co ANTWHER: Al:CRONICs)
 HEHIT, DAMP, IMPACT HOW TO SURVIVE IT

TINUTE MINDER

 TWO IIFR ALARM IS YOUR THME-REMINDERPC PHONECRD REDDER

sidgid diculs

HICH PERFORMANC: MHDUW WIVE RECHV:R DFDICATED TOSIFTING OUT MFDIUM WAVE STATIONS

$$
\begin{aligned}
& \text { Programmable Logic is one of the fastest } \\
& \text { growing areas in the Electronics Industry. } \\
& \text { This system allows you to both learn } \\
& \text { about PLDs (Programmable Logic } \\
& \text { Devices) and to implement them in } \\
& \text { practical projects. It comes complete } \\
& \text { with a Programmer (C apable of } \\
& \text { programming 16V8, 20V8 and 22V10 } \\
& \text { devices), a training module, a stand alone } \\
& \text { training course and a free copy of the } \\
& \text { industry standard CUPL for Windows, } \\
& \text { plus a Flash based device that can be } \\
& \text { reprogrammed 100s of times. }
\end{aligned}
$$

Assembler, Simulator, Book, Programmers (In System and Standalone) - All you need to give this new micro a try.

Serial EEPROMs are found in virtually every piece of programmable equipment made. From televisions, VCRs, Burglar Alarms, Mobile Phones and Microwave ovens right through to Aircraft. Worldwide over $£ 2$ Billion are sold every year and they are manufactured by over 20 companies. This, low cost, system allows you to both experiment with and implement these devices. The system allows the user to program all the popular versions including the $24,25,59,93$ and 17C series, both in system and standalone. The kit comprises a programming lead, programming module, Windows programming software (with integrated Hex and ASCII editors) and a comprehensive reference manual.

C is rapidly becoming the language of choice for embedded systems programming. We can now offer the professional C compiler from IAR (The acknowledged Industry Leaders) for most micros e.g. AVR Compiler $=£ 450$. Please contact us for full details. Free working Demo available on request.
A full Residential Training Course is also available, ideal for INSET or enhancing your job prospects.

Wellave ra range of low cost in Circuit Emulators (I.C.E) and development Systems available for the 51, PIC and (shortly) the AVR. Please call for details.

In
Prices do not include VAT

Microcontroller Training Systems for PIC, AVR or 51 series micros. Includes full coursework, Hardware and Software neatly bound into an A4 Ringbinder. Starts from basics and goes step by step through to project design. A full review of this product is available in Everyday and Practical Electronics.

Introduction to the AVR book. Written by a Lecturer, this book is the perfect introduction, not only to the AVR microcontroller, but also to microcontrollers in general. Includes Official Software. Only £18.

Pendre-Hafod, Pontrhydygroes, Ystrad Meurig, Ceredigion, SY25 6DX Tel: 01974282670 Fax: 01974282356 Email: sales@kanda-systems.com.
Website: www.kanda-systems.com
Kanda Products are also available from Maplin, Rapid Electronics and Farnell

Contents

Volume 26 No. 12

Next Issue 5th December 1997

Regulars

News	8
PCB foils	65,67
ETI PCB Service	69
Round the Corner	74

Round the Corner

DIGITAL MULTIMETERS

FEATURES:

- 3.75 LCD DISplay with decimal point - 33 SEGMENT BARGRAPH DISPLAY - overrange indication
- ROTARY SWITCH FOR FUNCTION SELECTION
- AUTO POWER OFF (APPROX 15 mins) AUTO POLARITY WITH INDICATION BUZZER
all ranges overload protected
- LOW batterr indication
- SUPPLIED WITH TEST PROBES
- DC VOLTAGE: $320 \mathrm{mV} / 3.2 \mathrm{~V} / 32 \mathrm{~V} / 320 \mathrm{~V} / 600 \mathrm{~V}$ - AC VOLTAGE: $320 \mathrm{mV} / 3.2 \mathrm{~V} / 32 \mathrm{~V} / 320 \mathrm{~V} 600 \mathrm{~V}$ - DC CURRE

$320 \mathrm{~mA} / 10 \mathrm{~A}$ AC CURRE

AC CURRENT A: $320 \mu \mathrm{~A} 3200 \mu \mathrm{~A} 32 \mathrm{~mA}$ 320mA/10A
3ESISTANCE: $320 \Omega / 3.2 \mathrm{~K} \Omega / 32 \mathrm{~K} \Omega / 320 \mathrm{~K} \Omega /$
ORDER CODE: CM2700
PRICE: 4050p

8 Way Preprogrammed Universal Remote Control

FEATURES:

- LARGE LCD DISplay

HEIGHT 18mm
MASIMUM READING 1999 + UNIT SINGLE MANUAL ROTARY SWITCH FOR AUTO POWER OFF (APPROX 15 min) dIODE TEST FUNCTION all ranges overload protected SUPPLIED WITH TEST PROBES
DC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V}$ 700 V ACCURACY $\pm 0.5 \%$
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ - DC CURRENT A: $200 \mu \mathrm{~A} 20 \mathrm{~mA} 200 \mathrm{~mA} 2 \mathrm{~A} 20 \mathrm{~A}$
 200M Ω

ORDER CODE: CM3900A
PRICE: 2900p

CNIB920 DJCITALMETER WHTTM TEMP MEASUFEMEMT

FEATURES

- TEMPERATURE MEASUREMENT - DIODE \& TRANSISTOR HFE TEST - LARGE LCD DISPLA
- MAXIMUM READING $1999+$ UNIT - SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION - AUTO POWER OFF (APPROX 15 mins) - DIODE TESWT FUNCTION - ALL RANGES OVERLOAD PROTECTED - SUPPLIED WITH TEST PROBES - DC VOLTAGE: $200 \mathrm{~m} V / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} /$ 100 V ACCURACY $\mathrm{E} 0.5 \%$
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$
- AC CURRENT A: 200 mA A20A
- RESISTANCE : 2000/2K $2 / 200 \mathrm{k} \Omega \nu 2 \mathrm{M} \Omega / 20 \mathrm{M} \Omega$ 200Ms
CAPACITANCE: 2 nF/20nF/200nF/2 $\mathrm{FF} / 20 \mu \mathrm{~F}$
ORDER CODE: CM3920
PRICE: 4100p

A single remote control to operate Television, Videos and Satellite Receivers. Plus Auxilary Options!!

- Replaces up to 8 remotes with one
- Simple 4 digit setup routine
- Controls 1000's of models
- Teletext functions with Fastext
- Clear (large key) layout
-Code Search Facility
- Stylish and easy to operate
- Replace broken or lost remotes
- Original Remote note required

Order Code: 8. WAY
Price: 1450P + VAT

GRANDATA LTD

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126

OPEN Monday to Saturday.
Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES

CODE	PFICE	CODE	Prace	C.DE	PRICE	OpE	PRICE
SATPSU1	650p	SATPSU6	650p	SATPSU11	835p	SATPSÚ16	730p
SATPSU2	650 p	SATPSU7	650p	SATPSU12	1735p	SATPSU17	850p
SÁTPSU3	650p	SATPSU8	730p	SATPSU13	3125p	SATPSU18	1175p
SATPSU4	650p	SATPSU9	900p	SATPSU14	3135p	SATPSU19	650p
SATPSU5	-50p	SATPSU10	1230p	SATPSU15	77.5p		

| PACE SWITCH MODE TRANSFORMERS |
| :--- | :---: | :---: |
| MODELS CODE PRACEY
 PACE 9000 PRCE9000 800 p
 PACEPRD800, PRD900 $550 p$ |

SATMETER

THE SATMETER IS A PROFESSIONAL PORTABLE SATELLITE STRNGTH METER DESIGNED FOR THE INSTALLATION AND MAINTENANCE OF SATELLITE TV SYSTEMS. THE SATMETER CAN BE USED AS STAND ALONE METER WITH POWERING THE LNB AS WELL AS IN LOOP. THROUGH OPERATION WITH SATELLITE RX POWERING THE LNB.

ACOUSTICAL SIGNAL: ON SIGNAL STRENGTH INPUT IMPEDENENCE: 75 Ohm MAX.INPUT SIGNAL: -10 DBM

LED INDICATOR: VERTICAL/HORIZONTAL POWER AMPLIFIER: 18 DB

FREQUENCY RANGE: 900 TO 2050 MHZ DETECTION RANGE: -60 TO -10 DBM

ORDER CODE: TOOL 22
PRICE: 8500p

SATELLTE LNB'S					
- Matara	ORTMat codr	PRIC5		Qenta cont	PRICE
Cambridge AE22/AE5 0.8dB standara $10.35-1170 \mathrm{GHz}$ Gold Range	LNB1	2160p	Cambridge AE7 wn $0 / \mathrm{PH}+\mathrm{V}$ Both Enhanced	LNB7	4000p
Cambridge AE14 Universal LNB 10.7-11.7/11.7-12.75 GHz	LNB2	2500p	Cambridge AE2 Dual O/P H-V Separate Enhanced	LNBB	3550p
Cambridge AE21/AE5 Single O/P Switching LNB 1.0dB Standard	LNB3	2050p	Grundig Super Universal 'Anis' 10.7-12.75 GHz 0.8dB	LNB9	2600p
Cambridge AE19/AE6 Single O/P Switching LNB 1.OdB Enhanced	LNB4	2050p	Grundig Universal 'Anis' $10.7-12.75 \mathrm{GHz} 1.0 \mathrm{~dB}$	LNB10	2250p
Cambridge AE23/AE12 0.8dB Enhanced 10.7-11.8GHz Gold Range	LNB5	2160p	Cambridge AE1 Twin O/P H+V Both Standard	LNB11	4000p
Cambridge AE8 Dual O/P H-V Separate Enhanced	LNB6	4000p			

			FUSES	
	TIME LAG 12		CUICKBLOW	(20MM)
CURRETT RATING	PRDER CODE	PGICE	Onger CODE	PRICE
100 mA	FUSE36	75p	FUSE37	60P
160 mA	FUSE01	75p	FUSE17	60p
250 mA	FUSE02	75p	FUSE18	60p
315 mA	FUSE03	75p	FUSE19	60p
400 mA	FUSE04	75p	FUSE20	60p
500 mA	FUSE05	75p	FUSE21	60p
630 mA	FUSE06	75p	FUSE22	60p
800 mA	FUSE07	60p	FUSE23	60p
IA	FUSE08	60p	FUSE24	60p
1.25A	FUSE09	60p	FUSE25	60p
1.6A	FUSE10	60p	FUSE26	60p
2A	FUSE11	50p	FUSE27	60p
2.5 A	FUSE12	50p	FUSE28	60p
3.15A	FUSE13	55p	FUSE29	50p
4 A	FUSE14	55p	FUSE30	50p
5A	FUSE15	60p	FUSE31	50p
6.3A	FUSE16	60p	FUSE32	50p

NB.
all fuses are made in the uk and fully meet BS4265 \& BS1362 SAFETY STANDARDS AND SHOULD NOT BE COMPARED WITH CHEAP IMPORTED TYPES.

CERAMIC PLUG TOP

CUARENTRATING	Qraxic cold	PRIGE
3A	FUSE33	100p
5A	FUSE34	100p
13 A	FUSE35	100p

20 mm CERAMIC TIME LAG

CuBbicnt rativa	SAPDER CODE	PRICE
6.3A	FUSE38	100p
8A	FUSE39	100p
10A	FUSE40	100p
3.15A	FUSE41	85p
4A	FUSE42	85p
5A	FUSE43	85p

38 mm CERAMIC TIME LAG

32 mm CERAMIC SLOW BLOW

CORRENT RATING	QRDEF	PबाCE
${ }^{3 A}$	FUSE44 FUSE15	${ }^{1855}$
10 A	FUSE45	1855
${ }^{15 \mathrm{~A}}$	FUSE46	1850 210p

DESCRIPTION	VOLIJME	CODE	PRICE	DESCRIPTION	YOLUME	CODE	PRICE
VIDEO HEAD CLEANER	75 ML	SP01	180p	EXCEL POLISH 80	250ML	SP18	150p
VIDEO HEAD CLEANER	200ML	SP27	250p	ADHESIVE 120	400ML	SP19	190p
SWITCH CLEANER	176ML	SP02	180p	LABEL REMOVER 130	200ML	SP20	240p
SUPER 40	400ML	SP15	250p	REFURB 140	400ML	SP21	240p
SILICONE GREASE	200ML	SP03	210p	TUBE SILICON GREASE	50 GRAMMES	SP11	220p
FREEZE IT	170ML	SP04	320p	TUBE TUBE SILICON			
FREEZE IT	400 ML	SP16	600p	SEALANT WHITE	75ML	SP22	280p
FOAM CLEANER	400 ML	SP05	200p	TUBE SILICON SEALANT			
ANTI STATIC	200ML	SP06	190p	CLEAR	75ML	SP23	280p
AEROKLEANE	200ML	SP07	220p	TUBE HEAT SINK COMPUND	25 GRAMMES	SP12	150p
AERO DUSTER	150ML	SP08	310p	DRIVE CLEANER	200ML	SP24	150P
AERO DUSTER	400 ML	SP17	550p	SCREEN CLEANER	200ML	SP25	150p
PLASTIC SEAL	200 ML	SP09	250p	COMPUTER CARE KIT		SP26	2100p
GLASS CLEANER	250ML	SP10	160p	ANTI STATIC FOAM CLEANER	400ML	SP28	175p
COLDKLENE	250ML	SP13	230p	AIR DUSTER	400ML	SP29	450p

ALL THE ABOVE ITEMS ARE MANUFACTURED BY SERVISOL

IF YOU PURCHASE MORE THAN ONE SERVISOL PRODUCT POSTAGE \& PACKING WILL BE CHARGED AS FOLLOWS: 300P FOR 5 CANS
450p FOR MORE THAN 5 CANS

Young Radio Amateur of the Year

The Young Radio Amateur of the Vear Award for 1997 has been won by 15-year-old Emma Constantine.

Emma has been a founder member and Secretary of her school radio club in West Yorkshire since she was 12. She helps to run Novice training courses for fellow students and friends, and recently facilitated lunchtime Morse code sessions at the school. She is also active in organising contests such as the IOTA (Island on the Air) she is curently planning to help her Novice course candidates. One notable achievement is that she has established educationai links with a schoof radio club in Lithuania, and also a club at Moi University in Kenya.

Her close runner-up is 14-year-old Mark Haynes from Harlow, Essex, who became the youngest radio amateur in his home town at the age of 12. when he gained his novice licence. He helped to set up an Amateur club at his school, and has taught two of his friends Morse code. Mark himself can transmit and receive Morse at around 16 words per minute.

At EII, we are glad to see young amateurs pitching into fundamental radio skills like Morse code and basic
construction instead of concentrating purely on "black box" radio skills.
As winner, Emma received the first prize of £300 from the
Radiocommunications Agency's Director of Mobile Services, Roger Louth, at the Radio Society of Great Britain's HF Convention in Windsor. She also received a certificate signed by Margaret Beckett, President of the Board of Trade and Secretary of State for Trade and Industry. Mark received an
award of L 50 from the Agency, and both winers will be invited to the winner's traditional outing to the Agency's Radio Monitoring Centre at Baldock, Herts, for a conducted tour.

Minister for Industry Barbara Roche congratulated the winners and all who had taken part, and reminded us all that the experience and exercise of their talents in radio will help young people when they enter the job market, particularly in view of the shortage of people with knowledge and experience of electronics.

The Amateur of the Year Award is organised in conjunction with the PSGB to encourage young people to go into amateur radio.

Applicants are expected to demonstrate an interest in good construction and radio operation, using radio to help the community, and encouraging others to be involved in school or science projects involving radio.

For more information about the competition, contact the RSGB at Lamda House, Cranbourne Road, Potters Bar, Herts EN6 3JE. Tel 01707659015.

RA plans auction of radio spectrum licenses for Universal Mobile Telecomms Service

The Radiocommunications Agency (RA) has placed an advertisement in the Official Journal of the European Communities seeking interest in tendering to provide financial management consulting services. The consultant in question would assist the RA in preparing for a possible auction of spectrum licences for UMTS (universal mobile telecommunications service), the third generation of mobile telecommunications.

This is a preparatory step towards meeting the Government and industry's shared goal of early licensing certainty for UMTS. Another action under way is the formation of a dedicated team with the RA to oversee the UMTS spectrum licensing process.

Any auction in connection with UMTS still remains subject to the successful completion of Parliamentary consideration of the Wireless Telegraphy Bill 1997, including the necessary Royal Assent, and the laying before Parliament of delegated legislation under the subsequent Act, and also subject to the results of the current consultation on the document 'Multimedia Communications on the Move' (31 July 1997). Copies of the document can be obtained by contacting 01712151785 , or on the internet at www.open.gov.uk/radiocom/rahome.htm

Radio and TelecommsCorrespondence School

The Radio and Telecommunications Correspondence School (RTCS) in Teignmouth, Devon, has been conducting tutored and untutored correspondence courses for City and Guilds of London Institute qualifications in Telecommunications and Electronics Engineering course no. 2710, which has been updated to 2720 . The course comprises three levels: the Technician Certificate, the Technician Diploma and the Advanced Technician Diploma.

The course can be started at any time of year, and the School recommends it for anyone with a reasonable background of schoollevel mathematics and science. Students are under the general supervision of Mr. A A Goddard BSc (Eng) MIEE (Member of the Institute of Electrical Engineerings) who is a past member of the examining body of the City and Guilds.

Subjects are taught by a combination of standard approved textbooks, lesson and revision notes, worked examples and examination questions from part City and Guilds programmes.

The RTCS also conducts courses for the RAE (Radio Amateurs' Examination) of the RSGB, and courses coivering Microelectronic Systems and Television Principles. Details about courses can be obtained by applying for the relevant prospectus form from RTCS, Handel House, 2 Somerset Place, Teignmouth, Devon TQ14 8EP. Tel 01626772414.

OVERSEAS READERS

To call UK telephone numbers, replace the initial 0 with your local overseas access code plus the digits 44.

 B^{2} Logic

Just some of the features

Fully Integrated and Interactive

Build the circuit on the screen and set up the simulations by choosing options from menus and dialogues. Run the simulation and view your results.

Flexible Visualisation of Results

 in 8 'Spice results can be displayed in graphs tables or directly in voltmeters and ammeters. Change from typical to worst case anatysis and include the effects of temperature on components. You can customise everything. right down to the colour of an individual trace
Versatility

A plethora of components include resistors capacitors, inductors. mutual inductors / transformers. controlied sources, bipolar junction transisfors, zener diodes, power MESFETs, JFETs, MOSFETs, voltage regulators, operational amplifiers, opto couplers, voltage comparators. quartz crysials, IBIS I:O buffers and switching matrix connectors and much more All devices and model parameters can be edited to suli your needs.Implement herarchical circuils in your designs quickly and easily

No Limits

With B^{2} Spice and B^{2} Logic there is no limit on the number of components in the circurt

Models

There are thousands of models included The complete Berkeley SPICE model nbrayy as we as commercial libraries from manufacturers such as. Motorola. Texas Instruments. Burt-Brown, Maxim. National Semi, APEX Comlinear. AlAP, Elantec, Linear Tech, and many more. Included with ESpice is a fult model and symbol editing package so you can create, import and edit custom models.

Cross Probing

Cross probing allows you to display waveform results simply by marking pins. wires and devices on the circuit drawing Montor resulte while the simulation is in progress then plot analogue results on finear or tog scales

Waveform Analysis

Display and currpare multiple response curves in a singie graph at the same time. ÉSpice simulation results can be selectively displayed and anaivsed graphically and in numerical format as well as exported to other applications. All of E'Spice and B'Logic display capabilities are completely flexible

Devices \& Stimulus for Simulation

in B Spice sinusoidal, constani, periodic pulse exponential, single frequencyFM, AM, DC voltage, AC voitage, VCO. VcC, piecewise linear exponential. polynomial /aroiltrany source voltage-controled voltage, voltagecontrolled current, current-controileci voltage, current-controlled current, Lossy and ideal transmission I ne, MESFET, uniform RC. current and voltage switches are all avalable Graphs
In B Spice analogue traces may be displayed as raw voltages and current values or further processed using arithmetic expressions. functions and Fast Fourier Transforms. Vew plot values corresponding to the cursor posittori on the graph and get data from mutriple simulations in one graph. Multiple graphs to be aligned and compared.

Data Analysis

Position detection with mouse for dala points Import and export data to and from other industry standard SPICE prograins.

Digital Options.

a cuacis completely fiexible. Set up ROM RAN and PLA to your own requirements. Sneink a whole circuit to a block and use it as a component in a new design. Run the simulations in real time or step by step. Customise rise and fall time of all components. Results displayed in a logic analyser or table. Select pants from all major logic fammes. Create your own custom libraries Greate and run pre-programmed simulations.

Professional engineers need software that produces results they can rely on. Anything less is a liability. B^{2} Spice \& B^{2} Logic will give you the accurate results you need fast.

The best way to find out if a package is really what you need is to try it, which is what we're giving you the chance to do... risk free for 30 days.

We guarantee you will be 100% satisified with the results or your money back.

For more information and to order call: 01603872331

http://www.paston.co.uk/spice email: rd.research@paston.co.uk

VISA

RD Research

Research House, Norwich Road, Eastgate, Norwich. NR10 4HA Postage \& packing £4.50. Prices quoted are ex VAT. All rademarks are acknowledged

PROTEUS

 ifis $\mathrm{y}^{\mathrm{tin}}$

 ifis $\mathrm{y}^{\mathrm{tin}}$} CJnermod

Schematic Capture

- Produces attractive schematics like you see in the magazines. - Netilst, Parts List \& ERC reports. Hierarchical Design. - Full support for buses including bus pins. Extensive component/model libraries. Advanced Property Management. -Seamless integration with simulation and PCB design.

-Non-Linear \& Linear Analogue Simulation. Event driven Digital Simulation with modelling language. -Partitioned simulation of large designs with multiple analogue \& digital sections. Graphs displayed directly on the schematic.

Available in 5 levels - prices from $£ 295$ to $£ 1625$ + VAT. Call now for further information \& upgrade prices.

- Automatic Component Placement. QRip-Up \& Retry Autorouter with tidy pass. -Pinswap/Gateswap Optimizer \& Backannotation. 32 bit high resolution database. Full DRC and Connectivity Checking. Shape based gridless power planes. Gerber and DXF Import capability.
a PJOMEUS
te parmevimay e) O!

EIectroniccs Wrte, phone or fax for your free demo disk, or ask about our full evaluation kit.
Tel: 01756 753440. Fax: 01756 752857. EMAlL: Info@labcenter.co.uk
53-55 Maln St, Grassington. BD23 5AA. WWW: http://miw.labcentico.uk
Fully interactive demo versions available for download from our WWW site.
Call for educational, multi-user and dealer pricing - new dealers always wanted.
Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

Rugged Electronics

Don't try this at home! But some electronics are designed to be dropped. Mike Bedford explores the main requirements of all-terrain gadgets.

cellphones, walkie-talkies, digital watches, car immobiliser keyfobs, personal stereos, ghetto blasters, portable TVs, GPS receivers, portable test equipment, digital cameras, camcorders, electronic games, dictation machines, calculators, laptops and hand-held computers - at first sight, these diverse examples of electronics equipment might not have much in common. A dictation machine couldn't be much more different from a Tamagotchi virtual pet. But if you have the sort of mind that finishes the Times crossword in five minutes flat, you've probably already figured out that everything in this list is designed to be taken into the great outdoors.

Portability in electronic equipment is today taken for granted, but it hasn't always been that way. Before the advent of the transistor radio in the late 1950 s, electronics was mainly valvebased, heavy, power hungry, and definitely not to be carried around more than necessary. A radio (or should that be a 'wireless'?) was as large as today's desktop PC, and computer engineers were being ridiculed for suggesting that, some day in the future, computers might weigh less than a ton.

Just as technology has changed, so has public perception. Electronic equipment has been thought of as fragile, to be handled with the utmost care. But no longer. Today, people don't expect to mollycoddle it, keep it dry and under no circumstances to drop it. Ironically, the people still treat optical equipment such as cameras or binoculars with respect, and would never dream of dropping a pair of glasses on the floor and stepping on them, but they expect a cellular phone or a laptop computer to soldier on whatever befalls it.

So, how does industry cater for this demand for tough equipment? In this article, we'll look in some detail at what is required of genuinely portable equipment - not only ordinary portables such as a standard cellular phone, which needs a modicum of ruggedness, but ultra-tough kit like laptop PCs targeted at civil engineers and the military. Then, having seen what's needed, we'll take an inside look at how equipment is designed and manufactured to meet the demands placed on it.

What's needed?

Talk of ruggedness in portable equipment and has probably already caused you to jump to certain conclusions. The word

Vibration testing: a sophisticated vibration and shock testing system can take anything from elecronic components to assemblies of up to 2 tonnes in weight. (Seimens Plessey Assessment Services Ltd., Fareham.)

Figure 1: How many ways are there to drop a Calculator? According to Mil Std 810E, there are 26 ways, and equipment must be able to survive drops onto every face, edge and corner.

Shock resistance

Shock resistance sounds a bit formal, so let's put it in everyday terms. To all intents and purposes, immunity to shock means that you can drop the equipment and it'll still keep going. There are undoubtedly other ways to shock a laptop, but dropping it on the floor must be the most common one. So you will frequently see a "drop test" figure quoted, and this may simply specify something like " 1 m onto a carpeted floor" or " 2 m onto concrete". But a figure like this is vague and could be designed to pull the wool over the buyers' eyes. For example, is this talking about a drop onto one of the flat faces of the equipment or - potentially more damaging - onto an edge or corner? Does it mean dropping it onto a wooden floor covered with thick pile carpet on overlay, or a concrete floor covered with an industrial carpet? Although quoting a simple drop test figure gives some indication that the kit is tougher than average, many people will need a more rigorously defined specification.

A much more scientific approach to shock testing is specified in the US military standard Mil-Std 810E. This specifies tests relating to just about every form of environmental hazard, but for now we'll concentrate on impact shock.. Manufacturer often quote "Mil-Std 810E", but although this looks impressive, it is meaningless unless you also state which part of the specification the unit has been tested against. Within Mil-Std 810E, method 516.4 relates to shock, and this sub-divides into various procedures. Procedure IV is the drop-test, and requires that a unit must be capable of surviving drops from a height of 1.2 m onto a steel plate over concrete. More specifically, the drops must be made onto all 26 faces, edges and corners of the unit under test (figure 1).

The other method of specifying immunity to shock is in terms of acceleration. This is the method defined by the European standard IEC 68-2-27. You will recall that anything in free fall will be subjected to the acceleration due to the Earth's gravity, and that this acceleration is referred to as G. Astronauts, fighter pilots and passengers in fairground rides can be subjected to a much higher acceleration. Unless you are carrying your cellular phone in a Space Shuttie take-off, it is unlikely to be subjected to an acceleration higher than one G, but it can easily be decelerated at a higher rate. Whenever you drop something, it accelerates at one G but, when it hits the ground, it decelerates at a much higher rate depending on the elasticity of the unit and the characteristics of the surface it lands on.

So what is typical? That's anyone's guess. Suffice it to say that the IEC 68-2-27 specification requires protection up to 15 G , and it is by no means uncommon to see much higher figures quoted - perhaps up to 100G. Unfortunately, although this is a much more scientific way of specifying shockresistance than the drop test, it's much jess easy for ordinary mortals to understand.

Vibration

Unless you're considering using equipment in a seriously hostile environment, immunity to shock is about accidents, dropping equipment on the ground or dropping a heavy object onto the equipment. Vibration is more of a day to day risk. A car radio, for instance, will be subjected to constant vibration whenever the car engine is running. Anything that is ever carried in a car, plane, ship or train will be vibrated to some extent. Unfortunately for buyers of rugged equipment, vibration specifications are not as easy to understand as drop test figures. There is no standard

that specifies the effect of "100,000 hours in a Ford Mondeo at $7,000 \mathrm{rpm}$ ".

Mil-Std 801E specifies immunity to vibration in method 514.4. This states that the unit must survive being subjected to vibrations from $20-1000 \mathrm{~Hz}$ with an amplitude of $0.04 \mathrm{~g}^{2} / \mathrm{Hz}$ and then from $1000-2000 \mathrm{~Hz}$ at 6dB/octave. The duration of the test is one hour for each axis. Similarly, European specification IEC 68-2-6 specifies the frequency, amplitude, acceleration and duration of the vibrations to be applied.

Unfortunately, these figures are not easy to translate into real world hazards. What is worth considering is why these specifications require the equipment to be subjected to vibration at a broad range of frequencies. The amplitude of vibration of any object increases very significantly when it is excited at its resonant frequency. For example, if the motherboard in a laptop PC has a resonant frequency of 750 Hz , there will be comparatively little likelihood of

Siemens Plessey's unique complex can meet requirements for all the major specifications for dust penetration in both "swirling" and "driving" conditions. The ability of assess the abrasive effect of airborne dust and sand on surfaces is another important service (below). (Seimens Plessey Assessment Services Ltd., Fareham.)
damage if the unit is vibrated at 600 Hz . However, once the magic figure of 750 Hz is reached, the PCB will flex violently, with obvious potential for damage. Other parts of the computer may have different resonant frequencies.

Not knowing in advance what these critical frequencies are, the only reliable way of proving the unit's immunity to vibration damage is to carry out a sweep of frequencies. This tends to be carried out using a pressure transducer basically a loudspeaker without the cone - driven by a variable frequency signal generator under computer control. In addition to subjecting the equipment to vibration, more sophisticated test equipment can monitor the vibrations and identify resonant frequencies.

