a built-involtage e reference and is intended to be powered from a single 9 battery. The complete module (including the readout)
typically draws only 1 mA of current and is intended to read 100 mVV DC full scale with 100% over-range capability (giving a maximum reading of 199.9 mV).
In our particular application we need, for various reasons, to
 reference, and supply it with a reference voltage from an external source. IC1 and the RV1-R23 divider are used for this purpose. In the completed DTM, voltage ranging is obtained by
feeding inputs to the DVM module via the R6-R12 potential
 to the DVM module via the same potential divider (which is
frequency compensated via $\mathrm{C} 2-\mathrm{C} 3$ and C 4) and via a precision ACIDC converter (designed around IC7). Current ranging is obtained by feeding the test current
through the appropriate one of the R1 to R5 ranging resistors and monitoring the voltages that they generate. In the DC mode, the generated voltages are fed directly to the input of the DVM
module. In the AC mode, they are fed to the module via the ACIDC
converter. the DVM module via a precision frequency-to-voltage converter. The f-to-v converter has a basic range of 10 Hz to $1,999 \mathrm{kHz}$ and
frequency ranging is achieved by feeding input signals to the converter via switch-selected decade divider networks.

Resistance measurements are made by disconnecting the
 ranging resistors and powering the combination with a few hundred millivolts DC (via the IC1-Q1 network). The voltage of the ranging resistor is monitored at the reference-input terminals of the DVM module and the voltage of the unknown resistor is
monitored at the module's signal input terminals. The DVM module compares the ratios of the two voltages (and thus the ratios of the resistors) and , , ives a readout that is interpreted directly in
terms of resistance.
 due to the complexity of the interwiring. Construction needs given a functional check at the end of each building stage. The following building sequence is recommended.

DV Ranges \& AV Ranges

Gather all hardware together (switches, battery pack, sockets, fuse holder and the DVM module and bezel) and secure them in their final positions in the instrument case. On our prototype, we've used a bank of push-button switches for
SW1 (mode selection) and a rotary switch for SW2 (range selection). On/off switch SW3 is mounted on the rear of the
instrument. SW1 is mounted on a small PCB and fixed, via

	\propto	
	$\stackrel{3}{4}$	
	>	
	4	¢ ¢ ¢ ¢ E ¢ ¢
	0	S \& ¢ ¢ ¢ ¢
	\checkmark	
$\frac{N}{\delta}$		-NM*L 0

Refer to the main circuit diagram and make the following connections. Wire up SW1d and make the connection to RV1 slider on PCB A. Wire up SW1f and make the connection to COM terminal on the DVM module. Trace the DV (direct voltage) path through the circuit and make the appropriate connections as follows. From SK2 to SW1a common; from SW1a DV to R6 and from the R6-R12 chain to the 1 to 6 pins of SK2c; from SW2c common to SW1b DV/AV; from SW1b common to SW1c DV and AC; from SW1c common to SW1e common and to the IN HI terminal of the DVM module.

With all the above connections made, double check the wiring and then switch the unit on. Short the instrument's input terminals and check that the DTM reads 000 on all ranges in the DV mode. Switch to the 1 V range, connect the unit's input terminal (SK2) to SK1 and trim RV1 to obtain a reading of 1 V 2 (1200). The unit is now approximately calibrated (within 5%) on all DV ranges. Remove the connection from SK1 and check that the unit is functional on all DV ranges.

If you have access to a precision DV source or to an accurate DMM, you can precisely calibrate the DTM by switching it to the 100 mV DV range, connecting a known input test voltage ($100-199 \mathrm{mV}$) and adjusting RV1 for a correct reading.

Decimal Pointing

Refer to the main circuit diagram and make the connections from $+6 \vee$ to SW2f common via R24 and from the SW2f range pins to the D1, D2 and D3 terminals on the DVM module. Switch the DTM on, on the DV ranges, and check that the decimal point appears in sensible positions on each range (eg 100 mV reads 100.0 on the 100 mV range or 100 on the 1 V range).

Refer to the main circuit diagram and trace the $A V$ (alternating voltage) path, making additional connections as appropriate, as follows. From SK2 to the top of R6 via SW1a and C1; from the output of the R6-R12 chain to SW1b via SW2c; from SW1b common to R41 of the AC/DC converter on PCB A and to the DV and DC pins of SW1 1 ; from R46 of the converter on PCB A and to the DV and DC pins of SW1c common to IN HI on the DVM module.

When the above connections are complete, set the unit to the 100 mV AV range, connect a 1 kHz sine wave of known amplitude ($100-199 \mathrm{mV}$) to the input of the DTM and adjust RV5 for a correct reading. Switch the unit to the 1 V range, increase the input signal to a sensible value and check the frequency response of the instrument. The response should be virtually flat from 20 Hz to 40 Hz ; if necessary, the value of C2 can be padded up slightly toobtain the required response. Check that the unit is functional on all other $A V$ ranges.

DC Ranges \& AC Ranges

Refer to the main circuit diagram, trace the DC (direct current) circuit path (via R1-R5), add all appropriate switching connections and then give the unit a functional check on all DC ranges.

Refer to the main circuit diagram, trace the $A C$ (alternating current) circuit path, add any appropriate switching connections and give the unit a functional check on all AC ranges.

Resistance Ranges

Refer to the main diagram again, trace the resistance measuring circuit (via R13-R18 and SW2d, SW1d-SW1e-SW1f and from the IN HI pin of the DV-M module to SK2 via SW1c

Fig.3. The mode switch assembly fits on its own PCB (above).
and SW1a) and make all appropriate connections. Give the unit a functional check on all ranges by connecting appropriate test resistors to the DTM test terminals.

Note that, due to the low-voltage ratiometric resistance measuring technique used in this instrument, the readout tends to jitter somewhat when used to test resistors with values in excess of 200 k or so. This tendency can be minimised by keeping test leads as short as possible, to avoid hum pickup.

Make the connection from R25 (on PCB A) to Diode Test Socket SK1. Short SK1 to SK2 and adjust RV2 for a reading of 100.0 on the 100 uA DC range. Remove the short and check that a reading of 00.0 is obtained. Connect a silicon diode between the two sockets and check that a reading of about 60.0 is obtained in the forward direction and 00.0 in the reverse.

Frequency Ranges

Construct the frequency-to-voltage converter circuit on PCB B and make its supply connections via SW1g (+6 V) and SW1h (-6 V) and the supply common line. Make the input connection to the PCB from SW1a and the output connection to SW1c. Wire up SW2e as shown, noting that a 4 k 7 resistor is connected directly to each of the $1 \mathrm{kHz}, 10$

Fig.4. Component overlays of the two Digital Test Meter boards. Frequency ranging (top board) is achieved by feeding IC6 from an appropriate point in the IC2-5 chain.
Resistance measurements are made by using one of the resistance ranging resistors R13-18 (bottom board). IC7 is the heart of the ACIDC converter.
PARTS LIST

Resistors $1 / 4$ W 5% unless specified		Capacitors	
R1	OR1 1/2W 1\%	C1	10n 2 kV ceramic disc.
R2	1R0 1/2W 1\%	C2	33p silver mica
R3,12	10R 1/2W 1\%	C3	470p silver mica
R4,11,13	100R 1/2W 1%	C4	$4 n 7$ silver mica
R 5, 10,14	1k0 1/2W 1\%	C5	150n polycarbonate
R6,18	10M 1/2W 1\%	C6,7,9,11	470u 16v electrolytic, PCB type.
R7,17	1M0 1/2W 1\%	C8	100n polycarbonate
R8,16	100k $1 / 2$ W 1\%	C10	470n polycarbonate
R9,15	10k 1/2W 1\%	C12	2n7 ceramic
R19,30,39	1k0	C13	470p ceramic
R 20,24,25,43,44	10k	C14	10n polycarbonate
R21,26	5 k 6	C15,17	220n polycarbonate
R22	3k3	C16.	447 electrolytic, PCB type
R23	22k	Semiconductors	
R27	680k	DVM	176M Rev. C.
R28,45	3k9	IC1	Zn423
R29,46	470k	IC2	4093B
R31	47R	IC3,4,5	4017B
R32,47,48,49,50	4k7	IC6	9400CJ
R33	390k	IC7	CA3140
R 34, 35	2 k 2	Q1,2,3	BC109
R 36,41	100k	D1-4	IN4148
R37	820k	Miscellaneous	
R 38	15k	SW1a, 8 pole ch	interlocking push button
R40	22R	SW1,b,c,d,e, 6 p	over interlocking push button
R42	2 M 2	SW2a-f, 2 pole 6 SW3, DPDT min	(3 off) rotary swith le
Potentiometers		SK1-4, 4 mm ban	
Rv1,2	4k7 miniature horizontal preset	2 off, 4 section b	ders for HP7
Rv3	47k miniature horizontal preset	1 off, $11 / 4$ " fuse	hassis fixing or similar
Rv4	470k miniature horizontal preset	1 off, winged kn	
Rv5	2k2 miniature horizontal preset	Case (see buylin	

$\mathrm{kHz}, 100 \mathrm{kHz}$ and 1 MHz output pins of PCB B with the connections to SW2e made via these resistors.

When construction is complete, switch to the 1 kHz range in the ' f ' mode, short the unit's input terminals and adjust RV3 for zero reading on the meter. Remove the input short, connect a 1 kHz input signal and adjust RV4 for a reading of 1.000 on the meter. Finally, check that the DTM is functional on all other frequency ranges.

BUYLINES

Watford Electronics have agreed to supply a full kit of parts for the ETIDTM.

Our Case for this project was obtained from OK Machine and Tool. (Order as CH23 Tan) Phone 0703-610944.

Ambit International Supply the DVM176 Rev. C.

