

BBC MICRO

 OSCILLOSCOPE SATELLITE TV * Antenna Theory DRUM FLASH

OMP POWER AMPLIFIER MODULES

comparing prices, NOTE all models include Toroida oof. Supplied ready built and tested. OMP100 Mk II Bi-Polar Output power, 110 watts R.M.S. into 4 ohms, Frequency Response $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$. T.H.D. 0.01%. S.N.R. -118 dB , Sens. for Max output PRICE $£ 3399$

OMP MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms. Frequency Response $1 \mathrm{~Hz}, 100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 80. Slew Rate 45 V uS. T.H.D. Typical 0.002%. Input Sensitivity 500 mV . S.NR
-125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE PRICE $£ 39.99+£ 3.00$ P\&P.
OMP/MF200 Mos-Fet Output power 200 watts RM.S into 4 ohms. Frequency Res ponse $1 \mathrm{~Hz}=100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 250 . Slew Rate 50V uS, T.H.D. Typical 0.001%. Input Sensitivity 500 mV , S.NR
130 dB Size $300 \times 150 \quad 100 \mathrm{~mm}$. PRICE 130 dB , Size $300 \times 150 \times 100$
PRICE $£ 62.99+£ 3.50$ P\&P.
OMP/MF300 Mos-Fet Output power 300 watts RMS into 4 ohms. Frequency Res350. Slew Rate 60V uS. T.H.D. Typical 00008%. Input Sensitivity 500 mV . S.NR. 130dB. Size $330 \times 147 \times 102 \mathrm{~mm}$ PRICE PRICE $£ 79.99+£ 4.50$ P\&P.

NOTE: Mos Fets are supplied as standard

Vu METER
very accurate visual display emploving 11 L FD diodes 17 green case with tinted acrylise front Size 84.27 .45 mm toulded plastic PRICE $58.50-50 \mathrm{p}$ P\&P

LOUDSPEAKERS $5^{\prime \prime}$ to $15^{\prime \prime}$ up to 400 WATTS R.M.S Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details POWER RANGE
8.50 WATT R.M.S
20 oz WATT R.M.S. Hi-Fi/Disca.

KHz Sens 92 dB PRICEf10999 Avail
100 WATT R.M.S. Hi-Fil

100 WATT R.M.S. Hi-Fi/Disco
\qquad

MCKENZIE

$12^{\prime \prime} 85$ WATT R.M.S. C1285GP Lead guitar/keyboard/Disco
$2^{\text {" }}$ ally voice coil Ally centre dome Res Freq 45 Hz Freq. Resp, 1065 KHz Sens. 98 dB PRICE $£ 29.99$
${ }^{+} 1^{\prime \prime} 85$ WATT R.M.S. C1285TC P.A/Disco $2^{\prime \prime}$ ally voice coll. Twin cone.
Res. Freq. ${ }^{45 H z}$ Freq. Resp. to 14 KHz PRICE
$15^{\prime \prime} 150$ WATT R.M.S. C15 Bass Guitar/Disco.
$3^{\prime \prime}$ ally voice coil Die-cast chassis Pes. Freq. 40 Hz Freq. Resp. to 4 KHz PRICE $£ 57.87+£ 4.00 \mathrm{P} \&$ Pea $10 " 60$ WATT R.M.S. 1060 GP Gen. Purpose/Lead Guitar/Keyboard/Mid. P.A.
$2^{\prime \prime}$ voice coil. Res. Freq. 75 Hz Freq. Resp. to 75 KHz Sens. 99 dB . PRICE $£ 19.99+£ 2.00 \mathrm{P} \& \mathrm{P}$
2^{2} voice coil. Res. Freq. 75 Hz Freq, Resp, to 75 KHz Sens. 99 dB . PRICE $£ 19.99+£ 2.00 \mathrm{PQ}$
$10 " 200$ WATT R.M.S. C10200GP Gultar, Keyboard, Disco.
$2^{\prime \prime}$ voice coil. Res. Freq. 45 Hz Freq. Resp. to 7 KHz . Sens. 101 dB PRICE $£ 44.76+15200$ High Power Bass.
$15^{\prime \prime} 200$ WATT R.M.S. C15200. Res. Freq. 40 Hz . Freq. Resp. to 5 KHz . Sens. 101
$15^{\prime \prime} 400$ WATT R.M.S. C15400 High Power Bass.
WEM
$5^{\prime \prime} 70$ WATT R.M.S. Multiple Array Disco etc.
1" voice coil Res. Freq. 52 Hz Freq. 52 Hz Freq. Resp. to 5 KHz Sens. 89 dB PRICE $£ 22.00+£ 1.50 \mathrm{P} \mathrm{\&}$ Pea $8^{\prime \prime} 150$ WATT R.M.S. Multiple Array Disco etc.
${ }^{\prime \prime}$ voice coil. Res. Freq. 48 Hz Freq. Resp to 5 KHz Sens. 92 dB PRICE $£ 32.00+£ 1.50 \mathrm{P} \& \mathrm{P}$ ea voice coil Res. Freq. 35 Hz Freq. Resp. to 4 KHz Sens.

$11 / 2^{\prime \prime}$ voice coil Res. Freq. 35 Hz Freq. Resp. to 4 KHz Sens. 94 dB PRICE $£ 47.00+£ 3.00$ P\&P ea
SOUNDLAB (Full Range Twin Cone)
50 WATT R.M.S. Hi-Fi/Multiple Array Disco etc. 60 WATT R.M.S. Hi-Fi/Multiple Array Disco etc.
voice coil Res Frea 56 Hz Freq Resp to 20KHz Sens. 89 dB . PRICE 10.99 . f1 50 P\&P ea voice coil Res Freq 56 Hz Freq Resp to 20 KHz Sens 89 dB . PRICE $£ 1099$. $£ 150 \mathrm{P} \mathrm{\& P}$ ea
60 WATT R.M.S. Hi-Fi/Muitiple Array Disco etc. 10 60 WATT R.M.S. Hi-Fi Disco (i 60 WATT R.M.S. Hi-Fi/Disco etc. components complete with instructions
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Price: $£ 8.62+75$ p P\&P.
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controhed professional performance. Range
(12 volt) Price: $f 14.49+75 p$ P\&PP.
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ SINGLE CHANNEL RADIO CONTROLLED TRANSMITER
RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation. RECEIVER 27 MH z. Range up to 500 metres. Double coded modulation.
Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for Receiver output operates telay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for
many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ volt). Price: $£ 17.82$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}$ ($9 / 12$ volt). Price: $£ 11.29$ P\&P + 75p each. S.A.E. for complete list. VISA/ACCESS/C O.D. ACCEPTED

OMP LINNET LOUDSPEAKERS

OMP 12-100 Watts 1 OOdB. Price $£ 149.99$
per pair
OMP 12-200 Watts 102 dB . Price $f 199.99$ per pair

Professional $19^{\prime \prime}$ cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin discos etc. With twin Vu meters, twin power supplies. XLR connections. MF600 Fan cooled. Three models (Ratings R.M.S. into 4 ohms). Input Sensitivity 775 mV . MF200 $(100+100)$ W. $£ 169.00$ Securicor MF400 $(200+200)$ W. £228.85 Delivery MF600 $(300+300)$ W. $£ 322.00 \quad £ 10.00$

1 K-WATT SLIDE DIMMER (10

BS800

* Suitable for both resis ance and inductive loads in numerable applications industry, the hom
disco's theatres etc PRICE $£ 13.99 \cdot 75 p$ P\&P

PIEZO ELECTRIC TWEETERS MOTOROLA
cossover is not required these units can be added to existing speaker systems of up to 100 watts TYPE 'A' (KSN2O36A) 3 ' round with protective wire mesh, Ideal for bookshelf and medium
speakers. Price $f 4.90$ each 40 p P\&P speakers, Price f4.90 each - 40 p P\&P
TYPE 'B' (KSN1005A) TYPE 'B' (KSN1005A) 3^{\prime} " super horn For general purpose speakers, disco and PA. syste
$f 5.99$ each 40 p P\&P TYPE 'C' (KSN6016A) horn For quality HI -fi systems and quality dispersion Price $f 6.99$ each $40 \mathrm{p} P \& P$ TYPE ' D^{\prime} (KSN1025A) $2^{\prime \prime}$, $6^{\prime \prime}$ wide dispersion horn Upper frequency response retained extending
down to mid range (2 KHz) Suitable for high quality $H_{i} f_{1}$ systems and quality discos. Price $\mathbf{f 9 . 9 9}$ each $\therefore 40 p$ P\&P TYPE 'E' (KSN1038A) $33 / 4$ " horn tweeter with attractive silver finish trim. Suitable for Hi -fi
systems etc. Price $£ 5.99$ each 40 p P\&P. LEVEL CONTROL Combines on a recessed mounting plate, level control and cabinet input jack socket

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L \&

 E. D. Vu Meters Many outstanding features 5 Inputs with individual faders providing 5 Inputs with individual faders provi 3 useful combination of the following. 3 Turntables (Mag), 3 Mics, 4 Line plus Micwith talk over switch. Headphone Monitor Pan Pot L. \& R. Master Output controls. Ou put. 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$

Cover photo courtesy Health and Safety Executive, Research and Laboratory Division, Explosion and Flame Laboratory, Buxton.
Editor: Geoff Bains
Assistant Editor: Jez Ford
Projects Editor: Paul Chappell Illustrator: Jerry Fowler Ad Manager: Christopher Harris Classified Sales: Julie Capstick Copy Control: Andrew Selwood

Published by Argus Specialist Publications Ltd., 1 Golden Square, London W1R 3AB. Tel: 01-437 0626.

- UK newstrade distribution by SM Distribution Ltd., 16-18 Trinity Gardens, London SW9 8DX. Tel: 01-274 8611
- Overseas and non-newstrade sales by Magazine Sales Department, 1 Golden Square, London W1R 3AB. Tel: 01-437 0626.
Subscriptions by Infonet Ltd. 5 River Park Estate, Berkhamstead, Herts. HP4 1HL. Tel: (04427) 76661
- Typesetting and origination by Multiform.
- Printed by Adlard \& Son, The Garden City Press.
- Covers printed by Loxley Brothers Ltd.

$$
\begin{array}{ll}
\text { ISSN } \\
\text { 0142-7229 ABC } & \begin{array}{l}
\text { Member of the } \\
\text { Audit Bureau } \\
\text { of Circulation }
\end{array}
\end{array}
$$

Electronics Today is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written Publications Ltd. All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisements nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for
press.

- Subscription rates: UK £16.80 Europe: $£ 21.00$ Middle East: $£ 21.20 \mathrm{Far}$ East: £22.80 Rest: £21.50 or US\$32.00

1 Golden Square
London W1R 3AB
Tel: 01-437 0626
Telex: 01-881 1896

FEATURES

RECEPTIVE THEORY 7

 Keith Brindley takes a break from the brand names in this third part of our series on satellite TV to look at the maths behind dish sizing.MICRO CIRCUITS 12
Two programs for PCB design and circuit diagrams running on the Amstrad CPC micros and the BBC micro come under the scrutiny of Malcolm Brown.

DOMAIN POINTS AGAIN 16
Paul Chappell narrowly misses some appalling puns with this continued investigation of complex numbers.

THE LM3524
Arthur Bossard finds there's more to the LM3524 switch mode power supply chip than meets the applications sheet. This IC is good for a number of bizarre uses.

PROJECTS

Abstract

GAS ALERT 21

Greg Thompson has sniffed out a gem of a project. This modular gas detector and alarm is designed to meet the forthcoming British Standard for protection of your home, boat or caravan.

BEEB-SCOPE

 26Turn your BBC micro into a low frequency 4-channel oscilloscope with this easy-to-build project from Richard Penney.

JUMPING JACK FLASH 34

Paul Chappell has come up with the all-purpose project! Well not
quite, but this light flasher device can be used for stage lighting, photography and many other uses.

SPECTRUM

CO-PROCESSOR
Part two of Graeme Durant's twin micro for the Spectrum sees the design of the 256 K RAM board with some ingenious design ideas.

TECH TIPS

46
Door Chimes
Motorcycle Regulator
Battery Regulator
Printer Switch
Soft Turn-on Dimmer

REGULARS

NEWS 5
PCB FOILS 51
SUBSCRIPTIONS 38, 50
PLAYBACK 48
OPEN CHANNEL 48
KEYNOTES 49
PCB SERVICE 53
OOPS! 53
CLASSIFIED ADS 55
AD INDEX 58

ORDERS: RING (01) 567 8910-24 HRS.

One of the best deterrents to a burglar is a quard
dog and this new kit provides the barking without dog and this new kit provides the barking without
the bitel The kit when assembled can be connectod to a doorbell, pressure mat or any other intruder detector and will produce a random series of threatening barks making the would be intruder
think egein end try hie luck olsewhere. The kit is think again and try his luck elsowhere. The kit is
suppliod complate with high qually PCB, transsuppliad complate with high quality PC8, trans-
former, all components and instructions. All you
nead is neod is a mains supply, intruder detector and a
little time. The kit oven includes a horn apeaker litte time. The kit even includes oh horn speoker
which is essential to produce the loud sound whequired. The "dog" can be adjusted to produce barks ranging from a Terrier to an Alsatian and
contains circuitry to produce a random saries of contains circuitry to produce a random saries of
barks giving a more raalistic effect. XK125 Complote kit of parts
£21.95

IEN EXCITING PROIECT FOR BEGINNERS
This Kit has been specially dosignod for the beginner and contains a SOLDERLESS BREADBOARO, COM-
PONENTS, and a BOOKLET with instructiona to enable the sbsolute novics to build TEN fascinsting projects including a light operated switch, intercom, burgler alarm, and electronit lock. Each project includes a circuit diagram, description of oporation and an assy to follow loyout disgram. A section on componant identification and function is includad. anabling tha beginner to build tio cricuits with OnDER
£13.75

MICROPROCESSOR TIMER KIT

 way keyboard. Ideal for central heating control including different switing time for weekends. Battery back-up
Includes box. 18 time settings. includes bo
CT6000K. XK114 Relay kit for CT6000, includesPCB connectors and one relay. Will accept up
to 4 relays. $3 \mathrm{~A} / 240 \mathrm{~V}$ c/o contacts. $£ 4.30$ 701115 Additional relays $\mathbf{\Sigma 1 . 8 0}$

VERSATILE REMOIE

This kit includes

 all components(+ transformer) (t transformer)
to make a sensi-
on with 16 logic wutputs $(0-15 \mathrm{~V})$ circuitry (relays, triscs, atc - details isterface can be used to switch up to 16 items of equipment on or off remotely. The outputs may be latched (to the last recoived code) or momentary (on during transmission) by specifying the docoder IC and a 15 V stabdised Supply: 240 V AC or $15-24 \mathrm{~V}$ DC ar 10 mA . Size (excluding transformer) $9 \times 4 \times 2 \mathrm{cms}$ The companion transmitter is the MK18 which operates from a 9V PP3 battery and gives a range of up to 60 ft . Two keyboards are available-MK9 (4-way) snd MK10 (16way), depending on the number of outputs io
Me usi2 iR Receiver (incl. transformer)
MK
MK18 Transmitter.... MK10 16-Way Keypoerd 601133 Box for Transmitter

HOME LIGHTING KITS

These kits contain all necessary components and full instructions and are designe col toplace a stand of wall switch and control up to 300 W of lighting.
TDR300N Remote Control Dimmer E18.45
MK6 Transmitter for above
TD300K Touchdimmer
TDEE/K Extonsion kit for 2-way
LD 300K SWitht Dimmer

NEN POWER STROBE KIT

Designed to produce a high intensity light pulse
at a voriable trequency of It 15 HFz this kit also
includes circuitry to trioIner the lightr from an external voltage source (eg. a loudspeaker) via an opto isolator. p .nstructions are on modifying the unit for manual triggering, ss a slave flash in photographic applications or as a warning boacon in security applications. The kit includes a high
quality pcb, components, connectors, $5 W$. quality pcb, components, connectors, $5 W$ s
strobe tube and full assembly instructions. strobe tube and full assembly instruc.
XK124 STROBOSCOPE KIT $£ 12.50$
DVM/ULTRA SENSITIVE
THERMOMETER KIT
 (only a fow additional resistors and switches required - details supplied) or a sensitive digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading 0.1°. The kit has a sensitivity of 200 mV for a full-scale reading automatic
polarity and overload indication. Typical polarity and overload indication. $\begin{aligned} & \text { Typical } \\ & \text { battery life of } 2 \text { years (PP3) }\end{aligned} \quad \mathrm{f17.00}$
XK113 MW RADIO KIT
Based on ZN414 IC, kit includes PCB, wound aerial and crystal earpiece and all components to make a sensitive miniature radio. Size: $5.5 \times 2.7 \times 2 \mathrm{cms}$.
Requires PP3 9 V battery.
IDEAL FOR BEGINNERS
PROPORTIONAL TEMPERATUR
CONTROLLER KIT

Uses "burst fire" tech-
nique to maintain tem-
$0.5^{\circ} \mathrm{C}$. Ident for whithin raphy, incubators raphy, incubators load $3 \mathrm{kw}\left(240 \mathrm{~V}\right.$ ac) Temp. range up to $90^{\circ} \mathrm{C}$. Size: $7 \times 4 \times 2.5 \mathrm{cms}$.
MK

BARGAIN COMPONENT PACKS Refill those empty component drawers at a fraction of the normal price and don't be caught without that odd resistor or capacitor to complete your project. All components supplied are to full spec. arid are not seconds or surplus stock.
Pack A: $650 \times .25$ watt resistor 47R-10M $£ 4.25$ Pack B: $60 \times$ Radial electrolytics $1 u f$ 1000uf
$£ 3.25$
Pack C: $30 \times$ Polyester capacitors a or 0.01 uf - 1 uf
£4.50
Pack D: $35 \times$ horizontal presets $1 \mathrm{k}-1 \mathrm{M} £ 3.00$ Pack E: $30 \times$ IC sockets 8, 14, 16 pin $£ 2.00$ Pack F: $25 \times$ Red 5 mm LEDS $£ 1.75$
$£ 2.00$ Pack G: $25 \times$ Green 5mm LEDs Pack H: $30 \times 5 \mathrm{~mm}$ LEDs 10 Red,
10 Green, 10 Yellow
£2.50 Pack J: $50 \times \ln 4148$ silicon diodes
£1.00 Pack K: $40 \times \mathrm{npn} / \mathrm{pnp}$ transistors BC/182/212
General Purpose
$£ 2.25$ FREE Solderless Breadboard (verobloc type). When you buy all ten packs. Prices exclude VAT (15\%).

Good quality tools selected to offer outstanding for money.
650004 Bin mini. Snipe Nose Pliors. Serrated jawa and return spring. handles and lap jointed side cutters. Insuleted 650008 Light duty cutters, Cutring capacity 0.22-1.2 mm coppar wire. TOOL KIT - Conper wire. pliers, wire - Contains: side cutters, anipe nose pliers, wire strippera, flat blade screwdriver, phil-
lips acrewdriver in black textered padded case which when open, reinforced and $240 \times 205 \mathrm{~mm}$

680007 Self-adjustable
atrippor with bullt-in cable cutter.
1.0/1.4/2.0/2.4/3.0/3.8mm .00 010 1.75 Sursight nosed, suraight noossed-reverse action.
 $580 \mathrm{B02}$ Roliant $9-12 \mathrm{~V}$ dc Drill. 850500 Titan 12 V de Drill. 850500 Titan 12 V dc Drill.
880
570 Serum Maina Drill. WE ALSO STOCK ANTEX IRONS AND

SECURITY PRODUCTS
install your own burglar alarm and save pounds. All parts available separately

950120 Stair Pressure Mat
950125 Floor Mat 29×16 ins. 950130 External bell box

950130 Xenon Beacon (12 v)

 950140 Flush Beacon (12v) 10.50 950143 Surface mounting contacts 1.05 960160 Alarm Control Unit950162 Alarm Control Unit incorporates all the features required to form the basis of a complete security system for the home or business. Operating off a 240 V AC supply with facility to charge a 12 v lead acid standby battery. The unit is housed in a white steel box $225 \times 225 \times 80 \mathrm{~mm}$. Full instructions supplied to connect normally open and closed
sensors, bells, personal alarms etc. sensors, bells, personal alarms etc. zone operation complies with BS
950170 DOOR PHONE
An attractively styled 2 station mains powered handset type door phone. Allowing conversation with visitors without opening the door. Free standing or wall mounted, connections to a 9 volt battery for standby. Electric doorlock release button release mechanism. Ivory and Fawn hody $210 \times 100 \times 70 \mathrm{~mm}$. $£ 27.95$

NOT JUST A MULTIMETER

${ }_{\text {quen }}^{\text {que }}$
multimeter ${ }^{2}$ dithith 34
ranges
fas Canges. As well as
the usial current
vol voltage ${ }^{2}$ ressist-
ance this meter
tend leatures transistor
and diode test, continuity AND
and TEMPERATURE ranges. Basic accuracy is 0.25%. Size: $170 \times 87 \times 42 \mathrm{~mm}$. Includes test leads,
thermcouple and full instruction \& recalibration manual.
AC Volts
DC Volts.
DC Volts.
AC Curren DC Current:200u-200u-2m-20m-200m-2A-10A Resistance $.2200-2 \mathrm{~K}-20 \mathrm{~K}-200 \mathrm{~K}-2 \mathrm{~A}$ Capacitance Temperature.
Conductance
hFE
Continuity Buzzer
(405208)
-1000 (NPN \& PNP)
less than 200 ohms (405208)

| LOGIC PR0BE |
| :--- | :--- |

Powerful cordless iron complete with bracket. Reaches soldering temperature in 10 seconds. Includes lamp which lights when soldering. Comes with mains charging unit and 12 V car battery
adaptor.
Special Offer $£ 15.95$
ELECTRONIC WEIGHING SCALES

This kit contains a Single
Chip Microprocessor, PCB displays and all electronics to produce a digital readout of weight in Kgs. or Sts. and Lbs. In normal usea toothed 1 , 2 , made to rotate when weight is placed onto the scales cessor counts the number of teeth passing the sensor (up or down, depending on which beam is broken first) and shows the reading on the LED display in Sts. \& Lbs., Lbs. or Kgms. A PC8 link selects the scale for bathroom or two types of Kitchen
Scales. A linear version of the Scales. A linear version of the toothed
wheel could also be used. Other uses wheel could also be used. Other uses
include up/down counters. A low cost digital ruler could be made by using a wheel with the correct tooth to diameter ratio.

ELECTRONICS
13 BOSTONRD
LONDON W7 3SJ
Tel: 01-567 8910
50 pOR CA.A.EGUE
OR CALL AT SHOP
MON-FRI 9-5pm saturday 10-4pm

ORDERING INFORMATION: ALL PRICES EXCLUDE VAT

FREE P\&P on orders over $£ 20$ (UK only), otherwise add
$75 p$ + VAT. Overseas P\&P: Europe £2.75. Elsewhere f6.50. Send cheque/PO/Barclaycard/Access No. with order. Giro No. 529314002.
LOCAL AUTHORITY AND EXPORT ORDERS WELCOME GOODS BY RETURN SUBJECT TO AVAILABILITY

- British Telecom is about to embark on the enormous task of digitally mapping the entire UK telephone network - cables, ducts and all.
At present BT basements are overflowing with 450,000 paper maps and diagrams.

After six years these will all be binned and the $£ 19 \mathrm{~m}$ digital map should be complete, enabling BT to get things wrong even more quickly than they do now!
In the first phase of the operation the principal towns will be mapped using BT's existing processor capacity, supplemented by four VAX computers from Intergraph. The Ordnance Survey will be collaborating with BT sinceit already has much of the necessary information in digital form.
The shareholders will be pleased.

- The semiconductor suppliers Top Ten of 1987 shows the Japanese companies continuing to gain ground, claiming 48% of the world market last year.