EASY-PC
 Schematic and PCB CAD

From Super Schematics

To Perfect PCB's

- Runs on:- PC/ 386/ 486 with VGA display
- Links to the PULSAR range of Logic simulators, the ANALYSER range of analogue simulators and LAYAN our spectacular electromagnetic simulator.
- Use of simulators allows testing of designs prior to bread boarding
- Design:- Single sided, Double sided and Multi-layer boards.
- Provides full Surface Mount support.
- Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photoplotter and N.C. Drill.

MultiRouter THE Autorouter for EASY-PC

How long did your last layout take you?

\author{

- EE Product News "Product of the Year" Award Winner
 - Uses the latest Shape Based, 32 bit, Multi-pass, Shove-aside and Rip-up and Re-try technology
 - Autoroute very large and complex boards
 - User Controllable, User Configurable
 - From single sided to up to 8 layers
 - 100% Completion where other autorouters fail!
 - 100% routed 140 Components on a $210 \mathrm{~mm} \times$ 150 mm board in less than 10 minutes!
 (75 MHz Pentium)
 - Could Easily Pay For Itself On The First Project!
}

For full information and demo disk, please write, phone, fax or email:-

> - Products Stocked by:- Electromail, RS Components, Farnell Components, CPC, Maplin, Cirkit, Mega, etc.

Number One Systems

UK/EEC: Ref. ETI, Harding Way, St.lves, Cambridgeshire., ENGLAND, PE17 4WR.
Telephone UK: 01480461778 (7 lines) Fax: 01480494042
USA: Ref. ETI, 126 Smith Creek Drive, Los Gatos, CA 95030
Telephone/Fax: (415) 968-9306
http://www.numberone.com

ada4pia

The Sony CMD-Z1 GSM cellular phone

Waterproofing

Even people who don't know the slightest thing about electronics accept that electricity and water are best kept apart. Modern circuitry can be damaged by even the slightest film of water on the circuit board. I know this from bitter experience of being stranded in the middle of nowhere after getting my car immobiliser keyfob wet. 'Damp' would be a better word - when I opened up the fob there was barely a trace of water on the PCB, but it was two days before it came back to life again and the car could be started. And whereas the contamination was with clean water and the affected equipment did eventually come back to life, dirty water or, worse still, sea water, can be fatal to electronic equipment. Ordinary tapwater in a lime-rich hard-water area doesn't do it a lot of good, either. But making the circuitry itself immune to water is rarely feasible - it would place too many constraints on the designer. Instead, waterproofing electronic equipment normally means keeping water out of the enclosure, and it is this aspect that is normally specified.

But in practice, precise as it sounds, 'waterproof' is a vague term, even where it distinguishes between waterproof and showerproof, as clothing manufacturers do. Although it is normally essential to completely prevent water entering electronics casing, it is harder to do this for a GPS receiver to be used on board a yacht rounding Cape Horn than it is for a laptop which may occasionally be caught in a light shower between car and office. So a standard has been drawn up which specifies exactly how waterproof a piece of equipment is.

The figure is referred to as the 'IP rating', and actually consists of two figures, the first of which relates to another environmental hazard - the ingress of solid objects of various sizes - and the second to the ingress of water. Table 1 shows how to interpret an IP rating, and a couple of examples should help clarify things.

- IP41 indicates that kit won't be damaged by having wires or larger objects poked into it, or by dripping water. - IP57 signifies that kit can withstand a dust storm, and can be immersed in a metre of water for short periods.

As an alternative to combining the two figures, you'll sometimes see them separated. So, for example, IP57 could be shown as IP5X for dust-proofing and IPX7 for waterproofing. And occasionally, a unit may not have been tested against either solid objects or water at all - another reason for showing an X in place of a figure in an \mathbb{P} rating. In this case, however, to all intents and purposes, the X should be replaced by a 0 - you can't rely on any level of protection which the equipment has not been tested against.

Table 1

	First Number (solid objects)	Second Number (water)
0	No special protection	No special protection
1	Protection against damage by objects larger than 50 mm (eg hands)	Protection against damage by drops of water (eg condensation)
2	Protection against damage by objects larger than 12 mm (eg finger)	Protection against damage by sprays of water up to 15 degrees to vertical
3	Protection against damage by objects larger than $\mathbf{2 . 5 m m}$ (eg tools)	Protection against damage by sprays of water up to 60 degrees to vertical
4	Protection against damage by objects larger than 1 mm (eg wires)	Protection against damage by sprays of water from all angles
5	Protection against damage by dust deposits	Protection against damage by low pressure jets of water from all angles
6	Total protection against ingress of dust	Protection against damage by jets of water (eg heavy seas)
7	N/A	Protection against damage by brief submersion to 1 m
8	N/A	Protection against damage by continuous submersion at a specified pressure

Greenweld has been established for 23 years specialising in buying and selling surplus job lots of Electonic Components and Finished Goods, We also keep a wide range of new stock regular lines. Why not request our 1998 Catalogue and latest Supplement - both absolutely FREE!

BECOME A BARGAIN LIST SUBSCRIBER TO SEE WHAT'S

ON OFFER BEFORE IT'S ADVERTISED GENERALLY

Standard Bargain List Subscription

For just $£ 6.00$ a year UK/BFPO ($£ 10.00$ overseas), we'll send you The Greenweld Guardian every month. With this newsletter comes our latest Bargain List giving details of new surplus products available and details of new lines being stocked. Each issue is supplied with a personalised Order Form and details of exclusive offers available to Subscribers only

Gold Bargain List Subscription

For just $£ 12.00$ a year ($£ 20.00$ overseas) the GOLD Subscriber category offers the following advantages:
\square The Greenweld Guardian and latest Bargain List every month, together with any brochures or fliers from our suppliers
A REDUCED POSTAGE RATE of $£ 1.50$ (normally $£ 3.00$) for all orders (UK only) and a reply paid envelope 5% DISCOUNT on all regular Catalogue and Bargain List items on orders over $£ 20.00$

So Don't Miss Out - Subscribe Today!

40 (0) 0 (0 \& 4 ? not
 Did you know that there is an organisation which has 30,000 research assisiants at yair disposal? Members with creative ideas - they've done it - not just talked about it , Valuable resource information including:
 > EMC advice

 EMC advice

 EMC advice
 Propagation forecasting
 Technical data
 Recrnutment adverts
 Plus, a comprehensive list of specialist publications and much, much more!
 As a member you would receive RadCom, the-100 page colour magazne delivered to your door every month
 We are the national society for radio amateurs and if you are interested in electronics we can help you
 Radio Society of Great Britain (Dept EII9) Lambda House Cranborne Road Potters Bar Herts EN6 3JE
 Tel: 01707659015 Fax: 01707 645105;
 e-mail: sales@rsgb.org.uk

Temperature Extremes

The final environmental hazard we're going to look at in any detail is extreme temperatures.Issues such as immunity to corrosive chemicals or bomb blasts only apply to very specific categories of equipment, so we'll forget them for now.

There are two quite different issues with regard to temperature. First, there are ranges of absolute temperatures; secondly, there is the matter of thermal shock. For the temperature ranges, two sets of figures are normally quoted, the non-operating temperature range and the operating temperature range. The non-operating range specifies temperatures over which no permanent damage will occur even though, at the extremes of this range, the equipment might cease to operate. The questions a manufacturer might have to address here are whether the case will melt or chemicals will leak from the batteries at elevated temperatures. However, it's unlikely that much information about nonoperating temperature ranges will be required of most portable equipment. Much more relevant is the operating temperature range, and here, makers of portable kit do have to take special measures to ensure that it will operate out of doors both on a hot summer's day in Death Valley, Nevada and the middle of winter in Anchorage, Alaska. Not usually both at the same time, however. This brings us to the question of thermal shock.

A piece of equipment may be able to operate from OdegreesC to 30degreesC, but would it be able to survive being cooled down from 30degrees C to Odegrees C in an instant? This may seem to be an extreme requirement (although it's not unreasonable to expect that a black box flight recorder deposited in the Arctic Ocean following the break up of an aircraft will continue to work), but more modest thermai shocks, such as that when a cellular phone is taken from the warmth of an office into the outside air are not uncommon. While the occasional shock of this sort may do no harm, portable equipment has to be capable of surviving many heating and cooling cycles throughout its lifetime. And in case you're wondering, the main reason that thermal shock is a potential problem is because of differential expansion and contraction with temperature. This is a problem not only with rapid changes in temperature. Where the various parts have different levels of thermal inertia, the problem is obviously made worse with rapid temperature changes.

Battery life

Admittedly, battery life has nothing to do with protecting equipment against environmental hazards, but this is not entirely a detour. The main reason that equipment has to be rugged and waterproof and able to withstand temperature extremes is that it will be used outside the home or office, and this usually means that it will not be operating from a mains supply. So the lifetime of the batteries is paramount, and is

Figure 2: Plotting equipment failure rates against time produces this familiar 'bathtub' curve.

The Panasonic SX-40 personal cassette player - this model is designed to be rugged for outdoor pursuits
often a major selling point with portable electronic equipment. For example, an ordinary business laptop computer may claim a battery life of two to three hours. However, portable PCs that are sold specifically as rugged computers tend to boast a much longer battery life. These are intended for use out and about, all day, every day - the very reason they have to be rugged - and a 10-hour battery lifetime is not uncommon.

Design and manufacture

Since ETI readers want to know what makes things tick, let's now look at how manufacturers design and build equipment to hack it in the great outdoors. Many of the issues we'll cover aren't restricted to large scale manufacturing. So, if you want to build your own rugged equipment, you could pick up some useful design and constructional techniques here too.

Infant mortality

Figure 2 is a graph of the failure rate of a piece of equipment measured in falures per unit time plotted against elapsed time. Although the values will differ from one type of equipment to another, the overall graph is nearly always this characteristic "bathtub" shape.

Let's discuss each of the three marked sections in turn. In the first section we see a high failure rate, dropping off with time. These failures are due mainly to manufacturing faults and are referred to as 'infant mortalities'. Then comes the section where there is a very low level of failures, and we might hope that this happy state of affairs will last for some time. In the graph, the operational life of the product may look depressingly short, but remember that the horizontal axis is not linear - the duration of this middle section has been compressed. Finally, we see the failure rate start to increase again as components begin to wear out. In the case of electronic components, we are not necessarily talking about mechanical wear - it may be an electronic failure - but the same principles apply.

For a piece of equipment which has to survive harsh treatment, there must be two main aims relating to the 'bathtub' curve. First, those units which are destined to fail in the early stages must be identified, and secondly, the time at which wear-out failures start to occur must be pushed as far to the right as possible. The second of these points is heavily tied up with how the product is designed and manufactured. Whereas the number of infant mortalities can be reduced by adopting good quality procedures in both design and manufacturing, the holy grail of zero defects will never by achieved in practice. So the weeding out of rogue units is

WHD GENERATORS 300 WATT

1.14 metre dia blades, carbon matrix blades, 3 year warranty, 12 usc output, 24 v version available, control electronics included, brushless neodymium cubic curve alternator, only two moving parts, maintenance ree, simple roof top installation, start up speed 7 mph , max output (30mph) 380w. $\mathbf{x} 499$ ref A/R

PLANS

PORTAELE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machine Effective device, X-ray sealed assemblies can be used for experimenta purposes. Not a toy or for minors! £6/set. Ref FXPP1
TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no known apparert means of cause. Uses no electrical or mechanical connections, no specialgimmicks ye produces positive motion and efiect. Excellent for science projects, magic shows, party demronstratlons or serious research\& development of this strange and amazing phychic phenomenon
£4/set Ref F/TKE1
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your control. Included is a ful volume reference text and several construction plans that when assembled can produce highly effective stimuli. This material must be sed cautously. It is for use as entertainment at parties etc only, by those experienced in its use. $£ 15 /$ set. Ref $\mathrm{F} / E \mathrm{H} 2$
GRAVITY GENERATOR PLANS This unique pian demonstrates a simple electrical phenomena that produces an anti-gravity effect. You can actually build a small mock spaceship out of simpte materials and without any visite means- cavee it to levitate. Eloter Ref FIGRAI WORLDS SMALLEST TESLA COIL/LIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar' St Elmo's $\begin{aligned} & \text { ire, Corona, excellent science project or conversation plece. }\end{aligned}$ E5/set Ref F/BTC1ALG5
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectralquality simular to Argon laser but easier and less costly to build yet far more efficient. This particular design was developed at the Atomic Energy Commision of NEGEV in Israel $£ 10$ /set Ref F/CVL
VOICE SCRAMBLER PLANS Minature solid state system tums speech sound into indecipherable noise that cannot be understood without a second matching unit. Use on teephone to prevent third party listering and bugging. £6/set Ref FNS9.
PULSED TV JOKER PLANS Little hand held device utilises pulse techniques that will completely disrupt TV picture and sound works on FM tool DISCRETION ADVISED EB/set Ref F $/ 155$.
BODYHEAT TELESCOPE PLANS Highly directional tong range device uses recent technology to detect the presence of living bodies, warm and hot spots, heat leaks etc. Intended for secunity, law enforcement, research and development, etc. Excellent security device or very interesting scyence project. £8/set Ref FiBHTT
BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of buming and melting materiais over a considerable distance. This laser is one of the most eficient, converting 10% input power into uselul output. Not only is this device a workhorse in weiding. cutting and heat processing materials but it is atso a likely candidate as an effective directed energy beam weapon agains missiles, aircraft, ground-to-ground, etc. Particle beams may very wel utilize a laser of this type to biast a channel in the atmosphere for a high energy stream of neutrons or other particies. The device is easily applicable to burning and etching wood, cutting, plastics, textiles eto £12/set Ref FתC7
DYNAMO FLASHLIGHT interesting concept, no batteries needed jus squeeze the trigger for instant light apparently even works under wate in an emergency although we haventt tried ty yetl $£ 6.99$ ref SC152 ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize iquides. Many cteaning uses for PC boards, jewthery, coins, small parts tc. E6/set Ref FNLB1
ANTI DOG FORCE FIELD PLANS Highiy effective circuit produces time variable pulses of accoustical energy that dogs cannot oierate fQrset Ref F/DOG2
LASER BOUNCE LISTENER SYSTEM PLANS AHows you to hear sounds from a premises without gaining access $£ 12 /$ set Ref F / LIST
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and bathery capacity with external controls, £6/set Ref F/PSP4
INFINITY TRANSMITTER PLANS Telephone line grabber! room monitor. The ultimate in home/office security and safety! simple to usel Call your home or office phone, push a secret tone on your telephone to access either: A) On premises sound and voices or B) Existing conversation with break-in capability for emergency messages. E7 Ref F/TELEGRAB
BUG DETECTOR PLANS is that someone getting the goods on your Easy to construct device tocates any hidden source of radic energyl Sniffs out and finds bugs and other sources of bothersome irmerference. Detects low, high and UHF frequencies. £5/set Ref Fi BD1
ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supenision $£ 5$ ref F/EML2.

ELECTRIC MAN PLANS, SHOCK PEOPLE WTH THE TOUCH OF YOUR HANDI £5/set Ref FIEMA
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and waices, open windows, sound sources in 'hard to get or hostie premises. Uses satelite technology to gather distant sounds and focus them to our ultra sensitive electronics. Fians also show an ootional wireless link system. E8/set ref F/PM5
2 FOR 1 MLLTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{Vdo}$, many possible experiments $£ 10$ Ref

GOLOUR ECTV VIDEO CAMERAS,

BRAND NEW AND, CASED, FROM £99 Works with most modern video's, TV's, Composite monitors, video grabber cands etc
Pal, iv P-P, composite, $750 \mathrm{hm}, 1 / 3$ " CCD, 4 mm F2.8, $500 \times 582,12 \mathrm{vdc}$, mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF150, 10 or more $£ 99$ ea $100+£ 89$

SUPERWIDEBAND RADAR DETECTOR 360 dag COVERAGE

Detects both radar and laser, X, K, superwide $K A$ bands. LED signal strength display Audio and visual alets, Alent priority, Rear and front lacing optical waveguides, Triptecheck verification, city mode, tutorial mode, dark mode, aux jack, volume controd. These may be illegal to use in certain countries
$1.1^{n} \times 2.7^{n} \times 4.6^{m}$
Superband 149 ref RD2

BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX. BN35QT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT. 24 HOUR SERVICE 55.00 PLUS VAT. OUVRSEAS ORDERS AT COST PLUS 83.30 (ACCESS, VISA, SWITCH, AMERICAN EXPRESS) phone orders : 01273203500

FAX 01273323077

E-mail bull@pavilion.co.uk

HELOS PNB-2 RUSSIAN bORDER GUARD OBSERTATION BIHOCURARS \&1799
rtended for the medium to long range obsevation of air and ground targets and the determina tion of their angular co-ordinates. Thes iant binoculars are a tribute Russian optical ingenuity, with a performance that simply has to be seento be believed. Alarge ext pupil lameter of 7.33 mm provides exceptional light passing power, which when combined with its high
magnification of $\times 15$ allows the user to view over vast distances with delightfully bright, crisp, high resolution images. Robust and abie in construction incorporating an uncomplicated yet thoughtfulty designe mechanical layout ensuring ease of operation and quick precis targeting. These binoculars have s wide variety of applicationis and are suitable for use by coastguards, law enforcement organizations, cus toms, farmers etc
Specifications
$\times 15$ magnification, 110 mm objective, 6 deg angle of view, Field $100 \mathrm{~m}=105 \mathrm{~m}$, focusing 10 m -int fully coated precision ground optics, range and neutral fiters, rubber lens caps, rapid tergetting hand grips padded headrest, screw in silica gel cartridges, wooden tripod, operating temperatures -40 c to +50 c , weight 25 kg . (45 kg without tripod), stupplied in wooden carrying case order guard binocutars $£ 1799$ ref PNB2

TZSA INFRARED NHAT SIAMT

One of our top most gelling night sights is this Russian TZS4. This sight enable you to see in very low inght tevels, or withthe aid of the buit in infra red illuminator-in total darkness. In $1 / 4$ moontight you would spot man at 150 m , in total darimess at 75 m . Magnification 2.3 x , $240 \times 66 \times 190 \mathrm{~mm}, 0.9 \mathrm{~kg}$ focusing range 15 m -infinity M42 camera mount included runs on 2xAA batteries, 100 mm focal length. 8 deg illuminator divergence, 50 hrs continuous (no illuminator) 10 hrs with, carryingcase and strap.
TZ34 Nightsight E199 raf BAR61
 LoU日SPEAKERS-19 INCH STEREO RACK AMPLIFIERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W) all power ratings r.m.s. INTO 4 OHMS, BOTH ChANNELS DRIVEN
FEATURES: *independent power supplies with two toroldal translormers $\#$ Twin L.E.D. Vu meters * Level controls \#illuminated on/oft swilch \# XLR connectors * Standard 775 mV inputs \& Open and short circuit
 USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

SIZES:- MXF200 W $19^{*} \times \mathrm{H}^{1 / 2,{ }^{\prime \prime}}$ (2U)×D11"

PRICES:- MXF200 \&175.00 MXF400 £233.85 MXF600 £329.00 MXF900 £449.15 SPECIALIST CARRIER DEL. £12.50 EACH 2

OMP XOS STEREO 3-WAY ACTIVE CROSS-OVEL

Advanced 3.Way Stereo Active Cross-Over, housed in a $19^{\prime \prime} \times 1 \mathrm{U}^{\text {case. Each channel has three level controls: }}$ bass. mid 8 lop. The removable front fascia allows access to the programmable Dil switches to adjust the
cross-over trequency: Bass-Mid $250 / 500 / 800 \mathrm{~Hz}$, Mid-Top $1.813 / 5 \mathrm{KHz}$, all ai 24 dB per octave. Bass invert swithe on each bass channel. Nominal 775 mV inputloutput. Fully compatible with MP rack amplifier and modules.

STEREO DISCO MIXER SDJ3¢00S3 * ECHO \& SOUND EFFECTS*	
STEREO DISCO MIXER with 2×7 band	-
Le R graphic equalisers with bar graph	- 5
FEATURES:- including Echo with repeat \&	
apeed control, of mic with talk-over	
switch, 6 Channels with individual faders plus cross fade, Cue Headptione Monitor. 8	$=$
Sound Effects. Useful combination of the following inputs:- 3 turntables (mag), 3 mics, 5 Line for CD, Tape, Video etc.	
Price £144.99 + £5.00	

Price ع144.99 + \&5.00 P\&P
SIZE: $482 \times 240 \times 120 \mathrm{~mm}$

PIEZO ELECTRICTWEATERS - MOTOROLA

Join the Piezo revolution! The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved translent response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these unis can be added to existing speaker systems of y 10 wat wat
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.

TYPE ' A ' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal to booksheff and medium sized Hi-Fi apeakers. Price $£ 4.90+50 \mathrm{p}$ P $\&$. . TYPE ' B ' (KSN1005A) $31 / 2$ " super horn for general
disco and P.A. systems etc. Price $£ 5.99+50 \mathrm{P}$ P\&P.
TYPE ' C ' (KSN1016A) 2 " $\times 5$ " wide dispersion horn
016A) 2×5 wide dispersion horn for quality Hi-Fi syslems and quality discos etc. Price $£ 6.99+50 \mathrm{p}$ P\&P.
TYPE ' D ' (KS1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion hor
TYPE ' D ' (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable for high quality Hi-Fi systems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P $\&$ P. TYPE ' ' ' (KSN1038A) $^{3}{ }^{3}{ }^{\text {an }}$ " horn tweeter with attractive silver finish trim. Suilable for Hi-Fi monitor systems etc. Price $\mathbf{5} 5.99+50 p$ P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. 85x85mm. Price $£ 4.10+50 \mathrm{p}$ P\&P.

IDI FLIGHT CASED LOUDSPEAKERS

A new range of quality loudspeakers, designed to take advantage of the latest speaker lechnology and enclosure designs. Both models utilize studio quality 12° cast aluminium loudspeakers with factory fitted grilles, wide dispersion constant directivity horns, extruded aluminium corner protection and steel ball corners, complimented with heavy duty black covering. The en
are fitted as standard with top hats for optional loudspeaker stands.
power ratings quoted in watts rms for each cabinet FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$
thlFC 12-100WATTS (100 d 8) PRICE $£ 159.00$ PER PAIR lblFC 12-200WATTS (100dB) PRICE \&175.00 PER PAIR SPECIALIST CARRIER DEL. £12.50 PER PAIR
OPTIONAL STANDS PRICE PER PAIR $£ 49.00$ Delivery 86.00 per pair

 400W \&109.95 PAP £2.00 EACH

THREE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS ($75+75$) Stereo, 150 W 250 WATTS $(125+125)$ Stereo, 250 W Bridged Mono
400 WATIS $(200+200)$ Stereo, 400 W Bridged Mono
ALL POWERS InTO 4 Ohms
Features:
\star Stereo, bridgable mono \star Choice of high \& low level inputs $\# L \&$ R level
controis \star Remote on-off $\#$ Speaker $\&$ conirois \star Remote on-oft \star Speaker \&
inermal brotection. ACLEBIVE OF V.A.T. SALEM, COUNTER.

The Panasonic SX50 camcorder
essential. Even if a company's products are sound in every other respect, a smattering of dead-on-arrival units soon dent a company's reputation for producing reliable rugged equipment.

The answer is to soak test units as they come off the production line. But for how long? It is clear that a lot of consumer goods are not soak-tested for very long. Early failures are not at all uncommon. A manufacturer of rugged portable equipment, on the other hand, cannot afford to have many failures in the field, so an extended soak test is essential. How far is it practical to go? It's obvious from the shape of the failure curve that there are diminishing returns after a certain time. Some rogue units will slip through the net, but the dilemma is solved, at least in part, by testing at an elevated temperature and with constant on/off cycling of the power. This sort of abuse will cause infant mortalities to occur earlier, and so allow a significant number of manufacturing failures to be identified in a comparatively short time.

Bringing'em up tough

How do you go about designing something that will take the knocks? There's no single answer, so let's investigate some of the secrets. First of all, the case needs to be tough. The design of plastic boxes may not sound like a high-tech issue, but in fact it is vitally important. However tough you make the circuit boards, if the case of your cellular phone shatters into a thousand pieces, you are not going to place that call. And it is only feasible to design a circuit board which will survive mishap if it's protected by some sort of enclosure. To design a PCB that will soldier on even if the case in hanging in tatters is not economically viable.

To a degree, a rugged case is a simple one - if there's anything which may break off, undoubtedly it will do so. This also applies to switches and such like - rocker switches are better than toggle switches, but better still are switches mounted in a depression on the case so that they are flush with the surface of the case. But although designing a tough case does involve this sort of mechanical detail, it also needs the right material. Although many plastics are relatively impactresistant, judging by the specifications of rugged PCs, magnesium alloy - often with an elastomer-coating to absorb shocks - seems to be the choice for equipment that has to withstand serious drops. Of course, steel would be tougher, but most people don't want to lug a steel notebook around all day long.

Equipment reliability is often expressed as mean time to failure (MTTF), which is defined as the average time, in hours, before a unit will fail. Strictly speaking, this is not a measure of
reliability since the MTTF is a design feature that won't alter during the life of equipment. However, any unit will become more unreliable as the MTTF is approached. Now for a bit of maths: the MTTF of any piece of equipment depends on the MTTF of the components which make it up, according to the following formula:

$$
\text { MTTF }_{\text {TOTAL }}=1 / \Sigma^{n}, 1 / M T T F n
$$

Where n components each have an MTTF of MTTFn.
Clearly, the total MTTF increases as the MTTF of each component increases, and is also increased with decreasing component count. Here, the word 'component' should be taken in its broadest sense to include solder joints. Joints, as we have all discovered, are often some of the least reliable parts of any electronic equipment. So a couple of clues to designing reliable equipment can be gleaned. First of all, use as few components as possible. In a sense this is redundant information - why would anyone design a circuit with more

The Panasonic CF-25 rugged notebook
components than necessary? Economics and common sense would seem to rule this out. However, it certainly points to the need for the highest possible level of integration - something which economic considerations alone may seem to contraindicate (that is, ICs are still more expensive than discrete components in many cases). But, historically, semiconductor prices tend to start high and drop throughout the life of the component product line. So, being an early user may work out more expensive than using a larger number of older, lower integration ICs, but is, nevertheless, something which a manufacturer of rugged equipment would have to consider seriously.

The second clue to designing-in reliability is equally obvious - use high quality components and employ the very best manufacturing practices to ensure that soldered joints are as reliable as possible. Once again, there will be financial penalties. However, which components will prove to be reliable when subjected to shock and vibration will not always be evident from manufacturers' specification sheets, and equipment manufacturers may have to conduct their own tests to find out which components are the most vibration proof or shock resistant.

To a large degree, shocks and vibrations will affect soldered joints, so it is vitally important in portable equipment to make every effort to reduce their susceptibility to stress. This means keeping PCBs as small as possible, and providing plenty of

Figure 3: Boards using surface mounted components are much smaller than their through-hole counterparts, and won't therefore, flex as much when dropped or vibrated.

Figure 4: If a surface-mount board does flex, the leadless components may be damaged because, unlike through-hold components, there is no lead to take the strain. But when the pros and cons are evaluated, surface mounting is the clear winner for rugged equipment.
anchor points to the casework to prevent undue flexing of the board. Clearly, a small PCB will not flex as much as a large one, especially if it's supported in the middle as well as round the edges. However, there's another reason to aim for small boards. When we looked at vibration testing, we saw how damage is most likely to occur at the resonant frequencies of the various assemblies in the equipment under test. Since objects are more likely to be vibrated at comparatively low frequencies, it makes sense to aim for a high resonant frequency. A large PCB, especially one with heavy components mounted at its centre, will have a low resonant frequency. So, once again, we can see the advantage of small PCBs.

However, we need to view this recommendation with practical caution. A high degree of integration gets board size down. However, one possible result of restricting yourself to small PCBs is that you could end up with more of them. Multiple small PCBs instead of one large one is seriously bad news, as the interconnects will undoubtedly cause problems it's nearly always better to have one well supported boards than a pair of interconnected boards.

Hot and cold

As we've already seen, differential expansion is a cause of failure in electronic circuits and goes some way to explaining why non-operating temperature ranges have to be respected. If a resistor on a PCB expands more than the PCB itself as the unit is heated up, stress is placed on the solder joint, and this may lead to failure. Of course, the smaller the components, the less the expansion or contraction with temperature, and this, once again, indicates that to build in reliability, circuit boards should be as small as possible. Whether or not this points to the use of surface mounted components, however, we'll leave to a discussion on the pros and cons of surface-mount and through-hole technology later in this article.
However, size reduction is not the only way of reducing the impact of differential expansion. Different materials have different thermal expansion coefficients, so we might assume that the trick is to pick those components that have a coefficient which is close to that of the PCB. Unfortunately, this is rarely possible - PCB and component materials have their own characteristics. However, you will find that different IC packages have different thermal properties and in particular, that ceramic packages are specified for a wider temperature range than plastic ones. On the down side, military specification ceramic ICs are much more expensive than standard plastic versions. It is also of interest that the improved thermal properties of ceramic packages is tied up with the differential expansion of the elements within the package, rather than that between the package and the PCB. But clearly, the same principles apply.
Designing a piece of equipment to withstand large temperature
ranges does not only involve thermal shock. Looking at operating temperature range, we find that electronic rather than mechanical issues are the key - the operational properties of electronic components also vary with temperature. At one extreme, semiconductors simply stop working at very low temperatures, so components that may travel on an Antarctic expedition or be launched into space may require some source of heat. At the other extreme, semiconductors will also stop working - permanently - if they become too hot, hence the need for heat sinks and/or fans. However, because of battery life considerations, fans are not very suitable for rugged portable equipment. More relevant is the need to design the circuitry to cope with

Waterproof boxes are available from about IP54 to IP67. This range of boxes (part numbers YM90X, YM91Y and YM92A) from Maplin is rated to IP55.

