

TRANSCENDENT POLYSYNTH

By brilliant design work and the use of high technology components the Polysynth brings to the reach of the home constructor a machine whose versatility and range of sounds is matched only by ready built equipment costing thousands of pounds. Designed by synthesizer ex pert Tim Orr and being featured in this issue of Electronics Today International, this latest addition to the famous Transcendent family is a 4 octave (transposable over $71 / 2$ octaves) polyphonic synthesizer with internally up to 4 voices making it possible to play simultaneously up to 4 notes. Whereas conventional synthesizers handle only one at a time.

The basic instrument is supplied with 1 voice and up to 3 more may be plugged in. A further 4 voices may be added by connecting to an expander unit, the metalwork and woodwork of which is designed for side by side matching with the main instrument. Each voice is a
complete synthesizer in itself with 2 VCOs, 2 ADSRs, a VCA and a VCF (requiring only control voltages and a power supply, the voice boards are also suitable for modular 12 systems). One of these voices is automatically allocated to a key as it is operated. There are separate tuning controls for each VCO of each voice. All other controls are common to all the voices for ease of control and to ensure consisten cy between the voices.

Although using very advanced electronics the kit is mechanically very simple with minimal wiring, most of which is with ribbon cable connectors. All controls are PCB mounted and the voice boards fi with PCB mounted plugs and sockets. The kit includes fully finished metalwork, solid teak cabinet, professional quality components (resistors 2% metal oxide or metal film of 0.5% and 01%), nuts, bolts, etc

EXPANDABLE POLYPHONIC SYNTHESIZER

COMPLETE KIT

ONLY
£320 + VAT
Single voicz
Plug in extra Voicin - Kit price Eb2 + VAT (C58 + VAT If erdared with kit)

Cabinet size $31.1^{\prime \prime} \times 19.6^{\prime \prime} \times 7.6^{\prime \prime}$ rear $3.4^{\prime \prime}$ front
Kit also available as separate packs

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{ADSRIC CEM 3310} \& \multirow[t]{3}{*}{¢4.00} \& \multicolumn{2}{|l|}{Pack} \& \& \multicolumn{2}{|l|}{Pack} \& Price \\
\hline \& \& POLY 1 \& Pair of PCB's for multiplex ect K B \& £9.50 \& POLY 14 \& PCB for VolCe con-ros \& E6.80 \\
\hline \& \& \& \& \& POLY 15 \& Pots, swithes diodes Cs \(\cdots\) vJICE PCB \& ¢4.80 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
VCOIC \\
CEM 3340
\end{tabular}} \& \multirow[t]{2}{*}{¢6.00} \& POLY 2 \& IC's, IC sockets, Rs, Cs, for multiplex cct \& 18.20 \& POLY 16 \& PCB for plug ir vase \& ¢8.20 \\
\hline \& \& POLY 3 \& Superior qualty keyboard \& [32.25 \& POLY 17 \& Rs, Cs, prese's =0 eirges for one vace \& ¢16.30 \\
\hline \multirow[t]{3}{*}{\(0.1 \% 25 \mathrm{ppm}\) M.F. Res} \& \multirow{3}{*}{0.50} \& \multirow[t]{3}{*}{POLY 4} \& Contacis \& bus bars \& ¢12.00 \& POLY 18 \& ICs. IC skts dodes fe ore voice \& ¢27.50 \\
\hline \& \& \& \multirow[t]{2}{*}{Double sided plated through PCB for digital control \& pitch/gate generator Cct} \& \multirow[t]{2}{*}{¢17.25} \& POLY 19 \& Transtormer O 128240 17017,077 \& c6.30 \\
\hline \& \& \& \& \& POLY 20 \& Pitch berd cunco \& c3.90 \\
\hline \(0.5 \% 25 \mathrm{ppm}\) M.F. Res \& \multirow[t]{2}{*}{¢0.25} \& \[
\text { POLY } 6
\]
\[
\text { POLY } 7
\] \& Rs, Cs, heat sink for fittung to Pack 5 IC's, IC sockets, diodes for fitting 10 Pack 5 \& £10.50
£31.30 \& POLY 21 \& Misc parts eg ack sockets, knobs, mans switch etc \& £13.00 \\
\hline \multirow{4}{*}{30 ppm multilay ceramic cap} \& \& POLY B \& des, ic sockers, diodes for ftting 10 Pack 5 \& E31.30
¢18.90 \& POLY 22 \& Ribbon cable, ribbon cable conneciors, mans \& ¢8.45 \\
\hline \& \multirow{3}{*}{¢0.50} \& POLY 9 \& Rs, Cs, connectors for mother board \& £14.90

¢14, \& \& cable \&

\hline \& \& \multirow[t]{2}{*}{foly 10} \& \multirow[t]{2}{*}{IC's IC sockets. Trs, heat sinks for mother board} \& \multirow[t]{2}{*}{£14.10
£ 13.10} \& POLY 23 \& Fully finshed metalwork and fixing parts \& £25.60

\hline \& \& \& \& \& POLY 24 \& Solid teak cabiner \& £25.80

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ICs and details of all packs in our}} \& POLY 11 \& PCB for master controls lieft of section marked VOICESI \& £18.80 \& \multicolumn{2}{|l|}{Total cost for individuallv purchased packs for single voice instrument} \& ¢355.15

\hline \& \& POLY 12 \& ICs, IC sockers, diodes, Trs, Rs, Cs for master conirol PCB \& ¢9.30 \& Compl includi \& kit for 4 voice expander connectors \& 295.00

\hline \multicolumn{2}{|l|}{FREE CATALOGUE} \& POLY 13 \& Pots. Switches for master control board \& ¢11.80 \& All pric \& VAT exclusive. \&

\hline
\end{tabular}

POWFETRAN

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW! POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP103NM

ANDOVER
(STD 0264) 64455

FEATURES

DIGEST 7 The good news and the good news
HOLOGRAPHY 20 Light relief
ASTROLOGUE
TECH-TIPS
AUTOMATIC FREQUENCY
AUTOMATIC FREQUENCY
MICROBASICS
Dynamic techniques
69 More on the H8
DESICNER'S NOTEBOOK
34 Jupiter, Ariane and Soyuz
44 Readers share their circuits

83 EX-OR gates - and beyond

PROJECTS

NOISELESS POWER SWITCH 13 High current, low RFI
POLYSYNTH 27 The End
CRYSTAL CALIBRATOR 39 Frequency reference
POWER SWITCH MODULES 49 Automate your power switch
ENGINEER'S STETHOSCOPE 63 Hear, hear
COMBINATION LOCK 74 Push-button protection
FOIL PATTERNS 90 Project PCBs

INFORMATION

NEXT MONTH'S ETI 11 Our next presentation
SUBSCRIPTIONS 31 Save money and shoe leather
BOOKS 37 Read all about it
ETIPRINTS 95 PCBs the easy way

Superb switching p. 13

Heathkit hardware p. 69
Electronics Today is normally published on the first Friday in the month preceding cover date. ©MODMAGS LTD 1981: All material is subject to worldwide copyright protection. All reasonable care is taken in the preparation of the magazine contents. but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be pubished as soon as possible afterwards. All prices and data contained in advertisements are arcepled by us in good faith as correct at time of going opes. Nerter the publication has closed for press. Subscripion Rates. UK $£ 11$ including postage Armall and other rates upon application to ETI Subscriptions Service. closed tor press.

WHIHOD EEHINOWS MAIL ORDER, CALLERS WELCOME

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS
DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ DESP OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL WNSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY
WELCOME. P\&P ADD 40p TO ALL ORDERS UNDER E10. OVERSEAS ORDERS WELCOME. P\& AD
POSTAGEAT COST. AIR / SURFACE. ACCESS ORDERS WELCOME.

VAT

Wa exock thousends more items. It pays to vieit us. We are situated bohind Warford Footbell Ground.
Noewet Undeground/BR Stetion: Wotford High Street. Open Monday to Saturday. Ample Free Car
Peding epece
ELECTRONIC CAPACITORS: (Values are in μ F) 500V. 10 52p; 47 78p; 250V: 100 65p; 83V: 0.47

 POLYESTER CAPACITORS

1000V: 1 nF 17 p ; 10 nF 30p; 15 n 40p; 22n 36p; 33n 42p; 47n 42p; 47n 100n 42p; 470n 99p.

選

MYLAR FILM CAPACITORS $100 \mathrm{~V}: 1 \mathrm{nF} 2,4,4 \mathrm{nF}, 106 \mathrm{p}: 15 \mathrm{n}$

CERAMIC CAPACITORS 5
Mang: 0.5 pF to 10.000 F
O-15

$\begin{array}{llll}180 \mathrm{pF} \\ 200, & 220 . & 250 . & 270 \\ 300 & 300 & 330 & 360\end{array}$
$\begin{array}{ll}390.470 .600 .800 .820 & \text { 21p each } \\ 1000.1200 .18002200 & \text { 30p each } \\ 3300.4700 \text { pf } & \text { 60p each }\end{array}$

$$
\begin{aligned}
& \text { DILICON } \\
& 100 / 300 \mathrm{pF} \\
& 500 \mathrm{pF}
\end{aligned}
$$

$$
\begin{aligned}
& 100 / 300 \\
& 500 \mathrm{pF} \\
& 6.1 \text { Ball } \\
& 4511 / 0
\end{aligned}
$$

dis
Dial Dr
$61 / 36$
Drum 54

RFCHOKES

WATFORD ELECTRONICS

COMPUTER CORNER

REELAOOR

PRESENTS THE LATEST STATE OF THE ART in DIGITAL WATCH TECHNOLOGY

1981 will be known as the year when 'digitals' became slimmer whilst maintaining the trend of increasing number of functions. We now offer YOU this watch - available by mail order for the first time. THE ULTRA SLIM MUSICAL ALARM CHRONOGRAPH IS YOURS FOR JUST $£ 12.95+50 \mathrm{p}$ P\&P. It is fully guaranteed for 1 year and comes complete with demonstration battery. Just look at the functions listed below:

- Normal time display of hours, minutes and seconds - Date - Melody alarm which plays a complete verse of a well-known tune - Dual time zone - Stopwatch with multi-lap times - Count down timer (sounds alarm when it reaches zero) - Backlight.

Just complete the form now - in keeping with the Keelmoor promise all goods are despatched by return. We have hundreds of other watches in stock. Send a SAE for our FREE colour brochure and read about all our bargains. Post to:

Keelmoor Lid. 78 Castle Street. Melbourne. Derby DE7 IDY
-
 DE7 1DY
Please rush me the watch. I enclose cheque/PO for $£ 12.95+50 \mathrm{p}$
P\&P.
Name
Address

Money refunded if not delighted. If you wish to buy via Access or Barclaycard write your number here

DIGEST

You can give your home or office that 'lived in' look even if you're a thousand miles away by installing the latest automatic light switch from Smiths.

The Securiswitch, which will switch $40-300 \mathrm{~W}$ loads, simply replaces an existing wall-mounted light switch and offers both normal on/off switching and a timed automatic function. On auto, the switch is triggered at dusk by a builtin photocell. You can then set it to switch off again after a delay variable from one to seven hours. It then resets for operation during the next dark period. However, shadows or dull periods during the day will not trigger the switch because of an integral delay facility designed to prevent such erroneous switching For additional security, the switchoff time also varies by a random margin around the set period (up to 10 minutes for each hour set). A 12 V DC version, for use in caravans, boats and mobile homes, should be in the shops soon.

You should be able to buy Smiths Industries Time Controls' Securiswitch in your local clever gadgets department for $\mathbf{E 1 0 . 7 5}$ or

Gold Scope

he Thandar SC110 portable oscilloscope from Sinclair Electronics LId was the only British product to win a gold medal at the 1980 BRNO Trade Fair in Czechoslovakia, the largest Eastern European trade fair. Of the several thousand exhibitors and their products, only forty were awarded gold medals.

The SC110 weighs in at only $2^{1 / 2}$ Ibs with its $2^{\prime \prime}$ CRT and is designed to fit inside a briefcase or toolkit. It's a single trace, 10 MHz bandwidth and 10 mV sensitivity instrument featuring low power consumption mains/ battery operation.

For more information on the SC110 and other Thandar products, contact Sinclair Electronics, London Road, Huntingdon, Cambs. PE17 4H).

1/2 Inch Blinders

- Hewlett Packard's new 0.56" high
iseven-segment displays should come with a free tube of suntan oil. They're made to be read clearly at up to 23 feet away. The HPSD 5300 to 5800 family are the brightest HP displays to date, available in red, high efficiency red, yellow or green. The new devices, although featuring a larger display, are packaged in the same size unit as the previous $0.43^{\prime \prime}$ display, enabling equipment to be easily uprated. The package features industry standard lead spacings and the devices are fully IT L compatible. For further information on the HPSD 5300 to 5800 family of high brightness displays, contact Jermyn Distribution, Vestry Estate, Sevenoaks, Kent.

Hello Sailor!

A new voice recognition unit has Abeen introduced into the system developed by Siemens and Computer Analysts and Programmers (CAP) for using Prestel at sea. The new adaptation is called Seaview and has involved the Post Office, the Home Office, the Departments of Trade and Industry and Liverpoo Polytechnic in the collation of data and the design of its basic system. Seaview uses 150 of the 165,000 page capacity of Prestel. Its first trials were carried out off Dover last year its main function being to supply officers with immediate access to information which is available to shore-based users. The voice recognition unit is made by Threshold Technology of the US, a part-owned subsidiary of Siemens, and converts the voice patterns of human speech into digital code
which activates the computer control unit. The software written by CAP converts these into signals that activate the Prestel system. Each user records 240 sounds or words on magnetic tape. To allow for variations in tone or inflexion these are then recorded 10 separate times. Security levels are, according to the designers, very high. The 240 words can then be fed into the system in two different ways. A word can either appear directly on the screen or it can be used in conjunction with an intermediate storage or buffer to trigger other words or information. Its application was recently tested when the command word 'Dover' was used, which resulted in the presentation on the screen of all the information within the Prestel system on the Dover coastline. The designers are confident of its widespread uses and adaptations. Prestel currently has just under 7,000 subscribers.

Fotoboards

M
arshall's, a household name in electronic component supply, are now stocking a competitively priced range of pre-sensitised PCBs, called Fotoboards. Single and double-sided boards (both 1.6 mm thick) are available. They are supplied with a protective peel-off plastic sheet and require 10 minutes in an ultra-violet exposure unit or a day out in the back garden under that great UV radiator in the sky. Marshall's can also supply a suitable UV exposure unit kit for $£ 34.50$ (or E19.50 without box and $9^{\prime \prime} \times 6^{\prime \prime}$ glass screen), Fotoboard developer (to callers only), drafting sheet (0.1 matrix), track, transfers and developing trays. Contact any of Marshall's shops for latest prices.

Rent-A-Camera

Dediffusion, the High Street TV Rrental chain, are opening 22 video centres all over the country, from Aberdeen to Brighton. In addition to the Rediffusion range of television sets (including Viewdata and Teletext models) and audio equipment, the centres will stock video recorders, portable video cameras and tuners. A complete package of recording equipment will be available on short term rental - a Hitachi colour video camera, a portable VTR, a video tuner and a rechargeable battery pack.

The camera can be used with a built-in or an external microphone. A fully charged battery will given an

Rediffusion is also launching a VHS video cassette library. Major feature films will be available for sale or rental. This scheme will be extended to several hundred of the group's 450 shops. Each cassette will be yours for three days for a rental charge of £4.95. About 25 films will be
available immediately with the addition of three or four new titles each month. The first batch of films to be made available offers something for almost everyone - from Swallows and Amazons to The Stud and The Bitch and from Tales of Beatrix Potter to Blondie.

Prestel Pricecutter

7 ycor's new adaptor converts an Lordinary TV set into a Prestel terminal for less than $£ 200$. The microprocessor-based adaptor, the Teledek 2000, has been developed at a cost of over $£ 100,000$, exclusive of Department of Industry support, with export in mind. Information can be displayed in German and Swedish and it will produce VHF signals and a range of UHF signals in addition to those used in the UK. It can be powered from UK, European, US or Australian mains supply voltages.

Screen information can also be output to a printer and to a domestic tape recorder. Teledek 2000 can also be used with TV monitors and receivers such as Thorn TX, which allows the tube to be connected directly to the adaptor.

The handheld keypad operates remotely by infra-red at up to 9 m . It has 12 data keys and four control keys. A directly wired keyboard with a full alpha-numeric character set is also available.

For further information on Teledek 2000 contact Zycor Ltd, 33 Fortess Road, London NW5 1AD.

Cream Of The Movies

Cream Mail Order Movies came Cinto being at the end of 1980. They're in the business of bringing the big box office movies into your living room with their purchase and
exchange video cassette service. Buy one cassette for $£ 39.50$ plus post (VHS and Betamax available). During the next three months you can exchange your cassette for another Cream movie for $£ 7.95$ plus post.

Cream's initial selection of 64 titles includes everything from laws to Barbareila and The French Connection to the Exorcist. plus a
selection of children's movies and music cassettes (La Traviatta, Blondie, Jesus Christ Superstar, etc.)

Cream have prepared a full colour leaflet listing all the films available and giving full details of their purchaselexchange scheme. It is available from Cream Mail Order Movies Ltd, The Cloisters, 11 Salem Road, London W24BU.

Case In The Round

aturr Ltd have just introduced an unusual product - the Orbix rotary electronic case. Orbix is steel, round, swivels, locks into position every 15° and can be wall mounted, suspended from the ceiling or plonked on top of your desk.

The system includes case, rear panel/rear panel with opening, two feet, two knurled screws and four adhesive feet. The range of accessories features an anti-dazzle mask to facilitate reading LED displays. The standard colour is beige, but alternative colours are available from Daturr Ltd, Unit E, Roan Industrial Estate, Mortimer Road, Mitcham, Surrey CR43HS.

TRANSCENDENT 2000 single board synthesizer

Deigned by consultant Tim Orr (formerly synthesizer designer for EMS Lid.) and featured as a constructional article in ETI, this live performance synthesizer is a 3 octave instrument transposable 2 octaves up or down giving sweep control, a noise generator and an ADSR envelope shaper. There is also a slow oscilator, a new pirch detects to ensure tuning sample and hoid, and special carcongst its many features. Ther (all resistors ether 2\% metal oxide or $1 / 2 \%$ meta! perm) and it really is complete - right down to the last nut and bolt and last piece of wired There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professional quality fibreglass PCB printed with component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be buitt in a few evenings by almost anyone capable of neat soldering! When finished you will possess a synthesizer comp
performance and quality with ready-built units selling for many Comprehensive handbook supplied with all complete kits! This fulity describes construction and tells you how to set
 $£ 168.50$ + VAT!

ETI VOCODER

Panel size 19.0" $\times 5.25^{\prime \prime}$. Depth 12.2

Cabinet size $24.6^{\prime \prime} \times 15.7^{\prime \prime} \times 4.8^{\prime \prime}$ (rear) $3.4^{\prime \prime}$ (front)
14 CHANNELS! 2 OSCILLATORS! NOISE GENERATOR! LED PPM METERS! VOICED / UNVOICED DETECTOR!

SLEW RATE CONTROL!

COMPLETE KIT ONLY £195 + VAT:
Kit includes FREE foot control and test oscillator! to the Vocoder and the instrument not the operator now appears to be doing the talking or singingl You now have vocal control of the amplitude and
Use the internal excitation oscillators, change the frequency and the speaker suddenly changes sex ${ }^{\prime}$
Use the noise generator and there is whispering in the breeze!
Use the output of a cassette deck and the London Symphony Orchestra recites from the Kama Sutra!
Just a few of the possibilities!
Just a rew of the possibilites! for by almost anything and this is just what a vocoder does.
Featured as a construction article in Electronics Today International this design enables a vocoder of great versatility and high intelligibility to be builh for an amazingly low price 14 channels are used to achieve its high intelligibility, each channel having its own level control. There are two input amplifiers, one for speech either from microphone or a high level source e.g. mixer or cassette deck and one for external excitation (the substitution signal) from either high or low level sources. Each amplition signals are monitored by LED PPM meters with 10 lights tone control giving varying degrees of bass boost with treble cut or treble boost with bass cut. excitation - a noise generator and two pulse generators of variable frequency and pulse width. -7 green and 3 red which indicate ine Any of the internal sources and the external source can be mixed together. There is a voiced/unvoiced etce There is a slew rate control which smooths out the changes in spectral batance and the vocal chord derived sounds of the speaker are substituted for byine andother special effects. A foot switch is provided to permit a complete freeze in spectral balance and amplitude whenever required. An LED on this indicates when the freeze is in operation.
whenever required. An LED on this the speech, external excitation and vocoder output The majority of the components fit into the large analysis/synthesis board with the rest on B much An output mixer allows mixing of the speech, external excitation ane vocoderstruction. Connectors are used for the small amount of wiring between the boards smaller boards with the controls and sockets mounted on them fincludes fully finished metalwork, professional quality components (all resistors 2% metal oxide) nuts, bolts, etc. - even a 13 A plug!

TRANSCENDENT DPX

Another superb design by synthesizer expert Tim Orr published in

Electronics Today International

> COMPLETE KIT ONLY
> $£ 299+$ VAT!

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3.3^{\prime \prime}$ (front)

 The Transcendent DPX is a really versatile 5 octave keyboard instrument. These are two audio outputs which can be used simultaneously. On the first there is a bealutful harpsichord or reedsound-fully polyphonic. $1 e$. you can play chords with as many notes as you like. On the second ouput there is a wide range of different vorces. still fully polyphonic, It can be a sound-wuly polyphon a a e. you cank piano or even a mixture of the two! Alternatively you can play strings over the whole range of the keyboard or brass over ine whole range of the keyboard or should you prefer - strings on the top of the keyboard and brass as the lower end (he keyboard is elecronicaly splir aly the harder you press down a key the louder it combination of strings and brass sounds simultaneousiy And on all voices you can switch in circuiry to make the keyboard coumlex dynamics law necessary tor a high degree of realism.
 There is a master volume and tone control, a separate control for the brass sounds and aiso viring sounds.
vibrator comes in only after walting a short time atter the note is strack ander (charge coupled device) analogue detay lines The To add interest to the sounds and make them more ratural there is a chorus ensembie unie which is act The ensemble circuitry can be swiched in with either strong or mild effecis overall effect of this is simiar to thar citseveratal data can be easily taken to and from a computer (for storing and playing back accompaniments with or without putch or key change, computer As the system is based on
Although the DPX is an advanced design using a very large amount of circutiry, much of it very sophisticated the kit is mechanically extremely simple with excellent access to all the circuin解 The kit includes fully finished metalwork, solid teak cabinet professional quality components (all resistors 2% metal oxide) nuts, bolts eic even a 13 A plug'

MANY MORE KITS ON PAGE 96. MORE KITS AND ORDERING INFORMATION ON INSIDE FRONT COVER
All projects on this page can be purchased as separate packs, e g PCBs, components sets, hardware sets, etc See our free catalogue for full details and prices

 | |
| :--- | :--- | :--- | :--- |

\qquad
 룽
 $\sqrt{65+3 \pi}$

$\begin{array}{r} 8 \mathrm{pm} \\ 44 \mathrm{pm} \\ 16 \mathrm{pm} \end{array}$	$\begin{aligned} & \text { 25pi } 18 \mathrm{prn} \\ & 35 \mathrm{p} 20 \mathrm{pm} \\ & 40 \mathrm{p} 22 \mathrm{pnn} \end{aligned}$	$\begin{aligned} & 50 \mathrm{p} 24 \mathrm{pn} \\ & \text { 60p } 28 \mathrm{pm} \\ & \text { 65p } 40 \mathrm{pmn} \\ & \hline \end{aligned}$	$70 p$ 80p $100 p$	$\begin{aligned} & 16 \text { pin } \\ & 24 \text { pin } 10 \\ & 40 \text { pin } 27 \end{aligned}$
SOFTY: Ideal Software / Hardware Deveiopment tool. Using SOFTY you can develop your Programmes. Debug / Verify and then commit them to EPROM KIT E100 BUILT AND TESTED E125 Also available Expansion Board for Programming single rail (+5 V) EPROMS. Reedy buith E40				
	FLOPPY DI	SC DRIVE		

15
150
虽
国
,

The Sub-Atomic Story

Once upon a Victorian time, physics was a relatively uncomplicated pursuit. It seemed to be just a matter of time before all the laws of nature would be discovered and fully investigated. Matter was made from microscopic billiard balls - protons and electrons. This century, however (particularly during the inter-war years), mesons, kaons, sigmas, neutrinos and their anti-particles began popping out of the woodwork. A.S. Lipson describes the trials and tribulations of the physicists who had to make sense of it all.

Low Ohmmeter

Measuring miniscule resistances accurately can be almost impossible with your common or garden test meter. The resistance range copes happily with resistances most often used - from $1 \mathrm{k0}$ to several tens of kilohms. However, if you want to check that you've got a 1 R0 resistor on your bench and not a OR5 or 10R, the chances are that your meter will give up. Look out for the ETI Low Ohmmeter, designed with remarkably reduced resistances in mind.

Pick-Up Principles

Time was when a copper needle did the trick. When you walk into your local hi-fi shop and gaze at the hundreds of cartridges available, the choice is bewildering. What's the difference between a $£ 5$ block of plastic and a $£ 50$ block of plastic apart from $£ 45$? They all extract music from the grooves, don't they? Next month, Pick-Up Principles looks at the different types of cartridges and how they work.

APRIL ISSUE

 ON SALE MARCH 6th
Drum Sequencer

If you need a lot of banging in your life (perhaps you're a musician), try your hand at the ETI Drum Sequencer. It's designed in two distinct sections. The drum effects unit will simulate high/low tom-tom and bass and snare drum voices, manually triggered by, say, a loudspeaker sensor. The clever bit is the sequential programmer, which will reproduce the drum rhythm of your choice from the effects unit.

Sound Analyser

Turn your volts and waves into six columns of flashing lights with ETI's Visual Complex Sound Analyser. Plug our six bar display (10 LEDs per bar) into your loudspeaker and transform Tony Blackburn into three bars of instantaneous amplitude in three different bands and three bars of instantaneous frequency in three different bands. Use it as a pretty sound to light display or for amplitude/frequency signal analysis of tape/radio/record programmes.

Articles described here are in an advanced state of preparation.

However, circumstances may dictate changes to the final
However, circumstances may dictate changes to the final
contents. contents.
 \section*{Bl-and Sane Sale-81}
 \section*{Bl-and Sane Sale-81}

NOISELESS POWER SWITCH

> Designed to switch any mains load up to 15A without generating RFI, this unit can be activated either manually or via a remote-control input. Ideal for use with the opto or thermal switches decribed elsewhere in this issue, or with various remote-control projects planned for future issues of ETI. Design by Ray Marston. Project development by Plamen Pazov

This rather sophisticated unit is designed to switch any mains load, up to a maximum of 15A (equivalent to 3.45 kW on 230 V mains), without generating significant electrical noise (RFI) and without excessive power dissipation (heat generation) in the unit. This action is obtained by using a unique combination of logic-controlled triac-plus-relay power swit ching and has very considerable technical advantages.

The complete power switch can be activated either manually or by a remote-control facility. This facility uses an opto-coupler in its input, giving 4 kV of mains isolation. The remote-switching mains isolation is further backed up by transformer isolation and this transformer is also used to provide an on-board 12 V regulated power supply, which can be used to power external electronic circuitry

The unit can be remote-switched in a variety of ways. The simplest way is to activate it through the two wire switch circuit shown in the diagram, which uses the built-in 12 V supply of the unit to provide the required switching current of a few milliamps. In this case the wires can be any length, enabling the control switch (SW2) to be placed anywhere in the house. The
'isolation factor' (isolation from the mains voltage) of this circuit is determined by the breakdown voltage (primary to secondary) of T1. A far greater isolation factor can be obtained by providing the two-wire switch with its own 9 V battery supply, wired so that it connects across the B-C pins of SK1 when SW2 is closed. In this case the isolation factor is determined by the series combination of opto-isolator IC4 and T1 and is greater than 4 kV .

Alternatively, the unit can be automatically switched by any of the two thermal switches or the light-sensitive switch shown elsewhere is this issue, which in turn can be powered from the built-in 12 V supply of the power switch. Finally, the unit can also be switched by an infra-red remote controller that will be described in a forthcoming issue of ETI, or by an even more sophisticated remote control system that we have planned for a future issue of ETI.

Construction

This project is fairly easy to build, but sensible precautions must be taken during the construction/testing to avoid contact
with live mains wiring. Build up the PCB first, noting that the two opto-couplers (IC4 and IC5) are soldered directly to the board and that a small heatsink is bolted directly to the verticallymounted triac (Q2). The four mounting holes in the PCB are designed to line up with screw-mounting lugs in the plastic case of our prototype.

The heavy-duty relay used in the unit must be mounted in the special octal socket mentioned in Buylines; connections are made to the base by screw terminals. On our prototype the relay unit is mounted horizontally on the rear panel of the case, together with transformer T1 and SK1 (a three-pin DIN on our unit). Threepin mains socket SK2 is mounted in the top of the case. SW1 (a three-position slide switch on our prototype) and the neon lamp are mounted on the front panel; on our unit we've fitted a second neon to the front panel, wired directly across the SK2 pins to indicate the POWER ON state of the unit.

When completing the interwiring of the unit, note that heavy gauge (15 A) wiring must be used between the triac, relay and SK2. Make the mains input connection to the unit through the rear panel.

When construction is complete, connect the mains input and give the unit a simple functional test via the ON/OFF actions of SW1. If all is well, check that 12 V is available between the A and D pins of SK1 and then check that a remote control action can be obtained by wiring up PLG1 as shown in the circuit diagram. If you want to control the unit automatically in response to light or temperature variations, refer to the light and temperature switching circuits shown elsewhere in this issue.

Fig. 1 Circuit diagram waveforms are shown for points \mathbf{a}, \mathbf{b} and \mathbf{c} in the circuit.

HOW IT WORKS

To appreciate the finer points of our power switch design it is necessary to first understand some of the basic principles of conventional mains-power switching, as follows.
SWITCHES AND RELAYS. The major disadvantages of switches and relays in mains-switching applications are that they suffer from contact arcing and generate a good deal of RFI (audible on radio and TV sets) as they switch from one state to the other. Their major advantages are their simplicity and negligible power dissipation in the ON condition.
TRIAC POWER SWITCHES. The main advantages of triacs (solid-state power switches) in mains-switching applications are that they do not suffer from arcing problems and can be controlled from low-power sources. They have several significant disadvantages:
Triacs can generate very significant RFI when they are initially switched on. The magnitude of the RFI is proportional to the rise time and the magnitude of the switch-on current, which in turn is proportional to the instantaneous magnitude of the mains voltage at the moment of switch-on. Switch-on RFI is radiated from all mains wiring through which the current pulse flows. Thus, if the instantaneous mains voltage is at 400 V as the triac switches power to a 20 R heater load, a very large pulse of RFI will be generated, but if the instantaneous voltage is only 10 V at the moment of switching the RFI will be negligible.

A second disadvantage of the triac is that it has a typical saturation voltage of about 2 V . It thus dissipates 30 W when driving a 15 A load and may need substantial heat sinking.

A final disadvantage of the triac is that it has a 'minimum holding current' characteristic, which causes the triac to unlatch if its load current is reduced below a certain value with gate drive removed. The net effect of this characteristic is that a 15 A triac power switching circuit may work correctly with a high current load but may be incapable of operating correctly when connected to (say) a 100 W lamp.
ZERO-VOLTAGE TRIAC SWITCHING. The RFI-generation problem of the triac can be overcome by feeding gate (switch-on) signals to the triac only when the instantaneous mains voltage is at, or close to, the zero-voltage crossover point of the mains waveform. Special 'zero-
voltage switching' ICs are available for this type of application and are very easy to use. 'Zero-voltage' triac circuits still, however, suffer from the power-dissipation and minimum-load problems inentioned above

The ETI circuit combines both zero-voltage triac-switching and relay switching techniques to give the best of both worlds, with RF problems eliminated by the triac circuitry and with power-dissipation and minimum-load problems eliminated by the relay. The basic operating principle of the circuit is quite simple. When an ON command is given, the zero-voltage triac-switching circuitry activates and connects power to the load without generating RFI. 100 mS later, the relay turns on and shorts out the triac, thus maintaining the load con nection without the usual power-dissipation and minimum-load problems. Since the relay is required to switch only the 2 V saturation voltage of the triac, it does not suffer from arcing or RFI problems.

When the OFF command is given, the reverse sequence of actions takes place, with the relay turning off on the arrival ol the OFF instruction and the triac turning off 'noiselessly' $\mathbf{1 0 0} \mathbf{~ m S}$ later.

The basic logic waveforms of the circuit are generated by IC2 IC2a-IC2b are wired as a non-inverting Schmitt amplifier with its output fed to a pair of time-constant networks with Schmitt-inverter outputs (D1-R4-C2-IC2c and D2-R5-C3-IC2d). The output of the IC2d network is fed to the relay by Q1 and the output of the IC2c network is fed to the IC1-Q2 'zero-crossing triac' circuitry by opto-coupler IC5.

The relay and the logic network are powered from a DC supply that is isolated from the mains by transformer T 1 . The logic supply is derived from a 12 V regulator, the 12 V supply being externally available for powering auxiliary circuitry.

The power switch can be activated either manually or by a 'remote' input via SW1. SW1 is fully isolated from the mains voltage by T1 and the opto-coupler IC5. The 'remote' input to the circuit is made through a second opto-coupler (IC4), which provides 4 kV of isolation at the input terminals. This input requires only a few milliamps of current (through R1) to turn the power switch on. This current can be derived from the internal supply, if desired, by using the two-wire remote switching connections shown in the circuit diagram.

BUYLINES

You'll need to hunt around for some of the components in this project. The relay is a Radiospares component (order no. 348-756), but can be supplied by Watford Electronics.

The CA3059 is available from Marshall's. The CNY17/1V optocouplers are available from Electrovalue. Watford can supply the BT139 triac.

The case chosen for our prototype is a PACTEC CM6, distributed by OK Machine \& Tool UK Ltd, Dutton Lane, Eastleigh SO5 4AA.

PROJECT : Noiseless Power Switch

PARTS LIST

Resistors all $1 / 4 \mathrm{~W}$	5\%, except where stated
R1	2x2
R2	12k
R3,6,9	10k
R4,5	1 MO
R7,10	4k7
R8	1k8
R11	22k 5W
Capacitors	
C1	10u 16 V electrolytic
C2,3	100n polyester
C4	10 n polyester
C5	100u 16 V electrolytic
C6	1000u 25 V electrolytic
Semiconductors	
IC1	CA3059
IC2	4093B
IC3	78 L 12
IC4,5	CNY17/1V (opto-couplers)
Q1	BFY50
Q2	BT139 (triac)
D1,2	IN4148
D3,4	1N4001
BR1	50 V 1 A bridge
Miscellaneous	
RLA	12 V coil resistance $>100 \mathrm{R}$, 2 pole changover contacts rated at $240 \mathrm{~V}, 10 \mathrm{~A}$, with relay base, 15 A rated (see Buylines).
SW1	threeway slide switch
SK1	three-pin DIN socket
SK2	three-pin mains socket
PLG1.	three-pin DIN plug
T1 ${ }^{\text {. }}$	$12 \mathrm{~V}, 3$ VA mains transformer
230 V neon, case, connecting wire, etc.	

Why the Sinclair XX80 is Britain's best-selling

Built: E99.95

TRemi995

Kit: \&79,95

Inciuding VAT, post and packing, free çourse in computing.

This is the $Z \times 80$. A really powerful. full-facility computer, matching or surpassing other personal computers at several times the price 'Personal Computer World' gave it 5 stars for 'excellent value'. Benchmark tests say it's faster than all previous personal computers.

Programmed in BASIC - the world's most popular language - the $Z \times 80$ is suitable for beginners and experts alike. And response from enthusiasts has been tremendousover $20,000 Z \times 80$ s have been sold so far!

Powerful ROM and BASIC interpreter

The 4 K BASIC ROM offers remarkable programming advantages

* Unique 'one-touch' key word entry: the $\mathrm{ZX80}$ eliminates a great deal of tiresome
typing. Key words
(RUN. PRINT, LIST,
etc.) have their own single-key entry
* Unique syntax check

A cursor identifies errors immediately

* Excellent string-handling capabilitytakes up to 26 string variables of any length. All strings can undergoall relational tests (e.g. comparison).
* Up to 26 single dimension arrays.
* FOR/NEXT loops nested up to 26.
* Variable names of any length.
* BASIC language also handles full Boolean arithmetic, condition expressions, etc.
* Randomise function. useful for games and secret codes, as well as more serious applications.
* Timer under program control.
* PEEK and POKE enable entry of machine code instructions
* High-resolution graphics.
* Lines of unlimited length.

Unique RAM

The $Z \times 80$'s 1 K -BYTE RAM is the
equivalent of up to 4 K BYTES in a conventional computer-typically storing 100 lines of BASIC.

No other personal computer offers this unique combination of high capability and low price.

The EX80 as a family learning aid Children of 10 years and upwards are quick to understand the principles of computing-and enjoy their personal computer

The Sinclair teach-yourself

BASIC manual

If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the specially-written 128 -page book (free with every $Z \times 80$). The book makes learning easy. exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs

Kit or built -it's up to you

In kit form, the $\mathrm{ZX80}$ is pleasantly easy to assemble using a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated. If not, see the coupon

Both kit and built versions come complete with all necessary leads to connect to your TV (colour or black and white) and cassette recorder. Plug in and you're ready to go. (Built versions come with mains adaptor.)

personal computer. Now available for the $\mathbf{Z X 8 0}$... New 16K-BYTE RAM pack

Massive add-on memory. Only £49.95.