			\%
1987	1986	Company	increase
1	1	NEC	21.0
2	3	Toshiba	29.1
3	2	Hitachi	20.5
4	4	Motorola	21.0
5	5	Texas Inst.	19.3
6	6	Fujitsu	39.1
7	8	Philips/	26.9
8	11	Signetics	
9	Intel	51.4	
10	Mitsubishi	30.4	
10	9	Matsushita	22.6

Figures are taken from Dataquest's 1987 World Survey.

- A selection of seven slimline logic probes are now on the market from OK Industries.

The cheapest is the PRB-20 which has LEDs to indicate Hi, Lo and Pulse, capable of 25 ns pulse detection with a 20 MHz bandwidth. Threshold levels are switchable between TTL and CMOS.

The top model is the PRB-100A with 5 ns pulse detection 100 MHz bandwidth.
Prices before VAT range from £21.08 to £39.40.

Full details from OK Industries, Barton Farm Ind. Estate, Chickenhall Lane, Eastleigh SO5 5RR. Tel: (0703) 619841.

- The Smart Talker Speech Synthesiser (ETI January 1988) can now be oblained as a fully assembled board (including power supply components) for £55 inclusive.

The PCB is still avallable at $£ 8.00$ and the complete parts kit (excluding case) for $£ 40.00$.

Orders to: Russell Vowles, 3 Orchard Waye, Uxbridge, Middlesex UB8 2BN. Please add 75p postage.

A Juicy Bit Of Software

Pineapple Software has produced an update for its popular PCB drafting program for BBC micro (reviewed in ETI March 1987).

The update gives the program full auto track routing with up to 190 connections specified by the user then linked by the program. If the result is not quite what you'd hoped for components can be shifted about without
redefining all your connection points, and to help the program in the right direction you can indicate a preferred track direction or even draw a few tracks yourself before the program does the rest.

The update is available to PCB owners for $£ 55$ from Pineapple Software, 39 Brownlea Gardens, Seven Kings, Ilford, Essex IG3 9NL. Tel: 01-599 1476.

DAT's The Way It Should Be

At last DAT players are 'officially' on sale in Britain about a year after they first appeared in Japan.

The Sony DTC1000ES is retailing at £1130+VAT and includes the controversial built-in copyguard that stops it recording at the 44.1 kHz sampling rate of compact disc.
Since you can't record CD and commercial recordings aren't exactly widely available yet, the only use for this machine will be in the audio industry - and even then only among the less affluent.
Richer studios will be more in-
terested in the PCM2500 which can switch sampling rates (including 44.1 kHz) and can match various formats (AES/ EBU, SDIF-2 and Sony/Philips). It cannot however convert signals from one format to another.
Ironically, considering Sony's own stand on copy prohibiting, the PCM2500 can add a copy prohibit code while recording.
HHB is supplying both machines to the UK and should soon have stocks of the even more expensive PCM2000.
For full details contact: HHB, 73-75 Scrubs Lane, London NW10 6QU. Tel: 01-960 1160.

YOUNG ELECTRONIC DESIGNER AWARDS

The 1988 Young Electronic Designer Awards are up for grabs if you can come up with a commercially viable device with an everyday application.

Last year's winners included a saucepan for the blind, a digital pressure gauge, a speech synthesiser and an animal stress meter (?).

There are three age groups (up to 15, 16-18 and 19-25) and applicants must be in attendance at a
school, college or university in Great Britain.

Apart from the cash on offer, Texas Instruments are offering course sponsorship and a job to the winner of the 19-25 group. (Even more exciting is the possibility of getting on Tomorrow's Worid.)
Entry forms from: The YEDA Trust, 24 London Road, Horsham, West Sussex RH12 1AY. Tel: (0403) 211048.

- Stereo TV broadcasts have not been shelved indefinitely as recent press reports have been claiming.

Although the BBC Nicam broadcasts will not be off the ground for at least three or four years, the IBA will be introducing a service for London in 1989.

Other IBA transmitters will be updated to broadcast stereo as they become due for routine maintenance, which would put Yorkshire next on the list.
The majority of programmes going out in stereo will be prerecorded films and music shows because of the lack of facilities for producing stereo in the TV studios.

The IBA are also considering multilingual broadcasting, using the two channels as completely separate soundtracks (dual channel sound).
Meanwhile BBC tests continue and some live programmes are already going out in London in Nicam stereo (Wogan for example) since none of the postrecording problems of stereo sound are encountered.

As for the general belief that the BBC originally scheduled Nicam for introduction in early 1988, the BBC says that this is complete rumour probably started by manufacturers such as Ferguson when they introduced stereo TVs and VCRs.

- Meanwhile you may have noticed some peculiar transmissions going out on BBC2 in the early morning closedown period.

These flickering distorted images of volcanos and skydivers are part of a BBC scrambling experiment with two applications in mind.

The first is the possibility of leasing unused air time to business and medical users to transmit high quality video pictures nationwide on a similar basis to BBC Enterprises' Datacast service on Ceefax.

The second more disturbing application stems from the Peacock Report's recommendations for Pay-As-You-View television where a scrambling system would be put on BBC broadcasts. The licence-fee would be abolished and consumers pay only for the programmes they watch (it is still unclear if ITV programmes could be watched free under such a system).
Although the BBC opposes this concept as removing any incentive to produce minority programmes, the Government may pass legislation that would give them no choice.

RECEPTIVE THEORY

In this third part of his series on satellite television, Keith Brindley considers the mathematical and theoretical side of signal reception and looks at ways of calculating antenna size

Satellite TV systems (or TVRO for the pedantic) are of course examples of communications systems and as such can be looked at mathematically in terms of signal strengths to enable us to define certain minimum standards which are governed by the user's operating requirements.

However these minimum standards are related to television picture quality and as picture quality is largely subjective, some way of relating subjective picture quality to objective signal strengths needs to be devised.

What's more the relation must be made in such a way as to make easy comparisons between similar systems.

The process of calculating a satellite system's quality in this way is known as a link budget analysis - so called because it's an analogy with a financial budget, comparing gains and losses in the link between satellite and receiver to give a final result in terms of picture quality.

No Accounting For Taste

The main problem in any communications system (but particularly in TVRO systems) is the level of noise which the receiver output contains. A communications system's noise level is typically quoted in relation to received signal level as a signal-to-noise ratio (S / N), where the S / N ratio is given in decibels (dB) by:

$$
\mathrm{S} / \mathrm{N}=10 \log \left(\frac{\text { signal power }}{\text { noise power }}\right)
$$

Most readers will know this and no further time needs to be spent here. However, the S / N ratio depends on a number of other factors within the overall system, particularly regarding satellite television reception. So we need to consider further these related factors.

To do this we must consider some basic transmission calculations. A transmitting satellite rotating in the geo-stationary orbit (GSO) is sufficiently far away from the Earth to be considered an isotropic radiating source since it appears from an Earth viewpoint to radiate in all directions (Fig. 1a).

In reality of course this is not the case as all satellites use directional transponders (Fig. 1b) - they are only effectively isotropic (remember this term) as far as the earth-bound observer is concerned.

We can calculate an antenna's received signal from an isotropic source if we first calculate the flux density of the-source at say a distance D_{s} because all the radiated signal must pass through an imaginary sphere

Fig. 1 Satellite transmissions viewed from Earth (a) A satellite is sufficiently far from Earth to appear as an isotropic transmitter (b) Directional transponders are always used on a satellite but the effect is still isotropic
of radius D_{s} around the source. The resultant flux density is given by:

$$
F=\frac{P_{t}}{4 \pi D^{2}} W m^{-2}
$$

where P_{t} is the transponder power.
If a receiving antenna is presumed to be positioned on the circumference of the imaginary sphere then two main points are illustrated by this relationship:

- flux density decreases with distances from the source (fairly obvious) as an inverse square
- flux density (in watts) received at the antenna can be simply calculated if the area of the antenna (in m^{2}) is known.

With a satellite's directional transponder a gain $\mathrm{G}(\theta)$ occurs in a direction θ, where gain is defined as the ratio of power per unit solid angle radiated in a given direction to the average power radiated per unit solid angle. That is:

$$
G(\theta)=\frac{P(\theta)}{P_{0} / 4 \pi}
$$

where $P(\theta)$ is the power radiated per unit solid angle,

Fig. 2 EIRP footprint of Eutelsat F1. Orbital position in GSO is 13° east
P_{0} is the total power radiated and $G(\theta)$ is the gain of the transponder at an angle θ. The angle corresponds to the direction in which the transponder is pointing.

So for a transponder of power P_{t} watts and gain G_{t}, the flux density is:

$$
F=\frac{P_{t} G_{t}}{4 \pi D^{2}} W m^{-2}
$$

The product $P_{t} G_{t}$ is usually called the effective isotropically radiated power or the equivalent isotropically radiated power (both abbreviated to EIRP). The terms merely signify the fact the unidirectional transponder is looked upon by the observer as equivalent to a real isotropic source radiating in all directions.

As we've already seen the power received by an antenna can be simply calculated knowing the flux density and the area of the receiving antenna. For an ideal antenna the received power is given by:

$$
\mathrm{P}_{\mathrm{r}}=\mathrm{FA}
$$

where P_{r} is received power, F is flux density and A is antenna area.

In practice however, no antenna is perfect and an efficiency, known as the aperture efficiency η, of between $60-75 \%$ is normal. This aperture efficiency is said to reduce the area of the antenna's receiving aperture to give an effective antenna area A_{e} where:

$$
A_{c}=\eta \mathrm{A}
$$

For a practical antenna the received power is therefore:

$$
P_{r}=F A_{e}
$$

So in terms of EIRP received power of a practical antenna is given by:

$$
P_{r}=\frac{P_{t} G_{t} A_{\mathrm{e}}}{4 \pi D^{2}}
$$

In other words, received power depends only on the satellite's EIRP, the antenna's effective area, and the distance between the satellite and the antenna.

We can consider this relationship another way, where the term:

$$
L_{s}=\frac{1}{4 \pi D_{2}}
$$

is known as the spreading loss, or the path loss (in fact it is not a loss in the strict sense at all - it merely accounts for the way energy spreads out as the trans-
mitted wave travels away from the source). The received power can now be calculated as:

$$
\mathrm{P}_{\mathrm{r}}=\frac{\mathrm{EIRP} \times \text { effective antenna area }}{\text { spreading loss }}
$$

and, because all these terms usually are quoted in decibels (that is, logarithmically) then:

$$
\mathrm{P}_{\mathrm{r}}=\mathrm{EIRP}+\mathrm{A}_{\mathrm{e}}-\mathrm{L}_{s} \mathrm{~dB}
$$

Again, this represents the ideal situation and in practice other losses such as attenuation due to weather (particularly rainfall) have to be taken into account.

Practical Example

To put things into perspective at this point, we can consider a real antenna site (such as in my back garden) and perform a few calculations to show the idea.

Figure 2 shows the footprint in terms of EIRP of the Eutelsat F1.satellite, positioned at 13° east in the GSO. Each ring of the footprint represents an EIRP 'contour' within which area the EIRP is numerically indicated in units of dBW. Over most of Britain the EIRP is 46 dBW .

The units dBW simply means that the power level is referred to 1 W . In other words 1 W is signified by 0 dBW . A positive dBW level means the power is greater than 1 W , a negative dBW level means the power is less than 1W. Another common reference power is in units of dBm where the level quoted with those units is referred to 1 mW - so that 1 mW is signified by 0 dBm . Both units are common in communications engineering.

Now in my back garden (in the wilds of the East Midlands) the distance from Eutelsat F1 and the antenna happens to be about 38747 km . So the spreading loss in my back garden is:

$$
\begin{aligned}
L_{s} & =\frac{1}{4 \pi D^{2}}=\frac{1}{4 \pi\left(38747 \times 10^{3}\right)^{2}} \\
& =\frac{1}{1.8866 \times 10^{16}} \\
& =5.3 \times 10^{-17}
\end{aligned}
$$

Expressed in decibels, this is: $10 \log \left(5.3 \times 10^{-17}\right)$ or -162.76 dB .

Using a 1.5 metre diameter antenna, the actual area is πr^{2} or $1.767 \mathrm{~m}^{2}$. With an aperture efficiency of, say, 60% (about right for most antennae), the effective antenna area is $1.06 \mathrm{~m}^{2}$, expressed logarithmically this is $0.25 \mathrm{dBm}^{2}$.

It's difficult to define exactly the loss which may occur due to weather conditions but generally 2 dB is about right.

Calculating the received power is now just a simple matter:

$$
P_{r}=46+0.25-162.76-2=-118.51 \mathrm{dBW}
$$

which means that only 1.4 picowatts of signal power (work it out for yourselves) is received by the antenna - not a lot!

The received power we've worked out here is normally referred to as the carrier power and given the symbol C. In frequency modulation (such as existing satellite television services) and phase modulation systems the two are equal because the carrier level is constant, whether or not a signal is modulated onto the carrier.

Most signal-to-noise calculations for satellite systems use estimates of carrier power rather than signal power and subsequent signal-to-noise ratios normally are quoted as a carrier-to-noise ratio (C/N).

Noise

Having calculated the received carrier power, we now have to consider the noise present so that we can compare the two.

Noise in satellite television reception systems follows a classical receiver convention (shown in Fig. 3a) where the receiving antenna is connected to a demodulator through a high-gain amplifier. In a satellite reception system the high-gain amplifier is only one part of the low noise blockdownconverter (LNB). All important parts of the LNB are shown in Fig. 3b.

The noise we want to measure is that noise present at the demodulator input and this is made up of noise which is contributed by various parts of the system including the antenna itself, the waveguide and the high-gain low-noise amplifier (LNA). Although parts following the LNA also contribute noise, their effects are negligible in comparison and so can be ignored.

At the microwave frequencies involved in satellite communications systems, all objects with a temperature above OK generate noise and so contribute to the total system noise. This thermal noise is usually calculated in terms of noise temperature by relating temperature to the thermal energy produced by the random movement of electrons, with Boltzmann's constant. Noise is generated by an object at each frequency, so the bandwidth of the receiver also bears directly on the amount of noise present at the demodulator input.

The noise power present at the demodulator input is given by:

$$
P_{n}=k T_{s} B
$$

where k is Boltzmann's constant $\left(1.38 \times 10^{-23}\right), T_{s}$ is the total system noise temperature in degrees Kelvin and B is the receiver bandwidth in Hz .

Total system noise temperature is a combination of the noise temperatures of antenna and LNB. LNB noise temperature may be given by the manufacturer or can be calculated from the LNB's noise figure (NF) which is usually quoted in decibels. LNB noise temperature is:

$$
T\left(\operatorname{antilog}\left(\frac{N F}{10}\right)-1\right)
$$

where T is the temperature in degrees Kelvin (usually taken as $17^{\circ} \mathrm{C}-290 \mathrm{~K}$).

Antenna noise temperature is a bit more difficult to estimate as it varies with antenna, elevation angle and received frequency but manufacturers should supply figures and results are typically in the range 40 K to 90 K .

In practical terms (my back garden again!) for an antenna with a noise temperature of 60 K , an LNB noise figure of 2.5 dB and a receiver bandwidth of 30 MHz , we can now calculate the noise power present at the demodulator input. The LNB noise temperature is:

$$
290\left(\operatorname{antilog}\left(\frac{2.5}{10}\right)-1\right)=225.7 \mathrm{~K}
$$

so the total system noise temperature is $225.7 \mathrm{~K}+60 \mathrm{~K}=$ 285.7K.

The noise power at the demodulator input can now be calculated as:

$$
P_{n}=1.38 \times 10^{-23} \times 285.7 \times 30 \times 10^{6}
$$

or, logarithmically in decibels:

$$
\begin{aligned}
& =-228.6+24.6+74.8 \\
& =-129.2 \mathrm{dBW}
\end{aligned}
$$

Fig. 3 Sources of noise in a satellite reception system (a) The basic system receives signals from the satellite via the antenna then amplifies the signal before demodulation (b) In practice the LNB contains a waveguide, a low-noise amplifier (LNA) and IF filter and is connected to the main receiver with coaxial cable

Knowing this and using our previous calculation for carrier power the available C / N ratio can be calculated as:

$$
\begin{aligned}
\mathrm{C} / \mathrm{N} & =(-118.51)-(-129.2) \\
& =10.69 \mathrm{~dB}
\end{aligned}
$$

Putting Us In The Picture

A simple C / N ratio like this doesn't mean a lot to the uninitiated so we need to look further into what it represents. Measurement of quality of a television picture is a highly subjective area (an adequate picture for one person is no good for another) but the International Radio Consultative Committee (CCIR) has defined a picture quality assessment plan which uses a five-point grading system. This, related to a system's CN ratio, is listed in Table 1 and shown in graphical form in Fig. 4.

From these we can see that a practical C/N ratio of 10.7 dB (the system in my back garden) gives a picture which is classed as only just fair. Even more worrying than this, however, is the fact that such a low C / N ratio is probably close to the receiver's FM threshold margin (typically around $8-9 \mathrm{~dB}$) and so impulse noise interference showing up as black and white flashes or dots on the screen - the infamous 'sparklies' - could occur.

If this was a real system which I was about to buy, I'd want to know how I could improve the picture quality a bit. Let's go back to the calculations for C / N ratio to find out how. The overall ratio is given (in decibels by:

$$
\frac{C}{N}=\frac{P_{r}}{P_{n}}=\frac{E I R P+A_{c}-L_{s}-\text { weather loss }}{k+T_{s}+B}
$$

Some of the factors in the calculation are constant EIRP, spreading loss L_{s}, Boltsmann's constant k - and cannot be altered. Weather loss (estimated at about 2 dB , is of course not constant but cannot be ignored as worst-case weather situations must be accounted for. The others depend on physical parameters such as antenna size and efficiency, LNB noise temperature and receiver bandwidth, so a number of measures can be taken to improve C / N ratio and the picture quality.

A larger or a more efficient antenna will give a greater carrier power so improving the C / N ratio. Conversely, an LNB with a lower noise temperature will decrease the noise power, so improving the C / N ratio. Also, reducing the receiver bandwidth will decrease the noise power - but there is a limit to how small the receiver bandwidth can be! - 30 MHz is about the minimum. Some satellite television channels (Sky Channel) have a baridwidth of as little as 27 MHz but others (Superchannel) have a bandwidth of as much as 36 MHz .

If receiver bandwidth is too low, not all the channel will be demodulated and results such as a tearing effect on video scenes with a sharp vertical edge can be caused.

This leaves me and my back garden with a simple choice: get a bigger antenna, a better antenna or a higher quality LNB. Now, the wife's already up in arms about having a monstrous brilliant white 1.5 m dish out there and she's not going to let it grow just to get a better picture so a better antenna and better LNB is the answer.

Using an antenna with an efficiency of, say, 65\% and an LNB with a noise figure of, say, only 1.5 dB (some of the most recently produced LNB's can meet this requirement) we can now re-calculate the C / N ratio.

Effective antenna area is now 65% of $1.767 \mathrm{~m}^{2}$ ($1.15 \mathrm{~m}^{2}$) or in decibels: 0.6 dB . LNB noise temperature is now:

$$
290\left(\operatorname{antilog}\left(\frac{1.5}{10}\right)^{-1}\right)=119.6 \mathrm{~K}
$$

and total noise temperature is $119.6 \mathrm{~K}+60 \mathrm{~K}=179.6 \mathrm{~K}$ or in decibels: 22.5 dB . Final C / N ratio now becomes:
$\mathrm{C} / \mathrm{N}=4+0.6-162.76-2-(-228.6+22.5+74.8)$ $=13.14 \mathrm{~dB}$

This result corresponds to a picture quality which is close to being good on the CCIR five point scale and l'Il certainly accept it. Generally, a C/N ratio of about this 13 dB figure should be aimed for when doing a link budget analysis. This should allow for extremes of weather conditions, minor antenna pointing inaccuracies and the like.

Figure Of Merit

Overall receiver performance is sometimes quoted as a figure of merit which is its gain over temperature (G / T). All receiver parameters such as antenna gain, total system noise temperature and so on are catered for in this G/T figure and so the figure of merit is related to the C / N ratio and one can be calculated from the other (approximately) according to the relationship:
$C / N=E I R P+G / T-53 d B$
or inversely:

$\mathrm{G} / \mathrm{T}=\mathrm{C} / \mathrm{N}-\mathrm{EIRP}+53 \mathrm{~dB}$

So, the practical example of the system in my back garden (with improved antenna and LNB) has a figure of merit of:

$$
\begin{aligned}
\mathrm{G} / \mathrm{T} & =13.14-46+53 \\
& =20.14 \mathrm{~dB}
\end{aligned}
$$

Next month, to round off this series, I shall look at three specific STV systems in detail.

Quality	Grade	Impairment	Approx C/N (dB)
Excellent 5 Imperceptible Good	4	Perceptible but not annoying	15
Fair	3	Slightly annoying Annoying Very annoying	10
Poor Bad	2	7	

Table 1 CCIR picture assessment compared to satellite receiver carrier-to-noise ratio

Fig. 4 CCIR picture quality assessment compared to carrier-tonoise ratio at the demodulator input of a satellite receiver

Our very latest kit for the discerning enthusiast of quality sound and an exotic feast for lovers of designs by John Linsley-Hood. A combination of his ultra high quality FM
tuner and stero decoder described in "ELECTRONICS TODAY INTERNATIONAL" and the Synchrodyne AM receiver described in "Wireless World". The complete unit is cased to match our 300 Series amplifiers. Novel circult features in the $F M$ section to include ready built pre-aligned front-end, phase locked loop demodulator with a response
down to $D C$ and advanced sample and hold stereo decoder together make a tuner which sounds better than the best of the high-priced exotica but. thanks to HART engineering, remains easy to build. The Synchrodyne section with it's selectable bandwidth provides the best possible results from of split programming. If you want the very best in real hif listening then this is the tuner for you. Since all components are selected by the designer to give the very best sound this tuner is not cheap, but in terms of it's sound it is incredible value for money. To cater for all needs four versions are
avaliable with variations up to the top of the range full AM/FM model. with any unit being upgradeable at any time. Send for our fully illustrated details.

STUART TAPE RECORDER CIRCUITS
Complete stereo record, replay and bias system for reel-toreel recorders. These circuits will give studio quality with optimum performance and allow a third head monitoring system to be used where the deck has this fitted. Standarव 250 mV input and output levels. These circuits are ideal fo bringing that old valve tape recorder back to life.
K90ow Stereo Kit with Wound Coils and Twin Meter
Drive . .. $£ 65.67$ RJS1 Reprints of Original Articles.......... \&1.30 no VAT

Complete record and replay circuits for very high quality low noise stereo cassette recorder. Circuits are optimised for our
HS16 Super Quality Sendust Alloy Head. Switched bias and equalisation to cater for chrome and ferric tapes. Very easy to assemble on plug-in PCBs. Complete with full instructions.

Complete Stereo Record/Play Kit

VU Meters to suit ï ïile.
Reprints of original Articies
860 X Stereo Mic Amplifier.
£2.30 each
75p no VAT
Superb INSLEY HOOD 300 SERIES AMPLIFIER KITS
Hoods articles in 'lifi News'. Ultra easy assembly and set-up with sound quality to please the most discerning listener. Ideal basis for any domeste
sound system if quality matters to you. Buy the kit complete and save pounds off the individual component price.
K300-35. 35 Watt. Discount price for Complete Kit . $£ 98.79$ K300-45. 45 Watt. Discount price or Complote Kit $\varepsilon 102.36$
RLH485. Reprints of Original Articles from Hi-fi News
RLH485. Reprints of Original Articles from Hi-Fi News

HART ELECTRONICS are specialist producers of kits for by the designer.