If you want the extra protection, you can spray the PCB with a conformal coating. Pictured is HPA spray (YT50E from Maplin). minimum heat dissipation and careful selection of semiconductors.
It is not only extreme temperatures that affect behaviour. The resistance of resistors and the capacitance of capacitors both change with temperature. A change of a few hundred or a thousand or so parts per million per degree may not sound like much, but it could be significant in a tuned circuit with a fifty-degree operating range. Different types of capacitors have different temperature coefficients, so designing for wide
 temperature variations means picking those which are least susceptible. Whereas most capacitors have a negative temperature coefficient (that is, the capacitance drops with increasing temperature) some types - polyester, for example - have a positive temperature coefficient, allowing them to be combined with negative coefficient capacitors to give a degree of immunity from temperature change - a very important design technique for temperature-sensitive applications.

SMT or THT?

It is interesting to consider whether surface mounting technology (SMT) or through- hole technology (THT) is better for rugged construction. The answer isn't as simple to answer as you might expect. SMT was designed,first and foremost, as an automated manufacturing system. With a very fine soldering iron and a very steady hand you can build a prototype SMT board by hand, but virtually all SMT manufacturing is automated. The advantages of pick-andplace equipment followed by reflow or wave soldering is that defect rates are much lower than with traditional semi-manual methods of populating circuit boards. When the equipment is properly adjusted, that is. You don't want to contemplate what

SALE PRICE $£ 9.95$
VIDEO PROCESSOR UNITS?/6V 10AH BATTS/24V BA TX Not too sure what the function of these units is but they certainly make good strippersi Measures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are controls for scan speed, scan delay, scan mode, loads of connections on the rear. Inside $2 x \in 1$ 10AH sealed lead acid batts, pcb's and a BA? 24 v torroidial transformer (mans in). sold as seen, may have one or two broken knobs etc due to poor storage. $£ 9.95$ ref VP2X

Dell switched mode psu 12v $15 \mathrm{amp} £ 9.95$
$140 \times 150 \times 90 \mathrm{~mm}$, fully cased with buitit in fan. +12 @ $13 \mathrm{~A},+5$ e 15A IEC power inet. fiyiead output $£ 9.95$ ref DEL2

UK made energy saving device that cangive youa 15% saving on the running costs of fridges etc
Suitable for mains appliances fifted with a motor of up to $2 A$ rating. We have tried the device on other things like soldering irons comventional bulbs and still achieved a saving.
One off price is $£ 9$ ref LOT71
Pack of 10 is $£ 69$ ref LOT72
Pack of 20 is $£ 119$ ref LOT73

SALE PRICE £10

These units must be cleared at the absurd price of just $£ 1011$ you get loads of leads, an infra red remote keyboard and receiver, a standard uhf modulator, a standard bt approved modem 1200/75 and loads of chips, resistors, capacitors etc etc all for just $£ 10$ ref bar33

Switched mode psu special offer $£ 2.99$
Brand new psu's giving 5 v at $4,4 \mathrm{Amps}$ Originally made for the Archimedes bu obvrously have many other uses. Fitted onfoff swatch and fiy lead. $150 \times 100 \times$ 42 mm £ 2.99 ref ARCH1X

SALE PRICE $£ 2.50$
Customer returns, domestic telephone coin boxes, used to convert ordinary phones in to pay phones. ref CBT1X

The ultimate enclosure for your projects must be one of these!
Well made ABS screw together beige case measuring $120 \times 150 \times$ 50 mm . Already fitted with rubber feet and front mounted LED. inside is a pcb fitted withother bits and pieces you may find useful. Sold either as a pack of five for $£ 10$ ref MD1 Or as a pack of 20 for $£ 19.95$ ref MD2

Order via our web site at www.bull-electrical.com SOLAR PANELS
3^{\prime} x 1' Amorphous silicon, 7 watt 12-14v output. Unframed. Ref SOLX SALE PRICE 4 for $£ 59$

PC KEYBOARDS sale price just $£ 2.99$
Standard ps2 type connector, 104 keys. ref PCX

Compaq
244 watt pc power supplies buy 2 for $\mathfrak{£} 16$
Ex equipment but in full working order direct from one of the top manufacturers. $145 \times 175 \times 85 \mathrm{~mm}$, fited fan and IEC iniet, switch on fiylead. Outputs are $3.3 \mathrm{vdc},+5 \mathrm{vdc},-5 \mathrm{vdc},+12 \mathrm{vdc},-12 \mathrm{vac}$. You may need to change the mother board connector so we have included another one with the power supply to help. $£ 16$ for 2 ref COM2
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX. BN3 50T. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PD OR CHEQUE WTTH ORDER PLUS \& 3.50 P\&P PLUSVAT. 24 HOUR SERVICE $\mathbf{5 5 . 0 0}$ PLUS VAT. OVERSEAS ORDERS AT COST PLUS E3.50 (ACCESS, VISA, SWITCH, AMERICAN EXPRESS) phone orders : 01273203500

FAX 01273323077
E-mail bull@pavilion.co.uk

12V FANS, EX EQUIPMENT COMPLETE WITH METAL CASES PACK OF 10 FOR $£ 9.95$

RCB UNITS $£ 2.99$

This in line minature earth leakage unit instantly shut off the mains supply in the event of any current flowing
between live and earth thus preventing a potentalliy lethal shock. IEC plug one end, socket the other, fitted in seconds, reset button. The ultimate safety aid when working on electronic equipment. computers etc.
As these units are fitted with an in-iine IEC plug on one end and socket on the otherthan could even be used to extend standard IEC computer leads.

Complete accounts system for your PC for just $£ 9.95$ Unlimited companies, general ledger, multiple cash books, deptors and creditors, stock, invoicing, purchasing, budgets, report writer caoculator, wordprocessor, automated backups, on line help wndowing, networkable up to 10 workstations. Free telephone sup port for $\mathbf{3 0}$ days from MAP computer products $\mathbf{0 1 6 1 6 7 8 8 4 1 3}$ all for the bargain price of just $£ 9.951$ worth it for the 200 page Pastel manual alonef ref SA12 $3.5^{\prime \prime}$ disk version only. $£ 9.95$ ref PAS2

MAINS SMOKE ALARMS (GENT) NEW AND BOXED $£ 4.99$ ref SMKX

BBC selector videocrypt 's'

 tvtuner with smart card
sale price $£ 9.95$

Interesting new item inthis wex is this Selector. Originally made for th BBC to send encrypted video films to your VCR at night time. The project seems to have failed
Very complex units consisting of a smart card slot in the front plus several switches and an \mathbb{R} receiver. Fully cased and measuring 230 $\times 430 \times 90 \mathrm{~mm}$, new and boxed.
On the back of the unit is a scar socket plus a UHF input and output A channel tuning control numbered 28 to 40 and an V socket Insde is a comprehensive tuner section, smart card reader mechanism and control electronics plus a power supply section.
These units are sold as strippers but we imagine you could use one to convert a monitor into a TV or maybe use the videocrypt side of things for something eise. Supplied complete with manual and mains lead. Clearance price just $£ 9.95$ ref BBC1X

Introducing our mega magnet that lifts 33 kilo's!

Just in this week are these incredible Neodymium magnets that will in an incredible 33 kolo's! Each magnet has a threaded bolt protruding from the rear for easy fixing. 32 mm diameter. £ 15 ref MAG33

The robust WPI Husky FC-PX5 field computer
happens when the temperatures are set wrongly.) In other words, a more reliable board should come off the production line. On top of this, surface-mount boards are usually quite a bit smaller than an equivalent board using through-hole components and as we've seen, small boards are less prone to damage (see figure 3). And finally, surface-mount components don't have leads to bend - an operation that can introduce a weak spot which may subsequently fail under pressure. So, on the face of it, surface mounting is the favourite for rugged applications. However, there is another side.

Figure 4 shows what can happen to a leadless surfacemounted component and a through-hole component when the board flexes violently. Component leads have a degree of flexion, so the mechanical strain on the solder joint is minimised. This is not the case with the surface-mounted component. The assembly is rigid, nothing is able to give, and a significant amount of stress is placed on the component and its soldered joints. In an extreme case, either the body of the component will crack or the joint will break. The same applies to thermal expansion - leads provide a degree of leeway, but a surfacemounted component will be put under a great deal of stress.

So we have some considerations which favour surfacemounted components and others which favour traditional manufacturing. Which technique should you use in designing for a harsh environment? I asked Rod Coleman of WPI-Husky Computers Ltd., manufacturers of ultra-rugged PCs and handheld computers, who felt that the advantages of surface mounting far outweighed the disadvantages. He pointed out that many sm components do have leads to take the strain, and chips with gullwing or J-leads would be chosen in preference to leadless chip carriers. The leadless passive sm components are usually not large enough to be a problem. Although every effort would be made to source a leaded part, in any case where a large leadless component is used - a capacitor, for example Husky minimises the effect of board flexing by placing the component near the edge of the board. He also emphasised the paramount importance of adequate board support to prevent flexing.

Redundancy

When you've spent millions of dollars placing a piece of electronic equipment on the surface of Mars, you're going to
be a little upset if it fails on arrival. Take the Sojourner robotic explorer deposited on the red planet by the Pathfinder spacecraft earlier this year. Now, we can reasonably expect that the circuitry inside that tiny robot was designed and built to the highest standards of reliability, using all the tricks of the trade we've discussed so far. However, NASA engineers used an additional technique for one of the critical circuits. In order to provide a soft landing, the Pathfinder spacecraft was fitted with airbags for deployment immediately before touch-down. Clearly, correct operation of the airbags was paramount - if they didn't inflate at the right time, NASA engineers would haveacquired a very expensive pile of scrap iron. So, the circuitry responsible for inflating the airbags was duplicated. Obviously, the chances of both circuits falling at the same time is much less than the probability of one of them failing.

This technique is usually called 'redundancy', and it was actually used less in Pathfinder than in some of the earlier planetary probes. This was due partly to improving reliability and partly to financial constraints - more circuitry would need a larger spacecraft to carry it, and Pathfinder is the first of a new breed of low-cost missions. But in other areas, especially where lives would be at risk in the event of failure, redundant circuitry is an important technique. This is rarely justifiable in portable consumer equipment, and tends to be used only where the cost of failure is far higher than the cost of the equipment itself.

Sometimes, it's possible to introduce redundancy without adding complexity. For example, rather than using a single pole on/off switch, additional reliability could be provided by using a double pole on/off switch and wiring the two poles in parallel. In passing, I should point out that this is only an illustration. It would only increase reliability if the expected failure mode is for the contacts go open circuit - if the contacts were to weld together, this would be no help at all. Usually, redundancy can only be provided at the cost of additional circuitry. Some of the earlier NASA deep space probes had three computer systems. Of course, you can't just parallel the outputs of these three systems. You need a majority voting system: some additional circuitry to make a final decision based on the output of all three systems, basically ignoring one of the computers if it disagrees with the other two. But you easily can't duplicate the majority voting system itself, so this is still a single point of failure. The implication is that the whole system must be as simple as possible and that the utmost care must be taken in its design and manufacture.

Wet and dry

Last on our list of environmental hazards and how to avoid them is water - perhaps the greatest enemy of all to portable equipment. Designing to withstand rain storms or being dunked in water is largely a matter of arranging a waterproof housing. Designing the actual electronics to operate while saturated a challenge not normally attempted. For waterproof enclosures, suffice it to say that they normally have tight-fitting lids fitted with a waterproof gasket. Both plastic and metal boxes can be designed this way, and if you look through a good electronics catalogue, you'll see boxes with specifications ranging from about IP54 to IP68.

However, there's a snag - it's very unusual for equipment to be devoid of switches, indicators, microphones and such like, and to fit them you need to cut a hole in your waterproof enclosure. Apart from holes compromising the

ETI Book of Electronics
This book is both a theoretical and practical introduction ta electronics. It clearly explains the theory and principles of electronics and each chapter includes a project for the beginner to make. The projects are a loudspeaker divider, continulity tester, 'brown-out' alarm, freezing alarm, loudspeaker, mini-amplifier and a burglar alarm. NB214 £12.45 UK £12.95 Overseas

Scanners 2 International. The companion book to Scanners provides even more information on the use of VHF

 and UHF communication bands and gives details on how to construct accessories to improve the performance of scanning equipment. The book is intemational in it's scope and contains frequency allocations for all three TU regions, including country-by-country variations. NB216 £11.45 UK £11.95 Overseas
Scanners 3 - Putting Scanners into Practice

This is the fourth revised and completely updated edition of Scanners, the complete VHF/UHF radio listeners guide and contains everything you need to know to put your scanner ta better use. There is vastly more information than ever before on frequency listing: in particulor actual frequencies used by coostal stations, airfields and the emergency services. Also included for the first time is a section on the MF (short wave) band as many scanners now cover this range.
NB217 £11.45 UK
£11.45 Overseas
Telephone orders: 01322616300 ask for Nexus Direct:
Please send me

Please send me...............copies of NB........................@.
I enclose my remittance of $£$.
I enclose my cheque/PO for.......................made payable to Nexus Special Interests or please debit my Access/Visa. כם

NEW FROM NEXUS!

An Introduction to Robotics

A fascinating and unique book that breaks new ground by exploring the exciting world of robotics in a clear and concise way. Both the theoretical and practical aspects are presented in an uncomplicated fashion using everyday English, which makes this an ideal book for the amateur. Divided into two sections, the first part explains how and why robots work and are controlled, while the
second shows you how to make a simple two legged humanoid robot that can be programmed to walk. There are no complicated formulas or equations to grapple with or incomprehensible circuit diagrams to decipher, - this robot can be built on your kitchen table and can be run from any personal computer! All you need are model aeroplane servos, a controller, a power supply and some
plywood - and all parts are easily available in the UK and the USA. This is a book that will be of interest to modellers and everyone with a fascination for things mechanical and electronic.
This is the way of the future, stay one step ahead and order your copy today!
Only $\in 11.50$ UK $\& \in 12.50$ Overseas (Includes Postage \& Packing).

Telephone orders: 01442266551 and ask for Nexus Direct

Please send me............ copies of NB299 @.

I enclose my cheque/PO for $£$. made payable to Nexus Special Interests $O R$ please debit my Access/ Visa.

Expiry date. \qquad Signature Name.

Address.
\qquad
\qquad

Post code

\qquad Telephone No.

Complete details and return coupon to: Nexus Direct, Nexus House, Boundary Way,

Hemel Hempstead, Herts, HP2 7ST. If you do not wish to receive malling from other companies, please tick box. \square
waterproofing of the box, most of these components are not themselves waterproof. However, it probably comes as no surprise that you can buy waterproof switches, pushbuttons, indicators and even microphones and speakers that are both water tolerant and provide a waterproof seal to the box. Cost is a snag. Looking through the Farnell catalogue, the cheapest IP67 push-button I could find was priced at $£ 4.27$ compared to about $£ 1.50$ for the "leaky" types. As a more cost-effective solution, some types of switch can be fitted with a waterproof rubber sealing "boot" which totally encloses the toggle or push-button.

As an additional measure, to provide some protection should a small amount of water penetrate the enclosure, manufacturers often apply a conformal coating to the completed circuit board. This is sprayed over the PCB, coating the surface of the board and the components, providing additional protection against moisture and corrosion. It is available in small aerosol cans for use in prototyping or one-off production.

Case Study - The Husky FC-PX5

This article has mostly looked at what the customer needs in rugged portable equipment and the basic principles involved in making equipment rugged and waterproof. Let's now come down to earth by looking at a plece of real-world rugged electronic equipment, specifically a rugged portable PC . Mainstream laptops are becoming ever more rugged as is evidenced by Panasonic's CF-25 which can survive modest drops and rain showers. However, there are also specialist manufacturers of ultra-rugged portables intended for niche markets such as the police, fire services, the military, civil engineers and shop-floor use. One such product is the FC-PX5 from WPI-Husky Computers Ltd. This is interesting to look at - its specification and design illustrate many of the points we've described. However, as a computer, a number of other issues have had to be addressed and the FC-PX5 is very different from run-of-the-mill laptops in certain respects.

The environmental specification of the FC-PX5 is very impressive indeed. It can be dropped $2 m$ onto concrete and, at IP67, it can be immersed in a metre of water for short periods. Given these facts and having read the rest of this article, you won't be surprised to
hear that it's housed in a totally sealed magnesium alloy case and the potential weak spot in any laptop - the hinge - has been eliminated by virtue of the fact it doesn't fold up. And while not actually a measure of ruggedness, it can be operated all day long on a single battery charge - important for equipment intended for extended use out of the office.

The basic computing specification may seem less impressive to users of business laptops. At 133 MHz , the processor is slower than some, but it's the hard disk specification which will surely be an eyeopener at just 20Mbytes on the basic model. With most entry-level PCs now boasting at least 2 gigabytes - one hundred times larger it's pertinent to ask "why is the disk so small?".

First of all, let's provide a justification. These PCs are not used for running standard office applications - the ones which can easily take up tens of megabytes each. Instead, they will probably be used with custom applications that are much more frugal in disk space. Secondly, user data won't accumulate on the disk - typically, data will be downloaded to a desktop PC at the end of each day's data gathering. So for most of its intended applications, this tiny disk will be adequate. It's still worth asking why the disk is so small, considering the low prices of large disks. The answer is - that the FC-PX5 doesn't actually have a disk at all. To meet the requirement of surviving a 2 m drop, the potentially fragile hard disk is replaced by solid state memory which emulates a disk. Of course, this also helps to meet the need of low power-consumption, but it means that the disk must be small - flash memory is much more expensive than magnetic storage. The other departure from normal practice is that the FC-PX5 has no floppy disk drive or CD-Rom drive. Either of these would make it virtually impossible to achieve IP67-level waterproofing. Data is transferred in and out of the computer via its communication ports.

This computer is interesting as it shows how, in some areas, an impressive environmental specification in some areas can only be achieved by compromising in other areas. It also shows, however, how this is no problem if you consider what a customer actually needs, rather than engaging in the "specmanship" wars.

This month's cover shows a WPI Husky FC-486 field computer facing one of "a host of demanding situations which have not been addressed by any other computer manufacturer."

The recent Sojourner Martian robot in action. The Pathfinder spacecraft which took the rover to the red planet used redundant circuitry to deploy its air bags.

Issue 13 of $\mathcal{D i s p l a y}$ News now available - send large SAE - PACKED with bargains! Beflet
 ALL MAIL \& OFFICES
 Open Mon-Fri 9.00-5:30 Dept ET. 32 Biggin Way Upper Norwood LONDON SE19 3XF
 DISTELC The Original FREE On line Database Info on $20,000+$ stock hems! RETURNING SOON!
 0181679

alactronics Principles 4.0

For Windows 3.1, '95 \& NT.
 If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the software for you.

Electronics Principles 4.0 now has an extended range of fully interactive analogue and digitar topics from curent flow and do circuits tryough switching and transistor operation to passive and active fiters tagie begins with simple gotes through binary. hex and ootat number conversion addition and subtiaction to Boplean algebra plus. mictoprocessor and milcrocomputer aperdion, legistern althmelic and loyic unit, ROM. RAN. Addressing modes and full instuction set which can be simulated on the screen. As. version 3.0 topics are included withon this program
Currently used in hundreds of UK and overseas schools \& colleges to support GCSE, A-level, BTEC, City a Guilds and university foundation courses. Also NVQ's and GNVQ's where students are required to have an understanding of electronics principles.

The popular Electronics Principles 3.0

$\$ 49.95^{*}$
A comprehensive introduction to ac \& dc circuit thegty. Onm's low, vollage, current. Phase angles, altemating voltages and currents, RCL series and parallel networks, reactance and impedance. Active devices'- diodes, bl-polar and field effect transistors, SCR's and OP-Amps. Logic gates, counters, shift registers and binary, octal and hex number conversions.

There are neary three hundred analogue and digital main topics, all with fully interactive graphics in colour, with supporting calculations that reflect your inputs along with notes to explain each toplc.

- Allinputs \& outputs use electronics symbols.
- Hundreds of electronics formulae available for circuit nvestigation.
- Ideal for students and hobbyists who require a quick and easy way to gef to grips with a particular point.
- Explore the subject as the interactive graphics are redrawn showing phase angles, voltage and current levels or logic states for your chosen component values.
- Generate hard copies of graphics, text and calculations.

Schools and Colleges.
A fully interactive 'electronics textbook' on the screen. OHP slides and student handouts within minutes.
Multi-user network version available.

Series Resistors.

Calculations.

Total 'R' $=4700+2500+100=7300=7.3 \mathrm{k}$
$V=3.424658 \mathrm{E}-03 \times 7300=25=25 \mathrm{~V}$
$1=\frac{25}{7300}=3.424658 \mathrm{E}-03=3.4247 \mathrm{~mA}$
Total ${ }^{\prime \prime} \mathrm{R}^{\prime}=\frac{25}{3.424658 E-0.3}=7300=7.3 \mathrm{k}$
$\mathrm{V} 1=4700 \times 3.424658 \mathrm{E}-03=16.09589=16.0959 \mathrm{~V}$
$\mathrm{V} 2=2500 \times 3.424658 \mathrm{E}-03=8.561644=8.5616 \mathrm{~V}$
$V 3=100 \times 3.424658 E-03=.3424658=342.4658 \mathrm{mV}$

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376514008 . e-mail sales@eptsoft.demon.co.uk * UK \& EC countries add £2 per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by return. Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational software.

You can "shoot" your hifi or other infra-red remote control signals round corners with this uncomplicated extender unit by Robert Penfold

11nfra-red remote control systems originally became popular as "zappers" for television sets, but these days just about every electronic gadget around the house seems to have its own remote control handset. At the last count I had six of them, giving remote control of a video recorder, a 35 mm SLR camera, a mini hi-fi system, a VCR, and two television sets. Infra-red remote controilers can also be used for such things as controlling lights, servo systems to operate curtains, and so on, and many other everyday applications. A versatile controller for general on/off switching applications will be featured in a future issue of ETI.

Just around the corner

Although infra-red remote control systems are suitable for many applications, their short operating range and line of sight operation can be a definite drawback. The pulses of infra-red "light" are at frequencies just below the visible red part of the light spectrum, and they cannot pass through anything opaque. The maximum operating range varies from one system to another, but is not usually more than about 6 metres, and in some cases is only about half this. Infra-red is not the medium to use where long range or operation through several walls is required, but the scope of this method of control would be greater if slightly longer range could be obtained, together with the ability to operate around corners.

This simple gadget is an infra-red repeater that receives the pulses from the transmitter and retransmits them towards the receiver. One way of using the unit is as a range extender. For example, with something like a remote controlled still or video camera, you are unlikely to obtain satisfactory results at a range of 10 metres. In fact, the camera would probably fail to respond to the transmitter at all. Using the extender unit half way between the transmitter and the camera would give a range of five metres from the transmitter to the extender, and the same distance from the extender to the camera. This should just about give satisfactory operation with most remote control systems.

The second method of operation is to position the repeater in the corner of an 'L' shaped room, or in a similar situation where the infra-red signal must negotiate a corner. With the receiver situated in one section of the room and the repeater aimed at it, the receiver can be operated from the other section of the room by aiming the transmitter at the repeater. This round-the-corner mode of operation is not likely to be of much practical use with something like a television set, where there is no point in controlling it unless you can see it! On the other

hand, it could be useful with something like a remote controlled hi-fi system, radio, curtains, and so on.

Although it might seem reasonable to expect the repeater to double the maximum operating range of the system, the actual increase in range is likely to be slightly less than this. When operating at extreme range the signal tends to be degraded somewhat at the output of the receiver. When operating with both the receiver and the repeater at extreme range this degradation occurs twice, probably resulting in an output signal of inadequate quality. The typical increase in range is therefore about 80 percent rather than 100 percent, but this is obviously to some extent dependent on the characteristics of the remote control system.

The long and the short

For the repeater to function properly it must not distort the signal in a fashion that would prevent it from being decoded properly at the receiver. The transmitted signal is usually a binary value sent in serial form. In a conventional serial system, such as the familiar RS232C type fitted to many computers, the binary is and Os are represented by a high or low voltage. The duration of each bit is the same regardless of whether it is set at 1 or 0 . This system is fine if dc coupling is used, but does not work well if the system must use ac coupling. In order to obtain good sensitivity it is essential for an infra-red remote control receiver to use a very high level of voltage gain. To avoid problems with drift it then becomes necessary to use ac coupling. The asymmetric nature of a conventional serial signal this tends to lead to "smearing" of the waveform, which renders it impossible to decode accurately.

Figure 1: a pulse signal (top) becomes distorted (bottom) by an inadequate low frequency response

The special encoder and decoder chips for use in infra-red remote control systems invariably adopt a different approach, with the 1 s being sent as long pulses, and the Os being sent as short pulses (or vice versa). Due to the good symmetry of the signal there is no major problem with "smearing", and the use of ac coupling is not likely to give any problems. Even with a certain amount of "smearing", the long pulses can still be sorted out from the short pulses with a high degree of reliability, and it is not even necessary to use any complex circuitry in the decoder. Although ac coupling is acceptable, it is essential that any system handling the signal has an adequate low frequency response. Figure 1 shows a pulse
signal (top), and the affect of a slightly inadequate low frequency response on that signal. The waveform is clearly distorted, and is effectively shortened somewhat. This shortening is unacceptable as it reduces the difference between the short and long pulses, making correct decoding very difficult.

In practical remote control systems, the longer pulses are actually quite short in absolute terms, and are usually no more than a millisecond or so in duration. This enables the system to incorporate highpass filtering which gives low sensitivity at 100 Hz , where there will often be "hum" from mains powered tungsten lighting, while still giving an acceptable output waveform.

System operation

The block diagram of figure 2 helps to explain the general way in which the remote control extender functions. Most of the active circuitry is contained within a special preamplifier integrated circuit, the TBA2800, and this chip is represented by the area within the broken line. The infra-red sensor is a special photodiode which incorporates a "daylight" filter that greatly reduces its sensitivity to visible light, but maintains good sensitivity to infra-red signals. The diode is used in the reverse biased mode, and this relies on the fact that the leakage current of a photodiode increases roughly in proportion to the applied light level. Ra represents the internal load resistor for the photodiode, but in reality the load is actually a semiconductor type, and the photodiode is direct coupled to the input of the input amplifier (A1).

The output from this amplifier is coupled by discrete capacitor Ca to the input of the second amplifier (A2). TRa and Rb act as a simple emitter follower buffer stage at the output of A2, and from here the signal is coupled by way of another discrete capacitor (Cb) to the input of the third amplifier stage, A3. The two coupling capacitors have quite low values so that they provide the required highpass filtering. The combined voltage gain of the three amplifiers is quite high at around 80 dB or so, giving what will normally be a clipped output signal. The biasing of the third amplifier is arranged to provide an output that is normally high, and produces low pulses when an input signal is present. An inverter provides the alternative of a normally low output that provides high output pulses, and it is the inverted output that is used in this circuit.

Although the output pulses from the preamplifier chip have an amplitude of a few volts peak-to-peak, the available drive

Figure 2: the remote control extender block diagram. The area within the broken line represents the preamplifier

Figure 3: the circuit diagram for the remote control extender
current is strictly limited. A buffer amplifier is therefore used to boost the output current to a level that can drive three infra-red LEDs properly.

The circuit

The circuit diagram for the remote control extender appears in figure 3. IC1 is the TBA2800 preamplifier chip, and it requires few discrete components. R1 and C1 are the supply decoupling network for IC1, and R1 also drops the six volt battery supply down to the five volts required by IC1. D1 is the infra-red detector diode, and it simply connects between the positive supply pin and input terminal of IC1. C 2 is a decoupling capacitor for the input amplifier. The inter-stage couplings are provided by C 3 and C 4 . The specified values
 give good attenuation at 100 Hz , but provide an adequate low frequency response for the remote control units tried with the prototype. If necessary, higher values could be used to improve the low frequency response, but this would make the unit more vulnerable to interference from mains lighting.
Q1 is used as an emitter follower buffer stage which ensures that the output pulses from IC1 drive switching transistor Q2 with a suitably high base current. TR2 drives three infra-red LEDs (D2 to D4) via individual current limiting resistors (R 4 to R 6). The current through each LED is about 100 milliamps or so, but the average current consumption is much lower than this. Despite the high drive current, the LEDs are therefore in no danger of being "zapped."

The standby current

Figure 5: the underside (copper side) of the stripboard
consumption of the unit is the one milliamp or thereabouts consumed by IC1. This low quiescent current consumption enables the unit to be powered from a six volt battery, even though it will probably be left running for long periods. Even with heavy use of the remote control unit, each set of batteries should give about three months of continuous operation. The unit can be powered from a six volt regulated battery eliminator if preferred, but it should have a current rating of 200 milliamps or more. Do not power the unit from an unregulated battery eliminator.

Construction

Figure 4 shows the component layout for the stripboard panel, together with details of the hard wiring. The underside view of the board appears in figure 5 . The board measures 32 holes by 21 copper strips, and construction follows along the normal lines. Cut the board to size, drill the two mounting holes, and then make the breaks in the copper strips. The components and link-wires are then added, but IC1 should be fitted in a holder and not soldered directly to the board.