 The new 16 K -BYTE RAM pack is a complete module designed to provide you-and your Sinclair ZX80-with massive add-on memory. You can use it for those really long and complex programs-or as a personal database. (Yet it can cost as little as half the price of competitive add-on memory for other computers.)For example. you could write an interactive or 'conversational' program to show people what your ZX80 can do. With 16 K -BYTES of RAM, they could be talking to your computer for hours!

Or you can store a mass of data-perhaps in a fairly simple program-such as a name and address list, or a telephone directory

And by linking a number of separate programs together into one giant, but modular, program, you can achieve the same

before you can buy cassette-based software using the full 16 K -BYTE RAM. So keep an eye on the personal computer magazines-and brush up your chess perhaps!

The RAM pack simply plugs into the existing expansion port on the rear of the ZX80. No wires, no soldering. It's a matter of seconds and you don't need another power supply. You can only add one RAM pack to your ZX80-but with 16K-BYTES who could want more!

How to order

Demand for the $Z \times 80$ exceeds all other personal computers put together! So use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX 80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be

6 Kings Parade. Cambridge, Cambs, CB2 1SN Tel: 0223311488

To: Science of Cambridge, FREEPOST 7, Cambridge CB2 1YY.

Remember all prices shown include VAT, postage and packing No hidden extras Please send me:

Qty	Item	Code	Item price Σ	Total £
	Sinclair ZX80 Personal Computerkitisi Price inciudes ZX80 BASIC manual excludes mains adaptor	02	79.95	
	Ready-assembled Sinclar ZX80 Personal Computer(s) Price includes $Z \times 80$ BASIC manual and mains adaptor	01	99.95	
	Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated)	03	8.95	
	16K-BYTE RAM pack(s)	18	49.95	
	Sinclar $Z \times 80$ Manualis) (Manual free with every ZX80 kit or ready-made computer)	06	5.00	

I enclose a cheque/postal order payable to Science of Cambridge Ltd for $£$
Please print
Name: Mr/Mrs/Miss
Address \qquad

ETI MARCH 1981

Holography records light waves reflected from an object and reconstructs them to produce a three-dimensional image. Holograms can only be recorded using a strong coherent light, so, to explain holography it is important to understand the nature of light itself. All light travels in waves. White light is composed of all the colours of the spectrum, each colour having its own wavelength. Because white light is composed of many different wavelengths and phase orientations travelling together, it is known as incoherent light. Coherent light is composed of waves of identical length and frequency travelling in phase, such as that produced by a laser.

Mirror, Mirror

All objects reflect light, the amount varying in intensity according to the shape and nature of the object. A hologram is recorded when wavelengths of coherent light that are in phase overlap to produce a wavefront known as an interference pattern. The interference pattern, which records the dimensions and depth of the object, is recorded on a photographic plate and when the interference pattern is reconstructed, we see what appears to be a three-dimensional image of the original object - a hologram.

Holography was discovered by Dennis Gabor in 1948 at the British Laboratories in Rugby. His early holograms confirmed this theory, but the images were dim and blurred. Development was hindered by a lack of a sufficiently strong source of coherent light and photographic emulsions of a high enough quality. In 1960 with the invention of the laser, a strong source of coherent light became available and in 1964 two American scientists, Emmett Leith and Juris Upatnicks were able to further the pioneering work done by Cabor. Leith and Upatnicks produced the first bright holograms and the system they developed is known as 'off axis transmission holography'.

Object Lesson

To make a hologram the light from a laser is split into two beams using a beam splitter. One beam is directed onto the object to be recorded (the object beam) and the second beam onto the photographic plate (the reference beam). The intensity of the lightwaves reflecting from all the points of the object combine with waves of the reference beam to produce an interference wavefront in the emulsion. The photographic plate (which is an extremely fine grain silver halide emulsion) is then developed and fixed in a similiar way to conventional photographic film. The developed plate which contains the interference pattern is a hologram.

Image Making

To reconstruct or view the hologram, the reference beam from the laser is directed at the holographic plate at the same angle as in the recording stage. When it emerges it recreates the light waves from the original object and reconstructs a threedimensional object behind the holographic plate. This type of hologram where the image is reconstructed behind the plate is known as a 'virtual image hologram'.

Reconstruction of a hologram where the image appears in front of the plate (a 'real image hologram) is more complicated. If the procedure is reversed and the holographic plate is lit from behind, the image that is reconstructed in front of the plate will be back to front and with reverse perspective; that is, the objects in the background will appear larger than those in the foreground. This inside-out image is known as pseudoscopic.

In order to create a real image hologram a second hologram is made of the pseudoscopic image. When the second generation hologram is reconstructed, the image appears in front of the plate the correct way round ie orthoscopic, the

Fig. 1 The single beam from a common-or-garden laser is split in two. One beam (reference) is taken directly to the photographic plate. The other gets there via the object. The two beams produce an interference pattern in the emulsion.
image having been reversed twice. Examples of laser transmission holograms have recently been seen in this country at the "Light Fantastic" exhibitions at the Royal Academy in London

Another type of hologram was developed in the Soviet Union in the early sixties by Y.N. Denisyuk which eliminated the need for a laser to reconstruct the image and so helped to bring holography out of the laboratory and make it more accessible to the public. This type of hologram is known as 'white light reflection hologram' and, although a laser is required to make the hologram, the image can be reconstructed using a white light source.

Daylight 3-D

In white light reflection holography, Denisyuk also eliminated the need for a beam splitter. A beam of coherent light is passed through the holographic plate and acts as both the object and reference beam. It illuminates the object to be recorded and is then reflected back through the holographic plate. The emulsion records the interference between the beam and the reflection from the object. The hologram is viewed by directing white light onto the holographic plate. The plate acts as a filter and selects only the coherent light to reconstruct the hologram. This type of holography is being developed in this country by Nick Phillips at Loughborough University for Holoco Ltd. Another method of making white light reflection holograms uses the pseudoscopic image of a laser transmission hologram (in a similar way to making a real image transmission) but with the reference beam of the second hologram coming from the opposite side of the plate.

In 1969 Dr. Stephen Benton, working for the Polaroid Corporation in the USA developed a system that enabled a real image hologram' to be viewed in white light. Making a so-called 'white light 'rainbow' transmission hologram' is a more complicated process, but it basically involves two stages. Initially, a transmission hologram is made. Then a second hologram is
made in the same way that a 'real image hologram' would be recorded except that just a horizontal slit ($3-5 \mathrm{~mm}$) of the master is illuminated. The slit is projected in front of the hologram and the white light passing through it acts as a filter. The white light passing through the slit is diffracted and produces a rainbow effect, so, depending on the viewing angle the holographic image appears in all colours of the spectrum. Dr. Benton has since modified his process and is now able to produce achromatic (black \& white) images. This type of holography is being developed in this country by See Three Holograms Ltd. Another type of reflection hologram known as a 'dichromate gelatin hologram' was developed in the USA in the sixties. These holograms are made using ammonium dichromate instead of a silver halide plate. This method produces holograms with a very bright image, but limited depth. Its major application so far has been in the production of holograms in the forms of pendants.

Life Class

In all the methods of holography previously described the subject matter has to be an inanimate object, as any movement, even breathing, would disturb the interference pattern of the wavelengths and no image would result. However, animate objects can be recorded holographically using a pulsed laser. A pulsed laser emits intense flashes of coherent light, rather like a flashgun, which freeze the movement of the subject long enough to record the image. Using a pulsed laser it has even been possible to make a hologram of a bullet in flight. Pulsed

Rick Silbermann's 'The Meeting', a reflection hologram shown at the recent holography exhibition at The Photographer's Gallery. Our lead photograph is Harriet Casden-Silver's 'A Woman', from the same exhibition.

lasers can also be used to make holographic portraits of people, but when making a hologram of a person a large sheet of frosted glass has to be used to diffuse the light from the laser for safety.

Another type of hologram, an 'integral hologram' incorporates movement. Integral holograms are not strictly holograms, but a marriage of cinematography and holography as the subject matter is not recorded with a laser, but with ordinary 16 or 35 mm black and white film. An integral hologram is basically a series of holograms joined together to create movement. The process was developed by Lloyd Cross of the Multiplex Co. in the USA in 1974. An integral (or multiplex) hologram is also made in two stages. First the subject is filmed on a turntable which moves at a fixed speed. Any movement to be recorded has to be slow and smooth or the resulting hologram will have blurred or jerky movement. The black and white film is then scanned by a laser and each frame is made into a vertical strip hologram using a technique similar to the 'Rainbow method. The resulting series of vertical strip holograms are contained on a flexible photographic sheet. To reconstruct the holograms the film is usually placed in a 120° cylindrical container (360° holograms can also be made). The container is illuminated from below by an ordinary incandescent light source. Integral holograms are popular as they eliminate some of the problem of the other types of holography, in that they are not confined to same size reproduction, allow a certain degree of movement, can be copied relatively cheaply and they can be reconstructed easily using an ordinary light source.

Applications

The applications of holography are numerous - among them, storing digital information, recording works of art and preserving them for posterity, as point of sale displays for advertising, in education to demonstrate complex forms such as molecular structures, as a completely new medium for artists to work in and as an art form in the home.

F

Fig. 2 Recovering a holographic image. A beam of light (white or laser, depending on the method of recording used) is directed at the photographic plate at the same angle as that of the reference beam during recording.

F

Fig. 3 The image can be made to appear in front of the plate by iluminating it from the front. However, the image is reversed in all respects. Objects in the background appear to be larger than those in the foreground.

Fig. 4 To return the perspective to normal, a second hologram must be made from the first.

Fig. 5 To make a white light reflection hologram, the recording reference beam and object to be recorded are on opposite sides of the plate. The back of the plate is often coated with black to give a dark viewing background during reconstruction.

Fig. 6 One method of producing a holographic film of a moving object. A pulsed beam illuminates the spinning cube.

I have just given a brief outline of holography, but it is a medium that is now becoming available to people in the same way as photography has done in the past. A holographic lab can be set up for approximately the same price as a quality colour lab. For those people who are interested in finding out more about holography I would recommend the following books and courses:-

Books

Understanding Holography by Michael Wenyon
Published by: David \& Charles. $£ 5.50$
A good all round introduction to holography, easily understood by the layman and with an extensive bibliography for further reading
Holograms (How to make and display them) by Graham Saxby. Published by Focal Press: $£ 7.95$
The most recent book available on holography. A good introduction to holography and an easily understood guide to producing your own holograms. Also contains an extensive bibliography.
Light Fantastic 2
Bergstroin \& Boyle £2.95
Catalogue of the Light Fantastic exhibition. Includes an introduction to holography and is well illustrated with holograms made by Holoco.

Course

Holography Arts Workshop
Goldsmith College
The Millard Building
Cormant Road
London SE15
Write to Paul Walton for a prospectus.

A double exposure hologram by Margaret Benyon. The front and back of the box are visible simultaneously (from Holograms by Graham Saxby, Focal Press Ltd).

Spacecraft flying in formation in the Light Fantastic 2 exhibition.

IONISER KIT

This negative ion generator gives you power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room The result? Your air feels like fresh ocean air. pure crisp and wonderfully refreshing.
All parts P.C.B. and full instructions $\mathbf{£ 1 0}$. A suitable case including front panel. neon switch, etc Available at $\mathbf{E 8}$ extra

H.E. KITS

Car Booster ZD50 £18; Multi Option Siren ZD 36 £10.50; Car Equaliser ZD52 E13.30; Envelope Generator ZD20 £11.79; R/C Speed Controller ZD 3 £9.60; White Noise Effects Unit ZD18 £16.85; Track Cleaner ZD12 £7.75; Drill Speed Controller ZD21 £7.
All Hobby Kits supplied cases except ZD3. All kits contain components as specified plus Texas IC sockets where required. Also connecting wire. Special introductory offer to E.T.I. readers, a pack of nuts, bolts, washers. self-cutting, self-tapping screws supplied with each kit

SPECIAL OFFERS

Texas/I.T.T. 1 N4148, 100 for $£ 1.50$.
Fairchild FLV ISO Red'2 LEDs 10 for £1; 100 for $\mathbf{£ 7 . 5 0 .}$
Mullard Computer Electrolytics S/T 21,000 U.F. 40 V
Mullard Computer Electrolytics $0 / T 21,000$
Daly Electrolytic Capacitors $2000 \mu \mathrm{~F} .100 \mathrm{~V}$
I.T.T. BCY 72 Transistors leads pre-formed Varicap Tuners ELC1042
Varicap Tuner ELC1043
Pholips Scope Tube 5' CV2191/DG-13-2
Thorn-Sylvannia Scope Tube $5^{\prime \prime}$ SE5J
Toshiba 12" TV Tube 310GAB4
If you do not have the issue of H.E. which contains the Project, we can supply a reprint at 40 p extra orders. Please add 30 p post and packing. Add 15% VAT to total order.

Callers please ring to check availability of Kits.

T. POWVELL
 306 ST. PAUL'S ROAD
 HIGHBURY CORNER, LONDON, N. 1 TELEPHONE: 01-226 1489
 Access / Visa accepted
 Shop hours: Mon. to Fri 9-5.30. Sat. 9-4.30

SHARP MZ8OK COMPUTERS

With Basic tape and a tree tape of approx 50
 E450.

SINCLAIR PRODUCTS *
SCilo Oscilloscope E144.05. PFM200 E51.95. Microvision TV E69, adaptor $\mathbf{~ E 6 . 8 8}$. Enterprise prog calcularor $£ 19.95$. PDM 35 E32.50, ©M 235 E55.55. DM450 £109.11.

BATTERY ELIMINATORS *

3-way lype $6,7 \frac{1}{2} / 9 \vee 300 \mathrm{ma}$ E3.50. 100 ma radio types with press-studs 9 V E4.77, $9+9 \mathrm{~V}$ E5.99. Car converter $\mathbf{f 3} \mathbf{2 v}$ inpul oulput $4 / 2 / 6.7 / 2.9 \mathrm{~V} 800 \mathrm{ma}$

BATTERY ELIMINATOR KITS *

100 ma radio types with press-stuts $9 v £ 1.64,9+9 \mathrm{v}$

 E14.82. TL and computer supplies 5 V stabilised 2 A
ce..38, 4 A E14.16. 12 V car converters $6: 7 / 2: 9 \mathrm{~V} 1 \mathrm{a}$ ع8.38,
E1.62.

TV GAMES *
Stunt cycle chip + kit $\mathbf{E 2 0 . 9 5}$. AY-3.8600 $+k$

MEMORIES

 All low current

New

Presensitised PC Boards, Developer. U.V. units. Toyo miniature Fans 230v AC $£ 9.95$
Mini Metal Detector/Voltage Tester for locating cable under plaster £9.95
Flow/Speed Sensors for monitoring fuel consumption electronically in vehicles
Just one of the exciting Leader range

$£ 299+$ VAT

LB0508A OSCILLOSCOPE
With 20 MHz DC bandwidth and 10 mv input sensitivity on a $5^{\prime \prime}$ screen this universal oscilloscope is suitable for a wide range of applications.
Send SAE for details of full range.
Marshall's 80/81 catalogue is now available by post, UK 75 p post paid Europe 95 p post paid: Rest of world $£ 1.35$ post paid.
A. Marshall (London) Ltd, Kingzgate House,

Kingsgate Place, London NW6 4TA.
Industrial Sales: 01-32B 1009
Mail Order: 01.624 B582 24hr service.

Atso retal shops. 325 Edgware Road. Lendon W2. 40 Crickiewood Broseway, London NW2. 85 West Regent St
Glasyow $108 A$ Stokes Ciotit Britiol

ETI MARCH 1981

Apollo I. Its sound quality is as outstanding as its looks. (And makes the price sound ridiculous.)

Three waveband radio and cassette recorder (battery/mains).

BIG SET QUALITY

Big set sound quality from a portable radio/ cassette recorder?
That's the remarkable achievement of the Apollo I. It really does have the rich tonal quality you'd only expect in an expensive home unit. On radio or cassette, reproduction is crystal clear even at full volume and over the whole of the tone range. The band change switch gives you the choice of FM, Medium or long wave and a big tuning control provides you with sensitive station tuning, helped by very clear and legible dial markings.

BIG FUNCTION RANGE

Remarkable, too, is the Apollo I's range of functions. In addition to the three band radio and cassette playing capability, it lets you record direct from the radio, record through the built-in condenser microphone, record through an external microphone (not included), and play yourself to sleep with taped music that switches off automatically.

EXTRA 'EXTRAS'

Apollo I has many features you'd hardly expect if it was twice the price. For example: automatic volume control on the built-in microphone, earphone monitoring of recordings, battery or mains operation, provision for remote control, etc.

SENSATIONAL VALUE

Most remarkable thing about Apollo I, though, has to be its price. Any multi-function set would be extremely good value for this kind of money. But the Apollo, with so many 'extras' and such superb quality reproduction, is an absolute bargain. Guaranteed for 12 months.
-Exceptional sound quality Battery/ mains operation ©Sensitive tuning - Push button recorder OBuiltin microphone Tone control - Auto recording level control Auto stop - Sleep function switch Earphone - Sockets for external microphone and remote control.

DATA

Output 2W (max). Power consumption 8W, Speaker 4in. 4ohm. Dinnensions 11^{\prime} rin x in $\times 3^{12}$ in (approx). Weight $51 b$.
\% Credit card holders may telephone (0536) 52202424 hours a day slating card number for immediate attentoon.

68-70 High Street, Kettering, Northants. NN16 8SY. Tel. (0536) 522024
「To Mitrad, 68.70 High Street. Ketterng, Northants. Please send me__Apolio 1 radio/cassette recorder at £19.95 plus 11.95 p \& p(£21.90)
Total value of $m y$ order f.
I encluse che que/PO made payable to Mitrad. Or debit my
Access/Barclaycard No _——n
Sgnature
Name
Address

POLISYNTH

We conclude the Polysynth project with the final setting up and alignment procedure. Design and development by Tim Orr.

Assuming that the rest of the synthesiser has been checked out and found to be working then the voice boards can be tested and aligned. When inserting or removing the voice boards make sure that the power is always turned off. Set up the panel as shown in Fig. 4. Insert a voice into slot number four with the component side facing the centre of the machine, the copper track side facing the wooden end. Make certain that the ICs are the correct way around, in particular IC1,4. Turn on the power and check the $\pm 15 \mathrm{~V}$ and -5 V rails on the voice board. Both VCOs should be oscillating. Check pins 4,8 and 10 for square, ramp and triangle waveforms. Next look at IC2 pin 2 and IC3 pin 3 and check that the two waveform selectors function properly. Also check that the two VCO tuning pots control their respective VCO frequencies. When the machine has been calibrated, these pots will have a two octave tuning range.

Check that the two transpose controls affect the VCO frequency. Move the pitch bend lever; this will slightly change the VCO pitch. Also check that the keyboard controls the

C COPYRIGHT MODMAGSLId
Fig. 1 VCF frequency response.
 VOLTAGE A
IC6 PiN 6 iC6 PIN 6
pitch, although it will not yet be in tune. Test out the three vibrato controls. Turn off the vibrato and tune the two VCOs to the same frequency. They should slowly beat with each other. Look at IC15 pin 5 (the top of R51). Check that the level controls for each VCO operate correctly. Turn both of them on. Turn on the sync switch. VCO1 should lock onto the frequency of VCO2. Turn off the sync and turn off the volume to VCO1. Select a square waveform from VCO2. Test the VCO2 MS (mark/space) contrcl pot. With the pot anticlockwise the waveform will be square. As the pot is rotated to its central position the square will turn into a thin pulse. Clockwise of centre the pulse width is controlled by the mark/space oscillator. Check out the mark/space speed and waveform controls. Repeat for VCO1.

Select a 100 Hz ramp waveform from VCO1. Turn VCO1 level to maximum, and VCO2 level to off. Look at the VCF output, IC9 pin 1 (the left hand side of R58). The VCF frequency pot will vary the filter cut-off frequency, and the resonance control will vary the Q factor (Fig. 5). Press a note on the keyboard. This will generate the ADSR sweep waveform as shown in Fig. 2. Adjust PR3 so that with the ADSR sweep pot in its central position there is no VCF sweep. Now rotate the

Fig. 2 Waveforms associated with the ADSR sweep potentiometer.
ADSR sweep pot anticlockwise. When the note is pressed it should be possible to get a filter sweep that sounds like a 'DOW' noise. In the clockwise position the sound is a 'WAH'. Check out the VCF ADSR controls. They should behave as shown in Fig. 3. Also test the TRACK switch. This will generate

Fig. 3 ADSR operation.
fast time-constants at the top end of the keyboard and slower ones at the bottom end. Now check out the VCF TRACK switch. Turn it on and play notes up and down the keyboard. The shape of the waveform at the VCF output will remain roughly the same as the frequency varies. But with the VCF TRACK off, the high notes will be sinusoidal, but the low notes will contain a strong harmonic content. Turn the VCF TRACK switch on. Turn up the noise level to test that it makes it to the filter.

The next and last section is the VCA. Turn off both the VCOs, the noise source and the VCF sweep. Set up the VCA ADSR as shown in Fig. 4. Press a note on the keyboard. This will start the ADSR which generates a fast envelope contour, causing a click at the VCA output, IC8 pin 5. Adjust PR1 until this click reaches a minimum. Turn on VCO1 so that the VCA has a signal to modulate. Test the VCA ADSR controls and the TRACK switch. When the note is released and the ADSR waveform has decayed away the output of the VCA will die away completely. Turn the ADSR/CONT switch to CONT. The sound will return and will be unaffected by the VCA ADSR. Now turn the relevant voice ON/OFF switch to OFF. The voice will now be off.

This concludes the initial alignment and debugging of the voice. Repeat all of this process for voices 3,2 and 1 until all four voices are plugged in and working. Allow the machine to 'burn in' for 24 to 48 hours, then retest all the functions.

The next section deals with aligning the VCF and VCOs for frequency and tuning.

Fig. 5 VCF response. From top to bottom: high frequency, high Q (resonance control clockwise); low frequency, high Q; high frequency, low Q (resonance control anticlockwise); low frequency, low \mathbf{Q}.

BUYLINES

Powertran Electronics can supply a complete kit of parts for each option of the Transcendent Polysynth.

1 voice	$£ 320$
2 voices	$£ 368$
3 voices	$£ 464$
4 voice expansion kit	$£ 295$

All prices are exclusive of VAT. Powertran Electronics, Portway Industrial Estate, Andover, Hants SP10 3NM.

Fig. 4 Front panel control positions for setting up procedure.

Pitch Spread

The pitch spread adjustment is very sensitive, but in order to obtain a musically useful synthesiser it must be properly set up. When two or more VCOs are being controlled from the keyboard it is imperative that they track. If they do not then objectionable frequency beating will occur as the keyboard pitch is altered. The Polysynth can have up to 16 VCOs in operation at once and so the pitch adjustment must be spot on. The VCOs have an exponential transfer function, which is musically very useful. It enables linear voltage changes from the keyboard to generate musical intervals from the VCOs. Also you can transpose VCO1 relative to VCO2. This relative tuning is maintained as the VCO pair is moved in pitch by the keyboard voltage.

This is a very powerful feature of the music synthesiser but it relies on the transfer function of all the VCOs being a perfect exponential curve. If one VCO deviates from this curve then it will never track with the other VCOs. If all the VCOs have the same curve but it is not an exact exponential then they will not track when transposed (VCO1 relative to VCO2) or when played in the polyphonic mode. If all the VCOs have exactly the same true exponential curve and yet the digital pitch generator has significant errors then the VCOs will not track in the polyphonic mode. However, if all these problems are properly resolved then you end up with a marvellous polyphonic music synthesiser. Figure 7 shows the VCO transfer function on a log/lin graph. Here a perfect exponential is shown as a straight line. The VCOs tend to go flat at high frequencies, which is caused by the accumulation of timing errors in the oscillator plus the effect of bulk resistance in the exponentiating transistor. However, the CEM3340 has a high frequency tracking adjustment to improve the top end tuning.

VCO Pitch Spread Adjustment

Turn the unit on and let it warm up for 10 minutes. The digital pitch generator must be working properly with a resolution of about 10 bits. If it cannot obtain this accuracy then it will not be possible to align the VCOs. Look at the VCF output (the left hand side of R58). Turn off VCO2 and select a sawtooth from VCO1. Turn all high frequency track presets (PR5,6) anticlockwise (this turns them off). Select one-voice operation and remove all modulations and sweeps. Turn off the sync. Set the VCF to maximum frequency and resonance to minimum. Play the bottom note on the keyboard and bias the VCO to 100 Hz . Now play the note one octave up. It should shift the VCO by an octave, but it won't! This is because the pitch spread trim is wrong. The pitch spread trim for VCO1 is PR9. Turning it clockwise gives more VCO octaves per keyboard octave; it gives the VCO a sharper tuning. Turning it anticlockwise gives less VCO octaves per keyboard octave; it gives the VCO a flatter tuning. So if VCO1 is sharp one octave up turn PR9 anticlockwise. However, adjusting the preset also alters the bottom note. This makes the tuning of the VCOs rather difficult unless you have a good musical ear. If you are blessed with this then it is possible to tune the VCO by playing scales or octaves, listening to the VCO output and making suitable changes to the preset.

For those who were born with tin ears a more technical approach should be employed. A frequency meter can be used to set the VCOs to give 'almost' octave intervals. As the frequency meter gate is asynchronous to the VCO then the reading will be slightly different every time. A frequency meter with a 1 S gate will give 1 Hz accuracy for a 100 Hz signal. A 10 S gate will give 0.1 Hz accuracy but 10 S is a long time to wait for two gate periods (20 S). A frequency meter is useful to give you the tuning to within a fraction of a percent.
Fig.

The best method is to tune the VCOs relative to a fixed tone. I use a crystal oscillator divided down to 400 Hz . You can mix this with the VCO output so that you can hear the beats, or even better you can display the two frequencies on a dual beam oscilloscope.

Oscilloscope Method

Display the 400 Hz fixed reference squarewave on one beam and sync from it. Display the VCO to be aligned on the other beam. Press the bottom note on the keyboard and set the VCO to 100 Hz . The VCO output will remain almost stationary relative to the reference squarewave. It will drift slowly to the left or to the right, which should be corrected by fine tuning the VCO. Play a note one octave up and adjust the PR9 preset so that the VCO output is stationary (ie 200 Hz) relative to the reference signal. Now go back to the bottom note. The pitch of this will have been changed by PR9, and so retune the VCO (to 100 Hz) with the fine tuning pot. Repeat the process again and again until the VCO interval converges to one octave. When altering PR9 it is best to overcorrect as you will then converge more rapidly. Now the tuning can be more finely set up by repeating the process for higher octaves. When finally set up the VCO output will be almost static relative to the reference tone on all five octave notes. Best results are obtained by tuning the VCO to be static relative to the reference tone at the top end of the keyboard. In fact when tuning up a synthesiser, musicians always tune up the VCOs for unison at the top of the keyboard. Then any pitch spread errors will cause minimum beat frequencies. Tuning the VCOs at the bottom of the keyboard generates maximum beats.

Repeat the entire tuning process for VCO2 using PR8 to adjust the pitch spread. Then tune the other voices. If all the VCOs track relative to a fixed reference then they will track with each other. Select one-voice mode, using both VCOs. Turn on all four voices and press the top note on the keyboard. Tune all the VCOs to 1600 Hz so that they are slowly beating together (a total of eight VCOs). Now play the lower notes down the keyboard. If the VCOs track then they will continue to slowly beat. The pitch spread tuning should be such that over the keyboard's range the beat rate does not exceed 1 to 2 Hz . If the VCOs track properly the synthesiser can now be switched to four voice polyphonic operation.

Octave Transpose Switch

Set the octave transpose switch to 0 . Tune a VCO to 200 Hz so that it slowly beats with the reference 400 Hz . Turn the octave transpose switch to +1 and adjust the preset (PR3 on board PS5) for an exact one-octave increase. Now set the switch to -1 and adjust the other preset (PR2 on board PS5) for an exact one-octave decrease. Set the number of voices to one, the octave transpose to 0 and turn on and tune all eight VCOs to be in unison. Now try the effect of the transpose switch and pot. All the VCOs should be transposed without a significant or objectionable increase in the beat rate. If the beat rate does become objectionable it will be because of an inaccurate transposition in one or more of the VCOs. This is due to the mismatch of resistor pairs R117/R113 or R112/R76 on the voice board, which should be matched to 0.01% for optimum results.

PROJECT : Polysynth

VCO Bias

Set the transpose pot and switch to maximum. Set all the tuning pots to maximum and play the top note on the keyboard. Adjust PR4 (for VCO1) and PR7 (for VCO2) on each voice board for a VCO pitch of 4 kHz . This is the maximum frequency of operation for the machine.

VCF Bias

Select one-voice operation. Tune all the VCO1s to 400 Hz (ramp waveform). Turn on the VCF TRACK switch. Set the ADSR SWEEP pot to off and the VCF frequency pot to its central position. Turn the resonance control to maximum. Adjust PR2 so that the VCF rings with the eighth harmonic of the ramp $(3200 \mathrm{~Hz})$. Repeat this for the other voices. Now try altering the filter frequency. The VCF on each voice should generate the same tone.

HF Track

Set the bottom note of the keyboard to 200 Hz and tune it against the 400 Hz reference note. Now play the top note (3200 Hz). The VCO may have gone slightly flat in which case adjust the HF TRACK preset to restore the high frequency tuning. Repeat this for every VCO. The Curtis data sheet recommends aligning the HF tracking at 10 kHz . This is, however, outside the tuning range of the Polysynth. At 4 kHz (the maximum frequency of the machine) it may not be necessary to use the HF track. The HF presets are PR9 for VCO1 and PR6 for VCO2.

Drift

Both the absolute frequency and the pitch spread drift with time and temperature. There is a turn-on drift caused by the warming up of the VCO chips and the power supply. The -5 V rail will change slightly as it warms up and this causes a frequency and pitch spread change. The same is true for the \pm 15 V rails but to a lesser extent. The VCO bank should be finally aligned after the chips have been burnt in for 24 hours and after the unit has been powered up for at least 10 minutes.

Long-term drift is caused by the ageing of the ICs and precision components and the voltage references in the power supplies. This will probably necessitate slight recalibration of the unit every six to twelve months.

Portamento

The portamento circuits are designed to generate virtually zero voltage change between input and output at all portamento speeds. If eight voices are set up to play in unison they will track over the keyboard range when the portamento is set to fast or slow. On the slow setting, a full-range keyboard transition will take place about 2 S .

Set the synthesiser up for four voice operation and tune up the voices on the top note. Now with the portamento slow (anticlockwise) play a four-note chord in the bottom octave. The four VCOs will shoot off from the top note and zoom down and land exactly on the chord. Lots of wild sounds can be generated using this polyphonic portamento facility.

ETI

SUBSCRIPTION PRICE SAVER

Inflation has been working its magic on ETI's bank account, pushing up the cost of an annual subscription a trifle to $£ 11$. Christmas and the January sales conspire to deplete one's gold reserves. Ever-conscious of this phenomenon of modern society (we're all skint, too) we're making you an offer you can't refuse.
Until February 28th, the subscription fee will be slashed to a mere $£ 9.95$.
To take advantage of this unrepeatable offer, send your cheque or PO
(made payable to Modmags Ltd) NOW direct to:
ETI Subscriptions,
Modmags Ltd,
145 Charing Cross Road, London WC2H OEE.

[^0]
micron

'MICRON' may sound small - but we all know that it's much larger than an atom!

The un-beatable features of Microtan 65 and Tanex have been brought together to give you Micron, a ready built and tested computer of outstanding value. Fully supported by comprehensive documentation, Micron represents an ideal starting point in personal computing. We've taken a full D.E.M. licence for Microsoft Basic, which means that you'll have the support of the most popular Basic available, (as used on PET, APPLE, TANDY etc.). If you want to expand Micron there's no problem, just move into the system rack and choose from the range of Microtan modules. Read the information, study what the magazines have to say about us and compare what we have to offer with other systems, then we feel sure that you'll be convinced that we've produced an excellent product.

- FULLY BUILT, TESTED AND CASED.
- 6502 BASED MICROCOMPUTER.

VDU ALPHA NUMERIC DISPLAY.

- 8K RAM.
- 32 PARALLEL I/O LINES.
- 2 TTL SERIAL I/O LINES.
- 1 SERIAL I/O PORT WITH RS232/20mA LOOP, AND 16 PROGRAMMABLE BAUD RATES.
- 300 / 2400 BAUD FILENAMED CASS. INTERFACE.
- DATA BUS BUFFERING.
- MEMORY MAPPING CONTROL.
- 71 KEY ASCII KEYBOARD, INCLUDING NUMERIC KEYPAD.
- POWER SUPPLY INCLUDED.

TANGERINE
 COMPUTER SYSTEMS LIMITED

Forehill Works
Forehill Ely Cambs England re: $: 035333633$

microtan 65

The Microtan system is rapidly becoming accepted as the ultimate approach to personal computing. Start with Microtan 65, a 6502 based single board computer, and expand to a powerful system in simple and in-expensive stages. The Microtan system is a concept and not an afterthought, this means expansion is easy and very efficient! Unlike many other systems, you'll find it difficult to outgrow Microtan, and you won't be wasting your money on a product that will only last you a few months! When you are ready to expand, Tanex is waiting. The features offered by Tanex are tremendous, and you can start into them for just $£ 49.45$! Cassette interface, 16 I/0 lines, two 16 bit counter timers, data bus buffering, memory mapping and a further $1 K$ of RAM are standard. From thereon expansion is simple, just plug in extra integrated circuits to get yourself 8 K of RAM, a further $16 \mathrm{I} / 0$ lines and two more counter timers a serial $I / 0$ line with $R S 232 / 20 m A 100 p$ and full modem control, XBUG - a firmware package containing cassette file handling routines, plus a line-by-line assembler (translator) and dis-assembler, PLUS LOK EXIENDED MICROSOFT BASIC, a suped-up version of the Basic as used by major manufacturers such as Apple, Tandy and Nascom, NO OTHER LOW COST MICROCOMPUTER OFFERS YOU THIS SUPERB PACKAGE. O.K. So you want more memory, try Tanram for size! Upto 40 K bytes on one board starting for as little as $£ 50.60$. RAM freaks will be pleased to hear that our system mother board offers page memory logic which will support 277 K Bytes, satisfied? To house these beautiful modules you can choose between our mini-rack (as used on Micron), which accepts Microtan and Tanex, or our system rack pictured above. The system rack will support 12 modules. What are these extra modules? Well for starters there's a couple of $1 / 0$ modules, parallel and serial offering upto $128 \mathrm{I} / 0$ lines organised as 168 bit ports and 8 serial I/O ports respectively. Shortly well be introducing high definition (256×256) colour graphics, A to D and D to A modules, IECE 488 Bus interface, a PROM programmer, disc controller and TANDOS - a 6502 CPM system. So there's plenty to keep you busy. Send for more details, and find out how you can get started for just £79.35!

ALL PRICES QUOTED INCLUDE V.A.T.

AIM 65, KIM 1, SIM 1 USERS- READ ON!

We have produced a T.V. interface module which simply connects to the expansion socket of your computer and produces a display of 16 rows by 40 characters! of even more interest will be our Buffer module, which allows you to expand into our system rack, giving you access to the full range of Microtan modules.

Please underline the information required. AIM T.V. INTERFACE. MICROTAN SYSTEM. NAME:

ADDRESS:

PLEASE ENCLOSE 12p STAMP. THANK YOU.

> Ian Graham reports on the next flight to Jupiter in 1984, the latest news of Ariane and developments in the Soviet Soyuz programme.

In March 1984 the space shuttle cargo bay doors will open and a spacecraft will emerge on its way to Jupiter. Three and a half years later the Galileo probe will begin its descent to the Jovian surface. The spacecraft is to be built by the Hughes Aircraft Company. It will be based on the design used during the Pioneer Venus planetary multiprobe programme in 1978 . It will comprise two components - the probe itself and the probe carrier. 10 days before Jupiter encounter the two components separate. The probe is sent on its way to the planet. As it descends through the atmosphere it will transmit data to the carrier which will relay the data back to Earth across 560 million miles.

NASA's Galileo programme is named after the founder of experimental physics and astronomy who discovered four of Jupiter's 13 known moons in the early seventeenth century. The probe's seven experiments are designed to investigate the planet's atmosphere, magnetic field, satellites and radiation belts. The mission also includes a Jupiter orbiter, built by the Jet Propulsion Laboratories (JPL) in California. The orbiter will take close-up photographs of the planet and its satellites.

Originally the orbiter and carrier/probe were to be launched during a single shuttle flight using a common Inertial Upper Stage (IUS). However, shuttle programme delays have meant postponing the launch from 1982 to 1984 and separating the mission into two different launches.

March, April, . . . Blast-Off

Talking of the Space Shuttle - how are preparations for the first flight going? The orbiter has now been attached to the external tank. If all goes well (always a dangerous thing to say where the shuttle is concerned) the system interfaces will be checked out and then the shuttle/external tank assembly will be moved to launch pad 39A where it will undergo a pre-flight engine trial burn before the launch itself. Plans still call for a March 14th launch. Any further delays will undoubtedly push the big day back.

European News

I reported in ETI January that the Ariane rocket crash was due to vibration in the first stage engine. Two high frequency phenomena have been identified. One in the 2300 Hz band has been rectified. The other at 2700 Hz still needs some work. In view of that the third flight test will probably take place in June 1981 and the fourth will follow in the Autumn of the same year. If the programme is not delayed any further, ESA will still be able to meet its commitments to launch scientific and telecommunications satellites in late 1981 and 1982. Despite the extra expenditure involved in rectifying the engine faults, the programme will remain within the overall financial envelope fixed at its outset. A 20% margin was built in for unexpected contingencies.