PINEAPPLE SOFTWARE

Programs for the BBC model ' $\mathrm{B}^{\prime}, \mathrm{B}+$, Master and Master Compact with disc drive

 DIAGRAM II - nou also available for RaCHIIEDESPCB Diagram II is a completely new version of Pineapples popular 'Diagram'
drawing software. The new version has a whole host of additional features Which make it into the most polverful and yet quick to use drawing. erogram available for the BRE micro. The new features mean that Diagram If can now be used for all types of drawings, not just cirouit diagrams. Scale
drawings are possible and the facilities for producing circles and rubber and
banded lines togeether with the pixel drawing routines make any type of
drawing possible. This advert has been produced completely using Diagram II

Sunaary of Diagran II features:-
works on all model BBC computers and makes use of Shadow memory if poss Rubber band dining and cout incles with automat ic
Makes use of the Acorn $Q \times R$ rom to produce ellipses, arcs, sectors, chords Pixel ard flowing filling ing ans very fine detait to be added.
Defined areas of screen may be moved, copied, deleted or saved to diso. On-screen cursor position indication allows scale drawings to be made. Keyboard keys may be defined to print User Defined Characters allowing new oharacter sets to be used. 9. Wordprocessor files may be loaded and formatted into defined areas 1. Compatible with Marconi Trackerball and most makes of mouse 2. All' Diagram Ut ilities' are included.
13. Completely' scaleable print rout ines
printed soither horizontally or through any area of the diagram to be varied in 1% steps allowing up to 18 mode 0 screens to be printed on 14. Smooth scrolling over the whole area of the diagram.

DIAGRAM II $-£ 55.00+$ Uat paptree MARCONI TRACKERBALL
For Model ' E^{\prime} and $\mathrm{B}+$ (With Icon Artmaster)
For Master 128 (with Pointer Rom)
For Master 128 (with Pointer Rom)
Pointer Rom (available separately)
Trackerball to mouse adapters
Postage and Packing on Trackerballs

All orders sent by return

Pineapple's now famous PCB drafting aid produces complex double sided PCB's very rapidly using any model BgC mioro and any FX compatible dot-matrix printer sides of sides of the board in red and blue either separately or superimposed. Component The print routines allow a separate printout of each side of the board in an expanded definition high contrast $1: 1$ or $2: 1$ scale. The print time is typically superb mins, for a 1 il print of a details and sample printouts

 PCB AUTO-ROUTING
This brand new addition to the PCB program greatly increases the, power of the software and speeds the A Iist of up, to 190 connections may be entered in the form of a 'rats nest' and then the computer does the rest! You may specify which side of the board choice to the computer, and you may al so say wheth tracks should be allowed to pass between I.C. pins full features are auailable on a standard model' B.
please write or 'phone for full details. COIPLETE RUTOROUTE PRCKRGE
(Including manual Epron)
185.00 + va

ADFS Utilities Rom

RDu is an invaluable utility for all ALFS users. It adds over 22 new facility with over 35 sub commands covering areas such as repeated disc compaction, saving and loading Rom images, auto booting of files and many more, Copying of DFS discs onto ADFS disCs can be made in one pass with automatic
creation of the required directories on the ADFS disc. All funotions are fully creation of the required directories on the ADFS disc. All functions are fully
compatible with Winchester divives including *BACKIP which allows backing up of Winchesters onto multiple floppies.
 PRICE \& $29.08+$ vat
MTEYSPICE - Powerful A.C. \& D.C. circuit analyser package - E119.88

MICRO
 CIRCUITS

Malcolm Brown takes a look at two programs for the BBC micro and Amstrad CPC machines to help the amateur circuit designer.

n the March 1987 issue of ETI we took a look at several programs for the BBC micro to help you design and draw circuits and PCB foils. One of the winners of that selection was Diagram from Pineapple Software. Now Diagram has been been completely rewritten with many additions and improvements as Diagram II. First, however, we'll look at a new contender - a PCB design package for Amstrad CPC micro users.

PCB Drafting Utility (cassette) £19.99 £21.99 (disk) CADsoft, 18 Ley Crescent, Astley, Tyldesley, Manchester M29 7BD.

The humble Amstrad CPC range of micros provide a lot of computer for not very much money so it is about time they were used to help the struggling electronics enthusiast.

This package is a PCB design tool to produce paper artwork of foils for subsequent photographic transfer to celluloid for UV exposure and etching.

The program is available on cassette for CPC464 users and on 3in disk for those with a CPC664 or CPC6128.

The program is in two parts - the editor and the plotter. Both sections are based on Basic programs with machine code routines.

The editor is used first to create your PCB design. PCBs up to 25×25 in can be designed. The screen display shows a greatly enlarged section - about $4 \times 21 / 2 i n-$ at any time. However, the whole PCB can be drawn on at a time if you can manage to do this 'blind'.

This is more useful than it seems at first because it means a track can run for more than the width of the screen and still be drawn in one go.

This is a drawing package which stores the start and end co-ordinates of the lines (tracks) and points (pads) and suffers from the problems associated with this method. Although the whole PCB is much larger than the screen window, you cannot scroll across it. Instead the screen must be entirely redrawn from a new viewpoint each time.

However, that aside, drawing a PCB with this package is easy enough. There are three structures which can be drawn - pads, tracks and DIL packages (which are really just collections of pads - so there's only two structures after all).

Tracks are drawn by rubber banding. The cursor is moved around in discrete 0.05 in steps and the Tab key starts and stops line drawing. The lines drawn on the screen in this way do not directly correspond to the tracks on the final PCB. The final width of the tracks is set separately to $0.0125,0.025,0.0325$ or 0.05 in .

Pads are similarly positioned at the current cursor position and they too can be preset in size to 0.05 , $0.065,0.085$ or 0.1 in .

Both pads and lengths of track can be deleted from the foil by moving the cursor to any part of them and pressing the appropriate key.

Sets of DIL pads are placed on the foil with the function keys and they can be set either horizontally or vertically. The pitch between the rows of pins can be altered to just about any conceivable value but sensible defaults are provided. Setting a row separation of zero provides SIL package pads.

Once on the foil design, the DIL pads are treated as individual pads and must be deleted one at a time.

The program can cope with double-sided boards and both sides are displayed at the same time in different colours. Which side is 'active' - being drawn on at the time - is selected with the U and L keys (upper and lower). All pads are always placed on both sides of the board which can occasionally be a problem.

The completed board can be saved to disk for further editing later or for printout.

The plotter routine uses a standard Epson-compatible dot-matrix printer. Either or both sides of the board can be printed and the printing can be either way around on the paper.

Printouts are made at twice size in four-inch strips which must be joined later for photography and are produced in either a quick draft mode or in the higher quality final mode.

The sections of the foil are drawn out on the screen before dumping to the printer and it is here that the real quality is shown. In this mode the tracks and pads
are expanded to their intended size and the pads take on the normal elongated oval shapes.

CADsoft's PCB Drafting Utility is adequate for most amateur use but it is not to the quality of Pineapple's PCB program (see that March 1987 review) for the BBC micro.

The Amstrad CPC micros have a far greater potential for this kind of work because of their vastly increased memory. However, some silly scrappy Basic programming mistakes (such as overwritten menu prompts and no disabling of the potentially lethal Escape key) means this program cannot be considered a truly professional tool.

Diagram II
 £55+VAT (exchange deals available for Diagram I users). Pineapple Software, Brownlea Road, Seven Kings, Ilford, Essex IG3 9NL. Tel: 01-599 1476.

There are many drawing packages around for the BBC micro but this one uses an entirely new method of storing the picture to make it particularly suited to drawing circuit diagrams.

Many other drawing packages store the start and end co-ordinates of all the lines in the picture along with a code to determine whether a line is drawn or a rectangle or whatever. This can be wasteful of disk space and makes editing the picture slow and difficult.

Other programs (usually the more 'artistic' ones) store the memory mapped screen RAM. This is usually quite economical on storage space but useful editing is nearly impossible.

Diagram II uses neither of these methods. Instead, the picture is stored as an array of character codes (an extended ASCII coding system is used) with the bit map definitions corresponding to each code stored separately.

Of course with a picture (such as an artistic work) with a great deal of variation across it, this is an uneconomical method, to say the least.

However, with a diagram consisting of a great many repeated symbols and sections (as is a circuit diagram) this method is economical and has a few other great advantages.

Most important is the speed in which the diagram can be drawn. This not only means that it can be produced on the screen and edited quickly but also that the section shown on the screen can be just a part of a much greater whole. Diagram II allows smooth scrolling across a complete diagram of up to 30 Beeb mode 0 screens.

This method also allows the complete multiscreen diagram to be easily displayed on one screen with each pixel representing each character of the full sized screen. A complete diagram of up to 8×8 screens can be displayed in this reduced form for checking the 'whole look' of the diagram.

Despite this unique system, when using the program you would not know that Diagram II is any different from other drawing packages. The mechanics of it all are very cleverly hidden. The cursor is used to move around the diagram and a line is left trailing behind. The program automatically lays down the correct line character needed at that point in the diagram. Turn a corner and a right angle turn character is printed, cross another line and a cross character is printed at the intersection.

A 'blob' can be left at line intersections just by

pressing Ctrl as you pass over the join. Now that just isn't possible with other types of drawing package. They require a precise positioning of a blob symbol after the lines are drawn.

This character system also means diagrams are naturally and easily kept aligned and 'square'. It is genuinely difficult to not draw neat and impressive diagrams using this software.

That's all very well for vertical and horizontal lines, but Diagram II can also make use of 'rubber banding' to draw all the diagonal lines in between or for tracing an irregular shape. Amazingly, this still uses predefined characters, automatically selected and positioned to make up all the line sections.

As well as straight lines, Diagram II running on a Master or model B with Acorn's GXR ROM can produce circles, rectangles, ellipses, arcs and triangles, either filled or in outline, to build up large shapes. Without the GXR ROM only circles and filled triangles can be created.

Again, although drawing these shapes is performed with the cursor and is as easy as with any drawing package, the end result is made up of individual predefined characters which go to make up the complex shapes.

Text is positioned on the diagram simply by typing it in when the cursor is at the right position. Text can also be taken from a file created with Wordwise Plus and automatically fitted in a defined section of he diagram.

Diagram II can produce discrete symbols such as transistors, resistors and so forth. These are also made up of characters - up to 12 normal Beeb 8×8-pixel characters.

With a basic model B BBC micro, 335 characters can be defined, shared between the symbols. With a machine using shadow memory (such as the B+ or Master) 880 Beeb characters can be used.

A definite improvement over the old program is the ability to delete unwanted symbols and so free the characters for use with new ones. The complete set of symbols or just a limited subsection from one diagram can be saved to disk to use with another diagram - again a useful addition.

To design these symbols a very effective character definer is provided. There have been many such definers produced for the BBC micro but this is one of the best I've seen. It is fast and simple to use. As well as allowing the symbols to be defined one pixel at a time on an enlarged grid, complete symbols can be emptied

or flipped horizontally or vertically
The character definer can of course be used to define new styles of text characters and these can then be inserted in the diagram just like 'normal' text, from the keyboard.

Each character has a 'direction' defined along with it. This controls the cursor movement after the character is positioned on the diagram. The direction can be defined in any of the four compass directions so that, say, a complete set of upside down characters could be typed right to left straight from the keyboard without fiddling with the cursor between characters.

Any area of the diagram can be defined with the cursor and then deleted, moved, copied to another part of the screen or saved to disk to be inserted into another part of the program or into another diagram altogether.

Borders can also be added in one single movement

AUDIOKITS PRECISION COMPONENTS

THE $30+30$ INTEGRATED AMPLIFIER
\star DESIGNED FOR OUTSTANDING SOUND QUALITY
\star VERY HIGH QUALITY COMPONENTS SUPPLIED
\star LOW TEMPERATURE GENERATED DISTORTION
\star ULTRA LOW NOISE MC STAGE

* CLEAN SOUND RIGHT UP TO FULL OUTPUT
$\star 7$ SEPARATELY RECTIFIED POWER SUPPLIES GIVES
OUTSTANDING STEREO IMAGERY
* LATEST KITS HAVE IMPROVED HEAT SINKS AND LOWER RESIDUAL NOISE

IMPROVED VERSION ALSO FEATURES

\star BULK FOIL RESISTOR (Temp. Coefficient 5 ppm $/{ }^{\circ} \mathrm{C}$) IN CRITICAL PLACES
\star HOLCO RESISTOR S FOR OUTPUT TRANSISTOR EMITTER RESISTORS
\star POLPROPYLENE AND POLYSTRRENE CAPACITORS

* LONG LIFE ELECTROLYTIC CAPACITORS
\star GOLD PLATED PHONO SOCKETS
Ł EXTRA OUTPUT TRANSISTORS FOR 40 WATT OUTPUT
PRICES Standard $30+30$ kit $£ 172+£ 6 p \& p=£ 178$
Standard with extra $0 / p$ transistors $£ 185+£ 6$ p\&p $=£ 191$ Improved kit $£ 380+£ 6$ p\&p $=£ 386$
Export version to order with 110 V or 220 V primary transformers. P\&P charges by quotation. Delivery 14 to 21 days, but can be ionger as lead times for manufacture of ETI VIRTUOSO PREAMP KITS, PCB'S AND ALL PARTS AVAILABLE. ETI System A Preamp \& Power Amp ETI Audio Design Preamp \& Power Amp
Amazing how many ETI readers are still building system A and Audio Design pre and power amps, many years later. Most are using higher grade parts recommended and supplied by Audio kits and enjoving much better sound quality than the originaldesign.
Special parts list available on request.

For details of Audio Kits components and kits, please send SAE ($\left.9^{\prime \prime} \times 4^{\prime \prime}\right)$ (overseas 3 IRCs) to: AUDIOKIIS, 6 Mill Close, Borrowash, Derby DE7 3GU. Tel: 0332674929
and existing diagrams changed in size for additions or shifted across an enlarged diagram.

The completed diagram is stored on disk or printed on a standard Epson compatible dot-matrix printer at just about any size from three screens to just one character across a sheet.

All the parameters entered to control the size, position and codes used for the printout can then be saved to disk to save time for later repeat runs.

The quality of printing is the last factor which makes Diagram II so outstanding. This package really is capable of producing top quality diagrams. It is difficult to see how this package could now really be improved. For anyone looking for ways to edit, store and print out professional circuit diagrams with a bare minimum of equipment, Diagram II is the only answer.

ETI

IT'S NEW, IT'S HERE AND ONLY AVAILABLE THROUGH ETI MICRO MINIATURE SURFACE MOUNT PROJECTS

You've heard about them, probably seen and marvelled at them inside your calculator or watch and now you can begin using them with the latest range of surface mounted component kits from SUMA DESIGNS. All the kits are of well proven, inhouse design and come complete with all components individually packed for easy identification, high quality fibreglass, surface mount, solder resist P.C.B., full assembly and circuit instructions. All you need is a pair of tweezers, a fine-tipped iron and a steady hand. Using assembly techniques developed to cope with our own prototype and batch manufacture you can be assured of success. To make things even easier we have developed a custom made component jig which although not essential greatly simplifies assembly and is well worth the investment. A full range of SM components are also stocked for your own projects.

SM20: SOUND TRIGGERED SWITCH:
813.95 Triggersfrom slightest sound. LED . indication. variable sensitivity.
SM21: DIGTAL DICE
Touch control. roll down speed SM LED readout.
SM22: VHFFM TRANSMITIER: Complete with mic, tuneable over 88-108 band.
SM23: LIVE WIRE DEIECTOR
Non-contact indication of live wires, blown fuses etc.
SM24: VHFFMBI EEPER
Transmits constant bleep to nearby FM radio. Tuneable.
CHJ22: Custom designed assembly jig for speedy and accurate assembly.
Send 9×4 S.A.E. for full details of these and other kits plus all components available. All prices are inclusive but please add $£ 1.50$ per order to cover post \& packing.
AUNS DESIGNS

Warwickshire. CVO 2LE Telephone:os27--714+7,

NII

 IN THE NEW STYLE mimis вода Circuift arnoous- Oscilloscope Digital Storage Unitestronic constructo - Temperature Controlled Irons - 5 and 50W RF Power Heads - ££Es of Discount Vouchers - Easy to Enter Competition - Quanity Price Discounts - PCB Prototyping System - 2 new HF Receiver kits - 24 hour order line - Component Packs - 12 new books - Special Offers

PACKED WITH NEW LINES

Available from your local newsagent or direct from Cirkit at

Cirkit Distribution Ltd. Park Lane, Broxbourne, Herts EN10 7NQ Telephone (0992) 444111 Telex: 22478

The K5000 Metal Detector Kit combines the challenge of DIY Electronics assembly with the reward and excitement of discovering Britain's buried past.
THE KIT - simplified assembly techniques require little technical knowledge and no complex electronic test equipment. All stages of assembly covered in a detailed 36 page manual.
THE DETECTOR - features Analytical Discrimination \& Ground Exclusion, backed by the proven pedigree of C-Scope, Europe's leading detector manufacturer.
Ask at your local Hobby/Electronics shop or contact:-

[^0]
DOMAIN POINTS AGAIN

Paul Chappell pulls his phasors together to find a use for mathematics in circuit design

Last month's article was concerned with the mechanics of manipulating complex numbers with hardly a mention of how this might apply to electronics. This month l'll redress the balance and concentrate on applying complex number arithmetic to circuit calculations.

We haven't reached the end of the mathematics by a long way but it's just as well to keep the final objective in sight - to make AC circuit theory as easy as π.

The Story So Far

In an earlier article (November 1987 Circuit Theory) I demonstrated that in a capacitor with a sinusoidal voltage applied, the current would also be sinusoidal. The ratio of the voltage and current amplitudes at any given frequency is constant so the capacitor can be thought of as having a 'resistance' to sine waves.

Since the apparent resistance varies with frequency and the voltage and current waves are offset by 90°, it's not quite the same as ordinary resistance. It is given the name reactance, the symbol X_{c}, and for a capacitor C at angular frequency ω it has the value $-1 / \omega C$.

For a sinusoidal current of amplitude I, the voltage amplitude will be given by $V=1 \times X_{c}$, just as for an ordinary Ohm's law calculation $\mathrm{V}=1 \times \mathrm{R}$. An inductor has similar properties and a reactance X_{L} of $\omega \mathrm{L}$.

The problem we found with using the straight voltage-to-current amplitude ratio as the 'resistance' of reactive components was that the 'resistances' didn't add for components in series and the usual parallel resistor calculations didn't apply to components in parallel. So the concept of an AC 'resistance' was rather limited in application!

We concluded that this problem arose because the 90° phase difference between voltage and current was not being taken into account. With the aid of complex numbers we are now in a position to correct this flaw and bring out the full power of the ideas.

A Practical Example

Let's take a look at the circuit of Fig. 1(a). To keep our feet firmly on the ground I haven't used normalised values - the frequency and components are those you might find in a real circuit. I haven't specified the input for the moment. All we know is that it's a sine wave of angular frequency 5×10^{6} radians per second (roughly 800 kHz)

The reactances of the inductor and capacitor at this frequency will be $X_{L}=500$ ohms and $X_{C}=400$ ohms. This suggests that the entire circuit has an impedance of 1000 R and that a 1 mA amplitude current should produce a voltage across the circuit of 1 V (both at 800 kHz).

We already know that this doesn't happen and Fig. 1 shows why. Taking the cosine form of the input
current and freezing the phasors at $\mathrm{t}=0$ gives the situation depicted in Fig. 1(b) for the individual voltages across each component and Fig. 1(c) for the combined voltages. The voltage across the entire circuit $\left(V_{\text {in }}\right)$ has an amplitude of 141 mV against a predicted yalue of 1 V . Our estimate was out by a factor of seven!

The diagrams show clearly what has gone wrong. To give the predicted 1 V , the voltages would all have to be in phase so their phasors would add in a straight line. They aren't and they don't!

Ordinary numbers can't take into account the direction of the phasors. All they can do is tell you how long they are. Complex numbers can do both!

Fig. 1 (a) The circuit. (b) The voltages across each component. (c) The voltage across the entire circuit.

Let's begin again. First of all we'll relabel the circuit as shown in Fig. 2. We have now entered the frequency domain! This means every time I mention a current I or a voltage V , they are automatically assumed to be sinusoidal in form (which saves having to state the obvious every two minutes) with amplitudes I and V respectively.

This also means the components are labelled with their complex impedances rather than with their normal component values. We'll see how it works right now.

First of all, we'll set the input frequency to $\omega=5 \times 10^{6}$ radians per second. Now we can work out the impedances of each of the components. $Z_{L}=j 500$, $Z_{C}=-j 400$ (note the minus sign - remember that $1 / j=-j$) and $Z_{R}=100$.

To find the impedance of the entire circuit, just add up the individual impedances. $100+j 500-j 400=100+$ j 100 . If we agree to work in mV and mA , then a 1 mA input current (remember: frequency domain so this means a sinusoidal input current of amplitude 1 mA and not a steady 1 mA current) in cosine form will be $\mathrm{I}=1+\mathrm{j} 0$ (or just 1 for short!). The voltage will be $1 \times \mathrm{Z}_{\text {in }}=1 \times(100+$ $j 100)=100+j 100$ and we're through. Well, almost. My voltmeter doesn't actually register voltages of $100+j 100$!

To express the answer in more familiar terms, we have to translate back to the time domain. The voltage $100+j 100$ has a modulus (length) of 141 and an argument (angle) of $\tan ^{-1}(100 / 100)=45^{\circ}=\pi / 4$. In full, we've discovered that an input current of cos $\left(5 \times 10^{-6}\right.$ t) at the input will give rise to a voltage $141 \cos$ ($5 \times 10^{-6 t+\pi / 4}$) across the input terminals.

Now let's look at the pictures to see what's going on. First of all, we agree to draw our phasors in the complex or z-plane. The phasor representing a current of 1 mA in cosine form points along the positive real axis and is described in complex number form as $1+\mathrm{j} 0$ (we're working in units of $m A$ and $m V$, remember).

This gives rise to a voltage of $(1+\mathrm{j} 0) \times(\mathrm{j} 500)$ across the inductor which comes to $j 500$ or a phasor of length 500 pointing up the positive imaginary axis. There's no need to draw it again - it's there in Fig. 1 (b)!

The voltage across the capacitor comes to -j400 represented by a phasor of length 400 pointing down the negative imaginary axis (as in Fig. 1(b)). The voltage across the resistor you can work out for yourself!

Now we add up the three individual voltages (remember from last month that complex number addition corresponds to addition of phasors in the $z-$ plane) giving the result shown in Fig. 1(c). The voltages due to a unit current add correctly so the impedances must also add correctly, since impedance is exactly that - the voltage per unit current.

Time And Frequency Domains

Just about every circuit you've ever seen in the pages of ETI is in the time domain. All this means is that if you know how the input behaves as a function of time, you can deduce the output - either by calculation, common sense or by reading the 'How It Works' section!

You might ask yourself what happens when the switch is pressed. What happens just after the pulse reaches IC5? When will the output of IC9 go high? All questions to do with time. First one thing happens, then another, then another ... OK, I won't labour the point any more!

Figure 1(a) is a time domain circuit. You could ask what its response is to a voltage step then draw the output as a graph of voltage against time and so on.

Now, we know that if the input to the circuit of Fig. 1(a) was a sine wave, every single voltage and current would also be a sine wave. So asking how the circuit behaves in time is silly. We know already - it gives sine waves.

If we know the voltages and currents in the circuit at any instant in time, we can deduce what they will be for evermore. So to inspect the circuit we suspend the operation at a single instant in time. All the currents and voltages can be visualised as phasors, immobile as frozen twigs on a February morning.

To help with the calculations, we draw a frequency domain circuit as in Fig. 2(a). The input voltage and current are represented by their frozen forms and the components are labelled with their complex impedances which makes it easy to calculate the lengths and angles of all the other frozen twigs.

Having studied the circuit to our hearts' content, we set the phasors spinning again and translate the circuit back into the time domain.

You'll notice that none of the expressions we've used in calculating impedances or whatever has a ' t ' in it. There is no reference to time. The variable we do have at our disposal is the angular frequency ω. Hence the name frequency domain. So far we haven't made use of the ability to vary ω, but that's about to change.