D1 is specified as a TIL100 in the components list, but any similar photodiode is suitable (that is, a large type having a built-in "daylight" fiter and no lens). A Maplin "Infra-Red Photodiode" (YH71N) is used on the prototype, and figure 4 is correct for this component. If you use an alternative make quite sure that it is connected the right way round. The unit will not work at all unless D1 has the correct polarity. The three LEDs must also be fitted the right way round if the unit is to work properly. Some five millimetre infra-red LEDS seem to lack the "flat" on the cathode (+) side of the body, but the cathode lead should be slightly shorter than the anode lead. Some suppliers sell five millimetre infra-red LEDs as such, rather than under a particular type number. Any components of this general type that are intended for use in remote control systems should work well in this unit. A type which has a narrow beam will give noticeably better results than a wide angle type.

To some extent the mechanical side of construction must be varied to suit the way in which the unit will be used. The prototype was designed for round the corner operation, and it has a window at one end of the case to permit the infra-red signal to reach D1. Three holes strategically positioned in the front panel accommodate D2 to D4, which are aimed at right angles relative to D1. If the unit must operate as a range extender, probably the best way of handling things would be to have the three LEDs mounted in holders at the end of the case opposite the one having D1's window. The LEDs would then have to be hard wired to the circuit board.

Testing, testing

If you have access to a multimeter it is advisable to check that the finished unit has the correct standby current consumption of about one milliamp. Aiming the remote control transmitter at D1 and pressing one of the control buttons should result in a higher and probably unstable reading. Although the total LED current is quite high, the pulsed and intermittent nature of the output signal means that the average current consumption is never likely to be much more than about 30 miliamps. Note that there will probably be a strong but brief current flow at switch-on while the capacitors take up their nomal operating charges. Assuming all is well, the unit is ready for testing.

Bear in mind that the output from the LEDs must be aimed towards the receiver with reasonable accuracy if the unit is to function well, especially if you are using narrow beam LEDs. Obviously it has not possible to check the unit with every infrared remote control system in existence, but when tried with

Remote Control Extender

half a dozen system it worked well in each case. Provided it is used with a system that utilises one of the standard remote control encoder/decoder chip sets there should be no problems.

IPCII-IPOOL

TRIED E TRUSTED STRAIGHT FROM GERMANY

A High Performance Medium Wave Receiver

A sensitive and selective design for the serious Medium Wave listener and DX enthusiast, by Raymond Haigh

Tune into the world of Medium Wave radio

f you enjoy listening to news, views, sport or popular music; if you respond to the challenge of receiving distant or 'difficult' stations, or if you are just a band browser, you will find something to interest you on the medium wave band.
Extending from 520 to 1620 kHz (530 to 1700 kHz in North America), there are more than 100 different BBC and commercial stations operating on medium wave in the UK. Most have outputs ranging from 100W to 2 kilowatts, but the BBC do run a few more powerful transmitters. These include one at Orford Ness, Suffolk, for the World Service $(500 \mathrm{~kW})$, at Droitwitch and Brookmans Park for Radio 5 Live (both 150 kW), Westerglen and Burghead for Radio Scotland, Washford for Radio Wales, and at Lisnagarvey for Radio Ulster (all 100 kW). Of the commercial operators, Talk Radio UK and Virgin Radio have a number of stations working at 100 kW , and Virgin puts out a hefty 250 kW from its aerials on Moorside Edge in West Yorkshire.

The more powerful transmissions can be received over considerable distances, and stations with much lower outputs can usually be heard clearly, well beyond the intended service area, if a sensitive and selective receiver is used.

News and comment broadcast by local stations often has a strong regional or specialist flavour, and eavesdropping on them can be interesting. Restricted Service Licenses are held by several football clubs, and also by some organisers of sports events and race meetings, and they transmit commentaries on match and event days. Power output is restricted to a meagre 1 W , and reception beyond a few kilometres from the transmitter is something of a challenge. They are, however, regularly picked up by enthusiasts at distances of 100 km and more. Indeed, Radio Rovers from Blackburn in Lancashire has been heard as far away as Skogsvagen in Sweden.

UK national, regional and local stations dominate the band by day, when propagation is almost exclusively by means of the ground wave. After dark, and around sunrise and sunset, the condition of the ionosphere changes, and sky-wave propagation makes European stations much more evident. Some powerful Middle Eastern and North African transmitters can also be heard then. Austria, Belgium, Finland, Holland, Norway, Poland, Russia, Sweden and Vatican City all make broadcasts in English as part of their programme scheduling, so you do not have to be a linguist to enjoy their different

Figure 1a: the aerial selector and input attenuator stages, the RF tuning stage, front-end AGC stage and the mixer stage
perspectives on world events.
The 120 or so channels within the medium wave band are allocated by international agreement. More than one station can be transmitting on a particular frequency, with regard to location and power output to minimise interference. Receiving some of these calls for a directional aerial, and a suitable design is the subject of a future article.

Although broadcasts from as far away as Chile and the Philippines have been received in the UK, medium wave DX is often seen as the reception of Canadian and American stations, which mostly operate at powers below 50 kW . Success is very dependant on propagation conditions while the two continents are linked by a path of darkness, but stations to listen for are CJYQ in St James, Newfoundland, on 930kHz; and WINS and WFAN in New York, on 1010 and 1050 kHz respectively.

Band congestion does not make transatiantic reception easier, but differences in channel spacing (9 kHz in Europe and 10 kHz in the USA) result in frequencies where there is a separation of 4 or 5 kHz between transmissions. These 'window' channels include 590, 680, 850, 940 950,1130 and 1220 kHz , frequencies which all carry Canadian or American stations. Patient listening after midnight can be rewarded by the sound of a broadcast from the New World.

What the receiver requires

Having weak and strong signals on adjacent channels requires a receiver with good dynamic range and linearity if cross modulation problems are to be avoided. Sufficient, but not excessive, gain coupled with good selectivity is important. The view is sometimes expressed that noise generated within receivers at medium and moderately high frequencies is unimportant because man-made and natural interference (band noise) invariably exceeds it. This type of noise, or hiss, is very clear between stations when the AGC system turns up amplification under no-signal conditions, and can be very tiresome when an excessively sensitive receiver is tuned across the band. There is no point having a receiver that makes the situation worse, and the necessary level of amplification should be achieved without adding needlessly to the noise. Audio must be good enough to serve the many stations that can be received free from fading and interference. Spurious responses, in the form of heterodynes (whistles) and images (the same transmission received at two points on the dial, usually separated by twice the IF) should be of a low order.

Some enthusiasts use quality transistor portables to surf the band. An external loop can be inductively coupled, and greatly improves performance. It is not possible, however, to connect a long-wire aerial to receivers of this kind without causing serious overload problems. Unless the portable is of exceptional quality, its selectivity will leave much to be desired.

Figure 1b: the locai oscillator, IF filter, IF amplifier and detector stages, moving into the signal strength meter and AGC amp stages

Serious listeners often use communications receivers, but this is an expensive solution if your interests lie mainly in the medium wave band. Their multiple conversion systems (needed to avoid images on the HF bands), circuitry to resolve Morse and single-side-band transmissions, and complex measures to eliminate tuning drift, are not necessary for reception on medium waves. Also, the fixed-tuned filters used ahead of the first mixer in most modern communications receivers do not perform as well as variably tuned RF circuits, especially at medium frequencies, and a simpler, singleconversion receiver with variable front-end tuning is often less noisy for a given level of signal amplification.

The receiver

The receiver described here has been specially designed for the medium wave. Restricting coverage to the band eliminates wave-change switching, and it is comparatively easy to incorporate more than one stage of RF tuning ahead of the mixer. Selectivity can be altered to suit different reception conditions, and signal frequency amplification can be set manually to achieve the best possible signal-to-noise ratio. The AGC system acts ahead of the mixer, and this helps to prevent receiver overload. Output is held reasonably constant over wide variations in signal input, and the audio quality is very satisfactory.

I have adopted a modular form of construction to enable constructors to use alternative audio amplifiers or power supplies if they wish. Suggestions are made for simplifying the circuit to help those who would prefer to build a less complicated receiver, at least in the first instance.

The circuit

The full circuit of the receiver is given in figures $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c} / \mathrm{d}$ and 1 e . FETS (field effect transistors) are used for all the RF amplifying and processing stages. Their valve-like attributes make these devices a good choice for high performance receivers designed around discrete components.

Aerials and imput

S2 enables different aerials to be switched into circuit so that rapid performance comparisons can be made (figure 1a).
'Long wire' aerials (in excess of, say, 10 metres), can be connected via the switched attenuator formed by S1 and R1R9 to the low impedance coupling winding on L1. Even traditional valve circuitry can be overloaded by strong signals, and as the growth of commercial radio brings fairly powerful transmitters close to many listeners, a means of attenuating the high signal voltages that can be delivered by 'long wires' is essential. Short wire or whip aerials, which present a high impedance at medium frequencies, are connected directly to the 'hot' end of L1 (the tuned circuit has a high impedance at resonance).

A dedicated medium wave receiver would be incomplete without some means of connecting a loop aerial via screened cable. Accordingly, the coupling winding on L1 can be isolated from the OV rail to avoid disturbing loop balance, and connected to a DIN socket where provision is made for earthing the cable screen.

RF tuning

At medium and even moderately high frequencies, no improvement in performance will be achieved by introducing a stage of RF amplification ahead of the mixer. It is only when

using inefficient aerials that this kind of stage can be justified, and even then the gain must be carefully controlled. In other circumstances, signal amplification ahead of the mixer will increase the possibility of blocking and cross modulation.

A good front-end selectivity will, on the other hand, narrow the bandwidth of frequencies accepted by the receiver, and do help prevent weak signals being swamped by strong ones. It will also improve signal-to-noise ratio before any mixing or amplification takes place, and significantly reduce the risk of spurious responses that can be generated within the receiver itself.

Additional pre-mixer selectivity is provided in this design by the bandpass circuit formed from L1, $L 2$, the 'top' coupling capacitor C 2 , and the associated tuning capacitors, C 3 and C4. Arrangements of this kind were common in high-quality valve radios designed for connection to 'long wire' aerials. The inclusion of a four-gang tuning capacitor may seem extravagant, but this component is obtained by linking two inexpensive polythene dielectric variable capacitors. Full details are given later in this article.

Front-end AGC

Some means of automatically reducing the level of strong signals before they reach the mixer is desirable, and this function is performed by Q1, which acts as a voltagecontrolled resistor in the low-impedance coupling link between the bandpass filter and the input tuned circuit of the mixer.

When a FET is used in this way, the gate voltage varies the resistance of the drain-source channel from around a hundred to several thousand ohms. Resistance increases as the gate becomes more negative with respect to the source, with most of the change taking place between -1 and -3 V . Signal input must not exceed 500 mV or linearity will suffer, but voltages of this order are not likely to be developed across low impedance coupling windings at this point in the receiver.

The potential divider network formed by R11 and R12 enables the positive voltage on the source to be set between zero and a little in excess of TV , determining the threshold at which the front-end AGC starts to operate. R10 isolates the signal path, C7 acts as a bypass capacitor, and C6 and C8 are coupling and DC blocking capacitors.

Figure 1c/d: the signal strength meter and AGC amp stages, manual IF gain control and (lower) the tone control and audio output stages

TEACHERS... STUDENTS.. HOME USERS... etc.

Your opportunity to save fefff's

With this non commercial version of our software produced for single users, this is your dream come true!

Software as you are probably aware has no real material value, but is priced to recover the enormous costs of development. The software house fries to evaluate how many units will sell at a specific price to generate the amount needed and produce a healthy profit.

As the electronics marketplace shrinks, due to expanding competition, it means that, in reality, powerful user friendly software, such as EDWin, must be very highly priced and therefore remains inaccessible to the individual and small businesses.

Until today ... Norlinvest, one of the biggest software houses in the electronics sector, has decided to put onto the market a "Non Commercial" version of their EDWin software, which is known worldwide.

This is the first truly seamlessly integrated suite of software running in all Windows formats simulation, schematics and PCB design. Af last allowing amateurs, teachers, students, ... in a work "individual" to take advantage of current technology, without any restriction.

To avoid misunderstanding - there is no difference between the industrial version of the software and our Non-commercial version, except the price. In other words; industry is subsidising the development cost and now the individual can take full advantage of this.

Computer Compatibility

To run the program you will need:

- Windows 3.x, Win95 or Win NT,
- a min. 386 processor $(486+$ rec.)
- 8 mb of RAM
- CD-ROM Drive

Complete End-to-End CAE/CAD system. Simultaneous Schematic and Layout generation Automatic Front and back annotation.
Intuitive hierarchical menu structure. Mouse or keyboard commend activation Macro operations.
Real-time display of: ratsnest, active nodes, single line or true trace width.
On-line help
Auto reconnect.
Full Integration of Schematic and Layout.
Automatic file backup.
User definable text sizes.
DXF in and output.
Screen hardcopy.
Library viewer with editing possibility. Switching on/off possibility for tool and scroll bars.
Visible schematic and PCB symbols by editing. Monochrome mode for better print resolution Bitmap support for loading logos,
documentation, etc. Can be used in hierarchical as well as in simple schematic or PCB design. Maximum number of nets: 16,000 .
Maximum number of nodes: 32,000
Maximum number of bend points: 64,000 Maximum number of connections: 64,000 Maximum number of symbols: 32,000. Maximum number of components: 32,000 Maximum number of multi-segment traces: 32,000 , with a total of 64,000 trace segments. ANSI/AEC libraries
Full Gerber, NCD, pic and place output
Schematic Capture
Up to 100 schematic sheets.
Up to 64" $\times 64$ " sheet size.
Industry standard sheet sizes.
Rotate, scale and mirror symbols. Real-time dragging of components and wires Automatic package and pin assignment. Orthogonal and free mode manual routing Automatic bus annotation.
Block save, load, move and delete. Direct access to mixed mode simulation Autorouting of connections. Merging and splitting of nets possibility. Definable line width, also for bus-lines.
Swapping of component positions.
Automatic component renumbering by swapping.

PCB Layout

32 layers (28 route layers, 2 silk-screen layers (front and back), 2 soldermask layers (front and back)).
User definable trace sizes.
User definable pads.
Curved traces.
1 mil grid resolution - Fine grid 10 micron. SMT, fine line, analog support.
Component repeat, rotate and mirror
Components "Move by name"
Component, gate and pin swap.
Automatic component renaming
Trace repeat.
On-line, multi-layer routing with automatic via insertion.
Pin-to-pin, free or 45 degree routing.
Change segment side and width, trace side and width.
Fast interactive generation of ground planes with user definable cross-hatch or solid fill. Automatic ground plane with thermal relief insertion.
Automatic DRC with user specified parameters.
Electrical connectivity checking.
Linear rotation of symbols.
Gerber input read and use possibility.
Built-in interface for Spectra 6.0, Max route 6.0 and Arizona Autorouter
Bitmap functions (logos, drawings, ...)
Sophisticated database viewer.
Mixed Mode Simulation
AC analysis (Frequency domain)
DC analysis (Linear/non-linear)
TD analysis (Time domain).
Diagram generator.
Dynamic parameter definition of active and passive components.
Output graphs displayed on screen, hardcopy or placed on schematic.
Oscilloscope function
DLL based analog/digital simulation primitives modelling language and library creation tools. Built-in model generator for discrete devices.

Please Note: Some of the above are ONLY provided on the De Luxe 3 Version. EdSpice and Thermal Analysis are available
as bolt-on extras.

T E L N E T

BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
Tel: 01203650702
Fox: 01203650773
Mobile: 0860400683
(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)

Hewleft Packard 435A or B Power Meter (with 8481A/8484A) ..from $£ 750$ Hewlett Packard 4271B-L.C.R. Meter (Digital)
.5900
$£ 3750$ Hewlett Packard 4279A - 1 MHz C-V Meter
Hewlett Packard 4948A - (TIMS) Transmission impairment M/Set
Hewlett Packard 4972A - Lan Protocol Analyser
Hewlett Packard 5420A Digital Signal Analyser.............................
Hewlett Packard 5314A - (NEW) 100 MHz Universal Counters Counter.
Hewlett Packard 5183 - Wavetorm Recorder
Hewlett Packard 5238A Frequency Counter 100 MHz
Hewlett Packard 5370A - 100 MHz Universal Timer/Counter
Hewlett Packard 5385A Frequency Counter - 1 GHz - (HP1B) with OPTS 001/003/004/005.
Hewlett Packard 6031A - 1000W Autoranging p.s.u. (20v-120A
Hewlett Packard 6253A Power Supply 2OV - 3A Twin...
Hewlett Packard 6255A Power supply 40V - 1.5A Twin.
Hewlett Packard 6266B Power Supply 40V-5A
Hewlett Packard 6271B Power supply 60V - 3A
Hewlett Packard 6744 A - 0 -60V - 10 A System P.S.
Hewlett Packard 7475A - 6 Pen Plotter..........
Hewlett Packard 7550A - 8 Pen Plotter A3/A4

HEWLETT PACKARD 6261B Power Supply 20V-50A £450 Discount for Quantities

Hewlett Packard 8349B - Microwave Broad Band Amplifier... 54500
Hewlett Packard 83555A - Millimeter - Wave source Module 33-50GHz $£ 4250$
Hewlett Packard 8015A - 50MHz Pulse Generator... 8750
Hewlett Packard 8405A Vector Voltmeter.............
Hewlett Packard 8165A - 50MHz Programmable Signal Source ... $£ 1650$
Hewlett Packard 8350B - Sweep Oscillator Mainframe (various Plug-Ins available) extra $£ 2650$
Hewiett Packard 8152A - Optical Average Power Meter..
Hewlet Packard 8158B - Optical Attenuator (OPTS $002+011$)
Hewlett Packard 8182A - Data Analyser
Hewlett Packard 83554A - Wave Source Module 265 to 40GHz
Hewlett Packard 8684A 5.4GHz to 12.5GHz Sig-Gen ..
Hewlett Packard 8620C Sweep oscillator mainframe ...from £250
Hewiett Packard 8656B - Synthesised Signal Generator..
Hewlett Packard 8750A Storage normaliser
Hewlett Packard 8756A - Scaler Network Analyser
Hewlett Packard 8903A - Audio Analyser ($20 \mathrm{~Hz}-100 \mathrm{KHz}$)...
Hewlett Packard 8958A - Cellular Radio Interface
Hewlett Packard 8901A - Modulation Anatyser
Hewlett Packard 8901A - Modulation Analyser.
Hewlett Packard 8920A - R/F Comms Test Set
Hewleft Packard P382A Variable Attenuator
Hewleft Packard 1630D - Logic Analyser (43 Channels) .. $\mathbf{6 5 5 0}$
Hewlett Packard 16500A - Fitted with 16510A/16515A/16530A/16531A - Logic Analyser £4000
Hewlett Packard 11729B - Carrier Noise Test Set
Krohn-Hite 2200 Lin/Log Sweep Generator
Krohn-Hite 2200 Lin/Log Sweep Generator
Krohn-Hite 4024A Oscillator
Krohn-Hite 5200 Sweep, Function Generator
Kronn-Hite 6500 Phase Meter
Marconi $2019-80 \mathrm{KHz}-1040 \mathrm{MHz}$ Synthesised Sig. Gen

Marconi 2019A-80KHz-1040MHZ - Synthesised Signal Generator... 81950
Marconi 2432A 500 MHz digital freq. meter ... $\mathbf{\Sigma 2 0 0}$
Marconi 2432A 500 MHz digital freq. meter
Marconi 2610 - True RMS Voltmeter.
Marconi 2871 Data Comms Analyser
Marconi 2955 - Radio Comms Test Set

Marconi 6960 - PMZ function gen
Philips PM 5167 MHz function gen.......
Philips 5190 L.F. Synthesiser (G.P.1B).
Philips PM5519. Synt TV Pattern Generator
Philips PM5667 - Vectorscope
Philips PM5716-50MHZ Pulse Generator

Philips PM6652-1.5GHz Programmable High Resolution Timer/Counter
Philips PM6673-120MHz High Resolution Universal Counter
Prema $4000-61 / 2$ Digit Multimeter (NEW)

Racal Dana 9084 Synth. sig. gen. 104 MHz .
Racal Dana 9917 UHF frequency meter 560 MHz .
Racal Dana 9302A R/F multivoltmeter (new version)......
Racal Dana 9082 Synthesised am/fm sig gen (520 M Hz).
Racal Dana 9082 Synthesised am/fm sig gen (520 MHz)
Pohde \& Schwarz LFM2 - 60MHZ Group Delay Sweep Gen ...1600
Pohde \& Schwarz UPSF2 - Video Noise Meter... 1400

Rohde \& Schwarz Scud Radio Code Test Set ..

Schaffiner NSG 222A interference Simulator
Schaffiner NSG 223 Interference Generator
Schaffiner WSG 431 Electrostatic Discharge Simulator
Schlumberger 4923 Radio Code Test Set.................
chlumberger 4031 - 10 H2 Radio Comms Test Set
… ...

Solartron 1250 - Freq. Response Analyser
Stanford Research DS $340-15 \mathrm{MHz}$ Synthesised Function (NEW) and arbitrary
waveform generator...
Systron Donner 6030 -
Telequipment CT71 Curve Tracer
Tektronix TM5003 + AFG 5101 Arbitrary Function Gen.
...... $£ 250$
\&1750
Tektronix DAS9100 - Series Logic Analyser.. 5500
Tektronix - Plug-ins - many available such as SC504, SW503, SG502,
PG508, FG504, FG503, TG501, TR503 + many more.
PG508, FG504, FG503, TG501, TR503 + many more
Tektronix 577 Curve Tracer
Tektronix AM503 + TM501 + P6302 - Current Probe Amplifier

Tektronix AA5001 \& TM5006 M/F - Programmable Distortion Analyser
Tektronix 577 - Curve Tracer
Time 9811 Programmable Resistance
Toellner 7720 - Programmable 10 MHz Function Gen (AS NEW)

landel \& Goltermann PCM4 (+options) Resistance Standar
Wayne Kerr 4225 - LCR Bridge
Component Analyse
$\begin{array}{r}\text { £9950 } \\ . . .5600 \\ \hline\end{array}$
Wayne Kerr 6425 - Precision Component Analyser
Wayne Kerr 8905 - Precision LCR Meter
Wayne Kerr 8905 - Precision LCR Meter....

Wavetek 184 - Sweep Generator - 5 MHz
Wavetek $3010-1-1 \mathrm{GHz}$ Signal Generator

Figure 1e: the power supply stage

Figure 2: linking two variable capacitors to form a four-gang unit: tin bushes and linkage strip (use ordinary flux-cored solder), then slide bushes and linkage onto a 6 mm diameter steel shaft and sweat them together. This ensures perfect alignment.
receivers. Noise and intermodulation distortion are acceptably low, and they provide some conversion gain.

The local oscillator

Another FET, Q3, is the active device in the Hartley oscillator circuit, and L4, C15 and C18 are the frequency determining components. C16 and trimmer, C17, act as a padder, reducing the capacitance swing of C18 in order to make the oscillator track at 455 kHz above the signal-frequency circuits (figure 1b)

Feedback is applied by grounding the source of the transistor through a coupling winding on L4. C19 connects the tuned circuit to the gate, and R17 ensures correct biasing. R18 and C20 decouple the stage from the supply.

Dual gate mosfet mixers require a local oscillator injection in the region of 1.8V RMS in order to ensure best blocking and intermodulation performance. The chain of diodes, D1 D3, from the gate of Q3 to the OV rail, holds the oscillator output constant, at this voltage, over the entire swing of the tuning capacitor. An oscilloscope check confirmed that the quality of the wave form is not affected by this regulating measure, which helps to keep receiver sensitivity uniform over the entire tuning range.

The IF filters

The four IF tuned circuits will not, on

The control voltage is derived directly from the negative output of the diode detector D4, and is applied to the gate via potentiometer R13, which permits adjustment of the AGC range. R27 and C9 are decoupling components.

In practice, good results are obtained with most specimens of 2N3819 when R12 sets the source at 1 V and R13 is adjusted for maximum input. These pre-sets do, however, enable the AGC characteristics to be altered to suit individual preferences.

Reducing the setting of R13 with the receiver tuned to a very strong signal will reveal how effective this arrangement is in preventing overload.

The mixer

The dual-gate mosfet mixer circuit configured around Q2 is conventional. Signal voltage developed across the tuned circuit formed by L3, C10 and C11 is applied to gate1, and the local oscillator voltage to gate2. Source bias resistor R16 is bypassed by C14, and bias is applied to gate2 by connecting it to the source via signal isolating resistor R14.

The combination of signal and local oscillator voltages is developed across the primary winding of IFT1, which, together with the filters and the other IFTs, is tuned to 455 kHz (the difference between the two frequencies). R15 and C12 decouple the stage from the supply. C13 is a DC blocking capacitor.

Low cost and ease of application have made dual-gate mosfet mixers a popular choice for higher performance
their own, ensure a high enough degree of selectivity for our purpose, and switched filter elements are placed in the IF strip immediately after the mixer. F1 is an inexpensive mechanical filter with a bandwidth at the 6 dB down points of 4 kHz . F 2 is a high-performance ceramic filter with a bandwidth of 2.6 kHz . The latter may seem very narrow for broadcast transmissions, but its use dramatically reduces noise levels under difficult conditions, and receiver tuning can be set to the upper or lower side band in order to optimise reception. If the filter is used in this way, the quality of the audio is still entirely acceptable.

Filter switch wiring must, of course, be very short and direct. Switching diodes are invariably used in commercial receivers, but here a signal-switching relay is mounted close to the relevant components. This is simpler, less expensive, and probably takes up less space on the PCB. When its coil is energised, change-over contacts bring the narrow filter into circuit.

IFT1 and IFT2 act as matching transformers for the filters, which have port impedances ranging between 1 and 2 k . Connection of Q2 and Q4 to the tuned windings of these transformers has been deliberately made less than optimum in order to increase the stability margin of the receiver. A better match would be obtained with the drain of Q2 taken to a tapping and the gate of Q4 connected across the entire winding. Connected in this way, however, there is a tendency to instability and, as there is gain to spare, I adopted the arrangement used here.

Figure 3: the component layout of the RF, IF and Detector stages PCB

The IF amplifier

Q4 and Q5 are almost identical amplifier stages coupled by IFT3. Source bias resistors R21 and R24 are bypassed by C23 and C26, and the gain of the circuit is controlled, either manually or automatically, by varying the voltage on the second gates of the mosfets. R19 and R22, together with capacitors C22 and C25, are AGC line decoupling components, and R20 and R23, along with C21 and C24, decouple the IF stages from the supply line. A tapping on the tuned winding of IFT4 matches the final stage to the diode detector.

The detector

Signais are demodulated by the germanium diode D4. C27 acts as the detector reservoir capacitor, and R28 and C28 filter out residual RF. R28 and pre-set potentiometer R33 act as the diode load, and the potentiometer also permits adjustment of the audio output level.

Signal strength meter and AGC amplifier

As signal level increases, the DC voltage developed across C27 becomes increasingly negative, reducing the current flowing through Q6 and thereby increasing the voltage at its collector. The amplified voltage swing is displayed by moving coil meter M1, in order to provide a comparative indication of signal strength (figure $1 \mathrm{c} / \mathrm{d}$).

Potentiometer R36 enables the meter pointer to be set at zero under no-signal conditions; R31 adjusts meter sensitivity, and R32 sets the level at which D5 begins to conduct, compressing the high end of the scale and preventing meter overload on strong signals. The signal strength meter circuitry will, of course, function with the IF AGC system switched off.

The second gates of IF transistors Q4 and Q5 have to be held at around 4 V to ensure maximum gain under weak signal conditions. A second DC amplifier, Q7, inverts the output of Q6 to provide the necessary control voltage, which is set by potentiometer R38 to fall from 4 V to near zero as the signal level increases. D6, at the 'bottom end' of the bias chain, stabilises Q7 against thermal drift.

Figure 4: details of the attenuator and aerial switch wiring (tag numbering is for the switches specified)

Manual IF gain control

The ability to switch off the AGC system and put the gain of the IF amplifier under manual control is a desirable feature, enabling receiver noise to be kept at the lowest possible level. When gain is controlled automatically, it rises to maximum in the absence of a signal, and the inevitable hiss of band noise can be tiresome. Turning IF gain well down results in almost complete silence between stations as the receiver is tuned across the band, making it more pleasant to use when maximum weak-signal sensitivity is not required. The front-end AGC system is, of course, still operational, and this prevents large swings in output.

Switch, S3, connects the AGC line to the collector of Q7
when automatic control is required, or to the slider of R41 when gain is to be set manually. R40 fixes the voltage across R41 at around 4 V to ensure the necessary control range. C30 prevents potentiometer noise.

Tone control stage

In a receiver of this kind, tone controls are often used to increase the clarity of weak signals by broadly peaking AF response around 1 kHz . A great many music stations can, however, be received at good entertainment quality, especially if a decent speaker is fitted, and the tone can be adjusted, which many listeners will find welcome.

The design uses a conventional passive network. Centred around potentiometers R44 and R47, the various component values have been tailored to suit the audio output from the diode detector, which is made a little bass heavy by the enhanced selectivity. Q8 overcomes signal losses in the tone control network. The omission of a bypass capacitor across its emitter resistor results in negative feedback, which reduces stage gain to around ten times. This is perfectly adequate. R49 is the collector load, base bias is determined by R50, and R48 and C36 decouple the stage from the supply.