Spacelab

The American and European payload specialists who will crew Spacelab are undergoing training at the Centre National D'Etudes Spatiales (CNES) at Toulouse and at the CNRS Laboratoire D'Astronomie Spatiale (LAS) at Marseilles in preparation for the first mission.

O. Carriot, B. Parker

M. Lampton, B. Lichtenberg

Dr. U. Merbold, C. Nicollier, Dr. W. Ockels
D. Frimount, C. Lewis
mission specialist selected by NASA.
NASA payload specialists (one of whom will be selected for the first mission).

ESA payload specialists (one of whom will be selected for the first mission). responsible for the coordination and training of the ESA and NASA Spacelab crews respectively.
When the 11 French experiments for the first flight have been built and tested, they will be delivered to ESA at the Toulouse Space Centre and sent to NASA for a final check and integration with Spacelab. If all goes to plan, the first Spacelab payload will be launched in June 1983.

Soyuz T3

The successful completion of the latest Soyuz/Salyut mission involved the use of a new spacecraft design, returning the crew to its full complement of three men. The last three-man Soyuz craft flew in 1971. At the end of the record-breaking flight (the crew spent 24 days in space) an air valve failed during reentry. As crews did not carry spacesuits, the Soyuz 11 crew died during the rapid depressurisation of the spacecraft. The landing continued under automatic control.

There was some Press speculation at the time that the deaths were due to the debilitating effects of long spaceflights, perhaps weakening cosmonauts to the point where they could not withstand the sudden exposure to G forces during reentry. However, NASA was able to verify the Soviet accident report, to which they insisted on access before the joint Apollo-Soyuz mission. Hardware modifications tested on Cosmos 496 and 573 and implemented on Soyuz 12 included an improved valve system. Crews began to carry spacesuits with a direct oxygen supply. These changes took up so much space that the crew had to be reduced to two men.

Fig. 1 Structural details of the Galileo probe carrier. The conical probe hangs underneath.

Fig. 2 Flight plan of the Galileo Jupiter exploration mission. Unlike the spectacular Voyager and Pioneer fly-bys, the Galileo probe will actually enter the Jovian atmosphere and send data back to Earth via its carrier spacecraft.

The new Soyuz T3 spacecraft is the same size and weight as the older design but it incorporates smaller, lighter components. New features include an on-board computer, new life support system, new orbital manoeuvring system and a new pressure suit. The first three Soyuz T3 crewmen (Kizim, Makarov and Strekalov) carried out several experiments in the Salyut 6 space station between November 28th and December 11th, including making the first hologram in orbit.

SHORTS

Ireland has become the eleventh member of the European Space Agency (ESA). Although Ireland signed the convention which brought ESA into being in December 1975, its application was not ratified until December 1980. Ireland's contribution to ESA comes to 0.54% of the total budget. In addition, Ireland participates in the remote sensing programme and in the Ariane production programme for the promotional series of six launches.
The International Maritime Satellite Organisation (INMARSAT) is to lease two MARECS satellites (MARECS A and B) from ESA in 1982. The deal will be worth about 65 million dollars and represents part of INMARSAT's new world-wide maritime telecommunications service for the international shipping community, MARECS A will be placed over the Atlantic ocean and MARECS B over either the Indian or Pacific ocean. The advantage of the MARECS system is its flexibility, in that MARECS satellites can, during their lifetime, be moved from one ocean area to another. Each satellite has a capacity of approximately 50 channels and will provide direct connections to subscribers on both telephony and telex and will also enable ship-to-shore search and rescue messages to be relayed quickly

\star PROMPT DELIVERY \star PRICES INCLUDE V.A.T. \star AMPLE STOCKS A PERSONAL SERVICE FROM A SMALL EXPANDING COMPANY

STEREO CASSETTE TAPE DECK

 ASSEMBLY. Comprising of a top panel assembly and tape mechanism coupled to a record/play back printed board assembly. Supplied as one complete unit for horizontal installation into cabinet or console of own choice. Brand new, ready built and tested. Features: Pause, control, auto stop, 3 digit tape counter. illuminated twin VU meters with individual record, level controls, secondary inputs for twin microphones. Input Sensitivity: 6 MV (with level control set at max). input Impedence: 47 kOhms. Output Level: To both left and right hand channels 150 MV . Output impedance: $<10 k$. Signal to noise ratio: 45 dB nominal. Power Supply Requiremente 12 V AC at $300 \mathrm{M} / \mathrm{A}$. Connections: All connections to the unit are via a wander lead terminated with a nine pin plug (socket provided), Dimensions: Top panel - $111 / 2$ in $\times 61 / 2 \mathrm{in}$. Mechanism fits through a cut out $53 / 4$ in $\times 101 / 2$ in. Clearance required under top panel $21 / 4$ in Supplied complete with circuit diagram etc. Price $£ 30.50$ plus $£ 2.50$ postage and packing. Suitable mains 12 -volt transformer, $£ \mathbf{3 . 0 0}$NEW RANGE QUALITY POWER LOUDSPEAKERS (15', $12^{\prime \prime}$ and $8^{\prime \prime}$). These loudspeakers are ideal for both hi-fi and disco applications. Both the $12^{\prime \prime}$ and $15^{\prime \prime}$ units have heavy duty die-cast chassis and aluminium centre domes. All three units have white speaker cones and are fitted with tixacive escutcheons Specification and \mathbf{P}

15" 100 watt. Impedance Bohm 50 oz . magnet. 2" aluminium voice coil. Resonant Frequency 20 Hz . Frequency Res£ 32 each. $£ 2.00$ Packing and Carriage

12"' 100 watt. Impedance 8 ohm. 50 oz, magnet. $2^{\prime \prime}$ aluminium voice coil.
Resonant Frequency 25 Hz . Frequency Response to 4 KHz Sensitivity 95 dB . Price Resonant Frequency 25 Hz . Frequency Response to 4 KHz . Sensitivity 95 dB . Price £23.70 each. £2.00 Packing and Carriage each
$3^{\prime \prime} 50$ watt. Impedance 8 ohm .20 oz . magnet. $1^{\prime \prime}$ aluminium voice coll. Resonant Frequency 40 Hz . Frequency Response to 6 KHz . Sensitivity 92 dB . Price $\mathbf{£ 8 . 0 0}$ each. 1.00 Packing and Carriage each

PIEZD ELECTRIC TWEETERS - MOTORDLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo weeter produces an improved transient response with a lower distortion level than ordinary dynamic iweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TVEETER.

Type 'A' Type 'C' Type 'D'

Type ' A ' 3 in round with removable wire mesh. Ideal for bookshelf hi-fi speakers. Price (Type 'A') E3.45 each Type 'B' $31 / 2 i n$ super horn. For general purpose speakers disco and PA systems, etc. Price $£ 4.35$ each.
Type 'C' 2 in $\times 5$ in wide dispersion horn. For hi-fi systems and quality disco etc. Price $£ 5.45$ each.
Type 'D' 2 in $\times 6$ in wide dispersion horn. Frequency response extending down to mid-range ($2000 \mathrm{c} / \mathrm{s}$) suitable for hi-fi systems and quality disco. Price £6.90 each.
Post and Packing, all types, $15 p$ each (or SAE for Piezo leaflets)

GEC AM/FM STEREO TUNER AMPLIFIER CHASSIS. Originally designed for installation into a music centre. Supplied as two separate built and tested units which are easily wired together. Note: Circuit diagram and interconnecting wiring diagrams supplied. Rotary Controls: Tuning, on/off plied. Rotary Controis: Tuning, on button controls. Mono, bass. Pushbutton controls. Mono, Tape. Disc. AFC, FM NHF), LW. MW. SW. Power Dutput: 7 watts RMS per channel, at better than 2% THD into 8 ohms. 10 watts speech and music. Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{kHz}$ within $\pm 3 \mathrm{~dB}$

Tape Sensitivity: Output - typically 150 mV . Input - 300 mV for rated output. Disc Sensitivity: 100 mV (cer amic cartridge). Radio: FM (VHF) $87.5 \mathrm{MHz}-108 \mathrm{MHz}$. Long wave $145 \mathrm{kHz}-108 \mathrm{kHz}$. Medium wave $520 \mathrm{kHz}-1620 \mathrm{kHz}$. Short wave $5.8 \mathrm{MHz}-16 \mathrm{MHz}$ Size: Tuner $23 / 2$ in $\times 15$ in $\times 71 / 2$ in approx. Power amplifier -2 in $\times 71 / 2$ in $\times 41 / 2$ in approx $240 V$ AC operation. Supplied complete with fuses. knobs and pushbuttons, and LED stereo beacon indicator. Price £23.50 plus $£ 2.50$ postage and pack ing.

JVC TURNTABLE. JVC Turntable supplied complete with an Audio Tech nica AT 10 stereo magnetic cartridge - 'S' shaped tone arm

* Belt driven
* Full size 12 in platter
\star Precision calibrated counterbalance weight ($0-3$ grms.)
\star Anti-skate (bias) device. Nylon thread weight.
\star Damped cueing lever
$\star 240 \mathrm{~V}$ AC operation, $(50 \mathrm{~Hz})$
\star Cut-out template supplied.
Size $-123 / 4$ in x $1.53 / 4$ in (approx)
Price $£ 28.50$ plus $£ 2.50$ postage and packing.

COPPER LAMINATED PRINTED CIRCUIT BOARD (single sided). Paxoline based type. Size $151 / 2^{\prime \prime} \times$ $121 / 4 "$. Brand new. Still shiny and bright. $£ 1.25$ per sheet. Post free.

FIRE ALARM CENTRAL CONTROL UNIT [S.T.C.] Ideal for Fire or Burglar Alarm Systems

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS 9 5TY

\star SAE for current lists. \star Official orders welcome. \star All prices include VAT. \star Mail order only. \star All items packed (where applicable) in special VISA energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572

electronics today international
 How to order ; Make cheques payable to ETl Book Service. Payment in sterling only please. Orders shouid be sent to: Ell prices indude P\&P. Prices may be subject to change without notice. Modmags Sales Office, 145 Charing Cross Road, London WC2. All prices include P \& P. Prices may be subject to change without notice.

BEGINNERS

Beginners Guide to Electronics Squires $\mathbf{4 4 . 2 5}$
Beginners Guide to Transistors Reddihough $\mathbf{5 4 . 2 5}$
Beginners Guide to Integrated Circuits Sinclair $\mathbf{\text { 4 }} .25$
Understanding Electronic Circuits Sinclair $£ 5.10$
Understanding Electronic Components Sinclair $\mathbf{£ 5 . 1 0}$
Beginners Guide to Radio King £4.25
Beginners Guide to Audio Sinclair $\mathbf{£ 4 . 2 5}$
Understanding Electronics, Warring $£ 4.90$

COOKBOOKS

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook $\mathbf{£ 8 . 2 0}$
Active Filters $\mathbf{£ 1 1 . 3 0}$
IC Timer Cookbook 57.65
IC Op-Amp Cookbook £10.00
Video Cookbook $\mathbf{E 6 . 5 0}$
ITL Cookbook $\mathbf{E 7 . 5 5}$
The Basic Cook $\mathbf{£ 4 . 0 0}$
IC Converter Cookbook 99.50
Master IC Cookbook Hallmark $£ 7.45$

APPLICATIONS

Fire and Theft Security Systems B. Weis $£ 2.15$
How To Build Electronic Kits Chapel $\mathbf{£ 3} 2 \mathbf{2 5}$
110 Electronic Alarm Projects R.M. Marston $\mathbf{£ 4 . 9 5}$
110 Semiconductor Projects for the Home Constructor R. M. Marston $\mathrm{f4.95}$
110 Integrated Circuit Projects for the Home Constructor R. M. Marston f4.95
110 Thyristor Projectors Using SCRs R. M Marston f4.95
110 Wave Form Generetor Projects R. M. Marston £4.95

COMPUTING \& MICROPROCESSORS

What is a Mircroprocessor? 2 cassette tapes plus a 72 -page book $\mathbf{£ 1 0 . 0 0}$ Beginners Guide to Computers and Microprocessors with Projects C. Adams $\mathbf{£ 6 . 0 5}$

BASIC Computer Games Ahl $\mathbf{£ 6 . 0 5}$
BASIC for Home Computers A self-teaching guide B. Albrecht $\mathbf{f 6 . 6 0}$ Illustrating BASIC D. Alcock $\mathbf{f 4 . 2 5}$
Troubleshooting to Microprocessors and Digital Logic Goodman $£ 5.90$
Z-80 Microcomputer Handbook W. Barden $\mathbf{£ 7 . 7 5}$
How to Program Microcomputers W. Barden $£ 7.25$
Introduction to Microcomputers and Microprocessors
A. Barna $\mathbf{E 9 . 5 0}$

Microprocessors in Instruments and Control R. J. Bibbero $\mathbf{£ 1 3 . 1 0}$
Basic BASIC J. S Coan $\mathbf{£ 7 . 4 0}$
Advanced BASIC J. S. Coan $£ 6.40$
Getting Acquainted with Microprocessors L. Frenzel $\mathbf{5 7 . 2 5}$
Beginners Guide to Microprocessors C. M. Gilmore $\mathbf{£ 4 . 9 0}$
1001 Things to do with Your Personal Computer Sawusch $\mathbf{£ 6 . 0 0}$
Beginning BASIC R. E. Gosling $\mathbf{f} 4.75$
Microprocessor Programming for Computer Hobbyists N. Graham $£ 7.15$ Miniprocessors from Calculators to Computers Heiserman E5.35
Mip
Microcomputers. Microprocess
Applications J. L. Hilburn $\mathbf{£ 1 7 . 4 0}$
Applications J. L. Hilburn E17.40
BASIC Programming J. G. Kemeny $\mathbf{~} 8.20$
BASIC Programming J. G. Kemeny $\mathbf{4 8 . 2 0}$
Microprocessor Systems Design E. Klingm
Intro to Microprocessors Leventhal $£ 11.00$
Microprocessor - Technology, Architecture \& Applications
Microprocessor - Tec
D. R McGlynn $\mathbf{f 1 1 . 3 0}$
D. R. McGlynn $\mathbf{£ 1 1 . 3 0}$

Interective Computing with BASIC Monro $\mathbf{£ 4 . 3 5}$
BASIC with Style P. Nagin $£ 4.50$
Software Design for Microcomputers Ogdin $\mathbf{£ 8 . 8 5}$
Microcomputer Design Ogdin $\mathbf{£ 7 . 4 5}$
Microcomputer Base Design Peatman $\mathbf{£ 6 . 1 0}$
Hands on BASIC with a PET Peckham £10.50
Complete Microcomputer Systems Handbook $£ 8.75$
6000 Software Gourmet Guide and Cookbook Scelbi $\mathbf{5 9 . 2 0}$
8060 Software Gourmet Guide and Cookbook $\mathbf{2 9 . 2 0}$
The 8080A Bugbook: Microcomputer Interfacing 8 Programming P H. Rony $f 8.35$
8080/8055 Software Design Titus $\mathbf{£ 7 . 6 0}$
57 Pratical Programs \& Games in BASIC Tracton $£ 6.65$
How to Design, Build and Program Your own Working Computer
System $\mathbf{£ 7 . 1 0}$
Your Own Computer Waite $\mathbf{£ 2 . 2 5}$
Microprocessor/Microprogramming Handbook Ward $\mathbf{£ 6 , 2 0}$

LOGIC

Logic Design Projects Using Standard ICs J. Wakerly $\mathbf{£ 7 . 2 5}$ Pratical Digital Design Using ICs J. Greenfield £16.00
Designing With TTL Integrated Circuits Texas Instruments $\mathbf{5 9 . 0 0}$
How To Use IC Circuit Logic Elements J. Streater $\mathbf{f 4 . 8 5}$
110 COSMOS Digital IC Projects for the Home Constructor
R M Marston $\mathbf{f 4 . 9 5}$
Understanding CMOS Integrated Circuits R. Melen $\mathbf{f 4 . 6 0}$
MOS Digital ICs G. Flynn 55.25

TEST INSTRUMENTS

The Oscilloscope In Use Sinclair $£ 4.00$
Working with the Oscilloscope A. Saunders $\mathbf{f 4 . 6 0}$
Servicing with the Oscilloscope A. King $\mathbf{E 7 . 5 0}$
Redio Television and Audio Test Instruments King $\mathbf{f 8 . 3 0}$

OP-AMPS

Applications of Operational Amplifiers Graeme (Burr Brown) $£ 8.45$ 110 Operational Amplifier Projects for the Home Constructor R. M. Marston $£ 4.55$

Designing With Operational Amplifiers Burr Brown $£ 19.65$
Operetional Amplifiers Design and Applications G. Tobery (Burr Brown) $£ 7.80$

COMMUNICATIONS

Communication Systems Intro To Signals \& Noise B. Carison $\mathbf{£ 7 . 6 5}$ Digital Signal Processing Theory \& Applications L. R. Rabiner $\mathbf{f} \mathbf{2 4 . 4 0}$ Electronic Communication Systems G. Kennedy $\mathbf{£ 8 . 7 5}$
Frequency Synthesis. Theory \& Design Mannassewitsch $£ 25.00$
Principles of Communication Systems H. Taub $\mathbf{f 8 . 4 0}$

THEORY

Introduction to Digitel Filtering Bogner $\mathbf{£ 1 0 . 6 0}$
Transistor Circuit Design Texas Insiruments $£ 10.00$
Foundations of Wireless Electronics M. G. Scroggie $\mathbf{5 6 . 1 0}$
Electronic Circuit Design Handbook 4th Edition E76.75
Master Guide to Electronic Circuits Adams $\mathbf{5 9 . 2 5}$

REFERENCE

Electronic Engineers Reference Book (Ed. 4) L. W. Turner $£ 38.00$ Electronic Components M. A. Colwell $£ 3.40$
Electronic Diagrams M. A. Colwell $\mathbf{£ 3 . 4 0}$
Intemational Transistor Selctor T. D. Towers New update $£ 10.70$ International FET Selector T. D. Towers New update $\mathbf{£ 4 . 6 0}$ Intemational Op-Amp Linear IC Selector Towers $\mathbf{£ 8 . 0 0}$ Intemational Microprocessor Selector (NEW) Towers £16.00 Radio, TV and Audio Technical Reference Amos $£ 37.00$

MISCELLANEOUS

Electronic Fault Diagnosis Sinclair $\mathbf{£ 4 . 0 0}$
Integrated Electronics J. Milman $\mathbf{£ 8 . 2 0}$
Practical Solid State DC Supplies T. D. Towers $\mathbf{\text { E6,5D }}$
Practical Triac/SCR Projects for the Experimenter R. Fox $\mathbf{£ 2 . 3 5}$
Printed Circuit Assembly Hughes \& Colwell $\mathbf{f 3 . 4 0}$

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

CRYSTAL
 CALIBRATOR

A simple but useful piece of test gear. Ideal for spot calibrating radio dials, 'scope timebases, etc. Design by Ray Marston. Development by Steve Ramsahadeo.

ETI

CRYSTAL
FREQUENCY

- CALBRATION STANDARD

This simple piece of test gear produces a square wave output with any one of six selected frequencies or periods. The outputs which range from $100 \mathrm{~Hz}(10 \mathrm{mS})$ to 1 MHz (1 uS), are derived from a crystal oscillator via decade divider stages and thus have a high degree of frequency/period precision. The instrument is thus specifically intended to be used as a precision frequency/period standard, for calibrating items such a radio dials, 'scope timebases, etc.

To calibrate a radio dial, loosely couple the output of the instrument to the radio antenna (i.e., dangle a bit of output wire near to the aerial), switch to the 1 MHz range and then tune the radio through its ranges, marking off the dial points at which the 1 MHz signal and its harmonics (up to about 30 MHz) are heard as a heterodyned 'zero beat' audio signal.

Then repeat the procedure at lower standard frequencies ($100 \mathrm{kHz}, 10 \mathrm{kHz}$, etc) until the dial is adequately calibrated.

To calibrate a 'scope timebase, simply connect the output of the calibration standard to the Y amplifier of the 'scope and then run through the timebase ranges, checking that the indicated periods agree with those of the calibrator.

Construction

This is a fairly simple project and construction should present few problems. Most components are mounted on a single PCB. Note here that five links are used on top of the PCB and that the crystal and the five ICs must all be mounted in suitable sockets.

When the PCB construction is complete, mount it in a suitable box and make the interconnections to SW1, SW2 SK1 LED1-R9 and B1. The unit is then ready for use.

The basic instrument has a typical accuracy of better than 0.01% with the C2 value shown. If you want better accuracy than this and have access to a precision frequency standard (such as Droitwich, which has an accuracy that is within 2 parts in 10^{11}), replace C 2 with a 100 pF trimmer and adjust it to give a precise 1 MHz crystal oscillator frequency.

For those of you who have always wanted to know what the inside of a crystal calibrator looks like but were too bashful to ask, here it is. You could go mad with a power drill (or sharpened boy scout) drilling holes for PCB bolts and battery clips. We've found sticky pads to be perfectly adequate.

Fig. 1 Circuit diagram. R9 is mounted off-board between LED1 and SW1.

HOW IT WORKS

The heart of the instrument is the crystal oscillator designed around Q2-Q3. Q3 is wired as a common base amplifier. Its collecter signal is buffered by emitter follower Q2 and then coupled back to Q3 emitter via the series-resonant 1 MHz crystal, thereby causing Q2-Q3 to oscillate at the crystal frequency. The oscillator output signal is then amplified by Q1 and converted to a clean square wave by Schmitt trigger IC1a.

The 1 MHz square wave from IC1a is used to clock a chain of cascaded decade dividers to generate standard frequencies of 100 $\mathbf{k H z}, 10 \mathrm{kHz}$ and 100 Hz . All of these signals are made available at output socket SK1 via SW2 and are individually buffered by Schmitt inverters (IC1b to IC1I).

The instrument is powered from a single 9 V battery. LED 1 illuminates while SW1 is closed.

BUYLINES

The case for the Crystal Calibrator was selected from West Hyde Developments (order as Box 434).

Mail order companies such as Maplin, Watford and Electrovalue are able to supply the 1 MHz Crystal.

Conquer the chip.
 Be it a career, hobby or interest, like it or not the Silicon Chip

 will revolutionise every human activity over the next ten years.Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.
Learn the technology of the future today in your own home.

Building an oscilloscope. - Recognition of components.

- Understanding circuit diagrams. - Handling all types Solid State 'Chips'.
- Carry out over 40 experiments on basic circuits and on digital electronics
- Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW
THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS

- Complete Home Study library. - Special educational MiniComputer supplied ready for use. Self Test program exercise.
- Services of skilled tutor available.

MASTER THE REST

- Radio Amateurs Licence. Logic/Digital techniques.
- Examination courses (City \& Guilds etc.) in electronics.
- Semi-conductor technology.
- Kits for Signal Generators - Digital Meters etc.

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p EACH
POSTAGE 15p PER PACK UP TO FOUR PACKS FIVE OR MORE POST FREE
BUY SIX PACKS AND GET A SEVENTH PACK FREE!

```
MN1. 300 1/4-watt Resistors preformed
MN2. 200 1/4 & 1/2-watt Resistors
MN3.100 1 & 2-watt Resisiors
MN4.50 Wirewound Resistors.
MN5. 100 metal oxide Resistors. 1%,
2% and 5%.
MN6. }12\mathrm{ asstd potentiometers
MN7. }25\mathrm{ asstd. skeleton pre-set Resis
Mrs.
MN9. 100 asstd. Ceramic Capacitors
Plie, disc, tub and monolythic etc.
MN10. 100 mixed capacitors. Polyester,
Polystyrene. Metallised, Radial and Axia
Mypes.
MN12.8 Tantalum Bead Capacitors
(useful values)
MN13. 20 asstd. Transistors BC, 2N
Series + Power etc.
Series + Power etc.
MN15.5 Light Sensitive Devices.
MN16. 20 min. wire-ended Neons
MN17. 212,volt Relays. Ex nearly new
equip.
MN18. 3 Encapsulated Reed Relays
9-12v.coil, d.-pole and t -pole
MN19. 224.volt Relays. Ex nearly new
equip. , 240-110 to 12 volt 100m
Tranformer -10,10
Transformer
MN21. 1 240-110 to 24-volt 100ma
Transformer
yellow,}2\mathrm{ green
```

MN23. 116 asstd scraws, nuts washers, self-1appers etc
MN24. 100 assid small springs
MN25. 50 asstd pop rivets.
MN25. 50 asstd. insulated crimps. MN27. 200 items. grommets. spacers, cable markers. plastic screws, sleeving. tie wraps etc.
MN28. 20
MN28. 20 asstd. fuses. $11 / a^{\prime \prime} 20 \mathrm{~mm}$ etc MN29. 75 mts equipment, wire, asstd colours and sizes.
MN30. $\mathbf{3} \times 2 \mathrm{~m}$ length. 3 core, marns MN31. 12 asstd trimmer capacitors. compression film. Air-spaced etc.
MN32. 1530 pF Beehive trimmer MN32. 15 30pF Beehive trimmers. MN33. 20 coil formers, ceramic, plastic. reed relay etc.
MN34. 25 min. glass reed switch
MN35. 10 assid. switches, toggle, slide,
micro etc.
MN36.
MN36. 10 ex equipment panel lamps (no
MN37. 10 asstd. audio connectors. Din
phono etc.
MN38. 1 PCB with triac control IC data
MN39. 1 oscillator PCB loads of components. (no data).
MN4O. 50 Polystyrene capacitors
MN41. 10 asstd. T.T.L. I/Cs.
MN42. 10 8C 107 Transistors.
MN43. 10 BC 108 Transistors.
MN44. 10 Screwtix S.P.C.O. min. slide switches

CHORDGATE LTD.

75 FARINGDON ROAD, SWINDON, WILTS
TEL: SWINDON (0793) 33877
RETAIL SHOP AT ABOVE ADDRESS
PLEASE QUOTE NO. OF PACKS WHEN ORDERING

For quick signal tracing and circuit modification For quick circuit analysis and diagramming
With or without built-in regulated power supplies
Use with virtually all parts - most
plug in directly, in seconds.

NO	$\begin{aligned} & \text { MODEL } \\ & \text { NO } \end{aligned}$	NO OF SDIDERLESS TIE POINTS	$\left[\begin{array}{l} \text { 1C } \\ \text { CAFACITY } \\ \text { (14 DindP Ss } \end{array}\right.$	$\begin{aligned} & \text { UNIT } \\ & \text { PRICE } \end{aligned}$	FRICE NC PGF 15: va7	$\begin{aligned} & \text { OTHER } \\ & \text { FEATURES } \end{aligned}$
1	PB6	530	6	920	11.73	Kit
2	PB 100	760	10	1180	14.72	Kit
3	PB 101	940	10	17.20	21.21	
4	PB 902	1240	12	2295	2783	
5	PB 103	2250	24	3445	4134	
6	PB 104	3060	32	45.95	54.56	
7	PB 203	2250	24	55.15	65.14	5 V @ 1A
8	PB 203A	2250	24	74.70	87.63	$5 \mathrm{~V} \pm 15 \mathrm{~V}$
9	PB 203AK	2250	24	59.00	59.57	$\begin{aligned} & 5 V \pm 15 V \\ & \& K i t \end{aligned}$

Ideal for design, prototype and hobby
Tomorrow's tools for today's problems
CONTINENTAL SPECIALIIES CORPORATION「C.SC.

C.S.C. (UK) Limited, Dept. 14 U

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex. CB11 3AQ.
Telephone: Saffron Walden (0799) 21682
Telex: 817477
ETI MARCH 1981

TECH TIPS

NOTE:
1C1 IS 4011
IC2 IS 4081
IC2 IS 4081
IC3 IS 4017
ICA 5 ARE
IC4,5 ARE 4016

Trip Petrol Meter

S.J. Stamps, Portishead

This circuit can be used to measure the amount of fuel used in a single car journey with greater accuracy than that of the standard petrol gauge. The circuit counts the number of pulses of the (electric) petrol pump over the journey, using a converted calculator to give a digital display. Interesting results can be obtained by taking measurements of the same journey whilst varying the route or just the driving style.

Circuit operation depends on the 'junk' calculator chosen - a suitable calculator can be bought for the price of a couple of seven-segment displays alone.

The function of most of the circuitry is to initiate the calculator chip to increment by one on each simulated press of the $=$ key. I used a TI30 machine, so the sequence on power up was; C/CE , 1,,$+ K$. On power-up the reset pin of the 4017 is held high. As the capacitor charges, the reset pin goes low and the counter counts from zero. As each output goes high the respective switch of the 4016 is enabled, simulating a key press. When the counter reaches ' 9 ', the clock is disabled and the pulses from the petrol pump are enabled to switch the $=$ key. Now each time the petrol pump pulses, the displayed value on the calculator is incremented by one. At the end of the journey the displayed value thus reflects the volume of petrol consumed since switchor.

Ballpoint Spacers
 W. McEwan, Argyll

The use of dried-out ballpoint pen plastic bodies as test prods is well known. Recently, I discovered that they also make excellent spacers for printed circuit boards. Simply cut them to size with a Junior hacksaw - excellent for awkward lengths. The internal hole is suitable for either M3 or M4 bolts.

Priority Audio Switch

T.P. Hopkins, Manchester.

This circuit switches a single loudspeaker from a 'normal' to a 'priority' circuit whenever a signal appears on the priority input. The

TThis circuit was designed to prevent condensation on a glider when stored in its trailer, by switching on a fan heater as soon as condensation occurs and off again when the condensation has evaporated, but it is equally applicable to kitchens, bathrooms or anywhere with a condensation problem
prototype was used to switch between a cassette player and a two-way radio whenever a call was received. Other uses include priority calls in PA systems, monitoring several infrequently-used radio channels, etc.

Audio from the priority input is rectified and applied to the Schmitt trigger circuit, IC1. If the rectified voltage exceeds the voltage set by PR1, IC1 switches and the relay is operated by Q1. The switching level is set by PR1.
output OUTPUT
(TO SPEAKERS)

The hysteresis is controlled by R8 and the delay before the relay switches back to the normal channel at the end of a priority call depends on C2 (approximately 2 S with the value shown).

If stereo outputs from the cassette recorder, etc. are to be switched, RLA will require two changeover contacts. Several of these circuits may be cascaded to provide more than one level of priority.

The detector is built around an RS307-913 reflective opto-switch. This consists of an infra-red diode and a photo Darlington transistor in one package arranged so that when a reflector is placed close to the switch (optimum distance 4.6 mm) the photo Darlington is turned on. In this device the reflector is a small piece of highly polished stainless steel, the reflectivity of which is reduced when misted by condensation, thus switching the heater on.

A reference voltage of about 4 V is
applied to the inverting input of the 741 op amp from the voltage divider R2 and R3. The voltage at the noninverting input can swing either side of the reference voltage depending upon the conduction state of the photo Darlington and the setting of the sensitivity control, PR1. Positive feedback is obtained via R4, providing Schmitt trigger action to prevent relay chatter at the changeover point. The rest of the circuit is straightforward, but ensure that the relay is adequately rated.

A cautionary note - if the device is used in a bathroom a fan heater must not be used; wall mounted radiant heaters only are permissible.

New Profile Amplifiers- Two New Series

M

NO QUIBBLE 5 YEAR GUARANTEE 7. DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE

SNGW PRE-AMPS

HY6 (mono) and HY66 (stereo) are new to f.L.P's range of advanced audio modules. Their improved characteristics and styling ensure their being compatible with ail i.L. power-amps bothsible reproduction from your equipment to get the best possible reproduction against short circuit and wrong polarity. Full assembly instructions are provided. Mounting boards are available as below.
Sizes - HY6 - $45 \times 20 \times 40 \mathrm{~mm}$. HY66 - $90 \times 20 \times 40 \mathrm{~mm}$. Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag. PU. - 3 mV : Mic - selectable 1-12mV: All others 100 mV . Tape O/P - 100 mV : Main O/P 500mV: Frequency response - D.C. to $100 \mathrm{KHz}-3 \mathrm{~dB}$.
HY6 mono $£ 6.44+97 \mathrm{p}$ VAT Connectors included
HY66 stereo $£ 12.19+$ £1. 83 VAT Connectors included
B6 Mounting Board for one HY6 78p +12 p VAT B66 Mounting Board for one HY6699p+15p VAT

S NEW POTFER SUPDTE UNTIS

Of the eleven power supply unis which comprise our current range, nine have torodal
Of the eleven power supply unts which comprise our current range, nine have toroldal
transformersmade inour wnfactory. Thusthese IL. P powersupply unitsare space-saving, more
 efficientand their better
the range are compatible
power amps you choose.
PSU30 +15 V at 100 mA to drive up to $12 \times$ HY 6 or $6 \times$ HY66 $£ 4.50+0.68 \mathrm{p}$ VAT - THE FOLLOWING WILL ALSO DRIVE I.L.P PRE-AMPS PSU36 for use with 1 or 2 HY30's
ALL THE FOLLOWING USE TOROIDA $£ 8.10+£ 1.22$ VAT ALL THE FOLLOWING HYE TOROIDAL TRANSFORMERS SU0 for use with or 2 HY60 PSU60 for use with 1 HY120 PSU65 for use with 1 MOSI20 PSU70 for use with 1 or 2 HY120's PSU75 for use with 1 or 2 MOS120 PSU90 for use with 1 HY200 PSU95 for use with MOs200 PSU180 for use with HY400 or 2 HY200 PSU185 for use with lor 2 MOS200
\star Freepost facility

When ordening or witing about I.L. Pproducts, you do not need to stamp the envelope. Mark it
below. We pay the postage for you.

* TO ORDER send cheque or money order payable to IL P Electronics in registered envelope:ifC.O.D. payment is wanted, please add $£ 1.00$ to TOTAL in registered en
value of order.

- DISTORTION TYPICELLY 0.005%

- LATEST DESIGN HIGH QUALITY CONAECTOR S/N RETIO-90dB (Kag.

ONLY POTS SWITCEES AND PLUGS/SOCKEIS NEED BDDINC

- NEEDS ONLY ONRECULETED POWER SUPPLY ± 15 to $\pm 60 \mathrm{v}$

II A MMLE OF II MODESS USITE LITEST TOMOLIL TMMSFOMEES

1971-1980
 TEN YEARS OF PLANNED PROGRESS

When, in 1971. Jan L. Potts founded his now world-famous company, he saw the need for a different and more rational approach to exploiting to the full, the porential that lay in modular construction. New thinking was badly needed. The result was a range of modules
revolutionary inconcept. The rightnessofthis new thirking is shown revolutionary inconcept. The nghtness ofthis new thinking is shown
by the size of the company today, its new factory, ts vast exports, its
acceptance by constructors as the modules to build with. The eange acceptance by constructors as the modules to build with. The range grows bigger and better. Exciting new lines in no way connlicting
withe existing ones) are well past drawing board stage. This is why
I.L. P are simply ahead and staying there.
$£ 10.94+£ 1.64$ VAT $£ 13.04+£ 1.96$ VAT $13.32+£ 2.00$ VAT $£ 15.92+£ 2.39$ VAT $£ 16.20+£ 2.43$ VAT
$£ 16.20+£ 2.43$ VAT $£ 16.20+£ 2.43$ VAT
$£ 16.32+£ 2.45$ VAT $£ 16.32+£ 2.45$ VAT
$£ 21.34+£ 3.20$ VAT £21.46+£3.22 VAT

BRITAIN'S FOREMOST QUALITY MODULE SUPPLIERS

-

TO: IL P ELECTRONICSLTD. CANTERBURY CT2 7EP
Please supply.
Total purchase price ε.
Ienclose Cheque \square Postal Orders \square International Money Order \square
Please debit my Access/Barclaycard Account No.

POWER SWITCH

 MODULESYou can use your ETI Noiseless Power Switch on its own OR trigger it automatically with one of three remote control modules. Use the Dark Activated Module to switch your lights on at night and off in the morning to deter the neighbourhood villains when you're away. The Differential Temperature Module will switch off your living room heater when the weather outside verges on the tropical and the Under Temperature Module will sound a red alert when your front path ices over. No doubt you can think of a hundred and one
 uses for this versatile family of projects around the home. Your options are endless.

DIFFERENTIAL TEMPERATURE MODULE

Activate extractor fans or fire alarms automatically with this easy-to-build unit. The device can be used either as a stand-alone project or to interface with the Noiseless Power Switch described elsewhere in this issue. Design by Ray Marston. Project development by Plamen Pazov.

This useful little project uses a pair of inexpensive silicon diodes to monitor temperatures at two different points and turns a relay on when the temperature of D1 goes above that of D2 and off when the temperature of D1 goes below that of D2. The circuit responds to relative, rather than absolute, temperatures. The temperature switching differential of the unit can be varied over a limited range by a preset pot. The circuit has a variety of practical uses. It can be used as an automatic fire alarm (using the relay contacts to activate a bell, etc) by placing D1 at the top of an internal wall and D2 halfway down the wall, so that the alarm is activated by excessive rising heat. Alternatively, the unit can be used to give automatic operation of heat extractors or ventilators in cellars or workshops, etc, by placing D1 in the cellar and D2 outside the
building, so that the extractor only operates when the inside temperature is greater than that outside.

The basic circuit can be used as a stand-alone project, with a relay output, or can be used without the relay and its associated transistor-diode network to give fully automatic operation of the Universal Noiseless Power Switch described elsewhere in this issue.

Construction

Construction of this project should present absolutely no problems if the specified components are used (IC1 MUST be a CA3140). If you intend to construct the unit as a stand-alone (relay output) project, build it as shown in the overlay, noting the

use of the PCB-mounting relay. If you want to use the unit to interface to the Universal Noiseless Power Switch, simply cut the PCB in half along the dotted line, assemble all indicated components on the non-relay side of the board and connect the unit to the Power Switch via the SK1 connections shown in the circuit diagram.