Fig. 2(a). Frequency domain version of Fig. 1. (b) Variation in the voltage across the circuit with frequency

Frequency

Sticking with the circuit of Fig. 1(a), let's see what we can find out about its behaviour at different frequencies. First of all, you'll notice the voltage across L is proportional to frequency. As ω increases, so will the voltage across L. As the frequency decreases, so will the voltage.

For the capacitor, exactly the opposite happens. Up the frequency and the voltage goes down. Reduce the frequency and the voltage rises.

If you think about the effect of this on Fig. 1(c) (assuming an input current of 1 mA at various frequencies) as the frequency increases, V_{c} gets shorter and the V_{L} phasor gets longer. The resultant voltage across the entire circuit gets larger in magnitude and leads the current by a greater and greater angle.

Reducing the frequency increases V_{c} and reduces V_{L} so the overall voltage swings downwards and lags the current by a greater and greater angle. The effect on the voltage across the circuit as a whole is shown in Fig. 2(b) for various frequencies. (It's at times like this I wish I could produce animated graphics with all the phasors altering in length and the voltage phasor gliding along its path. Since we haven't found a way to do it on the pages of ETI, you'll have to use your imagination!)

For some value of ω, the voltage across the circuit will point along the positive real axis. It will be in phase with the input. It will also have its minimum amplitude at this point. (If you can see where this is leading, take the Mrs Beestly prize for supreme cleverness!)

Let's see if we can work out the frequency at which this happens. Looking at Fig. 1(c), it's clear that the condition for the voltage phasor for the whole circuit to point along the positive real axis is that $\mathrm{V}_{\mathrm{C}}=-\mathrm{V}_{\mathrm{L}}$. If this holds, the voltages across the inductor and capacitor will cancel and the voltage across the entire circuit will be equal to the voltage across R. In mathematical terms we require $1 / \mathrm{j} \omega \mathrm{C}=-\mathrm{j} \omega \mathrm{L}$. Solving for ω we get $\omega=1 / \sqrt{L C}$.

If you still haven't caught on, perhaps the more familiar $\mathrm{f}=1 / 2 \pi$, LC will give you a clue!

We've just derived the condition for the circuit to be in resonance. The fact it was obtained so easily is a demonstration of the power of this method of analysis that you'll appreciate if you've ever tried to derive the same result in the time domain with the aid of a page of differential equations!

If you think this is good, you ain't seen nothing yet! Watch this space next month.

ETI

THE LM3524

Arthur Bossard inspects this versatile IC and finds it's good for more than switch mode power supplies

Now that Les Sage has introduced you all to the mysteries of switch mode power supplies (ETI October and November 1987) it seems an appropriate time to look at one of the many control ICs available for the purpose - the LM3524.

This IC is not the ultimate in high-tech, just the opposite, in fact. It is chosen because it is cheap (so you can experiment without heart palpitations at the thought of ten quid going up in smoke!). It is also readily available, doesn't need many external components to make it do its stuff and because it can be used for other control functions (or even as an LED flasher if your imagination deserts you!)

For those not familiar with switching regulators, the LM3524 is a good introduction since the basic functional blocks are not obscured by a mass of control circuitry. There's an over-current sensor, a logic input to shut down the IC in case of faults in other parts of the circuit, and that's your lot.

The functional blocks inside the IC are shown in Fig. 1. The heart of the IC is the oscillator which runs at a frequency set by the resistor and capacitor from pins 6 and 7 respectively. The capacitor is repeatedly charged at a constant current to 3.5 V , then quickly discharged back to 1 V , resulting in a sawtooth waveform at pin 7 .

Forgetting the input amplifier, current limit and all the rest of the paraphernalia for a moment, imagine applying a DC voltage to pin 9 of the IC. (You can actually do it if you want to, as the internal amplifiers are transconductance types and won't be upset by it).

If the voltage at pin 9 is below 1 V , the comparator output will always be high since its positive terminal is connected to the sawtooth waveform which is always above 1 V . If the voltage at pin 9 is a little above 1 V , the comparator output will go low briefly after each discharge of the capacitor. A higher voltage on pin 9 will keep the comparator output low for longer and an input above 3.5 V will keep it low all the time.

So the comparator output is a rectangular wave with a duty cycle controlled from zero to 100% by the voltage on pin 9 . If this wave were fed directly to a single output transistor, we would already have a very basic voltage controlled pulse-width modulator suitable for use in a switching regulator!

The LM3524 has two output transistors to allow for push-pull operation. Where this is not required, the two transistors are connected in parallel. The flip-flop switches between the two transistors on alternate cycles of the oscillator.

The gate input from the oscillator's output is a 'blanking pulse' to give a short period when both transistors are turned off, preventing crossconduction at maximum duty cycle.

You can get a 'feel' for the operation of the IC so far by connecting up the circuit of Fig. 2. The LEDs flash alternately as the flip-flop switches from one output transistor to the other. RV2 sets the oscillator frequency and therefore the flashing frequency. RV1 controls the duty cycle of the out pulses.

Fig. 1 The block diagram of the LM3524

Fig. 2 Demonstrating the basic operation of the LM3524. An LED flasher!

At the ground end of its travel, as soon as one LED turns off, the other turns on (apart from the brief blanking pulse, which won't be visible). As the preset is rotated, the flashing becomes briefer, giving a more 'urgent' look to the display.

This could actually be quite useful for a warning display, or for use with model cars or trains to simulate danger signals.

Strictly speaking, the values of R_{T} and C_{T} (RV2 and C1 in Fig. 2) should not be above 100k and 100 n respectively for reliable operation. What you'll find is that if you try to reduce the frequency too much the
flip-flop won't switch over, so you'll be left with one flashing LED and another that doesn't light at all.

Switching regulator circuits

The basic step-down regulator configuration is shown in Fig. 3. This is broadly equivalent to a standard series regulator. The input voltage can be anywhere between 8 V and an absolute maximum of 40 V . The output (for the component values shown) will be 5 V . The maximum input current, without an external drive transistor, will be 80 mA .

For the small currents involved, L1 will have to be quite high in value to sustain conduction when the transistors are turned off. A value of about 10 mH will be needed. D1 can be a 1 N4148.

The value of C3 will depend on the amount of ripple that can be tolerated on the output. A value of 1 uF is a

Fig. 3 The basic step-down regulator configuration
reasonable starting point. Increasing the value will improve the smoothing but will make the circuit less able to cope with rapid changes of input or load.

A Step Up

The basic step-up regulator configuration is shown in Fig. 4. Once again, L1 can be about $10 \mathrm{mH}, \mathrm{C} 31 \mathrm{uF}$ and for the low frequency and small currents involved D 1 can be a 1 N 4148 . The output voltage will be 27.5 V for the component values shown. The input can be anywhere from 8 V to about 20 V .

The output voltage can be varied by changing the value of R5. If a current limit is needed, it can be connected in the same way as for Fig. 3.

The component values given are intended as a starting point for experiment - this isn't a project! You might like to try finding the limits of each circuit for the values given - particular of the inductor. What is the smallest different in output and input voltage that the circuits will cope with? What is the largest? (Bear in mind that the IC will be damaged by input voltages voltages (Fig. 3) and output voltages (Fig. 4) of over 40 V .)

How does it cope with variations of the load? What is the disadvantage of using too large an inductor? Or too small? What happens if you use a 1 N4001 in for the rectifiers? Or a schottky diode? What happens if you make the value of the smoothing capacitor 10uF or 1000uF?

My theory about electronics is that an hour spent in intelligent experimentation (where if something goes wrong you ask 'why?' - and make damn sure you come up with an answer!) is worth a week reading a text book. That's not to devalue theory but a touch of practical experience gives meaning to what would otherwise be dry and uninteresting facts.

If your amplifiers oscillate and your regulators

Fig. 4 The basic step-up regulator configuration

Fig. 5 Using the LM3524 as a heating controller. The sensor diode characteristic is only important if the set temperature is to be variable. For a fixed temperature, RV1 is used to set the required temperature and the controller then left alone.
don't regulate, it gives you the incentive to get to the bottom of what's going on!

Other applications

The LM3524 is quite a versatile little IC and can be used for other purposes besides switching regulators. One thing that occurs to me is that it could be used for temperature regulation of sensitive components - a crystal oven for example.

In its simplest form, the heating element could be a resistor connected to the output transistor collectors (Fig. 5). The temperature sensing element could be a common or garden diode, arranged so that increasing temperature causes a rise in voltage at pin 1 of the IC. The set point would be controlled by varying the DC offset at pin 1 or the voltage at pin 2 .

Another possibility is to make optically isolated analogue outputs, such as the ones in the recent ETI EEG Monitor. A different approach would be to vary the mark-to-space ratio of the outputs in sympathy with the analogue signal. The circuit (Fig. 6) is similar

to Fig. 2 with the LEDs replaced by the opto-isolator and the two output transistors connected in parallel. Some level shifting is needed on the input to match the available analogue voltage range with the requirements of the LM3524, and IC2 achieves this.

Infra-red remote control? Once you start thinking about it, the possibilities for applying this IC seem endless. Have fun experimenting, and don't forget our Tech Tips page if you come up with something good.

Piease add $£ 3.00$ P\&P for the first item and $£ 1.50$ for each additional item No VAT to be added to the price.

TEST EQUIPMENTS

C83A Digital Power Supply/Voltmeter ($0 / 35$ Volts 1.5 A)
£ 44.95 C83B Digital Power Supply ($0 / 30$ Volts 1 A) C89A Function Generator (2 Hz to 200 KHz) C86A 60 MHz Counter/Timer
C87A Autoranging Capacitance Meter (0.1 pF to 99.9 mF)
MV338 Metal-mains detector
A new range of quality test equipment at the lowest possible price. The C89A ($£ 34.95$) and C86A ($£ 39.95$) are also available in kit form with full construction details. Please add $£ 3.00 \mathrm{p} / \mathrm{p}$ per item ($£ 1.00$ for MV338).

To order send cheque/postal order - please allow up to 7 days despatch for cheque clearance Quantity discount available. Customers who require further information please send S.A.E. Trade and overseas orders welcome. Mail order only.
T.J.A. DEVELOPMENTS

Dept. ETI, 19 Welbeck Road, London W3 OJT.

The following are examples of our proven product designs

- High quality touch dimmer 500W R/Built
£12.99
- Selectable tone generator 9-12V operation £5.50
- 3-Note Electronic Door Chime unit, 9 volt operation, three melodious tones; variable frequency. Kit .. $£ 9.83$
$£ 6.95$
- Miniature FM Transmitter; $60-145, \mathrm{MHz}$. Kit .. R/Built ... £8.95
- 3-Watt FM Transmitter, 80-108MHz. Kit ...

R/Built ...

- 300-Watt Light Dimmer unit for 240 volt mains lights,

4-Code Digital Code unit plus Key Pad - select own code; 9-volt Kit \qquad

- 5-100 Watt Electronic Loudspeaker Overload Protector adjustable. Kit

BLACK ICE ALARM
 Heyolutionary design wheh will de Kit includes all components. PCB
 Kirmcluces all components. P C B serisur thin debleater and full instructions. Kit £17.53 Ready Built $£ 20.75$

- VU Meter 10 LED indicator; -5 to +12dB range. Kit ... $£ 12.99$
- Automatic light controller; automatically turns on and off lights at preset times and triggered by darkness. Kit .. $£ 25.08$
- Mains Wiring and Metal Detector. R/Built £11.00
- Zenith Speech Processor. P-202. R/Built $£ 25.00$
- 18-Watt Car/Home Power Amp. 12-Volt. Kit £13.23
- Amplifier Power Meter; 10-LED indicator from $0.25-100$-Watt Input - 9 volt operation. Kit $£ 9.52$
- Light-sensitive relay unit; variable sensitivity trigger control; senses light or dark - selectable. Kit \qquad
ALL EITS CONTAN FULL INSTRUCTIONS: P.C.B.s AND COMPONENTS. RLL PRICES INCLUDE VAT AND POSTAGE \& PACKING.
OVERSEAS ORDERS-ADD 10\% TO ABOVE PRICES. PLEASE SEND CHEQUE OR POSTAL ORDERS WITH ORDER.

Zenith Electronics, 14 Cortlandt Business Centre, Hailsham, E. Sussex, U.K. BN27 1AE. Tcl: 0323847973 Tclex: 878334

GAS ALERT

Greg Thompson promises not to set the world alight with this top-spec gas detector design

Gas explosions in the home, caravans and the like are becoming virtually a daily occurrence. The ETI modular gas detection system will help to reduce these horrific accidents.

The system will detect and provide early warning of the presence of domestic gas, bottled gas based on methane and explosive vapours such as petrol fumes and other hydrocarbons.

Good Sense

Most inflammable vapour sensors are based on what is known as the 'hot-wire' principle. This involves a small heater element inside the sensor.

The sensor chosen incorporates the usual heater element which is designed to operate at $5 \mathrm{~V}(\pm 0.2 \mathrm{~V})$. The sensor output is quite simply a varying resistance.

This resistance remains stable whilst the sensor is in clean air but the resistance across the sensor drops when gas or explosive vapour is detected.

The heater element and resistive detector are two ideally independent circuits within the sensor.

HOW IT WORKS

Power enters the circuit via a protective fuse. The specified transformer supplies about 10.5 V on the +V rail.

C1, R1 and C2 form a smoothing filter which acts as a safeguard should the unit be powered from an unsmoothed supply. IC1 is a 5 V regulator from which the sensor and IC2 are powered. C3 is an additional smoothing capacitor.

LED1 and its series resistor R2 are positioned across the supply ralls to provide power-on indication.
The heater element of the sensor is fed directly from the 5 V rails. IC2a acts as a voltage comparator blased by resistor R_{L} and the sensor itself. R3 and C4 raise the input impedance and also stabilise the op-amp inputs.

When the sensor detects gas its resistance drops below that of \mathbf{R}_{L} causing the voltage at the inverting input (pin 2) to swing negative which in turn causes the output (pin 1) to go high. The non-inverting input (pin 3) is biased to half the supply potential by R6 and R7 enabling the op-amp to make its comparative decision against the voltage at pin 2.

R10, C5 and R11, D1 form the time delay stage. When gas is detected, pin 1 goes high which will after approxi-
mately 13 seconds take pin 5 high (the non-inverting input of IC2b).
If the gas dissipates within 13 seconds, pin 1 returns low (its normal state). C5 then discharges through R11 and D1. Pin 1 must remain high for the full duration of the 13 seconds before the final alarm is triggered.
Any brief encounter with gas will be shown by the illumination of amber LED2. This is turned on whenever pin 1 goes high via R9 and Q1.

IC2b again serves as a voltage comparator also blased by R6 and R7. If gas is detected for a longer period than 13 seconds the non-inverting input (pin 5) is held high causing the output (pin 7) to also go high. When this happens Q2 and Q3 are also turned on thus switching on the buzzer, red LED3 and reed relay RLA1 via Q3.
The coil of the reed relay also serves as a series resistance for LED3.

Pin 8 and 14 of the relay form a single pole switch. These contacts are normally open and close when the device is triggered.

Push-button SW1 when closed will test the entire circuit. This takes pin 2 low via R4 in the same way that the sensor operates when it has detected a presence of gas.

Fig. 1 The circuit diagram of the Gas Alert

As with all hot-wire sensors, respect must be given to current consumption. The heater element in this sensor will draw approximately 170 mA when supplied by a 5 V regulator. This current drain compares favourably
with other available devices.
Talking of other devices, use of the 'two dome' sensor/ compensator type detector should be avoided. These detectors consume more current and are rendered useless if allowed to
absorb silicone. Gas alarms that are utilised in domestic applications can easily become contaminated with the silicone used in many household spray polishes.

It may seem strange or even

The Sensor

Whilst most of us are more interested in the electrical and environmental characteristics of the sensor, the physical philosophers and philosophically fit will be eager to learn how it works. You will see from Fig. 2 that the heater element passes through a small ceramic tube. This is coated with a layer of tin oxide, SnO_{2}.

If tin oxide is heated in a 'clean air' atmosphere, oxygen is absorbed into the surface layer. The rate of absorption remains constant at a given temperature. If, however, a contaminant combustible gas is introduced, this will also be absorbed.

The reaction of a combustible gas with the oxygen causes electrons to be released from the oxygen giving the tin oxide greater electrical conductance. This all takes place between the two electrodes at either end of the ceramic tube. The resultant factor is increased conductivity which is equal to the lowering of its electrical resistance.

Fig. 2 The hot wire gas sensor
absurd to incorporate a heater element in a gas sensor as such a system appears to be a source of ignition itself.

The sensor type used here has been vigorously tested in an atmosphere of $2: 1$ hydrogen/ oxygen - a very explosive mixture. These tests were carried out under normal conditions and with an internal spark, both without causing ignition. This is due to the extremely fine stainless steel gauze used in the construction of the sensor.

The sensor itself is an internationally proven and accepted device and we stress it cannot itself be a source of ignition. However, careful consideration must be given to the
circuit and system in which it is used.

It's OK for your electric toaster to blow you off the face of the earth but if your gas alarm does the same, it's not on, is it?

It is worth pointing out at this stage that due to relatively high current power consumption it is neither practical nor recommended to operate such a gas detector from dry cell or NiCd batteries.

In our design we have incorporated an independent relay output in the form of a simple single pole make switch. The relay used is of the sealed reed type. This is important as relay contacts create a spark when thrown.

The relay output is included so the detector can be used to trigger existing alarm systems or any external device for that matter.

Some of the more ingenious
readers may decide to develop subtle luxuries such as switching in your extractor fan to help to 'clear the air.'

You may well decide to do this by using the internal reed relay to throw an external mains relay. Mains relays are usually of the open type and will without doubt cause a spark sufficient to ignite a gas filled room. It's recommended that a triac switching circuit be used for switching in any mains powered add-on.

We could also add that the electric motor inside extractor fans will also produce an arc from its commutator brushes but for the moment we'll assume most extractor fans are sufficiently sealed and in any event are normally exposed to clean air on one side.

Having scared the living daylights out of you we will now

PARTS LIST

RESISTORS ($1 / 4 \mathrm{~W} 5 \%$ unless specified)	Q1-3	TBC546B
R1 1R0 $1 / 2 \mathrm{~W}$	D1	1N4001
R2, 8 - 1k5	BR1	W02
R3 47k	LED1	Green LED
R4, 6, 7, 11 4k7	LED2	Amber LED
R5, 12 470k	LED3	Red LED
R9, 13, 14 10k		
R10 82k	MISCELLANEOUS	
CAPACITORS	FS1.	$500 \mathrm{~mA}, 20 \mathrm{~mm}$ fuse
	RLA1	SPST 12v 1k0 coil DIL
C1, $2 \quad 220 \mu 16 \mathrm{~V}$ radial		reed delay
electrolytic	SEN1	Hot wire gas sensor
C3, 4 10n ceramic		and matched
C5 $\quad 100 \mu 16 \mathrm{~V}$ radial		resistor
electrolytic	SW1	SPST push switch
	T1	7V mains transformer
SEMICONDUCTORS	BUZ1	Piezo buzzer
IC1 7805	PCB; 7-way terminal block; case; nuts	
IC2 TA75358P	and bolts.	

Fig. 3 The component overlay for the Gas Alert
tell you that the alarm will function well before an explosive mixture is allowed to accumulate.

The point at which a mixture of air and explosive vapour or gas will ignite is known as its lower explosive limit (LEL). Such mixtures are defined in parts per million (PPM).

This is the molecular count of explosive mixture per one million molecules of air. The LEL is dependent on the PPM - got it!

Our gas alarm system will trigger when an atmosphere of between 10% and 40% LEL has been reached. This may seem a rather large tolerance window but it includes all explosive atmospheres - methane (natural gas), butane, propane and so on, and other vapours (petrol, methanol, ethanol, propanol Navy Rum, etc).

Alarmingly Falsified

The time honoured expression 'false alarm' is a day-to-day saga in the majority of warning and detection devices of all types. Sophisticated electronic devices incorporating failsafe and fail failsafe are normally so safe that they fail to register anything or they are continually being triggered by just about everything except the gas they were designed for.

It's not a bit of good having a gas detection system triggered off by a quick squirt of hair spray or cooking deposits in the air. It's just switched off when everybody is so fed up of grabbing their wallets and purses and running out into the street and going four or five doors down the road to use someone's phone (next door is too near, they'll go up as well).

Now Hear This

The British Standards Institute is in the process of receiving (this is confidential you understand) a draft proposal from British Gas in respect of domestic gas alarms.
Although the document will delve into meticulous detail of test procedures involving gas concentrations, temperature and air pressure, notwithstanding wind velocity, it would appear that some of the more important factors have been overlooked.

The whole purpose of an alarm is to let someone know something is happening. Quite sensibly, the Standard has opted for an audible alarm which it stressed must have a sound level output of 85 dB at 3 m . Having delved into the depths

of Einstein's archives to create test procedures it omits to specify the frequency of the sound the audible alarm should generate!

Well, British Gas, have you ever heard 85 dB at 25 kHz ? No, that's not surprising because neither has anyone else on this planet. 25 kHz is all very well for dogs, they'll be saved!

It may well be that if you buy a gas alarm that has been manufactured to British Standards, your first indication of an imminent explosion is the dog going berserk or your mynah bird flat on its back in the cage pushing up the daisies.

About $400-700 \mathrm{~Hz}$ would be more suited. However even at a desired frequency, 85 dB is certainly not over loud. In an average house you may have an alarm installed in your kitchen. If the kitchen door is closed, your bedroom door is closed, it's the middle of the night and you're asleep, it is open to interpretation as to whether you would hear an alarm operating at this sound pressure level.

The ETI system has an internal buzzer rated at 75 dB at 1 m but serious provision has been made for external louder audible sounders positioned wherever required. This is of particular importance in larger houses.

Sensors

In the near future British Gas may invite you (at your own cost, of course) to have a gas detection

device fitting in your kitchen.
That's fine if you get a gas leak in your kitchen but what about the gas meter under the stairs, the gas fire in the lounge, the central heating boiler in the garage or what have you.

In the light of that, consideration should be given to the installation of more than one sensor in order to provide comprehensive cover.

The ETI gas alert is designed to operate from an AC or DC supply producing 12 V . Up to now we have dealt with practical considerations for domestic installations and for this purpose a

240 V mains transformer is used.
Boats and (more so) caravans are also prone to gas leaks from faulty low pressure bottled gas (LPG) systems.

This system can be powered from standard 12 V lead-acid car batteries - the normal source of power for boats and caravans. The current consumption of around 200 mA under normal working conditions, would not be considered a serious drain on such battery systems.

The consumption of the unit rises above 200 mA when the alarm is triggered but the last thing you are going to worry about is a flat battery if you're about to spontaneously combust!

The Circuit

As previously mentioned, false alarms are not acceptable in any gas alarm system. The sensor supplied for this project requires no setting-up or calibration. Each individual sensor has been calibrated prior to leaving the manufacturer's factory.

During the manufacture of a complex device such as this component, material tolerances are unavoidable. The inclusion of a resistor $\left(R_{L}\right)$ which is supplied with the sensor enables the device to operate within the prescribed parameters.

If you are assembling more than one detector, care must be taken to ensure each sensor and its companion resistor do not get mixed-up.

As a precaution it is worthwhile measuring the resistance of the resistor supplied and writing its value on the side of the sensor with a fine permanent marker. You will need to use an accurate digital meter if you choose to do this.

IC1 acts as two voltage comparators. As with the rest of the components, a good quality op-amp is chosen - the Toshiba TA75358. In fact this is a dual opamp in an 8-pin DIL package - an LM358. It features distinct advantages in a circuit of this type.

It is specifically designed to operate on single supply rails, has very low current consumption and its output will swing fully low.

Whilst on the subject of Toshiba, the TBC546B transistors were chosen, again being a quality device and are equivalent to BC546. All right Tosh!