Our condolences to purchasers of ZEON Hong Kong watches - ZEON have gone into voluntary liquidation
Yet another reason for paying a little more for qUALITY, RELIABILITY AND CONTINUING SERVIGE

Our best selling alarm chronograph is now available from stock again

CASIO 810S-35B
ALARM CHRONO

RRP £34.95
ONLY £29.95

Solid stainless steel, mineral glass. Water resistant. 5-YEAR BATTERY. Hours, minutes, seconds, day and day, date, month and year. 12 or 24 -hour display. 24 -hour alarm, hourly chimes Stopwatch from $1 / 100$ second to 7 hours; net, nap and 1 st and 2 nd place times.

NEW CASIO CHRONOGRAPHS

F-300

Something to sing about with twelve program-
med melodies!

CASIO
ML90
MELODY
MAKER
RRPE21.95
DMLY
E19.95

Clock, hourly chimes, calendar to 1999. Alärm 1:7 different melodies, changing daily, a fixed melody or buzzer. Alarm 2: a fixed melody or buzzer. Date memory 1: "Happy Birthday". Date memory 2: "Wedding March" or "Drinking song". On December $24 / 25$ plays "Jingle Bells". Calculator with 11 -note keyboard, full access memory, square roots, $\%, 7 / 32 \times 21 / 2 \times 41 / 2$ inches. Wallet. 1 year
batteries. batteries

C-80. Here it is!

CASIO C-801

Watch
Calculator
Stopwatch Dual time RRP $£ 34.95$

ONLY

 £29.95

Finger touch keyboard. Hours, minutes, seconds, am/pm and day. Day, date, month calendar pre-programmed to 2009 . Professional 24 -hour
stopwatch measuring net lap and first and second stopwatch, measuring net. lap and first and second 8 place times to $1 / 100$ second. Dual time (24 hour). chrome plated case with stainless steel bracelet.

C-80 Black resin cased version $£ 24.95$

We PROMISE TO BEAT any sensible lower advertised prices ON THE SPOT if the advertiser has stocks AND you get Casio's guarantee from us!

ONLY
£12.95

Hours, minutes, seconds, am/pm, day and date. Automatic four year calendar. $1 / 100$ second chronograph to 12 hours, measuring net, lap and first and second place times. Backlight, 2-year lithium battery. Water resistant case. Mineral glass.

F-300 Rugged, lightweight resin case
11005-37B Chrome plated. S/S bracelet

SEIKO

100 m WATER RESISTANT SUITABLE FOR SWIMMING ETC

DFT 030/038
ALARM CHRONOGRAPH

100 m WATER RESISTANT

ONLY $£ 49.95$

Hours, minutes, seconds with alpha day and date on upper display and day, date, month calendar. Alarm and hourly chimes. COUNTDOWN ALARM. Stopwatch from $1 / 100$ second to 12 hours; net, lap and 1 st and 2 nd place times on double display.

DER 028 SOLAR ALARM CHRONOGRAPH
With weekly alarm, interval timer, 7-year battery With weekly alarm, int
100 m water resistant

$£ 69.95$

OTHER STAR BUYS

Watches	
F-8C 8 digits. Resin. Now only	
F-200 Sports chrono. Resin	£10.9
950s-36B 1/100 sec. $12 / 24 \mathrm{hr}$. Solid s/s	
Alarm chronographs	
F-80 $1 / 10 \mathrm{sec}$. Resin. S/s trim	
830s-41B $1 / 10 \mathrm{sec}$. S/s jacket	
830GS-418 Gold plated version	
810s-40B As 81 OS-35B but chrome	
810GS-35B Gold plated version	
Casio ladies' watches. 11 models, many	
ch and dual	

SUMMERTIME SPECIAL OFFERS

FREE

on reauses with order

With any purchase made from this section before September 30th 1980 GENTLEMAN'S DIGITAL WATCH with comprehensive display and long life battery from world famous manufac turer. Value around $£ 12$. An ideal working watch for you or a present for someone else.

Offers subject to availability.

FREE ON REQUEST

With any purchase made from this section before September 30th, 1980
From world famous manufacturer
GENT'S DIGITAL WATCH, around $£ 17$ or LADY'S DIGITAL WATCH, around $£ 15$ or CALCULATOR / CLOCK, around $£ 17$

Offers subject to availability

BETURN OF POST SERVICE

Postal and telephone orders received before 4.00 p.m. will normally be despatched the same day by FIRST CLASS POST
Send your order by FREEPOST (2nd class post - no stamp required). Please phone urgent orders or use first class mail

WATCHES with chronograph (stopwatch) 950S-42B 12/24 hr Dual time. S/S jacket

560S-38B Digi/ana Timer chrome \quad| £17.95 |
| :--- |
| 24.95 | C-80 Calculator. Dual time £24.95 Alarm chronographs with hourly chimes $\mathbf{8 1 0 S - 4 0 B}$ As 81 QS-35B but chrome . $£ 24.95$ 830S-41B $1 / 10 \mathrm{sec}$. S / S jacket £24.95 7905-39B $1 / 10 \mathrm{sec}$. full calendar. Chrome $£ 29.95$ CALCULATORS

AQ-2200£19.95. MQ-12£19.95
Musical: ML-82 £19.95. ML-71, ML-81£22.95 Ultra slim scientific: FX-3200 £21.95.

WATCHES

56QS-50B Digital/analogue. Chronograph Timer. Solid stainless steel 59CS-33B Ultra slim dress watch with alarm

Scientific calculator: FX-8000. Stopwatch alarm timers £31.95

ILLUSTRATED CATALOGUE
Casio and Seiko products. Send 25 p to: TEMPUS (Information and Service Centre), 19-21 Fitzroy Street. Cambridge CB1 1 EH .

tll bOOK

BEGINNERS

Beginners Guide to Electronics Squires $£ 3.75$
Beginners Guide to Transistors Reddihough $\mathbf{£ 3} .75$
Beginners Guide to Integrated Circuits Sinclair $£ 3.75$
Understanding Electronic Circuits Sinclair $£ 4.60$
Understanding Electronic Components Sinclair $£ 4.60$
Beginners Guide to Radio king $£ 3.75$
Beginners Guide to Audio Sinclair £3.75
COOKBOOKS
TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook $£ 8.20$
Active Filters E11.30
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook f10.00
Video Cookbook $£ 7.00$
TIL Cookbook $£ 7.55$
The Basic Cook $£ 4.00$ inc. p / p
IC Converter Cookbook $£ 9.50$

APPLICATIONS

Fire and Theft Security Systems B. Weis $£ 2.15$
How to Build Electronic Kits Capel $£ 2.65$
110 Electronic Alarm Projects R. M. Marston $£ 4.45$
110 Semiconductor Projects for the Home Constructor R. M. Marston £4.45.
110 Integrated Circuit Projects for the Home Constructor R. M. Marston £4.45
110 Thyristor Projects Using SCRs R. M. Marston $£ 4.45$
110 Wave Form Generator Projects R. M. Marston $\mathbf{E 4 . 4 5}$

COMPUTING \& MICROPROCESSORS

What is a Microprocessor? 2 cassette tapes plus a 72 -page book

 £12.00Beginners Guide to Computers and Microprocessors with Projects C Adams $£ 6.05$
Basic Computer Games Ahl £6. 05
Basic for Home Computers A self-teaching guide. B. Albrecht E 6.15 Illustrating Basic D. Alcock $£ 3.75$
Intro to Microprocessors Aspinall E6.55
Z-80 Microcomputer Handbook W. Barden $£ 7.75$
How to Program Microcomputers W. Barden $£ 7.25$
Introduction to Microcomputers and Microprocessors A. Barna $\mathbf{£ 8 . 6 0}$ Microprocessors in Instruments and Control R. J. Bibbero $£ 13.00$
Basic Basic J. S. Coan $\mathbf{£ 7 . 8 0}$
Advanced Basic J. S. Coan $£ 7.30$
Getting Acquainted with Microprocessors L. Frenzel $\mathbf{£ 7 . 2 5}$
Beginners Guide to Microprocessors C. M. Gilmore $£ 4.90$
Beginners Guide to Home Computers Grossworth $£ 4.50$
Beginning Basic R. E. Gosling £4.75
Microprocessor Programming for Computer Hobbyists N. Graham £7.15
Miniprocessors from Calculators to Computers Heiserman $£ 5.00$
Microcomputers, Microprocessors, Hardware, Software and Appli cations J. L. Hilburn $£ 17.40$
Basic Programming J. G. Kemeny $£ 7.25$
Microprocessor Systems Design E. Klingman $£ 17.00$
Intro to Microprocessors Leventhal $£ 17.00$
Microprocessors - Technology, Architecture \& Applications D. R McGlynn $£ 10.55$
Interactive Computing with Basic Monro $\mathbf{E 4 . 2 5}$
Basic with Style P. Nagin $£ 4.25$
Software Design for Microcomputers Ogdin $£ 7.20$
Microcomputer Design Ogdin $£ 7.25$
Microcomputer Base Design Peatman $\mathbf{£ 5 . 7 0}$
Hands on Basic with a PET Peckham $£ 9.55$
Basic - A hands on method Peckham $£ 6.95$
6800 Software Gourmet Guide and Cookbook Scelbi 18.90
8080 Software Gourmet Guide and Cookbook $£ 8.90$
The 8080A Bugbook: Microcomputer Interfacing \& Programming
P. H. Rony E 8.35

8080/8085 Software Design Titus $£ 7.60$
57 Practical Programs \& Games in Basic Tracton $£ 6.65$
Microcomputer Primer M. Waite $£ 6.50$
Your Own Compqer Waite £1.60
Microprocessor/Microprogramming Handbook Ward $£ 6.20$

LOGIC

Logic Design Projects Using Standard ICs J. Wakerly $£ 7.15$
Practical Digital Design Using ICs J. Greenfield $£ 16.00$
Designing With TTL Integrated Circuits Texas Instruments $\mathbf{6 9 . 3 5}$
How To Use IC Circuit Logic Elements J. Streater $£ 3.80$
110 COSMOS Digital IC Projects for the Home Constructor
R. M. Marston E4.45