Whatever form of construction you use, note that Veropins should be used to facilitate the connections to D1 and D2 and that these two temperature-sensing diodes will normally be mounted remotely from the PCB.

Fig. 1 Circuit diagram. If required, PLG1 is used to connect the module to SK1 on the Noiseless Power Switch.

BUYLINES

The components for this project should not present any supply problems. The relay used is an RS $349-658$ or Maplin order code YX98G type.

Fig. 2 Component overlay. Note that one or both of D1, D2 will normally be mounted off-board.

HOW IT WORKS

Ordinary silicon diodes have temperature coefficients of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and can readily be used in temperature measuring/switching applications. In our circuit the two sensing diodes (D1 and D2) are fed with similar standing currents (via ZD1-R1-PR1) and their voltage differentials are fed to voltage comparator IC1, which has a small degree of hysteresis applied by R3.

The circuit action is such that, when the D1 temperature is above that of D2, the D1 voltage is below that of D2 and the output of IC1 (pin 6) is driven high and turns Q1 and the relay on via R4. When the D1 temperature is below that of $D 2$, the $D 1$ voltage is above that of $D 2$ and the output of IC1 is driven to 0 V , cutting off Q1 and the relay.

The temperature differential of the circuit can be varied over a limited range by PR1, thereby altering the relative standing currents of the two diodes.

PARTS LIST

Resistor all $1 / 4$ W 5\%	
R1	3k3
R2	1k0
R3	1 MO
R4	2k2
Potentiometer PR1	10k miniature horizontal preset
Semiconductors	
IC1	CA3140
Q1	BC109
D1,2	1N4148
D3,4	1N4001
ZD1	6V2 1/4W Zener
Miscellaneous	
PLCi	12 V , coil $\geq 120 \mathrm{R}$, PCB-mounting 3 pin DIN plug
Case to suit	

PROJECT : Power Switch Modules

UNDER TEMPERATURE MODULE

Turn home or greenhouse heating on and off automatically with this easy-to-build project. The device can be used either as a stand-alone project or to interface with the Noiseless Power Switch described elsewhere in this issue. Design by Ray Marston. Project development by Plamen Pazov.

This inexpensive little project can be used to turn home or greenhouse heating on and off automatically, to maintain temperatures within close limits (typically better than $1^{\circ} \mathrm{C}$). The circuit uses a carbon-rod thermistor for temperature sensing and incorporates a small degree of hysteresis to give a sharp switching action. The switching temperature range is variable over a fairly wide range with a preset pot.

The unit can be used as a stand-alone project, with a relay output, to give automatic operation of home or greenhouse heating, or can be used without the relay and its associated transistor-diode network to give fully automatic operation of the Universal Noiseless Power Switch described elsewhere in this issue. In the latter case the unit is powered from the built-in 12 V supply of the Universal Power Switch.

The switch can readily be made to give Over-Temperature operation (for operating fire alarms, etc) by simply transposing TH1 and PR1; we've made special provision for this on the PCB. In either case, thermistor TH1 can be mounted either directly on the PCB or can be located at a remote monitor point.

HOW IT WORKS

Abstract

TH1-PR1 and R1-R2 are wired in the form of a bridge network (or double potential divider), the output of the bridge being taken to the input of voltage comparator IC1. In this configuration, the pin 3 voltage of IC1 is fixed at half-supply volts, but the pin 2 voltage is temperaturedependent and rises with increasing temperature. The comparator has a small degree of hysteresis applied via R3.

In use, PR1 is adjusted so that the pin 2 voltage of IC1 is above that of pin 3 under warm conditions, in which case pin 6 (the output of IC1) is driven to 0 V , so Q1 and the relay are cut off. Under cold conditions the pin 2 voltage falls below that of pin 3, in which case pin 6 is driven high and drives Q1 and the relay on via R4. PR1 can be adjusted to cause switching at virtually any desired temperature level. The circuit action can be inverted, so that it acts as an over-temperature switch, by simply transposing TH1 and PR1.

Construction

Construction of this project should present no problems if the specified components are used (IC1 MUST be a CA3140). If you intend to construct the unit as a stand-alone (relay output) project, build it as shown in the overlay, noting the use of the PCB-mounting relay. If you want over (instead of under) temperatureoperation, simply transpose TH1 and PR1. In either case, TH1 can be mounted either remotely or directly on the PCB.

If you want to use the unit to interface to the Universal Noiseless Power Switch, simply cut the PCB in half along the dotted line, assemble all indicated components on the nonrelay side of the board and connect the unit to the Power Switch via the SK1 connections shown in the circuit diagram.

Fig. 2 Component overlay. Note the provision of extra pads on the PCB so that TH1 and TV1 may be transposed, if required. TH1 may be mounted remotely.

Resistors all 1/4W 5\%	
R1,2	12k
R3	1M0
R4	2k2
Potentiometer PR1	10k miniature horizontal preset
Semiconductors	
IC1	CA3140
Q1	BC109
D1,2	1N4001
Miscellaneous TH1	VA1066S
R69	12 V PCB-mounting relay coil resistance 120 R or greater
PLG1	3 pin DIN plug

BUYLINES
The thermistor (VA10665) is available from Maplin or Electrovalue. The relay is Radiospares type 349658, or Maplin type Yx90G.

DARK ACTIVATED MODULE

> Turn house or car lighting on automatically with this easy-to-build unit. The device can be used either a stand-alone project or to interface with the Noiseless Power Switch described elsewhere in this issue. Design by Ray Marston. Project development by Plamen Pazov.

This simple-looking project can be used to turn house or car lighting on automatically at dusk and off again at dawn. The circuit incorporates a transient-suppressor network and has a degree of built-in hysteresis to ensure that it is not switched by momentary changes in light level, as caused by passing shadows or lights, but responds only to mean light levels, integrated over several seconds.

The unit can be used as a 'stand-alone' project, with a relay output, to give automatic operation of car or house lights, or can be used without the relay and its associated transistor-diode network to give fully automatic operation of the Universal Noiseless Power Switch described elsewhere in this issue. In the latter case the unit is powered from the built-in 12 V supply of the Universal Power Switch.

To use the unit to give automatic operation of house lighting, simply provide a 12 V DC supply and use the relay contacts (RLA/T) to turn the lights on and off.

To give automatic operation of car lights, wire the unit's supply line connections to the vehicle's ignition switch and the relay contacts to the vehicle's lighting switch. In this case the lights will operate automatically only when the car ignition is turned on.

The switch can readily be made to give 'light-activated' operation by simply transposing the LDR and PR1 positions; we've made special provision for this on the PCB.

Construction

Construction of this project should present absolutely no problems if the specified components are used (IC1 MUST be a CA3140). If you intend to construct the unit as a stand-alone (relay output) project, build it exactly as shown in the overlay,

noting the use of the PCB-mounting relay. If you want light (instead of dark) activated operation, simply transpose LDR and PR1. In either case, the LDR can be mounted either remotely or directly on the PCB.

If you want to use the unit to interface to the Universal Noiseless Power Switch described elsewhere in this issue, simply cut the PCB in half along the dotted line, assemble all indicated components on the non-relay side of the board and connect the unit to the Power Switch via the SK1 connections shown in the circuit diagram.

Fig. 2 Component overlay for the Dark-Activated Switch. The circuit is corverted to light-activated operation if the LDR and PR1 are transposed as shown by the dotted lines.

Fig. 1 Circuit diagram of the Dark-Activated Switch. If required, PLG1 is used to connect the module to SK1 on the Noiseless Power Switch.

HOW IT WORKS

IC1 is wired as a voltage comparator, with a fixed reference voltage applied to pin 3 and with a light-dependent voltage applied to pin 2 (from the LDR-PR1 light-dependent potential divider) via the R2-C1 integrator network. The action of LDR-PR1 is such that the pin 2 voltage rises with increasing light levels. The comparator has a small amount of hysteresis applied via R5.

In use, PR1 is adjusted so that the pin 2 voltage of IC1 is above that of pin 3 under light conditions, in which case pin 6 (the output of IC1) is driven to 0 V , so Q1 and the relay are cut off. Under dark conditions the pin 2 voltage falls below that of pin 3 , in which case pin 6 is driven high and drives Q1 and the relay on via R6. PR1 can be adjusted to cause switching at virtually any desired darkness level. The circuit action can be irverted, so that the circuit acts as a light-activated switch, by simply transposing LDR and PR1.

The Dark-Activated Switch board follows the same general layout as the other two modules. The ORP12 light sensor is mounted next to PR1; it could also be mounted remotely.

AMPS- TUNER-CASSETTE

30 watt amp MC input SA4 130 £75.00 Stereo Tuner ST 4120
Cassette full features SC 4200 50 watt amplifier WA7700 20 watt amplifier LA2020 This new range of Electronics from Videotone redefines the words quality and value for money to a new high.

MICROPHONES

MU 105-22	$£ 29.30$
MU 105-12	$£ 22.25$
MU 25 C	$£ 17.39$

HEADPHONES
Superbly made with top flight performance HP90 £12.65 HP80 £9.69

Quality plus value~always

* A MESSAGE FROM VIDEOTONE * Dear Customer
You will find that the products advertised on this page are the best possible value for money. They are only low in price because we have eliminated large amounts of selling costs that other brands have to suffer. These savings are passed directly onto you. We have full brochures on any specific item you may be interested in and a competent realistic staff of engineers at our London Showrooms to help you in your choice. Our consumer protection packages are comprehensive and we offer every form of financing you may require. We carry out our own servicing and are dedicated to giving Value for Money. We are confident our products are unbeatable. You may purchase with confidence because our Engineers have specially selected them from competitive sources throughout the world and we import them directly ourselves. Remember, you have 21 days trial period on all products. That is the measure of our confidence.

B Alandeastle

Cliff Hardcastle, Managing Director

ALL
PRICES INCLUDE

BALE BALE BALE

DIOTTAL MULTIMETEN CMIP. Builds, full apoc. dovicos high accurbey dvm

 other uses too Only tz.De sach. Cat. No. 204.
SOUND EFPECTE WOOULE Brand now

programs. Requiress 8 ohm spacker (not suppliod) ESp. Cat. No. 10B.
Fits socket o Sound Effects Moduleo. Only 1 Hp each. Cat. No. 109. ${ }^{2}$ " load with mini jack plugg DICITAL ALARM CLOCM WODULE. Complete with girnt O. $7^{\prime \prime}$
witchas for complete clock. With detry only E4.ee. Car. No 225 .

20 KEY KEYBOARDS
lor BPP. Cat. No 101.
uper value at Aip. Cat No 313 anode. O.3' digits with crisp, bright segments. 14 pin DIL package
DIMTAL ALARMF CLOCK CCHIP, MM 5316 a lerm clock chip. With deta f1, ees. Cat. No. 203.
D.1/n LED WRISTWWATCH DIIPMAY. High brightness displsy in 'logloss flatpack' style packag

ploted for oxtrs relisbility.
mieht onavee display. 9 digit. 7 segment gas discharge display. $0.25^{\prime \prime}$ high digits. With

topect. Cat. No. 70. .

green, white. groy blocky. Not style, only it peach. Cat. No. 709.10 . 10 HYEADD Cincurrs. Now miniaturne your home produced PC8s with these 10 hybrid circuit
sech containing 8 resistors end 8 capacitors. Useful volues. 10 hybrids for 32 . Cet. No 809 .

FLUDNESCENT CALCULATORE. Manufacturors reject
unction with fult mamory. With 'repaifing calculator' info. E1. Me. Cat. No 107
LED DAsPLAYE (untested - no guarantees). 10 seven segment LED displays. $0.127^{\prime \prime}$ digits.
orep carnode. 10 for Eepp. Cat. No. 31
Onty f1.e\% med CBS No 104

MOSTAGE AND PACKIMO, PLEASE ADD BOP (OVEREEAE ORDERS ADD E1.25)
 OTE MOME mananum in oun AND PACKiNC

GATISFACTIOM GUARANTEED ON ALL TTEMS OR FULL CASH BEFUNDED CODEsPEED ELECTRONIC\&, P.O. Eox 23, 34 Semilild Rowd, Copnor, Pontumeuth PO3 EEU

SUPEREALE '81

All full spec. 2114 (450 ns) $\mathbf{E 1 . 8 5}$ p\&p 25p. 2708 \&2.00 p\&p 25p TEXAS INSTRUMENTS 2716 single reil, full spec. EE.e5.

NEW FREEDOM PHONE The completely porteble telephone with ittercom and bleep peging
facility. Range 200 yards E125 + VAT p\&p E3 00 . Leaflet eveileble on request (not PO/HO certified).
MK 1002P (duel 128 bit Shift Reg) $35 p$.
LM711CH (Voltege Comparator) 30p.

(All Full Spec)

2526 Character Generator (64×9 MM5240 + data Generator E3.50 + data.p/p 25p.
LEAR SIEGLER dot metrix prini head. 7 needle. E18.50 p/p 50 p . ZETTLER low protile PCB relay $30 \mathrm{~mm} \times 36 \mathrm{~mm} 4.8 / 6.9 \mathrm{v}$ d.c p/p 25 p .

Way: sockets (solder) 55 p
15 Way: wirewrap plugs only 75 p. 50 Way: ski (wirewrap) E1.65. 50 Way: skt E1.45, p\&p 25p. 25 Way Male to Female with covers plus minimum 1 metre of cable (12 way) $\mathbf{8 . 0 0}$ ench p/p 35 p .
25 Way plug (soldercail). 25 Way
socket $£ 1.20$ each.
COVER
37 Wey: 90p (plastic), p\&p 25p DISPLAVS
HP 50824 digit DIL display full spec E1.50 ench, p\&p 25p. Large quantities POA.
MAN 727 seg CC E1.25, p\&p 25p. Burroughs Panaplex 9 Dig. + skt and bezel £ 1.00, p\&p 25p LED 3 Digit DIL 55p, p\&p 25p. Bowmar 9 digit. 1 in LED with red bezel. (As used in calculators).
E1.00 +25 p pap.

ETI MARCH 1981

TELEPHONE
 UXBRIDGE 55399

Ribbon Cable Heeders 16 DIL Jermyn, gold plated, with cover 45p, p\&p 25p
75 p 15 Wey pluge. 14 Wey $75 p, 16$ Wry $95 p, 24$ Way
E1.60. (Insulation piercing typo). p/p $25 p$.
Anedor $1 / 0$ Heciege.$~$ 26 Way $65 \mathrm{p}, 26 \mathrm{~W}$ Wy (rightmaded) 85 c . $40 \mathrm{Way} \mathrm{E1.00p/p}$ 250. SUPERSAVER 2 Tantalum Capacitors 25 volt. 4.7 UF, 14 for E1.00, p\&p $25 p$
8UPEREAVER 3 PRICE SMAASH FND 500.5 in . LED displays, full spoc 50 p each,
p\&p 25p. large quantities POA. p\&p 25p. large quantities POA. SUPEREAVER 5 Battery oliminetor EVDC 200 MA 240 V AC input idend for calculators, rado, eic., give quantities P.O.A pach. Large SUPERSAVER 8
EAO KEY SWITCH oblong fascia. $25 \mathrm{~mm} \times 18 \mathrm{~mm}$ (approx. 18 mm hole, fixing supplied, brand new with 2 keys. E2.95 p\&p 25p. SUPERSAVER 7
SN74116 Dual 4 Bit letch 75p, pkp 25p.
SN718 Arithmetic Logic Unit, 80p, p\&p 25p.
SN74194

944 Bit Register, 50p p\&p SN741988 Bit Shift Register. 75p p\&p 25p.

SUPERSAVER 8
ITT 4ex 250 b brand now full apece E7.E0 anch p\&p 25p SUPERSAVER 9 5 digit 7 segment DIL LED . 11' displays 4 for ERSAVER 10 SUPERSAVER 10 9 way male / femate connector, plated PCB mounting. ideal for bussing two PCBs together. Superb value, $35 p$, $p \& p 25 p$ SUPERSAVER 11
$74 L S 26650 \mathrm{p}$. 74 LS 245 E2.40. 74LL240 £1.00. 74S260 35p. P\&P on all above 25 p .

SUPERSAVER 12 TM, E1.50, p\&p 25p.

SUPERSAVER 14
Recording Designs Lid digital cassette deck. 50-100 Beud superb deck E4800, 8 \& 5200

SUPERSAVER 15

$5 K$ multiturn trimpots, PCB mounting. per box of 14 EZ.60. p\&ep

SUPERSAVER 16 OPTRON OPTO 8LOTTED SWITCH (Type OPB-814) E1.00, p\&p 25p
TIL209, red 10p (Fill apece.) TlL209, red 10p. 0.2 in , red 12p. 0.2 in . green 28p. 0.2 in , yellow 28p.
RLsP red Axial lead. 15p
PEP on all above 25p. FM4 10 YMHz Ceramic filters type TRANSISTOR 8 , BD236 25 p . BC183L 10p, BF 195 10p. T8A 810S, with data, 85p, 4-way Dil switches. 75p. MC1303 Dual Stereo preamp with data, E1.25. 7 in . Nylon cable ties 100 for E1.60. All p\&p 25 p
NEW 8N7647
NEW 8 N78477 (Yes, back in
stock). Sound Generator IC (Train stock). Sound Generator IC (Train,
plane, explosion, laser gun, etc.). with data E3.25, p\&ep 25 p .
PCB KEYBOARD, $65 \mathrm{~mm} \times$ 82 mm , 18 key Clickers less Key 10ps, ideal Hexadecimal use 35p, p\&p 25 p
CAPACITOR SCOOP. 1.600 LF at $10 \mathrm{v}, 160 \mathrm{uF}$ at 25 v . Axial lead. 2 dozen for $\mathrm{E1}+{ }^{+} 25 \mathrm{p}$ p
DUNT 24 WL YOUR EPROM8 Augat 24 Way low profile socke1
Solid gold pins. A supert socket Solid gotd pins. A supert socket. programming or usage to prevent breaking off pins. Only 40p each. p\&p 25p
giveaway 22 pin low profile dit socket, gold plated.

12p EACH
perp 25p

Junt arrived. ITT 2082 Date Modmen. Brond now and boxed, whth manumb. $600 / 1200$ Boud. Dets Modem to CC ITT. V24/ 83232C. Chennel contre (e00 mention 1300 and 1700 H 1200 Beud) Bynctronous or 1200 beud). synetronous o or 4 wive, ewitch or dediceted Fres, buik in seff and lones teest functione. Some of the beot quipment we heve ever detained. E115.00 onch, plep 3.00. (Frection of origine cont)
 28 Dil 45p All p\&p 35p WE STOCK a vast range of TTL CMOS, some 74LS. MINIATURE TOGGLES, etc.
SUs. We have a large stock of power supplies at very realistic prices (callers).
Banor resettable double pole hangeover 12 V E1. Both p\&p CIRCUIT BREAKERS JUST ARRIVED - PCB 008 OSCILLATOR Containing 1 NPN ransistor. 1 resistor, 1 transforme and PP3 batrery connector. 30 mm
 E1. p/p 25 p . PCB $0091 \times$
CD4069, $1 \times$ CD4011, 5 transistors, 7 capacitors. 12 resistors, 1 diode, $45 \mathrm{~mm} \times 55 \mathrm{~mm}$ (approx) CENTROMIC8 101
EnNTRONIC8 101A Dot Matri printer. Fully overhauiod. 165 Corrimes it coet. As mbove dua headed 300 char/eec E650 inc. VAT.
C.P.U. TYPE 10560. These de vices are brand new, supplied with comprehensive. data sheet for experimental use or hang them on your Christmas tree! 4 for $\mathbf{E 1}$. p\&
25p

ICL POWER \$UPPLY (ox Dutput +24 Y et 2 ampa DC $-24 V=2$ anps DC (ediustab to 12 V) +5 V at 4 mmps DC -100 V DC and 6.3 V AC.
Terms cash with order (oificia orders weicomed from colleges tc). All enquiries s.a e. please. A prices inclusive of VAT, unless therwise stated. Postege as shown per item
USER. CP ROFESSIONAL witches with buttons (blank) 85 p each p \&p 25p.

URROUGHS keyboerd, 96 koy tation. On board eryatel and ri. Brand new end boxed. $00 n=1 \times 190 \mathrm{~mm}$. At the time II. Clere pender il. Ciers Pender. Reer plep E1.50.
PLEASE DO NOT ORDER GOODS ROM OLD ADVERTS. PHONE BEFORE ORDERING

SURPLUS STOCKS PURCHASED FOR CASH
LB ELECTRONICS 11 HERCIES ROAD HILLINGDON, MIDDLESEX

AB10 gLS, ENGLAND clophone sinswering machin service out of businges hours.

Now retail premises now open Mon, Tues. Thurs, Fri, and Sat 9.30-6.00 Lunch 1-2.15 week days. Closed all day Wednesday We are situated just off the A4O ppposite Master Brewe

ALL PRICES INCLUSIVE OF VAT
UXBRIDGE 55399
All components full spec

AUTOMATIC FREQUENCY ANAIYSIS

Microprocessors have revolutionised test instrument design. Morris Stanley of SE Labs (EMI) describes the use of new techniques to produce a fully automatic frequency response analysis system for state-of-the-art dynamic analysis.

Abstract

n almost every field of industrial and scientific research, design, manufacturing and field site maintenance, it is necessary to measure, accurately and easily, the dynamic performance of components, modules and complete systems. Dynamic is defined here as the response of the device under test to signals (self-generated or externally applied).

The ratio of output signal to input signal (expressed as both ratio magnitude and ratio phase) at all frequencies of interest, is the transfer function of the device under test.

Time Domain Techniques

Considering Time Domain Techniques, the data may, in special cases, be inferred indirectly from response observations made in the time domain ie by applying an accurately known complex signal (eg a near ideal unit pulse) and comparing the resultant output with the input using an oscilloscope or a fast chart recorder (Fig.1). However, in addition to the heavy computational and interpretive burdens the technique imposes on the user, its accuracy and validity are severely limited, in practice, by the masking effects of noise (Fig.2). Moreover, it rarely provides sufficient resolution (of raw data) to reveal small but highly significant resonances (glitches) or similar secondorder anomalies. Therefore, it is generally agreed that Time Domain response testing is at best a qualitative technique even considering the merits of the new digital oscilloscopes. Precision does not, after all, eliminate anamolous signals.

Fig. 1 Ideal system responses to unit pulse showing various damping factors.
In another, far more complex use of the Time Domain for transfer-function and related testing, the complex input signal applied is a known pseudorandom sequence, single level (binary) or multilevel. The delays and/or level shifts recorded at
the output can be correlated with the input signal to reject noise and other anomalies and can be made to yield the transfer function data required. However, this information can only be obtained after extensive (and expensive) computer manipulation. Pseudorandom testing is chiefly of historical interest now.

Fig. 2 Typical system response to a unit pulse.

Frequency Domain Techniques

Far more useful results are obtained when some form of frequency domain testing (ie obtaining the frequency response) is performed. In this approach, the instrumentation yields data that represent, more or less completely and accurately (depending on the technique selected), the Fourier spectrum of the transfer function. This may be used in several different ways, such as the Bode plot or a Nyquist or Nichols plot (Figs 3,4,5) or to implement the Evans root-locus approach. To be useful

Fig. 5 Nichols plot.
and informative, the transfer function must be expressed in both magnitude of ratio and phase.

Various techniques are currently available for making such measurements and before proceeding further, two additional introductory observations can be made. First, these techniques are equally useful in measuring the dynamic behaviour of all kinds of physical systems. Because all the instrumentation available today is electronic, it is frequently necessary to use one or more transducers in the measurement set-up: accelerometers, tachometers, position sensors, temperature sensors, chemical cells, load cells, etc. In every such instance, it is necessary to know the transfer function of the transducer (either to correct for it in response calculations, or to be certain that it may safely be ignored) and it is equally necessary to calibrate the transducer independently and accurately (usually by using the same instrumentation).

Finally, to comment on the wide range of needs and capabilities of those who use dynamic analysis. The maintenance technicians who perform pre-flight 'depot' checkouts on control systems for supersonic fighter aircraft work to a very different time scale, have totally different information needs and generally have very much less mathematical capability and theoretical intuition than did the scientists and engineers who originally designed those systems in the relatively serene and convenient environment of a laboratory. To be efficient, the depot system must be highly automated and fully pre-programmed; to be effective and equal to every research and design task, the laboratory system should be as versatile, and as responsive to creative manual programming, as possible.

The Classic Approach : FRA

In practice, the most direct, accurate and convenient method of measuring the transfer function of any circuit or device (or, indeed, of simply measuring the Fourier spectrum of any signal with respect to a reference signal) is shown in Fig. 6. This is the basic block diagram of any frequency response analyser, regardless of how the individual blocks may be implemented. A sine-wave signal of high purity and stability, programmable in both amplitude and frequency, is generated in the FRA and fed to the device under test. In open loop testing, the sinewave signal is simply applied to the input terminals. In testing a closed-loop system, the signal may be inserted at any convenient point in the loop, in series with the normal signal path or at a summing junction. In the simplest applications, only one of the two correlators is used. These are applications in which the transfer function to be measured is the one between

the input-signal interface and some other point in the device under test. In other important applications, both correlators must be used, because what is wanted is the transfer function between two points in the system, neither of which is the point of introduction of the test signal.

Correlation

It may be appropriate at this point to consider correlation in a little more detail. A correlator is defined as a circuit that has the ability to accept a signal of any kind (within its ratings) and extract from that signal only that part of it that corresponds exactly in frequency to a reference signal (also fed to the correlator). The correlator then produces two outputs - (1) a signal proportional to the in-phase component of the ratio of input amplitude to reference amplitude and (2) a signal proportional to the quadrative component of that ratio. From these signals, it is easy to compute the corresponding magnitude and phase values.

Perhaps the simplest way to think of a correlator is that it is a nearly-zero-bandwidth (very high Q) phase-sensitive detector. In fact, analogue correlators are just that and were originally called "synchronous detectors". In modern FRAs the technique used to obtain correlation is actually a digital computation that applies a simple algorithm to digitised samples of the input waveform and to known digital values of the reference waveform - but the effect is the same. The digital synthesis of the correlation integral merely optimises the performance of the correlator at significantly lower cost that would be possible by any comparably efficient analogue circuitry.

Cross Correlation

When two correlators are used, they are interconnected in such a way as to produce 'cross-correlation', ie to produce amplitude and phase (or in-phase and quadrature) signals proportional to the ratio of the two correlator inputs, having rejected all input components that do not correspond to the reference signal frequency.

The Correlation Integral

There is no doubt that the heart of any FRA is the correlator. Programmable wide range signal generators are straightforward enough and are not new in the art, but creating a fast, high performance, wide dynamic range correlator can present a

formidable design challenge. If the basic correlation integral is examined, the algorithm for its digital implementation starting with;

$$
X_{a}=\frac{1}{n T} \int_{0}^{n T} V_{\max } \sin (\omega t+\theta)+\sin \omega t d t
$$

$$
Y_{a}=\frac{1}{n T} \int_{0}^{n T} V_{\max } \sin (\omega t+\theta)+\cos \omega t d t
$$

Where $X_{a}=$ real part in volts $\quad V_{\text {max }}=$ peak of

$$
\mathrm{nT}=\text { integration time }
$$

$Y_{a}=$ quadrature part in volts
correlator input signal
$\theta=$ phase shift of correlator input signal
relative to generator output
Let a, b, c, d, e, \ldots. etc be the values of $\sin \omega t$ for t_{0}, t_{1}, t_{2}, T , and let
A, B, C, D, E, \ldots etc be the values of $\sin (\omega t+\theta)$ for t_{0}, t_{1}, t_{2}, T then,

$$
x_{a}=\frac{1}{n T} \quad[\Sigma a A+b B+c C+d D+
$$

As so often happens, we find that digital computation of a complex mathematical function is reducible to what has called a 'thundering redundancy' of 'fetch . . . multiply . . . add fetch . . . multiply ... add,' many times, as fast as possible. Trigonometric functions are reduced to table look-ups and vector matrices are all essentially boring variations on 'fetch . multiply add'. It is in the critical implementation of the analogue A / D and the elegant reduction of the logic to minimal hardware that a design competence shows through; and, for the latter, we can consider the computations made in this latest Frequency Response Analyser, the SE Laboratories 2450 . These computations are shown in detail in Fig. 8 .

Automating Frequency Response Analysis

The advent of the microcomputer has made it possible to automate not only the measurement process, but also the programming of specific tests at the operator or system interfaces. Fig. 9 shows how the new FRA utilises such a system. The tasks performed by the microcomputer include:

Fig. 8 Types of computation in the SE2450 FRA.

- Translating keyboard commands (typically, a single keystroke, plus a single numerical value) into all of the internal functions required to set up a testmode format.
- Generating a display that presents the formatted test conditions to the operator at any time he requests them.
- Providing cursor-linked guidance for the operator to speed and simplify the manual input of test parameters and conditions.
- Providing error detection, default (fallback) conditions and self-checking services.
- Controlling the signal generator during performance of the test run; frequency; amplitude; starting angle; number of cycles; DC bias (offset).
- Automatically executing harmonic analysis when so commanded on a specified harmonic (up to the 15th).
- Synchronising the FRA's signal generator to an external source when a standard option is installed.
- Executing the correlation computations.
- Ranging the correlators and generating (or compensating for) offset at the correlator inputs as commanded.
- Executing statistical computations when commanded.
- Scaling and/or converting the results to the selected units and generating result displays.
- Storing sets of results and displaying them, as commanded, in convenient page formats.
- Storing test conditions and parameters until no longer needed.
- Providing a full parallel standard IEEE 488 (1978) interface with external peripherals and/or external controller, calculator, or other CPU, when a standard option is installed.
- Providing a two-way RS232 serial interface - eg for teletypewriters or modems, when a standard option is installed.
- Controlling an external digital X-Y plotter, when a standard option is installed (provided that the IEEE 488 Interface option has also been installed).

The advantages of comprehensive internal automation of an instrument as sophisticated as the SE Labs model 2450 are not, perhaps, fully evident at first glance; but they become increasingly apparent as the various operating modes and design features are utilised. It is interesting to note that a typical non-automated FRA of roughly comparable range and facilities has more than sixty front panel controls and no interactive means of guiding the operator during set-up.

Simplified Programming For ATE Systems

To the designer of large Automatic Test Equipment systems, in which the automated FRA may be but one of several instruments, the advantages of its comprehensive internal

Fig. 9 An automatic frequency response analyser SE2450.
automation appear most impressively as substantial simplifications in programming. Just as the microcomputer makes it easy to set up a complex test run manually with perhaps 15 or 20 keystrokes, so it also simplifies the software required to command such a test via the system bus. It is never safe to generalise about software tasks, but one can observe that program generation for the 2450 is often an order of magnitude simpler and faster than it is for less 'intelligent' instruments and the interactive display of such a system as the SE2450 is always ready to help verify, edit, detect errors, etc., without external program-checking instrumentation.

Major System Specifications

By appropriate keystrokes, one may call into service either of two modes, spot frequency or sweep frequency. The generator frequency can be selected anywhere in the range from 0.0007 Hz to 10000 Hz , a ten million to one range, with a resolution of one part in 9999 . The RMS or peak amplitude of the signal may be programmed to any value between 1 mV and 9 V99. The operator may choose high-purity sinusoidal, precise triangular, or precise square waveforms, all of which are digitally generated with a resolution of 1024 steps per cycle and with essentially glitch-free transitions. The waveform generator may be selected to start at $0^{\circ}, 90^{\circ}, 180^{\circ}$, or 270° of its normal cycle. A DC bias (offset) voltage may be added to or subtracted from the generated waveform. Any bias voltage may be called for in the range from -9 V 98 to +9 V 99 in 10 mV steps.

The input sensitivity of the correlator(s) in use may be allowed to autorange, over the entire rated and usable sensitivity range of 250 mV to 1000 V , RMS or peak; or it may be manually set to any one of the following nominal ranges: 50 $\mathrm{mV} / 500 \mathrm{mV} / 5 \mathrm{~V} / 500 \mathrm{~V}$, RMS or peak. If the signal fed to the correlator is less than 5% of nominal range, the diagnostic legend 'underrange' will appear and computation will stop. If the signal rises above 200% of manual selected range, the instrument will revert to automatic ranging. If the correlator input rises above 500 V on the top range, the diagnostic legend 'overrange' will appear and the computation will stop. The
number of cycles over which the measurement is made may be specified by keyboard entry at any value from 1 to 9999 , improving the results by integration of the noise over more and more cycles.

If harmonic analysis is required, the number of the harmonic to be measured is specified, from two to 15 , by keyboard entry and the specified measurement is made at that harmonic frequency, with the system excited at the fundamental frequency. In the sweep frequency mode, the SE 2450 actually performs a sequence of spot-frequency measurements, over a specified frequency range, with a specified number of frequencies. The instrument may be programmed to sweep either up or down, the spacing of frequencies specified as linear (equal spacing) or logarithmic (a constant ratio of each frequency to the preceeding frequency). The 2450 automatically computes the test frequencies that will yield the desired spacing and on command the test proceeds automatically. The results of each of the individual tests made in the sweep frequency mode are stored and reported on a maximum of 10 pages of data, 12 results per page, consecutively numbered.

The form in which the test results are computed and expressed may be selected from: cartesian (real and imaginary terms of the output-to-input ratio, or a $+j$ j); polar (magnitude and phase angle of the output-to-input ratio, or R, ϕ°);or logpolar ($\log \mathrm{R}$, expressed in dB and phase angle ϕ°).

There is no doubt that the frequency-response concept is a useful and powerful tool for all aspects of engineering and as Alistair C.J. Macfarlane rightly pointed out in his paper to the IEEE (1), this form of measurement enables engineers to quickly and fluently communicate to each other the essential features of a feedback control situation. The SE Laboratories new frequency response analyser is certainly the first major step forward in producing a truly automatic system that will contribute to the future development of feedback and control.

Reference.

(1) Alistair G.J. Macfarlane, IEEE press 1979 Frequency-Response methods in control systems.

SPOT DESIGNS

Courtesy Light Timer

This courtesy light timer switches on the courtesy light of a car for a nominal period of 30 S after one of the car doors is opened, but the length of the switch-off delay can be altered to suit individual requirements. The circuit has been designed for use with 12 V negative earth electrical systems, but it is easily modified for use with positive earth systems.

One of the door switches closes if a car door is opened and this connects power to the courtesy lamp and to the timer circuit. As C1 will be totally uncharged af switch-on, it takes the gate terminal of VMOS transistor Q1 fully positive. This biases Q1 hard into conduction so that it operates the relay which forms its drain load. Make contacts RLA2 then close and connect power to beth the courtesy light and the timer circuit. These both remain operational, therefore, even if the car door is closed. RLA1 is a break relay contact and this opens so that C1 is free to charge up by way of R2.

After approximately 305 the charge voltage on Q1 reaches almost the full supply potential and the gate potential of Q1 drops to the point where this device switches off and deactivates the relay. RLA2 then opens again and the courtesy light and timer circuits are switched off. RLA 1 closes and rapidly discharges C1 through R1 so that the unit starts a new timing run when it is activated again and no residual charge is left on C1 (which would give a shortened timing period).

The length of the timing period is proportional to the value of R2 and is, therefore, easily modified if necessary. The circuit should function correctly with positive earth systems provided the door switches and RLA2 are connected in the positive supply lead rather than in the negative one. D2 and R3 are to protect Q1 against an excessive input voltage if the supply should go above 15 V . D1 is the usual protection diode for a highly inductive load in a semiconductor circuit.

D9ram Fitzroy House, Market Place, Swaffham, Norfolk, PE37 7QH.

PROJECT PACKS

200W Disco Power Amplifier (81082)

Pools predictor (79053). An analogue computer that may win you a fortune
Talk Funny (80052). A ring modulator circuit that produces very strange results when fed with a human voice $\mathbf{E 9 . 6 0}$
Pest Pester (80130). An electronic insect repellant
Steam train sound effects (80019). Simulates the sound of steam and whistle
Electronic Nuisance (80016). Makes an annoying noise, but only in the dark!
Cackling Egg timer (9985). An egg timer with a difference, it clucks like a hen
E3.85
Chorosynth (80016). A cheap mini synthesizer. Send for details
£57.90
Elektor Vocoder (80016). The first Vocoder designed to be built in kit form, 10 -channel modulator construction
£162.50
Analogue Reverberation Unit (9973). Uses a SAD 1024 which can produce a delay up to 100 mS
£27.70
Analogue Reverberation Unit (9973). Uses a
Guitar Prenmp (77020). With three tone controls
$E 6.50$
Guitar Preamp (77020). With three tone controls
£2.40
Transistor Curve Tracer (80128). Interface with your scope to display lc/Uce characteristics on the screen
£13.45
Linear Thermometer (80127). Simple but effective meter reading thermometer using a diode as sensor
£48.65
Precision Power Unit (80514). Produces accurate reference voltages at presettable current limits up to 2 Amps
£34.65
Top-premmp (80031) Minı, all iC preamplitier for use with most power amplifiers
£34.40
£46.50
Programmable Slide Fader (81002). Mixes audio signals on tape with operation of two slide projectors
46.50
65.20

Stereo dymamic Preamp (80532). A low noise high quality disc preamplifier
E5.20
STAMP (80543) Super tiny amplifier with up to 1 Watt output
Transistor Ignition (80082). The most significant advantages of other systems combined in one
$E 3.75$
Dipetick Probe (80102). Direct warning of high oil temperature. State long or short dipstick required
E20.45
Intelligent Wiper Delay (80086). Can be set to produce delayed wipes at any predetermined interva
E11.25
Fuel Economiser (81013). Audible guide to cheaper driving
Mini Mixer (81068) High quality stereo mixing unit
High Com (81103). New generation of noise reduction system

Send 40p for catalogue

Our Project Packs include the electronic components, the PCB. sockets and solder together with assembly instructions. Cases. knobs etc can be supplied as extra items if required. This is only part of our wide range of projects. See our catalogue for details of other projects that we can supply. You can also ring our number between $12.30 \mathrm{p} . \mathrm{m}$. and $1.30 \mathrm{p} . \mathrm{m}$. any weekday for a recorded announcement of any new items we have available.