Construction

Assembling the Gas Alert should provide no particular

Fig. 4 The 7-0, 7-0 transformer supplied in the Live Audio Systems kit is specifically designed to power the hot wire sensor. For UK mains it must be wired up as shown

The Live Audio Systems Caravan/Boat Gas Alert along with mains transformer and external siren modules.
problems, particularly if the recommended PCB (Fig. 3) is used.

In the recommended case, the component leads should be trimmed close to the board underside to enable the backpanel to be fitted.

The LEDs should be soldered in first with 8 mm sleeves over the leads so that they stand proud of the board at the correct height to protrude through the case top.

The test button should be soldered in next. It must be positioned exactly vertical and with careful comparison to the height of the LEDs, again for correct positioning. Although it is
a little awkward to have this test button protruding throughout construction, it must be fitted at this stage since the amount of heat required might damage more delicate components. The nut on the test button is unused and the pins need trimming off.

The voltage regulator IC1 is bolted flat to the board with its pins at right angles. A small heatsink may be placed on top (held in place by the bolt) but this is not imperative.

The fuseholders should be installed with the fuses in place. Solder in the tags and trim. Fit the bridge rectifier and check its polarity.

The Caravan/Boat Alert.

The mains transformer module.

The External 85dB siren.

The House Alert.
The transistors and ICs can now be fitted, again with attention to their orientation. Solder the relay into place, treating it like an IC. If the relay is not required, insert a 1 KO resistor between pinholes 2 and 6 to load LED3.

The transformer may be mounted with an additional fuse (500 mA) in the mains live input if desired. Rectification and smoothing are performed on the PCB. The transformer can either be mounted in a plug-topped box or in the complete unit with the alarm sounder.

Fig. 5 Using the Gas Alert with (a) an external siren (9V) or (b) an existing security system

Note that the sensor is a rugged 6-pin device which requires no special handling precautions. However, a device such as this should be treated with respect. Neither the heater element nor the internal detector are polarised - they have no positive or negative supply requirement.

The pinout configuration ensures it cannot be inserted into the PCB incorrectly (there are two possible ways and either will do). You will see from the pinout that pins 1 and 3 of the sensor are connected internally, as are 6 and 4. So, pin 1 or 3 and pin 6 or 4 are the sensor's resistive detector. Pin 2 and 5 supply the heater element.

Testing

The unit can be tested by pressing a cigarette lighter over the sensor for about 15 seconds (don't light it unless you want to melt your PCB). The 'Alert' LED (LED 2) should light almost immediately and the alarm should sound after about 20 seconds.

If this doesn't happen (and the supply voltages are known to be operational) then check polarity of components, terminal numbers on the transformer and look for soldering errors.

Installation

Some thought should be given to siting the Gas Alert module or modules. Try to place them near likely sources of leaks - the kitchen, gas meter, gas fires and
so on.
If used for detecting LPG bottle gas, (butane, propane and so on) the sensor should be 6-12in from the floor (LPGs are heavier than air). For domestic or other natural gas, the sensor must be about 12 in from the ceiling as these gases are lighter than air.

The placing of the extension siren (if used) will depend on your habits! Don't put it under the stairs with the gas meter - unless you're in the habit of sleeping there.

For use in caravans, I recommend the module with sensor and 75 dB sounder in a single box which simply connects to the caravan's 12 V DC supply. Similarly for boats, where the unit could be installed in bilges or engine compartments to detect excess fuel vapours.

It is possible to mount the sensor away from the PCB (a case is available to do this - see Buylines). In this case resistor R_{L} should be wired across the sensor (to maintain the resistive calibration) not into the PCB. This separate unit can then be connected to the PCB using lightweight 3-core cable (do not use screening as one of the cores).

A louder extension siren can also be fitted, powered via the reed relay contacts. A suitable 85 dB siren module is available (see Buylines).

ETI

BUYLINES

Although many of the parts used for the Gas Alert are avallable from usual suppliers, some components are specific to this project. These can be ordered from Live Audio Systems, Unit 52, Tafarnaubach Industrial Estate, Tredegar, Gwent NP2 3AA.
The gas sensor and matching R_{L} resistor cost $£ 10.95$, the mains transformer £2.25 and the PCB £2.25.

A kit of the PCB, sensor and other PCB-mounting components costs £19.95.

A complete kit of the PCB, components, buzzer and screen printed case suitable for 12 V caravan or boat use costs $£ 25.75$. The small extension sensor case costs £2.95. A box for the transformer incorporating a built-in mains plug is available for $£ 2.75$. The extension siren module on its own costs $£ 4.50$.

A larger kit including the PCB, components, transformer, siren and a box suitable for mains operation is available for $£ 32.85$.

All prices include VAT. Please add 50p per order for postage.

Please address all orders to Live Audio Systems. Enquiries can be answered on (0495) 717462 from 3.00 to 5.00 pm .

BEEB-SCOPE

Richard Penney finds there's scope for a scope on his BBC micro

0scilloscopes are an expensive piece of test gear for the electronics hobbyist. Flashy glowing knob-filled units can have pricetags stretching into the thousands and even the cheapest are well out of birthday present range.

This project is a low-frequency four-channel oscilloscope which is basically a fast analogue to digital converter that adds onto your BBC micro using the 1 MHz bus.

A model B BBC is specified because the software needs to poke directly to the screen memory and to the FRED page of the 1 MHz bus to optimise running speed. Models with shadow screen RAM can be used provided this is disabled first. The software can be adapted relatively easily to suit different screen addresses.

The circuit diagram for the Beeb-Scope is shown in Figs. 1 and 2. The Beeb-Scope has four inputs (only one is shown) with
input resistance switchable up to 1 MO on DC coupling. On AC coupling a $1 \mu 0$ capacitor C 1 is placed in series with this (such a large capacitor ensures there is minimal additional attenuation and phase-shift even at low frequencies).

The four inputs have range switches to select one of nine fullscale input voltage ranges -0.5 V , $1 \mathrm{~V}, 2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~V}, 50 \mathrm{~V}, 100 \mathrm{~V}$ and 'infinite.' On AC coupling these refer to the peak levels not

HOW IT WORKS

The circuit diagrams are shown in Figs. 2 and 3. For an explanation of the ciruit we shall concentrate on channel one of the unit.

Inputs come (directly or via a capacitor) from BNC socket (SK1) or terminal post (SK2, 3) to an input attenuator consisting of resistor chain R1-R13 tapped at various points by a rotary switch SW2.

This switch determines the input sensitivity and couples the input to analogue switch IC1 which provides channel switching under software control. The selected channel signal is amplified by a factor of 6.375 by IC2, thus boosting the input FSD (from the attenuator) of 400 mV to 2.55 V (suitable for the ADC chip on the digital board).

The gain is slightly variable (by RV1) to allow maximum accuracy to be obtained. Even uncalibrated. However, the unit is adequately accurate for most uses.

Overload indicators LED1, LED2 are driven from the output via a potential divider and two transistors. The first
starts glowing for inputs above 80% FSD and one each is provided for positive and negative levels in excess of FSD.
The amplified signal now goes to the digital board where it feeds the analogue to digital converter (IC4). An operational differentiator is used to derive a rising-edge pulse.

Most of the ICs on the digital board are concerned with decoding the signals available on the 1 MHz bus to ensure access to the device only on receipt of the correct addresses from the computer.
The data-bus is connected directly to IC4, as this has tri-state outputs. A simple potential divider is used to ensure that inputs in the range $\pm 2.55 \mathrm{~V}$ are fed to IC4 as 0 to 2.55 V . The data bus is also connected (via various buffers) to the rising-edge and external trigger signals and to the channelselect pins of IC1 on the analogue board.

The external trigger input is simply a TTL input configured in a 'monostable'
arrangement. An 'in-use' indicator is driven by this board, which lights when the board is being accessed by the computer.

The device is memory mapped to the BBC micro's 1 MHz bus as shown in Table 1.

The power-supply is a simple unit using a PCB-mounting mains transformer and standard 78M05 and 79M05 voltage regulators to fulfil the $\pm 5 \mathrm{~V}$ power requirements of all the electronics.
\&FCC0 Write: Channel selection
(0-7) start conversion ($9 \mu \mathrm{~s}$)
Read: Bit $6=$ External trigger pulse
Bit $7=$ Rising edge pulse (high=rising edge)
\&FCC1 Write: start conversion ($9 \mu \mathrm{~s}$) Read: Read digital voltage level
Table 1 Addresses used by the BeebScope

Fig. 3 Wiring for input attenuators and PCBs
the RMS levels. The infinite range grounds the input to the ADC.

The levels can be easily changed by altering the attenuation resistors. If you decide to do so, bear in mind that at FSD the attenuators should yield 400 mV and that keeping a suitably large resistor between the most sensitive input and the analogue board is sensible. This will avoid blowing the protection diodes should the maximum input be exceeded.

Calculating the resistor values is simply a matter of applying potential divider theory to the situation. Start with the least sensitive input and work up the resistor ladder.

Each input is protected by two 1N4148 diodes in inverse parallel.

Both the analogue switch (IC1) and ADC (IC4) are fairly tolerant of excessive inputs but the diodes provide a simple and effective way of avoiding damage, keeping inputs to the switch between $\pm 0.65 \mathrm{~V}$. These diodes also protect the analogue switch, which is a CMOS device, against static charges when a particular channel is unused.

The primary purpose of the analogue switch is to alleviate the need for swapping over input leads when monitoring various signals and not to provide a fullblown dual (or rather quadruple) trace display.

A multi-trace display is only practical for low frequencies (under 500 Hz) since if the switch is 'flicked' too rapidly, a meaningless

390 ．key：LDA 129：LDY 255：JSR\＆FFF4：TYA： RTS 400 －pcurs：LDAvar +7 ：EDR＊31：STAzp：LDA\＃O
 NEpelp

410 LDAzp：CLC：ADC\＃ypos MOD256：STAzp：LD

420 LDA（zP），Y：CLC：ADC $A(z p), Y=A D C{ }^{1} 1: S T A z p+3$ I DEY
STA（zP＋2）YiDEY： STA（2p＋2），Y：DEY：BPLPCIP1：RTS

440 ， JSRpcursi DECvar +7 I JMPpeurs
4S0 ．mdn：LDAvar＋7：CMP货3：BNEmdnak：RTS：． mdnok：JSRpcurs：INCvar＋7：JMPpeurs
460 ．mltiLDYvar＋7：LDApar，Y ：CMPminp，Y ：B NEm1tak：RTS：．mltok：SEC：SBCH1：STApar，Y ：JM Pcope ．mrt：LDYvar +7 ：LDApar，Y ：CMPmaxp，$Y: B$ NEmrtokiRTSi ．mrtokiCLCiADCillisTApar，Y I JM Pcope

B0－pchar：SEC：SBCW32：BPLpchok：RTS：．pe hokiSTAzp＋4iLDANO：STAzp＋5：LDX曹3z，pch1p：A SLzp＋4：ROLzp＋5：DEX：BNEpchlpiLDAzp＋5i CLCI CW8CO：STAzP＋5
490 LDY青72．pch
Y90 LDY翟7：pch1p $1:$ LDA $(z p+4), Y: S T A(z p+2$ p＋2：LDAzp $+3: A D C W O: S T A z p+3:$ RTS

500
510 ．cope：LDAvar＋7：ASLA：CLC：ADCvar +7 ：A DCiset MOD256：STAzpILDAWset DIV256iADCWO iSTAzp＋1：JMP（zp）：－set

520 JMPchan：JMPti mbas：JMPexpt：JMPfsts 530 ．chans JSRstupposiLDApariCLC：ADC 48 ：JSRpchar：JMPpcurs
S40．timbas：JSRpcurs：LDXpar＋1 ：DEX：STXz p：LDAWO：STAzp＋1：LDXW2i，tb1p：ASLzp：ROLzp＋ 1：DEX：BNEED1p：LDXpar＋1：DEX：TXAICLC：ADCzp

550 LDA 200：STAzp＋6：JSRdec：LDA $20:$ STAz p＋6：JSRdec：LDA\＃2：STAzp＋6：JSRdec
560 LDAzp＋2：CLC：ADC＊B：STAzp＋2：LDAzp＋3： ADC\＃0：STAzp +3 ：LDAzp：AND＊1：BEQtbokiLDAWS3 i JSRpeharisMPtbok 1：tbok：LDA \＃4B：JSRpchar ：．tbok 1：JMPpcurs
570 exptiJSRstupposi LDApar＋2iCLCi ADC 48iJ8Rpchari JMppeurs

580 ．fsts：JSRstuppos：LDA\＃ASC＂N＂：LDXpar ＋3：BEQfstok：LDAWASC＂Y＂i．fstokiJSRpchariJ Mrpcurs
48：STAzp＋2：LDA：JSRpcur s：LDAzp＋2：CLC：ADCe
 ：LDAzp：CMPzp＋6 z．dec1piLDAzp＋1；BNEdecok CiSBCzp＋6：STAz：BCCdecok 12 ．decok：LDAzp：SE X ：BNEdecl ST Azp： $\mathrm{LDAzp}+1$ ： SBCWO ：STAzp＋1：IN

610 ．minp：I：：PX $=800000100: \mathrm{PX}=\mathrm{PY}+4$ ， CRPT
A\％
620 ．maxp：J：！P\％＝80104FFO7：PX＝P\％+4 ： ［OPT
$A \%$

630 ．datar JıFOR $B \%=0$ TO 252 STEP4：BK！P $X=0: N E X T: P Y=P X+256$ ： $\mathrm{COPT} A \%$
640 ．oldd：3：FOR BX＝0 TO 252 STEP4：BY！P

650 －Ypos：1：PY＝PY＋512：IOPT AZ
660 JiNEXT
670 REM This calculates the screen add esses for each possible Y position
 40：FOR Y\％＝0 TO 71 SY＝AK＋（7－Y\％）：？（ypos＋（CZ 2＋1）$=5 \%$ DIV256：NEXT，
690 GCOLO，1：FOR $Y \%=0$ TO 128 STEP（128 5）：FOR $x X=0$ TO 256 STEP（ $256 / 16$ ）：PLOT 69 $, X \% * 4,512+(Y Z * 4)$ ：PLOT69，$X Z * 4,512-(Y Z * 4)$ NEXT，
700 GCOL 3，1：MOVEO，512：PLOT $1,1020,0$ 710 RESTORE740：FDR AX＝\＄5908 TO \＆SCCB TEP \＆140：FOR $B \%=0$ TO 52 STEP4：READ 1（AK + 7\％）：NEXT，
720 ？maxp＝3：REM this should be set to the highest channel number

730 CALLscope
740 DATA $\& 45552500,225554547,457552500$ \＆55555577，\＆74545700，\＆57545476，＊40404000 \＆70404040，\％O，\＆0，\＆0，\＆0，\＆7E6E663C，＊3C6676 1 Channel
750 DATA \＆7E6E663C，\＆3C6676，\＆18183818， 7E181B，\＆CO6663C，\＆7EJO1B，\＆18000000，\＆18，\＆ 6 7C607E，\＆3C6606， $444625452, * 10181, * 2804020$ ，\＆29AABS 1 time base
760 DATA $262457500,2754545,255556200,2$ $454567, * 75555600,2565575, * 0,40,20,80, \& 44$ 000000 ，\＆44281028，\＆7E6E663C，\＆3C6676
expand
770 DATA $* 32223900$, \＆222223，\＆91A11 B00， B18989，\＆8000，\＆0，\＆0，\＆ $0,80, \& 0, \& 0,40, \& 7 E 766$ 666，866666E I fast

Listing 1 The BBC Basic／assembler program to operate the Beeb－Scope
output is obtained．The longer the delay between switching and sampling，the more this effect is avoided．

Once locked onto one channel the user is totally oblivious to this effect．The switching effect does not limit the device＇s use as a low－ cost multichannel voltmeter．

The circuit as it stands does not have a sample－and－hold module and the prototype functions perfectly normally without it．The trace is smooth，
even when approaching the highest displayable frequency．

Construction

The prototype was built with four input attenuators although the analogue switch and software can cope with up to eight．To keep costs to a minimum，just one or two could be used．

The components used only in additional inputs（beyond the one illustrated in Fig．1）have prefixes 100,200 and 300 ，so omit some or
all of these if you are using less than four channels．

More inputs can be added by replacing each of the 1 MO pull－ down resistors R15－R18（which represent channels $4,6,7$ and 5 respectively）with further attenuators and protection diodes．

The Tedious Bit

Construction should be started with the input attenuators， made by soldering resistors directly to the tags of the rotary switches as shown in the wiring diagram（Fig．3）．

This is a tedious task （increasingly so with larger numbers of channels）but care should be taken to avoid errors which can be difficult to correct． Remember to set the stop on the rotary switch to allow nine positions．

Fun Bit

Assembly of the PCBs is quite straightforward．The power supply

board is probably the best to start on. (Fig. 4).

Assembly order here is not critical. However, it is wise not to insert the transformer until last. Bend the regulators so they lie flat against the board, to make them less vulnerable. This unit should be tested, to ensure the +5 V and -5 V supply rails are at the correct voltage.

Connect up a temporary (though not slipshod) mains supply. Care should be exercised, as 240 V mains will be present on the underside of the transformer.

If all is well, the analogue board should be assembled next (Fig. 5). Again, assembly order is not critical as there is plenty of space on the board. Care should be taken when handling IC1 which is a CMOS device. This should be the last device to be inserted and an IC socket is essential.

The board can be partially tested at this stage by applying power and attaching a suitable signal (a signal-generator is by no means essential - a tape recorder is quite sufficient) to R23 and checking that this appears amplified at the output of the board and that the overload indicators light when they should do.

Lastly the digital board may be tackled (Fig. 6). Start with resistors, capacitors and diode, then insert the IC sockets, presets, links and finally the ICs themselves.

There are a number of links, including some on the underside of the board. There are five pairs of points which must be linked by insulated lengths of wire on the underside of the board. These are shown on the overlay as bracketed numbers. Link (i) to (i), (ii) to (ii) and so forth.

An extensive system of flying links is used above the board to carry power to the IC's. Wires are simply soldered at one end in the holes in the PCB and at the other to the bus-bars formed from tinned copper wire at the top of the board. Use suitably coloured wires to help avoid (possibly expensive) errors.

Testing

It is prudent to make a thorough check of this board before soldering in the IDC cable and to do all possible checking now, as errors are far easier to correct before the whole device is put in a case.

After preliminary checking, link up the power-supply lines to

PROJECT: Beeb-Scope

PARTS LIST

Fig. 5 The component overlay for the analogue board
each board (make sure of the polarity) and hook-up the ribbon cable to the computer. Apply an audio signal to each of the inputs in turn and check that by poking the channel number into \&FFC0, you can obtain the signal at the output of the analogue board.

Now ground one input, select that channel (poke the required channel number to \&FCCO) and then read \&FCC1, which should yield a value between 122 and 134. Interference from nearby TVs and the like may prevent the value from being stable until the unit is properly screened.

With the unit in the case, glue a piece of metal (a scrap piece of aluminium is ideal if you have such a thing - about 50 mm square) between the digital and powersupply boards and link this to earth. This will screen the ADC from the transformer and is noticeably beneficial.

Links from the attenuators to the analogue board should be made with screened cable (ordinary audio-frequency type is fine). Most types of wire can be used for the connections to the external trigger input, LEDs and general links between the PCB's.

Tuning

The operational differentiator now needs to be 'tuned.'

For each op-amp on the digital board, short together the two inputs of the op-amp (pins 2 and 3) using a screwdriver and adjust the pre-set until the output voltage

Fig. 6 The component overlay for the digital board

(pin 6 to ground) is as close to zero as possible).

The op-amp on the analogue board can be 'tuned' by linking R23 (either end) to OV and adjusting the offset-null preset (RV2) until the output is as close to zero as possible. The gain of the op-amp can now be 'tweeked' by applying a known voltage, between 250 mV and 350 mV , to R23 (again, either end) and adjusting the preset (RV1) so that the input is amplified by a factor of 6.375 .

Software

A program in BBC Basic and assembler is given to allow basic operation of the unit (Listing 1).

Those parameters which can be altered are displayed at the top right of the screen. The parameter for alteration is selected with the it and $\sqrt{ }$ keys and the value incremented or decremented with the \hookleftarrow and \Rightarrow keys.

The time base is given in $\mu \mathrm{s} /$ point, there being 256 points across the trace. The 'Fast' option allow the fastest possible sampling
($11 \mu \mathrm{~s} / \mathrm{point}$) to be achieved. The 'Expand' option allows the timebase to be halved, quartered and so on, with intermediate points being added between the genuine readings.

Remember to take into account the settings of these three options when calculating frequencies, periodic times and the like.

ETI

BUYLINES

The $74 \mathrm{HC4351}$ (IC1) is stocked by Maplin (part no. UF14Q). Note that both 18 and 20 -pin devices exist. The PCB is designed for the 20 -pin version only.

The case used for the prototype is also as supplied by Maplin as part no. YM51F.
The IDC cable used to connect the unit to the computer is most easily brought ready assembled. Maplin offer a service for making up such leads, for a small fee.
The PCB is as ever available from the PCB service.

Braimmeve monitor 1 h

 β BETA - Concentration, α ALPHA - Relaxation, θ THETA - Imagination,problem solving, active $\begin{aligned} & \text { pleasure, tranquility, } \\ & \text { positive feelings. } \\ & \text { thought. } \\ & \text { imagery. }\end{aligned}$

This unique project will allow you to hear your own brainwaves! Through a simple training program you can learn to control them and achieve peak performance in all situations. It will revolutionise your life!
The approved parts set contains: two PCBs; all components, including three PMI precision amplifiers; shielded box for screening the bio-amplifier; attractive instrument case with tilting assembly and use.
Parts are available separately. We also have a range of accessories, professional electrodes, Oooks, etc. Please send a stamped, self-addressed envelope it you just want the lists.

ALPHA			SILVER SOLUTION Just wipe on with a cloth to plate PCB tracks, connectors, wire, osehold ornaments with a layer LARGE BOTTLE (150 ml) SILVER SOLUTION $£ 11.20+$ VA

DOWER CONDITIONER

As featured in ETI, January 1988. The approved parts set contains PCB, case, toroidal cores, class X and Y case, toroidal cores, class X and Y LEDs, all components, and full instructions.

Parts are available separately. Please send a stamped, self-addressed envelope if you want the lists. Otherwise, an SAE $+£ 1$ will bring you lists, construction details and further
information.

- For those who will only be satisfied with the best
- Use with $\mathrm{Hi}-\mathrm{Fi}$, computers, radios, TV sets to eliminate mains-borne interference
- 10 LED logarithmic display shows the amount of interference removed
- Massive filter section with thirteen capacitors and two currentbalanced inductors
- Bank of six VDRs to remove transients and spikes
- Suppresses common mode and differential mode interference

JUMPING JACK

FLASH

Clap hands here comes Chappell (Paul) with a sound-activated trigger for light shows on the stage or curtain-drawing in the home

Back in the golden days when the world was young and electronics was fun, before designers became obsessed with creating ever more sophisticated multi IC circuits, a great deal of enjoyment was to be had from the simple pleasure of trying to squeeze the most spectacular performance from the smallest number of components.

If your sensibilities have been jaded by auto-ranging multi functional megachips and rubbed raw from exposure to high-tech gadgetry, just call on J J Flash to bring a breath of fresh air into your life.

Rumour has it that Jack Flash was born when some friends known collectively as Filament started to achieve notoriety around the local pub and club circuit with their special brand of rock music.

For a simple way to give impact to their stage presence, Flash had all the answers. A microphone in the bass drum would pick up the driving beat of the song and relay it to powerful lights which could be trained on any member of the band or even on the audience. For an outrageously OTT effect, a microphone and 100W lamp inside each drum would cause the drum itself to flash each time it was struck!