Understanding CMOS Integrated Circuits R. Melen £4.15
Digital Electronic Circuits and Systems R. M. Morris $£ 4.50$
MOS Digital ICs G. Flynn $£ 5.25$

—TEST INSTRUMENTS

The Oscilloscope In Use Sinclair $£ 3.50$
Working with the Oscilloscope A. Saunders $£ 4.25$
Servicing with the Oscilloscope A. King $£ 6.65$
Radio Television and Audio Test Instruments King $£ 7.00$

OP-AMPS

Applications of Operational Amplifiers Graeme (Burr Brown) £8.45 110 Operational Amplifier Projects for the Home Constructor R. M. Marston E 4.45
Designing With Operational Amplifiers Burr Brown £ $£ 9.00$
Operational Amplifiers Design and Applications G. Tobery (Burr Brown) £7.55

COMMUNICATIONS

Communication Systems Intro To Signals \& Noise B. Carison $\mathbf{£ 7 . 6 5}$ Digital Signal Processing Theory \& Applications L. R. Rabiner £24.40 Electronic Communication Systems G. Kennedy $£ 8.75$
Frequency Synthesis. Theory \& Design Mannassewitsch $£ 25.00$
Principles of Communication Systems H. Taub $£ 8.40$

THEORY

Introduction to Digital Filtering Bogner $£ 10.60$
Transistor Circuit Design Texas Instruments $£ 9.75$
Foundations of Wireless Electronics M. G. Scroggie $\mathbb{£ 5 . 6 0}$

- REFERENCE

Electronic Engineers Reference Book (Ed. 4) L. W. Turner £34.50
Electronic Components M. A. Colwell $£ 2.90$
Electronic Diagrams M. A. Colwell $£ 2.90$
International Transistor Selector T. D. Towers New update $£ 10.20$ International FET Selector T. D. Towers $£ 4.35$
International Op-Amp Linear IC Selector Towers $£ 7.65$
Radio Valve and Semiconductor Data A. M. Bell £4.00
Radio, TV and Audio Technical Reference Amos $£ 30.40$

MISCELLANEOUS

Electronic Fault Diagnosis Sinclair $£ 3.55$
Integrated Electronics J. Milman $£ 8.20$
Practical Solid State DC Supplies T. D. Towers $£ 6.40$
Practical Triac/SCR Projects for the Experimenter R. Fox £2.35
Printed Circuit Assembly Hughes \& Colwell $£ 2.90$

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy way of getting your hands on the right title.

MICROPROCESSOR BOARD (NASCOM 2) 4 MHz Z80 CPU; TV or Video +1200 baud Kansas City + Serial RS 232 printer Interfaces; Keyboard; 128 character ASCII plus 128 Graphics in $2 \times 2 \mathrm{~K}$ ROM; free 16-way paraliel port; 8K BASIC; NAS SYS operating monitor. £280 built and tested.
Firmware \& MOS ICs
Zeap Assembler (4, 1Kx8 EPROMS) $£ 50$ Nas Pen text editor ($2,1 \mathrm{Kx} 8$ EPROMS $) £ 30$
Expenelon boards (in kit form)
16K RAM $£ 127.50$ - 32K RAM $£ 175.00$ 48K RAM $£ 220.00$
High Resolution Programmable Graphics $£ 90$ Colour Board Kit $£ 140$
High Resolution Colour add on $£ 37.50$

- Powertul monitor TANBlay
- 8K RAN
- 32 parallel I/O lines
- 2 serial I/O lines
- RS $232 \mathrm{C} / 20 \mathrm{~mA}$ loop, with 16 programmable Baud rates
- Four 16 Bit counter timers
- CUTS cassette recorder interface
- Data bus buffering
- Memory mapping control
- 71 Key ASCII Keyboard, including numeric keypad and with auto repeat
- Including metal cabinets for both keyboard and modules
- Including power supply 10K Microsoft BASIC - All the usual BASIC commands
- Integer and real numbers
- Integer and real arrays
- Intrinsic functions ABS, INT, RND SGN, SIN, SQR, TAB, USR, ATN, COS, EXP, LOG, TAN.
- User defined functions
- READ and DATA statements
- Dump and load programs for cassette recorders
- Program editing command
- String function for text I/O
- BASIC can call user machine-code sub routine
- User machine-code interrupt handler interfaces with BASIC

COMPUTER KEYBOARDS

TASA 56 key touch sensitive keyboard. All ASCII characters including control keys. Parallel output with strobe. Shift lock. Keys coded in 3 colours to with strobe. Shicate function. 18 V DC at $35 \mathrm{~mA} .15^{\prime \prime} \times 6.25^{\prime \prime} \times$ $0.385^{\prime \prime}$ thick. Black resin encapsulated.
49.50 + VAT

STAR DEVICES MK III 71 keytouch sensitive keyboard. With numeric pad. All ASCll characters including control keys. Auto key repeat. Paralle output with strobe. Shift lock with indicator LED Built in 'beeper' with level control. 5V DC at 300 mA $15^{\prime \prime} \times 7^{\prime \prime} \times 1.25^{\prime \prime}$. Grey case with white keys on blue. 48.50 plus VAT

CARTER 57 key ASCIl keyboard. Conventional key board. 128 ASCll characters including control keys Parallal output with strobe. Shift lock. +5 V and -12 V DC. $12^{\prime \prime} \times 5.5^{\prime \prime} \times 1.5^{\prime \prime}$. Black keys with white ledgends.
$39.34+$ VAT
FERRANTI - "SIZE $14 \times 6 \times 3$ " SLOPING FRONT" 55 Key ASCII Coded in steel case. Complete with Plug and Cable with circuit to convert to T.T.L. levers.
In good condition at only $\mathbf{E 2 5}+$ VAT, P/P £2.50

NASCOM PRODUCT LIST + VAT
 1/O board kit less I/O chips
 45.00
 IIART + BAUD rate generator + crystal for IO
 CTC - MK3882 multiple interrupt driven
 clock generator for 1/O board
 P/IO - MK3881 + interconnect for 1/O board
 P/IO interconnect only (for 1/O board)
 Econographics kit for additional 128 char-
 acters (N1 only)
 2708/2716 Programmer suitable for N1 30.00 under NAS-SYS $£ 20.95$ plus VAT
 Nascom 19" rack mounting card frame
 for N1 and N2
 保 3 EPROM for Nas-
 ${ }^{\text {sys }}{ }^{\mathbf{M}} \mathrm{K} 36271$ 8K BASIC in $8 \mathrm{~K} \times 8$ ROM
 Naspen VS in 2 EPROM
 Nas-sys monitor in 2 EPROM
 Nasbug T2 $1 \times$ EPROM
 Nasbug T4 $2 \times$ EPRON
 Tiny Basic $2 \times$ EPROM
 Super Tiny Basic $3 \times$ EPROM
 Super Tiny Basic upgrade $1 \times$ EPROM
 Tape Software
 ZEAP 1.2 tape and documentation for N1 30.00
 ZEAP 2 tape and documentation for
 Nas-sys
 30.00
 8K BASIC tape and documentation for N1 15.00
 MEMORIES Discounts 10% for $4,15 \%$ for 8 .
 20\% for 16
 K3880 (Z80) for N
 MK3880-N4 (Z80A) for N2
 MK4116 16K $\times 1$ dynamic RAM $\quad 7.80$
 MK4027 4K $\times 1$ dynamic RAM
 2102 1K $\times 1$ x 1 dynamic RAM
 $21021 \mathrm{~K} \times 1$ static RAM
 Unprogrammed 2708
 Unprogrammed 2708
 IM6402 UART
 $21141 \mathrm{~K} \times 4$ Static RAM 8080A
 3.86 5.25

CENTRONICS QUICK PRINTER

EXCLUSIVE TO HENRY'S
50% OFF MAKER'S PRICE
195

for: Software selectable 20, 40 and 80 TANDY, column using 120 mm alu
PET, 150 lines per minute.
NASCOMPCentronics parallel data interface for Nascom, Tandy, etc. 240 volt mains input. ASCII character set Paper feed, and on/off select switches 'BELL' signal Weight lolbs Size: $13^{\prime \prime} \times 10 h^{\prime \prime} \times 4 x^{\prime}$
New, boxed and fully guaranteed
POST PAID Price $\mathbf{£ 1 9 5 . 0 0}+$ VAT
See COMPUTING TOUAY Recommendations MARCH/MAY ISSUES

FUI ASCI keyooerd fbily The ASCII keyboard includes a numeric koypad and ribbon cable connector. Cebinet availeble at $£ 20.00$ plus VAT.
We hove produced a mini-rack which accepts MICROTAN 65 and TANEX, it hes an integral power supply, just plug it into the mains and away you gol Finished in Black/T angerine/Bruahed aluminium, it gives
your mini-system the professional finish.
\& 43.00 phes VAT

LONDON STOCKISTS
Microtan 65 Kit, Incl. VAT
Microtan 65 Assembled,
$£ 79.35$ $£ 90.85$

London Tangerine and National
Nascom Distributor
Export Orders deduct VAT, but add 5\% carriage Official Export \& Educational Orders welcome Our Telex 262284 Mono Ref. 1400 Transonics

ADD VAT
TOYOUR
TO YOUR
ORDER
ORDER
WXCEPT
WHERE
STATED

Tanex (min. con) Kit, Incl. VAT $£ 49.45$
Tanex Assembled Inci. VAT
49.45

Lower case pack. Incl. VAT $\mathbf{8 1 0 . 9 0}$
Chunky Graphics Pack, Incl. VAI ± 7.50
20 Way Keypad incl. VAT $£ 11.50$
Mini-mother board Incl. VAT E9.95
Complete Tangerine range available

SURVIVAL GAME

> A highly addictive but infuriating game. Escape from the tyranical machine if you can. Naturally, the game has sound effects, LED readouts and a skill level control.