To order send cheque or postal order + 40p P\&P to DORAM ELECTRONICS LTD. All prices include VAT a de boer company Telephone: (0760) 21627 Telex: 817912

HIGH QUALITY/LOW COST KIKUSUI 5520 20MHz SCOPE ONLY £230+VAT-FREEDELIVERY

 - 20 MHz .5 mV 1 mV .10 MHz
 - One Touch X-Y Operation - TV Sync. Separator (Trigger)
 - Single Sweep Function
 - High Brightness CRT
 SWEEP TIME $0.4 \mu \mathrm{sec} 05 \mathrm{sec} /$ INPUT RESISTANCE ADDIOX DIV $(\mathbf{W} 1 \mathrm{hin} \pm 5 \%)$

 DV (within $\pm 5 \%$)(WITH 5XMAG.) $04 \mu \mathrm{Sec} 0$.
*CALIBRATION VOLTAG Sec/DIV (within $\pm 5 \%$)
SWEEP STOP SWeep St tace becomes a spot
$\star E X T E R N A L$ SWEEP MODE X-Y mode (CH1. Xaxis) X SNSITVIVY 5 In V IS SOVIONV
SREQUENCYRESPONSEDC FREQUENCY RESPONSE DC
(AC 2 Hz$) \sim 1 \mathrm{MH}$ (AC 2 HZ) $-1 \mathrm{MH} \mathrm{H}_{2}$
INPUTMMPDANCE $1 \mathrm{M} \Omega$ $\pm 2 \%, 30 \mathrm{DF} \pm 2 \mathrm{pF}$
$\mathrm{X} \cdot Y$ PHASE DIFFERENCE with 3° at 50 kHZ
\star TRIGGERING
\star TRIGGGERMODG TRIGGER SOURCE INT EXT COUPLING AC and DC POLARITY " \pm " and " \star ZAXIS
SENSITIVITY 3 VD-D IT SENSITIVITY 3 Vp-p (Trace becomes orighter with negative inut signail
FREQUENCY RESPONSE DC
SMHZ WAVEFORM Square wave, OUTPUTVOLTAGE IVp-p. $\pm 3 \%$ ${ }_{-} \mathrm{CRT}$
YPE 5-mch round -type
HOSPHOR ACCELERATION VOLTAGE Approx $2 \times V$ N
EFFECTIVE AREA 8 DIV \times 10 DAV (IDIV = 9.5 mm)
GRATICULE ILLUMINATION GRATICULE ILLUMINATION
 AC LINE VOLTAGE $100 \mathrm{~V}, 110 \mathrm{~V}$. 20 V . $220 \mathrm{~V}, 230 \mathrm{~V} .240 \mathrm{~V} . \pm 10 \%$
EREQUENCY $50 / 60 \mathrm{~Hz}$ POWER CONSUMPTION Approx 40 VA

$* M E C H A N I C A$ | MPECIFICATICAL |
| :--- | MAXIMUM DIMENSIONS MAX $\times 210 \mathrm{H} \times 435 \mathrm{D}$ mm

WEIGHT Approx $8 \mathrm{~kg}(176 \mathrm{lb}$.

BELLE VUE RADIO AND ELECTRONICS EXHIBITION

in the Lancaster hall
ON SUNDAY, MARCH 29, 1981
Doors open at 11 a.m
The North's Premier Amateur Radio and Electronics Event features

Inter-Club Quiz Construction Contest R.S.G.B. Bookstall	Grand Raffle Amateur Computer	Radio Society's Stands and Trophy Morse Code
	Stands	Challenge

Traders Stands who have booked space

EUROVA LTD.
M. e B. RADIO
J. BIRKETT

THE AMATEUR RADIO SHOP
RADIOTRONICS
LOWE ELECTRONICS LTD.
BREDHURST ELECTRONICS
CRAYFORD ELECTRONICS
S.M.C. (JACK TWEEDY) LTD
J.M.G. ELECTRONICS

SOTA COMMUNICATION
SYSTEMS LTD.
AMATEUR RADIO
EXCHANGE
RICHARD WHITE
JOHNS RADIO
N.W. REPEATER GROUP
(BRING \& BUY)
S.G.S. ELECTRONICS

GH2 ENTERPRISES
WILSONS VALVES MECHANELEC LTD. W. H. WESTLAKE D.S. ELECTRONICS microdigital itd ARROW ELECTRONICS LTD TELECOM ROYD ELECTRONICS F. R. GALKA contour electronics TANDY CORPORATION (U.K.) ACE MAILTRONIX LTD. SOUND SERVICE marco trading minicost Trading ltd. JEWELL \& POWERS

Belle Vue has ample car parks
F.M. Talk-in on GB3NRS and G8NRS / A on 145 MHz Chs S22, $\mathrm{R}_{2}-\mathrm{R}_{6}$ and on 433 MHz Chs SU8, RB4 and RB 14
ADMISSION 40p-BY RAFFLE TICKET AND EXHIBITION PLAN ENTER AT REAR OF BELLE VUE

OPPOSITE MAIN CAR PARK
OFF HYDE ROAD A57 TELONIC/BERKELEY U.K 2 Castle Hill Terrace, Maidenhead, Berkshire SL6 4JR Tel : Maidenhead (0628) 73933 Telex: 849131 (TELBER G)

Orders to Telonic Berkeley UK

Terms. Cash with order (official orders welcomed from colleges etc) 30p postage please unless otherwise shown. VAT inclusive prices. S.A.E. for illustrated lists.

PROGRESSIVE RADIO
 31 CHEAPSIDE, LIVERPOOL L2 2JD ALL ORDERS DESPATCHED BY RETURN POST

IS THERE AN ALTERNATIVE TO SPENDING MORE AND MORE ON LP's AND TAPES?

 THE WILSON STEREO LIBRARY

As a music lover, you know just how much new records and cassettes cost. Now, by hiring your recordings from The Wilson Stereo Library you can save yourself a lot of money. Borrow from our vast collection of classical, opera, jazz, rock and pop recordings, for as little as 7p a day for stereo discs, and 6 p for cassettes. Keep them for as long as you like. Change them as often as you like. And then, if you want to buy a particular disc, on hire, you can and at a very advantageous price!

FOR BORROWERS, the choice is wide open. Almost every recent worthwhile classical, popular or jazz recording record or cassette - can be sent to you in prime condition; or mint condition and even totally unplayed for a small extra charge.

To find out just how good our selection of recordings is, why not buy our Record or Cassette Catalogue, or both, before even becoming a member. Address
To get your copy, simply complete and

TO: The Wilson Stereo Library Limited, 54 Sea Road, Bexhill, East Sussex. TN40 1JP.
Please send me:
\square Free booklet 'The Wilson Stereo Library', which gives full details of all W.S.L. services (and accessories).
\square W.S.L. Catalogue of stereo and quad recordings. I enclose $£ 2.25^{*}$ plus 25p post and packing.
\square W.S.L. Catalogue of stereo cassettes. I enclose $£ 1.50^{*}$ plus 20 p post and packing.
*I understand that this will be credited to me in full, should I decide to become a member of either the Cassette or Record Library, or both.

RY, your annual subscription for records
is $£ 4.90$; or $£ 4.50$ annually for cassettes. There is no deposit at all to pay.

A FULL LIBRARY CATALOGUE is sent to you the day you join.
From this, you make your choice and your first selection

This unusual device lets you locate or listen to internal engine sounds, such as the rumble of bearings or the rattle of tappets. An essential project for the DIY nut. Design by Ray Marston. Project development by Steve Ramsahadeo.

This very unusual project enables you to effectively and effortlessly get right inside an engine and listen to, or locate, all of its internally-generated sounds, such as the noises of bearings, pistons, tappets, etc. The device is fitted with a double filter network that can be used to pick out one set of sounds (such as those of the bearings or the tappets, etc) from all others, thus facilitating fault-finding on engines and motors.

The Stethoscope project comprises an acoustic probe unit, a 'box-of-tricks' and a pair of conventional headphones. The headphones help muffle ambient sounds, so that you can concentrate on the sounds of the stethoscope even in a very noisy environment. The probe unit is used to make mechanical contact with the engine or mechanism under test and is coupled to the 'box-of-tricks' by flexible leads.

The probe unit relies on mechanical coupling or contact between itself and the engine (or whatever) for acoustic pick-up. This coupling can be achieved either directly or by a metal rod. The rod can take any one of a variety of forms eg a screwdriver or a needle. If a needle probe is used, the stethoscope can even be used to listen to the sounds of individual jewelled bearings in a watch mechanism.

Operating Principles

The stethoscope operation relies on the simple fact that what is commonly called sound is a series of mechanical vibrations transmitted through a medium of some sort - air, water, metal etc. Thus, all the internally-generated sounds of a petrol (or any other) engine, such as the sounds of tappets, pistons, bearings, etc, are transmitted throughout the engine block and
can readily be further transmitted down a metal rod (or screwdriver, etc) to the body of an acoustic pick-up device such as a microphone.

Our stethoscope relies on this mechanical coupling principle. We use a crystal insert as the pick-up device, with all of its air holes blocked off (to exclude dirt) and with the coupling made to its body either directly or by some kind of metal rod. The use of rod coupling enables the source of a given sound to be precisely located within (say) an engine block, by simply probing to find the position of maximum noise. If a needle probe is used, the sound source can be located with pin-point accuracy.

Construction

The Stethoscope circuit is fairly simple and construction should present very few problems. Wire up the PCB first, noting the use of 20 Veropins to facilitate interwiring, as shown in the component overlay. When wiring up RV1 and RV2 take special care to connect the two halves of each component in the same phase, so that the resistances increase or decrease together

On our prototype we've fitted the two batteries (PP3s) into the top half of the case, secured by double-sided sticky-pads. We've fitted a small jack socket to the case top to facilitate connection to the external low-impedance headphones and have used a 3 -pin DIN socket for connecting the probe unit.

Finally, to complete construction, wire up the probe circuit as shown in the circuit diagram, taking care to fit Q1 and R1 as near as possible to the crystal insert terminals and connect the assembly to a suitable plug and lead.

At this stage, give the unit a simple functional test by plac-

NOTE:

HOW IT WORKS
A common-or-garden crystal insert is used as the pick-up device, with the external mechanical sound vibrations being fed to its body either directly or by a metal rod from the engine (or whatever) under test. FET source follower Q1 is wired directly to the output of the pick-up device, to give a low-impedance output from the resulting probe. The output of the probe circuit is then fed, either directly or through a double filter network, to a power amplifier stage (IC3) and thence on to a pair of headphones.

When the stethoscope is used in the filtered mode, the output of the probe circuit is first passed through high-pass (bottom-cut) filter IC1 and thence on to the power amplifier via low-pass (top cut) filter IC2. Both of these filters are second-order variable types. The IC1 filter can be used to reject signals below roll-off frequencies that are variable from 80 Hz to 3 kHz via RV1 and the IC2 filter can be used to reject signals above roll-off frequencies that are variable from 700 Hz to 15 kHz via RV2. These two filters can be used to pick out specific sounds, such as the low-frequency rumble of bearings or the highfrequency rattle of tappets, from the broad spectrum of sounds that are generated by an engine

The complete stethoscope is powered by a pair of 9 V batteries
All components used in the Engineer's Stethoscope are common types and should present no availability problems.

In case of difficulty Watford Electronics can supply the crystal and typically consumes about 15 mA when driving a pair of 8 R0 headphones. The split power supplies to the IC1-IC2 op-amp filters are generated with the aid of ZD1 and C8.

PROJECT : Engineer's Stethoscope

PARTS LIST

R1, R2, C1 and Q1 are wired directly

[^1]

We use advanced winding technology to make our toroidal transformers. They have only half the weight and height of their laminated equivalents and are appreciably more efficient. Our toroidals cost virtually the same as the older types which they are rapidly replacing. Induced hum is reduced by a factor of ten. Supplied with rigid mounting kit with centre bolt, steel and neoprene washers.

50 vi
80 mm dia $\times 35 \mathrm{~mm}$ Weight 0.9 Kg

+ El.10pD +0.94 VAD
2×010
2×011
2×012
2×013
2×014
2×015
2×016
2×017
2×028
2×029
2×030

80논
90 mm dia. Weight I Kg
$£ 5.76$

	$(+£ 1.20 p p+£ 1.04$ VAT)	
	$6+6$	6.64
3×010	$9+9$	4.44
3×011	$12+12$	3.33
3×012	$15+15$	2.66
3×013	$18+18$	2.22
3×014	$22+22$	1.81
3×015	$25+25$	1.60
3×016	$20+30$	1.33
3×017	$30+10$	0.72
3×028	100	0.36
3×029	220	
3×030	240	

120 ma 9m dia. $\times 40 \mathrm{~mm}$
Weight 1.2 Kg

$(+£ l .30$ p.p. + £l.20 VAT $)$	
$9+9$	6.66
$12+12$	5.00
$15+15$	4.00
$18+18$	3.33
$22+22$	2.72
$25+25$	2.40
$30+30$	2.00
110	1.09
220	0.54
240	0.50

${ }^{110 \mathrm{~mm} \text { dia } \times 50 \mathrm{~mm}} £ 12.27$

	(+2.60p.p. $+\ldots 2.08 \mathrm{VA}$	
7×016	$25+25$	6.00
7×017	$30+30$	5.00
7×018	$35+35$	4.28
7×026	$40+40$	3.75
7×025	$45+45$	3.33
7×028	110	2.72
7×029	220	1.36
7×030	240	

(£1.70pp. +52.71 VAT)

		8.33
8×017	$30+30$	7.14
8×018	$35+35$	65
8×026	$40+40$	6.25
8×025	$45+45$	5.55
8×033	$50+50$	5.00
8×028	110	4.54
8×029	220	2.27
8×030	240	2.08

- I.L.P. TOROIDAL TRANSFORMERS ARE GUARANTEED FOR 5 YEARS

CHOICE OF 3 PRIMARY INPUTS

L.P. Toroidal Transformers are available in choice of $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$, coded as follows: (Secondaries can be connected in senies or parallel)
For 110 V Primary insert 0 in place of ' X ' in type number
For 220 V Prmary (Europe) inser 1 in place of "X" in type number
or 240 V Prmary ($\mathrm{U} . \mathrm{K}$. insert 2 in place of " X " in type number
Example - 120VA 240V $15+15 \mathrm{~V} .4 \mathrm{~A}=42013$.

* CUSTOMER DESIGN ENQUIRIES INVITED.

QUANTITY PRICELIST AVAILABLE.
FREEPOST facility.(U.K. only).
Simply address envelope to FREEPOST to address below. NO STAMP REQUIRED.
TO ORDER Enclose cheque/Postal Order/Money Order payable toll.P Electronics Lid or quote your AcCEss or BARCLAYCARD ECcount No. To pay C.O.D. add \ddagger extra to TOTAL value of order
Also avallable from ELETROVALUE and MARSHALLS. A division of LL. P. ELECTRONICS LTD.
FREEPOST T4 GRAHAM BELL HOUSE ROPER CLOSE
CANTERBURY CT2 TEP
Phone (0227) 54778 Technical (0227)64723 Telex 965780

To: Heath Electronics (UK) Limited. Dept. (ET3), Bristol Road. Gloucester. GL2 6EE

Please send me a copy of the Heathkit catalogue. I enclose 25p in stamps.
Name
Addres

NB: If you are already on the Heathkit mailing list you will automatically receive a copy of the latest Heathkit catalogue without having to use this coupon

TEKTRONIX STORAGE OSCILLOSCOPE. Type 434, as tew 12 months

tektronix storage osit
E350.
TELELUIPMENT OsCLLLOSCOPE. TyPe D32 Portable, mains
HAMEG OSCILLOSCOPE. TYPE 512 DB. 50 MHZ E350
TELEOUHPMENT OSCILOSCOPRE. TYPe S54A SB 10 MHZ E 190 .

E300.
TEKTRONIX OSCILLOSCOPE, TYPe 533A with CA. DB 24 MHZ E 140.
HEWLETT PACKARDAC CONYERTOR. TYPE 3461 A
MARCONIFM EIG. GEN. TYPe TE1066B/6S E205.

ADVANCEA.C. VOLTMETER. TVPe OMT7E EEO

AAR RONI WIDERANGE R.C. OSCILLATOR. TF1370. E95.

COIOSIORC SIIOMAL GEMERATOR. TYPE 204 AM/FM 320 MHZ E150
WAYME KERR UNIVERSAL ERIDGE. TYPE B221 ESO
ADVANCE R.F.ESignil Gencraior Ex 100KHZ-100MHZ E40

S. T.C. ATTENUATOR 0 . 1000 B 6000 hm EO

AVOVAVE CHARACTERISTTC METERE 20

GRANDENBURG MIEH VOLTAGE GEMERATORS

BEK AUTOMATIC VISRATION EXCTIER CONTROL

TAYLON VALVE TESTER. TYpe 45D E6E

ADVANCE SIGNAL GENERATOEETYRETTE68A E50
TAYLOR MTER MODEL $128 . E 15$

MARCONI UNIVERSAL ERIDGE. TYPe F1 1 RASZZDIAGAAPH BM 3sb2 300 -2400MHZ EES
RMS POLYSKOP 1 SWOEBM A244/2/50 C350
WAYWE KERR COMPONENT ERIDGE. CT375 (B521) E75

CONVERT THIS UNITTOA

SUPER BATTERY CHARGER

Attractive green ministry quality case with removable
top and bottom plates - heavy duty power switches. top and boitom plates - heavy duty power switches.
high powered resistors to control current good quality centre mounted amp meter. strip of wing nut terminals on tront panel which can be used for connecting leads
All this tor $£ \mathbf{3} .50$ P\& $£ 2$ four units $£ 12$ Carriage $£ 5$

STEPPING MOTORS
$6 \cdot 12$ position with addituonal where the rotor is colls
Device can be used as a tacho Dlagram supplied Will
actually work on 5 volis 12' 24 recommended
E1.50 日ach P\&P 75 p
or 5 for $\mathbf{E 5}$ P\&PE150

STEPPING MOTORS
 \section*{200 Steps 20 PPING MOTORS}

KEYBOARD PAD

Size 3×2) $\times 2$ high with 12 Alma Reed Switches Blue
E4 each, P\&P $E 1$ or 5 for $£ 15 P \&$ P $£ 2$? blank

MINIATURE KEYBOARD

Push contacts marked $0-9$ and $A \cdot F$ a
function keys $\varepsilon 1.75$ each.

CRYSTALS

BRIDGE RECTIFIER. 2 Amp 50 P em.
PHOTODIODE DETECTOR 4" fily leads 25 pan .
spacing 15p
otiselis $180 p$ on.

DELAY LINE. 50 nanosecs 3 connections - ground-m-out Size 2

iegral semiconductor Speed
150 en

Res unbalanced standand attenuator 500 hm . bnib942/50
gis M-52A 37.51000 MHZ (2 piecos) E325 ASDON CGNAL CENERATOR. TyPe TF801B E85
EEK HETERODYNE VOLTMETERERECEVVER TYPE 2005 E250

 SOLARTRON DGIGTAL VOLTMETAR. TYPE LM1 1867 ET5

${ }_{\text {H.P. }}^{\text {E85. }}$ DC POWER SUPPLY 62098 . $0.320 \mathrm{~V}, 0.0 .1 \mathrm{~A}$ new boxed E140
 THARCONI CARIIER DEVIATION METER. TYPE TFB910 ESO SOLARTRON PULSE GENERATOR. vYP GO1 101.2 E40

 HEWLET PACKADD OSCHLLOSCOPE TYPR $120 B$ X.Y. From ras ADVANE AUDON SIGMAL GENERAOR TYPR H1 Sine Square E25 R 8 STUNAELE INDICATIWG AMP. BN $12121 / 245-600 \mathrm{MHZ}$
MUIRHEAD WAV AMALYER $30.3 H Z$ ESO MURHEAD WAVE ANALYSER 303 HZ ETE

KNMEG OSC
H. P. Memory display 54808 with 5486 Control TB and 5488A Y
 Channelingut E225.
RaS UHF TEST RECEIVER 0.9.2.7GHZ. BN1524E150
EDDYSTONE RECEIVER. TYPe 990 S 250.850 MHZ , E450
KEITHEY REGUEATED HiGH VOLTAGE SUPPLY. TYPe 241, E250
HEWLETPACKARD D.C. CURRENT SOURCE. TYPE 6181 B E175
MARCONI XY MEMDYY TYOE TK2 214 E140 GPO DATEL TESTER NO IC.E 100
LEVELL ERDADEAND VOLTMETER. TYPE TM6B. E40
DANEAF ANALYSER. TYPE

 MARCONIVALVE VOLTMETER. TYPe TVY VIDEO CIRCUITS LTP TUBE TESTER. TYPe 33 E30

SOME TEKTRONIX 500 range oscilloscopes
ingle trace Ptug-ins Working
From $£ 100$. Phone tor detalls

DIODES

All new full spec devices in 3063 $B A X \quad 13$ is44. 1 N414B

HEWLETT PACKARD
MICROWAVE SWITCH type 331 24A SPST
E 140 each. Reduction for quantity

Also

ATTENUATOR

Type B493A. 285 up to 12.4 GHz E25 mech

EDDYSTONE

RECEIVERS
Model $730-500 \mathrm{KHZ}$ to 30 MHZ E65 each
Model 770R-AM/FM
£95 each
Some models slight imperfections. Phone for Special Price
INFRA RED IMAGE CONVERTER Type 9606 (CV 144)

13 in drameter Requires single low current 3 KV to 6 KV supply individually boxed With
£12.50 each
Intra Red Lamps also advertised

GARRARD DIRECT DRIVE

 TURNTABLE MOTORSMade in Japan. With internal electronic
speed controt 24 volt Connections sup speed
plied

E3.50 each. P\&P E1 50
EX-MINISTRY SOLID
STATE
400 HZ INVERTOR
2 BVOC input. $115 \mathrm{output} \mathrm{Size} 7 \times$.2
15 m approx Connection detals supplied
$\varepsilon 18$ each. P\&P E2
TRANSISTOR INVERTOR
20Khz Output windings from Pot Core Can be rewound to sult own purpose or unin can
be broken for host of components. Circuits be broken
supplied supplied
£ 1.25 asch. P\&P £ 2

MINIMUM DRDER £3 VALUE DF GOODS. MINIMUM P\&P $£ 1$ - where P\&P not stated please use own discretion - excess refunded.
E5 CARRIAGE DN ALL UNITS. P\&P OR CARRIAGE and VAT at 15% on total MUST BE ADDED TD ALL ORDERS.
CALLERS VERY WELCOME STRICTLY BETWEEN 9 am-1 pm and $\mathbf{2 - 5 p m}$ Monday to Saturday inc
BARCLAYCARD (VISA) and ACCESS taken. Dfficial orders wolcome.

[1] Hifull
 Prime components-Lowprices.

Dept ETI7, 4 Meeting St, Appledore, Nr. Bideford, North Devon EX 39 1RY. Tel: Bideford (02372) 79507 Telex: 8953084

NEW, LOW, LOW PRICES ON MEMORIES!!!

Ail devices ar prices belore you buy eisewher

 spec. and fully guaranteed! All prices exclude \&p and VAT. Please reter to Ordering BUY TODAY - SUCH LOW PRICES DON'T AST FOR EVER!!

EW!!
50 NS 24 -pIn NEW! 260 890 DYNAMIC RAMS

BIPOLAR PROMS

the right to substitute any make $256 \operatorname{bit}(32 \times 8) 16$. pin tri-state MB 7051 256 bit $(32 \times 8) 16$-pin open collector MB 256 bi (32 $\times 8$ / 16-pin $1 \mathrm{~K}(256 \times 4) 16$-pin tri-state ${ }^{-M B 7052 / 74 S 287}$ TBP14S 10/ $93427 / 82$ S $129 / 7611 / 6301$ $1 \mathrm{~K}(256 \times 4) 16$ pin open collector MB7057/
$74 \mathrm{~S} 387 \mathrm{TBP} 14 \mathrm{SA} 10 / 9344782 \mathrm{~S} 126 / 761016300$ 395p $2 \mathrm{~K}(512 \times 4) 16$-pin tr-state MB7053/93446
B2S $131 / 7621 / 6306$
2K (512× 4) 16-pin open collector
MB7058/93436/ $82510 / 7620 / 6305$

NEW SUPER MUSIC MACHINE KIT!
AT LAST - an attordable kit that can be PROGRAMMED TO PLAY
ANY SONG OR GROUP OF SONGS: Instead of a nightmare of numerous
ICs mod specialexpensive Bipolar
ROMs the SUPER MUSIC MACHINE USO5 a SPECIAL MASK
PROGRAMMED COMPUTER CHIP PROGRAMMED COMPUTER C
One CMOS gate and the most popular erasable EPROM, the popular srasabe EPROM, ine includes
270012716 series. BASIC KIT ind
drilled, plated and screened PC board drilled, plated and screened PC bo
and ALL components except the
EPROM EPROM and 12 V transformer. The
basic kit will play short renditions of 25 tunes through its 7 WATT
AMPLIFIER SECTION. Add an AMPLIFIER SECTION. Add
optional ROM and any tune oplognammed will be played. If you
prove the equipment to program 2708 hrograme the equipment to program 2708
EPROMs. we supply ful information EPROMs.
on programm
FEATURES

* Basic kit contains 25 short lunes
in the main ICI. in the main ICl.
Will
to 1,000 Moss external ROM for UP (ROM is not included).
Operates on 12 V AC)
* Oparates on 12 V AC or 12 V DC at
500 mA . Using unit on 12 V DC and
with 500mA. (Using unit on $12 V$ DC and
with opional ROM requires $9 V$
bias battery not bias battory. not included).
$*$
7 wntis of audio * 7 wntte of audlo power will drive
8 or 16 ohm speakers or horn speakers (not included).
DIP switches not included. - DR switches not included.
'NEXTTUNE' provision steps
sequentially throuph alitunes. sequentially through all turns.
- Tune address can be wire jumpe selected or board is des signed to
take DIP switches. - PIICH. VOLUME and TEMPO are
all adjustable.
- SPECLAL 'CHIME' SEQUENCES
can be activated regardless of can be activated regardioss
tune address to provide for - Allituple doorbeill applications musical notes played one at harmony sound to he mus
+ STEP.BY.STEDASSEMBLY - INSTRUCTIONS ASSEMBLY - Large number of PREPROGRAMMED ROMS with popular and classical tunes
readily available. Send SAE for list and prices. p\&p60p).

SE 01 Sound Effects KIt

The SEOT is a complete kit that contains all ine pars to bulda programmabie effects generator. Designed around the new Texas
tnstruments SN 76477 Sound Chip. the board provides banks of MiNI DIP switches and pots to program the various combinations of the SLF Oscillator. VCO. Noises. One Shot and Envelope Controls A Quad Op Amp C is used to implement an Adjustable Pulse Generator. Level Compararo features a prototype area to allow for user added circuitry. Easily programmed to duplicate Explosion, Phaser Guns. Steam Trains. or almost an infinite number of other sounds. The unit has a multiple of applications. The low price includes all parts. assembly manual, programming charts and detailed 76477 chip specifications. It runs on a 9 V battery (not included). On board 100MV amp will drive a small spe directly, or the unit can eluded)
results! (Speaker not include) results! (Speaker not included
COMPLETE KIT ONLY \& 14.99
£29.95p
ع39.95p

NEW

NEW FROM INTERSIL ICL 7680

 Voltage ConverterThe intersif ICL7660 is a monolithic MAXCOMOS power supply circuit which offers unique performance advantages
over previously available devices The ICL7660 parforms the complete supply yoltage conversion from positive to negative or an input renge of +1.5 V to -10.0 V . resulting in
complementary output voltages of -1.5 to -10.0 V . FEATUREES
 - 99.9% typical open circuit voltage conversion efliciency. - 99.9% typical power officiency.

* Wide operating voltage range 1.5 V to 10.0 V .
* Easy to use - Requires only 2 external non

APPLICATIONS

* On board negative supply for up to 64 dynamic RAMs. Llocalized u.Processor (8080 type) negative supplies. * \quad Inexpensive negative supp
* Data acquisition systems.

EXCITING. ENTERTAINING SOFTWARE FOR THE APPLE! and APPLE II PLUS!! ASTEROIDS IN SPACE!!! your spaceship is travelling in the middle of a shower of asteroids. Blast the asteroids with lasers, but beware - BIG ASTEROIDS FRAGMENT INT SMALL ASTEROIDS! The apple game paddles allow you to rotate your spaceship. fire its laser gun. and give it itrust to propel it through endiess space. From time to time, too. you ill encounter an alien spacesnip
mission is to DESTROY YOU. So you'd better destroy it fisst! HIgh mission is to DESTR this program generates. RUNS ON ANY APPLE II WITH AT LEAST 32K AND ONE DISK DRIVE

STEREO! S100 SOUND COMPUTER
BOARD
General Instruments AY- $3-8910$ NMOS Computer sound IC's Allows you under total computer control to generate an intinite number of specia: SASIC. ASSEMBLY LANGUAGE. etC
KIT FEATURES: - Two GI sound computer IC's (AY-3-8910) - Four paralie $1 / \mathrm{O}$ ports on Board Uses on Board audio Amps or your STEREO On Board prototyping area - Ail sockets Daris and hardware are inciuded

- PC Board is soldermasked. silk screened with goid contacts © Easy. PC Board is soldermasked. silk screened with Und tun to buitd. with full instructions Uses Programmed $l / \begin{aligned} & \text { for }\end{aligned}$ maximum system flexibility - Both BASIC and ASSEMBLY language programming examples are inciuded
ARE BEE KIT............ ONLY 559.96 includes 60 page data Manua AY 38910 chio special price with purchase of BARE BOARD (2 chips)... §15 SOFTWARE: SCL is now avallable! Our Sound Command Language make Register Examine-Modity. Memory-Examine-Modify and Play-Memory SCL s available on CP/M compatible diskette or 2708/2716 Diskette - 19.95 208- 14.95 .2716 - $£ 24.95$ Diskette includes the sourse. EPROMs are

6809 S-100 SINGLE-BOARD COMPUTER

- Meets IEEE S. 100 Standard! \quad RS - 232 Handshake!
$\begin{array}{ll}- \text { MC6B09 CPU! } & \text { Selectable BAUD Rates! } \\ \text { Manual includes: } 11^{\prime \prime} \times 7^{\prime \prime}\end{array}$
-4K, 8K, 16 K ROM! Schematic. Parts List. User No
ACIA, PIA, 8080 Simiulatad IVO! CPU (6809) £ 19.00 ! ADSMON: Monto (2716) £25! COMPLETE BOARD ASSEMBLED AND TESTED. ONLY £250 (plus $£ 2$ p\&p) P\&PGTD VAT

THE NEW G COMPUTER SOUND CHIP the amazing AY-3.8910 is fantestically powerful sound and music generator, periect for use win 3 any ${ }^{8}$-bit micro process or. Contains 3 tone channeis, noise generator, bit envelope period control, 2 paralle IIO, 3DIA converters plus much more. All in 40 pin Dip Super easy to ONLY reprint of BYTE 79 article! Also, add E2.25 tor 60 page dafa manual. "Perhaps the next famous composer will not direct a 150 piece orchestra
but rather a trio of microcomputers controlling a bank of AY-3-8910s. BYTE July' 79.

MICROBASICS

Henry Budgett explains the functions of various elements of the Heathkit H8 microcomputer

We are now, at long last, in possession of a complete microcomputer. All the various components, both hardware and software, have been assembled into a working system. The only remaining task is to explain how they all interact. If you have been following the series you should have at least the last part close at hand as I shall be making reference to various bits and pieces.

The obvious place to start is with the CPU card, and the obvious item to look at first is the clock generator.

Keeping It Ticking

The CPU requires a two-phase clock signal (the device we actually use in the H 8 is an 8080A which runs at 2 MHz) and this is produced by a master oscillator, the Intel 8224 . The 8224 is driven from a single 18.432 MHz crystal and produces the power-on reset pulse, the two-phase clock and a couple of other synchronisation signals. The power-on reset is simply generated by an RC time constant which charges up and, after a given time, crosses a logic threshold, producing a nice, clean pulse that is passed to the CPU and all the other circuitry.

The second phase of the clock, $\phi 2$, is also sent to all the other circuitry as a control signal. Together with the system sync pulse it will ensure that the rest of the computer keeps in step with the CPU. In actual fact the CPU card contains very little indeed. Apart from the discrete components there are only 15 main ICs. The simplicity of the circuit is in no way an indication of incompleteness; the system is modular in design and makes full use of both the bus-based design (separate functions on separate cards) and the sophisticated control ICs that have been developed to go with the 8080 series.

There is, as mentioned previously, no RAM on the CPU card at all. The only memory is the 1 K front panel monitor in ROM. This means that without an additional memory card you can't get the machine up-and-running, but it does simplify the memory mapping. All the address and data lines are connected onto the 50 way bus as detailed in last month's article. The data bus is, as explained in an earlier article, bi-directional in nature. The direction of the data is decided by the memory and I/O controls which will be discussed later. The only memory address decoding done on the CPU card is to determine if an address lower than 1024 is being accessed. If so then the contents of that location in the monitor ROM are read. At all addresses greater than 1024 the ROM is disabled and its output set in the high impedance state.

Reading And Writing

To access RAM and ROM memory the computer needs to be able to control the 50 -way bus. To write to memory the following actions occur. The system controller, an 8238, looks at the current processor status word and finds that the CPU is requesting a memory write cycle. It now sets its control line, $\overline{\text { MEMW, low indicating to the bus that a memory write cycle is }}$

about to take place. The data bus is set to transmit from theCPU to the memory and the current address on A_{13} to A_{15} is decoded to determine the memory block required just as the address on A_{0} through A_{12} determines the actual memory cell to be written to. Once the decoding is done the MEMW signal on the bus switches the data (on the bus) into that location. The reading of data from the memory location is much the same. The control signal in this case is MEMR and the data bus buffers are set to read from memory to the CPU but, apart from that, it's the same.

For the memory card itself, we used a 16 K static board. The board start address (where it resides in the memory map) is controlled by a set of switches. The top two address lines can be decoded into four possible states. This determines which 16 K block of the available 64 K is being accessed. If the preset code and the current address code match, then you are using that board. The next two address lines can again be decoded into four possible states. These determine which 4K memory block of the 16 K is being accessed. The remaining 12 address lines are decoded within the memory ICs and determine which of the 4096 memory cells is actually being used at that instant. Simple really! For those of you who like to see proof, Fig. 1 reveals all.

The Ins And Outs

The 8080 treats I/O in much the same way as memory in that it has a pair of control signals, $\overline{I O W}$ and $\overline{I O R}$, produced by the system controller at the correct times which determine the direction of the operation. Because the 8080 can only have 256 I/O ports, the lower eight address lines are used to specify the device address. Each address signifies a discrete port or location, much as a memory address is only valid for one location, but certain addresses are already designated by the monitor software. It should be fairly obvious by now that computers are pretty dumb, so the system designer decides to allocate certain peripheral devices to certain addresses. This means that any software written for the machine can use these defined addresses and know, in advance, what will be there.

A typical I/O card is the serial I/O and cassette card. This is intended to be used with a VDU and/or printer and a cassette tape recorder for storing programs and data. The system defines that the serial I/O port is expected to reside at the octal address 372/3 (FA/B Hex). Similarly the cassette is expected at $370 / 1$ ($\mathrm{F} 8 / 9$ Hex). Both ports are extremely flexible. The serial port can operate at any of eight different transmission speeds with a

Fig. 1 How the memory decodes into discrete 4K blocks simply by using the top four address lines. In the case of the $\mathbf{H 8}$ we can page the memory into 16 K units, ie one card is a page.
number of code options in either RS232 or 20 mA modes. The cassette interface will operate at either 300 or 1200 baud and includes full motor control.

All the clock rates are controlled by a special crystal on the card whose output is divided down to produce a number of accurate clocks. These clocks actually run at 16 times the expected transmission speed to drive the UARTs. The reasons for this were explained in an earlier episode.

Cassette Taped

It is worth taking a close look at how the cassette interface actually works as this aspect of computers is seldom explained. Figure 2 shows the block diagram of the complete I/O card, which will serve to guide us through the details of the various circuit sections.

The cassette interface stores data on tape in a serial format. As discussed in an earlier article, serial data needs extra codes to indicate the start and end of each data byte and, you will be relieved to hear, the cassette interface is no exception. Data is stored on tape as a string of 'ones' and 'zeros' with ' 1 ' being represented by a burst of 2400 Hz and ' 0 ' being a burst of 1200 Hz . To be able to read the data back, the interface must, therefore, be able to distinguish the start and finish of any data byte and the difference between the two tones.

We will concentrate on the input section first and it is important to follow Fig. 3 as we go through it. The audio input is first limited in size by chopping the signal with a pair of diodes. This eliminates the possibility of overloading the circuitry with any large amplitude signals. The signal is now fed into a comparator so that a square wave of similar frequency is produced. These are the top two traces in Fig. 3.