Of course there are those who would dispute this version of JJ's provenance. Many say that he was called into being as an aid to photography. Capturing a balloon about to burst and a bullet in flight are his finest achievements, they claim. Yet others insist that his main talent is in his versatility as a capable and powerful sound to action controller.

But what of the man himself? What did Flash claim to be? Perhaps we will never know the truth behind the legend but the

story of his life may shed some light on one of the most intriguing mysteries of our time.

Jumping Jack Flash Is A GaAs

One matter which is undisputed is JJF's circuit. It is shown in Fig. 1.

To the left, a microphone picks up sound vibrations and converts them to an electrical signal. This is amplified by an amount set by RV1 and fed to a circuit which responds only when the peaks are above a pre-set level. A timer IC (the good old 555) is triggered by the peaks and gives a pulse of controllable length at its output.

The pulse drives an opto isolated triac, which drives a power triac, which in its turn drives a lamp. All 500W of it!

The experience of operating the circuit in a small room is not to be missed - it gives a ridiculous sense of power to have every snap of your fingers accompanied by a blinding flash of light. Five hundred Watts in a living room is bright!

The length of the flash is set by RV2 - anything from the briefest supernova to several seconds of atomic blast. For a more restrained effect, you can use lower powered bulbs or coloured lamps.

For use on stage, the sensitivity control RV1 will have to be set very low and the microphone positioned so that it responds to the sound you want.

To pick up a hand clap from the opposite side of the room, it will have to be set somewhere near the maximum.

Construction

The component overlay for the PCB is shown in Fig. 2. There is nothing to cause any difficulties here.

The only point to watch is the mounting of the triac which must make good contact with the heatsink if the circuit is controlling a respectable amount of power.

First lay it on the board with the hole in its tab over the mounting hole in the PCB. You can then judge exactly where to bend the leads. Bend them at right angles to the body of the triac (not too sharply, or you'll weaken them) then insert the triac leads temporarily into their holes to check that the tab hole is aligned with the PCB hole.

Take the triac away from the board, smear the tab with a little heatsink compound then bolt the triac to the heatsink and PCB before soldering the leads. A flat washer between the bolt and the triac tab will help to spread the pressure and to prevent the tab from becoming distorted.

Figure 3 shows a suitable power supply for the circuit. Fig. 4 is a suggested layout for the circuit in a small plastic hobby box. There is no need to use a PCB for the power supply unless you are really keen to make a neat job of it. The smoothing capacitors and transformer will support the rectifiers.

The microphone insert can be fixed to the case or can be remote from it at the end of a length of screened cable. If you splash out on a 3.5 mm jack plug and socket, you can leave all your options open.

You'll notice the power supply has no regulator ICs. In the days

HOW IT WORKS

The signal from the microphone is amplified by IC1a.
Immunity to mains hum is achieved by the crude but effective expedient of giving C1 a low enough value to reduce the gain almost to unity at 50 Hz while amplifying the fast spikes of percussive sounds anything up to about 2,000 times.
Components D1, R4, R5 and R3 hold pin 6 of IC1 slightly lower than pin 5 in the absence of a signal, keeping the output high. C2 tames the output of IC1b a little but no attempt is made to rectify or smooth the output since all IC2 requires is a signal which drops briefly below $1 / 3 \mathbf{V}+$.
IC2 is the familiar 555 timer connected in monostable mode with time period adjusted by RV2. R6 limits the current to the opto isolator.
When connected as shown in Fig. 3 , Q1 diverts the timer's output current from the isolator whenever any appreciable voltage is present across BR2, forming a simple zero crossing detector. The opto triac triggers the main triac via the surge limiting resistor R9. The main triac switches on the load.
when regulators had to be made from discrete components, they would only be used when absolutely necessary. These days they are included in every circuit almost as a reflex action. Just to be different (and since they are not necessary) I've left them out.
Saves a quid, doesn't it?
When you come to test the circuit remember that everything beyond the opto coupler (IC3) is live, including the heatsink which

Fig. 2 Jack Flash's internal organs

PARTS LIST

RESISTORS (all $1 / 4 \mathrm{~W} \mathbf{5 \%}$)	
R1	1MO
R2	56R
R3	47k
R4	100k
R5	4k7
R6	2k2
R7	4 k 7
R8	10k
R9	390R
RV1	100k
RV2	100k

CAPACITORS	
C1	47 m
C2	470 p
C3	47 n
C4	$33 \mu \mathbf{2 5 V}$ radial electrolytic
C5	$33 \mu 25 \mathrm{~V}$ radial electrolytic
C6,7	$1000 \mu \mathbf{2 5 V}$ radial electrolytic

is connected via the triac tab directly to the mains input. If you think anything may be wrong with the low voltage side of the circuit,

SEMICONDUCTORS	
IC1	MC1458
IC2	LM555
IC3	IS608 or similar
	(MOC3021 etc)
Q1	FS40
SCR1	TAG1360
D1	1N4148
D2	1N4001
BR1, 2	Iow voltage bridge rectifler,
	any type

MISCELLANEOUS
X1 Crystal microphone insert (almost any microphone will do as a substitute).
T1 0-6V, 0-6V 6VA.
Connecting wire; mains wire; plugs; sockets; plastic box. Optional parts for the modified versions are shown in the relevant diagrams.

Testing

The circuit really is too simple to need much explanation. The fault finding procedure is simply to check that the signal is reaching pin 1 of IC1 and pin 7 of IC1, triggering the timer IC2. The outputs from IC1 can be checked with a crystal earpiece if you haven't got a scope and the output from pin 3 of IC2 can be checked with a test meter on 25 V range. It should normally be high, going low when a sharp sound is present. Tapping the microphone with the gain set to maximum should be enough.

If you find that the lamp remains on at all times when RV1 is advanced to the maximum sensitivity (even when the room is perfectly quiet) the value of R4 should be reduced slightly. Use the largest value that will allow the lamp to turn off reliably.

Transistor Q1 and the connection to the J terminal form a zero crossing detector to cut down on the interference generated by SCR1. If this feature is not required, D2 and the link to terminal J can both be omitted.

Other Applications

If your pulse doesn't race at the thought of JJF's electric stage performances, perhaps your mind is on photography. Sound triggers for cameras were all the rage a while back, allowing spectacular photographs of such things as

Fig. 3 Jack Flash in stage costume

Fig. 5(a) Circuit modifications for the sound trigger. SW1 is optional (see text). Q1 and R8 are not required, but there is no need to remove them. All parts of the circuit not shown are the same as for Fig. 1. (b) Connections to the PCB for photographic sound trigger

PROJECT: Drum Flash

bursting balloons, popping balloons, exploding balloons, balloons going bang and so on.

BUYLINES

Most component suppliers will be able

 to provide suitable parts for this project. The only awkward device is the opto triac (IC3). If you use a type other than the IS608, it would be wise to increase the value of R9 just in case the surge current rating is lower. Most samples of the more readily available MOC3021 will work without modification to the circuit but if it does not turn on reliably this can be cured by reducing the value of R6 (not less than 1 kO).To get you started a parts set for the main circuit including PCB, triac, heatsink, pots and microphone is available from Specialist Semiconductors (see their ad in this issue). Power supply components are available separately from the same source, although your spares box will probably have suitable components in it.
The PCB will be available from our Readers Services in due course.

The photographs are made either by using the sound of the exploding balloon to trigger flash lights in a darkened room (the camera shutter would be left open throughout the procedure) or by triggering the camera itself if it was fitted with a solenoid operated shutter.

A touch of the soldering iron will transform JJF into a camera sound trigger. The way to do it is shown in Fig. 5. The power triac and heatsink are removed from the PCB and the opto triac is replaced by an ordinary opto-isolated transistor.

The only other difference is that the circuit is run from a pair of PP3 batteries instead of the mains power supply. You will probably want to put an on-off switch in the power supply as well.

The circuit can be armed by simply turning up the sensitivity. Otherwise, a switch in the 'reset' line of IC2 will give an arm/disarm function. You'll need to cut the PCB track for this.

For general sound switching purposes, the circuit of Fig. 1 can be used for mains applications and the modifications shown in Fig. 5 will make the circuit suitable for low voltage applications. The

Fig. 6 Making the trigger latch. A diode is added between IC2 pin 3 and IC1 pin 6. The track between pins 4 and 8 of IC2 is cut and pin 4 is taken to $V+$ via a $4 k 7$ resistor. A reset button is added between pins 1 and 4 of IC2. The remainder of the circuit is as for Fig. 1
other feature you may want to add - latching - is shown in Fig. 6. With this configuration the circuit will latch when a sound triggers the switch and will remain on until the reset button is pressed. So open your curtains with a whistle or your garage doors with a toot! Or just have fun experimenting.

ETI

It's easy
 to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints.

Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made.

If you think you've got good reason to complain about an advertisement, send off for a copy of our free leaflet.

It will tell you all you need to know to help us process your complaint as quickly as possible.

The Advertising Standards Authority. If an advertisement is wrong, wére here to put it right. ASA Ltd, Dept 1 Brook House,
Torrington Place, London WC1E 7HN

IRANSFORUZRS

3VA to . . KVA many standard ranges on-the-shelf
Mains Isolators, Autos, Cased Autos, $12 / 24 \mathrm{~V}, 15 / 30 \mathrm{~V}, 25 / 30 \mathrm{~V}, 30 / 60 \mathrm{~V}, 48 / 96 \mathrm{~V}$. All with intermediate voltage taps. Also Valve, Mains \& Output types.
WINDING TO SPEC including Toroidals. Inverters $12 / 24 V$ DC to 240 V AC constant voltage transformers for spike-free stable mains.

Unit 211, Stratford Workshops, Burford Road, London E15 2SP

SUBSCRIPTIONS SENSATIONS! AT COVER PRICE ONLY!

Any of the magazines from the list below can be delivered to your door with :

NO handling charge
NO postage costs

A\&B Computing	$£ 18.00$
Aeromodeller	$£ 22.20$
Citizens Band	$£ 16.20$
Clocks	$£ 27.00$
Commodore Disk User	$£ 15.00$
Disk User	$£ 17.70$
Electronics Digest	$£ 11.00$
Electronics Today International	$£ 16.80$
Ham Radio Today	$£ 15.60$
Military Modelling	$£ 15.60$
Model Boats	$£ 15.60$
Model Engineer	$£ 26.40$
Photography	$£ 15.00$
Photoplay	$£ 12.00$
Popular Crafts	$£ 16.20$
Radio Control Model Cars	$£ 16.20$
Radio Control Boat Modeller	$£ 7.50$
RCM\&E	$£ 14.40$
Radio Control Scale Aircraft Quarterly	$£ 9.00$
Radio Modeller	$£ 14.40$
Sea Classic International	$£ 11.70$
Scale Models International	$£ 15.00$
Video Today	$£ 15.00$
Which Video?	$£ 15.00$
Woodworker	$£ 15.60$
Your Commodore	$£ 14.40$
Model Railways	$£ 13.20$
Practical Wargamer	$£ 7.80$

The Above Prices Refer to U.K. Subscriptions Only

This offer is also open to existing U.K. subscribers who may wish to extend their current subscriptions.

Name.
Address

SPECTRUM CO-PROCESSOR Graeme Durant continues to build his add-on computer with this ingenious 256K RAM card

Having covered the design and construction of the Z80 CPU card last month, it is now time to move on and look at the main dynamic RAM cards.

These provide the coprocessor with a large area of storage which may be used for program or data. Each DRAM circuit is built on a standard $160 \times$ 100 mm eurocard sized doublesided PCB and consists of 256 K of store.

Since the Z80 has an address range restricted to 64 K , the DRAM card uses a paging mechanism to enable the Z80 to accommodate this increased address range.

Connections to the board are once again made via a DIN41612 connector, the pinout being the same as for the CPU card described last month.

This DRAM card was also designed to be strictly general purpose and it can be used in any Z80 or Z80A based application you like - for example upgrading the available memory in a Z80 based home computer.

DRAM

Dynamic RAM has traditionally been tricky stuff to use. Although DRAM is cheap and can offer large storage capacities on small chips, it has the awkward requirements of periodic refresh and a multitude of carefully timed control signals. These have often been enough to turn the average hobbyist to the alternative expensive and bulky static RAM devices.

Early DRAM devices needed everything doing for them. All refresh strobes and addresses had to be externally generated. As generations of dynamic memory have come and gone, the external hardware overhead has been reduced. Now DRAM has in effect 'grown-up.' It is much more self sufficient and needs a lot less in the way of external prodding to facilitate refresh and data access.

The 'state of the art' DRAM as

far as performance goes must be the AAA2800 series of CMOS 256 Kbit devices, designed by Inmos and produced by NMB in the newest, most advanced CMOS VLSI manufacturing plant in Japan.

These memories combine lowpower operation, fast access times and a number of versatile operating modes, making them the world's fastest monolithic 256K DRAM available.

One of the most interesting features included as far as the amateur is concerned is the so called 'CAS before RAS' refresh mode which makes the process of refresh simplicity itself. So the
timing signals required to drive the AAA2800 series are very straightforward. It is for these reasons that the AAA2800 family was chosen for use in this design.

One special feature of this circuit is that all the timing on the board is derived from the main CPU clock using synchronous logic techniques. So it is usable in any Z80 or Z80A based system regardless of the clock frequency.

Also, expensive LSI DRAM controller chips and unreliable RC generated relays are completely avoided. The design is based on ordinary TTL logic and operates reliably under all conditions with no setting up required at all.

Refresh Schemes

The usual method used to achieve the obligatory DRAM refresh process is termed RASonly refresh. This is shown in Fig. 1.

Since the refresh operation only requires that each row within the memory array is accessed CAS is held inactive high and RAS is strobed whilst a suitable row refresh address is supplied to the memory chips. To ensure correct operation of the AAA2800, all 256 rows must be refreshed every 4.4 ms .

You may be wondering why we cannot just use the built-in refresh mechanism provided by the Z80 microprocessor itself - the processor provides an incrementing row address for the DRAM after every instruction fetch (while it is internally decoding the new instruction and the system buses are otherwise unused).

This would be great but for the fact the $Z 80$ dates back to the days when sub-64K DRAM devices were the best available, and so only a 7 -bit refresh address is generated, whereas we need an 8bit address. This problem can be overcome by software but that introduces an unacceptable time overhead.

The usual solution is an external refresh address generator but using the AAA2800 we have another more elegant option.

The AAA2800 provides a CAS before RAS refresh mode. During normal DRAM accesses, RAS is strobed before CAS to latch-in the required address. If this order is reversed, the AAA2800 ignores the address present on its pins and uses an internal 8 -bit counter as a source of row addresses, performing a refresh operation all on its own.

The trick is to strobe CAS before RAS (Fig. 2) every time the Z80 authorises a refresh cycle and the result is a completely transparent refresh scheme with no wasted time overhead and no external refresh logic required.

Paging

In common with most 8-bit microprocessors, the $Z 80$ is capable of directly addressing only 64 K of memory. However, this limited address range can be extended by paging. The large block of storage to be addressed is partitioned into areas called pages, each 64 K locations or less in size.

The processor addresses the contents of a page directly,

Fig. $1 \overline{\text { RAS }}$ only refresh

Fig. $2 \overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh

because its address range can handle the entire page in one go. However, the actual page accessed is selected, one at a time, by some other means.

The usual method of page selection is via a bank select register. This is a multi-bit latch which holds the currently selected page number and can be updated by the processor to change pages. The memory hardware responds to the contents of the bank register by enabling only the memory page required for access on the Z80 buses.

In a Z80 based system, this register can be addressed as an 1/O port so it is conveniently
separate from the memory map thus avoiding the possibility of being able to page itself out!

The disadvantages of simple paging schemes like this revolve around the fact that the memory space is no longer randomly accessible.

The addressing of a location is now a two stage process, requiring an update of the bank register as well as the memory access itself. This can prove awkward if the program being executed is stored in the paged memory when jumps and subroutine calls may entail page changes.

Unless the machine's operating system has some kind of

PROJECT: Co-processor RAM
monitoring capability to handle such situations, the simplest way round this problem is to provide a small area of permanently enabled memory which is accessible regardless of the current page selected.

When code execution requires a change of page, a routine residing in this unpaged memory is called to change page and then to jump to the required location in the new page. This is the scheme used in this design. A memory map PROM (IC19) is used to permanently disable a section of each page in the paged memory, to allow the unpaged memory to sit undisturbed.

This unpaged memory consists of the operating system EPROM and the scratchpad RAM on the CPU card, described last month. The PROM allows unpaged program areas to be selected in steps of 256 locations so the least possible DRAM space is wasted in any given application.

For this co-processor design, the bottom 5 K locations of each 64 K page are disabled by the PROM but this can be easily changed for other applications by blowing different map PROM data.

Construction

The construction of the RAM card should not create too many problems, particularly if the suggested PCB layout is used. Like the Z80 CPU card described last month, this board is double sided but for reasons of expense, through-plating is not used to interconnect the two layers.

The through connections are shown in the overlay diagram (Fig. 4) and must be made by either wire links through the board, by the passive component leads, or by means of the IC pins. The various techniques for employing these methods were described last month. Once again 'turned pin' DIL sockets should be used to allow through connections via the IC pins.

As high currents are likely to flow in the memory power and ground lines, multiple through connections are provided to reduce the impedance of these links. These take the form of two or three closely situated through links. All must be made to ensure reliable operation.

This board also includes a large number of supply decoupling capacitors and it is important not to omit any of these. Each RAM chip has its own associated capacitor, connected
close to the power and ground pins. These capacitors must be long leaded axial types to fit the suggested PCB foil and these ensure low supply impedances at high frequencies where noise problems might otherwise exist.

Short M2.5 nuts and bolts should be used to fix the edge connector to the PCB for added strength. Note that two of the connector pins must also be soldered on the topside of the PCB to link through the board.

At this stage you must decide whether to program the card for operation as pages $0-3$ or pages 47. This determines what you do with the link pads on the PCB.

If you want the card to appear as pages 0-3 then point A should be connected to point C on the circuit diagram by soldering a through link at pad X.

If the card is to appear as pages $4-7$, point B on the circuit diagram must be connected to point C with two through connections at pads Y and Z.

The page indication LEDs are fitted next. Since these are closely spaced, light can easily spill from one LED to the next, spoiling the effect. This can be avoided by fitting each LED with a short length of rubber sleeving to trap the light. Note that these LEDs need to be soldered in on the topside of the PC board as well as underneath.

The address mapping PROM IC19 must be fitted to the board before power is applied for the first time. The How It Works section explains the PROM programming. See Buylines for details of preprogrammed PROMs with the correct specification.

Testing

Testing the completed memory card is not easy at this stage. If you are intending to build up the whole co-processor project, the procedure for testing all the hardware together will be given next month. If, however, the DRAM card is intended for your own particular application then testing must consist of connecting the card into your target system and powering it up, not forgetting to initialise the bank select register.

If data can be reliably stored and retrieved, your DRAM card is fine. If there are problems, first check that you have soldered everything in, particularly on the topside of the board, then ensure all the on-board control signals are active and that addresses and

BUYLINES

Most of the components used on this card should be available from usual component distributors. There are a number of parts which cannot easily be substituted with any old manufacturer's components due to required dimensions or specifications.

The miniature axial ceramic capacitors used throughout this project are available from Verospeed as order code 92-50952H. Verospeed can be contacted at Stansted Road, Boyatt Wood, Eastleigh, Hants SO5 4ZY. Tel. (0703) 644555.

The ultramin 100μ radial electrolytic capacitor was obtained from Maplin as order code RK50E. The DIN41612 backplane connector is also available from Maplin (order code FJ51F). The turned pin IC sockets suitable for use with this PC card are as supplied by most competent stockists but try Maplin's range if uncertain.

The Dynamic RAM chips used in this design are not commonly available due to their relative newness. Since this design makes use of their special CAS before $\overline{\text { RAS }}$ refresh mode, other manufacturer's devices cannot be substituted. The whole range of AAA2800 series RAMs are available from NMB's UK distributor, Mogul Electronics. The circuit was designed to work with any of the range of five AAA2800 series parts (AAA2800, 1, 2, 3 or 4) having access times of 120 ns or faster. As the cost of DRAM is continually fluctuating, it is best to choose the cheapest of these parts at the time of ordering. Mogul Electronics can be contacted at Central Court, Knoll Rise, Orpington, Kent BR1 0JA.
Unprogrammed 24S10 PROMs are readily available from many of the regular advertisers in ETI. However, since readers might find it difficult to get these bipolar devices programmed, ready blown PROMs suitable for use in this co-processor project are available from the author for price $£ 6.00$ inclusive of postage. Please send cheques or postal orders made payable to the author to 52 Bishops Court, Trumpington, Cambridge CB2 2NN. Allow 28 days for delivery.

Finally, the printed circuit board is available from the PCB service.
data are reaching the DRAM chips.
Like all microprocessor based projects fault finding is extremely difficult without the right gear, and a decent logic analyser will set you back five grand or so. Having said that, a little perseverance with a scope should pay dividends.

Next month we shall look at the final bit of hardware to complete the Spectrum coprocessor design - the interface card through which the coprocessor can communicate with the Spectrum. We shall also start to examine the software side of things, so don't miss the next exciting episode!

HOW IT WORKS

The heart of the circult (Fig. 3) is of course the eight dynamic RAM devices, IC22-29. The rest of the circuit can be considered as two distinct areas around this DRAM - the paging/ address logic and the circuits which manage the memory chips by generating the required control signals.
Looking first at the paging/address logic, this enables the memory card for access when both a valid page on the card is selected and a valid location within that page is addressed.
The bank select register, consisting of three D-type fllp-flops (IC14 and IC33b) is mapped onto the $\mathbf{Z 8 0}$ output port at address 254 by IC20 and IC31a, b, d. The data value sent by the $\mathbf{Z 8 0}$ to this port will determine which page is chosen.
IC18 decodes the port data to see whether one of the four pages on this card is selected. IC33b stores the result, its Q output being low if the current page is on the card. At the same time, IC14 stores the states of the two least significant port data bits.
If the required page does reside on this card then these two bits signify which page from the four is selected and will form two extra address bits to the DRAM devices.
IC21 is used as a two-to-four line binary decoder to light up one of four LEDs to indicate which page is currently selected. This decoder is disabled if the current page is not present on the card so all the LEDs are blanked.

For circuit simplicity inverse logic is used for page selection. Sending 255 to the bank register switches in page zero, 254 switches in page one and so on.
The user has the option of making the card elther pages 0-3 or pages 4-7. This is achieved by means of a link on the PCB. If point A is linked to point C, the output of IC18 will be active low when the most significant six bits of data to the bank register port are high. So, pages 0, 1, 2, 3 are decoded onto the card. If point B is linked to point C then port bit D2 is inverted before it gets to IC18 and pages 4, 5, 6, 7 are decoded onto the card.

In this way, up to eight pages of DRAM (two DRAM boards) may be used in the system. The 8 -bit port decoding however, allows up to 256 memory pages to be controlled from the processor and if more pages are required then further data bits must be Inverted on their way into IC18. This would of course entail modifications to the PCB design itself.

IC19 is an address decode PROM used to disable the memory card when certain addresses occur, allowing other unpaged memory (such as EPROM) to reside in the system.

Its address inputs are connected to the CPU's eight most significant address lines and so the PROM changes its addressed location every 256 Z80 locations.

The PROM is programmed to produce a logic low at its least significant bit output (pin 12) when the

$8 \mathrm{Ba} \overline{\mathrm{RFSH}} \mathrm{O}$
8 B रु
card is to be disabled. For example, if the first 1 K locations are to be reserved for an unpaged EPROM, IC19 should be programmed with the first four locations containing zeros in the LS bit position leaving the rest of the device holding all ones.

For this design, where the first 5 K locations must be disabled, IC19 must have its first 20 locations programmed to $E(h e x)$ and the following 236 locations programmed to F(hex).
The rest of the circuitry manages the memory devices themselves allowing

them to be accessed for data storage or retrieval and also handles the refresh requirements.