Survival is a small hand-held game in which the contestant pits his wits against those of the machine. The machine is a tyrannical device, dedicated to enslaving you by repeatedly making threatening gestures towards you (indicated by a brief flash of a LED as the threat is unleashed). When a threat is made you can either submit, by doing nothing, or you can defy the tryant by pressing a JUMP button and trying to escape up a flight of steps (indicated by a vertical column of ten LEDs).

To escape, you must press the JUMP button only when the threat LED is on. Each time you make a successful jump, you move a discrete amount towards the top of the steps and eventual escape (indicated by a pulsed WIN sound as the top LED of the column illuminates). If you make a single wrong move while on the steps, however, the tyrant will instantly strike you (indicated by a 'bleep' sound) and send you tumbling back down to the bottom of the steps. Alternatively, if you submit to the threats (by doing nothing) the tyrant will slowly lure you down from your perilous perch.

An Evening's Work

The machine makes a threatening move once every second or so, but the actual threat lasts for only a fraction of this time. The game is provided with a SKILL level control, which enables the threat duration (and thus the escape time) to be varied from over 200 mS to less than 50 mS . At the lowest skill level, it is possible to escape from the tyrant in only four to five successful moves. At the top skill level, between thirty and forty successful moves are needed to ensure escape. The escape 'steps' are exponentially weighed, so that climbing becomes progressively more difficult with each move.

The SURVIVAL game is designed around three ICs and three transistors, is reasonably inexpensive to build and is powered from a single 9 V battery. The project can be built in one or two evenings.

Construction

Construction of this project should present few problems if the overlay is followed with care. Note that IC3 is a CMOS device and should be mounted in a suitable socket.

When construction of the PCB is complete you can either make temporary connections to the eleven LEDs and the transducer, etc and give the unit a functional check, or you can dive in and fit the whole shebang in a suitable box and give the unit a functional check afterwards. If you decide on the latter approach, note that the unit typically consumes some $30-40 \mathrm{~mA}$ and should ideally be powered from a PP7 or larger battery, but that our own prototype is in fact powered (or under-powered!) from a PP3.

It is advisable, before completing the interwiring, to functionally check the performance of each of the eleven LEDs used in the unit.

When construction is complete, switch the game on and check that LED 11 flashes briefly once every second or so and that the flash duration can be varied by RV1. You can check the action of C4 and the ten-LED read-out circuit by temporarily shorting the top of R 8 to the positive supply line, in which case the LEDs in the column should sequentially illuminate and the WIN alarm (a pulsed tone) should sound when the upper LED (LED 10) turns on. Finally, remove the temporary short and press PB1 when LED 11 is off, checking that the column of LEDs turn off and a brief tone is generated. Your game is then complete and ready for use.

Construction of the Survival game is relatively straightforward - PCB in one half of the case, LEDs and controls in the other.

Fig.1b. The sound effects generator consists of two gated astable multivibrators. The game just isn't complete without it.

HOW IT WORKS

The basic operating principle of the game is quife simple. IC1 is a low frequency (less than 1 Hz) astable; its output switches alternately between the low (zero) and high (+9 V) states, driving LED 11 on whenever the output is high. The idea of the game is to close PB 1 whenever LED 11 is on, thereby causing C4 to slowly charge up via R8, but to ensure that PB 1 is open whenever LED 11 is off, thereby preventing C4 from rapidly discharging via R9 and D2. The voltage of C4 is monitored by a LED voltmeter (IC2 and ten LEDs) and the game is won when C4 charges to roughly half supply voltage (LED 10 on). IC3 is used as a sound effects generator and produces a brief tone whenever C4 goes into the discharge mode or a pulsed tone when the game is won.

The operation of the IC1 astable is slightly unusual. Here, C2 alternately charges (LED 11 on) via R1-D1-RV1-R3 in parallel with R2 and discharges (LED 11 off) via $R 2$ only, thereby producing a non-symmetrical output waveform in which LED 11 is on for a shorter period than it is off. The on/off ratio is variable via RV1, which thus acts as a Skill Level control.

The pin 1 ('ground') terminal of IC1 is taken to the 0 V line via the base-emitter junction of Q1, shunted by R4 and C3. Whenever C 4 is inadvertently discharged by closing PB1 at the wrong time, the capacitor discharges through this junction and turns Q1 on,
thereby causing Q2 to turn on and activate the IC3c-IC3d half of the sound-effects generator circuit.

Capacitor C4 charges slowly in the exponential mode via R8 when PB1 is correctly closed and discharges rapidly via R9 and D2 when PB1 is incorrectly closed. The capacitor discharges very slowly via R10 when PB1 is open. The C4 voltage is monitored by LED voltmeter IC 2, which drives a line of ten LEDs in the 'dot' mode. The voltmeter is programmed (via R11) to read full scale (LED 10 on) when C4 is charged to approximately half supply volts and is offset by approximately 600 mV via D3. The base-emitter junction of Q3 is wired in series with IED 10, causing Q3 to turn on and activate the IC3a-IC3b half of the sound effects generator when LED 10 turns on (game won).

The sound effects generator is made up of two gated astable multivibrators. IC 3c-IC 3d act as a fast (1 kHz or so) astable which directly drives a piezo transducer or sounder and is gated on via Q2 collector whenever PB1 is incorrectly closed. IC $3 \mathrm{a}-\mathrm{IC} 3 \mathrm{~b}$ act as a slow (a few Hertz) astable which is activated via Q3 collector when LED 10 turns on and pulses the fast astable on and off to produce a distinctive pulsed-tone GAME WON sound.

The entire circuit is powered from a 9 V battery. The circuit typically consumes some $\mathbf{3 0 - 4 0} \mathrm{mA}$, so this battery needs to be a PP7 or larger size.

PARTS LIST

Resistors all $1 / 4$ W 5\%	
R1,11,14,16	10k
R2	220k
R3	33k
R 4	100R
R5,6	4k7
R7	820R
R8	12k
R9	120R
R10	330k
R12	470R
R13	1k2
R15	1 MO
R17	68k
Potentiometer	
RV1	470k
Capacitors:	
C1,4	220u electrolytic axial
C2	4 4 7 electrolytic
C3,5	100n polycarbonate
C6	10n polycarbonate
Semiconductors:	
IC1	NE555
IC2	LM3914
IC3	4011B
Q1	BC108
Q2,3	BC212L
D1-D4	1N4148
LED 1-10	TIL 220 or square LEDs
LED 11	TIL 220 standard red 0.2"
Miscellaneous	
PB1 momentary push button	
SW1 SPST miniature toggle	
B1 PP3	
Txt transducer (See buylines)	
Ceramic resonator	
Case (See buylines)	

BUYLINES

All components used in the ETI Survival game are common types and should present no problems.

The case for this project can be oblained from OK Machine \& Tool Ltd. Phone: 0703-610944. Order as Series HP colour tan. Ambit International are stockists for the transducer.

Fig.2. Component overlay. Lots o^{\prime} LED leads to lace up - there's nothing to it.

AUDIO AND TEST EQUIPMENT

MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC

\section*{TM11 meriedible 120 Range Electronic A
 \section*{| TM3 |
| :---: |
| TM3 |
| 3 307 A |}}

Multi.moter*
$3807 \mathrm{~A} 100 \mathrm{k} / \mathrm{vol}$
$708020 \mathrm{k} / \mathrm{volt}$
7081 $50 \% / \mathrm{vol}$
NHSS
NH5S $20 \mathrm{kV} / \mathrm{vol}$
NTS
LT101 $1 \mathrm{k} /$ vol
YN $3807 \mathrm{FR} 20 \mathrm{k} / \mathrm{volt}$
AT205 $50 \mathrm{k} / \mathrm{v}$

AT1020 $20 / \mathrm{volh}$

 GENERAL EQUIPME

$\begin{array}{lll}\text { AC Micro voltmeter } 3 \mathrm{MHz}>4 \text { Mogohm (large scaie) } & 112.50 \\ \text {. } & 146.75\end{array}$
23 kang volmeter $3 \mathrm{MHz}>4$ Megohm 149.50
26 Range (Llurge scale
36 Range Mulii-meter
22 Range Mult-meter
12 Range Pocket Multi-meter
19 Range Multi-meter plus transistor chec
21 Range Multi-meter
12 Range Multi-meter Deluxe
23 Range Multi-moter, with case
19 Range Muti-mererr with rasanistor tes
18 Range Oeluxe Plus transistor checke
1 Range Multi-meter Deluxe
148.50 34.95
28.95 19.95
6.95 6.95
10.95 10.95
5.95
13.95
24.95 13.95
24.95 24.95
7.95 7.25
22.95 18.95
23.50 29.95

MOD83 5ngral injector
C3022 Transistor/Diode Checker 3101 Clamp Meler $0 / 1 \mathrm{~K}$ ohm. $\mathrm{D} / 15$
$300 / 600 \mathrm{AC}$ volis $0 / 300$ amp SWR $40 / 8$ SWR \& FS Meter SWR10 SWR Merer M8319 2×100 Wart Audio Watt Mete $-\mathbf{2 1 / 2}$ Amp Variable transformer DRILLE AND DAILL KITS
92012 vole Operated $\boldsymbol{h}^{\prime \prime}$ max. 92012 vot Operated $\mathrm{R}^{\prime \prime}$
SMALL OAIL with collets MEDIUM DRILL with 3 colllels SMALL DRIL 1 with 20 drulls/ /hoois
MEDIUM DRILL with 20 drills/tools MAINS Eliminators
VARIABLE Speed
C2 volt $1 h^{\prime \prime}$ Heavy Outy Dill
MAINS DRHL with toot set
TV SOUND
High quality TV sound from your Hi-Fi. tuner E8.50 (UK P\&P 50p)

TMK500
CALL IN AND SEE
AUDIO EIETTRONIES
301 EDGWARE RD. LONDON W2 1BN 01-724 3564. OPEN 9-6, MON-SAT.