The audio output stage

Power output is provided by an inexpensive TBA820M audio amplifier IC which can deliver 2 watts into an 8 -ohm load when connected to a 12 V supply. Pre-set R54 controls an internal feedback network and varies the gain of the device. The value of capacitor C 42 has been chosen to limit the frequency response of the amplifier to 7 kHz (stations on the medium wave band do not broadcast audio frequencies higher than thisj.

The input pin of the amplifier is connected to the slider of the AF gain control R52. Amplifier output is coupled to the speaker by C43, and R55 and C44 form a Zobel network which ensures stability under different loading conditions. C40 is a supply voltage ripple rejection capacitor, and C37 and C39 prevent the impedance of the power supply leads causing RF or AF instability,

A switched stereo phone jack is provided. Connecting it in the manner shown puts the two earpieces in series. The resulting 60 ohm load limits the output of the amplifier, and sound levels on the 'phones are kept at a comfortable level.

Figure 5: the audio amplifier and tone control PCB component layout

The power supply

Although the current drawn by the receiver is comparatively modest, a mains power supply with a regulated output ensures consistent performance, and is far more economical than batteries. The power supply circuit shown here is quite conventional. Diodes D8 - D11 are arranged in a bridge to give full-wave rectification of the 18 V AC supplied by the mains transformer MT1. Approximately 22 V is developed across the
reservoir capacitor C47. Capacitors C48-C51 prevent modulation hum, and C46 is a tantalum capacitor, included to bypass noise generated by the 12 V regulator IC2. Supplies to the LED indicator and the relay coil are taken directly from the rectifier output, and the values of R56 and R57 assume the use of the specified relay and low-current LED. If different components are used, these values may need changing.

A low-current internal fuse is included, and the mains earth is connected to the core of the transformer as a fault protection measure. Connecting the mains earth to the $O V$ line of the receiver can greatly improve reception if an independent earth is not available. Some transformers are available with shield between the mains winding and the secondary winding, and this can significantly reduce interference if grounded. Unfortunately, using the mains earth in this way sometimes results in the injection of heavy electrical interference, and $S 5$ enables it to be quickly disconnected if this problem is suspected.

This is a mains project. If you are not yet confident in mains construction, seek the assistance of someone who has the relevant experience, or consider using the battery option described in the next section.

Next month

In the second part of this project the author will describe how to simplify the receiver design for those who prefer to start with a less sophisticated design, and describe the construction of the circuits described this month.

This useful little gadget will help you to keep check on the passage of time without having to look at a clock or watch. It works by giving a short bleep every 15 minutes and a long one on the hour. It could be particularly useful during a car journey since the eyes need not be taken off the road to know how much time has elapsed since it was last reset. You will be able to use the Minute Minder to check that you are on time for an appointment or simply as a reminder to stop to make a phone call or take a rest.

The circuit may also be used for general purposes around the house possibly with modified operating times. It might be found handy for the kitchen or photographic darkroom, for example. For such applications, it could be powered from a commercial dc plug-in adaptor. Where no mains supply exists, it would also be possible to use batteries and more will be said about this later.

Flashing indicator

The circuit is built in a small plastic box. On the front panel is an on-off switch, an LED indicator and a push button reset switch. While the unit is switched on, the LED flashes about once per second. The reset switch enables the timing to be started from the beginning as required.

Bleeps track of time in the car, darkroom or kitchen. By Terry Balbirnie.

It would be a simple matter to modify the circuit to give signals at longer or shorter time intervals - for example, at one minute, two minutes, three minutes and the long one at four minutes. Details for doing this are given in the text. This idea could be useful in the home for keeping a check on the length of a phone call - especially one to a mobile or overseas destination. Note however that, although the periods may be set from a few seconds to several hours, they must all be the same length. It would not be possible to provide a signal at say, 2 minutes, 5 minutes, 8 minutes and 12 minutes.

The circuit is not designed to be highly accurate - it is controlled by pulses from a simple astable and there is no quartz crystal of the type used in a modern clock or watch. However, it will be sufficiently accurate for the purposes mentioned earlier. In theory, there should be no change in the timings with applied voltage but, in fact, there is a small effect. In tests on the prototype, there was a variation of about 4 seconds per hour over the range 11 V to 13 V . There is also a small drift in the timings with temperature. Over the range 5 to 20 degrees Celsius this was also about 4 seconds per hour. In practice, when used in a car, the voltage and temperature will be reasonably constant and the timings will be within a few seconds per hour. When used with a stabilised plug-in supply in the constant temperature of a centrally-heated house, the

Figure 1: the circuit diagram of the Minute Minder

Simulation, Schematic Capture, PCB
AutoRouting \& CADCAM Support for just $£ 79^{* *}$
Announcing Quickroute 4.0! Now all versions of Quickroute 4.0 have the full range of great features you've come to expect from Quickroute including a FREE integrated mixed mode simulator, plus a new modern user interface with active buttons, a fast new symbol browser, and dockable tool bars. The only difference now between the various versions of Quickroute is the size of design you can create.

Best of all, you can now try Quickroute 4.0 with complete confidence because all orders are covered with our 30 day money back guarantee*. Simply fill in the coupon and fax, mail (FREEPOST address below) or FREEphone 08007312824 to place your order.
\square Quickroute 4.0 (max 300 pins) at $£ 99.88$ inclusive
\square Quickroute 4.0 (max 800 pins) at $£ 182.13$ inclusiveQuickroute 4.0 (full access) at $£ 299.63$ inclusive(free)
Inclusive price includes U.K. post \& packing \& V.A.T.
\square I enclose a cheque payable in U.K sterling for $£$Please debit my Visa/Mastercard/American Express/Switch* card (*please delete) Card No. Expiry

Signature
\square

E1 BARGAIN PACKS
 - List 1

1,000 items appear in our Bargain Packs List - request one of these when you next order.
$1 \times 12 \mathrm{~V}$ Stepper Motor. $7-5$ degree. Order Ref: 910.
1×10 pack Screwdrivers. Order Ref: 909 .
$2 \times 5 \mathrm{amp}$ Pull Cord Celling Switches. Brown. Order Ref: 921
$5 \times$ reels Insulation Tape. Order Ref: 91
$4 \times 14 \mathrm{~mm}$ Bull-races. Order Rel: 912 .
${ }_{913} \times$ Cord Grip Switch Lamp Holders. Order Ref: 913.
$1 \times$ DC Voltage Reducer. $12 \mathrm{~V}-6 \mathrm{~V}$. Order Ref: 916. 1×10 amp 40 V Bridge Rectifier. Order Ref: 889. Lightweight Stereo Headphones. Moving coil so superior sound. Order Ref: 896 .
$2 \times 25 \mathrm{~W}$ Crossovers. For 40 hm loudspeakers. Order Ret: 22
$2 \times$ NiCad Constant Current Chargers. Easily adaptable to charge almost any NiCad battery. Order Ref: 30 .
18V-0-18V 10VA mains transformer. Order Ref: 813. $2 \times$ White Plastic Boxes. With lids, approx. $3^{\prime \prime}$ cube. Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132
$2 \times$ Reed Relay Kits. You get 8 reed switches and 2 coil sets. Order Ref: 148
12V-0-12V 6VA mains transformer, p.c.b. mounting. Order Ret: 938 .
$1 \times$ Big Pull Solenoid. Mains operated. Has $1 / 2^{\prime \prime}$ pull. $1 \times$ Big push
$1 \times$ Big Push Solenoid. Mains operated. Has $1 / 2^{*}$ push. Order Ret: 872
$1 \times$ Mini Mono Amp. $3 W$ into 4 ohm speaker or 1W into 8 ohm. Order Ref: 495
$1 \times$ Mini Stereo $1 W$ Amp. Order Ret: 870
15V DC 150 mA p.s.u., nicely cased. Order Ref: 942. $1 \times \operatorname{In}$-Flight Stereo Unit is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29
$1 \times 0.1 \mathrm{~mA}$ Panel Meter. Full vision fact 70 mm square. Scaled 0-100. Onder Ref: 756
${ }_{874}^{2} \times$ Lithium Batteries. $2-5 \mathrm{~V}$ penlight size. Order Ref: 874.
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT fiat plug. Ideal for phone extensions, fax, etc. Order Ref: 552
$1 \times 12 \mathrm{~V}$ Solenoid. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232
$3 \times$ In-Flex Switches. With neon on/off lights, saves leaving things switched on. Order Ref: 7
$2 \times 6 \mathrm{~V}$ 1A Mains Transformers. Upright mounting with fixing clamps. Order Ref: 9
$2 \times$ Humidity Switches. As the air becomes damper, the membrane stretches and operates a micro switch. Order Ref: 32.
$4 \times 13 A$ Rocker Switch. Three tags so on/off, or changeover with centre off. Order Ref: 42.
$1 \times$ Suck or Blow-Operated Pressure Switch. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref: 67.
$1 \times 6 V 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6 V output lead. Order Ref: 103A. $2 \times$ Stripper Boards. Each contains a 400V 2A well as dozens of condensers, etc Order Ref: 120 as 12 Very Fine Drills. For PCB boards etc Normal cost about 80p each. Order Ref: 128 .
needs no switch. Order Ref: 134.
$6 \times$ Microphone inserts. Magnetic 400 ohm, also act as speakers. Order Ref: 139.
$6 \times$ Neon Indicators. In panel mounting holders with lens. Order Ref: 180.
$1 \times$ In-Flex Simmerstat. Keeps your
etc always at the ready. Order Ref:196
x Mains Solenoid. Very Powertul
could push if modified. Order Ref: 199
$1 \times$ Fiectric Clock. and you need never be late. Order Ref: 211
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car hom. All brand new. Order Ref: 221.
$2 \times\left(6^{\prime \prime} \times 4^{\text {s }}\right)$ Speakers. 16 hm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref: 243
$1 \times$ Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252
$2 \times$ Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so could be foot switch if fitted in pattress. Order Ref: 263.
$50 \times$ Mixed Silicon Diodes. Order Ret: 293.
1×6 Digit Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28
$2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normally on, other normally closed. Order Ref: 48.
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55.
$61 / 28 \Omega 5$ Watt Speaker. Order Ref: 824
1 x Shaded Pole Mains Motor, $3_{4}{ }^{n}$ stack, so quite powerful. Order Ref: 85 .
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86 .
$1 \times$ Case, $31 / 2 \times 21 / 4 \times 13 / 4$ with $13 A$ socket pins. Order Ref: 845.
$2 \times$ Cases. $21 / 2 \times 21 / 4 \times 1^{3 / 4}$ with $13 A$ pins. Order Ref: 565 .
$4 \times$ Luminous Rocker Switches. 10A mains. Order Ref: 793.
$4 \times$ Different Standard V3 Micro Switches. Order Ref: 340 .
$4 \times$ Different Sub Min Micro Switches. Order Ref: 313.

BARGAINS GALORE

WSULATION TESTER WTH MULTMETER. Internally generates vollages which enable you to read insulation directly in megolhms. The
multimeter has four ranges, ACDC vols, 3 ranges miliamps, 3 ranges multimeter has four ranges, ACDC vols, 3 ranges miliamps, 3 ranges
resistance and 5 amp range. These instruments are ex-Brisish Teleresistance and 5 amp range. These instruments are ex-Bnish 1elecomt at least $\varepsilon 50$, yours for only $£ 7.50$ with leads, carying case $\mathbf{\Sigma}$ extra, Order Rel: 7.5 PP 4
This INSTRUI ENT but slighlly faully - you shoild be abte to repair We supply circuit diagram and notes, $£ 3$, Order Ret: 3P176.
12V 10 A SWITCH WODE POWER SUPPLY. For only 59.50 and a litte bit of work because you have to corvert our 135 W PSU. Modificalions are retatively simple - we supply instuctions. Simply Order PSU Ref: 9.5 P2 and request modification cetaiks. Price still 89.50 .
MEDCLNE CUPBOARD ALARIT. Or could be used io wam when any cupboard door is openad. The ighl shining on the unim makes the E3, Order Ref: 3P155 OONT ORTIT OVER
thing that coubd food. This Be it bath, sink, celar, sump or any onner thing the presel tevel Adiustathice will tell you when the water has risen for wall mounting, ready to work when battery fitted E 3 , Order Ret: 3 Yi56.
VERY POWERFUL. MANS MOTOR. With extra tong $(21 / 2)$ shatts extending out each side. Makes in ideal for a reversing arrangement for, as you know, shaded pole molors are not reversible, $\mathbf{\Sigma 3}$, Order Ref 3 P157.
2 SOL24 : PANEL BARGANN. Gives 3 V at 200 mA , m , Order Ref:
£1 SUPER BARGAN 12V axial tan for onty $\mathrm{\Sigma 1}$, ideal for
equipment cooking, brand new, made by West German comequipment cooing, brand new, made by West German company. Brushless so virually everlasting. Noeds simple transistor drive circuit, we include diagram. Only 11 , Onder Ref: 919 . When we supply this we
LIGHT DIMEERS. On standard plate to put directly in place of fiush switch. Available in colours, green, red, blue and yellow, 22.50 , Order Ref: 2.5 P 9 .
$45 A$ DOUBLE POLE MAMS SWICH. Mounted on a $6^{\circ} \times 31 / 2^{\circ}$ aluminium plate, beautituly finished in gotd, with pitot light. Top quality, DONT STAND OUT NTHE COLD. OUr 12 m telephone extension lead has a liat BT socket one end and flat BT plug other ond, \sum, Order Ret: 2P338.
2OW 4 OHM SPEAKER. ξ^{3}, Order Ret: 3P145. Malching 4 ohm 20W weeter on separate ballie, E1.50, Order Rel: 1.5P9.

LCD 31/2 DIGIT PANEL METER

This is a mult-range voltmeter/ammeter using the A.D converter
chio 7106 to provide 5 ranges each of volts and amps. Supolied with full data sheet. Special snip price of $\varepsilon 12$, Order Rel: 12 P19. TELEPHONE EXTENSION WIRE 4 core conrectly colour coded, in ended for permanent extensions, 25 m coil, 22 , Order Ret: 2P339. PHILRS 9' HIGH RESOLUTON MONTOR. Black and white in metal rame for easy mounting. Brand new, stin in maker's packing, oliered at less than price of tube alone, only E15, Order Ref: 15P1.
HIGH CURRENT AC MAMS RELAY. This has a 230 V cail and changeover switch rated at 15A with PCB mounting with clear plastic cover, $£ 1$, Order Rel: 965.
ULTRA THN DRILLS. Actually 0.3 mm . To buy these regutar costs a ortune. However, these are packed in har dozens and the price to you is $£ 1$ per pack, Order Ret; $797 B$.
his box is extremely tough and would te GPO telephone equipmen oots in intemal size aporox. $101 / 2 \times 41 k^{\prime} \times 6^{\circ}$ high Complete will carrying strap, price Z 2 , Order Ret: 2 P283B.
ULTRA SONIC TRANSDUCERS. Two metal cased units, one trans mits, one receives. Built to qperate around 40 kHz , price $\mathrm{\Sigma 1.50}$ the pair Order Ret: 1.5 P 4 .
POWER SUPPLY WITH EXTRAS. Mains input is fused and fitered and the $12 V$ DC output is vollage regulated, intended for high class equipment, this is mounted on a PC8 and also mounted on the boa out easily removed, are two 12 V relays and Piezo sounder. Price E3, rder Ref: 3P906
shocks, 230 V in and 230 V out 150 W . Stops you geting "to earth shocks, 230 V in and 230V out, 150W, 57.50, Order Rel: 7.5P5, and MHS 230V FAN, Order Ref: 10P97 E8, Order Ret: 8 PP . 30 P 1 LNER. Helmum neon by Phirips, fut spec., 530 , Order Ret 30P1. Power supply for this in kit form with case is $£ 15$, Order Ret
15P6, or in larger case to house hube as well, $£ 18$, Order Ret 18P2 The larger unit, made up, lested and mady well, £18, Order Ret: 18 P 2 . The larger unit, made 4p, te

Hy you order len of an tem we will add an eleventh one free

AR SPACED TRIMIER CAPS.

circunts, 4 for E1, Order Ref: 818 B
you may need to laulf find, A6, Order Rel: 6P34
ou may need to laull find, 66 , Order Ret: 6P34.
with leads and SOW MAMS TRAUSFOAR, nommal mains input, ©6, Order Ref: 6 P23. normal primaries and upright mounting one is 20 V 4A A , $\mathbf{~ D o t h ~ w i t h ~}$ normal primaties and upright mounting, one is 20 V 4 A , Order Ret: P106, the other 40 V 2 A , Order Ret. 3P107
prowed ends for ventitation othenwise undriled. Made for GPO so bes uality, only 53 each, Order Ref: 3P74. SENTNEL COMPONENT BOARD. Amongst hundred of other parts, is has $15 \mathrm{i} . \mathrm{CS}$, al phig in so do not need soldering. Cost well over 100, yours for E4, Order Rel: 4P67.
5W 8 OHM 8 SPEAKER \& 5 TWEETER. Made for a discontinued high qualiy music centre, gives real hi-fi and only $£ 4$ per pair, Order Ref: 4P57.
10P74. PUWP. Very powerful, mains operated, $\mathbf{5 1 0}$, Order Ret 0P74.
-1mA FULL VISION PANEL METER. 2 3/4" square, scalod 0-100 USTRAD KEYBOARD Ror rewring, E1 each, Order Ret: 756 . keytoand, having over 100 keys inctuding of course comprehensive and qwerty. Brand new, still in maker's packing, Order Ret: 5P202. 4 RPW MOTOR. This is onty 2 W so will not cost much to nun. Speed is deal for revolving mimors or lights, iz, Order Ret: 2 P328.
LIUSUAL SOL ENOD. Solenoids normaly have to be energised to pull in and hold the core, this is a disadvantage where the appiance is hold the core unti a votege is appted to release it $\{2$ Order Ret 2 2P327.
MAMS FLLTER Resin impregnated nicely cased, p.c.b. mounting
2. Order Ref: 2P315.

$\varepsilon 1$ BARGAIN PACKS

 - List 2This is the $£ 1$ Bargain Packs List 2 - watch out for lists 3 and 4 next month.
$3 \times$ Battery Model Motors, tiny, "medium and large Order Rer: 35
$2 \times$ Tuning Capacitors for super-het wave radios, Or der Rel: 36 .
Miniature 12 V Relay with low current consuming coil, 2×3 changeover contacts, Order Ref: 51
$2 \times$ Ferrite Slab Aerials with medium wave coils. Idea for building small radio, Order Ref: 61.
$2 \times 25 \mathrm{~W} 8 \mathrm{OHM}$ Variable Resistors. Ideal for oudspeaker volume control, Order Ref: 69
$2 \times$ Wirewound Variable Resistors in any of the for lowing values, 18, 35,50, 100 ohms, your choice Or der Ref: 71.
$4 \times 30 A$ Procelain Fuse Holders. Make your own fuse board, Orcer Ret 82
x $61 / 2^{\prime \prime}$ Metal Fan Blades for $5 / 16^{\prime \prime}$ shaft, Order Rel 86/61/2.
Mains Motor to suit the $61 / 2^{\prime \prime}$ blades, Order Ref: 88
$1 \times 4.5 \mathrm{~V} 150 \mathrm{~mA}$ DC Power Supply. Fully enclosed so quite saie, Order Ref: 104
10 each red a
15m Twin Wire, screened, Order Ref: 122A.
100 Plastic Headed Cable Clips, nail in type, severa sizes, Order Ref: 123
$4 \times$ MES Batten Holders, Order Ref: 126
4×2 Circuit Micro Switches (Licon) Order Ref: 157. x 13A Switch Socket, quite standard but coloured Order Ref: 164.
$1 \times 30 A$ Panel Mounting Toggle Switch, double-pole, Order Ref: 166.
$2 \times$ Neon Numicator Tubes, Order Ref: 170
$100 \times 3 / 8$ Rubber Grommets, Order Ref: 18
$4 \times$ BC Lamp Holder Adaptors, Order Ref: 191
$3 \times$ Superior Type Push Switches. Make your own keyboard, Order Ref: 201.
Miains Transformer 8V-0V-8V 1/2A, Order Ref: 212.
$2 \times$ Sub Min Toggle Switches, Order Ref: 214.
High Power 3 Speaker (11W 8ohm) Order Ref: 246. Medium Wave Permeability Tuner, its almost a com plete radio with circuit, Order Ref: 247.
o Screwdown Terminals with through panel in sulators, Order Rel: 264
LCD Clock Display, $1 / 2$ figures, Order Ref: 329
$10 \times$ Push-On Long Shafted Knobs for $1 / 4^{4}$ spindle, Order Ret: 339.
$2 \times$ ex-GPO Speaker Inserts, ref 4T, Order Ref: 352 $100 \times$ Sub vin if Transformers. Just right if you wan coil formers, Order Ref: 360.
$1 \times 24 \mathrm{~V} 200 \mathrm{~mA}$ PSU, Order Ref: 393.
$1 \times$ Heating Element, mains voltage 100W, brass en cased, Order Ref: 8
$1 \times$ Mains Interference Suppressor, Order Ret: 21. $3 \times$ Rocker Switches, 13A mains voltage, Order Ref
$1 \times$ Mini Uni-Selector with diagram for electronic jig saw, Order Ret: 56.
$2 \times$ Appliance Thermostats, adjustable 15A, Order Ref: 65
$1 \times$ Mains Motor with gearbox giving 1 rev per 24 hrs Order Ref: 89.
$10 \times$ Round Pointer Knobs for flatted $1 / 4^{\prime \prime}$ spindles Order Ref: 295.
$1 \times$ Ceramic Wave Change Switch, 12-pote, 3-way with $1 / 4^{\prime \prime}$ spindle, Order Ref: 303.
$1 \times$ Tubular Hand Mike, suits cassette recorders, etc Order Ref: 305
$2 \times$ Plastic Stethosets, take crystal or magnetic in serts, order Reif: 331.
$20 \times$ Pre-set Resistors, various types and values, Or der Ref: 332.
$6 \times$ Car Type Rocker Switches, assorted, Order Rof 333.
$1 \times$ Reversing Switch, 20A double-pole or 40A single pole, Order Ref: 343
$4 \times$ Skirted Control Knobs, engraved 0-10, Order Ref 355.
$3 \times$ Luminous Rocker Switches, Order Ref: 373.
$2 \times 1000 \mathrm{~W}$ Tubutar Heating Elements with termina ends, Order Ref: 376.
$1 \times$ Mains Transformer Operated NiCad Charger, cased with leads, Order Ref: 385 .
$2 \times$ Clockwork Motors, run for one hour, Order Ref 389.

MINI AMFM TUNING

CAPACITOR. Only $1^{1 "}$ square but has a good length of $1 /{ }^{\prime \prime}$ diameter spindle with 4 variable presel caps for fine tuning. Price £1, Order Ref: D202
ANOTHER T^{\prime} ' FERRITE ROD AERIAL. This is an extra special $1 / 2^{\prime \prime}$ diameter with long and medium wave coils. Price £1, Order Ref: D203.

TERMS

Send cash, PO, cheques or quote credit card number orders under £25 add £3 senvice charge.

> J\&N FACTORS
> Pilgrim Works (Dept. E.E.,
> Stairbridge Lane, Bolney, Sussex RH 17 5PA
> Telephone: 01444881965
timings might be even closer. The accuracy largely depends on the temperature coefficients of the components used (how much their values change with temperature) and may not be the same as in the prototype. This circuit should not be constructed where accurate timings are essential.

How it works

The complete circuit for the Minute Minder is shown in figure 1. The supply is connected via on-off switch S2, fuse F1 and diode D5. This latter component provides reverse polarity protection and also operates in conjunction with capacitor C9 to smooth the supply. Smoothing is particularly important when the circuit is powered by the car electrical system.

The astable section, which provides the basic timing pulses, comprises IC1 and associated components. The time period is dependent on the values of R2, R1, RV1 and C1 and at the end of construction, RV1 will be adjusted to give puises at 0.44 second intervals (about 2.3 pulses per second or 2.3 Hz) and these appear at pin 3 . The reason for this rather strange figure will become apparent presently. Using a short basic time period rather than, say, one of 15 minutes avoids the need for very high values of timing components. in particular, requiring a large value for C1 would almost certainly involve using an electrolytic capacitor. This would not be satisfactory because such components have a very wide range of tolerance. It is found that the value changes greatly with temperature and other factors and this would be reflected in highly inaccurate timings. Diode D1 shortens the length of the pulses compared with the space between them and the result is effective for processing by the next section of the circuit..

Slow pulse

The pulses referred to above are fed to the clock input (pin 10), of 14 -stage binary counter, IC2. C2 bypasses the electrical noise which is often picked up along the interconnecting PCB track and which could result in false pulses and erratic timings.

On the arrival of pulses to IC2, each of its fourteen outputs (Q1 to Q14) go high in various combinations to register the total number received in binary. Note that most of the outputs are unused and only Q1, Q12, Q13 and Q14 (pins 9, 1, 2 and 3 respectively) are shown in the diagram. The result of the first few clock pulses is shown in Table 1 (it would be impractical to show the entire counting cycle due to the large number of lines invoived). It can be seen that the second output (Q2) goes high on the second pulse, the third one (Q3) on the fourth, the fourth one (Q4) on the eighth and so on. By extending this reasoning, it can be deduced that output Q12 will go high on the arrival of 2048 pulses (which corresponds to 15 minutes at a clock rate of 1 every 0.44 seconds), Q13 on 4096 pulses or 30 minutes and both Q12 and Q13 on 6144 pulses or 45 minutes. The final output, Q14, will go high on receiving 8192 input pulses or 1 hour. It will now be clear why the clock rate is set to 1 pulse every 0.44 seconds. Left to itself, counting would proceed until all outputs had gone high and the cycle would repeat. However, in this circuit, the counter is reset on the hour and begins again. How this is achieved is explained later.

Output Q1 is used to feed light emitting diode LED1 via current-limiting resistor, R3. Referring again to Table 1, it can be seen that this will operate at one-half of clock frequency that is, at 0.88 second intervals. The LED thus acts as a flashing indicator light, as a check that the astable is working and will be used as an aid to adjusting the timings at the end.

Table 1: The results of the first few clock pulses of IC2 (see text).

Q	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	6	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	1	
0	0	0	0	0	0	0	0	0	0	0	0	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	1	1	
0	0	0	0	0	0	0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	0	0	0	0	1	0	1	
0	0	0	0	0	0	0	0	0	0	0	1	1	0	
0	0	0	0	0	0	0	0	0	0	0	1	1	1	
0	0	0	0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	0	0	0	0	1	0	0	1	
0	0	0	0	0	0	0	0	0	0	1	0	1	0	
0	0	0	0	0	0	0	0	0	0	1	0	1	1	

At the gate

At the times when Q12, Q13 or both Q12 and Q13 go high, a pulse is transferred through capacitor C 4 or C 5 to one or both inputs (pins 1 and 2) of 2 -input NOR gate, IC3a. IC3a is one section of a quadruple 2-input NOR gate chip - that is, the ic contains four identical gates. Only two of them are used here. The function of the other one, IC3b will be explained presently. The truth table for a NOR gate is shown in figure 2 and it will be seen that its output is low if one or both inputs is high. Where both inputs are low, the output is high. In the absence of any pulse, IC3a inputs will be kept low by pull-down resistors R5 and R6 so the output, pin 3, will be normally high.

On the arrival of a high pulse to either or both inputs, the output will pulse low. Capacitor coupling between IC2 outputs and IC3 inputs is necessary since, otherwise, on the transitions between Q12 and Q13 going high, no change would be seen by IC3 output (it would remain low all the time) since, as far as it is concerned, one of its inputs would have remained high. The capacitors overcome the problem by allowing the active IC3 input to go low again soon after the arrival of each pulse.

Figure 2: truth table for the NOR gate:

inputs		output
0	0	1
0	1	0
1	0	0
1	1	0

When a low pulse is produced at IC3 pin 3, a similar state is transferred to IC 4 b trigger input, pin 6 . IC 4 b is one half of a dual timer integrated circuit and this, together with the other section (IC4a) are connected as monostables. Thus, when triggered by such a low pulse, the output (pin 5) will go high for a certain time then revert to low. Note that it is a characteristic of this type of device that it is triggered by a low pulse - a high state applied to the trigger input has no effect. The time period of IC 4 b is determined by the values of $\mathrm{R9}$ and C 8 and with the values specified will be about 0.25 seconds. The output signal is passed through diode D3 to the buzzer, BUZ1, which therefore emits a short bleep.

Re-setting the counter

As explained previousiy, Q14 (IC2 pin 3) will go high after one hour. A high pulse is then passed through capacitor C 6 to the inter-connected inputs of 1 C 3 b which is one of the other NOR gate contained within IC3. The coupled inputs give the effect of
a NOT gate so the high pulse is converted into a low one and is provided at the output, pin 4. This is then applied to IC4a pin 8 which is the trigger input of the other monostable. Since resistor R 8 has a value of approximately four times that of R9 while C 7 is equal in value to C 8 , the time period of IC4a is about four times longer than that of IC4b - that is, about 1 second. This is provided at pin 9 and is passed on via diode D4 to the buzzer. Thus, on the hour, although a short pulse is also given by IC4b, the ionger one keeps the buzzer sounding for the extended time. The effect is that the buzzer gives three short bleeps then a long one at the specified time intervals.

When the one-hour bleep is produced and IC4a output (pin 9) goes high, a high state is also passed via diode D2 to IC2 reset input, pin 11. This returns the counter to zero and the cycle repeats. When the circuit is switched on, capacitor C3 charges up through R4. This applies a brief high state to pin 11 and ensures that the counter begins at zero. Pin 11 is kept normally low by R4 and this prevents false resetting. The counter may be reset manually by pressing switch SW1 momentarily and this also applies a high state to pin 11.