Dynamic RAM expects to receive its address signals in two halves (the row and column addresses) multiplexed in time onto one set of address pins. The

Fig. 3 The circuit diagram of the RAM board

DRAM devices require three correctly overlapped control signals, RAS, CAS and \bar{W} to make use of this address information. $\overline{R A S}$ is the strobe which latches in the row address, CAS latches in the column address and \bar{W} is the write enable control.

A further signal is required to drive the address multiplexers themselves, selecting whether the row or column addresses are being supplied to the DRAM.

In this design the RAS signal is directly obtained by using the Z80 memory access strobe signal MREQ via buffer IC32c. The DRAM write control signal \bar{W} is the $\mathbf{Z 8 0}$ write strobe WR buffered by IC32b.
The generation of the DRAM CAS and the multiplexer select signal, is a little more complicated. Their precise timing has to tie in with $\overline{\text { RAS }}$ and $\overline{\text { W. }}$.

D-type flip-fiop IC33a is clocked at high speed by the system clock and on each rising clock edge passes the state of MREQ to its Q output. The relative timing of MREQ with the clock is such that the Q output of IC33a follows MREQ with a delay of about 50 ns minimum (assuming a 4 MHz clock).
This delayed signal is used to drive the select line of the memory address multiplexer formed by IC15, 16 and 30. The 50 ns switchover delay after RAS ensures the row address hold time is not invalidated.
The address multiplexed into the DRAM consists of 16 bits of address from the Z80 and two bits of address from the bank select register, IC14. This results in the required configuration of four 64 K pages with each page being directly accessible to the CPU.
The $\overline{\mathbf{Q}}$ output of IC33a goes on to form CAS via IC34b, c, d and IC35b, c. The DRAM chips used in this design (in common with most dynamic memories) require for normal access that CAS goes low after RAS and that the W strobe has settled before CAS goes low.
The delayed $\overline{\text { RAS }}$ signal from IC33a is guaranteed to occur after RAS Itself. Similarly IC35a detects when the Z80 RD or WR strobes are active. When this happens it signifies that the DRAM \bar{W} control is also present. The output of IC35c will go low only when both the delayed RAS and the output of IC35a are active, thus fulfilling the timing requirements for CAS in relation to $\overline{R A S}$ and \bar{W}.
The output of IC35c is given a little extra delay by IC34b,c to ensure the recently multiplexed column address has had time to settle. This signal then passes via IC35b and IC34d to drive the DRAM CAS Ilne.
IC33a can be disabled via Its asynchronous preset input by IC32a, thus holding CAS inactive when a memory access is not required on this card.
This occurs when either the current page is not on this card (IC33b \bar{Q} is low), when an invalid address has been recelved (detected by IC19) or when a refresh operation is taking place (Z80 RFSH line low).
When the Z80 authorises a refresh cycle to occur, it drives the RFSH line low before the MREQ (RAS) strobe. This RFSH strobe forces CAS low via IC35b to accomplish the automatic CAS before RAS refresh cycle. The result is that refresh occurs trans-

PROJECT: Co-processor RAM

HOW IT WORKS CONT.
parently to the user during the time the Z80 is internally decoding its next instruction.
Data from the $\mathbf{Z 8 0}$ data bus is buffered onto this card by IC17, an octal tranceiver chip. The direction control for this device is simply derived from the Z80 $\overline{R D}$ strobe via IC35d and its enable control is the same signal as the multiplexer select - this being active low during the time that data is moving into or out of the card.

Since each of the AAA2800 devices used is configured as a 256 K by one bit memory, each chip handles one bit of the Z80 data word and the address information is fed to all the DRAM chips in parallel.

Numerous supply decoupling capacitors are used throughout the circult (especially around the RAM chips themselves) to avoid problems with high frequency supply noise. A high value electrolytic capacitor C15 acts as a bulk energy store to reduce problems associated with remotely connected power supplies.

PARTS LIST

RESISTORS (all 0.25W 5\% unless otherwise stated)
$\begin{array}{ll}\text { R13-18 } & \text { 1k0 }\end{array}$
R19 220R 0.5W 5\%

CAPACITORS

C15
$100 \mu 6 \mathrm{~V}$ ultramin electrolytic radial
C16-32 100 n ceramic

SEMICONDUCTORS

IC14, 33 74LS74
IC15, 16, 30 74LS157
IC17 74LS245
$\begin{array}{ll}\text { IC18, } 20 & \text { 74LS30 } \\ \text { IC19 } & \text { 24S10 PROM }\end{array}$
IC21 74LS138
IC22-29 AAA280
IC31 74LS02
IC32 74LS11
IC34 74LS14
$\begin{array}{ll}\text { IC35 } & \text { 74LS00 } \\ \text { LED1-4 } & \text { green LEDs }\end{array}$

MISCELLANEOUS
SK2 DIN41612 type C 64-pin right angle PCB mounting plug
PCB; IC sockets; tinned copper wire for through connections; M2.5 nuts and bolts for DIN connector.

DISK DRIVES • COMPONENTS • CONNECTORS • ELECTRO-MECHANICAL, PCB AND CABLE ASSEMBLIES
Electro Mech Industries Limited More Twansis Mode PSUs etc. etc. All at
competitive prices. Detalls on request.
ACCESS or VISA weicome. Just phone your
order through, we do the rest. 24 hr answerphone.

TECH TIPS

Door Chimes

G Landry
 South Africa

This circuit is not just another two tone doorbell but is envelope modulated to give a realistic 'ding-dong' chime sound. It also has the battery saving feature of consuming no power in standby mode.

Pressing SW1 turns on Q1 to power the rest of the circuit. IC1a is a low frequency oscillator providing clock pulses to the decade counter IC2. Q2 is switched on when the counter passes zero and maintains the power for a complete cycle.

The fast attack, slow decay envelope is formed by D4, C3 and R8 at the first count. Q4 modulates the output of audio oscillator IC1d which is fed to amplifer Q5 and the

loudspeaker.
At count 5 from the counter, another envelope is started from D5, C3 and R8. The carry out pin goes low and C4 is introduced in
parallel with C5 to produce the lower 'dong' sound.

At count 9 , the counter is reset, Q1,2 are turned off via IC1b and the circuit is ready for another ring.

Motorcycle Regulator

D Noble

Kyle

This circuit was devised to provide regulation for the lighting circuit added to an off-road motorcycle without lights.

The principle is straightforward. Any extra energy from the bike's generator is dumped. The 741 acts as a comparator. The output is low when the supply voltage is less than the desired value. When the supply voltage is greater than the desired output, the output of the 741 goes high and the transistors are switched on, taking

current from the generator and reducing the output voltage.

The switch on voltage is set by RV1. A bridge rectifier was chosen to provide greater power at low
revs (tickover).
The transistors are mounted on a large heatsink and the whole circuit coated with a paint to keep out water.

Battery Regulator

G Landry
 South Africa

This voltage regulator circuit provides a 6 V output from a 9 V battery input and can maintain the output with an input as low as 6.5 V . Up to 180 mA can be supplied.

On application of power, Q2 switches on via R2. Q3 drives Q2 to ensure the voltage across ZD1 and the base-emitter voltages of Q2 and Q3 are constant with varying
supply voltages and output currents.

The output voltage can be trimmed between 5.7 V and 6.7 V with RV1 as the zener voltage is dependent on the current through it.

Q1 is switched on and lights LED1 to indicate that regulated output is available. If the supply voltage drops below 6.5 V then Q1 and Q3 turn off, the LED goes out and Q2 is driven hard on connecting the output to the supply with minimum power dissipated in the idle regulator.

Printer Switch

M Pill
 Nazeing

This design offers a convenient way of enabling two different printers or a printer and a plotter to be used with a computer which has only one parallel printer port. It uses tri-state buffers to switch the signals from the computer to the printer currently required.

Which printer is active at any one time is determined by the toggle switch connected to the 'enable' inputs of the buffers. With the switch in the position shown in the diagram Printer 1 will be active, as the buffer control pin is pulled low by the switch, activating the buffer outputs. The buffers feeding Printer 2 will conversely be open circuit due to the action of R2. The printer control lines are treated in a similar fashion to the data lines.

An added advantage of using buffers in this way is the driving capability they add to the printer port. The printer ports on most computers tend to be unbuffered. This can lead to corruption of data when long cables are used.

The circuit will need a 5 V supply which in most instances can be obtained from the computer and fed down an unused wire in the cable.

The circuit could be expanded to drive more than two printers or even reversed to allow two computers to share one printer.

Soft Turn-On
 Dimmer
 F Choy
 Singapore

High current surges through the low resistance of a lamp's cold filament when power is first applied. This can be fatal to the lamp, particularly if switched-on at or near the voltage peaks.

Such a disaster, however, can be avoided by incorporating soft turn-on, that is, to let a lamp be dully lit for a few initial moments, pre-heating its filament. This circuit provides a warm-up period (determined by R7 and C2) of about one second during which analogue switch IC1b opens leaving the wiper of RV1 unconnected.The timing resistance from Q3 is therefore the full resistance of RV1, corresponding to minimum lamp intensity while C2 charges via R7.

After one second, C2 is charged up to the threshold of IC1b

closing it for as long as power remains on. Now the wiper of RV1 is effectively shorted to its upper end resulting in a conventional phase control lamp dimmer. IC1a is switched on by the rectified mains through D1 so the potentials on
each side of switch IC1b are equal.
When power is removed, R6 discharges C2 via D6 in preparation for a new warm-up period. The rest of the circuit provides a 12 V supply and synchronisation for Q3.

ETI

PLAYBACK

|n many areas of electronics good design ideas are thought up and sometimes patented years or decades before they are really practicable. Maybe an effort is made to apply the idea commercially for a while, and the unsuccessful attempt deters further consideration of it for some time after it becomes feasible. The idea of class D audio power amplifiers may well fall into this category.
A class D' power amplifier works somewhat like a series pass, switched mode voltage regulator. Of course, the output of the class D amplifier is $A C$ instead of DC and is constantly changing, so it is not possible to optimise the design for a specific output voltage but many of the ideas are the same.

Another application which bears a striking resemblance to a class D audio amplifier is a switched mode uninterruptible power supply. In this system, a variable mark/space ratio switching signal is generated and filtered to remove the switching frequency leaving a 50 Hz sine wave on the output of the supply

The same idea can be applied to audio signals. The problem is more difficult because a wide frequency range must be accommodated. Also, a distortion level acceptable on a power supply would be far too much for an audio signal.

If the problems were solved, the resulting design would have two great advantages over currently available amplifiers. The power dissipation would be very low and there would be no crossover distortion. Why? Because there is no crossover region.

At zero output the switching stage would provide a squarewave at the switching frequency, and the mark/space ratio of this square wave would alter in time with signal excursions. There is no discontinuity at any point.

I admit the same is true of class A amplifiers but for any substantial power rating the heat generated is a problem and the noise of the cooling fan can spoil the music.

Duplication

Recently, over a pint at the local, a friend who works for a consultancy asked my views on high frequency audio amplifier design. Apparently they had been asked to design an audio

distribution amplifier for use with audio cassette duplication equipment.

The draft specification may interest or shock audiophiles, particularly those who advocate amplifier bandwidths exceeding that of a bat, or distortion figures of around $1 \mathrm{E}-6$ per cent.
Apparently the duplication equipment has to work at 128 times normal running speed in order to make the process economic.

The bandwidth specified for the distribution amplifier was 400 Hz to 1.6 MHz , which corresponds to a single speed audio bandwidth of 3.125 Hz to 12500 Hz .

Low Response

I do not regard this as impressive at the high frequency end, but the low frequency performance is anomalous. This low frequency response is needed to record the low frequency cue tone used on some tapes.

The basic amplifier was required to drive ten 50R coaxial cables, terminated at both the sending end and the receiving end. This attenuates the signal to half its original amplitude, so a corresponding gain is required in the amplifier.
The normal operating signal level was specified as 4 V peak to peak, with an overload margin of 26 dB on this level. This corresponds to a maximum signal of 80 V peak to peak, which represents 80 W into the maximum combined load of 10R.

Specification

This specification may well be partly the result of a specification writer's nightmare but assuming it is realistic I would imagine that an amplifier designed to meet it would use a quasi-complementary output stage with hunky RF power transistors.

How likely is such a device to exhibit distortion figures of 0.01% or less, I wonder?

Here is just another example of how the source material is mistreated before it reaches the punter.
If this type of signal handling is rife in the music publishing industry then it would seem to make that last fractional improvements in hi-fi equipment rather academic.

Andrew Armstrong

OPEN CHANNEL

Acouple of months ago (January ETI) Open Channel reported on the second generation of cordless telephones, codenamed CT2, currently in development. CT2 cordless phones are digital and will operate at similar frequencies to current cellular radio phones (around 900 MHz).

Then I said the first CT2 phones will be similar to existing cordless phones.
I also prophesied that future CT2 cordless phones will be developed as a single base station with a number of portable handsets - rather like existing private branch exchanges without the wires.
It appears, however, that another use for CT2 cordless phones is just around the corner - called Telepoint in which base stations are located in public places. Anyone having a portable handset within a short range of the base station can then access the network.

Typical public places would be train stations and shopping centres and the base station areas would be known as Phone Zones. Users won't need cash to make a call as they will be billed direct to their home addresses.

This new telephone service (if it gets off the ground) is to be operated by Ferranti and has been developed by a company called Libera, although Libera is in fact part-owned by Ferranti.
Libera has reported that operators in France have already been found and the company is currently recruiting operators in other European countries.

But When?

Operation is hoped for by the middle of the year but this depends on appropriate licensing by the Department of Trade and Industry.
It appears that licensing of systems installed inside public places will be more easily obtained than licensing required for system use, say, in the street.
One big problem in the DTI's system licensing procedure is the fact that little or no standards have yet been produced for the proposed system - basically because it's such a new concept. I would hope this should present few problems to the DTI as the system appears to have found market-places both at home and abroad, long before any foreign
competition has even thought of a similar product.
This move by Ferranti into telephone operation services is interesting, particularly when viewed with two other happenings. First, the company's recent merger with American International Signal and Control.

ISC is a large supplier of defence equipment and services, so any experience Ferranti gains from telephone and communications operation will be a big plus in the defence market.

The second notable happening is Plessey's buy-out of Ferranti's semiconductor division. Plessey is reported to have paid $£ 30 \mathrm{~m}$ for this and will now be by far the largest chip producer in the United Kingdom. As far as Plessey is concerned this can only have advantages in terms of economy and pricing.
Six months ago Ferranti was basically a chip manufacturer and finding life very difficult. Today it is a systems supplier. It will be interesting to watch Ferranti's fortunes in the near future.

No Competition

Plessey, of course, has recently merged its telecommunications division with that of GEC to prevent self-destructive competition.
Rumours abound that Ericsson, too, wants to get in on the act to make a European telecommunications force which will further reduce competition.
If such a merger came off, there would be little to prevent the combined companies from upping prices considerably.

Although this would suit Plessey, GEC and Ericsson, it would not be agreeable to companies (like British Telecom) which as a matter of principle always prefer to foster competition in equipment procurement by inviting tenders from as many individual suppliers as possible.

Given the truth of such rumours Plessey/GEC should take care not to give too much thought to a merger with Ericsson. BT and other customers are not going to change procurement policies just for their benefit. Non-European suppliers will be asked to tender and competition may then be even fiercer.

Keith Brindley

KEYNOTES

Rubbish! I am referring to the Rdeluge of inaccurate advertising and parrot-fashion media reporting that digital audio technology drags in its turbulent wake.
While not being in quite the same league as relativity or quantum mechanics, the subtleties of analogue/digital conversion have certainly proved sufficiently complex to cause wholesale confusion.

Good CD players sound better than bad CD players, despite having identical 96 dB signal to noise (S / N) specifications.
In response, the well-meaning but conditioned equipment reviewer instinctively points the finger of blame at the output sample-hold (if present at all) and lowpass filter (often quoted as an anti-aliasing filter, which it isn't - aliasing occurs only at ADC inputs)

In most cases, the accusing finger should instead be directed toward the DACs, which in the case of CD players rarely break 85 dB .

Ignore the issue of oversampling, as found in some CD players. Oversampling is simply a technique which allows convertor accuracy to be traded off against conversion speed without sacrifice in S / N performance.

Given that precision audio DACs are at best rather suspect, it is worth considering next the other end of the digital chain, the ADC. After all, what comes out cannot be any better than what went in.
In short, audio ADCs are quite definitely not yet firing on all 16 cylinders. Almost all ADCs in current audio use are based on the successive approximation (SA) technique, in which a DAC and voltage comparator placed within a digital feedback loop home in on the input voltage over a number of clock cycles.

A 16-bit SA ADC must perform 16 internal D/A conversions per sample and so cannot be expected to be as accurate as a simple DAC because higher speed generally results in lower precision.
Most 12 and 16-bit ADCs used by the audio industry are BurrBrown SA types, notably the 16 bit PCM75. This $£ 30$ device is quoted as having a dynamic range of 90 dB when used in conjunction with a perfect samplehold (which Burr-Brown are unfortunately not able to provide). With a precision
discrete component errorcancelling sample-hold and with a lot of care, feeding and loving attention, the PCM75 can reach down as far as 88 dB - on a lab bench, when the wind is blowing in the right direction.
In the harsher environment of a commercial production line a figure of 80 dB is more typical.
SA is not the only viable approach to A/D conversion but other approaches currently offer little or no advantage. For example, Sony's 16 -bit CX20018 dual ADC employs a dual-ramp integration conversion process to achieve a respectable 86 dB according to the data sheet but what gives the game away is the fact that Sony use the BurrBrown convertors in their own professional recording products.
Most of the inaccuracies of convertors are attributable to resistor ladder tolerances (and thermal drift), settling times, stray capacitance and ground loops. A hidden and easily overlooked source of error in precision convertor circuits is actually the stability of the clock. A timing jitter of one part in 65,536 can correspond to the oss of as much as one bit of precision in a 16 -bit system

A well designed crystal oscillator is more stable than this but what about glitches and variable loading effects in the intermediary logic and on the digital supply rails? This source of error applies equally to DACs and ADCs.

Purveyors of 16 -bit audio equipment are able to perpetuate their 96 dB mythology only by dint of the considerable difficulties involved in accurately measuring S / N beyond about 80 dB .
In practice the measured performance depends as much on the measurement configuration as it does on the quality of the convertor circuit itself, so it is hard to categorically prove or disprove claims.

Reading a professional audio magazine recently, I happened across an advertisement from TC Electronic of Denmark for a 2 U rack-mount delay/effects processor sporting '18-bit resolution, 1 MHz sampling rate' at 'a quarter of the price of any truly competitive unit' to boot Changing the subject, do you see that flock of pigs up there?

Bruno Hewitt

TEST NSTRUMENTS

 UK's LARGEST IN-STOCK
bange

KT5005 1014% digit 28 range pluss hia 12 C 2 men (S)
MD508 it 15 range AC/OC voits 22 ACC 2 display hold $08 \%(\mathrm{~B})$

6010 (til 28 range $10 A$ AC/DC 20
 5010 EC (t) 34 range incl 5 range CAP plus Hie $10 \mathrm{C} 0.5 \%$ [F] M 3530 [1 28 range plus Hfe 2OA AC/DC 20 meg AC 30 (0 C 03% (R) M3sca 1730 range incl. Hea CAP req count $20{ }^{5} \%$ (RI)

 HCSOIO (O/ 3I Range IOA AC/DC Auto range HCTI9 [i) W Range ange
(o) Walle H He test display hold 0.5% (R)

SCOPES (\star with probes)

HAMEG - all with com nit testers

 HAME 5314.00 GEMERAL OSTSM * 20 Dual 80 MHZ. 3 chan delay etc 2698.00 5MHZ Bench $£ 146.00$ * $2065 / 2$ Dual 20 MHZ + digital store $\$ 2575.00$ HITACHI v212 * 604 Dual 60 MHZ + sweep delay 2575.00 Dual 20 MHZ S33.00 CROTECH 3831 20MHZ Single E199.00 Batt/Mains track + comp.

POGKET INSTRUMENTS

*KT905 8 Range Digithal Cap Meter - 555 20HZ to 150 KHZ Audio 2030 ET 21 hange FET meter $0.1 \mu \mathrm{~A} .1000$ meg ric 5050 E 41 fang Meler $20 \mathrm{~K} / \mathrm{N}$. 10 ADC Buz 10282 19 1 loge Probe. TTL. emos 072 MnL Logic Pose Th + Logic Pulse 0.5/400HZ 62550 MHZ Logic rose Probe 250 MHZ with access X1/X10 Scope/ inst LED 8 digit Frea counter + PFm 200 a 200MH2 LEU 2 TR Dipmeter KDm6 1.5MHZ to 250 MHZ IR Dipmele - 4 ac 4 ranges *ST300 0/300 AMPS IKOH Res clamp meler * 501 Electronic insulation 2 w 2 $5 / 4 \mathrm{KW}$ tru power - 6060 Digital power meler $10 \mathrm{AC} / \mathrm{A}^{2} \mathrm{~V}$ volts LCO - TH301 Digital temperature meter $12 \mathrm{AC} / \mathrm{DC}$ + HC201 19 range, analogue meter.
 MEASURIMGIMSTRUMEITS SECURIT TODLS
 AUDIO/TV/NOL
SEECATALOGUE

IITTAL MILTIMETERS
BENCH DIGITAL MULTTM 100 m DHM
34 digit LCD $100 / \vee \mathrm{AC} / D C 100 \mathrm{AC} / 0 \mathrm{CD}$ $\begin{array}{lr}\text { con buizer battery operated } \\ 3225025 \% \text { basic } & \mathbf{8} 8.00 \\ \mathbf{~} 119.00\end{array}$ 3210 True RMS Vasian aina AC/DC 025\% Tm355 3\% digil LEO 985.00 (Bat opersted) ${ }^{\mathrm{Im} 351} \mathrm{LCO} .1 \% \mathrm{E} .115 .00 \mathrm{Tm} 356 \mathrm{LCO}$ Tm351.0.00 8035 LED $20 A$ AC/DC 0.1% RMS $£ 139.00$ 8035 LEO 20A AC/DC True RMS

COUNTERS \& TIMERS ALL BENGH MDDELS FREQUENGY COUNTERS 299.00 MET100 $220 / 240 \mathrm{~V}$ AC 8 digil $£ 126.0$ MET600 LELUTLTION $£ 175.00$ MET1500 5 mu min Sensitivity $£ 199.00$ TE200 8 8IgiLLCU
COUNTER/TIMERS 8 DIGIT LED APPOLLO 10 STANDARD MODEL $£ 219.00$ APPOLL 100 PLUS DISPLAY HOLD APM STOP WATCH ETC \$19.96
($\mathrm{R}=$ Rotary
Pb $\$ 3450 \mathrm{~Pb}=$ Push Button E33.50 $S=$ Slide) 53950筑5
 12000

817.0
836.5

814.95
 832.83
585.00

+ TC220 Digita

285.00 $265.10 \mathrm{CAP} / \mathrm{RES} / \mathrm{MO}$ $\$ 53.04$ plus logic pulser 525.95

\qquad

DC POWER SUPPLIES
240 V AC input Stabillsed variable
output vollages. Direct output volizges. Direct $2430 / 24$ volts $0 / 3$ amps $D C$ 24.24 valis $0 / 3$ amps $O C$ $2450 / 24$ vils $0 / 4$ mps DC 1545/5 131 IC win meter $0 / 30 \mathrm{O} 0 / 3 A$ DC THANDAR DIGITAL PSU's THURLEY.G
AVAILABLE