GREENWVLD

443A Millbrook Road Southampton SD1 DHX All prices inc/ude VAT@15\% - just add 40p post
HAVE YOU GOT YOUR COPY OF THE AMAZING GREENWELD CATALOGUE YET????

WHY NOT?? - LOOK AT ALL THESE FEATURES:

* 60p Discount Vouchers
* Quantity Picices tor bulk buy
- Reply paid envelope
- Priority Order Form
* VAT inclusive prices
the NEW VERO catalogue
normally 40 on its ownll
ALL THIS FOR JUST $40 p+35 p$ postl!
Can you resist such an ofler?

SLIDER POT SCOOPI!!

Made by Fiher, types PL4OCP \& PL60C. Silly

220R, 2k or 10 k lin only. Prices (any mix). 1-24 20p: $25.9917 \mathrm{p} ; 100+14 \mathrm{p}$.
PL60C $-84 \times 10 \times 7 \mathrm{~mm} .60$

BUZZERS, MOTORS

\& RELAYS

2401 Powertul 6 V OC buzzer, all metal construc
lion. 50 mm dia $\times 20 \mathrm{~mm} 70 \mathrm{p}$.
2402 Miniature ype buzrer 6
2402 Miniature type buzrer. 6
$22 \times 15 \times 16 \mathrm{~mm}$. Very neat 53 p
$22 \times 15 \times 16 m m$. Very neat 53p
2450 Miniature $6 V$ OC motor. high quality type 32 mm dia $\times 25 \mathrm{~mm}$ high, with 12 mm spindle
Onty En.
 drives high elticiency transducer to give high outpul, Votage reqd 4.18 V Can also be driven direct trom TTL or CMOS. Module size
$45 \times 21 \times 12 \mathrm{~mm}$ Comprehensive data supplied $\$ 1.50$. W892 Heavy Outy 12 V relay, irieal tor car use -
single $15 A$ make contact. Coil $25 R$ in sealed meta can with mounting brecker 85p.
WB90 DIL Reed relay SPCO 2 4-10 V 200R col
Only E2. 20
SRA60 relay. $2 \times 10 \mathrm{~A}$ contacts. 1 M . 18 . Coil 15
$250 R$ and raied 60 V ac. but works on $12-24 \mathrm{DC}$ Solid Encapsulation with screw terminals makes

REGULATED PSU PANEL
Exclusive Greenwetd design - beller spec. than anything on the market being offered at the price
Panel $110 \times 82 \times 33 \mathrm{~mm}$ high contains all com ponents including bridge rectifier and smoothing capacitor. Ready built and rested - Just add a 30 V 2A ranstormer and two pols for a fully variab volage and current supply
$\begin{array}{ll}\mathrm{SPEC} & \begin{array}{c}\text { Output voltage } \mathrm{O} .28 \mathrm{~V} \\ \text { OGtput current } 20 \mathrm{~mA}\end{array} \\ & \text { OAA }\end{array}$
Source Impedance OR $1 /$
Sol
Send SME for full details of the many ways this useful module can be used, together with price is

TRANSISTOR PACK K516

Take advantage of this Unbelievable offer!
Small sugnal NPN/P NP transistors in plastuc package al an incredibly low low oricel! Almost all are marked with type number - almosi all are tull
spec devices Some have bent teads. Over 30 difterent types have been lound by us including ZTx107/8/9/342/450/550, elc. Only aval able as a mixed
c 25 per 1000
BUY A COMPLETE RANGE OF COMPONENTS AND THESE

PACKS WILL HELP YOU

ALL PACKS CONTAIN FULL SPEC BRAND NEW
MARKED DEVICES - SENT BY RETURN OF K 00150 V ceramic plate capacilurs. 5%. 10 or
each value 22 pF to 1000 pF totai $210 \mathrm{E3.69}$. . 6002 Extended range 22 nF 100 ; $\mu \mathrm{F} 330$ value 65.53.
$K 003$

003 Polyester canacitors 10 each of these $\begin{array}{lllllllll}0 & 068 & 0.1 & 0 & 15 & 0.22 & 0.33 & 047 \mathrm{H} . & 110\end{array}$ allogether for E 5.07 .
$K 004$ Mrlar capactors mun 100 V ype 10 each
all values from $1,000 \mathrm{pF}$ to 10.000 pF Total 130 or $\mathfrak{f 4 . 0 5}$. 1.000 pF to 10.000 p .
K007. Elecirolytic capacitors 25 V working smal physical size. 10 each of these populat values 1.
$2.2 .47 .10 .22 .47 .100 \mu \mathrm{~F}$ total 70 lor $£ 3.59$.
 $\mathbf{k 0 2 1}$ Minialure carbon film 54 resisiors CR250 similar. 10 of each value from 10 A in $1 \mathrm{M}, \mathrm{E} 12$ series Tolat 610 resistors $£ 6.15$.
6022 Extended range iotal 850 resistors from 1 R to 10 M £8.50.
K041 Zener diodes $400 \mathrm{~mW} 5 \%$, BZY 88 ete 10
of each value from 27 V 10 35 V E 24 series Total 280 for $\mathbf{1 8 . 3 7}$.

TM4030 RAN

4096 bit dynamic RAN with 300 ns access tim 470 ns cycle time, sugle low capacirance hig evel clock $1 / p$. fully ITL compatiule: low pow
dissipation Supploed with daia $\mathbf{2 . 7 5}$.

COMPOMENT PAMELS

11 Co ren 11 IN4004

 elc. Ony ER .74 Serias $1 \mathrm{C}_{\mathrm{s}}-$ Gates and complex logic. 20 asstd ICs on panels $\mathrm{C1}: 100 \mathrm{Cs} \mathrm{C4}$.
$25272 \times 6 \mathrm{~V}$ reed relays. 6×25030 or 25230 $6 \times 400 \mathrm{~V}$ rects, plus As Only 50 p .

mixed value multi-turn types $£ 1.00$

VEROCASE SALE!!!

Only one size left now - these have sold very fast - fy you want a $1 / 2$ price case like 75 3008. only 1 G GREN. order one now!
P.C. ETCHING KIT MK IV

The best value in elctrong kits on the market
contans 100 sq ins copper clad board. 11 b Ferric contains 100 sq ins copper clad board. 1tb Ferric minialure drilt bits, erching dish and instructions
All for $\mathbf{6 4} \mathbf{9 5}$.

BULK SUPPLIES

 Alt now rull of pec. devices. Prices are for maxclude VAT, which must be edded et 15% Minimum order volue trom this eection is$\mathrm{E} 10+$ VAT + post. VAT receipt on request. RESISTORS
Min. $1 / 2 W 5 \%$ carbon film $1 R-10 \mathrm{M}(10 \%$ ove The following values only at $\mathrm{E3.50/1,000} \mathrm{;} \mathrm{pel}$ value $4 \mathrm{R} 7.8 \mathrm{BR2}, 18 \mathrm{R}, 39 \mathrm{R}, 56 \mathrm{R} .220 \mathrm{R}, 1 \mathrm{k}, 4 \mathrm{k} 7$
$18 \mathrm{k}, 3 \mathrm{k}, 39 \mathrm{k}, 47 \mathrm{k}, 220 \mathrm{k}, 390 \mathrm{k}, 560 \mathrm{k}, 680 \mathrm{k}$, 820 k . MIN. PRESETS

values from 100 R to im , vertical or horizontal mouning All at .042. | The following values on 1 y at $.03,470 \mathrm{RV}, 470 \mathrm{HH}$ |
| :--- |
| $500 \mathrm{RH}, 1 \mathrm{kH}$, $1 \mathrm{k5H}, 2 \mathrm{kV}, 2 \mathrm{k} 2 \mathrm{H}, 2 \mathrm{k} 5 \mathrm{H}, 4 \mathrm{k} 7 \mathrm{H}$ | Also somo Piner enclosed type at . 042 : 150 RV $200 \mathrm{RH}, 2 \mathrm{kV}$.

POTS
5 k lin: 100 k lin: 220 k lin: $500 \mathrm{k} \mathrm{log} ; 1 \mathrm{M}$ lin. Aill with std bush and spindie. .14.
ELECTROLVIC CAPS

2.2/25R	. 023	47/63 R	. 046
$2.2 / 63 \mathrm{~A}$. 032	100/6.3 A	. 020
$4.7 / 10 \mathrm{R}$. 022	100/35 R PC	. 035
$47 / 25 \mathrm{R}$. 028	220/16 A	. 055
$4.7 / 50 \mathrm{R}$. 034	220/25 R	. 065
10/16 A	. 030	$220 / 70 \mathrm{~A}$. 075
10/25R	. 032	330/50A	. 075
10/25 R PC	. 022	330/100 A	. 085
10/25 A	. 035	470/16 R	. 080
10/50 A	. 040	470/100 RC	150
10/100 R	. 042	1000/40 A	. 230
15/40 A	. 030	1000/63 A	280
22/10 R	. 021	2200/10 A	080
22/25A	025	2200/25 A	280
22/25 R	. 027	2200/40 AC	350
22/63 A	040	$3300 / 10 \mathrm{~A}$	090
33/16 A	022	$3300 / 25$ A	180
47/6 A	. 015	$4700 / 10 \mathrm{~A}$. 100
$47 / 25 \mathrm{~A}$. 032	4700/25 RC	250
$47 / 35 \mathrm{R}$. 038	4700/40 RC	35
47/40 A	. 045	10000/15 AC	250
$\begin{aligned} & R=\text { radial leads } \\ & A=\text { axial leads } \end{aligned}$	R $\mathrm{PC}=$ short radial leads for PC mountirg		