This signal is fed into a frequency doubler. This consists of two monostables. Each produces a short pulse but on opposite 'edges' of the signal, as shown in the third and fourth traces. These are then combined to produce the fifth trace, which is a signal of twice the frequency of the original. The signal is now split to feed a space detector and a clock synthesiser. The space detector is simply a retriggerable monostable whose time constant is ' t '. As can be seen from the diagram the monostable will remain triggered for a 2400 Hz source signal but drop out during

Fig. 2 Block diagram of the serial I/O card. A detailed explanation of the cassette interface is given in the text, the normal serial port is conventional in operation and the techniques used have been discussed in earlier articles.
a 1200 Hz signal, so we have now detected the 'space'. This signal is fed into a data latch which simply consists of a bistable that triggers on the positive edge of the signal and resets on the 'space'. We now have a serial data stream of ' $0 s^{\prime}$ and ' $1 s$ ' that we can feed into a conventional UART. We still need a clock to drive the UART and this is actually produced by the data itself in the following way. The twice-frequency signal is fed into a divider IC that is set to divide by one if the signal is 1200 Hz or divide by two if it is 2400 Hz , ie the output will always be same frequency regardless of the input frequency. This signal has an uneven mark-space ratio and this is fed into a bistable which divides the frequency by two and makes it into an even markspace signal. This is fed into a PLL (Phase Locked Loop) device which multiplies the frequency by 16 . This is the signal that the UART needs. We have now recovered the data from the tape and used it to produce its own clock. This is called a selfclocking code.

Now, you are probably wondering, just how did the clock get onto the tape in the first place? The simple answer is that a system known as FSK or Frequency Shift Keying was used, but there's more to it than that. The UART is clocked by either a $19,200 \mathrm{~Hz}$ or a 4800 Hz signal depending on the baud rate you have chosen (1200 or 300) and this causes the serial output of data, which is inverted and fed into a bistable clocked by a 4800 Hz signal. When the data is set high the bistable will divide the clock signal by two and produce the 2400 Hz 'mark' signal. When the data is set low the 4800 Hz signal is fed through two bistables thus dividing it by four to produce the 1200 Hz 'space' signal. Because the controlling factor in this process is the length of time that the data is present, the length of tone recorded on the tape is directly related to the original transmission speed, which we can recover in the manner detailed above.

Expanding The System

The equipment that we currently have forms the basis of a complete computer system. The simple front panel controls can be replaced by a VDU (Visual Display Unit) or a Teletype, both of which will allow you to take advantage of the various high and low level languages available. You can attach a printer to another RS232 port for nice listings of your programs or

FEATURE : Microbasics

A different view of the box with its lid off. We have removed the front panel so you can see the control card and the elevated card at the rear is a part-built serial 110 and cassette unit. As can be seen at the back of the box, the mains transformer is not exactly small. The shielded area to its left is the mains input and that to its right is the power supply smoothing capacitor. All the components of the case are extremely robust - it's built like a tank. All the circuit boards are well legended and construction is rather laborious but not difficult.

(C) COPYAIGMT MODMAGS Ltt

Fig. 3 What the waveforms look like during cassette interface operation. They are all referred to in the text and are related to sections of Fig.2.
results of calculations. Sooner or later you will find that the speed or capacity of the cassette unit is less than you need and then you can add devices like floppy discs. At this time the original microcomputer has completely vanished from sight; it has become 'transparent' to the user.

The point of change between computer and system is hard to define but from the user's viewpoint it is probably the moment when the hardware ceases to be important and the software takes over. The best designed computer hardware in the world can be reduced to a useless heap of junk if it is equipped with bad software. It is true to say that with the vast increase in the complexity of the various ICs the actual design of the computer is considerably less of a problem than the production of the necessary software.

All the future range of assemblers, high level languages, compilers, editors and utility packages will rely on the correct design of the original monitor. At least one major personal microcomputer system has been dogged by the continual release of 'up-dated' monitors. Enhancements to an existing piece of software are fine but complete re-writes tend to cause major problems, not just in the supplying company but in the whole support industry that grows up around each system. One of the original reasons behind my choice of the H 8 for use in this series was that it was a tried, tested and proven machine that wasn't being continually messed around with.

The Soft Solution

I've just about exhausted the hardware possibilities, at least as far as this series is concerned. If you have any specific questions that you feel should be answered then please drop a line to Microbasics, c/o Electronics Today International, 145 Charing Cross Road, London WC2H OEE and I'll endeavour to reply to the best, in print, in our June issue which will be the last in the series.

For the next two months I'm going to take a brief look at some simple software techniques. We'll be working in BASIC and the programs will be as 'universal' as possible, so you should be able to try them out on any machine equipped with the language.

The H8 CPU card is supplied ready-built and contains remarkably little. The 8080A is in the centre next to the crystal, the large IC to its left is the monitor ROM and the large IC below the CPU is the master system

A bird'seye view of the HB's internals showing how the front panel card stacks in. The first bus card is the CPU card, the next one is a 16K static RAM card, both of which are supplied ready-built to avoid nasty and expensive accidents with static electricity.

BRANDED INTRUDER ALARMS AT DISCOUNT PRICES FOR LIMITED PERIOD ONLY	
Alarm with self-contained siren. Keyed and t minimal power consumption on stand-by. indicator, 3 reed switches, 1 pressure mat installation instructions.	ry, using uit•fault and ful £ 36.80
Siren extension unit to increase range	f11.75
Self-powered siren (sounds if separately attacked)	£25.00
Self-powered bell [sounds if separately atlacked)	£29.00
Reed switches (surface)	£1.00
Reed switches (flush)	£0.90
Pressure Pad - $27^{\prime \prime} \times 15^{\prime \prime}$	£2.20
Pressure Pad - $221 / 2^{\prime \prime} \times 6^{3}{ }_{4}^{\prime \prime}$	£1.60

All above prices inclusive of V.A.T. and postage. Terms: Cash with order. Write to Yale Security Products, Wood Street, Willenhall. West Midlands WV13 1LA. Teiephone: 090266911 . Telex: 338251.

BUILD YOUR OWN METAL DETECTOR VLF/TR VCO/TR IB/TR BFO

Pre-aligned search heads - test equipment not required. Literature available in return for SAE. Manuals and parts sold separately: write or phone for price. Export welcome: write for quote.

Shadow VLF/TR. Full just ferrous/ nonferrous indice tion. It works by measuring the conductivity of the target; now you can
reject nail's bottle caps even eluminium reject nails bothle caps oven bluminium
foin and ring pull tabsl Full ground effect
exal exclusion over normal or high effec meability soils \qquad 4 modes deepsesking VLF plus 3 TR discriminating'ranges Push bution 'memory tuning. Pertormance equal

Shadow

TR/1B
individual perta: Search head $£ 21.33$ PCB $£ 6.80$ Case $£ 5.33$ Adjustable shatt assy $£ 5$.10. LM393

Shadow TR / 1B (illustrated). A true transmit receive/induction balance detector at a budget price tor anyone who dousn't need discrimination. Waterproot and themaily insulated search head. Good

Sthedow TR/VCO. An advanced version of the TR/IB Use as a senstuve i B machine or swich to VCO mode when the sound changes to a varing pitch, allowing essars use over mineralsed ground and
enabling detection of negative, thigh permabihty anomalies. Kit price $£ 38.87$ inc VAT and Post.

Matching etereo hemdphonces for all Shadow modele E5.E5 inc. VAT and Post
Shell Kir. Consists of the (hard to find) hardware inems, for detectors of your own design. Fully adjustable shatt with handes. search head mouldings (int. diam 185 mm) with hinge assembly. special clips to moun
your own control housing (any box is suitable). Completely non-metalic and undritted. With assembly. instructions $\mathbf{E 1 4 . 4 5}$ inc. VAT and Post

ALTEK
(ETI), 1 Green Lane
Walton-on-Thames Surroy
Order by post or phone (24 hours). Access à Vise Cards quaie number. Calers by appoiniment only plaaso
Phone $1003 \mathbf{2 2)} 44110$ anytime!

Self Instruction Courses from Cambridge Learning

They're faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are learning and without mindless drudgery. With a good self-instruction course you become the world's best teacher.

mICROCOMPUTERS ARE COMINGRIDE THEWAVE! LEARNTO PROGRAM!

MILLIONS OF JOBS ARE THREATENED, BUT MILLIONS MORE WILL BE CREATED

LEARN BASIC
The language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging clear documentation. Harder problems are provided with a series of hints so you never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest, and computer games.
COMPUTER PROGRAMMING IN BASIC (CPB)

4 Vols. £10.00

Book 1 Computers and what they do wetl; READ. DATA, PRINT, powers, brackets, veriable names; LET; errors: coding simple programs.
Book 2 High-and low-level languages; flowcharting; functions; REM and documentation; NPPUT, IF...THEN. GO TO; limitations of computers, problem definition.
Book3 Compilers and interpreters; loops. FOR....NEXT, RESTORE; debugging; arrays; bubble sorting; TAB.
Book 4 Advanced BASIC: subroutines; string variebles: files; complex programming: examples: glossary.

THE BASIC HANDBOOK (BHB) £11.50

This best-seling American title usefully supplements our BASIC course with an slphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the wor/d.
A.N.S. COBOL (ANS) $£ 5.90$

The indispensable guicte to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oit company programs and did invaluable work from the first day. Need we say more?

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here, as well as being a priceless tool in all administrative areas - presenting safety regulations, government legislation, office procedures etc
THE ALGORITHM WRITER'S GUIDE (AWG) $£ 4.00$
explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

JIIN THE DIGITALREVOLUTION!

DESIGN OF DIGITALSYSTEMS (DDS) 6 Vols. $£ 13.50$

Written for the student or enthusiast, this course is packed with information, diagrams,

Digital calculators and watches came in during the 1970's. Soon you will see digital cash cards, telephones, car instruments, and TV messages from your friends.
DIGITAL COMPUTER LOGIC AND ELECTRONICS (DCL) 4 Vols. $£ 7.50$

A course covering the material in italics on the left, but at a slower pace. (4 vols)

GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition within 28 days. Our free booklist is sent with each order

and questions designed to lead you step-by step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and operation o calcuiators and computers

BOOK 1 Decimal,Octal, hexadecimal, and binary number systems and conversion between number systems, negative numbers; complementary systems. BOOK 2 OR and AND functions; multiple-input gates; truth tables; De Morgan's Laws; canonical forms; logic conventions: Karnaugh mapping; three-state and wired logic. BOOK 3 Halt, full, serial, and paraliel adders: subtraction; processors and ALU's; multiplication and division. BOOK 4 \%ip flops: shift registers. asynchronous. synchronous, ring. Johnson, and exclusive-OR feedback counters; ROMS and RAMS. BOOK 5 Structure of calculators; keyboard encoding; decoding displaydata; register systems; control unit; PROM; address de-coding. BOOK 6 CPU. memory organisation; character representation; program storage; address modes: input output systems; program interrupts; interrupt priorities; programming; assemblers; computers. executive programs; operating systems.

CAMBRIDGE LEARNING LTD
(Registered in England No. 1328762)
Unit 10, Rivermill Site, FREEPOST, St. Ives, HUNTINGDON, Cambs PE17 4BR. Phone 048067446

Drder Form

OUR WAYS TO PA
a order (Not Eire)
A bank draft, in sterling on major bank)

Pease charge my Access American Express/Barclaycerd Visa/Mastercharge/Trustcerd
expry Date

Phone us with these credit card details on 048067446 (24 hour

ETI
 a semi-intelligent security lock. It is key-pad operated and has 100 million possible key-code combinations. Design by Ray Marston. Project development by Plamen Pazov.

We at ETI are rather proud of this project, which can justly be described as a semi-intelligent key-padoperated combination lock that can be used to protect the home, office or car. The unit's key-pad has 10 buttons numbered 0 to 9 , plus reset and unlock buttons. To open the lock, a pre-determined eight-digit combination must be punched into the key-pad. If the correct number is punched in, an 'unlock ready' LED illuminates, at which point a relay (the 'lock') can be activated by pressing the 'unlock' button. If a wrong number is punched in, the lock will not open but will initiate an action (ranging from'do nothing' to sounding an external alarm) dependent on the nature of the error. Any desired combination of the owner's choice can be chosen by hard-wiring a DIL plug; the combination can be changed in seconds simply by swapping DIL plugs.

The really smart feature of the unit is its ability to distinguish between authorised and unauthorised operators. The circuit measures keying factors such as the total durations of key-pad and reset switch closures, the elapsed time since keying initiation and the presence or lack of keying errors. The circuit can, on the basis of these measurements, distinguish between childish fiddlers, drunken operators, authorised operators who make genuine keying errors and thieves who are trying to break the combination, and take appropriate action in each case.

Authorised Operation

The security lock is provided with three LEDs, marked 'ready', 'unlock ready', and 'disabled'. All three LEDs are normally off, indicating that the unit is ready to accept a keying sequence. As soon as the first key-pad closure is made, the'ready' LED turns on and the keying sequence can continue.

When the fifth digit is punched in, the circuit checks to see if any keying errors have been made and if so generates a brief bleep sound, at which point the operator can cancel the sequence with the reset button and then punch in a new set of numbers. If no errors have been made, the circuit continues to accept keying instructions until the eighth digit is punched in, at which point the circuit again checks for errors. If no errors have been made, the 'unlock ready' LED illuminates and the lockcontrol relay can be activated by pressing the unlock button. If,
on the other hand, an error has been made, an alarm tone will sound, at which point the operator can cancel the sequence and the alarm with the reset button and punch in a new set of numbers.

The security lock incorporates a timing network which measures the elapsed time since the initiation of key-pad operation. This timer enables the operator to have two or three goes at opening the lock, enabling a reasonable number of keying errors to be accommodated. Once the correct combination has been punched in and the lock has been opened, the operator should reset the lock using the reset button. If the operator forgets to reset manually, the timing circuit will perform the operation automatically after a delay of (typically) about 30 S , but will then go into an auto lock-out mode (indicated by the turning on of the 'disabled' LED) in which it accepts no further keying instructions for 30 S . At the end of the lock-out period the 'disabled' LED turns off and the circuit is ready to accept a new keying sequence. The key-pad must not be actuated when the 'disabled' LED is on.

Childish Fiddling

If children try activating the security lock by pressing the key buttons at random the circuit will, on the fifth key button actuation, detect a keying error and generate a brief bleep tone and then refuse to accept any further keying instructions unless the circuit is reset, in which case the same set of actions will recur. After a total of 6 S of key-pad closures, or a maximum of 60 S after the first push-button closure, the circuit will go into the auto lock-out mode and will accept no further instructions until 30 S after all key-pad buttons are released, at which point the circuit will automatically reset in readiness for an authorised keying instruction.

Operation By Thieves

It should be noted that the first five digits of the lock code have 100,000 possible combinations, so the chances of an unauthorised person getting past the fifth digit are very slight. If an operator does get past the fifth digit, the security lock automatically regards them as potential thieves and reacts accordingly.

Consequently, if keying errors are made subsequent to the
fifth digit and are not corrected within a reasonable space of time (an absolute maximum of 60 S) the circuit goes into an emergency alarm and auto lock-out condition in which an alarm tone is generated and a relay (which can be used to activate an external alarm) turns on and cannot be turned off again manually, but will only turn off (automatically) if the keypad remains unused for 30 S or so.

Operation By Drunks

The automatic protection circuitry of the security lock measures a variety of keying factors and the on-board timing networks can readily be adjusted to that the lock can be opened by the deft and nimble fingers of a sober operator, even allowing for two or three keying errors, but not by the fumbling and slow-operating fingers of a drunk.

Applications

The security lock requires a 12 V power supply and typically consumes a mere 1 uA or so when in the standby mode. The unit can be used to protect the home or office by using the lockcontrol relay to activate an electric door latch and the alarm relay output to actuate an external siren or burglar alarm, etc.

The device can be used to protect a car against thieves or drunken drivers by wiring the lock-control relay in the selflatching mode via the ignition switch, using the output to control the ignition circuit and the alarm relay output to actuate the car horn.

Construction

The unit is built up on two PCBs - one small and one large. The small PCB holds the keypad switches plus IC1 and its associated resistors and diodes. In domestic applications, this PCB is intended to be fitted in a small box and mounted on the outside (access side) of a door, together with the three LEDs and the small acoustic transducer, while the remaining circuitry (on the large PCB) is mounted on the inside of the door. The two units are interconnected by a length of multi-way ribbon cable

The large PCB is a fairly complex single-sided affair using a couple of dozen jumper links. We've made provision for either mounting two small PCB-mounting relays on this large board or for mounting larger relays remotely, as preferred. We've also made provision for wiring the desired key-code through a 24 -pin DIL plug.

Start the construction by building the small PCB, remembering to mount IC1 in a suitable socket and noting that the PCB is designed to accept the Ambit key-pad switches mentioned in 'Buylines'. When construction is complete, fit the unit into a suitable die-cast box, together with the three LEDs and the small acoustic transducer and a reasonable length of interconnecting ribbon cable.

Fig. 1 Method of wiring the security lock for use in a car.

Now build up the large PCB, again remembering to provide all ICs with suitable sockets. Do not fit the ICs in place at this stage. When construction is complete, double-check the assembly against the component overlay, paying particular attention to the jumper links and to the polarities of all diodes. Now wire the desired keyboard code sequence into the unit using the 24 way DIL plug, wiring the first number from point 'a' to the desired number on the left hand side of the plug, the second from point ' b ' to the desired number and so on until all eight digits are wired in. If you want to use six or seven (rather than eight) digits in your code, simply wire a suitable link from ' x ' to the appropriate number on the right hand side of the plug, as shown in the diagram.

At this stage, interconnect the two PCBs and then fit the ICs to the large board IN NUMERIC SEQUENCE (IC2 to IC8). If it is subsequently necessary to remove an IC, note that all highernumbered ICs must be removed in reverse sequence until the offending IC is reached. Now connect the unit to a 12 V supply, briefly press the reset button and check that all LEDs are off. Give the unit a functional check by keying in the appropriate sequence of numbers and check that the 'unlock ready' LED illuminates. Check that the alarm sounds briefly if an incorrect sequence is punched in, as already described. The unit is then ready for installation and use.

Installation

The key-pad security lock can be used to protect a car against drive-away thieves or drunken drivers by using one set of lock-control relay contacts to make or break the vehicle's ignition circuit, as shown in Fig.1. Here, the security lock unit is permanently wired to the vehicle's battery, but the connections to relay RLA and driving transistor Q1 are made via the ON position of the ignition switch; the relay is wired in the selffatching mode via contacts RLA/1 and the RLA/2 terminals are used to make/break the supply connections to the vehicle's ignition coil. The RLB/1 connections are taken to the car's horn. Note in this application that unlock button PB12 should be permanently shorted out.

The key-pad security lock can be used to protect access doors in homes and offices, or safe doors, etc. The electrical connections are quite simple in these applications (see Fig.2), but some ingenuity may be needed in implementing the electro-mechanical latching mechanism. Here, the lock is permanently powered from a mains-derived IC-regulated 12 V DC supply, contacts RLA/1 are used to make or break a DC supply to the electric door-latch and RLB/1 is used to make or break an AC supply to a 12 V alarm bell.

Electric door latches are available from major locksmiths and from security firms such as BSG (Security) Ltd, 34/35 Dean Street, London W1V 5AP (Tel: 01-439 4536), but are rather expensive, typically costing some $£ 12$ to $£ 15$ each. Ingenious readers may be able to find far cheaper ways of implementing effective electric door latches.

Fig. 2 Method of wiring the security lock for use in the home or office. In applications where power failure might occur, the switch and latch should be powered from a back-up battery (Ni-Cd or lead acid) under constant trickle charge. The alarm is still powered from the mains.

HOW IT WORKS

The key-pad security lock circuit comprises three major sections, the most important being a dual codeword generatoricomparator network. The remaining two are the error detectionlindication and auto lock-out circuitry.

The basic operating principle of the complete circuit is fairly easy to grasp. The dual code-word generator/comparator network, which is the heart of the unit, contains two four-bit code word generators and a two-word comparator. One of these generators is driven from the 10-button key-pad and generates a specific code word for each of the 10 buttons and, simultaneously, generates a press-detection waveform when any button is pressed. This press-detection waveform is used to clock an eight-step counter. The second code-word generator is driven from the output of the eight-step counter and generates one of 10 possible four-bit code words in each position of the counter. A sequence of eight four-bit code (or reference) words (corresponding to the desired eight-digit code) is hard-wired into this generator.

At the start of each sequence of keying operations, the counter is reset to zero. Thus, when the first key-pad press operation is perform ed, a four-bit key-pad code word is generated and, simultaneously, the counter selects the first of the four-bit reference words. The circuitry then compares the two words and if the numbers are not identical an error detector latch is activated. This process is repeated, with a new key-pad and reference number being generated and compared, each time that a key-pad button is pressed.

If no key-pad error is detected by the time the eighth key-pad operation has been performed, the output relay will be enabled by the error detection circuitry and can be activated by operating an unlock push-button. If, on the other hand, an error is detected, an alarm indication will be given and the unlock relay will not be enabled. The type of alarm indication depends on the nature of the keyboard error and ranges from a simple bleep to the actuation of an external alarm through a relay output.

The auto lock-out circuitry measures factors such as the total duration of key-pad press operation and the elapsed time from the start of a keying sequence, etc., and rejects keying operations if certain parameters are exceeded.

The dual code-word generator/comparator section of the unit is designed around IC1 to IC5, plus IC8a and ICBb. IC1 and IC2 are eightinput priority encoders. They have eight independent inputs (coded 0 to 7) and generate a three-bit binary code output in accordance with the highest activated input. The code ranges from 000 when the 0 input is active to 111 when the 7 input is active. Pin 15 of the chip is normally high, but switches low when any input is active.

In our application, IC1 and IC2 are each supplemented by a diode gate network that enables a four-bit code to be generated via 10 input terminals. The inputs to the IC1 code-generator are derived from the 10-button key-pad, and the pin 15 press detection waveform is used to generate a positive clock pulse by the IC4a bounce suppression circuitry. The clock pulse is fed to the input of a 4017 counter/decoder (IC5), which thus shifts one step each time a key button is pressed. The inputs to the IC2 code-generator are derived from the decoded outputs of IC5 through D16 to D23 and can be hard-wired to give any desired code sequence.

The four-bit outputs of the two code-word generators are compared by the IC3 quad two-input EX-OR gate and by the D9-D12 fourinput OR gate and NANDed with the clock waveform by IC4b. The output of IC4b is glitch-suppressed by R22 and C3 and the resulting signal is fed to one input of the IC4C-IC4d bistable latch. The outcome of all this is that the C3 voltage is normally high, but goes low (in synchrony with the clock waveform) if an incorrect codeword is generated from IC1 by the keyboard.

At the start of each keying sequence the IC5 counter is reset, either automatically or by PB11 and pin 3 goes high. This voltage is inverted by IC8a to drive 'ready' LED1 off and by ICBb to reset the IC4CIC4d bistable so that the output of IC4c goes low. As soon as the keying sequence is initiated, pin 3 of IC5 goes low and LED1 illuminates via ICBa and, simultaneously, the IC4c-IC4d fault detection bistable is enabled. If any keying fault is subsequently detected, the IC4c output of the bistable latches into the high state.

The error detection/indication circuitry section of the circuit is designed around IC7, IC8c-IC8d, IC6a-IC6b, the Q1 relay driver and the IC4c-IC4d bistable already described. IC6a-IC6b are wired as a gated astable with a buffered output that is used to drive a small acoustic transducer and IC8c-ICBd are wired as a latching alarm bistable.

If a keying error occurs, the output of IC4c locks into the high state. If the error occurs within the first five keying operations, the output of AND gate IC7a will go high on the arrival of the fifth keying operation and feed a brief gating pulse to the IC6a-IC6b astable via C4-R32-D24-D25 and cause a brief audible tone to be generated.

Simultaneously, D15 drives the inhibit terminal of IC5 high and causes the counter to ignore all subsequent clock signals until the counter is reset.

If the keying error occurs between the fifth and eighth operation, the output of IC7b will go high on the arrival of the eighth keying operation and activate the IC6a astable via D26, causing an alarm tone to be generated until IC5 is reset. Simultaneously, the IC8C-IC8d alarm bistable will latch and, if the keying error is not corrected within a reasonable time (by resetting the counter and re-keying the correct number sequence) it will cause the output of IC7d to switch high (via the auto lock-out circuitry) and drive the IC6a astable on via D27 and relay RLB on via Q2. The RLB contacts can be used to activate an external alarm generator. The counter inhibits via D15 when its 8 output goes high.

If the correct sequence of numbers is keyed into the security lock, the counter will again inhibit on the arrival of the eighth keystroke, but in this case 'unlock ready' LED2 will be driven on by IC7c, enabling lock-control relay RLA to be activated by PB12.

The auto lock-out circuitry is designed around the IC6c-IC6d

non-inverting Schmitt network, which has its input applied via C5 and its output taken to the reset terminal of the IC5 counter by D31. In essence, this circuit is used to measure various time-related characteristics of keyboard operation and to inhibit operations if these characteristics exceed preset limits.

C5 can be charged by any of the D28-D30 networks, and discharges by PR1 and R38 (and possibly R36) and the circuit is corfigured so that LED3 turns on and the circuit is disabled (by locking the counter into reset by D31) if the C5 voltage rises to two thirds of $V+$; LED3 turns off and the counter is re-enabled if the C5 voltage falls below one third of $V+$. C3 can be charged from any of three sources. It can be charged through reset button PB11 and D28-R35, in which case LED3 will turn on with 35 of continuous PB11 closure, but will not turn off again until roughly 30 S after PB11 release. The circuit thus responds to the number of manual reset operations.

C5 can also be charged by the clock pulse waveform (which gives a direct measure of key-pad press durations) and D29-R36, in which case LED 3 will turn on with a total of 65 of keyboard closures, but will not turn off again until 30 S after the final release of all keyswitches.

Finally, C5 can also be charged through D30 and PR1. In this instance, charging commences as soon as any key-pad switch is activated (pin 3 of IC5 goes low) and LED3 typically turns on 605 after the initiation of key-switch operations (the precise period can be varied by PR1). This input ensures that the circuit will eventually reset automatically if the owner forgets to reset the circuit manually after keying a correct number sequence, or if unauthorised persons (children) try playing with the keyboard.

The C5 charging network has an additive time constant such that an authorised and sober operator can have two or three tries at opering the lock before auto lock-out occurs, whereas a drunken operator (with fumbling a slow-operating fingers) will have little chance of opering the lock. Similarly, unauthorised persons can make very few keypad operations before auto lock-out occurs, ensuring that there is virtually no chance of cracking the lock combination (there are 100 million possible combinations). If auto lock-out does occur, the circuit can be re-enabled by simply allowing the key-pad, etc., to 'rest' for 305 or so until LED3 turns off, at which time a further attempt can be made at opening the lock.

PARTS LIST

Resistors all $1 / 4$ W 5\%	
R1-19,21,36,38	47k
R20,23,37,41,43	4k7
R22,24,26,27,	
28,29,31,32,33	100k
R25,30	1 ko
R34	68k
R35	22k
R39	6k8
R40	470R
R42	27k
Potentiometer	
PR1	470k
Capacitors	
C1	10u 16 V axial electrolytic
C2	470u 16 V axial electrolytic
C3,4	47n polyester
C5	10u 16 V axial electrolytic
C6	100w 16 V axial electrolytic
C7	10n polyester
Semiconductors	
IC1,2	45328
IC3	40708
IC4,6	4093B
IC5	4017B
IC7	4081B
ICB	4001B
Q1,2	BC109
D1-31	1N4148
D32-35	1N4001
LED1-3	0.125" ${ }^{\prime \prime}$ red LEDs
Miscellaneous KHC10901 (push-to-make non-locking)	
PB1-12 RIA, RIB	KHC10901 (push-to-make non-locking) 2 pole CIO, 12 V, coil> 120R
Tx	Piezo-electric sounder (PB 2720)
Verocase (code 2 socket and 24 pin nectors (2 off) rib	02-21035F), diecast box ($120 \times 65 \times 40 \mathrm{~mm}$), 24 pin DIL DIL Header, 14 pin DIL insulation displacement conbon cable, caps for switches (KT5 - 12 off).

-

Fig. 4 (Above). Overlay of the key-pad PCB.

PROJECT : Combination Lock

*

The key-pad PCB (above), and the main board in its case. The main board has the ribbon cable connector and the DIL header removed. The header is shown wired for a combination of 01234567 - with a range of pre-wired headers you can change the combination in a few seconds.

BUYLINES

 available from Ambit. The relays are RS types, also available from Maplin or Watford. DIL headers can be obtained from Maplin and Electrovalue, and DIL ínsulation displacement connectors are available from Electrovalue.

0

Wilmslow Audio

THE firm for speakers!

SEND 50P FOR THE WORLD'S BEST CATA LOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC, AND DISCOUNT PRICE LIST.

AUDAX - AUDIOMASTER - BAKER - BOWERS \& WILKINS CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD DECCA - EAGLE - ELAC - EMI - FANE - GAUSS - GOODMANS HARBETH - ISOPHON - I.M.F. - JORDON - JORDAN WATTS KEF - LOWTHER - MCKENZIE - MISSION - MONITOR AUDIO MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS - SHACKMAN - STAG - TANNOY VIDEOTONE - WHARFEDALE

WILMSLOW AUDIO

35/39 CHURCH STREET WILMSLOW, CHESHIRE SK9 1AS

Tel. 0625-529599 FOR MAIL ORDER AND EXPORT OF DRIVE UNITS, KITS, ETC.

Tel. 0625-526213 (SWIFT OF WILMSLOW) FOR HI-FI AND COMPLETE SPEAKERS.

THE ZX80 MAGIC BOOK £4.75

20 plus programs including one which allows you to make music with your ZXBO, and games such as Moon Lander, Hammurabi. Dthello. Aiso sections on How it Works, Plotting, Using USR, Converting programs written in other BASICs, and Hardware Notes including circuits for static and dynamic RAM and I/D.

23 + 23 WAY ZX80 EDGE CONNECTOR £3

THE ATOM MAGIC BOOK £5.50

Programs to run on your ATDM computer, including Brickout. Hexpawn. Jthello and Space Battle. Also Programming Tips and Hardware Notes
ASCII CODED KEYBOARD £39 inc. VAT \& P\&P
Brand new, assembled and tested, 60 keys in stepped rows. Auto repeat, s.a.e for details.

ALL PRICES INCLUDE UK DELIVERY \& VAT

TIMEDATA LTD.

57 Swallowdale, Basildon, Essex

TV SOUND TUNER ETI SEP 80 PROJECT

All parts available/send for list ALSO
No. 1 for Teletext Kits TV Spare Parts and Components

Callers welcome at Shop Premises

MANOR SUPPLIES

172 WEST END LANE, LONDON NW6 1SD TELEPHONE: 01-794 8751

Near West Hampstead Jubilee \& British Rail Stations

[^2]

DESIGNER'S NOTEBOOK

EX-OR gates and magnitude comparators feature in this month's edition of Ray Marston's 'Designer's Notebook'

The 4070B quad EX-OR gate is one of the least known but most useful members of the commonly-available family of CMOS quad two-input gate ICs. The device's gates can readily be used as programmable (inverting or non-inverting) pulse amplifiers, phase comparators, free-running or gated astables, or multi-bit magnitude checkers, etc. Pretty good for a chip that costs a mere $20-30$ pence.

Figure 1 shows the outline and pin notations of the 4070B, together with the truth table for each of the EX-OR gates in the package. The most important point to note here is that the output goes high only (EXclusively) if a logic 1 is applied to only one of the inputs (A OR B). The output takes a logic 0 state if identical inputs are applied to both inputs.

1 OF 4GATES

C COPYRIGHT MOD:

Figure 2 shows how individual gates can be used as programmable pulse amplifiers. With the connections shown in Fig. 2a, the circuit functions as an inverting amplifier. In Fig. 2b the amplifier acts in the non-inverting mode, while the Fig. 2c circuit shows the connections for making a switchprogrammable amplifier.

The EX-OR programmable amplifier can be used as the basis of a so-called scrambler system, of the type used on security telephones, etc., by using the basic circuit shown in Fig. 3. Here, in the transmitter, the audio signal is converted to digital form by an A-to-D converter and fed to one input of the EX-OR gate, while the other input is fed from a digital white noise or 'scramble' signal. The output of the EX-OR gate is thus inverted or non-inverted in a random manner and can not readily be deciphered.

Fig. 1 Pin notations, outline and truth table of the 4070B quad two-input EX-

Fig. 2 The EX-OR gate can be used as an a) inverting, b) non-inverting, or c) switch programmable pulse amplifier.

OR gate.

Fig. 3 Basic circuit of an audio (telephone etc) scrambler system.

Both the scrambled message and the scramble signal are sent out (on separate lines) from the transmitter. At the receiver, the two signals are picked up and fed to the two inputs of a second EX-OR gate, where the digital analogue signal is restored (unscrambled) to its original form (the simple principle here is that if both gates are either inverted or non-inverted, the net effect will be an overall non-inversion of the signal). The restored digital signal is then converted back to analogue form by a D-toA converter. Neat.

More Circuits

Figure 4 shows ways of using an EX-OR gate as a digital phase comparator and as a frequency-doubler. The two circuits use the same basic principle of operation, so let's look at the phase comparator first. The comparator is meant to be fed with digital (ideally, square wave) signals that are identical in form and frequency but which may differ in relative phase. A digital signal is available directly at the output of the gate, or a DC signal may be available from an R-C low pass output filter.

From the circuit waveforms, you can see that if both input signals are precisely in phase the two inputs will always be identical and the output will be zero. If, on the other hand, the two signals are not in phase, the output switches high at those points in the waveform where the two inputs are in opposite logic states. This situation occurs twice in each input cycle, so the output signal is frequency-doubled. The pulse width of the output signal and thus the mean DC output levels of both the gate and the low-pass filter are directly proportional to the magnitude of the phase difference between the two input signals. The level is low with a small phase difference, rises to a maximum at 180° difference and then reduces again as the phase difference is shifted from 180° towards 360°

From the above, it is easy to see how the Fig. 4 frequencydoubling circuit works. The digital input signal is fed directly to the ' A ' input terminal of the EX-OR gate but is fed to the ' B ' terminal through the phase-shifting network formed by R-C; the resulting phase-shift implements the frequency-doubler action.

Figure 5 shows how a pair of EX-OR gates can be used to make a 1 kHz astable multivibrator or square wave generator. The circuit operates as a standard CMOS astable, the two gates being made to function as pulse inverters by taking one of their two inputs high.

Figure 6 shows how to modify the above circuit so that it functions as a gated 1 kHz astable circuit. Useful features of this design are that it uses a logic 1 (high) gate signal and its output goes to the logic 0 (zero) state when the astable is gated off.

Fig. 5 A 1 kHz EX-OR astable.

Fig. 6 A gated $1 \mathbf{k H z}$ EX-OR astable.

Fig. 4 An EX-OR gate can be used as both a phase comparator and a frequency doubler. Typical waveforms for the phase comparator circuit are shown on the right.

FEATURE : Designer's Notebook

Magnitude Comparators

We've already seen that the output of an EX-OR gate goes low if its two inputs are identical, or high if the inputs differ. The device can thus be used to compare a pair of digital bits, or a number of gates can be used to compare the magnitudes of a pair of multi-bit digital words. Figure 7 shows how a 4070B can be used to compare two four-bit words and give a high output if the two words are not identical. In Fig. 7a, the outputs of the four EX-OR gates are ORed by one half of a 4072 dual four-input OR gate. In the Fig. 7 b circuit the outputs are ORed by a fourinput diode gate.

Fig. 7 Alternative ways of using a 4070B and a four-input OR gate to make a four-bit two-word comparator. The outputs go high if the two input words are not identical.

C COPYRIGHT MODMAGS LId

Fig. 9 The 4585B and the 4063B are four-bit magnitude comparator ICs.
An opposite action, in which the output goes high if the two words are identical, can be obtained by replacing the 4070B with a 4077 B EX-NOR IC and ANDing the outputs by one half of 4082B, as shown in Fig. 8. The 4077B has the same outline and pin notations as the 4070B.

The two magnitude comparator circuits described above are quite inexpensive and, clearly, are not particularly sophisticated. If a more sophisticated magnitude comparator performance is required, special chips such as the 4063B or 4585B four-bit magnitude comparators can be used. Figure 9 shows the outlines and pin notations of these two CMOS devices. Note that these chips have three outputs, one going high if the two words are identical, one if the ' A ' word is greater' than the ' B ' word, and the remaining output going high if the ' A ' word is less than the ' B ' word. Obviously, only the one output can be high at any given time.

A useful feature of the 4063B and 4585B comparators is that they can readily be cascaded to compare words of any desired 'bit' length. Figure 10, for example, shows the basic connections for making a 12-bit comparator, using three cascaded ICs. When using these comparators, either singly or in cascade, note that the cascading inputs of the least significant comparator are connected as follows: $(A<B)$ and $(A>B)$ are biased low, and $(A=B)$ is biased high.
C) COPYRIGHT MODMAGS LTd

A	B	$O U T$
0	0	1
0	1	0
1	0	0
7	1	1

4077B TRUTH TABLE
Fig. 8 Method of using 4077B EX-NOR gates to make a four-bit two-word comparator that gives a high output if the two input words are identical.