Time settings

To reduce the timings outside the range of RV1 adjustment, the value of C1 may be reduced in proportion. To increase the timings, either C1 or R1 could be increased in value. For the reasons given earlier, it is necessary to avoid the use of an electrolytic capacitor for C 1 and this, in practice, gives an upper limit of about 10 mF . On the whole, it would be easier to raise the value of R1 or to do this in combination with a modest increase in C1 if necessary.

To increase the length of the bleep times, the shorter one could be adjusted by increasing the value of R9 in proportion and vice versa. For the longer bleep time, similar changes may be made to R8.

Construction

The PCB component layout is shown in figure 3. Begin by drilling the two fixing holes, mounting the four ic sockets and soldering the three link wires in place. Attach the two-section piece of screw terminal block, TB1. Follow with all capacitors and resistors (including preset RV1). Do not use an ordinary (single turn) trimmer for RV1 - this would be much too difficult to adjust correctly. It is necessary to use a multi-turn type (a 12
turn unit was used in the prototype but others would be equally suitable). Some of these have an in-line pin arrangement while others have them set out in the form of a triangle. There are two holes provided on the PCB for the centre pin and the appropriate one should be used. Note that the polarity of C9 must be observed (this is clearly marked on the body). With some specimens of C , and if height is at a premium, it may be necessary to bend the end leads at right angles and lie it flat on the PCB. Add the five diodes and the buzzer, again, taking care over the polarity of these components. Bend the LED leads through rights angles and solder them to the PCB (observing the polarity) so that the body lies about 5 mm above it. Complete construction of the PCB by soldering 5 cm pieces of light duty stranded wire to the points labelled " S 1 ".

Prepare the box by drilling holes in the base to correspond with the fixing holes in the circuit panel. Allow sufficient space to the right of the PCB for the fuse holder and on-off switch (see photograph). Measure the position of the LED and drill a hole to correspond (see later if the circuit is to be batteryoperated). In the prototype, a 3 mm diameter hole was used and the LED leads adjusted so that it took up a position directly behind it. When considering this, think also about the positions of the two switches so that they will all end up at the same height and the layout will look neat. Drill the holes for the switches and for mounting the fuseholder. Measure the position of the buzzer and drill a hole in the lid for the sound to pass through. This should be a little larger than the hole in the buzzer. Drill a further hole to enable RV1 to be adjusted using a small screwdriver or trimming tool when the lid of the case is in josition. Drill a hole for the input wires to pass through if the unit is to be operated from the car supply. If it is to be powered using a plug-in adaptor, drill a hole and fit a socket to match the plug on the unit. Mount the switches and fuseholder using the holes already drilled for the purpose. When considering the orientation of the on-off switch, remember that the buzzer will point downwards if the unit is to be mounted under the car dashboard. Connect the reset switch wires leading from the PCB to the push-button reset switch but do not wire up the on-off switch yet. Secure the circuit panel in position on the base of the box. Check that the holes for the buzzer and preset align correctly and make any adjustments as necessary.

Insert the ics into their sockets observing the orientation.

Figure 3: the component layout of the Minute Minder

Note that they are all CMOS components and, as such, are liable to damage due to static charge on the body. To avoid any problems, touch something which is earthed - such as a water tap - before handling the pins. Adjust RV1 so that the sliding contact is near the centre of the track. Do this by turning the screw one way until clicking is heard - this happens when the wiper is at the end. Count the number or turns until it reaches the other end then set it about half way between these extremes.

Testing and adjustment

It is convenient to test the circuit and make initial adjustments to RV1 using a 9 V battery as a supply. Connect the positive terminal of the battery to the upper terminal of TB1 and the negative to the lower one - disregard switch SW2 and the fuse for the moment. As the supply is established, the buzzer may sound for about 1 second and the LED should be seen to be flashing at around once per second. Adjust RV1 until it flashes 68 times in 1 minute - clockwise rotation of the screw slows the pulses down and so extends the time period. Since this setting corresponds to 0.88 seconds per flash and this is equal to one-half of clock frequency, the clock must now be operating at 0.44 second intervals as required. Do not aim for great accuracy here - between 66 and 70 flashes per minute will be good enough for the moment. Check that the circuit may be reset by pressing switch SW1 for an instant. With approximate adjustment complete, connect one terminal of the on-off switch to one end of the fuse holder and connect the other end to TB1 top terminal. Complete construction by inserting the fuse.

If you are going to use the circuit in the car, you could plug it into the cigar lighter socket. However, a permanent connection is probably more satisfactory. To do this, locate a wire which is live only when the ignition is switched on. Make a connection to it using a snap-lock type connector and run a piece of light-duty automotive-type wire back to the unit. If this wire must pass through a hole in the car bodywork, it is essential to use a rubber grommet to prevent chaffing. Pass the wire through the hole in the box and solder it to the unused switch tag. Make an earth (car chassis) connection and connect it to the lower terminal on the terminal block. Leave some slack in the wires on the inside and provide strain relief by, for example, securing a cable tie tightly around them. Check that they cannot be pulled free. Secure the unit in position under the dashboard using adhesive fixing pads or self-tapping screws with the buzzer hole facing downwards. Check for correct operation and adjust the preset for the required accuracy. Note that the first operation after re-setting appears to be slightly less accurate than subsequent ones. When adjusting the circuit, therefore, do no keep re-setting it. Allow it to continue operating and make very small adjustments to the screw on RV1 to achieve the desired effect.

Stabilised supply

If you are using a plug-in adaptor as a power supply, use the stabilised variety having 12 V output. There are two reasons for using a stabilised supply unit. Firstly, the fixed voltage output will result in more accurate timings. Also, the non-stabilised variety generally has a much higher output voltage than its nominal value when it is subject to only a small load as is the case here. This could damage the circuit. If the unit has a polarity reversal switch it is quite safe to try it one way and reverse it if the circuit does not work.

If you are using batteries as a power supply, it would be convenient to use a set of 6 "AA" size cells in a suitable holder giving a nominal 9 V . However, the voltage will fall in the course of use and the timings may vary to some extent. It must be realised that the performance is not likely to be as good as when a plug-in adaptor supply unit is used. If using batteries, it would be a good idea to cut through one of the LED wires after the initial setting-up. This will prevent it from working and since the LED is responsible for most of the current requirement of the circuit, disabling it in this way will reduce the current to a low value - about 500 mA . The battery pack should then give more than 1 year of service in occasional use.

Resistors

R1	1 M
R2	100 k
R3	1k
R4, R5, R6, R7	470 k
R8	$\mathbf{8 M 2}$
R9	2M2
RV1	470 k or 500k multi-turn preset
	trimmer (top - top adjustment type)

Capacitors

C1 470n
C2, C3, C4, C5, C6 47n
C7, C8
100n
C9
220 m 25 V axial electrolytic
All capacitors apart from C9 miniature metallised polyester with 5 mm pin spacing.

Semiconductors

D1, D2, D3, D4	1N4148
D5	1N4001
IC1	7555
IC2	4020
IC3	4001
IC4	7556
LED1	10 mm red LED

Miscellaneous

S1	Miniature push to make switch
S2	Miniature SPST toggle or rocker switch
BUZ1	PCB mounting buzzer - dc operation
F1	200mA 20mm fuse and chassis holder.

Printed circuit board. Plastic box size $111 \times 57 \times$ 22 mm approx. 8-pin dil socket, 16-pin dil socket, 14-pin dil sockets (2 off).

LOW COST DEVELOPMENT SYSTEM

ECAL comprises a versatile relocatable assembler with integral editor which runs about ten times faster than typical assemblers. Support includes $4,8,16 \& 32$ bit processor families including 75X, 6502, 6809, 68HC05/11, 8031/51, H8-300, 78K, PICs, ST6 \& Z80/180, 68000 , 80C196, H8500 \& Z280.

ECAL is either available for a single processor family or all families.

Single processor version $£ 295$ Multiprocessor version.... £395

Overseas distributors required

OEMA Ltd.,
7 \& 7A Brook Lane, Warsash,
Southampton S031 9FH
Tel: 01489571300 Fcrx: 01489885853

The PC based ECAL hardware emulator is fully integrated with the assembler. Connection is made to the target through the eprom socket so a single pod can support all processors. Facilities include windows for the inspection or change of registers or memory. You can even watch your program executing at source level!
Download time is about two seconds!

Pods can be daisy-chained for 16/32 bit systems.
Applications include software development, hardware debug, test and, finally, teaching about microcontrollers in education.

ECAL emulator
£475
Quantity discounts of up to 50\% make ECAL software ideal for education.

A slimline storage oscilloscope and digital voltmeter with a sampling rate of up to 20 MHz . Inclusive software enables the recorded signals to be displayed simultaneously on a PC screen. Sample Rates: From 50 ns to 1 ms . Purveyors of Quality Input Voltage: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$.
Trigger: \pm Internal, \pm External, Auto. Voltmeter: AC and DC. Electronic Thingies at Vory Friendly Prices Supply Voltage: 9 V to $13 \mathrm{VDC}, 13 \mathrm{~mA}$, external. Trigger, ground, power \& serial cables included.

2 Chase Cottages Now Road, Alcham, Essex CO6 3aT Tel. 8 Fax 01206213322

are proud to announce our new "Voice Command Module"

Based on the Sensory Devices RSC neural network speech recognition processor. 20 individual digital word ID outputs on IDC header. Each output with an 'on' word and 'off' word giving you up to 99% speaker dependent recognition. Simply train the module with up to 40 words.
RS232 identification output of recognised word, word lists are stored in non-volatile memory.
Automatic gain control on microphone jack input. Runs off $9-12$ volt dc supply via 2.1 mm plug.

H138A

Pic Programmer:

H137A £25 Programs
PIC 16C71, PIC 16C84 and the new 8 pin PIC 12C508 and PIC 12C509. Connects to parallel port. Kit K137A £24 PC compatible software F.O.C. when supplied with programmer

We also have available a full range of PC I/O cards and accessories, Call for details.

ALL Prices INCLUSIVE of vat and delivery (UK only) same day despatch.
151-s, The Exchange Building, Mount Stuart Square, Cardiff, CF1 6EB. Tel (01222) 458417 Fax (01222) 480326 http:Hwww.vsltec.demon.co.uk

SPIGED CIRCUITS

We ended last month by connecting a NOR gate to our 2-stage counter to detect count 00 . The two outputs of the counter are connected to the inputs of a 2 -input NOR gate. The output of the NOR gate goes high whenever both of its inputs are low, and this is supposed to happen when (and only when) when the counter is at stage 00. To check on whether this happens on not, we add this line to the netlist:
> nor 7402 a:b b:c out:d +v:pos gnd:GND
This calls on the library file 7402 .lib which is a model of a 74 HCO 2 -input NOR gate. A plot of the counting sequence (figure 1) reveals something we had not intended. Recalling the circuit diagram from last month, a is the clock, b is the output from flip-flop 1, and c is the output from flip-flop 2.
so-called ripple counters. In certain kinds of circuit, such as those driving LED displays, these inter-stage glitches do not matter because the eye is not fast enough to register the briefly incorrect display. But if the output from the counter is going to another logic circuit (such as our NOR gate) this can respond As expected, the output of the NOR gate (trace d) goes high when the counter is at stage $00(b=0, c=0)$, but it also goes high (unexpectedly) for an instant as the counter changes from $01(b=1, c=0)$ to $10(b=0, c=1)$. When b changes from 1 to 0 , this change in b triggers c to change from 0 to 1 . But changes take time to propagate through the circuit so there is an instant when b has gone low but c has not had time to go high. Both are low together and the NOR gate detects this brief stage. This kind of behaviour is common in counters which rely on one stage to trigger the next, the

Figure 1: the output of the ripple counter described last month complete with glitches

Figure 2: the circuit of a synchronous counter with decoding for state 00

Figure 3: the output of the synchronous counter (figure 2) is free of glitches
fast enough to be affected by the erroneous signal.
The problem is overcome by using a synchronous counter, in which all the flip-flops are driven simultaneously by the same clock (figure 2). If we modify the netlist in this way, we find that counting proceeds without glitches appearing at the NOR gate (figure 3).

Logical primitives

Spice makes use of a number of built-in routines to

represent frequently-used components such as resistors, capacitors and inductors. These are often referred to as primitives and serve their purpose well in the majority of circuits. Semiconductor devices such transistors are often represented by models of varying complexity, usually saved as library files, and consisting of circuits made up from the primitives. When we modelled the counter circuit (figure 2) we used the 7472 and 7402 library files. The 7472 files for the J-K flip-flops call in turn on other library files: 7410 for 3 -input NAND gates, 7400 for 2 -input NAND gates and 7404 for a NOT gate. These files contain descriptions of the gates modelled by the primitives - resistors, capacitors and diodes. As a result, the counter circuit as presented for analysis thus consists of very many resistors, capacitors and diodes built up into gates which are in turn built up into a flip-flop. It represents more or less exactly what is on the 74 HC 72 and 74 HCO chips, that is to say, a large number of actual resistors, capacitors and diodes fabricated on the chip in such as way as to produce the complex logic circuit.

If you build up and analyse logic circuits in this way, you will soon find that the number of components is reckoned in thousands and analysis time is prohibitively long. The analysis of logic circuits differs from that of analogue circuits because the key times are when gates are changing state. Unless a circuit is being driven at its maximum speed there are relatively long periods during which nothing is happening, while the circuit waits for the next change of state. You can see this if you watch the barmeter while the counter circuit is being analysed. The end of the bar moves a short way at high speed, then stands more-or-less still while gates change state, then skips along rapidly until the next change of state, and so on. SpiceAge has routines by which it recognises when nothing much is happening in the circuit and it automatically increases the sampling interval so as to get ahead quickly to the next point at which significant changes occur

Then it slows down to compute the effects of these changes more precisely. This technique speeds up analysis of logical circuits but, in spite of this, they run very slowly if more than a few gates are involved. Recent versions of SpiceAge have included a new set of primitives for the logical operations AND, NAND, OR,

Figure 4: Schmitt trigger circuit adapted for use in a thermostat

Figure 5: the behaviour of the thermostat circuit as input voltage is ramped up and down

NOR, NOT and EX-OR (exclusive-OR). Except for the NOT gate, the primitives have eight input pins. Pins that are not connected to are ignored. This provides the designer with an extensive range of logic gates not based on library files and without the need to have separate files to cover different numbers of inputs. Since we are starting with gates, instead of individual components (such as resistors) it is easier to compose the netlist and circuits are simpler to analyse. To explore this new feature, we 're-assembled' the synchronous counter circuit of figure 2 , using the primitives instead of library files:
In this example, the flip-flop is defined as sub-circuit JKFF (we could have made it into a library file) which is called twice by using a $\mathrm{Mo}=$ statement in the later part of the netlist. The sub-circuit consists of eight NAND gates and one NOT gate, all of them primitives, and we have also used a NOR primitive on the last line of the netlist. When analysed, this netlist gave exactly the same plot as figure 2, but it took a very much shorter time to do it.

Design project

We set out to design a thermostat circuit based on a thermistor. It is to operate from a 9 V battery and to hold temperature between 25 degrees C and 32 degrees C. One of the simpler circuits suitable for a thermostat is a Schmitt trigger, using two npn transistors (figure 4). The values, based on those obtained from a handbook, are the starting-point of the project. The input voltage (Vin) is produced by a potential divider consisting of a thermistor and a fixed resistor. As temperature rises, the resistance of the thermistor decreases and Vin increases. Knowing that the resistance of TH1 at 25 degrees C is nominally 1500 R, we use the formula on the data sheet to calculate that its resistance at 32desgrees is 1257R. Assume the resistance of Rfix is 22 pR . Considering TH1 and Rfix as a potential divider, we calculate the input voltage as 1.15 V at 25 degrees C rising to 1.34 V at 32 degreesC . For convenience in the analysis we do not use TH1 and Rfix but use a ramp voltage generator instead. Actually we use a triangular wave generator, frequency 1 Hz , amplitude 2 V , offset 2 V , phase delay 90 degrees, and run the transient analysis for 1 second. The result is a dual ramp waveform which rises from 0 V to 4 V in 0.5 s then falls back to 0 V in the following 0.5 s . This simulates the thermistor increasing in temperature for 0.5 s and cooling again for 0.5 s .

Figure 5 shows the voltage input to the thermostat circuit and its output at the collector of Q2. At first, with OV input, Q1 is off. This pulls up the voltage at its collector, turning Q2 on. This pulls down the output at the collector of Q2. When Q2 is on, the current through R6 produces 1 V at the emitter. Consequently, the emitter of Q1 is at 1 V and the base of Q1 needs to be at 1.6 V before it can be turned on. The horizontal cross-hair in figure 5 shows that Q1 turns on as Vin reaches 1.875 V (there is a voltage drop across R1). This turns Q2 off and Vout rises sharply to 9 V . !n one possible application of this circuit R5 is the coil of a relay controlling a heater. The action just described turns off the relay when the temperature exceeds the upper threshold. Turning off Q2 reduces the current through R6 and the voltage across it is reduced to
0.47 V . This puts the base of Q1 at 0.47 V and Q 1 can not be turned off until its base falls below 1.07 V , the lower threshold. Figure 5 confirms this, showing that Q1 is not turned off until Vin has reached 1.1713V. This illustrates the two features of a Schmitt trigger:

1. The circuit changes state very sharply, even though the input voltage rises and falls relatively slowly. This is an essential feature for a circuit that is to control a device such as a heater or a relay.
2. Once the circuit has been switched off at 32 degreesC by a rising temperature, the temperature has to fall to 25 degreesC before it is switched on again. This avoids a situation in which a circuit is triggering on and off every few seconds. The gap between the two thresholds is known as the hysteresis of the circuit. If you are following this project on a breadboard, now is the time to set up the circuit, measure the thresholds and find the hysteresis. Use a variable resistor to produce the varying input, as in figure 6.

The problem now is to match the values of V in that we obtain from the simulation with the values we have calculated for the thermistor/Rfix potential divider. The first step is to try to match the hysteresis. For the thermistor it is $1.39-1.15=0.24 \mathrm{~V}$. For the circuit as shown by figure 5 , it is $1.875-1.1713=0.704 \mathrm{~V}$. We have to reduce the hysteresis of the circuit. The main cause of hysteresis is the change in voltage across R6, so we can try the effect of reducing R6. Try altering the value of $R 6$ in the netlist and re-running the transient analysis. On a breadboard, substitute a resistor of lower value for R6 and re-measure the thresholds. After trying various values, we arrived at 22R. Bearing in mind that the simulation is intended to represent a real circuit, we like to keep to standard E24 values as far as possible, to make it easier to translate it into hardware later. When R6 is $22 R$, the analysis produces a plot very similar to figure 5 , but with different thresholds, 1.28 V and 0.96 V , giving a hysteresis of 0.32 V . This is much nearer to the desired 0.24 V but not near enough yet. We tried reducing R6 further but then ran into one of the problems inherent in simulators.

Convergence

Simulators operate on the principle of setting up a matrix holding voltage values for all the nodes of the circuit. Then the program runs around the matrix, calculating currents and seeing what effect this has on the voltages at connected nodes. Then it repeats, or iterates, the operation. Each time round, it modifies the voltages, and repeats this operation until the voltage changes between iterations are less than a predetermined minimum. It takes these voltages to represent the true state of the network at that instant. We say that it has converged on an instantaneous solution of the network. The circuit is active, of course, and there may be signal voltages present or capacitors which are charging, for example. An instant later, some of the voltages will have changed and the simulator has to repeat the iteration to converge on a new set of voltages for the next instant. This technique generally works well, but there are some kinds of network which make it fail occasionally.

The Schmitt trigger is one such network. In fact any network in which there is feedback is potentially a problem, particularly if the feedback is positive. Oscillators and certain kinds of amplifier can suffer from this difficulty. What happens is that, when the simulator tries to converge on a set of instantaneous voltages, some of the newly calculated voltages may depart further than before from their previous values instead converging ever more closely. When this happens, SpiceAge flashes a message - 'Changing damping strategy 1 ', usually followed after a while by 'Changing damping strategy 2^{\prime}.

Even this approach may fail to bring about convergence and a final panel is displayed saying that it failed to converge and there may be no unique solution. All this time, you will note that the barmeter has stayed at the same level, indicating that virtually no progress is being made. When the final panel is displayed you are given three options, one of which is to ignore the message and carry on with the analysis. Perhaps we have been lucky but we have always found that pressing this button lets the simulator continue and (so far) produce a sensible result. When analysing this thermostat circuit convergence problems arise only when dramatic changes are occurring, that is, when the circuit is passing through the upper and lower thresholds. But convergence problems lead to long delays in the analysis and it is best to avoid them, if possible, by looking at the problem from a different angle.

Another approach

Reducing R6 below $22 R$ brings convergence problems so we will try something else. Altering the ratio between R2 and R5 can have some effect on hysteresis, so we reduce R2. Further Transient analyses show that hysteresis is reduced if we make R2 equal to 750R and there is further reduction by making it 680R. Then the thresholds become 1.33 V and 1.09 V , and hysteresis is 0.24 V , as required. However, the thresholds are both too high by the same amount. We could counter this by increasing Rfix but this means using a non-standard value of 230R. One possibility is to use a preset for Rfix. Another option is to increase R1. Increasing it to 5.1 k sets the thresholds to 1.39 V and 1.09 V . Summing up, the resistance changes needed are $R 1=5.1 \mathrm{k}, \mathrm{R} 2=680 \mathrm{R}$ and $R 6=22 R$.

In practice we have to recognise that a actual thermistor has a tolerance of 20 percent. The thresholds we have calculated will not hold true for any given thermistor. This means that we must either measure the thermistor we install in the circuit, and repeat the analyses, or perhaps we can substitute preset resistors to allow thresholds to be adjusted to compensate for the inevitable variations.

Temperature sweep

At this stage in the project, it occurred to us that although the resistance of a thermistor changes considerably with temperature, the resistance of all the resistors change to a certain extent. Is this enough to upset the thresholds? Assume that we use inexpensive metal film resistors, which have a temperature coefficient of 200 parts per million per degree Celsius. This can be
specified by adding Tc=0.0002 to each resistor line in the netlist. What about the transistors? The transistors used in our netlist are Spice models, which have temperature coefficients built in. By default, all Spice calculations assume a temperature of 27 degreesC for all components (in Kelvin this is a nice round temperature of 300 K), and we can investigate effects of other temperatures in one of two ways:

1: We can find out what happens if one or more particular components are at given temperatures. For example, in another circuit we might want to investigate the behaviour of a power transistor running at 100 degrees C or more, while the remainder of the circuit is at 27 degreesC. This is done by adding $\mathrm{Te}=100$ to its line in the netlist.

Figure 6: using a variable resistor to provide the input voltage for a breadboarded Schmitt trigger

2: We can sweep all components through a range of temperatures. This is equivalent to taking a breadboarded circuit and putting it in the fridge, the greenhouse, and other places at different temperatures.

The sweep is appropriate for the thermostat circuit, so select Analyses > Tolerance, value and temperature sweeps. On the right, select Temperature, then enter Start $=25.00$, Stop $=35.00$ and Temperature steps $=3$. This will analyse the circuit at 25degreesC, 30degreesC and 35 degrees C , spanning its operating range. The result of the Transient analysis is disappointing in the sense that it looks just like an analysis at 27 degreesC. The curves for Vin and Vout are identical. In other words, thresholds are constant over the intended operating range of the thermostat. Our design is a success!

HOW DOFS YOUR FQUIPMENT MFASURF UP? AT STEWART OF READING THERES ALWAYS 'SCOPE FOR IMPROVEMENT:

[^0]

GAZINE
 POR
 OMIY$£ 25$

5
Patchwork
unshay:
Lowtis ount
Asviko
\% $\%$

REMEMBER, A MACAZINE SUBSCRIPIION MAKES A GREAT CHRISTMAS CIFT THAT WILL LAST FOR MONTHS!

respecred paich work magazine.
Published every
9 wiss.

this offer is unbeatable. And it couldn't be simpler:

So whatever your passion, you can have the magazine (or magazines!) of your choice delivered direatly to your door, posi free ${ }^{*}$, for only $£ 25$. Remember, a subscripition is always cheaper than buying your copies from the newsogent** In this case, you can suve anything from $£ 2.00$ to $£ 8.75$, depending on your magazine choice.

TO ORDER, simply select your favouries from the 29 magazines we have available and fill in the defails on the coupon below. The number of issues you will receive and the saving you are moking are shown with each maguzine, so you can see what a sensational deal you are geting! If you would like to give a subscripion as a Christimas present, plasse make sure that you dso fill in the gift recipients details.

SO ORDER NOW, and don't miss out on these exceptional Christmas subscription savings!

Important Deadlines

If you would like to give a subssipioioi os o Christmos present to a friend or relative, it is importont that we receive your order no later thon the 8trs December: This will ensure that they reereve their first issue in lanscry, and dso gives us ime to send you o gith ncknowledgement letier if you require (please tirk the box on the order form).
The closing dete for this offer is 31 Jenuory 1998. This offer is open to oll readers. Pholocopies of this pege are acteptoble. Not to be used in coniunction with ony other offer.
Please allow up to 4 weeks for the delivery of your first issue

* All savings are based upon buying the same number of issues from your newsagent, UK only.

Plecee order all your goods weing the conpon below ensuring you fill in all sections or simply use our order hotline. Thank you.

Christmas Subscription Express Order Hotline: 01858435344
(PLEASE QUOTE CODE 3000)
9am-5.30pm Monday - Friday Fax order line: 01858434958

PC-based Phonecard reader

Patrick Gueulle has designed a reader that plugs a smart phonecard into a PC and lets you look at the contents programmed within

Beinig a "smart card" (or "chip card"), the new BT phonecard exerts a real fascination on many enthusiasts: as a collector's item, of course, but also as a very special electronic component (in fact, a highly secured serial
eeprom).
Believe it or not, it is quite a simple matter to read the contents of any smart phonecard. An inexpensive, easy-to-build card reader, along with some short pieces of Basic software, can turn any PC into a powerful exploration tool.

The beauty of the thing, however, is that this equipment cannot be used for illegal purposes, such as "refilling" used phonecards.

A phonecard at a glance

Technically speaking, the new BT phone card is a "third

Figure 1: The ISO-7816 pinning of the new BT phonecard

generation synchronous smart card". The first generation is the French "Telecarte" (in use since 1983), and the second generation is the early German "Telefonkarte". But most European countries are likely to choose the third generation "Eurochip" card, already in use in Germany, Holland, Switzerland and, last but not least, the UK.

BT began to test the smart phonecard during the summer of 1995 in Portsmouth and the Isle of Wight, but payphones all over the country are now being upgraded.

Many kinds of disposable smart phonecards are of the relatively inexpensive synchronous type, using serial memories with built-in hard-wired security features. In contrast, asynchronous smart cards contain an embedded microprocessor running extremely powerful, often cryptographic, security software. Pay TV cards, cellular phone SIMs and electronic purses such as the Mondex card are the best known examples, but they are of course another story.

Just a flat IC!

A smart card is nothing but a very thin (less than 0.76

Microchip PIC and Motorola HC11 based development Tools

PIC Microcontroller Programmers Original - This is our original programmer for 16C5X, 16C55X,16C6X, 16C7x, 16C8x, 16F8X devices. Price : $£ 40$ for the kit, or $£ 50$ ready built. Serial - This programmer programs the newest PIC devices in a single 40 pin multi-width ZIF socket. Will program: 16C55X, 16C6X, 16C7X, 16C8x, 16F8X, 12C508, 12C509, PIC 14000. Also In-Circuit programming. Price : £40 for the kit, or $£ 50$ ready built. Introductory - Will program 8 pin and 18 pin devices : 16C55X, 16C61, 16C62X, 16C71, 16C71X, 16C8X, 16F8X, 12C508, and 12C509. Price £22 for the kit (not available ready built). Note : All our programmers operate on a PC, using a standard RS232 serial interface (COM1, 2, 3, or 4). No hard to handle parallel cable swapping! All programmers are supplied with instructions, Windows programming software, MPASM, MPSIM and PICDE (Windows based PIC assembler)
PIC or HC11 Windows Based Development: PICDESIM and HC11DE allows assembly and simulation of your PIC or HC11 projects in one Windows program. Incorporate multiple files, view help file information directly from the code, edit within project, build and track errors directly in the source, then simulate. Simulator allows 3 breakpoint types, follow code in the source window, set breakpoints directly in code. Run programs, or single step, or step over subroutines. Track variable values and trace for display on the Trace Analyser. Input stimuli include clocks, direct values and asynchronous serial data. Profile your program - examine frequently called routines which are timed and use the information to optimise out bottle necks. PIC Version Simulates up to 50 times faster than MPSIM ! NEW ! - 32 bit version allows full use of Windows '95/NT4.0 facilities. Cost $£ 30.00$, or $£ 25.00$ for existing and new purchasers of any of our programmers. Please specify Windows 3.1, or Windows '95 (32 bit) and either PIC or HC11 version
PIC BASIC FED's PIC BASIC products - straightforward, capable, powerful, rapid development. Operating in a Windows Development Environment our modules need no assembler or UV eraser to program your PIC's, and operate from a serial link to your PC. The 16 C 74 module features - 8 k EEPROM, up to 2000 lines of BASIC, 27 lines of programmable I/O, 8 A/D inputs, Interrupt driven serial RS232 interface, Peripheral I2C bus interface, LCD display driver routines, up to 178 bytes for variables and stack, extendible with optional external RAM and all the standard 16C74 features. Ask about the 16 C 57 version
Compiler - The FED PIC BASIC compiler for the 16C74. It produces hex code to program your 16C74 directly with no need for external EEPROM. Compatible with the EEPROM versions of PIC 16C74 BASIC modules - develop on an EEPROM based module then compile and program your PIC chips directly.
16 C 57 Module Kit (8 k EEPROM, 4 MHz) $£ 25.00$, Pre-built $£ 30.0016 \mathrm{C} 57$ Module Kit (8 k EEPROM, 10MHz) £31.00, Pre-built $£ 37.00$ 16 C 74 Module Kit (8 k EEPROM, 4 MHz) $£ 35.00$, Pre-built $£ 42.00 \quad 16 \mathrm{C} 74$ Module Kit (8 k EEPROM, 20MHz) $£ 40.00$, Pre-built $£ 46.00$ 16 C 84 chip programmed with BASIC - $£ 25.00$ Compiler - $£ 60.00$, or $£ 50.00$ when ordered with a module

PIC16C74/JW
PIC16C74-04P
PIC16C57-04P
PIC16C84-04P
PIC16F84-04P
PIC14000-04P
PIC12C508-04P

20 MHz
4 MHz
4 MHz
4 MHz
4 MHz
4 MHz
4 MHz
£6.00
£24.00
$£ 8.00$
£5.00
$£ 5.00$
$£ 6.00$
$£ 6.00$
$£ 10.00$
£2.70

PIC and HC11 devices

Forest Electronic Developments

iso 2	iso 3	MICRO - INSTRUCTION
1	-	RESET
0	-	UP

Figure 2: The communications protocol

$\mathrm{mm})$ integrated circuit, accurately mounted on a plastic card about the same size as a credit card. The chip itself, as small as $1 \times 1 \mathrm{~mm}$, is hermetically sealed inside.