OLYESTER CAPS			
01	400 V	C296	. 025
015	250 V	C280	. 025
022	400 V	C280	. 025
068	250 V	Advance	. 025
22	250 V	C280	. 035
22	250 V	Advance	. 035
22	100 V	Minibox	. 035
47	250 V	C280	. 05
47	160 V	C296	. 04
1.0	250 V	C280	. 055
15	63 V	Filmcap	. 085
2.2	160 V	Firmcap	. 086
33	100 V	Wima MKS	. 15
4.7	100 V	C281	. 195
4.7	100 V	Wima MKS	. 235
6.8	100 V	Wime MKS	. 285

POLYSTYRENECAPS TANTBEADS | 22 pF | 125 V | 5% | $68 / 1000$ | $1.5 / 35$ |
| :--- | :--- | :--- | :--- | :--- |
| 27 pF | 125 V | 5% | $£ 8 / 1000$ | $3.3 / 25$ | $\begin{array}{lll}\text { 8200pF } & 125 \mathrm{~V} & 10 \% \\ \text { 10 } & \text { E18/1000 }\end{array}$ miniature ceramic caps

values $3,7 \mathrm{pF}, 22 \mathrm{pF}, 33 \mathrm{pF}, 47 \mathrm{pF}, 47 \mathrm{oF}, 68 \mathrm{pF}$, $82 \mathrm{pF}, 100 \mathrm{pF}$. 560 pF . $2700 \mathrm{pF}+$ All 5% exce $\begin{array}{ll}\text { Prices: up to } 82 \mathrm{pF} & \mathbf{6 7} / 100 \\ 10 \mathrm{pF} & \mathbf{6 9} / 100 \\ \mathbf{5 6 0} \mathbf{0 p F} & \mathbf{E 5} / 100\end{array}$ 5600F E9/1000
E5/1000
\qquad

ullara min. ceramics:	
$33 \mathrm{pF} 5 \% 100 \mathrm{~V}$	c7 / 1000
$330 \mathrm{pF} 2 \% 100 \mathrm{~V}$	ca / 1000
3300pF 10\% 100V	¢13/1000

Stettuer min. ceramics.
$330 \mathrm{pF} 5 \% 63 \mathrm{~V}$
022 F . 63 V
temco 047uF 63 V £14/1000
f16/1000

SEMICONDUCTORS

 2P4M (C106O1 4A 400V.
$.15:$ CR201 14200 V .18.

See last month s advt.
latest buik buyers list.

PROFESSIONAL TOOLS for the workshno, home laboratory or on site use

iterature and prices on reques

Special Products Distributors Limited

(Dept. ETI) 81 Piccadilly, London W1V OHL
Tel: 01-629 9556
Telex: 265200 (Answerback RACEN)

SAFGAN ST-45

High-quality low-cost single trace Oscilloscope that is simply SUPERIOR. Compare us and see.

Price at £137*

- $10 \mathrm{mv} /$ div 5 MHz BRITISH - ONE YEAR GUARANTEE

ST-45 SPECIFICATION

VERTICAL SYSTEM
Sensitivity $10 \mathrm{mv} / \mathrm{div} 5 \mathrm{v} /$ div in 9 cal steps Bandwidth ($3 \mathrm{~d} B$)
OC Coupled DC 5 MHz
AC Coupled 5 Hz .5 MHz
Risetime $70 \mu \mathrm{sec}$
Input Impedance $1 \mathrm{MO}+22 \mathrm{PF}$ approx. (for
all ranges 500 for $10 \mathrm{mv} / \mathrm{div}$
input Coupling AC CND DC
Input volts: 400 V max
Accuracy $+5 \%$

HORIZONTAL SYSTEM

Time base speeds
$50 \mathrm{~ms} / \mathrm{div} 1 \mathrm{\mu sec} / \mathrm{div}$ in 15 cal . steps with X5 Multiplier to $250 \mathrm{msec} / \mathrm{div}$ and $\times 5$
Expansion to $200 \mathrm{nsec} / \mathrm{div}$
External - X sensitivity $1 \mathrm{v} / \mathrm{div}$
External - X Bandwidth 500 KHz
Accuracy + 5\%

ACCESSORIES

Passive Probe switched ($\times 1$. REF $\times 10$)
100 MHz bandwidth E 11.50 + VAT
BNC to 4 mm Socket Adaptor $\mathbf{£ 2 . 9 5}+$ VAT

Cables: Specirod, London W1

TRIGGER

nternal
(2MHz-5MHz)
${ }^{\left(2 M H z_{2}\right.}$ External $100 \mathrm{mv}(20 \mathrm{~Hz}-2 \mathrm{MHz}) .200 \mathrm{mv}$ (2MHz-5MHz)
Bright Line Auto
Trace free runs in absence of signal
Trigger Level selects triggering point
Trigger (+)ve and (-)ve slope selection
FRONT PANEL
Black-Silver-White-ST-45-S The Silver Black-S
Scope
Slack -Gold-White-ST-45.G. The Gold Scope.

GENERAL

Blue display graticule ruled 8×10 div $(6.4 \mathrm{~cm} \times 8 \mathrm{~cm})$.
Power consumption 10 VA approx
Mains selection $200 \mathrm{v}-220 \mathrm{~V}-240 \mathrm{~V}$ ims $(40 \mathrm{~Hz}-60 \mathrm{~Hz}$).
Sire: H. $\mathbf{2 1 5 m m}$ W. $\mathbf{1 6 5 m m}$; D. 280 mm .
Weight 10 bss 4.5 kg approx.
Case aluminium with black pve finish and black handle seratch-resist tront panet biack control krobs. black feet and till bar.
Safgan Electronics Ltd.
56 Bizhops Wood. St. Johns
Woking, Surroy, GU1 30B

ORDERS TO: SAFGAN ELECTRONICS LTD.
56 Bishops Wood, St. Johns, Woking
Educational and Government
Institutions official Insitutions official orders Surrey GU21 30B or Tel: Woking 66836
Please send me
ST-45
Probe

Name
Address

- Ex VAT UK

A80 ETI

 and free postage in UK on orders $£ 5.75$ and upwards
eLECTROVALUE LTD. HEAD OFFICE (Mail Orders)
$28(\mathrm{H}) \mathrm{St}$. Judes Road Englefield Green, Egham Surrey TW20 OHB. Phone: Egham NORTHERN BRANC
NORTHERN BRANCH (Personal Shoppers Only)
680 Burnage Lane, Burnage, Manchester M19 1NA. Phone: (061) 4324945

BOMB PROOF POWER!

The WINTON is still the OUTSTANDING KIT ACHIEVEMENT of the decade. Using POWER MOS-FETs in the OUTPUT STAGE it provides $50+50$ WATTS at less than $01 . \%$ distortion over the whole audio band.
The Power MOS-FETs we use are practically 'Bomb Proof' without the need for distortion introducing protection devices, or as some coyly name them "Thermal Overload Cutouts." Our MOS-FETs don't suffer from thermal runaway or secondary breakdown as ordinary transistors do.
Requiring around twenty hours to build you finish up with an amplifier which is equal to, or better than ready-built designs costing upwards of $£ 600$, and you have the enormous satisfaction of having built it yourself.
A $12 p$ stamp will bring you the full details or better still, send your cheque for the best amplifier kit around. POWER MOS-FETs RULE, O.K.

COMPLETE KIT of all parts necessary to build the P.W. WINTON $£ 133.50$
Order with complete confidence (C.W.O. only please) from:
T. \& T. ELECTRONICS (Dept. E)

Green Hayes, Surlingham Lane, Rockland St. Mary Norwich NR14 7HH. Telephone 05088632

PRICE INCLUSIVE OF V.A.T. \& CARRIAGE Callers by appointment only

STEMFNSON Electronic Components

AT LAST! OUR NEW 1980/81 CATALOGUE IS NOW AVAILABLE. Our new cataiogue is just packed with components.
∞ Electronic components
...... and
much more.
It contains 100 illustrated pages detailing over 3000 line items. These include:

Included with our catalogue you will receive: - a reply paid envelope for your first order

- a mail order form to facilitate rapid despatch
- a 50p discount voucher to be used against mail order purchases over $£ 10.00$.
purchases over $£ 10.00$.
Available now by post from the address below at a cost of $50 p$
Due to stock and administrative problems over the last few months, the quality of our service had suffered considerably. These problems have now been resolved and we are confident that we can now offer the quality of service we had been accostomed to. We wish to convey our apologies to any customers who have been inconvenienced.

All prices include VAT Please add 50 p carriage on orders below $£ 15$ Controur requirements on 01-4645770

OPTO

Red 0.125 m .02 m $\begin{array}{llll}\text { Red } & \text { TIL209 TIL220 } & 10 p \\ \text { Green } & \text { THL211 TIL221 } & 160\end{array}$ Yellow TIL213 TIL223 16p Clips 3p DISPLAYS DL704 0.3 in CC 130p $\begin{array}{llll}\text { DL707 } & 0.3 \mathrm{in} \text { CA } & 130 \mathrm{p} \\ \text { FND500 } & 0.5 \mathrm{in} \text { CA } & 100 \mathrm{p}\end{array}$

TRANSISTORS

TRANSLSN			
AC127	$25 p$	$B C 547$	$8 p$
AC128	$25 p$	$B C Y 71$	$18 p$
AD161	$40 p$	BD131	$35 p$

ENVELOPE SHAPER

Is it Mantovani or a Project 80 synthesiser? You can't tell the difference with this VCES

designed by R.C. Blakey

Conventional ADSR envelope generators are adequate for most practical purposes since they are capable of providing a reasonable simulation of the amplitude envelopes of many musical instruments. The Project 80 Voltage Controlled Envelope Shaper (VCES) is provided for those who wish to obtain more realistic simulation or to obtain dynamic control over envelope shape. It is also a useful tool for innovative synthesis. The design incorporates the following features; bending of the standard exponential attack, decay and release curves to other shapes; alteration of attack, decay and release times by an external voltage thus allowing the envelope to be altered in proportion to the note played; the use of non linear sustain; built-in timer for re-triggering to create dual peak envelopes and also the generation of a delayed AD envelope.