BinOmASOMTE electronics
48 JUNCTION ROAD, ARCHWAY, LONDON N19 5RD - 100 yards from Archway Station \& Bus Routes TELEPHONE: 01-263 9493/01-2639495

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS AND COMPUTERS

MEMORY EXPANSION KIT
Suitable for UK101, Superboard expansion using 2114's each board has 16 K ram capacity kit contains:

* On board power supply
* 4K Eprom expansion
* Fully buffered for easy expansion via 40 pin socket
$\star 8 \mathrm{~K}$ kit $\mathbf{£ 8 9 . 9 5}$
$\star 16 \mathrm{Kkit} \quad \mathbf{£ 1 2 2 . 9 5}$
* Printed Circuit Board $£ \mathbf{~} 29.95$
$\star 40$ pin-40 pin header plug $\quad \mathbf{£ 8 . 5 0}$

[CASES \quad UK101 P.P.I

Available for UK101, Superboard, Nascom Appx. DIM $17^{\prime \prime} \times 15^{\prime \prime}$ $435 \times 384 \mathrm{~mm}$

PRICE $£ 24.50$
Post \& Packing $£ 1.50$

Built \& tested. Interfaces TX80 Printer direct. Can be programmed to operate relays, motors, various other peripherals "CENTRONICS COMPATABLE" Plugs into IC socket. LED binary display fully documented. $\mathbf{f 2 9 . 9 5}$

PRINTERS

-PSON MX80 £349 EPSON TX80 £299
Dot-matrix printer with Pet graphics interface: Centronics parallel and serial: Pet and Apple compatible.

Uilises Z80, 12k level II Basic, Integral Cassette Deck, UHF O:P 16k RAM,
all TRS80 features £289

Please add VAT 15% to all prices. Postage on computers, printers and cassette decks charged at cost, all other items P\&P 30p Place your order using your Access or Barclaycard (Min tel order £5) Trade and export enquiries welcome. credit fac:lities arranged
$\mathbf{£ 1 7 9}$ IN KIT FORM $£ 229$ READY BUILT \& TESTED
£255 COMPLETE IN CASE
4K Expansion (8×2114)
NOW ONLY $£ 18.00$
No extras required

* Free sampler tape
* Full Owerty keyboard
- 8K basic
* Ram expandable to 8 K
on board (4K inc)
* Kansas City tape interface
- NEW MONITOR ALLOWS FULL EDITING \&

CURSOR CONTROL E22.00

CRTBMAROMTE Electronics
 NEW SHOP \& SHOWROOM NOW OPEN

Telephone: 01-263 9493/01-263 9495

Sound Generator and com-
bined parallel in out port kit,
containing P.C.B., AY-3-8910,
6820 PIA. Fully documented
and demo tape. £29.95.
AY-3-8910 $£ 8.50$.

UK101 SOFTWWARE	
	$£$
Space Invaders	6.50
Real Time Clock	3.00
Chequers	3.00
Othello	4.00
Game Pack I	5.00
Game Pack II	5.00
Game Pack III	5.00
Screen Monitor	4.00
Assembler Editor	14.90
$10 x C 12$ Blank Tapes	4.00

CPUs	
280 2.5Meg	7.95
Z80A 4Meg	9.95
6502	6.95
6800	6.50
8080	4.75
9900	25.95

SUPPORT CHIPS		
Z8O CTC	5.95	
Z80A CTC	6.95	
Z80 P10	5.95	
Z80A P10	6.95	
6520	3.95	
6522	6.85	
6532	8.50	
6821	4.25	
6850	3.60	
6852	4.35	
8212	1.95	
8216	1.95	
9224	2.75	
8228	4.95	
8251	$£ 9.75$	
8253	4.50	
8255	11.18	
TMS9901	4.21	
TMS9902		
TMS9904 (74LS362)		

MEMORY	
D.RAMS	$£ p$
4027	2.75
$4050(350 N S)$	2.35
$4060(300 N S)$	2.39
4116	3.95
S.RAMS	
$2102 A$	1.30
$2102 A 2$	1.69
$2112 A$	2.75
$2114 / 4045$	2.75
4035	1.07
$4044-5257$	3.93
6810	
BULK PURCHASE	18.00
8×2114	27.50
8×4116	34.00
16×2114	

2513 (UC)	5.95
- BUFFERS	
81 LS95	1.25
81LS96	1.25
81LS97	1.25
81LS98	1.25
SN74365	. 52
SN74366	52
SN74367	52
SN74368	. 52
8T26	1.50
8 T 28	1.50
8 T95	1.50
8 T 96	$£ 1.50$
$8 \mathrm{T97}$	1.50
8 T 98	1.50

			MC14411	
8 pin	09	25	MM5307	8.75
14 pin	11	35		
16 pin	12	42		
18 pin	16	. 50		
20 pin	. 20	. 62		
22 pin	22	65	AY-5-1013	3.95
24 pin	24	70	AY-3-1015	4.75
28 pin	. 30	80	MM5303	4.75
36 pin	-	99	TMS6011	3.55
40 pin	. 40	1.10		

SEND S.A.E. FOR COMPLETE PRICE LIST OR PHONE 01-263 9493

HM 312
$£ 220$
Y: Bandwidth DC-20MHz (-3dB) - Sensitivity 5 mV 20V/cm $(\pm 3 \%)$ X: Timebase $0.2 \mathrm{~s}-40 \mathrm{~ns} / \mathrm{cm}$ incl. $\times 5 \mathrm{Magn}$. Trig. $3 \mathrm{~Hz}-30 \mathrm{MHz}(4 \mathrm{~mm})$ Dual trace - X-Y Operation - Calibrator . Screen $8 \times 10 \mathrm{~cm} \cdot 2 \mathrm{kV}$

HM 412
f 350
Y: Bandwidth DC-20MHz (-3dB) - Sensitivity $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}(\pm 3 \%)$ X: Timebase $2 \mathrm{~s}-40 \mathrm{~ns} / \mathrm{cm}$ incl. $\times 5$ Magn. - Trig. $\mathrm{DC}-40 \mathrm{MHz}(5 \mathrm{~mm})$ Dual trace - Algebr addition - X-Y Operation - Screen $8 \times 10 \mathrm{~cm}$ Sweep delay - Overscan, Trigger, Delay indications - Trigger filter Z-Modulation - Calibrator - Graticule illumination - 2kV

HM 512

£ 580

Y: Bandwidth DC-50MHz (-3dB) - Sensitivity $5 \mathrm{mV} \cdot 50 \mathrm{~V} / \mathrm{cm}(\pm 3 \%$) X : Timebase 5 s - $20 \mathrm{~ns} / \mathrm{cm}$ incl. $\times 5$ Magn. - Trig. DC-70MHz (5 mm) Dual trace - Algebr addition - X-Y Operation - Screen $8 \times 10 \mathrm{~cm}$ Delay line - Sweep delay - After delay triggering - Trigger filter Single shot + Reset - Overscan, Trigger, Ready, Delay indications var. Hold-off - Z-Modulation - Graticule illumination - 12kV

HM 812
£ 1,458
Y: Bandwidth DC-50MHz (-3dB) - Sensitivity $5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{div}$. $1 \pm 3 \%$) X: Timebase $5 \mathrm{~s}-20 \mathrm{~ns} /$ div. incl. $\times 5 \mathrm{Magn}$. - Trig. DC- $70 \mathrm{MHz}(0.5$ div.) Dual trace analog storage with var. Persistence and Auto-Storage Algebr.addition - X-Y Operation - Screen 8×10 div. $(7.2 \times 9 \mathrm{~cm})$ Delay line - Sweep delay - After delay triggering - Trigger filter Single shot - Overscan, Trigger, Ready, Delay, AS indications var. Hold-off - Z-Modulation - X-Guard circuit - Calibrator - 8.5 kV

GREENWVE

443A Millbrook Road Southamption SO1 DHX All prices include VAT @ 15\% - just add 40p post THE SPECTACULAR 1981 GREENWELD Component Catalogue

Bigger and better than ever!!!

* 60p discount vouchers
* First Class reply paid envelope
* Free Bargain List
* Priority Order Form
* VAT inclusive prices
\star Quantity prices for bulk buyers
* Free Data Sheet

SEND 75p FOR YOUR
COPY NOW!!
BUY A COMPLETE RANGE OF CDMPONENTS AND THESE PACKS WILL HELP YOU AU PACKS SVICAN - SENT BY RETURN OF POST. VAT INCLUSIVE PRICES.
K001 50 V ceramuc plote capacitors. $5 \% .10$ of
each value 22 pF to 1.000 pF , total $210 . \mathbf{5 3 . 8 9}$. each yalue 22 pF to 1.000 pF , total 210 . 53.60 . $\mathbf{E 5 . 5 3 .}$.
$\mathbf{K 0 0 3}$
Polvester capacitors. 10 each of these values 0.01, 0.015, 0.022, 0.033, 0.047 aliogether for $\mathbf{E 5 . 0 7}$.
KDom Mylar crpacitors, min 100 V type 10 each
all values trom 1.000 pF to 10.000 pF Total 130 all values trom 1.000 pF to 10.000 pF Total 130
tor Es.05. tor EA.O5.
$K 007$.
Ele
physical size. 10 eact of these popular values 22 4.7. 10. 22, 47. 100μ F Total 70 for $E 3.60$ K008 Exiended range, as above, also including
220.470 and $1000 \mu \mathrm{~F}$. Total of 100 tor $\mathbf{E 8 . 0 5}$. 220.4 Miniature carbon tolm 5% resistors CR25
$K 021$. sminlar 100 of each value from 10 A 101 M . E12 series Total 610 resistors E5. 15.
K022 Extender range. Total 850 resistors from
iR to 10 M EB. 50 . $K 041$ Zener diodes $400 \mathrm{~mW} 5 \% 8$ YYB8, etc 10 of each value from 2 N to 36 V . E2a series Tola
280 tor $£ 15.37$ NEW K051 LED
3 mm \& 5 mm . with dips. Total 60 LEDS for $\mathbf{E E} .95$
BUZZERS, PDTDRS \& RELAYS
100 n .50 mm dia $\times 20 \mathrm{~mm} 85 \mathrm{p}$.
7202 M
2402 Minature type buzzer.
$22 \times 15 \times 16 \mathrm{~mm}$ Very near 55 .
$22 \times 15 \times 16 \mathrm{~mm}$ Very neat 65p
2450 Minature 6 V DC moto
32 mm dia $\times 25 \mathrm{~mm}$ high. wing high quality type Only $\mathrm{E1}$.
A372 Audible Warning device - solid state circuir output Voltage read $4-18 \mathrm{~V}$ Can also be driven direct 1 rom Thi or CMOS Module size
 E1.50
W892
single 15 A 隹 12 V relay, ideal for car use can with moune contact Coil 25 R in sealed meta W890 DH Reed relay SPCO 25 . Only $\mathrm{Ez.20}$.
:B. Coil 15250 R relay 2×104 contacts. 1 M 12.24 DC . Solidd Encads 60 V ac. but works on

REGULATED PSU PANEL

Exclusive Greenuld design - betrer spe

anything on the market being offered at the price
Parnel $110 \times 82 \times 33 \mathrm{~mm}$ high ponents including bridge rectitier and smioothing capacitor Ready bultand lested - just add a 30
$2 A$ votsage and current supply
SPEC Oulpul voltage 0-28V
Soupul current 20 ma -2
Source Impedance OR1
Open circuit stple $10 \mathrm{~m} V$
Send SAE for full detaiks of the many ways this
useful module can be used together with price list
IN4006 DIDDES
Social purchase of iA rects Russian made
Packed din boxes of 300 . E8.E0 per box. 4 boxes Packed in boxes of $\mathbf{3 0 0}$.
$\mathbf{\varepsilon 3 0 . 0 0} ; 10$ boxes $£ 75.00$

DISC CERAMICS
022 uF , 9 ,
0 05uF 12 V 15 mm dia 100 E1.50; 1000 £12.00. Pack of disc cerames. assorted values TRANSFORMER
Mains primary. 50 V 20 V sec e20.00. Mams p SLIDER POT SCDOP!!!
Made by Piher, types PLAOCP \& PL60C Silly prices tor superb goods"1
PL40CP $-69 \times 16 \times 9.10$
PL40CP - $69 \times 16 \times 9 \mathrm{~mm}$ a 40 mm slide length
$220 \mathrm{R}, 2 \mathrm{k} 2$ or 10 k hn only. Prices (iany mix) $1-24$ $20 \mathrm{p} ; 25-9917 \mathrm{p} ; 100+14 \mathrm{p}$.
$\mathrm{PLLOC}-84 \times 10 \times 7 \mathrm{~mm} .60 \mathrm{~mm}$ sude lengit. 5 k log only Prices 1.24 25p; 25-99 22p; 100

REGULATED PSU PANEL
Exclusive Greenwetd design fully varable 0.28 V
$820 \mathrm{~mA}-2 \mathrm{~A}$ Board contains all campor $20 \mathrm{~mA}-2 \mathrm{~A}$ Board contdins all components
excepl pols and ransformed Only $\mathbf{E 7 . 7 5}$ Suilable except pols and ransformer Oniy $\mathbf{£ 7 . 7 5}$ Sulable
vanstormer and pots $\mathbf{£ 6 . 0 0}$ Send SAE tor tulter detals CALC CHIPS 60p!!!
New full spec, suppled with data yppe

- full funcuon inc memory Onty erip

£1 BARGAIN PACKS

Each pack £1; any 25 packs £22

Happy Memories

4116 200ns £2.95 2114 200ns £3.25
$\mathbf{2 1 1 4} 450$ ns $£ 2.55 \quad 27165$ volt £6.75

2708 450NS
MEMOREX SOFT-SECTORED MINI-DISCS for PET, TRS-80, etc. Supplied in Free Library Case £19.95 per 10

Low Profile I.C. Sockets by Texas
Pins 81416182022242840 Pence 101112161720212837

Memory Upgrade Kits for Apple, 2020, TRS-80, etc from £23.60 please phone

Quantity prices available on request. Government and Educational Orders welcome. Trade accounts opened
ALL PRICES INCLUDE V.A.T. POSTAGE FREE ON ORDERS OVER £10. OTHERWISE ADD 30p

Access and Barclaycard Welcome

HAPPY MEMORIES
 Dept. ETI

Gladestry, Kington
Herefordshire HR5 3NY
Telephone (054422) 618

KNOW YOUR ZX80

With LINSAC products for the Sinclair ZX80

The ZX80 Monitor a cumplete assemblv languoge isting of the $2 \times B 0^{\prime}$'s ak Monitor.
with annotations - Price f 50.00 , ncl Uk postage.
Cassette Soffware

GAMESPACK 3 - Izh +1-Fivut Machine. Four in aline. Zombies
education Pack, - Muits Dilli. Dol Reeogmion, MLsital Notes, Spelling Oult, Day, Findel.
EDUCATION PACK 2 - Giaph Plother, Frume Fociors, Number Boses. Buachotis. S:atiatics
EDUCATION PaCK
UTHLITY PACK

LINSAC

68 Barker Road, Linthorpe,
Middlesbrough, Co.Cleveland TS5 5ES

PCB FOIL PATTERNS

The Noiseless Power Switch PCB (above).

The PCBs for the Differential Temperature Switch (left), the Under Temperature Switch (below left), and the Dark Activated Switch (below) To use the modules with the Noiseless Power Switch, cut the PCBs along the dotted line and use the top half only.

PCB Foil Patterns

Engineer's Stethoscope PCB (left).

Crystal Calibrator (bottom).

BIORHYTHMS ABE BACK！
 With just about everything clee except the hitchen sink

CASIO BQ－IIOD BIOLATOR／ WATCH

 Clectl．Hours．minutes．seconds，am／om Day date
 and year display
Coum．Town separe te alerms． 24 hour system．
\＄ropwen $1 / 10$ second to 24 hours．Not times，or
Ture mennory．Dual tume facility． 24 －hour system．
monthly calender trom 1901 to 2099 canis，\％．Daie calculations An montuly calendar from 1901 to 2099 can be displayed and utilised
iorthythen calculetions．Forscast your physical，emotional and intertiectuab pertomanco poitential．Chart your peak ebb and critical days to avold mistakes．Two silver oxide batteries last approx
year
Oims $1 / 4 \times 2.7 / 16 \times 4 k$ inches．Leatherette wallet
ALL THIS FOR ONLY £14．95

CASIO＇S AMAZING NEW FX－3500P

Struistical regression and integrals．Non－voletile memories and strores．
38 functional（non－volatile）steps． 2 programme storage capability．Unconditional and conditiona jumps． 7 （non－volatile）memories，one independent． 6 in 6 levels．
61 built－in functions．including：Integrals（Simp son＇s rule）．Linear regression．logarithmic regression exponential regression and power regression．
Hyperbolits sexagesimal and co－ordinates con versions． 10 digit mantissa or $10+2$ exponent．Two silver oxide batteries give approximately 1.000 hours continuous use with power－saving automatic cut－otf with data and memory protection．
leatherette waller $\times 51 / 4$ inches．Supplied with
ALL THIS FOR ONLY £22．95

£19．95

CASIO＇S SUPERCALCS ！

白白白 000006

FX－8 100

46 ecientific functions，clock，calendar，elarm countdown alarm，interval elarm timar， $1 / 100$ second stopwatch with lep timing． Clock．Hours，minutes seconds，am／pm
Calonder．Pre－programmed to 1999 ．Day，date，month and year．
Alwm．24－hour alarm with hourly chimes
Countiown alarm．Can be set up to 10 hours．or Stopwertch．Measuring net hours，or place tumes in units of 1,100 necond tirst and second Celcutetor， 8 digits or $8+25$ second to 10 hours． access memory．Trigs．logs，hyperbolics，standard deviations．co－ordinates and sexagesimal conversions， fractions．\％，cube roots．pi，sign change．register Pxchange．etc tinuous）．Dims． $1 / 4 \times 23 / 4 \times 51 / 4$ bation approx． 1 year（con ONLY £24．95．

CASIOTONE KEYBOARDS

The revolutionary CT－201
ONLY £245（in e285）
A remarkabie new concept in electronic keyboard instruments using a totaliy new technology． Pitch．timbre and harmorics of 29 insirumenis have been measured．digitalised and stored in electronic chip memory for faithful reproduction．A 4 －sound memory function alfows switching This polyphonic instrument can play
chords of up to 8 notes on its 29 white and 20 black keys spanning 4 octaves．Vibrato and tone switches．Foot volume and sustain pedal options Echo jacks． $3 \times 331 / 2 \times 91 / 4$ inches． Werght 15 lb ．Black or woodgrain finish．AC only．

M－10 Piano，organ，violin，flute． $21 / 2$ octaves vices．iRRP $£ 325$ ）$£ 275$

CASIO＇S BEST SELLING WATCHES

AAB1 Chrome plated £29．95 AA81G Gold plated $£ 49.95$

With around 40 functions LCD ANALOGUE／DIGITAL Alarm Chronograph with countdown
Analogus．Independent hours and minutes with synchronous digital seconds．Dual time ability． Dightal．Hours，minutes，seconds，day and date． Stopwmech． $1 / 100$ second to 12 hours．Net lap and istand 2 nd place．Star／stop and 10 minute Sipnals．
Aarm．For 30 seconds with carousel display． Coumtdown Almm．Normal and net times to hour with amazing＂Star Burst＂flashing display
Time
Signal．Hall－hourly and hourly chimes Tone control．Lithium battery．Light．Water resistant case． 8.65 mm thick．Mineral glass．
AA82 Stainless Steel $£ 39.95$ AA83 Dress watch，s／s £44．95

12 MELODY ALARM Countdown alarm CHRONOGRAPHS Date memories

Hours，minutes，seconds，am－pm， 12 or 24 hour Day，date and month auto calendar
Hownty 7 melodies，one for each day of the week Howity ime aigna．With＂BIG Ben＂type tune or＂Trinklied＇to be played．
Birtholey and Christmes Momory．
Countedown mlam．From 1 second to 1 hour
After zero count continues positively
swopwich． $1 / 10$ second to 1 hour．Net，lap
st and 2nd place．
Picturesque moving display of notes played
－12 resin $/ \mathrm{s}$ tim M－1200 alt s / s ． thick．

100 METRE WATER RESISTANT

Alarm ctronogrephs with countofown
Amazing 5 －year tithium battery life．Hours． Amazing 5－year ithium battery life．Hours， 12 or 24 hour．Time is always visible regardless of display mode．
Stopwwtch． $1 / 100$ second to 1 hour Net tap． and 1 st and 2 nd．Start／stop signal． 10 －minute signal．
Almorm．Sounds for 30 seconds．
Countrdown Alerm．Normal and net times to 12 hours．Start／stop and 10 －minute signals．
$\mathbf{W}-100$ ．All resin $\mathbf{W}-140 \mathrm{~s}$ All chimes． （not illustrated） s / s case／resin strap f 29.95
A250．As above but with standard water－resistant case $\mathbb{2 4 . 9 5}$

S220．As above but with dual tune in lieu of alarms and chimes $£ 25.00$

SEIKO

DZA 038 CALCULATOR WATCH WITH 5 ALARMS AND STOPWATCH
Hours．minutes．seconds．dey（112－
Calendar pro－programmed to 2020
and
Stopwatch 1,10 second to 12 hours
Stopwatch 1,10 second to 12 hours．
Calculator， 4 functions Audible contirmation．
Non－volatile memory capability．

OZA038
your ACCESS or BARCLAYCARD
number to：

The larger Catalogue that means
free postage IN U.K.

ADDITIONAL

 DISCOUNTS KEEN PRICES GUARANTEED SATISFACTION GOOD STOCKSWe pay postage

Semi-Conductors • I.C.s - Optodevices \bullet Rs and Cs in great variety - Pots - Switches • Knobs. Accessories •Tools • Materials • Connectors

electrovalue

ELECTROVALUE LTD. (Dept. ET3), 28 St. Jude's Road, Englefield Green. Egham. Serrey TW2O DHB

Telephone: (STD 0784) (London 87) 33603. Telex: 264475

tramsistors									
	10p	${ }^{\text {BC2237 }}$	12p	${ }^{\text {BFIPA }}$	12p	8f595	30p	2 m 3055	45p
${ }_{\text {BCL }} 108$	10p	${ }^{\text {c }} 3337$	15p	${ }^{8 F 195}$	12p	berad	25p	2×3583	ction
BC109	109	BC547	10p	${ }^{\text {BFF }} 97$	14 p	8FY90	50p	2к3702	19
BCL258	${ }^{8}$	${ }^{80238}$	40 p	${ }^{\text {B7245 }}$	$3{ }^{30}$	8UWB1A	2009	2K3705	14
BC149	10p	B0239	$4{ }^{\text {P }}$	BF255A	40 P	mujz340at	50p	2 k 3710	15
BC154	12p	803714	300	BF324	30 p	MPF131	25	21406	15
BC159	9 p	B0x94	65p	BF469	65p	mpl132	25p	2M4123	14
BC171	10p	80792	1200	Bf495	20 p	MPU131	25p	2n4:23	12
limear ics									
ca3012	45p	MC1349	90p	тиз38	40p	toada 70			
${ }^{\text {c/33080 }}$	${ }^{50 p}$	MC1350	90p	tBalzos	60p	toaldio	150p	SPECIAL	FFER
Lm324	60p	m1558	1000	твк651	$100 p$	tdal170	${ }^{75 p}$	AY.5.35	orm
LMM74	15p	Ne535	50	tersbib	$125 p$	TOA1390	${ }^{200}$	CHIP ${ }^{\text {Im }}$	1212.
L141458	40 p	NE555	22p	TB1800	70p	T0A2524	150	£2.75p	imitet
1 Im3900	60 p	sallion		tBubios	809	T0R2541	150	quanting.	
MC1307	75p	Sas580	100p	teased	150p	toA2560	150p		
MC1310	100p	Sas590	1000	tciazos	900	toas5 1	175p		
$\begin{aligned} & \text { DICITAL ICs } \\ & \text { OCAITO } \\ & \text { EmM402 } \\ & \text { 2708 } \end{aligned}$									
	250			250p	Sk7490			N74284	2500
				200 p	SM17418)			174285	
	350	21		65p	SN74221	100			
				Send for listr of digiarics					
SPECMALOFER									
LOW PROFILE IC SOCKETS					35-amp 50-volt Stud Diodes, c / w mounting k 1 t				
$\begin{aligned} & 14 \text { pin }-12 \\ & 16 \text { pin }=10 \\ & 22 \mathrm{pin}=7 \\ & 24 \mathrm{pin}=6 \\ & 40 \mathrm{pin}=3 \end{aligned}$		$\cdots .100$ (130 £10)							
		240 -volt/ 12 -volt 6VA PC Mount Trans-							
		Semi-conductor Transistors/SCR (no lejects)							
		100	E10)		over 1 each. 1	items for $\mathbf{£ 2}$		
For larger quantities please phone for prices									
All prices include VAT. Please add 30p P\&P SAE tor list									
MAIL ORDER DEPT. BOWNESS MILL, SHAWCLOUGH RD WATERFOOT, ROSSENDALE, LANCS TEL: ROSSENDALE 5556						RETAIL SHOP (Open 6 days) 6A TODD ST MANCHESTER (next to Vicioria Stin TEL: 061-8341185			

ETIPRINTS offer you the easy way to produce high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects.

ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

			,		
040A	ETI 80 VCO/VCLFO	Feb 80		Speed Control DTM Switching Board	
040B	ETI 80 PSU	Feb 80		RIAA Preamp	Sep 80
	Tuning Fork Hi-Lo Filter		047C	ETI 80 Envelope Shaper	
	Coin Toss			TV Sound	
				Survival	
041A	Audiophile Driver Amp	Mar 80	048A		Oct 80
	VCA			Sustain/Fuzz Box	
	Signal Tracer			Flash Trigger	
	Heater Controller Main Board Electromyogram			FM Radio Control Receiver: (Top side)	
				(Bottom side)	
041B	ETI 80 VCM	Mar 80		FM Radio Control	
	Heater Controller Sensor			Transmitter	
046A	ETI 80 Dual VCA 100 W Power Amplifier	Aug 80	048B	Vocoder Slew Rate Control Vocoder Output Amp Vocoder Input Amp	Oct 80
046B	Capacitance Meter	Aug 80		Vocoder PSU	
	US Alarm			Vocoder LED PPM Display	
	Logic Tester		048C	Cassette Interface	Oct 80
	100 W Power Amp			ETI 80 Monitor Amp	
047A	Digital Test Meter	Sep 80	049	AF Generator	Nov 80
				Multi-Option Board	
047B	Vocoder Internal Excitation	Sep 80		Space Invasion PSU	

BUYLINES

\qquad
Sheets for Sep 79, Dec 79, Jan 80 and April - July 80 are temporarily out of stock. Earlier ETIPRINT sheets are available.

Send a cheque for PO (payable to ETI) for $£ 1.20$ per sheet with details of the project for which you require an ETIPRINT, and the month and year of publication to:

ETIPRINTS,
ETI,
145 Charing Cross Road, London WC2H OEE.

MPA 200 100 WATT ((ms into 8R) MIXER/AMPLIFIER

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplifier. It features an adaptab e nou: mixer which accepts a wide range of sources such as a microphone, guitar, etc. There are wide range tone controis and a master volume control. Mechanically the MPA 200 is simplitity ise:
with minimal wiring needed making construction very straightforward.

Panel size 19.0" $\times 3.5^{\prime \prime}$. Depth 7.3"
COMPLETE KIT ONLY
£49.90 +VAT!
MATCHES THE CHROMATHEQUE 5000 PERFECTLY!

This versatile system teatured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channsi Cor al it one lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or frov: $2 \mathrm{a}^{2}$ al olithtit or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500 W and as the kit is a single board design $\%$. mgis mint and construction very straightforward.

Kit includes fully finished metalwork, fibreglass PCB controls. wire. etc. - Complete right down to the last nut and bolt

COMPLETE KIT

 ONLY$£ 49.50$ + VAT!

POWERIRAM

Panel size 19.0" $\times 3.5^{\prime \prime}$. Depth 7.3'

DE LUXE EASY TO BUILD LINSLEY HOOD
75W STEREO AMPLIFIER $£ 85.00$ + VAT
This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon crcuit boards interconnected with gold plated contacts resulting in minimal wiring and Record Review and features include rumble filter, variable scratch filter versaule tone controls and tape monitoring while distortion is less than 001%

SYNTHESIZER KITS ON PAGE 9. MORE KITS AND ORDERING INFORMATION ON INSIDE FRONT COVER.

T20 + 20 20W STEREO AMPLIFIER £33.10 + VAT
This kıt, based upon a design published in Practical Wireless, uses a single printed carc.. board and offers at very low cost, ease of construction and all the normal faciltites fown on quality amplifiers. A 30 watt version of this $\mathrm{kit}(\mathrm{T} 30+30)$ is also avallable ser $£ 38.40$ +VAT MATCHING TUNERS - See our FREECATALOG

Above 2 kits are supplied with fully finished metalwork. ready assembled high quality teak veneer cabinet. cable. nuts, bolts. etc and fult instructions - in fact everything!

BLACK
 WOLS

MUSIC EFFECTS DEVICE - AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL!
The BLACK HOLE designed by Tim Orr, is a powertul new musical effects device for processing both natural and electronic instruments offering genuine VIBRATO (pitch modulation) and a CHORUS mode which gives a spacey feel to the sound achieved by delaying the input signal and mixing it back with the onginal Notches (HOLES) introduced in the frequency response, move up and down as the time delay is modulated by the chorus sweep generator An optional double chorus mode allows exciting antuphase eftects to be added The device is floor standing with foot switch controls. LED effect selection indicators, has variable sensitivity, has lugh signal noise ratio obtained by an audio compander and is mains powered - no batteries to changel Like all ou kits everything is provided including a highly superior, rugged steel, beautifutly finished enclosure
COMPLETE KIT ONLY: 49 + VAT (single delay line system)
De Luxe version (dual delay line system) also available for $\mathbf{£ 5 9 . 8 0}+$ VAT
Cabinet size $10 . \mathbf{o}^{\prime \prime} \times 8.5^{\prime \prime} \times 2.5^{\prime \prime}$ (rear) $1 . \mathbf{8}^{\prime \prime \prime}$ (front)

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices and a brief description. The kits, modules and specialized RF components - such as TOKO coils, filters etc. are covered in the general price list - so send now for a free copy (with an SAE please). Part 4 of the catalogue is due out now (incorporating a revised version of pt.1). LINEARICI:NUMERIC LISTINGS

ARE YOU INTERESTED IN ELECTRONICS?

THEN YOU SHOULD KNOW ABOUT VERO.
We manufacture a wide range of products for the electronics industry and can make available to you a selection suitable for project work. We offer you a large choice of Veroboard and circuit board accessories, including the latest solderless breadboard - VEROBLOC, which enables you to use those
valuable components time and time again Use a piece
feroboard to save a successfully completed circuit and choose a box or instrument case from our vast range to give your project that professional touch

For further details and a copy of the brochure please fill in the coupon below.
Vero Electronics Ltd.
Retail Department.
Industrial Estate,
Chandler's Ford.
Hampshire. SO5 3ZR.
Tel. (042 15) 62829

Vero Hobbyist Brochure.
I enclose 40p. for package and postage

Name

\qquad

Addres

GLETRONIC IGNITION

 SAVES PAROLMore and more new cars use elctronic ignition to give the best pertormance and economy. Bring YOUR CAR up to top specitication by fiting the latest TOTAL ENERGY
DISCHARGE electronic system
TOTAL ENERGY DISCHARGE gives all the advantages of the best capacitive discharge ignitions:

* Peak Performance-higher output voltage
* Peak Performance - higher output voltage.
* Better Starting-full spark power even with low battery
* Accurate Timing-prevents contact wear without 'contactless' errors
\star Smooth Performance-immune to contact bounce effects.

PLUS

SUPER HIGH POWER SPARK- $31 / 2$ times the energy of ordinary C.D. systems
OPTIMUM SPARK DURATION-to get the very best performance and economy with today s lean carburettor settings.
DESIGNED IN RELIABILITY-with the 'utimate insurance' of a changeover switch to revert instantly to standard ignition.

TECHNICAL DETAILS

HIGH EFFICIENCY INYERTER. A high-power high efficiency, regulated inverter provides a 400 -volt energy source-powerful enough to store twice the energy of other designs and regulated to provide full output even with the battery down to 4 volts.
SUPERB DISCHARGE CIRCUIT. A brand new technique prevents energy being reflected back to the storage capacitor. giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems. generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition deray mamtains the correct outper polarity. thereby preventing unnecessary stress on the HT. system.
SOPHISTICATED TRIGGER CIRCUIT. This circuit removes all unwanted signais caused by contact volt drop. contact shuffle contact bounce, and external transienis which, in many designs, can cause timing errors or damaging un-timed sparks Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean

IN MONEY-SAVING KIT FORM at $£ 14.85$ Inc. V.A.T.
All you need is a small soldering iron and a few basic toois - everything else is supplied with easy-to-follow instructions.

> FITS ALL $6 / 12$-volt NEGATIVE EARTH cars ELECTRONIZE DESIGN
> 2 Hillside Rowd, Four Osks
> Surton Coldfield, West Midiands, B74 4DQ

Phone 021-308 5877

LOW-COST, RUGGED TEMPERATURE CONTROL	
	aucios ohs fusts
GA 240V RANCO THERMOSTAT	
RAMCOTHERALIL CUTVUT	\%
Burone Each of Above for cas	
LIGHT DEPENDENT RESISTORS in plastic housing with window, $18^{\prime \prime}$ heavy duty lead. Two types - A similar to ORP61. B Similar to ORP12. You normally pay well over double for Resistor alone. Either type $\mathbf{3 0 p}$ each or $\mathbf{£ 2 . 3 5}$ double for Resisto for 10 (any mix)	
DOUBLE ENDED SMITHS ELOWERS 2 output apertures, $53 \times 103 \mathrm{~mm}$. Large flange. Only	
sulain stanin relies Leeve 10 for 30,	
	cirone boov ac
L.E.M. SERVICES 239 RUGBY RDAO LEAMINGTON SPA CY32 6OY	ADD 50p P\&P ORDERS OVE

CALCULATORS
 Pnce includes V A.T., Post and Packing

ANY CASIO, SHARP OR TEXAS CALCULATOR SENT
FOR EI LESS THAN ANY OTHER ADVERTISED FOR EI LESS THAN ANY OTHER ADVERTISED
PRICEINTHIS MAGAZINE (Subject to Stock)

CASIO

FX501P PROGRAMMABLE	E49.85
FX502P PROGRAMMABLE	E69.95
FAI Cassette interface	E19.95
EX501P with FA 1	E65.95
FX502P with FA 1	E85.95
FX 688 digit compact scientific	E18.95
FX 5108 digit scientific best-seller	¢18.05
FX 7100 credit card scientific clock/alarm	E23.95
FX 81008 digit scientific clock / timer/ alarm. etc.	¢23.85
	$\begin{aligned} & £ 21.95 \\ & £ 18.95 \end{aligned}$
- INEA FX 6100 similar to 8100 less calendar	£18.95 $€ 18.95$
SHARP	
POCKET COMPUTER PC 1211 with interface	¢106.95
EL 5101 Programme 16 digit	¢41.05
EL 5100 PROGRAMMABLE 24 digit	¢51.95
TEXAS INSTRUMENTS	
-TI 51-111 PROGRAMMABLE 32 step	C28.95
TI 57 PROGRAMMABLE 50 step	¢27.95
${ }^{\text {-Ti }} 58$ PROGRAMMABLE 480 step	c63.95
'TI 58C as above with constant memory and programme	¢76.95
-TI 59 PROGRAMMABLE 960 step	¢176.95
PC 100C printer unit for T/ 58/58C/59	¢173.85
${ }^{\text {TII PROGRAMMER }}$	c51.85

FULL RANGE OF CASIO. SHARP AND TEXAS CALCULATORS AVAILABLE SEND P.O.. CHEQUE, ACCESS NUMBER OR ADD 75P FOR C.O.D. (up to E100) CALCULATOR SALES \& SERVICE

FREEPOST, REDDITCH, WORCS, B97 4BR

ICRODIGITALTルAIDIOOXDIWAMICRODIG NOU thoucht Me

The HP85 is designed for personal use in business and industry, by professionals such as engineers, scientists, accountants and investment analysts.
The keyboard, video display, printer, cartridge type unit and operating system are all built into one desktop unit.

Nett	vat	Total
${ }^{1750.00}$	262.50	2012.50
25.00	${ }_{3.75}^{23.7}$	181.70 28.75

* HP85A Computer with 16 K RAM $\quad 1750.00 \quad 262.50 \quad 2012.50$

 ROMs$\underset{\star}{\star} \begin{aligned} & \text { ROMs } \\ & \\ & \text { Mass Storag }\end{aligned}$

* Mass Storage Each
* Matrix
$\left.\begin{array}{l}\text { * Assember } \\ \text { inpulioutput }\end{array}\right\}$

${ }^{\star}$ G GPIO (Parallel)
\star в.c.D.
PIotter-requires $\mathrm{HP} \cdot \mathrm{IB}$ interface and PIotter/PRinter ROM
$\star 7225 A$ Plotter

$\begin{array}{llllllll}\star \\ \text { Personality Module for HP85 } & & 1208.00 & 181.20 & 1389.20\end{array}$ Disk Units-require HP•IB interface and Mass Storage ${ }^{61.80}$ \star Dual Master Mini Floppys $(540 \mathrm{~K})$ and Mass Storage FOM | \star | | | |
| :--- | :--- | :--- | :--- |
| \star | Dual Master Mini Floppys (540 K) | 1350.00 | 202.50 |
| 1155 | | | |

 $\begin{array}{llll}\star \text { S } & 1050 \\ \star & \text { Single Add-On (270K) } & & 810.00 \\ & 121.50 \\ & 700.00 & 105.00\end{array}$
Application Packs
\star Basic Training \star General Stats \star Finance \star Math $\begin{gathered}\text { Circuit } \\ \text { Analysis } \\ \text { Games }\end{gathered}$
Anaysis Games Linear
Editing * Wave Form Analysis \star Basit Stat and Data
\star Regression Analysis

* Visicalc Plus
$\begin{array}{lll}108.00 & 16.20 & 124.20\end{array}$ fide commercial and government
For further details ask and we will send you a 24 page colour brochure and full price list.