Siemens is the primary supplier of Eurochip ICs, Philips being a possible second source.

The flat contacts are numbered in accordance with the ISO-7816 standard, as shown on figure 1.

The ISO 5 contact is the ground terminal, the opposite ISO 1 being allocated to the +5 volts Vcc.

Just like any other serial eeprom, a smart card communicates via a data line (ISO 7 , usually called I/O), linder the control of an external clock signal (ISO 3). A reset input (ISO 2) is aiso available on this 5 -wire bus. ISO 6 remains unconnected on most recent smart cards, since it is reserved for an optional Vpp voltage (as required by the first generation eprom-based smart cards).

Some smart cards come with an ISO 4 contact (located under ISO 3) and with an ISO 8 contact (under ISO 7). Both of them are "RFU" (reserved for future use) and, again, left unconnected on Eurochip cards.

The communications protocol

The useful contents of a smart phonecard consist of a relatively small number of bits.

Upon power-up, or more reliably after a reset sequence, the very first bit of the memory array is available for reading on the ISO 7 contact. Every "up" sequence applied to ISO 3 and ISO 2 will then increment the internal address counter and place the next bit onto ISO 7 . Figure 2 shows that a low to high transition on ISO 3 resets the card if ISO 2 is high, but increments the address counter if ISO 2 is low.

It must be stressed that "reset" and "up" are the only microinstructions needed to perform read operations, and that several other more complicated and sometimes top-secret sequences are used to write, erase, and compare bits.

A simple reader

It is a very simple task for even the oldest 8088 PC to output "reset" and "up" sequences on any of its serial or parallel ports, and to sample the I/O output of a synchronous smart card. It was chosen to make use of an RS-232 serial port (COM1:), because enough power is available here to source a good Vcc for the card. However, as RS-232 lines usually carries voltages of plus and minus 12 volts, some clamping is obviously necessary.

Figure 3 shows how three 4.7 volts zener diodes (D3 to D5), two resistors (R2 and R3) and a 78L05 regulator (IC1) are used to solve the problem. R1 is not a current limiting resistor for D3, but a "pullup" for the "open drain" I/O line of the smart card. D1 prevents any unwanted negative voltage from reaching the regulator (in case of a wrong software command, for example), and D2 allows the connection of an optional 9 volts battery, should an extremely low power RS-232 port have difficulties to generate a good +5 volts (quite unlikely to occur, except on a few battery powered PCs).

A small single-sided PC board layout (figure 4) can easily accommodate such a smail number of components, including a DB-9 female connector (CONN 1). The only odd part is the "smart card connector" (CONN 2), of which many makes are commercially available (8 or 16 wiping or landing contacts, NO or NF card detector, etc.)

The "card present" contact of the connector must be of the NO (normally open) type. In other words, it should close itself when a card is fully inserted, so as to apply the power supply to the circuit. The preferred brand is ITT Cannon (see end of article), since the PCB foil was designed according to its pinning, and the PCB supplied by the ETI PCB Service is of this type only. Please note, however, that only the two pins of the "card present" contact usually differ from one make of connector to another. In the UK, Pedoka Ltd. of Hitchin, Herts can also supply a range of smart card connectors from Hyo Sung. They only require a slight modification of the PCB foil.

Figure 4: The component layout for the Smart card reader, using the Cannon
CCM01-2NO-3 connector.

Getting started

The only external connection to be made is a standard cable between the female DB-9 of the card reader and the COM1: male DB-9 of the PC. A "monitor extension cable" is suitable, but do not use a "null modem" or any other "crossed" cable. If you choose to build your own cable, just tie pin 3 of a female DB-9 to pin 3 of a male DB-9, then pin 4 to pin 4, etc.

Now, it is time to get one of the new-style BT phonecards, possibly empty, and to type the short SMARTRD.BAS program (figure 5) under GWBASIC or QBASIC. Please note that the "B" value is the base address of the COM1: port. In case of any problem, first check the base address of the actual COM port used, as reported by the BIOS during power-up (or run MSD if Windows is installed).

Figure 5: The Basic "reader" program
10 REM - SMARTRD.BAS -
20 KEY OFF:CLS
$30 \mathrm{~B}=\& \mathrm{H} 3 F 8:$ REM COM1:
40 PRINT"INSERT A BT SMART PHONECARD INTO READER, THEN PRESS ANY KEY"
50 IF INKEY $\$="$ " THEN 50
60 OUT B+4,0:OUT B+3,64
70 BEEP:CLS:T=TIMER
80 IF T $>$ TIMER-1 THEN 80
90 OUT B+4,1:OUT B+4,3:OUT B+4,1
100 FOR $F=1$ TO 16
110 FOR G=1 TO 4
120 FOR $H=1$ TO 8
$130 \mathrm{E}=\mathrm{INP}(\mathrm{B}+6)$ AND 16
140 IF E=16 THEN PRINT" 1 "; ELSE PRINT " 0 ";
150 OUT B+4,2:OUT B+4,0:NEXT H
160 PRINT" ";:NEXT G
170 PRINT:NEXT F
180 OUT B+3,0
1990 REM (c) 1997 Patrick GUEULLE
Run the program, insert the card (in the right position) when prompted, then press any key (for example, the space bar). A binary dump will soon appear on the screen, normally looking like the samples in figure 6. It can be hard-copied on the
parallel printer by pressing the PrtScr key. A somewhat different pattern could be displayed, should the card come from another country (including Guernsey) or from a private operator (such as ACC). Anyway, the four first lines of the dump can always be decrypted using the same rules.

Figure 7 shows that the first two lines contain 64 bits of identification data. So called "smart card locks" were designed, by the way, to check them before granting access to, say, a computer or a building. The reason is that part of this ID data is unique for each individual, even empty, phonecard. Small groups of bits are, indeed, the same for all the chips made by the same manufacturer, or for all the cards issued by the same telephone operator. The area from bit 64 to bit 103 is divided into five eight bit "counters". Here, billing units (usually pence in the UK) are stored at the card maker's facility, then erased by the payphones as you phone away. An abacus-like counting scheme allows Eurochip cards to store more than 30000 billing units with just 40 bits of eeprom.

Figure $6 \mathrm{a}, \mathrm{b}$ and c : How to read the binary dump

10101000001000101111011110011111 10010101000000000000000110001000 00000000000000000000000000000000 00000000111111111001111111111111 111111111111111111111111111111111 1111111111111111111111111111111111 1111111111111111111111111111111111 111111111111111111111111111111111 1111111111111111111111111111111111 111111111111111111111111111111111 11111111111111111111111111111111 111111111111111111111111111111111 111111111111111111111111111111111 11111111111111111111111111111111 111111111111111111111111111111111 1111111111111111111111111111111111
(a) A sample dump of an empty "new BT phonecard"

11011000001010101111111111001010 01001010110110100010100110011100
00000000000000000111111100111111
00001111111111111111111111111111
11111111111111111111111111111111 111111111111111111111111111111111 11111111111111111111111111111111 11111111111111111111111111111111 11111111111111111111111111111111 111111111111111111111111111111111 00000000000000000000000000000000 11110100100010000100101010101000 111111111111111111111111111111111 111111111111111111111111111111111 111111111111111111111111111111111 11111111111111111111111111111111

Figure 7: How to read the binary dump
(b) A sample dump of a swiss phonecard (5 F or 500 units left)

10010100001110111111111100000110 01110000000000000000000111011110 00000000000000000000000000001111 00001111111111111111111111111111 10010100001110111111111100000110 01110000000000000000000111011110 00000000000000000000000000001111 00001111111111111111111111111111 10010100001110111111111100000110 01110000000000000000000111011110 00000000000000000000000000001111 00001111111111111111111111111111 10010100001110111111111100000110 01110000000000000000000111011110 00000000000000000000000000001111 00001111111111111111111111111111

Resistors

(All 0.25 watt 5 percent)

R1,2,3 $\quad 8 \mathrm{k} 2$ (3 off)

Capacitors

C1 22 u 25 V radial electro
C2 C.27u polyester, 7.5 mm lead spacing

Semiconductors

D1,2 1N 4148 (2 off)
D3,4,5 4.7V 0.25W zener (3 off)
IC1 78L05 positive regulator

Miscellaneous

CONN 1: 90 degree female DB-9 PCB connector CONN 2: ITT-Cannon ССM01-2NO-3 smart card connector (with NO contact).
BAT 1 (optional): 9V PP3 battery and flylead zonnector
PCB
(c) A sample dump of a phonecard from Guernsey (36 pence left)

Bits 96 to 103 are the " $x 1$ " counter: here, one bit is changed from 1 to 0 each time a penny (or unit) is spent. As soon as all eight bits are at logic 0 , a single bit is set to 0 in the " $\times 8$ "
counter (bits 88 to 95), while the " $\times 1$ " counter is reset (all bits cleared to 1).
In the same way, a "carry" bit is set to 0 in the "x64" counter when the " $x 8$ " counter is globally reset, and so on.

Since the exact value of any new card is pre-loaded into the counters at the factory level, all the counters of an empty card only contain zeros and can no longer be tampered with.

The area from bit 104 to bit 511 is "application dependant". On Eurochip cards like the new BT phonecard, it contains "anti-tearing flags" (a few bits used to prevent any loss of units when a card is removed from the payphone during a call), and various "user areas" usually filled with ones.

Innovative applications are likely to make use of some of them in the near future, such as abbreviated numbers storage, self-dialling numbers, or even a simple electronic purse. Watch for them!

Some locations are also probably involved with the "challenge-response" security scheme of the Eurochip card, but details are obviously top secret!

Do not be surprised if, when trying to read a nonBT phonecard, the resulting binary dump contains the same pattern (locations 0 to 127) four times over The explanation is
that the address counter of older, non-Eurochip cards usually "rolls over" at address 127 instead of 511 .

The SMARTCNT.BAS program (figure 8) just computes the number of billing units available to spend, if any. It might be a help for those collectors wishing to check, at home, the contents of huge lots of phonecards, either from BT or from some other operators.

A very simple algorithm (lines 190 to 240) is called five times for the "x1", "x8", "x64", " $\times 512$ ", and "x4096" counters respectively.

Figure 8: The Basic "counter" program

[^1]130 A=4096:GOSUB 190
140 A=512:GOSUB 190
$150 \mathrm{~A}=64$:GOSUB 190
160 A=8:GOSUB 190
170 A=1:GOSUB 190
180 GOTO 250
190 FOR $F=1$ TO 8
200 OUT B+4,2:OUT B+4,0
$210 \mathrm{E}=\mathrm{INP}(\mathrm{B}+6)$ AND 16
220 IF $\mathrm{E}=16$ THEN $\mathrm{U}=\mathrm{U}+\mathrm{A}$
230 NEXT F
240 RETURN
250 CLS:PRINT:PRINT
260 IF U>0 THEN 280
270 PRINT"THIS PHONECARD HAS RUN OUT":GOTO 290
280 PRINT U;"AVAILABLE UNITS (or pence)"
290 OUT B+3,0:PRINT:PRINT:END
300 REM (c) 1997 Patrick GUEULLE
Of course, do feel free to write your own software for this reader: it should be surprisingly simple now!

The CCM01-2NO-3 connector is available from Electrospeed, Stanstead Road, Boyatt Industrial Estate, Eastleigh, Hants SO50 4ZY. Tel. 01703644555 . Order number 19-12448K. Readers in France may find that their Radiospares Composants catalogue has this connector under the number 160-5224.

For Hyo Sung connectors, enquire at Pedoka Ltd., The Cam Centre, Willbury Way, Hitchin, Herts SG4 OHG. Tel 01462

422433 Fax 01462422233.
The Cannon PCB provided by the PCB service is the version used to build the prototype. We suggest that you order your connector type before deciding on which PCB variant to follow.

Low Cost Introduction to Smart Cards

THE SMARTEST SOLUTION

Crownhill can offer a broad range of processor hased smart cards from Just 81.00 . and Smart Card sockets for just $£ 1.45 \mathrm{ea}$. PIC Mlcrochip based Smart Cards now avallable at Smst E4.00 oac......DEVELOP YOUR OWN SMART CARD।
Crownhll can supply over 160 different types of IC from more than 12 sllicon suppllers, Crownhill can supply over 160 different types of fic from more than 12 silicon supplers,
which can all be incorporated into smart card format. Some cards are avallable from which can all be incorporated into smart card format Som
stock, most are manufactured to the customers specification.

SMART CARD INTERROGATION SYSTEM

- Smart Card ReaderMriter (Programming Interface) Smart Card Interrogation System, to identify the com mands acceoted by any velid Smart Card and log them to disk for evaluation
Will allow the user to "re send "known commands and monitor the resuit
Passive interface to allow the user to monitor the data flow between Card and host system.
244 page Hard Back reference book, covering all as pects of Smart Card design and programming Sample program to read memory type Phone cards Data on NEW Visa Smart Cards.
- $\quad \mathbf{1} 169.99$ + VAT

BASIC SMART CARD EVALUATION PACKAG

- Smart Card ReaderN Writer (Programining Interface)

Evaluation applications, for use with Smart cards provided in the package. Basic ID
Card, Basic Electronic Purse, Basic Loyatty Card.
'C' Library \& Command descriptions. For the user to design their own Smart Card applications using the cards provided.
Programmers Development Suite. Text Editor, Assembler, Simulator for programming the Cards provided.
INTRODUCTORY PRICE $£ 99.96$ + VAT including sample smart cards .
 - Creditcard: Now you can supply mem bers of your Club or customers with the own Custom Credit Card. Allowing the operator to read the value of the card and to Credit/Debit the value.

- Dongle Card: Protect your computer with the Dongle card, coce can be changed allowing the operator to load their own code. Using a Smartcard Reader you can control access to the computer, controlling unwanted access.
TimeCard: Ever wanted to be able to track the time you started work, or monitor colieague's movements, with the TimeCard you can.
- CRN1: Embedded PIC16C84 microchip using RB7 pin 13 input output 1024 byte memory and 64 bytes eeprom.
- CRN2: Embedded PIC16C84 microchip using RB7 pin 13 input output 1024 byte memory and 64 bytes eeprom and 16 K memory chip.
- CRN202: 2048 bit memory, using I2C Bus serial memory. (The CRN202 is just I2C memory and does not have any protection, ideal for storing data on smartcards.
- CRN102: 1024 bit eeprom configured as two 512×1 bit memory zones. Features secure transport code, two stage personalization, invalid security code lock-up and customer programmable Memory Security Access.
CRN033: Pin Controiled 256×8 bit EEPROM with programmable write/erase protection for each of the first 32 bytes.

VISA

MASTERCARD
SWITCH
accepted

Prices are exclusive of VAT and Postage \& Packing by registered delivery.
Cheques and P/O's payable to: Crownhilil Associates Limiled

CROWNHILL. ASSOCIATES LIMITED
THE OLD BAKERY, NEW BARNS ROAD EL.Y. CAMBS. CB7 4PW
Tel: 01353666709 Fax: 01353666710 Email: saies@crownhill.cambs.net

SMART CARD READER PROGRAMMER
ISO 7816 standard compatible, a must for the serious development engineer. An extremely versatile unit to enable the user to Read and Write to various types of smart card. OnLy $£ 79.95$ + VAT.

TELEPHONE CARD READER User friendly, simple to use, accepts almost all smart payphone cards on the market.

Only $£ 49.95$ + VAT

The TI Technical Bookshop currently stocks over 80 Data Books, Design Manuals and User's Guides.
They cover the entire spectrum of semiconductors from Texas Instruments - the company with one of the world's broadest S / C product ranges, and the acknowledged leader in Digital Processing Solutions. If you are a system designer or product specifier you cannot afford to be without ready access to this invaluable data bank.
Now, you can once again order this complete range of reference books from a UK supplier.

Contact the TI Technical Bookshop (UK)
 for the full list of books, prices
 and ordering information,
 or visit our web site at:
 http://www.ti-techbooks.co.uk
 Or writeflax to:
 TI Technical Bookshop (UK)
 PO Box 712
 Milton Keynes MK17 8ZH
 Tel: 01908282121
 Fax: 01908585660

The Winter 97/98 Edition brings you:

- Our most comprehensive selection of Computer equipment ever, including all the latest CPU's, the fastest CD-ROM's, new ranges of Scanners, Printers,
Motherboards, Graphic \& Sound cards etc. etc., extending our range of PC components and accessories at unbeatable prices.
- $£ 25$ worth discount vouchers.
- 208 Page main Catalogue, plus 32 Page full Colour Computer Catalogue,

$$
920
$$ incorporating 26 Sections with over 4000 Products from some of the Worlds Finest Manufacturers.

- Available at WH Smith, John Menzies and most large newsagents, or directly from Cirkit.

- Get your copy today!

(T)

Girkit Distribution Ltd
Park Lane • Broxbourne • Hertfordshire - EN10 7NQ
Tel: 01992448899 . Fax: 01992.471314
Email: mailorder@cirkit.co.uk
Website: http://www.cirkit.co.uk/cirkit
\square

FOLLS FOR THIS ISSUE

High Performance Medium Wave Receiver - Audio board

High Performance Medium Wave Receiver - RF board

High Performance Medium Wave Receiver - Tuning capacitor board

High Performance Medium Wave Receiver - Power supply board

The Low Cost Controller That's Easy To Use

Fecifures
The K-307 Module provides the features required for most embedded applications

Analogue

- 4 Channels in 1 Channel out
- 36 Digital in or out \& Timers
- RS-232 or RS-485 plus I2C

Seriol

- LCD both text and graphics
- Upto 8×8 matrix keyboard

Keyboard
Memory
Low Power

- $>2 \mathrm{Mbytes}$ available on board
- Many modes to choose from

Development
The PC Starter Pack provides the quickest method to get your application up \& running
Operating System - Real Time Multi Tasking
Languages
Expansion

- 'C', Modula-2 and Assembler
- Easy to expand to a wide range of peripheral cards

Other Features

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface
Cambridge Microprocessor Systems Limited

Units 17-18 Zone 'D'
Chelmsford Road Ind Est Great Dunmow Essex CM6 1XG E-mail cms@dial.pipex.com
Phone 01371875644

PIC MICROCONTROLLERS

Beginners Course on 16C84. One day course. Fee: $£ 125$, includes lunch, 16C84 chip and Development Board plus software.

Advanced Course on 16C84 and 16C71. One day course including look-up tables, long delays, keypads, 7 segment displays and A-D conversion. Fee: $£ 125$ includes lunch and 16C71 reprogrammable Microcontroller chip, with 4 channel A-D.

Complete Teach Yourself Package including PSU, Switch Input Board, Keypad Board, Development Board, 7 Segment Display Board and Buzzer, LED Output Board, Analog Development Board and 115 page course book, plus software. Fee: $£ 145+£ 6$ p+p + VAT.
Four-day Course - Understanding Microcontrollers Course Fee: $£ 395$, includes lunches and the complete teach yourself package. Accommodation available.

For dates and further details contact Dave Smith, Crewe+Alsager Faculty,
The Manchester Metropolitan University, Hassall Road, Alsager, Stoke-on-Trent, ST7 2HL Tel: 01612475437 Fax: 01612476377 E-mail D.W.Smith@MMU.AC.UK

ITT - CANNON ONLY
PC Phonecard Reader

ITT - CANNON + PEDOKA
PC Phonecard Reader

FOILS FOR THIS ISSUE

WIDEBAND SCANNER AERIALS
"REVCONE" Mremium quality Brinish WHF/UHF Discone 16 element for olt-round coveroge, $\mathbf{S O 2 3 9}$ connector $£ 38.95$ or N -type connector for improved UHF performance $£ 39.95$. "REVCONE PLUS" with improved low frequency coverage $£ 48.95$. "REVCONE EXTRA" reddy to go pockoge: discone, 10 m co-0x fitted PL259, mast clomps, BMC plug $£ 49.95$.

THE "REVCONE" IS THE UK'S ORIGINAL QUALITY DISCONE
VHF/UHF MOBILE AERIALS
REVCO premium quality aeriols (estoblished 37 yeors) - toll range for Amoteur bonds. ASK FOR "AMCAT" NOMAD" PORTABLE SCANNER AERIAL
Lightweight design using ribbon coble elements: rolls into o smat burdle for eose of tonsport, hang from ony convenient point, ideal for rovelling, with 4m coor \& BNC plug. E17.95.

ACTIVE "NOMAD"
With builtin widebond preamp complete with supply/spitite box (internol battery or externol $9-15 \mathrm{v}$ supply) $£ 29.95$
SCANNER AERIAL FITIER
Is your scanner useless dive to breakthrough? Then this product could sove you problem: o specially designed tunable filter to be fitted inline with the oerial teeder, reduces breaxthrough from sthong VHF signols, (e.g. Bond II, pagers, police) also indudes HPF to reduce SW \& MW interference, BNC contectors $£ 28.95$
Write, phone or fox for lists.

Callers by appointment only, please

 Cailers by appoiniment only, please.ALI PRICES INCLUDE UK CARRIAGE AND VAT AT 17.5%

VISA

GAREX ELECTRONICS

Unit 8 Sandpiper Court Harrington Lane Exeter EX4 8NS Phone: (01392) 466899 Fax: (01392) 466887

LTD STEVENAGE

Professional Sub-Contract Manufacturing \& Suppliers to the Electronics Industry
Do you have a requirement for any of the following services: PCB Assembly (Conventional and Product Design/Consultation Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand written shts or PC $31 / 2^{\prime \prime}$ disc
Cable Harness Assembly/loom Manufacture
Card Cage and Module Wiring Full Inspection

Product Design/Consultation PCB Test \& "Burn in" Facilities Enclosure Design \& Manufacture PCB Artwork Manufacture Circuits Drawn Professionally Kit Procurement \& Supply Component Sales
Refurbishment a speciality Top Quality Work at Reasonable Rates

Phone Steve on (01438) 360406 or fax details of your requirements to us on (01438) 352742
EQT LTD, Cromer House, Caxton way, STEVENAGE, HERTS, SG1 2DF

SERVICE MANUALS
 \& Technical Books

Available for most equipment, any make, age or model. Return the coupon for your FREE catalogue MAURITRON TECHNICAL SERVICES (ETI) 8 Cherry Tree Road. Chinnor, Oxon. OX9 4QY, Tel:-01844-351694. Fax: 01844 352554 email:- mauritron @ dial.pipex.com Please forward your latest catalogue for which I enclose $2 \times$ 1st Class Stamps, or 4.11 inc. vat for the complete Service Manuals Index on PC Disc plus catalogue. NAME ADDRESS
\qquad —__ Photocopy this co POSTCODE Photocopy this coupon if you do not wist to cut the magazine

10\% DISCOUNT TO ALL ETI READERS
 (0-12" (300 mm) Digital LCD Calipers $£ 99.95 £ 89.95$ inc
$0-6^{\prime \prime}(150 \mathrm{~mm})$ Digital LCD Calipers $£ 49.95 £ 44.95$ inc
Trener MEASURE INSIDE, OUTSIDE AND DEPTH ZERO ANYWHERE ON THE SCALE, CONVERTS METRIC TO IMPERIAL AND VICE VERSA BOTH THESE CALIPERS MEASURE TO A RESOLUTION AND REPEATABILITY OF $0.01 \mathrm{~mm} / 0.0005^{\prime \prime}$ AND ARE POWERED BY ONE STANDARD 1.5 V SILVER OXIDE BATTERY, THE PRICES INCLUDE A FOAM LINED CARRY CASE, VAT. POST AND PACKING (IF YOU ARE NOT COMPLETELY SAIISFED WTH YOUR PURCHASE SIMPLY RETURN IT TO US WTHIN 30 DAYS FOR AN MMMEDATE NO QUIBBLE REFUND. THIS OFFER OOES NOT AFFECT YOUR STATUTORY RIGHTS)

Computer Controlled Robotics Bring Electronics

SAxSAAM
$E 145$
Mobile Arm

Technology Education Index
Telephone for our catalogue or visit our web site for further details
40 Wellington Road, Orpington, Kent BR5 4AQ
Telephone - (01689) 876880
Web Site - http://www.technologyindex.com Prices exclude VAT and $£ 4.50$ carriage

British 3 pin plug top power supplies with transformer, rectifier. smoothing capacitor and regulator buitt in. The inpul is 230 v and the
output is 6 v at 100 mA . The unit has a 1.2 m output lead to 2.5 mm power plug. $£ 1.50$ each Thyristor models type IRKT2612, 1200v at 25A. $£ 7.00$ each
Stud rectifiers type MRF7535, 35 v at 60 A , 1/4" UNF, less nuts, $£ 1.25$ each.
Transistors Type 2N3055E 60p each.
2N6290, NPN, TO202, 65W. 40p each BD240, PNP, TO 220, 30W. 30p each. CMOS Low Power Timer IC Type TLC555,
40 peach .
Bridge r
Bridge
for 10 .
Diodes Type IN4007, Ikv at IA, £I for 50
Regulators LM723CN +2 v to $37 \mathrm{v}, 150 \mathrm{~mA}$.
27 p each.
LM3 $317 \mathrm{~K}, \mathrm{TO} 3,+1.2 \mathrm{v}$ to $+37 \mathrm{v} .1 .5 \mathrm{~A}, ~ £ 2$ each. LM7905CT, $5 \mathrm{v}, 1.5 \mathrm{~A}, 36 \mathrm{p}$ each.
LM340A, 48p each.
LM7815CT, $15 \mathrm{v}, 1 \mathrm{~A}$, TO220, 42 p each
Super Twist Graphics B
240 Pixel Size, 137×1030 Mode LCDs $320 \times$
240 Pixel Size, 132×103 Overall. $£ 5$ each
B. BAMBER ELECTRONICS
§STATION ROAD, LITTLEPORT CAMBS. CB6 10 EF . Phone: 01353860185 Fax: 01353863243

Densitron Liquid Crystal Displays, 5 Digit Type LSH5060RP. $£ 1$ each Type LSH5060RP. £1 each.
ridge Rectifier Type W0IG, 100 v at 1.5 A Power Diodes Type $1 \mathrm{~N} 5392,100 \mathrm{v}$ at 1.5A. £1 for 30.
LTC1062CN8, 5th Order Low Pass Filter, 8 pins. £2.25 each.
CD4040BCN CMOS IC. 20p each
TL082. Dual Bi-FET Operational Amp. 8 pin, 30p each.
LM324N Quad Op-Amp. 14 pin. 20p Zenner Diode 270v at 3W, 20p each roximity switches for doors and windows, urface mount, $£ 1$ each

MALL ORDER ONLY DELIVERY FREE, MIN ORDER 810. NO VAT

Printed Circuits in Minutes Direct from LascrPrint!

8 1/2" x 11"

* Or Photocopy
**Use standard houschold iron or P-n-P Press.

Use Standard Copper Clad Board 5 Sheets $£ 12.50,10$ Sheets $£ 25.00+$ VAT. Add $£ 2.50$ postage Complete kits to manufacture your own PCB's from $£ 40.00$, or individual items of material, chemicals, etchant etc.
PRESS-N-PEEL ETCHING SUPPLIES 18 Stapleton Road • Orton - Southgate Peterborough PE2 6TD • Tel: 01733233043

Protect Your Microchips from STATIC DISCHARGE!

Use an SSE grounding kit

 Kit includes:\square Static dissipative solder
resistant rubber mat
\square Wrist strap
Ground lead

- Earth plug

Ref: AGK1 Mat size $70 \times 30 \mathrm{~cm}$

- offer price $£ 16.55$ per kit + VAT

Ref: AGK2 Mat size $25 \times 20 \mathrm{~cm}$

- offer price $£ 12.55$ per kit + VAT

STATIC SAFE ENVIRONMENTS

Woodgate Business Park, Kettles Wood Drive, Birmingham B32 3GH Tel:01214219800 Fax:01214219828 E-Mail.sse@static-safe.co. uk Payment by CHEQUENISA/MASTERCARD

ACTIVE MICRO DESIGNS

We can
design or re-design any piece of Analog or Digital Equipment to your Spec Software included with PC-based hardware

Tel: 01772814646 Fax: 01772816304

Active Micro Designs

34 Sutton Avenue - Tarleton • Preston PR4 6BB England

ETI can supply printed circuit boards for most of our current projects - see the list below for boards available. For recent boards not listed, check the constructional article for an alternative supplier.