Design and Application

The VCES is based on the CEM 3310 voltage Controlled Envelope Cenerator produced by Curtis Electromusic Specialties. While it is well suited for use as a conventional ADSR envelope generator for both monophonic and polyphonic synthesisers the facilities provided on chip also make it ideal for configuring a complex envelope generator. The attack (A); decay (D), and release (R) parameters have a scale sensivity of $60 \mathrm{mV} /$ decade ($18 \mathrm{mV} /$ octave) while sustain level (S) is linearly proportional to the voltage applied to pin 9. To facilitate generation of complex shapes each of the four inputs has been buffered by an op amp configured as a summer and our standard 0 to +10 V control voltages allow the A, D and R times to be varied from 2 mS to greater than 20 S. Likewise for the sustain input a voltage of 0 to +10 V varies the sustain level from 0 to 100% of the peak attack voltage which has also been normalised to +10 V .

The A, D and R responses follow an exponential curve These characteristic curves may easily be altered in this design by taking a proportion of the output from the module and feeding it back to the appropriate input for the attack curve. The greater the amount of feedback the more convex the response and, although the overall time constant will increase, this may be adjusted over a wide range with the manual control provided. If the output is inverted prior to feedback then the attack curve will become concave in shape. Some of these curves are closer approximations to
conventional instruments while others offer some novel responses. The shape of the decay curve, or the release curve, may be similarly altered and thus the VCES offers virtually unlimited scope for generation of envelope shapes. The use of low frequency waveforms to modify the time. constants is also practical but setting up to obtain useful results is quite time consuming. Two attenuators, with or without inversion, are provided and the 80-5 Processor module may be used for distribution and attenuation when more complex patching is required.

Fig.1. The effect of feedback on the attack response.

Tremolo

The sustain level also has provision for external control and one application is to apply a low frequency waveform to this input in combination with an attenuator and perhaps the manual control to produce a varying sustain. If this envelope is now used to control a VCA the effect is a tremelo only during the sustain part of the note. In the design both the upper and lower levels of the sustain control have been clamped for protection.

Another application for voltage control of envelope shape is the automatic alteration of the time constants or sustain level while the instrument is being played.

Time and Time Again

A simple timer has been incorporated in the design which allows re-triggering, or initial trigger delay, for periods up to about 2.5 S . The effect of re-triggering is to produce an envelope with two peaks, which is a transient effect exhibited by a number of conventional instruments. Often, however, as such instruments reach their peak output the

Fig.3. Component overlay

PARTS LIST

sound alters due to the presence of noise and complex waveforms in the transient. A better simulation of this effect is obtained by using two envelope generators, two sound sources, a dual VCA and mixing the outputs from the latter together. In this example the VCES timer is in the delay mode and will initiate an $A D$ envelope when the trigger occurs. It should be noted that only AD envelopes are practical in the delay mode since if the sustain level is above zero the voltage will ramp up to the set level when the gate pulse is received.

Fig.4. Patch for obtaining realistic transient effects.

Construction

In common with other Project 80 modules the Voltage Controlled Envelope Shaper may be panel mounted or installed in a Teka Alba A23G case. The latter, however, does not have sufficient panel area to neatly accommodate all of the facilities provided. In the cased module illustrated we have omitted the two inverters and controls RV6 and RV7.

The panel markings for the inverters are,-+ and $A 1$ (or A2) with the latter being associated with the attenuating potentiometer RV6 (or RV7). Taking Inverter 1 as the example: R35 is wired to the jack socket marked - at the connection which makes contact with the jack plug; the output of the inverter (R37) is wired to the jack socket marked + but to the connection disabled when a jack plug is inserted, whereas the other connection on this socket is wired to RV6; finally the wiper of RV6 is wired to the make connection on the A1 jack socket. This allows a jack plug into the - socket to access the inverter and the output is obtained at A1, with attenuation when required. For noninverted voltages which require attenuation these are obtained via the + socket with the output at A1.

One external control of attack, decay and release times is commoned and accessed on the PCB at R8. This allows all three time constants to be altered simultaneously and is connected to jack socket marked TC, denoting time constants. If required, however, the constructor may obtain two independent controls for each time constant by cutting the PCB tracks that join up the inputs of R8, R14 and R20. PCB connections are provided at R14 and R20 to cater for this modification.

The module may be manually gated by connecting a push-to-make switch from the +5 V line to the gate input.

Calibration and Testing

The attack, decay and release manual controls are numbered $0-10$ for reference purposes since once external voltages are applied a time calibration becomes meaningless

Tackle the control wiring methodically, otherwise you're in for a case of the wiring jungles.

PR1 allows more than one module to have the same time constants for a given input voltage. For precise calibration a triggered timing device is required but in most instances the following technique is adequate. Set PR1 to mid-position and connect a voltmeter between ground and the junction of R6 and R9. Turn RV2 until a voltage of -5 V 6 is obtained. Set all other control pots to zero. Gate the module manually and time the attack time as shown by the attack LED being on. The manual push button is held down until the LED goes off. Gate the unit several times to allow all components to stabilise for this long attack time and then commence adjusting PR1 to give an attack time of 20 S .

Note that the gate LED is only on while the manual button is depressed. Next set the attack time for a short duration, switch to re-trigger mode, turn RV1 fully clockwise and manually gate the module and keep push button held down until the test is complete. The attack LED should come on when the button is first depressed and again about 2.5 S later when the unit re-triggers. Keep settings the same but put the switch into delay mode. In this test the attack LED should come on about 2.5 S after manually gating the unit. Finally connect the output to a VCO which is in turn connected to an audio amplifier and set the attack, decay, sustain and release controls to about mid-position. Gate the module and release the push-button when a steady note is obtained. The test is a simple means of checking that the A,D,S and R functions are all operational. The functioning of the inverters may also be checked in the same way by putting the output from the VCES through the inverters without attenuation prior to the VCO. In this test the envelope will be inverted, that is, the frequency starting high, decreasing, holding steady and then finally going high again.

BUYLINES

[^9]
CALCULATORS

ALL EQUIPMENT FULLY GUARANTEED

PROGAMMABLE CALCULATORS

BUILD YOUR OWN METAL DETECTOR VLF/TR VCO/TR IB/TR BFO

Pre-aligned search heads - test equipment not required Literature available in return for SAE Manuals and parts sold separately: write or phone for price. Export welcome: write for quote.

Shadow VLF/TR. Fuit
spectication discriminator
 lion it works by meassuring the
to conducivivy ot the target; now you can
reiect nails botile caps even aluminum
foil and ring pull wabs! Full ground effect texclusion over normal or high per. meatility scils
The hesd is thermally and capacritively shielde d 4 modes: deepseeking VLF pluss 3 Th discriminating ranges
Push button .memoty turing Pertormance equals

Shadow

Individual perte: Search head E21.33 PCB E6.80 Case E5.33 Adjustable shatt assy E5. 10. LM393 £1.12. Menual (gives more inlo than ETI article - and extra function) \mathbf{E} 1.12. All inc. VAT \& poot! (Other pars also available separately)
Shadow TA/ 18 (iblustated) A trie uansmit receive/induction balance detector at a budget price for sensinvity. Built in speaker and head sel jack. Complete kit E33.60 inc. VAT and Post.
Shadow TR/VCO. An advanced version of the tr/fB. Use as a sensitive 18 machine ur switch to vco mode when the sound changes to a varying pich, allowing easier use over mineralised ground and enabing detection or negative, high pormabiyy anomailes. Kh price 238.67 wi Wat aind
Marching storse headiphones for an Shadow modets $\mathbf{E 5} .85$ inc. VAI and Post
Beginnors BFO model. A very detailed assembly manual and prewound colls nake this an deal first project. Simple high efficiency circuis Full size (not a toy) but weighs only $300 \mathrm{gms}(10.5025)$ with batteryt
FREE SIETHOSCOPE HEADSET with every order. ALT $\mathbf{3}$ kit: $\mathbf{£ 1 5 . 6 0}$ inc. VAT and Post. Padded high 2 headphones $£ 5.45 \mathrm{inc}$ VAT
Sholl Kit. Consists of the (hard to find) hardware items. for detectors of your own design. Fully adjustable shatt with handie. search head mouldings (int, diam. 185 mn) with hinge assembly. special clips to moun instructions $\mathbf{1 4 . 4 5}$ inc VAT

G/MIT	Freepost A Birmingham B19 1BR	- FREEPOST ON ORDERS ACCESS VAT INCLUSIVE PRICES VISA CASH ADD 30 p P\&P CHEQUE
ELECTRONICS	021.233.240	$\square 24$ HR PHONE ANSWERING SERVICE

SEND A LARGTE SA.E FOR OUR FLOG LIST \& OTHER INFO.