MICRODIGITAL

Retail Premises at:
Rerail Premise ot:
25 BRUNSWICK STREET, LIVERPOOL 12 OPJ.
Tel:- 051 . 227 2535/6/7

Mail Orders to MICRODIGTAL LIMITED FREEPOST
(No stamp required) Liverpool 12 2AB

CRODIGZALTEATOOXDIVVMICRODIG

BOSS INDUSTRIAL MOULDINGS ITD
2 Herne Hill Road, London SE24 OAU. England Tel: 01-7372383

Telex: 919693

Type No./Name	Colour	Oty.	Unit Price	Total		

Name

Company

Telephone Number ETV/3.
Please make cheque/P.O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for cheque clearance and order processing

ETI MARCH 1981

loin the Protessionals...

Crimson modular audio amplifiers feature: \$Low values of transient and steadystate distortions 4 Envelope distortion (below 500 Hz) less than 0.05% Len-board electronic protection 4 P. C. B. pin and edge connector termination * Full range of complimentary components, i.e. P.S. U. 's, hearsiriks etc. available from Crimson.

1 Cl

CP3000
 XO 3

The Crimson range of amplifier modules are built to very high standards and have earned an enviable reputation in every field to which they have been applied. The boards come ready built and tested The power amplifier modula can be used to advantage where high quality signal amplification is required The power amplifier modules range from 6OWRMS to 310 WRMS with up to twice this amount in bridge mode. All feature substantial heatsink brackets which can be bolted to any available heatsink or the catered for by one of the three Crimson toroidal power supplies. The Pre-amplifier module (CPR1) basicaliy a phono amptifier with won toroidal power supplies. The Pre-amplitier module (CPR1) is board is auxiliary amplification for tape and tuner inpurs incorporating R.i.A.A. equalisation. Also on gives the required boost for low output moving coil type cartidges. Exdernal compo available and potentiometers for volume and balance, switches for signal routing and a regulated 15 V required are source (REG1). Complimenting this range, are the electronic crossover modules XO2/X03 which, powe special muting board (MUI) can be incorporated in all types of active speaker systems. umerous apolications a amplifier of 40 - 125 WRMS / channel can be built using our Hardware kits (see Hobby Flectronics rewe August 1980). Alternatively, Mono or Stereo slave amps of up to 500WRMS can be built into proprietory ight cases, while other uses include active loudspeaker systems such as designed by R.I. Harcourt Users A Alice Users: Application Manual available at $\mathbf{5 0 . 5 0}$

SPECIFICATIONS

ETI 80 MODULAR SYNTHESISER

ALL MODULES INCLUDING KEYBOARD CONTROLLER NOW AVAILABLE. SEPARATE CONSTRUCTION NOTES AVAILABLE FOR KITS NOT PREVIOUSLY PUBLISHED BY ETI.

THE KEYBOARD CONTROLLER

IS MICROPROCESSOR COMPATIBLE AND THE SYNTHESISER MAY BE EXPANDED FOR POLYPHONIC CONTROL AND MUCH, MUCH MORE.

SEND FOR CURRENT PRICE LIST WHICH INCLUDES INFORMATION ON EXPANSION TOGETHER WITH PRICES FOR A WIDE RANGE OF SPECIALISED I.C.S AND THE ELUSIVE 081 TEMPERATURE COMPEN. SATING RESISTOR.

DIGISOUND LIMITED,
13 THE BROOKLANDS. WREA GREEN PRESTON. LANCS. PR4 2NQ
Tel. : 0772683138 . (MAIL ORDER ONLY)

The SENSATIONAL
CROFTON Offer

9" metal cased monitors at the lowest price ever $£ 48.50$ plus VAT and P\&P.
P4 phosphor standard. P31 and P39 available at an extra $£ 11.50$ total.

Ask for Crofton Mail Order Catalogue.

Sony colour camera type 2010P only $£ 375.00$ total including VAT and P \& P.
$12 v$ operation IV composite video out. adapter box and modulator available for £25.00 total when purchased with camera. Normally $£ 69.50$.

All major credit cards accepted

CROFTON ELECTRONICS LIMITED

35 Grosvenor Road, Twickenham, Middx TW1 4AD. Tel: 01-891 1923/1513

AS RECOMMENDED BY COMPUTING TODAY - THE CENTRONICS 'MICRO-PRINTER'

Ask most people what they would like as their first peripheral and the chances are they will say "Printer". Here is an attractive electrostatic printer from the famous firm of Centronics. Capable of printing in three sizes of typeface it is easily attached to your machine by way of the parallel interface. The logic is fully TTL compatible and STROBE, Acknowledge and Busy lines are provided to make life easy
Cost of this wonderful peripheral is a mere $£ 195.00$ + VAT The printer comes complete with documentation connector and cleaning paper as well as a roll of the printing paper." (extract from COMPUTING TODAY).

Ex-STOCK from HENRY'S

CENTRONICS
Ideal for PETS-TANDY-NASCOM's

Specification

- 150 lines per minute
- Selectable 204080 columns
- $120 \mathrm{~m} / \mathrm{m}$ aluminium - Finish paper unaffected
by Heat, Light or Humidity
- Full character ASC II set.
- Paper Feed, 220-240AC mains
- Paper Feed, 220-24
- Paper Advance - Empty Controls.
- Size $10 \frac{1}{2} \times 13 \frac{1}{2} \times 41^{\prime \prime}$ " Weight 101 bs

Ideal for Home or Small Business use.
LIMITED QUANTITY DON'T DELAY
Brand new boxed fully
guaranteed list price of
this machine. $\mathbf{f} 459.95$ inc. VAT.

OUR PRICE
$\pm 195_{\text {inc. VAT }}^{.00}$
POST PAID

Complete with Full documentation connector \& Printing Paper -

HALF PRICE OFFER

Just Plug in and it's ready to go! AS RECOMMENDED BY "COMPUTING TODAY" MARCH/MAY 1980

Your London \& National Nascom Distributor
Export Orders deduct VAT, but add 5\% carriage Official Export E Educational Orders welcome Our Telex 262284 Mono Ref. 1400 Transonics

COMPUTER SEND BROCHURE FREE

Computer Kit Division

404 Edgwere Road, London, W2, England 01-402 6822

PC WHOLESALE

1 THORNHILL, RDMSEY RDAD WHITEPARISH, SALISBURY SP5 2SD

All good new full spec - prices are for minimum 100 any one type. Minimum Order $£ 10+50 p$ post. No VAT. SAE for full list

GRAND COMPUTER SALE: Ex-equipment memory boards. $16 \mathrm{k} \times 8$. Uses 4 k dynamic RAMS. Superb boards, easily interfaced to Nascom., etc. Circuit diagram and Nascom. circuit plans included, $£ 25+£ 1$ carriage each. Or with 16 k of 4116 s (200 ns)., $£ 30$. Also brand new 2114 static RAMS (200ns), $£ 3$ for two: $£ 40$ for 16 k (carr. 40p). Two I.B.M. format floppies, 256 k bytes per drive (standard format). With comprehensive manuals: $£ 125$ each or $£ 200$ the pair. Send s.a.e. for details. Payment with orders to - J. Wright. 27 Broomhill Drive, Glasgow, G 11 7AB.
VERORACKS, 19 inch by $51 / 4$ inches, 20 off 40 -way double-sided connectors with wire wrap pins, 20 card slides, and lockable front panel 12 by 4.5 inches, also removable P.S.U. 110/250 input on/off switch, O.P. +5 v . and -10 volts $@ 5$ amps. P.S.U. and Verorack, £25. Post £5 (U.K.). Please add V.A.T. - 'Q" Services, 29 Lawford Crescent, Yateley 871048 , Camberley, Surrey. Units are as new and boxed.

BARGAINS FOR THE ELEC.

 TRONIC HANDYMAN BRANDED L.E.D. DIGITAL ALARM CLOCKS

Service
Returned to Servic
Department within
guarantee period
With alarm repeat SRSP of $£ 1700$ Offered
£3.95, inc VAT or 3 for $\mathbf{£ 9 . 9 5}$, inc VAT
With luxury lamp and repeat alarm S P S P
$£ 3100$ Offered at $£ 7.95$ inc VAT each, or 3 for
$£ 19.95$ inc VAT E 19.95 inc VAT
These will be sold as received from our customers with Without g
K only
Discounts available on large bulk purchase
PRESCOTT CLOCK \& WATCH CO. LTD.
PRESCOTT HOUSE, HUMBER ROAD, LONDON NW2 6ER
ETI MARCH 1981

TELEPHONE MONITOR, connects between telephone line and cassette recorder Automatically records all telephone use. Circuit and plans $£ 2$. - S. D. Cross, 24 Thorney Road, Streetly, Sutton Coldfield, West Midlands

```
SHARP POCKET COMPUTERSLOWEST U.K. PRICE!! PC 1211 POCKET COMPUTER, complete with CE 121 casselt inerface E 105.95
\(\mathbf{£ 5 9 . 9 5}\) PRINTER CASSETTE interface, CE122 £59.95 Cassente Interface
PC1211 complete with CE 122 Printer/Cassette interface E152.00
All prices include \(V A T\) and U.K. delivery ELKAN ELECTRONICS, 28 Bury Now Rowd, Prestwich, Manchapter, M25 BLD
```


RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME FULL RANGE AVAILABLE. S.A.E. FOR LISTS E1.45 for Booklet. "Nickel Cadmium Power plus Catalogue. "New range of sealed lead now available* Write or call: Sandwell Plant Lid., 2 Union Drive, BOLDMERE, SUTTON COLDFIELD. WEST MIDLANDS. O21-3549764.

ZX80 'LIVE ACTION' SOFTWARE. TOP quality games at unbeatable prices: BREAKOUT (1 K) £4; SPACE INTRUDERS (2K) £4. Also MOVIES (2 K plus), 7×8 character pictures displayed in rapid rotation giving animation effect $£ 3$ - No hardware modification whatsoever. Written in machine code without loss of T.V. synchronisation. SOUNDS INCREDIBLE? - YES, but it's true Reviews say the $\mathrm{ZX80}$ can't be used for continuous live action ARCADE type games - WELL IT CAN - WE'VE DONE IT SEEING IS BELIEVING - Send cheques or P.O.'s for program listing (or S. A.E. for list of all software) to: MACRONICS (K. Macdonald), 26 Spiers Close, Knowle, Solihull, B93 9ES
B.U.F.O.R.I.N. BUFORIN UFO Research Network urgently need Investigators in all parts of Britain. For more details, send $10 p$ and s.a.e. to - The BUFORIN, Upper Grange Farm, Old Dalby, Melton Mowbray, Leicestershire.

TELEPHONE ANSWERING MACHINES

 from $£ 75$; flipcaller $£ 25$, watches from $£ 5.75$; car radio, cassettes, boosters. speakers, walkie-talkies. S.A.E. for details. H.P. Supplies, Dept. ETI, 162 London Road, Wembley, Middx.
PANELS

Give your project the professional fimish it deserves. Blend in with existing equipment with these tough 2 mm thick anodised aluminum fascia panels, mati black or brushed silver finish Stock sizes: $44 \times 16 \mathrm{~cm} £ 4.75,35 \times 15 \mathrm{~cm}$ $\mathbf{£ 4 . 2 5}, 3 n \times 12 \mathrm{~cm} \mathbf{£ 3 . 9 0}$. Other sizes available in cuantity to order. Prices incl. c.w o.
PROJECT FINISHERS
P.O. Box 2, Buntingford, Herts.

CITIZEN BAND RADIO and accessories Phone 052743169 or s.a.e. with enquiries to P.O. Box 13. Redditch B98 8NS.

GHAPP MZ-๕ฺ

and PC1211 Computers at LOWEST PRICES!!
With lots of FREE PROGRAMS
KING PIN COMPUTERS
PO Box 40, Stevenage, Herts.
SGA ZNF
Tel. Stev. (0438) 59677, up to 9 p.m

CB SPARES

Original transistors and integrated circuits for all types of $40 / 120 / 24 \mathrm{C}$, etc., channel rigs.

McLAUGHLIN ELECTRONICS

44 Carlisle Road Londonderry Northern Ireland BT48 6JW Tel: 050465002

FM MINI-TRANSMITTER, tunable 88 108 MHz , Rng 150 yds. (Low Chance of Unwanted Detection). Unlicensable. Kit £2.90. - P. Faherty, 37 College Dr., Ruislip. Middlesex.

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors Hardware and accessories
Selected range of popular components Full range of HE printed circuit boards normally ex.stock same day despatch at competitive prices
PC Boards to individual designs Resist-coated epoxy glass laminate for the d'y man with full processing instructions (no unusual chemicals requred)
Alfac range of etch resist transters and other drawing materials for p c boards
Send 15 p for catalogue.
RAMAR CONSTRUCTOR SERVICES
MASDNE ROAD
STRATFORD-ON-AVON
WARWICKS. Tel, 4875

NASCOM OWNERS - 16 gauge Aluminium Console, will support portable T.V. or monitor Enough space inside for 3A PSU. CPU Board and two expansion boards. Size $14^{\prime \prime} \times 20^{\prime \prime} \times 3^{\prime \prime}$ with sloping front for keyboard. Price includes keyboard cut-out, rubber feet, carry handle. Send cheques or P. 0.5 for $£ 25.30$ to - Cyber Electronics Co. Ltd., Pavement Square, Addiscombe, Croydon CRO 6RD. Tel. 01-6510388, any time.

BURGLAR ALARM Component Catalogue out now. Ring: C.W.A.S 0274682674

PARAPHYSICS JOURNAL. Russian/ Czech translations. Autogenics (self-training) improves vitality. Psychotronic Generators, UFOs, contacting extraterrestrials, Kirklianography telelinesis, levitation, gravity lasers. S A.E $4 \times 9^{\prime \prime}$: Paralab, Downton, Wilts.
PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now greatly improved and very much faster. Aerosol cans with full instructions. $£ 2.25$. Developer 35 p. Ferric Chloride 55p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-glass Board approx. 1 mm thick $£ 1.75 \mathrm{sq} . \mathrm{ft}$. Post/ packing 60p. White House Electronics, Castle Drive, Praa Sands, Penzance. Cornwall.

C.B.S.

If you are in Business and considering an application of a Minicomputer or Microprocessor based System and are a little confused why not attend one of our courses
A Microcomputer Application - BUSINESS B Microcomputer Application-

ENGINEERING AND CONTROL
Programming in BASIC - INTRODUC. TION
D. Programming in BASIC - ADVANCED We are an independent consultative organisa toon specialising in business and engineering application prepared to recommend systems when required and provide full software and programming support.
Courses are available for individual or group instruction, and may be arranged to suit your specific applications.
For full details and dates available write or phone

CLEVELAND BUSINESS SERVICES Cleveland House Routh. Near Beverloy
 North Humberside HU17 9SR Tel: Leven 0401-43139

ADAM HALL

Cabinet \& Flightease Firtings, fretcloths, coverings, handles, castors etc, Jacks \& sockets. Cannons, Bulgins. reverb trays. Emilar compression drivers. AKG mics. Celestion speakers. ASS glassfibre horns.
Send 30 p postal order for illustrated catalogues to ADAM HALL (E T SUPPLIES)

Unit B, Charlton Court Grainger Road, Southend-on-Sea Essex S525BZ

U.K. AIRPORT FREOUENCIES LIST. £1. U.K. coast station frequencies list $£ 1$. PLH Electronics, 20 Vallis Road, Frome, Somerset.
£99 SYNTHESISER DIY. Professional results, easy-build. Sae Dewton 254 Ringwood Road. Ferndown, Dorset BH22 9AR.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the
means. We suoply evegiass nonmeans. We supply eyegiass. non-
magnetic tweezers, watch screwdriver. case knite and screwback case opener Also one doz assort push-pleces. full instructions and battery identification chart. We then supply replacement batteries - you th them Begin now. Send last-growing business Prompt dast-grow
despateh
BOLSTER INSTRUMENT CO. (ET22)
11 Percy Avenue, Ashford, Middx. TW15 2PB

CENTURION ALARMS

BURGLAR ALARM EQUIPMENT at unbeatable value JUST LOOK!

Order No 100 ALA

JUST LOOK1

位
 210 Quality White Flush fitting 4 -wire MAGNETIC REED CONTACT + matching magnet

220 Surface 4 -w Ire MAGNETIC REED CONTACT 220 Surface 4-wire MAGNETIC REE D CONTACT 50 PRESSURE MAT, Stondard size 4 .wire $30^{\prime \prime} \times$ 365 MEW PABSIVE WULTI-DEAM. Intra-red Dutector E | E2.20 |
| :--- |
| 1.73 | metre range

$3 B 0$ SIX INCH UN DER DOME BELL E5E.00
5.95 390 BEST QUALITY BELL HOUSING. PVC coated meial not to contused with the cheaper decoy covers. Fully signwitten with 400 DECOY P.V.C. BELL COVER E8.50
NEW TWO.TONE U.S.A. POLICE SOUNDERS, Complete with
weatherp 00 h horn
SOUNDER PCB MO
SOUNDER PCB Module only
WEATHERPROOF Louspeaker 8 ohm horn, only
WEATHERPROOF Lousperker. 12 Volts DC.

LAMP STRINGS

Kit LS-1. Each Kit contains: 200 Lamps (50 each Red. Blue Yellow, Green). 200 Pre Cut Leads, 400 Sleeves plus Instructions.

Easy to Construct. Ideal for
DISCOS, SHOPS DISPLAYS, ETC.

LS-1 c/w Instructions
$£ 10.00$
SL-1 100 Spare Lamps (25 each colour)
Prices include VAT and P\&P
J \& H ASSOCIATES LTD.
The Maltings
Station Road
Sawbridgeworth, Herts
Tel. 0279-723156 Telex: 81675 JLamps-G
Trade Enquiries Invited

ETI MARCH 1981

NUCLEAR RADIATION MONITOR. Essential for the survivor of a nuclear attack Measures up to 100 rads hour S.a.e. details: Ray Nucleonics. 13 Rosemead Gardens, Brentwood CM13 1 HZ

CIRCÜIT DESIGN: Piototype constructionis

 Analogue or Digital. Single Circuits or Complete Instruments Systems Write_A J ATTWOOD, C.Eng.. MIERE Heathercote Heatherton Park, Taunton Somerset, TA4 1ET or Phone Bradford-on-Tone (082-346) 536.TELEPHONE ANSWERING MACHINES, Super Phones. Radio Phones etc. Ring C.W.A.S 0274682674

SPEED - VERS,ATILITY - ECONOMY

Designed originally for logic wiring applications, it is now
 technicians, designers and enpingers to carty out work on:--P.C.B. REPAIRS 'ANALOGUE BREADBOARDING 'SIMPLE LOIC WIRING 'COMPLEX INTERCONNECTING OF MICROS AND MEMORIES.
EURO INTROKIT £16.70. PORJECT KIT £8.18 £2.81 WITH T PENCIL WITH LOADED QSE BOBBIN FIX 20 PKT .' $^{\prime}$ LONG $£ 3.20$. HIGH DENSIT GLUEFIX 20 PKT 6": ONG ©3.20. PRESS FIX 20/PKT 23.20. SINGLE HIGH DENSITY D.SIDED EUROCARD £5.18. SINGLE SIDED £3.80. DOUBLE HIGH DENSITY D. SIDED EUROCARD £8.60. PROJECT CARD E2.50. BOBBINS BLUE 4 PKT f2.12. GREEN £2.12 1 OF EACH 2 :PKT C0.96 ADHESIVE $£ 2.20$. TINNED COPPE 2:PKT f0.96. ADHESIVE £0.41. SOLDERING IRON
420 C $£ 5.52$. REPIACEMENT 430 C $\mathbf{4} 1.40$. PTAAG 480 C $\mathbf{F} \mathbf{1 4 0}$
Please add 40 p for $\mathrm{PR} \mathrm{P}+\mathrm{VAT}$
FOR FURTH
ROADR INER INFOMATION ON ROADRUNNER PRODUCTS SEND LARGE SAE.TO
T. J. brine associates

REEPOST, Haslemere, Surrey GU27 3 BL ETI MARCH 1981

If it's a case of making yourproject look good, then use one of ours.
Simply send a S.A.E. for Detalls and prices.

H. M. ELECTRONICS 271a/275a Fulwood Road Broomhill Sheffield S 103 BD

£1 BARGAIN PACKS

All packe £1 esch; any 12 for £10. Post 250 . Alt top-grade new components - no rubbish. PC1 12 BC107 PC2 14 BC10B PC3 12 BBC 109 PC4 3 2N3055 PC5 7 BFY51 PC6 16 BC1B2 PC7 601 N414B PCB 251 N4003 PC9 10 TO3 sockets PC10 $150.1 / 35 \mathrm{~V}$ tants
PC1 1143 mm red LEDs PC12 125 mm red LEDs PC 13 B 74
PC 14655 PC146555 PC15 1512 V zeners
PC16 1001 k PCELECTRONI-page list/enquiries Mail Whiteparith, 1 Thomhill, Romey Rond

MICROTYPE

PRODUCED INBLACK ABS PLASTIC COMPLETE WITH SCREWS ANO INSTAUGTIONS
SPACE FOR XPAASION FOCE FED FAN. NUMERIC PAD AND ADDITIONAL KEYS

TIME EXACT?

MSF CLOCK is ALWAYS CORRECT-never gains or loses, self-setting at switch-on, B diaits show Date. leap year, also parallel BCD output and audio to record and show time on playback, receives Rugby 60 KHz tomic time signals, built-in antenna 1000 Km rang ABSOLUTE TIME, £54.80.
V.L.F.? EXPLORE 10.150 KHz , Receiver E13.70 BOKHZ RUGBY RECEIVER, as in MSF Clock. serial data output, built-in antenna, £15.70.
Each fun-to-build kit includes all parts, printed circuit. case, instructions, postage otc, money back assurance so GET yours NOW!

CAMBRIDGE KITS
PRE-WAR ONWARD VALVES, wireless (S.W.s included). S.A.E. 100 transistors E5. Bargains list 15p. - Sole Electronics, ETI, 37 Stanley Street, Ormskirk, Lañcs.
OSCILLOSCOPE, Scopex dual beam. 3% accuracy, 10 MHz bandwidth. Full working order, f 90 . - 0438724093 (evenings).
TRS-80 or ZX80. 4 games on cassette. TRS-80, £3.50; ZX80, £3. S.A.E. Details/ list. - Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
MEMORY BARGAINS. Low-price guaran teed devices. Eprom Programming Service S.A.E. information and discounts. - T.D.S. 57 Westmead, Woking, Surrey. GU21 3BS.
'TIS KLIFCO-'TIS UNBEATABLE!! Sony: Cassette deck - f.m./a.m. (toner) stereo player; + digital clock, meters display $+2 X$ bookshelf speakers, £75. Stereoamplifiers ic. + fet. 60 watt (magnetic pick-up), $£ 26+$ 2X Lloytron bookshelf speakers, $£ 42$ complete. National: i.c.-mixer amplifiers, 4 input + fade + master, 60 w ., $£ 30$. Chassis $60+$ 60w. + controls, £12. - 1 Regent Road Ilkley, LS29 9EA.

CLEAR-OUT of double-sided copper-clad fibreglass board. $1 / 2 p / s q$. in. Minimum order £1 inc. p. \& p. Also complete p.c.b. service - H.C.R. (Chelmsford), 1 Bankside, Off New Street, Chelmsford.

FLEXIBLE - EXPANDABLE - BUDGETABLE THE COMMUNITY MIXER KIT

 similar users.Not just another Mixer - but designed specifically for Hospital Radio, Talking Newspapers and

Is there such a word as
'Budgetable' ! Consult.

56 Feet Hoas, Beniket. Essex SS7 5JM or call [03745) 3256 for the answer Barchy and Access wilcome

Partridge Electronics
PARNDON ELECTRONICS LTD.
Dept. No. 23.44 Paddock Mead, Harlow, Essex CM18 7RR. Tel. 027932700 RESISTORS:

made under stricth comrolled conditions by automatic machines Bandritered and colour coded E1.00 per hundred mixed (Min 10 per valuel E8. 50 pee thousand mised (Min 50 per value) Special strick pach ofl alues 10 off each E5.50

DIODES:
£1.60 per hundred
 4 Wac 86_{p} each o Way $\mathbf{E 1 . 0 0}$ each s Way $\mathbf{E} \mathbf{1} \mathbf{2 0}$ each
DIL SOCKETS: High quaite: low profile socket:
 22p: - 29p. 24pin- 35p. 28pin- 39p. 40 pin 57 19p.

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK 1160 OVERSEAS 55 CASH WITH ORDER PLEASE

A FORTUNE

only $\mathbf{£ 2 9 9}$
Interíace Cards for Apple， Pet，TRS80，Nascom and
Compukit $-\mathbf{f 4 9}+$ VAT

Full Pet Graphics including

cables．Ready to go EX－STOCK．
NASCOM 2 DISC DRIVES Add a powertul，double density，mini floppy disc to
－Disc Controller Card linclu Nasbus $6 S 100$ interface －Will control 4 Drives． －CPM operating system
－Extend
Compiler
Compiler
One Disc System－£499

Additional Disc Unir－C299＋VA
NASCOM 2 GAMES TAPE
featuring Space Invaders and Android Nim，Re－numbering royram and other goodies
$\mathfrak{£ 7 . 5 0}$＋VAT

NEC＇s high quality printer uses a print＂inimble＂that has less diameter and inertia than a daisy wheel，giving a quieter， faster，more reliable printer that can cope with plotring and tion or tractor ted．The ribbon and thimble can be changed in seconds． 55 characters per second bidirectional printing－ with red／black，bold，subscript，superscript，proporional spacing，rabbing，and much，much more．

－TEAC FD－50A has 40 racks giving 125 K Bytes
－untormatted single density capacity．
－The FD－50A can be used in double density recording
－mode．
－The FD－50A is Shugar SA400 interface compatible．
－Directly compatible with Tandy TRS80 expansion interface．
－Also interfaces with Video Genie，SWTP，Heathki
－Aorth Star Horizon，Superbrain，Nascom，etc，etc．
－Disks plus poyyer supply housed in an attractive gre case．
$\underset{\substack{\text { Single } \\ \text { Disk Drive }}}{ } \mathbf{£ 2 2 5}+$ VAT $^{\text {Double }} \underset{\substack{\text { Disk Drive }}}{ } \mathbf{£ 3 8 9 + \text { Vat }}$

－

COMP POCRET COMPUTER GREATEST BREAKTHROUGH
 －Programs in BASIC ©＂OWERTY＂Alphabet Keyboard 11.9 K Random Access Memory －Long Battery Life．
Computer power that once filled a room can now be carried in your pocket！It＇s easy to load with ready－to－run software trom cassette tape linterface and recorder optionall o program it yourself in easy－to－learn BASIC．24－character
liquid crystal readout displays one line at a time．Soecial liquid crystal readout displays one line at a time．Special feature is advanced non－volatile memory allows you to Note：Memory must be transferred to tape before changing batteries．Autamatic statement comoaction squeezes every ounce of memary space．Features power－off retention of programs and data．Powerful resident BASIC language includes multiple statements，math functions，editing， strings，arrays and much more．Multiple program loading capability subject to RAM availability．Carrying case and capabiry sulject
batteries incluwed．

The Aculab Floppy Tape for the TRS－80 and Video Genie is a highly reliable digital storage system that provides many of the advantages of floppy disks at less cost．Automatic debounce routine for the Level 2 keyboard． Connects directly to TRS－80 Level 2 Keyboard．Operating and file handing software in ROM．
powerful functions to Level 2 BASIC ．

THE VIDEO GEWTE SVSTEW

Ideal for small businesses，schools，calleges，homes，etc．

16 K
£299
YOU NEED NEVER MISS AN IMPORTANT CALL AGAIN TWO CORDLESS TELEPHONE SYSTEMS－DPRECT FROM USA

THE ALCOM
ont £147
Base station connects to your teleprent the $=---m$ handset clips to your belt and gives you $m-3-\cdots=6=-\cdots$ Bieeps when call arriving－Nicad rechargede tawnot

LOW COST TELEPHONE
£99．95 ANSWERING MACHINE

Microprocessor controlled answering machine P_{2} vour phone ine．Records any phone call messages $2=-$ ．．． anywhere in the world．Uses standard cassettes cana complete with mains adaptor microphone，remote $\mathrm{t}=\mathrm{z}$ base unit，cassette with 30 sample pre－recorded messa 7 ss

EXPANDABLE－COMPLETE TRS 80 －MODEL If

tnssomertil
64K
1－Disk
Model II
£1995．00
RRP E 225000
This new unit from the world＇s mast successtu
company is now avaitable immediately with software The basic unit comes complete with 64 thousand charwal．
（bytesi of Memory．The buitt in $8^{\prime \prime}$ Flopoy disc adds antint （bylesi of Memory．The built in $8^{\prime \prime}$ Floppy disc addes a cint system．More disc expansion is now avarlable．
system．More disc expansion is now avaliable．
The Model II is a complete unit with a full kevboaro ind itel The Modellis a complete unit with a fulikeyboara inal
numeric pad and $12^{\prime \prime}$ screen which gives 24 ness characters．The computer is supplied with wan ine das operating system and the Level III Basic．
A full selif test routine is written into the power＝voube．．． to eliminate incorrect operation．Both sera $4=12 \mathrm{Fe}=$ expansion sockets are standard．A pimer is a niug－ operation．
Both hardware and siftware necessary to tajk to a man neame are inciuded．Terminal usage is very poss bie h ： addition of CPM 2 you can operaie with COBOL FOR RA applications packages i．e．accounting，payroll stock etc
$\begin{array}{lrll}\text { CP／M2 } & £ 95.00 & \text { M BASIC } & £ 155.00 \\ \text { CIS COBOL } & £ 400.00 & \text { FORTRAN } & £ 220.00\end{array}$ $\begin{array}{lrll}\text { CIS COBOL } & £ 400.00 & \text { FORTRAN } £ 220.00 \\ \text { C BASIC } & £ 75.00 & \text { WORDSTAR } £ 255.00\end{array}$

FULL RANGE OF

Professional

LEVEL 2 16K
Fully converted to UK TV Standard Comes compete with
easy to tollow manuals UK Power Supply Casselte Leads Sample lapes Special box to enable vou to
and go Full Range of Software Available
Interface to Centronics Parallel for TRS80 $\mathbf{£ T 5} .00+$ VAT
only $£ 295$
Only $\mathbf{E 2 9 5}$－VAT
Expand your TRS80 by $\mathbf{2 N}^{\prime}$
32k Meniar on board $\mathbf{3}^{2}$
TRS80

32 K Meniar an board
Centronics oardiliel port
 EXPANSION INTERFACE

THE ATARI VIDEO COMPUTER Whe GAMES SYSTEM Atari's video Computer System $£ 83.00$ than 1300 different game variations and options in iwanty Game Program ${ }^{\text {TM }}$ cartridges! Most Cartriages only £13.90+VA Ces may vary with special
editions Easic Maths, Airsea editions Easic Maths, Airsea
Eatte Black Jack, Breakoul Estre Black Jack, Breakout,
Surround, Spacewar, Video Surround, Spacewar, Video
Ormpics, Outaw. Basketball, Sky © Score: Space War, Sky Diver. Air Sea Battle, Extra Paddle Controllers -Keyboard Controllers SPACE INVADERS NOW IN STOCK £25

EUROPE'S FASTEST SELLING ONE BOARD COMPUTER* 6502 based system - best value for money on the market. A Powerful 8 K Basic - Fastest around *Full Qwerty Keyboard * 4K RAM Expandable to 8 K n board. * Power supply and RF Modulator on board. * No Extras needed Plug-in and go. * Kansas City Tape Interface on board. * Free Sampler Tape including powerful Dissassembler and Monitor with each Kit. \# If you want to mech which machine to buy then this is the
40 pin Expansion Jumper Cable for Compukit expansion $\mathbf{5 8 . 5 0}+$ VAT

Build. Understand and Program your own Computer for only a small outlay			
KIT ONLY E179 + VAT NO EXTRAS NEEDED			
Available ready assembled, tested \& ready to go E229 + VAT			

NEW MONITOR FOR COMPUKIT UK101

- In 2K Eprom 2716 - Allows screen editing - Saves data on tape - Flashing cursor - Text scrolls down $\mathbf{6 2 2 . 0 0}+$ VAT Special Bonus SAVE $\mathbf{6 2 2}$. New Super Monitor inc. in each kit or sold separately for $\mathbf{£ 2 2}+\mathrm{VAT}$

FOR THE COMPUKIT	
Assembler/Editor	$\mathbf{~} \mathbf{1 4 . 9 0}$
Screen Editor Tape	$\mathbf{5 5 . 9 0}$

\mathbf{G} Game Packs	
1. Four Games	$\mathbf{£ 5 . 0 0}$
2. Four Games	$\mathbf{£ 5 . 0 0}$
3. Three Games 8K only	$\mathbf{£ 5 . 0 0}$

Super Space Invaders (8K)	$\mathbf{E 8 . 5 0}$
Space Invaders	$\mathbf{E 5 . 0}$
Chequers	$\mathbf{E 3 . 0 0}$
Real Time Clock	$\mathbf{E 3 . 0 0}$
Case for Compukit	$\mathbf{£ 2 9 . 5 0}$

All Prices exclusive VAT

ENGLISH COLOUR TV/ AMERICAN NTSC COLOUR MONITOR
Suitable for Apple, Atari and Texas $99 / 4 \quad £ 295$ +VAT

8MHz Super Quality Modulators	¢4.90
6 MHz Standard Modulators	$¢ 2.90$
C12 Computer Grade Cassettes	10 for $\mathbf{E 4 . 0 0}$
Anadex Printer Paper - 2000 sheets	£25.00
Floppy Discs 5 $1_{4}{ }^{\prime \prime}$ Hard and Soft Sectored	¢3.50
Floppy Disc Libran Case $51 /{ }^{\prime \prime}$	£3.50
Verocases for Nascom 1 \& 2 etc.	E24.90
Keyboard Cases	E9.90

- Reliability Solid state circuitry using an IC and siticon ransistors ensures high reliability. - 500 lines horizontal resolution Horizontal resolution in excess of 500 lines is achieved in picture center. Stable picture Even played
back pictures of VTR can be displayed without jittering. - Looping video input Video input can be looped through with built-in termination switch. - External sync operetion (available as option for U and C types) - Compact construction Two monitors are mountable side by side in a standard 19 -inch rack.

racks of software for the PET Books under one roof, along with
TRS80. Come and see for yourself.

WE ARE NOW STOCKING THE APPLE II AT REDUCED PRICES

16K £599
32K £649
48K E659
Getting Started APPLE II is faster, smaller, and more powerful than its predecessors. And it's more fun to use toc because of built-in features like

- BASIC - The Language that Makes Programming Fun - High-Resolution Graphics (in a 54,000 -Point Array) for Finely-Detailed Displays. - Sound Capability that Brings Programs to Life. Hand Controls for Games and Other 48 K Bytes of AAM 12 K Bytes int ROM Memory Capacity of formance in a Small Package of ROM; for Big-System Perflots to let the System Grow With Your Needs.
You don't need to be an expert to enjoy APPLE II. It is a complete, ready-to-run computer. Just connect it to a video display and start using programs (or writing your own) the first day. You'll find that its tutorial manuals help you make it your own personal problem solver.

APPLE DISC II isc with Controller
$\mathbf{E 3 4 9}+\mathrm{VAT}$
ditional Drives

our NEW

 SHOWROOM \& SALES CENTRE AT 311 Edgware Road, London W2.Telephone: 01-441 2922

Delivery is added at cost.. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number.

MAIL OADEE AND SHOP CREDIT FACILITIES ARRANGED
 send S.A.E. for application form

14 Station Road, New Barnet, Hertfordshire, EN5 1QW (Close to New Barnet BR Station - Moorgate Line) Telephone: 01-441 2922 (Sales) 01-449 6596 Telex: 298755 TELCOM G

OPEN (BARNET) - 10am - 7pm - Monday to Saturday

[NEW WEST END SHOWAOOM

"Europes Largest Discount Personal Computer Stores"

OPEN (LONDON) - 10am - 6pm - Monday to Saturday
黄 IRELAND: 80 Marlborough Street, Dublin 1 . Telephone: Dublin 749933

- COMPSHOP USA, 1348 East Edinger, Santa Ana, California, Zip Code 92705
(Part of the Compshop Lid. Group)

Make it for a Song!

The New Maplin in Matinée

Amazing Value for Only For An

Easy to build. Latest technology - means less cost, less components and 80% less wiring. Comparable with organs selling for up to $£ 1,000.00$. Two 49 -note manuals. 13 -note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Manual and Auto-Wah. Glide (Hawaiian Guitar Sound). Single finger chording plus memory. 30 Rhythms! 8 -instrument voicing. Major, Minor and Seventh chords. Unique walking bass lines with each rhythm. Unique countermelody line with each rhythm. Truly amazing value for money. Full construction details start in Electronics \& Music Maker.

The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive guide to electronic components with thousahds of photographs and illustrations and page after page of invaluable data. Get a copy now - it's the one catalogue you can't afford to be without.

[^3]

Maplin Electronic Supplies Ltd.
All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR
Telephone: Southend (0702) 554155 . Sales (0702) 552911
Shops:
159.161 King Street, Hammersmith, London W6. Telephone: (01) 7480926. 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000 Both shops closed Mondays.

[^0]: Special offer closes on February 28th.

[^1]: ETI MARCH 1981

[^2]: ETIMARCH IY8I

[^3]: Post this coupon now for your copy of our 1981
 catalogue price $£ 1$.
 Please send me a copy of your 320 page catalogue. I
 enclose $£ 1$ (Plus 25 p p\&p). If I am not completely
 satisfied I may return the catalogue to you and have my
 money refunded. If you live outside the UK send $£ 1.68$
 or 12 International Reply Coupons.
 I enclose $£ 1.25$.
 Name.
 Address