SIGNAL SOURCES

AC220/240V operations
FIINCTION SINE/SQ/TRIANGLE/TTL FUNGTION SINE/50KHZ £110.00 Jupiter 5000.1 HZ to 500 kHz TG101 0.02HZ to 200 KHZ TG102 0.2 HZ 10 2 MHZ $\begin{array}{ll}\text { TGi02 } & \text { §160.00 } \\ \text { Jupiter } 2000 & 0.2 \mathrm{HZ} \text { to 2MHZ } \\ & £ 149.00\end{array}$ TV-VIDED SYK a/P's Colour - B / W etc. £199.00 DIGITAL DISPLAY [0.2Hz-2Mhz] 204 digit 02 Hz - 2 mHz function $\$ 165.10$ 801606 dight $02 \mathrm{~Hz}-2 \mathrm{Mhz}$ Function $£ 215.00$ 80195 digin AM/FM Function $£ 250.00$ SWEEP FUNGTION $[0.2 \mathrm{~Hz}-2 \mathrm{Mhz}$) 801 SS FM mod 5 types of wave form 80195 digit $02 \mathrm{MHz}-2 \mathrm{MHz}$ AM/FM PLEASE ADD VAT |UK ONLY
GATALOGUES WITH DISCOUNT YOUCHERS Send 12×19 sat El Stamp Uw $\frac{\text { TRADE } \square \text { EDUCATION } \square \text { EXPORT SUPPLIED }}{\text { ORDER BY POST OR PHONE • OPEN } 6 \text { DAYS A WEEK FOR CALLERS }}$ $03 \cap \rightarrow \Omega$ 204 EDGWare boad LONDON W2 1 ED Tel:01-7240323

When you take out a subscription to any of these magazines

	EUROPE	$\begin{aligned} & \text { MIDDLE } \\ & \text { EAST } \end{aligned}$	FAR EAST	REST OF THE WORLD
A\&B Computing	$£ 27.30$	$£ 27.60$	$£ 31.10$	£28.30
Aeromodeller	$£ 27.00$	$£ 27.20$	$£ 29.00$	$£ 27.50$
Citizens Band	$£ 20.10$	£20.30	$£ 21.80$	£20.50
Clocks	£32.40	$£ 32.60$	$£ 34.70$	£33.00
Commodore Disk User	$£ 18.00$	$£ 18.20$	$£ 19.30$	$£ 18.40$
Disk User	$£ 21.60$	$£ 21.70$	£23.20	$£ 22.00$
Electronics Digest	$£ 12.90$	$£ 13.00$	$£ 13.70$	$£ 13.10$
Electronics Today International	$£ 21.00$	221.20	$£ 22.80$	£21.50
Ham Radio Today	$£ 20.10$	£20.30	$£ 22.00$	220.60
Military Modelling	$£ 22.40$	222.60	$£ 25.20$	$£ 23.10$
Model Boats	$£ 20.00$	£20.10	£21.80	£20.40
Model Engineer	£35.40	235.70	$£ 39.00$	236.30
Photography	$£ 22.00$	£22.30	$£ 25.00$	£22.80
Photoplay	$£ 16.70$	$£ 16.90$	£18.70	$£ 17.20$
Popular Crafts	$£ 21.40$	£21.60	$£ 23.60$	$£ 22.00$
Radio Control Model Cars	$£ 21.10$	221.30	$£ 23.10$	£21.60
Radio Control Boat Modeller	$£ 10.00$	£10.20	$£ 11.10$	210.30
RCM\&E	$£ 20.40$	$£ 20.60$	$£ 22.90$	$£ 21.00$
Radio Control Scale Aircraft Quarterly	$£ 11.10$	£11.20	$£ 12.00$	$£ 11.30$
Radio Modeller	$£ 20.00$	£20.20	£22.40	$£ 20.60$
Sea Classic International	$£ 10.70$	$£ 10.80$	$£ 12.00$	$£ 11.00$
Scale Models International	$£ 19.60$	$£ 19.80$	$£ 21.50$	$£ 20.10$
Video Today	$£ 20.20$	220.40	$£ 22.30$	220.70
Which Video?	$£ 19.40$	$£ 19.50$	£21.20	£19.80
Woodworker	$£ 22.80$	£23.00	$£ 25.70$	£23.50
Your Commodore	$£ 22.00$	$£ 22.30$	$£ 25.20$	$£ 22.80$
Model Railways	$£ 19.10$	£19.30	£21.50	$£ 19.70$
Practical Wargamer	$£ 7.10$	£7.20	$£ 8.00$	£7.40

The Above Offer Applies to Overseas Subscriptions Only

This offer is also open to existing subscribers who may
wish to extend their current subscriptions.

Please commence my subscription(s) To with the \qquad Issue I enclose my cheque/money order for $£$ \qquad made payable to Argus Specialist Publications Ltd from my Access/Barclaycard No.
Signature \qquad
valid from \qquad to Signature.
Name.

Address

PCB FOIL PATTERNS

> The Spectrum Co-processor RAM board solderside foil

The Gas Alert PCB foil

ETI PCB SERVICE

E8803-1 Co-processor RAM board N
£13.10
E8803-2 Beeb-Scope (3 bds) O £15.80
E8803-3 Jumping Jack Flash
E £3.23

TO: ETI READERS' SERVICES DEPARTMENT Argus Specialist Publications Ltd, 9 Hall Road, Hemel Hempstead, Herts HP2 7BH

Please supply:

POSTAGE \& PACKING	$£$	$0.75 p$
TOTAL ENCLOSED	$£$	$\cdot p$

ORDER TO BE SENT TO: (BLOCK CAPS PLEASE)

Name
| Address

Postcode

(Make cheques payable to ASP Ltd)
ACCESS and VISA credit card orders can be taken on (0442) 41221 (office hours only).

Telephone Alarm (July 1987)

In the component overlay (Fig.2) IC1 and IC2 should be swapped. The capacitor to the right of IC1,2 is C1 and the inductor between them is L1. The unmarked resistor to the left of L1 should be a wire link. In the circuit diagram (Fig.1b) IC4a,b should be AND gates. IC5 should be NAND gates. The parts list is correct.

Kappellmeisters (July 1987)

The position of the speaker port in the front panel was omitted from Fig.2. This should be a $71 / 4 \times 4^{1 / 2} / 2$ ellipse centred across the panel with its top edge $21 / 2$ in below the panel top.

Knight Raider (August 1987)

In Fig.1(a) pins 4 and 5 of ICl are swapped. IC2-3 show the correct pin-out.

Car Alarm (August 1987)
In Fig. 1 Q7 is not numbered and its emitter is shown unconnected. This connects to earth. The transistors in the parts list went a little awry. Q2-6 are BC237 and Q7 is a TIP31.

Boiler Controller (September 1987)
In Fig. 2 (a) the primary of T 2 is shown connected to Earth. This should be neutral. In Fig. 2(b) one of the bridge rectifier diodes, D6-9, is shown the wrong way around. This is correctly shown in Fig. 5.

EEG Monitor (September 1987)

In Fig.3a the pins of IC1 connected to the power rails are shown swapped around. In Fig.4a R7 is unlabelled and is between C3 and C6. In Fig. 5 C20 should be £10 and R18 is unlabelled. It lies between R17 and R19.

ETI Concept (October 1987)

The Power Board parts list wrongly lists R6 as 270 . This should be 270 k . Also, note that the power board's OV rail must not be connected to Earth or the OV rail of the CPU board.

Printer Buffer (November 1987)
The software for the EPROM had three errors listed. The byte at 039A should read 20, at 039B 14 and at 0492 30. All numbers are in Hex
Dream Machine (December 1987)
The transistors used in this project are ST1702. BC108s can be substituted.

RGB Auto-Dissolve (January 1988)

In Fig. 5 there are marked two D6's. The right hand one should be D5 (they are both 1N4148's anyway). In the text the reference to zener diode D5 should read zener diode ZD1.

PASSIVE INFRA-RED ALARM

(January 1988)
Fig. 2(a) shows the base of Q1 connected to ground and to R14. It should be connected only to R14.

WRITE OR PHONE NOW FOR OUR FREE, 1988
PINK COMPONENTS CATALOGUE

HUNDREDS OF LOWER PRICES

 HUNDREDS OF NEW DEVICESfrom the U.K.'s number one 100% components shop - no gimmicks, no gadgets, no computers, just millions of components, all easily available by mail order, calling at shop, or credit card telephone orders. Just pick upne, ague (no SAE required
CRICKLEWOOD ELECTRONICS LIMITED 40 CRICKLEWOOD BROADWAY, LONDON NW SET Tel: 014500995 \& 014520161 Telex: 914977

8.

SM ELECTRONICS
Specialists in Semiconductors

ELECTRONICS TODAY INTERNATIONAL CLASSIFIED

Lineage:
44 p (VAT excl) per word (minimum 15 words) Semi Display: (minimum 2 cms) £12.20 per single column centimetre + VAT Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-437 0699 Ext 292
Send your requirements to: Julie Capstick ETI Class. Dept., ASP Ltd., 1 Golden Square, London W1.

SURVEILLANCE

ELECTRONICS
MANUFACTURERS AND SUPPLIERS
OF SURVEILLANCE AND AUDIO EQUIPMENT)

MICRO BUG
SK1 Miniature Transmitter 20 mm $\times 47 \mathrm{~mm} \times 20 \mathrm{~mm}$, extremely sensitive. Operates from 1.5 v battery, elegant metal box included.
Ready built + tested only. $\mathbf{£ 2 9 . 5 0}$ Kit Form

EXTRA MINIATURE
TRANSMITTER
EK2 $25 \mathrm{~mm} \times 30 \mathrm{~mm} \times 9 \mathrm{~mm}$
Ready built + tested......... £49.00
Kit Form $£ 37.95$
HIGH POWER FM RADIO TRANSMITTER
EK65, 65W adjustable frequency Mains operated.. $£ 650+£ 35$ p\&p (Operation in the UK illegal without licence) AUTOMATIC TELEPHONE MONITOR
SK19 ready built + tested $£ 34.50$ Kit Form.

Many other surveillance equipment available. Send large S.A.E for catalogue

> SOUND TO LIGHT UNIT

SK72 separate sensitivity, bass, treble and mid-range frequency
controls, designed and
manufactured to highes
professional standard. Ready Built......£39.95 p\&p £3.50 Kit Form £21.95 Casing. £11.95 SK70 sound to light control unit Kit Form.
£14.95
Send Cheque or P.O. payable to:
ESKAN ELECTRONICS 172 Caledonian Road, London N1 0SG. Tel: 012781768 vish Trade and Export Enquiries Welcome
> - Components

> Equipment - Kits
> - Surveillance - PCB's

> If you can supply products or services to ETI readers - confact Julie Capstick on 01-437 0626 Ext. 291

BUG-87 Matchbox sized surveillance transmitter - can be received by any FM/VHS radio...................................... \&4. 95 ROBO-VOX Instantly transforms your voice into Dalek/Robot type also amazing feedback/sound effects possible.

ROBOT CIRCULAR Unique radio controlled robot - can also be converted to
control via computer..................... \&16.95
EDO-SCOPE Build your own oscilliscope with solid state display.............. 239.99
EDU-SCOPE CASEKIT............................ 211.99
THERAMII IUSIC GEMERATOR An electronic device based on an ancient legendary mystical instrument....................... \&12.75

Please add $£ 0.75$ per order for P\&P. For FREE Datapack on all our Products /Kits send SAE. Cheques/PO's payable to:-IMAGINA-TRONICS Aberdeen House, The Street, Charlwood, Surrey. RH6 0DS

COMPONENTS

PROMs - EPROMs - PALs ANY PROGRAMMABLE IC SUPPLIED OR BLOWN
Typical prices (excluding VAT) (Data Entry P\&P extra) $2716 £ 4.20 \quad$............... $2732 £ 3.85$
$2764 £ 2.85$.......... $27128 £ 4.40$ BIPOLAR PROMs from $£ 1.35$ e.g. 82S123, $18 \mathrm{~S} 030,74 \mathrm{~S} 288$ PALs, PLDs etc. from £3.26 Full design and prototyping service. Any quantity programmed
P.L.S., 80 Central Road,

Worcester Park, Surrey, KT4 8HU Phone: 01-330 6540
S.H. COMPONENTS presents 18 pages of very competitively priced semi-conductors switches, Opto Electronics, etc Send 50p to: 17 Beeley Road, Grimsby, S. Humberside.

BSR P207 SEMI-AUTO TURNTABLE Complete with SC12M ceramic carruidge 240 V AC FEW ONLY AT $f 25+£ 2.50$ P\&P SP45 ${ }^{3 \prime \prime} 40$ Watt 8 ohm Baby Boomer Superb value at only $£ 5.60+51.50$ P\&P
ALTAI SOLDER PUMP $£ 4.50$ post free BAGS OF ASSORTED COMPONENTS SEND FOR FREE US
STRACHAN ELECTRONICS (ET) 9 CROALL PLACE, EDINBURGH EH7 4 IT

FREE RESISTORS plus hundreds of low price-manufacturers full spec. components, send $£ 1.50$ cheque for samples and lists or $10^{\prime \prime} \times 4^{\prime \prime}$ s.a.e. for lists only. Dept. (E), D\&M Component Supply Service, 2 Glentworth Avenue, Whitmore Park, Coventry, W. Midlands CV6 2HW.

ELECTRONIC KITS-For those Winter evenings. SAE for details: COVE ELECTRONICS, 7 st . Anne's Avenue, Southbourne, Bournemouth, Dorset BH6 3JR

MICRO TRANSMITTER KIT, 500 m Range, tunable $88-115 \mathrm{MHz}$, sensitive microphone. £3.95. Cheques/PO's to Quantek Ltd., (ETI), 267 Rednal Road, Kings Norton, Birmingham B38 8EB.

FOR SALE

2 TRI-TANKS with chemicals. Hardly used, Must go together to make a complete process for PCB manufacture. Tel: 0327 72994.

TELECOMMUNICATIONS ENGINEERS

Thamesway - one of the fastest growing operating districts within British Telecom, is looking for Telecommunications Engineers in Reading, Basingstoke, Aldershot, Guildford, Slough, Bracknell and surrounding areas.
We are looking for people who, ideally, have electronic/electrical experience or who have an academic background, preferably in maths and science subjects. There are also vacancies for people without qualifications who can demonstrate a practical aptitude as training will be provided.
You must be at least 18 years of age, in good health and hold a current driving licence.
Start salary will range from $£ 5,649-£ 8,806$ depending on age and experience. We offer the first class benefits of a large progressive company, including excellent training, a good pension scheme and every opportunity for advancement.
To apply, just complete the coupon and return it to:
The Engineering Recruitment Manager
British Telecom DP112
Thamesway District
49 Friar Street
Reading RG1 1BA

Name
Tel. No. Day Evening
Address

Date of birth

Type of Driving Licence: HGV/CAR/NONE*
Currently Employed Yes/No*
When could you start work
-Delate which is not applicable
Qualifications: GCE; City \& Guilds; BTEC; HNC etc.)

PCB'S

abcenter

At last, an affordable PCB design tool for your Amstrad PC. Plotting service available.
Send SAE for further details, or $£ 2$ for demo disk.
Labcenter Electronics 14 Marriner's Drive, Bradford, BD9 4JT. Tel: 0274542868

CIRCUIT BOARDS manufactured to any chosen design. Send SAE for details to Mr. Alexander, 28 Gilman Road, Norwich NR3 4JB.

PLANS \& DESIGNS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and computer graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, String Works, Bye St., Ledbury HR8 2AA.

DESIGN YOUR

 OWN PCBsWith our powerful drafting utility Available for Amstrad CPC464/664/6128 Double sided boards up to 25×25 inch Powerful screen editing facilities Various track widths and pad sizes V1.I $£ 17.99$ Tape $£ 19.99$ Disc V2.0 many improvements $£ 29.99$ Disc CADsoft System, 18 Lay Crescent, Astley, Tyldesley.
Manchester M27 7BD

PRINTED CIRCUIT BOARDS At very competitive rates: 4 pence per square centimetre (less for orders of 10 plus) 1 offs, 100 offs - send artwork (1:1, single sided) or drawings/enquiries. Also artwork carried out. Watling Wires PCB Production, 52 Watling Street, Nuneaton, Warwickshire, CV11 6JL. Telephone (0203) 382296.

SWITCHES

VOICE/SOUND ACTIVATED SWITCHES easy to follow diagrams and uses only $£ 1.00$. Components and P.C.B's available: Herrington, 63 Home Farm Rd, Hanwell, London W7 1NL.

ELECTRONICS TECHNICIANS Updating Courses (Dept ETI), 20 Penywern Road, London SW5 9SU. 01-373 8721.

Copy Deadine for May issue. 1st March.

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel. 0684 73127.

TMS320 Starter kit incorporating TMS32020, 16K Eprom RS232. Prices from under $£ 300$. For further details send S.A.E. to Melek Circuits, 18 Kincardine Drive, Bletchley, Milton Keynes MK3 7PG.

RETAIL OUTLETS

LIVERPOOL

PROGRESSIVE RADIO
87/93 Dale Street Tel: 0512360154
47 Whitechapel. Tel: 0512365489 Liverpool 2
THE ELECTRONICS SPECIALISTS
Open: Tues-Sat 9.30-5.30
LONDON

FOR COMPONENTS
LOTS OF NEW DEVISES
LOTS OF LOWER PRICES
01452 0161/450 0995 Telex: 914977 40 Cricklewood Broadway.
London NW . London NW2 3ET.

SOUTH COAST

ELECTRONIC COMPONENTS are best seen at
FRASER ELECTRONICS
42 ELM GROVE \star SOUTHSEA $*$ HANTS
Telephone (0705) 815584
Barclaycard Access
COME AND BROWSE BEFORE YOU BUY
TYNE AND WEAR
ELECTRONIC COMPONENTS AND KITS (c) $\mathrm{C}=\mathrm{C}$
STATION ROAD, CULLERCOATS, NORTH SHIELDS, TYNE \& WEAR NE30 4PQ 0912514363
New 1988 Catalogue now MON-SAT 9.30 to 5.30 avallable £1.85 incl p\&p. CLOSED THURS.

WANTED

IDEAS/INVENTIONSwanted Call I.S.C. 01434.1272 or write, Dept ASP 99 Regent St, London W1.

WANTED: Electronics boffin to construct calculator with builtin voice synthesisers for private project. No companies. Mr. Holmes No: 29 CM12 9EF.

Turn your surplus transistors, IC's etc., into cash. Immediate settlement We also welcome the opportunity to quote for complete factory clearance Contact:

COLES HARDING \& CO. 103 South Brink
Wisbech, Cambs
ESTABLISHED OVER 10 YEARS
Tel: 0945584188
Fax Number: 0945588844

See review
 SUPERMOS
 See Ell Oct. ad

Build the very best in British Hi-Fi sound quality and with a technical performance to rival even the best Japanese or American amplifiers

HICH EFFICENCY MOSFET CLASS A WITHOUT THE HEAT!

Are you still listening to crossover distortion generated by darlington bipolar transistors operating in class $A B$? Switch to SAGE active CLASS A MOSFET power amplifiers and we guarantee you'll never switch again.
All conventional Hi-Fi power amps (including so called pure class A) when driving a real loudspeaker generate crossover distortion. The unique SAGE ACTVE class A amp module will never switch to class B harmonic distortion is almost beyond measurement (2 ppm at 100 W) and slewrate is a super fast $250 \mathrm{~V} / \mathrm{us}$.
Many audio manufacturers build technically excellent amplifiers whilst turning a deaf ear to "Component Others use 'Audio Grade Components' whilst totally ignoring BASIC technical performance specifications.
THE SAGE AUDIO DESIGN PHILOSOPHY
THE WORLDS HIGHEST
A power amplifier module with
BUILT WITH AUDIO TECHNICAL PERFORMANCE

A UNIQUE
GRADE COMPONENTS
COMBINATION
Ultra linear active class A MOSFE THD 0.0002\% (2ppm) @ 100W Slewrate, $250 \mathrm{~V} / \mathrm{us}$
Output current $50 \mathrm{amps} \mathrm{p-p}$ Signal to noise ratio: 120 dB Real reactive speaker drive capability.

Close tolerance, polypropolene and and for real precision we use Lazer trimmed
SMD resistors, superior to BULK FOILS
Custom built fast MOSFET Custom buit fast MOSFETs and matched
selected transistors. manual details of these superb amplifier modules send a $9^{\prime \prime} \times 4^{\prime \prime}$ SAE or 4 IRC's. New style user manual giving full PSU/wiring details, components etc. $£ 2.50$ (12 IRC's), refunded on GRADE 1 SUPERMOS MODULES $£ 65$ TOTAL NC. P\&P. We now stock a full range of SRADE audio components, PSU caps, 36 amp bridges low noise toriods LS terminals.
 two LS protection units (c (FREE . Send $£ 187$ plus $£ 7$ p\&.p/insurance, (EXPORT - send bankdraft $£ 187$ plus $£ 10$).
CIPRE Construction House, Whitley Street, Bingley, Yorks. BD16 4JH.
Cif15 Export Facilities Worldwide. Tel: 0274568647 , Telex 517783, Fax 551065

SATELLITE

Calling all
Satellite T.V.
Dealers!!
Electronics Today
International can
bring you success
in 1988.
Contact Julie Capstick
on 014370626
for more details.

SPECIAL OFFERS

CHILDSPLAY . . FROM K.I.A.II 100 watt amplifiers $£ 7$ flow-soldered glass/PCB + integral To3 - heatsink + leads \& directions! 8 Cunliffe Road, Ilkley, LS29.

CASSETTE MOTORS large and small 2 for $£ 1.00$. Mono and stereo cassette tape heads. 2 for £1.00. Microphone small for cass. tel. etc. 2 for $£ 1.00$. Telephone buzzers at $£ 2.50$ each. Please add 75p p\&p no VAT. Access card accepted. Golden Orange Supplies, Brockhollands Road, Woodside, Bream, Lydney, Glos. Tel: 0594563009.

FREE MEMBERSHIP to a new
NATIONAL ELECTRONICS CLUB.
For details and à free gift of components worth over $£ 10$ send only $£ 1.00$ p\&p to
Woodside, Dowsett Lane, Ramsden Heath
Essex CM11 1JL.

ÍCLĀS̄̄̄IFIED COUPŌN

ELECTRONICS TODAY INTERNATIONAL, CLASSIFIED ADVERTISEMENT DEPT, No. 1 GOLDEN SQUARE, LONDON W1R 3AB. PLEASE DEBIT MY ACCESS/BARCLAYCARD NO. EXPIAY

Rates: Lineage 51 p per word (VAT inclusive) minimum $£ 7.65$ semi-display $£ 12.20$ per single column cm . No reimbursements for cancellations. All ads must be pre-paid.
Name.
Address .
.............. . . Daytime Tel. No:
Signature . Date.

ADVERTISERS' INDEX

Audiokits Electronics
BK Electronics
Cricklewood Electronics
C Scope Electronics
Display Electronics
Electromech Industries
Hart Electronics
Henry's Audio Electronics
Maplin Electronics
Pineapple Software
Rackz Mounting Products
Riscomp Ltd
RTVC
RTVC
SMJ Electronics
Specialist Semiconductor Devices
Stewarts of Reading
Suma Designs.
TKA Developmen
Wilmslow Audia
Zenith Electronics

FORNEXT MONTH'S NEWLOOK
 magazine a facelift.
Next month's ETI has a totally new look, inside and out. Nevertheless it is still crammed to the covers with the usual mixture of features and projects that go to make ETI the best electronics mag around.
The April issue sees the start of the hi-est of fi Virtuoso power amp project to complement the Virtuoso pre-amp of last year. The Spectrum Co-processor is in its third installment and we have the start of a new series of easy projects for the beginner to electronics or the expert short of spare time.

John Linsley Hood gives us the low down on capacitors what they are, how they're made and how to use them in audio design. Plus there's all the regulars - Circuit Theory, Chip In, Playback, Keynotes, Open Channel, News, letters and much, much more.
Don't be April fooled by the April ETI-Out March 4th

The Doller has fallen... and so have our Prices!

[^0]: ค $ค \cap \Omega \&$ C-Scope International Ltd., Dept. ETI
 @ Telephone: 023329181