MAINS TRANSFORMERS 		Order Code	Platic Boxat - Boss Industial Mouldings								
		Moultad Box and clote Firting Fiangerd the ABS Bor, Ciw Bisil Buthen. and Lid in Diznge									
					dor Code						
mination 235 exch			$L 150$ w80 D50190 w 110080	$\begin{gathered} 80 \\ 134 \end{gathered}$	Cate Bim 2003 OR Cact 8: 2005 On						
				223		M2006 OR					
Dasvoutiv soricriares	Tramigua		Pintic Boxat weth Matailids								
ojv obv											
012v.019\%											
015v. 215 V			1men Aluminum Tos Penot Finistoo Gieay Order Cod								
0.20v 230 V											
zova firmo Trae Constuction 360 each			$\begin{aligned} & \text { L85 w50 } 029 \\ & 11+\text { w } 7+042 \end{aligned}$	$\begin{array}{ll} 112 \\ 150 & \text { Cow } \\ \text { Cout } \end{array}$		Cow Bim4003 DR Cile BIM4004 OR					
			L181w9053 208 Case 81M4005 OR								
0			Diecatt Boxt								
0120,012v											
			Olecen Box and Finnoted Lis Aturnimium Brax and L in in Netural Finish								
$0.15 \mathrm{v}, 0 \% \mathrm{mv}$											
$\begin{aligned} & 1736012 \\ & 0.750 .02 \pi \end{aligned}$			Aluminum Box mat Lid in Noturai Finish								
			2152 w82 050 192 W113061	215 Coso		Cose BIM5005 NA Cine BIMs006 NA					
VERO ELEGTRONICS PRODUCTS											
$25^{\prime \prime} \times 5^{\prime \prime} 1^{\prime \prime}$ a.ich Veroboerd 3.75 $=5^{\prime \prime} .1^{\prime \prime}$ arich Veobomard Spot Fice Cutter Pin Insertion Toot for 040 type pin OS Pme ond itool \$5 any . 040 (100) Verowin Comber $\mathbf{1 2 5 1}$ Verowite Wirs 121	$\underset{7}{7}$	200212003 200.210720	Ministure Topla - Honeywell Order Code								
	85/Pack	200.21078C									
	68	200210 mH	${ }_{\text {SPOT }}$								
	135	200-21000 E			1	SW 8A1021					
	107	703.21013			${ }^{00}$	SWBAlioat					
	147	203-21015F	PROT CIOT1		- sw Bazol1						
	44/Pick	200.210876			(1)	SW *a 2021					
	44/Pisch	200.21017	Ministurs Push-C\& K								
	45A/K,	200.213410									
	109Pach	200-21330F	sp Pust To Mohe. Mamomiaty		*2	$\begin{aligned} & \mathbf{s w n} 8331 \\ & \mathbf{5 W H E 3 3} \end{aligned}$					
	109/Prack	200-213006	SP Pumb ${ }^{\text {Po }}$	nento							
O.m filectonics al's						1 27.50					
FULL TELETEXT KPT 			One amp Power suphy mouch kit - Five voits			\& $0-00$					
			ONE AMP POWES Sum	kT							
TELTEXJ OLCOOTR REMOVL COMROG KIT (Fow riing ints saiting wevevition			modet inemia controlier me i-slot macte								
		$135-90$				180.00					
cooer modualiokil		22	model inerta contecl ler me il - Thin ihano unit]			¢ 25-00					
doppler madar alamm kit		¢ $40-\infty$	model inemia cont	III - Imen	Onsot	Nin) $125-\infty$					

RIAA

 PREAMP

 PREAMP}

Fit a magnetic cartridge to your stereo system with our economical preamp design

Fig.1. Circuit diagram.

HOW IT WORKS

The desired RIAA frequency response is achieved through the use of a resistor-capacitor network in the feedback loop of an op-amp. Use of an internal resistor matrix in the LM382 chip enables a very simple practical circuit to be used. The circuit is absolutely conventional. A 12 V supply was chosen as the LM382 is characterised for operation in automobiles and its output is biased to 6 V .

The circuit offers a gain of $46 \mathrm{~dB}(200 \mathrm{x})$ at the RIAA 0 dB reference frequency of 1 kHz . As the output of a typical magnetic cartridge is in the range $2-7 \mathrm{mV}$, this should result in a preamp output of around 1 V , an ideal level for the 'line' input of most amps. A 47 k resistor at the input provides the standard cartridge load and a single 1,000 uF capacitor is used for overall supply decoupling.

Note that the integrated circuit pins are identified for the left and right channels with pairs of numbers on the circuit diagram. Ako that all components except IC1 and C6 are chuplicated on the component overlay.

Fig.2. Internal structure of the LM382.

BUYLINES

No problems here. All the components should be readily

 available from your usual suppliers.The LM382 can be obtained from Watford Electronics \& Delta Tech and Co.

Fig.3.(left)Component overlay.
Fig.4.(below) RIAA playback equalisution curve.

Construction

Use of a printed circuit board is recommended for this project. If you use another method of construction, ensure that connecting leads are kept short and locate the decoupling capacitor close to the supply pins of the integrated circuit. The unit may be assembled into a metal case for good screening. Once assembled, just connect your cartridge to the inputs and connect the outputs to your amp, either directly to the 'line' input or via the passive tone controls if you have them. Then put on your favourite disc and relax and enjoy it.

ETI

High Ouality Electronic Musical instruments toder the personal supervision of Sondialisi Designer A. J BOOTHMAN.
JOANNA 728.88 PIANOS Six and 71/4 Octave Electronic Pianns with Unique Touch Sensitive Action as used in the P. E. JOANNA, which electronically simulates piano key inertia - a teature
not available in any other design. Bund not available in any other design. Butid
this widely acclaimed protessional insiruthis widely acclaimed protessional instru
ment, for either Domestic or Stage use ment, for either Domestic or Stage use
from our top quality Combonent kits SIX OCTAVES - £207
71/4 OCTAVES - £232
P.E. STRING ENSEMBLE

The versatile String Synthesuzer with a Kantastic sound at an economic price Split we vores
COMPONENT KIT -- £169
Back up TELEPHONE advice is available from the designer to supplement the clear instructions included with the above Kits.
P.A.'s - SPEAKERS CABINETS
Units can be suppited to add to the Component Kits including Domestic or Stage Cabinets and portable tubular legs.

NEW -

ELECTRONIC ROTOR

Two-speed organ rotor simulator plus a three-phase chorus generator on a single PCB ($8^{\prime \prime} \times 5^{\prime \prime}$). Kit includes all components - IC sockels throughout - mains operation and stereo headphone driver PCB Component kit £89.00.

KEYBOARDS

We believe that we have located the best manulacturer of square front Keyboards, as used th our Kits, and can also supply Keyswitch hardware including the industry standard soti plated contac: springs
49 NOTE C-C £23.80
73 NOTE FFF $\mathbf{£ 3 7 . 0 0}$
88 NOTE A-C $\mathbf{£ 4 5 . 0 0}$
All Keyboards are easily cut to provide your required length and compass. Quantity enquifies welcome.

BUILDING SERVICE

We are specialists in Electronic Piano Manufacture and can build your Piano for you - see lists.

INFORMATION

Please send S.A.E quoting items of interest Telephone BARCLAYCARD orders can be accepted. all prices include

VISITS

Are welcome by appointment otherwise Mail Order Only

EXPORT

Enquiries welcome - in Australia please
contact JAYCAR (Sydney)

FUEL ECONOMY in kil form

FUELSTRETCHER, the leading UK in-car petrol computer, now available in kit form to save £EEfE£'s from start to finish.
You have a choice from two kits:
FSX20 gives accurate instantaneous digital mpg readings to obtain maximum fuel economy. Standard features include choice of two update frequencies, automatic clear down under idling and owner calibration facility.
FSX10 gives a digital gallons used reading to allow determination of total fuel and average mpg
Kits are complete with all necessary components and comprehensive instructions. All components guaranteed for 12 months, full technical backup services availaide.

ENVIROSYSTEMS LTD. Dept ETI
Hampsfell Road, Grange-over-Sands, Cumbria, LA11 6BE
Tel: 04484 4233/4
Name
Address
Phone your order with Access or Barclaycard

	inc. VAT \& p\&p.	Qty Rqd.
FSX20	$£ 47.50$	
- Pl option	$£ 65.90$	
FSX10	$£ 34.80$	

I enclose cheque/
POs for $£$...............................
Cheque No.

* Petrol injection

[^0]: Electronics Today is normally published on the first Friday in the month preceding cover date.
 ©MODMACS LTD 1980: All material is subject to worldwide copyright protection. All reasonable care is taken in the preparation of the magazine, contents, but the publishers cannot be held responsible for errors legally. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press.
 Subscription Rates : UK E10 including postage. Airmail and other rates upon application to. ETI Subscriptions Service, PO Box 35,
 Bridge Street. Hemel Hempstead, Herts. Bridge Street, Hemel Hempstead, Herts.

[^1]: *Use a 600 mA at 9 VDC nominal unregulated mains

[^2]: Above: Foil pattern for the SURVIVAL game. This has been designed to fit the specified case.
 Right: The monitor amplifier board for the TV Sound Tuner. This circuit is an optical extra to aid tuning and setting up.

[^3]: Articles mentioned herein are in an advanced state of preparation. However, circumstances may dictate changes to the tinal contents.

[^4]: PRO \quad 25 Professional capacitor boom- arm microphone by Eagle.

[^5]: All the necessary components should be readily available from your usual suppliers. See mail order suppliers advertising in this issue. The polypropylene capacitors are available from Electrovalue Lid, 28 St Judes Road, Englefield Green, Surrey TW 20 OBH.

[^6]: The essential feature of the circuit is triac Q1. This bi-directional electronic switch controls power flow through the load. This can be any 'universal' motor as may be found powering an electric drill, polisher, etc. The resistor-capacitor combination R3, C3 comprise a snubber network which prevents spurious switching effects in the triac. The triac is turned on when the current flow in its gate - MT1 junction exceeds a certain value. Direction of current flow is unimportant, though there will be a small difference in the sensitivity of the triac, and the device will switch on for both cycles of the alternating mains waveform.

 The resistor-capacitor network built with R1, 2, RV1, C1, 2 cause an alternating waveform at mains frequency to appear at the 'hot' end of C2. Adjustment of RV1 controls the phase of this signal with respect to the mains input. When the voltage across C2 exceeds about 30 V , current will flow in the gate circuit of the triac, turning it on. It remains on until the applied mains voltage falls to zero. It then remains off until re-triggered. Dissipation in the triac is low as it is only ever either fully on or fully off and a heatsink is unlikely to be required.

[^7]: To: Commodore Information Centre,

[^8]: \star SAE for current lists \star Official orders welcome. \star All prices include VAT. \star Mail order only. \star All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572

[^9]: An 80-10 Voliage Controlled Envelope Shaper module kit (PCB plus components) is available for the inclusive price of $£ 19.20$ from Digisound Limited, 13 The Brooklands, Wrea Green, Preston, Lancs. PR4 2NQ.