Please use this order form or a copy of it. Check that all relevant information is filled in, including the Unit Order Code, and that you have signed the form if sending a credit card number. Overseas customers please add postage appropriate to the number of units you are ordering. Make
cheques/POs/money orders, in £ sterling only, payable to Nexus Special Interest Limited. Please allow 28 days for delivery. Access/Nisa orders may be made on 014426655) (ask for Readers Services).

Only boards listed here are available from our PCB Service. For past issues of magazines, copy articles or binders, please see the admin panel (page 74) or contact Readers Services (see below) for information.

ETI Issue 111997

Total Harmonic Di
Alphanumeric Mo
ETI Issue 101997

The IQ Tester	E/1097/1	£5.64
Fake Flasher	E/1097/2	£5.09
DC Motors (Part 2)	E/1097/3	£6.77
Valve Tester - Main Board	E/1097/4	221.22
Valve Tester - Socket Board	E/1097/5	55.09
Valve Tester - Heater Regulator	E/1097/6	£5.09

 E/1297/2 E13.98 E/1297/3 E/1297/4 E/1297/5 E/129716 E/1297/3/4/5/6

Al
E/997/2 £5.09 E/997/3 £5.09 E/997/4 £10.11

ETI Issue 81997

The Brake Light Tester	E/897/1	$£ 5.09$
DC Motors (3 experimental boards)		
DC Motors: The first Control Unit	E/897/3	$£ 5.09$
DC Motors: The 4046 Circuit	E/897/4	$£ 5.09$
DC Motors: The Crystal Drive Circuit	E/897/5	$£ 5.09$
All three DC Motors boards	E/897/3/4/5	$£ 11.50$

ETI Issue 71997

Eprommer: main board (double sided)	E797/1	$£ 13.32$
Eprominer: PSU, board	E797/2	$£ 5.64$
Eprommer: personality modules		
(double sided):	E797/3	
Any ONE module board		$£ 5.09$
Any two modules		$£ 7.90$
Any three modules		$£ 11.85$
Any four modules		$£ 15.80$
Any five modules		$£ 19.75$
All six modules		$£ 23.70$

Please specify which Eprom modules you require. Modules are for 2716, 2732, 2764, 27128,27256 or 27512 . One order code/overseas postal charge applies whether a selection or all six personaity modulie boards are ordered.

E/797/4			£5.09	
Peak Reading VU Meter E/797/5			£5.09	
Cems of trade Terms strioty payment with order We cannol supply credit onders, out will supply				
proforma invoice if ifequested. Proforma orders will not be processed uny payment is received. All boercs are manufactured from the folls that appear in the fil) Fois Pages				
for the appropnate issue. Please check that our foils are suitabe for the cpmponent				
paekages you intend to use before ordering as we cannot supply modifed coards or reptice bcards that have been modified or soldered. Boards are only supplify in the				
lisped units. Sorry we cannot break units. Prices and stock may be aliered wintiout priornotice. Prices and stock listed in this issue supersede prices and stock appeaing in				
any provious issue En, Nexus Special Interests and their representatives shaf cut be liable for any loss ondamage suffered howsoever arising out of or in connection with the supply of printed circuit boards or other goods or services by ETI, Nexus Splectid				
Interests or their repesentatives other than to supply goods or sevices of				
reund the purchaser any moneypaidin respect of goods not suppied.				
Please supply:				
Quantity Project	Unit Order Code	Price	Total price	
Prices are inclusive of post and packing in the UK. Overseas Post and				
Packing (if applicable): Add £1 per unit				
Name				

Address

\qquad
\qquad $\begin{array}{lll}\text { Are Your Lights On? } & \text { E/797/4 } & £ 5.09 \\ \text { Peak Reading VU Meter } & \text { E/797/5 } & £ 5.09\end{array}$

Toms stricty payment with order We cannol supply credit onders, out sill supply a prffomma'tivoice iffecuestect. Protorma orders will not be processed uny payment is received. All boercts are mannfactured from the fols that appear in the Eill Fois Pages fou whe appropnate issue. Hlease check that our fois are suitabe tor the qpmponem aekages you intend to use before ordering as we camot supply modifec epards or replece boards hhat have been modified or soldered. Boards are only suppley in the notice, Prices and stock listed in this issue supersede prices and stock appeaing in any proviousissue ET, Nexus Special Interests and their representatives shaf cit be the supply of printed aicuit boards or other goods or senices by EII, Nexus Specti Interests of their repissentatives other than to supply goods or services offered or reumed the purchaser any moneypadi in respect of goods not suppied.

Please supply:

Quantity Project Unit Order Code Price Total price

Name

I enclose payment of $£$ \qquad (cheque/PO/money order in £ Sterling only) to:
PCB Service, READERS SERVICES DEPARTMENT, Nexus Special interests Ltd., Nexus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST UK. or charge my credit card number

Signature:

Card expiry date:

DISTANCE LEARNING COURSES in:

Analogue and Digital Electronics Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms Mathematics

Weourses to suit beginners and those wishing to update their knowledge and practical skills

- Courses are delivered to the student as self-contained kits
N No travelling or college attendance is required
Eearning is at your own pace

For information contact

NCT Enterprises
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 • Fax 01582492928

SUPPLIER OF QUALITY USED TEST INSTRUMENTS
 SERVICE MANUALS

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 OHD U.K. Tel: (+44)01243 545111/2 Fax: (+44)01243 542457
NEW CATALOGUE ALSO AVALLABLE ON DISK

ADVERTISERS INDEX	
ACTIVE MICRO DESIGNS 68	JPG . 55
AGAR CIRCUITS 72	KANDA SYSTEMS 72 , IFC
AMBYR LTD 66	LABCENTER ELECTRONICS 10
B BAMBER ELECTRONICS 68	MANCHESTER UNIVERSITY 66
BETA LAYOUT 31	MASTERTECH 68
BK ELECTRONICS 18	MAURITRON 68
BULL ELECTRICAL 17,21	MILFORD INSTRUMENTS 55
CHELMER VALVE 70	NCT . 70
CIRKITT DISTRIBUTION 64	NO NUTS 50
CMS . 66	N0 1 SYSTEMS 13
COOKE INTERNATIONAL 70	OEMA LTD 50
CROWN HILL ASSOCIATES 63	QUICK ROUTE SYSTEMS 45
DATAMANN PROGRAMMER LTD OBC	R D RESEARCH 9
DISPLAY ELECTRONICS 25	RSGB . 15
ELECTRONIC 59	SCIENTIFIC WIRE CO 72
EPT EDUCATIONAL SOFTWARE . 26	SERVICE TRADING CO 72
EQT . 67	SHEFFIELD SURPLUS 73
EQUINOX 72, IBC	SSE . 68
ESR ELECTRONIC COMPONENTS 22	STEWARTS OF READING 55
FOREST ELECTRONICS 59	SWIFT DESIGNS 37,72
GAREX ELECTRONICS 67	TECHNOLOGY EDUCATION INDEX 68
GRANDATA $4,5,6,7$	TELNET 38
GREENWELD ELECTRONICS 15	VERONIC FM 72
HENRY'S AUDI0 73	VISIBLE SOUND 50
J \& N FACTORS 46, 72	WILSON VALVES 73

Practically Speaking

BY TERRY BALBIRNIE

This month we check up on the power rating of a resistor before designing it into a circuit, a necessary procedure to avoid possible overheating later.

We continue looking at some of the calculations needed when developing and testing circuits. This time, we shall look at the topic of power.

Powerful stuff

Electricity is a form of energy and, as such, can be converted into other types of energy, such as heat (thermal energy) in a soldering iron, light in a bulb, sound in a buzzer, movement in a motor and chemical energy in a charged battery. In electronics work, heat is often unwanted, as when a transistor burns out.

The rate at which energy is converted (how much energy changes from one form into another each second) is called power. A powerful light bulb is coverts electrical energy into heat and light faster than one of lower rating.

Power is measured in watts (W). A bulb rated at, say, 60W is dimmer than one rated at 100W because less energy is converted into light and waste heat in each second. For a given brightness, the modern type of low-energy light bulb needs less power than a traditional filament type. This is because much more energy is converted into light instead of wasting much of it in the form of thermal energy, and the lowenergy bulb does not become hot in the way a traditional one does.

When a resistor carries current, the electrical energy is converted into heat and it becomes warm. In many circuits, the power involved is very small and the resistor remains cool. An electric fire heating element is an example of a resistor having a power rating of about 1 kW (one thousand watts) and whose sole purpose is to become hot. The filament in a light bulb is another resistor which is designed to become so hot that it glows with white heat and gives out light.

Power rating

As well as its value (expressed in ohms), every resistor has a power rating. This is the maximum power that it can handle without becoming excessively hot. The energy is dissipated by being carried off into the air. It is essential never to exceed the power rating of a resistor, and preferably to keep well below it. Typical resistors used in circuits have a power rating of between 0.25 W and 1 W . The larger component suppliers list resistors with power ratings of 25 W or more.

It is often useful to calculate the power which will be dissipated by a resistor to check that its rating will not being exceeded. Doing this before construction work begins will mean that modifications will not be necessary and damage will be avoided.

The formula for the power (P) dissipated by a resistor is:
$P=1 \times V$

The power rating label on a soldering iron

This means that the power (in watts) is equal to the current flowing through it (in amps) multiplied by the voltage across it. Note that if the current is expressed in milliamps, it will need to be converted into amps. This procedure was explained in an earlier part of this series.

Example

Suppose a resistor carries a current of 45 mA and is found to have a voltage of 2.7 V across it.

$$
P=1 \times V=0.045 \times 2.7=0.12 \mathrm{~W}
$$

A resistor of 0.25 W or 0.6 W rating would therefore be suitable.
It is straightforward to measure the voltage across a resistor simply by touching the voltmeter probes one on each side of it. However, it is more difficult measuring the current flowing through it. This involves de-soldering one end from the circuit panel and connecting the meter between the free ends. If the value of the resistor is known (and it almost certainly will be, because the colour code will tell you) then there is a trick which enables only the voltage to be measured.

Returning to:

$$
P=1 \times V
$$

Then using Ohm's Law (this topic was covered in an earlier part of this series):

$$
1=V / R
$$

So: $P=V / R \times V=(V \times V) / R=V^{2} / R$

Putting this into words, "power is equal to the voltage multiplied by itself and divided by the value of the resistor". Even if your maths is not up to the theory, the method is worth memorising.

If the voltage across a 470 W 0.6 W resistor is 16 V , the power will therefore be 16×16 divided by 470 giving 0.54 W . The resistor is safe to use but only just. It might be a good idea to use a 1 W component instead.

Kelly Helsey 01442266551

Send your requirements to:
ETI Classified Department, Nexus, Nexus House, Boundary Way, Hemel Hempstead, HP2 7ST Lineage: 85p per word (+VAT) (minimum 20 words)
Semi display: (minimum 3 cms)
$£ 12.50$ + VAT per single column centimetre
Ring for information on series bookings/discounts
All advertisements in this section must be pre-paid.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

5KVA ISOLATION TRANSFORMER
As New Ex-equipment fully shrouded Line Noise Suppression, Ultra Isolation Transformer with terminal covers and Knock-out cable entries. Primary $120 / 240 \mathrm{~V}$ Secondary $120 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} .005 \mathrm{pF}$ Capacitance.
Size L. $37 \times$ W. $19 \times \mathrm{H} .16 \mathrm{~cm}$ Weight 42 Kilos. PRICE £ 120.00 - VAT
equest
Type 24 V DC SIEMENS CONTACTOR Type 3 TH8022 DB $2 \times$ NO and $2 \times$ NC 230 VAC 10 A
contacts Screw or Din Rail fixing. Size H $120 \times \mathrm{W} 45 \times$ 0.75 mm . Brand New Price $£ 7.63$ incl. P\&P and VAT.

240 V AC WESTOOL SOLENIODS Th2 Mod 1 flat. 1 MAx stroke $1 / 4$ in. Base mounting $1 / 2 \mathrm{in}$. stroke 5 lbs puil approx. TT6 Mod 1 Rat. 2 Max stroke $1 / 8$ in. Front mounting $1 / 2$ in. Front mounting $1 / 2$ in. stroke 151 bs pull approx. Price incl. p\&p \& VAT. TT2 $£ 5.88$, TT6 £8.81. SERIES 400 £7.64.

AXIAL COOLING FAN
230 V AC 120 mm square $\times 38 \mathrm{~mm} 3$ blade 10 watt Low Noise fan. Price $£ 7.29$ incl. P\&P and VAT. Other voltages and sizes available from stock. Please telephone your enquiries.

INSTRUMENT CASE
Brand new Manuf. by Imhof L31 $\times \mathrm{H} 18 \times 19 \mathrm{~cm}$ deep. Removeable front and rear panel tor easy assembly of components. Grey finish complete with case feet.
PRICE $£ 16.45$ INCL. P\&P \&VAT 2 off $£ 28.20$ Inclusive

DIE CAST ALUMINIUM BOX
with internal PCB guides. Internal size $265 \times 165 \times$
50 mm deep. Price $£ 9.93$ incl $\mathrm{P} \& \mathrm{P}$ \& VAT. 2 of $£ 17.80$ 50 mm
incl.
230V AC SYNCHRONOUS GEARED MOTORS Brand new Ovoid Gearbox Crouzet type motors H $65 \mathrm{~mm} \times W 55 \mathrm{~mm} \times$ D 35 mm 4 mm die shaft \times 20 RPM antic cw Depth 40 mm £17. 16 incl p\&p \& VAI.

SOLID STATE EHT UNIT Input 230/240V AC, Output approx 15 KV . Producing omm spark. Built-in 10 sec timer. Easily modified for 20 sec, 30
sec to continuous. Designed for boiter ignition Dozel sec to continuous. Designed for boiler ignition. Dozens of
uses in the field of physics and efectronics, eg supplying uses in the field of physics and efectronics, eg supplying
neon or argon tubes etc. Price less case
£8.50 $+\mathbf{2} .40 \mathrm{p} \& \mathrm{p}$ ($\mathbf{\Sigma 1 2 . 8 1}$ inc VAT) NMS
EPROM ERASURE KIT
Build your own EPROM ERASURE for a fraction of the price of a made-up unit kit of parts less case includes 12 in 8 watt 2537 Angst Tube Ballast unit, pair of bl-pin leads, neon indicator, on/off switch, safety microswitch and

WASHING MACH WA
WASHING MACHINE WATER PUMP
Brand new 240 V AC. ian cooled. Can be used for a variety of purposes. Inlet $11 / 3$ in. outtet 1 in. dia. Price includes $\mathrm{p} \& \mathrm{p}$ \&
VAT. $£ 11.20$ each or 2 for $£ 20.50$ incusive.

	SERVICE TRADING CO 57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB TEL 0181-995 1560 FAX 0181-995 0549 ACCOUNT CUSTOMERS MIN, ORDER £10	BARCLAYCARD VISA Ample Parking Space

\backslash Veronica TRANSMITTERS

Professional PLL transmitter, Stereo Coder, and Compressor/Limiter kits licensable in the U.K. Also very stable VFO transmitter kits. Prices from under $£ 10$ and a 'Ready Built' service is available. Contact us for a free brochure including prices and more detailed information.

18 Victoria St, Queensbury, BRADFORD, BD13 1AR Tel 01274816200 Email veronica@legend.co.uk

'C'
 FOR MICROCONTROLLERS

Phone: 01974282670 or Sales@kanda-systems.com
KANDA
www.kanda-systems.com

T?? PCBDESCN OUERLOADT??
 - EDWIN -
 - EED3 -
 - CAPSTAR -

We could be the answer.
Contact Swift Designs Ltd
Email:
Designs@ SwiftDesigns.co.uk Phone:
01438310133 - 01438821811 Web:
www.swiftdesigns.co.uk

£50 BT INSTRUMENT FOR ONIY $£ 7.50$

We refer to the BT insulation tester ond muff-meter with which you con read insulation dire tly in megohms, $A C$ volts up to 230 , 4 ronges of $D C$ yolts up to 500,3 ronges of miliomps ond one $5 A$ ronge ond 3 ronges of resistonce. These ore in perfed condifion, hove hod very little use, if ony fested ond fully guoronteed. Complete with heods ond prods 57.50 , Order Ref 7.5P4. Corrying tase which will toke smoll fools os well, I 2 extro.

Postoge $£ 3$ uniess your order is $£ 25$ ond over.
Dept ETI, Pillgrim Works, Stairbridge Lane, Bolney, Sussex, RH17 5PA
Telephone: (01444) 881965

PRINTED CIRCUIT BOARDS

> PRINTED CIRCUIT BOARDS DESIGNED \& MANUFACTURED - PROTOTYPE OR PRODUCTION QUANTITIES - FAST TURNROUND AVAILABLE - PCBS DESIGNED FROM CIRCUIT DIAGRAMS - ALMOST ALL COMPUTER FILES ACCEPTED

> EasyPG / Aries / VuTrax/ CadStar
> - ASSEMBLY \& TEST AVAILABLE

> TELEEPHONE 01232738897
INTERNATIONAL +441232738897 \# \# agar

> Unit 5, East Belfast Enterprise Park
308Albertridge Road, Belfast, BT5

SWC ${ }^{\text {sulentric }}$

 WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW FAX 01815591114
QUARTZ CRYSTALS

QUARTZ CRYSTALS 100 KH2 100 MHZ at low cost. Full list available and technical advice. Electronic Design Associates. Tel: 0181-391-0545. Fax: 0181 391-5258.

PCB CAMERA

B/W MODULES
E 39.00 + VAT
32 mm Pinhole or 3.5 lens just $£ 39+$ VAT with sound. 42 mm lens version add $£ 10$
(UK carr./PacK/ins. £4 up to lopes)
DISCOUNTS FOR OUANTITY
Open 6 days a week for callers, mo and email.

HENRYS

404 Edgware Road, London W/2 1ED
Tel. 01712581831
Fax: 01717240322
Email: sales@henrys.demon.co.uk
Internet: www.henrys.co. uk.

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

MIGRO - ISP

In-system 8051 Programming in a FLASH! Now supports the AVR Microcontroller Family

Code development for the 8051 family could not be easier. Simply plug the "Socket Stealer Module" into your existing 8051 socket and then use the Micro-ISP Programmer to download code (and data) to your target microcontroller without even removing it from the target socket.

TECHNOLOGIES
The Embedded Solutions Company
Sales: 01204492010 Technical: 01204491110 Fax: 01204494883 Visit our web page at: www.equinox.tech.com Email: sales@equinox.tech.com

ATTENTION ALL NORTH AMERICAN READERS!

Did you know that you can order an annual subscription to this magazine direct from our official U.S. subscription representative?

For more information and rates contact: Wise Owl Worldwide Publications 4314 West 238th Street, Torrance, CA 905054509 Tel: (310) 3756258
ony is striving once again to make the MiniDisc recorder universally popular. Perhaps they will be successful this time. The price of machines has been cut, though it is still more expensive than a low-cost CD player.

The MiniDisc medium is a 2.5 -inch electro-optical disc that can hold approximately 140 megabytes of data. This is not enough for a direct digital copy of a whole CD, but a compression system reduces the amount of data to about one quarter required on a CD for the same playing time. The result is a tiny disc, which can record up to 74 minutes of sound. The editorial ears cannot distinguish between MiniDisc sound quality and that of a decent CD player.

To get a full CD duration of sound onto a relatively small storage medium, Sony have used a process involving psychoacoustic techniques which take advantage of the imperfections of human hearing. Incoming signals are examined and complex calculations are performed to determine which sounds are audible. Rather than record everything in the signal, as DATs (digital audio tapes) do, only the audible signals are encoded, and sounds masked by louder music are omitted.

The system is called ATRAC (Adaptive Transform Acoustic Coding). The compression used by Philips in their DCC system works along similar lines.

To make copies of vinyl albums, the MiniDisc is regarded by many as a better system than analogue audio cassette. Purists may object, but for most people the lack of tape hiss, and the absence of frequency response colouration and slight distortion on normal audio cassettes make the MiniDisc distinctly preferable.

Yamaha and very likely others have used the MiniDisc format to make 4-track recorders. The advantage is that when you use the recorder to "bounce down", the loss of quality associated with multiple generation recordings on audio cassette is much reduced.

Perhaps you have recorded on four separate tracks. You can mix these down on to two tracks. Then you have a stereo pair with the mixdown on it

After much bouncing down, a cassette system can give a slighly ropy sound, while the MiniDisc system is said to suffer much less audible degradation.

The question that occurs is: does the psycho-acoustic eoding work for everyone? Possibly there are some golden eared hifi enthusiasis who can hear the difference caused by the compression, but they may not find it easy.

However, to a western listener many Chinese words atr be indistinguishable. This is apparently because, when a baby's brain is develoging the ability to distinguish sounds, the pathways reinforced in the neural net are those for the sounds heard. Ultimately, some of the pathways are left inaccessible from lack of use, while others, used in the local language, are developed.

Perhaps a native Chinese speakercould hear differences in the sound caused by the compression? Or is the compression algorithm based on how the ear responds to sound, rather than how the brain processes it?

The other question is: Will it catch on? Lack of pre-recorded material will be a drawback, but as MiniDisc is now promoted as a recording medium it may go the same way as audio cassettes when there were enough users, prerecorded music became available. If that happens its future is assured.

Quickroute 3.6 and SMARTroute competition winners

Quickroute Systems selected Quickroute 3.6 Pro+, Quickroute 3.6 Designer and Quickroute 3.5 Personal as prizes in our August competition (issue 9), as well as copies of SMARTroute 1.0 32-bit autorouter and library packs for the second and first prizewinners. The lucky winners are (first) S J Horton, Folkestone (second) J Gardener, Bristol and D A Larner, Great Yarmouth and (third) S J Brown, Leicester; A McIntosh, Gamelon; G Manson, Thurso; J Capel, Chesterfield; H Kibble, Landudno and A Hardman, Liverpool.

More information about Quickroute can be obtained from the website www.quickroute. co.uk or from Quickroute's demonstration pack (tel. 0161476 0202).

Next Month...
Volume 26 no. 13 of Electronics Today International will be in your newsagent on 5 ith December $1997 \ldots$... the leading feature will take a snapshot of the way consumer digitai photography is developing ... another shot from Tim Parker's One Shot Taner ... a solection of DC voltage converter circuits from Ray Marston ... Bob Noyes has been warking on a switched mode power suppy ... plus all the regulars, and more.
Contents are in preparation but are subject to space and availability.

STILL THE WORLD'S MOST

POWERFUL PORTABLE

PROGRAMMERS?

DATAMAN-48LV

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2, 2.7, $3.3 \& 5 \mathrm{~V}$
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU - for goanywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

DATAMAN 54

- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manuak
- Supplied fully charged and ready to use

S4 GAL MODULE

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

SUPPORT

- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery - always in stock
- Dedicated UK supplier, established 1978

Still as unbeatable as ever. Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you want the best, there's still only one choice - Dataman.

Order via credit card hotline - phone today, use tomorrow.

Alternatively, request more detailed information on these and other marketleading programming solutions.

MONEY-BACK 30 DAY TRIAL

 If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

Orders received by 4 pm will normally be despatched seme day. Order today, get it tomorrow!

Dataman Programmers Ltd, Station Rd, Maiden Newto'n, Dorchester, Dorset, DT2 OAE, UK
Telephone +44/0 1300320719
Fax +44/0 1300321012
BBS +44/0 1300321095 (24hr)
Modem V.34N.FCN. 32 bis
Home page: http://www.dataman.com FTP: ftp.dataman.com
Email: sales@dataman.com

[^0]: Mini waterproof TV camera $40 \times 40 \times 15 \mathrm{~mm}$ requires 9 to 135 button cell 6 V 280 mAh battery with wires (Varta volts at 120 mA with composite video output (to feed into a $5 \times 250 \mathrm{DK}$) $£ 2.45$ video or a TV with a SCART plug) it has a high resolution Orbitel 866 battery pack $12 \mathrm{~V} 1,6 \mathrm{AH}$ contains 10 sub C of 450 TV lines Vertical and 380 I lines horizontal, cells with solder tags (the size most commonly used in
 electronic auto lris for nearty dark (1 LUX) to bright cordless screwdrint electronic auto lris for neariy dark (1 LUX) to bright cordless screwdrivers and drills 22 dia $\times 42 \mathrm{~mm}$ tali). It is
 sunlight operation and a smail lens with a 92 degree field easy to crack open and was manufactured in 1994 , of view, it focuses down to a few CM. it is fitted with a 3 wire lead (12 v in gnd and video out). Now also available BCl box $190 \times 106 \times 50 \mathrm{~mm}$ with slots to house a pcb the lid
 Board cameras all with 512×582 pixels $4.4 \times 3.3 \mathrm{~mm}$ sensor $9-13$ volts power supply and composite video out. All need
 to be housed in your own enclosure and have fragile to be housed in your own enclosure and have tragile
 exposed surface mount pars. 47 MIR size $60 \times 36 \times 27 \mathrm{~mm}$ exposed surface
 with 6 infra red leds (gives the same illumination as a smatl
 site torch would) $£ 50.00+$ vat $=£ 58.7540 \mathrm{MP}$ size
 $39 \times 38 \times 23 \mathrm{~mm}$ spy camera with a fixed focus pin hole lens for hiding benind a very smail hole. $£ 57+$ vat $=£ 66.98$
 40 MC size $39 \times 38 \times 28 \mathrm{~mm}$ camera for ' C ' mount lens this gives a much clearer picture than with the small lenses C 68.79 standard C ' mount lens F 1.616 mm for 40MC $£ 26.43+$ vat $=£ 31.06$
 High quality stepping motor kits (all including stepping motors) 'Comstep independent contro on sitepping
 motors by PC (Through the parallel port) with 2 motors and software. Kit $£ 67.00$ ready built $£ 99.00$ software support and 4 digital inputs kit $£ .27 .00$ power interface 4 A $\mathrm{kit} £ 36.00$ power intarface 8 A kit $£ 46.00$ Stepper kit 4
 (manual control) includes 200 step stepping motor and (manual control) includes 200 step stepping motor and control circuit $£ 23.00$
 DTA30 Hand held tran
 DTA30 tand held transistor analyser it tells you which or PNP or fauity (NEW VEASION does not say FETs \&
 SCRs are transistors) DTA ${ }^{\text {¢ }}$. 38.34 SCRA are transistors) DTA 30 £38.34 HMA2O hand held MOSFET analyser identifies gate drain
 and source and if P or N channei HMA20 $£ 38.34$ and source and it P or N channel HMAZO $£ 38.34$
 Speaker cabinets 2 way speaker systems with Motorola Spaaker cater
 tweeters
 speaker dia

 iequency range
 sensilivity (WiMM)
 size in size in mm
 weight
 weight
 price each for:
 grey tell coating E159.97** £119.97** £64.99 "* $=$ not normatly in stock allow 1 week for delivery)
 Power amplifiers 19 rack mount with gain contros \& V Power ampiniers
 meters
 STA300 2x 190 Wrms (4 ohm load) $11 \mathrm{~kg} \quad £ 339.00$ $\begin{array}{ll}\text { STA900 } \\ 2 \times 490 W \text { ms (} 40 \mathrm{hm} \text { load) } 15 \mathrm{~kg} & £ 585.00 \\ 7 & \end{array}$ LED's 3 mm or 5 mm red or green... 7 p each yellow 11 p each cable ties pethargeable Batteries
 AA (HPT) 500 mAH £ 0.99 AA 500 mAH with solder tags £1.55 AA $950 \mathrm{mAH} £ 1.75 \mathrm{C}(\mathrm{HP11)} 1.2 \mathrm{AH} £ 2.20 \mathrm{C}$ $\begin{array}{llll}2 \mathrm{AH} \text { with soider tags } £ 3.60 & \mathrm{D}(\mathrm{HP} 2) \\ 4 \mathrm{AH} \text { with solder tags } £ 4.95 & \text { PP3 } 8.4 \mathrm{~V} & 110 \mathrm{AHAH} & £ 4.95\end{array}$ 1/2AA with solder tags $£ 1.55 \mathrm{Sub} \mathrm{C}$ with solder tags 12.50 AAA (HP16) $180 \mathrm{mAH} £ 1.75 \quad 1 / 3$ AA with tags (philpsCTV) £1.95 Nickel Metal Hydride AA cells high capacity with no memory. If charged at 100 ma and discharged at 250 ma or tess 1100 mAH
 capacity for high discharge rates) $£ 3.75$ Special offers piease check for availability stick
 with red \& black leads 4.8 Vv £5. 95

[^1]: 10 REM - SMARTCNT.BAS -
 20 KEY OFF:CLS
 $30 \mathrm{~B}=$ \&H3F8:REM COM1:
 40 PRINT"INSERT A BT SMART PHONECARD INTO
 READER, THEN PRESS ANY KEY"
 50 IF INKEY\$="" THEN 50
 60 OUT B+4,0:OUT B+3,64
 70 BEEP:CLS:T=TIMER
 80 IF T $>$ TIMER-1 THEN 80
 90 OUT B+4,1:OUT B+4,3:OUT B+4,1
 100 U=0:FOR $F=1$ TO 63
 110 OUT B+4,2:OUT B+4,0
 120 NEXT F

